2329900007359786 a007 Real Root Of 80*x^4+83*x^3+27*x^2+804*x+419 2329900012958669 p001 sum(1/(277*n+44)/(6^n),n=0..infinity) 2329900015241136 h001 (1/10*exp(2)+2/3)/(7/9*exp(2)+2/7) 2329900020887703 m001 (KhinchinLevy-ln(2)*Riemann3rdZero)/ln(2) 2329900023717717 s002 sum(A066850[n]/((2^n-1)/n),n=1..infinity) 2329900026384314 a007 Real Root Of -25*x^4-547*x^3+850*x^2+553*x+145 2329900030186982 h005 exp(cos(Pi*5/37)-cos(Pi*23/48)) 2329900033847616 m005 (1/2*5^(1/2)-1/2)/(9/11*exp(1)+3/7) 2329900052963505 m001 (GAMMA(2/3)-cos(1))/(-FeigenbaumDelta+Salem) 2329900060655454 a007 Real Root Of -365*x^4-574*x^3+937*x^2+550*x-309 2329900061496915 m001 ZetaR(2)^DuboisRaymond+GAMMA(13/24) 2329900063955543 m006 (1/5*Pi+3/4)/(4/5*ln(Pi)+5) 2329900073814260 a007 Real Root Of -346*x^4-369*x^3+781*x^2-889*x-782 2329900074001710 r009 Im(z^3+c),c=-3/62+55/63*I,n=34 2329900085680819 m001 1/exp(Bloch)*DuboisRaymond^2*Pi^2 2329900101576968 r005 Im(z^2+c),c=9/32+4/57*I,n=27 2329900103119242 r009 Re(z^3+c),c=-31/98+13/36*I,n=23 2329900104204924 a003 cos(Pi*17/81)/cos(Pi*23/59) 2329900105230619 m001 (Backhouse+LaplaceLimit)/(Ei(1,1)-GAMMA(5/6)) 2329900120379410 a007 Real Root Of -135*x^4-129*x^3+395*x^2+305*x+913 2329900121982374 s004 Continued Fraction of A173353 2329900121982374 s004 Continued fraction of A173353 2329900122288464 m005 (1/2*gamma-4/5)/(9/11*3^(1/2)+7/9) 2329900122773588 s004 Continued Fraction of A032815 2329900122773588 s004 Continued fraction of A032815 2329900124541452 s004 Continued Fraction of A176894 2329900124541452 s004 Continued fraction of A176894 2329900124730784 a007 Real Root Of -832*x^4+888*x^3-795*x^2+696*x+219 2329900127137354 r005 Im(z^2+c),c=-15/98+7/22*I,n=8 2329900150382173 m001 1/FeigenbaumC^2/FeigenbaumDelta/exp(Zeta(7)) 2329900158849529 m001 (ln(3)+Zeta(1,-1))/(GAMMA(11/12)-Backhouse) 2329900168928249 m001 (Zeta(3)-ln(3))/(Conway-MadelungNaCl) 2329900172488689 a001 2206/21*2584^(11/16) 2329900187711840 r009 Im(z^3+c),c=-47/86+8/45*I,n=5 2329900189713081 r002 5th iterates of z^2 + 2329900191639351 m005 (1/2*2^(1/2)-1/8)/(1/8*Pi-1/7) 2329900191901428 m001 ln(BesselK(0,1))^2/Riemann2ndZero*cos(Pi/5)^2 2329900192181624 a001 610/123*29^(17/37) 2329900193594527 a001 2207/4181*5702887^(11/16) 2329900198189347 r009 Im(z^3+c),c=-23/82+1/5*I,n=9 2329900207829902 a001 3571/3*832040^(12/31) 2329900219847445 m001 (GAMMA(19/24)+FibonacciFactorial)^cos(1/12*Pi) 2329900220251947 a001 2207/832040*12586269025^(11/16) 2329900223387863 r005 Re(z^2+c),c=5/29+21/50*I,n=44 2329900229946008 m001 (BesselK(0,1)*Thue+GAMMA(13/24))/Thue 2329900235492423 r005 Im(z^2+c),c=19/94+7/47*I,n=13 2329900241643077 a001 1364/139583862445*86267571272^(5/23) 2329900241643133 a001 124/1144206275*1346269^(5/23) 2329900244187173 a007 Real Root Of -327*x^4-636*x^3+292*x^2+279*x+657 2329900248839240 m005 (1/2*5^(1/2)-3/7)/(8/9*Pi+1/6) 2329900249531891 r005 Im(z^2+c),c=-15/17+7/36*I,n=41 2329900252091409 p004 log(26357/20879) 2329900253175010 a003 cos(Pi*17/105)-sin(Pi*25/113) 2329900253983848 m001 1/Lehmer^2/Si(Pi)*exp(exp(1)) 2329900259573406 a001 10946/7*521^(19/44) 2329900264257898 m001 (-Paris+Totient)/(Psi(2,1/3)+Si(Pi)) 2329900268365435 a008 Real Root of x^5-x^4-7*x^3+6*x^2+6*x-9 2329900273919726 r005 Im(z^2+c),c=-39/40+14/61*I,n=56 2329900276454172 a007 Real Root Of -346*x^4-741*x^3+83*x^2+14*x+406 2329900277584136 r005 Re(z^2+c),c=-7/20+13/22*I,n=30 2329900279182489 p001 sum((-1)^n/(449*n+233)/n/(6^n),n=1..infinity) 2329900285115696 h001 (2/11*exp(2)+1/12)/(8/11*exp(2)+3/4) 2329900291577497 m001 GAMMA(19/24)/CopelandErdos*exp(cosh(1)) 2329900295674768 r005 Re(z^2+c),c=-11/50+23/58*I,n=11 2329900309430711 m005 (1/2*Catalan-2/9)/(7/9*5^(1/2)-8/11) 2329900310711044 m001 2^(1/3)*Sarnak-ln(Pi) 2329900311590580 s002 sum(A052723[n]/(2^n+1),n=1..infinity) 2329900314958380 r005 Re(z^2+c),c=-5/28+29/60*I,n=57 2329900319633462 a001 12752043/5*17711^(6/13) 2329900320323693 a001 710647/5*9227465^(6/13) 2329900321804606 a001 39603/5*4807526976^(6/13) 2329900325081130 a001 322/75025*610^(54/55) 2329900353774008 m001 1/Magata*Conway^2/exp(FeigenbaumD)^2 2329900360466200 b008 EllipticE[(-9*EulerGamma)/2] 2329900361988839 r005 Im(z^2+c),c=13/60+4/29*I,n=26 2329900363714119 r005 Re(z^2+c),c=19/66+3/17*I,n=41 2329900380843687 m001 ReciprocalFibonacci^(5^(1/2))*Magata^(5^(1/2)) 2329900382577979 a007 Real Root Of 832*x^4+451*x^3+739*x^2-477*x-148 2329900382711669 m001 (cos(1/5*Pi)-ln(3))/(Niven-Riemann1stZero) 2329900384240448 m005 (1/2*gamma-7/12)/(4*Pi+1/12) 2329900384841102 r005 Re(z^2+c),c=7/22+11/54*I,n=4 2329900385785060 m009 (1/3*Pi^2-4)/(3/4*Psi(1,2/3)+3/4) 2329900391765205 m001 (-FellerTornier+ZetaQ(2))/(Psi(1,1/3)+3^(1/3)) 2329900392150433 r005 Re(z^2+c),c=-11/14+15/152*I,n=64 2329900392734643 r005 Im(z^2+c),c=35/118+3/56*I,n=36 2329900394394338 a007 Real Root Of 128*x^4+505*x^3+291*x^2-599*x+117 2329900397369269 a001 21/199*3^(31/43) 2329900409701796 m005 (1/2*5^(1/2)-9/11)/(3/4*Catalan+3/5) 2329900411083139 m005 (1/3*Zeta(3)+2/11)/(2/7*5^(1/2)-8/9) 2329900411497661 r005 Im(z^2+c),c=-67/50+1/57*I,n=30 2329900419180356 m001 (ln(3)+Bloch*ZetaQ(4))/Bloch 2329900424368998 a001 1364/514229*987^(37/57) 2329900461139191 m001 (MertensB3+QuadraticClass)/(Lehmer-Psi(1,1/3)) 2329900462105543 m001 (5^(1/2)-Shi(1)*TwinPrimes)/TwinPrimes 2329900463550446 h001 (-9*exp(1)+12)/(-10*exp(4)+11) 2329900465921086 a007 Real Root Of 391*x^4+680*x^3+931*x^2-652*x-195 2329900472898824 m006 (4*ln(Pi)+2/5)/(2/5*exp(2*Pi)-1/2) 2329900484285818 r005 Im(z^2+c),c=-83/70+11/50*I,n=27 2329900495025705 m005 (1/2*gamma+3)/(1/2*3^(1/2)+6/11) 2329900507532052 m001 (-Robbin+StolarskyHarborth)/(exp(Pi)+Pi^(1/2)) 2329900508701225 a005 (1/cos(2/175*Pi))^1312 2329900514998971 h001 (1/8*exp(2)+7/8)/(1/12*exp(1)+6/11) 2329900516655235 p001 sum((-1)^n/(478*n+429)/(1000^n),n=0..infinity) 2329900526159610 a007 Real Root Of 256*x^4+763*x^3+85*x^2-776*x-163 2329900529494769 r009 Im(z^3+c),c=-3/23+55/64*I,n=54 2329900532719304 m005 (1/2*3^(1/2)-2/7)/(2/3*5^(1/2)+1) 2329900537666411 a007 Real Root Of -423*x^4+664*x^3-821*x^2+909*x+266 2329900537997066 m001 1/Riemann3rdZero^2*Artin/ln(GAMMA(19/24))^2 2329900544224756 r005 Im(z^2+c),c=-27/122+17/49*I,n=8 2329900544728322 a007 Real Root Of -517*x^4-948*x^3+409*x^2-102*x+787 2329900545983941 m001 (Champernowne-Kac)/(BesselI(1,1)+BesselI(1,2)) 2329900546148725 m005 (1/2*Zeta(3)+7/8)/(1/9*Pi-2/7) 2329900567258984 m001 (-Lehmer+Paris)/(GAMMA(13/24)-Si(Pi)) 2329900570975193 m005 (1/3*gamma-2/5)/(2/11*exp(1)-7/12) 2329900576052120 m001 (Chi(1)-GAMMA(17/24))/(Porter+ZetaP(2)) 2329900592281630 a007 Real Root Of 561*x^4+915*x^3-786*x^2+70*x-529 2329900595376842 a005 (1/sin(56/123*Pi))^1481 2329900612520328 r005 Re(z^2+c),c=-7/40+28/57*I,n=50 2329900637323312 r009 Re(z^3+c),c=-29/74+26/49*I,n=44 2329900638486113 m001 (Pi+ln(3))/(OneNinth-Tetranacci) 2329900640526653 r005 Re(z^2+c),c=-6/31+25/57*I,n=16 2329900646376557 a003 sin(Pi*1/96)*sin(Pi*28/111) 2329900649494032 m005 (1/2*3^(1/2)-3/5)/(101/110+1/10*5^(1/2)) 2329900652828073 m001 GAMMA(1/24)^2*ln(OneNinth)^2/GAMMA(19/24) 2329900662332653 a007 Real Root Of 498*x^4+767*x^3-761*x^2+528*x+387 2329900662720556 m001 (Otter+TwinPrimes)/(Ei(1,1)+MertensB3) 2329900671608111 r005 Re(z^2+c),c=-7/25+5/36*I,n=7 2329900677565816 r009 Im(z^3+c),c=-3/62+55/63*I,n=32 2329900681211254 m001 (1+Ei(1))/(Gompertz+MasserGramain) 2329900682438613 a001 1346269/11*29^(7/8) 2329900689356063 r009 Re(z^3+c),c=-23/86+41/59*I,n=46 2329900691883906 m004 4+5*Pi+Cos[Sqrt[5]*Pi]*Sinh[Sqrt[5]*Pi]^2 2329900700864497 a007 Real Root Of -586*x^4-929*x^3+743*x^2-734*x-225 2329900704832016 r005 Re(z^2+c),c=-5/28+29/60*I,n=56 2329900706875569 r005 Im(z^2+c),c=-55/118+15/37*I,n=28 2329900709299324 m001 (MertensB2-Robbin)/(Artin+FibonacciFactorial) 2329900714761538 r005 Re(z^2+c),c=-4/23+29/55*I,n=21 2329900718801880 m001 (Zeta(1/2)+sin(1/12*Pi))/(exp(1/Pi)-Thue) 2329900723436845 m005 (1/2*Catalan+1/3)/(11/12*Catalan-1/2) 2329900724339260 a003 3^(1/2)+cos(5/27*Pi)-cos(1/8*Pi)+cos(7/27*Pi) 2329900725539030 a007 Real Root Of -36*x^4-839*x^3+15*x^2+489*x+269 2329900741882279 r005 Re(z^2+c),c=-7/25+13/63*I,n=5 2329900751029581 r005 Im(z^2+c),c=-57/118+8/19*I,n=43 2329900751292784 m001 StolarskyHarborth*(sin(1/5*Pi)+BesselI(0,2)) 2329900774321767 m005 (1/3*2^(1/2)-1/9)/(5/11*Zeta(3)+1) 2329900777862487 r005 Re(z^2+c),c=-29/114+13/49*I,n=14 2329900783111118 m001 Zeta(5)^ln(Pi)-AlladiGrinstead 2329900784375973 a007 Real Root Of 471*x^4+845*x^3-855*x^2-998*x-876 2329900796027318 r009 Re(z^3+c),c=-37/90+40/63*I,n=11 2329900798654840 a001 2207/5*2504730781961^(6/13) 2329900806831396 r005 Im(z^2+c),c=-55/74+3/37*I,n=64 2329900811252234 a007 Real Root Of -209*x^4-249*x^3+869*x^2+642*x-212 2329900815690863 m001 Trott2nd^GolombDickman/(Trott2nd^Ei(1,1)) 2329900816382165 r002 9th iterates of z^2 + 2329900819263187 a007 Real Root Of 31*x^4+195*x^3+655*x^2-334*x-111 2329900825581503 p001 sum((-1)^n/(457*n+429)/(1024^n),n=0..infinity) 2329900828088101 r002 11th iterates of z^2 + 2329900845349403 r009 Im(z^3+c),c=-1/78+14/57*I,n=4 2329900851702195 m001 GAMMA(17/24)/gamma(3)/Khinchin 2329900860433115 r005 Re(z^2+c),c=-59/74+4/47*I,n=52 2329900863769951 r005 Im(z^2+c),c=19/94+7/47*I,n=24 2329900865035119 m001 1/cos(1)/ln(GAMMA(11/12))^2/exp(1) 2329900869559191 r005 Im(z^2+c),c=-23/78+22/61*I,n=27 2329900869887874 a001 64079/13*6557470319842^(1/19) 2329900870376867 a001 167761/13*75025^(1/19) 2329900870672032 a001 103682/13*701408733^(1/19) 2329900887698043 l006 ln(1909/1954) 2329900890912575 m001 (-Rabbit+ZetaP(4))/(BesselJ(0,1)-Zeta(5)) 2329900896466469 m005 (1/2*Zeta(3)+2/3)/(1/4*5^(1/2)-6) 2329900901717836 m001 exp(sqrt(2))*Conway^2/sqrt(3)^2 2329900903641008 l006 ln(65/668) 2329900907248841 a007 Real Root Of -136*x^4-529*x^3-590*x^2+31*x+592 2329900921202576 r005 Im(z^2+c),c=-1+36/157*I,n=19 2329900935386916 m001 (gamma+cos(1))/(Trott2nd+ZetaP(2)) 2329900938636057 m001 GAMMA(1/24)*exp(BesselJ(0,1))^3 2329900942427515 r005 Im(z^2+c),c=-15/29+9/20*I,n=46 2329900948795866 r005 Im(z^2+c),c=19/94+7/47*I,n=25 2329900952751386 a003 -1-cos(1/5*Pi)+2*cos(3/7*Pi)-cos(1/12*Pi) 2329900964072985 r005 Re(z^2+c),c=9/23+11/49*I,n=11 2329900975534986 r005 Re(z^2+c),c=-39/106+1/48*I,n=2 2329900976311709 r005 Im(z^2+c),c=-31/52+13/41*I,n=19 2329900977187543 a007 Real Root Of -319*x^4-806*x^3-130*x^2+361*x+753 2329900978967638 m001 (MertensB2+MertensB3)/(BesselJ(1,1)-Backhouse) 2329900979089705 r009 Im(z^3+c),c=-13/48+12/59*I,n=6 2329900982281888 r009 Im(z^3+c),c=-11/28+8/57*I,n=20 2329900986262801 m001 PrimesInBinary^2*ln(CopelandErdos)*Zeta(1,2) 2329900987372544 a001 46/3*34^(7/59) 2329900990273127 p003 LerchPhi(1/5,1,23/50) 2329901001219109 r005 Re(z^2+c),c=-41/30+11/111*I,n=13 2329901025294677 m005 (1/2*Pi+2)/(7/12*Pi-3/10) 2329901044202359 m002 -Sinh[Pi]/(5*Pi^2)+Tanh[Pi]/Pi^6 2329901046309721 a007 Real Root Of -397*x^4-507*x^3+649*x^2-586*x+398 2329901046342967 r005 Im(z^2+c),c=7/102+7/31*I,n=7 2329901048262911 a001 1/1762289*377^(5/21) 2329901051201681 s002 sum(A269125[n]/(64^n),n=1..infinity) 2329901051201681 s002 sum(A269125[n]/(64^n-1),n=1..infinity) 2329901054832475 r009 Re(z^3+c),c=-41/110+11/21*I,n=20 2329901058518045 m005 (1/2*Pi-3/11)/(1/9*2^(1/2)+2/5) 2329901069457761 a007 Real Root Of -386*x^4-729*x^3+312*x^2-166*x+74 2329901077226701 r005 Im(z^2+c),c=-4/11+24/59*I,n=12 2329901082837197 m005 (1/2*Zeta(3)-4/5)/(1/4*Catalan+5/8) 2329901091608151 r005 Re(z^2+c),c=-7/40+28/57*I,n=46 2329901098299162 r005 Re(z^2+c),c=7/25+10/59*I,n=26 2329901099432570 r005 Re(z^2+c),c=-27/34+11/127*I,n=38 2329901099676452 a007 Real Root Of 461*x^4+851*x^3-450*x^2+375*x+495 2329901111824559 a007 Real Root Of -320*x^4-769*x^3-243*x^2-266*x+403 2329901119935171 m005 (1/3*gamma+1/10)/(10/11*5^(1/2)-7/9) 2329901120279731 m001 (5^(1/2)+Ei(1))/(-FransenRobinson+MertensB2) 2329901121049341 r005 Im(z^2+c),c=-19/18+58/247*I,n=3 2329901121178317 r005 Re(z^2+c),c=-3/26+5/8*I,n=39 2329901124259397 m001 (Kac+LandauRamanujan)/(Mills-Rabbit) 2329901127254801 a007 Real Root Of -82*x^4-146*x^3+292*x^2+301*x-314 2329901130211274 m005 (1/2*gamma+9/10)/(3/8*Catalan+1/6) 2329901142498774 a003 cos(Pi*14/45)-cos(Pi*41/104) 2329901147867697 m001 Trott/FibonacciFactorial^2/exp(GAMMA(5/6)) 2329901152788154 m006 (4*Pi-1/2)/(4*ln(Pi)+3/5) 2329901154636037 a001 199/365435296162*233^(4/15) 2329901163480243 m001 1/Riemann1stZero/LaplaceLimit^2/ln(Zeta(7))^2 2329901170668957 m005 (1/2*Pi+5/8)/(-1/63+3/7*5^(1/2)) 2329901184926109 a007 Real Root Of 268*x^4+344*x^3-891*x^2-346*x+484 2329901189956867 a007 Real Root Of 324*x^4+936*x^3+312*x^2-685*x-999 2329901190965277 m001 ln(2^(1/2)+1)*Magata*StronglyCareFree 2329901194616372 m001 1/exp(Riemann3rdZero)^2*Porter*sin(1) 2329901200708615 r005 Im(z^2+c),c=-97/110+10/49*I,n=45 2329901201031025 m009 (3/10*Pi^2-1/3)/(2*Psi(1,2/3)-5) 2329901207135752 m001 (3^(1/2)-gamma(2))/(-Grothendieck+MertensB2) 2329901207702712 r005 Im(z^2+c),c=-8/17+19/35*I,n=45 2329901216962867 r005 Re(z^2+c),c=3/11+7/38*I,n=8 2329901223565875 a007 Real Root Of -447*x^4-865*x^3+660*x^2+424*x-363 2329901225235424 m004 250/Pi+4*Cosh[Sqrt[5]*Pi]+Log[Sqrt[5]*Pi] 2329901229234628 m001 (Rabbit+Trott)/(FeigenbaumD+HardyLittlewoodC5) 2329901239520756 m001 (ln(2)/ln(10)-sin(1/5*Pi))/(gamma(1)+Conway) 2329901241620442 m001 (Kac-ThueMorse)/(BesselJ(1,1)-FeigenbaumKappa) 2329901250501714 m001 Magata/ArtinRank2^2*exp(Zeta(3)) 2329901253826599 a001 7/18*(1/2*5^(1/2)+1/2)^9*18^(5/7) 2329901258606415 l006 ln(7539/9517) 2329901262512807 r009 Im(z^3+c),c=-6/11+13/40*I,n=29 2329901279279776 r005 Im(z^2+c),c=-87/110+1/63*I,n=7 2329901284785076 m005 (1/2*exp(1)-1/5)/(5/9*gamma-9/11) 2329901285456176 m001 FeigenbaumC*ln(ErdosBorwein)*FeigenbaumD 2329901294282225 a007 Real Root Of 420*x^4+881*x^3-3*x^2+114*x-952 2329901297511869 r005 Re(z^2+c),c=-27/34+9/104*I,n=56 2329901301278833 r009 Re(z^3+c),c=-5/16+13/37*I,n=12 2329901301341218 r009 Im(z^3+c),c=-9/20+3/43*I,n=27 2329901301385711 r009 Im(z^3+c),c=-11/28+8/57*I,n=25 2329901304599133 m001 (Pi-ln(gamma))/(Magata-MasserGramainDelta) 2329901307719810 a007 Real Root Of 767*x^4+432*x^3+113*x^2-475*x+11 2329901311234900 a001 3571/365435296162*86267571272^(5/23) 2329901311234956 a001 3571/32951280099*1346269^(5/23) 2329901320311005 a001 196418/2207*76^(2/9) 2329901328806044 a007 Real Root Of -605*x^4-522*x^3+463*x^2+914*x+183 2329901330815022 a007 Real Root Of 563*x^4+830*x^3-680*x^2+629*x-936 2329901333213366 h001 (-9*exp(4)+5)/(-7*exp(8)-9) 2329901340670621 r008 a(0)=0,K{-n^6,-89+89*n^3+47*n^2-4*n} 2329901350270745 r008 a(0)=0,K{-n^6,77-84*n^3-68*n^2+32*n} 2329901358725459 a001 1/2207*(1/2*5^(1/2)+1/2)^30*4^(11/15) 2329901364584949 m001 (ln(gamma)+2)/(GAMMA(3/4)+5) 2329901371017105 p004 log(32917/3203) 2329901371735674 m001 (ZetaR(2)-exp(Pi)*Zeta(1,2))/Zeta(1,2) 2329901374968311 r005 Re(z^2+c),c=-17/60+5/51*I,n=5 2329901376535681 b008 Log[7+E^(-2)+Pi] 2329901394520880 m001 (Gompertz+KhinchinHarmonic)/(Lehmer+ThueMorse) 2329901411509686 l006 ln(6872/8675) 2329901421056396 r002 19th iterates of z^2 + 2329901421060858 r005 Re(z^2+c),c=-41/50+1/52*I,n=60 2329901426586924 a001 121393/843*3571^(28/31) 2329901430941310 m001 (exp(-1/2*Pi)+MertensB1)/(Catalan+ln(3)) 2329901431905244 a007 Real Root Of -41*x^4-970*x^3-346*x^2-41*x+436 2329901438687830 m005 (1/2*2^(1/2)+9/11)/(-5/88+7/22*5^(1/2)) 2329901443564660 r005 Re(z^2+c),c=-2/13+15/28*I,n=56 2329901447018795 a007 Real Root Of -618*x^4-933*x^3+752*x^2-675*x+756 2329901447324582 a007 Real Root Of -416*x^4-879*x^3+x^2-809*x-749 2329901449529028 s002 sum(A194696[n]/(exp(n)+1),n=1..infinity) 2329901459905004 a001 55/322*15127^(1/31) 2329901460464566 a005 (1/cos(16/227*Pi))^1152 2329901463210113 m001 (2*Pi/GAMMA(5/6)-ZetaP(3))/exp(Pi) 2329901466137095 q001 1/4292027 2329901466471232 r009 Im(z^3+c),c=-53/122+3/35*I,n=12 2329901467286244 a001 9349/956722026041*86267571272^(5/23) 2329901467286300 a001 9349/86267571272*1346269^(5/23) 2329901468612228 a005 (1/sin(98/205*Pi))^1323 2329901469293923 p004 log(25183/19949) 2329901470707301 a007 Real Root Of 258*x^4+434*x^3-242*x^2-79*x-984 2329901472149844 r009 Im(z^3+c),c=-9/44+29/34*I,n=6 2329901472790495 a007 Real Root Of 230*x^4+688*x^3+438*x^2+199*x+10 2329901473010088 r005 Im(z^2+c),c=-69/58+1/33*I,n=29 2329901477858066 a007 Real Root Of 517*x^4+850*x^3-880*x^2-2*x+288 2329901490053828 a001 24476/2504730781961*86267571272^(5/23) 2329901490053884 a001 844/7787980473*1346269^(5/23) 2329901491091071 a007 Real Root Of -807*x^4-33*x^3+51*x^2+645*x+15 2329901493375574 a001 64079/6557470319842*86267571272^(5/23) 2329901493375630 a001 64079/591286729879*1346269^(5/23) 2329901493860266 a001 15251/140728068720*1346269^(5/23) 2329901493930974 a001 439204/4052739537881*1346269^(5/23) 2329901493941290 a001 1149851/10610209857723*1346269^(5/23) 2329901493947665 a001 710647/6557470319842*1346269^(5/23) 2329901493962410 a001 3571/1346269*987^(37/57) 2329901493974673 a001 271443/2504730781961*1346269^(5/23) 2329901494159732 a001 2206/225749145909*86267571272^(5/23) 2329901494159788 a001 103682/956722026041*1346269^(5/23) 2329901495428526 a001 39603/4052739537881*86267571272^(5/23) 2329901495428582 a001 39603/365435296162*1346269^(5/23) 2329901504124969 a001 15127/1548008755920*86267571272^(5/23) 2329901504125025 a001 15127/139583862445*1346269^(5/23) 2329901504691570 a003 sin(Pi*2/75)-sin(Pi*4/39) 2329901505400526 r005 Im(z^2+c),c=-10/27+19/50*I,n=21 2329901505667017 m009 (4/5*Psi(1,2/3)+3/4)/(2*Pi^2-6) 2329901506675186 m005 (5*exp(1)-3/5)/(1/3*gamma-3/4) 2329901514121140 r009 Re(z^3+c),c=-3/98+5/14*I,n=12 2329901529429069 r005 Im(z^2+c),c=-29/60+17/41*I,n=45 2329901536560009 r002 40th iterates of z^2 + 2329901544346050 r005 Im(z^2+c),c=-11/27+5/9*I,n=59 2329901544858067 a007 Real Root Of -262*x^4-215*x^3+421*x^2-785*x+887 2329901549947475 m001 (arctan(1/2)+Khinchin)/(Stephens-Tetranacci) 2329901559095786 r005 Im(z^2+c),c=-19/48+16/41*I,n=34 2329901563731278 a001 5778/591286729879*86267571272^(5/23) 2329901563731334 a001 5778/53316291173*1346269^(5/23) 2329901565045280 a007 Real Root Of -249*x^4-17*x^3+833*x^2-887*x+534 2329901566133989 r009 Re(z^3+c),c=-3/22+53/55*I,n=8 2329901592411272 a001 832040/843*39603^(16/31) 2329901592946488 a007 Real Root Of -316*x^4-636*x^3+156*x^2-461*x-653 2329901594348143 m001 FeigenbaumC*OrthogonalArrays^Rabbit 2329901596995860 r005 Re(z^2+c),c=-5/23+41/57*I,n=49 2329901597285309 l006 ln(6205/7833) 2329901598914118 m005 (1/2*Zeta(3)-5/8)/(1/7*Zeta(3)+6/7) 2329901600013213 a001 17711/843*15127^(30/31) 2329901601508856 m001 Conway^2*ln(ErdosBorwein)^2/GAMMA(13/24) 2329901601727741 a007 Real Root Of 569*x^4+255*x^3+817*x^2-297*x-112 2329901607925811 m001 (KhinchinLevy+Sarnak)/(2^(1/3)-BesselJ(1,1)) 2329901608710181 b008 53*EulerGamma*Tanh[1] 2329901616429908 m001 1/ln(Zeta(5))*GAMMA(13/24)^2*sqrt(Pi)^2 2329901637220458 a001 11/987*4807526976^(3/22) 2329901643419012 a001 377*5778^(23/31) 2329901647489504 m005 (1/2*exp(1)-2/9)/(39/112+1/16*5^(1/2)) 2329901664958155 a007 Real Root Of 417*x^4+773*x^3-339*x^2+37*x-585 2329901666745289 m001 Zeta(1,-1)^exp(1/Pi)/(Zeta(1,-1)^BesselI(1,1)) 2329901671561857 a007 Real Root Of 66*x^4-714*x^3+729*x^2+992*x+817 2329901680444920 m001 (cos(1/5*Pi)-Khinchin)/(Porter-Robbin) 2329901691231572 m003 2-E^(1+Sqrt[5])+(Sqrt[5]*Log[1/2+Sqrt[5]/2])/8 2329901695088189 m005 (1/3*3^(1/2)+3/5)/(1/3*Catalan+1/5) 2329901696839418 m001 exp(Pi)+Champernowne*GlaisherKinkelin 2329901697705900 a007 Real Root Of -79*x^4-244*x^3+66*x^2+771*x+680 2329901700650167 a003 cos(Pi*2/91)/sin(Pi*10/71) 2329901708564258 m001 (Zeta(3)-Kolakoski)/(MadelungNaCl+ZetaQ(4)) 2329901712698268 r002 46th iterates of z^2 + 2329901716538341 r009 Im(z^3+c),c=-5/11+5/64*I,n=37 2329901719714183 a001 24476/55*987^(31/54) 2329901723519473 m001 Mills+GAMMA(2/3)^ZetaP(4) 2329901728848369 a001 514229/5778*76^(2/9) 2329901729861481 p001 sum((-1)^n/(479*n+429)/(1000^n),n=0..infinity) 2329901729907315 m001 (GAMMA(17/24)-FellerTornier)/(Magata+Sarnak) 2329901732023052 b008 2/Sqrt[3]+Sinh[1] 2329901735952688 m001 1/exp(Tribonacci)^2/Paris^2/GAMMA(11/12)^2 2329901744765229 m001 (GAMMA(11/12)+Mills)/(ln(2^(1/2)+1)-Ei(1)) 2329901745872184 r005 Re(z^2+c),c=-25/32+3/28*I,n=4 2329901746190333 m005 (1/2*Pi-1/2)/(1/5*Zeta(3)-7/10) 2329901746459163 a001 1926/726103*987^(37/57) 2329901750158139 h001 (5/8*exp(2)+1/9)/(7/11*exp(1)+3/10) 2329901752647571 r005 Im(z^2+c),c=-27/52+17/41*I,n=49 2329901765600819 m005 (1/2*Pi+3/5)/(4/5*5^(1/2)-6/7) 2329901767273145 a001 1/5778*(1/2*5^(1/2)+1/2)^32*4^(11/15) 2329901775220924 m001 (Zeta(1,2)+Artin)/(Paris-PolyaRandomWalk3D) 2329901788453179 a001 1346269/15127*76^(2/9) 2329901797149404 a001 3524578/39603*76^(2/9) 2329901797862780 r005 Im(z^2+c),c=-14/29+17/41*I,n=60 2329901798418166 a001 9227465/103682*76^(2/9) 2329901798603276 a001 24157817/271443*76^(2/9) 2329901798630283 a001 63245986/710647*76^(2/9) 2329901798634223 a001 165580141/1860498*76^(2/9) 2329901798634798 a001 433494437/4870847*76^(2/9) 2329901798634882 a001 1134903170/12752043*76^(2/9) 2329901798634894 a001 2971215073/33385282*76^(2/9) 2329901798634896 a001 7778742049/87403803*76^(2/9) 2329901798634896 a001 20365011074/228826127*76^(2/9) 2329901798634896 a001 53316291173/599074578*76^(2/9) 2329901798634896 a001 139583862445/1568397607*76^(2/9) 2329901798634896 a001 365435296162/4106118243*76^(2/9) 2329901798634896 a001 956722026041/10749957122*76^(2/9) 2329901798634896 a001 2504730781961/28143753123*76^(2/9) 2329901798634896 a001 6557470319842/73681302247*76^(2/9) 2329901798634896 a001 10610209857723/119218851371*76^(2/9) 2329901798634896 a001 4052739537881/45537549124*76^(2/9) 2329901798634896 a001 1548008755920/17393796001*76^(2/9) 2329901798634896 a001 591286729879/6643838879*76^(2/9) 2329901798634896 a001 225851433717/2537720636*76^(2/9) 2329901798634896 a001 86267571272/969323029*76^(2/9) 2329901798634896 a001 32951280099/370248451*76^(2/9) 2329901798634896 a001 12586269025/141422324*76^(2/9) 2329901798634897 a001 4807526976/54018521*76^(2/9) 2329901798634902 a001 1836311903/20633239*76^(2/9) 2329901798634934 a001 3524667/39604*76^(2/9) 2329901798635153 a001 267914296/3010349*76^(2/9) 2329901798636658 a001 102334155/1149851*76^(2/9) 2329901798646974 a001 39088169/439204*76^(2/9) 2329901798717680 a001 14930352/167761*76^(2/9) 2329901799202304 a001 5702887/64079*76^(2/9) 2329901802289826 r005 Im(z^2+c),c=-49/40+5/32*I,n=22 2329901802523966 a001 2178309/24476*76^(2/9) 2329901805191771 m001 (gamma*ln(5)-Kolakoski)/gamma 2329901814367062 r002 13th iterates of z^2 + 2329901818269765 m001 (PlouffeB+Trott2nd)/(ln(gamma)-ln(5)) 2329901825290979 a001 832040/9349*76^(2/9) 2329901825542204 m001 BesselJ(0,1)*FeigenbaumAlpha+PrimesInBinary 2329901827810780 l006 ln(5538/6991) 2329901828361526 s002 sum(A109071[n]/(n^3*10^n-1),n=1..infinity) 2329901828873896 a001 2/433494437*225851433717^(5/21) 2329901828873898 a001 2/39088169*9227465^(5/21) 2329901830828592 a001 47*196418^(37/53) 2329901837061436 a001 (1/2*5^(1/2)+1/2)^14*4^(11/15) 2329901839113653 a007 Real Root Of 451*x^4+773*x^3-863*x^2-665*x-378 2329901844060157 m005 (4*exp(1)-2/5)/(1/5*2^(1/2)+1/6) 2329901849786472 m001 (-Niven+Otter)/(ln(2)/ln(10)+CopelandErdos) 2329901851602843 m001 1/cos(Pi/12)^2/ln(Conway)^2/cos(Pi/5)^2 2329901865622894 m001 1/Robbin*ln(CareFree)*BesselJ(1,1) 2329901870795405 a007 Real Root Of 623*x^4+950*x^3-849*x^2+935*x+444 2329901875972049 r009 Re(z^3+c),c=-7/27+53/54*I,n=14 2329901876394625 m008 (5*Pi^5+2/5)/(2/3*Pi^4+3/4) 2329901877411092 a007 Real Root Of -340*x^4-905*x^3-527*x^2-281*x+779 2329901889320132 a005 (1/cos(29/132*Pi))^145 2329901892130756 a007 Real Root Of 351*x^4-285*x^3+390*x^2-935*x-22 2329901898571012 h001 (3/4*exp(1)+4/11)/(1/3*exp(1)+1/8) 2329901907574013 h001 (3/10*exp(2)+3/7)/(1/9*exp(1)+5/6) 2329901931108813 a001 832040/843*2207^(22/31) 2329901935012280 r002 41th iterates of z^2 + 2329901942415759 r005 Re(z^2+c),c=15/52+27/58*I,n=57 2329901943024113 r002 3th iterates of z^2 + 2329901943689255 m005 (1/3*Zeta(3)+2/5)/(2*exp(1)-2) 2329901963575838 k003 Champernowne real with 5/3*n^3+5/2*n^2-109/6*n+16 2329901972279001 a001 2207/225851433717*86267571272^(5/23) 2329901972279057 a001 2207/20365011074*1346269^(5/23) 2329901972881666 r005 Im(z^2+c),c=-1/25+19/30*I,n=28 2329901981338417 a001 317811/3571*76^(2/9) 2329901983320705 r009 Re(z^3+c),c=-29/74+37/64*I,n=58 2329901989478937 h001 (3/4*exp(1)+5/9)/(4/11*exp(1)+1/8) 2329901998256093 r005 Im(z^2+c),c=-59/102+7/48*I,n=8 2329902019769573 a001 1/3571*(1/2*5^(1/2)+1/2)^31*4^(11/15) 2329902020174436 a007 Real Root Of 15*x^4+330*x^3-413*x^2+961*x+140 2329902020820963 r002 17th iterates of z^2 + 2329902024942791 r009 Im(z^3+c),c=-3/62+55/63*I,n=30 2329902029660472 r002 12th iterates of z^2 + 2329902032650137 p001 sum(1/(143*n+43)/(125^n),n=0..infinity) 2329902040186499 a007 Real Root Of 222*x^4+709*x^3+575*x^2+388*x+208 2329902041193287 s002 sum(A097030[n]/((exp(n)+1)/n),n=1..infinity) 2329902051993038 r004 Re(z^2+c),c=-5/18+1/7*I,z(0)=-1,n=22 2329902062493852 m008 (3*Pi^6-1)/(1/2*Pi-1/3) 2329902063776038 k002 Champernowne real with 55/2*n^2-153/2*n+72 2329902067158923 p001 sum((-1)^n/(458*n+429)/(1024^n),n=0..infinity) 2329902083856389 q001 928/3983 2329902084928754 r005 Re(z^2+c),c=-7/16+18/31*I,n=55 2329902086147117 r005 Re(z^2+c),c=-5/17+55/64*I,n=7 2329902089468832 m001 (BesselI(1,2)+Artin)/(FeigenbaumB+Trott) 2329902090814927 r005 Im(z^2+c),c=-55/122+23/60*I,n=18 2329902095545974 r005 Im(z^2+c),c=-13/42+23/63*I,n=38 2329902104666160 r009 Re(z^3+c),c=-37/62+28/57*I,n=24 2329902121456182 a007 Real Root Of 516*x^4+723*x^3-890*x^2+139*x-906 2329902121469270 l006 ln(4871/6149) 2329902125581000 m005 (1/2*exp(1)+3/5)/(5/7*gamma+3/7) 2329902155007492 a001 2207/832040*987^(37/57) 2329902168268494 b008 ArcSinh[2-4*Sqrt[Pi]] 2329902175640851 m001 gamma(1)^Zeta(3)*Landau 2329902189762476 h001 (8/9*exp(1)+7/11)/(1/6*exp(1)+6/7) 2329902203562363 a007 Real Root Of 14*x^4-442*x^3-964*x^2-49*x-884 2329902206391520 m001 1/exp(GAMMA(1/24))/Bloch/sin(Pi/5) 2329902209822315 r004 Re(z^2+c),c=15/46+21/22*I,z(0)=I,n=3 2329902211744228 r005 Re(z^2+c),c=-31/44+14/41*I,n=14 2329902217508372 a007 Real Root Of -216*x^4-623*x^3-788*x^2-828*x+834 2329902223581837 r005 Im(z^2+c),c=-51/70+8/39*I,n=59 2329902224731310 r005 Im(z^2+c),c=-13/31+21/53*I,n=43 2329902233240076 a007 Real Root Of 269*x^4+795*x^3+618*x^2+860*x+777 2329902262279140 a007 Real Root Of 196*x^4+212*x^3-457*x^2+114*x-348 2329902290501968 r009 Re(z^3+c),c=-10/27+23/38*I,n=56 2329902290519080 r005 Im(z^2+c),c=-34/29+1/33*I,n=55 2329902290928485 m005 (1/3*exp(1)-2/5)/(5/8*2^(1/2)-2/3) 2329902294361044 m001 (-GaussAGM+Kolakoski)/(gamma+ln(Pi)) 2329902300561420 a007 Real Root Of 468*x^4+487*x^3-820*x^2+995*x-862 2329902311599381 m001 BesselI(1,2)/((2^(1/3))-gamma) 2329902311599381 m001 BesselI(1,2)/(gamma-2^(1/3)) 2329902314567393 m005 (1/2*gamma-5)/(7/11*3^(1/2)-9/10) 2329902316664627 r005 Im(z^2+c),c=-15/31+27/62*I,n=34 2329902329902329 k006 concat of cont frac of 2329902335356061 m001 BesselJ(1,1)/GAMMA(7/12)*AlladiGrinstead 2329902336479904 r005 Re(z^2+c),c=9/32+19/45*I,n=5 2329902341228270 r005 Im(z^2+c),c=-7/10+18/227*I,n=53 2329902345971127 a007 Real Root Of -498*x^4-875*x^3+66*x^2-967*x+997 2329902367142032 m008 (2/3*Pi^3-2)/(5/6*Pi^6+1/5) 2329902391017521 m001 1/MertensB1*GaussKuzminWirsing*ln(Zeta(9)) 2329902394447636 r005 Im(z^2+c),c=-25/62+5/11*I,n=15 2329902408086537 m009 (3/4*Psi(1,2/3)-1/3)/(4*Catalan+1/2*Pi^2-1/6) 2329902426571202 r005 Im(z^2+c),c=-5/16+18/49*I,n=13 2329902435060234 r002 6th iterates of z^2 + 2329902437087925 m001 (ln(Pi)-Pi^(1/2))/(Khinchin+ZetaQ(3)) 2329902453922568 r005 Re(z^2+c),c=31/110+31/64*I,n=15 2329902458479849 m001 1/ln(ArtinRank2)/FransenRobinson^2*Robbin 2329902464384848 m001 BesselI(1,2)^cos(1/12*Pi)+LandauRamanujan 2329902464384848 m001 BesselI(1,2)^cos(Pi/12)+LandauRamanujan 2329902468547453 m009 (3/8*Pi^2-1/2)/(2*Pi^2-6) 2329902474078547 m001 (Chi(1)*ln(2^(1/2)+1)-Landau)/Chi(1) 2329902480973553 a005 (1/sin(75/197*Pi))^684 2329902484806823 r005 Im(z^2+c),c=-3/50+9/32*I,n=16 2329902493335277 r002 29th iterates of z^2 + 2329902493823570 r009 Re(z^3+c),c=-1/122+16/21*I,n=43 2329902497518720 m001 1/ln((2^(1/3)))^2*Champernowne^2/GAMMA(3/4) 2329902502146894 m001 (Zeta(1,2)+Bloch)/(MertensB2-Riemann2ndZero) 2329902508310532 l006 ln(4204/5307) 2329902516792711 l006 ln(928/9537) 2329902518982081 a007 Real Root Of -580*x^4-936*x^3+669*x^2-720*x-56 2329902529041941 s002 sum(A051112[n]/(n*exp(pi*n)+1),n=1..infinity) 2329902534087791 s002 sum(A051112[n]/(n*exp(pi*n)-1),n=1..infinity) 2329902542965288 m001 (2/3*Pi*3^(1/2)/GAMMA(2/3))^GaussAGM+ZetaQ(2) 2329902555356438 p004 log(27943/2719) 2329902561680225 r005 Re(z^2+c),c=-9/14+13/223*I,n=2 2329902581424119 p001 sum((-1)^n/(457*n+426)/(64^n),n=0..infinity) 2329902583352644 a003 sin(Pi*30/91)/cos(Pi*41/108) 2329902595080958 r005 Re(z^2+c),c=43/110+11/48*I,n=46 2329902595776406 r005 Im(z^2+c),c=-117/94+6/55*I,n=41 2329902600891662 p004 log(25693/20353) 2329902609084242 a007 Real Root Of -289*x^4-796*x^3+185*x^2+696*x-934 2329902612093233 r009 Im(z^3+c),c=-33/74+6/59*I,n=14 2329902638293024 l006 ln(863/8869) 2329902639663304 a007 Real Root Of -437*x^4+691*x^3+633*x^2+915*x-255 2329902648392911 h005 exp(cos(Pi*11/58)/sin(Pi*23/53)) 2329902669136441 r002 3th iterates of z^2 + 2329902670167242 a003 cos(Pi*17/94)-sin(Pi*19/91) 2329902677292146 a007 Real Root Of -707*x^4+161*x^3-643*x^2+266*x+101 2329902687135804 m001 2^(1/2)*ln(5)+ZetaQ(2) 2329902699814613 r005 Im(z^2+c),c=-109/118+13/61*I,n=48 2329902700212271 r005 Re(z^2+c),c=-23/122+29/63*I,n=28 2329902701135875 a007 Real Root Of 234*x^4+433*x^3-116*x^2+483*x+336 2329902703564681 p002 log((17+17^(1/2))^(1/2)*5^(1/2)) 2329902704885009 a003 sin(Pi*7/94)/sin(Pi*22/47) 2329902710216484 m005 (2/3*gamma+1/6)/(5/6*Catalan-1) 2329902710369442 r005 Re(z^2+c),c=-11/58+27/59*I,n=30 2329902711392173 b008 Sqrt[15]-Cosh[1] 2329902720774423 m001 (Pi-ln(5))/(FeigenbaumB-ZetaP(3)) 2329902721941554 m008 (5/6*Pi^3+5)/(1/6*Pi+4/5) 2329902727034198 h001 (-9*exp(6)+1)/(-3*exp(4)+8) 2329902729744482 r005 Re(z^2+c),c=5/38+36/59*I,n=25 2329902737701412 a005 (1/sin(84/221*Pi))^170 2329902741616899 r005 Im(z^2+c),c=-71/90+3/29*I,n=19 2329902744205697 m001 (OneNinth+Robbin)/(CareFree-MertensB2) 2329902747967288 s002 sum(A119344[n]/(pi^n+1),n=1..infinity) 2329902751729176 l006 ln(7741/9772) 2329902755510110 r005 Re(z^2+c),c=-7/25+1/8*I,n=15 2329902774784477 r005 Im(z^2+c),c=-5/27+35/52*I,n=36 2329902777623523 m005 (1/2*5^(1/2)+8/9)/(2/5*Catalan-3/8) 2329902779586602 l006 ln(798/8201) 2329902784976811 a001 322*32951280099^(15/23) 2329902795514088 a007 Real Root Of 291*x^4+228*x^3-875*x^2+208*x-457 2329902798581234 a007 Real Root Of -400*x^4-628*x^3+687*x^2+24*x+171 2329902801600914 q001 815/3498 2329902804850300 m001 (Pi+FeigenbaumC)^ReciprocalLucas 2329902805690028 r005 Re(z^2+c),c=-2/11+27/53*I,n=18 2329902822500133 r005 Im(z^2+c),c=-18/25+3/19*I,n=37 2329902823710181 r009 Re(z^3+c),c=-7/19+14/29*I,n=39 2329902837768703 a001 843/1597*5702887^(11/16) 2329902846932004 m001 GolombDickman^Totient/(Si(Pi)^Totient) 2329902861853900 a001 (5^(1/4)+1)^(481/30) 2329902874549260 r005 Re(z^2+c),c=-23/22+17/31*I,n=4 2329902874832449 m005 (1/2*exp(1)-2)/(7/9*exp(1)+7/11) 2329902879283990 a003 sin(Pi*41/117)/cos(Pi*3/8) 2329902880681192 m001 GAMMA(11/12)*GAMMA(11/24)^Zeta(3) 2329902889966284 a001 5/3461452808002*47^(13/18) 2329902891423855 m006 (1/6*exp(2*Pi)-5/6)/(1/5*exp(Pi)-5/6) 2329902918412008 s002 sum(A005969[n]/((2^n-1)/n),n=1..infinity) 2329902923663589 m008 (2*Pi^5+1/3)/(1/5*Pi+2) 2329902927942464 m002 -Pi^5+(Pi^3*Cosh[Pi])/5+Log[Pi] 2329902928680320 a003 cos(Pi*33/95)-cos(Pi*32/75) 2329902929448313 p001 sum((-1)^n/(559*n+422)/(25^n),n=0..infinity) 2329902937063308 r009 Re(z^3+c),c=-17/62+4/17*I,n=3 2329902938956809 m006 (1/2*exp(2*Pi)-2)/(1/5*Pi^2-5/6) 2329902945939043 l006 ln(733/7533) 2329902950429787 a001 98209/9*4^(29/53) 2329902959386874 b008 5*(Pi+ArcTan[19]) 2329902960993514 a007 Real Root Of 31*x^4+706*x^3-359*x^2+427*x-948 2329902968022532 a003 cos(Pi*23/53)*cos(Pi*45/97) 2329902968167726 a007 Real Root Of 579*x^4-389*x^3-85*x^2-618*x-146 2329902969315382 m006 (4/Pi+3/4)/(3/5*ln(Pi)-3/5) 2329902973987583 a001 39603/377*2584^(11/16) 2329902974046927 r002 11th iterates of z^2 + 2329902974284705 m001 (PlouffeB-Totient)/(GAMMA(23/24)+FeigenbaumD) 2329902978937125 m005 (1/2*gamma-4/5)/(7/11*Zeta(3)-6/11) 2329902989388747 m001 (Zeta(3)+ErdosBorwein)/(FeigenbaumC-Kac) 2329902994166572 a003 cos(Pi*4/111)*cos(Pi*31/73) 2329902996776018 a007 Real Root Of -517*x^4+908*x^3-778*x^2+411*x+151 2329903001358312 m001 (GlaisherKinkelin-gamma(3))/ln(gamma) 2329903005603575 r005 Re(z^2+c),c=-11/46+9/28*I,n=17 2329903010026335 m005 (2/3*gamma-3/5)/(1/6*Pi+2/5) 2329903020481528 a001 1/377*12586269025^(11/16) 2329903030719766 m001 (GAMMA(1/4)*GAMMA(1/24)-Lehmer)/GAMMA(1/4) 2329903041051188 l006 ln(3537/4465) 2329903044019804 a007 Real Root Of 407*x^4+720*x^3-769*x^2-865*x-728 2329903050904030 a001 121393/1364*76^(2/9) 2329903055936437 m005 (1/2*Zeta(3)+11/12)/(3/7*3^(1/2)-1/11) 2329903057573089 a001 123/233*832040^(41/43) 2329903058635325 m001 1/exp(Zeta(3))^2/Artin/Zeta(5) 2329903069666268 a007 Real Root Of 936*x^4-927*x^3-479*x^2-880*x+240 2329903070050588 r005 Im(z^2+c),c=-31/122+8/23*I,n=17 2329903070062711 m001 (BesselI(1,2)+Thue)/(sin(1/5*Pi)+arctan(1/2)) 2329903089362212 a001 1/1364*(1/2*5^(1/2)+1/2)^29*4^(11/15) 2329903099951990 m002 -Pi^5-Pi^2*Coth[Pi]+Pi^6*Sech[Pi] 2329903100679447 r005 Re(z^2+c),c=39/118+5/24*I,n=62 2329903109779920 r009 Re(z^3+c),c=-8/21+23/45*I,n=44 2329903110408536 m001 5^(1/2)/(BesselJ(0,1)+DuboisRaymond) 2329903116086606 r005 Im(z^2+c),c=-21/52+26/53*I,n=12 2329903127419134 b008 19/(3*E) 2329903128637826 r005 Im(z^2+c),c=-65/118+15/34*I,n=42 2329903134130613 m005 (1/2*5^(1/2)+3/5)/(7/10*gamma+1/3) 2329903135490233 a007 Real Root Of 140*x^4+390*x^3+610*x^2-564*x-160 2329903138381152 m001 GAMMA(1/12)*(ln(Pi)+ln(1+sqrt(2))) 2329903143672584 m001 Shi(1)*ln(2+3^(1/2))-Zeta(1,2) 2329903144665425 l006 ln(668/6865) 2329903168371333 m001 (Artin-LandauRamanujan2nd)/(ln(gamma)+3^(1/3)) 2329903176302024 r005 Re(z^2+c),c=2/7+11/63*I,n=31 2329903176828155 r005 Im(z^2+c),c=-19/32+4/23*I,n=8 2329903178149260 a007 Real Root Of 337*x^4+513*x^3-271*x^2+780*x-154 2329903182273341 a007 Real Root Of 487*x^4+657*x^3-991*x^2-128*x-960 2329903184601913 r005 Re(z^2+c),c=6/17+6/37*I,n=34 2329903190067355 r005 Re(z^2+c),c=-19/78+19/62*I,n=21 2329903209109126 m005 (1/3*2^(1/2)-1/4)/(1/6*Pi-3/7) 2329903210570272 r009 Re(z^3+c),c=-6/17+22/49*I,n=18 2329903215036922 r002 25th iterates of z^2 + 2329903215355881 m001 (sin(1/5*Pi)+GAMMA(5/6))/(RenyiParking-Trott) 2329903217832860 m001 (MertensB1-ZetaQ(4))/(Bloch+Cahen) 2329903220976905 m001 Totient^(FeigenbaumDelta/Zeta(1,2)) 2329903221716322 r005 Re(z^2+c),c=-7/44+31/63*I,n=14 2329903227361112 m001 Pi*csc(5/24*Pi)/GAMMA(19/24)*GaussAGM-Totient 2329903239219242 m001 (Totient-Trott)/(FeigenbaumDelta+MertensB2) 2329903245175034 m001 1/Zeta(3)^2*Zeta(1/2)/ln(cosh(1)) 2329903265599072 r005 Im(z^2+c),c=-7/44+17/53*I,n=8 2329903267636940 m002 -6/E^Pi-E^Pi+Tanh[Pi]/Pi^2 2329903270606462 p003 LerchPhi(1/100,4,66/145) 2329903288975605 m001 exp(CareFree)*Champernowne*cos(Pi/12)^2 2329903289570601 m001 (1-ln(Pi))/(-Mills+Tetranacci) 2329903309930536 a007 Real Root Of -660*x^4+237*x^3+693*x^2+598*x-178 2329903311223201 s002 sum(A054133[n]/(n^3*10^n-1),n=1..infinity) 2329903319173022 m001 (exp(Pi)*GAMMA(1/6)+ln(1+sqrt(2)))/GAMMA(1/6) 2329903322265849 m001 (Chi(1)+cos(1/5*Pi))/(-Kac+MertensB3) 2329903325024161 r002 62th iterates of z^2 + 2329903335210332 m001 GAMMA(11/12)^ln(Pi)+BesselI(0,1) 2329903341237308 r005 Re(z^2+c),c=-3/13+17/47*I,n=11 2329903357649193 a003 sin(Pi*8/101)*sin(Pi*47/119) 2329903357980446 a007 Real Root Of -395*x^4+86*x^3-872*x^2-230*x-4 2329903363809772 a007 Real Root Of 329*x^4+368*x^3-950*x^2+314*x+848 2329903375589791 a007 Real Root Of 399*x^4+427*x^3-955*x^2+682*x+416 2329903382646081 m001 (Zeta(3)-gamma)/(-FeigenbaumD+HeathBrownMoroz) 2329903386234922 l006 ln(603/6197) 2329903390612857 l006 ln(6407/8088) 2329903392322271 a007 Real Root Of -371*x^4-642*x^3+874*x^2+969*x+326 2329903403238974 r009 Re(z^3+c),c=-5/19+13/58*I,n=5 2329903407288214 a007 Real Root Of 132*x^4-721*x^3+631*x^2+612*x+378 2329903412587324 a007 Real Root Of -421*x^4-508*x^3+888*x^2-526*x-65 2329903413800472 m001 (gamma(1)-HardyLittlewoodC5)^2 2329903422317257 m009 (1/3*Psi(1,2/3)-3)/(1/6*Psi(1,1/3)-5/6) 2329903425345204 m005 (1/2*5^(1/2)-5/8)/(8/11*Catalan-5/11) 2329903429418447 m001 (GAMMA(17/24)+Cahen)/(QuadraticClass-ZetaQ(2)) 2329903434335324 r009 Im(z^3+c),c=-41/98+7/52*I,n=7 2329903453289885 r005 Re(z^2+c),c=-21/118+14/29*I,n=28 2329903455171710 r005 Re(z^2+c),c=23/102+3/26*I,n=15 2329903457237516 a007 Real Root Of -316*x^4+840*x^3+451*x^2+25*x-40 2329903480465504 m005 (1/3*3^(1/2)+1/6)/(7/8*Pi+4/9) 2329903482461796 b008 2+InverseEllipticNomeQ[1/40] 2329903483649467 a008 Real Root of x^4-x^3-13*x^2-62*x-116 2329903488097136 m005 (1/3*Zeta(3)-2/7)/(4/9*gamma-3/4) 2329903489757598 a007 Real Root Of -246*x^4-589*x^3+178*x^2+393*x-251 2329903494352697 m002 Pi^2+(5*Cosh[Pi]*Sinh[Pi])/3 2329903495108410 r002 5th iterates of z^2 + 2329903503329997 a001 7/34*10946^(6/23) 2329903508001141 r009 Im(z^3+c),c=-33/86+5/34*I,n=11 2329903514372575 m008 (1/2*Pi^3+1)/(2*Pi+4/5) 2329903545800577 a001 1/18*(1/2*5^(1/2)+1/2)^6*3^(17/22) 2329903555703170 h001 (-2*exp(1)+6)/(-10*exp(1)+3) 2329903555703170 m005 (1/6*exp(1)-1/2)/(5/6*exp(1)-1/4) 2329903557569268 m001 (Chi(1)-LambertW(1))/(-Landau+Niven) 2329903559911822 p001 sum((-1)^n/(176*n+1)/n/(24^n),n=0..infinity) 2329903571074770 a007 Real Root Of -179*x^4-188*x^3+472*x^2-551*x-949 2329903584863083 r005 Re(z^2+c),c=7/52+15/47*I,n=18 2329903587058573 r005 Im(z^2+c),c=-27/82+23/62*I,n=28 2329903591198351 m001 ln(Pi)^Shi(1)+Salem 2329903612251226 m004 20+Cos[Sqrt[5]*Pi]*Sinh[Sqrt[5]*Pi]^2 2329903612480733 r009 Im(z^3+c),c=-3/62+55/63*I,n=26 2329903621517447 m001 GAMMA(5/12)^2*ln(Trott)/Zeta(1,2)^2 2329903621687549 m001 Zeta(5)/(Sarnak^FeigenbaumAlpha) 2329903622913841 m001 1/ln(Porter)^2/Lehmer^2*Zeta(3) 2329903637515455 q001 1/4292023 2329903639484189 m009 (2/3*Psi(1,2/3)-3/4)/(1/2*Psi(1,1/3)+1/2) 2329903642388672 r002 63th iterates of z^2 + 2329903657518020 r005 Re(z^2+c),c=31/98+11/56*I,n=36 2329903660567207 a007 Real Root Of 290*x^4+538*x^3-231*x^2+601*x+913 2329903665373011 m001 (FeigenbaumB-MasserGramain)/(3^(1/3)-Cahen) 2329903666005706 m005 (1/2*exp(1)+6)/(7/10*Zeta(3)-4) 2329903667923286 r005 Re(z^2+c),c=-1/54+35/64*I,n=5 2329903675212285 r005 Re(z^2+c),c=5/98+27/49*I,n=9 2329903681446076 a007 Real Root Of 506*x^4+856*x^3-428*x^2+491*x-617 2329903682301906 h001 (3/11*exp(2)+1/4)/(1/5*exp(1)+3/7) 2329903686176148 l006 ln(538/5529) 2329903696316513 a001 5600748293801/2*377^(5/14) 2329903697977142 m001 (Si(Pi)+ErdosBorwein)/(Rabbit+Riemann1stZero) 2329903711141012 a007 Real Root Of 267*x^4+51*x^3-963*x^2+483*x-870 2329903714472740 m004 -6+3*Cos[Sqrt[5]*Pi]+(5*Tan[Sqrt[5]*Pi])/Pi 2329903716062830 r002 3th iterates of z^2 + 2329903717497137 m001 (Psi(1,1/3)+Khinchin)/(-Stephens+Trott2nd) 2329903729498879 r005 Im(z^2+c),c=-23/34+2/67*I,n=41 2329903730739507 r002 52th iterates of z^2 + 2329903736708286 a007 Real Root Of -327*x^4-528*x^3+669*x^2+702*x+962 2329903741648722 m001 (Pi*csc(1/24*Pi)/GAMMA(23/24))^ln(2)*MertensB1 2329903744026614 m005 (1/2*3^(1/2)-7/9)/(3/8*2^(1/2)-10/11) 2329903750414868 q001 702/3013 2329903752856144 r005 Im(z^2+c),c=-3/122+50/61*I,n=20 2329903752941687 a001 161/98209*55^(5/57) 2329903762096016 a007 Real Root Of 14*x^4+334*x^3+217*x^2+844*x+690 2329903762924909 m005 (1/2*5^(1/2)-5/12)/(5*Zeta(3)-3) 2329903769930321 a007 Real Root Of -295*x^4-747*x^3-425*x^2-692*x-60 2329903771897761 r005 Im(z^2+c),c=-35/74+17/41*I,n=38 2329903779912538 a007 Real Root Of 32*x^4-85*x^3-131*x^2+706*x+338 2329903780327200 r009 Re(z^3+c),c=-7/19+11/23*I,n=20 2329903781132762 a001 1/11*521^(14/27) 2329903783503896 r005 Im(z^2+c),c=-14/31+3/62*I,n=8 2329903783519578 a007 Real Root Of 613*x^4+122*x^3+759*x^2-968*x-267 2329903788708106 r005 Re(z^2+c),c=-11/70+19/37*I,n=16 2329903800501308 l003 Psi(33/76) 2329903802398606 h001 (5/11*exp(2)+5/11)/(4/7*exp(1)+1/12) 2329903802938267 p004 log(15919/1549) 2329903803814497 m001 CopelandErdos-gamma(3)*PisotVijayaraghavan 2329903804395784 r005 Im(z^2+c),c=-36/31+11/38*I,n=58 2329903804939137 a007 Real Root Of -107*x^4+28*x^3+229*x^2-649*x+752 2329903819884250 m001 1/BesselJ(0,1)^2*ln(Salem)^2/GAMMA(11/24) 2329903821414104 l006 ln(2870/3623) 2329903823698456 a007 Real Root Of -148*x^4-238*x^3-329*x^2-952*x+919 2329903842393110 m001 Catalan^2/FransenRobinson^2*exp(cosh(1))^2 2329903852039549 s002 sum(A202087[n]/(exp(pi*n)+1),n=1..infinity) 2329903852836638 m001 Chi(1)/(Riemann2ndZero^Salem) 2329903853822902 m001 (MadelungNaCl-Otter)/(PolyaRandomWalk3D-Thue) 2329903858861047 r002 15th iterates of z^2 + 2329903869127750 m001 sin(1)^BesselK(1,1)*Sierpinski 2329903879460109 r005 Im(z^2+c),c=-15/106+14/45*I,n=16 2329903881314992 m001 (-Artin+Grothendieck)/(cos(1)-ln(Pi)) 2329903882526106 r009 Im(z^3+c),c=-3/62+55/63*I,n=28 2329903885862593 r005 Im(z^2+c),c=-31/98+11/30*I,n=21 2329903908464196 a007 Real Root Of -282*x^4-375*x^3+726*x^2-88*x-579 2329903909248219 a007 Real Root Of -800*x^4-313*x^3+577*x^2+309*x-97 2329903910454241 r004 Im(z^2+c),c=5/42+1/5*I,z(0)=exp(3/8*I*Pi),n=14 2329903926275504 m001 (-MadelungNaCl+Trott)/(1-KhinchinHarmonic) 2329903937033063 r009 Re(z^3+c),c=-37/114+27/46*I,n=2 2329903938755993 r005 Re(z^2+c),c=-9/13+5/19*I,n=9 2329903943385874 m005 (1/2*Zeta(3)-7/9)/(5/7*Zeta(3)-1/10) 2329903947583810 m001 polylog(4,1/2)/(KhinchinHarmonic+PlouffeB) 2329903948849383 s002 sum(A216953[n]/(n*10^n-1),n=1..infinity) 2329903954395739 a007 Real Root Of -26*x^4+19*x^3-229*x^2+529*x+136 2329903958169791 a001 10946/7*9349^(13/44) 2329903960906909 r005 Im(z^2+c),c=-19/56+25/58*I,n=7 2329903963743746 a007 Real Root Of -34*x^4-779*x^3+268*x^2-940*x-846 2329903969667600 m001 1/GAMMA(3/4)*exp(FeigenbaumB)^2*cos(1) 2329903973439790 m005 (1/2*5^(1/2)+4/5)/(2/11*5^(1/2)+5/12) 2329903981835285 h005 exp(cos(Pi*1/31)-cos(Pi*19/42)) 2329903986370504 m001 BesselJ(0,1)^2*Conway/ln(sqrt(Pi))^2 2329903995935605 m001 (TravellingSalesman-Thue)/(Robbin-Sarnak) 2329903996789529 a007 Real Root Of -791*x^4-589*x^3-242*x^2+442*x+111 2329904006867130 m009 (3*Psi(1,1/3)+1/4)/(1/6*Psi(1,2/3)+4/5) 2329904007416798 a003 cos(Pi*32/119)-sin(Pi*17/48) 2329904021108513 a007 Real Root Of x^4-414*x^3-758*x^2+424*x-163 2329904030549966 r005 Re(z^2+c),c=-1/29+24/43*I,n=6 2329904033232362 m005 (1/2*3^(1/2)-1/4)/(5/7*Pi+2/5) 2329904051250436 m001 ln(Zeta(7))/GaussKuzminWirsing/sinh(1) 2329904052879723 a008 Real Root of x^4-x^3-3*x^2+156*x-364 2329904054344363 m001 (-MertensB1+MertensB3)/(Zeta(5)-gamma) 2329904059352853 s001 sum(exp(-Pi/4)^n*A117668[n],n=1..infinity) 2329904060237196 a007 Real Root Of 346*x^4+556*x^3-694*x^2+62*x+748 2329904060848130 m001 Backhouse+RenyiParking^arctan(1/2) 2329904060848130 m001 RenyiParking^arctan(1/2)+Backhouse 2329904066169853 a007 Real Root Of 42*x^4+994*x^3+372*x^2+298*x+290 2329904068553522 l006 ln(473/4861) 2329904081362664 r005 Im(z^2+c),c=-33/50+15/53*I,n=35 2329904081741015 r005 Im(z^2+c),c=-41/118+10/17*I,n=26 2329904083026596 m001 (AlladiGrinstead+PisotVijayaraghavan)/Catalan 2329904091618717 m001 Artin^(Sierpinski/KhinchinHarmonic) 2329904116614057 r002 49th iterates of z^2 + 2329904121633731 r009 Im(z^3+c),c=-43/110+9/64*I,n=10 2329904121811614 m001 KhinchinLevy*(LaplaceLimit-Thue) 2329904139410194 a007 Real Root Of 25*x^4+54*x^3+123*x^2-26*x-782 2329904148973736 m001 (Cahen-Riemann3rdZero)/(gamma(2)+GAMMA(11/12)) 2329904162719333 m001 5^(1/2)*OrthogonalArrays-AlladiGrinstead 2329904166687445 r005 Im(z^2+c),c=-16/23+3/16*I,n=24 2329904168907932 l006 ln(7943/10027) 2329904174154152 a003 sin(Pi*20/83)/cos(Pi*17/42) 2329904184557725 r009 Re(z^3+c),c=-37/114+3/8*I,n=9 2329904188634825 m001 (Ei(1)-gamma(3))/(BesselI(0,2)-Porter) 2329904194084462 m005 (11/12+1/4*5^(1/2))/(1/3*exp(1)-3/11) 2329904213519111 a007 Real Root Of 410*x^4+628*x^3-728*x^2+37*x-101 2329904219086572 r002 11th iterates of z^2 + 2329904226841022 a001 317811/2207*3571^(28/31) 2329904233906569 a003 cos(Pi*9/38)-sin(Pi*50/119) 2329904240155201 r005 Im(z^2+c),c=-17/23+2/57*I,n=4 2329904240504382 m001 (-Bloch+MadelungNaCl)/(3^(1/2)-BesselI(0,2)) 2329904249126894 r005 Re(z^2+c),c=-7/25+1/8*I,n=13 2329904260251302 a007 Real Root Of -340*x^4-628*x^3+571*x^2+692*x+589 2329904273095074 m001 Magata/GaussAGM(1,1/sqrt(2))/ln(sin(1)) 2329904283724945 m001 AlladiGrinstead^Pi-RenyiParking 2329904294156435 r005 Im(z^2+c),c=-5/8+70/213*I,n=32 2329904294700907 r005 Im(z^2+c),c=-21/50+23/58*I,n=47 2329904297550592 m001 (2^(1/2)-MinimumGamma)/(OneNinth+Tetranacci) 2329904300744060 m001 (Chi(1)-ln(3))/(CareFree+PrimesInBinary) 2329904302059724 l006 ln(881/9054) 2329904312051035 m005 (1/3*5^(1/2)-2/7)/(9/10*2^(1/2)+7/10) 2329904312960697 m002 E^Pi+6/Pi^4+3/Pi^3 2329904317126556 m001 arctan(1/3)^cos(1/5*Pi)*arctan(1/3)^PlouffeB 2329904318626927 r005 Im(z^2+c),c=-3/50+9/32*I,n=15 2329904318902667 r009 Re(z^3+c),c=-5/74+23/31*I,n=60 2329904334329393 a007 Real Root Of -34*x^4+525*x^3-791*x^2-410*x-389 2329904341661583 r005 Re(z^2+c),c=-7/40+28/57*I,n=52 2329904347353942 a001 11/2178309*832040^(9/20) 2329904347354146 a001 11/165580141*12586269025^(9/20) 2329904354221647 m008 (1/6*Pi^3+4)/(1/2*Pi^2-1) 2329904355814255 r009 Re(z^3+c),c=-1/16+21/31*I,n=2 2329904362876834 a007 Real Root Of 576*x^4+983*x^3-612*x^2+587*x+149 2329904365499153 l006 ln(5073/6404) 2329904365956467 a001 2/98209*196418^(7/18) 2329904365963849 a001 4/165580141*6557470319842^(7/18) 2329904365963863 a001 4/5702887*1134903170^(7/18) 2329904371191963 a007 Real Root Of 238*x^4+220*x^3+775*x^2-455*x-146 2329904373784307 r005 Re(z^2+c),c=-1/60+26/47*I,n=12 2329904383044011 a001 3/7778742049*987^(6/23) 2329904386716809 h001 (1/10*exp(2)+5/11)/(4/7*exp(2)+9/10) 2329904389540531 g002 Psi(5/12)+Psi(1/9)-2*Psi(2/9) 2329904392639137 a001 987*39603^(16/31) 2329904401509307 a001 46368/2207*15127^(30/31) 2329904401714166 a007 Real Root Of -398*x^4-825*x^3-127*x^2-980*x-300 2329904406758173 m002 8+(Pi^4*Sinh[Pi])/5 2329904408130977 m005 (1/3*5^(1/2)-3/7)/(8/9*Catalan+6/11) 2329904426021237 r005 Im(z^2+c),c=-13/42+23/63*I,n=35 2329904426066685 m005 (1/2*Pi+10/11)/(2/3*Catalan-3/5) 2329904428077185 m001 (Pi^(1/2)+Rabbit)/((1+3^(1/2))^(1/2)-exp(1)) 2329904431949572 a007 Real Root Of 486*x^4+755*x^3-946*x^2+64*x+512 2329904442872297 r005 Re(z^2+c),c=-5/32+26/49*I,n=64 2329904443650303 a001 832040/2207*5778^(23/31) 2329904455485521 a007 Real Root Of -137*x^4+61*x^3+543*x^2-876*x-180 2329904457383735 r005 Im(z^2+c),c=-9/16+5/119*I,n=53 2329904464336415 a007 Real Root Of 21*x^4-502*x^3-911*x^2+478*x-909 2329904465498263 m001 GAMMA(2/3)^2*ln(RenyiParking)^2*GAMMA(3/4)^2 2329904474367763 a007 Real Root Of -142*x^4+147*x^3+975*x^2-694*x-866 2329904488105410 r008 a(0)=2,K{-n^6,36-21*n-42*n^2+26*n^3} 2329904499406460 a007 Real Root Of 906*x^4+556*x^3-233*x^2-455*x-89 2329904507827488 a001 3/2504730781961*4052739537881^(6/23) 2329904507827488 a001 3/139583862445*63245986^(6/23) 2329904508137767 r009 Re(z^3+c),c=-11/27+35/64*I,n=50 2329904513888888 r005 Re(z^2+c),c=7/32+11/60*I,n=2 2329904522932265 r005 Im(z^2+c),c=-2/15+5/16*I,n=6 2329904533015979 a001 29/11*(1/2*5^(1/2)+1/2)^12*11^(8/19) 2329904541936427 p001 sum((-1)^n/(460*n+429)/(1024^n),n=0..infinity) 2329904548918503 m002 -2*Pi+Pi^6/4-ProductLog[Pi] 2329904549439516 r005 Im(z^2+c),c=-15/26+71/117*I,n=10 2329904568984364 a001 5/76*18^(7/16) 2329904569541571 r009 Re(z^3+c),c=-19/64+16/51*I,n=7 2329904572766600 l006 ln(408/4193) 2329904576251423 a001 64079/34*13^(50/51) 2329904580112131 l006 ln(7276/9185) 2329904587690446 m001 (1+3^(1/2))^(1/2)+gamma^Rabbit 2329904595626966 a007 Real Root Of 366*x^4+755*x^3+988*x^2-377*x-133 2329904603601036 m001 (gamma(2)-Magata)/(ln(Pi)+arctan(1/3)) 2329904604393725 r005 Im(z^2+c),c=-5/118+34/47*I,n=3 2329904608077700 m001 GAMMA(2/3)*ln(LaplaceLimit)^2*Zeta(7)^2 2329904609676910 m001 (2^(1/2)+Paris)/(-Trott+TwinPrimes) 2329904626048659 r002 34th iterates of z^2 + 2329904630667231 r008 a(0)=0,K{-n^6,40-40*n^3+26*n^2-22*n} 2329904635393152 a001 416020/2889*3571^(28/31) 2329904640783399 m001 FeigenbaumB-sin(1)*BesselI(0,1) 2329904642910782 m005 (2/3*Pi+3/4)/(11/20+3/10*5^(1/2)) 2329904649705511 m001 ln(sin(Pi/12))/Pi^2/sin(Pi/5) 2329904651980201 m001 Artin-OrthogonalArrays+ReciprocalFibonacci 2329904668783400 p002 log(2^(2/3)+7^(10/9)) 2329904669251701 r005 Im(z^2+c),c=-31/122+17/49*I,n=14 2329904671565251 p003 LerchPhi(1/64,6,100/169) 2329904684589532 r009 Re(z^3+c),c=-35/86+17/31*I,n=50 2329904695000116 a001 311187/2161*3571^(28/31) 2329904702261463 m001 (-sin(1)+GAMMA(5/6))/(Psi(1,1/3)+5^(1/2)) 2329904704091721 a007 Real Root Of 198*x^4+9*x^3-644*x^2+894*x-142 2329904705905236 m001 (1/3)^exp(1/2)-GAMMA(1/24) 2329904710503631 a007 Real Root Of -561*x^4-852*x^3+869*x^2-83*x+845 2329904713163816 m001 (Pi+GAMMA(17/24))/(Conway+Gompertz) 2329904722583630 m005 (1/2*Zeta(3)-4)/(9/10*3^(1/2)-1/10) 2329904729058222 r005 Im(z^2+c),c=-33/25+3/53*I,n=63 2329904731337084 a001 987*2207^(22/31) 2329904731839248 a001 1346269/9349*3571^(28/31) 2329904733913310 m001 (BesselK(0,1)-GAMMA(11/12))/(MertensB1+Trott) 2329904743901711 r005 Im(z^2+c),c=-10/21+7/17*I,n=62 2329904757400010 r005 Im(z^2+c),c=-11/38+14/39*I,n=24 2329904762801935 r005 Re(z^2+c),c=-23/82+4/33*I,n=11 2329904762838840 m001 2^(1/2)-exp(1)-GAMMA(23/24) 2329904762838840 m001 exp(1)-sqrt(2)+GAMMA(23/24) 2329904765846079 m001 (Robbin+Trott)/(Si(Pi)+MertensB2) 2329904772506747 a001 843/86267571272*86267571272^(5/23) 2329904772506803 a001 843/7778742049*1346269^(5/23) 2329904772910239 a003 cos(Pi*5/31)*cos(Pi*41/99) 2329904776042463 m005 (1/2*Pi+1/9)/(3/5*exp(1)-10/11) 2329904776907509 m001 2^(1/2)+ln(2^(1/2)+1)^ArtinRank2 2329904778547735 m001 Paris/(MertensB3-2*Pi/GAMMA(5/6)) 2329904781166200 m001 (2^(1/2)+Chi(1))/(-GAMMA(3/4)+sin(1/12*Pi)) 2329904785409413 m001 (BesselI(1,1)-Shi(1))/(Paris+Riemann2ndZero) 2329904787985890 m005 (1/2*5^(1/2)+7/9)/(1/2*exp(1)-6/11) 2329904790527976 r005 Im(z^2+c),c=-19/56+19/41*I,n=10 2329904795341518 s001 sum(exp(-Pi/3)^(n-1)*A139697[n],n=1..infinity) 2329904800457290 a007 Real Root Of 508*x^4+800*x^3-801*x^2-17*x-543 2329904810242642 a001 121393/5778*15127^(30/31) 2329904814629821 r005 Re(z^2+c),c=-2/11+28/55*I,n=18 2329904829698395 m001 (LaplaceLimit+ZetaQ(2))/(CopelandErdos-Landau) 2329904830439016 a001 123/29*(1/2*5^(1/2)+1/2)^10*29^(4/9) 2329904839269681 r005 Im(z^2+c),c=-3/58+39/61*I,n=56 2329904845484239 m002 (Pi^6*ProductLog[Pi])/(2*E^Pi)+Tanh[Pi] 2329904852199105 a001 726103/1926*5778^(23/31) 2329904867232715 a001 505019158607/2*317811^(5/14) 2329904867234363 a001 22768774562*267914296^(5/14) 2329904867234363 a001 4106118243/2*225851433717^(5/14) 2329904869876044 a001 317811/15127*15127^(30/31) 2329904878576440 a001 832040/39603*15127^(30/31) 2329904879845811 a001 46347/2206*15127^(30/31) 2329904880630325 a001 1346269/64079*15127^(30/31) 2329904882377929 a003 sin(Pi*5/83)/sin(Pi*35/117) 2329904883953581 a001 514229/24476*15127^(30/31) 2329904885934848 a007 Real Root Of 336*x^4+878*x^3-23*x^2-880*x-722 2329904886538173 r005 Re(z^2+c),c=-37/58+16/33*I,n=14 2329904887892326 a001 514229/3571*3571^(28/31) 2329904890333429 l006 ln(751/7718) 2329904891504185 m001 (ArtinRank2-Conway)/(Pi-cos(1)) 2329904906731515 a001 196418/9349*15127^(30/31) 2329904916372417 a007 Real Root Of -910*x^4+769*x^3+241*x^2+754*x+175 2329904922423060 m001 (Psi(1,1/3)+gamma)/(GAMMA(19/24)+Magata) 2329904937915383 a001 1/98209*377^(6/43) 2329904940249726 m001 ln((2^(1/3)))*FransenRobinson*Ei(1)^2 2329904941387061 m001 1/Riemann2ndZero/exp(DuboisRaymond)^2/Salem^2 2329904941637446 a007 Real Root Of 361*x^4+513*x^3-507*x^2+450*x-349 2329904943545469 p003 LerchPhi(1/3,2,277/122) 2329904943887655 m001 (exp(1/Pi)-BesselJ(1,1))/(Stephens-ZetaP(3)) 2329904944806132 m001 (Stephens+ZetaP(4))/(5^(1/2)+BesselI(1,1)) 2329904944865233 a007 Real Root Of -910*x^4-563*x^3-359*x^2+532*x+139 2329904946730320 p003 LerchPhi(1/5,2,231/106) 2329904955239399 a001 1/377*987^(37/57) 2329904965975846 m001 (ln(Pi)-arctan(1/2))/(BesselI(1,2)+MertensB3) 2329904970106608 a007 Real Root Of -264*x^4-294*x^3+416*x^2-709*x+151 2329904984905794 m001 1/(2^(1/3))/ln(MinimumGamma)*GAMMA(11/12)^2 2329904988364432 m005 (1/2*Catalan-2/11)/(2/3*Pi-10/11) 2329904998091151 m001 BesselJ(0,1)/(ln(2)/ln(10)+Trott2nd) 2329904998644281 r005 Im(z^2+c),c=-29/54+19/55*I,n=17 2329905005141745 r009 Re(z^3+c),c=-61/118+9/26*I,n=10 2329905043316162 r005 Im(z^2+c),c=-33/106+4/11*I,n=16 2329905049301154 r005 Re(z^2+c),c=-31/94+7/64*I,n=2 2329905062853807 a001 75025/3571*15127^(30/31) 2329905063291139 q001 589/2528 2329905069279215 r009 Im(z^3+c),c=-15/58+11/53*I,n=7 2329905069691874 p003 LerchPhi(1/32,1,13/30) 2329905074316217 l006 ln(2203/2781) 2329905093847263 r002 4th iterates of z^2 + 2329905104696223 a001 1346269/3571*5778^(23/31) 2329905108450460 a001 199/121393*3^(8/25) 2329905115625670 a001 843/5*2^(7/15) 2329905126638021 a001 18/13*46368^(48/53) 2329905132832926 r005 Im(z^2+c),c=-41/90+25/62*I,n=32 2329905134658263 m005 (1/2*5^(1/2)+1/11)/(7/11*3^(1/2)-7/12) 2329905137069798 r005 Im(z^2+c),c=-23/48+17/41*I,n=46 2329905143664451 a007 Real Root Of 328*x^4+722*x^3+143*x^2+646*x+195 2329905143678656 m001 FibonacciFactorial*Conway*exp(GAMMA(1/3)) 2329905149448690 r005 Im(z^2+c),c=-9/16+5/119*I,n=64 2329905150550734 a005 (1/cos(7/38*Pi))^225 2329905161972872 p002 log(11^(1/3)+9^(2/3)*12^(1/4)) 2329905166632663 r005 Im(z^2+c),c=11/38+3/58*I,n=23 2329905170955763 p003 LerchPhi(1/2,4,19/132) 2329905172162670 h001 (8/11*exp(1)+2/9)/(1/7*exp(1)+5/9) 2329905177891751 h001 (1/10*exp(2)+9/10)/(1/8*exp(1)+4/11) 2329905180617335 a007 Real Root Of 444*x^4+781*x^3-266*x^2+885*x+300 2329905180998492 a008 Real Root of x^4-2*x^3-37*x^2-4*x+206 2329905186877482 r009 Re(z^3+c),c=-23/78+7/26*I,n=3 2329905191316443 m001 CareFree-Catalan*Kolakoski 2329905196824045 m001 Totient+arctan(1/3)^ZetaQ(3) 2329905196907895 m001 GAMMA(5/24)^2*ln(MertensB1)^2*sin(Pi/12)^2 2329905207075832 a007 Real Root Of -503*x^4-558*x^3+890*x^2-869*x+909 2329905225554545 r009 Re(z^3+c),c=-3/26+29/36*I,n=11 2329905227471158 m005 (1/2*3^(1/2)+9/10)/(9/11*gamma+2/7) 2329905229081372 r005 Re(z^2+c),c=31/90+13/61*I,n=22 2329905240406941 m001 (FeigenbaumC-Niven)/(GAMMA(2/3)-Ei(1)) 2329905241495892 r002 56th iterates of z^2 + 2329905246171580 m001 Conway-OrthogonalArrays^BesselI(0,1) 2329905247304803 m001 1/Zeta(3)^2/Zeta(1/2)^2/exp(log(2+sqrt(3)))^2 2329905268080429 l006 ln(343/3525) 2329905268420388 r005 Re(z^2+c),c=-27/31+13/54*I,n=18 2329905270009810 a007 Real Root Of -382*x^4-831*x^3+416*x^2+763*x+266 2329905271464669 a003 sin(Pi*15/86)-sin(Pi*28/103) 2329905271591652 m001 (3^(1/3))^Totient*Conway^Totient 2329905272922651 p001 sum((-1)^n/(322*n+195)/n/(8^n),n=1..infinity) 2329905276622527 a007 Real Root Of -630*x^4+404*x^3-31*x^2+886*x-208 2329905297379897 a007 Real Root Of 262*x^4-49*x^3+974*x^2-664*x-16 2329905298372833 r002 34th iterates of z^2 + 2329905305941724 r002 56th iterates of z^2 + 2329905329937001 m001 BesselI(1,1)/Bloch*DuboisRaymond 2329905331550136 r005 Re(z^2+c),c=7/34+25/54*I,n=14 2329905336152709 m001 1+2^(1/3)*GAMMA(11/12) 2329905338242838 a007 Real Root Of -378*x^4-306*x^3+919*x^2-976*x+6 2329905342752924 a007 Real Root Of 959*x^4-542*x^3+89*x^2-188*x+43 2329905353503677 p001 sum((-1)^n/(482*n+429)/(1000^n),n=0..infinity) 2329905358537747 m001 cos(1)*exp(ErdosBorwein)^2*log(2+sqrt(3))^2 2329905382092402 r005 Re(z^2+c),c=-5/18+1/7*I,n=17 2329905382388358 a007 Real Root Of -499*x^4-951*x^3+563*x^2+99*x-149 2329905385423671 a001 521/144*6765^(11/15) 2329905389918168 r005 Im(z^2+c),c=15/86+7/41*I,n=6 2329905397199370 a007 Real Root Of -862*x^4-288*x^3+410*x^2+313*x-89 2329905412168923 m002 3+Log[Pi]/6-E^Pi*Log[Pi] 2329905418467840 r005 Re(z^2+c),c=-1/10+31/56*I,n=17 2329905426828825 r005 Im(z^2+c),c=-45/98+5/12*I,n=26 2329905428621361 m005 (1/2*5^(1/2)+1/4)/(5/12*exp(1)-6/11) 2329905447505640 r005 Re(z^2+c),c=23/86+5/31*I,n=16 2329905447841284 m005 (1/2*Pi+4/9)/(7/11*Zeta(3)+1/10) 2329905448070583 r005 Re(z^2+c),c=-13/106+27/44*I,n=60 2329905449679212 a007 Real Root Of 224*x^4+760*x^3+840*x^2+841*x+411 2329905454795688 r005 Im(z^2+c),c=-71/74+13/59*I,n=11 2329905459955921 p004 log(30389/2957) 2329905460431600 r009 Re(z^3+c),c=-27/122+1/35*I,n=3 2329905461279344 a007 Real Root Of -227*x^4-305*x^3-36*x^2-937*x+844 2329905462101820 a005 (1/sin(90/187*Pi))^489 2329905464238412 m005 (1/3*gamma+1/6)/(11/12*gamma-3/8) 2329905466051741 a007 Real Root Of 438*x^4+657*x^3-959*x^2-359*x-228 2329905466157664 r005 Im(z^2+c),c=-13/22+73/120*I,n=5 2329905482138875 m001 (FeigenbaumMu-Niven)/(Sarnak+ZetaP(4)) 2329905492778730 r002 14th iterates of z^2 + 2329905495036553 r009 Re(z^3+c),c=-11/32+23/54*I,n=29 2329905499549818 m005 (1/2*exp(1)-1)/(7/10*Zeta(3)+7/10) 2329905502557162 r005 Re(z^2+c),c=5/52+26/45*I,n=7 2329905509937558 r005 Im(z^2+c),c=7/38+31/56*I,n=4 2329905514105431 r005 Im(z^2+c),c=-23/98+13/38*I,n=26 2329905516181759 m001 (exp(1)*FeigenbaumC+FeigenbaumKappa)/exp(1) 2329905528592101 a007 Real Root Of -384*x^4-592*x^3+12*x^2+859*x+20 2329905531196912 m001 (ln(2)-Gompertz)/(Magata+RenyiParking) 2329905535861383 m001 (GlaisherKinkelin+Riemann1stZero)/Robbin 2329905540881367 m001 (sin(1/5*Pi)-gamma(2))/(Pi-gamma) 2329905545219779 h001 (3/4*exp(2)+5/12)/(9/11*exp(1)+1/3) 2329905554693114 m001 GAMMA(5/6)+GAMMA(19/24)+Trott2nd 2329905559681919 h001 (-exp(2)-9)/(-4*exp(3)+10) 2329905561351969 h001 (8/9*exp(1)+5/11)/(3/10*exp(1)+5/12) 2329905562362484 l006 ln(964/9907) 2329905567376846 a007 Real Root Of 249*x^4-788*x^3-344*x^2-700*x+191 2329905568525960 a007 Real Root Of -566*x^4+320*x^3+414*x^2+447*x-129 2329905570944419 m001 (FellerTornier+ThueMorse)/(Bloch+FeigenbaumD) 2329905571211625 a007 Real Root Of 221*x^4+723*x^3+721*x^2+867*x+738 2329905575772868 s002 sum(A191811[n]/((exp(n)+1)*n),n=1..infinity) 2329905576549109 a007 Real Root Of -344*x^4-448*x^3+653*x^2-373*x+57 2329905583896178 r005 Im(z^2+c),c=-33/26+7/120*I,n=18 2329905584833537 p004 log(17783/14087) 2329905588846375 s002 sum(A191811[n]/(n*exp(n)+1),n=1..infinity) 2329905590306943 s002 sum(A191811[n]/(n*exp(n)-1),n=1..infinity) 2329905594975975 a007 Real Root Of -89*x^4-4*x^3+504*x^2+136*x+153 2329905601047118 a007 Real Root Of 560*x^4+840*x^3-961*x^2+16*x-624 2329905601651669 m005 (5*Pi+1/3)/(3/5*Pi+5) 2329905601651669 m006 (5*Pi+1/3)/(3/5*Pi+5) 2329905601651669 m008 (5*Pi+1/3)/(3/5*Pi+5) 2329905608244444 m001 Ei(1)^Zeta(1/2)*Lehmer 2329905608882560 m001 1/Pi/ln(Salem)/sin(1) 2329905613385136 m001 (Ei(1)-exp(1/Pi))/(Khinchin-ZetaP(2)) 2329905634117706 a007 Real Root Of -422*x^4-672*x^3+574*x^2-589*x-552 2329905652965485 a007 Real Root Of 41*x^4-483*x^3+665*x^2+360*x+452 2329905667006239 m006 (2/3*exp(2*Pi)-1/3)/(5*Pi-2/5) 2329905679470833 l006 ln(5942/7501) 2329905679580942 m001 (OneNinth+Salem)/(sin(1)+FeigenbaumDelta) 2329905698070728 m001 (sin(1/5*Pi)+Ei(1))/(Ei(1,1)-GAMMA(17/24)) 2329905706149523 a007 Real Root Of -x^4-237*x^3-936*x^2-433*x-960 2329905708639502 m001 (GlaisherKinkelin-Paris)/(ln(3)-ErdosBorwein) 2329905716758193 m005 (1/2*gamma-2/3)/(6*exp(1)-1/12) 2329905721224896 r009 Re(z^3+c),c=-33/94+30/49*I,n=32 2329905724904710 l006 ln(621/6382) 2329905727081158 a007 Real Root Of 339*x^4+548*x^3-423*x^2+735*x+950 2329905740615323 m001 (-Champernowne+ZetaP(3))/(1+Zeta(3)) 2329905750554030 a007 Real Root Of 225*x^4+544*x^3+197*x^2+483*x+306 2329905753165836 m001 (CopelandErdos-Stephens)/Zeta(1/2) 2329905754175968 a007 Real Root Of 17*x^4-253*x^3+571*x^2-569*x+925 2329905775155329 p001 sum((-1)^n/(461*n+429)/(1024^n),n=0..infinity) 2329905785649591 m001 (-gamma(2)+GolombDickman)/(BesselK(0,1)-ln(2)) 2329905786133246 m001 (2^(1/3)+Shi(1))/(-BesselI(0,2)+GAMMA(17/24)) 2329905798090458 p004 log(22003/2141) 2329905800378671 m001 exp(GAMMA(1/24))/MinimumGamma^2*LambertW(1)^2 2329905802889397 r009 Re(z^3+c),c=-13/122+35/43*I,n=40 2329905810723563 m005 (1/2*Zeta(3)-7/12)/(1/3*gamma-1/5) 2329905813580449 m001 (OneNinth*Stephens-OrthogonalArrays)/Stephens 2329905824060152 r002 51th iterates of z^2 + 2329905825561911 r005 Im(z^2+c),c=-15/26+2/47*I,n=38 2329905849674024 r002 33th iterates of z^2 + 2329905859742649 m001 (exp(-1/2*Pi)+Artin)/(3^(1/2)+BesselJ(0,1)) 2329905861352005 h001 (-exp(-2)-2)/(-8*exp(1/3)+2) 2329905866451967 p001 sum((-1)^n/(517*n+379)/(3^n),n=0..infinity) 2329905869483415 m001 (-Bloch+CareFree)/(gamma+BesselK(0,1)) 2329905882533105 r005 Im(z^2+c),c=-29/23+3/28*I,n=6 2329905883646300 a007 Real Root Of 553*x^4-488*x^3+373*x^2-549*x-13 2329905891439912 r005 Re(z^2+c),c=-13/58+7/19*I,n=25 2329905899199124 l006 ln(899/9239) 2329905912553570 p004 log(21661/17159) 2329905918474366 a007 Real Root Of 437*x^4+780*x^3-543*x^2-95*x-286 2329905921197627 r005 Re(z^2+c),c=-7/6+59/248*I,n=18 2329905923633395 a007 Real Root Of -366*x^4-465*x^3+746*x^2-341*x+60 2329905924147400 r005 Im(z^2+c),c=-37/78+26/63*I,n=53 2329905942935118 r005 Re(z^2+c),c=-41/98+29/50*I,n=21 2329905947947160 m001 (Backhouse+Sierpinski)/(Zeta(5)+ArtinRank2) 2329905951725743 m005 (1/2*gamma+6/7)/(11/12*exp(1)-2) 2329905954405237 m001 (Psi(2,1/3)+GaussAGM)/(-Kac+Otter) 2329905957496598 a001 98209/682*3571^(28/31) 2329905958913921 a007 Real Root Of -377*x^4-660*x^3+677*x^2+746*x+825 2329905971195645 a007 Real Root Of -371*x^4-420*x^3+667*x^2-436*x+984 2329905972476785 m001 (ln(Pi)-Zeta(1/2))/(Bloch+MasserGramain) 2329905973685624 r002 27th iterates of z^2 + 2329905977747669 a003 sin(Pi*12/85)*sin(Pi*19/104) 2329905991614146 r005 Im(z^2+c),c=-27/46+14/41*I,n=14 2329905991848657 r005 Im(z^2+c),c=-7/6+49/249*I,n=55 2329905997200563 a007 Real Root Of -732*x^4-221*x^3+143*x^2+873*x+195 2329905997825246 r005 Im(z^2+c),c=-28/31+1/49*I,n=3 2329905998893048 m001 (exp(1/Pi)-KhinchinHarmonic)/BesselI(1,2) 2329906005102298 p003 LerchPhi(1/3,6,77/191) 2329906013249649 m005 (1/3*Pi+1/4)/(7/11*3^(1/2)-6/11) 2329906016849382 r005 Re(z^2+c),c=11/46+8/61*I,n=13 2329906018699523 r005 Re(z^2+c),c=-3/34+36/61*I,n=23 2329906036024873 l006 ln(3739/4720) 2329906040596814 m001 (Mills-Sarnak)/Riemann3rdZero 2329906047236507 a007 Real Root Of 328*x^4+621*x^3-685*x^2-910*x-213 2329906061584371 r009 Re(z^3+c),c=-7/23+30/47*I,n=11 2329906069290577 m001 3^(1/2)*Pi^(1/2)/HeathBrownMoroz 2329906069511694 s001 sum(exp(-Pi/4)^(n-1)*A224663[n],n=1..infinity) 2329906070900138 h001 (11/12*exp(2)+4/11)/(11/12*exp(1)+4/7) 2329906071524121 m001 1/GAMMA(7/24)*ln(FeigenbaumB)^2*Zeta(1/2)^2 2329906073763668 m005 (1/2*exp(1)-6/11)/(10/11*Pi+7/11) 2329906074351334 r005 Im(z^2+c),c=-49/106+11/27*I,n=49 2329906074376694 m005 (1/2*gamma-2/5)/(3/8*Pi-7/10) 2329906079109403 h005 exp(sin(Pi*12/35)*sin(Pi*16/39)) 2329906079355190 r005 Re(z^2+c),c=-13/62+11/27*I,n=21 2329906085080865 m001 (Si(Pi)*KhinchinLevy+LambertW(1))/KhinchinLevy 2329906085114944 a005 (1/sin(44/171*Pi))^166 2329906086816039 r009 Im(z^3+c),c=-3/106+1/43*I,n=5 2329906086817282 r009 Im(z^3+c),c=-3/106+1/43*I,n=6 2329906086817284 r009 Im(z^3+c),c=-3/106+1/43*I,n=9 2329906086817284 r009 Im(z^3+c),c=-3/106+1/43*I,n=10 2329906086817284 r009 Im(z^3+c),c=-3/106+1/43*I,n=14 2329906086817284 r009 Im(z^3+c),c=-3/106+1/43*I,n=15 2329906086817284 r009 Im(z^3+c),c=-3/106+1/43*I,n=17 2329906086817284 r009 Im(z^3+c),c=-3/106+1/43*I,n=18 2329906086817284 r009 Im(z^3+c),c=-3/106+1/43*I,n=16 2329906086817284 r009 Im(z^3+c),c=-3/106+1/43*I,n=13 2329906086817284 r009 Im(z^3+c),c=-3/106+1/43*I,n=12 2329906086817284 r009 Im(z^3+c),c=-3/106+1/43*I,n=11 2329906086817284 r009 Im(z^3+c),c=-3/106+1/43*I,n=8 2329906086817284 r009 Im(z^3+c),c=-3/106+1/43*I,n=7 2329906086843637 r009 Im(z^3+c),c=-3/106+1/43*I,n=4 2329906086906458 m001 (Shi(1)-cos(1))/(-ArtinRank2+PlouffeB) 2329906090312225 m001 FeigenbaumKappa*ln(Si(Pi))^2*GAMMA(5/12)^2 2329906091347300 s002 sum(A223677[n]/(n*pi^n+1),n=1..infinity) 2329906108156543 m003 1/2+(3*Sqrt[5])/64+(9*E^(1/2+Sqrt[5]/2))/2 2329906110986313 r005 Im(z^2+c),c=-8/21+23/61*I,n=16 2329906111132311 k008 concat of cont frac of 2329906123278499 a001 1346269/1364*39603^(16/31) 2329906126567784 a007 Real Root Of -166*x^4-583*x^3-746*x^2-287*x+899 2329906130906200 a007 Real Root Of -2*x^4+308*x^3+444*x^2-810*x-343 2329906132932480 a001 28657/1364*15127^(30/31) 2329906134544345 s002 sum(A082994[n]/(pi^n-1),n=1..infinity) 2329906134844376 m001 gamma(2)^Robbin*Trott^Robbin 2329906136422436 m001 (-ln(2+3^(1/2))+Bloch)/(3^(1/2)+Ei(1)) 2329906145519504 r005 Im(z^2+c),c=-129/118+10/41*I,n=23 2329906152914363 m001 ln(Riemann3rdZero)*Artin*TreeGrowth2nd^2 2329906155639673 m001 (5^(1/2)-MadelungNaCl)/(-Otter+Thue) 2329906157778677 a007 Real Root Of -355*x^4+564*x^3+727*x^2+444*x-149 2329906162280555 m001 ReciprocalLucas^ln(Pi)/(Zeta(1,2)^ln(Pi)) 2329906166104219 r009 Im(z^3+c),c=-3/106+1/43*I,n=3 2329906170210932 s002 sum(A223677[n]/(n*pi^n-1),n=1..infinity) 2329906171235284 r005 Im(z^2+c),c=-24/29+5/33*I,n=8 2329906172698834 a007 Real Root Of 848*x^4+149*x^3-234*x^2-445*x+112 2329906174291783 a001 514229/1364*5778^(23/31) 2329906190892802 b008 1/3+ExpIntegralEi[Coth[2]] 2329906195280424 m001 Zeta(7)/exp(Porter)*Zeta(9) 2329906199032531 m001 MadelungNaCl*Kolakoski*exp(sin(Pi/12))^2 2329906202180836 b008 1-5*Log[129] 2329906202833104 r005 Im(z^2+c),c=-1/22+37/58*I,n=44 2329906210578701 r009 Re(z^3+c),c=-7/25+11/41*I,n=6 2329906211177145 a001 199/13*3^(13/34) 2329906220762223 a007 Real Root Of -546*x^4-930*x^3+989*x^2+320*x-296 2329906220787902 a001 123/365435296162*377^(5/7) 2329906229278344 m001 (Zeta(5)-CareFree)/(Champernowne+Conway) 2329906230818445 m005 (1/2*2^(1/2)-3/8)/(10/11*3^(1/2)-3) 2329906232423922 a007 Real Root Of -330*x^4-812*x^3-81*x^2+251*x+479 2329906254167718 a007 Real Root Of -881*x^4-151*x^3-820*x^2+291*x+113 2329906257999174 m001 1/sin(Pi/5)^2*exp(log(1+sqrt(2)))^2*sinh(1)^2 2329906266701288 a007 Real Root Of -668*x^4-259*x^3+299*x^2+837*x-206 2329906266984022 m005 (1/3*Catalan-1/6)/(2/11*Catalan+3/7) 2329906274945076 m001 FeigenbaumB^exp(1)*GAMMA(13/24)^exp(1) 2329906287317089 m001 (Pi-cos(1))/(Otter-Tribonacci) 2329906288540136 l006 ln(278/2857) 2329906289103201 r002 62th iterates of z^2 + 2329906291383324 a007 Real Root Of 22*x^4+547*x^3+768*x^2-794*x-60 2329906292714960 r005 Re(z^2+c),c=-13/16+9/71*I,n=6 2329906295305786 m001 (FeigenbaumKappa-TwinPrimes)/(ln(5)+exp(1/Pi)) 2329906302601688 m001 Khinchin/(GAMMA(3/4)+gamma(1)) 2329906304828790 a001 29/144*610^(1/44) 2329906314892523 h001 (1/8*exp(1)+1/12)/(6/11*exp(1)+1/3) 2329906323381692 a007 Real Root Of -321*x^4-674*x^3-117*x^2-933*x-604 2329906326437149 r005 Im(z^2+c),c=-7/31+23/33*I,n=49 2329906328836526 m001 (Kac-Riemann1stZero)/(ln(2)-HardyLittlewoodC3) 2329906349420621 h003 exp(Pi*(13^(9/10)+6^(10/7))) 2329906349420621 h008 exp(Pi*(13^(9/10)+6^(10/7))) 2329906351196364 r005 Im(z^2+c),c=-21/23+8/41*I,n=3 2329906377160318 a005 (1/sin(61/125*Pi))^1190 2329906387330439 r005 Re(z^2+c),c=9/50+1/52*I,n=11 2329906391485880 r005 Im(z^2+c),c=-41/114+13/36*I,n=11 2329906392261969 a007 Real Root Of -371*x^4-845*x^3+327*x^2+642*x-34 2329906417447930 m001 Robbin^2*FeigenbaumB*ln(Ei(1)) 2329906422754135 r009 Re(z^3+c),c=-57/106+2/9*I,n=43 2329906437663551 l006 ln(5275/6659) 2329906439979026 p002 log(1/7*(11*7^(1/2)-7^(1/3))*7^(1/2)) 2329906448622524 a003 sin(Pi*17/60)/cos(Pi*38/97) 2329906448637184 r009 Re(z^3+c),c=-21/106+13/14*I,n=38 2329906453974328 r009 Re(z^3+c),c=-5/36+37/39*I,n=16 2329906457243584 r005 Im(z^2+c),c=7/38+9/55*I,n=6 2329906460428756 r005 Im(z^2+c),c=-5/34+1/34*I,n=6 2329906461330525 r005 Im(z^2+c),c=-41/98+17/43*I,n=35 2329906461976698 a001 1346269/1364*2207^(22/31) 2329906472456749 r005 Im(z^2+c),c=-55/86+1/52*I,n=7 2329906475533704 r005 Re(z^2+c),c=-8/29+3/22*I,n=6 2329906477369748 a007 Real Root Of 254*x^4+393*x^3-426*x^2-237*x-754 2329906494077209 r005 Im(z^2+c),c=-63/94+1/22*I,n=58 2329906502474616 h001 (2/9*exp(2)+2/7)/(1/10*exp(1)+5/9) 2329906507286662 a007 Real Root Of 123*x^4-555*x^3+139*x^2+762*x+865 2329906508409683 a007 Real Root Of -36*x^4-814*x^3+552*x^2-558*x+588 2329906531055038 a007 Real Root Of 36*x^4+807*x^3-755*x^2-385*x-896 2329906532649048 r005 Re(z^2+c),c=-1/4+15/53*I,n=22 2329906532944440 a007 Real Root Of -529*x^4-955*x^3+323*x^2-593*x+375 2329906533181652 m002 -4+3*Pi^2-Sinh[Pi]/5 2329906545031535 r005 Im(z^2+c),c=-65/74+10/47*I,n=45 2329906547592478 h001 (5/12*exp(1)+2/11)/(1/6*exp(1)+1/9) 2329906558169524 p001 sum((-1)^n/(504*n+407)/(8^n),n=0..infinity) 2329906566637255 r002 26th iterates of z^2 + 2329906574046659 a007 Real Root Of 42*x^4+968*x^3-211*x^2+799*x-414 2329906607921810 a007 Real Root Of -3*x^4+251*x^3-424*x^2-235*x-237 2329906612045863 m001 LaplaceLimit*(Pi+Artin) 2329906615815867 m006 (-4+1/2*Pi^2)/(3/4*exp(2*Pi)-2/5) 2329906623156309 m005 (1/2*Pi+2/3)/(1/5*exp(1)+5/12) 2329906624797963 m005 (1/3*Pi+1/9)/(8/11*2^(1/2)-6) 2329906632304509 a007 Real Root Of -371*x^4-935*x^3-138*x^2+39*x-53 2329906636667480 a007 Real Root Of -464*x^4-847*x^3+868*x^2+871*x+278 2329906638893001 m001 (cos(1)-sin(1/12*Pi))/(-Cahen+LandauRamanujan) 2329906651028852 r005 Im(z^2+c),c=-40/31+3/61*I,n=55 2329906658149084 l006 ln(6811/8598) 2329906677156854 r005 Im(z^2+c),c=-53/82+12/47*I,n=18 2329906680201463 m005 (1/3*2^(1/2)+3/7)/(-5/16+5/16*5^(1/2)) 2329906690829280 a007 Real Root Of -805*x^4-596*x^3+696*x^2+585*x-14 2329906699253132 r005 Im(z^2+c),c=-53/46+5/26*I,n=14 2329906699588610 a007 Real Root Of -862*x^4+528*x^3+13*x^2+912*x+221 2329906700215930 m001 GAMMA(13/24)*ln(PrimesInBinary)^2*GAMMA(2/3)^2 2329906701718156 m005 (1/2*gamma+9/10)/(5/7*2^(1/2)-1/2) 2329906706750688 r005 Re(z^2+c),c=27/62+13/56*I,n=14 2329906713269329 m005 (1/3*3^(1/2)-1/12)/(5/9*Pi+3/8) 2329906717367432 m001 ln(Ei(1))*Salem*GAMMA(1/6)^2 2329906725215900 m005 (1/2*2^(1/2)+4/9)/(3/10*Pi+4) 2329906725939874 m002 E^Pi+(2*E^Pi)/(3*Pi^4) 2329906728473303 m001 ln(Pi)+GaussKuzminWirsing+QuadraticClass 2329906735451147 r002 23th iterates of z^2 + 2329906743699331 l006 ln(769/7903) 2329906749656561 r008 a(0)=0,K{-n^6,76-84*n^3-68*n^2+33*n} 2329906770921784 r005 Im(z^2+c),c=-41/74+23/54*I,n=18 2329906778122427 m001 LambertW(1)+gamma(2)+Pi^(1/2) 2329906813420444 b008 21+Sqrt[37/7] 2329906819532937 r009 Im(z^3+c),c=-31/52+10/43*I,n=33 2329906820061792 r005 Im(z^2+c),c=-19/14+3/227*I,n=18 2329906829811133 m005 (1/2*3^(1/2)+2)/(1/5*exp(1)-2/3) 2329906832665081 a007 Real Root Of 379*x^4+388*x^3-652*x^2+754*x-965 2329906840199430 a007 Real Root Of -386*x^4-702*x^3+224*x^2-585*x-83 2329906841897773 m001 (ln(5)*TwinPrimes+PlouffeB)/TwinPrimes 2329906845782776 m001 (Chi(1)+gamma(1))/(-Champernowne+Magata) 2329906858128804 m001 PisotVijayaraghavan*ln(Paris)/log(2+sqrt(3)) 2329906863852775 r009 Re(z^3+c),c=-47/122+12/23*I,n=54 2329906873621892 r005 Im(z^2+c),c=-81/86+11/48*I,n=63 2329906893249116 r005 Im(z^2+c),c=-21/50+23/58*I,n=52 2329906893639305 a007 Real Root Of 325*x^4+24*x^3-303*x^2-643*x+165 2329906894590585 q001 1/4292017 2329906899262396 a007 Real Root Of -11*x^4-252*x^3+95*x^2-136*x-483 2329906925790088 r009 Im(z^3+c),c=-3/34+20/23*I,n=8 2329906928940406 m001 1/Riemann2ndZero^2/ln(MertensB1)*sinh(1)^2 2329906938187865 m001 (cos(1)-CopelandErdos)^GAMMA(3/4) 2329906940110649 m005 (1/2*exp(1)-8/9)/(-69/220+1/20*5^(1/2)) 2329906947640443 r005 Im(z^2+c),c=-27/46+21/58*I,n=40 2329906948279620 r002 33th iterates of z^2 + 2329906949895522 l006 ln(8442/8641) 2329906955621707 h001 (7/10*exp(2)+4/7)/(5/6*exp(1)+1/5) 2329906955822351 r005 Re(z^2+c),c=11/90+2/5*I,n=40 2329906961723972 m005 (1/2*2^(1/2)-4/11)/(121/120+5/24*5^(1/2)) 2329906963297576 m006 (2/5*exp(2*Pi)+1)/(4*exp(Pi)-1/5) 2329906966780604 r004 Re(z^2+c),c=1/7-3/14*I,z(0)=exp(7/12*I*Pi),n=7 2329906974501251 r005 Re(z^2+c),c=-23/29+5/43*I,n=58 2329906975624424 b008 23+5^(-3/4) 2329906981883696 m001 (GAMMA(17/24)+ErdosBorwein)/(Paris-Totient) 2329906981981299 m001 (gamma+Zeta(1,-1))/(-CopelandErdos+ThueMorse) 2329906987707156 p003 LerchPhi(1/1024,5,333/157) 2329906988043202 r005 Im(z^2+c),c=19/70+11/20*I,n=52 2329906998962147 r005 Im(z^2+c),c=3/56+7/30*I,n=9 2329906999198618 r005 Im(z^2+c),c=29/106+5/61*I,n=20 2329906999510523 q001 476/2043 2329906999510523 r005 Im(z^2+c),c=-23/18+34/227*I,n=2 2329907001406482 l006 ln(491/5046) 2329907004934329 m004 3+25*Pi+4*Sinh[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi] 2329907011648549 a007 Real Root Of -209*x^4+111*x^3+663*x^2+619*x-181 2329907017225913 m005 (1/2*Pi+2/7)/(5/8*3^(1/2)-2/7) 2329907023646779 r005 Re(z^2+c),c=-13/74+35/52*I,n=19 2329907025604746 a007 Real Root Of 133*x^4-43*x^3-398*x^2+602*x-900 2329907026133562 m004 -4-15*Sqrt[5]*Pi+25*Sqrt[5]*Pi*Log[Sqrt[5]*Pi] 2329907067235648 m002 -Sinh[Pi]/(3*Log[Pi])+Pi*Tanh[Pi] 2329907076140531 r002 29th iterates of z^2 + 2329907079333126 m001 (LambertW(1)-Shi(1))/(-cos(1/12*Pi)+Salem) 2329907079693178 r005 Re(z^2+c),c=-2/11+21/46*I,n=11 2329907086745790 m001 1/Kolakoski/exp(ArtinRank2)/GAMMA(13/24)^2 2329907087665444 a005 (1/sin(103/219*Pi))^1781 2329907130994491 a007 Real Root Of -836*x^4-626*x^3+534*x^2+753*x+141 2329907131949437 m001 Psi(2,1/3)^(cos(1/5*Pi)/ZetaP(4)) 2329907150063071 r002 9th iterates of z^2 + 2329907151335828 m001 (LaplaceLimit+Otter)/(Ei(1,1)-Pi^(1/2)) 2329907176324718 m001 (-Stephens+ZetaP(3))/(gamma+ln(Pi)) 2329907178501775 m004 6/5+(Csc[Sqrt[5]*Pi]*ProductLog[Sqrt[5]*Pi])/2 2329907180192382 a007 Real Root Of 290*x^4+578*x^3-531*x^2-925*x-508 2329907193854521 a001 1/841*(1/2*5^(1/2)+1/2)^29*29^(16/19) 2329907204270918 r009 Im(z^3+c),c=-11/28+8/57*I,n=30 2329907212003899 m001 (cos(1)+FeigenbaumAlpha)/(Gompertz+Rabbit) 2329907220933339 m005 (1/2*5^(1/2)+2/5)/(3/4*Zeta(3)-1/4) 2329907226709209 h001 (2/5*exp(2)+10/11)/(2/5*exp(1)+4/7) 2329907229385035 m001 (Robbin+TreeGrowth2nd)/(Pi^(1/2)+Otter) 2329907234027191 m006 (5*Pi+2/5)/(1/3*exp(Pi)-4/5) 2329907246000216 m001 (FeigenbaumD+Weierstrass)/FeigenbaumKappa 2329907250222356 r005 Im(z^2+c),c=-25/26+16/83*I,n=6 2329907253874395 s002 sum(A192076[n]/(n^3*2^n+1),n=1..infinity) 2329907267380684 r005 Re(z^2+c),c=4/15+3/19*I,n=19 2329907269035602 r009 Re(z^3+c),c=-45/98+29/60*I,n=18 2329907282907541 l006 ln(704/7235) 2329907287477040 m005 (1/2*Zeta(3)+3/10)/(1/10*gamma-4/9) 2329907294299516 m001 (Magata-ZetaP(3))/(Ei(1,1)-ErdosBorwein) 2329907301933138 m005 (1/2*5^(1/2)+4/5)/(1/8*2^(1/2)-1) 2329907304432247 m001 GAMMA(19/24)/exp(Riemann3rdZero)*Zeta(3)^2 2329907307259902 r009 Im(z^3+c),c=-11/28+8/57*I,n=23 2329907309356289 r005 Im(z^2+c),c=-39/64+17/49*I,n=42 2329907321241244 m001 (-Champernowne+Khinchin)/(GAMMA(13/24)-cos(1)) 2329907322502270 m001 (Zeta(3)+ln(2))/(Paris+TravellingSalesman) 2329907335480856 m004 (25*Pi)/4+Cos[Sqrt[5]*Pi]*Cosh[Sqrt[5]*Pi]^2 2329907348011556 a008 Real Root of x^4-x^3-17*x^2-38*x+164 2329907349911769 m001 GAMMA(2/3)+LambertW(1)^exp(-Pi) 2329907352785049 m001 1/BesselJ(1,1)^2/ln(Niven)^2*GAMMA(17/24) 2329907355186609 m001 arctan(1/2)^2*ln(GAMMA(1/4))*sin(1) 2329907364571282 m001 (Khinchin-Riemann1stZero)/(Pi+Pi^(1/2)) 2329907365261898 a008 Real Root of x^4-2*x^3-27*x^2-57*x-41 2329907373290041 r005 Im(z^2+c),c=-57/52+14/59*I,n=7 2329907382714553 m005 (1/2*Zeta(3)+1/11)/(3*Zeta(3)-7/11) 2329907383361378 r002 8th iterates of z^2 + 2329907390178511 a007 Real Root Of -792*x^4+339*x^3+265*x^2+990*x-247 2329907399136876 m005 (3*Pi-1/2)/(4*Catalan+1/6) 2329907401742987 r009 Im(z^3+c),c=-7/64+6/25*I,n=3 2329907415350343 l006 ln(1536/1939) 2329907421407657 m001 GAMMA(11/12)+FeigenbaumD*Weierstrass 2329907423012002 a001 8/39603*2^(7/34) 2329907423863506 r005 Re(z^2+c),c=9/50+22/53*I,n=6 2329907425677813 m001 LambertW(1)/ln(PrimesInBinary)^2/Pi 2329907425990796 h001 (6/7*exp(1)+5/9)/(4/11*exp(1)+1/4) 2329907426604039 h001 (1/3*exp(2)+1/2)/(1/11*exp(2)+3/5) 2329907428437972 h001 (-5*exp(1/2)+9)/(-9*exp(1)-8) 2329907429272953 m001 (-BesselJ(0,1)+ln(3))/(3^(1/2)-ln(2)/ln(10)) 2329907433634903 l006 ln(917/9424) 2329907459261884 m001 ZetaQ(4)^(Kolakoski/GAMMA(2/3)) 2329907468354751 r005 Re(z^2+c),c=-75/94+5/61*I,n=56 2329907469765373 m005 (1/2*5^(1/2)-1/3)/(1/4*5^(1/2)-2/9) 2329907472936874 p003 LerchPhi(1/3,3,345/206) 2329907473668663 m001 exp(1/exp(1))+FeigenbaumB+Riemann2ndZero 2329907475308081 r005 Re(z^2+c),c=-11/56+19/43*I,n=46 2329907480203110 a007 Real Root Of 150*x^4-751*x^3-991*x^2-932*x+280 2329907501657211 b008 5*(-8+E^4) 2329907502569373 q001 2267/973 2329907504100165 p001 sum((-1)^n/(447*n+361)/n/(5^n),n=1..infinity) 2329907515059467 m001 ArtinRank2/Conway/exp(exp(1))^2 2329907523372599 r005 Re(z^2+c),c=33/122+23/47*I,n=32 2329907525433379 m001 (Kac+KhinchinLevy)/(StolarskyHarborth-Thue) 2329907533720682 m001 (FeigenbaumKappa+ZetaQ(4))/(Pi+FeigenbaumD) 2329907560944182 r005 Re(z^2+c),c=23/78+11/62*I,n=18 2329907563539263 r009 Im(z^3+c),c=-1/8+14/59*I,n=4 2329907574130274 r009 Im(z^3+c),c=-19/42+3/40*I,n=41 2329907574499531 a007 Real Root Of -319*x^4-585*x^3+406*x^2+226*x+324 2329907575770410 a007 Real Root Of 266*x^4+583*x^3-275*x^2-403*x+89 2329907579043434 m001 (GAMMA(13/24)-Champernowne)/(Robbin-Trott) 2329907594514784 r009 Im(z^3+c),c=-11/28+8/57*I,n=31 2329907596200275 p004 log(35999/28517) 2329907603275231 m001 DuboisRaymond/(BesselI(0,2)-exp(1/exp(1))) 2329907609565044 r005 Im(z^2+c),c=-1+57/245*I,n=27 2329907611072247 r005 Re(z^2+c),c=-3/22+31/56*I,n=32 2329907611152228 a005 (1/sin(82/195*Pi))^173 2329907618803928 m005 (1/3*5^(1/2)-3/5)/(5/6*gamma+1/7) 2329907620613502 a007 Real Root Of 405*x^4+777*x^3-159*x^2+634*x+233 2329907623719725 m001 (gamma(1)+gamma(2))/(1-GAMMA(2/3)) 2329907624458163 a001 832040/843*3^(43/55) 2329907625661713 r009 Im(z^3+c),c=-11/28+8/57*I,n=29 2329907630396700 a007 Real Root Of 218*x^4+4*x^3-730*x^2+960*x-174 2329907638828024 r002 24th iterates of z^2 + 2329907647355236 r005 Im(z^2+c),c=-17/38+21/52*I,n=38 2329907649226169 m001 (Shi(1)+Chi(1))/(-Catalan+GaussAGM) 2329907649226169 m001 Ei(1)/(Catalan-GaussAGM) 2329907697973188 m001 HardyLittlewoodC3/(FeigenbaumD-Otter) 2329907711220292 r005 Im(z^2+c),c=-14/31+21/52*I,n=42 2329907717489757 a001 2889/17*17711^(1/31) 2329907722483593 m001 GAMMA(23/24)^2/ln(Backhouse)/Zeta(3) 2329907724723049 r002 9th iterates of z^2 + 2329907726256046 r005 Re(z^2+c),c=-17/74+8/23*I,n=12 2329907731830991 m001 (-Champernowne+Mills)/(Shi(1)+ln(gamma)) 2329907732265823 h001 (6/7*exp(1)+4/11)/(1/3*exp(1)+1/4) 2329907735443577 r005 Im(z^2+c),c=-15/26+5/106*I,n=22 2329907741647793 m001 MinimumGamma^CareFree/(TreeGrowth2nd^CareFree) 2329907747510198 m005 (1/2*Catalan+1/12)/(2/7*Zeta(3)-1/9) 2329907750830671 a005 (1/sin(50/153*Pi))^404 2329907765814584 r005 Im(z^2+c),c=-2/29+9/32*I,n=5 2329907770717699 s002 sum(A270109[n]/(2^n-1),n=1..infinity) 2329907772896862 r005 Re(z^2+c),c=-17/90+9/14*I,n=26 2329907789922957 m003 -3-4*Cos[1/2+Sqrt[5]/2]+Log[1/2+Sqrt[5]/2] 2329907795648824 m001 (OneNinth+Porter)/(GAMMA(3/4)+ln(gamma)) 2329907797511759 b008 2/3+3*Sinh[E] 2329907821522523 m001 (2/3*Pi*3^(1/2)/GAMMA(2/3)+ln(3))/(1-Chi(1)) 2329907834278700 m001 Mills-Pi*csc(11/24*Pi)/GAMMA(13/24)+Otter 2329907837565339 a007 Real Root Of -719*x^4-835*x^3-80*x^2+391*x+87 2329907846065729 m001 ln(Tribonacci)/Si(Pi)*sin(1)^2 2329907852989988 r009 Im(z^3+c),c=-11/28+8/57*I,n=36 2329907853222993 r005 Re(z^2+c),c=-11/56+19/43*I,n=45 2329907856195023 r005 Im(z^2+c),c=-55/58+7/30*I,n=57 2329907856324940 m001 CareFree^BesselJ(1,1)*exp(1) 2329907864908709 r009 Im(z^3+c),c=-11/28+8/57*I,n=35 2329907865802692 a007 Real Root Of -4*x^4-61*x^3+734*x^2-351*x+586 2329907869564286 m005 (1/2*3^(1/2)-3/4)/(5*Catalan+2/5) 2329907879113671 r009 Im(z^3+c),c=-11/28+8/57*I,n=37 2329907881977962 r005 Im(z^2+c),c=-13/42+23/63*I,n=36 2329907884534914 r005 Im(z^2+c),c=-9/16+5/119*I,n=62 2329907889236941 r009 Im(z^3+c),c=-11/28+8/57*I,n=42 2329907889269078 r009 Im(z^3+c),c=-11/28+8/57*I,n=41 2329907890861257 r009 Im(z^3+c),c=-11/28+8/57*I,n=43 2329907891146918 r009 Im(z^3+c),c=-11/28+8/57*I,n=47 2329907891178245 r009 Im(z^3+c),c=-11/28+8/57*I,n=48 2329907891273825 r009 Im(z^3+c),c=-11/28+8/57*I,n=49 2329907891274433 r009 Im(z^3+c),c=-11/28+8/57*I,n=53 2329907891277838 r009 Im(z^3+c),c=-11/28+8/57*I,n=54 2329907891282440 r009 Im(z^3+c),c=-11/28+8/57*I,n=59 2329907891282709 r009 Im(z^3+c),c=-11/28+8/57*I,n=60 2329907891282794 r009 Im(z^3+c),c=-11/28+8/57*I,n=58 2329907891282926 r009 Im(z^3+c),c=-11/28+8/57*I,n=64 2329907891282992 r009 Im(z^3+c),c=-11/28+8/57*I,n=63 2329907891282998 r009 Im(z^3+c),c=-11/28+8/57*I,n=61 2329907891283064 r009 Im(z^3+c),c=-11/28+8/57*I,n=62 2329907891283208 r009 Im(z^3+c),c=-11/28+8/57*I,n=55 2329907891283435 r009 Im(z^3+c),c=-11/28+8/57*I,n=52 2329907891284047 r009 Im(z^3+c),c=-11/28+8/57*I,n=57 2329907891285026 r009 Im(z^3+c),c=-11/28+8/57*I,n=56 2329907891306216 r009 Im(z^3+c),c=-11/28+8/57*I,n=51 2329907891317240 r009 Im(z^3+c),c=-11/28+8/57*I,n=50 2329907891351913 r009 Im(z^3+c),c=-11/28+8/57*I,n=46 2329907891748374 r009 Im(z^3+c),c=-11/28+8/57*I,n=45 2329907891812395 r009 Im(z^3+c),c=-11/28+8/57*I,n=44 2329907893616297 r009 Im(z^3+c),c=-11/28+8/57*I,n=40 2329907898092640 a007 Real Root Of -556*x^4-776*x^3+748*x^2-928*x+347 2329907898719685 r009 Im(z^3+c),c=-11/28+8/57*I,n=38 2329907900181005 r009 Im(z^3+c),c=-11/28+8/57*I,n=39 2329907902678929 a003 sin(Pi*3/71)/cos(Pi*4/13) 2329907909270138 r005 Im(z^2+c),c=-49/106+2/51*I,n=21 2329907914884619 a007 Real Root Of -936*x^4-406*x^3+69*x^2+713*x+160 2329907920502203 r009 Im(z^3+c),c=-13/27+4/39*I,n=6 2329907931813437 l006 ln(213/2189) 2329907932067392 m001 1/exp(Porter)^2/Magata/sin(Pi/12)^2 2329907938460692 a007 Real Root Of -403*x^4-713*x^3+231*x^2-339*x+814 2329907942012162 a003 -1-cos(3/7*Pi)-2*cos(3/8*Pi)-cos(7/18*Pi) 2329907950545958 r002 24th iterates of z^2 + 2329907952265429 r009 Im(z^3+c),c=-11/28+8/57*I,n=34 2329907968844831 a007 Real Root Of 261*x^4+407*x^3+111*x^2-332*x-79 2329907970497370 a007 Real Root Of -470*x^4-999*x^3-156*x^2-851*x+79 2329907973650011 m005 (4*Catalan-1/4)/(5/6*exp(1)-4/5) 2329907979360203 r009 Im(z^3+c),c=-11/28+8/57*I,n=32 2329907988090358 a003 sin(Pi*2/95)/cos(Pi*29/71) 2329907991477337 b008 11+13*SinIntegral[1] 2329908028267639 a007 Real Root Of 635*x^4+49*x^3-935*x^2-677*x+206 2329908035165486 r002 14th iterates of z^2 + 2329908038618858 a001 76/4181*21^(31/37) 2329908048824587 a007 Real Root Of 459*x^4+741*x^3-266*x^2+994*x-394 2329908049226599 m001 (-Thue+ThueMorse)/(Riemann2ndZero-Si(Pi)) 2329908054353276 r009 Im(z^3+c),c=-11/28+8/57*I,n=33 2329908065572687 m004 4+5*Pi+Cos[Sqrt[5]*Pi]*Cosh[Sqrt[5]*Pi]^2 2329908071203462 a007 Real Root Of -493*x^4-850*x^3+309*x^2-736*x+385 2329908076712585 m001 CareFree/(ln(2)/ln(10)+HeathBrownMoroz) 2329908093381769 m001 Backhouse^Champernowne+GlaisherKinkelin 2329908093454641 r005 Im(z^2+c),c=-9/16+5/119*I,n=56 2329908098004415 m001 (ErdosBorwein+RenyiParking)/(Si(Pi)-sin(1)) 2329908107614697 a007 Real Root Of -53*x^4+555*x^3-536*x^2-758*x-782 2329908110295909 m001 (ln(3)+gamma(1))/(FeigenbaumC-KomornikLoreti) 2329908110487740 a007 Real Root Of -242*x^4-220*x^3+494*x^2-543*x+402 2329908110658981 a001 521*(1/2*5^(1/2)+1/2)^10*47^(14/15) 2329908111882972 a007 Real Root Of -887*x^4-756*x^3+679*x^2+952*x+178 2329908117533096 a001 1/2576*75025^(31/40) 2329908119090281 h001 (1/2*exp(2)+3/11)/(4/11*exp(1)+5/7) 2329908122032053 m001 OneNinth*ln(CareFree)^2/LambertW(1) 2329908138489670 a007 Real Root Of -512*x^4-997*x^3+662*x^2+845*x+853 2329908150741386 l006 ln(7013/8853) 2329908160036231 m005 (1/3*Zeta(3)-3/4)/(7/12*Pi-1/3) 2329908174415504 a008 Real Root of x^5-2*x^4-x^3+14*x^2-15*x+4 2329908175653320 m001 HardyLittlewoodC5^Champernowne-LaplaceLimit 2329908197971754 r005 Re(z^2+c),c=-17/18-44/255*I,n=40 2329908200675357 r009 Re(z^3+c),c=-37/114+31/48*I,n=33 2329908202263286 a001 710647/13*21^(10/21) 2329908202781332 a001 233/3*4^(42/53) 2329908206318674 m001 (2^(1/3)-Shi(1))/(-Zeta(1,-1)+CareFree) 2329908226917506 a007 Real Root Of -544*x^4-957*x^3+198*x^2-991*x+543 2329908228756501 m001 KhinchinLevy*(BesselI(0,1)+ArtinRank2) 2329908229539138 r002 43th iterates of z^2 + 2329908233300165 p001 sum((-1)^n/(463*n+429)/(1024^n),n=0..infinity) 2329908235263003 r009 Re(z^3+c),c=-35/118+21/31*I,n=5 2329908238685080 r009 Re(z^3+c),c=-13/56+34/37*I,n=13 2329908244347131 r005 Im(z^2+c),c=-95/82+15/56*I,n=22 2329908251903379 s002 sum(A251001[n]/(64^n-1),n=1..infinity) 2329908277741185 a001 4/233*610^(1/21) 2329908286037829 r005 Im(z^2+c),c=-129/110+1/33*I,n=43 2329908286944024 m009 (1/2*Psi(1,3/4)+2/5)/(3/4*Psi(1,1/3)-2/5) 2329908287451778 r005 Re(z^2+c),c=-31/34+19/75*I,n=18 2329908287627891 r005 Re(z^2+c),c=-7/32+20/27*I,n=45 2329908296671571 a007 Real Root Of -252*x^4-213*x^3+894*x^2-106*x-368 2329908310878885 m001 (Zeta(3)+sin(1/12*Pi))/(ZetaP(2)+ZetaP(3)) 2329908314800046 m005 (1/2*3^(1/2)-5/6)/(4/11*2^(1/2)+8/9) 2329908323291644 r005 Re(z^2+c),c=5/22+2/17*I,n=14 2329908347944165 m001 GAMMA(1/6)^2/MadelungNaCl^2*exp(exp(1))^2 2329908356978485 l006 ln(5477/6914) 2329908358789225 q001 839/3601 2329908359662569 m001 (Zeta(3)+ln(gamma))/(Conway-Mills) 2329908360470651 r005 Re(z^2+c),c=-19/78+19/62*I,n=18 2329908374810148 a007 Real Root Of -434*x^4-825*x^3+290*x^2-529*x-452 2329908376565960 m001 (ln(3)-BesselI(1,2))/(GAMMA(13/24)+Bloch) 2329908383167852 r005 Re(z^2+c),c=-11/56+19/43*I,n=48 2329908398596493 m001 TreeGrowth2nd/(GAMMA(3/4)+LaplaceLimit) 2329908399847145 a007 Real Root Of -266*x^4-136*x^3+640*x^2+793*x-217 2329908403860027 r005 Im(z^2+c),c=49/110+16/53*I,n=5 2329908412048042 m001 (HardyLittlewoodC4-ThueMorse)^MasserGramain 2329908420948369 m005 (1/3*Catalan+1/8)/(5/8*gamma-6/11) 2329908438393975 m001 BesselI(0,1)*Zeta(1,2)*ReciprocalLucas 2329908439065473 m001 (Rabbit-sin(1))/(-Stephens+Trott) 2329908451324247 m005 (1/3*exp(1)-1/5)/(5/7*Zeta(3)-5/9) 2329908454644311 m002 -1+Pi^2+Pi^3/2-ProductLog[Pi] 2329908455405026 h001 (-3*exp(3/2)+4)/(-3*exp(1/2)+9) 2329908462453720 m001 (Totient-ZetaP(4))/(Pi+BesselI(0,2)) 2329908463886224 r009 Re(z^3+c),c=-57/106+14/45*I,n=34 2329908483720631 a003 cos(Pi*4/53)/sin(Pi*10/73) 2329908492444599 r005 Re(z^2+c),c=-3/40+35/52*I,n=48 2329908500671732 m001 1/GAMMA(5/6)/Ei(1)/ln(Zeta(9)) 2329908512282904 l006 ln(787/8088) 2329908532837645 m001 ln(Sierpinski)^2/LaplaceLimit^2/log(1+sqrt(2)) 2329908534139140 r009 Im(z^3+c),c=-11/28+8/57*I,n=26 2329908547478649 p004 log(28753/22777) 2329908549497640 r005 Re(z^2+c),c=-67/86+2/27*I,n=38 2329908551873829 a007 Real Root Of -294*x^4-505*x^3+106*x^2-358*x+867 2329908552713790 m001 (-FellerTornier+Otter)/(3^(1/2)-BesselK(1,1)) 2329908553658155 a007 Real Root Of -481*x^4-791*x^3+519*x^2-650*x-162 2329908565404714 a001 123/4052739537881*10946^(5/7) 2329908578928410 a008 Real Root of (16+3*x+3*x^2+2*x^3) 2329908581075593 m001 Pi*csc(11/24*Pi)/GAMMA(13/24)-ln(gamma)*Sarnak 2329908590953642 a007 Real Root Of -479*x^4+773*x^3+280*x^2+940*x+215 2329908591058767 p001 sum((-1)^n/(333*n+95)/n/(100^n),n=1..infinity) 2329908609065572 m001 Robbin^2*ln(Riemann3rdZero)*sqrt(1+sqrt(3)) 2329908617953321 r005 Re(z^2+c),c=5/23+2/19*I,n=11 2329908618500104 m001 (Pi*2^(1/2)/GAMMA(3/4)-ln(2^(1/2)+1))^Chi(1) 2329908619258340 m001 FeigenbaumDelta/exp(Cahen)*GAMMA(7/24)^2 2329908629453988 r005 Re(z^2+c),c=9/25+7/27*I,n=9 2329908631210234 m005 (1/3*gamma+2/5)/(5/7*Catalan-2/5) 2329908637715705 p002 log((14^(1/2)+6^(1/3))^(1/2)*19^(1/2)) 2329908643081032 m001 (-FransenRobinson+Otter)/(2^(1/3)-Ei(1)) 2329908646557126 m001 1/MinimumGamma*ln(DuboisRaymond)*(3^(1/3))^2 2329908650445614 m001 (Magata-MasserGramain)/(OneNinth+Trott) 2329908662447211 h001 (1/8*exp(2)+4/5)/(1/8*exp(1)+2/5) 2329908663013172 r005 Im(z^2+c),c=-37/90+13/33*I,n=31 2329908670369342 r009 Im(z^3+c),c=-4/31+9/38*I,n=7 2329908675799086 q001 2041/876 2329908678101263 m001 (GAMMA(7/12)+Rabbit)/(sin(1)+Zeta(1,2)) 2329908690044890 m005 (-1/12+1/4*5^(1/2))/(3/5*5^(1/2)+7/10) 2329908694073640 m003 4+4*E^(1/2+Sqrt[5]/2)-Cosh[1/2+Sqrt[5]/2]/3 2329908694923224 a005 (1/sin(72/217*Pi))^257 2329908706414946 s002 sum(A287615[n]/(exp(pi*n)+1),n=1..infinity) 2329908712760322 m001 (Landau-Sarnak)/(StronglyCareFree-ZetaQ(4)) 2329908715609724 m001 (-FellerTornier+Totient)/(2^(1/3)-Conway) 2329908716931547 a007 Real Root Of -176*x^4+2*x^3+990*x^2+253*x+427 2329908721322820 l006 ln(6533/6687) 2329908723976894 l006 ln(3941/4975) 2329908727683508 l006 ln(574/5899) 2329908732682667 a007 Real Root Of 394*x^4+803*x^3-444*x^2-309*x+236 2329908733194750 m005 (1/2*3^(1/2)+8/11)/(9/10*3^(1/2)-7/8) 2329908736527184 h001 (5/6*exp(2)+1/12)/(9/11*exp(1)+5/11) 2329908737021254 r005 Re(z^2+c),c=-7/44+27/53*I,n=13 2329908742468364 r005 Re(z^2+c),c=-95/102+25/63*I,n=4 2329908752731771 r009 Re(z^3+c),c=-19/50+13/25*I,n=10 2329908758278519 r009 Re(z^3+c),c=-41/106+27/50*I,n=28 2329908762797471 a007 Real Root Of -341*x^4-742*x^3-31*x^2-210*x+343 2329908764477181 r005 Im(z^2+c),c=-33/52+8/19*I,n=20 2329908768735483 a001 514229/199*29^(32/49) 2329908783996128 m004 3+25*Pi+2*E^(Sqrt[5]*Pi)*Tanh[Sqrt[5]*Pi] 2329908809066250 p004 log(21407/2083) 2329908837382980 m001 cos(1/5*Pi)+Porter+ZetaQ(2) 2329908842592332 m005 (1/3*Pi+3/4)/(6/11*Pi+6) 2329908846450194 r005 Im(z^2+c),c=-15/38+16/41*I,n=32 2329908848732048 a007 Real Root Of -525*x^4+769*x^3+563*x^2+705*x-203 2329908850218351 m005 (1/2*exp(1)+10/11)/(3/5*2^(1/2)+1/8) 2329908852305996 r009 Re(z^3+c),c=-13/38+16/39*I,n=8 2329908855700901 a001 11/46368*317811^(21/58) 2329908859828338 s002 sum(A129919[n]/(exp(pi*n)+1),n=1..infinity) 2329908861348975 a007 Real Root Of -92*x^4+108*x^3+769*x^2-129*x-398 2329908886757184 r009 Re(z^3+c),c=-3/70+36/53*I,n=46 2329908890479481 a007 Real Root Of 752*x^4+559*x^3+844*x^2-571*x-174 2329908904458064 m001 exp(GAMMA(7/24))/Niven^2/LambertW(1)^2 2329908908988580 l006 ln(935/9609) 2329908910409337 a007 Real Root Of 950*x^4+337*x^3-489*x^2-925*x+235 2329908912574881 r005 Re(z^2+c),c=-9/40+15/41*I,n=27 2329908912783841 p001 sum(1/(604*n+431)/(100^n),n=0..infinity) 2329908915487305 r005 Re(z^2+c),c=23/114+5/62*I,n=10 2329908916157435 m005 (1/3*exp(1)+1/5)/(2/7*Zeta(3)-9/11) 2329908919770074 m005 (1/2*exp(1)-8/11)/(2/11*Pi-3/10) 2329908920320323 m003 41/2+Sqrt[5]/2+E^(1/2+Sqrt[5]/2)/3 2329908930840529 m001 (sin(1/12*Pi)+gamma(3))/(Kac-KhinchinHarmonic) 2329908936692913 m005 (1/3*gamma-1/4)/(1/3*Pi-4/5) 2329908945870239 m005 (1/2*Pi+5/11)/(6/7*Pi+6) 2329908947387549 a001 29/21*514229^(54/59) 2329908949186299 b008 9+7*E^(5/7) 2329908950954547 r009 Re(z^3+c),c=-17/40+18/29*I,n=33 2329908953364530 p001 sum((-1)^n/(485*n+429)/(1000^n),n=0..infinity) 2329908953692076 s002 sum(A202243[n]/((pi^n-1)/n),n=1..infinity) 2329908962229345 m001 Ei(1)^cos(1/12*Pi)+PlouffeB 2329908962449824 m001 (Conway-LandauRamanujan)/(PlouffeB+Tribonacci) 2329908966540899 r005 Re(z^2+c),c=-9/118+19/33*I,n=12 2329908970829896 m001 Tribonacci^2/exp(FeigenbaumAlpha)*sin(1) 2329908971586598 m001 (sin(1/12*Pi)+MertensB3)/(arctan(1/2)+Ei(1,1)) 2329908986280680 m005 (1/2*3^(1/2)-1/11)/(7/11*gamma-7/10) 2329908992870760 a007 Real Root Of 482*x^4+946*x^3-789*x^2-625*x+588 2329909018250588 r005 Im(z^2+c),c=-31/106+9/25*I,n=25 2329909022991486 m008 (1/4*Pi^2-3/5)/(5/6*Pi^6+1/3) 2329909026252476 a007 Real Root Of -404*x^4-601*x^3+543*x^2-431*x+352 2329909034600041 p004 log(17029/1657) 2329909040719759 l006 ln(6346/8011) 2329909041147456 a001 2/1836311903*121393^(11/24) 2329909041161949 a001 1/182717648081*12586269025^(11/24) 2329909052306630 m001 1/2/(BesselJZeros(0,1)-sin(Pi/12)) 2329909055047872 a007 Real Root Of -423*x^4-662*x^3+522*x^2-126*x+965 2329909055122362 r005 Re(z^2+c),c=31/94+3/14*I,n=25 2329909058228377 m001 (Trott2nd+ZetaP(4))/(gamma(1)-Artin) 2329909060652369 s002 sum(A238387[n]/(10^n+1),n=1..infinity) 2329909068206945 m001 (-exp(1/Pi)+Champernowne)/(Psi(2,1/3)+2^(1/2)) 2329909072390707 r005 Re(z^2+c),c=-17/86+25/57*I,n=30 2329909072759248 m001 1/GAMMA(7/24)^2/exp(Niven)^2*sin(Pi/12)^2 2329909117115164 a007 Real Root Of -574*x^4-194*x^3+414*x^2+960*x-242 2329909120845064 a007 Real Root Of 456*x^4+954*x^3-581*x^2-556*x+487 2329909134770582 m001 (Salem-Sarnak)/(PlouffeB+Porter) 2329909140139544 r005 Re(z^2+c),c=17/66+9/19*I,n=5 2329909146778299 r005 Re(z^2+c),c=-13/90+21/40*I,n=20 2329909158080001 r009 Re(z^3+c),c=-25/62+14/27*I,n=16 2329909192642190 r004 Im(z^2+c),c=-19/20-5/24*I,z(0)=-1,n=5 2329909193519403 r009 Im(z^3+c),c=-17/38+1/11*I,n=22 2329909196898216 r005 Im(z^2+c),c=-1/3+16/43*I,n=43 2329909197268599 l006 ln(361/3710) 2329909202513235 a001 1/21*(1/2*5^(1/2)+1/2)^6*3^(21/23) 2329909202564440 a007 Real Root Of -367*x^4-964*x^3-166*x^2+335*x+304 2329909209514433 m001 (Mills+Sarnak)/(ln(gamma)-arctan(1/3)) 2329909215219121 m005 (1/3*2^(1/2)-1/4)/(11/12*5^(1/2)-3) 2329909217999063 a001 89/15127*199^(13/50) 2329909237553457 m001 (1+GAMMA(13/24))/(-Kolakoski+Tetranacci) 2329909249787468 a008 Real Root of x^5-2*x^4-9*x^3+11*x^2+15*x-11 2329909261272215 r005 Im(z^2+c),c=-35/38+10/47*I,n=27 2329909264832778 r009 Re(z^3+c),c=-23/66+7/16*I,n=18 2329909265883425 a007 Real Root Of 231*x^4+600*x^3-98*x^2-726*x-378 2329909269668994 r002 3th iterates of z^2 + 2329909281708486 p001 sum(1/(381*n+293)/n/(64^n),n=1..infinity) 2329909291833496 r005 Re(z^2+c),c=29/110+7/45*I,n=27 2329909299025064 r002 50th iterates of z^2 + 2329909302859270 r009 Im(z^3+c),c=-11/28+8/57*I,n=28 2329909305239826 h001 (9/10*exp(1)+5/9)/(4/11*exp(1)+3/10) 2329909314059228 a007 Real Root Of 175*x^4+594*x^3+753*x^2+454*x-674 2329909349708615 a007 Real Root Of -258*x^4-689*x^3-571*x^2-840*x+31 2329909357810219 m001 (Paris+TwinPrimes)/(ln(2)/ln(10)+Otter) 2329909369243050 r002 51th iterates of z^2 + 2329909392155487 m001 (GAMMA(23/24)+Thue)/cos(1/5*Pi) 2329909398515846 m001 (Gompertz+MertensB3)/(CareFree+Champernowne) 2329909405264905 r002 3th iterates of z^2 + 2329909410760660 m001 (FibonacciFactorial-Magata)/(Thue+ZetaP(4)) 2329909424983961 m001 (Otter+Totient)/(GAMMA(23/24)-sin(1)) 2329909425123704 a007 Real Root Of 420*x^4+896*x^3+219*x^2+564*x-919 2329909425466265 a001 2/1568397607*2^(20/23) 2329909428391193 a007 Real Root Of -254*x^4-202*x^3+848*x^2-560*x-978 2329909430485339 a007 Real Root Of 344*x^4+55*x^3+159*x^2-923*x-224 2329909441303798 r002 45th iterates of z^2 + 2329909445866593 r005 Re(z^2+c),c=9/46+23/58*I,n=42 2329909448689081 r005 Re(z^2+c),c=-3/16+27/64*I,n=7 2329909455484508 m001 (ln(3)-3^(1/3))/(GAMMA(7/12)-ZetaQ(2)) 2329909458244666 p001 sum((-1)^n/(464*n+429)/(1024^n),n=0..infinity) 2329909470875471 a007 Real Root Of 665*x^4-898*x^3+984*x^2-293*x-135 2329909480410666 r005 Im(z^2+c),c=2/23+19/26*I,n=3 2329909493357967 m005 (1/2*Pi-5/7)/(-101/22+9/22*5^(1/2)) 2329909500145798 r002 7th iterates of z^2 + 2329909502469245 m001 ZetaR(2)^cos(1/12*Pi)+exp(Pi) 2329909507086688 l006 ln(870/8941) 2329909520124896 a007 Real Root Of -389*x^4+158*x^3-444*x^2+235*x+82 2329909521116929 m001 (ThueMorse-ZetaQ(2))/(Conway+CopelandErdos) 2329909526630113 a007 Real Root Of -11*x^4+276*x^3-671*x^2+433*x-533 2329909528295480 r005 Im(z^2+c),c=-45/98+11/28*I,n=25 2329909533660095 m001 BesselJZeros(0,1)^Cahen/(exp(Pi)^Cahen) 2329909533660095 m001 exp(-Pi)^Cahen*BesselJZeros(0,1)^Cahen 2329909540602120 m006 (1/2*exp(Pi)+2/3)/(3/4*ln(Pi)-1/3) 2329909548843871 a007 Real Root Of 923*x^4-660*x^3-339*x^2-575*x+158 2329909559756589 l006 ln(2405/3036) 2329909561537403 p003 LerchPhi(1/32,6,536/195) 2329909563242680 m001 (gamma+Bloch)/(Psi(1,1/3)+Psi(2,1/3)) 2329909572353908 r009 Re(z^3+c),c=-25/94+3/13*I,n=6 2329909577052154 m001 (Trott+ZetaQ(3))/(ln(Pi)-GaussKuzminWirsing) 2329909593371353 m002 Pi^2/3-E^Pi*Coth[Pi]*Log[Pi] 2329909607836358 m001 exp(-1/2*Pi)^(Totient/exp(1/exp(1))) 2329909611573817 h001 (6/11*exp(2)+2/11)/(7/12*exp(1)+2/9) 2329909642834228 m005 (1/2*exp(1)-1/12)/(4/9*3^(1/2)-2/9) 2329909643668054 m001 (sin(1)+arctan(1/3))/(Bloch+Trott2nd) 2329909648493065 m005 (1/2*gamma-7/8)/(-85/24+11/24*5^(1/2)) 2329909664959939 m001 DuboisRaymond*FransenRobinson^ZetaP(3) 2329909665300838 m001 (BesselK(1,1)-Cahen)/(Mills+Weierstrass) 2329909672716687 m001 (BesselI(0,1)+GAMMA(2/3))/(-Artin+MertensB1) 2329909672989690 a007 Real Root Of 548*x^4+994*x^3-369*x^2+802*x+295 2329909673525620 m004 3+25*Pi-Cosh[Sqrt[5]*Pi]+5*Sinh[Sqrt[5]*Pi] 2329909677811596 r009 Re(z^3+c),c=-2/9+1/57*I,n=2 2329909689102142 r009 Re(z^3+c),c=-23/40+22/35*I,n=59 2329909699025681 m001 (Catalan-ln(gamma))/(2*Pi/GAMMA(5/6)+Sarnak) 2329909702984857 m006 (Pi^2+3)/(5*ln(Pi)-1/5) 2329909711986908 r005 Re(z^2+c),c=-11/56+19/43*I,n=51 2329909719163936 r005 Im(z^2+c),c=2/7+4/63*I,n=61 2329909724110585 s002 sum(A052723[n]/(2^n-1),n=1..infinity) 2329909726820088 l006 ln(509/5231) 2329909726820088 p004 log(5231/509) 2329909727164287 h001 (9/10*exp(1)+4/11)/(1/3*exp(1)+3/10) 2329909733731954 a007 Real Root Of 301*x^4+273*x^3-725*x^2+447*x-440 2329909734129798 r001 32i'th iterates of 2*x^2-1 of 2329909734714126 h001 (5/7*exp(2)+9/10)/(3/11*exp(2)+7/11) 2329909737602393 r005 Im(z^2+c),c=-11/74+16/51*I,n=14 2329909739165012 m005 (1/2*Catalan-7/9)/(3/5*3^(1/2)+1/3) 2329909746264904 m001 Pi*csc(5/12*Pi)/GAMMA(7/12)+ZetaP(3)^Catalan 2329909761956688 a007 Real Root Of 556*x^4+932*x^3-680*x^2+707*x+742 2329909763615085 r002 22th iterates of z^2 + 2329909789226685 a007 Real Root Of -129*x^4+227*x^3+701*x^2-840*x+910 2329909802652650 m001 Magata^exp(-1/2*Pi)-Shi(1) 2329909806227936 m002 -(Cosh[Pi]*Coth[Pi])/5+5/ProductLog[Pi] 2329909806483355 r009 Re(z^3+c),c=-5/16+19/54*I,n=20 2329909808445826 r005 Re(z^2+c),c=13/98+39/64*I,n=25 2329909810368660 a001 1/11*843^(13/27) 2329909814079480 a007 Real Root Of 485*x^4+747*x^3-776*x^2+84*x-436 2329909822323959 m001 (Zeta(3)*CareFree+Kolakoski)/CareFree 2329909825856881 m001 (exp(1/Pi)-BesselJ(1,1))/(GaussAGM-Kolakoski) 2329909826908973 a007 Real Root Of -324*x^4-403*x^3+407*x^2-698*x+615 2329909835075198 a005 (1/cos(3/64*Pi))^1982 2329909836362545 g007 Psi(2,6/7)+Psi(2,5/6)-Psi(2,5/11)-Psi(13/10) 2329909850521924 a007 Real Root Of 245*x^4+728*x^3+772*x^2+615*x-770 2329909859382543 a007 Real Root Of -3*x^4-695*x^3+928*x^2+541*x-796 2329909863668636 r005 Im(z^2+c),c=-13/62+55/64*I,n=8 2329909866026574 r005 Re(z^2+c),c=-17/60+2/23*I,n=6 2329909882089035 a001 4/9227465*63245986^(7/20) 2329909882089040 a001 1/66978574*956722026041^(7/20) 2329909883193652 m005 (1/3*5^(1/2)-1/7)/(2*Zeta(3)+2/11) 2329909891423550 a001 4/317811*4181^(7/20) 2329909892708331 r005 Im(z^2+c),c=-3/4+1/98*I,n=44 2329909893462520 a003 cos(Pi*11/65)-cos(Pi*11/60) 2329909894473924 m001 LaplaceLimit^2*FeigenbaumAlpha*ln(cos(Pi/5)) 2329909896299564 m001 LambertW(1)/GAMMA(13/24)/ZetaR(2) 2329909896413608 m001 2^(1/2)/(DuboisRaymond+ThueMorse) 2329909900337456 a007 Real Root Of 289*x^4+296*x^3-812*x^2+96*x-141 2329909906463673 a007 Real Root Of 361*x^4+168*x^3+391*x^2-480*x-132 2329909913773743 m005 (1/2*5^(1/2)+1/7)/(7/10*Catalan-1/10) 2329909945468493 g006 2*Psi(1,5/9)+Psi(1,1/4)-Psi(1,5/6) 2329909950082020 a003 cos(Pi*8/109)-cos(Pi*19/81) 2329909959826074 m009 (4/5*Psi(1,3/4)-2/5)/(3/8*Pi^2-3) 2329909965750699 m001 1/GAMMA(1/4)*BesselK(0,1)*ln(Zeta(9)) 2329909970554086 r005 Im(z^2+c),c=-73/60+1/28*I,n=54 2329909982339832 r005 Re(z^2+c),c=-7/46+9/17*I,n=25 2329910001867255 a007 Real Root Of 409*x^4+479*x^3-994*x^2+486*x+534 2329910002216486 a001 29/144*89^(6/11) 2329910002477077 p001 sum(1/(321*n+43)/(64^n),n=0..infinity) 2329910005241679 r005 Re(z^2+c),c=-5/106+43/52*I,n=15 2329910010340791 a005 (1/cos(52/139*Pi))^54 2329910012528387 r005 Im(z^2+c),c=-59/106+11/24*I,n=23 2329910017791182 l006 ln(657/6752) 2329910027606942 b008 -2+BesselJ[1/2,1+Pi] 2329910040945532 m001 (ZetaP(2)-ZetaQ(3))/(cos(1/12*Pi)-Zeta(1,2)) 2329910042691553 r005 Im(z^2+c),c=-5/9+16/37*I,n=62 2329910044769184 m001 (Mills-Thue)/(arctan(1/2)+Backhouse) 2329910047448539 m001 (2*Pi/GAMMA(5/6))^FeigenbaumC+OneNinth 2329910048338162 a007 Real Root Of -310*x^4-949*x^3-393*x^2+419*x+242 2329910050605420 r009 Re(z^3+c),c=-27/86+21/59*I,n=11 2329910052016658 a007 Real Root Of 37*x^4+850*x^3-322*x^2-932*x+464 2329910054521955 m001 ln(Riemann1stZero)^2*Porter^2*cosh(1) 2329910060932534 p004 log(35281/3433) 2329910067374067 a007 Real Root Of 154*x^4-916*x^3+856*x^2-118*x-86 2329910073090596 a007 Real Root Of 337*x^4+350*x^3-418*x^2+976*x-961 2329910073945278 m001 (Niven+Robbin)/(Stephens+TreeGrowth2nd) 2329910093312719 m001 (Ei(1)-arctan(1/3))/(Lehmer-TwinPrimes) 2329910100500592 m001 cos(1/5*Pi)^ReciprocalFibonacci+Tribonacci 2329910110657276 a004 Fibonacci(12)*Lucas(11)/(1/2+sqrt(5)/2)^10 2329910115393218 m001 (Khinchin-ZetaQ(2))/(ln(2)-CareFree) 2329910123193724 m001 (GaussAGM-Landau)/(Niven-Otter) 2329910134297493 r005 Im(z^2+c),c=-37/78+18/37*I,n=14 2329910138754692 m001 (Backhouse-Grothendieck)/(GAMMA(23/24)+Artin) 2329910139754396 l006 ln(5679/7169) 2329910141206675 q001 1815/779 2329910141206675 r002 2th iterates of z^2 + 2329910143204897 r009 Re(z^3+c),c=-43/106+11/20*I,n=49 2329910147574634 m005 (1/2*2^(1/2)+5/12)/(-62/11+4/11*5^(1/2)) 2329910150248212 m001 exp(GAMMA(3/4))^2/FeigenbaumC/exp(1) 2329910151047808 m001 (BesselI(0,2)+GAMMA(13/24))/(ln(5)-gamma(1)) 2329910151674820 q001 1/4292011 2329910166561435 r005 Im(z^2+c),c=-47/98+19/46*I,n=45 2329910168057880 g007 Psi(2,1/11)+Psi(2,5/6)-Psi(2,2/11)-Psi(2,6/7) 2329910168582909 r005 Re(z^2+c),c=-5/28+29/60*I,n=54 2329910172769564 a007 Real Root Of 717*x^4-986*x^3-150*x^2-294*x+87 2329910174004881 a001 7/3*1346269^(23/47) 2329910179882471 r005 Re(z^2+c),c=-3/19+29/55*I,n=60 2329910183208892 h001 (5/6*exp(1)+5/11)/(1/6*exp(1)+5/7) 2329910183208892 m005 (1/2*exp(1)+3/11)/(1/10*exp(1)+3/7) 2329910188191991 m001 Salem*exp(LandauRamanujan)/Trott 2329910188481948 m001 (exp(1/exp(1))+ZetaQ(3))/(ln(2)-ln(2+3^(1/2))) 2329910193903356 m001 gamma^GAMMA(5/12)/(ln(Pi)^GAMMA(5/12)) 2329910194010381 a007 Real Root Of 169*x^4+436*x^3+62*x^2-269*x-429 2329910194916841 r009 Im(z^3+c),c=-29/78+9/58*I,n=17 2329910195444552 m001 (ln(5)-GAMMA(5/6))/(OneNinth+Paris) 2329910201771619 l006 ln(805/8273) 2329910207112144 a007 Real Root Of 75*x^4-648*x^3+496*x^2-123*x-64 2329910211992421 r005 Im(z^2+c),c=-27/110+19/55*I,n=20 2329910224980742 m001 (exp(Pi)+1)/(-GaussKuzminWirsing+Totient) 2329910233053610 m001 Ei(1,1)/cos(1/12*Pi)*GAMMA(23/24) 2329910238718977 a007 Real Root Of 305*x^4+313*x^3-995*x^2-22*x+321 2329910243927340 r009 Re(z^3+c),c=-4/13+13/38*I,n=8 2329910247509230 m001 (-GAMMA(5/24)+2)/(-GAMMA(7/12)+1/2) 2329910254431693 m005 (1/2*Pi-1/2)/(1/8*2^(1/2)-7/11) 2329910262655212 r005 Im(z^2+c),c=-7/82+8/23*I,n=3 2329910268535391 a001 47/2584*5^(2/13) 2329910269228925 r005 Re(z^2+c),c=-1/4+15/53*I,n=20 2329910276036469 p001 sum((-1)^n/(511*n+361)/(2^n),n=0..infinity) 2329910290616001 r005 Re(z^2+c),c=-4/21+26/57*I,n=40 2329910294706028 r005 Im(z^2+c),c=-9/16+5/119*I,n=60 2329910295264609 a007 Real Root Of 737*x^4+90*x^3-735*x^2-358*x+120 2329910302809405 r005 Re(z^2+c),c=-4/31+4/7*I,n=44 2329910305564368 r005 Im(z^2+c),c=-6/17+19/50*I,n=20 2329910306515188 a001 3571/3*144^(5/37) 2329910314985892 m001 (CareFree-QuadraticClass)^sin(1) 2329910320928462 r002 3th iterates of z^2 + 2329910328608060 l006 ln(953/9794) 2329910328977089 a007 Real Root Of -436*x^4-881*x^3+116*x^2-366*x+223 2329910340196724 m008 (1/6*Pi^4+5/6)/(3/4*Pi^4+1/5) 2329910346365887 m005 (1/2*2^(1/2)+2/5)/(1/12*Zeta(3)+3/8) 2329910361698715 r009 Re(z^3+c),c=-37/126+18/59*I,n=14 2329910370073592 m002 -E^Pi+2/Pi^4-ProductLog[Pi]/6 2329910376849152 r009 Re(z^3+c),c=-1/70+59/63*I,n=2 2329910381842238 a001 46368/521*76^(2/9) 2329910386623532 m001 GaussAGM(1,1/sqrt(2))-Zeta(5)^GAMMA(5/12) 2329910393738262 r009 Re(z^3+c),c=-11/56+58/59*I,n=6 2329910395892544 m005 (1/2*Zeta(3)-11/12)/(6/11*2^(1/2)+7/12) 2329910407111528 r005 Re(z^2+c),c=31/122+9/17*I,n=10 2329910420485656 a001 1/521*(1/2*5^(1/2)+1/2)^27*4^(11/15) 2329910423263062 m001 2^(1/2)*5^(1/2)-FeigenbaumB 2329910424693277 a001 987*3^(43/55) 2329910427860603 r009 Im(z^3+c),c=-9/86+51/59*I,n=20 2329910428488237 a007 Real Root Of -244*x^4-392*x^3+181*x^2-651*x-267 2329910429745186 r002 43th iterates of z^2 + 2329910433117849 m001 1/Zeta(5)/GAMMA(1/12)^2*exp(sqrt(3))^2 2329910435776440 m005 (1/3*exp(1)-3/4)/(9/10*3^(1/2)-8/9) 2329910438765981 m004 3+4*Sinh[Sqrt[5]*Pi]+25*Pi*Tanh[Sqrt[5]*Pi] 2329910450972556 m001 1/ln(HardHexagonsEntropy)^2*Conway/Rabbit^2 2329910458621246 s001 sum(exp(-Pi)^n*A160372[n],n=1..infinity) 2329910458621246 s002 sum(A160372[n]/(exp(pi*n)),n=1..infinity) 2329910461812535 m001 BesselI(1,2)+BesselJ(0,1)^GAMMA(5/6) 2329910465253918 r005 Im(z^2+c),c=-103/78+1/64*I,n=22 2329910466857464 m009 (3/4*Psi(1,3/4)-4/5)/(3/5*Psi(1,3/4)-2) 2329910493105440 a001 322/3*10946^(1/12) 2329910495710963 m001 sin(1/5*Pi)/cos(1)/FeigenbaumDelta 2329910495710963 m001 sin(Pi/5)/cos(1)/FeigenbaumDelta 2329910517395748 s002 sum(A041145[n]/((10^n+1)/n),n=1..infinity) 2329910520989795 m005 (1/3*gamma+2/11)/(3*Zeta(3)-2) 2329910525662923 a007 Real Root Of 443*x^4+641*x^3-721*x^2+598*x+360 2329910528648778 m006 (3*exp(2*Pi)+3)/(1/6*ln(Pi)+1/2) 2329910537077814 m001 (FibonacciFactorial+Landau)/(cos(1)+Ei(1,1)) 2329910539584938 m001 Zeta(1/2)-exp(1/exp(1))*BesselK(1,1) 2329910543486435 m001 (Khinchin+ZetaP(3))/(GolombDickman-Si(Pi)) 2329910553943260 r009 Re(z^3+c),c=-17/36+20/39*I,n=12 2329910558310324 m004 25*Pi+4*Sinh[Sqrt[5]*Pi]+3*Tanh[Sqrt[5]*Pi] 2329910561475392 m004 2+25*Pi+4*Sinh[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi] 2329910563057927 m004 -3-25*Pi-4*Sinh[Sqrt[5]*Pi] 2329910563059334 m004 3+25*Pi+E^(2*Sqrt[5]*Pi)*Sech[Sqrt[5]*Pi] 2329910564640461 m004 -4-25*Pi-4*Sinh[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi] 2329910565806521 l006 ln(3274/4133) 2329910566039911 a001 38/17*3^(2/53) 2329910567805537 m004 25*Pi+3*Coth[Sqrt[5]*Pi]+4*Sinh[Sqrt[5]*Pi] 2329910568837569 a007 Real Root Of -348*x^4-627*x^3+239*x^2-277*x+382 2329910574636558 m005 (1/3*gamma+1/5)/(1/2*3^(1/2)+9/11) 2329910585635717 m001 (ln(2)/ln(10)+exp(1))/(GAMMA(17/24)+Trott) 2329910599646078 a007 Real Root Of 46*x^4+289*x^3+929*x^2+768*x-954 2329910600142615 a001 1/48*6765^(39/49) 2329910602540619 r005 Re(z^2+c),c=9/98+17/56*I,n=30 2329910603713199 m004 -2-(10*Sqrt[5])/Pi-5*Pi+ProductLog[Sqrt[5]*Pi] 2329910604374627 a007 Real Root Of 68*x^4-107*x^3-951*x^2-883*x-252 2329910607696068 m001 Si(Pi)*Pi^(1/2)*Rabbit 2329910617323126 a007 Real Root Of 424*x^4+518*x^3-805*x^2+852*x+412 2329910618031278 r005 Re(z^2+c),c=-25/29+5/17*I,n=6 2329910624342114 r009 Re(z^3+c),c=-5/36+22/23*I,n=14 2329910637615343 m001 (Zeta(1,2)+GaussAGM)/(MinimumGamma+Otter) 2329910638545327 m001 (exp(Pi)+exp(1))/(-KhinchinLevy+ZetaP(4)) 2329910644230065 m001 1/GAMMA(5/12)*Paris*ln(sqrt(1+sqrt(3))) 2329910648734198 s002 sum(A103906[n]/((2*n+1)!),n=1..infinity) 2329910676883869 m002 -E^Pi+Pi^4/E^Pi-5/Log[Pi] 2329910678415386 r009 Re(z^3+c),c=-9/40+2/29*I,n=5 2329910683727063 m005 (1/2*Catalan+5/11)/(2*5^(1/2)-5/9) 2329910684858741 m001 1/MadelungNaCl^2*ln(CopelandErdos)^2*Magata 2329910687350069 m004 3+25*Pi*Coth[Sqrt[5]*Pi]+4*Sinh[Sqrt[5]*Pi] 2329910689475806 r005 Re(z^2+c),c=-11/56+19/43*I,n=54 2329910691121952 a001 15127/2*377^(11/58) 2329910691883906 m004 5+5*Pi+Cos[Sqrt[5]*Pi]*Sinh[Sqrt[5]*Pi]^2 2329910714235095 r009 Im(z^3+c),c=-25/56+5/58*I,n=55 2329910728387544 m005 (1/2*gamma-4/9)/(-29/35+1/14*5^(1/2)) 2329910753358257 r009 Im(z^3+c),c=-11/28+8/57*I,n=27 2329910757016972 m001 1/ln(Zeta(3))/GAMMA(17/24)^2*sin(1)^2 2329910769319195 r009 Re(z^3+c),c=-23/48+24/47*I,n=21 2329910781145377 r009 Im(z^3+c),c=-3/5+20/41*I,n=12 2329910785726922 m001 GAMMA(7/12)/Ei(1)^2/ln(sin(Pi/12))^2 2329910800527235 m001 2*Pi/GAMMA(5/6)/(FeigenbaumDelta^BesselI(1,1)) 2329910803125527 a003 2^(1/2)+cos(2/7*Pi)+cos(1/7*Pi)-cos(7/24*Pi) 2329910803348282 a007 Real Root Of 274*x^4+762*x^3-182*x^2-686*x+953 2329910804094911 m008 (5*Pi-1/2)/(2/3*Pi^4+1/3) 2329910812921672 a007 Real Root Of 419*x^4-120*x^3-811*x^2-900*x+254 2329910819637072 a007 Real Root Of 625*x^4-541*x^3+224*x^2-252*x-6 2329910824648738 r005 Im(z^2+c),c=-25/114+9/26*I,n=8 2329910827867840 r005 Re(z^2+c),c=35/106+27/47*I,n=5 2329910843016936 m001 Artin/(ln(2^(1/2)+1)+Sarnak) 2329910854227310 m001 (gamma(2)+GAMMA(11/12))/(Cahen-DuboisRaymond) 2329910863627593 r005 Re(z^2+c),c=5/21+8/61*I,n=12 2329910866662710 b008 27*(2/7+EulerGamma) 2329910872450817 r005 Re(z^2+c),c=3/7+7/31*I,n=13 2329910873440285 s002 sum(A084828[n]/((2^n+1)/n),n=1..infinity) 2329910882500903 r005 Re(z^2+c),c=-9/56+31/60*I,n=10 2329910887062698 r005 Im(z^2+c),c=9/34+4/43*I,n=22 2329910889041700 r005 Im(z^2+c),c=-7/12+2/47*I,n=54 2329910892023310 l006 ln(7417/9363) 2329910899062372 r009 Im(z^3+c),c=-31/50+17/43*I,n=4 2329910899752335 m001 (5^(1/2)+ArtinRank2)/(Gompertz+LaplaceLimit) 2329910902832067 r005 Im(z^2+c),c=-9/19+7/17*I,n=55 2329910912094110 m001 (Catalan-GAMMA(11/12))/(Champernowne+PlouffeB) 2329910953216959 a007 Real Root Of -307*x^4-658*x^3+193*x^2+528*x+907 2329910955318036 m001 1/Kolakoski^2/exp(Khintchine)/arctan(1/2) 2329910958447015 r005 Re(z^2+c),c=-3/118+13/22*I,n=21 2329910963100550 r005 Re(z^2+c),c=17/56+1/37*I,n=24 2329910969246095 a007 Real Root Of 436*x^4+697*x^3-412*x^2+546*x-524 2329910969677284 r004 Im(z^2+c),c=-5/34+7/22*I,z(0)=I,n=14 2329910974966903 m001 (Pi-cos(1))/(FeigenbaumC-TravellingSalesman) 2329910976460507 a007 Real Root Of 72*x^4-65*x^3-826*x^2-364*x+692 2329910981576667 r009 Im(z^3+c),c=-11/64+29/33*I,n=18 2329910982597243 a008 Real Root of x^4-24*x^2-54*x-25 2329910985940007 m004 20+Cos[Sqrt[5]*Pi]*Cosh[Sqrt[5]*Pi]^2 2329910990268440 a007 Real Root Of 542*x^4+828*x^3-808*x^2+516*x+89 2329910991252791 m001 exp(Sierpinski)^2/Lehmer^2/arctan(1/2)^2 2329910998854034 a001 199/63245986*832040^(6/19) 2329910998854247 a001 199/1134903170*7778742049^(6/19) 2329911012107112 k008 concat of cont frac of 2329911013616305 a007 Real Root Of -544*x^4-715*x^3+977*x^2-691*x+74 2329911018461847 m005 (1/3*exp(1)+1/7)/(3/8*gamma-2/3) 2329911018495177 l006 ln(148/1521) 2329911021290475 a007 Real Root Of -43*x^4-976*x^3+638*x^2+799*x-625 2329911021515157 a007 Real Root Of 298*x^4+696*x^3+455*x^2-933*x+183 2329911037479846 r002 31th iterates of z^2 + 2329911039715260 m001 3*ln(3)-cos(Pi/12) 2329911042844611 m005 (41/10+1/10*5^(1/2))/(1/4*gamma-2) 2329911048239556 a001 29/233*13^(11/45) 2329911066968280 r002 12th iterates of z^2 + 2329911088267939 m001 (3^(1/3))^ln(3)+GaussAGM 2329911088788790 m001 exp(Sierpinski)^2/Riemann2ndZero/Ei(1)^2 2329911093350618 r005 Re(z^2+c),c=-11/56+19/43*I,n=49 2329911100986222 m001 (cos(1)+FeigenbaumMu)/(ZetaP(3)+ZetaQ(4)) 2329911101343471 r005 Re(z^2+c),c=-17/110+19/31*I,n=51 2329911101795560 a007 Real Root Of 87*x^4-604*x^3+263*x^2-407*x-117 2329911110725898 m001 ZetaQ(3)^(Niven/cos(1/12*Pi)) 2329911111872011 k006 concat of cont frac of 2329911111942552 m001 GAMMA(11/24)^2*exp(BesselJ(1,1))^2*sin(Pi/12) 2329911113695235 m001 1/Magata^2*HardHexagonsEntropy*exp(Robbin) 2329911117351556 m001 (Ei(1)-Lehmer)/(MertensB2-PlouffeB) 2329911127213860 s001 sum(exp(-Pi/4)^(n-1)*A235766[n],n=1..infinity) 2329911129802485 a007 Real Root Of 89*x^4+429*x^3+838*x^2+345*x-942 2329911149815667 l006 ln(4143/5230) 2329911152812934 r009 Re(z^3+c),c=-13/82+29/39*I,n=64 2329911161125905 a007 Real Root Of -209*x^4-236*x^3+210*x^2-967*x-219 2329911166426881 r005 Im(z^2+c),c=-9/16+5/119*I,n=58 2329911186610197 m005 (1/2*3^(1/2)+5/7)/(3/7*Catalan+2/7) 2329911193452319 r005 Im(z^2+c),c=-13/42+23/63*I,n=31 2329911193532831 k006 concat of cont frac of 2329911194588443 m001 1/GAMMA(1/24)^2/Porter*ln(cosh(1))^2 2329911196894167 a007 Real Root Of 532*x^4+932*x^3-509*x^2+695*x+493 2329911202332353 a007 Real Root Of 3*x^4+699*x^3+3*x^2-746*x+265 2329911208912940 r005 Re(z^2+c),c=41/126+1/8*I,n=6 2329911215718261 r005 Im(z^2+c),c=-65/58+7/30*I,n=25 2329911218586356 r009 Re(z^3+c),c=-8/23+23/55*I,n=8 2329911224814133 r005 Re(z^2+c),c=-11/56+19/43*I,n=57 2329911226387481 r005 Im(z^2+c),c=1/78+31/49*I,n=45 2329911234769156 r005 Re(z^2+c),c=-19/82+18/53*I,n=5 2329911236090139 a001 199/55*121393^(7/44) 2329911237371589 q001 1/4292009 2329911248081410 m001 1/Kolakoski^2*Bloch^2/exp(PrimesInBinary) 2329911261810164 a007 Real Root Of 455*x^4+466*x^3-482*x^2-966*x+244 2329911289203328 r002 11th iterates of z^2 + 2329911297861548 m005 (1/2*gamma+4/11)/(1/10*gamma+2/9) 2329911302028659 m001 (Psi(2,1/3)+Cahen)/(Conway+MertensB2) 2329911302647552 m001 (Lehmer-Mills)/(sin(1/12*Pi)-BesselI(1,1)) 2329911302779690 a007 Real Root Of 324*x^4+576*x^3-463*x^2+134*x+563 2329911303647528 r002 45th iterates of z^2 + 2329911303908896 a007 Real Root Of -557*x^4-924*x^3+382*x^2-993*x+340 2329911311523650 r002 4th iterates of z^2 + 2329911320083913 r005 Im(z^2+c),c=-11/14+15/106*I,n=31 2329911328408147 r005 Re(z^2+c),c=9/62+20/31*I,n=11 2329911331493782 a001 281/726103*1346269^(37/60) 2329911332349634 r009 Re(z^3+c),c=-15/29+8/41*I,n=4 2329911339248438 b008 (-7+Pi^(-4))/3 2329911340175257 p001 sum((-1)^n/(487*n+429)/(1000^n),n=0..infinity) 2329911347188413 a007 Real Root Of 39*x^4-735*x^3+756*x^2-732*x-221 2329911362119212 k007 concat of cont frac of 2329911374310738 r002 45th iterates of z^2 + 2329911375254962 m001 cos(1)+GlaisherKinkelin*HardHexagonsEntropy 2329911377399341 r004 Im(z^2+c),c=-11/30+8/21*I,z(0)=-1,n=36 2329911382421644 a001 17393796001/5*365435296162^(1/14) 2329911382421644 a001 28143753123/5*433494437^(1/14) 2329911382421770 a001 45537549124/5*514229^(1/14) 2329911383088853 m003 2+2*Sin[1/2+Sqrt[5]/2]+Tan[1/2+Sqrt[5]/2]/5 2329911383112977 m001 BesselK(0,1)^BesselI(1,2)/Trott 2329911390757778 a007 Real Root Of 416*x^4+375*x^3-853*x^2+850*x-905 2329911396218063 a001 55/322*123^(2/31) 2329911397845396 h005 exp(cos(Pi*10/51)+cos(Pi*26/53)) 2329911403846385 r005 Im(z^2+c),c=25/106+4/33*I,n=13 2329911422119511 k009 concat of cont frac of 2329911434901504 m001 1/exp(BesselJ(0,1))*RenyiParking*sin(Pi/12)^2 2329911435473595 m001 FeigenbaumAlpha/(Artin^gamma(1)) 2329911439042451 m001 (2^(1/3)-BesselI(0,1))/(Rabbit+Tetranacci) 2329911452590234 m004 3+25*Pi+Cosh[Sqrt[5]*Pi]+3*Sinh[Sqrt[5]*Pi] 2329911466466930 a007 Real Root Of 538*x^4+748*x^3-893*x^2+845*x+423 2329911469140659 r005 Re(z^2+c),c=-11/56+19/43*I,n=60 2329911471871996 a001 73681302247/5*610^(1/14) 2329911473194953 m001 (Landau+MertensB2)/(Paris-StronglyCareFree) 2329911479427112 m005 (1/2*2^(1/2)+7/10)/(4*3^(1/2)-8/9) 2329911483335030 m001 (-ln(Pi)+1/3)/(-polylog(4,1/2)+4) 2329911485751285 b008 1+7*(30+Pi) 2329911486243413 k006 concat of cont frac of 2329911489533914 m005 (1/2*Catalan+1/2)/(3/11*Zeta(3)+1/12) 2329911497791067 m002 2+Pi^3/2+Cosh[Pi]/2 2329911498142309 m001 (Zeta(3)+GAMMA(3/4))/(Cahen-RenyiParking) 2329911509104913 m001 1/ln(ArtinRank2)*FeigenbaumAlpha*FeigenbaumC^2 2329911510036940 r009 Re(z^3+c),c=-35/94+30/61*I,n=40 2329911511731824 a007 Real Root Of -399*x^4+248*x^3+488*x^2+842*x+174 2329911517185316 a007 Real Root Of 995*x^4+810*x^3+185*x^2-722*x+145 2329911519284399 m005 (1/2*2^(1/2)-4/7)/(13/126+3/14*5^(1/2)) 2329911525777909 r002 14th iterates of z^2 + 2329911531309253 l006 ln(5012/6327) 2329911535984858 r005 Re(z^2+c),c=-11/56+19/43*I,n=62 2329911538507586 h001 (-6*exp(8)+5)/(-7*exp(7)+2) 2329911554435639 r005 Re(z^2+c),c=-11/56+19/43*I,n=59 2329911558643336 a001 29/1346269*121393^(12/59) 2329911563195629 r005 Re(z^2+c),c=-11/56+19/43*I,n=63 2329911570005259 m001 RenyiParking-3*GAMMA(23/24) 2329911572637240 a007 Real Root Of 3*x^4+703*x^3+939*x^2+202*x+676 2329911579643997 a007 Real Root Of -562*x^4+328*x^3-622*x^2+886*x+246 2329911583492998 m001 (Tribonacci-ZetaP(2))/(Bloch+Champernowne) 2329911584416770 r005 Re(z^2+c),c=7/58+33/62*I,n=6 2329911595254955 m005 (5/6+1/4*5^(1/2))/(-67/176+7/16*5^(1/2)) 2329911605140362 m001 (PlouffeB+ZetaP(4))/(exp(Pi)+BesselI(1,1)) 2329911608596578 a007 Real Root Of -405*x^4-587*x^3+618*x^2-405*x+212 2329911609117266 a007 Real Root Of 85*x^4-671*x^3+548*x^2+943*x+810 2329911616509158 a007 Real Root Of -30*x^4-68*x^3-86*x^2-142*x+160 2329911620375155 r005 Im(z^2+c),c=1/70+16/61*I,n=3 2329911634465576 r009 Re(z^3+c),c=-1/3+35/54*I,n=38 2329911637618839 r009 Re(z^3+c),c=-23/60+16/31*I,n=47 2329911646127044 a007 Real Root Of 253*x^4+40*x^3-964*x^2+814*x+180 2329911646886424 r005 Re(z^2+c),c=-11/56+19/43*I,n=64 2329911658203807 a007 Real Root Of -435*x^4-584*x^3+789*x^2-777*x-661 2329911673922051 r005 Im(z^2+c),c=3/28+6/29*I,n=13 2329911676929578 m005 (5/6+1/4*5^(1/2))/(2/7*Pi-3/10) 2329911681900194 m001 (Sarnak+Trott2nd)/(ln(Pi)-Porter) 2329911686000025 r005 Re(z^2+c),c=-17/94+11/23*I,n=49 2329911692381768 r005 Re(z^2+c),c=-7/9+5/51*I,n=4 2329911695592987 l006 ln(971/9979) 2329911698949285 m001 GAMMA(17/24)*FeigenbaumKappa/RenyiParking 2329911703645310 a007 Real Root Of -16*x^4-336*x^3+881*x^2+521*x-847 2329911710281188 r005 Im(z^2+c),c=-71/66+12/49*I,n=7 2329911710638903 m005 (1/2*gamma+2/3)/(7/11*2^(1/2)-5) 2329911711111397 k006 concat of cont frac of 2329911711421412 k006 concat of cont frac of 2329911712836402 a007 Real Root Of -316*x^4-621*x^3+172*x^2-488*x-613 2329911718610213 r005 Re(z^2+c),c=-11/56+19/43*I,n=56 2329911721256213 a007 Real Root Of -330*x^4-656*x^3+423*x^2+778*x+944 2329911721301679 m001 1/exp(Niven)^2/Champernowne^2*Zeta(5)^2 2329911723831110 r005 Re(z^2+c),c=-11/56+19/43*I,n=61 2329911724831322 r005 Im(z^2+c),c=19/60+1/18*I,n=55 2329911727359036 r008 a(0)=4,K{-n^6,-3-4*n^3+4*n} 2329911734846406 a001 123/832040*28657^(33/46) 2329911738114368 a007 Real Root Of 396*x^4-577*x^3+701*x^2-736*x-218 2329911739242467 p001 sum(1/(307*n+29)/n/(128^n),n=1..infinity) 2329911746942512 m001 (exp(1/Pi)-Cahen)/(ReciprocalLucas+Salem) 2329911753854735 a001 610/3*2^(11/56) 2329911774095116 m005 (1/2*Catalan-2/9)/(3/56+3/7*5^(1/2)) 2329911778114927 m002 -Pi^5+E^Pi*Pi^2*Cosh[Pi]-Sinh[Pi] 2329911778474001 r009 Re(z^3+c),c=-45/122+23/48*I,n=20 2329911782356489 r009 Re(z^3+c),c=-3/98+5/14*I,n=14 2329911786376272 a001 322/55*46368^(12/35) 2329911791463945 r005 Re(z^2+c),c=-2/3+11/106*I,n=2 2329911800060805 l006 ln(5881/7424) 2329911800700255 m001 KhintchineLevy^2*exp(Cahen)/GAMMA(1/12) 2329911811495083 a001 1/2214*(1/2*5^(1/2)+1/2)^19*18^(13/22) 2329911817355364 l006 ln(823/8458) 2329911827954628 r005 Im(z^2+c),c=-21/25+8/47*I,n=44 2329911837022824 m001 BesselI(0,1)^(5^(1/2))*exp(1/Pi) 2329911837022824 m001 BesselI(0,1)^sqrt(5)*exp(1/Pi) 2329911838954251 a001 3/86267571272*1836311903^(14/19) 2329911838963151 a001 1/34111385*196418^(14/19) 2329911843394560 h001 (1/3*exp(1)+5/7)/(9/11*exp(2)+10/11) 2329911843927460 p002 log(22/21*3^(3/4)*7^(3/4)) 2329911844732603 h001 (6/11*exp(2)+3/11)/(5/12*exp(1)+5/7) 2329911856226633 r005 Re(z^2+c),c=-11/56+19/43*I,n=58 2329911865739784 m001 (Cahen-ln(2)/ln(10))/(-CopelandErdos+Niven) 2329911878762109 m001 (Pi+Psi(2,1/3)-cos(1/12*Pi))*BesselJ(1,1) 2329911883181127 a001 124/5*24157817^(17/18) 2329911883238900 r005 Im(z^2+c),c=4/25+8/45*I,n=5 2329911895779934 m006 (3/4*ln(Pi)-2/3)/(3/4*Pi^2+5/6) 2329911897880692 r002 8th iterates of z^2 + 2329911899923938 p001 sum((-1)^n/(466*n+429)/(1024^n),n=0..infinity) 2329911902812172 r005 Re(z^2+c),c=-33/118+4/19*I,n=5 2329911905292685 m001 (Pi^(1/2)-MinimumGamma)/(Thue+Weierstrass) 2329911908020903 a007 Real Root Of 630*x^4+26*x^3-577*x^2-600*x-110 2329911912482486 m005 (1/3*Zeta(3)-2/3)/(Pi-2) 2329911915130814 a007 Real Root Of -63*x^4+2*x^3+23*x^2-500*x+592 2329911922680811 r005 Im(z^2+c),c=-45/94+26/63*I,n=45 2329911928340287 m005 (1/2*5^(1/2)-10/11)/(5/9*2^(1/2)+1/9) 2329911939150976 a005 (1/cos(5/131*Pi))^1715 2329911945036587 m001 (Porter+ZetaP(3))/(ln(Pi)-BesselJ(1,1)) 2329911946106397 a003 sin(Pi*5/116)/sin(Pi*12/61) 2329911955403458 l006 ln(4624/4733) 2329911986322738 m001 GAMMA(19/24)/AlladiGrinstead*ErdosBorwein 2329911987746151 r009 Im(z^3+c),c=-21/46+5/59*I,n=21 2329911991019570 r005 Re(z^2+c),c=-11/56+19/43*I,n=52 2329911992512771 l006 ln(675/6937) 2329911994198602 r009 Im(z^3+c),c=-3/106+1/43*I,n=2 2329911994686340 r002 45th iterates of z^2 + 2329911996418084 m001 Trott/(arctan(1/2)+ZetaQ(4)) 2329911999613804 l006 ln(6750/8521) 2329912003676039 k003 Champernowne real with 11/6*n^3+3/2*n^2-49/3*n+15 2329912008854174 m005 (1/3*3^(1/2)-2/11)/(-2/3+2/9*5^(1/2)) 2329912013534143 r005 Re(z^2+c),c=-11/56+19/43*I,n=55 2329912014426447 m001 GAMMA(17/24)^2*TwinPrimes/exp(cosh(1)) 2329912017106523 m005 (1/2*3^(1/2)-10/11)/(3/10*Zeta(3)-6/11) 2329912017934453 r005 Im(z^2+c),c=-43/94+17/42*I,n=40 2329912023460410 q001 1589/682 2329912024471518 m005 (19/44+1/4*5^(1/2))/(4*Zeta(3)-5/9) 2329912038102318 a007 Real Root Of -331*x^4-664*x^3+330*x^2-59*x-573 2329912040578389 r005 Im(z^2+c),c=-5/8+95/254*I,n=30 2329912043525379 a007 Real Root Of 290*x^4-229*x^3+854*x^2-712*x-216 2329912064997301 a007 Real Root Of 422*x^4+963*x^3-35*x^2-228*x-597 2329912066164740 r009 Im(z^3+c),c=-41/94+7/58*I,n=8 2329912074996485 a007 Real Root Of 979*x^4-822*x^3-597*x^2-507*x-99 2329912078291996 m001 sin(1/12*Pi)^QuadraticClass*ZetaP(4) 2329912086150008 p004 log(31643/3079) 2329912093836138 k002 Champernowne real with 28*n^2-78*n+73 2329912098806140 m002 Pi^3/E^Pi-(E^Pi*Cosh[Pi])/Log[Pi] 2329912101368529 s002 sum(A162465[n]/(n*10^n+1),n=1..infinity) 2329912102154553 g002 Psi(4/11)+Psi(3/10)-Psi(6/11)-Psi(4/9) 2329912102918795 m001 GAMMA(7/24)^2*GAMMA(19/24)^2*exp(gamma) 2329912104322883 r005 Re(z^2+c),c=-63/52+10/63*I,n=62 2329912104844646 a007 Real Root Of 278*x^4+332*x^3-542*x^2+127*x-755 2329912108155238 r005 Re(z^2+c),c=13/74+22/59*I,n=35 2329912116079520 r005 Re(z^2+c),c=9/44+4/47*I,n=8 2329912116607516 h005 exp(cos(Pi*2/9)+cos(Pi*28/59)) 2329912121130044 r005 Re(z^2+c),c=-15/122+23/41*I,n=29 2329912134026968 m001 (-PlouffeB+Sarnak)/(Psi(1,1/3)-ln(gamma)) 2329912136448468 s002 sum(A263067[n]/(n*10^n+1),n=1..infinity) 2329912136966238 s002 sum(A263067[n]/(n*10^n-1),n=1..infinity) 2329912151212538 a007 Real Root Of 367*x^4+796*x^3+342*x^2+754*x-847 2329912153645983 l006 ln(7619/9618) 2329912155337120 a001 1346269/1364*3^(43/55) 2329912160379155 r009 Re(z^3+c),c=-8/15+17/41*I,n=54 2329912162605846 r005 Re(z^2+c),c=-19/122+33/62*I,n=45 2329912186207525 p003 LerchPhi(1/3,4,342/235) 2329912190347790 r009 Re(z^3+c),c=-65/118+22/57*I,n=21 2329912197355266 m001 (Sarnak-ZetaQ(3))/(ErdosBorwein+MinimumGamma) 2329912203627237 a003 -3/2-1/2*2^(1/2)-cos(1/21*Pi)+1/2*3^(1/2) 2329912205721146 r002 4th iterates of z^2 + 2329912210208850 r005 Im(z^2+c),c=-53/94+11/28*I,n=34 2329912211542212 m001 (2^(1/3)+sin(1))/(-BesselI(1,1)+Porter) 2329912212207167 h002 exp(2^(2/3)-9^(3/4)-12^(3/4)) 2329912216185416 m005 (1/3*Catalan-1/3)/(17/16+1/16*5^(1/2)) 2329912217830595 m004 3+2*E^(Sqrt[5]*Pi)+25*Pi*Tanh[Sqrt[5]*Pi] 2329912219870034 b008 68/3+Sqrt[2/5] 2329912223100936 m001 1/Niven^2/ln(KhintchineLevy)*OneNinth^2 2329912231573340 r005 Im(z^2+c),c=-109/118+11/53*I,n=13 2329912239702474 m001 BesselK(0,1)^ln(5)*Zeta(1,2) 2329912244465584 a001 1/203*(1/2*5^(1/2)+1/2)^10*29^(2/5) 2329912246159114 m001 AlladiGrinstead-BesselK(0,1)-exp(1) 2329912247596789 a007 Real Root Of 69*x^4+180*x^3+389*x^2+374*x-997 2329912251012871 r005 Im(z^2+c),c=-31/118+20/57*I,n=30 2329912266050748 l006 ln(527/5416) 2329912276584076 p001 sum(1/(512*n+43)/n/(8^n),n=1..infinity) 2329912279465452 a003 cos(Pi*12/77)/cos(Pi*35/93) 2329912280784532 a001 8/3571*2^(3/53) 2329912282909644 m005 (1/2*exp(1)+2/9)/(2/9*5^(1/2)+2/11) 2329912284678416 m005 (1/3*5^(1/2)+1/11)/(5/12*2^(1/2)+3) 2329912295577939 m001 cos(1)^ln(2)*FeigenbaumMu 2329912296245643 a007 Real Root Of 279*x^4+644*x^3-91*x^2-235*x-130 2329912307053955 r005 Re(z^2+c),c=-11/56+19/43*I,n=53 2329912323362020 m001 (-CareFree+Salem)/(exp(1)-ln(2)) 2329912326473992 r009 Im(z^3+c),c=-2/29+47/54*I,n=16 2329912329989425 a007 Real Root Of 144*x^4+432*x^3+35*x^2-653*x-491 2329912337374938 m004 2*E^(Sqrt[5]*Pi)+25*Pi+3*Tanh[Sqrt[5]*Pi] 2329912340540007 m004 2+2*E^(Sqrt[5]*Pi)+25*Pi+Tanh[Sqrt[5]*Pi] 2329912342122541 m004 -3-2*E^(Sqrt[5]*Pi)-25*Pi 2329912343705075 m004 -4-2*E^(Sqrt[5]*Pi)-25*Pi+Tanh[Sqrt[5]*Pi] 2329912346870151 m004 2*E^(Sqrt[5]*Pi)+25*Pi+3*Coth[Sqrt[5]*Pi] 2329912354079125 a007 Real Root Of -11*x^4-234*x^3+535*x^2+394*x+682 2329912363121832 a007 Real Root Of 187*x^4+280*x^3+46*x^2+806*x-341 2329912371580544 r009 Im(z^3+c),c=-13/27+3/43*I,n=54 2329912379217339 r005 Re(z^2+c),c=1/56+47/56*I,n=11 2329912381356846 m001 (Ei(1,1)*Cahen+ZetaQ(3))/Cahen 2329912384775690 m001 (GAMMA(23/24)+CareFree)/(Zeta(1,-1)-gamma) 2329912387193475 h001 (1/3*exp(1)+4/5)/(7/8*exp(2)+6/7) 2329912390878824 s002 sum(A211591[n]/(n^2*exp(n)-1),n=1..infinity) 2329912392219538 p001 sum((-1)^n/(421*n+386)/n/(5^n),n=1..infinity) 2329912393647509 r002 55th iterates of z^2 + 2329912397203286 a001 167761/3*233^(13/19) 2329912398798321 r002 38th iterates of z^2 + 2329912408683727 r005 Im(z^2+c),c=-13/106+23/47*I,n=3 2329912412727178 m001 GAMMA(5/24)-GAMMA(3/4)-sin(1) 2329912412727178 m001 Pi*csc(5/24*Pi)/GAMMA(19/24)-GAMMA(3/4)-sin(1) 2329912421259424 r005 Re(z^2+c),c=-2/7+3/52*I,n=12 2329912428875770 m001 (cos(1)+Khinchin)/(-Rabbit+Sarnak) 2329912431165046 r005 Im(z^2+c),c=-7/10+55/207*I,n=30 2329912432115743 m001 1/Catalan^2/exp(Paris)^2*cosh(1)^2 2329912441301569 r005 Re(z^2+c),c=-11/56+19/43*I,n=42 2329912443013186 m001 sin(1/5*Pi)*BesselK(1,1)^MasserGramainDelta 2329912447133007 m001 Pi-Psi(1,1/3)*2^(1/2)*Si(Pi) 2329912452625129 r005 Im(z^2+c),c=-35/94+17/49*I,n=8 2329912459188637 m005 (-19/4+1/4*5^(1/2))/(5/7*exp(1)-1/7) 2329912461935769 r005 Im(z^2+c),c=-11/25+29/56*I,n=40 2329912464776366 s002 sum(A224303[n]/(n!^3),n=1..infinity) 2329912466414683 m004 3+2*E^(Sqrt[5]*Pi)+25*Pi*Coth[Sqrt[5]*Pi] 2329912468078301 r005 Re(z^2+c),c=-17/29+25/64*I,n=5 2329912469506414 r005 Re(z^2+c),c=-20/27+1/7*I,n=25 2329912469845550 l006 ln(906/9311) 2329912478916619 r005 Im(z^2+c),c=-23/27+11/61*I,n=39 2329912494179440 r005 Im(z^2+c),c=-27/56+8/25*I,n=5 2329912495185417 r008 a(0)=0,K{-n^6,90-n^3+9*n^2-52*n} 2329912495543174 m001 cosh(1)^Pi*Gompertz 2329912501163968 r005 Re(z^2+c),c=-5/42+32/53*I,n=57 2329912505165998 h001 (1/8*exp(2)+4/7)/(6/7*exp(2)+1/12) 2329912517456924 m005 (-19/36+1/4*5^(1/2))/(8/11*gamma-2/7) 2329912520532966 m001 1/GAMMA(7/12)/GlaisherKinkelin/exp(cosh(1))^2 2329912520612732 a005 (1/cos(1/8*Pi))^825 2329912524812546 m001 (exp(Pi)+Shi(1))/(Zeta(5)+ZetaQ(4)) 2329912528980933 r005 Re(z^2+c),c=5/126+13/47*I,n=4 2329912529506875 r002 3th iterates of z^2 + 2329912529677366 p001 sum((-1)^n/(488*n+429)/(1000^n),n=0..infinity) 2329912542516253 a008 Real Root of (-4+x-x^2-x^3+3*x^4-x^5) 2329912553390198 a007 Real Root Of 639*x^4-782*x^3+820*x^2-840*x-252 2329912555135531 a007 Real Root Of 205*x^4+260*x^3-740*x^2-538*x+11 2329912558405031 a007 Real Root Of 456*x^4-283*x^3-345*x^2-674*x+178 2329912564011474 r005 Re(z^2+c),c=4/23+19/36*I,n=19 2329912568123122 a007 Real Root Of 557*x^4+896*x^3-673*x^2+955*x+797 2329912575582089 r005 Im(z^2+c),c=-89/94+15/62*I,n=58 2329912580767768 q001 613/2631 2329912604691948 a007 Real Root Of -203*x^4-46*x^3+590*x^2-829*x+266 2329912605780863 m001 ReciprocalLucas/(Thue^GAMMA(5/6)) 2329912606328314 r009 Re(z^3+c),c=-31/86+20/43*I,n=27 2329912607767003 a007 Real Root Of 522*x^4+934*x^3-459*x^2+172*x-677 2329912611853274 r005 Im(z^2+c),c=-11/9+20/57*I,n=4 2329912612239576 b008 -1/8+Pi*Sinh[5] 2329912617452382 r005 Im(z^2+c),c=-39/82+1/25*I,n=20 2329912617569753 r005 Im(z^2+c),c=39/86+20/53*I,n=6 2329912634086312 a007 Real Root Of -502*x^4-701*x^3+677*x^2-606*x+840 2329912644126836 s001 sum(exp(-Pi/3)^(n-1)*A039782[n],n=1..infinity) 2329912652482170 m005 (1/2*2^(1/2)-3/8)/(2/9*Pi+8/11) 2329912657765496 a007 Real Root Of -301*x^4-695*x^3-169*x^2-640*x-494 2329912668167080 r005 Re(z^2+c),c=-11/38+50/59*I,n=14 2329912668626518 a007 Real Root Of -314*x^4-938*x^3-543*x^2+209*x+824 2329912669627135 r005 Im(z^2+c),c=-5/94+17/61*I,n=10 2329912685523779 r009 Re(z^3+c),c=-29/74+29/53*I,n=39 2329912688830194 a007 Real Root Of -982*x^4-11*x^3+382*x^2+791*x-202 2329912690964129 a005 (1/cos(2/123*Pi))^648 2329912694829194 a007 Real Root Of 346*x^4+974*x^3+238*x^2-300*x+132 2329912696775341 m001 (Sierpinski+ZetaP(2))/(ArtinRank2-LambertW(1)) 2329912706801943 r009 Re(z^3+c),c=-3/98+5/14*I,n=16 2329912713605217 m001 (Mills-ReciprocalLucas)/(Landau-MertensB1) 2329912714006577 r009 Re(z^3+c),c=-8/21+28/55*I,n=36 2329912716145558 m005 (1/2*3^(1/2)+6)/(10/11*Pi+1/11) 2329912739140151 m001 GaussKuzminWirsing/(KhinchinHarmonic^PlouffeB) 2329912740139809 r005 Im(z^2+c),c=-23/60+17/44*I,n=41 2329912753222422 l006 ln(379/3895) 2329912755646719 s002 sum(A273941[n]/(exp(pi*n)+1),n=1..infinity) 2329912755906896 r005 Im(z^2+c),c=-53/56+13/56*I,n=40 2329912758150101 a001 4250681/7*20365011074^(13/24) 2329912758156629 a001 6643838879/21*196418^(13/24) 2329912758197637 m001 ln(cos(1))^2*ArtinRank2*log(1+sqrt(2)) 2329912759553217 m001 (Catalan+TreeGrowth2nd)/LandauRamanujan2nd 2329912770845778 m001 (GlaisherKinkelin-Salem)/(Pi+2^(1/2)) 2329912771717521 p003 LerchPhi(1/8,3,137/181) 2329912771843410 a007 Real Root Of 479*x^4+664*x^3-577*x^2+982*x-297 2329912772666112 m001 GAMMA(7/12)^ln(3)*MinimumGamma 2329912779852862 r005 Re(z^2+c),c=-7/30+16/47*I,n=13 2329912780543214 a007 Real Root Of -650*x^4-940*x^3+761*x^2-947*x+928 2329912781457629 r009 Re(z^3+c),c=-3/98+5/14*I,n=18 2329912786536639 r009 Re(z^3+c),c=-3/98+5/14*I,n=20 2329912786744796 r009 Re(z^3+c),c=-3/98+5/14*I,n=23 2329912786751679 r009 Re(z^3+c),c=-3/98+5/14*I,n=25 2329912786753251 r009 Re(z^3+c),c=-3/98+5/14*I,n=27 2329912786753483 r009 Re(z^3+c),c=-3/98+5/14*I,n=29 2329912786753512 r009 Re(z^3+c),c=-3/98+5/14*I,n=31 2329912786753515 r009 Re(z^3+c),c=-3/98+5/14*I,n=33 2329912786753515 r009 Re(z^3+c),c=-3/98+5/14*I,n=35 2329912786753515 r009 Re(z^3+c),c=-3/98+5/14*I,n=37 2329912786753515 r009 Re(z^3+c),c=-3/98+5/14*I,n=39 2329912786753515 r009 Re(z^3+c),c=-3/98+5/14*I,n=41 2329912786753515 r009 Re(z^3+c),c=-3/98+5/14*I,n=44 2329912786753515 r009 Re(z^3+c),c=-3/98+5/14*I,n=43 2329912786753515 r009 Re(z^3+c),c=-3/98+5/14*I,n=46 2329912786753515 r009 Re(z^3+c),c=-3/98+5/14*I,n=48 2329912786753515 r009 Re(z^3+c),c=-3/98+5/14*I,n=50 2329912786753515 r009 Re(z^3+c),c=-3/98+5/14*I,n=52 2329912786753515 r009 Re(z^3+c),c=-3/98+5/14*I,n=54 2329912786753515 r009 Re(z^3+c),c=-3/98+5/14*I,n=56 2329912786753515 r009 Re(z^3+c),c=-3/98+5/14*I,n=58 2329912786753515 r009 Re(z^3+c),c=-3/98+5/14*I,n=60 2329912786753515 r009 Re(z^3+c),c=-3/98+5/14*I,n=62 2329912786753515 r009 Re(z^3+c),c=-3/98+5/14*I,n=64 2329912786753515 r009 Re(z^3+c),c=-3/98+5/14*I,n=63 2329912786753515 r009 Re(z^3+c),c=-3/98+5/14*I,n=61 2329912786753515 r009 Re(z^3+c),c=-3/98+5/14*I,n=59 2329912786753515 r009 Re(z^3+c),c=-3/98+5/14*I,n=57 2329912786753515 r009 Re(z^3+c),c=-3/98+5/14*I,n=55 2329912786753515 r009 Re(z^3+c),c=-3/98+5/14*I,n=53 2329912786753515 r009 Re(z^3+c),c=-3/98+5/14*I,n=51 2329912786753515 r009 Re(z^3+c),c=-3/98+5/14*I,n=49 2329912786753515 r009 Re(z^3+c),c=-3/98+5/14*I,n=47 2329912786753515 r009 Re(z^3+c),c=-3/98+5/14*I,n=45 2329912786753515 r009 Re(z^3+c),c=-3/98+5/14*I,n=42 2329912786753515 r009 Re(z^3+c),c=-3/98+5/14*I,n=40 2329912786753515 r009 Re(z^3+c),c=-3/98+5/14*I,n=38 2329912786753515 r009 Re(z^3+c),c=-3/98+5/14*I,n=36 2329912786753515 r009 Re(z^3+c),c=-3/98+5/14*I,n=34 2329912786753517 r009 Re(z^3+c),c=-3/98+5/14*I,n=32 2329912786753526 r009 Re(z^3+c),c=-3/98+5/14*I,n=30 2329912786753609 r009 Re(z^3+c),c=-3/98+5/14*I,n=28 2329912786754232 r009 Re(z^3+c),c=-3/98+5/14*I,n=26 2329912786757842 r009 Re(z^3+c),c=-3/98+5/14*I,n=24 2329912786764806 r009 Re(z^3+c),c=-3/98+5/14*I,n=22 2329912786770096 r009 Re(z^3+c),c=-3/98+5/14*I,n=21 2329912787945790 r009 Re(z^3+c),c=-3/98+5/14*I,n=19 2329912807984917 r009 Re(z^3+c),c=-3/98+5/14*I,n=17 2329912813506875 m001 MadelungNaCl/FibonacciFactorial^2*ln(Zeta(9)) 2329912816151186 h001 (5/6*exp(2)+6/11)/(8/11*exp(1)+9/10) 2329912824285007 r005 Re(z^2+c),c=2/13+27/44*I,n=41 2329912834462323 a008 Real Root of x^4-2*x^3-12*x^2+9*x+40 2329912840824545 m001 Chi(1)^DuboisRaymond/PrimesInBinary 2329912872013726 m001 exp(FeigenbaumD)/LandauRamanujan^2/Zeta(5)^2 2329912875593259 h001 (-6*exp(8)-2)/(-7*exp(7)-1) 2329912876497589 r005 Re(z^2+c),c=-1/4+15/53*I,n=19 2329912879896443 m001 (-sin(1)+Magata)/(Psi(1,1/3)+Catalan) 2329912881356866 m005 (1/2*Pi+1/10)/(5*2^(1/2)+1/10) 2329912882495569 r005 Im(z^2+c),c=-95/74+1/52*I,n=41 2329912886710991 r009 Im(z^3+c),c=-53/126+5/43*I,n=25 2329912887211738 m001 (cos(1/5*Pi)+gamma(2))/(Otter+Weierstrass) 2329912894370704 r002 9th iterates of z^2 + 2329912898100642 g002 Psi(3/8)+Psi(1/5)-Psi(1/9)-Psi(4/5) 2329912905494612 a007 Real Root Of -266*x^4-523*x^3+390*x^2-2*x-898 2329912917588768 a007 Real Root Of -203*x^4-261*x^3+963*x^2+790*x-706 2329912941891911 m008 (3/5*Pi^3-2/3)/(4/5*Pi^6+3/4) 2329912947472851 a007 Real Root Of 280*x^4+405*x^3-99*x^2+965*x-343 2329912949275220 m001 (-BesselJ(1,1)+Mills)/(1+exp(1)) 2329912953003069 m001 Pi*(Psi(1,1/3)-sin(1/5*Pi)/Ei(1,1)) 2329912959181083 m001 ((1+3^(1/2))^(1/2)+Rabbit)/(Chi(1)-Si(Pi)) 2329912971075100 p004 log(24223/2357) 2329912978428406 a003 cos(Pi*13/109)-cos(Pi*15/59) 2329912981105918 m005 (1/3*Catalan+2/9)/(6/7*Pi-3/7) 2329912981190964 m001 1/BesselK(1,1)*Robbin*ln(cos(Pi/5)) 2329912990289524 m001 (sin(1/5*Pi)-LandauRamanujan)/(Porter-Rabbit) 2329913005778866 m001 GAMMA(1/3)^2*exp(FeigenbaumB)/sin(1)^2 2329913028926931 r005 Re(z^2+c),c=11/54+25/49*I,n=47 2329913038033074 a001 521/3*34^(1/12) 2329913039068878 r002 12th iterates of z^2 + 2329913039379260 a007 Real Root Of -258*x^4-287*x^3+633*x^2-381*x-351 2329913053074169 m001 gamma(3)*FeigenbaumKappa^PrimesInBinary 2329913053812139 m001 (2^(1/3))^2/exp(Porter)^2/BesselK(1,1)^2 2329913056500500 m001 1/exp(BesselJ(1,1))^2*Paris^2/sqrt(3) 2329913074928909 r009 Re(z^3+c),c=-3/98+5/14*I,n=15 2329913079264828 a007 Real Root Of 681*x^4-741*x^3+901*x^2-879*x+20 2329913104362177 a007 Real Root Of 888*x^4-727*x^3+66*x^2-279*x+68 2329913110820515 r005 Im(z^2+c),c=-47/42+3/11*I,n=3 2329913111631117 k006 concat of cont frac of 2329913113141271 k009 concat of cont frac of 2329913116663861 m001 1/ln(Tribonacci)/Conway/cos(1) 2329913116677029 p001 sum((-1)^n/(467*n+429)/(1024^n),n=0..infinity) 2329913120265568 a007 Real Root Of 326*x^4+589*x^3-56*x^2+937*x+330 2329913122021111 k006 concat of cont frac of 2329913126226854 a007 Real Root Of 391*x^4+839*x^3-430*x^2-199*x+960 2329913126790815 a001 123/17711*139583862445^(17/18) 2329913134975863 g006 Psi(1,1/6)-Psi(1,9/11)-Psi(1,3/8)-Psi(1,3/5) 2329913140413678 r005 Im(z^2+c),c=-33/64+7/26*I,n=5 2329913142705912 m001 exp(GAMMA(1/6))^2*Paris*sin(Pi/5)^2 2329913148568549 r005 Re(z^2+c),c=-1/12+34/59*I,n=18 2329913160663347 a001 4870847/55*4181^(17/18) 2329913170047464 h001 (1/5*exp(1)+1/9)/(8/11*exp(1)+5/6) 2329913171883923 r005 Re(z^2+c),c=7/52+39/64*I,n=16 2329913174106611 l006 ln(610/6269) 2329913186475867 m001 (GolombDickman+Magata)/(GAMMA(23/24)+CareFree) 2329913215575176 a007 Real Root Of -428*x^4-791*x^3+800*x^2+363*x-889 2329913217709552 r009 Re(z^3+c),c=-7/50+54/59*I,n=10 2329913231654848 m004 3+25*Pi+3*Cosh[Sqrt[5]*Pi]+Sinh[Sqrt[5]*Pi] 2329913232313101 r005 Im(z^2+c),c=-19/56+11/25*I,n=10 2329913235459858 a007 Real Root Of 306*x^4+949*x^3+833*x^2+944*x+663 2329913245748926 m001 (DuboisRaymond+LaplaceLimit)/(Otter+Sarnak) 2329913247882963 a007 Real Root Of -253*x^4-508*x^3-52*x^2-190*x+870 2329913256404759 m001 KhintchineHarmonic*exp(MertensB1)/Paris^2 2329913261505441 r005 Re(z^2+c),c=-1/38+36/61*I,n=21 2329913288182852 m001 1/DuboisRaymond*CopelandErdos^2/ln(Magata) 2329913288699774 a001 75025/521*3571^(28/31) 2329913291936935 r005 Im(z^2+c),c=-27/52+18/41*I,n=57 2329913294503646 a007 Real Root Of -212*x^4-813*x^3-573*x^2+712*x+734 2329913307621940 r009 Re(z^3+c),c=-13/31+26/47*I,n=42 2329913316525388 r005 Re(z^2+c),c=-9/23+20/33*I,n=19 2329913341163365 m005 (1/2*2^(1/2)+2/5)/(3*3^(1/2)-4/9) 2329913346603930 m001 MadelungNaCl^exp(-Pi)/GAMMA(5/24) 2329913348722040 m001 1/exp(GAMMA(17/24))*GAMMA(1/6)^2*exp(1) 2329913350098382 l006 ln(869/1097) 2329913356149967 r009 Re(z^3+c),c=-11/30+23/48*I,n=30 2329913363779690 l006 ln(841/8643) 2329913368261349 a007 Real Root Of -226*x^4-176*x^3+928*x^2+551*x+680 2329913372971143 v003 sum((11*n^2-32*n+42)/(n!+2),n=1..infinity) 2329913386952386 m001 Pi^(1/2)+GAMMA(19/24)*Weierstrass 2329913392286668 a007 Real Root Of 487*x^4+716*x^3-564*x^2+602*x-831 2329913393608516 a007 Real Root Of 2*x^4+463*x^3-693*x^2+450*x-375 2329913395473589 r009 Im(z^3+c),c=-71/126+29/48*I,n=3 2329913396533259 a007 Real Root Of 315*x^4+213*x^3-892*x^2+768*x+43 2329913397907019 r005 Re(z^2+c),c=-59/54+6/19*I,n=8 2329913404665392 r009 Re(z^3+c),c=-33/86+29/56*I,n=60 2329913411611142 k008 concat of cont frac of 2329913413293212 m001 (-Cahen+Riemann1stZero)/(Chi(1)-sin(1/12*Pi)) 2329913435444044 m005 (1/3*gamma+3/7)/(5/6*exp(1)+2/5) 2329913454412994 a001 514229/521*39603^(16/31) 2329913454703470 r005 Re(z^2+c),c=-3/19+29/55*I,n=57 2329913465141287 m001 (-gamma(1)+Paris)/(Zeta(5)-ln(2)/ln(10)) 2329913467387263 a001 10946/521*15127^(30/31) 2329913489191077 r009 Re(z^3+c),c=-25/86+5/19*I,n=3 2329913492394418 m001 AlladiGrinstead*exp(1)^ReciprocalFibonacci 2329913493139152 r009 Re(z^3+c),c=-39/110+23/51*I,n=33 2329913505435250 a001 196418/521*5778^(23/31) 2329913509311287 b008 21+ArcCsch[ArcCoth[5]] 2329913513113075 s002 sum(A041145[n]/((10^n-1)/n),n=1..infinity) 2329913528390096 r005 Im(z^2+c),c=-31/74+25/63*I,n=39 2329913546606409 r009 Re(z^3+c),c=-23/94+42/55*I,n=4 2329913551001025 r002 19th iterates of z^2 + 2329913554949662 m001 1/ln(BesselK(0,1))^2*Champernowne/sin(1)^2 2329913555148752 m001 Khinchin^DuboisRaymond*Khinchin^Robbin 2329913575446358 r009 Im(z^3+c),c=-33/64+16/43*I,n=7 2329913576763158 a007 Real Root Of -972*x^4-537*x^3+264*x^2+804*x-192 2329913577992744 r005 Re(z^2+c),c=33/106+19/53*I,n=13 2329913582948442 r002 5th iterates of z^2 + 2329913586005203 m001 (BesselK(0,1)+ln(2))/(Ei(1,1)+sin(1/12*Pi)) 2329913586520149 r005 Re(z^2+c),c=-5/23+34/47*I,n=64 2329913600980379 m001 (2^(1/3)+exp(-1/2*Pi))/(-Rabbit+Totient) 2329913606911447 q001 863/3704 2329913610075320 r005 Im(z^2+c),c=-15/118+15/49*I,n=14 2329913622253219 a007 Real Root Of -35*x^4-814*x^3+60*x^2+620*x+464 2329913629167608 b008 (4+2^Sqrt[Pi])*Pi 2329913629950429 r005 Im(z^2+c),c=-7/12+21/97*I,n=5 2329913631774418 a001 521/3*832040^(28/53) 2329913637886811 m001 GAMMA(13/24)+Cahen^sin(1) 2329913639621948 m001 3^(1/2)/(sin(1/12*Pi)^Ei(1,1)) 2329913642440717 a005 (1/cos(26/189*Pi))^343 2329913644866144 r005 Re(z^2+c),c=-4/31+11/18*I,n=49 2329913652857719 a007 Real Root Of -358*x^4-606*x^3+275*x^2-798*x-467 2329913656071501 m005 (1/3*gamma-1/6)/(-35/88+5/22*5^(1/2)) 2329913656777790 m001 exp(Pi)^BesselI(1,2)/HardyLittlewoodC3 2329913663033913 s002 sum(A221780[n]/(n*2^n-1),n=1..infinity) 2329913686305642 m001 (exp(1/Pi)+5)/(5^(1/2)+1/2) 2329913688077479 a007 Real Root Of -514*x^4-676*x^3+966*x^2-997*x-970 2329913691694548 a007 Real Root Of 580*x^4+822*x^3-911*x^2+345*x-946 2329913710077025 m001 Trott^(ErdosBorwein/Zeta(1,2)) 2329913722206144 p001 sum((-1)^n/(454*n+357)/(2^n),n=0..infinity) 2329913725518524 m001 BesselI(1,2)*(Ei(1)-ReciprocalFibonacci) 2329913730158927 m001 PisotVijayaraghavan+exp(Pi)^ZetaQ(4) 2329913734206333 m009 (4/5*Psi(1,2/3)-2)/(Psi(1,2/3)-5) 2329913744421070 a001 377/4870847*29^(18/55) 2329913751076999 a007 Real Root Of 437*x^4+598*x^3-748*x^2+645*x+249 2329913755371248 r009 Im(z^3+c),c=-23/42+8/17*I,n=39 2329913762181902 a007 Real Root Of 468*x^4+904*x^3-705*x^2-335*x+689 2329913764082306 r005 Im(z^2+c),c=-11/8+2/213*I,n=29 2329913768229545 a008 Real Root of x^4-2*x^3+16*x^2+111*x+117 2329913772633987 r009 Re(z^3+c),c=-33/86+19/35*I,n=28 2329913793112259 a001 514229/521*2207^(22/31) 2329913808509598 r005 Re(z^2+c),c=23/86+7/44*I,n=29 2329913810627949 m009 (6*Catalan+3/4*Pi^2+1/2)/(2*Psi(1,3/4)+2/3) 2329913821323837 m002 -6-5/Pi+Pi^3*Tanh[Pi] 2329913827997998 a007 Real Root Of -13*x^4-303*x^3+15*x^2+432*x+516 2329913833368862 m001 Si(Pi)^2/ln(FransenRobinson)^2/sinh(1)^2 2329913834610666 a007 Real Root Of -654*x^4+72*x^3-61*x^2+729*x+176 2329913846713200 m001 (ln(2+3^(1/2))-BesselI(1,2))/(Salem-ZetaQ(4)) 2329913852507119 m005 (1/2*exp(1)+3/4)/(1/12*gamma+6/7) 2329913858444096 r005 Im(z^2+c),c=-1/3+16/43*I,n=45 2329913864469564 m001 (Pi+(1+3^(1/2))^(1/2))/(QuadraticClass+Salem) 2329913864647819 l006 ln(231/2374) 2329913881944867 m005 (1/3*gamma+1/2)/(8/9*exp(1)+5/9) 2329913882334422 r009 Re(z^3+c),c=-27/110+9/55*I,n=4 2329913888227024 m001 MertensB1^2/GolombDickman*exp(GAMMA(7/12))^2 2329913888401438 r005 Im(z^2+c),c=-7/6+25/102*I,n=31 2329913903396153 r005 Re(z^2+c),c=-13/86+20/37*I,n=58 2329913915068230 r005 Re(z^2+c),c=-11/56+19/43*I,n=50 2329913916259413 m001 exp(1/Pi)*Backhouse^OrthogonalArrays 2329913916495187 r009 Re(z^3+c),c=-10/27+35/64*I,n=15 2329913925778215 m005 (1/3*Pi-1/2)/(1/2*Pi+7/9) 2329913934684921 m002 Pi^3*Coth[Pi]+4/ProductLog[Pi]-Sinh[Pi] 2329913943019769 m001 (BesselI(1,1)-FeigenbaumMu)/(Pi-Si(Pi)) 2329913947158780 m001 (MertensB1+Paris)/(Ei(1,1)-Artin) 2329913953068265 m005 (1/2*Zeta(3)+1/3)/(5*Zeta(3)-2) 2329913958315199 a007 Real Root Of 4*x^4+76*x^3-416*x^2-353*x+100 2329913961531099 a007 Real Root Of 330*x^4+856*x^3+596*x^2+568*x-810 2329913976111009 a001 161/1762289*12586269025^(11/15) 2329913976903231 a008 Real Root of x^2-x-54052 2329913977596589 a001 322/17711*9227465^(11/15) 2329913982004113 a007 Real Root Of 157*x^4+41*x^3-569*x^2+822*x+896 2329913996895210 m004 3+4*Cosh[Sqrt[5]*Pi]+25*Pi*Tanh[Sqrt[5]*Pi] 2329913998632305 m001 (FeigenbaumD+Magata)/(sin(1)+Pi^(1/2)) 2329914003496497 r005 Im(z^2+c),c=27/64+6/17*I,n=10 2329914006172707 m002 -E^Pi+Pi^(-2)-3*Csch[Pi] 2329914027171037 a007 Real Root Of 148*x^4+369*x^3+354*x^2+306*x-903 2329914031806443 m001 (Otter+Trott2nd)/(gamma(3)-GlaisherKinkelin) 2329914040673709 p004 log(24593/2393) 2329914052131975 a003 cos(Pi*3/115)-cos(Pi*21/94) 2329914055400116 r009 Im(z^3+c),c=-47/114+8/51*I,n=2 2329914059989589 m001 (Pi^(1/2)-KhinchinLevy)/(ZetaP(3)+ZetaP(4)) 2329914060407440 l004 cosh(682/111) 2329914065787957 r005 Re(z^2+c),c=-21/74+29/48*I,n=47 2329914069261784 m001 (Bloch+ZetaQ(4))/(Shi(1)-Zeta(5)) 2329914081631738 m001 (OneNinth-Psi(1,1/3))/(-RenyiParking+Salem) 2329914082892341 p002 log(1/7*(16+7^(2/3))*7^(2/3)) 2329914095545264 r009 Re(z^3+c),c=-1/54+41/59*I,n=5 2329914116439552 m004 25*Pi+4*Cosh[Sqrt[5]*Pi]+3*Tanh[Sqrt[5]*Pi] 2329914116459681 m008 (1/5*Pi^4-4/5)/(5/6*Pi^6+2/3) 2329914117081212 r005 Im(z^2+c),c=-25/22+2/69*I,n=28 2329914119604621 m004 2+25*Pi+4*Cosh[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi] 2329914121187155 m004 -3-25*Pi-4*Cosh[Sqrt[5]*Pi] 2329914121188563 m004 3+25*Pi+E^(2*Sqrt[5]*Pi)*Csch[Sqrt[5]*Pi] 2329914121965667 m001 1/cos(1)/GlaisherKinkelin*ln(sinh(1)) 2329914122769689 m004 -4-25*Pi-4*Cosh[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi] 2329914125934765 m004 25*Pi+4*Cosh[Sqrt[5]*Pi]+3*Coth[Sqrt[5]*Pi] 2329914135789341 a007 Real Root Of -476*x^4-935*x^3+745*x^2+976*x+431 2329914158306282 h001 (8/9*exp(1)+1/4)/(3/8*exp(1)+1/8) 2329914159269413 m001 (ln(5)-gamma(3))/(2*Pi/GAMMA(5/6)+MertensB3) 2329914169576180 h001 (3/5*exp(2)+1/4)/(2/11*exp(2)+2/3) 2329914175086777 a007 Real Root Of 142*x^4+291*x^3+76*x^2+714*x+747 2329914186696393 m001 (Catalan-ln(2+3^(1/2)))/(Mills+PrimesInBinary) 2329914188847987 m001 1/LandauRamanujan/Conway*exp(BesselK(0,1))^2 2329914193036643 m001 (BesselJ(0,1)*exp(-1/2*Pi)-Cahen)/exp(-1/2*Pi) 2329914196411958 r005 Re(z^2+c),c=13/122+34/57*I,n=52 2329914202598929 a007 Real Root Of 519*x^4+657*x^3-962*x^2+498*x-602 2329914204292792 g007 Psi(2,8/11)+Psi(2,2/11)-Psi(2,1/11)-Psi(2,5/7) 2329914211634392 h001 (-6*exp(8)-9)/(-7*exp(7)-4) 2329914212262067 m001 1/ln((3^(1/3)))*Rabbit*Zeta(3) 2329914215164294 a001 5/199*15127^(56/59) 2329914227596684 a003 sin(Pi*6/61)/cos(Pi*11/24) 2329914229536209 m001 Catalan^2*Bloch*exp(sqrt(Pi)) 2329914235391940 a001 47/13*1346269^(11/24) 2329914237586106 r009 Re(z^3+c),c=-11/48+56/61*I,n=19 2329914243336531 a007 Real Root Of 324*x^4+948*x^3+430*x^2-343*x-691 2329914245479297 m004 3+4*Cosh[Sqrt[5]*Pi]+25*Pi*Coth[Sqrt[5]*Pi] 2329914249895813 s001 sum(exp(-Pi/3)^n*A246121[n],n=1..infinity) 2329914252002090 a005 (1/cos(20/183*Pi))^1201 2329914282393568 r005 Im(z^2+c),c=-49/66+5/47*I,n=15 2329914282404873 s002 sum(A198658[n]/(10^n+1),n=1..infinity) 2329914282405612 s002 sum(A198658[n]/(10^n-1),n=1..infinity) 2329914283805435 r005 Im(z^2+c),c=-19/46+15/38*I,n=36 2329914293767635 r005 Im(z^2+c),c=-13/42+23/63*I,n=41 2329914294203000 s002 sum(A264466[n]/(n^3*exp(n)+1),n=1..infinity) 2329914295758464 r005 Im(z^2+c),c=-127/122+7/33*I,n=10 2329914298220836 s002 sum(A264466[n]/(n^3*exp(n)-1),n=1..infinity) 2329914302583305 s002 sum(A078018[n]/(n^2*2^n+1),n=1..infinity) 2329914302784413 a007 Real Root Of 142*x^4+4*x^3-544*x^2+142*x-850 2329914314416361 a007 Real Root Of -93*x^4-56*x^3-189*x^2-892*x+980 2329914315212858 a007 Real Root Of 318*x^4+307*x^3-647*x^2+430*x-974 2329914315638868 m005 (-1/12+1/4*5^(1/2))/(5/7*5^(1/2)+4/9) 2329914319469436 s002 sum(A078018[n]/(n^2*2^n-1),n=1..infinity) 2329914319826318 m005 (5/18+1/6*5^(1/2))/(11/12*exp(1)+3/10) 2329914321562048 m005 (1/2*Zeta(3)+1/8)/(5/8*2^(1/2)-4) 2329914321769332 a005 (1/sin(61/167*Pi))^383 2329914323769810 b008 5-22*EulerGamma^2 2329914328612966 a007 Real Root Of -245*x^4-280*x^3+675*x^2-346*x-792 2329914330871280 r005 Im(z^2+c),c=-45/94+18/41*I,n=31 2329914335980645 a001 2584/123*123^(1/2) 2329914345324042 a008 Real Root of x^2-x-54518 2329914345449468 a007 Real Root Of -247*x^4-665*x^3-134*x^2+84*x-209 2329914346060851 r005 Im(z^2+c),c=-5/11+25/62*I,n=32 2329914350136485 r005 Re(z^2+c),c=-7/34+9/22*I,n=8 2329914369945071 r005 Im(z^2+c),c=-89/126+14/53*I,n=19 2329914374841721 a003 cos(Pi*9/52)/cos(Pi*27/71) 2329914378924007 s002 sum(A045454[n]/(exp(pi*n)+1),n=1..infinity) 2329914407469826 l006 ln(776/7975) 2329914408244207 m001 (Pi+ln(2)/ln(10))/(GAMMA(2/3)+Champernowne) 2329914409667638 r009 Re(z^3+c),c=-15/44+18/43*I,n=17 2329914425679892 r005 Re(z^2+c),c=-59/62+27/62*I,n=4 2329914437272470 m001 exp(Pi)/(gamma(1)^QuadraticClass) 2329914441357534 s001 sum(exp(-Pi/3)^(n-1)*A056496[n],n=1..infinity) 2329914454484550 m001 FeigenbaumAlpha/(GAMMA(23/24)^FransenRobinson) 2329914456521107 m005 (1/2*Catalan+9/10)/(5*Zeta(3)-2/11) 2329914466165762 m001 (ln(2)+LaplaceLimit)/LandauRamanujan2nd 2329914469819320 r005 Im(z^2+c),c=-29/25+7/31*I,n=61 2329914478680827 r002 3th iterates of z^2 + 2329914484492179 r005 Im(z^2+c),c=-11/28+7/18*I,n=38 2329914494002944 a001 41/7*46368^(27/35) 2329914504237454 p001 sum((-1)^n/(422*n+97)/n/(8^n),n=1..infinity) 2329914506023309 a001 2/89*144^(8/17) 2329914513270220 p002 log(5/(3^(1/2)-5^(1/4))^(1/2)) 2329914519424229 m001 (ZetaP(2)-ln(2^(1/2)+1)*ArtinRank2)/ArtinRank2 2329914529914529 q001 1363/585 2329914533143153 m001 BesselJ(1,1)-Ei(1)*MinimumGamma 2329914534073893 a003 sin(Pi*1/116)*sin(Pi*31/94) 2329914534772189 a007 Real Root Of 381*x^4+806*x^3-183*x^2+130*x+263 2329914546098411 m005 (1/3*exp(1)-1/3)/(5^(1/2)+2/9) 2329914552685074 r009 Re(z^3+c),c=-23/58+19/35*I,n=39 2329914564279295 a007 Real Root Of 382*x^4+699*x^3-384*x^2+129*x-31 2329914566660166 m001 GAMMA(1/12)*FeigenbaumAlpha^2/exp(GAMMA(5/6)) 2329914568672601 a007 Real Root Of -331*x^4-627*x^3+20*x^2-989*x-589 2329914578436333 m008 (3/4*Pi^2-1/3)/(Pi^3-2/3) 2329914584793093 a008 Real Root of x^5-x^4-15*x^3+18*x^2+54*x-73 2329914585070211 s002 sum(A207395[n]/(n*10^n-1),n=1..infinity) 2329914607619994 a007 Real Root Of -368*x^4-771*x^3-301*x^2-818*x+821 2329914608952929 m005 (7/6+1/4*5^(1/2))/(9/10*3^(1/2)-9/11) 2329914611564903 r005 Im(z^2+c),c=-23/54+19/48*I,n=30 2329914612508765 m008 (2/3*Pi-2/5)/(3/4*Pi^4-1/3) 2329914612560549 m001 FibonacciFactorial^2/Champernowne/ln(Lehmer) 2329914624318357 l006 ln(7154/9031) 2329914627480277 r009 Re(z^3+c),c=-1/30+17/39*I,n=9 2329914633478810 a003 cos(Pi*32/75)/sin(Pi*24/55) 2329914636670931 r009 Re(z^3+c),c=-41/78+14/37*I,n=7 2329914637469955 h005 exp(sin(Pi*1/10)/cos(Pi*8/21)) 2329914637546588 l006 ln(545/5601) 2329914640230281 s002 sum(A048674[n]/((10^n-1)/n),n=1..infinity) 2329914642430532 r005 Re(z^2+c),c=-17/90+21/34*I,n=26 2329914650438415 a007 Real Root Of -340*x^4-290*x^3+645*x^2-961*x+611 2329914652821382 m002 -2/Pi^4-Pi^4/4+ProductLog[Pi] 2329914655908014 r005 Re(z^2+c),c=-8/31+11/27*I,n=6 2329914677955587 a005 (1/cos(49/225*Pi))^202 2329914680877652 r002 2th iterates of z^2 + 2329914681366182 m001 1/CareFree/ln(DuboisRaymond)^2*TreeGrowth2nd 2329914711552167 a007 Real Root Of 375*x^4+261*x^3-714*x^2-741*x+207 2329914717049162 m001 (Grothendieck+Porter)/(5^(1/2)-sin(1)) 2329914718645183 h001 (4/9*exp(2)+11/12)/(1/6*exp(2)+4/7) 2329914736037061 m001 (LambertW(1)-gamma)/(GAMMA(13/24)+FeigenbaumD) 2329914742018877 r005 Re(z^2+c),c=13/44+13/32*I,n=5 2329914743846847 a007 Real Root Of -204*x^4-342*x^3+458*x^2+707*x+847 2329914744292378 m001 GAMMA(17/24)*(TwinPrimes-sin(1)) 2329914744315708 m001 (GAMMA(7/12)-ErdosBorwein)/(Khinchin+Robbin) 2329914745463911 m001 (1/3+Khinchin*Zeta(1,2))/Zeta(1,2) 2329914766125574 m001 (Khinchin-Mills)/(arctan(1/2)-GAMMA(11/12)) 2329914768449079 a005 (1/sin(57/187*Pi))^50 2329914782676926 m001 1/Sierpinski^2/ln(GolombDickman)^2*sin(Pi/5)^2 2329914785098582 a007 Real Root Of 89*x^4-595*x^3+470*x^2+656*x+823 2329914786947483 m001 1/FeigenbaumC/exp(Si(Pi))^2/gamma 2329914795810280 a001 2207*6765^(28/53) 2329914800499276 l006 ln(6285/7934) 2329914812209687 r005 Im(z^2+c),c=1/4+5/44*I,n=10 2329914812895594 m001 Artin^MertensB3*Artin^ZetaR(2) 2329914814115697 a007 Real Root Of -248*x^4-158*x^3+559*x^2-883*x+218 2329914817288051 r005 Im(z^2+c),c=-41/38+9/37*I,n=7 2329914820326785 m008 (1/2*Pi^2-3/4)/(3/5*Pi^5-4) 2329914822556254 m001 (3^(1/3))^(KomornikLoreti/exp(-1/2*Pi)) 2329914823057619 a003 sin(Pi*35/97)/cos(Pi*22/59) 2329914833079263 a007 Real Root Of 565*x^4-387*x^3-200*x^2-203*x-43 2329914833957018 a007 Real Root Of -404*x^4-995*x^3+327*x^2+732*x-749 2329914834303603 l006 ln(7339/7512) 2329914834497587 a001 3/15127*521^(16/21) 2329914845392371 l006 ln(859/8828) 2329914849372177 m001 (HeathBrownMoroz+MertensB3)/(Zeta(5)-ln(5)) 2329914854067838 m001 GAMMA(5/24)/FeigenbaumB^2/exp(Zeta(9)) 2329914884342348 a003 sin(Pi*23/108)/cos(Pi*29/59) 2329914900917536 p001 sum((-1)^n/(490*n+429)/(1000^n),n=0..infinity) 2329914908216418 p004 log(14771/11701) 2329914910010371 a007 Real Root Of -41*x^4-913*x^3+964*x^2-526*x-996 2329914913564208 r005 Re(z^2+c),c=13/62+7/17*I,n=44 2329914917354302 h001 (1/4*exp(2)+3/8)/(1/12*exp(1)+8/11) 2329914925955760 r005 Im(z^2+c),c=3/82+11/45*I,n=3 2329914927876241 m001 3^(1/3)/(MasserGramain^ln(3)) 2329914929163625 a007 Real Root Of 145*x^4+371*x^3-147*x^2-941*x-207 2329914944225693 r002 21th iterates of z^2 + 2329914944529181 r002 4th iterates of z^2 + 2329914956054429 m001 Mills^(MasserGramainDelta/Stephens) 2329914957895718 m001 exp(FeigenbaumD)^2/Si(Pi)^2/GAMMA(1/3) 2329914973083087 m001 GAMMA(17/24)/exp(GaussAGM(1,1/sqrt(2)))^2*Pi^2 2329914974874980 a008 Real Root of (-6+6*x-3*x^2+x^3-3*x^4-2*x^5) 2329914981305335 m005 (1/2*2^(1/2)-1/10)/(1/5*Pi-8/9) 2329914991975049 a007 Real Root Of 36*x^4+60*x^3+211*x^2+368*x-590 2329914995282715 r009 Re(z^3+c),c=-21/74+5/17*I,n=2 2329915001767362 r009 Re(z^3+c),c=-19/78+10/63*I,n=9 2329915010719462 m004 3+25*Pi+5*Cosh[Sqrt[5]*Pi]-Sinh[Sqrt[5]*Pi] 2329915022057108 m001 (1-FeigenbaumB)/(-Porter+RenyiParking) 2329915033216830 l006 ln(5416/6837) 2329915042585300 m003 9+(Sec[1/2+Sqrt[5]/2]*Tan[1/2+Sqrt[5]/2])/2 2329915046499359 r005 Im(z^2+c),c=-13/42+23/63*I,n=43 2329915049543860 a003 sin(Pi*3/109)*sin(Pi*2/23) 2329915059475408 r009 Re(z^3+c),c=-49/118+5/8*I,n=2 2329915067450829 r009 Re(z^3+c),c=-7/50+44/47*I,n=20 2329915072792214 r005 Im(z^2+c),c=-87/122+2/61*I,n=36 2329915076715157 m005 (1/2*Pi-4/5)/(Pi+1/6) 2329915076715157 m006 (1/2*Pi-4/5)/(Pi+1/6) 2329915076715157 m008 (1/2*Pi-4/5)/(Pi+1/6) 2329915085149647 m001 (-BesselK(1,1)+Trott)/(sin(1)-sin(1/5*Pi)) 2329915092188316 a007 Real Root Of 449*x^4-506*x^3-245*x^2-419*x+116 2329915103940374 m001 ln(5)/Champernowne*KomornikLoreti 2329915107908419 r005 Im(z^2+c),c=-7/40+19/58*I,n=8 2329915115963672 a001 7/17711*4181^(10/47) 2329915122023135 p001 sum((-1)^n/(464*n+417)/(16^n),n=0..infinity) 2329915123482593 a007 Real Root Of -226*x^4+540*x^3+590*x^2+952*x-260 2329915136433590 r009 Re(z^3+c),c=-17/122+61/64*I,n=14 2329915152131321 k006 concat of cont frac of 2329915155221857 r005 Re(z^2+c),c=-87/106+9/61*I,n=8 2329915158469431 a007 Real Root Of -306*x^4-681*x^3+416*x^2+652*x-335 2329915174725238 m001 (BesselJ(0,1)-ln(Pi))/(gamma(1)+CopelandErdos) 2329915174985162 m001 (Zeta(1/2)-gamma)/(Paris+StronglyCareFree) 2329915186854014 r009 Im(z^3+c),c=-6/23+17/24*I,n=7 2329915191705255 r002 4th iterates of z^2 + 2329915202638276 r005 Re(z^2+c),c=-13/60+20/27*I,n=33 2329915203856162 r005 Im(z^2+c),c=-11/32+3/8*I,n=29 2329915205999330 r005 Im(z^2+c),c=-7/26+6/17*I,n=20 2329915206143708 l006 ln(314/3227) 2329915209534135 p003 LerchPhi(1/64,3,163/216) 2329915219118743 m001 exp(1/Pi)+cos(1/12*Pi)^PisotVijayaraghavan 2329915223711444 m002 3*Pi+(Pi^6*Csch[Pi])/6 2329915223762007 m001 (exp(Pi)+2^(1/2))/(-GAMMA(11/12)+ZetaQ(4)) 2329915223850088 r005 Re(z^2+c),c=6/19+21/52*I,n=51 2329915230333839 r009 Im(z^3+c),c=-13/48+12/59*I,n=7 2329915230418801 m001 1/ln(FeigenbaumB)/CopelandErdos^2/BesselK(0,1) 2329915236107062 a007 Real Root Of 176*x^4-990*x^3-573*x^2-609*x+185 2329915241515867 a007 Real Root Of 23*x^4+534*x^3-69*x^2-552*x+811 2329915247782444 m001 (-2^(1/3)+2/3)/(GAMMA(1/24)+2) 2329915254697681 a007 Real Root Of -311*x^4-873*x^3-334*x^2+354*x+761 2329915257516426 r009 Im(z^3+c),c=-25/62+7/53*I,n=21 2329915292882026 r005 Re(z^2+c),c=-9/34+13/59*I,n=13 2329915292999749 p004 log(35537/28151) 2329915297076769 r005 Im(z^2+c),c=-67/122+10/23*I,n=61 2329915311252617 m001 ln(Tribonacci)*Riemann3rdZero*GAMMA(7/12) 2329915331876300 a007 Real Root Of 586*x^4+942*x^3-735*x^2+786*x+467 2329915333427727 a007 Real Root Of -213*x^4-162*x^3+741*x^2-292*x-475 2329915353223143 a001 521/5*13^(16/51) 2329915354556966 r005 Re(z^2+c),c=-5/22+5/14*I,n=13 2329915354886015 l006 ln(4547/5740) 2329915355634083 a007 Real Root Of 289*x^4+459*x^3-181*x^2+544*x-461 2329915358216979 m005 (1/2*2^(1/2)+4/11)/(19/90+1/9*5^(1/2)) 2329915365444602 h001 (1/7*exp(2)+7/12)/(1/8*exp(1)+4/11) 2329915398212743 h001 (9/11*exp(2)+5/8)/(1/3*exp(2)+2/5) 2329915407596418 m001 (-BesselI(1,1)+BesselK(1,1))/(cos(1)+Zeta(5)) 2329915416892553 a007 Real Root Of -453*x^4-575*x^3+815*x^2-341*x+858 2329915418135336 m005 (1/2*gamma+2/7)/(2/3*Catalan-6/7) 2329915419729342 b008 13+6*E^Cos[1] 2329915441798224 a001 1364*(1/2*5^(1/2)+1/2)^8*47^(14/15) 2329915451932211 m005 (1/3*Pi-1/4)/(1/5*2^(1/2)-5/8) 2329915460210443 s002 sum(A078786[n]/(n*10^n-1),n=1..infinity) 2329915461311546 s002 sum(A258383[n]/(n*10^n-1),n=1..infinity) 2329915462034678 m001 (gamma+Zeta(1,2))/(GAMMA(17/24)+MertensB1) 2329915478751482 m001 Shi(1)+cos(1/5*Pi)+arctan(1/2) 2329915495290978 m001 (sin(1/12*Pi)+GAMMA(7/12))/(ln(2)+Zeta(1/2)) 2329915502262978 m005 (1/2*3^(1/2)-1)/(3/11*Catalan-6) 2329915510171365 r005 Im(z^2+c),c=-7/12+2/47*I,n=61 2329915511748929 m001 exp(1/exp(1))^ln(5)/StronglyCareFree 2329915513384862 m001 (-GAMMA(11/12)+Thue)/(Catalan+gamma(1)) 2329915514238348 m001 (-gamma(3)+Tetranacci)/(2^(1/2)-sin(1/5*Pi)) 2329915522126094 m005 (1/2*5^(1/2)-1/6)/(1/11*Catalan+4) 2329915535729408 a007 Real Root Of -358*x^4-909*x^3-736*x^2-925*x+893 2329915537021391 m001 arctan(1/3)+Pi^(1/2)+CopelandErdos 2329915542055610 p001 sum((-1)^n/(469*n+429)/(1024^n),n=0..infinity) 2329915542643554 m001 gamma^2*FeigenbaumD*ln(sinh(1))^2 2329915543397437 a007 Real Root Of -296*x^4-313*x^3+785*x^2-232*x-38 2329915549216331 a001 2/305*365435296162^(1/21) 2329915559200089 a001 8/3571*3^(1/28) 2329915565081769 r002 20th iterates of z^2 + 2329915573043948 a001 1/646*317811^(41/54) 2329915573279422 r009 Re(z^3+c),c=-37/106+38/61*I,n=42 2329915580145945 m001 (cos(1)+LambertW(1))/(-GAMMA(17/24)+MertensB3) 2329915584187738 m001 (Conway-2^(1/2))^Robbin 2329915586713717 a007 Real Root Of -514*x^4-616*x^3+919*x^2-694*x+750 2329915587784173 r009 Im(z^3+c),c=-39/94+6/49*I,n=9 2329915596521926 m001 Pi+exp(Pi)-exp(gamma)-Zeta(3) 2329915609087909 m001 (KhinchinLevy-Salem)/(TreeGrowth2nd+ZetaQ(4)) 2329915609309758 r002 5th iterates of z^2 + 2329915615567511 s002 sum(A270648[n]/(n*10^n-1),n=1..infinity) 2329915617033585 p002 log(1/15*(9*15^(1/2)+11^(2/3))*15^(1/2)) 2329915618389484 r002 38th iterates of z^2 + 2329915619441882 r005 Re(z^2+c),c=-19/106+14/29*I,n=32 2329915629556361 a007 Real Root Of 384*x^4+487*x^3-718*x^2+951*x+957 2329915630792366 m001 exp(1)/MertensB3/ZetaQ(3) 2329915633101063 r009 Re(z^3+c),c=-31/90+23/54*I,n=12 2329915641987976 l006 ln(711/7307) 2329915644141772 a007 Real Root Of -976*x^4+738*x^3-679*x^2+107*x+74 2329915647033524 m001 (gamma+Pi*2^(1/2)/GAMMA(3/4))/(Niven+Paris) 2329915649571986 r005 Re(z^2+c),c=5/126+26/45*I,n=19 2329915656745684 a007 Real Root Of 241*x^4+408*x^3-423*x^2-193*x-95 2329915658341742 p001 sum(1/(189*n+43)/(100^n),n=0..infinity) 2329915668232433 h001 (1/9*exp(2)+3/8)/(1/7*exp(1)+1/8) 2329915678084459 r005 Re(z^2+c),c=-13/74+41/62*I,n=36 2329915680580613 m001 GAMMA(13/24)*(Riemann1stZero-gamma(1)) 2329915687143030 a007 Real Root Of 161*x^4+422*x^3+344*x^2+656*x+254 2329915688796448 a007 Real Root Of -292*x^4-535*x^3-82*x^2-780*x+466 2329915700852946 r005 Im(z^2+c),c=-27/70+12/31*I,n=44 2329915703219156 a007 Real Root Of -663*x^4-996*x^3+904*x^2-488*x+896 2329915711694297 r009 Re(z^3+c),c=-49/118+20/61*I,n=3 2329915717939809 r005 Im(z^2+c),c=-25/94+33/53*I,n=44 2329915720082706 a007 Real Root Of 495*x^4+950*x^3-649*x^2-293*x+269 2329915722067568 a007 Real Root Of 963*x^4-166*x^3+961*x^2-991*x-288 2329915738726237 m001 (3^(1/3)-5^(1/2))/Magata 2329915747051360 m005 (1/2*Pi-1/8)/(3/10*gamma-1/9) 2329915758012443 r005 Re(z^2+c),c=19/58+17/49*I,n=13 2329915759072708 m001 (FellerTornier-Thue)/(GAMMA(5/6)+GAMMA(19/24)) 2329915768501405 a007 Real Root Of 628*x^4+963*x^3-962*x^2+61*x-962 2329915770182320 a007 Real Root Of -291*x^4-972*x^3-444*x^2+534*x-64 2329915774066448 m001 (Trott2nd+ZetaP(4))/(ln(3)-2*Pi/GAMMA(5/6)) 2329915779587953 r005 Re(z^2+c),c=-17/18+19/109*I,n=32 2329915779786636 a007 Real Root Of -774*x^4+539*x^3+829*x^2+796*x-235 2329915784166153 m001 cos(1)^LandauRamanujan+Niven 2329915799067766 r005 Im(z^2+c),c=-33/64+22/61*I,n=17 2329915800927307 a007 Real Root Of 83*x^4+146*x^3+60*x^2+485*x+205 2329915814444849 m001 1/BesselJ(1,1)^2*ln(Champernowne)/arctan(1/2) 2329915815436125 m004 1/4+(Pi*Csc[Sqrt[5]*Pi])/Sqrt[5] 2329915820146246 m001 1/Sierpinski*Riemann3rdZero/ln(TwinPrimes) 2329915825944426 a005 (1/sin(63/155*Pi))^860 2329915826149804 a007 Real Root Of -490*x^4-831*x^3+648*x^2-138*x+90 2329915826419144 m001 1/GAMMA(1/4)*HardHexagonsEntropy^2*ln(cosh(1)) 2329915826796686 a001 10946/199*76^(1/3) 2329915828556553 l006 ln(3678/4643) 2329915832513050 r002 13th iterates of z^2 + 2329915834355739 a007 Real Root Of 119*x^4-161*x^3-664*x^2+614*x-508 2329915841583295 a003 sin(Pi*18/65)-sin(Pi*51/107) 2329915845799879 m001 (Champernowne+KomornikLoreti)^Mills 2329915861983458 m001 (Backhouse-FeigenbaumDelta)/(Khinchin-Mills) 2329915870600905 a001 3010349/233*832040^(11/20) 2329915880160927 r009 Re(z^3+c),c=-1/86+55/64*I,n=14 2329915880783569 a001 15127/233*12586269025^(11/20) 2329915900254584 m004 3+25*Pi+2*E^(Sqrt[5]*Pi)*Coth[Sqrt[5]*Pi] 2329915910975874 a007 Real Root Of -535*x^4-823*x^3+908*x^2-568*x-896 2329915918680918 p001 sum(1/(613*n+432)/(64^n),n=0..infinity) 2329915923715131 a007 Real Root Of 33*x^4+784*x^3+358*x^2+165*x+839 2329915928435465 m005 (1/2*exp(1)+11/12)/(1/8*2^(1/2)+4/5) 2329915928686199 a007 Real Root Of -124*x^4-36*x^3+294*x^2-348*x+792 2329915933289417 r005 Im(z^2+c),c=-33/29+16/61*I,n=28 2329915938402611 r005 Re(z^2+c),c=-5/29+27/41*I,n=10 2329915964050201 r005 Re(z^2+c),c=7/25+7/40*I,n=16 2329915968845765 m001 (gamma(3)+RenyiParking)/arctan(1/3) 2329915971173993 a007 Real Root Of 340*x^4+878*x^3+463*x^2+924*x+725 2329915972956599 p001 sum((-1)^n/(486*n+197)/n/(6^n),n=1..infinity) 2329915974791597 b008 -11/4+Sqrt[3/17] 2329915976322864 r009 Re(z^3+c),c=-11/31+14/31*I,n=37 2329915986711016 l006 ln(397/4080) 2329915990592529 m001 1/MadelungNaCl/Khintchine^2/exp(GAMMA(3/4)) 2329915994426044 m005 (1/3*5^(1/2)-1/4)/(5/7*3^(1/2)+8/9) 2329915997587622 m001 (-Kac+OneNinth)/(2^(1/2)+AlladiGrinstead) 2329916017607356 r005 Re(z^2+c),c=-69/86+6/55*I,n=16 2329916022383624 r009 Re(z^3+c),c=-5/122+37/61*I,n=4 2329916034951102 a007 Real Root Of 342*x^4+614*x^3-657*x^2-170*x+858 2329916038480529 m005 (1/3*gamma-1/12)/(7/8*Catalan-1/3) 2329916039116609 h005 exp(cos(Pi*1/57)-sin(Pi*2/41)) 2329916049207993 m005 (1/3*gamma-2/3)/(1/5*3^(1/2)-1/7) 2329916050247336 m001 (BesselI(0,1)-gamma)/(-Zeta(5)+MertensB3) 2329916061689976 b008 Pi-3*Erfc[-1/9] 2329916061917531 p004 log(33493/3259) 2329916067239272 r005 Im(z^2+c),c=-39/110+11/24*I,n=7 2329916071752219 m005 (1/2*Zeta(3)+1/2)/(5/12*Catalan+1/11) 2329916080770389 r002 42th iterates of z^2 + 2329916081854695 m001 Gompertz/PlouffeB/ZetaQ(2) 2329916082672468 p001 sum((-1)^n/(491*n+429)/(1000^n),n=0..infinity) 2329916096484096 m005 (1/2*5^(1/2)-2)/(1/4*Pi+3) 2329916096617181 r009 Re(z^3+c),c=-5/38+47/56*I,n=16 2329916099736074 r002 64th iterates of z^2 + 2329916101395431 m001 Pi-ZetaP(4)^StolarskyHarborth 2329916104203051 r005 Re(z^2+c),c=-7/36+22/37*I,n=32 2329916104749572 a007 Real Root Of -462*x^4-768*x^3+602*x^2-115*x+365 2329916104960794 a001 29/2178309*3^(27/53) 2329916113071113 m001 (-gamma(1)+MertensB3)/(exp(1/exp(1))-sin(1)) 2329916121603210 m001 ln(GAMMA(1/12))*GaussKuzminWirsing*Pi 2329916123019571 q001 1/4292 2329916123019571 q001 25/1073 2329916123019571 r002 2th iterates of z^2 + 2329916123019571 r002 2th iterates of z^2 + 2329916123019571 r002 2th iterates of z^2 + 2329916123019571 r005 Im(z^2+c),c=-35/74+25/58*I,n=2 2329916133462155 r005 Re(z^2+c),c=19/56+19/63*I,n=18 2329916133559547 l006 ln(8583/8585) 2329916139549826 r005 Re(z^2+c),c=-3/8+34/63*I,n=11 2329916147960393 a007 Real Root Of 318*x^4+889*x^3+751*x^2+542*x-941 2329916155535081 m001 (exp(1)+MertensB3)/(-Paris+StolarskyHarborth) 2329916160571328 l006 ln(6487/8189) 2329916162833616 b008 Sqrt[2]+Pi*Sec[10] 2329916166487654 m001 ln(GAMMA(1/6))^2/GolombDickman^2*GAMMA(7/24) 2329916168668479 m005 (1/2*5^(1/2)+5)/(8/9*Pi-1/6) 2329916191796769 a006 5^(1/2)*Lucas(4)/(1/2+sqrt(5)/2)^(95/24) 2329916192191645 r009 Re(z^3+c),c=-3/98+5/14*I,n=13 2329916196365418 m001 (sin(1/5*Pi)+Otter)/(Porter+ZetaQ(2)) 2329916210458466 a007 Real Root Of 33*x^4+796*x^3+608*x^2-603*x-993 2329916216265696 m001 (Artin-Thue)/(exp(1/exp(1))-(1+3^(1/2))^(1/2)) 2329916223733043 a007 Real Root Of 81*x^4-106*x^3-499*x^2+539*x+237 2329916236991709 m001 Zeta(1,-1)^cos(1/12*Pi)*PisotVijayaraghavan 2329916249698825 m001 ln(2+3^(1/2))/(Lehmer-Trott2nd) 2329916257524460 m004 -2+2*Csch[Sqrt[5]*Pi]-5*Pi*Sec[Sqrt[5]*Pi] 2329916257806004 m004 -2+4/E^(Sqrt[5]*Pi)-5*Pi*Sec[Sqrt[5]*Pi] 2329916258087547 m004 -2-5*Pi*Sec[Sqrt[5]*Pi]+2*Sech[Sqrt[5]*Pi] 2329916263332223 m005 (1/2*Zeta(3)+6/7)/(97/18+7/18*5^(1/2)) 2329916266184226 l006 ln(877/9013) 2329916266184226 p004 log(9013/877) 2329916271500533 r005 Im(z^2+c),c=-31/74+21/53*I,n=48 2329916272952971 m005 (1/2*exp(1)+4/11)/(6*Zeta(3)+2/11) 2329916273616548 r009 Im(z^3+c),c=-5/98+48/55*I,n=20 2329916277902622 r005 Re(z^2+c),c=-23/114+19/45*I,n=16 2329916281194328 m001 1/Rabbit/ErdosBorwein*exp(GAMMA(13/24))^2 2329916287214566 b008 E^(4/3)*(3+Pi) 2329916291300630 r005 Im(z^2+c),c=-51/106+25/61*I,n=39 2329916302068611 a007 Real Root Of 213*x^4+85*x^3-718*x^2+364*x-456 2329916302573512 m008 (5/6*Pi^3+3)/(4*Pi^3-1/4) 2329916305686917 a007 Real Root Of -95*x^4+476*x^3+310*x^2+808*x-19 2329916321928509 r005 Re(z^2+c),c=3/20+20/33*I,n=32 2329916324642991 a007 Real Root Of 538*x^4+898*x^3-668*x^2+279*x-220 2329916332999641 r005 Im(z^2+c),c=-157/110+21/47*I,n=3 2329916342279043 a007 Real Root Of -132*x^4+22*x^3+492*x^2+953*x+196 2329916355479910 m001 1/Riemann1stZero/exp(CopelandErdos)^2/Ei(1) 2329916367119622 r005 Im(z^2+c),c=-31/46+2/61*I,n=43 2329916372354329 m001 (Sierpinski+ZetaP(3))/(Landau-Robbin) 2329916379571897 r005 Re(z^2+c),c=-13/82+10/19*I,n=50 2329916387880091 r009 Re(z^3+c),c=-19/78+10/63*I,n=8 2329916410837760 r005 Re(z^2+c),c=11/26+9/43*I,n=6 2329916421279110 m006 (2/5/Pi+2/5)/(4/5*Pi-1/4) 2329916425293780 r005 Re(z^2+c),c=-31/118+5/29*I,n=4 2329916428080078 a007 Real Root Of -34*x^4-822*x^3-713*x^2-437*x-398 2329916431006660 m001 (cos(1/5*Pi)+GAMMA(5/6))/(Trott2nd-Thue) 2329916433886311 m001 1/Zeta(9)/ln(Bloch)^2*log(2+sqrt(3)) 2329916438918928 m001 BesselK(1,1)/FeigenbaumMu/Sarnak 2329916439527337 a007 Real Root Of -4*x^4+308*x^3-639*x^2+161*x-684 2329916450138833 m001 exp(1/exp(1))+TreeGrowth2nd^ZetaR(2) 2329916453098268 r005 Im(z^2+c),c=-69/62+11/41*I,n=3 2329916456092570 m001 (GaussAGM+TreeGrowth2nd)/(GAMMA(3/4)-Pi^(1/2)) 2329916458923061 r005 Im(z^2+c),c=-21/22+11/50*I,n=21 2329916459718052 b008 3*(Pi+Sinh[Sqrt[5]]) 2329916478981014 a007 Real Root Of -752*x^4-32*x^3-998*x^2+940*x+275 2329916479843746 a007 Real Root Of -333*x^4-453*x^3+708*x^2-146*x-100 2329916497331801 l006 ln(480/4933) 2329916507273957 m001 (GAMMA(3/4)-ln(gamma))/(gamma(1)+GaussAGM) 2329916507682149 r002 32th iterates of z^2 + 2329916511397025 a001 3571*(1/2*5^(1/2)+1/2)^6*47^(14/15) 2329916517834630 m005 (1/3*2^(1/2)+1/6)/(9/11*5^(1/2)+10/11) 2329916521039383 b008 1/14+ArcSinh[3+Sqrt[3]] 2329916527195289 g002 -2*ln(2)+1/3*Pi*3^(1/2)-Psi(1/12)-Psi(1/10) 2329916538446685 a007 Real Root Of 443*x^4+822*x^3-393*x^2+408*x+426 2329916552409999 s002 sum(A100069[n]/(pi^n),n=1..infinity) 2329916554271586 m001 cos(1)^(FransenRobinson/KhinchinLevy) 2329916561170175 m001 Salem*ln(Champernowne)^2*GAMMA(5/12)^2 2329916564095417 a007 Real Root Of 424*x^4-119*x^3-35*x^2-553*x+131 2329916568079414 l004 sinh(285/106*Pi) 2329916569998767 a005 (1/cos(8/125*Pi))^381 2329916576632072 a003 sin(Pi*10/79)*sin(Pi*15/73) 2329916578695333 m001 (-Zeta(1,2)+ZetaQ(4))/(Shi(1)+Zeta(1/2)) 2329916579853028 m001 (Pi+sin(1/5*Pi))/(GAMMA(5/6)+Bloch) 2329916590376440 m001 (Si(Pi)+FransenRobinson)/(Totient+TwinPrimes) 2329916595299095 l006 ln(2809/3546) 2329916601769881 r009 Re(z^3+c),c=-12/31+10/19*I,n=54 2329916603079408 a007 Real Root Of -74*x^4+631*x^3-663*x^2-658*x-668 2329916605563162 a007 Real Root Of -100*x^4-12*x^3+579*x^2-3*x-355 2329916617171777 a001 3/370248451*4^(16/21) 2329916618835104 r005 Re(z^2+c),c=-17/110+31/58*I,n=50 2329916625917313 m005 (1/3*Zeta(3)-1/5)/(1/4*Catalan-1/7) 2329916627107762 a007 Real Root Of -478*x^4-565*x^3+812*x^2-879*x+484 2329916627336694 r005 Im(z^2+c),c=-10/27+18/47*I,n=30 2329916637316223 r005 Re(z^2+c),c=-21/118+25/37*I,n=13 2329916638678452 a001 199/24157817*8^(1/2) 2329916643098879 r005 Im(z^2+c),c=-57/82+1/55*I,n=5 2329916654344196 m001 Paris^2/FeigenbaumB^2*ln(GAMMA(1/4))^2 2329916655145095 a007 Real Root Of 89*x^4-36*x^3-780*x^2-431*x+152 2329916657658523 r005 Re(z^2+c),c=-17/78+22/57*I,n=29 2329916658958657 m005 (1/2*exp(1)+1/2)/(Zeta(3)-2) 2329916667449387 a001 9349*(1/2*5^(1/2)+1/2)^4*47^(14/15) 2329916680126452 m001 (BesselK(1,1)-sin(1))/(Stephens+ZetaP(2)) 2329916682565195 a007 Real Root Of 327*x^4+428*x^3-320*x^2+736*x-771 2329916690217120 a001 24476*(1/2*5^(1/2)+1/2)^2*47^(14/15) 2329916694106313 a001 (1/2*5^(1/2)+1/2)^23*47^(14/15) 2329916695591852 a001 39603*(1/2*5^(1/2)+1/2)*47^(14/15) 2329916703568311 m001 (arctan(1/2)-arctan(1/3))/(FeigenbaumD+Magata) 2329916704288352 a001 15127*(1/2*5^(1/2)+1/2)^3*47^(14/15) 2329916705951605 h001 (1/10*exp(1)+8/9)/(5/8*exp(2)+4/11) 2329916711587557 a001 305/161*199^(10/11) 2329916715468225 r005 Re(z^2+c),c=-17/60+6/61*I,n=5 2329916724579072 r005 Im(z^2+c),c=-19/46+15/38*I,n=42 2329916728995199 m001 MadelungNaCl/exp(Lehmer)/PrimesInBinary 2329916731064965 a007 Real Root Of 510*x^4+816*x^3-906*x^2-412*x-750 2329916737431818 r005 Re(z^2+c),c=-7/40+28/57*I,n=55 2329916738281250 r005 Im(z^2+c),c=25/64+2/25*I,n=3 2329916746783933 a007 Real Root Of 337*x^4+764*x^3-316*x^2-829*x-484 2329916748475256 m005 (1/2*2^(1/2)-5/7)/(1/7*3^(1/2)-5/9) 2329916750699175 p001 sum((-1)^n/(470*n+429)/(1024^n),n=0..infinity) 2329916750918466 m005 (1/2*Pi+7/11)/(-13/28+1/4*5^(1/2)) 2329916753720609 r005 Im(z^2+c),c=-9/31+9/25*I,n=18 2329916754419742 a007 Real Root Of 406*x^4-794*x^3+548*x^2-579*x+114 2329916757704009 m001 (BesselI(0,2)+GAMMA(23/24))/(gamma+sin(1)) 2329916763895050 a001 5778*(1/2*5^(1/2)+1/2)^5*47^(14/15) 2329916767767340 a007 Real Root Of 24*x^4-127*x^3-144*x^2+366*x+828 2329916780192206 m001 BesselI(0,2)/(Chi(1)^Champernowne) 2329916781947696 b008 14+2^E+E 2329916782561558 r009 Re(z^3+c),c=-43/118+9/19*I,n=38 2329916782679363 l004 cosh(285/106*Pi) 2329916789390806 a001 8/969323029*7^(8/15) 2329916808198469 b008 E-26*Coth[4] 2329916810134601 m001 ln(Niven)^2/Magata^2*GAMMA(7/24)^2 2329916818945612 r009 Re(z^3+c),c=-9/94+49/61*I,n=48 2329916819364682 m001 (KhinchinLevy+Landau)/(2^(1/3)-polylog(4,1/2)) 2329916831788006 m005 (1/2*Zeta(3)-2/5)/(6*2^(1/2)+1/7) 2329916839021528 r005 Im(z^2+c),c=-123/110+13/62*I,n=14 2329916857396390 l006 ln(563/5786) 2329916859130032 m003 15/8+(9*Sqrt[5])/64-Sinh[1/2+Sqrt[5]/2] 2329916866321744 r002 50th iterates of z^2 + 2329916884533972 m001 exp(-1/2*Pi)*(StolarskyHarborth-Zeta(3)) 2329916893096593 a007 Real Root Of 242*x^4+371*x^3-971*x^2-961*x+593 2329916907253808 r005 Im(z^2+c),c=11/98+31/50*I,n=38 2329916907333103 p004 log(35569/3461) 2329916908399051 r009 Re(z^3+c),c=-4/21+45/52*I,n=26 2329916920880728 m001 HardyLittlewoodC4^GAMMA(7/12)*Riemann1stZero 2329916925710344 m001 (BesselJ(0,1)-GAMMA(5/6))/(Artin+KhinchinLevy) 2329916928188075 a005 (1/cos(4/97*Pi))^1195 2329916928357537 r005 Im(z^2+c),c=-47/114+15/38*I,n=37 2329916931940030 p001 sum(1/(138*n+43)/(128^n),n=0..infinity) 2329916944411127 m001 (Magata+MinimumGamma)/(Ei(1)+DuboisRaymond) 2329916951788991 m001 Zeta(5)*ln(Pi)*ReciprocalLucas 2329916962231121 k008 concat of cont frac of 2329916968424116 l006 ln(7558/9541) 2329916978930874 a007 Real Root Of 376*x^4+564*x^3-229*x^2+978*x-425 2329916978951748 r005 Re(z^2+c),c=-17/110+31/58*I,n=48 2329916979213453 r005 Im(z^2+c),c=-7/20+13/35*I,n=9 2329916992177569 a007 Real Root Of -482*x^4-627*x^3+850*x^2-756*x-102 2329916996673550 m001 KomornikLoreti*Riemann1stZero-ReciprocalLucas 2329917009250135 r005 Re(z^2+c),c=8/21+16/55*I,n=14 2329917009356826 m001 (FeigenbaumAlpha+Riemann2ndZero)/(1-gamma(2)) 2329917019801253 a007 Real Root Of 454*x^4+826*x^3-272*x^2+676*x+120 2329917025544831 m001 1/GAMMA(11/24)*Riemann3rdZero*exp(sin(Pi/5)) 2329917038037828 a007 Real Root Of 176*x^4+595*x^3+163*x^2-331*x+683 2329917052453029 r005 Im(z^2+c),c=-13/42+23/63*I,n=46 2329917054019965 m002 -Pi-(5*Log[Pi])/Pi^3+Tanh[Pi] 2329917058421315 r005 Re(z^2+c),c=-35/122+1/44*I,n=9 2329917060258487 a001 47/233*10946^(24/47) 2329917061336732 m001 1/arctan(1/2)*exp(Salem)*gamma^2 2329917062195480 m008 (2/3*Pi^6+1/6)/(1/4*Pi^3-5) 2329917090198282 a007 Real Root Of -524*x^4-813*x^3+386*x^2-953*x+843 2329917099680508 r005 Im(z^2+c),c=-1/3+16/43*I,n=48 2329917102880550 m001 Si(Pi)^ZetaP(2)/LambertW(1) 2329917106408357 m001 (Backhouse-Otter)/(GAMMA(5/6)-Pi^(1/2)) 2329917111892102 m002 E^Pi*Coth[Pi]+(5*Sech[Pi])/6 2329917117775853 a007 Real Root Of 373*x^4+343*x^3-720*x^2+861*x-739 2329917118491901 s002 sum(A192076[n]/(n^3*2^n-1),n=1..infinity) 2329917124936557 l006 ln(646/6639) 2329917126231158 a007 Real Root Of 380*x^4+442*x^3-831*x^2+793*x+751 2329917140579331 s002 sum(A248380[n]/(n*10^n-1),n=1..infinity) 2329917143405092 m001 (2^(1/3)-cos(1))/(cos(1/5*Pi)+BesselI(0,2)) 2329917146646099 r005 Im(z^2+c),c=-43/94+2/51*I,n=28 2329917155497878 a005 (1/cos(14/209*Pi))^554 2329917169123564 m001 (ln(5)*HardyLittlewoodC5-MertensB2)/ln(5) 2329917170110674 r009 Re(z^3+c),c=-47/114+25/41*I,n=7 2329917172445438 a001 2207*(1/2*5^(1/2)+1/2)^7*47^(14/15) 2329917173672568 m005 (1/2*Zeta(3)-9/10)/(2*Pi-5) 2329917177018010 l006 ln(4287/4297) 2329917179541420 m001 (cos(Pi/12)-GAMMA(7/24))^GAMMA(5/6) 2329917179762094 m009 (1/5*Psi(1,3/4)-4)/(5*Psi(1,2/3)-1/3) 2329917189124927 l006 ln(4749/5995) 2329917190820370 a007 Real Root Of 325*x^4+362*x^3-786*x^2+303*x-26 2329917209338993 r005 Re(z^2+c),c=-23/19+3/20*I,n=12 2329917210121466 m001 (KhinchinHarmonic-PlouffeB*Totient)/PlouffeB 2329917211255257 m006 (1/4*Pi^2+3)/(4/5*Pi-1/6) 2329917211255257 m008 (1/4*Pi^2+3)/(4/5*Pi-1/6) 2329917221571572 r005 Re(z^2+c),c=-7/25+1/8*I,n=12 2329917224583046 r002 4th iterates of z^2 + 2329917229114674 a007 Real Root Of -365*x^4-745*x^3-59*x^2-596*x+265 2329917236436614 r009 Re(z^3+c),c=-29/78+26/53*I,n=49 2329917236997804 m005 (1/2*Catalan+2/5)/(5/8*3^(1/2)-5/7) 2329917245496280 m001 (ln(2)/ln(10)+5^(1/2))/(ln(3)+gamma(2)) 2329917256223268 s002 sum(A090044[n]/(n*10^n-1),n=1..infinity) 2329917256227014 s002 sum(A036238[n]/(n*10^n-1),n=1..infinity) 2329917279678529 a001 47/21*317811^(11/30) 2329917285977135 r005 Im(z^2+c),c=-5/6+41/252*I,n=39 2329917288589767 a007 Real Root Of -349*x^4-685*x^3+271*x^2-117*x-123 2329917292143859 m001 (cos(1/12*Pi)+FransenRobinson)/(exp(1)-ln(3)) 2329917295160576 r005 Re(z^2+c),c=-53/66+10/61*I,n=22 2329917295937386 s002 sum(A055020[n]/(n*10^n-1),n=1..infinity) 2329917303517825 v002 sum(1/(2^n*(7/2*n^2+57/2*n-4)),n=1..infinity) 2329917309197234 r005 Re(z^2+c),c=29/86+12/55*I,n=50 2329917331555320 l006 ln(729/7492) 2329917332040805 r005 Im(z^2+c),c=-59/66+13/61*I,n=60 2329917333799853 s002 sum(A260958[n]/(64^n-1),n=1..infinity) 2329917350823564 m001 (2^(1/3)-sin(1))/(KomornikLoreti+ZetaQ(3)) 2329917352647400 m001 ReciprocalFibonacci/(HardyLittlewoodC5-Si(Pi)) 2329917367973377 m005 (1/3*Zeta(3)+1/8)/(7/9*3^(1/2)+10/11) 2329917373927596 m001 TwinPrimes^2/ln(ErdosBorwein)^2*Zeta(3) 2329917374647972 h001 (7/11*exp(2)+5/12)/(6/11*exp(1)+5/7) 2329917379060636 m001 (gamma(2)-BesselI(0,2))/(Champernowne+Thue) 2329917384979639 r005 Re(z^2+c),c=-8/29+10/59*I,n=7 2329917408471952 r005 Re(z^2+c),c=-5/23+19/23*I,n=29 2329917412625972 a007 Real Root Of 213*x^4+774*x^3+683*x^2+6*x-181 2329917420948645 r005 Im(z^2+c),c=-71/58+5/33*I,n=33 2329917422395068 m005 (1/2*gamma-11/12)/(7/12*5^(1/2)-4) 2329917438498031 l006 ln(6689/8444) 2329917439445193 a001 281*1346269^(10/21) 2329917464110203 m005 (29/36+1/4*5^(1/2))/(5/9*2^(1/2)-1/5) 2329917471187889 m005 (1/2*5^(1/2)+1/6)/(-31/40+1/10*5^(1/2)) 2329917492358906 m005 (1/2*3^(1/2)-7/11)/(1/11*2^(1/2)+6/7) 2329917493985178 a007 Real Root Of 6*x^4-427*x^3+888*x^2-105*x+648 2329917495934257 l006 ln(812/8345) 2329917502255401 m001 (Psi(1,1/3)+1)/(-GAMMA(19/24)+ArtinRank2) 2329917507507426 a001 2/3*47^(13/40) 2329917508547352 a007 Real Root Of 597*x^4+889*x^3-854*x^2+436*x-697 2329917509357943 m001 (-GAMMA(19/24)+TwinPrimes)/(exp(Pi)-ln(3)) 2329917521669452 m001 (PlouffeB+ZetaQ(2))/(LambertW(1)+Niven) 2329917528034208 r005 Re(z^2+c),c=-5/66+21/31*I,n=15 2329917540383961 m001 Kolakoski+KomornikLoreti*Thue 2329917541688635 h001 (5/9*exp(1)+1/9)/(6/7*exp(2)+5/8) 2329917554110221 m005 (1/2*Pi+2/7)/(10/11*3^(1/2)-7/9) 2329917558741295 m001 (gamma(2)+HardyLittlewoodC5)^BesselI(1,2) 2329917560708745 r005 Re(z^2+c),c=-5/34+17/31*I,n=58 2329917561622342 m001 (-exp(1/Pi)+Backhouse)/(Catalan-LambertW(1)) 2329917566688710 a001 55/24476*521^(23/31) 2329917571791931 m005 (11/28+1/4*5^(1/2))/(3/8*gamma-5/8) 2329917573455490 a007 Real Root Of 36*x^4+826*x^3-330*x^2-722*x+800 2329917578126557 r005 Im(z^2+c),c=-6/25+11/32*I,n=22 2329917588236628 a001 199/4181*4181^(4/21) 2329917590112992 r008 a(0)=0,K{-n^6,76-84*n^3-67*n^2+32*n} 2329917590272125 r005 Im(z^2+c),c=13/60+4/29*I,n=21 2329917594606833 r005 Re(z^2+c),c=-11/56+19/43*I,n=47 2329917597333869 r009 Im(z^3+c),c=-21/118+23/26*I,n=34 2329917606199991 r005 Im(z^2+c),c=-1/18+11/40*I,n=4 2329917608366920 a007 Real Root Of 287*x^4+444*x^3-423*x^2+126*x-252 2329917609248627 a001 199/28657*102334155^(4/21) 2329917609803974 a001 199/196418*2504730781961^(4/21) 2329917616904334 r005 Im(z^2+c),c=-23/52+25/62*I,n=46 2329917618037715 m001 (Artin-ErdosBorwein)/(gamma(1)+BesselK(1,1)) 2329917620826818 r005 Im(z^2+c),c=-13/42+23/63*I,n=48 2329917629825013 l006 ln(895/9198) 2329917633004787 r005 Re(z^2+c),c=-83/70+11/60*I,n=24 2329917636309124 r005 Im(z^2+c),c=-8/23+5/13*I,n=15 2329917639577835 h005 exp(cos(Pi*19/58)+cos(Pi*11/28)) 2329917648121942 m001 ln(GAMMA(7/12))*BesselJ(0,1)^2*Zeta(1,2) 2329917667142776 a007 Real Root Of -983*x^4+425*x^3+356*x^2+988*x-252 2329917673343237 m001 Trott/Sierpinski/exp(sin(Pi/5)) 2329917676474408 m001 (Kac-Otter)/(Zeta(1,-1)-GaussAGM) 2329917679322014 m004 3+25*Pi+4*Cosh[Sqrt[5]*Pi]*Coth[Sqrt[5]*Pi] 2329917687870546 p004 log(19249/1873) 2329917690005590 p001 sum((-1)^n/(326*n+41)/(2^n),n=0..infinity) 2329917693571677 r005 Re(z^2+c),c=-9/74+32/53*I,n=60 2329917698546195 m001 GAMMA(11/12)^exp(1/Pi)-Magata 2329917701422776 a008 Real Root of x^5-x^4-13*x^3-x^2+39*x+30 2329917708493187 m002 E^Pi/Pi^4+(Pi^5*Sech[Pi])/Log[Pi] 2329917713075123 m008 (2/3*Pi-3/5)/(2/3*Pi^4-4/5) 2329917714466013 a001 13/15127*29^(49/50) 2329917718190764 a007 Real Root Of 131*x^4-225*x^3-553*x^2-957*x-22 2329917724232319 m005 (1/2*gamma+6/11)/(11/12*Pi+7/10) 2329917740989922 l006 ln(978/10051) 2329917742635533 m005 (1/2*Pi+3/11)/(1/12*2^(1/2)-10/11) 2329917752380308 r009 Re(z^3+c),c=-11/34+14/37*I,n=20 2329917759302316 p001 sum((-1)^n/(351*n+328)/n/(6^n),n=1..infinity) 2329917770155570 r005 Im(z^2+c),c=-29/32+11/53*I,n=52 2329917778293484 r005 Re(z^2+c),c=-3/23+19/33*I,n=56 2329917790425288 m005 (1/3*gamma-1/2)/(7/8*5^(1/2)-7/11) 2329917791068263 r005 Im(z^2+c),c=-13/42+23/63*I,n=40 2329917796226208 m006 (4*Pi-1/4)/(1/4*ln(Pi)+5) 2329917801738329 r005 Re(z^2+c),c=-3/16+19/41*I,n=32 2329917802017138 r005 Im(z^2+c),c=-17/14+9/70*I,n=58 2329917818344141 m001 Rabbit*(ArtinRank2+Sierpinski) 2329917823080813 r002 50th iterates of z^2 + 2329917826426205 r005 Re(z^2+c),c=-9/98+29/48*I,n=54 2329917828997609 r005 Im(z^2+c),c=-2/9+21/62*I,n=11 2329917831684266 a007 Real Root Of 268*x^4+397*x^3-967*x^2-685*x+777 2329917833658814 a007 Real Root Of 602*x^4+880*x^3+97*x^2-906*x-207 2329917837717377 m001 ln(2+3^(1/2))^gamma(2)+MertensB3 2329917848687945 r005 Im(z^2+c),c=-31/50+13/57*I,n=6 2329917872291614 r009 Re(z^3+c),c=-7/50+59/63*I,n=20 2329917872510868 p003 LerchPhi(1/16,2,452/215) 2329917872716141 r009 Im(z^3+c),c=-53/110+3/32*I,n=27 2329917884418839 r005 Im(z^2+c),c=-13/42+23/63*I,n=51 2329917898330635 a001 55/3*3^(12/55) 2329917909377054 m001 (Artin+FellerTornier)/(gamma(3)-ln(2)/ln(10)) 2329917912256699 m005 (1/2*Catalan+2/3)/(6/11*exp(1)-1) 2329917914366159 m005 (1/3*2^(1/2)+1/12)/(7/10*Pi+2/11) 2329917918731921 m009 (5/2*Pi^2-2/5)/(48*Catalan+6*Pi^2+1) 2329917928164265 a007 Real Root Of 173*x^4+397*x^3+24*x^2-136*x-524 2329917937010225 m001 (Ei(1,1)+Khinchin)/(Kolakoski+ZetaP(2)) 2329917939316984 m001 1/exp(Catalan)^2/MinimumGamma^2/LambertW(1)^2 2329917948548978 m001 Grothendieck*(FeigenbaumB+Weierstrass) 2329917968913526 r005 Im(z^2+c),c=9/64+1/63*I,n=4 2329917991314635 p003 LerchPhi(1/6,3,97/128) 2329918011374321 m001 FeigenbaumC^Thue*MinimumGamma^Thue 2329918011545010 m003 3/2+Sqrt[5]/8+(4*Csch[1/2+Sqrt[5]/2])/3 2329918013605773 m005 (1/2*Zeta(3)-1/2)/(2/5*Catalan-4/5) 2329918019879608 m001 exp(Pi)+ErdosBorwein*Paris 2329918024051030 m001 Zeta(9)*GAMMA(1/3)^2*exp(sin(Pi/5))^2 2329918026066721 m005 (1/2*Catalan-4/5)/(9/10*3^(1/2)-1/11) 2329918032786885 q001 1137/488 2329918035242109 m007 (-2/5*gamma-4/5*ln(2)+2/3)/(-1/6*gamma-5) 2329918043334198 a007 Real Root Of -315*x^4-455*x^3+264*x^2-672*x+529 2329918048947939 l006 ln(1940/2449) 2329918057155447 a005 (1/cos(11/142*Pi))^1414 2329918058476237 m001 (Bloch+DuboisRaymond)/(FeigenbaumMu-Rabbit) 2329918065572687 m004 5+5*Pi+Cos[Sqrt[5]*Pi]*Cosh[Sqrt[5]*Pi]^2 2329918070428744 m005 (1/2*3^(1/2)-1/5)/(1/10*2^(1/2)-3) 2329918074296833 m002 20*Cosh[Pi]+ProductLog[Pi]^2 2329918080212745 m001 (Ei(1)+StolarskyHarborth)/(Trott-Thue) 2329918081572337 r005 Im(z^2+c),c=-13/42+23/63*I,n=53 2329918084705116 m001 (-cos(1/5*Pi)+PlouffeB)/(BesselK(0,1)-Si(Pi)) 2329918091247256 a007 Real Root Of -99*x^4+175*x^3+895*x^2-13*x+242 2329918092556463 m001 FeigenbaumDelta^HardyLittlewoodC3*ZetaQ(3) 2329918097952108 r005 Im(z^2+c),c=-13/42+23/63*I,n=56 2329918100781998 a007 Real Root Of 177*x^4-544*x^3+615*x^2-61*x-55 2329918105877921 a001 1/281*370248451^(2/21) 2329918114378825 m001 (sin(1)+Niven)/(OneNinth+ZetaQ(4)) 2329918116222158 m006 (3/5*Pi^2+1/5)/(1/2*exp(2*Pi)-5) 2329918117313337 a007 Real Root Of -223*x^4-135*x^3+509*x^2-503*x+929 2329918122675494 r005 Re(z^2+c),c=-45/82+13/28*I,n=36 2329918132002179 a001 9349/21*610^(8/31) 2329918132167516 m001 (Shi(1)+sin(1))/(-ln(5)+Kolakoski) 2329918133659416 m001 (5^(1/2))^HardyLittlewoodC3+LaplaceLimit 2329918137591900 m005 (-7/30+1/10*5^(1/2))/(4/5*exp(1)+2) 2329918140976799 r005 Im(z^2+c),c=-13/42+23/63*I,n=54 2329918147144487 r005 Im(z^2+c),c=-13/42+23/63*I,n=61 2329918147721434 m001 Pi^(1/3*3^(1/2)/GAMMA(2/3)*2^(1/2)*GAMMA(3/4)) 2329918147721434 m001 Pi^(GAMMA(1/3)/GAMMA(1/4)) 2329918148916603 r005 Im(z^2+c),c=-13/42+23/63*I,n=59 2329918152420432 r005 Im(z^2+c),c=-13/42+23/63*I,n=58 2329918154581054 a001 89/12752043*4^(20/23) 2329918156258466 r005 Im(z^2+c),c=-13/42+23/63*I,n=64 2329918160374974 r005 Im(z^2+c),c=-13/42+23/63*I,n=63 2329918162065580 a007 Real Root Of -356*x^4-899*x^3+69*x^2+910*x+866 2329918162915082 r005 Im(z^2+c),c=-47/82+23/58*I,n=41 2329918165428918 r005 Im(z^2+c),c=-13/42+23/63*I,n=62 2329918170738430 a001 1/47*24476^(9/38) 2329918176255975 r005 Im(z^2+c),c=-13/42+23/63*I,n=60 2329918178842010 g007 Psi(2,4/9)+Psi(2,6/7)-Psi(2,5/8)-Psi(2,1/5) 2329918184484097 r005 Im(z^2+c),c=-51/56+13/64*I,n=38 2329918193108498 m001 BesselI(1,1)-exp(Pi)-Sarnak 2329918194665561 m001 (BesselJ(0,1)-cos(1/5*Pi))/(CareFree+Salem) 2329918195809361 r005 Im(z^2+c),c=-13/42+23/63*I,n=57 2329918202283168 r009 Im(z^3+c),c=-33/86+5/34*I,n=14 2329918208004114 m005 (1/2*5^(1/2)-1/12)/(5/8*gamma+1/12) 2329918208871401 h001 (-9*exp(2)+4)/(-9*exp(8)+3) 2329918223358407 a007 Real Root Of 407*x^4+739*x^3-480*x^2+319*x+702 2329918223412837 r005 Im(z^2+c),c=-13/42+23/63*I,n=55 2329918231740352 r005 Im(z^2+c),c=-13/42+23/63*I,n=49 2329918255347611 m006 (1/2*Pi^2+4)/(1/5*Pi-2/3) 2329918255347611 m008 (1/2*Pi^2+4)/(1/5*Pi-2/3) 2329918263034014 r005 Im(z^2+c),c=-127/94+1/44*I,n=28 2329918274961304 m001 (MadelungNaCl+ZetaP(3))/(gamma(1)+gamma(2)) 2329918276520700 a003 cos(Pi*28/81)/cos(Pi*17/39) 2329918277489750 r009 Re(z^3+c),c=-31/98+13/36*I,n=20 2329918283785757 r009 Re(z^3+c),c=-25/42+5/17*I,n=47 2329918298494804 a005 (1/cos(3/92*Pi))^1037 2329918301928453 s002 sum(A257028[n]/(n!^2),n=1..infinity) 2329918315744756 m005 (1/2*gamma-6)/(5/6*Pi-1/6) 2329918327995723 a007 Real Root Of -598*x^4-964*x^3+643*x^2-740*x+215 2329918331216946 r005 Im(z^2+c),c=-11/16+5/23*I,n=24 2329918332063302 p001 sum(1/(603*n+431)/(100^n),n=0..infinity) 2329918337606155 a007 Real Root Of -421*x^4-767*x^3-6*x^2-803*x+867 2329918357832038 r008 a(0)=2,K{-n^6,-5+6*n^3-n^2-n} 2329918359257805 r009 Re(z^3+c),c=-7/54+49/61*I,n=38 2329918359716222 r005 Im(z^2+c),c=-13/42+23/63*I,n=52 2329918364868354 g006 Psi(1,2/11)+Psi(1,7/8)-Psi(1,7/12)-Psi(1,3/7) 2329918368630721 r005 Im(z^2+c),c=-13/42+23/63*I,n=50 2329918382949865 r009 Re(z^3+c),c=-29/94+13/38*I,n=13 2329918401149661 r005 Im(z^2+c),c=-13/42+44/51*I,n=3 2329918404661183 m001 Rabbit*KhintchineLevy/exp(GAMMA(17/24)) 2329918404801129 a007 Real Root Of -3*x^4-699*x^3-9*x^2-765*x+723 2329918426095189 m001 (Otter-Sierpinski)/(sin(1/12*Pi)+MertensB3) 2329918428049158 p004 log(13597/10771) 2329918429469041 a007 Real Root Of -930*x^4-378*x^3-581*x^2+779*x+211 2329918438493937 p001 sum((-1)^n/(493*n+429)/(1000^n),n=0..infinity) 2329918444487318 a007 Real Root Of -343*x^4-586*x^3+294*x^2-364*x+252 2329918444759076 g004 Im(Psi(-95/24+I*113/24)) 2329918452325427 r005 Im(z^2+c),c=-25/102+17/49*I,n=7 2329918453005860 r005 Re(z^2+c),c=-43/98+11/27*I,n=5 2329918457742349 a007 Real Root Of -391*x^4-588*x^3+535*x^2-676*x-394 2329918458547112 r002 15th iterates of z^2 + 2329918462556546 a007 Real Root Of 157*x^4+103*x^3-955*x^2-671*x+297 2329918464908596 r005 Re(z^2+c),c=-4/21+26/57*I,n=31 2329918477287732 m001 (GAMMA(13/24)+MertensB1)/(3^(1/2)-Catalan) 2329918483162787 m001 BesselJ(1,1)+Grothendieck+OneNinth 2329918489453876 g005 GAMMA(4/9)*GAMMA(3/4)/GAMMA(5/9)/GAMMA(1/7) 2329918494815396 a007 Real Root Of -32*x^4-712*x^3+821*x^2+900*x-69 2329918501057973 m001 1/exp(KhintchineLevy)/Si(Pi)*Riemann1stZero 2329918510763080 m009 (5/6*Psi(1,2/3)-3/5)/(3/5*Psi(1,2/3)-1) 2329918511064390 m009 (3/4*Psi(1,1/3)-4/5)/(3/4*Psi(1,3/4)+1) 2329918532861818 a007 Real Root Of 407*x^4+891*x^3-458*x^2-930*x-405 2329918533374600 m001 (Rabbit-TwinPrimes)/(BesselK(1,1)+GAMMA(7/12)) 2329918534327085 r009 Re(z^3+c),c=-1/30+36/59*I,n=11 2329918557625316 r005 Im(z^2+c),c=-25/102+19/55*I,n=21 2329918567453662 m001 exp(sqrt(2))^TwinPrimes*Catalan 2329918567531612 m001 (cos(1/5*Pi)+ln(2))/(Cahen+HeathBrownMoroz) 2329918569641607 r009 Re(z^3+c),c=-23/60+21/43*I,n=17 2329918571053322 q001 887/3807 2329918576968739 a001 1/233*233^(9/29) 2329918578647262 a007 Real Root Of -115*x^4+244*x^3+625*x^2-916*x+948 2329918580979016 a003 sin(Pi*13/118)/cos(Pi*39/86) 2329918582944671 m001 1/Champernowne^2*ErdosBorwein/ln(Trott) 2329918584646650 m001 (ln(2)+GAMMA(23/24))/(DuboisRaymond+Landau) 2329918599757426 r005 Im(z^2+c),c=31/122+3/29*I,n=4 2329918601408470 a007 Real Root Of 221*x^4+594*x^3+307*x^2+122*x-382 2329918603786712 r005 Im(z^2+c),c=-9/58+21/64*I,n=5 2329918606827076 h001 (-exp(5)+8)/(-4*exp(5)-9) 2329918614602299 r009 Re(z^3+c),c=-19/102+7/8*I,n=43 2329918623837156 m001 (ZetaQ(2)+ZetaQ(3))/Khinchin 2329918631932081 r005 Im(z^2+c),c=-13/42+23/63*I,n=45 2329918634101654 r005 Im(z^2+c),c=-25/114+20/59*I,n=10 2329918641503328 l006 ln(6891/8699) 2329918641537860 m001 Zeta(1/2)*ln(Robbin)/sin(Pi/12) 2329918643079860 m005 (-19/30+1/6*5^(1/2))/(1/4*Pi+1/3) 2329918643877463 r005 Re(z^2+c),c=25/86+11/62*I,n=25 2329918662732568 m001 (Niven+Porter)/(BesselJ(0,1)+Gompertz) 2329918663796551 m001 Zeta(1/2)^2/Riemann1stZero/ln(sqrt(5))^2 2329918679846809 m001 Chi(1)-Pi^(1/2)*KomornikLoreti 2329918688964627 m001 (-LaplaceLimit+Sarnak)/(2^(1/3)+GAMMA(2/3)) 2329918693033908 m001 (-GAMMA(13/24)+Otter)/(GAMMA(2/3)-Psi(2,1/3)) 2329918693812442 a001 343/2+55/2*5^(1/2) 2329918731690477 m001 (Catalan-Zeta(3))/(BesselI(1,1)+LaplaceLimit) 2329918732661599 m005 (1/3*3^(1/2)+1/12)/(6/7*Pi+1/7) 2329918734516832 r005 Im(z^2+c),c=-11/122+16/55*I,n=7 2329918742730528 r009 Re(z^3+c),c=-29/94+13/38*I,n=16 2329918747959572 a007 Real Root Of -390*x^4-911*x^3-74*x^2-131*x+67 2329918748425649 m001 (FeigenbaumKappa+MertensB2)/GAMMA(23/24) 2329918764840759 r005 Re(z^2+c),c=-3/19+19/36*I,n=47 2329918773356317 p003 LerchPhi(1/5,6,305/239) 2329918776540238 r005 Im(z^2+c),c=-25/22+2/69*I,n=37 2329918779363289 a001 4/3*(1/2*5^(1/2)+1/2)^29*3^(8/21) 2329918780618089 a005 (1/sin(61/153*Pi))^1223 2329918793816760 r005 Im(z^2+c),c=-15/52+2/51*I,n=4 2329918794817839 m001 (Sierpinski+ZetaP(2))/Conway 2329918795451974 r009 Im(z^3+c),c=-4/27+43/50*I,n=42 2329918813432974 a007 Real Root Of 209*x^4+263*x^3-946*x^2-736*x+588 2329918816805391 m001 (Magata+Mills)/(Zeta(5)-GaussAGM) 2329918819185401 r005 Im(z^2+c),c=-1/3+16/43*I,n=50 2329918822704233 r005 Re(z^2+c),c=17/52+7/34*I,n=64 2329918824200237 a007 Real Root Of -466*x^4-868*x^3+702*x^2+542*x+206 2329918831712193 m001 (-Pi^(1/2)+Lehmer)/(BesselJ(0,1)-sin(1/12*Pi)) 2329918837526503 m001 (Khinchin+Salem)/(BesselK(1,1)+GAMMA(11/12)) 2329918850268692 s002 sum(A279034[n]/(n*exp(pi*n)-1),n=1..infinity) 2329918872112482 m001 (PlouffeB+ZetaQ(2))/(3^(1/2)+cos(1)) 2329918872275179 m001 1/TreeGrowth2nd*exp(Paris)^2*sin(1) 2329918873690241 l006 ln(4951/6250) 2329918878742781 m001 ln(TwinPrimes)*Trott/GAMMA(11/24) 2329918888583920 m001 1/Magata^2*FeigenbaumAlpha^2/ln(Paris) 2329918895168695 a007 Real Root Of 739*x^4+502*x^3+580*x^2-724*x-196 2329918897997396 a007 Real Root Of -307*x^4-857*x^3-627*x^2-604*x+204 2329918898771105 m005 (1/2*5^(1/2)-2)/(4/9*2^(1/2)-1/4) 2329918900448040 m001 ln(GAMMA(19/24))^2/Conway^2*cosh(1) 2329918909478221 r005 Re(z^2+c),c=-17/86+17/38*I,n=14 2329918911588095 r005 Re(z^2+c),c=9/56+17/48*I,n=21 2329918911678097 a001 3/34*75025^(39/43) 2329918913163330 b008 Sqrt[5*Sec[2/5]] 2329918937240071 a007 Real Root Of 649*x^4-368*x^3-326*x^2-114*x+47 2329918939695081 l006 ln(83/853) 2329918939695081 p004 log(853/83) 2329918942214867 v002 sum(1/(3^n*(2*n^2+34*n-20)),n=1..infinity) 2329918949696812 r005 Im(z^2+c),c=-145/118+23/64*I,n=4 2329918960270258 r009 Re(z^3+c),c=-25/66+31/54*I,n=36 2329918971135455 m001 (GAMMA(2/3)-ZetaR(2))/polylog(4,1/2) 2329918986318648 r005 Re(z^2+c),c=5/19+8/47*I,n=9 2329919000296231 r005 Re(z^2+c),c=-7/54+13/22*I,n=46 2329919007589942 m001 (GAMMA(3/4)+ZetaP(3))/(2^(1/2)-GAMMA(2/3)) 2329919007649308 r005 Re(z^2+c),c=15/94+19/47*I,n=64 2329919010164849 h001 (1/8*exp(2)+4/7)/(3/4*exp(2)+7/8) 2329919026838884 g002 Psi(4/11)-Psi(8/9)-Psi(3/8)-Psi(4/7) 2329919036386406 m001 1/ln(Tribonacci)^2*FeigenbaumAlpha^2*sinh(1)^2 2329919050327589 m001 (Catalan*BesselK(1,1)-Khinchin)/Catalan 2329919052185061 m005 (1/2*exp(1)+1/11)/(1/10*5^(1/2)+6) 2329919059058005 a001 521/514229*4807526976^(19/22) 2329919059213651 a007 Real Root Of -496*x^4-965*x^3+983*x^2+970*x-665 2329919060272959 m001 GAMMA(2/3)/(cos(1)^QuadraticClass) 2329919068823545 m001 gamma(1)*Weierstrass/ZetaR(2) 2329919071032651 p003 LerchPhi(1/2,2,530/219) 2329919074644773 l006 ln(7962/10051) 2329919074790200 r002 41th iterates of z^2 + 2329919075535948 a007 Real Root Of -33*x^4-746*x^3+540*x^2+165*x+6 2329919079843739 a007 Real Root Of 46*x^4-376*x^3-852*x^2+355*x-659 2329919084623344 a007 Real Root Of -793*x^4-898*x^3-848*x^2+721*x+205 2329919098846286 m001 (Psi(2,1/3)+Zeta(3))/(-sin(1/12*Pi)+Trott2nd) 2329919101296812 r009 Re(z^3+c),c=-19/86+1/42*I,n=4 2329919103263536 a007 Real Root Of 412*x^4+452*x^3-743*x^2+818*x-485 2329919114017462 m001 (FeigenbaumDelta-Lehmer)^BesselK(1,1) 2329919122118182 k008 concat of cont frac of 2329919128600413 m005 (4/3+3/2*5^(1/2))/(5/6*2^(1/2)+5/6) 2329919129338273 m005 (1/2*3^(1/2)+4)/(5/8*Pi+1/8) 2329919135472194 a007 Real Root Of -735*x^4-258*x^3-601*x^2+857*x+2 2329919143845611 m005 (3*gamma-3/5)/(1/6*2^(1/2)+1/4) 2329919159939743 p001 sum((-1)^n/(472*n+429)/(1024^n),n=0..infinity) 2329919161233149 r005 Im(z^2+c),c=-13/42+23/63*I,n=47 2329919199322158 m001 1/ln(FeigenbaumKappa)/Robbin/Zeta(1/2)^2 2329919218015518 m006 (ln(Pi)-1/6)/(2/5*Pi^2+1/4) 2329919222245544 r005 Im(z^2+c),c=-13/42+23/63*I,n=44 2329919224462639 h001 (1/2*exp(1)+1/6)/(7/8*exp(2)+1/12) 2329919226554508 r009 Im(z^3+c),c=-9/58+1/46*I,n=2 2329919229979019 h001 (4/7*exp(2)+10/11)/(3/5*exp(1)+4/7) 2329919245695552 a007 Real Root Of -596*x^4-947*x^3+888*x^2-613*x-663 2329919248244717 m005 (4*Catalan+3/4)/(1+2/5*5^(1/2)) 2329919255015018 a007 Real Root Of -512*x^4+863*x^3+507*x^2+378*x-125 2329919255306163 m001 (-Zeta(1/2)+ZetaQ(2))/(Si(Pi)-Zeta(3)) 2329919258941153 r005 Im(z^2+c),c=-25/48+18/43*I,n=61 2329919262421573 h001 (2/7*exp(2)+3/8)/(1/8*exp(1)+8/11) 2329919264279204 m001 1/ln(LambertW(1))^2/Salem^2*Zeta(5) 2329919278521486 a007 Real Root Of 312*x^4+394*x^3-457*x^2+352*x-910 2329919285349487 r005 Re(z^2+c),c=-17/14+35/236*I,n=34 2329919292438561 r005 Im(z^2+c),c=-7/106+27/55*I,n=3 2329919294060947 m001 1/(2^(1/3))^2/MinimumGamma*ln(GAMMA(11/12)) 2329919298098349 m001 Riemann3rdZero/DuboisRaymond^2*exp((2^(1/3))) 2329919310174464 r002 55th iterates of z^2 + 2329919312290672 a007 Real Root Of -471*x^4-734*x^3+649*x^2-270*x+444 2329919325393062 a007 Real Root Of 232*x^4+579*x^3-311*x^2-772*x+376 2329919330398498 m001 GAMMA(13/24)*exp(Paris)/log(1+sqrt(2))^2 2329919335695780 r005 Im(z^2+c),c=-1/3+16/43*I,n=53 2329919340845564 m001 1/ln(Cahen)^3*Riemann1stZero^2 2329919349260643 a007 Real Root Of 351*x^4+713*x^3+316*x^2+894*x-958 2329919352141180 m001 Riemann2ndZero^2/ln(Niven)^2*GAMMA(3/4)^2 2329919352521498 a007 Real Root Of 224*x^4+38*x^3-906*x^2+246*x-629 2329919357557383 a007 Real Root Of -26*x^4+242*x^3+288*x^2-899*x+169 2329919369397275 m001 1/exp(GAMMA(5/24))/RenyiParking*sqrt(2) 2329919371409382 m001 cos(1/12*Pi)*MertensB1/Trott 2329919383106003 m001 1/sin(1)^2/LambertW(1)*exp(sqrt(5)) 2329919386117764 a007 Real Root Of 174*x^4+45*x^3-763*x^2+256*x+180 2329919402490087 a007 Real Root Of 197*x^4+475*x^3+154*x^2+620*x+811 2329919405019836 a007 Real Root Of 413*x^4+740*x^3-255*x^2+439*x-404 2329919405075149 l006 ln(3011/3801) 2329919414155870 r005 Re(z^2+c),c=-1/14+29/46*I,n=43 2329919443805181 m009 (4*Psi(1,2/3)-2/3)/(1/5*Pi^2+3) 2329919444963219 m001 ln(Trott)^2*GlaisherKinkelin^2/Zeta(3)^2 2329919447274729 r005 Re(z^2+c),c=-7/8+41/120*I,n=6 2329919452088912 m001 (Shi(1)+ZetaR(2))/polylog(4,1/2) 2329919465382922 a003 cos(Pi*5/23)-sin(Pi*33/112) 2329919472775871 r009 Re(z^3+c),c=-17/62+35/51*I,n=46 2329919478167825 a007 Real Root Of 533*x^4+795*x^3-922*x^2+205*x-169 2329919481744960 r005 Im(z^2+c),c=-7/12+2/47*I,n=59 2329919486490595 a001 514229/521*3^(43/55) 2329919499646221 m001 (Psi(2,1/3)-ln(5))/(-Riemann3rdZero+Robbin) 2329919500624841 m001 ErdosBorwein^Zeta(3)*HeathBrownMoroz 2329919503020574 m005 (1/3*exp(1)-2/7)/(5/11*2^(1/2)-10/11) 2329919503345156 r005 Re(z^2+c),c=-71/70+4/39*I,n=16 2329919509128522 m005 (1/2*Catalan-7/8)/(5/8*exp(1)+1/11) 2329919520429678 b008 EulerGamma+BesselK[0,1/5] 2329919520492732 m001 Si(Pi)*Mills^Thue 2329919524571202 m005 (1/2*5^(1/2)+1/11)/(3/7*Catalan-4/9) 2329919531821506 q001 637/2734 2329919533505491 r005 Re(z^2+c),c=-41/50+1/52*I,n=58 2329919535428065 r002 5th iterates of z^2 + 2329919537403690 a001 2207/233*121393^(19/22) 2329919542302782 m009 (20/3*Catalan+5/6*Pi^2-5)/(4*Psi(1,1/3)-1/3) 2329919548909623 a007 Real Root Of 25*x^4+559*x^3-571*x^2-570*x-286 2329919554809037 r009 Re(z^3+c),c=-13/74+17/21*I,n=3 2329919560075901 r005 Im(z^2+c),c=11/106+11/52*I,n=4 2329919565340438 r005 Re(z^2+c),c=-1/60+27/47*I,n=7 2329919604710123 a007 Real Root Of 415*x^4+630*x^3-994*x^2-208*x+650 2329919606691046 m005 (1/3*2^(1/2)-3/4)/(5/8*Zeta(3)+4/9) 2329919617379093 m009 (2*Psi(1,3/4)+3/5)/(8/5*Catalan+1/5*Pi^2-1) 2329919621269957 a003 sin(Pi*8/113)/cos(Pi*12/115) 2329919627882250 a007 Real Root Of -434*x^4-756*x^3+804*x^2+797*x+720 2329919637829690 m001 (BesselJ(0,1)+Mills*RenyiParking)/RenyiParking 2329919642894707 m008 (3/5*Pi^5+1/4)/(5/6*Pi^2-1/3) 2329919653199669 g006 Psi(1,3/8)-Psi(1,5/11)-Psi(1,3/10)-Psi(1,2/7) 2329919665516207 r009 Re(z^3+c),c=-35/94+30/61*I,n=52 2329919665779159 m001 (Ei(1)+GaussAGM)/(MadelungNaCl-Stephens) 2329919666111900 a007 Real Root Of -423*x^4-549*x^3+447*x^2-970*x+835 2329919668641957 m001 ln(BesselK(1,1))*TwinPrimes^2/GAMMA(7/24)^2 2329919678898909 r009 Re(z^3+c),c=-29/98+14/45*I,n=7 2329919686071466 a007 Real Root Of 543*x^4+881*x^3-747*x^2-74*x-976 2329919688043555 r002 55th iterates of z^2 + 2329919688209704 m001 Trott^HardyLittlewoodC5*Trott^BesselK(0,1) 2329919689257942 r005 Im(z^2+c),c=-12/29+13/33*I,n=26 2329919691601217 m001 Cahen-exp(Pi)*MertensB2 2329919697969086 m005 (1/15+1/6*5^(1/2))/(7/12*exp(1)+3/10) 2329919705344617 a007 Real Root Of 530*x^4+777*x^3-560*x^2+873*x-717 2329919716332499 a008 Real Root of x^4-29*x^2-84*x-18 2329919716336066 a007 Real Root Of -79*x^4-129*x^3-657*x^2+929*x+22 2329919720139573 r005 Re(z^2+c),c=-14/27+42/59*I,n=5 2329919723682258 m001 BesselJ(0,1)-BesselK(1,1)-GAMMA(1/24) 2329919724285782 r005 Re(z^2+c),c=-7/30+16/47*I,n=23 2329919737446790 l006 ln(2715/2779) 2329919767336134 a007 Real Root Of 286*x^4+782*x^3+288*x^2-125*x-392 2329919772885260 r005 Im(z^2+c),c=-8/19+25/63*I,n=55 2329919774493173 m005 (1/3*2^(1/2)+3/4)/(5/9*5^(1/2)+4) 2329919775988240 l006 ln(7093/8954) 2329919778171656 r005 Im(z^2+c),c=7/90+8/35*I,n=4 2329919792992978 m005 (1/3*Pi-1/2)/(5/6*exp(1)+1/12) 2329919806003135 a001 9/10182505537*4807526976^(1/23) 2329919806006734 a001 18/12586269025*75025^(1/23) 2329919809637620 r002 46th iterates of z^2 + 2329919811251026 a007 Real Root Of -307*x^4-588*x^3+93*x^2-667*x-449 2329919817689569 m001 exp(Si(Pi))^2*FeigenbaumAlpha^2*Catalan 2329919828181715 m001 exp(arctan(1/2))^2*Conway/sqrt(2) 2329919828798982 h001 (3/5*exp(2)+7/8)/(2/9*exp(2)+7/11) 2329919832690335 m004 -18*Tan[Sqrt[5]*Pi]+(125*Tanh[Sqrt[5]*Pi])/Pi 2329919835139826 a007 Real Root Of -82*x^4+739*x^3-824*x^2-877*x-414 2329919838378420 p004 log(26813/2609) 2329919844024451 m004 5*Pi*Csc[Sqrt[5]*Pi]+Sin[Sqrt[5]*Pi]/15 2329919850184900 a007 Real Root Of 616*x^4+954*x^3-746*x^2+506*x-858 2329919854540467 m001 1/ln(cos(1))/Ei(1)*exp(1) 2329919859840545 m001 1/CareFree^2/GaussKuzminWirsing/ln(Niven)^2 2329919866120209 a007 Real Root Of 65*x^4+466*x^3+792*x^2-561*x-168 2329919884449649 m001 (-FellerTornier+GaussAGM)/(2^(1/3)-Zeta(1,2)) 2329919890501191 r005 Im(z^2+c),c=-1/3+16/43*I,n=55 2329919900666126 r009 Im(z^3+c),c=-25/62+7/53*I,n=23 2329919903844499 r005 Im(z^2+c),c=13/82+8/45*I,n=10 2329919907980549 r005 Im(z^2+c),c=-3/50+9/32*I,n=19 2329919908580373 m005 (1/2*gamma+1/11)/(4/11*Zeta(3)-3/5) 2329919935776500 r009 Im(z^3+c),c=-6/17+1/6*I,n=12 2329919938802320 a001 969323029/34*196418^(17/23) 2329919938825014 a001 271443/34*12586269025^(17/23) 2329919942867389 r005 Im(z^2+c),c=-1/3+16/43*I,n=58 2329919946097693 a007 Real Root Of 303*x^4+424*x^3-704*x^2+11*x+281 2329919948942654 r005 Im(z^2+c),c=-57/122+21/41*I,n=45 2329919965389914 m006 (5/6*Pi-4/5)/(1/6/Pi-5/6) 2329919972691453 a001 843*(1/2*5^(1/2)+1/2)^9*47^(14/15) 2329919976916128 m005 (1/3*Pi+1/6)/(4/11*gamma+5) 2329919980589321 r005 Im(z^2+c),c=21/122+7/44*I,n=4 2329919981660145 r005 Im(z^2+c),c=-17/94+14/43*I,n=11 2329919986154154 m005 (1/2*5^(1/2)-6/11)/(5*gamma-3/7) 2329919990346858 r005 Re(z^2+c),c=23/126+29/61*I,n=64 2329919999511145 r009 Re(z^3+c),c=-17/118+27/41*I,n=4 2329920020357627 a007 Real Root Of 554*x^4+927*x^3-814*x^2+422*x+801 2329920025208466 b008 Sqrt[3]*ArcCot[E^2] 2329920026918226 r005 Im(z^2+c),c=-11/21+19/46*I,n=58 2329920037561986 m005 (1/2*Zeta(3)-1/3)/(7/9*gamma+7/10) 2329920038309946 m008 (4*Pi^6+2/3)/(5*Pi+4/5) 2329920048958459 a007 Real Root Of -258*x^4-624*x^3-151*x^2-592*x-849 2329920049584341 l006 ln(4082/5153) 2329920053836117 h001 (-2*exp(2/3)+2)/(-exp(-2)-8) 2329920066369869 a001 987/11*76^(13/59) 2329920074368955 m001 (BesselI(0,1)-Bloch)/(Magata+ZetaQ(4)) 2329920079780572 a001 75025/2*29^(32/59) 2329920080113709 a001 4/377*14930352^(1/21) 2329920080740187 a007 Real Root Of 273*x^4+576*x^3+51*x^2+508*x+147 2329920087919888 a007 Real Root Of -315*x^4-868*x^3-363*x^2+225*x+799 2329920095186638 a007 Real Root Of 130*x^4+338*x^3+108*x^2+331*x+629 2329920097253075 m005 (1/3*gamma-1/5)/(8/11*3^(1/2)+2) 2329920102147690 r005 Im(z^2+c),c=-1/3+16/43*I,n=63 2329920108503272 r005 Im(z^2+c),c=-1/3+16/43*I,n=60 2329920112755125 r005 Re(z^2+c),c=-17/21+3/50*I,n=28 2329920115524794 a001 199/1597*75025^(6/23) 2329920117298849 r005 Im(z^2+c),c=-7/12+2/47*I,n=63 2329920118088849 m001 (Magata-ThueMorse)/(sin(1/5*Pi)+ArtinRank2) 2329920119116499 r005 Im(z^2+c),c=-1/3+16/43*I,n=56 2329920119454904 m001 1/ln(Catalan)^2/Porter^2/sin(Pi/12) 2329920126733684 m001 Kolakoski*ArtinRank2^2/ln(GAMMA(1/4))^2 2329920130824235 r005 Im(z^2+c),c=-1/3+16/43*I,n=61 2329920133721123 r005 Re(z^2+c),c=-1/6+28/55*I,n=57 2329920135382903 r009 Re(z^3+c),c=-4/31+28/29*I,n=4 2329920136183187 m001 (-GAMMA(7/12)+Tetranacci)/(LambertW(1)+ln(Pi)) 2329920139653342 m004 1/3+(25*Csc[Sqrt[5]*Pi]*Log[Sqrt[5]*Pi])/Pi 2329920146748295 h001 (3/8*exp(2)+11/12)/(6/11*exp(1)+1/10) 2329920152491956 a007 Real Root Of 455*x^4+449*x^3-984*x^2+669*x-829 2329920152744831 r005 Im(z^2+c),c=-22/29+3/44*I,n=31 2329920155466659 m005 (-9/44+1/4*5^(1/2))/(6/11*2^(1/2)+3/4) 2329920165341165 p001 sum((-1)^n/(545*n+418)/(16^n),n=0..infinity) 2329920187146820 r005 Im(z^2+c),c=-1/3+16/43*I,n=64 2329920192479558 a003 sin(Pi*19/91)/cos(Pi*59/120) 2329920198913345 l006 ln(931/9568) 2329920203312644 r005 Im(z^2+c),c=-12/19+3/62*I,n=34 2329920212630696 r005 Im(z^2+c),c=-1/3+16/43*I,n=62 2329920212631192 m001 arctan(1/2)^MasserGramainDelta/Shi(1) 2329920218190445 r005 Im(z^2+c),c=5/19+3/29*I,n=10 2329920220882804 m005 (1/2*exp(1)+3)/(47/55+5/11*5^(1/2)) 2329920223486770 a007 Real Root Of 370*x^4+574*x^3-449*x^2+161*x-831 2329920235685264 r004 Im(z^2+c),c=-3/10+6/17*I,z(0)=-1,n=19 2329920262206268 m001 (BesselJ(1,1)+Backhouse)/(GAMMA(2/3)-cos(1)) 2329920267612709 r005 Im(z^2+c),c=-1/3+16/43*I,n=51 2329920277863639 m001 (5^(1/2)-Mills*Riemann3rdZero)/Mills 2329920279146357 m001 (-Zeta(1,-1)+GAMMA(11/12))/(Psi(2,1/3)+exp(1)) 2329920288351778 a007 Real Root Of 323*x^4+622*x^3+39*x^2+949*x+348 2329920294870786 s002 sum(A061060[n]/(n^3*2^n-1),n=1..infinity) 2329920297595693 r005 Im(z^2+c),c=-1/3+16/43*I,n=59 2329920297645327 a001 199/28657*4807526976^(6/23) 2329920298581011 a003 sin(Pi*8/79)/cos(Pi*58/117) 2329920299375769 m005 (3*exp(1)-1/5)/(2+2^(1/2)) 2329920302313269 r005 Im(z^2+c),c=-37/58+14/41*I,n=60 2329920303137936 a007 Real Root Of 322*x^4+751*x^3+531*x^2+821*x-960 2329920306855572 g007 2*Psi(2,10/11)-Psi(2,2/11)-Psi(2,1/10) 2329920314136918 m001 1/Ei(1)*(3^(1/3))^2*exp(GAMMA(1/3))^2 2329920322162218 l006 ln(848/8715) 2329920322669703 a007 Real Root Of 969*x^4-471*x^3-353*x^2-677*x+180 2329920323897896 m001 (1-3^(1/3))/(BesselI(1,2)+HardyLittlewoodC4) 2329920329358558 a001 141/46*199^(9/11) 2329920334452273 k002 Champernowne real with 37/2*n^2-51/2*n+9 2329920343638490 r005 Im(z^2+c),c=-5/9-29/76*I,n=36 2329920347914416 a007 Real Root Of 291*x^4+394*x^3-972*x^2-371*x+820 2329920351650680 r005 Im(z^2+c),c=-1/3+16/43*I,n=57 2329920359004946 r002 13th iterates of z^2 + 2329920359815674 r005 Re(z^2+c),c=-3/20+31/57*I,n=51 2329920363473749 m001 (ln(3)+GAMMA(13/24))/(GAMMA(19/24)+ZetaQ(4)) 2329920364050056 q001 2048/879 2329920369039540 a007 Real Root Of 599*x^4-380*x^3+304*x^2-796*x+172 2329920372600525 a007 Real Root Of 457*x^4+882*x^3-573*x^2-639*x-690 2329920372603374 a007 Real Root Of -570*x^4+948*x^3+89*x^2+211*x+58 2329920390450747 r005 Im(z^2+c),c=-127/122+13/43*I,n=7 2329920395051997 r005 Im(z^2+c),c=-27/82+25/61*I,n=10 2329920405934326 h001 (7/9*exp(1)+3/11)/(1/6*exp(1)+4/7) 2329920416503331 m001 (Pi+ln(5))/(exp(-1/2*Pi)+FeigenbaumC) 2329920418197766 m001 ln(GAMMA(1/12))^2/ErdosBorwein^2*Zeta(7) 2329920418831161 r009 Im(z^3+c),c=-49/114+7/46*I,n=2 2329920419254816 m005 (1/2*Catalan+2)/(29/72+7/24*5^(1/2)) 2329920421546487 a007 Real Root Of -272*x^4-604*x^3+254*x^2+572*x+330 2329920426183813 l006 ln(5153/6505) 2329920434853275 k003 Champernowne real with 1/6*n^3+35/2*n^2-71/3*n+8 2329920435858627 m001 1/5*5^(1/2)*(GAMMA(13/24)+FeigenbaumMu) 2329920440949650 r009 Re(z^3+c),c=-19/78+10/63*I,n=10 2329920443631271 m001 (MadelungNaCl+Trott2nd)/(gamma(1)+GaussAGM) 2329920445471067 m006 (1/2*exp(Pi)+5/6)/(5*ln(Pi)-2/5) 2329920448979178 h002 exp(18^(7/12)-7^(5/12)) 2329920448979178 h007 exp(18^(7/12)-7^(5/12)) 2329920449200161 r005 Im(z^2+c),c=-25/22+2/69*I,n=27 2329920454079218 r005 Im(z^2+c),c=-59/114+17/41*I,n=58 2329920460637566 a007 Real Root Of 812*x^4-760*x^3+439*x^2-552*x+112 2329920472155269 l006 ln(765/7862) 2329920477058395 m001 (-Porter+Thue)/(1+ln(5)) 2329920480915869 r005 Im(z^2+c),c=-16/17+1/49*I,n=12 2329920493582247 m001 Si(Pi)^2/ln(Artin)*Sierpinski^2 2329920494296554 a007 Real Root Of -219*x^4-146*x^3+849*x^2-119*x-279 2329920502599473 a007 Real Root Of 659*x^4+832*x^3-261*x^2-791*x+186 2329920534572366 m001 (ln(5)-exp(1/exp(1)))/(gamma(2)-ArtinRank2) 2329920535254277 k003 Champernowne real with 1/3*n^3+33/2*n^2-131/6*n+7 2329920536312466 m002 3*Pi^3+Pi^6/(6*Log[Pi]) 2329920541079553 r005 Re(z^2+c),c=25/94+10/57*I,n=4 2329920547746747 r009 Re(z^3+c),c=-7/20+15/34*I,n=19 2329920554216810 a008 Real Root of x^4-x^3+15*x^2-62*x-268 2329920559569466 a007 Real Root Of -24*x^4-574*x^3-362*x^2-383*x+157 2329920561273339 m001 (HeathBrownMoroz+MertensB3)/(1-Shi(1)) 2329920563024164 r005 Re(z^2+c),c=-7/36+26/63*I,n=4 2329920564401856 m005 (1/2*5^(1/2)+4/9)/(2/9*3^(1/2)+2/7) 2329920587644007 r005 Im(z^2+c),c=-21/44+26/63*I,n=58 2329920591492454 m001 (gamma+GAMMA(2/3))^GAMMA(17/24) 2329920595271807 a005 (1/cos(55/182*Pi))^125 2329920604476355 m001 (gamma(2)+GAMMA(19/24))/(Catalan-cos(1/12*Pi)) 2329920618015242 a007 Real Root Of 246*x^4+241*x^3-564*x^2+638*x+347 2329920619859981 m005 (1/18+1/6*5^(1/2))/(7/10*5^(1/2)+3/11) 2329920619960452 m005 (3*Catalan+1/5)/(5/6*exp(1)-1) 2329920620557683 m001 1/cosh(1)*cos(Pi/5)^2*ln(sqrt(3)) 2329920625602785 r002 62th iterates of z^2 + 2329920633969498 m001 1/GAMMA(3/4)^2/BesselK(1,1)/exp(GAMMA(7/24))^2 2329920634788826 h001 (7/9*exp(2)+1/4)/(5/8*exp(1)+7/8) 2329920635655279 k003 Champernowne real with 1/2*n^3+31/2*n^2-20*n+6 2329920636262660 r005 Im(z^2+c),c=-35/78+24/59*I,n=21 2329920642884198 m001 (Pi+exp(-1/2*Pi))/(Robbin+StronglyCareFree) 2329920649577519 r005 Im(z^2+c),c=-23/34+25/87*I,n=21 2329920653670866 m001 (GAMMA(2/3)-sin(1))/(ln(Pi)+GAMMA(11/12)) 2329920658656862 l006 ln(682/7009) 2329920658803085 m001 (ln(2+3^(1/2))+Otter)^Psi(1,1/3) 2329920663125420 r005 Im(z^2+c),c=-41/122+22/59*I,n=39 2329920668385063 r009 Re(z^3+c),c=-13/110+53/63*I,n=20 2329920671096363 a007 Real Root Of 462*x^4+752*x^3-928*x^2-189*x+494 2329920672986093 p003 LerchPhi(1/12,5,71/53) 2329920673175940 l006 ln(6224/7857) 2329920677854892 m001 (-Rabbit+Thue)/(sin(1)+2*Pi/GAMMA(5/6)) 2329920680895289 a007 Real Root Of 447*x^4+256*x^3+502*x^2-578*x-160 2329920682992812 a007 Real Root Of 580*x^4-760*x^3-978*x^2-969*x-184 2329920689175214 m001 (MertensB3+MinimumGamma)/(PlouffeB+Sarnak) 2329920691883906 m004 6+5*Pi+Cos[Sqrt[5]*Pi]*Sinh[Sqrt[5]*Pi]^2 2329920715706181 b008 1-(30*E^4)/7 2329920717785449 m005 (1/2*gamma-4/7)/(1/3*Pi+1/6) 2329920719527193 m001 (3^(1/3)+Niven)/(PlouffeB-PolyaRandomWalk3D) 2329920722409941 m001 (Zeta(5)-Backhouse)/(Paris+StolarskyHarborth) 2329920722877111 s001 sum(exp(-Pi/4)^(n-1)*A096365[n],n=1..infinity) 2329920726266905 v003 sum((n^3-6*n^2+27*n-12)/(n!+1),n=1..infinity) 2329920730189045 r005 Im(z^2+c),c=-4/9+19/46*I,n=29 2329920734278048 r005 Im(z^2+c),c=-57/98+1/59*I,n=10 2329920734602997 s002 sum(A175531[n]/(n^3*exp(n)+1),n=1..infinity) 2329920736056281 k003 Champernowne real with 2/3*n^3+29/2*n^2-109/6*n+5 2329920738175673 m001 (-Thue+ThueMorse)/(gamma+Totient) 2329920750079049 m001 (Khinchin-Magata)/(Zeta(3)+Ei(1)) 2329920755617355 m001 Psi(2,1/3)^(Zeta(1/2)/cos(1/12*Pi)) 2329920755739800 h003 exp(Pi*(18^(2/5)-13^(1/7))) 2329920755739800 h008 exp(Pi*(18^(2/5)-13^(1/7))) 2329920763969422 m001 (gamma(2)-MertensB2)/(PlouffeB-Trott2nd) 2329920768054635 r008 a(0)=0,K{-n^6,50-12*n-62*n^2+29*n^3} 2329920771834237 r005 Im(z^2+c),c=-1/3+16/43*I,n=54 2329920788819899 r005 Im(z^2+c),c=-1/3+16/43*I,n=52 2329920793515702 r009 Re(z^3+c),c=-5/23+60/61*I,n=23 2329920800073266 r004 Re(z^2+c),c=-61/46-4/21*I,z(0)=-1,n=11 2329920803258601 m005 (5*2^(1/2)+1/4)/(4*gamma+5/6) 2329920806233562 m001 (FeigenbaumMu+Gompertz)/(2^(1/2)+Artin) 2329920820644516 b008 21*Sqrt[ArcSec[3]] 2329920820644516 b008 21*Sqrt[InverseHaversine[1/3]] 2329920829841389 a007 Real Root Of 325*x^4+512*x^3-621*x^2+247*x+845 2329920834614997 r004 Re(z^2+c),c=-2/11+10/21*I,z(0)=I,n=58 2329920836457283 k003 Champernowne real with 5/6*n^3+27/2*n^2-49/3*n+4 2329920843070835 a007 Real Root Of -351*x^4+130*x^3-994*x^2+405*x+151 2329920846878300 m001 GAMMA(23/24)^2/ln(FeigenbaumD)^2/arctan(1/2) 2329920847644810 l006 ln(7295/9209) 2329920857487150 r009 Re(z^3+c),c=-19/78+10/63*I,n=13 2329920857926902 m003 -5/2+Sqrt[5]/16+ProductLog[1/2+Sqrt[5]/2]/25 2329920863251302 a001 521/89*4181^(28/39) 2329920865352727 r009 Re(z^3+c),c=-19/78+10/63*I,n=14 2329920869007261 r002 12th iterates of z^2 + 2329920872299544 r009 Re(z^3+c),c=-19/78+10/63*I,n=18 2329920872320116 r009 Re(z^3+c),c=-19/78+10/63*I,n=19 2329920872327234 r009 Re(z^3+c),c=-19/78+10/63*I,n=23 2329920872327270 r009 Re(z^3+c),c=-19/78+10/63*I,n=24 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=27 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=28 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=29 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=32 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=33 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=37 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=38 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=42 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=41 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=43 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=46 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=47 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=48 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=51 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=52 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=56 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=57 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=61 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=60 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=62 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=64 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=63 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=59 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=58 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=55 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=54 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=53 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=50 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=49 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=45 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=44 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=40 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=39 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=36 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=34 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=35 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=31 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=30 2329920872327276 r009 Re(z^3+c),c=-19/78+10/63*I,n=26 2329920872327278 r009 Re(z^3+c),c=-19/78+10/63*I,n=25 2329920872327285 r009 Re(z^3+c),c=-19/78+10/63*I,n=22 2329920872327897 r009 Re(z^3+c),c=-19/78+10/63*I,n=21 2329920872328285 r009 Re(z^3+c),c=-19/78+10/63*I,n=20 2329920872380354 r009 Re(z^3+c),c=-19/78+10/63*I,n=17 2329920872470851 r009 Re(z^3+c),c=-19/78+10/63*I,n=15 2329920872826443 r009 Re(z^3+c),c=-19/78+10/63*I,n=16 2329920873421353 r002 20th iterates of z^2 + 2329920875952253 m001 Kolakoski^Khinchin/exp(Pi) 2329920881573320 r009 Re(z^3+c),c=-21/86+3/16*I,n=2 2329920883354337 m001 (sin(1/5*Pi)+Ei(1))/(Kac+TreeGrowth2nd) 2329920896843320 l006 ln(599/6156) 2329920906125008 a001 3/2207*3010349^(4/21) 2329920906125057 a001 3/2207*9062201101803^(2/21) 2329920908101421 m001 1/ln(Lehmer)^2/GaussAGM(1,1/sqrt(2))*cos(1) 2329920909933111 m001 GaussKuzminWirsing^FransenRobinson*Robbin 2329920913120236 m001 OneNinth/FeigenbaumDelta^2/ln(cos(Pi/5)) 2329920915557408 r009 Im(z^3+c),c=-37/122+5/26*I,n=5 2329920918281389 m001 (exp(Pi)*UniversalParabolic+Kolakoski)/exp(Pi) 2329920930143883 m001 3^(1/3)/GAMMA(11/12)*Niven 2329920936858285 k003 Champernowne real with n^3+25/2*n^2-29/2*n+3 2329920943110236 p004 log(36083/3511) 2329920946242700 r005 Re(z^2+c),c=-7/38+8/17*I,n=42 2329920946300924 r009 Re(z^3+c),c=-19/78+10/63*I,n=12 2329920958637213 a007 Real Root Of -215*x^4-207*x^3+98*x^2-972*x+921 2329920961198591 a001 161/305*5702887^(11/16) 2329920963741565 a007 Real Root Of -405*x^4-451*x^3+954*x^2-536*x-197 2329920968037444 a007 Real Root Of 548*x^4-163*x^3+607*x^2-930*x-22 2329920976126804 r005 Re(z^2+c),c=-8/7+32/125*I,n=60 2329920976658776 r005 Im(z^2+c),c=-17/44+17/46*I,n=13 2329920977802529 r005 Re(z^2+c),c=-1/14+22/37*I,n=17 2329920983119636 r009 Re(z^3+c),c=-4/9+25/33*I,n=2 2329920993270644 m001 1/Conway^2*Backhouse^2/exp(Pi)^2 2329920994295208 r005 Im(z^2+c),c=-61/66+8/41*I,n=8 2329920999178102 r009 Re(z^3+c),c=-1/24+11/17*I,n=42 2329921008113733 m005 (1/2*2^(1/2)-5/7)/(9/11*exp(1)+6/7) 2329921010196468 r005 Im(z^2+c),c=4/21+35/64*I,n=19 2329921011004090 r005 Im(z^2+c),c=-45/58+4/15*I,n=4 2329921012904411 a001 39603/5*514229^(9/35) 2329921036161028 m001 (GAMMA(5/6)+LaplaceLimit)/(ln(gamma)-Ei(1,1)) 2329921037259287 k003 Champernowne real with 7/6*n^3+23/2*n^2-38/3*n+2 2329921037444863 m001 (exp(Pi)+cos(1/12*Pi))/MertensB2 2329921038782420 r009 Re(z^3+c),c=-7/19+14/29*I,n=36 2329921045502309 a003 cos(Pi*49/115)/sin(Pi*9/20) 2329921046821462 s001 sum(exp(-3*Pi/5)^n*A209404[n],n=1..infinity) 2329921049349479 m001 (BesselK(1,1)-GAMMA(17/24))/(Zeta(5)+Ei(1)) 2329921050085577 m005 (1/2*exp(1)-5/11)/(10/11*Catalan-4/9) 2329921063208828 a007 Real Root Of -213*x^4-564*x^3-358*x^2-351*x+269 2329921081092794 m001 (MertensB1-Otter)/(arctan(1/3)+GaussAGM) 2329921099125691 m001 (Mills+Salem)/(arctan(1/2)+BesselK(1,1)) 2329921104947317 a007 Real Root Of -373*x^4-617*x^3+422*x^2-322*x+147 2329921108837319 r005 Im(z^2+c),c=-39/94+15/38*I,n=38 2329921127111270 m001 (cos(1)+LandauRamanujan)/(OneNinth+ZetaP(2)) 2329921130702438 m001 ln(3)^MasserGramainDelta*ReciprocalLucas 2329921130846889 a003 cos(Pi*16/53)-sin(Pi*24/79) 2329921135613566 r009 Re(z^3+c),c=-2/15+35/41*I,n=34 2329921137660289 k003 Champernowne real with 4/3*n^3+21/2*n^2-65/6*n+1 2329921138631792 r005 Im(z^2+c),c=1/32+15/62*I,n=5 2329921139432531 m005 (-1/12+1/4*5^(1/2))/(5/7*exp(1)+1/10) 2329921140118129 a007 Real Root Of -486*x^4-676*x^3+942*x^2-52*x+537 2329921140510792 r005 Im(z^2+c),c=-13/10+5/69*I,n=23 2329921140512311 a001 7*(1/2*5^(1/2)+1/2)^5*11^(11/24) 2329921143536136 a003 sin(Pi*2/59)/cos(Pi*22/63) 2329921147087941 m005 (-11/36+1/4*5^(1/2))/(119/132+1/12*5^(1/2)) 2329921153104739 m005 (19/20+1/4*5^(1/2))/(7/11*3^(1/2)-5/11) 2329921156748217 m005 (1/2*gamma+1/8)/(3/7*2^(1/2)-3/7) 2329921157426223 r005 Im(z^2+c),c=-1/6+19/64*I,n=4 2329921164697807 m001 (Si(Pi)+Zeta(1,2))/(polylog(4,1/2)+Magata) 2329921166241281 r005 Im(z^2+c),c=-113/98+17/63*I,n=24 2329921171740429 g004 Im(Psi(-17/12+I*49/24)) 2329921178426766 h001 (2/7*exp(2)+1/9)/(1/12*exp(1)+8/11) 2329921211655567 l006 ln(516/5303) 2329921214812031 m001 GAMMA(3/4)^ZetaP(3)/(gamma(2)^ZetaP(3)) 2329921216741001 m005 (1/3*2^(1/2)-1/12)/(5/6*3^(1/2)+2/9) 2329921222806684 r009 Re(z^3+c),c=-19/78+10/63*I,n=11 2329921229805310 m001 log(1+sqrt(2))^2*ln(MertensB1)*sqrt(5) 2329921238061291 k003 Champernowne real with 3/2*n^3+19/2*n^2-9*n 2329921238180060 a007 Real Root Of 90*x^4-183*x^3-792*x^2+468*x+423 2329921238419758 r005 Re(z^2+c),c=-3/19+29/55*I,n=61 2329921248002394 m005 (1/2*Zeta(3)+7/12)/(1/11*Catalan+5) 2329921251581533 a007 Real Root Of -199*x^4-26*x^3+938*x^2+150*x+793 2329921257302884 m001 DuboisRaymond/ErdosBorwein^2*exp(GAMMA(5/6)) 2329921265087240 h001 (5/7*exp(2)+5/12)/(7/11*exp(1)+5/7) 2329921267853748 m001 (LambertW(1)-GaussAGM(1,1/sqrt(2)))/Zeta(3) 2329921284251553 m005 (39/44+1/4*5^(1/2))/(1/3*5^(1/2)-1/8) 2329921298112290 a007 Real Root Of -128*x^4-20*x^3+416*x^2-157*x+895 2329921315416967 a001 3/9349*3571^(11/21) 2329921319173053 m001 Paris-Tribonacci^Backhouse 2329921320343293 a007 Real Root Of 385*x^4-866*x^3-984*x^2-690*x+224 2329921322491049 p004 log(17321/13721) 2329921323714702 r005 Re(z^2+c),c=-47/58+1/59*I,n=10 2329921328617048 a003 sin(Pi*7/99)/sin(Pi*43/109) 2329921329252448 r005 Im(z^2+c),c=-17/106+22/35*I,n=6 2329921334415266 a007 Real Root Of 468*x^4+737*x^3-519*x^2+453*x-597 2329921338462293 k003 Champernowne real with 5/3*n^3+17/2*n^2-43/6*n-1 2329921347669544 m005 (-1/12+1/4*5^(1/2))/(6/7*5^(1/2)+1/8) 2329921352443028 r009 Re(z^3+c),c=-11/30+11/23*I,n=31 2329921358820188 m001 (GAMMA(2/3)-Psi(2,1/3))/(-Khinchin+MertensB1) 2329921364604141 r002 11th iterates of z^2 + 2329921367256190 a007 Real Root Of 355*x^4+564*x^3-540*x^2+320*x+349 2329921368721494 m006 (4/5*Pi+1/5)/(5*exp(Pi)+3/4) 2329921370208106 m001 (2^(1/3)+3^(1/2))/(-Cahen+Tetranacci) 2329921374282987 a001 3/15127*73681302247^(4/21) 2329921374295034 a001 3/15127*271443^(8/21) 2329921375252707 a001 3/15127*(1/2*5^(1/2)+1/2)^8*15127^(2/21) 2329921382940083 a001 1/13201*167761^(10/21) 2329921382979505 a001 1/13201*28143753123^(5/21) 2329921383532277 r009 Re(z^3+c),c=-13/25+37/62*I,n=60 2329921383924543 a001 3/4870847*64079^(20/21) 2329921384460434 a001 3/710647*6643838879^(8/21) 2329921384464374 a001 1/620166*87403803^(11/21) 2329921384464949 a001 3/4870847*4106118243^(10/21) 2329921384465047 a001 3/17393796001*969323029^(19/21) 2329921384465047 a001 1/1368706081*1322157322203^(13/21) 2329921384465047 a001 3/73681302247*312119004989^(16/21) 2329921384465047 a001 3/119218851371*119218851371^(17/21) 2329921384465047 a001 3/73681302247*1568397607^(20/21) 2329921384465047 a001 3/370248451*2139295485799^(11/21) 2329921384465056 a001 3/33385282*12752043^(16/21) 2329921384465084 a001 3/7881196*54018521^(13/21) 2329921384465125 a001 3/33385282*4870847^(17/21) 2329921385808437 a001 1/620166*39603^(19/21) 2329921389040255 a001 1/13201*15127^(25/42) 2329921397079375 r009 Re(z^3+c),c=-4/13+2/7*I,n=3 2329921409852647 a001 3/9349*(1/2*5^(1/2)+1/2)^8*9349^(1/21) 2329921410362087 l006 ln(949/9753) 2329921411723318 a001 3/9349*39603^(17/42) 2329921418082657 m001 (Champernowne-Landau)/(Lehmer-ThueMorse) 2329921418885454 m001 (Zeta(5)-Kolakoski)/(ZetaQ(3)+ZetaQ(4)) 2329921421630134 r009 Re(z^3+c),c=-51/118+31/59*I,n=22 2329921438863295 k003 Champernowne real with 11/6*n^3+15/2*n^2-16/3*n-2 2329921447957008 a007 Real Root Of 193*x^4+732*x^3+817*x^2+416*x+105 2329921456562774 m001 1/ln(LandauRamanujan)/CareFree^2/LambertW(1)^2 2329921463896177 m008 (3/5*Pi^3-4)/(2*Pi^3+2/3) 2329921463920625 m001 (3^(1/3)-exp(1/Pi))/(GAMMA(11/12)+Tribonacci) 2329921465483197 b008 -1+E^(-5/(6*Pi)) 2329921481217812 m001 1/exp(FeigenbaumKappa)/GolombDickman/sqrt(Pi) 2329921482324075 m002 2+E^Pi-E^Pi/(4*Pi) 2329921499523531 a008 Real Root of (2+6*x+3*x^2+6*x^3-6*x^4+x^5) 2329921502210957 a007 Real Root Of -487*x^4-806*x^3+721*x^2-170*x-153 2329921507563400 m001 (Champernowne+Khinchin)/(MertensB1-Porter) 2329921509776286 m001 exp(cosh(1))^2*Riemann3rdZero^2/sin(Pi/5) 2329921520150600 m001 (arctan(1/2)-ThueMorse)/(sin(1/5*Pi)+ln(5)) 2329921524383243 a007 Real Root Of 983*x^4+505*x^3-279*x^2-951*x-22 2329921529572507 a007 Real Root Of 598*x^4-143*x^3+439*x^2-788*x-211 2329921533848746 m001 (Psi(1,1/3)+exp(1))/(-Chi(1)+FeigenbaumB) 2329921535236609 h001 (1/7*exp(1)+2/11)/(5/6*exp(1)+2/11) 2329921538869388 a007 Real Root Of 498*x^4+737*x^3-962*x^2+190*x+311 2329921539264297 k003 Champernowne real with 2*n^3+13/2*n^2-7/2*n-3 2329921552977614 m001 CopelandErdos-Pi+Stephens 2329921554184593 r004 Re(z^2+c),c=3/38+4/5*I,z(0)=I,n=5 2329921559876581 b008 E*Tanh[Glaisher] 2329921561340270 m001 (-BesselI(0,2)+CareFree)/(sin(1)+Zeta(1,-1)) 2329921567174298 a001 3/3571*1149851^(5/21) 2329921580402892 r005 Im(z^2+c),c=-21/86+11/32*I,n=12 2329921596427911 r005 Re(z^2+c),c=-23/82+7/58*I,n=12 2329921608956635 r005 Re(z^2+c),c=-117/98+11/45*I,n=20 2329921611265997 r004 Im(z^2+c),c=3/20+2/11*I,z(0)=exp(5/8*I*Pi),n=9 2329921618607891 a007 Real Root Of -181*x^4-310*x^3+80*x^2-184*x+550 2329921630573447 r005 Im(z^2+c),c=-1/3+16/43*I,n=46 2329921632611442 m005 (1/3*Zeta(3)-1/3)/(3*Catalan+1/7) 2329921639665299 k003 Champernowne real with 13/6*n^3+11/2*n^2-5/3*n-4 2329921640269028 m005 (1/2*Zeta(3)+11/12)/(1/10*5^(1/2)-7/8) 2329921647157796 l006 ln(433/4450) 2329921648642796 a007 Real Root Of 423*x^4+533*x^3-679*x^2+491*x-894 2329921653168466 m001 (Salem+StronglyCareFree)/(Ei(1)-Shi(1)) 2329921653168466 m001 (Salem+StronglyCareFree)/Chi(1) 2329921670098789 m001 (Salem-Sarnak)/(ln(2+3^(1/2))+Kac) 2329921670398267 a001 3/15127*2207^(13/21) 2329921671618401 r005 Im(z^2+c),c=-29/82+12/31*I,n=15 2329921674828430 r005 Re(z^2+c),c=7/40+17/31*I,n=36 2329921686349915 r009 Im(z^3+c),c=-25/56+5/58*I,n=61 2329921689100249 r009 Re(z^3+c),c=-11/30+23/48*I,n=29 2329921690380706 m001 (Mills-StronglyCareFree)/(3^(1/3)+GaussAGM) 2329921697519245 a007 Real Root Of 24*x^4+578*x^3+426*x^2-313*x-527 2329921703345957 m001 exp(sin(1))/GaussAGM(1,1/sqrt(2))/sinh(1) 2329921713890183 m001 1/GAMMA(5/12)*Bloch^2/ln(cos(Pi/5))^2 2329921721693058 a007 Real Root Of 327*x^4+462*x^3-789*x^2-540*x-768 2329921733895243 q001 387/1661 2329921736799455 a001 2/75025*121393^(5/27) 2329921739240868 a007 Real Root Of 37*x^4+866*x^3+130*x^2+930*x+791 2329921740066210 k003 Champernowne real with 7/3*n^3+9/2*n^2+1/6*n-5 2329921761032158 r005 Re(z^2+c),c=-21/118+17/35*I,n=32 2329921780661305 a007 Real Root Of -329*x^4-819*x^3-90*x^2-67*x-331 2329921782035315 r005 Im(z^2+c),c=7/32+3/22*I,n=15 2329921803011416 r005 Re(z^2+c),c=-11/70+35/62*I,n=10 2329921809264090 r005 Re(z^2+c),c=-17/62+4/45*I,n=3 2329921819304766 m001 (exp(1)*Zeta(1/2)+LambertW(1))/Zeta(1/2) 2329921819435719 m001 (5^(1/2)-GAMMA(23/24))/(KomornikLoreti+Magata) 2329921823285322 m001 Mills+BesselI(0,1)^Paris 2329921839426745 r005 Re(z^2+c),c=-27/94+1/62*I,n=10 2329921840467210 k003 Champernowne real with 5/2*n^3+7/2*n^2+2*n-6 2329921841258578 m001 Backhouse-sin(1/5*Pi)+MinimumGamma 2329921845693042 a007 Real Root Of -405*x^4-486*x^3+886*x^2-595*x-408 2329921858236227 r009 Re(z^3+c),c=-19/44+18/31*I,n=54 2329921860657129 r005 Re(z^2+c),c=27/106+7/45*I,n=9 2329921861551606 l006 ln(1071/1352) 2329921861970485 m001 KomornikLoreti^Catalan/(Rabbit^Catalan) 2329921863329309 p001 sum((-1)^n/(473*n+421)/(24^n),n=0..infinity) 2329921876553945 m005 (1/2*3^(1/2)-1/7)/(1/11*2^(1/2)+2/11) 2329921882346754 m001 BesselI(0,2)*MertensB3*ZetaP(4) 2329921893595436 m001 1/RenyiParking*exp(Magata)*gamma 2329921896533974 b008 27*E^(-1+Pi)+Pi 2329921902037232 s002 sum(A076649[n]/(n*2^n-1),n=1..infinity) 2329921914348408 a007 Real Root Of -23*x^4+552*x^3+928*x^2-927*x+462 2329921914721152 a001 34/4870847*47^(41/45) 2329921923413407 a003 -1/2-2*cos(1/7*Pi)+cos(5/12*Pi)-cos(11/27*Pi) 2329921925453839 a007 Real Root Of -599*x^4+985*x^3+379*x^2+295*x-100 2329921927370919 m001 (Psi(2,1/3)+BesselI(0,1))/(-Artin+Khinchin) 2329921933286865 p001 sum(1/(320*n+43)/(64^n),n=0..infinity) 2329921934155329 l006 ln(783/8047) 2329921936285076 m001 1/KhintchineHarmonic^2*Si(Pi)*ln(Porter) 2329921940868210 k003 Champernowne real with 8/3*n^3+5/2*n^2+23/6*n-7 2329921943926938 m001 1/exp(FeigenbaumDelta)/Artin/OneNinth 2329921952111511 k006 concat of cont frac of 2329921952564145 r009 Re(z^3+c),c=-43/122+24/53*I,n=9 2329921953129783 p001 sum((-1)^n/(496*n+429)/(1000^n),n=0..infinity) 2329921958365890 r005 Im(z^2+c),c=-17/114+16/51*I,n=15 2329921976719774 r009 Re(z^3+c),c=-17/40+23/42*I,n=44 2329921982767130 m005 (1/2*3^(1/2)+6/11)/(4/11*Catalan+3/11) 2329921985424815 r005 Re(z^2+c),c=2/13+15/34*I,n=62 2329922000075817 m001 GAMMA(2/3)^2/ln(GAMMA(13/24))^2/LambertW(1)^2 2329922005280031 p001 sum(1/(281*n+162)/n/(10^n),n=1..infinity) 2329922005433881 r005 Im(z^2+c),c=-13/16+1/84*I,n=36 2329922006748455 r005 Im(z^2+c),c=-1/3+16/43*I,n=47 2329922007585879 m001 (PlouffeB-Salem)/(arctan(1/3)+Khinchin) 2329922011963658 m001 Sierpinski/ArtinRank2/BesselI(1,2) 2329922013222232 l003 KelvinBei(1,83/118) 2329922019546875 a001 5/4*7^(8/25) 2329922025834142 m005 (1/2*Pi-6/11)/(4/7*Catalan-1/12) 2329922030143150 a007 Real Root Of -404*x^4-306*x^3+969*x^2-903*x+671 2329922030793044 m005 (-17/44+1/4*5^(1/2))/(5/8*2^(1/2)-1/7) 2329922041269210 k003 Champernowne real with 17/6*n^3+3/2*n^2+17/3*n-8 2329922041970723 m001 ln(2+3^(1/2))+Chi(1)^gamma(1) 2329922043776239 k003 Champernowne real with 2*n^3+1/2*n^2-29/2*n+14 2329922064372334 m005 (1/2*Catalan-5/9)/(2/3*exp(1)-6) 2329922071820768 m001 Catalan+Zeta(3)*Salem 2329922074750673 a007 Real Root Of -294*x^4-248*x^3+689*x^2-809*x-98 2329922076859778 m001 (BesselI(0,2)+Artin)/(ln(2)/ln(10)+Chi(1)) 2329922080856939 m005 (1/3*2^(1/2)+4/5)/(4*2^(1/2)-1/5) 2329922087005486 a003 cos(Pi*23/76)-sin(Pi*33/109) 2329922089292183 r009 Re(z^3+c),c=-3/56+15/26*I,n=2 2329922101747917 p004 log(15241/1483) 2329922123896239 k002 Champernowne real with 57/2*n^2-159/2*n+74 2329922136835359 m001 GAMMA(1/4)*Riemann1stZero^2*ln(LambertW(1))^2 2329922141670210 k003 Champernowne real with 3*n^3+1/2*n^2+15/2*n-9 2329922145113803 k009 concat of cont frac of 2329922147525339 a007 Real Root Of 274*x^4+469*x^3-300*x^2+194*x-62 2329922160716625 a005 (1/sin(64/205*Pi))^17 2329922161010910 a007 Real Root Of -311*x^4-393*x^3+650*x^2-208*x+181 2329922161462576 a007 Real Root Of 515*x^4+747*x^3-573*x^2+718*x-945 2329922164797137 m001 exp(Pi)+1-sin(1) 2329922168453628 m001 BesselI(1,2)-cos(1/12*Pi)+Niven 2329922170383719 a007 Real Root Of 516*x^4+854*x^3-453*x^2+459*x-876 2329922173582582 m001 (Khinchin-Psi(2,1/3))/(Niven+StronglyCareFree) 2329922175927913 a001 15127/144*2584^(11/16) 2329922176659046 r005 Im(z^2+c),c=-7/48+27/28*I,n=9 2329922179657124 r005 Im(z^2+c),c=13/82+26/41*I,n=26 2329922180954823 a007 Real Root Of -353*x^4-506*x^3+760*x^2+279*x+527 2329922185417689 a007 Real Root Of 223*x^4+301*x^3-271*x^2+277*x-648 2329922189333170 r005 Re(z^2+c),c=-4/17+53/64*I,n=25 2329922191170948 s001 sum(exp(-Pi/4)^n*A200311[n],n=1..infinity) 2329922195225621 r005 Im(z^2+c),c=-8/9+11/56*I,n=54 2329922205960601 a007 Real Root Of 526*x^4+914*x^3-829*x^2-521*x-654 2329922206084777 m001 (Bloch+OneNinth)/(exp(Pi)+3^(1/2)) 2329922209255360 m001 ((1+3^(1/2))^(1/2)+RenyiParking)^cos(1/12*Pi) 2329922209255360 m001 (RenyiParking+sqrt(1+sqrt(3)))^cos(Pi/12) 2329922211112133 k006 concat of cont frac of 2329922213540604 a001 322/121393*12586269025^(11/16) 2329922221458645 p004 log(25943/20551) 2329922228347141 a001 123/53316291173*121393^(13/22) 2329922230865052 m001 (-2*Pi/GAMMA(5/6)+Sierpinski)/(1-BesselI(0,2)) 2329922242071211 k003 Champernowne real with 19/6*n^3-1/2*n^2+28/3*n-10 2329922257764283 a007 Real Root Of -30*x^4+445*x^3+762*x^2+700*x-210 2329922259179284 r002 34th iterates of z^2 + 2329922264669642 m001 LandauRamanujan^2/Cahen/exp(FeigenbaumC)^2 2329922287387528 r005 Re(z^2+c),c=-6/31+8/19*I,n=8 2329922289212164 l006 ln(350/3597) 2329922300277984 m003 -10/3+(17*Sqrt[5])/32+Tan[1/2+Sqrt[5]/2] 2329922313780112 a007 Real Root Of -648*x^4-429*x^3+61*x^2+407*x+88 2329922328974115 a007 Real Root Of 750*x^4-953*x^3+643*x^2-893*x+183 2329922329848723 m001 Salem^2/exp(Cahen)^2/GAMMA(13/24) 2329922331860029 a007 Real Root Of -179*x^4-336*x^3-454*x^2+848*x+20 2329922342472211 k003 Champernowne real with 10/3*n^3-3/2*n^2+67/6*n-11 2329922353887152 r002 41th iterates of z^2 + 2329922366635270 b008 1/5+Log[7+Sqrt[2]] 2329922370957410 r005 Re(z^2+c),c=-27/34+5/97*I,n=6 2329922389388758 r009 Re(z^3+c),c=-53/94+28/51*I,n=8 2329922389483962 m005 (1/2*Zeta(3)+3/5)/(1/9*5^(1/2)-3/10) 2329922393477954 m005 (1/2*Pi-3/11)/(2/11*2^(1/2)+3/10) 2329922393959778 a008 Real Root of x^4+10*x^2-72*x+84 2329922394424558 r005 Re(z^2+c),c=-127/126+27/55*I,n=2 2329922416330459 a001 11/196418*121393^(17/33) 2329922421036760 r005 Im(z^2+c),c=-23/98+13/38*I,n=29 2329922422885157 m001 (-ErdosBorwein+Grothendieck)/(Si(Pi)-ln(3)) 2329922424328960 m005 (1/2*gamma-1/2)/(1/5*exp(1)+4/11) 2329922424384244 r002 29th iterates of z^2 + 2329922437022122 m001 ln(Ei(1))^2/RenyiParking/GAMMA(1/24) 2329922442873211 k003 Champernowne real with 7/2*n^3-5/2*n^2+13*n-12 2329922445392256 a001 199/2*4181^(5/49) 2329922447259025 r005 Re(z^2+c),c=-49/60+4/33*I,n=8 2329922450483274 m006 (3*ln(Pi)+5)/(2/3*exp(2*Pi)+5) 2329922457720728 r005 Im(z^2+c),c=-31/34+21/106*I,n=28 2329922464214075 m005 (3*Catalan+1/2)/(3/4*2^(1/2)+1/3) 2329922465130830 m005 (1/2*exp(1)+11/12)/(1/9*Catalan+7/8) 2329922476887264 r009 Im(z^3+c),c=-21/82+27/28*I,n=29 2329922478486289 a007 Real Root Of 361*x^4+162*x^3-228*x^2-677*x+167 2329922489694660 m001 (ThueMorse+ZetaP(2))/(GAMMA(23/24)+Khinchin) 2329922500909114 r004 Im(z^2+c),c=3/34-1/5*I,z(0)=exp(7/24*I*Pi),n=3 2329922511292726 a003 sin(Pi*26/101)-sin(Pi*43/106) 2329922512481189 g002 2*Psi(8/11)+Psi(7/10)-Psi(5/7) 2329922518779437 r005 Im(z^2+c),c=-53/58+11/53*I,n=48 2329922519702556 m001 (arctan(1/3)+exp(1/Pi))/gamma(1) 2329922543274211 k003 Champernowne real with 11/3*n^3-7/2*n^2+89/6*n-13 2329922547322546 a007 Real Root Of -323*x^4-476*x^3+776*x^2+626*x+744 2329922550180605 a001 7/377*196418^(11/53) 2329922556280770 m001 1/FeigenbaumD/ArtinRank2^2*ln(FeigenbaumKappa) 2329922566507627 m003 1/18+3*ProductLog[1/2+Sqrt[5]/2] 2329922574828251 m002 2+(E^Pi*Pi^7)/3 2329922576708971 l006 ln(967/9938) 2329922585997919 a007 Real Root Of 37*x^4+849*x^3-317*x^2-288*x+47 2329922595987441 r005 Re(z^2+c),c=-11/56+19/43*I,n=35 2329922598675084 m001 (Pi^(1/2)-FeigenbaumC)/(Gompertz+Tetranacci) 2329922598886364 a007 Real Root Of 274*x^4+412*x^3-258*x^2+309*x-743 2329922599693086 m001 (Riemann1stZero+Salem)/(Catalan-sin(1/12*Pi)) 2329922606575057 h001 (-11*exp(2)-8)/(-7*exp(4)-1) 2329922610674168 r005 Im(z^2+c),c=-35/94+23/60*I,n=42 2329922625995964 m005 (1/2*exp(1)+6/11)/(1/9*3^(1/2)+5/8) 2329922626099893 a001 89/15127*521^(11/50) 2329922637600464 m001 (Landau+Otter)/(BesselI(0,1)+CopelandErdos) 2329922643675211 k003 Champernowne real with 23/6*n^3-9/2*n^2+50/3*n-14 2329922658529567 r005 Re(z^2+c),c=7/38+18/47*I,n=23 2329922662472148 a007 Real Root Of -9*x^4+427*x^3-936*x^2+308*x+128 2329922664136706 m003 24+Sqrt[5]/16-E^(1/2+Sqrt[5]/2)/6 2329922664478792 m006 (2/3/Pi+1/2)/(1/6*exp(Pi)-4/5) 2329922666931123 m001 (GAMMA(2/3)+GAMMA(5/6))/(Kac+TreeGrowth2nd) 2329922682869170 a007 Real Root Of -511*x^4-993*x^3+300*x^2-26*x+810 2329922691911086 r002 3th iterates of z^2 + 2329922713450452 a007 Real Root Of -26*x^4+439*x^3-672*x^2-98*x-910 2329922722249913 r005 Im(z^2+c),c=-61/118+2/49*I,n=37 2329922724659777 a007 Real Root Of -390*x^4-692*x^3+665*x^2+238*x-315 2329922737228926 p001 sum((-1)^n/(500*n+411)/(10^n),n=0..infinity) 2329922739794643 l006 ln(617/6341) 2329922741974318 r005 Im(z^2+c),c=-13/42+23/63*I,n=42 2329922743154069 r005 Im(z^2+c),c=-1/3+16/43*I,n=49 2329922744076212 k003 Champernowne real with 4*n^3-11/2*n^2+37/2*n-15 2329922750759883 h001 (3/10*exp(2)+1/9)/(1/10*exp(1)+8/11) 2329922753817659 p001 sum((-1)^n/(475*n+429)/(1024^n),n=0..infinity) 2329922767317843 r005 Re(z^2+c),c=-47/58+3/19*I,n=46 2329922770461206 a007 Real Root Of -100*x^4+96*x^3+989*x^2+184*x-779 2329922774672925 m001 (2^(1/2)-exp(1))/(-MertensB2+Weierstrass) 2329922786873095 m001 1/ln(GAMMA(5/6))*Catalan*GAMMA(7/24) 2329922787086826 m001 1/Robbin/exp(Riemann1stZero)^2*cos(1)^2 2329922789762530 m005 (1/2*Pi+1/8)/(3/11*Zeta(3)+2/5) 2329922796662278 m001 HeathBrownMoroz^(Weierstrass/Chi(1)) 2329922797401124 r005 Re(z^2+c),c=-11/60+27/55*I,n=18 2329922798063924 r005 Re(z^2+c),c=-5/66+23/40*I,n=12 2329922804966685 r009 Re(z^3+c),c=-21/58+20/43*I,n=20 2329922814315068 r009 Im(z^3+c),c=-25/56+5/58*I,n=45 2329922822254210 l006 ln(7699/9719) 2329922822254210 p004 log(9719/7699) 2329922823535345 r002 60th iterates of z^2 + 2329922829978171 m001 Psi(1,1/3)*gamma/Riemann3rdZero 2329922834961475 r005 Im(z^2+c),c=-17/40+7/18*I,n=16 2329922836081214 a007 Real Root Of 543*x^4+904*x^3-584*x^2+226*x-871 2329922854872357 m001 (2/3*Pi*3^(1/2)/GAMMA(2/3)+Niven)/(Pi-2^(1/3)) 2329922856357435 r005 Im(z^2+c),c=-3/50+9/32*I,n=22 2329922873739656 m001 (-Landau+ZetaQ(2))/(BesselI(0,1)+GaussAGM) 2329922887056592 h005 exp(cos(Pi*2/55)-cos(Pi*24/53)) 2329922890444313 m001 (cos(1/5*Pi)-ln(3))/(Gompertz-Tribonacci) 2329922891185948 b008 2/3+15*ArcCsch[9] 2329922896114504 m005 (1/15+1/6*5^(1/2))/(8/11*2^(1/2)+6/7) 2329922916965446 m004 -3+12*Csc[Sqrt[5]*Pi]^2 2329922918192628 l006 ln(884/9085) 2329922919221929 m001 (sin(1)+ln(2^(1/2)+1))/(LaplaceLimit+ZetaP(4)) 2329922929184205 r009 Re(z^3+c),c=-5/78+19/26*I,n=45 2329922933491810 r005 Re(z^2+c),c=-9/50+12/25*I,n=39 2329922933744511 r009 Im(z^3+c),c=-11/78+33/38*I,n=6 2329922941265430 m002 -E^Pi+Pi^(-3)-Log[Pi]/6 2329922945319302 m001 FeigenbaumKappa^Chi(1)-Shi(1) 2329922956200385 h001 (5/6*exp(2)+8/11)/(6/7*exp(1)+5/8) 2329922967685598 m001 (ln(2)/ln(10)*ThueMorse+gamma)/ln(2)*ln(10) 2329922968827845 r005 Im(z^2+c),c=-7/10+37/79*I,n=13 2329922977491451 l006 ln(6628/8367) 2329922991111716 a007 Real Root Of -24*x^4-173*x^3-505*x^2-229*x+727 2329922993139366 m001 (Chi(1)+Cahen)/(LandauRamanujan2nd+ZetaQ(2)) 2329922995575030 m001 1/Zeta(7)^2/exp(FeigenbaumAlpha)/sin(Pi/5)^2 2329923006474365 r002 56th iterates of z^2 + 2329923011261131 m001 (2^(1/2)*GaussAGM-exp(1/Pi))/GaussAGM 2329923014865743 a005 (1/sin(57/127*Pi))^1484 2329923033245636 r009 Re(z^3+c),c=-3/122+5/36*I,n=6 2329923040963328 a001 55/39603*1364^(22/31) 2329923045279212 k003 Champernowne real with 9/2*n^3-17/2*n^2+24*n-18 2329923053727632 b008 1/17+5*ExpIntegralEi[1/2] 2329923063371194 m001 Pi*2^(1/3)/ln(5)/GAMMA(11/12) 2329923075872242 m001 (ln(2)-Artin)/(Rabbit+TwinPrimes) 2329923076843717 r004 Re(z^2+c),c=7/38+1/9*I,z(0)=exp(5/8*I*Pi),n=6 2329923084196236 a007 Real Root Of -14*x^4-324*x^3+19*x^2-703*x+996 2329923088310534 m001 (cos(1/12*Pi)-FeigenbaumKappa)/(ln(5)-3^(1/3)) 2329923098116988 m003 2+Log[1/2+Sqrt[5]/2]/6+Sin[1/2+Sqrt[5]/2]/4 2329923102550127 r009 Re(z^3+c),c=-15/44+13/31*I,n=25 2329923109249621 s002 sum(A165892[n]/((pi^n-1)/n),n=1..infinity) 2329923111441898 s001 sum(exp(-2*Pi/3)^n*A209009[n],n=1..infinity) 2329923119615688 p001 sum((-1)^n/(497*n+429)/(1000^n),n=0..infinity) 2329923120327593 m001 1/GAMMA(11/24)^2/GAMMA(1/3)^2/ln(GAMMA(19/24)) 2329923129617831 s002 sum(A234524[n]/(exp(n)+1),n=1..infinity) 2329923131391567 a001 1/9*(1/2*5^(1/2)+1/2)^11*3^(1/21) 2329923134310460 b008 (5*Csc[Pi/16])/11 2329923145653732 a007 Real Root Of 692*x^4-294*x^3-176*x^2-587*x+148 2329923150476434 m001 (KhinchinLevy+OneNinth)/(2^(1/3)-CareFree) 2329923154420683 r005 Im(z^2+c),c=-3/50+9/32*I,n=18 2329923157215317 m005 (1/3*Catalan+1/3)/(3/7*Catalan-2/3) 2329923171254152 r009 Re(z^3+c),c=-3/122+5/36*I,n=8 2329923171399374 r009 Re(z^3+c),c=-3/122+5/36*I,n=9 2329923171401740 r009 Re(z^3+c),c=-3/122+5/36*I,n=11 2329923171401814 r009 Re(z^3+c),c=-3/122+5/36*I,n=13 2329923171401814 r009 Re(z^3+c),c=-3/122+5/36*I,n=15 2329923171401814 r009 Re(z^3+c),c=-3/122+5/36*I,n=17 2329923171401814 r009 Re(z^3+c),c=-3/122+5/36*I,n=20 2329923171401814 r009 Re(z^3+c),c=-3/122+5/36*I,n=22 2329923171401814 r009 Re(z^3+c),c=-3/122+5/36*I,n=24 2329923171401814 r009 Re(z^3+c),c=-3/122+5/36*I,n=26 2329923171401814 r009 Re(z^3+c),c=-3/122+5/36*I,n=29 2329923171401814 r009 Re(z^3+c),c=-3/122+5/36*I,n=31 2329923171401814 r009 Re(z^3+c),c=-3/122+5/36*I,n=33 2329923171401814 r009 Re(z^3+c),c=-3/122+5/36*I,n=34 2329923171401814 r009 Re(z^3+c),c=-3/122+5/36*I,n=35 2329923171401814 r009 Re(z^3+c),c=-3/122+5/36*I,n=38 2329923171401814 r009 Re(z^3+c),c=-3/122+5/36*I,n=32 2329923171401814 r009 Re(z^3+c),c=-3/122+5/36*I,n=30 2329923171401814 r009 Re(z^3+c),c=-3/122+5/36*I,n=28 2329923171401814 r009 Re(z^3+c),c=-3/122+5/36*I,n=27 2329923171401814 r009 Re(z^3+c),c=-3/122+5/36*I,n=25 2329923171401814 r009 Re(z^3+c),c=-3/122+5/36*I,n=23 2329923171401814 r009 Re(z^3+c),c=-3/122+5/36*I,n=21 2329923171401814 r009 Re(z^3+c),c=-3/122+5/36*I,n=19 2329923171401814 r009 Re(z^3+c),c=-3/122+5/36*I,n=18 2329923171401814 r009 Re(z^3+c),c=-3/122+5/36*I,n=16 2329923171401814 r009 Re(z^3+c),c=-3/122+5/36*I,n=14 2329923171401820 r009 Re(z^3+c),c=-3/122+5/36*I,n=12 2329923171402569 r009 Re(z^3+c),c=-3/122+5/36*I,n=10 2329923176976846 r009 Re(z^3+c),c=-3/122+5/36*I,n=7 2329923177666067 a007 Real Root Of 38*x^4+896*x^3+256*x^2+213*x+431 2329923183558893 r005 Re(z^2+c),c=5/48+20/61*I,n=29 2329923185613591 a001 3571/5*8^(29/51) 2329923189776628 a007 Real Root Of 406*x^4+730*x^3-894*x^2-945*x-80 2329923192561864 r009 Im(z^3+c),c=-15/106+19/22*I,n=24 2329923192566400 l006 ln(5557/7015) 2329923193940296 r005 Re(z^2+c),c=-31/26+13/86*I,n=38 2329923201733837 a001 3940598/305*832040^(11/20) 2329923203219788 a001 39603/610*12586269025^(11/20) 2329923205888188 b008 Sqrt[5]+SphericalBesselJ[0,7] 2329923211687904 m001 GAMMA(23/24)/(CareFree-ln(Pi)) 2329923223828302 a007 Real Root Of -251*x^4-244*x^3+950*x^2+241*x-285 2329923231284297 a007 Real Root Of 223*x^4+830*x^3+864*x^2+503*x+408 2329923231548454 r009 Re(z^3+c),c=-13/94+29/30*I,n=28 2329923240081711 m001 (MasserGramain-Mills)/(Zeta(3)-GAMMA(19/24)) 2329923256504648 m001 Lehmer/Pi/csc(1/24*Pi)*GAMMA(23/24)/Trott 2329923258968995 p003 LerchPhi(1/512,5,473/223) 2329923261788483 r005 Re(z^2+c),c=13/46+8/47*I,n=20 2329923273406154 m005 (1/2*Pi-2/9)/(5*Zeta(3)-2/9) 2329923273657289 q001 911/391 2329923285925284 a007 Real Root Of -246*x^4-60*x^3+968*x^2-681*x-351 2329923287927999 r009 Re(z^3+c),c=-7/50+27/37*I,n=9 2329923293201859 r005 Im(z^2+c),c=-3/50+9/32*I,n=25 2329923298726492 m006 (2*Pi-5/6)/(exp(Pi)+1/4) 2329923298922883 a007 Real Root Of -387*x^4-892*x^3+134*x^2-94*x-824 2329923303748145 p004 log(32371/25643) 2329923305368832 a005 (1/cos(51/134*Pi))^49 2329923308742407 r005 Re(z^2+c),c=-1/54+9/14*I,n=11 2329923317600962 a007 Real Root Of 119*x^4-74*x^3-588*x^2+451*x-200 2329923330445526 l006 ln(267/2744) 2329923334561980 r009 Im(z^3+c),c=-1/36+13/53*I,n=4 2329923336601278 a007 Real Root Of 357*x^4+924*x^3+241*x^2-70*x-305 2329923341400253 r009 Re(z^3+c),c=-35/86+21/38*I,n=63 2329923346482213 k003 Champernowne real with 5*n^3-23/2*n^2+59/2*n-21 2329923351440772 r005 Im(z^2+c),c=-8/21+1/27*I,n=20 2329923351475292 r005 Im(z^2+c),c=-3/50+9/32*I,n=28 2329923358483099 r005 Im(z^2+c),c=-3/50+9/32*I,n=31 2329923358908382 r005 Im(z^2+c),c=-3/50+9/32*I,n=29 2329923359056154 r005 Im(z^2+c),c=-3/50+9/32*I,n=32 2329923359224910 r005 Im(z^2+c),c=-3/50+9/32*I,n=34 2329923359238659 r005 Im(z^2+c),c=-3/50+9/32*I,n=35 2329923359282066 r005 Im(z^2+c),c=-3/50+9/32*I,n=38 2329923359288677 r005 Im(z^2+c),c=-3/50+9/32*I,n=37 2329923359289798 r005 Im(z^2+c),c=-3/50+9/32*I,n=41 2329923359290984 r005 Im(z^2+c),c=-3/50+9/32*I,n=44 2329923359291147 r005 Im(z^2+c),c=-3/50+9/32*I,n=47 2329923359291168 r005 Im(z^2+c),c=-3/50+9/32*I,n=50 2329923359291169 r005 Im(z^2+c),c=-3/50+9/32*I,n=51 2329923359291170 r005 Im(z^2+c),c=-3/50+9/32*I,n=53 2329923359291170 r005 Im(z^2+c),c=-3/50+9/32*I,n=54 2329923359291170 r005 Im(z^2+c),c=-3/50+9/32*I,n=57 2329923359291170 r005 Im(z^2+c),c=-3/50+9/32*I,n=56 2329923359291170 r005 Im(z^2+c),c=-3/50+9/32*I,n=60 2329923359291170 r005 Im(z^2+c),c=-3/50+9/32*I,n=63 2329923359291170 r005 Im(z^2+c),c=-3/50+9/32*I,n=64 2329923359291170 r005 Im(z^2+c),c=-3/50+9/32*I,n=62 2329923359291170 r005 Im(z^2+c),c=-3/50+9/32*I,n=59 2329923359291170 r005 Im(z^2+c),c=-3/50+9/32*I,n=61 2329923359291170 r005 Im(z^2+c),c=-3/50+9/32*I,n=58 2329923359291170 r005 Im(z^2+c),c=-3/50+9/32*I,n=48 2329923359291170 r005 Im(z^2+c),c=-3/50+9/32*I,n=55 2329923359291171 r005 Im(z^2+c),c=-3/50+9/32*I,n=52 2329923359291176 r005 Im(z^2+c),c=-3/50+9/32*I,n=49 2329923359291200 r005 Im(z^2+c),c=-3/50+9/32*I,n=45 2329923359291206 r005 Im(z^2+c),c=-3/50+9/32*I,n=46 2329923359291349 r005 Im(z^2+c),c=-3/50+9/32*I,n=43 2329923359291599 r005 Im(z^2+c),c=-3/50+9/32*I,n=42 2329923359291707 r005 Im(z^2+c),c=-3/50+9/32*I,n=40 2329923359295590 r005 Im(z^2+c),c=-3/50+9/32*I,n=39 2329923359300979 h001 (4/7*exp(1)+1/6)/(7/8*exp(2)+11/12) 2329923359330153 r005 Im(z^2+c),c=-3/50+9/32*I,n=36 2329923359598655 r005 Im(z^2+c),c=-3/50+9/32*I,n=33 2329923361177266 m009 (3*Psi(1,1/3)-2/3)/(1/3*Psi(1,2/3)+1/4) 2329923361482185 r005 Im(z^2+c),c=-3/50+9/32*I,n=30 2329923362469582 r005 Im(z^2+c),c=-5/29+1/33*I,n=9 2329923363083569 r005 Im(z^2+c),c=-9/38+21/61*I,n=13 2329923367168880 r005 Im(z^2+c),c=-3/50+9/32*I,n=26 2329923368323403 a001 4*(1/2*5^(1/2)+1/2)^17*4^(6/17) 2329923373213813 r005 Im(z^2+c),c=-3/50+9/32*I,n=27 2329923374452551 m001 (-GAMMA(7/12)+Backhouse)/(Chi(1)+BesselI(0,2)) 2329923379301626 a007 Real Root Of 923*x^4-688*x^3+519*x^2-803*x-19 2329923395869473 r009 Im(z^3+c),c=-23/110+2/9*I,n=4 2329923397730788 m001 1/ln(RenyiParking)/FeigenbaumB/BesselK(0,1)^2 2329923403604573 a003 sin(Pi*8/77)*sin(Pi*29/112) 2329923408451810 a007 Real Root Of -37*x^4-865*x^3-51*x^2+362*x-918 2329923412429964 r005 Im(z^2+c),c=37/110+13/35*I,n=24 2329923414330868 m001 TreeGrowth2nd*Si(Pi)^2/ln(sqrt(5))^2 2329923415430620 r002 25th iterates of z^2 + 2329923433069357 m001 (BesselI(0,1)-Zeta(5))/(arctan(1/3)+Robbin) 2329923434276643 r005 Im(z^2+c),c=-3/50+9/32*I,n=24 2329923435251945 r009 Im(z^3+c),c=-35/66+5/27*I,n=57 2329923435519021 r005 Im(z^2+c),c=-14/29+19/46*I,n=51 2329923436813801 a007 Real Root Of -183*x^4-200*x^3+340*x^2-141*x+689 2329923438747044 m001 BesselI(0,2)^GaussKuzminWirsing/Psi(2,1/3) 2329923444789229 r005 Im(z^2+c),c=9/86+5/24*I,n=9 2329923451509232 m001 (Mills-TreeGrowth2nd)/(Pi+gamma) 2329923457495318 m001 (2^(1/3)-RenyiParking)/(Totient+Thue) 2329923459025286 a007 Real Root Of -91*x^4-110*x^3+291*x^2+398*x+638 2329923470856010 a001 55/2207*5778^(8/31) 2329923474241392 r002 21th iterates of z^2 + 2329923476537254 a007 Real Root Of -226*x^4-471*x^3+28*x+768 2329923489309799 m001 LambertW(1)^2/DuboisRaymond^2*exp(Zeta(7)) 2329923493989745 r005 Im(z^2+c),c=-3/50+9/32*I,n=23 2329923499983061 m009 (1/4*Psi(1,1/3)-6)/(5*Psi(1,2/3)-2/5) 2329923502447242 m001 (Pi+ln(2)/ln(10)*Psi(2,1/3))*3^(1/2) 2329923505992743 r005 Re(z^2+c),c=-57/70+4/45*I,n=10 2329923510336513 l006 ln(4486/5663) 2329923513285822 m001 (gamma(1)-MinimumGamma)/(Trott-ZetaP(4)) 2329923520977662 m001 (BesselK(1,1)+FellerTornier)/(3^(1/2)+5^(1/2)) 2329923524209343 r005 Im(z^2+c),c=-10/29+20/53*I,n=20 2329923529030737 a007 Real Root Of 796*x^4+350*x^3+704*x^2-875*x+20 2329923547574451 a007 Real Root Of -589*x^4-929*x^3+899*x^2-600*x-671 2329923562623141 a001 17*3571^(8/25) 2329923566863830 a007 Real Root Of -120*x^4-428*x^3-443*x^2-366*x-325 2329923567725238 s002 sum(A278823[n]/(pi^n+1),n=1..infinity) 2329923568321133 m001 1/GAMMA(1/12)^2/ln(Riemann1stZero)/GAMMA(3/4) 2329923577727340 r009 Re(z^3+c),c=-13/22+22/45*I,n=3 2329923591719003 a001 55/2207*2207^(9/31) 2329923596381636 m005 (1/2*2^(1/2)-5/9)/(5/18+1/6*5^(1/2)) 2329923600798998 m001 1/gamma^2/exp(PrimesInBinary)*sinh(1) 2329923609247364 a007 Real Root Of 64*x^4-57*x^3+67*x^2+975*x-699 2329923612669976 a007 Real Root Of 541*x^4+827*x^3-902*x^2+22*x-535 2329923617830561 m001 exp(1/exp(1))*(PrimesInBinary-Stephens) 2329923620534184 m005 (2/5*Catalan+1/4)/(2/3*exp(1)+5/6) 2329923632825810 a007 Real Root Of 273*x^4+361*x^3-787*x^2-734*x-917 2329923639822055 r005 Im(z^2+c),c=-19/26+9/124*I,n=47 2329923642469574 r005 Im(z^2+c),c=-3/50+9/32*I,n=21 2329923647685213 k003 Champernowne real with 11/2*n^3-29/2*n^2+35*n-24 2329923658482414 a007 Real Root Of -30*x^4-682*x^3+419*x^2+545*x-30 2329923664090204 r009 Im(z^3+c),c=-3/31+13/54*I,n=8 2329923673012651 m005 (1/2*2^(1/2)-1/5)/(3^(1/2)+4/9) 2329923677992069 r005 Im(z^2+c),c=-103/126+1/6*I,n=31 2329923681065210 m006 (3*exp(2*Pi)+1/6)/(4/5*Pi^2-1) 2329923684800970 r005 Im(z^2+c),c=-83/106+4/33*I,n=11 2329923685887407 a007 Real Root Of -80*x^4+736*x^3-996*x^2-399*x-615 2329923695129812 r002 5th iterates of z^2 + 2329923697383964 m001 sinh(1)^(exp(Pi)/KhinchinLevy) 2329923702302983 m001 (ln(2)-Zeta(1,-1))/(Landau-ZetaP(3)) 2329923709112831 r009 Im(z^3+c),c=-29/64+4/49*I,n=30 2329923713556386 a003 sin(Pi*21/107)-sin(Pi*25/83) 2329923714533653 a003 sin(Pi*6/53)*sin(Pi*7/30) 2329923715213400 r009 Re(z^3+c),c=-25/78+29/57*I,n=6 2329923733833345 l006 ln(7901/9974) 2329923757574848 l006 ln(8951/9162) 2329923759180106 m001 (BesselK(1,1)+FeigenbaumAlpha)/MertensB3 2329923759926314 m001 exp(gamma)+TwinPrimes^exp(1/exp(1)) 2329923760960171 m006 (4/5*exp(Pi)-4/5)/(3/4*Pi^2+1/5) 2329923772804679 a007 Real Root Of -154*x^4+616*x^3-724*x^2+884*x-174 2329923773182422 r005 Im(z^2+c),c=-89/94+14/61*I,n=54 2329923781228170 m001 (Zeta(5)-MinimumGamma)/MasserGramainDelta 2329923783335187 r005 Re(z^2+c),c=-29/102+1/13*I,n=8 2329923783726064 a001 17*2207^(17/50) 2329923785116158 p002 log(11^(1/3)*(24-7^(1/2))^(1/2)) 2329923788146722 r005 Im(z^2+c),c=-35/52+5/17*I,n=41 2329923788501118 m001 (Bloch-Shi(1))/(-Kolakoski+Landau) 2329923796068826 m005 (39/44+1/4*5^(1/2))/(3/11*gamma-7/9) 2329923797592931 a007 Real Root Of 196*x^4+216*x^3-528*x^2+484*x+950 2329923800096417 r005 Re(z^2+c),c=13/126+31/53*I,n=48 2329923800881469 m005 (-23/36+1/4*5^(1/2))/(2/3*2^(1/2)-3/5) 2329923802715648 m005 (1/2*2^(1/2)-1/2)/(2/7*Zeta(3)+6/11) 2329923803290389 m001 BesselI(1,2)*Riemann2ndZero^ln(2^(1/2)+1) 2329923803661345 m001 (Champernowne+ThueMorse)/(Pi-sin(1)) 2329923831969631 a007 Real Root Of 365*x^4+688*x^3-595*x^2-884*x-884 2329923832672894 r002 52th iterates of z^2 + 2329923838010142 l006 ln(718/7379) 2329923838354271 m001 arctan(1/2)*TreeGrowth2nd/exp(sqrt(5))^2 2329923843538473 a005 (1/cos(8/133*Pi))^1970 2329923848887061 a007 Real Root Of -33*x^4-750*x^3+447*x^2+153*x-360 2329923851944501 m001 (exp(1)+Lehmer)/(StolarskyHarborth+Totient) 2329923859356343 m001 (HardyLittlewoodC4+Magata)/(ln(Pi)-GAMMA(5/6)) 2329923862735167 m001 (3^(1/2)+Zeta(3))/(-polylog(4,1/2)+Cahen) 2329923892277735 r005 Im(z^2+c),c=-23/98+13/38*I,n=15 2329923898754279 r002 53th iterates of z^2 + 2329923912764688 a001 199/4181*75025^(16/29) 2329923915415735 a001 55/64079*9349^(19/31) 2329923927548442 a001 55/3010349*24476^(29/31) 2329923930419741 a001 55/39603*39603^(15/31) 2329923932330413 m001 BesselI(0,1)-GAMMA(11/12)^BesselK(1,1) 2329923934837726 a001 55/24476*64079^(13/31) 2329923939075392 a007 Real Root Of 894*x^4-163*x^3+153*x^2-845*x+188 2329923939430116 r009 Re(z^3+c),c=-5/13+23/43*I,n=34 2329923946483498 p001 sum((-1)^n/(476*n+429)/(1024^n),n=0..infinity) 2329923948888214 k003 Champernowne real with 6*n^3-35/2*n^2+81/2*n-27 2329923965553248 a001 322/32951280099*86267571272^(5/23) 2329923965553304 a001 322/2971215073*1346269^(5/23) 2329923974106676 m005 (-7/12+1/6*5^(1/2))/(1/2*Pi-2/3) 2329923982358818 m001 GlaisherKinkelin+FeigenbaumC^ZetaP(4) 2329923983782507 p004 log(28663/2789) 2329923985350689 a007 Real Root Of -194*x^4-216*x^3+552*x^2-256*x-608 2329923996463936 r009 Re(z^3+c),c=-13/34+27/53*I,n=3 2329923997319616 m001 1/exp(GAMMA(5/6))^2*Sierpinski^2/sqrt(3)^2 2329923997960433 a007 Real Root Of -599*x^4+886*x^3-503*x^2-263*x-21 2329923998240549 a007 Real Root Of -386*x^4-846*x^3-724*x^2+859*x-149 2329924000054518 a001 123/514229*121393^(7/36) 2329924016778743 h001 (1/8*exp(2)+5/9)/(1/6*exp(1)+2/11) 2329924020378756 a007 Real Root Of 503*x^4-436*x^3-573*x^2-111*x+61 2329924027422441 l006 ln(3415/4311) 2329924054382542 r005 Re(z^2+c),c=-9/40+15/41*I,n=30 2329924057040551 r005 Im(z^2+c),c=-37/58+26/61*I,n=6 2329924065425606 a003 cos(Pi*1/20)/cos(Pi*22/61) 2329924080953832 r002 6th iterates of z^2 + 2329924081884979 m001 (Zeta(3)+ln(Pi))/(LambertW(1)-gamma) 2329924103278162 a001 7/8*144^(35/53) 2329924108928262 a007 Real Root Of 9*x^4+193*x^3-366*x^2+525*x-220 2329924109950237 a007 Real Root Of 398*x^4+43*x^3-977*x^2-548*x+179 2329924111196270 r009 Re(z^3+c),c=-53/94+28/51*I,n=11 2329924114274222 a003 -1-cos(1/21*Pi)+cos(10/21*Pi)-2*cos(13/30*Pi) 2329924125773144 r005 Re(z^2+c),c=-11/62+17/35*I,n=39 2329924134979906 a001 144*76^(1/9) 2329924138497277 l006 ln(451/4635) 2329924148130157 a007 Real Root Of -204*x^4-560*x^3+108*x^2+923*x+493 2329924148314413 a001 322/121393*987^(37/57) 2329924168728924 m001 1/exp(Pi)^2/GAMMA(11/12)*log(2+sqrt(3)) 2329924183189912 a007 Real Root Of -632*x^4-253*x^3-115*x^2+700*x+168 2329924197712308 a007 Real Root Of -162*x^4+789*x^3-952*x^2+596*x+201 2329924200578713 m001 (Catalan+GAMMA(19/24))/(-ErdosBorwein+Rabbit) 2329924201310015 a007 Real Root Of -351*x^4-471*x^3+509*x^2-995*x-695 2329924203149936 r005 Re(z^2+c),c=-5/4+2/97*I,n=54 2329924205593060 s002 sum(A267132[n]/(n^3*exp(n)+1),n=1..infinity) 2329924207613764 m001 BesselK(1,1)^GAMMA(1/6)/(exp(-Pi)^GAMMA(1/6)) 2329924207613764 m001 exp(Pi)^GAMMA(1/6)*BesselK(1,1)^GAMMA(1/6) 2329924207840442 a007 Real Root Of -321*x^4-943*x^3-682*x^2-187*x+799 2329924215220531 m001 (ln(2)+CopelandErdos)/(MertensB1-TwinPrimes) 2329924216107126 m005 (-14/5+1/5*5^(1/2))/(2/5*2^(1/2)-2/3) 2329924216414619 a007 Real Root Of -497*x^4-835*x^3+958*x^2+520*x+96 2329924216720819 r009 Re(z^3+c),c=-53/94+28/51*I,n=14 2329924216841695 g005 GAMMA(9/11)*GAMMA(5/9)*GAMMA(4/7)/GAMMA(3/4) 2329924217866300 r009 Re(z^3+c),c=-53/94+28/51*I,n=26 2329924217866306 r009 Re(z^3+c),c=-53/94+28/51*I,n=29 2329924217866306 r009 Re(z^3+c),c=-53/94+28/51*I,n=32 2329924217866306 r009 Re(z^3+c),c=-53/94+28/51*I,n=41 2329924217866306 r009 Re(z^3+c),c=-53/94+28/51*I,n=44 2329924217866306 r009 Re(z^3+c),c=-53/94+28/51*I,n=47 2329924217866306 r009 Re(z^3+c),c=-53/94+28/51*I,n=59 2329924217866306 r009 Re(z^3+c),c=-53/94+28/51*I,n=62 2329924217866306 r009 Re(z^3+c),c=-53/94+28/51*I,n=56 2329924217866306 r009 Re(z^3+c),c=-53/94+28/51*I,n=53 2329924217866306 r009 Re(z^3+c),c=-53/94+28/51*I,n=50 2329924217866306 r009 Re(z^3+c),c=-53/94+28/51*I,n=38 2329924217866306 r009 Re(z^3+c),c=-53/94+28/51*I,n=35 2329924217866335 r009 Re(z^3+c),c=-53/94+28/51*I,n=23 2329924217871215 r009 Re(z^3+c),c=-53/94+28/51*I,n=20 2329924217968512 r009 Re(z^3+c),c=-53/94+28/51*I,n=17 2329924234116482 s001 sum(exp(-2*Pi/5)^n*A196341[n],n=1..infinity) 2329924234116482 s002 sum(A196341[n]/(exp(2/5*pi*n)),n=1..infinity) 2329924250091215 k003 Champernowne real with 13/2*n^3-41/2*n^2+46*n-30 2329924253854596 m005 (1/3*3^(1/2)+2/7)/(5*gamma+9/11) 2329924260084097 m001 1/cos(Pi/12)*CareFree*exp(sqrt(3))^2 2329924267021834 h001 (-6*exp(2/3)+1)/(-4*exp(-2)+1) 2329924271335573 a001 20633239/1597*832040^(11/20) 2329924271552687 a001 103682/1597*12586269025^(11/20) 2329924279449439 a007 Real Root Of 339*x^4+628*x^3+96*x^2+734*x-858 2329924279735804 r005 Im(z^2+c),c=-31/60+2/49*I,n=44 2329924280473757 m001 Pi^(1/2)*GolombDickman/Weierstrass 2329924305936829 a007 Real Root Of 31*x^4+704*x^3-427*x^2-65*x-879 2329924308674998 a001 322*(1/2*5^(1/2)+1/2)^2*4^(11/15) 2329924309821974 m001 (-Champernowne+GolombDickman)/(cos(1)+ln(5)) 2329924320131313 r005 Im(z^2+c),c=13/60+4/29*I,n=14 2329924321081657 r005 Im(z^2+c),c=-59/122+26/63*I,n=61 2329924337920262 a007 Real Root Of 489*x^4+887*x^3-867*x^2-973*x-752 2329924348401297 a007 Real Root Of -142*x^4-314*x^3-56*x^2+130*x+820 2329924352460976 a001 1322157322203/233*377^(5/21) 2329924356727770 m001 (Gompertz+Riemann2ndZero)/(gamma(2)-Zeta(1,2)) 2329924360680003 r005 Re(z^2+c),c=13/28+17/50*I,n=6 2329924380698878 r005 Im(z^2+c),c=-79/74+13/54*I,n=3 2329924381952085 m001 (GAMMA(7/12)-cos(1/5*Pi)*Porter)/Porter 2329924386500994 a007 Real Root Of -213*x^4-486*x^3-168*x^2-115*x+774 2329924387795619 r005 Re(z^2+c),c=-13/66+23/52*I,n=23 2329924410849266 q001 524/2249 2329924412802332 a005 (1/cos(9/235*Pi))^1386 2329924414835086 a007 Real Root Of -160*x^4+765*x^3+97*x^2+792*x-199 2329924418689765 a001 89/439204*3571^(29/50) 2329924426767184 h001 (5/7*exp(2)+7/10)/(2/7*exp(2)+5/11) 2329924427388446 a001 54018521/4181*832040^(11/20) 2329924427420438 a001 271443/4181*12586269025^(11/20) 2329924430208926 l006 ln(5759/7270) 2329924446411805 a001 41/48*55^(33/40) 2329924450156254 a001 70711162/5473*832040^(11/20) 2329924450161238 a001 710647/10946*12586269025^(11/20) 2329924453478033 a001 370248451/28657*832040^(11/20) 2329924453479076 a001 1860498/28657*12586269025^(11/20) 2329924453962674 a001 969323029/75025*832040^(11/20) 2329924453963142 a001 4870847/75025*12586269025^(11/20) 2329924454033382 a001 1268860318/98209*832040^(11/20) 2329924454033767 a001 12752043/196418*12586269025^(11/20) 2329924454043698 a001 6643838879/514229*832040^(11/20) 2329924454044071 a001 33385282/514229*12586269025^(11/20) 2329924454045204 a001 17393796001/1346269*832040^(11/20) 2329924454045423 a001 22768774562/1762289*832040^(11/20) 2329924454045455 a001 119218851371/9227465*832040^(11/20) 2329924454045460 a001 312119004989/24157817*832040^(11/20) 2329924454045461 a001 408569081798/31622993*832040^(11/20) 2329924454045461 a001 2139295485799/165580141*832040^(11/20) 2329924454045461 a001 5600748293801/433494437*832040^(11/20) 2329924454045461 a001 7331474697802/567451585*832040^(11/20) 2329924454045461 a001 23725150497407/1836311903*832040^(11/20) 2329924454045461 a001 3020733700601/233802911*832040^(11/20) 2329924454045461 a001 1730726404001/133957148*832040^(11/20) 2329924454045461 a001 440719107401/34111385*832040^(11/20) 2329924454045461 a001 505019158607/39088169*832040^(11/20) 2329924454045463 a001 33385281/2584*832040^(11/20) 2329924454045475 a001 73681302247/5702887*832040^(11/20) 2329924454045559 a001 9381251041/726103*832040^(11/20) 2329924454045574 a001 87403803/1346269*12586269025^(11/20) 2329924454045793 a001 228826127/3524578*12586269025^(11/20) 2329924454045825 a001 599074578/9227465*12586269025^(11/20) 2329924454045830 a001 1568397607/24157817*12586269025^(11/20) 2329924454045831 a001 4106118243/63245986*12586269025^(11/20) 2329924454045831 a001 10749957122/165580141*12586269025^(11/20) 2329924454045831 a001 28143753123/433494437*12586269025^(11/20) 2329924454045831 a001 73681302247/1134903170*12586269025^(11/20) 2329924454045831 a001 192900153618/2971215073*12586269025^(11/20) 2329924454045831 a001 505019158607/7778742049*12586269025^(11/20) 2329924454045831 a001 1322157322203/20365011074*12586269025^(11/20) 2329924454045831 a001 3461452808002/53316291173*12586269025^(11/20) 2329924454045831 a001 9062201101803/139583862445*12586269025^(11/20) 2329924454045831 a001 505618944676/7787980473*12586269025^(11/20) 2329924454045831 a001 5600748293801/86267571272*12586269025^(11/20) 2329924454045831 a001 2139295485799/32951280099*12586269025^(11/20) 2329924454045831 a001 817138163596/12586269025*12586269025^(11/20) 2329924454045831 a001 312119004989/4807526976*12586269025^(11/20) 2329924454045831 a001 119218851371/1836311903*12586269025^(11/20) 2329924454045831 a001 45537549124/701408733*12586269025^(11/20) 2329924454045831 a001 599786069/9238424*12586269025^(11/20) 2329924454045831 a001 6643838879/102334155*12586269025^(11/20) 2329924454045831 a001 2537720636/39088169*12586269025^(11/20) 2329924454045833 a001 969323029/14930352*12586269025^(11/20) 2329924454045845 a001 370248451/5702887*12586269025^(11/20) 2329924454045929 a001 141422324/2178309*12586269025^(11/20) 2329924454046134 a001 5374978561/416020*832040^(11/20) 2329924454046503 a001 54018521/832040*12586269025^(11/20) 2329924454050074 a001 1368706081/105937*832040^(11/20) 2329924454050439 a001 711491/10959*12586269025^(11/20) 2329924454077082 a001 1568397607/121393*832040^(11/20) 2329924454077415 a001 7881196/121393*12586269025^(11/20) 2329924454262199 a001 33281921/2576*832040^(11/20) 2329924454262312 a001 3010349/46368*12586269025^(11/20) 2329924455529613 a001 1149851/17711*12586269025^(11/20) 2329924455531005 a001 228826127/17711*832040^(11/20) 2329924457771998 r009 Im(z^3+c),c=-33/74+3/34*I,n=17 2329924464215826 a001 439204/6765*12586269025^(11/20) 2329924464227535 a001 29134601/2255*832040^(11/20) 2329924464807758 a007 Real Root Of 60*x^4-334*x^3-938*x^2+693*x+714 2329924464960872 b008 23+ArcSinh[4]/7 2329924468912659 m001 (3^(1/3)+BesselK(1,1)*GaussAGM)/GaussAGM 2329924469871457 r005 Im(z^2+c),c=25/102+4/35*I,n=8 2329924474061310 m005 (1/2*exp(1)-5/12)/(1/8+1/8*5^(1/2)) 2329924478260574 l006 ln(635/6526) 2329924480451109 r009 Re(z^3+c),c=-17/98+35/46*I,n=49 2329924484925296 m001 (ln(5)-Magata)^(3^(1/3)) 2329924486993737 a007 Real Root Of -438*x^4-733*x^3+308*x^2-853*x-23 2329924488504871 r005 Re(z^2+c),c=-9/16+64/111*I,n=3 2329924500316089 a003 cos(Pi*31/116)*cos(Pi*46/119) 2329924500346842 a007 Real Root Of -28*x^4-678*x^3-611*x^2-312*x+356 2329924513763139 a007 Real Root Of 476*x^4+934*x^3-280*x^2+494*x+457 2329924522082812 a001 89/3010349*24476^(33/50) 2329924523752017 a001 167761/2584*12586269025^(11/20) 2329924523834435 a001 16692641/1292*832040^(11/20) 2329924529173663 a007 Real Root Of -148*x^4+628*x^3+190*x^2+386*x+88 2329924540634485 m001 (Lehmer+Niven)/(3^(1/2)-exp(1)) 2329924541697306 m001 Robbin*FeigenbaumB*exp((3^(1/3))) 2329924544337853 a002 14^(5/7)-5^(9/10) 2329924549360044 m001 (GAMMA(5/6)-Porter)/(3^(1/3)-gamma(2)) 2329924551294215 k003 Champernowne real with 7*n^3-47/2*n^2+103/2*n-33 2329924553282275 a003 sin(Pi*7/116)/cos(Pi*46/97) 2329924554183813 r005 Im(z^2+c),c=-7/10+7/36*I,n=3 2329924557304087 r005 Im(z^2+c),c=-27/74+16/29*I,n=8 2329924562291831 m005 (1/2*2^(1/2)+1/12)/(3/7*Catalan+3) 2329924574980678 m005 (1/2*3^(1/2)-5/9)/(5/8*3^(1/2)+1/4) 2329924581327044 m005 (1/3*Catalan+1/10)/(11/12*Catalan+9/10) 2329924583276776 v002 sum(1/(3^n+(5/2*n^2+79/2*n-40)),n=1..infinity) 2329924596555387 r005 Im(z^2+c),c=-1/3+16/43*I,n=42 2329924604644125 a007 Real Root Of -825*x^4-468*x^3+605*x^2+955*x-247 2329924634102059 a007 Real Root Of 143*x^4+233*x^3-314*x^2-444*x-597 2329924641790154 a007 Real Root Of -340*x^4+799*x^3-790*x^2+176*x+95 2329924646894485 r005 Re(z^2+c),c=-5/6+45/224*I,n=20 2329924649084344 m001 1/2*BesselI(0,1)-1/2*sqrt(3) 2329924649901091 r005 Im(z^2+c),c=-17/60+5/14*I,n=24 2329924652951674 r005 Re(z^2+c),c=-11/74+37/62*I,n=45 2329924665358506 l006 ln(819/8417) 2329924668842683 r002 5th iterates of z^2 + 2329924672509611 r005 Im(z^2+c),c=5/34+5/27*I,n=7 2329924677673015 r005 Re(z^2+c),c=-11/56+19/43*I,n=44 2329924681331248 m005 (1/2*2^(1/2)+1/12)/(5/12*2^(1/2)-1/4) 2329924686547710 r009 Im(z^3+c),c=-3/31+13/54*I,n=10 2329924689729334 m005 (1/2*gamma-2/11)/(1/7*5^(1/2)-7/9) 2329924700538477 r001 58i'th iterates of 2*x^2-1 of 2329924705550204 r005 Im(z^2+c),c=-77/106+4/29*I,n=9 2329924706721063 r009 Im(z^3+c),c=-3/31+13/54*I,n=11 2329924707247728 r009 Im(z^3+c),c=-3/31+13/54*I,n=13 2329924707481972 r009 Im(z^3+c),c=-3/31+13/54*I,n=15 2329924707483535 r009 Im(z^3+c),c=-3/31+13/54*I,n=16 2329924707484084 r009 Im(z^3+c),c=-3/31+13/54*I,n=18 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=21 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=23 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=26 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=28 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=31 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=33 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=34 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=36 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=38 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=39 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=41 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=44 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=46 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=49 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=51 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=52 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=54 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=55 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=56 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=57 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=58 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=59 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=53 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=50 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=48 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=47 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=45 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=43 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=42 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=40 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=37 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=35 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=32 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=29 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=30 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=27 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=25 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=24 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=22 2329924707484133 r009 Im(z^3+c),c=-3/31+13/54*I,n=20 2329924707484138 r009 Im(z^3+c),c=-3/31+13/54*I,n=19 2329924707484375 r009 Im(z^3+c),c=-3/31+13/54*I,n=17 2329924707519932 r009 Im(z^3+c),c=-3/31+13/54*I,n=14 2329924708408529 r009 Im(z^3+c),c=-3/31+13/54*I,n=12 2329924721298707 a007 Real Root Of -556*x^4-409*x^3+195*x^2+413*x-100 2329924722946202 m001 (LambertW(1)+PlouffeB)/(-Trott2nd+Weierstrass) 2329924726983807 r009 Im(z^3+c),c=-3/34+15/62*I,n=3 2329924744868867 m002 E^Pi+(4*Log[Pi]*ProductLog[Pi])/Pi^3 2329924759274181 r005 Im(z^2+c),c=-73/102+6/49*I,n=15 2329924761710164 r005 Im(z^2+c),c=-37/54+10/51*I,n=3 2329924763141026 h001 (2/5*exp(1)+1/9)/(7/12*exp(2)+5/6) 2329924776550987 s002 sum(A256948[n]/(16^n),n=1..infinity) 2329924777763398 r005 Re(z^2+c),c=-7/58+61/63*I,n=8 2329924787167212 m005 (1/2*Zeta(3)-2/3)/(exp(1)-3) 2329924793168968 m001 1/cos(Pi/12)^2*exp(Tribonacci)*sin(Pi/5)^2 2329924796991593 r009 Re(z^3+c),c=-5/17+17/50*I,n=4 2329924799665950 m002 -E^Pi/3+2/Pi^5+Pi^3 2329924800332678 m001 ln(2)+3^(1/3)+DuboisRaymond 2329924819460601 m006 (3/4*Pi-3/5)/(1/4/Pi-5/6) 2329924821683089 m001 Trott^(Zeta(1,2)*GAMMA(17/24)) 2329924836976662 r005 Im(z^2+c),c=-5/8+11/54*I,n=7 2329924842246971 r005 Im(z^2+c),c=-3/50+9/32*I,n=20 2329924844129374 m001 BesselK(0,1)^2/ErdosBorwein^2/ln(GAMMA(1/6))^2 2329924844685597 r009 Re(z^3+c),c=-45/58+43/54*I,n=2 2329924852497216 k003 Champernowne real with 15/2*n^3-53/2*n^2+57*n-36 2329924856961511 r005 Re(z^2+c),c=21/52+7/33*I,n=53 2329924874699787 m001 (3^(1/3))/Conway/exp(GAMMA(7/24))^2 2329924875898774 m001 (Zeta(1/2)-MertensB3)/(Mills-OneNinth) 2329924878085501 p001 sum(1/(91*n+55)/(2^n),n=0..infinity) 2329924883670759 r005 Im(z^2+c),c=-65/106+25/59*I,n=18 2329924892676827 r005 Im(z^2+c),c=-1/4+17/49*I,n=26 2329924897685809 a007 Real Root Of -817*x^4-336*x^3+955*x^2+827*x+139 2329924904073608 m001 OneNinth/Champernowne^2/ln(GAMMA(2/3)) 2329924905677072 r009 Im(z^3+c),c=-3/31+13/54*I,n=9 2329924908033096 a007 Real Root Of -372*x^4-663*x^3+188*x^2-413*x+594 2329924912014818 a007 Real Root Of 91*x^4-37*x^3-44*x^2+836*x-963 2329924916115174 a007 Real Root Of 471*x^4+710*x^3-629*x^2+219*x-975 2329924918587356 m001 (5^(1/2))^GAMMA(2/3)-Cahen 2329924918587356 m001 sqrt(5)^GAMMA(2/3)-Cahen 2329924926134910 m001 (HeathBrownMoroz-Otter)/(GAMMA(3/4)-ln(3)) 2329924931819220 a001 64079/987*12586269025^(11/20) 2329924932386292 a001 4250681/329*832040^(11/20) 2329924932922399 r005 Re(z^2+c),c=2/11+28/59*I,n=64 2329924939251531 m009 (3/10*Pi^2+2/3)/(5*Psi(1,2/3)+1/4) 2329924945078857 a007 Real Root Of 534*x^4-49*x^3-807*x^2-934*x-176 2329924950717975 r002 18th iterates of z^2 + 2329924951028418 h001 (7/10*exp(2)+10/11)/(3/4*exp(1)+4/7) 2329924954388409 m005 (-17/44+1/4*5^(1/2))/(1/2*3^(1/2)-1/8) 2329924962924536 m001 1/ln(TwinPrimes)^2*Backhouse^2*Ei(1) 2329924966519287 r005 Re(z^2+c),c=-13/86+53/63*I,n=15 2329924969924778 r005 Re(z^2+c),c=-7/40+28/55*I,n=21 2329924971190331 m001 (MasserGramainDelta+Otter)/(Kac-MasserGramain) 2329924971439371 m001 Zeta(3)^sin(1)/(TreeGrowth2nd^sin(1)) 2329924979137577 a007 Real Root Of 231*x^4+697*x^3+658*x^2+990*x+743 2329924986319740 r005 Re(z^2+c),c=-1/14+36/61*I,n=9 2329924993375976 m005 (1/2*gamma+2/9)/(1/2*exp(1)+5/6) 2329925014916221 m001 (2^(1/3)-cos(1))/(Grothendieck+Mills) 2329925017033064 l006 ln(2344/2959) 2329925039595883 r005 Re(z^2+c),c=3/16+1/19*I,n=6 2329925040639871 r005 Im(z^2+c),c=-1/110+6/23*I,n=11 2329925042368276 m001 1/GAMMA(7/24)/exp(log(2+sqrt(3)))^2 2329925043238720 m001 GAMMA(5/6)*ln(GAMMA(1/24))/GAMMA(7/12) 2329925048397361 m001 (Lehmer-ZetaP(4))/(Ei(1,1)+gamma(3)) 2329925048630491 a005 (1/cos(26/215*Pi))^883 2329925048691618 a001 46347*76^(22/59) 2329925050193807 r005 Im(z^2+c),c=-5/13+17/44*I,n=31 2329925051088384 b008 2+(3*Csc[2])/10 2329925051088384 b008 20+3*Csc[2] 2329925067395775 m004 4*Tan[Sqrt[5]*Pi]+(25*Pi*Tanh[Sqrt[5]*Pi])/4 2329925105521513 a007 Real Root Of 359*x^4+461*x^3-604*x^2+351*x-652 2329925111095976 b008 -4*(1+E^(-1))+Pi 2329925117385030 h001 (1/10*exp(2)+3/10)/(6/11*exp(2)+3/7) 2329925128127862 m001 1/exp(sin(Pi/12))^2/Si(Pi)/sinh(1)^2 2329925128336758 m005 (1/2*Pi-3/8)/(5/12*gamma+3/11) 2329925133079731 a001 10749957122/233*225851433717^(5/21) 2329925133079733 a001 119218851371/233*9227465^(5/21) 2329925133949360 m005 (1/2*5^(1/2)+7/11)/(3*exp(1)-5/8) 2329925146037699 p003 LerchPhi(1/2,6,271/212) 2329925148733069 b008 (13/2)^(1+Pi)+Pi 2329925149914177 m001 (FeigenbaumC-PlouffeB)/(exp(-1/2*Pi)+Artin) 2329925153610021 k003 Champernowne real with 8*n^3-59/2*n^2+125/2*n-39 2329925157374325 a003 sin(Pi*32/89)/cos(Pi*25/67) 2329925159646222 r005 Re(z^2+c),c=-3/118+23/42*I,n=6 2329925169979026 m001 (Porter+Weierstrass)/(Khinchin-Si(Pi)) 2329925176847237 m001 GAMMA(1/4)*Zeta(1/2)*BesselJ(1,1) 2329925176847237 m001 Pi*2^(1/2)/GAMMA(3/4)*Zeta(1/2)*BesselJ(1,1) 2329925196548690 m009 (32/5*Catalan+4/5*Pi^2+1/5)/(6*Psi(1,1/3)-2/3) 2329925200951630 m005 (9/8+1/4*5^(1/2))/(1/2*exp(1)-7/11) 2329925206736985 h001 (9/11*exp(2)+1/5)/(1/4*exp(2)+5/6) 2329925210607767 s002 sum(A152834[n]/(16^n),n=1..infinity) 2329925218586902 m001 1/5*(5^(1/2)*GAMMA(11/12)-Tribonacci)*5^(1/2) 2329925235269052 a007 Real Root Of -226*x^4-606*x^3-38*x^2-32*x-873 2329925250278123 a005 (1/cos(2/33*Pi))^1309 2329925261535572 m001 (ln(2^(1/2)+1)+GolombDickman)/MasserGramain 2329925266472621 r005 Im(z^2+c),c=-10/23+11/32*I,n=6 2329925280959728 a007 Real Root Of -767*x^4+270*x^3-727*x^2+446*x-10 2329925285370229 m001 (Landau-Tribonacci)/(sin(1/5*Pi)-Cahen) 2329925292238548 m001 (Psi(2,1/3)-gamma)/(-BesselI(1,1)+Otter) 2329925296885873 m005 (1/2*gamma-9/11)/(145/112+7/16*5^(1/2)) 2329925300006137 r009 Re(z^3+c),c=-5/36+39/62*I,n=2 2329925306434506 m005 (1/2*5^(1/2)-5/12)/(4/7*3^(1/2)-4) 2329925307705846 m001 Stephens/(ln(2^(1/2)+1)+BesselI(1,2)) 2329925311049471 l006 ln(184/1891) 2329925314617030 r005 Im(z^2+c),c=-7/10+19/104*I,n=24 2329925317460943 m001 Catalan/exp(Rabbit)/GAMMA(5/24)^2 2329925318425651 h001 (3/8*exp(1)+5/8)/(5/6*exp(2)+9/10) 2329925320732252 r005 Re(z^2+c),c=-7/44+21/40*I,n=56 2329925328284564 r005 Im(z^2+c),c=-4/25+20/63*I,n=13 2329925328402876 a003 -3/2+cos(1/21*Pi)+cos(4/9*Pi)+cos(7/15*Pi) 2329925336318559 r009 Re(z^3+c),c=-1/26+33/53*I,n=17 2329925337654009 m001 (ln(2)/ln(10)*Totient+exp(1))/Totient 2329925342154936 m008 (1/6*Pi^4+3/4)/(1/3*Pi^2+4) 2329925344225895 s001 sum(exp(-Pi/2)^(n-1)*A277684[n],n=1..infinity) 2329925346777779 a007 Real Root Of 275*x^4+793*x^3-70*x^2-606*x+894 2329925363724058 m001 Psi(1,1/3)^(HardyLittlewoodC3*Stephens) 2329925367646478 h001 (4/7*exp(1)+1/5)/(9/10*exp(2)+7/8) 2329925378259455 a003 cos(Pi*37/87)/sin(Pi*25/52) 2329925381775042 r005 Im(z^2+c),c=-45/82+1/24*I,n=44 2329925382266444 a007 Real Root Of -467*x^4-734*x^3+972*x^2+440*x+227 2329925382500158 m001 (Ei(1,1)-gamma(2))/(Landau+TreeGrowth2nd) 2329925396226430 a007 Real Root Of -246*x^4-431*x^3-98*x^2-858*x+331 2329925401381806 p001 sum(1/(142*n+43)/(125^n),n=0..infinity) 2329925402456535 a003 sin(Pi*10/107)*sin(Pi*14/47) 2329925405638525 s002 sum(A083689[n]/(n^2*2^n+1),n=1..infinity) 2329925411722232 a008 Real Root of x^4-15*x^2-12*x+24 2329925418274134 r005 Re(z^2+c),c=-3/19+13/24*I,n=10 2329925425837422 m002 -E^Pi-Tanh[Pi]/(2*Pi) 2329925429029255 m001 (1-cos(1))/(GAMMA(3/4)+RenyiParking) 2329925431119695 s002 sum(A064469[n]/(n^2*10^n-1),n=1..infinity) 2329925433672238 m005 (1/2*Pi+6/11)/(7/12*2^(1/2)+1/12) 2329925434226209 s002 sum(A057700[n]/(n^2*10^n-1),n=1..infinity) 2329925434618970 m006 (2/5*exp(2*Pi)+5)/(1/6*ln(Pi)+3/4) 2329925445047483 p001 sum((-1)^n/(499*n+429)/(1000^n),n=0..infinity) 2329925454810321 k003 Champernowne real with 17/2*n^3-65/2*n^2+68*n-42 2329925456451871 r005 Re(z^2+c),c=37/122+13/60*I,n=14 2329925459193197 r005 Im(z^2+c),c=-1/3+16/43*I,n=37 2329925462581108 r005 Im(z^2+c),c=25/122+25/53*I,n=4 2329925462646406 a003 cos(Pi*1/97)-sin(Pi*34/79) 2329925466218306 p004 log(28493/22571) 2329925472705439 s002 sum(A242050[n]/(n*10^n-1),n=1..infinity) 2329925486481743 m005 (1/2*gamma-4)/(7/8*5^(1/2)-4/11) 2329925497953156 m001 (OneNinth-Porter)/(TwinPrimes-ZetaP(4)) 2329925498756257 r005 Im(z^2+c),c=-79/94+7/44*I,n=25 2329925504508580 m001 1/BesselK(1,1)*exp(Robbin)^2*GAMMA(11/24)^2 2329925506971042 r005 Im(z^2+c),c=17/110+18/31*I,n=25 2329925506980597 m005 (1/2*exp(1)+7/11)/(1/3*5^(1/2)+1/9) 2329925507839017 l006 ln(6236/6383) 2329925510249616 m001 KhintchineLevy*exp(Si(Pi))*GAMMA(7/24) 2329925512218719 a001 2/2178309*6765^(11/30) 2329925513393085 p002 log(6*(17^(1/2)-2^(1/4))^(1/2)) 2329925527873797 r005 Im(z^2+c),c=-99/98+1/42*I,n=6 2329925529702326 r005 Im(z^2+c),c=-29/118+21/61*I,n=12 2329925532827024 a007 Real Root Of 522*x^4+886*x^3-702*x^2-49*x-480 2329925536974885 r005 Im(z^2+c),c=-61/52+10/43*I,n=31 2329925559462750 a007 Real Root Of -237*x^4-691*x^3-651*x^2-783*x-46 2329925570094994 r009 Re(z^3+c),c=-35/66+13/43*I,n=3 2329925583971499 l006 ln(5961/7525) 2329925592123545 m001 Conway^FeigenbaumB/(Bloch^FeigenbaumB) 2329925592143886 r005 Re(z^2+c),c=15/64+8/63*I,n=12 2329925601780504 m001 (Pi-BesselI(0,1))/(FeigenbaumB-Trott2nd) 2329925604044106 m001 (GAMMA(19/24)+MertensB1)/(OneNinth-Sarnak) 2329925606455572 a001 233/3010349*29^(18/55) 2329925608701440 m001 CareFree/(GaussKuzminWirsing-HeathBrownMoroz) 2329925612307500 s002 sum(A164027[n]/((2^n+1)/n),n=1..infinity) 2329925614052373 r005 Im(z^2+c),c=-25/22+2/69*I,n=42 2329925614393965 a007 Real Root Of -564*x^4-960*x^3+857*x^2+45*x-69 2329925622018885 h001 (1/4*exp(2)+9/10)/(3/10*exp(1)+4/11) 2329925622388441 m001 (Khinchin+Stephens)/(GAMMA(23/24)+Artin) 2329925629262721 g004 Re(GAMMA(2+I*25/6)) 2329925629978794 a007 Real Root Of 361*x^4+960*x^3+144*x^2-261*x+114 2329925641327917 a007 Real Root Of -26*x^4+446*x^3+892*x^2-491*x+421 2329925643149866 a007 Real Root Of 293*x^4-683*x^3+404*x^2-520*x+107 2329925654743953 m001 FellerTornier^cos(1)+KomornikLoreti 2329925673954452 r005 Re(z^2+c),c=21/94+7/62*I,n=22 2329925678070482 m001 (1+Bloch)/(-PlouffeB+ThueMorse) 2329925701279646 r005 Re(z^2+c),c=25/62+9/29*I,n=29 2329925703074523 p001 sum((-1)^n/(335*n+93)/n/(100^n),n=1..infinity) 2329925721764342 m001 1/GAMMA(3/4)*GlaisherKinkelin/ln(cos(Pi/5))^2 2329925739330100 m001 exp(Riemann1stZero)^2/KhintchineLevy^2/gamma 2329925740495107 r005 Im(z^2+c),c=-5/8+65/178*I,n=7 2329925741889080 m001 (FeigenbaumKappa+Totient)/(ln(2)+arctan(1/2)) 2329925752506725 m001 1/BesselJ(1,1)^2*MadelungNaCl/exp(GAMMA(2/3)) 2329925753205919 a007 Real Root Of 282*x^4+339*x^3-501*x^2+227*x-774 2329925754565030 m005 (1/2*2^(1/2)+7/8)/(5/11*gamma+5/12) 2329925756010621 k003 Champernowne real with 9*n^3-71/2*n^2+147/2*n-45 2329925757891162 a007 Real Root Of 544*x^4-425*x^3-23*x^2-675*x-163 2329925770426297 p003 LerchPhi(1/1024,6,167/131) 2329925771886445 m001 1/sin(1)^2/exp(Si(Pi))^2*sin(Pi/12)^2 2329925790579518 a008 Real Root of (-6+4*x+6*x^2+6*x^3-5*x^4-3*x^5) 2329925792180006 r005 Im(z^2+c),c=-17/22+11/128*I,n=60 2329925796899639 m005 (39/44+1/4*5^(1/2))/(2/9*Catalan+6) 2329925800200074 r005 Im(z^2+c),c=-89/126+14/33*I,n=4 2329925803392764 a007 Real Root Of 637*x^4-271*x^3+445*x^2-861*x+178 2329925803747483 m005 (-11/4+1/4*5^(1/2))/(2/3*gamma+5/9) 2329925806498672 r004 Re(z^2+c),c=-5/18+1/7*I,z(0)=-1,n=19 2329925808469972 m002 25-E^Pi/2+Pi^2 2329925812071666 r005 Re(z^2+c),c=-5/21+13/40*I,n=18 2329925820511248 m001 CopelandErdos-GAMMA(7/12)-Zeta(5) 2329925821975467 r005 Re(z^2+c),c=-19/48+35/61*I,n=39 2329925826518607 a001 281/7*89^(19/21) 2329925837062434 a007 Real Root Of 816*x^4-57*x^3-98*x^2-302*x+74 2329925837619554 a001 38/5473*377^(10/49) 2329925844584501 r005 Im(z^2+c),c=1/44+14/55*I,n=4 2329925852373144 a001 2207/233*10946^(3/31) 2329925856681554 b008 6+13*E^(2/7) 2329925858322590 r002 44th iterates of z^2 + 2329925858497037 a007 Real Root Of 263*x^4+708*x^3+153*x^2-321*x-374 2329925860765606 m004 -5+4*Sqrt[5]*Pi+Tanh[Sqrt[5]*Pi]/5 2329925876937025 m001 (-TreeGrowth2nd+ZetaP(3))/(LambertW(1)-Niven) 2329925882399432 r005 Re(z^2+c),c=-9/32+5/44*I,n=12 2329925885377561 r005 Re(z^2+c),c=1/3+11/57*I,n=31 2329925888126079 r005 Im(z^2+c),c=-13/22+20/57*I,n=33 2329925893177370 a007 Real Root Of 97*x^4-597*x^3+348*x^2+895*x+718 2329925897592258 m001 (Lehmer+ZetaP(4))/(BesselI(0,1)+ErdosBorwein) 2329925903048447 r005 Re(z^2+c),c=-99/122+2/45*I,n=10 2329925907565359 h001 (1/2*exp(2)+5/11)/(1/8*exp(2)+6/7) 2329925908113907 a001 1364/317811*233^(9/29) 2329925908780030 a007 Real Root Of -496*x^4-933*x^3+588*x^2+9*x-355 2329925912337914 m001 1/GAMMA(5/6)*BesselJ(0,1)^2*ln(cos(Pi/5))^2 2329925918260490 a007 Real Root Of 436*x^4+859*x^3-636*x^2-666*x-83 2329925922639462 m001 (BesselK(1,1)-sin(1))/(-Otter+Tetranacci) 2329925924075901 a001 (5^(1/4)+1)^(407/48) 2329925938369107 r005 Im(z^2+c),c=5/17+3/56*I,n=23 2329925938680243 p001 sum((-1)^n/(511*n+414)/(12^n),n=0..infinity) 2329925942854206 l006 ln(837/8602) 2329925943399569 r005 Re(z^2+c),c=-4/27+31/52*I,n=45 2329925948958040 m001 Si(Pi)^2*Cahen^2/ln(Tribonacci) 2329925949752300 r009 Re(z^3+c),c=-17/48+9/20*I,n=29 2329925951376428 l006 ln(3617/4566) 2329925966241937 a007 Real Root Of 407*x^4+811*x^3-433*x^2-128*x+316 2329925972507660 m001 (FellerTornier+LandauRamanujan)/(Rabbit-Salem) 2329925978145928 q001 661/2837 2329925984017463 m001 (Zeta(3)+sin(1/12*Pi))/(GaussAGM-MinimumGamma) 2329925986815042 r005 Im(z^2+c),c=-10/23+19/47*I,n=27 2329926001438016 b008 -1/3+Sqrt[2]+ArcTan[3] 2329926016907233 s001 sum(exp(-2*Pi)^(n-1)*A220079[n],n=1..infinity) 2329926017209117 r009 Re(z^3+c),c=-3/122+5/36*I,n=5 2329926031943517 r002 6th iterates of z^2 + 2329926036859520 m001 Gompertz^ZetaR(2)-ln(2) 2329926057210921 k003 Champernowne real with 19/2*n^3-77/2*n^2+79*n-48 2329926059388300 m001 exp(GAMMA(7/24))*Ei(1)/sqrt(Pi) 2329926060645533 h001 (5/12*exp(1)+2/11)/(5/7*exp(2)+4/11) 2329926065848295 a007 Real Root Of 332*x^4+514*x^3-168*x^2+790*x-530 2329926069994529 m001 MasserGramain-Zeta(1,-1)-Pi 2329926076293132 r005 Re(z^2+c),c=31/86+11/52*I,n=61 2329926080114126 m001 (1+Catalan)/(HardyLittlewoodC5+ThueMorse) 2329926080838196 r009 Im(z^3+c),c=-1/38+13/53*I,n=6 2329926086495137 m001 (cos(1/5*Pi)+Bloch)/(FeigenbaumMu+Tetranacci) 2329926086973221 r005 Im(z^2+c),c=-1/28+48/59*I,n=18 2329926090429024 r002 3th iterates of z^2 + 2329926109847149 a007 Real Root Of -37*x^4-875*x^3-330*x^2-647*x+561 2329926115161016 r005 Im(z^2+c),c=-13/42+23/63*I,n=39 2329926117173070 m001 GAMMA(5/6)*Rabbit+GAMMA(7/12) 2329926118206648 a007 Real Root Of 131*x^4+39*x^3-520*x^2+389*x+362 2329926120881808 l006 ln(653/6711) 2329926121989895 h001 (-exp(1)-6)/(-7*exp(4)+8) 2329926127759617 m001 (1+3^(1/2))^(1/2)+GolombDickman+Riemann2ndZero 2329926129393842 m004 -125/Pi+18*Tan[Sqrt[5]*Pi] 2329926129857856 m005 (1/2*Pi+3/7)/(1/7*Catalan+8/11) 2329926135622033 p002 log(1/12*(9*12^(1/3)+5^(2/3))*12^(2/3)) 2329926137619862 a007 Real Root Of -748*x^4+847*x^3-575*x^2+875*x+248 2329926140850557 m001 LaplaceLimit/(Shi(1)+KomornikLoreti) 2329926152504602 r005 Im(z^2+c),c=-21/44+19/43*I,n=34 2329926173347342 r005 Im(z^2+c),c=-23/82+21/59*I,n=19 2329926184033623 r009 Re(z^3+c),c=-6/17+23/51*I,n=15 2329926185333500 m001 (BesselI(0,2)+ThueMorse)/(Ei(1,1)-exp(1/Pi)) 2329926187249082 m005 (1/2*gamma-5)/(3/7*exp(1)+6/7) 2329926230824392 m001 (BesselI(1,1)-Backhouse)/(GaussAGM-ZetaP(2)) 2329926232380036 m001 exp(GAMMA(1/3))*Magata^2*GAMMA(19/24)^2 2329926233909596 r005 Im(z^2+c),c=-3/26+16/53*I,n=15 2329926234054716 m005 (1/2*gamma+6/7)/(1/7*gamma-5) 2329926234249711 r009 Im(z^3+c),c=-29/66+5/53*I,n=25 2329926239335448 m001 GAMMA(1/3)^2*Artin^2*exp(Zeta(1/2)) 2329926242599627 b008 2-(3*Sinh[7])/7 2329926249274263 a001 (1+2^(1/2))^(1246/57) 2329926249424187 r005 Im(z^2+c),c=-69/118+11/51*I,n=5 2329926250270081 a001 1/87*(1/2*5^(1/2)+1/2)^15*29^(2/17) 2329926251719040 m001 1/sin(Pi/12)^2/exp(GAMMA(17/24))/sqrt(Pi) 2329926257582615 m001 1/(3^(1/3))/KhintchineLevy/ln(GAMMA(17/24)) 2329926270923355 a007 Real Root Of -14*x^4-129*x^3-386*x^2+801*x-164 2329926277616376 m001 Pi/ln(2)/DuboisRaymond 2329926284313562 a007 Real Root Of 364*x^4-556*x^3+859*x^2+89*x-34 2329926284960620 a007 Real Root Of 239*x^4+803*x^3+448*x^2-786*x-198 2329926290473057 r005 Re(z^2+c),c=-5/38+37/62*I,n=57 2329926303039654 r009 Re(z^3+c),c=-19/64+8/25*I,n=5 2329926314072777 r008 a(0)=0,K{-n^6,-6+29*n+42*n^2-21*n^3} 2329926321983722 m005 (1/2*3^(1/2)+5/8)/(7/11*Zeta(3)-1/8) 2329926323927485 p001 sum((-1)^n/(478*n+429)/(1024^n),n=0..infinity) 2329926338290059 m001 (GAMMA(11/12)+Backhouse)/(Kac+ZetaP(2)) 2329926338839232 a001 1597/322*199^(8/11) 2329926343518649 a007 Real Root Of -592*x^4+618*x^3-986*x^2+878*x+21 2329926346039016 m001 1/Rabbit^2/MadelungNaCl^2/exp(GAMMA(23/24)) 2329926346487465 a005 (1/cos(7/128*Pi))^1299 2329926347041834 a001 3/28657*2178309^(10/27) 2329926352106731 m001 BesselI(1,1)/Psi(2,1/3)/BesselJ(1,1) 2329926358411221 k003 Champernowne real with 10*n^3-83/2*n^2+169/2*n-51 2329926368347756 m001 Pi/exp(Pi)-sin(1/5*Pi)*Zeta(1,-1) 2329926380326373 m005 (1/3*Catalan-1/11)/(3*Pi-2/9) 2329926390233203 a001 1364/1346269*4807526976^(19/22) 2329926399249781 l006 ln(4890/6173) 2329926418554020 a003 sin(Pi*43/100)-sin(Pi*58/119) 2329926420158861 r005 Re(z^2+c),c=-29/110+7/31*I,n=7 2329926437152034 a007 Real Root Of 19*x^4-347*x^3-589*x^2+959*x+483 2329926438598366 l006 ln(469/4820) 2329926454570353 m001 Si(Pi)+Zeta(1,-1)+Cahen 2329926459995852 a001 2889/305*121393^(19/22) 2329926465067872 r009 Re(z^3+c),c=-61/102+22/45*I,n=57 2329926474160437 a007 Real Root Of -33*x^4+288*x^3+554*x^2-569*x+282 2329926495521340 a003 cos(Pi*27/88)-cos(Pi*41/105) 2329926501318395 r005 Im(z^2+c),c=-23/42+25/62*I,n=55 2329926501465784 m001 (Ei(1)+GAMMA(7/12))/(CopelandErdos-Niven) 2329926502951865 m001 (ln(5)+Magata)/(3^(1/2)+BesselK(0,1)) 2329926504105682 m008 (5*Pi^5+2/5)/(3/4*Pi^2-5/6) 2329926506180987 a007 Real Root Of -390*x^4-750*x^3+110*x^2-463*x+331 2329926511459512 m001 GAMMA(23/24)+MadelungNaCl^PlouffeB 2329926513675297 a007 Real Root Of 371*x^4+439*x^3-924*x^2+323*x+388 2329926515412332 r002 5th iterates of z^2 + 2329926520803066 m005 (1/3*gamma-1/11)/(3/4*Pi+2) 2329926523059169 a007 Real Root Of -243*x^4-119*x^3+792*x^2-838*x-596 2329926524077980 m005 (1/3*Zeta(3)-3/7)/(3/7*3^(1/2)+5/11) 2329926533468641 a007 Real Root Of -237*x^4-103*x^3+801*x^2-731*x-370 2329926536388106 m001 (ln(5)*ArtinRank2-RenyiParking)/ln(5) 2329926539766521 r005 Re(z^2+c),c=-107/98+11/35*I,n=8 2329926540539086 a008 Real Root of x^4+x^2-30*x+35 2329926543923262 m005 (1/2*3^(1/2)+2/5)/(5/6*3^(1/2)-9/10) 2329926547591554 h001 (3/7*exp(2)+1/11)/(1/6*exp(2)+1/6) 2329926555156980 a007 Real Root Of 336*x^4+514*x^3-312*x^2+545*x-437 2329926561865238 r005 Re(z^2+c),c=-4/17+7/23*I,n=7 2329926577186108 m008 (3/5*Pi^2+4/5)/(3*Pi^6+4/5) 2329926584172359 m001 (FellerTornier-exp(1))/(Stephens+ZetaP(2)) 2329926586136527 m001 (2^(1/3)+ln(gamma))/(3^(1/3)+ErdosBorwein) 2329926590791875 a001 1/11592*196418^(36/43) 2329926594750794 m001 Magata-MertensB3^sin(1/12*Pi) 2329926597266862 m001 1/Salem^2*exp(FransenRobinson)^2*GAMMA(19/24) 2329926601446087 m005 (1/2*Zeta(3)-1/11)/(5/6*Pi-3/7) 2329926604009601 p001 sum((-1)^n/(500*n+429)/(1000^n),n=0..infinity) 2329926608237665 p004 log(12569/1223) 2329926611217649 m005 (1/2*gamma+4/5)/(29/22+3/2*5^(1/2)) 2329926618844083 p001 sum(1/(305*n+31)/n/(128^n),n=1..infinity) 2329926621759490 a007 Real Root Of 457*x^4+545*x^3-869*x^2+551*x-573 2329926625408985 m005 (1/2*3^(1/2)+11/12)/(6/11*5^(1/2)-5/11) 2329926629395857 a007 Real Root Of 858*x^4-536*x^3-413*x^2-181*x-4 2329926647011297 a001 55/3*123^(28/53) 2329926653898480 m001 Trott^2*Riemann3rdZero^2/ln(GAMMA(1/24)) 2329926659611521 k003 Champernowne real with 21/2*n^3-89/2*n^2+90*n-54 2329926661926219 a003 3^(1/2)+2*cos(5/24*Pi)-cos(1/21*Pi) 2329926662101941 l006 ln(6163/7780) 2329926665557670 m001 1/exp(GAMMA(13/24))/GAMMA(1/12)*sinh(1)^2 2329926666549960 h001 (3/8*exp(1)+1/11)/(1/12*exp(1)+1/4) 2329926671273408 r005 Re(z^2+c),c=-11/40+7/43*I,n=10 2329926674555746 m001 cos(1)^(FeigenbaumAlpha/HardyLittlewoodC5) 2329926676213288 r005 Re(z^2+c),c=-17/18+24/139*I,n=60 2329926680895026 b008 1/7+13*ArcCoth[6] 2329926693074240 a007 Real Root Of 429*x^4+960*x^3+387*x^2+800*x-737 2329926693147533 a007 Real Root Of 711*x^4+479*x^3-557*x^2-782*x-148 2329926696143117 m001 Pi^2*exp(LambertW(1))^2/log(2+sqrt(3)) 2329926697583705 r005 Im(z^2+c),c=-9/10+48/245*I,n=4 2329926700140794 r009 Re(z^3+c),c=-45/106+16/49*I,n=3 2329926702586939 r005 Im(z^2+c),c=17/62+5/62*I,n=29 2329926711903477 a007 Real Root Of 582*x^4-411*x^3-339*x^2-912*x-201 2329926713755994 l006 ln(754/7749) 2329926717092513 m006 (4/5*Pi^2+5)/(1/2*Pi^2+3/5) 2329926717092513 m008 (4/5*Pi^2+5)/(1/2*Pi^2+3/5) 2329926719896097 p001 sum(1/(592*n+437)/(24^n),n=0..infinity) 2329926720289687 a007 Real Root Of 520*x^4+770*x^3-709*x^2+952*x+482 2329926724392323 m001 1/KhintchineLevy/GlaisherKinkelin/exp(Zeta(5)) 2329926725211111 k006 concat of cont frac of 2329926726385457 r005 Re(z^2+c),c=-43/102+3/7*I,n=5 2329926733076371 r009 Re(z^3+c),c=-19/74+41/62*I,n=5 2329926736909143 m001 (BesselK(1,1)-Rabbit)/(Trott+ZetaP(2)) 2329926743317777 r005 Im(z^2+c),c=-10/19+17/40*I,n=60 2329926743579393 m001 Psi(2,1/3)/FeigenbaumKappa/KhinchinHarmonic 2329926749655867 m001 Pi-2^(1/2)/(cos(1)+Zeta(3)) 2329926759909928 m005 (-5/28+1/4*5^(1/2))/(7/9*3^(1/2)+2/7) 2329926763266495 m004 625/Pi+5*Sqrt[5]*Pi-(5*Sin[Sqrt[5]*Pi])/Pi 2329926766712846 m001 MadelungNaCl/(GAMMA(1/6)^GAMMA(19/24)) 2329926766941146 a007 Real Root Of -133*x^4+771*x^3+209*x^2+679*x+157 2329926777339366 r005 Re(z^2+c),c=-43/54+5/53*I,n=38 2329926777747800 m001 (2^(1/2)+Chi(1))/(Artin+Lehmer) 2329926778202485 m001 MertensB3+cos(1/12*Pi)^ZetaP(4) 2329926793183250 r002 27th iterates of z^2 + 2329926804827138 a007 Real Root Of -306*x^4-239*x^3+723*x^2-733*x+362 2329926804900064 a007 Real Root Of 497*x^4-882*x^3+980*x^2-842*x-262 2329926818774420 a003 cos(Pi*11/26)*sin(Pi*32/75) 2329926828885522 a007 Real Root Of -448*x^4-972*x^3-225*x^2-493*x+981 2329926834956571 l006 ln(7436/9387) 2329926843747370 r005 Im(z^2+c),c=11/74+11/59*I,n=6 2329926859951618 m001 (MadelungNaCl+Thue)/(BesselI(1,2)-Bloch) 2329926861413016 a007 Real Root Of 775*x^4-187*x^3-620*x^2-602*x+174 2329926861666680 r005 Im(z^2+c),c=-29/118+31/61*I,n=5 2329926866098208 r005 Re(z^2+c),c=-7/40+28/57*I,n=58 2329926870197013 a007 Real Root Of -289*x^4-210*x^3+688*x^2-884*x+66 2329926880067011 m001 (Sarnak+Weierstrass)^FeigenbaumDelta 2329926892281439 a001 55/103682*843^(28/31) 2329926897501808 m005 (1/2*Zeta(3)-3/4)/(3/10*Zeta(3)-1) 2329926902831765 r005 Re(z^2+c),c=-15/22+31/121*I,n=22 2329926911227615 h001 (2/11*exp(1)+2/11)/(5/6*exp(1)+7/11) 2329926911954051 a008 Real Root of x^3-299*x-684 2329926922063772 r005 Im(z^2+c),c=-17/54+11/30*I,n=33 2329926941909749 m001 (Conway-exp(1))/(Gompertz+Trott) 2329926943434374 m004 -1/(4*E^(Sqrt[5]*Pi))+ProductLog[Sqrt[5]*Pi]^2 2329926947672156 m001 MasserGramainDelta^Sarnak/LaplaceLimit 2329926948598416 m001 1/BesselK(0,1)^2*exp(Riemann1stZero)/gamma^2 2329926950625533 a007 Real Root Of -243*x^4+23*x^3-376*x^2+54*x+34 2329926956786170 a001 2/89*514229^(6/17) 2329926960811822 k003 Champernowne real with 11*n^3-95/2*n^2+191/2*n-57 2329926966411675 a007 Real Root Of 856*x^4-380*x^3+339*x^2-778*x-207 2329926972143440 m005 (1/2*3^(1/2)+2/9)/(5*Catalan+1/11) 2329926975858424 r005 Im(z^2+c),c=-59/114+25/58*I,n=52 2329926977713572 a001 3571/832040*233^(9/29) 2329926982912346 m001 2^(1/2)-GAMMA(5/6)^exp(1/Pi) 2329926982912346 m001 GAMMA(5/6)^exp(1/Pi)-sqrt(2) 2329926985027278 r005 Im(z^2+c),c=-23/34+14/61*I,n=22 2329926987272960 r009 Re(z^3+c),c=-13/98+25/29*I,n=44 2329927006821187 p003 LerchPhi(1/100,6,489/178) 2329927007299270 q001 1596/685 2329927007316043 m001 (FeigenbaumB+MertensB3)/(Ei(1)-cos(1/12*Pi)) 2329927015389903 h001 (1/8*exp(1)+2/11)/(3/4*exp(1)+1/5) 2329927015389903 m005 (1/2*exp(1)+8/11)/(3*exp(1)+4/5) 2329927030811656 m001 (Gompertz+KhinchinLevy)/(ErdosBorwein-sin(1)) 2329927031250354 a007 Real Root Of 462*x^4+821*x^3-963*x^2-773*x+196 2329927034439264 a007 Real Root Of 25*x^4+560*x^3-547*x^2-540*x+8 2329927036166954 m001 (3^(1/3))*exp(FeigenbaumC)*sin(Pi/12) 2329927051008273 r002 14th iterates of z^2 + 2329927055244109 r004 Im(z^2+c),c=1/3+1/23*I,z(0)=exp(5/8*I*Pi),n=16 2329927061464200 a007 Real Root Of -303*x^4+747*x^3-978*x^2+878*x+268 2329927084118808 m001 (KomornikLoreti+Niven)/(CareFree+Kolakoski) 2329927086095593 a007 Real Root Of -298*x^4-281*x^3+433*x^2+739*x+146 2329927087969449 r005 Im(z^2+c),c=-23/26+11/58*I,n=30 2329927093236432 m001 KhinchinLevy^(2*Pi/GAMMA(5/6))-MertensB1 2329927094107910 m001 (Chi(1)-ln(5))/(-Backhouse+KomornikLoreti) 2329927097814972 a007 Real Root Of 64*x^4+134*x^3-110*x^2-403*x-533 2329927098319114 r005 Re(z^2+c),c=-1/16+43/63*I,n=36 2329927113518459 l006 ln(9757/9987) 2329927131044665 a007 Real Root Of -337*x^4-702*x^3+357*x^2+630*x+582 2329927131211128 h001 (1/4*exp(2)+8/11)/(3/11*exp(1)+4/11) 2329927133766060 a001 9349/2178309*233^(9/29) 2329927135767642 m001 (HardyLittlewoodC3-Mills)/(ln(3)+Grothendieck) 2329927136278423 m001 (Pi+ZetaP(4))^Sarnak 2329927148899222 a001 1/12238*7^(7/13) 2329927164917101 m001 Zeta(1/2)^2/exp(Champernowne)/cos(Pi/5) 2329927166559082 l006 ln(285/2929) 2329927173896091 r005 Im(z^2+c),c=-7/6+27/133*I,n=19 2329927175001065 a001 1/11*47^(11/45) 2329927175380764 m005 (1/2*Catalan+1/5)/(9/11*exp(1)+3/5) 2329927183964731 m001 (exp(Pi)+Chi(1))/(DuboisRaymond+GaussAGM) 2329927185272970 g005 GAMMA(5/7)*GAMMA(3/7)/GAMMA(1/11)/GAMMA(8/9) 2329927186567048 r005 Im(z^2+c),c=7/66+11/53*I,n=10 2329927187337926 m005 (23/44+1/4*5^(1/2))/(5/11*2^(1/2)+4) 2329927197511848 r009 Im(z^3+c),c=-17/44+8/55*I,n=12 2329927204066616 r002 49th iterates of z^2 + 2329927230211802 a001 5778/1346269*233^(9/29) 2329927233809998 m001 Pi-exp(Pi)-Pi*2^(1/2)/GAMMA(3/4)/ln(3) 2329927233926629 m001 (Thue-ZetaQ(2))/(GAMMA(7/12)+Tetranacci) 2329927240530247 r009 Im(z^3+c),c=-17/38+1/12*I,n=33 2329927243728924 m001 GAMMA(19/24)*Riemann2ndZero-exp(1/Pi) 2329927253105558 r009 Re(z^3+c),c=-17/40+22/43*I,n=23 2329927261338342 m001 KhinchinLevy^Pi-Riemann3rdZero 2329927291193069 m001 (ln(gamma)+ln(Pi))/(GAMMA(7/12)+GAMMA(23/24)) 2329927294382199 m001 (Cahen-MadelungNaCl)/(arctan(1/2)+Zeta(1,2)) 2329927298162527 m001 exp(BesselJ(0,1))^2*Niven^2*log(2+sqrt(3))^2 2329927307465804 m001 exp(MinimumGamma)/CopelandErdos^2/gamma^2 2329927308612160 m001 Trott*(AlladiGrinstead+Totient) 2329927318501864 a007 Real Root Of 414*x^4+498*x^3-969*x^2-66*x-795 2329927322016493 m001 (arctan(1/3)-ln(gamma))/Artin 2329927332092544 r005 Re(z^2+c),c=-7/26+9/46*I,n=11 2329927342724827 m001 (-exp(1/exp(1))+Salem)/(2^(1/3)-ln(Pi)) 2329927342816156 r005 Re(z^2+c),c=-21/26+5/79*I,n=8 2329927344446039 a007 Real Root Of -375*x^4-376*x^3+773*x^2-882*x+44 2329927348720955 m001 Tribonacci*ln(Champernowne)/GAMMA(17/24)^2 2329927349460180 h005 exp(cos(Pi*2/17)*sin(Pi*17/47)) 2329927354625351 r005 Re(z^2+c),c=1/27+39/64*I,n=13 2329927356742748 m001 1/Salem^2/Riemann3rdZero/exp(OneNinth)^2 2329927365783811 a007 Real Root Of 573*x^4+480*x^3+236*x^2-672*x-165 2329927368005510 r005 Im(z^2+c),c=-1/48+17/64*I,n=9 2329927375252246 r005 Re(z^2+c),c=-21/26+17/61*I,n=2 2329927377127296 r002 6th iterates of z^2 + 2329927392141498 m001 BesselK(1,1)^2*KhintchineLevy^2/exp(cosh(1))^2 2329927394445631 m001 (gamma+Conway)/(-GaussAGM+Trott2nd) 2329927407370955 m001 (LandauRamanujan+Trott)/(Cahen+FeigenbaumD) 2329927426380813 m001 1/ln(PisotVijayaraghavan)^2/Niven*Pi 2329927437750394 r009 Re(z^3+c),c=-31/66+23/48*I,n=30 2329927459837249 a001 3571/3524578*4807526976^(19/22) 2329927460230979 m001 Catalan*FeigenbaumB^2/exp(Zeta(9)) 2329927461926193 m001 Kolakoski/(Psi(2,1/3)+Riemann2ndZero) 2329927462782555 r009 Re(z^3+c),c=-7/18+9/17*I,n=63 2329927464445101 m001 GAMMA(5/6)*FeigenbaumB^2*ln(sin(1))^2 2329927469992078 a001 15127/1597*121393^(19/22) 2329927485227443 a007 Real Root Of -766*x^4+760*x^3+959*x^2+436*x-161 2329927503704084 m001 (Chi(1)+arctan(1/3))/(-Gompertz+Paris) 2329927507245222 h003 exp(Pi*(1/4*(2^(2/3)+12^(3/4))^(1/2)*4^(1/4))) 2329927508723001 p001 sum((-1)^n/(479*n+429)/(1024^n),n=0..infinity) 2329927512851340 m001 (1+FibonacciFactorial)/(Landau+ThueMorse) 2329927519789692 r005 Im(z^2+c),c=-3/13+19/22*I,n=14 2329927522944543 q001 1/4291979 2329927523676662 m005 (1/3*Zeta(3)+1/7)/(7/11*2^(1/2)-2/3) 2329927523686060 l006 ln(956/9825) 2329927529911786 m001 (BesselI(1,1)+Niven)/(cos(1/5*Pi)-Zeta(1,-1)) 2329927532371603 r009 Re(z^3+c),c=-23/56+31/57*I,n=50 2329927533891360 m001 (FeigenbaumAlpha+Sierpinski)/(Conway-exp(Pi)) 2329927535581849 m001 (exp(Pi)*Magata+cos(1))/Magata 2329927538506781 m006 (5*Pi^2+1/2)/(2/5*exp(2*Pi)-1/4) 2329927544818387 m001 1/cosh(1)^2/GolombDickman*exp(sqrt(Pi))^2 2329927550812459 m005 (1/2*2^(1/2)-2/7)/(5/7*3^(1/2)+4/7) 2329927560102382 m005 (1/2*2^(1/2)-6/11)/(4/9*5^(1/2)-3/10) 2329927568811269 m007 (-3*gamma+1/2)/(-1/3*gamma-ln(2)+1/6*Pi-1/6) 2329927573074979 r005 Im(z^2+c),c=-9/10+25/121*I,n=41 2329927583069186 a007 Real Root Of -416*x^4-423*x^3+851*x^2-583*x+931 2329927586528248 r009 Im(z^3+c),c=-27/98+12/61*I,n=3 2329927594802023 m004 (25*Pi)/4+4*Tan[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi] 2329927595972557 m005 (1/3*5^(1/2)+1/2)/(-83/126+1/18*5^(1/2)) 2329927598841248 r009 Im(z^3+c),c=-3/31+13/54*I,n=7 2329927615890377 a001 9349/9227465*4807526976^(19/22) 2329927617348619 a001 39603/4181*121393^(19/22) 2329927618551488 a007 Real Root Of 493*x^4+910*x^3-602*x^2-453*x-806 2329927638650557 g006 Psi(1,6/11)+Psi(1,4/5)-Psi(1,6/7)-Psi(1,5/6) 2329927638658221 a001 24476/24157817*4807526976^(19/22) 2329927638762520 a001 2207/514229*233^(9/29) 2329927638847651 a001 51841/5473*121393^(19/22) 2329927641980005 a001 64079/63245986*4807526976^(19/22) 2329927641984317 a001 271443/28657*121393^(19/22) 2329927642441951 a001 710647/75025*121393^(19/22) 2329927642464647 a001 167761/165580141*4807526976^(19/22) 2329927642508718 a001 930249/98209*121393^(19/22) 2329927642518460 a001 4870847/514229*121393^(19/22) 2329927642519881 a001 12752043/1346269*121393^(19/22) 2329927642520088 a001 16692641/1762289*121393^(19/22) 2329927642520119 a001 87403803/9227465*121393^(19/22) 2329927642520123 a001 228826127/24157817*121393^(19/22) 2329927642520124 a001 299537289/31622993*121393^(19/22) 2329927642520124 a001 1568397607/165580141*121393^(19/22) 2329927642520124 a001 4106118243/433494437*121393^(19/22) 2329927642520124 a001 5374978561/567451585*121393^(19/22) 2329927642520124 a001 28143753123/2971215073*121393^(19/22) 2329927642520124 a001 73681302247/7778742049*121393^(19/22) 2329927642520124 a001 96450076809/10182505537*121393^(19/22) 2329927642520124 a001 505019158607/53316291173*121393^(19/22) 2329927642520124 a001 1322157322203/139583862445*121393^(19/22) 2329927642520124 a001 1730726404001/182717648081*121393^(19/22) 2329927642520124 a001 2139295485799/225851433717*121393^(19/22) 2329927642520124 a001 204284540899/21566892818*121393^(19/22) 2329927642520124 a001 312119004989/32951280099*121393^(19/22) 2329927642520124 a001 119218851371/12586269025*121393^(19/22) 2329927642520124 a001 11384387281/1201881744*121393^(19/22) 2329927642520124 a001 17393796001/1836311903*121393^(19/22) 2329927642520124 a001 6643838879/701408733*121393^(19/22) 2329927642520124 a001 634430159/66978574*121393^(19/22) 2329927642520124 a001 969323029/102334155*121393^(19/22) 2329927642520124 a001 370248451/39088169*121393^(19/22) 2329927642520126 a001 35355581/3732588*121393^(19/22) 2329927642520137 a001 54018521/5702887*121393^(19/22) 2329927642520216 a001 20633239/2178309*121393^(19/22) 2329927642520759 a001 1970299/208010*121393^(19/22) 2329927642524480 a001 3010349/317811*121393^(19/22) 2329927642535355 a001 439204/433494437*4807526976^(19/22) 2329927642545671 a001 1149851/1134903170*4807526976^(19/22) 2329927642547176 a001 3010349/2971215073*4807526976^(19/22) 2329927642547396 a001 7881196/7778742049*4807526976^(19/22) 2329927642547428 a001 20633239/20365011074*4807526976^(19/22) 2329927642547433 a001 54018521/53316291173*4807526976^(19/22) 2329927642547433 a001 141422324/139583862445*4807526976^(19/22) 2329927642547433 a001 370248451/365435296162*4807526976^(19/22) 2329927642547433 a001 969323029/956722026041*4807526976^(19/22) 2329927642547433 a001 2537720636/2504730781961*4807526976^(19/22) 2329927642547433 a001 6643838879/6557470319842*4807526976^(19/22) 2329927642547433 a001 4870846/4807525989*4807526976^(19/22) 2329927642547433 a001 4106118243/4052739537881*4807526976^(19/22) 2329927642547433 a001 1568397607/1548008755920*4807526976^(19/22) 2329927642547433 a001 599074578/591286729879*4807526976^(19/22) 2329927642547433 a001 228826127/225851433717*4807526976^(19/22) 2329927642547434 a001 87403803/86267571272*4807526976^(19/22) 2329927642547435 a001 33385282/32951280099*4807526976^(19/22) 2329927642547448 a001 12752043/12586269025*4807526976^(19/22) 2329927642547532 a001 4870847/4807526976*4807526976^(19/22) 2329927642548106 a001 1860498/1836311903*4807526976^(19/22) 2329927642549983 a001 1149851/121393*121393^(19/22) 2329927642552047 a001 710647/701408733*4807526976^(19/22) 2329927642579055 a001 271443/267914296*4807526976^(19/22) 2329927642724784 a001 109801/11592*121393^(19/22) 2329927642764172 a001 103682/102334155*4807526976^(19/22) 2329927643922884 a001 167761/17711*121393^(19/22) 2329927644032980 a001 39603/39088169*4807526976^(19/22) 2329927645772957 a001 1/48*46368^(18/41) 2329927646982164 m001 BesselI(1,1)+BesselJ(1,1)+PisotVijayaraghavan 2329927649254485 m001 1/sqrt(5)/FeigenbaumC^2/ln(sqrt(Pi)) 2329927649363128 a005 (1/cos(4/125*Pi))^622 2329927652134783 a001 64079/6765*121393^(19/22) 2329927652729523 a001 15127/14930352*4807526976^(19/22) 2329927669113322 m001 (Shi(1)-Zeta(5))/(ArtinRank2+ZetaP(3)) 2329927671801060 l006 ln(1273/1607) 2329927675371847 l006 ln(671/6896) 2329927705792346 m001 OneNinth^(DuboisRaymond*ReciprocalFibonacci) 2329927708419980 a001 6119/646*121393^(19/22) 2329927712336513 a001 5778/5702887*4807526976^(19/22) 2329927719400089 a007 Real Root Of -474*x^4-723*x^3+893*x^2+427*x+971 2329927721737442 a007 Real Root Of 23*x^4+565*x^3+647*x^2-724*x+175 2329927723318556 m005 (1/2*Zeta(3)-4/5)/(1/4*Pi-7/10) 2329927724940759 r005 Im(z^2+c),c=-37/102+28/43*I,n=23 2329927728757293 a001 844/13*12586269025^(11/20) 2329927729639282 m001 Ei(1)^2/(2^(1/3))^2/ln(GAMMA(1/3))^2 2329927731394206 a007 Real Root Of 367*x^4+453*x^3-753*x^2+27*x-935 2329927732646232 a001 4870847/377*832040^(11/20) 2329927734861699 q001 935/4013 2329927738304446 m001 DuboisRaymond+OrthogonalArrays^(5^(1/2)) 2329927747193814 m001 FeigenbaumKappa/ln(LaplaceLimit)/sqrt(2) 2329927747196546 a005 (1/cos(15/214*Pi))^1165 2329927769618003 p001 sum(1/(602*n+431)/(100^n),n=0..infinity) 2329927774117421 r005 Re(z^2+c),c=-9/44+8/19*I,n=24 2329927777492303 m001 GAMMA(5/6)*(OrthogonalArrays+TwinPrimes) 2329927779382215 a007 Real Root Of 154*x^4+116*x^3-338*x^2+813*x+658 2329927779496487 m001 (2^(1/3)-Chi(1))/(HardyLittlewoodC3+Salem) 2329927786699031 r005 Re(z^2+c),c=-5/26+31/50*I,n=61 2329927788439649 m001 (Backhouse+QuadraticClass)/(Chi(1)-Zeta(1,-1)) 2329927798863796 r002 43th iterates of z^2 + 2329927806963226 m001 exp(GolombDickman)/CopelandErdos^2/(3^(1/3)) 2329927807219130 a001 11/610*5702887^(5/16) 2329927808917492 m005 (1/2*Pi-2/7)/(7/8*3^(1/2)+4) 2329927810354681 a005 (1/cos(15/181*Pi))^1771 2329927817444252 m001 (-gamma(3)+Bloch)/(BesselK(0,1)-Ei(1,1)) 2329927817461557 m001 (ln(Pi)-cos(1/12*Pi))/(BesselI(1,1)-MertensB3) 2329927817718728 p003 LerchPhi(1/1024,6,39/142) 2329927823601500 r005 Re(z^2+c),c=19/122+27/61*I,n=38 2329927829525347 m001 (MertensB3-ZetaP(2))/(Zeta(1,-1)+Landau) 2329927832793318 r002 4th iterates of z^2 + 2329927838748363 m001 (3^(1/2)+3^(1/3))/(-BesselI(1,1)+Tetranacci) 2329927844980170 m001 Pi*(Psi(1,1/3)-BesselI(1,1))/GAMMA(17/24) 2329927848180635 r005 Re(z^2+c),c=-6/29+17/41*I,n=19 2329927859418793 m001 (-Tribonacci+ZetaP(3))/(Champernowne-Chi(1)) 2329927861461966 h001 (-6*exp(1/2)-7)/(-9*exp(2)-6) 2329927863129098 m005 (1/2*5^(1/2)-3/5)/(1/6*Catalan-3/8) 2329927872215805 m001 (KhinchinHarmonic+Salem)/(ln(gamma)-CareFree) 2329927881224212 a007 Real Root Of -541*x^4+126*x^3+446*x^2+910*x+191 2329927888936391 h001 (2/7*exp(2)+1/8)/(1/7*exp(1)+4/7) 2329927890753817 m005 (1/2*Pi+4/7)/(1/7*5^(1/2)+3/5) 2329927891503330 a007 Real Root Of -522*x^4-866*x^3+949*x^2-109*x-976 2329927892947474 b008 Pi+15*Zeta[-1/2] 2329927893644250 m005 (1/3*Catalan+1/4)/(7/10*5^(1/2)+9/11) 2329927894799351 a007 Real Root Of -105*x^4+832*x^3+569*x^2+717*x+147 2329927897490117 a001 76/6765*377^(23/45) 2329927898571085 h001 (-5*exp(2)-6)/(-3*exp(2/3)+4) 2329927901988118 m001 ((1+3^(1/2))^(1/2))^GAMMA(3/4)/Kolakoski 2329927905293531 a007 Real Root Of -810*x^4-662*x^3-68*x^2+943*x+22 2329927909585594 r005 Re(z^2+c),c=-10/27+31/54*I,n=21 2329927910309368 r004 Im(z^2+c),c=3/8+1/8*I,z(0)=exp(7/12*I*Pi),n=7 2329927912008294 r005 Re(z^2+c),c=11/42+8/53*I,n=8 2329927928888238 m001 Salem^2*KhintchineLevy/exp(GAMMA(5/12))^2 2329927939979036 r009 Re(z^3+c),c=-5/13+26/49*I,n=34 2329927947192638 a007 Real Root Of -649*x^4+402*x^3+338*x^2+354*x-104 2329927949719726 a007 Real Root Of -302*x^4-886*x^3-786*x^2-692*x+348 2329927949834390 p002 log(1/2*(14-10^(1/4))*2^(3/4)) 2329927963329973 a007 Real Root Of 196*x^4+543*x^3+297*x^2+201*x-52 2329927963584248 r005 Im(z^2+c),c=-9/14+41/170*I,n=9 2329927969270398 m001 Kolakoski^(5^(1/2))+3^(1/2) 2329927971377430 m002 -Pi^2-2*Pi^3+Pi^5-Log[Pi] 2329927977548510 m001 exp(-1/2*Pi)/(ln(2^(1/2)+1)+Trott) 2329927978096236 a007 Real Root Of 550*x^4+989*x^3-493*x^2+351*x-205 2329927991338198 r005 Re(z^2+c),c=-17/122+35/61*I,n=48 2329927993514363 a007 Real Root Of 47*x^4-545*x^3-781*x^2-787*x-148 2329927998668273 a007 Real Root Of 357*x^4+400*x^3-859*x^2+252*x-211 2329927999436413 m005 (1/2*Zeta(3)-2/11)/(6*Pi-6/7) 2329928008498286 r009 Re(z^3+c),c=-43/110+23/43*I,n=57 2329928009572219 p003 LerchPhi(1/25,6,152/175) 2329928009956587 p001 sum(1/(471*n+430)/(256^n),n=0..infinity) 2329928023352821 p001 sum((-1)^n/(229*n+187)/n/(10^n),n=1..infinity) 2329928026315824 m008 (5/6*Pi^3+5)/(2/5*Pi^3+5/6) 2329928036016555 l005 404/61/(exp(202/61)+1) 2329928040460304 a005 (1/sin(83/215*Pi))^259 2329928043407110 a007 Real Root Of 288*x^4+973*x^3+580*x^2-215*x+170 2329928045437098 p003 LerchPhi(1/512,6,39/142) 2329928050674673 m005 (1/3*3^(1/2)+1/10)/(8/9*Zeta(3)-7/9) 2329928051049499 l006 ln(386/3967) 2329928054325680 r005 Re(z^2+c),c=-24/25+6/47*I,n=14 2329928056816405 m007 (-3/4*gamma-3/2*ln(2)-1/5)/(-1/5*gamma+5/6) 2329928061086389 p002 log(3^(3/4)*(16+9^(2/3))^(1/2)) 2329928065572687 m004 6+5*Pi+Cos[Sqrt[5]*Pi]*Cosh[Sqrt[5]*Pi]^2 2329928083117051 s002 sum(A277553[n]/(n*10^n-1),n=1..infinity) 2329928091036310 r005 Im(z^2+c),c=-35/74+21/44*I,n=9 2329928094204538 a001 9349/987*121393^(19/22) 2329928097733445 r005 Re(z^2+c),c=-11/94+38/63*I,n=54 2329928112937980 a007 Real Root Of 335*x^4+543*x^3-428*x^2+536*x+568 2329928120888905 a001 1/987*4807526976^(19/22) 2329928123600618 a007 Real Root Of 540*x^4-435*x^3+933*x^2-808*x-246 2329928129531399 a003 cos(Pi*13/55)/cos(Pi*33/83) 2329928132741938 a007 Real Root Of -240*x^4-224*x^3+727*x^2-133*x-17 2329928140981588 p004 log(28807/2803) 2329928149800217 r005 Im(z^2+c),c=-17/74+18/31*I,n=11 2329928152779877 r005 Re(z^2+c),c=19/86+23/53*I,n=38 2329928160359868 r005 Im(z^2+c),c=-17/18+48/229*I,n=13 2329928167531720 m001 Artin^(2^(1/3))*sin(1)^(2^(1/3)) 2329928167531720 m001 sin(1)^(2^(1/3))*Artin^(2^(1/3)) 2329928171574750 r005 Re(z^2+c),c=-15/106+36/41*I,n=48 2329928173324282 a007 Real Root Of 803*x^4-166*x^3+725*x^2+128*x-14 2329928174694407 m004 (-25*Pi)/4-4*Tan[Sqrt[5]*Pi] 2329928186146472 r005 Im(z^2+c),c=-41/98+21/53*I,n=46 2329928188084961 a007 Real Root Of 433*x^4+706*x^3-512*x^2+631*x+419 2329928192341924 m001 (Pi+GAMMA(19/24))/(TwinPrimes-Weierstrass) 2329928203013990 a008 Real Root of x^4+8*x^2-30*x-3 2329928203968568 r005 Re(z^2+c),c=-29/38+8/35*I,n=2 2329928230696340 r005 Im(z^2+c),c=-13/60+12/31*I,n=5 2329928235896264 r005 Re(z^2+c),c=-9/8+19/91*I,n=10 2329928236135330 r005 Re(z^2+c),c=-13/102+23/40*I,n=47 2329928237631129 r005 Im(z^2+c),c=-12/31+12/31*I,n=33 2329928239832439 m005 (1/2*2^(1/2)+6/7)/(7/9*2^(1/2)-3/7) 2329928249720886 a001 3/322*123^(4/21) 2329928278316645 m008 (1/2*Pi^3-4)/(1/2*Pi^4+2/3) 2329928284859049 m001 ln(2)^FeigenbaumKappa-sin(1) 2329928298413026 b008 22+Log[11/3] 2329928310356865 m001 (-BesselK(1,1)+Bloch)/(Psi(2,1/3)-ln(2)) 2329928315744303 a001 192900153618/89*144^(16/17) 2329928316727012 r005 Re(z^2+c),c=-1/70+8/13*I,n=37 2329928321018888 a007 Real Root Of -369*x^4-80*x^3+968*x^2+732*x-221 2329928324852817 a001 123/377*17711^(24/55) 2329928334391207 m001 (FellerTornier-ZetaP(4))/GAMMA(11/12) 2329928334721983 m001 Pi*2^(1/2)/GAMMA(3/4)/(GAMMA(7/12)+Trott2nd) 2329928337209387 r005 Im(z^2+c),c=-13/10+12/107*I,n=3 2329928339800496 l006 ln(873/8972) 2329928341764722 a003 cos(Pi*26/99)/cos(Pi*41/101) 2329928353103004 m001 (3^(1/2)-Backhouse)/(-Landau+Robbin) 2329928359053106 m001 (-Niven+RenyiParking)/(MasserGramain-Shi(1)) 2329928362943017 m005 (1/3*2^(1/2)+2/5)/(3/14+1/14*5^(1/2)) 2329928367345712 a007 Real Root Of -442*x^4-874*x^3-43*x^2-674*x+634 2329928376667368 r009 Re(z^3+c),c=-5/38+41/48*I,n=44 2329928386743495 r005 Im(z^2+c),c=-3/52+16/57*I,n=9 2329928399458529 a007 Real Root Of -296*x^4-379*x^3+761*x^2+233*x+341 2329928405327618 m001 1/GAMMA(23/24)^2*exp(FeigenbaumB)/Zeta(1,2) 2329928409287551 m001 GAMMA(17/24)*exp((3^(1/3)))^2/Pi^2 2329928410712841 m001 ZetaQ(4)/((3^(1/2))^Psi(2,1/3)) 2329928412483414 r009 Re(z^3+c),c=-37/126+25/43*I,n=6 2329928413763666 m001 (exp(Pi)-gamma(3))/(polylog(4,1/2)+PlouffeB) 2329928422602795 a007 Real Root Of 23*x^4-780*x^3-862*x^2-564*x+188 2329928451641900 m001 (Shi(1)-exp(1))/(-MadelungNaCl+MertensB2) 2329928451771679 r008 a(0)=0,K{-n^6,-44+89*n^3+67*n^2-69*n} 2329928454051342 a003 1/2+2*cos(1/18*Pi)+cos(4/21*Pi)-cos(1/12*Pi) 2329928465522375 l006 ln(7840/9897) 2329928476528847 m005 (25/36+1/4*5^(1/2))/(5*Catalan+4/5) 2329928477901935 a007 Real Root Of 161*x^4+85*x^3-587*x^2+421*x+498 2329928480533520 m001 Bloch/(HardyLittlewoodC4^GAMMA(2/3)) 2329928495217360 r005 Im(z^2+c),c=-5/98+5/18*I,n=12 2329928498467824 q001 2281/979 2329928500915180 p003 LerchPhi(1/256,6,39/142) 2329928507913526 r005 Re(z^2+c),c=-17/90+23/38*I,n=27 2329928514616274 m005 (1/2*3^(1/2)-10/11)/(11/12+5/12*5^(1/2)) 2329928515030367 a003 cos(Pi*15/68)*cos(Pi*39/97) 2329928515544600 m001 exp(Tribonacci)/FransenRobinson^2*cos(1)^2 2329928520819778 a007 Real Root Of 418*x^4+954*x^3-221*x^2-327*x+186 2329928523015165 a007 Real Root Of -257*x^4-711*x^3-448*x^2-460*x-59 2329928542534408 m001 (exp(1/Pi)+4)/(-ln(2)+3) 2329928548359879 a007 Real Root Of -624*x^4-936*x^3+942*x^2-450*x+388 2329928552725459 h001 (1/4*exp(2)+7/12)/(1/4*exp(1)+4/11) 2329928557425395 m001 (arctan(1/3)+LandauRamanujan)/(Niven+Otter) 2329928559941401 m001 GAMMA(17/24)+(Pi^(1/2))^ZetaP(4) 2329928562941704 m001 1/ln(Ei(1))*Riemann3rdZero^2*cosh(1)^2 2329928564670375 r002 13th iterates of z^2 + 2329928566336488 a005 (1/sin(64/137*Pi))^1022 2329928568666731 l006 ln(487/5005) 2329928597444623 m001 (-Ei(1)+Porter)/(2^(1/3)+gamma) 2329928614258662 r009 Re(z^3+c),c=-67/110+27/53*I,n=45 2329928619383680 l006 ln(6567/8290) 2329928620685627 s002 sum(A042051[n]/(n*pi^n+1),n=1..infinity) 2329928620818346 r005 Im(z^2+c),c=-17/30+23/58*I,n=52 2329928640216899 m005 (19/20+1/4*5^(1/2))/(3/8*3^(1/2)-5/7) 2329928651975358 m001 ln(Pi)^(Pi*csc(5/12*Pi)/GAMMA(7/12))*ZetaP(3) 2329928666397920 r005 Re(z^2+c),c=9/29+5/28*I,n=19 2329928668424864 r009 Re(z^3+c),c=-13/58+3/47*I,n=3 2329928668971697 r005 Re(z^2+c),c=9/28+12/61*I,n=23 2329928672829835 m005 (1/3*Zeta(3)+1/8)/(5/4+9/20*5^(1/2)) 2329928680342784 a007 Real Root Of 409*x^4+956*x^3-410*x^2-762*x+489 2329928687772239 a007 Real Root Of 356*x^4+667*x^3-475*x^2-348*x-287 2329928690549633 a007 Real Root Of 900*x^4-525*x^3+138*x^2-88*x+17 2329928693098553 r005 Re(z^2+c),c=1/3+4/19*I,n=58 2329928696339241 m001 (Pi*2^(1/2)/GAMMA(3/4)+Bloch)/(Mills+ZetaP(2)) 2329928704950725 r005 Im(z^2+c),c=-6/17+17/45*I,n=42 2329928711638208 a007 Real Root Of -357*x^4-624*x^3+718*x^2+896*x+818 2329928713492848 a001 11/233*12586269025^(4/15) 2329928725075929 m001 Lehmer/arctan(1/2)*MasserGramainDelta 2329928727284920 a007 Real Root Of -152*x^4-18*x^3+621*x^2-235*x+333 2329928739466379 r002 6th iterates of z^2 + 2329928754587709 m004 (25*Pi)/4+4*Coth[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi] 2329928757583903 m001 exp(Zeta(5))/PrimesInBinary/cos(1)^2 2329928763646265 r005 Im(z^2+c),c=-13/34+1/27*I,n=17 2329928784037830 a007 Real Root Of 490*x^4+392*x^3-493*x^2-668*x+176 2329928790813968 a007 Real Root Of -330*x^4-242*x^3-361*x^2+809*x+206 2329928795348818 r002 17th iterates of z^2 + 2329928821419094 r005 Im(z^2+c),c=-95/94+8/35*I,n=18 2329928832271062 a001 89/3571*76^(16/31) 2329928832539830 a001 2/89*6557470319842^(4/17) 2329928838440934 a005 (1/sin(31/233*Pi))^75 2329928845417726 r005 Im(z^2+c),c=-25/38+2/45*I,n=63 2329928847240235 l006 ln(5294/6683) 2329928848918293 s001 sum(exp(-4*Pi/5)^n*A133006[n],n=1..infinity) 2329928852423011 m001 (CareFree*Sarnak+Salem)/Sarnak 2329928868848357 r005 Re(z^2+c),c=-17/94+11/23*I,n=52 2329928870203106 p001 sum(1/(223*n+50)/n/(16^n),n=1..infinity) 2329928873488485 r009 Re(z^3+c),c=-11/31+14/31*I,n=40 2329928874537124 m001 (Si(Pi)+ln(3))/(Bloch+Kolakoski) 2329928877485490 m009 (24/5*Catalan+3/5*Pi^2+1/3)/(3/4*Psi(1,1/3)-3) 2329928880260877 m005 (1/2*Zeta(3)-8/11)/(3*3^(1/2)+2/9) 2329928885034196 a008 Real Root of x^4+22*x^2-30*x-79 2329928888891795 m001 1/exp(Zeta(1/2))^2*MinimumGamma^2*sin(Pi/5) 2329928893280026 m001 (Catalan-GAMMA(2/3))/(-CareFree+Sierpinski) 2329928903118299 m001 1/BesselJ(0,1)^2/Cahen*ln(Catalan) 2329928905934020 m001 (ErdosBorwein+KhinchinLevy)/(3^(1/2)-Si(Pi)) 2329928907168671 m001 MertensB1^(Si(Pi)/Niven) 2329928907498047 r005 Im(z^2+c),c=-47/44+13/58*I,n=30 2329928908462931 l006 ln(588/6043) 2329928914466582 p001 sum((-1)^n/(502*n+429)/(1000^n),n=0..infinity) 2329928916658205 r005 Im(z^2+c),c=-37/34+31/121*I,n=48 2329928924631433 r009 Re(z^3+c),c=-51/98+35/58*I,n=63 2329928954993851 m001 Zeta(3)^GAMMA(17/24)*ErdosBorwein^GAMMA(17/24) 2329928956348687 m005 (2/3*2^(1/2)+2/5)/(5/6*Catalan+5) 2329928962879477 p004 log(31253/3041) 2329928967306570 h001 (4/9*exp(1)+1/11)/(1/10*exp(1)+2/7) 2329928968909703 m001 Totient+FellerTornier^ZetaQ(3) 2329928996088809 a001 322/3*2178309^(13/19) 2329929004708910 b008 Coth[(3*(-1+Pi))/14] 2329929006561084 p001 sum((-1)^n/(438*n+421)/(25^n),n=0..infinity) 2329929027521943 p001 sum(1/(550*n+437)/(25^n),n=0..infinity) 2329929032410815 r005 Im(z^2+c),c=23/74+3/55*I,n=45 2329929046612582 a007 Real Root Of -x^4+534*x^3+775*x^2-747*x+836 2329929069454294 a007 Real Root Of 773*x^4-173*x^3-51*x^2-525*x+125 2329929069715290 a001 1/615*12586269025^(5/16) 2329929077763504 m006 (1/2*exp(2*Pi)+3)/(5*exp(Pi)+1/2) 2329929092656523 r002 40th iterates of z^2 + 2329929106663485 m001 1/GAMMA(11/12)/FeigenbaumD/exp(exp(1)) 2329929110054482 a007 Real Root Of 420*x^4+761*x^3-290*x^2+808*x+705 2329929117222251 m001 CareFree*(FeigenbaumD+GolombDickman) 2329929131479815 h001 (-6*exp(5)+7)/(-7*exp(4)+3) 2329929138865277 m001 (3^(1/2)-BesselI(0,2))/(GAMMA(19/24)+Salem) 2329929139495155 a007 Real Root Of -29*x^4-635*x^3+924*x^2-589*x-802 2329929140144041 m001 Shi(1)^ReciprocalFibonacci/polylog(4,1/2) 2329929141414714 m008 (1/6*Pi^3+3/4)/(1/3*Pi^2-3/4) 2329929143564712 a007 Real Root Of -2*x^4+216*x^3+105*x^2-897*x+131 2329929145310133 r009 Im(z^3+c),c=-25/46+10/41*I,n=47 2329929148638115 l006 ln(689/7081) 2329929157087775 m001 (-MertensB3+Trott)/(ErdosBorwein-Psi(2,1/3)) 2329929157667554 m001 1/ln(LandauRamanujan)*Si(Pi)*Tribonacci^2 2329929160916258 r005 Im(z^2+c),c=-45/46+5/18*I,n=30 2329929168350299 m001 (sin(1)+ln(gamma))/(-Niven+ZetaP(2)) 2329929168464668 a007 Real Root Of 866*x^4+20*x^3+347*x^2-596*x-160 2329929171381968 m001 Psi(2,1/3)^(3^(1/3))*Kolakoski^(3^(1/3)) 2329929172179468 m001 (Grothendieck+ZetaP(3))/(arctan(1/2)-Conway) 2329929191339316 a007 Real Root Of -217*x^4-895*x^3-912*x^2+74*x+198 2329929192523380 a005 (1/sin(93/211*Pi))^1106 2329929209364736 r009 Re(z^3+c),c=-4/29+27/28*I,n=14 2329929216328734 r005 Im(z^2+c),c=-25/106+51/59*I,n=17 2329929216621321 a007 Real Root Of -419*x^4-611*x^3+557*x^2-515*x+396 2329929219370042 l006 ln(4021/5076) 2329929236806374 r005 Re(z^2+c),c=9/28+3/44*I,n=19 2329929258513990 a007 Real Root Of 220*x^4+167*x^3-695*x^2+149*x-251 2329929261920410 m001 gamma(1)-sin(1/12*Pi)+Paris 2329929266918297 m005 (1/2*Catalan-5/7)/(7/11*2^(1/2)-2) 2329929280210458 r005 Re(z^2+c),c=-11/90+30/53*I,n=32 2329929287511261 m001 (Psi(2,1/3)+Zeta(3))/(Tribonacci+Weierstrass) 2329929290254734 m001 (Magata+Porter)/(exp(-1/2*Pi)+HeathBrownMoroz) 2329929298348231 a007 Real Root Of 959*x^4+341*x^3+920*x^2-556*x-178 2329929303959876 a004 Fibonacci(14)*Lucas(11)/(1/2+sqrt(5)/2)^12 2329929304436999 s002 sum(A234515[n]/(n^2*10^n-1),n=1..infinity) 2329929308957527 m001 ln(1+sqrt(2))^LambertW(1)*FeigenbaumAlpha 2329929308957527 m001 ln(2^(1/2)+1)^LambertW(1)*FeigenbaumAlpha 2329929309688863 a007 Real Root Of 402*x^4+950*x^3-174*x^2-884*x-946 2329929322110400 m001 (ln(5)*Grothendieck+QuadraticClass)/ln(5) 2329929327401379 l006 ln(790/8119) 2329929332633099 a001 5778/233*832040^(21/25) 2329929333636733 m005 (1/2*gamma+1/12)/(11/12*2^(1/2)+3/10) 2329929334944845 r004 Re(z^2+c),c=1/3+1/5*I,z(0)=exp(7/12*I*Pi),n=42 2329929335515701 r005 Im(z^2+c),c=-9/22+24/61*I,n=43 2329929336815405 a007 Real Root Of 335*x^4+686*x^3+139*x^2+737*x-233 2329929345915159 s002 sum(A242355[n]/(2^n+1),n=1..infinity) 2329929346566585 a007 Real Root Of -420*x^4-725*x^3+760*x^2+438*x+102 2329929355424396 a007 Real Root Of 206*x^4+493*x^3-26*x^2-194*x-146 2329929361862054 a007 Real Root Of -486*x^4-952*x^3+852*x^2+755*x-585 2329929380973289 r005 Im(z^2+c),c=-43/34+5/114*I,n=28 2329929390600625 m007 (-3*gamma-9*ln(2)-3/2*Pi-1/6)/(-2/3*gamma-1/6) 2329929395129518 a007 Real Root Of -14*x^4+423*x^3-858*x^2-30*x-210 2329929400215177 s002 sum(A178998[n]/(exp(n)-1),n=1..infinity) 2329929405443396 m002 E^Pi+(Pi^2*Sech[Pi])/(5*ProductLog[Pi]) 2329929413543683 r005 Im(z^2+c),c=5/122+11/46*I,n=11 2329929424924953 a007 Real Root Of -19*x^4-114*x^3-724*x^2-986*x+751 2329929433750307 m001 1/exp(Rabbit)^2/Paris^2*Zeta(1,2) 2329929439134977 m005 (1/3*gamma+1/8)/(73/70+1/7*5^(1/2)) 2329929446156045 h001 (5/6*exp(2)+1/8)/(9/10*exp(1)+1/4) 2329929449228429 m002 -E^Pi-Sinh[Pi]/10+Tanh[Pi] 2329929451802044 a007 Real Root Of 37*x^4-279*x^3-335*x^2+987*x-501 2329929453698303 a007 Real Root Of -832*x^4-138*x^3-727*x^2+990*x-187 2329929455776236 p003 LerchPhi(1/125,6,39/142) 2329929462260816 m001 Salem^2*ArtinRank2*exp(log(1+sqrt(2))) 2329929465636922 l006 ln(891/9157) 2329929469245417 m001 1/exp(OneNinth)*FeigenbaumKappa^2/sin(1)^2 2329929470903491 m001 (ln(3)*Landau+ReciprocalLucas)/ln(3) 2329929484695264 a007 Real Root Of -299*x^4-370*x^3+823*x^2+40*x-243 2329929488255103 a007 Real Root Of -449*x^4-760*x^3+561*x^2-381*x-314 2329929489069889 m001 (FeigenbaumAlpha+polylog(4,1/2))^BesselJ(0,1) 2329929489069889 m001 (polylog(4,1/2)+FeigenbaumAlpha)^BesselJ(0,1) 2329929490042870 b008 Sqrt[19/14]/5 2329929494692136 r005 Re(z^2+c),c=-27/110+19/64*I,n=12 2329929498893516 r005 Im(z^2+c),c=-41/56+5/28*I,n=20 2329929501820702 m001 (Gompertz+Rabbit)/(Psi(2,1/3)+Zeta(1,2)) 2329929510410836 l006 ln(6769/8545) 2329929518797333 m001 (Totient-ZetaP(2))/(FeigenbaumAlpha+Mills) 2329929530174027 a007 Real Root Of 436*x^4+470*x^3-957*x^2+824*x+211 2329929543341548 r005 Re(z^2+c),c=-5/32+19/29*I,n=19 2329929543495533 r005 Im(z^2+c),c=-5/98+57/64*I,n=6 2329929559595504 r005 Re(z^2+c),c=-29/102+2/25*I,n=13 2329929568724739 r009 Re(z^3+c),c=-11/31+14/31*I,n=35 2329929572312419 a007 Real Root Of -133*x^4+74*x^3+822*x^2+130*x+696 2329929577118807 a001 199/3524578*89^(6/19) 2329929579635126 m001 ln(5)^(2^(1/3))*ln(5)^polylog(4,1/2) 2329929601132805 m001 (1+3^(1/2))^(1/2)*FeigenbaumKappa^GAMMA(5/6) 2329929608770152 m005 (1/2*gamma+11/12)/(6/11*exp(1)-2) 2329929611738868 r005 Re(z^2+c),c=-15/62+13/42*I,n=10 2329929620774038 r008 a(0)=2,K{-n^6,-1+4*n^3+2*n^2-5*n} 2329929622018224 m005 (1/2*5^(1/2)+2)/(31/90+4/9*5^(1/2)) 2329929631424838 m005 (1/2*Zeta(3)-7/9)/(1/10*Pi+4/9) 2329929639031884 r005 Im(z^2+c),c=-7/24+40/61*I,n=45 2329929653729800 m005 (1/2*Pi-3/4)/(3*Zeta(3)-1/12) 2329929658338934 h001 (1/9*exp(2)+7/11)/(1/8*exp(1)+2/7) 2329929665891266 m005 (1/2*3^(1/2)-2/7)/(4*gamma+2/11) 2329929672271197 r005 Im(z^2+c),c=-3/31+18/61*I,n=11 2329929693005239 a007 Real Root Of 287*x^4+638*x^3+354*x^2-764*x-190 2329929708849497 r002 46th iterates of z^2 + 2329929714984044 b008 11/21+Sin[4] 2329929731264410 r009 Im(z^3+c),c=-53/126+5/43*I,n=29 2329929731925872 a008 Real Root of x^4+13*x^2-12*x-128 2329929742288002 m001 LandauRamanujan2nd^BesselI(1,2)*Psi(2,1/3) 2329929758491731 r005 Im(z^2+c),c=-31/32+3/13*I,n=37 2329929764327822 a007 Real Root Of -177*x^4-335*x^3+150*x^2+192*x+612 2329929766523809 a007 Real Root Of -430*x^4-733*x^3+549*x^2-559*x-882 2329929781585471 r005 Im(z^2+c),c=-35/74+16/39*I,n=39 2329929782989196 a007 Real Root Of -268*x^4-593*x^3+12*x^2+993*x+224 2329929799370889 a007 Real Root Of 558*x^4+858*x^3-942*x^2-18*x-520 2329929828282359 m001 (Psi(2,1/3)-Trott)^Zeta(1,2) 2329929832926244 r009 Im(z^3+c),c=-39/86+4/59*I,n=34 2329929839188240 m001 (-Landau+Otter)/(Psi(1,1/3)+sin(1/12*Pi)) 2329929842602868 a001 19/208010*5^(32/55) 2329929849691907 m005 (1/2*exp(1)+1/9)/(5*Zeta(3)+3/10) 2329929850736160 m005 (1/3*Catalan+1/6)/(5/7*5^(1/2)+3/7) 2329929854488027 m001 1/exp(PrimesInBinary)*Magata/cos(Pi/12) 2329929870980076 m001 (exp(Pi)*exp(1/2)+MertensB1)/exp(1/2) 2329929875647427 a001 10946/29*29^(20/37) 2329929888755308 s002 sum(A152274[n]/(n^2*exp(n)+1),n=1..infinity) 2329929893724652 m001 Salem^Pi/TravellingSalesman 2329929899523592 m005 (1/2*Zeta(3)-4/11)/(7/11*3^(1/2)-1/12) 2329929900779115 a007 Real Root Of -560*x^4-225*x^3+964*x^2+998*x+179 2329929915846302 r005 Re(z^2+c),c=-13/82+21/40*I,n=43 2329929917498177 r005 Im(z^2+c),c=-11/20+20/53*I,n=31 2329929918970502 m001 (1+cos(1))/(-LaplaceLimit+ZetaQ(4)) 2329929922361447 p003 LerchPhi(1/100,6,39/142) 2329929923630858 m005 (1/2*exp(1)-7/9)/(4/7*Pi+7/10) 2329929928982667 r005 Re(z^2+c),c=9/28+27/55*I,n=35 2329929936275097 l006 ln(2748/3469) 2329929949777995 m001 Psi(2,1/3)^Shi(1)*ReciprocalFibonacci 2329929957317602 l006 ln(3521/3604) 2329929960538964 r008 a(0)=3,K{-n^6,-44+60*n-9*n^3} 2329929962829988 m001 5^(1/2)*GaussAGM+arctan(1/2) 2329929967961280 a001 3/521*5600748293801^(1/21) 2329929978741251 g007 Psi(2,3/8)-Psi(2,6/11)-Psi(2,1/5)-Psi(2,2/3) 2329929979389152 a007 Real Root Of 334*x^4+276*x^3-948*x^2+805*x+670 2329929981239782 a003 cos(Pi*21/115)*cos(Pi*39/95) 2329929982483360 m001 GAMMA(7/12)/Magata^2/exp(sqrt(3)) 2329929989006629 m005 (1/2*3^(1/2)-5/9)/(7/11*Pi-2/3) 2329929990377615 a001 1597/123*123^(3/5) 2329929995360999 r002 47th iterates of z^2 + 2329929996191401 m001 ln(TwinPrimes)/LaplaceLimit/GAMMA(13/24)^2 2329930004946096 a001 123/5*987^(15/46) 2329930012578996 m005 (1/2*gamma+7/11)/(7/10*Zeta(3)-4/9) 2329930012997741 m001 3^(1/3)+Champernowne+LandauRamanujan 2329930015573610 r005 Re(z^2+c),c=-9/110+31/46*I,n=21 2329930015853771 a007 Real Root Of 603*x^4+936*x^3-906*x^2+767*x+774 2329930017406561 r005 Im(z^2+c),c=-1/3+16/43*I,n=41 2329930024410933 m001 (GAMMA(5/6)+FeigenbaumMu)/(5^(1/2)-Ei(1,1)) 2329930027637190 m006 (2/3*Pi-2/5)/(1/3/Pi-5/6) 2329930050727054 h001 (6/7*exp(1)+2/11)/(1/6*exp(1)+5/8) 2329930054156620 r005 Im(z^2+c),c=-15/22+22/87*I,n=38 2329930063789914 m002 Pi^5/15+Cosh[Pi]/4 2329930065594487 a001 123/377*75025^(24/41) 2329930065977465 p001 sum((-1)^n/(503*n+429)/(1000^n),n=0..infinity) 2329930076806523 r009 Re(z^3+c),c=-33/86+25/48*I,n=40 2329930079670018 m005 (1/2*5^(1/2)+7/9)/(3/10*5^(1/2)+1/7) 2329930079867353 a007 Real Root Of -815*x^4-373*x^3+845*x^2+796*x-19 2329930081432898 r005 Im(z^2+c),c=-115/102+13/61*I,n=50 2329930083191219 m005 (1/2*Zeta(3)-1)/(2/9*Zeta(3)-1/4) 2329930085405626 m006 (1/5/Pi+1/4)/(1/4*exp(2*Pi)+3/4) 2329930110055733 a007 Real Root Of 9*x^4-300*x^3-582*x^2+513*x+295 2329930113631074 m005 (1/3*5^(1/2)+1/7)/(2/3*exp(1)+2) 2329930124260943 p003 LerchPhi(1/25,1,73/168) 2329930124546176 m005 (1/2*Zeta(3)+1/3)/(4/7*3^(1/2)-5) 2329930124616722 a007 Real Root Of 165*x^4+531*x^3+442*x^2-7*x-562 2329930130417038 m005 (1/2*Catalan+9/10)/(2*2^(1/2)+3) 2329930139315766 r009 Re(z^3+c),c=-35/106+13/33*I,n=14 2329930150665194 b008 2-(3*Cosh[7])/7 2329930159476742 r005 Im(z^2+c),c=-49/102+31/64*I,n=49 2329930171077616 a007 Real Root Of -539*x^4-890*x^3+689*x^2-245*x+316 2329930185836898 m001 ln(Pi)^(Pi*2^(1/2)/GAMMA(3/4))+ArtinRank2 2329930187991571 m001 1/GAMMA(23/24)/ln(Robbin)*Pi^2 2329930195143057 r005 Re(z^2+c),c=-1/17+18/29*I,n=17 2329930196586791 m005 (1/2*5^(1/2)+11/12)/(3/11*Zeta(3)+6/11) 2329930204684845 m001 Conway^Bloch/(ZetaQ(4)^Bloch) 2329930208046446 r009 Re(z^3+c),c=-6/25+22/31*I,n=61 2329930213446155 m001 BesselJ(0,1)/ln(Trott)*GAMMA(19/24)^2 2329930217342626 r005 Im(z^2+c),c=-43/122+20/53*I,n=23 2329930223330615 a007 Real Root Of 813*x^4+646*x^3-397*x^2-837*x+206 2329930232530278 m001 FeigenbaumD*ln(Artin)^2/GAMMA(11/12)^2 2329930232877122 p004 log(12269/9719) 2329930238349985 r005 Im(z^2+c),c=-53/90+20/53*I,n=29 2329930247738489 m006 (2/5*Pi-5)/(3*exp(2*Pi)+1/6) 2329930265149561 m001 1/2*exp(1)^FeigenbaumC/Pi*3^(1/2)*GAMMA(2/3) 2329930265149561 m001 1/GAMMA(1/3)*exp(FeigenbaumC) 2329930269148897 m001 (Khinchin-ZetaP(4))/(Kac-KhinchinHarmonic) 2329930271608132 m001 (Otter+Riemann1stZero)/(2^(1/3)-KhinchinLevy) 2329930272348514 r005 Im(z^2+c),c=-115/122+11/49*I,n=11 2329930279969573 a007 Real Root Of 489*x^4+886*x^3-630*x^2+125*x+507 2329930287612468 r002 2th iterates of z^2 + 2329930288214123 r005 Im(z^2+c),c=-65/126+28/55*I,n=37 2329930290823772 h001 (7/8*exp(2)+3/11)/(7/9*exp(1)+7/9) 2329930291985953 h001 (10/11*exp(2)+3/4)/(6/7*exp(1)+7/8) 2329930293985554 m005 (1/42+1/6*5^(1/2))/(5/6*Zeta(3)+7/10) 2329930301281281 r002 6th iterates of z^2 + 2329930332163562 m001 (Cahen-LandauRamanujan)/(Zeta(1,2)+Backhouse) 2329930333689561 a003 sin(Pi*4/55)/sin(Pi*31/73) 2329930342167773 m001 (GAMMA(7/12)+2/3)/(-3^(1/3)+1/2) 2329930349798991 l006 ln(6971/8800) 2329930356137269 r005 Re(z^2+c),c=-9/10+27/80*I,n=4 2329930359248174 a007 Real Root Of 312*x^4+679*x^3-437*x^2-797*x-91 2329930361758427 m001 (-Pi^(1/2)+Mills)/(BesselI(1,1)-BesselJ(0,1)) 2329930362125212 a007 Real Root Of -402*x^4-768*x^3+696*x^2+765*x+137 2329930366915051 m001 (-gamma(1)+ZetaQ(3))/(BesselI(0,1)-Catalan) 2329930369016902 a007 Real Root Of 254*x^4+599*x^3+547*x^2+962*x-637 2329930370741440 a007 Real Root Of -364*x^4-911*x^3-495*x^2-929*x-273 2329930379964362 s001 sum(exp(-Pi/4)^(n-1)*A025764[n],n=1..infinity) 2329930381088819 r002 32th iterates of z^2 + 2329930401437923 m001 (gamma(3)+FeigenbaumC)^HardHexagonsEntropy 2329930412543132 m005 (1/2*3^(1/2)-7/11)/(1/6*2^(1/2)+3/4) 2329930415005136 a007 Real Root Of 705*x^4-351*x^3+351*x^2+84*x-6 2329930415222156 r005 Re(z^2+c),c=-59/98+16/49*I,n=7 2329930429812541 m001 ln(Lehmer)^2/LaplaceLimit/BesselK(0,1)^2 2329930430368179 m001 1/ln(cos(Pi/5))/GAMMA(1/24)^2*exp(1) 2329930438063339 a005 (1/cos(2/65*Pi))^1657 2329930439010797 a001 843/196418*233^(9/29) 2329930441901184 r002 30th iterates of z^2 + 2329930447517992 m001 3^(1/2)/(arctan(1/3)^MertensB1) 2329930453013642 m001 (ln(2)-ln(Pi))/(GAMMA(5/6)+AlladiGrinstead) 2329930457931371 r005 Im(z^2+c),c=-23/98+13/38*I,n=23 2329930466821543 a007 Real Root Of -239*x^4-236*x^3+484*x^2-454*x+373 2329930470930868 m005 (11/30+1/6*5^(1/2))/(5/12*Zeta(3)-9/11) 2329930473590696 m005 (1/2*2^(1/2)-7/10)/(5/12*3^(1/2)-5/12) 2329930474386976 a007 Real Root Of -165*x^4+668*x^3-886*x^2+781*x+239 2329930494072552 s001 sum(exp(-Pi/3)^(n-1)*A088441[n],n=1..infinity) 2329930494417618 r005 Im(z^2+c),c=-5/4+16/221*I,n=14 2329930495897661 a007 Real Root Of 553*x^4+831*x^3-810*x^2+942*x+806 2329930505109006 s002 sum(A097581[n]/(exp(n)-1),n=1..infinity) 2329930519562730 r004 Im(z^2+c),c=-13/38+3/8*I,z(0)=-1,n=27 2329930524594889 a001 161/416020*1346269^(37/60) 2329930530673344 a007 Real Root Of 386*x^4+966*x^3+995*x^2-99*x-66 2329930535462278 a007 Real Root Of 255*x^4+389*x^3-792*x^2-330*x+936 2329930536741560 m002 5/(3*E^Pi)+E^Pi*Coth[Pi] 2329930542665259 r009 Re(z^3+c),c=-37/90+33/62*I,n=36 2329930546884574 l006 ln(101/1038) 2329930566962069 r005 Im(z^2+c),c=-1+71/235*I,n=9 2329930577974954 a008 Real Root of x^4+4*x^2-54*x-177 2329930590039663 m001 1/KhintchineLevy/GolombDickman*ln(sin(1)) 2329930593828378 m001 (Gompertz+Otter)/(Paris+ZetaQ(2)) 2329930596458572 r004 Re(z^2+c),c=-7/26+4/19*I,z(0)=-1,n=12 2329930599874918 r005 Im(z^2+c),c=-17/90+18/55*I,n=19 2329930600460922 s002 sum(A117600[n]/(pi^n-1),n=1..infinity) 2329930614433405 b008 91/4+ArcCoth[2] 2329930618888174 l006 ln(4223/5331) 2329930625231630 m006 (1/Pi-4/5)/(1/4*Pi^2-2/5) 2329930628631980 a007 Real Root Of 450*x^4+539*x^3-776*x^2+992*x+80 2329930629584789 m001 (-CareFree+Salem)/(2^(1/3)+BesselJ(0,1)) 2329930634377337 m001 Si(Pi)^2/exp(Champernowne)^2/GAMMA(1/12) 2329930636288059 r005 Im(z^2+c),c=-37/34+7/29*I,n=52 2329930659968540 r002 24th iterates of z^2 + 2329930671090776 r005 Im(z^2+c),c=-31/50+9/31*I,n=16 2329930685749747 m005 (1/2*3^(1/2)-7/9)/(7/10*3^(1/2)-5) 2329930691784868 m001 (-OrthogonalArrays+PlouffeB)/(gamma+Magata) 2329930693939486 r005 Im(z^2+c),c=-1/3+16/43*I,n=44 2329930699339056 r005 Re(z^2+c),c=-31/90+15/26*I,n=24 2329930709286894 r005 Im(z^2+c),c=-13/29+25/62*I,n=42 2329930714688156 r009 Re(z^3+c),c=-43/118+39/53*I,n=12 2329930726782467 a007 Real Root Of -82*x^4+284*x^3+860*x^2-291*x+662 2329930737027162 m001 GlaisherKinkelin/ln(ArtinRank2)*cos(Pi/5)^2 2329930738414880 a001 3571/377*121393^(19/22) 2329930755388840 a007 Real Root Of 594*x^4-103*x^3-84*x^2-330*x+81 2329930769854891 m001 (2^(1/3)-BesselJ(0,1))/(MinimumGamma+Robbin) 2329930780859595 r009 Re(z^3+c),c=-17/50+13/30*I,n=10 2329930787136499 m001 1/ln(FeigenbaumD)^2/Cahen*Zeta(1/2) 2329930816455157 m005 (-23/60+5/12*5^(1/2))/(1/4*2^(1/2)+2) 2329930816650595 s002 sum(A016305[n]/(16^n-1),n=1..infinity) 2329930819551194 s002 sum(A236201[n]/(n!^3),n=1..infinity) 2329930822162037 a007 Real Root Of 198*x^4+307*x^3-10*x^2+784*x-71 2329930823146919 a007 Real Root Of 36*x^4-2*x^3+14*x^2+334*x-384 2329930837908752 m001 GAMMA(17/24)+Lehmer+ZetaP(2) 2329930852988008 m005 (27/28+1/4*5^(1/2))/(1/6*gamma-3/4) 2329930853368681 a007 Real Root Of -469*x^4-732*x^3+765*x^2-248*x-168 2329930859085453 p004 log(19717/15619) 2329930868792627 m005 (1/4*gamma+2/5)/(2/5*Catalan-3/5) 2329930881934064 a007 Real Root Of -900*x^4+361*x^3-66*x^2+885*x+217 2329930882520155 m005 (1/2*Pi-5)/(3/8*gamma-4/11) 2329930889458501 r009 Im(z^3+c),c=-1/38+13/53*I,n=9 2329930900701791 a007 Real Root Of 41*x^4+924*x^3-738*x^2-195*x+555 2329930902603550 m001 (FeigenbaumDelta+ZetaP(4))/(1+Zeta(5)) 2329930905936736 a007 Real Root Of -479*x^4-721*x^3+634*x^2-551*x+271 2329930907857507 r009 Im(z^3+c),c=-1/38+13/53*I,n=11 2329930909005892 r009 Im(z^3+c),c=-1/38+13/53*I,n=13 2329930909049924 r009 Im(z^3+c),c=-1/38+13/53*I,n=15 2329930909051289 r009 Im(z^3+c),c=-1/38+13/53*I,n=17 2329930909051325 r009 Im(z^3+c),c=-1/38+13/53*I,n=19 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=21 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=23 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=24 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=26 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=28 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=30 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=32 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=34 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=36 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=38 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=41 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=43 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=40 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=45 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=47 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=49 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=51 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=52 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=53 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=54 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=55 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=50 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=48 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=46 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=44 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=42 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=39 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=37 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=35 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=33 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=31 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=29 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=27 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=25 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=22 2329930909051326 r009 Im(z^3+c),c=-1/38+13/53*I,n=20 2329930909051332 r009 Im(z^3+c),c=-1/38+13/53*I,n=18 2329930909051558 r009 Im(z^3+c),c=-1/38+13/53*I,n=16 2329930909059476 r009 Im(z^3+c),c=-1/38+13/53*I,n=14 2329930909292145 r009 Im(z^3+c),c=-1/38+13/53*I,n=12 2329930910962778 a001 3/14662949395604*2^(3/16) 2329930912541058 r009 Re(z^3+c),c=-4/9+19/37*I,n=32 2329930914392677 r009 Im(z^3+c),c=-1/38+13/53*I,n=10 2329930914875307 m001 ln(GAMMA(1/3))^2/TreeGrowth2nd*GAMMA(11/12) 2329930921148653 a001 843/832040*4807526976^(19/22) 2329930925806590 m001 (-RenyiParking+ZetaP(4))/(5^(1/2)+Cahen) 2329930926539797 m005 (1/2*Pi-7/10)/(2/5*gamma+1/7) 2329930945315415 r009 Im(z^3+c),c=-1/38+13/53*I,n=8 2329930948095026 l006 ln(5698/7193) 2329930948964360 r005 Re(z^2+c),c=-5/28+29/60*I,n=51 2329930964989125 r009 Re(z^3+c),c=-5/13+10/19*I,n=37 2329930967049479 m001 MadelungNaCl^(FeigenbaumDelta/GAMMA(7/24)) 2329930972234074 m001 1/cos(1)/FeigenbaumC/ln(cosh(1)) 2329930977294452 a007 Real Root Of 364*x^4+900*x^3+32*x^2+37*x+569 2329930983163809 r005 Im(z^2+c),c=10/23+2/7*I,n=6 2329930985228039 h001 (2/7*exp(1)+2/11)/(6/11*exp(2)+1/12) 2329930995092778 a007 Real Root Of -93*x^4-27*x^3+677*x^2+591*x+101 2329930998463268 m001 FransenRobinson^2/exp(Backhouse)^2/Tribonacci 2329930999279008 a007 Real Root Of 455*x^4+938*x^3-503*x^2-394*x+268 2329930999407273 r005 Im(z^2+c),c=3/34+9/41*I,n=5 2329931007866142 m001 (GAMMA(23/24)-Lehmer)/(Ei(1,1)+GAMMA(13/24)) 2329931011393633 m006 (5/6/Pi+2/5)/(ln(Pi)-4) 2329931015889694 m001 (Niven-PrimesInBinary)/(ln(5)-GAMMA(11/12)) 2329931016531640 r009 Re(z^3+c),c=-25/66+13/23*I,n=15 2329931019598053 m001 (Cahen*FibonacciFactorial+Rabbit)/Cahen 2329931047442447 p004 log(26053/25453) 2329931047507044 p001 sum((-1)^n/(482*n+429)/(1024^n),n=0..infinity) 2329931054482192 m001 (OneNinth+Sierpinski)/(ln(gamma)+Niven) 2329931069205033 m006 (Pi^2+3)/(1/6*Pi+5) 2329931069205033 m008 (Pi^2+3)/(1/6*Pi+5) 2329931078518462 m001 (ln(2^(1/2)+1)-exp(1/Pi))/(Backhouse+Robbin) 2329931103500925 a007 Real Root Of -596*x^4-894*x^3+601*x^2-963*x+750 2329931115552492 r005 Im(z^2+c),c=-131/114+14/45*I,n=7 2329931118266842 m001 LaplaceLimit/exp(GolombDickman)^2*GAMMA(3/4) 2329931124436822 a001 29/3*34^(37/41) 2329931134576462 m001 GAMMA(23/24)^2*exp(Catalan)/GAMMA(5/6) 2329931135638575 m002 6/(Pi^5*ProductLog[Pi])+ProductLog[Pi]/5 2329931140851176 r004 Im(z^2+c),c=1/4*I,z(0)=exp(11/12*I*Pi),n=6 2329931141910793 l006 ln(7173/9055) 2329931141971406 m001 (-GaussAGM(1,1/sqrt(2))+3)/(-BesselI(1,2)+2/3) 2329931142128694 m001 (5^(1/2))^Porter/(MertensB1^Porter) 2329931142930656 m008 (2/5*Pi^3-1/4)/(2/5*Pi^2-4) 2329931147706874 r005 Im(z^2+c),c=-73/114+16/45*I,n=25 2329931148700227 r002 11th iterates of z^2 + 2329931149243587 a008 Real Root of x^4-23*x^2-114*x+361 2329931149636461 a007 Real Root Of 354*x^4+269*x^3-12*x^2-703*x+160 2329931157683981 r009 Re(z^3+c),c=-19/54+17/37*I,n=9 2329931161024361 m005 (1/2*Zeta(3)+6)/(1/3*gamma+1/11) 2329931161604695 h001 (1/2*exp(2)+5/7)/(3/7*exp(1)+8/11) 2329931167839221 a007 Real Root Of -452*x^4-862*x^3+186*x^2-963*x-836 2329931168201070 m001 GAMMA(11/24)*exp(FibonacciFactorial)^2*Zeta(5) 2329931191197938 m001 (ArtinRank2+CareFree*Totient)/CareFree 2329931195270148 r005 Re(z^2+c),c=-15/106+5/9*I,n=34 2329931201095008 r009 Im(z^3+c),c=-1/38+13/53*I,n=7 2329931206317008 a007 Real Root Of 384*x^4+993*x^3-17*x^2-484*x+208 2329931216991193 m002 1+(Pi^3*Tanh[Pi]^2)/E^Pi 2329931219552299 r005 Re(z^2+c),c=-21/26+1/16*I,n=52 2329931224963945 m005 (1/2*Pi+7/8)/(11/12*5^(1/2)-1) 2329931225056313 r005 Im(z^2+c),c=-32/31+10/29*I,n=8 2329931227269733 a007 Real Root Of -583*x^4-984*x^3+692*x^2-701*x-655 2329931234943182 p003 LerchPhi(1/64,6,39/142) 2329931235255476 m001 GAMMA(11/12)^2*ln(ErdosBorwein)^2/Zeta(5)^2 2329931238870180 a001 123/13*165580141^(1/21) 2329931239234376 m005 (1/2*5^(1/2)+5/12)/(4/9*3^(1/2)-1/9) 2329931239583586 m001 1/Kolakoski^2/ln(GolombDickman)*FeigenbaumB^2 2329931244808766 a005 (1/cos(5/41*Pi))^256 2329931277979974 a003 cos(Pi*23/103)-sin(Pi*47/99) 2329931281997957 m004 (25*Pi*Coth[Sqrt[5]*Pi])/4+4*Tan[Sqrt[5]*Pi] 2329931286059610 a001 2576*123^(27/59) 2329931299878506 a003 sin(Pi*4/113)-sin(Pi*3/83) 2329931300066104 a007 Real Root Of -284*x^4-342*x^3+997*x^2+690*x+239 2329931310145834 r009 Im(z^3+c),c=-3/31+13/54*I,n=6 2329931320140223 r005 Im(z^2+c),c=-4/15+6/17*I,n=15 2329931337517620 r005 Im(z^2+c),c=-23/98+13/38*I,n=32 2329931351283611 m001 ln(FeigenbaumC)^2/Magata^2*exp(1)^2 2329931352783588 a008 Real Root of x^4-13*x^2-30*x+111 2329931363939114 r005 Re(z^2+c),c=-7/6+38/125*I,n=6 2329931370681488 m001 GAMMA(17/24)-MertensB1+Mills 2329931376711744 r002 22i'th iterates of 2*x/(1-x^2) of 2329931378000176 m004 -1+(15*Pi)/2+Cos[Sqrt[5]*Pi] 2329931383860670 m005 (1/2*5^(1/2)-5/7)/(2/9*Zeta(3)-2) 2329931406535633 m005 (1/2*Pi+3/7)/(3/10*Catalan+7/12) 2329931430943285 r005 Im(z^2+c),c=-13/54+17/38*I,n=5 2329931431868613 a007 Real Root Of -139*x^4+108*x^3+903*x^2-610*x-861 2329931434782973 a001 1292/161*199^(7/11) 2329931447326435 m001 (Shi(1)+Ei(1))/(-exp(1/Pi)+OneNinth) 2329931459005210 m001 (GAMMA(1/3)-RenyiParking)^GAMMA(17/24) 2329931460375322 v002 sum(1/(2^n*(15/2*n^2+29/2*n+6)),n=1..infinity) 2329931475857848 a003 sin(Pi*1/75)/cos(Pi*50/113) 2329931484663482 m001 Lehmer/(5^(1/2)+HardyLittlewoodC4) 2329931494689160 r005 Re(z^2+c),c=-7/40+28/57*I,n=53 2329931499926228 a007 Real Root Of -953*x^4-949*x^3-882*x^2-239*x-17 2329931504286684 a007 Real Root Of 523*x^4+827*x^3-538*x^2+621*x-585 2329931505869437 m001 (-GolombDickman+Niven)/(Artin-Chi(1)) 2329931508335960 p001 sum(1/(379*n+295)/n/(64^n),n=1..infinity) 2329931520370682 m009 (2/5*Psi(1,3/4)+1/6)/(24*Catalan+3*Pi^2-4/5) 2329931522491689 m003 -5/2+Sqrt[5]/2+(2*Sinh[1/2+Sqrt[5]/2])/3 2329931523780751 m005 (5/6+1/4*5^(1/2))/(4/11*2^(1/2)+1/12) 2329931527119790 r009 Re(z^3+c),c=-21/62+23/55*I,n=13 2329931531278445 m001 (ln(Pi)-Zeta(1/2))/(CareFree-Lehmer) 2329931536253596 m004 (-15*Pi)/2-Cos[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi] 2329931543889348 a007 Real Root Of 254*x^4+441*x^3-404*x^2-266*x-334 2329931544151269 p003 LerchPhi(1/12,2,31/47) 2329931547497297 a001 18/5702887*89^(23/24) 2329931549732802 r009 Re(z^3+c),c=-45/118+27/53*I,n=30 2329931555563488 a005 (1/cos(32/159*Pi))^154 2329931556338492 m006 (4/5/Pi+1/3)/(1/6*Pi+2) 2329931560596744 m005 (1/3*Pi+1/5)/(6*Catalan-1/7) 2329931565137346 m001 GAMMA(11/24)^exp(sqrt(2))*GAMMA(11/24)^(2/3) 2329931568941035 a007 Real Root Of 444*x^4+734*x^3-669*x^2+18*x-127 2329931586140924 l006 ln(927/9527) 2329931586209131 a001 3571/2*34^(4/53) 2329931590326797 r005 Re(z^2+c),c=-35/122+1/34*I,n=12 2329931606254583 r005 Re(z^2+c),c=17/78+15/32*I,n=3 2329931619386723 r009 Im(z^3+c),c=-31/70+1/11*I,n=39 2329931621460014 m001 OneNinth^2*ArtinRank2^2*ln(GAMMA(3/4))^2 2329931627241126 a003 cos(Pi*2/15)*cos(Pi*28/67) 2329931633287675 m001 1/ln(Robbin)*ErdosBorwein^2/FeigenbaumD 2329931639128437 r002 59th iterates of z^2 + 2329931655990882 a007 Real Root Of 224*x^4+759*x^3+474*x^2-484*x-702 2329931661941432 m001 Sarnak^FeigenbaumDelta*Sarnak^Zeta(1,-1) 2329931667418257 a007 Real Root Of -481*x^4-977*x^3+331*x^2-102*x-217 2329931669561177 b008 3/80+ArcCosh[5] 2329931674945262 m001 ZetaP(3)^GAMMA(11/12)+exp(Pi) 2329931675243862 m001 1/Salem/HardHexagonsEntropy/exp(GAMMA(1/6)) 2329931679391231 a005 (1/cos(38/235*Pi))^228 2329931679814060 r005 Re(z^2+c),c=-19/90+25/62*I,n=8 2329931680284818 r005 Im(z^2+c),c=-157/110+10/61*I,n=7 2329931683620376 a001 1730726404001/305*377^(5/21) 2329931691771501 m002 -4/E^Pi-Pi*Coth[Pi]+Tanh[Pi] 2329931705319494 m005 (1/2*3^(1/2)-9/10)/(1/6*3^(1/2)-1/7) 2329931713216989 l006 ln(826/8489) 2329931715471161 r005 Im(z^2+c),c=-2/21+31/37*I,n=21 2329931717069990 r005 Re(z^2+c),c=-5/36+19/34*I,n=41 2329931720144918 m001 ThueMorse^((1+3^(1/2))^(1/2))+ZetaQ(4) 2329931735388288 r005 Re(z^2+c),c=-19/86+13/33*I,n=11 2329931749258658 r004 Im(z^2+c),c=-1+5/21*I,z(0)=-1,n=51 2329931763759560 r005 Re(z^2+c),c=-11/36+25/48*I,n=11 2329931769706641 m001 (Ei(1,1)-Zeta(1,-1))/(GAMMA(23/24)+Kac) 2329931772219083 m001 GolombDickman-exp(1/Pi)+polylog(4,1/2) 2329931772219083 m001 exp(1/Pi)-polylog(4,1/2)-GolombDickman 2329931773971774 m001 1/ln(Riemann2ndZero)^2*ArtinRank2*GAMMA(1/6)^2 2329931774911788 r005 Im(z^2+c),c=-11/15+9/47*I,n=3 2329931776477057 m001 (Pi*2^(1/2)/GAMMA(3/4)-Mills)/(Niven-Rabbit) 2329931801795733 a008 Real Root of x^4-10*x^2-54*x-101 2329931816040336 s002 sum(A250448[n]/(n^3*10^n+1),n=1..infinity) 2329931825632767 a007 Real Root Of -152*x^4+127*x^3-38*x^2+557*x+13 2329931828167866 r002 3th iterates of z^2 + 2329931835189631 r005 Im(z^2+c),c=-11/34+43/47*I,n=3 2329931846763435 m005 (1/2*Catalan+6/11)/(1/6*Catalan-7/12) 2329931854443441 r005 Im(z^2+c),c=-33/74+32/61*I,n=50 2329931863216210 m001 (-MertensB1+Paris)/(1-ln(2)/ln(10)) 2329931865170023 r005 Im(z^2+c),c=-73/78+13/61*I,n=23 2329931867693134 h001 (5/6*exp(2)+4/5)/(2/7*exp(2)+7/8) 2329931868735300 m005 (1/2*Pi-9/11)/(4/9*3^(1/2)-4) 2329931868970343 a007 Real Root Of -439*x^4-691*x^3+780*x^2+67*x+119 2329931869666526 m001 FeigenbaumD^Zeta(1,2)*sin(1/5*Pi) 2329931871046695 r005 Re(z^2+c),c=-17/74+26/43*I,n=37 2329931875573799 r005 Re(z^2+c),c=-7/40+23/38*I,n=33 2329931875699052 l006 ln(725/7451) 2329931890359092 a008 Real Root of (11+4*x+16*x^2+7*x^3) 2329931890630921 l006 ln(1475/1862) 2329931906768572 m001 Rabbit^2/ln(Porter)*sqrt(Pi) 2329931907417006 a007 Real Root Of 591*x^4-279*x^3+527*x^2-819*x+164 2329931912930791 r009 Re(z^3+c),c=-35/66+8/27*I,n=7 2329931934485002 r005 Im(z^2+c),c=37/94+15/49*I,n=33 2329931935838397 a001 11/514229*377^(34/43) 2329931937130332 r002 51th iterates of z^2 + 2329931945435781 a007 Real Root Of 203*x^4+428*x^3+146*x^2+262*x-751 2329931948108490 m001 PlouffeB^exp(Pi)*KomornikLoreti^exp(Pi) 2329931953508665 h001 (3/10*exp(1)+2/11)/(6/11*exp(2)+1/4) 2329931967325342 m001 DuboisRaymond+TravellingSalesman*ZetaQ(2) 2329931972789115 q001 137/588 2329931972789115 r002 2th iterates of z^2 + 2329931972789115 r005 Im(z^2+c),c=-9/14+137/168*I,n=2 2329931974588607 a007 Real Root Of 14*x^4+343*x^3+386*x^2-145*x-311 2329931996918759 h001 (3/7*exp(2)+6/11)/(3/10*exp(1)+7/9) 2329931999563505 m001 1/FeigenbaumDelta^2*ln(DuboisRaymond)^2*Ei(1) 2329932000895449 m001 1/Rabbit^2/Khintchine/exp(gamma)^2 2329932020969131 r005 Im(z^2+c),c=13/46+27/50*I,n=12 2329932022104222 a007 Real Root Of -442*x^4-852*x^3-50*x^2-687*x+920 2329932029959876 m008 (1/5*Pi^3+5)/(5*Pi^6+3/5) 2329932034460722 a003 cos(Pi*5/31)/cos(Pi*37/98) 2329932036943370 r002 28th iterates of z^2 + 2329932077578136 r005 Im(z^2+c),c=-21/46+2/51*I,n=24 2329932083876439 k003 Champernowne real with 13/6*n^3-1/2*n^2-38/3*n+13 2329932090779435 l006 ln(624/6413) 2329932093875706 g006 -Psi(1,1/11)-Psi(1,1/10)-Psi(1,4/9)-Psi(1,2/3) 2329932104224987 a004 Fibonacci(16)*Lucas(11)/(1/2+sqrt(5)/2)^14 2329932107441381 a007 Real Root Of -29*x^4-697*x^3-515*x^2-440*x-336 2329932112123101 k007 concat of cont frac of 2329932112908194 m005 (1/2*Pi+10/11)/(5/11*Pi-4/11) 2329932118605884 a008 Real Root of x^4-12*x^2-96*x-188 2329932132727757 r002 45th iterates of z^2 + 2329932143104957 a001 2889*1597^(15/53) 2329932151590073 a001 55/2207*322^(12/31) 2329932153956339 k002 Champernowne real with 29*n^2-81*n+75 2329932155783395 r002 18th iterates of z^2 + 2329932155885057 r005 Re(z^2+c),c=-13/54+29/52*I,n=12 2329932159264627 m001 1/ln(LambertW(1))*GAMMA(5/12)^2*cos(1)^2 2329932160587243 m001 BesselJ(1,1)+3/2*(2^(1/3)) 2329932167397916 m001 LambertW(1)*ln(RenyiParking)/sin(1)^2 2329932167760399 r005 Re(z^2+c),c=-85/86+16/55*I,n=14 2329932167876674 a001 29/165580141*2^(7/17) 2329932174517538 m001 (5^(1/2)+Si(Pi))/(-FeigenbaumC+ZetaP(4)) 2329932175164926 r005 Im(z^2+c),c=-7/48+6/19*I,n=6 2329932198611764 m001 GAMMA(17/24)*GAMMA(2/3)^ReciprocalLucas 2329932216783062 r005 Re(z^2+c),c=-13/16+2/23*I,n=14 2329932223449087 r009 Im(z^3+c),c=-4/9+3/34*I,n=32 2329932227305426 m001 (ln(3)+BesselJ(1,1))/(HeathBrownMoroz-Robbin) 2329932227365730 g006 Psi(1,3/11)-Psi(1,7/11)-Psi(1,2/11)-Psi(1,2/3) 2329932231118531 k008 concat of cont frac of 2329932233310204 m001 TravellingSalesman^(Khinchin/Zeta(1,-1)) 2329932241605048 r005 Im(z^2+c),c=-7/46+17/54*I,n=18 2329932250461438 m001 (GAMMA(1/12)+5)/(GAMMA(7/24)+4) 2329932252265654 m008 (1/6*Pi+4)/(2*Pi^4-2/3) 2329932253401166 r005 Re(z^2+c),c=-7/17+6/13*I,n=5 2329932258212574 m001 (FeigenbaumAlpha-Sarnak)/(gamma(2)+gamma(3)) 2329932270024998 a003 sin(Pi*1/48)*sin(Pi*8/69) 2329932272628088 a007 Real Root Of 436*x^4-902*x^3-148*x^2-759*x+195 2329932277106418 m001 (Kac-Riemann2ndZero)/(Trott+ZetaP(4)) 2329932280710181 s002 sum(A277196[n]/((exp(n)-1)/n),n=1..infinity) 2329932293753765 r009 Im(z^3+c),c=-25/102+10/47*I,n=4 2329932313895938 b008 -40/103+E 2329932324446373 m001 GAMMA(11/24)/(RenyiParking^Cahen) 2329932336147386 a001 4/2178309*2584^(1/33) 2329932336690099 r005 Im(z^2+c),c=-55/98+2/41*I,n=18 2329932338459941 r005 Re(z^2+c),c=-7/52+5/8*I,n=37 2329932344699354 h001 (3/7*exp(2)+1/9)/(1/4*exp(1)+8/11) 2329932345386695 a007 Real Root Of 25*x^4+569*x^3-357*x^2-993*x+127 2329932345425430 a001 2537720636/233*121393^(11/24) 2329932345439938 a001 12752043/233*12586269025^(11/24) 2329932359898595 p003 LerchPhi(1/125,6,320/171) 2329932360621603 r005 Re(z^2+c),c=-9/58+8/15*I,n=47 2329932360820307 m001 GAMMA(7/12)*MertensB1*exp(log(1+sqrt(2)))^2 2329932361482320 h001 (3/8*exp(2)+2/5)/(3/10*exp(1)+6/11) 2329932361603805 p001 sum((-1)^n/(505*n+429)/(1000^n),n=0..infinity) 2329932373795147 a007 Real Root Of -313*x^4+549*x^3-167*x^2+850*x-195 2329932378905847 a007 Real Root Of 413*x^4+690*x^3-947*x^2-813*x-197 2329932384146106 a007 Real Root Of 219*x^4-550*x^3+237*x^2-689*x-181 2329932384506235 m001 (1+3^(1/2))^(1/2)-LaplaceLimit+Totient 2329932388930940 l006 ln(523/5375) 2329932392408242 m001 1/ln(Salem)^2/MertensB1^2/cosh(1)^2 2329932407355058 a001 2/9*(1/2*5^(1/2)+1/2)^29*18^(13/17) 2329932408660824 q001 1/429197 2329932414756741 m006 (5/6/Pi-1/3)/(3/5*Pi^2-3) 2329932417422314 a007 Real Root Of 43*x^4+995*x^3-155*x^2+151*x+756 2329932424593190 r005 Re(z^2+c),c=19/48+2/9*I,n=48 2329932428246716 m002 -E^Pi-ProductLog[Pi]/3+Tanh[Pi]/5 2329932433294830 a007 Real Root Of -567*x^4-906*x^3+965*x^2-292*x-669 2329932435258337 m005 (2/5*Pi-5/6)/(1/5*Catalan-2) 2329932435633148 a007 Real Root Of -212*x^4+468*x^3-297*x^2+995*x-221 2329932445155421 m001 StronglyCareFree^Zeta(1/2)+ln(2^(1/2)+1) 2329932446147610 p001 sum(1/(459*n+97)/n/(8^n),n=1..infinity) 2329932447453948 a003 cos(Pi*1/29)-sin(Pi*19/69) 2329932447582718 m001 (Sarnak+Trott2nd)/(cos(1)+FeigenbaumD) 2329932452195839 m001 ln(GAMMA(23/24))/Kolakoski^2/log(2+sqrt(3))^2 2329932458216905 r005 Im(z^2+c),c=-23/98+13/38*I,n=34 2329932459644086 a007 Real Root Of -99*x^4-64*x^3+11*x^2-701*x+415 2329932464241588 a001 28143753123/610*225851433717^(5/21) 2329932464241589 a001 312119004989/610*9227465^(5/21) 2329932477298489 m005 (1/2*Catalan+11/12)/(7/11*2^(1/2)+5) 2329932486420272 a001 11/3*196418^(49/54) 2329932488558830 m001 1/Zeta(1/2)^2*Si(Pi)^2/exp(cos(Pi/12))^2 2329932497010424 a001 55/521*3571^(3/31) 2329932501672186 m001 FeigenbaumAlpha-exp(Pi)^MertensB2 2329932506238371 m001 (1+Pi*2^(1/2)/GAMMA(3/4))/(cos(1/5*Pi)+Salem) 2329932512778160 a004 Fibonacci(18)*Lucas(11)/(1/2+sqrt(5)/2)^16 2329932519666171 a007 Real Root Of -180*x^4-250*x^3-129*x^2-957*x+613 2329932531715337 m001 (FeigenbaumC-cos(1))/(Otter+Sierpinski) 2329932535500278 a007 Real Root Of 533*x^4+809*x^3-779*x^2+106*x-999 2329932536345093 s001 sum(1/10^(n-1)*A191279[n]/n!^2,n=1..infinity) 2329932536904352 m001 BesselJ(0,1)*Ei(1)*ErdosBorwein 2329932537941858 r005 Im(z^2+c),c=-41/70+7/44*I,n=8 2329932540575265 r005 Re(z^2+c),c=-9/40+15/41*I,n=28 2329932545685181 r005 Im(z^2+c),c=-5/9+16/41*I,n=19 2329932563500494 b008 -3+ArcCsch[Log[4]] 2329932564041336 m001 (CopelandErdos+Trott2nd)/(Zeta(3)+gamma(1)) 2329932565399082 a007 Real Root Of -61*x^4+401*x^3+972*x^2-882*x-462 2329932567099983 m001 TreeGrowth2nd/(Khinchin^Cahen) 2329932572385265 a004 Fibonacci(20)*Lucas(11)/(1/2+sqrt(5)/2)^18 2329932576649728 r005 Im(z^2+c),c=-43/74+13/30*I,n=25 2329932581081824 a004 Fibonacci(22)*Lucas(11)/(1/2+sqrt(5)/2)^20 2329932582350635 a004 Fibonacci(24)*Lucas(11)/(1/2+sqrt(5)/2)^22 2329932582535752 a004 Fibonacci(26)*Lucas(11)/(1/2+sqrt(5)/2)^24 2329932582562760 a004 Fibonacci(28)*Lucas(11)/(1/2+sqrt(5)/2)^26 2329932582566701 a004 Fibonacci(30)*Lucas(11)/(1/2+sqrt(5)/2)^28 2329932582567276 a004 Fibonacci(32)*Lucas(11)/(1/2+sqrt(5)/2)^30 2329932582567360 a004 Fibonacci(34)*Lucas(11)/(1/2+sqrt(5)/2)^32 2329932582567372 a004 Fibonacci(36)*Lucas(11)/(1/2+sqrt(5)/2)^34 2329932582567374 a004 Fibonacci(38)*Lucas(11)/(1/2+sqrt(5)/2)^36 2329932582567374 a004 Fibonacci(40)*Lucas(11)/(1/2+sqrt(5)/2)^38 2329932582567374 a004 Fibonacci(42)*Lucas(11)/(1/2+sqrt(5)/2)^40 2329932582567374 a004 Fibonacci(44)*Lucas(11)/(1/2+sqrt(5)/2)^42 2329932582567374 a004 Fibonacci(46)*Lucas(11)/(1/2+sqrt(5)/2)^44 2329932582567374 a004 Fibonacci(48)*Lucas(11)/(1/2+sqrt(5)/2)^46 2329932582567374 a004 Fibonacci(50)*Lucas(11)/(1/2+sqrt(5)/2)^48 2329932582567374 a004 Fibonacci(52)*Lucas(11)/(1/2+sqrt(5)/2)^50 2329932582567374 a004 Fibonacci(54)*Lucas(11)/(1/2+sqrt(5)/2)^52 2329932582567374 a004 Fibonacci(56)*Lucas(11)/(1/2+sqrt(5)/2)^54 2329932582567374 a004 Fibonacci(58)*Lucas(11)/(1/2+sqrt(5)/2)^56 2329932582567374 a004 Fibonacci(60)*Lucas(11)/(1/2+sqrt(5)/2)^58 2329932582567374 a004 Fibonacci(62)*Lucas(11)/(1/2+sqrt(5)/2)^60 2329932582567374 a004 Fibonacci(64)*Lucas(11)/(1/2+sqrt(5)/2)^62 2329932582567374 a004 Fibonacci(66)*Lucas(11)/(1/2+sqrt(5)/2)^64 2329932582567374 a004 Fibonacci(68)*Lucas(11)/(1/2+sqrt(5)/2)^66 2329932582567374 a004 Fibonacci(70)*Lucas(11)/(1/2+sqrt(5)/2)^68 2329932582567374 a004 Fibonacci(72)*Lucas(11)/(1/2+sqrt(5)/2)^70 2329932582567374 a004 Fibonacci(74)*Lucas(11)/(1/2+sqrt(5)/2)^72 2329932582567374 a004 Fibonacci(76)*Lucas(11)/(1/2+sqrt(5)/2)^74 2329932582567374 a004 Fibonacci(78)*Lucas(11)/(1/2+sqrt(5)/2)^76 2329932582567374 a004 Fibonacci(80)*Lucas(11)/(1/2+sqrt(5)/2)^78 2329932582567374 a004 Fibonacci(82)*Lucas(11)/(1/2+sqrt(5)/2)^80 2329932582567374 a004 Fibonacci(84)*Lucas(11)/(1/2+sqrt(5)/2)^82 2329932582567374 a004 Fibonacci(86)*Lucas(11)/(1/2+sqrt(5)/2)^84 2329932582567374 a004 Fibonacci(88)*Lucas(11)/(1/2+sqrt(5)/2)^86 2329932582567374 a004 Fibonacci(90)*Lucas(11)/(1/2+sqrt(5)/2)^88 2329932582567374 a004 Fibonacci(92)*Lucas(11)/(1/2+sqrt(5)/2)^90 2329932582567374 a004 Fibonacci(94)*Lucas(11)/(1/2+sqrt(5)/2)^92 2329932582567374 a004 Fibonacci(96)*Lucas(11)/(1/2+sqrt(5)/2)^94 2329932582567374 a004 Fibonacci(100)*Lucas(11)/(1/2+sqrt(5)/2)^98 2329932582567374 a004 Fibonacci(98)*Lucas(11)/(1/2+sqrt(5)/2)^96 2329932582567374 a004 Fibonacci(99)*Lucas(11)/(1/2+sqrt(5)/2)^97 2329932582567374 a004 Fibonacci(97)*Lucas(11)/(1/2+sqrt(5)/2)^95 2329932582567374 a004 Fibonacci(95)*Lucas(11)/(1/2+sqrt(5)/2)^93 2329932582567374 a004 Fibonacci(93)*Lucas(11)/(1/2+sqrt(5)/2)^91 2329932582567374 a004 Fibonacci(91)*Lucas(11)/(1/2+sqrt(5)/2)^89 2329932582567374 a004 Fibonacci(89)*Lucas(11)/(1/2+sqrt(5)/2)^87 2329932582567374 a004 Fibonacci(87)*Lucas(11)/(1/2+sqrt(5)/2)^85 2329932582567374 a004 Fibonacci(85)*Lucas(11)/(1/2+sqrt(5)/2)^83 2329932582567374 a004 Fibonacci(83)*Lucas(11)/(1/2+sqrt(5)/2)^81 2329932582567374 a004 Fibonacci(81)*Lucas(11)/(1/2+sqrt(5)/2)^79 2329932582567374 a004 Fibonacci(79)*Lucas(11)/(1/2+sqrt(5)/2)^77 2329932582567374 a004 Fibonacci(77)*Lucas(11)/(1/2+sqrt(5)/2)^75 2329932582567374 a004 Fibonacci(75)*Lucas(11)/(1/2+sqrt(5)/2)^73 2329932582567374 a004 Fibonacci(73)*Lucas(11)/(1/2+sqrt(5)/2)^71 2329932582567374 a004 Fibonacci(71)*Lucas(11)/(1/2+sqrt(5)/2)^69 2329932582567374 a004 Fibonacci(69)*Lucas(11)/(1/2+sqrt(5)/2)^67 2329932582567374 a004 Fibonacci(67)*Lucas(11)/(1/2+sqrt(5)/2)^65 2329932582567374 a004 Fibonacci(65)*Lucas(11)/(1/2+sqrt(5)/2)^63 2329932582567374 a004 Fibonacci(63)*Lucas(11)/(1/2+sqrt(5)/2)^61 2329932582567374 a004 Fibonacci(61)*Lucas(11)/(1/2+sqrt(5)/2)^59 2329932582567374 a004 Fibonacci(59)*Lucas(11)/(1/2+sqrt(5)/2)^57 2329932582567374 a004 Fibonacci(57)*Lucas(11)/(1/2+sqrt(5)/2)^55 2329932582567374 a004 Fibonacci(55)*Lucas(11)/(1/2+sqrt(5)/2)^53 2329932582567374 a004 Fibonacci(53)*Lucas(11)/(1/2+sqrt(5)/2)^51 2329932582567374 a004 Fibonacci(51)*Lucas(11)/(1/2+sqrt(5)/2)^49 2329932582567374 a004 Fibonacci(49)*Lucas(11)/(1/2+sqrt(5)/2)^47 2329932582567374 a004 Fibonacci(47)*Lucas(11)/(1/2+sqrt(5)/2)^45 2329932582567374 a004 Fibonacci(45)*Lucas(11)/(1/2+sqrt(5)/2)^43 2329932582567374 a004 Fibonacci(43)*Lucas(11)/(1/2+sqrt(5)/2)^41 2329932582567374 a004 Fibonacci(41)*Lucas(11)/(1/2+sqrt(5)/2)^39 2329932582567374 a004 Fibonacci(39)*Lucas(11)/(1/2+sqrt(5)/2)^37 2329932582567375 a004 Fibonacci(37)*Lucas(11)/(1/2+sqrt(5)/2)^35 2329932582567379 a004 Fibonacci(35)*Lucas(11)/(1/2+sqrt(5)/2)^33 2329932582567411 a004 Fibonacci(33)*Lucas(11)/(1/2+sqrt(5)/2)^31 2329932582567631 a004 Fibonacci(31)*Lucas(11)/(1/2+sqrt(5)/2)^29 2329932582569136 a004 Fibonacci(29)*Lucas(11)/(1/2+sqrt(5)/2)^27 2329932582579452 a004 Fibonacci(27)*Lucas(11)/(1/2+sqrt(5)/2)^25 2329932582650161 a004 Fibonacci(25)*Lucas(11)/(1/2+sqrt(5)/2)^23 2329932583134803 a004 Fibonacci(23)*Lucas(11)/(1/2+sqrt(5)/2)^21 2329932584052924 a001 2/89*(1/2+1/2*5^(1/2))^24 2329932585805536 l006 ln(945/9712) 2329932586456594 a004 Fibonacci(21)*Lucas(11)/(1/2+sqrt(5)/2)^19 2329932590990551 r005 Im(z^2+c),c=-2/31+29/59*I,n=3 2329932595090129 r005 Im(z^2+c),c=-89/122+7/26*I,n=6 2329932599429798 l006 ln(7577/9565) 2329932606940644 m001 (sin(1/12*Pi)+GAMMA(11/12))/(Khinchin+Otter) 2329932609224482 a004 Fibonacci(19)*Lucas(11)/(1/2+sqrt(5)/2)^17 2329932620614733 m001 ln(Riemann3rdZero)*Artin^2/GAMMA(11/24) 2329932637519479 a007 Real Root Of 205*x^4+232*x^3-547*x^2+462*x+939 2329932640012437 r009 Im(z^3+c),c=-47/106+2/39*I,n=8 2329932641520941 r009 Re(z^3+c),c=-21/40+10/43*I,n=8 2329932651062512 r005 Re(z^2+c),c=-7/29+14/45*I,n=10 2329932661783549 m005 (1/2*Catalan-4)/(4/7*Zeta(3)+5/6) 2329932662390014 m005 (1/2*Zeta(3)-4/7)/(5/11*3^(1/2)-4/5) 2329932668599052 a007 Real Root Of 539*x^4+733*x^3+352*x^2-867*x+20 2329932684563626 m001 1/ln(Lehmer)*LaplaceLimit*Tribonacci 2329932688347099 m001 (FeigenbaumC+Sarnak)/(ln(3)-gamma(3)) 2329932689916825 m001 (BesselJ(1,1)+Otter)/(QuadraticClass+Stephens) 2329932694309898 a007 Real Root Of 190*x^4-294*x^3-805*x^2-859*x+247 2329932700091499 m001 Zeta(1/2)^2/ln(GAMMA(2/3))^2*Zeta(9)^2 2329932704565915 m001 1/Zeta(7)^2/Lehmer^2/ln(cos(Pi/12))^2 2329932707746686 r005 Re(z^2+c),c=37/106+12/43*I,n=4 2329932728164967 a007 Real Root Of -2*x^4+287*x^3+516*x^2-539*x-368 2329932729716462 a001 521*(1/2*5^(1/2)+1/2)^21*4^(10/23) 2329932737432104 m002 Pi^6+E^Pi*Pi^6+Pi^4/ProductLog[Pi] 2329932744095795 a007 Real Root Of 40*x^4+949*x^3+406*x^2+238*x+505 2329932749619110 r005 Im(z^2+c),c=-28/31+11/52*I,n=64 2329932749791457 h001 (2/7*exp(1)+5/9)/(7/10*exp(2)+6/11) 2329932750020141 m001 1/exp(OneNinth)/FibonacciFactorial/Pi 2329932753225974 a001 9062201101803/1597*377^(5/21) 2329932753983847 p002 log(24*12^(1/3)-24*12^(1/4)) 2329932761938052 a003 cos(Pi*17/63)-cos(Pi*14/39) 2329932763859756 m001 (ln(2)+FellerTornier)/(OrthogonalArrays+Otter) 2329932765277908 a004 Fibonacci(17)*Lucas(11)/(1/2+sqrt(5)/2)^15 2329932767775173 r005 Re(z^2+c),c=-27/94+1/36*I,n=8 2329932770763508 l006 ln(6102/7703) 2329932774984069 a001 2889/305*10946^(3/31) 2329932783063951 r005 Re(z^2+c),c=-27/31+12/49*I,n=16 2329932795914026 r005 Im(z^2+c),c=37/114+29/52*I,n=60 2329932801950764 r005 Im(z^2+c),c=-49/118+17/43*I,n=49 2329932804666084 m001 (MinimumGamma-Tribonacci)/(arctan(1/2)-Kac) 2329932810983693 a007 Real Root Of -513*x^4-986*x^3+963*x^2+976*x-307 2329932818167402 s002 sum(A088885[n]/(2^n-1),n=1..infinity) 2329932823711991 a007 Real Root Of -238*x^4-590*x^3+179*x^2+953*x+800 2329932824033659 a007 Real Root Of -27*x^4-606*x^3+552*x^2+304*x-630 2329932829508840 r005 Im(z^2+c),c=-37/78+13/27*I,n=39 2329932829799354 l006 ln(422/4337) 2329932835265344 a001 3461452808002/89*144^(14/17) 2329932843423799 p001 sum(1/(47*n+43)/(256^n),n=0..infinity) 2329932847894724 p004 log(21247/16831) 2329932848858734 a007 Real Root Of -647*x^4+783*x^3+866*x^2+515*x-175 2329932866344338 m001 sin(1/12*Pi)*DuboisRaymond+BesselI(0,2) 2329932874714356 m005 (1/2*3^(1/2)+4/5)/(-1/33+1/3*5^(1/2)) 2329932877863172 r005 Im(z^2+c),c=-7/10+5/151*I,n=18 2329932909279410 a001 23725150497407/4181*377^(5/21) 2329932910004714 a007 Real Root Of -339*x^4-913*x^3-424*x^2-670*x-817 2329932918821125 m001 (MertensB2-ZetaP(4))/(CareFree+Magata) 2329932942429237 m005 (1/2*2^(1/2)+9/10)/(7/10*gamma+2/7) 2329932943259696 r005 Re(z^2+c),c=-11/70+22/39*I,n=10 2329932945707859 r005 Re(z^2+c),c=29/86+4/23*I,n=20 2329932949385897 m001 (3^(1/3))^2*Kolakoski*exp(GAMMA(1/4))^2 2329932958518624 r002 43th iterates of z^2 + 2329932977114662 m001 BesselK(0,1)^2*ln(Robbin)/Pi 2329932991103414 r005 Re(z^2+c),c=-21/118+27/46*I,n=27 2329932991197009 r005 Re(z^2+c),c=-3/98+38/53*I,n=9 2329932993646022 m001 1/Pi^2/BesselJ(1,1)^2/exp(cos(Pi/5)) 2329932995949293 r009 Im(z^3+c),c=-29/122+47/49*I,n=42 2329932997108372 b008 Sqrt[ArcCsch[Sqrt[339]]] 2329933000647604 a007 Real Root Of 361*x^4+537*x^3-406*x^2+471*x-545 2329933005725748 a001 192933544679/34*377^(5/21) 2329933020789720 m001 ln(2)/ln(10)/(ErdosBorwein^cos(1)) 2329933022286144 m001 1/GAMMA(1/4)^2/Porter^2*exp(GAMMA(5/24))^2 2329933022850697 b008 Cot[2*Tan[1/5]] 2329933023490047 m001 (MertensB3-ZetaP(4))/(Zeta(1,-1)+CareFree) 2329933026349922 m001 (Zeta(1,2)+Niven)/(Rabbit+Sierpinski) 2329933028021421 m001 Si(Pi)*Bloch+Backhouse 2329933029159016 a007 Real Root Of 227*x^4+111*x^3-829*x^2+195*x-331 2329933029441714 r005 Re(z^2+c),c=-13/48+11/59*I,n=8 2329933029850622 m002 Cosh[Pi]/5+ProductLog[Pi]/(3*Pi^3) 2329933030761570 p003 LerchPhi(1/8,4,457/177) 2329933033488317 m001 (Trott+ZetaP(3))/(FeigenbaumC-MertensB2) 2329933043724954 s002 sum(A016542[n]/(n!^2),n=1..infinity) 2329933051333097 l006 ln(4627/5841) 2329933059158861 g006 Psi(1,1/12)+Psi(1,1/9)+Psi(1,2/5)-Psi(1,5/6) 2329933068147725 a007 Real Root Of 31*x^4+743*x^3+485*x^2+38*x-320 2329933068607600 a007 Real Root Of -342*x^4+365*x^3-879*x^2+711*x+219 2329933073274879 m009 (3*Psi(1,1/3)-1)/(1/6*Psi(1,3/4)+5/6) 2329933074385413 h001 (3/8*exp(2)+4/5)/(5/12*exp(1)+2/5) 2329933084051530 r005 Im(z^2+c),c=-23/18+16/77*I,n=7 2329933090867215 r005 Im(z^2+c),c=-23/98+13/38*I,n=37 2329933098380801 a001 7/34*89^(20/37) 2329933113218178 m001 (-FeigenbaumDelta+1/2)/(Backhouse+1/3) 2329933117425340 a007 Real Root Of -309*x^4-924*x^3-798*x^2-746*x+13 2329933118681658 a007 Real Root Of -378*x^4-544*x^3+860*x^2+78*x-228 2329933134275190 m001 (Si(Pi)-MasserGramain)/polylog(4,1/2) 2329933140127879 l006 ln(743/7636) 2329933140809644 g005 GAMMA(11/12)*GAMMA(2/7)/GAMMA(4/5)/GAMMA(3/4) 2329933143270250 m001 (Bloch+ErdosBorwein)/(Artin-BesselI(0,1)) 2329933150553406 a001 365435296162/47*4^(19/24) 2329933156523601 a007 Real Root Of -898*x^4-931*x^3-264*x^2+497*x+121 2329933168109398 a007 Real Root Of 33*x^4+755*x^3-366*x^2-991*x+65 2329933181061533 r005 Im(z^2+c),c=-13/38+13/36*I,n=4 2329933194932977 r004 Re(z^2+c),c=-5/26+5/11*I,z(0)=I,n=31 2329933197340067 r005 Im(z^2+c),c=-3/29+31/36*I,n=60 2329933202392953 a001 4/89*233^(16/53) 2329933205180994 r005 Re(z^2+c),c=37/114+19/58*I,n=14 2329933211253373 r005 Re(z^2+c),c=-3/14+49/64*I,n=39 2329933213516042 m005 (1/2*Zeta(3)-3/5)/(10/11*gamma-1/12) 2329933225626863 m001 (LambertW(1)+GAMMA(3/4))/(OneNinth+Robbin) 2329933253398192 a007 Real Root Of 374*x^4-786*x^3+509*x^2+269*x+24 2329933253474925 m001 BesselI(1,2)^Lehmer*ZetaQ(2)^Lehmer 2329933261763377 r009 Im(z^3+c),c=-11/20+8/17*I,n=39 2329933264478341 r002 60th iterates of z^2 + 2329933270935620 m001 BesselI(1,2)*GlaisherKinkelin/ZetaQ(3) 2329933271417374 l006 ln(7779/9820) 2329933280029127 a001 29/21*701408733^(13/22) 2329933283701813 m001 1/GAMMA(1/12)^2*exp(Salem)/GAMMA(23/24)^2 2329933285144500 m001 (arctan(1/2)+Trott2nd)/(sin(1)+BesselI(0,1)) 2329933286137541 r005 Im(z^2+c),c=-23/98+13/38*I,n=31 2329933287770159 m001 (Lehmer+Otter)/(Ei(1,1)+Conway) 2329933293191965 a007 Real Root Of 423*x^4+771*x^3-658*x^2-143*x+525 2329933297202232 a007 Real Root Of -225*x^4-283*x^3+345*x^2-489*x+39 2329933300559161 r009 Re(z^3+c),c=-27/70+21/40*I,n=43 2329933302637074 a007 Real Root Of 277*x^4+533*x^3-259*x^2+426*x+977 2329933306712753 a007 Real Root Of -360*x^4-623*x^3+254*x^2-492*x+204 2329933321249964 m001 (-Kolakoski+Mills)/(sin(1)+FeigenbaumKappa) 2329933322737352 m001 LambertW(1)/(Pi^(1/2)+Robbin) 2329933344164662 a007 Real Root Of -450*x^4-921*x^3-410*x+657 2329933357673533 r005 Re(z^2+c),c=-33/118+5/41*I,n=8 2329933362833274 m001 Rabbit^2*KhintchineLevy/ln(GAMMA(19/24))^2 2329933364548773 m001 sin(Pi/5)/ln(Bloch)^2*sqrt(5) 2329933366288859 v003 sum((-5+9*n^2-3*n)/n^(n-1),n=1..infinity) 2329933367122550 m001 (exp(1/exp(1))-ln(gamma))^GAMMA(3/4) 2329933367122550 m001 (exp(1/exp(1))-log(gamma))^GAMMA(3/4) 2329933373540224 r005 Im(z^2+c),c=-22/19+13/47*I,n=4 2329933390819007 a001 3/47*(1/2*5^(1/2)+1/2)^27*47^(11/20) 2329933396357004 r005 Im(z^2+c),c=-31/118+21/40*I,n=8 2329933411328566 m001 (3^(1/3)-GAMMA(23/24))/KomornikLoreti 2329933412304625 a007 Real Root Of -482*x^4-916*x^3+399*x^2+59*x+590 2329933414161203 r005 Im(z^2+c),c=-31/106+9/25*I,n=28 2329933414279080 a001 5600748293801/987*377^(5/21) 2329933415752788 r005 Im(z^2+c),c=-23/98+13/38*I,n=40 2329933416282729 m001 Rabbit^2*FeigenbaumC*ln(sqrt(1+sqrt(3)))^2 2329933419626501 r004 Im(z^2+c),c=-29/34+3/16*I,z(0)=-1,n=3 2329933420944475 m005 (1/2*Catalan+1/11)/(5/11*exp(1)-1) 2329933445901226 a007 Real Root Of 334*x^4+427*x^3-994*x^2-300*x+255 2329933454039224 r005 Im(z^2+c),c=-23/98+13/38*I,n=42 2329933454138385 r009 Im(z^3+c),c=-12/29+7/57*I,n=24 2329933461851567 m001 GAMMA(5/6)*Champernowne^Otter 2329933466170416 r002 17th iterates of z^2 + 2329933471544266 m001 (-QuadraticClass+Salem)/(Shi(1)+exp(-1/2*Pi)) 2329933477681913 r005 Im(z^2+c),c=-23/98+13/38*I,n=45 2329933480184320 m005 (1/2*Pi+9/11)/(1/2*Pi-6/11) 2329933481270081 r005 Im(z^2+c),c=-23/98+13/38*I,n=39 2329933489514783 r005 Im(z^2+c),c=-23/98+13/38*I,n=48 2329933489794349 m001 FibonacciFactorial^ln(5)/Gompertz 2329933490817160 r005 Im(z^2+c),c=-23/98+13/38*I,n=50 2329933491699626 r005 Im(z^2+c),c=-23/98+13/38*I,n=53 2329933491702864 r005 Im(z^2+c),c=-23/98+13/38*I,n=47 2329933492130424 r005 Im(z^2+c),c=-23/98+13/38*I,n=56 2329933492174510 r005 Im(z^2+c),c=-23/98+13/38*I,n=58 2329933492202921 r005 Im(z^2+c),c=-23/98+13/38*I,n=55 2329933492207410 r005 Im(z^2+c),c=-23/98+13/38*I,n=61 2329933492223088 r005 Im(z^2+c),c=-23/98+13/38*I,n=64 2329933492225467 r005 Im(z^2+c),c=-23/98+13/38*I,n=63 2329933492231411 r005 Im(z^2+c),c=-23/98+13/38*I,n=59 2329933492236467 r005 Im(z^2+c),c=-23/98+13/38*I,n=62 2329933492244562 r005 Im(z^2+c),c=-23/98+13/38*I,n=60 2329933492326748 r005 Im(z^2+c),c=-23/98+13/38*I,n=57 2329933492338225 r005 Im(z^2+c),c=-23/98+13/38*I,n=51 2329933492497164 r005 Im(z^2+c),c=-23/98+13/38*I,n=54 2329933492736939 r005 Im(z^2+c),c=-23/98+13/38*I,n=52 2329933492861351 l006 ln(7848/8033) 2329933494644560 r005 Im(z^2+c),c=-23/98+13/38*I,n=43 2329933494994834 r005 Im(z^2+c),c=-23/98+13/38*I,n=49 2329933496432504 r002 12th iterates of z^2 + 2329933498908319 h001 (1/2*exp(2)+3/8)/(3/8*exp(1)+8/11) 2329933499563212 r005 Im(z^2+c),c=-23/98+13/38*I,n=46 2329933506628644 r005 Im(z^2+c),c=-23/98+13/38*I,n=44 2329933523888901 m001 -Zeta(5)/(ln(gamma)+5) 2329933533847544 a001 73681302247/1597*225851433717^(5/21) 2329933533847546 a001 817138163596/1597*9227465^(5/21) 2329933535523829 m005 (1/2*exp(1)-3/7)/(4/9*gamma+1/7) 2329933540616524 r005 Im(z^2+c),c=-23/98+13/38*I,n=35 2329933548098565 l006 ln(321/3299) 2329933559370315 m001 Riemann2ndZero^2*exp(Riemann1stZero)^2/Ei(1)^2 2329933565103764 r005 Re(z^2+c),c=7/24+7/39*I,n=49 2329933565415341 s002 sum(A200204[n]/((2^n+1)/n),n=1..infinity) 2329933568634454 r005 Im(z^2+c),c=-23/98+13/38*I,n=41 2329933568964978 m006 (5*exp(2*Pi)+3)/(3/5*Pi-2) 2329933578928469 a007 Real Root Of -269*x^4-720*x^3-618*x^2+102*x+49 2329933580540222 a001 13/3571*47^(27/56) 2329933582210042 a007 Real Root Of -848*x^4+231*x^3+194*x^2+949*x+216 2329933585686514 m001 (ThueMorse-ZetaP(4))/(LandauRamanujan2nd+Thue) 2329933594491588 l006 ln(3152/3979) 2329933614736814 m005 (1/2*5^(1/2)-3/10)/(6/7*Pi+9/11) 2329933616660172 m005 (1/2*5^(1/2)-1/5)/(2/7*3^(1/2)-8/9) 2329933617601297 m008 (1/4*Pi^5+2/5)/(1/4*Pi^2+5/6) 2329933619844448 r005 Re(z^2+c),c=-8/29+5/32*I,n=11 2329933626871056 m001 (Conway+ReciprocalLucas)/(ArtinRank2+CareFree) 2329933629992622 r005 Im(z^2+c),c=-7/27+33/58*I,n=11 2329933639615202 r005 Re(z^2+c),c=25/106+34/63*I,n=37 2329933639905027 r005 Im(z^2+c),c=25/74+3/32*I,n=3 2329933652672227 m001 (Zeta(1/2)+GAMMA(19/24))/(ArtinRank2-Rabbit) 2329933655983134 a001 3/1836311903*144^(1/14) 2329933657187557 a007 Real Root Of -222*x^4-297*x^3-575*x^2+918*x+242 2329933661382463 r005 Re(z^2+c),c=3/38+43/63*I,n=4 2329933662176162 r009 Im(z^3+c),c=-73/126+5/21*I,n=13 2329933664242837 a007 Real Root Of 591*x^4+959*x^3-693*x^2+733*x+183 2329933670021679 r009 Re(z^3+c),c=-19/82+5/46*I,n=5 2329933671643388 m001 (OrthogonalArrays-Porter)/(Zeta(1,2)-Pi^(1/2)) 2329933677410128 b008 2/17+Zeta[2/3] 2329933681602950 r005 Im(z^2+c),c=-5/13+12/31*I,n=29 2329933689580379 a001 2207/55*121393^(17/49) 2329933689901032 a001 192900153618/4181*225851433717^(5/21) 2329933689901034 a001 2139295485799/4181*9227465^(5/21) 2329933690954815 r005 Im(z^2+c),c=-23/98+13/38*I,n=38 2329933702694369 m001 (3^(1/3)-BesselK(0,1))/(-Gompertz+MertensB2) 2329933702862330 r005 Im(z^2+c),c=-31/60+18/41*I,n=62 2329933712668931 a001 505019158607/10946*225851433717^(5/21) 2329933712668933 a001 5600748293801/10946*9227465^(5/21) 2329933715652180 a007 Real Root Of 493*x^4+831*x^3+219*x^2-729*x+146 2329933715990723 a001 1322157322203/28657*225851433717^(5/21) 2329933715990724 a001 14662949395604/28657*9227465^(5/21) 2329933716475366 a001 3461452808002/75025*225851433717^(5/21) 2329933716546074 a001 9062201101803/196418*225851433717^(5/21) 2329933716556391 a001 23725150497407/514229*225851433717^(5/21) 2329933716562766 a001 505618944676/10959*225851433717^(5/21) 2329933716589775 a001 5600748293801/121393*225851433717^(5/21) 2329933716774892 a001 2139295485799/46368*225851433717^(5/21) 2329933716774893 a001 23725150497407/46368*9227465^(5/21) 2329933717541994 r005 Im(z^2+c),c=-51/94+17/44*I,n=27 2329933718043703 a001 817138163596/17711*225851433717^(5/21) 2329933718043704 a001 9062201101803/17711*9227465^(5/21) 2329933721310458 a001 199/13*1346269^(27/52) 2329933726740267 a001 28374454999/615*225851433717^(5/21) 2329933726740268 a001 3461452808002/6765*9227465^(5/21) 2329933730208586 p004 log(34213/3329) 2329933741900929 m001 ln(Pi)/ln(3)*5^(1/2) 2329933741900929 m001 sqrt(5)/ln(3)*ln(Pi) 2329933746942972 m001 1/ln(Porter)^2*MertensB1^2/Riemann1stZero^2 2329933756918327 r009 Re(z^3+c),c=-3/70+38/53*I,n=44 2329933762018623 r005 Im(z^2+c),c=-57/70+10/53*I,n=3 2329933773897029 r009 Re(z^3+c),c=-17/48+11/24*I,n=13 2329933783192182 r005 Im(z^2+c),c=-21/29+8/37*I,n=55 2329933784983033 a001 15127/1597*10946^(3/31) 2329933785670741 r005 Re(z^2+c),c=-5/18+1/7*I,n=11 2329933786347403 a001 119218851371/2584*225851433717^(5/21) 2329933786347404 a001 1322157322203/2584*9227465^(5/21) 2329933790936290 r009 Im(z^3+c),c=-25/56+5/58*I,n=60 2329933805262301 m001 (FeigenbaumB+FeigenbaumDelta)/(exp(Pi)+Bloch) 2329933813507358 m002 -6/Pi^6+Pi^3/E^Pi+Tanh[Pi] 2329933823019189 a007 Real Root Of 289*x^4+108*x^3-780*x^2+862*x-908 2329933825342871 m005 (1/2*3^(1/2)-1/2)/(6*exp(1)-3/5) 2329933833008320 m001 Ei(1)^2*exp(TwinPrimes)^2/gamma 2329933834884002 a004 Fibonacci(15)*Lucas(11)/(1/2+sqrt(5)/2)^13 2329933843625368 r009 Re(z^3+c),c=-41/78+18/49*I,n=45 2329933849118922 r009 Re(z^3+c),c=-8/23+25/64*I,n=6 2329933857628627 a003 cos(Pi*11/95)*cos(Pi*31/63) 2329933866574348 r005 Im(z^2+c),c=-15/98+20/63*I,n=6 2329933868815003 r005 Re(z^2+c),c=-7/40+28/57*I,n=61 2329933892386929 a007 Real Root Of 920*x^4+295*x^3+780*x^2-754*x-217 2329933898200617 r005 Im(z^2+c),c=-23/98+13/38*I,n=36 2329933899748339 l006 ln(862/8859) 2329933904532482 a007 Real Root Of 20*x^4+481*x^3+316*x^2-757*x+710 2329933906907542 a001 123/2*55^(39/43) 2329933909388748 l006 ln(7981/10075) 2329933911805934 a007 Real Root Of 527*x^4+866*x^3-984*x^2-105*x+520 2329933930049684 p001 sum(1/(319*n+43)/(64^n),n=0..infinity) 2329933932339973 a001 39603/4181*10946^(3/31) 2329933940387985 r005 Re(z^2+c),c=1/54+22/37*I,n=5 2329933942398779 m001 exp(Si(Pi))/DuboisRaymond^2*Salem^2 2329933943518884 r005 Re(z^2+c),c=-5/22+14/39*I,n=21 2329933945566202 r009 Im(z^3+c),c=-25/66+3/20*I,n=10 2329933950150089 s002 sum(A137934[n]/(n*10^n-1),n=1..infinity) 2329933960534346 m001 (cos(1)-sin(1/5*Pi))/(-GAMMA(5/6)+MertensB3) 2329933983079169 r002 3th iterates of z^2 + 2329933987577877 a001 3/28657*4181^(16/43) 2329933988337392 m001 (Champernowne-FeigenbaumD)/ln(3) 2329934007962955 a007 Real Root Of 370*x^4-947*x^3+116*x^2-977*x-247 2329934008360162 m006 (Pi^2+2)/(2/3*Pi+3) 2329934008360162 m008 (Pi^2+2)/(2/3*Pi+3) 2329934013718026 r005 Re(z^2+c),c=-31/110+7/40*I,n=5 2329934023411581 a001 6119/646*10946^(3/31) 2329934039147924 a007 Real Root Of 70*x^4-185*x^3-991*x^2-706*x-668 2329934041351580 a003 sin(Pi*9/100)*sin(Pi*28/89) 2329934065087768 m001 GAMMA(2/3)*ln(2+sqrt(3))-exp(sqrt(2)) 2329934067753889 m001 (Kac-Tetranacci)/(ln(2^(1/2)+1)-FellerTornier) 2329934086599217 m001 exp(Pi)+GAMMA(17/24)*Champernowne 2329934087611762 r009 Re(z^3+c),c=-15/82+21/25*I,n=18 2329934091611118 r009 Re(z^3+c),c=-2/11+25/29*I,n=3 2329934092951866 a007 Real Root Of 362*x^4+566*x^3-270*x^2+677*x-466 2329934094067325 m005 (1/2*2^(1/2)+2/3)/(7/11*5^(1/2)-5/6) 2329934097172347 m002 2+Pi^2-Cosh[Pi]/Pi^4+Sinh[Pi] 2329934108398146 l006 ln(541/5560) 2329934110531699 m005 (1/2*5^(1/2)-5/12)/(2*2^(1/2)+2/11) 2329934114929403 l006 ln(4829/6096) 2329934131378002 m001 1/MinimumGamma/exp(Cahen)/cosh(1) 2329934149746162 m005 (-7/20+1/4*5^(1/2))/(35/44+1/22*5^(1/2)) 2329934152470777 m001 (Pi+BesselK(1,1))/(RenyiParking+Thue) 2329934154546268 r005 Im(z^2+c),c=-6/17+17/45*I,n=45 2329934158410416 r009 Re(z^3+c),c=-11/32+20/47*I,n=20 2329934158646125 m005 (1/2*3^(1/2)+9/11)/(5/12*Zeta(3)-3/7) 2329934167567874 a007 Real Root Of -224*x^4-288*x^3+816*x^2+813*x+423 2329934179569953 m001 (cos(1)+ArtinRank2)/(Cahen+FeigenbaumDelta) 2329934194900871 a001 45537549124/987*225851433717^(5/21) 2329934194900872 a001 10745088481/21*9227465^(5/21) 2329934195427331 a007 Real Root Of 276*x^4+651*x^3+511*x^2+802*x-805 2329934199527771 m001 (Landau+Niven)/(BesselI(0,1)-ln(2)/ln(10)) 2329934207394973 r002 15th iterates of z^2 + 2329934208543009 a007 Real Root Of -380*x^4-981*x^3-134*x^2+473*x+620 2329934211518374 r002 39th iterates of z^2 + 2329934213134857 a007 Real Root Of -108*x^4+429*x^3+804*x^2+682*x+121 2329934219379003 a008 Real Root of (1+3*x-5*x^2+3*x^3+4*x^4+5*x^5) 2329934230462383 r005 Re(z^2+c),c=-11/56+19/43*I,n=39 2329934239698242 p002 log(5+10^(1/3)*6^(1/2)) 2329934239866582 a003 cos(Pi*27/98)/cos(Pi*16/39) 2329934243339563 a001 47/13*17711^(4/21) 2329934253739402 m001 (Ei(1,1)-Cahen)/(OneNinth-Tetranacci) 2329934262294932 a001 208010*2^(9/55) 2329934268351583 a007 Real Root Of -126*x^4+703*x^3+890*x^2+593*x-195 2329934268460948 m001 PisotVijayaraghavan/(ArtinRank2-BesselI(0,1)) 2329934271579804 r002 13th iterates of z^2 + 2329934282439309 a007 Real Root Of -14*x^4+664*x^3-670*x^2-261*x-16 2329934299310370 a007 Real Root Of -420*x^4-593*x^3+722*x^2-183*x+531 2329934303245979 s002 sum(A189565[n]/(n*pi^n-1),n=1..infinity) 2329934312648671 a007 Real Root Of 429*x^4-633*x^3-269*x^2-917*x+235 2329934322425636 r005 Im(z^2+c),c=-23/98+13/38*I,n=27 2329934322585453 r009 Re(z^3+c),c=-11/32+23/54*I,n=32 2329934328246985 r005 Im(z^2+c),c=-13/29+19/47*I,n=60 2329934329155506 m003 2+(3*Sqrt[5])/32+Log[1/2+Sqrt[5]/2]/4 2329934329493466 m005 (1/2*3^(1/2)-1/2)/(4/11*Pi+3/7) 2329934336011557 m001 1/FeigenbaumAlpha*ErdosBorwein^2/exp(Ei(1))^2 2329934336663190 r005 Re(z^2+c),c=23/126+1/30*I,n=9 2329934337964151 r005 Im(z^2+c),c=-89/98+13/61*I,n=29 2329934341242987 m001 1/sqrt(1+sqrt(3))*ln(Magata)*sqrt(Pi)^2 2329934341692057 m005 (1/2*Pi+3/11)/(6*Zeta(3)+7/10) 2329934344739925 l006 ln(761/7821) 2329934351019618 h001 (3/8*exp(1)+1/5)/(3/5*exp(2)+4/5) 2329934367068955 l006 ln(6506/8213) 2329934368449669 a003 cos(Pi*34/107)*cos(Pi*19/53) 2329934370242794 a001 76/3*21^(43/59) 2329934371106337 m005 (1/2*Pi+3/8)/(2/11*5^(1/2)+3/7) 2329934375379091 s002 sum(A045660[n]/(n!^2),n=1..infinity) 2329934383563295 a007 Real Root Of 644*x^4+994*x^3-942*x^2+295*x-605 2329934389100309 s001 sum(exp(-3*Pi/4)^n*A088789[n],n=1..infinity) 2329934403674825 m001 ((1+3^(1/2))^(1/2))^ln(2+3^(1/2))*Zeta(3) 2329934403674825 m001 sqrt(1+sqrt(3))^ln(2+sqrt(3))*Zeta(3) 2329934404769556 r005 Im(z^2+c),c=-45/98+21/46*I,n=27 2329934409197185 a001 9349/987*10946^(3/31) 2329934409510556 r009 Re(z^3+c),c=-27/74+19/40*I,n=30 2329934412366658 a007 Real Root Of -386*x^4-802*x^3+375*x^2+386*x+95 2329934420301586 a005 (1/cos(5/193*Pi))^1644 2329934427759976 m005 (1/3*3^(1/2)-2/5)/(1/8*gamma-5/6) 2329934428228049 r009 Re(z^3+c),c=-59/114+28/37*I,n=2 2329934432039056 p001 sum(1/(188*n+43)/(100^n),n=0..infinity) 2329934442189455 m004 1+5*Pi+(5*Sqrt[5]*Pi)/6+Cos[Sqrt[5]*Pi] 2329934444513311 a007 Real Root Of -340*x^4-974*x^3-637*x^2+682*x-111 2329934445505097 m001 Chi(1)*(Backhouse+PisotVijayaraghavan) 2329934450477204 s001 sum(exp(-3*Pi/5)^n*A192618[n],n=1..infinity) 2329934450618055 r005 Im(z^2+c),c=-19/62+16/41*I,n=7 2329934453516818 a007 Real Root Of 4*x^4+78*x^3-355*x^2-42*x-484 2329934466620622 m002 -((Cosh[Pi]*Coth[Pi])/Pi^5)+Pi*Sech[Pi] 2329934472736315 r005 Re(z^2+c),c=-11/82+5/9*I,n=32 2329934473899889 m001 (Pi^(1/2)+Mills)/(ln(2^(1/2)+1)+BesselJ(1,1)) 2329934474411913 a003 sin(Pi*4/57)/cos(Pi*12/107) 2329934475077213 l006 ln(981/10082) 2329934478983364 m001 1/BesselJ(0,1)/exp(Rabbit)*GAMMA(1/4) 2329934492275248 m001 exp(Kolakoski)^2/Backhouse^2*Zeta(7) 2329934492754006 p001 sum((-1)^n/(452*n+413)/(12^n),n=0..infinity) 2329934498147237 r002 6th iterates of z^2 + 2329934498640868 m005 (1/2*gamma-1/11)/(6/7*Zeta(3)-2/11) 2329934499603327 a007 Real Root Of 150*x^4-712*x^3+336*x^2+849*x+783 2329934506435628 p004 log(32507/3163) 2329934516060130 m001 (Zeta(1,2)-Pi^(1/2))/(FeigenbaumAlpha-Totient) 2329934524789339 m001 ZetaP(3)^(2*Pi/GAMMA(5/6)*GolombDickman) 2329934536278830 r009 Re(z^3+c),c=-55/106+3/5*I,n=42 2329934549603163 m001 1/GAMMA(3/4)^2/exp(RenyiParking)*exp(1)^2 2329934556051101 a007 Real Root Of 140*x^4-794*x^3+704*x^2+516*x+893 2329934557663945 p004 log(12343/1201) 2329934563066512 p001 sum((-1)^n/(485*n+429)/(1024^n),n=0..infinity) 2329934569515644 p004 log(22777/18043) 2329934575151029 m009 (16/5*Catalan+2/5*Pi^2-1/6)/(3*Pi^2-4/5) 2329934581374889 b008 ArcCosh[E*Sqrt[1/2+Pi]] 2329934584100464 r005 Re(z^2+c),c=-7/12+95/116*I,n=3 2329934591002943 a003 sin(Pi*1/52)-sin(Pi*2/75) 2329934592807951 m005 (1/2*Pi+4/11)/(1/11*gamma+7/9) 2329934594310218 m001 RenyiParking^Mills*Magata 2329934596891925 m004 -5+25*Pi*Sin[Sqrt[5]*Pi]-Sinh[Sqrt[5]*Pi]/2 2329934607261578 a007 Real Root Of 403*x^4+945*x^3+288*x^2+367*x-632 2329934607819825 m001 ln(GAMMA(11/12))*ArtinRank2^2/GAMMA(5/6) 2329934624985980 b008 E^2*Cos[5/4] 2329934627371707 r002 13th iterates of z^2 + 2329934634337641 a001 610^(27/55) 2329934636733717 a003 cos(Pi*16/75)/cos(Pi*34/87) 2329934638810286 m001 exp(GAMMA(1/12))^2*FeigenbaumB^2*sin(Pi/5)^2 2329934639791564 m001 (BesselI(1,1)+CareFree)/(Landau+ZetaQ(4)) 2329934648745489 a007 Real Root Of -227*x^4-450*x^3+164*x^2+274*x+746 2329934650066686 m005 (1/2*Pi-6)/(9/10*exp(1)-6/11) 2329934651590585 p004 log(27011/21397) 2329934657518382 a007 Real Root Of 532*x^4+957*x^3-779*x^2-465*x-428 2329934666887838 a007 Real Root Of -83*x^4-4*x^3-281*x^2+835*x-179 2329934686946402 a001 64079/5*514229^(1/22) 2329934687789275 a007 Real Root Of 622*x^4+897*x^3-979*x^2+973*x+597 2329934688999303 a001 39603/5*20365011074^(1/22) 2329934689142577 a007 Real Root Of 126*x^4-42*x^3-643*x^2+54*x-628 2329934689595343 m001 (Otter+ZetaP(4))/(gamma(3)-Conway) 2329934697031848 m001 (KhinchinLevy+Niven)/(Paris-Totient) 2329934707655167 r005 Im(z^2+c),c=-127/126+19/59*I,n=13 2329934708749583 a007 Real Root Of -647*x^4+992*x^3+572*x^2+761*x-219 2329934715221871 a007 Real Root Of 297*x^4+357*x^3-386*x^2+996*x+179 2329934729358396 a001 7331474697802*4052739537881^(5/18) 2329934731276365 a001 4/51841*18^(13/34) 2329934748423178 b008 -25+SinhIntegral[3/2] 2329934750091512 m001 LambertW(1)*gamma(1)/Pi^(1/2) 2329934757413829 a007 Real Root Of 347*x^4+825*x^3-83*x^2-462*x-417 2329934758749627 r005 Re(z^2+c),c=-15/82+9/19*I,n=38 2329934759637197 r005 Im(z^2+c),c=-51/56+13/59*I,n=56 2329934768685090 a007 Real Root Of -500*x^4-557*x^3+877*x^2-924*x+776 2329934773473790 a008 Real Root of x^4-17*x^2-54*x-63 2329934777665063 a001 1/4*(1/2*5^(1/2)+1/2)^18*47^(13/18) 2329934783294576 a007 Real Root Of 29*x^4+638*x^3-918*x^2-960*x-623 2329934797413492 m001 exp(RenyiParking)^2*Niven^2/GAMMA(1/6) 2329934833622723 a001 2/377*233^(34/49) 2329934835125363 a001 1597/843*199^(10/11) 2329934848015104 m005 (1/2*exp(1)-7/9)/(3/8*3^(1/2)-2/5) 2329934854892847 r005 Im(z^2+c),c=37/122+4/9*I,n=9 2329934858346717 m001 (ln(2+3^(1/2))-exp(1/Pi))/(Mills+Salem) 2329934861117068 p002 log(1/4*(11*4^(2/3)-11^(1/4))*4^(1/3)) 2329934883416140 p003 LerchPhi(1/32,6,39/142) 2329934925925608 l006 ln(220/2261) 2329934933029244 r009 Im(z^3+c),c=-29/78+9/58*I,n=18 2329934945153984 r009 Re(z^3+c),c=-11/31+14/31*I,n=43 2329934953011969 m001 Cahen/(exp(1)+exp(-Pi)) 2329934955638133 m005 (1/2*Pi+8/11)/(6/11*Pi-8/11) 2329934964391643 m002 -E^Pi-Log[Pi]/6+Tanh[Pi]/Pi^3 2329934972786463 a001 34/9349*123^(22/57) 2329934972887782 m001 (Si(Pi)+ln(2^(1/2)+1))/(ArtinRank2+PlouffeB) 2329934974340494 a007 Real Root Of -606*x^4-859*x^3+742*x^2-963*x+722 2329934977797401 m001 (gamma(3)+exp(-1/2*Pi))/(Zeta(3)-ln(2)/ln(10)) 2329934981945989 r005 Im(z^2+c),c=-45/94+25/52*I,n=37 2329934987830273 a007 Real Root Of -734*x^4+73*x^3+916*x^2+646*x-199 2329934992536208 r005 Im(z^2+c),c=-57/110+17/40*I,n=47 2329934996367551 r005 Re(z^2+c),c=-3/17+20/41*I,n=39 2329935009045061 r002 51th iterates of z^2 + 2329935010868522 m005 (1/2*Zeta(3)-2/9)/(7/9*Catalan-7/8) 2329935016994326 m005 (1/3*gamma+1/7)/(7/12*3^(1/2)+3/7) 2329935021128389 r005 Im(z^2+c),c=-63/106+5/13*I,n=63 2329935031475366 a007 Real Root Of -394*x^4-853*x^3-211*x^2-441*x+940 2329935041546140 m003 7+(33*Sqrt[5])/64-4*Cosh[1/2+Sqrt[5]/2] 2329935042884486 m001 (gamma(1)+BesselI(1,1))/(Bloch-Sierpinski) 2329935044521982 r009 Re(z^3+c),c=-43/78+29/46*I,n=23 2329935047770558 a007 Real Root Of -193*x^4+750*x^3-657*x^2+748*x+220 2329935048156142 m001 1/ln(PrimesInBinary)^2*Si(Pi)/GAMMA(23/24) 2329935052690558 m001 Zeta(1,2)*(FellerTornier-FransenRobinson) 2329935058281469 m001 GAMMA(3/4)-cos(1/12*Pi)^Ei(1,1) 2329935091618617 r005 Im(z^2+c),c=-11/14+27/205*I,n=9 2329935093116563 l006 ln(1677/2117) 2329935093463663 r002 59th iterates of z^2 + 2329935108487059 r002 61th iterates of z^2 + 2329935109171809 r005 Re(z^2+c),c=-3/16+29/46*I,n=59 2329935109703343 a007 Real Root Of -402*x^4-733*x^3+853*x^2+694*x-438 2329935114391040 m001 1/Zeta(3)/(3^(1/3))^2/exp(cos(1)) 2329935128693666 a007 Real Root Of -483*x^4-506*x^3+880*x^2-984*x+764 2329935130013697 m001 (-AlladiGrinstead+Gompertz)/(Si(Pi)+Zeta(1,2)) 2329935134167207 r008 a(0)=0,K{-n^6,-18+44*n^3-27*n^2-3*n} 2329935139479641 m001 (Cahen+LaplaceLimit)/(Psi(2,1/3)+Zeta(1,2)) 2329935139695267 m001 ReciprocalFibonacci*TwinPrimes^QuadraticClass 2329935145515594 r005 Im(z^2+c),c=-111/94+11/45*I,n=21 2329935145559034 r008 a(0)=3,K{-n^6,-49-45*n^3+44*n^2+51*n} 2329935154523590 r009 Im(z^3+c),c=-11/27+4/31*I,n=14 2329935159416584 m002 -(Pi^5/Log[Pi]^2)+ProductLog[Pi]/2 2329935160786869 h001 (2/11*exp(2)+1/8)/(7/9*exp(2)+5/9) 2329935163899370 b008 3+7*Cos[5/3] 2329935166718714 r005 Im(z^2+c),c=-49/74+14/61*I,n=18 2329935175350652 r005 Re(z^2+c),c=-137/98+29/51*I,n=2 2329935177572750 a007 Real Root Of 337*x^4+202*x^3-988*x^2+724*x-326 2329935180237879 m001 (ln(2+3^(1/2))-Grothendieck)/(Pi-ln(Pi)) 2329935185334162 m001 (RenyiParking+ZetaP(2))/(sin(1/5*Pi)+gamma(1)) 2329935200231399 h005 exp(sin(Pi*4/35)/cos(Pi*4/11)) 2329935204562745 a007 Real Root Of -36*x^4-816*x^3+558*x^2+638*x+35 2329935228869442 r005 Re(z^2+c),c=-5/36+9/16*I,n=50 2329935231372776 m001 CareFree/GaussKuzminWirsing/ln(GAMMA(1/24))^2 2329935237555923 a007 Real Root Of 305*x^4+831*x^3+299*x^2-4*x-110 2329935258571695 a001 7/1597*1346269^(31/51) 2329935258713904 a007 Real Root Of 145*x^4+394*x^3+151*x^2+177*x+303 2329935261126344 a001 3/2971215073*121393^(1/14) 2329935261128602 a001 1/1602508992*102334155^(1/14) 2329935261128602 a001 3/7778742049*86267571272^(1/14) 2329935263513541 m001 Si(Pi)*Salem^(2^(1/2)) 2329935268763446 m001 1/Zeta(3)^2*GAMMA(7/24)^2/exp(Zeta(5)) 2329935287935998 h001 (-exp(1)+7)/(-9*exp(3)-3) 2329935288040818 a003 sin(Pi*10/59)-sin(Pi*30/113) 2329935289277999 r005 Im(z^2+c),c=-15/56+9/25*I,n=7 2329935303574921 r005 Re(z^2+c),c=-15/86+35/62*I,n=24 2329935310939792 m001 (gamma(1)*Salem+Grothendieck)/gamma(1) 2329935311147972 r005 Im(z^2+c),c=35/94+7/51*I,n=37 2329935324769364 r005 Re(z^2+c),c=-29/62+43/56*I,n=3 2329935326838812 r005 Re(z^2+c),c=-11/56+19/43*I,n=41 2329935342117802 s002 sum(A245482[n]/((2*n)!),n=1..infinity) 2329935344591411 a007 Real Root Of 324*x^4+699*x^3+28*x^2+188*x-421 2329935346954313 r005 Im(z^2+c),c=-7/46+15/46*I,n=5 2329935354404579 a007 Real Root Of 256*x^4+546*x^3-146*x^2-10*x+131 2329935369631785 a007 Real Root Of 55*x^4-169*x^3+516*x^2-33*x-38 2329935377788967 m004 -4+25*Pi+Sqrt[5]*Pi+4*Sinh[Sqrt[5]*Pi] 2329935382268493 m001 (-Thue+ZetaP(3))/(3^(1/2)-FeigenbaumDelta) 2329935391417431 a007 Real Root Of 849*x^4-425*x^3+277*x^2-730*x-193 2329935392996475 m001 (arctan(1/2)-Artin)/(Champernowne+MertensB1) 2329935395614767 m001 1/ln(Paris)*FibonacciFactorial*TreeGrowth2nd 2329935397931740 m005 (1/2*exp(1)+7/12)/(6/7*5^(1/2)-2) 2329935398945331 a007 Real Root Of -505*x^4-987*x^3+550*x^2+80*x-401 2329935409231146 s002 sum(A144682[n]/((10^n+1)/n),n=1..infinity) 2329935409233218 s002 sum(A144682[n]/((10^n-1)/n),n=1..infinity) 2329935413615202 a007 Real Root Of -244*x^4-381*x^3+408*x^2-175*x-251 2329935421710302 r009 Re(z^3+c),c=-11/42+13/62*I,n=3 2329935432121547 a007 Real Root Of 468*x^4+855*x^3-624*x^2-221*x-105 2329935438039344 m005 (1/3*exp(1)+3/5)/(2*3^(1/2)+3) 2329935441879179 b008 4/3+SphericalBesselJ[0,1/7] 2329935444835098 g002 Psi(1/12)+Psi(1/11)+Psi(7/9)-Psi(7/12) 2329935451959436 m001 (Paris+ZetaP(3))/(gamma(2)-OneNinth) 2329935452508265 m001 (Trott2nd+ZetaP(4))/(Grothendieck+Khinchin) 2329935455062058 s002 sum(A137892[n]/(n^3*exp(n)+1),n=1..infinity) 2329935459893638 a007 Real Root Of -175*x^4-284*x^3-44*x^2-606*x+392 2329935467093033 r005 Im(z^2+c),c=-23/20+14/47*I,n=3 2329935469941771 r009 Im(z^3+c),c=-49/110+5/57*I,n=43 2329935471425641 m001 (2^(1/3)-exp(Pi))/(BesselI(1,1)+Artin) 2329935473852387 s002 sum(A054348[n]/(n*10^n-1),n=1..infinity) 2329935473961471 s002 sum(A083534[n]/(n*10^n-1),n=1..infinity) 2329935482975817 a008 Real Root of x^2-x-54053 2329935489050160 a007 Real Root Of 143*x^4-33*x^3-720*x^2+500*x+442 2329935490369708 g001 Psi(3/11,44/109) 2329935493681770 l006 ln(779/8006) 2329935501161509 r009 Re(z^3+c),c=-57/110+37/61*I,n=63 2329935501592680 m009 (Psi(1,3/4)+1/3)/(1/4*Psi(1,2/3)-2) 2329935502765642 a007 Real Root Of -441*x^4-787*x^3+303*x^2-667*x-157 2329935507393888 h001 (-8*exp(3/2)-6)/(-2*exp(3/2)-9) 2329935513709436 a007 Real Root Of 311*x^4+498*x^3-140*x^2+719*x-431 2329935518889272 a007 Real Root Of 180*x^4+182*x^3-594*x^2-285*x-442 2329935532395470 m001 FeigenbaumMu-Niven^FeigenbaumAlpha 2329935546225840 m005 (1/3*Catalan+2/7)/(6*gamma-6) 2329935552064560 r009 Re(z^3+c),c=-4/11+25/53*I,n=34 2329935560888823 m003 Sqrt[5]/64+ProductLog[1/2+Sqrt[5]/2]^(-3) 2329935567880730 m005 (1/3*5^(1/2)-1/11)/(4*gamma+1/2) 2329935572976934 m006 (4/5*Pi+5)/(5/6*Pi^2-5) 2329935572976934 m008 (4/5*Pi+5)/(5/6*Pi^2-5) 2329935574835601 r005 Im(z^2+c),c=-115/126+1/53*I,n=11 2329935579797487 r005 Im(z^2+c),c=-17/86+4/11*I,n=5 2329935586977568 r005 Re(z^2+c),c=-26/25+4/15*I,n=12 2329935600295994 r005 Im(z^2+c),c=-23/98+13/38*I,n=33 2329935604313091 r005 Im(z^2+c),c=-9/22+11/28*I,n=30 2329935604673358 m001 FeigenbaumB/(Magata-Zeta(1,-1)) 2329935604943578 h001 (1/2*exp(2)+1/9)/(1/3*exp(1)+8/11) 2329935616247631 a001 1/188*(1/2*5^(1/2)+1/2)^25*4^(9/13) 2329935616817859 s002 sum(A098220[n]/(n*10^n-1),n=1..infinity) 2329935620434221 m005 (13/20+1/4*5^(1/2))/(5/11*Pi-10/11) 2329935621428197 a008 Real Root of x^2-54286 2329935635799787 m001 Trott^GAMMA(13/24)/(Trott^cos(1/5*Pi)) 2329935650818782 m001 Conway+Sierpinski^Trott2nd 2329935694455916 m001 exp(Porter)/FeigenbaumB/sqrt(5) 2329935696879933 a007 Real Root Of -313*x^4-958*x^3-588*x^2+188*x+737 2329935699232651 m001 (Lehmer-TwinPrimes)/(3^(1/3)+Backhouse) 2329935700343944 m001 ln(Pi)+Pi^ZetaR(2) 2329935712537465 r005 Re(z^2+c),c=-11/70+17/28*I,n=45 2329935713007887 m001 (KhinchinHarmonic-Niven)/(GAMMA(5/6)+Gompertz) 2329935717127756 l006 ln(559/5745) 2329935738630910 r005 Re(z^2+c),c=3/62+17/28*I,n=53 2329935744282049 r002 55th iterates of z^2 + 2329935746527118 g006 Psi(1,7/12)+Psi(1,1/3)-Psi(1,1/12)-Psi(1,1/10) 2329935747947019 a007 Real Root Of -13*x^4+268*x^3-306*x^2-250*x-763 2329935749277664 m002 E^Pi*Coth[Pi]+(6*Sinh[Pi])/Pi^6 2329935758486468 r005 Im(z^2+c),c=-9/19+25/58*I,n=31 2329935759287608 a008 Real Root of x^2-x-54519 2329935760121235 a007 Real Root Of 489*x^4-741*x^3+616*x^2-955*x+197 2329935764096134 r005 Re(z^2+c),c=-11/70+31/55*I,n=10 2329935768587035 a007 Real Root Of -125*x^4+97*x^3+833*x^2-420*x-590 2329935776715029 l006 ln(6910/8723) 2329935782192934 m001 CareFree^BesselK(0,1)+Porter 2329935785602373 r005 Im(z^2+c),c=4/15+3/37*I,n=9 2329935786673101 p001 sum((-1)^n/(508*n+429)/(1000^n),n=0..infinity) 2329935792767603 m001 (Kac+Trott2nd)/(5^(1/2)+LambertW(1)) 2329935793219030 m005 (1/3*Pi-3/5)/(3/8*exp(1)+9/10) 2329935800592274 a001 29/21*5^(13/40) 2329935802614685 r005 Im(z^2+c),c=-21/52+20/51*I,n=47 2329935812591610 a007 Real Root Of -196*x^4-433*x^3+172*x^2-108*x-886 2329935816797761 r005 Re(z^2+c),c=7/24+7/39*I,n=47 2329935817003016 a001 1/9381251041*521^(1/8) 2329935817973719 a001 2576*18^(16/21) 2329935820188120 m009 (1/3*Psi(1,3/4)+4)/(3/2*Pi^2+6) 2329935823501796 m001 (Si(Pi)+cos(1/12*Pi))/(MertensB2+ZetaP(3)) 2329935826724657 m001 (FellerTornier-exp(1))/(-Otter+Tetranacci) 2329935840333850 a007 Real Root Of 512*x^4+598*x^3-583*x^2-813*x+212 2329935858549993 m001 1/(2^(1/3))^2*ln(Tribonacci)^2/Zeta(9)^2 2329935859164390 r002 8th iterates of z^2 + 2329935862721690 m004 -50/Pi+25*Sqrt[5]*Pi-125*Pi*Tanh[Sqrt[5]*Pi] 2329935864473938 a007 Real Root Of 542*x^4+923*x^3-611*x^2+98*x-753 2329935871122884 p004 log(15329/12143) 2329935875241631 a007 Real Root Of 301*x^4+562*x^3-207*x^2+592*x+741 2329935877469912 a007 Real Root Of -310*x^4-816*x^3-445*x^2-295*x+543 2329935879323403 r009 Re(z^3+c),c=-19/58+15/23*I,n=53 2329935880874753 r002 52th iterates of z^2 + 2329935884448344 r005 Re(z^2+c),c=-137/110+5/44*I,n=6 2329935890289226 a007 Real Root Of 755*x^4-399*x^3-204*x^2-820*x-19 2329935910963377 l006 ln(898/9229) 2329935916882352 m005 (1/3*2^(1/2)-1/7)/(6/7*Catalan+5/8) 2329935917857110 a007 Real Root Of -372*x^4-366*x^3+939*x^2-294*x+551 2329935921321125 r005 Im(z^2+c),c=-3/38+15/52*I,n=13 2329935922327689 m002 -1-E^Pi*Coth[Pi]+Tanh[Pi]/ProductLog[Pi] 2329935924607776 r005 Re(z^2+c),c=-25/122+19/45*I,n=15 2329935926774977 m002 2*Cosh[Pi]+(4*Csch[Pi])/3 2329935928447403 a007 Real Root Of 357*x^4+394*x^3-607*x^2+952*x-24 2329935929333200 m001 Zeta(5)^2/exp(Robbin)/cosh(1)^2 2329935934945456 m001 BesselJ(0,1)-ln(Pi)*Riemann2ndZero 2329935949075663 r009 Im(z^3+c),c=-5/48+25/31*I,n=14 2329935949118649 a007 Real Root Of -299*x^4-394*x^3+505*x^2-420*x+108 2329935957929946 a007 Real Root Of -349*x^4-685*x^3-5*x^2-591*x+271 2329935961539362 r005 Re(z^2+c),c=-3/11+11/62*I,n=12 2329935968854351 m001 (FellerTornier-ReciprocalFibonacci)/Conway 2329935995785271 l006 ln(5233/6606) 2329935998557634 p004 log(12713/1237) 2329936002885641 a001 3/2139295485799*1364^(17/24) 2329936015229337 m001 Ei(1)^2/(3^(1/3))*exp(sqrt(5)) 2329936015354769 m001 (PlouffeB+ZetaQ(2))/(ln(3)+GAMMA(19/24)) 2329936022559747 r005 Im(z^2+c),c=-5/8+1/233*I,n=53 2329936025099465 a007 Real Root Of 17*x^4+362*x^3-798*x^2-114*x-623 2329936026726278 a007 Real Root Of 224*x^4+268*x^3-782*x^2-581*x-320 2329936027626335 a007 Real Root Of 104*x^4-627*x^3-482*x^2-798*x-168 2329936040175986 a001 13/167761*29^(17/52) 2329936065583917 m001 FeigenbaumC*Riemann1stZero-Sierpinski 2329936065768460 r005 Re(z^2+c),c=11/38+11/62*I,n=32 2329936077331172 m001 BesselK(0,1)*ln(Niven)*Zeta(5) 2329936081857518 r002 30th iterates of z^2 + 2329936086903598 a007 Real Root Of -270*x^4-182*x^3+783*x^2-322*x+654 2329936096302631 r005 Im(z^2+c),c=-51/56+4/19*I,n=58 2329936104863034 a003 cos(Pi*41/113)/cos(Pi*27/61) 2329936105251424 p003 LerchPhi(1/8,2,331/155) 2329936106529302 a007 Real Root Of 338*x^4+199*x^3-974*x^2+992*x+155 2329936107902742 b008 25*InverseErfc[3/16] 2329936114763085 a007 Real Root Of 97*x^4-239*x^3-851*x^2+854*x+728 2329936128334581 r005 Re(z^2+c),c=-61/90+26/37*I,n=3 2329936142843114 p004 log(33617/3271) 2329936142997034 m004 5*Pi*Cot[Sqrt[5]*Pi]+75*Pi*Tan[Sqrt[5]*Pi] 2329936156406442 h001 (3/5*exp(2)+5/6)/(6/11*exp(1)+7/9) 2329936159230351 a001 521/832040*832040^(13/49) 2329936169409401 m001 ln(Rabbit)^2*Kolakoski^2*Pi 2329936171711524 r009 Im(z^3+c),c=-29/66+2/21*I,n=32 2329936177362738 m001 1/ln(GAMMA(1/4))^2/Magata*log(2+sqrt(3)) 2329936186312482 a007 Real Root Of 555*x^4+796*x^3-887*x^2+741*x+254 2329936189968450 m005 (1/2*gamma+7/11)/(-7/12+1/12*5^(1/2)) 2329936201558195 m001 (1-gamma)/(exp(-1/2*Pi)+ErdosBorwein) 2329936213595220 m001 (3^(1/3)+ArtinRank2)/(Landau-MinimumGamma) 2329936214549130 a001 2139295485799/377*377^(5/21) 2329936216358575 m001 (Khinchin+Stephens)/(BesselI(1,1)+GaussAGM) 2329936230591943 l006 ln(339/3484) 2329936233524545 a007 Real Root Of 500*x^4+293*x^3-283*x^2-406*x-77 2329936253989688 m001 Backhouse/BesselK(0,1)/ZetaR(2) 2329936259308317 m006 (3*Pi^2+4)/(3*Pi+5) 2329936259308317 m008 (3*Pi^2+4)/(3*Pi+5) 2329936266402834 a005 (1/sin(63/193*Pi))^314 2329936282420843 r005 Im(z^2+c),c=-2/3+65/246*I,n=20 2329936283200589 m005 (4*Pi+2/3)/(1/4*exp(1)+5) 2329936284314901 r005 Im(z^2+c),c=-45/52+11/63*I,n=20 2329936285785105 h001 (-7*exp(6)-8)/(-3*exp(1)-4) 2329936295097220 r005 Im(z^2+c),c=-29/34+19/127*I,n=12 2329936297279594 m003 -6+2*Csc[1/2+Sqrt[5]/2]-Tan[1/2+Sqrt[5]/2]/5 2329936301494411 m002 E^Pi+(4*Cosh[Pi])/(3*Pi^4) 2329936302516623 a007 Real Root Of -411*x^4-953*x^3-31*x^2-44*x+124 2329936305732484 q001 1829/785 2329936305820081 m008 (4/5*Pi^4-1/3)/(1/3*Pi^4+5/6) 2329936306062878 m001 Khintchine^2*exp(FransenRobinson)^2*Salem 2329936306299385 m001 (-Riemann2ndZero+ZetaP(4))/(gamma+arctan(1/3)) 2329936318950751 a007 Real Root Of 345*x^4+526*x^3-452*x^2+101*x-825 2329936322420417 m001 (ln(5)-FeigenbaumAlpha)/(Pi+ln(2)) 2329936336825987 r005 Im(z^2+c),c=23/56+18/53*I,n=5 2329936350789047 a001 521/28657*3^(7/31) 2329936354026989 b008 (1/2+E^(-2))^2*EulerGamma 2329936357794263 m001 1/ln(Magata)*FransenRobinson^2*BesselK(1,1)^2 2329936359253481 m001 (Conway-ErdosBorwein)/(Mills-Salem) 2329936360011257 r005 Im(z^2+c),c=-27/110+19/55*I,n=19 2329936369831340 l006 ln(4327/4429) 2329936378246326 m001 2*Pi/GAMMA(5/6)-Si(Pi)*MadelungNaCl 2329936378246326 m001 GAMMA(1/6)-Si(Pi)*MadelungNaCl 2329936386904933 h001 (1/11*exp(2)+7/8)/(4/5*exp(2)+8/11) 2329936393637001 a007 Real Root Of 326*x^4+439*x^3-172*x^2+939*x-933 2329936394210813 r005 Re(z^2+c),c=-67/82+2/55*I,n=32 2329936407758785 r005 Im(z^2+c),c=-101/118+5/28*I,n=33 2329936412386713 a007 Real Root Of 32*x^4+195*x^3+106*x^2-937*x+210 2329936420325280 a001 1/64300051206*1364^(3/8) 2329936421481369 l006 ln(3556/4489) 2329936428961051 r005 Re(z^2+c),c=-13/118+26/47*I,n=20 2329936437997666 r002 8th iterates of z^2 + 2329936444521275 g006 Psi(1,7/9)+Psi(1,1/3)-Psi(1,7/8)-Psi(1,3/8) 2329936444654134 a007 Real Root Of -475*x^4-660*x^3+667*x^2-971*x-233 2329936456880808 r009 Re(z^3+c),c=-45/122+41/62*I,n=30 2329936458209104 m001 (exp(1/exp(1))-polylog(4,1/2))/(Pi+Chi(1)) 2329936465154546 r009 Im(z^3+c),c=-19/122+41/46*I,n=4 2329936476480781 s002 sum(A265113[n]/(pi^n-1),n=1..infinity) 2329936480865370 r002 33th iterates of z^2 + 2329936484461148 m001 Riemann2ndZero*Khintchine^2/ln(GAMMA(23/24))^2 2329936486264115 r005 Re(z^2+c),c=-17/82+19/46*I,n=18 2329936496246897 m001 arctan(1/2)-FeigenbaumDelta^(2/3) 2329936506468550 m001 1/LandauRamanujan*CareFree*exp(arctan(1/2))^2 2329936517283434 m001 (FeigenbaumDelta+1/3)/(-ln(1+sqrt(2))+2/3) 2329936525819634 m001 CareFree-RenyiParking^Sierpinski 2329936528655100 r002 11th iterates of z^2 + 2329936538525204 a007 Real Root Of 576*x^4+265*x^3-409*x^2-420*x-74 2329936540768079 s002 sum(A242355[n]/(2^n-1),n=1..infinity) 2329936541572412 r005 Re(z^2+c),c=-47/44+7/33*I,n=8 2329936544321684 m001 (FeigenbaumKappa-Niven)/(arctan(1/3)-Bloch) 2329936545593678 m001 1/GAMMA(1/12)^2/exp(Rabbit)^2*GAMMA(5/6)^2 2329936564650048 m002 Sinh[Pi]/5+Tanh[Pi]/(5*Pi^2) 2329936577301745 r005 Im(z^2+c),c=-79/58+2/59*I,n=17 2329936579222884 m001 (Stephens-ZetaQ(3))/(GAMMA(13/24)+Kolakoski) 2329936584561218 r005 Im(z^2+c),c=-67/46+5/31*I,n=3 2329936588438978 r005 Re(z^2+c),c=31/122+5/39*I,n=7 2329936590725387 l006 ln(797/8191) 2329936590725387 p004 log(8191/797) 2329936604200962 a001 15127/610*832040^(21/25) 2329936613980883 m001 (Pi-ln(Pi))/(gamma(3)-Thue) 2329936619413017 a007 Real Root Of 622*x^4+919*x^3-704*x^2+887*x-818 2329936620395246 r005 Im(z^2+c),c=-19/60+35/58*I,n=38 2329936620953189 m001 (-BesselI(0,2)+Pi^(1/2))/(exp(1/Pi)-exp(Pi)) 2329936624509687 a007 Real Root Of -417*x^4-792*x^3-14*x^2-659*x+812 2329936629385310 h001 (3/5*exp(2)+5/11)/(2/3*exp(1)+2/7) 2329936656408449 r005 Im(z^2+c),c=-1/102+6/23*I,n=8 2329936656568438 q001 846/3631 2329936669189126 r005 Re(z^2+c),c=-11/102+16/27*I,n=41 2329936674008609 m001 (-BesselI(1,1)+BesselK(1,1))/(1+gamma) 2329936680115666 p003 LerchPhi(1/5,4,431/166) 2329936686493826 a007 Real Root Of 270*x^4+220*x^3-880*x^2+579*x+952 2329936686607911 m001 Paris^BesselI(1,2)+exp(-1/2*Pi) 2329936690606982 m001 Khintchine^2/Artin^2/exp(Kolakoski) 2329936691813151 a007 Real Root Of 267*x^4+751*x^3+545*x^2-610*x-163 2329936695992536 a007 Real Root Of -401*x^4+557*x^3+6*x^2+494*x+123 2329936702587414 r009 Im(z^3+c),c=-5/32+10/43*I,n=5 2329936706838032 a003 -1+2*cos(2/9*Pi)+cos(1/21*Pi)+cos(1/5*Pi) 2329936709638559 m001 ln(GolombDickman)/Si(Pi)*Catalan 2329936714571747 m003 7/2+(257*Sqrt[5])/4096-Cosh[1/2+Sqrt[5]/2]/2 2329936722506957 m001 (Lehmer+Trott2nd)/(LambertW(1)-ln(2)/ln(10)) 2329936730868360 r005 Im(z^2+c),c=-21/22+26/103*I,n=20 2329936734941729 m001 GAMMA(13/24)^exp(1/Pi)/GaussAGM(1,1/sqrt(2)) 2329936737523002 a007 Real Root Of 786*x^4-396*x^3+894*x^2-756*x-232 2329936750260314 a007 Real Root Of 257*x^4+484*x^3-244*x^2-108*x-379 2329936767360042 a007 Real Root Of 136*x^4+472*x^3+859*x^2-871*x-244 2329936769156840 r005 Re(z^2+c),c=11/36+15/32*I,n=6 2329936772134158 m001 (Riemann2ndZero-exp(1/Pi))^Shi(1) 2329936775750666 a001 3/2139295485799*3571^(5/8) 2329936775767899 r005 Re(z^2+c),c=-75/98+2/35*I,n=4 2329936783924168 p001 sum(1/(191*n+44)/(8^n),n=0..infinity) 2329936792161418 m001 LambertW(1)^2*ln(Ei(1))^2*sqrt(Pi) 2329936792278175 h001 (3/5*exp(2)+5/12)/(3/7*exp(1)+11/12) 2329936797561371 r005 Im(z^2+c),c=-1/28+13/48*I,n=4 2329936799321169 a007 Real Root Of -149*x^4-60*x^3+982*x^2+551*x-415 2329936820722692 m004 -5-E^(Sqrt[5]*Pi)/4+25*Pi*Sin[Sqrt[5]*Pi] 2329936825036888 r002 22th iterates of z^2 + 2329936829507708 m001 (Mills+ZetaQ(3))/(Pi+FeigenbaumAlpha) 2329936831355810 l006 ln(5435/6861) 2329936837764993 a001 3/17393796001*1364^(1/24) 2329936845027492 r002 4th iterates of z^2 + 2329936851598094 m004 4+(125*Log[Sqrt[5]*Pi])/Pi+4*Sinh[Sqrt[5]*Pi] 2329936851606590 r009 Re(z^3+c),c=-23/64+22/47*I,n=18 2329936853089379 b008 ArcCot[1/11+Sqrt[17]] 2329936853421870 p002 log(19^(2/3)+5^(5/7)) 2329936857286957 l006 ln(458/4707) 2329936858434923 m001 (cos(1)+BesselK(0,1))/(-Zeta(5)+GolombDickman) 2329936870258178 r005 Im(z^2+c),c=-41/44+12/47*I,n=21 2329936875092845 h001 (7/12*exp(2)+1/7)/(6/11*exp(1)+3/7) 2329936878659713 a007 Real Root Of -251*x^4-293*x^3+355*x^2-942*x-431 2329936878972197 a007 Real Root Of 215*x^4+304*x^3+762*x^2-553*x-167 2329936879684540 a001 4181/322*199^(6/11) 2329936881001181 r005 Im(z^2+c),c=-3/25+17/56*I,n=14 2329936882479661 m001 (-Otter+ThueMorse)/(2^(1/2)-FellerTornier) 2329936888162400 a001 1/440719107401*24476^(11/24) 2329936889458809 a001 3/45537549124*24476^(1/8) 2329936889732176 a001 3/817138163596*64079^(3/8) 2329936889893221 a001 3/23725150497407*167761^(5/8) 2329936889938420 a001 3/14662949395604*439204^(13/24) 2329936889942446 a001 1/64300051206*439204^(5/24) 2329936889944742 a001 3/73681302247*1149851^(1/8) 2329936889944866 a001 3/3461452808002*3010349^(3/8) 2329936889944952 a001 1/440719107401*7881196^(7/24) 2329936889944962 a001 3/119218851371*54018521^(1/8) 2329936889944962 a001 3/14662949395604*141422324^(3/8) 2329936889944963 a001 1/9381251041*141422324^(1/24) 2329936889944963 a001 1/64300051206*2537720636^(1/8) 2329936889944963 a001 3/73681302247*1322157322203^(1/16) 2329936889944963 a001 3/2139295485799*45537549124^(5/24) 2329936889944963 a001 3/505019158607*5600748293801^(1/8) 2329936889944963 a001 3/312119004989*119218851371^(1/8) 2329936889944963 a001 3/23725150497407*28143753123^(5/16) 2329936889944963 a001 3/45537549124*14662949395604^(1/24) 2329936889944963 a001 3/817138163596*4106118243^(3/16) 2329936889944963 a001 3/45537549124*599074578^(1/16) 2329936889944967 a001 3/2139295485799*12752043^(5/16) 2329936889945089 a001 1/64300051206*1860498^(3/16) 2329936889946939 a001 1/9381251041*271443^(1/16) 2329936889962750 a001 3/14662949395604*271443^(9/16) 2329936890445489 g002 -2*Psi(2/11)-Psi(4/9)-Psi(1/9) 2329936890594892 a001 1/440719107401*39603^(7/16) 2329936893982930 p001 sum((-1)^n/(487*n+429)/(1024^n),n=0..infinity) 2329936894240881 b008 (2/9+E^6)*EulerGamma 2329936898628724 a007 Real Root Of 253*x^4+793*x^3+447*x^2+198*x+609 2329936911754132 a001 1/64300051206*5778^(5/16) 2329936920196731 a005 (1/sin(100/223*Pi))^1811 2329936920696503 m001 1/RenyiParking^2/CareFree^2/exp(GAMMA(1/24)) 2329936922444206 a007 Real Root Of -218*x^4-145*x^3+904*x^2+376*x+559 2329936923495468 p001 sum((-1)^n/(509*n+429)/(1000^n),n=0..infinity) 2329936926770186 s002 sum(A190833[n]/(exp(n)),n=1..infinity) 2329936928116019 p003 LerchPhi(1/25,6,39/142) 2329936931865964 m001 (GAMMA(3/4)-Kac)/(MasserGramain+Tetranacci) 2329936938180993 m001 (GaussAGM-ZetaP(3))/(GAMMA(3/4)+ErdosBorwein) 2329936946648803 a001 3/14662949395604*5778^(13/16) 2329936957815970 r005 Im(z^2+c),c=-3/50+9/32*I,n=17 2329936958802292 r005 Im(z^2+c),c=-51/110+5/11*I,n=27 2329936966179592 p004 log(20051/1951) 2329936968348371 r005 Im(z^2+c),c=-81/110+8/53*I,n=49 2329936976056683 m001 GlaisherKinkelin*OneNinth^BesselJ(0,1) 2329936981970605 a007 Real Root Of -327*x^4-396*x^3+585*x^2-349*x+639 2329936985767643 r009 Re(z^3+c),c=-1/60+31/41*I,n=5 2329936995171860 a001 599786069/13*225851433717^(5/21) 2329936995171861 a001 192900153618/377*9227465^(5/21) 2329936996378305 m001 1/Sierpinski*ln(DuboisRaymond)/exp(1) 2329937017800557 r005 Im(z^2+c),c=-57/56+17/60*I,n=35 2329937018001117 r009 Re(z^3+c),c=-7/24+3/10*I,n=16 2329937027404635 a007 Real Root Of 967*x^4-177*x^3-225*x^2-697*x+174 2329937030633013 l006 ln(7314/9233) 2329937043333719 s002 sum(A118110[n]/(exp(n)+1),n=1..infinity) 2329937043662424 r005 Im(z^2+c),c=-33/64+7/15*I,n=39 2329937053414693 a001 3571/377*10946^(3/31) 2329937055007186 a001 521/317811*28657^(29/41) 2329937057747037 m001 sin(1)/gamma(2)*FeigenbaumD 2329937061133986 r002 35th iterates of z^2 + 2329937061423874 m001 1/Robbin^2*CopelandErdos/ln((2^(1/3))) 2329937069269738 m001 1/GAMMA(1/12)^2/ln(FeigenbaumD)^2/gamma^2 2329937069891477 m001 Landau/((2/3*Pi*3^(1/2)/GAMMA(2/3))^Thue) 2329937077623200 m001 (5^(1/2)-ln(2))/(gamma(3)+TwinPrimes) 2329937081281938 r005 Im(z^2+c),c=-27/70+1/25*I,n=8 2329937099218915 m005 (1/2*5^(1/2)-2/5)/(3/7*gamma-5/9) 2329937112691538 a003 sin(Pi*3/91)/cos(Pi*29/82) 2329937120989574 m005 (1/2*gamma-1/7)/(6/11*exp(1)-6/7) 2329937128128499 s002 sum(A179529[n]/(n*10^n-1),n=1..infinity) 2329937131807781 m001 (Ei(1)-LaplaceLimit)/(Niven-Salem) 2329937135549913 a007 Real Root Of 404*x^4+857*x^3+181*x^2+757*x-285 2329937139613676 m001 PrimesInBinary^2/Thue^2 2329937139709901 s002 sum(A241927[n]/(n*10^n-1),n=1..infinity) 2329937140719415 s002 sum(A194318[n]/(n*10^n-1),n=1..infinity) 2329937144279298 r002 13th iterates of z^2 + 2329937151377493 r009 Re(z^3+c),c=-5/122+39/62*I,n=30 2329937153119479 s002 sum(A194342[n]/(n*10^n-1),n=1..infinity) 2329937156853581 m004 -4+2*E^(Sqrt[5]*Pi)+25*Pi+Sqrt[5]*Pi 2329937158632990 m005 (1/2*Catalan+10/11)/(5*Zeta(3)-1/7) 2329937165299692 r005 Re(z^2+c),c=-7/25+32/59*I,n=14 2329937180594434 a007 Real Root Of -341*x^4-994*x^3-560*x^2-160*x+144 2329937197100092 g006 Psi(1,2/11)+Psi(1,5/6)-Psi(1,5/12)-Psi(1,3/5) 2329937204666174 m001 Riemann2ndZero-Zeta(1,2)+Totient 2329937205732034 a007 Real Root Of 806*x^4+823*x^3-147*x^2-673*x+152 2329937206981677 a007 Real Root Of -93*x^4-237*x^3+159*x^2+164*x-738 2329937209504818 m005 (1/2*Catalan+6)/(4/11*Zeta(3)-5/7) 2329937209560158 r005 Im(z^2+c),c=-13/42+23/63*I,n=37 2329937209573538 r005 Im(z^2+c),c=-11/70+6/19*I,n=10 2329937222555685 a003 sin(Pi*15/119)/cos(Pi*38/85) 2329937225483671 l006 ln(577/5930) 2329937225501212 p001 sum(1/(601*n+431)/(100^n),n=0..infinity) 2329937227803426 m001 1/(3^(1/3))^2*Robbin^2*exp(Zeta(3))^2 2329937235809139 a007 Real Root Of 369*x^4+978*x^3+245*x^2-90*x-44 2329937241024419 b008 6-5*(E+Pi) 2329937245648560 h005 exp(cos(Pi*1/47)*sin(Pi*19/59)) 2329937248686102 r005 Im(z^2+c),c=-7/10+7/155*I,n=26 2329937252159587 a007 Real Root Of 214*x^4+167*x^3-958*x^2-292*x+326 2329937269471698 a007 Real Root Of 4*x^4-328*x^3-332*x^2+816*x-563 2329937271086563 s002 sum(A263204[n]/(n*10^n-1),n=1..infinity) 2329937272096755 s002 sum(A194322[n]/(n*10^n-1),n=1..infinity) 2329937278019440 r005 Re(z^2+c),c=37/114+10/51*I,n=31 2329937283485644 s002 sum(A074264[n]/(n*10^n-1),n=1..infinity) 2329937283485644 s002 sum(A194302[n]/(n*10^n-1),n=1..infinity) 2329937283485644 s002 sum(A194294[n]/(n*10^n-1),n=1..infinity) 2329937283485644 s002 sum(A081245[n]/(n*10^n-1),n=1..infinity) 2329937283485644 s002 sum(A007395[n]/(n*10^n-1),n=1..infinity) 2329937283485644 s002 sum(A010859[n]/(n*10^n-1),n=1..infinity) 2329937283485644 s002 sum(A239374[n]/(n*10^n-1),n=1..infinity) 2329937283485644 s002 sum(A076303[n]/(n*10^n-1),n=1..infinity) 2329937283485644 s002 sum(A194334[n]/(n*10^n-1),n=1..infinity) 2329937283485644 s002 sum(A242259[n]/(n*10^n-1),n=1..infinity) 2329937283485644 s002 sum(A194338[n]/(n*10^n-1),n=1..infinity) 2329937283485644 s002 sum(A176170[n]/(n*10^n-1),n=1..infinity) 2329937283485644 s002 sum(A156822[n]/(n*10^n-1),n=1..infinity) 2329937283485645 s002 sum(A107609[n]/(n*10^n-1),n=1..infinity) 2329937283485646 s002 sum(A137325[n]/(n*10^n-1),n=1..infinity) 2329937283485651 s002 sum(A180258[n]/(n*10^n-1),n=1..infinity) 2329937283485721 s002 sum(A074594[n]/(n*10^n-1),n=1..infinity) 2329937283485996 s002 sum(A098708[n]/(n*10^n-1),n=1..infinity) 2329937283486479 s002 sum(A076925[n]/(n*10^n-1),n=1..infinity) 2329937283486485 s002 sum(A100961[n]/(n*10^n-1),n=1..infinity) 2329937283486555 s002 sum(A263206[n]/(n*10^n-1),n=1..infinity) 2329937283494735 s002 sum(A227533[n]/(n*10^n-1),n=1..infinity) 2329937283495653 s002 sum(A156821[n]/(n*10^n-1),n=1..infinity) 2329937283513827 s002 sum(A103663[n]/(n*10^n-1),n=1..infinity) 2329937283585644 s002 sum(A104230[n]/(n*10^n-1),n=1..infinity) 2329937283585721 s002 sum(A074908[n]/(n*10^n-1),n=1..infinity) 2329937283685647 s002 sum(A145992[n]/(n*10^n-1),n=1..infinity) 2329937283885644 s002 sum(A250201[n]/(n*10^n-1),n=1..infinity) 2329937283885688 s002 sum(A252375[n]/(n*10^n-1),n=1..infinity) 2329937284485651 s002 sum(A164898[n]/(n*10^n-1),n=1..infinity) 2329937284505089 s002 sum(A194310[n]/(n*10^n-1),n=1..infinity) 2329937284596763 s002 sum(A272231[n]/(n*10^n-1),n=1..infinity) 2329937284706764 s002 sum(A079416[n]/(n*10^n-1),n=1..infinity) 2329937284706764 s002 sum(A082896[n]/(n*10^n-1),n=1..infinity) 2329937284850083 s002 sum(A100801[n]/(n*10^n-1),n=1..infinity) 2329937285708020 s002 sum(A045818[n]/(n*10^n-1),n=1..infinity) 2329937285927884 s002 sum(A064128[n]/(n*10^n-1),n=1..infinity) 2329937289217673 s002 sum(A103795[n]/(n*10^n-1),n=1..infinity) 2329937290279375 m001 (arctan(1/2)-Zeta(1,2))/(Lehmer+ZetaQ(3)) 2329937295985721 s002 sum(A147793[n]/(n*10^n-1),n=1..infinity) 2329937296085651 s002 sum(A179938[n]/(n*10^n-1),n=1..infinity) 2329937296085652 s002 sum(A081412[n]/(n*10^n-1),n=1..infinity) 2329937296829206 s002 sum(A175101[n]/(n*10^n-1),n=1..infinity) 2329937297097673 s002 sum(A109829[n]/(n*10^n-1),n=1..infinity) 2329937297098590 s002 sum(A054125[n]/(n*10^n-1),n=1..infinity) 2329937297099661 s002 sum(A174373[n]/(n*10^n-1),n=1..infinity) 2329937310731063 s002 sum(A064132[n]/(n*10^n-1),n=1..infinity) 2329937310927884 s002 sum(A166594[n]/(n*10^n-1),n=1..infinity) 2329937319275285 m001 (Chi(1)-ln(Pi))/(GAMMA(11/12)+MertensB1) 2329937322612459 r009 Re(z^3+c),c=-4/13+21/61*I,n=5 2329937331067946 a007 Real Root Of -630*x^4-774*x^3-649*x^2+948*x-174 2329937335066845 b008 1+(4*E^Sqrt[3])/17 2329937335707875 s002 sum(A211455[n]/(n*10^n-1),n=1..infinity) 2329937337215219 s002 sum(A001991[n]/(n*10^n-1),n=1..infinity) 2329937337773026 m001 (PrimesInBinary+Trott2nd)/(GAMMA(2/3)+Landau) 2329937338136942 r009 Im(z^3+c),c=-39/86+3/38*I,n=37 2329937340171804 s002 sum(A202742[n]/(n*10^n-1),n=1..infinity) 2329937349512217 r005 Im(z^2+c),c=-17/19+11/54*I,n=53 2329937372773203 r005 Re(z^2+c),c=-9/40+15/41*I,n=33 2329937377036458 a007 Real Root Of 458*x^4+886*x^3-559*x^2-342*x-53 2329937392098411 m001 Conway/(polylog(4,1/2)^QuadraticClass) 2329937392314131 a007 Real Root Of -663*x^4-53*x^3+564*x^2+980*x+199 2329937394458663 a005 (1/sin(47/118*Pi))^238 2329937398494100 a007 Real Root Of -404*x^4+217*x^3+649*x^2+894*x+177 2329937406081542 m001 (Zeta(1,2)+PlouffeB)/(cos(1)+3^(1/3)) 2329937407309610 a007 Real Root Of 531*x^4+905*x^3-620*x^2+591*x+541 2329937408595852 r002 35th iterates of z^2 + 2329937410094451 s002 sum(A180304[n]/(n^2*10^n-1),n=1..infinity) 2329937412428948 m001 (3^(1/3))^(Porter/HardyLittlewoodC3) 2329937426342789 s002 sum(A258757[n]/(n*10^n-1),n=1..infinity) 2329937426342866 s002 sum(A096917[n]/(n*10^n-1),n=1..infinity) 2329937426352713 s002 sum(A068049[n]/(n*10^n-1),n=1..infinity) 2329937426352721 s002 sum(A171092[n]/(n*10^n-1),n=1..infinity) 2329937427453900 s002 sum(A108128[n]/(n*10^n-1),n=1..infinity) 2329937427563909 s002 sum(A212300[n]/(n*10^n-1),n=1..infinity) 2329937429428925 a001 1346269/29*39603^(33/41) 2329937430234262 m005 (1/3*2^(1/2)+2/3)/(1/5*gamma-5) 2329937434578187 m001 (Porter+ZetaQ(3))/(GAMMA(19/24)-cos(1)) 2329937434784089 s002 sum(A178705[n]/(n*exp(pi*n)-1),n=1..infinity) 2329937437234757 r005 Re(z^2+c),c=7/25+8/47*I,n=24 2329937438843622 s002 sum(A273165[n]/(n*10^n-1),n=1..infinity) 2329937441867792 m001 Ei(1,1)/(Landau^Paris) 2329937445848092 r005 Re(z^2+c),c=-7/34+23/55*I,n=30 2329937455672734 r005 Im(z^2+c),c=-27/70+12/31*I,n=47 2329937458099805 r005 Im(z^2+c),c=-87/94+11/50*I,n=64 2329937460604280 m001 (LandauRamanujan2nd-ZetaP(3))/ZetaP(3) 2329937461074252 r009 Re(z^3+c),c=-5/44+13/16*I,n=36 2329937463182413 m001 (cos(1)+OneNinth)/(-Otter+ZetaP(3)) 2329937467773964 l006 ln(696/7153) 2329937470519884 m001 (MinimumGamma+ZetaQ(4))/(ln(gamma)+Landau) 2329937471033249 r005 Im(z^2+c),c=-4/7+34/103*I,n=19 2329937475789694 a007 Real Root Of -261*x^4-372*x^3+318*x^2-743*x-471 2329937479338854 a001 4181/2207*199^(10/11) 2329937483167611 a007 Real Root Of 49*x^4-481*x^3+387*x^2+800*x+675 2329937497520698 r005 Re(z^2+c),c=-17/122+29/51*I,n=25 2329937501532411 r002 6th iterates of z^2 + 2329937501532411 r002 6th iterates of z^2 + 2329937504684653 a001 3/45537549124*843^(3/16) 2329937509607826 a007 Real Root Of 133*x^4-767*x^3+812*x^2+78*x-36 2329937510886501 m001 Ei(1)*Salem^2/ln(GAMMA(7/24)) 2329937515721821 a003 sin(Pi*26/111)-sin(Pi*32/89) 2329937515874099 g005 1/2/Pi^(1/2)*GAMMA(7/8)*GAMMA(5/6)/GAMMA(3/5) 2329937518006666 a007 Real Root Of -51*x^4+443*x^3-684*x^2+121*x-669 2329937524049336 m001 Zeta(1/2)-cos(1)*ln(5) 2329937525374374 m001 (BesselI(0,2)-Lehmer)/(Salem-ZetaP(2)) 2329937525391473 m001 (Catalan+GAMMA(11/12))/(-Khinchin+Tribonacci) 2329937526770951 r005 Im(z^2+c),c=-11/8+1/168*I,n=44 2329937527221798 a007 Real Root Of -397*x^4+459*x^3+252*x^2+870*x+196 2329937532508924 a007 Real Root Of -432*x^4-722*x^3+505*x^2-368*x 2329937553671480 p002 log(17^(1/2)+7^(2/3)*2^(3/4)) 2329937556388994 g006 Psi(1,1/3)-Psi(1,5/6)-Psi(1,3/4)-Psi(1,2/3) 2329937558473606 r005 Im(z^2+c),c=-43/48+13/59*I,n=57 2329937561616825 q001 709/3043 2329937562179112 a007 Real Root Of 523*x^4-346*x^3+461*x^2-717*x-198 2329937567112625 r009 Im(z^3+c),c=-47/110+7/64*I,n=25 2329937569400104 s002 sum(A104369[n]/(n*10^n-1),n=1..infinity) 2329937571423327 s002 sum(A238267[n]/(n*10^n-1),n=1..infinity) 2329937571434024 s002 sum(A064136[n]/(n*10^n-1),n=1..infinity) 2329937573863774 a007 Real Root Of -254*x^4-884*x^3-863*x^2-755*x-770 2329937578179938 a007 Real Root Of -293*x^4-861*x^3-609*x^2-647*x-457 2329937581836453 s002 sum(A143526[n]/(n*10^n-1),n=1..infinity) 2329937584032165 s002 sum(A247869[n]/(n*10^n-1),n=1..infinity) 2329937585032604 a007 Real Root Of -38*x^4-850*x^3+845*x^2+454*x-689 2329937589859685 a007 Real Root Of -56*x^4-103*x^3-449*x^2+759*x-151 2329937594419798 s002 sum(A279401[n]/(n*10^n-1),n=1..infinity) 2329937595311050 s002 sum(A268045[n]/(n*10^n-1),n=1..infinity) 2329937602662549 r005 Re(z^2+c),c=-11/62+18/37*I,n=35 2329937607041507 l006 ln(1879/2372) 2329937610263226 s002 sum(A202709[n]/(n*10^n-1),n=1..infinity) 2329937623888106 s002 sum(A279611[n]/(n*10^n-1),n=1..infinity) 2329937638183147 r009 Re(z^3+c),c=-11/31+14/31*I,n=46 2329937638857441 r005 Im(z^2+c),c=-115/122+7/37*I,n=4 2329937639309510 l006 ln(815/8376) 2329937639613206 m002 -6/Pi^5+4/Log[Pi]-Log[Pi] 2329937641366210 m001 ((1+3^(1/2))^(1/2))^(3^(1/3))-FeigenbaumC 2329937648557299 m001 Sierpinski^2/Champernowne^2/ln(cosh(1))^2 2329937649117642 m005 (23/30+1/6*5^(1/2))/(3/10*5^(1/2)-2/11) 2329937651040044 r008 a(0)=0,K{-n^6,-38+48*n^3-49*n^2+35*n} 2329937659149493 r009 Re(z^3+c),c=-35/114+12/35*I,n=5 2329937665112241 a001 39603/1597*832040^(21/25) 2329937673184434 r005 Re(z^2+c),c=1/90+9/46*I,n=10 2329937675553037 m001 OrthogonalArrays/(Robbin^FibonacciFactorial) 2329937682369169 m001 (Shi(1)+gamma(3))/(-KomornikLoreti+MertensB3) 2329937687655406 p001 sum(1/(469*n+430)/(256^n),n=0..infinity) 2329937697977164 m001 (GAMMA(19/24)-ZetaR(2))/BesselJ(1,1) 2329937698328497 a007 Real Root Of -631*x^4+322*x^3-545*x^2+839*x+231 2329937700898604 m001 (1-CareFree*KhinchinLevy)/CareFree 2329937709038761 h005 exp(cos(Pi*7/27)+cos(Pi*22/49)) 2329937713033006 m005 (-1/2+1/6*5^(1/2))/(1/10*Zeta(3)-2/3) 2329937731492562 m001 (KhinchinHarmonic-ZetaP(3))/(ln(2)-Kac) 2329937733298648 h001 (5/12*exp(2)+7/12)/(4/9*exp(1)+4/11) 2329937736479327 r005 Re(z^2+c),c=25/106+8/63*I,n=9 2329937745290154 r005 Im(z^2+c),c=-91/94+7/29*I,n=27 2329937753482205 b008 2+Cos[1/7]/3 2329937755380071 h001 (5/9*exp(2)+8/9)/(5/8*exp(1)+4/9) 2329937756647889 a001 123/89*377^(10/21) 2329937759657910 r005 Im(z^2+c),c=-1/78+39/61*I,n=57 2329937761766464 m001 (2^(1/2)*gamma(3)+PlouffeB)/gamma(3) 2329937763319950 m001 1/exp(Zeta(3))^2/GAMMA(1/3)^2/cos(1) 2329937767134694 l006 ln(934/9599) 2329937786062553 r009 Im(z^3+c),c=-53/126+5/43*I,n=30 2329937809298438 r002 33th iterates of z^2 + 2329937813468145 b008 1/11+LogGamma[Pi^(-2)] 2329937814473837 b008 (-1/2+Sqrt[3])^(-1)-Pi 2329937815386323 m002 -E^Pi-Log[Pi]+Tanh[Pi]-Tanh[Pi]/Pi^4 2329937833485782 s002 sum(A197169[n]/(n*10^n-1),n=1..infinity) 2329937837050781 m001 (FellerTornier-Magata)/(MertensB3-ZetaQ(3)) 2329937839927871 a007 Real Root Of 407*x^4+880*x^3+271*x^2+636*x-853 2329937840842126 r005 Im(z^2+c),c=23/94+7/62*I,n=14 2329937851248668 m001 (-FeigenbaumMu+ZetaQ(3))/(cos(1)-ln(2)) 2329937853214554 r002 57th iterates of z^2 + 2329937857131090 m009 (1/12*Pi^2+3)/(1/5*Pi^2-1/3) 2329937857554211 r005 Im(z^2+c),c=-19/48+23/59*I,n=35 2329937864749134 a003 cos(Pi*2/101)*cos(Pi*17/40) 2329937865124934 a001 5473/2889*199^(10/11) 2329937868144962 r009 Re(z^3+c),c=-11/48+49/53*I,n=31 2329937871636413 m001 (Pi+BesselK(1,1))/ErdosBorwein 2329937884571378 r005 Im(z^2+c),c=-109/122+10/43*I,n=14 2329937886445064 a003 cos(Pi*1/32)*cos(Pi*48/113) 2329937887599697 a001 -89+144*5^(1/2) 2329937903347816 m001 (Pi-Catalan)^Shi(1) 2329937903651231 r005 Re(z^2+c),c=17/56+10/53*I,n=56 2329937921410376 a001 28657/15127*199^(10/11) 2329937921822366 r009 Re(z^3+c),c=-17/126+30/41*I,n=9 2329937922174158 m001 (ln(5)-FeigenbaumAlpha)/(PlouffeB-Thue) 2329937925886079 m006 (2/5*Pi+1/2)/(5/6*ln(Pi)-1/5) 2329937929622312 a001 75025/39603*199^(10/11) 2329937930820417 a001 98209/51841*199^(10/11) 2329937930995218 a001 514229/271443*199^(10/11) 2329937931020721 a001 1346269/710647*199^(10/11) 2329937931024442 a001 1762289/930249*199^(10/11) 2329937931024985 a001 9227465/4870847*199^(10/11) 2329937931025064 a001 24157817/12752043*199^(10/11) 2329937931025076 a001 31622993/16692641*199^(10/11) 2329937931025078 a001 165580141/87403803*199^(10/11) 2329937931025078 a001 433494437/228826127*199^(10/11) 2329937931025078 a001 567451585/299537289*199^(10/11) 2329937931025078 a001 2971215073/1568397607*199^(10/11) 2329937931025078 a001 7778742049/4106118243*199^(10/11) 2329937931025078 a001 10182505537/5374978561*199^(10/11) 2329937931025078 a001 53316291173/28143753123*199^(10/11) 2329937931025078 a001 139583862445/73681302247*199^(10/11) 2329937931025078 a001 182717648081/96450076809*199^(10/11) 2329937931025078 a001 956722026041/505019158607*199^(10/11) 2329937931025078 a001 10610209857723/5600748293801*199^(10/11) 2329937931025078 a001 591286729879/312119004989*199^(10/11) 2329937931025078 a001 225851433717/119218851371*199^(10/11) 2329937931025078 a001 21566892818/11384387281*199^(10/11) 2329937931025078 a001 32951280099/17393796001*199^(10/11) 2329937931025078 a001 12586269025/6643838879*199^(10/11) 2329937931025078 a001 1201881744/634430159*199^(10/11) 2329937931025078 a001 1836311903/969323029*199^(10/11) 2329937931025078 a001 701408733/370248451*199^(10/11) 2329937931025078 a001 66978574/35355581*199^(10/11) 2329937931025079 a001 102334155/54018521*199^(10/11) 2329937931025083 a001 39088169/20633239*199^(10/11) 2329937931025113 a001 3732588/1970299*199^(10/11) 2329937931025321 a001 5702887/3010349*199^(10/11) 2329937931026742 a001 2178309/1149851*199^(10/11) 2329937931036483 a001 208010/109801*199^(10/11) 2329937931103251 a001 317811/167761*199^(10/11) 2329937931560887 a001 121393/64079*199^(10/11) 2329937934697567 a001 11592/6119*199^(10/11) 2329937946321897 p003 LerchPhi(1/10,4,257/178) 2329937950260320 a001 13/1860498*18^(5/12) 2329937954787174 m001 (Si(Pi)-ln(Pi))/(exp(1/exp(1))+BesselI(1,2)) 2329937956196694 a001 17711/9349*199^(10/11) 2329937965843418 m001 FeigenbaumMu*StronglyCareFree-TreeGrowth2nd 2329937972242374 r005 Im(z^2+c),c=7/86+11/50*I,n=14 2329937976423279 r005 Re(z^2+c),c=6/19+31/63*I,n=55 2329937992770567 a007 Real Root Of 301*x^4+329*x^3-632*x^2+913*x+849 2329937993120174 a003 cos(Pi*14/113)-cos(Pi*29/113) 2329937996729487 m001 1/exp(1)^2/Pi^2/exp(sqrt(Pi)) 2329938000074855 s001 sum(exp(-3*Pi/5)^n*A054267[n],n=1..infinity) 2329938017146020 p003 LerchPhi(1/1024,2,201/97) 2329938028251391 m001 1/exp(GAMMA(7/12))^2*GAMMA(17/24)^2/gamma^2 2329938036961674 m001 Zeta(1,-1)+Champernowne^TreeGrowth2nd 2329938041586267 m001 (-Khinchin+LaplaceLimit)/(2^(1/2)-Psi(1,1/3)) 2329938046308658 a007 Real Root Of 856*x^4-173*x^3+52*x^2-590*x-145 2329938052036806 m001 exp(MadelungNaCl)^2*Cahen^2/BesselJ(0,1)^2 2329938052100487 m001 1/ln(GAMMA(19/24))/DuboisRaymond^2/sin(1)^2 2329938055219272 a007 Real Root Of 245*x^4+288*x^3-423*x^2+564*x+33 2329938055629268 p001 sum((-1)^n/(488*n+429)/(1024^n),n=0..infinity) 2329938066167622 h001 (3/5*exp(2)+6/11)/(1/2*exp(1)+7/9) 2329938067480935 m001 (gamma(1)+Mills)/(PlouffeB+ZetaQ(2)) 2329938071031349 h001 (4/7*exp(2)+1/9)/(5/12*exp(1)+8/11) 2329938074470875 m001 (Sarnak+ZetaQ(2))/(Shi(1)+BesselI(0,2)) 2329938075578354 r008 a(0)=0,K{-n^6,24+31*n-17*n^2+6*n^3} 2329938077131050 r005 Re(z^2+c),c=7/22+22/59*I,n=32 2329938077487488 m001 (BesselK(1,1)+2/3)/(exp(1/exp(1))+4) 2329938087005066 r005 Im(z^2+c),c=-11/30+16/39*I,n=12 2329938102633775 a007 Real Root Of 163*x^4+139*x^3-530*x^2+10*x-145 2329938103553912 a001 6765/3571*199^(10/11) 2329938112276776 p004 log(31601/25033) 2329938113537301 r005 Im(z^2+c),c=-39/110+32/51*I,n=53 2329938128733376 p002 log(12^(2/3)*(6^(1/4)+3^(3/4))^(1/2)) 2329938128896637 m001 (MertensB3+Porter)/(gamma(1)-GAMMA(5/6)) 2329938131545086 m006 (3/5*Pi^2+1/2)/(3/4*Pi+2/5) 2329938131545086 m008 (3/5*Pi^2+1/2)/(3/4*Pi+2/5) 2329938137926865 m005 (1/2*3^(1/2)-2/11)/(4*Catalan-8/11) 2329938145178368 a007 Real Root Of 383*x^4+589*x^3-248*x^2+948*x-282 2329938153277771 l006 ln(7718/9743) 2329938155089158 a007 Real Root Of -611*x^4+696*x^3+586*x^2+533*x-163 2329938157173475 m001 1/GAMMA(7/24)^2*exp(LaplaceLimit)^2*sin(Pi/5) 2329938161134675 m005 (1/2*5^(1/2)+1/9)/(1/3*Catalan+2/9) 2329938170050998 m001 QuadraticClass-ReciprocalFibonacci+ZetaR(2) 2329938171540192 m005 (1/2*gamma+1/11)/(5/6*exp(1)-7/11) 2329938172535684 r009 Im(z^3+c),c=-11/28+8/57*I,n=22 2329938183021700 m001 exp(Pi)/(2^(1/2)-BesselK(0,1)) 2329938183021700 m001 exp(Pi)/(BesselK(0,1)-sqrt(2)) 2329938183353138 r005 Re(z^2+c),c=-7/27+14/57*I,n=15 2329938188436220 r005 Re(z^2+c),c=-17/82+17/41*I,n=22 2329938195120117 m001 exp(1/Pi)*FibonacciFactorial+Cahen 2329938202024357 m001 (gamma(3)-gamma)/(GAMMA(5/6)+Totient) 2329938211471830 s002 sum(A034217[n]/(exp(n)+1),n=1..infinity) 2329938215626201 m001 (BesselK(0,1)-cos(1))/(-arctan(1/2)+ThueMorse) 2329938249367357 r005 Re(z^2+c),c=-7/40+28/57*I,n=64 2329938249454927 a007 Real Root Of 455*x^4+717*x^3+405*x^2-956*x-237 2329938254264248 a007 Real Root Of -499*x^4-939*x^3+747*x^2+635*x+253 2329938258611024 a007 Real Root Of -405*x^4-382*x^3+912*x^2-572*x+820 2329938268396627 r005 Im(z^2+c),c=-47/114+11/28*I,n=25 2329938271604938 r002 2th iterates of z^2 + 2329938271604938 r005 Re(z^2+c),c=-11/30+1/36*I,n=2 2329938274717045 r005 Im(z^2+c),c=-39/82+16/49*I,n=8 2329938277819127 r002 5th iterates of z^2 + 2329938295448791 a007 Real Root Of 126*x^4-195*x^3-721*x^2+905*x-157 2329938299600246 m001 (-Paris+Robbin)/(exp(Pi)+GAMMA(23/24)) 2329938312772529 r005 Im(z^2+c),c=-21/32+12/37*I,n=64 2329938320791957 a001 24476/987*832040^(21/25) 2329938321381156 r005 Im(z^2+c),c=-5/8+10/229*I,n=54 2329938329057511 l006 ln(5839/7371) 2329938333170332 h005 exp(cos(Pi*4/35)*sin(Pi*14/39)) 2329938334673034 m001 (5^(1/2)+GAMMA(13/24))^GolombDickman 2329938334673034 m001 (sqrt(5)+GAMMA(13/24))^GolombDickman 2329938339852239 a001 701408733/7*4^(14/23) 2329938353607289 a001 29/610*14930352^(3/8) 2329938356697951 r002 18th iterates of z^2 + 2329938364725352 s002 sum(A034217[n]/(exp(n)),n=1..infinity) 2329938374778034 m001 (gamma+FeigenbaumDelta)/(Tribonacci+ThueMorse) 2329938388117035 s002 sum(A029905[n]/((exp(n)+1)/n),n=1..infinity) 2329938397258895 m001 1/exp(sin(Pi/5))*GaussKuzminWirsing*sinh(1)^2 2329938399363463 a007 Real Root Of -171*x^4-168*x^3+68*x^2-704*x+905 2329938405822103 m005 (1/2*3^(1/2)+5/9)/(2*Pi-2/11) 2329938417960297 m005 (1/2*gamma-11/12)/(2/9*Pi-3/7) 2329938418790294 r005 Im(z^2+c),c=-135/118+12/41*I,n=3 2329938420572178 r005 Im(z^2+c),c=-37/98+2/55*I,n=11 2329938432245220 a007 Real Root Of -488*x^4-853*x^3+464*x^2-871*x-956 2329938435801764 r002 57th iterates of z^2 + 2329938473548368 a007 Real Root Of 194*x^4+486*x^3+450*x^2-550*x-147 2329938478764413 r009 Re(z^3+c),c=-41/74+23/58*I,n=59 2329938488948146 p003 LerchPhi(1/512,2,371/179) 2329938501528127 a003 sin(Pi*11/83)-sin(Pi*11/50) 2329938508552612 r009 Re(z^3+c),c=-25/66+24/47*I,n=32 2329938509187406 m001 gamma+Zeta(1/2)*CopelandErdos 2329938514637190 m001 (MertensB3+TwinPrimes)/(LaplaceLimit-gamma) 2329938517980230 s002 sum(A034217[n]/(exp(n)-1),n=1..infinity) 2329938520149152 m001 GAMMA(1/24)-exp(-Pi)^gamma 2329938525609311 a007 Real Root Of -23*x^4-541*x^3-80*x^2+910*x-54 2329938544762153 m001 FeigenbaumB/(exp(1/Pi)-3^(1/2)) 2329938558740952 m001 ZetaP(4)^(ln(3)*MertensB3) 2329938576881820 m001 Riemann2ndZero*FeigenbaumAlpha^2/exp(sqrt(3)) 2329938595758538 a003 sin(Pi*13/53)/cos(Pi*48/119) 2329938608177563 m001 (-Landau+Trott2nd)/(1-exp(Pi)) 2329938615468682 r009 Re(z^3+c),c=-39/118+17/43*I,n=16 2329938616507684 r005 Re(z^2+c),c=11/74+34/61*I,n=28 2329938619059608 r005 Re(z^2+c),c=1/54+33/53*I,n=18 2329938630662708 m004 4+2*E^(Sqrt[5]*Pi)+(125*Log[Sqrt[5]*Pi])/Pi 2329938639670212 m001 Magata^2*Lehmer*ln(Zeta(3))^2 2329938642575642 l006 ln(119/1223) 2329938671650441 l006 ln(3960/4999) 2329938673515367 a007 Real Root Of 437*x^4+579*x^3-635*x^2+854*x-118 2329938674957390 m001 (Riemann2ndZero-ThueMorse)/(sin(1/12*Pi)+Kac) 2329938675350958 m005 (-1/30+3/10*5^(1/2))/(5^(1/2)+1/2) 2329938676761413 a007 Real Root Of 366*x^4+535*x^3-393*x^2+984*x+407 2329938689059083 r009 Im(z^3+c),c=-15/34+4/43*I,n=31 2329938698110231 m001 CareFree*Tribonacci-Pi*2^(1/2)/GAMMA(3/4) 2329938699333347 a007 Real Root Of -440*x^4+834*x^3-476*x^2+354*x-8 2329938703169893 a007 Real Root Of 205*x^4+700*x^3+609*x^2+341*x+301 2329938716673619 r009 Re(z^3+c),c=-83/126+44/57*I,n=2 2329938718899316 r005 Re(z^2+c),c=-91/94+3/14*I,n=4 2329938719357811 m001 OneNinth^(OrthogonalArrays/FeigenbaumB) 2329938734933442 m001 ln(Riemann3rdZero)/CareFree^2*Ei(1)^2 2329938735433670 s002 sum(A181647[n]/((2*n)!),n=1..infinity) 2329938746749907 r005 Im(z^2+c),c=-14/29+12/29*I,n=62 2329938749062308 p004 log(32621/25841) 2329938754318282 r005 Re(z^2+c),c=-67/122+22/47*I,n=36 2329938756560714 l006 ln(9460/9683) 2329938767741278 h005 exp(sin(Pi*8/41)/cos(Pi*11/42)) 2329938774928959 r009 Re(z^3+c),c=-11/31+14/31*I,n=49 2329938793953091 r009 Re(z^3+c),c=-9/64+23/25*I,n=14 2329938795112384 m006 (1/2*Pi^2+1/3)/(2/3*Pi+1/6) 2329938795112384 m008 (1/2*Pi^2+1/3)/(2/3*Pi+1/6) 2329938798247338 m001 Paris/ln(ArtinRank2)/sinh(1) 2329938798516527 a007 Real Root Of 146*x^4+562*x^3+718*x^2+203*x-619 2329938801743329 r009 Re(z^3+c),c=-19/56+25/58*I,n=10 2329938802933937 a003 cos(Pi*8/115)/sin(Pi*15/109) 2329938807186947 m001 (exp(-1/2*Pi)-Cahen)/(GaussAGM+MertensB2) 2329938810863477 r009 Im(z^3+c),c=-7/60+44/51*I,n=18 2329938812587436 a007 Real Root Of -197*x^4-182*x^3+987*x^2+841*x+105 2329938829966939 p003 LerchPhi(1/64,2,289/139) 2329938834145646 m001 PisotVijayaraghavan*Si(Pi)*ln(Sierpinski) 2329938834439806 m001 1/GAMMA(17/24)^2/ln(MinimumGamma)*Zeta(1/2) 2329938836145552 a007 Real Root Of 135*x^4-10*x^3-258*x^2+786*x-873 2329938851020861 m001 1/OneNinth^2*FeigenbaumB^2/ln(GAMMA(19/24))^2 2329938856221854 m001 (ln(2^(1/2)+1)+Otter)/(Chi(1)+cos(1/5*Pi)) 2329938871353480 r005 Im(z^2+c),c=-23/98+13/38*I,n=30 2329938871752291 a001 341/2*2584^(34/37) 2329938878679144 m001 (Champernowne+Stephens)/(Weierstrass-ZetaP(3)) 2329938883986193 m006 (1/6*Pi^2+5/6)/(1/5/Pi+1) 2329938888574506 m006 (1/5/Pi-4)/(2*ln(Pi)-3/5) 2329938890267874 s002 sum(A190617[n]/(n*10^n-1),n=1..infinity) 2329938900203665 q001 1144/491 2329938913217527 a007 Real Root Of -388*x^4-993*x^3-688*x^2-965*x+361 2329938920167399 a007 Real Root Of -229*x^4-535*x^3+23*x^2-36*x-227 2329938924966596 m001 (5^(1/2)-Bloch)/(-CareFree+MinimumGamma) 2329938925802533 a007 Real Root Of 141*x^4+33*x^3-960*x^2-899*x-621 2329938927752242 r005 Im(z^2+c),c=-11/106+15/31*I,n=3 2329938935918196 m004 -4+25*Pi+Sqrt[5]*Pi+4*Cosh[Sqrt[5]*Pi] 2329938944624589 a007 Real Root Of 878*x^4-377*x^3+258*x^2-771*x-201 2329938945836012 m001 1/Salem^2*Niven^2/ln(Sierpinski)^2 2329938950153422 s002 sum(A188794[n]/(n*10^n-1),n=1..infinity) 2329938950153501 s002 sum(A161966[n]/(n*10^n-1),n=1..infinity) 2329938950171847 s002 sum(A078178[n]/(n*10^n-1),n=1..infinity) 2329938963734178 s002 sum(A125973[n]/(n*10^n-1),n=1..infinity) 2329938967954352 p002 log(1/3*(10+3^(1/3)*5^(3/4))*3^(2/3)) 2329938972326670 m001 (exp(Pi)+Catalan)/(-Ei(1,1)+FellerTornier) 2329938974996915 a001 521/11*(1/2*5^(1/2)+1/2)^23*11^(17/20) 2329938975631260 r009 Im(z^3+c),c=-31/126+11/52*I,n=7 2329938983749688 p003 LerchPhi(1/2,2,144/209) 2329938986713488 m001 gamma*GAMMA(1/12)^2/ln(sqrt(Pi))^2 2329938994786653 r005 Re(z^2+c),c=-25/94+36/59*I,n=56 2329939002787678 l006 ln(6041/7626) 2329939006159519 m005 (1/2*exp(1)-1/3)/(4/11*5^(1/2)-6/7) 2329939010283858 s002 sum(A280945[n]/(n*10^n-1),n=1..infinity) 2329939010523410 a007 Real Root Of -359*x^4-416*x^3+940*x^2+218*x+723 2329939010769066 a007 Real Root Of -379*x^4+86*x^3-398*x^2+977*x-206 2329939015950696 s002 sum(A220085[n]/(n^2*2^n+1),n=1..infinity) 2329939021263731 r009 Im(z^3+c),c=-9/50+13/57*I,n=5 2329939027720568 m001 (FeigenbaumB-Mills)/(cos(1/5*Pi)+GAMMA(3/4)) 2329939033635434 r005 Im(z^2+c),c=-37/82+25/62*I,n=37 2329939038464462 r005 Re(z^2+c),c=-13/11+1/4*I,n=20 2329939039376432 a007 Real Root Of 321*x^4+469*x^3-821*x^2-352*x+109 2329939043263523 p003 LerchPhi(1/6,3,384/233) 2329939044553460 m004 -5-Cosh[Sqrt[5]*Pi]/2+25*Pi*Sin[Sqrt[5]*Pi] 2329939045475698 g001 Psi(4/5,50/87) 2329939067319663 m005 (1/3*Catalan+1/9)/(2/5*exp(1)+7/10) 2329939086888659 r002 9th iterates of z^2 + 2329939094231765 s002 sum(A084294[n]/(n*10^n-1),n=1..infinity) 2329939105476574 m005 (1/15+1/6*5^(1/2))/(10/11*2^(1/2)+3/5) 2329939105519743 s002 sum(A281855[n]/(n*10^n-1),n=1..infinity) 2329939106730854 s002 sum(A068549[n]/(n*10^n-1),n=1..infinity) 2329939106731772 s002 sum(A085290[n]/(n*10^n-1),n=1..infinity) 2329939106840871 s002 sum(A090663[n]/(n*10^n-1),n=1..infinity) 2329939107962076 s002 sum(A141053[n]/(n*10^n-1),n=1..infinity) 2329939111492928 a007 Real Root Of -732*x^4+542*x^3-628*x^2+903*x-181 2329939113555843 a001 646/341*199^(10/11) 2329939117782176 a007 Real Root Of 415*x^4+827*x^3-206*x^2+141*x-323 2329939119681924 m006 (4*Pi^2-2/3)/(4/5*ln(Pi)+3/4) 2329939123527586 a007 Real Root Of 274*x^4+590*x^3-31*x^2-79*x-628 2329939134574537 a003 sin(Pi*20/109)-sin(Pi*21/74) 2329939141303540 a007 Real Root Of 321*x^4+354*x^3-599*x^2+911*x+392 2329939142507364 a007 Real Root Of -34*x^4-788*x^3+70*x^2-618*x+462 2329939143991289 a001 1/440719107401*843^(11/16) 2329939156695717 m001 (-arctan(1/3)+CopelandErdos)/(1-Zeta(5)) 2329939157648126 m001 exp(GAMMA(1/3))^2*TreeGrowth2nd^2*LambertW(1) 2329939165863168 a001 322*(1/2*5^(1/2)+1/2)^11*47^(14/15) 2329939169829239 a001 34/6643838879*76^(7/20) 2329939174781329 a007 Real Root Of -279*x^4-238*x^3+760*x^2-479*x-30 2329939176955457 a007 Real Root Of -359*x^4-654*x^3+692*x^2+903*x+655 2329939189885692 p001 sum((-1)^n/(511*n+429)/(1000^n),n=0..infinity) 2329939190693609 a007 Real Root Of -282*x^4-206*x^3+800*x^2-279*x+712 2329939209930722 r009 Im(z^3+c),c=-31/64+3/34*I,n=34 2329939210806482 m001 5^(1/2)+ln(gamma)+Cahen 2329939210806482 m001 sqrt(5)+log(gamma)+Cahen 2329939212787706 r009 Re(z^3+c),c=-11/31+27/59*I,n=15 2329939222808256 r005 Im(z^2+c),c=-67/122+14/37*I,n=31 2329939226449766 r005 Re(z^2+c),c=-13/54+19/60*I,n=14 2329939233370855 r009 Re(z^3+c),c=-11/31+14/31*I,n=52 2329939240073936 m005 (1/3*gamma-1/11)/(3*Zeta(3)+3/4) 2329939241305815 r005 Re(z^2+c),c=11/102+11/34*I,n=14 2329939243270208 m001 (FeigenbaumD+FeigenbaumMu)/(Khinchin-ZetaQ(4)) 2329939256277737 a007 Real Root Of 967*x^4+288*x^3+76*x^2-784*x-186 2329939256813705 a007 Real Root Of -470*x^4-32*x^3-386*x^2+790*x+206 2329939263011796 m001 (ArtinRank2-Kac)/(MadelungNaCl+MertensB3) 2329939263091962 m001 (Bloch+FeigenbaumD)/GAMMA(2/3) 2329939263156176 m001 Chi(1)/((Pi^(1/2))^(5^(1/2))) 2329939263383181 m006 (3/5*exp(Pi)-5/6)/(1/2*Pi^2+2/3) 2329939278564310 r009 Re(z^3+c),c=-23/56+35/62*I,n=43 2329939292136762 m001 2^(1/3)/ln(5)/ReciprocalFibonacci 2329939296323727 a007 Real Root Of 363*x^4+612*x^3-868*x^2-807*x-125 2329939298062169 m004 -50/Pi-125*Pi+25*Sqrt[5]*Pi*Coth[Sqrt[5]*Pi] 2329939310005566 r002 5th iterates of z^2 + 2329939320416672 m005 (1/2*Pi-11/12)/(5^(1/2)+4/7) 2329939324067191 r005 Re(z^2+c),c=-31/38+6/47*I,n=10 2329939326286599 r009 Re(z^3+c),c=-4/15+10/43*I,n=11 2329939328250537 a007 Real Root Of 270*x^4+284*x^3-506*x^2+533*x-376 2329939350187222 p003 LerchPhi(1/512,1,70/163) 2329939359315902 m008 (1/6*Pi^6+2/3)/(3/4*Pi^4-4) 2329939363246584 r005 Re(z^2+c),c=21/58+20/59*I,n=64 2329939366198771 m001 (5^(1/2)-Si(Pi))/(GAMMA(19/24)+Weierstrass) 2329939370305454 a007 Real Root Of 210*x^4+437*x^3-381*x^2-897*x-683 2329939372253011 m001 (LandauRamanujan+Sarnak)/(Ei(1)-FeigenbaumC) 2329939374295890 r005 Im(z^2+c),c=-57/106+5/12*I,n=37 2329939378454356 m001 polylog(4,1/2)^GAMMA(17/24)*Landau 2329939379746370 m005 (1/3*Pi+1/7)/(1/8*3^(1/2)-8/11) 2329939384446033 r009 Re(z^3+c),c=-29/56+22/37*I,n=60 2329939395469709 m005 (1/2*5^(1/2)-4)/(1/4*Pi-10/11) 2329939396813080 m001 (Lehmer-Trott)/(Ei(1)+BesselK(1,1)) 2329939397223495 s002 sum(A079629[n]/(n*10^n-1),n=1..infinity) 2329939401100201 r002 9th iterates of z^2 + 2329939408219518 m001 (Bloch+FeigenbaumAlpha)^StronglyCareFree 2329939409931240 r009 Re(z^3+c),c=-11/31+14/31*I,n=55 2329939411484493 r009 Im(z^3+c),c=-7/62+39/47*I,n=12 2329939416406268 r002 31th iterates of z^2 + 2329939430011600 b008 -47+Pi*Sinh[E] 2329939430167176 a007 Real Root Of 365*x^4-420*x^3-183*x^2-995*x+246 2329939431706307 m001 Trott2nd-CareFree-(1+3^(1/2))^(1/2) 2329939435515935 a007 Real Root Of 464*x^4+875*x^3-720*x^2-624*x-152 2329939438239772 r008 a(0)=0,K{-n^6,76-83*n^3-68*n^2+32*n} 2329939448606613 r005 Im(z^2+c),c=-13/14+15/58*I,n=10 2329939453736082 a007 Real Root Of 438*x^4+659*x^3+668*x^2-939*x-248 2329939455287424 a007 Real Root Of 474*x^4+953*x^3-504*x^2+51*x+940 2329939455373173 a008 Real Root of x^5-x^4-13*x^3+13*x^2+39*x-46 2329939461249329 h001 (5/7*exp(2)+5/11)/(4/5*exp(1)+2/7) 2329939463123740 a007 Real Root Of -248*x^4-446*x^3+117*x^2-819*x-876 2329939466955765 r009 Im(z^3+c),c=-39/86+4/51*I,n=36 2329939474033757 a007 Real Root Of 351*x^4+391*x^3-557*x^2+878*x-329 2329939474537421 r009 Re(z^3+c),c=-11/31+14/31*I,n=58 2329939484699191 r009 Re(z^3+c),c=-11/31+14/31*I,n=57 2329939485525275 l006 ln(970/9969) 2329939487815546 m001 GAMMA(7/12)^BesselI(0,1)-Riemann3rdZero 2329939488802736 r009 Re(z^3+c),c=-11/31+14/31*I,n=54 2329939491823089 r009 Re(z^3+c),c=-11/31+14/31*I,n=60 2329939491929937 b008 ArcTan[13*Sqrt[3]]^2 2329939492143264 g007 -14*Zeta(3)-Psi(2,7/8)-Psi(2,4/5)-Psi(2,2/5) 2329939496730124 r009 Re(z^3+c),c=-11/31+14/31*I,n=61 2329939498143967 r009 Re(z^3+c),c=-11/31+14/31*I,n=63 2329939502426753 m001 1/exp(FeigenbaumC)*DuboisRaymond*RenyiParking 2329939503703307 r009 Re(z^3+c),c=-11/31+14/31*I,n=64 2329939520682739 r009 Re(z^3+c),c=-11/31+14/31*I,n=62 2329939521294851 m001 (GAMMA(2/3)-exp(1))/(-ln(2)+OneNinth) 2329939522349901 a007 Real Root Of 205*x^4+87*x^3-814*x^2+385*x+375 2329939537343103 m001 Catalan/Landau/Sarnak 2329939542977239 r009 Re(z^3+c),c=-11/31+14/31*I,n=59 2329939549879181 m005 (1/2*Pi-1/12)/(4*2^(1/2)+8/11) 2329939549903766 a001 1/54*(1/2*5^(1/2)+1/2)^18*3^(17/24) 2329939551944350 r009 Re(z^3+c),c=-11/31+14/31*I,n=51 2329939552647879 m005 (-19/30+1/5*5^(1/2))/(3*exp(1)-1/6) 2329939557781625 r005 Re(z^2+c),c=-9/86+29/50*I,n=29 2329939558680654 r005 Im(z^2+c),c=-2/11+17/47*I,n=3 2329939564319511 m001 GAMMA(7/24)*(BesselJZeros(0,1)-exp(1/2)) 2329939564784568 m001 1/BesselJ(0,1)/Kolakoski^2*ln(GAMMA(7/24)) 2329939567498875 s002 sum(A068736[n]/(exp(n)+1),n=1..infinity) 2329939570047724 r005 Im(z^2+c),c=1/29+15/62*I,n=9 2329939582317507 m005 (1/3*Catalan+2/5)/(3/7*2^(1/2)-7/11) 2329939594272579 r009 Re(z^3+c),c=-11/31+14/31*I,n=56 2329939594450553 m001 exp(cos(Pi/5))^2/Khintchine^2*gamma^2 2329939595143036 m001 LandauRamanujan*FeigenbaumAlpha*exp(Paris)^2 2329939596223777 r005 Re(z^2+c),c=-69/110+21/47*I,n=42 2329939601510042 a008 Real Root of x^4-6*x^2-30*x+73 2329939602037789 a001 29/10946*32951280099^(3/8) 2329939603399491 l006 ln(851/8746) 2329939604456126 r005 Re(z^2+c),c=37/110+21/59*I,n=31 2329939606143760 a001 29/46368*1548008755920^(3/8) 2329939613068973 a005 (1/cos(1/102*Pi))^1783 2329939615377939 r005 Re(z^2+c),c=-19/18+76/215*I,n=4 2329939628168207 g004 Re(GAMMA(-33/20+I*5/3)) 2329939632778338 r005 Re(z^2+c),c=11/64+6/13*I,n=41 2329939632919054 l006 ln(2081/2627) 2329939633210954 m002 -3+Pi^4+12*Sinh[Pi] 2329939638266577 r005 Re(z^2+c),c=-17/98+39/59*I,n=10 2329939641229279 a007 Real Root Of 144*x^4-900*x^3+882*x^2+645*x+849 2329939654479052 m001 (Pi+Shi(1))/(BesselJ(0,1)+Zeta(5)) 2329939662810997 a007 Real Root Of 276*x^4+775*x^3+513*x^2+167*x-727 2329939667214960 a005 (1/cos(37/154*Pi))^39 2329939672127722 m003 -2-Cosh[1/2+Sqrt[5]/2]/18+Tan[1/2+Sqrt[5]/2] 2329939675716446 a001 29/2584*701408733^(3/8) 2329939676609981 a001 6643838879/610*121393^(11/24) 2329939676624476 a001 16692641/305*12586269025^(11/24) 2329939678479952 m001 1/Catalan/ln(LandauRamanujan)^2*cosh(1) 2329939687307622 h001 (5/9*exp(2)+5/8)/(7/12*exp(1)+4/9) 2329939691653623 r005 Im(z^2+c),c=-55/54+15/64*I,n=25 2329939706013366 r009 Re(z^3+c),c=-11/31+14/31*I,n=53 2329939713772948 m001 1/MadelungNaCl^2/Kolakoski^2*ln(cos(Pi/5))^2 2329939713932964 m001 (-ln(3)+Zeta(1,2))/(2^(1/2)-cos(1)) 2329939717383547 a001 29/17711*1597^(9/25) 2329939748067154 r005 Re(z^2+c),c=-17/94+11/23*I,n=55 2329939759598910 l006 ln(732/7523) 2329939760207273 h001 (5/7*exp(2)+3/8)/(5/8*exp(1)+8/11) 2329939761714430 m001 BesselI(1,2)^ZetaQ(2)/BesselJ(1,1) 2329939766763525 a007 Real Root Of -960*x^4+112*x^3+699*x^2+590*x-174 2329939770377368 r009 Re(z^3+c),c=-45/118+11/21*I,n=17 2329939770630914 r002 9th iterates of z^2 + 2329939770737604 r005 Re(z^2+c),c=-13/70+33/49*I,n=46 2329939771049084 m001 1/ln(TreeGrowth2nd)^2*Niven^2*cos(1) 2329939771416515 r005 Re(z^2+c),c=-9/86+25/42*I,n=39 2329939774216458 r005 Im(z^2+c),c=31/90+8/21*I,n=9 2329939781459458 a007 Real Root Of -629*x^4-898*x^3+946*x^2-921*x-103 2329939783586329 s002 sum(A267132[n]/(n^3*exp(n)-1),n=1..infinity) 2329939795378332 m001 OneNinth/Paris^2/exp(GAMMA(7/24))^2 2329939796998365 b008 1/25+PolyLog[2,-4] 2329939798935638 r005 Re(z^2+c),c=-19/70+5/27*I,n=12 2329939800305120 r005 Im(z^2+c),c=-63/62+15/44*I,n=5 2329939804209594 a001 8/521*7^(3/14) 2329939831515172 r009 Re(z^3+c),c=-11/31+14/31*I,n=48 2329939837098267 a007 Real Root Of -308*x^4+341*x^3-179*x^2+996*x+247 2329939839777366 m001 (2^(1/3))/exp(Lehmer)^2/sqrt(1+sqrt(3)) 2329939844943050 a007 Real Root Of 146*x^4+88*x^3-304*x^2+810*x+348 2329939857526244 r009 Re(z^3+c),c=-11/31+14/31*I,n=38 2329939859382733 m005 (1/2*3^(1/2)+4/11)/(2/7*5^(1/2)-1/9) 2329939860111727 r009 Re(z^3+c),c=-19/52+31/63*I,n=18 2329939863684724 m001 (Khinchin+TreeGrowth2nd)/(2^(1/2)+gamma(1)) 2329939869355199 r005 Re(z^2+c),c=11/38+10/57*I,n=20 2329939874463852 r005 Re(z^2+c),c=-15/94+15/29*I,n=28 2329939878467777 m004 -13/5+5*Sqrt[5]*Pi*Cos[Sqrt[5]*Pi] 2329939879847307 r005 Im(z^2+c),c=-41/102+20/59*I,n=8 2329939887706391 m001 (GolombDickman+3)/(GAMMA(11/12)+1/2) 2329939890374689 r005 Im(z^2+c),c=-5/8+89/207*I,n=28 2329939903297173 r009 Im(z^3+c),c=-7/19+5/32*I,n=5 2329939908763564 r005 Im(z^2+c),c=-19/110+29/44*I,n=36 2329939909361041 r005 Im(z^2+c),c=-31/118+20/57*I,n=24 2329939913020200 r009 Im(z^3+c),c=-37/62+10/43*I,n=25 2329939913730688 m003 -2-Sech[1/2+Sqrt[5]/2]^2+Tan[1/2+Sqrt[5]/2] 2329939915956845 m005 (1/2*gamma+2)/(1/9*Catalan-1/5) 2329939931087687 a001 2584/843*199^(9/11) 2329939932493365 a007 Real Root Of -155*x^4-791*x^3-918*x^2+943*x+260 2329939932818542 r009 Re(z^3+c),c=-11/31+14/31*I,n=50 2329939941295086 m005 (1/2*5^(1/2)+3/4)/(-1/88+4/11*5^(1/2)) 2329939952630917 m001 (Bloch+ZetaQ(2))/(ln(2^(1/2)+1)+exp(1/Pi)) 2329939961302872 r002 3th iterates of z^2 + 2329939969946292 r005 Re(z^2+c),c=-31/25+1/33*I,n=60 2329939976443412 l006 ln(613/6300) 2329939981269211 a007 Real Root Of -383*x^4-814*x^3-352*x^2-858*x+903 2329939998641482 s002 sum(A141802[n]/(n*exp(n)+1),n=1..infinity) 2329940004906292 m005 (1/3*gamma+2/7)/(8/11*gamma-5/8) 2329940006042601 r005 Im(z^2+c),c=-4/7+39/98*I,n=55 2329940014714169 s001 sum(exp(-3*Pi/4)^n*A075110[n],n=1..infinity) 2329940019924773 m002 3/4+E^Pi/ProductLog[Pi]+Tanh[Pi] 2329940035301167 b008 19/E+6*E 2329940043681963 r005 Im(z^2+c),c=-29/30+21/85*I,n=53 2329940044480340 p004 log(23977/2333) 2329940058035428 a007 Real Root Of -581*x^4+638*x^3-478*x^2+778*x+217 2329940060552183 h001 (2/5*exp(1)+4/11)/(9/11*exp(2)+2/11) 2329940060933170 a001 1364*(1/2*5^(1/2)+1/2)^19*4^(10/23) 2329940062754840 r005 Im(z^2+c),c=-2/17+4/13*I,n=6 2329940071844418 a001 123/17711*1597^(41/52) 2329940077739773 a007 Real Root Of 156*x^4+41*x^3-786*x^2+345*x+992 2329940077843183 m001 Psi(2,1/3)/(exp(Pi)+polylog(4,1/2)) 2329940087800009 r009 Im(z^3+c),c=-9/82+51/59*I,n=18 2329940102677932 a001 610/3*18^(27/32) 2329940130643039 h001 (7/8*exp(2)+4/11)/(3/10*exp(2)+5/7) 2329940133537515 r009 Re(z^3+c),c=-7/22+19/52*I,n=15 2329940154834235 r005 Im(z^2+c),c=-31/52+20/51*I,n=57 2329940155699683 a007 Real Root Of -800*x^4+593*x^3+543*x^2+551*x-163 2329940156854751 r005 Re(z^2+c),c=9/122+34/57*I,n=24 2329940168227531 r002 56th iterates of z^2 + 2329940174265656 a007 Real Root Of -23*x^4-523*x^3+313*x^2+324*x+623 2329940176653951 a001 312119004989/13*225851433717^(8/13) 2329940176653951 a001 14662949395604/13*433494437^(8/13) 2329940177742180 m004 Pi/Sqrt[5]+5*Sech[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi] 2329940179226562 b008 1/5+1/(2*E^E) 2329940179226562 b008 2+5/E^E 2329940180705825 m005 (1/2*Pi+1/11)/(-33/40+1/20*5^(1/2)) 2329940187285095 m006 (1/2*Pi^2+1/6)/(3/4*Pi-1/6) 2329940187285095 m008 (1/2*Pi^2+1/6)/(3/4*Pi-1/6) 2329940191819344 m004 Pi/Sqrt[5]+5*Csch[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi] 2329940192705549 m001 (1+Si(Pi))/(-BesselI(0,2)+GAMMA(11/12)) 2329940200519425 r005 Re(z^2+c),c=13/29+20/31*I,n=2 2329940207967425 m006 (1/3*Pi+1/5)/(exp(2*Pi)-1/5) 2329940223551081 l006 ln(6445/8136) 2329940254451144 m001 Ei(1)^exp(1)*HardyLittlewoodC5 2329940255997281 r002 29th iterates of z^2 + 2329940282979308 m001 GAMMA(19/24)*(ReciprocalFibonacci-exp(1/Pi)) 2329940297759471 l006 ln(494/5077) 2329940299467373 r005 Im(z^2+c),c=-41/34+3/95*I,n=39 2329940311161243 a007 Real Root Of -139*x^4-255*x^3-197*x^2-562*x+631 2329940316123580 r005 Im(z^2+c),c=-5/6+3/220*I,n=28 2329940318310866 m001 (LambertW(1)-Zeta(5))/(-Riemann2ndZero+Thue) 2329940319468963 p001 sum((-1)^n/(512*n+429)/(1000^n),n=0..infinity) 2329940320962952 m001 Zeta(7)^2/(2^(1/3))/exp(sqrt(Pi))^2 2329940324438384 m004 -3+750*Pi-5*Pi*Csc[Sqrt[5]*Pi] 2329940330033452 m001 AlladiGrinstead^ArtinRank2+Porter 2329940341671555 r009 Re(z^3+c),c=-11/54+49/54*I,n=37 2329940346779897 r009 Re(z^3+c),c=-11/31+14/31*I,n=47 2329940353673257 r005 Im(z^2+c),c=-23/94+35/64*I,n=8 2329940353831245 m001 (CareFree+Lehmer)/(MertensB3-StronglyCareFree) 2329940354054437 a007 Real Root Of 412*x^4+810*x^3-736*x^2-876*x+58 2329940355750474 a007 Real Root Of -186*x^4-117*x^3+449*x^2-364*x+716 2329940371339668 p001 sum((-1)^n/(490*n+429)/(1024^n),n=0..infinity) 2329940374386433 m001 GAMMA(5/12)-Si(Pi)^Zeta(5) 2329940374386433 m001 Si(Pi)^Zeta(5)-Pi*csc(5/12*Pi)/GAMMA(7/12) 2329940375810978 m001 (CopelandErdos+Tribonacci)/(3^(1/2)-sin(1)) 2329940377219689 r005 Re(z^2+c),c=-31/110+4/37*I,n=12 2329940386218140 a007 Real Root Of -354*x^4-477*x^3+913*x^2-72*x-725 2329940387553778 r005 Im(z^2+c),c=3/11+5/59*I,n=14 2329940392334946 a007 Real Root Of 559*x^4+14*x^3-824*x^2-906*x+254 2329940392759574 a007 Real Root Of -143*x^4-243*x^3+256*x^2-318*x-990 2329940406487928 a001 47/3*514229^(48/53) 2329940407417051 a007 Real Root Of -588*x^4-456*x^3-511*x^2+409*x+119 2329940409727322 m004 4+4*Cosh[Sqrt[5]*Pi]+(125*Log[Sqrt[5]*Pi])/Pi 2329940411312739 a007 Real Root Of 404*x^4+977*x^3+44*x^2+316*x+949 2329940411742305 a007 Real Root Of 556*x^4+836*x^3-627*x^2+735*x-695 2329940415054398 a001 139583862445/18*76^(11/14) 2329940419151521 m005 (5/12+1/6*5^(1/2))/(10/11*exp(1)+11/12) 2329940425065933 a001 7/13*2584^(11/59) 2329940428576654 r002 53th iterates of z^2 + 2329940435949366 h001 (4/5*exp(1)+4/11)/(1/6*exp(1)+7/11) 2329940439174054 m001 (gamma(2)-BesselI(1,2))/(Kolakoski-OneNinth) 2329940444216617 a007 Real Root Of -410*x^4+980*x^3-35*x^2+355*x-92 2329940449325638 a007 Real Root Of -317*x^4-584*x^3+100*x^2-453*x+357 2329940452155018 a008 Real Root of x^4-2*x^3-15*x^2-108*x+26 2329940454020027 r005 Im(z^2+c),c=-19/18+19/79*I,n=43 2329940460585289 a001 45537549124/55*5^(9/14) 2329940462365640 r005 Re(z^2+c),c=-21/86+1/3*I,n=8 2329940465496031 a007 Real Root Of 220*x^4+692*x^3+700*x^2+957*x+699 2329940467639340 r005 Im(z^2+c),c=-13/82+18/61*I,n=4 2329940468200702 r005 Im(z^2+c),c=-9/10+43/207*I,n=59 2329940470214189 r009 Re(z^3+c),c=-6/17+32/63*I,n=7 2329940471848081 r005 Re(z^2+c),c=-41/34+11/89*I,n=2 2329940473285265 m005 (1/2*5^(1/2)-8/9)/(2/7*exp(1)-7/8) 2329940477955666 h001 (3/4*exp(2)+3/8)/(2/3*exp(1)+8/11) 2329940479151458 m001 exp(GAMMA(5/12))/(3^(1/3))^2/sqrt(3) 2329940489006168 m001 1/Kolakoski^2/Si(Pi)*exp(Zeta(9)) 2329940491536956 a007 Real Root Of 38*x^4+876*x^3-177*x^2+982*x+358 2329940492142454 r009 Re(z^3+c),c=-19/60+21/58*I,n=14 2329940505197550 l006 ln(4364/5509) 2329940514352270 r009 Re(z^3+c),c=-27/74+27/58*I,n=17 2329940517555671 r002 20th iterates of z^2 + 2329940524418494 l006 ln(869/8931) 2329940527447975 m001 (LandauRamanujan*Paris+Niven)/LandauRamanujan 2329940534509235 m001 gamma(2)*Paris^ln(5) 2329940540625886 a007 Real Root Of -16*x^4+353*x^3-25*x^2+768*x-182 2329940542373796 m001 (2^(1/2)-exp(Pi))/(-5^(1/2)+Conway) 2329940552651020 m005 (1/2*Catalan+1/12)/(2^(1/2)+10/11) 2329940558562350 m008 (4/5*Pi^3-1/3)/(1/2*Pi^3-5) 2329940570568013 m004 -5-(5*Sqrt[5]*Pi)/2-Cos[Sqrt[5]*Pi] 2329940577255941 r005 Re(z^2+c),c=-4/25+11/21*I,n=41 2329940580508153 p004 log(30427/24103) 2329940581981590 m001 (gamma+Zeta(1/2))/(GaussAGM+Otter) 2329940589941485 m001 (ln(2)+GlaisherKinkelin*Robbin)/Robbin 2329940592845937 r009 Re(z^3+c),c=-61/118+19/32*I,n=36 2329940602877813 m001 MasserGramain^sin(1/12*Pi)-TwinPrimes 2329940604916182 r005 Re(z^2+c),c=-45/56+2/21*I,n=6 2329940605739510 b008 3-Sqrt[22]/7 2329940618158119 m001 (Bloch+Riemann3rdZero)/(Psi(1,1/3)+sin(1)) 2329940618283280 s001 sum(exp(-Pi/2)^n*A253319[n],n=1..infinity) 2329940624948363 m001 (Catalan*Mills-Zeta(1,2))/Catalan 2329940625167597 m001 1/ln(Sierpinski)/ArtinRank2^2*OneNinth 2329940641839535 s002 sum(A066691[n]/(n*10^n-1),n=1..infinity) 2329940644206822 m001 1/TwinPrimes*ln(Salem)/GAMMA(11/12) 2329940648209395 a007 Real Root Of 546*x^4+701*x^3-907*x^2+592*x-921 2329940649132397 m001 (2^(1/3)-BesselK(1,1))/(OneNinth+ZetaP(3)) 2329940653981486 r005 Im(z^2+c),c=13/94+11/58*I,n=9 2329940654047734 r009 Re(z^3+c),c=-4/15+10/43*I,n=8 2329940657481651 m001 DuboisRaymond/(Zeta(1,2)+Pi^(1/2)) 2329940667975114 m005 (-43/12+5/12*5^(1/2))/(1/3*2^(1/2)+2/3) 2329940669922601 b008 1/25+Sqrt[541] 2329940684956581 a007 Real Root Of 641*x^4+917*x^3-855*x^2+822*x-735 2329940686157852 a007 Real Root Of 265*x^4+557*x^3+294*x^2+665*x-811 2329940689628059 m001 (ln(3)+ln(2+3^(1/2)))/(FeigenbaumC-Kolakoski) 2329940693682889 a007 Real Root Of -412*x^4-895*x^3+533*x^2+552*x-786 2329940695146079 p004 log(36191/28669) 2329940710344369 m001 (5^(1/2)+GAMMA(2/3))/(3^(1/3)+Paris) 2329940711463450 r002 10th iterates of z^2 + 2329940721822709 m001 Otter^(ln(2+3^(1/2))*Lehmer) 2329940723690333 m001 GAMMA(2/3)*ln(Khintchine)^2/LambertW(1) 2329940723704352 r005 Re(z^2+c),c=19/98+24/59*I,n=12 2329940743296032 a007 Real Root Of 543*x^4+784*x^3-908*x^2+293*x-474 2329940745017179 m001 Ei(1)*GAMMA(7/12)-LambertW(1) 2329940745043884 m001 MertensB3^CopelandErdos+2^(1/3) 2329940746219248 a001 17393796001/1597*121393^(11/24) 2329940746233742 a001 87403803/1597*12586269025^(11/24) 2329940753793991 a001 29/6765*832040^(17/58) 2329940756763858 g005 GAMMA(1/9)/GAMMA(8/9)^2/GAMMA(2/7) 2329940765101445 m001 (Si(Pi)-GAMMA(1/12))^BesselJZeros(0,1) 2329940766916648 a007 Real Root Of -298*x^4-496*x^3+392*x^2-265*x-237 2329940768518200 l006 ln(5133/5254) 2329940771006572 m001 (Pi-2^(1/3)-LambertW(1))*Pi^(1/2) 2329940772498954 h001 (9/11*exp(2)+5/6)/(4/5*exp(1)+7/9) 2329940774906671 m009 (4*Psi(1,2/3)-1/4)/(1/3*Psi(1,3/4)-6) 2329940778284875 l006 ln(6647/8391) 2329940779502790 l006 ln(9860/9883) 2329940785279435 r005 Re(z^2+c),c=23/126+8/21*I,n=33 2329940786697514 m005 (1/3*exp(1)+1/8)/(10/11*3^(1/2)-6) 2329940795703373 r009 Re(z^3+c),c=-11/31+14/31*I,n=45 2329940796197165 m005 (1/2*Zeta(3)+2)/(3/11*exp(1)+3/8) 2329940796846107 m001 ln((3^(1/3)))^2*Riemann1stZero^2/GAMMA(1/12) 2329940799938956 m001 (ln(5)+MasserGramain)/(OneNinth-Trott) 2329940800840589 b008 3*(Pi+2*ArcSinh[5]) 2329940819146397 m001 Magata*GolombDickman^2/ln(GAMMA(5/12))^2 2329940822035407 m001 ln(GAMMA(2/3))^2*LaplaceLimit^2*gamma 2329940822564361 r005 Im(z^2+c),c=-7/12+2/47*I,n=57 2329940823003900 l006 ln(375/3854) 2329940823795268 m001 Zeta(1,2)/exp(CareFree)^2*Zeta(7)^2 2329940828322846 a003 sin(Pi*2/49)/cos(Pi*23/73) 2329940828868495 m001 (exp(1)+MadelungNaCl)/(-Tetranacci+Trott) 2329940831379250 a007 Real Root Of 310*x^4+392*x^3-718*x^2-228*x-811 2329940836447519 m001 1/ln(TreeGrowth2nd)^2/Kolakoski^2/Zeta(7) 2329940839987877 r005 Im(z^2+c),c=-85/78+11/49*I,n=42 2329940840331232 a007 Real Root Of 482*x^4+618*x^3-973*x^2+754*x+651 2329940844024041 a007 Real Root Of 539*x^4+887*x^3-875*x^2-439*x-938 2329940844936192 m001 ErdosBorwein*OneNinth-FeigenbaumAlpha 2329940860687188 r005 Im(z^2+c),c=-11/10+53/243*I,n=34 2329940864542960 m001 (Artin+StolarskyHarborth)/(cos(1/5*Pi)+ln(Pi)) 2329940873548117 a007 Real Root Of -771*x^4+443*x^3-178*x^2+899*x+227 2329940884783517 m001 (2^(1/3))^GlaisherKinkelin/gamma 2329940902273219 a001 45537549124/4181*121393^(11/24) 2329940902287713 a001 228826127/4181*12586269025^(11/24) 2329940906973228 r005 Re(z^2+c),c=-4/19+13/32*I,n=28 2329940909542342 m005 (1/2*exp(1)-1/9)/(10/11*2^(1/2)-3/4) 2329940920737945 a005 (1/sin(84/185*Pi))^1843 2329940925041188 a001 119218851371/10946*121393^(11/24) 2329940925055682 a001 299537289/5473*12586269025^(11/24) 2329940928362990 a001 312119004989/28657*121393^(11/24) 2329940928377484 a001 1568397607/28657*12586269025^(11/24) 2329940928847635 a001 817138163596/75025*121393^(11/24) 2329940928862128 a001 4106118243/75025*12586269025^(11/24) 2329940928918343 a001 2139295485799/196418*121393^(11/24) 2329940928928660 a001 5600748293801/514229*121393^(11/24) 2329940928930165 a001 14662949395604/1346269*121393^(11/24) 2329940928930520 a001 23725150497407/2178309*121393^(11/24) 2329940928931095 a001 9062201101803/832040*121393^(11/24) 2329940928932837 a001 5374978561/98209*12586269025^(11/24) 2329940928935036 a001 3461452808002/317811*121393^(11/24) 2329940928943153 a001 28143753123/514229*12586269025^(11/24) 2329940928944658 a001 73681302247/1346269*12586269025^(11/24) 2329940928944878 a001 96450076809/1762289*12586269025^(11/24) 2329940928944910 a001 505019158607/9227465*12586269025^(11/24) 2329940928944914 a001 1322157322203/24157817*12586269025^(11/24) 2329940928944915 a001 1730726404001/31622993*12586269025^(11/24) 2329940928944915 a001 9062201101803/165580141*12586269025^(11/24) 2329940928944915 a001 23725150497407/433494437*12586269025^(11/24) 2329940928944915 a001 599074579/10946*12586269025^(11/24) 2329940928944915 a001 5600748293801/102334155*12586269025^(11/24) 2329940928944916 a001 2139295485799/39088169*12586269025^(11/24) 2329940928944917 a001 204284540899/3732588*12586269025^(11/24) 2329940928944930 a001 312119004989/5702887*12586269025^(11/24) 2329940928945014 a001 119218851371/2178309*12586269025^(11/24) 2329940928945588 a001 11384387281/208010*12586269025^(11/24) 2329940928949529 a001 599786069/10959*12586269025^(11/24) 2329940928962044 a001 1322157322203/121393*121393^(11/24) 2329940928976537 a001 6643838879/121393*12586269025^(11/24) 2329940929147161 a001 505019158607/46368*121393^(11/24) 2329940929161655 a001 634430159/11592*12586269025^(11/24) 2329940929774271 s002 sum(A064133[n]/(n*10^n-1),n=1..infinity) 2329940929996081 s002 sum(A105674[n]/(n*10^n-1),n=1..infinity) 2329940930415977 a001 192900153618/17711*121393^(11/24) 2329940930430470 a001 969323029/17711*12586269025^(11/24) 2329940934774437 m001 1/GAMMA(3/4)/ln(GAMMA(13/24))/sin(1)^2 2329940935163201 r004 Re(z^2+c),c=-13/16-10/21*I,z(0)=-1,n=3 2329940939112568 a001 73681302247/6765*121393^(11/24) 2329940939127061 a001 370248451/6765*12586269025^(11/24) 2329940950938544 m001 (2^(1/3)-FeigenbaumMu)/(-PlouffeB+Porter) 2329940953438396 m001 (ln(gamma)+FeigenbaumMu)^BesselJ(0,1) 2329940959570887 r009 Re(z^3+c),c=-7/50+29/31*I,n=20 2329940963245539 r009 Re(z^3+c),c=-11/31+14/31*I,n=44 2329940998719888 a001 28143753123/2584*121393^(11/24) 2329940998734381 a001 35355581/646*12586269025^(11/24) 2329940999759123 m001 (CopelandErdos-Sarnak)/(arctan(1/3)+Pi^(1/2)) 2329941008639092 a007 Real Root Of -45*x^4+359*x^3-786*x^2+705*x-126 2329941009443052 m005 (1/2*exp(1)+1/10)/(2/5*gamma-6/7) 2329941025825343 r005 Im(z^2+c),c=-57/118+20/49*I,n=42 2329941026084673 m001 GAMMA(1/24)^2/BesselK(1,1)^2*exp(Zeta(1,2))^2 2329941027272630 m005 (1/2*2^(1/2)+3/5)/(1/12*3^(1/2)+5/12) 2329941032783694 p001 sum(1/(137*n+43)/(128^n),n=0..infinity) 2329941034664616 m001 (ln(3)+sin(1/12*Pi))/(OneNinth+Weierstrass) 2329941042054274 m001 5^(1/2)+sin(1)-RenyiParking 2329941042054274 m001 RenyiParking-sin(1)-sqrt(5) 2329941046603088 s002 sum(A083499[n]/(n*10^n-1),n=1..infinity) 2329941049063830 a007 Real Root Of -340*x^4-511*x^3+820*x^2+294*x-210 2329941060321684 m005 (1/3*Pi+2/3)/(5/11*exp(1)-1/2) 2329941067792413 h001 (2/5*exp(1)+1/3)/(3/4*exp(2)+5/9) 2329941072212562 r002 57th iterates of z^2 + 2329941081949651 q001 435/1867 2329941085018786 m005 (1/2*gamma+5/7)/(7/12*5^(1/2)+3) 2329941092089880 h001 (4/5*exp(2)+5/11)/(9/10*exp(1)+2/7) 2329941098299933 a001 9349/377*832040^(21/25) 2329941098978329 s002 sum(A085862[n]/((pi^n+1)/n),n=1..infinity) 2329941107463622 a007 Real Root Of -347*x^4-510*x^3+460*x^2-322*x+528 2329941128208246 a007 Real Root Of 445*x^4+718*x^3-810*x^2-123*x+78 2329941130543273 a001 3571*(1/2*5^(1/2)+1/2)^17*4^(10/23) 2329941131414121 k006 concat of cont frac of 2329941131495226 r005 Im(z^2+c),c=-31/60+2/49*I,n=46 2329941134163867 a007 Real Root Of 383*x^4+556*x^3-691*x^2+298*x+191 2329941138848550 r002 27th iterates of z^2 + 2329941159851652 m005 (1/2*3^(1/2)-4/11)/(23/20+9/20*5^(1/2)) 2329941163353088 a007 Real Root Of 810*x^4-41*x^3-150*x^2-971*x-221 2329941164712018 a001 199/377*34^(8/19) 2329941166073239 a004 Fibonacci(13)*Lucas(11)/(1/2+sqrt(5)/2)^11 2329941170965307 a007 Real Root Of 225*x^4+193*x^3-623*x^2-71*x-973 2329941172597396 a007 Real Root Of 507*x^4+898*x^3-914*x^2-866*x-639 2329941181783577 m005 (1/2*3^(1/2)+2/3)/(1/11*5^(1/2)+5/11) 2329941182150705 h001 (2/11*exp(1)+3/11)/(11/12*exp(1)+4/5) 2329941182633176 p003 LerchPhi(1/8,6,129/218) 2329941185786039 r005 Im(z^2+c),c=-15/14+20/83*I,n=37 2329941200295935 r005 Im(z^2+c),c=-99/82+13/63*I,n=6 2329941205895357 m001 (exp(Pi)+Zeta(3))/(-Kolakoski+Tribonacci) 2329941208930242 m001 (sin(1/5*Pi)+ZetaP(4))/(1+Si(Pi)) 2329941234209331 l006 ln(631/6485) 2329941240733056 a003 sin(Pi*3/67)-sin(Pi*14/115) 2329941256249373 m001 Trott*Artin^2/ln(GAMMA(23/24))^2 2329941259408918 a007 Real Root Of 451*x^4+754*x^3-890*x^2-277*x+432 2329941260156995 r005 Re(z^2+c),c=-15/46+13/40*I,n=3 2329941260171438 r005 Im(z^2+c),c=8/23+8/23*I,n=54 2329941267427524 m001 Zeta(1/2)-exp(-1/2*Pi)-Robbin 2329941282993445 r004 Im(z^2+c),c=-1/20+5/18*I,z(0)=I,n=12 2329941286597284 a001 9349*(1/2*5^(1/2)+1/2)^15*4^(10/23) 2329941288489044 m001 (BesselJ(1,1)+BesselJZeros(0,1))^cos(Pi/5) 2329941295197027 r002 3th iterates of z^2 + 2329941298639657 a007 Real Root Of 35*x^4+37*x^3-240*x^2-665*x-810 2329941300296718 l006 ln(2283/2882) 2329941303393512 s002 sum(A270160[n]/((10^n-1)/n),n=1..infinity) 2329941309365257 a001 24476*(1/2*5^(1/2)+1/2)^13*4^(10/23) 2329941310716662 r005 Im(z^2+c),c=-1/17+39/58*I,n=21 2329941312687059 a001 64079*(1/2*5^(1/2)+1/2)^11*4^(10/23) 2329941313254505 a001 12752043*2^(20/23) 2329941314740046 a001 39603*(1/2*5^(1/2)+1/2)^12*4^(10/23) 2329941323436638 a001 15127*(1/2*5^(1/2)+1/2)^14*4^(10/23) 2329941324859275 a001 6/7*2584^(7/55) 2329941336853873 r009 Im(z^3+c),c=-7/62+35/41*I,n=12 2329941341335266 a007 Real Root Of 126*x^4+70*x^3-531*x^2+325*x+812 2329941347776710 r009 Im(z^3+c),c=-17/38+5/56*I,n=21 2329941351002654 m001 (BesselI(0,1)+FeigenbaumDelta)^Weierstrass 2329941366474806 r009 Im(z^3+c),c=-13/98+19/22*I,n=12 2329941379244745 m001 Conway+OrthogonalArrays^ZetaP(4) 2329941379263246 m005 (1/3*5^(1/2)-1/4)/(7/10*Catalan-3/7) 2329941380431005 r005 Im(z^2+c),c=-1/62+9/34*I,n=7 2329941380432824 m001 (Mills-ZetaP(2))/(sin(1/12*Pi)+Magata) 2329941381961278 m001 1/Zeta(9)*ln(ArtinRank2)/cosh(1) 2329941382439259 r002 41th iterates of z^2 + 2329941383043966 a001 5778*(1/2*5^(1/2)+1/2)^16*4^(10/23) 2329941388227913 a007 Real Root Of 422*x^4+974*x^3-287*x^2-431*x+437 2329941390048204 a007 Real Root Of 41*x^4+994*x^3+906*x^2+81*x-150 2329941399395842 r005 Re(z^2+c),c=-23/34+25/82*I,n=11 2329941407274621 a001 10749957122/987*121393^(11/24) 2329941407289114 a001 54018521/987*12586269025^(11/24) 2329941408055995 l006 ln(887/9116) 2329941408913796 m001 1/ln(GAMMA(3/4))^2*TwinPrimes^2/GAMMA(5/12)^2 2329941417557644 r009 Re(z^3+c),c=-11/31+14/31*I,n=41 2329941418246459 a007 Real Root Of -377*x^4-588*x^3+707*x^2-30*x-235 2329941419274252 p003 LerchPhi(1/2,3,131/171) 2329941422258572 a003 sin(Pi*1/26)/cos(Pi*17/52) 2329941422524835 a007 Real Root Of 152*x^4+581*x^3+948*x^2+570*x-949 2329941428868798 a007 Real Root Of 289*x^4-163*x^3+507*x^2-599*x-170 2329941431336080 m001 FeigenbaumAlpha^Bloch/Robbin 2329941433691141 r009 Re(z^3+c),c=-7/30+7/60*I,n=4 2329941439389736 a003 -2^(1/2)+cos(2/5*Pi)-cos(1/12*Pi)-cos(5/12*Pi) 2329941445744608 b008 (5*(1+Sqrt[3])^(1/3))/3 2329941447323651 s002 sum(A164666[n]/((2^n+1)/n),n=1..infinity) 2329941454541436 r005 Re(z^2+c),c=-13/56+21/61*I,n=24 2329941462395629 m001 1/Riemann2ndZero/exp(Kolakoski)*Trott 2329941463807541 a007 Real Root Of -164*x^4-49*x^3-467*x^2+723*x-142 2329941477223022 m001 (PrimesInBinary-Tetranacci)/(Trott-TwinPrimes) 2329941483239129 a007 Real Root Of -518*x^4-949*x^3+191*x^2-804*x+352 2329941499013447 s002 sum(A152659[n]/(n*10^n-1),n=1..infinity) 2329941499487397 m001 FellerTornier/GAMMA(5/6)/FibonacciFactorial 2329941504612915 r005 Im(z^2+c),c=-7/9+15/92*I,n=5 2329941512587161 a007 Real Root Of -276*x^4-449*x^3+395*x^2+281*x+965 2329941512734343 a007 Real Root Of -448*x^4-691*x^3+306*x^2-777*x+991 2329941515141168 a001 29/1346269*2^(6/53) 2329941516415064 r005 Im(z^2+c),c=-37/78+6/17*I,n=5 2329941517013232 r005 Re(z^2+c),c=-1/23+7/16*I,n=2 2329941521574374 a001 1/7*39088169^(19/20) 2329941524720204 h001 (5/12*exp(1)+1/3)/(3/4*exp(2)+3/4) 2329941525420207 p001 sum((-1)^n/(491*n+429)/(1024^n),n=0..infinity) 2329941525890921 m001 ln(GAMMA(19/24))^2*BesselK(0,1)/arctan(1/2) 2329941533958304 a001 21/1149851*2^(13/37) 2329941541974583 m001 (Salem-Tetranacci)/(3^(1/3)+Grothendieck) 2329941552955230 a007 Real Root Of 24*x^4-537*x^3+910*x^2+142*x+814 2329941554070747 h001 (5/7*exp(2)+1/9)/(7/12*exp(1)+8/11) 2329941557621253 a007 Real Root Of -254*x^4+211*x^3-9*x^2+290*x-69 2329941559515771 m005 (1/3*2^(1/2)-1/9)/(11/12*2^(1/2)+1/4) 2329941562240040 m001 ErdosBorwein^BesselI(1,1)*Grothendieck 2329941565696855 m001 (gamma(2)+Lehmer)/(Riemann3rdZero+ZetaQ(3)) 2329941567562292 m001 (OneNinth-TwinPrimes*GAMMA(1/24))/TwinPrimes 2329941597314745 m001 Catalan*(ln(2+3^(1/2))+FibonacciFactorial) 2329941608280124 m001 (Lehmer-Salem)/(Artin-Champernowne) 2329941619050374 r005 Re(z^2+c),c=-17/94+11/23*I,n=47 2329941625882222 m001 (Pi+Bloch)/(DuboisRaymond-KhinchinHarmonic) 2329941640478652 r005 Re(z^2+c),c=37/110+21/37*I,n=37 2329941642466260 m002 -E^Pi-Pi^(-4)-Log[Pi]+Tanh[Pi] 2329941651549089 m001 GAMMA(13/24)*Conway^PisotVijayaraghavan 2329941653330454 a007 Real Root Of 350*x^4+386*x^3-818*x^2+411*x-34 2329941662571803 r005 Re(z^2+c),c=-3/13+6/17*I,n=9 2329941665413672 m001 Pi*csc(1/24*Pi)/GAMMA(23/24)-ln(3)*ZetaR(2) 2329941665439563 m001 Salem^2/GolombDickman^2/exp(BesselK(0,1)) 2329941668501015 a005 (1/sin(78/179*Pi))^1164 2329941671611041 a001 5/3571*2^(36/49) 2329941673421607 r005 Re(z^2+c),c=3/25+14/33*I,n=4 2329941674675786 r009 Re(z^3+c),c=-1/66+11/13*I,n=27 2329941687192180 m001 (Psi(2,1/3)-ln(3))/(Kac+KomornikLoreti) 2329941698716437 r002 5th iterates of z^2 + 2329941702355864 m001 (Trott2nd-Thue)/(ArtinRank2-PolyaRandomWalk3D) 2329941703964596 a007 Real Root Of 149*x^4+501*x^3+635*x^2+383*x-609 2329941709124730 a007 Real Root Of 191*x^4-277*x^3+510*x^2-941*x-251 2329941719961570 r005 Im(z^2+c),c=-7/8+19/109*I,n=22 2329941721774464 m001 Landau/Riemann1stZero/ZetaQ(4) 2329941750394542 m001 Catalan*ReciprocalFibonacci-RenyiParking 2329941757329251 m001 PlouffeB/KomornikLoreti*ZetaQ(3) 2329941763628865 h001 (1/7*exp(1)+7/9)/(3/5*exp(2)+4/7) 2329941770781058 m001 (5^(1/2)+FeigenbaumB)/ln(2+3^(1/2)) 2329941775149373 p002 log(1/11*(11*11^(1/4)-3^(1/4))*11^(3/4)) 2329941778018848 a003 cos(Pi*11/71)/cos(Pi*41/109) 2329941781336699 a001 29/144*13^(21/22) 2329941784728492 r005 Im(z^2+c),c=-15/28+9/26*I,n=17 2329941785441068 m005 (1/2*Zeta(3)-2/11)/(157/132+3/11*5^(1/2)) 2329941791598671 a001 2207*(1/2*5^(1/2)+1/2)^18*4^(10/23) 2329941792398909 l006 ln(7051/8901) 2329941798772839 m005 (2/3*gamma-4)/(3/5*Pi-1/3) 2329941800175039 a003 cos(Pi*30/77)-cos(Pi*41/88) 2329941807015981 m001 (FeigenbaumMu+Robbin)/(3^(1/3)+Artin) 2329941814701903 a003 cos(Pi*12/71)-cos(Pi*17/60) 2329941814992265 a007 Real Root Of -133*x^4-86*x^3+445*x^2+3*x+423 2329941818225798 m001 Sierpinski/Porter^2/exp(GAMMA(13/24)) 2329941819424026 r005 Im(z^2+c),c=-27/31+1/5*I,n=15 2329941825450814 m004 -125*Pi+25*Sqrt[5]*Pi-(50*Tanh[Sqrt[5]*Pi])/Pi 2329941829427867 s002 sum(A149500[n]/((exp(n)+1)*n),n=1..infinity) 2329941832657107 m005 (1/2*2^(1/2)-1)/(9/11*2^(1/2)+1/10) 2329941834179497 h001 (3/7*exp(1)+1/3)/(3/4*exp(2)+8/9) 2329941836560730 l006 ln(256/2631) 2329941859497735 h001 (-5*exp(1)+7)/(-7*exp(6)-5) 2329941860465116 q001 1603/688 2329941875945926 m001 exp(Sierpinski)^2/Kolakoski*GAMMA(23/24)^2 2329941881712098 m001 (sin(1/12*Pi)*Cahen+MertensB3)/Cahen 2329941887870456 r005 Re(z^2+c),c=35/106+8/41*I,n=31 2329941900576845 m001 GAMMA(1/6)^2*Kolakoski^2/exp(GAMMA(5/12)) 2329941904536197 m001 1/Zeta(9)*CareFree/ln(sqrt(3))^2 2329941913296603 m001 1/GAMMA(7/12)^2/Si(Pi)^2/exp(Pi)^2 2329941918762723 a007 Real Root Of -239*x^4-201*x^3+553*x^2-597*x+108 2329941930335483 m006 (4/5/Pi+1/5)/(5/6*Pi-2/3) 2329941938585841 s002 sum(A164983[n]/((2^n+1)/n),n=1..infinity) 2329941941611729 m004 -20*Pi-25*Sqrt[5]*Pi+5*Cot[Sqrt[5]*Pi] 2329941949812161 a007 Real Root Of 850*x^4-144*x^3+643*x^2-587*x-176 2329941953637184 s002 sum(A165515[n]/((2^n+1)/n),n=1..infinity) 2329941954091067 s002 sum(A166026[n]/((2^n+1)/n),n=1..infinity) 2329941954104473 s002 sum(A166424[n]/((2^n+1)/n),n=1..infinity) 2329941954104858 s002 sum(A166617[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A167083[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A167715[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A167945[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A168707[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A168755[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A168803[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A168851[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A168899[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A168947[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A168995[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A169043[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A169091[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A169139[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A169187[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A169235[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A169283[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A169331[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A169379[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A169427[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A169475[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A169523[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A169571[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A170039[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A170087[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A170135[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A170183[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A170231[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A170279[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A170327[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A170375[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A170423[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A170471[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A170519[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A170567[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A170615[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A170663[n]/((2^n+1)/n),n=1..infinity) 2329941954104868 s002 sum(A170711[n]/((2^n+1)/n),n=1..infinity) 2329941968240329 m005 (1/5*2^(1/2)+3/4)/(3/4*gamma+4) 2329941969228422 m001 (Niven-ZetaP(2))/(Pi+5^(1/2)) 2329941973358045 a007 Real Root Of -913*x^4+579*x^3+611*x^2+988*x-268 2329941981134752 a007 Real Root Of -332*x^4-693*x^3+738*x^2+899*x-893 2329941989907212 a007 Real Root Of -843*x^4+742*x^3+630*x^2+888*x-248 2329941992268878 p004 log(25087/2441) 2329942006959601 m001 (Landau-LandauRamanujan)/(FellerTornier+Kac) 2329942017999398 a007 Real Root Of -369*x^4-413*x^3+999*x^2-162*x-150 2329942027758359 s002 sum(A065132[n]/(n^2*10^n+1),n=1..infinity) 2329942028025851 l006 ln(4768/6019) 2329942030180713 a007 Real Root Of 576*x^4-30*x^3-104*x^2-475*x+115 2329942034125751 m001 (2^(1/2)+sin(1))/(-OneNinth+Trott) 2329942038905810 a007 Real Root Of -451*x^4+714*x^3-674*x^2+187*x-4 2329942041530266 m001 (Zeta(1,-1)+Kac)/(Khinchin-Rabbit) 2329942044997428 h001 (4/7*exp(2)+7/12)/(5/8*exp(1)+4/11) 2329942046202661 m002 (Pi^3*Cosh[Pi])/5-Pi^5*Tanh[Pi] 2329942057785268 b008 LogGamma[1+2^(3+Pi)] 2329942060518128 a007 Real Root Of -479*x^4-854*x^3+523*x^2-519*x-734 2329942068439626 m001 3^(1/2)-Ei(1)+Pi*csc(1/24*Pi)/GAMMA(23/24) 2329942068439626 m001 Ei(1)-sqrt(3)-GAMMA(1/24) 2329942081047914 m001 ln(OneNinth)^2/HardHexagonsEntropy*cos(Pi/5)^2 2329942082538599 a007 Real Root Of 320*x^4+514*x^3-51*x^2+804*x-779 2329942083392851 m001 (2^(1/2))^MinimumGamma*OrthogonalArrays 2329942092885408 m001 (-GAMMA(17/24)+2)/(-ln(2)+1) 2329942102128384 b008 E+14*(-5+Pi) 2329942104679900 m001 (Zeta(5)+GaussAGM)/(Kolakoski+ZetaQ(3)) 2329942106685616 m001 ln(Zeta(5))*GAMMA(17/24)*sqrt(5)^2 2329942108191505 b008 ExpIntegralEi[-1/47*E] 2329942111989304 s001 sum(exp(-2*Pi/3)^n*A199732[n],n=1..infinity) 2329942119173841 a007 Real Root Of 49*x^4-263*x^3-903*x^2+244*x+700 2329942121968999 a003 cos(Pi*13/103)/cos(Pi*58/119) 2329942123976631 k003 Champernowne real with 7/3*n^3-3/2*n^2-65/6*n+12 2329942125054378 a007 Real Root Of 556*x^4+766*x^3-955*x^2+986*x+785 2329942129510211 r005 Re(z^2+c),c=-5/8+55/137*I,n=45 2329942132676449 r002 22th iterates of z^2 + 2329942142011044 s001 sum(exp(-Pi/2)^(n-1)*A178067[n],n=1..infinity) 2329942148000963 m001 (ln(3)-arctan(1/3))/(gamma(1)+Magata) 2329942158652249 m005 (1/3*3^(1/2)-2/5)/(5/8*5^(1/2)-7/11) 2329942170377840 a007 Real Root Of 181*x^4+27*x^3-703*x^2+322*x-426 2329942176787436 r009 Re(z^3+c),c=-23/58+31/57*I,n=63 2329942184016439 k002 Champernowne real with 59/2*n^2-165/2*n+76 2329942184470313 m001 (-Robbin+StolarskyHarborth)/(Mills-Shi(1)) 2329942191004699 r002 11th iterates of z^2 + 2329942191069712 p003 LerchPhi(1/16,6,39/142) 2329942191312740 a001 6765/322*199^(5/11) 2329942202264563 m001 (-FeigenbaumD+Khinchin)/(Ei(1,1)-Psi(1,1/3)) 2329942213199007 m001 ln(Tribonacci)^2/Lehmer/GAMMA(13/24)^2 2329942221583081 h001 (3/4*exp(2)+1/9)/(5/8*exp(1)+8/11) 2329942221951642 m001 sin(1)*Lehmer+FeigenbaumC 2329942238087274 v003 sum((11/6*n^3+7/6*n+1)/(n!+1),n=1..infinity) 2329942247798165 a003 sin(Pi*8/93)*sin(Pi*26/77) 2329942255693965 m009 (2*Psi(1,1/3)-1/4)/(40*Catalan+5*Pi^2-2/5) 2329942256542540 l006 ln(905/9301) 2329942257090449 l006 ln(7253/9156) 2329942259120525 m001 (cos(1)+PrimesInBinary)/HardyLittlewoodC5 2329942260293954 m005 (1/2*2^(1/2)-1/3)/(10/11*5^(1/2)-3/7) 2329942261831295 r005 Im(z^2+c),c=-3/38+18/37*I,n=3 2329942267669834 m001 (-GolombDickman+Totient)/(5^(1/2)+GaussAGM) 2329942283418721 r004 Re(z^2+c),c=7/18-1/5*I,z(0)=exp(3/8*I*Pi),n=2 2329942299477825 m001 TwinPrimes^2*exp(Si(Pi))*Catalan^2 2329942299806962 m001 (Otter-Stephens)/(ln(gamma)-Bloch) 2329942300228027 m004 36+625/Pi-Log[Sqrt[5]*Pi] 2329942300658691 m001 (sin(1/12*Pi)+Zeta(1,2))/(ErdosBorwein+Mills) 2329942304564738 a007 Real Root Of 240*x^4+58*x^3-742*x^2+740*x-587 2329942306135670 m001 BesselK(1,1)^(Pi*2^(1/2)/GAMMA(3/4))+exp(Pi) 2329942306135670 m001 BesselK(1,1)^GAMMA(1/4)+exp(Pi) 2329942308887688 r009 Im(z^3+c),c=-15/31+2/29*I,n=52 2329942314267572 a007 Real Root Of -104*x^4+289*x^3+393*x^2+246*x-82 2329942315964430 a007 Real Root Of 428*x^4+741*x^3-300*x^2+455*x-552 2329942326709104 m001 (-BesselK(1,1)+ZetaP(4))/(1-GAMMA(3/4)) 2329942329187494 m004 -125*Pi+25*Sqrt[5]*Pi-(50*Coth[Sqrt[5]*Pi])/Pi 2329942329209991 m001 (-Gompertz+Trott)/(2^(1/3)-GAMMA(17/24)) 2329942333132503 r005 Re(z^2+c),c=-7/12+22/35*I,n=31 2329942342161668 a007 Real Root Of 27*x^4-284*x^3-815*x^2+147*x+379 2329942344665864 m004 75/Pi+Cos[Sqrt[5]*Pi]*Sinh[Sqrt[5]*Pi]^2 2329942351457755 m001 1/exp(sin(1))^2/cos(1)^2/sqrt(1+sqrt(3))^2 2329942375436395 m001 FellerTornier/(sin(1)+Landau) 2329942377122803 r005 Re(z^2+c),c=-53/118+11/21*I,n=10 2329942390763368 r005 Re(z^2+c),c=9/98+17/56*I,n=37 2329942399014527 r009 Re(z^3+c),c=-21/40+35/58*I,n=21 2329942407507498 r005 Im(z^2+c),c=-5/6+43/227*I,n=33 2329942412958782 m002 -4*Pi+36*Tanh[Pi] 2329942413724123 h001 (7/11*exp(1)+8/11)/(1/4*exp(1)+3/8) 2329942414813862 r005 Re(z^2+c),c=-41/90+19/40*I,n=3 2329942419219796 r005 Re(z^2+c),c=-9/40+15/41*I,n=36 2329942420212417 r005 Re(z^2+c),c=6/19+24/41*I,n=12 2329942422205579 l006 ln(649/6670) 2329942427757234 s002 sum(A089452[n]/(n*10^n-1),n=1..infinity) 2329942432485615 r005 Re(z^2+c),c=-3/20+25/46*I,n=50 2329942438419960 a007 Real Root Of -339*x^4-865*x^3-16*x^2+296*x-174 2329942444016257 m005 (-1/18+1/6*5^(1/2))/(6/7*5^(1/2)-5/9) 2329942449114527 r002 62th iterates of z^2 + 2329942453633763 m001 ln(2)/ln(10)*Si(Pi)+Pi^(1/2) 2329942454240824 p002 log(1/13*(1+10*13^(1/2))*13^(1/2)) 2329942458690580 m001 TreeGrowth2nd/KhintchineLevy^2/ln((3^(1/3)))^2 2329942488506645 h001 (4/5*exp(2)+7/9)/(3/8*exp(2)+1/10) 2329942489818336 h001 (1/9*exp(1)+5/8)/(5/12*exp(2)+9/10) 2329942494559497 r009 Re(z^3+c),c=-29/94+13/38*I,n=18 2329942497340132 p003 LerchPhi(1/12,6,384/205) 2329942504208615 m001 (Magata-Robbin)/(Gompertz+LandauRamanujan2nd) 2329942514520782 a007 Real Root Of 400*x^4+784*x^3+4*x^2+574*x-556 2329942520426337 r009 Re(z^3+c),c=-25/106+6/47*I,n=4 2329942520986638 r005 Re(z^2+c),c=-9/13+6/29*I,n=13 2329942530904506 r005 Im(z^2+c),c=-23/98+13/38*I,n=19 2329942546118353 r005 Re(z^2+c),c=-25/114+13/34*I,n=25 2329942551328264 a007 Real Root Of 230*x^4+312*x^3-445*x^2+373*x+453 2329942560042832 r005 Im(z^2+c),c=-7/10+31/196*I,n=7 2329942564983892 a008 Real Root of x^3-x^2-1280*x-16632 2329942566141712 a001 34/3*3571^(17/46) 2329942569310902 m001 (Gompertz+ZetaQ(3))/(Shi(1)-ln(2+3^(1/2))) 2329942570629155 r005 Re(z^2+c),c=-3/19+37/64*I,n=33 2329942571450112 p001 sum((-1)^n/(514*n+429)/(1000^n),n=0..infinity) 2329942582101882 r005 Re(z^2+c),c=-9/40+15/41*I,n=35 2329942591491213 a001 1346269/7*11^(2/25) 2329942594715242 r008 a(0)=0,K{-n^6,24-12*n+39*n^2-47*n^3} 2329942597479160 s002 sum(A162487[n]/(n*10^n-1),n=1..infinity) 2329942597946537 m001 BesselJ(0,1)^2*GaussKuzminWirsing*ln(Pi)^2 2329942599195326 s002 sum(A118110[n]/(exp(n)),n=1..infinity) 2329942603786149 p004 log(25457/2477) 2329942606831469 a007 Real Root Of -914*x^4+712*x^3+868*x^2+981*x-282 2329942611681349 r002 54th iterates of z^2 + 2329942624428195 a007 Real Root Of 339*x^4+923*x^3+268*x^2+75*x+404 2329942647172821 r009 Im(z^3+c),c=-47/122+9/62*I,n=10 2329942659820965 r005 Re(z^2+c),c=-9/40+15/41*I,n=38 2329942663573803 a001 5600748293801/13*32951280099^(9/20) 2329942667452112 m001 exp(Pi)*QuadraticClass/ZetaQ(3) 2329942669656005 m001 Zeta(3)^KomornikLoreti/Gompertz 2329942671145390 a007 Real Root Of -348*x^4-840*x^3-415*x^2-648*x+374 2329942671618582 a005 (1/sin(22/135*Pi))^27 2329942671980922 r002 64th iterates of z^2 + 2329942679914232 a007 Real Root Of -349*x^4-601*x^3+527*x^2+335*x+603 2329942684114876 r005 Im(z^2+c),c=-23/28+5/33*I,n=64 2329942696599490 l006 ln(2485/3137) 2329942711422603 m005 (1/2*Zeta(3)-6/7)/(6*3^(1/2)+3/5) 2329942720764941 r009 Re(z^3+c),c=-33/122+13/57*I,n=3 2329942725838838 p001 sum((-1)^n/(337*n+91)/n/(100^n),n=1..infinity) 2329942730426142 h001 (7/8*exp(1)+1/11)/(1/12*exp(1)+5/6) 2329942731089866 b008 FresnelS[1/7]^2 2329942733862241 a008 Real Root of x^4-2*x^3+2*x^2+9*x-36 2329942736120745 a007 Real Root Of 338*x^4+859*x^3+479*x^2+428*x-699 2329942737606270 a007 Real Root Of 520*x^4+856*x^3-833*x^2+95*x+246 2329942739218598 m001 (exp(1/exp(1))-gamma)/(-Artin+ZetaQ(4)) 2329942740427880 h001 (7/9*exp(1)+5/9)/(1/8*exp(2)+2/9) 2329942741025767 m001 Riemann1stZero^OneNinth+1 2329942743426100 h005 exp(cos(Pi*1/24)-sin(Pi*2/43)) 2329942771121527 m001 (Pi-Psi(2,1/3)/exp(1/exp(1)))/Pi^(1/2) 2329942775746974 r005 Re(z^2+c),c=-17/14+28/191*I,n=34 2329942784488239 q001 733/3146 2329942790968420 a001 6765/2207*199^(9/11) 2329942791912969 m001 ln(Trott)^2/RenyiParking/sinh(1) 2329942803694151 l006 ln(393/4039) 2329942804812595 a007 Real Root Of -316*x^4-252*x^3+932*x^2-790*x-775 2329942805148336 m001 MadelungNaCl^LaplaceLimit*ln(5) 2329942806169697 s002 sum(A090359[n]/(n^3*10^n+1),n=1..infinity) 2329942807802629 m004 (4*Sqrt[5])/Pi-(5*Log[Sqrt[5]*Pi])/(6*Pi) 2329942815225978 m002 -4-Pi^2+(Pi^4*Log[Pi])/3 2329942824221600 a003 cos(Pi*13/53)/cos(Pi*25/51) 2329942827529501 s002 sum(A094421[n]/(n!^3),n=1..infinity) 2329942829495128 b008 1/13+Pi*Sinh[2/3] 2329942837186595 a007 Real Root Of -334*x^4-447*x^3+300*x^2-814*x+664 2329942860627065 m001 (Kac-MertensB1)/(arctan(1/3)+Zeta(1,-1)) 2329942872033514 m001 1/Conway^2/Backhouse^2*exp(GAMMA(5/12)) 2329942875385544 g005 GAMMA(7/12)*GAMMA(5/9)*GAMMA(7/8)/GAMMA(9/11) 2329942890573616 r005 Im(z^2+c),c=-19/24+6/47*I,n=33 2329942911287501 m001 arctan(1/3)/((3^(1/3))^ln(2^(1/2)+1)) 2329942912139146 a007 Real Root Of 420*x^4+428*x^3-729*x^2+953*x-786 2329942916541800 m001 TwinPrimes/CopelandErdos/Zeta(3) 2329942925382928 m001 (gamma(1)-PlouffeB)/(Zeta(5)+ln(2+3^(1/2))) 2329942930678928 m001 (Si(Pi)+BesselK(0,1))/(-ln(5)+Sierpinski) 2329942931694468 r002 6th iterates of z^2 + 2329942949385513 m005 (1/3*exp(1)+1/4)/(1/8*Pi-8/9) 2329942958105956 r002 47th iterates of z^2 + 2329942961809810 r002 7th iterates of z^2 + 2329942962269969 m001 (1-sin(1/5*Pi))/(ln(2+3^(1/2))+ZetaP(2)) 2329942968381238 r005 Im(z^2+c),c=-15/16+27/122*I,n=46 2329942978360280 r005 Re(z^2+c),c=-13/25+15/28*I,n=33 2329942979066425 h001 (6/7*exp(2)+6/11)/(4/5*exp(1)+7/9) 2329943010765756 a007 Real Root Of -645*x^4+978*x^3-583*x^2+945*x-199 2329943017214434 r005 Im(z^2+c),c=-25/22+2/69*I,n=41 2329943023130903 r009 Re(z^3+c),c=-35/102+27/64*I,n=14 2329943024851819 p004 log(23011/2239) 2329943030292077 s002 sum(A022011[n]/(n*exp(n)+1),n=1..infinity) 2329943030874131 r005 Im(z^2+c),c=29/106+4/49*I,n=39 2329943045671398 r005 Im(z^2+c),c=15/118+10/51*I,n=9 2329943046914884 a007 Real Root Of 441*x^4+840*x^3-54*x^2+838*x-126 2329943047715764 b008 5+(15*E*Pi)/7 2329943064755032 a003 sin(Pi*5/74)/sin(Pi*32/89) 2329943071934674 l006 ln(923/9486) 2329943094440960 r005 Im(z^2+c),c=5/78+13/57*I,n=7 2329943097797074 m001 1/ln(Niven)*Si(Pi)^2*GAMMA(1/4) 2329943098514515 r005 Im(z^2+c),c=-17/14+80/219*I,n=3 2329943102435168 r005 Im(z^2+c),c=-27/74+20/49*I,n=12 2329943112919059 l006 ln(7657/9666) 2329943112969713 m005 12/25*(1/2*Pi+3/5)*5^(1/2) 2329943115148594 a007 Real Root Of 225*x^4+551*x^3-103*x^2-593*x-484 2329943140924340 a007 Real Root Of -247*x^4-250*x^3+833*x^2-112*x-666 2329943150739531 m001 Niven^cos(1/5*Pi)*Niven^StronglyCareFree 2329943153702121 r005 Re(z^2+c),c=-9/40+15/41*I,n=41 2329943174176104 a007 Real Root Of -339*x^4-338*x^3+955*x^2-45*x+426 2329943177827959 a007 Real Root Of -438*x^4-703*x^3+791*x^2+200*x+188 2329943203675663 r005 Re(z^2+c),c=41/126+11/53*I,n=16 2329943208219971 a001 17711/5778*199^(9/11) 2329943213131175 a001 5/123*29^(14/27) 2329943235461142 m001 Rabbit/KhintchineHarmonic^2 2329943247860897 r005 Re(z^2+c),c=1/82+37/57*I,n=8 2329943256654516 m001 1/ln(Robbin)^2*FeigenbaumDelta/Trott^2 2329943265881475 q001 2/85839 2329943269096164 a001 6624/2161*199^(9/11) 2329943270837506 l006 ln(530/5447) 2329943273521068 m001 arctan(1/3)^exp(Pi)/(Psi(1,1/3)^exp(Pi)) 2329943273632534 r002 3th iterates of z^2 + 2329943275443427 a003 sin(Pi*5/107)/cos(Pi*23/81) 2329943277977881 a001 121393/39603*199^(9/11) 2329943279273706 a001 317811/103682*199^(9/11) 2329943279462764 a001 832040/271443*199^(9/11) 2329943279490348 a001 311187/101521*199^(9/11) 2329943279494372 a001 5702887/1860498*199^(9/11) 2329943279494959 a001 14930352/4870847*199^(9/11) 2329943279495045 a001 39088169/12752043*199^(9/11) 2329943279495057 a001 14619165/4769326*199^(9/11) 2329943279495059 a001 267914296/87403803*199^(9/11) 2329943279495059 a001 701408733/228826127*199^(9/11) 2329943279495059 a001 1836311903/599074578*199^(9/11) 2329943279495059 a001 686789568/224056801*199^(9/11) 2329943279495059 a001 12586269025/4106118243*199^(9/11) 2329943279495059 a001 32951280099/10749957122*199^(9/11) 2329943279495059 a001 86267571272/28143753123*199^(9/11) 2329943279495059 a001 32264490531/10525900321*199^(9/11) 2329943279495059 a001 591286729879/192900153618*199^(9/11) 2329943279495059 a001 1515744265389/494493258286*199^(9/11) 2329943279495059 a001 2504730781961/817138163596*199^(9/11) 2329943279495059 a001 956722026041/312119004989*199^(9/11) 2329943279495059 a001 365435296162/119218851371*199^(9/11) 2329943279495059 a001 139583862445/45537549124*199^(9/11) 2329943279495059 a001 53316291173/17393796001*199^(9/11) 2329943279495059 a001 20365011074/6643838879*199^(9/11) 2329943279495059 a001 7778742049/2537720636*199^(9/11) 2329943279495059 a001 2971215073/969323029*199^(9/11) 2329943279495059 a001 1134903170/370248451*199^(9/11) 2329943279495059 a001 433494437/141422324*199^(9/11) 2329943279495060 a001 165580141/54018521*199^(9/11) 2329943279495065 a001 63245986/20633239*199^(9/11) 2329943279495098 a001 24157817/7881196*199^(9/11) 2329943279495322 a001 9227465/3010349*199^(9/11) 2329943279496859 a001 3524578/1149851*199^(9/11) 2329943279507395 a001 1346269/439204*199^(9/11) 2329943279579609 a001 514229/167761*199^(9/11) 2329943280074570 a001 196418/64079*199^(9/11) 2329943283467084 a001 75025/24476*199^(9/11) 2329943287977460 m005 (1/3*Zeta(3)-3/4)/(37/56+3/8*5^(1/2)) 2329943293748736 m001 OneNinth*(FibonacciFactorial-Zeta(1,2)) 2329943294344332 m001 (Robbin-Totient)/(Conway+ErdosBorwein) 2329943295098996 a007 Real Root Of 464*x^4+759*x^3-159*x^2-877*x+202 2329943295718573 m001 Tribonacci^2/ln(Bloch)/GAMMA(5/24)^2 2329943306719722 a001 28657/9349*199^(9/11) 2329943312948853 l006 ln(5172/6529) 2329943315199450 m005 (1/3*2^(1/2)-1/4)/(1/8*Zeta(3)+4/5) 2329943318660465 r002 34th iterates of z^2 + 2329943322270353 r002 20th iterates of z^2 + 2329943323039456 m001 BesselI(0,1)+exp(1/Pi)^DuboisRaymond 2329943328371027 a001 121393/843*76^(1/9) 2329943329416837 a007 Real Root Of -273*x^4-230*x^3+881*x^2-520*x-858 2329943331443062 r002 34th iterates of z^2 + 2329943334681117 a003 cos(Pi*19/83)-sin(Pi*49/110) 2329943336709877 a007 Real Root Of -490*x^4-566*x^3+787*x^2-982*x+721 2329943348163772 a007 Real Root Of 412*x^4+978*x^3-451*x^2-751*x+927 2329943349924962 r005 Re(z^2+c),c=-4/27+27/50*I,n=19 2329943351180255 r009 Re(z^3+c),c=-29/94+13/38*I,n=19 2329943356312230 r009 Re(z^3+c),c=-29/62+32/59*I,n=26 2329943364654074 b008 Pi-3*ArcCot[Sqrt[13]] 2329943366601711 p004 log(36037/28547) 2329943380954902 a007 Real Root Of -336*x^4-671*x^3-792*x^2+869*x-150 2329943389878029 r005 Re(z^2+c),c=-9/40+15/41*I,n=44 2329943392096073 a001 8/7*29^(11/52) 2329943393881481 r009 Re(z^3+c),c=-45/118+25/44*I,n=31 2329943398152830 a007 Real Root Of 811*x^4-129*x^3+461*x^2+56*x-16 2329943403959429 r005 Im(z^2+c),c=-49/54+6/25*I,n=21 2329943404603650 m001 (Zeta(1/2)-exp(Pi))/(Cahen+ThueMorse) 2329943410066926 r005 Re(z^2+c),c=-11/56+19/43*I,n=38 2329943425434311 r009 Re(z^3+c),c=-7/24+3/10*I,n=17 2329943430728454 r005 Re(z^2+c),c=-9/40+15/41*I,n=46 2329943430911749 a007 Real Root Of -782*x^4-463*x^3-705*x^2+748*x+209 2329943431346660 r005 Re(z^2+c),c=-3/22+30/53*I,n=50 2329943442295729 m001 sin(1)*ln(2+3^(1/2))/PlouffeB 2329943443227358 m001 Conway^(exp(1)*GAMMA(19/24)) 2329943445913527 r005 Re(z^2+c),c=-9/40+15/41*I,n=49 2329943451613157 r009 Im(z^3+c),c=-15/29+8/59*I,n=23 2329943456129455 r005 Re(z^2+c),c=-9/40+15/41*I,n=52 2329943456521228 r005 Re(z^2+c),c=-9/40+15/41*I,n=47 2329943457483368 r005 Re(z^2+c),c=-9/40+15/41*I,n=43 2329943459308952 r005 Re(z^2+c),c=-9/40+15/41*I,n=54 2329943459587311 r005 Re(z^2+c),c=-9/40+15/41*I,n=57 2329943459638412 r005 Re(z^2+c),c=-9/40+15/41*I,n=55 2329943459989243 r005 Re(z^2+c),c=-9/40+15/41*I,n=60 2329943460159643 r005 Re(z^2+c),c=-9/40+15/41*I,n=63 2329943460187287 r005 Re(z^2+c),c=-9/40+15/41*I,n=62 2329943460250182 r005 Re(z^2+c),c=-9/40+15/41*I,n=64 2329943460326210 r005 Re(z^2+c),c=-9/40+15/41*I,n=61 2329943460336799 r005 Re(z^2+c),c=-9/40+15/41*I,n=58 2329943460364826 r005 Re(z^2+c),c=-9/40+15/41*I,n=59 2329943461145497 r005 Re(z^2+c),c=-9/40+15/41*I,n=56 2329943461917024 r005 Re(z^2+c),c=-9/40+15/41*I,n=51 2329943463199704 r005 Re(z^2+c),c=-9/40+15/41*I,n=53 2329943465512304 r005 Re(z^2+c),c=-9/40+15/41*I,n=50 2329943466095684 a001 10946/3571*199^(9/11) 2329943467897600 g002 Psi(2/5)-2*Psi(1/12)-Psi(4/5) 2329943470493121 a001 199/28657*6765^(7/51) 2329943474345223 r009 Re(z^3+c),c=-1/90+42/55*I,n=28 2329943477376823 r005 Re(z^2+c),c=-9/40+15/41*I,n=48 2329943481821230 m001 exp(Pi)+BesselK(0,1)^GAMMA(5/12) 2329943486103404 m001 (polylog(4,1/2)+Cahen)/(2^(1/2)-Catalan) 2329943490004182 r005 Re(z^2+c),c=23/114+3/37*I,n=16 2329943490457275 a001 1364/2178309*832040^(13/49) 2329943502824858 q001 2062/885 2329943503576910 a007 Real Root Of -892*x^4-29*x^3-359*x^2+838*x+217 2329943505486920 r009 Re(z^3+c),c=-15/122+46/59*I,n=7 2329943505577147 a007 Real Root Of -330*x^4-224*x^3+846*x^2-710*x+645 2329943507837275 l006 ln(7859/9921) 2329943509684916 m001 (cos(1/12*Pi)-FeigenbaumC)/(ln(2)-arctan(1/3)) 2329943513559505 r005 Re(z^2+c),c=-7/40+28/57*I,n=56 2329943519670663 m001 1/exp(FibonacciFactorial)^2/Artin/Pi^2 2329943520853086 r009 Re(z^3+c),c=-5/36+51/53*I,n=18 2329943521564516 m001 (gamma+gamma(2))/(-MinimumGamma+Niven) 2329943522620845 m001 (Backhouse-FellerTornier)/(PlouffeB+Trott) 2329943527011808 r005 Re(z^2+c),c=-9/40+15/41*I,n=45 2329943528338776 m001 (exp(Pi)-HardyLittlewoodC3)/cos(1/12*Pi) 2329943532133905 h001 (-9*exp(3/2)+4)/(-4*exp(1/2)-9) 2329943534030511 m001 (3^(1/3))-BesselJ(0,1)+sqrt(1+sqrt(3)) 2329943534030511 m001 3^(1/3)-BesselJ(0,1)+(1+3^(1/2))^(1/2) 2329943543332737 r005 Im(z^2+c),c=-1+57/214*I,n=5 2329943546080791 l006 ln(667/6855) 2329943546141728 m001 Tribonacci*(Porter-Riemann1stZero) 2329943549915463 b008 22/E^(1/15)+E 2329943553466337 r005 Re(z^2+c),c=23/90+5/33*I,n=11 2329943557085541 r002 33th iterates of z^2 + 2329943562875039 r005 Re(z^2+c),c=-9/40+15/41*I,n=39 2329943568436340 a005 (1/cos(12/173*Pi))^805 2329943568735649 m004 -3-(25*Sqrt[5]*Pi)/6+125*Pi*Sin[Sqrt[5]*Pi] 2329943570903894 m001 (BesselK(0,1)-GAMMA(23/24))/(Sierpinski+Trott) 2329943578520166 m005 (1/3*exp(1)+1/12)/(1/6*Zeta(3)-5/8) 2329943585106986 a001 2/1346269*121393^(19/44) 2329943588771489 m005 (-29/44+1/4*5^(1/2))/(8/9*Catalan-6/7) 2329943608107598 p003 LerchPhi(1/125,6,218/171) 2329943610774761 a005 (1/sin(81/185*Pi))^524 2329943612251226 m004 24+Cos[Sqrt[5]*Pi]*Sinh[Sqrt[5]*Pi]^2 2329943612520003 m001 (2/3+ln(Pi)*MadelungNaCl)/ln(Pi) 2329943613020503 m001 (2^(1/2)-2^(1/3))/(gamma(3)+TwinPrimes) 2329943615035160 r005 Re(z^2+c),c=-41/50+1/52*I,n=56 2329943615465327 g006 Psi(1,5/12)-Psi(1,7/11)-Psi(1,5/6)-Psi(1,3/5) 2329943616462930 r005 Re(z^2+c),c=-9/40+15/41*I,n=42 2329943645757392 r009 Im(z^3+c),c=-41/90+3/44*I,n=49 2329943667719499 r002 59th iterates of z^2 + 2329943671470505 r005 Re(z^2+c),c=25/94+3/19*I,n=15 2329943673805526 m001 Magata^(Pi*2^(1/2)/GAMMA(3/4))/(Magata^Shi(1)) 2329943676916999 r009 Re(z^3+c),c=-7/24+3/10*I,n=19 2329943677368813 a007 Real Root Of -349*x^4-303*x^3+924*x^2-629*x-29 2329943682501794 a001 1364/75025*3^(7/31) 2329943693863208 p001 sum((-1)^n/(515*n+429)/(1000^n),n=0..infinity) 2329943697052667 m001 (MasserGramain+ZetaP(2))/(ln(Pi)+FeigenbaumMu) 2329943697417352 m001 LandauRamanujan+Paris+Porter 2329943699982280 b008 -28+ArcSinh[55] 2329943704005626 r005 Im(z^2+c),c=-49/102+26/63*I,n=51 2329943704117030 m001 (exp(Pi)*GAMMA(3/4)+DuboisRaymond)/GAMMA(3/4) 2329943705519681 m001 (5^(1/2))^Bloch*Khinchin^Bloch 2329943715215703 g005 GAMMA(11/12)*GAMMA(6/11)*GAMMA(6/7)*GAMMA(3/4) 2329943725128911 m001 (polylog(4,1/2)-Artin)/(OneNinth-Sarnak) 2329943727522217 l006 ln(804/8263) 2329943729324783 m005 (1/2*5^(1/2)-1)/(7/11*Zeta(3)-5/7) 2329943730557556 m005 (1/2*2^(1/2)+1/6)/(3/11*Catalan-4) 2329943733584983 a001 55/322*3^(13/46) 2329943737707187 r005 Re(z^2+c),c=-9/40+15/41*I,n=40 2329943739596610 a007 Real Root Of 324*x^4+759*x^3+113*x^2-177*x-974 2329943743784930 m001 (KhinchinLevy+Magata)/(Mills-Riemann2ndZero) 2329943744907819 r009 Re(z^3+c),c=-11/31+14/31*I,n=42 2329943751906924 m009 (2/5*Psi(1,2/3)-2)/(1/4*Psi(1,1/3)+4/5) 2329943755937055 m001 (Zeta(5)-exp(1))/(-Conway+LandauRamanujan2nd) 2329943758047774 m005 (1/2*5^(1/2)+9/10)/(5/9*gamma+6/11) 2329943759792751 r009 Re(z^3+c),c=-7/24+3/10*I,n=20 2329943771227890 m005 (1/2*exp(1)+6/11)/(-21/44+1/4*5^(1/2)) 2329943774801364 m001 (Mills+Rabbit)/(3^(1/3)-Psi(1,1/3)) 2329943776518627 r005 Im(z^2+c),c=-51/40+13/34*I,n=5 2329943783447702 a001 123/8*267914296^(11/15) 2329943787223046 m005 (1/2*5^(1/2)+5/8)/(1/12*gamma+7/10) 2329943788085331 a007 Real Root Of -682*x^4+787*x^3-849*x^2+944*x+278 2329943789034722 r005 Re(z^2+c),c=-5/6+47/249*I,n=22 2329943792147938 m001 Lehmer^2*ln(Si(Pi))*OneNinth 2329943799263178 m005 (1/2*Catalan+9/10)/(3/10*Zeta(3)+2/9) 2329943805566875 a003 -1+2*cos(3/10*Pi)+cos(1/10*Pi)-cos(4/27*Pi) 2329943808745164 q001 1/4291949 2329943810254311 m006 (1/2*ln(Pi)+5/6)/(2*Pi-1/4) 2329943812409343 m001 (arctan(1/2)+OrthogonalArrays)^GAMMA(2/3) 2329943813004120 h001 (6/11*exp(2)+1/7)/(5/11*exp(1)+5/9) 2329943815289521 r005 Re(z^2+c),c=-17/66+15/61*I,n=7 2329943823263122 a007 Real Root Of -272*x^4-551*x^3+590*x^2+598*x-763 2329943826072890 p001 sum((-1)^n/(493*n+429)/(1024^n),n=0..infinity) 2329943829938785 a003 -1/2+cos(1/10*Pi)+2*cos(5/27*Pi)+cos(13/30*Pi) 2329943831069755 m005 (1/2*2^(1/2)+7/10)/(3/5*3^(1/2)+5) 2329943832232712 r009 Re(z^3+c),c=-15/58+23/31*I,n=25 2329943840007070 m001 (Robbin-ZetaP(2))/(3^(1/3)-Landau) 2329943856131583 l006 ln(941/9671) 2329943865384859 m001 (Landau+Rabbit)/(GaussKuzminWirsing-sin(1)) 2329943867073341 m001 (ZetaQ(3)-arctan(1/3)*Paris)/Paris 2329943871066483 m001 (Chi(1)+ReciprocalLucas)/Zeta(3) 2329943875611334 r005 Re(z^2+c),c=11/40+20/41*I,n=15 2329943877167779 m002 -1+Pi*ProductLog[Pi]-Tanh[Pi]/E^Pi 2329943882963024 l006 ln(2687/3392) 2329943883277107 r005 Im(z^2+c),c=-155/126+3/47*I,n=33 2329943895644864 m007 (-5*gamma-1/3)/(-5*gamma-10*ln(2)-4) 2329943896119890 h001 (6/7*exp(2)+1/9)/(3/4*exp(1)+8/11) 2329943897473724 r009 Re(z^3+c),c=-37/102+21/52*I,n=2 2329943907917592 m001 exp(Ei(1))^2/Niven/GAMMA(11/12)^2 2329943912012099 a007 Real Root Of 640*x^4+931*x^3-821*x^2+704*x-988 2329943917387867 m001 Ei(1)*KhinchinLevy+StolarskyHarborth 2329943939266524 r009 Re(z^3+c),c=-35/94+29/59*I,n=33 2329943940779016 r001 6i'th iterates of 2*x^2-1 of 2329943943658651 m001 Si(Pi)*GolombDickman+GAMMA(19/24) 2329943950155242 s002 sum(A225953[n]/(n*10^n-1),n=1..infinity) 2329943958773005 a007 Real Root Of 240*x^4+326*x^3-642*x^2-469*x-557 2329943973074032 m001 1/GAMMA(13/24)*exp(MinimumGamma)/GAMMA(5/6) 2329943973286228 l006 ln(5939/6079) 2329943973286228 p004 log(6079/5939) 2329943979397872 r005 Im(z^2+c),c=-13/14+43/220*I,n=16 2329943982029296 p004 log(37567/29759) 2329943995942707 r009 Re(z^3+c),c=-7/24+3/10*I,n=23 2329944001483353 a005 (1/sin(97/207*Pi))^646 2329944005599937 s002 sum(A263407[n]/(n*10^n-1),n=1..infinity) 2329944007751013 r009 Re(z^3+c),c=-11/32+23/54*I,n=35 2329944011825102 m002 E^Pi*Coth[Pi]+(5*Csch[Pi])/6 2329944030363614 r005 Im(z^2+c),c=-29/40+7/25*I,n=35 2329944031470476 r009 Re(z^3+c),c=-7/24+3/10*I,n=26 2329944034624774 r009 Re(z^3+c),c=-7/24+3/10*I,n=27 2329944034838548 r009 Re(z^3+c),c=-7/24+3/10*I,n=29 2329944034861964 r009 Re(z^3+c),c=-7/24+3/10*I,n=30 2329944034988386 r009 Re(z^3+c),c=-7/24+3/10*I,n=33 2329944035006787 r009 Re(z^3+c),c=-7/24+3/10*I,n=36 2329944035008334 r009 Re(z^3+c),c=-7/24+3/10*I,n=37 2329944035008487 r009 Re(z^3+c),c=-7/24+3/10*I,n=39 2329944035008489 r009 Re(z^3+c),c=-7/24+3/10*I,n=40 2329944035008557 r009 Re(z^3+c),c=-7/24+3/10*I,n=43 2329944035008566 r009 Re(z^3+c),c=-7/24+3/10*I,n=46 2329944035008567 r009 Re(z^3+c),c=-7/24+3/10*I,n=47 2329944035008567 r009 Re(z^3+c),c=-7/24+3/10*I,n=50 2329944035008567 r009 Re(z^3+c),c=-7/24+3/10*I,n=49 2329944035008567 r009 Re(z^3+c),c=-7/24+3/10*I,n=53 2329944035008567 r009 Re(z^3+c),c=-7/24+3/10*I,n=56 2329944035008567 r009 Re(z^3+c),c=-7/24+3/10*I,n=57 2329944035008567 r009 Re(z^3+c),c=-7/24+3/10*I,n=60 2329944035008567 r009 Re(z^3+c),c=-7/24+3/10*I,n=59 2329944035008567 r009 Re(z^3+c),c=-7/24+3/10*I,n=63 2329944035008567 r009 Re(z^3+c),c=-7/24+3/10*I,n=64 2329944035008567 r009 Re(z^3+c),c=-7/24+3/10*I,n=62 2329944035008567 r009 Re(z^3+c),c=-7/24+3/10*I,n=61 2329944035008567 r009 Re(z^3+c),c=-7/24+3/10*I,n=58 2329944035008567 r009 Re(z^3+c),c=-7/24+3/10*I,n=54 2329944035008567 r009 Re(z^3+c),c=-7/24+3/10*I,n=55 2329944035008567 r009 Re(z^3+c),c=-7/24+3/10*I,n=52 2329944035008567 r009 Re(z^3+c),c=-7/24+3/10*I,n=51 2329944035008568 r009 Re(z^3+c),c=-7/24+3/10*I,n=48 2329944035008569 r009 Re(z^3+c),c=-7/24+3/10*I,n=44 2329944035008569 r009 Re(z^3+c),c=-7/24+3/10*I,n=45 2329944035008573 r009 Re(z^3+c),c=-7/24+3/10*I,n=42 2329944035008607 r009 Re(z^3+c),c=-7/24+3/10*I,n=41 2329944035009026 r009 Re(z^3+c),c=-7/24+3/10*I,n=38 2329944035011948 r009 Re(z^3+c),c=-7/24+3/10*I,n=35 2329944035012260 r009 Re(z^3+c),c=-7/24+3/10*I,n=34 2329944035018064 r009 Re(z^3+c),c=-7/24+3/10*I,n=32 2329944035087960 r009 Re(z^3+c),c=-7/24+3/10*I,n=31 2329944035896643 r009 Re(z^3+c),c=-7/24+3/10*I,n=28 2329944036436287 m001 (ln(5)+Sierpinski)/(2^(1/3)+cos(1)) 2329944041362603 r009 Re(z^3+c),c=-7/24+3/10*I,n=25 2329944042818956 r009 Re(z^3+c),c=-7/24+3/10*I,n=24 2329944044378166 r005 Im(z^2+c),c=19/94+7/47*I,n=19 2329944050384719 r009 Re(z^3+c),c=-7/24+3/10*I,n=22 2329944078960683 m005 (1/3*exp(1)+3/4)/(7/9*3^(1/2)-7/11) 2329944087907260 a007 Real Root Of 464*x^4+872*x^3-83*x^2+649*x-682 2329944096008591 r002 20th iterates of z^2 + 2329944100736970 m005 (1/3*exp(1)+2/9)/(1/9*Pi-5/6) 2329944103250172 r005 Im(z^2+c),c=-55/54+7/27*I,n=33 2329944104558521 m001 (Salem-TreeGrowth2nd)/(Paris-PrimesInBinary) 2329944105961876 m001 1/GAMMA(23/24)/Catalan*exp(cosh(1))^2 2329944106031740 a007 Real Root Of 154*x^4+18*x^3-349*x^2+846*x-445 2329944108466438 r005 Im(z^2+c),c=-5/118+14/51*I,n=9 2329944109696174 a007 Real Root Of 571*x^4-242*x^3+696*x^2-178*x-84 2329944115769264 g002 Psi(10/11)+Psi(4/9)-Psi(4/7)-Psi(2/7) 2329944119348539 m005 (1/2*Zeta(3)+2)/(5/11*Catalan+7/10) 2329944140328052 a007 Real Root Of 360*x^4+831*x^3+273*x^2+859*x+421 2329944142718806 r009 Re(z^3+c),c=-11/31+23/51*I,n=23 2329944150156242 m005 (1/2*Zeta(3)+2/5)/(11/12*2^(1/2)+3) 2329944152496396 m001 (GAMMA(5/6)+Pi^(1/2))/(Sierpinski-Totient) 2329944157794802 r005 Im(z^2+c),c=-57/58+15/58*I,n=8 2329944158003877 a007 Real Root Of 465*x^4+591*x^3-680*x^2+812*x-645 2329944171376720 r005 Im(z^2+c),c=-5/4+17/96*I,n=9 2329944183068820 a005 (1/sin(70/169*Pi))^23 2329944190461140 m001 Ei(1)*HardyLittlewoodC4/Riemann3rdZero 2329944192609530 r009 Re(z^3+c),c=-7/24+3/10*I,n=21 2329944202742617 a007 Real Root Of -292*x^4-498*x^3+763*x^2+878*x+210 2329944207082050 m001 (KhinchinLevy+ZetaP(4))/(Si(Pi)+FeigenbaumMu) 2329944207554278 a001 4106118243/377*121393^(11/24) 2329944207568766 a001 711491/13*12586269025^(11/24) 2329944222378468 a001 64079/13*317811^(7/23) 2329944230133621 r002 8th iterates of z^2 + 2329944234107443 m001 (-Ei(1)+exp(1/Pi))/(cos(1/5*Pi)-exp(Pi)) 2329944241050662 a007 Real Root Of -41*x^4-164*x^3-700*x^2+532*x+160 2329944251432626 a007 Real Root Of 91*x^4-906*x^3+924*x^2-949*x-283 2329944255493909 a001 29/28657*2178309^(2/35) 2329944258207404 a007 Real Root Of -99*x^4+64*x^3+875*x^2+585*x+340 2329944266922270 a005 (1/sin(70/149*Pi))^1720 2329944291413800 a007 Real Root Of -316*x^4-257*x^3+544*x^2-963*x+865 2329944297334321 a007 Real Root Of -109*x^4-36*x^3+234*x^2-905*x-622 2329944303740408 m001 (1+3^(1/2))^(1/2)+TreeGrowth2nd^Weierstrass 2329944305379162 p003 LerchPhi(1/125,1,37/86) 2329944318181290 m001 1/GAMMA(17/24)*ln(Riemann3rdZero)/Zeta(5)^2 2329944320962188 m001 (Cahen+Sarnak)/(ln(2)/ln(10)+2*Pi/GAMMA(5/6)) 2329944322098295 h005 exp(cos(Pi*14/41)+cos(Pi*19/50)) 2329944327369029 r005 Re(z^2+c),c=-33/34+7/90*I,n=28 2329944334709146 m001 1/GAMMA(2/3)/BesselJ(0,1)*exp(log(1+sqrt(2))) 2329944338710658 r005 Im(z^2+c),c=41/126+28/61*I,n=9 2329944341562686 r005 Im(z^2+c),c=-41/56+1/64*I,n=36 2329944360708767 m001 (BesselI(1,1)-exp(1))/(Bloch+ZetaP(2)) 2329944363264598 a003 sin(Pi*1/30)-sin(Pi*8/73) 2329944363579711 m001 (Ei(1,1)+sin(1/12*Pi))/(Backhouse+Gompertz) 2329944367738332 m001 GAMMA(2/3)^(Pi^(1/2))-Riemann3rdZero 2329944374919257 r005 Im(z^2+c),c=-31/66+9/22*I,n=54 2329944375667767 m002 -2-Pi+E^Pi*Log[Pi]*ProductLog[Pi] 2329944379862192 a007 Real Root Of 289*x^4-709*x^3-673*x^2-840*x-169 2329944386233563 a001 1/610*28657^(29/41) 2329944386500765 r002 25th iterates of z^2 + 2329944396970571 a007 Real Root Of 646*x^4+959*x^3-826*x^2+745*x-688 2329944398196971 r005 Im(z^2+c),c=-5/12+19/48*I,n=36 2329944406565056 b008 Sqrt[5]+BesselK[2,Khinchin] 2329944407378135 m001 MinimumGamma/LandauRamanujan/ln(BesselJ(1,1)) 2329944411677717 l006 ln(5576/7039) 2329944438640943 m005 (17/5+2/5*5^(1/2))/(2/5*2^(1/2)-3/4) 2329944446346384 r005 Re(z^2+c),c=-23/19+8/53*I,n=34 2329944450399831 m001 (5^(1/2)-Si(Pi))/(GAMMA(13/24)+ZetaQ(3)) 2329944455335218 a001 7/75025*5^(29/51) 2329944456133929 h001 (9/10*exp(2)+1/9)/(4/5*exp(1)+8/11) 2329944468393405 r005 Im(z^2+c),c=-67/86+1/10*I,n=51 2329944472631600 a007 Real Root Of -426*x^4-752*x^3+781*x^2+755*x+562 2329944484112179 h001 (8/11*exp(2)+4/9)/(5/7*exp(1)+5/9) 2329944497398286 r005 Im(z^2+c),c=-25/54+19/47*I,n=37 2329944498938355 r005 Re(z^2+c),c=-15/106+35/59*I,n=48 2329944505188085 r002 45th iterates of z^2 + 2329944512584854 b008 ArcCot[2*(4+Pi)]/3 2329944518473168 r005 Im(z^2+c),c=-3/4+2/179*I,n=21 2329944518722101 s002 sum(A271414[n]/((10^n-1)/n),n=1..infinity) 2329944521213499 m004 -E^(Sqrt[5]*Pi)+(25*Pi)/6+125*Sqrt[5]*Pi 2329944549761840 s002 sum(A051887[n]/(n*10^n-1),n=1..infinity) 2329944558475355 a001 4181/1364*199^(9/11) 2329944568996011 m001 (Conway+OrthogonalArrays)/(Rabbit+ZetaP(2)) 2329944589961036 h001 (9/11*exp(2)+1/5)/(7/10*exp(1)+7/9) 2329944591874274 a001 843*(1/2*5^(1/2)+1/2)^20*4^(10/23) 2329944605179124 h001 (11/12*exp(1)+2/3)/(1/7*exp(2)+3/10) 2329944610889862 l006 ln(137/1408) 2329944624394424 s002 sum(A243097[n]/(n!^2),n=1..infinity) 2329944629207159 m005 (1/2*5^(1/2)+1/5)/(Zeta(3)-7/11) 2329944632294303 a007 Real Root Of -440*x^4-744*x^3-29*x^2+645*x-138 2329944633283270 a001 3/196418*317811^(1/30) 2329944656714761 r009 Re(z^3+c),c=-23/82+16/59*I,n=8 2329944657425226 h001 (5/8*exp(2)+4/7)/(5/7*exp(1)+2/7) 2329944667328037 a001 4/3*21^(11/60) 2329944667397583 m001 (Conway-ln(2)/ln(10))/(FellerTornier+OneNinth) 2329944673832440 m001 (Chi(1)+Artin)/(OneNinth+ThueMorse) 2329944683589097 m005 (23/20+1/4*5^(1/2))/(9/11*Zeta(3)-1/4) 2329944685538374 m001 log(gamma)^exp(-Pi)/(log(gamma)^Backhouse) 2329944689588306 r005 Im(z^2+c),c=-41/34+19/118*I,n=22 2329944701292082 a001 2207/13*20365011074^(7/23) 2329944702904646 s002 sum(A266995[n]/(n*10^n-1),n=1..infinity) 2329944720659305 r005 Re(z^2+c),c=-33/34+7/90*I,n=30 2329944723811318 r005 Re(z^2+c),c=-3/17+29/59*I,n=23 2329944728564743 m001 (GaussAGM-Paris)/(exp(1/exp(1))-GAMMA(5/6)) 2329944731322119 a001 329/41*123^(7/10) 2329944732224233 m001 (Pi-MertensB1)/(Stephens+TwinPrimes) 2329944738690768 m005 (1/2*Catalan-5)/(9/10*gamma-1/2) 2329944740347878 a007 Real Root Of -488*x^4+749*x^3-712*x^2+680*x+208 2329944741605296 r005 Im(z^2+c),c=-75/82+1/51*I,n=5 2329944741958643 m001 (1-Zeta(1/2))/(gamma(1)+GAMMA(5/6)) 2329944750251716 r009 Re(z^3+c),c=-4/11+17/42*I,n=2 2329944752184268 a001 3571/196418*3^(7/31) 2329944758201961 m005 (1/2*5^(1/2)-4)/(3/11*Zeta(3)+10/11) 2329944784283184 m005 (1/3+1/4*5^(1/2))/(3/8*exp(1)-7/11) 2329944784933301 m001 (2^(1/3)+ln(5))/(Gompertz+HardyLittlewoodC3) 2329944785219092 r005 Re(z^2+c),c=-29/118+19/59*I,n=5 2329944790944805 h003 exp(Pi*(24*(23-7^(1/3))^(1/2))) 2329944796902153 a007 Real Root Of -245*x^4-638*x^3-456*x^2-409*x+673 2329944798821029 r002 44th iterates of z^2 + 2329944800215271 r005 Re(z^2+c),c=-13/98+34/59*I,n=55 2329944810148412 m008 (1/2*Pi^3-1)/(5/6*Pi^2-2) 2329944825212471 a007 Real Root Of -820*x^4+169*x^3-308*x^2+691*x-144 2329944830228090 r005 Re(z^2+c),c=-1/7+13/23*I,n=45 2329944835006995 p004 log(32569/3169) 2329944836848574 p003 LerchPhi(1/256,6,423/154) 2329944839806287 r005 Re(z^2+c),c=-9/40+15/41*I,n=37 2329944840918738 a007 Real Root Of 417*x^4+710*x^3-692*x^2-112*x+187 2329944844818345 p001 sum(1/(503*n+468)/(6^n),n=0..infinity) 2329944848333724 r009 Re(z^3+c),c=-11/60+39/46*I,n=11 2329944850606762 m001 (MertensB2-Psi(2,1/3))/(-Sierpinski+ZetaP(3)) 2329944853865200 m005 (3/5*gamma-2/3)/(-8/15+3/10*5^(1/2)) 2329944855066272 a001 11/75025*121393^(17/27) 2329944856372769 m001 exp(1/exp(1))+Zeta(1,2)+MasserGramainDelta 2329944856571342 m004 -50/Pi-125*Pi+25*Sqrt[5]*Pi*Tanh[Sqrt[5]*Pi] 2329944861177567 a007 Real Root Of -384*x^4-548*x^3+753*x^2-168*x-94 2329944869360773 h001 (1/8*exp(1)+3/11)/(5/6*exp(1)+4/11) 2329944871634966 m001 (MertensB3+ZetaQ(4))/(Shi(1)+FeigenbaumDelta) 2329944876920535 a007 Real Root Of -742*x^4+837*x^3+475*x^2+746*x-208 2329944879070793 a007 Real Root Of 443*x^4+721*x^3-303*x^2+724*x-604 2329944882696611 m005 (1/2*5^(1/2)-2/3)/(6/11*exp(1)+5/11) 2329944883818995 m001 MasserGramain^(FransenRobinson/sin(1)) 2329944884798407 r005 Im(z^2+c),c=7/32+6/43*I,n=8 2329944887185927 a003 sin(Pi*2/57)/sin(Pi*18/115) 2329944903424449 l006 ln(2889/3647) 2329944903824565 r005 Im(z^2+c),c=-41/122+22/59*I,n=36 2329944907282988 r005 Re(z^2+c),c=-7/10+37/244*I,n=2 2329944908248838 a001 9349/514229*3^(7/31) 2329944913500499 p004 log(24121/2347) 2329944919199586 r009 Im(z^3+c),c=-37/78+4/47*I,n=34 2329944921707819 m001 DuboisRaymond/CopelandErdos^2/ln(Magata)^2 2329944925858688 r005 Im(z^2+c),c=-23/98+13/38*I,n=28 2329944930190195 r005 Re(z^2+c),c=-103/126+1/30*I,n=42 2329944931018352 a001 24476/1346269*3^(7/31) 2329944936393505 a001 13201/726103*3^(7/31) 2329944945090685 a001 15127/832040*3^(7/31) 2329944946639448 m001 exp(Pi)+Ei(1,1)*Sarnak 2329944948081284 m001 (ln(2^(1/2)+1)-GAMMA(23/24))/(Lehmer+Trott2nd) 2329944950729959 p001 sum(1/(611*n+432)/(64^n),n=0..infinity) 2329944951667265 a007 Real Root Of 155*x^4+410*x^3+214*x^2-949*x-228 2329944951902487 h001 (1/4*exp(2)+6/7)/(1/10*exp(1)+8/9) 2329944955755667 r009 Re(z^3+c),c=-23/110+43/44*I,n=61 2329944965497307 r002 17th iterates of z^2 + 2329944969963465 r005 Re(z^2+c),c=-33/34+7/90*I,n=38 2329944970852844 r005 Re(z^2+c),c=-33/34+7/90*I,n=40 2329944971933978 r005 Re(z^2+c),c=-33/34+7/90*I,n=42 2329944971970302 r005 Re(z^2+c),c=-33/34+7/90*I,n=48 2329944971970824 r005 Re(z^2+c),c=-33/34+7/90*I,n=50 2329944971975014 r005 Re(z^2+c),c=-33/34+7/90*I,n=52 2329944971975526 r005 Re(z^2+c),c=-33/34+7/90*I,n=60 2329944971975536 r005 Re(z^2+c),c=-33/34+7/90*I,n=58 2329944971975541 r005 Re(z^2+c),c=-33/34+7/90*I,n=62 2329944971975546 r005 Re(z^2+c),c=-33/34+7/90*I,n=64 2329944971975697 r005 Re(z^2+c),c=-33/34+7/90*I,n=56 2329944971975942 r005 Re(z^2+c),c=-33/34+7/90*I,n=54 2329944972007066 r005 Re(z^2+c),c=-33/34+7/90*I,n=46 2329944972089969 r005 Re(z^2+c),c=-33/34+7/90*I,n=44 2329944977844339 r005 Re(z^2+c),c=-33/34+7/90*I,n=36 2329944978619517 m001 (ln(Pi)-Rabbit)/(Tribonacci+Trott2nd) 2329944984155751 r005 Re(z^2+c),c=-33/34+7/90*I,n=32 2329945002644830 r005 Re(z^2+c),c=-33/34+7/90*I,n=34 2329945004702046 a001 1926/105937*3^(7/31) 2329945010863559 m001 (-BesselI(0,2)+Pi^(1/2))/(LambertW(1)+ln(5)) 2329945011690011 m001 Artin/Pi/csc(5/24*Pi)*GAMMA(19/24)*Trott2nd 2329945018150038 a005 (1/sin(79/171*Pi))^1407 2329945019495471 h001 (3/4*exp(2)+7/12)/(5/6*exp(1)+4/11) 2329945025726539 a007 Real Root Of -295*x^4-662*x^3+541*x^2+847*x-643 2329945028604012 s002 sum(A198878[n]/((exp(n)+1)*n),n=1..infinity) 2329945039787942 m001 Trott2nd^ZetaP(3)*ZetaQ(3)^ZetaP(3) 2329945041201771 a007 Real Root Of 341*x^4+260*x^3-929*x^2+829*x+214 2329945044581981 r005 Re(z^2+c),c=-25/102+13/58*I,n=4 2329945045761206 a003 cos(Pi*31/100)-cos(Pi*35/89) 2329945060570761 a007 Real Root Of -367*x^4-861*x^3-185*x^2-823*x-988 2329945064814906 r005 Re(z^2+c),c=-6/25+31/63*I,n=9 2329945064887595 m005 (1/2*exp(1)-5/9)/(7/9*gamma+3) 2329945071335709 r005 Im(z^2+c),c=-7/40+10/31*I,n=18 2329945075003219 m001 exp(Pi)+ln(5)*Paris 2329945083341456 m005 (1/2*2^(1/2)+1/12)/(8/9*Pi+3/5) 2329945087010610 r002 12th iterates of z^2 + 2329945089872046 m001 Paris-Pi*csc(5/12*Pi)/GAMMA(7/12)-ln(2)/ln(10) 2329945096828115 m002 1+E^Pi/Pi^3+E^Pi/ProductLog[Pi] 2329945097451774 r005 Im(z^2+c),c=-39/56+7/34*I,n=26 2329945098829065 m004 -75*Pi+Log[Sqrt[5]*Pi]+Sin[Sqrt[5]*Pi] 2329945100792880 a007 Real Root Of -161*x^4-153*x^3+287*x^2-256*x+655 2329945112077962 r005 Re(z^2+c),c=-29/106+5/29*I,n=10 2329945118078064 r009 Re(z^3+c),c=-19/86+1/52*I,n=3 2329945118672106 a007 Real Root Of 330*x^4+390*x^3-616*x^2+525*x-225 2329945126178961 m001 GAMMA(3/4)^2/exp(LandauRamanujan)*gamma^2 2329945135474012 a001 18*(1/2*5^(1/2)+1/2)^16*7^(10/11) 2329945138062531 a007 Real Root Of -4*x^4-930*x^3+464*x^2+727*x-203 2329945139392999 m002 -6+ProductLog[Pi]+(Pi*Sinh[Pi])/5 2329945142290782 a007 Real Root Of 250*x^4-935*x^3+473*x^2-921*x+200 2329945142987393 m001 (Pi^(1/2)+OneNinth)^Totient 2329945150070641 m001 exp(GAMMA(23/24))/Porter*GAMMA(3/4) 2329945155998434 h001 (1/11*exp(2)+11/12)/(10/11*exp(2)+1/10) 2329945161772831 m005 (1/2*exp(1)-4/5)/(2/3*5^(1/2)+10/11) 2329945172513942 r005 Im(z^2+c),c=-21/58+25/64*I,n=15 2329945175883390 m001 FibonacciFactorial^BesselI(0,1)+MertensB2 2329945178730081 r005 Im(z^2+c),c=-95/74+1/52*I,n=37 2329945178993727 m006 (1/4*exp(2*Pi)-3/4)/(1/3*exp(Pi)-2) 2329945181984824 r005 Im(z^2+c),c=-53/118+19/47*I,n=50 2329945183769075 a007 Real Root Of -214*x^4-545*x^3-278*x^2-183*x+496 2329945185270567 r005 Re(z^2+c),c=-35/122+1/27*I,n=8 2329945186341543 m001 (3^(1/2))^GaussAGM*BesselI(1,2)^GaussAGM 2329945194357265 r005 Re(z^2+c),c=35/106+21/59*I,n=15 2329945198926902 m001 (ZetaP(2)-ZetaP(4))/(CareFree-Landau) 2329945199147336 a001 433494437/3*521^(4/9) 2329945200714874 a007 Real Root Of -43*x^4-969*x^3+726*x^2-949*x-395 2329945201723749 r009 Im(z^3+c),c=-17/38+5/59*I,n=47 2329945212607077 m001 GolombDickman^2/Bloch*exp(Zeta(5)) 2329945218477025 a007 Real Root Of -576*x^4-220*x^3-763*x^2+785*x-137 2329945227783707 a007 Real Root Of 465*x^4+735*x^3-695*x^2+358*x+200 2329945231770566 r005 Im(z^2+c),c=-9/29+19/52*I,n=28 2329945239530216 m005 (1/2*Catalan-1/6)/(8/9*Zeta(3)+2/11) 2329945269741985 q001 298/1279 2329945272786650 m005 (4*Catalan-2/3)/(1/6*exp(1)+5/6) 2329945284335625 m005 (1/3*2^(1/2)+1/2)/(4/11*Catalan-3/4) 2329945291604727 m001 Zeta(5)^gamma(1)+MertensB3 2329945291903134 r005 Im(z^2+c),c=-29/70+23/56*I,n=14 2329945307334687 m001 exp(Catalan)*Si(Pi)^2*exp(1) 2329945308330558 a001 29/13*5^(1/37) 2329945318620493 m005 (1/2*5^(1/2)+5/11)/(9/11*Catalan+6) 2329945327196990 r002 2th iterates of z^2 + 2329945328521798 a007 Real Root Of -170*x^3-391*x^2-286*x-694 2329945329685335 h001 (5/12*exp(1)+2/5)/(4/5*exp(2)+2/3) 2329945336978423 b008 17+6*ProductLog[3] 2329945337836653 l006 ln(977/10041) 2329945339690244 m001 (Paris+TreeGrowth2nd)/(Artin-Khinchin) 2329945346327783 a007 Real Root Of 948*x^4-738*x^3+941*x^2-527*x-186 2329945347809405 h001 (7/11*exp(2)+3/7)/(2/7*exp(2)+1/11) 2329945350548940 a007 Real Root Of 144*x^4+194*x^3-595*x^2-452*x+387 2329945350910619 b008 Pi+11*Csc[EulerGamma] 2329945352407900 p001 sum(1/(591*n+449)/(10^n),n=0..infinity) 2329945357861133 m001 GAMMA(1/24)*FibonacciFactorial^2/exp(exp(1)) 2329945360457608 a001 1/438683*(1/2*5^(1/2)+1/2)^5*15127^(3/13) 2329945361949474 l006 ln(5980/7549) 2329945366034630 m001 (3^(1/3))/exp(FeigenbaumC)*Zeta(7) 2329945367310984 m005 (1/3*Catalan+2/3)/(1/7*Zeta(3)+4) 2329945368595583 a001 1/1858291*(1/2*5^(1/2)+1/2)^2*64079^(6/13) 2329945371880111 a001 1/709804*(1/2*5^(1/2)+1/2)^9*24476^(1/13) 2329945376009109 a001 4181/843*199^(8/11) 2329945378500256 m001 (3^(1/3)+Bloch)/(FeigenbaumB-Trott) 2329945381177554 a007 Real Root Of 890*x^4-884*x^3-223*x^2-585*x-138 2329945382833172 m001 (Zeta(5)+GAMMA(13/24))/(Salem-Trott2nd) 2329945385502849 r005 Im(z^2+c),c=-9/16+5/119*I,n=51 2329945386408204 a001 72/161*1364^(13/15) 2329945392542803 r005 Im(z^2+c),c=7/86+11/50*I,n=17 2329945393328938 r005 Re(z^2+c),c=-5/18+32/59*I,n=14 2329945393905705 m001 GAMMA(2/3)/LandauRamanujan*ln(Zeta(5))^2 2329945397581581 r005 Im(z^2+c),c=-81/70+12/53*I,n=43 2329945399548838 m001 Porter/exp(HardHexagonsEntropy)^2*sin(Pi/12) 2329945413284394 a001 2207/121393*3^(7/31) 2329945429245196 a007 Real Root Of -994*x^4+779*x^3-331*x^2+979*x+23 2329945442118751 m001 (Psi(1,1/3)+LandauRamanujan)/(Niven+Otter) 2329945444608181 a007 Real Root Of 27*x^4+622*x^3-200*x^2-839*x-593 2329945455845077 a001 3571/2178309*28657^(29/41) 2329945456398163 l006 ln(840/8633) 2329945460614144 m005 (1/2*3^(1/2)-9/10)/(1/2*Zeta(3)+6/7) 2329945471602743 a007 Real Root Of 36*x^4+816*x^3-498*x^2+774*x+244 2329945492939515 m001 (-RenyiParking+1/3)/(exp(1/exp(1))+1/3) 2329945502924678 m001 (Paris-ZetaQ(2))/(Zeta(1/2)-arctan(1/2)) 2329945506503764 m005 (1/2*exp(1)-3/5)/(-19/24+5/24*5^(1/2)) 2329945509209194 a007 Real Root Of 187*x^4-537*x^3-642*x^2-373*x+128 2329945510115746 a007 Real Root Of 938*x^4-196*x^3+700*x^2-720*x-211 2329945514928550 a007 Real Root Of 585*x^4+780*x^3-940*x^2+586*x-906 2329945515523931 m001 Zeta(9)/ln(Riemann2ndZero)^2/arctan(1/2) 2329945516432362 a007 Real Root Of -290*x^4-302*x^3-644*x^2+970*x+258 2329945518833385 h005 exp(cos(Pi*9/44)/sin(Pi*17/43)) 2329945519182033 m001 BesselK(1,1)^GaussKuzminWirsing*exp(1) 2329945519182033 m001 exp(1)*BesselK(1,1)^GaussKuzminWirsing 2329945522892123 a001 1/103559*(1/2*5^(1/2)+1/2)^4*3571^(2/13) 2329945526099695 a007 Real Root Of 836*x^4+667*x^3-394*x^2-852*x+209 2329945529676934 r005 Im(z^2+c),c=-1/20+7/22*I,n=3 2329945531045301 a007 Real Root Of 340*x^4+435*x^3-675*x^2+259*x-250 2329945533217321 a007 Real Root Of -246*x^4-662*x^3+66*x^2+818*x+424 2329945534401963 r009 Re(z^3+c),c=-13/94+51/56*I,n=20 2329945539364644 m001 (Bloch-Trott2nd)/(cos(1/5*Pi)+ln(3)) 2329945549811657 m006 (4/Pi+5/6)/(1/2*Pi-2/3) 2329945551024844 m001 (1-5^(1/2))/(exp(-1/2*Pi)+FellerTornier) 2329945556419739 r005 Re(z^2+c),c=-11/10+147/251*I,n=2 2329945594020024 m001 DuboisRaymond+Pi^LaplaceLimit 2329945599290995 a001 1268860318*2584^(22/23) 2329945607878214 r005 Re(z^2+c),c=-5/18+1/7*I,n=15 2329945621169968 l006 ln(703/7225) 2329945623242298 m001 (ln(3)+ln(5))/(PrimesInBinary+RenyiParking) 2329945630549253 p001 sum((-1)^n/(605*n+383)/(3^n),n=0..infinity) 2329945642244261 r009 Re(z^3+c),c=-23/54+23/40*I,n=10 2329945642346547 r009 Im(z^3+c),c=-55/106+17/48*I,n=4 2329945649437657 m002 -E^Pi+2*Pi-6*ProductLog[Pi] 2329945651067622 m005 (1/42+1/6*5^(1/2))/(9/10*3^(1/2)+1/7) 2329945665478838 a001 64079/2*165580141^(22/23) 2329945680844629 a007 Real Root Of -334*x^4-769*x^3+238*x^2+208*x-691 2329945690319731 r005 Im(z^2+c),c=-11/30+13/34*I,n=27 2329945714474815 a007 Real Root Of -605*x^4-968*x^3+908*x^2-326*x-103 2329945719170591 r009 Re(z^3+c),c=-29/78+26/53*I,n=46 2329945719658930 b008 -1/7+Pi*Cosh[5] 2329945738599452 m009 (32/5*Catalan+4/5*Pi^2+2/5)/(4/5*Psi(1,1/3)-2) 2329945743132448 r005 Re(z^2+c),c=-7/17+22/43*I,n=13 2329945744316939 m001 GAMMA(5/6)^2/Si(Pi)^2/ln(log(1+sqrt(2)))^2 2329945744557714 a007 Real Root Of -440*x^4-724*x^3+769*x^2+231*x+173 2329945745027257 a007 Real Root Of 125*x^4+265*x^3+365*x^2-387*x-107 2329945752876342 r009 Re(z^3+c),c=-7/24+3/10*I,n=18 2329945754023440 r005 Re(z^2+c),c=-7/82+18/31*I,n=24 2329945763078479 r005 Im(z^2+c),c=-35/38+10/47*I,n=58 2329945764333224 a007 Real Root Of -487*x^4-694*x^3+705*x^2-560*x+442 2329945764985155 s002 sum(A082057[n]/(n^2*2^n-1),n=1..infinity) 2329945769589469 a007 Real Root Of -373*x^4-546*x^3+993*x^2+301*x-603 2329945774471796 a007 Real Root Of -66*x^4+879*x^3+113*x^2-26*x-11 2329945784990136 r002 53th iterates of z^2 + 2329945790509402 l006 ln(3091/3902) 2329945803866405 r005 Im(z^2+c),c=-31/94+23/62*I,n=29 2329945803889590 r005 Re(z^2+c),c=-15/23+4/51*I,n=2 2329945808573384 m001 GAMMA(1/4)/ln(ErdosBorwein)^2*Zeta(3)^2 2329945809001757 a007 Real Root Of 370*x^4+708*x^3+28*x^2+824*x-181 2329945819141452 m001 exp(1)*(StolarskyHarborth+StronglyCareFree) 2329945822063235 a007 Real Root Of -199*x^4-823*x^3-946*x^2-277*x-55 2329945827123273 m001 (ln(Pi)-Zeta(1,2))/(Conway-HardyLittlewoodC5) 2329945830153368 a001 199/987*1597^(1/51) 2329945847726609 a007 Real Root Of -628*x^4-939*x^3+986*x^2-566*x-41 2329945861195143 r005 Re(z^2+c),c=-19/22+37/109*I,n=2 2329945865707578 l006 ln(566/5817) 2329945866773327 g001 Psi(9/11,36/59) 2329945872664691 r005 Re(z^2+c),c=-33/34+7/90*I,n=26 2329945881777749 a007 Real Root Of 12*x^4+272*x^3-180*x^2-112*x-940 2329945887088693 r005 Re(z^2+c),c=-3/14+19/48*I,n=24 2329945887428359 m001 exp(Pi)^Kolakoski/(TreeGrowth2nd^Kolakoski) 2329945888629094 a007 Real Root Of 496*x^4+920*x^3-161*x^2+993*x+207 2329945890620999 m004 -1+450*Sqrt[5]*Pi*Cos[Sqrt[5]*Pi] 2329945900123287 a007 Real Root Of -691*x^4+977*x^3-907*x^2+879*x-20 2329945904993973 m001 GAMMA(1/24)-Cahen^exp(sqrt(2)) 2329945909596633 m001 1/GAMMA(1/24)^2/(3^(1/3))/ln(GAMMA(11/12)) 2329945910231841 r005 Im(z^2+c),c=-43/54+6/47*I,n=61 2329945911565964 m006 (4*ln(Pi)-5)/(1/5*Pi^2-1/6) 2329945921366478 m001 (Zeta(1/2)-FeigenbaumMu)/(ln(gamma)-ln(5)) 2329945924679912 r009 Im(z^3+c),c=-7/23+4/21*I,n=8 2329945925925922 r005 Im(z^2+c),c=1/29+13/54*I,n=5 2329945930629276 r005 Re(z^2+c),c=-17/94+11/23*I,n=58 2329945932723521 m005 (1/2*exp(1)-1/6)/(1/2*5^(1/2)+4) 2329945953909824 m001 TreeGrowth2nd/(FeigenbaumDelta^ThueMorse) 2329945954689734 a007 Real Root Of 716*x^4-673*x^3-757*x^2-779*x+229 2329945955334587 m002 2*Cosh[Pi]+(Log[Pi]*Tanh[Pi])/Pi^2 2329945957499594 m001 (Psi(2,1/3)-sin(1))/(-Zeta(3)+3^(1/3)) 2329945961283753 m001 GAMMA(1/12)^2*Conway*ln(sin(Pi/12)) 2329945977828626 a007 Real Root Of -164*x^4+971*x^3-989*x^2-511*x-889 2329945993313947 p001 sum(1/(318*n+43)/(64^n),n=0..infinity) 2329945995806973 a007 Real Root Of 41*x^4+953*x^3-64*x^2-267*x-289 2329946004872633 r002 9th iterates of z^2 + 2329946022718431 r005 Im(z^2+c),c=-37/50+1/57*I,n=5 2329946023588559 m005 (1/2*3^(1/2)+5/12)/(6/7*gamma-6) 2329946036120161 m009 (3*Psi(1,2/3)-1/2)/(2/3*Psi(1,1/3)-3) 2329946036237021 a001 987/521*199^(10/11) 2329946044058866 a003 cos(Pi*21/52)-cos(Pi*35/73) 2329946046547077 a007 Real Root Of -249*x^4-527*x^3-160*x^2-512*x+348 2329946057548446 m001 exp(1/exp(1))/OneNinth/Stephens 2329946071597733 h001 (-6*exp(6)+7)/(-7*exp(5)+3) 2329946079306732 m001 (Pi+Mills)/(ReciprocalLucas-ZetaQ(2)) 2329946080645446 m001 exp(GAMMA(1/6))/Paris*Zeta(1,2)^2 2329946090753746 g002 -2*gamma-6*ln(2)-Psi(5/11)-Psi(8/9) 2329946092297983 m001 1/Trott/exp(Tribonacci)^2 2329946094848746 a007 Real Root Of 187*x^4+726*x^3+894*x^2+680*x+403 2329946105303781 r009 Im(z^3+c),c=-25/56+5/63*I,n=14 2329946109729000 r005 Im(z^2+c),c=-41/36+16/61*I,n=58 2329946109989350 m001 (HardyLittlewoodC5+MertensB1)/(Niven+Salem) 2329946111858763 b008 1/21+Pi*Sin[4] 2329946116901347 a001 2207/1346269*28657^(29/41) 2329946119258452 a007 Real Root Of 368*x^4+142*x^3-53*x^2-230*x-50 2329946128675486 a001 317811/2207*76^(1/9) 2329946131361732 r005 Im(z^2+c),c=-1+21/92*I,n=36 2329946132059038 m001 Tribonacci/FeigenbaumC*exp(sin(1)) 2329946133027189 m005 (5/6*Catalan+3)/(2/3*gamma-2) 2329946139631228 m001 FeigenbaumDelta^(FellerTornier/sin(1/5*Pi)) 2329946140181105 a005 (1/cos(35/122*Pi))^79 2329946142186192 a001 2/13*121393^(13/56) 2329946145124716 r005 Re(z^2+c),c=-9/14+7/120*I,n=2 2329946145956738 a007 Real Root Of -506*x^4-444*x^3-28*x^2+904*x-202 2329946149549488 m001 (Kolakoski+PisotVijayaraghavan)/(1-Psi(1,1/3)) 2329946157260238 a007 Real Root Of -531*x^4-708*x^3+987*x^2-441*x+308 2329946159560161 a007 Real Root Of 3*x^4+84*x^3+291*x^2-875*x+3 2329946173238640 m001 (Ei(1)+BesselI(0,2))/(ln(2)+ln(3)) 2329946184585073 a007 Real Root Of 344*x^4+867*x^3+467*x^2+672*x-141 2329946191948666 l006 ln(6384/8059) 2329946197018337 r005 Re(z^2+c),c=-7/40+28/57*I,n=63 2329946206478694 r002 3th iterates of z^2 + 2329946207833148 r005 Im(z^2+c),c=-149/118+5/47*I,n=6 2329946224377525 m001 (-exp(-1/2*Pi)+4)/(-GAMMA(5/12)+1/2) 2329946231235505 m001 1/Ei(1)/ln(TwinPrimes)*GAMMA(2/3)^2 2329946238032670 r005 Re(z^2+c),c=-87/74+4/25*I,n=4 2329946244807498 a007 Real Root Of -480*x^4-884*x^3+853*x^2+837*x+284 2329946256458750 m001 gamma*(1-Gompertz) 2329946266429920 l006 ln(429/4409) 2329946268833429 r009 Re(z^3+c),c=-25/64+25/47*I,n=55 2329946274470032 r002 42i'th iterates of 2*x/(1-x^2) of 2329946283383026 a005 (1/cos(7/39*Pi))^183 2329946293111331 m001 (Tetranacci+ZetaP(2))/(ln(gamma)-Bloch) 2329946304244652 a001 2139295485799/3*21^(7/18) 2329946305523716 r005 Im(z^2+c),c=-37/102+13/35*I,n=13 2329946305944661 m001 (Conway-TreeGrowth2nd)/(Pi+BesselI(1,1)) 2329946306233274 a001 124*(1/2*5^(1/2)+1/2)^21*11^(17/20) 2329946308641504 a007 Real Root Of 526*x^4+733*x^3-896*x^2+703*x+272 2329946312376297 v002 sum(1/(2^n+(9*n^2-5*n)),n=1..infinity) 2329946313129436 a007 Real Root Of 166*x^4-516*x^3+982*x^2-960*x-284 2329946327158048 m001 1/TwinPrimes^2/Niven^2/ln(Zeta(3))^2 2329946332035136 a001 72/161*3571^(13/17) 2329946337116000 m001 (-exp(-1/2*Pi)+Porter)/(ln(2)/ln(10)-sin(1)) 2329946345797897 r009 Re(z^3+c),c=-17/114+50/59*I,n=42 2329946347218008 m001 (Magata-Trott2nd)/(arctan(1/3)+GAMMA(5/6)) 2329946348710067 m001 (-Zeta(1/2)+Conway)/(1-ln(2^(1/2)+1)) 2329946355236954 a007 Real Root Of 286*x^4-852*x^3-296*x^2-336*x+8 2329946363105516 m001 exp(Salem)*Bloch^2/GAMMA(1/6)^2 2329946367210993 r005 Im(z^2+c),c=-29/25+8/35*I,n=55 2329946369818668 m001 Grothendieck*(Ei(1)-sin(1/5*Pi)) 2329946370904047 m005 (1/3*5^(1/2)-2/7)/(139/126+7/18*5^(1/2)) 2329946375321564 r005 Im(z^2+c),c=-67/126+8/19*I,n=30 2329946388490122 m001 (ln(2)-Bloch)/(FeigenbaumC-QuadraticClass) 2329946406294713 m001 sin(1)+ln(2+3^(1/2))^exp(1/exp(1)) 2329946406294713 m001 sin(1)+ln(2+sqrt(3))^exp(1/exp(1)) 2329946412140761 l006 ln(6745/6904) 2329946416476232 r005 Re(z^2+c),c=-13/62+24/59*I,n=18 2329946421635468 a001 47*4807526976^(10/17) 2329946421982384 a007 Real Root Of -390*x^4-519*x^3+469*x^2-648*x+873 2329946423876302 a007 Real Root Of 379*x^4+654*x^3-190*x^2+684*x-272 2329946423937596 r005 Im(z^2+c),c=-9/10+26/127*I,n=49 2329946436094579 r009 Im(z^3+c),c=-9/110+8/33*I,n=3 2329946449445142 m001 (3^(1/3)-BesselI(1,1))/(Bloch-PlouffeB) 2329946453516608 a001 72/161*9349^(13/19) 2329946462945026 m005 (1/2*gamma+5/11)/(1/3*3^(1/2)-6/11) 2329946464122470 m001 1/Zeta(5)*exp(BesselJ(1,1))^2*Zeta(9) 2329946469348164 a001 72/161*24476^(13/21) 2329946470900646 b008 23+3*Csch[3] 2329946471435068 a001 72/161*64079^(13/23) 2329946471755791 a001 72/161*141422324^(1/3) 2329946471755791 a001 72/161*(1/2+1/2*5^(1/2))^13 2329946471755791 a001 72/161*73681302247^(1/4) 2329946471771602 a001 72/161*271443^(1/2) 2329946471873191 a001 72/161*103682^(13/24) 2329946472633621 a001 72/161*39603^(13/22) 2329946476107255 m001 (BesselK(1,1)+GlaisherKinkelin)^exp(Pi) 2329946476442194 r005 Re(z^2+c),c=-5/24+27/35*I,n=6 2329946477523097 m001 Catalan*exp(TwinPrimes)*GAMMA(1/4)^2 2329946478374201 a001 72/161*15127^(13/20) 2329946487607851 m001 OneNinth^2/ln(GaussAGM(1,1/sqrt(2)))/sqrt(3)^2 2329946489138180 a007 Real Root Of 178*x^4+437*x^3+447*x^2+906*x-34 2329946495431580 m001 Paris^Kolakoski+exp(Pi) 2329946497327425 r009 Re(z^3+c),c=-10/27+19/39*I,n=42 2329946498921314 r005 Im(z^2+c),c=-5/28+32/49*I,n=20 2329946516212167 a001 3/17393796001*123^(1/16) 2329946516476636 r009 Im(z^3+c),c=-27/64+7/60*I,n=13 2329946518055029 m001 (ln(Pi)-Mills)/(RenyiParking-ZetaQ(2)) 2329946522159412 a001 72/161*5778^(13/18) 2329946537234963 a001 416020/2889*76^(1/9) 2329946549981385 m008 (1/6*Pi-2/3)/(1/5*Pi^5+1/5) 2329946554951090 m001 (5-5^(1/2))/(-ln(1+sqrt(2))+1) 2329946558384597 r005 Im(z^2+c),c=-43/70+1/21*I,n=30 2329946559733532 r005 Im(z^2+c),c=-43/64+9/46*I,n=11 2329946568762731 l006 ln(3293/4157) 2329946575027959 h001 (1/10*exp(2)+6/7)/(9/10*exp(2)+1/5) 2329946581005183 l006 ln(721/7410) 2329946581213268 m005 (1/4+1/6*5^(1/2))/(4*gamma+4/11) 2329946581718802 r005 Im(z^2+c),c=-79/118+7/27*I,n=25 2329946582335795 a007 Real Root Of 782*x^4+574*x^3-574*x^2-873*x+225 2329946582381093 m001 1/LambertW(1)/ln(MertensB1)*sqrt(Pi) 2329946593349534 m001 1/Zeta(5)/Sierpinski^2*ln(sinh(1)) 2329946596843000 a001 311187/2161*76^(1/9) 2329946597978089 r009 Im(z^3+c),c=-13/114+26/31*I,n=12 2329946602545548 m005 (1/2*gamma-7/12)/(7/11*Zeta(3)+1/2) 2329946605539695 a001 5702887/39603*76^(1/9) 2329946606808526 a001 7465176/51841*76^(1/9) 2329946606993646 a001 39088169/271443*76^(1/9) 2329946607020655 a001 14619165/101521*76^(1/9) 2329946607024595 a001 133957148/930249*76^(1/9) 2329946607025170 a001 701408733/4870847*76^(1/9) 2329946607025254 a001 1836311903/12752043*76^(1/9) 2329946607025266 a001 14930208/103681*76^(1/9) 2329946607025268 a001 12586269025/87403803*76^(1/9) 2329946607025268 a001 32951280099/228826127*76^(1/9) 2329946607025268 a001 43133785636/299537289*76^(1/9) 2329946607025268 a001 32264490531/224056801*76^(1/9) 2329946607025268 a001 591286729879/4106118243*76^(1/9) 2329946607025268 a001 774004377960/5374978561*76^(1/9) 2329946607025268 a001 4052739537881/28143753123*76^(1/9) 2329946607025268 a001 1515744265389/10525900321*76^(1/9) 2329946607025268 a001 3278735159921/22768774562*76^(1/9) 2329946607025268 a001 2504730781961/17393796001*76^(1/9) 2329946607025268 a001 956722026041/6643838879*76^(1/9) 2329946607025268 a001 182717648081/1268860318*76^(1/9) 2329946607025268 a001 139583862445/969323029*76^(1/9) 2329946607025268 a001 53316291173/370248451*76^(1/9) 2329946607025268 a001 10182505537/70711162*76^(1/9) 2329946607025269 a001 7778742049/54018521*76^(1/9) 2329946607025274 a001 2971215073/20633239*76^(1/9) 2329946607025306 a001 567451585/3940598*76^(1/9) 2329946607025525 a001 433494437/3010349*76^(1/9) 2329946607027031 a001 165580141/1149851*76^(1/9) 2329946607037347 a001 31622993/219602*76^(1/9) 2329946607108056 a001 24157817/167761*76^(1/9) 2329946607592707 a001 9227465/64079*76^(1/9) 2329946608336773 m001 KhinchinLevy/(Pi*2^(1/2)/GAMMA(3/4)+Porter) 2329946609174257 s002 sum(A120775[n]/((pi^n-1)/n),n=1..infinity) 2329946610914549 a001 1762289/12238*76^(1/9) 2329946624474212 r009 Re(z^3+c),c=-13/56+1/9*I,n=4 2329946633682794 a001 1346269/9349*76^(1/9) 2329946640624945 m006 (3/5*Pi+2)/(1/4*Pi^2-4/5) 2329946640624945 m008 (3/5*Pi+2)/(1/4*Pi^2-4/5) 2329946648618437 r009 Im(z^3+c),c=-21/86+7/33*I,n=8 2329946656410573 m001 ln(KhintchineLevy)^2/LaplaceLimit/Ei(1) 2329946666088448 m001 1/exp(sinh(1))/Lehmer/sqrt(5) 2329946667462067 m001 (ln(2)/ln(10))^ZetaQ(2)-CareFree 2329946678597758 m001 (Si(Pi)+Kac)/(-StronglyCareFree+Tribonacci) 2329946679575542 m004 -5-Cos[Sqrt[5]*Pi]+(750*Tanh[Sqrt[5]*Pi])/Pi 2329946682228819 m001 (cos(1/5*Pi)+GAMMA(7/12))/(PlouffeB-Stephens) 2329946687742792 r005 Re(z^2+c),c=15/38+7/22*I,n=28 2329946693891172 g001 abs(GAMMA(-39/20+I*163/60)) 2329946699619642 r009 Re(z^3+c),c=-17/74+5/49*I,n=3 2329946699766404 p001 sum(1/(600*n+431)/(100^n),n=0..infinity) 2329946700057974 m001 Trott*ErdosBorwein^2/ln(sqrt(2))^2 2329946700238179 m001 ln(5)^(Salem/gamma(3)) 2329946706299032 m001 ln(5)*Conway^HardHexagonsEntropy 2329946708964221 m001 exp(-1/2*Pi)^(exp(Pi)/ArtinRank2) 2329946713501250 m005 (2/5*Pi-1/4)/(1/4*exp(1)-5) 2329946724213245 r005 Im(z^2+c),c=-9/14+5/134*I,n=35 2329946727386865 a007 Real Root Of 264*x^4+618*x^3+407*x^2+830*x-239 2329946732441539 r009 Im(z^3+c),c=-15/38+9/64*I,n=8 2329946732772299 m001 (Pi+BesselI(1,2))/(Bloch-FeigenbaumAlpha) 2329946745038186 h001 (8/11*exp(2)+1/7)/(2/3*exp(1)+5/9) 2329946750773406 h001 (5/8*exp(2)+5/9)/(3/4*exp(1)+2/11) 2329946758408168 m001 (Sarnak-Trott)/(GAMMA(2/3)+Niven) 2329946761053390 a007 Real Root Of 425*x^4+307*x^3-803*x^2-659*x+192 2329946768089219 m001 1/ln(GAMMA(2/3))^2/Robbin^2*Zeta(1,2) 2329946769613467 m001 HardyLittlewoodC4/(GAMMA(19/24)^(3^(1/2))) 2329946778420585 r005 Im(z^2+c),c=-3/23+4/13*I,n=9 2329946781032027 m001 (Pi+Psi(2,1/3))/(Shi(1)+GAMMA(19/24)) 2329946782095147 a007 Real Root Of 98*x^4+288*x^3+998*x^2-563*x-182 2329946785950962 a003 sin(Pi*8/55)*sin(Pi*17/96) 2329946786636350 r005 Im(z^2+c),c=7/86+11/50*I,n=18 2329946786709505 r009 Re(z^3+c),c=-5/36+47/49*I,n=36 2329946787861079 h001 (7/11*exp(2)+9/11)/(2/9*exp(2)+8/11) 2329946789265746 h001 (8/11*exp(1)+2/11)/(1/12*exp(1)+7/10) 2329946789738678 a001 514229/3571*76^(1/9) 2329946802499020 m001 (1-sin(1/12*Pi))/(-BesselJ(1,1)+Bloch) 2329946802702864 m001 1/ln(sqrt(1+sqrt(3)))/FeigenbaumD*sqrt(Pi)^2 2329946810050136 a007 Real Root Of -99*x^4-405*x^3-959*x^2-207*x-1 2329946812637454 r009 Re(z^3+c),c=-7/22+15/41*I,n=13 2329946820172114 m001 (TreeGrowth2nd+ZetaQ(3))/(Zeta(3)+Sarnak) 2329946825281395 r005 Im(z^2+c),c=-4/7+64/101*I,n=5 2329946834219213 a003 cos(Pi*23/88)-sin(Pi*18/49) 2329946838835657 r005 Re(z^2+c),c=13/38+7/33*I,n=4 2329946846756748 m005 (1/3*Zeta(3)-1/9)/(3/11*2^(1/2)+6/7) 2329946854655979 r005 Im(z^2+c),c=-35/94+13/34*I,n=26 2329946860411290 a001 72/161*2207^(13/16) 2329946860645149 a007 Real Root Of -232*x^4-283*x^3+278*x^2-959*x-486 2329946861737544 r005 Re(z^2+c),c=-4/25+23/44*I,n=49 2329946876332828 m001 1/(3^(1/3))*exp(LaplaceLimit)*sqrt(3) 2329946884919933 r009 Re(z^3+c),c=-41/126+38/61*I,n=21 2329946885149102 a007 Real Root Of -359*x^4-515*x^3+644*x^2-548*x-707 2329946885400095 m001 (DuboisRaymond+Sierpinski)/(ln(gamma)-Cahen) 2329946899436999 a001 9349/144*12586269025^(11/20) 2329946915931564 r005 Im(z^2+c),c=-51/46+12/55*I,n=46 2329946923150018 l006 ln(6788/8569) 2329946924774930 r005 Re(z^2+c),c=-41/64+1/19*I,n=2 2329946926094573 a001 103361/8*832040^(11/20) 2329946941143443 a007 Real Root Of 39*x^4+874*x^3-819*x^2-215*x+957 2329946950304694 a007 Real Root Of -423*x^4-719*x^3+155*x^2-916*x+396 2329946955633127 p001 sum((-1)^n/(428*n+355)/(2^n),n=0..infinity) 2329946958842184 r005 Im(z^2+c),c=-33/34+29/123*I,n=24 2329946961664249 r005 Re(z^2+c),c=-4/27+13/24*I,n=34 2329946970774827 m001 (Stephens-ZetaQ(2))/(exp(1/exp(1))-Porter) 2329946976471663 r005 Re(z^2+c),c=3/23+17/28*I,n=18 2329946980236977 a007 Real Root Of -138*x^4-387*x^3-454*x^2-626*x+178 2329946992484719 r005 Re(z^2+c),c=-11/9+11/107*I,n=22 2329946995808433 a007 Real Root Of -287*x^4+545*x^3+911*x^2+500*x-172 2329947000014964 a007 Real Root Of 379*x^4-538*x^3-971*x^2-788*x+242 2329947000040247 m001 1/ln(TwinPrimes)/MinimumGamma*sqrt(2) 2329947006252610 a008 Real Root of x^4-x^3-23*x^2-x+1 2329947009862343 r009 Im(z^3+c),c=-7/36+55/61*I,n=18 2329947017385342 m005 (25/42+1/6*5^(1/2))/(2/9*2^(1/2)-3/11) 2329947026732835 r002 62th iterates of z^2 + 2329947027965469 h001 (7/8*exp(2)+1/12)/(5/6*exp(1)+6/11) 2329947030670649 r002 5th iterates of z^2 + 2329947039627807 r005 Re(z^2+c),c=-7/40+28/57*I,n=59 2329947040982053 m002 -(Pi^5*Sech[Pi])+(ProductLog[Pi]*Sinh[Pi])/4 2329947043172085 l006 ln(292/3001) 2329947046883219 p001 sum((-1)^n/(518*n+429)/(1000^n),n=0..infinity) 2329947048522804 m001 (arctan(1/3)+BesselI(0,2))/(Otter-Tribonacci) 2329947055824477 h001 (3/8*exp(1)+4/9)/(5/6*exp(2)+1/8) 2329947061917394 a007 Real Root Of 951*x^4+850*x^3+551*x^2-846*x-20 2329947062859076 m001 (BesselI(0,2)+Salem)/(ln(2)-sin(1)) 2329947065932609 q001 1/4291943 2329947069933592 b008 -2+Pi*LogGamma[Glaisher] 2329947070832347 p003 LerchPhi(1/12,6,39/142) 2329947075328901 r005 Re(z^2+c),c=-9/40+15/41*I,n=32 2329947076422395 a007 Real Root Of 16*x^4+357*x^3-393*x^2-612*x-652 2329947081060248 a001 123/2*21^(7/16) 2329947093861896 a007 Real Root Of -42*x^4-987*x^3-235*x^2-932*x-670 2329947115047989 m001 3^(1/3)+ReciprocalLucas*ZetaP(2) 2329947116058138 r005 Re(z^2+c),c=-21/94+25/58*I,n=9 2329947126431983 m008 (5*Pi^3-5)/(2/3*Pi^6+3) 2329947141025958 r009 Re(z^3+c),c=-11/28+20/37*I,n=62 2329947145565494 r002 56th iterates of z^2 + 2329947164118063 r005 Im(z^2+c),c=-23/70+10/27*I,n=24 2329947169523550 r002 4th iterates of z^2 + 2329947175471190 m001 Pi^(1/2)-ln(5)-Pi*csc(1/24*Pi)/GAMMA(23/24) 2329947175471190 m001 ln(5)-sqrt(Pi)+GAMMA(1/24) 2329947176431480 a007 Real Root Of -789*x^4+4*x^3+432*x^2+760*x+156 2329947185019664 m001 FeigenbaumMu/(Shi(1)+Weierstrass) 2329947186494428 m005 (1/2*5^(1/2)+3/10)/(5/7*Zeta(3)-1/4) 2329947199004541 r005 Re(z^2+c),c=-7/40+28/57*I,n=62 2329947212132576 r005 Im(z^2+c),c=-49/110+21/52*I,n=44 2329947226644605 r009 Re(z^3+c),c=-11/32+23/54*I,n=38 2329947230002584 m001 (sin(1/12*Pi)+MertensB1)/(cos(1/5*Pi)-exp(Pi)) 2329947230138342 a007 Real Root Of 496*x^4+881*x^3-550*x^2-57*x-621 2329947232258808 m001 (cos(1)-gamma(1))/(MertensB1+ZetaQ(4)) 2329947236887069 a001 3/13*433494437^(8/23) 2329947237776059 a007 Real Root Of -153*x^4-168*x^3+422*x^2+330*x+862 2329947244028212 a007 Real Root Of 564*x^4+543*x^3-578*x^2-829*x+216 2329947257054824 l006 ln(3495/4412) 2329947258402646 p001 sum((-1)^n/(496*n+429)/(1024^n),n=0..infinity) 2329947266845908 r005 Re(z^2+c),c=7/24+7/39*I,n=43 2329947272432784 r005 Re(z^2+c),c=-7/78+15/23*I,n=15 2329947281800745 r009 Re(z^3+c),c=-8/25+19/51*I,n=10 2329947282514517 a007 Real Root Of 484*x^4+265*x^3+480*x^2-390*x-115 2329947284102146 m005 (1/3*Zeta(3)-1/3)/(1/11*Zeta(3)-3) 2329947284511649 m006 (2/5*Pi^2-5/6)/(1/4*exp(2*Pi)-1/5) 2329947300587669 a007 Real Root Of -336*x^4-724*x^3-217*x^2-826*x-2 2329947303484362 r009 Re(z^3+c),c=-29/78+26/53*I,n=43 2329947311773656 r005 Im(z^2+c),c=-7/27+18/55*I,n=3 2329947326166826 a007 Real Root Of 407*x^4+607*x^3-829*x^2-126*x-110 2329947333916189 m001 (exp(Pi)-ln(5))/(Bloch+ZetaP(2)) 2329947339587772 a007 Real Root Of 502*x^4+963*x^3-134*x^2+937*x+297 2329947345698848 r005 Re(z^2+c),c=-4/21+31/51*I,n=26 2329947355784968 a001 5/9349*123^(40/51) 2329947375846244 a001 3571/11*(1/2*5^(1/2)+1/2)^19*11^(17/20) 2329947379650562 m001 (ln(2)+BesselI(1,2))/(Tribonacci-Thue) 2329947380984166 a007 Real Root Of 563*x^4+846*x^3-728*x^2+758*x-173 2329947382962983 r009 Im(z^3+c),c=-57/118+32/43*I,n=3 2329947391804462 m001 exp(BesselJ(1,1))^2/LandauRamanujan/GAMMA(2/3) 2329947399804766 r005 Re(z^2+c),c=-7/48+17/31*I,n=38 2329947402349452 r009 Im(z^3+c),c=-23/60+6/41*I,n=9 2329947408545489 r005 Re(z^2+c),c=11/54+27/49*I,n=8 2329947408556009 p001 sum(1/(467*n+430)/(256^n),n=0..infinity) 2329947413750170 b008 -4+Zeta[2,-1/5] 2329947429563559 a005 (1/cos(8/215*Pi))^796 2329947433517325 a007 Real Root Of -536*x^4-850*x^3+864*x^2-538*x-899 2329947441750062 m001 (MertensB2-ZetaQ(4))/(Ei(1,1)-LaplaceLimit) 2329947446111871 h001 (2/5*exp(1)+4/9)/(5/6*exp(2)+5/12) 2329947447933740 r005 Re(z^2+c),c=-9/40+15/41*I,n=34 2329947448814864 a007 Real Root Of 362*x^4+748*x^3+40*x^2+198*x-963 2329947462876420 a005 (1/sin(32/137*Pi))^94 2329947469705449 a007 Real Root Of -33*x^4-797*x^3-665*x^2-227*x+75 2329947479873590 r002 17th iterates of z^2 + 2329947480216645 s001 sum(exp(-4*Pi/5)^n*A100770[n],n=1..infinity) 2329947491469671 m001 (Ei(1)*cos(1/12*Pi)+Sierpinski)/Ei(1) 2329947494081671 l006 ln(739/7595) 2329947498710907 a001 32951280099/11*123^(19/21) 2329947500205489 m001 FeigenbaumKappa-Salem+ZetaQ(2) 2329947511355928 m001 (Pi*csc(1/24*Pi)/GAMMA(23/24))^(sin(1)/Trott) 2329947515437699 m001 (Chi(1)-ln(2+3^(1/2)))/(MertensB3+Sarnak) 2329947520029470 m005 (1/2*3^(1/2)-2)/(1/12*Catalan-1/8) 2329947525342643 r005 Im(z^2+c),c=-25/22+2/69*I,n=46 2329947528841435 m001 (Pi-2^(1/2))/(Zeta(1,-1)-Stephens) 2329947531769345 a001 514229/29*2^(13/33) 2329947531900673 a001 9349/11*(1/2*5^(1/2)+1/2)^17*11^(17/20) 2329947533982231 r005 Im(z^2+c),c=-31/48+2/45*I,n=54 2329947542838668 p002 log(13/4*10^(1/2)) 2329947553863920 a001 5473/161*199^(4/11) 2329947554668707 a001 24476/11*(1/2*5^(1/2)+1/2)^15*11^(17/20) 2329947557990519 a001 64079/11*(1/2*5^(1/2)+1/2)^13*11^(17/20) 2329947560043511 a001 39603/11*(1/2*5^(1/2)+1/2)^14*11^(17/20) 2329947562531630 m008 (4*Pi^3+1/2)/(3/5*Pi^4-5) 2329947568740126 a001 15127/11*(1/2*5^(1/2)+1/2)^16*11^(17/20) 2329947572203009 l006 ln(7192/9079) 2329947572411130 m001 (Mills+PolyaRandomWalk3D)/(Kac-MertensB3) 2329947599107010 m005 (1/3*Pi+3/5)/(1/7*2^(1/2)-3/11) 2329947601256927 r005 Re(z^2+c),c=-5/31+19/36*I,n=30 2329947613995868 a007 Real Root Of 155*x^4+298*x^3+350*x^2+981*x-413 2329947628347614 a001 5778/11*(1/2*5^(1/2)+1/2)^18*11^(17/20) 2329947637915794 a001 39603/8*21^(29/57) 2329947644788988 r005 Im(z^2+c),c=-37/90+7/16*I,n=17 2329947647930403 a001 1364*121393^(8/33) 2329947649679618 m001 arctan(1/2)^2/ln(GAMMA(17/24))*exp(1) 2329947659670633 s001 sum(exp(-3*Pi/5)^n*A137351[n],n=1..infinity) 2329947661204144 a003 cos(Pi*34/79)*cos(Pi*34/73) 2329947664580225 a007 Real Root Of 89*x^4-191*x^3-572*x^2+829*x-2 2329947666376620 r005 Im(z^2+c),c=-49/102+19/46*I,n=62 2329947666679971 m001 (-Pi+2)/(-GAMMA(1/6)+2/3) 2329947669624159 a007 Real Root Of -181*x^4+697*x^3-335*x^2-413*x-701 2329947671543127 m005 (1/3*2^(1/2)+1/9)/(2/7*5^(1/2)-8/9) 2329947676208064 q001 757/3249 2329947676208064 r005 Re(z^2+c),c=-28/19+55/57*I,n=2 2329947688577391 m001 (cos(1/5*Pi)+Zeta(1,2))/(Weierstrass+ZetaP(4)) 2329947710486606 m005 (1/2*gamma+4/5)/(1/7*Zeta(3)-1/8) 2329947719104002 m001 (FeigenbaumAlpha-GAMMA(5/6)*Sarnak)/Sarnak 2329947726022144 m001 (Kac+Thue)/(Zeta(1,-1)-Bloch) 2329947731173239 a007 Real Root Of -314*x^4-282*x^3+644*x^2-960*x-46 2329947731995706 r005 Re(z^2+c),c=-2/13+13/24*I,n=36 2329947735224890 r005 Im(z^2+c),c=1/40+12/13*I,n=5 2329947752161012 m001 ln(GAMMA(1/3))/Robbin^2/cos(Pi/12) 2329947758338401 a007 Real Root Of -770*x^4-964*x^3+629*x^2+937*x-238 2329947770403006 a005 (1/sin(73/159*Pi))^1216 2329947771814334 m002 -Pi^5+Cosh[Pi]+(Pi^5*Coth[Pi])/5 2329947771899643 r009 Re(z^3+c),c=-15/106+36/43*I,n=44 2329947779523158 a007 Real Root Of -393*x^4-540*x^3+497*x^2-805*x+178 2329947779953182 m001 KomornikLoreti*(1+GaussKuzminWirsing) 2329947781609356 m001 (Otter-Riemann1stZero)/(GAMMA(3/4)-Niven) 2329947786062722 r005 Re(z^2+c),c=-19/82+11/32*I,n=15 2329947788635474 l006 ln(447/4594) 2329947793275350 r005 Im(z^2+c),c=7/86+11/50*I,n=22 2329947796957359 r005 Im(z^2+c),c=-71/98+9/46*I,n=27 2329947800353347 m001 (Psi(1,1/3)-exp(-Pi)*GolombDickman)/exp(-Pi) 2329947800353347 m001 GolombDickman-exp(Pi)*Psi(1,1/3) 2329947801097680 r005 Im(z^2+c),c=7/86+11/50*I,n=21 2329947815728629 a007 Real Root Of -677*x^4-732*x^3-67*x^2+517*x-12 2329947818053891 p003 LerchPhi(1/6,2,434/201) 2329947821996163 a007 Real Root Of -189*x^4-168*x^3+171*x^2-893*x+436 2329947824405990 r009 Re(z^3+c),c=-9/25+19/41*I,n=19 2329947838173890 m005 (1/2*Zeta(3)+9/11)/(1/9*3^(1/2)+5/12) 2329947843680274 s002 sum(A137892[n]/(n^3*exp(n)-1),n=1..infinity) 2329947848000195 h001 (5/8*exp(1)+4/11)/(1/8*exp(1)+6/11) 2329947851363189 a007 Real Root Of -293*x^4-552*x^3+404*x^2+195*x-86 2329947851796326 h001 (3/7*exp(1)+4/9)/(5/6*exp(2)+3/4) 2329947854882771 r005 Im(z^2+c),c=-63/110+23/42*I,n=20 2329947857472770 a007 Real Root Of 226*x^4+191*x^3-496*x^2-623*x+169 2329947859321340 r005 Im(z^2+c),c=7/86+11/50*I,n=26 2329947859362186 a001 98209/682*76^(1/9) 2329947862286262 r005 Im(z^2+c),c=7/86+11/50*I,n=27 2329947862646605 r005 Im(z^2+c),c=7/86+11/50*I,n=30 2329947862724925 r005 Im(z^2+c),c=7/86+11/50*I,n=31 2329947862777639 r005 Im(z^2+c),c=7/86+11/50*I,n=35 2329947862777865 r005 Im(z^2+c),c=7/86+11/50*I,n=34 2329947862781152 r005 Im(z^2+c),c=7/86+11/50*I,n=39 2329947862781313 r005 Im(z^2+c),c=7/86+11/50*I,n=40 2329947862781331 r005 Im(z^2+c),c=7/86+11/50*I,n=43 2329947862781335 r005 Im(z^2+c),c=7/86+11/50*I,n=44 2329947862781338 r005 Im(z^2+c),c=7/86+11/50*I,n=48 2329947862781338 r005 Im(z^2+c),c=7/86+11/50*I,n=47 2329947862781338 r005 Im(z^2+c),c=7/86+11/50*I,n=52 2329947862781338 r005 Im(z^2+c),c=7/86+11/50*I,n=53 2329947862781338 r005 Im(z^2+c),c=7/86+11/50*I,n=56 2329947862781338 r005 Im(z^2+c),c=7/86+11/50*I,n=57 2329947862781338 r005 Im(z^2+c),c=7/86+11/50*I,n=60 2329947862781338 r005 Im(z^2+c),c=7/86+11/50*I,n=61 2329947862781338 r005 Im(z^2+c),c=7/86+11/50*I,n=64 2329947862781338 r005 Im(z^2+c),c=7/86+11/50*I,n=62 2329947862781338 r005 Im(z^2+c),c=7/86+11/50*I,n=63 2329947862781338 r005 Im(z^2+c),c=7/86+11/50*I,n=59 2329947862781338 r005 Im(z^2+c),c=7/86+11/50*I,n=58 2329947862781338 r005 Im(z^2+c),c=7/86+11/50*I,n=51 2329947862781338 r005 Im(z^2+c),c=7/86+11/50*I,n=55 2329947862781338 r005 Im(z^2+c),c=7/86+11/50*I,n=54 2329947862781338 r005 Im(z^2+c),c=7/86+11/50*I,n=49 2329947862781338 r005 Im(z^2+c),c=7/86+11/50*I,n=50 2329947862781339 r005 Im(z^2+c),c=7/86+11/50*I,n=46 2329947862781339 r005 Im(z^2+c),c=7/86+11/50*I,n=45 2329947862781348 r005 Im(z^2+c),c=7/86+11/50*I,n=42 2329947862781356 r005 Im(z^2+c),c=7/86+11/50*I,n=38 2329947862781376 r005 Im(z^2+c),c=7/86+11/50*I,n=41 2329947862781690 r005 Im(z^2+c),c=7/86+11/50*I,n=36 2329947862782192 r005 Im(z^2+c),c=7/86+11/50*I,n=37 2329947862796372 r005 Im(z^2+c),c=7/86+11/50*I,n=33 2329947862804721 r005 Im(z^2+c),c=7/86+11/50*I,n=32 2329947862969230 r005 Im(z^2+c),c=7/86+11/50*I,n=29 2329947863276797 r005 Im(z^2+c),c=7/86+11/50*I,n=25 2329947863488203 r005 Im(z^2+c),c=7/86+11/50*I,n=28 2329947865445778 m001 Trott*(exp(1/2)-exp(Pi)) 2329947865950844 m001 (Kac+Khinchin)/(Riemann1stZero+ZetaP(4)) 2329947868614493 r005 Im(z^2+c),c=7/86+11/50*I,n=23 2329947870131836 l006 ln(3697/4667) 2329947874096828 m001 GAMMA(7/12)^2*ln(MinimumGamma)^2/Zeta(3)^2 2329947878741174 r005 Im(z^2+c),c=7/86+11/50*I,n=24 2329947889419272 a008 Real Root of x^4-2*x^3+13*x^2+195*x+329 2329947890207813 m001 (Otter+Rabbit)/(cos(1/5*Pi)+LandauRamanujan) 2329947898940993 a003 cos(Pi*17/62)*cos(Pi*28/73) 2329947900418034 r005 Im(z^2+c),c=-43/44+10/53*I,n=4 2329947903252175 m005 (1/2*Catalan-3/11)/(4/5*gamma+1/3) 2329947914597138 r005 Re(z^2+c),c=-13/16+7/123*I,n=24 2329947930334946 r005 Re(z^2+c),c=-5/4+7/171*I,n=42 2329947931146347 a007 Real Root Of 213*x^4+239*x^3-757*x^2-304*x+147 2329947932682652 r005 Im(z^2+c),c=2/23+22/37*I,n=3 2329947932707826 a001 47/196418*2178309^(16/51) 2329947934735796 m001 (Khinchin-RenyiParking)/(Bloch-Conway) 2329947941946286 r009 Re(z^3+c),c=-25/58+26/49*I,n=19 2329947943895885 a007 Real Root Of -99*x^4-99*x^3+106*x^2-121*x+808 2329947945561562 m001 Salem+(2^(1/2))^ThueMorse 2329947953382079 m004 -15-125*Pi+25*Sqrt[5]*Pi-Tan[Sqrt[5]*Pi] 2329947966821889 m001 cos(1)^2/arctan(1/2)^2/exp(log(1+sqrt(2)))^2 2329947977770608 r005 Im(z^2+c),c=-49/40+7/46*I,n=12 2329947985770587 a007 Real Root Of -26*x^4+421*x^3+53*x^2+663*x+157 2329947990972362 m001 (arctan(1/3)+Sarnak)/(TreeGrowth2nd+ZetaQ(3)) 2329947993567598 m001 (2^(1/2)+Shi(1))/(polylog(4,1/2)+Landau) 2329947993892666 m001 (Otter+ZetaP(2))/(BesselJ(0,1)+ArtinRank2) 2329947994197611 h001 (4/11*exp(1)+1/12)/(3/5*exp(2)+1/6) 2329947996142820 p004 log(10781/1049) 2329948011393982 a001 199/3*514229^(39/49) 2329948012616839 m006 (1/2*Pi^2-1/2)/(5/6*exp(Pi)-1/4) 2329948016983116 r009 Re(z^3+c),c=-3/98+39/59*I,n=15 2329948018918658 r005 Re(z^2+c),c=9/86+17/31*I,n=10 2329948020090019 r009 Im(z^3+c),c=-1/26+12/49*I,n=4 2329948021404693 a001 843/1346269*832040^(13/49) 2329948036903414 a001 2207/11*(1/2*5^(1/2)+1/2)^20*11^(17/20) 2329948041656563 r005 Im(z^2+c),c=17/70+7/61*I,n=13 2329948043981368 m001 Catalan*Grothendieck+ArtinRank2 2329948048999855 m005 (1/3*Zeta(3)-1/3)/(5/6*Pi+3/11) 2329948049919741 m001 (-gamma(1)+MasserGramain)/(3^(1/2)+GAMMA(2/3)) 2329948072059165 a001 29/1346269*3^(1/14) 2329948074420624 m001 (Mills+Rabbit)/(cos(1/12*Pi)-FeigenbaumC) 2329948086646707 a007 Real Root Of 640*x^4+969*x^3-834*x^2+555*x-784 2329948089622899 m001 (Zeta(5)+GAMMA(7/12))/(Psi(1,1/3)+Catalan) 2329948094582330 h001 (6/7*exp(2)+1/7)/(9/11*exp(1)+5/9) 2329948108297001 m001 (MadelungNaCl-Magata)/(exp(1/Pi)-Conway) 2329948113824292 a007 Real Root Of 109*x^4+289*x^3+124*x^2-297*x-922 2329948120896972 a007 Real Root Of 271*x^4+515*x^3-161*x^2-41*x-694 2329948124109221 s002 sum(A243490[n]/(pi^n-1),n=1..infinity) 2329948131262491 h001 (9/10*exp(1)+8/9)/(1/6*exp(2)+1/5) 2329948133275709 m006 (Pi-4)/(1/3*ln(Pi)-3/4) 2329948147110413 r005 Im(z^2+c),c=7/86+11/50*I,n=20 2329948148412739 r005 Im(z^2+c),c=-71/106+2/55*I,n=45 2329948148509129 m001 Backhouse^GAMMA(11/24)-GAMMA(5/24) 2329948150222167 l006 ln(602/6187) 2329948151614966 a005 (1/sin(99/227*Pi))^1064 2329948151955376 m001 Psi(2,1/3)^(LaplaceLimit/Pi) 2329948152215046 l006 ln(7596/9589) 2329948153300231 m001 (Zeta(5)-Conway)/(FellerTornier-Porter) 2329948153520981 a001 10946/2207*199^(8/11) 2329948154407449 m001 (LaplaceLimit+Paris)/(exp(1)-ln(gamma)) 2329948155086337 s002 sum(A118110[n]/(exp(n)-1),n=1..infinity) 2329948157516964 r005 Im(z^2+c),c=-9/10+20/97*I,n=19 2329948161628342 r002 49th iterates of z^2 + 2329948163715230 m008 (1/2*Pi-1)/(4/5*Pi^5+1/6) 2329948176902330 m003 4/5+Sinh[1/2+Sqrt[5]/2]/4+Tanh[1/2+Sqrt[5]/2] 2329948176995316 m005 (1/2*3^(1/2)+1/12)/(1/11*3^(1/2)+1/4) 2329948180261962 m001 Ei(1)^(GolombDickman/Bloch) 2329948187483221 l003 AiryAi(1,47/110) 2329948188376151 m001 ln(GAMMA(11/12))*Cahen*sin(Pi/12)^2 2329948191749753 h001 (1/11*exp(1)+1/5)/(7/12*exp(1)+1/3) 2329948192077602 m005 (1/3*gamma+3/7)/(2/7*exp(1)-3/4) 2329948207614043 r002 34th iterates of z^2 + 2329948213749469 a001 281/15456*3^(7/31) 2329948213947455 s002 sum(A272673[n]/(n^3*2^n-1),n=1..infinity) 2329948218264129 m004 2+250/Pi+4*Sinh[Sqrt[5]*Pi] 2329948251622425 m005 (1/2*Zeta(3)-11/12)/(2/3*3^(1/2)+1/5) 2329948254402949 m001 exp(Champernowne)^2*Cahen^2*GAMMA(5/24) 2329948266715376 m001 GAMMA(3/4)*(KhinchinLevy+TravellingSalesman) 2329948266907097 m005 (1/2*5^(1/2)+10/11)/(3*exp(1)+6/11) 2329948284955823 r009 Re(z^3+c),c=-11/32+23/54*I,n=41 2329948286828657 r005 Im(z^2+c),c=7/86+11/50*I,n=19 2329948291926054 m004 -50/Pi+25*Sqrt[5]*Pi-125*Pi*Coth[Sqrt[5]*Pi] 2329948294120510 m005 (1/2*Catalan+4/5)/(2/7*gamma+3/8) 2329948299750261 r005 Im(z^2+c),c=-19/46+15/38*I,n=49 2329948311015029 r005 Im(z^2+c),c=-51/82+12/43*I,n=16 2329948318068392 s002 sum(A164824[n]/(10^n-1),n=1..infinity) 2329948330344543 l006 ln(7551/7729) 2329948332174260 m001 (GAMMA(11/12)-MertensB1)/(Otter+ZetaP(2)) 2329948332464924 r002 27th iterates of z^2 + 2329948333903732 a007 Real Root Of 281*x^4+790*x^3+255*x^2-48*x+215 2329948339865292 r005 Im(z^2+c),c=4/11+8/63*I,n=39 2329948344550387 m001 1/Salem^2*FeigenbaumAlpha*ln(GAMMA(1/4)) 2329948347417131 r009 Re(z^3+c),c=-4/15+10/43*I,n=10 2329948347553159 r009 Re(z^3+c),c=-41/110+25/41*I,n=37 2329948354677040 a003 sin(Pi*6/77)*sin(Pi*44/107) 2329948360460440 m005 (3*gamma-1/4)/(1/2*exp(1)+5) 2329948363734988 l006 ln(757/7780) 2329948364430598 r005 Im(z^2+c),c=-107/98+13/56*I,n=15 2329948372235409 m001 1/Riemann1stZero^2/ln(Lehmer)^2*GAMMA(5/6)^2 2329948373380689 a005 (1/cos(5/212*Pi))^1984 2329948382900769 r005 Re(z^2+c),c=-79/126+19/45*I,n=35 2329948387449369 m001 (Landau-gamma)/(Rabbit+RenyiParking) 2329948387547995 m001 ZetaP(4)^(Grothendieck/Pi) 2329948388300441 a007 Real Root Of -425*x^4-863*x^3-2*x^2-561*x+313 2329948392321764 a007 Real Root Of 472*x^4+837*x^3-508*x^2-35*x-647 2329948396756084 a007 Real Root Of 511*x^4+925*x^3-780*x^2-236*x+325 2329948397571639 p001 sum((-1)^n/(497*n+429)/(1024^n),n=0..infinity) 2329948402530807 h001 (-exp(3)-1)/(-exp(-3)-9) 2329948417859449 r009 Im(z^3+c),c=-57/118+25/48*I,n=33 2329948419684038 l006 ln(3899/4922) 2329948420329719 r005 Re(z^2+c),c=-20/31+14/39*I,n=34 2329948429201032 r005 Re(z^2+c),c=-1/58+3/4*I,n=15 2329948434972969 m001 1/FeigenbaumKappa*exp(RenyiParking)^2*sin(1)^2 2329948436373807 r005 Im(z^2+c),c=-31/114+17/47*I,n=8 2329948439814433 b008 7*ArcCsc[11/6]^2 2329948442187375 r005 Im(z^2+c),c=-21/122+1/33*I,n=8 2329948442350452 r009 Re(z^3+c),c=-55/106+24/61*I,n=33 2329948447617074 a007 Real Root Of 542*x^4-532*x^3+662*x^2-780*x-226 2329948450712318 r009 Re(z^3+c),c=-5/114+44/63*I,n=61 2329948451600214 m001 exp(gamma)/arctan(1/2)/exp(1/2) 2329948451639734 m001 (Zeta(5)-Gompertz)/(Khinchin-Kolakoski) 2329948452238571 m005 (1/2*3^(1/2)+1/5)/(5/8*3^(1/2)-5/8) 2329948460813678 a007 Real Root Of -550*x^4-815*x^3+634*x^2-868*x+436 2329948462633003 r005 Re(z^2+c),c=-7/48+27/49*I,n=64 2329948470552654 a007 Real Root Of -838*x^4-544*x^3+54*x^2+557*x-13 2329948474470240 b008 E+3*(EulerGamma+2*Pi) 2329948476655578 r005 Re(z^2+c),c=1/38+15/64*I,n=11 2329948493208616 a007 Real Root Of -30*x^4-686*x^3+342*x^2+892*x-642 2329948495713829 h002 exp(7^(1/3)+4^(2/3)+10^(3/4)) 2329948499104670 h001 (-8*exp(1/3)+2)/(-9*exp(3/2)+1) 2329948501041785 m005 (1/2*3^(1/2)-7/11)/(3/11*2^(1/2)+3/5) 2329948504672154 l006 ln(912/9373) 2329948510544875 r009 Re(z^3+c),c=-7/19+14/29*I,n=42 2329948516219476 a003 cos(Pi*6/71)-sin(Pi*41/98) 2329948520048604 r005 Re(z^2+c),c=-21/34+37/44*I,n=3 2329948521823502 r005 Im(z^2+c),c=-27/98+44/59*I,n=9 2329948523287864 m001 ArtinRank2*Bloch^2*exp(GAMMA(2/3))^2 2329948528050961 a001 14662949395604/89*2^(1/2) 2329948535723879 a001 329*2139295485799^(5/9) 2329948540415342 m001 (Pi^(1/2)-CareFree)/(Pi+3^(1/3)) 2329948547427153 r005 Im(z^2+c),c=-45/82+18/55*I,n=8 2329948547937104 r005 Im(z^2+c),c=-21/38+13/30*I,n=49 2329948558755060 a001 28657/5778*199^(8/11) 2329948560021925 a003 sin(Pi*1/34)+sin(Pi*4/89) 2329948562341701 m001 Tribonacci/exp(Riemann2ndZero)/BesselJ(0,1)^2 2329948578213747 m001 (KhinchinLevy-sin(1))/(Mills+ZetaP(3)) 2329948590838676 r005 Im(z^2+c),c=-69/82+5/23*I,n=4 2329948595019005 h005 exp(sin(Pi*10/39)/sin(Pi*13/40)) 2329948597708360 r009 Re(z^3+c),c=-13/114+34/45*I,n=41 2329948604558523 m001 (2^(1/2)+GAMMA(7/12))/(-Totient+ZetaP(4)) 2329948605913787 r005 Re(z^2+c),c=-21/118+18/37*I,n=29 2329948607085094 a001 55/9349*18^(10/21) 2329948611563980 m005 (1/3*gamma+2/3)/(3*2^(1/2)-5/9) 2329948616074251 a007 Real Root Of -280*x^4-239*x^3+956*x^2-224*x-483 2329948617877927 a001 75025/15127*199^(8/11) 2329948623422040 h001 (7/8*exp(2)+1/6)/(9/10*exp(1)+2/5) 2329948625757135 a007 Real Root Of 838*x^4+841*x^3-210*x^2-981*x-209 2329948626503837 a001 196418/39603*199^(8/11) 2329948627762340 a001 514229/103682*199^(8/11) 2329948627945954 a001 1346269/271443*199^(8/11) 2329948627972742 a001 3524578/710647*199^(8/11) 2329948627976651 a001 9227465/1860498*199^(8/11) 2329948627977221 a001 24157817/4870847*199^(8/11) 2329948627977304 a001 63245986/12752043*199^(8/11) 2329948627977316 a001 165580141/33385282*199^(8/11) 2329948627977318 a001 433494437/87403803*199^(8/11) 2329948627977318 a001 1134903170/228826127*199^(8/11) 2329948627977318 a001 2971215073/599074578*199^(8/11) 2329948627977318 a001 7778742049/1568397607*199^(8/11) 2329948627977318 a001 20365011074/4106118243*199^(8/11) 2329948627977318 a001 53316291173/10749957122*199^(8/11) 2329948627977318 a001 139583862445/28143753123*199^(8/11) 2329948627977318 a001 365435296162/73681302247*199^(8/11) 2329948627977318 a001 956722026041/192900153618*199^(8/11) 2329948627977318 a001 2504730781961/505019158607*199^(8/11) 2329948627977318 a001 10610209857723/2139295485799*199^(8/11) 2329948627977318 a001 4052739537881/817138163596*199^(8/11) 2329948627977318 a001 140728068720/28374454999*199^(8/11) 2329948627977318 a001 591286729879/119218851371*199^(8/11) 2329948627977318 a001 225851433717/45537549124*199^(8/11) 2329948627977318 a001 86267571272/17393796001*199^(8/11) 2329948627977318 a001 32951280099/6643838879*199^(8/11) 2329948627977318 a001 1144206275/230701876*199^(8/11) 2329948627977318 a001 4807526976/969323029*199^(8/11) 2329948627977319 a001 1836311903/370248451*199^(8/11) 2329948627977319 a001 701408733/141422324*199^(8/11) 2329948627977319 a001 267914296/54018521*199^(8/11) 2329948627977324 a001 9303105/1875749*199^(8/11) 2329948627977356 a001 39088169/7881196*199^(8/11) 2329948627977574 a001 14930352/3010349*199^(8/11) 2329948627979066 a001 5702887/1149851*199^(8/11) 2329948627989299 a001 2178309/439204*199^(8/11) 2329948628059433 a001 75640/15251*199^(8/11) 2329948628540138 a001 317811/64079*199^(8/11) 2329948629093017 r009 Re(z^3+c),c=-11/32+23/54*I,n=44 2329948631834943 a001 121393/24476*199^(8/11) 2329948632818147 r005 Im(z^2+c),c=-31/60+2/49*I,n=48 2329948633537996 r005 Im(z^2+c),c=-21/46+25/62*I,n=32 2329948640160244 m001 TwinPrimes^Sierpinski/Porter 2329948640688966 m001 (GAMMA(11/12)-PolyaRandomWalk3D)/(Pi+gamma(1)) 2329948644041686 m001 FeigenbaumAlpha^sin(1)/(Riemann1stZero^sin(1)) 2329948654417870 a001 46368/9349*199^(8/11) 2329948656090108 h001 (5/9*exp(2)+3/7)/(1/6*exp(2)+5/7) 2329948666501521 m005 (1/2*3^(1/2)-9/11)/(1/6*3^(1/2)-1/12) 2329948673645839 l006 ln(8000/10099) 2329948679086149 a007 Real Root Of -542*x^4-684*x^3+986*x^2-975*x-303 2329948699739614 m001 (Si(Pi)+Chi(1))/(-ErdosBorwein+ZetaP(2)) 2329948699968315 p003 LerchPhi(1/100,1,96/223) 2329948703482269 m008 (1/3*Pi-5/6)/(3*Pi^5-1/6) 2329948705561897 m005 (1/2*Pi-1/2)/(6*Catalan-9/10) 2329948714451426 m006 (1/4*ln(Pi)-1)/(1/5/Pi+3) 2329948720373546 r005 Im(z^2+c),c=-137/110+2/25*I,n=26 2329948720843403 r009 Re(z^3+c),c=-27/82+13/34*I,n=5 2329948725510504 m001 (ln(3)+3^(1/3))/(GAMMA(17/24)-DuboisRaymond) 2329948729004484 m008 (Pi^5+3/4)/(4*Pi+3/5) 2329948729686784 a007 Real Root Of -547*x^4-854*x^3+594*x^2-933*x-80 2329948736399304 m005 (1/3*3^(1/2)+1/6)/(1/6*Catalan+1/6) 2329948739718218 r009 Re(z^3+c),c=-11/32+23/54*I,n=47 2329948746272342 a003 cos(Pi*5/119)-sin(Pi*20/73) 2329948761647341 a007 Real Root Of 718*x^4+345*x^3-173*x^2-648*x-15 2329948773650185 b008 8+3*ArcCosh[82] 2329948774845339 r009 Re(z^3+c),c=-11/32+23/54*I,n=50 2329948775131678 b008 E+Pi*Coth[2/13] 2329948778393942 h001 (1/9*exp(1)+1/4)/(2/9*exp(2)+8/11) 2329948780887835 r008 a(0)=0,K{-n^6,-61-3*n^3-10*n^2+30*n} 2329948784047886 m004 6+5/Pi+5*Pi*Tanh[Sqrt[5]*Pi] 2329948785850422 r009 Re(z^3+c),c=-11/32+23/54*I,n=53 2329948789127424 r009 Re(z^3+c),c=-11/32+23/54*I,n=49 2329948789220589 r009 Re(z^3+c),c=-11/32+23/54*I,n=52 2329948789246511 r009 Re(z^3+c),c=-11/32+23/54*I,n=56 2329948789897778 r009 Re(z^3+c),c=-11/32+23/54*I,n=55 2329948790276311 r009 Re(z^3+c),c=-11/32+23/54*I,n=59 2329948790334865 r009 Re(z^3+c),c=-11/32+23/54*I,n=58 2329948790548926 r009 Re(z^3+c),c=-11/32+23/54*I,n=61 2329948790582071 r009 Re(z^3+c),c=-11/32+23/54*I,n=62 2329948790642134 r009 Re(z^3+c),c=-11/32+23/54*I,n=64 2329948790867158 r009 Re(z^3+c),c=-11/32+23/54*I,n=63 2329948791194107 r009 Re(z^3+c),c=-11/32+23/54*I,n=60 2329948792159138 r009 Re(z^3+c),c=-11/32+23/54*I,n=57 2329948794709652 r009 Re(z^3+c),c=-11/32+23/54*I,n=46 2329948794876309 a007 Real Root Of -316*x^4-360*x^3+767*x^2-180*x+176 2329948794975131 r009 Re(z^3+c),c=-11/32+23/54*I,n=54 2329948798642045 a007 Real Root Of -400*x^4-904*x^3+184*x^2-91*x-857 2329948803092721 r009 Re(z^3+c),c=-11/32+23/54*I,n=51 2329948803496660 r005 Im(z^2+c),c=-29/66+13/34*I,n=18 2329948806472874 m001 (polylog(4,1/2)+Backhouse)/(Kolakoski-Rabbit) 2329948809203565 a001 17711/3571*199^(8/11) 2329948821368146 a007 Real Root Of -374*x^4-694*x^3+241*x^2-626*x-523 2329948825629866 a007 Real Root Of 258*x^4+296*x^3-413*x^2+583*x-259 2329948826183650 r009 Re(z^3+c),c=-11/32+23/54*I,n=48 2329948828991986 r009 Re(z^3+c),c=-11/32+23/54*I,n=43 2329948830449966 m001 (Kac-Robbin)/(sin(1/12*Pi)+GAMMA(17/24)) 2329948837226278 p004 log(36269/3529) 2329948845916582 m001 (Kolakoski+OneNinth)/(KhinchinLevy+Khinchin) 2329948860896613 m001 GAMMA(7/24)/Cahen^2/exp(sqrt(3))^2 2329948862273264 a001 341/36*121393^(19/22) 2329948866854459 m005 (1/2*5^(1/2)+1/12)/(17/72+1/8*5^(1/2)) 2329948871794755 a007 Real Root Of -473*x^4-915*x^3-71*x^2-826*x+827 2329948880405930 m005 (1/2*Pi+1)/(9/10*5^(1/2)-10/11) 2329948890893769 r009 Re(z^3+c),c=-11/32+23/54*I,n=45 2329948895962381 m001 exp(-1/2*Pi)+ln(Pi)^(2*Pi/GAMMA(5/6)) 2329948895962381 m001 exp(-1/2*Pi)+ln(Pi)^GAMMA(1/6) 2329948897454589 m009 (3/10*Pi^2+2)/(1/3*Psi(1,2/3)-1) 2329948902306413 r002 5th iterates of z^2 + 2329948911516409 a007 Real Root Of 650*x^4-961*x^3-282*x^2-971*x-225 2329948915098421 l006 ln(4101/5177) 2329948917139526 r009 Re(z^3+c),c=-39/122+25/49*I,n=6 2329948917180644 a001 843/514229*28657^(29/41) 2329948933020696 m005 (1/2*2^(1/2)+5)/(10/11*5^(1/2)+5/12) 2329948938918249 m001 exp(Rabbit)/LaplaceLimit/log(2+sqrt(3)) 2329948945431306 h003 exp(Pi*(5^(2/3)/(11^(1/2)+9^(3/4))^(1/2))) 2329948955452235 r002 3th iterates of z^2 + 2329948961576712 m001 MinimumGamma^(1/2*FransenRobinson*2^(2/3)) 2329948966155101 a007 Real Root Of 417*x^4-253*x^3+431*x^2-710*x+144 2329948970355197 m001 (HardyLittlewoodC3+Salem)/(Sarnak+ZetaQ(2)) 2329948972880344 m008 (1/4*Pi^3+3)/(2/5*Pi^2+2/3) 2329948973467011 a001 1134903170/3*3571^(2/9) 2329948983727602 r009 Re(z^3+c),c=-11/32+23/54*I,n=40 2329948984335035 m001 GAMMA(5/6)+ErdosBorwein*RenyiParking 2329948985657705 r005 Im(z^2+c),c=-4/7+17/76*I,n=5 2329948986526180 a001 (5^(1/4)+1)^(37/40) 2329948987229718 m001 (5^(1/2)+Shi(1))/Riemann1stZero 2329948992400250 a007 Real Root Of -272*x^4-825*x^3-506*x^2-445*x-709 2329948993336173 a001 5702887/3*9349^(7/9) 2329948996013054 a003 sin(Pi*11/92)*sin(Pi*23/105) 2329948997409189 r005 Re(z^2+c),c=-9/52+25/51*I,n=25 2329949003887458 a001 2255*54018521^(7/9) 2329949006342992 m005 (1/2*2^(1/2)+2/3)/(3*3^(1/2)+7/10) 2329949013754397 a001 4976784*64079^(5/9) 2329949014038018 a001 121393/3*370248451^(5/9) 2329949014060441 a001 1836311903/3*167761^(1/9) 2329949014065035 a001 105937*12752043^(11/18) 2329949014069531 a001 9227465/3*3010349^(4/9) 2329949014069625 a001 5702887/3*87403803^(7/18) 2329949014069638 a001 4976784*4106118243^(5/18) 2329949014069638 a001 165580141/3*20633239^(2/9) 2329949014069640 a001 267914296/3*5600748293801^(1/9) 2329949014069640 a001 233802911*969323029^(1/9) 2329949014069640 a001 1836311903/3*28143753123^(1/18) 2329949014069640 a001 433494437/3*73681302247^(1/9) 2329949014069640 a001 63245986/3*1568397607^(2/9) 2329949014069640 a001 24157817/3*119218851371^(2/9) 2329949014069641 a001 1134903170/3*12752043^(1/9) 2329949014069645 a001 2971215073/3*4870847^(1/18) 2329949014069645 a001 9227465/3*9062201101803^(2/9) 2329949014069897 a001 1346269/3*23725150497407^(5/18) 2329949014069897 a001 1346269/3*228826127^(4/9) 2329949014069951 a001 1346269/3*4870847^(5/9) 2329949014070921 a001 165580141/3*710647^(5/18) 2329949014076667 a001 433494437/3*271443^(2/9) 2329949014081718 a001 196418/3*17393796001^(4/9) 2329949014081718 a001 196418/3*505019158607^(7/18) 2329949014085307 a001 196418/3*710647^(7/9) 2329949014091805 a001 832040/3*271443^(13/18) 2329949014635507 a001 28657/3*1149851^(8/9) 2329949014637073 a001 28657/3*1322157322203^(4/9) 2329949014729889 a001 63245986/3*39603^(4/9) 2329949015468055 a001 105937*39603^(17/18) 2329949017958887 a001 10946/3*28143753123^(5/9) 2329949018029377 a001 165580141/3*15127^(7/18) 2329949020122861 a003 cos(Pi*28/83)-cos(Pi*38/91) 2329949023120724 a001 1346269/3*15127^(8/9) 2329949024293935 p001 sum(1/(141*n+43)/(125^n),n=0..infinity) 2329949026919180 a007 Real Root Of -390*x^4-960*x^3-241*x^2-43*x+559 2329949036065201 a007 Real Root Of 343*x^4+746*x^3+74*x^2+510*x+114 2329949038297340 r002 32th iterates of z^2 + 2329949046682153 m001 GAMMA(2/3)^Khinchin-gamma(1) 2329949048540997 m005 (1/15+1/6*5^(1/2))/(4/5*3^(1/2)+1/2) 2329949053954419 r005 Im(z^2+c),c=-47/114+15/34*I,n=17 2329949067219164 a001 2971215073/3*2207^(1/9) 2329949068282082 m001 (-sin(1)+OrthogonalArrays)/(exp(Pi)+1) 2329949069135196 r009 Re(z^3+c),c=-11/32+23/54*I,n=42 2329949069716945 a007 Real Root Of 476*x^4+696*x^3-764*x^2+185*x-646 2329949070306603 m001 5^(1/2)-KhinchinHarmonic+Tribonacci 2329949085617920 m001 LandauRamanujan+Grothendieck^StronglyCareFree 2329949096353150 a001 2255*199^(15/34) 2329949098289368 m001 (-QuadraticClass+Thue)/(PlouffeB-Psi(1,1/3)) 2329949108261737 p002 log(16*(2-2^(2/3))^(1/2)) 2329949114996355 a001 521/6557470319842*317811^(4/15) 2329949118831800 m001 (2^(1/3)-Zeta(1/2))/(-Salem+ZetaQ(3)) 2329949124476364 m001 Gompertz/FeigenbaumB/HardyLittlewoodC4 2329949130920067 a007 Real Root Of -421*x^4-997*x^3+251*x^2+849*x+412 2329949131100966 m001 (Trott+ZetaP(3))/(gamma+Ei(1,1)) 2329949139663197 m001 (1-Chi(1))/(-Kolakoski+Paris) 2329949148049795 r005 Re(z^2+c),c=-17/94+11/23*I,n=61 2329949156402590 a003 sin(Pi*35/103)-sin(Pi*21/59) 2329949156669023 m001 (Tribonacci+ZetaQ(2))/(BesselI(0,2)-Porter) 2329949164739123 r005 Re(z^2+c),c=-5/6+30/143*I,n=64 2329949182090303 r005 Re(z^2+c),c=5/22+17/36*I,n=43 2329949192332644 p002 log(14^(1/2)/(10^(1/4)-2^(1/2))) 2329949192990801 l006 ln(155/1593) 2329949196215664 a001 1602508992*843^(1/18) 2329949196781462 a001 1597/3*73681302247^(11/18) 2329949196781462 a001 1597/3*1568397607^(13/18) 2329949198755783 m005 (1/3*2^(1/2)+1/10)/(9/10*Pi-3/8) 2329949203366361 m001 (Niven+TwinPrimes)/(Zeta(3)-Conway) 2329949210127176 m001 exp(GAMMA(7/24))*Si(Pi)/sqrt(3) 2329949226785475 a007 Real Root Of -34*x^4-770*x^3+486*x^2-723*x-100 2329949229938043 r005 Im(z^2+c),c=-5/7+17/116*I,n=52 2329949234113531 m002 (3*E^Pi)/Pi^6+E^Pi*Coth[Pi] 2329949235512359 a007 Real Root Of 873*x^4-993*x^3+298*x^2-621*x-176 2329949238578680 q001 459/197 2329949240521613 r005 Im(z^2+c),c=-21/82+15/43*I,n=29 2329949246703266 r005 Re(z^2+c),c=-113/114+19/59*I,n=13 2329949248146926 m001 arctan(1/3)^exp(1)/(CopelandErdos^exp(1)) 2329949249998026 a007 Real Root Of -891*x^4+36*x^3+166*x^2+417*x-104 2329949252223466 m001 GaussKuzminWirsing^2/ln(Conway)*sin(Pi/12)^2 2329949255322611 a007 Real Root Of -430*x^4-652*x^3+896*x^2+302*x+265 2329949256854852 p002 log(5^(3/4)*(3+12^(3/4))^(1/2)) 2329949265531070 m005 (1/2*Zeta(3)-11/12)/(-41/110+5/22*5^(1/2)) 2329949268999335 r005 Re(z^2+c),c=-1/7+26/47*I,n=25 2329949276270992 m006 (4/5*exp(Pi)+5)/(3*Pi+2/3) 2329949278771907 a007 Real Root Of 308*x^4+242*x^3-963*x^2+58*x-653 2329949278997488 a007 Real Root Of -370*x^4-915*x^3+88*x^2+276*x-504 2329949289933723 r005 Re(z^2+c),c=-9/40+15/41*I,n=31 2329949293399666 r009 Re(z^3+c),c=-3/98+5/14*I,n=11 2329949303650765 a007 Real Root Of -41*x^4+311*x^3+776*x^2-x+927 2329949305512541 a007 Real Root Of 332*x^4+967*x^3+397*x^2+225*x+816 2329949306392037 a001 63245986/3*2207^(11/18) 2329949310768535 m005 (1/2*3^(1/2)+5/11)/(5/9*Zeta(3)+5) 2329949317803685 m001 (Champernowne-ZetaP(4))^PlouffeB 2329949334001684 m001 (cos(1)+exp(1/exp(1)))/(1-Si(Pi)) 2329949334977946 m005 (1/2*exp(1)+1/6)/(1/12*Pi-11/12) 2329949339731451 a007 Real Root Of -204*x^4-531*x^3-89*x^2+419*x+755 2329949345050507 h001 (-8*exp(6)-9)/(-exp(2)+6) 2329949357592152 a007 Real Root Of -946*x^4-991*x^3-323*x^2+752*x+183 2329949363999324 l006 ln(4303/5432) 2329949371902262 a007 Real Root Of -513*x^4-631*x^3+991*x^2-504*x+583 2329949373565141 a007 Real Root Of -493*x^4-942*x^3+967*x^2+932*x-464 2329949391326995 r005 Im(z^2+c),c=-13/10+3/226*I,n=6 2329949406401004 m001 (gamma+Zeta(3))/(gamma(2)+gamma(3)) 2329949408357098 a007 Real Root Of -329*x^4-322*x^3+810*x^2-378*x+345 2329949409243203 r005 Re(z^2+c),c=-17/98+9/16*I,n=24 2329949410892745 r005 Im(z^2+c),c=2/19+3/5*I,n=17 2329949419433415 a007 Real Root Of 354*x^4-946*x^3-178*x^2-843*x+217 2329949421032391 r005 Re(z^2+c),c=49/114+58/63*I,n=2 2329949425505939 m001 (Zeta(5)+Ei(1))/(CareFree-ReciprocalLucas) 2329949435048599 s001 sum(exp(-Pi/4)^(n-1)*A004935[n],n=1..infinity) 2329949441631970 m001 (ln(3)+CareFree)/(OneNinth-QuadraticClass) 2329949450848468 a007 Real Root Of 15*x^4+368*x^3+423*x^2-190*x+34 2329949463149364 m001 (-KhinchinLevy+TwinPrimes)/(Shi(1)+Zeta(3)) 2329949464740446 m001 (KhinchinHarmonic+Mills*Niven)/Niven 2329949465585809 m001 (exp(Pi)-ln(2^(1/2)+1)*Otter)/ln(2^(1/2)+1) 2329949465938255 a001 87403803/89*514229^(16/17) 2329949467422156 a001 39603/89*1836311903^(16/17) 2329949469856050 r002 28th iterates of z^2 + 2329949476906861 m001 MertensB1^GAMMA(23/24)/Trott 2329949480972415 r005 Im(z^2+c),c=-9/8+31/125*I,n=22 2329949491477822 m001 (FeigenbaumAlpha-Riemann3rdZero)/(ln(5)-Cahen) 2329949493661166 b008 3/5-7*(2+Sqrt[2]) 2329949493880808 a007 Real Root Of 972*x^4+7*x^3+623*x^2-830*x+19 2329949513519042 h005 exp(sin(Pi*14/51)/sin(Pi*11/31)) 2329949516195034 a001 72/161*843^(13/14) 2329949518295735 m001 Robbin*(5^(1/2)+GAMMA(17/24)) 2329949523470881 b008 3+39*Erf[1/2] 2329949527257469 v002 sum(1/(3^n*(26*n^2-70*n+62)),n=1..infinity) 2329949537670557 h001 (1/7*exp(2)+1/7)/(7/12*exp(2)+5/6) 2329949541167121 r005 Im(z^2+c),c=-17/38+21/52*I,n=57 2329949544364282 m001 (5^(1/2)+ln(3))/(MertensB3+Paris) 2329949545416822 m001 (-Champernowne+OneNinth)/(1-arctan(1/3)) 2329949550055885 r009 Re(z^3+c),c=-11/32+23/54*I,n=39 2329949558718553 m002 -Pi^3-2*Cosh[Pi]+Pi^3*Tanh[Pi] 2329949573186673 r002 22th iterates of z^2 + 2329949577400411 a007 Real Root Of -34*x^4-803*x^3-222*x^2+696*x-88 2329949577963760 m005 (1/3*3^(1/2)+1/11)/(8/11*Pi+7/12) 2329949578288501 r009 Im(z^3+c),c=-37/106+8/47*I,n=5 2329949594134678 m001 FeigenbaumD-MertensB1^StronglyCareFree 2329949595243100 r009 Re(z^3+c),c=-23/90+17/25*I,n=15 2329949599746402 r009 Re(z^3+c),c=-11/32+23/54*I,n=37 2329949600491792 r005 Im(z^2+c),c=-9/14+79/255*I,n=11 2329949602601096 m005 (2/5*Catalan-3/4)/(1/4*2^(1/2)-2) 2329949632198022 a001 322/75025*233^(9/29) 2329949644822075 h001 (-2*exp(1/3)+4)/(-6*exp(-2)+6) 2329949647316054 a007 Real Root Of 121*x^4-232*x^3-702*x^2+950*x-476 2329949665024034 r005 Re(z^2+c),c=-55/118+16/33*I,n=3 2329949667194385 m001 Riemann2ndZero/(ErdosBorwein-CareFree) 2329949681509398 a003 cos(Pi*1/33)-cos(Pi*7/93) 2329949682426146 r005 Re(z^2+c),c=11/29+11/19*I,n=5 2329949688688252 s001 sum(1/10^(n-1)*A250438[n]/n!,n=1..infinity) 2329949694079371 m001 (Khinchin-Stephens)/(exp(-1/2*Pi)+ArtinRank2) 2329949694934244 m005 (1/2*gamma+4)/(9/11*Zeta(3)+6/7) 2329949699034151 a007 Real Root Of 307*x^4+260*x^3-496*x^2+931*x-897 2329949714002537 a007 Real Root Of -267*x^4-603*x^3-38*x^2-345*x-356 2329949718354645 m004 75/Pi+Cos[Sqrt[5]*Pi]*Cosh[Sqrt[5]*Pi]^2 2329949734068278 r002 3th iterates of z^2 + 2329949750012593 a001 665/2-89/2*5^(1/2) 2329949760390339 m001 MertensB3/((Pi*2^(1/2)/GAMMA(3/4))^Pi) 2329949772643613 l006 ln(4505/5687) 2329949792561004 m001 (Catalan+BesselI(0,2))/(Rabbit+Robbin) 2329949799600357 m001 (ln(5)-GAMMA(13/24))/(Landau-ThueMorse) 2329949808486662 a007 Real Root Of 311*x^4+621*x^3-132*x^2-94*x-813 2329949825140239 a001 46/311187*34^(4/31) 2329949841528749 m001 (Porter+TwinPrimes)/(Pi^(1/2)-Khinchin) 2329949852808090 a007 Real Root Of 436*x^4+921*x^3-28*x^2+351*x-230 2329949855170319 l006 ln(948/9743) 2329949859042309 m001 ln(Catalan)^2*FeigenbaumC*GAMMA(17/24)^2 2329949867925158 r005 Re(z^2+c),c=21/46+4/17*I,n=4 2329949870121060 a001 615/124*199^(8/11) 2329949878541777 l006 ln(8357/8554) 2329949880940117 m001 (gamma(2)+Weierstrass)/(Pi-ln(Pi)) 2329949881191698 m001 exp(Pi)/(GolombDickman-Sarnak) 2329949883390773 p004 log(37379/3637) 2329949888771299 r009 Re(z^3+c),c=-5/14+26/57*I,n=23 2329949889676270 m001 2/3+GAMMA(3/4)^FeigenbaumAlpha 2329949890298365 a001 1/6*2^(29/60) 2329949893068194 r005 Re(z^2+c),c=23/126+16/31*I,n=58 2329949893850214 r005 Re(z^2+c),c=-14/25+17/39*I,n=24 2329949912451618 a007 Real Root Of -207*x^4-507*x^3+73*x^2+84*x-513 2329949912652011 r009 Re(z^3+c),c=-31/98+13/36*I,n=16 2329949942796987 a001 199/987*6557470319842^(16/17) 2329949942838530 m001 (Conway-GaussAGM)/(HardyLittlewoodC4+Niven) 2329949944974346 a007 Real Root Of -3*x^4-695*x^3+930*x^2+356*x+496 2329949945927374 r002 12th iterates of z^2 + 2329949946679210 m001 Psi(1,1/3)^(sin(1/5*Pi)/ErdosBorwein) 2329949956248444 r009 Im(z^3+c),c=-25/126+1/49*I,n=3 2329949957814216 m001 (Sierpinski-ZetaP(4))/OneNinth 2329949959648155 b008 LogIntegral[15]/35 2329949961122711 r005 Im(z^2+c),c=-99/122+8/51*I,n=62 2329949966543076 a007 Real Root Of 484*x^4+801*x^3-890*x^2-307*x-16 2329949984584011 a003 cos(Pi*1/65)/cos(Pi*14/39) 2329949984600060 l006 ln(793/8150) 2329949987234529 a007 Real Root Of -566*x^4+253*x^3+411*x^2+856*x+182 2329949992536120 m005 (1/2*3^(1/2)-1/2)/(4/9*Catalan-1/4) 2329949997328744 m004 2+2*E^(Sqrt[5]*Pi)+250/Pi 2329950013923869 r005 Im(z^2+c),c=-5/6+27/134*I,n=18 2329950018255358 m006 (4*exp(2*Pi)-5/6)/(4*exp(Pi)-2/3) 2329950021373824 a007 Real Root Of -654*x^4+872*x^3-295*x^2+336*x+8 2329950024947367 g006 2*Psi(1,2/7)+Psi(1,3/4)-Psi(1,4/9) 2329950026581929 r005 Re(z^2+c),c=-25/54+29/53*I,n=51 2329950031428368 a007 Real Root Of 396*x^4+674*x^3-224*x^2+740*x-205 2329950041971637 r002 20th iterates of z^2 + 2329950049728187 a001 5/11*1364^(12/53) 2329950054798064 a007 Real Root Of 122*x^4+109*x^3-135*x^2+739*x+238 2329950056037995 m005 (1/2*2^(1/2)-4)/(6/7*exp(1)-11/12) 2329950057545992 m005 (1/4*gamma-5)/(Catalan-3) 2329950066990777 a007 Real Root Of -785*x^4-157*x^3-207*x^2+483*x-97 2329950071779193 m005 (1/3*exp(1)-3/5)/(3/7*3^(1/2)+4/7) 2329950071873787 m001 (Zeta(1/2)+Niven)/(Stephens+Weierstrass) 2329950078834592 a001 11/75025*34^(40/51) 2329950079494822 m005 (1/2*Catalan+2/5)/(2/11*2^(1/2)+1/9) 2329950082036838 r005 Im(z^2+c),c=-45/86+27/56*I,n=21 2329950084603299 m001 (gamma+Catalan)/(-GAMMA(11/12)+PrimesInBinary) 2329950094664455 r005 Re(z^2+c),c=23/52+5/22*I,n=13 2329950101244084 m001 exp(1)+Backhouse*Riemann1stZero 2329950101441232 a007 Real Root Of -333*x^4-999*x^3-840*x^2-436*x+722 2329950109435592 s002 sum(A056371[n]/(n^2*10^n-1),n=1..infinity) 2329950114414499 a001 322/317811*4807526976^(19/22) 2329950123566367 m001 (BesselJ(1,1)+GAMMA(11/12))/(Landau+Paris) 2329950135202184 p003 LerchPhi(1/6,6,629/228) 2329950139248462 m006 (1/4/Pi+1/4)/(3/4*ln(Pi)-1) 2329950146214106 l006 ln(4707/5942) 2329950176918829 l006 ln(638/6557) 2329950179709587 m001 exp(PrimesInBinary)/MadelungNaCl^2/GAMMA(5/12) 2329950180643074 b008 Cosh[Sqrt[1+ArcTan[E]]] 2329950189676351 r009 Re(z^3+c),c=-43/114+29/56*I,n=26 2329950190012740 a007 Real Root Of 21*x^4+505*x^3+369*x^2+29*x-928 2329950194432141 a005 (1/sin(100/219*Pi))^338 2329950208497278 m005 (1/2*Catalan-2/3)/(1/4*Catalan+2/3) 2329950223023178 a008 Real Root of x^4-x^3-2*x^2-109*x+248 2329950223669762 b008 23+3*ArcCsch[10] 2329950226105648 r009 Im(z^3+c),c=-7/31+28/31*I,n=4 2329950231397236 r005 Re(z^2+c),c=-11/62+15/31*I,n=28 2329950232662239 p003 LerchPhi(1/256,6,436/233) 2329950234136266 a007 Real Root Of -243*x^4+537*x^3-325*x^2+393*x-80 2329950245614639 m001 exp(GAMMA(13/24))^2/GAMMA(1/12)*Zeta(7) 2329950250710824 r002 12th iterates of z^2 + 2329950259911305 a007 Real Root Of -436*x^4-640*x^3+593*x^2-930*x-632 2329950266237103 m005 (1/2*2^(1/2)+5/8)/(4*Zeta(3)+10/11) 2329950266395100 a001 610/3*87403803^(8/9) 2329950269726516 a005 (1/sin(101/229*Pi))^583 2329950292051815 r005 Re(z^2+c),c=-25/118+2/5*I,n=16 2329950294879391 m001 (ln(5)-ReciprocalFibonacci)/(Salem-Tetranacci) 2329950306744769 a007 Real Root Of -28*x^4-629*x^3+525*x^2-479*x-366 2329950313835511 b008 E+(-11+E)*Pi 2329950315075779 m001 exp(GAMMA(7/12))^2*Rabbit*cosh(1) 2329950315461714 m005 (1/2*2^(1/2)-4/7)/(1/8*2^(1/2)-6) 2329950317786547 m001 (Zeta(1,-1)-exp(1))/(Robbin+Stephens) 2329950319531727 m001 polylog(4,1/2)/(Champernowne+Paris) 2329950320366272 m004 5/Pi+5*Pi+6*Tanh[Sqrt[5]*Pi] 2329950320575309 a007 Real Root Of 382*x^4+578*x^3-682*x^2+47*x-135 2329950328323678 r005 Im(z^2+c),c=-14/29+25/56*I,n=31 2329950331247403 m001 (ln(Pi)+exp(1/exp(1)))/(MertensB2+ZetaP(4)) 2329950332749890 m001 1/Salem^2/Riemann1stZero^2/exp(TreeGrowth2nd) 2329950335002844 a001 5/11*15127^(9/53) 2329950335999634 r005 Re(z^2+c),c=-1/11+55/59*I,n=3 2329950344437241 m001 (MertensB3+ZetaP(3))/(DuboisRaymond-sin(1)) 2329950346441670 a001 5/11*5778^(10/53) 2329950347022493 b008 1+23*Sech[1/4] 2329950359357000 m008 (5*Pi^5-1/6)/(2/5*Pi-3/5) 2329950360858449 m001 (gamma(3)+FeigenbaumKappa)/(Pi-Psi(2,1/3)) 2329950362280721 m001 ErdosBorwein/polylog(4,1/2)/MertensB3 2329950364449730 m001 (Pi+Si(Pi))/(HardyLittlewoodC5+Riemann2ndZero) 2329950367718320 r008 a(0)=0,K{-n^6,-4+2*n^3-5*n^2-4*n} 2329950367718320 r008 a(0)=0,K{-n^6,4-2*n^3+5*n^2+4*n} 2329950374209620 r005 Im(z^2+c),c=-15/62+16/25*I,n=36 2329950378215619 a007 Real Root Of 428*x^4+542*x^3-996*x^2+130*x-48 2329950378470811 m004 -750/Pi+Cos[Sqrt[5]*Pi]+5*Coth[Sqrt[5]*Pi] 2329950378731426 p001 sum((-1)^n/(521*n+429)/(1000^n),n=0..infinity) 2329950383229413 r005 Re(z^2+c),c=-17/82+17/41*I,n=26 2329950385305912 r005 Im(z^2+c),c=-8/27+8/21*I,n=7 2329950389596459 m009 (5/2*Pi^2-1/6)/(48*Catalan+6*Pi^2+2) 2329950402184458 v002 sum(1/(3^n+(28*n^2-48*n+22)),n=1..infinity) 2329950403878955 m008 (5*Pi^4+2/5)/(2/3*Pi^3+1/4) 2329950416903351 m001 1/sin(1)^2*exp(GaussAGM(1,1/sqrt(2)))/sqrt(2) 2329950433621959 r005 Im(z^2+c),c=-15/26+4/119*I,n=17 2329950441772304 m004 -6+750/Pi-Cos[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi] 2329950445919525 p003 LerchPhi(1/1024,6,596/217) 2329950445928513 m004 -5+750/Pi-Cos[Sqrt[5]*Pi]*Coth[Sqrt[5]*Pi] 2329950452818230 m001 HardyLittlewoodC4^GAMMA(11/12)*cos(1/5*Pi) 2329950455909452 r008 a(0)=0,K{-n^6,86-81*n^3-68*n^2+20*n} 2329950457597646 m004 -5+750/Pi-Cos[Sqrt[5]*Pi] 2329950461424310 m001 (-Trott2nd+Thue)/(2^(1/2)-Shi(1)) 2329950467419442 m005 (1/3*2^(1/2)-1/11)/(11/12*5^(1/2)-5/12) 2329950469266761 m004 -5+750/Pi-Cos[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi] 2329950473422988 m004 -4+750/Pi-Cos[Sqrt[5]*Pi]-Tanh[Sqrt[5]*Pi] 2329950477590666 a008 Real Root of (-6+5*x+x^2+6*x^3-4*x^4-3*x^5) 2329950489040549 l006 ln(4909/6197) 2329950489040549 p004 log(6197/4909) 2329950490332040 m001 1/GAMMA(5/24)^2*ln(Porter)*sinh(1) 2329950492671925 l006 ln(483/4964) 2329950498113289 a007 Real Root Of -288*x^4-434*x^3+530*x^2-148*x-224 2329950502016273 m001 1/ln(Robbin)*Rabbit*FeigenbaumKappa 2329950504282040 r005 Im(z^2+c),c=-7/10+57/241*I,n=37 2329950505343996 m001 GAMMA(19/24)^ln(gamma)+2^(1/2) 2329950505343996 m001 GAMMA(19/24)^log(gamma)+sqrt(2) 2329950509027439 r005 Im(z^2+c),c=-47/114+21/40*I,n=25 2329950510661201 m001 BesselJ(1,1)^(2^(1/3))-Khinchin 2329950510661201 m001 Khinchin-BesselJ(1,1)^(2^(1/3)) 2329950511863776 a005 (1/sin(72/191*Pi))^672 2329950514147117 r005 Im(z^2+c),c=-15/14+31/135*I,n=44 2329950531339001 m001 (Zeta(3)+GaussKuzminWirsing)/MasserGramain 2329950536255078 r002 51th iterates of z^2 + 2329950536724356 m004 -750/Pi+Cos[Sqrt[5]*Pi]+5*Tanh[Sqrt[5]*Pi] 2329950553014122 m001 LandauRamanujan2nd/(Champernowne-ZetaR(2)) 2329950553488507 m001 ln(Zeta(3))^2/FibonacciFactorial^2/cos(Pi/12) 2329950555674204 r005 Re(z^2+c),c=-91/114+5/61*I,n=24 2329950557461374 a001 9349/3*377^(8/11) 2329950561832603 m005 (1/2*3^(1/2)-2/7)/(1/9*Pi-1/10) 2329950564099843 r005 Im(z^2+c),c=7/32+3/22*I,n=16 2329950574366935 a007 Real Root Of -238*x^4-452*x^3+366*x^2+376*x+186 2329950581809489 a007 Real Root Of 320*x^4+522*x^3-56*x^2+885*x-462 2329950590159395 m001 (1-FransenRobinson)/StronglyCareFree 2329950592269263 m001 PisotVijayaraghavan*exp(MertensB1)*GAMMA(2/3) 2329950594615062 m001 (Otter+ZetaP(4))/(Chi(1)+arctan(1/2)) 2329950599683154 r005 Re(z^2+c),c=-9/8+59/219*I,n=34 2329950609732936 m001 1/Magata/exp(Backhouse)^2*Zeta(1/2) 2329950619994269 m001 1/2*GAMMA(2/3)+sqrt(1+sqrt(3)) 2329950620076780 a001 123/34*377^(33/47) 2329950624873112 r002 22th iterates of z^2 + 2329950636752898 m004 -10*Pi+Sqrt[5]*Pi+Cot[Sqrt[5]*Pi] 2329950641828476 r009 Re(z^3+c),c=-13/82+5/7*I,n=7 2329950653210910 m001 (Catalan+exp(1/Pi))/(Landau+TreeGrowth2nd) 2329950655410927 m001 FeigenbaumDelta*ZetaQ(2)^GAMMA(23/24) 2329950661097725 r005 Re(z^2+c),c=21/94+6/53*I,n=13 2329950665996352 m005 (1/2*gamma+2/9)/(1/9*3^(1/2)+2) 2329950668546139 p001 sum((-1)^n/(499*n+429)/(1024^n),n=0..infinity) 2329950670358941 r005 Im(z^2+c),c=-7/6+65/252*I,n=24 2329950673821931 a007 Real Root Of 576*x^4+446*x^3+128*x^2-924*x+201 2329950683982066 r005 Re(z^2+c),c=-17/94+11/23*I,n=64 2329950687656678 a001 2255/281*199^(7/11) 2329950688999619 m001 (-Bloch+Otter)/(Psi(1,1/3)+BesselI(1,1)) 2329950691625481 r005 Im(z^2+c),c=-31/60+2/49*I,n=53 2329950693024281 r009 Re(z^3+c),c=-29/94+13/38*I,n=22 2329950699061307 r005 Re(z^2+c),c=-7/78+32/63*I,n=8 2329950704963258 r005 Im(z^2+c),c=-7/10+24/113*I,n=52 2329950707855869 p003 LerchPhi(1/8,1,93/208) 2329950712852454 m002 -6/Pi^3+Pi^2/E^Pi 2329950720893126 m001 1/Zeta(3)^2*FeigenbaumDelta^2/ln(sqrt(5))^2 2329950724568777 r005 Im(z^2+c),c=-19/14+3/235*I,n=10 2329950724718150 m001 (BesselI(0,2)+Magata)/(exp(Pi)+BesselI(0,1)) 2329950737514261 m001 (CopelandErdos-gamma(2))^Zeta(5) 2329950740208374 a007 Real Root Of 156*x^4-933*x^3+672*x^2-911*x-261 2329950740254749 r005 Im(z^2+c),c=-5/8+32/97*I,n=11 2329950741069481 l006 ln(811/8335) 2329950745592945 r005 Im(z^2+c),c=-31/60+2/49*I,n=55 2329950748280880 r005 Re(z^2+c),c=3/19+35/59*I,n=8 2329950750212248 a007 Real Root Of 342*x^4+606*x^3-394*x^2+200*x+191 2329950756921634 m006 (1/Pi+4)/(5/6*exp(Pi)-3/4) 2329950766150909 m004 6+5*Pi+(5*Tanh[Sqrt[5]*Pi]^2)/Pi 2329950768137702 m005 (1/2*Catalan-1/8)/(5*exp(1)+7/10) 2329950788723035 m001 exp(1)^Landau*KhinchinHarmonic^Landau 2329950804768199 l006 ln(5111/6452) 2329950805200362 r005 Re(z^2+c),c=-8/31+16/63*I,n=10 2329950814604302 r009 Re(z^3+c),c=-11/32+23/54*I,n=36 2329950824188911 s001 sum(exp(-Pi/3)^n*A122677[n],n=1..infinity) 2329950832124437 r005 Im(z^2+c),c=-47/106+25/62*I,n=51 2329950835530526 a001 165580141/3*843^(5/9) 2329950837186523 a001 843/11*(1/2*5^(1/2)+1/2)^22*11^(17/20) 2329950842031598 m001 Ei(1)*(3^(1/3))^2/exp(sqrt(2))^2 2329950842694083 m001 ln(GAMMA(3/4))^2/Magata^2*cos(Pi/5)^2 2329950843598008 m001 1/exp(GAMMA(17/24))^2*TreeGrowth2nd/Zeta(3)^2 2329950858437325 r005 Re(z^2+c),c=-43/58+26/55*I,n=5 2329950864745295 m001 (GAMMA(23/24)-Paris)/(Pi+Chi(1)) 2329950870703363 r005 Re(z^2+c),c=-19/122+13/25*I,n=22 2329950874259474 r005 Re(z^2+c),c=-13/31+45/64*I,n=6 2329950888324767 r009 Im(z^3+c),c=-29/106+1/58*I,n=4 2329950893205963 r005 Re(z^2+c),c=-17/94+11/23*I,n=63 2329950906144345 r005 Im(z^2+c),c=-1/11+19/30*I,n=15 2329950913915293 m001 (GAMMA(5/6)-Shi(1))/(-OneNinth+PrimesInBinary) 2329950919870626 r005 Re(z^2+c),c=-29/122+18/55*I,n=13 2329950931228466 m001 (-Landau+Robbin)/(BesselK(0,1)-Bloch) 2329950947665931 m001 ZetaQ(2)^ZetaP(2)/ln(Pi) 2329950948912417 m005 (1/2*2^(1/2)+1/10)/(2/9*Catalan+1/7) 2329950952593688 b008 (61*Sqrt[Coth[1]])/3 2329950956380445 r005 Im(z^2+c),c=-31/60+2/49*I,n=57 2329950963492857 h001 (7/10*exp(2)+6/7)/(5/8*exp(1)+8/9) 2329950973193778 r002 11th iterates of z^2 + 2329950973675285 a001 4181/18*11^(25/26) 2329950976377364 m005 (1/2*Catalan-1/8)/(6*5^(1/2)+7/8) 2329950979283663 p003 LerchPhi(1/10,6,39/142) 2329950981267746 r005 Re(z^2+c),c=-27/106+17/64*I,n=13 2329950982392971 r005 Im(z^2+c),c=-67/118+31/49*I,n=17 2329950985940007 m004 24+Cos[Sqrt[5]*Pi]*Cosh[Sqrt[5]*Pi]^2 2329950995315858 a008 Real Root of x^4-x^3-x^2-7*x-53 2329950999999521 a007 Real Root Of -342*x^4-710*x^3+410*x^2+301*x-426 2329951011237488 r005 Re(z^2+c),c=-7/40+28/57*I,n=60 2329951018018651 m004 6+5*Pi+(5*Tanh[Sqrt[5]*Pi])/Pi 2329951025213763 a007 Real Root Of -706*x^4+957*x^3-871*x^2+204*x+109 2329951032540475 m001 arctan(1/2)*ln(sqrt(1+sqrt(3))) 2329951035862488 r005 Im(z^2+c),c=-1/90+31/42*I,n=30 2329951041988384 r009 Im(z^3+c),c=-55/122+3/61*I,n=47 2329951045083612 a003 sin(Pi*21/107)/cos(Pi*50/119) 2329951064785678 p001 sum((-1)^n/(463*n+406)/(8^n),n=0..infinity) 2329951067950327 m001 (arctan(1/2)+Zeta(1,2))/(Pi^(1/2)+MertensB1) 2329951088397987 h001 (6/11*exp(1)+4/7)/(1/6*exp(1)+3/7) 2329951096487939 l006 ln(5313/6707) 2329951106849916 l006 ln(328/3371) 2329951107074887 s002 sum(A067874[n]/(n^2*10^n-1),n=1..infinity) 2329951111633372 m004 5+5/Pi+5*Pi+Tanh[Sqrt[5]*Pi] 2329951112601568 m001 ln(Pi)+Backhouse^ZetaP(2) 2329951112882381 r005 Im(z^2+c),c=-13/118+3/10*I,n=17 2329951117207029 m001 (LambertW(1)-sin(1))/(-GAMMA(17/24)+OneNinth) 2329951118934693 h001 (1/4*exp(1)+1/3)/(4/7*exp(2)+1/8) 2329951130045266 r005 Re(z^2+c),c=-17/110+28/53*I,n=31 2329951130123510 r005 Im(z^2+c),c=-97/126+1/40*I,n=6 2329951131505734 a007 Real Root Of -6*x^4+886*x^3-262*x^2+983*x-226 2329951135773004 a007 Real Root Of 551*x^4+807*x^3-771*x^2+880*x+205 2329951146185644 q001 62/2661 2329951151356737 s002 sum(A015733[n]/(n^2*10^n-1),n=1..infinity) 2329951154372525 l006 ln(9163/9379) 2329951155992325 h001 (3/10*exp(2)+5/11)/(1/7*exp(2)+1/11) 2329951157610707 r005 Im(z^2+c),c=-31/60+2/49*I,n=51 2329951171616663 m001 ReciprocalFibonacci^Bloch*KomornikLoreti^Bloch 2329951174437705 r005 Im(z^2+c),c=-37/34+20/83*I,n=42 2329951176373070 r005 Im(z^2+c),c=-31/60+2/49*I,n=59 2329951177568136 m001 (MertensB1-ErdosBorwein)*3^(1/2) 2329951193050941 m005 (1/2*Pi+3/10)/(3/7*gamma+5/9) 2329951214055073 m001 MadelungNaCl*ln(Artin)*FeigenbaumKappa 2329951248377323 r005 Im(z^2+c),c=-35/66+16/45*I,n=12 2329951258987062 r005 Im(z^2+c),c=-35/94+23/60*I,n=40 2329951269886791 b008 6+5*(Pi^(-1)+Pi) 2329951278157253 m001 (BesselI(1,2)+Niven)/(Riemann1stZero+Trott) 2329951278503295 m001 (Artin+Totient)/(Zeta(5)-Pi^(1/2)) 2329951288348659 m005 (1/2*2^(1/2)-3/4)/(4/9*2^(1/2)-4/9) 2329951288348659 r004 Im(z^2+c),c=-1/16+1/2*I,z(0)=exp(7/8*I*Pi),n=2 2329951290098329 m001 GAMMA(5/6)*PisotVijayaraghavan+GaussAGM 2329951304122054 a007 Real Root Of 374*x^4+583*x^3-845*x^2-286*x+273 2329951304599995 a007 Real Root Of 255*x^4+701*x^3+341*x^2+338*x+288 2329951317266045 m005 (1/3*Catalan-3/4)/(7/9*2^(1/2)-10/11) 2329951319257224 m001 (sin(1/12*Pi)+MinimumGamma)/(Robbin+ZetaP(4)) 2329951337757094 p003 LerchPhi(1/8,4,302/209) 2329951341709097 a001 4870847/89*1836311903^(14/17) 2329951341710450 a001 4106118243/89*514229^(14/17) 2329951343683901 a001 21/4*2207^(6/31) 2329951344018991 r005 Re(z^2+c),c=-17/94+11/23*I,n=60 2329951356246289 r005 Im(z^2+c),c=-31/60+2/49*I,n=61 2329951356900009 r005 Im(z^2+c),c=-9/23+7/18*I,n=34 2329951364706210 a001 47/8*10610209857723^(7/12) 2329951366837813 l006 ln(5515/6962) 2329951369917312 s001 sum(exp(-3*Pi/5)^n*A143074[n],n=1..infinity) 2329951375262707 r005 Im(z^2+c),c=-15/17+1/56*I,n=7 2329951378896348 r002 14th iterates of z^2 + 2329951378994787 r005 Re(z^2+c),c=-11/42+13/57*I,n=9 2329951381421117 m006 (5*ln(Pi)+3/5)/(exp(Pi)+4) 2329951385724281 m001 (Champernowne-Magata)/(RenyiParking+Robbin) 2329951388759436 r002 6th iterates of z^2 + 2329951389233018 m005 (1/2*2^(1/2)+9/10)/(2/7*Pi+6) 2329951389409870 r009 Re(z^3+c),c=-47/122+13/25*I,n=47 2329951392206640 a007 Real Root Of -136*x^4-290*x^3+64*x^2+509*x-118 2329951398543159 h001 (9/10*exp(1)+4/9)/(1/12*exp(2)+5/8) 2329951400838548 r005 Re(z^2+c),c=11/42+2/13*I,n=19 2329951403945632 a001 521/956722026041*233^(4/15) 2329951405963961 a007 Real Root Of -36*x^4-176*x^3-445*x^2-132*x+943 2329951408363583 r005 Im(z^2+c),c=-3/7+8/19*I,n=4 2329951411498775 a001 5778/89*6557470319842^(14/17) 2329951412420143 r005 Im(z^2+c),c=-15/28+11/25*I,n=59 2329951425730761 m002 -Pi^6/4+(2*Sinh[Pi])/Pi 2329951426709092 r005 Re(z^2+c),c=-27/94+1/61*I,n=10 2329951428108928 a003 cos(Pi*19/84)-cos(Pi*35/108) 2329951444082307 a001 11/3*13^(31/43) 2329951455115315 k006 concat of cont frac of 2329951459816753 m001 FransenRobinson-GAMMA(3/4)+RenyiParking 2329951464688066 l006 ln(829/8520) 2329951476508254 m005 (1/2*2^(1/2)+2/7)/(10/11*Zeta(3)-2/3) 2329951486406535 r005 Re(z^2+c),c=19/86+17/40*I,n=59 2329951487977894 r005 Im(z^2+c),c=-31/60+2/49*I,n=63 2329951489513606 r005 Im(z^2+c),c=-6/17+17/45*I,n=47 2329951490324694 r002 58th iterates of z^2 + 2329951493437980 r005 Re(z^2+c),c=-11/60+17/36*I,n=30 2329951494190429 m001 (-FellerTornier+PlouffeB)/(1+2*Pi/GAMMA(5/6)) 2329951497639563 r005 Im(z^2+c),c=7/86+11/50*I,n=16 2329951498520903 m001 1/Zeta(9)*GlaisherKinkelin/ln(sqrt(3)) 2329951507750614 m001 ln(Riemann1stZero)^2*Magata/GAMMA(23/24) 2329951508037532 r002 56th iterates of z^2 + 2329951515678747 r005 Im(z^2+c),c=-49/118+17/43*I,n=46 2329951516374462 m005 (1/2*3^(1/2)+11/12)/(5/9*gamma+4/9) 2329951521755330 m004 6+5*Pi+(5*Coth[Sqrt[5]*Pi])/Pi 2329951527736846 a007 Real Root Of -692*x^4-875*x^3-925*x^2+849*x+239 2329951532189623 r002 60th iterates of z^2 + 2329951535131159 r002 53th iterates of z^2 + 2329951537050879 r005 Im(z^2+c),c=-19/26+1/61*I,n=54 2329951537066398 m005 (1/2*5^(1/2)+4/5)/(4/7*5^(1/2)-5/11) 2329951550262856 m002 -(Pi^5*Csch[Pi])+(3*Log[Pi])/ProductLog[Pi] 2329951553544521 m005 (1/2*gamma-9/10)/(5/7*Catalan-11/12) 2329951553951008 m002 4/3+E^Pi-Cosh[Pi]/Pi^2 2329951557624283 m005 (1/3*3^(1/2)-2/11)/(2/7*Pi+4/5) 2329951558923595 a007 Real Root Of 193*x^4-89*x^3-951*x^2+436*x-635 2329951565204674 s001 sum(exp(-Pi/2)^(n-1)*A077718[n],n=1..infinity) 2329951565754280 a007 Real Root Of -359*x^4-527*x^3+291*x^2-577*x+990 2329951569022044 m001 sin(1/12*Pi)^sin(1)/(MinimumGamma^sin(1)) 2329951584461713 m005 (1/6*gamma+1/2)/(4*gamma+1/4) 2329951584461713 m007 (-1/6*gamma-1/2)/(-4*gamma-1/4) 2329951585035759 r002 62th iterates of z^2 + 2329951585120006 m001 (Psi(2,1/3)+gamma)/(MertensB2+Mills) 2329951589769748 m009 (Psi(1,1/3)+5)/(32*Catalan+4*Pi^2-4) 2329951594309858 m009 (5/6*Psi(1,3/4)+1)/(6*Psi(1,2/3)-5) 2329951594738601 p002 log(21^(1/2)+12^(1/4)+6^(3/4)) 2329951606640438 p002 log(6+7^(1/3)*5^(1/2)) 2329951608162001 a007 Real Root Of 30*x^4-638*x^3-594*x^2-969*x+266 2329951612599767 r005 Im(z^2+c),c=-3/10+41/61*I,n=8 2329951618083019 l006 ln(5717/7217) 2329951619680334 a007 Real Root Of -231*x^4+106*x^3+969*x^2-873*x+854 2329951631067828 r002 64th iterates of z^2 + 2329951635556988 a008 Real Root of x^4-x^3+10*x^2-120*x-376 2329951647939530 a007 Real Root Of -573*x^4-793*x^3+978*x^2-870*x-480 2329951648097636 m001 1/3*GAMMA(17/24)*3^(2/3)*MertensB1 2329951648436187 r005 Re(z^2+c),c=9/98+17/56*I,n=34 2329951654902231 r005 Im(z^2+c),c=-31/60+2/49*I,n=50 2329951665785719 m001 (-LaplaceLimit+RenyiParking)/(Chi(1)-Zeta(3)) 2329951668282832 a001 5/1860498*47^(23/41) 2329951669121997 m001 1/ln(FeigenbaumD)*Kolakoski/sin(Pi/5)^2 2329951670319230 r009 Im(z^3+c),c=-31/74+3/37*I,n=5 2329951675806329 m001 1/Zeta(3)*ln(PisotVijayaraghavan)/Zeta(9)^2 2329951683454017 m005 (1/2*gamma+1/3)/(2/3*exp(1)+6/7) 2329951684185660 r005 Re(z^2+c),c=-4/21+26/57*I,n=43 2329951686958706 r005 Re(z^2+c),c=-19/74+11/43*I,n=11 2329951688991880 m001 1/FeigenbaumC/PisotVijayaraghavan*exp(sqrt(3)) 2329951696477484 m001 (-2*Pi/GAMMA(5/6)+Landau)/(Shi(1)+ln(3)) 2329951696749387 r002 4th iterates of z^2 + 2329951698961276 l006 ln(501/5149) 2329951700039023 r002 54th iterates of z^2 + 2329951700431584 m001 (ArtinRank2+MertensB2)/(Porter-Sarnak) 2329951700854640 m001 (FeigenbaumD+Kac)/(sin(1/5*Pi)+FeigenbaumB) 2329951706775469 s002 sum(A247460[n]/(n^2*10^n-1),n=1..infinity) 2329951712626435 r005 Re(z^2+c),c=1/32+14/57*I,n=11 2329951715941368 m006 (Pi+1/5)/(3*ln(Pi)-2) 2329951723532289 r009 Re(z^3+c),c=-7/52+39/44*I,n=16 2329951725878108 r005 Im(z^2+c),c=-33/34+27/110*I,n=54 2329951728508772 a007 Real Root Of -299*x^4-696*x^3-55*x^2-433*x-702 2329951733990198 a007 Real Root Of 526*x^4-553*x^3+974*x^2-848*x-259 2329951735249390 m001 (3^(1/2)-Paris)/(-Rabbit+ZetaQ(3)) 2329951751302740 m001 Stephens*(Sierpinski-Zeta(1/2)) 2329951751453479 r002 10th iterates of z^2 + 2329951752622603 a007 Real Root Of -223*x^4-86*x^3+791*x^2-473*x+88 2329951763940056 r002 17th iterates of z^2 + 2329951765220034 b008 BarnesG[E+ArcSec[6]] 2329951767582798 m001 Kolakoski^2*Champernowne^2/ln(Robbin) 2329951768884798 r005 Re(z^2+c),c=-7/54+17/27*I,n=61 2329951772672867 a003 sin(Pi*6/91)/sin(Pi*21/61) 2329951775732810 r005 Re(z^2+c),c=23/102+3/26*I,n=16 2329951776393358 m004 2+250/Pi+4*Cosh[Sqrt[5]*Pi] 2329951777937691 m002 -E^Pi-3*Csch[Pi]+Tanh[Pi]/Pi^2 2329951780645988 r005 Im(z^2+c),c=37/90+12/55*I,n=7 2329951781484136 r005 Im(z^2+c),c=-21/34+31/88*I,n=46 2329951784073384 a005 (1/cos(8/123*Pi))^1026 2329951800367494 p001 sum((-1)^n/(500*n+429)/(1024^n),n=0..infinity) 2329951807698636 s001 sum(exp(-Pi/3)^(n-1)*A050261[n],n=1..infinity) 2329951809458827 m001 1/Paris^2*exp(KhintchineLevy)/Zeta(3)^2 2329951813540305 m008 (5/6*Pi+4/5)/(1/2*Pi^3-5/6) 2329951824094654 r005 Im(z^2+c),c=-22/17+3/55*I,n=15 2329951828402113 a007 Real Root Of -299*x^4-597*x^3+313*x^2+490*x+703 2329951832466651 m001 1/FeigenbaumD*MadelungNaCl^2*ln(Trott)^2 2329951837217444 r005 Re(z^2+c),c=-33/106+3/22*I,n=2 2329951837222390 a007 Real Root Of 391*x^4+983*x^3+125*x^2-206*x-248 2329951846256979 m001 (Gompertz-MasserGramain)/(Pi-1) 2329951852179535 l006 ln(5919/7472) 2329951857066514 r002 63th iterates of z^2 + 2329951867542145 m001 GAMMA(5/12)^2/GolombDickman^2*ln(Zeta(9)) 2329951875828416 m001 (BesselI(1,1)+Pi^(1/2))/(Chi(1)-Zeta(1,-1)) 2329951876303258 m008 (4*Pi^5+1/3)/(3/5*Pi^2-2/3) 2329951882090331 m001 ln(HardHexagonsEntropy)/Cahen^2/sin(Pi/5)^2 2329951886666604 r009 Re(z^3+c),c=-11/32+23/54*I,n=34 2329951892521420 m001 (Chi(1)-arctan(1/3))/(-FransenRobinson+Lehmer) 2329951895492865 r002 55th iterates of z^2 + 2329951907622123 r002 61th iterates of z^2 + 2329951911769405 a007 Real Root Of 341*x^4+416*x^3-891*x^2-404*x-892 2329951921558029 p003 LerchPhi(1/1024,1,82/191) 2329951924757632 a003 cos(Pi*19/97)*cos(Pi*31/76) 2329951928709778 r005 Im(z^2+c),c=-31/60+2/49*I,n=64 2329951930817224 r005 Im(z^2+c),c=-6/17+17/45*I,n=50 2329951940129493 a007 Real Root Of -327*x^4+924*x^3+826*x^2+92*x-77 2329951945083327 m001 Trott^2/Si(Pi)/exp(Zeta(9)) 2329951951719667 a007 Real Root Of 284*x^4+222*x^3-970*x^2+542*x+967 2329951956300839 m001 LambertW(1)*Conway+BesselI(1,2) 2329951958565756 r002 59th iterates of z^2 + 2329951962416244 r005 Re(z^2+c),c=-1/44+2/57*I,n=3 2329951963420758 b008 -28+Log[110] 2329951965145966 r005 Im(z^2+c),c=-11/56+50/63*I,n=36 2329951965763013 a007 Real Root Of -565*x^4+631*x^3-405*x^2+96*x+54 2329951976798961 m001 (TwinPrimes-ZetaP(2))/(QuadraticClass+Trott) 2329951979021259 s002 sum(A186751[n]/(n*pi^n-1),n=1..infinity) 2329951979724589 r002 57th iterates of z^2 + 2329951984469693 r002 10th iterates of z^2 + 2329951987110298 l006 ln(674/6927) 2329951989004675 m001 (Niven-Shi(1))/(-Otter+ZetaP(3)) 2329951989803389 r005 Re(z^2+c),c=-23/82+4/35*I,n=4 2329952003912251 m001 ln(gamma)*ln(2^(1/2)+1)/exp(-1/2*Pi) 2329952003912251 m001 log(gamma)*ln(1+sqrt(2))/exp(-1/2*Pi) 2329952004093541 m001 (sin(1)+ln(2))/(LandauRamanujan2nd+ZetaP(4)) 2329952006568044 m001 Gompertz^CopelandErdos+exp(1/exp(1)) 2329952009439368 m005 (1/2*Catalan-3/4)/(1/5*Pi+5/8) 2329952014712416 a007 Real Root Of 228*x^4+436*x^3-467*x^2-587*x-37 2329952019560478 a007 Real Root Of -560*x^4-755*x^3+677*x^2-999*x+951 2329952020671497 m001 (Pi+ln(Pi))/(BesselI(0,2)-TreeGrowth2nd) 2329952021714692 a001 47/55*2584^(6/47) 2329952022057224 a007 Real Root Of -109*x^4+68*x^3+370*x^2-854*x+74 2329952031235253 r005 Im(z^2+c),c=-17/50+22/59*I,n=19 2329952031558185 r009 Re(z^3+c),c=-37/50+25/39*I,n=2 2329952038563655 r005 Im(z^2+c),c=-31/60+2/49*I,n=62 2329952045784000 a001 1597/521*199^(9/11) 2329952048403486 m004 2-Cos[Sqrt[5]*Pi]/2+125*Pi*Sech[Sqrt[5]*Pi] 2329952057929748 a007 Real Root Of -455*x^4-712*x^3+651*x^2-616*x-566 2329952068428105 m005 (1/2*5^(1/2)+2)/(1/5*2^(1/2)-5/12) 2329952070825140 l006 ln(6121/7727) 2329952070825140 p004 log(7727/6121) 2329952071772985 r005 Im(z^2+c),c=-17/12+48/121*I,n=3 2329952075646316 r005 Re(z^2+c),c=5/74+17/64*I,n=12 2329952080791202 p001 sum(1/(503*n+447)/(12^n),n=0..infinity) 2329952083656963 m001 (Zeta(5)+Ei(1,1))/(Psi(2,1/3)+Zeta(3)) 2329952085308457 a007 Real Root Of -466*x^4-962*x^3-152*x^2-735*x+678 2329952086889123 m001 (Catalan-Otter)^KhinchinLevy 2329952089458742 m002 -1+Log[Pi]/3+Pi^2*Sech[Pi] 2329952090391362 a005 (1/cos(5/204*Pi))^1061 2329952098628661 r005 Im(z^2+c),c=27/94+3/49*I,n=47 2329952102165143 r009 Re(z^3+c),c=-11/31+14/31*I,n=39 2329952108089225 a001 76/13*63245986^(6/13) 2329952118249104 m001 (-exp(1/Pi)+gamma(2))/(Catalan-arctan(1/3)) 2329952118704097 a007 Real Root Of 251*x^4+681*x^3+26*x^2-665*x-474 2329952124384077 m001 (GAMMA(2/3)+ln(5))/(MadelungNaCl-PlouffeB) 2329952125508661 a005 (1/sin(90/223*Pi))^117 2329952130594565 r005 Re(z^2+c),c=-19/98+25/62*I,n=7 2329952141690528 a007 Real Root Of -293*x^4-582*x^3-79*x^2-807*x-178 2329952157550235 l006 ln(847/8705) 2329952162261896 a007 Real Root Of 17*x^4+355*x^3-949*x^2+185*x-261 2329952164076831 k003 Champernowne real with 5/2*n^3-5/2*n^2-9*n+11 2329952166033440 a007 Real Root Of 444*x^4+592*x^3-933*x^2+94*x-313 2329952170129039 m003 3/2+(21*Sqrt[5])/64+Log[1/2+Sqrt[5]/2]/5 2329952174252820 m001 GAMMA(5/6)*Khintchine*ln(arctan(1/2)) 2329952176246366 a003 cos(Pi*15/119)-cos(Pi*17/118) 2329952184019231 a007 Real Root Of -463*x^4+963*x^3+438*x^2+770*x-214 2329952184688603 a001 123/233*89^(27/32) 2329952194048297 r005 Im(z^2+c),c=-31/60+2/49*I,n=60 2329952214076539 k002 Champernowne real with 30*n^2-84*n+77 2329952214442791 a007 Real Root Of 51*x^4-298*x^3-704*x^2+647*x+57 2329952219408813 m004 5/Pi+5*Pi+6*Coth[Sqrt[5]*Pi] 2329952225737940 a007 Real Root Of 163*x^4-74*x^3-892*x^2+401*x+37 2329952237132156 p004 log(29671/2887) 2329952242000901 a007 Real Root Of 14*x^4-202*x^3-321*x^2+397*x-300 2329952256916200 a007 Real Root Of 454*x^4+880*x^3-106*x^2+359*x-837 2329952261176337 h001 (-6*exp(7)+7)/(-7*exp(6)+3) 2329952264619066 r005 Im(z^2+c),c=-49/122+31/52*I,n=52 2329952266308623 r009 Re(z^3+c),c=-7/102+25/46*I,n=4 2329952267303102 q001 781/3352 2329952267678470 r009 Re(z^3+c),c=-29/94+13/38*I,n=25 2329952275500659 l006 ln(6323/7982) 2329952275598021 m001 (2*Pi/GAMMA(5/6)-gamma)/(-MertensB1+PlouffeB) 2329952284489335 h001 (-9*exp(7)+6)/(-6*exp(2)+2) 2329952292993821 a007 Real Root Of -541*x^4-220*x^3-805*x^2+530*x+166 2329952298429934 h003 exp(Pi*(6^(7/5)+7^(1/12))) 2329952298429934 h008 exp(Pi*(6^(7/5)+7^(1/12))) 2329952303265440 r009 Re(z^3+c),c=-1/4+25/44*I,n=3 2329952303904181 r009 Re(z^3+c),c=-17/122+15/16*I,n=16 2329952306075501 m001 exp(GAMMA(7/12))^2*DuboisRaymond^2/sin(Pi/5)^2 2329952309323035 m008 (1/2*Pi^6+1)/(1/4*Pi^2-2/5) 2329952316626943 r002 52th iterates of z^2 + 2329952321281481 r009 Re(z^3+c),c=-29/94+13/38*I,n=21 2329952324752751 m001 Zeta(1/2)/(Artin^Weierstrass) 2329952329586612 r005 Im(z^2+c),c=-57/86+17/41*I,n=15 2329952339276691 a007 Real Root Of 450*x^4+879*x^3+186*x^2+968*x-898 2329952362031284 m002 (25*Sech[Pi])/(4*E^Pi) 2329952371776401 r005 Im(z^2+c),c=23/82+1/15*I,n=20 2329952387763508 r009 Im(z^3+c),c=-49/122+2/15*I,n=17 2329952396689097 r005 Im(z^2+c),c=-31/60+2/49*I,n=58 2329952405691218 m005 (2*exp(1)+1/3)/(1/6*Pi-3) 2329952407840756 a007 Real Root Of 381*x^4+396*x^3-843*x^2+373*x-774 2329952415874883 r002 40i'th iterates of 2*x/(1-x^2) of 2329952417447785 s001 sum(exp(-Pi/3)^(n-1)*A214034[n],n=1..infinity) 2329952421710176 r005 Im(z^2+c),c=-89/126+6/31*I,n=20 2329952424368004 m001 GAMMA(11/12)*exp(Paris)*sqrt(2)^2 2329952449143911 r002 54th iterates of z^2 + 2329952455576711 r004 Im(z^2+c),c=7/30+1/2*I,z(0)=I,n=7 2329952455837151 m005 (1/2*gamma-3)/(3/4*exp(1)-7/8) 2329952457067281 a007 Real Root Of -309*x^4-812*x^3+141*x^2+490*x-788 2329952460176914 a003 -1/2-2*cos(3/7*Pi)-cos(1/21*Pi)-cos(10/27*Pi) 2329952461253525 a007 Real Root Of 216*x^4+285*x^3-389*x^2+579*x+700 2329952464429057 a007 Real Root Of 156*x^4-96*x^3-772*x^2+672*x-55 2329952466631034 a007 Real Root Of -888*x^4+447*x^3+91*x^2+425*x-107 2329952467503545 l006 ln(6525/8237) 2329952484992137 m001 (Pi-Psi(2,1/3))/(sin(1/12*Pi)-ZetaQ(3)) 2329952491891711 m001 MinimumGamma/exp(MertensB1)^2*GAMMA(13/24)^2 2329952494598587 q001 1/4291933 2329952509925598 r005 Re(z^2+c),c=-17/26+4/49*I,n=2 2329952523377715 h001 (-9*exp(2)-3)/(-exp(8)-2) 2329952527607271 a007 Real Root Of 98*x^4-48*x^3-918*x^2-804*x-385 2329952529833737 r005 Re(z^2+c),c=13/38+9/59*I,n=21 2329952537839192 r009 Re(z^3+c),c=-15/46+33/49*I,n=25 2329952545494154 a007 Real Root Of 369*x^4+545*x^3-448*x^2+655*x-23 2329952553175166 r002 24th iterates of z^2 + 2329952553515701 r009 Re(z^3+c),c=-29/94+13/38*I,n=28 2329952562773263 m001 ln(FeigenbaumKappa)^2/ArtinRank2^2*GAMMA(3/4) 2329952563925101 m001 GAMMA(3/4)^2*ln(Paris)*sin(Pi/12)^2 2329952565625672 g005 GAMMA(7/12)*GAMMA(5/9)*GAMMA(2/7)/GAMMA(3/11) 2329952568005305 m001 ln(Pi)/(Gompertz^exp(1/Pi)) 2329952572232100 a001 48*9349^(23/34) 2329952576884479 m005 (29/36+1/4*5^(1/2))/(6/7*gamma+1/11) 2329952583365494 b008 ArcCsch[E^(3/7)+E] 2329952584200744 s002 sum(A109253[n]/(n^2*10^n-1),n=1..infinity) 2329952586263107 h005 exp(sin(Pi*11/39)/sin(Pi*7/19)) 2329952588251122 m001 (Shi(1)-exp(1))/(-arctan(1/3)+MertensB2) 2329952588300261 p001 sum((-1)^n/(523*n+429)/(1000^n),n=0..infinity) 2329952589947909 a001 48*64079^(19/34) 2329952597497909 r009 Re(z^3+c),c=-19/70+31/45*I,n=39 2329952599319119 r009 Re(z^3+c),c=-29/94+13/38*I,n=31 2329952600768537 m002 -E^Pi+Pi^3-24*Pi^4 2329952603532214 r005 Re(z^2+c),c=-49/90+29/52*I,n=33 2329952604930569 m001 ln(Salem)^2/Artin^2/cos(Pi/5) 2329952605816275 r009 Re(z^3+c),c=-29/94+13/38*I,n=34 2329952606048671 r009 Re(z^3+c),c=-29/94+13/38*I,n=32 2329952606338618 r009 Re(z^3+c),c=-29/94+13/38*I,n=35 2329952606592547 r009 Re(z^3+c),c=-29/94+13/38*I,n=38 2329952606605694 r009 Re(z^3+c),c=-29/94+13/38*I,n=37 2329952606661119 r009 Re(z^3+c),c=-29/94+13/38*I,n=41 2329952606675220 r009 Re(z^3+c),c=-29/94+13/38*I,n=44 2329952606677709 r009 Re(z^3+c),c=-29/94+13/38*I,n=47 2329952606678098 r009 Re(z^3+c),c=-29/94+13/38*I,n=50 2329952606678150 r009 Re(z^3+c),c=-29/94+13/38*I,n=51 2329952606678152 r009 Re(z^3+c),c=-29/94+13/38*I,n=53 2329952606678155 r009 Re(z^3+c),c=-29/94+13/38*I,n=54 2329952606678158 r009 Re(z^3+c),c=-29/94+13/38*I,n=57 2329952606678158 r009 Re(z^3+c),c=-29/94+13/38*I,n=56 2329952606678158 r009 Re(z^3+c),c=-29/94+13/38*I,n=60 2329952606678159 r009 Re(z^3+c),c=-29/94+13/38*I,n=63 2329952606678159 r009 Re(z^3+c),c=-29/94+13/38*I,n=64 2329952606678159 r009 Re(z^3+c),c=-29/94+13/38*I,n=62 2329952606678159 r009 Re(z^3+c),c=-29/94+13/38*I,n=59 2329952606678159 r009 Re(z^3+c),c=-29/94+13/38*I,n=61 2329952606678159 r009 Re(z^3+c),c=-29/94+13/38*I,n=58 2329952606678162 r009 Re(z^3+c),c=-29/94+13/38*I,n=55 2329952606678180 r009 Re(z^3+c),c=-29/94+13/38*I,n=40 2329952606678180 r009 Re(z^3+c),c=-29/94+13/38*I,n=52 2329952606678192 r009 Re(z^3+c),c=-29/94+13/38*I,n=48 2329952606678276 r009 Re(z^3+c),c=-29/94+13/38*I,n=49 2329952606678704 r009 Re(z^3+c),c=-29/94+13/38*I,n=46 2329952606678889 r009 Re(z^3+c),c=-29/94+13/38*I,n=45 2329952606679987 r009 Re(z^3+c),c=-29/94+13/38*I,n=43 2329952606685498 r009 Re(z^3+c),c=-29/94+13/38*I,n=42 2329952606736292 r009 Re(z^3+c),c=-29/94+13/38*I,n=39 2329952607077017 r009 Re(z^3+c),c=-29/94+13/38*I,n=36 2329952609105385 r009 Re(z^3+c),c=-29/94+13/38*I,n=33 2329952612703078 r009 Re(z^3+c),c=-29/94+13/38*I,n=29 2329952619655277 r009 Re(z^3+c),c=-29/94+13/38*I,n=30 2329952620486626 m005 (1/2*2^(1/2)-1/5)/(3*Catalan-4/7) 2329952622538213 r005 Im(z^2+c),c=-31/60+2/49*I,n=56 2329952630439542 m001 (1-arctan(1/3))/(GAMMA(5/6)+Grothendieck) 2329952643141983 r005 Im(z^2+c),c=-31/60+2/49*I,n=52 2329952647975409 l006 ln(6727/8492) 2329952650652196 r005 Im(z^2+c),c=-15/26+9/26*I,n=26 2329952651060350 m001 (Ei(1,1)+Tribonacci)/(2^(1/3)-Psi(1,1/3)) 2329952651959248 m001 HardyLittlewoodC4-Riemann2ndZero-Sierpinski 2329952655604136 m005 (1/3*Zeta(3)-1/3)/(9/11*exp(1)+2/3) 2329952659190643 r002 14th iterates of z^2 + 2329952662473278 a005 (1/cos(34/203*Pi))^291 2329952664337486 r009 Re(z^3+c),c=-29/94+13/38*I,n=27 2329952668291139 a007 Real Root Of -278*x^4-542*x^3-102*x^2-882*x-164 2329952670897440 a001 2/109801*199^(2/43) 2329952673766753 a007 Real Root Of 532*x^4+908*x^3-354*x^2+684*x-678 2329952673798202 r005 Im(z^2+c),c=-19/14+2/79*I,n=37 2329952687161582 a005 (1/sin(64/163*Pi))^1166 2329952689189160 a001 2/199*18^(16/55) 2329952703305109 r009 Re(z^3+c),c=-29/94+13/38*I,n=26 2329952703875825 m001 (-Kolakoski+MertensB1)/(Catalan-ln(Pi)) 2329952707158612 r009 Im(z^3+c),c=-15/29+3/37*I,n=14 2329952709788772 r002 3th iterates of z^2 + 2329952713502193 m001 (FeigenbaumMu-TravellingSalesman)/GAMMA(3/4) 2329952714029362 r005 Im(z^2+c),c=-25/22+2/69*I,n=45 2329952714231599 r005 Re(z^2+c),c=-33/34+7/90*I,n=24 2329952749540611 a007 Real Root Of 460*x^4+800*x^3-157*x^2+995*x-267 2329952750304439 m001 (TreeGrowth2nd+ZetaQ(4))/(Zeta(3)+ln(2)) 2329952754819704 h001 (5/11*exp(2)+4/5)/(2/9*exp(2)+1/7) 2329952759912640 r005 Im(z^2+c),c=-13/54+31/56*I,n=8 2329952775660972 r009 Re(z^3+c),c=-29/94+13/38*I,n=24 2329952779053726 m008 (1/5*Pi^2+1/6)/(3*Pi^5+2/3) 2329952783089426 r005 Im(z^2+c),c=-31/60+2/49*I,n=54 2329952786414527 m001 TreeGrowth2nd/exp(Porter)^2/Zeta(9)^2 2329952794965089 m001 1/MinimumGamma^2*ln(Cahen)*GAMMA(5/6) 2329952802188199 m001 (GAMMA(1/3)+1)/(-BesselK(0,1)+2) 2329952804340100 m001 (DuboisRaymond+Khinchin)/(1-5^(1/2)) 2329952804340100 m001 cos(1/5*Pi)*(DuboisRaymond+Khinchin) 2329952810862143 m001 Catalan^2*exp(Bloch)/gamma 2329952817924736 l006 ln(6929/8747) 2329952821576070 l006 ln(173/1778) 2329952825676147 m001 (Porter+Sarnak)/(Psi(1,1/3)-ln(2)) 2329952832595154 a007 Real Root Of 72*x^4-579*x^3-8*x^2-300*x-77 2329952848937794 a007 Real Root Of 514*x^4+846*x^3-836*x^2-140*x-235 2329952853562471 m004 -750*Pi+5*Sqrt[5]*Pi-6*Csc[Sqrt[5]*Pi] 2329952862466814 m001 Gompertz^(2^(1/3))/(Ei(1)^(2^(1/3))) 2329952866077402 m005 (1/2*Pi+5/12)/(1/12*5^(1/2)+2/3) 2329952872516091 r009 Im(z^3+c),c=-29/48+18/55*I,n=4 2329952879050870 m001 3^(1/3)*KhinchinLevy-Riemann3rdZero 2329952883552991 r005 Im(z^2+c),c=-61/58+10/41*I,n=57 2329952885972231 a007 Real Root Of -437*x^4-777*x^3+935*x^2+952*x+193 2329952895733137 m001 (MinimumGamma+Totient)/(Zeta(5)-Zeta(1,-1)) 2329952896981175 a001 17711/322*199^(3/11) 2329952901486270 m001 1/BesselJ(0,1)^2*Salem*exp(GAMMA(3/4))^2 2329952904319702 r005 Im(z^2+c),c=-39/70+19/47*I,n=57 2329952908467386 m005 (1/3*gamma+1/3)/(125/99+4/9*5^(1/2)) 2329952909033115 m001 FeigenbaumD/Mills/QuadraticClass 2329952909220427 m001 (Rabbit-ZetaP(4))/(MertensB2-Mills) 2329952912787460 m004 -75*Pi+(5*Sqrt[5]*Cos[Sqrt[5]*Pi])/Pi 2329952924390661 m001 (ln(2)/ln(10))^(Catalan*PisotVijayaraghavan) 2329952928521804 a001 15127/3*4181^(39/53) 2329952931328216 a001 8/9349*3^(31/34) 2329952938861521 r005 Im(z^2+c),c=-20/21+13/61*I,n=16 2329952939867103 m001 1/GAMMA(1/12)*ln(Tribonacci)*GAMMA(5/24) 2329952941697745 a007 Real Root Of -550*x^4-835*x^3+768*x^2-582*x+122 2329952943066888 m001 (LambertW(1)+ln(2))/(-ArtinRank2+Cahen) 2329952944334151 a007 Real Root Of -410*x^4-647*x^3+740*x^2-73*x-288 2329952951779941 m005 (1/3*2^(1/2)-1/6)/(3/8*Zeta(3)+6/7) 2329952954169407 m001 PisotVijayaraghavan/MertensB1^2/ln(Zeta(7)) 2329952955233152 r005 Im(z^2+c),c=-31/60+2/49*I,n=49 2329952959696888 m001 BesselI(1,1)/(Cahen+Grothendieck) 2329952965208589 p003 LerchPhi(1/6,2,97/146) 2329952978245743 l006 ln(7131/9002) 2329952981672816 a007 Real Root Of -322*x^4-394*x^3+405*x^2-580*x+956 2329952984054325 r009 Im(z^3+c),c=-11/31+40/61*I,n=5 2329952992332878 m005 (-1/18+1/6*5^(1/2))/(5^(1/2)-7/8) 2329952999662104 a001 48/29134601*2^(1/2) 2329953004746902 m005 (1/2*exp(1)-6/11)/(3/8*Zeta(3)-4/5) 2329953005194162 q001 942/4043 2329953009228494 m001 1/GAMMA(7/12)/Paris^2*ln(sqrt(2)) 2329953020347900 r002 10th iterates of z^2 + 2329953021283545 r005 Im(z^2+c),c=-23/60+12/31*I,n=24 2329953022582144 m001 (Bloch+Conway)/(Zeta(3)-BesselJ(1,1)) 2329953030189896 m001 (GAMMA(13/24)+Conway)/(Stephens-Tribonacci) 2329953040788819 a007 Real Root Of -636*x^4+874*x^3+593*x^2+857*x-2 2329953042519400 a007 Real Root Of -239*x^4+192*x^3-143*x^2+674*x-151 2329953043409407 r005 Re(z^2+c),c=-15/74+26/61*I,n=30 2329953051142464 a001 55/29*3571^(20/23) 2329953062080745 a007 Real Root Of -145*x^4+289*x^3-414*x^2+959*x+250 2329953064220781 a007 Real Root Of -567*x^4-913*x^3+936*x^2-71*x-85 2329953070602436 r005 Im(z^2+c),c=-7/94+17/61*I,n=4 2329953072181981 m005 (1/2*5^(1/2)+3/5)/(1/7*Zeta(3)-10/11) 2329953072580329 r005 Im(z^2+c),c=-163/126+1/48*I,n=13 2329953096620569 a007 Real Root Of -999*x^4+503*x^3-493*x^2+798*x+222 2329953116368711 r005 Im(z^2+c),c=-7/8+15/73*I,n=51 2329953126780511 m001 ln(2)/ln(10)/(3^(1/2)-BesselJ(1,1)) 2329953128000474 m001 FeigenbaumAlpha^Ei(1)-ReciprocalFibonacci 2329953129734117 l006 ln(7333/9257) 2329953129734117 p004 log(9257/7333) 2329953129908448 m001 (BesselI(1,1)+GaussAGM)/(3^(1/3)-sin(1)) 2329953139952973 r005 Re(z^2+c),c=-55/48+7/29*I,n=30 2329953147008663 h001 (-exp(7)+8)/(-7*exp(2)+5) 2329953154021369 m004 2-Cos[Sqrt[5]*Pi]/2+125*Pi*Csch[Sqrt[5]*Pi] 2329953154877418 r005 Re(z^2+c),c=29/114+7/50*I,n=8 2329953164746909 m001 (sin(1)+gamma(2))/FeigenbaumMu 2329953166623528 m001 ln(Pi)*((1+3^(1/2))^(1/2))^(2^(1/2)) 2329953166623528 m001 ln(Pi)*sqrt(1+sqrt(3))^sqrt(2) 2329953166843496 h001 (1/8*exp(2)+1/4)/(2/3*exp(2)+1/9) 2329953171054457 a007 Real Root Of -101*x^4-96*x^3-606*x^2+43*x+42 2329953179186202 r005 Im(z^2+c),c=-77/102+3/37*I,n=26 2329953184439013 m005 (1/2*gamma-4)/(4/9*Catalan-2) 2329953189869562 m001 (2^(1/3)-gamma(2))/(Landau+ZetaQ(4)) 2329953193776460 a007 Real Root Of 329*x^4+554*x^3-874*x^2-743*x+325 2329953208207336 r005 Re(z^2+c),c=15/46+11/29*I,n=38 2329953210022603 a001 55/29*12752043^(10/23) 2329953216233129 m001 (exp(-1/2*Pi)+Porter)^GAMMA(13/24) 2329953217482912 a001 599074578/89*1836311903^(12/17) 2329953217483585 a001 1860498/89*6557470319842^(12/17) 2329953217484156 a001 192900153618/89*514229^(12/17) 2329953217548570 a001 55/29*15127^(17/23) 2329953224151434 m001 Zeta(1/2)^2*DuboisRaymond^2/exp(sqrt(Pi))^2 2329953240924633 a007 Real Root Of -722*x^4-81*x^3-107*x^2+627*x+153 2329953245364928 r005 Im(z^2+c),c=-9/8+18/73*I,n=58 2329953251971656 r005 Re(z^2+c),c=-13/98+29/48*I,n=60 2329953258336535 a007 Real Root Of -306*x^4-793*x^3-30*x^2+653*x+672 2329953266346792 m001 LambertW(1)*Pi^(1/2)+PisotVijayaraghavan 2329953267592645 m001 (MertensB3+Paris)/(Zeta(3)-sin(1/5*Pi)) 2329953268949714 r005 Re(z^2+c),c=-17/110+23/43*I,n=45 2329953273100219 l006 ln(7535/9512) 2329953282906194 r002 50th iterates of z^2 + 2329953289808622 m001 (gamma(2)+MasserGramain)/(1+3^(1/2)) 2329953290165527 a007 Real Root Of -591*x^4-178*x^3-145*x^2+183*x+50 2329953291056495 b008 Erfc[1+(2*E)/9] 2329953294233787 r005 Im(z^2+c),c=-11/27+19/48*I,n=27 2329953295605948 a001 29/4181*610^(39/43) 2329953296374240 r005 Im(z^2+c),c=-91/94+11/48*I,n=58 2329953297153373 r005 Re(z^2+c),c=-33/34+7/90*I,n=22 2329953308193760 a007 Real Root Of -496*x^4-795*x^3+890*x^2+178*x+145 2329953308564198 r005 Re(z^2+c),c=-17/94+11/23*I,n=57 2329953310645986 m001 (gamma(3)+Weierstrass)/(GAMMA(2/3)+ln(2)) 2329953325842046 a007 Real Root Of -560*x^4-985*x^3+822*x^2+584*x+943 2329953329562319 a007 Real Root Of -491*x^4+973*x^3+398*x^2+689*x-193 2329953339327008 r005 Re(z^2+c),c=5/17+14/43*I,n=6 2329953341268683 m001 GAMMA(11/12)^2/exp(GlaisherKinkelin)^2*exp(1) 2329953343047928 r005 Im(z^2+c),c=-9/70+55/64*I,n=33 2329953344317756 m001 GAMMA(19/24)*Grothendieck^KhinchinLevy 2329953344655761 m001 GAMMA(13/24)^2*GAMMA(1/3)*exp(GAMMA(19/24)) 2329953347547868 s002 sum(A220009[n]/(n^3*10^n-1),n=1..infinity) 2329953347744572 m001 Thue-cos(1/12*Pi)*Riemann3rdZero 2329953352609605 b008 9/11+Pi*ArcCsch[2] 2329953355388490 m001 exp(BesselJ(1,1))^2*Robbin*Zeta(1/2) 2329953359931278 m001 MinimumGamma*Tribonacci^BesselJ(0,1) 2329953362986716 m005 (1/3*gamma+1/11)/(Catalan+3/10) 2329953369088589 p001 sum(1/(187*n+43)/(100^n),n=0..infinity) 2329953384376888 m001 1/ln(FeigenbaumD)^2/FibonacciFactorial/Ei(1)^2 2329953402532369 a007 Real Root Of -419*x^4-918*x^3+235*x^2+112*x-278 2329953407700619 m001 (arctan(1/2)+ln(2+3^(1/2)))/LandauRamanujan 2329953407700619 m001 (arctan(1/2)+ln(2+sqrt(3)))/LandauRamanujan 2329953408980225 l006 ln(7737/9767) 2329953414222758 r009 Im(z^3+c),c=-45/94+1/15*I,n=38 2329953429935895 r002 14th iterates of z^2 + 2329953439169985 a007 Real Root Of -481*x^4-742*x^3+806*x^2-120*x+135 2329953446974945 a007 Real Root Of 9*x^4-308*x^3-444*x^2+593*x-369 2329953458529091 l006 ln(883/9075) 2329953466715835 r005 Re(z^2+c),c=17/52+5/24*I,n=22 2329953466930703 m005 (1/2*Catalan-6)/(8/11*Zeta(3)-7/11) 2329953472042338 m005 (1/2*gamma+2/11)/(10/11*3^(1/2)+4/9) 2329953481094193 a007 Real Root Of -321*x^4-513*x^3+485*x^2+226*x+865 2329953484733706 r009 Re(z^3+c),c=-12/31+31/59*I,n=63 2329953486533921 r005 Re(z^2+c),c=7/40+28/61*I,n=13 2329953488884050 r009 Re(z^3+c),c=-5/114+43/64*I,n=28 2329953492038262 r009 Re(z^3+c),c=-23/54+25/51*I,n=17 2329953496639611 a001 17711/2207*199^(7/11) 2329953509970772 m001 (-Robbin+Salem)/(GAMMA(11/12)-exp(Pi)) 2329953514361490 a007 Real Root Of 92*x^4-789*x^3+785*x^2+912*x+882 2329953515199765 r009 Re(z^3+c),c=-29/94+13/38*I,n=23 2329953519456791 m001 Pi*GAMMA(13/24)*ZetaP(2) 2329953528356486 r002 12th iterates of z^2 + 2329953534310713 a001 11/8*2^(35/46) 2329953534799512 m001 (3^(1/2)+Zeta(3))/(-arctan(1/3)+Zeta(1,2)) 2329953537945565 l006 ln(7939/10022) 2329953540801697 a001 123/13*13^(13/37) 2329953546862797 m001 BesselI(0,2)^GAMMA(23/24)+HeathBrownMoroz 2329953547771245 m004 6+5*Pi+Sin[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi] 2329953550741622 r005 Re(z^2+c),c=41/118+11/54*I,n=49 2329953551438971 a007 Real Root Of -142*x^4-152*x^3+62*x^2-790*x+85 2329953553602540 r009 Re(z^3+c),c=-17/32+11/17*I,n=8 2329953559283346 a008 Real Root of x^4+3*x^2-72*x+122 2329953602480369 r005 Re(z^2+c),c=4/29+8/19*I,n=35 2329953612251226 m004 25+Cos[Sqrt[5]*Pi]*Sinh[Sqrt[5]*Pi]^2 2329953612324963 r005 Im(z^2+c),c=-43/114+5/13*I,n=38 2329953613730259 l006 ln(710/7297) 2329953616076527 b008 3/2+ArcCsch[14/13] 2329953622328579 a007 Real Root Of -105*x^4+55*x^3+772*x^2+42*x-303 2329953623849934 s002 sum(A245562[n]/(exp(n)),n=1..infinity) 2329953623984066 r005 Im(z^2+c),c=-35/74+8/21*I,n=20 2329953635476148 r009 Re(z^3+c),c=-39/110+21/46*I,n=15 2329953636231403 r005 Re(z^2+c),c=-7/94+23/38*I,n=9 2329953642563995 r005 Re(z^2+c),c=-61/102+7/17*I,n=35 2329953653354141 r005 Im(z^2+c),c=-97/90+7/30*I,n=35 2329953659948582 a007 Real Root Of -528*x^4+303*x^3-897*x^2-245*x-3 2329953669144195 a007 Real Root Of 15*x^4-141*x^3-71*x^2+373*x-971 2329953670290379 m001 Zeta(5)*ArtinRank2+ErdosBorwein 2329953683623575 m001 GAMMA(13/24)^cos(1/5*Pi)+Chi(1) 2329953685317902 a005 (1/sin(59/142*Pi))^1315 2329953689442903 a007 Real Root Of -296*x^4-726*x^3+29*x^2+394*x+301 2329953689607710 p001 sum((-1)^n/(524*n+429)/(1000^n),n=0..infinity) 2329953691811439 a003 sin(Pi*5/73)/sin(Pi*38/103) 2329953692692532 s002 sum(A088050[n]/(n*10^n-1),n=1..infinity) 2329953698316425 b008 ArcCosh[8/3]+Log[2] 2329953700180491 m001 (ZetaP(2)+ZetaQ(4))/(FeigenbaumKappa+Lehmer) 2329953706049569 m001 Zeta(1,-1)*Porter-gamma(2) 2329953706073011 p002 log(18^(6/7)-19^(1/6)) 2329953706563734 m009 (1/6*Pi^2-1/4)/(1/10*Pi^2+5) 2329953709391517 m001 (Si(Pi)+Otter)/(Sarnak+Totient) 2329953712162293 r009 Re(z^3+c),c=-29/110+32/33*I,n=16 2329953713312051 r005 Re(z^2+c),c=-17/14+5/179*I,n=6 2329953716044534 a007 Real Root Of 276*x^4+482*x^3-574*x^2-160*x+706 2329953722318924 r005 Im(z^2+c),c=41/114+9/35*I,n=17 2329953740003526 m001 1/Rabbit/Backhouse/ln(TwinPrimes) 2329953742733460 m005 (1/2*5^(1/2)+6/11)/(5/11*2^(1/2)-4/7) 2329953748764772 a005 (1/cos(28/209*Pi))^564 2329953755729631 m004 6+5/Pi+5*Pi*Coth[Sqrt[5]*Pi] 2329953760286619 a007 Real Root Of -296*x^4-573*x^3-186*x^2-671*x+922 2329953760354395 m005 (1/2*gamma+7/11)/(3*2^(1/2)-3/11) 2329953763601121 m001 (exp(Pi)*Ei(1)+ln(2)/ln(10))/Ei(1) 2329953768937982 r005 Re(z^2+c),c=-7/50+31/55*I,n=63 2329953771176894 a007 Real Root Of -478*x^4-760*x^3+451*x^2-781*x+206 2329953773331517 r005 Im(z^2+c),c=-1/78+37/61*I,n=6 2329953789659963 m001 (exp(1)*MertensB3-polylog(4,1/2))/MertensB3 2329953798011192 a007 Real Root Of 528*x^4+887*x^3-861*x^2-521*x-881 2329953800405682 m001 (Lehmer+2/3)/(BesselJZeros(0,1)+3) 2329953818034372 m001 (Grothendieck+ZetaP(3))/(Chi(1)+gamma(3)) 2329953819784720 m001 (OneNinth+Sarnak)/(gamma(3)-FeigenbaumMu) 2329953820007885 p001 sum(1/(377*n+297)/n/(64^n),n=1..infinity) 2329953824144183 a007 Real Root Of 329*x^4+652*x^3-256*x^2-63*x-206 2329953828322381 m005 (1/2*3^(1/2)+1)/(7/10*Pi-3) 2329953830893017 m001 1/GAMMA(3/4)*ln(GAMMA(13/24))*gamma 2329953837549112 r005 Im(z^2+c),c=-31/34+11/46*I,n=31 2329953844493971 a007 Real Root Of 415*x^4+856*x^3+127*x^2+623*x-641 2329953848026173 a007 Real Root Of -255*x^4-193*x^3+851*x^2+6*x+468 2329953868930636 l006 ln(537/5519) 2329953869430050 r002 20th iterates of z^2 + 2329953875382508 a007 Real Root Of 372*x^4+505*x^3-421*x^2+673*x-722 2329953877005086 r002 50th iterates of z^2 + 2329953888992658 g005 GAMMA(7/8)/GAMMA(7/11)/GAMMA(4/11)/GAMMA(2/3) 2329953889651732 p003 LerchPhi(1/10,3,349/213) 2329953892042770 a007 Real Root Of -386*x^4-443*x^3-849*x^2+169*x+81 2329953892169254 m007 (-4*gamma+3/4)/(-3*gamma-6*ln(2)-4/5) 2329953892761976 h005 exp(cos(Pi*8/27)+cos(Pi*21/50)) 2329953906465262 a001 2576/321*199^(7/11) 2329953908590566 m001 MertensB2^LandauRamanujan+Conway 2329953918092536 r002 14th iterates of z^2 + 2329953918240838 m001 (GAMMA(3/4)-gamma)/(3^(1/3)+Totient) 2329953918510259 s001 sum(exp(-Pi/4)^(n-1)*A249265[n],n=1..infinity) 2329953930694125 a001 11/89*121393^(37/44) 2329953950356788 s002 sum(A058005[n]/(n*10^n-1),n=1..infinity) 2329953951374005 a007 Real Root Of 208*x^4-40*x^3-844*x^2+585*x-691 2329953960612053 a007 Real Root Of 529*x^4-200*x^3+519*x^2-780*x-214 2329953966258031 a001 121393/15127*199^(7/11) 2329953974463742 a007 Real Root Of -774*x^4+950*x^3+871*x^2+648*x-208 2329953974981678 a001 105937/13201*199^(7/11) 2329953976254441 a001 416020/51841*199^(7/11) 2329953976440135 a001 726103/90481*199^(7/11) 2329953976467227 a001 5702887/710647*199^(7/11) 2329953976471180 a001 829464/103361*199^(7/11) 2329953976471757 a001 39088169/4870847*199^(7/11) 2329953976471841 a001 34111385/4250681*199^(7/11) 2329953976471853 a001 133957148/16692641*199^(7/11) 2329953976471855 a001 233802911/29134601*199^(7/11) 2329953976471855 a001 1836311903/228826127*199^(7/11) 2329953976471855 a001 267084832/33281921*199^(7/11) 2329953976471855 a001 12586269025/1568397607*199^(7/11) 2329953976471855 a001 10983760033/1368706081*199^(7/11) 2329953976471855 a001 43133785636/5374978561*199^(7/11) 2329953976471855 a001 75283811239/9381251041*199^(7/11) 2329953976471855 a001 591286729879/73681302247*199^(7/11) 2329953976471855 a001 86000486440/10716675201*199^(7/11) 2329953976471855 a001 4052739537881/505019158607*199^(7/11) 2329953976471855 a001 3278735159921/408569081798*199^(7/11) 2329953976471855 a001 2504730781961/312119004989*199^(7/11) 2329953976471855 a001 956722026041/119218851371*199^(7/11) 2329953976471855 a001 182717648081/22768774562*199^(7/11) 2329953976471855 a001 139583862445/17393796001*199^(7/11) 2329953976471855 a001 53316291173/6643838879*199^(7/11) 2329953976471855 a001 10182505537/1268860318*199^(7/11) 2329953976471855 a001 7778742049/969323029*199^(7/11) 2329953976471855 a001 2971215073/370248451*199^(7/11) 2329953976471855 a001 567451585/70711162*199^(7/11) 2329953976471856 a001 433494437/54018521*199^(7/11) 2329953976471861 a001 165580141/20633239*199^(7/11) 2329953976471893 a001 31622993/3940598*199^(7/11) 2329953976472113 a001 24157817/3010349*199^(7/11) 2329953976473623 a001 9227465/1149851*199^(7/11) 2329953976483971 a001 1762289/219602*199^(7/11) 2329953976554900 a001 1346269/167761*199^(7/11) 2329953977041052 a001 514229/64079*199^(7/11) 2329953980373189 a001 98209/12238*199^(7/11) 2329953981131756 s002 sum(A011364[n]/((exp(n)-1)/n),n=1..infinity) 2329953981395812 p001 sum((-1)^n/(284*n+133)/n/(10^n),n=1..infinity) 2329953991458904 a003 cos(Pi*26/105)*cos(Pi*13/33) 2329954001596416 m001 exp(Pi)-ln(Pi)+Conway 2329954003211996 a001 75025/9349*199^(7/11) 2329954011594348 r009 Re(z^3+c),c=-11/21+12/35*I,n=10 2329954028606423 r009 Re(z^3+c),c=-11/32+23/54*I,n=33 2329954050082070 r005 Re(z^2+c),c=-17/94+11/23*I,n=62 2329954056717776 p001 sum((-1)^n/(502*n+429)/(1024^n),n=0..infinity) 2329954057883973 m002 Pi+E^Pi*Pi+E^Pi*Pi^4 2329954058525347 a007 Real Root Of 287*x^4+292*x^3-661*x^2+398*x-249 2329954066354232 a007 Real Root Of 92*x^4-238*x^3-695*x^2+969*x+309 2329954067639680 m001 Thue/(FeigenbaumB-arctan(1/2)) 2329954070031887 l006 ln(901/9260) 2329954071451274 m001 (ArtinRank2+Khinchin)/(3^(1/3)-gamma(2)) 2329954075183051 r005 Re(z^2+c),c=-5/52+41/50*I,n=9 2329954081163416 a005 (1/cos(9/170*Pi))^558 2329954093966847 r005 Re(z^2+c),c=-23/62+35/59*I,n=16 2329954095523267 m001 (2/3)^Khinchin/exp(1/exp(1)) 2329954100597811 a001 24476/21*34^(11/56) 2329954101094055 m001 Riemann2ndZero^FeigenbaumDelta/Cahen 2329954104713342 a003 cos(Pi*27/119)/cos(Pi*15/38) 2329954110884174 m001 Bloch^2/DuboisRaymond^2/ln(sqrt(1+sqrt(3)))^2 2329954111401363 m005 (1/3+1/4*5^(1/2))/(1/6*Zeta(3)-7/12) 2329954118547233 r005 Re(z^2+c),c=-17/122+23/41*I,n=34 2329954130883798 m005 (7/8+1/4*5^(1/2))/(2/3*3^(1/2)+5) 2329954138419243 a001 1/5*610^(1/42) 2329954138582036 r005 Im(z^2+c),c=-41/90+17/37*I,n=27 2329954145592841 m001 Si(Pi)*LaplaceLimit+Zeta(1/2) 2329954159018909 p002 log(1/12*(23-3^(2/3)*12^(1/4))*12^(3/4)) 2329954159751516 a001 28657/3571*199^(7/11) 2329954162868734 a007 Real Root Of 146*x^4+248*x^3-125*x^2+510*x+701 2329954166480447 a001 199/5*7778742049^(13/19) 2329954167560994 m004 -125*Pi-(25*Sqrt[5]*Pi)/2+5*Sinh[Sqrt[5]*Pi] 2329954168344795 a005 (1/cos(7/211*Pi))^1425 2329954169992788 r009 Im(z^3+c),c=-7/86+8/33*I,n=2 2329954172885782 m006 (2/5*Pi^2-1/5)/(3/4*ln(Pi)+3/4) 2329954197288955 a003 sin(Pi*11/95)*sin(Pi*5/22) 2329954199529565 a001 7*610^(3/16) 2329954209644917 r002 11th iterates of z^2 + 2329954212405525 m006 (4/5*exp(Pi)+3)/(2/5*Pi-1/3) 2329954219260844 m001 (Magata-PlouffeB)/(arctan(1/2)+Kolakoski) 2329954222988863 m001 (ln(2)+3^(1/3))/(PolyaRandomWalk3D+Stephens) 2329954232587860 p004 log(20483/1993) 2329954233533441 r009 Re(z^3+c),c=-35/94+30/61*I,n=49 2329954235625730 m004 -5-Cos[Sqrt[5]*Pi]+(750*Coth[Sqrt[5]*Pi])/Pi 2329954243672801 r005 Im(z^2+c),c=-33/106+10/33*I,n=3 2329954251586728 m001 exp(1/exp(1))+BesselJ(1,1)^ZetaR(2) 2329954266235829 b008 Sqrt[6*ProductLog[Sqrt[5]]] 2329954267378698 a001 817138163596/3*14930352^(11/16) 2329954267378700 a001 1368706081*32951280099^(11/16) 2329954273408425 m001 arctan(1/3)^sin(1)/(1+3^(1/2))^(1/2) 2329954273587232 m001 1/Khintchine^2*GolombDickman^2/exp(sin(1)) 2329954287221683 m001 (PolyaRandomWalk3D+Sarnak)/(1-Landau) 2329954288470828 r005 Re(z^2+c),c=-9/50+13/27*I,n=17 2329954289208298 p004 log(35447/3449) 2329954290955016 p001 sum((-1)^n/(595*n+403)/(6^n),n=0..infinity) 2329954292911430 a007 Real Root Of -480*x^4+392*x^3-165*x^2+946*x-215 2329954296300650 m001 Pi^2/Niven*ln(Zeta(9))^2 2329954299688198 m001 ln(Ei(1))^2*BesselK(0,1)*GAMMA(2/3) 2329954302783503 m001 (Zeta(3)+GAMMA(2/3)*(3^(1/3)))/GAMMA(2/3) 2329954302783503 m001 (Zeta(3)+GAMMA(2/3)*3^(1/3))/GAMMA(2/3) 2329954307299412 r005 Re(z^2+c),c=-71/126+21/26*I,n=3 2329954316026705 m001 (PlouffeB-Sarnak)/(Bloch+Lehmer) 2329954324653676 b008 Pi^(-1)+Coth[6/11] 2329954343950826 m001 (OneNinth-Thue)/(cos(1/12*Pi)-Cahen) 2329954347265077 r009 Re(z^3+c),c=-37/86+17/35*I,n=14 2329954351368187 m001 GAMMA(1/4)*ln(RenyiParking)/GAMMA(5/12)^2 2329954354328231 m005 (1/3*2^(1/2)+1/12)/(3/8*gamma-5/11) 2329954357392801 a005 (1/sin(86/195*Pi))^49 2329954360014941 m001 (Sierpinski+ZetaP(4))/(gamma+BesselI(1,1)) 2329954366711405 l006 ln(364/3741) 2329954386372559 r002 15th iterates of z^2 + 2329954389837660 m005 (1/2*3^(1/2)-3/10)/(8/11*Catalan-10/11) 2329954390268873 h001 (3/4*exp(2)+5/6)/(2/7*exp(2)+5/8) 2329954398559217 r002 43th iterates of z^2 + 2329954407458944 r005 Im(z^2+c),c=-109/122+13/64*I,n=31 2329954409229548 a001 8/710647*521^(5/43) 2329954411993298 m005 (13/4+1/4*5^(1/2))/(7/8*Catalan+5/6) 2329954414439819 a007 Real Root Of 76*x^4+30*x^3-654*x^2-873*x-344 2329954415849471 m001 cos(1/5*Pi)^GAMMA(7/12)+ErdosBorwein 2329954424663496 r002 12th iterates of z^2 + 2329954425923226 r009 Im(z^3+c),c=-23/36+2/19*I,n=2 2329954442337454 m005 (1/2*gamma-1/9)/(13/20+1/20*5^(1/2)) 2329954449105759 m001 (-exp(-1/2*Pi)+LaplaceLimit)/(2^(1/2)-ln(5)) 2329954455500488 a007 Real Root Of -235*x^4-208*x^3+410*x^2-809*x+184 2329954464378402 a007 Real Root Of 731*x^4+487*x^3+873*x^2-879*x+20 2329954475864025 r009 Re(z^3+c),c=-13/70+55/64*I,n=23 2329954481017237 h001 (-3*exp(-1)+1)/(-9*exp(-3)-4) 2329954484558717 r005 Im(z^2+c),c=-1/10+8/27*I,n=18 2329954507135131 a007 Real Root Of 9*x^4+198*x^3-287*x^2-309*x+667 2329954513681641 r005 Re(z^2+c),c=17/90+23/47*I,n=31 2329954518413864 m005 (1/2*5^(1/2)-7/10)/(5/11*5^(1/2)+7/9) 2329954521344901 a001 1/11*(1/2*5^(1/2)+1/2)^14*7^(4/7) 2329954525748165 m001 CopelandErdos^ln(gamma)/(ln(3)^ln(gamma)) 2329954526411721 m005 (1/2*2^(1/2)+1/10)/(1/3*2^(1/2)-1/8) 2329954532507379 h001 (-6*exp(8)+7)/(-7*exp(7)+3) 2329954540522472 m001 (ln(2^(1/2)+1)+GAMMA(13/24))/(Artin-Backhouse) 2329954545955245 m001 (ln(2+3^(1/2))-Pi^(1/2))/(Tetranacci+Trott2nd) 2329954551459297 a007 Real Root Of 581*x^4-985*x^3-254*x^2-934*x-218 2329954552229654 m001 (FeigenbaumMu-Robbin)/(exp(-1/2*Pi)-Backhouse) 2329954552720734 a005 (1/sin(107/231*Pi))^814 2329954576750438 m001 (Psi(2,1/3)+CopelandErdos*Thue)/CopelandErdos 2329954583086232 a003 cos(Pi*19/106)-sin(Pi*17/81) 2329954583103113 r008 a(0)=0,K{-n^6,20+43*n^3-5*n^2-62*n} 2329954596711483 a007 Real Root Of -216*x^4+908*x^3-579*x^2-576*x-634 2329954597671488 a005 (1/sin(28/75*Pi))^67 2329954612071642 r005 Re(z^2+c),c=6/17+9/52*I,n=6 2329954614182418 r005 Im(z^2+c),c=-25/22+2/69*I,n=50 2329954625637168 r009 Re(z^3+c),c=-23/94+7/43*I,n=6 2329954640379186 m001 (OneNinth*TwinPrimes+Porter)/TwinPrimes 2329954657579922 l006 ln(919/9445) 2329954666619520 m001 (BesselK(1,1)-GAMMA(11/12))/(Cahen+Conway) 2329954676989496 p001 sum(1/(136*n+45)/n/(24^n),n=0..infinity) 2329954686512863 s001 sum(exp(-Pi/2)^n*A211141[n],n=1..infinity) 2329954687866068 m001 GAMMA(7/24)^2/ln(Robbin)/Pi^2 2329954690173641 r004 Re(z^2+c),c=1/18-2/5*I,z(0)=exp(5/12*I*Pi),n=3 2329954691879327 m001 Cahen^FeigenbaumAlpha-Paris 2329954698435887 a003 sin(Pi*8/107)/sin(Pi*16/33) 2329954699078017 b008 1/2+ArcSinh[E+Pi^(-1)] 2329954699733075 m001 (-Zeta(1,-1)+BesselK(1,1))/(5^(1/2)+Shi(1)) 2329954704195738 m001 (-GAMMA(7/12)+Kac)/(Chi(1)-GAMMA(3/4)) 2329954737536767 r009 Re(z^3+c),c=-5/26+33/35*I,n=12 2329954738258926 a007 Real Root Of -410*x^4+584*x^3+314*x^2+722*x-17 2329954756234660 r005 Re(z^2+c),c=-2/15+15/32*I,n=8 2329954757603398 m001 (Rabbit-Thue)/(cos(1/12*Pi)-ErdosBorwein) 2329954761445687 a007 Real Root Of -710*x^4-94*x^3+759*x^2+404*x+9 2329954767056894 m005 (-9/44+1/4*5^(1/2))/(-47/132+5/22*5^(1/2)) 2329954773679716 a001 123/8*3^(14/37) 2329954778439717 a007 Real Root Of 646*x^4-938*x^3+186*x^2-786*x-207 2329954783224836 m001 (-Ei(1,1)+FeigenbaumDelta)/(1-cos(1/5*Pi)) 2329954793695381 m005 (1/2*Pi+1/10)/(2/7*3^(1/2)+2/9) 2329954808029405 m001 (OneNinth-Robbin)/(HardyLittlewoodC4-Khinchin) 2329954808274801 m001 Pi/Psi(2,1/3)-Si(Pi)-BesselK(0,1) 2329954809190975 a007 Real Root Of 366*x^4+640*x^3-404*x^2+9*x-477 2329954825281762 m001 (Catalan+exp(1/exp(1))*MertensB2)/MertensB2 2329954829981331 m006 (2/Pi+1/4)/(1/3*Pi-2/3) 2329954843956525 m001 (Zeta(3)-DuboisRaymond)/(MertensB2-Porter) 2329954848347697 l006 ln(555/5704) 2329954858757400 r005 Re(z^2+c),c=-13/56+26/41*I,n=35 2329954868688931 a007 Real Root Of -446*x^4-960*x^3+76*x^2-193*x+139 2329954881942951 m008 (2*Pi^6-1/5)/(1/4*Pi^3+1/2) 2329954883244511 a007 Real Root Of 629*x^4-269*x^3+47*x^2-812*x-197 2329954892286310 r005 Im(z^2+c),c=-21/82+15/43*I,n=31 2329954893556695 m001 1/TwinPrimes^2*exp(Salem)^2*cos(Pi/12) 2329954897934103 r005 Im(z^2+c),c=-73/78+1/49*I,n=5 2329954899688642 r005 Im(z^2+c),c=-1/31+33/46*I,n=39 2329954905320774 r005 Im(z^2+c),c=-19/48+23/59*I,n=43 2329954911232473 m001 FeigenbaumD^2*CopelandErdos^2/ln(GAMMA(1/6)) 2329954911728110 m005 (-1/20+1/4*5^(1/2))/(7/8*Zeta(3)-5/6) 2329954915225860 a001 1597/7*18^(41/51) 2329954919168768 a007 Real Root Of 251*x^4+387*x^3-475*x^2-50*x-40 2329954925087679 a008 Real Root of (5+x-13*x^2+5*x^3) 2329954934661154 r005 Im(z^2+c),c=-71/90+3/28*I,n=16 2329954936581018 a001 440719107401*20365011074^(15/23) 2329954950519583 a007 Real Root Of 627*x^4+880*x^3-145*x^2-670*x+151 2329954954119324 a007 Real Root Of -311*x^4-128*x^3+969*x^2-703*x+648 2329954954954954 q001 2069/888 2329954960305471 m001 (OneNinth+Robbin)/(3^(1/3)-Pi^(1/2)) 2329954969249458 p002 log(12^(1/3)*(5^(2/3)+6^(1/4))) 2329954978074083 m001 (FellerTornier-LandauRamanujan)^Grothendieck 2329954980946357 m001 BesselJ(0,1)*LaplaceLimit+MasserGramainDelta 2329954982375455 a007 Real Root Of 227*x^4+713*x^3+717*x^2+663*x-19 2329954990157552 r005 Im(z^2+c),c=-21/44+19/46*I,n=55 2329955001470958 m001 (1-sin(1/5*Pi))/(-KhinchinLevy+Otter) 2329955014872298 a007 Real Root Of -17*x^4-407*x^3-240*x^2+337*x+174 2329955027043283 m005 (1/2*Pi-2/7)/(1/9*5^(1/2)-4/5) 2329955033232084 r005 Im(z^2+c),c=-77/106+9/61*I,n=59 2329955036312947 m002 -E^Pi-Sinh[Pi]/(E^Pi*Pi) 2329955048209772 m001 (Artin+Grothendieck)/(Psi(1,1/3)-sin(1)) 2329955054207963 a007 Real Root Of -868*x^4-898*x^3+686*x^2+960*x-247 2329955059120877 m001 1/Magata*exp(Backhouse)/cos(1) 2329955064081983 m001 Zeta(1/2)^2*GAMMA(7/24)/exp(Zeta(5)) 2329955066805314 m001 BesselK(1,1)*ln(Lehmer)^2*sqrt(2) 2329955080330142 m001 GAMMA(19/24)-exp(Pi)-MertensB3 2329955081117981 r005 Re(z^2+c),c=-123/94+3/44*I,n=49 2329955083355133 l006 ln(746/7667) 2329955093258335 a001 73681302247/89*1836311903^(10/17) 2329955093258335 a001 599074578/89*6557470319842^(10/17) 2329955093259372 a001 9062201101803/89*514229^(10/17) 2329955094403201 a007 Real Root Of -519*x^4-803*x^3+684*x^2-228*x+894 2329955102284742 m001 1/MertensB1*ln(DuboisRaymond)^2/TreeGrowth2nd 2329955103666505 a007 Real Root Of 382*x^4+499*x^3-997*x^2+175*x+874 2329955106054669 m001 Ei(1)*(Zeta(3)+Trott2nd) 2329955110727971 r009 Im(z^3+c),c=-37/82+5/64*I,n=35 2329955126864356 m001 (GAMMA(7/12)+Grothendieck)/(1+BesselK(0,1)) 2329955139023073 a007 Real Root Of -676*x^4-67*x^3+225*x^2+419*x-107 2329955147718023 p004 log(14867/11777) 2329955155215012 r005 Re(z^2+c),c=-119/122+2/49*I,n=12 2329955156093966 r005 Re(z^2+c),c=33/106+5/24*I,n=20 2329955156253949 a007 Real Root Of 330*x^4+566*x^3-679*x^2-533*x-122 2329955177322200 a001 341/36*10946^(3/31) 2329955181262348 p001 sum((-1)^n/(503*n+429)/(1024^n),n=0..infinity) 2329955182920688 a001 3461452808002/55*987^(11/21) 2329955187984982 r002 49th iterates of z^2 + 2329955190697210 a001 75025/521*76^(1/9) 2329955195255507 r005 Im(z^2+c),c=-11/122+12/41*I,n=15 2329955197234077 m001 ln(PrimesInBinary)^2*MertensB1*GAMMA(1/12) 2329955200547637 m002 -E^Pi+Pi/(3*Log[Pi])-ProductLog[Pi] 2329955212774709 r009 Re(z^3+c),c=-4/15+10/43*I,n=14 2329955215188115 m001 ThueMorse^ArtinRank2/exp(Pi) 2329955221095241 m001 LambertW(1)*ZetaP(2)-sin(1/12*Pi) 2329955222553749 l006 ln(937/9630) 2329955225344167 r009 Re(z^3+c),c=-39/122+17/46*I,n=11 2329955228060270 p003 LerchPhi(1/10,5,272/203) 2329955232689913 a001 5473/682*199^(7/11) 2329955259445465 a001 2/9227465*144^(16/17) 2329955269864900 r005 Im(z^2+c),c=-55/48+14/53*I,n=28 2329955272191468 m001 (sin(1/5*Pi)+ln(5))/(Ei(1,1)+Sarnak) 2329955286650133 a007 Real Root Of 604*x^4+169*x^3+273*x^2-677*x+139 2329955295361792 r002 20th iterates of z^2 + 2329955298245418 m001 (-GAMMA(7/12)+KomornikLoreti)/(Psi(1,1/3)+1) 2329955300181298 a007 Real Root Of -447*x^4-755*x^3+780*x^2+687*x+990 2329955303803705 m001 1/Pi*Conway^2/exp(Zeta(1/2)) 2329955308748849 m006 (1/3*Pi+2/5)/(2/3/Pi-5/6) 2329955315428988 a007 Real Root Of -342*x^4+246*x^3+487*x^2+834*x+172 2329955321949056 r002 18th iterates of z^2 + 2329955330694575 m005 (1/2*Zeta(3)+5/7)/(3/10*5^(1/2)-8/11) 2329955332623951 g002 Psi(4/5)+Psi(1/5)-Psi(7/10)-Psi(1/7) 2329955334652054 r005 Im(z^2+c),c=2/7+1/49*I,n=60 2329955339547277 a007 Real Root Of -322*x^4-262*x^3+971*x^2-483*x-221 2329955348810274 h001 (2/11*exp(1)+3/11)/(3/7*exp(2)+1/8) 2329955351360408 g002 Psi(3/10)+Psi(8/9)-Psi(8/11)-Psi(7/8) 2329955357818320 a001 521/317811*3^(8/25) 2329955368169918 r002 28th iterates of z^2 + 2329955377278227 g005 1/GAMMA(7/9)/GAMMA(5/9)/GAMMA(7/8)/GAMMA(3/7) 2329955378855835 a005 (1/sin(62/147*Pi))^556 2329955379246828 r002 45th iterates of z^2 + 2329955382127209 r005 Re(z^2+c),c=-11/10+37/164*I,n=36 2329955383770476 r005 Re(z^2+c),c=31/94+3/8*I,n=62 2329955387453477 h001 (6/11*exp(2)+10/11)/(1/4*exp(2)+3/11) 2329955387507398 a007 Real Root Of -741*x^4+378*x^3-223*x^2+210*x+68 2329955394130540 m005 (1/2*2^(1/2)+1/7)/(2/9*Pi-1/3) 2329955394504318 a007 Real Root Of -214*x^4-448*x^3-2*x^2-688*x-952 2329955400007788 m001 (Psi(2,1/3)+gamma)/(-MertensB1+Trott2nd) 2329955404286697 r009 Re(z^3+c),c=-4/15+10/43*I,n=15 2329955406511521 r005 Re(z^2+c),c=33/106+7/36*I,n=61 2329955407374268 a001 2/109801*39603^(1/43) 2329955408066769 a001 204284540899/36*377^(5/21) 2329955409974956 m001 Chi(1)*Pi*2^(1/2)/GAMMA(3/4)*ZetaP(4) 2329955411319476 r009 Re(z^3+c),c=-41/126+17/56*I,n=3 2329955411970737 m008 (3*Pi^3-5/6)/(1/3*Pi^2+2/3) 2329955416193916 b008 3*Csch[13/4] 2329955417067529 a001 8/1149851*5778^(6/43) 2329955417184098 m001 (Ei(1,1)-gamma(2)*TwinPrimes)/gamma(2) 2329955428801607 m001 FeigenbaumB*exp(CareFree)^2/MinimumGamma 2329955433483456 a001 87403803/55*591286729879^(11/21) 2329955433483456 a001 17393796001/55*24157817^(11/21) 2329955444104645 m001 CareFree^Ei(1,1)+OrthogonalArrays 2329955457273655 a007 Real Root Of -90*x^4+219*x^3+452*x^2-896*x+881 2329955461261453 s002 sum(A245563[n]/(exp(n)),n=1..infinity) 2329955463869192 a007 Real Root Of -77*x^4+208*x^3+801*x^2-166*x+165 2329955465814691 v002 sum(1/(5^n*(22*n^2-35*n+22)),n=1..infinity) 2329955470384967 m001 (Paris+Tribonacci)/(Backhouse-GolombDickman) 2329955479416153 a003 cos(Pi*9/46)/cos(Pi*22/57) 2329955479605937 m001 (ln(3)-GAMMA(7/12))/(Zeta(5)+cos(1/5*Pi)) 2329955480293833 r005 Im(z^2+c),c=-23/31+7/62*I,n=55 2329955484358933 s002 sum(A193447[n]/(n^3*exp(n)+1),n=1..infinity) 2329955490677319 s002 sum(A141338[n]/(n^2*pi^n+1),n=1..infinity) 2329955494816310 m001 2/3*BesselK(0,1)*Pi*3^(1/2)/GAMMA(2/3)+Zeta(3) 2329955494816310 m001 BesselK(0,1)*GAMMA(1/3)+Zeta(3) 2329955503177765 a007 Real Root Of 525*x^4+837*x^3-499*x^2+598*x-783 2329955506307029 m001 (Zeta(1/2)-GAMMA(11/24))/Backhouse 2329955520647545 m001 gamma/FeigenbaumB*ReciprocalFibonacci 2329955524730164 b008 2+E^((-6*Pi)/17) 2329955526016657 r005 Re(z^2+c),c=-31/26+18/119*I,n=38 2329955536644559 a007 Real Root Of -191*x^4-115*x^3+881*x^2+583*x+750 2329955543203605 s002 sum(A193447[n]/(n^3*exp(n)-1),n=1..infinity) 2329955544235762 a008 Real Root of x^4-2*x^3+6*x^2-2*x-92 2329955545755245 m001 (CareFree+Stephens)/ln(gamma) 2329955545921927 m001 (Niven-Salem)/(Zeta(1,2)-MertensB3) 2329955551040333 r009 Re(z^3+c),c=-7/27+55/57*I,n=40 2329955560652824 a007 Real Root Of 78*x^4-756*x^2-974*x-464 2329955569311622 m001 GAMMA(11/24)^2/ln(Salem)/Pi^2 2329955592554919 a007 Real Root Of 551*x^4+793*x^3+199*x^2-582*x-138 2329955592962217 s002 sum(A212355[n]/(n*10^n-1),n=1..infinity) 2329955601184869 a007 Real Root Of 680*x^4-404*x^3+998*x^2-767*x-240 2329955606739617 r005 Re(z^2+c),c=-55/56+5/23*I,n=60 2329955615421940 h001 (1/10*exp(2)+4/7)/(8/11*exp(2)+1/4) 2329955616858700 s002 sum(A194330[n]/(n*10^n-1),n=1..infinity) 2329955620201485 m001 CareFree^2/Backhouse*exp(GAMMA(1/6))^2 2329955621953179 r009 Re(z^3+c),c=-4/15+10/43*I,n=18 2329955628247589 s002 sum(A194286[n]/(n*10^n-1),n=1..infinity) 2329955630633812 r009 Re(z^3+c),c=-4/15+10/43*I,n=19 2329955631501990 r009 Re(z^3+c),c=-11/122+37/48*I,n=14 2329955632849157 r009 Re(z^3+c),c=-4/15+10/43*I,n=22 2329955633066892 r009 Re(z^3+c),c=-4/15+10/43*I,n=23 2329955633073054 r009 Re(z^3+c),c=-4/15+10/43*I,n=26 2329955633076110 r009 Re(z^3+c),c=-4/15+10/43*I,n=25 2329955633076897 r009 Re(z^3+c),c=-4/15+10/43*I,n=29 2329955633076926 r009 Re(z^3+c),c=-4/15+10/43*I,n=30 2329955633076981 r009 Re(z^3+c),c=-4/15+10/43*I,n=33 2329955633076983 r009 Re(z^3+c),c=-4/15+10/43*I,n=34 2329955633076984 r009 Re(z^3+c),c=-4/15+10/43*I,n=37 2329955633076984 r009 Re(z^3+c),c=-4/15+10/43*I,n=38 2329955633076984 r009 Re(z^3+c),c=-4/15+10/43*I,n=41 2329955633076984 r009 Re(z^3+c),c=-4/15+10/43*I,n=44 2329955633076984 r009 Re(z^3+c),c=-4/15+10/43*I,n=45 2329955633076984 r009 Re(z^3+c),c=-4/15+10/43*I,n=40 2329955633076984 r009 Re(z^3+c),c=-4/15+10/43*I,n=48 2329955633076984 r009 Re(z^3+c),c=-4/15+10/43*I,n=49 2329955633076984 r009 Re(z^3+c),c=-4/15+10/43*I,n=52 2329955633076984 r009 Re(z^3+c),c=-4/15+10/43*I,n=53 2329955633076984 r009 Re(z^3+c),c=-4/15+10/43*I,n=56 2329955633076984 r009 Re(z^3+c),c=-4/15+10/43*I,n=60 2329955633076984 r009 Re(z^3+c),c=-4/15+10/43*I,n=59 2329955633076984 r009 Re(z^3+c),c=-4/15+10/43*I,n=63 2329955633076984 r009 Re(z^3+c),c=-4/15+10/43*I,n=64 2329955633076984 r009 Re(z^3+c),c=-4/15+10/43*I,n=62 2329955633076984 r009 Re(z^3+c),c=-4/15+10/43*I,n=61 2329955633076984 r009 Re(z^3+c),c=-4/15+10/43*I,n=57 2329955633076984 r009 Re(z^3+c),c=-4/15+10/43*I,n=58 2329955633076984 r009 Re(z^3+c),c=-4/15+10/43*I,n=55 2329955633076984 r009 Re(z^3+c),c=-4/15+10/43*I,n=54 2329955633076984 r009 Re(z^3+c),c=-4/15+10/43*I,n=51 2329955633076984 r009 Re(z^3+c),c=-4/15+10/43*I,n=50 2329955633076984 r009 Re(z^3+c),c=-4/15+10/43*I,n=47 2329955633076984 r009 Re(z^3+c),c=-4/15+10/43*I,n=46 2329955633076984 r009 Re(z^3+c),c=-4/15+10/43*I,n=42 2329955633076984 r009 Re(z^3+c),c=-4/15+10/43*I,n=43 2329955633076984 r009 Re(z^3+c),c=-4/15+10/43*I,n=39 2329955633076984 r009 Re(z^3+c),c=-4/15+10/43*I,n=36 2329955633076984 r009 Re(z^3+c),c=-4/15+10/43*I,n=35 2329955633076990 r009 Re(z^3+c),c=-4/15+10/43*I,n=32 2329955633076999 r009 Re(z^3+c),c=-4/15+10/43*I,n=31 2329955633077381 r009 Re(z^3+c),c=-4/15+10/43*I,n=27 2329955633077469 r009 Re(z^3+c),c=-4/15+10/43*I,n=28 2329955633107509 r009 Re(z^3+c),c=-4/15+10/43*I,n=24 2329955633279341 r009 Re(z^3+c),c=-4/15+10/43*I,n=21 2329955634707583 r009 Re(z^3+c),c=-4/15+10/43*I,n=20 2329955643419076 m001 cosh(1)/(LandauRamanujan^Psi(1,1/3)) 2329955651403622 m005 (1/3*2^(1/2)-1/10)/(8/9*Zeta(3)-10/11) 2329955654547593 m001 BesselJ(1,1)^Shi(1)/(KhinchinHarmonic^Shi(1)) 2329955657868831 r009 Re(z^3+c),c=-4/15+10/43*I,n=17 2329955658989906 m001 (Catalan-ln(2))/(sin(1/12*Pi)+ArtinRank2) 2329955681348464 r002 54th iterates of z^2 + 2329955681876515 r005 Re(z^2+c),c=-31/90+25/41*I,n=3 2329955686031107 m001 ArtinRank2^2/exp(FransenRobinson)/(2^(1/3)) 2329955698356043 m001 StolarskyHarborth^CopelandErdos*BesselK(0,1) 2329955698379597 m005 (1/2*2^(1/2)-1)/(7/9*exp(1)-6/7) 2329955699532649 r005 Re(z^2+c),c=-9/62+16/29*I,n=55 2329955700836430 m006 (3*ln(Pi)-3/4)/(5*exp(Pi)-1/2) 2329955704497657 r009 Re(z^3+c),c=-4/15+10/43*I,n=16 2329955718324954 r005 Im(z^2+c),c=-13/9+5/28*I,n=3 2329955728805457 m001 (GaussAGM-ZetaQ(2))/(Ei(1)+Backhouse) 2329955729997612 s002 sum(A281801[n]/(n*pi^n+1),n=1..infinity) 2329955744853036 a007 Real Root Of -302*x^4-813*x^3-621*x^2-676*x+413 2329955747015518 r005 Re(z^2+c),c=9/98+17/56*I,n=41 2329955750694190 p003 LerchPhi(1/32,2,361/173) 2329955753899450 m005 (4/5*Pi+3/4)/(1/6*Catalan-1/6) 2329955755387333 r009 Im(z^3+c),c=-11/28+8/57*I,n=21 2329955755425402 s002 sum(A095386[n]/(n*10^n-1),n=1..infinity) 2329955766229831 l006 ln(191/1963) 2329955768527421 r009 Re(z^3+c),c=-41/106+32/61*I,n=56 2329955769062170 p002 log(6^(3/4)*(17^(1/2)-3^(1/3))) 2329955778454053 m001 MadelungNaCl^2/Lehmer^2/exp(log(2+sqrt(3))) 2329955778587341 p001 sum(1/(47*n+5)/(5^floor(1/3*n)),n=0..infinity) 2329955780837684 h001 (11/12*exp(1)+8/9)/(2/5*exp(1)+4/11) 2329955782048837 r005 Im(z^2+c),c=-4/7+41/72*I,n=4 2329955784954078 r005 Im(z^2+c),c=-19/18+70/239*I,n=8 2329955785708941 r005 Re(z^2+c),c=-17/94+11/23*I,n=59 2329955793549710 m001 (ln(2)-Zeta(1,2)*BesselI(1,2))/Zeta(1,2) 2329955800890894 m005 (1/3*5^(1/2)+1/12)/(6/11*Zeta(3)-3/10) 2329955812504778 m001 (Pi+1)/(gamma(2)+KomornikLoreti) 2329955817735449 r005 Re(z^2+c),c=-21/58+27/47*I,n=27 2329955819348950 p001 sum(1/(473*n+458)/(8^n),n=0..infinity) 2329955822861620 a007 Real Root Of -274*x^4-112*x^3+672*x^2-913*x+883 2329955844444722 m005 (1/2*Catalan+3)/(1/2*exp(1)+1/8) 2329955852964895 b008 (3*E)/35 2329955852964895 h001 (-6*exp(1)+6)/(-7*exp(-1)+7) 2329955852964895 m001 6/7*exp(1) 2329955853434441 m005 (1/2*gamma-1/10)/(5/11*2^(1/2)+1/6) 2329955854316258 m001 (Riemann3rdZero+ZetaP(3))/(CareFree-Gompertz) 2329955865294021 r005 Im(z^2+c),c=-19/27+2/33*I,n=61 2329955871632101 r002 8th iterates of z^2 + 2329955872986550 a007 Real Root Of -406*x^4-656*x^3+388*x^2-310*x+839 2329955876543200 m005 (1/3*2^(1/2)+3/5)/(1/6*gamma+4/11) 2329955878892250 r005 Im(z^2+c),c=-67/60+15/58*I,n=52 2329955879314691 r005 Im(z^2+c),c=-25/22+2/69*I,n=49 2329955885305067 p001 sum((-1)^n/(526*n+429)/(1000^n),n=0..infinity) 2329955912212462 m001 exp(Pi)+exp(-1/2*Pi)*LandauRamanujan 2329955913121584 a001 9*2971215073^(4/7) 2329955926507740 a007 Real Root Of -138*x^4+934*x^3+231*x^2+731*x+170 2329955928859113 r005 Re(z^2+c),c=13/86+29/53*I,n=6 2329955933246562 p004 log(19457/15413) 2329955947494988 r009 Re(z^3+c),c=-7/24+3/10*I,n=15 2329955955664447 m002 -1+Pi^5/24+Sinh[Pi] 2329955957349479 m001 MasserGramain^ReciprocalFibonacci-arctan(1/2) 2329955962072774 m001 GAMMA(2/3)^GAMMA(5/12)/(Khinchin^GAMMA(5/12)) 2329955963412378 a007 Real Root Of -364*x^4-690*x^3-35*x^2-651*x+673 2329955965288304 m005 (1/2*gamma+7/12)/(3/7*3^(1/2)+3) 2329955972396842 m005 (3/4*Catalan+3/5)/(1/6*Pi+5) 2329955974183077 a007 Real Root Of -464*x^4-840*x^3+280*x^2-629*x+64 2329955978868168 r008 a(0)=0,K{-n^6,85-81*n^3-68*n^2+21*n} 2329955992762999 a007 Real Root Of -24*x^4-581*x^3-503*x^2+94*x-620 2329955997813930 m005 (1/2*Pi+4/7)/(4*5^(1/2)+1/4) 2329956036222530 a007 Real Root Of 901*x^4+550*x^3+514*x^2-697*x-186 2329956037327064 r005 Im(z^2+c),c=-25/26+27/119*I,n=58 2329956041309391 m001 GAMMA(2/3)*BesselJ(1,1)^2/ln(GAMMA(7/24)) 2329956050227413 a001 10946/843*199^(6/11) 2329956060477534 r009 Re(z^3+c),c=-17/94+25/28*I,n=24 2329956062859824 m001 cos(1)^2*Sierpinski/exp(sinh(1)) 2329956073116930 r005 Re(z^2+c),c=-125/106+15/61*I,n=30 2329956085571233 r005 Im(z^2+c),c=-13/50+17/52*I,n=3 2329956088187015 a007 Real Root Of 34*x^4-688*x^3-38*x^2-808*x-195 2329956092896261 r005 Re(z^2+c),c=-7/25+31/55*I,n=17 2329956095581128 m001 (MertensB2+PlouffeB)/(GAMMA(3/4)-gamma) 2329956098646455 s002 sum(A281801[n]/(n*pi^n-1),n=1..infinity) 2329956111563771 r005 Im(z^2+c),c=-29/34+15/71*I,n=47 2329956114549566 a007 Real Root Of 222*x^4+359*x^3-340*x^2+427*x+839 2329956119439000 a007 Real Root Of -739*x^4+952*x^3+510*x^2+444*x-141 2329956141579725 m001 TwinPrimes/RenyiParking/ln(cos(1))^2 2329956142625137 a007 Real Root Of -179*x^4-225*x^3+50*x^2-527*x+930 2329956153647600 r002 56th iterates of z^2 + 2329956154091966 a007 Real Root Of 357*x^4+793*x^3-71*x^2-175*x-513 2329956168832824 m005 (1/2*exp(1)-9/11)/(5/11*2^(1/2)-7/8) 2329956169061728 a005 (1/cos(7/104*Pi))^242 2329956183276586 m001 BesselK(1,1)*Niven+Conway 2329956184128568 a007 Real Root Of 500*x^4+768*x^3-924*x^2-33*x-82 2329956188695929 a001 6643838879/144*225851433717^(5/21) 2329956188695930 a001 73681302247/144*9227465^(5/21) 2329956192467262 p001 sum(1/(599*n+431)/(100^n),n=0..infinity) 2329956195094902 a007 Real Root Of 41*x^4+948*x^3-163*x^2+137*x-428 2329956207466319 a007 Real Root Of 942*x^4+197*x^3+409*x^2-852*x-221 2329956208184121 m001 (Zeta(1/2)+Totient)/polylog(4,1/2) 2329956211918710 r009 Im(z^3+c),c=-11/106+6/25*I,n=6 2329956217330004 p002 log(3*11^(1/3)+13^(1/2)) 2329956231266144 m001 exp(Zeta(3))^2*Champernowne^2*sinh(1)^2 2329956234362657 m001 MadelungNaCl*TwinPrimes+Salem 2329956234922198 m005 (1/2*exp(1)+5/11)/(1/9*gamma+5/7) 2329956246760958 a007 Real Root Of -53*x^4+462*x^3+818*x^2-906*x+854 2329956252806501 m001 (MasserGramain+Rabbit)/(GAMMA(3/4)-Cahen) 2329956255596413 a007 Real Root Of 639*x^4-980*x^3+516*x^2-664*x-197 2329956258003694 a007 Real Root Of -871*x^4-8*x^3-586*x^2+428*x+134 2329956260409492 r005 Re(z^2+c),c=13/38+7/33*I,n=59 2329956268860029 r009 Re(z^3+c),c=-21/40+21/43*I,n=36 2329956271828649 a007 Real Root Of 541*x^4+893*x^3-907*x^2-283*x-384 2329956276762124 m001 (-cos(1)+5)/(-exp(Pi)+4) 2329956289790177 l006 ln(973/10000) 2329956309358661 r009 Re(z^3+c),c=-41/78+17/47*I,n=35 2329956324572079 m001 (-Paris+PlouffeB)/(ln(2)/ln(10)+ln(2+3^(1/2))) 2329956325041591 m001 (3^(1/3))^Porter-Riemann3rdZero 2329956343550705 r005 Re(z^2+c),c=6/25+26/49*I,n=9 2329956344741774 r005 Re(z^2+c),c=-11/52+21/38*I,n=15 2329956356204809 m001 ln(2)^BesselI(1,2)/((3^(1/2))^BesselI(1,2)) 2329956356204809 m001 ln(2)^BesselI(1,2)/(sqrt(3)^BesselI(1,2)) 2329956367201620 r009 Re(z^3+c),c=-25/126+11/12*I,n=37 2329956367552652 a007 Real Root Of -305*x^4-717*x^3-72*x^2-480*x-808 2329956376121704 r002 26th iterates of z^2 + 2329956376660396 g006 Psi(1,8/9)+Psi(1,1/3)-Psi(1,7/12)-Psi(1,2/11) 2329956378399699 m001 (exp(-1/2*Pi)-Gompertz)/(Lehmer-Stephens) 2329956382216268 h003 exp(Pi*(10^(1/2)+2^(2/3)*10^(2/3))) 2329956394946515 m004 -25/2+5*Sqrt[5]*Pi+Sin[Sqrt[5]*Pi] 2329956407723382 m002 -ProductLog[Pi]+(Pi^5*Sech[Pi])/6-Tanh[Pi] 2329956412223167 m005 (1/3*Catalan+1/8)/(149/140+7/20*5^(1/2)) 2329956417667407 l006 ln(782/8037) 2329956423217958 a001 726103/41*521^(39/50) 2329956426614200 a007 Real Root Of 400*x^4-127*x^3-87*x^2-347*x+86 2329956427046454 r005 Re(z^2+c),c=-4/15+4/19*I,n=17 2329956437555054 r002 60th iterates of z^2 + 2329956442064189 a007 Real Root Of 411*x^4+677*x^3-437*x^2+291*x-499 2329956443860461 m001 ln(GAMMA(23/24))^2*LaplaceLimit*cos(1) 2329956451079580 a007 Real Root Of -140*x^4+809*x^3-99*x^2+629*x-151 2329956456433492 m005 (29/36+1/4*5^(1/2))/(7/12*exp(1)-1) 2329956457034927 r005 Im(z^2+c),c=-7/31+19/56*I,n=24 2329956457120055 r005 Re(z^2+c),c=-2/3+167/207*I,n=3 2329956459882992 m001 FeigenbaumKappa*Totient^Si(Pi) 2329956467549926 m001 (Chi(1)-FransenRobinson)/(GaussAGM+Trott) 2329956473943424 r009 Re(z^3+c),c=-15/38+6/11*I,n=54 2329956474074605 m001 ln(2)/ln(10)/(gamma+TravellingSalesman) 2329956479625453 r005 Im(z^2+c),c=-29/60+31/60*I,n=44 2329956486479223 a007 Real Root Of 337*x^4+702*x^3+91*x^2+498*x-386 2329956498865819 a008 Real Root of (1+2*x+3*x^2+6*x^3+6*x^4-4*x^5) 2329956501131622 m001 (gamma+ln(gamma))/(-Cahen+FeigenbaumC) 2329956506924502 a007 Real Root Of -574*x^4-944*x^3+819*x^2-354*x-295 2329956509745392 a007 Real Root Of -532*x^4-854*x^3+919*x^2-235*x-660 2329956510298717 m001 (PlouffeB+QuadraticClass)/(Pi+FeigenbaumD) 2329956517753054 a007 Real Root Of -303*x^4-202*x^3+868*x^2-541*x+402 2329956519000723 m001 (3^(1/3)+Artin)/(FeigenbaumKappa-Stephens) 2329956520101346 a007 Real Root Of -134*x^4-117*x^3+315*x^2+45*x+864 2329956522864823 r005 Im(z^2+c),c=-9/14+1/24*I,n=43 2329956522971591 r005 Im(z^2+c),c=-25/22+2/69*I,n=54 2329956523007580 m001 (ErdosBorwein-Shi(1))/(Grothendieck+Stephens) 2329956525897453 m009 (3*Psi(1,3/4)+4/5)/(4/3*Catalan+1/6*Pi^2+3/4) 2329956526291816 r005 Re(z^2+c),c=5/58+38/63*I,n=50 2329956531448019 a007 Real Root Of 84*x^4+355*x^3+854*x^2+971*x-359 2329956532293206 a007 Real Root Of -266*x^4-458*x^3+565*x^2+573*x+314 2329956538550639 a007 Real Root Of 290*x^4+14*x^3-35*x^2-992*x+232 2329956540374806 m005 (3/20+1/4*5^(1/2))/(2/9*Zeta(3)-4/7) 2329956542046323 p004 log(25577/20261) 2329956543332063 m001 Khintchine*ln(Si(Pi))*KhintchineLevy^2 2329956544813122 s002 sum(A045103[n]/((3*n)!),n=1..infinity) 2329956555218204 m005 (1/2*2^(1/2)-5)/(3/10*Pi+9/10) 2329956559725089 m001 (Riemann1stZero-cos(1))/(-TwinPrimes+ZetaP(4)) 2329956562979399 r005 Im(z^2+c),c=-11/48+25/39*I,n=3 2329956563182981 m001 (Weierstrass+ZetaP(2))/(Pi+Chi(1)) 2329956563857437 r009 Re(z^3+c),c=-29/70+8/15*I,n=39 2329956574472042 m001 ln(gamma)/BesselI(0,2)/MertensB2 2329956580935437 m001 GAMMA(2/3)/Bloch*exp(GAMMA(5/24)) 2329956584659913 q001 161/691 2329956584882318 m005 (1/2*Pi-1/11)/(5/9*exp(1)-7/8) 2329956587814190 a007 Real Root Of -513*x^4-586*x^3+851*x^2-914*x+957 2329956593287463 r005 Im(z^2+c),c=-41/94+13/30*I,n=22 2329956603272957 r002 55th iterates of z^2 + 2329956607004117 a007 Real Root Of 81*x^4-215*x^3-850*x^2+140*x-166 2329956619963832 g005 GAMMA(3/11)/GAMMA(9/10)/GAMMA(1/9)/GAMMA(4/7) 2329956620433698 m001 (Pi+exp(1/Pi))/(Tetranacci+Trott) 2329956628199595 l006 ln(591/6074) 2329956652847669 m001 (exp(1/Pi)-FellerTornier)/(ln(2)-ln(Pi)) 2329956666469910 a007 Real Root Of 929*x^4-967*x^3+778*x^2-431*x+1 2329956667854240 r004 Re(z^2+c),c=-9/10-5/22*I,z(0)=-1,n=19 2329956671702040 m001 (sin(1)+3^(1/3))/(Paris+QuadraticClass) 2329956675959940 m005 (1/2*Pi+3)/(1/8*5^(1/2)-1/12) 2329956693098046 a007 Real Root Of -406*x^4-706*x^3+684*x^2+385*x+219 2329956693274813 a001 5/11*322^(15/53) 2329956701109398 m001 BesselI(0,2)-Pi^(1/2)+MasserGramainDelta 2329956709995074 r005 Im(z^2+c),c=-21/50+1/23*I,n=8 2329956712486406 r005 Im(z^2+c),c=11/78+11/63*I,n=3 2329956714641771 r002 59th iterates of z^2 + 2329956719797223 a001 3/55*610^(17/18) 2329956723401138 r005 Im(z^2+c),c=15/52+1/19*I,n=18 2329956724003949 a007 Real Root Of -480*x^4-695*x^3+751*x^2-331*x+507 2329956724591236 r002 64th iterates of z^2 + 2329956739098165 r004 Im(z^2+c),c=-5/38+4/13*I,z(0)=I,n=19 2329956740028111 r005 Im(z^2+c),c=-25/22+2/69*I,n=53 2329956755462543 a007 Real Root Of -292*x^4-598*x^3+225*x^2+958*x-227 2329956758228429 a007 Real Root Of 323*x^4+269*x^3-935*x^2+866*x+977 2329956762537127 r005 Re(z^2+c),c=-7/50+22/39*I,n=60 2329956766538669 m001 (1-ln(2+3^(1/2)))/(-Stephens+TreeGrowth2nd) 2329956777778588 a007 Real Root Of 496*x^4+926*x^3-455*x^2+254*x+157 2329956786139337 p001 sum((-1)^n/(379*n+371)/(3^n),n=0..infinity) 2329956786350142 m001 Riemann2ndZero/exp(ArtinRank2)^2/sqrt(5) 2329956795222266 r005 Im(z^2+c),c=-6/17+17/45*I,n=43 2329956827257135 m001 (5^(1/2)+FransenRobinson)/(Kac+Riemann2ndZero) 2329956828653805 a003 cos(Pi*38/87)+cos(Pi*43/88) 2329956836073000 m001 (Lehmer+Sierpinski)/(GAMMA(2/3)-gamma(2)) 2329956838541849 r002 63th iterates of z^2 + 2329956840804508 r005 Re(z^2+c),c=-17/94+11/23*I,n=50 2329956840991529 r009 Re(z^3+c),c=-25/122+45/49*I,n=30 2329956849753021 p003 LerchPhi(1/8,6,39/142) 2329956850378409 a007 Real Root Of -302*x^4-185*x^3+950*x^2-421*x+422 2329956874186718 m001 ln(2+3^(1/2))*(KhinchinLevy-Otter) 2329956877967815 a007 Real Root Of -65*x^4-360*x^3-899*x^2-644*x+742 2329956894950928 r009 Re(z^3+c),c=-9/98+28/39*I,n=25 2329956898122532 r005 Im(z^2+c),c=-25/22+2/69*I,n=60 2329956899543893 r005 Im(z^2+c),c=-25/22+2/69*I,n=64 2329956908600292 m001 Zeta(1/2)-sin(1/12*Pi)*ReciprocalFibonacci 2329956916093965 r005 Im(z^2+c),c=-25/22+2/69*I,n=63 2329956916567759 r005 Im(z^2+c),c=-25/22+2/69*I,n=59 2329956921984572 r005 Im(z^2+c),c=-25/22+2/69*I,n=58 2329956922970664 r005 Im(z^2+c),c=-25/22+2/69*I,n=57 2329956929958673 r005 Re(z^2+c),c=17/54+9/46*I,n=36 2329956943681238 r005 Im(z^2+c),c=-25/22+2/69*I,n=61 2329956953789295 a007 Real Root Of -426*x^4-552*x^3+597*x^2-917*x+195 2329956964109942 r005 Im(z^2+c),c=-25/22+2/69*I,n=62 2329956964566701 a007 Real Root Of 413*x^4+524*x^3-657*x^2+921*x+169 2329956969035269 a001 9062201101803/89*1836311903^(8/17) 2329956969035269 a001 192900153618/89*6557470319842^(8/17) 2329956979709443 p001 sum((-1)^n/(527*n+429)/(1000^n),n=0..infinity) 2329956987700161 r005 Im(z^2+c),c=-25/22+2/69*I,n=55 2329956988849471 a008 Real Root of x^2-x-54054 2329956992912580 r009 Im(z^3+c),c=-23/38+33/62*I,n=33 2329956994266416 m001 (gamma(3)+Tetranacci)/(Chi(1)+gamma(2)) 2329956996343736 a007 Real Root Of 47*x^4-822*x^3+148*x^2-504*x-136 2329956997926639 a001 139583862445/123*11^(3/10) 2329956999969406 r002 53th iterates of z^2 + 2329957006124321 a001 15127/2*89^(42/55) 2329957009410909 m005 (1/2*5^(1/2)-4/5)/(3/7*exp(1)+1/5) 2329957023765672 a007 Real Root Of 454*x^4+639*x^3-982*x^2+413*x+996 2329957031984107 r005 Re(z^2+c),c=9/98+17/56*I,n=38 2329957034442006 m005 (1/3*2^(1/2)+2/3)/(5/8*5^(1/2)-10/11) 2329957036206522 s002 sum(A171574[n]/((2^n-1)/n),n=1..infinity) 2329957036530738 a007 Real Root Of -845*x^4+552*x^3+867*x^2+371*x-138 2329957039789896 l006 ln(400/4111) 2329957042304302 r005 Im(z^2+c),c=-6/17+17/45*I,n=55 2329957050329092 a001 21/4*322^(8/31) 2329957050475962 r005 Im(z^2+c),c=-25/22+2/69*I,n=56 2329957060107081 r005 Re(z^2+c),c=-7/48+33/59*I,n=42 2329957072329599 r002 61th iterates of z^2 + 2329957074027497 a007 Real Root Of -14*x^4-17*x^3-937*x^2+967*x+276 2329957078571662 m001 (BesselI(1,2)+MertensB2)/(gamma-ln(gamma)) 2329957081149779 a008 Real Root of x^2-54287 2329957081386952 a001 -699/2+521/2*5^(1/2) 2329957081545064 a001 54288/233 2329957083737789 m001 (ln(3)+Zeta(1,2))/(Lehmer+Paris) 2329957095992086 a007 Real Root Of 11*x^4+53*x^3+189*x^2-66*x-25 2329957099510773 r005 Im(z^2+c),c=-17/56+14/41*I,n=4 2329957110668731 m001 BesselI(0,2)-gamma(3)+Riemann2ndZero 2329957117555445 r005 Im(z^2+c),c=-43/106+2/53*I,n=21 2329957119158668 m001 (MertensB1-Paris)/(Rabbit-Trott) 2329957131349640 s001 sum(exp(-Pi/2)^n*A236124[n],n=1..infinity) 2329957139129998 m001 (-FransenRobinson+Thue)/(3^(1/2)-Psi(1,1/3)) 2329957141025582 r002 53th iterates of z^2 + 2329957141783966 a001 2584/521*199^(8/11) 2329957172390728 h001 (-6*exp(8)-7)/(-7*exp(7)-3) 2329957173054786 a008 Real Root of x^2-x-54520 2329957181658539 a007 Real Root Of -242*x^4-599*x^3+6*x^2-151*x-829 2329957196713576 a007 Real Root Of -314*x^4-659*x^3+400*x^2+561*x+54 2329957198254436 m001 exp(1)^2*ln(TwinPrimes)/log(2+sqrt(3)) 2329957199571910 r009 Re(z^3+c),c=-31/86+13/28*I,n=26 2329957206992657 r005 Re(z^2+c),c=-4/27+19/26*I,n=3 2329957214065439 m001 arctan(1/2)^2*exp(TwinPrimes)^2/sin(Pi/5)^2 2329957214562093 r009 Re(z^3+c),c=-83/122+11/18*I,n=2 2329957217650284 r002 57th iterates of z^2 + 2329957228993131 r005 Im(z^2+c),c=-6/17+17/45*I,n=52 2329957229385882 m005 (1/2*exp(1)-4)/(4/9*3^(1/2)+4/11) 2329957230226487 r002 51th iterates of z^2 + 2329957239007533 r005 Re(z^2+c),c=-27/34+10/123*I,n=38 2329957244532934 a001 47/317811*75025^(14/57) 2329957253624795 m001 GAMMA(3/4)+GAMMA(11/12)^Tribonacci 2329957255767784 r002 62th iterates of z^2 + 2329957271169932 m001 Mills^Zeta(3)*Mills^ReciprocalLucas 2329957274368913 r005 Im(z^2+c),c=-59/48+3/64*I,n=24 2329957283526478 s002 sum(A020649[n]/(n*10^n-1),n=1..infinity) 2329957283625644 s002 sum(A094915[n]/(n*10^n-1),n=1..infinity) 2329957283625645 s002 sum(A217619[n]/(n*10^n-1),n=1..infinity) 2329957284636832 s002 sum(A081147[n]/(n*10^n-1),n=1..infinity) 2329957284745931 s002 sum(A069719[n]/(n*10^n-1),n=1..infinity) 2329957291579365 r005 Im(z^2+c),c=-83/102+2/13*I,n=33 2329957293716229 m001 GAMMA(2/3)+exp(1/Pi)*Rabbit 2329957296025652 s002 sum(A074592[n]/(n*10^n-1),n=1..infinity) 2329957296025728 s002 sum(A089993[n]/(n*10^n-1),n=1..infinity) 2329957296134910 s002 sum(A033618[n]/(n*10^n-1),n=1..infinity) 2329957297137827 s002 sum(A138139[n]/(n*10^n-1),n=1..infinity) 2329957297138513 s002 sum(A259578[n]/(n*10^n-1),n=1..infinity) 2329957297138667 s002 sum(A266547[n]/(n*10^n-1),n=1..infinity) 2329957297357608 s002 sum(A184721[n]/(n*10^n-1),n=1..infinity) 2329957299066767 m001 (2^(1/3)+Si(Pi))/(-cos(1/12*Pi)+FeigenbaumB) 2329957303344980 a007 Real Root Of 77*x^4+120*x^3+244*x^2-262*x-73 2329957307380514 m001 TwinPrimes*FransenRobinson/exp(Zeta(5))^2 2329957307547483 m001 (exp(1)+BesselK(1,1))/(FeigenbaumB+Lehmer) 2329957310750849 s002 sum(A201375[n]/(n*10^n-1),n=1..infinity) 2329957311208623 m005 (1/3*2^(1/2)-1/6)/(3/4*gamma+7/8) 2329957314960505 a005 (1/cos(3/140*Pi))^373 2329957323164315 m001 (Pi+GAMMA(5/6))/(KhinchinLevy+MasserGramain) 2329957323802339 m001 (Cahen+Tribonacci)/(arctan(1/2)+BesselK(1,1)) 2329957324364026 s002 sum(A074589[n]/(n*10^n-1),n=1..infinity) 2329957334760169 m005 (1/2*gamma-9/10)/(9/11*exp(1)+2/5) 2329957350652100 r005 Im(z^2+c),c=-3/4+29/176*I,n=5 2329957356945546 p001 sum((-1)^n/(369*n+350)/(2^n),n=0..infinity) 2329957366140564 m001 CareFree^(PisotVijayaraghavan/Champernowne) 2329957400743597 r005 Im(z^2+c),c=-25/22+2/69*I,n=51 2329957401822859 m001 exp(TreeGrowth2nd)/DuboisRaymond*cos(1)^2 2329957410732129 r005 Im(z^2+c),c=-8/9+3/17*I,n=5 2329957419825298 r002 48th iterates of z^2 + 2329957423129209 p001 sum((-1)^n/(505*n+429)/(1024^n),n=0..infinity) 2329957426491964 s002 sum(A217403[n]/(n*10^n-1),n=1..infinity) 2329957427603075 s002 sum(A260235[n]/(n*10^n-1),n=1..infinity) 2329957429722083 s002 sum(A242166[n]/(n*10^n-1),n=1..infinity) 2329957429726047 s002 sum(A068211[n]/(n*10^n-1),n=1..infinity) 2329957437558804 r005 Im(z^2+c),c=-45/94+7/17*I,n=61 2329957439214804 l006 ln(609/6259) 2329957441027969 m001 (Magata+MertensB1)/(ln(2)+ln(2^(1/2)+1)) 2329957444549951 s002 sum(A051888[n]/(n*10^n-1),n=1..infinity) 2329957445013910 r005 Im(z^2+c),c=-77/90+2/13*I,n=12 2329957446423232 b008 2-49*Sqrt[23] 2329957453905217 r002 52th iterates of z^2 + 2329957457384438 a007 Real Root Of -322*x^4-618*x^3+243*x^2-426*x-639 2329957458425963 a007 Real Root Of 390*x^4+817*x^3-489*x^2-603*x+90 2329957470145915 a007 Real Root Of -12*x^4+446*x^3+616*x^2-830*x+717 2329957471513951 m002 -E^Pi-6/Pi^3+ProductLog[Pi]/Pi^3 2329957477467995 m001 (Kac-Totient)/(GlaisherKinkelin+Grothendieck) 2329957482276332 r005 Re(z^2+c),c=-109/114+7/33*I,n=62 2329957485864821 r005 Im(z^2+c),c=-29/66+23/57*I,n=36 2329957489422678 r002 54th iterates of z^2 + 2329957505297334 a007 Real Root Of 91*x^4-9*x^3-661*x^2-684*x-801 2329957505917301 r009 Re(z^3+c),c=-5/36+47/49*I,n=42 2329957525353954 m001 (3^(1/3))^sin(1/12*Pi)/Bloch 2329957528790737 a007 Real Root Of -340*x^4-475*x^3+416*x^2-999*x-574 2329957531487356 p004 log(35591/3463) 2329957531947904 r005 Im(z^2+c),c=-6/17+17/45*I,n=48 2329957534616765 m001 (Catalan+Bloch)/(-Grothendieck+KhinchinLevy) 2329957540562077 m001 (QuadraticClass-TreeGrowth2nd)^Grothendieck 2329957543077697 m001 1/Tribonacci*exp(TreeGrowth2nd)/BesselK(1,1)^2 2329957555877754 m005 (1/2*exp(1)+10/11)/(5/8*Zeta(3)+2/9) 2329957558999651 r005 Re(z^2+c),c=9/98+17/56*I,n=45 2329957566076892 l003 cosh(3+90/107) 2329957566076892 l004 cosh(411/107) 2329957577800127 a007 Real Root Of -215*x^4-126*x^3+421*x^2-688*x+854 2329957579428743 m001 Salem/ln(Riemann2ndZero)^2*FeigenbaumKappa^2 2329957595347635 r005 Re(z^2+c),c=17/110+23/52*I,n=43 2329957597636039 a001 233/3*4106118243^(7/9) 2329957599811946 r002 58th iterates of z^2 + 2329957601904951 a007 Real Root Of -410*x^4-469*x^3+823*x^2-594*x+299 2329957612662360 r005 Re(z^2+c),c=21/64+1/17*I,n=40 2329957613223651 r009 Re(z^3+c),c=-4/15+10/43*I,n=13 2329957613913494 r002 21th iterates of z^2 + 2329957616607247 a007 Real Root Of -566*x^4-794*x^3+227*x^2+727*x-170 2329957618154613 a007 Real Root Of 532*x^4+981*x^3-518*x^2-24*x-514 2329957625151448 a007 Real Root Of -394*x^4-559*x^3+461*x^2-610*x+617 2329957625436625 r005 Re(z^2+c),c=11/62+18/37*I,n=39 2329957629176186 m005 (1/2*3^(1/2)-3/8)/(5/12*2^(1/2)-4/5) 2329957634532549 l006 ln(818/8407) 2329957641670883 a007 Real Root Of 128*x^4+209*x^3+103*x^2+636*x-206 2329957646619883 a001 123*(1/2*5^(1/2)+1/2)^23*18^(3/8) 2329957648506217 a007 Real Root Of 119*x^4+206*x^3+61*x^2-984*x+223 2329957651285136 m001 (-FransenRobinson+ZetaP(3))/(Shi(1)-gamma(1)) 2329957652989185 m001 (ln(Pi)-arctan(1/2))/(Backhouse+Porter) 2329957660457440 r002 37th iterates of z^2 + 2329957677954858 r002 19th iterates of z^2 + 2329957685411331 k002 Champernowne real with 1/2*n^2+549/2*n-252 2329957697314420 m005 (1/2*Pi+5/9)/(59/72+1/24*5^(1/2)) 2329957703612810 m001 (Conway-LandauRamanujan2nd)/(Zeta(3)+Ei(1)) 2329957710136299 r009 Im(z^3+c),c=-11/94+25/29*I,n=34 2329957712675954 r005 Im(z^2+c),c=-7/10+19/242*I,n=51 2329957717617817 r009 Re(z^3+c),c=-5/34+6/7*I,n=22 2329957719055741 a007 Real Root Of 314*x^4-87*x^3-39*x^2-767*x+181 2329957730017987 h001 (3/8*exp(1)+3/5)/(9/10*exp(2)+3/10) 2329957731561617 b008 Pi*BesselI[2,1+Pi] 2329957733824808 a007 Real Root Of 278*x^4+960*x^3+877*x^2+546*x+461 2329957737259073 r005 Re(z^2+c),c=9/98+17/56*I,n=42 2329957740142158 m005 (4*exp(1)-1/3)/(1/6*Pi+4) 2329957747170332 p002 log(5^(1/4)*(3+15^(1/2))) 2329957750829979 m001 2^(1/3)+HardyLittlewoodC5+TwinPrimes 2329957756610222 a007 Real Root Of -417*x^4-570*x^3+706*x^2-315*x+513 2329957758246685 r009 Re(z^3+c),c=-4/15+10/43*I,n=12 2329957761086148 m001 (-Rabbit+Sarnak)/(Catalan-arctan(1/3)) 2329957779989182 a007 Real Root Of 275*x^4+198*x^3-791*x^2+512*x-113 2329957784957019 m001 gamma^BesselI(0,1)+FeigenbaumC 2329957785711391 k002 Champernowne real with n^2+273*n-251 2329957795729399 r005 Im(z^2+c),c=-31/60+2/49*I,n=47 2329957804821253 r005 Re(z^2+c),c=9/98+17/56*I,n=49 2329957813171684 a007 Real Root Of 907*x^4+868*x^3+801*x^2-922*x-250 2329957817389381 r005 Re(z^2+c),c=23/62+11/39*I,n=37 2329957822144517 m001 MinimumGamma*(MertensB1+MertensB3) 2329957829538037 r005 Re(z^2+c),c=9/98+17/56*I,n=46 2329957838170158 r005 Re(z^2+c),c=9/98+17/56*I,n=53 2329957841595630 r005 Re(z^2+c),c=9/98+17/56*I,n=50 2329957842694328 r005 Re(z^2+c),c=9/98+17/56*I,n=57 2329957843168840 r005 Re(z^2+c),c=9/98+17/56*I,n=54 2329957843189540 m004 6+5*Pi*Cot[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi]/6 2329957843308079 r005 Re(z^2+c),c=9/98+17/56*I,n=61 2329957843373782 r005 Re(z^2+c),c=9/98+17/56*I,n=58 2329957843400434 r005 Re(z^2+c),c=9/98+17/56*I,n=62 2329957843405839 r005 Re(z^2+c),c=9/98+17/56*I,n=64 2329957843415443 r005 Re(z^2+c),c=9/98+17/56*I,n=60 2329957843439888 r005 Re(z^2+c),c=9/98+17/56*I,n=63 2329957843489366 r005 Re(z^2+c),c=9/98+17/56*I,n=56 2329957843665944 r005 Re(z^2+c),c=9/98+17/56*I,n=59 2329957844057299 r005 Re(z^2+c),c=9/98+17/56*I,n=52 2329957845332294 r005 Re(z^2+c),c=9/98+17/56*I,n=55 2329957848413478 r005 Re(z^2+c),c=9/98+17/56*I,n=48 2329957857541254 m005 (1/2*Catalan-1/7)/(7/12*Catalan+9/11) 2329957857615473 r005 Re(z^2+c),c=9/98+17/56*I,n=51 2329957860075191 m001 (cos(1/12*Pi)+Khinchin)/(1+LambertW(1)) 2329957872594573 a007 Real Root Of -541*x^4+50*x^3-867*x^2+870*x+252 2329957876388405 r002 10th iterates of z^2 + 2329957881775908 r005 Re(z^2+c),c=9/98+17/56*I,n=44 2329957885680418 m005 (1/3*5^(1/2)-3/7)/(6/7*3^(1/2)-1/8) 2329957886011451 k002 Champernowne real with 3/2*n^2+543/2*n-250 2329957888498675 m001 (Pi-Artin)/(Cahen-FeigenbaumC) 2329957900208161 m001 (Porter+ReciprocalFibonacci)^2 2329957926193114 r005 Im(z^2+c),c=-14/29+17/39*I,n=34 2329957941624554 r005 Re(z^2+c),c=-15/58+13/64*I,n=2 2329957942446593 r005 Re(z^2+c),c=-17/94+11/23*I,n=56 2329957944435615 a007 Real Root Of -301*x^4-432*x^3+711*x^2+304*x+255 2329957948157732 r005 Re(z^2+c),c=9/98+17/56*I,n=47 2329957948429867 r005 Im(z^2+c),c=-6/19+13/33*I,n=10 2329957950383865 a001 1322157322203*46368^(16/23) 2329957950534641 a001 599074578*2971215073^(16/23) 2329957960243388 a007 Real Root Of 786*x^4+380*x^3+698*x^2-303*x-106 2329957960337621 r005 Im(z^2+c),c=-25/22+2/69*I,n=52 2329957967492315 a007 Real Root Of 157*x^4-158*x^3-719*x^2+740*x-998 2329957970897099 m001 (Pi+2^(1/3))/(OneNinth+StolarskyHarborth) 2329957975751963 m001 ReciprocalFibonacci^arctan(1/2)+Stephens 2329957977460753 r005 Im(z^2+c),c=-19/30+7/24*I,n=25 2329957986311511 k002 Champernowne real with 2*n^2+270*n-249 2329958017601739 r005 Im(z^2+c),c=-17/18+32/159*I,n=5 2329958026902350 g005 GAMMA(7/10)*GAMMA(5/8)*GAMMA(3/5)/GAMMA(7/9) 2329958031174359 p004 log(27739/2699) 2329958036160396 r005 Im(z^2+c),c=-23/18+2/215*I,n=56 2329958038691425 m005 (1/2*5^(1/2)+3/11)/(2/9*5^(1/2)+1/10) 2329958043320543 m001 (Bloch-ZetaP(2))^(Pi*csc(5/12*Pi)/GAMMA(7/12)) 2329958044781928 m001 (Magata-ZetaP(2))/(ln(Pi)+Champernowne) 2329958049207905 m001 Kolakoski^2/exp(Conway)^2/Riemann1stZero^2 2329958050078005 a008 Real Root of (12+x+16*x^2-8*x^3) 2329958065978376 r009 Re(z^3+c),c=-61/126+17/36*I,n=36 2329958067975711 a007 Real Root Of -540*x^4-593*x^3+981*x^2-976*x+814 2329958068223839 r005 Im(z^2+c),c=-49/106+2/49*I,n=14 2329958082764276 a007 Real Root Of 4*x^4-313*x^3+766*x^2-422*x+666 2329958086611571 k002 Champernowne real with 5/2*n^2+537/2*n-248 2329958090978238 m001 (FeigenbaumDelta-Rabbit)/(Pi-3^(1/3)) 2329958098279768 r005 Re(z^2+c),c=-25/98+11/42*I,n=12 2329958102022242 r005 Re(z^2+c),c=-7/9+4/37*I,n=60 2329958104126691 r005 Im(z^2+c),c=-4/3+16/209*I,n=10 2329958107453458 p001 sum((-1)^n/(577*n+398)/(5^n),n=0..infinity) 2329958121118180 m001 (Landau+Robbin)/(DuboisRaymond+FellerTornier) 2329958123634166 p001 sum(1/(317*n+43)/(64^n),n=0..infinity) 2329958128036776 a007 Real Root Of 374*x^4+375*x^3-980*x^2+84*x-763 2329958135672808 a007 Real Root Of 207*x^4+382*x^3+73*x^2+897*x+425 2329958136929235 r005 Re(z^2+c),c=9/98+17/56*I,n=40 2329958144523057 m001 (PlouffeB-Porter)/(PrimesInBinary+Trott) 2329958149682597 m001 exp(Cahen)/Artin^2/LandauRamanujan^2 2329958151421200 h001 (-5*exp(5)+7)/(-3*exp(1)+5) 2329958152121755 m001 1/GAMMA(1/6)^2*exp(MertensB1)^2/GAMMA(7/12)^2 2329958154542682 a001 167761/21*53316291173^(15/17) 2329958154625468 a001 228826127/21*14930352^(15/17) 2329958155429378 a007 Real Root Of 40*x^4-62*x^3-140*x^2+682*x+386 2329958163529997 h001 (8/11*exp(2)+7/9)/(5/6*exp(1)+3/8) 2329958178146706 a001 312119004989/21*4181^(15/17) 2329958181168575 r005 Re(z^2+c),c=37/110+13/62*I,n=43 2329958182085902 m001 FeigenbaumMu*(Stephens+ZetaP(4)) 2329958186911631 k002 Champernowne real with 3*n^2+267*n-247 2329958196968336 h001 (-7*exp(1/2)-6)/(-4*exp(-1)+9) 2329958198486973 r005 Im(z^2+c),c=-31/78+25/63*I,n=22 2329958200144600 h001 (5/7*exp(2)+7/9)/(9/11*exp(1)+3/8) 2329958200684765 m001 (3^(1/2)-GAMMA(23/24))/(-FellerTornier+Kac) 2329958203663944 l006 ln(209/2148) 2329958203843534 r005 Re(z^2+c),c=-27/106+9/34*I,n=15 2329958204823365 r009 Im(z^3+c),c=-51/98+29/50*I,n=12 2329958213259148 m001 (ln(5)+GAMMA(13/24))/(5^(1/2)-sin(1)) 2329958218508059 m001 ln(GAMMA(7/12))*Paris^2/sqrt(Pi) 2329958223174968 m001 MertensB2^PlouffeB/(ZetaP(3)^PlouffeB) 2329958227941731 r005 Im(z^2+c),c=3/28+6/29*I,n=11 2329958240983686 h001 (4/5*exp(2)+6/11)/(10/11*exp(1)+3/10) 2329958247538513 a001 28657/322*199^(2/11) 2329958255193183 r005 Re(z^2+c),c=-7/40+28/57*I,n=43 2329958268004523 r005 Re(z^2+c),c=-5/66+34/39*I,n=19 2329958273099598 m005 (1/2*5^(1/2)-3/5)/(31/24+5/12*5^(1/2)) 2329958273490955 r002 4th iterates of z^2 + 2329958274996761 r005 Im(z^2+c),c=19/60+4/51*I,n=20 2329958278573712 a007 Real Root Of -259*x^4-111*x^3+781*x^2-752*x+237 2329958282982796 m005 (1/2*3^(1/2)-3/11)/(5/11*Zeta(3)+2) 2329958287211691 k002 Champernowne real with 7/2*n^2+531/2*n-246 2329958299185588 r005 Im(z^2+c),c=-8/27+13/36*I,n=29 2329958299868732 m005 (1/2*Zeta(3)-2/7)/(4/7*exp(1)-1/5) 2329958302053643 m001 cos(1/12*Pi)+(3^(1/2))^BesselI(1,1) 2329958302053643 m001 cos(Pi/12)+sqrt(3)^BesselI(1,1) 2329958309090655 a007 Real Root Of 784*x^4-735*x^3-138*x^2-639*x-153 2329958323347657 m009 (3*Psi(1,1/3)-4/5)/(4*Psi(1,2/3)+2/5) 2329958326202105 m005 (1/3+1/6*5^(1/2))/(3/7*Zeta(3)-9/11) 2329958327341439 r005 Re(z^2+c),c=-25/118+26/47*I,n=15 2329958334369224 a007 Real Root Of 426*x^4+819*x^3-136*x^2+585*x-94 2329958336703786 m001 1/ln(GolombDickman)*Artin/Magata 2329958352022155 m001 ln(3)-Rabbit^BesselK(0,1) 2329958355899508 r009 Re(z^3+c),c=-17/122+59/62*I,n=26 2329958367778874 r005 Re(z^2+c),c=-25/122+9/34*I,n=2 2329958381269668 r005 Re(z^2+c),c=-3/14+17/43*I,n=21 2329958385307128 m001 HardHexagonsEntropy^(sin(1/12*Pi)/Trott2nd) 2329958386091550 m001 (ln(2)/ln(10))^MinimumGamma-FeigenbaumAlpha 2329958387511751 k002 Champernowne real with 4*n^2+264*n-245 2329958390744002 r005 Im(z^2+c),c=-6/17+17/45*I,n=53 2329958392883995 m001 1/exp(Kolakoski)*FransenRobinson^2/GAMMA(7/12) 2329958394661428 m005 (1/3*2^(1/2)-1/11)/(5/6*2^(1/2)+5/11) 2329958402286239 a001 377/322*521^(11/13) 2329958407971880 r002 11th iterates of z^2 + 2329958410410524 m001 (ln(gamma)+3^(1/3))/(FeigenbaumMu+MertensB1) 2329958416475681 m005 (1/2*2^(1/2)+5/8)/(2/9*gamma-7/10) 2329958419223015 m001 (Pi-gamma)/(Ei(1)-Kolakoski) 2329958427500323 a007 Real Root Of -724*x^4+939*x^3+953*x^2+234*x-116 2329958427898775 r002 52th iterates of z^2 + 2329958438600624 r005 Re(z^2+c),c=21/110+19/52*I,n=12 2329958440805909 a007 Real Root Of 741*x^4+857*x^3+715*x^2-274*x-94 2329958446761783 h001 (7/11*exp(2)+7/9)/(8/11*exp(1)+3/8) 2329958468339878 r002 7th iterates of z^2 + 2329958470701539 m001 (2^(1/2)+Zeta(1/2))/(exp(-1/2*Pi)+Pi^(1/2)) 2329958477572213 l006 ln(202/255) 2329958477614712 m001 (Trott+Trott2nd)/(Zeta(1,-1)+HeathBrownMoroz) 2329958487811811 k002 Champernowne real with 9/2*n^2+525/2*n-244 2329958489434075 a007 Real Root Of -855*x^4+644*x^3-857*x^2+364*x+142 2329958490301609 m005 (1/2*3^(1/2)+7/9)/(8/11*gamma+2/7) 2329958497562265 m001 (Si(Pi)+FransenRobinson)/(Pi-exp(Pi)) 2329958503107147 m001 GAMMA(5/6)+GlaisherKinkelin-StolarskyHarborth 2329958503406641 r005 Im(z^2+c),c=-6/17+17/45*I,n=60 2329958513165534 m001 TwinPrimes^2/exp(Backhouse)^2/Zeta(7)^2 2329958519652339 m001 (FeigenbaumMu+Gompertz)/(ln(Pi)+Cahen) 2329958521549074 a007 Real Root Of -197*x^4-293*x^3+140*x^2-193*x+890 2329958529654360 a007 Real Root Of -977*x^4+929*x^3-216*x^2+462*x+134 2329958537290768 a007 Real Root Of -103*x^4+125*x^3+896*x^2+235*x+300 2329958537607808 m001 1/Salem^2*Artin^2/ln(cosh(1)) 2329958541056393 a007 Real Root Of -40*x^4-943*x^3-283*x^2-572*x+960 2329958547329597 a003 cos(Pi*29/63)+cos(Pi*47/101) 2329958547543718 r009 Re(z^3+c),c=-23/66+27/43*I,n=37 2329958548421509 r005 Im(z^2+c),c=-21/22+13/58*I,n=40 2329958549535405 a007 Real Root Of -26*x^4-620*x^3-290*x^2+924*x-786 2329958549933428 m001 1/ln(Magata)*KhintchineHarmonic^2*Zeta(1,2) 2329958551778782 a007 Real Root Of 479*x^4+855*x^3-424*x^2+643*x+498 2329958553012457 a007 Real Root Of 421*x^4+837*x^3-656*x^2-712*x+82 2329958561900334 r005 Re(z^2+c),c=33/106+7/36*I,n=57 2329958564987472 a007 Real Root Of -698*x^4+362*x^3-774*x^2+259*x+109 2329958565250984 m001 (2^(1/2)-arctan(1/3))/(-Pi^(1/2)+Conway) 2329958588111871 k002 Champernowne real with 5*n^2+261*n-243 2329958591985904 m003 3/4+Sech[1/2+Sqrt[5]/2]^2*Tan[1/2+Sqrt[5]/2] 2329958598978519 m001 Khinchin/(BesselI(0,1)^BesselK(1,1)) 2329958599900529 m001 Backhouse*Gompertz+MinimumGamma 2329958611518955 b008 23/E^(1/9)+E 2329958612355050 r005 Im(z^2+c),c=-35/64+12/31*I,n=27 2329958615222529 m004 -125*Pi-(25*Sqrt[5]*Pi)/2+5*Cosh[Sqrt[5]*Pi] 2329958615560085 r005 Re(z^2+c),c=9/98+17/56*I,n=43 2329958618265440 m001 1/ln(GAMMA(7/24))*Conway^2*cosh(1) 2329958619423577 m001 GAMMA(11/12)*Champernowne^2/exp(GAMMA(11/24)) 2329958619699016 a005 (1/cos(54/233*Pi))^121 2329958621942943 p002 log(5^(2/3)*(15-7^(1/2))^(1/2)) 2329958625361663 a007 Real Root Of 126*x^4+180*x^3-315*x^2-156*x-90 2329958629495507 a007 Real Root Of 562*x^4-220*x^3+93*x^2-161*x-47 2329958633760368 a007 Real Root Of -21*x^4+89*x^3+190*x^2-307*x-823 2329958635451228 r005 Re(z^2+c),c=9/58+17/49*I,n=34 2329958643914305 r005 Im(z^2+c),c=-6/17+17/45*I,n=57 2329958646048795 r002 6th iterates of z^2 + 2329958649370175 r005 Im(z^2+c),c=-6/17+13/34*I,n=17 2329958663982485 r005 Im(z^2+c),c=-5/8+55/157*I,n=58 2329958664574463 a007 Real Root Of -390*x^4-942*x^3+78*x^2+639*x+644 2329958673310784 m001 BesselK(1,1)*Porter/ln(cos(1))^2 2329958679933402 a007 Real Root Of 13*x^4+263*x^3-912*x^2+406*x-56 2329958688411931 k002 Champernowne real with 11/2*n^2+519/2*n-242 2329958692848683 m001 (MasserGramain+Salem)/(1-Grothendieck) 2329958694430466 m001 (2^(1/3)+Ei(1))/GAMMA(2/3) 2329958694430466 m001 (Ei(1)+(2^(1/3)))/GAMMA(2/3) 2329958696495160 a007 Real Root Of 439*x^4+534*x^3-934*x^2+718*x+560 2329958703667822 a007 Real Root Of -723*x^4+539*x^3-298*x^2+324*x-64 2329958704821230 r005 Im(z^2+c),c=-57/122+25/61*I,n=51 2329958705781483 r005 Im(z^2+c),c=-31/70+27/62*I,n=19 2329958710476709 r002 58th iterates of z^2 + 2329958712363451 m001 1+Ei(1)-BesselI(1,1) 2329958714068057 m005 (4*Catalan+3/4)/(2/3*Pi-1/5) 2329958718129109 m001 MasserGramainDelta^(1/Rabbit) 2329958718821912 r005 Im(z^2+c),c=-5/8+71/197*I,n=25 2329958729904466 a007 Real Root Of 233*x^4-137*x^3+10*x^2-86*x+2 2329958733368777 a007 Real Root Of -89*x^4-290*x^3-994*x^2+856*x+250 2329958734278644 m001 (GAMMA(2/3)-BesselI(1,2))/(Bloch+Landau) 2329958735221100 a001 1364/2504730781961*233^(4/15) 2329958737588221 m006 (1/4*Pi^2+5)/(3/5*exp(2*Pi)-4/5) 2329958738012774 r005 Im(z^2+c),c=-47/122+12/31*I,n=30 2329958748803547 l006 ln(854/8777) 2329958749878022 m001 (Ei(1)+3^(1/3))/(OneNinth+PisotVijayaraghavan) 2329958754605403 a003 sin(Pi*11/89)*sin(Pi*23/109) 2329958757647973 a007 Real Root Of -569*x^4-172*x^3+996*x^2+710*x+16 2329958760997297 m005 (1/2*3^(1/2)-2/11)/(1/5*exp(1)-1/4) 2329958769822646 r009 Im(z^3+c),c=-11/106+6/25*I,n=8 2329958769931935 m001 Totient^GAMMA(19/24)*(1+3^(1/2))^(1/2) 2329958780666178 r009 Im(z^3+c),c=-53/118+2/45*I,n=41 2329958780961583 m001 (GAMMA(19/24)+FeigenbaumD)/(Trott-Trott2nd) 2329958783510797 m001 ln(3)/(exp(sqrt(2))+BesselK(1,1)) 2329958788711991 k002 Champernowne real with 6*n^2+258*n-241 2329958795666546 m001 (ZetaP(2)+ZetaQ(2))/(3^(1/2)+TreeGrowth2nd) 2329958803801198 a007 Real Root Of -120*x^4-51*x^3+675*x^2+112*x-512 2329958804850740 a007 Real Root Of -335*x^4-565*x^3+600*x^2+500*x+634 2329958816007044 r005 Im(z^2+c),c=-6/17+17/45*I,n=58 2329958820132417 m001 (Landau+ZetaP(2))/(Ei(1,1)+exp(-1/2*Pi)) 2329958820216899 h001 (-6*exp(1)+1)/(-6*exp(7)+9) 2329958826046306 m001 1/exp(TwinPrimes)/Champernowne*GAMMA(1/6) 2329958842627984 p004 log(37441/3643) 2329958843107963 r005 Im(z^2+c),c=-13/22+14/83*I,n=8 2329958847198326 a001 28657/2207*199^(6/11) 2329958859045289 a007 Real Root Of -760*x^4-112*x^3+359*x^2+990*x+212 2329958864250364 a007 Real Root Of -646*x^4+446*x^3+752*x^2+577*x-179 2329958868720819 m005 (1/2*2^(1/2)-8/11)/(5/12*gamma+5/8) 2329958887508863 r005 Re(z^2+c),c=-7/46+35/58*I,n=13 2329958889012051 k002 Champernowne real with 13/2*n^2+513/2*n-240 2329958906094081 m001 Chi(1)+gamma*Sierpinski 2329958907331364 m001 Totient+FeigenbaumB^ZetaQ(2) 2329958910888982 m001 GAMMA(2/3)/CopelandErdos^2*exp(GAMMA(5/6))^2 2329958913679005 h005 exp(sin(Pi*1/22)-sin(Pi*23/51)) 2329958916682380 r005 Re(z^2+c),c=-17/94+11/23*I,n=54 2329958924642437 m001 1/exp(Riemann2ndZero)^2*Bloch/GAMMA(11/12)^2 2329958925445619 l006 ln(645/6629) 2329958933548370 a007 Real Root Of -248*x^4-122*x^3+778*x^2-858*x-457 2329958935585714 l006 ln(5573/5586) 2329958941788555 m004 2+Sinh[Sqrt[5]*Pi]+Pi*Sinh[Sqrt[5]*Pi] 2329958945616718 a007 Real Root Of -898*x^4-234*x^3+960*x^2+324*x-122 2329958950207268 s002 sum(A273632[n]/(n*10^n-1),n=1..infinity) 2329958951513701 s002 sum(A247069[n]/(n*10^n-1),n=1..infinity) 2329958958136915 s002 sum(A215445[n]/(pi^n),n=1..infinity) 2329958962027122 a001 2/377*13^(15/26) 2329958962614958 s002 sum(A118377[n]/(n*10^n-1),n=1..infinity) 2329958963803700 s002 sum(A093450[n]/(n*10^n-1),n=1..infinity) 2329958969180097 m001 (Gompertz-Rabbit)/(Robbin-ZetaP(3)) 2329958972511221 r005 Re(z^2+c),c=-129/110+5/31*I,n=4 2329958975591231 h001 (-3*exp(-1)+9)/(-exp(2)+4) 2329958982476602 r005 Re(z^2+c),c=21/74+9/52*I,n=38 2329958982936797 r005 Im(z^2+c),c=-6/17+17/45*I,n=62 2329958984614315 r005 Re(z^2+c),c=-27/122+16/43*I,n=13 2329958987120445 r005 Im(z^2+c),c=-6/17+17/45*I,n=63 2329958989312111 k002 Champernowne real with 7*n^2+255*n-239 2329958990877584 r009 Re(z^3+c),c=-53/94+28/51*I,n=5 2329958992902646 m001 1/Zeta(7)^2/ErdosBorwein/exp(cos(Pi/12)) 2329958999428186 b008 5/4+E^(1/13) 2329959001182792 a007 Real Root Of -393*x^4-983*x^3-481*x^2-408*x+809 2329959001451312 a001 76/89*196418^(37/57) 2329959001643820 s002 sum(A194320[n]/(n*10^n-1),n=1..infinity) 2329959002395712 p003 LerchPhi(1/3,4,559/213) 2329959014742795 r005 Re(z^2+c),c=25/74+13/61*I,n=58 2329959020747376 a007 Real Root Of 559*x^4+763*x^3-985*x^2+985*x+819 2329959034872573 a001 9349/5*21^(29/35) 2329959035681825 m007 (-3*gamma-1/3)/(-1/2*gamma-3/2*ln(2)-1/4*Pi+3) 2329959038410719 m001 (Totient+ZetaP(3))/(gamma(1)-gamma) 2329959044955716 a007 Real Root Of -185*x^4-208*x^3+349*x^2-720*x-751 2329959056252854 m001 (Psi(2,1/3)-Zeta(1/2))/(Bloch+FeigenbaumC) 2329959060692160 r009 Re(z^3+c),c=-5/36+47/49*I,n=48 2329959072541806 m001 (ln(5)-BesselK(1,1))/(MertensB2-Porter) 2329959086975921 r005 Re(z^2+c),c=-59/56+25/56*I,n=4 2329959089612171 k002 Champernowne real with 15/2*n^2+507/2*n-238 2329959091994622 r005 Im(z^2+c),c=-25/22+2/69*I,n=47 2329959093248984 s002 sum(A104186[n]/(n*10^n-1),n=1..infinity) 2329959094380711 s002 sum(A184320[n]/(n*10^n-1),n=1..infinity) 2329959094380863 s002 sum(A092363[n]/(n*10^n-1),n=1..infinity) 2329959094556048 h001 (-exp(-1)+7)/(-9*exp(1)-4) 2329959095764622 a007 Real Root Of 462*x^4-407*x^3+897*x^2-961*x+179 2329959101261805 r005 Re(z^2+c),c=-53/110+8/15*I,n=48 2329959105549903 s002 sum(A053384[n]/(n*10^n-1),n=1..infinity) 2329959106770854 s002 sum(A165020[n]/(n*10^n-1),n=1..infinity) 2329959106771772 s002 sum(A090973[n]/(n*10^n-1),n=1..infinity) 2329959106790872 s002 sum(A111656[n]/(n*10^n-1),n=1..infinity) 2329959106790872 s002 sum(A165118[n]/(n*10^n-1),n=1..infinity) 2329959106880863 s002 sum(A104147[n]/(n*10^n-1),n=1..infinity) 2329959106990872 s002 sum(A230775[n]/(n*10^n-1),n=1..infinity) 2329959120492892 s002 sum(A066927[n]/(n*10^n-1),n=1..infinity) 2329959120501983 s002 sum(A057810[n]/(n*10^n-1),n=1..infinity) 2329959120501991 s002 sum(A231152[n]/(n*10^n-1),n=1..infinity) 2329959120502076 s002 sum(A120203[n]/(n*10^n-1),n=1..infinity) 2329959120602995 s002 sum(A120195[n]/(n*10^n-1),n=1..infinity) 2329959124506960 a007 Real Root Of -133*x^4+126*x^3+327*x^2+159*x-56 2329959125366029 m001 (-GAMMA(7/12)+FeigenbaumC)/(5^(1/2)+Zeta(1,2)) 2329959126249507 a007 Real Root Of -11*x^4+639*x^3+968*x^2-981*x+866 2329959127345585 a007 Real Root Of 22*x^4+545*x^3+749*x^2-138*x+105 2329959131014878 m001 ln(GAMMA(5/24))/FeigenbaumKappa*Zeta(1/2)^2 2329959134039203 m001 Cahen^GAMMA(5/12)-GolombDickman 2329959139903318 b008 -24/7+Log[3] 2329959148715404 r009 Re(z^3+c),c=-9/74+43/56*I,n=10 2329959150254283 r005 Im(z^2+c),c=-3/74+8/29*I,n=6 2329959161665531 p001 sum((-1)^n/(529*n+429)/(1000^n),n=0..infinity) 2329959162109717 m005 (1/2*Pi-6/11)/(1/3*Zeta(3)+4) 2329959166499701 a003 cos(Pi*4/67)/cos(Pi*30/83) 2329959188311734 a001 5778/89*317811^(13/46) 2329959189912231 k002 Champernowne real with 8*n^2+252*n-237 2329959197338844 r005 Re(z^2+c),c=-11/52+25/62*I,n=19 2329959203158074 m005 (1/3*gamma+2/7)/(3/4*5^(1/2)+3/8) 2329959203822042 a007 Real Root Of 42*x^4-375*x^3+158*x^2+769*x+856 2329959208938933 r009 Re(z^3+c),c=-5/36+47/49*I,n=46 2329959228503355 m001 KhintchineHarmonic/ln(ArtinRank2)^2/gamma 2329959233717654 m001 1/Ei(1)^2/ln(RenyiParking)^2*sin(1)^2 2329959245223604 r009 Re(z^3+c),c=-5/36+47/49*I,n=40 2329959251061874 s002 sum(A064658[n]/(n*10^n-1),n=1..infinity) 2329959251275521 m001 (-MadelungNaCl+ZetaP(2))/(Bloch-Psi(2,1/3)) 2329959251980332 s002 sum(A194292[n]/(n*10^n-1),n=1..infinity) 2329959253491250 a007 Real Root Of 238*x^4+227*x^3-949*x^2-685*x-587 2329959255271445 a001 75025/5778*199^(6/11) 2329959258767515 r005 Im(z^2+c),c=-6/17+17/45*I,n=64 2329959262103806 p004 log(24229/23671) 2329959263369151 s002 sum(A194324[n]/(n*10^n-1),n=1..infinity) 2329959263369221 s002 sum(A194328[n]/(n*10^n-1),n=1..infinity) 2329959263378305 s002 sum(A194304[n]/(n*10^n-1),n=1..infinity) 2329959271437108 l006 ln(436/4481) 2329959272873571 m001 GAMMA(7/12)/ln(GAMMA(23/24))^2/Zeta(7) 2329959274758936 s002 sum(A194316[n]/(n*10^n-1),n=1..infinity) 2329959277191269 s002 sum(A173777[n]/(n*10^n-1),n=1..infinity) 2329959279300999 r009 Re(z^3+c),c=-5/36+47/49*I,n=54 2329959282470051 r009 Re(z^3+c),c=-5/36+47/49*I,n=52 2329959283425759 m001 (-PlouffeB+Trott2nd)/(Kolakoski-exp(1)) 2329959283905658 m001 1/exp(GAMMA(1/12))*Lehmer^2*cos(Pi/5)^2 2329959285952745 r005 Im(z^2+c),c=-81/70+3/14*I,n=57 2329959288128692 a001 233^(9/58) 2329959290212291 k002 Champernowne real with 17/2*n^2+501/2*n-236 2329959291997899 m001 (cos(1/5*Pi)+arctan(1/3))/(gamma(2)-PlouffeB) 2329959298648607 s002 sum(A269333[n]/(n*10^n-1),n=1..infinity) 2329959300476569 m001 GAMMA(17/24)*Salem^2*ln(Pi)^2 2329959300596873 a001 55/4*521^(19/42) 2329959303447395 m002 -3+Cosh[Pi]/(5*ProductLog[Pi])+ProductLog[Pi] 2329959306196040 r009 Re(z^3+c),c=-5/36+47/49*I,n=58 2329959308865346 r009 Re(z^3+c),c=-5/36+47/49*I,n=60 2329959308944369 r005 Im(z^2+c),c=-35/66+20/49*I,n=24 2329959310286125 m003 5/2+(9*Sqrt[5])/64-Sinh[1/2+Sqrt[5]/2]/5 2329959311751045 r009 Re(z^3+c),c=-5/36+47/49*I,n=64 2329959314808522 a001 196418/15127*199^(6/11) 2329959317691452 r009 Re(z^3+c),c=-5/36+47/49*I,n=62 2329959319239272 r005 Re(z^2+c),c=-7/114+34/55*I,n=37 2329959322377715 a001 47/1346269*55^(9/19) 2329959323494865 a001 514229/39603*199^(6/11) 2329959324762186 a001 1346269/103682*199^(6/11) 2329959324947085 a001 3524578/271443*199^(6/11) 2329959324974062 a001 9227465/710647*199^(6/11) 2329959324977997 a001 24157817/1860498*199^(6/11) 2329959324978572 a001 63245986/4870847*199^(6/11) 2329959324978655 a001 165580141/12752043*199^(6/11) 2329959324978668 a001 433494437/33385282*199^(6/11) 2329959324978669 a001 1134903170/87403803*199^(6/11) 2329959324978670 a001 2971215073/228826127*199^(6/11) 2329959324978670 a001 7778742049/599074578*199^(6/11) 2329959324978670 a001 20365011074/1568397607*199^(6/11) 2329959324978670 a001 53316291173/4106118243*199^(6/11) 2329959324978670 a001 139583862445/10749957122*199^(6/11) 2329959324978670 a001 365435296162/28143753123*199^(6/11) 2329959324978670 a001 956722026041/73681302247*199^(6/11) 2329959324978670 a001 2504730781961/192900153618*199^(6/11) 2329959324978670 a001 10610209857723/817138163596*199^(6/11) 2329959324978670 a001 4052739537881/312119004989*199^(6/11) 2329959324978670 a001 1548008755920/119218851371*199^(6/11) 2329959324978670 a001 591286729879/45537549124*199^(6/11) 2329959324978670 a001 7787980473/599786069*199^(6/11) 2329959324978670 a001 86267571272/6643838879*199^(6/11) 2329959324978670 a001 32951280099/2537720636*199^(6/11) 2329959324978670 a001 12586269025/969323029*199^(6/11) 2329959324978670 a001 4807526976/370248451*199^(6/11) 2329959324978670 a001 1836311903/141422324*199^(6/11) 2329959324978671 a001 701408733/54018521*199^(6/11) 2329959324978675 a001 9238424/711491*199^(6/11) 2329959324978707 a001 102334155/7881196*199^(6/11) 2329959324978927 a001 39088169/3010349*199^(6/11) 2329959324980430 a001 14930352/1149851*199^(6/11) 2329959324990734 a001 5702887/439204*199^(6/11) 2329959325061359 a001 2178309/167761*199^(6/11) 2329959325545433 a001 832040/64079*199^(6/11) 2329959326792662 r005 Im(z^2+c),c=-11/31+14/37*I,n=35 2329959328863320 a001 10959/844*199^(6/11) 2329959338635799 r009 Re(z^3+c),c=-31/60+21/62*I,n=14 2329959339778946 m001 Pi-2^(1/3)+2^(1/2)-cos(1/12*Pi) 2329959341892162 r009 Re(z^3+c),c=-5/36+47/49*I,n=56 2329959351604462 a001 121393/9349*199^(6/11) 2329959369649100 m001 (3^(1/2)+Magata)/(MertensB2+Riemann2ndZero) 2329959370783931 r009 Re(z^3+c),c=-17/70+27/37*I,n=13 2329959374126610 m001 1/exp(Zeta(9))/GAMMA(11/12)*sin(Pi/12)^2 2329959374566716 h001 (2/5*exp(2)+2/9)/(1/10*exp(2)+5/8) 2329959375190635 r005 Im(z^2+c),c=5/36+11/19*I,n=39 2329959390169831 m005 (13/4+1/4*5^(1/2))/(5/11*Catalan-2/5) 2329959390512351 k002 Champernowne real with 9*n^2+249*n-235 2329959391332878 a007 Real Root Of -430*x^4-965*x^3-159*x^2+967*x+223 2329959393935503 a007 Real Root Of -179*x^4-512*x^3-321*x^2+134*x+854 2329959395444398 a008 Real Root of x^4-x^3-13*x^2-25*x+112 2329959401263334 m001 (exp(-Pi)-gamma*BesselJZeros(0,1))/gamma 2329959403626680 m001 1/Magata/DuboisRaymond/ln(sqrt(5))^2 2329959406952605 a003 cos(Pi*2/41)*sin(Pi*5/66) 2329959407605143 r009 Im(z^3+c),c=-29/78+9/58*I,n=23 2329959416163800 s002 sum(A014530[n]/(exp(n)-1),n=1..infinity) 2329959418486018 s002 sum(A127759[n]/(exp(n)-1),n=1..infinity) 2329959428415828 m005 (1/3*Pi-3/5)/(2*2^(1/2)-10/11) 2329959429385925 r005 Re(z^2+c),c=-17/94+11/23*I,n=53 2329959431616112 r002 7th iterates of z^2 + 2329959433163108 r005 Im(z^2+c),c=-29/52+6/17*I,n=15 2329959434327128 r009 Re(z^3+c),c=-15/46+17/26*I,n=46 2329959435092156 r005 Im(z^2+c),c=-17/18+14/65*I,n=23 2329959437130277 h001 (-6*exp(7)-7)/(-7*exp(6)-3) 2329959441841327 r005 Im(z^2+c),c=-6/17+17/45*I,n=61 2329959451200413 s002 sum(A219795[n]/(n*10^n-1),n=1..infinity) 2329959451539164 m001 exp(Pi)^(Salem/GAMMA(19/24)) 2329959451917770 r005 Re(z^2+c),c=-4/15+29/51*I,n=11 2329959454451537 r005 Im(z^2+c),c=-73/82+8/39*I,n=49 2329959459236168 a007 Real Root Of -591*x^4-989*x^3+494*x^2-994*x-90 2329959463491988 r002 35th iterates of z^2 + 2329959474327744 a001 18/5*591286729879^(2/13) 2329959475507987 h001 (3/4*exp(2)+5/6)/(1/4*exp(2)+8/9) 2329959490812411 k002 Champernowne real with 19/2*n^2+495/2*n-234 2329959491185027 r009 Re(z^3+c),c=-5/36+47/49*I,n=50 2329959492028517 r005 Re(z^2+c),c=-19/82+19/55*I,n=20 2329959499382953 r002 30th iterates of z^2 + 2329959502242255 r002 10th iterates of z^2 + 2329959506436615 m001 (Cahen-Paris)/(GAMMA(7/12)+AlladiGrinstead) 2329959507474574 a001 46368/3571*199^(6/11) 2329959514170040 q001 1151/494 2329959522187769 m001 (Artin-Cahen)/(Grothendieck-Kac) 2329959524681334 a001 47/13*317811^(9/13) 2329959532401008 s002 sum(A255796[n]/(n!^3),n=1..infinity) 2329959539108760 r005 Im(z^2+c),c=-67/58+7/31*I,n=13 2329959543351821 a007 Real Root Of -339*x^4-685*x^3+125*x^2-384*x-247 2329959546847892 m001 (Shi(1)+3^(1/3))/(-Magata+Riemann1stZero) 2329959548497513 m001 ErdosBorwein^(5^(1/2))/(ErdosBorwein^ZetaP(2)) 2329959558843101 r009 Re(z^3+c),c=-29/94+13/38*I,n=20 2329959561115587 m005 (1/3*Pi+1/2)/(3/7*gamma+5/12) 2329959570864525 r005 Re(z^2+c),c=-51/52+3/14*I,n=56 2329959573116807 a007 Real Root Of -401*x^4-401*x^3+993*x^2-394*x+437 2329959576443782 r009 Im(z^3+c),c=-29/78+9/58*I,n=22 2329959589288888 m005 (1/2*3^(1/2)+7/11)/(1/7*gamma-8/11) 2329959591112471 k002 Champernowne real with 10*n^2+246*n-233 2329959592087604 m005 (1/2*Zeta(3)-7/10)/(3/10*Pi-9/10) 2329959594323631 a007 Real Root Of -18*x^4-378*x^3+968*x^2+50*x-771 2329959594801963 m001 (Zeta(1,2)+Magata)/(ln(gamma)+ln(5)) 2329959601952479 a007 Real Root Of 121*x^4+202*x^3+27*x^2+438*x-137 2329959602641977 r002 35th iterates of z^2 + 2329959603270043 m001 1/exp(TreeGrowth2nd)^2*Paris^2*gamma 2329959608035049 l006 ln(663/6814) 2329959608513919 a007 Real Root Of -218*x^4+71*x^3+344*x^2+584*x-155 2329959616890505 m001 Riemann1stZero/Khintchine*exp(Ei(1))^2 2329959619757833 a001 28657/3*199^(35/58) 2329959623685804 r005 Re(z^2+c),c=-19/86+35/61*I,n=20 2329959632502028 h001 (10/11*exp(2)+7/12)/(3/10*exp(2)+11/12) 2329959637247421 a007 Real Root Of -442*x^4-638*x^3+928*x^2+32*x-7 2329959637491712 r005 Im(z^2+c),c=-11/56+15/22*I,n=39 2329959638119510 m006 (exp(Pi)+5/6)/(1/5*ln(Pi)+4/5) 2329959639744943 r009 Re(z^3+c),c=-11/34+14/37*I,n=19 2329959655648321 a007 Real Root Of 105*x^4-576*x^3+561*x^2+93*x+929 2329959660026470 m004 (-5*Pi)/6+(500*Csc[Sqrt[5]*Pi])/Pi 2329959660047487 p001 sum((-1)^n/(339*n+89)/n/(100^n),n=1..infinity) 2329959663179836 m002 Pi^2+Cosh[Pi]+Sinh[Pi]/(2*Pi) 2329959665922448 m001 1/exp(sin(1))^2/GAMMA(7/24)/sin(Pi/12) 2329959671470664 a007 Real Root Of 23*x^4+567*x^3+737*x^2+243*x-943 2329959673808562 m001 ln(KhintchineLevy)^2*FeigenbaumDelta*Niven 2329959675949090 r005 Im(z^2+c),c=-6/17+17/45*I,n=59 2329959691412531 k002 Champernowne real with 21/2*n^2+489/2*n-232 2329959691482044 m001 (Pi+Khinchin)/(Riemann3rdZero-ZetaQ(4)) 2329959704019934 h001 (9/10*exp(1)+8/11)/(1/6*exp(1)+10/11) 2329959716867256 r002 36th iterates of z^2 + 2329959723631981 r005 Im(z^2+c),c=-32/29+13/56*I,n=59 2329959724029735 r002 11th iterates of z^2 + 2329959734394240 r002 33th iterates of z^2 + 2329959748321445 r005 Re(z^2+c),c=-17/70+17/55*I,n=14 2329959750470091 a007 Real Root Of -736*x^4-178*x^3+297*x^2+576*x+118 2329959751518036 m001 FeigenbaumAlpha/Backhouse*FeigenbaumKappa 2329959757845408 r005 Im(z^2+c),c=-83/114+7/45*I,n=47 2329959759546296 a007 Real Root Of -558*x^4-880*x^3+991*x^2-273*x-702 2329959760683581 m001 (cos(1)-ln(3))/(-GAMMA(19/24)+FeigenbaumMu) 2329959772930178 l006 ln(890/9147) 2329959779017013 a001 2/514229*144^(14/17) 2329959791712591 k002 Champernowne real with 11*n^2+243*n-231 2329959796418797 r009 Re(z^3+c),c=-13/25+37/62*I,n=63 2329959804115974 a007 Real Root Of 360*x^4+466*x^3-642*x^2+194*x-778 2329959804722110 r005 Re(z^2+c),c=-13/62+25/61*I,n=20 2329959804839775 a001 3571/6557470319842*233^(4/15) 2329959806057005 s002 sum(A060359[n]/(n*10^n-1),n=1..infinity) 2329959809936372 m001 1/GAMMA(17/24)^2*ln(Si(Pi))^2/Pi^2 2329959811822526 r005 Im(z^2+c),c=1/46+13/51*I,n=4 2329959811910462 m001 exp(1)*Chi(1)+Riemann2ndZero 2329959824528231 m006 (1/5/Pi-1)/(3/4*exp(2*Pi)+1/4) 2329959828579332 p004 log(36643/29027) 2329959831320862 m004 2+Cosh[Sqrt[5]*Pi]+Pi*Sinh[Sqrt[5]*Pi] 2329959832566477 m001 (Lehmer-ReciprocalLucas)^Khinchin 2329959832858388 m001 (Pi+GAMMA(11/12))/(MadelungNaCl+ZetaQ(2)) 2329959832881556 r005 Im(z^2+c),c=-11/58+13/43*I,n=4 2329959841764176 h001 (5/6*exp(1)+8/11)/(1/10*exp(2)+6/11) 2329959843696604 m008 (2/3*Pi+4/5)/(4*Pi^3+1/5) 2329959862104973 m005 (1/2*exp(1)+3/5)/(3/8+5/24*5^(1/2)) 2329959869204503 m001 Zeta(1/2)*Niven*exp(sqrt(5)) 2329959870732236 m001 gamma*GAMMA(11/12)/MertensB1 2329959874667822 a007 Real Root Of 410*x^4+396*x^3-950*x^2+418*x-943 2329959892012651 k002 Champernowne real with 23/2*n^2+483/2*n-230 2329959896118562 s002 sum(A095276[n]/(2^n-1),n=1..infinity) 2329959902814111 m001 (-FeigenbaumB+ZetaQ(2))/(3^(1/2)+ln(5)) 2329959909796170 b008 ProductLog[6^Sqrt[Pi]] 2329959918833357 m001 (cos(1/5*Pi)+Backhouse)/(FeigenbaumC-Thue) 2329959922068214 a001 13201/7*2^(18/59) 2329959927131838 r005 Im(z^2+c),c=-17/30+47/120*I,n=13 2329959944841488 a003 sin(Pi*17/78)/cos(Pi*33/80) 2329959945810900 m001 Sierpinski/(ln(3)+Trott) 2329959949223872 r005 Re(z^2+c),c=29/82+5/28*I,n=20 2329959954916258 m001 (Paris-Salem)/(GAMMA(17/24)-MadelungNaCl) 2329959965329424 a007 Real Root Of -223*x^4-222*x^3+221*x^2-910*x+444 2329959976664044 m001 (FeigenbaumC+FeigenbaumD)/(1-Zeta(1,2)) 2329959982147897 r005 Im(z^2+c),c=-27/118+14/41*I,n=13 2329959985082407 m001 (LambertW(1)+FeigenbaumAlpha)/HeathBrownMoroz 2329959990103736 m002 E^Pi+Pi^4/(E^(2*Pi)*Log[Pi]) 2329959990927833 m009 (Psi(1,3/4)+1/2)/(4*Psi(1,2/3)+4/5) 2329959992312711 k002 Champernowne real with 12*n^2+240*n-229 2329959999689388 r009 Re(z^3+c),c=-11/32+23/54*I,n=31 2329960004987127 b008 (3*LogIntegral[Catalan])/25 2329960007843588 h001 (5/12*exp(1)+7/11)/(10/11*exp(2)+7/8) 2329960030239125 a001 440719107401/7*46368^(13/17) 2329960030404868 a001 2537720636/21*165580141^(13/17) 2329960030404966 a001 4870847/21*591286729879^(13/17) 2329960037054130 m001 ln(gamma)^OrthogonalArrays/Si(Pi) 2329960039227561 m001 exp(LandauRamanujan)*FeigenbaumAlpha^2*sqrt(3) 2329960041913643 a007 Real Root Of -117*x^4+96*x^3+473*x^2-714*x+431 2329960052073448 r009 Im(z^3+c),c=-1/11+1/44*I,n=3 2329960052989305 m001 (ln(2)/ln(10)+GaussAGM)/(Magata+Porter) 2329960053050133 a003 sin(Pi*4/89)/cos(Pi*32/109) 2329960057342493 a001 1926/3536736619241*233^(4/15) 2329960058248253 a007 Real Root Of -887*x^4+894*x^3+848*x^2+87*x-75 2329960059185445 m004 (-55*Pi)/6+Sqrt[5]*Pi-ProductLog[Sqrt[5]*Pi] 2329960061468147 m001 (KhinchinLevy-Magata)/(gamma(1)+GAMMA(23/24)) 2329960061845348 m005 (1/3*5^(1/2)-1/5)/(5*gamma-6/11) 2329960067388767 r005 Re(z^2+c),c=-5/21+13/40*I,n=20 2329960070844378 r009 Im(z^3+c),c=-11/106+6/25*I,n=11 2329960071729822 r009 Im(z^3+c),c=-11/106+6/25*I,n=10 2329960074480954 r004 Im(z^2+c),c=-11/46+4/13*I,z(0)=-1,n=11 2329960075718565 r009 Im(z^3+c),c=-11/106+6/25*I,n=13 2329960075972782 r009 Im(z^3+c),c=-11/106+6/25*I,n=16 2329960075974564 r009 Im(z^3+c),c=-11/106+6/25*I,n=18 2329960075974593 r009 Im(z^3+c),c=-11/106+6/25*I,n=19 2329960075974596 r009 Im(z^3+c),c=-11/106+6/25*I,n=21 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=24 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=26 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=29 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=31 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=32 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=34 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=37 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=39 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=42 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=40 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=44 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=45 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=47 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=50 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=52 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=53 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=55 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=56 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=57 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=58 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=59 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=60 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=54 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=51 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=49 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=48 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=46 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=43 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=41 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=38 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=36 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=35 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=33 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=30 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=28 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=27 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=25 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=23 2329960075974597 r009 Im(z^3+c),c=-11/106+6/25*I,n=22 2329960075974599 r009 Im(z^3+c),c=-11/106+6/25*I,n=20 2329960075974941 r009 Im(z^3+c),c=-11/106+6/25*I,n=17 2329960075979122 r009 Im(z^3+c),c=-11/106+6/25*I,n=15 2329960075990597 r009 Im(z^3+c),c=-11/106+6/25*I,n=14 2329960077545626 r009 Im(z^3+c),c=-11/106+6/25*I,n=12 2329960080290516 a008 Real Root of (1+5*x+4*x^2+4*x^3-x^4-2*x^5) 2329960085783383 r005 Re(z^2+c),c=9/98+17/56*I,n=36 2329960089679306 a007 Real Root Of -681*x^4+766*x^3+825*x^2+204*x-100 2329960092509019 m001 (Tetranacci-ZetaQ(2))/(gamma(2)-Kolakoski) 2329960092612771 k002 Champernowne real with 25/2*n^2+477/2*n-228 2329960107144460 r005 Im(z^2+c),c=-15/23+2/45*I,n=58 2329960110780589 a001 8/1149851*322^(9/43) 2329960114792965 a007 Real Root Of -292*x^4-566*x^3+347*x^2+571*x+893 2329960114870995 m001 1/exp(1)^2/cos(Pi/5)*exp(log(2+sqrt(3)))^2 2329960119367929 s002 sum(A278355[n]/(n^3*2^n-1),n=1..infinity) 2329960122307329 m001 (Pi^(1/2)-Robbin)/(ln(gamma)-gamma(1)) 2329960126989591 a008 Real Root of (17+2*x+3*x^2-3*x^3) 2329960128738014 m005 (1/2*Zeta(3)-9/10)/(1/3*exp(1)-7/9) 2329960135802519 a001 3571/144*832040^(21/25) 2329960160880912 r005 Im(z^2+c),c=-17/20+7/48*I,n=12 2329960165296415 a007 Real Root Of 238*x^4+548*x^3+300*x^2+331*x-940 2329960165505842 a007 Real Root Of 366*x^4+903*x^3+332*x^2+712*x+492 2329960172876917 a003 cos(Pi*19/75)-cos(Pi*19/55) 2329960176561811 m003 15/32+(3*Sqrt[5])/4-Tan[1/2+Sqrt[5]/2] 2329960178673243 m001 Paris^(cos(1)/Thue) 2329960179003360 r009 Im(z^3+c),c=-9/31+11/58*I,n=3 2329960186221769 a007 Real Root Of 224*x^4+898*x^3+631*x^2-935*x-847 2329960189946736 a001 7/41*3^(15/53) 2329960191405420 m005 (1/2*exp(1)-1/10)/(1/8*2^(1/2)+4/11) 2329960192912831 k002 Champernowne real with 13*n^2+237*n-227 2329960193198740 m001 (Weierstrass+ZetaQ(4))/(Khinchin-exp(Pi)) 2329960202428079 a007 Real Root Of 150*x^4-143*x^3-933*x^2+174*x-759 2329960209562521 m001 1/GAMMA(1/4)/exp(Bloch)*GAMMA(2/3) 2329960210599857 r005 Im(z^2+c),c=-13/118+3/10*I,n=18 2329960215428428 r005 Im(z^2+c),c=7/86+11/50*I,n=12 2329960218069844 a007 Real Root Of -556*x^4+496*x^3-397*x^2+586*x+166 2329960222561727 m005 (1/2*exp(1)+1/7)/(9/10*exp(1)+4) 2329960225258144 m001 GAMMA(3/4)+ln(3)^Shi(1) 2329960228908276 b008 -28+ArcCosh[55] 2329960235162206 a007 Real Root Of 461*x^4+2*x^3-732*x^2-575*x-13 2329960249231530 p001 sum((-1)^n/(530*n+429)/(1000^n),n=0..infinity) 2329960250695125 m005 (1/3*Pi+1/11)/(4/11*exp(1)-1/2) 2329960251786675 r005 Re(z^2+c),c=23/66+11/46*I,n=54 2329960254540027 l006 ln(227/2333) 2329960254540027 p004 log(2333/227) 2329960256169456 r009 Im(z^3+c),c=-11/106+6/25*I,n=9 2329960262245816 a007 Real Root Of 370*x^4+125*x^3-197*x^2-266*x+70 2329960263051901 r005 Im(z^2+c),c=-13/23+17/38*I,n=30 2329960278692001 m001 exp(1)^GlaisherKinkelin*MasserGramain 2329960293212891 k002 Champernowne real with 27/2*n^2+471/2*n-226 2329960294641043 r005 Im(z^2+c),c=-31/118+20/57*I,n=27 2329960305079400 m001 GAMMA(11/12)*RenyiParking/ln(Zeta(3))^2 2329960306518948 m008 (1/2*Pi^2+1)/(4/5*Pi^3+2/3) 2329960323563476 s002 sum(A188047[n]/(n^2*10^n-1),n=1..infinity) 2329960324423776 a001 7/6*11^(15/52) 2329960327292267 m001 (BesselK(0,1)-gamma)/(-exp(1/Pi)+CareFree) 2329960336486684 a001 29/17711*4181^(22/37) 2329960341014251 a007 Real Root Of 139*x^4+65*x^3-430*x^2+15*x-905 2329960341155764 s002 sum(A032465[n]/(n^2*10^n-1),n=1..infinity) 2329960352566183 m006 (1/4*ln(Pi)-2/5)/(3/5*Pi+3) 2329960358364761 p004 log(30829/30119) 2329960360160027 a004 Fibonacci(12)*Lucas(13)/(1/2+sqrt(5)/2)^12 2329960362465371 r005 Re(z^2+c),c=-11/16+20/77*I,n=24 2329960364671213 h001 (9/11*exp(2)+1/6)/(8/9*exp(1)+1/4) 2329960366716785 a007 Real Root Of -303*x^4-265*x^3+911*x^2-128*x+334 2329960386528185 p004 log(25933/20543) 2329960390232325 r009 Re(z^3+c),c=-5/36+47/49*I,n=44 2329960391269112 a001 13/1364*76^(31/42) 2329960393512951 k002 Champernowne real with 14*n^2+234*n-225 2329960399538605 m001 GAMMA(7/24)^2/GAMMA(13/24)^2/exp(exp(1)) 2329960418177580 r005 Re(z^2+c),c=-5/26+14/31*I,n=33 2329960423302086 r009 Re(z^3+c),c=-7/24+3/10*I,n=14 2329960423756117 m001 (MertensB2+Robbin)/(ln(5)-ln(2^(1/2)+1)) 2329960423887266 r005 Im(z^2+c),c=-6/17+17/45*I,n=56 2329960424979275 m002 -E^Pi+2*Csch[Pi]-Tanh[Pi]/3 2329960438618616 m001 (MinimumGamma-sin(1))/(Sierpinski+ZetaP(4)) 2329960438831227 m001 (GAMMA(5/6)-Bloch)/(exp(1/exp(1))+exp(1/Pi)) 2329960465900472 a001 2207/4052739537881*233^(4/15) 2329960473636746 a007 Real Root Of 442*x^4+699*x^3-948*x^2-584*x-399 2329960479503192 m001 (ln(Pi)+HardyLittlewoodC3)^Porter 2329960485124099 r005 Re(z^2+c),c=7/86+28/47*I,n=26 2329960486886641 b008 1+ArcSinh[SinIntegral[4]] 2329960489494948 a007 Real Root Of -844*x^4+502*x^3-397*x^2+758*x+207 2329960493813011 k002 Champernowne real with 29/2*n^2+465/2*n-224 2329960494716291 r002 7th iterates of z^2 + 2329960500075273 m001 1/GAMMA(5/12)^2/exp(FeigenbaumD)*cosh(1) 2329960505176654 r009 Im(z^3+c),c=-25/54+3/20*I,n=6 2329960524947436 b008 17+5*2^(1/3) 2329960525308572 m005 (1/2*gamma+6/7)/(5/8*3^(1/2)-6) 2329960527616801 m005 (1/3*exp(1)+2/9)/(3*2^(1/2)+3/5) 2329960528281325 a001 47*(1/2*5^(1/2)+1/2)^14*76^(9/22) 2329960531545477 a007 Real Root Of 22*x^4-382*x^3-739*x^2+986*x+829 2329960531876204 m001 BesselJ(0,1)-FeigenbaumD^ln(Pi) 2329960546110376 m001 (ArtinRank2+Khinchin)/(PlouffeB-Tetranacci) 2329960552131413 m001 GAMMA(5/6)*ln(Trott)^2*Zeta(7) 2329960554741043 r005 Im(z^2+c),c=-33/28+11/43*I,n=12 2329960556252486 m001 (BesselI(0,2)-Si(Pi))/(GAMMA(19/24)+Robbin) 2329960562368562 m001 (Si(Pi)+3^(1/3))/(MertensB3+StolarskyHarborth) 2329960567706843 m001 (BesselI(0,2)+LandauRamanujan)/Mills 2329960575824778 a001 17711/1364*199^(6/11) 2329960586232900 a007 Real Root Of -340*x^4-936*x^3-18*x^2+889*x+350 2329960594113071 k002 Champernowne real with 15*n^2+231*n-223 2329960603680435 r005 Im(z^2+c),c=-37/38+11/51*I,n=22 2329960615640061 m004 -5+375/Pi+25*Sqrt[5]*Pi*Sin[Sqrt[5]*Pi] 2329960622382786 m001 1/GAMMA(2/3)/ln(GlaisherKinkelin)/GAMMA(5/6)^2 2329960623046402 h001 (4/11*exp(2)+6/11)/(2/5*exp(1)+3/10) 2329960630082012 a001 89*76^(2/9) 2329960638452540 a007 Real Root Of 66*x^4-243*x^3-632*x^2+563*x-276 2329960647208488 r005 Im(z^2+c),c=-19/56+10/19*I,n=8 2329960652051714 q001 829/3558 2329960652795655 r005 Im(z^2+c),c=-33/46+10/41*I,n=14 2329960654664326 s002 sum(A029665[n]/(n*10^n-1),n=1..infinity) 2329960657850568 b008 2+Sech[1/7]/3 2329960663434096 r002 5th iterates of z^2 + 2329960668264893 r002 8th iterates of z^2 + 2329960669995090 a001 1/199*(1/2*5^(1/2)+1/2)^25*4^(11/15) 2329960676877355 s002 sum(A248071[n]/(10^n-1),n=1..infinity) 2329960692796214 a001 123/377*317811^(9/58) 2329960694413131 k002 Champernowne real with 31/2*n^2+459/2*n-222 2329960697010222 a007 Real Root Of 450*x^4+596*x^3-680*x^2+657*x-501 2329960699501396 a007 Real Root Of 365*x^4+456*x^3-954*x^2-30*x+120 2329960717426164 l006 ln(926/9517) 2329960718861071 m001 ln(Riemann2ndZero)^2*FeigenbaumB^2*GAMMA(1/4) 2329960724611645 r002 8th iterates of z^2 + 2329960725288224 a003 cos(Pi*11/89)-sin(Pi*14/37) 2329960725626322 r009 Re(z^3+c),c=-15/52+27/38*I,n=43 2329960740408015 r005 Re(z^2+c),c=-3/26+7/13*I,n=17 2329960747495806 p004 log(34129/33343) 2329960749144615 m007 (-3/4*gamma+1/6)/(-1/5*gamma-2/5*ln(2)-3/4) 2329960751277199 r009 Im(z^3+c),c=-29/78+9/58*I,n=24 2329960751587229 m001 BesselJ(0,1)-PrimesInBinary^gamma(3) 2329960753820607 m005 (1/2*Pi+3/4)/(3/5*Pi-8/9) 2329960762454268 m004 2+3*Sqrt[5]*Pi+Sin[Sqrt[5]*Pi]/3 2329960764164949 a007 Real Root Of -447*x^4+743*x^3-507*x^2+932*x+22 2329960767989381 p001 sum((-1)^n/(508*n+429)/(1024^n),n=0..infinity) 2329960774979855 s002 sum(A265626[n]/(n*10^n-1),n=1..infinity) 2329960776397451 m001 1/GAMMA(1/24)/exp(Salem)*sqrt(Pi) 2329960778428309 m001 (MinimumGamma+Otter)/(Pi^(1/2)+Champernowne) 2329960779666262 m001 sin(Pi/12)^2/Conway^2/exp(sqrt(2))^2 2329960787846728 r009 Im(z^3+c),c=-14/31+4/51*I,n=49 2329960794713191 k002 Champernowne real with 16*n^2+228*n-221 2329960821701840 p004 log(31069/3023) 2329960823044010 a007 Real Root Of -184*x^4+737*x^3-251*x^2+367*x+109 2329960831247427 m005 (1/2*Pi-10/11)/(-73/176+5/16*5^(1/2)) 2329960836508943 a001 75283811239*76^(6/23) 2329960837008311 p001 sum(1/(424*n+333)/n/(6^n),n=1..infinity) 2329960841983505 a007 Real Root Of 590*x^4+510*x^3+412*x^2-526*x+92 2329960849946691 m001 (Conway+MinimumGamma)/(Psi(1,1/3)+Pi^(1/2)) 2329960856299126 a007 Real Root Of -180*x^4-322*x^3-217*x^2-615*x+977 2329960867726095 m001 (Si(Pi)+Chi(1))/(-GAMMA(7/12)+FeigenbaumD) 2329960867748225 l006 ln(699/7184) 2329960874174298 a007 Real Root Of -529*x^4+978*x^3+123*x^2+955*x-240 2329960887640534 r005 Im(z^2+c),c=-1/4+17/49*I,n=24 2329960889707867 a007 Real Root Of 630*x^4-5*x^3-962*x^2-981*x+279 2329960892849009 r005 Re(z^2+c),c=-17/14+16/97*I,n=2 2329960895013251 k002 Champernowne real with 33/2*n^2+453/2*n-220 2329960902036024 m001 1/ln((2^(1/3)))*GolombDickman^2*sinh(1)^2 2329960905546852 m001 BesselJ(1,1)-Gompertz-ZetaP(4) 2329960912751204 a001 1/1858291*(1/2*5^(1/2)+1/2)^2*64079^(1/22) 2329960917585104 a003 cos(Pi*43/108)/cos(Pi*53/116) 2329960918809569 r005 Im(z^2+c),c=7/86+11/50*I,n=15 2329960929209876 p002 log(17^(3/5)+3^(10/7)) 2329960938782222 a007 Real Root Of 358*x^4+456*x^3-794*x^2-20*x-519 2329960940146603 m001 Pi*(2^(1/2)-Shi(1)-ln(3)) 2329960946258356 m001 (GAMMA(7/12)+CopelandErdos)/(Porter-Rabbit) 2329960947825094 m001 (Sierpinski-ZetaP(3))/(Zeta(3)-ln(3)) 2329960948786320 r005 Im(z^2+c),c=-20/31+7/16*I,n=56 2329960959676056 m004 (Sqrt[5]*Pi)/3-(25*Pi)/(6*E^(Sqrt[5]*Pi)) 2329960962491961 p002 log(4+17^(1/2)+10^(1/3)) 2329960967667862 r009 Im(z^3+c),c=-29/78+9/58*I,n=28 2329960968103662 r005 Im(z^2+c),c=-29/50+20/53*I,n=47 2329960975625121 m003 5+Sqrt[5]/8+18*Csc[1/2+Sqrt[5]/2] 2329960977237589 a001 281/3536736619241*317811^(4/15) 2329960979192297 a007 Real Root Of -484*x^4-671*x^3+866*x^2-868*x-947 2329960980270289 r005 Im(z^2+c),c=-21/82+15/43*I,n=28 2329960982009142 r005 Re(z^2+c),c=-23/86+20/33*I,n=12 2329960985940007 m004 25+Cos[Sqrt[5]*Pi]*Cosh[Sqrt[5]*Pi]^2 2329960988203794 r009 Im(z^3+c),c=-9/56+48/53*I,n=2 2329960995313311 k002 Champernowne real with 17*n^2+225*n-219 2329960997085875 r005 Re(z^2+c),c=-3/20+32/59*I,n=52 2329961008123821 r009 Im(z^3+c),c=-29/78+9/58*I,n=29 2329961009650211 m005 (1/2*Catalan+1/3)/(4/9*Pi+2) 2329961019200241 m001 ln(Pi)*(Salem+Thue) 2329961026332615 a007 Real Root Of -196*x^4+326*x^3+5*x^2+842*x-200 2329961029511277 m005 (1/3*Catalan-1/4)/(7/8*2^(1/2)-1) 2329961035209586 m001 (KhinchinHarmonic-Salem)/(arctan(1/2)-Ei(1,1)) 2329961040782728 r009 Im(z^3+c),c=-29/78+9/58*I,n=33 2329961040844649 r009 Im(z^3+c),c=-29/78+9/58*I,n=34 2329961042139669 r005 Re(z^2+c),c=25/82+11/58*I,n=56 2329961042832201 r009 Im(z^3+c),c=-29/78+9/58*I,n=35 2329961043041690 r009 Im(z^3+c),c=-29/78+9/58*I,n=39 2329961043106423 r009 Im(z^3+c),c=-29/78+9/58*I,n=40 2329961043140933 r009 Im(z^3+c),c=-29/78+9/58*I,n=38 2329961043149178 r009 Im(z^3+c),c=-29/78+9/58*I,n=44 2329961043149697 r009 Im(z^3+c),c=-29/78+9/58*I,n=45 2329961043152617 r009 Im(z^3+c),c=-29/78+9/58*I,n=46 2329961043152772 r009 Im(z^3+c),c=-29/78+9/58*I,n=50 2329961043152874 r009 Im(z^3+c),c=-29/78+9/58*I,n=51 2329961043152894 r009 Im(z^3+c),c=-29/78+9/58*I,n=49 2329961043152929 r009 Im(z^3+c),c=-29/78+9/58*I,n=55 2329961043152931 r009 Im(z^3+c),c=-29/78+9/58*I,n=56 2329961043152935 r009 Im(z^3+c),c=-29/78+9/58*I,n=57 2329961043152935 r009 Im(z^3+c),c=-29/78+9/58*I,n=61 2329961043152935 r009 Im(z^3+c),c=-29/78+9/58*I,n=60 2329961043152935 r009 Im(z^3+c),c=-29/78+9/58*I,n=62 2329961043152935 r009 Im(z^3+c),c=-29/78+9/58*I,n=63 2329961043152935 r009 Im(z^3+c),c=-29/78+9/58*I,n=64 2329961043152936 r009 Im(z^3+c),c=-29/78+9/58*I,n=59 2329961043152936 r009 Im(z^3+c),c=-29/78+9/58*I,n=58 2329961043152941 r009 Im(z^3+c),c=-29/78+9/58*I,n=54 2329961043152957 r009 Im(z^3+c),c=-29/78+9/58*I,n=52 2329961043152964 r009 Im(z^3+c),c=-29/78+9/58*I,n=53 2329961043153411 r009 Im(z^3+c),c=-29/78+9/58*I,n=48 2329961043153775 r009 Im(z^3+c),c=-29/78+9/58*I,n=47 2329961043158017 r009 Im(z^3+c),c=-29/78+9/58*I,n=43 2329961043165758 r009 Im(z^3+c),c=-29/78+9/58*I,n=41 2329961043172846 r009 Im(z^3+c),c=-29/78+9/58*I,n=42 2329961043501324 r009 Im(z^3+c),c=-29/78+9/58*I,n=37 2329961043709533 r009 Im(z^3+c),c=-29/78+9/58*I,n=36 2329961045855443 r005 Re(z^2+c),c=-7/40+28/57*I,n=57 2329961046427147 r009 Im(z^3+c),c=-29/78+9/58*I,n=27 2329961047233580 r009 Im(z^3+c),c=-29/78+9/58*I,n=32 2329961048554626 h001 (8/9*exp(1)+5/9)/(5/12*exp(1)+1/7) 2329961050289901 r009 Im(z^3+c),c=-29/78+9/58*I,n=30 2329961050965717 m001 (BesselJ(0,1)+Ei(1))/(-ArtinRank2+Tribonacci) 2329961057011941 r009 Im(z^3+c),c=-29/78+9/58*I,n=31 2329961058049540 r005 Im(z^2+c),c=-6/17+17/45*I,n=54 2329961059852301 m005 (1/3*5^(1/2)-1/11)/(6/11*3^(1/2)-11/12) 2329961084697685 r005 Re(z^2+c),c=-7/110+35/62*I,n=15 2329961095613371 k002 Champernowne real with 35/2*n^2+447/2*n-218 2329961100543690 m001 (Ei(1)-exp(1/Pi))/(GAMMA(7/12)+CareFree) 2329961102183504 a001 123/4181*377^(15/43) 2329961111076064 m005 (1/3*Catalan+1/9)/(5/11*3^(1/2)+1) 2329961111795436 p004 log(18793/14887) 2329961113443835 a007 Real Root Of -341*x^4-988*x^3-483*x^2+225*x+699 2329961114212111 k007 concat of cont frac of 2329961114215860 m004 5+25*Pi-Log[Sqrt[5]*Pi]+4*Sinh[Sqrt[5]*Pi] 2329961114237167 r002 35th iterates of z^2 + 2329961137847751 b008 5+(5+Sqrt[3])*E 2329961147667511 r002 49th iterates of z^2 + 2329961150262655 r009 Im(z^3+c),c=-5/56+7/29*I,n=4 2329961151982446 s002 sum(A183398[n]/((2^n+1)/n),n=1..infinity) 2329961153625919 m001 Pi/(ln(2)/ln(10)-Zeta(5)*BesselI(1,2)) 2329961161248877 r005 Re(z^2+c),c=-13/60+23/59*I,n=19 2329961162659661 l006 ln(472/4851) 2329961162862460 r005 Re(z^2+c),c=19/74+7/47*I,n=20 2329961171589500 a001 271443/55*433494437^(17/22) 2329961174563221 a001 969323029/55*10946^(17/22) 2329961188619368 a007 Real Root Of -61*x^4+470*x^3-619*x^2-163*x-407 2329961188830960 r009 Re(z^3+c),c=-61/118+19/32*I,n=51 2329961190535542 m001 (PolyaRandomWalk3D-Thue)/(Pi-Catalan) 2329961191239260 r005 Re(z^2+c),c=-21/86+7/23*I,n=24 2329961195913431 k002 Champernowne real with 18*n^2+222*n-217 2329961199428577 a001 199/3*8^(29/48) 2329961206356410 a007 Real Root Of 299*x^4+822*x^3+17*x^2-755*x-266 2329961219492400 a007 Real Root Of -160*x^4+960*x^3-860*x^2-781*x-939 2329961221721012 k009 concat of cont frac of 2329961233289953 a007 Real Root Of 183*x^4+394*x^3-382*x^2-543*x+399 2329961236716810 a007 Real Root Of 393*x^4+765*x^3-623*x^2-222*x+959 2329961236965278 a007 Real Root Of -157*x^4-284*x^3-145*x^2-827*x-105 2329961241596441 a003 cos(Pi*9/40)-sin(Pi*19/41) 2329961248375942 a001 521/165580141*832040^(6/19) 2329961248376154 a001 521/2971215073*7778742049^(6/19) 2329961251487568 a007 Real Root Of -388*x^4-465*x^3+697*x^2-510*x+581 2329961254902094 m003 37/36+Sqrt[5]/2-Tan[1/2+Sqrt[5]/2] 2329961260305015 h001 (1/9*exp(1)+1/3)/(8/11*exp(1)+3/4) 2329961263008743 r005 Im(z^2+c),c=-45/98+24/59*I,n=49 2329961268813512 a007 Real Root Of 19*x^4+424*x^3-417*x^2+461*x+681 2329961270838325 a007 Real Root Of 185*x^4+548*x^3+350*x^2+387*x+481 2329961275041829 m001 (ln(Pi)+ln(2^(1/2)+1))/(exp(-1/2*Pi)+Robbin) 2329961275555239 a007 Real Root Of 525*x^4+960*x^3-227*x^2+634*x-620 2329961291565566 r005 Im(z^2+c),c=-41/52+1/35*I,n=4 2329961296213491 k002 Champernowne real with 37/2*n^2+441/2*n-216 2329961296499350 r009 Im(z^3+c),c=-29/78+9/58*I,n=26 2329961302882256 a007 Real Root Of 226*x^4-313*x^3+928*x^2-794*x+18 2329961307994650 m001 StolarskyHarborth/(Grothendieck+Niven) 2329961315637468 r005 Im(z^2+c),c=-14/27+36/53*I,n=11 2329961321602788 r002 36th iterates of z^2 + 2329961333627384 a001 1/21*46368^(34/43) 2329961336358333 m001 Champernowne/Backhouse^2/exp(Catalan) 2329961338121099 s002 sum(A077817[n]/(n*exp(pi*n)+1),n=1..infinity) 2329961342501544 m001 (exp(1/Pi)-Artin)/(Otter+Totient) 2329961346950607 m001 (FeigenbaumC+GaussKuzminWirsing)/(ln(2)-ln(5)) 2329961355063619 m001 ln(BesselJ(0,1))^2/(2^(1/3))^2/BesselJ(1,1)^2 2329961359265548 m001 (2^(1/3)+cos(1))/(-LambertW(1)+Totient) 2329961375567228 a007 Real Root Of 313*x^4+289*x^3-766*x^2+332*x-637 2329961375834673 m001 (3^(1/2)+Mills)/(2^(1/2)-exp(1)) 2329961380074918 r005 Re(z^2+c),c=7/54+35/62*I,n=33 2329961387787898 r005 Im(z^2+c),c=-31/74+15/38*I,n=30 2329961390235352 a007 Real Root Of 587*x^4+291*x^3+987*x^2-684*x-211 2329961393364152 a001 17711/843*199^(5/11) 2329961396513551 k002 Champernowne real with 19*n^2+219*n-215 2329961407079699 m001 (cos(1/5*Pi)+Champernowne)/(MertensB1-Robbin) 2329961408398028 r009 Im(z^3+c),c=-29/78+9/58*I,n=25 2329961413974859 a007 Real Root Of 348*x^4+550*x^3-504*x^2-112*x-824 2329961414781136 s002 sum(A254936[n]/(n^3*pi^n+1),n=1..infinity) 2329961419897175 a001 29*(1/2*5^(1/2)+1/2)*7^(14/17) 2329961432091047 m001 1/cos(Pi/5)^2*ln(PrimesInBinary)/gamma 2329961439390272 a007 Real Root Of -422*x^4-962*x^3-933*x^2+923*x+22 2329961442067625 r005 Re(z^2+c),c=-11/27+3/7*I,n=3 2329961448552922 r009 Im(z^3+c),c=-9/34+55/57*I,n=12 2329961450167378 l006 ln(717/7369) 2329961462973936 r009 Re(z^3+c),c=-27/74+28/59*I,n=37 2329961465210230 a001 18/139583862445*3^(7/13) 2329961473137604 m005 (1/3*exp(1)-1/2)/(8/9*2^(1/2)-3) 2329961476503406 r008 a(0)=0,K{-n^6,92-94*n^3-25*n^2-16*n} 2329961479530329 m001 GAMMA(7/24)^2*GAMMA(1/6)^2/ln(log(1+sqrt(2))) 2329961483349795 r005 Re(z^2+c),c=-11/48+47/62*I,n=13 2329961485392271 m001 1/FeigenbaumKappa^2*Artin*ln(Pi) 2329961485682121 m004 -1+E^(Sqrt[5]*Pi)/5+6*ProductLog[Sqrt[5]*Pi] 2329961486386736 m001 (HardyLittlewoodC3+Stephens)/(Pi+Psi(2,1/3)) 2329961488371335 m005 (1/2*Zeta(3)+3/7)/(6/11*5^(1/2)-7/9) 2329961490609831 m001 (Paris-Stephens)/(ln(2)+FeigenbaumKappa) 2329961495699649 b008 -1/10*Pi+ArcSinh[7] 2329961495699649 b008 Pi-10*ArcSinh[7] 2329961495699649 b008 Pi-15*ArcCosh[3] 2329961495699649 b008 Pi-30*ArcCsch[1] 2329961495699649 b008 Pi-30*InverseGudermannian[Pi/4] 2329961496813611 k002 Champernowne real with 39/2*n^2+435/2*n-214 2329961506027610 m005 (1/2*2^(1/2)+5)/(1/7*Zeta(3)-5/12) 2329961506234536 a007 Real Root Of -290*x^4+800*x^3-15*x^2+643*x+15 2329961512848352 r005 Im(z^2+c),c=-27/98+11/31*I,n=28 2329961522598059 r009 Re(z^3+c),c=-17/106+17/20*I,n=5 2329961540686798 m001 (-MertensB2+Sarnak)/(cos(1)+Kolakoski) 2329961541132339 r005 Im(z^2+c),c=-31/36+11/50*I,n=64 2329961560919714 r008 a(0)=0,K{-n^6,22-52*n^3+53*n^2-19*n} 2329961561954225 r005 Im(z^2+c),c=-41/34+13/81*I,n=12 2329961576098797 m005 (1/3*gamma-3/5)/(10/11*Catalan+11/12) 2329961590537521 a007 Real Root Of 573*x^4-991*x^3+315*x^2-269*x-94 2329961591231426 l006 ln(962/9887) 2329961591986489 m005 (1/2*Pi-4)/(1/11*exp(1)-1/7) 2329961597113671 k002 Champernowne real with 20*n^2+216*n-213 2329961603960606 m001 arctan(1/2)*BesselK(1,1)^FeigenbaumKappa 2329961614133658 m001 (-ArtinRank2+MinimumGamma)/(1+BesselI(0,2)) 2329961631644451 a001 3571/89*21^(26/45) 2329961632368329 q001 668/2867 2329961632368329 r002 2th iterates of z^2 + 2329961650162257 r005 Im(z^2+c),c=-5/4+83/247*I,n=5 2329961654667728 r005 Im(z^2+c),c=-39/110+20/53*I,n=19 2329961660560746 a007 Real Root Of 511*x^4+820*x^3-802*x^2+521*x+880 2329961676992581 r009 Re(z^3+c),c=-3/70+19/28*I,n=48 2329961687585610 m001 (Magata-OrthogonalArrays)/(Backhouse-Gompertz) 2329961697413731 k002 Champernowne real with 41/2*n^2+429/2*n-212 2329961719688717 m001 1/exp(LaplaceLimit)/Kolakoski*Ei(1)^2 2329961730732830 r005 Im(z^2+c),c=-25/22+2/69*I,n=48 2329961736336716 m004 2+Pi*Cosh[Sqrt[5]*Pi]+Sinh[Sqrt[5]*Pi] 2329961739545504 m001 exp(GAMMA(13/24))^2/Cahen/sqrt(Pi) 2329961745177900 m001 1/sin(1)^2*ln(GAMMA(5/12))^2/sin(Pi/5)^2 2329961745886823 r002 3th iterates of z^2 + 2329961747333130 r005 Re(z^2+c),c=-21/106+42/61*I,n=28 2329961751423672 a001 2/4181*610^(55/57) 2329961754956738 m001 (-GaussAGM+Otter)/(FeigenbaumB-sin(1)) 2329961758559150 m001 (2^(1/2)+ln(3))/(Ei(1,1)+Thue) 2329961767201641 a007 Real Root Of -228*x^4-672*x^3-50*x^2+858*x+490 2329961770715770 m001 (3^(1/3))/FibonacciFactorial^2/exp(sqrt(2)) 2329961774970889 m001 (-Gompertz+Niven)/(BesselJ(1,1)-Catalan) 2329961777121442 r005 Im(z^2+c),c=-27/82+11/29*I,n=12 2329961783002728 m001 exp(GAMMA(19/24))^2/GAMMA(17/24)^2/exp(1) 2329961785332136 m001 GAMMA(2/3)+CopelandErdos-MasserGramainDelta 2329961787443493 p001 sum((-1)^n/(475*n+423)/(32^n),n=0..infinity) 2329961791192539 m001 (GaussAGM+OrthogonalArrays)/(sin(1)+Zeta(1,2)) 2329961792187477 m001 ZetaQ(4)*(1+ThueMorse) 2329961797713791 k002 Champernowne real with 21*n^2+213*n-211 2329961802343640 m005 (11/30+1/6*5^(1/2))/(1/10*3^(1/2)+3) 2329961814500668 r009 Re(z^3+c),c=-11/32+23/54*I,n=30 2329961816593681 m001 GAMMA(19/24)*exp(TwinPrimes)*GAMMA(23/24) 2329961817161205 r005 Im(z^2+c),c=-1/3+16/43*I,n=39 2329961825266868 r002 23th iterates of z^2 + 2329961841184073 a007 Real Root Of 260*x^4+413*x^3-733*x^2-878*x-505 2329961852943761 m001 1/exp(HardHexagonsEntropy)/ErdosBorwein/Robbin 2329961858958442 m005 (3/4*2^(1/2)-4/5)/(1/4*Pi+1/3) 2329961864100407 a001 610/123*123^(4/5) 2329961867560710 m001 MadelungNaCl^KhinchinLevy/FeigenbaumB 2329961878189332 p001 sum((-1)^n/(509*n+429)/(1024^n),n=0..infinity) 2329961880421066 s002 sum(A224716[n]/(exp(pi*n)-1),n=1..infinity) 2329961892523792 r005 Re(z^2+c),c=17/56+10/53*I,n=57 2329961896849634 m005 (1/2*Catalan-2/5)/(5/9*Zeta(3)-11/12) 2329961897805386 m001 (Pi*csc(5/12*Pi)/GAMMA(7/12))^Ei(1)-Si(Pi) 2329961897805386 m001 Si(Pi)-GAMMA(5/12)^Ei(1) 2329961898013851 k002 Champernowne real with 43/2*n^2+423/2*n-210 2329961902660512 m005 (1/2*Catalan+2/11)/(10/11*Zeta(3)-9/11) 2329961906185776 a001 1368706081/7*86267571272^(11/17) 2329961906185777 a001 817138163596/21*24157817^(11/17) 2329961911365079 r005 Im(z^2+c),c=-27/46+3/61*I,n=22 2329961913687756 a007 Real Root Of 823*x^4-589*x^3+620*x^2-693*x-205 2329961920071728 a007 Real Root Of -537*x^4-991*x^3+290*x^2-672*x+151 2329961923770605 m001 1/GAMMA(5/12)*GAMMA(1/12)/exp(sin(1)) 2329961933092344 a007 Real Root Of -489*x^4-730*x^3+878*x^2-489*x-728 2329961937012543 r005 Im(z^2+c),c=-103/110+7/29*I,n=39 2329961943256461 m001 (Bloch+Champernowne)/(GAMMA(2/3)-ln(3)) 2329961945734618 m001 MinimumGamma*Kolakoski*ln(Zeta(9)) 2329961946299896 m006 (1/2*Pi^2+5)/(4/5*exp(2*Pi)-2) 2329961949463822 a001 3571/5*5^(36/49) 2329961951060658 a007 Real Root Of -271*x^4-827*x^3-489*x^2+140*x+507 2329961952962309 r002 6th iterates of z^2 + 2329961953629500 a007 Real Root Of -157*x^4-188*x^3+880*x^2+707*x-881 2329961958929381 m005 (1/3*2^(1/2)+2/9)/(5*gamma+1/11) 2329961959536831 a007 Real Root Of -203*x^4-201*x^3+189*x^2-831*x+478 2329961977065718 r005 Im(z^2+c),c=-21/82+15/43*I,n=34 2329961982869021 m001 FeigenbaumKappa-MertensB2*MertensB3 2329961992331654 r005 Re(z^2+c),c=-7/6+37/206*I,n=52 2329961995163917 m001 GAMMA(1/12)/exp(RenyiParking)/GAMMA(7/12)^2 2329961998313911 k002 Champernowne real with 22*n^2+210*n-209 2329962004059565 l006 ln(245/2518) 2329962018483788 s002 sum(A098895[n]/(n^2*10^n-1),n=1..infinity) 2329962040527230 a001 4/377*4181^(5/53) 2329962042529586 a007 Real Root Of 195*x^4+75*x^3-596*x^2+293*x-880 2329962050022183 m001 ln(gamma)^(3^(1/3))*LaplaceLimit^(3^(1/3)) 2329962058121452 r005 Re(z^2+c),c=-5/28+15/31*I,n=35 2329962059612965 m002 18+(Pi^5*Csch[Pi])/5 2329962065654103 r002 47th iterates of z^2 + 2329962073324905 q001 1843/791 2329962076371820 h001 (5/9*exp(1)+1/7)/(9/10*exp(2)+4/9) 2329962078119869 a001 29/144*317811^(3/8) 2329962079801978 m001 Salem^PlouffeB/arctan(1/2) 2329962080978206 m005 (1/2*exp(1)-3/10)/(2/5*2^(1/2)-1/9) 2329962091474118 m001 (2^(1/2)-Cahen*PlouffeB)/PlouffeB 2329962092920161 p004 log(13693/10847) 2329962098613971 k002 Champernowne real with 45/2*n^2+417/2*n-208 2329962108072135 r002 46th iterates of z^2 + 2329962115448571 b008 Sinh[ArcSec[-88]] 2329962121123094 a005 (1/sin(75/169*Pi))^1376 2329962123817574 r009 Re(z^3+c),c=-2/15+51/59*I,n=42 2329962125391575 a007 Real Root Of -506*x^4+423*x^3-664*x^2+361*x+127 2329962137676036 a003 cos(Pi*9/67)-cos(Pi*16/61) 2329962139174229 s002 sum(A152274[n]/(n^2*exp(n)-1),n=1..infinity) 2329962142599630 m005 (1/2*exp(1)-8/9)/(exp(1)-7/10) 2329962147898484 m001 Otter/(StronglyCareFree^Zeta(1,2)) 2329962150443848 p004 log(27883/2713) 2329962162648012 a007 Real Root Of -692*x^4+819*x^3+341*x^2+490*x-141 2329962166162106 m001 ln(2+3^(1/2))*(LambertW(1)+Zeta(3)) 2329962166162106 m001 ln(2+sqrt(3))*(LambertW(1)+Zeta(3)) 2329962173830010 a007 Real Root Of -512*x^4+153*x^3+650*x^2+929*x-22 2329962182111889 s002 sum(A180187[n]/((2^n+1)/n),n=1..infinity) 2329962183559333 m006 (1/6*exp(2*Pi)+5)/(3/Pi-5) 2329962198914031 k002 Champernowne real with 23*n^2+207*n-207 2329962204177031 k003 Champernowne real with 8/3*n^3-7/2*n^2-43/6*n+10 2329962211389841 a005 (1/cos(9/188*Pi))^683 2329962215392258 r001 38i'th iterates of 2*x^2-1 of 2329962216372417 a007 Real Root Of 331*x^4-484*x^3-403*x^2-454*x-91 2329962224541869 a005 (1/cos(7/81*Pi))^578 2329962229342388 m001 (HardyLittlewoodC5-Riemann1stZero)^Zeta(3) 2329962230844933 a007 Real Root Of -288*x^4-326*x^3-946*x^2+579*x+14 2329962231374123 m001 Niven/ArtinRank2^2/exp(FeigenbaumKappa)^2 2329962243921113 r009 Im(z^3+c),c=-29/94+32/45*I,n=10 2329962244136639 k002 Champernowne real with 61/2*n^2-171/2*n+78 2329962256988412 m001 FeigenbaumKappa^2/Khintchine*exp(GAMMA(3/4)) 2329962273225122 m001 (GaussKuzminWirsing+1/3)/(-BesselI(0,1)+4) 2329962282089288 a007 Real Root Of 310*x^4-397*x^3+235*x^2-967*x-244 2329962284963702 r009 Im(z^3+c),c=-1/126+14/57*I,n=6 2329962289780496 r009 Re(z^3+c),c=-51/118+31/56*I,n=58 2329962299214091 k002 Champernowne real with 47/2*n^2+411/2*n-206 2329962304875555 a007 Real Root Of -133*x^4+555*x^3+577*x^2+747*x-212 2329962312655157 r005 Re(z^2+c),c=3/52+11/28*I,n=4 2329962313433055 r005 Im(z^2+c),c=-23/60+7/18*I,n=20 2329962315143378 m001 (Zeta(5)+Backhouse*KhinchinLevy)/KhinchinLevy 2329962316046985 m005 (1/3*Catalan+1/9)/(1/8*Pi-4/7) 2329962317796633 a007 Real Root Of -467*x^4-656*x^3+702*x^2-459*x+585 2329962318543538 r005 Im(z^2+c),c=17/110+11/61*I,n=13 2329962336047125 a007 Real Root Of -27*x^4-590*x^3+955*x^2+997*x-777 2329962345874159 r005 Im(z^2+c),c=-6/17+17/45*I,n=38 2329962348829891 a007 Real Root Of 557*x^4+841*x^3-613*x^2+794*x-600 2329962349505179 m001 1/Zeta(1/2)^2*ln(GAMMA(1/6))/sin(Pi/5)^2 2329962359422382 a008 Real Root of x^5-2*x^4-13*x^3+32*x^2+3*x-26 2329962366311318 r005 Im(z^2+c),c=-34/29+3/13*I,n=16 2329962369452715 m001 Zeta(3)^cos(1)+GAMMA(3/4) 2329962384701383 a005 (1/sin(98/211*Pi))^1241 2329962399514151 k002 Champernowne real with 24*n^2+204*n-205 2329962406054077 a007 Real Root Of 41*x^4+919*x^3-861*x^2-372*x-208 2329962417574932 p001 sum((-1)^n/(532*n+429)/(1000^n),n=0..infinity) 2329962437692824 m001 Riemann2ndZero^3*ln(GAMMA(17/24)) 2329962455775234 r009 Im(z^3+c),c=-35/62+3/25*I,n=2 2329962471924963 m004 -2+5*Sqrt[5]*Pi-9*Cot[Sqrt[5]*Pi] 2329962472342921 m005 (1/2*5^(1/2)-3/4)/(1/4*exp(1)+9/10) 2329962472626552 s002 sum(A179133[n]/(n^2*10^n-1),n=1..infinity) 2329962474274709 r009 Re(z^3+c),c=-13/44+7/20*I,n=4 2329962475029344 m001 (Kac-Landau)/(Zeta(5)+FeigenbaumAlpha) 2329962479374320 r005 Im(z^2+c),c=-9/8+56/227*I,n=46 2329962479579605 a007 Real Root Of 217*x^4+14*x^3-825*x^2+562*x-430 2329962482005643 a007 Real Root Of 959*x^4+129*x^3+725*x^2+41*x-31 2329962486528830 s002 sum(A086796[n]/(n^2*exp(n)-1),n=1..infinity) 2329962491670960 a007 Real Root Of 24*x^4-81*x^3+51*x^2+875*x+30 2329962499814211 k002 Champernowne real with 49/2*n^2+405/2*n-204 2329962501640652 a007 Real Root Of 481*x^4+788*x^3-644*x^2+707*x+935 2329962503550895 g007 Psi(2,1/11)+Psi(2,6/7)-Psi(2,2/11)-Psi(2,8/9) 2329962504739129 a007 Real Root Of -371*x^4-575*x^3+445*x^2-209*x+758 2329962510011427 k002 Champernowne real with 25*n^2+201*n-203 2329962523144713 a001 141/46*521^(9/13) 2329962531470565 l006 ln(753/7739) 2329962535909682 p001 sum(1/(243*n+124)/n/(12^n),n=1..infinity) 2329962539957072 a007 Real Root Of 349*x^4+910*x^3+145*x^2-363*x-408 2329962540414798 m006 (3/5*Pi^2-5)/(1/5*ln(Pi)+1/6) 2329962544428560 a007 Real Root Of -366*x^4-358*x^3+831*x^2-724*x+60 2329962545571690 r005 Im(z^2+c),c=-11/16+29/119*I,n=41 2329962547135253 r005 Im(z^2+c),c=-7/18+21/38*I,n=7 2329962554404551 m005 (19/28+1/4*5^(1/2))/(1/8*Catalan+5/12) 2329962562189833 m005 (1/2*Pi+10/11)/(5/6*gamma+7/12) 2329962574739271 r005 Im(z^2+c),c=-47/118+25/64*I,n=49 2329962578149523 m001 Cahen^Niven-CareFree 2329962584172034 a001 29/832040*121393^(14/39) 2329962586745609 a001 4181/521*199^(7/11) 2329962593190096 a007 Real Root Of -749*x^4-579*x^3-23*x^2+988*x-23 2329962593818835 m001 GAMMA(11/12)^Khinchin+GAMMA(19/24) 2329962593818835 m001 GAMMA(19/24)+GAMMA(11/12)^Khinchin 2329962595410575 s002 sum(A266543[n]/(n^2*10^n-1),n=1..infinity) 2329962610041433 k002 Champernowne real with 51/2*n^2+399/2*n-202 2329962614964770 m001 GAMMA(3/4)-exp(1/exp(1))+ZetaP(2) 2329962625869023 m004 2+Cosh[Sqrt[5]*Pi]+Pi*Cosh[Sqrt[5]*Pi] 2329962640333410 r005 Im(z^2+c),c=7/38+10/61*I,n=7 2329962648956426 m001 GAMMA(5/6)-cos(Pi/12)-GAMMA(1/24) 2329962657712398 m006 (1/3*exp(2*Pi)+5/6)/(1/5/Pi-5/6) 2329962660344130 a001 76/139583862445*2971215073^(5/18) 2329962660344619 a001 76/12586269025*514229^(5/18) 2329962661350813 m001 cos(1/12*Pi)*FransenRobinson*Thue 2329962661484360 r005 Re(z^2+c),c=-19/58+35/59*I,n=35 2329962668678071 a001 2889*46368^(36/43) 2329962669704788 m001 (Conway+ZetaQ(3))/(Psi(2,1/3)-Zeta(3)) 2329962682343393 m001 ThueMorse^Trott/(ThueMorse^cos(1/12*Pi)) 2329962686337267 r009 Re(z^3+c),c=-5/36+47/49*I,n=34 2329962687255919 m001 (Chi(1)-ln(3))/(gamma(2)+GAMMA(5/6)) 2329962687952820 a005 (1/sin(82/169*Pi))^783 2329962689102288 a001 1/610*3^(8/25) 2329962689280879 r009 Re(z^3+c),c=-1/86+43/57*I,n=17 2329962707827499 h001 (1/6*exp(2)+4/9)/(8/9*exp(2)+5/8) 2329962710071439 k002 Champernowne real with 26*n^2+198*n-201 2329962718949397 m002 (6*Cosh[Pi])/Pi^6+E^Pi*Coth[Pi] 2329962720402390 a007 Real Root Of 212*x^4+758*x^3+676*x^2+312*x+397 2329962730156042 r005 Re(z^2+c),c=-13/90+13/23*I,n=42 2329962730877057 r005 Im(z^2+c),c=-13/10+17/83*I,n=3 2329962734240452 m001 (Kac+PolyaRandomWalk3D)/(gamma+FeigenbaumMu) 2329962756197744 r005 Re(z^2+c),c=-7/8+77/219*I,n=2 2329962756344459 m005 (1/3*2^(1/2)+2/5)/(7/12*3^(1/2)-7/11) 2329962756892665 m001 (2^(1/2)+BesselI(1,2))/(Cahen+MasserGramain) 2329962757314957 l003 KelvinHer(2,68/93) 2329962758419955 m006 (1/6*exp(2*Pi)-1/2)/(3/5/Pi-4) 2329962760313936 a007 Real Root Of 327*x^4+508*x^3-767*x^2-589*x-420 2329962760458095 r005 Im(z^2+c),c=-37/110+19/52*I,n=9 2329962768860557 m001 ln(2)*PlouffeB^Porter 2329962772421445 m002 -Pi-Pi^4/E^Pi+Pi^6/4 2329962776132908 b008 InverseErfc[Sin[2]^Pi] 2329962785832070 l006 ln(508/5221) 2329962794044690 a007 Real Root Of -37*x^4-837*x^3+584*x^2-28*x-381 2329962796367379 r009 Im(z^3+c),c=-25/64+7/43*I,n=2 2329962801564365 a007 Real Root Of -287*x^4-353*x^3+452*x^2-768*x-250 2329962801705318 m001 (sin(1)+Riemann3rdZero)/(Psi(1,1/3)+1) 2329962805779177 a001 76/21*75025^(25/32) 2329962810101445 k002 Champernowne real with 53/2*n^2+393/2*n-200 2329962812681546 a007 Real Root Of -191*x^4-417*x^3-647*x^2+333*x+108 2329962830507257 r005 Im(z^2+c),c=-57/40+8/53*I,n=6 2329962831989076 a007 Real Root Of 56*x^4-637*x^3-578*x^2-604*x+180 2329962835507964 b008 4/3+7*ArcCsch[7] 2329962847311794 m001 (Landau+ZetaP(3))/(Ei(1)+KhinchinLevy) 2329962863301449 s002 sum(A253633[n]/(n*10^n-1),n=1..infinity) 2329962870376053 m002 -1/5-E^Pi+4/Pi^4 2329962870545122 m001 1/Rabbit^2/ln(ErdosBorwein)*GAMMA(1/6) 2329962870685436 m002 -2-Cosh[Pi]/Pi^5+5/Log[Pi] 2329962893280474 m004 5+2*E^(Sqrt[5]*Pi)+25*Pi-Log[Sqrt[5]*Pi] 2329962910131451 k002 Champernowne real with 27*n^2+195*n-199 2329962914115856 a007 Real Root Of 184*x^4+49*x^3-429*x^2+900*x-377 2329962915377514 m001 (ln(5)-ln(2+3^(1/2)))/(FeigenbaumC-Stephens) 2329962922473468 a003 sin(Pi*55/117)-sin(Pi*35/73) 2329962937726108 m001 BesselI(1,1)^Landau/(BesselI(1,1)^Psi(1,1/3)) 2329962941794258 a007 Real Root Of -975*x^4-27*x^3+398*x^2+966*x+206 2329962942507991 a007 Real Root Of -950*x^4-644*x^3+837*x^2+968*x-23 2329962945436653 p001 sum((-1)^n/(398*n+397)/(6^n),n=0..infinity) 2329962947532179 m001 sin(1)*ln(GolombDickman)*sin(Pi/5) 2329962956891236 a007 Real Root Of 82*x^4-118*x^3-635*x^2+612*x+964 2329962958463447 a003 sin(Pi*13/111)*sin(Pi*24/107) 2329962980829756 p002 log(1/9*(10*9^(3/4)+3^(1/3))*9^(1/4)) 2329962983786231 a007 Real Root Of 458*x^4+480*x^3-693*x^2-860*x-2 2329962986458399 s001 sum(1/10^(n-1)*A229908[n]/n^n,n=1..infinity) 2329962987320286 a007 Real Root Of 391*x^4+817*x^3-158*x^2-229*x-865 2329962988394629 r005 Re(z^2+c),c=-27/122+11/28*I,n=11 2329962996864037 m007 (-5*gamma-10*ln(2)-4/5)/(-1/4*gamma+3/5) 2329962997531982 a007 Real Root Of 488*x^4+52*x^3+122*x^2-406*x-102 2329963010161457 k002 Champernowne real with 55/2*n^2+387/2*n-198 2329963017532794 m005 (1/2*2^(1/2)+6/7)/(11/12*2^(1/2)-5/8) 2329963020405552 a007 Real Root Of -769*x^4-834*x^3+250*x^2+662*x-155 2329963033230805 m001 (ln(gamma)+GAMMA(23/24))/(CareFree+Totient) 2329963034255112 l006 ln(771/7924) 2329963038800726 m006 (1/4*Pi+3/5)/(3/4/Pi-5/6) 2329963043482136 m001 1/ln(Khintchine)^2/Conway^2/sin(Pi/12) 2329963046786971 m001 (ReciprocalLucas+ZetaQ(4))/(Catalan+gamma(1)) 2329963060509649 r005 Re(z^2+c),c=-23/122+17/37*I,n=25 2329963063206369 a007 Real Root Of 441*x^4+688*x^3-943*x^2-236*x+275 2329963066106999 a007 Real Root Of 590*x^4+856*x^3-773*x^2+628*x-901 2329963077305921 m001 Khinchin-sin(1/12*Pi)^BesselJ(0,1) 2329963077305921 m001 Khinchin-sin(Pi/12)^BesselJ(0,1) 2329963081442365 a007 Real Root Of -199*x^4-381*x^3+22*x^2-649*x-586 2329963087191810 m006 (5*exp(2*Pi)-1/4)/(5*exp(Pi)-4/5) 2329963089558433 r005 Im(z^2+c),c=-47/118+25/64*I,n=47 2329963108648687 r005 Im(z^2+c),c=-73/58+1/9*I,n=13 2329963110191463 k002 Champernowne real with 28*n^2+192*n-197 2329963131821373 r005 Re(z^2+c),c=-9/25+41/62*I,n=27 2329963134807499 b008 Pi*ArcCsch[1]*Sin[1] 2329963134807499 m001 Pi*sin(1)*ln(1+sqrt(2)) 2329963134807499 m001 Pi*sin(1)*ln(2^(1/2)+1) 2329963135198414 m001 1/KhintchineLevy/Backhouse*ln(Zeta(9))^2 2329963136731647 h001 (8/11*exp(1)+3/7)/(1/12*exp(2)+5/12) 2329963147950751 a007 Real Root Of 85*x^4-132*x^3-643*x^2-100*x-917 2329963156827515 r005 Im(z^2+c),c=-73/94+7/37*I,n=3 2329963161511684 s002 sum(A102121[n]/(n^3*exp(n)+1),n=1..infinity) 2329963167352788 m005 (1/2*3^(1/2)-1/2)/(8/9*5^(1/2)-5/12) 2329963167383005 m001 (-Paris+Porter)/(3^(1/2)-ln(Pi)) 2329963175415229 a001 55/4*9349^(13/42) 2329963184114510 m001 (Kac+Paris)/((1+3^(1/2))^(1/2)+Backhouse) 2329963189531483 a007 Real Root Of 144*x^4+355*x^3+281*x^2+591*x+98 2329963200097532 p001 sum(1/(523*n+442)/(16^n),n=0..infinity) 2329963210221469 k002 Champernowne real with 57/2*n^2+381/2*n-196 2329963210564084 r005 Im(z^2+c),c=-51/62+8/45*I,n=22 2329963219561118 a007 Real Root Of 430*x^4+782*x^3-252*x^2+331*x-642 2329963221506382 s001 sum(exp(-Pi)^n*A152881[n],n=1..infinity) 2329963221506382 s002 sum(A152881[n]/(exp(pi*n)),n=1..infinity) 2329963228403562 m002 (Pi^3*Sech[Pi])/2+Tanh[Pi]^2 2329963235294117 q001 507/2176 2329963235294117 r002 2th iterates of z^2 + 2329963238300423 r005 Im(z^2+c),c=-21/34+5/114*I,n=44 2329963241381395 r005 Re(z^2+c),c=4/17+4/31*I,n=11 2329963241967218 a007 Real Root Of 452*x^4-700*x^3+193*x^2-429*x+97 2329963244472983 m001 MertensB1-Pi*csc(1/24*Pi)/GAMMA(23/24)-Paris 2329963245759746 r005 Re(z^2+c),c=-25/31+1/16*I,n=34 2329963249357004 a007 Real Root Of 313*x^4+158*x^3-937*x^2+722*x-457 2329963249426354 a007 Real Root Of -119*x^4+500*x^3-945*x^2+425*x+157 2329963255114187 p004 log(29363/2857) 2329963256511580 m001 Tribonacci^LaplaceLimit+FeigenbaumB 2329963259344748 a007 Real Root Of 64*x^4+108*x^3+162*x^2+532*x-160 2329963262659681 r005 Im(z^2+c),c=-4/17+15/44*I,n=12 2329963266198519 a001 281/516002918640*233^(4/15) 2329963269203942 r002 43th iterates of z^2 + 2329963271139421 m001 Zeta(1,-1)/ln(3)/MasserGramain 2329963271887905 a007 Real Root Of -298*x^4-738*x^3-324*x^2-932*x-965 2329963279315269 m001 (GAMMA(2/3)-Shi(1))/(-BesselI(1,1)+Tribonacci) 2329963282369712 r005 Im(z^2+c),c=29/102+16/31*I,n=12 2329963282942275 m001 1/GlaisherKinkelin/exp(Artin)^2*Kolakoski^2 2329963293508481 m001 (-gamma(2)+ZetaP(2))/(Chi(1)+ln(Pi)) 2329963294309874 s002 sum(A266354[n]/((10^n-1)/n),n=1..infinity) 2329963295794852 r005 Im(z^2+c),c=-5/4+9/80*I,n=6 2329963310251475 k002 Champernowne real with 29*n^2+189*n-195 2329963313308883 m001 (FeigenbaumB+Lehmer)/(gamma(2)-BesselK(1,1)) 2329963321980114 r005 Re(z^2+c),c=-5/26+14/31*I,n=21 2329963328593153 h001 (8/11*exp(2)+1/4)/(3/4*exp(1)+3/8) 2329963331540080 r009 Re(z^3+c),c=-27/74+28/59*I,n=26 2329963333731001 a007 Real Root Of -579*x^4-858*x^3+724*x^2-866*x+263 2329963342431940 r005 Im(z^2+c),c=25/74+16/63*I,n=6 2329963348781378 r005 Im(z^2+c),c=-83/98+9/53*I,n=39 2329963348948676 m001 Ei(1,1)*(MertensB2+Trott2nd) 2329963354237554 r009 Re(z^3+c),c=-43/110+23/43*I,n=56 2329963354636677 a007 Real Root Of -411*x^4-275*x^3+648*x^2+955*x-253 2329963358696829 m001 (Zeta(3)-ln(2))/(exp(1/Pi)+AlladiGrinstead) 2329963359707421 m005 (15/44+1/4*5^(1/2))/(5/12*5^(1/2)-6/11) 2329963363897360 a007 Real Root Of 441*x^4+867*x^3-418*x^2-521*x-975 2329963366739070 m001 (exp(1)+FeigenbaumC)/(MasserGramain+Mills) 2329963374925153 m005 (1/3*5^(1/2)+1/5)/(-11/28+5/14*5^(1/2)) 2329963387293069 a007 Real Root Of 3*x^4+699*x^3+4*x^2+332*x-863 2329963393385261 a007 Real Root Of -557*x^4-939*x^3+331*x^2-892*x+663 2329963393977666 a007 Real Root Of 727*x^4-783*x^3+579*x^2-234*x-98 2329963401137761 a001 1568397607/144*121393^(11/24) 2329963401152217 a001 1970299/36*12586269025^(11/24) 2329963404203432 m005 (-7/12+1/6*5^(1/2))/(11/12*gamma+3/8) 2329963407206562 r005 Im(z^2+c),c=-53/110+15/46*I,n=8 2329963410281481 k002 Champernowne real with 59/2*n^2+375/2*n-194 2329963410357259 r005 Re(z^2+c),c=-3/106+25/34*I,n=30 2329963414317014 m001 (exp(Pi)+5^(1/2)*ln(3))/ln(3) 2329963414317014 m001 (exp(Pi)+sqrt(5)*ln(3))/ln(3) 2329963416452894 m001 (Si(Pi)-ln(5))/(BesselI(1,1)+PlouffeB) 2329963425410035 r005 Re(z^2+c),c=-27/106+45/58*I,n=4 2329963429607053 m001 (-Backhouse+ZetaP(4))/(2^(1/3)-Si(Pi)) 2329963432580746 m005 (1/2*2^(1/2)-1/4)/(4/7*Pi+1/6) 2329963435792412 a003 cos(Pi*4/99)*sin(Pi*4/53) 2329963438566237 m002 -6/Pi+3*Pi^4*Sech[Pi] 2329963445403852 a007 Real Root Of 564*x^4+577*x^3-178*x^2-997*x+233 2329963448053884 m001 (sin(1/12*Pi)+Magata)/(Ei(1)-arctan(1/3)) 2329963451303808 a007 Real Root Of -347*x^4-797*x^3-181*x^2-91*x+916 2329963452515616 s001 sum(exp(-Pi)^(n-1)*A274116[n],n=1..infinity) 2329963455126850 m001 (exp(1)+exp(-1/2*Pi))/(-MertensB3+ZetaP(4)) 2329963455554777 r009 Re(z^3+c),c=-43/122+25/56*I,n=24 2329963460674608 m001 (1+exp(1))/(-ErdosBorwein+Trott) 2329963466445097 h001 (1/4*exp(2)+5/12)/(1/7*exp(1)+7/12) 2329963477824882 a007 Real Root Of -450*x^4-602*x^3+798*x^2-298*x+621 2329963481642157 s002 sum(A233968[n]/(n^2*10^n-1),n=1..infinity) 2329963491369027 r002 47th iterates of z^2 + 2329963494289168 l006 ln(7817/9868) 2329963505715417 m005 (1/2*exp(1)+7/11)/(6/11*Pi-6/7) 2329963507630896 m001 Catalan/exp(BesselJ(0,1))^2*sinh(1) 2329963510311487 k002 Champernowne real with 30*n^2+186*n-193 2329963514098683 l006 ln(263/2703) 2329963520119929 m001 Shi(1)+HardHexagonsEntropy^Sarnak 2329963521328043 r002 50th iterates of z^2 + 2329963526336925 a007 Real Root Of -240*x^4+406*x^3+948*x^2+670*x-212 2329963527180728 m001 LandauRamanujan^2*Backhouse^2*ln(cosh(1))^2 2329963531930536 r002 36th iterates of z^2 + 2329963535049338 r005 Re(z^2+c),c=9/98+17/56*I,n=39 2329963537267407 r005 Im(z^2+c),c=13/60+4/29*I,n=18 2329963538755716 a001 28657/199*3571^(28/31) 2329963545159945 m001 sqrt(1+sqrt(3))^2*log(2+sqrt(3))*ln(sqrt(5))^2 2329963559429197 r009 Re(z^3+c),c=-17/122+43/46*I,n=18 2329963567860469 m001 exp(-Pi)/((3^(1/3))+ThueMorse) 2329963572839454 m005 (1/6*2^(1/2)-5/6)/(3*gamma+5/6) 2329963573642793 m005 (1/2*Pi-1/7)/(2/7*gamma-7/9) 2329963593546544 a001 305/161*521^(10/13) 2329963595270953 a001 144*199^(1/11) 2329963599693818 m005 (1/2*5^(1/2)+10/11)/(1/14+5/14*5^(1/2)) 2329963609245870 r005 Re(z^2+c),c=-41/42+14/57*I,n=64 2329963609984104 r002 59th iterates of z^2 + 2329963610341493 k002 Champernowne real with 61/2*n^2+369/2*n-192 2329963612336329 a007 Real Root Of 443*x^4-882*x^3-743*x^2-849*x+248 2329963626566955 a007 Real Root Of -36*x^4-860*x^3-471*x^2+530*x-277 2329963627365539 l006 ln(7615/9613) 2329963630538749 a007 Real Root Of 157*x^4+36*x^3-651*x^2+641*x+856 2329963635732480 r005 Im(z^2+c),c=21/74+1/15*I,n=51 2329963639161101 r005 Im(z^2+c),c=19/82+4/31*I,n=8 2329963640445304 a007 Real Root Of 280*x^4+965*x^3+908*x^2+249*x-395 2329963643723051 a007 Real Root Of 396*x^4+407*x^3-955*x^2+964*x+908 2329963644025384 a001 1/208010*121393^(47/51) 2329963661845751 m001 Ei(1,1)^(GAMMA(11/12)/Champernowne) 2329963668836315 r009 Re(z^3+c),c=-31/102+17/40*I,n=4 2329963676331332 r005 Re(z^2+c),c=-7/50+33/59*I,n=37 2329963679787878 m005 (1/2*Pi-3/11)/(2/11*Pi+5) 2329963681590640 m005 (1/3*Zeta(3)+2/7)/(1/2*3^(1/2)-4/7) 2329963682025864 h001 (4/9*exp(1)+3/11)/(4/5*exp(2)+4/9) 2329963691059878 s002 sum(A120453[n]/(n^2*10^n-1),n=1..infinity) 2329963692900592 a001 1346269/199*9349^(12/31) 2329963698714111 a007 Real Root Of 215*x^4+585*x^3+141*x^2+131*x+603 2329963701402150 m001 (Salem-TwinPrimes)/(FransenRobinson-Lehmer) 2329963703998177 a001 196418/199*39603^(16/31) 2329963708605323 m001 (Rabbit-Thue)/(Champernowne-LandauRamanujan) 2329963710371499 k002 Champernowne real with 31*n^2+183*n-191 2329963717446022 a007 Real Root Of 299*x^4+346*x^3-881*x^2+93*x+564 2329963723122792 a001 7/144*6557470319842^(5/6) 2329963724003657 m001 (GAMMA(23/24)+Artin)/(3^(1/3)-sin(1)) 2329963728804553 a007 Real Root Of -392*x^4+441*x^3-775*x^2+883*x+21 2329963734178051 s002 sum(A138185[n]/(n*10^n-1),n=1..infinity) 2329963739730602 a001 4181/199*15127^(30/31) 2329963743004094 s002 sum(A038826[n]/(n*pi^n+1),n=1..infinity) 2329963755081926 a001 75025/199*5778^(23/31) 2329963758722204 a001 3571/2178309*3^(8/25) 2329963767694418 l006 ln(7413/9358) 2329963771978937 h001 (1/3*exp(1)+2/3)/(9/10*exp(2)+1/10) 2329963774360824 m001 (KhinchinLevy+Tetranacci)/(ln(2)+Cahen) 2329963778030668 b008 (8+Sec[3])/3 2329963781968195 a001 440719107401/7*32951280099^(9/17) 2329963785248795 a001 322*(1/2*5^(1/2)+1/2)^22*4^(10/23) 2329963810401505 k002 Champernowne real with 63/2*n^2+363/2*n-190 2329963818762779 m001 (Porter-Sierpinski)/(GAMMA(3/4)-Niven) 2329963828942677 m001 Totient+ArtinRank2^Trott2nd 2329963831241338 a007 Real Root Of 311*x^4+678*x^3-95*x^2+18*x-32 2329963835213520 m001 1/Salem*exp(Bloch)^2/Zeta(1,2) 2329963843007188 r005 Re(z^2+c),c=-32/27+5/31*I,n=18 2329963844485929 a001 1597/322*521^(8/13) 2329963849059396 r005 Re(z^2+c),c=-13/38+16/27*I,n=59 2329963853457877 r009 Re(z^3+c),c=-23/70+23/60*I,n=9 2329963854438641 a007 Real Root Of 500*x^4+910*x^3-280*x^2+349*x-892 2329963857443937 m004 25*Sqrt[5]*Pi+(25*Pi*Csc[Sqrt[5]*Pi]^2)/3 2329963864807298 a007 Real Root Of -36*x^4+399*x^3-102*x^2+70*x+27 2329963868612573 r005 Re(z^2+c),c=-13/17+3/55*I,n=4 2329963885921140 m001 (Zeta(1,2)+2)/(-BesselJ(1,1)+5) 2329963892839288 a007 Real Root Of 243*x^4+847*x^3+835*x^2+697*x+643 2329963894312051 r009 Re(z^3+c),c=-19/52+10/21*I,n=30 2329963903049264 m001 ZetaQ(2)^Mills+HeathBrownMoroz 2329963909866364 a007 Real Root Of -93*x^4+857*x^3+561*x^2+854*x-240 2329963910431511 k002 Champernowne real with 32*n^2+180*n-189 2329963915885292 l006 ln(7211/9103) 2329963915885292 p004 log(9103/7211) 2329963923056911 r005 Im(z^2+c),c=-11/56+21/34*I,n=20 2329963926854484 m001 BesselK(1,1)/ln(2)*FeigenbaumD 2329963931346560 r005 Re(z^2+c),c=-9/86+31/54*I,n=26 2329963934724233 m001 (ln(2)/ln(10))^sin(1/5*Pi)*Bloch 2329963937999257 p004 log(35879/3491) 2329963949655248 h001 (6/11*exp(2)+1/6)/(3/7*exp(1)+7/11) 2329963963436021 m005 (9/20+1/4*5^(1/2))/(5/11*5^(1/2)-7/12) 2329963972536377 l006 ln(807/8294) 2329963975706119 m001 (Zeta(5)-ln(2)/ln(10))/(-Landau+Thue) 2329963981635935 b008 2+Sinh[Pi]/35 2329963991567324 m008 (4/5*Pi^5+1/3)/(2/5*Pi^2-5) 2329963999394173 m001 (Niven+ZetaP(3))/(GAMMA(3/4)-ln(Pi)) 2329964000937692 a005 (1/cos(6/53*Pi))^1082 2329964003782290 m001 RenyiParking/Niven/ln(cosh(1))^2 2329964009206397 r005 Re(z^2+c),c=-129/110+11/64*I,n=46 2329964010461517 k002 Champernowne real with 65/2*n^2+357/2*n-188 2329964019165020 r005 Im(z^2+c),c=-25/34+14/83*I,n=24 2329964030909772 r005 Im(z^2+c),c=-21/82+15/43*I,n=24 2329964038420742 r005 Im(z^2+c),c=-79/114+46/63*I,n=4 2329964039481565 m005 (1/2*2^(1/2)+6)/(-52/99+4/11*5^(1/2)) 2329964042704747 a001 196418/199*2207^(22/31) 2329964043111455 m001 ArtinRank2/Artin^2/exp(FeigenbaumD)^2 2329964043631060 r005 Im(z^2+c),c=-6/17+17/45*I,n=51 2329964072617912 l006 ln(7009/8848) 2329964076074647 r009 Im(z^3+c),c=-53/122+1/32*I,n=28 2329964091504569 p001 sum((-1)^n/(511*n+429)/(1024^n),n=0..infinity) 2329964094440782 r005 Re(z^2+c),c=1/98+33/53*I,n=44 2329964094497487 r005 Im(z^2+c),c=-5/19+14/39*I,n=10 2329964098387158 m001 (-Bloch+Rabbit)/(3^(1/3)-BesselK(0,1)) 2329964105785643 a005 (1/cos(3/94*Pi))^168 2329964110491523 k002 Champernowne real with 33*n^2+177*n-187 2329964112814853 m001 1/ln(CopelandErdos)^2*Conway/GAMMA(1/3) 2329964131674632 a001 6/105937*55^(6/17) 2329964132044841 a001 3/2*317811^(29/50) 2329964142841464 m001 sin(1/12*Pi)*ln(2^(1/2)+1)^FeigenbaumB 2329964175242084 r002 6th iterates of z^2 + 2329964179116334 r005 Im(z^2+c),c=-109/102+11/47*I,n=29 2329964180607886 r005 Re(z^2+c),c=-13/16+6/121*I,n=44 2329964182613549 m001 (CopelandErdos+KhinchinLevy)/(ln(2)-Conway) 2329964192983424 m005 (1/2*exp(1)-1/6)/(1/12*Pi+1/4) 2329964193703666 r009 Re(z^3+c),c=-13/50+10/47*I,n=7 2329964194170702 l006 ln(544/5591) 2329964194932143 a001 46368/2207*199^(5/11) 2329964197562434 m001 1/GAMMA(2/3)*exp(Lehmer)^2/Zeta(5) 2329964203761798 r009 Re(z^3+c),c=-19/50+32/63*I,n=39 2329964205354305 r002 18th iterates of z^2 + 2329964210521529 k002 Champernowne real with 67/2*n^2+351/2*n-186 2329964220119885 m001 (ErdosBorwein+Niven)/(Zeta(3)+Ei(1,1)) 2329964234861253 r005 Im(z^2+c),c=27/110+1/10*I,n=5 2329964238652716 l006 ln(6807/8593) 2329964249994584 m008 (4/5*Pi+5)/(1/3*Pi^6+2) 2329964250238734 r009 Im(z^3+c),c=-29/78+9/58*I,n=21 2329964252262593 a001 1292/161*521^(7/13) 2329964262107751 m001 GlaisherKinkelin+GAMMA(11/12)^Thue 2329964276409747 m005 (1/2*gamma-1/11)/(2/7*2^(1/2)+4/9) 2329964277511309 r002 59th iterates of z^2 + 2329964287667237 p004 log(19661/1913) 2329964291749794 m001 (Robbin-Tribonacci)/(GAMMA(2/3)-Conway) 2329964293118961 m001 (Niven+Stephens)/(Artin-Bloch) 2329964298033411 a001 2/28657*144^(12/17) 2329964300321542 h001 (2/3*exp(2)+1/7)/(7/10*exp(1)+3/11) 2329964310551535 k002 Champernowne real with 34*n^2+174*n-185 2329964322553242 m001 BesselK(0,1)/FeigenbaumAlpha^2*ln(cos(Pi/12)) 2329964329300782 m001 (Artin+HeathBrownMoroz)/(ln(3)+Zeta(1,2)) 2329964338118681 m005 (1/2*3^(1/2)+1)/(3/7*Zeta(3)+2/7) 2329964346191177 r005 Re(z^2+c),c=-129/110+3/19*I,n=14 2329964377616238 m001 (exp(-1/2*Pi)+Grothendieck)/(Mills-ZetaP(2)) 2329964382805269 l006 ln(806/825) 2329964384605925 m002 -(E^Pi*Pi^2)-Pi^3+Pi^5*Sech[Pi] 2329964385626249 m001 GAMMA(1/3)/ln(Artin)^2*sin(1) 2329964386631337 b008 ArcSinh[(2+Pi)*Cos[3]] 2329964387658744 a007 Real Root Of 627*x^4-382*x^3+475*x^2-982*x+206 2329964392387047 m001 (1+BesselK(1,1))/(-LandauRamanujan+ZetaP(4)) 2329964400664561 r005 Im(z^2+c),c=-55/64+5/27*I,n=60 2329964407545409 a003 cos(Pi*26/99)-sin(Pi*23/63) 2329964410581541 k002 Champernowne real with 69/2*n^2+345/2*n-184 2329964410969322 l006 ln(825/8479) 2329964412110194 r002 10th iterates of z^2 + 2329964412226535 r002 30i'th iterates of 2*x/(1-x^2) of 2329964414567718 r005 Re(z^2+c),c=-11/8+1/168*I,n=16 2329964414843165 l006 ln(6605/8338) 2329964419783667 a001 2207/1346269*3^(8/25) 2329964420457825 a007 Real Root Of -297*x^4-351*x^3+791*x^2-270*x-610 2329964423977286 m001 Pi*Weierstrass+Chi(1) 2329964430224988 m001 GAMMA(11/12)+FibonacciFactorial^KhinchinLevy 2329964436885921 r005 Im(z^2+c),c=-43/62+7/47*I,n=11 2329964440208520 m005 (1/3*Catalan+1/8)/(5/12*exp(1)+5/7) 2329964442087317 a007 Real Root Of -386*x^4-880*x^3+104*x^2+308*x+398 2329964443313531 m001 (Bloch+ZetaQ(3))/(Zeta(5)+GAMMA(23/24)) 2329964447382107 a007 Real Root Of -285*x^4-298*x^3+337*x^2-950*x+587 2329964472991189 r009 Re(z^3+c),c=-2/27+46/59*I,n=17 2329964476286995 r005 Im(z^2+c),c=1/7+29/45*I,n=21 2329964478650512 m001 Backhouse^GAMMA(2/3)+2/3 2329964479164734 a001 2161/3*2178309^(37/52) 2329964490576345 q001 853/3661 2329964490838664 r005 Re(z^2+c),c=-6/31+35/51*I,n=7 2329964493747764 a007 Real Root Of 419*x^4+641*x^3-210*x^2+932*x-929 2329964510611547 k002 Champernowne real with 35*n^2+171*n-183 2329964516073736 m001 BesselK(1,1)/(Sierpinski-ZetaQ(4)) 2329964516450614 a007 Real Root Of 310*x^4+526*x^3-885*x^2-905*x+213 2329964519381694 h001 (4/5*exp(1)+8/11)/(1/7*exp(1)+6/7) 2329964529509071 m001 ln(GAMMA(3/4))^2*KhintchineHarmonic^2/cos(1) 2329964533357166 a005 (1/sin(89/205*Pi))^787 2329964538128075 m005 (1/2*3^(1/2)+5/9)/(4*2^(1/2)+4/9) 2329964547459596 m006 (4*exp(Pi)+3)/(1/2*Pi^2-5/6) 2329964549874155 m001 (-GAMMA(5/24)+3)/(-BesselJ(1,1)+1/2) 2329964558581748 m005 (1/3*Pi+1/10)/(1/12*Catalan-5) 2329964567221667 m001 1/exp(BesselJ(1,1))/Magata^2/cosh(1)^2 2329964567303725 r005 Im(z^2+c),c=-61/90+10/33*I,n=60 2329964569936799 a001 17/2*47^(11/42) 2329964583974510 m006 (1/5*Pi+1/3)/(2/5/Pi+4) 2329964590201455 p001 sum((-1)^n/(579*n+415)/(12^n),n=0..infinity) 2329964591512885 a001 7/34*13^(35/37) 2329964598636265 m001 cos(1)/(ErdosBorwein-exp(1/Pi)) 2329964599840252 m001 1/LandauRamanujan^2/CareFree^2/ln(GAMMA(5/24)) 2329964602150421 l006 ln(6403/8083) 2329964603675967 a001 121393/5778*199^(5/11) 2329964610641553 k002 Champernowne real with 71/2*n^2+339/2*n-182 2329964618809327 a005 (1/cos(8/153*Pi))^742 2329964623350215 a007 Real Root Of -492*x^4-723*x^3+678*x^2-373*x+805 2329964627039984 r005 Im(z^2+c),c=-11/25+13/33*I,n=25 2329964630953145 m001 (GAMMA(3/4)+MertensB2)/(5^(1/2)-BesselI(0,1)) 2329964631211387 a003 cos(Pi*28/113)-sin(Pi*13/33) 2329964632283637 m008 (4/5*Pi^2-3/4)/(Pi^5+2/3) 2329964659930081 m001 (Lehmer+1/3)/(-GAMMA(23/24)+5) 2329964660764499 p003 LerchPhi(1/256,3,330/203) 2329964663310899 a001 317811/15127*199^(5/11) 2329964665075439 r005 Im(z^2+c),c=-21/34+17/101*I,n=8 2329964668908568 s002 sum(A180187[n]/((2^n-1)/n),n=1..infinity) 2329964672011519 a001 832040/39603*199^(5/11) 2329964672345088 m004 5+25*Pi+4*Cosh[Sqrt[5]*Pi]-Log[Sqrt[5]*Pi] 2329964673280922 a001 46347/2206*199^(5/11) 2329964673466125 a001 5702887/271443*199^(5/11) 2329964673493146 a001 14930352/710647*199^(5/11) 2329964673497089 a001 39088169/1860498*199^(5/11) 2329964673497664 a001 102334155/4870847*199^(5/11) 2329964673497748 a001 267914296/12752043*199^(5/11) 2329964673497760 a001 701408733/33385282*199^(5/11) 2329964673497762 a001 1836311903/87403803*199^(5/11) 2329964673497762 a001 102287808/4868641*199^(5/11) 2329964673497762 a001 12586269025/599074578*199^(5/11) 2329964673497762 a001 32951280099/1568397607*199^(5/11) 2329964673497762 a001 86267571272/4106118243*199^(5/11) 2329964673497762 a001 225851433717/10749957122*199^(5/11) 2329964673497762 a001 591286729879/28143753123*199^(5/11) 2329964673497762 a001 1548008755920/73681302247*199^(5/11) 2329964673497762 a001 4052739537881/192900153618*199^(5/11) 2329964673497762 a001 225749145909/10745088481*199^(5/11) 2329964673497762 a001 6557470319842/312119004989*199^(5/11) 2329964673497762 a001 2504730781961/119218851371*199^(5/11) 2329964673497762 a001 956722026041/45537549124*199^(5/11) 2329964673497762 a001 365435296162/17393796001*199^(5/11) 2329964673497762 a001 139583862445/6643838879*199^(5/11) 2329964673497762 a001 53316291173/2537720636*199^(5/11) 2329964673497762 a001 20365011074/969323029*199^(5/11) 2329964673497762 a001 7778742049/370248451*199^(5/11) 2329964673497762 a001 2971215073/141422324*199^(5/11) 2329964673497763 a001 1134903170/54018521*199^(5/11) 2329964673497767 a001 433494437/20633239*199^(5/11) 2329964673497800 a001 165580141/7881196*199^(5/11) 2329964673498019 a001 63245986/3010349*199^(5/11) 2329964673499525 a001 24157817/1149851*199^(5/11) 2329964673509846 a001 9227465/439204*199^(5/11) 2329964673580588 a001 3524578/167761*199^(5/11) 2329964674065456 a001 1346269/64079*199^(5/11) 2329964677388797 a001 514229/24476*199^(5/11) 2329964694954376 a007 Real Root Of -187*x^4-217*x^3+384*x^2-487*x-453 2329964700167316 a001 196418/9349*199^(5/11) 2329964701387440 r005 Re(z^2+c),c=-9/40+15/41*I,n=20 2329964701984515 p001 sum(1/(455*n+443)/(16^n),n=0..infinity) 2329964701999681 a007 Real Root Of -20*x^4-498*x^3-723*x^2+551*x+486 2329964708844915 m001 (gamma(3)-ln(5))^Grothendieck 2329964710671559 k002 Champernowne real with 36*n^2+168*n-181 2329964715521165 r002 3th iterates of z^2 + 2329964716958243 r009 Im(z^3+c),c=-29/78+9/58*I,n=19 2329964726515398 m001 LaplaceLimit*ln(Bloch)/MinimumGamma^2 2329964733940487 m001 (GAMMA(7/12)+QuadraticClass)/(Zeta(3)-ln(3)) 2329964736291667 r005 Im(z^2+c),c=-23/29+1/9*I,n=15 2329964737107185 r005 Re(z^2+c),c=-13/56+31/57*I,n=12 2329964738899864 r009 Re(z^3+c),c=-37/82+16/31*I,n=49 2329964742859590 m001 1/FeigenbaumC/exp(MinimumGamma)^2/(2^(1/3)) 2329964746979292 a001 377/322*1364^(11/15) 2329964757577237 r005 Im(z^2+c),c=-25/22+2/69*I,n=43 2329964758042623 m005 (43/44+1/4*5^(1/2))/(5*Zeta(3)+7/12) 2329964758910082 m001 (Ei(1,1)+ZetaQ(3))/(Catalan-Ei(1)) 2329964760275018 p003 LerchPhi(1/100,2,326/157) 2329964761456045 r005 Re(z^2+c),c=-41/34+12/85*I,n=12 2329964773017594 a007 Real Root Of 520*x^4+999*x^3-10*x^2+908*x-519 2329964784750815 r009 Re(z^3+c),c=-8/21+30/53*I,n=31 2329964794977679 r005 Im(z^2+c),c=-125/102+7/53*I,n=6 2329964799452433 r005 Im(z^2+c),c=-33/50+2/11*I,n=9 2329964801660888 l006 ln(6201/7828) 2329964801787736 m001 (Psi(1,1/3)+2^(1/2))/(-Lehmer+Paris) 2329964810701565 k002 Champernowne real with 73/2*n^2+333/2*n-180 2329964820835881 r005 Im(z^2+c),c=-31/102+16/27*I,n=11 2329964824254881 m009 (5/12*Pi^2-1)/(32/5*Catalan+4/5*Pi^2-2/5) 2329964825160023 m001 HeathBrownMoroz^(sin(1/5*Pi)/Zeta(5)) 2329964826202119 a007 Real Root Of -154*x^4+237*x^3+935*x^2-856*x+466 2329964829079804 m001 FibonacciFactorial+MinimumGamma^sin(1/12*Pi) 2329964830678971 l006 ln(281/2888) 2329964831286173 a007 Real Root Of 106*x^4-256*x^3-934*x^2+320*x-546 2329964837741638 a007 Real Root Of -222*x^4-690*x^3-161*x^2+291*x-633 2329964844612455 a003 sin(Pi*28/97)/cos(Pi*16/41) 2329964851799178 a007 Real Root Of -25*x^4-619*x^3-846*x^2+90*x-423 2329964851831905 b008 1/3+ArcCosh[15/4] 2329964856293615 a001 75025/3571*199^(5/11) 2329964859716386 m001 (Psi(2,1/3)+Gompertz)/(Lehmer+MadelungNaCl) 2329964864864164 r009 Re(z^3+c),c=-17/44+11/21*I,n=59 2329964876630821 a007 Real Root Of -312*x^4-578*x^3+404*x^2+340*x+483 2329964878590756 p002 log(1/12*(14*12^(3/4)-24)*12^(1/4)) 2329964881739139 a007 Real Root Of -350*x^4-902*x^3-633*x^2-955*x+117 2329964882828744 a007 Real Root Of 663*x^4-540*x^3+403*x^2-877*x-235 2329964888076349 m001 FeigenbaumB/GolombDickman*ZetaP(3) 2329964893461287 m001 BesselK(1,1)-FellerTornier^QuadraticClass 2329964899172669 b008 (7*JacobiCN[2,Pi])/3 2329964910731571 k002 Champernowne real with 37*n^2+165*n-179 2329964924598529 m009 (1/3*Pi^2+3)/(4/3*Catalan+1/6*Pi^2-1/6) 2329964925807096 a007 Real Root Of 344*x^4+604*x^3-87*x^2+812*x-134 2329964932463658 r002 24th iterates of z^2 + 2329964932716595 a001 17/38*1364^(23/42) 2329964935692512 m005 (1/3*5^(1/2)-1/6)/(10/11*3^(1/2)+10/11) 2329964936259898 m001 OrthogonalArrays^FeigenbaumD*Zeta(1,2) 2329964941036130 a001 281*832040^(9/58) 2329964956861614 m001 (Psi(1,1/3)+BesselI(0,1))/(FeigenbaumMu+Mills) 2329964965443850 r002 46th iterates of z^2 + 2329964987661967 b008 Zeta[EllipticK[1/30]] 2329964988790919 r005 Im(z^2+c),c=-29/24+9/44*I,n=7 2329965002280754 m001 FeigenbaumC+LambertW(1)^FibonacciFactorial 2329965003965848 m005 (-5/8+1/4*5^(1/2))/(1/5*Catalan+1/10) 2329965004622568 m005 (1/2*exp(1)-6/7)/(1/4*Catalan-4/9) 2329965008990222 a001 4181/322*521^(6/13) 2329965010761577 k002 Champernowne real with 75/2*n^2+327/2*n-178 2329965012435852 g007 2*Psi(2,7/12)-Psi(2,10/11)-Psi(2,1/5) 2329965014607295 l006 ln(5999/7573) 2329965020239130 h001 (8/11*exp(1)+4/7)/(1/9*exp(2)+3/11) 2329965026359529 a001 11/2*17711^(18/47) 2329965044021092 a007 Real Root Of 274*x^4+322*x^3-338*x^2+607*x-753 2329965056809012 b008 21*ArcCosh[14]^2 2329965061211167 a007 Real Root Of 172*x^4-185*x^3-842*x^2+870*x-811 2329965069884965 r005 Im(z^2+c),c=-5/13+28/51*I,n=31 2329965070470188 m001 (-Gompertz+ZetaP(4))/(Chi(1)-exp(Pi)) 2329965085316062 r002 51th iterates of z^2 + 2329965093012221 r002 49th iterates of z^2 + 2329965094190979 h001 (1/7*exp(1)+11/12)/(7/10*exp(2)+3/7) 2329965098800976 a008 Real Root of (1+5*x+7*x^2+17*x^3) 2329965110791583 k002 Champernowne real with 38*n^2+162*n-177 2329965146371397 a007 Real Root Of 285*x^4+296*x^3-572*x^2+688*x+53 2329965163166476 r005 Im(z^2+c),c=-29/60+29/47*I,n=5 2329965170859896 a007 Real Root Of 210*x^4-759*x^3+77*x^2-400*x+98 2329965177051080 r009 Re(z^3+c),c=-1/44+26/27*I,n=5 2329965181629501 a007 Real Root Of 493*x^4-136*x^3+256*x^2-210*x-66 2329965194634909 p001 sum((-1)^n/(512*n+429)/(1024^n),n=0..infinity) 2329965195971598 m001 (FeigenbaumC+Niven)/(gamma(1)+BesselI(1,2)) 2329965203293398 r005 Im(z^2+c),c=-21/82+15/43*I,n=36 2329965204740743 r005 Re(z^2+c),c=-1/6+28/55*I,n=54 2329965206749589 a007 Real Root Of 336*x^4+826*x^3-14*x^2-426*x-371 2329965207079078 m001 (-OneNinth+Riemann3rdZero)/(Psi(1,1/3)+Lehmer) 2329965208904282 a007 Real Root Of -853*x^4+864*x^3-819*x^2+803*x+245 2329965210287824 r005 Re(z^2+c),c=-15/94+21/41*I,n=22 2329965210821589 k002 Champernowne real with 77/2*n^2+321/2*n-176 2329965220819805 r009 Im(z^3+c),c=-12/19+9/28*I,n=50 2329965232839619 l006 ln(861/8849) 2329965241094627 a007 Real Root Of -235*x^4+424*x^3+594*x^2+348*x-118 2329965242026273 s002 sum(A141747[n]/((10^n+1)/n),n=1..infinity) 2329965242394192 l006 ln(5797/7318) 2329965245114533 m001 GAMMA(13/24)^GAMMA(19/24)/ZetaP(4) 2329965250563814 r005 Im(z^2+c),c=-17/70+10/29*I,n=15 2329965257980150 a001 34/271443*76^(27/40) 2329965259193014 a007 Real Root Of -319*x^4-740*x^3-10*x^2+250*x+678 2329965273817848 m001 ln(5)*FeigenbaumKappa+ZetaR(2) 2329965274591419 r009 Im(z^3+c),c=-11/106+6/25*I,n=7 2329965275282890 m001 (ln(1+sqrt(2))+BesselJ(1,1))/LambertW(1) 2329965275282890 m001 (ln(2^(1/2)+1)+BesselJ(1,1))/LambertW(1) 2329965276493875 a007 Real Root Of 551*x^4+849*x^3-691*x^2+426*x-756 2329965287070019 r005 Im(z^2+c),c=-13/86+21/41*I,n=3 2329965287341908 b008 Sec[(-1+Sqrt[5])^2] 2329965290309791 m005 (1/2*Pi+1/7)/(3*exp(1)-4/5) 2329965302926314 m001 GaussKuzminWirsing^cosh(1)+exp(Pi) 2329965310851595 k002 Champernowne real with 39*n^2+159*n-175 2329965311896361 a007 Real Root Of 260*x^4+680*x^3+673*x^2+924*x-562 2329965317430867 r005 Re(z^2+c),c=-41/90+23/58*I,n=5 2329965317944821 h002 exp(22*(24+7^(1/4))^(1/2)) 2329965322209215 p001 sum(1/(411*n+146)/n/(8^n),n=1..infinity) 2329965327531397 m001 BesselJ(1,1)^2*ln(Trott)^2*sin(Pi/5) 2329965328602404 p003 LerchPhi(1/64,4,597/233) 2329965329100418 r009 Re(z^3+c),c=-9/25+19/41*I,n=34 2329965329688736 a007 Real Root Of -338*x^4-302*x^3+803*x^2-873*x-252 2329965334394125 r005 Im(z^2+c),c=-21/82+15/43*I,n=39 2329965339446775 r005 Im(z^2+c),c=-11/122+13/37*I,n=3 2329965340584086 a003 -1+2*cos(1/27*Pi)+cos(8/21*Pi)+cos(1/15*Pi) 2329965348301012 r005 Re(z^2+c),c=43/122+26/55*I,n=3 2329965352329749 a007 Real Root Of 573*x^4+886*x^3-872*x^2+398*x-19 2329965358053068 m004 25*Pi+(250*Log[Sqrt[5]*Pi])/Pi-Sin[Sqrt[5]*Pi] 2329965359672605 a005 (1/cos(31/168*Pi))^392 2329965360107100 r002 7th iterates of z^2 + 2329965367193705 r009 Re(z^3+c),c=-29/78+26/53*I,n=44 2329965368317806 a001 13/9349*2^(35/47) 2329965372960965 r005 Re(z^2+c),c=-31/118+14/61*I,n=14 2329965374942242 p004 log(32693/3181) 2329965379073500 a007 Real Root Of -270*x^4-330*x^3+402*x^2-957*x-629 2329965403096125 p001 sum(1/(136*n+43)/(128^n),n=0..infinity) 2329965410881601 k002 Champernowne real with 79/2*n^2+315/2*n-174 2329965411639025 m004 (25*Pi)/3+Cos[Sqrt[5]*Pi]*Sinh[Sqrt[5]*Pi]^2 2329965412711954 m005 (1/3*Pi+5/6)/(5*2^(1/2)+1) 2329965413068944 h001 (1/5*exp(1)+1/7)/(9/10*exp(1)+1/2) 2329965422122271 m005 (1/3*3^(1/2)-1/5)/(2/3*Zeta(3)+9/11) 2329965427679461 l006 ln(580/5961) 2329965433425749 m001 (gamma+Ei(1,1))/(Backhouse+ReciprocalLucas) 2329965434494432 r005 Im(z^2+c),c=-21/82+15/43*I,n=37 2329965449421573 m001 1/exp(GAMMA(17/24))/GAMMA(1/24)^2*arctan(1/2) 2329965464230743 p001 sum(1/(484*n+437)/n/(5^n),n=1..infinity) 2329965481815454 m005 (1/3*2^(1/2)+1/4)/(1/6*gamma+3) 2329965484861115 r005 Re(z^2+c),c=21/62+15/56*I,n=29 2329965486628966 l006 ln(5595/7063) 2329965488407946 m001 1/Lehmer/Conway*exp(sin(Pi/5)) 2329965503928331 a001 48/281*3571^(15/17) 2329965507633999 a008 Real Root of x^4+18*x^2-43*x-27 2329965507700776 m009 (1/6*Psi(1,1/3)+1/2)/(4*Psi(1,3/4)-4/5) 2329965508491254 m001 (Magata+OneNinth)/(ln(3)+HardyLittlewoodC5) 2329965509474265 m001 (gamma(3)+BesselJ(1,1))/(3^(1/2)-Zeta(1,-1)) 2329965510911607 k002 Champernowne real with 40*n^2+156*n-173 2329965512690667 a007 Real Root Of 356*x^4-996*x^3+721*x^2-164*x-91 2329965523502764 m001 (FeigenbaumB-PlouffeB)/(Riemann1stZero+Salem) 2329965531556144 m001 Champernowne^Lehmer/((3^(1/3))^Lehmer) 2329965547131782 a001 377/322*3571^(11/17) 2329965554776436 m001 (sin(1/5*Pi)-gamma(2))/(Niven+Thue) 2329965563687707 m001 1/exp(Zeta(9))^2*Artin^2/cos(Pi/5) 2329965568319043 r005 Re(z^2+c),c=-9/32+8/63*I,n=7 2329965578003574 h001 (-6*exp(6)-7)/(-7*exp(5)-3) 2329965582734518 s001 sum(1/10^(n-1)*A082262[n],n=1..infinity) 2329965582734518 s001 sum(1/10^n*A082262[n],n=1..infinity) 2329965587856705 r005 Im(z^2+c),c=-6/17+17/45*I,n=49 2329965590714516 r002 64th iterates of z^2 + 2329965607929103 m001 (KhinchinLevy+Lehmer)/(Rabbit+ZetaQ(2)) 2329965610941613 k002 Champernowne real with 81/2*n^2+309/2*n-172 2329965612771477 a007 Real Root Of 551*x^4-258*x^3-975*x^2-504*x+172 2329965618316186 a001 17/38*64079^(5/14) 2329965618512976 a007 Real Root Of -208*x^4-136*x^3+526*x^2-813*x-340 2329965618529372 l006 ln(879/9034) 2329965622700839 a001 17/38*15127^(23/56) 2329965622925702 m001 ZetaP(3)^(QuadraticClass/GAMMA(11/12)) 2329965632430663 a001 6765/322*521^(5/13) 2329965632666638 a007 Real Root Of 40*x^4+892*x^3-891*x^2+906*x-967 2329965644100414 a001 48/281*9349^(15/19) 2329965649924644 a001 377/322*9349^(11/19) 2329965650918641 h001 (1/8*exp(1)+5/12)/(6/7*exp(1)+11/12) 2329965653224145 p001 sum((-1)^n/(535*n+429)/(1000^n),n=0..infinity) 2329965658900325 h001 (1/11*exp(2)+7/9)/(1/11*exp(1)+3/8) 2329965660052390 r009 Re(z^3+c),c=-5/36+47/49*I,n=38 2329965662367744 a001 48/281*24476^(5/7) 2329965663320686 a001 377/322*24476^(11/21) 2329965664775729 a001 48/281*64079^(15/23) 2329965665086542 a001 377/322*64079^(11/23) 2329965665096125 a001 48/281*167761^(3/5) 2329965665139087 a001 48/281*439204^(5/9) 2329965665145780 a001 48/281*7881196^(5/11) 2329965665145795 a001 48/281*20633239^(3/7) 2329965665145797 a001 48/281*141422324^(5/13) 2329965665145797 a001 48/281*2537720636^(1/3) 2329965665145797 a001 48/281*45537549124^(5/17) 2329965665145797 a001 48/281*312119004989^(3/11) 2329965665145797 a001 48/281*14662949395604^(5/21) 2329965665145797 a001 48/281*(1/2+1/2*5^(1/2))^15 2329965665145797 a001 48/281*192900153618^(5/18) 2329965665145797 a001 48/281*28143753123^(3/10) 2329965665145797 a001 48/281*10749957122^(5/16) 2329965665145797 a001 48/281*599074578^(5/14) 2329965665145797 a001 48/281*228826127^(3/8) 2329965665145798 a001 48/281*33385282^(5/12) 2329965665146134 a001 48/281*1860498^(1/2) 2329965665281261 a001 48/281*103682^(5/8) 2329965665357913 a001 377/322*7881196^(1/3) 2329965665357926 a001 377/322*312119004989^(1/5) 2329965665357926 a001 377/322*(1/2+1/2*5^(1/2))^11 2329965665357926 a001 377/322*1568397607^(1/4) 2329965665457266 a001 377/322*103682^(11/24) 2329965666100711 a001 377/322*39603^(1/2) 2329965666158687 a001 48/281*39603^(15/22) 2329965667398383 a007 Real Root Of -834*x^4-2*x^3-87*x^2+759*x+184 2329965670958165 a001 377/322*15127^(11/20) 2329965671975422 m001 (Tribonacci+Trott)^exp(1/Pi) 2329965672782488 a001 48/281*15127^(3/4) 2329965677684718 r009 Re(z^3+c),c=-5/13+29/53*I,n=18 2329965686993222 m005 (-2/3+1/6*5^(1/2))/(4/5*gamma+4/5) 2329965693472524 m005 (1/3*exp(1)-3/7)/(2/11*gamma+1/10) 2329965693767104 a007 Real Root Of 248*x^4+572*x^3-378*x^2-801*x+112 2329965703657679 p001 sum(1/(598*n+431)/(100^n),n=0..infinity) 2329965708007495 a001 377/322*5778^(11/18) 2329965708380961 r005 Im(z^2+c),c=-53/114+5/12*I,n=36 2329965709408443 r005 Im(z^2+c),c=-7/34+13/40*I,n=6 2329965709877995 a007 Real Root Of 277*x^4+310*x^3-949*x^2-356*x+80 2329965710971619 k002 Champernowne real with 41*n^2+153*n-171 2329965723304301 a001 48/281*5778^(5/6) 2329965723381692 r005 Im(z^2+c),c=-29/102+19/58*I,n=6 2329965733852877 a007 Real Root Of -569*x^4-139*x^3+545*x^2+450*x-131 2329965738729067 m003 3+10/Log[1/2+Sqrt[5]/2]-Log[1/2+Sqrt[5]/2] 2329965739574658 m008 (3*Pi^6-1/4)/(4*Pi^3-1/4) 2329965749159830 l006 ln(5393/6808) 2329965751803028 r005 Im(z^2+c),c=-21/82+15/43*I,n=42 2329965760537600 r005 Re(z^2+c),c=1/94+23/41*I,n=12 2329965763401109 a007 Real Root Of 449*x^4+472*x^3-409*x^2-954*x-22 2329965771170161 r005 Im(z^2+c),c=13/62+5/38*I,n=4 2329965777112386 r005 Im(z^2+c),c=-3/98+28/55*I,n=3 2329965779058118 r002 40th iterates of z^2 + 2329965783474953 h001 (-4*exp(-3)+1)/(-7*exp(3/2)-3) 2329965797931921 b008 E+1/(3*(-4+Pi)) 2329965805203984 m007 (-5*gamma-2)/(-5*gamma-15*ln(2)-5/2*Pi+1/6) 2329965811001625 k002 Champernowne real with 83/2*n^2+303/2*n-170 2329965812959894 a007 Real Root Of 682*x^4+453*x^3-567*x^2-914*x+236 2329965814780698 m001 GAMMA(1/3)*Lehmer*ln(GAMMA(5/6))^2 2329965829362907 a007 Real Root Of -2*x^4+514*x^3-999*x^2-331*x-248 2329965830956593 m001 (exp(-1/2*Pi)+Grothendieck)/(Lehmer+MertensB1) 2329965832622870 m001 (BesselI(0,2)+PlouffeB)/(3^(1/2)+ln(gamma)) 2329965835395969 m001 2^(1/3)-HardyLittlewoodC3+Niven 2329965838382347 m001 exp(FeigenbaumD)*LaplaceLimit^2*GAMMA(1/4) 2329965840809941 r005 Im(z^2+c),c=-89/106+7/37*I,n=3 2329965844627949 a003 sin(Pi*1/41)/cos(Pi*24/61) 2329965855190572 s002 sum(A272232[n]/(n*2^n-1),n=1..infinity) 2329965860320737 r005 Im(z^2+c),c=-21/82+15/43*I,n=44 2329965864454492 a007 Real Root Of 500*x^4+866*x^3-502*x^2+829*x+875 2329965885258944 r005 Im(z^2+c),c=-21/82+15/43*I,n=47 2329965887540252 m005 (1/3*3^(1/2)+2/3)/(4/11*exp(1)-5/11) 2329965890275313 r002 26th iterates of z^2 + 2329965902636592 h001 (4/7*exp(1)+7/11)/(1/8*exp(1)+3/5) 2329965905265370 m001 (Conway-Grothendieck)/(Lehmer+MinimumGamma) 2329965905579937 m001 exp((2^(1/3)))*Kolakoski/Zeta(3) 2329965906468627 r005 Im(z^2+c),c=-21/82+15/43*I,n=45 2329965907462906 r005 Im(z^2+c),c=-21/82+15/43*I,n=50 2329965910243972 r005 Im(z^2+c),c=-21/82+15/43*I,n=52 2329965911031631 k002 Champernowne real with 42*n^2+150*n-169 2329965912201951 r005 Im(z^2+c),c=-21/82+15/43*I,n=55 2329965913295489 r005 Im(z^2+c),c=-21/82+15/43*I,n=58 2329965913305148 r005 Im(z^2+c),c=-21/82+15/43*I,n=49 2329965913310929 r005 Im(z^2+c),c=-21/82+15/43*I,n=60 2329965913323155 r005 Im(z^2+c),c=-21/82+15/43*I,n=57 2329965913433008 r005 Im(z^2+c),c=-21/82+15/43*I,n=63 2329965913518348 r005 Im(z^2+c),c=-21/82+15/43*I,n=62 2329965913527479 r005 Im(z^2+c),c=-21/82+15/43*I,n=64 2329965913539050 r005 Im(z^2+c),c=-21/82+15/43*I,n=61 2329965913754856 r005 Im(z^2+c),c=-21/82+15/43*I,n=59 2329965913891827 r005 Im(z^2+c),c=-21/82+15/43*I,n=53 2329965914253211 r005 Im(z^2+c),c=-21/82+15/43*I,n=56 2329965914591657 r005 Im(z^2+c),c=-21/82+15/43*I,n=54 2329965917915063 a003 cos(Pi*10/61)/cos(Pi*45/119) 2329965918432633 m001 1/TreeGrowth2nd^2/exp(Champernowne)^2*gamma 2329965919562873 r005 Im(z^2+c),c=-21/82+15/43*I,n=51 2329965926399750 a001 28657/1364*199^(5/11) 2329965926852927 r005 Im(z^2+c),c=-21/82+15/43*I,n=48 2329965932423772 a007 Real Root Of 253*x^4+301*x^3-585*x^2+161*x-98 2329965945154052 r005 Im(z^2+c),c=-21/82+15/43*I,n=46 2329965950088777 r005 Re(z^2+c),c=35/114+4/21*I,n=26 2329965951305544 r005 Im(z^2+c),c=-7/10+23/117*I,n=20 2329965952277969 m005 (1/3*Zeta(3)+1/8)/(3/4*Pi-1/10) 2329965957323369 m001 (Mills+TravellingSalesman)^Zeta(3) 2329965963045915 m001 GAMMA(11/12)*FellerTornier/MinimumGamma 2329965967525973 a007 Real Root Of 271*x^4+419*x^3-903*x^2-904*x+109 2329965971155140 r005 Im(z^2+c),c=-69/62+17/57*I,n=5 2329965971541399 a007 Real Root Of 514*x^4+862*x^3-732*x^2+161*x+104 2329965979464363 r005 Im(z^2+c),c=-129/118+7/32*I,n=8 2329965981974923 r005 Im(z^2+c),c=-21/82+15/43*I,n=41 2329965983004901 r002 58th iterates of z^2 + 2329965983004901 r002 58th iterates of z^2 + 2329965984385407 h001 (2/5*exp(2)+5/9)/(1/8*exp(2)+7/12) 2329965987154075 r005 Re(z^2+c),c=-7/32+2/5*I,n=11 2329965988739798 l006 ln(299/3073) 2329965994222976 a001 377/322*2207^(11/16) 2329965998271172 r005 Re(z^2+c),c=7/19+9/38*I,n=12 2329965999584742 a008 Real Root of x^5-2*x^4-11*x^3+22*x^2+6*x-4 2329966004660857 h001 (7/11*exp(1)+4/7)/(1/9*exp(2)+1/6) 2329966011061637 k002 Champernowne real with 85/2*n^2+297/2*n-168 2329966031890501 r005 Im(z^2+c),c=-5/6+51/230*I,n=4 2329966032122678 l006 ln(5191/6553) 2329966042458215 r005 Im(z^2+c),c=-21/82+15/43*I,n=43 2329966047138439 r002 38th iterates of z^2 + 2329966051441471 r009 Re(z^3+c),c=-65/122+29/48*I,n=33 2329966052372874 a007 Real Root Of 43*x^4-151*x^3-93*x^2+983*x-382 2329966056155096 a007 Real Root Of -396*x^4-589*x^3+400*x^2-897*x-41 2329966057111477 m001 1/GAMMA(1/24)/exp(BesselK(1,1))/Zeta(9) 2329966063479281 h001 (7/12*exp(1)+1/10)/(8/9*exp(2)+2/3) 2329966068889133 m001 ln(2)/ln(10)*(arctan(1/3)+ZetaP(2)) 2329966080432616 m005 (1/2*5^(1/2)-1/8)/(1/7*Pi-7/8) 2329966085049523 m009 (3/5*Psi(1,2/3)-2)/(32*Catalan+4*Pi^2+3/5) 2329966100645990 a008 Real Root of x^4-2*x^3-x^2-2*x-54 2329966104956114 a007 Real Root Of -996*x^4+293*x^3+312*x^2+718*x-185 2329966111091643 k002 Champernowne real with 43*n^2+147*n-167 2329966113598150 a001 48/281*2207^(15/16) 2329966114340360 a007 Real Root Of -385*x^4-968*x^3-244*x^2-391*x-484 2329966115031275 r005 Im(z^2+c),c=-21/82+15/43*I,n=40 2329966129560412 r005 Re(z^2+c),c=-17/14+11/104*I,n=40 2329966160196148 r005 Im(z^2+c),c=-13/42+23/63*I,n=34 2329966174431718 m001 cosh(1)*GAMMA(13/24)^2/exp(gamma) 2329966180458849 r005 Re(z^2+c),c=-137/122+17/48*I,n=6 2329966181519124 b008 6+5*E^(3+Pi) 2329966189086483 m001 1/GAMMA(3/4)/ln(GAMMA(1/6))^2*sin(1) 2329966196791262 a007 Real Root Of 169*x^4+127*x^3-510*x^2+123*x-319 2329966203072823 r005 Im(z^2+c),c=-85/82+11/38*I,n=25 2329966203333416 a007 Real Root Of 167*x^4+509*x^3+231*x^2-447*x-779 2329966208450335 m001 (-LandauRamanujan2nd+Trott)/(2^(1/2)+Zeta(5)) 2329966211121649 k002 Champernowne real with 87/2*n^2+291/2*n-166 2329966214250731 m005 (1/2*exp(1)+6/7)/(6/11*gamma+7/11) 2329966214845638 r002 54th iterates of z^2 + 2329966219165057 a003 -1/2+2*cos(1/15*Pi)+cos(7/30*Pi)+cos(11/24*Pi) 2329966220377504 m001 ln(5)*3^(1/3)+ZetaQ(3) 2329966221277956 m001 1/exp(GAMMA(1/12))^2/BesselJ(1,1)/Zeta(9) 2329966226653906 a007 Real Root Of -371*x^4+550*x^3-573*x^2+862*x+240 2329966244008801 h001 (7/9*exp(2)+4/7)/(7/8*exp(1)+1/3) 2329966245114765 r005 Re(z^2+c),c=-26/25+19/54*I,n=7 2329966245534922 h001 (1/3*exp(1)+2/3)/(6/7*exp(2)+5/12) 2329966248067957 a007 Real Root Of 100*x^4-294*x^3+348*x^2-430*x+1 2329966251549650 a007 Real Root Of -505*x^4+737*x^3+293*x^2+911*x-236 2329966255843615 m001 GAMMA(11/24)/exp(GAMMA(1/12))^2*GAMMA(19/24) 2329966255873452 m003 1/2+(3*Sqrt[5])/8+5*E^(-1/2-Sqrt[5]/2) 2329966262684411 m001 Mills*(Grothendieck+HeathBrownMoroz) 2329966264382262 m001 Paris/ln(LandauRamanujan)^2/BesselJ(0,1)^2 2329966272447126 m001 (ln(2)+cos(1/12*Pi))/(exp(1/Pi)-LaplaceLimit) 2329966294437171 p004 log(21881/2129) 2329966294567887 r009 Re(z^3+c),c=-5/13+25/48*I,n=46 2329966298039591 r005 Re(z^2+c),c=15/44+13/53*I,n=36 2329966300797982 m005 (1/2*exp(1)-3/7)/(-19/70+3/10*5^(1/2)) 2329966306782553 a001 5473/161*521^(4/13) 2329966311151655 k002 Champernowne real with 44*n^2+144*n-165 2329966314683863 r001 62i'th iterates of 2*x^2-1 of 2329966329966329 q001 346/1485 2329966329966329 s001 sum(1/10^(n-1)*A002798[n],n=1..infinity) 2329966329966329 s001 sum(1/10^n*A002798[n],n=1..infinity) 2329966333694264 a001 98209/9*3^(29/42) 2329966337999325 l006 ln(4989/6298) 2329966338498940 m005 (2/5*Catalan-1)/(5*gamma-1/6) 2329966338654611 r008 a(0)=6,K{-n^6,-8+6*n^3+9*n^2-6*n} 2329966340296994 m001 gamma(1)+ReciprocalLucas+TreeGrowth2nd 2329966342966819 a005 (1/sin(98/229*Pi))^1102 2329966344384438 l006 ln(915/9404) 2329966372163993 a007 Real Root Of 354*x^4+433*x^3-697*x^2+179*x-755 2329966376023155 p004 log(34543/3361) 2329966384944802 r009 Im(z^3+c),c=-13/114+44/51*I,n=54 2329966390097703 m001 (Magata+ZetaP(2))/(Artin+GlaisherKinkelin) 2329966391267078 a007 Real Root Of 523*x^4+876*x^3-744*x^2+255*x+300 2329966402499268 m001 (CareFree*TwinPrimes+Salem)/CareFree 2329966407802599 a007 Real Root Of -835*x^4+479*x^3-508*x^2+785*x+219 2329966410851325 a007 Real Root Of -435*x^4-222*x^3+682*x^2+893*x-241 2329966411181661 k002 Champernowne real with 89/2*n^2+285/2*n-164 2329966423720928 a005 (1/cos(14/171*Pi))^576 2329966426271935 r005 Re(z^2+c),c=-23/16+56/89*I,n=2 2329966427389507 a007 Real Root Of 343*x^4+799*x^3-150*x^2-479*x-304 2329966458105108 r005 Im(z^2+c),c=-10/27+13/33*I,n=15 2329966463974035 p003 LerchPhi(1/10,4,567/220) 2329966468788802 m001 1/Pi/ln(MertensB1)^2*log(2+sqrt(3)) 2329966473185621 m001 1+MasserGramainDelta^Weierstrass 2329966473623805 m001 Catalan*HardHexagonsEntropy*MasserGramainDelta 2329966479970094 r005 Im(z^2+c),c=-65/74+10/51*I,n=53 2329966487164644 r005 Re(z^2+c),c=-9/40+15/41*I,n=24 2329966488313614 r009 Im(z^3+c),c=-13/66+11/49*I,n=6 2329966497966592 r005 Im(z^2+c),c=-3/46+28/57*I,n=3 2329966499816307 r005 Im(z^2+c),c=-49/106+20/49*I,n=63 2329966511211667 k002 Champernowne real with 45*n^2+141*n-163 2329966511624555 k008 concat of cont frac of 2329966511629272 m001 Catalan^2/Bloch*ln(Pi)^2 2329966511808539 m001 Cahen-GAMMA(7/12)-exp(1/exp(1)) 2329966517010606 l006 ln(616/6331) 2329966544064808 a007 Real Root Of 138*x^4+129*x^3-742*x^2-954*x-630 2329966557020058 a007 Real Root Of 619*x^4+30*x^3-933*x^2-732*x+219 2329966558150303 m001 1+Grothendieck-ZetaP(2) 2329966562303575 m001 1/GAMMA(11/24)*Backhouse*exp(GAMMA(5/6)) 2329966594398391 m001 Chi(1)-GAMMA(5/6)^BesselI(1,1) 2329966594679108 r005 Re(z^2+c),c=-1/6+27/53*I,n=36 2329966595968699 a007 Real Root Of -37*x^4-869*x^3-166*x^2-144*x-671 2329966599113716 m001 LambertW(1)^2/ln(GAMMA(1/4))*cos(Pi/12)^2 2329966611241673 k002 Champernowne real with 91/2*n^2+279/2*n-162 2329966616500033 r002 50th iterates of z^2 + 2329966618018202 h001 (1/10*exp(1)+5/12)/(6/7*exp(1)+5/8) 2329966619011897 r005 Im(z^2+c),c=-31/78+32/61*I,n=20 2329966623174727 a007 Real Root Of -329*x^4-480*x^3+210*x^2-914*x+355 2329966636416510 a007 Real Root Of 441*x^4+780*x^3-503*x^2+561*x+907 2329966641003101 a007 Real Root Of 52*x^4-403*x^3-869*x^2+577*x-568 2329966644701585 m001 1/GAMMA(1/6)*exp(FeigenbaumB)/sqrt(Pi) 2329966651284269 m001 5^(1/2)*gamma(1)+Pi*csc(1/24*Pi)/GAMMA(23/24) 2329966651490398 m001 OrthogonalArrays^(FeigenbaumKappa*Tribonacci) 2329966654855742 p003 LerchPhi(1/6,6,39/142) 2329966665900169 m001 GlaisherKinkelin*ln(Conway)^2*Sierpinski 2329966669690494 l006 ln(4787/6043) 2329966669690494 p004 log(6043/4787) 2329966686306337 l006 ln(933/9589) 2329966688751655 r005 Im(z^2+c),c=-11/78+10/27*I,n=3 2329966689919607 m001 (ln(gamma)+AlladiGrinstead)/(Bloch+Cahen) 2329966696833917 r002 9i'th iterates of 2*x/(1-x^2) of 2329966702056902 m001 Zeta(1,2)*GAMMA(13/24)*exp(exp(1)) 2329966707863219 m006 (3/4*Pi-3)/(2/3*ln(Pi)+2) 2329966709969195 m001 ZetaP(4)*(MertensB3+Niven) 2329966710165601 m005 (1/2*gamma-1/9)/(1/12*Pi+1/2) 2329966711271679 k002 Champernowne real with 46*n^2+138*n-161 2329966719544643 r005 Im(z^2+c),c=-21/82+15/43*I,n=38 2329966721959417 r009 Re(z^3+c),c=-7/18+22/43*I,n=3 2329966723546309 m001 GAMMA(11/24)^2/LaplaceLimit^2*exp(Zeta(7)) 2329966727304267 p001 sum((-1)^n/(536*n+429)/(1000^n),n=0..infinity) 2329966740220017 r009 Re(z^3+c),c=-1/82+22/29*I,n=48 2329966743941002 a001 28657/843*199^(4/11) 2329966753915381 r005 Re(z^2+c),c=-79/66+1/19*I,n=2 2329966773170030 m001 3*cos(1)-3*ln(2+sqrt(3)) 2329966777730936 r005 Im(z^2+c),c=-6/11+18/41*I,n=36 2329966784521224 a007 Real Root Of -590*x^4-893*x^3+925*x^2-667*x-483 2329966790534743 r005 Re(z^2+c),c=-13/23+19/44*I,n=7 2329966790960467 a007 Real Root Of 273*x^4-919*x^3-298*x^2-647*x-147 2329966794765009 m001 DuboisRaymond^(BesselI(1,1)/HardyLittlewoodC3) 2329966795470116 m005 (1/2*2^(1/2)+7/9)/(5/11*Zeta(3)+1/11) 2329966795470170 m009 (16*Catalan+2*Pi^2+3/4)/(1/5*Psi(1,3/4)+1) 2329966802757821 a007 Real Root Of 221*x^4-821*x^3+257*x^2-558*x-155 2329966811274636 r002 18th iterates of z^2 + 2329966811301685 k002 Champernowne real with 93/2*n^2+273/2*n-160 2329966816596455 b008 JacobiDS[2/7,12] 2329966817852041 m005 (1/2*3^(1/2)+4/5)/(4*3^(1/2)+2/9) 2329966821440781 r005 Im(z^2+c),c=-13/14+23/99*I,n=18 2329966826460038 a007 Real Root Of -465*x^4-427*x^3+933*x^2-964*x+992 2329966833403788 v003 sum((3/2*n^3+3/2*n^2+n+9)/n^n,n=1..infinity) 2329966841181102 r009 Re(z^3+c),c=-31/122+9/47*I,n=4 2329966848015339 h001 (4/7*exp(1)+4/7)/(1/9*exp(2)+1/11) 2329966851232727 a001 (2+2^(1/2))^(221/35) 2329966858271341 m001 (3^(1/3))/ln(2+sqrt(3))*GAMMA(5/12) 2329966861906492 a007 Real Root Of -236*x^4-805*x^3-515*x^2+419*x+545 2329966866724509 h001 (1/6*exp(1)+1/7)/(9/10*exp(1)+1/9) 2329966871114733 a005 (1/cos(21/100*Pi))^248 2329966883613741 r002 9th iterates of z^2 + 2329966884646624 r005 Im(z^2+c),c=-23/34+25/111*I,n=22 2329966888321995 a001 521/63245986*8^(1/2) 2329966900729618 m001 DuboisRaymond^GaussAGM-Sierpinski 2329966904757156 m005 (1/3*Zeta(3)-3/4)/(1/3*3^(1/2)-8/11) 2329966906362098 m005 (1/2*Zeta(3)+1/10)/(6*gamma-5/11) 2329966911331691 k002 Champernowne real with 47*n^2+135*n-159 2329966928014440 m001 (5^(1/2)+3^(1/3))/(OrthogonalArrays+ZetaP(3)) 2329966930300885 r005 Im(z^2+c),c=-33/70+17/35*I,n=29 2329966930538791 a007 Real Root Of -40*x^4-954*x^3-495*x^2+427*x+231 2329966941495874 h001 (-4*exp(3)+9)/(-12*exp(1)+2) 2329966958349729 m008 (3/5*Pi^2+4/5)/(3*Pi^6+3/4) 2329966959247109 r005 Im(z^2+c),c=-19/40+18/43*I,n=34 2329966961688253 a001 17711/322*521^(3/13) 2329966966323384 r005 Im(z^2+c),c=-39/46+1/6*I,n=25 2329966971241258 r005 Re(z^2+c),c=-4/29+47/54*I,n=3 2329966981125283 p001 sum(1/(463*n+430)/(256^n),n=0..infinity) 2329966988194822 r005 Im(z^2+c),c=-85/98+4/21*I,n=44 2329966994281275 r002 36th iterates of z^2 + 2329967002599013 r005 Im(z^2+c),c=-7/6+47/175*I,n=25 2329967006109236 r009 Re(z^3+c),c=-27/98+11/42*I,n=5 2329967007370342 a007 Real Root Of 386*x^4+635*x^3-399*x^2+339*x-388 2329967011361697 k002 Champernowne real with 95/2*n^2+267/2*n-158 2329967011592433 m001 (MertensB3+TwinPrimes)^FibonacciFactorial 2329967015284709 l006 ln(317/3258) 2329967015695318 r005 Re(z^2+c),c=-21/86+13/23*I,n=14 2329967020762643 r008 a(0)=0,K{-n^6,49-89*n^3-61*n^2+58*n} 2329967022894819 m001 (1-Cahen)/(-Niven+ZetaP(3)) 2329967027185945 r005 Re(z^2+c),c=11/78+20/61*I,n=21 2329967027322021 r008 a(0)=0,K{-n^6,91-94*n^3-25*n^2-15*n} 2329967030419548 a007 Real Root Of -473*x^4+581*x^3-661*x^2-316*x-29 2329967030608092 l006 ln(4585/5788) 2329967042842423 m005 (1/2*3^(1/2)+7/10)/(3/5*Zeta(3)+6) 2329967044934828 m005 (1/2*Zeta(3)-8/9)/(8/11+5/22*5^(1/2)) 2329967065289446 m001 (Shi(1)+GAMMA(7/12))/(-KhinchinLevy+ZetaP(4)) 2329967067944827 r008 a(0)=0,K{-n^6,85-81*n^3-67*n^2+20*n} 2329967070993781 r002 24th iterates of z^2 + 2329967080651413 r005 Im(z^2+c),c=-75/64+14/51*I,n=9 2329967088802564 b008 ArcCot[4+CosIntegral[E]] 2329967089637627 m002 -Pi^2-2*Pi^3+Pi^5*Tanh[Pi] 2329967101075853 m001 Conway/(Cahen^ln(2+3^(1/2))) 2329967102603105 m008 (2/5*Pi^3+3/4)/(1/6*Pi^2+4) 2329967106687133 m005 (2/5*gamma-5)/(29/24+3/8*5^(1/2)) 2329967109569744 b008 E^2*Pi+Sech[Pi] 2329967110502001 r005 Im(z^2+c),c=-9/14+95/213*I,n=27 2329967111391703 k002 Champernowne real with 48*n^2+132*n-157 2329967119607478 a007 Real Root Of -416*x^4-769*x^3+863*x^2+927*x+8 2329967129982382 a007 Real Root Of 85*x^4-400*x^3+2*x^2+811*x+654 2329967133820256 m002 -12-Sinh[Pi]+Tanh[Pi]/4 2329967140231862 m001 (gamma(1)+Cahen)/(KomornikLoreti+Robbin) 2329967143868953 r005 Im(z^2+c),c=-45/38+3/64*I,n=7 2329967147216277 g005 GAMMA(9/11)*GAMMA(6/11)/GAMMA(5/11)/GAMMA(2/9) 2329967150099024 m001 Sierpinski-exp(-1/2*Pi)*FibonacciFactorial 2329967154209292 a005 (1/cos(19/103*Pi))^121 2329967155562651 r005 Im(z^2+c),c=17/52+25/44*I,n=64 2329967157602233 m005 (1/2*Catalan+2/7)/(4/7*2^(1/2)-4) 2329967168367311 a007 Real Root Of 301*x^4+855*x^3+768*x^2+571*x-895 2329967168617635 a007 Real Root Of -464*x^4-837*x^3+607*x^2+411*x+750 2329967171078043 a001 55/9349*7^(29/41) 2329967172536290 a007 Real Root Of 351*x^4+361*x^3-957*x^2+130*x-280 2329967174239785 a007 Real Root Of 164*x^4+507*x^3+305*x^2-929*x+193 2329967176976439 m005 (1/2*Zeta(3)+6/11)/(1/4*gamma-7/11) 2329967179711244 a007 Real Root Of 836*x^4-630*x^3+826*x^2-913*x-268 2329967182574925 a007 Real Root Of -87*x^4-163*x^3+156*x^2+405*x+599 2329967186437318 m001 (cos(1)-gamma(2))/(-FeigenbaumD+FellerTornier) 2329967187671502 m001 HardyLittlewoodC3-Rabbit^ThueMorse 2329967194552906 m001 Salem^2/GaussKuzminWirsing^2*exp(BesselJ(1,1)) 2329967208241327 a001 29/13*514229^(29/33) 2329967211421709 k002 Champernowne real with 97/2*n^2+261/2*n-156 2329967213114754 a001 71064/305 2329967214805961 a001 322/514229*832040^(13/49) 2329967216018361 r002 17th iterates of z^2 + 2329967220084961 a001 843/514229*3^(8/25) 2329967225940362 h001 (9/11*exp(1)+6/7)/(1/6*exp(2)+1/11) 2329967247664886 a007 Real Root Of 503*x^4+593*x^3-987*x^2+649*x-453 2329967256922116 r005 Im(z^2+c),c=-10/29+1/28*I,n=11 2329967260698849 r009 Re(z^3+c),c=-49/122+25/48*I,n=28 2329967279216093 r005 Re(z^2+c),c=-31/38+2/41*I,n=14 2329967279906037 b008 Log[4*(1/3+Sqrt[5])] 2329967282696998 a007 Real Root Of -409*x^4-550*x^3+834*x^2-492*x-577 2329967294236208 r005 Re(z^2+c),c=23/64+7/20*I,n=55 2329967303139869 a007 Real Root Of 298*x^4-925*x^3+621*x^2+27*x-40 2329967311451715 k002 Champernowne real with 49*n^2+129*n-155 2329967321314489 m001 (cos(1/5*Pi)-Khinchin)/(Kolakoski+Trott) 2329967321635666 a007 Real Root Of 410*x^4+991*x^3-91*x^2-372*x+79 2329967326638143 r005 Re(z^2+c),c=-4/31+17/29*I,n=55 2329967327903060 m005 (1/2*Catalan-5/6)/(6*exp(1)-1/5) 2329967331721553 a007 Real Root Of 642*x^4+544*x^3-404*x^2-463*x+11 2329967332040873 l006 ln(969/9959) 2329967333056675 r002 29th iterates of z^2 + 2329967376906840 r005 Im(z^2+c),c=-7/12+11/17*I,n=11 2329967377501463 a007 Real Root Of 415*x^4+915*x^3-164*x^2+14*x+266 2329967387682184 m001 QuadraticClass/Khinchin*Rabbit 2329967392911457 m001 1/CareFree/GaussKuzminWirsing/ln(Zeta(9)) 2329967393878425 p001 sum((-1)^n/(514*n+429)/(1024^n),n=0..infinity) 2329967395581112 a007 Real Root Of -259*x^4-240*x^3+678*x^2-199*x+453 2329967399464344 m001 (Zeta(3)+BesselI(1,2))/(Sarnak+Weierstrass) 2329967408422656 a001 322/17711*3^(7/31) 2329967409834897 m001 Porter/LandauRamanujan^2*ln(Riemann2ndZero)^2 2329967411481721 k002 Champernowne real with 99/2*n^2+255/2*n-154 2329967418248247 r005 Im(z^2+c),c=-17/44+19/49*I,n=32 2329967424793005 l006 ln(4383/5533) 2329967427327626 m005 (1/2*exp(1)-1/10)/(2*Zeta(3)+3) 2329967427876241 a007 Real Root Of -752*x^4-241*x^3-733*x^2+820*x-146 2329967428588544 m005 (1/3*exp(1)+2/11)/(4/11*Catalan-4/5) 2329967431998647 a008 Real Root of (-6+6*x-4*x^2+6*x^3-3*x^4-3*x^5) 2329967437089208 m001 exp(GAMMA(5/6))^2/Khintchine*cos(Pi/5)^2 2329967439062155 m009 (8/5*Catalan+1/5*Pi^2+3/5)/(1/8*Pi^2+1/2) 2329967443814324 r002 2th iterates of z^2 + 2329967446653917 m005 (1/2*3^(1/2)+2/3)/(11/12*Catalan-2/11) 2329967459093998 m005 (1/2*Zeta(3)+3/5)/(2/3*3^(1/2)+4) 2329967463001198 a007 Real Root Of -203*x^4-200*x^3+827*x^2+596*x+352 2329967468200972 m001 (Ei(1)+FellerTornier)/(Psi(1,1/3)-gamma) 2329967477646567 a007 Real Root Of 420*x^4+541*x^3-838*x^2+796*x+869 2329967478395822 p001 sum(1/(591*n+437)/(24^n),n=0..infinity) 2329967479265468 a007 Real Root Of 494*x^4-566*x^3-774*x^2-263*x+109 2329967486046517 l006 ln(652/6701) 2329967500951767 a007 Real Root Of -533*x^4-753*x^3+865*x^2-954*x-735 2329967506987804 s002 sum(A042238[n]/((pi^n-1)/n),n=1..infinity) 2329967511511727 k002 Champernowne real with 50*n^2+126*n-153 2329967529950751 m005 (1/2*Catalan+5/7)/(8/11*gamma+1/12) 2329967532040154 s001 sum(exp(-Pi/3)^(n-1)*A116010[n],n=1..infinity) 2329967533567489 a007 Real Root Of -84*x^4+320*x^3+886*x^2-692*x+101 2329967535314223 m001 (CareFree-KhinchinHarmonic)/(gamma(1)-Artin) 2329967541321564 s002 sum(A267821[n]/(2^n-1),n=1..infinity) 2329967542068075 m001 (Zeta(1,-1)-FeigenbaumC)/(MertensB3-PlouffeB) 2329967545215714 m001 Pi-ln(1+sqrt(2))^sqrt(1+sqrt(3)) 2329967545215714 m001 Pi-ln(2^(1/2)+1)^((1+3^(1/2))^(1/2)) 2329967547370945 m001 exp(LandauRamanujan)*Conway*FeigenbaumB 2329967550044336 r005 Re(z^2+c),c=-29/30+13/28*I,n=4 2329967586087787 r002 62th iterates of z^2 + 2329967591262539 m006 (3/4*ln(Pi)-5)/(1/3*exp(2*Pi)-3/4) 2329967592010509 m005 (1/2*2^(1/2)+3/7)/(8/11*Zeta(3)+4) 2329967594726952 m001 (Conway+PlouffeB)/(Rabbit+ZetaQ(2)) 2329967600709244 a007 Real Root Of 45*x^4-286*x^3+128*x^2-984*x-23 2329967601907962 m001 1/GAMMA(1/24)^2/exp(ArtinRank2)^2/GAMMA(11/24) 2329967609720210 a001 11/987*317811^(35/58) 2329967610827386 r005 Im(z^2+c),c=-33/62+10/21*I,n=50 2329967611541733 k002 Champernowne real with 101/2*n^2+249/2*n-152 2329967619734960 h001 (1/4*exp(1)+1/2)/(5/8*exp(2)+4/9) 2329967621807927 m005 (1/3*Zeta(3)+1/8)/(5/12*2^(1/2)-4/11) 2329967624021997 a001 28657/322*521^(2/13) 2329967633107183 h001 (-8*exp(3/2)+2)/(-9*exp(2/3)+3) 2329967634154798 a007 Real Root Of -36*x^4-878*x^3-945*x^2-711*x+470 2329967649469024 r005 Im(z^2+c),c=-1/8+26/53*I,n=3 2329967657198633 a007 Real Root Of 374*x^4+809*x^3+173*x^2+329*x-962 2329967659211749 m001 (DuboisRaymond+Totient)/(TwinPrimes-ZetaQ(4)) 2329967667075763 r002 16th iterates of z^2 + 2329967668425158 r009 Re(z^3+c),c=-17/122+56/59*I,n=22 2329967675948984 a007 Real Root Of -528*x^4-859*x^3+560*x^2-962*x-586 2329967681451534 r005 Re(z^2+c),c=2/29+13/25*I,n=6 2329967691463676 a004 Fibonacci(12)*Lucas(15)/(1/2+sqrt(5)/2)^14 2329967691754731 a007 Real Root Of 96*x^4+157*x^3-215*x^2+237*x+876 2329967698980632 r005 Re(z^2+c),c=31/110+25/54*I,n=59 2329967706175246 a007 Real Root Of -542*x^4-786*x^3+654*x^2-667*x+927 2329967711571739 k002 Champernowne real with 51*n^2+123*n-151 2329967714265108 a001 141/46*1364^(3/5) 2329967714767388 r005 Im(z^2+c),c=-9/10+26/127*I,n=51 2329967732313624 a007 Real Root Of 583*x^4-982*x^3+919*x^2-781*x-246 2329967733668740 r005 Re(z^2+c),c=-13/114+26/51*I,n=11 2329967744558675 m001 (GAMMA(7/12)+Porter)/(Rabbit+Stephens) 2329967758516458 a007 Real Root Of 500*x^4+702*x^3-916*x^2-38*x-972 2329967770428213 r002 42i'th iterates of 2*x/(1-x^2) of 2329967770682987 m005 (1/2*gamma-2)/(1/7*Pi+2/7) 2329967775779820 r009 Re(z^3+c),c=-1/25+47/62*I,n=50 2329967782801964 r005 Re(z^2+c),c=-4/19+21/53*I,n=13 2329967783738708 a001 41/105937*75025^(50/51) 2329967791866949 m001 1/cos(Pi/12)^2/ln(CopelandErdos)*sqrt(Pi)^2 2329967799834220 r005 Re(z^2+c),c=11/62+8/17*I,n=59 2329967801114400 p001 sum((-1)^n/(415*n+266)/n/(6^n),n=1..infinity) 2329967802287396 m001 1/BesselK(0,1)/exp(MertensB1)*GAMMA(5/6)^2 2329967805971437 r009 Re(z^3+c),c=-31/60+27/46*I,n=12 2329967811601745 k002 Champernowne real with 103/2*n^2+243/2*n-150 2329967819359795 m001 ln(2^(1/2)+1)/(Grothendieck-OrthogonalArrays) 2329967845970701 r005 Im(z^2+c),c=-25/74+13/27*I,n=10 2329967847196069 r009 Im(z^3+c),c=-11/23+3/32*I,n=26 2329967848094602 a007 Real Root Of -578*x^4-980*x^3+431*x^2-951*x+83 2329967850775568 m001 Bloch^2*exp(DuboisRaymond)/Magata^2 2329967856662102 r005 Im(z^2+c),c=-19/17+11/48*I,n=64 2329967857067043 l006 ln(4181/5278) 2329967859397751 a001 521/75025*102334155^(4/21) 2329967859478777 a001 521/514229*2504730781961^(4/21) 2329967860668882 a001 521/10946*4181^(4/21) 2329967864315215 r005 Re(z^2+c),c=-1/4+44/57*I,n=9 2329967865084046 r005 Im(z^2+c),c=-7/23+4/11*I,n=25 2329967883654169 r005 Im(z^2+c),c=6/17+5/18*I,n=6 2329967891947142 r009 Re(z^3+c),c=-7/24+3/10*I,n=12 2329967894975818 m001 (ln(Pi)-GaussAGM)/(MertensB3-ZetaQ(4)) 2329967898432413 a001 6765/521*199^(6/11) 2329967901700871 a007 Real Root Of -466*x^4-769*x^3+352*x^2-560*x+791 2329967902737793 r005 Im(z^2+c),c=-7/38+23/36*I,n=61 2329967904040296 m001 (Porter-Stephens)/(sin(1/5*Pi)+ln(gamma)) 2329967906789477 m005 (1/42+1/6*5^(1/2))/(3/4*Catalan-6/7) 2329967910412704 p004 log(35171/34361) 2329967911305726 r005 Re(z^2+c),c=-13/16+11/115*I,n=8 2329967911631751 k002 Champernowne real with 52*n^2+120*n-149 2329967917390366 m006 (1/3*ln(Pi)+4)/(1/3*Pi+5/6) 2329967917718796 a007 Real Root Of -425*x^4-658*x^3+769*x^2-93*x-189 2329967917746611 m005 (1/3*Pi+1/8)/(2/9*5^(1/2)-1) 2329967920535581 a007 Real Root Of 18*x^4+425*x^3+162*x^2+752*x+482 2329967931513457 l006 ln(335/3443) 2329967945689411 a007 Real Root Of -376*x^4-462*x^3+396*x^2+929*x-231 2329967952328294 m001 BesselK(1,1)+Sierpinski^Stephens 2329967953292337 a001 6/105937*5^(29/33) 2329967961184451 m001 (Psi(2,1/3)-gamma(2))/(Niven+TwinPrimes) 2329967969850683 m004 1+(25*Cos[Sqrt[5]*Pi]*Log[Sqrt[5]*Pi]^2)/Pi 2329967976131970 r004 Im(z^2+c),c=5/38-5/9*I,z(0)=I,n=35 2329967976637071 a008 Real Root of x^3-x^2-76*x-159 2329967978060469 m001 1/log(2+sqrt(3))/GAMMA(5/6)*exp(sqrt(Pi))^2 2329967988792263 m001 ZetaQ(3)-exp(Pi)*gamma(2) 2329967995929166 b008 ArcSinh[5]-3*Log[2] 2329968000711431 h005 exp(cos(Pi*5/54)*cos(Pi*7/45)) 2329968001020787 m001 HardyLittlewoodC4*Rabbit^AlladiGrinstead 2329968003203376 r009 Im(z^3+c),c=-8/31+1/56*I,n=7 2329968011661757 k002 Champernowne real with 105/2*n^2+237/2*n-148 2329968013365267 a007 Real Root Of -49*x^4-65*x^2-803*x-74 2329968017792875 m001 1/(3^(1/3))^2/ln(Artin)^2/Zeta(1/2)^2 2329968020439982 r005 Im(z^2+c),c=-12/29+19/48*I,n=32 2329968025015054 a007 Real Root Of -222*x^4-460*x^3-160*x^2-263*x+980 2329968027860653 m006 (2/5*Pi+5/6)/(1/5/Pi+5/6) 2329968029682074 r002 48th iterates of z^2 + 2329968032630299 m005 (1/3*Catalan+1/12)/(73/88+3/8*5^(1/2)) 2329968040618321 r009 Re(z^3+c),c=-13/94+55/61*I,n=38 2329968047677761 r005 Re(z^2+c),c=-17/26+49/97*I,n=7 2329968053420202 a005 (1/cos(16/111*Pi))^138 2329968059785882 m001 (FeigenbaumC+OneNinth)/(StronglyCareFree-Thue) 2329968076265403 r005 Im(z^2+c),c=-7/86+7/25*I,n=4 2329968084051688 p004 log(33521/32749) 2329968084147257 r002 3th iterates of z^2 + 2329968084368666 a008 Real Root of x^4-x^3+11*x^2-38*x+12 2329968088116951 m001 FeigenbaumB*ln(Bloch)/FeigenbaumD 2329968090787737 m001 (sin(1)+Pi^(1/2))/(MasserGramain+PlouffeB) 2329968100974959 r005 Re(z^2+c),c=-1/23+61/62*I,n=10 2329968103204989 m005 (1/2*5^(1/2)+1/7)/(-64/11+2/11*5^(1/2)) 2329968110580479 a001 161/98209*28657^(29/41) 2329968110682221 r005 Im(z^2+c),c=-21/82+15/43*I,n=32 2329968111691763 k002 Champernowne real with 53*n^2+117*n-147 2329968119022316 q001 877/3764 2329968121079716 r005 Im(z^2+c),c=-5/7+1/56*I,n=5 2329968130333212 a007 Real Root Of 41*x^4+947*x^3-170*x^2+511*x-625 2329968135601527 m003 Sec[1/2+Sqrt[5]/2]^2/(4*Log[1/2+Sqrt[5]/2]) 2329968137888465 r005 Re(z^2+c),c=-85/106+3/43*I,n=38 2329968150175860 m001 (Lehmer-Salem)/(gamma(3)+FeigenbaumAlpha) 2329968164448606 a007 Real Root Of -392*x^4-926*x^3-176*x^2-271*x+164 2329968166047062 a007 Real Root Of 444*x^4+782*x^3-443*x^2+506*x+390 2329968175674242 r005 Re(z^2+c),c=11/58+1/17*I,n=6 2329968177391002 r009 Im(z^3+c),c=-19/58+9/50*I,n=15 2329968182402753 m001 (Kolakoski+TwinPrimes)/GolombDickman 2329968183634542 h001 (1/7*exp(1)+6/7)/(5/8*exp(2)+8/11) 2329968196732080 m001 (-gamma(1)+Kac)/(3^(1/2)+BesselI(0,1)) 2329968204803736 m001 Catalan*(CareFree+Tribonacci) 2329968210507086 m001 (RenyiParking-Sarnak)/(gamma(3)+GAMMA(23/24)) 2329968211721769 k002 Champernowne real with 107/2*n^2+231/2*n-146 2329968215897573 r005 Re(z^2+c),c=-23/19+8/53*I,n=64 2329968235008478 r005 Im(z^2+c),c=-47/102+1/2*I,n=42 2329968241442863 a001 377/322*843^(11/14) 2329968242206838 m001 BesselK(1,1)*(ln(2)/ln(10)+FeigenbaumMu) 2329968248834761 r005 Im(z^2+c),c=-7/6+3/73*I,n=12 2329968259121631 m004 3/2+Cos[Sqrt[5]*Pi]^2*ProductLog[Sqrt[5]*Pi] 2329968269932263 m001 (3^(1/2)-ln(2)/ln(10))/(-FeigenbaumMu+Otter) 2329968274178229 r009 Re(z^3+c),c=-23/62+22/45*I,n=38 2329968276068411 a007 Real Root Of -209*x^4-674*x^3-499*x^2+145*x+681 2329968276678555 m001 (Mills+PisotVijayaraghavan)/(Zeta(3)+gamma(1)) 2329968283496010 a007 Real Root Of -817*x^4+69*x^3+511*x^2+909*x-238 2329968283518739 a001 144*521^(1/13) 2329968287334656 a001 123/3524578*121393^(5/9) 2329968287352261 a001 123/433494437*701408733^(5/9) 2329968287352261 a001 123/53316291173*4052739537881^(5/9) 2329968287352261 a001 41/1602508992*53316291173^(5/9) 2329968287352265 a001 123/39088169*9227465^(5/9) 2329968289470279 m002 E^Pi+(5*Log[Pi])/36 2329968289802674 a001 1292/161*1364^(7/15) 2329968295379013 r005 Re(z^2+c),c=1/28+28/29*I,n=3 2329968302550104 a007 Real Root Of 45*x^4+40*x^3-129*x^2-282*x-777 2329968311751775 k002 Champernowne real with 54*n^2+114*n-145 2329968313140847 m006 (4/5*exp(Pi)-3)/(4/5*ln(Pi)-1/4) 2329968314288588 r002 64i'th iterates of 2*x/(1-x^2) of 2329968323230506 a005 (1/sin(73/149*Pi))^1691 2329968333231160 l006 ln(3979/5023) 2329968335709165 a003 cos(Pi*11/118)-cos(Pi*23/95) 2329968339834137 r005 Im(z^2+c),c=-31/86+19/50*I,n=35 2329968346869185 r005 Re(z^2+c),c=-9/8+46/235*I,n=4 2329968353670897 l006 ln(688/7071) 2329968356064621 a007 Real Root Of 66*x^4-273*x^3-911*x^2+502*x+717 2329968360117690 r005 Im(z^2+c),c=-73/54+1/58*I,n=60 2329968368936140 a001 141/46*3571^(9/17) 2329968379506702 m003 3+Sqrt[5]/32+(Sqrt[5]*Sec[1/2+Sqrt[5]/2])/64 2329968388864281 a001 41/105937*1597^(5/9) 2329968391473710 m004 (-125*Pi)/36+5*Sqrt[5]*Pi-Tan[Sqrt[5]*Pi] 2329968393120999 h001 (5/6*exp(2)+3/11)/(5/7*exp(1)+9/11) 2329968406938890 m006 (4/Pi+1/6)/(5/6*Pi-2) 2329968408039956 a007 Real Root Of 570*x^4+775*x^3-759*x^2+868*x-853 2329968411342671 a007 Real Root Of 316*x^4+346*x^3-773*x^2-9*x-761 2329968411781781 k002 Champernowne real with 109/2*n^2+225/2*n-144 2329968412182567 p004 log(24841/2417) 2329968422670426 r002 47th iterates of z^2 + 2329968423377709 b008 3*E^2*Cosh[Pi^(-1)] 2329968425661068 a003 sin(Pi*7/39)-sin(Pi*22/79) 2329968441598630 a001 144/2207*9349^(17/19) 2329968453039492 a001 141/46*9349^(9/19) 2329968458817214 a001 1597/322*1364^(8/15) 2329968462301629 a001 144/2207*24476^(17/21) 2329968463999904 a001 141/46*24476^(3/7) 2329968465030683 a001 144/2207*64079^(17/23) 2329968465444697 a001 141/46*64079^(9/23) 2329968465450094 a001 144/2207*45537549124^(1/3) 2329968465450094 a001 144/2207*(1/2+1/2*5^(1/2))^17 2329968465450101 a001 144/2207*12752043^(1/2) 2329968465603619 a001 144/2207*103682^(17/24) 2329968465662712 a001 141/46*439204^(1/3) 2329968465666728 a001 141/46*7881196^(3/11) 2329968465666738 a001 141/46*141422324^(3/13) 2329968465666738 a001 141/46*2537720636^(1/5) 2329968465666738 a001 141/46*45537549124^(3/17) 2329968465666738 a001 141/46*14662949395604^(1/7) 2329968465666738 a001 141/46*(1/2+1/2*5^(1/2))^9 2329968465666738 a001 141/46*192900153618^(1/6) 2329968465666738 a001 141/46*10749957122^(3/16) 2329968465666738 a001 141/46*599074578^(3/14) 2329968465666738 a001 141/46*33385282^(1/4) 2329968465666940 a001 141/46*1860498^(3/10) 2329968465748016 a001 141/46*103682^(3/8) 2329968465908686 r005 Im(z^2+c),c=-21/82+15/43*I,n=35 2329968466274472 a001 141/46*39603^(9/22) 2329968466598036 a001 144/2207*39603^(17/22) 2329968469739558 a001 4181/322*1364^(2/5) 2329968470248757 a001 141/46*15127^(9/20) 2329968474105020 a001 144/2207*15127^(17/20) 2329968478288693 p004 log(34651/27449) 2329968490006464 p001 sum((-1)^n/(515*n+429)/(1024^n),n=0..infinity) 2329968500561882 a001 141/46*5778^(1/2) 2329968501626331 m001 (2^(1/2)+3^(1/2))/(-gamma+Tetranacci) 2329968502224598 r009 Re(z^3+c),c=-45/122+15/31*I,n=41 2329968502682596 a007 Real Root Of 49*x^4-26*x^3-194*x^2+63*x-573 2329968506805667 a007 Real Root Of -12*x^4+357*x^3-325*x^2+776*x+203 2329968511811787 k002 Champernowne real with 55*n^2+111*n-143 2329968516388859 a001 6765/322*1364^(1/3) 2329968521434292 a007 Real Root Of -480*x^4-928*x^3+932*x^2+856*x-657 2329968531363144 a001 144/2207*5778^(17/18) 2329968532913279 r005 Im(z^2+c),c=-47/86+23/57*I,n=46 2329968535431687 m001 (BesselI(0,2)+Pi^(1/2))/(CareFree+MertensB2) 2329968536837481 p001 sum(1/(439*n+438)/(25^n),n=0..infinity) 2329968539190825 a007 Real Root Of -843*x^4+252*x^3-8*x^2+712*x+172 2329968539522246 m001 (Niven-PlouffeB)/(ln(2)+Zeta(1,-1)) 2329968546699290 r009 Re(z^3+c),c=-1/21+25/36*I,n=28 2329968550576053 r005 Im(z^2+c),c=-13/28+20/49*I,n=59 2329968559105416 m001 (5^(1/2)+ln(2+3^(1/2)))/(Cahen+QuadraticClass) 2329968569297528 m001 (-GAMMA(17/24)+Trott2nd)/(Psi(2,1/3)+ln(Pi)) 2329968579682385 a001 1364/433494437*832040^(6/19) 2329968579682598 a001 1364/7778742049*7778742049^(6/19) 2329968584942498 r005 Im(z^2+c),c=-7/38+13/40*I,n=12 2329968589915289 l006 ln(7756/9791) 2329968611841793 k002 Champernowne real with 111/2*n^2+219/2*n-142 2329968613949492 a001 5473/161*1364^(4/15) 2329968619552612 h001 (2/5*exp(1)+7/11)/(1/8*exp(1)+2/5) 2329968619636662 p003 LerchPhi(1/2,6,179/95) 2329968620235480 m001 GAMMA(23/24)*ln(Rabbit)^2*GAMMA(5/24)^2 2329968626712699 r002 3th iterates of z^2 + 2329968630777308 a007 Real Root Of 482*x^4+885*x^3-629*x^2-387*x-498 2329968634354623 m009 (4/5*Psi(1,1/3)+3/4)/(2/5*Psi(1,1/3)-1/4) 2329968635478327 a001 2/1597*144^(10/17) 2329968646524611 l004 sinh(221/113*Pi) 2329968654198006 a001 161/4*10946^(24/55) 2329968665111732 m001 (Weierstrass-ZetaQ(2))/(ln(Pi)+LaplaceLimit) 2329968671055677 m005 (1/2*Catalan-1/6)/(5/12*2^(1/2)-5/7) 2329968675958510 a005 (1/cos(49/125*Pi))^51 2329968677207230 a007 Real Root Of -16*x^4-350*x^3+506*x^2-617*x-741 2329968683730484 a003 cos(Pi*11/25)*cos(Pi*29/63) 2329968684049283 h005 exp(cos(Pi*10/41)+cos(Pi*23/50)) 2329968687881334 a007 Real Root Of 659*x^4+278*x^3+837*x^2-786*x-227 2329968691296180 a001 372096/1597 2329968692063729 a001 17711/322*1364^(1/5) 2329968711871799 k002 Champernowne real with 56*n^2+108*n-141 2329968717676449 m008 (5*Pi^2-2)/(2/3*Pi^5-4/5) 2329968731939724 a007 Real Root Of 632*x^4-235*x^3-988*x^2-632*x+202 2329968734738462 a001 141/46*2207^(9/16) 2329968738594664 m005 (1/2*Pi+1/10)/(19/198+5/18*5^(1/2)) 2329968739449688 a007 Real Root Of -637*x^4-729*x^3-485*x^2+710*x-128 2329968749594290 a001 3/7*9349^(5/27) 2329968753252359 m005 (1/2*5^(1/2)-3)/(1/10*gamma+3/4) 2329968754266750 a001 17711/18*18^(17/57) 2329968754301730 l006 ln(353/3628) 2329968761086463 a004 Fibonacci(12)*Lucas(17)/(1/2+sqrt(5)/2)^16 2329968763635464 a007 Real Root Of 282*x^4-464*x^3-511*x^2-928*x+249 2329968768060504 a007 Real Root Of -306*x^4-290*x^3+953*x^2+241*x+738 2329968771602582 a007 Real Root Of 233*x^4+588*x^3-141*x^2-158*x+968 2329968777605833 a001 28657/322*1364^(2/15) 2329968791816153 a007 Real Root Of -119*x^4-279*x^3-305*x^2-939*x-554 2329968798991365 a001 1292/161*3571^(7/17) 2329968804197514 a007 Real Root Of 199*x^4+187*x^3-353*x^2+558*x-283 2329968805036457 m005 (1/2*Pi+9/10)/(5/9*5^(1/2)-2/11) 2329968806389185 r009 Re(z^3+c),c=-11/30+28/59*I,n=20 2329968806623024 l003 Pi*cos(Pi*11/47) 2329968806623024 l003 Pi*cos(Pi*36/47) 2329968811901805 k002 Champernowne real with 113/2*n^2+213/2*n-140 2329968814504674 r009 Re(z^3+c),c=-19/94+43/64*I,n=5 2329968826982765 r005 Im(z^2+c),c=-79/90+13/56*I,n=21 2329968846233662 r005 Im(z^2+c),c=-21/82+15/43*I,n=33 2329968853879541 a007 Real Root Of 202*x^4+596*x^3+65*x^2-808*x-650 2329968855654056 a007 Real Root Of -20*x^4-461*x^3+104*x^2-288*x-4 2329968860310749 a001 144*1364^(1/15) 2329968860327288 l006 ln(3777/4768) 2329968864405095 a001 1292/161*9349^(7/19) 2329968864426259 r005 Im(z^2+c),c=-137/122+7/30*I,n=43 2329968868801677 p001 sum((-1)^n/(538*n+429)/(1000^n),n=0..infinity) 2329968870490675 a001 8/321*24476^(19/21) 2329968872929861 a001 1292/161*24476^(1/3) 2329968873540794 a001 8/321*64079^(19/23) 2329968874009547 a001 8/321*817138163596^(1/3) 2329968874009547 a001 8/321*(1/2+1/2*5^(1/2))^19 2329968874009547 a001 8/321*87403803^(1/2) 2329968874053589 a001 1292/161*64079^(7/23) 2329968874181135 a001 8/321*103682^(19/24) 2329968874226286 a001 1292/161*20633239^(1/5) 2329968874226287 a001 1292/161*17393796001^(1/7) 2329968874226287 a001 1292/161*14662949395604^(1/9) 2329968874226287 a001 1292/161*(1/2+1/2*5^(1/2))^7 2329968874226287 a001 1292/161*599074578^(1/6) 2329968874227441 a001 1292/161*710647^(1/4) 2329968874289504 a001 1292/161*103682^(7/24) 2329968874698970 a001 1292/161*39603^(7/22) 2329968875292542 a001 8/321*39603^(19/22) 2329968875484887 a007 Real Root Of 976*x^4-196*x^3+873*x^2-838*x-248 2329968876311072 r005 Re(z^2+c),c=-19/78+19/62*I,n=24 2329968877690596 h005 exp(cos(Pi*5/16)+cos(Pi*13/32)) 2329968877790081 a001 1292/161*15127^(7/20) 2329968880095090 a001 6765/322*3571^(5/17) 2329968883682702 a001 8/321*15127^(19/20) 2329968896536469 r005 Im(z^2+c),c=-7/8+23/128*I,n=9 2329968899217917 r009 Re(z^3+c),c=-15/62+9/59*I,n=9 2329968901366960 a001 1292/161*5778^(7/18) 2329968904914484 a001 5473/161*3571^(4/17) 2329968906187034 a001 4181/322*3571^(6/17) 2329968906960057 a001 974160/4181 2329968910287478 a001 17711/322*3571^(3/17) 2329968911931811 k002 Champernowne real with 57*n^2+105*n-139 2329968911990228 m001 (cos(1)-gamma(1))/(Conway+Riemann3rdZero) 2329968917142324 a004 Fibonacci(12)*Lucas(19)/(1/2+sqrt(5)/2)^18 2329968923088335 a001 28657/322*3571^(2/17) 2329968923989322 m008 (2/5*Pi^2+2/3)/(4/5*Pi^3-5) 2329968926352065 m005 (1/2*gamma+1/11)/(6/7*2^(1/2)+5/12) 2329968926819184 a001 6765/322*9349^(5/19) 2329968932908303 a001 6765/322*24476^(5/21) 2329968933052002 a001 144*3571^(1/17) 2329968933099484 a001 144/15127*64079^(21/23) 2329968933608186 a001 144/15127*439204^(7/9) 2329968933617556 a001 144/15127*7881196^(7/11) 2329968933617577 a001 144/15127*20633239^(3/5) 2329968933617580 a001 144/15127*141422324^(7/13) 2329968933617580 a001 144/15127*2537720636^(7/15) 2329968933617580 a001 144/15127*17393796001^(3/7) 2329968933617580 a001 144/15127*45537549124^(7/17) 2329968933617580 a001 144/15127*14662949395604^(1/3) 2329968933617580 a001 144/15127*(1/2+1/2*5^(1/2))^21 2329968933617580 a001 144/15127*192900153618^(7/18) 2329968933617580 a001 144/15127*10749957122^(7/16) 2329968933617580 a001 144/15127*599074578^(1/2) 2329968933617581 a001 144/15127*33385282^(7/12) 2329968933618051 a001 144/15127*1860498^(7/10) 2329968933621040 a001 144/15127*710647^(3/4) 2329968933710966 a001 6765/322*64079^(5/23) 2329968933807230 a001 144/15127*103682^(7/8) 2329968933817765 a001 6765/322*167761^(1/5) 2329968933834321 a001 6765/322*20633239^(1/7) 2329968933834322 a001 6765/322*2537720636^(1/9) 2329968933834322 a001 6765/322*312119004989^(1/11) 2329968933834322 a001 6765/322*(1/2+1/2*5^(1/2))^5 2329968933834322 a001 6765/322*28143753123^(1/10) 2329968933834322 a001 6765/322*228826127^(1/8) 2329968933834434 a001 6765/322*1860498^(1/6) 2329968933879477 a001 6765/322*103682^(5/24) 2329968934171952 a001 6765/322*39603^(5/22) 2329968934609329 m001 GolombDickman^Psi(2,1/3)/StolarskyHarborth 2329968935035627 a001 144/15127*39603^(21/22) 2329968936379889 a001 6765/322*15127^(1/4) 2329968938321935 a001 17711/322*9349^(3/19) 2329968938424995 a001 1275192/5473 2329968939910568 a004 Fibonacci(12)*Lucas(21)/(1/2+sqrt(5)/2)^20 2329968941777973 a001 28657/322*9349^(2/19) 2329968941975406 a001 17711/322*24476^(1/7) 2329968942293760 a001 5473/161*9349^(4/19) 2329968942314275 a001 48/13201*(1/2+1/2*5^(1/2))^23 2329968942314275 a001 48/13201*4106118243^(1/2) 2329968942396821 a001 144*9349^(1/19) 2329968942457004 a001 17711/322*64079^(3/23) 2329968942521986 a001 48/13201*103682^(23/24) 2329968942529675 a001 17711/322*439204^(1/9) 2329968942531014 a001 17711/322*7881196^(1/11) 2329968942531017 a001 17711/322*141422324^(1/13) 2329968942531017 a001 17711/322*2537720636^(1/15) 2329968942531017 a001 17711/322*45537549124^(1/17) 2329968942531017 a001 17711/322*14662949395604^(1/21) 2329968942531017 a001 17711/322*(1/2+1/2*5^(1/2))^3 2329968942531017 a001 17711/322*10749957122^(1/16) 2329968942531017 a001 17711/322*599074578^(1/14) 2329968942531018 a001 17711/322*33385282^(1/12) 2329968942531085 a001 17711/322*1860498^(1/10) 2329968942558110 a001 17711/322*103682^(1/8) 2329968942733595 a001 17711/322*39603^(3/22) 2329968943015668 a001 6676992/28657 2329968943232410 a004 Fibonacci(12)*Lucas(23)/(1/2+sqrt(5)/2)^22 2329968943583102 a001 72/51841*20633239^(5/7) 2329968943583106 a001 72/51841*2537720636^(5/9) 2329968943583106 a001 72/51841*312119004989^(5/11) 2329968943583106 a001 72/51841*(1/2+1/2*5^(1/2))^25 2329968943583106 a001 72/51841*3461452808002^(5/12) 2329968943583106 a001 72/51841*28143753123^(1/2) 2329968943583106 a001 72/51841*228826127^(5/8) 2329968943583667 a001 72/51841*1860498^(5/6) 2329968943614644 a001 144*24476^(1/21) 2329968943685438 a001 17480592/75025 2329968943717060 a004 Fibonacci(12)*Lucas(25)/(1/2+sqrt(5)/2)^24 2329968943768195 a001 48/90481*7881196^(9/11) 2329968943768226 a001 48/90481*141422324^(9/13) 2329968943768226 a001 48/90481*2537720636^(3/5) 2329968943768226 a001 48/90481*45537549124^(9/17) 2329968943768226 a001 48/90481*817138163596^(9/19) 2329968943768226 a001 48/90481*14662949395604^(3/7) 2329968943768226 a001 48/90481*(1/2+1/2*5^(1/2))^27 2329968943768226 a001 48/90481*192900153618^(1/2) 2329968943768226 a001 48/90481*10749957122^(9/16) 2329968943768226 a001 48/90481*599074578^(9/14) 2329968943768227 a001 48/90481*33385282^(3/4) 2329968943768832 a001 48/90481*1860498^(9/10) 2329968943775177 a001 144*64079^(1/23) 2329968943783156 a001 22882392/98209 2329968943787769 a004 Fibonacci(12)*Lucas(27)/(1/2+sqrt(5)/2)^26 2329968943795234 a001 144/710647*(1/2+1/2*5^(1/2))^29 2329968943795234 a001 144/710647*1322157322203^(1/2) 2329968943797413 a001 119813760/514229 2329968943798086 a004 Fibonacci(12)*Lucas(29)/(1/2+sqrt(5)/2)^28 2329968943799175 a001 8/103361*(1/2+1/2*5^(1/2))^31 2329968943799175 a001 8/103361*9062201101803^(1/2) 2329968943799493 a001 313676496/1346269 2329968943799591 a004 Fibonacci(12)*Lucas(31)/(1/2+sqrt(5)/2)^30 2329968943799750 a001 144/4870847*141422324^(11/13) 2329968943799750 a001 144/4870847*2537720636^(11/15) 2329968943799750 a001 144/4870847*45537549124^(11/17) 2329968943799750 a001 144/4870847*312119004989^(3/5) 2329968943799750 a001 144/4870847*14662949395604^(11/21) 2329968943799750 a001 144/4870847*(1/2+1/2*5^(1/2))^33 2329968943799750 a001 144/4870847*192900153618^(11/18) 2329968943799750 a001 144/4870847*10749957122^(11/16) 2329968943799750 a001 144/4870847*1568397607^(3/4) 2329968943799750 a001 144/4870847*599074578^(11/14) 2329968943799752 a001 144/4870847*33385282^(11/12) 2329968943799796 a001 410607864/1762289 2329968943799811 a004 Fibonacci(12)*Lucas(33)/(1/2+sqrt(5)/2)^32 2329968943799834 a001 48/4250681*2537720636^(7/9) 2329968943799834 a001 48/4250681*17393796001^(5/7) 2329968943799834 a001 48/4250681*312119004989^(7/11) 2329968943799834 a001 48/4250681*14662949395604^(5/9) 2329968943799834 a001 48/4250681*(1/2+1/2*5^(1/2))^35 2329968943799834 a001 48/4250681*505019158607^(5/8) 2329968943799834 a001 48/4250681*28143753123^(7/10) 2329968943799834 a001 48/4250681*599074578^(5/6) 2329968943799834 a001 48/4250681*228826127^(7/8) 2329968943799841 a001 2149970688/9227465 2329968943799843 a004 Fibonacci(12)*Lucas(35)/(1/2+sqrt(5)/2)^34 2329968943799846 a001 72/16692641*(1/2+1/2*5^(1/2))^37 2329968943799846 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^37/Lucas(36) 2329968943799847 a001 5628696336/24157817 2329968943799847 a004 Fibonacci(12)*Lucas(37)/(1/2+sqrt(5)/2)^36 2329968943799848 a001 48/29134601*2537720636^(13/15) 2329968943799848 a001 48/29134601*45537549124^(13/17) 2329968943799848 a001 48/29134601*14662949395604^(13/21) 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^39/Lucas(38) 2329968943799848 a001 48/29134601*192900153618^(13/18) 2329968943799848 a001 48/29134601*73681302247^(3/4) 2329968943799848 a001 48/29134601*10749957122^(13/16) 2329968943799848 a001 48/29134601*599074578^(13/14) 2329968943799848 a001 7368059160/31622993 2329968943799848 a004 Fibonacci(12)*Lucas(39)/(1/2+sqrt(5)/2)^38 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^41/Lucas(40) 2329968943799848 a001 38579658624/165580141 2329968943799848 a004 Fibonacci(12)*Lucas(41)/(1/2+sqrt(5)/2)^40 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^43/Lucas(42) 2329968943799848 a001 101002857552/433494437 2329968943799848 a004 Fibonacci(12)*Lucas(43)/(1/2+sqrt(5)/2)^42 2329968943799848 a001 144/1568397607*45537549124^(15/17) 2329968943799848 a001 144/1568397607*312119004989^(9/11) 2329968943799848 a001 144/1568397607*14662949395604^(5/7) 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^45/Lucas(44) 2329968943799848 a001 144/1568397607*192900153618^(5/6) 2329968943799848 a001 144/1568397607*28143753123^(9/10) 2329968943799848 a001 144/1568397607*10749957122^(15/16) 2329968943799848 a001 132214457016/567451585 2329968943799848 a004 Fibonacci(12)*Lucas(45)/(1/2+sqrt(5)/2)^44 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^47/Lucas(46) 2329968943799848 a001 692283884544/2971215073 2329968943799848 a004 Fibonacci(12)*Lucas(47)/(1/2+sqrt(5)/2)^46 2329968943799848 a001 72/5374978561*14662949395604^(7/9) 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^49/Lucas(48) 2329968943799848 a001 72/5374978561*505019158607^(7/8) 2329968943799848 a001 1812422739600/7778742049 2329968943799848 a004 Fibonacci(12)*Lucas(49)/(1/2+sqrt(5)/2)^48 2329968943799848 a001 48/9381251041*817138163596^(17/19) 2329968943799848 a001 48/9381251041*14662949395604^(17/21) 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^51/Lucas(50) 2329968943799848 a001 48/9381251041*192900153618^(17/18) 2329968943799848 a001 2372492167128/10182505537 2329968943799848 a004 Fibonacci(12)*Lucas(51)/(1/2+sqrt(5)/2)^50 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^53/Lucas(52) 2329968943799848 a001 12422530263168/53316291173 2329968943799848 a004 Fibonacci(12)*Lucas(53)/(1/2+sqrt(5)/2)^52 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^55/Lucas(54) 2329968943799848 a001 8/10716675201*3461452808002^(11/12) 2329968943799848 a001 32522606455248/139583862445 2329968943799848 a004 Fibonacci(12)*Lucas(55)/(1/2+sqrt(5)/2)^54 2329968943799848 a001 144/505019158607*14662949395604^(19/21) 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^57/Lucas(56) 2329968943799848 a004 Fibonacci(12)*Lucas(57)/(1/2+sqrt(5)/2)^56 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^59/Lucas(58) 2329968943799848 a004 Fibonacci(12)*Lucas(59)/(1/2+sqrt(5)/2)^58 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^61/Lucas(60) 2329968943799848 a004 Fibonacci(12)*Lucas(61)/(1/2+sqrt(5)/2)^60 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^63/Lucas(62) 2329968943799848 a004 Fibonacci(12)*Lucas(63)/(1/2+sqrt(5)/2)^62 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^65/Lucas(64) 2329968943799848 a004 Fibonacci(12)*Lucas(65)/(1/2+sqrt(5)/2)^64 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^67/Lucas(66) 2329968943799848 a004 Fibonacci(12)*Lucas(67)/(1/2+sqrt(5)/2)^66 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^69/Lucas(68) 2329968943799848 a004 Fibonacci(12)*Lucas(69)/(1/2+sqrt(5)/2)^68 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^71/Lucas(70) 2329968943799848 a004 Fibonacci(12)*Lucas(71)/(1/2+sqrt(5)/2)^70 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^73/Lucas(72) 2329968943799848 a004 Fibonacci(12)*Lucas(73)/(1/2+sqrt(5)/2)^72 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^75/Lucas(74) 2329968943799848 a004 Fibonacci(12)*Lucas(75)/(1/2+sqrt(5)/2)^74 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^77/Lucas(76) 2329968943799848 a004 Fibonacci(12)*Lucas(77)/(1/2+sqrt(5)/2)^76 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^79/Lucas(78) 2329968943799848 a004 Fibonacci(12)*Lucas(79)/(1/2+sqrt(5)/2)^78 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^81/Lucas(80) 2329968943799848 a004 Fibonacci(12)*Lucas(81)/(1/2+sqrt(5)/2)^80 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^83/Lucas(82) 2329968943799848 a004 Fibonacci(12)*Lucas(83)/(1/2+sqrt(5)/2)^82 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^85/Lucas(84) 2329968943799848 a004 Fibonacci(12)*Lucas(85)/(1/2+sqrt(5)/2)^84 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^87/Lucas(86) 2329968943799848 a004 Fibonacci(12)*Lucas(87)/(1/2+sqrt(5)/2)^86 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^89/Lucas(88) 2329968943799848 a004 Fibonacci(12)*Lucas(89)/(1/2+sqrt(5)/2)^88 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^91/Lucas(90) 2329968943799848 a004 Fibonacci(12)*Lucas(91)/(1/2+sqrt(5)/2)^90 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^93/Lucas(92) 2329968943799848 a004 Fibonacci(12)*Lucas(93)/(1/2+sqrt(5)/2)^92 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^95/Lucas(94) 2329968943799848 a004 Fibonacci(12)*Lucas(95)/(1/2+sqrt(5)/2)^94 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^97/Lucas(96) 2329968943799848 a004 Fibonacci(12)*Lucas(97)/(1/2+sqrt(5)/2)^96 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)/Lucas(1) 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^100/Lucas(99) 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^99/Lucas(98) 2329968943799848 a004 Fibonacci(12)*Lucas(100)/(1/2+sqrt(5)/2)^99 2329968943799848 a004 Fibonacci(12)*Lucas(98)/(1/2+sqrt(5)/2)^97 2329968943799848 a004 Fibonacci(12)*Lucas(99)/(1/2+sqrt(5)/2)^98 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^98/Lucas(97) 2329968943799848 a004 Fibonacci(12)*Lucas(96)/(1/2+sqrt(5)/2)^95 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^96/Lucas(95) 2329968943799848 a004 Fibonacci(12)*Lucas(94)/(1/2+sqrt(5)/2)^93 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^94/Lucas(93) 2329968943799848 a004 Fibonacci(12)*Lucas(92)/(1/2+sqrt(5)/2)^91 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^92/Lucas(91) 2329968943799848 a004 Fibonacci(12)*Lucas(90)/(1/2+sqrt(5)/2)^89 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^90/Lucas(89) 2329968943799848 a004 Fibonacci(12)*Lucas(88)/(1/2+sqrt(5)/2)^87 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^88/Lucas(87) 2329968943799848 a004 Fibonacci(12)*Lucas(86)/(1/2+sqrt(5)/2)^85 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^86/Lucas(85) 2329968943799848 a004 Fibonacci(12)*Lucas(84)/(1/2+sqrt(5)/2)^83 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^84/Lucas(83) 2329968943799848 a004 Fibonacci(12)*Lucas(82)/(1/2+sqrt(5)/2)^81 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^82/Lucas(81) 2329968943799848 a004 Fibonacci(12)*Lucas(80)/(1/2+sqrt(5)/2)^79 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^80/Lucas(79) 2329968943799848 a004 Fibonacci(12)*Lucas(78)/(1/2+sqrt(5)/2)^77 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^78/Lucas(77) 2329968943799848 a004 Fibonacci(12)*Lucas(76)/(1/2+sqrt(5)/2)^75 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^76/Lucas(75) 2329968943799848 a004 Fibonacci(12)*Lucas(74)/(1/2+sqrt(5)/2)^73 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^74/Lucas(73) 2329968943799848 a004 Fibonacci(12)*Lucas(72)/(1/2+sqrt(5)/2)^71 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^72/Lucas(71) 2329968943799848 a004 Fibonacci(12)*Lucas(70)/(1/2+sqrt(5)/2)^69 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^70/Lucas(69) 2329968943799848 a004 Fibonacci(12)*Lucas(68)/(1/2+sqrt(5)/2)^67 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^68/Lucas(67) 2329968943799848 a004 Fibonacci(12)*Lucas(66)/(1/2+sqrt(5)/2)^65 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^66/Lucas(65) 2329968943799848 a004 Fibonacci(12)*Lucas(64)/(1/2+sqrt(5)/2)^63 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^64/Lucas(63) 2329968943799848 a004 Fibonacci(12)*Lucas(62)/(1/2+sqrt(5)/2)^61 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^62/Lucas(61) 2329968943799848 a004 Fibonacci(12)*Lucas(60)/(1/2+sqrt(5)/2)^59 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^60/Lucas(59) 2329968943799848 a004 Fibonacci(12)*Lucas(58)/(1/2+sqrt(5)/2)^57 2329968943799848 a001 137767971749904/591286729879 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^58/Lucas(57) 2329968943799848 a004 Fibonacci(12)*Lucas(56)/(1/2+sqrt(5)/2)^55 2329968943799848 a001 17540894215776/75283811239 2329968943799848 a001 144/312119004989*14662949395604^(8/9) 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^56/Lucas(55) 2329968943799848 a004 Fibonacci(12)*Lucas(54)/(1/2+sqrt(5)/2)^53 2329968943799848 a001 2512509524010/10783446409 2329968943799848 a001 144/119218851371*14662949395604^(6/7) 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^54/Lucas(53) 2329968943799848 a004 Fibonacci(12)*Lucas(52)/(1/2+sqrt(5)/2)^51 2329968943799848 a001 2559181976304/10983760033 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^52/Lucas(51) 2329968943799848 a001 36/11384387281*23725150497407^(13/16) 2329968943799848 a001 36/11384387281*505019158607^(13/14) 2329968943799848 a004 Fibonacci(12)*Lucas(50)/(1/2+sqrt(5)/2)^49 2329968943799848 a001 2932561594656/12586269025 2329968943799848 a001 144/17393796001*312119004989^(10/11) 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^50/Lucas(49) 2329968943799848 a001 144/17393796001*3461452808002^(5/6) 2329968943799848 a004 Fibonacci(12)*Lucas(48)/(1/2+sqrt(5)/2)^47 2329968943799848 a001 7778742049/33385604 2329968943799848 a001 144/6643838879*45537549124^(16/17) 2329968943799848 a001 144/6643838879*14662949395604^(16/21) 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^48/Lucas(47) 2329968943799848 a001 144/6643838879*192900153618^(8/9) 2329968943799848 a001 144/6643838879*73681302247^(12/13) 2329968943799848 a004 Fibonacci(12)*Lucas(46)/(1/2+sqrt(5)/2)^45 2329968943799848 a001 427854970512/1836311903 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^46/Lucas(45) 2329968943799848 a001 36/634430159*10749957122^(23/24) 2329968943799848 a004 Fibonacci(12)*Lucas(44)/(1/2+sqrt(5)/2)^43 2329968943799848 a001 54475352160/233802911 2329968943799848 a001 144/969323029*312119004989^(4/5) 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^44/Lucas(43) 2329968943799848 a001 144/969323029*23725150497407^(11/16) 2329968943799848 a001 144/969323029*73681302247^(11/13) 2329968943799848 a001 144/969323029*10749957122^(11/12) 2329968943799848 a001 144/969323029*4106118243^(22/23) 2329968943799848 a004 Fibonacci(12)*Lucas(42)/(1/2+sqrt(5)/2)^41 2329968943799848 a001 7802899866/33489287 2329968943799848 a001 144/370248451*2537720636^(14/15) 2329968943799848 a001 144/370248451*17393796001^(6/7) 2329968943799848 a001 144/370248451*45537549124^(14/17) 2329968943799848 a001 144/370248451*14662949395604^(2/3) 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^42/Lucas(41) 2329968943799848 a001 144/370248451*505019158607^(3/4) 2329968943799848 a001 144/370248451*192900153618^(7/9) 2329968943799848 a001 144/370248451*10749957122^(7/8) 2329968943799848 a001 144/370248451*4106118243^(21/23) 2329968943799848 a001 144/370248451*1568397607^(21/22) 2329968943799848 a004 Fibonacci(12)*Lucas(40)/(1/2+sqrt(5)/2)^39 2329968943799848 a001 7947846768/34111385 2329968943799848 a001 36/35355581*2537720636^(8/9) 2329968943799848 a001 36/35355581*312119004989^(8/11) 2329968943799848 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^40/Lucas(39) 2329968943799848 a001 36/35355581*23725150497407^(5/8) 2329968943799848 a001 36/35355581*73681302247^(10/13) 2329968943799848 a001 36/35355581*28143753123^(4/5) 2329968943799848 a001 36/35355581*10749957122^(5/6) 2329968943799848 a001 36/35355581*4106118243^(20/23) 2329968943799848 a001 36/35355581*1568397607^(10/11) 2329968943799848 a001 36/35355581*599074578^(20/21) 2329968943799848 a004 Fibonacci(12)*Lucas(38)/(1/2+sqrt(5)/2)^37 2329968943799849 a001 9107421984/39088169 2329968943799849 a001 144/54018521*817138163596^(2/3) 2329968943799849 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^38/Lucas(37) 2329968943799849 a001 144/54018521*10749957122^(19/24) 2329968943799849 a001 144/54018521*4106118243^(19/23) 2329968943799849 a001 144/54018521*1568397607^(19/22) 2329968943799849 a001 144/54018521*599074578^(19/21) 2329968943799849 a001 144/54018521*228826127^(19/20) 2329968943799850 a004 Fibonacci(12)*Lucas(36)/(1/2+sqrt(5)/2)^35 2329968943799851 a001 24157817/103683 2329968943799853 a001 144/20633239*141422324^(12/13) 2329968943799854 a001 144/20633239*2537720636^(4/5) 2329968943799854 a001 144/20633239*45537549124^(12/17) 2329968943799854 a001 144/20633239*14662949395604^(4/7) 2329968943799854 a001 144/20633239*(1/2+1/2*5^(1/2))^36 2329968943799854 a001 144/20633239*505019158607^(9/14) 2329968943799854 a001 144/20633239*192900153618^(2/3) 2329968943799854 a001 144/20633239*73681302247^(9/13) 2329968943799854 a001 144/20633239*10749957122^(3/4) 2329968943799854 a001 144/20633239*4106118243^(18/23) 2329968943799854 a001 144/20633239*1568397607^(9/11) 2329968943799854 a001 144/20633239*599074578^(6/7) 2329968943799854 a001 144/20633239*228826127^(9/10) 2329968943799854 a001 144/20633239*87403803^(18/19) 2329968943799862 a004 Fibonacci(12)*Lucas(34)/(1/2+sqrt(5)/2)^33 2329968943799868 a001 1328754960/5702887 2329968943799886 a001 36/1970299*45537549124^(2/3) 2329968943799886 a001 36/1970299*(1/2+1/2*5^(1/2))^34 2329968943799886 a001 36/1970299*10749957122^(17/24) 2329968943799886 a001 36/1970299*4106118243^(17/23) 2329968943799886 a001 36/1970299*1568397607^(17/22) 2329968943799886 a001 36/1970299*599074578^(17/21) 2329968943799886 a001 36/1970299*228826127^(17/20) 2329968943799886 a001 36/1970299*87403803^(17/19) 2329968943799888 a001 36/1970299*33385282^(17/18) 2329968943799946 a004 Fibonacci(12)*Lucas(32)/(1/2+sqrt(5)/2)^31 2329968943799984 a001 169179744/726103 2329968943800105 a001 144/3010349*(1/2+1/2*5^(1/2))^32 2329968943800105 a001 144/3010349*23725150497407^(1/2) 2329968943800105 a001 144/3010349*505019158607^(4/7) 2329968943800105 a001 144/3010349*73681302247^(8/13) 2329968943800105 a001 144/3010349*10749957122^(2/3) 2329968943800105 a001 144/3010349*4106118243^(16/23) 2329968943800105 a001 144/3010349*1568397607^(8/11) 2329968943800105 a001 144/3010349*599074578^(16/21) 2329968943800105 a001 144/3010349*228826127^(4/5) 2329968943800105 a001 144/3010349*87403803^(16/19) 2329968943800107 a001 144/3010349*33385282^(8/9) 2329968943800119 a001 144/3010349*12752043^(16/17) 2329968943800521 a004 Fibonacci(12)*Lucas(30)/(1/2+sqrt(5)/2)^29 2329968943800778 a001 24232842/104005 2329968943801576 a001 144/1149851*7881196^(10/11) 2329968943801606 a001 144/1149851*20633239^(6/7) 2329968943801610 a001 144/1149851*141422324^(10/13) 2329968943801610 a001 144/1149851*2537720636^(2/3) 2329968943801610 a001 144/1149851*45537549124^(10/17) 2329968943801610 a001 144/1149851*312119004989^(6/11) 2329968943801610 a001 144/1149851*14662949395604^(10/21) 2329968943801610 a001 144/1149851*(1/2+1/2*5^(1/2))^30 2329968943801610 a001 144/1149851*192900153618^(5/9) 2329968943801610 a001 144/1149851*28143753123^(3/5) 2329968943801610 a001 144/1149851*10749957122^(5/8) 2329968943801610 a001 144/1149851*4106118243^(15/23) 2329968943801610 a001 144/1149851*1568397607^(15/22) 2329968943801610 a001 144/1149851*599074578^(5/7) 2329968943801610 a001 144/1149851*228826127^(3/4) 2329968943801611 a001 144/1149851*87403803^(15/19) 2329968943801612 a001 144/1149851*33385282^(5/6) 2329968943801623 a001 144/1149851*12752043^(15/17) 2329968943801702 a001 144/1149851*4870847^(15/16) 2329968943804462 a004 Fibonacci(12)*Lucas(28)/(1/2+sqrt(5)/2)^27 2329968943806224 a001 24682992/105937 2329968943808879 a001 144*103682^(1/24) 2329968943811922 a001 36/109801*20633239^(4/5) 2329968943811927 a001 36/109801*17393796001^(4/7) 2329968943811927 a001 36/109801*14662949395604^(4/9) 2329968943811927 a001 36/109801*(1/2+1/2*5^(1/2))^28 2329968943811927 a001 36/109801*505019158607^(1/2) 2329968943811927 a001 36/109801*73681302247^(7/13) 2329968943811927 a001 36/109801*10749957122^(7/12) 2329968943811927 a001 36/109801*4106118243^(14/23) 2329968943811927 a001 36/109801*1568397607^(7/11) 2329968943811927 a001 36/109801*599074578^(2/3) 2329968943811927 a001 36/109801*228826127^(7/10) 2329968943811927 a001 36/109801*87403803^(14/19) 2329968943811928 a001 36/109801*33385282^(7/9) 2329968943811939 a001 36/109801*12752043^(14/17) 2329968943812013 a001 36/109801*4870847^(7/8) 2329968943812555 a001 36/109801*1860498^(14/15) 2329968943831470 a004 Fibonacci(12)*Lucas(26)/(1/2+sqrt(5)/2)^25 2329968943843549 a001 28284192/121393 2329968943867374 a001 144*39603^(1/22) 2329968943882636 a001 144/167761*141422324^(2/3) 2329968943882636 a001 144/167761*(1/2+1/2*5^(1/2))^26 2329968943882636 a001 144/167761*73681302247^(1/2) 2329968943882636 a001 144/167761*10749957122^(13/24) 2329968943882636 a001 144/167761*4106118243^(13/23) 2329968943882636 a001 144/167761*1568397607^(13/22) 2329968943882636 a001 144/167761*599074578^(13/21) 2329968943882636 a001 144/167761*228826127^(13/20) 2329968943882636 a001 144/167761*87403803^(13/19) 2329968943882638 a001 144/167761*33385282^(13/18) 2329968943882647 a001 144/167761*12752043^(13/17) 2329968943882716 a001 144/167761*4870847^(13/16) 2329968943883220 a001 144/167761*1860498^(13/15) 2329968943886920 a001 144/167761*710647^(13/14) 2329968943984968 a004 Fibonacci(26)/Lucas(12)/(1/2+sqrt(5)/2) 2329968944011977 a004 Fibonacci(28)/Lucas(12)/(1/2+sqrt(5)/2)^3 2329968944015917 a004 Fibonacci(30)/Lucas(12)/(1/2+sqrt(5)/2)^5 2329968944016492 a004 Fibonacci(32)/Lucas(12)/(1/2+sqrt(5)/2)^7 2329968944016576 a004 Fibonacci(34)/Lucas(12)/(1/2+sqrt(5)/2)^9 2329968944016588 a004 Fibonacci(36)/Lucas(12)/(1/2+sqrt(5)/2)^11 2329968944016590 a004 Fibonacci(38)/Lucas(12)/(1/2+sqrt(5)/2)^13 2329968944016590 a004 Fibonacci(40)/Lucas(12)/(1/2+sqrt(5)/2)^15 2329968944016590 a004 Fibonacci(42)/Lucas(12)/(1/2+sqrt(5)/2)^17 2329968944016590 a004 Fibonacci(44)/Lucas(12)/(1/2+sqrt(5)/2)^19 2329968944016590 a004 Fibonacci(46)/Lucas(12)/(1/2+sqrt(5)/2)^21 2329968944016590 a004 Fibonacci(12)*Lucas(24)/(1/2+sqrt(5)/2)^23 2329968944016590 a004 Fibonacci(50)/Lucas(12)/(1/2+sqrt(5)/2)^25 2329968944016590 a004 Fibonacci(52)/Lucas(12)/(1/2+sqrt(5)/2)^27 2329968944016590 a004 Fibonacci(54)/Lucas(12)/(1/2+sqrt(5)/2)^29 2329968944016590 a004 Fibonacci(56)/Lucas(12)/(1/2+sqrt(5)/2)^31 2329968944016590 a004 Fibonacci(58)/Lucas(12)/(1/2+sqrt(5)/2)^33 2329968944016590 a004 Fibonacci(60)/Lucas(12)/(1/2+sqrt(5)/2)^35 2329968944016590 a004 Fibonacci(62)/Lucas(12)/(1/2+sqrt(5)/2)^37 2329968944016590 a004 Fibonacci(64)/Lucas(12)/(1/2+sqrt(5)/2)^39 2329968944016590 a004 Fibonacci(66)/Lucas(12)/(1/2+sqrt(5)/2)^41 2329968944016590 a004 Fibonacci(68)/Lucas(12)/(1/2+sqrt(5)/2)^43 2329968944016590 a004 Fibonacci(70)/Lucas(12)/(1/2+sqrt(5)/2)^45 2329968944016590 a004 Fibonacci(72)/Lucas(12)/(1/2+sqrt(5)/2)^47 2329968944016590 a004 Fibonacci(74)/Lucas(12)/(1/2+sqrt(5)/2)^49 2329968944016590 a004 Fibonacci(76)/Lucas(12)/(1/2+sqrt(5)/2)^51 2329968944016590 a004 Fibonacci(78)/Lucas(12)/(1/2+sqrt(5)/2)^53 2329968944016590 a004 Fibonacci(80)/Lucas(12)/(1/2+sqrt(5)/2)^55 2329968944016590 a004 Fibonacci(82)/Lucas(12)/(1/2+sqrt(5)/2)^57 2329968944016590 a004 Fibonacci(84)/Lucas(12)/(1/2+sqrt(5)/2)^59 2329968944016590 a004 Fibonacci(86)/Lucas(12)/(1/2+sqrt(5)/2)^61 2329968944016590 a004 Fibonacci(88)/Lucas(12)/(1/2+sqrt(5)/2)^63 2329968944016590 a004 Fibonacci(90)/Lucas(12)/(1/2+sqrt(5)/2)^65 2329968944016590 a004 Fibonacci(92)/Lucas(12)/(1/2+sqrt(5)/2)^67 2329968944016590 a004 Fibonacci(94)/Lucas(12)/(1/2+sqrt(5)/2)^69 2329968944016590 a004 Fibonacci(96)/Lucas(12)/(1/2+sqrt(5)/2)^71 2329968944016590 a004 Fibonacci(100)/Lucas(12)/(1/2+sqrt(5)/2)^75 2329968944016590 a004 Fibonacci(98)/Lucas(12)/(1/2+sqrt(5)/2)^73 2329968944016590 a004 Fibonacci(97)/Lucas(12)/(1/2+sqrt(5)/2)^72 2329968944016590 a004 Fibonacci(99)/Lucas(12)/(1/2+sqrt(5)/2)^74 2329968944016590 a004 Fibonacci(95)/Lucas(12)/(1/2+sqrt(5)/2)^70 2329968944016590 a004 Fibonacci(93)/Lucas(12)/(1/2+sqrt(5)/2)^68 2329968944016590 a004 Fibonacci(91)/Lucas(12)/(1/2+sqrt(5)/2)^66 2329968944016590 a004 Fibonacci(89)/Lucas(12)/(1/2+sqrt(5)/2)^64 2329968944016590 a004 Fibonacci(87)/Lucas(12)/(1/2+sqrt(5)/2)^62 2329968944016590 a004 Fibonacci(85)/Lucas(12)/(1/2+sqrt(5)/2)^60 2329968944016590 a004 Fibonacci(83)/Lucas(12)/(1/2+sqrt(5)/2)^58 2329968944016590 a004 Fibonacci(81)/Lucas(12)/(1/2+sqrt(5)/2)^56 2329968944016590 a004 Fibonacci(79)/Lucas(12)/(1/2+sqrt(5)/2)^54 2329968944016590 a004 Fibonacci(77)/Lucas(12)/(1/2+sqrt(5)/2)^52 2329968944016590 a004 Fibonacci(75)/Lucas(12)/(1/2+sqrt(5)/2)^50 2329968944016590 a004 Fibonacci(73)/Lucas(12)/(1/2+sqrt(5)/2)^48 2329968944016590 a004 Fibonacci(71)/Lucas(12)/(1/2+sqrt(5)/2)^46 2329968944016590 a004 Fibonacci(69)/Lucas(12)/(1/2+sqrt(5)/2)^44 2329968944016590 a004 Fibonacci(67)/Lucas(12)/(1/2+sqrt(5)/2)^42 2329968944016590 a004 Fibonacci(65)/Lucas(12)/(1/2+sqrt(5)/2)^40 2329968944016590 a004 Fibonacci(63)/Lucas(12)/(1/2+sqrt(5)/2)^38 2329968944016590 a004 Fibonacci(61)/Lucas(12)/(1/2+sqrt(5)/2)^36 2329968944016590 a004 Fibonacci(59)/Lucas(12)/(1/2+sqrt(5)/2)^34 2329968944016590 a004 Fibonacci(57)/Lucas(12)/(1/2+sqrt(5)/2)^32 2329968944016590 a004 Fibonacci(55)/Lucas(12)/(1/2+sqrt(5)/2)^30 2329968944016590 a004 Fibonacci(53)/Lucas(12)/(1/2+sqrt(5)/2)^28 2329968944016590 a004 Fibonacci(51)/Lucas(12)/(1/2+sqrt(5)/2)^26 2329968944016590 a004 Fibonacci(49)/Lucas(12)/(1/2+sqrt(5)/2)^24 2329968944016590 a004 Fibonacci(47)/Lucas(12)/(1/2+sqrt(5)/2)^22 2329968944016590 a004 Fibonacci(45)/Lucas(12)/(1/2+sqrt(5)/2)^20 2329968944016590 a004 Fibonacci(43)/Lucas(12)/(1/2+sqrt(5)/2)^18 2329968944016590 a004 Fibonacci(41)/Lucas(12)/(1/2+sqrt(5)/2)^16 2329968944016590 a004 Fibonacci(39)/Lucas(12)/(1/2+sqrt(5)/2)^14 2329968944016591 a004 Fibonacci(37)/Lucas(12)/(1/2+sqrt(5)/2)^12 2329968944016596 a004 Fibonacci(35)/Lucas(12)/(1/2+sqrt(5)/2)^10 2329968944016628 a004 Fibonacci(33)/Lucas(12)/(1/2+sqrt(5)/2)^8 2329968944016847 a004 Fibonacci(31)/Lucas(12)/(1/2+sqrt(5)/2)^6 2329968944018352 a004 Fibonacci(29)/Lucas(12)/(1/2+sqrt(5)/2)^4 2329968944028669 a004 Fibonacci(27)/Lucas(12)/(1/2+sqrt(5)/2)^2 2329968944058358 a001 17711/322*15127^(3/20) 2329968944099378 a001 75025/322 2329968944213621 a001 28657/322*24476^(2/21) 2329968944308961 a001 144*15127^(1/20) 2329968944356550 a001 144/64079*439204^(8/9) 2329968944367259 a001 144/64079*7881196^(8/11) 2329968944367286 a001 144/64079*141422324^(8/13) 2329968944367286 a001 144/64079*2537720636^(8/15) 2329968944367286 a001 144/64079*45537549124^(8/17) 2329968944367286 a001 144/64079*14662949395604^(8/21) 2329968944367286 a001 144/64079*(1/2+1/2*5^(1/2))^24 2329968944367286 a001 144/64079*192900153618^(4/9) 2329968944367286 a001 144/64079*73681302247^(6/13) 2329968944367286 a001 144/64079*10749957122^(1/2) 2329968944367286 a001 144/64079*4106118243^(12/23) 2329968944367286 a001 144/64079*1568397607^(6/11) 2329968944367286 a001 144/64079*599074578^(4/7) 2329968944367286 a001 144/64079*228826127^(3/5) 2329968944367287 a001 144/64079*87403803^(12/19) 2329968944367288 a001 144/64079*33385282^(2/3) 2329968944367297 a001 144/64079*12752043^(12/17) 2329968944367360 a001 144/64079*4870847^(3/4) 2329968944367825 a001 144/64079*1860498^(4/5) 2329968944371241 a001 144/64079*710647^(6/7) 2329968944396476 a001 144/64079*271443^(12/13) 2329968944534686 a001 28657/322*64079^(2/23) 2329968944584029 a001 28657/322*(1/2+1/2*5^(1/2))^2 2329968944584029 a001 28657/322*10749957122^(1/24) 2329968944584029 a001 28657/322*4106118243^(1/23) 2329968944584029 a001 28657/322*1568397607^(1/22) 2329968944584029 a001 28657/322*599074578^(1/21) 2329968944584029 a001 28657/322*228826127^(1/20) 2329968944584029 a001 28657/322*87403803^(1/19) 2329968944584029 a001 28657/322*33385282^(1/18) 2329968944584029 a001 28657/322*12752043^(1/17) 2329968944584035 a001 28657/322*4870847^(1/16) 2329968944584073 a001 28657/322*1860498^(1/15) 2329968944584358 a001 28657/322*710647^(1/14) 2329968944586461 a001 28657/322*271443^(1/13) 2329968944602090 a001 28657/322*103682^(1/12) 2329968944719081 a001 28657/322*39603^(1/11) 2329968945285421 a004 Fibonacci(12)*Lucas(22)/(1/2+sqrt(5)/2)^21 2329968945602255 a001 28657/322*15127^(1/10) 2329968945852859 a001 4126608/17711 2329968947146361 a001 36/6119*64079^(22/23) 2329968947165055 a001 5473/161*24476^(4/21) 2329968947677087 a001 144*5778^(1/18) 2329968947689103 a001 36/6119*7881196^(2/3) 2329968947689128 a001 36/6119*312119004989^(2/5) 2329968947689128 a001 36/6119*(1/2+1/2*5^(1/2))^22 2329968947689128 a001 36/6119*10749957122^(11/24) 2329968947689128 a001 36/6119*4106118243^(11/23) 2329968947689128 a001 36/6119*1568397607^(1/2) 2329968947689128 a001 36/6119*599074578^(11/21) 2329968947689128 a001 36/6119*228826127^(11/20) 2329968947689129 a001 36/6119*87403803^(11/19) 2329968947689130 a001 36/6119*33385282^(11/18) 2329968947689138 a001 36/6119*12752043^(11/17) 2329968947689196 a001 36/6119*4870847^(11/16) 2329968947689622 a001 36/6119*1860498^(11/15) 2329968947692753 a001 36/6119*710647^(11/14) 2329968947715886 a001 36/6119*271443^(11/13) 2329968947807186 a001 5473/161*64079^(4/23) 2329968947887809 a001 36/6119*103682^(11/12) 2329968947905871 a001 5473/161*(1/2+1/2*5^(1/2))^4 2329968947905871 a001 5473/161*23725150497407^(1/16) 2329968947905871 a001 5473/161*73681302247^(1/13) 2329968947905871 a001 5473/161*10749957122^(1/12) 2329968947905871 a001 5473/161*4106118243^(2/23) 2329968947905871 a001 5473/161*1568397607^(1/11) 2329968947905871 a001 5473/161*599074578^(2/21) 2329968947905871 a001 5473/161*228826127^(1/10) 2329968947905871 a001 5473/161*87403803^(2/19) 2329968947905871 a001 5473/161*33385282^(1/9) 2329968947905872 a001 5473/161*12752043^(2/17) 2329968947905883 a001 5473/161*4870847^(1/8) 2329968947905960 a001 5473/161*1860498^(2/15) 2329968947906530 a001 5473/161*710647^(1/7) 2329968947910735 a001 5473/161*271443^(2/13) 2329968947941994 a001 5473/161*103682^(1/6) 2329968948175975 a001 5473/161*39603^(2/11) 2329968949142728 a007 Real Root Of -402*x^4-493*x^3+975*x^2-123*x+32 2329968949942324 a001 5473/161*15127^(1/5) 2329968952338507 a001 28657/322*5778^(1/9) 2329968953220517 a001 6765/322*5778^(5/18) 2329968953982116 a004 Fibonacci(12)*Lucas(20)/(1/2+sqrt(5)/2)^19 2329968954162734 a001 17711/322*5778^(1/6) 2329968957871396 a001 525408/2255 2329968962234571 h005 exp(cos(Pi*1/31)*cos(Pi*3/17)) 2329968962255948 a001 4181/322*9349^(6/19) 2329968963042462 m001 (Magata-Paris)/(GAMMA(3/4)+DuboisRaymond) 2329968963414827 a001 5473/161*5778^(2/9) 2329968966753296 a001 144/9349*24476^(20/21) 2329968966986815 m001 (LaplaceLimit+ZetaP(4))/(5^(1/2)-Zeta(1,2)) 2329968968040568 h001 (8/9*exp(2)+5/9)/(9/11*exp(1)+5/6) 2329968969562891 a001 4181/322*24476^(2/7) 2329968969963947 a001 144/9349*64079^(20/23) 2329968970391142 a001 144/9349*167761^(4/5) 2329968970457369 a001 144/9349*20633239^(4/7) 2329968970457372 a001 144/9349*2537720636^(4/9) 2329968970457372 a001 144/9349*(1/2+1/2*5^(1/2))^20 2329968970457372 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^20/Lucas(19) 2329968970457372 a001 144/9349*23725150497407^(5/16) 2329968970457372 a001 144/9349*505019158607^(5/14) 2329968970457372 a001 144/9349*73681302247^(5/13) 2329968970457372 a001 144/9349*28143753123^(2/5) 2329968970457372 a001 144/9349*10749957122^(5/12) 2329968970457372 a001 144/9349*4106118243^(10/23) 2329968970457372 a001 144/9349*1568397607^(5/11) 2329968970457372 a001 144/9349*599074578^(10/21) 2329968970457372 a001 144/9349*228826127^(1/2) 2329968970457372 a001 144/9349*87403803^(10/19) 2329968970457373 a001 144/9349*33385282^(5/9) 2329968970457380 a001 144/9349*12752043^(10/17) 2329968970457433 a001 144/9349*4870847^(5/8) 2329968970457821 a001 144/9349*1860498^(2/3) 2329968970460667 a001 144/9349*710647^(5/7) 2329968970481697 a001 144/9349*271443^(10/13) 2329968970526086 a001 4181/322*64079^(6/23) 2329968970637990 a001 144/9349*103682^(5/6) 2329968970671430 a001 4181/322*439204^(2/9) 2329968970674107 a001 4181/322*7881196^(2/11) 2329968970674114 a001 4181/322*141422324^(2/13) 2329968970674114 a001 4181/322*2537720636^(2/15) 2329968970674114 a001 4181/322*45537549124^(2/17) 2329968970674114 a001 4181/322*14662949395604^(2/21) 2329968970674114 a001 4181/322*(1/2+1/2*5^(1/2))^6 2329968970674114 a001 4181/322*10749957122^(1/8) 2329968970674114 a001 4181/322*4106118243^(3/23) 2329968970674114 a001 4181/322*1568397607^(3/22) 2329968970674114 a001 4181/322*599074578^(1/7) 2329968970674114 a001 4181/322*228826127^(3/20) 2329968970674114 a001 4181/322*87403803^(3/19) 2329968970674114 a001 4181/322*33385282^(1/6) 2329968970674116 a001 4181/322*12752043^(3/17) 2329968970674132 a001 4181/322*4870847^(3/16) 2329968970674248 a001 4181/322*1860498^(1/5) 2329968970675103 a001 4181/322*710647^(3/14) 2329968970681411 a001 4181/322*271443^(3/13) 2329968970728299 a001 4181/322*103682^(1/4) 2329968971079270 a001 4181/322*39603^(3/11) 2329968971807893 a001 144/9349*39603^(10/11) 2329968973315809 m001 sin(1/5*Pi)-FeigenbaumMu^sin(1) 2329968973696711 a001 144*2207^(1/16) 2329968973728794 a001 4181/322*15127^(3/10) 2329968981279068 m001 (Mills+ZetaP(4))/(Shi(1)-arctan(1/2)) 2329968984228855 a001 76/6765*10946^(4/51) 2329968989532489 h001 (1/12*exp(1)+2/5)/(8/9*exp(1)+3/11) 2329968993937548 a001 4181/322*5778^(1/3) 2329969004377755 a001 28657/322*2207^(1/8) 2329969004905421 m004 -6+75*Pi+5*Sin[Sqrt[5]*Pi] 2329969011961817 k002 Champernowne real with 115/2*n^2+207/2*n-138 2329969013590151 a004 Fibonacci(12)*Lucas(18)/(1/2+sqrt(5)/2)^17 2329969014253888 m001 RenyiParking/(ZetaP(4)^(5^(1/2))) 2329969016817188 m001 (exp(-1/2*Pi)+ThueMorse)/(Zeta(3)-Zeta(1/2)) 2329969025543223 a001 55/2207*11^(55/59) 2329969032168858 m001 (Ei(1)-exp(1/exp(1)))/(Cahen-LaplaceLimit) 2329969032221607 a001 17711/322*2207^(3/16) 2329969035466612 a007 Real Root Of -402*x^4-842*x^3+5*x^2-88*x+965 2329969040247678 a001 75258/323 2329969040747197 a001 1597/322*3571^(8/17) 2329969043266976 r005 Im(z^2+c),c=19/64+17/37*I,n=8 2329969047157675 m005 (1/3*Zeta(3)-3/4)/(8/11*Zeta(3)+5/8) 2329969057043205 a001 55/521*29^(34/37) 2329969066071046 a007 Real Root Of -12*x^4-22*x^3-352*x^2-504*x+812 2329969067493325 a001 5473/161*2207^(1/4) 2329969070605339 r009 Re(z^3+c),c=-11/30+17/35*I,n=21 2329969072296436 m005 (5/6*Pi-1)/(-1/5+2/5*5^(1/2)) 2329969075642417 a007 Real Root Of -428*x^4-681*x^3+567*x^2-160*x+549 2329969083318640 a001 6765/322*2207^(5/16) 2329969083504329 a001 1292/161*2207^(7/16) 2329969085718953 m001 (ln(Pi)-GlaisherKinkelin)/(Lehmer-ZetaQ(4)) 2329969101202267 m001 ln(2+3^(1/2))^Psi(1,1/3)*ln(2+3^(1/2))^Totient 2329969101258749 a001 144/3571*9349^(18/19) 2329969103089680 b008 ArcCsch[3+Sqrt[Pi/2]] 2329969111991823 k002 Champernowne real with 58*n^2+102*n-137 2329969115505754 a001 1597/322*9349^(8/19) 2329969123179578 a001 144/3571*24476^(6/7) 2329969125248345 a001 1597/322*24476^(8/21) 2329969125265393 m001 ReciprocalLucas^Niven/FeigenbaumKappa 2329969126069165 a001 144/3571*64079^(18/23) 2329969126505195 a001 144/3571*439204^(2/3) 2329969126513227 a001 144/3571*7881196^(6/11) 2329969126513247 a001 144/3571*141422324^(6/13) 2329969126513248 a001 144/3571*2537720636^(2/5) 2329969126513248 a001 144/3571*45537549124^(6/17) 2329969126513248 a001 144/3571*14662949395604^(2/7) 2329969126513248 a001 144/3571*(1/2+1/2*5^(1/2))^18 2329969126513248 a001 144/3571*192900153618^(1/3) 2329969126513248 a001 144/3571*10749957122^(3/8) 2329969126513248 a001 144/3571*4106118243^(9/23) 2329969126513248 a001 144/3571*1568397607^(9/22) 2329969126513248 a001 144/3571*599074578^(3/7) 2329969126513248 a001 144/3571*228826127^(9/20) 2329969126513248 a001 144/3571*87403803^(9/19) 2329969126513249 a001 144/3571*33385282^(1/2) 2329969126513255 a001 144/3571*12752043^(9/17) 2329969126513303 a001 144/3571*4870847^(9/16) 2329969126513651 a001 144/3571*1860498^(3/5) 2329969126516213 a001 144/3571*710647^(9/14) 2329969126532606 a001 1597/322*64079^(8/23) 2329969126535140 a001 144/3571*271443^(9/13) 2329969126675804 a001 144/3571*103682^(3/4) 2329969126729975 a001 1597/322*(1/2+1/2*5^(1/2))^8 2329969126729975 a001 1597/322*23725150497407^(1/8) 2329969126729975 a001 1597/322*505019158607^(1/7) 2329969126729975 a001 1597/322*73681302247^(2/13) 2329969126729975 a001 1597/322*10749957122^(1/6) 2329969126729975 a001 1597/322*4106118243^(4/23) 2329969126729975 a001 1597/322*1568397607^(2/11) 2329969126729975 a001 1597/322*599074578^(4/21) 2329969126729975 a001 1597/322*228826127^(1/5) 2329969126729975 a001 1597/322*87403803^(4/19) 2329969126729976 a001 1597/322*33385282^(2/9) 2329969126729979 a001 1597/322*12752043^(4/17) 2329969126730000 a001 1597/322*4870847^(1/4) 2329969126730155 a001 1597/322*1860498^(4/15) 2329969126731294 a001 1597/322*710647^(2/7) 2329969126739705 a001 1597/322*271443^(4/13) 2329969126802223 a001 1597/322*103682^(1/3) 2329969127270184 a001 1597/322*39603^(4/11) 2329969127728716 a001 144/3571*39603^(9/11) 2329969130802883 a001 1597/322*15127^(2/5) 2329969132326857 a007 Real Root Of 357*x^4+436*x^3-982*x^2+92*x+539 2329969133608319 a007 Real Root Of -112*x^4+245*x^3+918*x^2-249*x+836 2329969135011544 l006 ln(724/7441) 2329969135677289 a001 144/3571*15127^(9/10) 2329969139889761 r009 Re(z^3+c),c=-53/118+31/60*I,n=46 2329969143594119 r005 Im(z^2+c),c=-31/60+2/49*I,n=45 2329969145598698 l006 ln(7352/9281) 2329969150055299 a001 4181/322*2207^(3/8) 2329969156175058 m001 Riemann3rdZero-Tribonacci^QuadraticClass 2329969157747890 a001 1597/322*5778^(4/9) 2329969177989600 a001 144*843^(1/14) 2329969183023966 a007 Real Root Of -319*x^4+397*x^3-236*x^2+516*x+139 2329969185983726 a007 Real Root Of -215*x^4-483*x^3-395*x^2-598*x+978 2329969188989611 a007 Real Root Of -219*x^4-184*x^3+621*x^2+77*x+935 2329969197025140 m001 Zeta(1,-1)*(GAMMA(17/24)+Champernowne) 2329969199480886 m001 1/exp(GAMMA(1/4))^2/FeigenbaumD*log(1+sqrt(2)) 2329969200372945 m005 (1/3*Zeta(3)+1/10)/(4/11*Zeta(3)-2/9) 2329969203100609 r002 24th iterates of z^2 + 2329969212021829 k002 Champernowne real with 117/2*n^2+201/2*n-136 2329969212677015 r005 Re(z^2+c),c=-23/19+8/53*I,n=54 2329969212851970 m005 (1/2*2^(1/2)+9/11)/(5/11*Zeta(3)+6) 2329969218952508 a007 Real Root Of 888*x^4+473*x^3+26*x^2-532*x-122 2329969232112625 r005 Im(z^2+c),c=-7/9+9/101*I,n=22 2329969258384896 a003 cos(Pi*6/71)/sin(Pi*14/103) 2329969267860948 r009 Re(z^3+c),c=-9/38+5/37*I,n=3 2329969284774023 q001 531/2279 2329969284774023 r002 2th iterates of z^2 + 2329969295575930 m001 ln(FeigenbaumKappa)^2*Conway*GAMMA(11/24) 2329969299274147 a007 Real Root Of -359*x^4-578*x^3+148*x^2-669*x+907 2329969302940913 m005 (1/3*exp(1)-1/6)/(5/6*Pi+5/9) 2329969311072016 r002 62th iterates of z^2 + 2329969312051835 k002 Champernowne real with 59*n^2+99*n-135 2329969312663518 m001 (Pi+Chi(1))^BesselI(0,2) 2329969314733483 m001 LambertW(1)/(2^(1/3))^2/exp(Zeta(1,2))^2 2329969316154638 r009 Im(z^3+c),c=-39/86+4/53*I,n=62 2329969325644744 s002 sum(A167706[n]/(n^2*10^n-1),n=1..infinity) 2329969326536435 r002 54th iterates of z^2 + 2329969327458083 a001 17711/123*47^(1/8) 2329969338556119 a007 Real Root Of -798*x^4+862*x^3+99*x^2+537*x+133 2329969349663822 m001 1/GAMMA(5/12)/ln(CopelandErdos)^2/cos(Pi/12) 2329969355483315 a005 (1/cos(9/203*Pi))^1270 2329969361461457 a001 305/161*1364^(2/3) 2329969365904908 a001 1597/322*2207^(1/2) 2329969382771614 r005 Im(z^2+c),c=13/46+3/44*I,n=16 2329969385620763 a001 377/4*7^(20/43) 2329969388099701 m001 Gompertz^sin(1/12*Pi)/(Gompertz^Ei(1)) 2329969397144580 r005 Re(z^2+c),c=-1/28+17/28*I,n=27 2329969399335194 a001 521*144^(13/17) 2329969407685995 r005 Im(z^2+c),c=-155/122+1/30*I,n=59 2329969407758302 v002 sum(1/(5^n+(2*n^3-2)),n=1..infinity) 2329969412081841 k002 Champernowne real with 119/2*n^2+195/2*n-134 2329969412963555 a001 28657/322*843^(1/7) 2329969422149701 a004 Fibonacci(12)*Lucas(16)/(1/2+sqrt(5)/2)^15 2329969425720854 r005 Re(z^2+c),c=-9/26+5/14*I,n=3 2329969428196468 a007 Real Root Of 340*x^4-918*x^3-981*x^2-889*x+271 2329969436066198 m005 (1/3*Zeta(3)+1/10)/(7/8*Pi-3/5) 2329969440192663 a007 Real Root Of 115*x^4-24*x^3-461*x^2+755*x+569 2329969446988931 l006 ln(3575/4513) 2329969458744185 b008 Gamma[1/54+Pi] 2329969459828903 r009 Re(z^3+c),c=-1/66+43/51*I,n=13 2329969482623448 m009 (1/3*Psi(1,3/4)-4)/(20/3*Catalan+5/6*Pi^2-4/5) 2329969497250128 l006 ln(371/3813) 2329969497469774 m004 -31+Sqrt[5]*Pi+Sin[Sqrt[5]*Pi] 2329969512111847 k002 Champernowne real with 60*n^2+96*n-133 2329969520388214 r005 Im(z^2+c),c=-67/102+1/49*I,n=3 2329969520855071 a007 Real Root Of -351*x^4+667*x^3-775*x^2+32*x+59 2329969523867103 r002 15th iterates of z^2 + 2329969528037235 m001 (PlouffeB+ZetaQ(2))/(cos(1/12*Pi)+Mills) 2329969534306031 m001 ln(5)^GAMMA(5/6)-Riemann3rdZero 2329969543761945 a001 75025/2207*199^(4/11) 2329969550397676 m005 (2/5*gamma+1)/(1/5*2^(1/2)+5) 2329969558066364 p001 sum(1/(441*n+436)/(32^n),n=0..infinity) 2329969560309485 s002 sum(A228025[n]/(n^3*10^n-1),n=1..infinity) 2329969570960505 a007 Real Root Of -203*x^4-600*x^3-318*x^2-78*x-62 2329969574963344 m001 5^(1/2)/(cos(1/12*Pi)^KhinchinLevy) 2329969577444529 h001 (1/5*exp(1)+4/11)/(3/7*exp(2)+8/11) 2329969590302471 m005 (1/3*gamma+1/11)/(13/30+7/20*5^(1/2)) 2329969597367543 r005 Re(z^2+c),c=25/94+19/48*I,n=12 2329969599427571 r005 Re(z^2+c),c=-23/19+8/53*I,n=44 2329969599717479 r005 Im(z^2+c),c=-77/122+1/36*I,n=12 2329969601686320 m005 (-9/20+1/4*5^(1/2))/(1/5*gamma-7/12) 2329969604266264 a001 233/322*521^(12/13) 2329969604863221 a001 76656/329 2329969605911181 m001 exp(GAMMA(5/12))*ErdosBorwein^2*Zeta(5)^2 2329969612141853 k002 Champernowne real with 121/2*n^2+189/2*n-132 2329969614521005 h001 (9/10*exp(2)+1/6)/(10/11*exp(1)+5/11) 2329969616822966 a007 Real Root Of -400*x^4-942*x^3-256*x^2-658*x-270 2329969623497885 r005 Re(z^2+c),c=-155/126+2/43*I,n=10 2329969629781520 s002 sum(A171923[n]/(n^2*10^n-1),n=1..infinity) 2329969643571184 r005 Re(z^2+c),c=-11/14+22/219*I,n=50 2329969645100342 a001 17711/322*843^(3/14) 2329969649305580 a001 3571/1134903170*832040^(6/19) 2329969649305792 a001 3571/20365011074*7778742049^(6/19) 2329969657607080 m001 1/exp(GAMMA(23/24))^2/GAMMA(1/24)^2/Zeta(9) 2329969660105663 r005 Im(z^2+c),c=21/110+8/51*I,n=12 2329969661624319 a007 Real Root Of 289*x^4+421*x^3-320*x^2+830*x+479 2329969666877545 a007 Real Root Of -299*x^4-206*x^3+834*x^2-384*x+784 2329969672277751 h001 (4/5*exp(2)+2/7)/(7/9*exp(1)+6/11) 2329969673759118 r005 Im(z^2+c),c=-1/110+6/23*I,n=14 2329969676264047 m001 (-CopelandErdos+Sarnak)/(Shi(1)+Zeta(5)) 2329969693847080 m005 (1/2*gamma+2/3)/(7/9*2^(1/2)+3) 2329969694790871 r002 47th iterates of z^2 + 2329969696460657 p004 log(27061/2633) 2329969712171859 k002 Champernowne real with 61*n^2+93*n-131 2329969717982108 m001 Landau*TravellingSalesman-exp(1) 2329969718656573 r005 Re(z^2+c),c=-67/56+10/53*I,n=29 2329969720776212 m001 (FeigenbaumDelta-cos(Pi/12))^BesselJZeros(0,1) 2329969726826892 m001 (Si(Pi)+LambertW(1))/(Zeta(5)+HeathBrownMoroz) 2329969727547931 q001 2309/991 2329969729570740 m001 Zeta(1/2)-sin(1)^AlladiGrinstead 2329969735521359 m001 exp(BesselK(0,1))^2*Rabbit*sqrt(2) 2329969736205873 a001 196418/199*3^(43/55) 2329969741895311 a007 Real Root Of 322*x^4+520*x^3-851*x^2-850*x-273 2329969745575265 r005 Re(z^2+c),c=-9/40+15/41*I,n=29 2329969745654794 s002 sum(A225566[n]/(n^2*10^n-1),n=1..infinity) 2329969746398362 m001 (Trott2nd+ZetaQ(4))/(gamma(1)-GAMMA(19/24)) 2329969746945152 r002 15th iterates of z^2 + 2329969760267135 r005 Re(z^2+c),c=13/82+13/37*I,n=30 2329969765903860 l006 ln(6948/8771) 2329969766622985 a007 Real Root Of 136*x^4-101*x^3-879*x^2+69*x-353 2329969766654110 m005 (1/3*Pi-1/9)/(2*5^(1/2)-5/11) 2329969771839877 r005 Im(z^2+c),c=-41/60+12/47*I,n=33 2329969778502034 m008 (3*Pi^4-5)/(4*Pi^3-3/4) 2329969790218651 g007 Psi(2,1/11)+Psi(2,7/10)-Psi(2,2/11)-Psi(2,5/7) 2329969798167240 m002 Pi^4+E^Pi*Pi^4-E^Pi/ProductLog[Pi] 2329969798735937 r005 Im(z^2+c),c=-13/27+25/49*I,n=34 2329969805361501 a001 9349/2971215073*832040^(6/19) 2329969805361713 a001 9349/53316291173*7778742049^(6/19) 2329969806812184 m009 (5/12*Pi^2+2/3)/(4/5*Psi(1,2/3)-2/5) 2329969807456123 r005 Re(z^2+c),c=-13/122+36/59*I,n=24 2329969812201865 k002 Champernowne real with 123/2*n^2+183/2*n-130 2329969821792130 s002 sum(A107992[n]/(10^n+1),n=1..infinity) 2329969824362692 h001 (7/11*exp(1)+6/11)/(1/12*exp(1)+3/4) 2329969826896661 m001 (Psi(1,1/3)+ln(2)/ln(10))/(-Ei(1,1)+ZetaP(3)) 2329969828129753 a001 24476/7778742049*832040^(6/19) 2329969828129965 a001 24476/139583862445*7778742049^(6/19) 2329969831451596 a001 64079/20365011074*832040^(6/19) 2329969831451809 a001 64079/365435296162*7778742049^(6/19) 2329969831936246 a001 167761/53316291173*832040^(6/19) 2329969831936459 a001 167761/956722026041*7778742049^(6/19) 2329969832006956 a001 439204/139583862445*832040^(6/19) 2329969832007169 a001 439204/2504730781961*7778742049^(6/19) 2329969832017272 a001 1149851/365435296162*832040^(6/19) 2329969832017485 a001 1149851/6557470319842*7778742049^(6/19) 2329969832018778 a001 3010349/956722026041*832040^(6/19) 2329969832018997 a001 7881196/2504730781961*832040^(6/19) 2329969832019029 a001 20633239/6557470319842*832040^(6/19) 2329969832019037 a001 4769326/1515744265389*832040^(6/19) 2329969832019049 a001 12752043/4052739537881*832040^(6/19) 2329969832019133 a001 4870847/1548008755920*832040^(6/19) 2329969832019708 a001 1860498/591286729879*832040^(6/19) 2329969832019920 a001 620166/3536736619241*7778742049^(6/19) 2329969832023648 a001 1/317811*832040^(6/19) 2329969832023861 a001 710647/4052739537881*7778742049^(6/19) 2329969832050657 a001 271443/86267571272*832040^(6/19) 2329969832050869 a001 90481/516002918640*7778742049^(6/19) 2329969832235777 a001 103682/32951280099*832040^(6/19) 2329969832235989 a001 103682/591286729879*7778742049^(6/19) 2329969833504608 a001 39603/12586269025*832040^(6/19) 2329969833504821 a001 13201/75283811239*7778742049^(6/19) 2329969839092327 m001 (-Gompertz+Magata)/(2^(1/2)-exp(-1/2*Pi)) 2329969842201306 a001 2161/686789568*832040^(6/19) 2329969842201519 a001 15127/86267571272*7778742049^(6/19) 2329969842329920 l006 ln(760/7811) 2329969849787121 a003 sin(Pi*10/97)/cos(Pi*57/115) 2329969862668222 a007 Real Root Of 350*x^4+546*x^3-925*x^2-930*x-554 2329969871623142 r005 Im(z^2+c),c=-23/102+20/59*I,n=17 2329969878589548 r009 Im(z^3+c),c=-9/70+55/62*I,n=2 2329969884665020 a001 5473/161*843^(2/7) 2329969891850735 p002 log(5+3^(1/3)*7^(2/3)) 2329969895210294 b008 (47*Tan[1])/Pi 2329969898864688 m001 (1+GAMMA(2/3))/(gamma(1)+Zeta(1,2)) 2329969901809364 a001 5778/1836311903*832040^(6/19) 2329969901809577 a001 1926/10983760033*7778742049^(6/19) 2329969903713865 m009 (5/6*Psi(1,3/4)-1/6)/(2*Psi(1,3/4)-5) 2329969912231871 k002 Champernowne real with 62*n^2+90*n-129 2329969924852563 r005 Im(z^2+c),c=-57/46+1/64*I,n=41 2329969926306337 m001 HardHexagonsEntropy^Salem/HardyLittlewoodC3 2329969930682473 m001 (sin(1)+3)/exp(1/2) 2329969935127359 a007 Real Root Of -300*x^4-214*x^3+234*x^2+433*x-110 2329969935449601 m001 1/MinimumGamma/Cahen^2*exp(GAMMA(1/4))^2 2329969952250878 a001 98209/2889*199^(4/11) 2329969952907070 m001 (-Khinchin+ZetaQ(3))/(2^(1/3)-exp(1/Pi)) 2329969953870410 g005 GAMMA(3/4)/GAMMA(5/8)/GAMMA(2/7)/GAMMA(4/5) 2329969956230742 m001 (Salem-Totient)/(AlladiGrinstead-OneNinth) 2329969957632448 a001 4250681*8^(9/11) 2329969959523850 a007 Real Root Of 265*x^4+963*x^3+438*x^2-561*x+686 2329969967885828 m006 (5/6*exp(2*Pi)+5/6)/(3/4*ln(Pi)-2/3) 2329970000625925 m001 MinimumGamma*(Ei(1)-ln(2)/ln(10)) 2329970004341645 m001 1/BesselJ(0,1)^2/exp(Rabbit)^2/sqrt(Pi) 2329970004582357 a001 514229/7*199^(32/49) 2329970011848622 a001 514229/15127*199^(4/11) 2329970012261877 k002 Champernowne real with 125/2*n^2+177/2*n-128 2329970019206958 m005 (1/2*3^(1/2)+7/11)/(-2/21+1/14*5^(1/2)) 2329970020543816 a001 1346269/39603*199^(4/11) 2329970021812427 a001 1762289/51841*199^(4/11) 2329970021997515 a001 9227465/271443*199^(4/11) 2329970022024519 a001 24157817/710647*199^(4/11) 2329970022028459 a001 31622993/930249*199^(4/11) 2329970022029034 a001 165580141/4870847*199^(4/11) 2329970022029118 a001 433494437/12752043*199^(4/11) 2329970022029130 a001 567451585/16692641*199^(4/11) 2329970022029132 a001 2971215073/87403803*199^(4/11) 2329970022029132 a001 7778742049/228826127*199^(4/11) 2329970022029132 a001 10182505537/299537289*199^(4/11) 2329970022029132 a001 53316291173/1568397607*199^(4/11) 2329970022029132 a001 139583862445/4106118243*199^(4/11) 2329970022029132 a001 182717648081/5374978561*199^(4/11) 2329970022029132 a001 956722026041/28143753123*199^(4/11) 2329970022029132 a001 2504730781961/73681302247*199^(4/11) 2329970022029132 a001 3278735159921/96450076809*199^(4/11) 2329970022029132 a001 10610209857723/312119004989*199^(4/11) 2329970022029132 a001 4052739537881/119218851371*199^(4/11) 2329970022029132 a001 387002188980/11384387281*199^(4/11) 2329970022029132 a001 591286729879/17393796001*199^(4/11) 2329970022029132 a001 225851433717/6643838879*199^(4/11) 2329970022029132 a001 1135099622/33391061*199^(4/11) 2329970022029132 a001 32951280099/969323029*199^(4/11) 2329970022029132 a001 12586269025/370248451*199^(4/11) 2329970022029132 a001 1201881744/35355581*199^(4/11) 2329970022029133 a001 1836311903/54018521*199^(4/11) 2329970022029137 a001 701408733/20633239*199^(4/11) 2329970022029169 a001 66978574/1970299*199^(4/11) 2329970022029389 a001 102334155/3010349*199^(4/11) 2329970022030894 a001 39088169/1149851*199^(4/11) 2329970022041209 a001 196452/5779*199^(4/11) 2329970022111906 a001 5702887/167761*199^(4/11) 2329970022596472 a001 2178309/64079*199^(4/11) 2329970022908246 a007 Real Root Of -234*x^4-820*x^3-793*x^2-416*x-140 2329970024171062 a001 36/341*3571^(16/17) 2329970024550392 m001 ((1+3^(1/2))^(1/2)+OneNinth)^(2*Pi/GAMMA(5/6)) 2329970024550392 m001 (OneNinth+sqrt(1+sqrt(3)))^GAMMA(1/6) 2329970025917741 a001 208010/6119*199^(4/11) 2329970030612491 a001 322/11*(1/2*5^(1/2)+1/2)^24*11^(17/20) 2329970042214932 r005 Im(z^2+c),c=-11/29+5/13*I,n=28 2329970045180858 m009 (3/5*Psi(1,1/3)+5/6)/(2/3*Psi(1,2/3)-5) 2329970048682055 a001 317811/9349*199^(4/11) 2329970055220614 m005 (5/6*gamma+1/3)/(2*2^(1/2)+2/3) 2329970059410338 m001 (-gamma(2)+Artin)/(BesselJ(0,1)+ln(2^(1/2)+1)) 2329970063254764 m001 (-KomornikLoreti+Landau)/(Psi(2,1/3)+3^(1/2)) 2329970064769352 r005 Im(z^2+c),c=-37/29+5/49*I,n=6 2329970076396748 a007 Real Root Of 41*x^4+237*x^3+982*x^2-496*x-166 2329970087796526 m001 5^(1/2)-BesselJ(0,1)+Thue 2329970088013800 m001 PisotVijayaraghavan*exp(Si(Pi))/BesselK(1,1)^2 2329970088874241 a001 305/161*3571^(10/17) 2329970092586735 m005 (1/3*Zeta(3)+1/6)/(3/10*gamma-5/12) 2329970096920222 m001 GAMMA(5/12)/Niven/exp(Pi)^2 2329970102700594 a007 Real Root Of -11*x^4-237*x^3+428*x^2-498*x+127 2329970103917745 l006 ln(3373/4258) 2329970104783311 a001 6765/322*843^(5/14) 2329970105258882 m001 1/GAMMA(17/24)^2*exp(OneNinth)*sin(Pi/5)^2 2329970112291883 k002 Champernowne real with 63*n^2+87*n-127 2329970117406090 a007 Real Root Of 301*x^4+273*x^3-863*x^2+75*x-558 2329970122969147 m001 TreeGrowth2nd*(arctan(1/3)+exp(-1/2*Pi)) 2329970125892148 m005 (1/2*3^(1/2)-3/4)/(1/7*2^(1/2)-7/10) 2329970129992716 a005 (1/sin(73/167*Pi))^1802 2329970131528452 m001 1/Niven^2/exp(Lehmer)*GAMMA(3/4) 2329970133699661 r005 Im(z^2+c),c=-17/40+29/64*I,n=15 2329970142956642 m007 (-2/5*gamma-4/5*ln(2)+5)/(-4*gamma+1/2) 2329970150736757 r002 17th iterates of z^2 + 2329970153200090 m001 (GAMMA(11/12)-Mills)^exp(1) 2329970153815611 m001 1/gamma^2*exp(TreeGrowth2nd)*sqrt(5)^2 2329970154328746 a007 Real Root Of 875*x^4+274*x^3+511*x^2-836*x+161 2329970154947355 m001 (FeigenbaumMu-Landau)/(TreeGrowth2nd+Thue) 2329970160729129 a008 Real Root of x^4-x^3-8*x^2-7*x-15 2329970163018480 a007 Real Root Of -861*x^4-176*x^3-608*x^2+484*x-75 2329970170869272 a007 Real Root Of 375*x^4+557*x^3-586*x^2+61*x-683 2329970171441899 l006 ln(389/3998) 2329970173688240 a001 36/341*9349^(16/19) 2329970180210946 r005 Re(z^2+c),c=-22/27+6/61*I,n=10 2329970182322479 a001 305/161*9349^(10/19) 2329970184108403 m001 Sarnak/HeathBrownMoroz/CopelandErdos 2329970184844604 r002 28th iterates of z^2 + 2329970193173431 a001 36/341*24476^(16/21) 2329970194500723 a001 305/161*24476^(10/21) 2329970194786178 g002 -Psi(6/11)-Psi(1/10)-Psi(5/9)-Psi(1/9) 2329970195741954 a001 36/341*64079^(16/23) 2329970196106050 a001 305/161*64079^(10/23) 2329970196136693 a001 36/341*(1/2+1/2*5^(1/2))^16 2329970196136693 a001 36/341*23725150497407^(1/4) 2329970196136693 a001 36/341*73681302247^(4/13) 2329970196136693 a001 36/341*10749957122^(1/3) 2329970196136693 a001 36/341*4106118243^(8/23) 2329970196136693 a001 36/341*1568397607^(4/11) 2329970196136693 a001 36/341*599074578^(8/21) 2329970196136693 a001 36/341*228826127^(2/5) 2329970196136694 a001 36/341*87403803^(8/19) 2329970196136694 a001 36/341*33385282^(4/9) 2329970196136700 a001 36/341*12752043^(8/17) 2329970196136743 a001 36/341*4870847^(1/2) 2329970196137052 a001 36/341*1860498^(8/15) 2329970196139330 a001 36/341*710647^(4/7) 2329970196156153 a001 36/341*271443^(8/13) 2329970196281188 a001 36/341*103682^(2/3) 2329970196319647 a001 305/161*167761^(2/5) 2329970196352761 a001 305/161*20633239^(2/7) 2329970196352763 a001 305/161*2537720636^(2/9) 2329970196352763 a001 305/161*312119004989^(2/11) 2329970196352763 a001 305/161*(1/2+1/2*5^(1/2))^10 2329970196352763 a001 305/161*28143753123^(1/5) 2329970196352763 a001 305/161*10749957122^(5/24) 2329970196352763 a001 305/161*4106118243^(5/23) 2329970196352763 a001 305/161*1568397607^(5/22) 2329970196352763 a001 305/161*599074578^(5/21) 2329970196352763 a001 305/161*228826127^(1/4) 2329970196352763 a001 305/161*87403803^(5/19) 2329970196352763 a001 305/161*33385282^(5/18) 2329970196352767 a001 305/161*12752043^(5/17) 2329970196352793 a001 305/161*4870847^(5/16) 2329970196352987 a001 305/161*1860498^(1/3) 2329970196354410 a001 305/161*710647^(5/14) 2329970196364925 a001 305/161*271443^(5/13) 2329970196443072 a001 305/161*103682^(5/12) 2329970197028023 a001 305/161*39603^(5/11) 2329970197217111 a001 36/341*39603^(8/11) 2329970199262670 a005 (1/cos(13/140*Pi))^553 2329970201443899 a001 305/161*15127^(1/2) 2329970204282512 a001 36/341*15127^(4/5) 2329970204710994 a001 121393/3571*199^(4/11) 2329970209645743 m001 (Conway+ErdosBorwein)/(Trott+ZetaQ(4)) 2329970211787547 m001 (FeigenbaumMu-OneNinth)/(ln(5)-Champernowne) 2329970212321889 k002 Champernowne real with 127/2*n^2+171/2*n-126 2329970235125174 a001 305/161*5778^(5/9) 2329970241454689 m001 (-Grothendieck+Mills)/(exp(1)-exp(Pi)) 2329970243035659 a007 Real Root Of 36*x^4-91*x^3-324*x^2+367*x+402 2329970243488912 a003 cos(Pi*10/117)/sin(Pi*11/81) 2329970254467726 m001 GAMMA(17/24)*(gamma(2)+MasserGramainDelta) 2329970258172552 a001 36/341*5778^(8/9) 2329970259169218 a001 6/726103*10946^(41/48) 2329970265302943 m001 (Ei(1)+Bloch)/(Stephens+TreeGrowth2nd) 2329970270087493 r009 Im(z^3+c),c=-5/17+4/21*I,n=2 2329970273883694 r005 Im(z^2+c),c=-37/78+29/56*I,n=55 2329970286864215 m001 (exp(1)+FellerTornier)/(ZetaP(4)+ZetaQ(2)) 2329970288466579 m001 (ln(3)-GAMMA(13/24))/(GAMMA(7/12)+Kolakoski) 2329970295008360 m005 (1/2*Pi+5/9)/(4*5^(1/2)+2/11) 2329970296133025 r002 8th iterates of z^2 + 2329970297005806 a007 Real Root Of 456*x^4+818*x^3-825*x^2-741*x-340 2329970298910377 m001 (Khinchin-ZetaQ(3))^Thue 2329970304462209 r009 Re(z^3+c),c=-2/17+35/53*I,n=8 2329970310369069 a001 2207/701408733*832040^(6/19) 2329970310369282 a001 2207/12586269025*7778742049^(6/19) 2329970311695870 a005 (1/sin(92/211*Pi))^1853 2329970312351895 k002 Champernowne real with 64*n^2+84*n-125 2329970316971052 s002 sum(A215821[n]/(n^2*10^n-1),n=1..infinity) 2329970319835344 m001 (FeigenbaumDelta+Gompertz)/(1+2^(1/3)) 2329970321571034 p001 sum(1/(316*n+43)/(64^n),n=0..infinity) 2329970324434958 r005 Im(z^2+c),c=-1/10+8/27*I,n=21 2329970343933761 a007 Real Root Of -654*x^4+589*x^3-886*x^2+822*x+249 2329970349770479 m006 (3/5*ln(Pi)-1/5)/(2*ln(Pi)-1/5) 2329970364802494 a007 Real Root Of 438*x^4+777*x^3-203*x^2+704*x-338 2329970370157214 m001 (cos(1)+GAMMA(19/24))/(-Champernowne+Thue) 2329970375812993 a001 4181/322*843^(3/7) 2329970378372339 r005 Re(z^2+c),c=-7/54+24/41*I,n=52 2329970380360391 m001 (5^(1/2)+ln(Pi))/(3^(1/3)+ZetaQ(3)) 2329970380583280 h001 (1/4*exp(1)+5/9)/(2/3*exp(2)+3/8) 2329970390521508 r005 Re(z^2+c),c=-5/22+15/28*I,n=12 2329970398922517 m001 Zeta(1,2)+Gompertz*ReciprocalLucas 2329970405666427 h001 (5/7*exp(2)+1/2)/(7/11*exp(1)+3/4) 2329970409375800 q001 1/42919 2329970412381901 k002 Champernowne real with 129/2*n^2+165/2*n-124 2329970416947710 r002 27th iterates of z^2 + 2329970418483729 m005 (3/4*exp(1)-2/5)/(2*Pi+3/4) 2329970419751600 r005 Re(z^2+c),c=27/122+21/50*I,n=33 2329970426560407 a007 Real Root Of -192*x^4-353*x^3+390*x^2+572*x+409 2329970441652589 p004 log(28541/2777) 2329970441890677 g007 Psi(2,1/10)+Psi(2,1/8)-Psi(2,1/7)-Psi(2,3/5) 2329970445052207 m001 ZetaP(4)-CopelandErdos-exp(Pi) 2329970453960206 a007 Real Root Of -445*x^4-876*x^3+113*x^2-609*x+2 2329970454781569 a007 Real Root Of 803*x^4+633*x^3+291*x^2-608*x+14 2329970457137839 m001 (Salem-exp(1))/(TwinPrimes+ZetaQ(4)) 2329970462799223 l006 ln(6544/8261) 2329970477903854 m005 (1/3*gamma+1/9)/(69/77+2/11*5^(1/2)) 2329970479017181 a007 Real Root Of 483*x^4+849*x^3-517*x^2+446*x+350 2329970485669315 l006 ln(796/8181) 2329970492749577 r005 Im(z^2+c),c=13/114+26/41*I,n=14 2329970495321570 a001 305/161*2207^(5/8) 2329970508093716 m005 (1/2*Catalan+4/9)/(2/5*exp(1)-7/10) 2329970512411907 k002 Champernowne real with 65*n^2+81*n-123 2329970513554994 a001 1292/161*843^(1/2) 2329970518997346 m008 (4*Pi^6+3/4)/(5*Pi+4/5) 2329970519072870 a007 Real Root Of 291*x^4-705*x^3-131*x^2-510*x+134 2329970519529495 a007 Real Root Of x^4+232*x^3-230*x^2+539*x+172 2329970521299277 a001 521/4181*75025^(6/23) 2329970532485799 m009 (1/6*Psi(1,3/4)-4/5)/(5*Psi(1,2/3)+5/6) 2329970545879682 r002 8th iterates of z^2 + 2329970547407325 a001 55/39603*76^(28/43) 2329970547852433 a001 521/75025*4807526976^(6/23) 2329970559920930 m001 (-BesselJ(0,1)+ln(2+3^(1/2)))/(exp(Pi)+cos(1)) 2329970561633323 m001 (log(gamma)+GAMMA(19/24))/GAMMA(1/3) 2329970562757654 a007 Real Root Of -899*x^4-196*x^3-892*x^2+976*x+276 2329970562820630 m001 (Conway-Lehmer)/(MertensB2-Totient) 2329970563481994 r005 Re(z^2+c),c=-13/56+21/61*I,n=27 2329970568252612 m001 FeigenbaumDelta*ReciprocalLucas+Riemann1stZero 2329970568568864 a001 1/41*11^(16/17) 2329970573374917 a001 141/46*843^(9/14) 2329970584972006 m001 (sin(1/5*Pi)+FeigenbaumD)/(Lehmer-ZetaP(2)) 2329970594328253 s002 sum(A192224[n]/(n^2*10^n-1),n=1..infinity) 2329970612441913 k002 Champernowne real with 131/2*n^2+159/2*n-122 2329970613078023 a007 Real Root Of -79*x^4+441*x^3-159*x^2-775*x-581 2329970613386320 a007 Real Root Of -310*x^4-387*x^3+982*x^2+397*x-165 2329970614896897 a007 Real Root Of 135*x^4+115*x^3-485*x^2-321*x-639 2329970629973221 a003 sin(Pi*5/112)/sin(Pi*17/83) 2329970630681034 a007 Real Root Of -296*x^4-370*x^3+734*x^2-169*x-335 2329970631377315 r009 Im(z^3+c),c=-29/78+9/58*I,n=20 2329970639354521 m001 (Zeta(1/2)+MertensB2)/(2^(1/3)+LambertW(1)) 2329970640998195 r005 Im(z^2+c),c=-141/122+11/48*I,n=7 2329970649197717 a007 Real Root Of 797*x^4+514*x^3+752*x^2-907*x-248 2329970652681131 m001 exp(1/2)^Lehmer/gamma 2329970656802061 a001 9/305*1346269^(26/55) 2329970668379844 m005 (1/3*Catalan+1/10)/(8/9*3^(1/2)+1/5) 2329970676836593 m001 (2*Pi/GAMMA(5/6)+Lehmer)/(Porter+Salem) 2329970686582113 b008 1/12+7*Sqrt[11] 2329970693686348 r005 Im(z^2+c),c=-23/98+16/49*I,n=6 2329970693805439 m001 Zeta(1,2)*GAMMA(5/24)*exp(sqrt(3)) 2329970696876842 r005 Im(z^2+c),c=-73/70+13/55*I,n=23 2329970700840128 m001 5^(1/2)/(AlladiGrinstead^DuboisRaymond) 2329970712471919 k002 Champernowne real with 66*n^2+78*n-121 2329970712658639 q001 716/3073 2329970716696417 r009 Re(z^3+c),c=-5/26+53/59*I,n=3 2329970717170260 m001 exp(CopelandErdos)/Champernowne/BesselJ(1,1) 2329970721694740 a007 Real Root Of 545*x^4+933*x^3-597*x^2+517*x+185 2329970728384868 m001 (GaussKuzminWirsing-ThueMorse)/FeigenbaumDelta 2329970737143215 a007 Real Root Of -313*x^4-703*x^3-305*x^2-834*x+45 2329970737709242 a007 Real Root Of 386*x^4+657*x^3-938*x^2-944*x-173 2329970752779940 r005 Im(z^2+c),c=-13/118+3/10*I,n=20 2329970758434727 m001 (Chi(1)+Zeta(1/2))/(FeigenbaumB+Tribonacci) 2329970759422997 a005 (1/cos(1/108*Pi))^1999 2329970765578410 a007 Real Root Of 299*x^4+394*x^3-751*x^2-293*x-434 2329970772070690 a008 Real Root of x^4-x^3+34*x^2+20*x-248 2329970785999603 l006 ln(407/4183) 2329970786237101 a007 Real Root Of -470*x^4-752*x^3+963*x^2+719*x+787 2329970788538629 r002 3th iterates of z^2 + 2329970793870595 m001 exp(Pi)/(ln(3)^gamma(1)) 2329970800422064 m005 (1/2*3^(1/2)-5/8)/(3/10*5^(1/2)+4/11) 2329970812501925 k002 Champernowne real with 133/2*n^2+153/2*n-120 2329970816479970 a001 144*322^(1/12) 2329970821906019 m001 (ln(3)-gamma(3))/(Cahen-Gompertz) 2329970826859334 a001 199/21*514229^(18/43) 2329970826982639 a007 Real Root Of -141*x^4-467*x^3-707*x^2-814*x+190 2329970827015368 r005 Im(z^2+c),c=-83/102+5/33*I,n=25 2329970833627080 r005 Im(z^2+c),c=-25/42+13/32*I,n=16 2329970838620222 m001 1/FeigenbaumB^2/ln(Conway)^2/log(1+sqrt(2)) 2329970841474098 a007 Real Root Of -528*x^4-739*x^3+941*x^2-506*x-74 2329970844542262 l006 ln(3171/4003) 2329970863079187 r005 Im(z^2+c),c=-7/16+26/49*I,n=53 2329970872594758 r005 Re(z^2+c),c=-3/13+13/37*I,n=14 2329970883354702 m001 (-Riemann2ndZero+TwinPrimes)/(2^(1/2)-cos(1)) 2329970891659458 a007 Real Root Of 251*x^4-696*x^3-743*x^2-891*x+256 2329970891787014 a007 Real Root Of -446*x^4-571*x^3+725*x^2-815*x+87 2329970899287194 a007 Real Root Of 142*x^4+279*x^3+128*x^2+357*x-519 2329970900024987 m001 (Artin+MertensB1)/(3^(1/3)+GAMMA(17/24)) 2329970902869017 m008 (1/5*Pi^4-1/6)/(1/3*Pi^2+5) 2329970909158010 m001 (GAMMA(13/24)+GaussAGM)/(MertensB2+Trott2nd) 2329970911928106 m001 ln(OneNinth)^2/MinimumGamma^2*Zeta(9) 2329970912531931 k002 Champernowne real with 67*n^2+75*n-119 2329970915693881 a007 Real Root Of -369*x^4-646*x^3+971*x^2+738*x-848 2329970920090061 m001 (Ei(1,1)+Kac)/(3^(1/2)+Ei(1)) 2329970926640295 m005 (7/8+1/4*5^(1/2))/(1/7*Pi+1/6) 2329970927063656 a007 Real Root Of 311*x^4+667*x^3-19*x^2-107*x-875 2329970932492968 r002 29th iterates of z^2 + 2329970941822621 m001 KhinchinHarmonic*MadelungNaCl^polylog(4,1/2) 2329970942145668 m001 (FeigenbaumMu+Paris)/(ln(2)+ln(2^(1/2)+1)) 2329970948408742 r005 Im(z^2+c),c=-41/40+12/55*I,n=10 2329970948958239 m001 (Shi(1)-Si(Pi))/(-cos(1)+ln(2^(1/2)+1)) 2329970961830570 r005 Re(z^2+c),c=17/50+17/42*I,n=45 2329970969203487 a007 Real Root Of 40*x^4+911*x^3-461*x^2+648*x-115 2329971000248794 a001 1597/322*843^(4/7) 2329971010601931 m001 (Gompertz-HeathBrownMoroz)/(Pi-sin(1/5*Pi)) 2329971012561937 k002 Champernowne real with 135/2*n^2+147/2*n-118 2329971015651530 m005 (1/2*gamma+7/8)/(-11/72+7/24*5^(1/2)) 2329971032452289 s002 sum(A130702[n]/(pi^n+1),n=1..infinity) 2329971033728018 r005 Re(z^2+c),c=-7/50+22/45*I,n=11 2329971049583747 s002 sum(A192096[n]/(n^2*10^n-1),n=1..infinity) 2329971051959486 r005 Im(z^2+c),c=-49/122+16/41*I,n=26 2329971054876431 m009 (1/2*Psi(1,3/4)+5/6)/(1/6*Psi(1,3/4)-1/3) 2329971056489554 m001 MadelungNaCl+MertensB2-ZetaP(2) 2329971062528429 a007 Real Root Of -601*x^4-996*x^3+985*x^2-269*x-860 2329971073334746 l006 ln(832/8551) 2329971073733087 a007 Real Root Of -441*x^4-967*x^3+258*x^2+452*x+418 2329971081800199 b008 8+3*ArcSinh[82] 2329971086378386 m001 (Zeta(5)+FeigenbaumAlpha)/(Thue+TwinPrimes) 2329971091797848 a007 Real Root Of -19*x^4-409*x^3+825*x^2+967*x+855 2329971106929768 m001 3^(1/3)*(Porter+ZetaR(2)) 2329971112591943 k002 Champernowne real with 68*n^2+72*n-117 2329971115388453 a001 39603/89*610^(41/42) 2329971115862731 m001 1/CopelandErdos*ln(Backhouse)*MinimumGamma 2329971126391643 m005 (3/5*Pi+1/2)/(1/6*Pi+1/2) 2329971126391643 m006 (1/2/Pi+3/5)/(1/2/Pi+1/6) 2329971126391643 m008 (3/5*Pi+1/2)/(1/6*Pi+1/2) 2329971130280260 m001 1/Niven/Kolakoski^2*ln(GAMMA(17/24)) 2329971132776598 p001 sum((-1)^n/(503*n+307)/n/(5^n),n=1..infinity) 2329971145522037 b008 -33/2+Tan[8] 2329971150006781 m001 (1+exp(1))/(cos(1)+GAMMA(11/12)) 2329971156880434 a007 Real Root Of -94*x^4+88*x^3+902*x^2+498*x+147 2329971178461404 m001 (Sarnak-TwinPrimes)/(Zeta(1,2)-KomornikLoreti) 2329971181556195 q001 1617/694 2329971189179635 a007 Real Root Of 323*x^4+420*x^3-912*x^2-516*x-458 2329971212621949 k002 Champernowne real with 137/2*n^2+141/2*n-116 2329971217543489 r009 Re(z^3+c),c=-5/16+19/54*I,n=17 2329971223998854 r002 3th iterates of z^2 + 2329971226973805 a005 (1/sin(89/235*Pi))^785 2329971230162225 m009 (32/5*Catalan+4/5*Pi^2+1/3)/(1/2*Psi(1,1/3)+1) 2329971247807246 a007 Real Root Of -353*x^4-737*x^3-23*x^2-173*x+803 2329971251403232 l006 ln(6140/7751) 2329971258794649 r009 Re(z^3+c),c=-29/82+31/64*I,n=12 2329971260057361 a007 Real Root Of -206*x^4-685*x^3-733*x^2-712*x-273 2329971261189346 r009 Im(z^3+c),c=-39/86+3/52*I,n=12 2329971271078025 p004 log(30391/2957) 2329971274149815 a001 11592/341*199^(4/11) 2329971289278786 a003 sin(Pi*7/65)*sin(Pi*27/109) 2329971298592930 m001 (-BesselI(1,2)+4)/(-cos(Pi/12)+2) 2329971312651955 k002 Champernowne real with 69*n^2+69*n-115 2329971313075123 m001 1/Riemann2ndZero/ln(Bloch)/exp(1) 2329971316536769 s001 sum(exp(-Pi/3)^n*A155045[n],n=1..infinity) 2329971322920739 m001 (Zeta(3)*FeigenbaumAlpha-exp(-1/2*Pi))/Zeta(3) 2329971332544900 m001 CopelandErdos/(ZetaQ(3)^Zeta(1/2)) 2329971333977366 r005 Im(z^2+c),c=-83/110+9/56*I,n=10 2329971339604555 m005 (1/2*exp(1)-5/8)/(2/9*5^(1/2)-2/11) 2329971345492597 m001 Ei(1)/Rabbit^2/ln(sinh(1)) 2329971347927582 m001 (LambertW(1)-Shi(1))/(-Conway+Magata) 2329971348500324 l006 ln(425/4368) 2329971351499314 m001 Pi*2^(1/2)/GAMMA(3/4)/CopelandErdos/TwinPrimes 2329971356611885 m005 (1/2*Pi-1/11)/(5/7*2^(1/2)-3/8) 2329971367446936 m001 ReciprocalFibonacci^(2*Pi/GAMMA(5/6))*Trott2nd 2329971370228266 r005 Im(z^2+c),c=-23/20+3/13*I,n=37 2329971379745786 r005 Re(z^2+c),c=-5/28+29/60*I,n=48 2329971391380487 r009 Re(z^3+c),c=-39/106+33/61*I,n=20 2329971400546911 m001 (5^(1/2))^cos(1/5*Pi)+ThueMorse 2329971400546911 m001 sqrt(5)^cos(Pi/5)+ThueMorse 2329971412626870 r005 Im(z^2+c),c=-10/21+16/39*I,n=39 2329971412681961 k002 Champernowne real with 139/2*n^2+135/2*n-114 2329971414736036 m001 1/ln(GAMMA(3/4))^2/GAMMA(23/24)^2/Pi^2 2329971415854361 m005 (1/2*Pi-2)/(6*Pi-3/7) 2329971418837546 r005 Re(z^2+c),c=23/106+13/27*I,n=26 2329971420049727 m004 -1/(5*E^(Sqrt[5]*Pi))+ProductLog[Sqrt[5]*Pi]^2 2329971421110398 m001 (cos(1)+gamma(2))/(-Zeta(1,2)+Totient) 2329971422711114 a007 Real Root Of -413*x^4-834*x^3+581*x^2+732*x+174 2329971433377833 r005 Im(z^2+c),c=-9/10+19/97*I,n=28 2329971437568793 a001 76/4181*610^(28/37) 2329971440009700 a007 Real Root Of -467*x^4-714*x^3+796*x^2+80*x+597 2329971440317925 m005 (1/3*Zeta(3)-1/9)/(5/11*2^(1/2)+3/5) 2329971443620518 a007 Real Root Of 606*x^4+872*x^3-912*x^2+927*x+281 2329971458001509 a007 Real Root Of -228*x^4-86*x^3+900*x^2+43*x+846 2329971458657592 g005 GAMMA(2/9)/GAMMA(10/11)/GAMMA(5/11)/GAMMA(1/9) 2329971463382953 h001 (7/11*exp(2)+3/11)/(5/9*exp(1)+5/8) 2329971469666300 m006 (4*exp(Pi)-3/5)/(1/6/Pi-4) 2329971470890265 r005 Im(z^2+c),c=-23/34+4/127*I,n=43 2329971472682715 h005 exp(sin(Pi*10/49)/cos(Pi*1/4)) 2329971473619286 r005 Im(z^2+c),c=-43/90+22/51*I,n=36 2329971473704601 r005 Re(z^2+c),c=-23/94+13/43*I,n=17 2329971480681525 r004 Re(z^2+c),c=-5/34+6/11*I,z(0)=I,n=45 2329971483244299 m001 1/Champernowne/ln(Cahen)/FransenRobinson^2 2329971484891555 m001 Lehmer/(ZetaP(3)-exp(1)) 2329971490750100 m006 (1/6*Pi+4/5)/(5/6/Pi-5/6) 2329971495425171 m001 BesselI(0,2)+Tribonacci*Trott2nd 2329971498974574 m005 (1/2*3^(1/2)-10/11)/(3/7*Zeta(3)-7/10) 2329971512711967 k002 Champernowne real with 70*n^2+66*n-113 2329971513048234 m001 TreeGrowth2nd^2*ArtinRank2*ln(sin(1)) 2329971514330182 r009 Re(z^3+c),c=-21/62+7/17*I,n=12 2329971516979399 r005 Im(z^2+c),c=-25/66+19/49*I,n=20 2329971520633327 m001 GAMMA(7/12)/Champernowne*ln(cosh(1))^2 2329971524278350 r002 5th iterates of z^2 + 2329971526375249 r009 Im(z^3+c),c=-29/78+9/58*I,n=16 2329971531812383 p001 sum(1/(549*n+437)/(25^n),n=0..infinity) 2329971546110521 m001 1/exp(BesselJ(0,1))/DuboisRaymond^2*Ei(1) 2329971553579147 a001 55/5778*3^(22/27) 2329971554176364 q001 901/3867 2329971555229829 s002 sum(A167777[n]/(n^2*10^n-1),n=1..infinity) 2329971560519347 m001 Champernowne/BesselI(1,1)/Zeta(1,2) 2329971564047939 r009 Re(z^3+c),c=-9/74+53/63*I,n=18 2329971575949322 r005 Im(z^2+c),c=-8/21+22/57*I,n=29 2329971581327478 h001 (1/4*exp(1)+6/11)/(7/11*exp(2)+5/9) 2329971583684540 a007 Real Root Of 279*x^4+571*x^3-514*x^2-692*x+178 2329971599363605 m005 (1/2*Catalan+2/9)/(Pi-2/9) 2329971609867314 m005 (51/44+1/4*5^(1/2))/(2/7*2^(1/2)+1/3) 2329971611212346 k007 concat of cont frac of 2329971612253433 l006 ln(868/8921) 2329971612741973 k002 Champernowne real with 141/2*n^2+129/2*n-112 2329971624451834 m001 Zeta(5)+ln(2^(1/2)+1)*Porter 2329971627237711 h001 (-8*exp(-3)+1)/(-4*exp(1/3)+3) 2329971645378437 a007 Real Root Of -328*x^4-723*x^3+167*x^2+273*x+251 2329971651571725 r005 Im(z^2+c),c=4/27+7/38*I,n=11 2329971655627998 m001 (BesselJ(1,1)+Khinchin)/(Totient+ZetaQ(4)) 2329971661940228 a007 Real Root Of -443*x^4-942*x^3+252*x^2-220*x-740 2329971664454556 r005 Im(z^2+c),c=-67/66+6/25*I,n=64 2329971667005873 r005 Re(z^2+c),c=-1/4+15/53*I,n=15 2329971668001175 r005 Im(z^2+c),c=13/62+34/63*I,n=42 2329971671654593 a007 Real Root Of 225*x^4+115*x^3-898*x^2+68*x-143 2329971685945530 l006 ln(2969/3748) 2329971690592081 m008 (4/5*Pi^3+2)/(3/5*Pi-2) 2329971699550020 a007 Real Root Of 263*x^4+501*x^3-455*x^2-149*x+709 2329971701861414 r005 Im(z^2+c),c=-3/26+16/53*I,n=17 2329971711255025 a003 2^(1/2)-cos(7/27*Pi)+cos(7/24*Pi)+cos(1/27*Pi) 2329971712771979 k002 Champernowne real with 71*n^2+63*n-111 2329971717724078 r005 Re(z^2+c),c=23/126+23/36*I,n=5 2329971720555741 r005 Im(z^2+c),c=-1/10+8/27*I,n=14 2329971722038821 m001 HeathBrownMoroz^PlouffeB/FeigenbaumC 2329971722391454 m005 (1/2*Zeta(3)+1/9)/(6/7*Pi+4/11) 2329971726229790 a007 Real Root Of 262*x^4+812*x^3+282*x^2-862*x-990 2329971746754200 m001 (Backhouse-ErdosBorwein)/(Lehmer+ZetaQ(2)) 2329971764504214 p001 sum((-1)^n/(518*n+429)/(1024^n),n=0..infinity) 2329971778737701 a007 Real Root Of 325*x^4+460*x^3-664*x^2-18*x-197 2329971782732616 m001 (GaussAGM-exp(1))/(Paris+Rabbit) 2329971783866646 b008 E*(-1/4+ArcTan[2]) 2329971800259984 r005 Re(z^2+c),c=-11/102+31/55*I,n=23 2329971806595280 m001 1/Rabbit^2*Artin^2*exp(GAMMA(5/12)) 2329971812801985 k002 Champernowne real with 143/2*n^2+123/2*n-110 2329971820996829 p001 sum(1/(299*n+37)/n/(128^n),n=1..infinity) 2329971833854575 m001 sin(1/5*Pi)^Totient+Tribonacci 2329971837653760 r002 8th iterates of z^2 + 2329971837758026 r005 Im(z^2+c),c=-9/16+33/79*I,n=58 2329971846116071 r005 Re(z^2+c),c=-13/110+38/63*I,n=57 2329971846225294 m001 (ln(3)-Kolakoski)/(MertensB3-Trott2nd) 2329971847552711 m001 exp(Salem)^2/KhintchineHarmonic/Sierpinski 2329971861786135 a001 11/987*55^(22/29) 2329971865289646 l006 ln(443/4553) 2329971866950785 m002 1+Log[Pi]+2*ProductLog[Pi]*Sech[Pi] 2329971877360998 p002 log(17/4*5^(1/3)*4^(1/4)) 2329971879506149 v002 sum(1/(2^n*(3/2*n^2+57/2*n-1)),n=1..infinity) 2329971879844072 r005 Re(z^2+c),c=-105/106+16/61*I,n=38 2329971912831991 k002 Champernowne real with 72*n^2+60*n-109 2329971914963582 m001 (gamma(1)+HeathBrownMoroz)/(Chi(1)-ln(Pi)) 2329971915710779 m001 (exp(Pi)-gamma)/(-exp(-1/2*Pi)+Salem) 2329971919813308 m008 (3/4*Pi^4+3/4)/(1/6*Pi^3-2) 2329971930176044 r005 Re(z^2+c),c=-27/98+7/44*I,n=16 2329971937212603 m001 exp(Robbin)^2*FransenRobinson/GAMMA(5/12)^2 2329971950756765 a007 Real Root Of 246*x^4+592*x^3-27*x^2+213*x+881 2329971952769466 r005 Re(z^2+c),c=-1/6+28/55*I,n=49 2329971970069474 b008 E^E^EulerGamma^2*EulerGamma 2329971977091783 r009 Im(z^3+c),c=-13/23+1/18*I,n=3 2329971982315806 r004 Im(z^2+c),c=-11/34-8/21*I,z(0)=-1,n=14 2329971987119746 m001 1/ln(RenyiParking)*LaplaceLimit^2*cosh(1) 2329972002708620 r005 Re(z^2+c),c=13/42+25/56*I,n=28 2329972003035108 r009 Re(z^3+c),c=-31/98+22/43*I,n=3 2329972006898959 m001 (Magata+Totient)/(exp(1/exp(1))+Lehmer) 2329972007660473 r002 30th iterates of z^2 + 2329972010751062 m001 GolombDickman*Si(Pi)^2/ln(GAMMA(2/3))^2 2329972012861997 k002 Champernowne real with 145/2*n^2+117/2*n-108 2329972016368458 h001 (7/11*exp(2)+1/2)/(6/11*exp(1)+3/4) 2329972020483968 m006 (3*exp(2*Pi)+1/5)/(4/5*Pi^2-1) 2329972028618709 m001 Porter*exp(Khintchine)^2/GAMMA(2/3) 2329972059567949 a007 Real Root Of -466*x^4-931*x^3+526*x^2+227*x-369 2329972064493703 p001 sum((-1)^n/(541*n+429)/(1000^n),n=0..infinity) 2329972072992351 m005 (1/2*Catalan-1/8)/(9/10*5^(1/2)-7/12) 2329972082648151 p004 log(25471/20177) 2329972091692943 a001 15456/281*199^(3/11) 2329972103913812 a001 6/7*24157817^(1/17) 2329972108249135 l006 ln(904/9291) 2329972112892003 k002 Champernowne real with 73*n^2+57*n-107 2329972143289132 m005 (1/2*3^(1/2)-6/11)/(5/12*Zeta(3)+7/8) 2329972144632054 p001 sum((-1)^n/(474*n+421)/(24^n),n=0..infinity) 2329972146441476 r005 Im(z^2+c),c=-43/110+16/41*I,n=27 2329972151093644 l006 ln(5736/7241) 2329972152625946 m001 (arctan(1/2)-MertensB3)/(Pi+sin(1/5*Pi)) 2329972165098630 r009 Re(z^3+c),c=-19/54+26/51*I,n=12 2329972172149448 m001 (3^(1/3)-Thue*ZetaP(2))/ZetaP(2) 2329972177697359 r005 Re(z^2+c),c=-17/86+18/41*I,n=29 2329972182293825 m001 (Cahen+MertensB1)/(2^(1/2)-GAMMA(23/24)) 2329972193318015 a001 377/228826127*2^(1/2) 2329972197256701 m001 MertensB3^(Tribonacci/GolombDickman) 2329972206270516 h001 (-2*exp(1/2)-3)/(-7*exp(1)-8) 2329972210420728 m005 (1/2*Pi-7/11)/(-85/168+5/24*5^(1/2)) 2329972212922009 k002 Champernowne real with 147/2*n^2+111/2*n-106 2329972221471862 a007 Real Root Of -62*x^4+179*x^3+745*x^2+85*x+245 2329972222458512 a004 Fibonacci(12)*Lucas(14)/(1/2+sqrt(5)/2)^13 2329972228979333 m001 (GAMMA(3/4)+BesselI(0,2))/(Kolakoski+Rabbit) 2329972232192448 m001 (LaplaceLimit-Magata)^Chi(1) 2329972238800101 m001 (MertensB2-Robbin)/(GAMMA(5/6)+Bloch) 2329972239179981 a001 2/6765*13^(33/41) 2329972241219172 m005 (1/2*exp(1)+1/10)/(1/5*2^(1/2)-10/11) 2329972243895839 m001 BesselK(1,1)^BesselJZeros(0,1)/BesselI(0,1) 2329972244277231 k003 Champernowne real with 17/6*n^3-9/2*n^2-16/3*n+9 2329972273354449 m001 1/exp(BesselK(0,1))^2/MertensB1*sqrt(2) 2329972274196739 k002 Champernowne real with 31*n^2-87*n+79 2329972276273093 s002 sum(A248898[n]/(n^2*2^n-1),n=1..infinity) 2329972278201774 r009 Im(z^3+c),c=-13/114+44/51*I,n=46 2329972283031423 a007 Real Root Of 195*x^4-114*x^3-871*x^2+853*x-473 2329972298695380 r009 Im(z^3+c),c=-51/110+8/53*I,n=6 2329972303904467 m009 (4*Psi(1,3/4)+6)/(32*Catalan+4*Pi^2+3/5) 2329972305147057 m001 GAMMA(7/24)^2/exp(Kolakoski)^2*Zeta(3) 2329972312952015 k002 Champernowne real with 74*n^2+54*n-105 2329972315065216 m001 (GAMMA(3/4)-ln(5))/(GAMMA(11/12)+Lehmer) 2329972327747552 m005 (1/2*2^(1/2)+5/9)/(4/11*Catalan-7/8) 2329972328596339 m001 cos(Pi/12)/Niven*exp(sqrt(2)) 2329972329294172 a007 Real Root Of -379*x^4-999*x^3+182*x^2+926*x-297 2329972334981716 a007 Real Root Of 266*x^4-496*x^3+816*x^2-565*x-183 2329972341722082 l006 ln(461/4738) 2329972348854457 m001 (Catalan+Conway)/(-GaussAGM+KomornikLoreti) 2329972351123496 r002 10th iterates of z^2 + 2329972352433015 m001 MasserGramainDelta^(GAMMA(13/24)*Thue) 2329972353344399 m001 GAMMA(1/12)^2/ln(Riemann1stZero)^2/cos(Pi/5) 2329972370903444 r005 Re(z^2+c),c=-26/21+1/31*I,n=36 2329972375509940 r005 Re(z^2+c),c=-17/94+11/23*I,n=51 2329972383304252 r009 Re(z^3+c),c=-15/62+9/59*I,n=10 2329972394630869 m005 (1/2*gamma-5/12)/(3*3^(1/2)+3/10) 2329972397637045 m001 1/2*Si(Pi)^MadelungNaCl*2^(2/3) 2329972397637045 m001 Si(Pi)^MadelungNaCl/(2^(1/3)) 2329972399221247 m001 (2^(1/2)-AlladiGrinstead)/(Sierpinski+Trott) 2329972400274112 s002 sum(A119762[n]/(n*10^n-1),n=1..infinity) 2329972412982021 k002 Champernowne real with 149/2*n^2+105/2*n-104 2329972422958559 a007 Real Root Of 45*x^4-336*x^3-699*x^2+535*x-535 2329972424704018 a007 Real Root Of -43*x^4+521*x^3-467*x^2-826*x-863 2329972427309219 m001 BesselJ(0,1)^2*TwinPrimes/ln(GAMMA(1/4))^2 2329972443850852 m001 1/OneNinth/Riemann1stZero/exp(Zeta(5)) 2329972456263581 a001 76/55*6765^(25/43) 2329972467129697 a007 Real Root Of -412*x^4+309*x^3-25*x^2+337*x+85 2329972471631817 p001 sum(1/(186*n+43)/(100^n),n=0..infinity) 2329972483043316 m005 (1/3*Catalan-1/5)/(1/7*2^(1/2)+1/4) 2329972484510685 r005 Re(z^2+c),c=7/30+5/42*I,n=8 2329972488394962 m001 (Salem+ZetaP(4))/(Pi+5^(1/2)) 2329972489660998 r005 Im(z^2+c),c=-1/10+8/27*I,n=17 2329972499197744 r009 Im(z^3+c),c=-19/58+9/50*I,n=16 2329972513012027 k002 Champernowne real with 75*n^2+51*n-103 2329972514296455 r005 Im(z^2+c),c=-9/94+13/44*I,n=9 2329972531657420 m001 Ei(1)*GAMMA(5/6)^Niven 2329972533382132 m005 (1/3*Pi-1/8)/(9/10*Catalan-3/7) 2329972533900689 m005 (1/2*5^(1/2)-3/5)/(2/7*exp(1)-3) 2329972538252597 a001 305/161*843^(5/7) 2329972539521262 m001 (Rabbit-Trott)/(Pi*2^(1/2)/GAMMA(3/4)-Kac) 2329972545729037 a007 Real Root Of 506*x^4+996*x^3-219*x^2+471*x-28 2329972548619033 p001 sum((-1)^(n+1)/(124*n+41)/(5^n),n=0..infinity) 2329972553095095 r005 Re(z^2+c),c=29/82+6/29*I,n=25 2329972555579160 a007 Real Root Of -543*x^4-786*x^3+782*x^2-972*x-449 2329972561628728 r002 17th iterates of z^2 + 2329972565053281 b008 Sin[4*ArcCsch[17]] 2329972565580915 r005 Im(z^2+c),c=-93/106+1/60*I,n=27 2329972566253460 l006 ln(940/9661) 2329972578951215 m001 GAMMA(1/3)/DuboisRaymond*exp(sqrt(2))^2 2329972580912030 m001 sqrt(3)/Kolakoski/exp(sqrt(5)) 2329972582187657 m005 (1/3*gamma+2/3)/(Pi+6/11) 2329972584486839 a007 Real Root Of -330*x^4-352*x^3+626*x^2-854*x-115 2329972585643357 r008 a(0)=0,K{-n^6,48-89*n^3-61*n^2+59*n} 2329972587452545 m001 Sierpinski/LaplaceLimit^2*exp(Tribonacci)^2 2329972595576356 m001 (LandauRamanujan2nd+Thue)/(Chi(1)-Ei(1,1)) 2329972604784433 a007 Real Root Of 497*x^4-658*x^3-676*x^2-268*x+106 2329972607567211 a003 cos(Pi*16/103)/cos(Pi*38/101) 2329972608131220 a007 Real Root Of -742*x^4+853*x^3+761*x^2+245*x-107 2329972609291709 a003 sin(Pi*11/113)*sin(Pi*20/71) 2329972609533119 a001 34/29*7^(6/17) 2329972613042033 k002 Champernowne real with 151/2*n^2+99/2*n-102 2329972631327299 h001 (7/10*exp(2)+5/9)/(7/10*exp(1)+5/9) 2329972650199060 l006 ln(2767/3493) 2329972657974390 a007 Real Root Of -415*x^4-683*x^3+848*x^2+370*x-150 2329972663755854 m001 (Zeta(1/2)+Zeta(1,2))/(DuboisRaymond+GaussAGM) 2329972671354402 m001 ln(cosh(1))^2*Tribonacci^2/sqrt(1+sqrt(3))^2 2329972687852564 r005 Im(z^2+c),c=-11/36+21/64*I,n=6 2329972688927855 a007 Real Root Of 151*x^4-230*x^3+677*x^2-21*x-45 2329972689945778 a001 28657/322*322^(1/6) 2329972693430620 r005 Im(z^2+c),c=-35/66+23/47*I,n=51 2329972698945606 m001 exp(GAMMA(1/24))^2*ErdosBorwein/GAMMA(17/24)^2 2329972701135537 m001 (-sin(1/12*Pi)+RenyiParking)/(2^(1/3)+Chi(1)) 2329972705033612 r002 17th iterates of z^2 + 2329972711060075 m008 (3/5*Pi^6+5)/(4/5*Pi^3+1/6) 2329972712498383 r002 7th iterates of z^2 + 2329972713022730 m001 ArtinRank2/ln(2+3^(1/2))*TreeGrowth2nd 2329972713072039 k002 Champernowne real with 76*n^2+48*n-101 2329972733846635 a007 Real Root Of -421*x^4-767*x^3+937*x^2+815*x-482 2329972735303530 a001 377/123*123^(9/10) 2329972754880200 m001 cosh(1)*ln(GAMMA(5/12))*sqrt(2)^2 2329972754898073 m005 (1/3*exp(1)-1/5)/(Pi-1/9) 2329972775971069 r005 Re(z^2+c),c=-43/102+27/61*I,n=3 2329972782347285 l006 ln(479/4923) 2329972784183698 l004 Shi(196/103) 2329972785327806 m004 (25*Pi)/3+Cos[Sqrt[5]*Pi]*Cosh[Sqrt[5]*Pi]^2 2329972785778173 a003 cos(Pi*12/113)/cos(Pi*29/79) 2329972786670752 m009 (3/5*Psi(1,1/3)+2/3)/(3*Pi^2-3/4) 2329972791142051 r005 Im(z^2+c),c=-1/10+8/27*I,n=24 2329972794996272 r009 Im(z^3+c),c=-29/110+7/34*I,n=7 2329972796670530 r005 Re(z^2+c),c=-21/86+7/23*I,n=26 2329972797503705 r005 Re(z^2+c),c=-13/74+24/49*I,n=47 2329972804021279 m001 GAMMA(1/3)-exp(1/Pi)+GAMMA(23/24) 2329972813102045 k002 Champernowne real with 153/2*n^2+93/2*n-100 2329972822810711 m001 1/Niven*exp(LaplaceLimit)^2*GAMMA(11/12) 2329972840408539 m005 (1/2*Pi-2/5)/(5/9*gamma+2/11) 2329972849112959 m005 (1/2*2^(1/2)+6/7)/(6/11*Pi+5) 2329972850147486 m001 (-sin(1/5*Pi)+KhinchinLevy)/(3^(1/2)+Chi(1)) 2329972859651135 m005 (1/3*2^(1/2)-1/11)/(5/6*Catalan-3/5) 2329972864109967 r005 Im(z^2+c),c=-11/10+17/72*I,n=19 2329972864747229 s002 sum(A027476[n]/(n*exp(pi*n)+1),n=1..infinity) 2329972871688599 r005 Re(z^2+c),c=-31/38+8/57*I,n=10 2329972873894258 m001 1/GAMMA(1/4)^2*PrimesInBinary^2*exp(gamma) 2329972880089311 a007 Real Root Of 31*x^4-425*x^3-654*x^2-958*x+264 2329972885053943 m001 (Mills+Sarnak)/(Catalan-KomornikLoreti) 2329972899135652 a007 Real Root Of -149*x^4-137*x^3+248*x^2-685*x-284 2329972900248870 h001 (2/11*exp(1)+1/12)/(2/3*exp(1)+2/3) 2329972905556640 p001 sum(1/(140*n+43)/(125^n),n=0..infinity) 2329972908381893 a007 Real Root Of -510*x^4-928*x^3+409*x^2-209*x+585 2329972908895610 m005 (3/5*gamma-5/6)/(-7/20+1/4*5^(1/2)) 2329972913132051 k002 Champernowne real with 77*n^2+45*n-99 2329972928975601 m001 (KhinchinHarmonic+Landau*ZetaP(4))/ZetaP(4) 2329972938635857 a007 Real Root Of 520*x^4+99*x^3-643*x^2-463*x+140 2329972939290186 m001 Ei(1,1)^BesselK(1,1)/(ZetaQ(2)^BesselK(1,1)) 2329972940314878 r005 Im(z^2+c),c=-19/98+45/59*I,n=33 2329972954266217 m005 (1/3*5^(1/2)-1/10)/(4/9*3^(1/2)+2) 2329972958108173 m001 (Khinchin-Sierpinski)/(DuboisRaymond-Kac) 2329972963386428 h001 (-6*exp(3)-6)/(-10*exp(4)+3) 2329972981284878 a003 cos(Pi*21/71)-sin(Pi*5/16) 2329972990470392 l006 ln(976/10031) 2329972995548721 a007 Real Root Of 307*x^4+250*x^3-861*x^2+780*x+606 2329972996075117 m001 (Champernowne-Khinchin)/(Salem-ZetaP(4)) 2329973004563803 m001 (-Totient+Trott)/(2^(1/3)-ln(2+3^(1/2))) 2329973013162057 k002 Champernowne real with 155/2*n^2+87/2*n-98 2329973024589903 r005 Im(z^2+c),c=-37/114+7/19*I,n=19 2329973032122190 r009 Re(z^3+c),c=-19/52+29/61*I,n=31 2329973042189390 m001 HardHexagonsEntropy*ln(Si(Pi))^2*GAMMA(5/24) 2329973046339035 r005 Im(z^2+c),c=-1/10+8/27*I,n=20 2329973048153121 m001 (-3^(1/3)+Riemann2ndZero)/(1-Catalan) 2329973049515170 r005 Re(z^2+c),c=-29/82+7/12*I,n=14 2329973059815056 a007 Real Root Of 997*x^4+381*x^3+980*x^2-914*x+152 2329973060178105 a007 Real Root Of 80*x^4+317*x^3+568*x^2+723*x+253 2329973063123625 a001 1/846*(1/2*5^(1/2)+1/2)^12*47^(8/17) 2329973070959771 m001 exp(Pi)^OneNinth/BesselK(1,1) 2329973080102410 m001 (Zeta(1,-1)-Pi^(1/2))/(Bloch-Conway) 2329973082354571 r009 Re(z^3+c),c=-15/62+9/59*I,n=14 2329973082937639 m001 (1-Zeta(5))/(cos(1/5*Pi)+StronglyCareFree) 2329973085664282 r009 Re(z^3+c),c=-15/62+9/59*I,n=13 2329973086588476 r009 Re(z^3+c),c=-15/62+9/59*I,n=15 2329973087160753 r009 Re(z^3+c),c=-15/62+9/59*I,n=19 2329973087160776 r009 Re(z^3+c),c=-15/62+9/59*I,n=18 2329973087165695 r009 Re(z^3+c),c=-15/62+9/59*I,n=20 2329973087166089 r009 Re(z^3+c),c=-15/62+9/59*I,n=23 2329973087166093 r009 Re(z^3+c),c=-15/62+9/59*I,n=24 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=25 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=28 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=29 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=33 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=34 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=38 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=39 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=43 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=44 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=48 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=47 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=49 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=53 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=52 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=54 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=57 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=58 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=59 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=62 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=63 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=64 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=61 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=60 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=56 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=55 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=51 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=50 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=46 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=45 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=42 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=41 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=40 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=37 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=35 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=36 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=32 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=30 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=31 2329973087166098 r009 Re(z^3+c),c=-15/62+9/59*I,n=27 2329973087166099 r009 Re(z^3+c),c=-15/62+9/59*I,n=26 2329973087166166 r009 Re(z^3+c),c=-15/62+9/59*I,n=22 2329973087166391 r009 Re(z^3+c),c=-15/62+9/59*I,n=21 2329973087236531 r009 Re(z^3+c),c=-15/62+9/59*I,n=17 2329973087399113 r009 Re(z^3+c),c=-15/62+9/59*I,n=16 2329973089871111 m005 (1+1/4*5^(1/2))/(2/5*gamma-9/10) 2329973096044948 a001 7/610*701408733^(3/5) 2329973110678949 a001 843/267914296*832040^(6/19) 2329973110679161 a001 281/1602508992*7778742049^(6/19) 2329973113192063 k002 Champernowne real with 78*n^2+42*n-97 2329973125337225 p001 sum((-1)^n/(542*n+429)/(1000^n),n=0..infinity) 2329973127468477 a007 Real Root Of 98*x^4+6*x^3-390*x^2-30*x-765 2329973138303611 m001 ArtinRank2^OrthogonalArrays/sin(1/12*Pi) 2329973157634173 r009 Re(z^3+c),c=-15/62+9/59*I,n=12 2329973160900939 m001 1/GAMMA(5/12)/exp(Porter)*arctan(1/2)^2 2329973162209678 m001 ln(GAMMA(1/4))*Tribonacci/Zeta(7)^2 2329973175191754 r005 Im(z^2+c),c=-1/10+8/27*I,n=27 2329973176290385 a003 sin(Pi*13/93)*sin(Pi*12/65) 2329973182766949 m001 (GAMMA(23/24)+Riemann3rdZero)^cos(1/12*Pi) 2329973187121138 l006 ln(5332/6731) 2329973189341206 m001 (2^(1/3))^(3^(1/2))+Chi(1) 2329973190117025 m005 (1/2*Pi-1/7)/(1/11*2^(1/2)+6) 2329973191055801 l006 ln(497/5108) 2329973198298408 m001 (-Kac+ZetaQ(3))/(3^(1/2)+Catalan) 2329973199665848 a007 Real Root Of -342*x^4-551*x^3+238*x^2-587*x+450 2329973201960046 r005 Im(z^2+c),c=-1/10+8/27*I,n=23 2329973212835561 r005 Re(z^2+c),c=-17/26+41/92*I,n=40 2329973213222069 k002 Champernowne real with 157/2*n^2+81/2*n-96 2329973215403979 m001 (Riemann2ndZero+Thue)/(CareFree-Psi(1,1/3)) 2329973225351035 r005 Re(z^2+c),c=39/110+9/49*I,n=37 2329973234972195 r005 Im(z^2+c),c=-1/10+8/27*I,n=30 2329973236406072 m006 (1/5*exp(2*Pi)-3/5)/(1/2*Pi+3) 2329973237088015 r005 Im(z^2+c),c=-1/10+8/27*I,n=26 2329973244275365 r005 Im(z^2+c),c=-1/10+8/27*I,n=33 2329973244280105 r005 Im(z^2+c),c=-1/10+8/27*I,n=29 2329973245672179 r005 Im(z^2+c),c=-1/10+8/27*I,n=32 2329973245722806 r005 Im(z^2+c),c=-1/10+8/27*I,n=36 2329973245931947 r005 Im(z^2+c),c=-1/10+8/27*I,n=35 2329973245947954 r005 Im(z^2+c),c=-1/10+8/27*I,n=39 2329973245979190 r005 Im(z^2+c),c=-1/10+8/27*I,n=38 2329973245982967 r005 Im(z^2+c),c=-1/10+8/27*I,n=42 2329973245987620 r005 Im(z^2+c),c=-1/10+8/27*I,n=41 2329973245988411 r005 Im(z^2+c),c=-1/10+8/27*I,n=45 2329973245989102 r005 Im(z^2+c),c=-1/10+8/27*I,n=44 2329973245989257 r005 Im(z^2+c),c=-1/10+8/27*I,n=48 2329973245989359 r005 Im(z^2+c),c=-1/10+8/27*I,n=47 2329973245989388 r005 Im(z^2+c),c=-1/10+8/27*I,n=51 2329973245989403 r005 Im(z^2+c),c=-1/10+8/27*I,n=50 2329973245989409 r005 Im(z^2+c),c=-1/10+8/27*I,n=54 2329973245989411 r005 Im(z^2+c),c=-1/10+8/27*I,n=53 2329973245989412 r005 Im(z^2+c),c=-1/10+8/27*I,n=57 2329973245989412 r005 Im(z^2+c),c=-1/10+8/27*I,n=56 2329973245989412 r005 Im(z^2+c),c=-1/10+8/27*I,n=60 2329973245989412 r005 Im(z^2+c),c=-1/10+8/27*I,n=59 2329973245989413 r005 Im(z^2+c),c=-1/10+8/27*I,n=63 2329973245989413 r005 Im(z^2+c),c=-1/10+8/27*I,n=62 2329973245989413 r005 Im(z^2+c),c=-1/10+8/27*I,n=64 2329973245989413 r005 Im(z^2+c),c=-1/10+8/27*I,n=61 2329973245989413 r005 Im(z^2+c),c=-1/10+8/27*I,n=58 2329973245989415 r005 Im(z^2+c),c=-1/10+8/27*I,n=55 2329973245989428 r005 Im(z^2+c),c=-1/10+8/27*I,n=52 2329973245989513 r005 Im(z^2+c),c=-1/10+8/27*I,n=49 2329973245990047 r005 Im(z^2+c),c=-1/10+8/27*I,n=46 2329973245993436 r005 Im(z^2+c),c=-1/10+8/27*I,n=43 2329973246014913 r005 Im(z^2+c),c=-1/10+8/27*I,n=40 2329973246150992 r005 Im(z^2+c),c=-1/10+8/27*I,n=37 2329973247013033 r005 Im(z^2+c),c=-1/10+8/27*I,n=34 2329973247235411 m001 (2/3*Pi*3^(1/2)/GAMMA(2/3)+Sarnak)/Zeta(1/2) 2329973251703388 m001 LandauRamanujan2nd-Si(Pi)*BesselJ(1,1) 2329973252472898 r005 Im(z^2+c),c=-1/10+8/27*I,n=31 2329973261042761 a001 10946/521*199^(5/11) 2329973261741797 r009 Re(z^3+c),c=-15/62+9/59*I,n=11 2329973270000347 m001 Pi^(1/2)*GAMMA(17/24)+Riemann2ndZero 2329973271156387 m001 exp(Pi)^(gamma/Stephens) 2329973274704435 m005 (1/3*Catalan-2/11)/(7/10*Catalan-1/9) 2329973276621049 r005 Im(z^2+c),c=-31/34+19/81*I,n=53 2329973287046894 r005 Im(z^2+c),c=-1/10+8/27*I,n=28 2329973287905189 r005 Im(z^2+c),c=-13/118+3/10*I,n=21 2329973289473380 m001 (Shi(1)+ln(Pi))/(-GAMMA(13/24)+Sierpinski) 2329973289837362 a007 Real Root Of 218*x^4+192*x^3-891*x^2-54*x+715 2329973291061862 r009 Re(z^3+c),c=-11/48+49/59*I,n=2 2329973296965245 a007 Real Root Of 932*x^4-105*x^3+905*x^2-115*x-80 2329973313252075 k002 Champernowne real with 79*n^2+39*n-95 2329973318710333 b008 -4*Pi+LogIntegral[21] 2329973321022460 s002 sum(A064978[n]/((2^n+1)/n),n=1..infinity) 2329973330742096 b008 (2+Cos[E])^10 2329973346165479 m001 (cos(1/12*Pi)+Lehmer)/(TwinPrimes+ZetaQ(3)) 2329973354595151 s002 sum(A104352[n]/(n^2*10^n-1),n=1..infinity) 2329973357360538 r002 44th iterates of z^2 + 2329973375251229 l006 ln(7897/9969) 2329973375380668 m005 (1/4*Pi-5)/(4*gamma-1/2) 2329973381220865 m001 cosh(1)^2*exp(FibonacciFactorial)^2*sin(1) 2329973388483378 m001 1/GAMMA(5/6)^2*OneNinth/ln(Zeta(5)) 2329973413282081 k002 Champernowne real with 159/2*n^2+75/2*n-94 2329973422431062 s002 sum(A055131[n]/((10^n+1)/n),n=1..infinity) 2329973429651660 m001 (1+Psi(2,1/3))/(-Grothendieck+Riemann3rdZero) 2329973435010058 r009 Im(z^3+c),c=-3/62+48/55*I,n=4 2329973437800063 a007 Real Root Of 289*x^4+585*x^3-75*x^2+438*x+310 2329973442640064 m001 (MadelungNaCl-Niven)/(GAMMA(2/3)+arctan(1/2)) 2329973442714803 m008 (2/3*Pi-3/4)/(3/5*Pi^6+1/6) 2329973444610186 m001 (FeigenbaumKappa-Totient)/(ln(Pi)-Bloch) 2329973446261291 r002 5th iterates of z^2 + 2329973454448483 a005 (1/cos(7/43*Pi))^393 2329973455304666 m001 (-Zeta(1,-1)+Stephens)/(exp(1)+arctan(1/2)) 2329973460726405 m001 1/GAMMA(1/24)^2*Porter^2/exp(sin(Pi/12))^2 2329973474801061 a001 87840/377 2329973474838386 a001 2351/2-843/2*5^(1/2) 2329973479437264 r009 Im(z^3+c),c=-37/82+3/38*I,n=39 2329973505939149 r005 Im(z^2+c),c=-1/10+8/27*I,n=25 2329973511812065 m001 Salem^FeigenbaumDelta/Catalan 2329973512903659 a001 1926*1346269^(34/41) 2329973513312087 k002 Champernowne real with 80*n^2+36*n-93 2329973518128772 a007 Real Root Of 753*x^4-270*x^3+759*x^2-314*x-120 2329973524716398 a007 Real Root Of 66*x^4-311*x^3-799*x^2+989*x+763 2329973529421681 r005 Im(z^2+c),c=-23/48+23/56*I,n=40 2329973546174361 b008 ArcSec[-5/2+Pi/3] 2329973549353192 m001 Ei(1)^GAMMA(11/12)*KhinchinLevy 2329973550081854 r005 Im(z^2+c),c=-3/38+15/52*I,n=14 2329973552921482 m001 (FeigenbaumAlpha+Trott)/(Psi(1,1/3)+ln(2)) 2329973553991018 a007 Real Root Of -385*x^4-842*x^3-26*x^2-692*x-775 2329973561556140 m005 (-1/44+1/4*5^(1/2))/(2/5*exp(1)-6/7) 2329973564188429 m001 1/Rabbit^2/exp(MadelungNaCl)^2/Sierpinski 2329973564708356 p003 LerchPhi(1/5,3,81/49) 2329973571194251 l006 ln(515/5293) 2329973576639259 m001 Otter/KomornikLoreti/Rabbit 2329973584952657 a007 Real Root Of -15*x^4-311*x^3+903*x^2+146*x+116 2329973613342093 k002 Champernowne real with 161/2*n^2+69/2*n-92 2329973616950354 r005 Im(z^2+c),c=-31/66+2/51*I,n=19 2329973617301127 m005 (1/2*Zeta(3)+4/5)/(7/9*Catalan-1/9) 2329973617471770 r005 Re(z^2+c),c=-15/94+21/41*I,n=20 2329973638833887 m001 1/exp(Niven)*Conway/Zeta(7)^2 2329973667401073 a007 Real Root Of 537*x^4+698*x^3-908*x^2+994*x+248 2329973668884370 r009 Im(z^3+c),c=-19/24+3/37*I,n=2 2329973671677666 m001 (-Totient+Thue)/(HardyLittlewoodC3-sin(1)) 2329973693111415 r009 Re(z^3+c),c=-6/17+17/38*I,n=22 2329973713372099 k002 Champernowne real with 81*n^2+33*n-91 2329973714903210 b008 EllipticK[5/7]/9 2329973720284935 m001 PrimesInBinary*ln(Cahen)*GAMMA(5/6)^2 2329973731110907 r002 41th iterates of z^2 + 2329973735910018 a007 Real Root Of -448*x^4-788*x^3+439*x^2-581*x-501 2329973736229373 r005 Re(z^2+c),c=-25/102+11/36*I,n=11 2329973742565950 a003 cos(Pi*43/101)/sin(Pi*52/113) 2329973744847296 a003 cos(Pi*32/117)-sin(Pi*35/101) 2329973749570621 r005 Im(z^2+c),c=-9/16+33/109*I,n=12 2329973751693175 r009 Re(z^3+c),c=-49/118+29/56*I,n=22 2329973762418016 r005 Re(z^2+c),c=-19/48+5/12*I,n=3 2329973763129647 a007 Real Root Of -931*x^4+621*x^3-695*x^2+681*x+207 2329973764732875 r002 31th iterates of z^2 + 2329973764732875 r002 31th iterates of z^2 + 2329973766327105 l006 ln(2565/3238) 2329973774501218 m001 ln(5)-Zeta(1,2)^BesselI(0,1) 2329973775418474 a007 Real Root Of -576*x^4-839*x^3+972*x^2-362*x+243 2329973776691126 h001 (6/7*exp(1)+5/12)/(1/3*exp(1)+3/11) 2329973793751693 m001 (ln(gamma)+Pi^(1/2))/(KhinchinLevy-Robbin) 2329973796651353 r005 Re(z^2+c),c=31/122+27/50*I,n=58 2329973796936624 m001 TwinPrimes^2/ln(FeigenbaumD)/Ei(1) 2329973798635585 a007 Real Root Of -315*x^4-911*x^3-608*x^2-267*x+439 2329973809337771 a007 Real Root Of 43*x^4-934*x^3-612*x^2-645*x-129 2329973809437867 m005 (1/3*2^(1/2)-2/9)/(7/10*exp(1)-5/6) 2329973812640989 a005 (1/cos(2/137*Pi))^804 2329973813402105 k002 Champernowne real with 163/2*n^2+63/2*n-90 2329973835773085 a001 123/10946*610^(26/55) 2329973837560666 a007 Real Root Of -408*x^4-795*x^3+311*x^2+57*x+413 2329973849871144 m005 (1/2*exp(1)+5/6)/(1/3*3^(1/2)+4/11) 2329973856316281 r002 2th iterates of z^2 + 2329973866719130 a007 Real Root Of -120*x^4-515*x^3-753*x^2-513*x-85 2329973875170199 r005 Re(z^2+c),c=15/58+8/53*I,n=29 2329973879063517 a003 sin(Pi*4/119)/sin(Pi*13/87) 2329973890420486 r005 Im(z^2+c),c=-79/122+23/52*I,n=25 2329973890784926 m001 GAMMA(19/24)^arctan(1/2)-Magata 2329973894143614 m005 (1/2*3^(1/2)-3/4)/(1/9*exp(1)-4/5) 2329973897764844 g004 Re(GAMMA(-23/20+I*19/20)) 2329973906603455 a007 Real Root Of -157*x^4+67*x^3+898*x^2-353*x-223 2329973907774595 r005 Re(z^2+c),c=21/94+7/62*I,n=19 2329973912997844 m001 1/log(2+sqrt(3))^2*ArtinRank2/ln(sin(1)) 2329973913432111 k002 Champernowne real with 82*n^2+30*n-89 2329973913945173 m008 (3/4*Pi^5-3/5)/(3*Pi+2/5) 2329973919078809 a007 Real Root Of 380*x^4-353*x^3+828*x^2-105*x-75 2329973919732878 a001 1346269/29*18^(24/43) 2329973925657178 l006 ln(533/5478) 2329973937006575 m001 1/GAMMA(1/12)^2/exp(Conway)/log(1+sqrt(2)) 2329973980979707 m009 (24/5*Catalan+3/5*Pi^2-5)/(1/6*Psi(1,1/3)+3/5) 2329973981859225 m001 (1+ln(2)/ln(10))/(-LambertW(1)+ZetaQ(3)) 2329973985579892 m001 (Cahen+FeigenbaumDelta)/(Chi(1)+3^(1/3)) 2329973998351624 r005 Im(z^2+c),c=-10/27+3/8*I,n=16 2329974003904176 p002 log(2^(1/3)*(5^(1/3)+12^(3/4))) 2329974007561436 r005 Re(z^2+c),c=-37/46+11/40*I,n=2 2329974013462117 k002 Champernowne real with 165/2*n^2+57/2*n-88 2329974024693237 r005 Im(z^2+c),c=-43/102+17/35*I,n=17 2329974028738589 a007 Real Root Of 400*x^4+554*x^3+430*x^2-45*x-28 2329974032089864 m005 (1/2*gamma-2/7)/(1/5*3^(1/2)-2/9) 2329974037231706 m001 exp(Zeta(9))/GAMMA(11/24)*sqrt(1+sqrt(3)) 2329974045386177 m001 (Psi(2,1/3)+cos(1/5*Pi))/(Zeta(1,2)+CareFree) 2329974052670081 r009 Re(z^3+c),c=-35/94+29/59*I,n=39 2329974063446260 m001 (KomornikLoreti-gamma(3)*ZetaP(4))/ZetaP(4) 2329974076770097 r005 Im(z^2+c),c=-2/11+26/47*I,n=3 2329974083008571 m001 (Backhouse+Kolakoski)/cos(1/12*Pi) 2329974083170507 r002 24th iterates of z^2 + 2329974086977159 m001 (Gompertz-Lehmer)/(ln(Pi)-GAMMA(5/6)) 2329974089545883 m002 4+6/Pi^2+E^Pi*Pi^2 2329974092353220 r009 Im(z^3+c),c=-13/25+7/46*I,n=46 2329974099326370 m001 KomornikLoreti^ln(2^(1/2)+1)+Robbin 2329974108960294 a008 Real Root of (-3-6*x-x^2+2*x^3+3*x^4+x^5) 2329974113492123 k002 Champernowne real with 83*n^2+27*n-87 2329974125306766 b008 Pi*Erfi[(5*Pi)/4] 2329974131060850 a007 Real Root Of 365*x^4+551*x^3-265*x^2+703*x-711 2329974160337942 a007 Real Root Of -328*x^4-600*x^3+20*x^2-960*x-268 2329974164830059 m001 (-ErdosBorwein+MasserGramain)/(1-sin(1/5*Pi)) 2329974177772616 r005 Im(z^2+c),c=-31/118+20/57*I,n=25 2329974178488597 l006 ln(7493/9459) 2329974181591563 m001 (MinimumGamma-Thue)/(Conway+GlaisherKinkelin) 2329974181596251 r005 Im(z^2+c),c=-49/90+30/47*I,n=9 2329974183738499 m005 (31/44+1/4*5^(1/2))/(3/7*3^(1/2)-1/5) 2329974185333406 a001 521/10946*75025^(16/29) 2329974190995411 a007 Real Root Of 483*x^4+712*x^3-961*x^2-413*x-974 2329974192710545 m001 (-Zeta(1,-1)+Landau)/(gamma-ln(2^(1/2)+1)) 2329974194293082 a007 Real Root Of -74*x^4-27*x^3+325*x^2+306*x+788 2329974213522129 k002 Champernowne real with 167/2*n^2+51/2*n-86 2329974219646185 a001 1364/165580141*8^(1/2) 2329974223699398 m005 (1/3*gamma+1/2)/(7/11*Catalan-2/7) 2329974241328291 m001 ln((3^(1/3)))*PisotVijayaraghavan^2*GAMMA(1/4) 2329974250038657 a007 Real Root Of -263*x^4-354*x^3+267*x^2-642*x+328 2329974252671119 m005 (1/2*Zeta(3)-3/8)/(7/8*3^(1/2)-6/11) 2329974256960890 l006 ln(551/5663) 2329974264885480 m001 (Bloch-RenyiParking)/(3^(1/3)-sin(1/12*Pi)) 2329974272581368 p001 sum((-1)^n/(145*n+118)/n/(16^n),n=0..infinity) 2329974277000854 m005 (1/2*Zeta(3)+4/7)/(5/7*gamma+1/11) 2329974277013942 r009 Im(z^3+c),c=-4/31+9/38*I,n=5 2329974278230005 r009 Re(z^3+c),c=-27/98+29/41*I,n=14 2329974309973415 m001 (Weierstrass+ZetaP(2))/(Chi(1)-TreeGrowth2nd) 2329974313552135 k002 Champernowne real with 84*n^2+24*n-85 2329974317610926 a007 Real Root Of 431*x^4+730*x^3-171*x^2+719*x-865 2329974319043469 r009 Re(z^3+c),c=-19/54+17/53*I,n=3 2329974321456015 a007 Real Root Of -351*x^4-721*x^3-131*x^2-739*x+214 2329974330373336 a003 cos(Pi*23/107)*cos(Pi*23/57) 2329974336415033 m002 (E^Pi*Sech[Pi])/Pi^2+2*Sinh[Pi] 2329974337068096 a007 Real Root Of 280*x^4+341*x^3-349*x^2+852*x-59 2329974341933697 r005 Im(z^2+c),c=-13/74+31/57*I,n=3 2329974344494063 a001 7/10946*86267571272^(3/5) 2329974345514682 p003 LerchPhi(1/25,5,241/180) 2329974347309416 a007 Real Root Of -559*x^4-971*x^3+694*x^2-303*x-281 2329974348371274 a001 7/196418*10610209857723^(3/5) 2329974348600095 a001 1/6624*956722026041^(3/5) 2329974353463510 r005 Re(z^2+c),c=-33/58+23/44*I,n=13 2329974355220806 a007 Real Root Of 174*x^4+21*x^3-749*x^2+213*x-300 2329974358202027 r009 Im(z^3+c),c=-19/58+9/50*I,n=20 2329974368709442 m005 (1/3*gamma-1/5)/(1/7*exp(1)-5/7) 2329974376579485 m001 (GAMMA(2/3)+GAMMA(19/24)*Salem)/GAMMA(19/24) 2329974381042254 m001 (-Riemann2ndZero+Thue)/(2^(1/2)-BesselI(0,2)) 2329974386915214 m001 GAMMA(11/12)-GolombDickman^PrimesInBinary 2329974389093855 r005 Im(z^2+c),c=-1/3+16/43*I,n=36 2329974392498028 a007 Real Root Of 255*x^4+143*x^3-508*x^2+896*x-861 2329974392891014 a007 Real Root Of 22*x^4+553*x^3+924*x^2-428*x-504 2329974393016640 l006 ln(4928/6221) 2329974397074416 a001 341/2*4181^(23/39) 2329974405975099 r005 Im(z^2+c),c=-10/29+23/64*I,n=11 2329974409678096 r005 Re(z^2+c),c=-3/44+36/59*I,n=52 2329974409802663 a001 29/1548008755920*121393^(14/23) 2329974412211050 m001 sin(Pi/5)*(GAMMA(1/3)+GAMMA(17/24)) 2329974413582141 k002 Champernowne real with 169/2*n^2+45/2*n-84 2329974418173819 a001 7/2584*7778742049^(3/5) 2329974421249156 m001 exp(FeigenbaumD)*FeigenbaumC/GAMMA(1/12) 2329974430894292 h001 (-5*exp(3/2)+5)/(-4*exp(-1)-6) 2329974441576852 m001 (ln(5)-HardyLittlewoodC4)/(Mills-RenyiParking) 2329974443875070 m001 (Pi-gamma(3))/(Riemann1stZero-TwinPrimes) 2329974444779819 m001 GaussKuzminWirsing^2*Bloch*exp(Pi)^2 2329974451095326 r009 Im(z^3+c),c=-19/58+9/50*I,n=21 2329974459297244 r009 Im(z^3+c),c=-19/58+9/50*I,n=19 2329974464190051 r009 Re(z^3+c),c=-11/31+14/31*I,n=36 2329974473705103 r009 Im(z^3+c),c=-19/58+9/50*I,n=25 2329974474502573 r009 Im(z^3+c),c=-19/58+9/50*I,n=24 2329974474636078 r005 Im(z^2+c),c=-25/22+2/69*I,n=44 2329974475552429 r009 Im(z^3+c),c=-19/58+9/50*I,n=26 2329974475754974 r009 Im(z^3+c),c=-19/58+9/50*I,n=29 2329974475758432 r009 Im(z^3+c),c=-19/58+9/50*I,n=30 2329974475792878 r009 Im(z^3+c),c=-19/58+9/50*I,n=34 2329974475793071 r009 Im(z^3+c),c=-19/58+9/50*I,n=31 2329974475793236 r009 Im(z^3+c),c=-19/58+9/50*I,n=35 2329974475793786 r009 Im(z^3+c),c=-19/58+9/50*I,n=39 2329974475793797 r009 Im(z^3+c),c=-19/58+9/50*I,n=40 2329974475793806 r009 Im(z^3+c),c=-19/58+9/50*I,n=44 2329974475793806 r009 Im(z^3+c),c=-19/58+9/50*I,n=45 2329974475793806 r009 Im(z^3+c),c=-19/58+9/50*I,n=49 2329974475793806 r009 Im(z^3+c),c=-19/58+9/50*I,n=50 2329974475793806 r009 Im(z^3+c),c=-19/58+9/50*I,n=48 2329974475793806 r009 Im(z^3+c),c=-19/58+9/50*I,n=54 2329974475793806 r009 Im(z^3+c),c=-19/58+9/50*I,n=53 2329974475793806 r009 Im(z^3+c),c=-19/58+9/50*I,n=55 2329974475793806 r009 Im(z^3+c),c=-19/58+9/50*I,n=58 2329974475793806 r009 Im(z^3+c),c=-19/58+9/50*I,n=59 2329974475793806 r009 Im(z^3+c),c=-19/58+9/50*I,n=63 2329974475793806 r009 Im(z^3+c),c=-19/58+9/50*I,n=60 2329974475793806 r009 Im(z^3+c),c=-19/58+9/50*I,n=64 2329974475793806 r009 Im(z^3+c),c=-19/58+9/50*I,n=62 2329974475793806 r009 Im(z^3+c),c=-19/58+9/50*I,n=61 2329974475793806 r009 Im(z^3+c),c=-19/58+9/50*I,n=57 2329974475793806 r009 Im(z^3+c),c=-19/58+9/50*I,n=56 2329974475793806 r009 Im(z^3+c),c=-19/58+9/50*I,n=52 2329974475793806 r009 Im(z^3+c),c=-19/58+9/50*I,n=51 2329974475793806 r009 Im(z^3+c),c=-19/58+9/50*I,n=47 2329974475793806 r009 Im(z^3+c),c=-19/58+9/50*I,n=46 2329974475793806 r009 Im(z^3+c),c=-19/58+9/50*I,n=43 2329974475793808 r009 Im(z^3+c),c=-19/58+9/50*I,n=41 2329974475793808 r009 Im(z^3+c),c=-19/58+9/50*I,n=42 2329974475793826 r009 Im(z^3+c),c=-19/58+9/50*I,n=38 2329974475793854 r009 Im(z^3+c),c=-19/58+9/50*I,n=36 2329974475793930 r009 Im(z^3+c),c=-19/58+9/50*I,n=37 2329974475795572 r009 Im(z^3+c),c=-19/58+9/50*I,n=33 2329974475800624 r009 Im(z^3+c),c=-19/58+9/50*I,n=32 2329974475926047 r009 Im(z^3+c),c=-19/58+9/50*I,n=28 2329974476149306 r009 Im(z^3+c),c=-19/58+9/50*I,n=27 2329974481718484 m005 (-9/44+1/4*5^(1/2))/(7/8*exp(1)-6/7) 2329974484806872 r009 Im(z^3+c),c=-19/58+9/50*I,n=23 2329974493166686 r009 Im(z^3+c),c=-19/58+9/50*I,n=22 2329974501395479 h001 (1/5*exp(1)+7/11)/(1/8*exp(1)+1/6) 2329974513612147 k002 Champernowne real with 85*n^2+21*n-83 2329974516858023 a007 Real Root Of -389*x^4-661*x^3+591*x^2-358*x-939 2329974517794110 r005 Im(z^2+c),c=-7/60+13/43*I,n=16 2329974518056204 p003 LerchPhi(1/5,6,39/142) 2329974527349851 m005 (1/2*2^(1/2)-1/3)/(-17/84+1/12*5^(1/2)) 2329974537616923 m001 1/ln(Tribonacci)^2*FransenRobinson*GAMMA(7/24) 2329974544285645 r005 Im(z^2+c),c=-13/118+3/10*I,n=23 2329974544791391 r005 Re(z^2+c),c=-25/98+5/19*I,n=15 2329974555502985 m005 (5/18+1/6*5^(1/2))/(7/10*exp(1)+8/9) 2329974560575894 a001 17711/322*322^(1/4) 2329974567303283 l006 ln(569/5848) 2329974577046181 r005 Im(z^2+c),c=-7/50+10/27*I,n=3 2329974599227655 m001 (MasserGramain-Thue)/(ln(2)-ErdosBorwein) 2329974612926349 m001 1/GAMMA(1/4)*ln(LandauRamanujan)*Pi 2329974613300401 m005 (1/2*Catalan-5)/(3/10*Zeta(3)-5/9) 2329974613488261 l006 ln(7291/9204) 2329974613642153 k002 Champernowne real with 171/2*n^2+39/2*n-82 2329974622468095 r005 Im(z^2+c),c=-14/23+5/14*I,n=58 2329974624487951 r005 Im(z^2+c),c=-15/106+10/27*I,n=3 2329974634031310 h001 (3/7*exp(1)+5/8)/(11/12*exp(2)+10/11) 2329974639464803 m001 GAMMA(13/24)^MertensB2+Robbin 2329974641577767 m001 (Riemann2ndZero+Thue)/(BesselI(1,1)+Artin) 2329974647233801 a001 2255*1364^(11/34) 2329974658605576 r005 Re(z^2+c),c=-53/66+4/55*I,n=26 2329974660470982 m001 (Lehmer+Otter)/(ReciprocalLucas-TreeGrowth2nd) 2329974667390243 a007 Real Root Of -692*x^4-19*x^3-56*x^2+834*x-189 2329974713672159 k002 Champernowne real with 86*n^2+18*n-81 2329974716904286 r005 Re(z^2+c),c=-29/110+10/43*I,n=8 2329974743727409 a007 Real Root Of -517*x^4-958*x^3-580*x^2+773*x+201 2329974744587840 a007 Real Root Of 382*x^4+434*x^3-654*x^2+658*x-685 2329974757281009 a005 (1/cos(4/101*Pi))^109 2329974758556634 a007 Real Root Of -312*x^4+334*x^3-489*x^2+655*x-15 2329974765074379 r009 Re(z^3+c),c=-31/78+25/46*I,n=58 2329974788364209 a007 Real Root Of -937*x^4-443*x^3-713*x^2+889*x+243 2329974795638782 h001 (-9*exp(-3)+7)/(-6*exp(-2)-2) 2329974805369559 m006 (2/5/Pi-3/4)/(1/2*exp(2*Pi)-1/2) 2329974810088747 r002 23th iterates of z^2 + 2329974811083123 q001 185/794 2329974811790480 m001 1/Riemann3rdZero^2/Magata^2*exp(sqrt(2))^2 2329974811804777 a007 Real Root Of 120*x^4+385*x^3+200*x^2-56*x+117 2329974813702165 k002 Champernowne real with 173/2*n^2+33/2*n-80 2329974855398092 m005 (1/2*exp(1)+11/12)/(9/55+4/11*5^(1/2)) 2329974858410065 a007 Real Root Of 460*x^4+765*x^3-636*x^2+48*x-316 2329974858612665 l006 ln(587/6033) 2329974860341923 r009 Re(z^3+c),c=-15/62+9/59*I,n=8 2329974867759735 m001 (Porter-Sarnak)/(ln(2+3^(1/2))-GAMMA(17/24)) 2329974873161957 r005 Re(z^2+c),c=23/110+2/21*I,n=6 2329974881087654 a003 cos(Pi*2/63)/cos(Pi*32/89) 2329974883584828 r005 Re(z^2+c),c=-23/102+21/58*I,n=15 2329974886263599 m001 (-TwinPrimes+ZetaP(2))/(1-OneNinth) 2329974889043646 a007 Real Root Of 106*x^4+123*x^3+59*x^2+453*x-833 2329974891492138 r005 Im(z^2+c),c=-1/10+8/27*I,n=22 2329974892190084 a001 121393/2207*199^(3/11) 2329974901344994 m009 (4/5*Psi(1,1/3)-5/6)/(3*Psi(1,1/3)+4/5) 2329974913732171 k002 Champernowne real with 87*n^2+15*n-79 2329974930406264 m001 exp(MadelungNaCl)/FeigenbaumDelta*Ei(1) 2329974938073111 m001 (ln(2^(1/2)+1)-3^(1/3))/(FeigenbaumC+Stephens) 2329974942095734 m001 BesselK(1,1)^(Pi^(1/2)/ZetaR(2)) 2329974942136529 a003 sin(Pi*3/41)/sin(Pi*42/97) 2329974944556709 r009 Re(z^3+c),c=-39/94+33/46*I,n=26 2329974952956372 s002 sum(A160233[n]/(n*pi^n-1),n=1..infinity) 2329974953029205 r005 Re(z^2+c),c=9/98+17/56*I,n=32 2329974960324104 m001 Trott*(ln(2)+Backhouse) 2329974982994732 r009 Re(z^3+c),c=-13/74+33/38*I,n=5 2329974993634673 a001 329/199691526*2^(1/2) 2329974999373774 m005 (1/2*2^(1/2)-2/11)/(5/8*exp(1)+5/9) 2329975000557893 r002 6th iterates of z^2 + 2329975004451203 a007 Real Root Of 278*x^4-483*x^3-73*x^2-853*x+208 2329975005699570 m001 (Pi+BesselJ(0,1))/(GAMMA(2/3)+FellerTornier) 2329975009441608 s002 sum(A123292[n]/(16^n),n=1..infinity) 2329975009443733 s002 sum(A123292[n]/(16^n-1),n=1..infinity) 2329975010677631 m001 (GAMMA(7/12)-PisotVijayaraghavan)/ZetaQ(3) 2329975013762177 k002 Champernowne real with 175/2*n^2+27/2*n-78 2329975018325851 p001 sum((-1)^n/(521*n+429)/(1024^n),n=0..infinity) 2329975029249579 m001 (ArtinRank2+MertensB3)/(ln(gamma)-arctan(1/3)) 2329975046189266 m005 (1/2*Pi-5/9)/(2/9*2^(1/2)-3/4) 2329975050815344 r009 Im(z^3+c),c=-19/58+9/50*I,n=18 2329975062809084 a001 28657/3*24476^(3/34) 2329975065232044 a007 Real Root Of -208*x^4-457*x^3-213*x^2-730*x-195 2329975073278406 l006 ln(2363/2983) 2329975075366452 s001 sum(1/10^(n-1)*A137483[n]/n!^2,n=1..infinity) 2329975075522963 m001 1/2*GAMMA(19/24)*2^(2/3)*Riemann3rdZero 2329975095719019 b008 5*Zeta[4,3*Pi] 2329975095916217 m001 (-Khinchin+OneNinth)/(2^(1/2)-Conway) 2329975112267113 k007 concat of cont frac of 2329975112847711 a007 Real Root Of 350*x^4+531*x^3-549*x^2+464*x+463 2329975113792183 k002 Champernowne real with 88*n^2+12*n-77 2329975116345420 h001 (3/5*exp(2)+5/9)/(7/12*exp(1)+5/9) 2329975120779172 g007 Psi(2,3/10)+2*Psi(2,1/4)-Psi(2,1/11) 2329975128291990 r005 Im(z^2+c),c=-13/118+3/10*I,n=24 2329975132587857 l006 ln(605/6218) 2329975144010157 a007 Real Root Of 896*x^4+133*x^3+163*x^2-915*x-223 2329975158777391 m001 MinimumGamma*Kolakoski^2*ln(sqrt(1+sqrt(3)))^2 2329975180634083 m001 (2^(1/2)-ZetaR(2))/Landau 2329975186243535 r009 Re(z^3+c),c=-1/42+2/23*I,n=4 2329975190795706 a001 682/98209*102334155^(4/21) 2329975190807528 a001 1364/1346269*2504730781961^(4/21) 2329975195317982 a001 1364/28657*4181^(4/21) 2329975198310399 m001 ln(cos(Pi/12))*DuboisRaymond*sin(Pi/5)^2 2329975206506069 a007 Real Root Of 245*x^4+715*x^3+660*x^2+920*x+384 2329975208406523 r005 Re(z^2+c),c=-41/50+1/52*I,n=54 2329975213822189 k002 Champernowne real with 177/2*n^2+21/2*n-76 2329975216012072 r009 Im(z^3+c),c=-9/70+55/64*I,n=40 2329975221647757 r005 Im(z^2+c),c=19/66+1/40*I,n=38 2329975233391757 p001 sum(1/(597*n+431)/(100^n),n=0..infinity) 2329975240484106 p001 sum((-1)^n/(544*n+429)/(1000^n),n=0..infinity) 2329975242047415 r002 60i'th iterates of 2*x/(1-x^2) of 2329975243159843 m005 (exp(1)-2/3)/(1/3*Pi-1/6) 2329975250879703 r009 Im(z^3+c),c=-19/58+9/50*I,n=17 2329975253539073 m001 Cahen*CareFree/DuboisRaymond 2329975255068496 r005 Im(z^2+c),c=-13/118+3/10*I,n=26 2329975264748858 a008 Real Root of (13+6*x+16*x^2-9*x^3) 2329975271014192 g007 Psi(2,1/11)+Psi(2,7/9)-Psi(2,2/11)-Psi(2,4/5) 2329975271356012 r005 Re(z^2+c),c=19/66+3/17*I,n=42 2329975274322235 m001 BesselJ(1,1)+ErdosBorwein*Salem 2329975277464203 h001 (-8*exp(7)+8)/(-7*exp(4)+6) 2329975288366837 m001 1/Lehmer/exp(LaplaceLimit)*GAMMA(1/3) 2329975289271969 a001 3571/433494437*8^(1/2) 2329975300777673 a001 105937/1926*199^(3/11) 2329975307878404 m001 (ArtinRank2+GolombDickman)/(Psi(2,1/3)-ln(5)) 2329975313852195 k002 Champernowne real with 89*n^2+9*n-75 2329975327023203 m001 ZetaP(4)^(LandauRamanujan2nd/GAMMA(23/24)) 2329975328884439 m001 (FeigenbaumDelta+Tetranacci)/(1+FeigenbaumC) 2329975333602483 r005 Im(z^2+c),c=-81/94+1/64*I,n=25 2329975335291758 p004 log(32303/25589) 2329975340659995 m001 (Otter+PisotVijayaraghavan)/(2^(1/3)+gamma) 2329975345764416 r009 Re(z^3+c),c=-2/5+35/62*I,n=59 2329975348026070 a001 1/116*(1/2*5^(1/2)+1/2)^11*29^(1/11) 2329975348704175 m001 exp(Pi)+Otter*ZetaQ(2) 2329975351995990 a005 (1/cos(15/119*Pi))^668 2329975352563246 a001 123/55*10610209857723^(9/13) 2329975357302037 a007 Real Root Of -314*x^4-486*x^3+682*x^2+90*x-386 2329975360389811 a001 832040/15127*199^(3/11) 2329975360479492 a007 Real Root Of -572*x^4-909*x^3+575*x^2-680*x+654 2329975369087105 a001 726103/13201*199^(3/11) 2329975370356023 a001 5702887/103682*199^(3/11) 2329975370541155 a001 4976784/90481*199^(3/11) 2329975370568166 a001 39088169/710647*199^(3/11) 2329975370572107 a001 831985/15126*199^(3/11) 2329975370572682 a001 267914296/4870847*199^(3/11) 2329975370572765 a001 233802911/4250681*199^(3/11) 2329975370572778 a001 1836311903/33385282*199^(3/11) 2329975370572779 a001 1602508992/29134601*199^(3/11) 2329975370572780 a001 12586269025/228826127*199^(3/11) 2329975370572780 a001 10983760033/199691526*199^(3/11) 2329975370572780 a001 86267571272/1568397607*199^(3/11) 2329975370572780 a001 75283811239/1368706081*199^(3/11) 2329975370572780 a001 591286729879/10749957122*199^(3/11) 2329975370572780 a001 12585437040/228811001*199^(3/11) 2329975370572780 a001 4052739537881/73681302247*199^(3/11) 2329975370572780 a001 3536736619241/64300051206*199^(3/11) 2329975370572780 a001 6557470319842/119218851371*199^(3/11) 2329975370572780 a001 2504730781961/45537549124*199^(3/11) 2329975370572780 a001 956722026041/17393796001*199^(3/11) 2329975370572780 a001 365435296162/6643838879*199^(3/11) 2329975370572780 a001 139583862445/2537720636*199^(3/11) 2329975370572780 a001 53316291173/969323029*199^(3/11) 2329975370572780 a001 20365011074/370248451*199^(3/11) 2329975370572780 a001 7778742049/141422324*199^(3/11) 2329975370572781 a001 2971215073/54018521*199^(3/11) 2329975370572785 a001 1134903170/20633239*199^(3/11) 2329975370572817 a001 433494437/7881196*199^(3/11) 2329975370573037 a001 165580141/3010349*199^(3/11) 2329975370574542 a001 63245986/1149851*199^(3/11) 2329975370584859 a001 24157817/439204*199^(3/11) 2329975370655574 a001 9227465/167761*199^(3/11) 2329975371140257 a001 3524578/64079*199^(3/11) 2329975374462328 a001 1346269/24476*199^(3/11) 2329975374569910 m001 OneNinth^Grothendieck/(OneNinth^Zeta(1,2)) 2329975377761262 r005 Im(z^2+c),c=-13/118+3/10*I,n=27 2329975380521653 r005 Re(z^2+c),c=-16/21+3/50*I,n=54 2329975385361327 r005 Im(z^2+c),c=-13/118+3/10*I,n=29 2329975385507058 m001 ZetaR(2)-HardyLittlewoodC4-exp(Pi) 2329975390731349 l006 ln(623/6403) 2329975397232139 a001 514229/9349*199^(3/11) 2329975399158178 m005 (1/2*exp(1)-4/5)/(4*gamma+1/11) 2329975401296279 m005 (1/2*exp(1)+1/9)/(1/11*Catalan-5/7) 2329975402195367 a001 2584/1568397607*2^(1/2) 2329975408820155 r005 Im(z^2+c),c=-13/118+3/10*I,n=32 2329975409751783 r005 Im(z^2+c),c=-13/118+3/10*I,n=30 2329975411607446 s002 sum(A029819[n]/((3*n)!),n=1..infinity) 2329975412981342 r005 Im(z^2+c),c=-13/118+3/10*I,n=35 2329975413490976 r005 Im(z^2+c),c=-13/118+3/10*I,n=33 2329975413710105 r005 Im(z^2+c),c=-13/118+3/10*I,n=38 2329975413836313 r005 Im(z^2+c),c=-13/118+3/10*I,n=41 2329975413851697 r005 Im(z^2+c),c=-13/118+3/10*I,n=36 2329975413857951 r005 Im(z^2+c),c=-13/118+3/10*I,n=44 2329975413861627 r005 Im(z^2+c),c=-13/118+3/10*I,n=47 2329975413862246 r005 Im(z^2+c),c=-13/118+3/10*I,n=50 2329975413862349 r005 Im(z^2+c),c=-13/118+3/10*I,n=53 2329975413862367 r005 Im(z^2+c),c=-13/118+3/10*I,n=56 2329975413862369 r005 Im(z^2+c),c=-13/118+3/10*I,n=59 2329975413862370 r005 Im(z^2+c),c=-13/118+3/10*I,n=62 2329975413862370 r005 Im(z^2+c),c=-13/118+3/10*I,n=64 2329975413862370 r005 Im(z^2+c),c=-13/118+3/10*I,n=63 2329975413862370 r005 Im(z^2+c),c=-13/118+3/10*I,n=61 2329975413862370 r005 Im(z^2+c),c=-13/118+3/10*I,n=60 2329975413862370 r005 Im(z^2+c),c=-13/118+3/10*I,n=58 2329975413862371 r005 Im(z^2+c),c=-13/118+3/10*I,n=57 2329975413862373 r005 Im(z^2+c),c=-13/118+3/10*I,n=55 2329975413862375 r005 Im(z^2+c),c=-13/118+3/10*I,n=54 2329975413862391 r005 Im(z^2+c),c=-13/118+3/10*I,n=52 2329975413862398 r005 Im(z^2+c),c=-13/118+3/10*I,n=51 2329975413862506 r005 Im(z^2+c),c=-13/118+3/10*I,n=48 2329975413862514 r005 Im(z^2+c),c=-13/118+3/10*I,n=49 2329975413862986 r005 Im(z^2+c),c=-13/118+3/10*I,n=45 2329975413863340 r005 Im(z^2+c),c=-13/118+3/10*I,n=46 2329975413864791 r005 Im(z^2+c),c=-13/118+3/10*I,n=42 2329975413868791 r005 Im(z^2+c),c=-13/118+3/10*I,n=43 2329975413868891 r005 Im(z^2+c),c=-13/118+3/10*I,n=39 2329975413882201 k002 Champernowne real with 179/2*n^2+15/2*n-74 2329975413904276 r005 Im(z^2+c),c=-13/118+3/10*I,n=40 2329975414132681 r005 Im(z^2+c),c=-13/118+3/10*I,n=37 2329975415587861 r005 Im(z^2+c),c=-13/118+3/10*I,n=34 2329975419152936 m001 (Psi(2,1/3)+gamma(2))^Zeta(1,2) 2329975422102950 a007 Real Root Of -484*x^4-913*x^3+739*x^2+682*x+293 2329975424772443 r005 Im(z^2+c),c=-13/118+3/10*I,n=31 2329975427686592 a007 Real Root Of -365*x^4-751*x^3-300*x^2-856*x+892 2329975437426535 r002 64th iterates of z^2 + 2329975441954501 r005 Re(z^2+c),c=-2/7+2/39*I,n=7 2329975445328268 a001 9349/1134903170*8^(1/2) 2329975461295168 s002 sum(A037339[n]/(n^2*2^n-1),n=1..infinity) 2329975461803569 a001 2255/1368706081*2^(1/2) 2329975468096575 a001 24476/2971215073*8^(1/2) 2329975470464222 m001 (2^(1/3))/ln(LaplaceLimit)/GAMMA(1/4)^2 2329975470500289 a001 17711/10749957122*2^(1/2) 2329975471418426 a001 64079/7778742049*8^(1/2) 2329975471769123 a001 15456/9381251041*2^(1/2) 2329975471903078 a001 167761/20365011074*8^(1/2) 2329975471954244 a001 121393/73681302247*2^(1/2) 2329975471973787 a001 439204/53316291173*8^(1/2) 2329975471981252 a001 105937/64300051206*2^(1/2) 2329975471984104 a001 1149851/139583862445*8^(1/2) 2329975471985193 a001 832040/505019158607*2^(1/2) 2329975471985609 a001 3010349/365435296162*8^(1/2) 2329975471985768 a001 726103/440719107401*2^(1/2) 2329975471985828 a001 7881196/956722026041*8^(1/2) 2329975471985852 a001 5702887/3461452808002*2^(1/2) 2329975471985860 a001 20633239/2504730781961*8^(1/2) 2329975471985864 a001 4976784/3020733700601*2^(1/2) 2329975471985865 a001 54018521/6557470319842*8^(1/2) 2329975471985866 a001 39088169/23725150497407*2^(1/2) 2329975471985866 a001 29134601/3536736619241*8^(1/2) 2329975471985867 a001 24157817/14662949395604*2^(1/2) 2329975471985868 a001 33385282/4052739537881*8^(1/2) 2329975471985871 a001 9227465/5600748293801*2^(1/2) 2329975471985880 a001 4250681/516002918640*8^(1/2) 2329975471985903 a001 3524578/2139295485799*2^(1/2) 2329975471985964 a001 4870847/591286729879*8^(1/2) 2329975471986123 a001 1346269/817138163596*2^(1/2) 2329975471986539 a001 620166/75283811239*8^(1/2) 2329975471987628 a001 514229/312119004989*2^(1/2) 2329975471990480 a001 710647/86267571272*8^(1/2) 2329975471997945 a001 196418/119218851371*2^(1/2) 2329975472017488 a001 1/121393*8^(1/2) 2329975472068654 a001 75025/45537549124*2^(1/2) 2329975472202609 a001 103682/12586269025*8^(1/2) 2329975472553306 a001 28657/17393796001*2^(1/2) 2329975473471443 a001 13201/1602508992*8^(1/2) 2329975475875157 a001 10946/6643838879*2^(1/2) 2329975478089388 a007 Real Root Of 81*x^4+7*x^3-538*x^2-391*x-289 2329975479718315 r005 Im(z^2+c),c=-35/78+11/27*I,n=36 2329975481539675 a007 Real Root Of -357*x^4-504*x^3+517*x^2-599*x-56 2329975482168162 a001 15127/1836311903*8^(1/2) 2329975482239123 r005 Im(z^2+c),c=-13/118+3/10*I,n=28 2329975482969591 m005 (1/2*Catalan-7/10)/(3/4*exp(1)-1) 2329975496831851 r005 Re(z^2+c),c=11/126+5/6*I,n=4 2329975498643464 a001 4181/2537720636*2^(1/2) 2329975509115381 a007 Real Root Of 567*x^4+974*x^3-502*x^2+949*x+546 2329975509985612 r002 34th iterates of z^2 + 2329975510448039 a007 Real Root Of 286*x^4+167*x^3-985*x^2+243*x-403 2329975513600430 a007 Real Root Of 433*x^4+435*x^3+445*x^2-790*x-204 2329975513912207 k002 Champernowne real with 90*n^2+6*n-73 2329975518720522 r005 Re(z^2+c),c=-67/102+13/48*I,n=9 2329975518901967 r002 4th iterates of z^2 + 2329975525704573 m001 ln(sin(Pi/5))/GAMMA(17/24)^2/sinh(1)^2 2329975527872809 m005 (1/2*2^(1/2)+4)/(Zeta(3)+9/11) 2329975530703664 a007 Real Root Of 305*x^4+708*x^3+405*x^2+670*x-671 2329975531614118 m005 (1/3*2^(1/2)-3/5)/(2/5*Zeta(3)-6) 2329975541776364 a001 1926/233802911*8^(1/2) 2329975544447487 a001 28657/4*7^(20/33) 2329975553298762 a001 196418/3571*199^(3/11) 2329975560040391 l006 ln(6887/8694) 2329975564869821 m001 exp(Ei(1))^2/BesselK(0,1)^2*cos(Pi/12)^2 2329975565891497 a003 sin(Pi*1/63)/cos(Pi*22/51) 2329975567726714 m005 (1/2*Pi+4/11)/(1/3+2/9*5^(1/2)) 2329975572739102 r009 Re(z^3+c),c=-11/34+13/34*I,n=10 2329975601055631 m006 (1/5*Pi^2-2/5)/(3/5*Pi^2+5/6) 2329975601055631 m008 (1/5*Pi^2-2/5)/(3/5*Pi^2+5/6) 2329975601473749 m005 (-1/2+1/6*5^(1/2))/(2/9*Catalan-3/4) 2329975609117978 a007 Real Root Of 533*x^4+767*x^3-692*x^2+803*x-379 2329975610254613 a007 Real Root Of -19*x^4-400*x^3+991*x^2-58*x+707 2329975613942213 k002 Champernowne real with 181/2*n^2+9/2*n-72 2329975613959450 r005 Re(z^2+c),c=-4/21+26/57*I,n=46 2329975634376860 l006 ln(641/6588) 2329975638559026 g007 Psi(2,7/8)-Psi(2,7/10)-Psi(2,5/8)-Psi(2,4/7) 2329975644639380 a007 Real Root Of -231*x^4-676*x^3-276*x^2+386*x+655 2329975654699763 a001 1597/969323029*2^(1/2) 2329975660382595 a007 Real Root Of -301*x^4-917*x^3-546*x^2-91*x+24 2329975660518872 b008 ArcCsch[51*Sin[1]] 2329975664365819 a007 Real Root Of 48*x^4-140*x^3-276*x^2+849*x+291 2329975669658713 a007 Real Root Of -653*x^4+845*x^3+406*x^2+709*x-196 2329975690568642 m001 Riemann1stZero^PisotVijayaraghavan*ArtinRank2 2329975695842834 r005 Re(z^2+c),c=3/10+8/43*I,n=42 2329975697792685 a008 Real Root of x^4-2*x^3-22*x^2+22*x+64 2329975697828892 m009 (3/5*Psi(1,3/4)+1/2)/(3*Psi(1,2/3)-1/2) 2329975702095106 a007 Real Root Of -299*x^4-435*x^3+518*x^2-205*x+20 2329975703709348 r009 Re(z^3+c),c=-65/122+26/43*I,n=12 2329975713972219 k002 Champernowne real with 91*n^2+3*n-71 2329975715414947 r005 Re(z^2+c),c=-4/21+26/57*I,n=38 2329975716060658 m005 (1/2*2^(1/2)-3/8)/(83/110+3/10*5^(1/2)) 2329975717239085 m001 1/GAMMA(13/24)^2*exp(Porter)*Zeta(3)^2 2329975725576325 r005 Re(z^2+c),c=1/18+7/12*I,n=19 2329975746175343 a007 Real Root Of 211*x^4-898*x^3-161*x^2-925*x+235 2329975758597714 m005 (1/2*3^(1/2)+4/11)/(2/9*3^(1/2)+1/7) 2329975770387307 r009 Re(z^3+c),c=-1/25+37/61*I,n=25 2329975772462859 a007 Real Root Of -191*x^4+799*x^3-970*x^2+681*x+222 2329975783205076 h001 (7/11*exp(2)+1/12)/(3/7*exp(1)+8/9) 2329975783445651 m001 exp(MadelungNaCl)^2*ErdosBorwein*BesselJ(1,1) 2329975784705327 a007 Real Root Of 232*x^4+277*x^3-822*x^2-463*x+50 2329975785033239 a001 199*(1/2*5^(1/2)+1/2)^18*3^(9/14) 2329975792321912 r005 Re(z^2+c),c=-17/78+22/57*I,n=26 2329975801564279 r005 Re(z^2+c),c=-1/26+31/45*I,n=30 2329975802527306 a003 sin(Pi*1/21)/cos(Pi*12/43) 2329975805657407 a007 Real Root Of 58*x^4-889*x^3-920*x^2-751*x+236 2329975814002225 k002 Champernowne real with 183/2*n^2+3/2*n-70 2329975814288518 l006 ln(4524/5711) 2329975815084398 m001 MertensB3-Shi(1)^Niven 2329975819869858 m001 (Psi(1,1/3)-gamma(3))/(-GAMMA(23/24)+Lehmer) 2329975819936686 a001 233/3*521^(31/34) 2329975838843172 r005 Im(z^2+c),c=-13/118+3/10*I,n=25 2329975841332713 m001 BesselI(0,1)*Tribonacci+HeathBrownMoroz 2329975848629334 a001 7/55*55^(37/51) 2329975852670397 m002 -Pi^3+Pi^5-5*Pi^4*Sech[Pi] 2329975854840074 a001 89/1149851*29^(18/55) 2329975864712396 l006 ln(659/6773) 2329975872881494 p002 log(11*(15^(1/2)-3)^(1/2)) 2329975881061637 a003 cos(Pi*7/47)*cos(Pi*47/113) 2329975881688708 m001 sin(Pi/12)*GAMMA(1/24)/ln(sinh(1))^2 2329975883330245 a007 Real Root Of 638*x^4-691*x^3-984*x^2-600*x-97 2329975884931445 r009 Re(z^3+c),c=-1/42+2/23*I,n=7 2329975884941578 r009 Re(z^3+c),c=-1/42+2/23*I,n=9 2329975884941585 r009 Re(z^3+c),c=-1/42+2/23*I,n=11 2329975884941585 r009 Re(z^3+c),c=-1/42+2/23*I,n=12 2329975884941585 r009 Re(z^3+c),c=-1/42+2/23*I,n=14 2329975884941585 r009 Re(z^3+c),c=-1/42+2/23*I,n=16 2329975884941585 r009 Re(z^3+c),c=-1/42+2/23*I,n=19 2329975884941585 r009 Re(z^3+c),c=-1/42+2/23*I,n=21 2329975884941585 r009 Re(z^3+c),c=-1/42+2/23*I,n=23 2329975884941585 r009 Re(z^3+c),c=-1/42+2/23*I,n=24 2329975884941585 r009 Re(z^3+c),c=-1/42+2/23*I,n=26 2329975884941585 r009 Re(z^3+c),c=-1/42+2/23*I,n=27 2329975884941585 r009 Re(z^3+c),c=-1/42+2/23*I,n=28 2329975884941585 r009 Re(z^3+c),c=-1/42+2/23*I,n=25 2329975884941585 r009 Re(z^3+c),c=-1/42+2/23*I,n=22 2329975884941585 r009 Re(z^3+c),c=-1/42+2/23*I,n=20 2329975884941585 r009 Re(z^3+c),c=-1/42+2/23*I,n=18 2329975884941585 r009 Re(z^3+c),c=-1/42+2/23*I,n=17 2329975884941585 r009 Re(z^3+c),c=-1/42+2/23*I,n=15 2329975884941585 r009 Re(z^3+c),c=-1/42+2/23*I,n=13 2329975884941585 r009 Re(z^3+c),c=-1/42+2/23*I,n=10 2329975884941913 r009 Re(z^3+c),c=-1/42+2/23*I,n=8 2329975885104863 r009 Re(z^3+c),c=-1/42+2/23*I,n=6 2329975890733347 r009 Re(z^3+c),c=-1/42+2/23*I,n=5 2329975912464026 r005 Re(z^2+c),c=-65/102+22/61*I,n=9 2329975914032231 k002 Champernowne real with 92*n^2-69 2329975920658803 p001 sum((-1)^n/(601*n+422)/(24^n),n=0..infinity) 2329975923593525 a007 Real Root Of -260*x^4-343*x^3+424*x^2-519*x-187 2329975925583682 p004 log(19861/15733) 2329975925812676 m001 Lehmer^Gompertz/Pi 2329975940218818 r009 Im(z^3+c),c=-4/9+2/25*I,n=11 2329975943450481 a003 sin(Pi*12/67)/cos(Pi*29/68) 2329975948415900 m001 (2^(1/2)+5^(1/2))/(Zeta(1,-1)+ZetaQ(3)) 2329975950189600 p001 sum(1/(335*n+107)/n/(10^n),n=1..infinity) 2329975950337059 a001 2207/267914296*8^(1/2) 2329975951129281 m001 TwinPrimes*Salem/exp(BesselK(1,1))^2 2329975951515091 m001 (Chi(1)+BesselK(0,1))/cos(1) 2329975952101074 s002 sum(A125414[n]/(64^n),n=1..infinity) 2329975964895989 m001 Catalan-LandauRamanujan+StolarskyHarborth 2329975965602885 m001 (KhinchinLevy-Porter)/(Sarnak-Tetranacci) 2329975971046826 m003 2+Sqrt[5]/8+Sinh[1/2+Sqrt[5]/2]/48 2329975980670913 r005 Re(z^2+c),c=-95/66+32/41*I,n=2 2329975995268034 m006 (Pi-4)/(3*ln(Pi)+1/4) 2329976003355018 a007 Real Root Of 442*x^4+937*x^3-212*x^2-162*x-401 2329976005518987 m001 1/GAMMA(1/6)/TwinPrimes^2*exp(sqrt(3)) 2329976014062237 k002 Champernowne real with 185/2*n^2-3/2*n-68 2329976046428600 m005 (1/3*gamma+2/11)/(9/10*2^(1/2)+1/3) 2329976061500808 m001 Khintchine^2/GaussKuzminWirsing^2*ln(sin(1))^2 2329976076219229 l006 ln(6685/8439) 2329976077485379 m005 (1/3*Pi-1/5)/(5*gamma+3/4) 2329976077912576 r005 Re(z^2+c),c=-19/90+19/47*I,n=24 2329976081102095 r009 Im(z^3+c),c=-1/126+14/57*I,n=8 2329976082799612 l006 ln(677/6958) 2329976087644188 r005 Im(z^2+c),c=-1/11+12/41*I,n=10 2329976102877660 r005 Im(z^2+c),c=-29/70+17/35*I,n=20 2329976114092243 k002 Champernowne real with 93*n^2-3*n-67 2329976114897598 h001 (4/5*exp(2)+3/7)/(7/10*exp(1)+9/11) 2329976129249845 r005 Im(z^2+c),c=-35/74+9/22*I,n=44 2329976133355064 a007 Real Root Of 134*x^4-449*x^2-783*x-18 2329976143720925 a003 cos(Pi*7/101)-sin(Pi*31/63) 2329976146229482 r005 Im(z^2+c),c=-57/122+16/39*I,n=16 2329976150684681 a001 208010/19*3^(11/16) 2329976151542875 a007 Real Root Of -474*x^4+377*x^3+266*x^2+533*x-142 2329976151620980 r009 Re(z^3+c),c=-43/122+29/64*I,n=9 2329976160368552 m001 exp(Pi)+BesselJ(0,1)*exp(-1/2*Pi) 2329976162278322 h001 (2/7*exp(1)+2/3)/(5/7*exp(2)+11/12) 2329976171711944 r005 Im(z^2+c),c=-4/9+24/59*I,n=26 2329976180215700 a007 Real Root Of -31*x^4-716*x^3+149*x^2+90*x+803 2329976189172312 r005 Im(z^2+c),c=-9/14+79/183*I,n=35 2329976189579359 r005 Im(z^2+c),c=-23/56+24/55*I,n=17 2329976198600618 a007 Real Root Of -239*x^4+112*x^3+902*x^2+834*x-244 2329976214122249 k002 Champernowne real with 187/2*n^2-9/2*n-66 2329976217214521 p001 sum(1/(375*n+299)/n/(64^n),n=1..infinity) 2329976222110128 m005 (1/2*exp(1)-1/6)/(1/3*Zeta(3)+1/9) 2329976234746119 r009 Re(z^3+c),c=-23/64+25/39*I,n=4 2329976235006482 m001 (Mills+Totient)/(3^(1/2)-Gompertz) 2329976258564003 m005 (1/2*Catalan+5/11)/(-65/126+1/18*5^(1/2)) 2329976260432252 a001 3571/514229*102334155^(4/21) 2329976260433977 a001 3571/3524578*2504730781961^(4/21) 2329976265428866 a001 3571/75025*4181^(4/21) 2329976266859516 r009 Re(z^3+c),c=-7/18+32/61*I,n=39 2329976269708554 r005 Re(z^2+c),c=-33/50+13/42*I,n=27 2329976270877858 m009 (5/2*Pi^2+1/2)/(3/2*Pi^2-4) 2329976275174207 a001 -610+377*5^(1/2) 2329976278296758 m005 (1/2*Zeta(3)+5/6)/(7/9*gamma+1/6) 2329976281026159 m009 (1/3*Psi(1,3/4)-2/5)/(8*Catalan+Pi^2+2) 2329976285201406 m001 (BesselI(1,2)*Thue+HardyLittlewoodC3)/Thue 2329976289590180 l006 ln(695/7143) 2329976292645027 a001 123/121393*832040^(48/53) 2329976292850599 m001 (-GlaisherKinkelin+Sarnak)/(exp(Pi)+sin(1)) 2329976294800890 p001 sum((-1)^n/(545*n+429)/(1000^n),n=0..infinity) 2329976300577085 m001 (Psi(1,1/3)*CopelandErdos-Trott2nd)/Psi(1,1/3) 2329976305318144 r005 Re(z^2+c),c=-13/66+26/59*I,n=31 2329976306603412 r005 Re(z^2+c),c=-137/114+7/39*I,n=6 2329976312984427 m009 (3/10*Pi^2+2/5)/(32/5*Catalan+4/5*Pi^2+2/3) 2329976314152255 k002 Champernowne real with 94*n^2-6*n-65 2329976319090894 r005 Re(z^2+c),c=12/29+25/52*I,n=3 2329976319513669 r005 Re(z^2+c),c=-3/20+33/61*I,n=43 2329976343180067 m001 GAMMA(1/6)*Robbin^2*exp(GAMMA(5/6))^2 2329976354554204 r005 Re(z^2+c),c=-21/86+7/23*I,n=29 2329976358619870 a001 144/521*1364^(14/15) 2329976359676959 m001 BesselI(1,2)/Zeta(1,2)/gamma(1) 2329976369887414 m005 (1/2*gamma+1/7)/(7/8*Zeta(3)+4/5) 2329976371258076 a007 Real Root Of 20*x^4-344*x^3+204*x^2+795*x+802 2329976378783395 r004 Re(z^2+c),c=-27/34-1/11*I,z(0)=-1,n=3 2329976390745668 r005 Re(z^2+c),c=-1/10+23/37*I,n=50 2329976406287500 r005 Im(z^2+c),c=-9/8+67/254*I,n=52 2329976409884006 a001 1/10182505537*514229^(16/17) 2329976412019343 r009 Re(z^3+c),c=-39/122+25/32*I,n=2 2329976414182261 k002 Champernowne real with 189/2*n^2-15/2*n-64 2329976416490121 a001 9349/1346269*102334155^(4/21) 2329976416490373 a001 9349/9227465*2504730781961^(4/21) 2329976417201859 m001 (MertensB2-Weierstrass)/(ln(3)+Conway) 2329976421555939 a001 9349/196418*4181^(4/21) 2329976428055772 r009 Im(z^3+c),c=-1/126+14/57*I,n=10 2329976434342348 m001 Paris*MadelungNaCl*ln(sin(Pi/12)) 2329976436479413 m001 (2^(1/3))^2/Backhouse/exp(cosh(1)) 2329976436626990 r009 Im(z^3+c),c=-1/126+14/57*I,n=12 2329976436834406 r009 Im(z^3+c),c=-1/126+14/57*I,n=14 2329976436839302 r009 Im(z^3+c),c=-1/126+14/57*I,n=16 2329976436839414 r009 Im(z^3+c),c=-1/126+14/57*I,n=18 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=20 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=22 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=24 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=26 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=27 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=29 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=31 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=33 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=35 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=37 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=39 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=41 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=43 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=45 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=47 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=49 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=51 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=52 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=53 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=54 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=55 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=57 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=50 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=48 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=46 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=44 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=42 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=40 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=38 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=36 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=34 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=32 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=30 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=28 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=25 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=23 2329976436839416 r009 Im(z^3+c),c=-1/126+14/57*I,n=21 2329976436839417 r009 Im(z^3+c),c=-1/126+14/57*I,n=19 2329976436839433 r009 Im(z^3+c),c=-1/126+14/57*I,n=17 2329976436840177 r009 Im(z^3+c),c=-1/126+14/57*I,n=15 2329976436872153 r009 Im(z^3+c),c=-1/126+14/57*I,n=13 2329976438209247 r009 Im(z^3+c),c=-1/126+14/57*I,n=11 2329976438635401 a001 5473/161*322^(1/3) 2329976439258657 a001 12238/1762289*102334155^(4/21) 2329976439258694 a001 24476/24157817*2504730781961^(4/21) 2329976441349315 q001 9/38627 2329976442580542 a001 64079/9227465*102334155^(4/21) 2329976442580547 a001 64079/63245986*2504730781961^(4/21) 2329976443065199 a001 167761/24157817*102334155^(4/21) 2329976443065199 a001 167761/165580141*2504730781961^(4/21) 2329976443135909 a001 219602/31622993*102334155^(4/21) 2329976443135909 a001 439204/433494437*2504730781961^(4/21) 2329976443146225 a001 1149851/165580141*102334155^(4/21) 2329976443146225 a001 1149851/1134903170*2504730781961^(4/21) 2329976443147731 a001 3010349/433494437*102334155^(4/21) 2329976443147731 a001 3010349/2971215073*2504730781961^(4/21) 2329976443147950 a001 3940598/567451585*102334155^(4/21) 2329976443147950 a001 7881196/7778742049*2504730781961^(4/21) 2329976443147982 a001 20633239/2971215073*102334155^(4/21) 2329976443147982 a001 20633239/20365011074*2504730781961^(4/21) 2329976443147987 a001 54018521/7778742049*102334155^(4/21) 2329976443147987 a001 54018521/53316291173*2504730781961^(4/21) 2329976443147988 a001 70711162/10182505537*102334155^(4/21) 2329976443147988 a001 141422324/139583862445*2504730781961^(4/21) 2329976443147988 a001 370248451/53316291173*102334155^(4/21) 2329976443147988 a001 370248451/365435296162*2504730781961^(4/21) 2329976443147988 a001 969323029/139583862445*102334155^(4/21) 2329976443147988 a001 1268860318/182717648081*102334155^(4/21) 2329976443147988 a001 6643838879/956722026041*102334155^(4/21) 2329976443147988 a001 17393796001/2504730781961*102334155^(4/21) 2329976443147988 a001 22768774562/3278735159921*102334155^(4/21) 2329976443147988 a001 10525900321/1515744265389*102334155^(4/21) 2329976443147988 a001 28143753123/4052739537881*102334155^(4/21) 2329976443147988 a001 5374978561/774004377960*102334155^(4/21) 2329976443147988 a001 4106118243/591286729879*102334155^(4/21) 2329976443147988 a001 224056801/32264490531*102334155^(4/21) 2329976443147988 a001 969323029/956722026041*2504730781961^(4/21) 2329976443147988 a001 299537289/43133785636*102334155^(4/21) 2329976443147988 a001 2537720636/2504730781961*2504730781961^(4/21) 2329976443147988 a001 6643838879/6557470319842*2504730781961^(4/21) 2329976443147988 a001 4870846/4807525989*2504730781961^(4/21) 2329976443147988 a001 4106118243/4052739537881*2504730781961^(4/21) 2329976443147988 a001 1568397607/1548008755920*2504730781961^(4/21) 2329976443147988 a001 599074578/591286729879*2504730781961^(4/21) 2329976443147988 a001 228826127/32951280099*102334155^(4/21) 2329976443147988 a001 228826127/225851433717*2504730781961^(4/21) 2329976443147988 a001 87403803/12586269025*102334155^(4/21) 2329976443147988 a001 87403803/86267571272*2504730781961^(4/21) 2329976443147990 a001 103681/14930208*102334155^(4/21) 2329976443147990 a001 33385282/32951280099*2504730781961^(4/21) 2329976443148002 a001 12752043/1836311903*102334155^(4/21) 2329976443148002 a001 12752043/12586269025*2504730781961^(4/21) 2329976443148086 a001 4870847/701408733*102334155^(4/21) 2329976443148086 a001 4870847/4807526976*2504730781961^(4/21) 2329976443148661 a001 930249/133957148*102334155^(4/21) 2329976443148661 a001 1860498/1836311903*2504730781961^(4/21) 2329976443152601 a001 710647/701408733*2504730781961^(4/21) 2329976443152601 a001 101521/14619165*102334155^(4/21) 2329976443179610 a001 271443/267914296*2504730781961^(4/21) 2329976443179610 a001 271443/39088169*102334155^(4/21) 2329976443364731 a001 103682/102334155*2504730781961^(4/21) 2329976443364733 a001 51841/7465176*102334155^(4/21) 2329976444334573 a001 24476/514229*4181^(4/21) 2329976444633566 a001 39603/39088169*2504730781961^(4/21) 2329976444633580 a001 39603/5702887*102334155^(4/21) 2329976446645191 a007 Real Root Of -417*x^4-600*x^3+652*x^2-760*x-610 2329976447657930 a001 64079/1346269*4181^(4/21) 2329976448142802 a001 167761/3524578*4181^(4/21) 2329976448213543 a001 439204/9227465*4181^(4/21) 2329976448223865 a001 1149851/24157817*4181^(4/21) 2329976448225370 a001 3010349/63245986*4181^(4/21) 2329976448225590 a001 7881196/165580141*4181^(4/21) 2329976448225622 a001 20633239/433494437*4181^(4/21) 2329976448225627 a001 54018521/1134903170*4181^(4/21) 2329976448225628 a001 141422324/2971215073*4181^(4/21) 2329976448225628 a001 370248451/7778742049*4181^(4/21) 2329976448225628 a001 969323029/20365011074*4181^(4/21) 2329976448225628 a001 2537720636/53316291173*4181^(4/21) 2329976448225628 a001 6643838879/139583862445*4181^(4/21) 2329976448225628 a001 17393796001/365435296162*4181^(4/21) 2329976448225628 a001 45537549124/956722026041*4181^(4/21) 2329976448225628 a001 119218851371/2504730781961*4181^(4/21) 2329976448225628 a001 312119004989/6557470319842*4181^(4/21) 2329976448225628 a001 10745088481/225749145909*4181^(4/21) 2329976448225628 a001 192900153618/4052739537881*4181^(4/21) 2329976448225628 a001 73681302247/1548008755920*4181^(4/21) 2329976448225628 a001 28143753123/591286729879*4181^(4/21) 2329976448225628 a001 10749957122/225851433717*4181^(4/21) 2329976448225628 a001 4106118243/86267571272*4181^(4/21) 2329976448225628 a001 1568397607/32951280099*4181^(4/21) 2329976448225628 a001 599074578/12586269025*4181^(4/21) 2329976448225628 a001 4868641/102287808*4181^(4/21) 2329976448225628 a001 87403803/1836311903*4181^(4/21) 2329976448225630 a001 33385282/701408733*4181^(4/21) 2329976448225642 a001 12752043/267914296*4181^(4/21) 2329976448225726 a001 4870847/102334155*4181^(4/21) 2329976448226301 a001 1860498/39088169*4181^(4/21) 2329976448230243 a001 710647/14930352*4181^(4/21) 2329976448257264 a001 271443/5702887*4181^(4/21) 2329976448442469 a001 2206/46347*4181^(4/21) 2329976449711878 a001 39603/832040*4181^(4/21) 2329976453330291 a001 15127/14930352*2504730781961^(4/21) 2329976453330387 a001 2161/311187*102334155^(4/21) 2329976458412542 a001 15127/317811*4181^(4/21) 2329976465193372 r009 Re(z^3+c),c=-45/98+17/33*I,n=52 2329976475091905 m001 (gamma(3)*MadelungNaCl+Weierstrass)/gamma(3) 2329976475550406 m001 MinimumGamma/Backhouse*exp(BesselK(0,1))^2 2329976480251499 m001 (Trott2nd-ZetaQ(2))/(ln(Pi)-Trott) 2329976485939670 l006 ln(713/7328) 2329976487406773 m005 (1/2*Pi-5)/(7/11*Catalan+8/9) 2329976490022796 a007 Real Root Of 412*x^4+660*x^3-232*x^2+920*x-391 2329976492871820 r009 Im(z^3+c),c=-1/126+14/57*I,n=9 2329976494424673 r005 Re(z^2+c),c=10/27+17/59*I,n=10 2329976498272544 r005 Re(z^2+c),c=-35/82+25/44*I,n=23 2329976500128454 r005 Im(z^2+c),c=1/106+1/4*I,n=5 2329976506389041 p001 sum((-1)^n/(341*n+87)/n/(100^n),n=1..infinity) 2329976512938530 a001 5778/5702887*2504730781961^(4/21) 2329976512939188 a001 2889/416020*102334155^(4/21) 2329976514212267 k002 Champernowne real with 95*n^2-9*n-63 2329976518047778 a001 5778/121393*4181^(4/21) 2329976525783729 a001 233/322*1364^(4/5) 2329976529463362 s002 sum(A263839[n]/(n*exp(n)+1),n=1..infinity) 2329976532562546 a001 29/13*196418^(41/54) 2329976540501000 m005 (1/2*Pi-3/4)/(1/11*5^(1/2)-5/9) 2329976543989999 s001 sum(exp(-4*Pi/5)^n*A121020[n],n=1..infinity) 2329976551645172 r005 Re(z^2+c),c=1/56+11/21*I,n=6 2329976569237921 s002 sum(A042196[n]/(n^2*10^n+1),n=1..infinity) 2329976571371060 r009 Re(z^3+c),c=-11/28+33/59*I,n=53 2329976574100674 r001 55i'th iterates of 2*x^2-1 of 2329976583631936 m001 (BesselK(0,1)+gamma(1))/(Porter+Trott2nd) 2329976591590736 r005 Re(z^2+c),c=-11/98+39/64*I,n=33 2329976614242273 k002 Champernowne real with 191/2*n^2-21/2*n-62 2329976614282450 r005 Im(z^2+c),c=-9/14+77/244*I,n=43 2329976616416288 m001 (Khinchin-RenyiParking)/(Trott2nd-Thue) 2329976616484100 a001 2889/17*5^(10/51) 2329976620322202 r009 Re(z^3+c),c=-23/56+5/9*I,n=61 2329976622995868 a001 75025/1364*199^(3/11) 2329976624564667 l006 ln(2161/2728) 2329976651444155 a007 Real Root Of 490*x^4+848*x^3-424*x^2+582*x-57 2329976655687936 m001 1/ln(GAMMA(17/24))*BesselJ(0,1)^2/Zeta(9) 2329976659318590 r005 Im(z^2+c),c=-87/94+8/35*I,n=47 2329976663212988 r005 Im(z^2+c),c=-11/94+16/53*I,n=10 2329976672619382 l006 ln(731/7513) 2329976676514318 a007 Real Root Of -431*x^4-579*x^3+859*x^2-122*x+431 2329976680978056 a007 Real Root Of -226*x^4-155*x^3+975*x^2+485*x+537 2329976692740715 b008 ArcCosh[83/16] 2329976697012173 r005 Im(z^2+c),c=-41/110+18/47*I,n=28 2329976703278954 r005 Im(z^2+c),c=-5/13+1/27*I,n=15 2329976706952367 r005 Im(z^2+c),c=-25/46+24/59*I,n=55 2329976714272279 k002 Champernowne real with 96*n^2-12*n-61 2329976720318808 r005 Im(z^2+c),c=-95/98+12/53*I,n=29 2329976724325547 a001 610/370248451*2^(1/2) 2329976733320730 m001 (-GAMMA(3/4)+2/3)/(-BesselK(1,1)+3) 2329976738189779 r009 Re(z^3+c),c=-17/122+11/12*I,n=44 2329976743649181 r002 3th iterates of z^2 + 2329976744491292 a005 (1/cos(13/188*Pi))^326 2329976750080556 m001 (Artin-Catalan)/(-Landau+StronglyCareFree) 2329976753544235 m005 (1/2*gamma+1/2)/(2/7*3^(1/2)-5/6) 2329976757294797 m005 (3/5*Pi+1/3)/(1/4*Pi+1/6) 2329976757294797 m006 (3/5*Pi+1/3)/(1/4*Pi+1/6) 2329976757294797 m008 (3/5*Pi+1/3)/(1/4*Pi+1/6) 2329976771972147 r009 Re(z^3+c),c=-5/18+12/17*I,n=27 2329976787891530 a005 (1/cos(64/221*Pi))^115 2329976796710939 m001 LambertW(1)/BesselJ(1,1)^2*exp(Zeta(5))^2 2329976799986602 m001 Pi^(1/2)/(Stephens^FeigenbaumDelta) 2329976802781630 r008 a(0)=1,K{-n^6,-4-9*n+14*n^3+n^2} 2329976811595654 r005 Im(z^2+c),c=-1/98+16/61*I,n=7 2329976814302285 k002 Champernowne real with 193/2*n^2-27/2*n-60 2329976814367930 a007 Real Root Of -249*x^4-479*x^3+402*x^2+769*x+889 2329976816384626 m001 (Mills+Thue)/(GaussKuzminWirsing+Kac) 2329976823645621 m001 (Shi(1)*exp(-1/2*Pi)-FeigenbaumD)/Shi(1) 2329976833381847 p001 sum(1/(461*n+430)/(256^n),n=0..infinity) 2329976837585461 r009 Re(z^3+c),c=-27/64+35/64*I,n=64 2329976843499071 h001 (7/10*exp(2)+5/7)/(2/3*exp(1)+5/7) 2329976844241845 m001 (exp(Pi)*ln(3)+ZetaP(3))/ln(3) 2329976850326471 l006 ln(749/7698) 2329976855668790 m001 (exp(Pi)*BesselJZeros(0,1)-sqrt(3))/exp(Pi) 2329976855668790 m001 BesselJZeros(0,1)-sqrt(3)*exp(-Pi) 2329976864132608 r009 Im(z^3+c),c=-11/86+47/55*I,n=12 2329976868158351 a007 Real Root Of -56*x^4+178*x^3+394*x^2-400*x+831 2329976870987556 m001 (3^(1/3))^Ei(1)*(3^(1/3))^PrimesInBinary 2329976880819862 r009 Im(z^3+c),c=-3/44+9/37*I,n=5 2329976881066817 m001 1/LambertW(1)^2/GolombDickman*exp(cosh(1)) 2329976882355689 a007 Real Root Of 62*x^4-297*x^3-998*x^2-315*x-900 2329976883526274 r005 Im(z^2+c),c=-83/102+10/53*I,n=3 2329976895315776 m001 (FeigenbaumKappa-Kac)/(Pi+gamma(2)) 2329976895629751 m001 (Chi(1)+GAMMA(13/24))/(-ErdosBorwein+Landau) 2329976897534635 r005 Re(z^2+c),c=-11/90+13/25*I,n=14 2329976899183316 r009 Im(z^3+c),c=-19/58+9/50*I,n=14 2329976902714373 m001 (HeathBrownMoroz-MinimumGamma)/(ln(3)-Bloch) 2329976911712075 r005 Re(z^2+c),c=-29/62+23/45*I,n=8 2329976912649952 m001 1/Tribonacci/exp(MertensB1)*GAMMA(1/6) 2329976914332291 k002 Champernowne real with 97*n^2-15*n-59 2329976921499478 a001 1/987*2504730781961^(4/21) 2329976921503993 a001 2207/317811*102334155^(4/21) 2329976926589237 r005 Re(z^2+c),c=-27/44+23/60*I,n=37 2329976926793764 a001 2207/46368*4181^(4/21) 2329976927990763 a007 Real Root Of 507*x^4+896*x^3-919*x^2-298*x+686 2329976938144642 m004 -3+75*Pi+Cos[Sqrt[5]*Pi]/Log[Sqrt[5]*Pi] 2329976942547012 m005 (1/2*Pi+4/9)/(2/7*gamma+7/10) 2329976956615640 m005 (1/2*3^(1/2)+8/11)/(2/9*gamma+5/9) 2329976959785103 b008 3+CosIntegral[Pi/89] 2329976964309377 b008 Gamma[ArcCosh[3],2+Pi] 2329976970510335 r002 29th iterates of z^2 + 2329976987068308 m001 Psi(1,1/3)^PlouffeB/(Niven^PlouffeB) 2329976993888231 m001 1/LandauRamanujan*ln(Si(Pi))^2/Zeta(1/2)^2 2329976995731166 m005 (1/2*3^(1/2)-1/2)/(61/110+5/11*5^(1/2)) 2329976996831531 m001 (Bloch+Trott)/(exp(-1/2*Pi)-BesselI(0,2)) 2329976998684824 m001 sqrt(5)+Artin^BesselJZeros(0,1) 2329977014111689 a007 Real Root Of -34*x^4+435*x^3-81*x^2+794*x+195 2329977014362297 k002 Champernowne real with 195/2*n^2-33/2*n-58 2329977018719494 m001 (-MertensB1+MertensB3)/(1-cos(1)) 2329977019692652 l006 ln(767/7883) 2329977024663207 a007 Real Root Of -611*x^4-116*x^3-376*x^2+754*x-152 2329977031171842 s002 sum(A085496[n]/((10^n+1)/n),n=1..infinity) 2329977036047518 h001 (-7*exp(3)-5)/(-5*exp(-3)-6) 2329977038750748 a007 Real Root Of 464*x^4+759*x^3-468*x^2+693*x+81 2329977045433076 a007 Real Root Of 349*x^4+911*x^3+466*x^2+516*x-90 2329977072884186 r001 44i'th iterates of 2*x^2-1 of 2329977073486914 a005 (1/sin(43/137*Pi))^30 2329977084876399 r009 Re(z^3+c),c=-2/9+1/23*I,n=11 2329977085330638 r009 Re(z^3+c),c=-2/9+1/23*I,n=12 2329977085565096 r009 Re(z^3+c),c=-2/9+1/23*I,n=13 2329977085624428 r009 Re(z^3+c),c=-2/9+1/23*I,n=14 2329977085635951 r009 Re(z^3+c),c=-2/9+1/23*I,n=15 2329977085637787 r009 Re(z^3+c),c=-2/9+1/23*I,n=16 2329977085638018 r009 Re(z^3+c),c=-2/9+1/23*I,n=17 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=25 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=26 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=27 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=28 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=29 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=30 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=31 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=40 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=41 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=42 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=43 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=44 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=45 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=46 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=52 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=53 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=54 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=55 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=56 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=51 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=50 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=49 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=48 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=47 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=39 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=38 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=37 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=36 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=35 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=34 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=32 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=33 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=24 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=23 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=22 2329977085638034 r009 Re(z^3+c),c=-2/9+1/23*I,n=21 2329977085638035 r009 Re(z^3+c),c=-2/9+1/23*I,n=20 2329977085638035 r009 Re(z^3+c),c=-2/9+1/23*I,n=19 2329977085638037 r009 Re(z^3+c),c=-2/9+1/23*I,n=18 2329977088087972 r009 Re(z^3+c),c=-2/9+1/23*I,n=10 2329977104334256 s002 sum(A033812[n]/((exp(n)+1)*n),n=1..infinity) 2329977113985950 m005 (1/2*exp(1)-7/11)/(1/12*3^(1/2)-5/11) 2329977114392303 k002 Champernowne real with 98*n^2-18*n-57 2329977116949811 r005 Re(z^2+c),c=-9/56+14/27*I,n=34 2329977136845718 a007 Real Root Of 413*x^4+908*x^3+201*x^2+860*x+226 2329977137686462 r009 Re(z^3+c),c=-2/9+1/23*I,n=9 2329977137844002 r005 Im(z^2+c),c=-7/10+7/86*I,n=53 2329977141587555 m001 (GaussAGM+LandauRamanujan2nd)/(Porter-Thue) 2329977143208867 m001 (Khinchin+Tetranacci)/(GAMMA(2/3)+Kac) 2329977143706463 m001 (GolombDickman+OneNinth)/Pi 2329977152422467 a007 Real Root Of -491*x^4+996*x^3+192*x^2+66*x+19 2329977154276506 r005 Im(z^2+c),c=-13/10+15/182*I,n=8 2329977157066635 a007 Real Root Of -378*x^4-823*x^3-218*x^2-481*x+793 2329977157935315 m001 HardyLittlewoodC5*(ZetaQ(3)-gamma) 2329977161778629 a001 199/1597*55^(19/26) 2329977162367920 r005 Re(z^2+c),c=-1/7+29/52*I,n=63 2329977164177320 a007 Real Root Of -194*x^4-265*x^3+161*x^2-541*x+231 2329977175060119 m001 1/BesselJ(0,1)^2/Si(Pi)^2*exp(cosh(1)) 2329977176150044 p001 sum((-1)^n/(523*n+429)/(1024^n),n=0..infinity) 2329977179796165 m001 1/ln(Zeta(3))*ArtinRank2^2*log(1+sqrt(2)) 2329977181291693 l006 ln(785/8068) 2329977186092992 r002 60th iterates of z^2 + 2329977201507190 m005 (1/3*5^(1/2)+1/8)/(71/22+5/22*5^(1/2)) 2329977207245204 a007 Real Root Of -379*x^4-784*x^3+36*x^2-123*x+771 2329977208024680 a007 Real Root Of -498*x^4-212*x^3-64*x^2+677*x+160 2329977208180181 l006 ln(6281/7929) 2329977208759320 r009 Re(z^3+c),c=-11/28+16/29*I,n=48 2329977210507988 m001 BesselJ(1,1)^Catalan/(ZetaP(3)^Catalan) 2329977214422309 k002 Champernowne real with 197/2*n^2-39/2*n-56 2329977222797252 b008 ExpIntegralEi[ArcCoth[ArcTan[E]]] 2329977225876247 p003 LerchPhi(1/3,6,596/215) 2329977226988470 m009 (2/3*Psi(1,3/4)-3/5)/(2/5*Pi^2+3/4) 2329977237070891 a007 Real Root Of 344*x^4+944*x^3+627*x^2+438*x-581 2329977239032728 m001 exp(gamma)+sin(Pi/5)^GAMMA(5/6) 2329977248181374 a001 6/329*6765^(1/36) 2329977254424857 m005 (1/3*3^(1/2)+2/7)/(1/8*5^(1/2)+1/11) 2329977259377219 a007 Real Root Of -287*x^4-571*x^3+354*x^2+215*x-185 2329977260138715 r005 Im(z^2+c),c=-31/58+42/61*I,n=15 2329977267402621 g006 Psi(1,1/5)-Psi(1,7/12)-Psi(1,7/11)-Psi(1,2/9) 2329977283565644 s002 sum(A053238[n]/(n*10^n-1),n=1..infinity) 2329977283588540 r005 Im(z^2+c),c=-17/14+13/96*I,n=48 2329977287263884 r009 Re(z^3+c),c=-23/62+22/45*I,n=30 2329977290844985 m001 ReciprocalFibonacci^(Shi(1)*TwinPrimes) 2329977290878373 r005 Im(z^2+c),c=-6/17+17/45*I,n=46 2329977298389413 s002 sum(A187467[n]/(n*10^n-1),n=1..infinity) 2329977299190041 a007 Real Root Of 480*x^4+936*x^3-661*x^2-477*x+170 2329977312097362 l006 ln(9375/9596) 2329977314452315 k002 Champernowne real with 99*n^2-21*n-55 2329977325885068 a001 1/4*46368^(7/11) 2329977328295122 h001 (1/7*exp(1)+7/11)/(1/8*exp(1)+1/10) 2329977329159628 a007 Real Root Of -356*x^4-640*x^3+669*x^2+922*x+913 2329977335645922 l006 ln(803/8253) 2329977338014907 s002 sum(A097859[n]/(n*10^n-1),n=1..infinity) 2329977338015901 s002 sum(A028326[n]/(n*10^n-1),n=1..infinity) 2329977350721283 r005 Im(z^2+c),c=-17/20+11/63*I,n=51 2329977351639779 s002 sum(A156046[n]/(n*10^n-1),n=1..infinity) 2329977354356543 a007 Real Root Of -188*x^4-332*x^3+467*x^2+694*x+423 2329977359937673 r005 Re(z^2+c),c=-23/94+9/41*I,n=2 2329977360798496 s002 sum(A048003[n]/(n*10^n-1),n=1..infinity) 2329977364547001 m001 exp(1/Pi)/(LaplaceLimit^GlaisherKinkelin) 2329977365354907 r002 40th iterates of z^2 + 2329977373742886 m001 (BesselI(0,1)-Cahen)/(MertensB3+Totient) 2329977374038651 a007 Real Root Of 105*x^4-655*x^3+877*x^2-909*x-268 2329977377000889 a001 144/521*3571^(14/17) 2329977389218219 a007 Real Root Of -822*x^4-901*x^3+80*x^2+766*x-169 2329977393608689 r005 Im(z^2+c),c=-1/4+17/49*I,n=29 2329977397715580 r002 38th iterates of z^2 + 2329977398681781 a001 233/322*3571^(12/17) 2329977414482321 k002 Champernowne real with 199/2*n^2-45/2*n-54 2329977420630839 m005 (1/2*5^(1/2)+4/9)/(4*3^(1/2)-2/9) 2329977425683330 m005 (1/2*5^(1/2)+7/9)/(1/12*5^(1/2)-1) 2329977427801189 a007 Real Root Of 455*x^4+969*x^3-596*x^2-972*x-182 2329977430221543 m001 (-Gompertz+ZetaP(3))/(1+AlladiGrinstead) 2329977430601051 a007 Real Root Of -266*x^4-721*x^3-676*x^2-856*x+395 2329977436300689 m001 (Otter+Tribonacci)/(BesselK(1,1)+Backhouse) 2329977440540873 a001 75025/843*199^(2/11) 2329977442041096 a007 Real Root Of -474*x^4-627*x^3+846*x^2-206*x+966 2329977447212994 m001 GAMMA(7/12)^2/GAMMA(5/6)*ln(GAMMA(7/24)) 2329977452688372 b008 -22+ExpIntegralEi[2/15] 2329977457650128 a007 Real Root Of 180*x^4-879*x^3+686*x^2+686*x+491 2329977476484054 a001 1346269/199*322^(19/31) 2329977478975415 s002 sum(A084718[n]/(n*10^n-1),n=1..infinity) 2329977481686272 m005 (1/3*gamma-3/8)/(1/6*Zeta(3)+7/12) 2329977483231855 l006 ln(821/8438) 2329977485906910 m001 sin(1)/ln(GAMMA(7/12))*sinh(1) 2329977507828833 a001 144/521*9349^(14/19) 2329977510820019 a001 233/322*9349^(12/19) 2329977513294410 r005 Im(z^2+c),c=-31/90+15/52*I,n=3 2329977514295003 l006 ln(4120/5201) 2329977514512327 k002 Champernowne real with 100*n^2-24*n-53 2329977516254168 m005 (1/2*2^(1/2)+1/11)/(5/11*Zeta(3)-8/9) 2329977521032361 m005 (1/2*3^(1/2)-5/11)/(1/2*3^(1/2)+9/10) 2329977521866979 s002 sum(A154851[n]/(n*10^n-1),n=1..infinity) 2329977523977552 a001 6/2255*514229^(45/52) 2329977524878428 a001 144/521*24476^(2/3) 2329977525433958 a001 233/322*24476^(4/7) 2329977526399074 r002 46th iterates of z^2 + 2329977527125893 a001 144/521*64079^(14/23) 2329977527360356 a001 233/322*64079^(12/23) 2329977527471289 a001 144/521*20633239^(2/5) 2329977527471291 a001 144/521*17393796001^(2/7) 2329977527471291 a001 144/521*14662949395604^(2/9) 2329977527471291 a001 144/521*(1/2+1/2*5^(1/2))^14 2329977527471291 a001 144/521*505019158607^(1/4) 2329977527471291 a001 144/521*10749957122^(7/24) 2329977527471291 a001 144/521*4106118243^(7/23) 2329977527471291 a001 144/521*1568397607^(7/22) 2329977527471291 a001 144/521*599074578^(1/3) 2329977527471291 a001 144/521*228826127^(7/20) 2329977527471291 a001 144/521*87403803^(7/19) 2329977527471292 a001 144/521*33385282^(7/18) 2329977527471297 a001 144/521*12752043^(7/17) 2329977527471334 a001 144/521*4870847^(7/16) 2329977527471605 a001 144/521*1860498^(7/15) 2329977527473598 a001 144/521*710647^(1/2) 2329977527488319 a001 144/521*271443^(7/13) 2329977527597724 a001 144/521*103682^(7/12) 2329977527651043 a001 233/322*439204^(4/9) 2329977527656398 a001 233/322*7881196^(4/11) 2329977527656412 a001 233/322*141422324^(4/13) 2329977527656412 a001 233/322*2537720636^(4/15) 2329977527656412 a001 233/322*45537549124^(4/17) 2329977527656412 a001 233/322*817138163596^(4/19) 2329977527656412 a001 233/322*14662949395604^(4/21) 2329977527656412 a001 233/322*(1/2+1/2*5^(1/2))^12 2329977527656412 a001 233/322*192900153618^(2/9) 2329977527656412 a001 233/322*73681302247^(3/13) 2329977527656412 a001 233/322*10749957122^(1/4) 2329977527656412 a001 233/322*4106118243^(6/23) 2329977527656412 a001 233/322*1568397607^(3/11) 2329977527656412 a001 233/322*599074578^(2/7) 2329977527656412 a001 233/322*228826127^(3/10) 2329977527656412 a001 233/322*87403803^(6/19) 2329977527656412 a001 233/322*33385282^(1/3) 2329977527656417 a001 233/322*12752043^(6/17) 2329977527656448 a001 233/322*4870847^(3/8) 2329977527656681 a001 233/322*1860498^(2/5) 2329977527658389 a001 233/322*710647^(3/7) 2329977527671007 a001 233/322*271443^(6/13) 2329977527764783 a001 233/322*103682^(1/2) 2329977528416659 a001 144/521*39603^(7/11) 2329977528466727 a001 233/322*39603^(6/11) 2329977533765795 a001 233/322*15127^(3/5) 2329977534598905 a001 144/521*15127^(7/10) 2329977538884865 r009 Re(z^3+c),c=-23/60+14/27*I,n=43 2329977539708617 h001 (2/11*exp(1)+1/9)/(8/9*exp(1)+2/11) 2329977543700203 b008 23+KelvinBei[1,2] 2329977553539974 r009 Re(z^3+c),c=-2/9+1/23*I,n=8 2329977558498804 m005 (1/5*Catalan+3/5)/(4*Catalan-4) 2329977558890846 m001 (LaplaceLimit-Salem)/(Pi+Zeta(1,2)) 2329977563157743 a007 Real Root Of 480*x^4-144*x^3+970*x^2-185*x-99 2329977568509958 r005 Re(z^2+c),c=-69/86+2/27*I,n=44 2329977571511247 s002 sum(A281854[n]/(n*10^n-1),n=1..infinity) 2329977574183451 a001 233/322*5778^(2/3) 2329977574404697 r009 Re(z^3+c),c=-11/21+13/36*I,n=28 2329977578052054 m001 1/(FeigenbaumMu^ln(Pi)) 2329977581752838 a001 144/521*5778^(7/9) 2329977589571063 m001 BesselK(0,1)/exp(Cahen)/GAMMA(7/24)^2 2329977591170475 a007 Real Root Of 414*x^4+588*x^3-729*x^2+155*x-445 2329977593499698 a001 47/34*2178309^(6/31) 2329977601402719 r009 Re(z^3+c),c=-37/118+13/37*I,n=9 2329977605904200 m005 (1/2*gamma-9/11)/(2*2^(1/2)-5/9) 2329977606530822 m005 (1/2*exp(1)+7/10)/(-7/22+2/11*5^(1/2)) 2329977609603789 m001 1/ln(OneNinth)/FeigenbaumD/GAMMA(1/3)^2 2329977614542333 k002 Champernowne real with 201/2*n^2-51/2*n-52 2329977624485118 l006 ln(839/8623) 2329977624485118 p004 log(8623/839) 2329977626861996 h001 (3/10*exp(1)+4/5)/(6/7*exp(2)+3/5) 2329977628635346 q001 2083/894 2329977641372922 r005 Re(z^2+c),c=-23/98+23/39*I,n=26 2329977644010037 h001 (5/11*exp(2)+1/2)/(1/3*exp(1)+3/4) 2329977646329454 s002 sum(A089818[n]/(n*10^n-1),n=1..infinity) 2329977649078481 m001 Tribonacci^Landau-Zeta(1,2) 2329977651541679 a003 sin(Pi*1/87)*sin(Pi*23/103) 2329977657593286 a007 Real Root Of 127*x^4-230*x^3-969*x^2+790*x+449 2329977669235747 a003 -1/2+2*cos(1/15*Pi)-cos(7/27*Pi)-cos(5/24*Pi) 2329977671534633 a003 -cos(1/9*Pi)-3^(1/2)+1/2*2^(1/2)-cos(8/21*Pi) 2329977673035438 m005 (1/2*gamma-3/5)/(8/11*gamma+11/12) 2329977674036284 m004 5*Sqrt[5]*Pi+216*Tan[Sqrt[5]*Pi] 2329977676994652 m001 Salem/(TreeGrowth2nd^FeigenbaumB) 2329977688312355 m001 (BesselK(1,1)*ZetaP(2)-ThueMorse)/BesselK(1,1) 2329977689747495 m005 (1/2*gamma-1/11)/(3/7*Zeta(3)+1/3) 2329977698213007 m001 (-BesselI(1,1)+2/3)/(-Cahen+5) 2329977702798900 r005 Im(z^2+c),c=-63/118+20/47*I,n=36 2329977705225952 m001 (-GAMMA(17/24)+Kac)/(Shi(1)+Pi^(1/2)) 2329977714572339 k002 Champernowne real with 101*n^2-27*n-51 2329977715849436 a007 Real Root Of -276*x^4+448*x^3-342*x^2-159*x-12 2329977716245157 h001 (-10*exp(3)+9)/(-4*exp(3)-2) 2329977716581538 s002 sum(A067025[n]/(n*10^n-1),n=1..infinity) 2329977717046263 m005 (4/15+1/6*5^(1/2))/(5/7*Pi+1/2) 2329977718075348 m002 -3-4*E^Pi+Pi^5*ProductLog[Pi] 2329977721454898 a007 Real Root Of 699*x^4-730*x^3+446*x^2-118*x-63 2329977740524530 s002 sum(A037088[n]/(n*10^n-1),n=1..infinity) 2329977745656795 r009 Im(z^3+c),c=-1/38+13/53*I,n=5 2329977746442511 m001 (Artin+Niven)/(QuadraticClass+Trott) 2329977759804736 l006 ln(857/8808) 2329977768677505 a007 Real Root Of 557*x^4-54*x^3-515*x^2-794*x+212 2329977792534071 m002 4/3-(E^Pi*Cosh[Pi])/Log[Pi] 2329977795623123 m001 BesselI(1,1)*(BesselK(0,1)-ZetaQ(3)) 2329977796076937 b008 3*(37/8+Pi) 2329977797936443 m001 1/exp(sqrt(3))*log(2+sqrt(3)) 2329977800000097 m001 (Lehmer-cos(1))/(-Otter+Rabbit) 2329977814602345 k002 Champernowne real with 203/2*n^2-57/2*n-50 2329977821473906 a007 Real Root Of -17*x^4-424*x^3-608*x^2+995*x+300 2329977827066897 p002 log(13^(1/2)*(21^(1/2)-3^(1/2))) 2329977829285872 a007 Real Root Of 920*x^4+532*x^3-399*x^2-557*x+142 2329977830581751 l006 ln(6079/7674) 2329977841368221 a007 Real Root Of 467*x^4+684*x^3-393*x^2+915*x-846 2329977849863210 h001 (2/7*exp(1)+5/7)/(3/4*exp(2)+6/7) 2329977862674871 m001 (-Paris+Stephens)/(ln(2)/ln(10)+MadelungNaCl) 2329977868012733 r005 Re(z^2+c),c=-11/52+14/39*I,n=7 2329977871750882 a007 Real Root Of -493*x^4-800*x^3+350*x^2-689*x+905 2329977875403228 a001 682/5473*75025^(6/23) 2329977879258847 a001 682/98209*4807526976^(6/23) 2329977880813131 m001 FeigenbaumC*GAMMA(2/3)^Kolakoski 2329977883882088 m001 1/Bloch^2*Cahen/exp(OneNinth)^2 2329977884853428 r002 61th iterates of z^2 + 2329977885644538 m001 (Pi+FeigenbaumC)/(Kolakoski+Totient) 2329977885844664 a007 Real Root Of 164*x^4+183*x^3-528*x^2-163*x-32 2329977886420114 a001 233/322*2207^(3/4) 2329977887025884 r009 Im(z^3+c),c=-11/28+8/57*I,n=17 2329977889556901 l006 ln(875/8993) 2329977899346245 r002 8th iterates of z^2 + 2329977903265406 q001 949/4073 2329977907006751 a001 199/12586269025*3^(6/17) 2329977914399339 a007 Real Root Of -330*x^4-591*x^3+920*x^2+795*x-892 2329977914632351 k002 Champernowne real with 102*n^2-30*n-49 2329977919205225 m001 1/GAMMA(23/24)^2/Riemann1stZero*ln(sqrt(2)) 2329977929416815 a001 21/1364*199^(55/58) 2329977935162569 a005 (1/cos(15/139*Pi))^1036 2329977935212806 m001 exp(1/exp(1))*Champernowne*Mills 2329977936934574 m001 exp(1/exp(1))+QuadraticClass^cos(1/12*Pi) 2329977938655610 m001 (ThueMorse+TwinPrimes)/(1+Zeta(1/2)) 2329977943750424 v002 sum(1/(5^n*(8*n^2+8*n-7)),n=1..infinity) 2329977946028949 a001 144/521*2207^(7/8) 2329977946289155 m001 (ln(gamma)-KomornikLoreti)/(Paris+ZetaQ(4)) 2329977955225216 r002 26th iterates of z^2 + 2329977973676192 a007 Real Root Of -267*x^4-587*x^3+43*x^2-320*x-535 2329977977679329 m001 BesselK(0,1)+ln(Pi)+LandauRamanujan 2329977984025466 m001 (ArtinRank2-Stephens)/(ZetaQ(2)-ZetaQ(4)) 2329977986564038 m005 (1/2*Pi+1/4)/(2/9*Pi+1/12) 2329977988300011 a007 Real Root Of -762*x^4+54*x^3-548*x^2+731*x+203 2329977992130634 a007 Real Root Of -593*x^4-851*x^3+730*x^2-944*x+550 2329977995639084 r005 Re(z^2+c),c=-13/70+23/49*I,n=21 2329978005789716 m001 Zeta(1/2)^Khinchin/KhinchinLevy 2329978009032643 r005 Im(z^2+c),c=5/126+6/25*I,n=7 2329978010652223 a007 Real Root Of 408*x^4+590*x^3-670*x^2+4*x-915 2329978014078279 l006 ln(893/9178) 2329978014662357 k002 Champernowne real with 205/2*n^2-63/2*n-48 2329978018115572 m001 1/Sierpinski^2*exp(FeigenbaumDelta)*Zeta(1/2) 2329978024470450 r002 27th iterates of z^2 + 2329978032232945 r005 Im(z^2+c),c=9/26+1/5*I,n=7 2329978034183819 r005 Im(z^2+c),c=-13/118+3/10*I,n=22 2329978035899866 m005 (1/2*3^(1/2)+3/5)/(3/8*Catalan+2/7) 2329978061141163 m001 (-MasserGramain+ZetaP(4))/(exp(Pi)+Conway) 2329978063671930 r005 Im(z^2+c),c=-81/110+6/37*I,n=14 2329978071364876 m001 (Bloch-Salem)/(TravellingSalesman-ThueMorse) 2329978075791546 m001 (Sarnak-ZetaP(4))/(Ei(1)+QuadraticClass) 2329978075804579 m002 2*Log[Pi]+(ProductLog[Pi]*Sinh[Pi])/Pi^5 2329978093698179 r005 Re(z^2+c),c=-7/74+11/18*I,n=15 2329978100450551 m001 (ln(2)/ln(10)-sin(1/12*Pi))/(Bloch+Totient) 2329978106867798 h001 (3/7*exp(1)+1/2)/(10/11*exp(2)+3/7) 2329978110908254 a007 Real Root Of -299*x^4-506*x^3-90*x^2-907*x+787 2329978112228128 r005 Re(z^2+c),c=-21/86+7/23*I,n=32 2329978114342951 s002 sum(A166575[n]/(exp(pi*n)+1),n=1..infinity) 2329978114692363 k002 Champernowne real with 103*n^2-33*n-47 2329978133678930 l006 ln(911/9363) 2329978143071720 m001 ln(3)*KhinchinHarmonic+ThueMorse 2329978148103001 b008 14/11+SinhIntegral[1] 2329978153345131 r005 Re(z^2+c),c=-21/86+7/23*I,n=31 2329978156317598 r009 Re(z^3+c),c=-9/50+29/39*I,n=23 2329978163066553 r005 Re(z^2+c),c=-21/86+7/23*I,n=34 2329978172386254 r008 a(0)=0,K{-n^6,91-94*n^3-24*n^2-16*n} 2329978177731507 r005 Re(z^2+c),c=19/70+7/43*I,n=18 2329978186532311 a007 Real Root Of 295*x^4+261*x^3-525*x^2+787*x-709 2329978189049979 b008 ProductLog[(-1+2*EulerGamma)^2] 2329978190078785 a007 Real Root Of 398*x^4+730*x^3-776*x^2-584*x+356 2329978208559653 s002 sum(A234162[n]/(64^n),n=1..infinity) 2329978211648204 m005 (1/3*Catalan+1/5)/(5/12*3^(1/2)-7/10) 2329978214722369 k002 Champernowne real with 207/2*n^2-69/2*n-46 2329978219368255 a007 Real Root Of 146*x^4-46*x^3-788*x^2-687*x+203 2329978222316861 a001 3571/21*21^(3/29) 2329978231238332 a007 Real Root Of 593*x^4-284*x^3+19*x^2-213*x-56 2329978232197679 m001 1/ln(Pi)^2*Catalan/sqrt(3)^2 2329978232371618 r005 Im(z^2+c),c=-23/118+1/32*I,n=6 2329978236285751 r009 Im(z^3+c),c=-29/106+13/64*I,n=5 2329978236295529 r005 Re(z^2+c),c=-47/86+29/64*I,n=29 2329978244532826 m001 ErdosBorwein^sin(1/5*Pi)/LambertW(1) 2329978248644882 l006 ln(929/9548) 2329978251666578 p001 sum((-1)^n/(524*n+429)/(1024^n),n=0..infinity) 2329978252332883 r005 Im(z^2+c),c=-13/14+25/117*I,n=34 2329978252539657 h001 (7/9*exp(2)+1/12)/(7/12*exp(1)+11/12) 2329978255839647 h001 (-3*exp(7)+8)/(-exp(3)+6) 2329978258547496 r009 Re(z^3+c),c=-7/54+29/34*I,n=38 2329978262381241 a005 (1/sin(79/231*Pi))^293 2329978264475513 a007 Real Root Of -799*x^4-415*x^3+587*x^2+883*x-230 2329978278890940 m006 (2/3*exp(2*Pi)+3/4)/(1/4*Pi+3/4) 2329978285676442 a001 1/182717648081*1836311903^(14/17) 2329978285677893 a001 2/433494437*514229^(14/17) 2329978297249941 a001 6765/322*322^(5/12) 2329978300153711 r005 Re(z^2+c),c=11/106+38/63*I,n=46 2329978301303675 r005 Re(z^2+c),c=-21/86+7/23*I,n=37 2329978310294141 a007 Real Root Of 286*x^4+384*x^3-676*x^2-161*x-277 2329978313784703 m005 (1/2*2^(1/2)-5/9)/(3/11*exp(1)-1/11) 2329978314752375 k002 Champernowne real with 104*n^2-36*n-45 2329978317717456 h001 (1/6*exp(1)+4/11)/(4/11*exp(2)+9/11) 2329978326686018 r005 Im(z^2+c),c=-9/40+19/56*I,n=16 2329978328085347 r005 Re(z^2+c),c=-21/86+7/23*I,n=39 2329978335328761 r005 Re(z^2+c),c=-21/86+7/23*I,n=42 2329978339145362 r005 Re(z^2+c),c=-21/86+7/23*I,n=45 2329978339296422 r005 Re(z^2+c),c=-21/86+7/23*I,n=47 2329978339330762 r005 Re(z^2+c),c=-21/86+7/23*I,n=44 2329978339385583 r005 Re(z^2+c),c=-21/86+7/23*I,n=40 2329978339590112 r005 Re(z^2+c),c=-21/86+7/23*I,n=50 2329978339651649 r005 Re(z^2+c),c=-21/86+7/23*I,n=52 2329978339666299 r005 Re(z^2+c),c=-21/86+7/23*I,n=55 2329978339674269 r005 Re(z^2+c),c=-21/86+7/23*I,n=53 2329978339674575 r005 Re(z^2+c),c=-21/86+7/23*I,n=58 2329978339674992 r005 Re(z^2+c),c=-21/86+7/23*I,n=60 2329978339675188 r005 Re(z^2+c),c=-21/86+7/23*I,n=57 2329978339675615 r005 Re(z^2+c),c=-21/86+7/23*I,n=63 2329978339675919 r005 Re(z^2+c),c=-21/86+7/23*I,n=62 2329978339675939 r005 Re(z^2+c),c=-21/86+7/23*I,n=64 2329978339676023 r005 Re(z^2+c),c=-21/86+7/23*I,n=61 2329978339677193 r005 Re(z^2+c),c=-21/86+7/23*I,n=59 2329978339680442 r005 Re(z^2+c),c=-21/86+7/23*I,n=56 2329978339686647 r005 Re(z^2+c),c=-21/86+7/23*I,n=54 2329978339722343 r005 Re(z^2+c),c=-21/86+7/23*I,n=49 2329978339737542 r005 Re(z^2+c),c=-21/86+7/23*I,n=51 2329978339784445 r005 Re(z^2+c),c=-21/86+7/23*I,n=48 2329978340304586 r005 Re(z^2+c),c=-21/86+7/23*I,n=46 2329978341862993 r005 Re(z^2+c),c=-21/86+7/23*I,n=43 2329978344461366 r005 Re(z^2+c),c=-21/86+7/23*I,n=41 2329978354187017 b008 7/44+E^Pi 2329978358383469 r005 Re(z^2+c),c=-21/86+7/23*I,n=36 2329978359240415 l006 ln(947/9733) 2329978359240415 p004 log(9733/947) 2329978363342895 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)-Ei(1,1)*BesselI(1,2) 2329978363744051 h001 (5/7*exp(2)+3/7)/(3/5*exp(1)+9/11) 2329978368150709 r005 Re(z^2+c),c=-21/86+7/23*I,n=38 2329978377451407 m006 (1/2*Pi-5)/(3/5*exp(Pi)+5/6) 2329978393421647 r005 Re(z^2+c),c=-21/86+7/23*I,n=35 2329978396685417 r005 Re(z^2+c),c=-21/86+7/23*I,n=27 2329978396954504 p001 sum((-1)^n/(547*n+429)/(1000^n),n=0..infinity) 2329978414782381 k002 Champernowne real with 209/2*n^2-75/2*n-44 2329978417482170 a007 Real Root Of -34*x^4-794*x^3-53*x^2-259*x-123 2329978419420057 a001 2207/55*233^(38/51) 2329978430192632 m005 (1/3*5^(1/2)+2/9)/(5^(1/2)+23/12) 2329978438506526 r005 Im(z^2+c),c=-3/14+14/43*I,n=6 2329978442008193 a007 Real Root Of 141*x^4-114*x^3-790*x^2+666*x+243 2329978442869482 a001 1364/233*4181^(28/39) 2329978446009072 r002 15th iterates of z^2 + 2329978446737602 r005 Re(z^2+c),c=-3/13+31/53*I,n=15 2329978452571408 s002 sum(A153436[n]/(n*10^n-1),n=1..infinity) 2329978457585493 a005 (1/cos(5/157*Pi))^628 2329978460504152 m002 2+Pi^2+Sinh[Pi]-Sinh[Pi]/Pi^4 2329978462195227 a007 Real Root Of -286*x^4-684*x^3-284*x^2-648*x-191 2329978465446143 h001 (3/4*exp(2)+5/6)/(7/10*exp(1)+5/6) 2329978465710093 l006 ln(965/9918) 2329978473565910 m001 GAMMA(5/6)+OrthogonalArrays^cos(1) 2329978476265559 m001 1/ln(Rabbit)^2/Conway^2/arctan(1/2)^2 2329978483283023 r002 19i'th iterates of 2*x/(1-x^2) of 2329978485302895 a007 Real Root Of -347*x^4+687*x^3-258*x^2+851*x+222 2329978488055433 a007 Real Root Of -201*x^4-441*x^3+96*x^2+341*x+619 2329978494524196 a008 Real Root of x^2-x-54055 2329978495768754 l006 ln(1959/2473) 2329978501140560 m001 Tribonacci/LandauRamanujan^2/ln(sin(Pi/12)) 2329978501440303 m001 (gamma(3)+Pi^(1/2))/(PrimesInBinary-Salem) 2329978505018394 r009 Im(z^3+c),c=-31/86+8/49*I,n=7 2329978505552704 m001 Pi^DuboisRaymond/(Pi^Porter) 2329978510964598 r005 Im(z^2+c),c=-7/10+14/251*I,n=50 2329978514480941 m001 MertensB1*ln(GaussKuzminWirsing)*RenyiParking 2329978514812387 k002 Champernowne real with 105*n^2-39*n-43 2329978515447498 a007 Real Root Of -334*x^4+936*x^3-361*x^2+363*x+117 2329978516823992 m001 (GAMMA(11/12)-Mills)/OneNinth 2329978521012045 h001 (-8*exp(-3)-4)/(-9*exp(3)-8) 2329978521603100 m001 (KhinchinLevy+OneNinth)/(1-GAMMA(11/12)) 2329978527607652 m001 1/FeigenbaumC/ln(FeigenbaumDelta)^2/Pi^2 2329978528226279 l006 ln(8569/8771) 2329978534095792 r009 Re(z^3+c),c=-13/94+41/42*I,n=10 2329978547148723 a008 Real Root of x^5-x^4-10*x^3+14*x^2+13*x-19 2329978551149702 r005 Re(z^2+c),c=-77/78+6/59*I,n=14 2329978555659898 r005 Im(z^2+c),c=-101/86+1/34*I,n=21 2329978564185730 a001 505019158607/233*144^(16/17) 2329978564990240 a007 Real Root Of 165*x^4+154*x^3-636*x^2-357*x-294 2329978568280565 p004 log(10103/983) 2329978586625581 a008 Real Root of x^2-x-54521 2329978590529119 m005 (1/3*exp(1)-1/4)/(1/8*Pi-1/9) 2329978594464735 r009 Re(z^3+c),c=-13/48+11/45*I,n=8 2329978604218968 a001 17711/521*199^(4/11) 2329978607217158 r005 Re(z^2+c),c=-21/118+31/64*I,n=17 2329978614842393 k002 Champernowne real with 211/2*n^2-81/2*n-42 2329978620970684 r005 Re(z^2+c),c=27/74+5/54*I,n=35 2329978624240411 r005 Re(z^2+c),c=-21/86+7/23*I,n=33 2329978635934860 m001 1/Zeta(1,2)*Magata^2/ln(sin(Pi/5)) 2329978651461776 a007 Real Root Of -318*x^4-828*x^3-722*x^2+842*x+20 2329978652028057 q001 764/3279 2329978654129075 r005 Re(z^2+c),c=-57/70+8/45*I,n=10 2329978657149087 r002 60th iterates of z^2 + 2329978672756226 a007 Real Root Of 30*x^4+675*x^3-568*x^2-217*x-195 2329978677149916 r005 Re(z^2+c),c=-11/114+10/19*I,n=11 2329978679959909 m005 (1/2*gamma-8/11)/(6/11*exp(1)+2/5) 2329978680798393 r005 Im(z^2+c),c=-3/110+23/45*I,n=3 2329978684976034 r002 64th iterates of z^2 + 2329978685034159 m001 ln(sin(1))/CareFree^2*sin(Pi/12)^2 2329978685285974 r009 Im(z^3+c),c=-1/126+14/57*I,n=7 2329978705649724 a007 Real Root Of 72*x^4-42*x^3-487*x^2-320*x-755 2329978706836786 b008 93/4+E^(-3) 2329978707703103 r005 Re(z^2+c),c=-4/29+13/23*I,n=56 2329978714872399 k002 Champernowne real with 106*n^2-42*n-41 2329978729383730 a007 Real Root Of 865*x^4+949*x^3+436*x^2-939*x-233 2329978733428513 m001 (Conway+Sierpinski)/(5^(1/2)-LambertW(1)) 2329978736392869 m001 exp(GolombDickman)*ArtinRank2/RenyiParking^2 2329978748407236 r005 Im(z^2+c),c=5/122+11/46*I,n=12 2329978750653716 a001 281/34111385*8^(1/2) 2329978751991229 a007 Real Root Of 886*x^4+738*x^3+535*x^2-824*x+151 2329978757246991 a008 Real Root of x^4-x^3+17*x^2-23*x-188 2329978786360077 a007 Real Root Of 365*x^4+639*x^3-387*x^2+223*x-54 2329978787999157 h001 (7/10*exp(2)+3/7)/(7/12*exp(1)+9/11) 2329978794904467 a007 Real Root Of 295*x^4+250*x^3+978*x^2-400*x-144 2329978800982006 a001 3/17711*2^(23/50) 2329978813864368 m001 (arctan(1/2)+ZetaQ(3))/(LambertW(1)-Zeta(1/2)) 2329978813970512 r005 Im(z^2+c),c=-55/118+28/59*I,n=24 2329978814902405 k002 Champernowne real with 213/2*n^2-87/2*n-40 2329978824669620 a007 Real Root Of -182*x^4-372*x^3+186*x^2+507*x+830 2329978834289847 a007 Real Root Of -409*x^4-639*x^3+841*x^2+598*x+799 2329978838573074 r009 Re(z^3+c),c=-17/122+11/12*I,n=46 2329978848765638 r009 Re(z^3+c),c=-1/50+46/51*I,n=5 2329978862287808 a007 Real Root Of -709*x^4+562*x^3-281*x^2+589*x-127 2329978867597195 m001 (1+ln(3))/(-Grothendieck+QuadraticClass) 2329978875577560 h001 (-9*exp(4)+8)/(-8*exp(1)+1) 2329978878924516 a007 Real Root Of -359*x^4-658*x^3+314*x^2-181*x+131 2329978880021171 m001 Paris*HardHexagonsEntropy/ln(arctan(1/2))^2 2329978885486791 m001 (ln(2+3^(1/2))+Magata)/(LambertW(1)-Zeta(1/2)) 2329978889635920 r009 Re(z^3+c),c=-27/70+29/52*I,n=34 2329978893266910 r005 Re(z^2+c),c=-5/34+28/51*I,n=50 2329978897118784 m001 BesselK(0,1)*exp(FeigenbaumKappa)^2/exp(1) 2329978897436189 a007 Real Root Of -462*x^4-944*x^3+135*x^2-753*x-812 2329978898470146 m005 (1/2*5^(1/2)-6)/(3*gamma+4/11) 2329978906186947 s002 sum(A265808[n]/(exp(pi*n)+1),n=1..infinity) 2329978906366420 a007 Real Root Of 199*x^4+190*x^3-833*x^2-717*x-610 2329978909369665 r005 Im(z^2+c),c=-49/114+2/5*I,n=32 2329978910945368 m001 (cos(1/12*Pi)-CareFree)/(Rabbit+ThueMorse) 2329978910968917 a001 199/46368*8^(48/59) 2329978914932411 k002 Champernowne real with 107*n^2-45*n-39 2329978915998309 a007 Real Root Of 763*x^4-876*x^3+614*x^2-980*x-275 2329978930970442 g007 2*Psi(2,4/7)-Psi(2,4/5)-Psi(2,1/5) 2329978942526903 m001 Zeta(1,2)^2/ln(Backhouse)/Zeta(9)^2 2329978945034005 a007 Real Root Of -121*x^4-96*x^3+248*x^2-362*x+162 2329978948352546 a001 3571/28657*75025^(6/23) 2329978948896628 a001 3571/514229*4807526976^(6/23) 2329978952403769 m001 (polylog(4,1/2)+LandauRamanujan2nd)/Bloch 2329978973658420 m001 1/Trott^2/Backhouse/ln(GAMMA(17/24)) 2329978985348281 r005 Im(z^2+c),c=-75/118+17/52*I,n=55 2329978988433485 m001 1/GAMMA(1/6)^2*FeigenbaumDelta^2/ln(gamma)^2 2329978998478512 a007 Real Root Of -469*x^4-709*x^3+825*x^2-74*x+203 2329979001314083 r009 Re(z^3+c),c=-3/22+60/61*I,n=26 2329979002690647 a001 38/567451585*89^(5/18) 2329979006656682 m005 (1/2*gamma+5/11)/(3/4*Pi+5/6) 2329979011512990 r005 Im(z^2+c),c=-39/70+10/57*I,n=6 2329979014962417 k002 Champernowne real with 215/2*n^2-93/2*n-38 2329979025461123 l006 ln(7634/9637) 2329979036716921 a003 sin(Pi*22/89)-sin(Pi*28/73) 2329979040441617 r009 Im(z^3+c),c=-5/11+3/41*I,n=56 2329979047186197 r005 Im(z^2+c),c=-97/122+5/44*I,n=19 2329979060563404 r005 Im(z^2+c),c=-17/30+3/8*I,n=38 2329979065740392 a007 Real Root Of 36*x^4+858*x^3+482*x^2+828*x+580 2329979076389765 m001 1/sin(Pi/5)^2*exp(cos(1))^2*sqrt(1+sqrt(3))^2 2329979076637044 a007 Real Root Of -382*x^4-809*x^3-89*x^2-480*x+390 2329979077538590 m001 1/OneNinth^2/CopelandErdos^2*exp(GAMMA(2/3))^2 2329979083466232 a007 Real Root Of 310*x^4+782*x^3+70*x^2-434*x-636 2329979095177554 a007 Real Root Of -779*x^4+970*x^3-965*x^2+159*x+104 2329979095481333 a007 Real Root Of -273*x^4-327*x^3+508*x^2-266*x+532 2329979096162167 h001 (1/10*exp(2)+5/9)/(8/11*exp(2)+2/11) 2329979099688695 m001 FeigenbaumC+ReciprocalFibonacci*ZetaR(2) 2329979101885623 a007 Real Root Of -335*x^4-193*x^3-921*x^2+322*x-7 2329979104893743 a001 9349/75025*75025^(6/23) 2329979104954677 a001 9349/1346269*4807526976^(6/23) 2329979112627809 p004 log(11213/1091) 2329979112726031 m001 Totient*(BesselI(1,2)+ZetaR(2)) 2329979114992423 k002 Champernowne real with 108*n^2-48*n-37 2329979124561792 a007 Real Root Of 681*x^4+805*x^3+584*x^2-384*x-113 2329979127723239 a001 12238/1762289*4807526976^(6/23) 2329979127732795 a001 12238/98209*75025^(6/23) 2329979131045128 a001 64079/9227465*4807526976^(6/23) 2329979131064968 a001 64079/514229*75025^(6/23) 2329979131529785 a001 167761/24157817*4807526976^(6/23) 2329979131551126 a001 167761/1346269*75025^(6/23) 2329979131600495 a001 219602/31622993*4807526976^(6/23) 2329979131610812 a001 1149851/165580141*4807526976^(6/23) 2329979131612317 a001 3010349/433494437*4807526976^(6/23) 2329979131612537 a001 3940598/567451585*4807526976^(6/23) 2329979131612569 a001 20633239/2971215073*4807526976^(6/23) 2329979131612573 a001 54018521/7778742049*4807526976^(6/23) 2329979131612574 a001 70711162/10182505537*4807526976^(6/23) 2329979131612574 a001 370248451/53316291173*4807526976^(6/23) 2329979131612574 a001 969323029/139583862445*4807526976^(6/23) 2329979131612574 a001 1268860318/182717648081*4807526976^(6/23) 2329979131612574 a001 6643838879/956722026041*4807526976^(6/23) 2329979131612574 a001 17393796001/2504730781961*4807526976^(6/23) 2329979131612574 a001 22768774562/3278735159921*4807526976^(6/23) 2329979131612574 a001 10525900321/1515744265389*4807526976^(6/23) 2329979131612574 a001 28143753123/4052739537881*4807526976^(6/23) 2329979131612574 a001 5374978561/774004377960*4807526976^(6/23) 2329979131612574 a001 4106118243/591286729879*4807526976^(6/23) 2329979131612574 a001 224056801/32264490531*4807526976^(6/23) 2329979131612574 a001 299537289/43133785636*4807526976^(6/23) 2329979131612574 a001 228826127/32951280099*4807526976^(6/23) 2329979131612575 a001 87403803/12586269025*4807526976^(6/23) 2329979131612576 a001 103681/14930208*4807526976^(6/23) 2329979131612589 a001 12752043/1836311903*4807526976^(6/23) 2329979131612672 a001 4870847/701408733*4807526976^(6/23) 2329979131613247 a001 930249/133957148*4807526976^(6/23) 2329979131617188 a001 101521/14619165*4807526976^(6/23) 2329979131622055 a001 219602/1762289*75025^(6/23) 2329979131632403 a001 1149851/9227465*75025^(6/23) 2329979131633913 a001 3010349/24157817*75025^(6/23) 2329979131634134 a001 3940598/31622993*75025^(6/23) 2329979131634166 a001 20633239/165580141*75025^(6/23) 2329979131634170 a001 54018521/433494437*75025^(6/23) 2329979131634171 a001 70711162/567451585*75025^(6/23) 2329979131634171 a001 370248451/2971215073*75025^(6/23) 2329979131634171 a001 969323029/7778742049*75025^(6/23) 2329979131634171 a001 1268860318/10182505537*75025^(6/23) 2329979131634171 a001 6643838879/53316291173*75025^(6/23) 2329979131634171 a001 17393796001/139583862445*75025^(6/23) 2329979131634171 a001 22768774562/182717648081*75025^(6/23) 2329979131634171 a001 119218851371/956722026041*75025^(6/23) 2329979131634171 a001 312119004989/2504730781961*75025^(6/23) 2329979131634171 a001 408569081798/3278735159921*75025^(6/23) 2329979131634171 a001 505019158607/4052739537881*75025^(6/23) 2329979131634171 a001 10716675201/86000486440*75025^(6/23) 2329979131634171 a001 73681302247/591286729879*75025^(6/23) 2329979131634171 a001 9381251041/75283811239*75025^(6/23) 2329979131634171 a001 5374978561/43133785636*75025^(6/23) 2329979131634171 a001 1368706081/10983760033*75025^(6/23) 2329979131634171 a001 1568397607/12586269025*75025^(6/23) 2329979131634171 a001 33281921/267084832*75025^(6/23) 2329979131634171 a001 228826127/1836311903*75025^(6/23) 2329979131634172 a001 29134601/233802911*75025^(6/23) 2329979131634173 a001 16692641/133957148*75025^(6/23) 2329979131634186 a001 4250681/34111385*75025^(6/23) 2329979131634270 a001 4870847/39088169*75025^(6/23) 2329979131634846 a001 103361/829464*75025^(6/23) 2329979131638799 a001 710647/5702887*75025^(6/23) 2329979131644197 a001 271443/39088169*4807526976^(6/23) 2329979131665892 a001 90481/726103*75025^(6/23) 2329979131829319 a001 51841/7465176*4807526976^(6/23) 2329979131851587 a001 51841/416020*75025^(6/23) 2329979133098168 a001 39603/5702887*4807526976^(6/23) 2329979133124364 a001 13201/105937*75025^(6/23) 2329979139506101 s002 sum(A080694[n]/(pi^n+1),n=1..infinity) 2329979141794985 a001 2161/311187*4807526976^(6/23) 2329979141848106 a001 15127/121393*75025^(6/23) 2329979143135905 m001 (-Bloch+Conway)/(2^(1/2)-Shi(1)) 2329979158190430 p001 sum(1/(76*n+15)/n/(5^n),n=0..infinity) 2329979158988253 a007 Real Root Of -403*x^4-772*x^3-184*x^2-979*x+830 2329979171909665 r002 9th iterates of z^2 + 2329979187554695 s002 sum(A115129[n]/(64^n),n=1..infinity) 2329979201403855 a001 2889/416020*4807526976^(6/23) 2329979201641522 a001 321/2576*75025^(6/23) 2329979203662966 m001 Grothendieck-gamma(1)+Weierstrass 2329979204970537 m005 (1/2*Catalan-3/4)/(4/7*exp(1)-3/10) 2329979205238937 p002 log(6^(3/4)*(19^(1/2)+4^(3/4))^(1/2)) 2329979208309989 l006 ln(5675/7164) 2329979214278701 a001 47*(1/2*5^(1/2)+1/2)^21*199^(2/15) 2329979214809884 m005 (1/2*gamma-3/11)/(1/6*gamma-7/9) 2329979215022429 k002 Champernowne real with 217/2*n^2-99/2*n-36 2329979228953964 r005 Im(z^2+c),c=-43/102+23/58*I,n=40 2329979236382852 m001 CopelandErdos-ln(3)-Porter 2329979239731544 m001 (BesselI(1,2)-MasserGramain)/(Zeta(5)-3^(1/3)) 2329979242416898 m001 1/OneNinth*ln(GlaisherKinkelin)*Zeta(7) 2329979242427882 r005 Im(z^2+c),c=-8/21+19/50*I,n=18 2329979251065616 r002 13th iterates of z^2 + 2329979251207369 r005 Re(z^2+c),c=-20/31+19/55*I,n=43 2329979262501311 r005 Im(z^2+c),c=-5/7+41/107*I,n=4 2329979267146371 m001 GAMMA(7/12)/GAMMA(5/24)^2*exp(cos(1))^2 2329979296624527 m001 LandauRamanujan-MertensB3^gamma(2) 2329979300098898 r005 Re(z^2+c),c=-23/94+47/63*I,n=25 2329979308948320 s001 sum(exp(-Pi)^n*A062149[n],n=1..infinity) 2329979308948320 s002 sum(A062149[n]/(exp(pi*n)),n=1..infinity) 2329979310173895 r009 Re(z^3+c),c=-11/32+23/54*I,n=27 2329979315052435 k002 Champernowne real with 109*n^2-51*n-35 2329979328916256 r005 Im(z^2+c),c=-29/118+30/59*I,n=5 2329979337580945 m005 (1/2*Zeta(3)+3)/(9/10*2^(1/2)+3/11) 2329979337813968 a007 Real Root Of 347*x^4-92*x^3+824*x^2-818*x+146 2329979341653146 r005 Im(z^2+c),c=-19/29+26/55*I,n=8 2329979356962365 m006 (1/5*Pi+5/6)/(4/Pi+5) 2329979369338525 r005 Re(z^2+c),c=-21/86+7/23*I,n=30 2329979378941857 s002 sum(A125262[n]/(n^2*2^n-1),n=1..infinity) 2329979389861612 m001 Shi(1)/KhinchinLevy*MertensB1 2329979390317342 m001 arctan(1/3)^FeigenbaumB*arctan(1/3)^ZetaP(2) 2329979411434528 a007 Real Root Of 542*x^4+681*x^3-755*x^2+976*x-987 2329979415082441 k002 Champernowne real with 219/2*n^2-105/2*n-34 2329979417080494 m001 (1/3)^sqrt(1+sqrt(3))-GAMMA(1/24) 2329979419359316 p004 log(11953/1163) 2329979425017189 r005 Im(z^2+c),c=-13/28+22/53*I,n=34 2329979426879749 m005 (1/2*Zeta(3)+9/11)/(-22/63+3/7*5^(1/2)) 2329979430118407 a007 Real Root Of 572*x^4+838*x^3-948*x^2+726*x+580 2329979435483734 m001 (2^(1/3)-Psi(1,1/3))/(-GAMMA(19/24)+Kolakoski) 2329979436320384 h001 (1/10*exp(2)+7/10)/(7/9*exp(2)+3/7) 2329979444804595 p001 sum((-1)^n/(548*n+429)/(1000^n),n=0..infinity) 2329979446772456 m004 50*Pi*Csc[Sqrt[5]*Pi]+Sin[Sqrt[5]*Pi]^2 2329979448089628 r002 64th iterates of z^2 + 2329979450036073 m001 (Ei(1,1)+OneNinth)/(Paris-Riemann1stZero) 2329979456826030 m001 1/GAMMA(1/3)/exp(GAMMA(1/24))*cos(Pi/12) 2329979464013212 h001 (3/11*exp(1)+1/9)/(5/11*exp(2)+3/10) 2329979466397273 m001 3^(1/3)+FibonacciFactorial*Sarnak 2329979481796460 m001 TreeGrowth2nd/(BesselK(0,1)+Porter) 2329979509162220 a003 cos(Pi*15/64)-sin(Pi*44/103) 2329979510634304 a007 Real Root Of -327*x^4-614*x^3+132*x^2-628*x-309 2329979512567972 m001 (ln(2)/ln(10)*Trott2nd+ln(2))/ln(2)*ln(10) 2329979512567972 m001 ln(2)+ln(5)+Trott2nd 2329979515112447 k002 Champernowne real with 110*n^2-54*n-33 2329979518076584 s002 sum(A214630[n]/(n*pi^n+1),n=1..infinity) 2329979536776079 m001 1/exp(Champernowne)/Backhouse^2*RenyiParking^2 2329979553054672 m005 (-9/44+1/4*5^(1/2))/(10/11*Zeta(3)+3/7) 2329979553876572 a004 Fibonacci(14)*Lucas(13)/(1/2+sqrt(5)/2)^14 2329979556487960 a007 Real Root Of 434*x^4+607*x^3-497*x^2+869*x-390 2329979570312945 m005 (1/2*2^(1/2)-3/4)/(7/11*exp(1)+1/9) 2329979576594571 m001 sin(1)*exp(Zeta(1,2))/sqrt(2) 2329979576848246 m001 (exp(1)+Zeta(1,-1))/(Cahen+ZetaP(2)) 2329979578019307 m001 (PlouffeB-QuadraticClass)/(ln(3)+Cahen) 2329979583579913 g005 2*Pi^2*2^(1/2)/GAMMA(5/6)/GAMMA(10/11) 2329979583947288 l006 ln(3716/4691) 2329979588210035 m001 Ei(1)/MadelungNaCl^2*exp(GAMMA(1/4)) 2329979592099312 s002 sum(A134320[n]/(n^2*10^n-1),n=1..infinity) 2329979596943270 m001 ln(5)^FeigenbaumC/(ln(5)^ZetaQ(2)) 2329979597036780 m001 Mills+FeigenbaumKappa^ZetaP(4) 2329979601815937 r005 Im(z^2+c),c=-7/15+9/22*I,n=62 2329979602923542 r005 Im(z^2+c),c=-17/14+7/223*I,n=44 2329979609969132 a001 2207/317811*4807526976^(6/23) 2329979611471695 a001 2207/17711*75025^(6/23) 2329979612997861 a001 3/199*123^(33/58) 2329979615142453 k002 Champernowne real with 221/2*n^2-111/2*n-32 2329979618420601 h001 (2/7*exp(1)+5/6)/(7/8*exp(2)+4/9) 2329979623149498 r009 Im(z^3+c),c=-47/86+21/32*I,n=3 2329979641778598 a007 Real Root Of -461*x^4-620*x^3+763*x^2-697*x-22 2329979654689841 p003 LerchPhi(1/256,4,489/191) 2329979662072441 r009 Re(z^3+c),c=-6/17+17/38*I,n=27 2329979663374076 a003 cos(Pi*27/107)/cos(Pi*31/77) 2329979677314348 a007 Real Root Of 36*x^4+835*x^3-115*x^2-589*x+734 2329979686999118 m005 (1/2*exp(1)+5/8)/(4*5^(1/2)-3/7) 2329979687096155 r005 Im(z^2+c),c=-77/90+9/43*I,n=41 2329979687641838 a007 Real Root Of -258*x^4-207*x^3+785*x^2+40*x+817 2329979689289302 a001 514229/47*29^(11/49) 2329979699806541 m001 ZetaQ(4)/(HardyLittlewoodC3-gamma(1)) 2329979701533703 r005 Im(z^2+c),c=-59/122+26/63*I,n=52 2329979708712280 a007 Real Root Of -429*x^4-514*x^3+666*x^2-810*x+639 2329979715172459 k002 Champernowne real with 111*n^2-57*n-31 2329979716578573 s002 sum(A156797[n]/((2^n-1)/n),n=1..infinity) 2329979721817878 a001 843/832040*2504730781961^(4/21) 2329979721848827 a001 843/121393*102334155^(4/21) 2329979722039117 a007 Real Root Of -606*x^4+962*x^3-48*x^2+577*x+151 2329979722845207 a003 cos(Pi*1/36)/cos(Pi*23/64) 2329979728380432 a001 843/17711*4181^(4/21) 2329979732333127 s002 sum(A201502[n]/(pi^n+1),n=1..infinity) 2329979744512439 h001 (4/5*exp(2)+1/10)/(6/7*exp(1)+1/4) 2329979745469477 a001 199/13*2^(20/33) 2329979751500474 a007 Real Root Of 253*x^4+255*x^3-345*x^2+806*x-480 2329979754488535 s001 sum(1/10^(n-1)*A240518[n]/n!^2,n=1..infinity) 2329979755961027 r009 Re(z^3+c),c=-25/66+41/60*I,n=34 2329979759410047 a001 1364/89*28657^(2/49) 2329979760494571 m006 (4/Pi-2/5)/(2/5*Pi^2-1/5) 2329979781600672 a001 3/439204*76^(17/60) 2329979794346637 m001 FeigenbaumKappa/FeigenbaumD*exp(GAMMA(7/12)) 2329979796152605 r009 Re(z^3+c),c=-13/38+11/25*I,n=10 2329979796317393 m005 (1/2*5^(1/2)-7/9)/(4/5*exp(1)-5/7) 2329979815202465 k002 Champernowne real with 223/2*n^2-117/2*n-30 2329979818998816 a007 Real Root Of 493*x^4+625*x^3-983*x^2+641*x+206 2329979823484029 r009 Re(z^3+c),c=-2/9+1/58*I,n=2 2329979827041426 a001 521/9227465*89^(6/19) 2329979827555665 a001 29/17711*4807526976^(16/19) 2329979841341084 a007 Real Root Of -518*x^4-907*x^3+732*x^2-221*x-695 2329979849111133 r005 Im(z^2+c),c=-19/60+2/57*I,n=15 2329979856022577 b008 -1/3+ArcCoth[10] 2329979856682200 m001 1/gamma^2*(3^(1/3))^2*exp(log(2+sqrt(3))) 2329979862741230 m001 1/Salem*exp(CareFree)^2*sin(Pi/12)^2 2329979866271289 v002 sum(1/(3^n+(28*n^2-76*n+51)),n=1..infinity) 2329979871710176 a007 Real Root Of -5*x^4+713*x^3+350*x^2+412*x-124 2329979873282416 r005 Re(z^2+c),c=-5/27+35/52*I,n=64 2329979877217943 r005 Re(z^2+c),c=-17/30+37/85*I,n=7 2329979879064772 r005 Im(z^2+c),c=-13/14+29/127*I,n=31 2329979879275653 q001 1158/497 2329979881879606 r005 Re(z^2+c),c=-45/82+4/5*I,n=3 2329979885294789 m001 1/exp(Conway)^2/Backhouse^2*sin(Pi/12)^2 2329979891530677 r009 Re(z^3+c),c=-31/46+31/51*I,n=2 2329979894039870 r005 Re(z^2+c),c=-7/38+13/29*I,n=13 2329979895291612 h001 (10/11*exp(2)+3/11)/(2/7*exp(2)+8/9) 2329979898976650 a007 Real Root Of -368*x^4-699*x^3+383*x^2+134*x+237 2329979915232471 k002 Champernowne real with 112*n^2-60*n-29 2329979918114152 r005 Im(z^2+c),c=-31/56+35/61*I,n=12 2329979924581147 h001 (1/12*exp(1)+1/9)/(1/12*exp(2)+5/6) 2329979942516453 m002 -ProductLog[Pi]-(ProductLog[Pi]*Sinh[Pi])/Pi^2 2329979942540563 m006 (1/5*exp(2*Pi)+1/2)/(5/6*Pi+2) 2329979947343782 r009 Re(z^3+c),c=-5/34+31/38*I,n=53 2329979951769734 r005 Re(z^2+c),c=-29/102+5/62*I,n=11 2329979960528107 m001 (Zeta(3)+ln(2^(1/2)+1))/(3^(1/2)-Chi(1)) 2329979968462745 r005 Re(z^2+c),c=19/98+15/34*I,n=19 2329979968482369 r005 Im(z^2+c),c=-79/114+25/54*I,n=12 2329979973284404 r009 Im(z^3+c),c=-17/70+33/35*I,n=44 2329979973448767 l006 ln(5473/6909) 2329979974094193 r002 29th iterates of z^2 + 2329979980226509 a007 Real Root Of -570*x^4-882*x^3+504*x^2-956*x+679 2329979983500700 m007 (-1/3*gamma-1/2)/(-2*gamma-6*ln(2)+Pi-4/5) 2329979985411898 m005 (1/2*2^(1/2)-1/7)/(4/11*Catalan-1/11) 2329979986674303 a007 Real Root Of -262*x^4-495*x^3+283*x^2+309*x+644 2329979992415123 r005 Re(z^2+c),c=-19/78+19/62*I,n=14 2329979996886391 l006 ln(7763/7946) 2329980002050444 m009 (24/5*Catalan+3/5*Pi^2+3/4)/(2*Psi(1,3/4)-1/3) 2329980003571319 a007 Real Root Of 35*x^4-124*x^3-485*x^2-206*x-447 2329980008924735 a007 Real Root Of 162*x^4-672*x^3+319*x^2+430*x+992 2329980015262477 k002 Champernowne real with 225/2*n^2-123/2*n-28 2329980019982251 b008 EllipticPi[-26,-10] 2329980026061606 a001 47/4181*34^(49/57) 2329980034379612 r002 51th iterates of z^2 + 2329980053665760 r002 9th iterates of z^2 + 2329980056000802 m005 (1/2*5^(1/2)-1/8)/(1/9*2^(1/2)-7/12) 2329980079086282 r005 Im(z^2+c),c=-5/4+30/149*I,n=7 2329980085230768 r009 Im(z^3+c),c=-4/31+41/49*I,n=22 2329980091092666 b008 ArcCoth[12*(3+EulerGamma)] 2329980093257502 m001 FransenRobinson*ZetaP(3)+Tribonacci 2329980098906133 m005 (1/2*Pi-3/5)/(2/7*5^(1/2)-2/9) 2329980112822211 m001 (Si(Pi)+exp(1/Pi))/(-Kac+LandauRamanujan) 2329980115292483 k002 Champernowne real with 113*n^2-63*n-27 2329980127898324 a007 Real Root Of -239*x^4-632*x^3-52*x^2-124*x-957 2329980135186710 r005 Im(z^2+c),c=-53/48+16/61*I,n=3 2329980156866062 m001 ZetaQ(2)*(ErdosBorwein-GAMMA(19/24)) 2329980157182269 m005 (1/2*exp(1)-5/9)/(7/8*Pi+7/10) 2329980161472047 a001 2/2971215073*1836311903^(12/17) 2329980161472047 a001 2/956722026041*6557470319842^(12/17) 2329980161473285 a001 2/9227465*514229^(12/17) 2329980164499639 a003 cos(Pi*8/27)-cos(Pi*45/118) 2329980167631974 r009 Re(z^3+c),c=-31/82+30/59*I,n=32 2329980168455300 m005 (1/2*3^(1/2)-4/11)/(3/4*Pi-1/5) 2329980170747087 a001 322/4052739537881*317811^(4/15) 2329980173640669 l006 ln(7230/9127) 2329980175546965 r005 Im(z^2+c),c=-5/7+14/61*I,n=14 2329980180214124 r002 61th iterates of z^2 + 2329980183879715 m001 ln(PrimesInBinary)^2/Backhouse*Robbin^2 2329980185894879 r009 Im(z^3+c),c=-45/74+9/34*I,n=8 2329980195135610 a007 Real Root Of 436*x^4+657*x^3-804*x^2+117*x+98 2329980197081744 a007 Real Root Of 110*x^4+400*x^3+651*x^2+359*x-880 2329980206482840 r005 Re(z^2+c),c=-57/70+1/36*I,n=12 2329980206777550 a001 4181/322*322^(1/2) 2329980210146472 m001 gamma/ln(CareFree)*sqrt(2) 2329980215322489 k002 Champernowne real with 227/2*n^2-129/2*n-26 2329980216622885 a001 3/199*9349^(1/21) 2329980220369473 p004 log(29599/23447) 2329980230527976 a007 Real Root Of 324*x^4+510*x^3-409*x^2+338*x-90 2329980237754819 a007 Real Root Of -416*x^4-583*x^3+483*x^2-842*x+302 2329980240788612 a001 196418/2207*199^(2/11) 2329980241782609 r009 Re(z^3+c),c=-21/64+25/64*I,n=13 2329980244726375 a007 Real Root Of 980*x^4-551*x^3+189*x^2-460*x+101 2329980249036573 r005 Im(z^2+c),c=-6/17+17/45*I,n=44 2329980255978570 m001 (FeigenbaumB+GaussAGM)/(GolombDickman-Totient) 2329980264023862 r009 Re(z^3+c),c=-2/9+1/23*I,n=7 2329980271227377 b008 -1+Sinh[Zeta[5]] 2329980275149624 a007 Real Root Of 424*x^4+756*x^3-430*x^2+179*x-182 2329980278595224 m001 1/FeigenbaumDelta^2*ln(Conway)^2/Salem^2 2329980279073394 r005 Im(z^2+c),c=-13/14+45/178*I,n=48 2329980280046062 m005 (1/2*exp(1)-4/7)/(2*3^(1/2)-1/12) 2329980286382198 r002 8th iterates of z^2 + 2329980293019455 a003 cos(Pi*3/8)-cos(Pi*52/115) 2329980299406686 a007 Real Root Of -379*x^4-812*x^3+255*x^2+256*x+111 2329980303197087 a007 Real Root Of -283*x^4-357*x^3+817*x^2-41*x-706 2329980303605154 a005 (1/cos(11/230*Pi))^1294 2329980306065831 r002 51th iterates of z^2 + 2329980312994950 m005 (1/3*Catalan+2/9)/(5/12*Zeta(3)-8/11) 2329980314515971 m001 (CopelandErdos+OneNinth)/(Trott2nd-ZetaP(3)) 2329980315352495 k002 Champernowne real with 114*n^2-66*n-25 2329980333173739 m001 (Niven+ZetaQ(4))/(LambertW(1)-Zeta(1,-1)) 2329980337945338 a001 233/322*843^(6/7) 2329980345691608 m006 (3*ln(Pi)-4)/(5/6*exp(Pi)+5) 2329980354381098 s002 sum(A270655[n]/((10^n+1)/n),n=1..infinity) 2329980354616542 r002 44th iterates of z^2 + 2329980363698692 m001 Khintchine/GaussKuzminWirsing/ln(MinimumGamma) 2329980366025903 a001 8/167761*199^(36/49) 2329980368236051 r005 Re(z^2+c),c=31/106+11/61*I,n=35 2329980380806677 r002 14th iterates of z^2 + 2329980392969308 r005 Im(z^2+c),c=-3/4+23/235*I,n=17 2329980395944065 p001 sum((-1)^n/(526*n+429)/(1024^n),n=0..infinity) 2329980396021583 g006 -Psi(1,10/11)-Psi(1,8/9)-Psi(1,4/9)-Psi(1,2/7) 2329980396097677 a001 329/281*521^(11/13) 2329980400016794 a007 Real Root Of -443*x^4-705*x^3+683*x^2-205*x-47 2329980404436307 s002 sum(A040157[n]/(2^n-1),n=1..infinity) 2329980415382501 k002 Champernowne real with 229/2*n^2-135/2*n-24 2329980418694386 a007 Real Root Of 272*x^4-451*x^3+343*x^2-81*x-44 2329980423637192 r009 Re(z^3+c),c=-11/52+38/39*I,n=31 2329980429985328 m001 (Porter+Sierpinski)/(CareFree+MertensB2) 2329980435518982 a007 Real Root Of 392*x^4+676*x^3-356*x^2+611*x+354 2329980442790779 m001 (3^(1/2)-FeigenbaumAlpha)/(-Magata+Paris) 2329980443685308 m001 BesselI(0,2)^ln(3)/(GAMMA(11/12)^ln(3)) 2329980445827136 r005 Re(z^2+c),c=-21/86+7/23*I,n=28 2329980460872896 m001 (Otter+Tribonacci)/(Gompertz+MinimumGamma) 2329980463353358 r005 Im(z^2+c),c=5/62+13/59*I,n=11 2329980479436007 r005 Im(z^2+c),c=-61/98+15/47*I,n=28 2329980480312686 m005 (1/3*3^(1/2)+1/3)/(2*3^(1/2)+4/9) 2329980495029385 m008 (1/5*Pi^3+5)/(5*Pi^6+1/2) 2329980500073284 m001 exp(1/Pi)^BesselK(0,1)+KhinchinLevy 2329980502538041 r005 Re(z^2+c),c=-37/90+27/55*I,n=5 2329980506087413 r005 Re(z^2+c),c=-7/40+28/57*I,n=54 2329980515412507 k002 Champernowne real with 115*n^2-69*n-23 2329980516117459 a007 Real Root Of -21*x^4-512*x^3-557*x^2-661*x-201 2329980520843230 a007 Real Root Of -361*x^4-346*x^3+876*x^2-343*x+708 2329980528181205 m005 (5/6+3/2*5^(1/2))/(1/3*Pi+3/4) 2329980531467300 m002 1/4-Cosh[Pi]/24 2329980533006210 r005 Im(z^2+c),c=-25/34+29/89*I,n=4 2329980533500999 a007 Real Root Of -190*x^4-187*x^3-322*x^2+976*x-207 2329980537483273 a007 Real Root Of 476*x^4+962*x^3-401*x^2+95*x+538 2329980538937733 r002 39th iterates of z^2 + 2329980541029910 m001 (Chi(1)-ln(3))/(-FibonacciFactorial+OneNinth) 2329980544177111 a007 Real Root Of -248*x^4-441*x^3+108*x^2-541*x-116 2329980545161354 m005 (1/3*Pi+2/11)/(3/10*Catalan+5) 2329980549129878 r005 Im(z^2+c),c=-19/32+19/61*I,n=7 2329980556048693 r005 Im(z^2+c),c=-25/22+2/69*I,n=39 2329980557505153 m001 (Thue+ZetaP(4))/(Conway-Niven) 2329980561169193 b008 2+(-1/9+Pi)^(-1) 2329980561333670 a007 Real Root Of -303*x^4-295*x^3+833*x^2-95*x+455 2329980568463104 s002 sum(A148400[n]/(n^3*2^n+1),n=1..infinity) 2329980573449253 m001 (gamma(1)-Grothendieck)/(Kolakoski+ZetaQ(4)) 2329980574021054 r005 Im(z^2+c),c=-73/74+14/61*I,n=46 2329980587168480 a001 5778/5*6765^(44/51) 2329980601207709 a003 sin(Pi*28/65)-sin(Pi*34/69) 2329980614613600 r005 Im(z^2+c),c=-47/106+27/61*I,n=14 2329980615442513 k002 Champernowne real with 231/2*n^2-141/2*n-22 2329980619140121 s002 sum(A051464[n]/(n*10^n-1),n=1..infinity) 2329980620970477 m005 (23/30+1/6*5^(1/2))/(1/11*5^(1/2)+2/7) 2329980621542756 a007 Real Root Of 215*x^4+585*x^3+407*x^2+898*x+946 2329980621552332 a001 13/11*7^(15/43) 2329980624283022 r005 Re(z^2+c),c=-79/64+1/46*I,n=18 2329980625332510 s002 sum(A031327[n]/(n^3*10^n-1),n=1..infinity) 2329980631816059 l003 Zeta(2,19/34) 2329980632808779 m005 (1/2*5^(1/2)+2/9)/(3/10*Pi-1) 2329980636406331 s001 sum(exp(-2*Pi/5)^n*A252438[n],n=1..infinity) 2329980636406331 s002 sum(A252438[n]/(exp(2/5*pi*n)),n=1..infinity) 2329980648886067 a001 39088169/47*7^(9/17) 2329980649339814 a001 514229/5778*199^(2/11) 2329980650116279 r005 Im(z^2+c),c=-13/32+18/47*I,n=16 2329980659183118 a007 Real Root Of 536*x^4+754*x^3-939*x^2+806*x+716 2329980682174682 m005 (1/3*2^(1/2)-2/9)/(3/11*2^(1/2)-3/8) 2329980696452045 a007 Real Root Of -476*x^4-600*x^3+938*x^2-291*x+669 2329980708946643 a001 1346269/15127*199^(2/11) 2329980709835698 m001 (Zeta(5)-exp(1))/(-Khinchin+Magata) 2329980715472519 k002 Champernowne real with 116*n^2-72*n-21 2329980717643162 a001 3524578/39603*199^(2/11) 2329980718911968 a001 9227465/103682*199^(2/11) 2329980719097084 a001 24157817/271443*199^(2/11) 2329980719124092 a001 63245986/710647*199^(2/11) 2329980719128032 a001 165580141/1860498*199^(2/11) 2329980719128607 a001 433494437/4870847*199^(2/11) 2329980719128691 a001 1134903170/12752043*199^(2/11) 2329980719128703 a001 2971215073/33385282*199^(2/11) 2329980719128705 a001 7778742049/87403803*199^(2/11) 2329980719128705 a001 20365011074/228826127*199^(2/11) 2329980719128705 a001 53316291173/599074578*199^(2/11) 2329980719128705 a001 139583862445/1568397607*199^(2/11) 2329980719128705 a001 365435296162/4106118243*199^(2/11) 2329980719128705 a001 956722026041/10749957122*199^(2/11) 2329980719128705 a001 2504730781961/28143753123*199^(2/11) 2329980719128705 a001 6557470319842/73681302247*199^(2/11) 2329980719128705 a001 10610209857723/119218851371*199^(2/11) 2329980719128705 a001 4052739537881/45537549124*199^(2/11) 2329980719128705 a001 1548008755920/17393796001*199^(2/11) 2329980719128705 a001 591286729879/6643838879*199^(2/11) 2329980719128705 a001 225851433717/2537720636*199^(2/11) 2329980719128705 a001 86267571272/969323029*199^(2/11) 2329980719128705 a001 32951280099/370248451*199^(2/11) 2329980719128705 a001 12586269025/141422324*199^(2/11) 2329980719128706 a001 4807526976/54018521*199^(2/11) 2329980719128711 a001 1836311903/20633239*199^(2/11) 2329980719128743 a001 3524667/39604*199^(2/11) 2329980719128962 a001 267914296/3010349*199^(2/11) 2329980719130468 a001 102334155/1149851*199^(2/11) 2329980719140784 a001 39088169/439204*199^(2/11) 2329980719211492 a001 14930352/167761*199^(2/11) 2329980719696132 a001 5702887/64079*199^(2/11) 2329980720900868 r002 8th iterates of z^2 + 2329980721251383 h001 (-10*exp(2)-5)/(-6*exp(4)-11) 2329980723017907 a001 2178309/24476*199^(2/11) 2329980726083793 a001 7/4*(1/2*5^(1/2)+1/2)^27*4^(4/5) 2329980745274199 a007 Real Root Of -443*x^4+684*x^3-931*x^2+397*x+153 2329980745785691 a001 832040/9349*199^(2/11) 2329980749851906 r005 Im(z^2+c),c=-93/106+15/64*I,n=10 2329980757988240 m009 (Psi(1,1/3)-3)/(3*Psi(1,1/3)+1/6) 2329980772922311 r005 Re(z^2+c),c=-17/78+17/44*I,n=19 2329980774787686 a007 Real Root Of 229*x^4+72*x^3-968*x^2+219*x-73 2329980781279862 a007 Real Root Of 509*x^4+862*x^3-808*x^2-90*x+79 2329980786165227 r005 Im(z^2+c),c=-49/106+20/49*I,n=55 2329980791068475 m006 (1/5*ln(Pi)+2)/(4*Pi-3) 2329980791391599 m001 (-MinimumGamma+Sierpinski)/(2^(1/2)+Magata) 2329980797232151 l006 ln(1757/2218) 2329980806212745 a001 987/2-233/2*5^(1/2) 2329980806450564 a008 Real Root of x^4+21*x^2-156*x+220 2329980810376959 r009 Re(z^3+c),c=-9/118+13/19*I,n=6 2329980812729231 m001 HardHexagonsEntropy^Champernowne*5^(1/2) 2329980813804859 h001 (-3*exp(7)-5)/(-exp(5)+7) 2329980815502525 k002 Champernowne real with 233/2*n^2-147/2*n-20 2329980831252838 m001 (Stephens-Trott2nd)/(Porter-Riemann3rdZero) 2329980833806827 m005 (1/2*5^(1/2)-6/7)/(1/6*exp(1)+2/3) 2329980839295338 m001 GAMMA(2/3)+HardyLittlewoodC5^Trott2nd 2329980843905875 r005 Im(z^2+c),c=-47/90+3/7*I,n=35 2329980848121789 r005 Im(z^2+c),c=-1/110+6/23*I,n=13 2329980848743904 p001 sum(1/(557*n+446)/(12^n),n=0..infinity) 2329980860109703 a007 Real Root Of -135*x^4-71*x^3+689*x^2+354*x+165 2329980868005867 a007 Real Root Of 491*x^4+590*x^3-870*x^2+769*x-493 2329980868739914 r005 Im(z^2+c),c=-45/56+7/51*I,n=51 2329980873959864 a007 Real Root Of 364*x^4+783*x^3-79*x^2-22*x-446 2329980901838415 a001 317811/3571*199^(2/11) 2329980908464767 r005 Re(z^2+c),c=-7/60+23/38*I,n=48 2329980909902377 r005 Im(z^2+c),c=-105/118+7/34*I,n=62 2329980915532531 k002 Champernowne real with 117*n^2-75*n-19 2329980917280262 a007 Real Root Of 323*x^4+467*x^3-703*x^2-170*x-192 2329980922219576 a007 Real Root Of -586*x^4-201*x^3+514*x^2+302*x-94 2329980929935774 m001 (2*Pi/GAMMA(5/6))^arctan(1/3)+Lehmer 2329980934510398 s002 sum(A053479[n]/(pi^n+1),n=1..infinity) 2329980938766641 r002 40th iterates of z^2 + 2329980941369156 m005 (1/2*Zeta(3)+2/3)/(1/5*Catalan-8/11) 2329980943770488 m001 1/exp(LambertW(1))*FeigenbaumKappa^2*sqrt(5) 2329980953482452 r005 Im(z^2+c),c=-23/98+19/32*I,n=14 2329980953968048 a007 Real Root Of 332*x^4+387*x^3-729*x^2+818*x+974 2329980957518323 s002 sum(A214628[n]/(n*10^n-1),n=1..infinity) 2329980962200425 r002 61th iterates of z^2 + 2329980963394297 a007 Real Root Of -717*x^4-282*x^3-971*x^2+967*x-22 2329980963895217 a001 123/10946*317811^(8/19) 2329980967784698 a001 123/514229*2971215073^(8/19) 2329980973453217 r005 Re(z^2+c),c=21/94+7/62*I,n=21 2329980977750949 m001 1/Pi^2/ln(Porter)*log(1+sqrt(2)) 2329980983242837 m001 GAMMA(2/3)+Artin+BesselK(1,1) 2329980983242837 m001 GAMMA(2/3)+BesselK(1,1)+Artin 2329980996382565 p004 log(28579/22639) 2329980997525349 r009 Re(z^3+c),c=-11/29+30/59*I,n=40 2329980998895610 m005 (1/2*exp(1)-1/5)/(4*Zeta(3)+1/6) 2329980999990359 a005 (1/cos(22/189*Pi))^147 2329981005240447 m001 (gamma(1)+gamma(3))/(Otter+StolarskyHarborth) 2329981006920456 r005 Im(z^2+c),c=-39/62+4/49*I,n=4 2329981013204258 h001 (-5*exp(2/3)-5)/(-3*exp(3)-3) 2329981013384510 m001 (BesselJ(0,1)+ln(3))/(-MinimumGamma+Robbin) 2329981015562537 k002 Champernowne real with 235/2*n^2-153/2*n-18 2329981015668851 r009 Re(z^3+c),c=-17/122+11/12*I,n=36 2329981016108332 r009 Im(z^3+c),c=-1/122+14/57*I,n=6 2329981022899972 r005 Im(z^2+c),c=-27/22+16/117*I,n=12 2329981047741511 m001 1/Sierpinski/ln(Champernowne)*(2^(1/3)) 2329981050894540 m002 -6/Log[Pi]-ProductLog[Pi]+4*Tanh[Pi] 2329981062101932 r005 Im(z^2+c),c=-51/110+13/32*I,n=40 2329981065268520 m001 (2^(1/3)-Si(Pi))/(ln(3)+3^(1/3)) 2329981073095107 m009 (1/5*Psi(1,1/3)-6)/(Psi(1,3/4)-5/6) 2329981073097642 m001 1/CareFree*FransenRobinson/ln(KhintchineLevy) 2329981087285123 m001 OneNinth^2/RenyiParking/exp(Ei(1)) 2329981088310020 m001 (5^(1/2)+Si(Pi))/(GAMMA(5/6)+Kac) 2329981090391218 a007 Real Root Of 5*x^4-918*x^3-671*x^2-971*x+23 2329981090711889 h001 (5/12*exp(2)+7/12)/(1/11*exp(2)+9/10) 2329981092664292 a007 Real Root Of 172*x^4+277*x^3-395*x^2-106*x+332 2329981093950704 a007 Real Root Of 254*x^4-724*x^3-906*x^2-182*x+100 2329981098571584 a007 Real Root Of -55*x^4+417*x^3-693*x^2+453*x-947 2329981113891202 r009 Re(z^3+c),c=-23/90+41/59*I,n=31 2329981115592543 k002 Champernowne real with 118*n^2-78*n-17 2329981118510714 a001 17711/11*76^(29/47) 2329981162432548 m001 ln(Conway)^2*Backhouse/LaplaceLimit^2 2329981169933332 p004 log(15271/12097) 2329981172174028 m001 (gamma(2)+Lehmer)/(Shi(1)+exp(1/exp(1))) 2329981182316635 m001 exp(1)*Zeta(3)+Zeta(1,2) 2329981183020245 a007 Real Root Of -489*x^4-992*x^3+467*x^2+313*x+58 2329981190100012 r005 Re(z^2+c),c=15/46+18/53*I,n=21 2329981204004429 m008 (1/2*Pi^2+3/5)/(3/4*Pi^3+1/2) 2329981204906276 r002 60th iterates of z^2 + 2329981211719563 a007 Real Root Of 262*x^4-497*x^3+821*x^2-684*x-211 2329981215360312 m005 (1/2*Pi+8/9)/(6/11*Zeta(3)+2/5) 2329981215622549 k002 Champernowne real with 237/2*n^2-159/2*n-16 2329981225354375 a007 Real Root Of -720*x^4+297*x^3-205*x^2+912*x-203 2329981243212593 s002 sum(A071809[n]/(n*10^n-1),n=1..infinity) 2329981244256233 m001 2^(1/2)*HardyLittlewoodC4+Ei(1) 2329981249151090 r005 Re(z^2+c),c=-4/19+41/51*I,n=3 2329981253278640 r005 Re(z^2+c),c=-7/60+32/53*I,n=51 2329981261612171 a007 Real Root Of 512*x^4+594*x^3-946*x^2+750*x-693 2329981263224550 a007 Real Root Of -314*x^4-616*x^3-229*x^2-814*x+809 2329981265592169 h001 (2/7*exp(1)+8/9)/(11/12*exp(2)+3/8) 2329981285340453 a007 Real Root Of -941*x^4-890*x^3-357*x^2+288*x+78 2329981289076095 r005 Im(z^2+c),c=-18/17+2/9*I,n=16 2329981297720472 a007 Real Root Of -409*x^4-690*x^3+725*x^2-x-612 2329981303771747 m001 (Conway-ThueMorse)/(sin(1/5*Pi)+ln(gamma)) 2329981308322387 a007 Real Root Of -11*x^4+319*x^3+345*x^2-907*x+373 2329981309522121 m001 1/exp(1)/GAMMA(1/4)^2/ln(sqrt(2))^2 2329981312726436 p001 sum((-1)^n/(461*n+426)/(64^n),n=0..infinity) 2329981315058554 p001 sum((-1)^n/(439*n+421)/(25^n),n=0..infinity) 2329981315652555 k002 Champernowne real with 119*n^2-81*n-15 2329981321754943 a007 Real Root Of -425*x^4-399*x^3+329*x^2+680*x-170 2329981328025101 r005 Im(z^2+c),c=-25/58+21/50*I,n=22 2329981330872005 a007 Real Root Of -18*x^4-398*x^3+518*x^2+456*x+59 2329981337633577 m001 GAMMA(2/3)^2/ln(RenyiParking)^2*Zeta(5)^2 2329981340149813 m005 (1/2*Catalan+5/7)/(5/12*5^(1/2)-3/7) 2329981344119775 m001 (GAMMA(1/4)+BesselJZeros(0,1))/sin(Pi/12) 2329981344790340 r005 Im(z^2+c),c=31/122+27/55*I,n=16 2329981355110172 m001 HeathBrownMoroz-ln(Pi)-KhinchinLevy 2329981365303966 a007 Real Root Of 41*x^4+977*x^3+491*x^2-310*x+803 2329981378426715 m001 (MasserGramain+Paris)/(arctan(1/3)-gamma(3)) 2329981381629746 m001 1/FransenRobinson/ln(Conway)*log(2+sqrt(3))^2 2329981400082774 a007 Real Root Of 417*x^4-617*x^3-15*x^2-964*x+232 2329981402806689 a001 1926*196418^(9/44) 2329981404334835 r005 Re(z^2+c),c=-11/52+23/57*I,n=31 2329981406264101 m001 BesselJ(0,1)^2*ln(Riemann3rdZero)/cos(Pi/5) 2329981413681483 a007 Real Root Of 265*x^4-614*x^3-354*x^2-806*x+214 2329981415682561 k002 Champernowne real with 239/2*n^2-165/2*n-14 2329981416511909 r005 Im(z^2+c),c=-61/94+19/49*I,n=24 2329981429589187 r002 20th iterates of z^2 + 2329981430788465 r005 Im(z^2+c),c=-63/110+27/61*I,n=33 2329981440994615 r002 11th iterates of z^2 + 2329981441293699 p003 LerchPhi(1/32,5,501/236) 2329981444791144 m001 Totient^ErdosBorwein*Totient^GAMMA(17/24) 2329981447429108 r005 Im(z^2+c),c=-31/34+22/105*I,n=47 2329981448865371 m001 (Bloch-Mills)/(Pi+BesselJ(1,1)) 2329981450046865 m001 (-Mills+RenyiParking)/(exp(Pi)+sin(1)) 2329981451086447 a007 Real Root Of 471*x^4+869*x^3-748*x^2-862*x-837 2329981457731144 l006 ln(6826/8617) 2329981461565880 m001 1/BesselJ(0,1)^2*Artin/exp(Zeta(7)) 2329981462638415 r005 Im(z^2+c),c=-39/62+17/52*I,n=46 2329981464719147 p001 sum((-1)^n/(527*n+429)/(1024^n),n=0..infinity) 2329981466507719 a001 610/843*521^(12/13) 2329981479410865 m001 exp(Pi)+polylog(4,1/2)*HardyLittlewoodC4 2329981485842364 r005 Im(z^2+c),c=2/7+4/63*I,n=64 2329981494209167 a007 Real Root Of 275*x^4+571*x^3-394*x^2-175*x+849 2329981499843199 m005 (1/2*5^(1/2)-5)/(9/11*Catalan+11/12) 2329981506112421 r005 Im(z^2+c),c=-11/24+22/53*I,n=31 2329981512882344 a007 Real Root Of -310*x^4-524*x^3-6*x^2-854*x+551 2329981515712567 k002 Champernowne real with 120*n^2-84*n-13 2329981517039889 b008 16+Sqrt[3]+Sqrt[31] 2329981520002415 a001 1364/28657*75025^(16/29) 2329981523242066 p001 sum((-1)^n/(229*n+120)/n/(12^n),n=1..infinity) 2329981523619479 r009 Im(z^3+c),c=-27/64+7/61*I,n=16 2329981524659586 m001 (Pi*csc(7/24*Pi)/GAMMA(17/24))^Sarnak/gamma(2) 2329981526584181 m001 (1+3^(1/2))^(1/2)-Zeta(1/2)*arctan(1/2) 2329981526584181 m001 Zeta(1/2)*arctan(1/2)-sqrt(1+sqrt(3)) 2329981526717510 m005 (1/2*gamma-8/11)/(4/9*5^(1/2)+8/9) 2329981540529607 r009 Im(z^3+c),c=-9/20+3/37*I,n=63 2329981546243429 m005 (1/2*2^(1/2)+11/12)/(2/9*5^(1/2)+1/5) 2329981549204545 m001 (Conway-Shi(1))/(-HardyLittlewoodC5+Porter) 2329981551610194 m001 Niven*ln(Artin)^2/sin(1)^2 2329981570825105 m008 (1/6*Pi^2-1/6)/(3/5*Pi^4+5) 2329981581569376 m005 (1/2*exp(1)-3/4)/(4/5*3^(1/2)-4) 2329981586105802 s001 sum(exp(-Pi)^n*A108527[n],n=1..infinity) 2329981586105802 s002 sum(A108527[n]/(exp(pi*n)),n=1..infinity) 2329981588280979 m001 (GAMMA(1/12)+5)/(-exp(1/Pi)+2/3) 2329981591804859 m003 3/2+Sqrt[5]/512+2*Csch[1/2+Sqrt[5]/2] 2329981603953152 m005 (1/2*Pi-6)/(-11/48+3/16*5^(1/2)) 2329981623000664 m005 (1/2*Pi+6)/(2/3*Catalan-2/7) 2329981625742650 a007 Real Root Of -374*x^4-442*x^3+718*x^2-863*x-477 2329981641999127 r002 8th iterates of z^2 + 2329981645793591 r005 Re(z^2+c),c=47/126+13/60*I,n=46 2329981657279387 p004 log(23053/2243) 2329981678567250 r009 Re(z^3+c),c=-1/126+48/61*I,n=32 2329981686671109 l006 ln(5069/6399) 2329981710353318 m005 (1/3*Zeta(3)-2/7)/(1/70+3/14*5^(1/2)) 2329981713712213 k006 concat of cont frac of 2329981716072284 r009 Im(z^3+c),c=-41/62+1/31*I,n=3 2329981717449028 a001 1597/843*521^(10/13) 2329981719066202 r005 Re(z^2+c),c=5/19+9/58*I,n=34 2329981737838558 m001 sin(1/5*Pi)+GAMMA(2/3)^FeigenbaumC 2329981755076861 a001 47/377*4181^(3/40) 2329981757477291 m008 (5*Pi^3-5/6)/(5/6*Pi+4) 2329981759380700 a007 Real Root Of -486*x^4-744*x^3+680*x^2-121*x+939 2329981776133016 p001 sum(1/(46*n+43)/(256^n),n=0..infinity) 2329981784048883 m005 (1/3*gamma+1/11)/(5/12*exp(1)+1/12) 2329981792034356 r009 Re(z^3+c),c=-8/29+5/18*I,n=2 2329981795287064 m005 (1/3*5^(1/2)+3/7)/(4/5*Zeta(3)-6) 2329981800053779 a007 Real Root Of -473*x^4-625*x^3+721*x^2-762*x+345 2329981802922991 m001 GAMMA(1/6)/Riemann2ndZero^2/ln(GAMMA(11/12)) 2329981805010308 m001 (Khinchin+Salem)/(DuboisRaymond-Si(Pi)) 2329981805848341 l006 ln(6957/7121) 2329981812503056 r005 Im(z^2+c),c=-21/23+11/53*I,n=37 2329981818764311 r005 Re(z^2+c),c=-11/78+39/64*I,n=60 2329981820360090 m001 1/OneNinth^2/ErdosBorwein*ln(GAMMA(11/24))^2 2329981838401885 a007 Real Root Of 86*x^4-299*x^3-663*x^2+889*x-646 2329981868946324 m001 Kolakoski/(LaplaceLimit-arctan(1/3)) 2329981874320625 g006 Psi(1,7/8)+Psi(1,3/8)-Psi(1,2/11)-Psi(1,9/10) 2329981879924850 m001 Zeta(5)^2/TreeGrowth2nd/exp(sinh(1))^2 2329981890577415 m005 (4/5*2^(1/2)-5/6)/(5*exp(1)-4/5) 2329981890613715 r005 Im(z^2+c),c=-1/5+19/58*I,n=9 2329981891980279 a007 Real Root Of 177*x^4+33*x^3-610*x^2+829*x+444 2329981903918124 r005 Im(z^2+c),c=-35/118+13/36*I,n=22 2329981904178472 s002 sum(A153667[n]/(n*10^n-1),n=1..infinity) 2329981906286303 m001 ln((3^(1/3)))^2/Robbin^2/GAMMA(1/4)^2 2329981909552233 m001 GAMMA(5/12)^2*GAMMA(1/4)^2*exp(Zeta(1,2)) 2329981909933320 m001 (Khinchin+Magata)/(cos(1/12*Pi)-CareFree) 2329981910093263 r005 Re(z^2+c),c=-13/50+14/55*I,n=8 2329981915356575 m001 Salem^FeigenbaumMu*Salem^GAMMA(13/24) 2329981918124216 r009 Im(z^3+c),c=-25/106+25/26*I,n=2 2329981927403356 m002 -E^Pi-Cosh[Pi]/Pi^3+ProductLog[Pi]/5 2329981930093112 a003 cos(Pi*50/107)/cos(Pi*52/107) 2329981930213092 s002 sum(A206095[n]/(n!^3),n=1..infinity) 2329981930317065 m001 (Backhouse+Tetranacci)/(BesselI(0,1)-exp(1)) 2329981931344232 m001 (exp(Pi)*Mills+exp(-1/2*Pi))/Mills 2329981934258839 a007 Real Root Of 316*x^4+307*x^3-684*x^2+617*x-279 2329981934641978 m001 (ArtinRank2-Landau)/(ln(2^(1/2)+1)-Ei(1,1)) 2329981941873687 s002 sum(A178901[n]/(n^2*10^n-1),n=1..infinity) 2329981943230731 m001 (Zeta(1,2)+ReciprocalLucas)/BesselJ(1,1) 2329981952938536 m001 (-Rabbit+RenyiParking)/(2^(1/2)+exp(-1/2*Pi)) 2329981961077619 a007 Real Root Of -372*x^4+589*x^3-52*x^2+904*x+222 2329981966373705 p001 sum((-1)^n/(349*n+69)/n/(10^n),n=1..infinity) 2329981971440257 a001 121393/1364*199^(2/11) 2329981979420867 m001 KhinchinHarmonic^MinimumGamma-gamma(1) 2329981983018354 a001 1292/161*322^(7/12) 2329981991027274 m001 FeigenbaumKappa*(Shi(1)+Robbin) 2329981993111077 m001 (sin(1/12*Pi)-gamma(1))/(Paris+Riemann1stZero) 2329981995380192 a007 Real Root Of 451*x^4+947*x^3-432*x^2-497*x-126 2329981998193041 m001 (GAMMA(2/3)-Psi(2,1/3))/(FeigenbaumC+Lehmer) 2329982002299530 r005 Im(z^2+c),c=-14/31+25/61*I,n=34 2329982003257098 m001 GAMMA(23/24)+Khinchin^Pi 2329982003257098 m001 Khinchin^Pi+GAMMA(23/24) 2329982007469737 m001 BesselJ(1,1)/(FeigenbaumD-Kolakoski) 2329982009042575 m001 (ln(Pi)*arctan(1/2)-ln(gamma))/arctan(1/2) 2329982009042575 m001 (ln(Pi)*arctan(1/2)-log(gamma))/arctan(1/2) 2329982010839535 m001 (exp(1)-sin(1/5*Pi))/(arctan(1/3)+Lehmer) 2329982024244900 m001 (MertensB2+Porter)/(ln(5)-FeigenbaumD) 2329982029061290 m009 (1/5*Psi(1,1/3)+2/3)/(1/3*Psi(1,3/4)-2) 2329982030662034 r005 Im(z^2+c),c=-25/38+17/26*I,n=5 2329982034771594 a008 Real Root of x^4+29*x^2-127*x+109 2329982036695568 m005 (1/2*Catalan+11/12)/(1/12*Zeta(3)-6) 2329982037258120 a001 1/98209*514229^(10/17) 2329982037269161 a001 2/24157817*1836311903^(10/17) 2329982037269162 a001 2/2971215073*6557470319842^(10/17) 2329982038188643 m001 (Kac-ln(2)/ln(10))/(Totient+ZetaQ(2)) 2329982044721649 h001 (4/9*exp(2)+7/10)/(1/9*exp(2)+8/9) 2329982052348578 m001 HardyLittlewoodC3+MertensB2+TwinPrimes 2329982055985385 m005 (1/2*Catalan+3/4)/(3/10*exp(1)-6) 2329982059077618 m005 (1/2*Zeta(3)-6/7)/(1/5*exp(1)+5/9) 2329982064855859 a007 Real Root Of 173*x^4+96*x^3-754*x^2+91*x+421 2329982074343093 a007 Real Root Of 229*x^4+388*x^3-54*x^2+364*x-700 2329982079715344 h001 (-7*exp(8)+9)/(-3*exp(8)-9) 2329982081187146 a001 17/12238*11^(11/51) 2329982081336568 m001 (Tetranacci-ZetaP(4))/(Backhouse-Robbin) 2329982103091538 m001 Cahen-LambertW(1)*Sarnak 2329982108170768 a001 843/5*1597^(50/51) 2329982125228820 a001 2584/843*521^(9/13) 2329982137751071 m008 (3/4*Pi^5-1)/(Pi^4+2/3) 2329982141833470 r002 4th iterates of z^2 + 2329982143082108 m001 (KomornikLoreti+Paris)/AlladiGrinstead 2329982145585416 a001 3/196418*14930352^(7/23) 2329982145597510 a001 3/5702887*956722026041^(7/23) 2329982150927970 r002 62th iterates of z^2 + 2329982151886011 m001 cos(1)^2/ln(FibonacciFactorial)^2/sqrt(3)^2 2329982158213473 h001 (-6*exp(5)-7)/(-7*exp(4)-3) 2329982158514147 l006 ln(3312/4181) 2329982160945891 r008 a(0)=2,K{-n^6,2+2*n^3+6*n^2-8*n} 2329982162670425 r005 Re(z^2+c),c=2/11+19/45*I,n=41 2329982169204410 m001 Mills+MertensB3^StolarskyHarborth 2329982185304331 r002 47th iterates of z^2 + 2329982188228642 m001 (gamma(3)+GaussAGM)/(HardyLittlewoodC3+Otter) 2329982188998181 p003 LerchPhi(1/25,3,344/211) 2329982191315054 a005 (1/cos(31/236*Pi))^246 2329982199909425 a007 Real Root Of 523*x^4+970*x^3-388*x^2+121*x-756 2329982203953315 m005 (1/2*Zeta(3)-1/5)/(10/11*exp(1)-3/4) 2329982209392098 r009 Re(z^3+c),c=-9/31+19/62*I,n=2 2329982212431040 a007 Real Root Of 325*x^4+896*x^3+401*x^2-479*x-123 2329982214750665 m001 GAMMA(5/12)/exp(KhintchineLevy)^2*sinh(1) 2329982215567553 m008 (1/3*Pi^2-3)/(2/5*Pi^5+2) 2329982221280672 a001 2/4181*34^(22/49) 2329982221535109 a007 Real Root Of 631*x^4-633*x^3+998*x^2-635*x-212 2329982223818132 r002 50th iterates of z^2 + 2329982230182717 m001 1/FeigenbaumC/exp(ErdosBorwein)*GAMMA(5/12) 2329982233882866 m005 (2/5*exp(1)-1/3)/(1/6*Pi-1/5) 2329982259018332 q001 394/1691 2329982260492024 a007 Real Root Of 102*x^4+90*x^3+706*x^2-367*x-123 2329982263747338 b008 45/14+E^3 2329982266071658 a007 Real Root Of 106*x^4-997*x^3-232*x^2-876*x+229 2329982268903797 m001 (-MasserGramain+Trott)/(BesselI(1,1)-Chi(1)) 2329982283540156 m001 (Zeta(5)+ln(5))/(PlouffeB+TwinPrimes) 2329982284377431 k003 Champernowne real with 3*n^3-11/2*n^2-7/2*n+8 2329982288082734 m001 BesselK(1,1)^2*exp((2^(1/3)))^2/GAMMA(11/24) 2329982288880570 s002 sum(A125584[n]/(n*10^n-1),n=1..infinity) 2329982292742020 m005 (1/2*5^(1/2)+1/4)/(1/11*2^(1/2)-6) 2329982304256831 k002 Champernowne real with 63/2*n^2-177/2*n+80 2329982311328055 s002 sum(A177608[n]/(n*pi^n+1),n=1..infinity) 2329982325316445 r005 Im(z^2+c),c=-41/46+1/53*I,n=5 2329982331409658 m009 (1/4*Pi^2-1)/(3/4*Psi(1,2/3)+4) 2329982333043775 m005 (1/2*gamma-1/5)/(7/8*2^(1/2)-6/7) 2329982333244761 p001 sum(1/(574*n+113)/n/(625^n),n=1..infinity) 2329982334838010 m001 (-MertensB2+Trott2nd)/(Catalan+Magata) 2329982338709592 s002 sum(A266498[n]/(n^2*2^n-1),n=1..infinity) 2329982353677649 m001 5^(1/2)*BesselJ(0,1)-Riemann3rdZero 2329982354202077 a004 Fibonacci(16)*Lucas(13)/(1/2+sqrt(5)/2)^16 2329982356674002 m001 Otter-TwinPrimes^GAMMA(5/6) 2329982374551286 m001 (Riemann3rdZero+Trott)/(Psi(1,1/3)+Cahen) 2329982379311227 a007 Real Root Of -188*x^4-362*x^3+352*x^2+452*x+104 2329982389732344 m001 Robbin^2/Artin/ln(sqrt(1+sqrt(3))) 2329982390553051 r002 58th iterates of z^2 + 2329982391664228 a007 Real Root Of 423*x^4+814*x^3-408*x^2+80*x+231 2329982396161874 r005 Re(z^2+c),c=-7/8+20/79*I,n=23 2329982404490711 p004 log(33413/3251) 2329982410042803 m001 (gamma(1)+Magata)/(3^(1/2)-ln(2)/ln(10)) 2329982410317197 a001 843/121393*4807526976^(6/23) 2329982410713822 r009 Re(z^3+c),c=-33/82+34/61*I,n=54 2329982414800040 r005 Re(z^2+c),c=-19/82+35/58*I,n=37 2329982417636451 r005 Re(z^2+c),c=-11/54+25/59*I,n=30 2329982418330523 r005 Re(z^2+c),c=-27/98+7/44*I,n=19 2329982420489498 a001 281/2255*75025^(6/23) 2329982424624361 m001 Bloch^MasserGramain/(Bloch^(Pi^(1/2))) 2329982431165398 a007 Real Root Of 135*x^4+77*x^3-682*x^2+110*x+954 2329982435335189 m001 (Backhouse+FeigenbaumC)/(Zeta(5)+Artin) 2329982441906172 r005 Im(z^2+c),c=-11/12+3/14*I,n=23 2329982445046263 r002 47th iterates of z^2 + 2329982451248519 a007 Real Root Of 626*x^4+190*x^3-454*x^2-891*x+228 2329982454197703 m005 (1/3*2^(1/2)-1/8)/(4/5*Pi-4) 2329982459726874 a001 322/591286729879*233^(4/15) 2329982462648908 m001 (GAMMA(23/24)+MertensB1)/(OneNinth-TwinPrimes) 2329982463723295 m005 (1/2*Pi-3/5)/(2/11*Catalan+4) 2329982475968021 a001 9349*144^(11/17) 2329982480349123 m001 1/ln(MertensB1)^2/Champernowne/GAMMA(11/24) 2329982481586400 a001 281*10946^(19/40) 2329982482024227 p003 LerchPhi(1/16,4,383/149) 2329982491924789 m005 (1/2*gamma-1/12)/(5/6*gamma+2/5) 2329982491924789 m007 (-5*gamma+5/6)/(-5/6*gamma-2/5) 2329982495416965 a007 Real Root Of 228*x^4+735*x^3+739*x^2+256*x-838 2329982503315503 r005 Re(z^2+c),c=-27/94+1/60*I,n=10 2329982504850159 r002 4th iterates of z^2 + 2329982511489275 m001 (Artin+MasserGramain)/(Zeta(3)-GAMMA(13/24)) 2329982516085616 r009 Re(z^3+c),c=-39/98+29/51*I,n=56 2329982531405852 a007 Real Root Of -461*x^4-632*x^3+507*x^2-991*x+531 2329982531538459 m003 1+(257*Sqrt[5])/512-Sec[1/2+Sqrt[5]/2] 2329982539798850 p004 log(36373/3539) 2329982551756956 r004 Re(z^2+c),c=-3/20+11/20*I,z(0)=I,n=44 2329982575527001 p001 sum((-1)^n/(551*n+429)/(1000^n),n=0..infinity) 2329982576696087 r002 9th iterates of z^2 + 2329982578018508 a008 Real Root of (1+6*x+6*x^2-6*x^3-x^4+x^5) 2329982578690721 r005 Im(z^2+c),c=-11/32+13/35*I,n=13 2329982587691514 p001 sum(1/(315*n+43)/(64^n),n=0..infinity) 2329982588394699 m006 (1/4*Pi^2-5)/(Pi^2+1) 2329982588394699 m008 (1/4*Pi^2-5)/(Pi^2+1) 2329982588394699 m009 (1/4*Pi^2-5)/(Pi^2+1) 2329982589096141 r009 Im(z^3+c),c=-33/86+5/34*I,n=16 2329982590116204 a001 3571/75025*75025^(16/29) 2329982602022983 m005 (1/2*3^(1/2)-6)/(7/8*Pi-6/11) 2329982604746756 a007 Real Root Of 394*x^4+924*x^3-235*x^2-547*x+77 2329982606105552 a007 Real Root Of x^4-302*x^3-505*x^2+418*x-134 2329982606998418 m001 (Pi-ln(2^(1/2)+1))/(ArtinRank2-Kolakoski) 2329982615046387 m009 (1/6*Psi(1,3/4)-5/6)/(6*Psi(1,2/3)-4/5) 2329982623223125 m001 exp(RenyiParking)*DuboisRaymond*LambertW(1) 2329982629606124 m001 DuboisRaymond-Stephens+ZetaR(2) 2329982636571187 a007 Real Root Of -399*x^4-866*x^3+510*x^2+571*x-633 2329982636572242 a007 Real Root Of -71*x^4+162*x^3+750*x^2+723*x+130 2329982646060143 a007 Real Root Of 284*x^4+718*x^3-28*x^2-112*x+603 2329982649940537 l006 ln(4867/6144) 2329982659196107 m001 (-Otter+Robbin)/(BesselJ(0,1)+Ei(1,1)) 2329982663748170 a007 Real Root Of -499*x^4-850*x^3+888*x^2+521*x+348 2329982668710772 m001 Pi+2^(1/3)*(arctan(1/3)-cos(1/12*Pi)) 2329982669647251 m001 (Catalan-gamma(1))/(-gamma(2)+PrimesInBinary) 2329982669729568 r005 Im(z^2+c),c=-5/14+2/49*I,n=6 2329982676385371 m006 (4*exp(2*Pi)+3/4)/(4*exp(Pi)-3/5) 2329982677152960 r005 Im(z^2+c),c=-17/18+38/201*I,n=4 2329982679109043 m001 (Pi+Pi*2^(1/2)/GAMMA(3/4))/(Trott2nd+ZetaQ(4)) 2329982698934656 a007 Real Root Of -404*x^4-769*x^3+262*x^2-225*x+233 2329982699419667 a007 Real Root Of 420*x^4+642*x^3-977*x^2-783*x-778 2329982701789286 m002 -3+Pi^3/2+Cosh[Pi]/ProductLog[Pi] 2329982707801690 m005 (1/2*Pi-3/10)/(21/10+3/2*5^(1/2)) 2329982722842618 a007 Real Root Of 733*x^4+698*x^3+630*x^2+101*x-4 2329982723231465 r005 Im(z^2+c),c=-7/17+7/17*I,n=9 2329982727360704 p004 log(26539/21023) 2329982737161904 r002 3th iterates of z^2 + 2329982740198898 r009 Re(z^3+c),c=-3/23+29/30*I,n=2 2329982740669720 a007 Real Root Of -347*x^4-336*x^3+726*x^2-774*x+232 2329982746243701 a001 9349/196418*75025^(16/29) 2329982747467456 m005 (9/8+1/4*5^(1/2))/(40/77+1/11*5^(1/2)) 2329982747967927 a007 Real Root Of -346*x^4-860*x^3+322*x^2+718*x-756 2329982752153833 m004 -1+(250*Tan[Sqrt[5]*Pi])/(3*Pi) 2329982758776265 a007 Real Root Of -723*x^4+703*x^3+276*x^2+914*x+209 2329982762764061 a004 Fibonacci(18)*Lucas(13)/(1/2+sqrt(5)/2)^18 2329982763512198 r005 Re(z^2+c),c=7/46+29/51*I,n=24 2329982764460162 r009 Im(z^3+c),c=-7/66+51/59*I,n=26 2329982769022396 a001 24476/514229*75025^(16/29) 2329982774399717 a001 39603/832040*75025^(16/29) 2329982776521237 m001 (ln(3)-ln(2^(1/2)+1))/(GAMMA(7/12)-Gompertz) 2329982783100404 a001 15127/317811*75025^(16/29) 2329982783707427 m001 Psi(2,1/3)*(UniversalParabolic-exp(1)) 2329982783756316 m001 (Chi(1)+ln(2^(1/2)+1))/(-BesselK(1,1)+Totient) 2329982788987139 a001 121393/843*199^(1/11) 2329982794272848 m001 1/sqrt(3)^2*GAMMA(5/12)^2/ln(sqrt(5))^2 2329982795530901 m001 2^(1/3)*sin(1/12*Pi)/csc(5/24*Pi)*GAMMA(19/24) 2329982796420781 a007 Real Root Of -299*x^4-950*x^3-545*x^2-222*x-763 2329982822372452 a004 Fibonacci(20)*Lucas(13)/(1/2+sqrt(5)/2)^20 2329982831069199 a004 Fibonacci(22)*Lucas(13)/(1/2+sqrt(5)/2)^22 2329982832269512 m001 (2^(1/2)-exp(Pi))/(cos(1/5*Pi)+Champernowne) 2329982832338037 a004 Fibonacci(24)*Lucas(13)/(1/2+sqrt(5)/2)^24 2329982832523158 a004 Fibonacci(26)*Lucas(13)/(1/2+sqrt(5)/2)^26 2329982832550167 a004 Fibonacci(28)*Lucas(13)/(1/2+sqrt(5)/2)^28 2329982832554107 a004 Fibonacci(30)*Lucas(13)/(1/2+sqrt(5)/2)^30 2329982832554682 a004 Fibonacci(32)*Lucas(13)/(1/2+sqrt(5)/2)^32 2329982832554766 a004 Fibonacci(34)*Lucas(13)/(1/2+sqrt(5)/2)^34 2329982832554778 a004 Fibonacci(36)*Lucas(13)/(1/2+sqrt(5)/2)^36 2329982832554780 a004 Fibonacci(38)*Lucas(13)/(1/2+sqrt(5)/2)^38 2329982832554780 a004 Fibonacci(40)*Lucas(13)/(1/2+sqrt(5)/2)^40 2329982832554780 a004 Fibonacci(42)*Lucas(13)/(1/2+sqrt(5)/2)^42 2329982832554780 a004 Fibonacci(44)*Lucas(13)/(1/2+sqrt(5)/2)^44 2329982832554780 a004 Fibonacci(46)*Lucas(13)/(1/2+sqrt(5)/2)^46 2329982832554780 a004 Fibonacci(48)*Lucas(13)/(1/2+sqrt(5)/2)^48 2329982832554780 a004 Fibonacci(50)*Lucas(13)/(1/2+sqrt(5)/2)^50 2329982832554780 a004 Fibonacci(52)*Lucas(13)/(1/2+sqrt(5)/2)^52 2329982832554780 a004 Fibonacci(54)*Lucas(13)/(1/2+sqrt(5)/2)^54 2329982832554780 a004 Fibonacci(56)*Lucas(13)/(1/2+sqrt(5)/2)^56 2329982832554780 a004 Fibonacci(58)*Lucas(13)/(1/2+sqrt(5)/2)^58 2329982832554780 a004 Fibonacci(60)*Lucas(13)/(1/2+sqrt(5)/2)^60 2329982832554780 a004 Fibonacci(62)*Lucas(13)/(1/2+sqrt(5)/2)^62 2329982832554780 a004 Fibonacci(64)*Lucas(13)/(1/2+sqrt(5)/2)^64 2329982832554780 a004 Fibonacci(66)*Lucas(13)/(1/2+sqrt(5)/2)^66 2329982832554780 a004 Fibonacci(68)*Lucas(13)/(1/2+sqrt(5)/2)^68 2329982832554780 a004 Fibonacci(70)*Lucas(13)/(1/2+sqrt(5)/2)^70 2329982832554780 a004 Fibonacci(72)*Lucas(13)/(1/2+sqrt(5)/2)^72 2329982832554780 a004 Fibonacci(74)*Lucas(13)/(1/2+sqrt(5)/2)^74 2329982832554780 a004 Fibonacci(76)*Lucas(13)/(1/2+sqrt(5)/2)^76 2329982832554780 a004 Fibonacci(78)*Lucas(13)/(1/2+sqrt(5)/2)^78 2329982832554780 a004 Fibonacci(80)*Lucas(13)/(1/2+sqrt(5)/2)^80 2329982832554780 a004 Fibonacci(82)*Lucas(13)/(1/2+sqrt(5)/2)^82 2329982832554780 a004 Fibonacci(84)*Lucas(13)/(1/2+sqrt(5)/2)^84 2329982832554780 a004 Fibonacci(86)*Lucas(13)/(1/2+sqrt(5)/2)^86 2329982832554780 a004 Fibonacci(88)*Lucas(13)/(1/2+sqrt(5)/2)^88 2329982832554780 a004 Fibonacci(90)*Lucas(13)/(1/2+sqrt(5)/2)^90 2329982832554780 a004 Fibonacci(92)*Lucas(13)/(1/2+sqrt(5)/2)^92 2329982832554780 a004 Fibonacci(94)*Lucas(13)/(1/2+sqrt(5)/2)^94 2329982832554780 a004 Fibonacci(96)*Lucas(13)/(1/2+sqrt(5)/2)^96 2329982832554780 a004 Fibonacci(98)*Lucas(13)/(1/2+sqrt(5)/2)^98 2329982832554780 a004 Fibonacci(100)*Lucas(13)/(1/2+sqrt(5)/2)^100 2329982832554780 a004 Fibonacci(97)*Lucas(13)/(1/2+sqrt(5)/2)^97 2329982832554780 a004 Fibonacci(99)*Lucas(13)/(1/2+sqrt(5)/2)^99 2329982832554780 a004 Fibonacci(95)*Lucas(13)/(1/2+sqrt(5)/2)^95 2329982832554780 a004 Fibonacci(93)*Lucas(13)/(1/2+sqrt(5)/2)^93 2329982832554780 a004 Fibonacci(91)*Lucas(13)/(1/2+sqrt(5)/2)^91 2329982832554780 a004 Fibonacci(89)*Lucas(13)/(1/2+sqrt(5)/2)^89 2329982832554780 a004 Fibonacci(87)*Lucas(13)/(1/2+sqrt(5)/2)^87 2329982832554780 a004 Fibonacci(85)*Lucas(13)/(1/2+sqrt(5)/2)^85 2329982832554780 a004 Fibonacci(83)*Lucas(13)/(1/2+sqrt(5)/2)^83 2329982832554780 a004 Fibonacci(81)*Lucas(13)/(1/2+sqrt(5)/2)^81 2329982832554780 a004 Fibonacci(79)*Lucas(13)/(1/2+sqrt(5)/2)^79 2329982832554780 a004 Fibonacci(77)*Lucas(13)/(1/2+sqrt(5)/2)^77 2329982832554780 a004 Fibonacci(75)*Lucas(13)/(1/2+sqrt(5)/2)^75 2329982832554780 a004 Fibonacci(73)*Lucas(13)/(1/2+sqrt(5)/2)^73 2329982832554780 a004 Fibonacci(71)*Lucas(13)/(1/2+sqrt(5)/2)^71 2329982832554780 a004 Fibonacci(69)*Lucas(13)/(1/2+sqrt(5)/2)^69 2329982832554780 a004 Fibonacci(67)*Lucas(13)/(1/2+sqrt(5)/2)^67 2329982832554780 a004 Fibonacci(65)*Lucas(13)/(1/2+sqrt(5)/2)^65 2329982832554780 a004 Fibonacci(63)*Lucas(13)/(1/2+sqrt(5)/2)^63 2329982832554780 a004 Fibonacci(61)*Lucas(13)/(1/2+sqrt(5)/2)^61 2329982832554780 a004 Fibonacci(59)*Lucas(13)/(1/2+sqrt(5)/2)^59 2329982832554780 a004 Fibonacci(57)*Lucas(13)/(1/2+sqrt(5)/2)^57 2329982832554780 a004 Fibonacci(55)*Lucas(13)/(1/2+sqrt(5)/2)^55 2329982832554780 a004 Fibonacci(53)*Lucas(13)/(1/2+sqrt(5)/2)^53 2329982832554780 a004 Fibonacci(51)*Lucas(13)/(1/2+sqrt(5)/2)^51 2329982832554780 a004 Fibonacci(49)*Lucas(13)/(1/2+sqrt(5)/2)^49 2329982832554780 a004 Fibonacci(47)*Lucas(13)/(1/2+sqrt(5)/2)^47 2329982832554780 a004 Fibonacci(45)*Lucas(13)/(1/2+sqrt(5)/2)^45 2329982832554780 a004 Fibonacci(43)*Lucas(13)/(1/2+sqrt(5)/2)^43 2329982832554780 a004 Fibonacci(41)*Lucas(13)/(1/2+sqrt(5)/2)^41 2329982832554780 a004 Fibonacci(39)*Lucas(13)/(1/2+sqrt(5)/2)^39 2329982832554781 a004 Fibonacci(37)*Lucas(13)/(1/2+sqrt(5)/2)^37 2329982832554786 a004 Fibonacci(35)*Lucas(13)/(1/2+sqrt(5)/2)^35 2329982832554818 a004 Fibonacci(33)*Lucas(13)/(1/2+sqrt(5)/2)^33 2329982832555037 a004 Fibonacci(31)*Lucas(13)/(1/2+sqrt(5)/2)^31 2329982832556543 a004 Fibonacci(29)*Lucas(13)/(1/2+sqrt(5)/2)^29 2329982832566859 a004 Fibonacci(27)*Lucas(13)/(1/2+sqrt(5)/2)^27 2329982832586403 a001 2/233*(1/2+1/2*5^(1/2))^26 2329982832637569 a004 Fibonacci(25)*Lucas(13)/(1/2+sqrt(5)/2)^25 2329982833122222 a004 Fibonacci(23)*Lucas(13)/(1/2+sqrt(5)/2)^23 2329982836444084 a004 Fibonacci(21)*Lucas(13)/(1/2+sqrt(5)/2)^21 2329982836743768 a007 Real Root Of 562*x^4+896*x^3-765*x^2+584*x+284 2329982841651795 m003 -1+3*E^(-1/2-Sqrt[5]/2)-4*Log[1/2+Sqrt[5]/2] 2329982842735801 a001 5778/121393*75025^(16/29) 2329982849416949 m001 (ln(2^(1/2)+1)+GAMMA(11/12))/(OneNinth+Sarnak) 2329982854762738 m001 ln(Niven)^2/Backhouse^2*log(2+sqrt(3))^2 2329982859212463 a004 Fibonacci(19)*Lucas(13)/(1/2+sqrt(5)/2)^19 2329982866406329 m009 (1/3*Pi^2-6)/(16/3*Catalan+2/3*Pi^2+1/6) 2329982880084413 r005 Im(z^2+c),c=-83/106+7/57*I,n=35 2329982880312527 a001 2207/5*2178309^(38/51) 2329982881962254 a001 4181/843*521^(8/13) 2329982882894198 a007 Real Root Of -5*x^4+433*x^3+251*x^2+961*x-243 2329982892762656 h001 (1/6*exp(1)+1/5)/(7/10*exp(1)+9/10) 2329982903382479 l006 ln(6422/8107) 2329982904462230 a007 Real Root Of -224*x^4-638*x^3-122*x^2+288*x-135 2329982910407253 m004 (-250*Tan[Sqrt[5]*Pi])/(3*Pi)+Tanh[Sqrt[5]*Pi] 2329982925698594 a007 Real Root Of -416*x^4-618*x^3+388*x^2-630*x+869 2329982940302726 m001 (BesselI(1,1)+2*Pi/GAMMA(5/6))/(Pi^(1/2)+Thue) 2329982942413672 m009 (1/2*Pi^2-6)/(3/4*Psi(1,1/3)-3) 2329982954857723 r005 Im(z^2+c),c=-17/26+2/73*I,n=27 2329982959301975 a007 Real Root Of 497*x^4+657*x^3-917*x^2+606*x+53 2329982974135344 r005 Re(z^2+c),c=17/50+17/42*I,n=44 2329982989411743 r002 50th iterates of z^2 + 2329982994176499 a007 Real Root Of -465*x^4-722*x^3+500*x^2-450*x+809 2329982997806786 r005 Re(z^2+c),c=-17/114+22/41*I,n=19 2329983009293544 m005 (1/2*gamma+1/9)/(7/8*3^(1/2)+1/5) 2329983013507335 r005 Im(z^2+c),c=19/86+7/52*I,n=15 2329983015269255 a004 Fibonacci(17)*Lucas(13)/(1/2+sqrt(5)/2)^17 2329983018589001 r005 Re(z^2+c),c=-35/122+1/43*I,n=9 2329983018911881 m005 (1/2*Pi-3/11)/(3*3^(1/2)+3/8) 2329983019723487 m001 exp(1)*BesselJ(0,1)^Stephens 2329983022278997 m005 (1/2*Zeta(3)-10/11)/(7/9*2^(1/2)+2/9) 2329983037724266 a007 Real Root Of -544*x^4-897*x^3+528*x^2-837*x-130 2329983040839836 r009 Im(z^3+c),c=-13/28+5/62*I,n=10 2329983041111350 m001 (2*Pi/GAMMA(5/6)-sin(1))/(FellerTornier+Niven) 2329983041462464 m001 ln(Rabbit)^2/Lehmer*Trott^2 2329983051757232 r005 Im(z^2+c),c=-1/11+26/37*I,n=27 2329983052349853 p003 LerchPhi(1/256,2,141/68) 2329983058014784 l006 ln(7977/10070) 2329983061677340 a007 Real Root Of 428*x^4+664*x^3-746*x^2-54*x-291 2329983068153150 m005 (1/2*3^(1/2)-1/10)/(8/11*Zeta(3)-6/11) 2329983075917140 a007 Real Root Of 487*x^4+486*x^3+145*x^2-377*x-91 2329983083804241 a001 9062201101803/233*144^(14/17) 2329983085365685 r005 Re(z^2+c),c=-19/78+19/62*I,n=26 2329983094831757 s002 sum(A049117[n]/(16^n-1),n=1..infinity) 2329983096522528 m001 (BesselJ(0,1)+ln(gamma)*Zeta(1,2))/ln(gamma) 2329983096522528 m001 (BesselJ(0,1)+log(gamma)*Zeta(1,2))/log(gamma) 2329983102943004 r005 Re(z^2+c),c=-7/86+31/52*I,n=39 2329983105445855 a001 7/956722026041*55^(19/22) 2329983106073016 m005 (41/36+1/4*5^(1/2))/(3/10*gamma+5/9) 2329983116214646 a005 (1/cos(2/71*Pi))^803 2329983117056467 a007 Real Root Of -179*x^4-296*x^3+635*x^2+721*x-236 2329983123489376 m003 -16/3+3*Csc[1/2+Sqrt[5]/2] 2329983133917879 m006 (3/4*Pi^2-4)/(1/4*Pi-4/5) 2329983133917879 m008 (3/4*Pi^2-4)/(1/4*Pi-4/5) 2329983140022875 a001 3/2207*18^(11/59) 2329983146397353 m004 3+(3750*Log[Sqrt[5]*Pi])/Pi 2329983164553722 b008 20+(7*Sqrt[2])/3 2329983164567214 m001 (Sierpinski-ThueMorse)/(Artin-Mills) 2329983175669246 m001 (Pi*FeigenbaumAlpha-Landau)/Pi 2329983182621913 m001 (3^(1/2)-GAMMA(3/4))/(GaussAGM+Totient) 2329983183390163 a007 Real Root Of 323*x^4+504*x^3-623*x^2+237*x+790 2329983184747848 a005 (1/cos(41/216*Pi))^126 2329983189410447 a007 Real Root Of 162*x^4-152*x^3-878*x^2+408*x-980 2329983191540011 r005 Re(z^2+c),c=-35/122+1/34*I,n=14 2329983197201760 a001 1597/2207*521^(12/13) 2329983214271632 v003 sum((8*n^2-18*n+23)/(n!+1),n=1..infinity) 2329983217520332 a007 Real Root Of 494*x^4+966*x^3-794*x^2-619*x+528 2329983226450178 r005 Re(z^2+c),c=-15/62+18/55*I,n=5 2329983238372945 s002 sum(A140399[n]/(n*2^n-1),n=1..infinity) 2329983249581239 q001 1391/597 2329983249793715 a007 Real Root Of 544*x^4+906*x^3-796*x^2+468*x+839 2329983251482897 a001 2207/46368*75025^(16/29) 2329983253559007 m001 ln(Pi)^ln(2+3^(1/2))*ZetaQ(3)^ln(2+3^(1/2)) 2329983268802334 a007 Real Root Of 420*x^4+688*x^3-944*x^2-673*x-119 2329983271394606 m001 (HardyLittlewoodC5+LaplaceLimit)/(1+Zeta(1/2)) 2329983281709183 p001 sum((-1)^n/(561*n+422)/(25^n),n=0..infinity) 2329983289607579 a001 2207/21*6765^(13/37) 2329983296136830 r005 Im(z^2+c),c=-39/86+25/62*I,n=32 2329983303102190 m005 (3/5*Pi+1/6)/(1/3*Pi-1/6) 2329983303102190 m006 (1/6/Pi+3/5)/(1/6/Pi-1/3) 2329983303102190 m008 (3/5*Pi+1/6)/(1/3*Pi-1/6) 2329983305180117 m001 (3^(1/2)-Catalan)/(-TreeGrowth2nd+Weierstrass) 2329983316112802 m001 (BesselJ(0,1)-ln(3))/(GaussAGM+Gompertz) 2329983327091971 a001 47/21*5^(1/40) 2329983336633294 a007 Real Root Of 438*x^4+752*x^3-371*x^2+320*x-637 2329983339033225 m001 FeigenbaumKappa/BesselK(1,1)*MertensB2 2329983347234639 m001 1/FeigenbaumKappa^2*Cahen*exp(Ei(1)) 2329983361516839 m005 (1/2*exp(1)+5/8)/(3*Pi-10/11) 2329983363330023 a007 Real Root Of 655*x^4-857*x^3+616*x^2-733*x-217 2329983364286859 a007 Real Root Of 373*x^4+941*x^3+386*x^2+442*x-156 2329983390534253 a001 18/1597*3^(39/59) 2329983394663950 a007 Real Root Of 145*x^4-902*x^3-886*x^2-966*x+23 2329983397642637 r009 Re(z^3+c),c=-25/64+31/58*I,n=59 2329983410274465 a001 1292*7^(10/33) 2329983410784714 m001 (-LaplaceLimit+Totient)/(3^(1/2)+GAMMA(19/24)) 2329983413803830 m005 (1/3*exp(1)+3/5)/(3/7*Pi-7/10) 2329983418053215 m001 (PisotVijayaraghavan+ZetaP(4))/(ln(Pi)-Landau) 2329983431601119 a007 Real Root Of -414*x^4-694*x^3+590*x^2-100*x-13 2329983438959956 r002 8th iterates of z^2 + 2329983443527074 b008 63/4+Sqrt[57] 2329983449706965 a001 4181/5778*521^(12/13) 2329983455629951 a007 Real Root Of -549*x^4-972*x^3-713*x^2+987*x+258 2329983463704340 h001 (5/9*exp(2)+7/12)/(2/3*exp(1)+1/5) 2329983473834351 a007 Real Root Of 478*x^4+926*x^3+50*x^2+773*x-845 2329983486546985 a001 10946/15127*521^(12/13) 2329983491921872 a001 28657/39603*521^(12/13) 2329983492706057 a001 75025/103682*521^(12/13) 2329983492820468 a001 196418/271443*521^(12/13) 2329983492837161 a001 514229/710647*521^(12/13) 2329983492839596 a001 1346269/1860498*521^(12/13) 2329983492839952 a001 3524578/4870847*521^(12/13) 2329983492840003 a001 9227465/12752043*521^(12/13) 2329983492840011 a001 24157817/33385282*521^(12/13) 2329983492840012 a001 63245986/87403803*521^(12/13) 2329983492840012 a001 165580141/228826127*521^(12/13) 2329983492840012 a001 433494437/599074578*521^(12/13) 2329983492840012 a001 1134903170/1568397607*521^(12/13) 2329983492840012 a001 2971215073/4106118243*521^(12/13) 2329983492840012 a001 7778742049/10749957122*521^(12/13) 2329983492840012 a001 20365011074/28143753123*521^(12/13) 2329983492840012 a001 53316291173/73681302247*521^(12/13) 2329983492840012 a001 139583862445/192900153618*521^(12/13) 2329983492840012 a001 10610209857723/14662949395604*521^(12/13) 2329983492840012 a001 591286729879/817138163596*521^(12/13) 2329983492840012 a001 225851433717/312119004989*521^(12/13) 2329983492840012 a001 86267571272/119218851371*521^(12/13) 2329983492840012 a001 32951280099/45537549124*521^(12/13) 2329983492840012 a001 12586269025/17393796001*521^(12/13) 2329983492840012 a001 4807526976/6643838879*521^(12/13) 2329983492840012 a001 1836311903/2537720636*521^(12/13) 2329983492840012 a001 701408733/969323029*521^(12/13) 2329983492840012 a001 267914296/370248451*521^(12/13) 2329983492840012 a001 102334155/141422324*521^(12/13) 2329983492840013 a001 39088169/54018521*521^(12/13) 2329983492840016 a001 14930352/20633239*521^(12/13) 2329983492840035 a001 5702887/7881196*521^(12/13) 2329983492840171 a001 2178309/3010349*521^(12/13) 2329983492841101 a001 832040/1149851*521^(12/13) 2329983492847477 a001 317811/439204*521^(12/13) 2329983492891178 a001 121393/167761*521^(12/13) 2329983493190711 a001 46368/64079*521^(12/13) 2329983495243735 a001 17711/24476*521^(12/13) 2329983505407478 a001 2255/281*521^(7/13) 2329983505559161 a007 Real Root Of 144*x^4+163*x^3-518*x^2-415*x-337 2329983508895235 a007 Real Root Of 127*x^4-757*x^3+673*x^2+760*x+408 2329983509315371 a001 6765/9349*521^(12/13) 2329983518755363 r009 Re(z^3+c),c=-61/118+35/59*I,n=45 2329983541591559 m001 BesselI(1,2)^BesselJ(0,1)*BesselI(1,2)^Shi(1) 2329983554572956 m005 (3*exp(1)-1/6)/(2*2^(1/2)+3/5) 2329983562434577 b008 74*Pi+Erf[1/2] 2329983563458677 m001 Cahen^GAMMA(3/4)/(FellerTornier^GAMMA(3/4)) 2329983576845567 r009 Im(z^3+c),c=-25/62+7/53*I,n=22 2329983577225252 a007 Real Root Of 516*x^4+307*x^3+378*x^2-274*x-82 2329983581203140 m001 (-3^(1/3)+arctan(1/3))/(2^(1/2)-Ei(1)) 2329983583723649 m008 (3*Pi^2-3/4)/(4*Pi^3-1/6) 2329983589929800 a007 Real Root Of 40*x^4+901*x^3-760*x^2-882*x+2 2329983592115082 m005 (1/2*2^(1/2)-1/2)/(2/7*5^(1/2)+1/4) 2329983595577088 p001 sum((-1)^n/(529*n+429)/(1024^n),n=0..infinity) 2329983604981810 a001 2584/2207*521^(11/13) 2329983605763808 a001 2584/3571*521^(12/13) 2329983605907260 m001 (Zeta(5)-Cahen)/(FeigenbaumKappa-KhinchinLevy) 2329983606557377 a001 142129/610 2329983612688390 m001 (Chi(1)+exp(1/exp(1)))/(gamma(2)+OneNinth) 2329983628581055 m005 (1/3*gamma-3/7)/(6/11*Pi-7/10) 2329983631011785 r009 Re(z^3+c),c=-13/40+21/55*I,n=11 2329983635644233 a001 29/4181*832040^(4/45) 2329983648299941 m008 (Pi^3-5/6)/(1/5*Pi+2/3) 2329983650783635 m001 1/ArtinRank2/Champernowne*ln(Zeta(9)) 2329983653345946 r009 Im(z^3+c),c=-23/48+5/51*I,n=19 2329983660015003 r005 Im(z^2+c),c=-1/10+8/27*I,n=19 2329983663741923 m001 Mills*(BesselI(0,1)+polylog(4,1/2)) 2329983663924376 m001 BesselK(1,1)-Zeta(1,2)-Pi^(1/2) 2329983663924376 m001 BesselK(1,1)-Zeta(1,2)-sqrt(Pi) 2329983668171957 p003 LerchPhi(1/3,6,359/191) 2329983670077888 m001 FeigenbaumC^2*exp(ErdosBorwein)/GAMMA(1/3)^2 2329983679255429 m005 (1/2*gamma-1/8)/(-7/36+1/18*5^(1/2)) 2329983683818353 r009 Re(z^3+c),c=-31/90+20/41*I,n=9 2329983696631265 l006 ln(1555/1963) 2329983702526145 a005 (1/cos(7/232*Pi))^188 2329983708193628 s002 sum(A125279[n]/(n*pi^n+1),n=1..infinity) 2329983713268437 m001 Zeta(5)^Cahen+Mills 2329983719909037 m005 (1/2*gamma-3/8)/(8/11*3^(1/2)-8/9) 2329983722857747 m001 (MasserGramain-MertensB1)/(Zeta(3)-Zeta(5)) 2329983734738125 m005 (3/20+1/4*5^(1/2))/(5/6*exp(1)+7/9) 2329983736722878 a007 Real Root Of 401*x^4+820*x^3-427*x^2-491*x-272 2329983738560949 m001 (Cahen+Lehmer)/(Mills-StronglyCareFree) 2329983740714996 m001 MertensB1*OrthogonalArrays+ReciprocalLucas 2329983741185556 r005 Im(z^2+c),c=-6/13+20/49*I,n=58 2329983743239379 m001 1/exp(Pi)*HardHexagonsEntropy/sin(Pi/12) 2329983743239379 m001 HardHexagonsEntropy/sin(1/12*Pi)/exp(Pi) 2329983744824465 m005 (1/2*Zeta(3)-5/12)/(1/6*2^(1/2)+5/9) 2329983748334530 a007 Real Root Of 943*x^4+220*x^3+846*x^2-172*x-86 2329983758209166 r005 Re(z^2+c),c=-9/10+45/119*I,n=2 2329983758987451 r008 a(0)=0,K{-n^6,48-89*n^3-60*n^2+58*n} 2329983761709139 m005 (1/2*3^(1/2)+1)/(3/5*gamma+5/11) 2329983773540575 a001 377/843*1364^(13/15) 2329983780354595 m001 Riemann3rdZero-Tribonacci^ln(2^(1/2)+1) 2329983783394175 m001 (-CareFree+Conway)/(ln(3)-sin(1)) 2329983789465162 r009 Re(z^3+c),c=-23/66+15/47*I,n=3 2329983790920389 m001 (gamma(3)-HardyLittlewoodC3)/(MertensB2-Mills) 2329983791903712 m001 PrimesInBinary/LaplaceLimit/Khinchin 2329983834424597 m001 BesselI(1,2)+Lehmer^gamma 2329983834545922 a007 Real Root Of 274*x^4+399*x^3-326*x^2+720*x+419 2329983842677386 a007 Real Root Of 256*x^4+496*x^3-256*x^2+155*x+480 2329983850210398 r004 Re(z^2+c),c=-1/4+2/7*I,z(0)=-1,n=19 2329983850645306 m005 (1/2*gamma-7/8)/(5/7*Pi+3/11) 2329983858706113 r009 Re(z^3+c),c=-11/29+17/30*I,n=23 2329983868906252 a007 Real Root Of -729*x^4+554*x^3-992*x^2+30*x+70 2329983886410922 a001 2/4181*514229^(8/17) 2329983888894879 r005 Im(z^2+c),c=-18/29+1/32*I,n=14 2329983897614505 r005 Im(z^2+c),c=-13/22+43/116*I,n=22 2329983897905078 r005 Im(z^2+c),c=-31/106+23/64*I,n=19 2329983899852943 m001 (Ei(1,1)+gamma(1))/(BesselI(0,1)-Ei(1)) 2329983900614089 m001 Shi(1)/(Champernowne-gamma) 2329983905478170 m001 Mills^Landau+GAMMA(19/24) 2329983913055709 a001 1/98209*1836311903^(8/17) 2329983913067782 a001 2/9227465*6557470319842^(8/17) 2329983913821127 p003 LerchPhi(1/3,5,79/235) 2329983916531704 a007 Real Root Of 384*x^4+524*x^3-874*x^2+380*x+941 2329983922958335 m001 cos(1)^2/exp(FeigenbaumDelta)/sinh(1) 2329983930364307 m001 (Ei(1)-Conway)/(ReciprocalLucas+Stephens) 2329983930472705 r005 Re(z^2+c),c=31/102+12/55*I,n=14 2329983944663369 m001 exp(sqrt(2))*Zeta(9)^2/sqrt(Pi) 2329983947369780 p001 sum(1/(572*n+115)/n/(625^n),n=1..infinity) 2329983950692442 m001 1/ln(Zeta(7))^2*Robbin^2/exp(1) 2329983951580769 m005 (1/2*3^(1/2)-3/7)/(7/11*5^(1/2)+5/11) 2329983952478856 s002 sum(A045812[n]/(n*10^n-1),n=1..infinity) 2329983954835341 a001 28657/521*199^(3/11) 2329983956718631 a007 Real Root Of -293*x^4-478*x^3+668*x^2+286*x-371 2329983958577472 a007 Real Root Of -186*x^4-27*x^3+585*x^2-568*x+641 2329983964978730 m001 Khinchin/(GAMMA(23/24)^(2*Pi/GAMMA(5/6))) 2329983964978730 m001 Khinchin/(GAMMA(23/24)^GAMMA(1/6)) 2329983967097568 m005 (1/2*gamma+3/10)/(8/11*5^(1/2)+9/10) 2329983970503583 b008 EulerGamma*(1+E+Pi^(-1)) 2329983977640348 a001 7/365435296162*365435296162^(11/14) 2329983977640348 a001 7/1836311903*433494437^(11/14) 2329983977641727 a001 7/9227465*514229^(11/14) 2329983981360128 q001 8/34335 2329983989366090 a007 Real Root Of 3*x^4+698*x^3-231*x^2+206*x+264 2329983992819253 r002 35th iterates of z^2 + 2329983992933548 r002 43th iterates of z^2 + 2329983999098901 m005 (1/2*Zeta(3)+3)/(6/7*2^(1/2)+1/3) 2329984003303899 a007 Real Root Of 252*x^4+538*x^3+226*x^2+490*x-707 2329984009737728 r002 63th iterates of z^2 + 2329984015002150 m001 (Khinchin+Porter)/Grothendieck 2329984024535846 m005 (2/15+3/10*5^(1/2))/(5/6*Pi+5/6) 2329984026565376 m001 (5^(1/2)+1)/(GAMMA(11/12)+1/3) 2329984029624000 m006 (3*Pi^2+4/5)/(3/5*exp(Pi)-5/6) 2329984046158853 a001 9/5473*55^(2/23) 2329984047794465 r005 Im(z^2+c),c=-105/122+14/61*I,n=36 2329984051409031 r009 Im(z^3+c),c=-2/25+53/61*I,n=24 2329984055649737 a001 233/141422324*2^(1/2) 2329984056516460 r005 Im(z^2+c),c=-55/106+17/32*I,n=14 2329984065788000 r005 Re(z^2+c),c=8/23+13/61*I,n=10 2329984067182160 b008 Log[185/18] 2329984067182160 l006 ln(18/185) 2329984071653205 r005 Im(z^2+c),c=-8/19+25/63*I,n=48 2329984073152341 a001 2255/1926*521^(11/13) 2329984073788427 m001 (exp(Pi)*Psi(1,1/3)+ErdosBorwein)/Psi(1,1/3) 2329984076242441 m001 (Landau-ln(3)*MertensB1)/ln(3) 2329984076965423 r005 Im(z^2+c),c=-1/3+21/55*I,n=12 2329984084898418 a004 Fibonacci(15)*Lucas(13)/(1/2+sqrt(5)/2)^15 2329984085557407 m001 (FeigenbaumD-Psi(1,1/3))/(Gompertz+Sierpinski) 2329984088887088 l006 ln(6151/6296) 2329984102287975 m001 (Psi(1,1/3)+GAMMA(23/24))/(-Paris+Stephens) 2329984106547991 m001 3^(1/2)*KhinchinHarmonic-ln(2) 2329984108214268 a001 1597/322*322^(2/3) 2329984120936296 a007 Real Root Of 316*x^4+641*x^3-599*x^2-878*x+1 2329984123819275 m001 1/ln(GAMMA(5/6))/BesselK(0,1)/sin(1) 2329984137916514 a001 377/18*11^(2/45) 2329984140136630 m001 (1-Zeta(5))/(-BesselI(1,1)+Sarnak) 2329984141457514 a001 17711/15127*521^(11/13) 2329984142119912 m006 (4/Pi-3/5)/(2*ln(Pi)+3/5) 2329984147947563 r002 20th iterates of z^2 + 2329984149319119 r005 Im(z^2+c),c=-31/50+17/50*I,n=9 2329984151423105 a001 15456/13201*521^(11/13) 2329984152877065 a001 121393/103682*521^(11/13) 2329984153089195 a001 105937/90481*521^(11/13) 2329984153120144 a001 832040/710647*521^(11/13) 2329984153124660 a001 726103/620166*521^(11/13) 2329984153125319 a001 5702887/4870847*521^(11/13) 2329984153125415 a001 4976784/4250681*521^(11/13) 2329984153125429 a001 39088169/33385282*521^(11/13) 2329984153125431 a001 34111385/29134601*521^(11/13) 2329984153125431 a001 267914296/228826127*521^(11/13) 2329984153125431 a001 233802911/199691526*521^(11/13) 2329984153125431 a001 1836311903/1568397607*521^(11/13) 2329984153125431 a001 1602508992/1368706081*521^(11/13) 2329984153125431 a001 12586269025/10749957122*521^(11/13) 2329984153125431 a001 10983760033/9381251041*521^(11/13) 2329984153125431 a001 86267571272/73681302247*521^(11/13) 2329984153125431 a001 75283811239/64300051206*521^(11/13) 2329984153125431 a001 2504730781961/2139295485799*521^(11/13) 2329984153125431 a001 365435296162/312119004989*521^(11/13) 2329984153125431 a001 139583862445/119218851371*521^(11/13) 2329984153125431 a001 53316291173/45537549124*521^(11/13) 2329984153125431 a001 20365011074/17393796001*521^(11/13) 2329984153125431 a001 7778742049/6643838879*521^(11/13) 2329984153125431 a001 2971215073/2537720636*521^(11/13) 2329984153125431 a001 1134903170/969323029*521^(11/13) 2329984153125431 a001 433494437/370248451*521^(11/13) 2329984153125431 a001 165580141/141422324*521^(11/13) 2329984153125432 a001 63245986/54018521*521^(11/13) 2329984153125438 a001 24157817/20633239*521^(11/13) 2329984153125474 a001 9227465/7881196*521^(11/13) 2329984153125726 a001 3524578/3010349*521^(11/13) 2329984153127451 a001 1346269/1149851*521^(11/13) 2329984153139272 a001 514229/439204*521^(11/13) 2329984153220299 a001 196418/167761*521^(11/13) 2329984153775662 a001 75025/64079*521^(11/13) 2329984157582179 a001 28657/24476*521^(11/13) 2329984166579917 r009 Re(z^3+c),c=-17/62+29/42*I,n=51 2329984178563882 a003 sin(Pi*1/114)*sin(Pi*17/53) 2329984178802807 m001 (2^(1/2)-gamma(2))/(-BesselI(1,1)+Salem) 2329984179446845 s002 sum(A243912[n]/(exp(n)),n=1..infinity) 2329984179764540 a001 10946/843*521^(6/13) 2329984183672435 a001 10946/9349*521^(11/13) 2329984223116170 h001 (1/3*exp(2)+8/11)/(2/11*exp(1)+7/8) 2329984226086436 r005 Im(z^2+c),c=-59/114+23/45*I,n=10 2329984255706831 m001 1/Riemann1stZero^2/ln(RenyiParking)*GAMMA(2/3) 2329984259367000 m001 1/Riemann1stZero*Cahen^2*exp(Zeta(5))^2 2329984266831581 a001 987/1364*521^(12/13) 2329984267956962 m001 (ln(Pi)+cos(1/12*Pi))/(Psi(1,1/3)-Zeta(5)) 2329984273320285 r005 Re(z^2+c),c=-7/46+29/55*I,n=19 2329984278861443 m001 Zeta(1,-1)^ln(2)+Pi*csc(1/24*Pi)/GAMMA(23/24) 2329984281101729 m001 (-PlouffeB+Trott)/(Shi(1)-Zeta(1,2)) 2329984301888190 m005 (1/2*gamma+4/5)/(5/8*2^(1/2)-5/12) 2329984312311405 m001 BesselK(1,1)*ln(BesselK(0,1))^2/GAMMA(5/24)^2 2329984312754589 p003 LerchPhi(1/125,2,110/53) 2329984315966866 r005 Im(z^2+c),c=-9/58+6/19*I,n=13 2329984326880305 m001 (MertensB3+Trott2nd)/(GAMMA(11/12)-Bloch) 2329984337940229 r009 Re(z^3+c),c=-29/74+15/28*I,n=63 2329984340276027 r005 Re(z^2+c),c=-1/19+24/43*I,n=9 2329984341873710 r005 Im(z^2+c),c=-19/20+7/31*I,n=44 2329984346058357 a001 144*123^(1/10) 2329984354603450 r005 Im(z^2+c),c=-85/126+4/11*I,n=13 2329984354764361 m001 1/ln(TreeGrowth2nd)^2/Paris^2*GAMMA(7/12) 2329984355549711 r005 Re(z^2+c),c=6/19+22/63*I,n=7 2329984361715725 a001 4181/2207*521^(10/13) 2329984362497723 a001 4181/3571*521^(11/13) 2329984368586232 m001 1/GAMMA(5/6)/ln(Kolakoski)/sqrt(1+sqrt(3)) 2329984369316242 l006 ln(7573/9560) 2329984390956266 s002 sum(A044554[n]/((2^n+1)/n),n=1..infinity) 2329984394294515 a007 Real Root Of 516*x^4+713*x^3-925*x^2+246*x-594 2329984406065231 a007 Real Root Of -394*x^4-648*x^3-706*x^2+76*x+49 2329984408661990 a001 5778/5*3^(30/47) 2329984414010982 m001 1/cosh(1)/Lehmer^2*ln(log(1+sqrt(2))) 2329984417737361 r005 Im(z^2+c),c=-51/110+20/49*I,n=64 2329984427570675 a007 Real Root Of 449*x^4+858*x^3-195*x^2+756*x+440 2329984432730748 g007 -Psi(2,2/11)-Psi(13/10)-Psi(2,1/10)-Psi(2,5/7) 2329984432794199 b008 Sech[(2*Pi)/7]/3 2329984432874348 r009 Re(z^3+c),c=-35/102+17/40*I,n=19 2329984433935505 a008 Real Root of (-5+3*x+4*x^2+2*x^4+x^5) 2329984445764297 r009 Re(z^3+c),c=-7/50+15/16*I,n=20 2329984447220201 r009 Re(z^3+c),c=-11/28+11/21*I,n=33 2329984452272636 m001 BesselK(1,1)*DuboisRaymond/ln(sqrt(1+sqrt(3))) 2329984457809414 m005 (1/2*Zeta(3)-3/7)/(-5/6+1/24*5^(1/2)) 2329984458511352 a007 Real Root Of 199*x^4+250*x^3-188*x^2+576*x-340 2329984459055803 r009 Re(z^3+c),c=-17/46+6/13*I,n=6 2329984468668039 a007 Real Root Of 165*x^4-894*x^3+835*x^2+507*x+731 2329984470743966 r005 Im(z^2+c),c=-107/118+16/63*I,n=21 2329984479069390 a007 Real Root Of -894*x^4-732*x^3+240*x^2+802*x-188 2329984479501103 m001 (ln(Pi)+Champernowne)/(Psi(2,1/3)+ln(2)) 2329984481295299 m001 GAMMA(7/12)^(FransenRobinson*Rabbit) 2329984486351008 a005 (1/cos(7/223*Pi))^1592 2329984498873611 a007 Real Root Of -302*x^4-493*x^3+305*x^2-357*x+177 2329984499521863 m005 (1/2*5^(1/2)-9/11)/(1/6*gamma-1/12) 2329984515179860 r005 Re(z^2+c),c=-61/50+3/28*I,n=44 2329984515887555 r009 Re(z^3+c),c=-15/52+10/33*I,n=2 2329984526486554 a007 Real Root Of 709*x^4+788*x^3+251*x^2-941*x-225 2329984531298080 r009 Re(z^3+c),c=-29/46+19/63*I,n=4 2329984532901024 r002 41th iterates of z^2 + 2329984534971944 a007 Real Root Of 767*x^4-56*x^3+734*x^2-945*x-263 2329984541660265 a008 Real Root of x^4-2*x^3+12*x^2-4*x-60 2329984543132310 l006 ln(6018/7597) 2329984544049459 q001 603/2588 2329984546198867 a003 cos(Pi*47/111)*sin(Pi*42/97) 2329984551264330 r002 49th iterates of z^2 + 2329984558962001 r005 Im(z^2+c),c=-45/74+13/36*I,n=37 2329984561651317 m005 (1/3*Zeta(3)-1/6)/(11/12*3^(1/2)-7/12) 2329984566756047 r005 Im(z^2+c),c=-29/52+12/55*I,n=3 2329984572042531 m005 (1/2*2^(1/2)+1/8)/(2/11*2^(1/2)+1/10) 2329984586166176 r002 23th iterates of z^2 + 2329984597736509 m005 (1/2*Zeta(3)-5/6)/(3*Pi+6/11) 2329984598976014 m001 1/ln(Niven)/ErdosBorwein*Riemann1stZero^2 2329984611317058 s002 sum(A282536[n]/((2^n-1)/n),n=1..infinity) 2329984616654574 s001 sum(exp(-Pi)^(n-1)*A220622[n],n=1..infinity) 2329984618170086 m001 (Mills-Riemann3rdZero)/(Artin+Cahen) 2329984621449295 m001 (FeigenbaumDelta-exp(1/2))^BesselJ(0,1) 2329984627643650 m001 (Shi(1)+gamma(3))/(BesselI(1,2)+Otter) 2329984632883470 m001 FeigenbaumD-arctan(1/2)^GAMMA(2/3) 2329984636075931 m005 (1/4*gamma+3/4)/(1/5*2^(1/2)-2/3) 2329984639572624 r005 Im(z^2+c),c=-31/66+22/53*I,n=41 2329984641383716 m001 LambertW(1)/FransenRobinson^2*exp(sinh(1)) 2329984644675479 a007 Real Root Of -931*x^4-8*x^3+536*x^2+956*x-249 2329984645445059 a001 11/4181*225851433717^(11/21) 2329984652050679 p001 sum((-1)^n/(553*n+429)/(1000^n),n=0..infinity) 2329984655587363 a007 Real Root Of 196*x^4+435*x^3+117*x^2+189*x-469 2329984656168180 m001 cosh(1)^2*ln(LandauRamanujan)^2/exp(1)^2 2329984657673900 p001 sum((-1)^n/(530*n+429)/(1024^n),n=0..infinity) 2329984669093703 a007 Real Root Of 355*x^4+501*x^3-806*x^2-337*x-535 2329984669120213 a007 Real Root Of -945*x^4+651*x^3-759*x^2+969*x+278 2329984669231784 h002 exp(11^(10/7)-18^(2/3)) 2329984669231784 h007 exp(11^(10/7)-18^(2/3)) 2329984670641433 a007 Real Root Of 486*x^4+815*x^3-448*x^2+789*x+256 2329984671797107 a007 Real Root Of -363*x^4-861*x^3-20*x^2+233*x+459 2329984672788579 s002 sum(A241485[n]/(exp(n)-1),n=1..infinity) 2329984676409040 a007 Real Root Of 944*x^4+111*x^3+59*x^2-740*x-177 2329984676587187 a007 Real Root Of -726*x^4+945*x^3-986*x^2+860*x+268 2329984685604645 m001 GAMMA(1/4)^2/exp(Porter)^2/sqrt(3)^2 2329984691041649 r005 Re(z^2+c),c=-27/98+7/44*I,n=21 2329984691378228 a001 39603/34*2178309^(25/48) 2329984693709486 m001 1/exp(GAMMA(1/24))/Conway/GAMMA(5/12) 2329984697042984 m004 -5*Pi*ProductLog[Sqrt[5]*Pi]+Sec[Sqrt[5]*Pi]/2 2329984705023100 a007 Real Root Of -597*x^4+972*x^3-948*x^2+457*x+172 2329984715342637 a007 Real Root Of 233*x^4+409*x^3-382*x^2+81*x+569 2329984719091143 a007 Real Root Of -416*x^4-896*x^3+198*x^2-218*x-656 2329984719183087 a001 377/843*3571^(13/17) 2329984734422433 m001 (exp(Pi)+DuboisRaymond)/(-Salem+ZetaP(3)) 2329984734893574 a007 Real Root Of -318*x^4-440*x^3+727*x^2+437*x+878 2329984746900594 a007 Real Root Of 267*x^4+296*x^3-286*x^2+807*x-692 2329984747509568 a001 5473/2889*521^(10/13) 2329984755753202 r009 Im(z^3+c),c=-49/118+7/58*I,n=6 2329984756357651 p001 sum(1/(571*n+116)/n/(625^n),n=1..infinity) 2329984757587116 m001 (Pi*exp(Pi)+1/2)/Pi 2329984757587116 m002 -E^Pi-1/(2*Pi) 2329984768203406 a001 1/2255*233^(7/23) 2329984769853028 a001 47*(1/2*5^(1/2)+1/2)^19*521^(4/15) 2329984774235053 m001 BesselJ(1,1)^2*Riemann2ndZero*ln(sqrt(Pi)) 2329984774703952 r005 Im(z^2+c),c=-1/10+8/27*I,n=11 2329984777761792 r002 43th iterates of z^2 + 2329984781723811 p001 sum(1/(596*n+431)/(100^n),n=0..infinity) 2329984782621088 a007 Real Root Of 346*x^4+380*x^3-501*x^2+733*x-963 2329984783015007 r005 Im(z^2+c),c=-21/82+15/43*I,n=30 2329984784253845 a007 Real Root Of -14*x^4+159*x^3+257*x^2-217*x+523 2329984792584652 a007 Real Root Of 126*x^4-735*x^3+734*x^2+351*x+781 2329984802677676 r002 6th iterates of z^2 + 2329984803796142 a001 28657/15127*521^(10/13) 2329984804489164 b008 10+E*Pi*Tan[1] 2329984806924168 m001 FeigenbaumC^(ReciprocalLucas/OrthogonalArrays) 2329984812008243 a001 75025/39603*521^(10/13) 2329984812832232 a003 cos(Pi*8/69)-sin(Pi*46/113) 2329984813206372 a001 98209/51841*521^(10/13) 2329984813381177 a001 514229/271443*521^(10/13) 2329984813406681 a001 1346269/710647*521^(10/13) 2329984813410402 a001 1762289/930249*521^(10/13) 2329984813410945 a001 9227465/4870847*521^(10/13) 2329984813411024 a001 24157817/12752043*521^(10/13) 2329984813411035 a001 31622993/16692641*521^(10/13) 2329984813411037 a001 165580141/87403803*521^(10/13) 2329984813411037 a001 433494437/228826127*521^(10/13) 2329984813411037 a001 567451585/299537289*521^(10/13) 2329984813411037 a001 2971215073/1568397607*521^(10/13) 2329984813411037 a001 7778742049/4106118243*521^(10/13) 2329984813411037 a001 10182505537/5374978561*521^(10/13) 2329984813411037 a001 53316291173/28143753123*521^(10/13) 2329984813411037 a001 139583862445/73681302247*521^(10/13) 2329984813411037 a001 182717648081/96450076809*521^(10/13) 2329984813411037 a001 956722026041/505019158607*521^(10/13) 2329984813411037 a001 10610209857723/5600748293801*521^(10/13) 2329984813411037 a001 591286729879/312119004989*521^(10/13) 2329984813411037 a001 225851433717/119218851371*521^(10/13) 2329984813411037 a001 21566892818/11384387281*521^(10/13) 2329984813411037 a001 32951280099/17393796001*521^(10/13) 2329984813411037 a001 12586269025/6643838879*521^(10/13) 2329984813411037 a001 1201881744/634430159*521^(10/13) 2329984813411037 a001 1836311903/969323029*521^(10/13) 2329984813411037 a001 701408733/370248451*521^(10/13) 2329984813411037 a001 66978574/35355581*521^(10/13) 2329984813411038 a001 102334155/54018521*521^(10/13) 2329984813411043 a001 39088169/20633239*521^(10/13) 2329984813411073 a001 3732588/1970299*521^(10/13) 2329984813411280 a001 5702887/3010349*521^(10/13) 2329984813412701 a001 2178309/1149851*521^(10/13) 2329984813422443 a001 208010/109801*521^(10/13) 2329984813489212 a001 317811/167761*521^(10/13) 2329984813946857 a001 121393/64079*521^(10/13) 2329984817083601 a001 11592/6119*521^(10/13) 2329984817323472 m001 (-FeigenbaumC+Salem)/(Catalan+Ei(1)) 2329984826363609 r005 Im(z^2+c),c=6/25+7/58*I,n=8 2329984833859794 r005 Re(z^2+c),c=-7/10+46/209*I,n=26 2329984834603211 a007 Real Root Of 587*x^4-384*x^3+874*x^2-834*x+150 2329984834675264 a001 17711/843*521^(5/13) 2329984835850262 a005 (1/cos(14/81*Pi))^302 2329984836384428 r009 Re(z^3+c),c=-9/17+17/52*I,n=14 2329984838070480 l006 ln(4463/5634) 2329984838287917 m001 GAMMA(3/4)^MertensB2-Porter 2329984838583160 a001 17711/9349*521^(10/13) 2329984840666561 a001 377/843*9349^(13/19) 2329984845966739 r009 Im(z^3+c),c=-5/86+10/41*I,n=5 2329984856188334 a007 Real Root Of -36*x^4-824*x^3+370*x^2+584*x-122 2329984856498377 a001 377/843*24476^(13/21) 2329984858585315 a001 377/843*64079^(13/23) 2329984858906044 a001 377/843*141422324^(1/3) 2329984858906044 a001 377/843*(1/2+1/2*5^(1/2))^13 2329984858906044 a001 377/843*73681302247^(1/4) 2329984858921855 a001 377/843*271443^(1/2) 2329984859023446 a001 377/843*103682^(13/24) 2329984859783888 a001 377/843*39603^(13/22) 2329984860908160 m001 (Zeta(1,-1)+exp(1/exp(1)))/(Kac-ZetaP(4)) 2329984864298728 a007 Real Root Of -579*x^4-970*x^3+854*x^2-32*x+84 2329984865524563 a001 377/843*15127^(13/20) 2329984868472576 m005 (1/3*Zeta(3)-1/9)/(7/8*3^(1/2)-3/11) 2329984874308059 a007 Real Root Of -98*x^4+284*x^3+967*x^2-118*x+956 2329984874488670 m004 -20/Pi+5*Sqrt[5]*Pi-5*Cot[Sqrt[5]*Pi] 2329984877076993 a007 Real Root Of -293*x^4-178*x^3+884*x^2-778*x-228 2329984877641067 r005 Im(z^2+c),c=7/24+3/58*I,n=41 2329984879553614 m001 exp(1/exp(1))-ln(2)-GAMMA(7/24) 2329984891114332 m006 (1/3*exp(Pi)-3/5)/(1/6/Pi+3) 2329984895536528 m001 (exp(1/Pi)+gamma(1))/(CopelandErdos-Kolakoski) 2329984901232999 r005 Re(z^2+c),c=4/29+8/19*I,n=31 2329984909310495 a001 377/843*5778^(13/18) 2329984928937689 m005 (1/2*Pi-1/12)/(-151/198+1/18*5^(1/2)) 2329984931090582 m001 (ln(3)-ln(Pi))/(BesselI(1,2)-FeigenbaumMu) 2329984938110606 m005 (1/3*Pi+1/10)/(7/264+5/24*5^(1/2)) 2329984948036039 m001 (Kolakoski-PrimesInBinary)/(ln(5)-Pi^(1/2)) 2329984950307595 r005 Re(z^2+c),c=-37/118+33/40*I,n=4 2329984961841805 a001 1/6624*610^(11/14) 2329984962209876 a005 (1/cos(17/198*Pi))^1461 2329984963627767 a007 Real Root Of 213*x^4+737*x^3+893*x^2+555*x-510 2329984965463520 m001 (Grothendieck+PlouffeB)/gamma(2) 2329984971187249 a003 sin(Pi*11/60)-sin(Pi*19/67) 2329984977328367 s002 sum(A060824[n]/(n*10^n-1),n=1..infinity) 2329984985161345 a001 6765/2207*521^(9/13) 2329984985943343 a001 6765/3571*521^(10/13) 2329985009478205 s002 sum(A161756[n]/((10^n+1)/n),n=1..infinity) 2329985023456274 m005 (1/2*Zeta(3)+7/9)/(5/12*Zeta(3)+1/11) 2329985023938412 m001 (ln(2+3^(1/2))-Backhouse)/(Landau+ZetaQ(2)) 2329985032170347 m001 1/Tribonacci*Si(Pi)*exp(Pi) 2329985032170347 m001 exp(Pi)*Si(Pi)/Tribonacci 2329985035450662 l006 ln(6859/6875) 2329985039788973 a007 Real Root Of 40*x^4+913*x^3-465*x^2-482*x+953 2329985042212931 m001 Zeta(3)*(Ei(1)+exp(-Pi)) 2329985043329757 r005 Re(z^2+c),c=-11/56+19/23*I,n=19 2329985047532244 r005 Re(z^2+c),c=25/114+13/25*I,n=26 2329985048631254 r005 Im(z^2+c),c=-27/34+1/96*I,n=40 2329985056130631 r005 Im(z^2+c),c=-4/19+7/20*I,n=3 2329985061965506 r005 Re(z^2+c),c=-5/6+77/251*I,n=2 2329985066704478 m001 (Kac+Riemann3rdZero)/(sin(1)+sin(1/12*Pi)) 2329985078870623 l006 ln(7371/9305) 2329985091336474 m005 (1/2*5^(1/2)+4/11)/(1/2*exp(1)+5) 2329985101555348 a007 Real Root Of 261*x^4+830*x^3+771*x^2+361*x-538 2329985101845500 a007 Real Root Of 575*x^4+411*x^3-575*x^2-737*x-137 2329985120107773 m001 Rabbit/GaussAGM(1,1/sqrt(2))^2/ln(GAMMA(7/12)) 2329985123936512 m001 (exp(1)+TreeGrowth2nd)/FeigenbaumKappa 2329985125178848 m001 (cos(1/5*Pi)-Zeta(1,2)*Porter)/Zeta(1,2) 2329985126675227 a007 Real Root Of 143*x^4-622*x^3+258*x^2-385*x-112 2329985143143058 r005 Re(z^2+c),c=-1/58+20/37*I,n=6 2329985146724386 r005 Re(z^2+c),c=-13/50+15/62*I,n=12 2329985168117392 m001 (Grothendieck-Niven)/(Artin-CareFree) 2329985171722788 a007 Real Root Of -198*x^4-548*x^3-547*x^2-489*x+734 2329985183239724 m008 (2*Pi^4+4/5)/(4/5*Pi^2+1/2) 2329985183773581 m009 (3*Pi^2-1/3)/(6*Catalan+3/4*Pi^2-1/3) 2329985189258913 r009 Re(z^3+c),c=-29/78+23/47*I,n=31 2329985199053259 m005 (1/2*gamma+4/5)/(3/11*Zeta(3)-5) 2329985205426992 r005 Im(z^2+c),c=-63/106+7/40*I,n=8 2329985212647806 m001 gamma(3)^(Zeta(5)*Conway) 2329985214264828 r005 Re(z^2+c),c=-13/58+7/19*I,n=20 2329985229478181 r009 Re(z^3+c),c=-51/118+27/56*I,n=11 2329985247567946 a001 377/843*2207^(13/16) 2329985256059839 r009 Im(z^3+c),c=-7/13+13/55*I,n=22 2329985259445368 h001 (7/10*exp(2)+1/9)/(4/7*exp(1)+5/7) 2329985260335212 r005 Re(z^2+c),c=11/36+5/28*I,n=19 2329985277515154 a007 Real Root Of 149*x^4+443*x^3+336*x^2+230*x-76 2329985295367175 m001 (ln(2)-Niven)/(Pi+Zeta(3)) 2329985319838558 a001 141/46*322^(3/4) 2329985321013365 a007 Real Root Of 256*x^4+599*x^3+130*x^2+351*x+144 2329985325393632 m001 (Pi-2^(1/3))/(Gompertz-OrthogonalArrays) 2329985326007952 m001 (ArtinRank2+Lehmer)/(Zeta(5)-BesselI(1,2)) 2329985328224528 a008 Real Root of (18+7*x+3*x^2-4*x^3) 2329985331311486 m005 (3/5*Catalan+4)/(1/3*2^(1/2)-2/3) 2329985337251282 a001 1597-610*5^(1/2) 2329985344042955 a007 Real Root Of 34*x^4+753*x^3-921*x^2-156*x+579 2329985351571960 m001 1/exp(Riemann1stZero)^2/Porter^2*GAMMA(7/24)^2 2329985352699498 m001 Riemann2ndZero^KomornikLoreti+FeigenbaumC 2329985368573081 r005 Im(z^2+c),c=-7/6+47/173*I,n=45 2329985389787943 h001 (-exp(4)+6)/(-7*exp(8)+9) 2329985392263193 a005 (1/cos(18/217*Pi))^628 2329985396129700 m001 (Pi*2^(1/2)/GAMMA(3/4))^(Khinchin/ln(3)) 2329985396129700 m001 GAMMA(1/4)^(Khinchin/ln(3)) 2329985396415896 a007 Real Root Of 18*x^4+410*x^3-259*x^2-922*x+256 2329985397769618 b008 (-3+Sqrt[14])*Pi 2329985398080381 m005 (1/2*3^(1/2)-1/4)/(6/7*5^(1/2)+8/11) 2329985402420451 a001 17711/5778*521^(9/13) 2329985407775817 p003 LerchPhi(1/512,6,607/221) 2329985408155154 r002 27th iterates of z^2 + 2329985425470179 m001 1/ln((2^(1/3)))^2*Cahen*GAMMA(5/24)^2 2329985435898300 m001 (exp(1/exp(1))-ErdosBorwein)/(Pi-Psi(1,1/3)) 2329985444836702 m001 GAMMA(11/24)^2*Sierpinski*exp(log(1+sqrt(2))) 2329985447747554 m001 (GAMMA(2/3)-BesselK(1,1))/(Cahen+Sierpinski) 2329985448434243 l006 ln(2908/3671) 2329985463297747 a001 6624/2161*521^(9/13) 2329985472179625 a001 121393/39603*521^(9/13) 2329985473475473 a001 317811/103682*521^(9/13) 2329985473664535 a001 832040/271443*521^(9/13) 2329985473692119 a001 311187/101521*521^(9/13) 2329985473696143 a001 5702887/1860498*521^(9/13) 2329985473696730 a001 14930352/4870847*521^(9/13) 2329985473696816 a001 39088169/12752043*521^(9/13) 2329985473696828 a001 14619165/4769326*521^(9/13) 2329985473696830 a001 267914296/87403803*521^(9/13) 2329985473696831 a001 701408733/228826127*521^(9/13) 2329985473696831 a001 1836311903/599074578*521^(9/13) 2329985473696831 a001 686789568/224056801*521^(9/13) 2329985473696831 a001 12586269025/4106118243*521^(9/13) 2329985473696831 a001 32951280099/10749957122*521^(9/13) 2329985473696831 a001 86267571272/28143753123*521^(9/13) 2329985473696831 a001 32264490531/10525900321*521^(9/13) 2329985473696831 a001 591286729879/192900153618*521^(9/13) 2329985473696831 a001 1548008755920/505019158607*521^(9/13) 2329985473696831 a001 1515744265389/494493258286*521^(9/13) 2329985473696831 a001 2504730781961/817138163596*521^(9/13) 2329985473696831 a001 956722026041/312119004989*521^(9/13) 2329985473696831 a001 365435296162/119218851371*521^(9/13) 2329985473696831 a001 139583862445/45537549124*521^(9/13) 2329985473696831 a001 53316291173/17393796001*521^(9/13) 2329985473696831 a001 20365011074/6643838879*521^(9/13) 2329985473696831 a001 7778742049/2537720636*521^(9/13) 2329985473696831 a001 2971215073/969323029*521^(9/13) 2329985473696831 a001 1134903170/370248451*521^(9/13) 2329985473696831 a001 433494437/141422324*521^(9/13) 2329985473696831 a001 165580141/54018521*521^(9/13) 2329985473696836 a001 63245986/20633239*521^(9/13) 2329985473696869 a001 24157817/7881196*521^(9/13) 2329985473697093 a001 9227465/3010349*521^(9/13) 2329985473698630 a001 3524578/1149851*521^(9/13) 2329985473709166 a001 1346269/439204*521^(9/13) 2329985473781382 a001 514229/167761*521^(9/13) 2329985474276352 a001 196418/64079*521^(9/13) 2329985475585903 m001 Psi(1,1/3)^(MertensB1/TravellingSalesman) 2329985477668927 a001 75025/24476*521^(9/13) 2329985480499739 m001 (Mills+OneNinth)/(2*Pi/GAMMA(5/6)-Psi(2,1/3)) 2329985484627856 m001 (Si(Pi)+Lehmer)/(-MinimumGamma+ThueMorse) 2329985485562981 a007 Real Root Of -483*x^4+206*x^3+647*x^2+518*x-157 2329985486374953 r005 Im(z^2+c),c=-59/58+5/18*I,n=38 2329985490677166 r009 Re(z^3+c),c=-25/102+58/61*I,n=22 2329985497014089 a001 28657/843*521^(4/13) 2329985499943534 a008 Real Root of x^4-x^3-42*x^2+130*x-28 2329985500921986 a001 28657/9349*521^(9/13) 2329985503370594 a003 1/2-cos(5/27*Pi)-cos(7/18*Pi)-2*cos(4/21*Pi) 2329985524520069 m001 (Pi-Chi(1))/(BesselK(1,1)-BesselI(1,2)) 2329985527717872 r005 Re(z^2+c),c=-21/26+1/16*I,n=60 2329985528793508 a001 47/843*(1/2*5^(1/2)+1/2)^29*843^(8/15) 2329985532491238 m001 ln(GAMMA(19/24)*FeigenbaumB) 2329985546382983 m005 (1/2*gamma-5/11)/(6/7*2^(1/2)-1/2) 2329985562397906 m001 (-ln(1+sqrt(2))+1/3)/(-Khinchin+1/3) 2329985569478688 m001 (exp(-1/2*Pi)-Backhouse)/(Conway-Tribonacci) 2329985576979323 r009 Im(z^3+c),c=-41/114+21/32*I,n=30 2329985580484164 m005 (1/3*Zeta(3)-1/3)/(11/12*gamma-9/11) 2329985582255001 m001 (Zeta(3)+GAMMA(2/3))/(gamma(3)+OneNinth) 2329985588185128 a001 1597/1364*521^(11/13) 2329985589339025 a001 317811/2207*199^(1/11) 2329985599188714 a007 Real Root Of -468*x^4-852*x^3+717*x^2+247*x-301 2329985606153231 a001 2/1597*1836311903^(6/17) 2329985607242065 m001 ln(sin(1))^2*GAMMA(1/24)/sqrt(3)^2 2329985614240092 m001 FeigenbaumC/(5^(1/2)-Psi(1,1/3)) 2329985615211427 m005 (1/2*2^(1/2)+6)/(1/2*Zeta(3)-8/9) 2329985622280275 r005 Im(z^2+c),c=-41/94+2/5*I,n=40 2329985623704918 r005 Im(z^2+c),c=-15/29+20/49*I,n=44 2329985627992850 m009 (5/6*Psi(1,1/3)-4/5)/(1/4*Pi^2+4/5) 2329985640509864 r005 Re(z^2+c),c=-5/26+33/53*I,n=4 2329985642405335 r005 Im(z^2+c),c=-37/60+10/47*I,n=7 2329985643286316 m001 (Mills+Riemann3rdZero)/(ln(2)-CareFree) 2329985648718810 m001 1/GAMMA(2/3)^2*Salem/ln(log(2+sqrt(3))) 2329985652797704 q001 1624/697 2329985659518836 a001 10946/2207*521^(8/13) 2329985660300834 a001 10946/3571*521^(9/13) 2329985669732137 p004 log(34667/3373) 2329985678061607 r009 Re(z^3+c),c=-3/11+13/48*I,n=2 2329985687144590 p001 sum((-1)^n/(554*n+429)/(1000^n),n=0..infinity) 2329985692361811 a007 Real Root Of 214*x^4-910*x^3+725*x^2+397*x+41 2329985697926340 b008 -24+ExpIntegralEi[EulerGamma] 2329985699724286 r005 Re(z^2+c),c=-21/86+7/23*I,n=23 2329985702980168 r005 Im(z^2+c),c=-29/66+15/38*I,n=16 2329985703053017 r005 Re(z^2+c),c=-27/98+7/44*I,n=23 2329985709137203 r002 47th iterates of z^2 + 2329985718586083 a007 Real Root Of -149*x^4-145*x^3+194*x^2-782*x-318 2329985765471386 m006 (1/2*exp(Pi)-1/4)/(3/4*ln(Pi)+4) 2329985767371349 r009 Im(z^3+c),c=-43/94+3/47*I,n=58 2329985785604662 a007 Real Root Of -77*x^4-87*x^3-304*x^2+787*x+199 2329985788300480 a001 2/28657*6557470319842^(6/17) 2329985792671979 m005 (1/2*5^(1/2)+3/7)/(1/11*exp(1)+5/12) 2329985799071438 a007 Real Root Of -19*x^4-469*x^3-583*x^2+719*x+548 2329985799127281 p004 log(32077/3121) 2329985806055746 m005 (1/2*gamma+2)/(13/36+5/18*5^(1/2)) 2329985808071232 a007 Real Root Of -558*x^4-654*x^3+972*x^2-946*x+692 2329985810154356 a001 29/3*8^(11/26) 2329985818392074 a007 Real Root Of 419*x^4+871*x^3-157*x^2+49*x-365 2329985827152777 m001 GAMMA(5/6)*OneNinth^2*exp(gamma) 2329985828410995 l006 ln(7169/9050) 2329985830315017 r005 Re(z^2+c),c=-27/98+7/44*I,n=26 2329985840025916 p004 log(31337/3049) 2329985841901602 r005 Re(z^2+c),c=-27/98+7/44*I,n=17 2329985845230238 m005 (1/3*Catalan+1/8)/(4/7*3^(1/2)+6/7) 2329985846462779 r005 Re(z^2+c),c=-15/94+11/21*I,n=55 2329985849137770 r005 Re(z^2+c),c=-27/98+7/44*I,n=28 2329985857973482 m005 (1/2*Catalan+7/10)/(3*2^(1/2)+8/11) 2329985858642441 r005 Re(z^2+c),c=-27/98+7/44*I,n=30 2329985860103253 r005 Re(z^2+c),c=-27/98+7/44*I,n=33 2329985860194861 a007 Real Root Of -343*x^4-227*x^3+880*x^2-919*x+319 2329985860254388 r005 Re(z^2+c),c=-27/98+7/44*I,n=35 2329985860342908 r005 Re(z^2+c),c=-27/98+7/44*I,n=37 2329985860359058 r005 Re(z^2+c),c=-27/98+7/44*I,n=40 2329985860360220 r005 Re(z^2+c),c=-27/98+7/44*I,n=42 2329985860361037 r005 Re(z^2+c),c=-27/98+7/44*I,n=44 2329985860361211 r005 Re(z^2+c),c=-27/98+7/44*I,n=47 2329985860361219 r005 Re(z^2+c),c=-27/98+7/44*I,n=49 2329985860361227 r005 Re(z^2+c),c=-27/98+7/44*I,n=51 2329985860361229 r005 Re(z^2+c),c=-27/98+7/44*I,n=54 2329985860361229 r005 Re(z^2+c),c=-27/98+7/44*I,n=56 2329985860361229 r005 Re(z^2+c),c=-27/98+7/44*I,n=58 2329985860361229 r005 Re(z^2+c),c=-27/98+7/44*I,n=53 2329985860361229 r005 Re(z^2+c),c=-27/98+7/44*I,n=61 2329985860361229 r005 Re(z^2+c),c=-27/98+7/44*I,n=63 2329985860361229 r005 Re(z^2+c),c=-27/98+7/44*I,n=60 2329985860361229 r005 Re(z^2+c),c=-27/98+7/44*I,n=64 2329985860361229 r005 Re(z^2+c),c=-27/98+7/44*I,n=62 2329985860361229 r005 Re(z^2+c),c=-27/98+7/44*I,n=59 2329985860361229 r005 Re(z^2+c),c=-27/98+7/44*I,n=57 2329985860361229 r005 Re(z^2+c),c=-27/98+7/44*I,n=55 2329985860361229 r005 Re(z^2+c),c=-27/98+7/44*I,n=52 2329985860361234 r005 Re(z^2+c),c=-27/98+7/44*I,n=50 2329985860361234 r005 Re(z^2+c),c=-27/98+7/44*I,n=46 2329985860361244 r005 Re(z^2+c),c=-27/98+7/44*I,n=48 2329985860361277 r005 Re(z^2+c),c=-27/98+7/44*I,n=45 2329985860361720 r005 Re(z^2+c),c=-27/98+7/44*I,n=43 2329985860362459 r005 Re(z^2+c),c=-27/98+7/44*I,n=39 2329985860362927 r005 Re(z^2+c),c=-27/98+7/44*I,n=41 2329985860365103 r005 Re(z^2+c),c=-27/98+7/44*I,n=38 2329985860411180 r005 Re(z^2+c),c=-27/98+7/44*I,n=36 2329985860549013 r005 Re(z^2+c),c=-27/98+7/44*I,n=34 2329985860560455 r005 Re(z^2+c),c=-27/98+7/44*I,n=32 2329985860634816 r005 Re(z^2+c),c=-27/98+7/44*I,n=31 2329985860698122 m001 Tribonacci^2/DuboisRaymond^2*ln(sinh(1))^2 2329985865387763 r005 Re(z^2+c),c=-27/98+7/44*I,n=29 2329985868719001 m001 (Ei(1,1)-ln(2+3^(1/2)))/(Conway+Magata) 2329985870703211 a003 cos(Pi*10/113)/cos(Pi*35/96) 2329985874751956 r005 Re(z^2+c),c=-27/98+7/44*I,n=24 2329985880923026 r005 Re(z^2+c),c=-27/98+7/44*I,n=27 2329985883877339 a007 Real Root Of -121*x^4-285*x^3-433*x^2-648*x+802 2329985887302999 a007 Real Root Of 423*x^4+799*x^3-744*x^2-618*x+239 2329985887706993 r005 Im(z^2+c),c=-29/90+11/27*I,n=7 2329985888519464 r005 Re(z^2+c),c=-27/98+7/44*I,n=25 2329985894782386 m005 (1/2*Zeta(3)-7/10)/(7/10*Zeta(3)-5/12) 2329985895515709 a001 1322157322203/610*144^(16/17) 2329985915036455 m001 1/ln(OneNinth)^2*Champernowne*Zeta(1,2) 2329985926707838 m005 (5/6*Pi-1/3)/(8/15+1/5*5^(1/2)) 2329985930991821 m005 (1/3*exp(1)+1/12)/(5*Catalan-1/3) 2329985938134141 m001 Gompertz^(5^(1/2))*Gompertz^LandauRamanujan2nd 2329985951621249 m005 (1/3*2^(1/2)-3/5)/(5/11*2^(1/2)-1/11) 2329985953902812 r005 Re(z^2+c),c=-37/58+20/63*I,n=7 2329985964404402 m001 (FeigenbaumC-Stephens*ZetaP(4))/ZetaP(4) 2329985967861182 m001 GlaisherKinkelin-sin(1/12*Pi)+Mills 2329985968886656 a007 Real Root Of -613*x^4+783*x^3-664*x^2+971*x+274 2329985972113574 m001 (exp(1/Pi)+Artin)/(Catalan+Zeta(1,-1)) 2329985973378963 r002 24th iterates of z^2 + 2329985995965597 a001 646/341*521^(10/13) 2329985997302098 r005 Re(z^2+c),c=-115/114+5/39*I,n=20 2329985997905422 a001 416020/2889*199^(1/11) 2329985999802427 a007 Real Root Of 515*x^4+623*x^3-950*x^2+771*x-344 2329986007896140 m001 (ln(Pi)+FellerTornier)/(Stephens+ZetaQ(2)) 2329986017321784 r005 Re(z^2+c),c=-37/78+22/41*I,n=40 2329986024300746 s002 sum(A125279[n]/(n*pi^n-1),n=1..infinity) 2329986029316810 h003 exp(Pi*(17^(2/7)+18^(11/12))) 2329986029316810 h008 exp(Pi*(17^(2/7)+18^(11/12))) 2329986034394018 r005 Re(z^2+c),c=-2/9+31/51*I,n=40 2329986040174477 a007 Real Root Of -612*x^4-929*x^3+674*x^2-809*x+742 2329986053077170 a001 843/17711*75025^(16/29) 2329986057514468 a001 311187/2161*199^(1/11) 2329986059225946 r005 Im(z^2+c),c=-5/4+74/191*I,n=4 2329986064062677 a007 Real Root Of 141*x^4+164*x^3-403*x^2-193*x-343 2329986064759438 a001 28657/5778*521^(8/13) 2329986066211311 a001 5702887/39603*199^(1/11) 2329986067480163 a001 7465176/51841*199^(1/11) 2329986067665286 a001 39088169/271443*199^(1/11) 2329986067692295 a001 14619165/101521*199^(1/11) 2329986067696236 a001 133957148/930249*199^(1/11) 2329986067696810 a001 701408733/4870847*199^(1/11) 2329986067696894 a001 1836311903/12752043*199^(1/11) 2329986067696907 a001 14930208/103681*199^(1/11) 2329986067696908 a001 12586269025/87403803*199^(1/11) 2329986067696909 a001 32951280099/228826127*199^(1/11) 2329986067696909 a001 43133785636/299537289*199^(1/11) 2329986067696909 a001 32264490531/224056801*199^(1/11) 2329986067696909 a001 591286729879/4106118243*199^(1/11) 2329986067696909 a001 774004377960/5374978561*199^(1/11) 2329986067696909 a001 4052739537881/28143753123*199^(1/11) 2329986067696909 a001 1515744265389/10525900321*199^(1/11) 2329986067696909 a001 3278735159921/22768774562*199^(1/11) 2329986067696909 a001 2504730781961/17393796001*199^(1/11) 2329986067696909 a001 956722026041/6643838879*199^(1/11) 2329986067696909 a001 182717648081/1268860318*199^(1/11) 2329986067696909 a001 139583862445/969323029*199^(1/11) 2329986067696909 a001 53316291173/370248451*199^(1/11) 2329986067696909 a001 10182505537/70711162*199^(1/11) 2329986067696909 a001 7778742049/54018521*199^(1/11) 2329986067696914 a001 2971215073/20633239*199^(1/11) 2329986067696946 a001 567451585/3940598*199^(1/11) 2329986067697166 a001 433494437/3010349*199^(1/11) 2329986067698671 a001 165580141/1149851*199^(1/11) 2329986067708988 a001 31622993/219602*199^(1/11) 2329986067779698 a001 24157817/167761*199^(1/11) 2329986068264357 a001 9227465/64079*199^(1/11) 2329986071586255 a001 1762289/12238*199^(1/11) 2329986072175074 a007 Real Root Of 771*x^4+805*x^3+347*x^2-430*x+1 2329986076851822 m004 -1+30*Sqrt[5]*Pi+5*Pi*Csc[Sqrt[5]*Pi] 2329986087733305 l006 ln(4261/5379) 2329986088579448 r005 Im(z^2+c),c=19/94+7/47*I,n=17 2329986094354886 a001 1346269/9349*199^(1/11) 2329986099055264 r009 Re(z^3+c),c=-9/23+31/60*I,n=13 2329986102269228 r005 Re(z^2+c),c=-17/78+5/13*I,n=18 2329986111663837 a007 Real Root Of 574*x^4+886*x^3-898*x^2+239*x-278 2329986115498798 m001 (3^(1/2)-arctan(1/2))/(Zeta(1,-1)+Rabbit) 2329986123883257 a001 75025/15127*521^(8/13) 2329986126984668 m005 (1/2*2^(1/2)+4/11)/(-39/8+1/8*5^(1/2)) 2329986130898614 a007 Real Root Of 541*x^4-466*x^3+226*x^2-74*x-37 2329986132509306 a001 196418/39603*521^(8/13) 2329986133540877 r002 64th iterates of z^2 + 2329986133767829 a001 514229/103682*521^(8/13) 2329986133951446 a001 1346269/271443*521^(8/13) 2329986133978235 a001 3524578/710647*521^(8/13) 2329986133982143 a001 9227465/1860498*521^(8/13) 2329986133982714 a001 24157817/4870847*521^(8/13) 2329986133982797 a001 63245986/12752043*521^(8/13) 2329986133982809 a001 165580141/33385282*521^(8/13) 2329986133982811 a001 433494437/87403803*521^(8/13) 2329986133982811 a001 1134903170/228826127*521^(8/13) 2329986133982811 a001 2971215073/599074578*521^(8/13) 2329986133982811 a001 7778742049/1568397607*521^(8/13) 2329986133982811 a001 20365011074/4106118243*521^(8/13) 2329986133982811 a001 53316291173/10749957122*521^(8/13) 2329986133982811 a001 139583862445/28143753123*521^(8/13) 2329986133982811 a001 365435296162/73681302247*521^(8/13) 2329986133982811 a001 956722026041/192900153618*521^(8/13) 2329986133982811 a001 2504730781961/505019158607*521^(8/13) 2329986133982811 a001 10610209857723/2139295485799*521^(8/13) 2329986133982811 a001 4052739537881/817138163596*521^(8/13) 2329986133982811 a001 140728068720/28374454999*521^(8/13) 2329986133982811 a001 591286729879/119218851371*521^(8/13) 2329986133982811 a001 225851433717/45537549124*521^(8/13) 2329986133982811 a001 86267571272/17393796001*521^(8/13) 2329986133982811 a001 32951280099/6643838879*521^(8/13) 2329986133982811 a001 1144206275/230701876*521^(8/13) 2329986133982811 a001 4807526976/969323029*521^(8/13) 2329986133982811 a001 1836311903/370248451*521^(8/13) 2329986133982811 a001 701408733/141422324*521^(8/13) 2329986133982812 a001 267914296/54018521*521^(8/13) 2329986133982816 a001 9303105/1875749*521^(8/13) 2329986133982848 a001 39088169/7881196*521^(8/13) 2329986133983066 a001 14930352/3010349*521^(8/13) 2329986133984559 a001 5702887/1149851*521^(8/13) 2329986133994791 a001 2178309/439204*521^(8/13) 2329986134064927 a001 75640/15251*521^(8/13) 2329986134545640 a001 317811/64079*521^(8/13) 2329986137840497 a001 121393/24476*521^(8/13) 2329986141701092 m005 (1/3*gamma+2/5)/(8/9*Pi-1/4) 2329986145215866 m001 1/ln(OneNinth)^2*Kolakoski^2*GAMMA(2/3)^2 2329986156515890 a001 15456/281*521^(3/13) 2329986160423788 a001 46368/9349*521^(8/13) 2329986172503821 r005 Re(z^2+c),c=-7/94+25/32*I,n=30 2329986199835545 r009 Re(z^3+c),c=-79/98+41/51*I,n=2 2329986205087645 m001 2^(1/2)-cos(1)+Backhouse 2329986205087645 m001 cos(1)-sqrt(2)-Backhouse 2329986206193940 m005 (1/3*Zeta(3)-2/7)/(2/11*5^(1/2)-9/10) 2329986210630052 r005 Re(z^2+c),c=-5/32+26/49*I,n=61 2329986213206404 a007 Real Root Of -210*x^4-410*x^3-141*x^2-447*x+727 2329986215174075 m001 Porter^KhinchinHarmonic/Chi(1) 2329986218222316 r005 Im(z^2+c),c=-3/13+15/44*I,n=21 2329986218744960 a007 Real Root Of 341*x^4-208*x^3-509*x^2-428*x+1 2329986219898425 m001 Zeta(5)*FeigenbaumD-ZetaP(2) 2329986219986573 r009 Re(z^3+c),c=-5/29+46/55*I,n=50 2329986221911008 m001 sin(1/5*Pi)*Grothendieck+GlaisherKinkelin 2329986235721303 a007 Real Root Of 177*x^4-337*x^3+43*x^2-428*x-10 2329986241497285 a007 Real Root Of -319*x^4-194*x^3+952*x^2-656*x+251 2329986250413413 a001 514229/3571*199^(1/11) 2329986251010663 a005 (1/cos(7/136*Pi))^1818 2329986258655616 p003 LerchPhi(1/16,4,137/95) 2329986262102582 m001 (Sierpinski+ZetaQ(3))/(Ei(1,1)-MertensB3) 2329986264893060 a001 377/322*322^(11/12) 2329986276559920 r005 Re(z^2+c),c=-19/78+19/62*I,n=29 2329986291102554 m006 (2*exp(2*Pi)-2/5)/(2*exp(Pi)-1/3) 2329986291887366 a007 Real Root Of 272*x^4+738*x^3+299*x^2-89*x-512 2329986304723278 r005 Im(z^2+c),c=-51/58+11/52*I,n=21 2329986306046837 m001 (-Champernowne+ZetaP(3))/(Shi(1)+ln(Pi)) 2329986314429975 a001 17711/2207*521^(7/13) 2329986315211974 a001 17711/3571*521^(8/13) 2329986326993247 m005 (11/12+1/4*5^(1/2))/(3/10*Zeta(3)+3/11) 2329986330202048 m001 exp(sqrt(2))/(sqrt(2)^GAMMA(13/24)) 2329986342198077 r005 Im(z^2+c),c=-63/118+21/55*I,n=12 2329986342694695 m001 1/ln(BesselJ(0,1))/Rabbit^2*Pi 2329986360699907 r005 Re(z^2+c),c=-27/98+7/44*I,n=22 2329986363695262 a007 Real Root Of 489*x^4+945*x^3-307*x^2+636*x+690 2329986378199453 p001 sum(1/(569*n+118)/n/(625^n),n=1..infinity) 2329986394802800 m001 BesselJ(0,1)*exp(FeigenbaumDelta)^2*GAMMA(1/3) 2329986396105332 a007 Real Root Of -521*x^4+649*x^3+234*x^2+223*x+49 2329986413635570 a001 161/98209*3^(8/25) 2329986415528283 r009 Im(z^3+c),c=-13/114+44/51*I,n=56 2329986418884282 l006 ln(5614/7087) 2329986419513813 a001 11/144*13^(10/23) 2329986424530190 p004 log(23567/2293) 2329986424583482 s002 sum(A141129[n]/((10^n-1)/n),n=1..infinity) 2329986424912131 m001 (Catalan-ln(Pi))/(-arctan(1/3)+Conway) 2329986427629434 m001 GAMMA(5/24)/KhintchineHarmonic^2*ln(sinh(1)) 2329986429297345 m001 (-gamma(3)+ThueMorse)/(Zeta(1/2)-ln(2)/ln(10)) 2329986430825827 m005 (1/2*2^(1/2)-4/9)/(4*exp(1)+2/5) 2329986432557720 r005 Re(z^2+c),c=39/122+11/27*I,n=29 2329986450992288 r002 5th iterates of z^2 + 2329986454578973 a003 cos(Pi*26/95)/cos(Pi*34/83) 2329986472578574 r005 Re(z^2+c),c=-1/11+19/49*I,n=2 2329986480254118 r005 Im(z^2+c),c=-21/50+23/58*I,n=55 2329986490356989 b008 Zeta[ArcSec[-75]] 2329986492154768 m001 (Cahen+MertensB2)/(RenyiParking-Trott2nd) 2329986500654217 h001 (3/11*exp(1)+10/11)/(6/7*exp(2)+3/4) 2329986507704015 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)/(Niven^MertensB1) 2329986507944524 a007 Real Root Of 366*x^4+801*x^3+72*x^2+363*x-200 2329986508869047 m001 1-Zeta(5)^HardyLittlewoodC3 2329986509559291 a007 Real Root Of -267*x^4-554*x^3+379*x^2+485*x-66 2329986512777752 a001 199/13*10946^(26/33) 2329986517291355 r002 11th iterates of z^2 + 2329986518454696 a007 Real Root Of -974*x^4+742*x^3-83*x^2+824*x-194 2329986524421036 r004 Re(z^2+c),c=1/9+7/12*I,z(0)=I,n=58 2329986534004341 r002 28th iterates of z^2 + 2329986534146863 m001 (ln(2^(1/2)+1)-Rabbit)/(Salem-TreeGrowth2nd) 2329986565166405 m003 1/3+Sqrt[5]/128+(Sqrt[5]*Tan[1/2+Sqrt[5]/2])/2 2329986568952949 r005 Re(z^2+c),c=-5/24+7/17*I,n=27 2329986573505302 a007 Real Root Of 404*x^4+503*x^3-771*x^2+799*x+503 2329986578819824 s002 sum(A207698[n]/(n^3*pi^n-1),n=1..infinity) 2329986584169616 a007 Real Root Of 111*x^4-182*x^3+301*x^2-807*x-207 2329986587620230 m001 FeigenbaumMu-gamma-LaplaceLimit 2329986612478827 b008 -1/3+Tan[1/10] 2329986621415396 l006 ln(6967/8795) 2329986641455412 h001 (5/9*exp(2)+1/6)/(1/7*exp(2)+7/9) 2329986647229266 m001 MadelungNaCl^2/exp(GlaisherKinkelin)^2/Zeta(7) 2329986650791712 p001 sum(1/(511*n+44)/n/(8^n),n=1..infinity) 2329986657152821 a007 Real Root Of -354*x^4-582*x^3+715*x^2+34*x-731 2329986671122244 b008 (23*Cos[E])/9 2329986678695992 m001 (3^(1/3))^2/ln(GolombDickman)/Ei(1) 2329986694084159 a001 76/1346269*377^(37/59) 2329986694283745 a001 199/55*6765^(11/15) 2329986694810480 r005 Re(z^2+c),c=5/17+10/57*I,n=19 2329986695593444 r005 Im(z^2+c),c=-41/102+12/31*I,n=23 2329986706010452 m001 (2^(1/2)+ThueMorse)^OrthogonalArrays 2329986712300216 a001 2/31622993*55^(9/10) 2329986718584211 m001 (Magata+TwinPrimes)/(Zeta(1,2)+FeigenbaumD) 2329986718911802 s002 sum(A260452[n]/(n*2^n-1),n=1..infinity) 2329986724261399 a001 2576/321*521^(7/13) 2329986730016042 p001 sum(1/(459*n+430)/(256^n),n=0..infinity) 2329986739883449 r005 Re(z^2+c),c=-2/31+36/53*I,n=36 2329986740850621 a001 329/281*1364^(11/15) 2329986750898180 a007 Real Root Of -517*x^4-975*x^3+240*x^2-989*x-703 2329986752309089 r005 Im(z^2+c),c=-31/54+22/57*I,n=40 2329986752700288 a001 4181/1364*521^(9/13) 2329986771942974 r009 Im(z^3+c),c=-5/44+44/51*I,n=24 2329986775237870 p001 sum((-1)^n/(532*n+429)/(1024^n),n=0..infinity) 2329986775708199 h001 (3/4*exp(2)+1/5)/(3/5*exp(1)+5/6) 2329986778492976 s001 sum(exp(-Pi)^(n-1)*A119489[n],n=1..infinity) 2329986784055010 a001 121393/15127*521^(7/13) 2329986792778781 a001 105937/13201*521^(7/13) 2329986793362818 m001 (Cahen+Totient)/(gamma(2)-sin(1)) 2329986794051561 a001 416020/51841*521^(7/13) 2329986794237258 a001 726103/90481*521^(7/13) 2329986794264350 a001 5702887/710647*521^(7/13) 2329986794268303 a001 829464/103361*521^(7/13) 2329986794268880 a001 39088169/4870847*521^(7/13) 2329986794268964 a001 34111385/4250681*521^(7/13) 2329986794268976 a001 133957148/16692641*521^(7/13) 2329986794268978 a001 233802911/29134601*521^(7/13) 2329986794268978 a001 1836311903/228826127*521^(7/13) 2329986794268978 a001 267084832/33281921*521^(7/13) 2329986794268978 a001 12586269025/1568397607*521^(7/13) 2329986794268978 a001 10983760033/1368706081*521^(7/13) 2329986794268978 a001 43133785636/5374978561*521^(7/13) 2329986794268978 a001 75283811239/9381251041*521^(7/13) 2329986794268978 a001 591286729879/73681302247*521^(7/13) 2329986794268978 a001 86000486440/10716675201*521^(7/13) 2329986794268978 a001 4052739537881/505019158607*521^(7/13) 2329986794268978 a001 3536736619241/440719107401*521^(7/13) 2329986794268978 a001 3278735159921/408569081798*521^(7/13) 2329986794268978 a001 2504730781961/312119004989*521^(7/13) 2329986794268978 a001 956722026041/119218851371*521^(7/13) 2329986794268978 a001 182717648081/22768774562*521^(7/13) 2329986794268978 a001 139583862445/17393796001*521^(7/13) 2329986794268978 a001 53316291173/6643838879*521^(7/13) 2329986794268978 a001 10182505537/1268860318*521^(7/13) 2329986794268978 a001 7778742049/969323029*521^(7/13) 2329986794268978 a001 2971215073/370248451*521^(7/13) 2329986794268979 a001 567451585/70711162*521^(7/13) 2329986794268979 a001 433494437/54018521*521^(7/13) 2329986794268984 a001 165580141/20633239*521^(7/13) 2329986794269016 a001 31622993/3940598*521^(7/13) 2329986794269236 a001 24157817/3010349*521^(7/13) 2329986794270746 a001 9227465/1149851*521^(7/13) 2329986794281095 a001 1762289/219602*521^(7/13) 2329986794352024 a001 1346269/167761*521^(7/13) 2329986794838183 a001 514229/64079*521^(7/13) 2329986798170367 a001 98209/12238*521^(7/13) 2329986803722670 a001 47/2207*(1/2*5^(1/2)+1/2)^31*2207^(7/15) 2329986817101596 a001 75025/843*521^(2/13) 2329986821009495 a001 75025/9349*521^(7/13) 2329986831301125 m005 (1/3*Pi-2/5)/(1/8*2^(1/2)-5/11) 2329986833324975 r009 Im(z^3+c),c=-9/46+48/55*I,n=8 2329986835520152 m001 (RenyiParking+ZetaQ(2))/(2^(1/3)-Catalan) 2329986843830167 a001 3571/610*4181^(28/39) 2329986847556101 r005 Im(z^2+c),c=-13/14+44/201*I,n=64 2329986855231693 a007 Real Root Of -93*x^4-104*x^3-15*x^2-245*x+936 2329986857627015 m001 (exp(Pi)+cos(1/5*Pi))/(gamma(3)+GAMMA(23/24)) 2329986860617987 m003 -2/3+3*Sin[1/2+Sqrt[5]/2] 2329986863559732 p004 log(19867/1933) 2329986867459227 p002 log((14+13^(1/2))^(1/2)*6^(1/2)) 2329986883668768 m008 (1/3*Pi+2/3)/(3/4*Pi^4+1/2) 2329986884090503 a007 Real Root Of -262*x^4-118*x^3+761*x^2-957*x-132 2329986885240614 a004 Fibonacci(14)*Lucas(15)/(1/2+sqrt(5)/2)^16 2329986895201613 r005 Re(z^2+c),c=-13/90+17/31*I,n=31 2329986904686669 a007 Real Root Of -436*x^4-571*x^3+788*x^2-395*x+429 2329986905315966 r005 Im(z^2+c),c=-73/60+11/64*I,n=25 2329986905693251 m002 -2+6/Pi^2-ProductLog[Pi]/Log[Pi] 2329986912258472 m006 (1/6*Pi^2-3)/(1/3*ln(Pi)+1/5) 2329986915601250 r009 Re(z^3+c),c=-25/64+7/15*I,n=6 2329986924853676 a001 47*(1/2*5^(1/2)+1/2)^10*3571^(11/15) 2329986957015587 a001 1/141*53316291173^(8/19) 2329986964718763 a007 Real Root Of 111*x^4-302*x^3-877*x^2+886*x-266 2329986964771740 m001 (-GAMMA(1/4)+1/2)/(sin(1)+1/2) 2329986965146194 a001 3461452808002/1597*144^(16/17) 2329986971708711 r005 Re(z^2+c),c=-37/70+25/46*I,n=3 2329986975270759 r009 Re(z^3+c),c=-8/31+6/29*I,n=7 2329986976769221 a001 28657/2207*521^(6/13) 2329986977551220 a001 28657/3571*521^(7/13) 2329986982516200 a007 Real Root Of -347*x^4+562*x^3+716*x^2+468*x-154 2329986989133578 r009 Im(z^3+c),c=-1/74+14/57*I,n=4 2329986991966864 m005 (1/3*Catalan-1/3)/(gamma+5/8) 2329986998199867 m002 -E^Pi+2/Pi^6-5/Pi^3 2329987003994495 r005 Im(z^2+c),c=-4/19+38/63*I,n=3 2329987007195674 m001 FeigenbaumMu-Salem^PisotVijayaraghavan 2329987014689968 m001 (Trott2nd+ZetaP(2))/(GAMMA(2/3)+CareFree) 2329987022169062 a001 167761*144^(9/17) 2329987033635926 m002 -E^Pi-Cosh[Pi]/E^Pi+ProductLog[Pi]/Pi 2329987035741168 a001 47*(1/2*5^(1/2)+1/2)^6*9349^(13/15) 2329987040359727 m001 (ln(3)+GAMMA(23/24))/(Bloch+TreeGrowth2nd) 2329987044398408 m005 (51/44+1/4*5^(1/2))/(3/7*Zeta(3)+2/9) 2329987052107079 r005 Im(z^2+c),c=-53/110+23/57*I,n=23 2329987054745303 r009 Re(z^3+c),c=-49/122+31/54*I,n=22 2329987057554129 p002 log(4^(3/4)*(18-23^(1/2))^(1/2)) 2329987058314922 a001 47*(1/2*5^(1/2)+1/2)*64079^(14/15) 2329987058882364 a001 47/64079*(1/2*5^(1/2)+1/2)^24*64079^(14/15) 2329987058943574 a001 47*(1/2*5^(1/2)+1/2)^21*39603^(1/15) 2329987060468032 l006 ln(5345/5471) 2329987062398899 a001 47/9349*(1/2*5^(1/2)+1/2)^25*9349^(13/15) 2329987066897832 r005 Im(z^2+c),c=-23/70+17/46*I,n=19 2329987067206492 m001 1/3*(FeigenbaumD-BesselI(0,2))*3^(1/2) 2329987070348265 m001 (GAMMA(19/24)-ZetaQ(2))/(ln(5)-GAMMA(5/6)) 2329987086388342 r005 Im(z^2+c),c=21/74+1/15*I,n=38 2329987098964846 m001 ErdosBorwein+Chi(1)^FeigenbaumC 2329987106981045 m001 1/ln(BesselJ(0,1))*Kolakoski/GAMMA(5/6)^2 2329987107568485 a001 47/3571*(1/2*5^(1/2)+1/2)^27*3571^(11/15) 2329987107629055 g005 GAMMA(7/11)*GAMMA(9/10)*GAMMA(7/10)*GAMMA(7/9) 2329987111824085 a007 Real Root Of 435*x^4-393*x^3-920*x^2-302*x+124 2329987113663461 r005 Im(z^2+c),c=-17/66+28/41*I,n=5 2329987118364035 r009 Re(z^3+c),c=-7/19+14/29*I,n=40 2329987118687241 a001 47/10946*6765^(39/40) 2329987121203261 a001 9062201101803/4181*144^(16/17) 2329987125680372 a007 Real Root Of -475*x^4-995*x^3-177*x^2-986*x+77 2329987143971682 a001 23725150497407/10946*144^(16/17) 2329987158017597 a001 34/12752043*18^(3/4) 2329987158026432 a007 Real Root Of -589*x^4-895*x^3+904*x^2-235*x+583 2329987158043340 a001 14662949395604/6765*144^(16/17) 2329987158406332 a001 1364/24157817*89^(6/19) 2329987162145299 m001 (exp(1)*Sierpinski-ln(2))/exp(1) 2329987170937868 r009 Im(z^3+c),c=-9/94+13/54*I,n=4 2329987172631511 g006 Psi(1,1/12)+Psi(1,1/11)+Psi(1,7/9)-Psi(1,1/6) 2329987181077347 m001 ln(3)*(GAMMA(11/24)-exp(Pi)) 2329987181077347 m001 ln(3)*(Pi*csc(11/24*Pi)/GAMMA(13/24)-exp(Pi)) 2329987181189183 m001 FeigenbaumMu/FeigenbaumB*Landau 2329987181225198 m004 (5*Pi)/24+Sin[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi] 2329987181534219 s002 sum(A141974[n]/((2^n+1)/n),n=1..infinity) 2329987182991700 m005 (1/2*5^(1/2)+1/3)/(1/3*Zeta(3)+2/9) 2329987189516677 r002 27th iterates of z^2 + 2329987191059549 p001 sum(1/(568*n+119)/n/(625^n),n=1..infinity) 2329987201915087 m001 GlaisherKinkelin*Cahen*ln(sin(Pi/5))^2 2329987202425446 r005 Im(z^2+c),c=-65/122+18/37*I,n=5 2329987209043800 b008 2-73*ArcCoth[3] 2329987217651843 a001 5600748293801/2584*144^(16/17) 2329987223205673 a001 3/1346269*610^(29/40) 2329987224136951 m005 (1/3*exp(1)+3/4)/(9/11*Zeta(3)-3/11) 2329987227727420 m005 (1/3*Zeta(3)-1/11)/(3/11*3^(1/2)+6/7) 2329987235834257 m001 BesselK(1,1)*exp(MinimumGamma)/GAMMA(11/12)^2 2329987239689313 m001 ArtinRank2*Totient+HardHexagonsEntropy 2329987241320657 r005 Im(z^2+c),c=3/56+7/30*I,n=16 2329987259562331 h001 (1/8*exp(1)+1/3)/(2/7*exp(2)+7/9) 2329987263588488 m006 (Pi^2-5)/(2/5*Pi+5/6) 2329987263588488 m008 (Pi^2-5)/(2/5*Pi+5/6) 2329987263651480 r005 Im(z^2+c),c=-19/48+23/59*I,n=30 2329987282076189 a001 47*(1/2*5^(1/2)+1/2)^15*2207^(7/15) 2329987286789375 m002 Pi^4/5+Pi/Log[Pi]+ProductLog[Pi] 2329987292958866 m005 (1/2*exp(1)-3)/(7/10*2^(1/2)-2/7) 2329987293542806 r009 Im(z^3+c),c=-19/62+11/58*I,n=14 2329987311532734 m001 1/LaplaceLimit*Artin*ln(Robbin) 2329987316392887 a001 2584/843*1364^(3/5) 2329987317661508 s002 sum(A064849[n]/(n*10^n-1),n=1..infinity) 2329987320055037 a001 98209/682*199^(1/11) 2329987322451902 m001 FibonacciFactorial+Backhouse^MertensB1 2329987328191592 m005 (1/2*exp(1)-11/12)/(5/7*2^(1/2)+8/9) 2329987333949961 r005 Im(z^2+c),c=-11/20+1/24*I,n=39 2329987347649327 r005 Im(z^2+c),c=33/118+3/41*I,n=43 2329987359493591 a003 -3/2-1/2*2^(1/2)-1/2*3^(1/2)+cos(7/30*Pi) 2329987363400837 r005 Im(z^2+c),c=-15/14+59/255*I,n=9 2329987376146547 a001 615/124*521^(8/13) 2329987384847267 a001 75025/5778*521^(6/13) 2329987402061435 m001 (ln(2)+exp(1/Pi))/(Totient-ZetaP(2)) 2329987408559076 m001 (exp(-1/2*Pi)+Trott2nd)/(Psi(1,1/3)+gamma(3)) 2329987411408934 m005 (5/6*Pi-2)/(5/6*exp(1)-2) 2329987412123310 a003 sin(Pi*31/80)/cos(Pi*19/39) 2329987419522563 a007 Real Root Of -690*x^4+672*x^3+529*x^2+952*x-257 2329987430924294 b008 3*CosIntegral[E/4] 2329987444385063 a001 196418/15127*521^(6/13) 2329987445926536 a007 Real Root Of -422*x^4-488*x^3+730*x^2-950*x+88 2329987448025020 a007 Real Root Of 354*x^4+583*x^3-589*x^2+49*x+253 2329987449855371 m001 (GAMMA(3/4)+3^(1/3))/(Khinchin-Riemann1stZero) 2329987452514184 a008 Real Root of (14+11*x+16*x^2-10*x^3) 2329987452948557 q001 1857/797 2329987453071511 a001 514229/39603*521^(6/13) 2329987454338846 a001 1346269/103682*521^(6/13) 2329987454523748 a001 3524578/271443*521^(6/13) 2329987454550725 a001 9227465/710647*521^(6/13) 2329987454554661 a001 24157817/1860498*521^(6/13) 2329987454555235 a001 63245986/4870847*521^(6/13) 2329987454555319 a001 165580141/12752043*521^(6/13) 2329987454555331 a001 433494437/33385282*521^(6/13) 2329987454555333 a001 1134903170/87403803*521^(6/13) 2329987454555333 a001 2971215073/228826127*521^(6/13) 2329987454555333 a001 7778742049/599074578*521^(6/13) 2329987454555333 a001 20365011074/1568397607*521^(6/13) 2329987454555333 a001 53316291173/4106118243*521^(6/13) 2329987454555333 a001 139583862445/10749957122*521^(6/13) 2329987454555333 a001 365435296162/28143753123*521^(6/13) 2329987454555333 a001 956722026041/73681302247*521^(6/13) 2329987454555333 a001 2504730781961/192900153618*521^(6/13) 2329987454555333 a001 10610209857723/817138163596*521^(6/13) 2329987454555333 a001 4052739537881/312119004989*521^(6/13) 2329987454555333 a001 1548008755920/119218851371*521^(6/13) 2329987454555333 a001 591286729879/45537549124*521^(6/13) 2329987454555333 a001 7787980473/599786069*521^(6/13) 2329987454555333 a001 86267571272/6643838879*521^(6/13) 2329987454555333 a001 32951280099/2537720636*521^(6/13) 2329987454555333 a001 12586269025/969323029*521^(6/13) 2329987454555333 a001 4807526976/370248451*521^(6/13) 2329987454555333 a001 1836311903/141422324*521^(6/13) 2329987454555334 a001 701408733/54018521*521^(6/13) 2329987454555338 a001 9238424/711491*521^(6/13) 2329987454555370 a001 102334155/7881196*521^(6/13) 2329987454555590 a001 39088169/3010349*521^(6/13) 2329987454557093 a001 14930352/1149851*521^(6/13) 2329987454567397 a001 5702887/439204*521^(6/13) 2329987454638024 a001 2178309/167761*521^(6/13) 2329987455122103 a001 832040/64079*521^(6/13) 2329987458440031 a001 10959/844*521^(6/13) 2329987461484955 a007 Real Root Of -15*x^4-315*x^3+817*x^2+277*x-711 2329987461710423 m001 (3^(1/2)-gamma(1))/(-BesselI(1,1)+Totient) 2329987461777271 l006 ln(1353/1708) 2329987476518472 a001 372099/1597 2329987477023216 r005 Im(z^2+c),c=-1/4+17/49*I,n=31 2329987477273546 a001 121393/843*521^(1/13) 2329987481181446 a001 121393/9349*521^(6/13) 2329987485408808 a001 1597/843*1364^(2/3) 2329987486500786 m005 (1/2*exp(1)+6/7)/(7/12*Zeta(3)+1/4) 2329987486602424 a005 (1/sin(60/211*Pi))^271 2329987496331241 a001 4181/843*1364^(8/15) 2329987498014420 a001 377/2207*3571^(15/17) 2329987509152373 a007 Real Root Of 214*x^4+325*x^3-438*x^2+316*x+918 2329987509165838 m001 1/Niven^2/FeigenbaumAlpha^2*ln(GAMMA(7/12)) 2329987523882365 m005 (-23/36+1/4*5^(1/2))/(5/11*Pi+2) 2329987529832454 m001 Tribonacci/gamma(1)/Trott 2329987531177130 m001 (ln(Pi)+FransenRobinson)/(MertensB2+Robbin) 2329987541010664 a001 329/281*3571^(11/17) 2329987541424561 r005 Re(z^2+c),c=-4/21+26/57*I,n=49 2329987541855902 h001 (6/11*exp(1)+1/9)/(7/8*exp(2)+3/8) 2329987542980922 a001 2255/281*1364^(7/15) 2329987544620217 m005 (1/2*Zeta(3)-2/11)/(7/11*Pi-1/5) 2329987549023381 r002 4th iterates of z^2 + 2329987553862842 m001 (Paris-PrimesInBinary)/(arctan(1/3)+MertensB2) 2329987560903060 m001 (Catalan-ErdosBorwein)/(Otter+ZetaQ(3)) 2329987573864392 r005 Im(z^2+c),c=-15/38+23/59*I,n=37 2329987581638559 a007 Real Root Of 484*x^4+951*x^3-36*x^2+745*x-304 2329987585281346 m001 Zeta(1,2)*FransenRobinson^2/exp(gamma)^2 2329987588693256 a001 123/832040*17711^(2/43) 2329987592392494 m001 1/ln(Salem)/Champernowne^2/log(2+sqrt(3))^2 2329987592528674 m001 (BesselJ(1,1)-CareFree)/(GAMMA(2/3)-Ei(1,1)) 2329987594373485 m001 (3^(1/2)-BesselI(0,1))/(Totient+TwinPrimes) 2329987596261299 r005 Im(z^2+c),c=-19/66+13/36*I,n=13 2329987603046204 m001 (Catalan+ln(2))/(2*Pi/GAMMA(5/6)+Totient) 2329987613206723 r005 Im(z^2+c),c=-29/30+23/117*I,n=6 2329987619953906 a007 Real Root Of -723*x^4+460*x^3+407*x^2+859*x+186 2329987626214680 a001 2139295485799/987*144^(16/17) 2329987636271441 a001 46368/2207*521^(5/13) 2329987637053440 a001 46368/3571*521^(6/13) 2329987638187826 a001 377/2207*9349^(15/19) 2329987640542352 a001 10946/843*1364^(2/5) 2329987641283478 m001 Shi(1)+gamma(2)+GlaisherKinkelin 2329987643804497 a001 329/281*9349^(11/19) 2329987647864908 r005 Im(z^2+c),c=-15/14+25/101*I,n=7 2329987648669942 m001 (PlouffeB-Thue)^exp(Pi) 2329987656455329 a001 377/2207*24476^(5/7) 2329987656503668 m001 MertensB1^2*ArtinRank2/ln(Trott)^2 2329987657200665 a001 329/281*24476^(11/21) 2329987658863337 a001 377/2207*64079^(15/23) 2329987658966538 a001 329/281*64079^(11/23) 2329987659183735 a001 377/2207*167761^(3/5) 2329987659226698 a001 377/2207*439204^(5/9) 2329987659233391 a001 377/2207*7881196^(5/11) 2329987659233406 a001 377/2207*20633239^(3/7) 2329987659233408 a001 377/2207*141422324^(5/13) 2329987659233408 a001 377/2207*2537720636^(1/3) 2329987659233408 a001 377/2207*45537549124^(5/17) 2329987659233408 a001 377/2207*312119004989^(3/11) 2329987659233408 a001 377/2207*14662949395604^(5/21) 2329987659233408 a001 377/2207*(1/2+1/2*5^(1/2))^15 2329987659233408 a001 377/2207*192900153618^(5/18) 2329987659233408 a001 377/2207*28143753123^(3/10) 2329987659233408 a001 377/2207*10749957122^(5/16) 2329987659233408 a001 377/2207*599074578^(5/14) 2329987659233408 a001 377/2207*228826127^(3/8) 2329987659233409 a001 377/2207*33385282^(5/12) 2329987659233745 a001 377/2207*1860498^(1/2) 2329987659237911 a001 329/281*7881196^(1/3) 2329987659237924 a001 329/281*312119004989^(1/5) 2329987659237924 a001 329/281*(1/2+1/2*5^(1/2))^11 2329987659237924 a001 329/281*1568397607^(1/4) 2329987659337265 a001 329/281*103682^(11/24) 2329987659368873 a001 377/2207*103682^(5/8) 2329987659980716 a001 329/281*39603^(1/2) 2329987660246307 a001 377/2207*39603^(15/22) 2329987664838216 a001 329/281*15127^(11/20) 2329987666870171 a001 377/2207*15127^(3/4) 2329987669045558 a007 Real Root Of 32*x^4-564*x^3+685*x^2+725*x+783 2329987673922241 a001 1/47*(1/2*5^(1/2)+1/2)^8*11^(6/17) 2329987674997328 r005 Im(z^2+c),c=-23/31+1/61*I,n=20 2329987684838852 m001 (Zeta(3)+LaplaceLimit)/(Sarnak+ZetaP(4)) 2329987685774341 p002 log(7^(2/5)-3^(1/6)) 2329987688424484 m001 1/MinimumGamma*exp(GAMMA(3/4)) 2329987688424484 m001 exp(1)^GAMMA(3/4)/MinimumGamma 2329987693577091 a005 (1/sin(16/45*Pi))^569 2329987693610391 m001 gamma(1)+Mills*Tribonacci 2329987696325521 m001 CopelandErdos*(Zeta(1/2)+Bloch) 2329987701887896 a001 329/281*5778^(11/18) 2329987702047722 m001 ReciprocalFibonacci*(Catalan-ln(5)) 2329987717392461 a001 377/2207*5778^(5/6) 2329987717443648 r005 Im(z^2+c),c=-51/86+17/55*I,n=7 2329987718657228 a001 17711/843*1364^(1/3) 2329987720977102 r005 Re(z^2+c),c=-7/66+40/61*I,n=36 2329987724589375 a007 Real Root Of -252*x^4-340*x^3+973*x^2+615*x-723 2329987738514031 g006 Psi(1,2/3)+Psi(1,1/3)-Psi(1,8/11)-Psi(1,3/8) 2329987740515984 r005 Re(z^2+c),c=17/58+5/41*I,n=7 2329987751028706 p001 sum((-1)^n/(556*n+429)/(1000^n),n=0..infinity) 2329987755315002 r005 Re(z^2+c),c=-45/52+5/24*I,n=50 2329987759367914 b008 -2+Pi+Csc[1] 2329987763868646 m001 (Gompertz-Tribonacci)/(ln(3)-BesselI(1,1)) 2329987769295031 a007 Real Root Of -417*x^4+88*x^3-893*x^2+563*x+182 2329987769574111 r005 Im(z^2+c),c=-9/52+9/28*I,n=10 2329987784085019 m001 2^(1/3)*(KhinchinLevy+LaplaceLimit) 2329987785571577 m001 (gamma(2)+KhinchinHarmonic)/(Catalan-sin(1)) 2329987790596989 r005 Im(z^2+c),c=-11/19+24/61*I,n=47 2329987795043753 p001 sum(1/(589*n+435)/(32^n),n=0..infinity) 2329987803503282 a007 Real Root Of -218*x^4-365*x^3+178*x^2+10*x+865 2329987804200030 a001 28657/843*1364^(4/15) 2329987805335875 m008 (1/6*Pi^6+3)/(3/4*Pi^4-3) 2329987808366554 m001 (-exp(-1/2*Pi)+ArtinRank2)/(2^(1/3)+sin(1)) 2329987823294886 m005 (1/10+3/10*5^(1/2))/(Pi+1/6) 2329987844289423 a007 Real Root Of 402*x^4-483*x^3+724*x^2-757*x+142 2329987844702294 s002 sum(A092621[n]/(n^2*2^n-1),n=1..infinity) 2329987856568451 a007 Real Root Of -553*x^4-904*x^3+888*x^2-29*x-25 2329987860395850 r009 Re(z^3+c),c=-11/32+23/54*I,n=28 2329987867902195 m001 Ei(1)^2/ln(CopelandErdos)*Zeta(1,2) 2329987868556424 r005 Re(z^2+c),c=-7/50+25/42*I,n=22 2329987879864176 a003 cos(Pi*5/94)-cos(Pi*8/35) 2329987886905621 a001 15456/281*1364^(1/5) 2329987903395446 a001 377/843*843^(13/14) 2329987903518616 m001 cosh(1)*Trott*exp(log(2+sqrt(3)))^2 2329987916399556 r005 Re(z^2+c),c=39/118+39/64*I,n=7 2329987926513372 r005 Re(z^2+c),c=13/38+11/53*I,n=25 2329987931485113 a007 Real Root Of -411*x^4-727*x^3+354*x^2-180*x+576 2329987936786522 a003 sin(Pi*8/45)/cos(Pi*38/89) 2329987942726922 m001 KomornikLoreti+LandauRamanujan2nd^GAMMA(5/6) 2329987952789675 r005 Im(z^2+c),c=-51/106+12/29*I,n=58 2329987954872213 a004 Fibonacci(14)*Lucas(17)/(1/2+sqrt(5)/2)^18 2329987961827616 a007 Real Root Of 337*x^4+868*x^3+95*x^2-538*x-722 2329987962345927 m001 sin(1/5*Pi)*Otter+Lehmer 2329987962458241 a007 Real Root Of -34*x^4-799*x^3-158*x^2+44*x+735 2329987966733656 m001 Conway+MertensB2^BesselJ(0,1) 2329987968970681 a007 Real Root Of -492*x^4+404*x^3-668*x^2-25*x+37 2329987970694935 a001 75025/843*1364^(2/15) 2329987971069428 a001 2584/843*3571^(9/17) 2329987976793856 a007 Real Root Of 288*x^4+791*x^3+8*x^2-497*x+316 2329987988106078 a001 329/281*2207^(11/16) 2329987988842379 m001 (2^(1/3)-GAMMA(23/24))/(-GaussAGM+Tribonacci) 2329987988866093 m006 (1/6*exp(2*Pi)+5/6)/(2/Pi-1/4) 2329987994322889 h001 (3/11*exp(2)+10/11)/(1/11*exp(2)+7/12) 2329987994759384 r005 Re(z^2+c),c=-19/78+19/62*I,n=27 2329987995504349 a001 87403803/8*987^(7/9) 2329988005017650 r002 13th iterates of z^2 + 2329988011758933 r005 Im(z^2+c),c=-23/29+1/4*I,n=4 2329988016884438 a007 Real Root Of 408*x^4+913*x^3-352*x^2-727*x-259 2329988041138483 a001 974168/4181 2329988043944563 a001 377/5778*9349^(17/19) 2329988045019377 a001 121393/5778*521^(5/13) 2329988050504730 a001 5473/682*521^(7/13) 2329988052173820 a001 2255/281*3571^(7/17) 2329988054070307 a001 121393/843*1364^(1/15) 2329988055173487 a001 2584/843*9349^(9/19) 2329988064647736 a001 377/5778*24476^(17/21) 2329988066133991 a001 2584/843*24476^(3/7) 2329988067376813 a001 377/5778*64079^(17/23) 2329988067578796 a001 2584/843*64079^(9/23) 2329988067796227 a001 377/5778*45537549124^(1/3) 2329988067796227 a001 377/5778*(1/2+1/2*5^(1/2))^17 2329988067796234 a001 377/5778*12752043^(1/2) 2329988067796813 a001 2584/843*439204^(1/3) 2329988067800829 a001 2584/843*7881196^(3/11) 2329988067800839 a001 2584/843*141422324^(3/13) 2329988067800839 a001 2584/843*2537720636^(1/5) 2329988067800839 a001 2584/843*45537549124^(3/17) 2329988067800839 a001 2584/843*817138163596^(3/19) 2329988067800839 a001 2584/843*14662949395604^(1/7) 2329988067800839 a001 2584/843*(1/2+1/2*5^(1/2))^9 2329988067800839 a001 2584/843*192900153618^(1/6) 2329988067800839 a001 2584/843*10749957122^(3/16) 2329988067800839 a001 2584/843*599074578^(3/14) 2329988067800839 a001 2584/843*33385282^(1/4) 2329988067801041 a001 2584/843*1860498^(3/10) 2329988067882118 a001 2584/843*103682^(3/8) 2329988067949754 a001 377/5778*103682^(17/24) 2329988068141699 b008 9/7+2^(1/16) 2329988068408578 a001 2584/843*39603^(9/22) 2329988068944179 a001 377/5778*39603^(17/22) 2329988069518232 a001 9349/1597*4181^(28/39) 2329988072382897 a001 2584/843*15127^(9/20) 2329988076451226 a001 377/5778*15127^(17/20) 2329988076993419 a001 10946/843*3571^(6/17) 2329988078265979 a001 4181/843*3571^(8/17) 2329988081989931 h001 (7/12*exp(1)+1/9)/(8/9*exp(2)+5/7) 2329988082366457 a001 17711/843*3571^(5/17) 2329988082705006 r009 Re(z^3+c),c=-17/122+11/12*I,n=52 2329988083902067 m001 (Chi(1)+Zeta(3))/ZetaQ(3) 2329988085204661 a007 Real Root Of 753*x^4-642*x^3+135*x^2-804*x-205 2329988086894655 r002 3th iterates of z^2 + 2329988088656082 m001 (-Conway+Tribonacci)/(3^(1/2)+LambertW(1)) 2329988090966292 r005 Re(z^2+c),c=-27/98+7/44*I,n=20 2329988095167420 a001 28657/843*3571^(4/17) 2329988099089137 a001 3010349/34*6557470319842^(11/19) 2329988099089394 a001 299537289/17*701408733^(11/19) 2329988099137324 a001 119218851371/34*75025^(11/19) 2329988102696277 a001 2584/843*5778^(1/2) 2329988104654909 a001 317811/15127*521^(5/13) 2329988104937947 m003 1/3+Sin[1/2+Sqrt[5]/2]+Sin[1/2+Sqrt[5]/2]^2 2329988105131168 a001 15456/281*3571^(3/17) 2329988107593850 r005 Im(z^2+c),c=-13/42+23/63*I,n=32 2329988107689994 a001 377/2207*2207^(15/16) 2329988110929360 a004 Fibonacci(14)*Lucas(19)/(1/2+sqrt(5)/2)^20 2329988111834213 m001 GAMMA(1/24)*BesselK(1,1)^2*exp(Zeta(7)) 2329988113355616 a001 832040/39603*521^(5/13) 2329988114625033 a001 46347/2206*521^(5/13) 2329988114810238 a001 5702887/271443*521^(5/13) 2329988114837259 a001 14930352/710647*521^(5/13) 2329988114841201 a001 39088169/1860498*521^(5/13) 2329988114841776 a001 102334155/4870847*521^(5/13) 2329988114841860 a001 267914296/12752043*521^(5/13) 2329988114841873 a001 701408733/33385282*521^(5/13) 2329988114841874 a001 1836311903/87403803*521^(5/13) 2329988114841875 a001 102287808/4868641*521^(5/13) 2329988114841875 a001 12586269025/599074578*521^(5/13) 2329988114841875 a001 32951280099/1568397607*521^(5/13) 2329988114841875 a001 86267571272/4106118243*521^(5/13) 2329988114841875 a001 225851433717/10749957122*521^(5/13) 2329988114841875 a001 591286729879/28143753123*521^(5/13) 2329988114841875 a001 1548008755920/73681302247*521^(5/13) 2329988114841875 a001 4052739537881/192900153618*521^(5/13) 2329988114841875 a001 225749145909/10745088481*521^(5/13) 2329988114841875 a001 6557470319842/312119004989*521^(5/13) 2329988114841875 a001 2504730781961/119218851371*521^(5/13) 2329988114841875 a001 956722026041/45537549124*521^(5/13) 2329988114841875 a001 365435296162/17393796001*521^(5/13) 2329988114841875 a001 139583862445/6643838879*521^(5/13) 2329988114841875 a001 53316291173/2537720636*521^(5/13) 2329988114841875 a001 20365011074/969323029*521^(5/13) 2329988114841875 a001 7778742049/370248451*521^(5/13) 2329988114841875 a001 2971215073/141422324*521^(5/13) 2329988114841875 a001 1134903170/54018521*521^(5/13) 2329988114841880 a001 433494437/20633239*521^(5/13) 2329988114841912 a001 165580141/7881196*521^(5/13) 2329988114842132 a001 63245986/3010349*521^(5/13) 2329988114843638 a001 24157817/1149851*521^(5/13) 2329988114853959 a001 9227465/439204*521^(5/13) 2329988114924701 a001 3524578/167761*521^(5/13) 2329988115409575 a001 1346269/64079*521^(5/13) 2329988116178635 a001 75025/843*3571^(2/17) 2329988117588091 a001 2255/281*9349^(7/19) 2329988118732949 a001 514229/24476*521^(5/13) 2329988123515439 a001 196185/842 2329988123885850 a001 377/15127*24476^(19/21) 2329988126044740 a007 Real Root Of 59*x^4-315*x^3-537*x^2+879*x-760 2329988126112927 a001 2255/281*24476^(1/3) 2329988126812159 a001 121393/843*3571^(1/17) 2329988126935994 a001 377/15127*64079^(19/23) 2329988127236665 a001 2255/281*64079^(7/23) 2329988127404751 a001 377/15127*817138163596^(1/3) 2329988127404751 a001 377/15127*(1/2+1/2*5^(1/2))^19 2329988127404751 a001 377/15127*87403803^(1/2) 2329988127409364 a001 2255/281*20633239^(1/5) 2329988127409365 a001 2255/281*17393796001^(1/7) 2329988127409365 a001 2255/281*14662949395604^(1/9) 2329988127409365 a001 2255/281*(1/2+1/2*5^(1/2))^7 2329988127409365 a001 2255/281*599074578^(1/6) 2329988127410518 a001 2255/281*710647^(1/4) 2329988127472582 a001 2255/281*103682^(7/24) 2329988127576340 a001 377/15127*103682^(19/24) 2329988127882051 a001 2255/281*39603^(7/22) 2329988128687757 a001 377/15127*39603^(19/22) 2329988128973975 s002 sum(A188809[n]/(n^2*2^n-1),n=1..infinity) 2329988129090936 a001 17711/843*9349^(5/19) 2329988129377691 r005 Re(z^2+c),c=-1/118+22/31*I,n=3 2329988130973188 a001 2255/281*15127^(7/20) 2329988132547003 a001 28657/843*9349^(4/19) 2329988133062794 a001 10946/843*9349^(6/19) 2329988133165855 a001 15456/281*9349^(3/19) 2329988133697791 a004 Fibonacci(14)*Lucas(21)/(1/2+sqrt(5)/2)^22 2329988133709832 a001 377/5778*5778^(17/18) 2329988134868427 a001 75025/843*9349^(2/19) 2329988135180105 a001 17711/843*24476^(5/21) 2329988135534075 a001 6677047/28657 2329988135583418 a001 377/39603*64079^(21/23) 2329988135982774 a001 17711/843*64079^(5/23) 2329988136089574 a001 17711/843*167761^(1/5) 2329988136092123 a001 377/39603*439204^(7/9) 2329988136101494 a001 377/39603*7881196^(7/11) 2329988136101515 a001 377/39603*20633239^(3/5) 2329988136101518 a001 377/39603*141422324^(7/13) 2329988136101518 a001 377/39603*2537720636^(7/15) 2329988136101518 a001 377/39603*17393796001^(3/7) 2329988136101518 a001 377/39603*45537549124^(7/17) 2329988136101518 a001 377/39603*14662949395604^(1/3) 2329988136101518 a001 377/39603*(1/2+1/2*5^(1/2))^21 2329988136101518 a001 377/39603*192900153618^(7/18) 2329988136101518 a001 377/39603*10749957122^(7/16) 2329988136101518 a001 377/39603*599074578^(1/2) 2329988136101519 a001 377/39603*33385282^(7/12) 2329988136101989 a001 377/39603*1860498^(7/10) 2329988136104978 a001 377/39603*710647^(3/4) 2329988136106131 a001 17711/843*20633239^(1/7) 2329988136106132 a001 17711/843*2537720636^(1/9) 2329988136106132 a001 17711/843*312119004989^(1/11) 2329988136106132 a001 17711/843*(1/2+1/2*5^(1/2))^5 2329988136106132 a001 17711/843*28143753123^(1/10) 2329988136106132 a001 17711/843*228826127^(1/8) 2329988136106244 a001 17711/843*1860498^(1/6) 2329988136151287 a001 17711/843*103682^(5/24) 2329988136157055 a001 121393/843*9349^(1/19) 2329988136291169 a001 377/39603*103682^(7/8) 2329988136443765 a001 17711/843*39603^(5/22) 2329988136819357 a001 15456/281*24476^(1/7) 2329988137019660 a004 Fibonacci(14)*Lucas(23)/(1/2+sqrt(5)/2)^24 2329988137077985 a001 377/15127*15127^(19/20) 2329988137287570 a001 17480736/75025 2329988137300958 a001 15456/281*64079^(3/23) 2329988137304095 a001 75025/843*24476^(2/21) 2329988137370359 a001 377/103682*(1/2+1/2*5^(1/2))^23 2329988137370359 a001 377/103682*4106118243^(1/2) 2329988137373631 a001 15456/281*439204^(1/9) 2329988137374889 a001 121393/843*24476^(1/21) 2329988137374969 a001 15456/281*7881196^(1/11) 2329988137374973 a001 15456/281*141422324^(1/13) 2329988137374973 a001 15456/281*2537720636^(1/15) 2329988137374973 a001 15456/281*45537549124^(1/17) 2329988137374973 a001 15456/281*14662949395604^(1/21) 2329988137374973 a001 15456/281*(1/2+1/2*5^(1/2))^3 2329988137374973 a001 15456/281*192900153618^(1/18) 2329988137374973 a001 15456/281*10749957122^(1/16) 2329988137374973 a001 15456/281*599074578^(1/14) 2329988137374973 a001 15456/281*33385282^(1/12) 2329988137375040 a001 15456/281*1860498^(1/10) 2329988137402066 a001 15456/281*103682^(1/8) 2329988137418338 a001 28657/843*24476^(4/21) 2329988137504314 a004 Fibonacci(14)*Lucas(25)/(1/2+sqrt(5)/2)^26 2329988137519576 a001 377/39603*39603^(21/22) 2329988137535423 a001 121393/843*64079^(1/23) 2329988137543402 a001 45765161/196418 2329988137555477 a001 377/271443*20633239^(5/7) 2329988137555481 a001 377/271443*2537720636^(5/9) 2329988137555481 a001 377/271443*312119004989^(5/11) 2329988137555481 a001 377/271443*(1/2+1/2*5^(1/2))^25 2329988137555481 a001 377/271443*3461452808002^(5/12) 2329988137555481 a001 377/271443*28143753123^(1/2) 2329988137555481 a001 377/271443*228826127^(5/8) 2329988137556041 a001 377/271443*1860498^(5/6) 2329988137560094 a001 121393/1686+121393/1686*5^(1/2) 2329988137569125 a001 121393/843*103682^(1/24) 2329988137575024 a004 Fibonacci(14)*Lucas(27)/(1/2+sqrt(5)/2)^28 2329988137577553 a001 15456/281*39603^(3/22) 2329988137578072 a001 377/103682*103682^(23/24) 2329988137580727 a001 119814747/514229 2329988137582459 a001 377/710647*7881196^(9/11) 2329988137582489 a001 377/710647*141422324^(9/13) 2329988137582489 a001 377/710647*2537720636^(3/5) 2329988137582489 a001 377/710647*45537549124^(9/17) 2329988137582489 a001 377/710647*817138163596^(9/19) 2329988137582489 a001 377/710647*14662949395604^(3/7) 2329988137582489 a001 377/710647*(1/2+1/2*5^(1/2))^27 2329988137582489 a001 377/710647*192900153618^(1/2) 2329988137582489 a001 377/710647*10749957122^(9/16) 2329988137582489 a001 377/710647*599074578^(9/14) 2329988137582491 a001 377/710647*33385282^(3/4) 2329988137583095 a001 377/710647*1860498^(9/10) 2329988137585341 a004 Fibonacci(14)*Lucas(29)/(1/2+sqrt(5)/2)^30 2329988137586173 a001 313679080/1346269 2329988137586430 a001 377/1860498*(1/2+1/2*5^(1/2))^29 2329988137586430 a001 377/1860498*1322157322203^(1/2) 2329988137586846 a004 Fibonacci(14)*Lucas(31)/(1/2+sqrt(5)/2)^32 2329988137586967 a001 821222493/3524578 2329988137587005 a001 377/4870847*(1/2+1/2*5^(1/2))^31 2329988137587005 a001 377/4870847*9062201101803^(1/2) 2329988137587066 a004 Fibonacci(14)*Lucas(33)/(1/2+sqrt(5)/2)^34 2329988137587083 a001 165383723/709805 2329988137587089 a001 377/12752043*141422324^(11/13) 2329988137587089 a001 377/12752043*2537720636^(11/15) 2329988137587089 a001 377/12752043*45537549124^(11/17) 2329988137587089 a001 377/12752043*312119004989^(3/5) 2329988137587089 a001 377/12752043*817138163596^(11/19) 2329988137587089 a001 377/12752043*14662949395604^(11/21) 2329988137587089 a001 377/12752043*(1/2+1/2*5^(1/2))^33 2329988137587089 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^33/Lucas(34) 2329988137587089 a001 377/12752043*192900153618^(11/18) 2329988137587089 a001 377/12752043*10749957122^(11/16) 2329988137587089 a001 377/12752043*1568397607^(3/4) 2329988137587089 a001 377/12752043*599074578^(11/14) 2329988137587091 a001 377/12752043*33385282^(11/12) 2329988137587098 a004 Fibonacci(14)*Lucas(35)/(1/2+sqrt(5)/2)^36 2329988137587100 a001 5628742704/24157817 2329988137587101 a001 377/33385282*2537720636^(7/9) 2329988137587101 a001 377/33385282*17393796001^(5/7) 2329988137587101 a001 377/33385282*312119004989^(7/11) 2329988137587101 a001 377/33385282*14662949395604^(5/9) 2329988137587101 a001 377/33385282*(1/2+1/2*5^(1/2))^35 2329988137587101 a001 377/33385282*505019158607^(5/8) 2329988137587101 a001 377/33385282*28143753123^(7/10) 2329988137587101 a001 377/33385282*599074578^(5/6) 2329988137587101 a001 377/33385282*228826127^(7/8) 2329988137587102 a004 Fibonacci(14)*Lucas(37)/(1/2+sqrt(5)/2)^38 2329988137587103 a001 14736239713/63245986 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^37/Lucas(38) 2329988137587103 a004 Fibonacci(14)*Lucas(39)/(1/2+sqrt(5)/2)^40 2329988137587103 a001 38579976435/165580141 2329988137587103 a001 377/228826127*2537720636^(13/15) 2329988137587103 a001 377/228826127*45537549124^(13/17) 2329988137587103 a001 377/228826127*14662949395604^(13/21) 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^39/Lucas(40) 2329988137587103 a001 377/228826127*192900153618^(13/18) 2329988137587103 a001 377/228826127*73681302247^(3/4) 2329988137587103 a001 377/228826127*10749957122^(13/16) 2329988137587103 a001 377/228826127*599074578^(13/14) 2329988137587103 a004 Fibonacci(14)*Lucas(41)/(1/2+sqrt(5)/2)^42 2329988137587103 a001 101003689592/433494437 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^41/Lucas(42) 2329988137587103 a004 Fibonacci(14)*Lucas(43)/(1/2+sqrt(5)/2)^44 2329988137587103 a001 264431092341/1134903170 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^43/Lucas(44) 2329988137587103 a004 Fibonacci(14)*Lucas(45)/(1/2+sqrt(5)/2)^46 2329988137587103 a001 692289587431/2971215073 2329988137587103 a001 377/4106118243*45537549124^(15/17) 2329988137587103 a001 377/4106118243*312119004989^(9/11) 2329988137587103 a001 377/4106118243*14662949395604^(5/7) 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^45/Lucas(46) 2329988137587103 a001 377/4106118243*192900153618^(5/6) 2329988137587103 a001 377/4106118243*28143753123^(9/10) 2329988137587103 a001 377/4106118243*10749957122^(15/16) 2329988137587103 a004 Fibonacci(14)*Lucas(47)/(1/2+sqrt(5)/2)^48 2329988137587103 a001 139418282304/598364773 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^47/Lucas(48) 2329988137587103 a004 Fibonacci(14)*Lucas(49)/(1/2+sqrt(5)/2)^50 2329988137587103 a001 4745023422425/20365011074 2329988137587103 a001 377/28143753123*14662949395604^(7/9) 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^49/Lucas(50) 2329988137587103 a001 377/28143753123*505019158607^(7/8) 2329988137587103 a004 Fibonacci(14)*Lucas(51)/(1/2+sqrt(5)/2)^52 2329988137587103 a001 12422632597323/53316291173 2329988137587103 a001 377/73681302247*817138163596^(17/19) 2329988137587103 a001 377/73681302247*14662949395604^(17/21) 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^51/Lucas(52) 2329988137587103 a001 377/73681302247*192900153618^(17/18) 2329988137587103 a004 Fibonacci(14)*Lucas(53)/(1/2+sqrt(5)/2)^54 2329988137587103 a001 32522874369544/139583862445 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^53/Lucas(54) 2329988137587103 a004 Fibonacci(14)*Lucas(55)/(1/2+sqrt(5)/2)^56 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^55/Lucas(56) 2329988137587103 a001 377/505019158607*3461452808002^(11/12) 2329988137587103 a004 Fibonacci(14)*Lucas(57)/(1/2+sqrt(5)/2)^58 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^57/Lucas(58) 2329988137587103 a004 Fibonacci(14)*Lucas(59)/(1/2+sqrt(5)/2)^60 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^59/Lucas(60) 2329988137587103 a004 Fibonacci(14)*Lucas(61)/(1/2+sqrt(5)/2)^62 2329988137587103 a001 117529446598549/504420793834 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^61/Lucas(62) 2329988137587103 a004 Fibonacci(14)*Lucas(63)/(1/2+sqrt(5)/2)^64 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^63/Lucas(64) 2329988137587103 a004 Fibonacci(14)*Lucas(65)/(1/2+sqrt(5)/2)^66 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^65/Lucas(66) 2329988137587103 a004 Fibonacci(14)*Lucas(67)/(1/2+sqrt(5)/2)^68 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^67/Lucas(68) 2329988137587103 a004 Fibonacci(14)*Lucas(69)/(1/2+sqrt(5)/2)^70 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^69/Lucas(70) 2329988137587103 a004 Fibonacci(14)*Lucas(71)/(1/2+sqrt(5)/2)^72 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^71/Lucas(72) 2329988137587103 a004 Fibonacci(14)*Lucas(73)/(1/2+sqrt(5)/2)^74 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^73/Lucas(74) 2329988137587103 a004 Fibonacci(14)*Lucas(75)/(1/2+sqrt(5)/2)^76 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^75/Lucas(76) 2329988137587103 a004 Fibonacci(14)*Lucas(77)/(1/2+sqrt(5)/2)^78 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^77/Lucas(78) 2329988137587103 a004 Fibonacci(14)*Lucas(79)/(1/2+sqrt(5)/2)^80 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^79/Lucas(80) 2329988137587103 a004 Fibonacci(14)*Lucas(81)/(1/2+sqrt(5)/2)^82 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^81/Lucas(82) 2329988137587103 a004 Fibonacci(14)*Lucas(83)/(1/2+sqrt(5)/2)^84 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^83/Lucas(84) 2329988137587103 a004 Fibonacci(14)*Lucas(85)/(1/2+sqrt(5)/2)^86 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^85/Lucas(86) 2329988137587103 a004 Fibonacci(14)*Lucas(87)/(1/2+sqrt(5)/2)^88 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^87/Lucas(88) 2329988137587103 a004 Fibonacci(14)*Lucas(89)/(1/2+sqrt(5)/2)^90 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^89/Lucas(90) 2329988137587103 a004 Fibonacci(14)*Lucas(91)/(1/2+sqrt(5)/2)^92 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^91/Lucas(92) 2329988137587103 a004 Fibonacci(14)*Lucas(93)/(1/2+sqrt(5)/2)^94 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^93/Lucas(94) 2329988137587103 a004 Fibonacci(14)*Lucas(95)/(1/2+sqrt(5)/2)^96 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^95/Lucas(96) 2329988137587103 a004 Fibonacci(14)*Lucas(97)/(1/2+sqrt(5)/2)^98 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^97/Lucas(98) 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^98/Lucas(99) 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^99/Lucas(100) 2329988137587103 a004 Fibonacci(14)*Lucas(98)/(1/2+sqrt(5)/2)^99 2329988137587103 a004 Fibonacci(14)*Lucas(99)/(1/2+sqrt(5)/2)^100 2329988137587103 a004 Fibonacci(7)*Lucas(7)/(1/2+sqrt(5)/2) 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^96/Lucas(97) 2329988137587103 a004 Fibonacci(14)*Lucas(96)/(1/2+sqrt(5)/2)^97 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^94/Lucas(95) 2329988137587103 a004 Fibonacci(14)*Lucas(94)/(1/2+sqrt(5)/2)^95 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^92/Lucas(93) 2329988137587103 a004 Fibonacci(14)*Lucas(92)/(1/2+sqrt(5)/2)^93 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^90/Lucas(91) 2329988137587103 a004 Fibonacci(14)*Lucas(90)/(1/2+sqrt(5)/2)^91 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^88/Lucas(89) 2329988137587103 a004 Fibonacci(14)*Lucas(88)/(1/2+sqrt(5)/2)^89 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^86/Lucas(87) 2329988137587103 a004 Fibonacci(14)*Lucas(86)/(1/2+sqrt(5)/2)^87 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^84/Lucas(85) 2329988137587103 a004 Fibonacci(14)*Lucas(84)/(1/2+sqrt(5)/2)^85 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^82/Lucas(83) 2329988137587103 a004 Fibonacci(14)*Lucas(82)/(1/2+sqrt(5)/2)^83 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^80/Lucas(81) 2329988137587103 a004 Fibonacci(14)*Lucas(80)/(1/2+sqrt(5)/2)^81 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^78/Lucas(79) 2329988137587103 a004 Fibonacci(14)*Lucas(78)/(1/2+sqrt(5)/2)^79 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^76/Lucas(77) 2329988137587103 a004 Fibonacci(14)*Lucas(76)/(1/2+sqrt(5)/2)^77 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^74/Lucas(75) 2329988137587103 a004 Fibonacci(14)*Lucas(74)/(1/2+sqrt(5)/2)^75 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^72/Lucas(73) 2329988137587103 a004 Fibonacci(14)*Lucas(72)/(1/2+sqrt(5)/2)^73 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^70/Lucas(71) 2329988137587103 a004 Fibonacci(14)*Lucas(70)/(1/2+sqrt(5)/2)^71 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^68/Lucas(69) 2329988137587103 a004 Fibonacci(14)*Lucas(68)/(1/2+sqrt(5)/2)^69 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^66/Lucas(67) 2329988137587103 a004 Fibonacci(14)*Lucas(66)/(1/2+sqrt(5)/2)^67 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^64/Lucas(65) 2329988137587103 a004 Fibonacci(14)*Lucas(64)/(1/2+sqrt(5)/2)^65 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^62/Lucas(63) 2329988137587103 a004 Fibonacci(14)*Lucas(62)/(1/2+sqrt(5)/2)^63 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^60/Lucas(61) 2329988137587103 a004 Fibonacci(14)*Lucas(60)/(1/2+sqrt(5)/2)^61 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^58/Lucas(59) 2329988137587103 a004 Fibonacci(14)*Lucas(58)/(1/2+sqrt(5)/2)^59 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^56/Lucas(57) 2329988137587103 a001 137769106653074/591286729879 2329988137587103 a004 Fibonacci(14)*Lucas(56)/(1/2+sqrt(5)/2)^57 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^54/Lucas(55) 2329988137587103 a001 139583862445/599075421 2329988137587103 a004 Fibonacci(14)*Lucas(54)/(1/2+sqrt(5)/2)^55 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^52/Lucas(53) 2329988137587103 a001 377/119218851371*23725150497407^(13/16) 2329988137587103 a001 377/119218851371*505019158607^(13/14) 2329988137587103 a001 20100241772221/86267571272 2329988137587103 a004 Fibonacci(14)*Lucas(52)/(1/2+sqrt(5)/2)^53 2329988137587103 a001 377/45537549124*312119004989^(10/11) 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^50/Lucas(51) 2329988137587103 a001 377/45537549124*3461452808002^(5/6) 2329988137587103 a001 7677609174898/32951280099 2329988137587103 a004 Fibonacci(14)*Lucas(50)/(1/2+sqrt(5)/2)^51 2329988137587103 a001 13/599786069*45537549124^(16/17) 2329988137587103 a001 13/599786069*14662949395604^(16/21) 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^48/Lucas(49) 2329988137587103 a001 13/599786069*192900153618^(8/9) 2329988137587103 a001 13/599786069*73681302247^(12/13) 2329988137587103 a001 2932585752473/12586269025 2329988137587103 a004 Fibonacci(14)*Lucas(48)/(1/2+sqrt(5)/2)^49 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^46/Lucas(47) 2329988137587103 a001 377/6643838879*10749957122^(23/24) 2329988137587103 a001 1120148082521/4807526976 2329988137587103 a004 Fibonacci(14)*Lucas(46)/(1/2+sqrt(5)/2)^47 2329988137587103 a001 377/2537720636*312119004989^(4/5) 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^44/Lucas(45) 2329988137587103 a001 377/2537720636*23725150497407^(11/16) 2329988137587103 a001 377/2537720636*73681302247^(11/13) 2329988137587103 a001 377/2537720636*10749957122^(11/12) 2329988137587103 a001 377/2537720636*4106118243^(22/23) 2329988137587103 a001 427858495090/1836311903 2329988137587103 a004 Fibonacci(14)*Lucas(44)/(1/2+sqrt(5)/2)^45 2329988137587103 a001 377/969323029*2537720636^(14/15) 2329988137587103 a001 377/969323029*17393796001^(6/7) 2329988137587103 a001 377/969323029*45537549124^(14/17) 2329988137587103 a001 377/969323029*817138163596^(14/19) 2329988137587103 a001 377/969323029*14662949395604^(2/3) 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^42/Lucas(43) 2329988137587103 a001 377/969323029*192900153618^(7/9) 2329988137587103 a001 377/969323029*10749957122^(7/8) 2329988137587103 a001 377/969323029*4106118243^(21/23) 2329988137587103 a001 377/969323029*1568397607^(21/22) 2329988137587103 a001 163427402749/701408733 2329988137587103 a004 Fibonacci(14)*Lucas(42)/(1/2+sqrt(5)/2)^43 2329988137587103 a001 377/370248451*2537720636^(8/9) 2329988137587103 a001 377/370248451*312119004989^(8/11) 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^40/Lucas(41) 2329988137587103 a001 377/370248451*23725150497407^(5/8) 2329988137587103 a001 377/370248451*73681302247^(10/13) 2329988137587103 a001 377/370248451*28143753123^(4/5) 2329988137587103 a001 377/370248451*10749957122^(5/6) 2329988137587103 a001 377/370248451*4106118243^(20/23) 2329988137587103 a001 377/370248451*1568397607^(10/11) 2329988137587103 a001 377/370248451*599074578^(20/21) 2329988137587103 a001 165580141/710648 2329988137587103 a004 Fibonacci(14)*Lucas(40)/(1/2+sqrt(5)/2)^41 2329988137587103 a001 377/141422324*817138163596^(2/3) 2329988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^38/Lucas(39) 2329988137587103 a001 377/141422324*10749957122^(19/24) 2329988137587103 a001 377/141422324*4106118243^(19/23) 2329988137587103 a001 377/141422324*1568397607^(19/22) 2329988137587103 a001 377/141422324*599074578^(19/21) 2329988137587103 a001 377/141422324*228826127^(19/20) 2329988137587103 a001 23843736722/102334155 2329988137587103 a004 Fibonacci(14)*Lucas(38)/(1/2+sqrt(5)/2)^39 2329988137587104 a001 377/54018521*141422324^(12/13) 2329988137587104 a001 377/54018521*2537720636^(4/5) 2329988137587104 a001 377/54018521*45537549124^(12/17) 2329988137587104 a001 377/54018521*14662949395604^(4/7) 2329988137587104 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^36/Lucas(37) 2329988137587104 a001 377/54018521*192900153618^(2/3) 2329988137587104 a001 377/54018521*73681302247^(9/13) 2329988137587104 a001 377/54018521*10749957122^(3/4) 2329988137587104 a001 377/54018521*4106118243^(18/23) 2329988137587104 a001 377/54018521*1568397607^(9/11) 2329988137587104 a001 377/54018521*599074578^(6/7) 2329988137587104 a001 377/54018521*228826127^(9/10) 2329988137587104 a001 377/54018521*87403803^(18/19) 2329988137587104 a001 9107497009/39088169 2329988137587105 a004 Fibonacci(14)*Lucas(36)/(1/2+sqrt(5)/2)^37 2329988137587109 a001 13/711491*45537549124^(2/3) 2329988137587109 a001 13/711491*(1/2+1/2*5^(1/2))^34 2329988137587109 a001 13/711491*10749957122^(17/24) 2329988137587109 a001 13/711491*4106118243^(17/23) 2329988137587109 a001 13/711491*1568397607^(17/22) 2329988137587109 a001 13/711491*599074578^(17/21) 2329988137587109 a001 13/711491*228826127^(17/20) 2329988137587109 a001 13/711491*87403803^(17/19) 2329988137587111 a001 13/711491*33385282^(17/18) 2329988137587111 a001 3478754305/14930352 2329988137587117 a004 Fibonacci(14)*Lucas(34)/(1/2+sqrt(5)/2)^35 2329988137587141 a001 377/7881196*(1/2+1/2*5^(1/2))^32 2329988137587141 a001 377/7881196*23725150497407^(1/2) 2329988137587141 a001 377/7881196*73681302247^(8/13) 2329988137587141 a001 377/7881196*10749957122^(2/3) 2329988137587141 a001 377/7881196*4106118243^(16/23) 2329988137587141 a001 377/7881196*1568397607^(8/11) 2329988137587141 a001 377/7881196*599074578^(16/21) 2329988137587141 a001 377/7881196*228826127^(4/5) 2329988137587141 a001 377/7881196*87403803^(16/19) 2329988137587142 a001 377/7881196*33385282^(8/9) 2329988137587154 a001 377/7881196*12752043^(16/17) 2329988137587155 a001 1328765906/5702887 2329988137587201 a004 Fibonacci(14)*Lucas(32)/(1/2+sqrt(5)/2)^33 2329988137587326 a001 377/3010349*7881196^(10/11) 2329988137587355 a001 377/3010349*20633239^(6/7) 2329988137587360 a001 377/3010349*141422324^(10/13) 2329988137587360 a001 377/3010349*2537720636^(2/3) 2329988137587360 a001 377/3010349*45537549124^(10/17) 2329988137587360 a001 377/3010349*312119004989^(6/11) 2329988137587360 a001 377/3010349*14662949395604^(10/21) 2329988137587360 a001 377/3010349*(1/2+1/2*5^(1/2))^30 2329988137587360 a001 377/3010349*192900153618^(5/9) 2329988137587360 a001 377/3010349*28143753123^(3/5) 2329988137587360 a001 377/3010349*10749957122^(5/8) 2329988137587360 a001 377/3010349*4106118243^(15/23) 2329988137587360 a001 377/3010349*1568397607^(15/22) 2329988137587360 a001 377/3010349*599074578^(5/7) 2329988137587360 a001 377/3010349*228826127^(3/4) 2329988137587360 a001 377/3010349*87403803^(15/19) 2329988137587362 a001 377/3010349*33385282^(5/6) 2329988137587373 a001 377/3010349*12752043^(15/17) 2329988137587452 a001 377/3010349*4870847^(15/16) 2329988137587458 a001 507543413/2178309 2329988137587776 a004 Fibonacci(14)*Lucas(30)/(1/2+sqrt(5)/2)^31 2329988137588861 a001 377/1149851*20633239^(4/5) 2329988137588865 a001 377/1149851*17393796001^(4/7) 2329988137588865 a001 377/1149851*14662949395604^(4/9) 2329988137588865 a001 377/1149851*(1/2+1/2*5^(1/2))^28 2329988137588865 a001 377/1149851*73681302247^(7/13) 2329988137588865 a001 377/1149851*10749957122^(7/12) 2329988137588865 a001 377/1149851*4106118243^(14/23) 2329988137588865 a001 377/1149851*1568397607^(7/11) 2329988137588865 a001 377/1149851*599074578^(2/3) 2329988137588865 a001 377/1149851*228826127^(7/10) 2329988137588866 a001 377/1149851*87403803^(14/19) 2329988137588867 a001 377/1149851*33385282^(7/9) 2329988137588877 a001 377/1149851*12752043^(14/17) 2329988137588951 a001 377/1149851*4870847^(7/8) 2329988137589494 a001 377/1149851*1860498^(14/15) 2329988137589538 a001 193864333/832040 2329988137591044 a004 Fibonacci(30)/Lucas(14)/(1/2+sqrt(5)/2)^3 2329988137591619 a004 Fibonacci(32)/Lucas(14)/(1/2+sqrt(5)/2)^5 2329988137591702 a004 Fibonacci(34)/Lucas(14)/(1/2+sqrt(5)/2)^7 2329988137591715 a004 Fibonacci(36)/Lucas(14)/(1/2+sqrt(5)/2)^9 2329988137591716 a004 Fibonacci(38)/Lucas(14)/(1/2+sqrt(5)/2)^11 2329988137591717 a004 Fibonacci(40)/Lucas(14)/(1/2+sqrt(5)/2)^13 2329988137591717 a004 Fibonacci(42)/Lucas(14)/(1/2+sqrt(5)/2)^15 2329988137591717 a004 Fibonacci(44)/Lucas(14)/(1/2+sqrt(5)/2)^17 2329988137591717 a004 Fibonacci(46)/Lucas(14)/(1/2+sqrt(5)/2)^19 2329988137591717 a004 Fibonacci(48)/Lucas(14)/(1/2+sqrt(5)/2)^21 2329988137591717 a004 Fibonacci(50)/Lucas(14)/(1/2+sqrt(5)/2)^23 2329988137591717 a004 Fibonacci(52)/Lucas(14)/(1/2+sqrt(5)/2)^25 2329988137591717 a004 Fibonacci(54)/Lucas(14)/(1/2+sqrt(5)/2)^27 2329988137591717 a004 Fibonacci(14)*Lucas(28)/(1/2+sqrt(5)/2)^29 2329988137591717 a004 Fibonacci(58)/Lucas(14)/(1/2+sqrt(5)/2)^31 2329988137591717 a004 Fibonacci(60)/Lucas(14)/(1/2+sqrt(5)/2)^33 2329988137591717 a004 Fibonacci(62)/Lucas(14)/(1/2+sqrt(5)/2)^35 2329988137591717 a004 Fibonacci(64)/Lucas(14)/(1/2+sqrt(5)/2)^37 2329988137591717 a004 Fibonacci(66)/Lucas(14)/(1/2+sqrt(5)/2)^39 2329988137591717 a004 Fibonacci(68)/Lucas(14)/(1/2+sqrt(5)/2)^41 2329988137591717 a004 Fibonacci(70)/Lucas(14)/(1/2+sqrt(5)/2)^43 2329988137591717 a004 Fibonacci(72)/Lucas(14)/(1/2+sqrt(5)/2)^45 2329988137591717 a004 Fibonacci(74)/Lucas(14)/(1/2+sqrt(5)/2)^47 2329988137591717 a004 Fibonacci(76)/Lucas(14)/(1/2+sqrt(5)/2)^49 2329988137591717 a004 Fibonacci(78)/Lucas(14)/(1/2+sqrt(5)/2)^51 2329988137591717 a004 Fibonacci(80)/Lucas(14)/(1/2+sqrt(5)/2)^53 2329988137591717 a004 Fibonacci(82)/Lucas(14)/(1/2+sqrt(5)/2)^55 2329988137591717 a004 Fibonacci(84)/Lucas(14)/(1/2+sqrt(5)/2)^57 2329988137591717 a004 Fibonacci(86)/Lucas(14)/(1/2+sqrt(5)/2)^59 2329988137591717 a004 Fibonacci(88)/Lucas(14)/(1/2+sqrt(5)/2)^61 2329988137591717 a004 Fibonacci(90)/Lucas(14)/(1/2+sqrt(5)/2)^63 2329988137591717 a004 Fibonacci(92)/Lucas(14)/(1/2+sqrt(5)/2)^65 2329988137591717 a004 Fibonacci(94)/Lucas(14)/(1/2+sqrt(5)/2)^67 2329988137591717 a004 Fibonacci(96)/Lucas(14)/(1/2+sqrt(5)/2)^69 2329988137591717 a004 Fibonacci(98)/Lucas(14)/(1/2+sqrt(5)/2)^71 2329988137591717 a004 Fibonacci(100)/Lucas(14)/(1/2+sqrt(5)/2)^73 2329988137591717 a004 Fibonacci(97)/Lucas(14)/(1/2+sqrt(5)/2)^70 2329988137591717 a004 Fibonacci(99)/Lucas(14)/(1/2+sqrt(5)/2)^72 2329988137591717 a004 Fibonacci(95)/Lucas(14)/(1/2+sqrt(5)/2)^68 2329988137591717 a004 Fibonacci(93)/Lucas(14)/(1/2+sqrt(5)/2)^66 2329988137591717 a004 Fibonacci(91)/Lucas(14)/(1/2+sqrt(5)/2)^64 2329988137591717 a004 Fibonacci(89)/Lucas(14)/(1/2+sqrt(5)/2)^62 2329988137591717 a004 Fibonacci(87)/Lucas(14)/(1/2+sqrt(5)/2)^60 2329988137591717 a004 Fibonacci(85)/Lucas(14)/(1/2+sqrt(5)/2)^58 2329988137591717 a004 Fibonacci(83)/Lucas(14)/(1/2+sqrt(5)/2)^56 2329988137591717 a004 Fibonacci(81)/Lucas(14)/(1/2+sqrt(5)/2)^54 2329988137591717 a004 Fibonacci(79)/Lucas(14)/(1/2+sqrt(5)/2)^52 2329988137591717 a004 Fibonacci(77)/Lucas(14)/(1/2+sqrt(5)/2)^50 2329988137591717 a004 Fibonacci(75)/Lucas(14)/(1/2+sqrt(5)/2)^48 2329988137591717 a004 Fibonacci(73)/Lucas(14)/(1/2+sqrt(5)/2)^46 2329988137591717 a004 Fibonacci(71)/Lucas(14)/(1/2+sqrt(5)/2)^44 2329988137591717 a004 Fibonacci(69)/Lucas(14)/(1/2+sqrt(5)/2)^42 2329988137591717 a004 Fibonacci(67)/Lucas(14)/(1/2+sqrt(5)/2)^40 2329988137591717 a004 Fibonacci(65)/Lucas(14)/(1/2+sqrt(5)/2)^38 2329988137591717 a004 Fibonacci(63)/Lucas(14)/(1/2+sqrt(5)/2)^36 2329988137591717 a004 Fibonacci(61)/Lucas(14)/(1/2+sqrt(5)/2)^34 2329988137591717 a004 Fibonacci(59)/Lucas(14)/(1/2+sqrt(5)/2)^32 2329988137591717 a004 Fibonacci(57)/Lucas(14)/(1/2+sqrt(5)/2)^30 2329988137591717 a004 Fibonacci(55)/Lucas(14)/(1/2+sqrt(5)/2)^28 2329988137591717 a004 Fibonacci(53)/Lucas(14)/(1/2+sqrt(5)/2)^26 2329988137591717 a004 Fibonacci(51)/Lucas(14)/(1/2+sqrt(5)/2)^24 2329988137591717 a004 Fibonacci(49)/Lucas(14)/(1/2+sqrt(5)/2)^22 2329988137591717 a004 Fibonacci(47)/Lucas(14)/(1/2+sqrt(5)/2)^20 2329988137591717 a004 Fibonacci(45)/Lucas(14)/(1/2+sqrt(5)/2)^18 2329988137591717 a004 Fibonacci(43)/Lucas(14)/(1/2+sqrt(5)/2)^16 2329988137591717 a004 Fibonacci(41)/Lucas(14)/(1/2+sqrt(5)/2)^14 2329988137591717 a004 Fibonacci(39)/Lucas(14)/(1/2+sqrt(5)/2)^12 2329988137591718 a004 Fibonacci(37)/Lucas(14)/(1/2+sqrt(5)/2)^10 2329988137591722 a004 Fibonacci(35)/Lucas(14)/(1/2+sqrt(5)/2)^8 2329988137591754 a004 Fibonacci(33)/Lucas(14)/(1/2+sqrt(5)/2)^6 2329988137591974 a004 Fibonacci(31)/Lucas(14)/(1/2+sqrt(5)/2)^4 2329988137593479 a004 Fibonacci(29)/Lucas(14)/(1/2+sqrt(5)/2)^2 2329988137599182 a001 377/439204*141422324^(2/3) 2329988137599182 a001 377/439204*(1/2+1/2*5^(1/2))^26 2329988137599182 a001 377/439204*73681302247^(1/2) 2329988137599182 a001 377/439204*10749957122^(13/24) 2329988137599182 a001 377/439204*4106118243^(13/23) 2329988137599182 a001 377/439204*1568397607^(13/22) 2329988137599182 a001 377/439204*599074578^(13/21) 2329988137599182 a001 377/439204*228826127^(13/20) 2329988137599182 a001 377/439204*87403803^(13/19) 2329988137599183 a001 377/439204*33385282^(13/18) 2329988137599193 a001 377/439204*12752043^(13/17) 2329988137599262 a001 377/439204*4870847^(13/16) 2329988137599765 a001 377/439204*1860498^(13/15) 2329988137603466 a001 377/439204*710647^(13/14) 2329988137603795 a001 196418/843 2329988137611775 a001 377/64079*64079^(22/23) 2329988137618726 a004 Fibonacci(14)*Lucas(26)/(1/2+sqrt(5)/2)^27 2329988137625163 a001 75025/843*64079^(2/23) 2329988137627621 a001 121393/843*39603^(1/22) 2329988137659155 a001 377/167761*439204^(8/9) 2329988137669865 a001 377/167761*7881196^(8/11) 2329988137669892 a001 377/167761*141422324^(8/13) 2329988137669892 a001 377/167761*2537720636^(8/15) 2329988137669892 a001 377/167761*45537549124^(8/17) 2329988137669892 a001 377/167761*14662949395604^(8/21) 2329988137669892 a001 377/167761*(1/2+1/2*5^(1/2))^24 2329988137669892 a001 377/167761*192900153618^(4/9) 2329988137669892 a001 377/167761*73681302247^(6/13) 2329988137669892 a001 377/167761*10749957122^(1/2) 2329988137669892 a001 377/167761*4106118243^(12/23) 2329988137669892 a001 377/167761*1568397607^(6/11) 2329988137669892 a001 377/167761*599074578^(4/7) 2329988137669892 a001 377/167761*228826127^(3/5) 2329988137669892 a001 377/167761*87403803^(12/19) 2329988137669893 a001 377/167761*33385282^(2/3) 2329988137669902 a001 377/167761*12752043^(12/17) 2329988137669966 a001 377/167761*4870847^(3/4) 2329988137670430 a001 377/167761*1860498^(4/5) 2329988137673846 a001 377/167761*710647^(6/7) 2329988137674506 a001 75025/843*(1/2+1/2*5^(1/2))^2 2329988137674506 a001 75025/843*10749957122^(1/24) 2329988137674506 a001 75025/843*4106118243^(1/23) 2329988137674506 a001 75025/843*1568397607^(1/22) 2329988137674506 a001 75025/843*599074578^(1/21) 2329988137674506 a001 75025/843*228826127^(1/20) 2329988137674506 a001 75025/843*87403803^(1/19) 2329988137674506 a001 75025/843*33385282^(1/18) 2329988137674506 a001 75025/843*12752043^(1/17) 2329988137674512 a001 75025/843*4870847^(1/16) 2329988137674550 a001 75025/843*1860498^(1/15) 2329988137674835 a001 75025/843*710647^(1/14) 2329988137676938 a001 75025/843*271443^(1/13) 2329988137692568 a001 75025/843*103682^(1/12) 2329988137699082 a001 377/167761*271443^(12/13) 2329988137701514 a001 28284425/121393 2329988137772308 a001 13/844*24476^(20/21) 2329988137803847 a004 Fibonacci(14)*Lucas(24)/(1/2+sqrt(5)/2)^25 2329988137809559 a001 75025/843*39603^(1/11) 2329988138060474 a001 28657/843*64079^(4/23) 2329988138069212 a001 121393/843*15127^(1/20) 2329988138154521 a001 377/64079*7881196^(2/3) 2329988138154546 a001 377/64079*312119004989^(2/5) 2329988138154546 a001 377/64079*(1/2+1/2*5^(1/2))^22 2329988138154546 a001 377/64079*10749957122^(11/24) 2329988138154546 a001 377/64079*4106118243^(11/23) 2329988138154546 a001 377/64079*1568397607^(1/2) 2329988138154546 a001 377/64079*599074578^(11/21) 2329988138154546 a001 377/64079*228826127^(11/20) 2329988138154546 a001 377/64079*87403803^(11/19) 2329988138154547 a001 377/64079*33385282^(11/18) 2329988138154555 a001 377/64079*12752043^(11/17) 2329988138154614 a001 377/64079*4870847^(11/16) 2329988138155040 a001 377/64079*1860498^(11/15) 2329988138158171 a001 377/64079*710647^(11/14) 2329988138159160 a001 28657/843*(1/2+1/2*5^(1/2))^4 2329988138159160 a001 28657/843*23725150497407^(1/16) 2329988138159160 a001 28657/843*73681302247^(1/13) 2329988138159160 a001 28657/843*10749957122^(1/12) 2329988138159160 a001 28657/843*4106118243^(2/23) 2329988138159160 a001 28657/843*1568397607^(1/11) 2329988138159160 a001 28657/843*599074578^(2/21) 2329988138159160 a001 28657/843*228826127^(1/10) 2329988138159160 a001 28657/843*87403803^(2/19) 2329988138159160 a001 28657/843*33385282^(1/9) 2329988138159161 a001 28657/843*12752043^(2/17) 2329988138159172 a001 28657/843*4870847^(1/8) 2329988138159250 a001 28657/843*1860498^(2/15) 2329988138159819 a001 28657/843*710647^(1/7) 2329988138164025 a001 28657/843*271443^(2/13) 2329988138181304 a001 377/64079*271443^(11/13) 2329988138195284 a001 28657/843*103682^(1/6) 2329988138353228 a001 377/64079*103682^(11/12) 2329988138371290 a001 10803689/46368 2329988138429266 a001 28657/843*39603^(2/11) 2329988138651720 a001 17711/843*15127^(1/4) 2329988138692741 a001 75025/843*15127^(1/10) 2329988138902326 a001 15456/281*15127^(3/20) 2329988138990142 a001 377/9349*9349^(18/19) 2329988139072688 a004 Fibonacci(14)*Lucas(22)/(1/2+sqrt(5)/2)^23 2329988140195630 a001 28657/843*15127^(1/5) 2329988140369797 a001 10946/843*24476^(2/7) 2329988140982987 a001 13/844*64079^(20/23) 2329988141333000 a001 10946/843*64079^(6/23) 2329988141410184 a001 13/844*167761^(4/5) 2329988141437365 a001 121393/843*5778^(1/18) 2329988141476412 a001 13/844*20633239^(4/7) 2329988141476415 a001 13/844*2537720636^(4/9) 2329988141476415 a001 13/844*(1/2+1/2*5^(1/2))^20 2329988141476415 a001 13/844*23725150497407^(5/16) 2329988141476415 a001 13/844*505019158607^(5/14) 2329988141476415 a001 13/844*73681302247^(5/13) 2329988141476415 a001 13/844*28143753123^(2/5) 2329988141476415 a001 13/844*10749957122^(5/12) 2329988141476415 a001 13/844*4106118243^(10/23) 2329988141476415 a001 13/844*1568397607^(5/11) 2329988141476415 a001 13/844*599074578^(10/21) 2329988141476415 a001 13/844*228826127^(1/2) 2329988141476416 a001 13/844*87403803^(10/19) 2329988141476417 a001 13/844*33385282^(5/9) 2329988141476424 a001 13/844*12752043^(10/17) 2329988141476477 a001 13/844*4870847^(5/8) 2329988141476864 a001 13/844*1860498^(2/3) 2329988141478345 a001 10946/843*439204^(2/9) 2329988141479711 a001 13/844*710647^(5/7) 2329988141481022 a001 10946/843*7881196^(2/11) 2329988141481029 a001 10946/843*141422324^(2/13) 2329988141481029 a001 10946/843*2537720636^(2/15) 2329988141481029 a001 10946/843*45537549124^(2/17) 2329988141481029 a001 10946/843*14662949395604^(2/21) 2329988141481029 a001 10946/843*(1/2+1/2*5^(1/2))^6 2329988141481029 a001 10946/843*10749957122^(1/8) 2329988141481029 a001 10946/843*4106118243^(3/23) 2329988141481029 a001 10946/843*1568397607^(3/22) 2329988141481029 a001 10946/843*599074578^(1/7) 2329988141481029 a001 10946/843*228826127^(3/20) 2329988141481029 a001 10946/843*87403803^(3/19) 2329988141481029 a001 10946/843*33385282^(1/6) 2329988141481032 a001 10946/843*12752043^(3/17) 2329988141481047 a001 10946/843*4870847^(3/16) 2329988141481164 a001 10946/843*1860498^(1/5) 2329988141482018 a001 10946/843*710647^(3/14) 2329988141488327 a001 10946/843*271443^(3/13) 2329988141500740 a001 13/844*271443^(10/13) 2329988141511697 a001 196418/9349*521^(5/13) 2329988141535215 a001 10946/843*103682^(1/4) 2329988141657035 a001 13/844*103682^(5/6) 2329988141886189 a001 10946/843*39603^(3/11) 2329988142826947 a001 13/844*39603^(10/11) 2329988142962001 a001 4126642/17711 2329988144127958 a007 Real Root Of -743*x^4-507*x^3+505*x^2+636*x-167 2329988144388400 m001 (DuboisRaymond+Otter)/(GAMMA(2/3)-gamma(3)) 2329988144535735 a001 10946/843*15127^(3/10) 2329988145429047 a001 75025/843*5778^(1/9) 2329988145914770 a007 Real Root Of -954*x^4-222*x^3+277*x^2+951*x-231 2329988147769455 a004 Fibonacci(14)*Lucas(20)/(1/2+sqrt(5)/2)^21 2329988148335038 a001 377/3571*3571^(16/17) 2329988149006786 a001 15456/281*5778^(1/6) 2329988153025147 a001 4181/843*9349^(8/19) 2329988153668244 a001 28657/843*5778^(2/9) 2329988154550261 a001 2255/281*5778^(7/18) 2329988155492486 a001 17711/843*5778^(5/18) 2329988157064192 p003 LerchPhi(1/3,2,129/191) 2329988159077955 p004 log(13577/1321) 2329988160911150 a001 377/9349*24476^(6/7) 2329988162767817 a001 4181/843*24476^(8/21) 2329988163800761 a001 377/9349*64079^(18/23) 2329988164052088 a001 4181/843*64079^(8/23) 2329988164236794 a001 377/9349*439204^(2/3) 2329988164244826 a001 377/9349*7881196^(6/11) 2329988164244847 a001 377/9349*141422324^(6/13) 2329988164244847 a001 377/9349*2537720636^(2/5) 2329988164244847 a001 377/9349*45537549124^(6/17) 2329988164244847 a001 377/9349*14662949395604^(2/7) 2329988164244847 a001 377/9349*(1/2+1/2*5^(1/2))^18 2329988164244847 a001 377/9349*192900153618^(1/3) 2329988164244847 a001 377/9349*10749957122^(3/8) 2329988164244847 a001 377/9349*4106118243^(9/23) 2329988164244847 a001 377/9349*1568397607^(9/22) 2329988164244847 a001 377/9349*599074578^(3/7) 2329988164244847 a001 377/9349*228826127^(9/20) 2329988164244847 a001 377/9349*87403803^(9/19) 2329988164244848 a001 377/9349*33385282^(1/2) 2329988164244854 a001 377/9349*12752043^(9/17) 2329988164244902 a001 377/9349*4870847^(9/16) 2329988164245250 a001 377/9349*1860498^(3/5) 2329988164247813 a001 377/9349*710647^(9/14) 2329988164249460 a001 4181/843*(1/2+1/2*5^(1/2))^8 2329988164249460 a001 4181/843*23725150497407^(1/8) 2329988164249460 a001 4181/843*505019158607^(1/7) 2329988164249460 a001 4181/843*73681302247^(2/13) 2329988164249460 a001 4181/843*10749957122^(1/6) 2329988164249460 a001 4181/843*4106118243^(4/23) 2329988164249460 a001 4181/843*1568397607^(2/11) 2329988164249460 a001 4181/843*599074578^(4/21) 2329988164249460 a001 4181/843*228826127^(1/5) 2329988164249460 a001 4181/843*87403803^(4/19) 2329988164249460 a001 4181/843*33385282^(2/9) 2329988164249463 a001 4181/843*12752043^(4/17) 2329988164249485 a001 4181/843*4870847^(1/4) 2329988164249639 a001 4181/843*1860498^(4/15) 2329988164250778 a001 4181/843*710647^(2/7) 2329988164259190 a001 4181/843*271443^(4/13) 2329988164266739 a001 377/9349*271443^(9/13) 2329988164321708 a001 4181/843*103682^(1/3) 2329988164407405 a001 377/9349*103682^(3/4) 2329988164744655 a001 10946/843*5778^(1/3) 2329988164789673 a001 4181/843*39603^(4/11) 2329988165103107 a007 Real Root Of -268*x^4-470*x^3+316*x^2-106*x-9 2329988165223846 m001 (exp(1/Pi)-GAMMA(5/6))/(Cahen+ThueMorse) 2329988165460325 a001 377/9349*39603^(9/11) 2329988166402321 r005 Re(z^2+c),c=-19/78+19/62*I,n=32 2329988167457203 a001 121393/843*2207^(1/16) 2329988168322401 a001 4181/843*15127^(2/5) 2329988171168267 a005 (1/cos(5/163*Pi))^677 2329988172626136 r005 Im(z^2+c),c=-35/64+1/24*I,n=36 2329988173408963 a001 377/9349*15127^(9/10) 2329988174427198 a001 1576237/6765 2329988184842436 a001 3571/8*433494437^(7/9) 2329988188613756 a007 Real Root Of 757*x^4-423*x^3+840*x^2+48*x-42 2329988188855429 m001 1/exp(ArtinRank2)/Artin^2*cos(Pi/5)^2 2329988195267628 a001 4181/843*5778^(4/9) 2329988197468724 a001 75025/843*2207^(1/8) 2329988199511823 a007 Real Root Of 43*x^4+991*x^3-252*x^2+2*x-958 2329988201393329 l006 ln(7916/9993) 2329988207377981 a004 Fibonacci(14)*Lucas(18)/(1/2+sqrt(5)/2)^19 2329988212827250 a001 1597/843*3571^(10/17) 2329988215688995 m001 FeigenbaumAlpha-GaussAGM+Robbin 2329988221076893 a001 377/1364*1364^(14/15) 2329988227066301 a001 15456/281*2207^(3/16) 2329988228038057 a001 3571/63245986*89^(6/19) 2329988228593593 r005 Im(z^2+c),c=1/50+34/55*I,n=26 2329988245155735 m002 2/(5*Pi^2)+2*Log[Pi] 2329988248343805 a001 24476/4181*4181^(28/39) 2329988257747599 a001 28657/843*2207^(1/4) 2329988266623390 m001 sin(1/12*Pi)*GAMMA(19/24)*ZetaP(4) 2329988279895188 m005 (1/2*gamma-9/11)/(3/4*Pi-1/12) 2329988283188166 m004 -1+125*Pi-6*Sqrt[5]*Pi*Sinh[Sqrt[5]*Pi] 2329988284226386 r005 Re(z^2+c),c=-19/78+19/62*I,n=34 2329988284698396 m001 FeigenbaumC+LandauRamanujan2nd^GAMMA(17/24) 2329988285591681 a001 17711/843*2207^(5/16) 2329988286281533 r009 Re(z^3+c),c=-6/17+29/48*I,n=8 2329988287085850 a007 Real Root Of 993*x^4-941*x^3+953*x^2-298*x-136 2329988290558799 a001 13201/2255*4181^(28/39) 2329988290614862 a007 Real Root Of 473*x^4+701*x^3-812*x^2+552*x+621 2329988291246582 m001 (Pi-1)/(Trott-ZetaQ(4)) 2329988296857567 a001 75025/2207*521^(4/13) 2329988297639566 a001 75025/3571*521^(5/13) 2329988297853380 a001 377/3571*9349^(16/19) 2329988302245589 h001 (-3*exp(-1)+9)/(-6*exp(3/2)-7) 2329988303077223 r005 Im(z^2+c),c=-7/10+6/71*I,n=45 2329988306276215 a001 1597/843*9349^(10/19) 2329988311096352 a007 Real Root Of 427*x^4+674*x^3-212*x^2+919*x-767 2329988314033423 m001 exp(OneNinth)*KhintchineLevy/LambertW(1) 2329988314033555 m001 (Niven*TwinPrimes+ThueMorse)/TwinPrimes 2329988317338722 a001 377/3571*24476^(16/21) 2329988318454553 a001 1597/843*24476^(10/21) 2329988319907265 a001 377/3571*64079^(16/23) 2329988320059893 a001 1597/843*64079^(10/23) 2329988320273491 a001 1597/843*167761^(2/5) 2329988320302008 a001 377/3571*(1/2+1/2*5^(1/2))^16 2329988320302008 a001 377/3571*23725150497407^(1/4) 2329988320302008 a001 377/3571*73681302247^(4/13) 2329988320302008 a001 377/3571*10749957122^(1/3) 2329988320302008 a001 377/3571*4106118243^(8/23) 2329988320302008 a001 377/3571*1568397607^(4/11) 2329988320302008 a001 377/3571*599074578^(8/21) 2329988320302008 a001 377/3571*228826127^(2/5) 2329988320302008 a001 377/3571*87403803^(8/19) 2329988320302009 a001 377/3571*33385282^(4/9) 2329988320302014 a001 377/3571*12752043^(8/17) 2329988320302057 a001 377/3571*4870847^(1/2) 2329988320302367 a001 377/3571*1860498^(8/15) 2329988320304644 a001 377/3571*710647^(4/7) 2329988320306605 a001 1597/843*20633239^(2/7) 2329988320306607 a001 1597/843*2537720636^(2/9) 2329988320306607 a001 1597/843*312119004989^(2/11) 2329988320306607 a001 1597/843*(1/2+1/2*5^(1/2))^10 2329988320306607 a001 1597/843*28143753123^(1/5) 2329988320306607 a001 1597/843*10749957122^(5/24) 2329988320306607 a001 1597/843*4106118243^(5/23) 2329988320306607 a001 1597/843*1568397607^(5/22) 2329988320306607 a001 1597/843*599074578^(5/21) 2329988320306607 a001 1597/843*228826127^(1/4) 2329988320306607 a001 1597/843*87403803^(5/19) 2329988320306608 a001 1597/843*33385282^(5/18) 2329988320306611 a001 1597/843*12752043^(5/17) 2329988320306638 a001 1597/843*4870847^(5/16) 2329988320306831 a001 1597/843*1860498^(1/3) 2329988320308255 a001 1597/843*710647^(5/14) 2329988320318770 a001 1597/843*271443^(5/13) 2329988320321468 a001 377/3571*271443^(8/13) 2329988320396917 a001 1597/843*103682^(5/12) 2329988320446504 a001 377/3571*103682^(2/3) 2329988320863690 a001 10946/843*2207^(3/8) 2329988320981873 a001 1597/843*39603^(5/11) 2329988321382433 a001 377/3571*39603^(8/11) 2329988322717703 m001 Landau^(MasserGramainDelta/Trott2nd) 2329988322723654 r002 58th iterates of z^2 + 2329988324428506 q001 1/4291867 2329988325397783 a001 1597/843*15127^(1/2) 2329988328447890 a001 377/3571*15127^(4/5) 2329988334871031 m001 (-RenyiParking+1)/(-GAMMA(1/12)+2/3) 2329988336689136 a001 2255/281*2207^(7/16) 2329988336874827 a001 2584/843*2207^(9/16) 2329988338349621 r005 Re(z^2+c),c=-13/56+21/61*I,n=25 2329988340569836 m001 (-Cahen+FibonacciFactorial)/(exp(Pi)+Ei(1)) 2329988347474743 b008 (6+Cosh[1])^(-3) 2329988353102833 m005 (1/3*5^(1/2)+1/12)/(5/6*3^(1/2)-5) 2329988353869405 l006 ln(6563/8285) 2329988356057942 m004 25*Pi+6/Log[Sqrt[5]*Pi]+4*Sinh[Sqrt[5]*Pi] 2329988357476643 r005 Re(z^2+c),c=-19/78+19/62*I,n=31 2329988358864099 a001 15127/2584*4181^(28/39) 2329988359079320 a001 1597/843*5778^(5/9) 2329988361979743 m001 (gamma(2)+OneNinth)/(BesselK(0,1)-sin(1)) 2329988367621478 a001 3010349/8*75025^(7/9) 2329988367774077 a001 51841/4*5702887^(7/9) 2329988371751775 a001 121393/843*843^(1/14) 2329988374322631 m004 2+25*Pi+(Sec[Sqrt[5]*Pi]*Sinh[Sqrt[5]*Pi])/5 2329988382338348 a001 377/3571*5778^(8/9) 2329988384095222 a001 9349/165580141*89^(6/19) 2329988384881003 r005 Im(z^2+c),c=7/46+2/11*I,n=11 2329988388060422 a001 610/843*1364^(4/5) 2329988390092879 a001 602069/2584 2329988390656480 m005 (1/2*2^(1/2)-7/12)/(5/12*Pi-7/9) 2329988392827707 a007 Real Root Of -30*x^4-671*x^3+617*x^2-828*x-120 2329988393359458 m009 (2/5*Psi(1,1/3)-5)/(2*Psi(1,2/3)-2) 2329988403426347 a001 4181/843*2207^(1/2) 2329988405282234 a007 Real Root Of 357*x^4+581*x^3-600*x^2-251*x-500 2329988406153424 r002 47th iterates of z^2 + 2329988406863656 a001 24476/433494437*89^(6/19) 2329988407936058 m001 ln(DuboisRaymond)*Conway/Catalan 2329988410185526 a001 64079/1134903170*89^(6/19) 2329988410670180 a001 167761/2971215073*89^(6/19) 2329988410740890 a001 439204/7778742049*89^(6/19) 2329988410751206 a001 1149851/20365011074*89^(6/19) 2329988410752712 a001 3010349/53316291173*89^(6/19) 2329988410752931 a001 7881196/139583862445*89^(6/19) 2329988410752963 a001 20633239/365435296162*89^(6/19) 2329988410752968 a001 54018521/956722026041*89^(6/19) 2329988410752969 a001 141422324/2504730781961*89^(6/19) 2329988410752969 a001 370248451/6557470319842*89^(6/19) 2329988410752969 a001 199691526/3536736619241*89^(6/19) 2329988410752969 a001 228826127/4052739537881*89^(6/19) 2329988410752969 a001 29134601/516002918640*89^(6/19) 2329988410752971 a001 33385282/591286729879*89^(6/19) 2329988410752983 a001 4250681/75283811239*89^(6/19) 2329988410753067 a001 4870847/86267571272*89^(6/19) 2329988410753642 a001 620166/10983760033*89^(6/19) 2329988410757582 a001 710647/12586269025*89^(6/19) 2329988410784591 a001 90481/1602508992*89^(6/19) 2329988410969713 a001 103682/1836311903*89^(6/19) 2329988412238554 a001 1/17711*89^(6/19) 2329988420935322 a001 15127/267914296*89^(6/19) 2329988422566938 r005 Re(z^2+c),c=-9/44+27/64*I,n=26 2329988423810615 r005 Re(z^2+c),c=-19/78+19/62*I,n=37 2329988430882724 m001 1/ln(BesselK(1,1))^2*Lehmer/Pi^2 2329988433661426 m001 (2^(1/3)-cos(1/5*Pi))/(GAMMA(3/4)+Rabbit) 2329988441833142 s001 sum(exp(-3*Pi)^n*A241529[n],n=1..infinity) 2329988442502682 r005 Im(z^2+c),c=-71/66+13/40*I,n=6 2329988457422924 a007 Real Root Of 100*x^4+363*x^3+439*x^2+42*x-641 2329988459430788 r005 Re(z^2+c),c=-19/78+19/62*I,n=39 2329988465321570 r005 Re(z^2+c),c=-19/78+19/62*I,n=42 2329988468187472 r005 Re(z^2+c),c=-19/78+19/62*I,n=40 2329988469523937 r005 Re(z^2+c),c=-19/78+19/62*I,n=45 2329988469890954 r005 Re(z^2+c),c=-19/78+19/62*I,n=47 2329988470184102 r005 Re(z^2+c),c=-19/78+19/62*I,n=50 2329988470195735 r005 Re(z^2+c),c=-19/78+19/62*I,n=44 2329988470272060 r005 Re(z^2+c),c=-19/78+19/62*I,n=52 2329988470282273 r005 Re(z^2+c),c=-19/78+19/62*I,n=55 2329988470286388 r005 Re(z^2+c),c=-19/78+19/62*I,n=53 2329988470291550 r005 Re(z^2+c),c=-19/78+19/62*I,n=58 2329988470292604 r005 Re(z^2+c),c=-19/78+19/62*I,n=60 2329988470293211 r005 Re(z^2+c),c=-19/78+19/62*I,n=63 2329988470293592 r005 Re(z^2+c),c=-19/78+19/62*I,n=61 2329988470293605 r005 Re(z^2+c),c=-19/78+19/62*I,n=57 2329988470293618 r005 Re(z^2+c),c=-19/78+19/62*I,n=64 2329988470293688 r005 Re(z^2+c),c=-19/78+19/62*I,n=62 2329988470295198 r005 Re(z^2+c),c=-19/78+19/62*I,n=59 2329988470298025 r005 Re(z^2+c),c=-19/78+19/62*I,n=56 2329988470308453 r005 Re(z^2+c),c=-19/78+19/62*I,n=54 2329988470362427 r005 Re(z^2+c),c=-19/78+19/62*I,n=51 2329988470372492 r005 Re(z^2+c),c=-19/78+19/62*I,n=48 2329988470377578 r005 Re(z^2+c),c=-19/78+19/62*I,n=49 2329988470899614 s001 sum(exp(-2*Pi/5)^n*A004321[n],n=1..infinity) 2329988470899614 s002 sum(A004321[n]/(exp(2/5*pi*n)),n=1..infinity) 2329988471048970 r005 Re(z^2+c),c=-19/78+19/62*I,n=46 2329988472489225 r005 Re(z^2+c),c=-19/78+19/62*I,n=43 2329988476513807 r005 Re(z^2+c),c=-19/78+19/62*I,n=41 2329988480543855 a001 1926/34111385*89^(6/19) 2329988480769478 r002 12th iterates of z^2 + 2329988483497800 m009 (20/3*Catalan+5/6*Pi^2+5/6)/(1/5*Psi(1,3/4)+6) 2329988484161280 a001 199/610*8^(52/55) 2329988496217782 m001 gamma(2)*FellerTornier^(2^(1/3)) 2329988500325625 a001 4/21*34^(2/35) 2329988501212350 r005 Re(z^2+c),c=-19/78+19/62*I,n=36 2329988501496795 r005 Re(z^2+c),c=-19/78+19/62*I,n=38 2329988503341295 a001 98209/9*7^(23/59) 2329988510007036 a007 Real Root Of 531*x^4+795*x^3-734*x^2+603*x-204 2329988515367737 r005 Re(z^2+c),c=-19/78+19/62*I,n=35 2329988518624013 r005 Im(z^2+c),c=-67/114+22/61*I,n=31 2329988519002749 r005 Re(z^2+c),c=13/118+31/52*I,n=9 2329988519762815 a007 Real Root Of 229*x^4+159*x^3-995*x^2-575*x-676 2329988528281677 a007 Real Root Of 228*x^4+522*x^3+216*x^2+356*x-460 2329988531869566 r005 Im(z^2+c),c=-83/74+6/25*I,n=46 2329988532773470 r005 Im(z^2+c),c=-2/3+4/111*I,n=43 2329988546125403 m001 (-BesselI(0,2)+2)/(GAMMA(1/12)+1/2) 2329988553731209 r005 Re(z^2+c),c=-9/56+23/44*I,n=35 2329988555018833 m001 CareFree^(2^(1/2))/MertensB1 2329988556636935 a007 Real Root Of -299*x^4-747*x^3-134*x^2+37*x+177 2329988576208480 m002 -5/Pi^5+(Log[Pi]*ProductLog[Pi])/Pi^3 2329988585539384 l006 ln(5210/6577) 2329988591256667 a007 Real Root Of -2*x^4-464*x^3+463*x^2-571*x+837 2329988592773621 m005 (1/2*exp(1)-11/12)/(7/10*2^(1/2)+10/11) 2329988596175228 a007 Real Root Of 766*x^4+532*x^3-337*x^2-896*x-186 2329988606057891 a001 75025/843*843^(1/7) 2329988610378083 r005 Re(z^2+c),c=-7/5+3/83*I,n=8 2329988612990007 m001 ln(cosh(1))*Kolakoski^2/sinh(1) 2329988614548123 a001 521/987*34^(8/19) 2329988615940896 a004 Fibonacci(14)*Lucas(16)/(1/2+sqrt(5)/2)^17 2329988617487442 a007 Real Root Of -262*x^4-605*x^3-871*x^2+612*x+183 2329988619277740 a001 1597/843*2207^(5/8) 2329988636240483 m003 4+Sqrt[5]/32-ProductLog[1/2+Sqrt[5]/2]^(-2) 2329988647103543 p004 log(31177/24697) 2329988647873974 m001 exp(Magata)/GaussAGM(1,1/sqrt(2))/GAMMA(7/12) 2329988650622025 r005 Im(z^2+c),c=-7/12+2/47*I,n=56 2329988684032032 m009 (1/3*Psi(1,1/3)-1/5)/(3/5*Psi(1,3/4)-1/6) 2329988687040971 a008 Real Root of (1+3*x-4*x^2+6*x^3-2*x^4+3*x^5) 2329988692509643 m001 (Zeta(1/2)+Artin)/(ThueMorse+ZetaQ(2)) 2329988702458042 m005 (1/2*exp(1)-1/4)/(1/2*Zeta(3)-1/8) 2329988704551838 m001 (ln(5)-BesselI(1,2))/(Porter-TwinPrimes) 2329988705262669 a007 Real Root Of 225*x^4+384*x^3-496*x^2-290*x+243 2329988705349787 a001 98209/2889*521^(4/13) 2329988705416542 a001 17711/1364*521^(6/13) 2329988708878860 a007 Real Root Of 30*x^4+720*x^3+463*x^2-635*x-476 2329988709346689 a007 Real Root Of 441*x^4+570*x^3+229*x^2-349*x+8 2329988717293667 a007 Real Root Of 152*x^4-78*x^3-724*x^2+812*x+356 2329988718207382 a007 Real Root Of 169*x^4+167*x^3-526*x^2-55*x-141 2329988718584400 m001 (ln(5)-GAMMA(13/24))/(Mills+ZetaQ(4)) 2329988725309121 m001 1/ln(Magata)/Backhouse^2/GAMMA(17/24)^2 2329988726782973 m005 (1/2*2^(1/2)+5/8)/(1/7*Zeta(3)+2/5) 2329988731068464 m001 (LaplaceLimit-OneNinth)/(Zeta(1,-1)+gamma(1)) 2329988744562226 m001 (GAMMA(19/24)+Salem)/(Psi(1,1/3)+gamma(2)) 2329988744687333 r005 Re(z^2+c),c=29/106+25/62*I,n=25 2329988748535637 a001 2255*521^(43/58) 2329988749813193 m008 (3/5*Pi^6+3/5)/(1/6*Pi^2+5/6) 2329988752084270 m002 E^Pi+(Pi^2*Csch[Pi])/(5*ProductLog[Pi]) 2329988754228265 h001 (1/10*exp(1)+2/9)/(1/6*exp(2)+8/9) 2329988757149704 r008 a(0)=0,K{-n^6,22-45*n-34*n^2+53*n^3} 2329988763759397 m004 1+(5*Pi)/24+Sin[Sqrt[5]*Pi] 2329988764948011 a001 514229/15127*521^(4/13) 2329988768464433 a007 Real Root Of -937*x^4+13*x^3+486*x^2+958*x-247 2329988772791033 m005 (5/66+1/6*5^(1/2))/(4/5*exp(1)-1/4) 2329988773643275 a001 1346269/39603*521^(4/13) 2329988774869031 a007 Real Root Of 578*x^4-98*x^3-646*x^2-418*x+132 2329988774911897 a001 1762289/51841*521^(4/13) 2329988775096986 a001 9227465/271443*521^(4/13) 2329988775123991 a001 24157817/710647*521^(4/13) 2329988775127931 a001 31622993/930249*521^(4/13) 2329988775128505 a001 165580141/4870847*521^(4/13) 2329988775128589 a001 433494437/12752043*521^(4/13) 2329988775128601 a001 567451585/16692641*521^(4/13) 2329988775128603 a001 2971215073/87403803*521^(4/13) 2329988775128603 a001 7778742049/228826127*521^(4/13) 2329988775128604 a001 10182505537/299537289*521^(4/13) 2329988775128604 a001 53316291173/1568397607*521^(4/13) 2329988775128604 a001 139583862445/4106118243*521^(4/13) 2329988775128604 a001 182717648081/5374978561*521^(4/13) 2329988775128604 a001 956722026041/28143753123*521^(4/13) 2329988775128604 a001 2504730781961/73681302247*521^(4/13) 2329988775128604 a001 3278735159921/96450076809*521^(4/13) 2329988775128604 a001 10610209857723/312119004989*521^(4/13) 2329988775128604 a001 4052739537881/119218851371*521^(4/13) 2329988775128604 a001 387002188980/11384387281*521^(4/13) 2329988775128604 a001 591286729879/17393796001*521^(4/13) 2329988775128604 a001 225851433717/6643838879*521^(4/13) 2329988775128604 a001 1135099622/33391061*521^(4/13) 2329988775128604 a001 32951280099/969323029*521^(4/13) 2329988775128604 a001 12586269025/370248451*521^(4/13) 2329988775128604 a001 1201881744/35355581*521^(4/13) 2329988775128604 a001 1836311903/54018521*521^(4/13) 2329988775128609 a001 701408733/20633239*521^(4/13) 2329988775128641 a001 66978574/1970299*521^(4/13) 2329988775128861 a001 102334155/3010349*521^(4/13) 2329988775130365 a001 39088169/1149851*521^(4/13) 2329988775140680 a001 196452/5779*521^(4/13) 2329988775211378 a001 5702887/167761*521^(4/13) 2329988775695948 a001 2178309/64079*521^(4/13) 2329988775799866 r005 Re(z^2+c),c=-41/90+23/44*I,n=23 2329988776068551 a007 Real Root Of x^4+235*x^3+464*x^2-524*x+561 2329988777581495 r002 59th iterates of z^2 + 2329988779017244 a001 208010/6119*521^(4/13) 2329988779831695 p001 sum((-1)^n/(557*n+429)/(1000^n),n=0..infinity) 2329988788237945 b008 1+Csc[Csch[1]] 2329988790801085 a007 Real Root Of 298*x^4+458*x^3-610*x^2-158*x-46 2329988792438047 a007 Real Root Of -945*x^4+678*x^3-696*x^2+935*x+267 2329988793419489 m001 (exp(Pi)+Zeta(3))/(-sin(1/12*Pi)+Conway) 2329988794587883 r009 Re(z^3+c),c=-35/52+12/35*I,n=3 2329988795381386 m001 exp(GAMMA(7/24))^2*GAMMA(1/4)/exp(1)^2 2329988796033142 m002 1-E^Pi-Cosh[Pi]/10 2329988797736538 r005 Re(z^2+c),c=-19/78+19/62*I,n=33 2329988797873838 a001 377/521*521^(12/13) 2329988801781741 a001 317811/9349*521^(4/13) 2329988807475510 a001 47*(1/2*5^(1/2)+1/2)^15*843^(8/15) 2329988810271964 a007 Real Root Of 328*x^4+614*x^3-664*x^2-680*x+120 2329988817518731 m001 1/ln(BesselJ(1,1))^2/RenyiParking*GAMMA(19/24) 2329988820673614 p001 sum(1/(566*n+121)/n/(625^n),n=1..infinity) 2329988821958883 s002 sum(A085811[n]/((exp(n)-1)/n),n=1..infinity) 2329988827035678 a001 1926/329*4181^(28/39) 2329988829160565 r009 Im(z^3+c),c=-13/110+42/53*I,n=31 2329988834295987 r002 53th iterates of z^2 + 2329988839850700 m001 Riemann2ndZero^2*Niven*exp(GAMMA(5/6)) 2329988839950086 a001 15456/281*843^(3/14) 2329988851727982 q001 209/897 2329988851727982 r002 2th iterates of z^2 + 2329988851727982 r002 2th iterates of z^2 + 2329988851727982 r005 Im(z^2+c),c=-1/78+11/46*I,n=2 2329988855756668 b008 Sqrt[3]+E+6*Pi 2329988855781867 h001 (3/11*exp(2)+8/11)/(1/9*exp(1)+7/8) 2329988864818764 r005 Im(z^2+c),c=7/29+4/39*I,n=6 2329988869551681 a007 Real Root Of -353*x^4-522*x^3+452*x^2-382*x+457 2329988874998172 m005 (19/28+1/4*5^(1/2))/(2*exp(1)-1/8) 2329988876484957 r005 Im(z^2+c),c=-59/94+21/50*I,n=27 2329988878135470 m001 (BesselI(0,1)+Zeta(5))/(Stephens+ThueMorse) 2329988881883252 r005 Im(z^2+c),c=-21/26+8/49*I,n=5 2329988884624371 r009 Im(z^3+c),c=-1/12+15/62*I,n=4 2329988885069746 r005 Im(z^2+c),c=-83/62+1/34*I,n=5 2329988885264684 h005 exp(sin(Pi*1/57)+sin(Pi*9/31)) 2329988889049300 a003 cos(Pi*29/90)-cos(Pi*40/99) 2329988889106818 a001 2207/39088169*89^(6/19) 2329988894002447 m001 1/sin(Pi/12)^2*Zeta(1/2)/exp(sqrt(5)) 2329988905540346 m001 (Zeta(3)-Champernowne)/(KhinchinLevy-Sarnak) 2329988910913865 a007 Real Root Of 237*x^4+357*x^3+379*x^2-74*x-34 2329988914821350 a007 Real Root Of 282*x^4+649*x^3-456*x^2-705*x+731 2329988923231776 a001 305/161*322^(5/6) 2329988927000786 m001 Shi(1)^GaussAGM+GlaisherKinkelin 2329988933867373 s002 sum(A252802[n]/(pi^n+1),n=1..infinity) 2329988938039665 r005 Im(z^2+c),c=-15/98+18/35*I,n=3 2329988939442177 r005 Im(z^2+c),c=-13/14+46/209*I,n=63 2329988940249462 a007 Real Root Of -345*x^4-642*x^3+807*x^2+639*x-845 2329988941639201 m005 (-3/4+1/4*5^(1/2))/(6/11*5^(1/2)-2/5) 2329988942356977 m001 exp(arctan(1/2))^2/FransenRobinson*sin(Pi/12) 2329988948773129 a007 Real Root Of -766*x^4+216*x^3+263*x^2+456*x-121 2329988957029936 a001 121393/2207*521^(3/13) 2329988957811936 a001 121393/3571*521^(4/13) 2329988963701438 m005 (1/2*3^(1/2)+5/12)/(1/4*Zeta(3)+1/4) 2329988964937162 r005 Im(z^2+c),c=-7/10+29/137*I,n=60 2329988975980503 m001 1/cos(1)^2/GAMMA(11/12)/exp(log(2+sqrt(3)))^2 2329988979108703 m001 (GAMMA(13/24)-Magata)/(RenyiParking+Trott) 2329988979744731 l006 ln(3857/4869) 2329988979902191 m001 GAMMA(11/12)^2/Champernowne/exp(GAMMA(2/3)) 2329988985384001 m001 Zeta(1/2)^(GAMMA(3/4)*MasserGramainDelta) 2329989002502393 a007 Real Root Of 538*x^4+938*x^3-779*x^2+249*x+818 2329989015343646 m001 (cos(1)-ln(2))/(-Rabbit+ZetaQ(2)) 2329989018922269 r005 Re(z^2+c),c=31/126+23/44*I,n=9 2329989024764699 a007 Real Root Of -270*x^4+211*x^3+350*x^2+689*x+145 2329989030694630 a007 Real Root Of 385*x^4+360*x^3-996*x^2+585*x-23 2329989043957161 m006 (1/2*Pi+3)/(5/6*exp(Pi)+1/3) 2329989047979063 m005 (1/2*2^(1/2)+6/7)/(4/5*3^(1/2)-5/7) 2329989055693533 r005 Im(z^2+c),c=-41/90+14/33*I,n=29 2329989062346201 m005 (1/2*Zeta(3)-4/11)/(11/12*Zeta(3)-1) 2329989074926024 a001 28657/843*843^(2/7) 2329989082264641 r005 Im(z^2+c),c=-47/122+12/31*I,n=34 2329989094419783 a005 (1/cos(2/191*Pi))^1563 2329989100653003 a007 Real Root Of 331*x^4+480*x^3-454*x^2+776*x+589 2329989105935799 m001 OneNinth^2/PisotVijayaraghavan/exp(GAMMA(1/4)) 2329989111134832 r002 7th iterates of z^2 + 2329989111693577 r009 Re(z^3+c),c=-3/20+31/37*I,n=56 2329989117968079 m001 (LambertW(1)+KomornikLoreti)/(Si(Pi)-sin(1)) 2329989123599415 a007 Real Root Of -35*x^4-788*x^3+633*x^2-162*x+383 2329989123675835 p004 log(10987/1069) 2329989129176184 a005 (1/cos(22/157*Pi))^514 2329989130765654 r005 Re(z^2+c),c=-23/86+8/39*I,n=11 2329989134814770 a001 1/521*29^(43/58) 2329989141516542 m001 (gamma+GAMMA(7/12))/(Psi(1,1/3)-Shi(1)) 2329989143983723 m001 OneNinth/exp(Lehmer)^2*sin(1)^2 2329989155875647 r005 Im(z^2+c),c=6/23+4/41*I,n=20 2329989166952589 a007 Real Root Of -252*x^4-151*x^3+985*x^2-317*x-569 2329989178997933 a001 225749145909*9062201101803^(16/23) 2329989184499458 a007 Real Root Of -253*x^4-842*x^3-567*x^2+324*x+639 2329989186109715 a007 Real Root Of -363*x^4-801*x^3+335*x^2+152*x-898 2329989186163509 a007 Real Root Of 305*x^4+803*x^3-226*x^2-764*x+615 2329989190434329 r002 41th iterates of z^2 + 2329989193802806 m002 -2*Cosh[Pi]-Log[Pi]/Pi^2 2329989212127685 r002 6th iterates of z^2 + 2329989214129546 r009 Im(z^3+c),c=-11/25+29/44*I,n=3 2329989216681470 r002 41i'th iterates of 2*x/(1-x^2) of 2329989225597251 m001 (exp(1)+Shi(1))/(Catalan+CareFree) 2329989235096754 r002 28th iterates of z^2 + 2329989235235660 m005 (1/3*Catalan+1/3)/(2*Catalan+10/11) 2329989239463097 a001 377/1364*3571^(14/17) 2329989243178534 m001 1/exp(TwinPrimes)^2/KhintchineLevy/cos(Pi/12) 2329989243282299 s002 sum(A130504[n]/((10^n+1)/n),n=1..infinity) 2329989245459747 m001 1/TwinPrimes/ln(Lehmer)^2*BesselK(0,1) 2329989254776046 r005 Im(z^2+c),c=-3/4+35/239*I,n=12 2329989260962918 a001 610/843*3571^(12/17) 2329989270297519 h001 (1/9*exp(1)+4/9)/(5/12*exp(2)+1/8) 2329989281588398 r005 Im(z^2+c),c=-37/32+11/52*I,n=19 2329989286310223 m001 (ln(gamma)+KhinchinLevy)/(Paris+ZetaP(3)) 2329989294416058 r009 Re(z^3+c),c=-8/23+27/62*I,n=24 2329989302620031 l006 ln(6361/8030) 2329989302626785 a001 46368/521*199^(2/11) 2329989302918305 m005 (1/2*2^(1/2)+3/4)/(4/11*2^(1/2)+1/9) 2329989307016094 m001 ((3^(1/3))*ThueMorse-sin(Pi/12))/(3^(1/3)) 2329989307016094 m001 1/3*(3^(1/3)*ThueMorse-sin(1/12*Pi))*3^(2/3) 2329989307064770 a001 17711/843*843^(5/14) 2329989311279761 a001 199/591286729879*20365011074^(21/22) 2329989311281442 a001 199/24157817*514229^(21/22) 2329989315958961 m001 GaussKuzminWirsing+MasserGramainDelta^Salem 2329989318331938 a007 Real Root Of -553*x^4-812*x^3+928*x^2-752*x-763 2329989322128584 m005 (1/2*5^(1/2)+5/11)/(1/10*Catalan+7/12) 2329989327285915 m001 arctan(1/2)^(FeigenbaumD*MasserGramainDelta) 2329989328538174 r009 Im(z^3+c),c=-5/62+53/61*I,n=20 2329989331715210 m001 (MasserGramain+ZetaP(2))/(GAMMA(7/12)-Shi(1)) 2329989340147561 b008 Pi*CoshIntegral[7*Pi^2] 2329989340147561 b008 Pi*SinhIntegral[7*Pi^2] 2329989356428545 r005 Re(z^2+c),c=5/13+12/37*I,n=19 2329989356525201 a003 cos(Pi*10/79)-cos(Pi*8/31) 2329989362841700 m001 (-Kolakoski+ThueMorse)/(5^(1/2)-Gompertz) 2329989365619991 a001 105937/1926*521^(3/13) 2329989367756468 a001 28657/1364*521^(5/13) 2329989370073865 r009 Im(z^3+c),c=-16/31+9/20*I,n=42 2329989370291707 a001 377/1364*9349^(14/19) 2329989373101727 a001 610/843*9349^(12/19) 2329989373936340 r009 Im(z^3+c),c=-19/62+11/58*I,n=15 2329989374200577 a001 987/2207*1364^(13/15) 2329989387341389 a001 377/1364*24476^(2/3) 2329989387715740 a001 610/843*24476^(4/7) 2329989389588865 a001 377/1364*64079^(14/23) 2329989389642148 a001 610/843*64079^(12/23) 2329989389932837 a001 610/843*439204^(4/9) 2329989389934263 a001 377/1364*20633239^(2/5) 2329989389934265 a001 377/1364*17393796001^(2/7) 2329989389934265 a001 377/1364*14662949395604^(2/9) 2329989389934265 a001 377/1364*(1/2+1/2*5^(1/2))^14 2329989389934265 a001 377/1364*10749957122^(7/24) 2329989389934265 a001 377/1364*4106118243^(7/23) 2329989389934265 a001 377/1364*1568397607^(7/22) 2329989389934265 a001 377/1364*599074578^(1/3) 2329989389934265 a001 377/1364*228826127^(7/20) 2329989389934265 a001 377/1364*87403803^(7/19) 2329989389934266 a001 377/1364*33385282^(7/18) 2329989389934271 a001 377/1364*12752043^(7/17) 2329989389934308 a001 377/1364*4870847^(7/16) 2329989389934579 a001 377/1364*1860498^(7/15) 2329989389936572 a001 377/1364*710647^(1/2) 2329989389938192 a001 610/843*7881196^(4/11) 2329989389938205 a001 610/843*141422324^(4/13) 2329989389938205 a001 610/843*2537720636^(4/15) 2329989389938205 a001 610/843*45537549124^(4/17) 2329989389938205 a001 610/843*817138163596^(4/19) 2329989389938205 a001 610/843*14662949395604^(4/21) 2329989389938205 a001 610/843*(1/2+1/2*5^(1/2))^12 2329989389938205 a001 610/843*192900153618^(2/9) 2329989389938205 a001 610/843*73681302247^(3/13) 2329989389938205 a001 610/843*10749957122^(1/4) 2329989389938205 a001 610/843*4106118243^(6/23) 2329989389938205 a001 610/843*1568397607^(3/11) 2329989389938205 a001 610/843*599074578^(2/7) 2329989389938205 a001 610/843*228826127^(3/10) 2329989389938206 a001 610/843*87403803^(6/19) 2329989389938206 a001 610/843*33385282^(1/3) 2329989389938211 a001 610/843*12752043^(6/17) 2329989389938242 a001 610/843*4870847^(3/8) 2329989389938475 a001 610/843*1860498^(2/5) 2329989389940183 a001 610/843*710647^(3/7) 2329989389951292 a001 377/1364*271443^(7/13) 2329989389952800 a001 610/843*271443^(6/13) 2329989390046578 a001 610/843*103682^(1/2) 2329989390060699 a001 377/1364*103682^(7/12) 2329989390748525 a001 610/843*39603^(6/11) 2329989390879638 a001 377/1364*39603^(7/11) 2329989395345581 m001 (QuadraticClass+TreeGrowth2nd)/LambertW(1) 2329989396047620 a001 610/843*15127^(3/5) 2329989396178751 m001 1/GAMMA(17/24)^2/OneNinth/exp(log(1+sqrt(2))) 2329989397061915 a001 377/1364*15127^(7/10) 2329989397297231 r009 Re(z^3+c),c=-23/74+8/23*I,n=14 2329989406266151 r008 a(0)=0,K{-n^6,-87+84*n^3+55*n^2-9*n} 2329989415357910 r009 Re(z^3+c),c=-23/78+25/36*I,n=48 2329989419199862 r005 Re(z^2+c),c=-27/34+29/110*I,n=2 2329989419216152 r008 a(0)=0,K{-n^6,85-80*n^3-68*n^2+20*n} 2329989421594190 r008 a(0)=0,K{-n^6,83-79*n^3-72*n^2+25*n} 2329989425232489 a001 832040/15127*521^(3/13) 2329989433929835 a001 726103/13201*521^(3/13) 2329989435198761 a001 5702887/103682*521^(3/13) 2329989435383895 a001 4976784/90481*521^(3/13) 2329989435410905 a001 39088169/710647*521^(3/13) 2329989435414846 a001 831985/15126*521^(3/13) 2329989435415421 a001 267914296/4870847*521^(3/13) 2329989435415505 a001 233802911/4250681*521^(3/13) 2329989435415517 a001 1836311903/33385282*521^(3/13) 2329989435415519 a001 1602508992/29134601*521^(3/13) 2329989435415519 a001 12586269025/228826127*521^(3/13) 2329989435415519 a001 10983760033/199691526*521^(3/13) 2329989435415519 a001 86267571272/1568397607*521^(3/13) 2329989435415519 a001 75283811239/1368706081*521^(3/13) 2329989435415519 a001 591286729879/10749957122*521^(3/13) 2329989435415519 a001 12585437040/228811001*521^(3/13) 2329989435415519 a001 4052739537881/73681302247*521^(3/13) 2329989435415519 a001 3536736619241/64300051206*521^(3/13) 2329989435415519 a001 6557470319842/119218851371*521^(3/13) 2329989435415519 a001 2504730781961/45537549124*521^(3/13) 2329989435415519 a001 956722026041/17393796001*521^(3/13) 2329989435415519 a001 365435296162/6643838879*521^(3/13) 2329989435415519 a001 139583862445/2537720636*521^(3/13) 2329989435415519 a001 53316291173/969323029*521^(3/13) 2329989435415519 a001 20365011074/370248451*521^(3/13) 2329989435415520 a001 7778742049/141422324*521^(3/13) 2329989435415520 a001 2971215073/54018521*521^(3/13) 2329989435415525 a001 1134903170/20633239*521^(3/13) 2329989435415557 a001 433494437/7881196*521^(3/13) 2329989435415777 a001 165580141/3010349*521^(3/13) 2329989435417282 a001 63245986/1149851*521^(3/13) 2329989435427599 a001 24157817/439204*521^(3/13) 2329989435498314 a001 9227465/167761*521^(3/13) 2329989435983000 a001 3524578/64079*521^(3/13) 2329989436465482 a001 610/843*5778^(2/3) 2329989437087695 m001 GAMMA(2/3)+HardyLittlewoodC3^ZetaQ(2) 2329989437711516 p003 LerchPhi(1/64,4,17/21) 2329989439305091 a001 1346269/24476*521^(3/13) 2329989440079472 m001 (LandauRamanujan2nd-cos(1)*Magata)/cos(1) 2329989443923030 r009 Re(z^3+c),c=-21/86+28/39*I,n=15 2329989444216088 a001 377/1364*5778^(7/9) 2329989456535204 r005 Im(z^2+c),c=-53/122+2/5*I,n=38 2329989462075040 a001 514229/9349*521^(3/13) 2329989488837879 p004 log(10247/997) 2329989490768760 m005 (1/2*Pi-1/2)/(4/7*5^(1/2)-9/11) 2329989491474366 h001 (-3*exp(2)-1)/(-8*exp(-1)-7) 2329989495204258 s002 sum(A034585[n]/(n*10^n-1),n=1..infinity) 2329989513901135 r005 Re(z^2+c),c=-19/78+19/62*I,n=30 2329989516318322 a007 Real Root Of -462*x^4-337*x^3+521*x^2+877*x-227 2329989516711384 b008 74*Pi+Sinh[1/2] 2329989521276438 a007 Real Root Of -264*x^4-322*x^3+313*x^2+780*x+18 2329989523377967 m001 (GAMMA(2/3)-Zeta(1,-1))/(Cahen+ZetaQ(3)) 2329989524980039 a007 Real Root Of -274*x^4-520*x^3+229*x^2+101*x+490 2329989542647354 r005 Im(z^2+c),c=-41/94+26/61*I,n=19 2329989546631469 a001 10946/843*843^(3/7) 2329989554755205 r005 Im(z^2+c),c=-5/6+21/146*I,n=9 2329989558803453 r005 Re(z^2+c),c=-27/98+7/44*I,n=18 2329989567788150 a007 Real Root Of 168*x^4+464*x^3-153*x^2-959*x-486 2329989573227301 r005 Re(z^2+c),c=-7/46+7/13*I,n=55 2329989580117498 m001 (FeigenbaumC+MinimumGamma)/(Porter-ZetaQ(2)) 2329989583074986 a007 Real Root Of -330*x^4+668*x^3+211*x^2+893*x-227 2329989588520753 l006 ln(979/10062) 2329989617360604 a001 196418/2207*521^(2/13) 2329989618142605 a001 196418/3571*521^(3/13) 2329989618263830 m005 (1/2+1/2*5^(1/2))/(1/7*5^(1/2)+3/8) 2329989621576109 r002 6th iterates of z^2 + 2329989624130609 m009 (16*Catalan+2*Pi^2+5/6)/(5*Psi(1,2/3)-1/5) 2329989628451418 s002 sum(A030793[n]/(n^2*10^n-1),n=1..infinity) 2329989635196435 m001 1/GAMMA(7/12)/ln(GAMMA(3/4))/sinh(1)^2 2329989637433806 p001 sum(1/(565*n+122)/n/(625^n),n=1..infinity) 2329989674112636 m006 (3/5*Pi+5)/(3/Pi+2) 2329989676943920 m001 Catalan*ln(Sierpinski)/GAMMA(11/24)^2 2329989685574930 a004 Fibonacci(16)*Lucas(15)/(1/2+sqrt(5)/2)^18 2329989686020585 m005 (1/2*gamma+9/11)/(3/11*Catalan-5) 2329989691937834 l006 ln(961/9877) 2329989705384245 m005 (3*exp(1)+1/5)/(2^(1/2)-5) 2329989712301328 a001 13201/7*144^(2/47) 2329989721587689 r002 7th iterates of z^2 + 2329989732035107 h001 (9/10*exp(1)+2/5)/(1/7*exp(1)+5/6) 2329989734760291 m001 Stephens^Zeta(3)*ZetaP(2) 2329989748703734 a001 610/843*2207^(3/4) 2329989766751618 a001 2255/281*843^(1/2) 2329989775399006 m001 (exp(Pi)*GAMMA(1/4)+gamma)/GAMMA(1/4) 2329989778844728 r002 62th iterates of z^2 + 2329989781203236 r005 Re(z^2+c),c=29/114+18/35*I,n=49 2329989799302958 l006 ln(943/9692) 2329989799956285 l006 ln(2504/3161) 2329989808494053 a001 377/1364*2207^(7/8) 2329989822563147 m005 (1/2*3^(1/2)+4)/(8/11*Catalan-7/8) 2329989834107423 r009 Re(z^3+c),c=-43/94+17/44*I,n=6 2329989847744246 m001 2^(1/3)-GAMMA(3/4)^FibonacciFactorial 2329989854436300 m005 (1/2*Zeta(3)-6/11)/(5/9*exp(1)+7/8) 2329989868287740 a001 229970/987 2329989874556036 m002 -4/(5*Pi^3)+3*Sech[Pi] 2329989879974745 r004 Re(z^2+c),c=7/38+1/20*I,z(0)=exp(3/8*I*Pi),n=9 2329989898039367 a001 199/28657*63245986^(17/24) 2329989898606810 a001 199/102334155*6557470319842^(17/24) 2329989899472591 m002 Cosh[Pi]/5+ProductLog[Pi]/(4*E^Pi) 2329989903121214 r005 Im(z^2+c),c=-9/20+17/42*I,n=61 2329989909076400 m005 (1/2*2^(1/2)+5/7)/(5/6*3^(1/2)-5/6) 2329989910779705 m005 (1/2*Catalan+9/10)/(1/7*Zeta(3)-6) 2329989910846605 l006 ln(925/9507) 2329989915693454 a005 (1/sin(65/149*Pi))^1296 2329989926900681 a007 Real Root Of 585*x^4+912*x^3-676*x^2+968*x+220 2329989927441543 m005 (1/3*Catalan-1/3)/(7/11*3^(1/2)+1/10) 2329989930413829 m001 (Ei(1)+Champernowne)/(Si(Pi)-exp(1)) 2329989933158256 m001 (Grothendieck+Lehmer)/(arctan(1/3)+ArtinRank2) 2329989934995796 m001 (ln(3)+FeigenbaumD)/(BesselK(0,1)+Zeta(3)) 2329989935112818 p001 sum((-1)^n/(535*n+429)/(1024^n),n=0..infinity) 2329989948739565 r005 Im(z^2+c),c=-99/94+9/44*I,n=4 2329989949743493 a001 2584/2207*1364^(11/15) 2329989951779808 a001 987/3571*1364^(14/15) 2329989956122785 a007 Real Root Of -110*x^4+197*x^3+702*x^2-857*x-74 2329989956304720 m001 GAMMA(17/24)/(cos(1/5*Pi)^FransenRobinson) 2329989956810117 a007 Real Root Of -847*x^4+583*x^3-771*x^2+883*x+21 2329989960760827 r005 Im(z^2+c),c=3/56+7/30*I,n=13 2329989963949017 m001 (GAMMA(3/4)+ln(5))/(BesselI(1,2)-Artin) 2329989969622889 r005 Re(z^2+c),c=-17/70+17/55*I,n=19 2329989969909729 q001 2323/997 2329989970921087 m005 (1/2*5^(1/2)-5/8)/(2/9*gamma+1/12) 2329989971908037 a007 Real Root Of 37*x^4-203*x^3-870*x^2-48*x+953 2329989974024808 m009 (1/6*Psi(1,3/4)-3)/(3/5*Psi(1,1/3)+5) 2329989976786291 a007 Real Root Of -257*x^4-181*x^3+621*x^2-917*x-223 2329989977272068 a007 Real Root Of -451*x^4-790*x^3+489*x^2-244*x+76 2329989979066092 r009 Re(z^3+c),c=-19/50+28/55*I,n=53 2329989980125786 r009 Im(z^3+c),c=-5/8+13/58*I,n=4 2329989981809378 a007 Real Root Of 363*x^4+725*x^3-332*x^2+159*x+645 2329989982270256 r009 Re(z^3+c),c=-33/86+33/64*I,n=31 2329989984461307 r005 Im(z^2+c),c=-11/10+35/148*I,n=7 2329989989819701 r009 Re(z^3+c),c=-35/94+21/40*I,n=20 2329990000771233 r005 Im(z^2+c),c=-17/31+3/56*I,n=14 2329990006343838 m001 AlladiGrinstead*(GAMMA(3/4)+Zeta(1,2)) 2329990008409959 m001 ln(Pi)^gamma(1)+Totient 2329990010255642 a001 121393/843*322^(1/12) 2329990017260949 r005 Re(z^2+c),c=-59/110+23/60*I,n=5 2329990020028321 r005 Re(z^2+c),c=9/118+4/7*I,n=16 2329990023045267 r009 Re(z^3+c),c=-11/54+26/37*I,n=9 2329990025913450 a001 514229/5778*521^(2/13) 2329990026817549 l006 ln(907/9322) 2329990027259364 a001 11592/341*521^(4/13) 2329990028807312 a007 Real Root Of 381*x^4+605*x^3-639*x^2+434*x+904 2329990033762108 r009 Re(z^3+c),c=-7/27+4/19*I,n=7 2329990036898790 a007 Real Root Of 181*x^4+82*x^3-454*x^2+823*x+85 2329990037783587 a001 4181/843*843^(4/7) 2329990047422509 p001 sum(1/(135*n+43)/(128^n),n=0..infinity) 2329990048586830 r009 Im(z^3+c),c=-11/24+3/43*I,n=60 2329990063676262 a003 sin(Pi*14/53)/cos(Pi*31/78) 2329990068022450 h001 (-12*exp(2)+11)/(-6*exp(2)+11) 2329990068618721 m001 (-GAMMA(17/24)+TreeGrowth2nd)/(3^(1/2)+Ei(1)) 2329990069753752 a007 Real Root Of 522*x^4+881*x^3-765*x^2-386*x-987 2329990070977538 a007 Real Root Of -262*x^4-612*x^3-83*x^2+224*x+953 2329990085520519 a001 1346269/15127*521^(2/13) 2329990090690489 s002 sum(A200843[n]/(n!^2),n=1..infinity) 2329990093019420 m005 (1/2*5^(1/2)+5/9)/(exp(1)-2) 2329990093026864 m001 (DuboisRaymond+ThueMorse)/(ln(Pi)-Zeta(1/2)) 2329990094138200 a004 Fibonacci(18)*Lucas(15)/(1/2+sqrt(5)/2)^20 2329990094217074 a001 3524578/39603*521^(2/13) 2329990094656945 r009 Re(z^3+c),c=-29/86+30/47*I,n=29 2329990094813050 r005 Re(z^2+c),c=11/30+5/14*I,n=50 2329990095485884 a001 9227465/103682*521^(2/13) 2329990095671001 a001 24157817/271443*521^(2/13) 2329990095698009 a001 63245986/710647*521^(2/13) 2329990095701949 a001 165580141/1860498*521^(2/13) 2329990095702524 a001 433494437/4870847*521^(2/13) 2329990095702608 a001 1134903170/12752043*521^(2/13) 2329990095702620 a001 2971215073/33385282*521^(2/13) 2329990095702622 a001 7778742049/87403803*521^(2/13) 2329990095702622 a001 20365011074/228826127*521^(2/13) 2329990095702622 a001 53316291173/599074578*521^(2/13) 2329990095702622 a001 139583862445/1568397607*521^(2/13) 2329990095702622 a001 365435296162/4106118243*521^(2/13) 2329990095702622 a001 956722026041/10749957122*521^(2/13) 2329990095702622 a001 2504730781961/28143753123*521^(2/13) 2329990095702622 a001 6557470319842/73681302247*521^(2/13) 2329990095702622 a001 10610209857723/119218851371*521^(2/13) 2329990095702622 a001 4052739537881/45537549124*521^(2/13) 2329990095702622 a001 1548008755920/17393796001*521^(2/13) 2329990095702622 a001 591286729879/6643838879*521^(2/13) 2329990095702622 a001 225851433717/2537720636*521^(2/13) 2329990095702622 a001 86267571272/969323029*521^(2/13) 2329990095702623 a001 32951280099/370248451*521^(2/13) 2329990095702623 a001 12586269025/141422324*521^(2/13) 2329990095702623 a001 4807526976/54018521*521^(2/13) 2329990095702628 a001 1836311903/20633239*521^(2/13) 2329990095702660 a001 3524667/39604*521^(2/13) 2329990095702880 a001 267914296/3010349*521^(2/13) 2329990095704385 a001 102334155/1149851*521^(2/13) 2329990095714701 a001 39088169/439204*521^(2/13) 2329990095785409 a001 14930352/167761*521^(2/13) 2329990096270052 a001 5702887/64079*521^(2/13) 2329990097601386 r002 61th iterates of z^2 + 2329990099591840 a001 2178309/24476*521^(2/13) 2329990105942025 l004 cosh(221/113*Pi) 2329990114065545 a007 Real Root Of -216*x^4-626*x^3-410*x^2+528*x+138 2329990118596420 m001 (StronglyCareFree+Trott)/(cos(1/12*Pi)-Conway) 2329990118759604 a001 1597/2207*1364^(4/5) 2329990122359715 a001 832040/9349*521^(2/13) 2329990128223317 r005 Re(z^2+c),c=-53/62+16/63*I,n=4 2329990129682050 a001 4181/2207*1364^(2/3) 2329990133043968 p004 log(35969/28493) 2329990135122556 m004 2*E^(Sqrt[5]*Pi)+25*Pi+6/Log[Sqrt[5]*Pi] 2329990135914559 m001 (-GAMMA(5/6)+GaussAGM)/(sin(1)+BesselK(0,1)) 2329990136914569 m001 HardyLittlewoodC5-MertensB2-Niven 2329990145617600 m001 1/Zeta(1/2)^2/GAMMA(7/24)^2/ln(cos(Pi/5)) 2329990147484716 l006 ln(889/9137) 2329990153746778 a004 Fibonacci(20)*Lucas(15)/(1/2+sqrt(5)/2)^22 2329990155301930 m001 (GolombDickman+Riemann1stZero)/(3^(1/2)-ln(3)) 2329990157828062 m004 -1+125*Pi-3*Sqrt[5]*E^(Sqrt[5]*Pi)*Pi 2329990160372967 m001 (FeigenbaumMu-OrthogonalArrays)/(Artin-Conway) 2329990162443553 a004 Fibonacci(22)*Lucas(15)/(1/2+sqrt(5)/2)^24 2329990163712395 a004 Fibonacci(24)*Lucas(15)/(1/2+sqrt(5)/2)^26 2329990163897516 a004 Fibonacci(26)*Lucas(15)/(1/2+sqrt(5)/2)^28 2329990163924525 a004 Fibonacci(28)*Lucas(15)/(1/2+sqrt(5)/2)^30 2329990163928466 a004 Fibonacci(30)*Lucas(15)/(1/2+sqrt(5)/2)^32 2329990163929041 a004 Fibonacci(32)*Lucas(15)/(1/2+sqrt(5)/2)^34 2329990163929125 a004 Fibonacci(34)*Lucas(15)/(1/2+sqrt(5)/2)^36 2329990163929137 a004 Fibonacci(36)*Lucas(15)/(1/2+sqrt(5)/2)^38 2329990163929139 a004 Fibonacci(38)*Lucas(15)/(1/2+sqrt(5)/2)^40 2329990163929139 a004 Fibonacci(40)*Lucas(15)/(1/2+sqrt(5)/2)^42 2329990163929139 a004 Fibonacci(42)*Lucas(15)/(1/2+sqrt(5)/2)^44 2329990163929139 a004 Fibonacci(44)*Lucas(15)/(1/2+sqrt(5)/2)^46 2329990163929139 a004 Fibonacci(46)*Lucas(15)/(1/2+sqrt(5)/2)^48 2329990163929139 a004 Fibonacci(48)*Lucas(15)/(1/2+sqrt(5)/2)^50 2329990163929139 a004 Fibonacci(50)*Lucas(15)/(1/2+sqrt(5)/2)^52 2329990163929139 a004 Fibonacci(52)*Lucas(15)/(1/2+sqrt(5)/2)^54 2329990163929139 a004 Fibonacci(54)*Lucas(15)/(1/2+sqrt(5)/2)^56 2329990163929139 a004 Fibonacci(56)*Lucas(15)/(1/2+sqrt(5)/2)^58 2329990163929139 a004 Fibonacci(58)*Lucas(15)/(1/2+sqrt(5)/2)^60 2329990163929139 a004 Fibonacci(60)*Lucas(15)/(1/2+sqrt(5)/2)^62 2329990163929139 a004 Fibonacci(62)*Lucas(15)/(1/2+sqrt(5)/2)^64 2329990163929139 a004 Fibonacci(64)*Lucas(15)/(1/2+sqrt(5)/2)^66 2329990163929139 a004 Fibonacci(66)*Lucas(15)/(1/2+sqrt(5)/2)^68 2329990163929139 a004 Fibonacci(68)*Lucas(15)/(1/2+sqrt(5)/2)^70 2329990163929139 a004 Fibonacci(70)*Lucas(15)/(1/2+sqrt(5)/2)^72 2329990163929139 a004 Fibonacci(72)*Lucas(15)/(1/2+sqrt(5)/2)^74 2329990163929139 a004 Fibonacci(74)*Lucas(15)/(1/2+sqrt(5)/2)^76 2329990163929139 a004 Fibonacci(76)*Lucas(15)/(1/2+sqrt(5)/2)^78 2329990163929139 a004 Fibonacci(78)*Lucas(15)/(1/2+sqrt(5)/2)^80 2329990163929139 a004 Fibonacci(80)*Lucas(15)/(1/2+sqrt(5)/2)^82 2329990163929139 a004 Fibonacci(82)*Lucas(15)/(1/2+sqrt(5)/2)^84 2329990163929139 a004 Fibonacci(84)*Lucas(15)/(1/2+sqrt(5)/2)^86 2329990163929139 a004 Fibonacci(86)*Lucas(15)/(1/2+sqrt(5)/2)^88 2329990163929139 a004 Fibonacci(88)*Lucas(15)/(1/2+sqrt(5)/2)^90 2329990163929139 a004 Fibonacci(90)*Lucas(15)/(1/2+sqrt(5)/2)^92 2329990163929139 a004 Fibonacci(92)*Lucas(15)/(1/2+sqrt(5)/2)^94 2329990163929139 a004 Fibonacci(94)*Lucas(15)/(1/2+sqrt(5)/2)^96 2329990163929139 a004 Fibonacci(96)*Lucas(15)/(1/2+sqrt(5)/2)^98 2329990163929139 a004 Fibonacci(98)*Lucas(15)/(1/2+sqrt(5)/2)^100 2329990163929139 a004 Fibonacci(97)*Lucas(15)/(1/2+sqrt(5)/2)^99 2329990163929139 a004 Fibonacci(95)*Lucas(15)/(1/2+sqrt(5)/2)^97 2329990163929139 a004 Fibonacci(93)*Lucas(15)/(1/2+sqrt(5)/2)^95 2329990163929139 a004 Fibonacci(91)*Lucas(15)/(1/2+sqrt(5)/2)^93 2329990163929139 a004 Fibonacci(89)*Lucas(15)/(1/2+sqrt(5)/2)^91 2329990163929139 a004 Fibonacci(87)*Lucas(15)/(1/2+sqrt(5)/2)^89 2329990163929139 a004 Fibonacci(85)*Lucas(15)/(1/2+sqrt(5)/2)^87 2329990163929139 a004 Fibonacci(83)*Lucas(15)/(1/2+sqrt(5)/2)^85 2329990163929139 a004 Fibonacci(81)*Lucas(15)/(1/2+sqrt(5)/2)^83 2329990163929139 a004 Fibonacci(79)*Lucas(15)/(1/2+sqrt(5)/2)^81 2329990163929139 a004 Fibonacci(77)*Lucas(15)/(1/2+sqrt(5)/2)^79 2329990163929139 a004 Fibonacci(75)*Lucas(15)/(1/2+sqrt(5)/2)^77 2329990163929139 a004 Fibonacci(73)*Lucas(15)/(1/2+sqrt(5)/2)^75 2329990163929139 a004 Fibonacci(71)*Lucas(15)/(1/2+sqrt(5)/2)^73 2329990163929139 a004 Fibonacci(69)*Lucas(15)/(1/2+sqrt(5)/2)^71 2329990163929139 a004 Fibonacci(67)*Lucas(15)/(1/2+sqrt(5)/2)^69 2329990163929139 a004 Fibonacci(65)*Lucas(15)/(1/2+sqrt(5)/2)^67 2329990163929139 a004 Fibonacci(63)*Lucas(15)/(1/2+sqrt(5)/2)^65 2329990163929139 a004 Fibonacci(61)*Lucas(15)/(1/2+sqrt(5)/2)^63 2329990163929139 a004 Fibonacci(59)*Lucas(15)/(1/2+sqrt(5)/2)^61 2329990163929139 a004 Fibonacci(57)*Lucas(15)/(1/2+sqrt(5)/2)^59 2329990163929139 a004 Fibonacci(55)*Lucas(15)/(1/2+sqrt(5)/2)^57 2329990163929139 a004 Fibonacci(53)*Lucas(15)/(1/2+sqrt(5)/2)^55 2329990163929139 a004 Fibonacci(51)*Lucas(15)/(1/2+sqrt(5)/2)^53 2329990163929139 a004 Fibonacci(49)*Lucas(15)/(1/2+sqrt(5)/2)^51 2329990163929139 a004 Fibonacci(47)*Lucas(15)/(1/2+sqrt(5)/2)^49 2329990163929139 a004 Fibonacci(45)*Lucas(15)/(1/2+sqrt(5)/2)^47 2329990163929139 a004 Fibonacci(43)*Lucas(15)/(1/2+sqrt(5)/2)^45 2329990163929139 a004 Fibonacci(41)*Lucas(15)/(1/2+sqrt(5)/2)^43 2329990163929139 a004 Fibonacci(39)*Lucas(15)/(1/2+sqrt(5)/2)^41 2329990163929140 a004 Fibonacci(37)*Lucas(15)/(1/2+sqrt(5)/2)^39 2329990163929144 a004 Fibonacci(35)*Lucas(15)/(1/2+sqrt(5)/2)^37 2329990163929176 a004 Fibonacci(33)*Lucas(15)/(1/2+sqrt(5)/2)^35 2329990163929396 a004 Fibonacci(31)*Lucas(15)/(1/2+sqrt(5)/2)^33 2329990163929812 a001 1/305*(1/2+1/2*5^(1/2))^28 2329990163930901 a004 Fibonacci(29)*Lucas(15)/(1/2+sqrt(5)/2)^31 2329990163941218 a004 Fibonacci(27)*Lucas(15)/(1/2+sqrt(5)/2)^29 2329990164011928 a004 Fibonacci(25)*Lucas(15)/(1/2+sqrt(5)/2)^27 2329990164496582 a004 Fibonacci(23)*Lucas(15)/(1/2+sqrt(5)/2)^25 2329990167818455 a004 Fibonacci(21)*Lucas(15)/(1/2+sqrt(5)/2)^23 2329990169911926 r009 Im(z^3+c),c=-19/62+11/58*I,n=11 2329990175526750 a001 2584/843*843^(9/14) 2329990175908510 r002 48th iterates of z^2 + 2329990176331784 a001 6765/2207*1364^(3/5) 2329990176394248 a007 Real Root Of -853*x^4+772*x^3+11*x^2+344*x-88 2329990180671203 s001 sum(exp(-Pi/3)^n*A112888[n],n=1..infinity) 2329990183014099 a007 Real Root Of 115*x^4-22*x^3-484*x^2+85*x-842 2329990187152354 m005 (1/2*exp(1)-1/10)/(2/7*2^(1/2)+5) 2329990190586905 a004 Fibonacci(19)*Lucas(15)/(1/2+sqrt(5)/2)^21 2329990191326984 a001 1292/2889*1364^(13/15) 2329990196358897 m001 1-FeigenbaumKappa+Khinchin 2329990200923060 r009 Re(z^3+c),c=-39/122+28/43*I,n=26 2329990202493335 r002 30th iterates of z^2 + 2329990204285827 a001 2584/9349*1364^(14/15) 2329990232921567 m001 (Tribonacci+Thue)/(Champernowne+MertensB2) 2329990235347178 a001 329/281*843^(11/14) 2329990241125956 a001 6765/24476*1364^(14/15) 2329990246500858 a001 17711/64079*1364^(14/15) 2329990247285046 a001 46368/167761*1364^(14/15) 2329990247399458 a001 121393/439204*1364^(14/15) 2329990247416150 a001 317811/1149851*1364^(14/15) 2329990247418585 a001 832040/3010349*1364^(14/15) 2329990247418941 a001 2178309/7881196*1364^(14/15) 2329990247418993 a001 5702887/20633239*1364^(14/15) 2329990247419000 a001 14930352/54018521*1364^(14/15) 2329990247419001 a001 39088169/141422324*1364^(14/15) 2329990247419001 a001 102334155/370248451*1364^(14/15) 2329990247419001 a001 267914296/969323029*1364^(14/15) 2329990247419001 a001 701408733/2537720636*1364^(14/15) 2329990247419001 a001 1836311903/6643838879*1364^(14/15) 2329990247419001 a001 4807526976/17393796001*1364^(14/15) 2329990247419001 a001 12586269025/45537549124*1364^(14/15) 2329990247419001 a001 32951280099/119218851371*1364^(14/15) 2329990247419001 a001 86267571272/312119004989*1364^(14/15) 2329990247419001 a001 225851433717/817138163596*1364^(14/15) 2329990247419001 a001 1548008755920/5600748293801*1364^(14/15) 2329990247419001 a001 139583862445/505019158607*1364^(14/15) 2329990247419001 a001 53316291173/192900153618*1364^(14/15) 2329990247419001 a001 20365011074/73681302247*1364^(14/15) 2329990247419001 a001 7778742049/28143753123*1364^(14/15) 2329990247419001 a001 2971215073/10749957122*1364^(14/15) 2329990247419001 a001 1134903170/4106118243*1364^(14/15) 2329990247419001 a001 433494437/1568397607*1364^(14/15) 2329990247419001 a001 165580141/599074578*1364^(14/15) 2329990247419001 a001 63245986/228826127*1364^(14/15) 2329990247419002 a001 24157817/87403803*1364^(14/15) 2329990247419005 a001 9227465/33385282*1364^(14/15) 2329990247419025 a001 3524578/12752043*1364^(14/15) 2329990247419160 a001 1346269/4870847*1364^(14/15) 2329990247420091 a001 514229/1860498*1364^(14/15) 2329990247426466 a001 196418/710647*1364^(14/15) 2329990247470168 a001 75025/271443*1364^(14/15) 2329990247769701 a001 28657/103682*1364^(14/15) 2329990248008261 h001 (3/5*exp(1)+2/3)/(1/10*exp(1)+5/7) 2329990249822731 a001 10946/39603*1364^(14/15) 2329990251497455 m003 1/18+Sqrt[5]/4-Sech[1/2+Sqrt[5]/2] 2329990259223259 m001 (Champernowne-Magata)/(MertensB3+ZetaP(4)) 2329990263419522 m001 1/BesselK(1,1)^2/FeigenbaumDelta^2*ln(Zeta(3)) 2329990263894408 a001 4181/15127*1364^(14/15) 2329990273139258 l006 ln(871/8952) 2329990273893324 a001 10946/2207*1364^(8/15) 2329990277631067 a001 317811/2207*521^(1/13) 2329990278413067 a001 317811/3571*521^(2/13) 2329990279939540 r009 Im(z^3+c),c=-13/34+5/34*I,n=9 2329990280185576 a007 Real Root Of 746*x^4-480*x^3-726*x^2-458*x+150 2329990282790644 a003 sin(Pi*3/43)/cos(Pi*11/94) 2329990283621337 a008 Real Root of (4+4*x-13*x^2-6*x^3) 2329990294347732 m001 1/Ei(1)^2/exp(Conway)*GAMMA(7/24) 2329990300856165 m001 (1+sin(1))/(-Ei(1)+Khinchin) 2329990310544144 a001 6765/15127*1364^(13/15) 2329990313603916 l006 ln(6159/7775) 2329990319845362 a001 987/2207*3571^(13/17) 2329990327937694 a001 17711/39603*1364^(13/15) 2329990330475379 a001 23184/51841*1364^(13/15) 2329990330512025 m001 (QuadraticClass+ThueMorse)/(ln(3)-Landau) 2329990330845622 a001 121393/271443*1364^(13/15) 2329990330899640 a001 317811/710647*1364^(13/15) 2329990330907521 a001 416020/930249*1364^(13/15) 2329990330908670 a001 2178309/4870847*1364^(13/15) 2329990330908838 a001 5702887/12752043*1364^(13/15) 2329990330908863 a001 7465176/16692641*1364^(13/15) 2329990330908866 a001 39088169/87403803*1364^(13/15) 2329990330908867 a001 102334155/228826127*1364^(13/15) 2329990330908867 a001 133957148/299537289*1364^(13/15) 2329990330908867 a001 701408733/1568397607*1364^(13/15) 2329990330908867 a001 1836311903/4106118243*1364^(13/15) 2329990330908867 a001 2403763488/5374978561*1364^(13/15) 2329990330908867 a001 12586269025/28143753123*1364^(13/15) 2329990330908867 a001 32951280099/73681302247*1364^(13/15) 2329990330908867 a001 43133785636/96450076809*1364^(13/15) 2329990330908867 a001 225851433717/505019158607*1364^(13/15) 2329990330908867 a001 591286729879/1322157322203*1364^(13/15) 2329990330908867 a001 10610209857723/23725150497407*1364^(13/15) 2329990330908867 a001 139583862445/312119004989*1364^(13/15) 2329990330908867 a001 53316291173/119218851371*1364^(13/15) 2329990330908867 a001 10182505537/22768774562*1364^(13/15) 2329990330908867 a001 7778742049/17393796001*1364^(13/15) 2329990330908867 a001 2971215073/6643838879*1364^(13/15) 2329990330908867 a001 567451585/1268860318*1364^(13/15) 2329990330908867 a001 433494437/969323029*1364^(13/15) 2329990330908867 a001 165580141/370248451*1364^(13/15) 2329990330908867 a001 31622993/70711162*1364^(13/15) 2329990330908868 a001 24157817/54018521*1364^(13/15) 2329990330908878 a001 9227465/20633239*1364^(13/15) 2329990330908942 a001 1762289/3940598*1364^(13/15) 2329990330909381 a001 1346269/3010349*1364^(13/15) 2329990330912391 a001 514229/1149851*1364^(13/15) 2329990330933024 a001 98209/219602*1364^(13/15) 2329990331074445 a001 75025/167761*1364^(13/15) 2329990332043754 a001 28657/64079*1364^(13/15) 2329990337342102 a007 Real Root Of 33*x^4+802*x^3+807*x^2+865*x+774 2329990338562212 r009 Re(z^3+c),c=-13/48+11/45*I,n=9 2329990338687499 a001 5473/12238*1364^(13/15) 2329990342339829 r005 Re(z^2+c),c=-45/82+36/61*I,n=5 2329990346644188 a004 Fibonacci(17)*Lucas(15)/(1/2+sqrt(5)/2)^19 2329990352008288 a001 17711/2207*1364^(7/15) 2329990352393575 r005 Re(z^2+c),c=-25/102+19/63*I,n=16 2329990360343113 a001 1597/5778*1364^(14/15) 2329990371265560 a001 4181/5778*1364^(4/5) 2329990378552064 r005 Im(z^2+c),c=-33/26+5/37*I,n=8 2329990381234208 r002 61th iterates of z^2 + 2329990384224404 a001 4181/9349*1364^(13/15) 2329990390754440 b008 1+59/Sqrt[7] 2329990395840842 r009 Re(z^3+c),c=-37/114+23/64*I,n=2 2329990402102599 r009 Im(z^3+c),c=-19/62+11/58*I,n=19 2329990404096906 l006 ln(853/8767) 2329990408105690 a001 10946/15127*1364^(4/5) 2329990409973963 m001 FeigenbaumD^PrimesInBinary/MasserGramain 2329990413480592 a001 28657/39603*1364^(4/5) 2329990414264780 a001 75025/103682*1364^(4/5) 2329990414345073 a007 Real Root Of 530*x^4+716*x^3-887*x^2+937*x+435 2329990414379191 a001 196418/271443*1364^(4/5) 2329990414395884 a001 514229/710647*1364^(4/5) 2329990414398319 a001 1346269/1860498*1364^(4/5) 2329990414398675 a001 3524578/4870847*1364^(4/5) 2329990414398726 a001 9227465/12752043*1364^(4/5) 2329990414398734 a001 24157817/33385282*1364^(4/5) 2329990414398735 a001 63245986/87403803*1364^(4/5) 2329990414398735 a001 165580141/228826127*1364^(4/5) 2329990414398735 a001 433494437/599074578*1364^(4/5) 2329990414398735 a001 1134903170/1568397607*1364^(4/5) 2329990414398735 a001 2971215073/4106118243*1364^(4/5) 2329990414398735 a001 7778742049/10749957122*1364^(4/5) 2329990414398735 a001 20365011074/28143753123*1364^(4/5) 2329990414398735 a001 53316291173/73681302247*1364^(4/5) 2329990414398735 a001 139583862445/192900153618*1364^(4/5) 2329990414398735 a001 10610209857723/14662949395604*1364^(4/5) 2329990414398735 a001 591286729879/817138163596*1364^(4/5) 2329990414398735 a001 225851433717/312119004989*1364^(4/5) 2329990414398735 a001 86267571272/119218851371*1364^(4/5) 2329990414398735 a001 32951280099/45537549124*1364^(4/5) 2329990414398735 a001 12586269025/17393796001*1364^(4/5) 2329990414398735 a001 4807526976/6643838879*1364^(4/5) 2329990414398735 a001 1836311903/2537720636*1364^(4/5) 2329990414398735 a001 701408733/969323029*1364^(4/5) 2329990414398735 a001 267914296/370248451*1364^(4/5) 2329990414398735 a001 102334155/141422324*1364^(4/5) 2329990414398736 a001 39088169/54018521*1364^(4/5) 2329990414398739 a001 14930352/20633239*1364^(4/5) 2329990414398758 a001 5702887/7881196*1364^(4/5) 2329990414398894 a001 2178309/3010349*1364^(4/5) 2329990414399824 a001 832040/1149851*1364^(4/5) 2329990414406200 a001 317811/439204*1364^(4/5) 2329990414449902 a001 121393/167761*1364^(4/5) 2329990414749435 a001 46368/64079*1364^(4/5) 2329990415148441 a001 23725150497407/610*144^(14/17) 2329990416802465 a001 17711/24476*1364^(4/5) 2329990417915298 a001 2255/1926*1364^(11/15) 2329990421231065 r009 Im(z^3+c),c=-19/62+11/58*I,n=18 2329990426549886 a001 817138163596/377*144^(16/17) 2329990426721227 p004 log(33347/32579) 2329990430874143 a001 6765/9349*1364^(4/5) 2329990432910786 a001 974169/4181 2329990437551187 a001 28657/2207*1364^(2/5) 2329990439519860 r009 Im(z^3+c),c=-19/62+11/58*I,n=20 2329990441329127 a001 987/2207*9349^(13/19) 2329990441546130 r009 Im(z^3+c),c=-19/62+11/58*I,n=23 2329990441973544 r009 Im(z^3+c),c=-19/62+11/58*I,n=24 2329990442310138 r009 Im(z^3+c),c=-19/62+11/58*I,n=28 2329990442319804 r009 Im(z^3+c),c=-19/62+11/58*I,n=29 2329990442320098 r009 Im(z^3+c),c=-19/62+11/58*I,n=27 2329990442321156 r009 Im(z^3+c),c=-19/62+11/58*I,n=32 2329990442321228 r009 Im(z^3+c),c=-19/62+11/58*I,n=33 2329990442321334 r009 Im(z^3+c),c=-19/62+11/58*I,n=37 2329990442321336 r009 Im(z^3+c),c=-19/62+11/58*I,n=38 2329990442321337 r009 Im(z^3+c),c=-19/62+11/58*I,n=41 2329990442321337 r009 Im(z^3+c),c=-19/62+11/58*I,n=42 2329990442321337 r009 Im(z^3+c),c=-19/62+11/58*I,n=46 2329990442321337 r009 Im(z^3+c),c=-19/62+11/58*I,n=47 2329990442321337 r009 Im(z^3+c),c=-19/62+11/58*I,n=51 2329990442321337 r009 Im(z^3+c),c=-19/62+11/58*I,n=50 2329990442321337 r009 Im(z^3+c),c=-19/62+11/58*I,n=52 2329990442321337 r009 Im(z^3+c),c=-19/62+11/58*I,n=55 2329990442321337 r009 Im(z^3+c),c=-19/62+11/58*I,n=56 2329990442321337 r009 Im(z^3+c),c=-19/62+11/58*I,n=60 2329990442321337 r009 Im(z^3+c),c=-19/62+11/58*I,n=59 2329990442321337 r009 Im(z^3+c),c=-19/62+11/58*I,n=61 2329990442321337 r009 Im(z^3+c),c=-19/62+11/58*I,n=64 2329990442321337 r009 Im(z^3+c),c=-19/62+11/58*I,n=63 2329990442321337 r009 Im(z^3+c),c=-19/62+11/58*I,n=62 2329990442321337 r009 Im(z^3+c),c=-19/62+11/58*I,n=58 2329990442321337 r009 Im(z^3+c),c=-19/62+11/58*I,n=57 2329990442321337 r009 Im(z^3+c),c=-19/62+11/58*I,n=54 2329990442321337 r009 Im(z^3+c),c=-19/62+11/58*I,n=53 2329990442321337 r009 Im(z^3+c),c=-19/62+11/58*I,n=49 2329990442321337 r009 Im(z^3+c),c=-19/62+11/58*I,n=48 2329990442321337 r009 Im(z^3+c),c=-19/62+11/58*I,n=45 2329990442321337 r009 Im(z^3+c),c=-19/62+11/58*I,n=43 2329990442321337 r009 Im(z^3+c),c=-19/62+11/58*I,n=44 2329990442321337 r009 Im(z^3+c),c=-19/62+11/58*I,n=40 2329990442321337 r009 Im(z^3+c),c=-19/62+11/58*I,n=39 2329990442321338 r009 Im(z^3+c),c=-19/62+11/58*I,n=36 2329990442321349 r009 Im(z^3+c),c=-19/62+11/58*I,n=34 2329990442321356 r009 Im(z^3+c),c=-19/62+11/58*I,n=35 2329990442321831 r009 Im(z^3+c),c=-19/62+11/58*I,n=31 2329990442322920 r009 Im(z^3+c),c=-19/62+11/58*I,n=30 2329990442389046 r009 Im(z^3+c),c=-19/62+11/58*I,n=26 2329990442393478 r009 Im(z^3+c),c=-19/62+11/58*I,n=25 2329990443722191 r009 Im(z^3+c),c=-19/62+11/58*I,n=22 2329990445850106 r005 Re(z^2+c),c=-9/22+39/43*I,n=4 2329990448425122 r009 Im(z^3+c),c=-19/62+11/58*I,n=21 2329990450961052 m001 (exp(1/Pi)*FeigenbaumKappa+Totient)/exp(1/Pi) 2329990451654839 m006 (3/4*exp(Pi)-4/5)/(2*ln(Pi)-3) 2329990453618091 b008 2+7*Sinh[13/2] 2329990457160982 a001 987/2207*24476^(13/21) 2329990458585936 m004 -75*Pi+4/ProductLog[Sqrt[5]*Pi] 2329990458978774 m001 (Paris-Sierpinski)/(ln(2)+Artin) 2329990459247925 a001 987/2207*64079^(13/23) 2329990459568654 a001 987/2207*141422324^(1/3) 2329990459568654 a001 987/2207*(1/2+1/2*5^(1/2))^13 2329990459568654 a001 987/2207*73681302247^(1/4) 2329990459584465 a001 987/2207*271443^(1/2) 2329990459686057 a001 987/2207*103682^(13/24) 2329990460446501 a001 987/2207*39603^(13/22) 2329990466187189 a001 987/2207*15127^(13/20) 2329990486220658 a001 17711/15127*1364^(11/15) 2329990491645156 a007 Real Root Of 382*x^4+471*x^3-474*x^2+765*x-945 2329990496186276 a001 15456/13201*1364^(11/15) 2329990497640240 a001 121393/103682*1364^(11/15) 2329990497852371 a001 105937/90481*1364^(11/15) 2329990497883320 a001 832040/710647*1364^(11/15) 2329990497887835 a001 726103/620166*1364^(11/15) 2329990497888494 a001 5702887/4870847*1364^(11/15) 2329990497888590 a001 4976784/4250681*1364^(11/15) 2329990497888604 a001 39088169/33385282*1364^(11/15) 2329990497888606 a001 34111385/29134601*1364^(11/15) 2329990497888607 a001 267914296/228826127*1364^(11/15) 2329990497888607 a001 233802911/199691526*1364^(11/15) 2329990497888607 a001 1836311903/1568397607*1364^(11/15) 2329990497888607 a001 1602508992/1368706081*1364^(11/15) 2329990497888607 a001 12586269025/10749957122*1364^(11/15) 2329990497888607 a001 10983760033/9381251041*1364^(11/15) 2329990497888607 a001 86267571272/73681302247*1364^(11/15) 2329990497888607 a001 75283811239/64300051206*1364^(11/15) 2329990497888607 a001 2504730781961/2139295485799*1364^(11/15) 2329990497888607 a001 365435296162/312119004989*1364^(11/15) 2329990497888607 a001 139583862445/119218851371*1364^(11/15) 2329990497888607 a001 53316291173/45537549124*1364^(11/15) 2329990497888607 a001 20365011074/17393796001*1364^(11/15) 2329990497888607 a001 7778742049/6643838879*1364^(11/15) 2329990497888607 a001 2971215073/2537720636*1364^(11/15) 2329990497888607 a001 1134903170/969323029*1364^(11/15) 2329990497888607 a001 433494437/370248451*1364^(11/15) 2329990497888607 a001 165580141/141422324*1364^(11/15) 2329990497888608 a001 63245986/54018521*1364^(11/15) 2329990497888613 a001 24157817/20633239*1364^(11/15) 2329990497888650 a001 9227465/7881196*1364^(11/15) 2329990497888901 a001 3524578/3010349*1364^(11/15) 2329990497890626 a001 1346269/1149851*1364^(11/15) 2329990497902448 a001 514229/439204*1364^(11/15) 2329990497983474 a001 196418/167761*1364^(11/15) 2329990498538839 a001 75025/64079*1364^(11/15) 2329990502345367 a001 28657/24476*1364^(11/15) 2329990507172692 a003 cos(Pi*9/109)-sin(Pi*27/103) 2329990509973227 a001 987/2207*5778^(13/18) 2329990513054104 m005 (1/12+1/4*5^(1/2))/(10/11*exp(1)+2/7) 2329990515476848 a001 5473/2889*1364^(2/3) 2329990518784070 m005 (1/3*2^(1/2)-1/9)/(11/12*Zeta(3)+4/9) 2329990520256872 a001 46368/2207*1364^(1/3) 2329990523417278 r009 Im(z^3+c),c=-53/118+5/59*I,n=30 2329990524013587 r005 Re(z^2+c),c=-13/56+21/61*I,n=30 2329990527322867 a001 2584/3571*1364^(4/5) 2329990528435694 a001 10946/9349*1364^(11/15) 2329990533344643 a007 Real Root Of -437*x^4-742*x^3+203*x^2-981*x+106 2329990534795990 m009 (1/6*Psi(1,1/3)-5/6)/(1/6*Pi^2+2) 2329990538903016 m001 TreeGrowth2nd^Chi(1)/(FeigenbaumAlpha^Chi(1)) 2329990540700614 l006 ln(835/8582) 2329990552201370 h001 (2/11*exp(1)+8/11)/(1/9*exp(1)+2/9) 2329990559353342 r005 Re(z^2+c),c=-27/34+9/98*I,n=50 2329990571763562 a001 28657/15127*1364^(2/3) 2329990579975683 a001 75025/39603*1364^(2/3) 2329990580806821 m005 (2/5*exp(1)-2/5)/(1/5*Pi-1/3) 2329990581173816 a001 98209/51841*1364^(2/3) 2329990581348621 a001 514229/271443*1364^(2/3) 2329990581374125 a001 1346269/710647*1364^(2/3) 2329990581377846 a001 1762289/930249*1364^(2/3) 2329990581378388 a001 9227465/4870847*1364^(2/3) 2329990581378468 a001 24157817/12752043*1364^(2/3) 2329990581378479 a001 31622993/16692641*1364^(2/3) 2329990581378481 a001 165580141/87403803*1364^(2/3) 2329990581378481 a001 433494437/228826127*1364^(2/3) 2329990581378481 a001 567451585/299537289*1364^(2/3) 2329990581378481 a001 2971215073/1568397607*1364^(2/3) 2329990581378481 a001 7778742049/4106118243*1364^(2/3) 2329990581378481 a001 10182505537/5374978561*1364^(2/3) 2329990581378481 a001 53316291173/28143753123*1364^(2/3) 2329990581378481 a001 139583862445/73681302247*1364^(2/3) 2329990581378481 a001 182717648081/96450076809*1364^(2/3) 2329990581378481 a001 956722026041/505019158607*1364^(2/3) 2329990581378481 a001 10610209857723/5600748293801*1364^(2/3) 2329990581378481 a001 591286729879/312119004989*1364^(2/3) 2329990581378481 a001 225851433717/119218851371*1364^(2/3) 2329990581378481 a001 21566892818/11384387281*1364^(2/3) 2329990581378481 a001 32951280099/17393796001*1364^(2/3) 2329990581378481 a001 12586269025/6643838879*1364^(2/3) 2329990581378481 a001 1201881744/634430159*1364^(2/3) 2329990581378481 a001 1836311903/969323029*1364^(2/3) 2329990581378481 a001 701408733/370248451*1364^(2/3) 2329990581378481 a001 66978574/35355581*1364^(2/3) 2329990581378482 a001 102334155/54018521*1364^(2/3) 2329990581378486 a001 39088169/20633239*1364^(2/3) 2329990581378517 a001 3732588/1970299*1364^(2/3) 2329990581378724 a001 5702887/3010349*1364^(2/3) 2329990581380145 a001 2178309/1149851*1364^(2/3) 2329990581389887 a001 208010/109801*1364^(2/3) 2329990581456656 a001 317811/167761*1364^(2/3) 2329990581914302 a001 121393/64079*1364^(2/3) 2329990584129112 r002 12th iterates of z^2 + 2329990585051053 a001 11592/6119*1364^(2/3) 2329990590879104 r005 Im(z^2+c),c=-73/54+4/63*I,n=19 2329990592189838 m003 4/3+Sin[1/2+Sqrt[5]/2]^3 2329990593591245 a007 Real Root Of -798*x^4+960*x^3-571*x^2-118*x+18 2329990593591820 a001 17711/5778*1364^(3/5) 2329990594748717 a007 Real Root Of 404*x^4+505*x^3-910*x^2+563*x+733 2329990595589324 a008 Real Root of x^4-16*x^2-83*x-136 2329990597469761 a001 86000486440*9062201101803^(15/17) 2329990597469761 a001 4052739537881/18*23725150497407^(14/17) 2329990597469761 a001 4052739537881/18*505019158607^(16/17) 2329990602644375 r002 42th iterates of z^2 + 2329990604046280 a001 75025/2207*1364^(4/15) 2329990606550666 a001 17711/9349*1364^(2/3) 2329990609696862 a007 Real Root Of 494*x^4+937*x^3-383*x^2+239*x-71 2329990615468413 h001 (6/11*exp(1)+10/11)/(1/12*exp(1)+4/5) 2329990621972624 r005 Re(z^2+c),c=-13/62+18/43*I,n=14 2329990623803357 a007 Real Root Of 243*x^4+373*x^3-757*x^2-306*x+953 2329990628866376 m005 (1/2*Zeta(3)+1/3)/(5/7*2^(1/2)+3) 2329990649586343 r005 Im(z^2+c),c=-67/74+4/21*I,n=7 2329990653707626 m005 (1/2*3^(1/2)+5/9)/(3/5*Zeta(3)-1/9) 2329990653849661 m001 (2^(1/2)-3^(1/2))/(ln(Pi)+Ei(1,1)) 2329990654469252 a001 6624/2161*1364^(3/5) 2329990662224658 a001 1597/843*843^(5/7) 2329990663351149 a001 121393/39603*1364^(3/5) 2329990664647001 a001 317811/103682*1364^(3/5) 2329990664836063 a001 832040/271443*1364^(3/5) 2329990664863647 a001 311187/101521*1364^(3/5) 2329990664867671 a001 5702887/1860498*1364^(3/5) 2329990664868258 a001 14930352/4870847*1364^(3/5) 2329990664868344 a001 39088169/12752043*1364^(3/5) 2329990664868356 a001 14619165/4769326*1364^(3/5) 2329990664868358 a001 267914296/87403803*1364^(3/5) 2329990664868359 a001 701408733/228826127*1364^(3/5) 2329990664868359 a001 1836311903/599074578*1364^(3/5) 2329990664868359 a001 686789568/224056801*1364^(3/5) 2329990664868359 a001 12586269025/4106118243*1364^(3/5) 2329990664868359 a001 32951280099/10749957122*1364^(3/5) 2329990664868359 a001 86267571272/28143753123*1364^(3/5) 2329990664868359 a001 32264490531/10525900321*1364^(3/5) 2329990664868359 a001 591286729879/192900153618*1364^(3/5) 2329990664868359 a001 1515744265389/494493258286*1364^(3/5) 2329990664868359 a001 2504730781961/817138163596*1364^(3/5) 2329990664868359 a001 956722026041/312119004989*1364^(3/5) 2329990664868359 a001 365435296162/119218851371*1364^(3/5) 2329990664868359 a001 139583862445/45537549124*1364^(3/5) 2329990664868359 a001 53316291173/17393796001*1364^(3/5) 2329990664868359 a001 20365011074/6643838879*1364^(3/5) 2329990664868359 a001 7778742049/2537720636*1364^(3/5) 2329990664868359 a001 2971215073/969323029*1364^(3/5) 2329990664868359 a001 1134903170/370248451*1364^(3/5) 2329990664868359 a001 433494437/141422324*1364^(3/5) 2329990664868359 a001 165580141/54018521*1364^(3/5) 2329990664868364 a001 63245986/20633239*1364^(3/5) 2329990664868397 a001 24157817/7881196*1364^(3/5) 2329990664868621 a001 9227465/3010349*1364^(3/5) 2329990664870158 a001 3524578/1149851*1364^(3/5) 2329990664880694 a001 1346269/439204*1364^(3/5) 2329990664952910 a001 514229/167761*1364^(3/5) 2329990665447881 a001 196418/64079*1364^(3/5) 2329990665498200 l006 ln(3655/4614) 2329990668840464 a001 75025/24476*1364^(3/5) 2329990669641766 r009 Im(z^3+c),c=-19/62+11/58*I,n=17 2329990670904560 m001 ZetaP(4)*(Pi*2^(1/2)/GAMMA(3/4)-sin(1/5*Pi)) 2329990677269539 r002 6th iterates of z^2 + 2329990679134729 a001 28657/5778*1364^(8/15) 2329990679396477 r009 Im(z^3+c),c=-11/118+13/15*I,n=32 2329990682070872 r009 Re(z^3+c),c=-43/126+17/40*I,n=13 2329990683323560 l006 ln(817/8397) 2329990686198285 a001 416020/2889*521^(1/13) 2329990687421747 a001 121393/2207*1364^(1/5) 2329990687846168 a001 75025/1364*521^(3/13) 2329990689460380 r002 12th iterates of z^2 + 2329990692093575 a001 28657/9349*1364^(3/5) 2329990693439465 g001 Psi(1/4,16/39) 2329990696339020 a001 1597/3571*1364^(13/15) 2329990697005367 m001 1/ln(TwinPrimes)*HardHexagonsEntropy/(3^(1/3)) 2329990699775550 a007 Real Root Of 37*x^4+891*x^3+662*x^2-239*x+646 2329990706912754 a001 329/1926*3571^(15/17) 2329990707261469 a001 4181/3571*1364^(11/15) 2329990710541349 m001 (Cahen+Salem)/(Catalan-Chi(1)) 2329990710959395 m002 2*Log[Pi]+ProductLog[Pi]/(E^Pi*Log[Pi]) 2329990719626992 m001 (Pi+GAMMA(23/24))^Lehmer 2329990721970384 r009 Re(z^3+c),c=-59/110+19/63*I,n=34 2329990734588862 a007 Real Root Of -278*x^4-99*x^3+958*x^2-328*x+976 2329990738258665 a001 75025/15127*1364^(8/15) 2329990745807451 a001 311187/2161*521^(1/13) 2329990745991621 r002 11th iterates of z^2 + 2329990746884731 a001 196418/39603*1364^(8/15) 2329990746947342 p003 LerchPhi(1/256,3,43/57) 2329990748143257 a001 514229/103682*1364^(8/15) 2329990748326874 a001 1346269/271443*1364^(8/15) 2329990748353663 a001 3524578/710647*1364^(8/15) 2329990748357571 a001 9227465/1860498*1364^(8/15) 2329990748358142 a001 24157817/4870847*1364^(8/15) 2329990748358225 a001 63245986/12752043*1364^(8/15) 2329990748358237 a001 165580141/33385282*1364^(8/15) 2329990748358239 a001 433494437/87403803*1364^(8/15) 2329990748358239 a001 1134903170/228826127*1364^(8/15) 2329990748358239 a001 2971215073/599074578*1364^(8/15) 2329990748358239 a001 7778742049/1568397607*1364^(8/15) 2329990748358239 a001 20365011074/4106118243*1364^(8/15) 2329990748358239 a001 53316291173/10749957122*1364^(8/15) 2329990748358239 a001 139583862445/28143753123*1364^(8/15) 2329990748358239 a001 365435296162/73681302247*1364^(8/15) 2329990748358239 a001 956722026041/192900153618*1364^(8/15) 2329990748358239 a001 2504730781961/505019158607*1364^(8/15) 2329990748358239 a001 10610209857723/2139295485799*1364^(8/15) 2329990748358239 a001 140728068720/28374454999*1364^(8/15) 2329990748358239 a001 591286729879/119218851371*1364^(8/15) 2329990748358239 a001 225851433717/45537549124*1364^(8/15) 2329990748358239 a001 86267571272/17393796001*1364^(8/15) 2329990748358239 a001 32951280099/6643838879*1364^(8/15) 2329990748358239 a001 1144206275/230701876*1364^(8/15) 2329990748358239 a001 4807526976/969323029*1364^(8/15) 2329990748358239 a001 1836311903/370248451*1364^(8/15) 2329990748358239 a001 701408733/141422324*1364^(8/15) 2329990748358240 a001 267914296/54018521*1364^(8/15) 2329990748358244 a001 9303105/1875749*1364^(8/15) 2329990748358276 a001 39088169/7881196*1364^(8/15) 2329990748358494 a001 14930352/3010349*1364^(8/15) 2329990748359987 a001 5702887/1149851*1364^(8/15) 2329990748370220 a001 2178309/439204*1364^(8/15) 2329990748440355 a001 75640/15251*1364^(8/15) 2329990748921069 a001 317811/64079*1364^(8/15) 2329990749904638 a001 2584/2207*3571^(11/17) 2329990751688824 s001 sum(exp(-Pi/4)^(n-1)*A132081[n],n=1..infinity) 2329990752215933 a001 121393/24476*1364^(8/15) 2329990753911214 a001 6765/3571*1364^(2/3) 2329990754504312 a001 5702887/39603*521^(1/13) 2329990755207814 a004 Fibonacci(16)*Lucas(17)/(1/2+sqrt(5)/2)^20 2329990755773166 a001 7465176/51841*521^(1/13) 2329990755958290 a001 39088169/271443*521^(1/13) 2329990755985299 a001 14619165/101521*521^(1/13) 2329990755989240 a001 133957148/930249*521^(1/13) 2329990755989814 a001 701408733/4870847*521^(1/13) 2329990755989898 a001 1836311903/12752043*521^(1/13) 2329990755989911 a001 14930208/103681*521^(1/13) 2329990755989912 a001 12586269025/87403803*521^(1/13) 2329990755989913 a001 32951280099/228826127*521^(1/13) 2329990755989913 a001 43133785636/299537289*521^(1/13) 2329990755989913 a001 32264490531/224056801*521^(1/13) 2329990755989913 a001 591286729879/4106118243*521^(1/13) 2329990755989913 a001 774004377960/5374978561*521^(1/13) 2329990755989913 a001 4052739537881/28143753123*521^(1/13) 2329990755989913 a001 1515744265389/10525900321*521^(1/13) 2329990755989913 a001 3278735159921/22768774562*521^(1/13) 2329990755989913 a001 2504730781961/17393796001*521^(1/13) 2329990755989913 a001 956722026041/6643838879*521^(1/13) 2329990755989913 a001 182717648081/1268860318*521^(1/13) 2329990755989913 a001 139583862445/969323029*521^(1/13) 2329990755989913 a001 53316291173/370248451*521^(1/13) 2329990755989913 a001 10182505537/70711162*521^(1/13) 2329990755989913 a001 7778742049/54018521*521^(1/13) 2329990755989918 a001 2971215073/20633239*521^(1/13) 2329990755989950 a001 567451585/3940598*521^(1/13) 2329990755990170 a001 433494437/3010349*521^(1/13) 2329990755991675 a001 165580141/1149851*521^(1/13) 2329990756001992 a001 31622993/219602*521^(1/13) 2329990756072702 a001 24157817/167761*521^(1/13) 2329990756557362 a001 9227465/64079*521^(1/13) 2329990759398675 p004 log(29137/23081) 2329990759879267 a001 1762289/12238*521^(1/13) 2329990761840422 a001 2576/321*1364^(7/15) 2329990764343671 a007 Real Root Of 360*x^4-988*x^3-513*x^2-458*x+146 2329990765573758 m001 (BesselK(0,1)+ln(2))/(exp(1/Pi)+Magata) 2329990770955329 a001 196418/2207*1364^(2/15) 2329990774799268 a001 46368/9349*1364^(8/15) 2329990780898896 a007 Real Root Of 311*x^4+651*x^3+167*x^2+815*x+61 2329990782647943 a001 1346269/9349*521^(1/13) 2329990786293427 r002 48th iterates of z^2 + 2329990787042596 m004 2+25*Pi+(Cosh[Sqrt[5]*Pi]*Sec[Sqrt[5]*Pi])/5 2329990788290463 r005 Re(z^2+c),c=-35/122+1/34*I,n=16 2329990788677510 r009 Im(z^3+c),c=-19/62+11/58*I,n=16 2329990792613535 a001 987/9349*3571^(16/17) 2329990794766318 a007 Real Root Of -626*x^4+855*x^3-987*x^2+926*x+282 2329990795585359 m008 (3/5*Pi^4+5/6)/(5/6*Pi^5-3/5) 2329990795688559 r005 Re(z^2+c),c=-17/18+58/233*I,n=24 2329990812416387 r005 Im(z^2+c),c=-6/13+25/62*I,n=35 2329990815951964 m001 1/BesselJ(0,1)*Trott^2/exp(GAMMA(5/24))^2 2329990821634136 a001 121393/15127*1364^(7/15) 2329990830357922 a001 105937/13201*1364^(7/15) 2329990831009128 a001 6765/2207*3571^(9/17) 2329990831630705 a001 416020/51841*1364^(7/15) 2329990831816402 a001 726103/90481*1364^(7/15) 2329990831843494 a001 5702887/710647*1364^(7/15) 2329990831847447 a001 829464/103361*1364^(7/15) 2329990831848024 a001 39088169/4870847*1364^(7/15) 2329990831848108 a001 34111385/4250681*1364^(7/15) 2329990831848120 a001 133957148/16692641*1364^(7/15) 2329990831848122 a001 233802911/29134601*1364^(7/15) 2329990831848122 a001 1836311903/228826127*1364^(7/15) 2329990831848122 a001 267084832/33281921*1364^(7/15) 2329990831848122 a001 12586269025/1568397607*1364^(7/15) 2329990831848122 a001 10983760033/1368706081*1364^(7/15) 2329990831848122 a001 43133785636/5374978561*1364^(7/15) 2329990831848122 a001 75283811239/9381251041*1364^(7/15) 2329990831848122 a001 591286729879/73681302247*1364^(7/15) 2329990831848122 a001 86000486440/10716675201*1364^(7/15) 2329990831848122 a001 4052739537881/505019158607*1364^(7/15) 2329990831848122 a001 3278735159921/408569081798*1364^(7/15) 2329990831848122 a001 2504730781961/312119004989*1364^(7/15) 2329990831848122 a001 956722026041/119218851371*1364^(7/15) 2329990831848122 a001 182717648081/22768774562*1364^(7/15) 2329990831848122 a001 139583862445/17393796001*1364^(7/15) 2329990831848122 a001 53316291173/6643838879*1364^(7/15) 2329990831848122 a001 10182505537/1268860318*1364^(7/15) 2329990831848122 a001 7778742049/969323029*1364^(7/15) 2329990831848122 a001 2971215073/370248451*1364^(7/15) 2329990831848122 a001 567451585/70711162*1364^(7/15) 2329990831848123 a001 433494437/54018521*1364^(7/15) 2329990831848128 a001 165580141/20633239*1364^(7/15) 2329990831848160 a001 31622993/3940598*1364^(7/15) 2329990831848380 a001 24157817/3010349*1364^(7/15) 2329990831849890 a001 9227465/1149851*1364^(7/15) 2329990831860239 a001 1762289/219602*1364^(7/15) 2329990831931168 a001 1346269/167761*1364^(7/15) 2329990832372549 l006 ln(799/8212) 2329990832417328 a001 514229/64079*1364^(7/15) 2329990835749518 a001 98209/12238*1364^(7/15) 2329990838600812 r009 Re(z^3+c),c=-17/122+11/12*I,n=54 2329990842821985 m001 (-GAMMA(11/12)+Conway)/(Psi(1,1/3)-ln(gamma)) 2329990844729075 m001 1/GAMMA(11/24)^2/ln(Lehmer)^2*cosh(1)^2 2329990845629839 a001 75025/5778*1364^(2/5) 2329990847086353 a001 329/1926*9349^(15/19) 2329990848040656 r005 Im(z^2+c),c=-17/54+11/30*I,n=35 2329990848231491 a001 987/2207*2207^(13/16) 2329990851472778 a001 10946/3571*1364^(3/5) 2329990852698612 a001 2584/2207*9349^(11/19) 2329990854428521 a001 317811/2207*1364^(1/15) 2329990855828756 a001 10946/2207*3571^(8/17) 2329990857101318 a001 4181/2207*3571^(10/17) 2329990858372454 m001 (PrimesInBinary+Trott)/(GAMMA(5/6)+ArtinRank2) 2329990858588686 a001 75025/9349*1364^(7/15) 2329990861201800 a001 17711/2207*3571^(7/17) 2329990864242645 a001 1275204/5473 2329990865353881 a001 329/1926*24476^(5/7) 2329990865545009 m005 (1/2*Catalan+1/7)/(7/9*Catalan-5/11) 2329990866094799 a001 2584/2207*24476^(11/21) 2329990867761892 a001 329/1926*64079^(15/23) 2329990867860674 a001 2584/2207*64079^(11/23) 2329990868082291 a001 329/1926*167761^(3/5) 2329990868125254 a001 329/1926*439204^(5/9) 2329990868131947 a001 329/1926*7881196^(5/11) 2329990868131962 a001 329/1926*20633239^(3/7) 2329990868131964 a001 329/1926*141422324^(5/13) 2329990868131964 a001 329/1926*2537720636^(1/3) 2329990868131964 a001 329/1926*45537549124^(5/17) 2329990868131964 a001 329/1926*312119004989^(3/11) 2329990868131964 a001 329/1926*14662949395604^(5/21) 2329990868131964 a001 329/1926*(1/2+1/2*5^(1/2))^15 2329990868131964 a001 329/1926*192900153618^(5/18) 2329990868131964 a001 329/1926*28143753123^(3/10) 2329990868131964 a001 329/1926*10749957122^(5/16) 2329990868131964 a001 329/1926*599074578^(5/14) 2329990868131964 a001 329/1926*228826127^(3/8) 2329990868131965 a001 329/1926*33385282^(5/12) 2329990868132048 a001 2584/2207*7881196^(1/3) 2329990868132060 a001 2584/2207*312119004989^(1/5) 2329990868132060 a001 2584/2207*(1/2+1/2*5^(1/2))^11 2329990868132060 a001 2584/2207*1568397607^(1/4) 2329990868132301 a001 329/1926*1860498^(1/2) 2329990868231401 a001 2584/2207*103682^(11/24) 2329990868267429 a001 329/1926*103682^(5/8) 2329990868874854 a001 2584/2207*39603^(1/2) 2329990869144864 a001 329/1926*39603^(15/22) 2329990873677467 a007 Real Root Of 298*x^4-813*x^3-414*x^2-658*x-142 2329990873732360 a001 2584/2207*15127^(11/20) 2329990874002778 a001 28657/2207*3571^(6/17) 2329990875768737 a001 329/1926*15127^(3/4) 2329990883966538 a001 46368/2207*3571^(5/17) 2329990895014019 a001 75025/2207*3571^(4/17) 2329990895115567 m001 (LaplaceLimit+Mills)/(Ei(1,1)+Kac) 2329990898038804 m005 (1/2*Catalan-3/7)/(33/35+1/7*5^(1/2)) 2329990898354319 m001 1/ln(Sierpinski)/Riemann2ndZero/arctan(1/2)^2 2329990903888866 a001 141/2161*9349^(17/19) 2329990905167724 a001 196418/15127*1364^(2/5) 2329990905647555 a001 121393/2207*3571^(3/17) 2329990907401833 m005 (1/3*exp(1)+2/9)/(3/11*gamma-5) 2329990907688698 m001 (Tribonacci+Trott)/(GAMMA(11/12)-MertensB1) 2329990909927412 m005 (1/2*Pi-5/11)/(1/5*gamma+4/11) 2329990910782091 a001 2584/2207*5778^(11/18) 2329990911265149 a004 Fibonacci(16)*Lucas(19)/(1/2+sqrt(5)/2)^22 2329990913854184 a001 514229/39603*1364^(2/5) 2329990915113291 a001 6765/2207*9349^(9/19) 2329990915121522 a001 1346269/103682*1364^(2/5) 2329990915306424 a001 3524578/271443*1364^(2/5) 2329990915333401 a001 9227465/710647*1364^(2/5) 2329990915337336 a001 24157817/1860498*1364^(2/5) 2329990915337911 a001 63245986/4870847*1364^(2/5) 2329990915337994 a001 165580141/12752043*1364^(2/5) 2329990915338007 a001 433494437/33385282*1364^(2/5) 2329990915338008 a001 1134903170/87403803*1364^(2/5) 2329990915338009 a001 2971215073/228826127*1364^(2/5) 2329990915338009 a001 7778742049/599074578*1364^(2/5) 2329990915338009 a001 20365011074/1568397607*1364^(2/5) 2329990915338009 a001 53316291173/4106118243*1364^(2/5) 2329990915338009 a001 139583862445/10749957122*1364^(2/5) 2329990915338009 a001 365435296162/28143753123*1364^(2/5) 2329990915338009 a001 956722026041/73681302247*1364^(2/5) 2329990915338009 a001 2504730781961/192900153618*1364^(2/5) 2329990915338009 a001 10610209857723/817138163596*1364^(2/5) 2329990915338009 a001 4052739537881/312119004989*1364^(2/5) 2329990915338009 a001 1548008755920/119218851371*1364^(2/5) 2329990915338009 a001 591286729879/45537549124*1364^(2/5) 2329990915338009 a001 7787980473/599786069*1364^(2/5) 2329990915338009 a001 86267571272/6643838879*1364^(2/5) 2329990915338009 a001 32951280099/2537720636*1364^(2/5) 2329990915338009 a001 12586269025/969323029*1364^(2/5) 2329990915338009 a001 4807526976/370248451*1364^(2/5) 2329990915338009 a001 1836311903/141422324*1364^(2/5) 2329990915338010 a001 701408733/54018521*1364^(2/5) 2329990915338014 a001 9238424/711491*1364^(2/5) 2329990915338046 a001 102334155/7881196*1364^(2/5) 2329990915338266 a001 39088169/3010349*1364^(2/5) 2329990915339769 a001 14930352/1149851*1364^(2/5) 2329990915350073 a001 5702887/439204*1364^(2/5) 2329990915420699 a001 2178309/167761*1364^(2/5) 2329990915904779 a001 832040/64079*1364^(2/5) 2329990916439205 a001 196418/2207*3571^(2/17) 2329990916557506 a001 987/24476*9349^(18/19) 2329990919222712 a001 10959/844*1364^(2/5) 2329990924592065 a001 141/2161*24476^(17/21) 2329990926073808 a001 6765/2207*24476^(3/7) 2329990926291097 a001 329/1926*5778^(5/6) 2329990926616149 a001 17711/2207*9349^(7/19) 2329990927170460 a001 317811/2207*3571^(1/17) 2329990927173116 a001 6677055/28657 2329990927321145 a001 141/2161*64079^(17/23) 2329990927518615 a001 6765/2207*64079^(9/23) 2329990927736632 a001 6765/2207*439204^(1/3) 2329990927740560 a001 141/2161*45537549124^(1/3) 2329990927740560 a001 141/2161*(1/2+1/2*5^(1/2))^17 2329990927740567 a001 141/2161*12752043^(1/2) 2329990927740648 a001 6765/2207*7881196^(3/11) 2329990927740658 a001 6765/2207*141422324^(3/13) 2329990927740658 a001 6765/2207*2537720636^(1/5) 2329990927740658 a001 6765/2207*45537549124^(3/17) 2329990927740658 a001 6765/2207*14662949395604^(1/7) 2329990927740658 a001 6765/2207*(1/2+1/2*5^(1/2))^9 2329990927740658 a001 6765/2207*192900153618^(1/6) 2329990927740658 a001 6765/2207*10749957122^(3/16) 2329990927740658 a001 6765/2207*599074578^(3/14) 2329990927740658 a001 6765/2207*33385282^(1/4) 2329990927740860 a001 6765/2207*1860498^(3/10) 2329990927821937 a001 6765/2207*103682^(3/8) 2329990927894087 a001 141/2161*103682^(17/24) 2329990928348398 a001 6765/2207*39603^(9/22) 2329990928888513 a001 141/2161*39603^(17/22) 2329990929005314 a001 121393/5778*1364^(1/3) 2329990929587761 a001 17711/3571*1364^(8/15) 2329990930072221 a001 28657/2207*9349^(6/19) 2329990930588013 a001 10946/2207*9349^(8/19) 2329990930691074 a001 46368/2207*9349^(5/19) 2329990932322722 a001 6765/2207*15127^(9/20) 2329990932393648 a001 75025/2207*9349^(4/19) 2329990932918431 a001 329/13201*24476^(19/21) 2329990933682277 a001 121393/2207*9349^(3/19) 2329990934033607 a004 Fibonacci(16)*Lucas(21)/(1/2+sqrt(5)/2)^24 2329990934786256 a001 987/64079*24476^(20/21) 2329990935129019 a001 196418/2207*9349^(2/19) 2329990935140996 a001 17711/2207*24476^(1/3) 2329990935318678 p002 log(3^(2/3)*(23+2^(1/2))^(1/2)) 2329990935968579 a001 329/13201*64079^(19/23) 2329990936264735 a001 17711/2207*64079^(7/23) 2329990936354548 a001 17480757/75025 2329990936395569 a001 141/2161*15127^(17/20) 2329990936437337 a001 329/13201*817138163596^(1/3) 2329990936437337 a001 329/13201*(1/2+1/2*5^(1/2))^19 2329990936437337 a001 329/13201*87403803^(1/2) 2329990936437434 a001 17711/2207*20633239^(1/5) 2329990936437435 a001 17711/2207*17393796001^(1/7) 2329990936437435 a001 17711/2207*14662949395604^(1/9) 2329990936437435 a001 17711/2207*(1/2+1/2*5^(1/2))^7 2329990936437435 a001 17711/2207*599074578^(1/6) 2329990936438589 a001 17711/2207*710647^(1/4) 2329990936500652 a001 17711/2207*103682^(7/24) 2329990936515368 a001 317811/2207*9349^(1/19) 2329990936608926 a001 329/13201*103682^(19/24) 2329990936780250 a001 46368/2207*24476^(5/21) 2329990936910122 a001 17711/2207*39603^(7/22) 2329990937188079 a001 21/2206*64079^(21/23) 2329990937264989 a001 75025/2207*24476^(4/21) 2329990937335783 a001 121393/2207*24476^(1/7) 2329990937355480 a004 Fibonacci(16)*Lucas(23)/(1/2+sqrt(5)/2)^26 2329990937379232 a001 28657/2207*24476^(2/7) 2329990937462940 a001 987/167761*64079^(22/23) 2329990937564690 a001 196418/2207*24476^(2/21) 2329990937582920 a001 46368/2207*64079^(5/23) 2329990937689720 a001 46368/2207*167761^(1/5) 2329990937694101 a001 22882608/98209 2329990937696785 a001 21/2206*439204^(7/9) 2329990937706156 a001 21/2206*7881196^(7/11) 2329990937706176 a001 21/2206*20633239^(3/5) 2329990937706180 a001 21/2206*141422324^(7/13) 2329990937706180 a001 21/2206*2537720636^(7/15) 2329990937706180 a001 21/2206*17393796001^(3/7) 2329990937706180 a001 21/2206*45537549124^(7/17) 2329990937706180 a001 21/2206*14662949395604^(1/3) 2329990937706180 a001 21/2206*(1/2+1/2*5^(1/2))^21 2329990937706180 a001 21/2206*192900153618^(7/18) 2329990937706180 a001 21/2206*10749957122^(7/16) 2329990937706180 a001 21/2206*599074578^(1/2) 2329990937706181 a001 21/2206*33385282^(7/12) 2329990937706277 a001 46368/2207*20633239^(1/7) 2329990937706278 a001 46368/2207*2537720636^(1/9) 2329990937706278 a001 46368/2207*312119004989^(1/11) 2329990937706278 a001 46368/2207*(1/2+1/2*5^(1/2))^5 2329990937706278 a001 46368/2207*28143753123^(1/10) 2329990937706278 a001 46368/2207*228826127^(1/8) 2329990937706390 a001 46368/2207*1860498^(1/6) 2329990937706651 a001 21/2206*1860498^(7/10) 2329990937709640 a001 21/2206*710647^(3/4) 2329990937720344 a001 329/13201*39603^(19/22) 2329990937733203 a001 317811/2207*24476^(1/21) 2329990937751433 a001 46368/2207*103682^(5/24) 2329990937817385 a001 121393/2207*64079^(3/23) 2329990937840135 a004 Fibonacci(16)*Lucas(25)/(1/2+sqrt(5)/2)^28 2329990937885758 a001 196418/2207*64079^(2/23) 2329990937889539 a001 119814891/514229 2329990937890057 a001 121393/2207*439204^(1/9) 2329990937891301 a001 329/90481*(1/2+1/2*5^(1/2))^23 2329990937891301 a001 329/90481*4106118243^(1/2) 2329990937891396 a001 121393/2207*7881196^(1/11) 2329990937891399 a001 121393/2207*141422324^(1/13) 2329990937891399 a001 121393/2207*2537720636^(1/15) 2329990937891399 a001 121393/2207*45537549124^(1/17) 2329990937891399 a001 121393/2207*14662949395604^(1/21) 2329990937891399 a001 121393/2207*(1/2+1/2*5^(1/2))^3 2329990937891399 a001 121393/2207*192900153618^(1/18) 2329990937891399 a001 121393/2207*10749957122^(1/16) 2329990937891399 a001 121393/2207*599074578^(1/14) 2329990937891400 a001 121393/2207*33385282^(1/12) 2329990937891467 a001 121393/2207*1860498^(1/10) 2329990937893737 a001 317811/2207*64079^(1/23) 2329990937895831 a001 21/2206*103682^(7/8) 2329990937907125 a001 75025/2207*64079^(4/23) 2329990937910845 a004 Fibonacci(16)*Lucas(27)/(1/2+sqrt(5)/2)^30 2329990937918053 a001 313679457/1346269 2329990937918306 a001 141/101521*20633239^(5/7) 2329990937918310 a001 141/101521*2537720636^(5/9) 2329990937918310 a001 141/101521*312119004989^(5/11) 2329990937918310 a001 141/101521*(1/2+1/2*5^(1/2))^25 2329990937918310 a001 141/101521*3461452808002^(5/12) 2329990937918310 a001 141/101521*28143753123^(1/2) 2329990937918310 a001 141/101521*228826127^(5/8) 2329990937918408 a001 317811/4414+317811/4414*5^(1/2) 2329990937918492 a001 121393/2207*103682^(1/8) 2329990937918871 a001 141/101521*1860498^(5/6) 2329990937921162 a004 Fibonacci(16)*Lucas(29)/(1/2+sqrt(5)/2)^32 2329990937922213 a001 410611740/1762289 2329990937922220 a001 329/620166*7881196^(9/11) 2329990937922251 a001 329/620166*141422324^(9/13) 2329990937922251 a001 329/620166*2537720636^(3/5) 2329990937922251 a001 329/620166*45537549124^(9/17) 2329990937922251 a001 329/620166*14662949395604^(3/7) 2329990937922251 a001 329/620166*(1/2+1/2*5^(1/2))^27 2329990937922251 a001 329/620166*192900153618^(1/2) 2329990937922251 a001 329/620166*10749957122^(9/16) 2329990937922251 a001 329/620166*599074578^(9/14) 2329990937922252 a001 329/620166*33385282^(3/4) 2329990937922349 a004 Fibonacci(30)/Lucas(16)/(1/2+sqrt(5)/2) 2329990937922667 a004 Fibonacci(16)*Lucas(31)/(1/2+sqrt(5)/2)^34 2329990937922820 a001 2149990983/9227465 2329990937922826 a001 987/4870847*(1/2+1/2*5^(1/2))^29 2329990937922826 a001 987/4870847*1322157322203^(1/2) 2329990937922856 a001 329/620166*1860498^(9/10) 2329990937922886 a004 Fibonacci(16)*Lucas(33)/(1/2+sqrt(5)/2)^36 2329990937922909 a001 5628749469/24157817 2329990937922909 a001 329/4250681*(1/2+1/2*5^(1/2))^31 2329990937922909 a001 329/4250681*9062201101803^(1/2) 2329990937922918 a004 Fibonacci(16)*Lucas(35)/(1/2+sqrt(5)/2)^38 2329990937922922 a001 7368128712/31622993 2329990937922922 a001 141/4769326*141422324^(11/13) 2329990937922922 a001 141/4769326*2537720636^(11/15) 2329990937922922 a001 141/4769326*45537549124^(11/17) 2329990937922922 a001 141/4769326*312119004989^(3/5) 2329990937922922 a001 141/4769326*14662949395604^(11/21) 2329990937922922 a001 141/4769326*(1/2+1/2*5^(1/2))^33 2329990937922922 a001 141/4769326*192900153618^(11/18) 2329990937922922 a001 141/4769326*10749957122^(11/16) 2329990937922922 a001 141/4769326*1568397607^(3/4) 2329990937922922 a001 141/4769326*599074578^(11/14) 2329990937922923 a004 Fibonacci(16)*Lucas(37)/(1/2+sqrt(5)/2)^40 2329990937922923 a001 38580022803/165580141 2329990937922923 a001 329/29134601*2537720636^(7/9) 2329990937922923 a001 329/29134601*17393796001^(5/7) 2329990937922923 a001 329/29134601*312119004989^(7/11) 2329990937922923 a001 329/29134601*14662949395604^(5/9) 2329990937922923 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^35/Lucas(38) 2329990937922923 a001 329/29134601*505019158607^(5/8) 2329990937922923 a001 329/29134601*28143753123^(7/10) 2329990937922924 a001 329/29134601*599074578^(5/6) 2329990937922924 a001 329/29134601*228826127^(7/8) 2329990937922924 a001 141/4769326*33385282^(11/12) 2329990937922924 a004 Fibonacci(16)*Lucas(39)/(1/2+sqrt(5)/2)^42 2329990937922924 a001 101003810985/433494437 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^37/Lucas(40) 2329990937922924 a004 Fibonacci(16)*Lucas(41)/(1/2+sqrt(5)/2)^44 2329990937922924 a001 132215705076/567451585 2329990937922924 a001 329/199691526*2537720636^(13/15) 2329990937922924 a001 329/199691526*45537549124^(13/17) 2329990937922924 a001 329/199691526*14662949395604^(13/21) 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^39/Lucas(42) 2329990937922924 a001 329/199691526*192900153618^(13/18) 2329990937922924 a001 329/199691526*73681302247^(3/4) 2329990937922924 a001 329/199691526*10749957122^(13/16) 2329990937922924 a004 Fibonacci(16)*Lucas(43)/(1/2+sqrt(5)/2)^46 2329990937922924 a001 692290419471/2971215073 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^41/Lucas(44) 2329990937922924 a001 329/199691526*599074578^(13/14) 2329990937922924 a004 Fibonacci(16)*Lucas(45)/(1/2+sqrt(5)/2)^48 2329990937922924 a001 1812439848261/7778742049 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^43/Lucas(46) 2329990937922924 a004 Fibonacci(16)*Lucas(47)/(1/2+sqrt(5)/2)^50 2329990937922924 a001 2372514562656/10182505537 2329990937922924 a001 987/10749957122*45537549124^(15/17) 2329990937922924 a001 987/10749957122*312119004989^(9/11) 2329990937922924 a001 987/10749957122*14662949395604^(5/7) 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^45/Lucas(48) 2329990937922924 a001 987/10749957122*192900153618^(5/6) 2329990937922924 a001 987/10749957122*28143753123^(9/10) 2329990937922924 a004 Fibonacci(16)*Lucas(49)/(1/2+sqrt(5)/2)^52 2329990937922924 a001 12422647527675/53316291173 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^47/Lucas(50) 2329990937922924 a001 987/10749957122*10749957122^(15/16) 2329990937922924 a004 Fibonacci(16)*Lucas(51)/(1/2+sqrt(5)/2)^54 2329990937922924 a001 32522913457713/139583862445 2329990937922924 a001 141/10525900321*14662949395604^(7/9) 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^49/Lucas(52) 2329990937922924 a001 141/10525900321*505019158607^(7/8) 2329990937922924 a004 Fibonacci(16)*Lucas(53)/(1/2+sqrt(5)/2)^56 2329990937922924 a001 329/64300051206*14662949395604^(17/21) 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^51/Lucas(54) 2329990937922924 a004 Fibonacci(16)*Lucas(55)/(1/2+sqrt(5)/2)^58 2329990937922924 a001 222915365078679/956722026041 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^53/Lucas(56) 2329990937922924 a004 Fibonacci(16)*Lucas(57)/(1/2+sqrt(5)/2)^60 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^55/Lucas(58) 2329990937922924 a004 Fibonacci(16)*Lucas(59)/(1/2+sqrt(5)/2)^62 2329990937922924 a001 141/494493258286*14662949395604^(19/21) 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^57/Lucas(60) 2329990937922924 a004 Fibonacci(16)*Lucas(61)/(1/2+sqrt(5)/2)^64 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^59/Lucas(62) 2329990937922924 a004 Fibonacci(16)*Lucas(63)/(1/2+sqrt(5)/2)^66 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^61/Lucas(64) 2329990937922924 a004 Fibonacci(16)*Lucas(65)/(1/2+sqrt(5)/2)^68 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^63/Lucas(66) 2329990937922924 a004 Fibonacci(16)*Lucas(67)/(1/2+sqrt(5)/2)^70 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^65/Lucas(68) 2329990937922924 a004 Fibonacci(16)*Lucas(69)/(1/2+sqrt(5)/2)^72 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^67/Lucas(70) 2329990937922924 a004 Fibonacci(16)*Lucas(71)/(1/2+sqrt(5)/2)^74 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^69/Lucas(72) 2329990937922924 a004 Fibonacci(16)*Lucas(73)/(1/2+sqrt(5)/2)^76 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^71/Lucas(74) 2329990937922924 a004 Fibonacci(16)*Lucas(75)/(1/2+sqrt(5)/2)^78 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^73/Lucas(76) 2329990937922924 a004 Fibonacci(16)*Lucas(77)/(1/2+sqrt(5)/2)^80 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^75/Lucas(78) 2329990937922924 a004 Fibonacci(16)*Lucas(79)/(1/2+sqrt(5)/2)^82 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^77/Lucas(80) 2329990937922924 a004 Fibonacci(16)*Lucas(81)/(1/2+sqrt(5)/2)^84 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^79/Lucas(82) 2329990937922924 a004 Fibonacci(16)*Lucas(83)/(1/2+sqrt(5)/2)^86 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^81/Lucas(84) 2329990937922924 a004 Fibonacci(16)*Lucas(85)/(1/2+sqrt(5)/2)^88 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^83/Lucas(86) 2329990937922924 a004 Fibonacci(16)*Lucas(87)/(1/2+sqrt(5)/2)^90 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^85/Lucas(88) 2329990937922924 a004 Fibonacci(16)*Lucas(89)/(1/2+sqrt(5)/2)^92 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^87/Lucas(90) 2329990937922924 a004 Fibonacci(16)*Lucas(91)/(1/2+sqrt(5)/2)^94 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^89/Lucas(92) 2329990937922924 a004 Fibonacci(16)*Lucas(93)/(1/2+sqrt(5)/2)^96 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^91/Lucas(94) 2329990937922924 a004 Fibonacci(16)*Lucas(95)/(1/2+sqrt(5)/2)^98 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^93/Lucas(96) 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^95/Lucas(98) 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^97/Lucas(100) 2329990937922924 a004 Fibonacci(16)*Lucas(97)/(1/2+sqrt(5)/2)^100 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^94/Lucas(97) 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^96/Lucas(99) 2329990937922924 a004 Fibonacci(8)*Lucas(8)/(1/2+sqrt(5)/2)^3 2329990937922924 a004 Fibonacci(16)*Lucas(96)/(1/2+sqrt(5)/2)^99 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^92/Lucas(95) 2329990937922924 a004 Fibonacci(16)*Lucas(94)/(1/2+sqrt(5)/2)^97 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^90/Lucas(93) 2329990937922924 a004 Fibonacci(16)*Lucas(92)/(1/2+sqrt(5)/2)^95 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^88/Lucas(91) 2329990937922924 a004 Fibonacci(16)*Lucas(90)/(1/2+sqrt(5)/2)^93 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^86/Lucas(89) 2329990937922924 a004 Fibonacci(16)*Lucas(88)/(1/2+sqrt(5)/2)^91 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^84/Lucas(87) 2329990937922924 a004 Fibonacci(16)*Lucas(86)/(1/2+sqrt(5)/2)^89 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^82/Lucas(85) 2329990937922924 a004 Fibonacci(16)*Lucas(84)/(1/2+sqrt(5)/2)^87 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^80/Lucas(83) 2329990937922924 a004 Fibonacci(16)*Lucas(82)/(1/2+sqrt(5)/2)^85 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^78/Lucas(81) 2329990937922924 a004 Fibonacci(16)*Lucas(80)/(1/2+sqrt(5)/2)^83 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^76/Lucas(79) 2329990937922924 a004 Fibonacci(16)*Lucas(78)/(1/2+sqrt(5)/2)^81 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^74/Lucas(77) 2329990937922924 a004 Fibonacci(16)*Lucas(76)/(1/2+sqrt(5)/2)^79 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^72/Lucas(75) 2329990937922924 a004 Fibonacci(16)*Lucas(74)/(1/2+sqrt(5)/2)^77 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^70/Lucas(73) 2329990937922924 a004 Fibonacci(16)*Lucas(72)/(1/2+sqrt(5)/2)^75 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^68/Lucas(71) 2329990937922924 a004 Fibonacci(16)*Lucas(70)/(1/2+sqrt(5)/2)^73 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^66/Lucas(69) 2329990937922924 a004 Fibonacci(16)*Lucas(68)/(1/2+sqrt(5)/2)^71 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^64/Lucas(67) 2329990937922924 a004 Fibonacci(16)*Lucas(66)/(1/2+sqrt(5)/2)^69 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^62/Lucas(65) 2329990937922924 a004 Fibonacci(16)*Lucas(64)/(1/2+sqrt(5)/2)^67 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^60/Lucas(63) 2329990937922924 a004 Fibonacci(16)*Lucas(62)/(1/2+sqrt(5)/2)^65 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^58/Lucas(61) 2329990937922924 a004 Fibonacci(16)*Lucas(60)/(1/2+sqrt(5)/2)^63 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^56/Lucas(59) 2329990937922924 a004 Fibonacci(16)*Lucas(58)/(1/2+sqrt(5)/2)^61 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^54/Lucas(57) 2329990937922924 a001 60114106218649/258001459320 2329990937922924 a004 Fibonacci(16)*Lucas(56)/(1/2+sqrt(5)/2)^59 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^52/Lucas(55) 2329990937922924 a001 987/312119004989*23725150497407^(13/16) 2329990937922924 a001 137769272233215/591286729879 2329990937922924 a004 Fibonacci(16)*Lucas(54)/(1/2+sqrt(5)/2)^57 2329990937922924 a001 987/45537549124*45537549124^(16/17) 2329990937922924 a001 987/119218851371*312119004989^(10/11) 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^50/Lucas(53) 2329990937922924 a001 987/119218851371*3461452808002^(5/6) 2329990937922924 a001 2505865685131/10754830177 2329990937922924 a004 Fibonacci(16)*Lucas(52)/(1/2+sqrt(5)/2)^55 2329990937922924 a001 987/45537549124*14662949395604^(16/21) 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^48/Lucas(51) 2329990937922924 a001 987/45537549124*192900153618^(8/9) 2329990937922924 a001 10050132965019/43133785636 2329990937922924 a001 987/45537549124*73681302247^(12/13) 2329990937922924 a004 Fibonacci(16)*Lucas(50)/(1/2+sqrt(5)/2)^53 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^46/Lucas(49) 2329990937922924 a001 2559206134121/10983760033 2329990937922924 a004 Fibonacci(16)*Lucas(48)/(1/2+sqrt(5)/2)^51 2329990937922924 a001 987/2537720636*2537720636^(14/15) 2329990937922924 a001 987/17393796001*10749957122^(23/24) 2329990937922924 a001 987/6643838879*312119004989^(4/5) 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^44/Lucas(47) 2329990937922924 a001 987/6643838879*23725150497407^(11/16) 2329990937922924 a001 987/6643838879*73681302247^(11/13) 2329990937922924 a001 2932589277051/12586269025 2329990937922924 a001 987/6643838879*10749957122^(11/12) 2329990937922924 a004 Fibonacci(16)*Lucas(46)/(1/2+sqrt(5)/2)^49 2329990937922924 a001 987/6643838879*4106118243^(22/23) 2329990937922924 a001 987/2537720636*17393796001^(6/7) 2329990937922924 a001 987/2537720636*45537549124^(14/17) 2329990937922924 a001 987/2537720636*14662949395604^(2/3) 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^42/Lucas(45) 2329990937922924 a001 987/2537720636*505019158607^(3/4) 2329990937922924 a001 987/2537720636*192900153618^(7/9) 2329990937922924 a001 987/2537720636*10749957122^(7/8) 2329990937922924 a001 567451585/2435424 2329990937922924 a001 987/2537720636*4106118243^(21/23) 2329990937922924 a004 Fibonacci(16)*Lucas(44)/(1/2+sqrt(5)/2)^47 2329990937922924 a001 987/2537720636*1568397607^(21/22) 2329990937922924 a001 987/969323029*2537720636^(8/9) 2329990937922924 a001 987/969323029*312119004989^(8/11) 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^40/Lucas(43) 2329990937922924 a001 987/969323029*23725150497407^(5/8) 2329990937922924 a001 987/969323029*73681302247^(10/13) 2329990937922924 a001 987/969323029*28143753123^(4/5) 2329990937922924 a001 987/969323029*10749957122^(5/6) 2329990937922924 a001 987/969323029*4106118243^(20/23) 2329990937922924 a001 427859009319/1836311903 2329990937922924 a001 987/969323029*1568397607^(10/11) 2329990937922924 a004 Fibonacci(16)*Lucas(42)/(1/2+sqrt(5)/2)^45 2329990937922924 a001 987/969323029*599074578^(20/21) 2329990937922924 a001 987/141422324*141422324^(12/13) 2329990937922924 a001 987/370248451*817138163596^(2/3) 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^38/Lucas(41) 2329990937922924 a001 987/370248451*10749957122^(19/24) 2329990937922924 a001 987/370248451*4106118243^(19/23) 2329990937922924 a001 987/370248451*1568397607^(19/22) 2329990937922924 a001 54475866389/233802911 2329990937922924 a001 987/370248451*599074578^(19/21) 2329990937922924 a004 Fibonacci(16)*Lucas(40)/(1/2+sqrt(5)/2)^43 2329990937922924 a001 987/370248451*228826127^(19/20) 2329990937922924 a001 987/141422324*2537720636^(4/5) 2329990937922924 a001 987/141422324*45537549124^(12/17) 2329990937922924 a001 987/141422324*14662949395604^(4/7) 2329990937922924 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^36/Lucas(39) 2329990937922924 a001 987/141422324*505019158607^(9/14) 2329990937922924 a001 987/141422324*192900153618^(2/3) 2329990937922924 a001 987/141422324*73681302247^(9/13) 2329990937922924 a001 987/141422324*10749957122^(3/4) 2329990937922924 a001 987/141422324*4106118243^(18/23) 2329990937922924 a001 987/141422324*1568397607^(9/11) 2329990937922924 a001 987/141422324*599074578^(6/7) 2329990937922924 a001 31211894091/133957148 2329990937922924 a001 987/141422324*228826127^(9/10) 2329990937922924 a004 Fibonacci(16)*Lucas(38)/(1/2+sqrt(5)/2)^41 2329990937922924 a001 987/141422324*87403803^(18/19) 2329990937922925 a001 987/54018521*45537549124^(2/3) 2329990937922925 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^34/Lucas(37) 2329990937922925 a001 987/54018521*10749957122^(17/24) 2329990937922925 a001 987/54018521*4106118243^(17/23) 2329990937922925 a001 987/54018521*1568397607^(17/22) 2329990937922925 a001 987/54018521*599074578^(17/21) 2329990937922925 a001 987/54018521*228826127^(17/20) 2329990937922925 a001 1135417399/4873055 2329990937922925 a001 987/54018521*87403803^(17/19) 2329990937922926 a004 Fibonacci(16)*Lucas(36)/(1/2+sqrt(5)/2)^39 2329990937922927 a001 987/54018521*33385282^(17/18) 2329990937922927 a001 987/7881196*7881196^(10/11) 2329990937922929 a001 987/20633239*(1/2+1/2*5^(1/2))^32 2329990937922929 a001 987/20633239*23725150497407^(1/2) 2329990937922929 a001 987/20633239*73681302247^(8/13) 2329990937922929 a001 987/20633239*10749957122^(2/3) 2329990937922929 a001 987/20633239*4106118243^(16/23) 2329990937922929 a001 987/20633239*1568397607^(8/11) 2329990937922929 a001 987/20633239*599074578^(16/21) 2329990937922929 a001 987/20633239*228826127^(4/5) 2329990937922930 a001 987/20633239*87403803^(16/19) 2329990937922930 a001 9107507955/39088169 2329990937922931 a001 987/20633239*33385282^(8/9) 2329990937922938 a004 Fibonacci(16)*Lucas(34)/(1/2+sqrt(5)/2)^37 2329990937922943 a001 987/20633239*12752043^(16/17) 2329990937922957 a001 987/7881196*20633239^(6/7) 2329990937922961 a001 987/7881196*141422324^(10/13) 2329990937922961 a001 987/7881196*2537720636^(2/3) 2329990937922961 a001 987/7881196*45537549124^(10/17) 2329990937922961 a001 987/7881196*312119004989^(6/11) 2329990937922961 a001 987/7881196*14662949395604^(10/21) 2329990937922961 a001 987/7881196*(1/2+1/2*5^(1/2))^30 2329990937922961 a001 987/7881196*192900153618^(5/9) 2329990937922961 a001 987/7881196*28143753123^(3/5) 2329990937922961 a001 987/7881196*10749957122^(5/8) 2329990937922961 a001 987/7881196*4106118243^(15/23) 2329990937922961 a001 987/7881196*1568397607^(15/22) 2329990937922961 a001 987/7881196*599074578^(5/7) 2329990937922961 a001 987/7881196*228826127^(3/4) 2329990937922962 a001 987/7881196*87403803^(15/19) 2329990937922963 a001 987/7881196*33385282^(5/6) 2329990937922963 a001 579793081/2488392 2329990937922974 a001 987/7881196*12752043^(15/17) 2329990937923008 a004 Fibonacci(34)/Lucas(16)/(1/2+sqrt(5)/2)^5 2329990937923020 a004 Fibonacci(36)/Lucas(16)/(1/2+sqrt(5)/2)^7 2329990937923022 a004 Fibonacci(38)/Lucas(16)/(1/2+sqrt(5)/2)^9 2329990937923022 a004 Fibonacci(40)/Lucas(16)/(1/2+sqrt(5)/2)^11 2329990937923022 a004 Fibonacci(42)/Lucas(16)/(1/2+sqrt(5)/2)^13 2329990937923022 a004 Fibonacci(44)/Lucas(16)/(1/2+sqrt(5)/2)^15 2329990937923022 a004 Fibonacci(46)/Lucas(16)/(1/2+sqrt(5)/2)^17 2329990937923022 a004 Fibonacci(48)/Lucas(16)/(1/2+sqrt(5)/2)^19 2329990937923022 a004 Fibonacci(50)/Lucas(16)/(1/2+sqrt(5)/2)^21 2329990937923022 a004 Fibonacci(52)/Lucas(16)/(1/2+sqrt(5)/2)^23 2329990937923022 a004 Fibonacci(54)/Lucas(16)/(1/2+sqrt(5)/2)^25 2329990937923022 a004 Fibonacci(56)/Lucas(16)/(1/2+sqrt(5)/2)^27 2329990937923022 a004 Fibonacci(58)/Lucas(16)/(1/2+sqrt(5)/2)^29 2329990937923022 a004 Fibonacci(60)/Lucas(16)/(1/2+sqrt(5)/2)^31 2329990937923022 a004 Fibonacci(62)/Lucas(16)/(1/2+sqrt(5)/2)^33 2329990937923022 a004 Fibonacci(16)*Lucas(32)/(1/2+sqrt(5)/2)^35 2329990937923022 a004 Fibonacci(66)/Lucas(16)/(1/2+sqrt(5)/2)^37 2329990937923022 a004 Fibonacci(68)/Lucas(16)/(1/2+sqrt(5)/2)^39 2329990937923022 a004 Fibonacci(70)/Lucas(16)/(1/2+sqrt(5)/2)^41 2329990937923022 a004 Fibonacci(72)/Lucas(16)/(1/2+sqrt(5)/2)^43 2329990937923022 a004 Fibonacci(74)/Lucas(16)/(1/2+sqrt(5)/2)^45 2329990937923022 a004 Fibonacci(76)/Lucas(16)/(1/2+sqrt(5)/2)^47 2329990937923022 a004 Fibonacci(78)/Lucas(16)/(1/2+sqrt(5)/2)^49 2329990937923022 a004 Fibonacci(80)/Lucas(16)/(1/2+sqrt(5)/2)^51 2329990937923022 a004 Fibonacci(82)/Lucas(16)/(1/2+sqrt(5)/2)^53 2329990937923022 a004 Fibonacci(84)/Lucas(16)/(1/2+sqrt(5)/2)^55 2329990937923022 a004 Fibonacci(86)/Lucas(16)/(1/2+sqrt(5)/2)^57 2329990937923022 a004 Fibonacci(88)/Lucas(16)/(1/2+sqrt(5)/2)^59 2329990937923022 a004 Fibonacci(90)/Lucas(16)/(1/2+sqrt(5)/2)^61 2329990937923022 a004 Fibonacci(92)/Lucas(16)/(1/2+sqrt(5)/2)^63 2329990937923022 a004 Fibonacci(94)/Lucas(16)/(1/2+sqrt(5)/2)^65 2329990937923022 a004 Fibonacci(96)/Lucas(16)/(1/2+sqrt(5)/2)^67 2329990937923022 a004 Fibonacci(100)/Lucas(16)/(1/2+sqrt(5)/2)^71 2329990937923022 a004 Fibonacci(98)/Lucas(16)/(1/2+sqrt(5)/2)^69 2329990937923022 a004 Fibonacci(97)/Lucas(16)/(1/2+sqrt(5)/2)^68 2329990937923022 a004 Fibonacci(99)/Lucas(16)/(1/2+sqrt(5)/2)^70 2329990937923022 a004 Fibonacci(95)/Lucas(16)/(1/2+sqrt(5)/2)^66 2329990937923022 a004 Fibonacci(93)/Lucas(16)/(1/2+sqrt(5)/2)^64 2329990937923022 a004 Fibonacci(91)/Lucas(16)/(1/2+sqrt(5)/2)^62 2329990937923022 a004 Fibonacci(89)/Lucas(16)/(1/2+sqrt(5)/2)^60 2329990937923022 a004 Fibonacci(87)/Lucas(16)/(1/2+sqrt(5)/2)^58 2329990937923022 a004 Fibonacci(85)/Lucas(16)/(1/2+sqrt(5)/2)^56 2329990937923022 a004 Fibonacci(83)/Lucas(16)/(1/2+sqrt(5)/2)^54 2329990937923022 a004 Fibonacci(81)/Lucas(16)/(1/2+sqrt(5)/2)^52 2329990937923022 a004 Fibonacci(79)/Lucas(16)/(1/2+sqrt(5)/2)^50 2329990937923022 a004 Fibonacci(77)/Lucas(16)/(1/2+sqrt(5)/2)^48 2329990937923022 a004 Fibonacci(75)/Lucas(16)/(1/2+sqrt(5)/2)^46 2329990937923022 a004 Fibonacci(73)/Lucas(16)/(1/2+sqrt(5)/2)^44 2329990937923022 a004 Fibonacci(71)/Lucas(16)/(1/2+sqrt(5)/2)^42 2329990937923022 a004 Fibonacci(69)/Lucas(16)/(1/2+sqrt(5)/2)^40 2329990937923022 a004 Fibonacci(67)/Lucas(16)/(1/2+sqrt(5)/2)^38 2329990937923022 a004 Fibonacci(65)/Lucas(16)/(1/2+sqrt(5)/2)^36 2329990937923022 a004 Fibonacci(63)/Lucas(16)/(1/2+sqrt(5)/2)^34 2329990937923022 a004 Fibonacci(61)/Lucas(16)/(1/2+sqrt(5)/2)^32 2329990937923022 a004 Fibonacci(59)/Lucas(16)/(1/2+sqrt(5)/2)^30 2329990937923022 a004 Fibonacci(57)/Lucas(16)/(1/2+sqrt(5)/2)^28 2329990937923022 a004 Fibonacci(55)/Lucas(16)/(1/2+sqrt(5)/2)^26 2329990937923022 a004 Fibonacci(53)/Lucas(16)/(1/2+sqrt(5)/2)^24 2329990937923022 a004 Fibonacci(51)/Lucas(16)/(1/2+sqrt(5)/2)^22 2329990937923022 a004 Fibonacci(49)/Lucas(16)/(1/2+sqrt(5)/2)^20 2329990937923022 a004 Fibonacci(47)/Lucas(16)/(1/2+sqrt(5)/2)^18 2329990937923022 a004 Fibonacci(45)/Lucas(16)/(1/2+sqrt(5)/2)^16 2329990937923022 a004 Fibonacci(43)/Lucas(16)/(1/2+sqrt(5)/2)^14 2329990937923022 a004 Fibonacci(41)/Lucas(16)/(1/2+sqrt(5)/2)^12 2329990937923022 a004 Fibonacci(39)/Lucas(16)/(1/2+sqrt(5)/2)^10 2329990937923023 a004 Fibonacci(37)/Lucas(16)/(1/2+sqrt(5)/2)^8 2329990937923027 a004 Fibonacci(35)/Lucas(16)/(1/2+sqrt(5)/2)^6 2329990937923053 a001 987/7881196*4870847^(15/16) 2329990937923060 a004 Fibonacci(33)/Lucas(16)/(1/2+sqrt(5)/2)^4 2329990937923177 a001 987/3010349*20633239^(4/5) 2329990937923181 a001 987/3010349*17393796001^(4/7) 2329990937923181 a001 987/3010349*14662949395604^(4/9) 2329990937923181 a001 987/3010349*(1/2+1/2*5^(1/2))^28 2329990937923181 a001 987/3010349*73681302247^(7/13) 2329990937923181 a001 987/3010349*10749957122^(7/12) 2329990937923181 a001 987/3010349*4106118243^(14/23) 2329990937923181 a001 987/3010349*1568397607^(7/11) 2329990937923181 a001 987/3010349*599074578^(2/3) 2329990937923181 a001 987/3010349*228826127^(7/10) 2329990937923181 a001 987/3010349*87403803^(14/19) 2329990937923183 a001 987/3010349*33385282^(7/9) 2329990937923193 a001 987/3010349*12752043^(14/17) 2329990937923195 a001 1328767503/5702887 2329990937923267 a001 987/3010349*4870847^(7/8) 2329990937923279 a004 Fibonacci(31)/Lucas(16)/(1/2+sqrt(5)/2)^2 2329990937923597 a004 Fibonacci(16)*Lucas(30)/(1/2+sqrt(5)/2)^33 2329990937923809 a001 987/3010349*1860498^(14/15) 2329990937924266 a001 987/439204*439204^(8/9) 2329990937924686 a001 987/1149851*141422324^(2/3) 2329990937924686 a001 987/1149851*(1/2+1/2*5^(1/2))^26 2329990937924686 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^26/Lucas(29) 2329990937924686 a001 987/1149851*73681302247^(1/2) 2329990937924686 a001 987/1149851*10749957122^(13/24) 2329990937924686 a001 987/1149851*4106118243^(13/23) 2329990937924686 a001 987/1149851*1568397607^(13/22) 2329990937924686 a001 987/1149851*599074578^(13/21) 2329990937924686 a001 987/1149851*228826127^(13/20) 2329990937924686 a001 987/1149851*87403803^(13/19) 2329990937924688 a001 987/1149851*33385282^(13/18) 2329990937924697 a001 987/1149851*12752043^(13/17) 2329990937924766 a001 987/1149851*4870847^(13/16) 2329990937924784 a001 514229/2207 2329990937925269 a001 987/1149851*1860498^(13/15) 2329990937927439 a001 317811/2207*103682^(1/24) 2329990937927537 a004 Fibonacci(16)*Lucas(28)/(1/2+sqrt(5)/2)^31 2329990937928970 a001 987/1149851*710647^(13/14) 2329990937934975 a001 987/439204*7881196^(8/11) 2329990937935002 a001 987/439204*141422324^(8/13) 2329990937935003 a001 987/439204*2537720636^(8/15) 2329990937935003 a001 987/439204*45537549124^(8/17) 2329990937935003 a001 987/439204*14662949395604^(8/21) 2329990937935003 a001 987/439204*(1/2+1/2*5^(1/2))^24 2329990937935003 a001 987/439204*192900153618^(4/9) 2329990937935003 a001 987/439204*73681302247^(6/13) 2329990937935003 a001 987/439204*10749957122^(1/2) 2329990937935003 a001 987/439204*4106118243^(12/23) 2329990937935003 a001 987/439204*1568397607^(6/11) 2329990937935003 a001 987/439204*599074578^(4/7) 2329990937935003 a001 987/439204*228826127^(3/5) 2329990937935003 a001 987/439204*87403803^(12/19) 2329990937935004 a001 987/439204*33385282^(2/3) 2329990937935013 a001 987/439204*12752043^(12/17) 2329990937935076 a001 987/439204*4870847^(3/4) 2329990937935101 a001 196418/2207*(1/2+1/2*5^(1/2))^2 2329990937935101 a001 196418/2207*10749957122^(1/24) 2329990937935101 a001 196418/2207*4106118243^(1/23) 2329990937935101 a001 196418/2207*1568397607^(1/22) 2329990937935101 a001 196418/2207*599074578^(1/21) 2329990937935101 a001 196418/2207*228826127^(1/20) 2329990937935101 a001 196418/2207*87403803^(1/19) 2329990937935101 a001 196418/2207*33385282^(1/18) 2329990937935102 a001 196418/2207*12752043^(1/17) 2329990937935107 a001 196418/2207*4870847^(1/16) 2329990937935146 a001 196418/2207*1860498^(1/15) 2329990937935430 a001 196418/2207*710647^(1/14) 2329990937935541 a001 987/439204*1860498^(4/5) 2329990937935676 a001 96932283/416020 2329990937937533 a001 196418/2207*271443^(1/13) 2329990937938957 a001 987/439204*710647^(6/7) 2329990937953163 a001 196418/2207*103682^(1/12) 2329990937954546 a004 Fibonacci(16)*Lucas(26)/(1/2+sqrt(5)/2)^29 2329990937964193 a001 987/439204*271443^(12/13) 2329990937985935 a001 317811/2207*39603^(1/22) 2329990937996938 a001 987/64079*64079^(20/23) 2329990938005688 a001 987/167761*7881196^(2/3) 2329990938005713 a001 987/167761*312119004989^(2/5) 2329990938005713 a001 987/167761*(1/2+1/2*5^(1/2))^22 2329990938005713 a001 987/167761*10749957122^(11/24) 2329990938005713 a001 987/167761*4106118243^(11/23) 2329990938005713 a001 987/167761*1568397607^(1/2) 2329990938005713 a001 987/167761*599074578^(11/21) 2329990938005713 a001 987/167761*228826127^(11/20) 2329990938005713 a001 987/167761*87403803^(11/19) 2329990938005714 a001 987/167761*33385282^(11/18) 2329990938005722 a001 987/167761*12752043^(11/17) 2329990938005780 a001 987/167761*4870847^(11/16) 2329990938005811 a001 75025/2207*(1/2+1/2*5^(1/2))^4 2329990938005811 a001 75025/2207*23725150497407^(1/16) 2329990938005811 a001 75025/2207*73681302247^(1/13) 2329990938005811 a001 75025/2207*10749957122^(1/12) 2329990938005811 a001 75025/2207*4106118243^(2/23) 2329990938005811 a001 75025/2207*1568397607^(1/11) 2329990938005811 a001 75025/2207*599074578^(2/21) 2329990938005811 a001 75025/2207*228826127^(1/10) 2329990938005811 a001 75025/2207*87403803^(2/19) 2329990938005811 a001 75025/2207*33385282^(1/9) 2329990938005813 a001 75025/2207*12752043^(2/17) 2329990938005823 a001 75025/2207*4870847^(1/8) 2329990938005901 a001 75025/2207*1860498^(2/15) 2329990938006206 a001 987/167761*1860498^(11/15) 2329990938006470 a001 75025/2207*710647^(1/7) 2329990938009338 a001 987/167761*710647^(11/14) 2329990938010326 a001 24683225/105937 2329990938010676 a001 75025/2207*271443^(2/13) 2329990938032470 a001 987/167761*271443^(11/13) 2329990938041935 a001 75025/2207*103682^(1/6) 2329990938043911 a001 46368/2207*39603^(5/22) 2329990938070154 a001 196418/2207*39603^(1/11) 2329990938093979 a001 121393/2207*39603^(3/22) 2329990938099014 a001 329/90481*103682^(23/24) 2329990938139668 a004 Fibonacci(16)*Lucas(24)/(1/2+sqrt(5)/2)^27 2329990938204395 a001 987/167761*103682^(11/12) 2329990938275918 a001 75025/2207*39603^(2/11) 2329990938342437 a001 28657/2207*64079^(6/23) 2329990938424136 a001 987/64079*167761^(4/5) 2329990938427527 a001 317811/2207*15127^(1/20) 2329990938478541 a001 987/24476*24476^(6/7) 2329990938487782 a001 28657/2207*439204^(2/9) 2329990938490364 a001 987/64079*20633239^(4/7) 2329990938490368 a001 987/64079*2537720636^(4/9) 2329990938490368 a001 987/64079*(1/2+1/2*5^(1/2))^20 2329990938490368 a001 987/64079*23725150497407^(5/16) 2329990938490368 a001 987/64079*505019158607^(5/14) 2329990938490368 a001 987/64079*73681302247^(5/13) 2329990938490368 a001 987/64079*28143753123^(2/5) 2329990938490368 a001 987/64079*10749957122^(5/12) 2329990938490368 a001 987/64079*4106118243^(10/23) 2329990938490368 a001 987/64079*1568397607^(5/11) 2329990938490368 a001 987/64079*599074578^(10/21) 2329990938490368 a001 987/64079*228826127^(1/2) 2329990938490368 a001 987/64079*87403803^(10/19) 2329990938490369 a001 987/64079*33385282^(5/9) 2329990938490376 a001 987/64079*12752043^(10/17) 2329990938490429 a001 987/64079*4870847^(5/8) 2329990938490459 a001 28657/2207*7881196^(2/11) 2329990938490466 a001 28657/2207*141422324^(2/13) 2329990938490466 a001 28657/2207*2537720636^(2/15) 2329990938490466 a001 28657/2207*45537549124^(2/17) 2329990938490466 a001 28657/2207*14662949395604^(2/21) 2329990938490466 a001 28657/2207*(1/2+1/2*5^(1/2))^6 2329990938490466 a001 28657/2207*10749957122^(1/8) 2329990938490466 a001 28657/2207*4106118243^(3/23) 2329990938490466 a001 28657/2207*1568397607^(3/22) 2329990938490466 a001 28657/2207*599074578^(1/7) 2329990938490466 a001 28657/2207*228826127^(3/20) 2329990938490466 a001 28657/2207*87403803^(3/19) 2329990938490466 a001 28657/2207*33385282^(1/6) 2329990938490468 a001 28657/2207*12752043^(3/17) 2329990938490484 a001 28657/2207*4870847^(3/16) 2329990938490600 a001 28657/2207*1860498^(1/5) 2329990938490816 a001 987/64079*1860498^(2/3) 2329990938491454 a001 28657/2207*710647^(3/14) 2329990938493663 a001 987/64079*710647^(5/7) 2329990938497763 a001 28657/2207*271443^(3/13) 2329990938514693 a001 987/64079*271443^(10/13) 2329990938521990 a001 28284459/121393 2329990938544652 a001 28657/2207*103682^(1/4) 2329990938670988 a001 987/64079*103682^(5/6) 2329990938706785 a001 514229/3571*521^(1/13) 2329990938895626 a001 28657/2207*39603^(3/11) 2329990938953337 a001 196418/2207*15127^(1/10) 2329990939124240 a001 21/2206*39603^(21/22) 2329990939408511 a004 Fibonacci(16)*Lucas(22)/(1/2+sqrt(5)/2)^25 2329990939418754 a001 121393/2207*15127^(3/20) 2329990939840901 a001 987/64079*39603^(10/11) 2329990940001263 a001 17711/2207*15127^(7/20) 2329990940042284 a001 75025/2207*15127^(1/5) 2329990940251869 a001 46368/2207*15127^(1/4) 2329990940330694 a001 10946/2207*24476^(8/21) 2329990941368154 a001 987/24476*64079^(18/23) 2329990941545175 a001 28657/2207*15127^(3/10) 2329990941614967 a001 10946/2207*64079^(8/23) 2329990941795684 a001 317811/2207*5778^(1/18) 2329990941804188 a001 987/24476*439204^(2/3) 2329990941812220 a001 987/24476*7881196^(6/11) 2329990941812241 a001 987/24476*141422324^(6/13) 2329990941812241 a001 987/24476*2537720636^(2/5) 2329990941812241 a001 987/24476*45537549124^(6/17) 2329990941812241 a001 987/24476*14662949395604^(2/7) 2329990941812241 a001 987/24476*(1/2+1/2*5^(1/2))^18 2329990941812241 a001 987/24476*192900153618^(1/3) 2329990941812241 a001 987/24476*10749957122^(3/8) 2329990941812241 a001 987/24476*4106118243^(9/23) 2329990941812241 a001 987/24476*1568397607^(9/22) 2329990941812241 a001 987/24476*599074578^(3/7) 2329990941812241 a001 987/24476*228826127^(9/20) 2329990941812241 a001 987/24476*87403803^(9/19) 2329990941812242 a001 987/24476*33385282^(1/2) 2329990941812248 a001 987/24476*12752043^(9/17) 2329990941812296 a001 987/24476*4870847^(9/16) 2329990941812339 a001 10946/2207*(1/2+1/2*5^(1/2))^8 2329990941812339 a001 10946/2207*23725150497407^(1/8) 2329990941812339 a001 10946/2207*505019158607^(1/7) 2329990941812339 a001 10946/2207*73681302247^(2/13) 2329990941812339 a001 10946/2207*10749957122^(1/6) 2329990941812339 a001 10946/2207*4106118243^(4/23) 2329990941812339 a001 10946/2207*1568397607^(2/11) 2329990941812339 a001 10946/2207*599074578^(4/21) 2329990941812339 a001 10946/2207*228826127^(1/5) 2329990941812339 a001 10946/2207*87403803^(4/19) 2329990941812339 a001 10946/2207*33385282^(2/9) 2329990941812342 a001 10946/2207*12752043^(4/17) 2329990941812364 a001 10946/2207*4870847^(1/4) 2329990941812519 a001 10946/2207*1860498^(4/15) 2329990941812645 a001 987/24476*1860498^(3/5) 2329990941813657 a001 10946/2207*710647^(2/7) 2329990941815207 a001 987/24476*710647^(9/14) 2329990941822069 a001 10946/2207*271443^(4/13) 2329990941834133 a001 987/24476*271443^(9/13) 2329990941884587 a001 10946/2207*103682^(1/3) 2329990941964162 a001 121393/9349*1364^(2/5) 2329990941974799 a001 987/24476*103682^(3/4) 2329990942028985 a001 257231/1104 2329990942132046 a001 987/9349*9349^(16/19) 2329990942352552 a001 10946/2207*39603^(4/11) 2329990943027721 a001 987/24476*39603^(9/11) 2329990945689652 a001 196418/2207*5778^(1/9) 2329990945885285 a001 10946/2207*15127^(2/5) 2329990946110583 a001 329/13201*15127^(19/20) 2329990948105288 a004 Fibonacci(16)*Lucas(20)/(1/2+sqrt(5)/2)^23 2329990949523226 a001 121393/2207*5778^(1/6) 2329990950550389 a001 4181/2207*9349^(10/19) 2329990950976368 a001 987/24476*15127^(9/10) 2329990951346719 m001 (FeigenbaumD-exp(Pi))/(-Paris+Trott) 2329990953514913 a001 75025/2207*5778^(2/9) 2329990957092656 a001 46368/2207*5778^(5/18) 2329990960615349 m001 (Gompertz-Magata)/(Artin+FeigenbaumB) 2329990961617410 a001 987/9349*24476^(16/21) 2329990961754119 a001 28657/2207*5778^(1/3) 2329990962636138 a001 6765/2207*5778^(1/2) 2329990962728742 a001 4181/2207*24476^(10/21) 2329990963578364 a001 17711/2207*5778^(7/18) 2329990964185956 a001 987/9349*64079^(16/23) 2329990964334083 a001 4181/2207*64079^(10/23) 2329990964547682 a001 4181/2207*167761^(2/5) 2329990964580699 a001 987/9349*(1/2+1/2*5^(1/2))^16 2329990964580699 a001 987/9349*23725150497407^(1/4) 2329990964580699 a001 987/9349*73681302247^(4/13) 2329990964580699 a001 987/9349*10749957122^(1/3) 2329990964580699 a001 987/9349*4106118243^(8/23) 2329990964580699 a001 987/9349*1568397607^(4/11) 2329990964580699 a001 987/9349*599074578^(8/21) 2329990964580699 a001 987/9349*228826127^(2/5) 2329990964580700 a001 987/9349*87403803^(8/19) 2329990964580700 a001 987/9349*33385282^(4/9) 2329990964580706 a001 987/9349*12752043^(8/17) 2329990964580748 a001 987/9349*4870847^(1/2) 2329990964580796 a001 4181/2207*20633239^(2/7) 2329990964580797 a001 4181/2207*2537720636^(2/9) 2329990964580797 a001 4181/2207*312119004989^(2/11) 2329990964580797 a001 4181/2207*(1/2+1/2*5^(1/2))^10 2329990964580797 a001 4181/2207*28143753123^(1/5) 2329990964580797 a001 4181/2207*10749957122^(5/24) 2329990964580797 a001 4181/2207*4106118243^(5/23) 2329990964580797 a001 4181/2207*1568397607^(5/22) 2329990964580797 a001 4181/2207*599074578^(5/21) 2329990964580797 a001 4181/2207*228826127^(1/4) 2329990964580797 a001 4181/2207*87403803^(5/19) 2329990964580798 a001 4181/2207*33385282^(5/18) 2329990964580801 a001 4181/2207*12752043^(5/17) 2329990964580828 a001 4181/2207*4870847^(5/16) 2329990964581022 a001 4181/2207*1860498^(1/3) 2329990964581058 a001 987/9349*1860498^(8/15) 2329990964582445 a001 4181/2207*710647^(5/14) 2329990964583336 a001 987/9349*710647^(4/7) 2329990964592960 a001 4181/2207*271443^(5/13) 2329990964600159 a001 987/9349*271443^(8/13) 2329990964671107 a001 4181/2207*103682^(5/12) 2329990964725196 a001 987/9349*103682^(2/3) 2329990965256064 a001 4181/2207*39603^(5/11) 2329990965661126 a001 987/9349*39603^(8/11) 2329990966066286 a001 4126647/17711 2329990966114054 a007 Real Root Of -376*x^4-535*x^3+387*x^2-586*x+848 2329990967815553 a001 317811/2207*2207^(1/16) 2329990969671979 a001 4181/2207*15127^(1/2) 2329990970098323 m001 1/FeigenbaumD^2/FeigenbaumB/ln(BesselJ(0,1))^2 2329990970166768 a001 987/3571*3571^(14/17) 2329990971158459 a007 Real Root Of 771*x^4-176*x^3-19*x^2-455*x+107 2329990972726591 a001 987/9349*15127^(4/5) 2329990972830544 a001 10946/2207*5778^(4/9) 2329990976400904 m001 (ln(2)+cos(1/12*Pi))/(Cahen-FeigenbaumKappa) 2329990980906883 r005 Im(z^2+c),c=-10/29+19/51*I,n=14 2329990982973313 r005 Re(z^2+c),c=5/56+8/23*I,n=10 2329990984039500 p001 sum((-1)^n/(536*n+429)/(1024^n),n=0..infinity) 2329990984860109 p003 LerchPhi(1/2,5,121/227) 2329990988291890 l006 ln(781/8027) 2329990988640920 a001 317811/15127*1364^(1/3) 2329990989700450 a007 Real Root Of 466*x^4+778*x^3-509*x^2+451*x-79 2329990991022486 m001 (polylog(4,1/2)+Paris)/(Zeta(3)+3^(1/3)) 2329990991662749 a001 1597/2207*3571^(12/17) 2329990993654245 a001 141/2161*5778^(17/18) 2329990997341638 a001 832040/39603*1364^(1/3) 2329990997729391 a001 196418/2207*2207^(1/8) 2329990998611056 a001 46347/2206*1364^(1/3) 2329990998796261 a001 5702887/271443*1364^(1/3) 2329990998823282 a001 14930352/710647*1364^(1/3) 2329990998827225 a001 39088169/1860498*1364^(1/3) 2329990998827800 a001 102334155/4870847*1364^(1/3) 2329990998827884 a001 267914296/12752043*1364^(1/3) 2329990998827896 a001 701408733/33385282*1364^(1/3) 2329990998827898 a001 1836311903/87403803*1364^(1/3) 2329990998827898 a001 102287808/4868641*1364^(1/3) 2329990998827898 a001 12586269025/599074578*1364^(1/3) 2329990998827898 a001 32951280099/1568397607*1364^(1/3) 2329990998827898 a001 86267571272/4106118243*1364^(1/3) 2329990998827898 a001 225851433717/10749957122*1364^(1/3) 2329990998827898 a001 591286729879/28143753123*1364^(1/3) 2329990998827898 a001 1548008755920/73681302247*1364^(1/3) 2329990998827898 a001 4052739537881/192900153618*1364^(1/3) 2329990998827898 a001 225749145909/10745088481*1364^(1/3) 2329990998827898 a001 6557470319842/312119004989*1364^(1/3) 2329990998827898 a001 2504730781961/119218851371*1364^(1/3) 2329990998827898 a001 956722026041/45537549124*1364^(1/3) 2329990998827898 a001 365435296162/17393796001*1364^(1/3) 2329990998827898 a001 139583862445/6643838879*1364^(1/3) 2329990998827898 a001 53316291173/2537720636*1364^(1/3) 2329990998827898 a001 20365011074/969323029*1364^(1/3) 2329990998827898 a001 7778742049/370248451*1364^(1/3) 2329990998827898 a001 2971215073/141422324*1364^(1/3) 2329990998827899 a001 1134903170/54018521*1364^(1/3) 2329990998827904 a001 433494437/20633239*1364^(1/3) 2329990998827936 a001 165580141/7881196*1364^(1/3) 2329990998828155 a001 63245986/3010349*1364^(1/3) 2329990998829661 a001 24157817/1149851*1364^(1/3) 2329990998839982 a001 9227465/439204*1364^(1/3) 2329990998910725 a001 3524578/167761*1364^(1/3) 2329990999395599 a001 1346269/64079*1364^(1/3) 2329991002718978 a001 514229/24476*1364^(1/3) 2329991003353554 a001 4181/2207*5778^(5/9) 2329991007713886 a004 Fibonacci(16)*Lucas(18)/(1/2+sqrt(5)/2)^21 2329991012538905 a001 98209/2889*1364^(4/15) 2329991015130682 a001 28657/3571*1364^(7/15) 2329991015420335 b008 7+(3+Coth[2])^2 2329991016284832 a007 Real Root Of 493*x^4+935*x^3-233*x^2+491*x-294 2329991021412239 a001 610/2207*1364^(14/15) 2329991023794729 a007 Real Root Of 292*x^4+376*x^3-766*x^2+89*x+516 2329991024080693 r005 Re(z^2+c),c=-19/78+19/62*I,n=28 2329991024224434 r005 Im(z^2+c),c=-5/21+31/49*I,n=39 2329991024783654 p002 log(10^(6/5)-19^(7/12)) 2329991025497753 a001 196418/9349*1364^(1/3) 2329991025760819 a007 Real Root Of -114*x^4+286*x^3+930*x^2-490*x+787 2329991026617110 a001 987/9349*5778^(8/9) 2329991027582836 a001 121393/2207*2207^(3/16) 2329991028141424 m009 (1/4*Pi^2+5)/(2/5*Psi(1,1/3)-5/6) 2329991029070893 r005 Im(z^2+c),c=-35/106+19/51*I,n=20 2329991029144102 m001 (OneNinth-Tetranacci)/(Pi+FeigenbaumDelta) 2329991037661455 a008 Real Root of x^4-2*x^3-8*x^2-2*x-16 2329991048845648 r005 Re(z^2+c),c=-1+42/235*I,n=18 2329991055292028 m001 GAMMA(11/12)/ln(Champernowne)^2*cos(Pi/12) 2329991057594394 a001 75025/2207*2207^(1/4) 2329991060518401 m008 (1/4*Pi^6-3/4)/(2*Pi+4) 2329991064985591 r008 a(0)=2,K{-n^6,-7-3*n^3+2*n} 2329991067139726 r005 Im(z^2+c),c=-1/4+17/49*I,n=34 2329991068041288 r009 Re(z^3+c),c=-35/94+30/61*I,n=44 2329991068103938 a007 Real Root Of 25*x^4-190*x^3-125*x^2+932*x-290 2329991072137188 a001 514229/15127*1364^(4/15) 2329991077702375 r009 Re(z^3+c),c=-17/122+11/12*I,n=60 2329991080832461 a001 1346269/39603*1364^(4/15) 2329991082101084 a001 1762289/51841*1364^(4/15) 2329991082137323 a007 Real Root Of 815*x^4-703*x^3-950*x^2-592*x+196 2329991082286173 a001 9227465/271443*1364^(4/15) 2329991082313178 a001 24157817/710647*1364^(4/15) 2329991082317118 a001 31622993/930249*1364^(4/15) 2329991082317692 a001 165580141/4870847*1364^(4/15) 2329991082317776 a001 433494437/12752043*1364^(4/15) 2329991082317788 a001 567451585/16692641*1364^(4/15) 2329991082317790 a001 2971215073/87403803*1364^(4/15) 2329991082317790 a001 7778742049/228826127*1364^(4/15) 2329991082317791 a001 10182505537/299537289*1364^(4/15) 2329991082317791 a001 53316291173/1568397607*1364^(4/15) 2329991082317791 a001 139583862445/4106118243*1364^(4/15) 2329991082317791 a001 182717648081/5374978561*1364^(4/15) 2329991082317791 a001 956722026041/28143753123*1364^(4/15) 2329991082317791 a001 2504730781961/73681302247*1364^(4/15) 2329991082317791 a001 3278735159921/96450076809*1364^(4/15) 2329991082317791 a001 10610209857723/312119004989*1364^(4/15) 2329991082317791 a001 4052739537881/119218851371*1364^(4/15) 2329991082317791 a001 387002188980/11384387281*1364^(4/15) 2329991082317791 a001 591286729879/17393796001*1364^(4/15) 2329991082317791 a001 225851433717/6643838879*1364^(4/15) 2329991082317791 a001 1135099622/33391061*1364^(4/15) 2329991082317791 a001 32951280099/969323029*1364^(4/15) 2329991082317791 a001 12586269025/370248451*1364^(4/15) 2329991082317791 a001 1201881744/35355581*1364^(4/15) 2329991082317791 a001 1836311903/54018521*1364^(4/15) 2329991082317796 a001 701408733/20633239*1364^(4/15) 2329991082317828 a001 66978574/1970299*1364^(4/15) 2329991082318048 a001 102334155/3010349*1364^(4/15) 2329991082319552 a001 39088169/1149851*1364^(4/15) 2329991082329867 a001 196452/5779*1364^(4/15) 2329991082400565 a001 5702887/167761*1364^(4/15) 2329991082885136 a001 2178309/64079*1364^(4/15) 2329991086206435 a001 208010/6119*1364^(4/15) 2329991087192007 a001 46368/2207*2207^(5/16) 2329991087388884 l006 ln(4539/4646) 2329991096012106 a001 105937/1926*1364^(1/5) 2329991097253782 m004 -5-(30*Sqrt[5])/Pi+2*ProductLog[Sqrt[5]*Pi] 2329991097836387 a001 46368/3571*1364^(2/5) 2329991100995475 a001 987/3571*9349^(14/19) 2329991103801641 a001 1597/2207*9349^(12/19) 2329991104054482 r002 63th iterates of z^2 + 2329991107676485 m001 1/BesselK(1,1)*Salem^2/exp(GAMMA(1/12)) 2329991108970954 a001 317811/9349*1364^(4/15) 2329991113663289 r005 Re(z^2+c),c=-17/94+11/23*I,n=37 2329991116458836 l006 ln(4806/6067) 2329991117873342 a001 28657/2207*2207^(3/8) 2329991118045170 a001 987/3571*24476^(2/3) 2329991118415665 a001 1597/2207*24476^(4/7) 2329991120292647 a001 987/3571*64079^(14/23) 2329991120342074 a001 1597/2207*64079^(12/23) 2329991120632764 a001 1597/2207*439204^(4/9) 2329991120638046 a001 987/3571*20633239^(2/5) 2329991120638048 a001 987/3571*17393796001^(2/7) 2329991120638048 a001 987/3571*14662949395604^(2/9) 2329991120638048 a001 987/3571*(1/2+1/2*5^(1/2))^14 2329991120638048 a001 987/3571*10749957122^(7/24) 2329991120638048 a001 987/3571*4106118243^(7/23) 2329991120638048 a001 987/3571*1568397607^(7/22) 2329991120638048 a001 987/3571*599074578^(1/3) 2329991120638048 a001 987/3571*228826127^(7/20) 2329991120638048 a001 987/3571*87403803^(7/19) 2329991120638049 a001 987/3571*33385282^(7/18) 2329991120638054 a001 987/3571*12752043^(7/17) 2329991120638091 a001 987/3571*4870847^(7/16) 2329991120638118 a001 1597/2207*7881196^(4/11) 2329991120638132 a001 1597/2207*141422324^(4/13) 2329991120638132 a001 1597/2207*2537720636^(4/15) 2329991120638132 a001 1597/2207*45537549124^(4/17) 2329991120638132 a001 1597/2207*817138163596^(4/19) 2329991120638132 a001 1597/2207*14662949395604^(4/21) 2329991120638132 a001 1597/2207*(1/2+1/2*5^(1/2))^12 2329991120638132 a001 1597/2207*73681302247^(3/13) 2329991120638132 a001 1597/2207*10749957122^(1/4) 2329991120638132 a001 1597/2207*4106118243^(6/23) 2329991120638132 a001 1597/2207*1568397607^(3/11) 2329991120638132 a001 1597/2207*599074578^(2/7) 2329991120638132 a001 1597/2207*228826127^(3/10) 2329991120638132 a001 1597/2207*87403803^(6/19) 2329991120638133 a001 1597/2207*33385282^(1/3) 2329991120638137 a001 1597/2207*12752043^(6/17) 2329991120638169 a001 1597/2207*4870847^(3/8) 2329991120638362 a001 987/3571*1860498^(7/15) 2329991120638401 a001 1597/2207*1860498^(2/5) 2329991120640109 a001 1597/2207*710647^(3/7) 2329991120640355 a001 987/3571*710647^(1/2) 2329991120652727 a001 1597/2207*271443^(6/13) 2329991120655076 a001 987/3571*271443^(7/13) 2329991120746504 a001 1597/2207*103682^(1/2) 2329991120764482 a001 987/3571*103682^(7/12) 2329991121448452 a001 1597/2207*39603^(6/11) 2329991121583422 a001 987/3571*39603^(7/11) 2329991126188983 a001 141/46*18^(40/57) 2329991126747551 a001 1597/2207*15127^(3/5) 2329991127765703 a001 987/3571*15127^(7/10) 2329991128283376 r009 Re(z^3+c),c=-7/64+19/24*I,n=45 2329991130820399 a001 525413/2255 2329991136972101 a001 1292/2889*3571^(13/17) 2329991139957294 m001 (GolombDickman+Robbin)/(Psi(2,1/3)+gamma(1)) 2329991143170507 m001 cos(Pi/12)*BesselJ(0,1)/exp(gamma)^2 2329991145717459 a001 17711/2207*2207^(7/16) 2329991150263583 m005 (51/44+1/4*5^(1/2))/(1/5*2^(1/2)+5/11) 2329991151567819 l006 ln(763/7842) 2329991155624648 a001 832040/15127*1364^(1/5) 2329991159744365 r005 Im(z^2+c),c=-79/126+15/32*I,n=44 2329991160183936 a001 2889/17*121393^(29/47) 2329991162502101 r005 Im(z^2+c),c=-89/82+7/31*I,n=8 2329991162807977 m001 1/exp(Sierpinski)^2*Backhouse^2*GAMMA(5/24)^2 2329991163771272 a004 Fibonacci(18)*Lucas(17)/(1/2+sqrt(5)/2)^22 2329991164322001 a001 726103/13201*1364^(1/5) 2329991165590927 a001 5702887/103682*1364^(1/5) 2329991165776061 a001 4976784/90481*1364^(1/5) 2329991165803072 a001 39088169/710647*1364^(1/5) 2329991165807013 a001 831985/15126*1364^(1/5) 2329991165807588 a001 267914296/4870847*1364^(1/5) 2329991165807672 a001 233802911/4250681*1364^(1/5) 2329991165807684 a001 1836311903/33385282*1364^(1/5) 2329991165807686 a001 1602508992/29134601*1364^(1/5) 2329991165807686 a001 12586269025/228826127*1364^(1/5) 2329991165807686 a001 10983760033/199691526*1364^(1/5) 2329991165807686 a001 86267571272/1568397607*1364^(1/5) 2329991165807686 a001 75283811239/1368706081*1364^(1/5) 2329991165807686 a001 591286729879/10749957122*1364^(1/5) 2329991165807686 a001 12585437040/228811001*1364^(1/5) 2329991165807686 a001 4052739537881/73681302247*1364^(1/5) 2329991165807686 a001 3536736619241/64300051206*1364^(1/5) 2329991165807686 a001 6557470319842/119218851371*1364^(1/5) 2329991165807686 a001 2504730781961/45537549124*1364^(1/5) 2329991165807686 a001 956722026041/17393796001*1364^(1/5) 2329991165807686 a001 365435296162/6643838879*1364^(1/5) 2329991165807686 a001 139583862445/2537720636*1364^(1/5) 2329991165807686 a001 53316291173/969323029*1364^(1/5) 2329991165807686 a001 20365011074/370248451*1364^(1/5) 2329991165807686 a001 7778742049/141422324*1364^(1/5) 2329991165807687 a001 2971215073/54018521*1364^(1/5) 2329991165807691 a001 1134903170/20633239*1364^(1/5) 2329991165807723 a001 433494437/7881196*1364^(1/5) 2329991165807943 a001 165580141/3010349*1364^(1/5) 2329991165809448 a001 63245986/1149851*1364^(1/5) 2329991165819765 a001 24157817/439204*1364^(1/5) 2329991165890480 a001 9227465/167761*1364^(1/5) 2329991166375167 a001 3524578/64079*1364^(1/5) 2329991167165443 a001 1597/2207*5778^(2/3) 2329991168727280 r005 Im(z^2+c),c=-6/13+23/60*I,n=20 2329991169697260 a001 1346269/24476*1364^(1/5) 2329991171294621 m001 (Pi^(1/2)+OneNinth)/(Porter-TwinPrimes) 2329991172110371 a001 317811/2207*843^(1/14) 2329991173313828 a007 Real Root Of 547*x^4+877*x^3-476*x^2+803*x-573 2329991174919911 a001 987/3571*5778^(7/9) 2329991175084805 a001 2584/15127*3571^(15/17) 2329991178362674 r005 Im(z^2+c),c=-2/25+13/45*I,n=15 2329991178408538 a001 646/6119*3571^(16/17) 2329991179508378 a001 514229/5778*1364^(2/15) 2329991180989511 a001 10946/2207*2207^(1/2) 2329991181625816 a001 75025/3571*1364^(1/3) 2329991184064319 a007 Real Root Of -339*x^4-374*x^3+876*x^2+210*x+994 2329991188392603 a001 987/1364*1364^(4/5) 2329991192467226 a001 514229/9349*1364^(1/5) 2329991194382019 r009 Re(z^3+c),c=-11/34+14/37*I,n=17 2329991196814977 a001 6765/2207*2207^(9/16) 2329991197000668 a001 2584/2207*2207^(11/16) 2329991215394906 s002 sum(A257184[n]/(10^n-1),n=1..infinity) 2329991218076604 a001 2255/1926*3571^(11/17) 2329991222672898 a001 2584/9349*3571^(14/17) 2329991223379877 a004 Fibonacci(20)*Lucas(17)/(1/2+sqrt(5)/2)^24 2329991223489000 m001 (ln(3)+BesselI(1,2))/(GAMMA(11/12)+Paris) 2329991232076655 a004 Fibonacci(22)*Lucas(17)/(1/2+sqrt(5)/2)^26 2329991233345498 a004 Fibonacci(24)*Lucas(17)/(1/2+sqrt(5)/2)^28 2329991233530620 a004 Fibonacci(26)*Lucas(17)/(1/2+sqrt(5)/2)^30 2329991233557629 a004 Fibonacci(28)*Lucas(17)/(1/2+sqrt(5)/2)^32 2329991233561569 a004 Fibonacci(30)*Lucas(17)/(1/2+sqrt(5)/2)^34 2329991233562144 a004 Fibonacci(32)*Lucas(17)/(1/2+sqrt(5)/2)^36 2329991233562228 a004 Fibonacci(34)*Lucas(17)/(1/2+sqrt(5)/2)^38 2329991233562240 a004 Fibonacci(36)*Lucas(17)/(1/2+sqrt(5)/2)^40 2329991233562242 a004 Fibonacci(38)*Lucas(17)/(1/2+sqrt(5)/2)^42 2329991233562242 a004 Fibonacci(40)*Lucas(17)/(1/2+sqrt(5)/2)^44 2329991233562243 a004 Fibonacci(42)*Lucas(17)/(1/2+sqrt(5)/2)^46 2329991233562243 a004 Fibonacci(44)*Lucas(17)/(1/2+sqrt(5)/2)^48 2329991233562243 a004 Fibonacci(46)*Lucas(17)/(1/2+sqrt(5)/2)^50 2329991233562243 a004 Fibonacci(48)*Lucas(17)/(1/2+sqrt(5)/2)^52 2329991233562243 a004 Fibonacci(50)*Lucas(17)/(1/2+sqrt(5)/2)^54 2329991233562243 a004 Fibonacci(52)*Lucas(17)/(1/2+sqrt(5)/2)^56 2329991233562243 a004 Fibonacci(54)*Lucas(17)/(1/2+sqrt(5)/2)^58 2329991233562243 a004 Fibonacci(56)*Lucas(17)/(1/2+sqrt(5)/2)^60 2329991233562243 a004 Fibonacci(58)*Lucas(17)/(1/2+sqrt(5)/2)^62 2329991233562243 a004 Fibonacci(60)*Lucas(17)/(1/2+sqrt(5)/2)^64 2329991233562243 a004 Fibonacci(62)*Lucas(17)/(1/2+sqrt(5)/2)^66 2329991233562243 a004 Fibonacci(64)*Lucas(17)/(1/2+sqrt(5)/2)^68 2329991233562243 a004 Fibonacci(66)*Lucas(17)/(1/2+sqrt(5)/2)^70 2329991233562243 a004 Fibonacci(68)*Lucas(17)/(1/2+sqrt(5)/2)^72 2329991233562243 a004 Fibonacci(70)*Lucas(17)/(1/2+sqrt(5)/2)^74 2329991233562243 a004 Fibonacci(72)*Lucas(17)/(1/2+sqrt(5)/2)^76 2329991233562243 a004 Fibonacci(74)*Lucas(17)/(1/2+sqrt(5)/2)^78 2329991233562243 a004 Fibonacci(76)*Lucas(17)/(1/2+sqrt(5)/2)^80 2329991233562243 a004 Fibonacci(78)*Lucas(17)/(1/2+sqrt(5)/2)^82 2329991233562243 a004 Fibonacci(80)*Lucas(17)/(1/2+sqrt(5)/2)^84 2329991233562243 a004 Fibonacci(82)*Lucas(17)/(1/2+sqrt(5)/2)^86 2329991233562243 a004 Fibonacci(84)*Lucas(17)/(1/2+sqrt(5)/2)^88 2329991233562243 a004 Fibonacci(86)*Lucas(17)/(1/2+sqrt(5)/2)^90 2329991233562243 a004 Fibonacci(88)*Lucas(17)/(1/2+sqrt(5)/2)^92 2329991233562243 a004 Fibonacci(90)*Lucas(17)/(1/2+sqrt(5)/2)^94 2329991233562243 a004 Fibonacci(92)*Lucas(17)/(1/2+sqrt(5)/2)^96 2329991233562243 a004 Fibonacci(94)*Lucas(17)/(1/2+sqrt(5)/2)^98 2329991233562243 a004 Fibonacci(96)*Lucas(17)/(1/2+sqrt(5)/2)^100 2329991233562243 a004 Fibonacci(95)*Lucas(17)/(1/2+sqrt(5)/2)^99 2329991233562243 a004 Fibonacci(93)*Lucas(17)/(1/2+sqrt(5)/2)^97 2329991233562243 a004 Fibonacci(91)*Lucas(17)/(1/2+sqrt(5)/2)^95 2329991233562243 a004 Fibonacci(89)*Lucas(17)/(1/2+sqrt(5)/2)^93 2329991233562243 a004 Fibonacci(87)*Lucas(17)/(1/2+sqrt(5)/2)^91 2329991233562243 a004 Fibonacci(85)*Lucas(17)/(1/2+sqrt(5)/2)^89 2329991233562243 a004 Fibonacci(83)*Lucas(17)/(1/2+sqrt(5)/2)^87 2329991233562243 a004 Fibonacci(81)*Lucas(17)/(1/2+sqrt(5)/2)^85 2329991233562243 a004 Fibonacci(79)*Lucas(17)/(1/2+sqrt(5)/2)^83 2329991233562243 a004 Fibonacci(77)*Lucas(17)/(1/2+sqrt(5)/2)^81 2329991233562243 a004 Fibonacci(75)*Lucas(17)/(1/2+sqrt(5)/2)^79 2329991233562243 a004 Fibonacci(73)*Lucas(17)/(1/2+sqrt(5)/2)^77 2329991233562243 a004 Fibonacci(71)*Lucas(17)/(1/2+sqrt(5)/2)^75 2329991233562243 a004 Fibonacci(69)*Lucas(17)/(1/2+sqrt(5)/2)^73 2329991233562243 a004 Fibonacci(67)*Lucas(17)/(1/2+sqrt(5)/2)^71 2329991233562243 a004 Fibonacci(65)*Lucas(17)/(1/2+sqrt(5)/2)^69 2329991233562243 a004 Fibonacci(63)*Lucas(17)/(1/2+sqrt(5)/2)^67 2329991233562243 a004 Fibonacci(61)*Lucas(17)/(1/2+sqrt(5)/2)^65 2329991233562243 a004 Fibonacci(59)*Lucas(17)/(1/2+sqrt(5)/2)^63 2329991233562243 a004 Fibonacci(57)*Lucas(17)/(1/2+sqrt(5)/2)^61 2329991233562243 a004 Fibonacci(55)*Lucas(17)/(1/2+sqrt(5)/2)^59 2329991233562243 a004 Fibonacci(53)*Lucas(17)/(1/2+sqrt(5)/2)^57 2329991233562243 a004 Fibonacci(51)*Lucas(17)/(1/2+sqrt(5)/2)^55 2329991233562243 a004 Fibonacci(49)*Lucas(17)/(1/2+sqrt(5)/2)^53 2329991233562243 a004 Fibonacci(47)*Lucas(17)/(1/2+sqrt(5)/2)^51 2329991233562243 a004 Fibonacci(45)*Lucas(17)/(1/2+sqrt(5)/2)^49 2329991233562243 a004 Fibonacci(43)*Lucas(17)/(1/2+sqrt(5)/2)^47 2329991233562243 a004 Fibonacci(41)*Lucas(17)/(1/2+sqrt(5)/2)^45 2329991233562243 a004 Fibonacci(39)*Lucas(17)/(1/2+sqrt(5)/2)^43 2329991233562243 a004 Fibonacci(37)*Lucas(17)/(1/2+sqrt(5)/2)^41 2329991233562248 a004 Fibonacci(35)*Lucas(17)/(1/2+sqrt(5)/2)^39 2329991233562257 a001 2/1597*(1/2+1/2*5^(1/2))^30 2329991233562280 a004 Fibonacci(33)*Lucas(17)/(1/2+sqrt(5)/2)^37 2329991233562500 a004 Fibonacci(31)*Lucas(17)/(1/2+sqrt(5)/2)^35 2329991233564005 a004 Fibonacci(29)*Lucas(17)/(1/2+sqrt(5)/2)^33 2329991233574321 a004 Fibonacci(27)*Lucas(17)/(1/2+sqrt(5)/2)^31 2329991233645031 a004 Fibonacci(25)*Lucas(17)/(1/2+sqrt(5)/2)^29 2329991233815115 p001 sum(1/(593*n+515)/(3^n),n=0..infinity) 2329991234129686 a004 Fibonacci(23)*Lucas(17)/(1/2+sqrt(5)/2)^27 2329991234695270 a001 6765/64079*3571^(16/17) 2329991237451560 a004 Fibonacci(21)*Lucas(17)/(1/2+sqrt(5)/2)^25 2329991239115476 a001 1346269/15127*1364^(2/15) 2329991242896236 a001 5473/2889*3571^(10/17) 2329991242907394 a001 17711/167761*3571^(16/17) 2329991243390189 a001 2255/13201*3571^(15/17) 2329991244093253 m001 (GAMMA(19/24)+Tetranacci)/(Totient-ZetaQ(3)) 2329991244105526 a001 11592/109801*3571^(16/17) 2329991244168799 a001 4181/5778*3571^(12/17) 2329991244280332 a001 121393/1149851*3571^(16/17) 2329991244305835 a001 317811/3010349*3571^(16/17) 2329991244309556 a001 208010/1970299*3571^(16/17) 2329991244310099 a001 2178309/20633239*3571^(16/17) 2329991244310178 a001 5702887/54018521*3571^(16/17) 2329991244310190 a001 3732588/35355581*3571^(16/17) 2329991244310192 a001 39088169/370248451*3571^(16/17) 2329991244310192 a001 102334155/969323029*3571^(16/17) 2329991244310192 a001 66978574/634430159*3571^(16/17) 2329991244310192 a001 701408733/6643838879*3571^(16/17) 2329991244310192 a001 1836311903/17393796001*3571^(16/17) 2329991244310192 a001 1201881744/11384387281*3571^(16/17) 2329991244310192 a001 12586269025/119218851371*3571^(16/17) 2329991244310192 a001 32951280099/312119004989*3571^(16/17) 2329991244310192 a001 21566892818/204284540899*3571^(16/17) 2329991244310192 a001 225851433717/2139295485799*3571^(16/17) 2329991244310192 a001 182717648081/1730726404001*3571^(16/17) 2329991244310192 a001 139583862445/1322157322203*3571^(16/17) 2329991244310192 a001 53316291173/505019158607*3571^(16/17) 2329991244310192 a001 10182505537/96450076809*3571^(16/17) 2329991244310192 a001 7778742049/73681302247*3571^(16/17) 2329991244310192 a001 2971215073/28143753123*3571^(16/17) 2329991244310192 a001 567451585/5374978561*3571^(16/17) 2329991244310192 a001 433494437/4106118243*3571^(16/17) 2329991244310192 a001 165580141/1568397607*3571^(16/17) 2329991244310192 a001 31622993/299537289*3571^(16/17) 2329991244310193 a001 24157817/228826127*3571^(16/17) 2329991244310197 a001 9227465/87403803*3571^(16/17) 2329991244310227 a001 1762289/16692641*3571^(16/17) 2329991244310435 a001 1346269/12752043*3571^(16/17) 2329991244311856 a001 514229/4870847*3571^(16/17) 2329991244321598 a001 98209/930249*3571^(16/17) 2329991244388367 a001 75025/710647*3571^(16/17) 2329991244846013 a001 28657/271443*3571^(16/17) 2329991247812035 a001 3524578/39603*1364^(2/15) 2329991247982765 a001 5473/51841*3571^(16/17) 2329991248269281 a001 17711/5778*3571^(9/17) 2329991249080845 a001 9227465/103682*1364^(2/15) 2329991249265962 a001 24157817/271443*1364^(2/15) 2329991249292971 a001 63245986/710647*1364^(2/15) 2329991249296911 a001 165580141/1860498*1364^(2/15) 2329991249297486 a001 433494437/4870847*1364^(2/15) 2329991249297570 a001 1134903170/12752043*1364^(2/15) 2329991249297582 a001 2971215073/33385282*1364^(2/15) 2329991249297584 a001 7778742049/87403803*1364^(2/15) 2329991249297584 a001 20365011074/228826127*1364^(2/15) 2329991249297584 a001 53316291173/599074578*1364^(2/15) 2329991249297584 a001 139583862445/1568397607*1364^(2/15) 2329991249297584 a001 365435296162/4106118243*1364^(2/15) 2329991249297584 a001 956722026041/10749957122*1364^(2/15) 2329991249297584 a001 2504730781961/28143753123*1364^(2/15) 2329991249297584 a001 6557470319842/73681302247*1364^(2/15) 2329991249297584 a001 10610209857723/119218851371*1364^(2/15) 2329991249297584 a001 4052739537881/45537549124*1364^(2/15) 2329991249297584 a001 1548008755920/17393796001*1364^(2/15) 2329991249297584 a001 591286729879/6643838879*1364^(2/15) 2329991249297584 a001 225851433717/2537720636*1364^(2/15) 2329991249297584 a001 86267571272/969323029*1364^(2/15) 2329991249297584 a001 32951280099/370248451*1364^(2/15) 2329991249297584 a001 12586269025/141422324*1364^(2/15) 2329991249297585 a001 4807526976/54018521*1364^(2/15) 2329991249297590 a001 1836311903/20633239*1364^(2/15) 2329991249297622 a001 3524667/39604*1364^(2/15) 2329991249297841 a001 267914296/3010349*1364^(2/15) 2329991249299346 a001 102334155/1149851*1364^(2/15) 2329991249309663 a001 39088169/439204*1364^(2/15) 2329991249380371 a001 14930352/167761*1364^(2/15) 2329991249865014 a001 5702887/64079*1364^(2/15) 2329991250602306 m001 (1+3^(1/2))^(1/2)/(LaplaceLimit^GaussAGM) 2329991253186804 a001 2178309/24476*1364^(2/15) 2329991253355810 a001 17711/103682*3571^(15/17) 2329991254809775 a001 15456/90481*3571^(15/17) 2329991255021905 a001 121393/710647*3571^(15/17) 2329991255052855 a001 105937/620166*3571^(15/17) 2329991255057370 a001 832040/4870847*3571^(15/17) 2329991255058029 a001 726103/4250681*3571^(15/17) 2329991255058125 a001 5702887/33385282*3571^(15/17) 2329991255058139 a001 4976784/29134601*3571^(15/17) 2329991255058141 a001 39088169/228826127*3571^(15/17) 2329991255058141 a001 34111385/199691526*3571^(15/17) 2329991255058141 a001 267914296/1568397607*3571^(15/17) 2329991255058141 a001 233802911/1368706081*3571^(15/17) 2329991255058141 a001 1836311903/10749957122*3571^(15/17) 2329991255058141 a001 1602508992/9381251041*3571^(15/17) 2329991255058141 a001 12586269025/73681302247*3571^(15/17) 2329991255058141 a001 10983760033/64300051206*3571^(15/17) 2329991255058141 a001 86267571272/505019158607*3571^(15/17) 2329991255058141 a001 75283811239/440719107401*3571^(15/17) 2329991255058141 a001 2504730781961/14662949395604*3571^(15/17) 2329991255058141 a001 139583862445/817138163596*3571^(15/17) 2329991255058141 a001 53316291173/312119004989*3571^(15/17) 2329991255058141 a001 20365011074/119218851371*3571^(15/17) 2329991255058141 a001 7778742049/45537549124*3571^(15/17) 2329991255058141 a001 2971215073/17393796001*3571^(15/17) 2329991255058141 a001 1134903170/6643838879*3571^(15/17) 2329991255058141 a001 433494437/2537720636*3571^(15/17) 2329991255058142 a001 165580141/969323029*3571^(15/17) 2329991255058142 a001 63245986/370248451*3571^(15/17) 2329991255058142 a001 24157817/141422324*3571^(15/17) 2329991255058148 a001 9227465/54018521*3571^(15/17) 2329991255058184 a001 3524578/20633239*3571^(15/17) 2329991255058436 a001 1346269/7881196*3571^(15/17) 2329991255060161 a001 514229/3010349*3571^(15/17) 2329991255071982 a001 196418/1149851*3571^(15/17) 2329991255153009 a001 75025/439204*3571^(15/17) 2329991255708374 a001 28657/167761*3571^(15/17) 2329991256189310 a001 6765/15127*3571^(13/17) 2329991256870166 m002 E^Pi+Pi/6-Log[Pi]/Pi 2329991258455909 a001 1292/2889*9349^(13/19) 2329991258623502 r002 17th iterates of z^2 + 2329991259513043 a001 6765/24476*3571^(14/17) 2329991259514903 a001 10946/64079*3571^(15/17) 2329991260220021 a004 Fibonacci(19)*Lucas(17)/(1/2+sqrt(5)/2)^23 2329991261070262 a001 28657/5778*3571^(8/17) 2329991262995841 a001 416020/2889*1364^(1/15) 2329991263552269 a001 4181/2207*2207^(5/8) 2329991264887948 a001 17711/64079*3571^(14/17) 2329991265001303 a001 121393/3571*1364^(4/15) 2329991265526098 a001 2207/89*610^(17/24) 2329991265672136 a001 46368/167761*3571^(14/17) 2329991265786547 a001 121393/439204*3571^(14/17) 2329991265803240 a001 317811/1149851*3571^(14/17) 2329991265805675 a001 832040/3010349*3571^(14/17) 2329991265806030 a001 2178309/7881196*3571^(14/17) 2329991265806082 a001 5702887/20633239*3571^(14/17) 2329991265806090 a001 14930352/54018521*3571^(14/17) 2329991265806091 a001 39088169/141422324*3571^(14/17) 2329991265806091 a001 102334155/370248451*3571^(14/17) 2329991265806091 a001 267914296/969323029*3571^(14/17) 2329991265806091 a001 701408733/2537720636*3571^(14/17) 2329991265806091 a001 1836311903/6643838879*3571^(14/17) 2329991265806091 a001 4807526976/17393796001*3571^(14/17) 2329991265806091 a001 12586269025/45537549124*3571^(14/17) 2329991265806091 a001 32951280099/119218851371*3571^(14/17) 2329991265806091 a001 86267571272/312119004989*3571^(14/17) 2329991265806091 a001 225851433717/817138163596*3571^(14/17) 2329991265806091 a001 1548008755920/5600748293801*3571^(14/17) 2329991265806091 a001 139583862445/505019158607*3571^(14/17) 2329991265806091 a001 53316291173/192900153618*3571^(14/17) 2329991265806091 a001 20365011074/73681302247*3571^(14/17) 2329991265806091 a001 7778742049/28143753123*3571^(14/17) 2329991265806091 a001 2971215073/10749957122*3571^(14/17) 2329991265806091 a001 1134903170/4106118243*3571^(14/17) 2329991265806091 a001 433494437/1568397607*3571^(14/17) 2329991265806091 a001 165580141/599074578*3571^(14/17) 2329991265806091 a001 63245986/228826127*3571^(14/17) 2329991265806092 a001 24157817/87403803*3571^(14/17) 2329991265806094 a001 9227465/33385282*3571^(14/17) 2329991265806114 a001 3524578/12752043*3571^(14/17) 2329991265806250 a001 1346269/4870847*3571^(14/17) 2329991265807180 a001 514229/1860498*3571^(14/17) 2329991265813556 a001 196418/710647*3571^(14/17) 2329991265857257 a001 75025/271443*3571^(14/17) 2329991266156791 a001 28657/103682*3571^(14/17) 2329991268209821 a001 10946/39603*3571^(14/17) 2329991269482384 a001 4181/39603*3571^(16/17) 2329991271034023 a001 2576/321*3571^(7/17) 2329991273582866 a001 17711/39603*3571^(13/17) 2329991273702921 a007 Real Root Of -39*x^4+335*x^3-382*x^2-231*x-476 2329991274287769 a001 1292/2889*24476^(13/21) 2329991274876145 p001 sum(1/(563*n+124)/n/(625^n),n=1..infinity) 2329991275954690 a001 832040/9349*1364^(2/15) 2329991276120552 a001 23184/51841*3571^(13/17) 2329991276127996 a001 6677056/28657 2329991276374713 a001 1292/2889*64079^(13/23) 2329991276490796 a001 121393/271443*3571^(13/17) 2329991276544813 a001 317811/710647*3571^(13/17) 2329991276552694 a001 416020/930249*3571^(13/17) 2329991276553844 a001 2178309/4870847*3571^(13/17) 2329991276554012 a001 5702887/12752043*3571^(13/17) 2329991276554036 a001 7465176/16692641*3571^(13/17) 2329991276554040 a001 39088169/87403803*3571^(13/17) 2329991276554041 a001 102334155/228826127*3571^(13/17) 2329991276554041 a001 133957148/299537289*3571^(13/17) 2329991276554041 a001 701408733/1568397607*3571^(13/17) 2329991276554041 a001 1836311903/4106118243*3571^(13/17) 2329991276554041 a001 2403763488/5374978561*3571^(13/17) 2329991276554041 a001 12586269025/28143753123*3571^(13/17) 2329991276554041 a001 32951280099/73681302247*3571^(13/17) 2329991276554041 a001 43133785636/96450076809*3571^(13/17) 2329991276554041 a001 225851433717/505019158607*3571^(13/17) 2329991276554041 a001 10610209857723/23725150497407*3571^(13/17) 2329991276554041 a001 182717648081/408569081798*3571^(13/17) 2329991276554041 a001 139583862445/312119004989*3571^(13/17) 2329991276554041 a001 53316291173/119218851371*3571^(13/17) 2329991276554041 a001 10182505537/22768774562*3571^(13/17) 2329991276554041 a001 7778742049/17393796001*3571^(13/17) 2329991276554041 a001 2971215073/6643838879*3571^(13/17) 2329991276554041 a001 567451585/1268860318*3571^(13/17) 2329991276554041 a001 433494437/969323029*3571^(13/17) 2329991276554041 a001 165580141/370248451*3571^(13/17) 2329991276554041 a001 31622993/70711162*3571^(13/17) 2329991276554042 a001 24157817/54018521*3571^(13/17) 2329991276554052 a001 9227465/20633239*3571^(13/17) 2329991276554116 a001 1762289/3940598*3571^(13/17) 2329991276554555 a001 1346269/3010349*3571^(13/17) 2329991276557565 a001 514229/1149851*3571^(13/17) 2329991276578198 a001 98209/219602*3571^(13/17) 2329991276695442 a001 1292/2889*141422324^(1/3) 2329991276695442 a001 1292/2889*(1/2+1/2*5^(1/2))^13 2329991276695442 a001 1292/2889*73681302247^(1/4) 2329991276711253 a001 1292/2889*271443^(1/2) 2329991276719619 a001 75025/167761*3571^(13/17) 2329991276812845 a001 1292/2889*103682^(13/24) 2329991277573289 a001 1292/2889*39603^(13/22) 2329991277688928 a001 28657/64079*3571^(13/17) 2329991281008942 a001 10946/15127*3571^(12/17) 2329991282081506 a001 75025/5778*3571^(6/17) 2329991282281504 a001 4181/15127*3571^(14/17) 2329991283313980 a001 1292/2889*15127^(13/20) 2329991284332676 a001 5473/12238*3571^(13/17) 2329991285605238 a001 4181/24476*3571^(15/17) 2329991286381987 a001 17711/15127*3571^(11/17) 2329991286383847 a001 28657/39603*3571^(12/17) 2329991287155011 m005 (1/3*2^(1/2)+3/7)/(11/12*gamma-1/7) 2329991287168035 a001 75025/103682*3571^(12/17) 2329991287282446 a001 196418/271443*3571^(12/17) 2329991287299139 a001 514229/710647*3571^(12/17) 2329991287301574 a001 1346269/1860498*3571^(12/17) 2329991287301930 a001 3524578/4870847*3571^(12/17) 2329991287301981 a001 9227465/12752043*3571^(12/17) 2329991287301989 a001 24157817/33385282*3571^(12/17) 2329991287301990 a001 63245986/87403803*3571^(12/17) 2329991287301990 a001 165580141/228826127*3571^(12/17) 2329991287301990 a001 433494437/599074578*3571^(12/17) 2329991287301990 a001 1134903170/1568397607*3571^(12/17) 2329991287301990 a001 2971215073/4106118243*3571^(12/17) 2329991287301990 a001 7778742049/10749957122*3571^(12/17) 2329991287301990 a001 20365011074/28143753123*3571^(12/17) 2329991287301990 a001 53316291173/73681302247*3571^(12/17) 2329991287301990 a001 139583862445/192900153618*3571^(12/17) 2329991287301990 a001 10610209857723/14662949395604*3571^(12/17) 2329991287301990 a001 225851433717/312119004989*3571^(12/17) 2329991287301990 a001 86267571272/119218851371*3571^(12/17) 2329991287301990 a001 32951280099/45537549124*3571^(12/17) 2329991287301990 a001 12586269025/17393796001*3571^(12/17) 2329991287301990 a001 4807526976/6643838879*3571^(12/17) 2329991287301990 a001 1836311903/2537720636*3571^(12/17) 2329991287301990 a001 701408733/969323029*3571^(12/17) 2329991287301990 a001 267914296/370248451*3571^(12/17) 2329991287301990 a001 102334155/141422324*3571^(12/17) 2329991287301991 a001 39088169/54018521*3571^(12/17) 2329991287301994 a001 14930352/20633239*3571^(12/17) 2329991287302013 a001 5702887/7881196*3571^(12/17) 2329991287302149 a001 2178309/3010349*3571^(12/17) 2329991287303079 a001 832040/1149851*3571^(12/17) 2329991287309455 a001 317811/439204*3571^(12/17) 2329991287353157 a001 121393/167761*3571^(12/17) 2329991287652690 a001 46368/64079*3571^(12/17) 2329991287899611 a007 Real Root Of -395*x^4+694*x^3+713*x^2+166*x-85 2329991289705721 a001 17711/24476*3571^(12/17) 2329991292715044 a001 121393/5778*3571^(5/17) 2329991293849655 m001 Si(Pi)/(KomornikLoreti^FeigenbaumMu) 2329991296347609 a001 15456/13201*3571^(11/17) 2329991297801573 a001 121393/103682*3571^(11/17) 2329991298013704 a001 105937/90481*3571^(11/17) 2329991298044653 a001 832040/710647*3571^(11/17) 2329991298049169 a001 726103/620166*3571^(11/17) 2329991298049827 a001 5702887/4870847*3571^(11/17) 2329991298049924 a001 4976784/4250681*3571^(11/17) 2329991298049938 a001 39088169/33385282*3571^(11/17) 2329991298049940 a001 34111385/29134601*3571^(11/17) 2329991298049940 a001 267914296/228826127*3571^(11/17) 2329991298049940 a001 233802911/199691526*3571^(11/17) 2329991298049940 a001 1836311903/1568397607*3571^(11/17) 2329991298049940 a001 1602508992/1368706081*3571^(11/17) 2329991298049940 a001 12586269025/10749957122*3571^(11/17) 2329991298049940 a001 10983760033/9381251041*3571^(11/17) 2329991298049940 a001 86267571272/73681302247*3571^(11/17) 2329991298049940 a001 75283811239/64300051206*3571^(11/17) 2329991298049940 a001 2504730781961/2139295485799*3571^(11/17) 2329991298049940 a001 365435296162/312119004989*3571^(11/17) 2329991298049940 a001 139583862445/119218851371*3571^(11/17) 2329991298049940 a001 53316291173/45537549124*3571^(11/17) 2329991298049940 a001 20365011074/17393796001*3571^(11/17) 2329991298049940 a001 7778742049/6643838879*3571^(11/17) 2329991298049940 a001 2971215073/2537720636*3571^(11/17) 2329991298049940 a001 1134903170/969323029*3571^(11/17) 2329991298049940 a001 433494437/370248451*3571^(11/17) 2329991298049940 a001 165580141/141422324*3571^(11/17) 2329991298049941 a001 63245986/54018521*3571^(11/17) 2329991298049946 a001 24157817/20633239*3571^(11/17) 2329991298049983 a001 9227465/7881196*3571^(11/17) 2329991298050235 a001 3524578/3010349*3571^(11/17) 2329991298051959 a001 1346269/1149851*3571^(11/17) 2329991298063781 a001 514229/439204*3571^(11/17) 2329991298144808 a001 196418/167761*3571^(11/17) 2329991298700173 a001 75025/64079*3571^(11/17) 2329991299182968 a001 28657/15127*3571^(10/17) 2329991299292459 r002 44th iterates of z^2 + 2329991302506701 a001 28657/24476*3571^(11/17) 2329991302946974 m001 (Pi^(1/2))^ErdosBorwein/OneNinth 2329991303221916 m005 (-7/12+1/6*5^(1/2))/(7/8*2^(1/2)-1/3) 2329991303506695 a001 98209/2889*3571^(4/17) 2329991303777404 a001 6765/9349*3571^(12/17) 2329991307395092 a001 75025/39603*3571^(10/17) 2329991308593224 a001 98209/51841*3571^(10/17) 2329991308768029 a001 514229/271443*3571^(10/17) 2329991308793533 a001 1346269/710647*3571^(10/17) 2329991308797254 a001 1762289/930249*3571^(10/17) 2329991308797797 a001 9227465/4870847*3571^(10/17) 2329991308797876 a001 24157817/12752043*3571^(10/17) 2329991308797888 a001 31622993/16692641*3571^(10/17) 2329991308797889 a001 165580141/87403803*3571^(10/17) 2329991308797890 a001 433494437/228826127*3571^(10/17) 2329991308797890 a001 567451585/299537289*3571^(10/17) 2329991308797890 a001 2971215073/1568397607*3571^(10/17) 2329991308797890 a001 7778742049/4106118243*3571^(10/17) 2329991308797890 a001 10182505537/5374978561*3571^(10/17) 2329991308797890 a001 53316291173/28143753123*3571^(10/17) 2329991308797890 a001 139583862445/73681302247*3571^(10/17) 2329991308797890 a001 182717648081/96450076809*3571^(10/17) 2329991308797890 a001 956722026041/505019158607*3571^(10/17) 2329991308797890 a001 10610209857723/5600748293801*3571^(10/17) 2329991308797890 a001 591286729879/312119004989*3571^(10/17) 2329991308797890 a001 225851433717/119218851371*3571^(10/17) 2329991308797890 a001 21566892818/11384387281*3571^(10/17) 2329991308797890 a001 32951280099/17393796001*3571^(10/17) 2329991308797890 a001 12586269025/6643838879*3571^(10/17) 2329991308797890 a001 1201881744/634430159*3571^(10/17) 2329991308797890 a001 1836311903/969323029*3571^(10/17) 2329991308797890 a001 701408733/370248451*3571^(10/17) 2329991308797890 a001 66978574/35355581*3571^(10/17) 2329991308797890 a001 102334155/54018521*3571^(10/17) 2329991308797895 a001 39088169/20633239*3571^(10/17) 2329991308797925 a001 3732588/1970299*3571^(10/17) 2329991308798133 a001 5702887/3010349*3571^(10/17) 2329991308799554 a001 2178309/1149851*3571^(10/17) 2329991308809295 a001 208010/109801*3571^(10/17) 2329991308876065 a001 317811/167761*3571^(10/17) 2329991309146730 a001 6624/2161*3571^(9/17) 2329991309333711 a001 121393/64079*3571^(10/17) 2329991310020730 s001 sum(exp(-Pi/2)^(n-1)*A006636[n],n=1..infinity) 2329991310582280 r005 Im(z^2+c),c=-8/9+25/128*I,n=31 2329991312470463 a001 11592/6119*3571^(10/17) 2329991314237953 a001 105937/1926*3571^(3/17) 2329991315258432 a001 2584/15127*9349^(15/19) 2329991316589168 a001 329/1926*2207^(15/16) 2329991318028630 a001 121393/39603*3571^(9/17) 2329991319324482 a001 317811/103682*3571^(9/17) 2329991319513544 a001 832040/271443*3571^(9/17) 2329991319541128 a001 311187/101521*3571^(9/17) 2329991319545152 a001 5702887/1860498*3571^(9/17) 2329991319545739 a001 14930352/4870847*3571^(9/17) 2329991319545825 a001 39088169/12752043*3571^(9/17) 2329991319545837 a001 14619165/4769326*3571^(9/17) 2329991319545839 a001 267914296/87403803*3571^(9/17) 2329991319545839 a001 701408733/228826127*3571^(9/17) 2329991319545840 a001 1836311903/599074578*3571^(9/17) 2329991319545840 a001 686789568/224056801*3571^(9/17) 2329991319545840 a001 12586269025/4106118243*3571^(9/17) 2329991319545840 a001 32951280099/10749957122*3571^(9/17) 2329991319545840 a001 86267571272/28143753123*3571^(9/17) 2329991319545840 a001 32264490531/10525900321*3571^(9/17) 2329991319545840 a001 591286729879/192900153618*3571^(9/17) 2329991319545840 a001 1548008755920/505019158607*3571^(9/17) 2329991319545840 a001 1515744265389/494493258286*3571^(9/17) 2329991319545840 a001 2504730781961/817138163596*3571^(9/17) 2329991319545840 a001 956722026041/312119004989*3571^(9/17) 2329991319545840 a001 365435296162/119218851371*3571^(9/17) 2329991319545840 a001 139583862445/45537549124*3571^(9/17) 2329991319545840 a001 53316291173/17393796001*3571^(9/17) 2329991319545840 a001 20365011074/6643838879*3571^(9/17) 2329991319545840 a001 7778742049/2537720636*3571^(9/17) 2329991319545840 a001 2971215073/969323029*3571^(9/17) 2329991319545840 a001 1134903170/370248451*3571^(9/17) 2329991319545840 a001 433494437/141422324*3571^(9/17) 2329991319545840 a001 165580141/54018521*3571^(9/17) 2329991319545845 a001 63245986/20633239*3571^(9/17) 2329991319545878 a001 24157817/7881196*3571^(9/17) 2329991319546102 a001 9227465/3010349*3571^(9/17) 2329991319547639 a001 3524578/1149851*3571^(9/17) 2329991319558175 a001 1346269/439204*3571^(9/17) 2329991319630391 a001 514229/167761*3571^(9/17) 2329991319828634 a004 Fibonacci(18)*Lucas(19)/(1/2+sqrt(5)/2)^24 2329991320125362 a001 196418/64079*3571^(9/17) 2329991320194213 a001 75025/15127*3571^(8/17) 2329991320870599 a001 2255/1926*9349^(11/19) 2329991321149129 a001 2584/39603*9349^(17/19) 2329991321799119 a001 2584/64079*9349^(18/19) 2329991322482274 r002 10th iterates of z^2 + 2329991322605022 a001 311187/2161*1364^(1/15) 2329991322733563 l006 ln(745/7657) 2329991322773101 m001 (-MadelungNaCl+TreeGrowth2nd)/(1-Psi(2,1/3)) 2329991322914998 m001 (-GAMMA(11/12)+ZetaQ(4))/(Catalan-arctan(1/2)) 2329991323517946 a001 75025/24476*3571^(9/17) 2329991324992278 a001 514229/5778*3571^(2/17) 2329991327100033 a001 1292/2889*5778^(13/18) 2329991327927075 a001 646/6119*9349^(16/19) 2329991328597037 a001 10946/9349*3571^(11/17) 2329991328820281 a001 196418/39603*3571^(8/17) 2329991329869600 a001 4181/9349*3571^(13/17) 2329991330078807 a001 514229/103682*3571^(8/17) 2329991330262424 a001 1346269/271443*3571^(8/17) 2329991330289213 a001 3524578/710647*3571^(8/17) 2329991330293122 a001 9227465/1860498*3571^(8/17) 2329991330293692 a001 24157817/4870847*3571^(8/17) 2329991330293775 a001 63245986/12752043*3571^(8/17) 2329991330293787 a001 165580141/33385282*3571^(8/17) 2329991330293789 a001 433494437/87403803*3571^(8/17) 2329991330293789 a001 1134903170/228826127*3571^(8/17) 2329991330293789 a001 2971215073/599074578*3571^(8/17) 2329991330293789 a001 7778742049/1568397607*3571^(8/17) 2329991330293789 a001 20365011074/4106118243*3571^(8/17) 2329991330293789 a001 53316291173/10749957122*3571^(8/17) 2329991330293789 a001 139583862445/28143753123*3571^(8/17) 2329991330293789 a001 365435296162/73681302247*3571^(8/17) 2329991330293789 a001 956722026041/192900153618*3571^(8/17) 2329991330293789 a001 2504730781961/505019158607*3571^(8/17) 2329991330293789 a001 10610209857723/2139295485799*3571^(8/17) 2329991330293789 a001 4052739537881/817138163596*3571^(8/17) 2329991330293789 a001 140728068720/28374454999*3571^(8/17) 2329991330293789 a001 591286729879/119218851371*3571^(8/17) 2329991330293789 a001 225851433717/45537549124*3571^(8/17) 2329991330293789 a001 86267571272/17393796001*3571^(8/17) 2329991330293789 a001 32951280099/6643838879*3571^(8/17) 2329991330293789 a001 1144206275/230701876*3571^(8/17) 2329991330293789 a001 4807526976/969323029*3571^(8/17) 2329991330293789 a001 1836311903/370248451*3571^(8/17) 2329991330293789 a001 701408733/141422324*3571^(8/17) 2329991330293790 a001 267914296/54018521*3571^(8/17) 2329991330293795 a001 9303105/1875749*3571^(8/17) 2329991330293827 a001 39088169/7881196*3571^(8/17) 2329991330294044 a001 14930352/3010349*3571^(8/17) 2329991330295537 a001 5702887/1149851*3571^(8/17) 2329991330305770 a001 2178309/439204*3571^(8/17) 2329991330375905 a001 75640/15251*3571^(8/17) 2329991330827751 a001 121393/15127*3571^(7/17) 2329991330856620 a001 317811/64079*3571^(8/17) 2329991331301884 a001 5702887/39603*1364^(1/15) 2329991332373459 a001 17711/5778*9349^(9/19) 2329991332570739 a001 7465176/51841*1364^(1/15) 2329991332755863 a001 39088169/271443*1364^(1/15) 2329991332782872 a001 14619165/101521*1364^(1/15) 2329991332786812 a001 133957148/930249*1364^(1/15) 2329991332787387 a001 701408733/4870847*1364^(1/15) 2329991332787471 a001 1836311903/12752043*1364^(1/15) 2329991332787484 a001 14930208/103681*1364^(1/15) 2329991332787485 a001 12586269025/87403803*1364^(1/15) 2329991332787486 a001 32951280099/228826127*1364^(1/15) 2329991332787486 a001 43133785636/299537289*1364^(1/15) 2329991332787486 a001 32264490531/224056801*1364^(1/15) 2329991332787486 a001 591286729879/4106118243*1364^(1/15) 2329991332787486 a001 774004377960/5374978561*1364^(1/15) 2329991332787486 a001 4052739537881/28143753123*1364^(1/15) 2329991332787486 a001 1515744265389/10525900321*1364^(1/15) 2329991332787486 a001 3278735159921/22768774562*1364^(1/15) 2329991332787486 a001 2504730781961/17393796001*1364^(1/15) 2329991332787486 a001 956722026041/6643838879*1364^(1/15) 2329991332787486 a001 182717648081/1268860318*1364^(1/15) 2329991332787486 a001 139583862445/969323029*1364^(1/15) 2329991332787486 a001 53316291173/370248451*1364^(1/15) 2329991332787486 a001 10182505537/70711162*1364^(1/15) 2329991332787486 a001 7778742049/54018521*1364^(1/15) 2329991332787491 a001 2971215073/20633239*1364^(1/15) 2329991332787523 a001 567451585/3940598*1364^(1/15) 2329991332787743 a001 433494437/3010349*1364^(1/15) 2329991332789248 a001 165580141/1149851*1364^(1/15) 2329991332799564 a001 31622993/219602*1364^(1/15) 2329991332870275 a001 24157817/167761*1364^(1/15) 2329991333354935 a001 9227465/64079*1364^(1/15) 2329991333525964 a001 2584/15127*24476^(5/7) 2329991333970082 a001 17711/9349*3571^(10/17) 2329991334151484 a001 121393/24476*3571^(8/17) 2329991334266788 a001 2255/1926*24476^(11/21) 2329991335737793 a001 416020/2889*3571^(1/17) 2329991335829531 a001 28657/5778*9349^(8/19) 2329991335933976 a001 2584/15127*64079^(15/23) 2329991336032664 a001 2255/1926*64079^(11/23) 2329991336221259 a001 3496152/15005 2329991336254375 a001 2584/15127*167761^(3/5) 2329991336297338 a001 2584/15127*439204^(5/9) 2329991336304031 a001 2584/15127*7881196^(5/11) 2329991336304038 a001 2255/1926*7881196^(1/3) 2329991336304046 a001 2584/15127*20633239^(3/7) 2329991336304048 a001 2584/15127*141422324^(5/13) 2329991336304048 a001 2584/15127*2537720636^(1/3) 2329991336304048 a001 2584/15127*45537549124^(5/17) 2329991336304048 a001 2584/15127*312119004989^(3/11) 2329991336304048 a001 2584/15127*14662949395604^(5/21) 2329991336304048 a001 2584/15127*(1/2+1/2*5^(1/2))^15 2329991336304048 a001 2584/15127*192900153618^(5/18) 2329991336304048 a001 2584/15127*28143753123^(3/10) 2329991336304048 a001 2584/15127*10749957122^(5/16) 2329991336304048 a001 2584/15127*599074578^(5/14) 2329991336304048 a001 2584/15127*228826127^(3/8) 2329991336304049 a001 2584/15127*33385282^(5/12) 2329991336304050 a001 2255/1926*312119004989^(1/5) 2329991336304050 a001 2255/1926*(1/2+1/2*5^(1/2))^11 2329991336304050 a001 2255/1926*1568397607^(1/4) 2329991336304385 a001 2584/15127*1860498^(1/2) 2329991336345323 a001 5473/2889*9349^(10/19) 2329991336403391 a001 2255/1926*103682^(11/24) 2329991336439513 a001 2584/15127*103682^(5/8) 2329991336448384 a001 2576/321*9349^(7/19) 2329991336676841 a001 1762289/12238*1364^(1/15) 2329991337046844 a001 2255/1926*39603^(1/2) 2329991337316948 a001 2584/15127*39603^(15/22) 2329991338150959 a001 75025/5778*9349^(6/19) 2329991338229202 r005 Im(z^2+c),c=-89/86+7/31*I,n=3 2329991339439588 a001 121393/5778*9349^(5/19) 2329991339551538 a001 105937/13201*3571^(7/17) 2329991340824322 a001 416020/51841*3571^(7/17) 2329991340886330 a001 98209/2889*9349^(4/19) 2329991341010019 a001 726103/90481*3571^(7/17) 2329991341037111 a001 5702887/710647*3571^(7/17) 2329991341041064 a001 829464/103361*3571^(7/17) 2329991341041641 a001 39088169/4870847*3571^(7/17) 2329991341041725 a001 34111385/4250681*3571^(7/17) 2329991341041737 a001 133957148/16692641*3571^(7/17) 2329991341041739 a001 233802911/29134601*3571^(7/17) 2329991341041739 a001 1836311903/228826127*3571^(7/17) 2329991341041739 a001 267084832/33281921*3571^(7/17) 2329991341041739 a001 12586269025/1568397607*3571^(7/17) 2329991341041739 a001 10983760033/1368706081*3571^(7/17) 2329991341041739 a001 43133785636/5374978561*3571^(7/17) 2329991341041739 a001 75283811239/9381251041*3571^(7/17) 2329991341041739 a001 591286729879/73681302247*3571^(7/17) 2329991341041739 a001 86000486440/10716675201*3571^(7/17) 2329991341041739 a001 4052739537881/505019158607*3571^(7/17) 2329991341041739 a001 3278735159921/408569081798*3571^(7/17) 2329991341041739 a001 2504730781961/312119004989*3571^(7/17) 2329991341041739 a001 956722026041/119218851371*3571^(7/17) 2329991341041739 a001 182717648081/22768774562*3571^(7/17) 2329991341041739 a001 139583862445/17393796001*3571^(7/17) 2329991341041739 a001 53316291173/6643838879*3571^(7/17) 2329991341041739 a001 10182505537/1268860318*3571^(7/17) 2329991341041739 a001 7778742049/969323029*3571^(7/17) 2329991341041739 a001 2971215073/370248451*3571^(7/17) 2329991341041739 a001 567451585/70711162*3571^(7/17) 2329991341041740 a001 433494437/54018521*3571^(7/17) 2329991341041745 a001 165580141/20633239*3571^(7/17) 2329991341041777 a001 31622993/3940598*3571^(7/17) 2329991341041997 a001 24157817/3010349*3571^(7/17) 2329991341043507 a001 9227465/1149851*3571^(7/17) 2329991341053856 a001 1762289/219602*3571^(7/17) 2329991341124785 a001 1346269/167761*3571^(7/17) 2329991341610945 a001 514229/64079*3571^(7/17) 2329991341619402 a001 196418/15127*3571^(6/17) 2329991341852331 a001 2584/39603*24476^(17/21) 2329991341904351 a001 2255/1926*15127^(11/20) 2329991342272679 a001 105937/1926*9349^(3/19) 2329991342597096 a004 Fibonacci(18)*Lucas(21)/(1/2+sqrt(5)/2)^26 2329991342750763 a001 1292/51841*24476^(19/21) 2329991342865091 a001 2584/167761*24476^(20/21) 2329991343333978 a001 17711/5778*24476^(3/7) 2329991343428474 m005 (1/2*Catalan-5/8)/(1/5*Pi-7/10) 2329991343682096 a001 514229/5778*9349^(2/19) 2329991343720157 a001 2584/64079*24476^(6/7) 2329991343940822 a001 2584/15127*15127^(3/4) 2329991344581412 a001 2584/39603*64079^(17/23) 2329991344778786 a001 17711/5778*64079^(9/23) 2329991344943136 a001 98209/12238*3571^(7/17) 2329991344973233 a001 2576/321*24476^(1/3) 2329991344988748 a001 1346036/5777 2329991344996803 a001 17711/5778*439204^(1/3) 2329991345000819 a001 17711/5778*7881196^(3/11) 2329991345000827 a001 2584/39603*45537549124^(1/3) 2329991345000827 a001 2584/39603*(1/2+1/2*5^(1/2))^17 2329991345000829 a001 17711/5778*141422324^(3/13) 2329991345000829 a001 17711/5778*2537720636^(1/5) 2329991345000829 a001 17711/5778*45537549124^(3/17) 2329991345000829 a001 17711/5778*14662949395604^(1/7) 2329991345000829 a001 17711/5778*(1/2+1/2*5^(1/2))^9 2329991345000829 a001 17711/5778*192900153618^(1/6) 2329991345000829 a001 17711/5778*10749957122^(3/16) 2329991345000829 a001 17711/5778*599074578^(3/14) 2329991345000829 a001 17711/5778*33385282^(1/4) 2329991345000834 a001 2584/39603*12752043^(1/2) 2329991345001031 a001 17711/5778*1860498^(3/10) 2329991345082108 a001 17711/5778*103682^(3/8) 2329991345082702 a001 416020/2889*9349^(1/19) 2329991345154354 a001 2584/39603*103682^(17/24) 2329991345457971 a001 75025/5778*24476^(2/7) 2329991345528765 a001 121393/5778*24476^(5/21) 2329991345572215 a001 28657/5778*24476^(8/21) 2329991345608569 a001 17711/5778*39603^(9/22) 2329991345757672 a001 98209/2889*24476^(4/21) 2329991345800912 a001 1292/51841*64079^(19/23) 2329991345918970 a004 Fibonacci(18)*Lucas(23)/(1/2+sqrt(5)/2)^28 2329991345926185 a001 105937/1926*24476^(1/7) 2329991345936690 a001 2584/271443*64079^(21/23) 2329991345955720 a001 34/5779*64079^(22/23) 2329991346075773 a001 2584/167761*64079^(20/23) 2329991346096971 a001 2576/321*64079^(7/23) 2329991346117767 a001 514229/5778*24476^(2/21) 2329991346148780 a001 2584/39603*39603^(17/22) 2329991346267907 a001 119814912/514229 2329991346269670 a001 1292/51841*817138163596^(1/3) 2329991346269670 a001 1292/51841*(1/2+1/2*5^(1/2))^19 2329991346269670 a001 1292/51841*87403803^(1/2) 2329991346269671 a001 2576/321*20633239^(1/5) 2329991346269672 a001 2576/321*17393796001^(1/7) 2329991346269672 a001 2576/321*14662949395604^(1/9) 2329991346269672 a001 2576/321*(1/2+1/2*5^(1/2))^7 2329991346269672 a001 2576/321*599074578^(1/6) 2329991346270825 a001 2576/321*710647^(1/4) 2329991346300537 a001 416020/2889*24476^(1/21) 2329991346331436 a001 121393/5778*64079^(5/23) 2329991346332889 a001 2576/321*103682^(7/24) 2329991346399809 a001 98209/2889*64079^(4/23) 2329991346403625 a004 Fibonacci(18)*Lucas(25)/(1/2+sqrt(5)/2)^30 2329991346407788 a001 105937/1926*64079^(3/23) 2329991346421176 a001 75025/5778*64079^(6/23) 2329991346438236 a001 121393/5778*167761^(1/5) 2329991346438835 a001 514229/5778*64079^(2/23) 2329991346441259 a001 1292/51841*103682^(19/24) 2329991346445397 a001 2584/271443*439204^(7/9) 2329991346454534 a001 313679512/1346269 2329991346454767 a001 2584/271443*7881196^(7/11) 2329991346454788 a001 2584/271443*20633239^(3/5) 2329991346454791 a001 2584/271443*141422324^(7/13) 2329991346454791 a001 2584/271443*2537720636^(7/15) 2329991346454791 a001 2584/271443*17393796001^(3/7) 2329991346454791 a001 2584/271443*45537549124^(7/17) 2329991346454791 a001 2584/271443*14662949395604^(1/3) 2329991346454791 a001 2584/271443*(1/2+1/2*5^(1/2))^21 2329991346454791 a001 2584/271443*192900153618^(7/18) 2329991346454791 a001 2584/271443*10749957122^(7/16) 2329991346454791 a001 2584/271443*599074578^(1/2) 2329991346454793 a001 2584/271443*33385282^(7/12) 2329991346454793 a001 121393/5778*20633239^(1/7) 2329991346454793 a001 121393/5778*2537720636^(1/9) 2329991346454793 a001 121393/5778*312119004989^(1/11) 2329991346454793 a001 121393/5778*(1/2+1/2*5^(1/2))^5 2329991346454793 a001 121393/5778*28143753123^(1/10) 2329991346454793 a001 121393/5778*228826127^(1/8) 2329991346454906 a001 121393/5778*1860498^(1/6) 2329991346455263 a001 2584/271443*1860498^(7/10) 2329991346458252 a001 2584/271443*710647^(3/4) 2329991346461071 a001 416020/2889*64079^(1/23) 2329991346474335 a004 Fibonacci(18)*Lucas(27)/(1/2+sqrt(5)/2)^32 2329991346477439 a001 2584/1149851*439204^(8/9) 2329991346480460 a001 105937/1926*439204^(1/9) 2329991346481763 a001 410611812/1762289 2329991346481799 a001 105937/1926*7881196^(1/11) 2329991346481800 a001 2584/710647*(1/2+1/2*5^(1/2))^23 2329991346481800 a001 2584/710647*4106118243^(1/2) 2329991346481802 a001 105937/1926*141422324^(1/13) 2329991346481802 a001 105937/1926*2537720636^(1/15) 2329991346481802 a001 105937/1926*45537549124^(1/17) 2329991346481802 a001 105937/1926*14662949395604^(1/21) 2329991346481802 a001 105937/1926*(1/2+1/2*5^(1/2))^3 2329991346481802 a001 105937/1926*192900153618^(1/18) 2329991346481802 a001 105937/1926*10749957122^(1/16) 2329991346481802 a001 105937/1926*599074578^(1/14) 2329991346481802 a001 105937/1926*33385282^(1/12) 2329991346481870 a001 105937/1926*1860498^(1/10) 2329991346484652 a004 Fibonacci(18)*Lucas(29)/(1/2+sqrt(5)/2)^34 2329991346485735 a001 429998272/1845493 2329991346485737 a001 1292/930249*20633239^(5/7) 2329991346485741 a001 1292/930249*2537720636^(5/9) 2329991346485741 a001 1292/930249*312119004989^(5/11) 2329991346485741 a001 1292/930249*(1/2+1/2*5^(1/2))^25 2329991346485741 a001 1292/930249*3461452808002^(5/12) 2329991346485741 a001 1292/930249*28143753123^(1/2) 2329991346485741 a001 1292/930249*228826127^(5/8) 2329991346485743 a001 208010/2889+208010/2889*5^(1/2) 2329991346486157 a004 Fibonacci(18)*Lucas(31)/(1/2+sqrt(5)/2)^36 2329991346486285 a001 2584/4870847*7881196^(9/11) 2329991346486302 a001 1292/930249*1860498^(5/6) 2329991346486315 a001 5628750456/24157817 2329991346486316 a001 2584/4870847*141422324^(9/13) 2329991346486316 a001 2584/4870847*2537720636^(3/5) 2329991346486316 a001 2584/4870847*45537549124^(9/17) 2329991346486316 a001 2584/4870847*817138163596^(9/19) 2329991346486316 a001 2584/4870847*14662949395604^(3/7) 2329991346486316 a001 2584/4870847*(1/2+1/2*5^(1/2))^27 2329991346486316 a001 2584/4870847*192900153618^(1/2) 2329991346486316 a001 2584/4870847*10749957122^(9/16) 2329991346486316 a001 2584/4870847*599074578^(9/14) 2329991346486317 a001 2584/4870847*33385282^(3/4) 2329991346486318 a004 Fibonacci(32)/Lucas(18)/(1/2+sqrt(5)/2) 2329991346486376 a004 Fibonacci(18)*Lucas(33)/(1/2+sqrt(5)/2)^38 2329991346486385 a001 2584/20633239*7881196^(10/11) 2329991346486399 a001 7368130004/31622993 2329991346486400 a001 2584/12752043*(1/2+1/2*5^(1/2))^29 2329991346486400 a001 2584/12752043*1322157322203^(1/2) 2329991346486402 a004 Fibonacci(34)/Lucas(18)/(1/2+sqrt(5)/2)^3 2329991346486408 a004 Fibonacci(18)*Lucas(35)/(1/2+sqrt(5)/2)^40 2329991346486412 a001 38580029568/165580141 2329991346486412 a001 1292/16692641*(1/2+1/2*5^(1/2))^31 2329991346486412 a001 1292/16692641*9062201101803^(1/2) 2329991346486413 a004 Fibonacci(18)*Lucas(37)/(1/2+sqrt(5)/2)^42 2329991346486413 a001 2584/87403803*141422324^(11/13) 2329991346486414 a001 101003828696/433494437 2329991346486414 a001 2584/87403803*2537720636^(11/15) 2329991346486414 a001 2584/87403803*45537549124^(11/17) 2329991346486414 a001 2584/87403803*312119004989^(3/5) 2329991346486414 a001 2584/87403803*817138163596^(11/19) 2329991346486414 a001 2584/87403803*14662949395604^(11/21) 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^33/Lucas(38) 2329991346486414 a001 2584/87403803*192900153618^(11/18) 2329991346486414 a001 2584/87403803*10749957122^(11/16) 2329991346486414 a001 2584/87403803*1568397607^(3/4) 2329991346486414 a001 2584/87403803*599074578^(11/14) 2329991346486414 a004 Fibonacci(18)*Lucas(39)/(1/2+sqrt(5)/2)^44 2329991346486414 a001 2584/370248451*141422324^(12/13) 2329991346486414 a001 1555479156/6675901 2329991346486414 a001 2584/228826127*2537720636^(7/9) 2329991346486414 a001 2584/228826127*17393796001^(5/7) 2329991346486414 a001 2584/228826127*312119004989^(7/11) 2329991346486414 a001 2584/228826127*14662949395604^(5/9) 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^35/Lucas(40) 2329991346486414 a001 2584/228826127*505019158607^(5/8) 2329991346486414 a001 2584/228826127*28143753123^(7/10) 2329991346486414 a001 2584/228826127*599074578^(5/6) 2329991346486414 a004 Fibonacci(18)*Lucas(41)/(1/2+sqrt(5)/2)^46 2329991346486414 a001 692290540864/2971215073 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^37/Lucas(42) 2329991346486414 a001 2584/228826127*228826127^(7/8) 2329991346486414 a004 Fibonacci(18)*Lucas(43)/(1/2+sqrt(5)/2)^48 2329991346486414 a001 2584/1568397607*2537720636^(13/15) 2329991346486414 a001 1812440166072/7778742049 2329991346486414 a001 2584/1568397607*45537549124^(13/17) 2329991346486414 a001 2584/1568397607*14662949395604^(13/21) 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^39/Lucas(44) 2329991346486414 a001 2584/1568397607*192900153618^(13/18) 2329991346486414 a001 2584/1568397607*73681302247^(3/4) 2329991346486414 a001 2584/1568397607*10749957122^(13/16) 2329991346486414 a004 Fibonacci(18)*Lucas(45)/(1/2+sqrt(5)/2)^50 2329991346486414 a001 2584/6643838879*2537720636^(14/15) 2329991346486414 a001 2372514978676/10182505537 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^41/Lucas(46) 2329991346486414 a004 Fibonacci(18)*Lucas(47)/(1/2+sqrt(5)/2)^52 2329991346486414 a001 12422649705984/53316291173 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^43/Lucas(48) 2329991346486414 a004 Fibonacci(18)*Lucas(49)/(1/2+sqrt(5)/2)^54 2329991346486414 a001 2584/28143753123*45537549124^(15/17) 2329991346486414 a001 6504583832120/27916772489 2329991346486414 a001 2584/28143753123*312119004989^(9/11) 2329991346486414 a001 2584/28143753123*14662949395604^(5/7) 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^45/Lucas(50) 2329991346486414 a001 2584/28143753123*192900153618^(5/6) 2329991346486414 a004 Fibonacci(18)*Lucas(51)/(1/2+sqrt(5)/2)^56 2329991346486414 a001 2584/119218851371*45537549124^(16/17) 2329991346486414 a001 42573053887908/182717648081 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^47/Lucas(52) 2329991346486414 a001 2584/28143753123*28143753123^(9/10) 2329991346486414 a004 Fibonacci(18)*Lucas(53)/(1/2+sqrt(5)/2)^58 2329991346486414 a001 222915404166848/956722026041 2329991346486414 a001 1292/96450076809*14662949395604^(7/9) 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^49/Lucas(54) 2329991346486414 a001 1292/96450076809*505019158607^(7/8) 2329991346486414 a004 Fibonacci(18)*Lucas(55)/(1/2+sqrt(5)/2)^60 2329991346486414 a001 2584/505019158607*14662949395604^(17/21) 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^51/Lucas(56) 2329991346486414 a004 Fibonacci(18)*Lucas(57)/(1/2+sqrt(5)/2)^62 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^53/Lucas(58) 2329991346486414 a004 Fibonacci(18)*Lucas(59)/(1/2+sqrt(5)/2)^64 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^55/Lucas(60) 2329991346486414 a004 Fibonacci(18)*Lucas(61)/(1/2+sqrt(5)/2)^66 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^57/Lucas(62) 2329991346486414 a001 1292/1730726404001*3461452808002^(11/12) 2329991346486414 a004 Fibonacci(18)*Lucas(63)/(1/2+sqrt(5)/2)^68 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^59/Lucas(64) 2329991346486414 a004 Fibonacci(18)*Lucas(65)/(1/2+sqrt(5)/2)^70 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^61/Lucas(66) 2329991346486414 a004 Fibonacci(18)*Lucas(67)/(1/2+sqrt(5)/2)^72 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^63/Lucas(68) 2329991346486414 a004 Fibonacci(18)*Lucas(69)/(1/2+sqrt(5)/2)^74 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^65/Lucas(70) 2329991346486414 a004 Fibonacci(18)*Lucas(71)/(1/2+sqrt(5)/2)^76 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^67/Lucas(72) 2329991346486414 a004 Fibonacci(18)*Lucas(73)/(1/2+sqrt(5)/2)^78 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^69/Lucas(74) 2329991346486414 a004 Fibonacci(18)*Lucas(75)/(1/2+sqrt(5)/2)^80 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^71/Lucas(76) 2329991346486414 a004 Fibonacci(18)*Lucas(77)/(1/2+sqrt(5)/2)^82 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^73/Lucas(78) 2329991346486414 a004 Fibonacci(18)*Lucas(79)/(1/2+sqrt(5)/2)^84 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^75/Lucas(80) 2329991346486414 a004 Fibonacci(18)*Lucas(81)/(1/2+sqrt(5)/2)^86 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^77/Lucas(82) 2329991346486414 a004 Fibonacci(18)*Lucas(83)/(1/2+sqrt(5)/2)^88 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^79/Lucas(84) 2329991346486414 a004 Fibonacci(18)*Lucas(85)/(1/2+sqrt(5)/2)^90 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^81/Lucas(86) 2329991346486414 a004 Fibonacci(18)*Lucas(87)/(1/2+sqrt(5)/2)^92 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^83/Lucas(88) 2329991346486414 a004 Fibonacci(18)*Lucas(89)/(1/2+sqrt(5)/2)^94 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^85/Lucas(90) 2329991346486414 a004 Fibonacci(18)*Lucas(91)/(1/2+sqrt(5)/2)^96 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^87/Lucas(92) 2329991346486414 a004 Fibonacci(18)*Lucas(93)/(1/2+sqrt(5)/2)^98 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^89/Lucas(94) 2329991346486414 a004 Fibonacci(18)*Lucas(95)/(1/2+sqrt(5)/2)^100 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^91/Lucas(96) 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^93/Lucas(98) 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^94/Lucas(99) 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^95/Lucas(100) 2329991346486414 a004 Fibonacci(9)*Lucas(9)/(1/2+sqrt(5)/2)^5 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^92/Lucas(97) 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^90/Lucas(95) 2329991346486414 a004 Fibonacci(18)*Lucas(94)/(1/2+sqrt(5)/2)^99 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^88/Lucas(93) 2329991346486414 a004 Fibonacci(18)*Lucas(92)/(1/2+sqrt(5)/2)^97 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^86/Lucas(91) 2329991346486414 a004 Fibonacci(18)*Lucas(90)/(1/2+sqrt(5)/2)^95 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^84/Lucas(89) 2329991346486414 a004 Fibonacci(18)*Lucas(88)/(1/2+sqrt(5)/2)^93 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^82/Lucas(87) 2329991346486414 a004 Fibonacci(18)*Lucas(86)/(1/2+sqrt(5)/2)^91 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^80/Lucas(85) 2329991346486414 a004 Fibonacci(18)*Lucas(84)/(1/2+sqrt(5)/2)^89 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^78/Lucas(83) 2329991346486414 a004 Fibonacci(18)*Lucas(82)/(1/2+sqrt(5)/2)^87 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^76/Lucas(81) 2329991346486414 a004 Fibonacci(18)*Lucas(80)/(1/2+sqrt(5)/2)^85 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^74/Lucas(79) 2329991346486414 a004 Fibonacci(18)*Lucas(78)/(1/2+sqrt(5)/2)^83 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^72/Lucas(77) 2329991346486414 a004 Fibonacci(18)*Lucas(76)/(1/2+sqrt(5)/2)^81 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^70/Lucas(75) 2329991346486414 a004 Fibonacci(18)*Lucas(74)/(1/2+sqrt(5)/2)^79 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^68/Lucas(73) 2329991346486414 a004 Fibonacci(18)*Lucas(72)/(1/2+sqrt(5)/2)^77 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^66/Lucas(71) 2329991346486414 a004 Fibonacci(18)*Lucas(70)/(1/2+sqrt(5)/2)^75 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^64/Lucas(69) 2329991346486414 a004 Fibonacci(18)*Lucas(68)/(1/2+sqrt(5)/2)^73 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^62/Lucas(67) 2329991346486414 a004 Fibonacci(18)*Lucas(66)/(1/2+sqrt(5)/2)^71 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^60/Lucas(65) 2329991346486414 a004 Fibonacci(18)*Lucas(64)/(1/2+sqrt(5)/2)^69 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^58/Lucas(63) 2329991346486414 a004 Fibonacci(18)*Lucas(62)/(1/2+sqrt(5)/2)^67 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^56/Lucas(61) 2329991346486414 a004 Fibonacci(18)*Lucas(60)/(1/2+sqrt(5)/2)^65 2329991346486414 a001 2584/2139295485799*14662949395604^(6/7) 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^54/Lucas(59) 2329991346486414 a004 Fibonacci(18)*Lucas(58)/(1/2+sqrt(5)/2)^63 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^52/Lucas(57) 2329991346486414 a004 Fibonacci(18)*Lucas(56)/(1/2+sqrt(5)/2)^61 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^50/Lucas(55) 2329991346486414 a001 2584/312119004989*3461452808002^(5/6) 2329991346486414 a001 2584/505019158607*192900153618^(17/18) 2329991346486414 a004 Fibonacci(18)*Lucas(54)/(1/2+sqrt(5)/2)^59 2329991346486414 a001 2584/119218851371*14662949395604^(16/21) 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^48/Lucas(53) 2329991346486414 a001 137769296391032/591286729879 2329991346486414 a001 2584/119218851371*192900153618^(8/9) 2329991346486414 a004 Fibonacci(18)*Lucas(52)/(1/2+sqrt(5)/2)^57 2329991346486414 a001 2584/119218851371*73681302247^(12/13) 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^46/Lucas(51) 2329991346486414 a001 52623188615216/225851433717 2329991346486414 a004 Fibonacci(18)*Lucas(50)/(1/2+sqrt(5)/2)^55 2329991346486414 a001 2584/17393796001*312119004989^(4/5) 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^44/Lucas(49) 2329991346486414 a001 2584/17393796001*23725150497407^(11/16) 2329991346486414 a001 7778742049/33385283 2329991346486414 a001 2584/17393796001*73681302247^(11/13) 2329991346486414 a001 2584/28143753123*10749957122^(15/16) 2329991346486414 a004 Fibonacci(18)*Lucas(48)/(1/2+sqrt(5)/2)^53 2329991346486414 a001 646/11384387281*10749957122^(23/24) 2329991346486414 a001 2584/17393796001*10749957122^(11/12) 2329991346486414 a001 34/33391061*2537720636^(8/9) 2329991346486414 a001 2584/6643838879*17393796001^(6/7) 2329991346486414 a001 2584/6643838879*45537549124^(14/17) 2329991346486414 a001 2584/6643838879*817138163596^(14/19) 2329991346486414 a001 2584/6643838879*14662949395604^(2/3) 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^42/Lucas(47) 2329991346486414 a001 2584/6643838879*192900153618^(7/9) 2329991346486414 a001 7677619748632/32951280099 2329991346486414 a001 2584/6643838879*10749957122^(7/8) 2329991346486414 a004 Fibonacci(18)*Lucas(46)/(1/2+sqrt(5)/2)^51 2329991346486414 a001 2584/17393796001*4106118243^(22/23) 2329991346486414 a001 2584/6643838879*4106118243^(21/23) 2329991346486414 a001 34/33391061*312119004989^(8/11) 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^40/Lucas(45) 2329991346486414 a001 34/33391061*23725150497407^(5/8) 2329991346486414 a001 34/33391061*73681302247^(10/13) 2329991346486414 a001 34/33391061*28143753123^(4/5) 2329991346486414 a001 586517958256/2517253805 2329991346486414 a001 34/33391061*10749957122^(5/6) 2329991346486414 a001 34/33391061*4106118243^(20/23) 2329991346486414 a004 Fibonacci(18)*Lucas(44)/(1/2+sqrt(5)/2)^49 2329991346486414 a001 2584/6643838879*1568397607^(21/22) 2329991346486414 a001 34/33391061*1568397607^(10/11) 2329991346486414 a001 2584/969323029*817138163596^(2/3) 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^38/Lucas(43) 2329991346486414 a001 2584/969323029*10749957122^(19/24) 2329991346486414 a001 140018703151/600940872 2329991346486414 a001 2584/969323029*4106118243^(19/23) 2329991346486414 a001 2584/969323029*1568397607^(19/22) 2329991346486414 a001 2584/1568397607*599074578^(13/14) 2329991346486414 a004 Fibonacci(18)*Lucas(42)/(1/2+sqrt(5)/2)^47 2329991346486414 a001 34/33391061*599074578^(20/21) 2329991346486414 a001 2584/969323029*599074578^(19/21) 2329991346486414 a001 2584/370248451*2537720636^(4/5) 2329991346486414 a001 2584/370248451*45537549124^(12/17) 2329991346486414 a001 2584/370248451*14662949395604^(4/7) 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^36/Lucas(41) 2329991346486414 a001 2584/370248451*505019158607^(9/14) 2329991346486414 a001 2584/370248451*192900153618^(2/3) 2329991346486414 a001 2584/370248451*73681302247^(9/13) 2329991346486414 a001 2584/370248451*10749957122^(3/4) 2329991346486414 a001 2584/370248451*4106118243^(18/23) 2329991346486414 a001 427859084344/1836311903 2329991346486414 a001 2584/370248451*1568397607^(9/11) 2329991346486414 a001 2584/370248451*599074578^(6/7) 2329991346486414 a004 Fibonacci(18)*Lucas(40)/(1/2+sqrt(5)/2)^45 2329991346486414 a001 2584/969323029*228826127^(19/20) 2329991346486414 a001 2584/370248451*228826127^(9/10) 2329991346486414 a001 646/35355581*45537549124^(2/3) 2329991346486414 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^34/Lucas(39) 2329991346486414 a001 646/35355581*10749957122^(17/24) 2329991346486414 a001 646/35355581*4106118243^(17/23) 2329991346486414 a001 646/35355581*1568397607^(17/22) 2329991346486414 a001 163427627824/701408733 2329991346486414 a001 646/35355581*599074578^(17/21) 2329991346486414 a001 646/35355581*228826127^(17/20) 2329991346486414 a004 Fibonacci(18)*Lucas(38)/(1/2+sqrt(5)/2)^43 2329991346486414 a001 2584/370248451*87403803^(18/19) 2329991346486414 a001 646/35355581*87403803^(17/19) 2329991346486415 a001 2584/20633239*20633239^(6/7) 2329991346486415 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^32/Lucas(37) 2329991346486415 a001 2584/54018521*23725150497407^(1/2) 2329991346486415 a001 2584/54018521*73681302247^(8/13) 2329991346486415 a001 2584/54018521*10749957122^(2/3) 2329991346486415 a001 2584/54018521*4106118243^(16/23) 2329991346486415 a001 2584/54018521*1568397607^(8/11) 2329991346486415 a001 2584/54018521*599074578^(16/21) 2329991346486415 a001 7802974891/33489287 2329991346486415 a001 2584/54018521*228826127^(4/5) 2329991346486415 a001 2584/54018521*87403803^(16/19) 2329991346486415 a001 2584/87403803*33385282^(11/12) 2329991346486416 a004 Fibonacci(38)/Lucas(18)/(1/2+sqrt(5)/2)^7 2329991346486416 a004 Fibonacci(40)/Lucas(18)/(1/2+sqrt(5)/2)^9 2329991346486416 a004 Fibonacci(42)/Lucas(18)/(1/2+sqrt(5)/2)^11 2329991346486416 a004 Fibonacci(44)/Lucas(18)/(1/2+sqrt(5)/2)^13 2329991346486416 a004 Fibonacci(46)/Lucas(18)/(1/2+sqrt(5)/2)^15 2329991346486416 a004 Fibonacci(48)/Lucas(18)/(1/2+sqrt(5)/2)^17 2329991346486416 a004 Fibonacci(50)/Lucas(18)/(1/2+sqrt(5)/2)^19 2329991346486416 a004 Fibonacci(52)/Lucas(18)/(1/2+sqrt(5)/2)^21 2329991346486416 a004 Fibonacci(54)/Lucas(18)/(1/2+sqrt(5)/2)^23 2329991346486416 a004 Fibonacci(56)/Lucas(18)/(1/2+sqrt(5)/2)^25 2329991346486416 a004 Fibonacci(58)/Lucas(18)/(1/2+sqrt(5)/2)^27 2329991346486416 a004 Fibonacci(60)/Lucas(18)/(1/2+sqrt(5)/2)^29 2329991346486416 a004 Fibonacci(62)/Lucas(18)/(1/2+sqrt(5)/2)^31 2329991346486416 a004 Fibonacci(64)/Lucas(18)/(1/2+sqrt(5)/2)^33 2329991346486416 a004 Fibonacci(66)/Lucas(18)/(1/2+sqrt(5)/2)^35 2329991346486416 a004 Fibonacci(68)/Lucas(18)/(1/2+sqrt(5)/2)^37 2329991346486416 a004 Fibonacci(70)/Lucas(18)/(1/2+sqrt(5)/2)^39 2329991346486416 a004 Fibonacci(18)*Lucas(36)/(1/2+sqrt(5)/2)^41 2329991346486416 a004 Fibonacci(74)/Lucas(18)/(1/2+sqrt(5)/2)^43 2329991346486416 a004 Fibonacci(76)/Lucas(18)/(1/2+sqrt(5)/2)^45 2329991346486416 a004 Fibonacci(78)/Lucas(18)/(1/2+sqrt(5)/2)^47 2329991346486416 a004 Fibonacci(80)/Lucas(18)/(1/2+sqrt(5)/2)^49 2329991346486416 a004 Fibonacci(82)/Lucas(18)/(1/2+sqrt(5)/2)^51 2329991346486416 a004 Fibonacci(84)/Lucas(18)/(1/2+sqrt(5)/2)^53 2329991346486416 a004 Fibonacci(86)/Lucas(18)/(1/2+sqrt(5)/2)^55 2329991346486416 a004 Fibonacci(88)/Lucas(18)/(1/2+sqrt(5)/2)^57 2329991346486416 a004 Fibonacci(90)/Lucas(18)/(1/2+sqrt(5)/2)^59 2329991346486416 a004 Fibonacci(92)/Lucas(18)/(1/2+sqrt(5)/2)^61 2329991346486416 a004 Fibonacci(94)/Lucas(18)/(1/2+sqrt(5)/2)^63 2329991346486416 a004 Fibonacci(96)/Lucas(18)/(1/2+sqrt(5)/2)^65 2329991346486416 a004 Fibonacci(100)/Lucas(18)/(1/2+sqrt(5)/2)^69 2329991346486416 a004 Fibonacci(98)/Lucas(18)/(1/2+sqrt(5)/2)^67 2329991346486416 a004 Fibonacci(99)/Lucas(18)/(1/2+sqrt(5)/2)^68 2329991346486416 a004 Fibonacci(97)/Lucas(18)/(1/2+sqrt(5)/2)^66 2329991346486416 a004 Fibonacci(95)/Lucas(18)/(1/2+sqrt(5)/2)^64 2329991346486416 a004 Fibonacci(93)/Lucas(18)/(1/2+sqrt(5)/2)^62 2329991346486416 a004 Fibonacci(91)/Lucas(18)/(1/2+sqrt(5)/2)^60 2329991346486416 a004 Fibonacci(89)/Lucas(18)/(1/2+sqrt(5)/2)^58 2329991346486416 a004 Fibonacci(87)/Lucas(18)/(1/2+sqrt(5)/2)^56 2329991346486416 a004 Fibonacci(85)/Lucas(18)/(1/2+sqrt(5)/2)^54 2329991346486416 a004 Fibonacci(83)/Lucas(18)/(1/2+sqrt(5)/2)^52 2329991346486416 a004 Fibonacci(81)/Lucas(18)/(1/2+sqrt(5)/2)^50 2329991346486416 a004 Fibonacci(79)/Lucas(18)/(1/2+sqrt(5)/2)^48 2329991346486416 a004 Fibonacci(77)/Lucas(18)/(1/2+sqrt(5)/2)^46 2329991346486416 a004 Fibonacci(75)/Lucas(18)/(1/2+sqrt(5)/2)^44 2329991346486416 a004 Fibonacci(73)/Lucas(18)/(1/2+sqrt(5)/2)^42 2329991346486416 a004 Fibonacci(71)/Lucas(18)/(1/2+sqrt(5)/2)^40 2329991346486416 a004 Fibonacci(69)/Lucas(18)/(1/2+sqrt(5)/2)^38 2329991346486416 a004 Fibonacci(67)/Lucas(18)/(1/2+sqrt(5)/2)^36 2329991346486416 a004 Fibonacci(65)/Lucas(18)/(1/2+sqrt(5)/2)^34 2329991346486416 a004 Fibonacci(63)/Lucas(18)/(1/2+sqrt(5)/2)^32 2329991346486416 a004 Fibonacci(61)/Lucas(18)/(1/2+sqrt(5)/2)^30 2329991346486416 a004 Fibonacci(59)/Lucas(18)/(1/2+sqrt(5)/2)^28 2329991346486416 a004 Fibonacci(57)/Lucas(18)/(1/2+sqrt(5)/2)^26 2329991346486416 a004 Fibonacci(55)/Lucas(18)/(1/2+sqrt(5)/2)^24 2329991346486416 a004 Fibonacci(53)/Lucas(18)/(1/2+sqrt(5)/2)^22 2329991346486416 a004 Fibonacci(51)/Lucas(18)/(1/2+sqrt(5)/2)^20 2329991346486416 a004 Fibonacci(49)/Lucas(18)/(1/2+sqrt(5)/2)^18 2329991346486416 a004 Fibonacci(47)/Lucas(18)/(1/2+sqrt(5)/2)^16 2329991346486416 a001 646/35355581*33385282^(17/18) 2329991346486416 a004 Fibonacci(45)/Lucas(18)/(1/2+sqrt(5)/2)^14 2329991346486416 a004 Fibonacci(43)/Lucas(18)/(1/2+sqrt(5)/2)^12 2329991346486416 a004 Fibonacci(41)/Lucas(18)/(1/2+sqrt(5)/2)^10 2329991346486416 a004 Fibonacci(39)/Lucas(18)/(1/2+sqrt(5)/2)^8 2329991346486417 a001 2584/54018521*33385282^(8/9) 2329991346486417 a004 Fibonacci(37)/Lucas(18)/(1/2+sqrt(5)/2)^6 2329991346486419 a001 2584/20633239*141422324^(10/13) 2329991346486419 a001 2584/20633239*2537720636^(2/3) 2329991346486419 a001 2584/20633239*45537549124^(10/17) 2329991346486419 a001 2584/20633239*312119004989^(6/11) 2329991346486419 a001 2584/20633239*14662949395604^(10/21) 2329991346486419 a001 2584/20633239*(1/2+1/2*5^(1/2))^30 2329991346486419 a001 2584/20633239*192900153618^(5/9) 2329991346486419 a001 2584/20633239*28143753123^(3/5) 2329991346486419 a001 2584/20633239*10749957122^(5/8) 2329991346486419 a001 2584/20633239*4106118243^(15/23) 2329991346486419 a001 2584/20633239*1568397607^(15/22) 2329991346486419 a001 2584/20633239*599074578^(5/7) 2329991346486419 a001 2584/20633239*228826127^(3/4) 2329991346486419 a001 4768753912/20466831 2329991346486420 a001 2584/20633239*87403803^(15/19) 2329991346486421 a001 2584/20633239*33385282^(5/6) 2329991346486421 a004 Fibonacci(35)/Lucas(18)/(1/2+sqrt(5)/2)^4 2329991346486428 a001 2584/54018521*12752043^(16/17) 2329991346486428 a004 Fibonacci(18)*Lucas(34)/(1/2+sqrt(5)/2)^39 2329991346486432 a001 2584/20633239*12752043^(15/17) 2329991346486447 a001 646/1970299*20633239^(4/5) 2329991346486451 a001 646/1970299*17393796001^(4/7) 2329991346486451 a001 646/1970299*14662949395604^(4/9) 2329991346486451 a001 646/1970299*(1/2+1/2*5^(1/2))^28 2329991346486451 a001 646/1970299*73681302247^(7/13) 2329991346486451 a001 646/1970299*10749957122^(7/12) 2329991346486451 a001 646/1970299*4106118243^(14/23) 2329991346486451 a001 646/1970299*1568397607^(7/11) 2329991346486451 a001 646/1970299*599074578^(2/3) 2329991346486451 a001 646/1970299*228826127^(7/10) 2329991346486452 a001 646/1970299*87403803^(14/19) 2329991346486452 a001 9107509552/39088169 2329991346486453 a001 646/1970299*33385282^(7/9) 2329991346486453 a004 Fibonacci(33)/Lucas(18)/(1/2+sqrt(5)/2)^2 2329991346486463 a001 646/1970299*12752043^(14/17) 2329991346486511 a001 2584/20633239*4870847^(15/16) 2329991346486512 a004 Fibonacci(18)*Lucas(32)/(1/2+sqrt(5)/2)^37 2329991346486537 a001 646/1970299*4870847^(7/8) 2329991346486671 a001 2584/3010349*141422324^(2/3) 2329991346486671 a001 2584/3010349*(1/2+1/2*5^(1/2))^26 2329991346486671 a001 2584/3010349*73681302247^(1/2) 2329991346486671 a001 2584/3010349*10749957122^(13/24) 2329991346486671 a001 2584/3010349*4106118243^(13/23) 2329991346486671 a001 2584/3010349*1568397607^(13/22) 2329991346486671 a001 2584/3010349*599074578^(13/21) 2329991346486671 a001 2584/3010349*228826127^(13/20) 2329991346486671 a001 2584/3010349*87403803^(13/19) 2329991346486673 a001 2584/3010349*33385282^(13/18) 2329991346486673 a001 1346269/5778 2329991346486682 a001 2584/3010349*12752043^(13/17) 2329991346486751 a001 2584/3010349*4870847^(13/16) 2329991346486921 a001 2584/4870847*1860498^(9/10) 2329991346487080 a001 646/1970299*1860498^(14/15) 2329991346487087 a004 Fibonacci(18)*Lucas(30)/(1/2+sqrt(5)/2)^35 2329991346487254 a001 2584/3010349*1860498^(13/15) 2329991346488149 a001 2584/1149851*7881196^(8/11) 2329991346488176 a001 2584/1149851*141422324^(8/13) 2329991346488176 a001 2584/1149851*2537720636^(8/15) 2329991346488176 a001 2584/1149851*45537549124^(8/17) 2329991346488176 a001 2584/1149851*14662949395604^(8/21) 2329991346488176 a001 2584/1149851*(1/2+1/2*5^(1/2))^24 2329991346488176 a001 2584/1149851*192900153618^(4/9) 2329991346488176 a001 2584/1149851*73681302247^(6/13) 2329991346488176 a001 2584/1149851*10749957122^(1/2) 2329991346488176 a001 2584/1149851*4106118243^(12/23) 2329991346488176 a001 2584/1149851*1568397607^(6/11) 2329991346488176 a001 2584/1149851*599074578^(4/7) 2329991346488176 a001 2584/1149851*228826127^(3/5) 2329991346488176 a001 2584/1149851*87403803^(12/19) 2329991346488178 a001 2584/1149851*33385282^(2/3) 2329991346488178 a001 514229/5778*(1/2+1/2*5^(1/2))^2 2329991346488178 a001 514229/5778*10749957122^(1/24) 2329991346488178 a001 514229/5778*4106118243^(1/23) 2329991346488178 a001 514229/5778*1568397607^(1/22) 2329991346488178 a001 514229/5778*599074578^(1/21) 2329991346488178 a001 514229/5778*228826127^(1/20) 2329991346488178 a001 514229/5778*87403803^(1/19) 2329991346488178 a001 514229/5778*33385282^(1/18) 2329991346488179 a001 514229/5778*12752043^(1/17) 2329991346488184 a001 514229/5778*4870847^(1/16) 2329991346488186 a001 2584/1149851*12752043^(12/17) 2329991346488190 a001 1328767736/5702887 2329991346488223 a001 514229/5778*1860498^(1/15) 2329991346488250 a001 2584/1149851*4870847^(3/4) 2329991346488508 a001 514229/5778*710647^(1/14) 2329991346488715 a001 2584/1149851*1860498^(4/5) 2329991346490611 a001 514229/5778*271443^(1/13) 2329991346490955 a001 2584/3010349*710647^(13/14) 2329991346491028 a004 Fibonacci(18)*Lucas(28)/(1/2+sqrt(5)/2)^33 2329991346492131 a001 2584/1149851*710647^(6/7) 2329991346494774 a001 416020/2889*103682^(1/24) 2329991346498468 a001 34/5779*7881196^(2/3) 2329991346498493 a001 34/5779*312119004989^(2/5) 2329991346498493 a001 34/5779*(1/2+1/2*5^(1/2))^22 2329991346498493 a001 34/5779*10749957122^(11/24) 2329991346498493 a001 34/5779*4106118243^(11/23) 2329991346498493 a001 34/5779*1568397607^(1/2) 2329991346498493 a001 34/5779*599074578^(11/21) 2329991346498493 a001 34/5779*228826127^(11/20) 2329991346498493 a001 34/5779*87403803^(11/19) 2329991346498494 a001 34/5779*33385282^(11/18) 2329991346498495 a001 98209/2889*(1/2+1/2*5^(1/2))^4 2329991346498495 a001 98209/2889*23725150497407^(1/16) 2329991346498495 a001 98209/2889*73681302247^(1/13) 2329991346498495 a001 98209/2889*10749957122^(1/12) 2329991346498495 a001 98209/2889*4106118243^(2/23) 2329991346498495 a001 98209/2889*1568397607^(1/11) 2329991346498495 a001 98209/2889*599074578^(2/21) 2329991346498495 a001 98209/2889*228826127^(1/10) 2329991346498495 a001 98209/2889*87403803^(2/19) 2329991346498495 a001 98209/2889*33385282^(1/9) 2329991346498496 a001 98209/2889*12752043^(2/17) 2329991346498502 a001 34/5779*12752043^(11/17) 2329991346498507 a001 98209/2889*4870847^(1/8) 2329991346498560 a001 34/5779*4870847^(11/16) 2329991346498584 a001 98209/2889*1860498^(2/15) 2329991346498591 a001 507544112/2178309 2329991346498986 a001 34/5779*1860498^(11/15) 2329991346499154 a001 98209/2889*710647^(1/7) 2329991346499948 a001 121393/5778*103682^(5/24) 2329991346502118 a001 34/5779*710647^(11/14) 2329991346502972 a001 2584/167761*167761^(4/5) 2329991346503360 a001 98209/2889*271443^(2/13) 2329991346506240 a001 514229/5778*103682^(1/12) 2329991346508895 a001 105937/1926*103682^(1/8) 2329991346517366 a001 2584/1149851*271443^(12/13) 2329991346518036 a004 Fibonacci(18)*Lucas(26)/(1/2+sqrt(5)/2)^31 2329991346525250 a001 34/5779*271443^(11/13) 2329991346534619 a001 98209/2889*103682^(1/6) 2329991346553270 a001 416020/2889*39603^(1/22) 2329991346566521 a001 75025/5778*439204^(2/9) 2329991346569198 a001 75025/5778*7881196^(2/11) 2329991346569200 a001 2584/167761*20633239^(4/7) 2329991346569203 a001 2584/167761*2537720636^(4/9) 2329991346569203 a001 2584/167761*(1/2+1/2*5^(1/2))^20 2329991346569203 a001 2584/167761*23725150497407^(5/16) 2329991346569203 a001 2584/167761*505019158607^(5/14) 2329991346569203 a001 2584/167761*73681302247^(5/13) 2329991346569203 a001 2584/167761*28143753123^(2/5) 2329991346569203 a001 2584/167761*10749957122^(5/12) 2329991346569203 a001 2584/167761*4106118243^(10/23) 2329991346569203 a001 2584/167761*1568397607^(5/11) 2329991346569203 a001 2584/167761*599074578^(10/21) 2329991346569203 a001 2584/167761*228826127^(1/2) 2329991346569203 a001 2584/167761*87403803^(10/19) 2329991346569204 a001 2584/167761*33385282^(5/9) 2329991346569205 a001 75025/5778*141422324^(2/13) 2329991346569205 a001 75025/5778*2537720636^(2/15) 2329991346569205 a001 75025/5778*45537549124^(2/17) 2329991346569205 a001 75025/5778*14662949395604^(2/21) 2329991346569205 a001 75025/5778*(1/2+1/2*5^(1/2))^6 2329991346569205 a001 75025/5778*10749957122^(1/8) 2329991346569205 a001 75025/5778*4106118243^(3/23) 2329991346569205 a001 75025/5778*1568397607^(3/22) 2329991346569205 a001 75025/5778*599074578^(1/7) 2329991346569205 a001 75025/5778*228826127^(3/20) 2329991346569205 a001 75025/5778*87403803^(3/19) 2329991346569205 a001 75025/5778*33385282^(1/6) 2329991346569207 a001 75025/5778*12752043^(3/17) 2329991346569211 a001 2584/167761*12752043^(10/17) 2329991346569223 a001 75025/5778*4870847^(3/16) 2329991346569264 a001 2584/167761*4870847^(5/8) 2329991346569340 a001 75025/5778*1860498^(1/5) 2329991346569652 a001 2584/167761*1860498^(2/3) 2329991346569876 a001 4846615/20801 2329991346570194 a001 75025/5778*710647^(3/14) 2329991346572498 a001 2584/167761*710647^(5/7) 2329991346576502 a001 75025/5778*271443^(3/13) 2329991346593528 a001 2584/167761*271443^(10/13) 2329991346609771 a001 2584/64079*64079^(18/23) 2329991346623232 a001 514229/5778*39603^(1/11) 2329991346623391 a001 75025/5778*103682^(1/4) 2329991346644443 a001 2584/271443*103682^(7/8) 2329991346684382 a001 105937/1926*39603^(3/22) 2329991346689513 a001 2584/710647*103682^(23/24) 2329991346697175 a001 34/5779*103682^(11/12) 2329991346703158 a004 Fibonacci(18)*Lucas(24)/(1/2+sqrt(5)/2)^29 2329991346742359 a001 2576/321*39603^(7/22) 2329991346749823 a001 2584/167761*103682^(5/6) 2329991346768601 a001 98209/2889*39603^(2/11) 2329991346771063 a001 28657/9349*3571^(9/17) 2329991346792427 a001 121393/5778*39603^(5/22) 2329991346856488 a001 28657/5778*64079^(8/23) 2329991346974365 a001 75025/5778*39603^(3/11) 2329991346994861 a001 416020/2889*15127^(1/20) 2329991347045805 a001 2584/64079*439204^(2/3) 2329991347053837 a001 2584/64079*7881196^(6/11) 2329991347053858 a001 2584/64079*141422324^(6/13) 2329991347053858 a001 2584/64079*2537720636^(2/5) 2329991347053858 a001 2584/64079*45537549124^(6/17) 2329991347053858 a001 2584/64079*14662949395604^(2/7) 2329991347053858 a001 2584/64079*(1/2+1/2*5^(1/2))^18 2329991347053858 a001 2584/64079*192900153618^(1/3) 2329991347053858 a001 2584/64079*10749957122^(3/8) 2329991347053858 a001 2584/64079*4106118243^(9/23) 2329991347053858 a001 2584/64079*1568397607^(9/22) 2329991347053858 a001 2584/64079*599074578^(3/7) 2329991347053858 a001 2584/64079*228826127^(9/20) 2329991347053858 a001 2584/64079*87403803^(9/19) 2329991347053859 a001 2584/64079*33385282^(1/2) 2329991347053860 a001 28657/5778*(1/2+1/2*5^(1/2))^8 2329991347053860 a001 28657/5778*23725150497407^(1/8) 2329991347053860 a001 28657/5778*505019158607^(1/7) 2329991347053860 a001 28657/5778*73681302247^(2/13) 2329991347053860 a001 28657/5778*10749957122^(1/6) 2329991347053860 a001 28657/5778*4106118243^(4/23) 2329991347053860 a001 28657/5778*1568397607^(2/11) 2329991347053860 a001 28657/5778*599074578^(4/21) 2329991347053860 a001 28657/5778*228826127^(1/5) 2329991347053860 a001 28657/5778*87403803^(4/19) 2329991347053860 a001 28657/5778*33385282^(2/9) 2329991347053863 a001 28657/5778*12752043^(4/17) 2329991347053865 a001 2584/64079*12752043^(9/17) 2329991347053884 a001 28657/5778*4870847^(1/4) 2329991347053913 a001 2584/64079*4870847^(9/16) 2329991347054039 a001 28657/5778*1860498^(4/15) 2329991347054262 a001 2584/64079*1860498^(3/5) 2329991347055178 a001 28657/5778*710647^(2/7) 2329991347056824 a001 2584/64079*710647^(9/14) 2329991347058471 a001 74049688/317811 2329991347063590 a001 28657/5778*271443^(4/13) 2329991347075750 a001 2584/64079*271443^(9/13) 2329991347126108 a001 28657/5778*103682^(1/3) 2329991347216416 a001 2584/64079*103682^(3/4) 2329991347412442 a001 646/6119*24476^(16/21) 2329991347506415 a001 514229/5778*15127^(1/10) 2329991347552677 a001 1292/51841*39603^(19/22) 2329991347594073 a001 28657/5778*39603^(4/11) 2329991347872852 a001 2584/271443*39603^(21/22) 2329991347919737 a001 2584/167761*39603^(10/11) 2329991347972001 a004 Fibonacci(18)*Lucas(22)/(1/2+sqrt(5)/2)^27 2329991348009157 a001 105937/1926*15127^(3/20) 2329991348019214 a001 121393/1364*521^(2/13) 2329991348269338 a001 2584/64079*39603^(9/11) 2329991348523678 a001 5473/2889*24476^(10/21) 2329991348534907 a001 196418/3571*1364^(1/5) 2329991348534968 a001 98209/2889*15127^(1/5) 2329991349000385 a001 121393/5778*15127^(1/4) 2329991349582893 a001 17711/5778*15127^(9/20) 2329991349623915 a001 75025/5778*15127^(3/10) 2329991349833500 a001 2576/321*15127^(7/20) 2329991349980988 a001 646/6119*64079^(16/23) 2329991350129019 a001 5473/2889*64079^(10/23) 2329991350305864 a001 514229/39603*3571^(6/17) 2329991350342618 a001 5473/2889*167761^(2/5) 2329991350363019 a001 416020/2889*5778^(1/18) 2329991350375732 a001 646/6119*(1/2+1/2*5^(1/2))^16 2329991350375732 a001 646/6119*23725150497407^(1/4) 2329991350375732 a001 646/6119*73681302247^(4/13) 2329991350375732 a001 646/6119*10749957122^(1/3) 2329991350375732 a001 646/6119*4106118243^(8/23) 2329991350375732 a001 646/6119*1568397607^(4/11) 2329991350375732 a001 646/6119*599074578^(8/21) 2329991350375732 a001 646/6119*228826127^(2/5) 2329991350375732 a001 646/6119*87403803^(8/19) 2329991350375732 a001 5473/2889*20633239^(2/7) 2329991350375733 a001 646/6119*33385282^(4/9) 2329991350375734 a001 5473/2889*2537720636^(2/9) 2329991350375734 a001 5473/2889*312119004989^(2/11) 2329991350375734 a001 5473/2889*(1/2+1/2*5^(1/2))^10 2329991350375734 a001 5473/2889*28143753123^(1/5) 2329991350375734 a001 5473/2889*10749957122^(5/24) 2329991350375734 a001 5473/2889*4106118243^(5/23) 2329991350375734 a001 5473/2889*1568397607^(5/22) 2329991350375734 a001 5473/2889*599074578^(5/21) 2329991350375734 a001 5473/2889*228826127^(1/4) 2329991350375734 a001 5473/2889*87403803^(5/19) 2329991350375734 a001 5473/2889*33385282^(5/18) 2329991350375738 a001 5473/2889*12752043^(5/17) 2329991350375738 a001 646/6119*12752043^(8/17) 2329991350375764 a001 5473/2889*4870847^(5/16) 2329991350375781 a001 646/6119*4870847^(1/2) 2329991350375958 a001 5473/2889*1860498^(1/3) 2329991350376091 a001 646/6119*1860498^(8/15) 2329991350377381 a001 5473/2889*710647^(5/14) 2329991350378368 a001 646/6119*710647^(4/7) 2329991350387896 a001 5473/2889*271443^(5/13) 2329991350395192 a001 646/6119*271443^(8/13) 2329991350407354 a001 28284464/121393 2329991350466044 a001 5473/2889*103682^(5/12) 2329991350520228 a001 646/6119*103682^(2/3) 2329991351051001 a001 5473/2889*39603^(5/11) 2329991351126806 a001 28657/5778*15127^(2/5) 2329991351456159 a001 646/6119*39603^(8/11) 2329991351573202 a001 1346269/103682*3571^(6/17) 2329991351758104 a001 3524578/271443*3571^(6/17) 2329991351785081 a001 9227465/710647*3571^(6/17) 2329991351789017 a001 24157817/1860498*3571^(6/17) 2329991351789591 a001 63245986/4870847*3571^(6/17) 2329991351789675 a001 165580141/12752043*3571^(6/17) 2329991351789687 a001 433494437/33385282*3571^(6/17) 2329991351789689 a001 1134903170/87403803*3571^(6/17) 2329991351789689 a001 2971215073/228826127*3571^(6/17) 2329991351789689 a001 7778742049/599074578*3571^(6/17) 2329991351789689 a001 20365011074/1568397607*3571^(6/17) 2329991351789689 a001 53316291173/4106118243*3571^(6/17) 2329991351789689 a001 139583862445/10749957122*3571^(6/17) 2329991351789689 a001 365435296162/28143753123*3571^(6/17) 2329991351789689 a001 956722026041/73681302247*3571^(6/17) 2329991351789689 a001 2504730781961/192900153618*3571^(6/17) 2329991351789689 a001 10610209857723/817138163596*3571^(6/17) 2329991351789689 a001 4052739537881/312119004989*3571^(6/17) 2329991351789689 a001 1548008755920/119218851371*3571^(6/17) 2329991351789689 a001 591286729879/45537549124*3571^(6/17) 2329991351789689 a001 7787980473/599786069*3571^(6/17) 2329991351789689 a001 86267571272/6643838879*3571^(6/17) 2329991351789689 a001 32951280099/2537720636*3571^(6/17) 2329991351789689 a001 12586269025/969323029*3571^(6/17) 2329991351789689 a001 4807526976/370248451*3571^(6/17) 2329991351789689 a001 1836311903/141422324*3571^(6/17) 2329991351789690 a001 701408733/54018521*3571^(6/17) 2329991351789695 a001 9238424/711491*3571^(6/17) 2329991351789727 a001 102334155/7881196*3571^(6/17) 2329991351789946 a001 39088169/3010349*3571^(6/17) 2329991351791449 a001 14930352/1149851*3571^(6/17) 2329991351801754 a001 5702887/439204*3571^(6/17) 2329991351872380 a001 2178309/167761*3571^(6/17) 2329991352350660 a001 317811/15127*3571^(5/17) 2329991352356460 a001 832040/64079*3571^(6/17) 2329991353501619 a001 2584/9349*9349^(14/19) 2329991353655838 a001 2584/39603*15127^(17/20) 2329991354242731 a001 514229/5778*5778^(1/9) 2329991355466917 a001 5473/2889*15127^(1/2) 2329991355674393 a001 10959/844*3571^(6/17) 2329991355942917 a001 1292/51841*15127^(19/20) 2329991356217987 a001 2584/64079*15127^(9/10) 2329991356307703 a001 4181/5778*9349^(12/19) 2329991356668780 a004 Fibonacci(18)*Lucas(20)/(1/2+sqrt(5)/2)^25 2329991356734825 a001 46368/9349*3571^(8/17) 2329991358113631 a001 105937/1926*5778^(1/6) 2329991358521624 a001 646/6119*15127^(4/5) 2329991359445523 a001 1346269/9349*1364^(1/15) 2329991361022240 m005 (1/3*5^(1/2)-3/4)/(1/3*Zeta(3)-3/5) 2329991361051379 a001 832040/39603*3571^(5/17) 2329991362007600 a001 98209/2889*5778^(2/9) 2329991362320797 a001 46347/2206*3571^(5/17) 2329991362506002 a001 5702887/271443*3571^(5/17) 2329991362533023 a001 14930352/710647*3571^(5/17) 2329991362536966 a001 39088169/1860498*3571^(5/17) 2329991362537541 a001 102334155/4870847*3571^(5/17) 2329991362537625 a001 267914296/12752043*3571^(5/17) 2329991362537637 a001 701408733/33385282*3571^(5/17) 2329991362537639 a001 1836311903/87403803*3571^(5/17) 2329991362537639 a001 102287808/4868641*3571^(5/17) 2329991362537639 a001 12586269025/599074578*3571^(5/17) 2329991362537639 a001 32951280099/1568397607*3571^(5/17) 2329991362537639 a001 86267571272/4106118243*3571^(5/17) 2329991362537639 a001 225851433717/10749957122*3571^(5/17) 2329991362537639 a001 591286729879/28143753123*3571^(5/17) 2329991362537639 a001 1548008755920/73681302247*3571^(5/17) 2329991362537639 a001 4052739537881/192900153618*3571^(5/17) 2329991362537639 a001 225749145909/10745088481*3571^(5/17) 2329991362537639 a001 6557470319842/312119004989*3571^(5/17) 2329991362537639 a001 2504730781961/119218851371*3571^(5/17) 2329991362537639 a001 956722026041/45537549124*3571^(5/17) 2329991362537639 a001 365435296162/17393796001*3571^(5/17) 2329991362537639 a001 139583862445/6643838879*3571^(5/17) 2329991362537639 a001 53316291173/2537720636*3571^(5/17) 2329991362537639 a001 20365011074/969323029*3571^(5/17) 2329991362537639 a001 7778742049/370248451*3571^(5/17) 2329991362537639 a001 2971215073/141422324*3571^(5/17) 2329991362537640 a001 1134903170/54018521*3571^(5/17) 2329991362537645 a001 433494437/20633239*3571^(5/17) 2329991362537677 a001 165580141/7881196*3571^(5/17) 2329991362537896 a001 63245986/3010349*3571^(5/17) 2329991362539402 a001 24157817/1149851*3571^(5/17) 2329991362549723 a001 9227465/439204*3571^(5/17) 2329991362620466 a001 3524578/167761*3571^(5/17) 2329991363104986 a001 514229/15127*3571^(4/17) 2329991363105340 a001 1346269/64079*3571^(5/17) 2329991365841175 a001 121393/5778*5778^(5/18) 2329991366428719 a001 514229/24476*3571^(5/17) 2329991367782308 a001 75025/9349*3571^(7/17) 2329991368001969 a007 Real Root Of -946*x^4-76*x^3-260*x^2+923*x+231 2329991368772652 h001 (-4*exp(2)-10)/(-9*exp(3)+11) 2329991369832863 a001 75025/5778*5778^(1/3) 2329991370199294 r009 Re(z^3+c),c=-35/94+30/61*I,n=46 2329991370551316 a001 2584/9349*24476^(2/3) 2329991370921729 a001 4181/5778*24476^(4/7) 2329991371800259 a001 1346269/39603*3571^(4/17) 2329991372798794 a001 2584/9349*64079^(14/23) 2329991372848138 a001 4181/5778*64079^(12/23) 2329991373068883 a001 1762289/51841*3571^(4/17) 2329991373138828 a001 4181/5778*439204^(4/9) 2329991373144182 a001 4181/5778*7881196^(4/11) 2329991373144192 a001 2584/9349*20633239^(2/5) 2329991373144194 a001 2584/9349*17393796001^(2/7) 2329991373144194 a001 2584/9349*14662949395604^(2/9) 2329991373144194 a001 2584/9349*(1/2+1/2*5^(1/2))^14 2329991373144194 a001 2584/9349*505019158607^(1/4) 2329991373144194 a001 2584/9349*10749957122^(7/24) 2329991373144194 a001 2584/9349*4106118243^(7/23) 2329991373144194 a001 2584/9349*1568397607^(7/22) 2329991373144194 a001 2584/9349*599074578^(1/3) 2329991373144194 a001 2584/9349*228826127^(7/20) 2329991373144194 a001 2584/9349*87403803^(7/19) 2329991373144195 a001 2584/9349*33385282^(7/18) 2329991373144196 a001 4181/5778*141422324^(4/13) 2329991373144196 a001 4181/5778*2537720636^(4/15) 2329991373144196 a001 4181/5778*45537549124^(4/17) 2329991373144196 a001 4181/5778*817138163596^(4/19) 2329991373144196 a001 4181/5778*14662949395604^(4/21) 2329991373144196 a001 4181/5778*(1/2+1/2*5^(1/2))^12 2329991373144196 a001 4181/5778*73681302247^(3/13) 2329991373144196 a001 4181/5778*10749957122^(1/4) 2329991373144196 a001 4181/5778*4106118243^(6/23) 2329991373144196 a001 4181/5778*1568397607^(3/11) 2329991373144196 a001 4181/5778*599074578^(2/7) 2329991373144196 a001 4181/5778*228826127^(3/10) 2329991373144196 a001 4181/5778*87403803^(6/19) 2329991373144197 a001 4181/5778*33385282^(1/3) 2329991373144200 a001 2584/9349*12752043^(7/17) 2329991373144201 a001 4181/5778*12752043^(6/17) 2329991373144233 a001 4181/5778*4870847^(3/8) 2329991373144237 a001 2584/9349*4870847^(7/16) 2329991373144465 a001 4181/5778*1860498^(2/5) 2329991373144508 a001 2584/9349*1860498^(7/15) 2329991373146173 a001 4181/5778*710647^(3/7) 2329991373146501 a001 2584/9349*710647^(1/2) 2329991373158791 a001 4181/5778*271443^(6/13) 2329991373161222 a001 2584/9349*271443^(7/13) 2329991373252568 a001 4181/5778*103682^(1/2) 2329991373253972 a001 9227465/271443*3571^(4/17) 2329991373270628 a001 2584/9349*103682^(7/12) 2329991373280976 a001 24157817/710647*3571^(4/17) 2329991373284916 a001 31622993/930249*3571^(4/17) 2329991373285491 a001 165580141/4870847*3571^(4/17) 2329991373285575 a001 433494437/12752043*3571^(4/17) 2329991373285587 a001 567451585/16692641*3571^(4/17) 2329991373285589 a001 2971215073/87403803*3571^(4/17) 2329991373285589 a001 7778742049/228826127*3571^(4/17) 2329991373285589 a001 10182505537/299537289*3571^(4/17) 2329991373285589 a001 53316291173/1568397607*3571^(4/17) 2329991373285589 a001 139583862445/4106118243*3571^(4/17) 2329991373285589 a001 182717648081/5374978561*3571^(4/17) 2329991373285589 a001 956722026041/28143753123*3571^(4/17) 2329991373285589 a001 2504730781961/73681302247*3571^(4/17) 2329991373285589 a001 3278735159921/96450076809*3571^(4/17) 2329991373285589 a001 10610209857723/312119004989*3571^(4/17) 2329991373285589 a001 4052739537881/119218851371*3571^(4/17) 2329991373285589 a001 387002188980/11384387281*3571^(4/17) 2329991373285589 a001 591286729879/17393796001*3571^(4/17) 2329991373285589 a001 225851433717/6643838879*3571^(4/17) 2329991373285589 a001 1135099622/33391061*3571^(4/17) 2329991373285589 a001 32951280099/969323029*3571^(4/17) 2329991373285589 a001 12586269025/370248451*3571^(4/17) 2329991373285589 a001 1201881744/35355581*3571^(4/17) 2329991373285590 a001 1836311903/54018521*3571^(4/17) 2329991373285595 a001 701408733/20633239*3571^(4/17) 2329991373285627 a001 66978574/1970299*3571^(4/17) 2329991373285846 a001 102334155/3010349*3571^(4/17) 2329991373287351 a001 39088169/1149851*3571^(4/17) 2329991373297666 a001 196452/5779*3571^(4/17) 2329991373360938 a001 1350463/5796 2329991373368364 a001 5702887/167761*3571^(4/17) 2329991373410606 a001 2576/321*5778^(7/18) 2329991373850500 a001 832040/15127*3571^(3/17) 2329991373852935 a001 2178309/64079*3571^(4/17) 2329991373954516 a001 4181/5778*39603^(6/11) 2329991374089568 a001 2584/9349*39603^(7/11) 2329991376382893 a001 416020/2889*2207^(1/16) 2329991377174234 a001 208010/6119*3571^(4/17) 2329991377673124 a001 6765/15127*9349^(13/19) 2329991377965339 a007 Real Root Of 512*x^4+935*x^3-927*x^2-911*x-353 2329991378072070 a001 28657/5778*5778^(4/9) 2329991378415847 a001 121393/9349*3571^(6/17) 2329991378730252 a001 1597/5778*3571^(14/17) 2329991378954089 a001 2255/1926*5778^(11/18) 2329991379253616 a001 4181/5778*15127^(3/5) 2329991379437243 a004 Fibonacci(20)*Lucas(19)/(1/2+sqrt(5)/2)^26 2329991379896316 a001 17711/5778*5778^(1/2) 2329991380271850 a001 2584/9349*15127^(7/10) 2329991380923073 a001 615/15251*9349^(18/19) 2329991382026581 a001 6765/103682*9349^(17/19) 2329991382547854 a001 726103/13201*3571^(3/17) 2329991383214985 p001 sum(1/(451*n+305)/n/(6^n),n=1..infinity) 2329991383563820 a001 2255/13201*9349^(15/19) 2329991383816781 a001 5702887/103682*3571^(3/17) 2329991384001915 a001 4976784/90481*3571^(3/17) 2329991384028925 a001 39088169/710647*3571^(3/17) 2329991384032866 a001 831985/15126*3571^(3/17) 2329991384033441 a001 267914296/4870847*3571^(3/17) 2329991384033525 a001 233802911/4250681*3571^(3/17) 2329991384033537 a001 1836311903/33385282*3571^(3/17) 2329991384033539 a001 1602508992/29134601*3571^(3/17) 2329991384033539 a001 12586269025/228826127*3571^(3/17) 2329991384033539 a001 10983760033/199691526*3571^(3/17) 2329991384033539 a001 86267571272/1568397607*3571^(3/17) 2329991384033539 a001 75283811239/1368706081*3571^(3/17) 2329991384033539 a001 591286729879/10749957122*3571^(3/17) 2329991384033539 a001 12585437040/228811001*3571^(3/17) 2329991384033539 a001 4052739537881/73681302247*3571^(3/17) 2329991384033539 a001 3536736619241/64300051206*3571^(3/17) 2329991384033539 a001 6557470319842/119218851371*3571^(3/17) 2329991384033539 a001 2504730781961/45537549124*3571^(3/17) 2329991384033539 a001 956722026041/17393796001*3571^(3/17) 2329991384033539 a001 365435296162/6643838879*3571^(3/17) 2329991384033539 a001 139583862445/2537720636*3571^(3/17) 2329991384033539 a001 53316291173/969323029*3571^(3/17) 2329991384033539 a001 20365011074/370248451*3571^(3/17) 2329991384033539 a001 7778742049/141422324*3571^(3/17) 2329991384033540 a001 2971215073/54018521*3571^(3/17) 2329991384033545 a001 1134903170/20633239*3571^(3/17) 2329991384033577 a001 433494437/7881196*3571^(3/17) 2329991384033796 a001 165580141/3010349*3571^(3/17) 2329991384035302 a001 63245986/1149851*3571^(3/17) 2329991384045619 a001 24157817/439204*3571^(3/17) 2329991384116334 a001 9227465/167761*3571^(3/17) 2329991384213810 a001 6765/64079*9349^(16/19) 2329991384599381 a001 1346269/15127*3571^(2/17) 2329991384601021 a001 3524578/64079*3571^(3/17) 2329991387923114 a001 1346269/24476*3571^(3/17) 2329991388134022 a004 Fibonacci(22)*Lucas(19)/(1/2+sqrt(5)/2)^28 2329991389148497 a001 5473/2889*5778^(5/9) 2329991389175985 a001 17711/15127*9349^(11/19) 2329991389207498 a001 196418/9349*3571^(5/17) 2329991389402865 a004 Fibonacci(24)*Lucas(19)/(1/2+sqrt(5)/2)^30 2329991389549142 a001 17711/439204*9349^(18/19) 2329991389587987 a004 Fibonacci(26)*Lucas(19)/(1/2+sqrt(5)/2)^32 2329991389614996 a004 Fibonacci(28)*Lucas(19)/(1/2+sqrt(5)/2)^34 2329991389618936 a004 Fibonacci(30)*Lucas(19)/(1/2+sqrt(5)/2)^36 2329991389619511 a004 Fibonacci(32)*Lucas(19)/(1/2+sqrt(5)/2)^38 2329991389619595 a004 Fibonacci(34)*Lucas(19)/(1/2+sqrt(5)/2)^40 2329991389619607 a004 Fibonacci(36)*Lucas(19)/(1/2+sqrt(5)/2)^42 2329991389619609 a004 Fibonacci(38)*Lucas(19)/(1/2+sqrt(5)/2)^44 2329991389619609 a004 Fibonacci(40)*Lucas(19)/(1/2+sqrt(5)/2)^46 2329991389619609 a004 Fibonacci(42)*Lucas(19)/(1/2+sqrt(5)/2)^48 2329991389619609 a004 Fibonacci(44)*Lucas(19)/(1/2+sqrt(5)/2)^50 2329991389619609 a004 Fibonacci(46)*Lucas(19)/(1/2+sqrt(5)/2)^52 2329991389619609 a004 Fibonacci(48)*Lucas(19)/(1/2+sqrt(5)/2)^54 2329991389619609 a004 Fibonacci(50)*Lucas(19)/(1/2+sqrt(5)/2)^56 2329991389619609 a004 Fibonacci(52)*Lucas(19)/(1/2+sqrt(5)/2)^58 2329991389619609 a004 Fibonacci(54)*Lucas(19)/(1/2+sqrt(5)/2)^60 2329991389619609 a004 Fibonacci(56)*Lucas(19)/(1/2+sqrt(5)/2)^62 2329991389619609 a004 Fibonacci(58)*Lucas(19)/(1/2+sqrt(5)/2)^64 2329991389619609 a004 Fibonacci(60)*Lucas(19)/(1/2+sqrt(5)/2)^66 2329991389619609 a004 Fibonacci(62)*Lucas(19)/(1/2+sqrt(5)/2)^68 2329991389619609 a004 Fibonacci(64)*Lucas(19)/(1/2+sqrt(5)/2)^70 2329991389619609 a004 Fibonacci(66)*Lucas(19)/(1/2+sqrt(5)/2)^72 2329991389619609 a004 Fibonacci(68)*Lucas(19)/(1/2+sqrt(5)/2)^74 2329991389619609 a004 Fibonacci(70)*Lucas(19)/(1/2+sqrt(5)/2)^76 2329991389619609 a004 Fibonacci(72)*Lucas(19)/(1/2+sqrt(5)/2)^78 2329991389619609 a004 Fibonacci(74)*Lucas(19)/(1/2+sqrt(5)/2)^80 2329991389619609 a004 Fibonacci(76)*Lucas(19)/(1/2+sqrt(5)/2)^82 2329991389619609 a004 Fibonacci(78)*Lucas(19)/(1/2+sqrt(5)/2)^84 2329991389619609 a004 Fibonacci(80)*Lucas(19)/(1/2+sqrt(5)/2)^86 2329991389619609 a004 Fibonacci(82)*Lucas(19)/(1/2+sqrt(5)/2)^88 2329991389619609 a004 Fibonacci(84)*Lucas(19)/(1/2+sqrt(5)/2)^90 2329991389619609 a004 Fibonacci(86)*Lucas(19)/(1/2+sqrt(5)/2)^92 2329991389619609 a004 Fibonacci(88)*Lucas(19)/(1/2+sqrt(5)/2)^94 2329991389619609 a004 Fibonacci(90)*Lucas(19)/(1/2+sqrt(5)/2)^96 2329991389619609 a004 Fibonacci(92)*Lucas(19)/(1/2+sqrt(5)/2)^98 2329991389619609 a004 Fibonacci(94)*Lucas(19)/(1/2+sqrt(5)/2)^100 2329991389619609 a004 Fibonacci(93)*Lucas(19)/(1/2+sqrt(5)/2)^99 2329991389619609 a004 Fibonacci(91)*Lucas(19)/(1/2+sqrt(5)/2)^97 2329991389619609 a004 Fibonacci(89)*Lucas(19)/(1/2+sqrt(5)/2)^95 2329991389619609 a004 Fibonacci(87)*Lucas(19)/(1/2+sqrt(5)/2)^93 2329991389619609 a004 Fibonacci(85)*Lucas(19)/(1/2+sqrt(5)/2)^91 2329991389619609 a004 Fibonacci(83)*Lucas(19)/(1/2+sqrt(5)/2)^89 2329991389619609 a004 Fibonacci(81)*Lucas(19)/(1/2+sqrt(5)/2)^87 2329991389619609 a004 Fibonacci(79)*Lucas(19)/(1/2+sqrt(5)/2)^85 2329991389619609 a004 Fibonacci(77)*Lucas(19)/(1/2+sqrt(5)/2)^83 2329991389619609 a004 Fibonacci(75)*Lucas(19)/(1/2+sqrt(5)/2)^81 2329991389619609 a004 Fibonacci(73)*Lucas(19)/(1/2+sqrt(5)/2)^79 2329991389619609 a004 Fibonacci(71)*Lucas(19)/(1/2+sqrt(5)/2)^77 2329991389619609 a004 Fibonacci(69)*Lucas(19)/(1/2+sqrt(5)/2)^75 2329991389619609 a004 Fibonacci(67)*Lucas(19)/(1/2+sqrt(5)/2)^73 2329991389619609 a004 Fibonacci(65)*Lucas(19)/(1/2+sqrt(5)/2)^71 2329991389619609 a004 Fibonacci(63)*Lucas(19)/(1/2+sqrt(5)/2)^69 2329991389619609 a004 Fibonacci(61)*Lucas(19)/(1/2+sqrt(5)/2)^67 2329991389619609 a004 Fibonacci(59)*Lucas(19)/(1/2+sqrt(5)/2)^65 2329991389619609 a004 Fibonacci(57)*Lucas(19)/(1/2+sqrt(5)/2)^63 2329991389619609 a004 Fibonacci(55)*Lucas(19)/(1/2+sqrt(5)/2)^61 2329991389619609 a004 Fibonacci(53)*Lucas(19)/(1/2+sqrt(5)/2)^59 2329991389619609 a004 Fibonacci(51)*Lucas(19)/(1/2+sqrt(5)/2)^57 2329991389619609 a004 Fibonacci(49)*Lucas(19)/(1/2+sqrt(5)/2)^55 2329991389619609 a004 Fibonacci(47)*Lucas(19)/(1/2+sqrt(5)/2)^53 2329991389619609 a004 Fibonacci(45)*Lucas(19)/(1/2+sqrt(5)/2)^51 2329991389619609 a004 Fibonacci(43)*Lucas(19)/(1/2+sqrt(5)/2)^49 2329991389619609 a004 Fibonacci(41)*Lucas(19)/(1/2+sqrt(5)/2)^47 2329991389619609 a004 Fibonacci(39)*Lucas(19)/(1/2+sqrt(5)/2)^45 2329991389619609 a001 2/4181*(1/2+1/2*5^(1/2))^32 2329991389619610 a004 Fibonacci(37)*Lucas(19)/(1/2+sqrt(5)/2)^43 2329991389619615 a004 Fibonacci(35)*Lucas(19)/(1/2+sqrt(5)/2)^41 2329991389619647 a004 Fibonacci(33)*Lucas(19)/(1/2+sqrt(5)/2)^39 2329991389619866 a004 Fibonacci(31)*Lucas(19)/(1/2+sqrt(5)/2)^37 2329991389621371 a004 Fibonacci(29)*Lucas(19)/(1/2+sqrt(5)/2)^35 2329991389631688 a004 Fibonacci(27)*Lucas(19)/(1/2+sqrt(5)/2)^33 2329991389702398 a004 Fibonacci(25)*Lucas(19)/(1/2+sqrt(5)/2)^31 2329991390187053 a004 Fibonacci(23)*Lucas(19)/(1/2+sqrt(5)/2)^29 2329991390341766 a001 6765/24476*9349^(14/19) 2329991390807668 a001 46368/1149851*9349^(18/19) 2329991390908482 a001 17711/271443*9349^(17/19) 2329991390991285 a001 121393/3010349*9349^(18/19) 2329991391018074 a001 317811/7881196*9349^(18/19) 2329991391021983 a001 75640/1875749*9349^(18/19) 2329991391022553 a001 2178309/54018521*9349^(18/19) 2329991391022636 a001 5702887/141422324*9349^(18/19) 2329991391022648 a001 14930352/370248451*9349^(18/19) 2329991391022650 a001 39088169/969323029*9349^(18/19) 2329991391022650 a001 9303105/230701876*9349^(18/19) 2329991391022650 a001 267914296/6643838879*9349^(18/19) 2329991391022650 a001 701408733/17393796001*9349^(18/19) 2329991391022650 a001 1836311903/45537549124*9349^(18/19) 2329991391022650 a001 4807526976/119218851371*9349^(18/19) 2329991391022650 a001 1144206275/28374454999*9349^(18/19) 2329991391022650 a001 32951280099/817138163596*9349^(18/19) 2329991391022650 a001 86267571272/2139295485799*9349^(18/19) 2329991391022650 a001 225851433717/5600748293801*9349^(18/19) 2329991391022650 a001 591286729879/14662949395604*9349^(18/19) 2329991391022650 a001 365435296162/9062201101803*9349^(18/19) 2329991391022650 a001 139583862445/3461452808002*9349^(18/19) 2329991391022650 a001 53316291173/1322157322203*9349^(18/19) 2329991391022650 a001 20365011074/505019158607*9349^(18/19) 2329991391022650 a001 7778742049/192900153618*9349^(18/19) 2329991391022650 a001 2971215073/73681302247*9349^(18/19) 2329991391022650 a001 1134903170/28143753123*9349^(18/19) 2329991391022650 a001 433494437/10749957122*9349^(18/19) 2329991391022650 a001 165580141/4106118243*9349^(18/19) 2329991391022650 a001 63245986/1568397607*9349^(18/19) 2329991391022651 a001 24157817/599074578*9349^(18/19) 2329991391022656 a001 9227465/228826127*9349^(18/19) 2329991391022687 a001 3524578/87403803*9349^(18/19) 2329991391022905 a001 1346269/33385282*9349^(18/19) 2329991391024398 a001 514229/12752043*9349^(18/19) 2329991391034631 a001 196418/4870847*9349^(18/19) 2329991391104766 a001 75025/1860498*9349^(18/19) 2329991391585480 a001 28657/710647*9349^(18/19) 2329991392204333 a001 6624/101521*9349^(17/19) 2329991392393396 a001 121393/1860498*9349^(17/19) 2329991392420979 a001 317811/4870847*9349^(17/19) 2329991392425004 a001 832040/12752043*9349^(17/19) 2329991392425591 a001 311187/4769326*9349^(17/19) 2329991392425677 a001 5702887/87403803*9349^(17/19) 2329991392425689 a001 14930352/228826127*9349^(17/19) 2329991392425691 a001 39088169/599074578*9349^(17/19) 2329991392425691 a001 14619165/224056801*9349^(17/19) 2329991392425691 a001 267914296/4106118243*9349^(17/19) 2329991392425691 a001 701408733/10749957122*9349^(17/19) 2329991392425691 a001 1836311903/28143753123*9349^(17/19) 2329991392425691 a001 686789568/10525900321*9349^(17/19) 2329991392425691 a001 12586269025/192900153618*9349^(17/19) 2329991392425691 a001 32951280099/505019158607*9349^(17/19) 2329991392425691 a001 86267571272/1322157322203*9349^(17/19) 2329991392425691 a001 32264490531/494493258286*9349^(17/19) 2329991392425691 a001 1548008755920/23725150497407*9349^(17/19) 2329991392425691 a001 139583862445/2139295485799*9349^(17/19) 2329991392425691 a001 53316291173/817138163596*9349^(17/19) 2329991392425691 a001 20365011074/312119004989*9349^(17/19) 2329991392425691 a001 7778742049/119218851371*9349^(17/19) 2329991392425691 a001 2971215073/45537549124*9349^(17/19) 2329991392425691 a001 1134903170/17393796001*9349^(17/19) 2329991392425691 a001 433494437/6643838879*9349^(17/19) 2329991392425691 a001 165580141/2537720636*9349^(17/19) 2329991392425691 a001 63245986/969323029*9349^(17/19) 2329991392425692 a001 24157817/370248451*9349^(17/19) 2329991392425697 a001 9227465/141422324*9349^(17/19) 2329991392425730 a001 3524578/54018521*9349^(17/19) 2329991392425934 a001 17711/167761*9349^(16/19) 2329991392425954 a001 1346269/20633239*9349^(17/19) 2329991392427491 a001 514229/7881196*9349^(17/19) 2329991392438027 a001 196418/3010349*9349^(17/19) 2329991392510243 a001 75025/1149851*9349^(17/19) 2329991392632057 a001 28657/15127*9349^(10/19) 2329991393005214 a001 28657/439204*9349^(17/19) 2329991393147848 a001 10946/15127*9349^(12/19) 2329991393151980 l006 ln(5957/7520) 2329991393250910 a001 6624/2161*9349^(9/19) 2329991393295940 a001 3524578/39603*3571^(2/17) 2329991393504985 a001 6765/15127*24476^(13/21) 2329991393508927 a004 Fibonacci(21)*Lucas(19)/(1/2+sqrt(5)/2)^27 2329991393529442 a001 17711/103682*9349^(15/19) 2329991393624067 a001 11592/109801*9349^(16/19) 2329991393798872 a001 121393/1149851*9349^(16/19) 2329991393824376 a001 317811/3010349*9349^(16/19) 2329991393828097 a001 208010/1970299*9349^(16/19) 2329991393828640 a001 2178309/20633239*9349^(16/19) 2329991393828719 a001 5702887/54018521*9349^(16/19) 2329991393828730 a001 3732588/35355581*9349^(16/19) 2329991393828732 a001 39088169/370248451*9349^(16/19) 2329991393828732 a001 102334155/969323029*9349^(16/19) 2329991393828732 a001 66978574/634430159*9349^(16/19) 2329991393828732 a001 701408733/6643838879*9349^(16/19) 2329991393828732 a001 1836311903/17393796001*9349^(16/19) 2329991393828732 a001 1201881744/11384387281*9349^(16/19) 2329991393828732 a001 12586269025/119218851371*9349^(16/19) 2329991393828732 a001 32951280099/312119004989*9349^(16/19) 2329991393828732 a001 21566892818/204284540899*9349^(16/19) 2329991393828732 a001 225851433717/2139295485799*9349^(16/19) 2329991393828732 a001 182717648081/1730726404001*9349^(16/19) 2329991393828732 a001 139583862445/1322157322203*9349^(16/19) 2329991393828732 a001 53316291173/505019158607*9349^(16/19) 2329991393828732 a001 10182505537/96450076809*9349^(16/19) 2329991393828732 a001 7778742049/73681302247*9349^(16/19) 2329991393828732 a001 2971215073/28143753123*9349^(16/19) 2329991393828732 a001 567451585/5374978561*9349^(16/19) 2329991393828732 a001 433494437/4106118243*9349^(16/19) 2329991393828732 a001 165580141/1568397607*9349^(16/19) 2329991393828733 a001 31622993/299537289*9349^(16/19) 2329991393828733 a001 24157817/228826127*9349^(16/19) 2329991393828738 a001 9227465/87403803*9349^(16/19) 2329991393828768 a001 1762289/16692641*9349^(16/19) 2329991393828975 a001 1346269/12752043*9349^(16/19) 2329991393830397 a001 514229/4870847*9349^(16/19) 2329991393840138 a001 98209/930249*9349^(16/19) 2329991393906908 a001 75025/710647*9349^(16/19) 2329991394364554 a001 28657/271443*9349^(16/19) 2329991394463193 a001 2584/15127*5778^(5/6) 2329991394564751 a001 9227465/103682*3571^(2/17) 2329991394749868 a001 24157817/271443*3571^(2/17) 2329991394776876 a001 63245986/710647*3571^(2/17) 2329991394780816 a001 165580141/1860498*3571^(2/17) 2329991394781391 a001 433494437/4870847*3571^(2/17) 2329991394781475 a001 1134903170/12752043*3571^(2/17) 2329991394781487 a001 2971215073/33385282*3571^(2/17) 2329991394781489 a001 7778742049/87403803*3571^(2/17) 2329991394781489 a001 20365011074/228826127*3571^(2/17) 2329991394781489 a001 53316291173/599074578*3571^(2/17) 2329991394781489 a001 139583862445/1568397607*3571^(2/17) 2329991394781489 a001 365435296162/4106118243*3571^(2/17) 2329991394781489 a001 956722026041/10749957122*3571^(2/17) 2329991394781489 a001 2504730781961/28143753123*3571^(2/17) 2329991394781489 a001 6557470319842/73681302247*3571^(2/17) 2329991394781489 a001 10610209857723/119218851371*3571^(2/17) 2329991394781489 a001 4052739537881/45537549124*3571^(2/17) 2329991394781489 a001 1548008755920/17393796001*3571^(2/17) 2329991394781489 a001 591286729879/6643838879*3571^(2/17) 2329991394781489 a001 225851433717/2537720636*3571^(2/17) 2329991394781489 a001 86267571272/969323029*3571^(2/17) 2329991394781490 a001 32951280099/370248451*3571^(2/17) 2329991394781490 a001 12586269025/141422324*3571^(2/17) 2329991394781490 a001 4807526976/54018521*3571^(2/17) 2329991394781495 a001 1836311903/20633239*3571^(2/17) 2329991394781527 a001 3524667/39604*3571^(2/17) 2329991394781747 a001 267914296/3010349*3571^(2/17) 2329991394783252 a001 102334155/1149851*3571^(2/17) 2329991394793568 a001 39088169/439204*3571^(2/17) 2329991394864276 a001 14930352/167761*3571^(2/17) 2329991394880345 a001 10946/271443*9349^(18/19) 2329991394953484 a001 75025/15127*9349^(8/19) 2329991394983407 a001 15456/90481*9349^(15/19) 2329991395066681 a001 17711/39603*9349^(13/19) 2329991395195537 a001 121393/710647*9349^(15/19) 2329991395226487 a001 105937/620166*9349^(15/19) 2329991395231002 a001 832040/4870847*9349^(15/19) 2329991395231661 a001 726103/4250681*9349^(15/19) 2329991395231757 a001 5702887/33385282*9349^(15/19) 2329991395231771 a001 4976784/29134601*9349^(15/19) 2329991395231773 a001 39088169/228826127*9349^(15/19) 2329991395231773 a001 34111385/199691526*9349^(15/19) 2329991395231774 a001 267914296/1568397607*9349^(15/19) 2329991395231774 a001 233802911/1368706081*9349^(15/19) 2329991395231774 a001 1836311903/10749957122*9349^(15/19) 2329991395231774 a001 1602508992/9381251041*9349^(15/19) 2329991395231774 a001 12586269025/73681302247*9349^(15/19) 2329991395231774 a001 10983760033/64300051206*9349^(15/19) 2329991395231774 a001 86267571272/505019158607*9349^(15/19) 2329991395231774 a001 75283811239/440719107401*9349^(15/19) 2329991395231774 a001 2504730781961/14662949395604*9349^(15/19) 2329991395231774 a001 139583862445/817138163596*9349^(15/19) 2329991395231774 a001 53316291173/312119004989*9349^(15/19) 2329991395231774 a001 20365011074/119218851371*9349^(15/19) 2329991395231774 a001 7778742049/45537549124*9349^(15/19) 2329991395231774 a001 2971215073/17393796001*9349^(15/19) 2329991395231774 a001 1134903170/6643838879*9349^(15/19) 2329991395231774 a001 433494437/2537720636*9349^(15/19) 2329991395231774 a001 165580141/969323029*9349^(15/19) 2329991395231774 a001 63245986/370248451*9349^(15/19) 2329991395231774 a001 24157817/141422324*9349^(15/19) 2329991395231780 a001 9227465/54018521*9349^(15/19) 2329991395231817 a001 3524578/20633239*9349^(15/19) 2329991395232068 a001 1346269/7881196*9349^(15/19) 2329991395233793 a001 514229/3010349*9349^(15/19) 2329991395245615 a001 196418/1149851*9349^(15/19) 2329991395326641 a001 75025/439204*9349^(15/19) 2329991395346975 a001 311187/2161*3571^(1/17) 2329991395348919 a001 5702887/64079*3571^(2/17) 2329991395591929 a001 6765/15127*64079^(13/23) 2329991395716671 a001 17711/64079*9349^(14/19) 2329991395882006 a001 28657/167761*9349^(15/19) 2329991395900579 a001 45765225/196418 2329991395912658 a001 6765/15127*141422324^(1/3) 2329991395912658 a001 6765/15127*(1/2+1/2*5^(1/2))^13 2329991395912658 a001 6765/15127*73681302247^(1/4) 2329991395928469 a001 6765/15127*271443^(1/2) 2329991396030061 a001 6765/15127*103682^(13/24) 2329991396242114 a001 121393/15127*9349^(7/19) 2329991396397798 a001 10946/167761*9349^(17/19) 2329991396500859 a001 46368/167761*9349^(14/19) 2329991396615271 a001 121393/439204*9349^(14/19) 2329991396631963 a001 317811/1149851*9349^(14/19) 2329991396634399 a001 832040/3010349*9349^(14/19) 2329991396634754 a001 2178309/7881196*9349^(14/19) 2329991396634806 a001 5702887/20633239*9349^(14/19) 2329991396634813 a001 14930352/54018521*9349^(14/19) 2329991396634814 a001 39088169/141422324*9349^(14/19) 2329991396634815 a001 102334155/370248451*9349^(14/19) 2329991396634815 a001 267914296/969323029*9349^(14/19) 2329991396634815 a001 701408733/2537720636*9349^(14/19) 2329991396634815 a001 1836311903/6643838879*9349^(14/19) 2329991396634815 a001 4807526976/17393796001*9349^(14/19) 2329991396634815 a001 12586269025/45537549124*9349^(14/19) 2329991396634815 a001 32951280099/119218851371*9349^(14/19) 2329991396634815 a001 86267571272/312119004989*9349^(14/19) 2329991396634815 a001 225851433717/817138163596*9349^(14/19) 2329991396634815 a001 1548008755920/5600748293801*9349^(14/19) 2329991396634815 a001 139583862445/505019158607*9349^(14/19) 2329991396634815 a001 53316291173/192900153618*9349^(14/19) 2329991396634815 a001 20365011074/73681302247*9349^(14/19) 2329991396634815 a001 7778742049/28143753123*9349^(14/19) 2329991396634815 a001 2971215073/10749957122*9349^(14/19) 2329991396634815 a001 1134903170/4106118243*9349^(14/19) 2329991396634815 a001 433494437/1568397607*9349^(14/19) 2329991396634815 a001 165580141/599074578*9349^(14/19) 2329991396634815 a001 63245986/228826127*9349^(14/19) 2329991396634815 a001 24157817/87403803*9349^(14/19) 2329991396634818 a001 9227465/33385282*9349^(14/19) 2329991396634838 a001 3524578/12752043*9349^(14/19) 2329991396634974 a001 1346269/4870847*9349^(14/19) 2329991396635904 a001 514229/1860498*9349^(14/19) 2329991396642280 a001 196418/710647*9349^(14/19) 2329991396685981 a001 75025/271443*9349^(14/19) 2329991396790505 a001 6765/15127*39603^(13/22) 2329991396985514 a001 28657/103682*9349^(14/19) 2329991397034615 m001 Stephens/(ln(2)^Psi(1,1/3)) 2329991397501306 a001 5473/51841*9349^(16/19) 2329991397604367 a001 23184/51841*9349^(13/19) 2329991397688856 a001 196418/15127*9349^(6/19) 2329991397974611 a001 121393/271443*9349^(13/19) 2329991398028628 a001 317811/710647*9349^(13/19) 2329991398036509 a001 416020/930249*9349^(13/19) 2329991398037659 a001 2178309/4870847*9349^(13/19) 2329991398037827 a001 5702887/12752043*9349^(13/19) 2329991398037852 a001 7465176/16692641*9349^(13/19) 2329991398037855 a001 39088169/87403803*9349^(13/19) 2329991398037856 a001 102334155/228826127*9349^(13/19) 2329991398037856 a001 133957148/299537289*9349^(13/19) 2329991398037856 a001 701408733/1568397607*9349^(13/19) 2329991398037856 a001 1836311903/4106118243*9349^(13/19) 2329991398037856 a001 2403763488/5374978561*9349^(13/19) 2329991398037856 a001 12586269025/28143753123*9349^(13/19) 2329991398037856 a001 32951280099/73681302247*9349^(13/19) 2329991398037856 a001 43133785636/96450076809*9349^(13/19) 2329991398037856 a001 225851433717/505019158607*9349^(13/19) 2329991398037856 a001 591286729879/1322157322203*9349^(13/19) 2329991398037856 a001 10610209857723/23725150497407*9349^(13/19) 2329991398037856 a001 139583862445/312119004989*9349^(13/19) 2329991398037856 a001 53316291173/119218851371*9349^(13/19) 2329991398037856 a001 10182505537/22768774562*9349^(13/19) 2329991398037856 a001 7778742049/17393796001*9349^(13/19) 2329991398037856 a001 2971215073/6643838879*9349^(13/19) 2329991398037856 a001 567451585/1268860318*9349^(13/19) 2329991398037856 a001 433494437/969323029*9349^(13/19) 2329991398037856 a001 165580141/370248451*9349^(13/19) 2329991398037856 a001 31622993/70711162*9349^(13/19) 2329991398037857 a001 24157817/54018521*9349^(13/19) 2329991398037867 a001 9227465/20633239*9349^(13/19) 2329991398037931 a001 1762289/3940598*9349^(13/19) 2329991398038370 a001 1346269/3010349*9349^(13/19) 2329991398041380 a001 514229/1149851*9349^(13/19) 2329991398062013 a001 98209/219602*9349^(13/19) 2329991398203434 a001 75025/167761*9349^(13/19) 2329991398522753 a001 28657/39603*9349^(12/19) 2329991398670709 a001 2178309/24476*3571^(2/17) 2329991399038545 a001 10946/39603*9349^(14/19) 2329991399075205 a001 317811/15127*9349^(5/19) 2329991399141606 a001 15456/13201*9349^(11/19) 2329991399172743 a001 28657/64079*9349^(13/19) 2329991399306941 a001 75025/103682*9349^(12/19) 2329991399421353 a001 196418/271443*9349^(12/19) 2329991399438045 a001 514229/710647*9349^(12/19) 2329991399440481 a001 1346269/1860498*9349^(12/19) 2329991399440836 a001 3524578/4870847*9349^(12/19) 2329991399440888 a001 9227465/12752043*9349^(12/19) 2329991399440896 a001 24157817/33385282*9349^(12/19) 2329991399440897 a001 63245986/87403803*9349^(12/19) 2329991399440897 a001 165580141/228826127*9349^(12/19) 2329991399440897 a001 433494437/599074578*9349^(12/19) 2329991399440897 a001 1134903170/1568397607*9349^(12/19) 2329991399440897 a001 2971215073/4106118243*9349^(12/19) 2329991399440897 a001 7778742049/10749957122*9349^(12/19) 2329991399440897 a001 20365011074/28143753123*9349^(12/19) 2329991399440897 a001 53316291173/73681302247*9349^(12/19) 2329991399440897 a001 139583862445/192900153618*9349^(12/19) 2329991399440897 a001 10610209857723/14662949395604*9349^(12/19) 2329991399440897 a001 591286729879/817138163596*9349^(12/19) 2329991399440897 a001 225851433717/312119004989*9349^(12/19) 2329991399440897 a001 86267571272/119218851371*9349^(12/19) 2329991399440897 a001 32951280099/45537549124*9349^(12/19) 2329991399440897 a001 12586269025/17393796001*9349^(12/19) 2329991399440897 a001 4807526976/6643838879*9349^(12/19) 2329991399440897 a001 1836311903/2537720636*9349^(12/19) 2329991399440897 a001 701408733/969323029*9349^(12/19) 2329991399440897 a001 267914296/370248451*9349^(12/19) 2329991399440897 a001 102334155/141422324*9349^(12/19) 2329991399440897 a001 39088169/54018521*9349^(12/19) 2329991399440900 a001 14930352/20633239*9349^(12/19) 2329991399440920 a001 5702887/7881196*9349^(12/19) 2329991399441056 a001 2178309/3010349*9349^(12/19) 2329991399441986 a001 832040/1149851*9349^(12/19) 2329991399448362 a001 317811/439204*9349^(12/19) 2329991399492063 a001 121393/167761*9349^(12/19) 2329991399688535 a001 10946/64079*9349^(15/19) 2329991399791596 a001 46368/64079*9349^(12/19) 2329991399938756 a001 317811/9349*3571^(4/17) 2329991400226164 a001 2584/3571*3571^(12/17) 2329991400484622 a001 514229/15127*9349^(4/19) 2329991400595571 a001 121393/103682*9349^(11/19) 2329991400807702 a001 105937/90481*9349^(11/19) 2329991400838651 a001 832040/710647*9349^(11/19) 2329991400843167 a001 726103/620166*9349^(11/19) 2329991400843825 a001 5702887/4870847*9349^(11/19) 2329991400843921 a001 4976784/4250681*9349^(11/19) 2329991400843935 a001 39088169/33385282*9349^(11/19) 2329991400843938 a001 34111385/29134601*9349^(11/19) 2329991400843938 a001 267914296/228826127*9349^(11/19) 2329991400843938 a001 233802911/199691526*9349^(11/19) 2329991400843938 a001 1836311903/1568397607*9349^(11/19) 2329991400843938 a001 1602508992/1368706081*9349^(11/19) 2329991400843938 a001 12586269025/10749957122*9349^(11/19) 2329991400843938 a001 10983760033/9381251041*9349^(11/19) 2329991400843938 a001 86267571272/73681302247*9349^(11/19) 2329991400843938 a001 75283811239/64300051206*9349^(11/19) 2329991400843938 a001 2504730781961/2139295485799*9349^(11/19) 2329991400843938 a001 365435296162/312119004989*9349^(11/19) 2329991400843938 a001 139583862445/119218851371*9349^(11/19) 2329991400843938 a001 53316291173/45537549124*9349^(11/19) 2329991400843938 a001 20365011074/17393796001*9349^(11/19) 2329991400843938 a001 7778742049/6643838879*9349^(11/19) 2329991400843938 a001 2971215073/2537720636*9349^(11/19) 2329991400843938 a001 1134903170/969323029*9349^(11/19) 2329991400843938 a001 433494437/370248451*9349^(11/19) 2329991400843938 a001 165580141/141422324*9349^(11/19) 2329991400843939 a001 63245986/54018521*9349^(11/19) 2329991400843944 a001 24157817/20633239*9349^(11/19) 2329991400843981 a001 9227465/7881196*9349^(11/19) 2329991400844181 a001 75025/39603*9349^(10/19) 2329991400844233 a001 3524578/3010349*9349^(11/19) 2329991400845957 a001 1346269/1149851*9349^(11/19) 2329991400857779 a001 514229/439204*9349^(11/19) 2329991400938806 a001 196418/167761*9349^(11/19) 2329991401494171 a001 75025/64079*9349^(11/19) 2329991401831352 a001 2255/13201*24476^(5/7) 2329991401844627 a001 17711/24476*9349^(12/19) 2329991401885227 a001 832040/15127*9349^(3/19) 2329991402042313 a001 98209/51841*9349^(10/19) 2329991402132810 a001 121393/39603*9349^(9/19) 2329991402205706 a004 Fibonacci(20)*Lucas(21)/(1/2+sqrt(5)/2)^28 2329991402217119 a001 514229/271443*9349^(10/19) 2329991402242622 a001 1346269/710647*9349^(10/19) 2329991402246343 a001 1762289/930249*9349^(10/19) 2329991402246886 a001 9227465/4870847*9349^(10/19) 2329991402246965 a001 24157817/12752043*9349^(10/19) 2329991402246977 a001 31622993/16692641*9349^(10/19) 2329991402246979 a001 165580141/87403803*9349^(10/19) 2329991402246979 a001 433494437/228826127*9349^(10/19) 2329991402246979 a001 567451585/299537289*9349^(10/19) 2329991402246979 a001 2971215073/1568397607*9349^(10/19) 2329991402246979 a001 7778742049/4106118243*9349^(10/19) 2329991402246979 a001 10182505537/5374978561*9349^(10/19) 2329991402246979 a001 53316291173/28143753123*9349^(10/19) 2329991402246979 a001 139583862445/73681302247*9349^(10/19) 2329991402246979 a001 182717648081/96450076809*9349^(10/19) 2329991402246979 a001 956722026041/505019158607*9349^(10/19) 2329991402246979 a001 10610209857723/5600748293801*9349^(10/19) 2329991402246979 a001 591286729879/312119004989*9349^(10/19) 2329991402246979 a001 225851433717/119218851371*9349^(10/19) 2329991402246979 a001 21566892818/11384387281*9349^(10/19) 2329991402246979 a001 32951280099/17393796001*9349^(10/19) 2329991402246979 a001 12586269025/6643838879*9349^(10/19) 2329991402246979 a001 1201881744/634430159*9349^(10/19) 2329991402246979 a001 1836311903/969323029*9349^(10/19) 2329991402246979 a001 701408733/370248451*9349^(10/19) 2329991402246979 a001 66978574/35355581*9349^(10/19) 2329991402246980 a001 102334155/54018521*9349^(10/19) 2329991402246984 a001 39088169/20633239*9349^(10/19) 2329991402247014 a001 3732588/1970299*9349^(10/19) 2329991402247222 a001 5702887/3010349*9349^(10/19) 2329991402248643 a001 2178309/1149851*9349^(10/19) 2329991402258385 a001 208010/109801*9349^(10/19) 2329991402325154 a001 317811/167761*9349^(10/19) 2329991402402990 a001 6765/439204*24476^(20/21) 2329991402531196 a001 6765/15127*15127^(13/20) 2329991402544495 a001 2255/90481*24476^(19/21) 2329991402572175 a001 17711/15127*24476^(11/21) 2329991402729784 a001 6765/103682*24476^(17/21) 2329991402782800 a001 121393/64079*9349^(10/19) 2329991402844112 a001 615/15251*24476^(6/7) 2329991403289199 a001 1346269/15127*9349^(2/19) 2329991403428662 a001 317811/103682*9349^(9/19) 2329991403579553 a001 196418/39603*9349^(8/19) 2329991403617724 a001 832040/271443*9349^(9/19) 2329991403645308 a001 311187/101521*9349^(9/19) 2329991403649333 a001 5702887/1860498*9349^(9/19) 2329991403649920 a001 14930352/4870847*9349^(9/19) 2329991403650005 a001 39088169/12752043*9349^(9/19) 2329991403650018 a001 14619165/4769326*9349^(9/19) 2329991403650020 a001 267914296/87403803*9349^(9/19) 2329991403650020 a001 701408733/228826127*9349^(9/19) 2329991403650020 a001 1836311903/599074578*9349^(9/19) 2329991403650020 a001 686789568/224056801*9349^(9/19) 2329991403650020 a001 12586269025/4106118243*9349^(9/19) 2329991403650020 a001 32951280099/10749957122*9349^(9/19) 2329991403650020 a001 86267571272/28143753123*9349^(9/19) 2329991403650020 a001 32264490531/10525900321*9349^(9/19) 2329991403650020 a001 591286729879/192900153618*9349^(9/19) 2329991403650020 a001 1548008755920/505019158607*9349^(9/19) 2329991403650020 a001 1515744265389/494493258286*9349^(9/19) 2329991403650020 a001 2504730781961/817138163596*9349^(9/19) 2329991403650020 a001 956722026041/312119004989*9349^(9/19) 2329991403650020 a001 365435296162/119218851371*9349^(9/19) 2329991403650020 a001 139583862445/45537549124*9349^(9/19) 2329991403650020 a001 53316291173/17393796001*9349^(9/19) 2329991403650020 a001 20365011074/6643838879*9349^(9/19) 2329991403650020 a001 7778742049/2537720636*9349^(9/19) 2329991403650020 a001 2971215073/969323029*9349^(9/19) 2329991403650020 a001 1134903170/370248451*9349^(9/19) 2329991403650020 a001 433494437/141422324*9349^(9/19) 2329991403650021 a001 165580141/54018521*9349^(9/19) 2329991403650026 a001 63245986/20633239*9349^(9/19) 2329991403650058 a001 24157817/7881196*9349^(9/19) 2329991403650283 a001 9227465/3010349*9349^(9/19) 2329991403651820 a001 3524578/1149851*9349^(9/19) 2329991403662356 a001 1346269/439204*9349^(9/19) 2329991403699178 a001 6765/64079*24476^(16/21) 2329991403734571 a001 514229/167761*9349^(9/19) 2329991404043838 a001 5702887/39603*3571^(1/17) 2329991404211429 a001 6624/2161*24476^(3/7) 2329991404229543 a001 196418/64079*9349^(9/19) 2329991404239365 a001 2255/13201*64079^(15/23) 2329991404338050 a001 17711/15127*64079^(11/23) 2329991404559763 a001 2255/13201*167761^(3/5) 2329991404602726 a001 2255/13201*439204^(5/9) 2329991404607674 a001 119814915/514229 2329991404609420 a001 2255/13201*7881196^(5/11) 2329991404609424 a001 17711/15127*7881196^(1/3) 2329991404609434 a001 2255/13201*20633239^(3/7) 2329991404609437 a001 2255/13201*141422324^(5/13) 2329991404609437 a001 2255/13201*2537720636^(1/3) 2329991404609437 a001 2255/13201*45537549124^(5/17) 2329991404609437 a001 2255/13201*312119004989^(3/11) 2329991404609437 a001 2255/13201*14662949395604^(5/21) 2329991404609437 a001 2255/13201*(1/2+1/2*5^(1/2))^15 2329991404609437 a001 2255/13201*192900153618^(5/18) 2329991404609437 a001 2255/13201*28143753123^(3/10) 2329991404609437 a001 2255/13201*10749957122^(5/16) 2329991404609437 a001 2255/13201*599074578^(5/14) 2329991404609437 a001 2255/13201*228826127^(3/8) 2329991404609437 a001 17711/15127*312119004989^(1/5) 2329991404609437 a001 17711/15127*(1/2+1/2*5^(1/2))^11 2329991404609437 a001 17711/15127*1568397607^(1/4) 2329991404609437 a001 2255/13201*33385282^(5/12) 2329991404609773 a001 2255/13201*1860498^(1/2) 2329991404691884 a001 311187/2161*9349^(1/19) 2329991404696168 a001 75025/15127*24476^(8/21) 2329991404708778 a001 17711/15127*103682^(11/24) 2329991404744902 a001 2255/13201*103682^(5/8) 2329991404766962 a001 121393/15127*24476^(1/3) 2329991404810412 a001 28657/15127*24476^(10/21) 2329991404838079 a001 514229/103682*9349^(8/19) 2329991404965901 a001 105937/13201*9349^(7/19) 2329991404995869 a001 196418/15127*24476^(2/7) 2329991405021696 a001 1346269/271443*9349^(8/19) 2329991405048485 a001 3524578/710647*9349^(8/19) 2329991405052394 a001 9227465/1860498*9349^(8/19) 2329991405052964 a001 24157817/4870847*9349^(8/19) 2329991405053047 a001 63245986/12752043*9349^(8/19) 2329991405053059 a001 165580141/33385282*9349^(8/19) 2329991405053061 a001 433494437/87403803*9349^(8/19) 2329991405053061 a001 1134903170/228826127*9349^(8/19) 2329991405053061 a001 2971215073/599074578*9349^(8/19) 2329991405053061 a001 7778742049/1568397607*9349^(8/19) 2329991405053061 a001 20365011074/4106118243*9349^(8/19) 2329991405053061 a001 53316291173/10749957122*9349^(8/19) 2329991405053061 a001 139583862445/28143753123*9349^(8/19) 2329991405053061 a001 365435296162/73681302247*9349^(8/19) 2329991405053061 a001 956722026041/192900153618*9349^(8/19) 2329991405053061 a001 2504730781961/505019158607*9349^(8/19) 2329991405053061 a001 10610209857723/2139295485799*9349^(8/19) 2329991405053061 a001 140728068720/28374454999*9349^(8/19) 2329991405053061 a001 591286729879/119218851371*9349^(8/19) 2329991405053061 a001 225851433717/45537549124*9349^(8/19) 2329991405053061 a001 86267571272/17393796001*9349^(8/19) 2329991405053061 a001 32951280099/6643838879*9349^(8/19) 2329991405053061 a001 1144206275/230701876*9349^(8/19) 2329991405053061 a001 4807526976/969323029*9349^(8/19) 2329991405053061 a001 1836311903/370248451*9349^(8/19) 2329991405053061 a001 701408733/141422324*9349^(8/19) 2329991405053062 a001 267914296/54018521*9349^(8/19) 2329991405053067 a001 9303105/1875749*9349^(8/19) 2329991405053098 a001 39088169/7881196*9349^(8/19) 2329991405053316 a001 14930352/3010349*9349^(8/19) 2329991405054809 a001 5702887/1149851*9349^(8/19) 2329991405065042 a001 2178309/439204*9349^(8/19) 2329991405135177 a001 75640/15251*9349^(8/19) 2329991405164382 a001 317811/15127*24476^(5/21) 2329991405300699 a001 28657/24476*9349^(11/19) 2329991405312693 a001 7465176/51841*3571^(1/17) 2329991405352230 a001 17711/15127*39603^(1/2) 2329991405355964 a001 514229/15127*24476^(4/21) 2329991405458865 a001 6765/103682*64079^(17/23) 2329991405497817 a001 39088169/271443*3571^(1/17) 2329991405524826 a001 14619165/101521*3571^(1/17) 2329991405527580 a004 Fibonacci(20)*Lucas(23)/(1/2+sqrt(5)/2)^30 2329991405528767 a001 133957148/930249*3571^(1/17) 2329991405529341 a001 701408733/4870847*3571^(1/17) 2329991405529425 a001 1836311903/12752043*3571^(1/17) 2329991405529438 a001 14930208/103681*3571^(1/17) 2329991405529439 a001 12586269025/87403803*3571^(1/17) 2329991405529440 a001 32951280099/228826127*3571^(1/17) 2329991405529440 a001 43133785636/299537289*3571^(1/17) 2329991405529440 a001 32264490531/224056801*3571^(1/17) 2329991405529440 a001 591286729879/4106118243*3571^(1/17) 2329991405529440 a001 774004377960/5374978561*3571^(1/17) 2329991405529440 a001 4052739537881/28143753123*3571^(1/17) 2329991405529440 a001 1515744265389/10525900321*3571^(1/17) 2329991405529440 a001 3278735159921/22768774562*3571^(1/17) 2329991405529440 a001 2504730781961/17393796001*3571^(1/17) 2329991405529440 a001 956722026041/6643838879*3571^(1/17) 2329991405529440 a001 182717648081/1268860318*3571^(1/17) 2329991405529440 a001 139583862445/969323029*3571^(1/17) 2329991405529440 a001 53316291173/370248451*3571^(1/17) 2329991405529440 a001 10182505537/70711162*3571^(1/17) 2329991405529440 a001 7778742049/54018521*3571^(1/17) 2329991405529445 a001 2971215073/20633239*3571^(1/17) 2329991405529477 a001 567451585/3940598*3571^(1/17) 2329991405529697 a001 433494437/3010349*3571^(1/17) 2329991405531202 a001 165580141/1149851*3571^(1/17) 2329991405538734 a001 832040/15127*24476^(1/7) 2329991405541519 a001 31622993/219602*3571^(1/17) 2329991405554014 a001 6765/1149851*64079^(22/23) 2329991405572309 a001 6765/710647*64079^(21/23) 2329991405594643 a001 2255/90481*64079^(19/23) 2329991405612229 a001 24157817/167761*3571^(1/17) 2329991405613673 a001 6765/439204*64079^(20/23) 2329991405615891 a001 317811/64079*9349^(8/19) 2329991405622337 a001 2255/13201*39603^(15/22) 2329991405636182 r005 Re(z^2+c),c=-35/122+1/34*I,n=19 2329991405656236 a001 6624/2161*64079^(9/23) 2329991405724870 a001 1346269/15127*24476^(2/21) 2329991405733726 a001 615/15251*64079^(18/23) 2329991405816491 a001 5473/12238*9349^(13/19) 2329991405874253 a001 6624/2161*439204^(1/3) 2329991405878022 a001 313679520/1346269 2329991405878269 a001 6624/2161*7881196^(3/11) 2329991405878280 a001 6765/103682*45537549124^(1/3) 2329991405878280 a001 6765/103682*(1/2+1/2*5^(1/2))^17 2329991405878280 a001 6624/2161*141422324^(3/13) 2329991405878280 a001 6624/2161*2537720636^(1/5) 2329991405878280 a001 6624/2161*45537549124^(3/17) 2329991405878280 a001 6624/2161*14662949395604^(1/7) 2329991405878280 a001 6624/2161*(1/2+1/2*5^(1/2))^9 2329991405878280 a001 6624/2161*192900153618^(1/6) 2329991405878280 a001 6624/2161*10749957122^(3/16) 2329991405878280 a001 6624/2161*599074578^(3/14) 2329991405878280 a001 6624/2161*33385282^(1/4) 2329991405878287 a001 6765/103682*12752043^(1/2) 2329991405878481 a001 6624/2161*1860498^(3/10) 2329991405890701 a001 121393/15127*64079^(7/23) 2329991405909720 a001 311187/2161*24476^(1/21) 2329991405919553 a001 11592/6119*9349^(10/19) 2329991405959074 a001 196418/15127*64079^(6/23) 2329991405959559 a001 6624/2161*103682^(3/8) 2329991405967053 a001 317811/15127*64079^(5/23) 2329991405980441 a001 75025/15127*64079^(8/23) 2329991405998100 a001 514229/15127*64079^(4/23) 2329991406012235 a004 Fibonacci(20)*Lucas(25)/(1/2+sqrt(5)/2)^32 2329991406020336 a001 832040/15127*64079^(3/23) 2329991406031807 a001 6765/103682*103682^(17/24) 2329991406040871 a001 6765/439204*167761^(4/5) 2329991406045938 a001 1346269/15127*64079^(2/23) 2329991406063364 a001 821223645/3524578 2329991406063400 a001 121393/15127*20633239^(1/5) 2329991406063401 a001 2255/90481*817138163596^(1/3) 2329991406063401 a001 2255/90481*(1/2+1/2*5^(1/2))^19 2329991406063401 a001 121393/15127*17393796001^(1/7) 2329991406063401 a001 121393/15127*14662949395604^(1/9) 2329991406063401 a001 121393/15127*(1/2+1/2*5^(1/2))^7 2329991406063401 a001 121393/15127*599074578^(1/6) 2329991406063401 a001 2255/90481*87403803^(1/2) 2329991406064555 a001 121393/15127*710647^(1/4) 2329991406070254 a001 311187/2161*64079^(1/23) 2329991406073852 a001 317811/15127*167761^(1/5) 2329991406081016 a001 6765/710647*439204^(7/9) 2329991406082945 a004 Fibonacci(20)*Lucas(27)/(1/2+sqrt(5)/2)^34 2329991406084544 a001 6765/3010349*439204^(8/9) 2329991406090386 a001 6765/710647*7881196^(7/11) 2329991406090405 a001 33076791/141961 2329991406090407 a001 6765/710647*20633239^(3/5) 2329991406090409 a001 317811/15127*20633239^(1/7) 2329991406090410 a001 6765/710647*141422324^(7/13) 2329991406090410 a001 6765/710647*2537720636^(7/15) 2329991406090410 a001 6765/710647*17393796001^(3/7) 2329991406090410 a001 6765/710647*45537549124^(7/17) 2329991406090410 a001 6765/710647*14662949395604^(1/3) 2329991406090410 a001 6765/710647*(1/2+1/2*5^(1/2))^21 2329991406090410 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^21/Lucas(28) 2329991406090410 a001 6765/710647*192900153618^(7/18) 2329991406090410 a001 6765/710647*10749957122^(7/16) 2329991406090410 a001 6765/710647*599074578^(1/2) 2329991406090410 a001 317811/15127*2537720636^(1/9) 2329991406090410 a001 317811/15127*312119004989^(1/11) 2329991406090410 a001 317811/15127*(1/2+1/2*5^(1/2))^5 2329991406090410 a001 317811/15127*28143753123^(1/10) 2329991406090410 a001 317811/15127*228826127^(1/8) 2329991406090411 a001 6765/710647*33385282^(7/12) 2329991406090522 a001 317811/15127*1860498^(1/6) 2329991406090881 a001 6765/710647*1860498^(7/10) 2329991406093009 a001 832040/15127*439204^(1/9) 2329991406093261 a004 Fibonacci(20)*Lucas(29)/(1/2+sqrt(5)/2)^36 2329991406093870 a001 6765/710647*710647^(3/4) 2329991406094347 a001 832040/15127*7881196^(1/11) 2329991406094350 a001 5628750600/24157817 2329991406094351 a001 55/15126*(1/2+1/2*5^(1/2))^23 2329991406094351 a001 55/15126*4106118243^(1/2) 2329991406094351 a001 832040/15127*141422324^(1/13) 2329991406094351 a001 832040/15127*2537720636^(1/15) 2329991406094351 a001 832040/15127*45537549124^(1/17) 2329991406094351 a001 832040/15127*14662949395604^(1/21) 2329991406094351 a001 832040/15127*(1/2+1/2*5^(1/2))^3 2329991406094351 a001 832040/15127*10749957122^(1/16) 2329991406094351 a001 832040/15127*599074578^(1/14) 2329991406094351 a001 832040/15127*33385282^(1/12) 2329991406094418 a001 832040/15127*1860498^(1/10) 2329991406094767 a004 Fibonacci(20)*Lucas(31)/(1/2+sqrt(5)/2)^38 2329991406094922 a001 6765/4870847*20633239^(5/7) 2329991406094925 a001 14736260385/63245986 2329991406094926 a001 6765/4870847*2537720636^(5/9) 2329991406094926 a001 6765/4870847*312119004989^(5/11) 2329991406094926 a001 6765/4870847*(1/2+1/2*5^(1/2))^25 2329991406094926 a001 6765/4870847*3461452808002^(5/12) 2329991406094926 a001 6765/4870847*28143753123^(1/2) 2329991406094926 a001 6765/4870847*228826127^(5/8) 2329991406094926 a001 311187/4322+311187/4322*5^(1/2) 2329991406094979 a001 2255/4250681*7881196^(9/11) 2329991406094986 a004 Fibonacci(20)*Lucas(33)/(1/2+sqrt(5)/2)^40 2329991406094990 a001 6765/54018521*7881196^(10/11) 2329991406095009 a001 2255/4250681*141422324^(9/13) 2329991406095009 a001 38580030555/165580141 2329991406095009 a001 2255/4250681*2537720636^(3/5) 2329991406095009 a001 2255/4250681*45537549124^(9/17) 2329991406095009 a001 2255/4250681*817138163596^(9/19) 2329991406095009 a001 2255/4250681*14662949395604^(3/7) 2329991406095009 a001 2255/4250681*(1/2+1/2*5^(1/2))^27 2329991406095009 a001 2255/4250681*192900153618^(1/2) 2329991406095009 a001 2255/4250681*10749957122^(9/16) 2329991406095009 a001 2255/4250681*599074578^(9/14) 2329991406095009 a004 Fibonacci(34)/Lucas(20)/(1/2+sqrt(5)/2) 2329991406095011 a001 2255/4250681*33385282^(3/4) 2329991406095018 a004 Fibonacci(20)*Lucas(35)/(1/2+sqrt(5)/2)^42 2329991406095020 a001 6765/54018521*20633239^(6/7) 2329991406095022 a001 101003831280/433494437 2329991406095022 a001 6765/33385282*(1/2+1/2*5^(1/2))^29 2329991406095022 a001 6765/33385282*1322157322203^(1/2) 2329991406095022 a004 Fibonacci(36)/Lucas(20)/(1/2+sqrt(5)/2)^3 2329991406095023 a004 Fibonacci(20)*Lucas(37)/(1/2+sqrt(5)/2)^44 2329991406095023 a001 52886292657/226980634 2329991406095023 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^31/Lucas(38) 2329991406095023 a001 2255/29134601*9062201101803^(1/2) 2329991406095023 a004 Fibonacci(38)/Lucas(20)/(1/2+sqrt(5)/2)^5 2329991406095024 a001 6765/228826127*141422324^(11/13) 2329991406095024 a004 Fibonacci(20)*Lucas(39)/(1/2+sqrt(5)/2)^46 2329991406095024 a001 6765/969323029*141422324^(12/13) 2329991406095024 a001 6765/228826127*2537720636^(11/15) 2329991406095024 a001 692290558575/2971215073 2329991406095024 a001 6765/228826127*45537549124^(11/17) 2329991406095024 a001 6765/228826127*312119004989^(3/5) 2329991406095024 a001 6765/228826127*817138163596^(11/19) 2329991406095024 a001 6765/228826127*14662949395604^(11/21) 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^33/Lucas(40) 2329991406095024 a001 6765/228826127*192900153618^(11/18) 2329991406095024 a001 6765/228826127*10749957122^(11/16) 2329991406095024 a001 6765/228826127*1568397607^(3/4) 2329991406095024 a001 6765/228826127*599074578^(11/14) 2329991406095024 a004 Fibonacci(20)*Lucas(41)/(1/2+sqrt(5)/2)^48 2329991406095024 a001 2255/199691526*2537720636^(7/9) 2329991406095024 a001 139418477880/598364773 2329991406095024 a001 2255/199691526*17393796001^(5/7) 2329991406095024 a001 2255/199691526*312119004989^(7/11) 2329991406095024 a001 2255/199691526*14662949395604^(5/9) 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^35/Lucas(42) 2329991406095024 a001 2255/199691526*505019158607^(5/8) 2329991406095024 a001 2255/199691526*28143753123^(7/10) 2329991406095024 a004 Fibonacci(20)*Lucas(43)/(1/2+sqrt(5)/2)^50 2329991406095024 a001 2255/199691526*599074578^(5/6) 2329991406095024 a001 4745030078745/20365011074 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^37/Lucas(44) 2329991406095024 a001 2255/1368706081*2537720636^(13/15) 2329991406095024 a004 Fibonacci(20)*Lucas(45)/(1/2+sqrt(5)/2)^52 2329991406095024 a001 6765/17393796001*2537720636^(14/15) 2329991406095024 a001 6765/6643838879*2537720636^(8/9) 2329991406095024 a001 2255/1368706081*45537549124^(13/17) 2329991406095024 a001 12422650023795/53316291173 2329991406095024 a001 2255/1368706081*14662949395604^(13/21) 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^39/Lucas(46) 2329991406095024 a001 2255/1368706081*192900153618^(13/18) 2329991406095024 a001 2255/1368706081*73681302247^(3/4) 2329991406095024 a001 2255/1368706081*10749957122^(13/16) 2329991406095024 a004 Fibonacci(20)*Lucas(47)/(1/2+sqrt(5)/2)^54 2329991406095024 a001 6504583998528/27916772489 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^41/Lucas(48) 2329991406095024 a004 Fibonacci(20)*Lucas(49)/(1/2+sqrt(5)/2)^56 2329991406095024 a001 85146109954125/365435296162 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^43/Lucas(50) 2329991406095024 a001 6765/73681302247*45537549124^(15/17) 2329991406095024 a004 Fibonacci(20)*Lucas(51)/(1/2+sqrt(5)/2)^58 2329991406095024 a001 615/28374454999*45537549124^(16/17) 2329991406095024 a001 6765/73681302247*312119004989^(9/11) 2329991406095024 a001 222915409869735/956722026041 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^45/Lucas(52) 2329991406095024 a001 6765/73681302247*192900153618^(5/6) 2329991406095024 a004 Fibonacci(20)*Lucas(53)/(1/2+sqrt(5)/2)^60 2329991406095024 a001 583600119655080/2504730781961 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^47/Lucas(54) 2329991406095024 a004 Fibonacci(20)*Lucas(55)/(1/2+sqrt(5)/2)^62 2329991406095024 a001 6765/817138163596*312119004989^(10/11) 2329991406095024 a001 117529611468885/504420793834 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^49/Lucas(56) 2329991406095024 a004 Fibonacci(20)*Lucas(57)/(1/2+sqrt(5)/2)^64 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^51/Lucas(58) 2329991406095024 a004 Fibonacci(20)*Lucas(59)/(1/2+sqrt(5)/2)^66 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^53/Lucas(60) 2329991406095024 a004 Fibonacci(20)*Lucas(61)/(1/2+sqrt(5)/2)^68 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^55/Lucas(62) 2329991406095024 a004 Fibonacci(20)*Lucas(63)/(1/2+sqrt(5)/2)^70 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^57/Lucas(64) 2329991406095024 a004 Fibonacci(20)*Lucas(65)/(1/2+sqrt(5)/2)^72 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^59/Lucas(66) 2329991406095024 a004 Fibonacci(20)*Lucas(67)/(1/2+sqrt(5)/2)^74 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^61/Lucas(68) 2329991406095024 a004 Fibonacci(20)*Lucas(69)/(1/2+sqrt(5)/2)^76 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^63/Lucas(70) 2329991406095024 a004 Fibonacci(20)*Lucas(71)/(1/2+sqrt(5)/2)^78 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^65/Lucas(72) 2329991406095024 a004 Fibonacci(20)*Lucas(73)/(1/2+sqrt(5)/2)^80 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^67/Lucas(74) 2329991406095024 a004 Fibonacci(20)*Lucas(75)/(1/2+sqrt(5)/2)^82 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^69/Lucas(76) 2329991406095024 a004 Fibonacci(20)*Lucas(77)/(1/2+sqrt(5)/2)^84 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^71/Lucas(78) 2329991406095024 a004 Fibonacci(20)*Lucas(79)/(1/2+sqrt(5)/2)^86 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^73/Lucas(80) 2329991406095024 a004 Fibonacci(20)*Lucas(81)/(1/2+sqrt(5)/2)^88 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^75/Lucas(82) 2329991406095024 a004 Fibonacci(20)*Lucas(83)/(1/2+sqrt(5)/2)^90 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^77/Lucas(84) 2329991406095024 a004 Fibonacci(20)*Lucas(85)/(1/2+sqrt(5)/2)^92 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^79/Lucas(86) 2329991406095024 a004 Fibonacci(20)*Lucas(87)/(1/2+sqrt(5)/2)^94 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^81/Lucas(88) 2329991406095024 a004 Fibonacci(20)*Lucas(89)/(1/2+sqrt(5)/2)^96 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^83/Lucas(90) 2329991406095024 a004 Fibonacci(20)*Lucas(91)/(1/2+sqrt(5)/2)^98 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^85/Lucas(92) 2329991406095024 a004 Fibonacci(20)*Lucas(93)/(1/2+sqrt(5)/2)^100 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^87/Lucas(94) 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^89/Lucas(96) 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^91/Lucas(98) 2329991406095024 a004 Fibonacci(10)*Lucas(10)/(1/2+sqrt(5)/2)^7 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^90/Lucas(97) 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^92/Lucas(99) 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^93/Lucas(100) 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^88/Lucas(95) 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^86/Lucas(93) 2329991406095024 a004 Fibonacci(20)*Lucas(92)/(1/2+sqrt(5)/2)^99 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^84/Lucas(91) 2329991406095024 a004 Fibonacci(20)*Lucas(90)/(1/2+sqrt(5)/2)^97 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^82/Lucas(89) 2329991406095024 a004 Fibonacci(20)*Lucas(88)/(1/2+sqrt(5)/2)^95 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^80/Lucas(87) 2329991406095024 a004 Fibonacci(20)*Lucas(86)/(1/2+sqrt(5)/2)^93 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^78/Lucas(85) 2329991406095024 a004 Fibonacci(20)*Lucas(84)/(1/2+sqrt(5)/2)^91 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^76/Lucas(83) 2329991406095024 a004 Fibonacci(20)*Lucas(82)/(1/2+sqrt(5)/2)^89 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^74/Lucas(81) 2329991406095024 a004 Fibonacci(20)*Lucas(80)/(1/2+sqrt(5)/2)^87 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^72/Lucas(79) 2329991406095024 a004 Fibonacci(20)*Lucas(78)/(1/2+sqrt(5)/2)^85 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^70/Lucas(77) 2329991406095024 a004 Fibonacci(20)*Lucas(76)/(1/2+sqrt(5)/2)^83 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^68/Lucas(75) 2329991406095024 a004 Fibonacci(20)*Lucas(74)/(1/2+sqrt(5)/2)^81 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^66/Lucas(73) 2329991406095024 a004 Fibonacci(20)*Lucas(72)/(1/2+sqrt(5)/2)^79 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^64/Lucas(71) 2329991406095024 a004 Fibonacci(20)*Lucas(70)/(1/2+sqrt(5)/2)^77 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^62/Lucas(69) 2329991406095024 a004 Fibonacci(20)*Lucas(68)/(1/2+sqrt(5)/2)^75 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^60/Lucas(67) 2329991406095024 a004 Fibonacci(20)*Lucas(66)/(1/2+sqrt(5)/2)^73 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^58/Lucas(65) 2329991406095024 a004 Fibonacci(20)*Lucas(64)/(1/2+sqrt(5)/2)^71 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^56/Lucas(63) 2329991406095024 a004 Fibonacci(20)*Lucas(62)/(1/2+sqrt(5)/2)^69 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^54/Lucas(61) 2329991406095024 a001 2255/3020733700601*3461452808002^(11/12) 2329991406095024 a004 Fibonacci(20)*Lucas(60)/(1/2+sqrt(5)/2)^67 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^52/Lucas(59) 2329991406095024 a004 Fibonacci(20)*Lucas(58)/(1/2+sqrt(5)/2)^65 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^50/Lucas(57) 2329991406095024 a001 6765/2139295485799*505019158607^(13/14) 2329991406095024 a004 Fibonacci(20)*Lucas(56)/(1/2+sqrt(5)/2)^63 2329991406095024 a001 615/28374454999*14662949395604^(16/21) 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^48/Lucas(55) 2329991406095024 a001 2255/440719107401*192900153618^(17/18) 2329991406095024 a004 Fibonacci(20)*Lucas(54)/(1/2+sqrt(5)/2)^61 2329991406095024 a001 615/28374454999*192900153618^(8/9) 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^46/Lucas(53) 2329991406095024 a001 53316291173/228826128 2329991406095024 a001 615/28374454999*73681302247^(12/13) 2329991406095024 a004 Fibonacci(20)*Lucas(52)/(1/2+sqrt(5)/2)^59 2329991406095024 a001 6765/17393796001*17393796001^(6/7) 2329991406095024 a001 6765/45537549124*312119004989^(4/5) 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^44/Lucas(51) 2329991406095024 a001 6765/45537549124*23725150497407^(11/16) 2329991406095024 a001 137769299915610/591286729879 2329991406095024 a001 6765/45537549124*73681302247^(11/13) 2329991406095024 a001 6765/73681302247*28143753123^(9/10) 2329991406095024 a004 Fibonacci(20)*Lucas(50)/(1/2+sqrt(5)/2)^57 2329991406095024 a001 6765/17393796001*45537549124^(14/17) 2329991406095024 a001 6765/17393796001*14662949395604^(2/3) 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^42/Lucas(49) 2329991406095024 a001 1349312563115/5791062403 2329991406095024 a001 6765/17393796001*192900153618^(7/9) 2329991406095024 a001 6765/73681302247*10749957122^(15/16) 2329991406095024 a001 6765/119218851371*10749957122^(23/24) 2329991406095024 a001 6765/45537549124*10749957122^(11/12) 2329991406095024 a004 Fibonacci(20)*Lucas(48)/(1/2+sqrt(5)/2)^55 2329991406095024 a001 6765/17393796001*10749957122^(7/8) 2329991406095024 a001 6765/6643838879*312119004989^(8/11) 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^40/Lucas(47) 2329991406095024 a001 6765/6643838879*23725150497407^(5/8) 2329991406095024 a001 20100269968845/86267571272 2329991406095024 a001 6765/6643838879*73681302247^(10/13) 2329991406095024 a001 6765/6643838879*28143753123^(4/5) 2329991406095024 a001 6765/6643838879*10749957122^(5/6) 2329991406095024 a001 6765/45537549124*4106118243^(22/23) 2329991406095024 a001 6765/17393796001*4106118243^(21/23) 2329991406095024 a004 Fibonacci(20)*Lucas(46)/(1/2+sqrt(5)/2)^53 2329991406095024 a001 6765/6643838879*4106118243^(20/23) 2329991406095024 a001 615/230701876*817138163596^(2/3) 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^38/Lucas(45) 2329991406095024 a001 2559206648350/10983760033 2329991406095024 a001 615/230701876*10749957122^(19/24) 2329991406095024 a001 615/230701876*4106118243^(19/23) 2329991406095024 a001 6765/17393796001*1568397607^(21/22) 2329991406095024 a001 6765/6643838879*1568397607^(10/11) 2329991406095024 a004 Fibonacci(20)*Lucas(44)/(1/2+sqrt(5)/2)^51 2329991406095024 a001 615/230701876*1568397607^(19/22) 2329991406095024 a001 6765/969323029*2537720636^(4/5) 2329991406095024 a001 6765/969323029*45537549124^(12/17) 2329991406095024 a001 6765/969323029*14662949395604^(4/7) 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^36/Lucas(43) 2329991406095024 a001 6765/969323029*505019158607^(9/14) 2329991406095024 a001 6765/969323029*192900153618^(2/3) 2329991406095024 a001 6765/969323029*73681302247^(9/13) 2329991406095024 a001 53319815751/228841255 2329991406095024 a001 6765/969323029*10749957122^(3/4) 2329991406095024 a001 6765/969323029*4106118243^(18/23) 2329991406095024 a001 6765/969323029*1568397607^(9/11) 2329991406095024 a001 2255/1368706081*599074578^(13/14) 2329991406095024 a001 615/230701876*599074578^(19/21) 2329991406095024 a001 6765/6643838879*599074578^(20/21) 2329991406095024 a004 Fibonacci(20)*Lucas(42)/(1/2+sqrt(5)/2)^49 2329991406095024 a001 6765/969323029*599074578^(6/7) 2329991406095024 a001 6765/370248451*45537549124^(2/3) 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^34/Lucas(41) 2329991406095024 a001 6765/370248451*10749957122^(17/24) 2329991406095024 a001 373383217955/1602508992 2329991406095024 a001 6765/370248451*4106118243^(17/23) 2329991406095024 a001 6765/370248451*1568397607^(17/22) 2329991406095024 a001 6765/370248451*599074578^(17/21) 2329991406095024 a001 2255/199691526*228826127^(7/8) 2329991406095024 a004 Fibonacci(42)/Lucas(20)/(1/2+sqrt(5)/2)^9 2329991406095024 a001 6765/969323029*228826127^(9/10) 2329991406095024 a001 615/230701876*228826127^(19/20) 2329991406095024 a004 Fibonacci(44)/Lucas(20)/(1/2+sqrt(5)/2)^11 2329991406095024 a004 Fibonacci(46)/Lucas(20)/(1/2+sqrt(5)/2)^13 2329991406095024 a004 Fibonacci(48)/Lucas(20)/(1/2+sqrt(5)/2)^15 2329991406095024 a004 Fibonacci(50)/Lucas(20)/(1/2+sqrt(5)/2)^17 2329991406095024 a004 Fibonacci(52)/Lucas(20)/(1/2+sqrt(5)/2)^19 2329991406095024 a004 Fibonacci(54)/Lucas(20)/(1/2+sqrt(5)/2)^21 2329991406095024 a004 Fibonacci(56)/Lucas(20)/(1/2+sqrt(5)/2)^23 2329991406095024 a004 Fibonacci(58)/Lucas(20)/(1/2+sqrt(5)/2)^25 2329991406095024 a004 Fibonacci(60)/Lucas(20)/(1/2+sqrt(5)/2)^27 2329991406095024 a004 Fibonacci(62)/Lucas(20)/(1/2+sqrt(5)/2)^29 2329991406095024 a004 Fibonacci(64)/Lucas(20)/(1/2+sqrt(5)/2)^31 2329991406095024 a004 Fibonacci(66)/Lucas(20)/(1/2+sqrt(5)/2)^33 2329991406095024 a004 Fibonacci(68)/Lucas(20)/(1/2+sqrt(5)/2)^35 2329991406095024 a004 Fibonacci(70)/Lucas(20)/(1/2+sqrt(5)/2)^37 2329991406095024 a004 Fibonacci(72)/Lucas(20)/(1/2+sqrt(5)/2)^39 2329991406095024 a004 Fibonacci(74)/Lucas(20)/(1/2+sqrt(5)/2)^41 2329991406095024 a004 Fibonacci(76)/Lucas(20)/(1/2+sqrt(5)/2)^43 2329991406095024 a004 Fibonacci(78)/Lucas(20)/(1/2+sqrt(5)/2)^45 2329991406095024 a004 Fibonacci(20)*Lucas(40)/(1/2+sqrt(5)/2)^47 2329991406095024 a004 Fibonacci(82)/Lucas(20)/(1/2+sqrt(5)/2)^49 2329991406095024 a004 Fibonacci(84)/Lucas(20)/(1/2+sqrt(5)/2)^51 2329991406095024 a004 Fibonacci(86)/Lucas(20)/(1/2+sqrt(5)/2)^53 2329991406095024 a004 Fibonacci(88)/Lucas(20)/(1/2+sqrt(5)/2)^55 2329991406095024 a004 Fibonacci(90)/Lucas(20)/(1/2+sqrt(5)/2)^57 2329991406095024 a004 Fibonacci(92)/Lucas(20)/(1/2+sqrt(5)/2)^59 2329991406095024 a004 Fibonacci(94)/Lucas(20)/(1/2+sqrt(5)/2)^61 2329991406095024 a004 Fibonacci(96)/Lucas(20)/(1/2+sqrt(5)/2)^63 2329991406095024 a004 Fibonacci(98)/Lucas(20)/(1/2+sqrt(5)/2)^65 2329991406095024 a004 Fibonacci(100)/Lucas(20)/(1/2+sqrt(5)/2)^67 2329991406095024 a004 Fibonacci(97)/Lucas(20)/(1/2+sqrt(5)/2)^64 2329991406095024 a004 Fibonacci(99)/Lucas(20)/(1/2+sqrt(5)/2)^66 2329991406095024 a004 Fibonacci(95)/Lucas(20)/(1/2+sqrt(5)/2)^62 2329991406095024 a004 Fibonacci(93)/Lucas(20)/(1/2+sqrt(5)/2)^60 2329991406095024 a004 Fibonacci(91)/Lucas(20)/(1/2+sqrt(5)/2)^58 2329991406095024 a004 Fibonacci(89)/Lucas(20)/(1/2+sqrt(5)/2)^56 2329991406095024 a004 Fibonacci(87)/Lucas(20)/(1/2+sqrt(5)/2)^54 2329991406095024 a004 Fibonacci(85)/Lucas(20)/(1/2+sqrt(5)/2)^52 2329991406095024 a004 Fibonacci(83)/Lucas(20)/(1/2+sqrt(5)/2)^50 2329991406095024 a004 Fibonacci(81)/Lucas(20)/(1/2+sqrt(5)/2)^48 2329991406095024 a004 Fibonacci(79)/Lucas(20)/(1/2+sqrt(5)/2)^46 2329991406095024 a004 Fibonacci(77)/Lucas(20)/(1/2+sqrt(5)/2)^44 2329991406095024 a004 Fibonacci(75)/Lucas(20)/(1/2+sqrt(5)/2)^42 2329991406095024 a004 Fibonacci(73)/Lucas(20)/(1/2+sqrt(5)/2)^40 2329991406095024 a004 Fibonacci(71)/Lucas(20)/(1/2+sqrt(5)/2)^38 2329991406095024 a004 Fibonacci(69)/Lucas(20)/(1/2+sqrt(5)/2)^36 2329991406095024 a004 Fibonacci(67)/Lucas(20)/(1/2+sqrt(5)/2)^34 2329991406095024 a004 Fibonacci(65)/Lucas(20)/(1/2+sqrt(5)/2)^32 2329991406095024 a004 Fibonacci(63)/Lucas(20)/(1/2+sqrt(5)/2)^30 2329991406095024 a004 Fibonacci(61)/Lucas(20)/(1/2+sqrt(5)/2)^28 2329991406095024 a004 Fibonacci(59)/Lucas(20)/(1/2+sqrt(5)/2)^26 2329991406095024 a004 Fibonacci(57)/Lucas(20)/(1/2+sqrt(5)/2)^24 2329991406095024 a004 Fibonacci(55)/Lucas(20)/(1/2+sqrt(5)/2)^22 2329991406095024 a004 Fibonacci(53)/Lucas(20)/(1/2+sqrt(5)/2)^20 2329991406095024 a004 Fibonacci(51)/Lucas(20)/(1/2+sqrt(5)/2)^18 2329991406095024 a004 Fibonacci(49)/Lucas(20)/(1/2+sqrt(5)/2)^16 2329991406095024 a004 Fibonacci(47)/Lucas(20)/(1/2+sqrt(5)/2)^14 2329991406095024 a004 Fibonacci(45)/Lucas(20)/(1/2+sqrt(5)/2)^12 2329991406095024 a004 Fibonacci(43)/Lucas(20)/(1/2+sqrt(5)/2)^10 2329991406095024 a001 6765/370248451*228826127^(17/20) 2329991406095024 a004 Fibonacci(41)/Lucas(20)/(1/2+sqrt(5)/2)^8 2329991406095024 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^32/Lucas(39) 2329991406095024 a001 6765/141422324*23725150497407^(1/2) 2329991406095024 a001 6765/141422324*73681302247^(8/13) 2329991406095024 a001 6765/141422324*10749957122^(2/3) 2329991406095024 a001 6765/141422324*4106118243^(16/23) 2329991406095024 a001 427859095290/1836311903 2329991406095024 a001 6765/141422324*1568397607^(8/11) 2329991406095024 a001 6765/141422324*599074578^(16/21) 2329991406095024 a001 6765/141422324*228826127^(4/5) 2329991406095024 a004 Fibonacci(39)/Lucas(20)/(1/2+sqrt(5)/2)^6 2329991406095024 a001 6765/370248451*87403803^(17/19) 2329991406095024 a001 6765/969323029*87403803^(18/19) 2329991406095024 a004 Fibonacci(20)*Lucas(38)/(1/2+sqrt(5)/2)^45 2329991406095024 a001 6765/141422324*87403803^(16/19) 2329991406095024 a001 6765/54018521*141422324^(10/13) 2329991406095025 a001 6765/54018521*2537720636^(2/3) 2329991406095025 a001 6765/54018521*45537549124^(10/17) 2329991406095025 a001 6765/54018521*312119004989^(6/11) 2329991406095025 a001 6765/54018521*14662949395604^(10/21) 2329991406095025 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^30/Lucas(37) 2329991406095025 a001 6765/54018521*192900153618^(5/9) 2329991406095025 a001 6765/54018521*28143753123^(3/5) 2329991406095025 a001 6765/54018521*10749957122^(5/8) 2329991406095025 a001 6765/54018521*4106118243^(15/23) 2329991406095025 a001 6765/54018521*1568397607^(15/22) 2329991406095025 a001 54475877335/233802911 2329991406095025 a001 6765/54018521*599074578^(5/7) 2329991406095025 a001 6765/54018521*228826127^(3/4) 2329991406095025 a004 Fibonacci(37)/Lucas(20)/(1/2+sqrt(5)/2)^4 2329991406095025 a001 6765/54018521*87403803^(15/19) 2329991406095025 a001 615/1875749*20633239^(4/5) 2329991406095026 a001 6765/228826127*33385282^(11/12) 2329991406095026 a001 6765/141422324*33385282^(8/9) 2329991406095026 a001 6765/370248451*33385282^(17/18) 2329991406095026 a004 Fibonacci(20)*Lucas(36)/(1/2+sqrt(5)/2)^43 2329991406095026 a001 6765/54018521*33385282^(5/6) 2329991406095029 a001 615/1875749*17393796001^(4/7) 2329991406095029 a001 615/1875749*14662949395604^(4/9) 2329991406095029 a001 615/1875749*(1/2+1/2*5^(1/2))^28 2329991406095029 a001 615/1875749*505019158607^(1/2) 2329991406095029 a001 615/1875749*73681302247^(7/13) 2329991406095029 a001 615/1875749*10749957122^(7/12) 2329991406095029 a001 615/1875749*4106118243^(14/23) 2329991406095029 a001 615/1875749*1568397607^(7/11) 2329991406095029 a001 615/1875749*599074578^(2/3) 2329991406095029 a001 4801830825/20608792 2329991406095029 a001 615/1875749*228826127^(7/10) 2329991406095029 a004 Fibonacci(35)/Lucas(20)/(1/2+sqrt(5)/2)^2 2329991406095029 a001 615/1875749*87403803^(14/19) 2329991406095031 a001 615/1875749*33385282^(7/9) 2329991406095037 a001 6765/54018521*12752043^(15/17) 2329991406095037 a001 6765/141422324*12752043^(16/17) 2329991406095038 a004 Fibonacci(20)*Lucas(34)/(1/2+sqrt(5)/2)^41 2329991406095041 a001 615/1875749*12752043^(14/17) 2329991406095061 a001 6765/7881196*141422324^(2/3) 2329991406095061 a001 6765/7881196*(1/2+1/2*5^(1/2))^26 2329991406095061 a001 6765/7881196*73681302247^(1/2) 2329991406095061 a001 6765/7881196*10749957122^(13/24) 2329991406095061 a001 6765/7881196*4106118243^(13/23) 2329991406095061 a001 6765/7881196*1568397607^(13/22) 2329991406095061 a001 6765/7881196*599074578^(13/21) 2329991406095061 a001 6765/7881196*228826127^(13/20) 2329991406095061 a001 3524578/15127 2329991406095061 a001 6765/7881196*87403803^(13/19) 2329991406095063 a001 6765/7881196*33385282^(13/18) 2329991406095072 a001 6765/7881196*12752043^(13/17) 2329991406095115 a001 615/1875749*4870847^(7/8) 2329991406095117 a001 6765/54018521*4870847^(15/16) 2329991406095122 a004 Fibonacci(20)*Lucas(32)/(1/2+sqrt(5)/2)^39 2329991406095141 a001 6765/7881196*4870847^(13/16) 2329991406095254 a001 6765/3010349*7881196^(8/11) 2329991406095281 a001 6765/3010349*141422324^(8/13) 2329991406095281 a001 6765/3010349*2537720636^(8/15) 2329991406095281 a001 6765/3010349*45537549124^(8/17) 2329991406095281 a001 6765/3010349*14662949395604^(8/21) 2329991406095281 a001 6765/3010349*(1/2+1/2*5^(1/2))^24 2329991406095281 a001 6765/3010349*192900153618^(4/9) 2329991406095281 a001 6765/3010349*73681302247^(6/13) 2329991406095281 a001 6765/3010349*10749957122^(1/2) 2329991406095281 a001 6765/3010349*4106118243^(12/23) 2329991406095281 a001 6765/3010349*1568397607^(6/11) 2329991406095281 a001 6765/3010349*599074578^(4/7) 2329991406095281 a001 6765/3010349*228826127^(3/5) 2329991406095281 a001 1346269/15127*(1/2+1/2*5^(1/2))^2 2329991406095281 a001 1346269/15127*10749957122^(1/24) 2329991406095281 a001 1346269/15127*4106118243^(1/23) 2329991406095281 a001 1346269/15127*1568397607^(1/22) 2329991406095281 a001 1346269/15127*599074578^(1/21) 2329991406095281 a001 1346269/15127*228826127^(1/20) 2329991406095281 a001 1346269/15127*87403803^(1/19) 2329991406095281 a001 1346269/15127*33385282^(1/18) 2329991406095281 a001 6765/3010349*87403803^(12/19) 2329991406095281 a001 9107509785/39088169 2329991406095282 a001 1346269/15127*12752043^(1/17) 2329991406095282 a001 6765/3010349*33385282^(2/3) 2329991406095287 a001 1346269/15127*4870847^(1/16) 2329991406095291 a001 6765/3010349*12752043^(12/17) 2329991406095326 a001 1346269/15127*1860498^(1/15) 2329991406095355 a001 6765/3010349*4870847^(3/4) 2329991406095486 a001 6765/4870847*1860498^(5/6) 2329991406095610 a001 1346269/15127*710647^(1/14) 2329991406095615 a001 2255/4250681*1860498^(9/10) 2329991406095645 a001 6765/7881196*1860498^(13/15) 2329991406095657 a001 615/1875749*1860498^(14/15) 2329991406095697 a004 Fibonacci(20)*Lucas(30)/(1/2+sqrt(5)/2)^37 2329991406095819 a001 6765/3010349*1860498^(4/5) 2329991406096761 a001 6765/1149851*7881196^(2/3) 2329991406096786 a001 6765/1149851*312119004989^(2/5) 2329991406096786 a001 6765/1149851*(1/2+1/2*5^(1/2))^22 2329991406096786 a001 6765/1149851*10749957122^(11/24) 2329991406096786 a001 6765/1149851*4106118243^(11/23) 2329991406096786 a001 6765/1149851*1568397607^(1/2) 2329991406096786 a001 6765/1149851*599074578^(11/21) 2329991406096786 a001 6765/1149851*228826127^(11/20) 2329991406096786 a001 514229/15127*(1/2+1/2*5^(1/2))^4 2329991406096786 a001 514229/15127*23725150497407^(1/16) 2329991406096786 a001 514229/15127*73681302247^(1/13) 2329991406096786 a001 514229/15127*10749957122^(1/12) 2329991406096786 a001 514229/15127*4106118243^(2/23) 2329991406096786 a001 514229/15127*1568397607^(1/11) 2329991406096786 a001 514229/15127*599074578^(2/21) 2329991406096786 a001 514229/15127*228826127^(1/10) 2329991406096786 a001 514229/15127*87403803^(2/19) 2329991406096786 a001 6765/1149851*87403803^(11/19) 2329991406096786 a001 514229/15127*33385282^(1/9) 2329991406096787 a001 6765/1149851*33385282^(11/18) 2329991406096788 a001 514229/15127*12752043^(2/17) 2329991406096788 a001 1159586395/4976784 2329991406096795 a001 6765/1149851*12752043^(11/17) 2329991406096798 a001 514229/15127*4870847^(1/8) 2329991406096854 a001 6765/1149851*4870847^(11/16) 2329991406096876 a001 514229/15127*1860498^(2/15) 2329991406096889 a001 9227465/64079*3571^(1/17) 2329991406097280 a001 6765/1149851*1860498^(11/15) 2329991406097445 a001 514229/15127*710647^(1/7) 2329991406097713 a001 1346269/15127*271443^(1/13) 2329991406099235 a001 6765/3010349*710647^(6/7) 2329991406099345 a001 6765/7881196*710647^(13/14) 2329991406099637 a004 Fibonacci(20)*Lucas(28)/(1/2+sqrt(5)/2)^35 2329991406100411 a001 6765/1149851*710647^(11/14) 2329991406101651 a001 514229/15127*271443^(2/13) 2329991406103957 a001 311187/2161*103682^(1/24) 2329991406104418 a001 196418/15127*439204^(2/9) 2329991406107096 a001 196418/15127*7881196^(2/11) 2329991406107099 a001 6765/439204*20633239^(4/7) 2329991406107102 a001 6765/439204*2537720636^(4/9) 2329991406107102 a001 6765/439204*(1/2+1/2*5^(1/2))^20 2329991406107102 a001 6765/439204*23725150497407^(5/16) 2329991406107102 a001 6765/439204*505019158607^(5/14) 2329991406107102 a001 6765/439204*73681302247^(5/13) 2329991406107102 a001 6765/439204*28143753123^(2/5) 2329991406107102 a001 6765/439204*10749957122^(5/12) 2329991406107102 a001 6765/439204*4106118243^(10/23) 2329991406107102 a001 6765/439204*1568397607^(5/11) 2329991406107102 a001 6765/439204*599074578^(10/21) 2329991406107103 a001 6765/439204*228826127^(1/2) 2329991406107103 a001 196418/15127*141422324^(2/13) 2329991406107103 a001 196418/15127*2537720636^(2/15) 2329991406107103 a001 196418/15127*45537549124^(2/17) 2329991406107103 a001 196418/15127*14662949395604^(2/21) 2329991406107103 a001 196418/15127*(1/2+1/2*5^(1/2))^6 2329991406107103 a001 196418/15127*10749957122^(1/8) 2329991406107103 a001 196418/15127*4106118243^(3/23) 2329991406107103 a001 196418/15127*1568397607^(3/22) 2329991406107103 a001 196418/15127*599074578^(1/7) 2329991406107103 a001 196418/15127*228826127^(3/20) 2329991406107103 a001 196418/15127*87403803^(3/19) 2329991406107103 a001 6765/439204*87403803^(10/19) 2329991406107103 a001 196418/15127*33385282^(1/6) 2329991406107104 a001 6765/439204*33385282^(5/9) 2329991406107105 a001 196418/15127*12752043^(3/17) 2329991406107111 a001 6765/439204*12752043^(10/17) 2329991406107117 a001 1328767770/5702887 2329991406107121 a001 196418/15127*4870847^(3/16) 2329991406107164 a001 6765/439204*4870847^(5/8) 2329991406107237 a001 196418/15127*1860498^(1/5) 2329991406107551 a001 6765/439204*1860498^(2/3) 2329991406108091 a001 196418/15127*710647^(3/14) 2329991406110398 a001 6765/439204*710647^(5/7) 2329991406113343 a001 1346269/15127*103682^(1/12) 2329991406114400 a001 196418/15127*271443^(3/13) 2329991406121444 a001 832040/15127*103682^(1/8) 2329991406123544 a001 6765/1149851*271443^(11/13) 2329991406124471 a001 6765/3010349*271443^(12/13) 2329991406126618 a001 121393/15127*103682^(7/24) 2329991406126646 a004 Fibonacci(20)*Lucas(26)/(1/2+sqrt(5)/2)^33 2329991406131428 a001 6765/439204*271443^(10/13) 2329991406132910 a001 514229/15127*103682^(1/6) 2329991406135565 a001 317811/15127*103682^(5/24) 2329991406161289 a001 196418/15127*103682^(1/4) 2329991406162452 a001 311187/2161*39603^(1/22) 2329991406169760 a001 615/15251*439204^(2/3) 2329991406177792 a001 615/15251*7881196^(6/11) 2329991406177813 a001 615/15251*141422324^(6/13) 2329991406177813 a001 615/15251*2537720636^(2/5) 2329991406177813 a001 615/15251*45537549124^(6/17) 2329991406177813 a001 615/15251*14662949395604^(2/7) 2329991406177813 a001 615/15251*(1/2+1/2*5^(1/2))^18 2329991406177813 a001 615/15251*192900153618^(1/3) 2329991406177813 a001 615/15251*10749957122^(3/8) 2329991406177813 a001 615/15251*4106118243^(9/23) 2329991406177813 a001 615/15251*1568397607^(9/22) 2329991406177813 a001 615/15251*599074578^(3/7) 2329991406177813 a001 615/15251*228826127^(9/20) 2329991406177813 a001 75025/15127*(1/2+1/2*5^(1/2))^8 2329991406177813 a001 75025/15127*23725150497407^(1/8) 2329991406177813 a001 75025/15127*505019158607^(1/7) 2329991406177813 a001 75025/15127*73681302247^(2/13) 2329991406177813 a001 75025/15127*10749957122^(1/6) 2329991406177813 a001 75025/15127*4106118243^(4/23) 2329991406177813 a001 75025/15127*1568397607^(2/11) 2329991406177813 a001 75025/15127*599074578^(4/21) 2329991406177813 a001 75025/15127*228826127^(1/5) 2329991406177813 a001 75025/15127*87403803^(4/19) 2329991406177813 a001 615/15251*87403803^(9/19) 2329991406177813 a001 75025/15127*33385282^(2/9) 2329991406177814 a001 615/15251*33385282^(1/2) 2329991406177816 a001 75025/15127*12752043^(4/17) 2329991406177820 a001 615/15251*12752043^(9/17) 2329991406177837 a001 75025/15127*4870847^(1/4) 2329991406177868 a001 615/15251*4870847^(9/16) 2329991406177911 a001 169181375/726103 2329991406177992 a001 75025/15127*1860498^(4/15) 2329991406178217 a001 615/15251*1860498^(3/5) 2329991406179131 a001 75025/15127*710647^(2/7) 2329991406180779 a001 615/15251*710647^(9/14) 2329991406187543 a001 75025/15127*271443^(4/13) 2329991406199705 a001 615/15251*271443^(9/13) 2329991406230334 a001 1346269/15127*39603^(1/11) 2329991406234990 a001 2255/90481*103682^(19/24) 2329991406238685 a001 416020/51841*9349^(7/19) 2329991406250061 a001 75025/15127*103682^(1/3) 2329991406267724 a001 6765/64079*64079^(16/23) 2329991406280061 a001 6765/710647*103682^(7/8) 2329991406282479 a001 514229/5778*2207^(1/8) 2329991406287723 a001 6765/439204*103682^(5/6) 2329991406295468 a001 6765/1149851*103682^(11/12) 2329991406296931 a001 832040/15127*39603^(3/22) 2329991406302064 a001 55/15126*103682^(23/24) 2329991406311768 a004 Fibonacci(20)*Lucas(24)/(1/2+sqrt(5)/2)^31 2329991406319049 a001 196418/2207*843^(1/7) 2329991406340371 a001 615/15251*103682^(3/4) 2329991406366893 a001 514229/15127*39603^(2/11) 2329991406375318 a001 514229/39603*9349^(6/19) 2329991406415753 a001 28657/15127*64079^(10/23) 2329991406424381 a001 726103/90481*9349^(7/19) 2329991406428044 a001 317811/15127*39603^(5/22) 2329991406451474 a001 5702887/710647*9349^(7/19) 2329991406455427 a001 829464/103361*9349^(7/19) 2329991406456004 a001 39088169/4870847*9349^(7/19) 2329991406456088 a001 34111385/4250681*9349^(7/19) 2329991406456100 a001 133957148/16692641*9349^(7/19) 2329991406456102 a001 233802911/29134601*9349^(7/19) 2329991406456102 a001 1836311903/228826127*9349^(7/19) 2329991406456102 a001 267084832/33281921*9349^(7/19) 2329991406456102 a001 12586269025/1568397607*9349^(7/19) 2329991406456102 a001 10983760033/1368706081*9349^(7/19) 2329991406456102 a001 43133785636/5374978561*9349^(7/19) 2329991406456102 a001 75283811239/9381251041*9349^(7/19) 2329991406456102 a001 591286729879/73681302247*9349^(7/19) 2329991406456102 a001 86000486440/10716675201*9349^(7/19) 2329991406456102 a001 4052739537881/505019158607*9349^(7/19) 2329991406456102 a001 3278735159921/408569081798*9349^(7/19) 2329991406456102 a001 2504730781961/312119004989*9349^(7/19) 2329991406456102 a001 956722026041/119218851371*9349^(7/19) 2329991406456102 a001 182717648081/22768774562*9349^(7/19) 2329991406456102 a001 139583862445/17393796001*9349^(7/19) 2329991406456102 a001 53316291173/6643838879*9349^(7/19) 2329991406456102 a001 10182505537/1268860318*9349^(7/19) 2329991406456102 a001 7778742049/969323029*9349^(7/19) 2329991406456102 a001 2971215073/370248451*9349^(7/19) 2329991406456102 a001 567451585/70711162*9349^(7/19) 2329991406456103 a001 433494437/54018521*9349^(7/19) 2329991406456108 a001 165580141/20633239*9349^(7/19) 2329991406456140 a001 31622993/3940598*9349^(7/19) 2329991406456360 a001 24157817/3010349*9349^(7/19) 2329991406457870 a001 9227465/1149851*9349^(7/19) 2329991406468219 a001 1762289/219602*9349^(7/19) 2329991406486020 a001 6624/2161*39603^(9/22) 2329991406512263 a001 196418/15127*39603^(3/11) 2329991406536088 a001 121393/15127*39603^(7/22) 2329991406539148 a001 1346269/167761*9349^(7/19) 2329991406604044 a001 311187/2161*15127^(1/20) 2329991406629352 a001 28657/15127*167761^(2/5) 2329991406662466 a001 28657/15127*20633239^(2/7) 2329991406662468 a001 6765/64079*(1/2+1/2*5^(1/2))^16 2329991406662468 a001 6765/64079*23725150497407^(1/4) 2329991406662468 a001 6765/64079*73681302247^(4/13) 2329991406662468 a001 6765/64079*10749957122^(1/3) 2329991406662468 a001 6765/64079*4106118243^(8/23) 2329991406662468 a001 6765/64079*1568397607^(4/11) 2329991406662468 a001 6765/64079*599074578^(8/21) 2329991406662468 a001 6765/64079*228826127^(2/5) 2329991406662468 a001 28657/15127*2537720636^(2/9) 2329991406662468 a001 28657/15127*312119004989^(2/11) 2329991406662468 a001 28657/15127*(1/2+1/2*5^(1/2))^10 2329991406662468 a001 28657/15127*28143753123^(1/5) 2329991406662468 a001 28657/15127*10749957122^(5/24) 2329991406662468 a001 28657/15127*4106118243^(5/23) 2329991406662468 a001 28657/15127*1568397607^(5/22) 2329991406662468 a001 28657/15127*599074578^(5/21) 2329991406662468 a001 28657/15127*228826127^(1/4) 2329991406662468 a001 28657/15127*87403803^(5/19) 2329991406662468 a001 6765/64079*87403803^(8/19) 2329991406662468 a001 28657/15127*33385282^(5/18) 2329991406662468 a001 6765/64079*33385282^(4/9) 2329991406662472 a001 28657/15127*12752043^(5/17) 2329991406662474 a001 6765/64079*12752043^(8/17) 2329991406662498 a001 28657/15127*4870847^(5/16) 2329991406662517 a001 6765/64079*4870847^(1/2) 2329991406662692 a001 28657/15127*1860498^(1/3) 2329991406662827 a001 6765/64079*1860498^(8/15) 2329991406663141 a001 3524811/15128 2329991406664115 a001 28657/15127*710647^(5/14) 2329991406665104 a001 6765/64079*710647^(4/7) 2329991406674630 a001 28657/15127*271443^(5/13) 2329991406681928 a001 6765/64079*271443^(8/13) 2329991406718026 a001 75025/15127*39603^(4/11) 2329991406752778 a001 28657/15127*103682^(5/12) 2329991406806964 a001 6765/64079*103682^(2/3) 2329991407025308 a001 514229/64079*9349^(7/19) 2329991407026233 a001 6765/103682*39603^(17/22) 2329991407113518 a001 1346269/15127*15127^(1/10) 2329991407337735 a001 28657/15127*39603^(5/11) 2329991407346408 a001 2255/90481*39603^(19/22) 2329991407391463 a001 6765/24476*24476^(2/3) 2329991407393293 a001 615/15251*39603^(9/11) 2329991407457636 a001 6765/439204*39603^(10/11) 2329991407508471 a001 6765/710647*39603^(21/22) 2329991407580611 a004 Fibonacci(20)*Lucas(22)/(1/2+sqrt(5)/2)^29 2329991407621706 a001 832040/15127*15127^(3/20) 2329991407622127 a001 75025/24476*9349^(9/19) 2329991407642656 a001 1346269/103682*9349^(6/19) 2329991407742895 a001 6765/64079*39603^(8/11) 2329991407761874 a001 10946/15127*24476^(4/7) 2329991407775924 a001 832040/39603*9349^(5/19) 2329991407827558 a001 3524578/271443*9349^(6/19) 2329991407854535 a001 9227465/710647*9349^(6/19) 2329991407858471 a001 24157817/1860498*9349^(6/19) 2329991407859045 a001 63245986/4870847*9349^(6/19) 2329991407859129 a001 165580141/12752043*9349^(6/19) 2329991407859141 a001 433494437/33385282*9349^(6/19) 2329991407859143 a001 1134903170/87403803*9349^(6/19) 2329991407859143 a001 2971215073/228826127*9349^(6/19) 2329991407859143 a001 7778742049/599074578*9349^(6/19) 2329991407859143 a001 20365011074/1568397607*9349^(6/19) 2329991407859143 a001 53316291173/4106118243*9349^(6/19) 2329991407859143 a001 139583862445/10749957122*9349^(6/19) 2329991407859143 a001 365435296162/28143753123*9349^(6/19) 2329991407859143 a001 956722026041/73681302247*9349^(6/19) 2329991407859143 a001 2504730781961/192900153618*9349^(6/19) 2329991407859143 a001 10610209857723/817138163596*9349^(6/19) 2329991407859143 a001 4052739537881/312119004989*9349^(6/19) 2329991407859143 a001 1548008755920/119218851371*9349^(6/19) 2329991407859143 a001 591286729879/45537549124*9349^(6/19) 2329991407859143 a001 7787980473/599786069*9349^(6/19) 2329991407859143 a001 86267571272/6643838879*9349^(6/19) 2329991407859143 a001 32951280099/2537720636*9349^(6/19) 2329991407859143 a001 12586269025/969323029*9349^(6/19) 2329991407859143 a001 4807526976/370248451*9349^(6/19) 2329991407859143 a001 1836311903/141422324*9349^(6/19) 2329991407859144 a001 701408733/54018521*9349^(6/19) 2329991407859149 a001 9238424/711491*9349^(6/19) 2329991407859181 a001 102334155/7881196*9349^(6/19) 2329991407859400 a001 39088169/3010349*9349^(6/19) 2329991407860904 a001 14930352/1149851*9349^(6/19) 2329991407871208 a001 5702887/439204*9349^(6/19) 2329991407941834 a001 2178309/167761*9349^(6/19) 2329991408133259 a001 514229/15127*15127^(1/5) 2329991408425914 a001 832040/64079*9349^(6/19) 2329991408636002 a001 317811/15127*15127^(1/4) 2329991408910756 a001 121393/24476*9349^(8/19) 2329991409045342 a001 46347/2206*9349^(5/19) 2329991409161812 a001 196418/15127*15127^(3/10) 2329991409179895 a001 1346269/39603*9349^(4/19) 2329991409230548 a001 5702887/271443*9349^(5/19) 2329991409257569 a001 14930352/710647*9349^(5/19) 2329991409261511 a001 39088169/1860498*9349^(5/19) 2329991409262086 a001 102334155/4870847*9349^(5/19) 2329991409262170 a001 267914296/12752043*9349^(5/19) 2329991409262182 a001 701408733/33385282*9349^(5/19) 2329991409262184 a001 1836311903/87403803*9349^(5/19) 2329991409262184 a001 102287808/4868641*9349^(5/19) 2329991409262184 a001 12586269025/599074578*9349^(5/19) 2329991409262184 a001 32951280099/1568397607*9349^(5/19) 2329991409262184 a001 86267571272/4106118243*9349^(5/19) 2329991409262184 a001 225851433717/10749957122*9349^(5/19) 2329991409262184 a001 591286729879/28143753123*9349^(5/19) 2329991409262184 a001 1548008755920/73681302247*9349^(5/19) 2329991409262184 a001 4052739537881/192900153618*9349^(5/19) 2329991409262184 a001 225749145909/10745088481*9349^(5/19) 2329991409262184 a001 6557470319842/312119004989*9349^(5/19) 2329991409262184 a001 2504730781961/119218851371*9349^(5/19) 2329991409262184 a001 956722026041/45537549124*9349^(5/19) 2329991409262184 a001 365435296162/17393796001*9349^(5/19) 2329991409262184 a001 139583862445/6643838879*9349^(5/19) 2329991409262184 a001 53316291173/2537720636*9349^(5/19) 2329991409262184 a001 20365011074/969323029*9349^(5/19) 2329991409262184 a001 7778742049/370248451*9349^(5/19) 2329991409262185 a001 2971215073/141422324*9349^(5/19) 2329991409262185 a001 1134903170/54018521*9349^(5/19) 2329991409262190 a001 433494437/20633239*9349^(5/19) 2329991409262222 a001 165580141/7881196*9349^(5/19) 2329991409262442 a001 63245986/3010349*9349^(5/19) 2329991409263948 a001 24157817/1149851*9349^(5/19) 2329991409274269 a001 9227465/439204*9349^(5/19) 2329991409345011 a001 3524578/167761*9349^(5/19) 2329991409418795 a001 1762289/12238*3571^(1/17) 2329991409627229 a001 121393/15127*15127^(7/20) 2329991409638941 a001 6765/24476*64079^(14/23) 2329991409688284 a001 10946/15127*64079^(12/23) 2329991409829885 a001 1346269/64079*9349^(5/19) 2329991409972202 a001 311187/2161*5778^(1/18) 2329991409978973 a001 10946/15127*439204^(4/9) 2329991409984328 a001 10946/15127*7881196^(4/11) 2329991409984339 a001 6765/24476*20633239^(2/5) 2329991409984342 a001 6765/24476*17393796001^(2/7) 2329991409984342 a001 6765/24476*14662949395604^(2/9) 2329991409984342 a001 6765/24476*(1/2+1/2*5^(1/2))^14 2329991409984342 a001 6765/24476*10749957122^(7/24) 2329991409984342 a001 6765/24476*4106118243^(7/23) 2329991409984342 a001 6765/24476*1568397607^(7/22) 2329991409984342 a001 10946/15127*141422324^(4/13) 2329991409984342 a001 6765/24476*599074578^(1/3) 2329991409984342 a001 6765/24476*228826127^(7/20) 2329991409984342 a001 10946/15127*2537720636^(4/15) 2329991409984342 a001 10946/15127*45537549124^(4/17) 2329991409984342 a001 10946/15127*14662949395604^(4/21) 2329991409984342 a001 10946/15127*(1/2+1/2*5^(1/2))^12 2329991409984342 a001 10946/15127*192900153618^(2/9) 2329991409984342 a001 10946/15127*73681302247^(3/13) 2329991409984342 a001 10946/15127*10749957122^(1/4) 2329991409984342 a001 10946/15127*4106118243^(6/23) 2329991409984342 a001 10946/15127*1568397607^(3/11) 2329991409984342 a001 10946/15127*599074578^(2/7) 2329991409984342 a001 10946/15127*228826127^(3/10) 2329991409984342 a001 6765/24476*87403803^(7/19) 2329991409984342 a001 10946/15127*87403803^(6/19) 2329991409984342 a001 10946/15127*33385282^(1/3) 2329991409984342 a001 6765/24476*33385282^(7/18) 2329991409984347 a001 10946/15127*12752043^(6/17) 2329991409984347 a001 6765/24476*12752043^(7/17) 2329991409984378 a001 10946/15127*4870847^(3/8) 2329991409984385 a001 6765/24476*4870847^(7/16) 2329991409984611 a001 10946/15127*1860498^(2/5) 2329991409984656 a001 6765/24476*1860498^(7/15) 2329991409986319 a001 10946/15127*710647^(3/7) 2329991409986648 a001 6765/24476*710647^(1/2) 2329991409988955 a001 1898710/8149 2329991409998937 a001 10946/15127*271443^(6/13) 2329991410001369 a001 6765/24476*271443^(7/13) 2329991410092714 a001 10946/15127*103682^(1/2) 2329991410110776 a001 6765/24476*103682^(7/12) 2329991410209738 a001 17711/15127*15127^(11/20) 2329991410250759 a001 75025/15127*15127^(2/5) 2329991410357499 a001 98209/12238*9349^(7/19) 2329991410448519 a001 1762289/51841*9349^(4/19) 2329991410460344 a001 6624/2161*15127^(9/20) 2329991410582581 a001 726103/13201*9349^(3/19) 2329991410633608 a001 9227465/271443*9349^(4/19) 2329991410660613 a001 24157817/710647*9349^(4/19) 2329991410664553 a001 31622993/930249*9349^(4/19) 2329991410665127 a001 165580141/4870847*9349^(4/19) 2329991410665211 a001 433494437/12752043*9349^(4/19) 2329991410665223 a001 567451585/16692641*9349^(4/19) 2329991410665225 a001 2971215073/87403803*9349^(4/19) 2329991410665225 a001 7778742049/228826127*9349^(4/19) 2329991410665226 a001 10182505537/299537289*9349^(4/19) 2329991410665226 a001 53316291173/1568397607*9349^(4/19) 2329991410665226 a001 139583862445/4106118243*9349^(4/19) 2329991410665226 a001 182717648081/5374978561*9349^(4/19) 2329991410665226 a001 956722026041/28143753123*9349^(4/19) 2329991410665226 a001 2504730781961/73681302247*9349^(4/19) 2329991410665226 a001 3278735159921/96450076809*9349^(4/19) 2329991410665226 a001 10610209857723/312119004989*9349^(4/19) 2329991410665226 a001 4052739537881/119218851371*9349^(4/19) 2329991410665226 a001 387002188980/11384387281*9349^(4/19) 2329991410665226 a001 591286729879/17393796001*9349^(4/19) 2329991410665226 a001 225851433717/6643838879*9349^(4/19) 2329991410665226 a001 1135099622/33391061*9349^(4/19) 2329991410665226 a001 32951280099/969323029*9349^(4/19) 2329991410665226 a001 12586269025/370248451*9349^(4/19) 2329991410665226 a001 1201881744/35355581*9349^(4/19) 2329991410665226 a001 1836311903/54018521*9349^(4/19) 2329991410665231 a001 701408733/20633239*9349^(4/19) 2329991410665263 a001 66978574/1970299*9349^(4/19) 2329991410665483 a001 102334155/3010349*9349^(4/19) 2329991410666987 a001 39088169/1149851*9349^(4/19) 2329991410677302 a001 196452/5779*9349^(4/19) 2329991410693082 a001 514229/9349*3571^(3/17) 2329991410748000 a001 5702887/167761*9349^(4/19) 2329991410794662 a001 10946/15127*39603^(6/11) 2329991410898543 a001 17711/39603*24476^(13/21) 2329991410902485 a004 Fibonacci(22)*Lucas(21)/(1/2+sqrt(5)/2)^30 2329991410914524 a001 2584/39603*5778^(17/18) 2329991410929715 a001 6765/24476*39603^(7/11) 2329991411089453 a001 17711/1149851*24476^(20/21) 2329991411126504 m005 (1/2*exp(1)-11/12)/(3/4*3^(1/2)+3/5) 2329991411232571 a001 2178309/64079*9349^(4/19) 2329991411268282 a001 17711/710647*24476^(19/21) 2329991411470181 a001 17711/439204*24476^(6/7) 2329991411611685 a001 17711/271443*24476^(17/21) 2329991411743847 a001 10959/844*9349^(6/19) 2329991411753651 a001 28657/15127*15127^(1/2) 2329991411796974 a001 17711/103682*24476^(5/7) 2329991411851508 a001 5702887/103682*9349^(3/19) 2329991411911302 a001 17711/167761*24476^(16/21) 2329991411985758 a001 3524578/39603*9349^(2/19) 2329991412036642 a001 4976784/90481*9349^(3/19) 2329991412063653 a001 39088169/710647*9349^(3/19) 2329991412067593 a001 831985/15126*9349^(3/19) 2329991412068168 a001 267914296/4870847*9349^(3/19) 2329991412068252 a001 233802911/4250681*9349^(3/19) 2329991412068265 a001 1836311903/33385282*9349^(3/19) 2329991412068266 a001 1602508992/29134601*9349^(3/19) 2329991412068267 a001 12586269025/228826127*9349^(3/19) 2329991412068267 a001 10983760033/199691526*9349^(3/19) 2329991412068267 a001 86267571272/1568397607*9349^(3/19) 2329991412068267 a001 75283811239/1368706081*9349^(3/19) 2329991412068267 a001 591286729879/10749957122*9349^(3/19) 2329991412068267 a001 12585437040/228811001*9349^(3/19) 2329991412068267 a001 4052739537881/73681302247*9349^(3/19) 2329991412068267 a001 3536736619241/64300051206*9349^(3/19) 2329991412068267 a001 6557470319842/119218851371*9349^(3/19) 2329991412068267 a001 2504730781961/45537549124*9349^(3/19) 2329991412068267 a001 956722026041/17393796001*9349^(3/19) 2329991412068267 a001 365435296162/6643838879*9349^(3/19) 2329991412068267 a001 139583862445/2537720636*9349^(3/19) 2329991412068267 a001 53316291173/969323029*9349^(3/19) 2329991412068267 a001 20365011074/370248451*9349^(3/19) 2329991412068267 a001 7778742049/141422324*9349^(3/19) 2329991412068267 a001 2971215073/54018521*9349^(3/19) 2329991412068272 a001 1134903170/20633239*9349^(3/19) 2329991412068304 a001 433494437/7881196*9349^(3/19) 2329991412068524 a001 165580141/3010349*9349^(3/19) 2329991412070029 a001 63245986/1149851*9349^(3/19) 2329991412080346 a001 24157817/439204*9349^(3/19) 2329991412151061 a001 9227465/167761*9349^(3/19) 2329991412171328 a004 Fibonacci(24)*Lucas(21)/(1/2+sqrt(5)/2)^32 2329991412246211 a001 2255/13201*15127^(3/4) 2329991412356450 a004 Fibonacci(26)*Lucas(21)/(1/2+sqrt(5)/2)^34 2329991412356791 a001 46368/3010349*24476^(20/21) 2329991412383458 a004 Fibonacci(28)*Lucas(21)/(1/2+sqrt(5)/2)^36 2329991412387399 a004 Fibonacci(30)*Lucas(21)/(1/2+sqrt(5)/2)^38 2329991412387974 a004 Fibonacci(32)*Lucas(21)/(1/2+sqrt(5)/2)^40 2329991412388058 a004 Fibonacci(34)*Lucas(21)/(1/2+sqrt(5)/2)^42 2329991412388070 a004 Fibonacci(36)*Lucas(21)/(1/2+sqrt(5)/2)^44 2329991412388072 a004 Fibonacci(38)*Lucas(21)/(1/2+sqrt(5)/2)^46 2329991412388072 a004 Fibonacci(40)*Lucas(21)/(1/2+sqrt(5)/2)^48 2329991412388072 a004 Fibonacci(42)*Lucas(21)/(1/2+sqrt(5)/2)^50 2329991412388072 a004 Fibonacci(44)*Lucas(21)/(1/2+sqrt(5)/2)^52 2329991412388072 a004 Fibonacci(46)*Lucas(21)/(1/2+sqrt(5)/2)^54 2329991412388072 a004 Fibonacci(48)*Lucas(21)/(1/2+sqrt(5)/2)^56 2329991412388072 a004 Fibonacci(50)*Lucas(21)/(1/2+sqrt(5)/2)^58 2329991412388072 a004 Fibonacci(52)*Lucas(21)/(1/2+sqrt(5)/2)^60 2329991412388072 a004 Fibonacci(54)*Lucas(21)/(1/2+sqrt(5)/2)^62 2329991412388072 a004 Fibonacci(56)*Lucas(21)/(1/2+sqrt(5)/2)^64 2329991412388072 a004 Fibonacci(58)*Lucas(21)/(1/2+sqrt(5)/2)^66 2329991412388072 a004 Fibonacci(60)*Lucas(21)/(1/2+sqrt(5)/2)^68 2329991412388072 a004 Fibonacci(62)*Lucas(21)/(1/2+sqrt(5)/2)^70 2329991412388072 a004 Fibonacci(64)*Lucas(21)/(1/2+sqrt(5)/2)^72 2329991412388072 a004 Fibonacci(66)*Lucas(21)/(1/2+sqrt(5)/2)^74 2329991412388072 a004 Fibonacci(68)*Lucas(21)/(1/2+sqrt(5)/2)^76 2329991412388072 a004 Fibonacci(70)*Lucas(21)/(1/2+sqrt(5)/2)^78 2329991412388072 a004 Fibonacci(72)*Lucas(21)/(1/2+sqrt(5)/2)^80 2329991412388072 a004 Fibonacci(74)*Lucas(21)/(1/2+sqrt(5)/2)^82 2329991412388072 a004 Fibonacci(76)*Lucas(21)/(1/2+sqrt(5)/2)^84 2329991412388072 a004 Fibonacci(78)*Lucas(21)/(1/2+sqrt(5)/2)^86 2329991412388072 a004 Fibonacci(80)*Lucas(21)/(1/2+sqrt(5)/2)^88 2329991412388072 a004 Fibonacci(82)*Lucas(21)/(1/2+sqrt(5)/2)^90 2329991412388072 a004 Fibonacci(84)*Lucas(21)/(1/2+sqrt(5)/2)^92 2329991412388072 a004 Fibonacci(86)*Lucas(21)/(1/2+sqrt(5)/2)^94 2329991412388072 a004 Fibonacci(88)*Lucas(21)/(1/2+sqrt(5)/2)^96 2329991412388072 a004 Fibonacci(90)*Lucas(21)/(1/2+sqrt(5)/2)^98 2329991412388072 a004 Fibonacci(92)*Lucas(21)/(1/2+sqrt(5)/2)^100 2329991412388072 a004 Fibonacci(91)*Lucas(21)/(1/2+sqrt(5)/2)^99 2329991412388072 a004 Fibonacci(89)*Lucas(21)/(1/2+sqrt(5)/2)^97 2329991412388072 a004 Fibonacci(87)*Lucas(21)/(1/2+sqrt(5)/2)^95 2329991412388072 a004 Fibonacci(85)*Lucas(21)/(1/2+sqrt(5)/2)^93 2329991412388072 a004 Fibonacci(83)*Lucas(21)/(1/2+sqrt(5)/2)^91 2329991412388072 a004 Fibonacci(81)*Lucas(21)/(1/2+sqrt(5)/2)^89 2329991412388072 a004 Fibonacci(79)*Lucas(21)/(1/2+sqrt(5)/2)^87 2329991412388072 a004 Fibonacci(77)*Lucas(21)/(1/2+sqrt(5)/2)^85 2329991412388072 a004 Fibonacci(75)*Lucas(21)/(1/2+sqrt(5)/2)^83 2329991412388072 a004 Fibonacci(73)*Lucas(21)/(1/2+sqrt(5)/2)^81 2329991412388072 a004 Fibonacci(71)*Lucas(21)/(1/2+sqrt(5)/2)^79 2329991412388072 a004 Fibonacci(69)*Lucas(21)/(1/2+sqrt(5)/2)^77 2329991412388072 a004 Fibonacci(67)*Lucas(21)/(1/2+sqrt(5)/2)^75 2329991412388072 a004 Fibonacci(65)*Lucas(21)/(1/2+sqrt(5)/2)^73 2329991412388072 a004 Fibonacci(63)*Lucas(21)/(1/2+sqrt(5)/2)^71 2329991412388072 a004 Fibonacci(61)*Lucas(21)/(1/2+sqrt(5)/2)^69 2329991412388072 a004 Fibonacci(59)*Lucas(21)/(1/2+sqrt(5)/2)^67 2329991412388072 a004 Fibonacci(57)*Lucas(21)/(1/2+sqrt(5)/2)^65 2329991412388072 a004 Fibonacci(55)*Lucas(21)/(1/2+sqrt(5)/2)^63 2329991412388072 a004 Fibonacci(53)*Lucas(21)/(1/2+sqrt(5)/2)^61 2329991412388072 a004 Fibonacci(51)*Lucas(21)/(1/2+sqrt(5)/2)^59 2329991412388072 a004 Fibonacci(49)*Lucas(21)/(1/2+sqrt(5)/2)^57 2329991412388072 a004 Fibonacci(47)*Lucas(21)/(1/2+sqrt(5)/2)^55 2329991412388072 a004 Fibonacci(45)*Lucas(21)/(1/2+sqrt(5)/2)^53 2329991412388072 a004 Fibonacci(43)*Lucas(21)/(1/2+sqrt(5)/2)^51 2329991412388072 a001 1/5473*(1/2+1/2*5^(1/2))^34 2329991412388072 a004 Fibonacci(41)*Lucas(21)/(1/2+sqrt(5)/2)^49 2329991412388072 a004 Fibonacci(39)*Lucas(21)/(1/2+sqrt(5)/2)^47 2329991412388073 a004 Fibonacci(37)*Lucas(21)/(1/2+sqrt(5)/2)^45 2329991412388078 a004 Fibonacci(35)*Lucas(21)/(1/2+sqrt(5)/2)^43 2329991412388110 a004 Fibonacci(33)*Lucas(21)/(1/2+sqrt(5)/2)^41 2329991412388329 a004 Fibonacci(31)*Lucas(21)/(1/2+sqrt(5)/2)^39 2329991412389834 a004 Fibonacci(29)*Lucas(21)/(1/2+sqrt(5)/2)^37 2329991412400151 a004 Fibonacci(27)*Lucas(21)/(1/2+sqrt(5)/2)^35 2329991412412153 a001 646/6119*5778^(8/9) 2329991412470861 a004 Fibonacci(25)*Lucas(21)/(1/2+sqrt(5)/2)^33 2329991412537797 a001 15456/13201*24476^(11/21) 2329991412541066 a001 2576/103361*24476^(19/21) 2329991412541693 a001 121393/7881196*24476^(20/21) 2329991412568670 a001 10959/711491*24476^(20/21) 2329991412572605 a001 832040/54018521*24476^(20/21) 2329991412573180 a001 2178309/141422324*24476^(20/21) 2329991412573263 a001 5702887/370248451*24476^(20/21) 2329991412573276 a001 14930352/969323029*24476^(20/21) 2329991412573277 a001 39088169/2537720636*24476^(20/21) 2329991412573278 a001 102334155/6643838879*24476^(20/21) 2329991412573278 a001 9238424/599786069*24476^(20/21) 2329991412573278 a001 701408733/45537549124*24476^(20/21) 2329991412573278 a001 1836311903/119218851371*24476^(20/21) 2329991412573278 a001 4807526976/312119004989*24476^(20/21) 2329991412573278 a001 12586269025/817138163596*24476^(20/21) 2329991412573278 a001 32951280099/2139295485799*24476^(20/21) 2329991412573278 a001 86267571272/5600748293801*24476^(20/21) 2329991412573278 a001 7787980473/505618944676*24476^(20/21) 2329991412573278 a001 365435296162/23725150497407*24476^(20/21) 2329991412573278 a001 139583862445/9062201101803*24476^(20/21) 2329991412573278 a001 53316291173/3461452808002*24476^(20/21) 2329991412573278 a001 20365011074/1322157322203*24476^(20/21) 2329991412573278 a001 7778742049/505019158607*24476^(20/21) 2329991412573278 a001 2971215073/192900153618*24476^(20/21) 2329991412573278 a001 1134903170/73681302247*24476^(20/21) 2329991412573278 a001 433494437/28143753123*24476^(20/21) 2329991412573278 a001 165580141/10749957122*24476^(20/21) 2329991412573278 a001 63245986/4106118243*24476^(20/21) 2329991412573279 a001 24157817/1568397607*24476^(20/21) 2329991412573283 a001 9227465/599074578*24476^(20/21) 2329991412573315 a001 3524578/228826127*24476^(20/21) 2329991412573535 a001 1346269/87403803*24476^(20/21) 2329991412575038 a001 514229/33385282*24476^(20/21) 2329991412585342 a001 196418/12752043*24476^(20/21) 2329991412635748 a001 3524578/64079*9349^(3/19) 2329991412655968 a001 75025/4870847*24476^(20/21) 2329991412726763 a001 121393/4870847*24476^(19/21) 2329991412728707 a001 46368/1149851*24476^(6/7) 2329991412753855 a001 105937/4250681*24476^(19/21) 2329991412757808 a001 416020/16692641*24476^(19/21) 2329991412758385 a001 726103/29134601*24476^(19/21) 2329991412758469 a001 5702887/228826127*24476^(19/21) 2329991412758481 a001 829464/33281921*24476^(19/21) 2329991412758483 a001 39088169/1568397607*24476^(19/21) 2329991412758483 a001 34111385/1368706081*24476^(19/21) 2329991412758483 a001 133957148/5374978561*24476^(19/21) 2329991412758483 a001 233802911/9381251041*24476^(19/21) 2329991412758483 a001 1836311903/73681302247*24476^(19/21) 2329991412758483 a001 267084832/10716675201*24476^(19/21) 2329991412758483 a001 12586269025/505019158607*24476^(19/21) 2329991412758483 a001 10983760033/440719107401*24476^(19/21) 2329991412758483 a001 43133785636/1730726404001*24476^(19/21) 2329991412758483 a001 75283811239/3020733700601*24476^(19/21) 2329991412758483 a001 182717648081/7331474697802*24476^(19/21) 2329991412758483 a001 139583862445/5600748293801*24476^(19/21) 2329991412758483 a001 53316291173/2139295485799*24476^(19/21) 2329991412758483 a001 10182505537/408569081798*24476^(19/21) 2329991412758483 a001 7778742049/312119004989*24476^(19/21) 2329991412758483 a001 2971215073/119218851371*24476^(19/21) 2329991412758483 a001 567451585/22768774562*24476^(19/21) 2329991412758483 a001 433494437/17393796001*24476^(19/21) 2329991412758483 a001 165580141/6643838879*24476^(19/21) 2329991412758483 a001 31622993/1268860318*24476^(19/21) 2329991412758484 a001 24157817/969323029*24476^(19/21) 2329991412758489 a001 9227465/370248451*24476^(19/21) 2329991412758521 a001 1762289/70711162*24476^(19/21) 2329991412758741 a001 1346269/54018521*24476^(19/21) 2329991412760251 a001 514229/20633239*24476^(19/21) 2329991412766368 a001 17711/64079*24476^(2/3) 2329991412770600 a001 98209/3940598*24476^(19/21) 2329991412841529 a001 75025/3010349*24476^(19/21) 2329991412907537 a001 6624/101521*24476^(17/21) 2329991412912324 a001 121393/3010349*24476^(6/7) 2329991412939113 a001 317811/7881196*24476^(6/7) 2329991412943021 a001 75640/1875749*24476^(6/7) 2329991412943592 a001 2178309/54018521*24476^(6/7) 2329991412943675 a001 5702887/141422324*24476^(6/7) 2329991412943687 a001 14930352/370248451*24476^(6/7) 2329991412943689 a001 39088169/969323029*24476^(6/7) 2329991412943689 a001 9303105/230701876*24476^(6/7) 2329991412943689 a001 267914296/6643838879*24476^(6/7) 2329991412943689 a001 701408733/17393796001*24476^(6/7) 2329991412943689 a001 1836311903/45537549124*24476^(6/7) 2329991412943689 a001 4807526976/119218851371*24476^(6/7) 2329991412943689 a001 1144206275/28374454999*24476^(6/7) 2329991412943689 a001 32951280099/817138163596*24476^(6/7) 2329991412943689 a001 86267571272/2139295485799*24476^(6/7) 2329991412943689 a001 225851433717/5600748293801*24476^(6/7) 2329991412943689 a001 365435296162/9062201101803*24476^(6/7) 2329991412943689 a001 139583862445/3461452808002*24476^(6/7) 2329991412943689 a001 53316291173/1322157322203*24476^(6/7) 2329991412943689 a001 20365011074/505019158607*24476^(6/7) 2329991412943689 a001 7778742049/192900153618*24476^(6/7) 2329991412943689 a001 2971215073/73681302247*24476^(6/7) 2329991412943689 a001 1134903170/28143753123*24476^(6/7) 2329991412943689 a001 433494437/10749957122*24476^(6/7) 2329991412943689 a001 165580141/4106118243*24476^(6/7) 2329991412943689 a001 63245986/1568397607*24476^(6/7) 2329991412943690 a001 24157817/599074578*24476^(6/7) 2329991412943694 a001 9227465/228826127*24476^(6/7) 2329991412943726 a001 3524578/87403803*24476^(6/7) 2329991412943944 a001 1346269/33385282*24476^(6/7) 2329991412945437 a001 514229/12752043*24476^(6/7) 2329991412955516 a004 Fibonacci(23)*Lucas(21)/(1/2+sqrt(5)/2)^31 2329991412955670 a001 196418/4870847*24476^(6/7) 2329991412985486 a001 17711/39603*64079^(13/23) 2329991413022536 a001 75025/39603*24476^(10/21) 2329991413025805 a001 75025/1860498*24476^(6/7) 2329991413093330 a001 121393/39603*24476^(3/7) 2329991413096599 a001 121393/1860498*24476^(17/21) 2329991413109435 a001 11592/109801*24476^(16/21) 2329991413110229 a001 4181/15127*9349^(14/19) 2329991413124183 a001 317811/4870847*24476^(17/21) 2329991413128207 a001 832040/12752043*24476^(17/21) 2329991413128794 a001 311187/4769326*24476^(17/21) 2329991413128880 a001 5702887/87403803*24476^(17/21) 2329991413128892 a001 14930352/228826127*24476^(17/21) 2329991413128894 a001 39088169/599074578*24476^(17/21) 2329991413128895 a001 14619165/224056801*24476^(17/21) 2329991413128895 a001 267914296/4106118243*24476^(17/21) 2329991413128895 a001 701408733/10749957122*24476^(17/21) 2329991413128895 a001 1836311903/28143753123*24476^(17/21) 2329991413128895 a001 686789568/10525900321*24476^(17/21) 2329991413128895 a001 12586269025/192900153618*24476^(17/21) 2329991413128895 a001 32951280099/505019158607*24476^(17/21) 2329991413128895 a001 86267571272/1322157322203*24476^(17/21) 2329991413128895 a001 32264490531/494493258286*24476^(17/21) 2329991413128895 a001 1548008755920/23725150497407*24476^(17/21) 2329991413128895 a001 139583862445/2139295485799*24476^(17/21) 2329991413128895 a001 53316291173/817138163596*24476^(17/21) 2329991413128895 a001 20365011074/312119004989*24476^(17/21) 2329991413128895 a001 7778742049/119218851371*24476^(17/21) 2329991413128895 a001 2971215073/45537549124*24476^(17/21) 2329991413128895 a001 1134903170/17393796001*24476^(17/21) 2329991413128895 a001 433494437/6643838879*24476^(17/21) 2329991413128895 a001 165580141/2537720636*24476^(17/21) 2329991413128895 a001 63245986/969323029*24476^(17/21) 2329991413128895 a001 24157817/370248451*24476^(17/21) 2329991413128900 a001 9227465/141422324*24476^(17/21) 2329991413128933 a001 3524578/54018521*24476^(17/21) 2329991413129157 a001 1346269/20633239*24476^(17/21) 2329991413130694 a001 514229/7881196*24476^(17/21) 2329991413136779 a001 28657/39603*24476^(4/7) 2329991413140048 a001 28657/1860498*24476^(20/21) 2329991413141230 a001 196418/3010349*24476^(17/21) 2329991413153264 a001 514229/24476*9349^(5/19) 2329991413213446 a001 75025/1149851*24476^(17/21) 2329991413250939 a001 15456/90481*24476^(5/7) 2329991413254569 a001 9227465/103682*9349^(2/19) 2329991413284240 a001 121393/1149851*24476^(16/21) 2329991413305958 a001 313679521/1346269 2329991413306215 a001 17711/39603*141422324^(1/3) 2329991413306216 a001 17711/39603*(1/2+1/2*5^(1/2))^13 2329991413306216 a001 17711/39603*73681302247^(1/4) 2329991413309744 a001 317811/3010349*24476^(16/21) 2329991413313465 a001 208010/1970299*24476^(16/21) 2329991413314007 a001 2178309/20633239*24476^(16/21) 2329991413314087 a001 5702887/54018521*24476^(16/21) 2329991413314098 a001 3732588/35355581*24476^(16/21) 2329991413314100 a001 39088169/370248451*24476^(16/21) 2329991413314100 a001 102334155/969323029*24476^(16/21) 2329991413314100 a001 66978574/634430159*24476^(16/21) 2329991413314100 a001 701408733/6643838879*24476^(16/21) 2329991413314100 a001 1836311903/17393796001*24476^(16/21) 2329991413314100 a001 1201881744/11384387281*24476^(16/21) 2329991413314100 a001 12586269025/119218851371*24476^(16/21) 2329991413314100 a001 32951280099/312119004989*24476^(16/21) 2329991413314100 a001 21566892818/204284540899*24476^(16/21) 2329991413314100 a001 225851433717/2139295485799*24476^(16/21) 2329991413314100 a001 182717648081/1730726404001*24476^(16/21) 2329991413314100 a001 139583862445/1322157322203*24476^(16/21) 2329991413314100 a001 53316291173/505019158607*24476^(16/21) 2329991413314100 a001 10182505537/96450076809*24476^(16/21) 2329991413314100 a001 7778742049/73681302247*24476^(16/21) 2329991413314100 a001 2971215073/28143753123*24476^(16/21) 2329991413314100 a001 567451585/5374978561*24476^(16/21) 2329991413314100 a001 433494437/4106118243*24476^(16/21) 2329991413314100 a001 165580141/1568397607*24476^(16/21) 2329991413314100 a001 31622993/299537289*24476^(16/21) 2329991413314101 a001 24157817/228826127*24476^(16/21) 2329991413314105 a001 9227465/87403803*24476^(16/21) 2329991413314136 a001 1762289/16692641*24476^(16/21) 2329991413314343 a001 1346269/12752043*24476^(16/21) 2329991413315764 a001 514229/4870847*24476^(16/21) 2329991413322027 a001 17711/39603*271443^(1/2) 2329991413322237 a001 196418/39603*24476^(8/21) 2329991413325506 a001 98209/930249*24476^(16/21) 2329991413327689 a001 28657/1149851*24476^(19/21) 2329991413388747 a001 5702887/39603*9349^(1/19) 2329991413392275 a001 75025/710647*24476^(16/21) 2329991413423619 a001 17711/39603*103682^(13/24) 2329991413436229 a001 23184/51841*24476^(13/21) 2329991413439686 a001 24157817/271443*9349^(2/19) 2329991413463070 a001 121393/710647*24476^(5/7) 2329991413466694 a001 63245986/710647*9349^(2/19) 2329991413470635 a001 165580141/1860498*9349^(2/19) 2329991413471210 a001 433494437/4870847*9349^(2/19) 2329991413471293 a001 1134903170/12752043*9349^(2/19) 2329991413471306 a001 2971215073/33385282*9349^(2/19) 2329991413471307 a001 7778742049/87403803*9349^(2/19) 2329991413471308 a001 20365011074/228826127*9349^(2/19) 2329991413471308 a001 53316291173/599074578*9349^(2/19) 2329991413471308 a001 139583862445/1568397607*9349^(2/19) 2329991413471308 a001 365435296162/4106118243*9349^(2/19) 2329991413471308 a001 956722026041/10749957122*9349^(2/19) 2329991413471308 a001 2504730781961/28143753123*9349^(2/19) 2329991413471308 a001 6557470319842/73681302247*9349^(2/19) 2329991413471308 a001 10610209857723/119218851371*9349^(2/19) 2329991413471308 a001 4052739537881/45537549124*9349^(2/19) 2329991413471308 a001 1548008755920/17393796001*9349^(2/19) 2329991413471308 a001 591286729879/6643838879*9349^(2/19) 2329991413471308 a001 225851433717/2537720636*9349^(2/19) 2329991413471308 a001 86267571272/969323029*9349^(2/19) 2329991413471308 a001 32951280099/370248451*9349^(2/19) 2329991413471308 a001 12586269025/141422324*9349^(2/19) 2329991413471309 a001 4807526976/54018521*9349^(2/19) 2329991413471313 a001 1836311903/20633239*9349^(2/19) 2329991413471345 a001 3524667/39604*9349^(2/19) 2329991413471565 a001 267914296/3010349*9349^(2/19) 2329991413473070 a001 102334155/1149851*9349^(2/19) 2329991413483386 a001 39088169/439204*9349^(2/19) 2329991413490750 a001 105937/13201*24476^(1/3) 2329991413494019 a001 105937/620166*24476^(5/7) 2329991413498534 a001 832040/4870847*24476^(5/7) 2329991413499193 a001 726103/4250681*24476^(5/7) 2329991413499289 a001 5702887/33385282*24476^(5/7) 2329991413499303 a001 4976784/29134601*24476^(5/7) 2329991413499305 a001 39088169/228826127*24476^(5/7) 2329991413499306 a001 34111385/199691526*24476^(5/7) 2329991413499306 a001 267914296/1568397607*24476^(5/7) 2329991413499306 a001 233802911/1368706081*24476^(5/7) 2329991413499306 a001 1836311903/10749957122*24476^(5/7) 2329991413499306 a001 1602508992/9381251041*24476^(5/7) 2329991413499306 a001 12586269025/73681302247*24476^(5/7) 2329991413499306 a001 10983760033/64300051206*24476^(5/7) 2329991413499306 a001 86267571272/505019158607*24476^(5/7) 2329991413499306 a001 75283811239/440719107401*24476^(5/7) 2329991413499306 a001 2504730781961/14662949395604*24476^(5/7) 2329991413499306 a001 139583862445/817138163596*24476^(5/7) 2329991413499306 a001 53316291173/312119004989*24476^(5/7) 2329991413499306 a001 20365011074/119218851371*24476^(5/7) 2329991413499306 a001 7778742049/45537549124*24476^(5/7) 2329991413499306 a001 2971215073/17393796001*24476^(5/7) 2329991413499306 a001 1134903170/6643838879*24476^(5/7) 2329991413499306 a001 433494437/2537720636*24476^(5/7) 2329991413499306 a001 165580141/969323029*24476^(5/7) 2329991413499306 a001 63245986/370248451*24476^(5/7) 2329991413499307 a001 24157817/141422324*24476^(5/7) 2329991413499312 a001 9227465/54018521*24476^(5/7) 2329991413499349 a001 3524578/20633239*24476^(5/7) 2329991413499600 a001 1346269/7881196*24476^(5/7) 2329991413501325 a001 514229/3010349*24476^(5/7) 2329991413506519 a001 28657/710647*24476^(6/7) 2329991413513147 a001 196418/1149851*24476^(5/7) 2329991413550556 a001 46368/167761*24476^(2/3) 2329991413554095 a001 14930352/167761*9349^(2/19) 2329991413594173 a001 75025/439204*24476^(5/7) 2329991413664968 a001 121393/439204*24476^(2/3) 2329991413681660 a001 317811/1149851*24476^(2/3) 2329991413682331 a001 514229/39603*24476^(2/7) 2329991413684095 a001 832040/3010349*24476^(2/3) 2329991413684451 a001 2178309/7881196*24476^(2/3) 2329991413684503 a001 5702887/20633239*24476^(2/3) 2329991413684510 a001 14930352/54018521*24476^(2/3) 2329991413684511 a001 39088169/141422324*24476^(2/3) 2329991413684511 a001 102334155/370248451*24476^(2/3) 2329991413684511 a001 267914296/969323029*24476^(2/3) 2329991413684511 a001 701408733/2537720636*24476^(2/3) 2329991413684511 a001 1836311903/6643838879*24476^(2/3) 2329991413684511 a001 4807526976/17393796001*24476^(2/3) 2329991413684511 a001 12586269025/45537549124*24476^(2/3) 2329991413684511 a001 32951280099/119218851371*24476^(2/3) 2329991413684511 a001 86267571272/312119004989*24476^(2/3) 2329991413684511 a001 225851433717/817138163596*24476^(2/3) 2329991413684511 a001 139583862445/505019158607*24476^(2/3) 2329991413684511 a001 53316291173/192900153618*24476^(2/3) 2329991413684511 a001 20365011074/73681302247*24476^(2/3) 2329991413684511 a001 7778742049/28143753123*24476^(2/3) 2329991413684511 a001 2971215073/10749957122*24476^(2/3) 2329991413684511 a001 1134903170/4106118243*24476^(2/3) 2329991413684511 a001 433494437/1568397607*24476^(2/3) 2329991413684511 a001 165580141/599074578*24476^(2/3) 2329991413684511 a001 63245986/228826127*24476^(2/3) 2329991413684512 a001 24157817/87403803*24476^(2/3) 2329991413684515 a001 9227465/33385282*24476^(2/3) 2329991413684535 a001 3524578/12752043*24476^(2/3) 2329991413684670 a001 1346269/4870847*24476^(2/3) 2329991413685601 a001 514229/1860498*24476^(2/3) 2329991413691976 a001 196418/710647*24476^(2/3) 2329991413708417 a001 28657/439204*24476^(17/21) 2329991413735678 a001 75025/271443*24476^(2/3) 2329991413806472 a001 121393/271443*24476^(13/21) 2329991413849834 a001 1346269/15127*5778^(1/9) 2329991413849921 a001 28657/271443*24476^(16/21) 2329991413860490 a001 317811/710647*24476^(13/21) 2329991413865102 a001 832040/39603*24476^(5/21) 2329991413868371 a001 416020/930249*24476^(13/21) 2329991413869521 a001 2178309/4870847*24476^(13/21) 2329991413869688 a001 5702887/12752043*24476^(13/21) 2329991413869713 a001 7465176/16692641*24476^(13/21) 2329991413869716 a001 39088169/87403803*24476^(13/21) 2329991413869717 a001 102334155/228826127*24476^(13/21) 2329991413869717 a001 133957148/299537289*24476^(13/21) 2329991413869717 a001 701408733/1568397607*24476^(13/21) 2329991413869717 a001 1836311903/4106118243*24476^(13/21) 2329991413869717 a001 2403763488/5374978561*24476^(13/21) 2329991413869717 a001 12586269025/28143753123*24476^(13/21) 2329991413869717 a001 32951280099/73681302247*24476^(13/21) 2329991413869717 a001 43133785636/96450076809*24476^(13/21) 2329991413869717 a001 225851433717/505019158607*24476^(13/21) 2329991413869717 a001 10610209857723/23725150497407*24476^(13/21) 2329991413869717 a001 182717648081/408569081798*24476^(13/21) 2329991413869717 a001 139583862445/312119004989*24476^(13/21) 2329991413869717 a001 53316291173/119218851371*24476^(13/21) 2329991413869717 a001 10182505537/22768774562*24476^(13/21) 2329991413869717 a001 7778742049/17393796001*24476^(13/21) 2329991413869717 a001 2971215073/6643838879*24476^(13/21) 2329991413869717 a001 567451585/1268860318*24476^(13/21) 2329991413869717 a001 433494437/969323029*24476^(13/21) 2329991413869717 a001 165580141/370248451*24476^(13/21) 2329991413869717 a001 31622993/70711162*24476^(13/21) 2329991413869719 a001 24157817/54018521*24476^(13/21) 2329991413869728 a001 9227465/20633239*24476^(13/21) 2329991413869792 a001 1762289/3940598*24476^(13/21) 2329991413870231 a001 1346269/3010349*24476^(13/21) 2329991413873242 a001 514229/1149851*24476^(13/21) 2329991413893874 a001 98209/219602*24476^(13/21) 2329991413920967 a001 75025/103682*24476^(4/7) 2329991413991761 a001 121393/103682*24476^(11/21) 2329991414035211 a001 28657/103682*24476^(2/3) 2329991414035295 a001 75025/167761*24476^(13/21) 2329991414035379 a001 196418/271443*24476^(4/7) 2329991414038737 a001 5702887/64079*9349^(2/19) 2329991414051237 a001 1346269/39603*24476^(4/21) 2329991414052071 a001 514229/710647*24476^(4/7) 2329991414054507 a001 1346269/1860498*24476^(4/7) 2329991414054862 a001 3524578/4870847*24476^(4/7) 2329991414054914 a001 9227465/12752043*24476^(4/7) 2329991414054921 a001 24157817/33385282*24476^(4/7) 2329991414054922 a001 63245986/87403803*24476^(4/7) 2329991414054923 a001 165580141/228826127*24476^(4/7) 2329991414054923 a001 433494437/599074578*24476^(4/7) 2329991414054923 a001 1134903170/1568397607*24476^(4/7) 2329991414054923 a001 2971215073/4106118243*24476^(4/7) 2329991414054923 a001 7778742049/10749957122*24476^(4/7) 2329991414054923 a001 20365011074/28143753123*24476^(4/7) 2329991414054923 a001 53316291173/73681302247*24476^(4/7) 2329991414054923 a001 139583862445/192900153618*24476^(4/7) 2329991414054923 a001 10610209857723/14662949395604*24476^(4/7) 2329991414054923 a001 591286729879/817138163596*24476^(4/7) 2329991414054923 a001 225851433717/312119004989*24476^(4/7) 2329991414054923 a001 86267571272/119218851371*24476^(4/7) 2329991414054923 a001 32951280099/45537549124*24476^(4/7) 2329991414054923 a001 12586269025/17393796001*24476^(4/7) 2329991414054923 a001 4807526976/6643838879*24476^(4/7) 2329991414054923 a001 1836311903/2537720636*24476^(4/7) 2329991414054923 a001 701408733/969323029*24476^(4/7) 2329991414054923 a001 267914296/370248451*24476^(4/7) 2329991414054923 a001 102334155/141422324*24476^(4/7) 2329991414054923 a001 39088169/54018521*24476^(4/7) 2329991414054926 a001 14930352/20633239*24476^(4/7) 2329991414054946 a001 5702887/7881196*24476^(4/7) 2329991414055082 a001 2178309/3010349*24476^(4/7) 2329991414056012 a001 832040/1149851*24476^(4/7) 2329991414062388 a001 317811/439204*24476^(4/7) 2329991414106089 a001 121393/167761*24476^(4/7) 2329991414149539 a001 28657/167761*24476^(5/7) 2329991414184063 a001 17711/39603*39603^(13/22) 2329991414203892 a001 105937/90481*24476^(11/21) 2329991414204986 a001 17711/103682*64079^(15/23) 2329991414220668 a001 98209/51841*24476^(10/21) 2329991414224359 a004 Fibonacci(22)*Lucas(23)/(1/2+sqrt(5)/2)^32 2329991414234841 a001 832040/710647*24476^(11/21) 2329991414236088 a001 726103/13201*24476^(1/7) 2329991414239357 a001 726103/620166*24476^(11/21) 2329991414240016 a001 5702887/4870847*24476^(11/21) 2329991414240112 a001 4976784/4250681*24476^(11/21) 2329991414240126 a001 39088169/33385282*24476^(11/21) 2329991414240128 a001 34111385/29134601*24476^(11/21) 2329991414240128 a001 267914296/228826127*24476^(11/21) 2329991414240128 a001 233802911/199691526*24476^(11/21) 2329991414240128 a001 1836311903/1568397607*24476^(11/21) 2329991414240128 a001 1602508992/1368706081*24476^(11/21) 2329991414240128 a001 12586269025/10749957122*24476^(11/21) 2329991414240128 a001 10983760033/9381251041*24476^(11/21) 2329991414240128 a001 86267571272/73681302247*24476^(11/21) 2329991414240128 a001 75283811239/64300051206*24476^(11/21) 2329991414240128 a001 2504730781961/2139295485799*24476^(11/21) 2329991414240128 a001 365435296162/312119004989*24476^(11/21) 2329991414240128 a001 139583862445/119218851371*24476^(11/21) 2329991414240128 a001 53316291173/45537549124*24476^(11/21) 2329991414240128 a001 20365011074/17393796001*24476^(11/21) 2329991414240128 a001 7778742049/6643838879*24476^(11/21) 2329991414240128 a001 2971215073/2537720636*24476^(11/21) 2329991414240128 a001 1134903170/969323029*24476^(11/21) 2329991414240128 a001 433494437/370248451*24476^(11/21) 2329991414240128 a001 165580141/141422324*24476^(11/21) 2329991414240129 a001 63245986/54018521*24476^(11/21) 2329991414240135 a001 24157817/20633239*24476^(11/21) 2329991414240171 a001 9227465/7881196*24476^(11/21) 2329991414240423 a001 3524578/3010349*24476^(11/21) 2329991414242148 a001 1346269/1149851*24476^(11/21) 2329991414249287 a001 17711/3010349*64079^(22/23) 2329991414253969 a001 514229/439204*24476^(11/21) 2329991414273029 a001 17711/1860498*64079^(21/23) 2329991414300136 a001 17711/1149851*64079^(20/23) 2329991414303672 a001 15456/13201*64079^(11/23) 2329991414318431 a001 17711/710647*64079^(19/23) 2329991414334996 a001 196418/167761*24476^(11/21) 2329991414340765 a001 17711/271443*64079^(17/23) 2329991414359795 a001 17711/439204*64079^(18/23) 2329991414389182 a001 317811/103682*24476^(3/7) 2329991414395474 a001 514229/271443*24476^(10/21) 2329991414405622 a001 46368/64079*24476^(4/7) 2329991414420977 a001 1346269/710647*24476^(10/21) 2329991414421429 a001 3524578/39603*24476^(2/21) 2329991414424698 a001 1762289/930249*24476^(10/21) 2329991414425241 a001 9227465/4870847*24476^(10/21) 2329991414425320 a001 24157817/12752043*24476^(10/21) 2329991414425332 a001 31622993/16692641*24476^(10/21) 2329991414425334 a001 165580141/87403803*24476^(10/21) 2329991414425334 a001 433494437/228826127*24476^(10/21) 2329991414425334 a001 567451585/299537289*24476^(10/21) 2329991414425334 a001 2971215073/1568397607*24476^(10/21) 2329991414425334 a001 7778742049/4106118243*24476^(10/21) 2329991414425334 a001 10182505537/5374978561*24476^(10/21) 2329991414425334 a001 53316291173/28143753123*24476^(10/21) 2329991414425334 a001 139583862445/73681302247*24476^(10/21) 2329991414425334 a001 182717648081/96450076809*24476^(10/21) 2329991414425334 a001 956722026041/505019158607*24476^(10/21) 2329991414425334 a001 10610209857723/5600748293801*24476^(10/21) 2329991414425334 a001 591286729879/312119004989*24476^(10/21) 2329991414425334 a001 225851433717/119218851371*24476^(10/21) 2329991414425334 a001 21566892818/11384387281*24476^(10/21) 2329991414425334 a001 32951280099/17393796001*24476^(10/21) 2329991414425334 a001 12586269025/6643838879*24476^(10/21) 2329991414425334 a001 1201881744/634430159*24476^(10/21) 2329991414425334 a001 1836311903/969323029*24476^(10/21) 2329991414425334 a001 701408733/370248451*24476^(10/21) 2329991414425334 a001 66978574/35355581*24476^(10/21) 2329991414425335 a001 102334155/54018521*24476^(10/21) 2329991414425339 a001 39088169/20633239*24476^(10/21) 2329991414425369 a001 3732588/1970299*24476^(10/21) 2329991414425577 a001 5702887/3010349*24476^(10/21) 2329991414426998 a001 2178309/1149851*24476^(10/21) 2329991414436739 a001 208010/109801*24476^(10/21) 2329991414479848 a001 17711/167761*64079^(16/23) 2329991414503509 a001 317811/167761*24476^(10/21) 2329991414525385 a001 17711/103682*167761^(3/5) 2329991414533291 a001 6765/103682*15127^(17/20) 2329991414538137 a001 121393/39603*64079^(9/23) 2329991414553870 a001 208010/6119*9349^(4/19) 2329991414568348 a001 17711/103682*439204^(5/9) 2329991414575021 a001 4613616/19801 2329991414575041 a001 17711/103682*7881196^(5/11) 2329991414575046 a001 15456/13201*7881196^(1/3) 2329991414575056 a001 17711/103682*20633239^(3/7) 2329991414575058 a001 17711/103682*141422324^(5/13) 2329991414575058 a001 17711/103682*2537720636^(1/3) 2329991414575058 a001 17711/103682*45537549124^(5/17) 2329991414575058 a001 17711/103682*312119004989^(3/11) 2329991414575058 a001 17711/103682*14662949395604^(5/21) 2329991414575058 a001 17711/103682*(1/2+1/2*5^(1/2))^15 2329991414575058 a001 17711/103682*192900153618^(5/18) 2329991414575058 a001 17711/103682*28143753123^(3/10) 2329991414575058 a001 17711/103682*10749957122^(5/16) 2329991414575058 a001 15456/13201*312119004989^(1/5) 2329991414575058 a001 15456/13201*(1/2+1/2*5^(1/2))^11 2329991414575058 a001 15456/13201*1568397607^(1/4) 2329991414575058 a001 17711/103682*599074578^(5/14) 2329991414575058 a001 17711/103682*228826127^(3/8) 2329991414575059 a001 17711/103682*33385282^(5/12) 2329991414575395 a001 17711/103682*1860498^(1/2) 2329991414578244 a001 832040/271443*24476^(3/7) 2329991414580763 a001 514229/103682*24476^(8/21) 2329991414605828 a001 311187/101521*24476^(3/7) 2329991414606510 a001 196418/39603*64079^(8/23) 2329991414606583 a001 5702887/39603*24476^(1/21) 2329991414609852 a001 5702887/1860498*24476^(3/7) 2329991414610439 a001 14930352/4870847*24476^(3/7) 2329991414610525 a001 39088169/12752043*24476^(3/7) 2329991414610537 a001 14619165/4769326*24476^(3/7) 2329991414610539 a001 267914296/87403803*24476^(3/7) 2329991414610539 a001 701408733/228826127*24476^(3/7) 2329991414610539 a001 1836311903/599074578*24476^(3/7) 2329991414610539 a001 686789568/224056801*24476^(3/7) 2329991414610539 a001 12586269025/4106118243*24476^(3/7) 2329991414610539 a001 32951280099/10749957122*24476^(3/7) 2329991414610539 a001 86267571272/28143753123*24476^(3/7) 2329991414610539 a001 32264490531/10525900321*24476^(3/7) 2329991414610539 a001 591286729879/192900153618*24476^(3/7) 2329991414610539 a001 1548008755920/505019158607*24476^(3/7) 2329991414610539 a001 1515744265389/494493258286*24476^(3/7) 2329991414610539 a001 2504730781961/817138163596*24476^(3/7) 2329991414610539 a001 956722026041/312119004989*24476^(3/7) 2329991414610539 a001 365435296162/119218851371*24476^(3/7) 2329991414610539 a001 139583862445/45537549124*24476^(3/7) 2329991414610539 a001 53316291173/17393796001*24476^(3/7) 2329991414610539 a001 20365011074/6643838879*24476^(3/7) 2329991414610539 a001 7778742049/2537720636*24476^(3/7) 2329991414610539 a001 2971215073/969323029*24476^(3/7) 2329991414610539 a001 1134903170/370248451*24476^(3/7) 2329991414610540 a001 433494437/141422324*24476^(3/7) 2329991414610540 a001 165580141/54018521*24476^(3/7) 2329991414610545 a001 63245986/20633239*24476^(3/7) 2329991414610578 a001 24157817/7881196*24476^(3/7) 2329991414610802 a001 9227465/3010349*24476^(3/7) 2329991414612339 a001 3524578/1149851*24476^(3/7) 2329991414614489 a001 105937/13201*64079^(7/23) 2329991414622875 a001 1346269/439204*24476^(3/7) 2329991414627877 a001 75025/39603*64079^(10/23) 2329991414645536 a001 514229/39603*64079^(6/23) 2329991414657602 a001 7465176/51841*9349^(1/19) 2329991414667772 a001 832040/39603*64079^(5/23) 2329991414674400 a001 15456/13201*103682^(11/24) 2329991414693374 a001 1346269/39603*64079^(4/23) 2329991414695091 a001 514229/167761*24476^(3/7) 2329991414709014 a004 Fibonacci(22)*Lucas(25)/(1/2+sqrt(5)/2)^34 2329991414710524 a001 17711/103682*103682^(5/8) 2329991414717690 a001 726103/13201*64079^(3/23) 2329991414727334 a001 17711/1149851*167761^(4/5) 2329991414742497 a001 3524578/39603*64079^(2/23) 2329991414756154 a001 121393/39603*439204^(1/3) 2329991414760170 a001 121393/39603*7881196^(3/11) 2329991414760175 a001 2149991423/9227465 2329991414760180 a001 121393/39603*141422324^(3/13) 2329991414760180 a001 17711/271443*45537549124^(1/3) 2329991414760180 a001 17711/271443*(1/2+1/2*5^(1/2))^17 2329991414760180 a001 121393/39603*2537720636^(1/5) 2329991414760180 a001 121393/39603*45537549124^(3/17) 2329991414760180 a001 121393/39603*14662949395604^(1/7) 2329991414760180 a001 121393/39603*(1/2+1/2*5^(1/2))^9 2329991414760180 a001 121393/39603*192900153618^(1/6) 2329991414760180 a001 121393/39603*10749957122^(3/16) 2329991414760180 a001 121393/39603*599074578^(3/14) 2329991414760181 a001 121393/39603*33385282^(1/4) 2329991414760187 a001 17711/271443*12752043^(1/2) 2329991414760382 a001 121393/39603*1860498^(3/10) 2329991414763533 a001 416020/51841*24476^(1/3) 2329991414764380 a001 1346269/271443*24476^(8/21) 2329991414767117 a001 5702887/39603*64079^(1/23) 2329991414774572 a001 832040/39603*167761^(1/5) 2329991414779724 a004 Fibonacci(22)*Lucas(27)/(1/2+sqrt(5)/2)^36 2329991414781104 a001 89/39604*439204^(8/9) 2329991414781735 a001 17711/1860498*439204^(7/9) 2329991414787188 a001 105937/13201*20633239^(1/5) 2329991414787188 a001 5628750621/24157817 2329991414787189 a001 17711/710647*817138163596^(1/3) 2329991414787189 a001 17711/710647*(1/2+1/2*5^(1/2))^19 2329991414787189 a001 105937/13201*17393796001^(1/7) 2329991414787189 a001 105937/13201*14662949395604^(1/9) 2329991414787189 a001 105937/13201*(1/2+1/2*5^(1/2))^7 2329991414787189 a001 105937/13201*599074578^(1/6) 2329991414787189 a001 17711/710647*87403803^(1/2) 2329991414788342 a001 105937/13201*710647^(1/4) 2329991414790040 a004 Fibonacci(22)*Lucas(29)/(1/2+sqrt(5)/2)^38 2329991414790362 a001 726103/13201*439204^(1/9) 2329991414790881 a001 514229/39603*439204^(2/9) 2329991414791106 a001 17711/1860498*7881196^(7/11) 2329991414791126 a001 17711/1860498*20633239^(3/5) 2329991414791129 a001 832040/39603*20633239^(1/7) 2329991414791129 a001 7368130220/31622993 2329991414791130 a001 17711/1860498*141422324^(7/13) 2329991414791130 a001 17711/1860498*2537720636^(7/15) 2329991414791130 a001 17711/1860498*17393796001^(3/7) 2329991414791130 a001 17711/1860498*45537549124^(7/17) 2329991414791130 a001 17711/1860498*14662949395604^(1/3) 2329991414791130 a001 17711/1860498*(1/2+1/2*5^(1/2))^21 2329991414791130 a001 17711/1860498*192900153618^(7/18) 2329991414791130 a001 17711/1860498*10749957122^(7/16) 2329991414791130 a001 832040/39603*2537720636^(1/9) 2329991414791130 a001 832040/39603*312119004989^(1/11) 2329991414791130 a001 832040/39603*(1/2+1/2*5^(1/2))^5 2329991414791130 a001 832040/39603*28143753123^(1/10) 2329991414791130 a001 17711/1860498*599074578^(1/2) 2329991414791130 a001 832040/39603*228826127^(1/8) 2329991414791131 a001 17711/1860498*33385282^(7/12) 2329991414791169 a001 3524578/710647*24476^(8/21) 2329991414791242 a001 832040/39603*1860498^(1/6) 2329991414791546 a004 Fibonacci(22)*Lucas(31)/(1/2+sqrt(5)/2)^40 2329991414791601 a001 17711/1860498*1860498^(7/10) 2329991414791701 a001 726103/13201*7881196^(1/11) 2329991414791705 a001 38580030699/165580141 2329991414791705 a001 726103/13201*141422324^(1/13) 2329991414791705 a001 17711/4870847*(1/2+1/2*5^(1/2))^23 2329991414791705 a001 17711/4870847*4106118243^(1/2) 2329991414791705 a001 726103/13201*2537720636^(1/15) 2329991414791705 a001 726103/13201*45537549124^(1/17) 2329991414791705 a001 726103/13201*14662949395604^(1/21) 2329991414791705 a001 726103/13201*(1/2+1/2*5^(1/2))^3 2329991414791705 a001 726103/13201*192900153618^(1/18) 2329991414791705 a001 726103/13201*10749957122^(1/16) 2329991414791705 a001 726103/13201*599074578^(1/14) 2329991414791705 a001 726103/13201*33385282^(1/12) 2329991414791765 a004 Fibonacci(22)*Lucas(33)/(1/2+sqrt(5)/2)^42 2329991414791769 a001 17711/141422324*7881196^(10/11) 2329991414791770 a001 17711/33385282*7881196^(9/11) 2329991414791772 a001 726103/13201*1860498^(1/10) 2329991414791784 a001 17711/12752043*20633239^(5/7) 2329991414791788 a001 101003831657/433494437 2329991414791788 a001 17711/12752043*2537720636^(5/9) 2329991414791788 a001 17711/12752043*312119004989^(5/11) 2329991414791788 a001 17711/12752043*(1/2+1/2*5^(1/2))^25 2329991414791788 a001 17711/12752043*3461452808002^(5/12) 2329991414791788 a001 17711/12752043*28143753123^(1/2) 2329991414791788 a001 5702887/79206+5702887/79206*5^(1/2) 2329991414791788 a001 17711/12752043*228826127^(5/8) 2329991414791797 a004 Fibonacci(22)*Lucas(35)/(1/2+sqrt(5)/2)^44 2329991414791798 a001 17711/141422324*20633239^(6/7) 2329991414791799 a001 17711/54018521*20633239^(4/5) 2329991414791801 a001 17711/33385282*141422324^(9/13) 2329991414791801 a001 7777396008/33379505 2329991414791801 a001 17711/33385282*2537720636^(3/5) 2329991414791801 a001 17711/33385282*45537549124^(9/17) 2329991414791801 a001 17711/33385282*14662949395604^(3/7) 2329991414791801 a001 17711/33385282*(1/2+1/2*5^(1/2))^27 2329991414791801 a001 17711/33385282*192900153618^(1/2) 2329991414791801 a001 17711/33385282*10749957122^(9/16) 2329991414791801 a004 Fibonacci(36)/Lucas(22)/(1/2+sqrt(5)/2) 2329991414791801 a001 17711/33385282*599074578^(9/14) 2329991414791802 a004 Fibonacci(22)*Lucas(37)/(1/2+sqrt(5)/2)^46 2329991414791802 a001 17711/33385282*33385282^(3/4) 2329991414791802 a001 692290561159/2971215073 2329991414791802 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^29/Lucas(38) 2329991414791802 a001 17711/87403803*1322157322203^(1/2) 2329991414791802 a004 Fibonacci(38)/Lucas(22)/(1/2+sqrt(5)/2)^3 2329991414791803 a004 Fibonacci(22)*Lucas(39)/(1/2+sqrt(5)/2)^48 2329991414791803 a001 17711/2537720636*141422324^(12/13) 2329991414791803 a001 17711/599074578*141422324^(11/13) 2329991414791803 a001 1812440219205/7778742049 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^31/Lucas(40) 2329991414791803 a001 17711/228826127*9062201101803^(1/2) 2329991414791803 a004 Fibonacci(40)/Lucas(22)/(1/2+sqrt(5)/2)^5 2329991414791803 a004 Fibonacci(22)*Lucas(41)/(1/2+sqrt(5)/2)^50 2329991414791803 a001 17711/599074578*2537720636^(11/15) 2329991414791803 a001 2372515048228/10182505537 2329991414791803 a001 17711/599074578*45537549124^(11/17) 2329991414791803 a001 17711/599074578*312119004989^(3/5) 2329991414791803 a001 17711/599074578*14662949395604^(11/21) 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^33/Lucas(42) 2329991414791803 a001 17711/599074578*192900153618^(11/18) 2329991414791803 a001 17711/599074578*10749957122^(11/16) 2329991414791803 a001 17711/599074578*1568397607^(3/4) 2329991414791803 a004 Fibonacci(42)/Lucas(22)/(1/2+sqrt(5)/2)^7 2329991414791803 a004 Fibonacci(22)*Lucas(43)/(1/2+sqrt(5)/2)^52 2329991414791803 a001 17711/599074578*599074578^(11/14) 2329991414791803 a001 17711/1568397607*2537720636^(7/9) 2329991414791803 a001 17711/1568397607*17393796001^(5/7) 2329991414791803 a001 12422650070163/53316291173 2329991414791803 a001 17711/1568397607*312119004989^(7/11) 2329991414791803 a001 17711/1568397607*14662949395604^(5/9) 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^35/Lucas(44) 2329991414791803 a001 17711/1568397607*505019158607^(5/8) 2329991414791803 a001 17711/1568397607*28143753123^(7/10) 2329991414791803 a004 Fibonacci(22)*Lucas(45)/(1/2+sqrt(5)/2)^54 2329991414791803 a001 17711/45537549124*2537720636^(14/15) 2329991414791803 a001 17711/10749957122*2537720636^(13/15) 2329991414791803 a001 17711/17393796001*2537720636^(8/9) 2329991414791803 a001 365426068697/1568358005 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^37/Lucas(46) 2329991414791803 a004 Fibonacci(22)*Lucas(47)/(1/2+sqrt(5)/2)^56 2329991414791803 a001 17711/10749957122*45537549124^(13/17) 2329991414791803 a001 42573055135968/182717648081 2329991414791803 a001 17711/10749957122*14662949395604^(13/21) 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^39/Lucas(48) 2329991414791803 a001 17711/10749957122*192900153618^(13/18) 2329991414791803 a001 17711/10749957122*73681302247^(3/4) 2329991414791803 a004 Fibonacci(22)*Lucas(49)/(1/2+sqrt(5)/2)^58 2329991414791803 a001 17711/45537549124*17393796001^(6/7) 2329991414791803 a001 17711/10749957122*10749957122^(13/16) 2329991414791803 a001 222915410701775/956722026041 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^41/Lucas(50) 2329991414791803 a004 Fibonacci(22)*Lucas(51)/(1/2+sqrt(5)/2)^60 2329991414791803 a001 17711/192900153618*45537549124^(15/17) 2329991414791803 a001 17711/817138163596*45537549124^(16/17) 2329991414791803 a001 583600121833389/2504730781961 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^43/Lucas(52) 2329991414791803 a004 Fibonacci(22)*Lucas(53)/(1/2+sqrt(5)/2)^62 2329991414791803 a001 17711/192900153618*312119004989^(9/11) 2329991414791803 a001 17711/192900153618*14662949395604^(5/7) 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^45/Lucas(54) 2329991414791803 a004 Fibonacci(22)*Lucas(55)/(1/2+sqrt(5)/2)^64 2329991414791803 a001 17711/2139295485799*312119004989^(10/11) 2329991414791803 a001 17711/192900153618*192900153618^(5/6) 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^47/Lucas(56) 2329991414791803 a004 Fibonacci(22)*Lucas(57)/(1/2+sqrt(5)/2)^66 2329991414791803 a001 17711/1322157322203*14662949395604^(7/9) 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^49/Lucas(58) 2329991414791803 a004 Fibonacci(22)*Lucas(59)/(1/2+sqrt(5)/2)^68 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^51/Lucas(60) 2329991414791803 a004 Fibonacci(22)*Lucas(61)/(1/2+sqrt(5)/2)^70 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^53/Lucas(62) 2329991414791803 a004 Fibonacci(22)*Lucas(63)/(1/2+sqrt(5)/2)^72 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^55/Lucas(64) 2329991414791803 a004 Fibonacci(22)*Lucas(65)/(1/2+sqrt(5)/2)^74 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^57/Lucas(66) 2329991414791803 a004 Fibonacci(22)*Lucas(67)/(1/2+sqrt(5)/2)^76 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^59/Lucas(68) 2329991414791803 a004 Fibonacci(22)*Lucas(69)/(1/2+sqrt(5)/2)^78 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^61/Lucas(70) 2329991414791803 a004 Fibonacci(22)*Lucas(71)/(1/2+sqrt(5)/2)^80 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^63/Lucas(72) 2329991414791803 a004 Fibonacci(22)*Lucas(73)/(1/2+sqrt(5)/2)^82 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^65/Lucas(74) 2329991414791803 a004 Fibonacci(22)*Lucas(75)/(1/2+sqrt(5)/2)^84 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^67/Lucas(76) 2329991414791803 a004 Fibonacci(22)*Lucas(77)/(1/2+sqrt(5)/2)^86 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^69/Lucas(78) 2329991414791803 a004 Fibonacci(22)*Lucas(79)/(1/2+sqrt(5)/2)^88 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^71/Lucas(80) 2329991414791803 a004 Fibonacci(22)*Lucas(81)/(1/2+sqrt(5)/2)^90 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^73/Lucas(82) 2329991414791803 a004 Fibonacci(22)*Lucas(83)/(1/2+sqrt(5)/2)^92 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^75/Lucas(84) 2329991414791803 a004 Fibonacci(22)*Lucas(85)/(1/2+sqrt(5)/2)^94 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^77/Lucas(86) 2329991414791803 a004 Fibonacci(22)*Lucas(87)/(1/2+sqrt(5)/2)^96 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^79/Lucas(88) 2329991414791803 a004 Fibonacci(22)*Lucas(89)/(1/2+sqrt(5)/2)^98 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^81/Lucas(90) 2329991414791803 a004 Fibonacci(22)*Lucas(91)/(1/2+sqrt(5)/2)^100 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^83/Lucas(92) 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^85/Lucas(94) 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^87/Lucas(96) 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^89/Lucas(98) 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^91/Lucas(100) 2329991414791803 a004 Fibonacci(11)*Lucas(11)/(1/2+sqrt(5)/2)^9 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^88/Lucas(97) 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^90/Lucas(99) 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^86/Lucas(95) 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^84/Lucas(93) 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^82/Lucas(91) 2329991414791803 a004 Fibonacci(22)*Lucas(90)/(1/2+sqrt(5)/2)^99 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^80/Lucas(89) 2329991414791803 a004 Fibonacci(22)*Lucas(88)/(1/2+sqrt(5)/2)^97 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^78/Lucas(87) 2329991414791803 a004 Fibonacci(22)*Lucas(86)/(1/2+sqrt(5)/2)^95 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^76/Lucas(85) 2329991414791803 a004 Fibonacci(22)*Lucas(84)/(1/2+sqrt(5)/2)^93 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^74/Lucas(83) 2329991414791803 a004 Fibonacci(22)*Lucas(82)/(1/2+sqrt(5)/2)^91 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^72/Lucas(81) 2329991414791803 a004 Fibonacci(22)*Lucas(80)/(1/2+sqrt(5)/2)^89 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^70/Lucas(79) 2329991414791803 a004 Fibonacci(22)*Lucas(78)/(1/2+sqrt(5)/2)^87 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^68/Lucas(77) 2329991414791803 a004 Fibonacci(22)*Lucas(76)/(1/2+sqrt(5)/2)^85 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^66/Lucas(75) 2329991414791803 a004 Fibonacci(22)*Lucas(74)/(1/2+sqrt(5)/2)^83 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^64/Lucas(73) 2329991414791803 a004 Fibonacci(22)*Lucas(72)/(1/2+sqrt(5)/2)^81 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^62/Lucas(71) 2329991414791803 a004 Fibonacci(22)*Lucas(70)/(1/2+sqrt(5)/2)^79 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^60/Lucas(69) 2329991414791803 a004 Fibonacci(22)*Lucas(68)/(1/2+sqrt(5)/2)^77 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^58/Lucas(67) 2329991414791803 a004 Fibonacci(22)*Lucas(66)/(1/2+sqrt(5)/2)^75 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^56/Lucas(65) 2329991414791803 a004 Fibonacci(22)*Lucas(64)/(1/2+sqrt(5)/2)^73 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^54/Lucas(63) 2329991414791803 a004 Fibonacci(22)*Lucas(62)/(1/2+sqrt(5)/2)^71 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^52/Lucas(61) 2329991414791803 a004 Fibonacci(22)*Lucas(60)/(1/2+sqrt(5)/2)^69 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^50/Lucas(59) 2329991414791803 a004 Fibonacci(22)*Lucas(58)/(1/2+sqrt(5)/2)^67 2329991414791803 a001 17711/817138163596*14662949395604^(16/21) 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^48/Lucas(57) 2329991414791803 a001 17711/1322157322203*505019158607^(7/8) 2329991414791803 a004 Fibonacci(22)*Lucas(56)/(1/2+sqrt(5)/2)^65 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^46/Lucas(55) 2329991414791803 a001 2472169787763395/10610209857723 2329991414791803 a001 17711/3461452808002*192900153618^(17/18) 2329991414791803 a004 Fibonacci(22)*Lucas(54)/(1/2+sqrt(5)/2)^63 2329991414791803 a001 17711/119218851371*312119004989^(4/5) 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^44/Lucas(53) 2329991414791803 a001 17711/119218851371*23725150497407^(11/16) 2329991414791803 a001 944284832965003/4052739537881 2329991414791803 a001 17711/45537549124*45537549124^(14/17) 2329991414791803 a001 17711/817138163596*73681302247^(12/13) 2329991414791803 a004 Fibonacci(22)*Lucas(52)/(1/2+sqrt(5)/2)^61 2329991414791803 a001 17711/119218851371*73681302247^(11/13) 2329991414791803 a001 17711/45537549124*817138163596^(14/19) 2329991414791803 a001 17711/45537549124*14662949395604^(2/3) 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^42/Lucas(51) 2329991414791803 a001 17711/45537549124*505019158607^(3/4) 2329991414791803 a001 17711/45537549124*192900153618^(7/9) 2329991414791803 a001 17711/192900153618*28143753123^(9/10) 2329991414791803 a004 Fibonacci(22)*Lucas(50)/(1/2+sqrt(5)/2)^59 2329991414791803 a001 17711/17393796001*312119004989^(8/11) 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^40/Lucas(49) 2329991414791803 a001 137769300429839/591286729879 2329991414791803 a001 17711/17393796001*73681302247^(10/13) 2329991414791803 a001 17711/17393796001*28143753123^(4/5) 2329991414791803 a001 17711/119218851371*10749957122^(11/12) 2329991414791803 a001 17711/45537549124*10749957122^(7/8) 2329991414791803 a001 17711/192900153618*10749957122^(15/16) 2329991414791803 a001 89/1568437211*10749957122^(23/24) 2329991414791803 a004 Fibonacci(22)*Lucas(48)/(1/2+sqrt(5)/2)^57 2329991414791803 a001 17711/17393796001*10749957122^(5/6) 2329991414791803 a001 17711/6643838879*817138163596^(2/3) 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^38/Lucas(47) 2329991414791803 a001 52623190157903/225851433717 2329991414791803 a001 17711/6643838879*10749957122^(19/24) 2329991414791803 a001 17711/2537720636*2537720636^(4/5) 2329991414791803 a001 17711/45537549124*4106118243^(21/23) 2329991414791803 a001 17711/17393796001*4106118243^(20/23) 2329991414791803 a001 17711/119218851371*4106118243^(22/23) 2329991414791803 a004 Fibonacci(22)*Lucas(46)/(1/2+sqrt(5)/2)^55 2329991414791803 a001 17711/6643838879*4106118243^(19/23) 2329991414791803 a001 17711/2537720636*45537549124^(12/17) 2329991414791803 a001 17711/2537720636*14662949395604^(4/7) 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^36/Lucas(45) 2329991414791803 a001 17711/2537720636*505019158607^(9/14) 2329991414791803 a001 17711/2537720636*192900153618^(2/3) 2329991414791803 a001 591184413055/2537281508 2329991414791803 a001 17711/2537720636*73681302247^(9/13) 2329991414791803 a001 17711/2537720636*10749957122^(3/4) 2329991414791803 a001 17711/2537720636*4106118243^(18/23) 2329991414791803 a004 Fibonacci(46)/Lucas(22)/(1/2+sqrt(5)/2)^11 2329991414791803 a001 17711/17393796001*1568397607^(10/11) 2329991414791803 a001 17711/6643838879*1568397607^(19/22) 2329991414791803 a001 17711/45537549124*1568397607^(21/22) 2329991414791803 a004 Fibonacci(48)/Lucas(22)/(1/2+sqrt(5)/2)^13 2329991414791803 a004 Fibonacci(50)/Lucas(22)/(1/2+sqrt(5)/2)^15 2329991414791803 a004 Fibonacci(52)/Lucas(22)/(1/2+sqrt(5)/2)^17 2329991414791803 a004 Fibonacci(54)/Lucas(22)/(1/2+sqrt(5)/2)^19 2329991414791803 a004 Fibonacci(56)/Lucas(22)/(1/2+sqrt(5)/2)^21 2329991414791803 a004 Fibonacci(58)/Lucas(22)/(1/2+sqrt(5)/2)^23 2329991414791803 a004 Fibonacci(60)/Lucas(22)/(1/2+sqrt(5)/2)^25 2329991414791803 a004 Fibonacci(62)/Lucas(22)/(1/2+sqrt(5)/2)^27 2329991414791803 a004 Fibonacci(64)/Lucas(22)/(1/2+sqrt(5)/2)^29 2329991414791803 a004 Fibonacci(66)/Lucas(22)/(1/2+sqrt(5)/2)^31 2329991414791803 a004 Fibonacci(68)/Lucas(22)/(1/2+sqrt(5)/2)^33 2329991414791803 a004 Fibonacci(70)/Lucas(22)/(1/2+sqrt(5)/2)^35 2329991414791803 a004 Fibonacci(72)/Lucas(22)/(1/2+sqrt(5)/2)^37 2329991414791803 a004 Fibonacci(74)/Lucas(22)/(1/2+sqrt(5)/2)^39 2329991414791803 a004 Fibonacci(76)/Lucas(22)/(1/2+sqrt(5)/2)^41 2329991414791803 a004 Fibonacci(78)/Lucas(22)/(1/2+sqrt(5)/2)^43 2329991414791803 a004 Fibonacci(80)/Lucas(22)/(1/2+sqrt(5)/2)^45 2329991414791803 a004 Fibonacci(82)/Lucas(22)/(1/2+sqrt(5)/2)^47 2329991414791803 a004 Fibonacci(84)/Lucas(22)/(1/2+sqrt(5)/2)^49 2329991414791803 a004 Fibonacci(86)/Lucas(22)/(1/2+sqrt(5)/2)^51 2329991414791803 a004 Fibonacci(22)*Lucas(44)/(1/2+sqrt(5)/2)^53 2329991414791803 a004 Fibonacci(90)/Lucas(22)/(1/2+sqrt(5)/2)^55 2329991414791803 a004 Fibonacci(92)/Lucas(22)/(1/2+sqrt(5)/2)^57 2329991414791803 a004 Fibonacci(94)/Lucas(22)/(1/2+sqrt(5)/2)^59 2329991414791803 a004 Fibonacci(96)/Lucas(22)/(1/2+sqrt(5)/2)^61 2329991414791803 a004 Fibonacci(98)/Lucas(22)/(1/2+sqrt(5)/2)^63 2329991414791803 a004 Fibonacci(100)/Lucas(22)/(1/2+sqrt(5)/2)^65 2329991414791803 a004 Fibonacci(97)/Lucas(22)/(1/2+sqrt(5)/2)^62 2329991414791803 a004 Fibonacci(99)/Lucas(22)/(1/2+sqrt(5)/2)^64 2329991414791803 a004 Fibonacci(95)/Lucas(22)/(1/2+sqrt(5)/2)^60 2329991414791803 a004 Fibonacci(93)/Lucas(22)/(1/2+sqrt(5)/2)^58 2329991414791803 a004 Fibonacci(91)/Lucas(22)/(1/2+sqrt(5)/2)^56 2329991414791803 a004 Fibonacci(89)/Lucas(22)/(1/2+sqrt(5)/2)^54 2329991414791803 a004 Fibonacci(87)/Lucas(22)/(1/2+sqrt(5)/2)^52 2329991414791803 a004 Fibonacci(85)/Lucas(22)/(1/2+sqrt(5)/2)^50 2329991414791803 a004 Fibonacci(83)/Lucas(22)/(1/2+sqrt(5)/2)^48 2329991414791803 a004 Fibonacci(81)/Lucas(22)/(1/2+sqrt(5)/2)^46 2329991414791803 a004 Fibonacci(79)/Lucas(22)/(1/2+sqrt(5)/2)^44 2329991414791803 a004 Fibonacci(77)/Lucas(22)/(1/2+sqrt(5)/2)^42 2329991414791803 a004 Fibonacci(75)/Lucas(22)/(1/2+sqrt(5)/2)^40 2329991414791803 a004 Fibonacci(73)/Lucas(22)/(1/2+sqrt(5)/2)^38 2329991414791803 a004 Fibonacci(71)/Lucas(22)/(1/2+sqrt(5)/2)^36 2329991414791803 a004 Fibonacci(69)/Lucas(22)/(1/2+sqrt(5)/2)^34 2329991414791803 a004 Fibonacci(67)/Lucas(22)/(1/2+sqrt(5)/2)^32 2329991414791803 a004 Fibonacci(65)/Lucas(22)/(1/2+sqrt(5)/2)^30 2329991414791803 a004 Fibonacci(63)/Lucas(22)/(1/2+sqrt(5)/2)^28 2329991414791803 a004 Fibonacci(61)/Lucas(22)/(1/2+sqrt(5)/2)^26 2329991414791803 a004 Fibonacci(59)/Lucas(22)/(1/2+sqrt(5)/2)^24 2329991414791803 a004 Fibonacci(57)/Lucas(22)/(1/2+sqrt(5)/2)^22 2329991414791803 a004 Fibonacci(55)/Lucas(22)/(1/2+sqrt(5)/2)^20 2329991414791803 a004 Fibonacci(53)/Lucas(22)/(1/2+sqrt(5)/2)^18 2329991414791803 a004 Fibonacci(51)/Lucas(22)/(1/2+sqrt(5)/2)^16 2329991414791803 a004 Fibonacci(49)/Lucas(22)/(1/2+sqrt(5)/2)^14 2329991414791803 a004 Fibonacci(47)/Lucas(22)/(1/2+sqrt(5)/2)^12 2329991414791803 a001 17711/2537720636*1568397607^(9/11) 2329991414791803 a004 Fibonacci(45)/Lucas(22)/(1/2+sqrt(5)/2)^10 2329991414791803 a001 17711/969323029*45537549124^(2/3) 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^34/Lucas(43) 2329991414791803 a001 7677619973707/32951280099 2329991414791803 a001 17711/969323029*10749957122^(17/24) 2329991414791803 a001 17711/969323029*4106118243^(17/23) 2329991414791803 a001 17711/969323029*1568397607^(17/22) 2329991414791803 a004 Fibonacci(43)/Lucas(22)/(1/2+sqrt(5)/2)^8 2329991414791803 a001 17711/1568397607*599074578^(5/6) 2329991414791803 a001 17711/2537720636*599074578^(6/7) 2329991414791803 a001 17711/6643838879*599074578^(19/21) 2329991414791803 a001 17711/10749957122*599074578^(13/14) 2329991414791803 a001 17711/17393796001*599074578^(20/21) 2329991414791803 a004 Fibonacci(22)*Lucas(42)/(1/2+sqrt(5)/2)^51 2329991414791803 a001 17711/969323029*599074578^(17/21) 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^32/Lucas(41) 2329991414791803 a001 17711/370248451*23725150497407^(1/2) 2329991414791803 a001 17711/370248451*505019158607^(4/7) 2329991414791803 a001 17711/370248451*73681302247^(8/13) 2329991414791803 a001 2932589877251/12586269025 2329991414791803 a001 17711/370248451*10749957122^(2/3) 2329991414791803 a001 17711/370248451*4106118243^(16/23) 2329991414791803 a001 17711/370248451*1568397607^(8/11) 2329991414791803 a004 Fibonacci(41)/Lucas(22)/(1/2+sqrt(5)/2)^6 2329991414791803 a001 17711/370248451*599074578^(16/21) 2329991414791803 a001 17711/141422324*141422324^(10/13) 2329991414791803 a001 17711/1568397607*228826127^(7/8) 2329991414791803 a001 17711/969323029*228826127^(17/20) 2329991414791803 a001 17711/2537720636*228826127^(9/10) 2329991414791803 a001 17711/6643838879*228826127^(19/20) 2329991414791803 a004 Fibonacci(22)*Lucas(40)/(1/2+sqrt(5)/2)^49 2329991414791803 a001 17711/370248451*228826127^(4/5) 2329991414791803 a001 17711/141422324*2537720636^(2/3) 2329991414791803 a001 17711/141422324*45537549124^(10/17) 2329991414791803 a001 17711/141422324*312119004989^(6/11) 2329991414791803 a001 17711/141422324*14662949395604^(10/21) 2329991414791803 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^30/Lucas(39) 2329991414791803 a001 17711/141422324*192900153618^(5/9) 2329991414791803 a001 17711/141422324*28143753123^(3/5) 2329991414791803 a001 17711/141422324*10749957122^(5/8) 2329991414791803 a001 560074829023/2403763488 2329991414791803 a001 17711/141422324*4106118243^(15/23) 2329991414791803 a001 17711/141422324*1568397607^(15/22) 2329991414791803 a004 Fibonacci(39)/Lucas(22)/(1/2+sqrt(5)/2)^4 2329991414791803 a001 17711/141422324*599074578^(5/7) 2329991414791803 a001 17711/141422324*228826127^(3/4) 2329991414791803 a001 17711/370248451*87403803^(16/19) 2329991414791803 a001 17711/969323029*87403803^(17/19) 2329991414791803 a001 17711/2537720636*87403803^(18/19) 2329991414791803 a004 Fibonacci(22)*Lucas(38)/(1/2+sqrt(5)/2)^47 2329991414791803 a001 17711/141422324*87403803^(15/19) 2329991414791804 a001 17711/54018521*17393796001^(4/7) 2329991414791804 a001 17711/54018521*14662949395604^(4/9) 2329991414791804 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^28/Lucas(37) 2329991414791804 a001 17711/54018521*505019158607^(1/2) 2329991414791804 a001 17711/54018521*73681302247^(7/13) 2329991414791804 a001 17711/54018521*10749957122^(7/12) 2329991414791804 a001 17711/54018521*4106118243^(14/23) 2329991414791804 a001 427859096887/1836311903 2329991414791804 a001 17711/54018521*1568397607^(7/11) 2329991414791804 a004 Fibonacci(37)/Lucas(22)/(1/2+sqrt(5)/2)^2 2329991414791804 a001 17711/54018521*599074578^(2/3) 2329991414791804 a001 17711/54018521*228826127^(7/10) 2329991414791804 a001 17711/54018521*87403803^(14/19) 2329991414791805 a001 17711/141422324*33385282^(5/6) 2329991414791805 a001 17711/370248451*33385282^(8/9) 2329991414791805 a001 17711/599074578*33385282^(11/12) 2329991414791805 a001 17711/969323029*33385282^(17/18) 2329991414791805 a004 Fibonacci(22)*Lucas(36)/(1/2+sqrt(5)/2)^45 2329991414791805 a001 17711/54018521*33385282^(7/9) 2329991414791808 a001 17711/20633239*141422324^(2/3) 2329991414791808 a001 17711/20633239*(1/2+1/2*5^(1/2))^26 2329991414791808 a001 17711/20633239*73681302247^(1/2) 2329991414791808 a001 17711/20633239*10749957122^(13/24) 2329991414791808 a001 17711/20633239*4106118243^(13/23) 2329991414791808 a001 17711/20633239*1568397607^(13/22) 2329991414791808 a001 9227465/39603 2329991414791808 a001 17711/20633239*599074578^(13/21) 2329991414791808 a001 17711/20633239*228826127^(13/20) 2329991414791808 a001 17711/20633239*87403803^(13/19) 2329991414791810 a001 17711/20633239*33385282^(13/18) 2329991414791813 a001 89/39604*7881196^(8/11) 2329991414791815 a001 17711/54018521*12752043^(14/17) 2329991414791815 a001 17711/141422324*12752043^(15/17) 2329991414791816 a001 17711/370248451*12752043^(16/17) 2329991414791817 a004 Fibonacci(22)*Lucas(34)/(1/2+sqrt(5)/2)^43 2329991414791819 a001 17711/20633239*12752043^(13/17) 2329991414791840 a001 89/39604*141422324^(8/13) 2329991414791840 a001 89/39604*2537720636^(8/15) 2329991414791840 a001 89/39604*45537549124^(8/17) 2329991414791840 a001 89/39604*14662949395604^(8/21) 2329991414791840 a001 89/39604*(1/2+1/2*5^(1/2))^24 2329991414791840 a001 89/39604*192900153618^(4/9) 2329991414791840 a001 89/39604*73681302247^(6/13) 2329991414791840 a001 89/39604*10749957122^(1/2) 2329991414791840 a001 89/39604*4106118243^(12/23) 2329991414791840 a001 89/39604*1568397607^(6/11) 2329991414791840 a001 3524578/39603*(1/2+1/2*5^(1/2))^2 2329991414791840 a001 3524578/39603*10749957122^(1/24) 2329991414791840 a001 3524578/39603*4106118243^(1/23) 2329991414791840 a001 3524578/39603*1568397607^(1/22) 2329991414791840 a001 3524578/39603*599074578^(1/21) 2329991414791840 a001 3524578/39603*228826127^(1/20) 2329991414791840 a001 89/39604*599074578^(4/7) 2329991414791840 a001 31211900479/133957148 2329991414791840 a001 3524578/39603*87403803^(1/19) 2329991414791840 a001 89/39604*228826127^(3/5) 2329991414791840 a001 3524578/39603*33385282^(1/18) 2329991414791840 a001 89/39604*87403803^(12/19) 2329991414791841 a001 3524578/39603*12752043^(1/17) 2329991414791842 a001 89/39604*33385282^(2/3) 2329991414791846 a001 3524578/39603*4870847^(1/16) 2329991414791850 a001 89/39604*12752043^(12/17) 2329991414791885 a001 3524578/39603*1860498^(1/15) 2329991414791888 a001 17711/20633239*4870847^(13/16) 2329991414791889 a001 17711/54018521*4870847^(7/8) 2329991414791895 a001 17711/141422324*4870847^(15/16) 2329991414791901 a004 Fibonacci(22)*Lucas(32)/(1/2+sqrt(5)/2)^41 2329991414791914 a001 89/39604*4870847^(3/4) 2329991414792035 a001 17711/3010349*7881196^(2/3) 2329991414792060 a001 17711/3010349*312119004989^(2/5) 2329991414792060 a001 17711/3010349*(1/2+1/2*5^(1/2))^22 2329991414792060 a001 17711/3010349*10749957122^(11/24) 2329991414792060 a001 17711/3010349*4106118243^(11/23) 2329991414792060 a001 17711/3010349*1568397607^(1/2) 2329991414792060 a001 1346269/39603*(1/2+1/2*5^(1/2))^4 2329991414792060 a001 1346269/39603*23725150497407^(1/16) 2329991414792060 a001 1346269/39603*73681302247^(1/13) 2329991414792060 a001 1346269/39603*10749957122^(1/12) 2329991414792060 a001 1346269/39603*4106118243^(2/23) 2329991414792060 a001 1346269/39603*1568397607^(1/11) 2329991414792060 a001 1346269/39603*599074578^(2/21) 2329991414792060 a001 17711/3010349*599074578^(11/21) 2329991414792060 a001 1346269/39603*228826127^(1/10) 2329991414792060 a001 17711/3010349*228826127^(11/20) 2329991414792060 a001 1346269/39603*87403803^(2/19) 2329991414792060 a001 23843770259/102334155 2329991414792060 a001 17711/3010349*87403803^(11/19) 2329991414792060 a001 1346269/39603*33385282^(1/9) 2329991414792061 a001 17711/3010349*33385282^(11/18) 2329991414792062 a001 1346269/39603*12752043^(2/17) 2329991414792069 a001 17711/3010349*12752043^(11/17) 2329991414792072 a001 1346269/39603*4870847^(1/8) 2329991414792127 a001 17711/3010349*4870847^(11/16) 2329991414792150 a001 1346269/39603*1860498^(2/15) 2329991414792170 a001 3524578/39603*710647^(1/14) 2329991414792349 a001 17711/12752043*1860498^(5/6) 2329991414792379 a001 89/39604*1860498^(4/5) 2329991414792392 a001 17711/20633239*1860498^(13/15) 2329991414792406 a001 17711/33385282*1860498^(9/10) 2329991414792432 a001 17711/54018521*1860498^(14/15) 2329991414792476 a004 Fibonacci(22)*Lucas(30)/(1/2+sqrt(5)/2)^39 2329991414792553 a001 17711/3010349*1860498^(11/15) 2329991414792719 a001 1346269/39603*710647^(1/7) 2329991414793558 a001 514229/39603*7881196^(2/11) 2329991414793562 a001 17711/1149851*20633239^(4/7) 2329991414793565 a001 514229/39603*141422324^(2/13) 2329991414793565 a001 17711/1149851*2537720636^(4/9) 2329991414793565 a001 17711/1149851*(1/2+1/2*5^(1/2))^20 2329991414793565 a001 17711/1149851*23725150497407^(5/16) 2329991414793565 a001 17711/1149851*505019158607^(5/14) 2329991414793565 a001 17711/1149851*73681302247^(5/13) 2329991414793565 a001 17711/1149851*28143753123^(2/5) 2329991414793565 a001 17711/1149851*10749957122^(5/12) 2329991414793565 a001 17711/1149851*4106118243^(10/23) 2329991414793565 a001 17711/1149851*1568397607^(5/11) 2329991414793565 a001 514229/39603*2537720636^(2/15) 2329991414793565 a001 514229/39603*45537549124^(2/17) 2329991414793565 a001 514229/39603*14662949395604^(2/21) 2329991414793565 a001 514229/39603*(1/2+1/2*5^(1/2))^6 2329991414793565 a001 514229/39603*10749957122^(1/8) 2329991414793565 a001 514229/39603*4106118243^(3/23) 2329991414793565 a001 514229/39603*1568397607^(3/22) 2329991414793565 a001 514229/39603*599074578^(1/7) 2329991414793565 a001 17711/1149851*599074578^(10/21) 2329991414793565 a001 514229/39603*228826127^(3/20) 2329991414793565 a001 17711/1149851*228826127^(1/2) 2329991414793565 a001 514229/39603*87403803^(3/19) 2329991414793565 a001 17711/1149851*87403803^(10/19) 2329991414793565 a001 9107509819/39088169 2329991414793565 a001 514229/39603*33385282^(1/6) 2329991414793566 a001 17711/1149851*33385282^(5/9) 2329991414793568 a001 514229/39603*12752043^(3/17) 2329991414793573 a001 17711/1149851*12752043^(10/17) 2329991414793583 a001 514229/39603*4870847^(3/16) 2329991414793626 a001 17711/1149851*4870847^(5/8) 2329991414793700 a001 514229/39603*1860498^(1/5) 2329991414794014 a001 17711/1149851*1860498^(2/3) 2329991414794273 a001 3524578/39603*271443^(1/13) 2329991414794554 a001 514229/39603*710647^(3/14) 2329991414794590 a001 17711/1860498*710647^(3/4) 2329991414795077 a001 9227465/1860498*24476^(8/21) 2329991414795648 a001 24157817/4870847*24476^(8/21) 2329991414795685 a001 17711/3010349*710647^(11/14) 2329991414795731 a001 63245986/12752043*24476^(8/21) 2329991414795743 a001 165580141/33385282*24476^(8/21) 2329991414795745 a001 433494437/87403803*24476^(8/21) 2329991414795745 a001 1134903170/228826127*24476^(8/21) 2329991414795745 a001 2971215073/599074578*24476^(8/21) 2329991414795745 a001 7778742049/1568397607*24476^(8/21) 2329991414795745 a001 20365011074/4106118243*24476^(8/21) 2329991414795745 a001 53316291173/10749957122*24476^(8/21) 2329991414795745 a001 139583862445/28143753123*24476^(8/21) 2329991414795745 a001 365435296162/73681302247*24476^(8/21) 2329991414795745 a001 956722026041/192900153618*24476^(8/21) 2329991414795745 a001 2504730781961/505019158607*24476^(8/21) 2329991414795745 a001 10610209857723/2139295485799*24476^(8/21) 2329991414795745 a001 140728068720/28374454999*24476^(8/21) 2329991414795745 a001 591286729879/119218851371*24476^(8/21) 2329991414795745 a001 225851433717/45537549124*24476^(8/21) 2329991414795745 a001 86267571272/17393796001*24476^(8/21) 2329991414795745 a001 32951280099/6643838879*24476^(8/21) 2329991414795745 a001 1144206275/230701876*24476^(8/21) 2329991414795745 a001 4807526976/969323029*24476^(8/21) 2329991414795745 a001 1836311903/370248451*24476^(8/21) 2329991414795745 a001 701408733/141422324*24476^(8/21) 2329991414795746 a001 267914296/54018521*24476^(8/21) 2329991414795750 a001 9303105/1875749*24476^(8/21) 2329991414795782 a001 39088169/7881196*24476^(8/21) 2329991414795795 a001 89/39604*710647^(6/7) 2329991414795829 a001 17711/439204*439204^(2/3) 2329991414796000 a001 14930352/3010349*24476^(8/21) 2329991414796092 a001 17711/20633239*710647^(13/14) 2329991414796416 a004 Fibonacci(22)*Lucas(28)/(1/2+sqrt(5)/2)^37 2329991414796860 a001 17711/1149851*710647^(5/7) 2329991414796925 a001 1346269/39603*271443^(2/13) 2329991414797493 a001 5702887/1149851*24476^(8/21) 2329991414800819 a001 5702887/39603*103682^(1/24) 2329991414800863 a001 514229/39603*271443^(3/13) 2329991414803861 a001 17711/439204*7881196^(6/11) 2329991414803881 a001 17711/439204*141422324^(6/13) 2329991414803881 a001 17711/439204*2537720636^(2/5) 2329991414803881 a001 17711/439204*45537549124^(6/17) 2329991414803881 a001 17711/439204*14662949395604^(2/7) 2329991414803881 a001 17711/439204*(1/2+1/2*5^(1/2))^18 2329991414803881 a001 17711/439204*192900153618^(1/3) 2329991414803881 a001 17711/439204*10749957122^(3/8) 2329991414803881 a001 17711/439204*4106118243^(9/23) 2329991414803881 a001 17711/439204*1568397607^(9/22) 2329991414803881 a001 196418/39603*(1/2+1/2*5^(1/2))^8 2329991414803881 a001 196418/39603*23725150497407^(1/8) 2329991414803881 a001 196418/39603*505019158607^(1/7) 2329991414803881 a001 196418/39603*73681302247^(2/13) 2329991414803881 a001 196418/39603*10749957122^(1/6) 2329991414803881 a001 196418/39603*4106118243^(4/23) 2329991414803881 a001 196418/39603*1568397607^(2/11) 2329991414803881 a001 196418/39603*599074578^(4/21) 2329991414803881 a001 17711/439204*599074578^(3/7) 2329991414803881 a001 196418/39603*228826127^(1/5) 2329991414803881 a001 17711/439204*228826127^(9/20) 2329991414803882 a001 196418/39603*87403803^(4/19) 2329991414803882 a001 17711/439204*87403803^(9/19) 2329991414803882 a001 196418/39603*33385282^(2/9) 2329991414803883 a001 17711/439204*33385282^(1/2) 2329991414803884 a001 102316447/439128 2329991414803885 a001 196418/39603*12752043^(4/17) 2329991414803889 a001 17711/439204*12752043^(9/17) 2329991414803906 a001 196418/39603*4870847^(1/4) 2329991414803937 a001 17711/439204*4870847^(9/16) 2329991414804061 a001 196418/39603*1860498^(4/15) 2329991414804285 a001 17711/439204*1860498^(3/5) 2329991414805200 a001 196418/39603*710647^(2/7) 2329991414806847 a001 17711/439204*710647^(9/14) 2329991414807726 a001 2178309/439204*24476^(8/21) 2329991414808360 a001 6765/64079*15127^(4/5) 2329991414809902 a001 3524578/39603*103682^(1/12) 2329991414813611 a001 196418/39603*271443^(4/13) 2329991414817890 a001 17711/1149851*271443^(10/13) 2329991414818798 a001 726103/13201*103682^(1/8) 2329991414818817 a001 17711/3010349*271443^(11/13) 2329991414821030 a001 89/39604*271443^(12/13) 2329991414823425 a004 Fibonacci(22)*Lucas(26)/(1/2+sqrt(5)/2)^35 2329991414825774 a001 17711/439204*271443^(9/13) 2329991414828184 a001 1346269/39603*103682^(1/6) 2329991414836285 a001 832040/39603*103682^(5/24) 2329991414841459 a001 121393/39603*103682^(3/8) 2329991414841476 a001 75025/39603*167761^(2/5) 2329991414842726 a001 39088169/271443*9349^(1/19) 2329991414847751 a001 514229/39603*103682^(1/4) 2329991414850406 a001 105937/13201*103682^(7/24) 2329991414859315 a001 5702887/39603*39603^(1/22) 2329991414869735 a001 14619165/101521*9349^(1/19) 2329991414873676 a001 133957148/930249*9349^(1/19) 2329991414874251 a001 701408733/4870847*9349^(1/19) 2329991414874335 a001 1836311903/12752043*9349^(1/19) 2329991414874347 a001 14930208/103681*9349^(1/19) 2329991414874349 a001 12586269025/87403803*9349^(1/19) 2329991414874349 a001 32951280099/228826127*9349^(1/19) 2329991414874349 a001 43133785636/299537289*9349^(1/19) 2329991414874349 a001 32264490531/224056801*9349^(1/19) 2329991414874349 a001 591286729879/4106118243*9349^(1/19) 2329991414874349 a001 774004377960/5374978561*9349^(1/19) 2329991414874349 a001 4052739537881/28143753123*9349^(1/19) 2329991414874349 a001 1515744265389/10525900321*9349^(1/19) 2329991414874349 a001 3278735159921/22768774562*9349^(1/19) 2329991414874349 a001 2504730781961/17393796001*9349^(1/19) 2329991414874349 a001 956722026041/6643838879*9349^(1/19) 2329991414874349 a001 182717648081/1268860318*9349^(1/19) 2329991414874349 a001 139583862445/969323029*9349^(1/19) 2329991414874349 a001 53316291173/370248451*9349^(1/19) 2329991414874349 a001 10182505537/70711162*9349^(1/19) 2329991414874350 a001 7778742049/54018521*9349^(1/19) 2329991414874354 a001 2971215073/20633239*9349^(1/19) 2329991414874386 a001 567451585/3940598*9349^(1/19) 2329991414874590 a001 75025/39603*20633239^(2/7) 2329991414874592 a001 17711/167761*(1/2+1/2*5^(1/2))^16 2329991414874592 a001 17711/167761*23725150497407^(1/4) 2329991414874592 a001 17711/167761*73681302247^(4/13) 2329991414874592 a001 17711/167761*10749957122^(1/3) 2329991414874592 a001 17711/167761*4106118243^(8/23) 2329991414874592 a001 17711/167761*1568397607^(4/11) 2329991414874592 a001 75025/39603*2537720636^(2/9) 2329991414874592 a001 75025/39603*312119004989^(2/11) 2329991414874592 a001 75025/39603*(1/2+1/2*5^(1/2))^10 2329991414874592 a001 75025/39603*28143753123^(1/5) 2329991414874592 a001 75025/39603*10749957122^(5/24) 2329991414874592 a001 75025/39603*4106118243^(5/23) 2329991414874592 a001 75025/39603*1568397607^(5/22) 2329991414874592 a001 17711/167761*599074578^(8/21) 2329991414874592 a001 75025/39603*599074578^(5/21) 2329991414874592 a001 75025/39603*228826127^(1/4) 2329991414874592 a001 17711/167761*228826127^(2/5) 2329991414874592 a001 75025/39603*87403803^(5/19) 2329991414874592 a001 17711/167761*87403803^(8/19) 2329991414874592 a001 75025/39603*33385282^(5/18) 2329991414874593 a001 17711/167761*33385282^(4/9) 2329991414874596 a001 75025/39603*12752043^(5/17) 2329991414874598 a001 17711/167761*12752043^(8/17) 2329991414874606 a001 433494437/3010349*9349^(1/19) 2329991414874606 a001 1328767775/5702887 2329991414874622 a001 75025/39603*4870847^(5/16) 2329991414874641 a001 17711/167761*4870847^(1/2) 2329991414874816 a001 75025/39603*1860498^(1/3) 2329991414874951 a001 17711/167761*1860498^(8/15) 2329991414876111 a001 165580141/1149851*9349^(1/19) 2329991414876130 a001 196418/39603*103682^(1/3) 2329991414876239 a001 75025/39603*710647^(5/14) 2329991414877228 a001 17711/167761*710647^(4/7) 2329991414877861 a001 75640/15251*24476^(8/21) 2329991414886428 a001 31622993/219602*9349^(1/19) 2329991414886754 a001 75025/39603*271443^(5/13) 2329991414890361 a001 75025/64079*24476^(11/21) 2329991414894052 a001 17711/167761*271443^(8/13) 2329991414913707 a001 17711/271443*103682^(17/24) 2329991414926894 a001 3524578/39603*39603^(1/11) 2329991414949230 a001 726103/90481*24476^(1/3) 2329991414949669 a001 1346269/103682*24476^(2/7) 2329991414957139 a001 24157817/167761*9349^(1/19) 2329991414958778 a001 17711/710647*103682^(19/24) 2329991414961155 a001 121393/64079*24476^(10/21) 2329991414964902 a001 75025/39603*103682^(5/12) 2329991414966440 a001 17711/439204*103682^(3/4) 2329991414974185 a001 17711/1149851*103682^(5/6) 2329991414976323 a001 5702887/710647*24476^(1/3) 2329991414980275 a001 829464/103361*24476^(1/3) 2329991414980781 a001 17711/1860498*103682^(7/8) 2329991414980852 a001 39088169/4870847*24476^(1/3) 2329991414980936 a001 34111385/4250681*24476^(1/3) 2329991414980949 a001 133957148/16692641*24476^(1/3) 2329991414980950 a001 233802911/29134601*24476^(1/3) 2329991414980951 a001 1836311903/228826127*24476^(1/3) 2329991414980951 a001 267084832/33281921*24476^(1/3) 2329991414980951 a001 12586269025/1568397607*24476^(1/3) 2329991414980951 a001 10983760033/1368706081*24476^(1/3) 2329991414980951 a001 43133785636/5374978561*24476^(1/3) 2329991414980951 a001 75283811239/9381251041*24476^(1/3) 2329991414980951 a001 591286729879/73681302247*24476^(1/3) 2329991414980951 a001 86000486440/10716675201*24476^(1/3) 2329991414980951 a001 3536736619241/440719107401*24476^(1/3) 2329991414980951 a001 3278735159921/408569081798*24476^(1/3) 2329991414980951 a001 2504730781961/312119004989*24476^(1/3) 2329991414980951 a001 956722026041/119218851371*24476^(1/3) 2329991414980951 a001 182717648081/22768774562*24476^(1/3) 2329991414980951 a001 139583862445/17393796001*24476^(1/3) 2329991414980951 a001 53316291173/6643838879*24476^(1/3) 2329991414980951 a001 10182505537/1268860318*24476^(1/3) 2329991414980951 a001 7778742049/969323029*24476^(1/3) 2329991414980951 a001 2971215073/370248451*24476^(1/3) 2329991414980951 a001 567451585/70711162*24476^(1/3) 2329991414980951 a001 433494437/54018521*24476^(1/3) 2329991414980956 a001 165580141/20633239*24476^(1/3) 2329991414980988 a001 31622993/3940598*24476^(1/3) 2329991414981209 a001 24157817/3010349*24476^(1/3) 2329991414982718 a001 9227465/1149851*24476^(1/3) 2329991414990742 a001 17711/3010349*103682^(11/12) 2329991414993067 a001 1762289/219602*24476^(1/3) 2329991414994285 a001 726103/13201*39603^(3/22) 2329991414999418 a001 17711/4870847*103682^(23/24) 2329991415004605 a001 28657/64079*24476^(13/21) 2329991415008547 a004 Fibonacci(22)*Lucas(24)/(1/2+sqrt(5)/2)^33 2329991415013846 a001 17711/64079*64079^(14/23) 2329991415019088 a001 17711/167761*103682^(2/3) 2329991415062167 a001 1346269/39603*39603^(2/11) 2329991415063189 a001 28657/39603*64079^(12/23) 2329991415063997 a001 1346269/167761*24476^(1/3) 2329991415128763 a001 832040/39603*39603^(5/22) 2329991415134519 a001 46347/2206*24476^(5/21) 2329991415134571 a001 3524578/271443*24476^(2/7) 2329991415161548 a001 9227465/710647*24476^(2/7) 2329991415165484 a001 24157817/1860498*24476^(2/7) 2329991415166058 a001 63245986/4870847*24476^(2/7) 2329991415166142 a001 165580141/12752043*24476^(2/7) 2329991415166154 a001 433494437/33385282*24476^(2/7) 2329991415166156 a001 1134903170/87403803*24476^(2/7) 2329991415166156 a001 2971215073/228826127*24476^(2/7) 2329991415166156 a001 7778742049/599074578*24476^(2/7) 2329991415166156 a001 20365011074/1568397607*24476^(2/7) 2329991415166156 a001 53316291173/4106118243*24476^(2/7) 2329991415166156 a001 139583862445/10749957122*24476^(2/7) 2329991415166156 a001 365435296162/28143753123*24476^(2/7) 2329991415166156 a001 956722026041/73681302247*24476^(2/7) 2329991415166156 a001 2504730781961/192900153618*24476^(2/7) 2329991415166156 a001 10610209857723/817138163596*24476^(2/7) 2329991415166156 a001 4052739537881/312119004989*24476^(2/7) 2329991415166156 a001 1548008755920/119218851371*24476^(2/7) 2329991415166156 a001 591286729879/45537549124*24476^(2/7) 2329991415166156 a001 7787980473/599786069*24476^(2/7) 2329991415166156 a001 86267571272/6643838879*24476^(2/7) 2329991415166156 a001 32951280099/2537720636*24476^(2/7) 2329991415166156 a001 12586269025/969323029*24476^(2/7) 2329991415166156 a001 4807526976/370248451*24476^(2/7) 2329991415166156 a001 1836311903/141422324*24476^(2/7) 2329991415166157 a001 701408733/54018521*24476^(2/7) 2329991415166162 a001 9238424/711491*24476^(2/7) 2329991415166194 a001 102334155/7881196*24476^(2/7) 2329991415166413 a001 39088169/3010349*24476^(2/7) 2329991415167916 a001 14930352/1149851*24476^(2/7) 2329991415178221 a001 5702887/439204*24476^(2/7) 2329991415190062 a001 196418/64079*24476^(3/7) 2329991415198725 a001 514229/39603*39603^(3/11) 2329991415248847 a001 2178309/167761*24476^(2/7) 2329991415259876 a001 105937/13201*39603^(7/22) 2329991415300907 a001 5702887/39603*15127^(1/20) 2329991415317852 a001 15456/13201*39603^(1/2) 2329991415319725 a001 5702887/271443*24476^(5/21) 2329991415319861 a001 1762289/51841*24476^(4/21) 2329991415341942 a001 615/15251*15127^(9/10) 2329991415344095 a001 196418/39603*39603^(4/11) 2329991415346746 a001 14930352/710647*24476^(5/21) 2329991415350688 a001 39088169/1860498*24476^(5/21) 2329991415351264 a001 102334155/4870847*24476^(5/21) 2329991415351348 a001 267914296/12752043*24476^(5/21) 2329991415351360 a001 701408733/33385282*24476^(5/21) 2329991415351362 a001 1836311903/87403803*24476^(5/21) 2329991415351362 a001 102287808/4868641*24476^(5/21) 2329991415351362 a001 12586269025/599074578*24476^(5/21) 2329991415351362 a001 32951280099/1568397607*24476^(5/21) 2329991415351362 a001 86267571272/4106118243*24476^(5/21) 2329991415351362 a001 225851433717/10749957122*24476^(5/21) 2329991415351362 a001 591286729879/28143753123*24476^(5/21) 2329991415351362 a001 1548008755920/73681302247*24476^(5/21) 2329991415351362 a001 4052739537881/192900153618*24476^(5/21) 2329991415351362 a001 225749145909/10745088481*24476^(5/21) 2329991415351362 a001 6557470319842/312119004989*24476^(5/21) 2329991415351362 a001 2504730781961/119218851371*24476^(5/21) 2329991415351362 a001 956722026041/45537549124*24476^(5/21) 2329991415351362 a001 365435296162/17393796001*24476^(5/21) 2329991415351362 a001 139583862445/6643838879*24476^(5/21) 2329991415351362 a001 53316291173/2537720636*24476^(5/21) 2329991415351362 a001 20365011074/969323029*24476^(5/21) 2329991415351362 a001 7778742049/370248451*24476^(5/21) 2329991415351362 a001 2971215073/141422324*24476^(5/21) 2329991415351363 a001 1134903170/54018521*24476^(5/21) 2329991415351367 a001 433494437/20633239*24476^(5/21) 2329991415351399 a001 165580141/7881196*24476^(5/21) 2329991415351619 a001 63245986/3010349*24476^(5/21) 2329991415353125 a001 24157817/1149851*24476^(5/21) 2329991415353878 a001 28657/39603*439204^(4/9) 2329991415358575 a001 317811/64079*24476^(8/21) 2329991415359233 a001 28657/39603*7881196^(4/11) 2329991415359244 a001 17711/64079*20633239^(2/5) 2329991415359247 a001 28657/39603*141422324^(4/13) 2329991415359247 a001 17711/64079*17393796001^(2/7) 2329991415359247 a001 17711/64079*14662949395604^(2/9) 2329991415359247 a001 17711/64079*(1/2+1/2*5^(1/2))^14 2329991415359247 a001 17711/64079*10749957122^(7/24) 2329991415359247 a001 17711/64079*4106118243^(7/23) 2329991415359247 a001 17711/64079*1568397607^(7/22) 2329991415359247 a001 28657/39603*2537720636^(4/15) 2329991415359247 a001 28657/39603*45537549124^(4/17) 2329991415359247 a001 28657/39603*817138163596^(4/19) 2329991415359247 a001 28657/39603*14662949395604^(4/21) 2329991415359247 a001 28657/39603*(1/2+1/2*5^(1/2))^12 2329991415359247 a001 28657/39603*192900153618^(2/9) 2329991415359247 a001 28657/39603*73681302247^(3/13) 2329991415359247 a001 28657/39603*10749957122^(1/4) 2329991415359247 a001 28657/39603*4106118243^(6/23) 2329991415359247 a001 28657/39603*1568397607^(3/11) 2329991415359247 a001 17711/64079*599074578^(1/3) 2329991415359247 a001 28657/39603*599074578^(2/7) 2329991415359247 a001 28657/39603*228826127^(3/10) 2329991415359247 a001 17711/64079*228826127^(7/20) 2329991415359247 a001 28657/39603*87403803^(6/19) 2329991415359247 a001 17711/64079*87403803^(7/19) 2329991415359247 a001 28657/39603*33385282^(1/3) 2329991415359247 a001 17711/64079*33385282^(7/18) 2329991415359252 a001 28657/39603*12752043^(6/17) 2329991415359252 a001 17711/64079*12752043^(7/17) 2329991415359283 a001 28657/39603*4870847^(3/8) 2329991415359290 a001 17711/64079*4870847^(7/16) 2329991415359345 a001 507544127/2178309 2329991415359516 a001 28657/39603*1860498^(2/5) 2329991415359561 a001 17711/64079*1860498^(7/15) 2329991415361224 a001 28657/39603*710647^(3/7) 2329991415361553 a001 17711/64079*710647^(1/2) 2329991415363446 a001 9227465/439204*24476^(5/21) 2329991415367920 a001 121393/39603*39603^(9/22) 2329991415373842 a001 28657/39603*271443^(6/13) 2329991415376274 a001 17711/64079*271443^(7/13) 2329991415434188 a001 3524578/167761*24476^(5/21) 2329991415441798 a001 9227465/64079*9349^(1/19) 2329991415467619 a001 28657/39603*103682^(1/2) 2329991415485681 a001 17711/64079*103682^(7/12) 2329991415493202 a004 Fibonacci(24)*Lucas(23)/(1/2+sqrt(5)/2)^34 2329991415504950 a001 9227465/271443*24476^(4/21) 2329991415505015 a001 5702887/103682*24476^(1/7) 2329991415517911 a001 11592/1970299*64079^(22/23) 2329991415523172 a001 23184/51841*64079^(13/23) 2329991415531955 a001 24157817/710647*24476^(4/21) 2329991415535894 a001 31622993/930249*24476^(4/21) 2329991415536469 a001 165580141/4870847*24476^(4/21) 2329991415536553 a001 433494437/12752043*24476^(4/21) 2329991415536565 a001 567451585/16692641*24476^(4/21) 2329991415536567 a001 2971215073/87403803*24476^(4/21) 2329991415536567 a001 7778742049/228826127*24476^(4/21) 2329991415536567 a001 10182505537/299537289*24476^(4/21) 2329991415536567 a001 53316291173/1568397607*24476^(4/21) 2329991415536567 a001 139583862445/4106118243*24476^(4/21) 2329991415536567 a001 182717648081/5374978561*24476^(4/21) 2329991415536567 a001 956722026041/28143753123*24476^(4/21) 2329991415536567 a001 2504730781961/73681302247*24476^(4/21) 2329991415536567 a001 3278735159921/96450076809*24476^(4/21) 2329991415536567 a001 10610209857723/312119004989*24476^(4/21) 2329991415536567 a001 4052739537881/119218851371*24476^(4/21) 2329991415536567 a001 387002188980/11384387281*24476^(4/21) 2329991415536567 a001 591286729879/17393796001*24476^(4/21) 2329991415536567 a001 225851433717/6643838879*24476^(4/21) 2329991415536567 a001 1135099622/33391061*24476^(4/21) 2329991415536567 a001 32951280099/969323029*24476^(4/21) 2329991415536568 a001 12586269025/370248451*24476^(4/21) 2329991415536568 a001 1201881744/35355581*24476^(4/21) 2329991415536568 a001 1836311903/54018521*24476^(4/21) 2329991415536573 a001 701408733/20633239*24476^(4/21) 2329991415536605 a001 66978574/1970299*24476^(4/21) 2329991415536825 a001 102334155/3010349*24476^(4/21) 2329991415538329 a001 39088169/1149851*24476^(4/21) 2329991415542447 a001 46368/4870847*64079^(21/23) 2329991415548644 a001 196452/5779*24476^(4/21) 2329991415549859 a001 75025/39603*39603^(5/11) 2329991415550157 a001 514229/64079*24476^(1/3) 2329991415567473 a001 46368/3010349*64079^(20/23) 2329991415587959 a001 17711/103682*39603^(15/22) 2329991415591215 a001 2576/103361*64079^(19/23) 2329991415618321 a001 46368/1149851*64079^(18/23) 2329991415619342 a001 5702887/167761*24476^(4/21) 2329991415636617 a001 6624/101521*64079^(17/23) 2329991415658951 a001 15456/90481*64079^(15/23) 2329991415677981 a001 11592/109801*64079^(16/23) 2329991415678324 a004 Fibonacci(26)*Lucas(23)/(1/2+sqrt(5)/2)^36 2329991415690148 a001 4976784/90481*24476^(1/7) 2329991415690240 a001 9227465/103682*24476^(2/21) 2329991415703000 a001 121393/20633239*64079^(22/23) 2329991415705332 a004 Fibonacci(28)*Lucas(23)/(1/2+sqrt(5)/2)^38 2329991415709273 a004 Fibonacci(30)*Lucas(23)/(1/2+sqrt(5)/2)^40 2329991415709848 a004 Fibonacci(32)*Lucas(23)/(1/2+sqrt(5)/2)^42 2329991415709932 a004 Fibonacci(34)*Lucas(23)/(1/2+sqrt(5)/2)^44 2329991415709944 a004 Fibonacci(36)*Lucas(23)/(1/2+sqrt(5)/2)^46 2329991415709946 a004 Fibonacci(38)*Lucas(23)/(1/2+sqrt(5)/2)^48 2329991415709946 a004 Fibonacci(40)*Lucas(23)/(1/2+sqrt(5)/2)^50 2329991415709946 a004 Fibonacci(42)*Lucas(23)/(1/2+sqrt(5)/2)^52 2329991415709946 a004 Fibonacci(44)*Lucas(23)/(1/2+sqrt(5)/2)^54 2329991415709946 a004 Fibonacci(46)*Lucas(23)/(1/2+sqrt(5)/2)^56 2329991415709946 a004 Fibonacci(48)*Lucas(23)/(1/2+sqrt(5)/2)^58 2329991415709946 a004 Fibonacci(50)*Lucas(23)/(1/2+sqrt(5)/2)^60 2329991415709946 a004 Fibonacci(52)*Lucas(23)/(1/2+sqrt(5)/2)^62 2329991415709946 a004 Fibonacci(54)*Lucas(23)/(1/2+sqrt(5)/2)^64 2329991415709946 a004 Fibonacci(56)*Lucas(23)/(1/2+sqrt(5)/2)^66 2329991415709946 a004 Fibonacci(58)*Lucas(23)/(1/2+sqrt(5)/2)^68 2329991415709946 a004 Fibonacci(60)*Lucas(23)/(1/2+sqrt(5)/2)^70 2329991415709946 a004 Fibonacci(62)*Lucas(23)/(1/2+sqrt(5)/2)^72 2329991415709946 a004 Fibonacci(64)*Lucas(23)/(1/2+sqrt(5)/2)^74 2329991415709946 a004 Fibonacci(66)*Lucas(23)/(1/2+sqrt(5)/2)^76 2329991415709946 a004 Fibonacci(68)*Lucas(23)/(1/2+sqrt(5)/2)^78 2329991415709946 a004 Fibonacci(70)*Lucas(23)/(1/2+sqrt(5)/2)^80 2329991415709946 a004 Fibonacci(72)*Lucas(23)/(1/2+sqrt(5)/2)^82 2329991415709946 a004 Fibonacci(74)*Lucas(23)/(1/2+sqrt(5)/2)^84 2329991415709946 a004 Fibonacci(76)*Lucas(23)/(1/2+sqrt(5)/2)^86 2329991415709946 a004 Fibonacci(78)*Lucas(23)/(1/2+sqrt(5)/2)^88 2329991415709946 a004 Fibonacci(80)*Lucas(23)/(1/2+sqrt(5)/2)^90 2329991415709946 a004 Fibonacci(82)*Lucas(23)/(1/2+sqrt(5)/2)^92 2329991415709946 a004 Fibonacci(84)*Lucas(23)/(1/2+sqrt(5)/2)^94 2329991415709946 a004 Fibonacci(86)*Lucas(23)/(1/2+sqrt(5)/2)^96 2329991415709946 a004 Fibonacci(88)*Lucas(23)/(1/2+sqrt(5)/2)^98 2329991415709946 a004 Fibonacci(90)*Lucas(23)/(1/2+sqrt(5)/2)^100 2329991415709946 a004 Fibonacci(89)*Lucas(23)/(1/2+sqrt(5)/2)^99 2329991415709946 a004 Fibonacci(87)*Lucas(23)/(1/2+sqrt(5)/2)^97 2329991415709946 a004 Fibonacci(85)*Lucas(23)/(1/2+sqrt(5)/2)^95 2329991415709946 a004 Fibonacci(83)*Lucas(23)/(1/2+sqrt(5)/2)^93 2329991415709946 a004 Fibonacci(81)*Lucas(23)/(1/2+sqrt(5)/2)^91 2329991415709946 a004 Fibonacci(79)*Lucas(23)/(1/2+sqrt(5)/2)^89 2329991415709946 a004 Fibonacci(77)*Lucas(23)/(1/2+sqrt(5)/2)^87 2329991415709946 a004 Fibonacci(75)*Lucas(23)/(1/2+sqrt(5)/2)^85 2329991415709946 a004 Fibonacci(73)*Lucas(23)/(1/2+sqrt(5)/2)^83 2329991415709946 a004 Fibonacci(71)*Lucas(23)/(1/2+sqrt(5)/2)^81 2329991415709946 a004 Fibonacci(69)*Lucas(23)/(1/2+sqrt(5)/2)^79 2329991415709946 a004 Fibonacci(67)*Lucas(23)/(1/2+sqrt(5)/2)^77 2329991415709946 a004 Fibonacci(65)*Lucas(23)/(1/2+sqrt(5)/2)^75 2329991415709946 a004 Fibonacci(63)*Lucas(23)/(1/2+sqrt(5)/2)^73 2329991415709946 a004 Fibonacci(61)*Lucas(23)/(1/2+sqrt(5)/2)^71 2329991415709946 a004 Fibonacci(59)*Lucas(23)/(1/2+sqrt(5)/2)^69 2329991415709946 a004 Fibonacci(57)*Lucas(23)/(1/2+sqrt(5)/2)^67 2329991415709946 a004 Fibonacci(55)*Lucas(23)/(1/2+sqrt(5)/2)^65 2329991415709946 a004 Fibonacci(53)*Lucas(23)/(1/2+sqrt(5)/2)^63 2329991415709946 a004 Fibonacci(51)*Lucas(23)/(1/2+sqrt(5)/2)^61 2329991415709946 a004 Fibonacci(49)*Lucas(23)/(1/2+sqrt(5)/2)^59 2329991415709946 a004 Fibonacci(47)*Lucas(23)/(1/2+sqrt(5)/2)^57 2329991415709946 a001 2/28657*(1/2+1/2*5^(1/2))^36 2329991415709946 a004 Fibonacci(45)*Lucas(23)/(1/2+sqrt(5)/2)^55 2329991415709946 a004 Fibonacci(43)*Lucas(23)/(1/2+sqrt(5)/2)^53 2329991415709946 a004 Fibonacci(41)*Lucas(23)/(1/2+sqrt(5)/2)^51 2329991415709946 a004 Fibonacci(39)*Lucas(23)/(1/2+sqrt(5)/2)^49 2329991415709947 a004 Fibonacci(37)*Lucas(23)/(1/2+sqrt(5)/2)^47 2329991415709952 a004 Fibonacci(35)*Lucas(23)/(1/2+sqrt(5)/2)^45 2329991415709984 a004 Fibonacci(33)*Lucas(23)/(1/2+sqrt(5)/2)^43 2329991415710203 a004 Fibonacci(31)*Lucas(23)/(1/2+sqrt(5)/2)^41 2329991415711708 a004 Fibonacci(29)*Lucas(23)/(1/2+sqrt(5)/2)^39 2329991415717159 a001 39088169/710647*24476^(1/7) 2329991415721100 a001 831985/15126*24476^(1/7) 2329991415721675 a001 267914296/4870847*24476^(1/7) 2329991415721759 a001 233802911/4250681*24476^(1/7) 2329991415721771 a001 1836311903/33385282*24476^(1/7) 2329991415721773 a001 1602508992/29134601*24476^(1/7) 2329991415721773 a001 12586269025/228826127*24476^(1/7) 2329991415721773 a001 10983760033/199691526*24476^(1/7) 2329991415721773 a001 86267571272/1568397607*24476^(1/7) 2329991415721773 a001 75283811239/1368706081*24476^(1/7) 2329991415721773 a001 591286729879/10749957122*24476^(1/7) 2329991415721773 a001 12585437040/228811001*24476^(1/7) 2329991415721773 a001 4052739537881/73681302247*24476^(1/7) 2329991415721773 a001 3536736619241/64300051206*24476^(1/7) 2329991415721773 a001 6557470319842/119218851371*24476^(1/7) 2329991415721773 a001 2504730781961/45537549124*24476^(1/7) 2329991415721773 a001 956722026041/17393796001*24476^(1/7) 2329991415721773 a001 365435296162/6643838879*24476^(1/7) 2329991415721773 a001 139583862445/2537720636*24476^(1/7) 2329991415721773 a001 53316291173/969323029*24476^(1/7) 2329991415721773 a001 20365011074/370248451*24476^(1/7) 2329991415721773 a001 7778742049/141422324*24476^(1/7) 2329991415721774 a001 2971215073/54018521*24476^(1/7) 2329991415721779 a001 1134903170/20633239*24476^(1/7) 2329991415721811 a001 433494437/7881196*24476^(1/7) 2329991415722025 a004 Fibonacci(27)*Lucas(23)/(1/2+sqrt(5)/2)^37 2329991415722030 a001 165580141/3010349*24476^(1/7) 2329991415723535 a001 63245986/1149851*24476^(1/7) 2329991415727652 a001 121393/12752043*64079^(21/23) 2329991415730005 a001 317811/54018521*64079^(22/23) 2329991415732927 a001 832040/64079*24476^(2/7) 2329991415733853 a001 24157817/439204*24476^(1/7) 2329991415733945 a001 208010/35355581*64079^(22/23) 2329991415734519 a001 2178309/370248451*64079^(22/23) 2329991415734603 a001 5702887/969323029*64079^(22/23) 2329991415734615 a001 196452/33391061*64079^(22/23) 2329991415734617 a001 39088169/6643838879*64079^(22/23) 2329991415734618 a001 102334155/17393796001*64079^(22/23) 2329991415734618 a001 66978574/11384387281*64079^(22/23) 2329991415734618 a001 701408733/119218851371*64079^(22/23) 2329991415734618 a001 1836311903/312119004989*64079^(22/23) 2329991415734618 a001 1201881744/204284540899*64079^(22/23) 2329991415734618 a001 12586269025/2139295485799*64079^(22/23) 2329991415734618 a001 32951280099/5600748293801*64079^(22/23) 2329991415734618 a001 1135099622/192933544679*64079^(22/23) 2329991415734618 a001 139583862445/23725150497407*64079^(22/23) 2329991415734618 a001 53316291173/9062201101803*64079^(22/23) 2329991415734618 a001 10182505537/1730726404001*64079^(22/23) 2329991415734618 a001 7778742049/1322157322203*64079^(22/23) 2329991415734618 a001 2971215073/505019158607*64079^(22/23) 2329991415734618 a001 567451585/96450076809*64079^(22/23) 2329991415734618 a001 433494437/73681302247*64079^(22/23) 2329991415734618 a001 165580141/28143753123*64079^(22/23) 2329991415734618 a001 31622993/5374978561*64079^(22/23) 2329991415734618 a001 24157817/4106118243*64079^(22/23) 2329991415734623 a001 9227465/1568397607*64079^(22/23) 2329991415734655 a001 1762289/299537289*64079^(22/23) 2329991415734875 a001 1346269/228826127*64079^(22/23) 2329991415736380 a001 514229/87403803*64079^(22/23) 2329991415736649 a001 2255/90481*15127^(19/20) 2329991415746694 a001 98209/16692641*64079^(22/23) 2329991415752375 a001 121393/7881196*64079^(20/23) 2329991415754673 a001 317811/33385282*64079^(21/23) 2329991415757637 a001 121393/103682*64079^(11/23) 2329991415758616 a001 832040/87403803*64079^(21/23) 2329991415759191 a001 46347/4868641*64079^(21/23) 2329991415759275 a001 5702887/599074578*64079^(21/23) 2329991415759287 a001 14930352/1568397607*64079^(21/23) 2329991415759289 a001 39088169/4106118243*64079^(21/23) 2329991415759289 a001 102334155/10749957122*64079^(21/23) 2329991415759289 a001 267914296/28143753123*64079^(21/23) 2329991415759289 a001 701408733/73681302247*64079^(21/23) 2329991415759289 a001 1836311903/192900153618*64079^(21/23) 2329991415759289 a001 102287808/10745088481*64079^(21/23) 2329991415759289 a001 12586269025/1322157322203*64079^(21/23) 2329991415759289 a001 32951280099/3461452808002*64079^(21/23) 2329991415759289 a001 86267571272/9062201101803*64079^(21/23) 2329991415759289 a001 225851433717/23725150497407*64079^(21/23) 2329991415759289 a001 139583862445/14662949395604*64079^(21/23) 2329991415759289 a001 53316291173/5600748293801*64079^(21/23) 2329991415759289 a001 20365011074/2139295485799*64079^(21/23) 2329991415759289 a001 7778742049/817138163596*64079^(21/23) 2329991415759289 a001 2971215073/312119004989*64079^(21/23) 2329991415759289 a001 1134903170/119218851371*64079^(21/23) 2329991415759289 a001 433494437/45537549124*64079^(21/23) 2329991415759289 a001 165580141/17393796001*64079^(21/23) 2329991415759289 a001 63245986/6643838879*64079^(21/23) 2329991415759290 a001 24157817/2537720636*64079^(21/23) 2329991415759295 a001 9227465/969323029*64079^(21/23) 2329991415759327 a001 3524578/370248451*64079^(21/23) 2329991415759546 a001 1346269/141422324*64079^(21/23) 2329991415761052 a001 514229/54018521*64079^(21/23) 2329991415771373 a001 196418/20633239*64079^(21/23) 2329991415776911 a001 121393/4870847*64079^(19/23) 2329991415779352 a001 10959/711491*64079^(20/23) 2329991415783288 a001 832040/54018521*64079^(20/23) 2329991415783862 a001 2178309/141422324*64079^(20/23) 2329991415783946 a001 5702887/370248451*64079^(20/23) 2329991415783958 a001 14930352/969323029*64079^(20/23) 2329991415783960 a001 39088169/2537720636*64079^(20/23) 2329991415783960 a001 102334155/6643838879*64079^(20/23) 2329991415783961 a001 9238424/599786069*64079^(20/23) 2329991415783961 a001 701408733/45537549124*64079^(20/23) 2329991415783961 a001 1836311903/119218851371*64079^(20/23) 2329991415783961 a001 4807526976/312119004989*64079^(20/23) 2329991415783961 a001 12586269025/817138163596*64079^(20/23) 2329991415783961 a001 32951280099/2139295485799*64079^(20/23) 2329991415783961 a001 86267571272/5600748293801*64079^(20/23) 2329991415783961 a001 7787980473/505618944676*64079^(20/23) 2329991415783961 a001 365435296162/23725150497407*64079^(20/23) 2329991415783961 a001 139583862445/9062201101803*64079^(20/23) 2329991415783961 a001 53316291173/3461452808002*64079^(20/23) 2329991415783961 a001 20365011074/1322157322203*64079^(20/23) 2329991415783961 a001 7778742049/505019158607*64079^(20/23) 2329991415783961 a001 2971215073/192900153618*64079^(20/23) 2329991415783961 a001 1134903170/73681302247*64079^(20/23) 2329991415783961 a001 433494437/28143753123*64079^(20/23) 2329991415783961 a001 165580141/10749957122*64079^(20/23) 2329991415783961 a001 63245986/4106118243*64079^(20/23) 2329991415783961 a001 24157817/1568397607*64079^(20/23) 2329991415783966 a001 9227465/599074578*64079^(20/23) 2329991415783998 a001 3524578/228826127*64079^(20/23) 2329991415784217 a001 1346269/87403803*64079^(20/23) 2329991415785721 a001 514229/33385282*64079^(20/23) 2329991415792735 a004 Fibonacci(25)*Lucas(23)/(1/2+sqrt(5)/2)^35 2329991415796025 a001 196418/12752043*64079^(20/23) 2329991415798034 a001 46368/167761*64079^(14/23) 2329991415801938 a001 121393/3010349*64079^(18/23) 2329991415804004 a001 105937/4250681*64079^(19/23) 2329991415804568 a001 9227465/167761*24476^(1/7) 2329991415807957 a001 416020/16692641*64079^(19/23) 2329991415808533 a001 726103/29134601*64079^(19/23) 2329991415808618 a001 5702887/228826127*64079^(19/23) 2329991415808630 a001 829464/33281921*64079^(19/23) 2329991415808632 a001 39088169/1568397607*64079^(19/23) 2329991415808632 a001 34111385/1368706081*64079^(19/23) 2329991415808632 a001 133957148/5374978561*64079^(19/23) 2329991415808632 a001 233802911/9381251041*64079^(19/23) 2329991415808632 a001 1836311903/73681302247*64079^(19/23) 2329991415808632 a001 267084832/10716675201*64079^(19/23) 2329991415808632 a001 12586269025/505019158607*64079^(19/23) 2329991415808632 a001 10983760033/440719107401*64079^(19/23) 2329991415808632 a001 43133785636/1730726404001*64079^(19/23) 2329991415808632 a001 75283811239/3020733700601*64079^(19/23) 2329991415808632 a001 182717648081/7331474697802*64079^(19/23) 2329991415808632 a001 139583862445/5600748293801*64079^(19/23) 2329991415808632 a001 53316291173/2139295485799*64079^(19/23) 2329991415808632 a001 10182505537/408569081798*64079^(19/23) 2329991415808632 a001 7778742049/312119004989*64079^(19/23) 2329991415808632 a001 2971215073/119218851371*64079^(19/23) 2329991415808632 a001 567451585/22768774562*64079^(19/23) 2329991415808632 a001 433494437/17393796001*64079^(19/23) 2329991415808632 a001 165580141/6643838879*64079^(19/23) 2329991415808632 a001 31622993/1268860318*64079^(19/23) 2329991415808633 a001 24157817/969323029*64079^(19/23) 2329991415808637 a001 9227465/370248451*64079^(19/23) 2329991415808670 a001 1762289/70711162*64079^(19/23) 2329991415808890 a001 1346269/54018521*64079^(19/23) 2329991415810077 a001 3524578/39603*15127^(1/10) 2329991415810400 a001 514229/20633239*64079^(19/23) 2329991415817392 a001 75025/12752043*64079^(22/23) 2329991415820748 a001 98209/3940598*64079^(19/23) 2329991415825679 a001 121393/1860498*64079^(17/23) 2329991415826010 a001 98209/51841*64079^(10/23) 2329991415828727 a001 317811/7881196*64079^(18/23) 2329991415832636 a001 75640/1875749*64079^(18/23) 2329991415833206 a001 2178309/54018521*64079^(18/23) 2329991415833289 a001 5702887/141422324*64079^(18/23) 2329991415833301 a001 14930352/370248451*64079^(18/23) 2329991415833303 a001 39088169/969323029*64079^(18/23) 2329991415833303 a001 9303105/230701876*64079^(18/23) 2329991415833303 a001 267914296/6643838879*64079^(18/23) 2329991415833303 a001 701408733/17393796001*64079^(18/23) 2329991415833303 a001 1836311903/45537549124*64079^(18/23) 2329991415833303 a001 4807526976/119218851371*64079^(18/23) 2329991415833303 a001 1144206275/28374454999*64079^(18/23) 2329991415833303 a001 32951280099/817138163596*64079^(18/23) 2329991415833303 a001 86267571272/2139295485799*64079^(18/23) 2329991415833303 a001 225851433717/5600748293801*64079^(18/23) 2329991415833303 a001 365435296162/9062201101803*64079^(18/23) 2329991415833303 a001 139583862445/3461452808002*64079^(18/23) 2329991415833303 a001 53316291173/1322157322203*64079^(18/23) 2329991415833303 a001 20365011074/505019158607*64079^(18/23) 2329991415833303 a001 7778742049/192900153618*64079^(18/23) 2329991415833303 a001 2971215073/73681302247*64079^(18/23) 2329991415833303 a001 1134903170/28143753123*64079^(18/23) 2329991415833303 a001 433494437/10749957122*64079^(18/23) 2329991415833303 a001 165580141/4106118243*64079^(18/23) 2329991415833304 a001 63245986/1568397607*64079^(18/23) 2329991415833304 a001 24157817/599074578*64079^(18/23) 2329991415833309 a001 9227465/228826127*64079^(18/23) 2329991415833341 a001 3524578/87403803*64079^(18/23) 2329991415833558 a001 1346269/33385282*64079^(18/23) 2329991415833989 a001 317811/103682*64079^(9/23) 2329991415835051 a001 514229/12752043*64079^(18/23) 2329991415837075 m001 1/ln(Tribonacci)^2*Bloch*GAMMA(2/3)^2 2329991415842116 a001 75025/7881196*64079^(21/23) 2329991415843896 a001 2149991424/9227465 2329991415843901 a001 23184/51841*141422324^(1/3) 2329991415843901 a001 23184/51841*(1/2+1/2*5^(1/2))^13 2329991415843901 a001 23184/51841*73681302247^(1/4) 2329991415845284 a001 196418/4870847*64079^(18/23) 2329991415847377 a001 75025/103682*64079^(12/23) 2329991415852786 a001 121393/1149851*64079^(16/23) 2329991415853263 a001 317811/4870847*64079^(17/23) 2329991415857287 a001 832040/12752043*64079^(17/23) 2329991415857875 a001 311187/4769326*64079^(17/23) 2329991415857960 a001 5702887/87403803*64079^(17/23) 2329991415857973 a001 14930352/228826127*64079^(17/23) 2329991415857975 a001 39088169/599074578*64079^(17/23) 2329991415857975 a001 14619165/224056801*64079^(17/23) 2329991415857975 a001 267914296/4106118243*64079^(17/23) 2329991415857975 a001 701408733/10749957122*64079^(17/23) 2329991415857975 a001 1836311903/28143753123*64079^(17/23) 2329991415857975 a001 686789568/10525900321*64079^(17/23) 2329991415857975 a001 12586269025/192900153618*64079^(17/23) 2329991415857975 a001 32951280099/505019158607*64079^(17/23) 2329991415857975 a001 86267571272/1322157322203*64079^(17/23) 2329991415857975 a001 32264490531/494493258286*64079^(17/23) 2329991415857975 a001 1548008755920/23725150497407*64079^(17/23) 2329991415857975 a001 139583862445/2139295485799*64079^(17/23) 2329991415857975 a001 53316291173/817138163596*64079^(17/23) 2329991415857975 a001 20365011074/312119004989*64079^(17/23) 2329991415857975 a001 7778742049/119218851371*64079^(17/23) 2329991415857975 a001 2971215073/45537549124*64079^(17/23) 2329991415857975 a001 1134903170/17393796001*64079^(17/23) 2329991415857975 a001 433494437/6643838879*64079^(17/23) 2329991415857975 a001 165580141/2537720636*64079^(17/23) 2329991415857975 a001 63245986/969323029*64079^(17/23) 2329991415857976 a001 24157817/370248451*64079^(17/23) 2329991415857981 a001 9227465/141422324*64079^(17/23) 2329991415858013 a001 3524578/54018521*64079^(17/23) 2329991415858238 a001 1346269/20633239*64079^(17/23) 2329991415859713 a001 23184/51841*271443^(1/2) 2329991415859775 a001 514229/7881196*64079^(17/23) 2329991415865036 a001 514229/103682*64079^(8/23) 2329991415866651 a001 75025/4870847*64079^(20/23) 2329991415870311 a001 196418/3010349*64079^(17/23) 2329991415871082 a001 121393/710647*64079^(15/23) 2329991415875357 a001 24157817/271443*24476^(2/21) 2329991415875438 a001 7465176/51841*24476^(1/21) 2329991415878290 a001 317811/3010349*64079^(16/23) 2329991415882011 a001 208010/1970299*64079^(16/23) 2329991415882554 a001 2178309/20633239*64079^(16/23) 2329991415882633 a001 5702887/54018521*64079^(16/23) 2329991415882644 a001 3732588/35355581*64079^(16/23) 2329991415882646 a001 39088169/370248451*64079^(16/23) 2329991415882646 a001 102334155/969323029*64079^(16/23) 2329991415882646 a001 66978574/634430159*64079^(16/23) 2329991415882646 a001 701408733/6643838879*64079^(16/23) 2329991415882646 a001 1836311903/17393796001*64079^(16/23) 2329991415882646 a001 1201881744/11384387281*64079^(16/23) 2329991415882646 a001 12586269025/119218851371*64079^(16/23) 2329991415882646 a001 32951280099/312119004989*64079^(16/23) 2329991415882646 a001 21566892818/204284540899*64079^(16/23) 2329991415882646 a001 225851433717/2139295485799*64079^(16/23) 2329991415882646 a001 182717648081/1730726404001*64079^(16/23) 2329991415882646 a001 139583862445/1322157322203*64079^(16/23) 2329991415882646 a001 53316291173/505019158607*64079^(16/23) 2329991415882646 a001 10182505537/96450076809*64079^(16/23) 2329991415882646 a001 7778742049/73681302247*64079^(16/23) 2329991415882646 a001 2971215073/28143753123*64079^(16/23) 2329991415882646 a001 567451585/5374978561*64079^(16/23) 2329991415882646 a001 433494437/4106118243*64079^(16/23) 2329991415882646 a001 165580141/1568397607*64079^(16/23) 2329991415882647 a001 31622993/299537289*64079^(16/23) 2329991415882647 a001 24157817/228826127*64079^(16/23) 2329991415882652 a001 9227465/87403803*64079^(16/23) 2329991415882682 a001 1762289/16692641*64079^(16/23) 2329991415882889 a001 1346269/12752043*64079^(16/23) 2329991415884310 a001 514229/4870847*64079^(16/23) 2329991415887272 a001 416020/51841*64079^(7/23) 2329991415891678 a001 75025/3010349*64079^(19/23) 2329991415893416 a001 121393/271443*64079^(13/23) 2329991415894052 a001 98209/930249*64079^(16/23) 2329991415902031 a001 105937/620166*64079^(15/23) 2329991415902365 a001 63245986/710647*24476^(2/21) 2329991415906306 a001 165580141/1860498*24476^(2/21) 2329991415906547 a001 832040/4870847*64079^(15/23) 2329991415906881 a001 433494437/4870847*24476^(2/21) 2329991415906964 a001 1134903170/12752043*24476^(2/21) 2329991415906977 a001 2971215073/33385282*24476^(2/21) 2329991415906978 a001 7778742049/87403803*24476^(2/21) 2329991415906979 a001 20365011074/228826127*24476^(2/21) 2329991415906979 a001 53316291173/599074578*24476^(2/21) 2329991415906979 a001 139583862445/1568397607*24476^(2/21) 2329991415906979 a001 365435296162/4106118243*24476^(2/21) 2329991415906979 a001 956722026041/10749957122*24476^(2/21) 2329991415906979 a001 2504730781961/28143753123*24476^(2/21) 2329991415906979 a001 6557470319842/73681302247*24476^(2/21) 2329991415906979 a001 10610209857723/119218851371*24476^(2/21) 2329991415906979 a001 4052739537881/45537549124*24476^(2/21) 2329991415906979 a001 1548008755920/17393796001*24476^(2/21) 2329991415906979 a001 591286729879/6643838879*24476^(2/21) 2329991415906979 a001 225851433717/2537720636*24476^(2/21) 2329991415906979 a001 86267571272/969323029*24476^(2/21) 2329991415906979 a001 32951280099/370248451*24476^(2/21) 2329991415906979 a001 12586269025/141422324*24476^(2/21) 2329991415906980 a001 4807526976/54018521*24476^(2/21) 2329991415906984 a001 1836311903/20633239*24476^(2/21) 2329991415907016 a001 3524667/39604*24476^(2/21) 2329991415907205 a001 726103/4250681*64079^(15/23) 2329991415907236 a001 267914296/3010349*24476^(2/21) 2329991415907301 a001 5702887/33385282*64079^(15/23) 2329991415907315 a001 4976784/29134601*64079^(15/23) 2329991415907318 a001 39088169/228826127*64079^(15/23) 2329991415907318 a001 34111385/199691526*64079^(15/23) 2329991415907318 a001 267914296/1568397607*64079^(15/23) 2329991415907318 a001 233802911/1368706081*64079^(15/23) 2329991415907318 a001 1836311903/10749957122*64079^(15/23) 2329991415907318 a001 1602508992/9381251041*64079^(15/23) 2329991415907318 a001 12586269025/73681302247*64079^(15/23) 2329991415907318 a001 10983760033/64300051206*64079^(15/23) 2329991415907318 a001 86267571272/505019158607*64079^(15/23) 2329991415907318 a001 75283811239/440719107401*64079^(15/23) 2329991415907318 a001 2504730781961/14662949395604*64079^(15/23) 2329991415907318 a001 139583862445/817138163596*64079^(15/23) 2329991415907318 a001 53316291173/312119004989*64079^(15/23) 2329991415907318 a001 20365011074/119218851371*64079^(15/23) 2329991415907318 a001 7778742049/45537549124*64079^(15/23) 2329991415907318 a001 2971215073/17393796001*64079^(15/23) 2329991415907318 a001 1134903170/6643838879*64079^(15/23) 2329991415907318 a001 433494437/2537720636*64079^(15/23) 2329991415907318 a001 165580141/969323029*64079^(15/23) 2329991415907318 a001 63245986/370248451*64079^(15/23) 2329991415907319 a001 24157817/141422324*64079^(15/23) 2329991415907324 a001 9227465/54018521*64079^(15/23) 2329991415907361 a001 3524578/20633239*64079^(15/23) 2329991415907612 a001 1346269/7881196*64079^(15/23) 2329991415908134 a001 17711/271443*39603^(17/22) 2329991415908741 a001 102334155/1149851*24476^(2/21) 2329991415909337 a001 514229/3010349*64079^(15/23) 2329991415912446 a001 121393/439204*64079^(14/23) 2329991415912874 a001 1346269/103682*64079^(6/23) 2329991415915419 a001 75025/1860498*64079^(18/23) 2329991415916311 a001 6765/9349*9349^(12/19) 2329991415919057 a001 39088169/439204*24476^(2/21) 2329991415919063 a001 1346269/64079*24476^(5/21) 2329991415921159 a001 196418/1149851*64079^(15/23) 2329991415929138 a001 317811/1149851*64079^(14/23) 2329991415931573 a001 832040/3010349*64079^(14/23) 2329991415931929 a001 2178309/7881196*64079^(14/23) 2329991415931980 a001 5702887/20633239*64079^(14/23) 2329991415931988 a001 14930352/54018521*64079^(14/23) 2329991415931989 a001 39088169/141422324*64079^(14/23) 2329991415931989 a001 102334155/370248451*64079^(14/23) 2329991415931989 a001 267914296/969323029*64079^(14/23) 2329991415931989 a001 701408733/2537720636*64079^(14/23) 2329991415931989 a001 1836311903/6643838879*64079^(14/23) 2329991415931989 a001 4807526976/17393796001*64079^(14/23) 2329991415931989 a001 12586269025/45537549124*64079^(14/23) 2329991415931989 a001 32951280099/119218851371*64079^(14/23) 2329991415931989 a001 86267571272/312119004989*64079^(14/23) 2329991415931989 a001 225851433717/817138163596*64079^(14/23) 2329991415931989 a001 1548008755920/5600748293801*64079^(14/23) 2329991415931989 a001 139583862445/505019158607*64079^(14/23) 2329991415931989 a001 53316291173/192900153618*64079^(14/23) 2329991415931989 a001 20365011074/73681302247*64079^(14/23) 2329991415931989 a001 7778742049/28143753123*64079^(14/23) 2329991415931989 a001 2971215073/10749957122*64079^(14/23) 2329991415931989 a001 1134903170/4106118243*64079^(14/23) 2329991415931989 a001 433494437/1568397607*64079^(14/23) 2329991415931989 a001 165580141/599074578*64079^(14/23) 2329991415931989 a001 63245986/228826127*64079^(14/23) 2329991415931990 a001 24157817/87403803*64079^(14/23) 2329991415931993 a001 9227465/33385282*64079^(14/23) 2329991415932013 a001 3524578/12752043*64079^(14/23) 2329991415932148 a001 1346269/4870847*64079^(14/23) 2329991415933078 a001 514229/1860498*64079^(14/23) 2329991415937190 a001 46347/2206*64079^(5/23) 2329991415939454 a001 196418/710647*64079^(14/23) 2329991415942526 a001 75025/1149851*64079^(17/23) 2329991415947433 a001 317811/710647*64079^(13/23) 2329991415955019 a001 17711/167761*39603^(8/11) 2329991415955315 a001 416020/930249*64079^(13/23) 2329991415956464 a001 2178309/4870847*64079^(13/23) 2329991415956632 a001 5702887/12752043*64079^(13/23) 2329991415956657 a001 7465176/16692641*64079^(13/23) 2329991415956660 a001 39088169/87403803*64079^(13/23) 2329991415956661 a001 102334155/228826127*64079^(13/23) 2329991415956661 a001 133957148/299537289*64079^(13/23) 2329991415956661 a001 701408733/1568397607*64079^(13/23) 2329991415956661 a001 1836311903/4106118243*64079^(13/23) 2329991415956661 a001 2403763488/5374978561*64079^(13/23) 2329991415956661 a001 12586269025/28143753123*64079^(13/23) 2329991415956661 a001 32951280099/73681302247*64079^(13/23) 2329991415956661 a001 43133785636/96450076809*64079^(13/23) 2329991415956661 a001 225851433717/505019158607*64079^(13/23) 2329991415956661 a001 591286729879/1322157322203*64079^(13/23) 2329991415956661 a001 10610209857723/23725150497407*64079^(13/23) 2329991415956661 a001 139583862445/312119004989*64079^(13/23) 2329991415956661 a001 53316291173/119218851371*64079^(13/23) 2329991415956661 a001 10182505537/22768774562*64079^(13/23) 2329991415956661 a001 7778742049/17393796001*64079^(13/23) 2329991415956661 a001 2971215073/6643838879*64079^(13/23) 2329991415956661 a001 567451585/1268860318*64079^(13/23) 2329991415956661 a001 433494437/969323029*64079^(13/23) 2329991415956661 a001 165580141/370248451*64079^(13/23) 2329991415956661 a001 31622993/70711162*64079^(13/23) 2329991415956662 a001 24157817/54018521*64079^(13/23) 2329991415956672 a001 9227465/20633239*64079^(13/23) 2329991415956736 a001 1762289/3940598*64079^(13/23) 2329991415957175 a001 1346269/3010349*64079^(13/23) 2329991415957842 a001 1346269/24476*9349^(3/19) 2329991415960185 a001 514229/1149851*64079^(13/23) 2329991415960822 a001 75025/710647*64079^(16/23) 2329991415961305 a001 23184/51841*103682^(13/24) 2329991415961788 a001 196418/271443*64079^(12/23) 2329991415961997 a001 1762289/51841*64079^(4/23) 2329991415969768 a001 105937/90481*64079^(11/23) 2329991415977857 a004 Fibonacci(24)*Lucas(25)/(1/2+sqrt(5)/2)^36 2329991415978481 a001 514229/710647*64079^(12/23) 2329991415979350 a001 15456/90481*167761^(3/5) 2329991415980818 a001 98209/219602*64079^(13/23) 2329991415980916 a001 1346269/1860498*64079^(12/23) 2329991415981272 a001 3524578/4870847*64079^(12/23) 2329991415981323 a001 9227465/12752043*64079^(12/23) 2329991415981331 a001 24157817/33385282*64079^(12/23) 2329991415981332 a001 63245986/87403803*64079^(12/23) 2329991415981332 a001 165580141/228826127*64079^(12/23) 2329991415981332 a001 433494437/599074578*64079^(12/23) 2329991415981332 a001 1134903170/1568397607*64079^(12/23) 2329991415981332 a001 2971215073/4106118243*64079^(12/23) 2329991415981332 a001 7778742049/10749957122*64079^(12/23) 2329991415981332 a001 20365011074/28143753123*64079^(12/23) 2329991415981332 a001 53316291173/73681302247*64079^(12/23) 2329991415981332 a001 139583862445/192900153618*64079^(12/23) 2329991415981332 a001 10610209857723/14662949395604*64079^(12/23) 2329991415981332 a001 225851433717/312119004989*64079^(12/23) 2329991415981332 a001 86267571272/119218851371*64079^(12/23) 2329991415981332 a001 32951280099/45537549124*64079^(12/23) 2329991415981332 a001 12586269025/17393796001*64079^(12/23) 2329991415981332 a001 4807526976/6643838879*64079^(12/23) 2329991415981332 a001 1836311903/2537720636*64079^(12/23) 2329991415981332 a001 701408733/969323029*64079^(12/23) 2329991415981332 a001 267914296/370248451*64079^(12/23) 2329991415981332 a001 102334155/141422324*64079^(12/23) 2329991415981333 a001 39088169/54018521*64079^(12/23) 2329991415981336 a001 14930352/20633239*64079^(12/23) 2329991415981355 a001 5702887/7881196*64079^(12/23) 2329991415981491 a001 2178309/3010349*64079^(12/23) 2329991415982421 a001 832040/1149851*64079^(12/23) 2329991415983156 a001 75025/271443*64079^(14/23) 2329991415986617 a001 5702887/103682*64079^(3/23) 2329991415988797 a001 317811/439204*64079^(12/23) 2329991415989766 a001 14930352/167761*24476^(2/21) 2329991415994672 a001 46368/3010349*167761^(4/5) 2329991416000717 a001 832040/710647*64079^(11/23) 2329991416000815 a001 514229/271443*64079^(10/23) 2329991416002186 a001 75025/439204*64079^(15/23) 2329991416005232 a001 726103/620166*64079^(11/23) 2329991416005891 a001 5702887/4870847*64079^(11/23) 2329991416005987 a001 4976784/4250681*64079^(11/23) 2329991416006001 a001 39088169/33385282*64079^(11/23) 2329991416006003 a001 34111385/29134601*64079^(11/23) 2329991416006004 a001 267914296/228826127*64079^(11/23) 2329991416006004 a001 233802911/199691526*64079^(11/23) 2329991416006004 a001 1836311903/1568397607*64079^(11/23) 2329991416006004 a001 1602508992/1368706081*64079^(11/23) 2329991416006004 a001 12586269025/10749957122*64079^(11/23) 2329991416006004 a001 10983760033/9381251041*64079^(11/23) 2329991416006004 a001 86267571272/73681302247*64079^(11/23) 2329991416006004 a001 75283811239/64300051206*64079^(11/23) 2329991416006004 a001 2504730781961/2139295485799*64079^(11/23) 2329991416006004 a001 365435296162/312119004989*64079^(11/23) 2329991416006004 a001 139583862445/119218851371*64079^(11/23) 2329991416006004 a001 53316291173/45537549124*64079^(11/23) 2329991416006004 a001 20365011074/17393796001*64079^(11/23) 2329991416006004 a001 7778742049/6643838879*64079^(11/23) 2329991416006004 a001 2971215073/2537720636*64079^(11/23) 2329991416006004 a001 1134903170/969323029*64079^(11/23) 2329991416006004 a001 433494437/370248451*64079^(11/23) 2329991416006004 a001 165580141/141422324*64079^(11/23) 2329991416006005 a001 63245986/54018521*64079^(11/23) 2329991416006010 a001 24157817/20633239*64079^(11/23) 2329991416006047 a001 9227465/7881196*64079^(11/23) 2329991416006298 a001 3524578/3010349*64079^(11/23) 2329991416008023 a001 1346269/1149851*64079^(11/23) 2329991416011308 a001 9227465/103682*64079^(2/23) 2329991416019362 a001 17711/439204*39603^(9/11) 2329991416019845 a001 514229/439204*64079^(11/23) 2329991416022313 a001 15456/90481*439204^(5/9) 2329991416023051 a001 832040/271443*64079^(9/23) 2329991416026319 a001 1346269/710647*64079^(10/23) 2329991416029006 a001 15456/90481*7881196^(5/11) 2329991416029011 a001 121393/103682*7881196^(1/3) 2329991416029021 a001 15456/90481*20633239^(3/7) 2329991416029022 a001 5628750624/24157817 2329991416029023 a001 15456/90481*141422324^(5/13) 2329991416029023 a001 15456/90481*2537720636^(1/3) 2329991416029023 a001 15456/90481*45537549124^(5/17) 2329991416029023 a001 15456/90481*312119004989^(3/11) 2329991416029023 a001 15456/90481*14662949395604^(5/21) 2329991416029023 a001 15456/90481*(1/2+1/2*5^(1/2))^15 2329991416029023 a001 15456/90481*192900153618^(5/18) 2329991416029023 a001 15456/90481*28143753123^(3/10) 2329991416029023 a001 15456/90481*10749957122^(5/16) 2329991416029023 a001 121393/103682*312119004989^(1/5) 2329991416029023 a001 121393/103682*(1/2+1/2*5^(1/2))^11 2329991416029023 a001 121393/103682*1568397607^(1/4) 2329991416029023 a001 15456/90481*599074578^(5/14) 2329991416029023 a001 15456/90481*228826127^(3/8) 2329991416029024 a001 15456/90481*33385282^(5/12) 2329991416029360 a001 15456/90481*1860498^(1/2) 2329991416030040 a001 1762289/930249*64079^(10/23) 2329991416030582 a001 9227465/4870847*64079^(10/23) 2329991416030662 a001 24157817/12752043*64079^(10/23) 2329991416030673 a001 31622993/16692641*64079^(10/23) 2329991416030675 a001 165580141/87403803*64079^(10/23) 2329991416030675 a001 433494437/228826127*64079^(10/23) 2329991416030675 a001 567451585/299537289*64079^(10/23) 2329991416030675 a001 2971215073/1568397607*64079^(10/23) 2329991416030675 a001 7778742049/4106118243*64079^(10/23) 2329991416030675 a001 10182505537/5374978561*64079^(10/23) 2329991416030675 a001 53316291173/28143753123*64079^(10/23) 2329991416030675 a001 139583862445/73681302247*64079^(10/23) 2329991416030675 a001 182717648081/96450076809*64079^(10/23) 2329991416030675 a001 956722026041/505019158607*64079^(10/23) 2329991416030675 a001 10610209857723/5600748293801*64079^(10/23) 2329991416030675 a001 591286729879/312119004989*64079^(10/23) 2329991416030675 a001 225851433717/119218851371*64079^(10/23) 2329991416030675 a001 21566892818/11384387281*64079^(10/23) 2329991416030675 a001 32951280099/17393796001*64079^(10/23) 2329991416030675 a001 12586269025/6643838879*64079^(10/23) 2329991416030675 a001 1201881744/634430159*64079^(10/23) 2329991416030675 a001 1836311903/969323029*64079^(10/23) 2329991416030675 a001 701408733/370248451*64079^(10/23) 2329991416030675 a001 66978574/35355581*64079^(10/23) 2329991416030676 a001 102334155/54018521*64079^(10/23) 2329991416030680 a001 39088169/20633239*64079^(10/23) 2329991416030711 a001 3732588/1970299*64079^(10/23) 2329991416030918 a001 5702887/3010349*64079^(10/23) 2329991416032339 a001 2178309/1149851*64079^(10/23) 2329991416032499 a001 121393/167761*64079^(12/23) 2329991416035972 a001 7465176/51841*64079^(1/23) 2329991416039609 a001 98209/51841*167761^(2/5) 2329991416042081 a001 208010/109801*64079^(10/23) 2329991416043990 a001 46347/2206*167761^(1/5) 2329991416048567 a004 Fibonacci(24)*Lucas(27)/(1/2+sqrt(5)/2)^38 2329991416048653 a001 1346269/271443*64079^(8/23) 2329991416049914 a001 46368/20633239*439204^(8/9) 2329991416050635 a001 311187/101521*64079^(9/23) 2329991416051153 a001 46368/4870847*439204^(7/9) 2329991416052006 a001 317811/103682*439204^(1/3) 2329991416054355 a001 46368/1149851*439204^(2/3) 2329991416054659 a001 5702887/1860498*64079^(9/23) 2329991416055246 a001 14930352/4870847*64079^(9/23) 2329991416055332 a001 39088169/12752043*64079^(9/23) 2329991416055345 a001 14619165/4769326*64079^(9/23) 2329991416055346 a001 267914296/87403803*64079^(9/23) 2329991416055347 a001 701408733/228826127*64079^(9/23) 2329991416055347 a001 1836311903/599074578*64079^(9/23) 2329991416055347 a001 686789568/224056801*64079^(9/23) 2329991416055347 a001 12586269025/4106118243*64079^(9/23) 2329991416055347 a001 32951280099/10749957122*64079^(9/23) 2329991416055347 a001 86267571272/28143753123*64079^(9/23) 2329991416055347 a001 32264490531/10525900321*64079^(9/23) 2329991416055347 a001 591286729879/192900153618*64079^(9/23) 2329991416055347 a001 1548008755920/505019158607*64079^(9/23) 2329991416055347 a001 1515744265389/494493258286*64079^(9/23) 2329991416055347 a001 2504730781961/817138163596*64079^(9/23) 2329991416055347 a001 956722026041/312119004989*64079^(9/23) 2329991416055347 a001 365435296162/119218851371*64079^(9/23) 2329991416055347 a001 139583862445/45537549124*64079^(9/23) 2329991416055347 a001 53316291173/17393796001*64079^(9/23) 2329991416055347 a001 20365011074/6643838879*64079^(9/23) 2329991416055347 a001 7778742049/2537720636*64079^(9/23) 2329991416055347 a001 2971215073/969323029*64079^(9/23) 2329991416055347 a001 1134903170/370248451*64079^(9/23) 2329991416055347 a001 433494437/141422324*64079^(9/23) 2329991416055348 a001 165580141/54018521*64079^(9/23) 2329991416055352 a001 63245986/20633239*64079^(9/23) 2329991416055385 a001 24157817/7881196*64079^(9/23) 2329991416055609 a001 9227465/3010349*64079^(9/23) 2329991416056022 a001 317811/103682*7881196^(3/11) 2329991416056032 a001 7368130224/31622993 2329991416056032 a001 317811/103682*141422324^(3/13) 2329991416056032 a001 317811/103682*2537720636^(1/5) 2329991416056032 a001 6624/101521*45537549124^(1/3) 2329991416056032 a001 6624/101521*(1/2+1/2*5^(1/2))^17 2329991416056032 a001 317811/103682*45537549124^(3/17) 2329991416056032 a001 317811/103682*14662949395604^(1/7) 2329991416056032 a001 317811/103682*(1/2+1/2*5^(1/2))^9 2329991416056032 a001 317811/103682*192900153618^(1/6) 2329991416056032 a001 317811/103682*10749957122^(3/16) 2329991416056032 a001 317811/103682*599074578^(3/14) 2329991416056033 a001 317811/103682*33385282^(1/4) 2329991416056039 a001 6624/101521*12752043^(1/2) 2329991416056234 a001 317811/103682*1860498^(3/10) 2329991416057146 a001 3524578/1149851*64079^(9/23) 2329991416058219 a001 1346269/103682*439204^(2/9) 2329991416058883 a004 Fibonacci(24)*Lucas(29)/(1/2+sqrt(5)/2)^40 2329991416059289 a001 5702887/103682*439204^(1/9) 2329991416059971 a001 416020/51841*20633239^(1/5) 2329991416059973 a001 38580030720/165580141 2329991416059973 a001 2576/103361*817138163596^(1/3) 2329991416059973 a001 2576/103361*(1/2+1/2*5^(1/2))^19 2329991416059973 a001 416020/51841*17393796001^(1/7) 2329991416059973 a001 416020/51841*14662949395604^(1/9) 2329991416059973 a001 416020/51841*(1/2+1/2*5^(1/2))^7 2329991416059973 a001 416020/51841*599074578^(1/6) 2329991416059973 a001 2576/103361*87403803^(1/2) 2329991416060389 a004 Fibonacci(24)*Lucas(31)/(1/2+sqrt(5)/2)^42 2329991416060524 a001 46368/4870847*7881196^(7/11) 2329991416060544 a001 46368/4870847*20633239^(3/5) 2329991416060547 a001 46347/2206*20633239^(1/7) 2329991416060547 a001 46368/4870847*141422324^(7/13) 2329991416060547 a001 101003831712/433494437 2329991416060547 a001 46368/4870847*2537720636^(7/15) 2329991416060547 a001 46347/2206*2537720636^(1/9) 2329991416060547 a001 46368/4870847*17393796001^(3/7) 2329991416060547 a001 46368/4870847*45537549124^(7/17) 2329991416060547 a001 46368/4870847*14662949395604^(1/3) 2329991416060547 a001 46368/4870847*(1/2+1/2*5^(1/2))^21 2329991416060547 a001 46368/4870847*192900153618^(7/18) 2329991416060547 a001 46368/4870847*10749957122^(7/16) 2329991416060547 a001 46347/2206*312119004989^(1/11) 2329991416060547 a001 46347/2206*(1/2+1/2*5^(1/2))^5 2329991416060547 a001 46347/2206*28143753123^(1/10) 2329991416060547 a001 46368/4870847*599074578^(1/2) 2329991416060547 a001 46347/2206*228826127^(1/8) 2329991416060549 a001 46368/4870847*33385282^(7/12) 2329991416060561 a001 39088169/271443*24476^(1/21) 2329991416060608 a004 Fibonacci(24)*Lucas(33)/(1/2+sqrt(5)/2)^44 2329991416060612 a001 46368/370248451*7881196^(10/11) 2329991416060615 a001 15456/29134601*7881196^(9/11) 2329991416060624 a001 46368/20633239*7881196^(8/11) 2329991416060628 a001 5702887/103682*7881196^(1/11) 2329991416060631 a001 5702887/103682*141422324^(1/13) 2329991416060631 a001 132215732208/567451585 2329991416060631 a001 5702887/103682*2537720636^(1/15) 2329991416060631 a001 15456/4250681*(1/2+1/2*5^(1/2))^23 2329991416060631 a001 5702887/103682*45537549124^(1/17) 2329991416060631 a001 5702887/103682*14662949395604^(1/21) 2329991416060631 a001 5702887/103682*(1/2+1/2*5^(1/2))^3 2329991416060631 a001 5702887/103682*192900153618^(1/18) 2329991416060631 a001 5702887/103682*10749957122^(1/16) 2329991416060631 a001 15456/4250681*4106118243^(1/2) 2329991416060631 a001 5702887/103682*599074578^(1/14) 2329991416060632 a001 5702887/103682*33385282^(1/12) 2329991416060640 a001 144/103681*20633239^(5/7) 2329991416060640 a004 Fibonacci(24)*Lucas(35)/(1/2+sqrt(5)/2)^46 2329991416060641 a001 46368/370248451*20633239^(6/7) 2329991416060641 a001 11592/35355581*20633239^(4/5) 2329991416060644 a001 144/103681*2537720636^(5/9) 2329991416060644 a001 692290561536/2971215073 2329991416060644 a001 144/103681*312119004989^(5/11) 2329991416060644 a001 144/103681*(1/2+1/2*5^(1/2))^25 2329991416060644 a001 144/103681*3461452808002^(5/12) 2329991416060644 a001 144/103681*28143753123^(1/2) 2329991416060644 a001 3732588/51841+3732588/51841*5^(1/2) 2329991416060644 a001 144/103681*228826127^(5/8) 2329991416060645 a004 Fibonacci(24)*Lucas(37)/(1/2+sqrt(5)/2)^48 2329991416060645 a001 15456/29134601*141422324^(9/13) 2329991416060645 a001 15456/29134601*2537720636^(3/5) 2329991416060645 a001 1812440220192/7778742049 2329991416060645 a001 15456/29134601*45537549124^(9/17) 2329991416060645 a001 15456/29134601*817138163596^(9/19) 2329991416060645 a001 15456/29134601*14662949395604^(3/7) 2329991416060645 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^27/Lucas(38) 2329991416060645 a001 15456/29134601*192900153618^(1/2) 2329991416060645 a001 15456/29134601*10749957122^(9/16) 2329991416060645 a004 Fibonacci(38)/Lucas(24)/(1/2+sqrt(5)/2) 2329991416060645 a001 15456/29134601*599074578^(9/14) 2329991416060646 a004 Fibonacci(24)*Lucas(39)/(1/2+sqrt(5)/2)^50 2329991416060646 a001 46368/6643838879*141422324^(12/13) 2329991416060646 a001 6624/224056801*141422324^(11/13) 2329991416060646 a001 46368/370248451*141422324^(10/13) 2329991416060646 a001 2372515049520/10182505537 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^29/Lucas(40) 2329991416060646 a001 46368/228826127*1322157322203^(1/2) 2329991416060646 a004 Fibonacci(40)/Lucas(24)/(1/2+sqrt(5)/2)^3 2329991416060646 a004 Fibonacci(24)*Lucas(41)/(1/2+sqrt(5)/2)^52 2329991416060646 a001 12422650076928/53316291173 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^31/Lucas(42) 2329991416060646 a001 2576/33281921*9062201101803^(1/2) 2329991416060646 a004 Fibonacci(42)/Lucas(24)/(1/2+sqrt(5)/2)^5 2329991416060646 a004 Fibonacci(24)*Lucas(43)/(1/2+sqrt(5)/2)^54 2329991416060646 a001 6624/224056801*2537720636^(11/15) 2329991416060646 a001 6624/224056801*45537549124^(11/17) 2329991416060646 a001 365426068896/1568358005 2329991416060646 a001 6624/224056801*312119004989^(3/5) 2329991416060646 a001 6624/224056801*14662949395604^(11/21) 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^33/Lucas(44) 2329991416060646 a001 6624/224056801*192900153618^(11/18) 2329991416060646 a001 6624/224056801*10749957122^(11/16) 2329991416060646 a004 Fibonacci(44)/Lucas(24)/(1/2+sqrt(5)/2)^7 2329991416060646 a001 15456/1368706081*2537720636^(7/9) 2329991416060646 a004 Fibonacci(24)*Lucas(45)/(1/2+sqrt(5)/2)^56 2329991416060646 a001 46368/119218851371*2537720636^(14/15) 2329991416060646 a001 11592/11384387281*2537720636^(8/9) 2329991416060646 a001 15456/9381251041*2537720636^(13/15) 2329991416060646 a001 6624/224056801*1568397607^(3/4) 2329991416060646 a001 46368/6643838879*2537720636^(4/5) 2329991416060646 a001 15456/1368706081*17393796001^(5/7) 2329991416060646 a001 15456/1368706081*312119004989^(7/11) 2329991416060646 a001 15456/1368706081*14662949395604^(5/9) 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^35/Lucas(46) 2329991416060646 a001 15456/1368706081*505019158607^(5/8) 2329991416060646 a001 15456/1368706081*28143753123^(7/10) 2329991416060646 a004 Fibonacci(46)/Lucas(24)/(1/2+sqrt(5)/2)^9 2329991416060646 a004 Fibonacci(24)*Lucas(47)/(1/2+sqrt(5)/2)^58 2329991416060646 a001 222915410823168/956722026041 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^37/Lucas(48) 2329991416060646 a004 Fibonacci(24)*Lucas(49)/(1/2+sqrt(5)/2)^60 2329991416060646 a001 46368/119218851371*17393796001^(6/7) 2329991416060646 a001 15456/9381251041*45537549124^(13/17) 2329991416060646 a001 583600122151200/2504730781961 2329991416060646 a001 15456/9381251041*14662949395604^(13/21) 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^39/Lucas(50) 2329991416060646 a001 15456/9381251041*192900153618^(13/18) 2329991416060646 a001 15456/9381251041*73681302247^(3/4) 2329991416060646 a004 Fibonacci(24)*Lucas(51)/(1/2+sqrt(5)/2)^62 2329991416060646 a001 46368/2139295485799*45537549124^(16/17) 2329991416060646 a001 46368/505019158607*45537549124^(15/17) 2329991416060646 a001 46368/119218851371*45537549124^(14/17) 2329991416060646 a001 763942477815216/3278735159921 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^41/Lucas(52) 2329991416060646 a004 Fibonacci(24)*Lucas(53)/(1/2+sqrt(5)/2)^64 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^43/Lucas(54) 2329991416060646 a001 46368/505019158607*312119004989^(9/11) 2329991416060646 a004 Fibonacci(24)*Lucas(55)/(1/2+sqrt(5)/2)^66 2329991416060646 a001 46368/505019158607*14662949395604^(5/7) 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^45/Lucas(56) 2329991416060646 a004 Fibonacci(24)*Lucas(57)/(1/2+sqrt(5)/2)^68 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^47/Lucas(58) 2329991416060646 a004 Fibonacci(24)*Lucas(59)/(1/2+sqrt(5)/2)^70 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^49/Lucas(60) 2329991416060646 a004 Fibonacci(24)*Lucas(61)/(1/2+sqrt(5)/2)^72 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^51/Lucas(62) 2329991416060646 a004 Fibonacci(24)*Lucas(63)/(1/2+sqrt(5)/2)^74 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^53/Lucas(64) 2329991416060646 a004 Fibonacci(24)*Lucas(65)/(1/2+sqrt(5)/2)^76 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^55/Lucas(66) 2329991416060646 a004 Fibonacci(24)*Lucas(67)/(1/2+sqrt(5)/2)^78 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^57/Lucas(68) 2329991416060646 a004 Fibonacci(24)*Lucas(69)/(1/2+sqrt(5)/2)^80 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^59/Lucas(70) 2329991416060646 a004 Fibonacci(24)*Lucas(71)/(1/2+sqrt(5)/2)^82 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^61/Lucas(72) 2329991416060646 a004 Fibonacci(24)*Lucas(73)/(1/2+sqrt(5)/2)^84 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^63/Lucas(74) 2329991416060646 a004 Fibonacci(24)*Lucas(75)/(1/2+sqrt(5)/2)^86 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^65/Lucas(76) 2329991416060646 a004 Fibonacci(24)*Lucas(77)/(1/2+sqrt(5)/2)^88 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^67/Lucas(78) 2329991416060646 a004 Fibonacci(24)*Lucas(79)/(1/2+sqrt(5)/2)^90 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^69/Lucas(80) 2329991416060646 a004 Fibonacci(24)*Lucas(81)/(1/2+sqrt(5)/2)^92 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^71/Lucas(82) 2329991416060646 a004 Fibonacci(24)*Lucas(83)/(1/2+sqrt(5)/2)^94 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^73/Lucas(84) 2329991416060646 a004 Fibonacci(24)*Lucas(85)/(1/2+sqrt(5)/2)^96 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^75/Lucas(86) 2329991416060646 a004 Fibonacci(24)*Lucas(87)/(1/2+sqrt(5)/2)^98 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^77/Lucas(88) 2329991416060646 a004 Fibonacci(24)*Lucas(89)/(1/2+sqrt(5)/2)^100 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^79/Lucas(90) 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^81/Lucas(92) 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^83/Lucas(94) 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^85/Lucas(96) 2329991416060646 a004 Fibonacci(12)*Lucas(12)/(1/2+sqrt(5)/2)^11 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^87/Lucas(98) 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^88/Lucas(99) 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^89/Lucas(100) 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^86/Lucas(97) 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^84/Lucas(95) 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^82/Lucas(93) 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^80/Lucas(91) 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^78/Lucas(89) 2329991416060646 a004 Fibonacci(24)*Lucas(88)/(1/2+sqrt(5)/2)^99 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^76/Lucas(87) 2329991416060646 a004 Fibonacci(24)*Lucas(86)/(1/2+sqrt(5)/2)^97 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^74/Lucas(85) 2329991416060646 a004 Fibonacci(24)*Lucas(84)/(1/2+sqrt(5)/2)^95 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^72/Lucas(83) 2329991416060646 a004 Fibonacci(24)*Lucas(82)/(1/2+sqrt(5)/2)^93 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^70/Lucas(81) 2329991416060646 a004 Fibonacci(24)*Lucas(80)/(1/2+sqrt(5)/2)^91 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^68/Lucas(79) 2329991416060646 a004 Fibonacci(24)*Lucas(78)/(1/2+sqrt(5)/2)^89 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^66/Lucas(77) 2329991416060646 a004 Fibonacci(24)*Lucas(76)/(1/2+sqrt(5)/2)^87 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^64/Lucas(75) 2329991416060646 a004 Fibonacci(24)*Lucas(74)/(1/2+sqrt(5)/2)^85 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^62/Lucas(73) 2329991416060646 a004 Fibonacci(24)*Lucas(72)/(1/2+sqrt(5)/2)^83 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^60/Lucas(71) 2329991416060646 a004 Fibonacci(24)*Lucas(70)/(1/2+sqrt(5)/2)^81 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^58/Lucas(69) 2329991416060646 a004 Fibonacci(24)*Lucas(68)/(1/2+sqrt(5)/2)^79 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^56/Lucas(67) 2329991416060646 a004 Fibonacci(24)*Lucas(66)/(1/2+sqrt(5)/2)^77 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^54/Lucas(65) 2329991416060646 a004 Fibonacci(24)*Lucas(64)/(1/2+sqrt(5)/2)^75 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^52/Lucas(63) 2329991416060646 a001 11592/3665737348901*23725150497407^(13/16) 2329991416060646 a004 Fibonacci(24)*Lucas(62)/(1/2+sqrt(5)/2)^73 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^50/Lucas(61) 2329991416060646 a004 Fibonacci(24)*Lucas(60)/(1/2+sqrt(5)/2)^71 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^48/Lucas(59) 2329991416060646 a004 Fibonacci(24)*Lucas(58)/(1/2+sqrt(5)/2)^69 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^46/Lucas(57) 2329991416060646 a001 144/10749853441*505019158607^(7/8) 2329991416060646 a001 11592/3665737348901*505019158607^(13/14) 2329991416060646 a004 Fibonacci(24)*Lucas(56)/(1/2+sqrt(5)/2)^67 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^44/Lucas(55) 2329991416060646 a001 46368/312119004989*23725150497407^(11/16) 2329991416060646 a001 46368/505019158607*192900153618^(5/6) 2329991416060646 a001 46368/2139295485799*192900153618^(8/9) 2329991416060646 a001 15456/3020733700601*192900153618^(17/18) 2329991416060646 a004 Fibonacci(24)*Lucas(54)/(1/2+sqrt(5)/2)^65 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^42/Lucas(53) 2329991416060646 a001 117722370909984/505248088463 2329991416060646 a001 46368/119218851371*505019158607^(3/4) 2329991416060646 a001 46368/119218851371*192900153618^(7/9) 2329991416060646 a001 46368/312119004989*73681302247^(11/13) 2329991416060646 a001 46368/2139295485799*73681302247^(12/13) 2329991416060646 a004 Fibonacci(24)*Lucas(52)/(1/2+sqrt(5)/2)^63 2329991416060646 a001 11592/11384387281*312119004989^(8/11) 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^40/Lucas(51) 2329991416060646 a001 11592/11384387281*23725150497407^(5/8) 2329991416060646 a001 11592/11384387281*73681302247^(10/13) 2329991416060646 a001 46368/505019158607*28143753123^(9/10) 2329991416060646 a004 Fibonacci(24)*Lucas(50)/(1/2+sqrt(5)/2)^61 2329991416060646 a001 11592/11384387281*28143753123^(4/5) 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^38/Lucas(49) 2329991416060646 a001 2504754939778/10750060805 2329991416060646 a001 15456/9381251041*10749957122^(13/16) 2329991416060646 a004 Fibonacci(50)/Lucas(24)/(1/2+sqrt(5)/2)^13 2329991416060646 a001 46368/119218851371*10749957122^(7/8) 2329991416060646 a001 11592/11384387281*10749957122^(5/6) 2329991416060646 a001 46368/312119004989*10749957122^(11/12) 2329991416060646 a001 46368/505019158607*10749957122^(15/16) 2329991416060646 a001 11592/204284540899*10749957122^(23/24) 2329991416060646 a004 Fibonacci(52)/Lucas(24)/(1/2+sqrt(5)/2)^15 2329991416060646 a004 Fibonacci(54)/Lucas(24)/(1/2+sqrt(5)/2)^17 2329991416060646 a004 Fibonacci(56)/Lucas(24)/(1/2+sqrt(5)/2)^19 2329991416060646 a004 Fibonacci(58)/Lucas(24)/(1/2+sqrt(5)/2)^21 2329991416060646 a004 Fibonacci(60)/Lucas(24)/(1/2+sqrt(5)/2)^23 2329991416060646 a004 Fibonacci(62)/Lucas(24)/(1/2+sqrt(5)/2)^25 2329991416060646 a004 Fibonacci(64)/Lucas(24)/(1/2+sqrt(5)/2)^27 2329991416060646 a004 Fibonacci(66)/Lucas(24)/(1/2+sqrt(5)/2)^29 2329991416060646 a004 Fibonacci(68)/Lucas(24)/(1/2+sqrt(5)/2)^31 2329991416060646 a004 Fibonacci(70)/Lucas(24)/(1/2+sqrt(5)/2)^33 2329991416060646 a004 Fibonacci(72)/Lucas(24)/(1/2+sqrt(5)/2)^35 2329991416060646 a004 Fibonacci(74)/Lucas(24)/(1/2+sqrt(5)/2)^37 2329991416060646 a004 Fibonacci(76)/Lucas(24)/(1/2+sqrt(5)/2)^39 2329991416060646 a004 Fibonacci(78)/Lucas(24)/(1/2+sqrt(5)/2)^41 2329991416060646 a004 Fibonacci(80)/Lucas(24)/(1/2+sqrt(5)/2)^43 2329991416060646 a004 Fibonacci(82)/Lucas(24)/(1/2+sqrt(5)/2)^45 2329991416060646 a004 Fibonacci(84)/Lucas(24)/(1/2+sqrt(5)/2)^47 2329991416060646 a004 Fibonacci(86)/Lucas(24)/(1/2+sqrt(5)/2)^49 2329991416060646 a004 Fibonacci(88)/Lucas(24)/(1/2+sqrt(5)/2)^51 2329991416060646 a004 Fibonacci(90)/Lucas(24)/(1/2+sqrt(5)/2)^53 2329991416060646 a004 Fibonacci(92)/Lucas(24)/(1/2+sqrt(5)/2)^55 2329991416060646 a004 Fibonacci(94)/Lucas(24)/(1/2+sqrt(5)/2)^57 2329991416060646 a004 Fibonacci(24)*Lucas(48)/(1/2+sqrt(5)/2)^59 2329991416060646 a004 Fibonacci(100)/Lucas(24)/(1/2+sqrt(5)/2)^63 2329991416060646 a004 Fibonacci(98)/Lucas(24)/(1/2+sqrt(5)/2)^61 2329991416060646 a004 Fibonacci(99)/Lucas(24)/(1/2+sqrt(5)/2)^62 2329991416060646 a004 Fibonacci(97)/Lucas(24)/(1/2+sqrt(5)/2)^60 2329991416060646 a004 Fibonacci(95)/Lucas(24)/(1/2+sqrt(5)/2)^58 2329991416060646 a004 Fibonacci(93)/Lucas(24)/(1/2+sqrt(5)/2)^56 2329991416060646 a004 Fibonacci(91)/Lucas(24)/(1/2+sqrt(5)/2)^54 2329991416060646 a004 Fibonacci(89)/Lucas(24)/(1/2+sqrt(5)/2)^52 2329991416060646 a004 Fibonacci(87)/Lucas(24)/(1/2+sqrt(5)/2)^50 2329991416060646 a004 Fibonacci(85)/Lucas(24)/(1/2+sqrt(5)/2)^48 2329991416060646 a004 Fibonacci(83)/Lucas(24)/(1/2+sqrt(5)/2)^46 2329991416060646 a004 Fibonacci(81)/Lucas(24)/(1/2+sqrt(5)/2)^44 2329991416060646 a004 Fibonacci(79)/Lucas(24)/(1/2+sqrt(5)/2)^42 2329991416060646 a004 Fibonacci(77)/Lucas(24)/(1/2+sqrt(5)/2)^40 2329991416060646 a004 Fibonacci(75)/Lucas(24)/(1/2+sqrt(5)/2)^38 2329991416060646 a004 Fibonacci(73)/Lucas(24)/(1/2+sqrt(5)/2)^36 2329991416060646 a004 Fibonacci(71)/Lucas(24)/(1/2+sqrt(5)/2)^34 2329991416060646 a004 Fibonacci(69)/Lucas(24)/(1/2+sqrt(5)/2)^32 2329991416060646 a004 Fibonacci(67)/Lucas(24)/(1/2+sqrt(5)/2)^30 2329991416060646 a004 Fibonacci(65)/Lucas(24)/(1/2+sqrt(5)/2)^28 2329991416060646 a004 Fibonacci(63)/Lucas(24)/(1/2+sqrt(5)/2)^26 2329991416060646 a004 Fibonacci(61)/Lucas(24)/(1/2+sqrt(5)/2)^24 2329991416060646 a004 Fibonacci(59)/Lucas(24)/(1/2+sqrt(5)/2)^22 2329991416060646 a004 Fibonacci(57)/Lucas(24)/(1/2+sqrt(5)/2)^20 2329991416060646 a004 Fibonacci(55)/Lucas(24)/(1/2+sqrt(5)/2)^18 2329991416060646 a004 Fibonacci(53)/Lucas(24)/(1/2+sqrt(5)/2)^16 2329991416060646 a004 Fibonacci(51)/Lucas(24)/(1/2+sqrt(5)/2)^14 2329991416060646 a001 46368/17393796001*10749957122^(19/24) 2329991416060646 a004 Fibonacci(49)/Lucas(24)/(1/2+sqrt(5)/2)^12 2329991416060646 a001 46368/6643838879*45537549124^(12/17) 2329991416060646 a001 46368/6643838879*14662949395604^(4/7) 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^36/Lucas(47) 2329991416060646 a001 137769300504864/591286729879 2329991416060646 a001 46368/6643838879*192900153618^(2/3) 2329991416060646 a001 46368/6643838879*73681302247^(9/13) 2329991416060646 a001 46368/6643838879*10749957122^(3/4) 2329991416060646 a004 Fibonacci(47)/Lucas(24)/(1/2+sqrt(5)/2)^10 2329991416060646 a001 11592/11384387281*4106118243^(20/23) 2329991416060646 a001 46368/17393796001*4106118243^(19/23) 2329991416060646 a001 46368/119218851371*4106118243^(21/23) 2329991416060646 a001 46368/312119004989*4106118243^(22/23) 2329991416060646 a004 Fibonacci(24)*Lucas(46)/(1/2+sqrt(5)/2)^57 2329991416060646 a001 46368/6643838879*4106118243^(18/23) 2329991416060646 a001 11592/634430159*45537549124^(2/3) 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^34/Lucas(45) 2329991416060646 a001 2505866199360/10754830177 2329991416060646 a001 11592/634430159*10749957122^(17/24) 2329991416060646 a004 Fibonacci(45)/Lucas(24)/(1/2+sqrt(5)/2)^8 2329991416060646 a001 11592/634430159*4106118243^(17/23) 2329991416060646 a001 46368/17393796001*1568397607^(19/22) 2329991416060646 a001 46368/6643838879*1568397607^(9/11) 2329991416060646 a001 11592/11384387281*1568397607^(10/11) 2329991416060646 a001 46368/119218851371*1568397607^(21/22) 2329991416060646 a004 Fibonacci(24)*Lucas(44)/(1/2+sqrt(5)/2)^55 2329991416060646 a001 11592/634430159*1568397607^(17/22) 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^32/Lucas(43) 2329991416060646 a001 46368/969323029*23725150497407^(1/2) 2329991416060646 a001 2512533756852/10783446409 2329991416060646 a001 46368/969323029*73681302247^(8/13) 2329991416060646 a001 46368/969323029*10749957122^(2/3) 2329991416060646 a004 Fibonacci(43)/Lucas(24)/(1/2+sqrt(5)/2)^6 2329991416060646 a001 46368/969323029*4106118243^(16/23) 2329991416060646 a001 46368/969323029*1568397607^(8/11) 2329991416060646 a001 6624/224056801*599074578^(11/14) 2329991416060646 a001 15456/1368706081*599074578^(5/6) 2329991416060646 a001 11592/634430159*599074578^(17/21) 2329991416060646 a001 46368/6643838879*599074578^(6/7) 2329991416060646 a001 46368/17393796001*599074578^(19/21) 2329991416060646 a001 15456/9381251041*599074578^(13/14) 2329991416060646 a001 11592/11384387281*599074578^(20/21) 2329991416060646 a004 Fibonacci(24)*Lucas(42)/(1/2+sqrt(5)/2)^53 2329991416060646 a001 46368/969323029*599074578^(16/21) 2329991416060646 a001 46368/370248451*2537720636^(2/3) 2329991416060646 a001 46368/370248451*45537549124^(10/17) 2329991416060646 a001 46368/370248451*312119004989^(6/11) 2329991416060646 a001 46368/370248451*14662949395604^(10/21) 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^30/Lucas(41) 2329991416060646 a001 46368/370248451*192900153618^(5/9) 2329991416060646 a001 2559206659296/10983760033 2329991416060646 a001 46368/370248451*28143753123^(3/5) 2329991416060646 a001 46368/370248451*10749957122^(5/8) 2329991416060646 a004 Fibonacci(41)/Lucas(24)/(1/2+sqrt(5)/2)^4 2329991416060646 a001 46368/370248451*4106118243^(15/23) 2329991416060646 a001 46368/370248451*1568397607^(15/22) 2329991416060646 a001 46368/370248451*599074578^(5/7) 2329991416060646 a001 46368/969323029*228826127^(4/5) 2329991416060646 a001 11592/634430159*228826127^(17/20) 2329991416060646 a001 15456/1368706081*228826127^(7/8) 2329991416060646 a001 46368/6643838879*228826127^(9/10) 2329991416060646 a001 46368/17393796001*228826127^(19/20) 2329991416060646 a004 Fibonacci(24)*Lucas(40)/(1/2+sqrt(5)/2)^51 2329991416060646 a001 46368/370248451*228826127^(3/4) 2329991416060646 a001 11592/35355581*17393796001^(4/7) 2329991416060646 a001 11592/35355581*14662949395604^(4/9) 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^28/Lucas(39) 2329991416060646 a001 11592/35355581*73681302247^(7/13) 2329991416060646 a001 2932589878848/12586269025 2329991416060646 a001 11592/35355581*10749957122^(7/12) 2329991416060646 a004 Fibonacci(39)/Lucas(24)/(1/2+sqrt(5)/2)^2 2329991416060646 a001 11592/35355581*4106118243^(14/23) 2329991416060646 a001 11592/35355581*1568397607^(7/11) 2329991416060646 a001 11592/35355581*599074578^(2/3) 2329991416060646 a001 11592/35355581*228826127^(7/10) 2329991416060646 a001 46368/370248451*87403803^(15/19) 2329991416060646 a001 46368/969323029*87403803^(16/19) 2329991416060646 a001 11592/634430159*87403803^(17/19) 2329991416060646 a001 46368/6643838879*87403803^(18/19) 2329991416060646 a004 Fibonacci(24)*Lucas(38)/(1/2+sqrt(5)/2)^49 2329991416060646 a001 11592/35355581*87403803^(14/19) 2329991416060646 a001 46368/54018521*141422324^(2/3) 2329991416060646 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^26/Lucas(37) 2329991416060646 a001 46368/54018521*73681302247^(1/2) 2329991416060646 a001 46368/54018521*10749957122^(13/24) 2329991416060646 a001 24157817/103682 2329991416060646 a001 46368/54018521*4106118243^(13/23) 2329991416060646 a001 46368/54018521*1568397607^(13/22) 2329991416060646 a001 46368/54018521*599074578^(13/21) 2329991416060647 a001 46368/54018521*228826127^(13/20) 2329991416060647 a001 46368/54018521*87403803^(13/19) 2329991416060647 a001 15456/29134601*33385282^(3/4) 2329991416060647 a001 11592/35355581*33385282^(7/9) 2329991416060647 a001 46368/370248451*33385282^(5/6) 2329991416060648 a001 46368/969323029*33385282^(8/9) 2329991416060648 a001 6624/224056801*33385282^(11/12) 2329991416060648 a001 11592/634430159*33385282^(17/18) 2329991416060648 a004 Fibonacci(24)*Lucas(36)/(1/2+sqrt(5)/2)^47 2329991416060648 a001 46368/54018521*33385282^(13/18) 2329991416060651 a001 46368/20633239*141422324^(8/13) 2329991416060651 a001 46368/20633239*2537720636^(8/15) 2329991416060651 a001 46368/20633239*45537549124^(8/17) 2329991416060651 a001 46368/20633239*14662949395604^(8/21) 2329991416060651 a001 46368/20633239*(1/2+1/2*5^(1/2))^24 2329991416060651 a001 46368/20633239*192900153618^(4/9) 2329991416060651 a001 46368/20633239*73681302247^(6/13) 2329991416060651 a001 46368/20633239*10749957122^(1/2) 2329991416060651 a001 9227465/103682*(1/2+1/2*5^(1/2))^2 2329991416060651 a001 9227465/103682*10749957122^(1/24) 2329991416060651 a001 9227465/103682*4106118243^(1/23) 2329991416060651 a001 9227465/103682*1568397607^(1/22) 2329991416060651 a001 46368/20633239*4106118243^(12/23) 2329991416060651 a001 427859097120/1836311903 2329991416060651 a001 9227465/103682*599074578^(1/21) 2329991416060651 a001 46368/20633239*1568397607^(6/11) 2329991416060651 a001 9227465/103682*228826127^(1/20) 2329991416060651 a001 46368/20633239*599074578^(4/7) 2329991416060651 a001 9227465/103682*87403803^(1/19) 2329991416060651 a001 46368/20633239*228826127^(3/5) 2329991416060651 a001 9227465/103682*33385282^(1/18) 2329991416060651 a001 46368/20633239*87403803^(12/19) 2329991416060652 a001 9227465/103682*12752043^(1/17) 2329991416060653 a001 46368/20633239*33385282^(2/3) 2329991416060657 a001 9227465/103682*4870847^(1/16) 2329991416060657 a001 46368/54018521*12752043^(13/17) 2329991416060658 a001 11592/35355581*12752043^(14/17) 2329991416060658 a001 11592/1970299*7881196^(2/3) 2329991416060658 a001 46368/370248451*12752043^(15/17) 2329991416060659 a001 46368/969323029*12752043^(16/17) 2329991416060660 a001 46347/2206*1860498^(1/6) 2329991416060660 a004 Fibonacci(24)*Lucas(34)/(1/2+sqrt(5)/2)^45 2329991416060661 a001 46368/20633239*12752043^(12/17) 2329991416060683 a001 11592/1970299*312119004989^(2/5) 2329991416060683 a001 11592/1970299*(1/2+1/2*5^(1/2))^22 2329991416060683 a001 11592/1970299*10749957122^(11/24) 2329991416060683 a001 1762289/51841*(1/2+1/2*5^(1/2))^4 2329991416060683 a001 1762289/51841*23725150497407^(1/16) 2329991416060683 a001 1762289/51841*73681302247^(1/13) 2329991416060683 a001 1762289/51841*10749957122^(1/12) 2329991416060683 a001 1762289/51841*4106118243^(2/23) 2329991416060683 a001 11592/1970299*4106118243^(11/23) 2329991416060683 a001 1762289/51841*1568397607^(1/11) 2329991416060683 a001 11592/1970299*1568397607^(1/2) 2329991416060683 a001 1762289/51841*599074578^(2/21) 2329991416060683 a001 612088512/2626999 2329991416060683 a001 11592/1970299*599074578^(11/21) 2329991416060683 a001 1762289/51841*228826127^(1/10) 2329991416060683 a001 11592/1970299*228826127^(11/20) 2329991416060683 a001 1762289/51841*87403803^(2/19) 2329991416060683 a001 11592/1970299*87403803^(11/19) 2329991416060683 a001 1762289/51841*33385282^(1/9) 2329991416060684 a001 11592/1970299*33385282^(11/18) 2329991416060685 a001 1762289/51841*12752043^(2/17) 2329991416060692 a001 11592/1970299*12752043^(11/17) 2329991416060695 a001 1762289/51841*4870847^(1/8) 2329991416060696 a001 9227465/103682*1860498^(1/15) 2329991416060699 a001 5702887/103682*1860498^(1/10) 2329991416060725 a001 46368/20633239*4870847^(3/4) 2329991416060726 a001 46368/54018521*4870847^(13/16) 2329991416060732 a001 11592/35355581*4870847^(7/8) 2329991416060738 a001 46368/370248451*4870847^(15/16) 2329991416060744 a004 Fibonacci(24)*Lucas(32)/(1/2+sqrt(5)/2)^43 2329991416060751 a001 11592/1970299*4870847^(11/16) 2329991416060773 a001 1762289/51841*1860498^(2/15) 2329991416060896 a001 1346269/103682*7881196^(2/11) 2329991416060900 a001 46368/3010349*20633239^(4/7) 2329991416060903 a001 1346269/103682*141422324^(2/13) 2329991416060903 a001 46368/3010349*2537720636^(4/9) 2329991416060903 a001 1346269/103682*2537720636^(2/15) 2329991416060903 a001 46368/3010349*(1/2+1/2*5^(1/2))^20 2329991416060903 a001 46368/3010349*23725150497407^(5/16) 2329991416060903 a001 46368/3010349*505019158607^(5/14) 2329991416060903 a001 46368/3010349*73681302247^(5/13) 2329991416060903 a001 46368/3010349*28143753123^(2/5) 2329991416060903 a001 46368/3010349*10749957122^(5/12) 2329991416060903 a001 1346269/103682*45537549124^(2/17) 2329991416060903 a001 1346269/103682*14662949395604^(2/21) 2329991416060903 a001 1346269/103682*(1/2+1/2*5^(1/2))^6 2329991416060903 a001 1346269/103682*10749957122^(1/8) 2329991416060903 a001 1346269/103682*4106118243^(3/23) 2329991416060903 a001 46368/3010349*4106118243^(10/23) 2329991416060903 a001 1346269/103682*1568397607^(3/22) 2329991416060903 a001 46368/3010349*1568397607^(5/11) 2329991416060903 a001 1346269/103682*599074578^(1/7) 2329991416060903 a001 46368/3010349*599074578^(10/21) 2329991416060903 a001 7802975124/33489287 2329991416060903 a001 1346269/103682*228826127^(3/20) 2329991416060903 a001 46368/3010349*228826127^(1/2) 2329991416060903 a001 1346269/103682*87403803^(3/19) 2329991416060903 a001 46368/3010349*87403803^(10/19) 2329991416060903 a001 1346269/103682*33385282^(1/6) 2329991416060904 a001 46368/3010349*33385282^(5/9) 2329991416060905 a001 1346269/103682*12752043^(3/17) 2329991416060911 a001 46368/3010349*12752043^(10/17) 2329991416060921 a001 1346269/103682*4870847^(3/16) 2329991416060964 a001 46368/3010349*4870847^(5/8) 2329991416060981 a001 9227465/103682*710647^(1/14) 2329991416061019 a001 46368/4870847*1860498^(7/10) 2329991416061037 a001 1346269/103682*1860498^(1/5) 2329991416061126 a001 416020/51841*710647^(1/4) 2329991416061177 a001 11592/1970299*1860498^(11/15) 2329991416061190 a001 46368/20633239*1860498^(4/5) 2329991416061205 a001 144/103681*1860498^(5/6) 2329991416061230 a001 46368/54018521*1860498^(13/15) 2329991416061251 a001 15456/29134601*1860498^(9/10) 2329991416061274 a001 11592/35355581*1860498^(14/15) 2329991416061319 a004 Fibonacci(24)*Lucas(30)/(1/2+sqrt(5)/2)^41 2329991416061342 a001 1762289/51841*710647^(1/7) 2329991416061352 a001 46368/3010349*1860498^(2/3) 2329991416061891 a001 1346269/103682*710647^(3/14) 2329991416062387 a001 46368/1149851*7881196^(6/11) 2329991416062408 a001 46368/1149851*141422324^(6/13) 2329991416062408 a001 46368/1149851*2537720636^(2/5) 2329991416062408 a001 46368/1149851*45537549124^(6/17) 2329991416062408 a001 46368/1149851*14662949395604^(2/7) 2329991416062408 a001 46368/1149851*(1/2+1/2*5^(1/2))^18 2329991416062408 a001 46368/1149851*192900153618^(1/3) 2329991416062408 a001 46368/1149851*10749957122^(3/8) 2329991416062408 a001 514229/103682*(1/2+1/2*5^(1/2))^8 2329991416062408 a001 514229/103682*23725150497407^(1/8) 2329991416062408 a001 514229/103682*73681302247^(2/13) 2329991416062408 a001 514229/103682*10749957122^(1/6) 2329991416062408 a001 514229/103682*4106118243^(4/23) 2329991416062408 a001 46368/1149851*4106118243^(9/23) 2329991416062408 a001 514229/103682*1568397607^(2/11) 2329991416062408 a001 46368/1149851*1568397607^(9/22) 2329991416062408 a001 514229/103682*599074578^(4/21) 2329991416062408 a001 46368/1149851*599074578^(3/7) 2329991416062408 a001 514229/103682*228826127^(1/5) 2329991416062408 a001 46368/1149851*228826127^(9/20) 2329991416062408 a001 1135417632/4873055 2329991416062408 a001 514229/103682*87403803^(4/19) 2329991416062408 a001 46368/1149851*87403803^(9/19) 2329991416062408 a001 514229/103682*33385282^(2/9) 2329991416062409 a001 46368/1149851*33385282^(1/2) 2329991416062411 a001 514229/103682*12752043^(4/17) 2329991416062416 a001 46368/1149851*12752043^(9/17) 2329991416062432 a001 514229/103682*4870847^(1/4) 2329991416062463 a001 46368/1149851*4870847^(9/16) 2329991416062587 a001 514229/103682*1860498^(4/15) 2329991416062812 a001 46368/1149851*1860498^(3/5) 2329991416063084 a001 9227465/103682*271443^(1/13) 2329991416063726 a001 514229/103682*710647^(2/7) 2329991416064008 a001 46368/4870847*710647^(3/4) 2329991416064198 a001 46368/3010349*710647^(5/7) 2329991416064308 a001 11592/1970299*710647^(11/14) 2329991416064606 a001 46368/20633239*710647^(6/7) 2329991416064931 a001 46368/54018521*710647^(13/14) 2329991416065259 a004 Fibonacci(24)*Lucas(28)/(1/2+sqrt(5)/2)^39 2329991416065374 a001 46368/1149851*710647^(9/14) 2329991416065548 a001 1762289/51841*271443^(2/13) 2329991416067683 a001 1346269/439204*64079^(9/23) 2329991416068200 a001 1346269/103682*271443^(3/13) 2329991416069675 a001 7465176/51841*103682^(1/24) 2329991416070196 a001 17711/710647*39603^(19/22) 2329991416072138 a001 514229/103682*271443^(4/13) 2329991416072723 a001 98209/51841*20633239^(2/7) 2329991416072724 a001 98209/51841*2537720636^(2/9) 2329991416072724 a001 11592/109801*(1/2+1/2*5^(1/2))^16 2329991416072724 a001 11592/109801*23725150497407^(1/4) 2329991416072724 a001 11592/109801*73681302247^(4/13) 2329991416072724 a001 11592/109801*10749957122^(1/3) 2329991416072724 a001 98209/51841*312119004989^(2/11) 2329991416072724 a001 98209/51841*(1/2+1/2*5^(1/2))^10 2329991416072724 a001 98209/51841*28143753123^(1/5) 2329991416072724 a001 98209/51841*10749957122^(5/24) 2329991416072724 a001 11592/109801*4106118243^(8/23) 2329991416072724 a001 98209/51841*4106118243^(5/23) 2329991416072724 a001 98209/51841*1568397607^(5/22) 2329991416072724 a001 11592/109801*1568397607^(4/11) 2329991416072724 a001 98209/51841*599074578^(5/21) 2329991416072724 a001 11592/109801*599074578^(8/21) 2329991416072724 a001 98209/51841*228826127^(1/4) 2329991416072724 a001 11592/109801*228826127^(2/5) 2329991416072725 a001 98209/51841*87403803^(5/19) 2329991416072725 a001 11592/109801*87403803^(8/19) 2329991416072725 a001 9107509824/39088169 2329991416072725 a001 98209/51841*33385282^(5/18) 2329991416072725 a001 11592/109801*33385282^(4/9) 2329991416072729 a001 98209/51841*12752043^(5/17) 2329991416072731 a001 11592/109801*12752043^(8/17) 2329991416072755 a001 98209/51841*4870847^(5/16) 2329991416072774 a001 11592/109801*4870847^(1/2) 2329991416072949 a001 98209/51841*1860498^(1/3) 2329991416072969 a001 726103/90481*64079^(7/23) 2329991416073083 a001 11592/109801*1860498^(8/15) 2329991416074372 a001 98209/51841*710647^(5/14) 2329991416075361 a001 11592/109801*710647^(4/7) 2329991416075442 a001 3524578/710647*64079^(8/23) 2329991416078713 a001 9227465/103682*103682^(1/12) 2329991416079351 a001 9227465/1860498*64079^(8/23) 2329991416079921 a001 24157817/4870847*64079^(8/23) 2329991416080004 a001 63245986/12752043*64079^(8/23) 2329991416080016 a001 165580141/33385282*64079^(8/23) 2329991416080018 a001 433494437/87403803*64079^(8/23) 2329991416080018 a001 1134903170/228826127*64079^(8/23) 2329991416080018 a001 2971215073/599074578*64079^(8/23) 2329991416080018 a001 7778742049/1568397607*64079^(8/23) 2329991416080018 a001 20365011074/4106118243*64079^(8/23) 2329991416080018 a001 53316291173/10749957122*64079^(8/23) 2329991416080018 a001 139583862445/28143753123*64079^(8/23) 2329991416080018 a001 365435296162/73681302247*64079^(8/23) 2329991416080018 a001 956722026041/192900153618*64079^(8/23) 2329991416080018 a001 2504730781961/505019158607*64079^(8/23) 2329991416080018 a001 10610209857723/2139295485799*64079^(8/23) 2329991416080018 a001 140728068720/28374454999*64079^(8/23) 2329991416080018 a001 591286729879/119218851371*64079^(8/23) 2329991416080018 a001 225851433717/45537549124*64079^(8/23) 2329991416080018 a001 86267571272/17393796001*64079^(8/23) 2329991416080018 a001 32951280099/6643838879*64079^(8/23) 2329991416080018 a001 1144206275/230701876*64079^(8/23) 2329991416080018 a001 4807526976/969323029*64079^(8/23) 2329991416080018 a001 1836311903/370248451*64079^(8/23) 2329991416080018 a001 701408733/141422324*64079^(8/23) 2329991416080019 a001 267914296/54018521*64079^(8/23) 2329991416080024 a001 9303105/1875749*64079^(8/23) 2329991416080055 a001 39088169/7881196*64079^(8/23) 2329991416080273 a001 14930352/3010349*64079^(8/23) 2329991416081766 a001 5702887/1149851*64079^(8/23) 2329991416084300 a001 46368/1149851*271443^(9/13) 2329991416084887 a001 98209/51841*271443^(5/13) 2329991416085228 a001 46368/3010349*271443^(10/13) 2329991416087441 a001 11592/1970299*271443^(11/13) 2329991416087571 a001 14619165/101521*24476^(1/21) 2329991416087724 a001 5702887/103682*103682^(1/8) 2329991416088242 a001 10946/39603*24476^(2/3) 2329991416089841 a001 46368/20633239*271443^(12/13) 2329991416091511 a001 133957148/930249*24476^(1/21) 2329991416091999 a001 2178309/439204*64079^(8/23) 2329991416092086 a001 701408733/4870847*24476^(1/21) 2329991416092170 a001 1836311903/12752043*24476^(1/21) 2329991416092182 a001 14930208/103681*24476^(1/21) 2329991416092184 a001 12586269025/87403803*24476^(1/21) 2329991416092184 a001 32951280099/228826127*24476^(1/21) 2329991416092184 a001 43133785636/299537289*24476^(1/21) 2329991416092184 a001 32264490531/224056801*24476^(1/21) 2329991416092184 a001 591286729879/4106118243*24476^(1/21) 2329991416092184 a001 774004377960/5374978561*24476^(1/21) 2329991416092184 a001 4052739537881/28143753123*24476^(1/21) 2329991416092184 a001 1515744265389/10525900321*24476^(1/21) 2329991416092184 a001 3278735159921/22768774562*24476^(1/21) 2329991416092184 a001 2504730781961/17393796001*24476^(1/21) 2329991416092184 a001 956722026041/6643838879*24476^(1/21) 2329991416092184 a001 182717648081/1268860318*24476^(1/21) 2329991416092184 a001 139583862445/969323029*24476^(1/21) 2329991416092184 a001 53316291173/370248451*24476^(1/21) 2329991416092184 a001 10182505537/70711162*24476^(1/21) 2329991416092184 a001 11592/109801*271443^(8/13) 2329991416092185 a001 7778742049/54018521*24476^(1/21) 2329991416092190 a001 2971215073/20633239*24476^(1/21) 2329991416092222 a001 567451585/3940598*24476^(1/21) 2329991416092268 a004 Fibonacci(24)*Lucas(26)/(1/2+sqrt(5)/2)^37 2329991416092441 a001 433494437/3010349*24476^(1/21) 2329991416093761 a001 10946/15127*15127^(3/5) 2329991416093947 a001 165580141/1149851*24476^(1/21) 2329991416096807 a001 1762289/51841*103682^(1/6) 2329991416097776 a001 3524578/271443*64079^(6/23) 2329991416100062 a001 5702887/710647*64079^(7/23) 2329991416100871 a001 196418/167761*64079^(11/23) 2329991416103913 a001 2178309/64079*24476^(4/21) 2329991416104014 a001 829464/103361*64079^(7/23) 2329991416104263 a001 31622993/219602*24476^(1/21) 2329991416104591 a001 39088169/4870847*64079^(7/23) 2329991416104675 a001 34111385/4250681*64079^(7/23) 2329991416104688 a001 133957148/16692641*64079^(7/23) 2329991416104689 a001 233802911/29134601*64079^(7/23) 2329991416104690 a001 1836311903/228826127*64079^(7/23) 2329991416104690 a001 267084832/33281921*64079^(7/23) 2329991416104690 a001 12586269025/1568397607*64079^(7/23) 2329991416104690 a001 10983760033/1368706081*64079^(7/23) 2329991416104690 a001 43133785636/5374978561*64079^(7/23) 2329991416104690 a001 75283811239/9381251041*64079^(7/23) 2329991416104690 a001 591286729879/73681302247*64079^(7/23) 2329991416104690 a001 86000486440/10716675201*64079^(7/23) 2329991416104690 a001 4052739537881/505019158607*64079^(7/23) 2329991416104690 a001 3278735159921/408569081798*64079^(7/23) 2329991416104690 a001 2504730781961/312119004989*64079^(7/23) 2329991416104690 a001 956722026041/119218851371*64079^(7/23) 2329991416104690 a001 182717648081/22768774562*64079^(7/23) 2329991416104690 a001 139583862445/17393796001*64079^(7/23) 2329991416104690 a001 53316291173/6643838879*64079^(7/23) 2329991416104690 a001 10182505537/1268860318*64079^(7/23) 2329991416104690 a001 7778742049/969323029*64079^(7/23) 2329991416104690 a001 2971215073/370248451*64079^(7/23) 2329991416104690 a001 567451585/70711162*64079^(7/23) 2329991416104690 a001 433494437/54018521*64079^(7/23) 2329991416104695 a001 165580141/20633239*64079^(7/23) 2329991416104727 a001 31622993/3940598*64079^(7/23) 2329991416104948 a001 24157817/3010349*64079^(7/23) 2329991416105703 a001 46347/2206*103682^(5/24) 2329991416106457 a001 9227465/1149851*64079^(7/23) 2329991416108850 a001 317811/167761*64079^(10/23) 2329991416115089 a001 1346269/103682*103682^(1/4) 2329991416116806 a001 1762289/219602*64079^(7/23) 2329991416122239 a001 75025/167761*64079^(13/23) 2329991416122396 a001 5702887/271443*64079^(5/23) 2329991416123190 a001 416020/51841*103682^(7/24) 2329991416124753 a001 9227465/710647*64079^(6/23) 2329991416128170 a001 7465176/51841*39603^(1/22) 2329991416128364 a001 121393/103682*103682^(11/24) 2329991416128689 a001 24157817/1860498*64079^(6/23) 2329991416129263 a001 63245986/4870847*64079^(6/23) 2329991416129347 a001 165580141/12752043*64079^(6/23) 2329991416129359 a001 433494437/33385282*64079^(6/23) 2329991416129361 a001 1134903170/87403803*64079^(6/23) 2329991416129361 a001 2971215073/228826127*64079^(6/23) 2329991416129361 a001 7778742049/599074578*64079^(6/23) 2329991416129361 a001 20365011074/1568397607*64079^(6/23) 2329991416129361 a001 53316291173/4106118243*64079^(6/23) 2329991416129361 a001 139583862445/10749957122*64079^(6/23) 2329991416129361 a001 365435296162/28143753123*64079^(6/23) 2329991416129361 a001 956722026041/73681302247*64079^(6/23) 2329991416129361 a001 2504730781961/192900153618*64079^(6/23) 2329991416129361 a001 10610209857723/817138163596*64079^(6/23) 2329991416129361 a001 4052739537881/312119004989*64079^(6/23) 2329991416129361 a001 1548008755920/119218851371*64079^(6/23) 2329991416129361 a001 591286729879/45537549124*64079^(6/23) 2329991416129361 a001 7787980473/599786069*64079^(6/23) 2329991416129361 a001 86267571272/6643838879*64079^(6/23) 2329991416129361 a001 32951280099/2537720636*64079^(6/23) 2329991416129361 a001 12586269025/969323029*64079^(6/23) 2329991416129361 a001 4807526976/370248451*64079^(6/23) 2329991416129361 a001 1836311903/141422324*64079^(6/23) 2329991416129362 a001 701408733/54018521*64079^(6/23) 2329991416129367 a001 9238424/711491*64079^(6/23) 2329991416129399 a001 102334155/7881196*64079^(6/23) 2329991416129618 a001 39088169/3010349*64079^(6/23) 2329991416131121 a001 14930352/1149851*64079^(6/23) 2329991416134656 a001 514229/103682*103682^(1/3) 2329991416137311 a001 317811/103682*103682^(3/8) 2329991416138066 a001 75025/103682*439204^(4/9) 2329991416139898 a001 514229/167761*64079^(9/23) 2329991416141426 a001 5702887/439204*64079^(6/23) 2329991416143421 a001 75025/103682*7881196^(4/11) 2329991416143432 a001 46368/167761*20633239^(2/5) 2329991416143435 a001 75025/103682*141422324^(4/13) 2329991416143435 a001 75025/103682*2537720636^(4/15) 2329991416143435 a001 46368/167761*17393796001^(2/7) 2329991416143435 a001 46368/167761*14662949395604^(2/9) 2329991416143435 a001 46368/167761*(1/2+1/2*5^(1/2))^14 2329991416143435 a001 46368/167761*505019158607^(1/4) 2329991416143435 a001 46368/167761*10749957122^(7/24) 2329991416143435 a001 75025/103682*45537549124^(4/17) 2329991416143435 a001 75025/103682*817138163596^(4/19) 2329991416143435 a001 75025/103682*14662949395604^(4/21) 2329991416143435 a001 75025/103682*(1/2+1/2*5^(1/2))^12 2329991416143435 a001 75025/103682*73681302247^(3/13) 2329991416143435 a001 75025/103682*10749957122^(1/4) 2329991416143435 a001 46368/167761*4106118243^(7/23) 2329991416143435 a001 75025/103682*4106118243^(6/23) 2329991416143435 a001 75025/103682*1568397607^(3/11) 2329991416143435 a001 46368/167761*1568397607^(7/22) 2329991416143435 a001 75025/103682*599074578^(2/7) 2329991416143435 a001 46368/167761*599074578^(1/3) 2329991416143435 a001 75025/103682*228826127^(3/10) 2329991416143435 a001 46368/167761*228826127^(7/20) 2329991416143435 a001 75025/103682*87403803^(6/19) 2329991416143435 a001 46368/167761*87403803^(7/19) 2329991416143435 a001 75025/103682*33385282^(1/3) 2329991416143435 a001 46368/167761*33385282^(7/18) 2329991416143437 a001 24158050/103683 2329991416143440 a001 75025/103682*12752043^(6/17) 2329991416143441 a001 46368/167761*12752043^(7/17) 2329991416143471 a001 75025/103682*4870847^(3/8) 2329991416143478 a001 46368/167761*4870847^(7/16) 2329991416143704 a001 75025/103682*1860498^(2/5) 2329991416143749 a001 46368/167761*1860498^(7/15) 2329991416144099 a001 17711/1149851*39603^(10/11) 2329991416145412 a001 75025/103682*710647^(3/7) 2329991416145741 a001 46368/167761*710647^(1/2) 2329991416147087 a001 9227465/271443*64079^(4/23) 2329991416149417 a001 14930352/710647*64079^(5/23) 2329991416153359 a001 39088169/1860498*64079^(5/23) 2329991416153934 a001 102334155/4870847*64079^(5/23) 2329991416154018 a001 267914296/12752043*64079^(5/23) 2329991416154030 a001 701408733/33385282*64079^(5/23) 2329991416154032 a001 1836311903/87403803*64079^(5/23) 2329991416154033 a001 102287808/4868641*64079^(5/23) 2329991416154033 a001 12586269025/599074578*64079^(5/23) 2329991416154033 a001 32951280099/1568397607*64079^(5/23) 2329991416154033 a001 86267571272/4106118243*64079^(5/23) 2329991416154033 a001 225851433717/10749957122*64079^(5/23) 2329991416154033 a001 591286729879/28143753123*64079^(5/23) 2329991416154033 a001 1548008755920/73681302247*64079^(5/23) 2329991416154033 a001 4052739537881/192900153618*64079^(5/23) 2329991416154033 a001 225749145909/10745088481*64079^(5/23) 2329991416154033 a001 6557470319842/312119004989*64079^(5/23) 2329991416154033 a001 2504730781961/119218851371*64079^(5/23) 2329991416154033 a001 956722026041/45537549124*64079^(5/23) 2329991416154033 a001 365435296162/17393796001*64079^(5/23) 2329991416154033 a001 139583862445/6643838879*64079^(5/23) 2329991416154033 a001 53316291173/2537720636*64079^(5/23) 2329991416154033 a001 20365011074/969323029*64079^(5/23) 2329991416154033 a001 7778742049/370248451*64079^(5/23) 2329991416154033 a001 2971215073/141422324*64079^(5/23) 2329991416154033 a001 1134903170/54018521*64079^(5/23) 2329991416154038 a001 433494437/20633239*64079^(5/23) 2329991416154070 a001 165580141/7881196*64079^(5/23) 2329991416154290 a001 63245986/3010349*64079^(5/23) 2329991416155796 a001 24157817/1149851*64079^(5/23) 2329991416158030 a001 75025/103682*271443^(6/13) 2329991416160462 a001 46368/167761*271443^(7/13) 2329991416162134 a001 75640/15251*64079^(8/23) 2329991416162978 a004 Fibonacci(26)*Lucas(25)/(1/2+sqrt(5)/2)^38 2329991416163035 a001 98209/51841*103682^(5/12) 2329991416164488 a001 15456/90481*103682^(5/8) 2329991416166117 a001 9227465/439204*64079^(5/23) 2329991416169567 a001 28657/39603*39603^(6/11) 2329991416171751 a001 4976784/90481*64079^(3/23) 2329991416174091 a001 24157817/710647*64079^(4/23) 2329991416174974 a001 24157817/167761*24476^(1/21) 2329991416178031 a001 31622993/930249*64079^(4/23) 2329991416178606 a001 165580141/4870847*64079^(4/23) 2329991416178690 a001 433494437/12752043*64079^(4/23) 2329991416178702 a001 567451585/16692641*64079^(4/23) 2329991416178704 a001 2971215073/87403803*64079^(4/23) 2329991416178704 a001 7778742049/228826127*64079^(4/23) 2329991416178704 a001 10182505537/299537289*64079^(4/23) 2329991416178704 a001 53316291173/1568397607*64079^(4/23) 2329991416178704 a001 139583862445/4106118243*64079^(4/23) 2329991416178704 a001 182717648081/5374978561*64079^(4/23) 2329991416178704 a001 956722026041/28143753123*64079^(4/23) 2329991416178704 a001 2504730781961/73681302247*64079^(4/23) 2329991416178704 a001 3278735159921/96450076809*64079^(4/23) 2329991416178704 a001 10610209857723/312119004989*64079^(4/23) 2329991416178704 a001 4052739537881/119218851371*64079^(4/23) 2329991416178704 a001 387002188980/11384387281*64079^(4/23) 2329991416178704 a001 591286729879/17393796001*64079^(4/23) 2329991416178704 a001 225851433717/6643838879*64079^(4/23) 2329991416178704 a001 1135099622/33391061*64079^(4/23) 2329991416178704 a001 32951280099/969323029*64079^(4/23) 2329991416178704 a001 12586269025/370248451*64079^(4/23) 2329991416178704 a001 1201881744/35355581*64079^(4/23) 2329991416178705 a001 1836311903/54018521*64079^(4/23) 2329991416178710 a001 701408733/20633239*64079^(4/23) 2329991416178742 a001 66978574/1970299*64079^(4/23) 2329991416178961 a001 102334155/3010349*64079^(4/23) 2329991416179574 a001 121393/7881196*167761^(4/5) 2329991416180466 a001 39088169/1149851*64079^(4/23) 2329991416187736 a001 1346269/167761*64079^(7/23) 2329991416189987 a004 Fibonacci(28)*Lucas(25)/(1/2+sqrt(5)/2)^40 2329991416190781 a001 196452/5779*64079^(4/23) 2329991416191480 a001 121393/710647*167761^(3/5) 2329991416193928 a004 Fibonacci(30)*Lucas(25)/(1/2+sqrt(5)/2)^42 2329991416194503 a004 Fibonacci(32)*Lucas(25)/(1/2+sqrt(5)/2)^44 2329991416194587 a004 Fibonacci(34)*Lucas(25)/(1/2+sqrt(5)/2)^46 2329991416194599 a004 Fibonacci(36)*Lucas(25)/(1/2+sqrt(5)/2)^48 2329991416194601 a004 Fibonacci(38)*Lucas(25)/(1/2+sqrt(5)/2)^50 2329991416194601 a004 Fibonacci(40)*Lucas(25)/(1/2+sqrt(5)/2)^52 2329991416194601 a004 Fibonacci(42)*Lucas(25)/(1/2+sqrt(5)/2)^54 2329991416194601 a004 Fibonacci(44)*Lucas(25)/(1/2+sqrt(5)/2)^56 2329991416194601 a004 Fibonacci(46)*Lucas(25)/(1/2+sqrt(5)/2)^58 2329991416194601 a004 Fibonacci(48)*Lucas(25)/(1/2+sqrt(5)/2)^60 2329991416194601 a004 Fibonacci(50)*Lucas(25)/(1/2+sqrt(5)/2)^62 2329991416194601 a004 Fibonacci(52)*Lucas(25)/(1/2+sqrt(5)/2)^64 2329991416194601 a004 Fibonacci(54)*Lucas(25)/(1/2+sqrt(5)/2)^66 2329991416194601 a004 Fibonacci(56)*Lucas(25)/(1/2+sqrt(5)/2)^68 2329991416194601 a004 Fibonacci(58)*Lucas(25)/(1/2+sqrt(5)/2)^70 2329991416194601 a004 Fibonacci(60)*Lucas(25)/(1/2+sqrt(5)/2)^72 2329991416194601 a004 Fibonacci(62)*Lucas(25)/(1/2+sqrt(5)/2)^74 2329991416194601 a004 Fibonacci(64)*Lucas(25)/(1/2+sqrt(5)/2)^76 2329991416194601 a004 Fibonacci(66)*Lucas(25)/(1/2+sqrt(5)/2)^78 2329991416194601 a004 Fibonacci(68)*Lucas(25)/(1/2+sqrt(5)/2)^80 2329991416194601 a004 Fibonacci(70)*Lucas(25)/(1/2+sqrt(5)/2)^82 2329991416194601 a004 Fibonacci(72)*Lucas(25)/(1/2+sqrt(5)/2)^84 2329991416194601 a004 Fibonacci(74)*Lucas(25)/(1/2+sqrt(5)/2)^86 2329991416194601 a004 Fibonacci(76)*Lucas(25)/(1/2+sqrt(5)/2)^88 2329991416194601 a004 Fibonacci(78)*Lucas(25)/(1/2+sqrt(5)/2)^90 2329991416194601 a004 Fibonacci(80)*Lucas(25)/(1/2+sqrt(5)/2)^92 2329991416194601 a004 Fibonacci(82)*Lucas(25)/(1/2+sqrt(5)/2)^94 2329991416194601 a004 Fibonacci(84)*Lucas(25)/(1/2+sqrt(5)/2)^96 2329991416194601 a004 Fibonacci(86)*Lucas(25)/(1/2+sqrt(5)/2)^98 2329991416194601 a004 Fibonacci(88)*Lucas(25)/(1/2+sqrt(5)/2)^100 2329991416194601 a004 Fibonacci(87)*Lucas(25)/(1/2+sqrt(5)/2)^99 2329991416194601 a004 Fibonacci(85)*Lucas(25)/(1/2+sqrt(5)/2)^97 2329991416194601 a004 Fibonacci(83)*Lucas(25)/(1/2+sqrt(5)/2)^95 2329991416194601 a004 Fibonacci(81)*Lucas(25)/(1/2+sqrt(5)/2)^93 2329991416194601 a004 Fibonacci(79)*Lucas(25)/(1/2+sqrt(5)/2)^91 2329991416194601 a004 Fibonacci(77)*Lucas(25)/(1/2+sqrt(5)/2)^89 2329991416194601 a004 Fibonacci(75)*Lucas(25)/(1/2+sqrt(5)/2)^87 2329991416194601 a004 Fibonacci(73)*Lucas(25)/(1/2+sqrt(5)/2)^85 2329991416194601 a004 Fibonacci(71)*Lucas(25)/(1/2+sqrt(5)/2)^83 2329991416194601 a004 Fibonacci(69)*Lucas(25)/(1/2+sqrt(5)/2)^81 2329991416194601 a004 Fibonacci(67)*Lucas(25)/(1/2+sqrt(5)/2)^79 2329991416194601 a004 Fibonacci(65)*Lucas(25)/(1/2+sqrt(5)/2)^77 2329991416194601 a004 Fibonacci(63)*Lucas(25)/(1/2+sqrt(5)/2)^75 2329991416194601 a004 Fibonacci(61)*Lucas(25)/(1/2+sqrt(5)/2)^73 2329991416194601 a004 Fibonacci(59)*Lucas(25)/(1/2+sqrt(5)/2)^71 2329991416194601 a004 Fibonacci(57)*Lucas(25)/(1/2+sqrt(5)/2)^69 2329991416194601 a004 Fibonacci(55)*Lucas(25)/(1/2+sqrt(5)/2)^67 2329991416194601 a004 Fibonacci(53)*Lucas(25)/(1/2+sqrt(5)/2)^65 2329991416194601 a004 Fibonacci(51)*Lucas(25)/(1/2+sqrt(5)/2)^63 2329991416194601 a001 2/75025*(1/2+1/2*5^(1/2))^38 2329991416194601 a004 Fibonacci(49)*Lucas(25)/(1/2+sqrt(5)/2)^61 2329991416194601 a004 Fibonacci(47)*Lucas(25)/(1/2+sqrt(5)/2)^59 2329991416194601 a004 Fibonacci(45)*Lucas(25)/(1/2+sqrt(5)/2)^57 2329991416194601 a004 Fibonacci(43)*Lucas(25)/(1/2+sqrt(5)/2)^55 2329991416194601 a004 Fibonacci(41)*Lucas(25)/(1/2+sqrt(5)/2)^53 2329991416194601 a004 Fibonacci(39)*Lucas(25)/(1/2+sqrt(5)/2)^51 2329991416194602 a004 Fibonacci(37)*Lucas(25)/(1/2+sqrt(5)/2)^49 2329991416194606 a004 Fibonacci(35)*Lucas(25)/(1/2+sqrt(5)/2)^47 2329991416194639 a004 Fibonacci(33)*Lucas(25)/(1/2+sqrt(5)/2)^45 2329991416194858 a004 Fibonacci(31)*Lucas(25)/(1/2+sqrt(5)/2)^43 2329991416195705 a001 9227465/103682*39603^(1/11) 2329991416196363 a004 Fibonacci(29)*Lucas(25)/(1/2+sqrt(5)/2)^41 2329991416196425 a001 24157817/271443*64079^(2/23) 2329991416198762 a001 39088169/710647*64079^(3/23) 2329991416202702 a001 831985/15126*64079^(3/23) 2329991416203277 a001 267914296/4870847*64079^(3/23) 2329991416203361 a001 233802911/4250681*64079^(3/23) 2329991416203373 a001 1836311903/33385282*64079^(3/23) 2329991416203375 a001 1602508992/29134601*64079^(3/23) 2329991416203375 a001 12586269025/228826127*64079^(3/23) 2329991416203376 a001 10983760033/199691526*64079^(3/23) 2329991416203376 a001 86267571272/1568397607*64079^(3/23) 2329991416203376 a001 75283811239/1368706081*64079^(3/23) 2329991416203376 a001 591286729879/10749957122*64079^(3/23) 2329991416203376 a001 12585437040/228811001*64079^(3/23) 2329991416203376 a001 4052739537881/73681302247*64079^(3/23) 2329991416203376 a001 3536736619241/64300051206*64079^(3/23) 2329991416203376 a001 6557470319842/119218851371*64079^(3/23) 2329991416203376 a001 2504730781961/45537549124*64079^(3/23) 2329991416203376 a001 956722026041/17393796001*64079^(3/23) 2329991416203376 a001 365435296162/6643838879*64079^(3/23) 2329991416203376 a001 139583862445/2537720636*64079^(3/23) 2329991416203376 a001 53316291173/969323029*64079^(3/23) 2329991416203376 a001 20365011074/370248451*64079^(3/23) 2329991416203376 a001 7778742049/141422324*64079^(3/23) 2329991416203376 a001 2971215073/54018521*64079^(3/23) 2329991416203381 a001 1134903170/20633239*64079^(3/23) 2329991416203413 a001 433494437/7881196*64079^(3/23) 2329991416203633 a001 165580141/3010349*64079^(3/23) 2329991416205138 a001 63245986/1149851*64079^(3/23) 2329991416206551 a001 10959/711491*167761^(4/5) 2329991416206680 a004 Fibonacci(27)*Lucas(25)/(1/2+sqrt(5)/2)^39 2329991416209190 a001 17711/1860498*39603^(21/22) 2329991416209559 a001 6624/101521*103682^(17/24) 2329991416210486 a001 832040/54018521*167761^(4/5) 2329991416211061 a001 2178309/141422324*167761^(4/5) 2329991416211144 a001 5702887/370248451*167761^(4/5) 2329991416211157 a001 14930352/969323029*167761^(4/5) 2329991416211158 a001 39088169/2537720636*167761^(4/5) 2329991416211159 a001 102334155/6643838879*167761^(4/5) 2329991416211159 a001 9238424/599786069*167761^(4/5) 2329991416211159 a001 701408733/45537549124*167761^(4/5) 2329991416211159 a001 1836311903/119218851371*167761^(4/5) 2329991416211159 a001 4807526976/312119004989*167761^(4/5) 2329991416211159 a001 12586269025/817138163596*167761^(4/5) 2329991416211159 a001 32951280099/2139295485799*167761^(4/5) 2329991416211159 a001 86267571272/5600748293801*167761^(4/5) 2329991416211159 a001 7787980473/505618944676*167761^(4/5) 2329991416211159 a001 365435296162/23725150497407*167761^(4/5) 2329991416211159 a001 139583862445/9062201101803*167761^(4/5) 2329991416211159 a001 53316291173/3461452808002*167761^(4/5) 2329991416211159 a001 20365011074/1322157322203*167761^(4/5) 2329991416211159 a001 7778742049/505019158607*167761^(4/5) 2329991416211159 a001 2971215073/192900153618*167761^(4/5) 2329991416211159 a001 1134903170/73681302247*167761^(4/5) 2329991416211159 a001 433494437/28143753123*167761^(4/5) 2329991416211159 a001 165580141/10749957122*167761^(4/5) 2329991416211159 a001 63245986/4106118243*167761^(4/5) 2329991416211160 a001 24157817/1568397607*167761^(4/5) 2329991416211164 a001 9227465/599074578*167761^(4/5) 2329991416211196 a001 3524578/228826127*167761^(4/5) 2329991416211416 a001 1346269/87403803*167761^(4/5) 2329991416212052 a001 2178309/167761*64079^(6/23) 2329991416212919 a001 514229/33385282*167761^(4/5) 2329991416214145 a001 63245753/271442 2329991416214145 a001 121393/271443*141422324^(1/3) 2329991416214145 a001 121393/271443*(1/2+1/2*5^(1/2))^13 2329991416214145 a001 121393/271443*73681302247^(1/4) 2329991416214414 a001 514229/271443*167761^(2/5) 2329991416215455 a001 24157817/439204*64079^(3/23) 2329991416217221 a001 11592/109801*103682^(2/3) 2329991416221096 a001 39088169/271443*64079^(1/23) 2329991416222430 a001 105937/620166*167761^(3/5) 2329991416223223 a001 196418/12752043*167761^(4/5) 2329991416223433 a001 63245986/710647*64079^(2/23) 2329991416224966 a001 46368/1149851*103682^(3/4) 2329991416226945 a001 832040/4870847*167761^(3/5) 2329991416227374 a001 165580141/1860498*64079^(2/23) 2329991416227604 a001 726103/4250681*167761^(3/5) 2329991416227700 a001 5702887/33385282*167761^(3/5) 2329991416227714 a001 4976784/29134601*167761^(3/5) 2329991416227716 a001 39088169/228826127*167761^(3/5) 2329991416227717 a001 34111385/199691526*167761^(3/5) 2329991416227717 a001 267914296/1568397607*167761^(3/5) 2329991416227717 a001 233802911/1368706081*167761^(3/5) 2329991416227717 a001 1836311903/10749957122*167761^(3/5) 2329991416227717 a001 1602508992/9381251041*167761^(3/5) 2329991416227717 a001 12586269025/73681302247*167761^(3/5) 2329991416227717 a001 10983760033/64300051206*167761^(3/5) 2329991416227717 a001 86267571272/505019158607*167761^(3/5) 2329991416227717 a001 75283811239/440719107401*167761^(3/5) 2329991416227717 a001 2504730781961/14662949395604*167761^(3/5) 2329991416227717 a001 139583862445/817138163596*167761^(3/5) 2329991416227717 a001 53316291173/312119004989*167761^(3/5) 2329991416227717 a001 20365011074/119218851371*167761^(3/5) 2329991416227717 a001 7778742049/45537549124*167761^(3/5) 2329991416227717 a001 2971215073/17393796001*167761^(3/5) 2329991416227717 a001 1134903170/6643838879*167761^(3/5) 2329991416227717 a001 433494437/2537720636*167761^(3/5) 2329991416227717 a001 165580141/969323029*167761^(3/5) 2329991416227717 a001 63245986/370248451*167761^(3/5) 2329991416227717 a001 24157817/141422324*167761^(3/5) 2329991416227723 a001 9227465/54018521*167761^(3/5) 2329991416227760 a001 3524578/20633239*167761^(3/5) 2329991416227949 a001 433494437/4870847*64079^(2/23) 2329991416228011 a001 1346269/7881196*167761^(3/5) 2329991416228033 a001 1134903170/12752043*64079^(2/23) 2329991416228045 a001 2971215073/33385282*64079^(2/23) 2329991416228047 a001 7778742049/87403803*64079^(2/23) 2329991416228047 a001 20365011074/228826127*64079^(2/23) 2329991416228047 a001 53316291173/599074578*64079^(2/23) 2329991416228047 a001 139583862445/1568397607*64079^(2/23) 2329991416228047 a001 365435296162/4106118243*64079^(2/23) 2329991416228047 a001 956722026041/10749957122*64079^(2/23) 2329991416228047 a001 2504730781961/28143753123*64079^(2/23) 2329991416228047 a001 6557470319842/73681302247*64079^(2/23) 2329991416228047 a001 10610209857723/119218851371*64079^(2/23) 2329991416228047 a001 4052739537881/45537549124*64079^(2/23) 2329991416228047 a001 1548008755920/17393796001*64079^(2/23) 2329991416228047 a001 591286729879/6643838879*64079^(2/23) 2329991416228047 a001 225851433717/2537720636*64079^(2/23) 2329991416228047 a001 86267571272/969323029*64079^(2/23) 2329991416228047 a001 32951280099/370248451*64079^(2/23) 2329991416228047 a001 12586269025/141422324*64079^(2/23) 2329991416228048 a001 4807526976/54018521*64079^(2/23) 2329991416228052 a001 1836311903/20633239*64079^(2/23) 2329991416228085 a001 3524667/39604*64079^(2/23) 2329991416228304 a001 267914296/3010349*64079^(2/23) 2329991416229195 a001 5702887/271443*167761^(1/5) 2329991416229736 a001 514229/3010349*167761^(3/5) 2329991416229809 a001 102334155/1149851*64079^(2/23) 2329991416229956 a001 121393/271443*271443^(1/2) 2329991416231562 a001 2576/103361*103682^(19/24) 2329991416233689 a004 Fibonacci(26)*Lucas(27)/(1/2+sqrt(5)/2)^40 2329991416234443 a001 121393/710647*439204^(5/9) 2329991416235032 a001 121393/54018521*439204^(8/9) 2329991416236358 a001 121393/12752043*439204^(7/9) 2329991416236859 a001 3524578/167761*64079^(5/23) 2329991416237972 a001 121393/3010349*439204^(2/3) 2329991416239918 a001 1346269/710647*167761^(2/5) 2329991416240125 a001 39088169/439204*64079^(2/23) 2329991416241068 a001 832040/271443*439204^(1/3) 2329991416241137 a001 121393/710647*7881196^(5/11) 2329991416241141 a001 105937/90481*7881196^(1/3) 2329991416241151 a001 121393/710647*20633239^(3/7) 2329991416241154 a001 121393/710647*141422324^(5/13) 2329991416241154 a001 38580030723/165580141 2329991416241154 a001 121393/710647*2537720636^(1/3) 2329991416241154 a001 121393/710647*45537549124^(5/17) 2329991416241154 a001 121393/710647*312119004989^(3/11) 2329991416241154 a001 121393/710647*14662949395604^(5/21) 2329991416241154 a001 121393/710647*(1/2+1/2*5^(1/2))^15 2329991416241154 a001 121393/710647*192900153618^(5/18) 2329991416241154 a001 105937/90481*312119004989^(1/5) 2329991416241154 a001 105937/90481*(1/2+1/2*5^(1/2))^11 2329991416241154 a001 121393/710647*28143753123^(3/10) 2329991416241154 a001 121393/710647*10749957122^(5/16) 2329991416241154 a001 105937/90481*1568397607^(1/4) 2329991416241154 a001 121393/710647*599074578^(5/14) 2329991416241154 a001 121393/710647*228826127^(3/8) 2329991416241155 a001 121393/710647*33385282^(5/12) 2329991416241490 a001 121393/710647*1860498^(1/2) 2329991416241523 a001 46368/3010349*103682^(5/6) 2329991416241558 a001 196418/1149851*167761^(3/5) 2329991416243121 a001 3524578/271443*439204^(2/9) 2329991416243639 a001 1762289/930249*167761^(2/5) 2329991416244005 a004 Fibonacci(26)*Lucas(29)/(1/2+sqrt(5)/2)^42 2329991416244182 a001 9227465/4870847*167761^(2/5) 2329991416244261 a001 24157817/12752043*167761^(2/5) 2329991416244272 a001 31622993/16692641*167761^(2/5) 2329991416244274 a001 165580141/87403803*167761^(2/5) 2329991416244274 a001 433494437/228826127*167761^(2/5) 2329991416244274 a001 567451585/299537289*167761^(2/5) 2329991416244274 a001 2971215073/1568397607*167761^(2/5) 2329991416244274 a001 7778742049/4106118243*167761^(2/5) 2329991416244274 a001 10182505537/5374978561*167761^(2/5) 2329991416244274 a001 53316291173/28143753123*167761^(2/5) 2329991416244274 a001 139583862445/73681302247*167761^(2/5) 2329991416244274 a001 182717648081/96450076809*167761^(2/5) 2329991416244274 a001 956722026041/505019158607*167761^(2/5) 2329991416244274 a001 10610209857723/5600748293801*167761^(2/5) 2329991416244274 a001 591286729879/312119004989*167761^(2/5) 2329991416244274 a001 225851433717/119218851371*167761^(2/5) 2329991416244274 a001 21566892818/11384387281*167761^(2/5) 2329991416244274 a001 32951280099/17393796001*167761^(2/5) 2329991416244274 a001 12586269025/6643838879*167761^(2/5) 2329991416244274 a001 1201881744/634430159*167761^(2/5) 2329991416244274 a001 1836311903/969323029*167761^(2/5) 2329991416244274 a001 701408733/370248451*167761^(2/5) 2329991416244274 a001 66978574/35355581*167761^(2/5) 2329991416244275 a001 102334155/54018521*167761^(2/5) 2329991416244280 a001 39088169/20633239*167761^(2/5) 2329991416244310 a001 3732588/1970299*167761^(2/5) 2329991416244423 a001 4976784/90481*439204^(1/9) 2329991416244517 a001 5702887/3010349*167761^(2/5) 2329991416245084 a001 832040/271443*7881196^(3/11) 2329991416245094 a001 832040/271443*141422324^(3/13) 2329991416245094 a001 101003831720/433494437 2329991416245094 a001 832040/271443*2537720636^(1/5) 2329991416245094 a001 121393/1860498*45537549124^(1/3) 2329991416245094 a001 121393/1860498*(1/2+1/2*5^(1/2))^17 2329991416245094 a001 832040/271443*45537549124^(3/17) 2329991416245094 a001 832040/271443*14662949395604^(1/7) 2329991416245094 a001 832040/271443*(1/2+1/2*5^(1/2))^9 2329991416245094 a001 832040/271443*192900153618^(1/6) 2329991416245094 a001 832040/271443*10749957122^(3/16) 2329991416245094 a001 832040/271443*599074578^(3/14) 2329991416245095 a001 832040/271443*33385282^(1/4) 2329991416245101 a001 121393/1860498*12752043^(1/2) 2329991416245296 a001 832040/271443*1860498^(3/10) 2329991416245510 a004 Fibonacci(26)*Lucas(31)/(1/2+sqrt(5)/2)^44 2329991416245668 a001 726103/90481*20633239^(1/5) 2329991416245669 a001 264431464437/1134903170 2329991416245669 a001 726103/90481*17393796001^(1/7) 2329991416245669 a001 121393/4870847*817138163596^(1/3) 2329991416245669 a001 121393/4870847*(1/2+1/2*5^(1/2))^19 2329991416245669 a001 726103/90481*14662949395604^(1/9) 2329991416245669 a001 726103/90481*(1/2+1/2*5^(1/2))^7 2329991416245669 a001 726103/90481*599074578^(1/6) 2329991416245669 a001 121393/4870847*87403803^(1/2) 2329991416245729 a001 121393/12752043*7881196^(7/11) 2329991416245730 a004 Fibonacci(26)*Lucas(33)/(1/2+sqrt(5)/2)^46 2329991416245733 a001 121393/969323029*7881196^(10/11) 2329991416245737 a001 121393/228826127*7881196^(9/11) 2329991416245741 a001 121393/54018521*7881196^(8/11) 2329991416245748 a001 121393/20633239*7881196^(2/3) 2329991416245750 a001 121393/12752043*20633239^(3/5) 2329991416245752 a001 5702887/271443*20633239^(1/7) 2329991416245753 a001 121393/12752043*141422324^(7/13) 2329991416245753 a001 121393/12752043*2537720636^(7/15) 2329991416245753 a001 692290561591/2971215073 2329991416245753 a001 5702887/271443*2537720636^(1/9) 2329991416245753 a001 121393/12752043*17393796001^(3/7) 2329991416245753 a001 121393/12752043*45537549124^(7/17) 2329991416245753 a001 121393/12752043*14662949395604^(1/3) 2329991416245753 a001 121393/12752043*(1/2+1/2*5^(1/2))^21 2329991416245753 a001 121393/12752043*192900153618^(7/18) 2329991416245753 a001 5702887/271443*312119004989^(1/11) 2329991416245753 a001 5702887/271443*(1/2+1/2*5^(1/2))^5 2329991416245753 a001 5702887/271443*28143753123^(1/10) 2329991416245753 a001 121393/12752043*10749957122^(7/16) 2329991416245753 a001 121393/12752043*599074578^(1/2) 2329991416245753 a001 5702887/271443*228826127^(1/8) 2329991416245754 a001 121393/12752043*33385282^(7/12) 2329991416245762 a001 4976784/90481*7881196^(1/11) 2329991416245762 a004 Fibonacci(26)*Lucas(35)/(1/2+sqrt(5)/2)^48 2329991416245763 a001 121393/969323029*20633239^(6/7) 2329991416245763 a001 121393/370248451*20633239^(4/5) 2329991416245763 a001 121393/87403803*20633239^(5/7) 2329991416245765 a001 4976784/90481*141422324^(1/13) 2329991416245765 a001 4976784/90481*2537720636^(1/15) 2329991416245765 a001 1812440220336/7778742049 2329991416245765 a001 121393/33385282*(1/2+1/2*5^(1/2))^23 2329991416245765 a001 4976784/90481*45537549124^(1/17) 2329991416245765 a001 4976784/90481*14662949395604^(1/21) 2329991416245765 a001 4976784/90481*(1/2+1/2*5^(1/2))^3 2329991416245765 a001 4976784/90481*192900153618^(1/18) 2329991416245765 a001 4976784/90481*10749957122^(1/16) 2329991416245765 a001 121393/33385282*4106118243^(1/2) 2329991416245765 a001 4976784/90481*599074578^(1/14) 2329991416245765 a001 4976784/90481*33385282^(1/12) 2329991416245767 a004 Fibonacci(26)*Lucas(37)/(1/2+sqrt(5)/2)^50 2329991416245767 a001 121393/87403803*2537720636^(5/9) 2329991416245767 a001 4745030099417/20365011074 2329991416245767 a001 121393/87403803*312119004989^(5/11) 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^25/Lucas(38) 2329991416245767 a001 121393/87403803*3461452808002^(5/12) 2329991416245767 a001 39088169/542886+39088169/542886*5^(1/2) 2329991416245767 a001 121393/87403803*28143753123^(1/2) 2329991416245767 a001 121393/87403803*228826127^(5/8) 2329991416245767 a001 121393/228826127*141422324^(9/13) 2329991416245767 a004 Fibonacci(26)*Lucas(39)/(1/2+sqrt(5)/2)^52 2329991416245767 a001 121393/17393796001*141422324^(12/13) 2329991416245767 a001 121393/4106118243*141422324^(11/13) 2329991416245767 a001 121393/969323029*141422324^(10/13) 2329991416245767 a001 121393/228826127*2537720636^(3/5) 2329991416245767 a001 121393/228826127*45537549124^(9/17) 2329991416245767 a001 12422650077915/53316291173 2329991416245767 a001 121393/228826127*817138163596^(9/19) 2329991416245767 a001 121393/228826127*14662949395604^(3/7) 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^27/Lucas(40) 2329991416245767 a001 121393/228826127*192900153618^(1/2) 2329991416245767 a004 Fibonacci(40)/Lucas(26)/(1/2+sqrt(5)/2) 2329991416245767 a001 121393/228826127*10749957122^(9/16) 2329991416245767 a001 121393/228826127*599074578^(9/14) 2329991416245767 a004 Fibonacci(26)*Lucas(41)/(1/2+sqrt(5)/2)^54 2329991416245767 a001 32522920134328/139583862445 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^29/Lucas(42) 2329991416245767 a001 121393/599074578*1322157322203^(1/2) 2329991416245767 a004 Fibonacci(42)/Lucas(26)/(1/2+sqrt(5)/2)^3 2329991416245767 a004 Fibonacci(26)*Lucas(43)/(1/2+sqrt(5)/2)^56 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^31/Lucas(44) 2329991416245767 a001 121393/1568397607*9062201101803^(1/2) 2329991416245767 a004 Fibonacci(44)/Lucas(26)/(1/2+sqrt(5)/2)^5 2329991416245767 a001 121393/4106118243*2537720636^(11/15) 2329991416245767 a004 Fibonacci(26)*Lucas(45)/(1/2+sqrt(5)/2)^58 2329991416245767 a001 121393/312119004989*2537720636^(14/15) 2329991416245767 a001 121393/119218851371*2537720636^(8/9) 2329991416245767 a001 121393/73681302247*2537720636^(13/15) 2329991416245767 a001 121393/10749957122*2537720636^(7/9) 2329991416245767 a001 121393/17393796001*2537720636^(4/5) 2329991416245767 a001 121393/4106118243*45537549124^(11/17) 2329991416245767 a001 121393/4106118243*312119004989^(3/5) 2329991416245767 a001 121393/4106118243*817138163596^(11/19) 2329991416245767 a001 121393/4106118243*14662949395604^(11/21) 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^33/Lucas(46) 2329991416245767 a001 121393/4106118243*192900153618^(11/18) 2329991416245767 a004 Fibonacci(46)/Lucas(26)/(1/2+sqrt(5)/2)^7 2329991416245767 a001 121393/4106118243*10749957122^(11/16) 2329991416245767 a004 Fibonacci(26)*Lucas(47)/(1/2+sqrt(5)/2)^60 2329991416245767 a001 121393/10749957122*17393796001^(5/7) 2329991416245767 a001 121393/10749957122*312119004989^(7/11) 2329991416245767 a001 121393/10749957122*14662949395604^(5/9) 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^35/Lucas(48) 2329991416245767 a001 121393/10749957122*505019158607^(5/8) 2329991416245767 a004 Fibonacci(48)/Lucas(26)/(1/2+sqrt(5)/2)^9 2329991416245767 a001 121393/10749957122*28143753123^(7/10) 2329991416245767 a004 Fibonacci(26)*Lucas(49)/(1/2+sqrt(5)/2)^62 2329991416245767 a001 121393/312119004989*17393796001^(6/7) 2329991416245767 a001 1527884955751825/6557470319842 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^37/Lucas(50) 2329991416245767 a004 Fibonacci(50)/Lucas(26)/(1/2+sqrt(5)/2)^11 2329991416245767 a001 121393/73681302247*45537549124^(13/17) 2329991416245767 a004 Fibonacci(26)*Lucas(51)/(1/2+sqrt(5)/2)^64 2329991416245767 a001 121393/5600748293801*45537549124^(16/17) 2329991416245767 a001 121393/1322157322203*45537549124^(15/17) 2329991416245767 a001 121393/312119004989*45537549124^(14/17) 2329991416245767 a001 121393/73681302247*14662949395604^(13/21) 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^39/Lucas(52) 2329991416245767 a001 121393/73681302247*192900153618^(13/18) 2329991416245767 a004 Fibonacci(26)*Lucas(53)/(1/2+sqrt(5)/2)^66 2329991416245767 a001 121393/73681302247*73681302247^(3/4) 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^41/Lucas(54) 2329991416245767 a004 Fibonacci(26)*Lucas(55)/(1/2+sqrt(5)/2)^68 2329991416245767 a001 121393/1322157322203*312119004989^(9/11) 2329991416245767 a001 121393/817138163596*312119004989^(4/5) 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^43/Lucas(56) 2329991416245767 a004 Fibonacci(26)*Lucas(57)/(1/2+sqrt(5)/2)^70 2329991416245767 a001 121393/1322157322203*14662949395604^(5/7) 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^45/Lucas(58) 2329991416245767 a004 Fibonacci(26)*Lucas(59)/(1/2+sqrt(5)/2)^72 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^47/Lucas(60) 2329991416245767 a004 Fibonacci(26)*Lucas(61)/(1/2+sqrt(5)/2)^74 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^49/Lucas(62) 2329991416245767 a004 Fibonacci(26)*Lucas(63)/(1/2+sqrt(5)/2)^76 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^51/Lucas(64) 2329991416245767 a004 Fibonacci(26)*Lucas(65)/(1/2+sqrt(5)/2)^78 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^53/Lucas(66) 2329991416245767 a004 Fibonacci(26)*Lucas(67)/(1/2+sqrt(5)/2)^80 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^55/Lucas(68) 2329991416245767 a004 Fibonacci(26)*Lucas(69)/(1/2+sqrt(5)/2)^82 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^57/Lucas(70) 2329991416245767 a004 Fibonacci(26)*Lucas(71)/(1/2+sqrt(5)/2)^84 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^59/Lucas(72) 2329991416245767 a004 Fibonacci(26)*Lucas(73)/(1/2+sqrt(5)/2)^86 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^61/Lucas(74) 2329991416245767 a004 Fibonacci(26)*Lucas(75)/(1/2+sqrt(5)/2)^88 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^63/Lucas(76) 2329991416245767 a004 Fibonacci(26)*Lucas(77)/(1/2+sqrt(5)/2)^90 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^65/Lucas(78) 2329991416245767 a004 Fibonacci(26)*Lucas(79)/(1/2+sqrt(5)/2)^92 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^67/Lucas(80) 2329991416245767 a004 Fibonacci(26)*Lucas(81)/(1/2+sqrt(5)/2)^94 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^69/Lucas(82) 2329991416245767 a004 Fibonacci(26)*Lucas(83)/(1/2+sqrt(5)/2)^96 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^71/Lucas(84) 2329991416245767 a004 Fibonacci(26)*Lucas(85)/(1/2+sqrt(5)/2)^98 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^73/Lucas(86) 2329991416245767 a004 Fibonacci(26)*Lucas(87)/(1/2+sqrt(5)/2)^100 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^75/Lucas(88) 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^77/Lucas(90) 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^79/Lucas(92) 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^81/Lucas(94) 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^83/Lucas(96) 2329991416245767 a004 Fibonacci(13)*Lucas(13)/(1/2+sqrt(5)/2)^13 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^85/Lucas(98) 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^86/Lucas(99) 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^87/Lucas(100) 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^84/Lucas(97) 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^82/Lucas(95) 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^80/Lucas(93) 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^78/Lucas(91) 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^76/Lucas(89) 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^74/Lucas(87) 2329991416245767 a004 Fibonacci(26)*Lucas(86)/(1/2+sqrt(5)/2)^99 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^72/Lucas(85) 2329991416245767 a004 Fibonacci(26)*Lucas(84)/(1/2+sqrt(5)/2)^97 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^70/Lucas(83) 2329991416245767 a004 Fibonacci(26)*Lucas(82)/(1/2+sqrt(5)/2)^95 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^68/Lucas(81) 2329991416245767 a004 Fibonacci(26)*Lucas(80)/(1/2+sqrt(5)/2)^93 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^66/Lucas(79) 2329991416245767 a004 Fibonacci(26)*Lucas(78)/(1/2+sqrt(5)/2)^91 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^64/Lucas(77) 2329991416245767 a004 Fibonacci(26)*Lucas(76)/(1/2+sqrt(5)/2)^89 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^62/Lucas(75) 2329991416245767 a004 Fibonacci(26)*Lucas(74)/(1/2+sqrt(5)/2)^87 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^60/Lucas(73) 2329991416245767 a004 Fibonacci(26)*Lucas(72)/(1/2+sqrt(5)/2)^85 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^58/Lucas(71) 2329991416245767 a004 Fibonacci(26)*Lucas(70)/(1/2+sqrt(5)/2)^83 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^56/Lucas(69) 2329991416245767 a004 Fibonacci(26)*Lucas(68)/(1/2+sqrt(5)/2)^81 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^54/Lucas(67) 2329991416245767 a004 Fibonacci(26)*Lucas(66)/(1/2+sqrt(5)/2)^79 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^52/Lucas(65) 2329991416245767 a004 Fibonacci(26)*Lucas(64)/(1/2+sqrt(5)/2)^77 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^50/Lucas(63) 2329991416245767 a004 Fibonacci(26)*Lucas(62)/(1/2+sqrt(5)/2)^75 2329991416245767 a001 121393/5600748293801*14662949395604^(16/21) 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^48/Lucas(61) 2329991416245767 a004 Fibonacci(26)*Lucas(60)/(1/2+sqrt(5)/2)^73 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^46/Lucas(59) 2329991416245767 a004 Fibonacci(26)*Lucas(58)/(1/2+sqrt(5)/2)^71 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^44/Lucas(57) 2329991416245767 a004 Fibonacci(26)*Lucas(56)/(1/2+sqrt(5)/2)^69 2329991416245767 a001 121393/312119004989*817138163596^(14/19) 2329991416245767 a001 121393/312119004989*14662949395604^(2/3) 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^42/Lucas(55) 2329991416245767 a001 121393/1322157322203*192900153618^(5/6) 2329991416245767 a001 121393/23725150497407*192900153618^(17/18) 2329991416245767 a004 Fibonacci(26)*Lucas(54)/(1/2+sqrt(5)/2)^67 2329991416245767 a001 121393/312119004989*192900153618^(7/9) 2329991416245767 a001 121393/119218851371*312119004989^(8/11) 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^40/Lucas(53) 2329991416245767 a001 121393/119218851371*23725150497407^(5/8) 2329991416245767 a004 Fibonacci(54)/Lucas(26)/(1/2+sqrt(5)/2)^15 2329991416245767 a001 121393/817138163596*73681302247^(11/13) 2329991416245767 a001 121393/5600748293801*73681302247^(12/13) 2329991416245767 a004 Fibonacci(56)/Lucas(26)/(1/2+sqrt(5)/2)^17 2329991416245767 a004 Fibonacci(58)/Lucas(26)/(1/2+sqrt(5)/2)^19 2329991416245767 a004 Fibonacci(60)/Lucas(26)/(1/2+sqrt(5)/2)^21 2329991416245767 a004 Fibonacci(62)/Lucas(26)/(1/2+sqrt(5)/2)^23 2329991416245767 a004 Fibonacci(64)/Lucas(26)/(1/2+sqrt(5)/2)^25 2329991416245767 a004 Fibonacci(66)/Lucas(26)/(1/2+sqrt(5)/2)^27 2329991416245767 a004 Fibonacci(68)/Lucas(26)/(1/2+sqrt(5)/2)^29 2329991416245767 a004 Fibonacci(70)/Lucas(26)/(1/2+sqrt(5)/2)^31 2329991416245767 a004 Fibonacci(72)/Lucas(26)/(1/2+sqrt(5)/2)^33 2329991416245767 a004 Fibonacci(74)/Lucas(26)/(1/2+sqrt(5)/2)^35 2329991416245767 a004 Fibonacci(76)/Lucas(26)/(1/2+sqrt(5)/2)^37 2329991416245767 a004 Fibonacci(78)/Lucas(26)/(1/2+sqrt(5)/2)^39 2329991416245767 a004 Fibonacci(80)/Lucas(26)/(1/2+sqrt(5)/2)^41 2329991416245767 a004 Fibonacci(82)/Lucas(26)/(1/2+sqrt(5)/2)^43 2329991416245767 a004 Fibonacci(84)/Lucas(26)/(1/2+sqrt(5)/2)^45 2329991416245767 a004 Fibonacci(86)/Lucas(26)/(1/2+sqrt(5)/2)^47 2329991416245767 a004 Fibonacci(88)/Lucas(26)/(1/2+sqrt(5)/2)^49 2329991416245767 a004 Fibonacci(90)/Lucas(26)/(1/2+sqrt(5)/2)^51 2329991416245767 a004 Fibonacci(92)/Lucas(26)/(1/2+sqrt(5)/2)^53 2329991416245767 a004 Fibonacci(94)/Lucas(26)/(1/2+sqrt(5)/2)^55 2329991416245767 a004 Fibonacci(96)/Lucas(26)/(1/2+sqrt(5)/2)^57 2329991416245767 a004 Fibonacci(100)/Lucas(26)/(1/2+sqrt(5)/2)^61 2329991416245767 a004 Fibonacci(26)*Lucas(52)/(1/2+sqrt(5)/2)^65 2329991416245767 a004 Fibonacci(98)/Lucas(26)/(1/2+sqrt(5)/2)^59 2329991416245767 a004 Fibonacci(99)/Lucas(26)/(1/2+sqrt(5)/2)^60 2329991416245767 a004 Fibonacci(97)/Lucas(26)/(1/2+sqrt(5)/2)^58 2329991416245767 a004 Fibonacci(95)/Lucas(26)/(1/2+sqrt(5)/2)^56 2329991416245767 a004 Fibonacci(93)/Lucas(26)/(1/2+sqrt(5)/2)^54 2329991416245767 a004 Fibonacci(91)/Lucas(26)/(1/2+sqrt(5)/2)^52 2329991416245767 a004 Fibonacci(89)/Lucas(26)/(1/2+sqrt(5)/2)^50 2329991416245767 a004 Fibonacci(87)/Lucas(26)/(1/2+sqrt(5)/2)^48 2329991416245767 a004 Fibonacci(85)/Lucas(26)/(1/2+sqrt(5)/2)^46 2329991416245767 a004 Fibonacci(83)/Lucas(26)/(1/2+sqrt(5)/2)^44 2329991416245767 a004 Fibonacci(81)/Lucas(26)/(1/2+sqrt(5)/2)^42 2329991416245767 a004 Fibonacci(79)/Lucas(26)/(1/2+sqrt(5)/2)^40 2329991416245767 a004 Fibonacci(77)/Lucas(26)/(1/2+sqrt(5)/2)^38 2329991416245767 a004 Fibonacci(75)/Lucas(26)/(1/2+sqrt(5)/2)^36 2329991416245767 a004 Fibonacci(73)/Lucas(26)/(1/2+sqrt(5)/2)^34 2329991416245767 a004 Fibonacci(71)/Lucas(26)/(1/2+sqrt(5)/2)^32 2329991416245767 a004 Fibonacci(69)/Lucas(26)/(1/2+sqrt(5)/2)^30 2329991416245767 a004 Fibonacci(67)/Lucas(26)/(1/2+sqrt(5)/2)^28 2329991416245767 a004 Fibonacci(65)/Lucas(26)/(1/2+sqrt(5)/2)^26 2329991416245767 a004 Fibonacci(63)/Lucas(26)/(1/2+sqrt(5)/2)^24 2329991416245767 a004 Fibonacci(61)/Lucas(26)/(1/2+sqrt(5)/2)^22 2329991416245767 a004 Fibonacci(59)/Lucas(26)/(1/2+sqrt(5)/2)^20 2329991416245767 a004 Fibonacci(57)/Lucas(26)/(1/2+sqrt(5)/2)^18 2329991416245767 a004 Fibonacci(55)/Lucas(26)/(1/2+sqrt(5)/2)^16 2329991416245767 a001 121393/119218851371*73681302247^(10/13) 2329991416245767 a004 Fibonacci(53)/Lucas(26)/(1/2+sqrt(5)/2)^14 2329991416245767 a001 121393/45537549124*817138163596^(2/3) 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^38/Lucas(51) 2329991416245767 a004 Fibonacci(51)/Lucas(26)/(1/2+sqrt(5)/2)^12 2329991416245767 a001 121393/119218851371*28143753123^(4/5) 2329991416245767 a001 121393/1322157322203*28143753123^(9/10) 2329991416245767 a004 Fibonacci(26)*Lucas(50)/(1/2+sqrt(5)/2)^63 2329991416245767 a001 121393/17393796001*45537549124^(12/17) 2329991416245767 a001 121393/17393796001*14662949395604^(4/7) 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^36/Lucas(49) 2329991416245767 a001 121393/17393796001*505019158607^(9/14) 2329991416245767 a001 121393/17393796001*192900153618^(2/3) 2329991416245767 a001 121393/17393796001*73681302247^(9/13) 2329991416245767 a004 Fibonacci(49)/Lucas(26)/(1/2+sqrt(5)/2)^10 2329991416245767 a001 121393/73681302247*10749957122^(13/16) 2329991416245767 a001 121393/119218851371*10749957122^(5/6) 2329991416245767 a001 121393/45537549124*10749957122^(19/24) 2329991416245767 a001 121393/312119004989*10749957122^(7/8) 2329991416245767 a001 121393/817138163596*10749957122^(11/12) 2329991416245767 a001 121393/1322157322203*10749957122^(15/16) 2329991416245767 a001 121393/2139295485799*10749957122^(23/24) 2329991416245767 a004 Fibonacci(26)*Lucas(48)/(1/2+sqrt(5)/2)^61 2329991416245767 a001 121393/17393796001*10749957122^(3/4) 2329991416245767 a001 121393/6643838879*45537549124^(2/3) 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^34/Lucas(47) 2329991416245767 a001 360684711356689/1548008755920 2329991416245767 a004 Fibonacci(47)/Lucas(26)/(1/2+sqrt(5)/2)^8 2329991416245767 a001 121393/6643838879*10749957122^(17/24) 2329991416245767 a001 121393/45537549124*4106118243^(19/23) 2329991416245767 a001 121393/17393796001*4106118243^(18/23) 2329991416245767 a001 121393/119218851371*4106118243^(20/23) 2329991416245767 a001 121393/312119004989*4106118243^(21/23) 2329991416245767 a001 121393/817138163596*4106118243^(22/23) 2329991416245767 a004 Fibonacci(26)*Lucas(46)/(1/2+sqrt(5)/2)^59 2329991416245767 a001 121393/6643838879*4106118243^(17/23) 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^32/Lucas(45) 2329991416245767 a001 121393/2537720636*23725150497407^(1/2) 2329991416245767 a001 121393/2537720636*505019158607^(4/7) 2329991416245767 a001 121393/2537720636*73681302247^(8/13) 2329991416245767 a004 Fibonacci(45)/Lucas(26)/(1/2+sqrt(5)/2)^6 2329991416245767 a001 121393/2537720636*10749957122^(2/3) 2329991416245767 a001 121393/2537720636*4106118243^(16/23) 2329991416245767 a001 121393/4106118243*1568397607^(3/4) 2329991416245767 a001 121393/17393796001*1568397607^(9/11) 2329991416245767 a001 121393/6643838879*1568397607^(17/22) 2329991416245767 a001 121393/45537549124*1568397607^(19/22) 2329991416245767 a001 121393/119218851371*1568397607^(10/11) 2329991416245767 a001 121393/312119004989*1568397607^(21/22) 2329991416245767 a004 Fibonacci(26)*Lucas(44)/(1/2+sqrt(5)/2)^57 2329991416245767 a001 121393/2537720636*1568397607^(8/11) 2329991416245767 a001 121393/969323029*2537720636^(2/3) 2329991416245767 a001 121393/969323029*45537549124^(10/17) 2329991416245767 a001 121393/969323029*312119004989^(6/11) 2329991416245767 a001 121393/969323029*14662949395604^(10/21) 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^30/Lucas(43) 2329991416245767 a001 52623190190741/225851433717 2329991416245767 a001 121393/969323029*192900153618^(5/9) 2329991416245767 a004 Fibonacci(43)/Lucas(26)/(1/2+sqrt(5)/2)^4 2329991416245767 a001 121393/969323029*28143753123^(3/5) 2329991416245767 a001 121393/969323029*10749957122^(5/8) 2329991416245767 a001 121393/969323029*4106118243^(15/23) 2329991416245767 a001 121393/969323029*1568397607^(15/22) 2329991416245767 a001 121393/4106118243*599074578^(11/14) 2329991416245767 a001 121393/2537720636*599074578^(16/21) 2329991416245767 a001 121393/6643838879*599074578^(17/21) 2329991416245767 a001 121393/10749957122*599074578^(5/6) 2329991416245767 a001 121393/17393796001*599074578^(6/7) 2329991416245767 a001 121393/45537549124*599074578^(19/21) 2329991416245767 a001 121393/73681302247*599074578^(13/14) 2329991416245767 a001 121393/119218851371*599074578^(20/21) 2329991416245767 a004 Fibonacci(26)*Lucas(42)/(1/2+sqrt(5)/2)^55 2329991416245767 a001 121393/969323029*599074578^(5/7) 2329991416245767 a001 121393/370248451*17393796001^(4/7) 2329991416245767 a001 121393/370248451*14662949395604^(4/9) 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^28/Lucas(41) 2329991416245767 a001 121393/370248451*505019158607^(1/2) 2329991416245767 a001 20100270056413/86267571272 2329991416245767 a001 121393/370248451*73681302247^(7/13) 2329991416245767 a004 Fibonacci(41)/Lucas(26)/(1/2+sqrt(5)/2)^2 2329991416245767 a001 121393/370248451*10749957122^(7/12) 2329991416245767 a001 121393/370248451*4106118243^(14/23) 2329991416245767 a001 121393/370248451*1568397607^(7/11) 2329991416245767 a001 121393/370248451*599074578^(2/3) 2329991416245767 a001 121393/969323029*228826127^(3/4) 2329991416245767 a001 121393/2537720636*228826127^(4/5) 2329991416245767 a001 121393/6643838879*228826127^(17/20) 2329991416245767 a001 233/271444*141422324^(2/3) 2329991416245767 a001 121393/10749957122*228826127^(7/8) 2329991416245767 a001 121393/17393796001*228826127^(9/10) 2329991416245767 a001 121393/45537549124*228826127^(19/20) 2329991416245767 a004 Fibonacci(26)*Lucas(40)/(1/2+sqrt(5)/2)^53 2329991416245767 a001 121393/370248451*228826127^(7/10) 2329991416245767 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^26/Lucas(39) 2329991416245767 a001 233/271444*73681302247^(1/2) 2329991416245767 a001 63245986/271443 2329991416245767 a001 233/271444*10749957122^(13/24) 2329991416245767 a001 233/271444*4106118243^(13/23) 2329991416245767 a001 233/271444*1568397607^(13/22) 2329991416245767 a001 233/271444*599074578^(13/21) 2329991416245768 a001 233/271444*228826127^(13/20) 2329991416245768 a001 121393/370248451*87403803^(14/19) 2329991416245768 a001 121393/969323029*87403803^(15/19) 2329991416245768 a001 121393/2537720636*87403803^(16/19) 2329991416245768 a001 121393/6643838879*87403803^(17/19) 2329991416245768 a001 121393/17393796001*87403803^(18/19) 2329991416245768 a004 Fibonacci(26)*Lucas(38)/(1/2+sqrt(5)/2)^51 2329991416245768 a001 233/271444*87403803^(13/19) 2329991416245768 a001 121393/54018521*141422324^(8/13) 2329991416245768 a001 121393/54018521*2537720636^(8/15) 2329991416245768 a001 121393/54018521*45537549124^(8/17) 2329991416245768 a001 121393/54018521*14662949395604^(8/21) 2329991416245768 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^24/Lucas(37) 2329991416245768 a001 121393/54018521*192900153618^(4/9) 2329991416245768 a001 121393/54018521*73681302247^(6/13) 2329991416245768 a001 24157817/271443*(1/2+1/2*5^(1/2))^2 2329991416245768 a001 24157817/271443*10749957122^(1/24) 2329991416245768 a001 2932589879081/12586269025 2329991416245768 a001 24157817/271443*4106118243^(1/23) 2329991416245768 a001 121393/54018521*10749957122^(1/2) 2329991416245768 a001 24157817/271443*1568397607^(1/22) 2329991416245768 a001 121393/54018521*4106118243^(12/23) 2329991416245768 a001 24157817/271443*599074578^(1/21) 2329991416245768 a001 121393/54018521*1568397607^(6/11) 2329991416245768 a001 24157817/271443*228826127^(1/20) 2329991416245768 a001 121393/54018521*599074578^(4/7) 2329991416245768 a001 24157817/271443*87403803^(1/19) 2329991416245768 a001 121393/54018521*228826127^(3/5) 2329991416245768 a001 24157817/271443*33385282^(1/18) 2329991416245768 a001 121393/54018521*87403803^(12/19) 2329991416245769 a001 121393/228826127*33385282^(3/4) 2329991416245769 a001 233/271444*33385282^(13/18) 2329991416245769 a001 24157817/271443*12752043^(1/17) 2329991416245769 a001 121393/370248451*33385282^(7/9) 2329991416245769 a001 121393/969323029*33385282^(5/6) 2329991416245769 a001 121393/2537720636*33385282^(8/9) 2329991416245769 a001 121393/4106118243*33385282^(11/12) 2329991416245769 a001 121393/6643838879*33385282^(17/18) 2329991416245769 a004 Fibonacci(26)*Lucas(36)/(1/2+sqrt(5)/2)^49 2329991416245770 a001 121393/54018521*33385282^(2/3) 2329991416245773 a001 121393/20633239*312119004989^(2/5) 2329991416245773 a001 121393/20633239*(1/2+1/2*5^(1/2))^22 2329991416245773 a001 9227465/271443*(1/2+1/2*5^(1/2))^4 2329991416245773 a001 9227465/271443*23725150497407^(1/16) 2329991416245773 a001 9227465/271443*73681302247^(1/13) 2329991416245773 a001 9227465/271443*10749957122^(1/12) 2329991416245773 a001 121393/20633239*10749957122^(11/24) 2329991416245773 a001 9227465/271443*4106118243^(2/23) 2329991416245773 a001 1120149658745/4807526976 2329991416245773 a001 121393/20633239*4106118243^(11/23) 2329991416245773 a001 9227465/271443*1568397607^(1/11) 2329991416245773 a001 121393/20633239*1568397607^(1/2) 2329991416245773 a001 9227465/271443*599074578^(2/21) 2329991416245773 a001 121393/20633239*599074578^(11/21) 2329991416245773 a001 9227465/271443*228826127^(1/10) 2329991416245773 a001 121393/20633239*228826127^(11/20) 2329991416245773 a001 9227465/271443*87403803^(2/19) 2329991416245773 a001 121393/20633239*87403803^(11/19) 2329991416245773 a001 9227465/271443*33385282^(1/9) 2329991416245774 a001 121393/20633239*33385282^(11/18) 2329991416245774 a001 24157817/271443*4870847^(1/16) 2329991416245775 a001 9227465/271443*12752043^(2/17) 2329991416245778 a001 121393/54018521*12752043^(12/17) 2329991416245778 a001 233/271444*12752043^(13/17) 2329991416245779 a001 121393/370248451*12752043^(14/17) 2329991416245780 a001 121393/969323029*12752043^(15/17) 2329991416245781 a001 121393/2537720636*12752043^(16/17) 2329991416245782 a004 Fibonacci(26)*Lucas(34)/(1/2+sqrt(5)/2)^47 2329991416245782 a001 121393/20633239*12752043^(11/17) 2329991416245785 a001 9227465/271443*4870847^(1/8) 2329991416245798 a001 3524578/271443*7881196^(2/11) 2329991416245802 a001 121393/7881196*20633239^(4/7) 2329991416245805 a001 3524578/271443*141422324^(2/13) 2329991416245805 a001 121393/7881196*2537720636^(4/9) 2329991416245805 a001 3524578/271443*2537720636^(2/15) 2329991416245805 a001 121393/7881196*(1/2+1/2*5^(1/2))^20 2329991416245805 a001 121393/7881196*23725150497407^(5/16) 2329991416245805 a001 121393/7881196*505019158607^(5/14) 2329991416245805 a001 121393/7881196*73681302247^(5/13) 2329991416245805 a001 3524578/271443*45537549124^(2/17) 2329991416245805 a001 3524578/271443*14662949395604^(2/21) 2329991416245805 a001 3524578/271443*(1/2+1/2*5^(1/2))^6 2329991416245805 a001 121393/7881196*28143753123^(2/5) 2329991416245805 a001 3524578/271443*10749957122^(1/8) 2329991416245805 a001 121393/7881196*10749957122^(5/12) 2329991416245805 a001 3524578/271443*4106118243^(3/23) 2329991416245805 a001 121393/7881196*4106118243^(10/23) 2329991416245805 a001 3524578/271443*1568397607^(3/22) 2329991416245805 a001 427859097154/1836311903 2329991416245805 a001 121393/7881196*1568397607^(5/11) 2329991416245805 a001 3524578/271443*599074578^(1/7) 2329991416245805 a001 121393/7881196*599074578^(10/21) 2329991416245805 a001 3524578/271443*228826127^(3/20) 2329991416245805 a001 121393/7881196*228826127^(1/2) 2329991416245805 a001 3524578/271443*87403803^(3/19) 2329991416245805 a001 121393/7881196*87403803^(10/19) 2329991416245805 a001 3524578/271443*33385282^(1/6) 2329991416245806 a001 121393/7881196*33385282^(5/9) 2329991416245807 a001 3524578/271443*12752043^(3/17) 2329991416245813 a001 24157817/271443*1860498^(1/15) 2329991416245813 a001 121393/7881196*12752043^(10/17) 2329991416245823 a001 3524578/271443*4870847^(3/16) 2329991416245833 a001 4976784/90481*1860498^(1/10) 2329991416245840 a001 121393/20633239*4870847^(11/16) 2329991416245842 a001 121393/54018521*4870847^(3/4) 2329991416245847 a001 233/271444*4870847^(13/16) 2329991416245853 a001 121393/370248451*4870847^(7/8) 2329991416245859 a001 121393/969323029*4870847^(15/16) 2329991416245863 a001 9227465/271443*1860498^(2/15) 2329991416245865 a001 5702887/271443*1860498^(1/6) 2329991416245866 a004 Fibonacci(26)*Lucas(32)/(1/2+sqrt(5)/2)^45 2329991416245866 a001 121393/7881196*4870847^(5/8) 2329991416245938 a001 2178309/1149851*167761^(2/5) 2329991416245940 a001 3524578/271443*1860498^(1/5) 2329991416246004 a001 121393/3010349*7881196^(6/11) 2329991416246024 a001 121393/3010349*141422324^(6/13) 2329991416246024 a001 121393/3010349*2537720636^(2/5) 2329991416246024 a001 121393/3010349*45537549124^(6/17) 2329991416246024 a001 121393/3010349*14662949395604^(2/7) 2329991416246024 a001 121393/3010349*(1/2+1/2*5^(1/2))^18 2329991416246024 a001 121393/3010349*192900153618^(1/3) 2329991416246024 a001 1346269/271443*(1/2+1/2*5^(1/2))^8 2329991416246024 a001 1346269/271443*23725150497407^(1/8) 2329991416246024 a001 1346269/271443*505019158607^(1/7) 2329991416246024 a001 1346269/271443*73681302247^(2/13) 2329991416246024 a001 1346269/271443*10749957122^(1/6) 2329991416246024 a001 121393/3010349*10749957122^(3/8) 2329991416246024 a001 1346269/271443*4106118243^(4/23) 2329991416246024 a001 121393/3010349*4106118243^(9/23) 2329991416246024 a001 1346269/271443*1568397607^(2/11) 2329991416246024 a001 121393/3010349*1568397607^(9/22) 2329991416246024 a001 163427632717/701408733 2329991416246024 a001 1346269/271443*599074578^(4/21) 2329991416246024 a001 121393/3010349*599074578^(3/7) 2329991416246024 a001 1346269/271443*228826127^(1/5) 2329991416246025 a001 121393/3010349*228826127^(9/20) 2329991416246025 a001 1346269/271443*87403803^(4/19) 2329991416246025 a001 121393/3010349*87403803^(9/19) 2329991416246025 a001 1346269/271443*33385282^(2/9) 2329991416246026 a001 121393/3010349*33385282^(1/2) 2329991416246028 a001 1346269/271443*12752043^(4/17) 2329991416246032 a001 121393/3010349*12752043^(9/17) 2329991416246049 a001 1346269/271443*4870847^(1/4) 2329991416246080 a001 121393/3010349*4870847^(9/16) 2329991416246098 a001 24157817/271443*710647^(1/14) 2329991416246204 a001 1346269/271443*1860498^(4/15) 2329991416246224 a001 121393/12752043*1860498^(7/10) 2329991416246254 a001 121393/7881196*1860498^(2/3) 2329991416246266 a001 121393/20633239*1860498^(11/15) 2329991416246307 a001 121393/54018521*1860498^(4/5) 2329991416246328 a001 121393/87403803*1860498^(5/6) 2329991416246351 a001 233/271444*1860498^(13/15) 2329991416246373 a001 121393/228826127*1860498^(9/10) 2329991416246396 a001 121393/370248451*1860498^(14/15) 2329991416246428 a001 121393/3010349*1860498^(3/5) 2329991416246432 a001 9227465/271443*710647^(1/7) 2329991416246440 a004 Fibonacci(26)*Lucas(30)/(1/2+sqrt(5)/2)^43 2329991416246794 a001 3524578/271443*710647^(3/14) 2329991416246823 a001 726103/90481*710647^(1/4) 2329991416247343 a001 1346269/271443*710647^(2/7) 2329991416247528 a001 514229/271443*20633239^(2/7) 2329991416247530 a001 514229/271443*2537720636^(2/9) 2329991416247530 a001 121393/1149851*(1/2+1/2*5^(1/2))^16 2329991416247530 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^16/Lucas(29) 2329991416247530 a001 121393/1149851*23725150497407^(1/4) 2329991416247530 a001 121393/1149851*73681302247^(4/13) 2329991416247530 a001 514229/271443*312119004989^(2/11) 2329991416247530 a001 514229/271443*(1/2+1/2*5^(1/2))^10 2329991416247530 a001 514229/271443*28143753123^(1/5) 2329991416247530 a001 514229/271443*10749957122^(5/24) 2329991416247530 a001 121393/1149851*10749957122^(1/3) 2329991416247530 a001 514229/271443*4106118243^(5/23) 2329991416247530 a001 121393/1149851*4106118243^(8/23) 2329991416247530 a001 514229/271443*1568397607^(5/22) 2329991416247530 a001 121393/1149851*1568397607^(4/11) 2329991416247530 a001 514229/271443*599074578^(5/21) 2329991416247530 a001 121393/1149851*599074578^(8/21) 2329991416247530 a001 62423800997/267914296 2329991416247530 a001 514229/271443*228826127^(1/4) 2329991416247530 a001 121393/1149851*228826127^(2/5) 2329991416247530 a001 514229/271443*87403803^(5/19) 2329991416247530 a001 121393/1149851*87403803^(8/19) 2329991416247530 a001 514229/271443*33385282^(5/18) 2329991416247531 a001 121393/1149851*33385282^(4/9) 2329991416247534 a001 514229/271443*12752043^(5/17) 2329991416247536 a001 121393/1149851*12752043^(8/17) 2329991416247560 a001 514229/271443*4870847^(5/16) 2329991416247579 a001 121393/1149851*4870847^(1/2) 2329991416247754 a001 514229/271443*1860498^(1/3) 2329991416247889 a001 121393/1149851*1860498^(8/15) 2329991416248105 a001 14619165/101521*64079^(1/23) 2329991416248201 a001 24157817/271443*271443^(1/13) 2329991416248990 a001 121393/3010349*710647^(9/14) 2329991416249100 a001 121393/7881196*710647^(5/7) 2329991416249177 a001 514229/271443*710647^(5/14) 2329991416249213 a001 121393/12752043*710647^(3/4) 2329991416249398 a001 121393/20633239*710647^(11/14) 2329991416249723 a001 121393/54018521*710647^(6/7) 2329991416250052 a001 233/271444*710647^(13/14) 2329991416250166 a001 121393/1149851*710647^(4/7) 2329991416250199 a001 46368/4870847*103682^(7/8) 2329991416250381 a004 Fibonacci(26)*Lucas(28)/(1/2+sqrt(5)/2)^41 2329991416250638 a001 9227465/271443*271443^(2/13) 2329991416251807 a001 75025/103682*103682^(1/2) 2329991416252045 a001 133957148/930249*64079^(1/23) 2329991416252478 a001 196418/271443*439204^(4/9) 2329991416252620 a001 701408733/4870847*64079^(1/23) 2329991416252704 a001 1836311903/12752043*64079^(1/23) 2329991416252716 a001 14930208/103681*64079^(1/23) 2329991416252718 a001 12586269025/87403803*64079^(1/23) 2329991416252718 a001 32951280099/228826127*64079^(1/23) 2329991416252718 a001 43133785636/299537289*64079^(1/23) 2329991416252718 a001 32264490531/224056801*64079^(1/23) 2329991416252718 a001 591286729879/4106118243*64079^(1/23) 2329991416252718 a001 774004377960/5374978561*64079^(1/23) 2329991416252718 a001 4052739537881/28143753123*64079^(1/23) 2329991416252718 a001 1515744265389/10525900321*64079^(1/23) 2329991416252718 a001 3278735159921/22768774562*64079^(1/23) 2329991416252718 a001 2504730781961/17393796001*64079^(1/23) 2329991416252718 a001 956722026041/6643838879*64079^(1/23) 2329991416252718 a001 182717648081/1268860318*64079^(1/23) 2329991416252718 a001 139583862445/969323029*64079^(1/23) 2329991416252718 a001 53316291173/370248451*64079^(1/23) 2329991416252719 a001 10182505537/70711162*64079^(1/23) 2329991416252719 a001 7778742049/54018521*64079^(1/23) 2329991416252724 a001 2971215073/20633239*64079^(1/23) 2329991416252756 a001 567451585/3940598*64079^(1/23) 2329991416252976 a001 433494437/3010349*64079^(1/23) 2329991416253102 a001 3524578/271443*271443^(3/13) 2329991416254481 a001 165580141/1149851*64079^(1/23) 2329991416254798 a001 39088169/271443*103682^(1/24) 2329991416255680 a001 208010/109801*167761^(2/5) 2329991416255755 a001 1346269/271443*271443^(4/13) 2329991416256216 a001 14930352/710647*167761^(1/5) 2329991416257832 a001 196418/271443*7881196^(4/11) 2329991416257844 a001 121393/439204*20633239^(2/5) 2329991416257846 a001 196418/271443*141422324^(4/13) 2329991416257846 a001 196418/271443*2537720636^(4/15) 2329991416257846 a001 121393/439204*17393796001^(2/7) 2329991416257846 a001 121393/439204*14662949395604^(2/9) 2329991416257846 a001 121393/439204*(1/2+1/2*5^(1/2))^14 2329991416257846 a001 121393/439204*505019158607^(1/4) 2329991416257846 a001 196418/271443*45537549124^(4/17) 2329991416257846 a001 196418/271443*817138163596^(4/19) 2329991416257846 a001 196418/271443*14662949395604^(4/21) 2329991416257846 a001 196418/271443*(1/2+1/2*5^(1/2))^12 2329991416257846 a001 196418/271443*192900153618^(2/9) 2329991416257846 a001 196418/271443*73681302247^(3/13) 2329991416257846 a001 196418/271443*10749957122^(1/4) 2329991416257846 a001 121393/439204*10749957122^(7/24) 2329991416257846 a001 196418/271443*4106118243^(6/23) 2329991416257846 a001 121393/439204*4106118243^(7/23) 2329991416257846 a001 196418/271443*1568397607^(3/11) 2329991416257846 a001 121393/439204*1568397607^(7/22) 2329991416257846 a001 196418/271443*599074578^(2/7) 2329991416257846 a001 121393/439204*599074578^(1/3) 2329991416257846 a001 196418/271443*228826127^(3/10) 2329991416257846 a001 121393/439204*228826127^(7/20) 2329991416257846 a001 23843770274/102334155 2329991416257846 a001 196418/271443*87403803^(6/19) 2329991416257846 a001 121393/439204*87403803^(7/19) 2329991416257847 a001 196418/271443*33385282^(1/3) 2329991416257847 a001 121393/439204*33385282^(7/18) 2329991416257851 a001 196418/271443*12752043^(6/17) 2329991416257852 a001 121393/439204*12752043^(7/17) 2329991416257883 a001 196418/271443*4870847^(3/8) 2329991416257889 a001 121393/439204*4870847^(7/16) 2329991416258115 a001 196418/271443*1860498^(2/5) 2329991416258160 a001 121393/439204*1860498^(7/15) 2329991416259365 a001 11592/1970299*103682^(11/12) 2329991416259692 a001 514229/271443*271443^(5/13) 2329991416259823 a001 196418/271443*710647^(3/7) 2329991416260153 a001 121393/439204*710647^(1/2) 2329991416260159 a001 39088169/1860498*167761^(1/5) 2329991416260698 a004 Fibonacci(28)*Lucas(27)/(1/2+sqrt(5)/2)^42 2329991416260734 a001 102334155/4870847*167761^(1/5) 2329991416260818 a001 267914296/12752043*167761^(1/5) 2329991416260830 a001 701408733/33385282*167761^(1/5) 2329991416260832 a001 1836311903/87403803*167761^(1/5) 2329991416260832 a001 102287808/4868641*167761^(1/5) 2329991416260832 a001 12586269025/599074578*167761^(1/5) 2329991416260832 a001 32951280099/1568397607*167761^(1/5) 2329991416260832 a001 86267571272/4106118243*167761^(1/5) 2329991416260832 a001 225851433717/10749957122*167761^(1/5) 2329991416260832 a001 591286729879/28143753123*167761^(1/5) 2329991416260832 a001 1548008755920/73681302247*167761^(1/5) 2329991416260832 a001 4052739537881/192900153618*167761^(1/5) 2329991416260832 a001 225749145909/10745088481*167761^(1/5) 2329991416260832 a001 6557470319842/312119004989*167761^(1/5) 2329991416260832 a001 2504730781961/119218851371*167761^(1/5) 2329991416260832 a001 956722026041/45537549124*167761^(1/5) 2329991416260832 a001 365435296162/17393796001*167761^(1/5) 2329991416260832 a001 139583862445/6643838879*167761^(1/5) 2329991416260832 a001 53316291173/2537720636*167761^(1/5) 2329991416260832 a001 20365011074/969323029*167761^(1/5) 2329991416260832 a001 7778742049/370248451*167761^(1/5) 2329991416260832 a001 2971215073/141422324*167761^(1/5) 2329991416260833 a001 1134903170/54018521*167761^(1/5) 2329991416260838 a001 433494437/20633239*167761^(1/5) 2329991416260870 a001 165580141/7881196*167761^(1/5) 2329991416261089 a001 63245986/3010349*167761^(1/5) 2329991416261479 a001 5702887/167761*64079^(4/23) 2329991416262040 a001 317811/141422324*439204^(8/9) 2329991416262595 a001 24157817/1149851*167761^(1/5) 2329991416263211 a001 5702887/103682*39603^(3/22) 2329991416263380 a001 317811/33385282*439204^(7/9) 2329991416263830 a001 24157817/271443*103682^(1/12) 2329991416264638 a004 Fibonacci(30)*Lucas(27)/(1/2+sqrt(5)/2)^44 2329991416264761 a001 317811/7881196*439204^(2/3) 2329991416264797 a001 31622993/219602*64079^(1/23) 2329991416265213 a004 Fibonacci(32)*Lucas(27)/(1/2+sqrt(5)/2)^46 2329991416265297 a004 Fibonacci(34)*Lucas(27)/(1/2+sqrt(5)/2)^48 2329991416265309 a004 Fibonacci(36)*Lucas(27)/(1/2+sqrt(5)/2)^50 2329991416265311 a004 Fibonacci(38)*Lucas(27)/(1/2+sqrt(5)/2)^52 2329991416265311 a004 Fibonacci(40)*Lucas(27)/(1/2+sqrt(5)/2)^54 2329991416265311 a004 Fibonacci(42)*Lucas(27)/(1/2+sqrt(5)/2)^56 2329991416265311 a004 Fibonacci(44)*Lucas(27)/(1/2+sqrt(5)/2)^58 2329991416265311 a004 Fibonacci(46)*Lucas(27)/(1/2+sqrt(5)/2)^60 2329991416265311 a004 Fibonacci(48)*Lucas(27)/(1/2+sqrt(5)/2)^62 2329991416265311 a004 Fibonacci(50)*Lucas(27)/(1/2+sqrt(5)/2)^64 2329991416265311 a004 Fibonacci(52)*Lucas(27)/(1/2+sqrt(5)/2)^66 2329991416265311 a004 Fibonacci(54)*Lucas(27)/(1/2+sqrt(5)/2)^68 2329991416265311 a004 Fibonacci(56)*Lucas(27)/(1/2+sqrt(5)/2)^70 2329991416265311 a004 Fibonacci(58)*Lucas(27)/(1/2+sqrt(5)/2)^72 2329991416265311 a004 Fibonacci(60)*Lucas(27)/(1/2+sqrt(5)/2)^74 2329991416265311 a004 Fibonacci(62)*Lucas(27)/(1/2+sqrt(5)/2)^76 2329991416265311 a004 Fibonacci(64)*Lucas(27)/(1/2+sqrt(5)/2)^78 2329991416265311 a004 Fibonacci(66)*Lucas(27)/(1/2+sqrt(5)/2)^80 2329991416265311 a004 Fibonacci(68)*Lucas(27)/(1/2+sqrt(5)/2)^82 2329991416265311 a004 Fibonacci(70)*Lucas(27)/(1/2+sqrt(5)/2)^84 2329991416265311 a004 Fibonacci(72)*Lucas(27)/(1/2+sqrt(5)/2)^86 2329991416265311 a004 Fibonacci(74)*Lucas(27)/(1/2+sqrt(5)/2)^88 2329991416265311 a004 Fibonacci(76)*Lucas(27)/(1/2+sqrt(5)/2)^90 2329991416265311 a004 Fibonacci(78)*Lucas(27)/(1/2+sqrt(5)/2)^92 2329991416265311 a004 Fibonacci(80)*Lucas(27)/(1/2+sqrt(5)/2)^94 2329991416265311 a004 Fibonacci(82)*Lucas(27)/(1/2+sqrt(5)/2)^96 2329991416265311 a004 Fibonacci(84)*Lucas(27)/(1/2+sqrt(5)/2)^98 2329991416265311 a004 Fibonacci(86)*Lucas(27)/(1/2+sqrt(5)/2)^100 2329991416265311 a004 Fibonacci(85)*Lucas(27)/(1/2+sqrt(5)/2)^99 2329991416265311 a004 Fibonacci(83)*Lucas(27)/(1/2+sqrt(5)/2)^97 2329991416265311 a004 Fibonacci(81)*Lucas(27)/(1/2+sqrt(5)/2)^95 2329991416265311 a004 Fibonacci(79)*Lucas(27)/(1/2+sqrt(5)/2)^93 2329991416265311 a004 Fibonacci(77)*Lucas(27)/(1/2+sqrt(5)/2)^91 2329991416265311 a004 Fibonacci(75)*Lucas(27)/(1/2+sqrt(5)/2)^89 2329991416265311 a004 Fibonacci(73)*Lucas(27)/(1/2+sqrt(5)/2)^87 2329991416265311 a004 Fibonacci(71)*Lucas(27)/(1/2+sqrt(5)/2)^85 2329991416265311 a004 Fibonacci(69)*Lucas(27)/(1/2+sqrt(5)/2)^83 2329991416265311 a004 Fibonacci(67)*Lucas(27)/(1/2+sqrt(5)/2)^81 2329991416265311 a004 Fibonacci(65)*Lucas(27)/(1/2+sqrt(5)/2)^79 2329991416265311 a004 Fibonacci(63)*Lucas(27)/(1/2+sqrt(5)/2)^77 2329991416265311 a004 Fibonacci(61)*Lucas(27)/(1/2+sqrt(5)/2)^75 2329991416265311 a004 Fibonacci(59)*Lucas(27)/(1/2+sqrt(5)/2)^73 2329991416265311 a004 Fibonacci(57)*Lucas(27)/(1/2+sqrt(5)/2)^71 2329991416265311 a004 Fibonacci(55)*Lucas(27)/(1/2+sqrt(5)/2)^69 2329991416265311 a001 1/98209*(1/2+1/2*5^(1/2))^40 2329991416265311 a004 Fibonacci(53)*Lucas(27)/(1/2+sqrt(5)/2)^67 2329991416265311 a004 Fibonacci(51)*Lucas(27)/(1/2+sqrt(5)/2)^65 2329991416265311 a004 Fibonacci(49)*Lucas(27)/(1/2+sqrt(5)/2)^63 2329991416265311 a004 Fibonacci(47)*Lucas(27)/(1/2+sqrt(5)/2)^61 2329991416265311 a004 Fibonacci(45)*Lucas(27)/(1/2+sqrt(5)/2)^59 2329991416265311 a004 Fibonacci(43)*Lucas(27)/(1/2+sqrt(5)/2)^57 2329991416265311 a004 Fibonacci(41)*Lucas(27)/(1/2+sqrt(5)/2)^55 2329991416265311 a004 Fibonacci(39)*Lucas(27)/(1/2+sqrt(5)/2)^53 2329991416265312 a004 Fibonacci(37)*Lucas(27)/(1/2+sqrt(5)/2)^51 2329991416265317 a004 Fibonacci(35)*Lucas(27)/(1/2+sqrt(5)/2)^49 2329991416265349 a004 Fibonacci(33)*Lucas(27)/(1/2+sqrt(5)/2)^47 2329991416265393 a001 105937/620166*439204^(5/9) 2329991416265568 a004 Fibonacci(31)*Lucas(27)/(1/2+sqrt(5)/2)^45 2329991416265980 a001 832040/370248451*439204^(8/9) 2329991416266555 a001 2178309/969323029*439204^(8/9) 2329991416266639 a001 5702887/2537720636*439204^(8/9) 2329991416266651 a001 14930352/6643838879*439204^(8/9) 2329991416266653 a001 39088169/17393796001*439204^(8/9) 2329991416266653 a001 102334155/45537549124*439204^(8/9) 2329991416266653 a001 267914296/119218851371*439204^(8/9) 2329991416266653 a001 3524667/1568437211*439204^(8/9) 2329991416266653 a001 1836311903/817138163596*439204^(8/9) 2329991416266653 a001 4807526976/2139295485799*439204^(8/9) 2329991416266653 a001 12586269025/5600748293801*439204^(8/9) 2329991416266653 a001 32951280099/14662949395604*439204^(8/9) 2329991416266653 a001 53316291173/23725150497407*439204^(8/9) 2329991416266653 a001 20365011074/9062201101803*439204^(8/9) 2329991416266653 a001 7778742049/3461452808002*439204^(8/9) 2329991416266653 a001 2971215073/1322157322203*439204^(8/9) 2329991416266653 a001 1134903170/505019158607*439204^(8/9) 2329991416266653 a001 433494437/192900153618*439204^(8/9) 2329991416266653 a001 165580141/73681302247*439204^(8/9) 2329991416266653 a001 63245986/28143753123*439204^(8/9) 2329991416266654 a001 24157817/10749957122*439204^(8/9) 2329991416266659 a001 9227465/4106118243*439204^(8/9) 2329991416266691 a001 3524578/1568397607*439204^(8/9) 2329991416266910 a001 1346269/599074578*439204^(8/9) 2329991416266990 a001 121393/1149851*271443^(8/13) 2329991416267073 a004 Fibonacci(29)*Lucas(27)/(1/2+sqrt(5)/2)^43 2329991416267322 a001 832040/87403803*439204^(7/9) 2329991416267897 a001 46347/4868641*439204^(7/9) 2329991416267917 a001 121393/3010349*271443^(9/13) 2329991416267981 a001 5702887/599074578*439204^(7/9) 2329991416267993 a001 14930352/1568397607*439204^(7/9) 2329991416267995 a001 39088169/4106118243*439204^(7/9) 2329991416267995 a001 102334155/10749957122*439204^(7/9) 2329991416267995 a001 267914296/28143753123*439204^(7/9) 2329991416267995 a001 701408733/73681302247*439204^(7/9) 2329991416267995 a001 1836311903/192900153618*439204^(7/9) 2329991416267995 a001 102287808/10745088481*439204^(7/9) 2329991416267995 a001 12586269025/1322157322203*439204^(7/9) 2329991416267995 a001 32951280099/3461452808002*439204^(7/9) 2329991416267995 a001 86267571272/9062201101803*439204^(7/9) 2329991416267995 a001 225851433717/23725150497407*439204^(7/9) 2329991416267995 a001 139583862445/14662949395604*439204^(7/9) 2329991416267995 a001 53316291173/5600748293801*439204^(7/9) 2329991416267995 a001 20365011074/2139295485799*439204^(7/9) 2329991416267995 a001 7778742049/817138163596*439204^(7/9) 2329991416267995 a001 2971215073/312119004989*439204^(7/9) 2329991416267995 a001 1134903170/119218851371*439204^(7/9) 2329991416267995 a001 433494437/45537549124*439204^(7/9) 2329991416267995 a001 165580141/17393796001*439204^(7/9) 2329991416267995 a001 63245986/6643838879*439204^(7/9) 2329991416267996 a001 24157817/2537720636*439204^(7/9) 2329991416268001 a001 9227465/969323029*439204^(7/9) 2329991416268033 a001 3524578/370248451*439204^(7/9) 2329991416268163 a001 317811/710647*141422324^(1/3) 2329991416268163 a001 101003831721/433494437 2329991416268163 a001 317811/710647*(1/2+1/2*5^(1/2))^13 2329991416268163 a001 317811/710647*73681302247^(1/4) 2329991416268253 a001 1346269/141422324*439204^(7/9) 2329991416268345 a001 15456/4250681*103682^(23/24) 2329991416268415 a001 514229/228826127*439204^(8/9) 2329991416268652 a001 311187/101521*439204^(1/3) 2329991416268670 a001 75640/1875749*439204^(2/3) 2329991416269170 a001 514229/710647*439204^(4/9) 2329991416269240 a001 2178309/54018521*439204^(2/3) 2329991416269323 a001 5702887/141422324*439204^(2/3) 2329991416269335 a001 14930352/370248451*439204^(2/3) 2329991416269337 a001 39088169/969323029*439204^(2/3) 2329991416269337 a001 9303105/230701876*439204^(2/3) 2329991416269337 a001 267914296/6643838879*439204^(2/3) 2329991416269337 a001 701408733/17393796001*439204^(2/3) 2329991416269337 a001 1836311903/45537549124*439204^(2/3) 2329991416269337 a001 4807526976/119218851371*439204^(2/3) 2329991416269337 a001 1144206275/28374454999*439204^(2/3) 2329991416269337 a001 32951280099/817138163596*439204^(2/3) 2329991416269337 a001 86267571272/2139295485799*439204^(2/3) 2329991416269337 a001 225851433717/5600748293801*439204^(2/3) 2329991416269337 a001 365435296162/9062201101803*439204^(2/3) 2329991416269337 a001 139583862445/3461452808002*439204^(2/3) 2329991416269337 a001 53316291173/1322157322203*439204^(2/3) 2329991416269337 a001 20365011074/505019158607*439204^(2/3) 2329991416269337 a001 7778742049/192900153618*439204^(2/3) 2329991416269337 a001 2971215073/73681302247*439204^(2/3) 2329991416269337 a001 1134903170/28143753123*439204^(2/3) 2329991416269337 a001 433494437/10749957122*439204^(2/3) 2329991416269337 a001 165580141/4106118243*439204^(2/3) 2329991416269338 a001 63245986/1568397607*439204^(2/3) 2329991416269338 a001 24157817/599074578*439204^(2/3) 2329991416269343 a001 9227465/228826127*439204^(2/3) 2329991416269375 a001 3524578/87403803*439204^(2/3) 2329991416269592 a001 1346269/33385282*439204^(2/3) 2329991416269758 a001 514229/54018521*439204^(7/9) 2329991416269869 a001 46368/167761*103682^(7/12) 2329991416269908 a001 832040/4870847*439204^(5/9) 2329991416270098 a001 9227465/710647*439204^(2/9) 2329991416270130 a001 121393/7881196*271443^(10/13) 2329991416270567 a001 726103/4250681*439204^(5/9) 2329991416270663 a001 5702887/33385282*439204^(5/9) 2329991416270677 a001 4976784/29134601*439204^(5/9) 2329991416270679 a001 39088169/228826127*439204^(5/9) 2329991416270679 a001 34111385/199691526*439204^(5/9) 2329991416270680 a001 267914296/1568397607*439204^(5/9) 2329991416270680 a001 233802911/1368706081*439204^(5/9) 2329991416270680 a001 1836311903/10749957122*439204^(5/9) 2329991416270680 a001 1602508992/9381251041*439204^(5/9) 2329991416270680 a001 12586269025/73681302247*439204^(5/9) 2329991416270680 a001 10983760033/64300051206*439204^(5/9) 2329991416270680 a001 86267571272/505019158607*439204^(5/9) 2329991416270680 a001 75283811239/440719107401*439204^(5/9) 2329991416270680 a001 2504730781961/14662949395604*439204^(5/9) 2329991416270680 a001 139583862445/817138163596*439204^(5/9) 2329991416270680 a001 53316291173/312119004989*439204^(5/9) 2329991416270680 a001 20365011074/119218851371*439204^(5/9) 2329991416270680 a001 7778742049/45537549124*439204^(5/9) 2329991416270680 a001 2971215073/17393796001*439204^(5/9) 2329991416270680 a001 1134903170/6643838879*439204^(5/9) 2329991416270680 a001 433494437/2537720636*439204^(5/9) 2329991416270680 a001 165580141/969323029*439204^(5/9) 2329991416270680 a001 63245986/370248451*439204^(5/9) 2329991416270680 a001 24157817/141422324*439204^(5/9) 2329991416270686 a001 9227465/54018521*439204^(5/9) 2329991416270723 a001 3524578/20633239*439204^(5/9) 2329991416270974 a001 1346269/7881196*439204^(5/9) 2329991416271014 a004 Fibonacci(28)*Lucas(29)/(1/2+sqrt(5)/2)^44 2329991416271085 a001 514229/12752043*439204^(2/3) 2329991416271434 a001 39088169/710647*439204^(1/9) 2329991416271606 a001 1346269/1860498*439204^(4/9) 2329991416271961 a001 3524578/4870847*439204^(4/9) 2329991416272013 a001 9227465/12752043*439204^(4/9) 2329991416272020 a001 24157817/33385282*439204^(4/9) 2329991416272021 a001 63245986/87403803*439204^(4/9) 2329991416272022 a001 165580141/228826127*439204^(4/9) 2329991416272022 a001 433494437/599074578*439204^(4/9) 2329991416272022 a001 1134903170/1568397607*439204^(4/9) 2329991416272022 a001 2971215073/4106118243*439204^(4/9) 2329991416272022 a001 7778742049/10749957122*439204^(4/9) 2329991416272022 a001 20365011074/28143753123*439204^(4/9) 2329991416272022 a001 53316291173/73681302247*439204^(4/9) 2329991416272022 a001 139583862445/192900153618*439204^(4/9) 2329991416272022 a001 10610209857723/14662949395604*439204^(4/9) 2329991416272022 a001 591286729879/817138163596*439204^(4/9) 2329991416272022 a001 225851433717/312119004989*439204^(4/9) 2329991416272022 a001 86267571272/119218851371*439204^(4/9) 2329991416272022 a001 32951280099/45537549124*439204^(4/9) 2329991416272022 a001 12586269025/17393796001*439204^(4/9) 2329991416272022 a001 4807526976/6643838879*439204^(4/9) 2329991416272022 a001 1836311903/2537720636*439204^(4/9) 2329991416272022 a001 701408733/969323029*439204^(4/9) 2329991416272022 a001 267914296/370248451*439204^(4/9) 2329991416272022 a001 102334155/141422324*439204^(4/9) 2329991416272022 a001 39088169/54018521*439204^(4/9) 2329991416272025 a001 14930352/20633239*439204^(4/9) 2329991416272045 a001 5702887/7881196*439204^(4/9) 2329991416272086 a001 105937/620166*7881196^(5/11) 2329991416272091 a001 832040/710647*7881196^(1/3) 2329991416272101 a001 105937/620166*20633239^(3/7) 2329991416272103 a001 105937/620166*141422324^(5/13) 2329991416272103 a001 433494204/1860497 2329991416272103 a001 105937/620166*2537720636^(1/3) 2329991416272103 a001 105937/620166*45537549124^(5/17) 2329991416272103 a001 105937/620166*312119004989^(3/11) 2329991416272103 a001 105937/620166*14662949395604^(5/21) 2329991416272103 a001 105937/620166*(1/2+1/2*5^(1/2))^15 2329991416272103 a001 832040/710647*(1/2+1/2*5^(1/2))^11 2329991416272103 a001 105937/620166*192900153618^(5/18) 2329991416272103 a001 105937/620166*28143753123^(3/10) 2329991416272103 a001 105937/620166*10749957122^(5/16) 2329991416272103 a001 832040/710647*1568397607^(1/4) 2329991416272103 a001 105937/620166*599074578^(5/14) 2329991416272103 a001 105937/620166*228826127^(3/8) 2329991416272104 a001 105937/620166*33385282^(5/12) 2329991416272181 a001 2178309/3010349*439204^(4/9) 2329991416272440 a001 105937/620166*1860498^(1/2) 2329991416272441 a001 196418/271443*271443^(6/13) 2329991416272519 a004 Fibonacci(28)*Lucas(31)/(1/2+sqrt(5)/2)^46 2329991416272530 a001 121393/20633239*271443^(11/13) 2329991416272668 a001 311187/101521*7881196^(3/11) 2329991416272676 a001 5702887/1860498*439204^(1/3) 2329991416272678 a001 311187/101521*141422324^(3/13) 2329991416272678 a001 311187/101521*2537720636^(1/5) 2329991416272678 a001 692290561599/2971215073 2329991416272678 a001 317811/4870847*45537549124^(1/3) 2329991416272678 a001 311187/101521*45537549124^(3/17) 2329991416272678 a001 317811/4870847*(1/2+1/2*5^(1/2))^17 2329991416272678 a001 311187/101521*14662949395604^(1/7) 2329991416272678 a001 311187/101521*(1/2+1/2*5^(1/2))^9 2329991416272678 a001 311187/101521*192900153618^(1/6) 2329991416272678 a001 311187/101521*10749957122^(3/16) 2329991416272678 a001 311187/101521*599074578^(3/14) 2329991416272679 a001 311187/101521*33385282^(1/4) 2329991416272685 a001 317811/4870847*12752043^(1/2) 2329991416272699 a001 514229/3010349*439204^(5/9) 2329991416272739 a004 Fibonacci(28)*Lucas(33)/(1/2+sqrt(5)/2)^48 2329991416272742 a001 317811/2537720636*7881196^(10/11) 2329991416272746 a001 377/710646*7881196^(9/11) 2329991416272749 a001 317811/141422324*7881196^(8/11) 2329991416272750 a001 317811/33385282*7881196^(7/11) 2329991416272752 a001 317811/54018521*7881196^(2/3) 2329991416272761 a001 5702887/710647*20633239^(1/5) 2329991416272762 a001 139418478489/598364773 2329991416272762 a001 5702887/710647*17393796001^(1/7) 2329991416272762 a001 105937/4250681*817138163596^(1/3) 2329991416272762 a001 105937/4250681*(1/2+1/2*5^(1/2))^19 2329991416272762 a001 5702887/710647*(1/2+1/2*5^(1/2))^7 2329991416272762 a001 5702887/710647*599074578^(1/6) 2329991416272762 a001 105937/4250681*87403803^(1/2) 2329991416272771 a004 Fibonacci(28)*Lucas(35)/(1/2+sqrt(5)/2)^50 2329991416272771 a001 317811/33385282*20633239^(3/5) 2329991416272772 a001 317811/2537720636*20633239^(6/7) 2329991416272772 a001 317811/969323029*20633239^(4/5) 2329991416272772 a001 317811/228826127*20633239^(5/7) 2329991416272773 a001 39088169/710647*7881196^(1/11) 2329991416272773 a001 14930352/710647*20633239^(1/7) 2329991416272774 a001 317811/33385282*141422324^(7/13) 2329991416272774 a001 317811/33385282*2537720636^(7/15) 2329991416272774 a001 14930352/710647*2537720636^(1/9) 2329991416272774 a001 317811/33385282*17393796001^(3/7) 2329991416272774 a001 2372515049736/10182505537 2329991416272774 a001 317811/33385282*45537549124^(7/17) 2329991416272774 a001 317811/33385282*(1/2+1/2*5^(1/2))^21 2329991416272774 a001 14930352/710647*312119004989^(1/11) 2329991416272774 a001 14930352/710647*(1/2+1/2*5^(1/2))^5 2329991416272774 a001 317811/33385282*192900153618^(7/18) 2329991416272774 a001 14930352/710647*28143753123^(1/10) 2329991416272774 a001 317811/33385282*10749957122^(7/16) 2329991416272774 a001 317811/33385282*599074578^(1/2) 2329991416272774 a001 14930352/710647*228826127^(1/8) 2329991416272775 a001 9227465/710647*7881196^(2/11) 2329991416272775 a001 317811/33385282*33385282^(7/12) 2329991416272775 a004 Fibonacci(28)*Lucas(37)/(1/2+sqrt(5)/2)^52 2329991416272776 a001 39088169/710647*141422324^(1/13) 2329991416272776 a001 39088169/710647*2537720636^(1/15) 2329991416272776 a001 12422650078059/53316291173 2329991416272776 a001 39088169/710647*45537549124^(1/17) 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^23/Lucas(38) 2329991416272776 a001 39088169/710647*14662949395604^(1/21) 2329991416272776 a001 39088169/710647*(1/2+1/2*5^(1/2))^3 2329991416272776 a001 39088169/710647*10749957122^(1/16) 2329991416272776 a001 105937/29134601*4106118243^(1/2) 2329991416272776 a001 39088169/710647*599074578^(1/14) 2329991416272776 a001 39088169/710647*33385282^(1/12) 2329991416272776 a004 Fibonacci(28)*Lucas(39)/(1/2+sqrt(5)/2)^54 2329991416272776 a001 317811/45537549124*141422324^(12/13) 2329991416272776 a001 317811/10749957122*141422324^(11/13) 2329991416272776 a001 317811/2537720636*141422324^(10/13) 2329991416272776 a001 377/710646*141422324^(9/13) 2329991416272776 a001 317811/370248451*141422324^(2/3) 2329991416272776 a001 317811/228826127*2537720636^(5/9) 2329991416272776 a001 6504584026941/27916772489 2329991416272776 a001 317811/228826127*312119004989^(5/11) 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^25/Lucas(40) 2329991416272776 a001 14619165/203042+14619165/203042*5^(1/2) 2329991416272776 a001 317811/228826127*28143753123^(1/2) 2329991416272776 a004 Fibonacci(28)*Lucas(41)/(1/2+sqrt(5)/2)^56 2329991416272776 a001 317811/228826127*228826127^(5/8) 2329991416272776 a001 377/710646*2537720636^(3/5) 2329991416272776 a001 377/710646*45537549124^(9/17) 2329991416272776 a001 377/710646*817138163596^(9/19) 2329991416272776 a001 377/710646*14662949395604^(3/7) 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^27/Lucas(42) 2329991416272776 a004 Fibonacci(42)/Lucas(28)/(1/2+sqrt(5)/2) 2329991416272776 a001 377/710646*192900153618^(1/2) 2329991416272776 a001 377/710646*10749957122^(9/16) 2329991416272776 a004 Fibonacci(28)*Lucas(43)/(1/2+sqrt(5)/2)^58 2329991416272776 a001 377/710646*599074578^(9/14) 2329991416272776 a001 222915410843463/956722026041 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^29/Lucas(44) 2329991416272776 a001 317811/1568397607*1322157322203^(1/2) 2329991416272776 a004 Fibonacci(44)/Lucas(28)/(1/2+sqrt(5)/2)^3 2329991416272776 a004 Fibonacci(28)*Lucas(45)/(1/2+sqrt(5)/2)^60 2329991416272776 a001 317811/817138163596*2537720636^(14/15) 2329991416272776 a001 317811/312119004989*2537720636^(8/9) 2329991416272776 a001 105937/64300051206*2537720636^(13/15) 2329991416272776 a001 317811/45537549124*2537720636^(4/5) 2329991416272776 a001 317811/10749957122*2537720636^(11/15) 2329991416272776 a001 105937/9381251041*2537720636^(7/9) 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^31/Lucas(46) 2329991416272776 a001 105937/1368706081*9062201101803^(1/2) 2329991416272776 a004 Fibonacci(46)/Lucas(28)/(1/2+sqrt(5)/2)^5 2329991416272776 a004 Fibonacci(28)*Lucas(47)/(1/2+sqrt(5)/2)^62 2329991416272776 a001 317811/10749957122*45537549124^(11/17) 2329991416272776 a001 317811/10749957122*312119004989^(3/5) 2329991416272776 a001 317811/10749957122*14662949395604^(11/21) 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^33/Lucas(48) 2329991416272776 a004 Fibonacci(48)/Lucas(28)/(1/2+sqrt(5)/2)^7 2329991416272776 a001 317811/10749957122*192900153618^(11/18) 2329991416272776 a001 105937/9381251041*17393796001^(5/7) 2329991416272776 a004 Fibonacci(28)*Lucas(49)/(1/2+sqrt(5)/2)^64 2329991416272776 a001 317811/817138163596*17393796001^(6/7) 2329991416272776 a001 317811/10749957122*10749957122^(11/16) 2329991416272776 a001 105937/9381251041*312119004989^(7/11) 2329991416272776 a001 105937/9381251041*14662949395604^(5/9) 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^35/Lucas(50) 2329991416272776 a001 105937/9381251041*505019158607^(5/8) 2329991416272776 a004 Fibonacci(50)/Lucas(28)/(1/2+sqrt(5)/2)^9 2329991416272776 a004 Fibonacci(28)*Lucas(51)/(1/2+sqrt(5)/2)^66 2329991416272776 a001 10959/505618944676*45537549124^(16/17) 2329991416272776 a001 317811/3461452808002*45537549124^(15/17) 2329991416272776 a001 105937/64300051206*45537549124^(13/17) 2329991416272776 a001 317811/817138163596*45537549124^(14/17) 2329991416272776 a001 105937/9381251041*28143753123^(7/10) 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^37/Lucas(52) 2329991416272776 a004 Fibonacci(52)/Lucas(28)/(1/2+sqrt(5)/2)^11 2329991416272776 a004 Fibonacci(28)*Lucas(53)/(1/2+sqrt(5)/2)^68 2329991416272776 a001 105937/64300051206*14662949395604^(13/21) 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^39/Lucas(54) 2329991416272776 a004 Fibonacci(54)/Lucas(28)/(1/2+sqrt(5)/2)^13 2329991416272776 a004 Fibonacci(28)*Lucas(55)/(1/2+sqrt(5)/2)^70 2329991416272776 a001 317811/2139295485799*312119004989^(4/5) 2329991416272776 a001 105937/64300051206*192900153618^(13/18) 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^41/Lucas(56) 2329991416272776 a004 Fibonacci(28)*Lucas(57)/(1/2+sqrt(5)/2)^72 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^43/Lucas(58) 2329991416272776 a004 Fibonacci(28)*Lucas(59)/(1/2+sqrt(5)/2)^74 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^45/Lucas(60) 2329991416272776 a004 Fibonacci(28)*Lucas(61)/(1/2+sqrt(5)/2)^76 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^47/Lucas(62) 2329991416272776 a004 Fibonacci(28)*Lucas(63)/(1/2+sqrt(5)/2)^78 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^49/Lucas(64) 2329991416272776 a004 Fibonacci(28)*Lucas(65)/(1/2+sqrt(5)/2)^80 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^51/Lucas(66) 2329991416272776 a004 Fibonacci(28)*Lucas(67)/(1/2+sqrt(5)/2)^82 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^53/Lucas(68) 2329991416272776 a004 Fibonacci(28)*Lucas(69)/(1/2+sqrt(5)/2)^84 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^55/Lucas(70) 2329991416272776 a004 Fibonacci(28)*Lucas(71)/(1/2+sqrt(5)/2)^86 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^57/Lucas(72) 2329991416272776 a004 Fibonacci(28)*Lucas(73)/(1/2+sqrt(5)/2)^88 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^59/Lucas(74) 2329991416272776 a004 Fibonacci(28)*Lucas(75)/(1/2+sqrt(5)/2)^90 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^61/Lucas(76) 2329991416272776 a004 Fibonacci(28)*Lucas(77)/(1/2+sqrt(5)/2)^92 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^63/Lucas(78) 2329991416272776 a004 Fibonacci(28)*Lucas(79)/(1/2+sqrt(5)/2)^94 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^65/Lucas(80) 2329991416272776 a004 Fibonacci(28)*Lucas(81)/(1/2+sqrt(5)/2)^96 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^67/Lucas(82) 2329991416272776 a004 Fibonacci(28)*Lucas(83)/(1/2+sqrt(5)/2)^98 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^69/Lucas(84) 2329991416272776 a004 Fibonacci(28)*Lucas(85)/(1/2+sqrt(5)/2)^100 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^71/Lucas(86) 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^73/Lucas(88) 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^75/Lucas(90) 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^77/Lucas(92) 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^79/Lucas(94) 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^81/Lucas(96) 2329991416272776 a004 Fibonacci(14)*Lucas(14)/(1/2+sqrt(5)/2)^15 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^83/Lucas(98) 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^84/Lucas(99) 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^85/Lucas(100) 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^82/Lucas(97) 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^80/Lucas(95) 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^78/Lucas(93) 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^76/Lucas(91) 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^74/Lucas(89) 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^72/Lucas(87) 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^70/Lucas(85) 2329991416272776 a004 Fibonacci(28)*Lucas(84)/(1/2+sqrt(5)/2)^99 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^68/Lucas(83) 2329991416272776 a004 Fibonacci(28)*Lucas(82)/(1/2+sqrt(5)/2)^97 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^66/Lucas(81) 2329991416272776 a004 Fibonacci(28)*Lucas(80)/(1/2+sqrt(5)/2)^95 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^64/Lucas(79) 2329991416272776 a004 Fibonacci(28)*Lucas(78)/(1/2+sqrt(5)/2)^93 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^62/Lucas(77) 2329991416272776 a004 Fibonacci(28)*Lucas(76)/(1/2+sqrt(5)/2)^91 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^60/Lucas(75) 2329991416272776 a004 Fibonacci(28)*Lucas(74)/(1/2+sqrt(5)/2)^89 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^58/Lucas(73) 2329991416272776 a004 Fibonacci(28)*Lucas(72)/(1/2+sqrt(5)/2)^87 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^56/Lucas(71) 2329991416272776 a004 Fibonacci(28)*Lucas(70)/(1/2+sqrt(5)/2)^85 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^54/Lucas(69) 2329991416272776 a004 Fibonacci(28)*Lucas(68)/(1/2+sqrt(5)/2)^83 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^52/Lucas(67) 2329991416272776 a004 Fibonacci(28)*Lucas(66)/(1/2+sqrt(5)/2)^81 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^50/Lucas(65) 2329991416272776 a001 10959/505618944676*14662949395604^(16/21) 2329991416272776 a004 Fibonacci(28)*Lucas(64)/(1/2+sqrt(5)/2)^79 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^48/Lucas(63) 2329991416272776 a004 Fibonacci(28)*Lucas(62)/(1/2+sqrt(5)/2)^77 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^46/Lucas(61) 2329991416272776 a004 Fibonacci(28)*Lucas(60)/(1/2+sqrt(5)/2)^75 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^44/Lucas(59) 2329991416272776 a001 317811/2139295485799*23725150497407^(11/16) 2329991416272776 a004 Fibonacci(28)*Lucas(58)/(1/2+sqrt(5)/2)^73 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^42/Lucas(57) 2329991416272776 a004 Fibonacci(58)/Lucas(28)/(1/2+sqrt(5)/2)^17 2329991416272776 a004 Fibonacci(60)/Lucas(28)/(1/2+sqrt(5)/2)^19 2329991416272776 a004 Fibonacci(62)/Lucas(28)/(1/2+sqrt(5)/2)^21 2329991416272776 a004 Fibonacci(64)/Lucas(28)/(1/2+sqrt(5)/2)^23 2329991416272776 a004 Fibonacci(66)/Lucas(28)/(1/2+sqrt(5)/2)^25 2329991416272776 a004 Fibonacci(68)/Lucas(28)/(1/2+sqrt(5)/2)^27 2329991416272776 a004 Fibonacci(70)/Lucas(28)/(1/2+sqrt(5)/2)^29 2329991416272776 a004 Fibonacci(72)/Lucas(28)/(1/2+sqrt(5)/2)^31 2329991416272776 a004 Fibonacci(74)/Lucas(28)/(1/2+sqrt(5)/2)^33 2329991416272776 a004 Fibonacci(76)/Lucas(28)/(1/2+sqrt(5)/2)^35 2329991416272776 a004 Fibonacci(78)/Lucas(28)/(1/2+sqrt(5)/2)^37 2329991416272776 a004 Fibonacci(80)/Lucas(28)/(1/2+sqrt(5)/2)^39 2329991416272776 a004 Fibonacci(82)/Lucas(28)/(1/2+sqrt(5)/2)^41 2329991416272776 a004 Fibonacci(84)/Lucas(28)/(1/2+sqrt(5)/2)^43 2329991416272776 a004 Fibonacci(86)/Lucas(28)/(1/2+sqrt(5)/2)^45 2329991416272776 a004 Fibonacci(88)/Lucas(28)/(1/2+sqrt(5)/2)^47 2329991416272776 a004 Fibonacci(90)/Lucas(28)/(1/2+sqrt(5)/2)^49 2329991416272776 a004 Fibonacci(92)/Lucas(28)/(1/2+sqrt(5)/2)^51 2329991416272776 a004 Fibonacci(94)/Lucas(28)/(1/2+sqrt(5)/2)^53 2329991416272776 a004 Fibonacci(96)/Lucas(28)/(1/2+sqrt(5)/2)^55 2329991416272776 a004 Fibonacci(98)/Lucas(28)/(1/2+sqrt(5)/2)^57 2329991416272776 a004 Fibonacci(100)/Lucas(28)/(1/2+sqrt(5)/2)^59 2329991416272776 a004 Fibonacci(28)*Lucas(56)/(1/2+sqrt(5)/2)^71 2329991416272776 a004 Fibonacci(97)/Lucas(28)/(1/2+sqrt(5)/2)^56 2329991416272776 a004 Fibonacci(99)/Lucas(28)/(1/2+sqrt(5)/2)^58 2329991416272776 a004 Fibonacci(95)/Lucas(28)/(1/2+sqrt(5)/2)^54 2329991416272776 a004 Fibonacci(93)/Lucas(28)/(1/2+sqrt(5)/2)^52 2329991416272776 a004 Fibonacci(91)/Lucas(28)/(1/2+sqrt(5)/2)^50 2329991416272776 a004 Fibonacci(89)/Lucas(28)/(1/2+sqrt(5)/2)^48 2329991416272776 a004 Fibonacci(87)/Lucas(28)/(1/2+sqrt(5)/2)^46 2329991416272776 a004 Fibonacci(85)/Lucas(28)/(1/2+sqrt(5)/2)^44 2329991416272776 a004 Fibonacci(83)/Lucas(28)/(1/2+sqrt(5)/2)^42 2329991416272776 a004 Fibonacci(81)/Lucas(28)/(1/2+sqrt(5)/2)^40 2329991416272776 a004 Fibonacci(79)/Lucas(28)/(1/2+sqrt(5)/2)^38 2329991416272776 a004 Fibonacci(77)/Lucas(28)/(1/2+sqrt(5)/2)^36 2329991416272776 a004 Fibonacci(75)/Lucas(28)/(1/2+sqrt(5)/2)^34 2329991416272776 a004 Fibonacci(73)/Lucas(28)/(1/2+sqrt(5)/2)^32 2329991416272776 a004 Fibonacci(71)/Lucas(28)/(1/2+sqrt(5)/2)^30 2329991416272776 a004 Fibonacci(69)/Lucas(28)/(1/2+sqrt(5)/2)^28 2329991416272776 a004 Fibonacci(67)/Lucas(28)/(1/2+sqrt(5)/2)^26 2329991416272776 a004 Fibonacci(65)/Lucas(28)/(1/2+sqrt(5)/2)^24 2329991416272776 a004 Fibonacci(63)/Lucas(28)/(1/2+sqrt(5)/2)^22 2329991416272776 a004 Fibonacci(61)/Lucas(28)/(1/2+sqrt(5)/2)^20 2329991416272776 a004 Fibonacci(59)/Lucas(28)/(1/2+sqrt(5)/2)^18 2329991416272776 a001 317811/817138163596*505019158607^(3/4) 2329991416272776 a004 Fibonacci(57)/Lucas(28)/(1/2+sqrt(5)/2)^16 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^40/Lucas(55) 2329991416272776 a001 317811/312119004989*23725150497407^(5/8) 2329991416272776 a004 Fibonacci(55)/Lucas(28)/(1/2+sqrt(5)/2)^14 2329991416272776 a001 10959/505618944676*192900153618^(8/9) 2329991416272776 a004 Fibonacci(28)*Lucas(54)/(1/2+sqrt(5)/2)^69 2329991416272776 a001 317811/119218851371*817138163596^(2/3) 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^38/Lucas(53) 2329991416272776 a004 Fibonacci(53)/Lucas(28)/(1/2+sqrt(5)/2)^12 2329991416272776 a001 105937/64300051206*73681302247^(3/4) 2329991416272776 a001 317811/45537549124*45537549124^(12/17) 2329991416272776 a001 317811/2139295485799*73681302247^(11/13) 2329991416272776 a001 10959/505618944676*73681302247^(12/13) 2329991416272776 a004 Fibonacci(28)*Lucas(52)/(1/2+sqrt(5)/2)^67 2329991416272776 a001 317811/45537549124*14662949395604^(4/7) 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^36/Lucas(51) 2329991416272776 a001 317811/45537549124*505019158607^(9/14) 2329991416272776 a004 Fibonacci(51)/Lucas(28)/(1/2+sqrt(5)/2)^10 2329991416272776 a001 317811/45537549124*192900153618^(2/3) 2329991416272776 a001 317811/45537549124*73681302247^(9/13) 2329991416272776 a001 317811/312119004989*28143753123^(4/5) 2329991416272776 a001 317811/3461452808002*28143753123^(9/10) 2329991416272776 a004 Fibonacci(28)*Lucas(50)/(1/2+sqrt(5)/2)^65 2329991416272776 a001 10959/599786069*45537549124^(2/3) 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^34/Lucas(49) 2329991416272776 a001 824056596444913/3536736619241 2329991416272776 a004 Fibonacci(49)/Lucas(28)/(1/2+sqrt(5)/2)^8 2329991416272776 a001 317811/119218851371*10749957122^(19/24) 2329991416272776 a001 317811/45537549124*10749957122^(3/4) 2329991416272776 a001 105937/64300051206*10749957122^(13/16) 2329991416272776 a001 317811/312119004989*10749957122^(5/6) 2329991416272776 a001 317811/817138163596*10749957122^(7/8) 2329991416272776 a001 317811/2139295485799*10749957122^(11/12) 2329991416272776 a001 317811/3461452808002*10749957122^(15/16) 2329991416272776 a001 317811/5600748293801*10749957122^(23/24) 2329991416272776 a004 Fibonacci(28)*Lucas(48)/(1/2+sqrt(5)/2)^63 2329991416272776 a001 10959/599786069*10749957122^(17/24) 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^32/Lucas(47) 2329991416272776 a001 317811/6643838879*23725150497407^(1/2) 2329991416272776 a001 317811/6643838879*505019158607^(4/7) 2329991416272776 a004 Fibonacci(47)/Lucas(28)/(1/2+sqrt(5)/2)^6 2329991416272776 a001 317811/6643838879*73681302247^(8/13) 2329991416272776 a001 317811/6643838879*10749957122^(2/3) 2329991416272776 a001 317811/45537549124*4106118243^(18/23) 2329991416272776 a001 10959/599786069*4106118243^(17/23) 2329991416272776 a001 317811/119218851371*4106118243^(19/23) 2329991416272776 a001 317811/312119004989*4106118243^(20/23) 2329991416272776 a001 317811/2537720636*2537720636^(2/3) 2329991416272776 a001 317811/817138163596*4106118243^(21/23) 2329991416272776 a001 317811/2139295485799*4106118243^(22/23) 2329991416272776 a004 Fibonacci(28)*Lucas(46)/(1/2+sqrt(5)/2)^61 2329991416272776 a001 317811/6643838879*4106118243^(16/23) 2329991416272776 a001 317811/2537720636*45537549124^(10/17) 2329991416272776 a001 317811/2537720636*312119004989^(6/11) 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^30/Lucas(45) 2329991416272776 a001 197095470689/845906424 2329991416272776 a004 Fibonacci(45)/Lucas(28)/(1/2+sqrt(5)/2)^4 2329991416272776 a001 317811/2537720636*192900153618^(5/9) 2329991416272776 a001 317811/2537720636*28143753123^(3/5) 2329991416272776 a001 317811/2537720636*10749957122^(5/8) 2329991416272776 a001 317811/2537720636*4106118243^(15/23) 2329991416272776 a001 317811/10749957122*1568397607^(3/4) 2329991416272776 a001 10959/599786069*1568397607^(17/22) 2329991416272776 a001 317811/6643838879*1568397607^(8/11) 2329991416272776 a001 317811/45537549124*1568397607^(9/11) 2329991416272776 a001 317811/119218851371*1568397607^(19/22) 2329991416272776 a001 317811/312119004989*1568397607^(10/11) 2329991416272776 a001 317811/817138163596*1568397607^(21/22) 2329991416272776 a004 Fibonacci(28)*Lucas(44)/(1/2+sqrt(5)/2)^59 2329991416272776 a001 317811/2537720636*1568397607^(15/22) 2329991416272776 a001 317811/969323029*17393796001^(4/7) 2329991416272776 a001 317811/969323029*14662949395604^(4/9) 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^28/Lucas(43) 2329991416272776 a001 137769300517407/591286729879 2329991416272776 a004 Fibonacci(43)/Lucas(28)/(1/2+sqrt(5)/2)^2 2329991416272776 a001 317811/969323029*73681302247^(7/13) 2329991416272776 a001 317811/969323029*10749957122^(7/12) 2329991416272776 a001 317811/969323029*4106118243^(14/23) 2329991416272776 a001 317811/969323029*1568397607^(7/11) 2329991416272776 a001 317811/2537720636*599074578^(5/7) 2329991416272776 a001 317811/6643838879*599074578^(16/21) 2329991416272776 a001 317811/10749957122*599074578^(11/14) 2329991416272776 a001 10959/599786069*599074578^(17/21) 2329991416272776 a001 105937/9381251041*599074578^(5/6) 2329991416272776 a001 317811/45537549124*599074578^(6/7) 2329991416272776 a001 317811/119218851371*599074578^(19/21) 2329991416272776 a001 105937/64300051206*599074578^(13/14) 2329991416272776 a001 317811/312119004989*599074578^(20/21) 2329991416272776 a004 Fibonacci(28)*Lucas(42)/(1/2+sqrt(5)/2)^57 2329991416272776 a001 317811/969323029*599074578^(2/3) 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^26/Lucas(41) 2329991416272776 a001 165580141/710647 2329991416272776 a001 317811/370248451*73681302247^(1/2) 2329991416272776 a001 317811/370248451*10749957122^(13/24) 2329991416272776 a001 317811/370248451*4106118243^(13/23) 2329991416272776 a001 317811/370248451*1568397607^(13/22) 2329991416272776 a001 317811/370248451*599074578^(13/21) 2329991416272776 a001 317811/969323029*228826127^(7/10) 2329991416272776 a001 317811/2537720636*228826127^(3/4) 2329991416272776 a001 317811/6643838879*228826127^(4/5) 2329991416272776 a001 10959/599786069*228826127^(17/20) 2329991416272776 a001 105937/9381251041*228826127^(7/8) 2329991416272776 a001 317811/45537549124*228826127^(9/10) 2329991416272776 a001 317811/119218851371*228826127^(19/20) 2329991416272776 a004 Fibonacci(28)*Lucas(40)/(1/2+sqrt(5)/2)^55 2329991416272776 a001 317811/141422324*141422324^(8/13) 2329991416272776 a001 317811/370248451*228826127^(13/20) 2329991416272776 a001 317811/141422324*2537720636^(8/15) 2329991416272776 a001 317811/141422324*45537549124^(8/17) 2329991416272776 a001 317811/141422324*14662949395604^(8/21) 2329991416272776 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^24/Lucas(39) 2329991416272776 a001 63245986/710647*(1/2+1/2*5^(1/2))^2 2329991416272776 a001 317811/141422324*192900153618^(4/9) 2329991416272776 a001 10050135028323/43133785636 2329991416272776 a001 317811/141422324*73681302247^(6/13) 2329991416272776 a001 63245986/710647*10749957122^(1/24) 2329991416272776 a001 63245986/710647*4106118243^(1/23) 2329991416272776 a001 317811/141422324*10749957122^(1/2) 2329991416272776 a001 63245986/710647*1568397607^(1/22) 2329991416272776 a001 317811/141422324*4106118243^(12/23) 2329991416272776 a001 63245986/710647*599074578^(1/21) 2329991416272776 a001 317811/141422324*1568397607^(6/11) 2329991416272776 a001 63245986/710647*228826127^(1/20) 2329991416272776 a001 317811/141422324*599074578^(4/7) 2329991416272776 a001 63245986/710647*87403803^(1/19) 2329991416272776 a001 317811/141422324*228826127^(3/5) 2329991416272776 a001 317811/370248451*87403803^(13/19) 2329991416272776 a001 317811/969323029*87403803^(14/19) 2329991416272776 a001 63245986/710647*33385282^(1/18) 2329991416272777 a001 317811/2537720636*87403803^(15/19) 2329991416272777 a001 317811/6643838879*87403803^(16/19) 2329991416272777 a001 10959/599786069*87403803^(17/19) 2329991416272777 a001 317811/45537549124*87403803^(18/19) 2329991416272777 a004 Fibonacci(28)*Lucas(38)/(1/2+sqrt(5)/2)^53 2329991416272777 a001 317811/141422324*87403803^(12/19) 2329991416272777 a001 317811/54018521*312119004989^(2/5) 2329991416272777 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^22/Lucas(37) 2329991416272777 a001 24157817/710647*(1/2+1/2*5^(1/2))^4 2329991416272777 a001 24157817/710647*23725150497407^(1/16) 2329991416272777 a001 24157817/710647*73681302247^(1/13) 2329991416272777 a001 2559206659529/10983760033 2329991416272777 a001 24157817/710647*10749957122^(1/12) 2329991416272777 a001 317811/54018521*10749957122^(11/24) 2329991416272777 a001 24157817/710647*4106118243^(2/23) 2329991416272777 a001 317811/54018521*4106118243^(11/23) 2329991416272777 a001 24157817/710647*1568397607^(1/11) 2329991416272777 a001 317811/54018521*1568397607^(1/2) 2329991416272777 a001 24157817/710647*599074578^(2/21) 2329991416272777 a001 317811/54018521*599074578^(11/21) 2329991416272777 a001 24157817/710647*228826127^(1/10) 2329991416272777 a001 317811/54018521*228826127^(11/20) 2329991416272777 a001 24157817/710647*87403803^(2/19) 2329991416272777 a001 63245986/710647*12752043^(1/17) 2329991416272777 a001 317811/54018521*87403803^(11/19) 2329991416272777 a001 24157817/710647*33385282^(1/9) 2329991416272778 a001 317811/141422324*33385282^(2/3) 2329991416272778 a001 317811/370248451*33385282^(13/18) 2329991416272778 a001 377/710646*33385282^(3/4) 2329991416272778 a001 317811/969323029*33385282^(7/9) 2329991416272778 a001 317811/2537720636*33385282^(5/6) 2329991416272778 a001 317811/6643838879*33385282^(8/9) 2329991416272778 a001 317811/10749957122*33385282^(11/12) 2329991416272778 a001 10959/599786069*33385282^(17/18) 2329991416272778 a001 317811/54018521*33385282^(11/18) 2329991416272778 a004 Fibonacci(28)*Lucas(36)/(1/2+sqrt(5)/2)^51 2329991416272779 a001 10959/711491*20633239^(4/7) 2329991416272779 a001 24157817/710647*12752043^(2/17) 2329991416272782 a001 9227465/710647*141422324^(2/13) 2329991416272782 a001 10959/711491*2537720636^(4/9) 2329991416272782 a001 9227465/710647*2537720636^(2/15) 2329991416272782 a001 9227465/710647*45537549124^(2/17) 2329991416272782 a001 10959/711491*(1/2+1/2*5^(1/2))^20 2329991416272782 a001 10959/711491*23725150497407^(5/16) 2329991416272782 a001 10959/711491*505019158607^(5/14) 2329991416272782 a001 9227465/710647*(1/2+1/2*5^(1/2))^6 2329991416272782 a001 10959/711491*73681302247^(5/13) 2329991416272782 a001 10959/711491*28143753123^(2/5) 2329991416272782 a001 9227465/710647*10749957122^(1/8) 2329991416272782 a001 586517975823/2517253805 2329991416272782 a001 10959/711491*10749957122^(5/12) 2329991416272782 a001 9227465/710647*4106118243^(3/23) 2329991416272782 a001 10959/711491*4106118243^(10/23) 2329991416272782 a001 9227465/710647*1568397607^(3/22) 2329991416272782 a001 10959/711491*1568397607^(5/11) 2329991416272782 a001 9227465/710647*599074578^(1/7) 2329991416272782 a001 10959/711491*599074578^(10/21) 2329991416272782 a001 9227465/710647*228826127^(3/20) 2329991416272782 a001 10959/711491*228826127^(1/2) 2329991416272782 a001 9227465/710647*87403803^(3/19) 2329991416272782 a001 10959/711491*87403803^(10/19) 2329991416272782 a001 9227465/710647*33385282^(1/6) 2329991416272783 a001 63245986/710647*4870847^(1/16) 2329991416272783 a001 10959/711491*33385282^(5/9) 2329991416272784 a001 9227465/710647*12752043^(3/17) 2329991416272786 a001 317811/54018521*12752043^(11/17) 2329991416272786 a001 317811/141422324*12752043^(12/17) 2329991416272787 a001 317811/370248451*12752043^(13/17) 2329991416272788 a001 317811/969323029*12752043^(14/17) 2329991416272789 a001 317811/2537720636*12752043^(15/17) 2329991416272789 a001 24157817/710647*4870847^(1/8) 2329991416272790 a001 317811/6643838879*12752043^(16/17) 2329991416272790 a001 10959/711491*12752043^(10/17) 2329991416272791 a004 Fibonacci(28)*Lucas(34)/(1/2+sqrt(5)/2)^49 2329991416272793 a001 317811/7881196*7881196^(6/11) 2329991416272800 a001 9227465/710647*4870847^(3/16) 2329991416272814 a001 317811/7881196*141422324^(6/13) 2329991416272814 a001 317811/7881196*2537720636^(2/5) 2329991416272814 a001 317811/7881196*45537549124^(6/17) 2329991416272814 a001 317811/7881196*14662949395604^(2/7) 2329991416272814 a001 317811/7881196*(1/2+1/2*5^(1/2))^18 2329991416272814 a001 3524578/710647*(1/2+1/2*5^(1/2))^8 2329991416272814 a001 3524578/710647*23725150497407^(1/8) 2329991416272814 a001 317811/7881196*192900153618^(1/3) 2329991416272814 a001 3524578/710647*73681302247^(2/13) 2329991416272814 a001 3524578/710647*10749957122^(1/6) 2329991416272814 a001 317811/7881196*10749957122^(3/8) 2329991416272814 a001 186691609793/801254496 2329991416272814 a001 3524578/710647*4106118243^(4/23) 2329991416272814 a001 317811/7881196*4106118243^(9/23) 2329991416272814 a001 3524578/710647*1568397607^(2/11) 2329991416272814 a001 317811/7881196*1568397607^(9/22) 2329991416272814 a001 3524578/710647*599074578^(4/21) 2329991416272814 a001 317811/7881196*599074578^(3/7) 2329991416272814 a001 3524578/710647*228826127^(1/5) 2329991416272814 a001 317811/7881196*228826127^(9/20) 2329991416272814 a001 3524578/710647*87403803^(4/19) 2329991416272814 a001 317811/7881196*87403803^(9/19) 2329991416272814 a001 3524578/710647*33385282^(2/9) 2329991416272815 a001 317811/7881196*33385282^(1/2) 2329991416272817 a001 3524578/710647*12752043^(4/17) 2329991416272821 a001 63245986/710647*1860498^(1/15) 2329991416272821 a001 317811/7881196*12752043^(9/17) 2329991416272838 a001 3524578/710647*4870847^(1/4) 2329991416272843 a001 10959/711491*4870847^(5/8) 2329991416272843 a001 39088169/710647*1860498^(1/10) 2329991416272845 a001 317811/54018521*4870847^(11/16) 2329991416272850 a001 317811/141422324*4870847^(3/4) 2329991416272856 a001 317811/370248451*4870847^(13/16) 2329991416272858 a001 4976784/90481*103682^(1/8) 2329991416272862 a001 317811/969323029*4870847^(7/8) 2329991416272867 a001 24157817/710647*1860498^(2/15) 2329991416272868 a001 317811/2537720636*4870847^(15/16) 2329991416272869 a001 317811/7881196*4870847^(9/16) 2329991416272874 a004 Fibonacci(28)*Lucas(32)/(1/2+sqrt(5)/2)^47 2329991416272880 a001 311187/101521*1860498^(3/10) 2329991416272886 a001 14930352/710647*1860498^(1/6) 2329991416272916 a001 9227465/439204*167761^(1/5) 2329991416272916 a001 9227465/710647*1860498^(1/5) 2329991416272993 a001 3524578/710647*1860498^(4/15) 2329991416273032 a001 1346269/710647*20633239^(2/7) 2329991416273033 a001 1346269/710647*2537720636^(2/9) 2329991416273033 a001 317811/3010349*(1/2+1/2*5^(1/2))^16 2329991416273033 a001 317811/3010349*23725150497407^(1/4) 2329991416273033 a001 1346269/710647*312119004989^(2/11) 2329991416273033 a001 1346269/710647*(1/2+1/2*5^(1/2))^10 2329991416273033 a001 317811/3010349*73681302247^(4/13) 2329991416273033 a001 1346269/710647*28143753123^(1/5) 2329991416273033 a001 1346269/710647*10749957122^(5/24) 2329991416273033 a001 317811/3010349*10749957122^(1/3) 2329991416273033 a001 1346269/710647*4106118243^(5/23) 2329991416273033 a001 317811/3010349*4106118243^(8/23) 2329991416273033 a001 427859097159/1836311903 2329991416273033 a001 1346269/710647*1568397607^(5/22) 2329991416273033 a001 317811/3010349*1568397607^(4/11) 2329991416273033 a001 1346269/710647*599074578^(5/21) 2329991416273033 a001 317811/3010349*599074578^(8/21) 2329991416273033 a001 1346269/710647*228826127^(1/4) 2329991416273033 a001 317811/3010349*228826127^(2/5) 2329991416273033 a001 1346269/710647*87403803^(5/19) 2329991416273034 a001 317811/3010349*87403803^(8/19) 2329991416273034 a001 1346269/710647*33385282^(5/18) 2329991416273034 a001 317811/3010349*33385282^(4/9) 2329991416273038 a001 1346269/710647*12752043^(5/17) 2329991416273040 a001 317811/3010349*12752043^(8/17) 2329991416273064 a001 1346269/710647*4870847^(5/16) 2329991416273082 a001 317811/3010349*4870847^(1/2) 2329991416273106 a001 63245986/710647*710647^(1/14) 2329991416273111 a001 832040/1149851*439204^(4/9) 2329991416273218 a001 317811/7881196*1860498^(3/5) 2329991416273230 a001 10959/711491*1860498^(2/3) 2329991416273245 a001 317811/33385282*1860498^(7/10) 2329991416273258 a001 1346269/710647*1860498^(1/3) 2329991416273263 a001 14930352/4870847*439204^(1/3) 2329991416273271 a001 317811/54018521*1860498^(11/15) 2329991416273315 a001 317811/141422324*1860498^(4/5) 2329991416273337 a001 317811/228826127*1860498^(5/6) 2329991416273349 a001 39088169/12752043*439204^(1/3) 2329991416273360 a001 317811/370248451*1860498^(13/15) 2329991416273362 a001 14619165/4769326*439204^(1/3) 2329991416273363 a001 267914296/87403803*439204^(1/3) 2329991416273364 a001 701408733/228826127*439204^(1/3) 2329991416273364 a001 1836311903/599074578*439204^(1/3) 2329991416273364 a001 686789568/224056801*439204^(1/3) 2329991416273364 a001 12586269025/4106118243*439204^(1/3) 2329991416273364 a001 32951280099/10749957122*439204^(1/3) 2329991416273364 a001 86267571272/28143753123*439204^(1/3) 2329991416273364 a001 32264490531/10525900321*439204^(1/3) 2329991416273364 a001 591286729879/192900153618*439204^(1/3) 2329991416273364 a001 1515744265389/494493258286*439204^(1/3) 2329991416273364 a001 2504730781961/817138163596*439204^(1/3) 2329991416273364 a001 956722026041/312119004989*439204^(1/3) 2329991416273364 a001 365435296162/119218851371*439204^(1/3) 2329991416273364 a001 139583862445/45537549124*439204^(1/3) 2329991416273364 a001 53316291173/17393796001*439204^(1/3) 2329991416273364 a001 20365011074/6643838879*439204^(1/3) 2329991416273364 a001 7778742049/2537720636*439204^(1/3) 2329991416273364 a001 2971215073/969323029*439204^(1/3) 2329991416273364 a001 1134903170/370248451*439204^(1/3) 2329991416273364 a001 433494437/141422324*439204^(1/3) 2329991416273364 a001 165580141/54018521*439204^(1/3) 2329991416273369 a001 63245986/20633239*439204^(1/3) 2329991416273382 a001 377/710646*1860498^(9/10) 2329991416273392 a001 317811/3010349*1860498^(8/15) 2329991416273402 a001 24157817/7881196*439204^(1/3) 2329991416273405 a001 317811/969323029*1860498^(14/15) 2329991416273436 a001 24157817/710647*710647^(1/7) 2329991416273449 a004 Fibonacci(28)*Lucas(30)/(1/2+sqrt(5)/2)^45 2329991416273626 a001 9227465/3010349*439204^(1/3) 2329991416273770 a001 9227465/710647*710647^(3/14) 2329991416273915 a001 5702887/710647*710647^(1/4) 2329991416274033 a001 24157817/1860498*439204^(2/9) 2329991416274132 a001 3524578/710647*710647^(2/7) 2329991416274525 a001 514229/710647*7881196^(4/11) 2329991416274536 a001 317811/1149851*20633239^(2/5) 2329991416274538 a001 514229/710647*141422324^(4/13) 2329991416274539 a001 514229/710647*2537720636^(4/15) 2329991416274539 a001 317811/1149851*17393796001^(2/7) 2329991416274539 a001 514229/710647*45537549124^(4/17) 2329991416274539 a001 317811/1149851*14662949395604^(2/9) 2329991416274539 a001 317811/1149851*(1/2+1/2*5^(1/2))^14 2329991416274539 a001 514229/710647*14662949395604^(4/21) 2329991416274539 a001 514229/710647*(1/2+1/2*5^(1/2))^12 2329991416274539 a001 514229/710647*192900153618^(2/9) 2329991416274539 a001 514229/710647*73681302247^(3/13) 2329991416274539 a001 514229/710647*10749957122^(1/4) 2329991416274539 a001 317811/1149851*10749957122^(7/24) 2329991416274539 a001 514229/710647*4106118243^(6/23) 2329991416274539 a001 317811/1149851*4106118243^(7/23) 2329991416274539 a001 514229/710647*1568397607^(3/11) 2329991416274539 a001 317811/1149851*1568397607^(7/22) 2329991416274539 a001 54475877573/233802911 2329991416274539 a001 514229/710647*599074578^(2/7) 2329991416274539 a001 317811/1149851*599074578^(1/3) 2329991416274539 a001 514229/710647*228826127^(3/10) 2329991416274539 a001 317811/1149851*228826127^(7/20) 2329991416274539 a001 514229/710647*87403803^(6/19) 2329991416274539 a001 317811/1149851*87403803^(7/19) 2329991416274539 a001 514229/710647*33385282^(1/3) 2329991416274539 a001 317811/1149851*33385282^(7/18) 2329991416274544 a001 514229/710647*12752043^(6/17) 2329991416274544 a001 317811/1149851*12752043^(7/17) 2329991416274575 a001 514229/710647*4870847^(3/8) 2329991416274581 a001 317811/1149851*4870847^(7/16) 2329991416274608 a001 63245986/4870847*439204^(2/9) 2329991416274681 a001 1346269/710647*710647^(5/14) 2329991416274691 a001 165580141/12752043*439204^(2/9) 2329991416274704 a001 433494437/33385282*439204^(2/9) 2329991416274705 a001 1134903170/87403803*439204^(2/9) 2329991416274706 a001 2971215073/228826127*439204^(2/9) 2329991416274706 a001 7778742049/599074578*439204^(2/9) 2329991416274706 a001 20365011074/1568397607*439204^(2/9) 2329991416274706 a001 53316291173/4106118243*439204^(2/9) 2329991416274706 a001 139583862445/10749957122*439204^(2/9) 2329991416274706 a001 365435296162/28143753123*439204^(2/9) 2329991416274706 a001 956722026041/73681302247*439204^(2/9) 2329991416274706 a001 2504730781961/192900153618*439204^(2/9) 2329991416274706 a001 10610209857723/817138163596*439204^(2/9) 2329991416274706 a001 4052739537881/312119004989*439204^(2/9) 2329991416274706 a001 1548008755920/119218851371*439204^(2/9) 2329991416274706 a001 591286729879/45537549124*439204^(2/9) 2329991416274706 a001 7787980473/599786069*439204^(2/9) 2329991416274706 a001 86267571272/6643838879*439204^(2/9) 2329991416274706 a001 32951280099/2537720636*439204^(2/9) 2329991416274706 a001 12586269025/969323029*439204^(2/9) 2329991416274706 a001 4807526976/370248451*439204^(2/9) 2329991416274706 a001 1836311903/141422324*439204^(2/9) 2329991416274707 a001 701408733/54018521*439204^(2/9) 2329991416274711 a001 9238424/711491*439204^(2/9) 2329991416274743 a001 102334155/7881196*439204^(2/9) 2329991416274808 a001 514229/710647*1860498^(2/5) 2329991416274853 a001 317811/1149851*1860498^(7/15) 2329991416274874 a001 121393/439204*271443^(7/13) 2329991416274955 a004 Fibonacci(30)*Lucas(29)/(1/2+sqrt(5)/2)^46 2329991416274958 a001 121393/54018521*271443^(12/13) 2329991416274963 a001 39088169/3010349*439204^(2/9) 2329991416275163 a001 3524578/1149851*439204^(1/3) 2329991416275209 a001 63245986/710647*271443^(1/13) 2329991416275375 a001 831985/15126*439204^(1/9) 2329991416275529 a004 Fibonacci(32)*Lucas(29)/(1/2+sqrt(5)/2)^48 2329991416275613 a004 Fibonacci(34)*Lucas(29)/(1/2+sqrt(5)/2)^50 2329991416275626 a004 Fibonacci(36)*Lucas(29)/(1/2+sqrt(5)/2)^52 2329991416275627 a004 Fibonacci(38)*Lucas(29)/(1/2+sqrt(5)/2)^54 2329991416275628 a004 Fibonacci(40)*Lucas(29)/(1/2+sqrt(5)/2)^56 2329991416275628 a004 Fibonacci(42)*Lucas(29)/(1/2+sqrt(5)/2)^58 2329991416275628 a004 Fibonacci(44)*Lucas(29)/(1/2+sqrt(5)/2)^60 2329991416275628 a004 Fibonacci(46)*Lucas(29)/(1/2+sqrt(5)/2)^62 2329991416275628 a004 Fibonacci(48)*Lucas(29)/(1/2+sqrt(5)/2)^64 2329991416275628 a004 Fibonacci(50)*Lucas(29)/(1/2+sqrt(5)/2)^66 2329991416275628 a004 Fibonacci(52)*Lucas(29)/(1/2+sqrt(5)/2)^68 2329991416275628 a004 Fibonacci(54)*Lucas(29)/(1/2+sqrt(5)/2)^70 2329991416275628 a004 Fibonacci(56)*Lucas(29)/(1/2+sqrt(5)/2)^72 2329991416275628 a004 Fibonacci(58)*Lucas(29)/(1/2+sqrt(5)/2)^74 2329991416275628 a004 Fibonacci(60)*Lucas(29)/(1/2+sqrt(5)/2)^76 2329991416275628 a004 Fibonacci(62)*Lucas(29)/(1/2+sqrt(5)/2)^78 2329991416275628 a004 Fibonacci(64)*Lucas(29)/(1/2+sqrt(5)/2)^80 2329991416275628 a004 Fibonacci(66)*Lucas(29)/(1/2+sqrt(5)/2)^82 2329991416275628 a004 Fibonacci(68)*Lucas(29)/(1/2+sqrt(5)/2)^84 2329991416275628 a004 Fibonacci(70)*Lucas(29)/(1/2+sqrt(5)/2)^86 2329991416275628 a004 Fibonacci(72)*Lucas(29)/(1/2+sqrt(5)/2)^88 2329991416275628 a004 Fibonacci(74)*Lucas(29)/(1/2+sqrt(5)/2)^90 2329991416275628 a004 Fibonacci(76)*Lucas(29)/(1/2+sqrt(5)/2)^92 2329991416275628 a004 Fibonacci(78)*Lucas(29)/(1/2+sqrt(5)/2)^94 2329991416275628 a004 Fibonacci(80)*Lucas(29)/(1/2+sqrt(5)/2)^96 2329991416275628 a004 Fibonacci(82)*Lucas(29)/(1/2+sqrt(5)/2)^98 2329991416275628 a004 Fibonacci(84)*Lucas(29)/(1/2+sqrt(5)/2)^100 2329991416275628 a004 Fibonacci(83)*Lucas(29)/(1/2+sqrt(5)/2)^99 2329991416275628 a004 Fibonacci(81)*Lucas(29)/(1/2+sqrt(5)/2)^97 2329991416275628 a004 Fibonacci(79)*Lucas(29)/(1/2+sqrt(5)/2)^95 2329991416275628 a004 Fibonacci(77)*Lucas(29)/(1/2+sqrt(5)/2)^93 2329991416275628 a004 Fibonacci(75)*Lucas(29)/(1/2+sqrt(5)/2)^91 2329991416275628 a004 Fibonacci(73)*Lucas(29)/(1/2+sqrt(5)/2)^89 2329991416275628 a004 Fibonacci(71)*Lucas(29)/(1/2+sqrt(5)/2)^87 2329991416275628 a004 Fibonacci(69)*Lucas(29)/(1/2+sqrt(5)/2)^85 2329991416275628 a004 Fibonacci(67)*Lucas(29)/(1/2+sqrt(5)/2)^83 2329991416275628 a004 Fibonacci(65)*Lucas(29)/(1/2+sqrt(5)/2)^81 2329991416275628 a004 Fibonacci(63)*Lucas(29)/(1/2+sqrt(5)/2)^79 2329991416275628 a004 Fibonacci(61)*Lucas(29)/(1/2+sqrt(5)/2)^77 2329991416275628 a004 Fibonacci(59)*Lucas(29)/(1/2+sqrt(5)/2)^75 2329991416275628 a001 2/514229*(1/2+1/2*5^(1/2))^42 2329991416275628 a004 Fibonacci(57)*Lucas(29)/(1/2+sqrt(5)/2)^73 2329991416275628 a004 Fibonacci(55)*Lucas(29)/(1/2+sqrt(5)/2)^71 2329991416275628 a004 Fibonacci(53)*Lucas(29)/(1/2+sqrt(5)/2)^69 2329991416275628 a004 Fibonacci(51)*Lucas(29)/(1/2+sqrt(5)/2)^67 2329991416275628 a004 Fibonacci(49)*Lucas(29)/(1/2+sqrt(5)/2)^65 2329991416275628 a004 Fibonacci(47)*Lucas(29)/(1/2+sqrt(5)/2)^63 2329991416275628 a004 Fibonacci(45)*Lucas(29)/(1/2+sqrt(5)/2)^61 2329991416275628 a004 Fibonacci(43)*Lucas(29)/(1/2+sqrt(5)/2)^59 2329991416275628 a004 Fibonacci(41)*Lucas(29)/(1/2+sqrt(5)/2)^57 2329991416275628 a004 Fibonacci(39)*Lucas(29)/(1/2+sqrt(5)/2)^55 2329991416275628 a004 Fibonacci(37)*Lucas(29)/(1/2+sqrt(5)/2)^53 2329991416275633 a004 Fibonacci(35)*Lucas(29)/(1/2+sqrt(5)/2)^51 2329991416275665 a004 Fibonacci(33)*Lucas(29)/(1/2+sqrt(5)/2)^49 2329991416275670 a001 317811/3010349*710647^(4/7) 2329991416275780 a001 317811/7881196*710647^(9/14) 2329991416275885 a004 Fibonacci(31)*Lucas(29)/(1/2+sqrt(5)/2)^47 2329991416275950 a001 267914296/4870847*439204^(1/9) 2329991416276034 a001 233802911/4250681*439204^(1/9) 2329991416276044 a001 416020/930249*141422324^(1/3) 2329991416276044 a001 692290561600/2971215073 2329991416276044 a001 416020/930249*(1/2+1/2*5^(1/2))^13 2329991416276044 a001 416020/930249*73681302247^(1/4) 2329991416276046 a001 1836311903/33385282*439204^(1/9) 2329991416276048 a001 1602508992/29134601*439204^(1/9) 2329991416276048 a001 12586269025/228826127*439204^(1/9) 2329991416276048 a001 10983760033/199691526*439204^(1/9) 2329991416276048 a001 86267571272/1568397607*439204^(1/9) 2329991416276048 a001 75283811239/1368706081*439204^(1/9) 2329991416276048 a001 591286729879/10749957122*439204^(1/9) 2329991416276048 a001 12585437040/228811001*439204^(1/9) 2329991416276048 a001 4052739537881/73681302247*439204^(1/9) 2329991416276048 a001 3536736619241/64300051206*439204^(1/9) 2329991416276048 a001 6557470319842/119218851371*439204^(1/9) 2329991416276048 a001 2504730781961/45537549124*439204^(1/9) 2329991416276048 a001 956722026041/17393796001*439204^(1/9) 2329991416276048 a001 365435296162/6643838879*439204^(1/9) 2329991416276048 a001 139583862445/2537720636*439204^(1/9) 2329991416276048 a001 53316291173/969323029*439204^(1/9) 2329991416276048 a001 20365011074/370248451*439204^(1/9) 2329991416276048 a001 7778742049/141422324*439204^(1/9) 2329991416276049 a001 2971215073/54018521*439204^(1/9) 2329991416276053 a001 1134903170/20633239*439204^(1/9) 2329991416276077 a001 10959/711491*710647^(5/7) 2329991416276085 a001 433494437/7881196*439204^(1/9) 2329991416276234 a001 317811/33385282*710647^(3/4) 2329991416276305 a001 165580141/3010349*439204^(1/9) 2329991416276402 a001 317811/54018521*710647^(11/14) 2329991416276460 a004 Fibonacci(30)*Lucas(31)/(1/2+sqrt(5)/2)^48 2329991416276466 a001 14930352/1149851*439204^(2/9) 2329991416276516 a001 514229/710647*710647^(3/7) 2329991416276602 a001 832040/4870847*7881196^(5/11) 2329991416276606 a001 726103/620166*7881196^(1/3) 2329991416276616 a001 832040/4870847*20633239^(3/7) 2329991416276619 a001 832040/4870847*141422324^(5/13) 2329991416276619 a001 832040/4870847*2537720636^(1/3) 2329991416276619 a001 1812440220360/7778742049 2329991416276619 a001 832040/4870847*45537549124^(5/17) 2329991416276619 a001 832040/4870847*312119004989^(3/11) 2329991416276619 a001 726103/620166*312119004989^(1/5) 2329991416276619 a001 832040/4870847*14662949395604^(5/21) 2329991416276619 a001 832040/4870847*(1/2+1/2*5^(1/2))^15 2329991416276619 a001 726103/620166*(1/2+1/2*5^(1/2))^11 2329991416276619 a001 832040/4870847*192900153618^(5/18) 2329991416276619 a001 832040/4870847*28143753123^(3/10) 2329991416276619 a001 832040/4870847*10749957122^(5/16) 2329991416276619 a001 726103/620166*1568397607^(1/4) 2329991416276619 a001 832040/4870847*599074578^(5/14) 2329991416276619 a001 832040/4870847*228826127^(3/8) 2329991416276619 a001 832040/4870847*33385282^(5/12) 2329991416276679 a004 Fibonacci(30)*Lucas(33)/(1/2+sqrt(5)/2)^50 2329991416276683 a001 832040/6643838879*7881196^(10/11) 2329991416276686 a001 832040/1568397607*7881196^(9/11) 2329991416276690 a001 832040/370248451*7881196^(8/11) 2329991416276692 a001 208010/35355581*7881196^(2/3) 2329991416276692 a001 5702887/1860498*7881196^(3/11) 2329991416276693 a001 832040/87403803*7881196^(7/11) 2329991416276702 a001 75640/1875749*7881196^(6/11) 2329991416276702 a001 5702887/1860498*141422324^(3/13) 2329991416276702 a001 5702887/1860498*2537720636^(1/5) 2329991416276702 a001 1485607420/6376021 2329991416276702 a001 832040/12752043*45537549124^(1/3) 2329991416276702 a001 5702887/1860498*45537549124^(3/17) 2329991416276702 a001 832040/12752043*(1/2+1/2*5^(1/2))^17 2329991416276702 a001 5702887/1860498*14662949395604^(1/7) 2329991416276702 a001 5702887/1860498*(1/2+1/2*5^(1/2))^9 2329991416276702 a001 5702887/1860498*192900153618^(1/6) 2329991416276702 a001 5702887/1860498*10749957122^(3/16) 2329991416276702 a001 5702887/1860498*599074578^(3/14) 2329991416276703 a001 5702887/1860498*33385282^(1/4) 2329991416276710 a001 832040/12752043*12752043^(1/2) 2329991416276711 a001 24157817/1860498*7881196^(2/11) 2329991416276711 a004 Fibonacci(30)*Lucas(35)/(1/2+sqrt(5)/2)^52 2329991416276712 a001 832040/6643838879*20633239^(6/7) 2329991416276712 a001 610/1860499*20633239^(4/5) 2329991416276713 a001 416020/299537289*20633239^(5/7) 2329991416276713 a001 832040/87403803*20633239^(3/5) 2329991416276713 a001 831985/15126*7881196^(1/11) 2329991416276714 a001 829464/103361*20633239^(1/5) 2329991416276714 a001 832040/54018521*20633239^(4/7) 2329991416276715 a001 829464/103361*17393796001^(1/7) 2329991416276715 a001 12422650078080/53316291173 2329991416276715 a001 416020/16692641*817138163596^(1/3) 2329991416276715 a001 416020/16692641*(1/2+1/2*5^(1/2))^19 2329991416276715 a001 829464/103361*(1/2+1/2*5^(1/2))^7 2329991416276715 a001 829464/103361*599074578^(1/6) 2329991416276715 a001 416020/16692641*87403803^(1/2) 2329991416276716 a001 39088169/1860498*20633239^(1/7) 2329991416276716 a004 Fibonacci(30)*Lucas(37)/(1/2+sqrt(5)/2)^54 2329991416276716 a001 832040/87403803*141422324^(7/13) 2329991416276717 a001 832040/87403803*2537720636^(7/15) 2329991416276717 a001 39088169/1860498*2537720636^(1/9) 2329991416276717 a001 832040/87403803*17393796001^(3/7) 2329991416276717 a001 832040/87403803*45537549124^(7/17) 2329991416276717 a001 6504584026952/27916772489 2329991416276717 a001 39088169/1860498*312119004989^(1/11) 2329991416276717 a001 832040/87403803*14662949395604^(1/3) 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^21/Lucas(38) 2329991416276717 a001 39088169/1860498*(1/2+1/2*5^(1/2))^5 2329991416276717 a001 832040/87403803*192900153618^(7/18) 2329991416276717 a001 39088169/1860498*28143753123^(1/10) 2329991416276717 a001 832040/87403803*10749957122^(7/16) 2329991416276717 a001 832040/87403803*599074578^(1/2) 2329991416276717 a001 39088169/1860498*228826127^(1/8) 2329991416276717 a004 Fibonacci(30)*Lucas(39)/(1/2+sqrt(5)/2)^56 2329991416276717 a001 832040/119218851371*141422324^(12/13) 2329991416276717 a001 832040/28143753123*141422324^(11/13) 2329991416276717 a001 832040/6643838879*141422324^(10/13) 2329991416276717 a001 832040/1568397607*141422324^(9/13) 2329991416276717 a001 832040/969323029*141422324^(2/3) 2329991416276717 a001 832040/370248451*141422324^(8/13) 2329991416276717 a001 831985/15126*141422324^(1/13) 2329991416276717 a001 831985/15126*2537720636^(1/15) 2329991416276717 a001 831985/15126*45537549124^(1/17) 2329991416276717 a001 42573055163100/182717648081 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^23/Lucas(40) 2329991416276717 a001 831985/15126*(1/2+1/2*5^(1/2))^3 2329991416276717 a001 831985/15126*10749957122^(1/16) 2329991416276717 a001 832040/228826127*4106118243^(1/2) 2329991416276717 a001 831985/15126*599074578^(1/14) 2329991416276717 a004 Fibonacci(30)*Lucas(41)/(1/2+sqrt(5)/2)^58 2329991416276717 a001 416020/299537289*2537720636^(5/9) 2329991416276717 a001 416020/299537289*312119004989^(5/11) 2329991416276717 a001 222915410843840/956722026041 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^25/Lucas(42) 2329991416276717 a001 416020/299537289*3461452808002^(5/12) 2329991416276717 a004 Fibonacci(42)*(1/2+sqrt(5)/2)/Lucas(30) 2329991416276717 a001 416020/299537289*28143753123^(1/2) 2329991416276717 a004 Fibonacci(30)*Lucas(43)/(1/2+sqrt(5)/2)^60 2329991416276717 a001 832040/1568397607*2537720636^(3/5) 2329991416276717 a001 832040/1568397607*45537549124^(9/17) 2329991416276717 a001 832040/1568397607*817138163596^(9/19) 2329991416276717 a001 583600122205320/2504730781961 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^27/Lucas(44) 2329991416276717 a004 Fibonacci(44)/Lucas(30)/(1/2+sqrt(5)/2) 2329991416276717 a001 832040/1568397607*192900153618^(1/2) 2329991416276717 a001 832040/1568397607*10749957122^(9/16) 2329991416276717 a004 Fibonacci(30)*Lucas(45)/(1/2+sqrt(5)/2)^62 2329991416276717 a001 832040/2139295485799*2537720636^(14/15) 2329991416276717 a001 208010/204284540899*2537720636^(8/9) 2329991416276717 a001 832040/505019158607*2537720636^(13/15) 2329991416276717 a001 832040/119218851371*2537720636^(4/5) 2329991416276717 a001 832040/73681302247*2537720636^(7/9) 2329991416276717 a001 832040/28143753123*2537720636^(11/15) 2329991416276717 a001 832040/6643838879*2537720636^(2/3) 2329991416276717 a001 763942477886060/3278735159921 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^29/Lucas(46) 2329991416276717 a004 Fibonacci(46)/Lucas(30)/(1/2+sqrt(5)/2)^3 2329991416276717 a001 832040/4106118243*1322157322203^(1/2) 2329991416276717 a004 Fibonacci(30)*Lucas(47)/(1/2+sqrt(5)/2)^64 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^31/Lucas(48) 2329991416276717 a001 416020/5374978561*9062201101803^(1/2) 2329991416276717 a004 Fibonacci(48)/Lucas(30)/(1/2+sqrt(5)/2)^5 2329991416276717 a004 Fibonacci(30)*Lucas(49)/(1/2+sqrt(5)/2)^66 2329991416276717 a001 832040/2139295485799*17393796001^(6/7) 2329991416276717 a001 832040/73681302247*17393796001^(5/7) 2329991416276717 a001 832040/28143753123*45537549124^(11/17) 2329991416276717 a001 832040/28143753123*312119004989^(3/5) 2329991416276717 a001 832040/28143753123*14662949395604^(11/21) 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^33/Lucas(50) 2329991416276717 a004 Fibonacci(50)/Lucas(30)/(1/2+sqrt(5)/2)^7 2329991416276717 a001 832040/28143753123*192900153618^(11/18) 2329991416276717 a004 Fibonacci(30)*Lucas(51)/(1/2+sqrt(5)/2)^68 2329991416276717 a001 832040/9062201101803*45537549124^(15/17) 2329991416276717 a001 832040/2139295485799*45537549124^(14/17) 2329991416276717 a001 832040/505019158607*45537549124^(13/17) 2329991416276717 a001 832040/119218851371*45537549124^(12/17) 2329991416276717 a001 832040/73681302247*312119004989^(7/11) 2329991416276717 a001 832040/73681302247*14662949395604^(5/9) 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^35/Lucas(52) 2329991416276717 a004 Fibonacci(52)/Lucas(30)/(1/2+sqrt(5)/2)^9 2329991416276717 a001 832040/73681302247*505019158607^(5/8) 2329991416276717 a004 Fibonacci(30)*Lucas(53)/(1/2+sqrt(5)/2)^70 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^37/Lucas(54) 2329991416276717 a004 Fibonacci(54)/Lucas(30)/(1/2+sqrt(5)/2)^11 2329991416276717 a004 Fibonacci(30)*Lucas(55)/(1/2+sqrt(5)/2)^72 2329991416276717 a001 208010/204284540899*312119004989^(8/11) 2329991416276717 a001 832040/505019158607*14662949395604^(13/21) 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^39/Lucas(56) 2329991416276717 a004 Fibonacci(56)/Lucas(30)/(1/2+sqrt(5)/2)^13 2329991416276717 a004 Fibonacci(30)*Lucas(57)/(1/2+sqrt(5)/2)^74 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^41/Lucas(58) 2329991416276717 a004 Fibonacci(58)/Lucas(30)/(1/2+sqrt(5)/2)^15 2329991416276717 a004 Fibonacci(30)*Lucas(59)/(1/2+sqrt(5)/2)^76 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^43/Lucas(60) 2329991416276717 a004 Fibonacci(30)*Lucas(61)/(1/2+sqrt(5)/2)^78 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^45/Lucas(62) 2329991416276717 a004 Fibonacci(30)*Lucas(63)/(1/2+sqrt(5)/2)^80 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^47/Lucas(64) 2329991416276717 a004 Fibonacci(30)*Lucas(65)/(1/2+sqrt(5)/2)^82 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^49/Lucas(66) 2329991416276717 a004 Fibonacci(30)*Lucas(67)/(1/2+sqrt(5)/2)^84 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^51/Lucas(68) 2329991416276717 a004 Fibonacci(30)*Lucas(69)/(1/2+sqrt(5)/2)^86 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^53/Lucas(70) 2329991416276717 a004 Fibonacci(30)*Lucas(71)/(1/2+sqrt(5)/2)^88 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^55/Lucas(72) 2329991416276717 a004 Fibonacci(30)*Lucas(73)/(1/2+sqrt(5)/2)^90 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^57/Lucas(74) 2329991416276717 a004 Fibonacci(30)*Lucas(75)/(1/2+sqrt(5)/2)^92 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^59/Lucas(76) 2329991416276717 a004 Fibonacci(30)*Lucas(77)/(1/2+sqrt(5)/2)^94 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^61/Lucas(78) 2329991416276717 a004 Fibonacci(30)*Lucas(79)/(1/2+sqrt(5)/2)^96 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^63/Lucas(80) 2329991416276717 a004 Fibonacci(30)*Lucas(81)/(1/2+sqrt(5)/2)^98 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^65/Lucas(82) 2329991416276717 a004 Fibonacci(30)*Lucas(83)/(1/2+sqrt(5)/2)^100 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^67/Lucas(84) 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^69/Lucas(86) 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^71/Lucas(88) 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^73/Lucas(90) 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^75/Lucas(92) 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^77/Lucas(94) 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^79/Lucas(96) 2329991416276717 a004 Fibonacci(15)*Lucas(15)/(1/2+sqrt(5)/2)^17 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^81/Lucas(98) 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^82/Lucas(99) 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^83/Lucas(100) 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^80/Lucas(97) 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^78/Lucas(95) 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^76/Lucas(93) 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^74/Lucas(91) 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^72/Lucas(89) 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^70/Lucas(87) 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^68/Lucas(85) 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^66/Lucas(83) 2329991416276717 a004 Fibonacci(30)*Lucas(82)/(1/2+sqrt(5)/2)^99 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^64/Lucas(81) 2329991416276717 a004 Fibonacci(30)*Lucas(80)/(1/2+sqrt(5)/2)^97 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^62/Lucas(79) 2329991416276717 a004 Fibonacci(30)*Lucas(78)/(1/2+sqrt(5)/2)^95 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^60/Lucas(77) 2329991416276717 a004 Fibonacci(30)*Lucas(76)/(1/2+sqrt(5)/2)^93 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^58/Lucas(75) 2329991416276717 a004 Fibonacci(30)*Lucas(74)/(1/2+sqrt(5)/2)^91 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^56/Lucas(73) 2329991416276717 a004 Fibonacci(30)*Lucas(72)/(1/2+sqrt(5)/2)^89 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^54/Lucas(71) 2329991416276717 a004 Fibonacci(30)*Lucas(70)/(1/2+sqrt(5)/2)^87 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^52/Lucas(69) 2329991416276717 a004 Fibonacci(30)*Lucas(68)/(1/2+sqrt(5)/2)^85 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^50/Lucas(67) 2329991416276717 a004 Fibonacci(30)*Lucas(66)/(1/2+sqrt(5)/2)^83 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^48/Lucas(65) 2329991416276717 a004 Fibonacci(30)*Lucas(64)/(1/2+sqrt(5)/2)^81 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^46/Lucas(63) 2329991416276717 a004 Fibonacci(30)*Lucas(62)/(1/2+sqrt(5)/2)^79 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^44/Lucas(61) 2329991416276717 a004 Fibonacci(62)/Lucas(30)/(1/2+sqrt(5)/2)^19 2329991416276717 a004 Fibonacci(64)/Lucas(30)/(1/2+sqrt(5)/2)^21 2329991416276717 a004 Fibonacci(66)/Lucas(30)/(1/2+sqrt(5)/2)^23 2329991416276717 a004 Fibonacci(68)/Lucas(30)/(1/2+sqrt(5)/2)^25 2329991416276717 a004 Fibonacci(70)/Lucas(30)/(1/2+sqrt(5)/2)^27 2329991416276717 a004 Fibonacci(72)/Lucas(30)/(1/2+sqrt(5)/2)^29 2329991416276717 a004 Fibonacci(74)/Lucas(30)/(1/2+sqrt(5)/2)^31 2329991416276717 a004 Fibonacci(76)/Lucas(30)/(1/2+sqrt(5)/2)^33 2329991416276717 a004 Fibonacci(78)/Lucas(30)/(1/2+sqrt(5)/2)^35 2329991416276717 a004 Fibonacci(80)/Lucas(30)/(1/2+sqrt(5)/2)^37 2329991416276717 a004 Fibonacci(82)/Lucas(30)/(1/2+sqrt(5)/2)^39 2329991416276717 a004 Fibonacci(84)/Lucas(30)/(1/2+sqrt(5)/2)^41 2329991416276717 a004 Fibonacci(86)/Lucas(30)/(1/2+sqrt(5)/2)^43 2329991416276717 a004 Fibonacci(88)/Lucas(30)/(1/2+sqrt(5)/2)^45 2329991416276717 a004 Fibonacci(90)/Lucas(30)/(1/2+sqrt(5)/2)^47 2329991416276717 a004 Fibonacci(92)/Lucas(30)/(1/2+sqrt(5)/2)^49 2329991416276717 a004 Fibonacci(94)/Lucas(30)/(1/2+sqrt(5)/2)^51 2329991416276717 a004 Fibonacci(96)/Lucas(30)/(1/2+sqrt(5)/2)^53 2329991416276717 a004 Fibonacci(100)/Lucas(30)/(1/2+sqrt(5)/2)^57 2329991416276717 a004 Fibonacci(30)*Lucas(60)/(1/2+sqrt(5)/2)^77 2329991416276717 a004 Fibonacci(98)/Lucas(30)/(1/2+sqrt(5)/2)^55 2329991416276717 a004 Fibonacci(99)/Lucas(30)/(1/2+sqrt(5)/2)^56 2329991416276717 a004 Fibonacci(97)/Lucas(30)/(1/2+sqrt(5)/2)^54 2329991416276717 a004 Fibonacci(95)/Lucas(30)/(1/2+sqrt(5)/2)^52 2329991416276717 a004 Fibonacci(93)/Lucas(30)/(1/2+sqrt(5)/2)^50 2329991416276717 a004 Fibonacci(91)/Lucas(30)/(1/2+sqrt(5)/2)^48 2329991416276717 a004 Fibonacci(89)/Lucas(30)/(1/2+sqrt(5)/2)^46 2329991416276717 a004 Fibonacci(87)/Lucas(30)/(1/2+sqrt(5)/2)^44 2329991416276717 a004 Fibonacci(85)/Lucas(30)/(1/2+sqrt(5)/2)^42 2329991416276717 a004 Fibonacci(83)/Lucas(30)/(1/2+sqrt(5)/2)^40 2329991416276717 a004 Fibonacci(81)/Lucas(30)/(1/2+sqrt(5)/2)^38 2329991416276717 a004 Fibonacci(79)/Lucas(30)/(1/2+sqrt(5)/2)^36 2329991416276717 a004 Fibonacci(77)/Lucas(30)/(1/2+sqrt(5)/2)^34 2329991416276717 a004 Fibonacci(75)/Lucas(30)/(1/2+sqrt(5)/2)^32 2329991416276717 a004 Fibonacci(73)/Lucas(30)/(1/2+sqrt(5)/2)^30 2329991416276717 a004 Fibonacci(71)/Lucas(30)/(1/2+sqrt(5)/2)^28 2329991416276717 a004 Fibonacci(69)/Lucas(30)/(1/2+sqrt(5)/2)^26 2329991416276717 a004 Fibonacci(67)/Lucas(30)/(1/2+sqrt(5)/2)^24 2329991416276717 a004 Fibonacci(65)/Lucas(30)/(1/2+sqrt(5)/2)^22 2329991416276717 a004 Fibonacci(63)/Lucas(30)/(1/2+sqrt(5)/2)^20 2329991416276717 a004 Fibonacci(61)/Lucas(30)/(1/2+sqrt(5)/2)^18 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^42/Lucas(59) 2329991416276717 a004 Fibonacci(59)/Lucas(30)/(1/2+sqrt(5)/2)^16 2329991416276717 a004 Fibonacci(30)*Lucas(58)/(1/2+sqrt(5)/2)^75 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^40/Lucas(57) 2329991416276717 a001 208010/204284540899*23725150497407^(5/8) 2329991416276717 a004 Fibonacci(57)/Lucas(30)/(1/2+sqrt(5)/2)^14 2329991416276717 a001 832040/2139295485799*505019158607^(3/4) 2329991416276717 a004 Fibonacci(30)*Lucas(56)/(1/2+sqrt(5)/2)^73 2329991416276717 a001 75640/28374454999*817138163596^(2/3) 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^38/Lucas(55) 2329991416276717 a004 Fibonacci(55)/Lucas(30)/(1/2+sqrt(5)/2)^12 2329991416276717 a001 832040/505019158607*192900153618^(13/18) 2329991416276717 a001 832040/2139295485799*192900153618^(7/9) 2329991416276717 a004 Fibonacci(30)*Lucas(54)/(1/2+sqrt(5)/2)^71 2329991416276717 a001 832040/119218851371*14662949395604^(4/7) 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^36/Lucas(53) 2329991416276717 a004 Fibonacci(53)/Lucas(30)/(1/2+sqrt(5)/2)^10 2329991416276717 a001 832040/119218851371*505019158607^(9/14) 2329991416276717 a001 832040/119218851371*192900153618^(2/3) 2329991416276717 a001 208010/204284540899*73681302247^(10/13) 2329991416276717 a001 832040/5600748293801*73681302247^(11/13) 2329991416276717 a001 208010/11384387281*45537549124^(2/3) 2329991416276717 a004 Fibonacci(30)*Lucas(52)/(1/2+sqrt(5)/2)^69 2329991416276717 a001 832040/119218851371*73681302247^(9/13) 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^34/Lucas(51) 2329991416276717 a004 Fibonacci(51)/Lucas(30)/(1/2+sqrt(5)/2)^8 2329991416276717 a001 832040/73681302247*28143753123^(7/10) 2329991416276717 a001 208010/204284540899*28143753123^(4/5) 2329991416276717 a001 832040/9062201101803*28143753123^(9/10) 2329991416276717 a004 Fibonacci(30)*Lucas(50)/(1/2+sqrt(5)/2)^67 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^32/Lucas(49) 2329991416276717 a001 832040/17393796001*23725150497407^(1/2) 2329991416276717 a004 Fibonacci(49)/Lucas(30)/(1/2+sqrt(5)/2)^6 2329991416276717 a001 832040/17393796001*505019158607^(4/7) 2329991416276717 a001 832040/17393796001*73681302247^(8/13) 2329991416276717 a001 832040/28143753123*10749957122^(11/16) 2329991416276717 a001 832040/119218851371*10749957122^(3/4) 2329991416276717 a001 208010/11384387281*10749957122^(17/24) 2329991416276717 a001 75640/28374454999*10749957122^(19/24) 2329991416276717 a001 832040/505019158607*10749957122^(13/16) 2329991416276717 a001 208010/204284540899*10749957122^(5/6) 2329991416276717 a001 832040/2139295485799*10749957122^(7/8) 2329991416276717 a001 832040/5600748293801*10749957122^(11/12) 2329991416276717 a001 832040/9062201101803*10749957122^(15/16) 2329991416276717 a001 208010/3665737348901*10749957122^(23/24) 2329991416276717 a004 Fibonacci(30)*Lucas(48)/(1/2+sqrt(5)/2)^65 2329991416276717 a001 832040/17393796001*10749957122^(2/3) 2329991416276717 a001 832040/6643838879*45537549124^(10/17) 2329991416276717 a001 832040/6643838879*312119004989^(6/11) 2329991416276717 a001 832040/6643838879*14662949395604^(10/21) 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^30/Lucas(47) 2329991416276717 a001 2472169789338920/10610209857723 2329991416276717 a004 Fibonacci(47)/Lucas(30)/(1/2+sqrt(5)/2)^4 2329991416276717 a001 832040/6643838879*192900153618^(5/9) 2329991416276717 a001 832040/6643838879*28143753123^(3/5) 2329991416276717 a001 832040/6643838879*10749957122^(5/8) 2329991416276717 a001 208010/11384387281*4106118243^(17/23) 2329991416276717 a001 832040/17393796001*4106118243^(16/23) 2329991416276717 a001 832040/119218851371*4106118243^(18/23) 2329991416276717 a001 75640/28374454999*4106118243^(19/23) 2329991416276717 a001 208010/204284540899*4106118243^(20/23) 2329991416276717 a001 832040/2139295485799*4106118243^(21/23) 2329991416276717 a001 832040/5600748293801*4106118243^(22/23) 2329991416276717 a004 Fibonacci(30)*Lucas(46)/(1/2+sqrt(5)/2)^63 2329991416276717 a001 832040/6643838879*4106118243^(15/23) 2329991416276717 a001 610/1860499*17393796001^(4/7) 2329991416276717 a001 610/1860499*14662949395604^(4/9) 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^28/Lucas(45) 2329991416276717 a004 Fibonacci(45)/Lucas(30)/(1/2+sqrt(5)/2)^2 2329991416276717 a001 610/1860499*73681302247^(7/13) 2329991416276717 a001 610/1860499*10749957122^(7/12) 2329991416276717 a001 610/1860499*4106118243^(14/23) 2329991416276717 a001 832040/17393796001*1568397607^(8/11) 2329991416276717 a001 832040/6643838879*1568397607^(15/22) 2329991416276717 a001 832040/28143753123*1568397607^(3/4) 2329991416276717 a001 208010/11384387281*1568397607^(17/22) 2329991416276717 a001 832040/119218851371*1568397607^(9/11) 2329991416276717 a001 75640/28374454999*1568397607^(19/22) 2329991416276717 a001 208010/204284540899*1568397607^(10/11) 2329991416276717 a001 832040/2139295485799*1568397607^(21/22) 2329991416276717 a004 Fibonacci(30)*Lucas(44)/(1/2+sqrt(5)/2)^61 2329991416276717 a001 610/1860499*1568397607^(7/11) 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^26/Lucas(43) 2329991416276717 a001 433494437/1860498 2329991416276717 a001 832040/969323029*73681302247^(1/2) 2329991416276717 a001 832040/969323029*10749957122^(13/24) 2329991416276717 a001 832040/969323029*4106118243^(13/23) 2329991416276717 a001 832040/969323029*1568397607^(13/22) 2329991416276717 a001 832040/1568397607*599074578^(9/14) 2329991416276717 a001 610/1860499*599074578^(2/3) 2329991416276717 a001 832040/6643838879*599074578^(5/7) 2329991416276717 a001 832040/17393796001*599074578^(16/21) 2329991416276717 a001 832040/28143753123*599074578^(11/14) 2329991416276717 a001 208010/11384387281*599074578^(17/21) 2329991416276717 a001 832040/73681302247*599074578^(5/6) 2329991416276717 a001 832040/119218851371*599074578^(6/7) 2329991416276717 a001 75640/28374454999*599074578^(19/21) 2329991416276717 a001 832040/505019158607*599074578^(13/14) 2329991416276717 a001 208010/204284540899*599074578^(20/21) 2329991416276717 a004 Fibonacci(30)*Lucas(42)/(1/2+sqrt(5)/2)^59 2329991416276717 a001 832040/969323029*599074578^(13/21) 2329991416276717 a001 832040/370248451*2537720636^(8/15) 2329991416276717 a001 832040/370248451*45537549124^(8/17) 2329991416276717 a001 832040/370248451*14662949395604^(8/21) 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^24/Lucas(41) 2329991416276717 a001 165580141/1860498*(1/2+1/2*5^(1/2))^2 2329991416276717 a001 137769300517640/591286729879 2329991416276717 a001 832040/370248451*192900153618^(4/9) 2329991416276717 a001 832040/370248451*73681302247^(6/13) 2329991416276717 a001 165580141/1860498*10749957122^(1/24) 2329991416276717 a001 165580141/1860498*4106118243^(1/23) 2329991416276717 a001 832040/370248451*10749957122^(1/2) 2329991416276717 a001 165580141/1860498*1568397607^(1/22) 2329991416276717 a001 832040/370248451*4106118243^(12/23) 2329991416276717 a001 165580141/1860498*599074578^(1/21) 2329991416276717 a001 832040/370248451*1568397607^(6/11) 2329991416276717 a001 165580141/1860498*228826127^(1/20) 2329991416276717 a001 832040/370248451*599074578^(4/7) 2329991416276717 a001 416020/299537289*228826127^(5/8) 2329991416276717 a001 832040/969323029*228826127^(13/20) 2329991416276717 a001 610/1860499*228826127^(7/10) 2329991416276717 a001 165580141/1860498*87403803^(1/19) 2329991416276717 a001 832040/6643838879*228826127^(3/4) 2329991416276717 a001 832040/17393796001*228826127^(4/5) 2329991416276717 a001 208010/11384387281*228826127^(17/20) 2329991416276717 a001 832040/73681302247*228826127^(7/8) 2329991416276717 a001 832040/119218851371*228826127^(9/10) 2329991416276717 a001 75640/28374454999*228826127^(19/20) 2329991416276717 a001 832040/370248451*228826127^(3/5) 2329991416276717 a004 Fibonacci(30)*Lucas(40)/(1/2+sqrt(5)/2)^57 2329991416276717 a001 208010/35355581*312119004989^(2/5) 2329991416276717 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^22/Lucas(39) 2329991416276717 a001 31622993/930249*(1/2+1/2*5^(1/2))^4 2329991416276717 a001 31622993/930249*23725150497407^(1/16) 2329991416276717 a001 31622993/930249*73681302247^(1/13) 2329991416276717 a001 31622993/930249*10749957122^(1/12) 2329991416276717 a001 208010/35355581*10749957122^(11/24) 2329991416276717 a001 31622993/930249*4106118243^(2/23) 2329991416276717 a001 208010/35355581*4106118243^(11/23) 2329991416276717 a001 31622993/930249*1568397607^(1/11) 2329991416276717 a001 208010/35355581*1568397607^(1/2) 2329991416276717 a001 31622993/930249*599074578^(2/21) 2329991416276717 a001 208010/35355581*599074578^(11/21) 2329991416276717 a001 31622993/930249*228826127^(1/10) 2329991416276717 a001 831985/15126*33385282^(1/12) 2329991416276717 a001 165580141/1860498*33385282^(1/18) 2329991416276717 a001 208010/35355581*228826127^(11/20) 2329991416276717 a001 31622993/930249*87403803^(2/19) 2329991416276717 a001 832040/370248451*87403803^(12/19) 2329991416276717 a001 832040/969323029*87403803^(13/19) 2329991416276717 a001 610/1860499*87403803^(14/19) 2329991416276717 a001 832040/6643838879*87403803^(15/19) 2329991416276717 a001 832040/17393796001*87403803^(16/19) 2329991416276717 a001 208010/11384387281*87403803^(17/19) 2329991416276717 a001 832040/119218851371*87403803^(18/19) 2329991416276717 a001 208010/35355581*87403803^(11/19) 2329991416276717 a004 Fibonacci(30)*Lucas(38)/(1/2+sqrt(5)/2)^55 2329991416276717 a001 31622993/930249*33385282^(1/9) 2329991416276718 a001 24157817/1860498*141422324^(2/13) 2329991416276718 a001 832040/54018521*2537720636^(4/9) 2329991416276718 a001 24157817/1860498*2537720636^(2/15) 2329991416276718 a001 24157817/1860498*45537549124^(2/17) 2329991416276718 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^20/Lucas(37) 2329991416276718 a001 832040/54018521*23725150497407^(5/16) 2329991416276718 a001 24157817/1860498*14662949395604^(2/21) 2329991416276718 a001 24157817/1860498*(1/2+1/2*5^(1/2))^6 2329991416276718 a001 832040/54018521*505019158607^(5/14) 2329991416276718 a001 2512533757085/10783446409 2329991416276718 a001 832040/54018521*73681302247^(5/13) 2329991416276718 a001 832040/54018521*28143753123^(2/5) 2329991416276718 a001 24157817/1860498*10749957122^(1/8) 2329991416276718 a001 832040/54018521*10749957122^(5/12) 2329991416276718 a001 24157817/1860498*4106118243^(3/23) 2329991416276718 a001 832040/54018521*4106118243^(10/23) 2329991416276718 a001 24157817/1860498*1568397607^(3/22) 2329991416276718 a001 832040/54018521*1568397607^(5/11) 2329991416276718 a001 24157817/1860498*599074578^(1/7) 2329991416276718 a001 832040/54018521*599074578^(10/21) 2329991416276718 a001 24157817/1860498*228826127^(3/20) 2329991416276718 a001 832040/54018521*228826127^(1/2) 2329991416276718 a001 24157817/1860498*87403803^(3/19) 2329991416276718 a001 165580141/1860498*12752043^(1/17) 2329991416276718 a001 832040/87403803*33385282^(7/12) 2329991416276718 a001 832040/54018521*87403803^(10/19) 2329991416276718 a001 24157817/1860498*33385282^(1/6) 2329991416276718 a001 208010/35355581*33385282^(11/18) 2329991416276718 a001 832040/370248451*33385282^(2/3) 2329991416276718 a001 832040/969323029*33385282^(13/18) 2329991416276718 a001 832040/1568397607*33385282^(3/4) 2329991416276718 a001 610/1860499*33385282^(7/9) 2329991416276719 a001 832040/6643838879*33385282^(5/6) 2329991416276719 a001 31622993/930249*12752043^(2/17) 2329991416276719 a001 832040/17393796001*33385282^(8/9) 2329991416276719 a001 832040/28143753123*33385282^(11/12) 2329991416276719 a001 832040/54018521*33385282^(5/9) 2329991416276719 a001 208010/11384387281*33385282^(17/18) 2329991416276719 a004 Fibonacci(30)*Lucas(36)/(1/2+sqrt(5)/2)^53 2329991416276720 a001 24157817/1860498*12752043^(3/17) 2329991416276722 a001 75640/1875749*141422324^(6/13) 2329991416276722 a001 75640/1875749*2537720636^(2/5) 2329991416276722 a001 75640/1875749*45537549124^(6/17) 2329991416276722 a001 75640/1875749*14662949395604^(2/7) 2329991416276722 a001 75640/1875749*(1/2+1/2*5^(1/2))^18 2329991416276722 a001 9227465/1860498*(1/2+1/2*5^(1/2))^8 2329991416276722 a001 9227465/1860498*505019158607^(1/7) 2329991416276722 a001 75640/1875749*192900153618^(1/3) 2329991416276722 a001 9227465/1860498*73681302247^(2/13) 2329991416276722 a001 7677619978600/32951280099 2329991416276722 a001 9227465/1860498*10749957122^(1/6) 2329991416276722 a001 75640/1875749*10749957122^(3/8) 2329991416276722 a001 9227465/1860498*4106118243^(4/23) 2329991416276722 a001 75640/1875749*4106118243^(9/23) 2329991416276722 a001 9227465/1860498*1568397607^(2/11) 2329991416276722 a001 75640/1875749*1568397607^(9/22) 2329991416276722 a001 9227465/1860498*599074578^(4/21) 2329991416276722 a001 75640/1875749*599074578^(3/7) 2329991416276722 a001 9227465/1860498*228826127^(1/5) 2329991416276722 a001 75640/1875749*228826127^(9/20) 2329991416276722 a001 9227465/1860498*87403803^(4/19) 2329991416276722 a001 75640/1875749*87403803^(9/19) 2329991416276723 a001 9227465/1860498*33385282^(2/9) 2329991416276723 a001 165580141/1860498*4870847^(1/16) 2329991416276723 a001 75640/1875749*33385282^(1/2) 2329991416276726 a001 9227465/1860498*12752043^(4/17) 2329991416276726 a001 832040/54018521*12752043^(10/17) 2329991416276726 a001 208010/35355581*12752043^(11/17) 2329991416276727 a001 832040/370248451*12752043^(12/17) 2329991416276728 a001 832040/969323029*12752043^(13/17) 2329991416276729 a001 610/1860499*12752043^(14/17) 2329991416276729 a001 31622993/930249*4870847^(1/8) 2329991416276729 a001 832040/6643838879*12752043^(15/17) 2329991416276730 a001 75640/1875749*12752043^(9/17) 2329991416276730 a001 832040/17393796001*12752043^(16/17) 2329991416276731 a001 317811/141422324*710647^(6/7) 2329991416276731 a004 Fibonacci(30)*Lucas(34)/(1/2+sqrt(5)/2)^51 2329991416276736 a001 24157817/1860498*4870847^(3/16) 2329991416276747 a001 9227465/1860498*4870847^(1/4) 2329991416276753 a001 1762289/930249*20633239^(2/7) 2329991416276754 a001 1762289/930249*2537720636^(2/9) 2329991416276754 a001 1762289/930249*312119004989^(2/11) 2329991416276754 a001 208010/1970299*(1/2+1/2*5^(1/2))^16 2329991416276754 a001 208010/1970299*23725150497407^(1/4) 2329991416276754 a001 1762289/930249*(1/2+1/2*5^(1/2))^10 2329991416276754 a001 208010/1970299*73681302247^(4/13) 2329991416276754 a001 1762289/930249*28143753123^(1/5) 2329991416276754 a001 53319815984/228841255 2329991416276754 a001 1762289/930249*10749957122^(5/24) 2329991416276754 a001 208010/1970299*10749957122^(1/3) 2329991416276754 a001 1762289/930249*4106118243^(5/23) 2329991416276754 a001 208010/1970299*4106118243^(8/23) 2329991416276754 a001 1762289/930249*1568397607^(5/22) 2329991416276754 a001 208010/1970299*1568397607^(4/11) 2329991416276754 a001 1762289/930249*599074578^(5/21) 2329991416276754 a001 208010/1970299*599074578^(8/21) 2329991416276754 a001 1762289/930249*228826127^(1/4) 2329991416276754 a001 208010/1970299*228826127^(2/5) 2329991416276754 a001 1762289/930249*87403803^(5/19) 2329991416276754 a001 208010/1970299*87403803^(8/19) 2329991416276755 a001 1762289/930249*33385282^(5/18) 2329991416276755 a001 208010/1970299*33385282^(4/9) 2329991416276759 a001 1762289/930249*12752043^(5/17) 2329991416276761 a001 208010/1970299*12752043^(8/17) 2329991416276762 a001 165580141/1860498*1860498^(1/15) 2329991416276778 a001 75640/1875749*4870847^(9/16) 2329991416276779 a001 832040/54018521*4870847^(5/8) 2329991416276784 a001 831985/15126*1860498^(1/10) 2329991416276784 a001 208010/35355581*4870847^(11/16) 2329991416276785 a001 1762289/930249*4870847^(5/16) 2329991416276790 a001 832040/370248451*4870847^(3/4) 2329991416276797 a001 832040/969323029*4870847^(13/16) 2329991416276803 a001 610/1860499*4870847^(7/8) 2329991416276803 a001 208010/1970299*4870847^(1/2) 2329991416276807 a001 31622993/930249*1860498^(2/15) 2329991416276809 a001 832040/6643838879*4870847^(15/16) 2329991416276815 a004 Fibonacci(30)*Lucas(32)/(1/2+sqrt(5)/2)^49 2329991416276829 a001 39088169/1860498*1860498^(1/6) 2329991416276845 a001 317811/1149851*710647^(1/2) 2329991416276852 a001 24157817/1860498*1860498^(1/5) 2329991416276902 a001 9227465/1860498*1860498^(4/15) 2329991416276904 a001 5702887/1860498*1860498^(3/10) 2329991416276955 a001 832040/4870847*1860498^(1/2) 2329991416276960 a001 1346269/1860498*7881196^(4/11) 2329991416276972 a001 832040/3010349*20633239^(2/5) 2329991416276974 a001 1346269/1860498*141422324^(4/13) 2329991416276974 a001 1346269/1860498*2537720636^(4/15) 2329991416276974 a001 832040/3010349*17393796001^(2/7) 2329991416276974 a001 1346269/1860498*45537549124^(4/17) 2329991416276974 a001 1346269/1860498*817138163596^(4/19) 2329991416276974 a001 832040/3010349*(1/2+1/2*5^(1/2))^14 2329991416276974 a001 1346269/1860498*14662949395604^(4/21) 2329991416276974 a001 1346269/1860498*(1/2+1/2*5^(1/2))^12 2329991416276974 a001 1346269/1860498*192900153618^(2/9) 2329991416276974 a001 1346269/1860498*73681302247^(3/13) 2329991416276974 a001 1346269/1860498*10749957122^(1/4) 2329991416276974 a001 832040/3010349*10749957122^(7/24) 2329991416276974 a001 140018707345/600940872 2329991416276974 a001 1346269/1860498*4106118243^(6/23) 2329991416276974 a001 832040/3010349*4106118243^(7/23) 2329991416276974 a001 1346269/1860498*1568397607^(3/11) 2329991416276974 a001 832040/3010349*1568397607^(7/22) 2329991416276974 a001 1346269/1860498*599074578^(2/7) 2329991416276974 a001 832040/3010349*599074578^(1/3) 2329991416276974 a001 1346269/1860498*228826127^(3/10) 2329991416276974 a001 832040/3010349*228826127^(7/20) 2329991416276974 a001 1346269/1860498*87403803^(6/19) 2329991416276974 a001 832040/3010349*87403803^(7/19) 2329991416276975 a001 1346269/1860498*33385282^(1/3) 2329991416276975 a001 832040/3010349*33385282^(7/18) 2329991416276979 a001 1762289/930249*1860498^(1/3) 2329991416276979 a001 1346269/1860498*12752043^(6/17) 2329991416276980 a001 832040/3010349*12752043^(7/17) 2329991416277011 a001 1346269/1860498*4870847^(3/8) 2329991416277017 a001 832040/3010349*4870847^(7/16) 2329991416277035 a004 Fibonacci(32)*Lucas(31)/(1/2+sqrt(5)/2)^50 2329991416277046 a001 165580141/1860498*710647^(1/14) 2329991416277060 a001 317811/370248451*710647^(13/14) 2329991416277113 a001 208010/1970299*1860498^(8/15) 2329991416277118 a004 Fibonacci(34)*Lucas(31)/(1/2+sqrt(5)/2)^52 2329991416277126 a001 75640/1875749*1860498^(3/5) 2329991416277131 a004 Fibonacci(36)*Lucas(31)/(1/2+sqrt(5)/2)^54 2329991416277133 a004 Fibonacci(38)*Lucas(31)/(1/2+sqrt(5)/2)^56 2329991416277133 a004 Fibonacci(40)*Lucas(31)/(1/2+sqrt(5)/2)^58 2329991416277133 a004 Fibonacci(42)*Lucas(31)/(1/2+sqrt(5)/2)^60 2329991416277133 a004 Fibonacci(44)*Lucas(31)/(1/2+sqrt(5)/2)^62 2329991416277133 a004 Fibonacci(46)*Lucas(31)/(1/2+sqrt(5)/2)^64 2329991416277133 a004 Fibonacci(48)*Lucas(31)/(1/2+sqrt(5)/2)^66 2329991416277133 a004 Fibonacci(50)*Lucas(31)/(1/2+sqrt(5)/2)^68 2329991416277133 a004 Fibonacci(52)*Lucas(31)/(1/2+sqrt(5)/2)^70 2329991416277133 a004 Fibonacci(54)*Lucas(31)/(1/2+sqrt(5)/2)^72 2329991416277133 a004 Fibonacci(56)*Lucas(31)/(1/2+sqrt(5)/2)^74 2329991416277133 a004 Fibonacci(58)*Lucas(31)/(1/2+sqrt(5)/2)^76 2329991416277133 a004 Fibonacci(60)*Lucas(31)/(1/2+sqrt(5)/2)^78 2329991416277133 a004 Fibonacci(62)*Lucas(31)/(1/2+sqrt(5)/2)^80 2329991416277133 a004 Fibonacci(64)*Lucas(31)/(1/2+sqrt(5)/2)^82 2329991416277133 a004 Fibonacci(66)*Lucas(31)/(1/2+sqrt(5)/2)^84 2329991416277133 a004 Fibonacci(68)*Lucas(31)/(1/2+sqrt(5)/2)^86 2329991416277133 a004 Fibonacci(70)*Lucas(31)/(1/2+sqrt(5)/2)^88 2329991416277133 a004 Fibonacci(72)*Lucas(31)/(1/2+sqrt(5)/2)^90 2329991416277133 a004 Fibonacci(74)*Lucas(31)/(1/2+sqrt(5)/2)^92 2329991416277133 a004 Fibonacci(76)*Lucas(31)/(1/2+sqrt(5)/2)^94 2329991416277133 a004 Fibonacci(78)*Lucas(31)/(1/2+sqrt(5)/2)^96 2329991416277133 a004 Fibonacci(80)*Lucas(31)/(1/2+sqrt(5)/2)^98 2329991416277133 a004 Fibonacci(82)*Lucas(31)/(1/2+sqrt(5)/2)^100 2329991416277133 a004 Fibonacci(81)*Lucas(31)/(1/2+sqrt(5)/2)^99 2329991416277133 a004 Fibonacci(79)*Lucas(31)/(1/2+sqrt(5)/2)^97 2329991416277133 a004 Fibonacci(77)*Lucas(31)/(1/2+sqrt(5)/2)^95 2329991416277133 a004 Fibonacci(75)*Lucas(31)/(1/2+sqrt(5)/2)^93 2329991416277133 a004 Fibonacci(73)*Lucas(31)/(1/2+sqrt(5)/2)^91 2329991416277133 a004 Fibonacci(71)*Lucas(31)/(1/2+sqrt(5)/2)^89 2329991416277133 a004 Fibonacci(69)*Lucas(31)/(1/2+sqrt(5)/2)^87 2329991416277133 a004 Fibonacci(67)*Lucas(31)/(1/2+sqrt(5)/2)^85 2329991416277133 a004 Fibonacci(65)*Lucas(31)/(1/2+sqrt(5)/2)^83 2329991416277133 a004 Fibonacci(63)*Lucas(31)/(1/2+sqrt(5)/2)^81 2329991416277133 a001 2/1346269*(1/2+1/2*5^(1/2))^44 2329991416277133 a004 Fibonacci(61)*Lucas(31)/(1/2+sqrt(5)/2)^79 2329991416277133 a004 Fibonacci(59)*Lucas(31)/(1/2+sqrt(5)/2)^77 2329991416277133 a004 Fibonacci(57)*Lucas(31)/(1/2+sqrt(5)/2)^75 2329991416277133 a004 Fibonacci(55)*Lucas(31)/(1/2+sqrt(5)/2)^73 2329991416277133 a004 Fibonacci(53)*Lucas(31)/(1/2+sqrt(5)/2)^71 2329991416277133 a004 Fibonacci(51)*Lucas(31)/(1/2+sqrt(5)/2)^69 2329991416277133 a004 Fibonacci(49)*Lucas(31)/(1/2+sqrt(5)/2)^67 2329991416277133 a004 Fibonacci(47)*Lucas(31)/(1/2+sqrt(5)/2)^65 2329991416277133 a004 Fibonacci(45)*Lucas(31)/(1/2+sqrt(5)/2)^63 2329991416277133 a004 Fibonacci(43)*Lucas(31)/(1/2+sqrt(5)/2)^61 2329991416277133 a004 Fibonacci(41)*Lucas(31)/(1/2+sqrt(5)/2)^59 2329991416277133 a004 Fibonacci(39)*Lucas(31)/(1/2+sqrt(5)/2)^57 2329991416277134 a004 Fibonacci(37)*Lucas(31)/(1/2+sqrt(5)/2)^55 2329991416277138 a004 Fibonacci(35)*Lucas(31)/(1/2+sqrt(5)/2)^53 2329991416277166 a001 832040/54018521*1860498^(2/3) 2329991416277170 a004 Fibonacci(33)*Lucas(31)/(1/2+sqrt(5)/2)^51 2329991416277188 a001 832040/87403803*1860498^(7/10) 2329991416277193 a001 2178309/4870847*141422324^(1/3) 2329991416277194 a001 4745030099481/20365011074 2329991416277194 a001 2178309/4870847*(1/2+1/2*5^(1/2))^13 2329991416277194 a001 2178309/4870847*73681302247^(1/4) 2329991416277211 a001 208010/35355581*1860498^(11/15) 2329991416277243 a001 1346269/1860498*1860498^(2/5) 2329991416277254 a004 Fibonacci(32)*Lucas(33)/(1/2+sqrt(5)/2)^52 2329991416277255 a001 832040/370248451*1860498^(4/5) 2329991416277258 a001 2178309/17393796001*7881196^(10/11) 2329991416277260 a001 726103/4250681*7881196^(5/11) 2329991416277261 a001 726103/1368706081*7881196^(9/11) 2329991416277264 a001 2178309/969323029*7881196^(8/11) 2329991416277265 a001 5702887/4870847*7881196^(1/3) 2329991416277267 a001 2178309/370248451*7881196^(2/3) 2329991416277268 a001 46347/4868641*7881196^(7/11) 2329991416277272 a001 2178309/54018521*7881196^(6/11) 2329991416277275 a001 726103/4250681*20633239^(3/7) 2329991416277277 a001 726103/4250681*141422324^(5/13) 2329991416277277 a001 726103/4250681*2537720636^(1/3) 2329991416277277 a001 726103/4250681*45537549124^(5/17) 2329991416277277 a001 12422650078083/53316291173 2329991416277277 a001 726103/4250681*312119004989^(3/11) 2329991416277277 a001 5702887/4870847*312119004989^(1/5) 2329991416277277 a001 726103/4250681*14662949395604^(5/21) 2329991416277277 a001 726103/4250681*(1/2+1/2*5^(1/2))^15 2329991416277277 a001 5702887/4870847*(1/2+1/2*5^(1/2))^11 2329991416277277 a001 726103/4250681*192900153618^(5/18) 2329991416277277 a001 726103/4250681*28143753123^(3/10) 2329991416277277 a001 726103/4250681*10749957122^(5/16) 2329991416277277 a001 5702887/4870847*1568397607^(1/4) 2329991416277277 a001 726103/4250681*599074578^(5/14) 2329991416277277 a001 726103/4250681*228826127^(3/8) 2329991416277278 a001 416020/299537289*1860498^(5/6) 2329991416277278 a001 726103/4250681*33385282^(5/12) 2329991416277279 a001 14930352/4870847*7881196^(3/11) 2329991416277285 a001 63245986/4870847*7881196^(2/11) 2329991416277286 a004 Fibonacci(32)*Lucas(35)/(1/2+sqrt(5)/2)^54 2329991416277287 a001 2178309/17393796001*20633239^(6/7) 2329991416277287 a001 2178309/6643838879*20633239^(4/5) 2329991416277288 a001 311187/224056801*20633239^(5/7) 2329991416277288 a001 832040/3010349*1860498^(7/15) 2329991416277288 a001 267914296/4870847*7881196^(1/11) 2329991416277288 a001 46347/4868641*20633239^(3/5) 2329991416277289 a001 2178309/141422324*20633239^(4/7) 2329991416277290 a001 14930352/4870847*141422324^(3/13) 2329991416277290 a001 14930352/4870847*2537720636^(1/5) 2329991416277290 a001 311187/4769326*45537549124^(1/3) 2329991416277290 a001 14930352/4870847*45537549124^(3/17) 2329991416277290 a001 32522920134768/139583862445 2329991416277290 a001 14930352/4870847*817138163596^(3/19) 2329991416277290 a001 311187/4769326*(1/2+1/2*5^(1/2))^17 2329991416277290 a001 14930352/4870847*14662949395604^(1/7) 2329991416277290 a001 14930352/4870847*(1/2+1/2*5^(1/2))^9 2329991416277290 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^9/Lucas(32) 2329991416277290 a001 14930352/4870847*10749957122^(3/16) 2329991416277290 a001 14930352/4870847*599074578^(3/14) 2329991416277290 a001 14930352/4870847*33385282^(1/4) 2329991416277290 a001 39088169/4870847*20633239^(1/5) 2329991416277291 a001 102334155/4870847*20633239^(1/7) 2329991416277291 a004 Fibonacci(32)*Lucas(37)/(1/2+sqrt(5)/2)^56 2329991416277291 a001 39088169/4870847*17393796001^(1/7) 2329991416277291 a001 20365010841/87403802 2329991416277291 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^19/Lucas(38) 2329991416277291 a001 39088169/4870847*(1/2+1/2*5^(1/2))^7 2329991416277291 a001 39088169/4870847*599074578^(1/6) 2329991416277292 a001 726103/29134601*87403803^(1/2) 2329991416277292 a004 Fibonacci(32)*Lucas(39)/(1/2+sqrt(5)/2)^58 2329991416277292 a001 2178309/312119004989*141422324^(12/13) 2329991416277292 a001 46347/4868641*141422324^(7/13) 2329991416277292 a001 311187/10525900321*141422324^(11/13) 2329991416277292 a001 2178309/17393796001*141422324^(10/13) 2329991416277292 a001 726103/1368706081*141422324^(9/13) 2329991416277292 a001 2178309/2537720636*141422324^(2/3) 2329991416277292 a001 2178309/969323029*141422324^(8/13) 2329991416277292 a001 46347/4868641*2537720636^(7/15) 2329991416277292 a001 102334155/4870847*2537720636^(1/9) 2329991416277292 a001 46347/4868641*17393796001^(3/7) 2329991416277292 a001 46347/4868641*45537549124^(7/17) 2329991416277292 a001 102334155/4870847*312119004989^(1/11) 2329991416277292 a001 222915410843895/956722026041 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^21/Lucas(40) 2329991416277292 a001 102334155/4870847*(1/2+1/2*5^(1/2))^5 2329991416277292 a001 46347/4868641*192900153618^(7/18) 2329991416277292 a001 102334155/4870847*28143753123^(1/10) 2329991416277292 a001 46347/4868641*10749957122^(7/16) 2329991416277292 a001 46347/4868641*599074578^(1/2) 2329991416277292 a001 102334155/4870847*228826127^(1/8) 2329991416277292 a004 Fibonacci(32)*Lucas(41)/(1/2+sqrt(5)/2)^60 2329991416277292 a001 267914296/4870847*141422324^(1/13) 2329991416277292 a001 267914296/4870847*2537720636^(1/15) 2329991416277292 a001 267914296/4870847*45537549124^(1/17) 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^23/Lucas(42) 2329991416277292 a001 267914296/4870847*14662949395604^(1/21) 2329991416277292 a001 267914296/4870847*(1/2+1/2*5^(1/2))^3 2329991416277292 a001 267914296/4870847*10749957122^(1/16) 2329991416277292 a001 726103/199691526*4106118243^(1/2) 2329991416277292 a001 267914296/4870847*599074578^(1/14) 2329991416277292 a004 Fibonacci(32)*Lucas(43)/(1/2+sqrt(5)/2)^62 2329991416277292 a001 311187/224056801*2537720636^(5/9) 2329991416277292 a001 311187/224056801*312119004989^(5/11) 2329991416277292 a001 1527884955772497/6557470319842 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^25/Lucas(44) 2329991416277292 a001 701408733/9741694+701408733/9741694*5^(1/2) 2329991416277292 a001 311187/224056801*28143753123^(1/2) 2329991416277292 a004 Fibonacci(32)*Lucas(45)/(1/2+sqrt(5)/2)^64 2329991416277292 a001 726103/1368706081*2537720636^(3/5) 2329991416277292 a001 2178309/5600748293801*2537720636^(14/15) 2329991416277292 a001 2178309/2139295485799*2537720636^(8/9) 2329991416277292 a001 726103/440719107401*2537720636^(13/15) 2329991416277292 a001 2178309/312119004989*2537720636^(4/5) 2329991416277292 a001 726103/64300051206*2537720636^(7/9) 2329991416277292 a001 311187/10525900321*2537720636^(11/15) 2329991416277292 a001 2178309/17393796001*2537720636^(2/3) 2329991416277292 a001 726103/1368706081*45537549124^(9/17) 2329991416277292 a001 726103/1368706081*817138163596^(9/19) 2329991416277292 a001 726103/1368706081*14662949395604^(3/7) 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^27/Lucas(46) 2329991416277292 a004 Fibonacci(46)/Lucas(32)/(1/2+sqrt(5)/2) 2329991416277292 a001 726103/1368706081*192900153618^(1/2) 2329991416277292 a001 726103/1368706081*10749957122^(9/16) 2329991416277292 a004 Fibonacci(32)*Lucas(47)/(1/2+sqrt(5)/2)^66 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^29/Lucas(48) 2329991416277292 a004 Fibonacci(48)/Lucas(32)/(1/2+sqrt(5)/2)^3 2329991416277292 a001 987/4870846*1322157322203^(1/2) 2329991416277292 a004 Fibonacci(32)*Lucas(49)/(1/2+sqrt(5)/2)^68 2329991416277292 a001 2178309/5600748293801*17393796001^(6/7) 2329991416277292 a001 726103/64300051206*17393796001^(5/7) 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^31/Lucas(50) 2329991416277292 a004 Fibonacci(50)/Lucas(32)/(1/2+sqrt(5)/2)^5 2329991416277292 a001 726103/9381251041*9062201101803^(1/2) 2329991416277292 a001 311187/10525900321*45537549124^(11/17) 2329991416277292 a004 Fibonacci(32)*Lucas(51)/(1/2+sqrt(5)/2)^70 2329991416277292 a001 2178309/23725150497407*45537549124^(15/17) 2329991416277292 a001 2178309/5600748293801*45537549124^(14/17) 2329991416277292 a001 726103/440719107401*45537549124^(13/17) 2329991416277292 a001 2178309/312119004989*45537549124^(12/17) 2329991416277292 a001 2178309/119218851371*45537549124^(2/3) 2329991416277292 a001 311187/10525900321*312119004989^(3/5) 2329991416277292 a001 311187/10525900321*14662949395604^(11/21) 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^33/Lucas(52) 2329991416277292 a004 Fibonacci(52)/Lucas(32)/(1/2+sqrt(5)/2)^7 2329991416277292 a001 311187/10525900321*192900153618^(11/18) 2329991416277292 a004 Fibonacci(32)*Lucas(53)/(1/2+sqrt(5)/2)^72 2329991416277292 a001 726103/64300051206*312119004989^(7/11) 2329991416277292 a001 726103/64300051206*14662949395604^(5/9) 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^35/Lucas(54) 2329991416277292 a004 Fibonacci(54)/Lucas(32)/(1/2+sqrt(5)/2)^9 2329991416277292 a001 726103/64300051206*505019158607^(5/8) 2329991416277292 a004 Fibonacci(32)*Lucas(55)/(1/2+sqrt(5)/2)^74 2329991416277292 a001 2178309/23725150497407*312119004989^(9/11) 2329991416277292 a001 2178309/14662949395604*312119004989^(4/5) 2329991416277292 a001 2178309/2139295485799*312119004989^(8/11) 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^37/Lucas(56) 2329991416277292 a004 Fibonacci(56)/Lucas(32)/(1/2+sqrt(5)/2)^11 2329991416277292 a004 Fibonacci(32)*Lucas(57)/(1/2+sqrt(5)/2)^76 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^39/Lucas(58) 2329991416277292 a004 Fibonacci(58)/Lucas(32)/(1/2+sqrt(5)/2)^13 2329991416277292 a004 Fibonacci(32)*Lucas(59)/(1/2+sqrt(5)/2)^78 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^41/Lucas(60) 2329991416277292 a004 Fibonacci(60)/Lucas(32)/(1/2+sqrt(5)/2)^15 2329991416277292 a004 Fibonacci(32)*Lucas(61)/(1/2+sqrt(5)/2)^80 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^43/Lucas(62) 2329991416277292 a004 Fibonacci(62)/Lucas(32)/(1/2+sqrt(5)/2)^17 2329991416277292 a004 Fibonacci(32)*Lucas(63)/(1/2+sqrt(5)/2)^82 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^45/Lucas(64) 2329991416277292 a004 Fibonacci(32)*Lucas(65)/(1/2+sqrt(5)/2)^84 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^47/Lucas(66) 2329991416277292 a004 Fibonacci(32)*Lucas(67)/(1/2+sqrt(5)/2)^86 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^49/Lucas(68) 2329991416277292 a004 Fibonacci(32)*Lucas(69)/(1/2+sqrt(5)/2)^88 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^51/Lucas(70) 2329991416277292 a004 Fibonacci(32)*Lucas(71)/(1/2+sqrt(5)/2)^90 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^53/Lucas(72) 2329991416277292 a004 Fibonacci(32)*Lucas(73)/(1/2+sqrt(5)/2)^92 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^55/Lucas(74) 2329991416277292 a004 Fibonacci(32)*Lucas(75)/(1/2+sqrt(5)/2)^94 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^57/Lucas(76) 2329991416277292 a004 Fibonacci(32)*Lucas(77)/(1/2+sqrt(5)/2)^96 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^59/Lucas(78) 2329991416277292 a004 Fibonacci(32)*Lucas(79)/(1/2+sqrt(5)/2)^98 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^61/Lucas(80) 2329991416277292 a004 Fibonacci(32)*Lucas(81)/(1/2+sqrt(5)/2)^100 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^63/Lucas(82) 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^65/Lucas(84) 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^67/Lucas(86) 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^69/Lucas(88) 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^71/Lucas(90) 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^73/Lucas(92) 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^75/Lucas(94) 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^77/Lucas(96) 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^79/Lucas(98) 2329991416277292 a004 Fibonacci(16)*Lucas(16)/(1/2+sqrt(5)/2)^19 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^78/Lucas(97) 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^80/Lucas(99) 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^81/Lucas(100) 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^76/Lucas(95) 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^74/Lucas(93) 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^72/Lucas(91) 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^70/Lucas(89) 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^68/Lucas(87) 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^66/Lucas(85) 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^64/Lucas(83) 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^62/Lucas(81) 2329991416277292 a004 Fibonacci(32)*Lucas(80)/(1/2+sqrt(5)/2)^99 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^60/Lucas(79) 2329991416277292 a004 Fibonacci(32)*Lucas(78)/(1/2+sqrt(5)/2)^97 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^58/Lucas(77) 2329991416277292 a004 Fibonacci(32)*Lucas(76)/(1/2+sqrt(5)/2)^95 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^56/Lucas(75) 2329991416277292 a004 Fibonacci(32)*Lucas(74)/(1/2+sqrt(5)/2)^93 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^54/Lucas(73) 2329991416277292 a004 Fibonacci(32)*Lucas(72)/(1/2+sqrt(5)/2)^91 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^52/Lucas(71) 2329991416277292 a004 Fibonacci(32)*Lucas(70)/(1/2+sqrt(5)/2)^89 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^50/Lucas(69) 2329991416277292 a004 Fibonacci(32)*Lucas(68)/(1/2+sqrt(5)/2)^87 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^48/Lucas(67) 2329991416277292 a004 Fibonacci(32)*Lucas(66)/(1/2+sqrt(5)/2)^85 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^46/Lucas(65) 2329991416277292 a004 Fibonacci(66)/Lucas(32)/(1/2+sqrt(5)/2)^21 2329991416277292 a004 Fibonacci(68)/Lucas(32)/(1/2+sqrt(5)/2)^23 2329991416277292 a004 Fibonacci(70)/Lucas(32)/(1/2+sqrt(5)/2)^25 2329991416277292 a004 Fibonacci(72)/Lucas(32)/(1/2+sqrt(5)/2)^27 2329991416277292 a004 Fibonacci(74)/Lucas(32)/(1/2+sqrt(5)/2)^29 2329991416277292 a004 Fibonacci(76)/Lucas(32)/(1/2+sqrt(5)/2)^31 2329991416277292 a004 Fibonacci(78)/Lucas(32)/(1/2+sqrt(5)/2)^33 2329991416277292 a004 Fibonacci(80)/Lucas(32)/(1/2+sqrt(5)/2)^35 2329991416277292 a004 Fibonacci(82)/Lucas(32)/(1/2+sqrt(5)/2)^37 2329991416277292 a004 Fibonacci(84)/Lucas(32)/(1/2+sqrt(5)/2)^39 2329991416277292 a004 Fibonacci(86)/Lucas(32)/(1/2+sqrt(5)/2)^41 2329991416277292 a004 Fibonacci(88)/Lucas(32)/(1/2+sqrt(5)/2)^43 2329991416277292 a004 Fibonacci(90)/Lucas(32)/(1/2+sqrt(5)/2)^45 2329991416277292 a004 Fibonacci(92)/Lucas(32)/(1/2+sqrt(5)/2)^47 2329991416277292 a004 Fibonacci(94)/Lucas(32)/(1/2+sqrt(5)/2)^49 2329991416277292 a004 Fibonacci(96)/Lucas(32)/(1/2+sqrt(5)/2)^51 2329991416277292 a004 Fibonacci(100)/Lucas(32)/(1/2+sqrt(5)/2)^55 2329991416277292 a004 Fibonacci(32)*Lucas(64)/(1/2+sqrt(5)/2)^83 2329991416277292 a004 Fibonacci(98)/Lucas(32)/(1/2+sqrt(5)/2)^53 2329991416277292 a004 Fibonacci(97)/Lucas(32)/(1/2+sqrt(5)/2)^52 2329991416277292 a004 Fibonacci(99)/Lucas(32)/(1/2+sqrt(5)/2)^54 2329991416277292 a004 Fibonacci(95)/Lucas(32)/(1/2+sqrt(5)/2)^50 2329991416277292 a004 Fibonacci(93)/Lucas(32)/(1/2+sqrt(5)/2)^48 2329991416277292 a004 Fibonacci(91)/Lucas(32)/(1/2+sqrt(5)/2)^46 2329991416277292 a004 Fibonacci(89)/Lucas(32)/(1/2+sqrt(5)/2)^44 2329991416277292 a004 Fibonacci(87)/Lucas(32)/(1/2+sqrt(5)/2)^42 2329991416277292 a004 Fibonacci(85)/Lucas(32)/(1/2+sqrt(5)/2)^40 2329991416277292 a004 Fibonacci(83)/Lucas(32)/(1/2+sqrt(5)/2)^38 2329991416277292 a004 Fibonacci(81)/Lucas(32)/(1/2+sqrt(5)/2)^36 2329991416277292 a004 Fibonacci(79)/Lucas(32)/(1/2+sqrt(5)/2)^34 2329991416277292 a004 Fibonacci(77)/Lucas(32)/(1/2+sqrt(5)/2)^32 2329991416277292 a004 Fibonacci(75)/Lucas(32)/(1/2+sqrt(5)/2)^30 2329991416277292 a004 Fibonacci(73)/Lucas(32)/(1/2+sqrt(5)/2)^28 2329991416277292 a004 Fibonacci(71)/Lucas(32)/(1/2+sqrt(5)/2)^26 2329991416277292 a004 Fibonacci(69)/Lucas(32)/(1/2+sqrt(5)/2)^24 2329991416277292 a004 Fibonacci(67)/Lucas(32)/(1/2+sqrt(5)/2)^22 2329991416277292 a004 Fibonacci(65)/Lucas(32)/(1/2+sqrt(5)/2)^20 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^44/Lucas(63) 2329991416277292 a001 2178309/14662949395604*23725150497407^(11/16) 2329991416277292 a004 Fibonacci(63)/Lucas(32)/(1/2+sqrt(5)/2)^18 2329991416277292 a004 Fibonacci(32)*Lucas(62)/(1/2+sqrt(5)/2)^81 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^42/Lucas(61) 2329991416277292 a004 Fibonacci(61)/Lucas(32)/(1/2+sqrt(5)/2)^16 2329991416277292 a004 Fibonacci(32)*Lucas(60)/(1/2+sqrt(5)/2)^79 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^40/Lucas(59) 2329991416277292 a001 2178309/2139295485799*23725150497407^(5/8) 2329991416277292 a004 Fibonacci(59)/Lucas(32)/(1/2+sqrt(5)/2)^14 2329991416277292 a004 Fibonacci(32)*Lucas(58)/(1/2+sqrt(5)/2)^77 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^38/Lucas(57) 2329991416277292 a004 Fibonacci(57)/Lucas(32)/(1/2+sqrt(5)/2)^12 2329991416277292 a004 Fibonacci(32)*Lucas(56)/(1/2+sqrt(5)/2)^75 2329991416277292 a001 2178309/312119004989*14662949395604^(4/7) 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^36/Lucas(55) 2329991416277292 a004 Fibonacci(55)/Lucas(32)/(1/2+sqrt(5)/2)^10 2329991416277292 a001 726103/440719107401*192900153618^(13/18) 2329991416277292 a001 2178309/23725150497407*192900153618^(5/6) 2329991416277292 a004 Fibonacci(32)*Lucas(54)/(1/2+sqrt(5)/2)^73 2329991416277292 a001 2178309/312119004989*192900153618^(2/3) 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^34/Lucas(53) 2329991416277292 a004 Fibonacci(53)/Lucas(32)/(1/2+sqrt(5)/2)^8 2329991416277292 a001 726103/440719107401*73681302247^(3/4) 2329991416277292 a001 2178309/312119004989*73681302247^(9/13) 2329991416277292 a001 2178309/2139295485799*73681302247^(10/13) 2329991416277292 a001 2178309/14662949395604*73681302247^(11/13) 2329991416277292 a004 Fibonacci(32)*Lucas(52)/(1/2+sqrt(5)/2)^71 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^32/Lucas(51) 2329991416277292 a001 2178309/45537549124*23725150497407^(1/2) 2329991416277292 a004 Fibonacci(51)/Lucas(32)/(1/2+sqrt(5)/2)^6 2329991416277292 a001 2178309/45537549124*505019158607^(4/7) 2329991416277292 a001 2178309/45537549124*73681302247^(8/13) 2329991416277292 a001 726103/64300051206*28143753123^(7/10) 2329991416277292 a001 2178309/2139295485799*28143753123^(4/5) 2329991416277292 a001 2178309/23725150497407*28143753123^(9/10) 2329991416277292 a004 Fibonacci(32)*Lucas(50)/(1/2+sqrt(5)/2)^69 2329991416277292 a001 2178309/17393796001*45537549124^(10/17) 2329991416277292 a001 2178309/17393796001*312119004989^(6/11) 2329991416277292 a001 2178309/17393796001*14662949395604^(10/21) 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^30/Lucas(49) 2329991416277292 a004 Fibonacci(49)/Lucas(32)/(1/2+sqrt(5)/2)^4 2329991416277292 a001 2178309/17393796001*192900153618^(5/9) 2329991416277292 a001 2178309/17393796001*28143753123^(3/5) 2329991416277292 a001 311187/10525900321*10749957122^(11/16) 2329991416277292 a001 2178309/119218851371*10749957122^(17/24) 2329991416277292 a001 2178309/45537549124*10749957122^(2/3) 2329991416277292 a001 2178309/312119004989*10749957122^(3/4) 2329991416277292 a001 2178309/817138163596*10749957122^(19/24) 2329991416277292 a001 726103/440719107401*10749957122^(13/16) 2329991416277292 a001 2178309/2139295485799*10749957122^(5/6) 2329991416277292 a001 2178309/5600748293801*10749957122^(7/8) 2329991416277292 a001 2178309/14662949395604*10749957122^(11/12) 2329991416277292 a001 2178309/23725150497407*10749957122^(15/16) 2329991416277292 a004 Fibonacci(32)*Lucas(48)/(1/2+sqrt(5)/2)^67 2329991416277292 a001 2178309/17393796001*10749957122^(5/8) 2329991416277292 a001 2178309/6643838879*17393796001^(4/7) 2329991416277292 a001 2178309/6643838879*14662949395604^(4/9) 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^28/Lucas(47) 2329991416277292 a004 Fibonacci(47)/Lucas(32)/(1/2+sqrt(5)/2)^2 2329991416277292 a001 2178309/6643838879*73681302247^(7/13) 2329991416277292 a001 2178309/6643838879*10749957122^(7/12) 2329991416277292 a001 2178309/45537549124*4106118243^(16/23) 2329991416277292 a001 2178309/17393796001*4106118243^(15/23) 2329991416277292 a001 2178309/119218851371*4106118243^(17/23) 2329991416277292 a001 2178309/312119004989*4106118243^(18/23) 2329991416277292 a001 2178309/817138163596*4106118243^(19/23) 2329991416277292 a001 2178309/2139295485799*4106118243^(20/23) 2329991416277292 a001 2178309/5600748293801*4106118243^(21/23) 2329991416277292 a001 2178309/14662949395604*4106118243^(22/23) 2329991416277292 a001 2178309/6643838879*4106118243^(14/23) 2329991416277292 a004 Fibonacci(32)*Lucas(46)/(1/2+sqrt(5)/2)^65 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^26/Lucas(45) 2329991416277292 a001 1134903170/4870847 2329991416277292 a001 2178309/2537720636*73681302247^(1/2) 2329991416277292 a001 2178309/2537720636*10749957122^(13/24) 2329991416277292 a001 2178309/2537720636*4106118243^(13/23) 2329991416277292 a001 2178309/17393796001*1568397607^(15/22) 2329991416277292 a001 2178309/6643838879*1568397607^(7/11) 2329991416277292 a001 2178309/45537549124*1568397607^(8/11) 2329991416277292 a001 311187/10525900321*1568397607^(3/4) 2329991416277292 a001 2178309/119218851371*1568397607^(17/22) 2329991416277292 a001 2178309/312119004989*1568397607^(9/11) 2329991416277292 a001 2178309/817138163596*1568397607^(19/22) 2329991416277292 a001 2178309/2139295485799*1568397607^(10/11) 2329991416277292 a001 2178309/5600748293801*1568397607^(21/22) 2329991416277292 a001 2178309/2537720636*1568397607^(13/22) 2329991416277292 a004 Fibonacci(32)*Lucas(44)/(1/2+sqrt(5)/2)^63 2329991416277292 a001 2178309/969323029*2537720636^(8/15) 2329991416277292 a001 2178309/969323029*45537549124^(8/17) 2329991416277292 a001 2178309/969323029*14662949395604^(8/21) 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^24/Lucas(43) 2329991416277292 a001 433494437/4870847*(1/2+1/2*5^(1/2))^2 2329991416277292 a001 2178309/969323029*192900153618^(4/9) 2329991416277292 a001 2178309/969323029*73681302247^(6/13) 2329991416277292 a001 433494437/4870847*10749957122^(1/24) 2329991416277292 a001 433494437/4870847*4106118243^(1/23) 2329991416277292 a001 2178309/969323029*10749957122^(1/2) 2329991416277292 a001 433494437/4870847*1568397607^(1/22) 2329991416277292 a001 2178309/969323029*4106118243^(12/23) 2329991416277292 a001 433494437/4870847*599074578^(1/21) 2329991416277292 a001 2178309/969323029*1568397607^(6/11) 2329991416277292 a001 726103/1368706081*599074578^(9/14) 2329991416277292 a001 2178309/2537720636*599074578^(13/21) 2329991416277292 a001 2178309/6643838879*599074578^(2/3) 2329991416277292 a001 2178309/17393796001*599074578^(5/7) 2329991416277292 a001 433494437/4870847*228826127^(1/20) 2329991416277292 a001 2178309/45537549124*599074578^(16/21) 2329991416277292 a001 311187/10525900321*599074578^(11/14) 2329991416277292 a001 2178309/119218851371*599074578^(17/21) 2329991416277292 a001 726103/64300051206*599074578^(5/6) 2329991416277292 a001 2178309/312119004989*599074578^(6/7) 2329991416277292 a001 2178309/817138163596*599074578^(19/21) 2329991416277292 a001 726103/440719107401*599074578^(13/14) 2329991416277292 a001 2178309/2139295485799*599074578^(20/21) 2329991416277292 a001 2178309/969323029*599074578^(4/7) 2329991416277292 a004 Fibonacci(32)*Lucas(42)/(1/2+sqrt(5)/2)^61 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^22/Lucas(41) 2329991416277292 a001 165580141/4870847*(1/2+1/2*5^(1/2))^4 2329991416277292 a001 120228237120523/516002918640 2329991416277292 a001 165580141/4870847*73681302247^(1/13) 2329991416277292 a001 165580141/4870847*10749957122^(1/12) 2329991416277292 a001 2178309/370248451*10749957122^(11/24) 2329991416277292 a001 165580141/4870847*4106118243^(2/23) 2329991416277292 a001 2178309/370248451*4106118243^(11/23) 2329991416277292 a001 165580141/4870847*1568397607^(1/11) 2329991416277292 a001 2178309/370248451*1568397607^(1/2) 2329991416277292 a001 165580141/4870847*599074578^(2/21) 2329991416277292 a001 433494437/4870847*87403803^(1/19) 2329991416277292 a001 2178309/370248451*599074578^(11/21) 2329991416277292 a001 165580141/4870847*228826127^(1/10) 2329991416277292 a001 311187/224056801*228826127^(5/8) 2329991416277292 a001 2178309/969323029*228826127^(3/5) 2329991416277292 a001 2178309/2537720636*228826127^(13/20) 2329991416277292 a001 2178309/6643838879*228826127^(7/10) 2329991416277292 a001 2178309/17393796001*228826127^(3/4) 2329991416277292 a001 2178309/45537549124*228826127^(4/5) 2329991416277292 a001 2178309/119218851371*228826127^(17/20) 2329991416277292 a001 726103/64300051206*228826127^(7/8) 2329991416277292 a001 2178309/312119004989*228826127^(9/10) 2329991416277292 a001 2178309/370248451*228826127^(11/20) 2329991416277292 a001 2178309/817138163596*228826127^(19/20) 2329991416277292 a004 Fibonacci(32)*Lucas(40)/(1/2+sqrt(5)/2)^59 2329991416277292 a001 165580141/4870847*87403803^(2/19) 2329991416277292 a001 63245986/4870847*141422324^(2/13) 2329991416277292 a001 2178309/141422324*2537720636^(4/9) 2329991416277292 a001 63245986/4870847*2537720636^(2/15) 2329991416277292 a001 63245986/4870847*45537549124^(2/17) 2329991416277292 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^20/Lucas(39) 2329991416277292 a001 63245986/4870847*14662949395604^(2/21) 2329991416277292 a001 63245986/4870847*(1/2+1/2*5^(1/2))^6 2329991416277292 a001 137769300517674/591286729879 2329991416277292 a001 2178309/141422324*505019158607^(5/14) 2329991416277292 a001 2178309/141422324*73681302247^(5/13) 2329991416277292 a001 2178309/141422324*28143753123^(2/5) 2329991416277292 a001 63245986/4870847*10749957122^(1/8) 2329991416277292 a001 2178309/141422324*10749957122^(5/12) 2329991416277292 a001 63245986/4870847*4106118243^(3/23) 2329991416277292 a001 2178309/141422324*4106118243^(10/23) 2329991416277292 a001 63245986/4870847*1568397607^(3/22) 2329991416277292 a001 2178309/141422324*1568397607^(5/11) 2329991416277292 a001 63245986/4870847*599074578^(1/7) 2329991416277292 a001 433494437/4870847*33385282^(1/18) 2329991416277292 a001 2178309/141422324*599074578^(10/21) 2329991416277292 a001 63245986/4870847*228826127^(3/20) 2329991416277292 a001 2178309/141422324*228826127^(1/2) 2329991416277292 a001 63245986/4870847*87403803^(3/19) 2329991416277292 a001 267914296/4870847*33385282^(1/12) 2329991416277292 a001 2178309/370248451*87403803^(11/19) 2329991416277292 a001 2178309/969323029*87403803^(12/19) 2329991416277292 a001 2178309/2537720636*87403803^(13/19) 2329991416277292 a001 2178309/6643838879*87403803^(14/19) 2329991416277292 a001 2178309/17393796001*87403803^(15/19) 2329991416277292 a001 165580141/4870847*33385282^(1/9) 2329991416277292 a001 2178309/45537549124*87403803^(16/19) 2329991416277292 a001 2178309/119218851371*87403803^(17/19) 2329991416277292 a001 2178309/141422324*87403803^(10/19) 2329991416277292 a001 2178309/312119004989*87403803^(18/19) 2329991416277292 a004 Fibonacci(32)*Lucas(38)/(1/2+sqrt(5)/2)^57 2329991416277292 a001 63245986/4870847*33385282^(1/6) 2329991416277292 a001 2178309/54018521*141422324^(6/13) 2329991416277293 a001 2178309/54018521*2537720636^(2/5) 2329991416277293 a001 2178309/54018521*45537549124^(6/17) 2329991416277293 a001 2178309/54018521*14662949395604^(2/7) 2329991416277293 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^18/Lucas(37) 2329991416277293 a001 24157817/4870847*(1/2+1/2*5^(1/2))^8 2329991416277293 a001 24157817/4870847*23725150497407^(1/8) 2329991416277293 a001 2178309/54018521*192900153618^(1/3) 2329991416277293 a001 24157817/4870847*73681302247^(2/13) 2329991416277293 a001 24157817/4870847*10749957122^(1/6) 2329991416277293 a001 2178309/54018521*10749957122^(3/8) 2329991416277293 a001 24157817/4870847*4106118243^(4/23) 2329991416277293 a001 2178309/54018521*4106118243^(9/23) 2329991416277293 a001 24157817/4870847*1568397607^(2/11) 2329991416277293 a001 2178309/54018521*1568397607^(9/22) 2329991416277293 a001 24157817/4870847*599074578^(4/21) 2329991416277293 a001 2178309/54018521*599074578^(3/7) 2329991416277293 a001 24157817/4870847*228826127^(1/5) 2329991416277293 a001 2178309/54018521*228826127^(9/20) 2329991416277293 a001 433494437/4870847*12752043^(1/17) 2329991416277293 a001 24157817/4870847*87403803^(4/19) 2329991416277293 a001 2178309/54018521*87403803^(9/19) 2329991416277293 a001 46347/4868641*33385282^(7/12) 2329991416277293 a001 24157817/4870847*33385282^(2/9) 2329991416277293 a001 2178309/141422324*33385282^(5/9) 2329991416277293 a001 2178309/370248451*33385282^(11/18) 2329991416277293 a001 2178309/969323029*33385282^(2/3) 2329991416277293 a001 2178309/2537720636*33385282^(13/18) 2329991416277293 a001 726103/1368706081*33385282^(3/4) 2329991416277293 a001 2178309/6643838879*33385282^(7/9) 2329991416277293 a001 165580141/4870847*12752043^(2/17) 2329991416277293 a001 2178309/17393796001*33385282^(5/6) 2329991416277294 a001 2178309/54018521*33385282^(1/2) 2329991416277294 a001 2178309/45537549124*33385282^(8/9) 2329991416277294 a001 311187/10525900321*33385282^(11/12) 2329991416277294 a001 2178309/119218851371*33385282^(17/18) 2329991416277294 a004 Fibonacci(32)*Lucas(36)/(1/2+sqrt(5)/2)^55 2329991416277294 a001 63245986/4870847*12752043^(3/17) 2329991416277296 a001 9227465/4870847*20633239^(2/7) 2329991416277296 a001 24157817/4870847*12752043^(4/17) 2329991416277297 a001 311187/4769326*12752043^(1/2) 2329991416277297 a001 9227465/4870847*2537720636^(2/9) 2329991416277297 a001 2178309/20633239*(1/2+1/2*5^(1/2))^16 2329991416277297 a001 2178309/20633239*23725150497407^(1/4) 2329991416277297 a001 9227465/4870847*(1/2+1/2*5^(1/2))^10 2329991416277297 a001 20100270056685/86267571272 2329991416277297 a001 2178309/20633239*73681302247^(4/13) 2329991416277297 a001 9227465/4870847*28143753123^(1/5) 2329991416277297 a001 9227465/4870847*10749957122^(5/24) 2329991416277297 a001 2178309/20633239*10749957122^(1/3) 2329991416277297 a001 9227465/4870847*4106118243^(5/23) 2329991416277297 a001 2178309/20633239*4106118243^(8/23) 2329991416277297 a001 9227465/4870847*1568397607^(5/22) 2329991416277297 a001 2178309/20633239*1568397607^(4/11) 2329991416277297 a001 9227465/4870847*599074578^(5/21) 2329991416277297 a001 2178309/20633239*599074578^(8/21) 2329991416277297 a001 9227465/4870847*228826127^(1/4) 2329991416277297 a001 2178309/20633239*228826127^(2/5) 2329991416277297 a001 9227465/4870847*87403803^(5/19) 2329991416277297 a001 2178309/20633239*87403803^(8/19) 2329991416277298 a001 9227465/4870847*33385282^(5/18) 2329991416277298 a001 433494437/4870847*4870847^(1/16) 2329991416277298 a001 2178309/20633239*33385282^(4/9) 2329991416277300 a001 2178309/54018521*12752043^(9/17) 2329991416277300 a001 832040/969323029*1860498^(13/15) 2329991416277300 a001 2178309/141422324*12752043^(10/17) 2329991416277301 a001 2178309/370248451*12752043^(11/17) 2329991416277301 a001 9227465/4870847*12752043^(5/17) 2329991416277302 a001 2178309/969323029*12752043^(12/17) 2329991416277303 a001 2178309/2537720636*12752043^(13/17) 2329991416277304 a001 2178309/6643838879*12752043^(14/17) 2329991416277304 a001 2178309/20633239*12752043^(8/17) 2329991416277304 a001 165580141/4870847*4870847^(1/8) 2329991416277304 a001 2178309/17393796001*12752043^(15/17) 2329991416277305 a001 2178309/45537549124*12752043^(16/17) 2329991416277306 a004 Fibonacci(32)*Lucas(34)/(1/2+sqrt(5)/2)^53 2329991416277310 a001 63245986/4870847*4870847^(3/16) 2329991416277316 a001 3524578/4870847*7881196^(4/11) 2329991416277317 a001 24157817/4870847*4870847^(1/4) 2329991416277323 a001 832040/1568397607*1860498^(9/10) 2329991416277327 a001 2178309/7881196*20633239^(2/5) 2329991416277328 a001 9227465/4870847*4870847^(5/16) 2329991416277329 a001 3524578/4870847*141422324^(4/13) 2329991416277329 a001 3524578/4870847*2537720636^(4/15) 2329991416277329 a001 2178309/7881196*17393796001^(2/7) 2329991416277329 a001 3524578/4870847*45537549124^(4/17) 2329991416277329 a001 3524578/4870847*817138163596^(4/19) 2329991416277329 a001 2178309/7881196*14662949395604^(2/9) 2329991416277329 a001 2178309/7881196*(1/2+1/2*5^(1/2))^14 2329991416277329 a001 3524578/4870847*(1/2+1/2*5^(1/2))^12 2329991416277329 a001 3524578/4870847*192900153618^(2/9) 2329991416277329 a001 3524578/4870847*73681302247^(3/13) 2329991416277329 a001 2559206659534/10983760033 2329991416277329 a001 3524578/4870847*10749957122^(1/4) 2329991416277329 a001 2178309/7881196*10749957122^(7/24) 2329991416277329 a001 3524578/4870847*4106118243^(6/23) 2329991416277329 a001 2178309/7881196*4106118243^(7/23) 2329991416277329 a001 3524578/4870847*1568397607^(3/11) 2329991416277329 a001 2178309/7881196*1568397607^(7/22) 2329991416277329 a001 3524578/4870847*599074578^(2/7) 2329991416277329 a001 2178309/7881196*599074578^(1/3) 2329991416277329 a001 3524578/4870847*228826127^(3/10) 2329991416277329 a001 2178309/7881196*228826127^(7/20) 2329991416277329 a001 3524578/4870847*87403803^(6/19) 2329991416277329 a001 2178309/7881196*87403803^(7/19) 2329991416277330 a001 3524578/4870847*33385282^(1/3) 2329991416277330 a001 2178309/7881196*33385282^(7/18) 2329991416277334 a001 3524578/4870847*12752043^(6/17) 2329991416277335 a001 2178309/7881196*12752043^(7/17) 2329991416277337 a001 433494437/4870847*1860498^(1/15) 2329991416277338 a004 Fibonacci(34)*Lucas(33)/(1/2+sqrt(5)/2)^54 2329991416277342 a001 1597/12752044*7881196^(10/11) 2329991416277345 a001 5702887/10749957122*7881196^(9/11) 2329991416277345 a001 610/1860499*1860498^(14/15) 2329991416277346 a001 2178309/20633239*4870847^(1/2) 2329991416277348 a001 2178309/54018521*4870847^(9/16) 2329991416277348 a001 5702887/2537720636*7881196^(8/11) 2329991416277350 a004 Fibonacci(36)*Lucas(33)/(1/2+sqrt(5)/2)^56 2329991416277351 a001 5702887/969323029*7881196^(2/3) 2329991416277352 a001 5702887/599074578*7881196^(7/11) 2329991416277352 a004 Fibonacci(38)*Lucas(33)/(1/2+sqrt(5)/2)^58 2329991416277352 a004 Fibonacci(40)*Lucas(33)/(1/2+sqrt(5)/2)^60 2329991416277352 a004 Fibonacci(42)*Lucas(33)/(1/2+sqrt(5)/2)^62 2329991416277352 a004 Fibonacci(44)*Lucas(33)/(1/2+sqrt(5)/2)^64 2329991416277352 a004 Fibonacci(46)*Lucas(33)/(1/2+sqrt(5)/2)^66 2329991416277352 a004 Fibonacci(48)*Lucas(33)/(1/2+sqrt(5)/2)^68 2329991416277352 a004 Fibonacci(50)*Lucas(33)/(1/2+sqrt(5)/2)^70 2329991416277352 a004 Fibonacci(52)*Lucas(33)/(1/2+sqrt(5)/2)^72 2329991416277352 a004 Fibonacci(54)*Lucas(33)/(1/2+sqrt(5)/2)^74 2329991416277352 a004 Fibonacci(56)*Lucas(33)/(1/2+sqrt(5)/2)^76 2329991416277352 a004 Fibonacci(58)*Lucas(33)/(1/2+sqrt(5)/2)^78 2329991416277352 a004 Fibonacci(60)*Lucas(33)/(1/2+sqrt(5)/2)^80 2329991416277352 a004 Fibonacci(62)*Lucas(33)/(1/2+sqrt(5)/2)^82 2329991416277352 a004 Fibonacci(64)*Lucas(33)/(1/2+sqrt(5)/2)^84 2329991416277352 a004 Fibonacci(66)*Lucas(33)/(1/2+sqrt(5)/2)^86 2329991416277352 a004 Fibonacci(68)*Lucas(33)/(1/2+sqrt(5)/2)^88 2329991416277352 a004 Fibonacci(70)*Lucas(33)/(1/2+sqrt(5)/2)^90 2329991416277352 a004 Fibonacci(72)*Lucas(33)/(1/2+sqrt(5)/2)^92 2329991416277352 a004 Fibonacci(74)*Lucas(33)/(1/2+sqrt(5)/2)^94 2329991416277352 a004 Fibonacci(76)*Lucas(33)/(1/2+sqrt(5)/2)^96 2329991416277352 a004 Fibonacci(78)*Lucas(33)/(1/2+sqrt(5)/2)^98 2329991416277352 a004 Fibonacci(80)*Lucas(33)/(1/2+sqrt(5)/2)^100 2329991416277352 a004 Fibonacci(79)*Lucas(33)/(1/2+sqrt(5)/2)^99 2329991416277352 a004 Fibonacci(77)*Lucas(33)/(1/2+sqrt(5)/2)^97 2329991416277352 a004 Fibonacci(75)*Lucas(33)/(1/2+sqrt(5)/2)^95 2329991416277352 a004 Fibonacci(73)*Lucas(33)/(1/2+sqrt(5)/2)^93 2329991416277352 a004 Fibonacci(71)*Lucas(33)/(1/2+sqrt(5)/2)^91 2329991416277352 a004 Fibonacci(69)*Lucas(33)/(1/2+sqrt(5)/2)^89 2329991416277352 a004 Fibonacci(67)*Lucas(33)/(1/2+sqrt(5)/2)^87 2329991416277352 a001 1/1762289*(1/2+1/2*5^(1/2))^46 2329991416277352 a004 Fibonacci(65)*Lucas(33)/(1/2+sqrt(5)/2)^85 2329991416277352 a004 Fibonacci(63)*Lucas(33)/(1/2+sqrt(5)/2)^83 2329991416277352 a004 Fibonacci(61)*Lucas(33)/(1/2+sqrt(5)/2)^81 2329991416277352 a004 Fibonacci(59)*Lucas(33)/(1/2+sqrt(5)/2)^79 2329991416277352 a004 Fibonacci(57)*Lucas(33)/(1/2+sqrt(5)/2)^77 2329991416277352 a004 Fibonacci(55)*Lucas(33)/(1/2+sqrt(5)/2)^75 2329991416277352 a004 Fibonacci(53)*Lucas(33)/(1/2+sqrt(5)/2)^73 2329991416277352 a004 Fibonacci(51)*Lucas(33)/(1/2+sqrt(5)/2)^71 2329991416277352 a004 Fibonacci(49)*Lucas(33)/(1/2+sqrt(5)/2)^69 2329991416277352 a004 Fibonacci(47)*Lucas(33)/(1/2+sqrt(5)/2)^67 2329991416277352 a004 Fibonacci(45)*Lucas(33)/(1/2+sqrt(5)/2)^65 2329991416277352 a004 Fibonacci(43)*Lucas(33)/(1/2+sqrt(5)/2)^63 2329991416277352 a004 Fibonacci(41)*Lucas(33)/(1/2+sqrt(5)/2)^61 2329991416277353 a004 Fibonacci(39)*Lucas(33)/(1/2+sqrt(5)/2)^59 2329991416277353 a004 Fibonacci(37)*Lucas(33)/(1/2+sqrt(5)/2)^57 2329991416277353 a001 2178309/141422324*4870847^(5/8) 2329991416277354 a001 14930352/119218851371*7881196^(10/11) 2329991416277355 a001 5702887/141422324*7881196^(6/11) 2329991416277356 a001 39088169/312119004989*7881196^(10/11) 2329991416277356 a001 102334155/817138163596*7881196^(10/11) 2329991416277356 a001 267914296/2139295485799*7881196^(10/11) 2329991416277356 a001 701408733/5600748293801*7881196^(10/11) 2329991416277356 a001 1836311903/14662949395604*7881196^(10/11) 2329991416277356 a001 2971215073/23725150497407*7881196^(10/11) 2329991416277356 a001 1134903170/9062201101803*7881196^(10/11) 2329991416277356 a001 433494437/3461452808002*7881196^(10/11) 2329991416277356 a001 165580141/1322157322203*7881196^(10/11) 2329991416277356 a001 63245986/505019158607*7881196^(10/11) 2329991416277356 a001 5702887/33385282*7881196^(5/11) 2329991416277357 a001 24157817/192900153618*7881196^(10/11) 2329991416277357 a001 4976784/9381251041*7881196^(9/11) 2329991416277358 a004 Fibonacci(35)*Lucas(33)/(1/2+sqrt(5)/2)^55 2329991416277359 a001 39088169/73681302247*7881196^(9/11) 2329991416277359 a001 267914296/4870847*1860498^(1/10) 2329991416277359 a001 34111385/64300051206*7881196^(9/11) 2329991416277359 a001 267914296/505019158607*7881196^(9/11) 2329991416277359 a001 233802911/440719107401*7881196^(9/11) 2329991416277359 a001 1836311903/3461452808002*7881196^(9/11) 2329991416277359 a001 1602508992/3020733700601*7881196^(9/11) 2329991416277359 a001 12586269025/23725150497407*7881196^(9/11) 2329991416277359 a001 7778742049/14662949395604*7881196^(9/11) 2329991416277359 a001 2971215073/5600748293801*7881196^(9/11) 2329991416277359 a001 1134903170/2139295485799*7881196^(9/11) 2329991416277359 a001 433494437/817138163596*7881196^(9/11) 2329991416277359 a001 165580141/312119004989*7881196^(9/11) 2329991416277359 a001 2178309/370248451*4870847^(11/16) 2329991416277359 a001 63245986/119218851371*7881196^(9/11) 2329991416277360 a001 24157817/45537549124*7881196^(9/11) 2329991416277361 a001 14930352/6643838879*7881196^(8/11) 2329991416277361 a001 4976784/4250681*7881196^(1/3) 2329991416277361 a001 5702887/12752043*141422324^(1/3) 2329991416277361 a001 32522920134769/139583862445 2329991416277361 a001 5702887/12752043*(1/2+1/2*5^(1/2))^13 2329991416277361 a001 5702887/12752043*73681302247^(1/4) 2329991416277361 a001 9227465/73681302247*7881196^(10/11) 2329991416277362 a001 39088169/17393796001*7881196^(8/11) 2329991416277363 a001 102334155/45537549124*7881196^(8/11) 2329991416277363 a001 267914296/119218851371*7881196^(8/11) 2329991416277363 a001 3524667/1568437211*7881196^(8/11) 2329991416277363 a001 1836311903/817138163596*7881196^(8/11) 2329991416277363 a001 4807526976/2139295485799*7881196^(8/11) 2329991416277363 a001 12586269025/5600748293801*7881196^(8/11) 2329991416277363 a001 32951280099/14662949395604*7881196^(8/11) 2329991416277363 a001 53316291173/23725150497407*7881196^(8/11) 2329991416277363 a001 20365011074/9062201101803*7881196^(8/11) 2329991416277363 a001 7778742049/3461452808002*7881196^(8/11) 2329991416277363 a001 2971215073/1322157322203*7881196^(8/11) 2329991416277363 a001 1134903170/505019158607*7881196^(8/11) 2329991416277363 a001 433494437/192900153618*7881196^(8/11) 2329991416277363 a001 165580141/73681302247*7881196^(8/11) 2329991416277363 a001 63245986/28143753123*7881196^(8/11) 2329991416277363 a001 196452/33391061*7881196^(2/3) 2329991416277363 a001 24157817/10749957122*7881196^(8/11) 2329991416277364 a001 14930352/1568397607*7881196^(7/11) 2329991416277365 a001 39088169/6643838879*7881196^(2/3) 2329991416277365 a001 9227465/17393796001*7881196^(9/11) 2329991416277365 a001 102334155/17393796001*7881196^(2/3) 2329991416277365 a001 66978574/11384387281*7881196^(2/3) 2329991416277365 a001 701408733/119218851371*7881196^(2/3) 2329991416277365 a001 1836311903/312119004989*7881196^(2/3) 2329991416277365 a001 1201881744/204284540899*7881196^(2/3) 2329991416277365 a001 12586269025/2139295485799*7881196^(2/3) 2329991416277365 a001 32951280099/5600748293801*7881196^(2/3) 2329991416277365 a001 1135099622/192933544679*7881196^(2/3) 2329991416277365 a001 139583862445/23725150497407*7881196^(2/3) 2329991416277365 a001 53316291173/9062201101803*7881196^(2/3) 2329991416277365 a001 10182505537/1730726404001*7881196^(2/3) 2329991416277365 a001 7778742049/1322157322203*7881196^(2/3) 2329991416277365 a001 2971215073/505019158607*7881196^(2/3) 2329991416277365 a001 567451585/96450076809*7881196^(2/3) 2329991416277365 a001 433494437/73681302247*7881196^(2/3) 2329991416277365 a001 165580141/28143753123*7881196^(2/3) 2329991416277365 a001 31622993/5374978561*7881196^(2/3) 2329991416277365 a001 39088169/12752043*7881196^(3/11) 2329991416277365 a001 2178309/969323029*4870847^(3/4) 2329991416277366 a001 24157817/4106118243*7881196^(2/3) 2329991416277366 a001 39088169/4106118243*7881196^(7/11) 2329991416277366 a001 102334155/10749957122*7881196^(7/11) 2329991416277366 a001 267914296/28143753123*7881196^(7/11) 2329991416277366 a001 701408733/73681302247*7881196^(7/11) 2329991416277366 a001 1836311903/192900153618*7881196^(7/11) 2329991416277366 a001 102287808/10745088481*7881196^(7/11) 2329991416277366 a001 12586269025/1322157322203*7881196^(7/11) 2329991416277366 a001 32951280099/3461452808002*7881196^(7/11) 2329991416277366 a001 86267571272/9062201101803*7881196^(7/11) 2329991416277366 a001 225851433717/23725150497407*7881196^(7/11) 2329991416277366 a001 139583862445/14662949395604*7881196^(7/11) 2329991416277366 a001 53316291173/5600748293801*7881196^(7/11) 2329991416277366 a001 20365011074/2139295485799*7881196^(7/11) 2329991416277366 a001 7778742049/817138163596*7881196^(7/11) 2329991416277366 a001 2971215073/312119004989*7881196^(7/11) 2329991416277366 a001 1134903170/119218851371*7881196^(7/11) 2329991416277366 a001 433494437/45537549124*7881196^(7/11) 2329991416277366 a001 3524578/4870847*4870847^(3/8) 2329991416277366 a001 165580141/17393796001*7881196^(7/11) 2329991416277366 a001 63245986/6643838879*7881196^(7/11) 2329991416277367 a001 24157817/2537720636*7881196^(7/11) 2329991416277367 a001 14930352/370248451*7881196^(6/11) 2329991416277367 a001 9227465/12752043*7881196^(4/11) 2329991416277368 a001 9227465/4106118243*7881196^(8/11) 2329991416277369 a001 165580141/12752043*7881196^(2/11) 2329991416277369 a001 39088169/969323029*7881196^(6/11) 2329991416277369 a001 9303105/230701876*7881196^(6/11) 2329991416277369 a001 267914296/6643838879*7881196^(6/11) 2329991416277369 a001 701408733/17393796001*7881196^(6/11) 2329991416277369 a001 1836311903/45537549124*7881196^(6/11) 2329991416277369 a001 4807526976/119218851371*7881196^(6/11) 2329991416277369 a001 1144206275/28374454999*7881196^(6/11) 2329991416277369 a001 32951280099/817138163596*7881196^(6/11) 2329991416277369 a001 86267571272/2139295485799*7881196^(6/11) 2329991416277369 a001 225851433717/5600748293801*7881196^(6/11) 2329991416277369 a001 365435296162/9062201101803*7881196^(6/11) 2329991416277369 a001 139583862445/3461452808002*7881196^(6/11) 2329991416277369 a001 53316291173/1322157322203*7881196^(6/11) 2329991416277369 a001 20365011074/505019158607*7881196^(6/11) 2329991416277369 a001 7778742049/192900153618*7881196^(6/11) 2329991416277369 a001 2971215073/73681302247*7881196^(6/11) 2329991416277369 a001 1134903170/28143753123*7881196^(6/11) 2329991416277369 a001 433494437/10749957122*7881196^(6/11) 2329991416277369 a001 165580141/4106118243*7881196^(6/11) 2329991416277370 a001 63245986/1568397607*7881196^(6/11) 2329991416277370 a004 Fibonacci(34)*Lucas(35)/(1/2+sqrt(5)/2)^56 2329991416277370 a001 24157817/599074578*7881196^(6/11) 2329991416277370 a001 9227465/1568397607*7881196^(2/3) 2329991416277370 a001 4976784/29134601*7881196^(5/11) 2329991416277371 a001 1597/12752044*20633239^(6/7) 2329991416277371 a001 5702887/33385282*20633239^(3/7) 2329991416277371 a001 5702887/17393796001*20633239^(4/5) 2329991416277372 a001 2178309/2537720636*4870847^(13/16) 2329991416277372 a001 9227465/969323029*7881196^(7/11) 2329991416277372 a001 5702887/4106118243*20633239^(5/7) 2329991416277372 a001 233802911/4250681*7881196^(1/11) 2329991416277372 a001 2178309/7881196*4870847^(7/16) 2329991416277372 a001 5702887/599074578*20633239^(3/5) 2329991416277372 a001 5702887/370248451*20633239^(4/7) 2329991416277373 a001 39088169/228826127*7881196^(5/11) 2329991416277373 a001 34111385/199691526*7881196^(5/11) 2329991416277373 a001 267914296/1568397607*7881196^(5/11) 2329991416277373 a001 233802911/1368706081*7881196^(5/11) 2329991416277373 a001 1836311903/10749957122*7881196^(5/11) 2329991416277373 a001 1602508992/9381251041*7881196^(5/11) 2329991416277373 a001 12586269025/73681302247*7881196^(5/11) 2329991416277373 a001 10983760033/64300051206*7881196^(5/11) 2329991416277373 a001 86267571272/505019158607*7881196^(5/11) 2329991416277373 a001 75283811239/440719107401*7881196^(5/11) 2329991416277373 a001 2504730781961/14662949395604*7881196^(5/11) 2329991416277373 a001 139583862445/817138163596*7881196^(5/11) 2329991416277373 a001 53316291173/312119004989*7881196^(5/11) 2329991416277373 a001 20365011074/119218851371*7881196^(5/11) 2329991416277373 a001 7778742049/45537549124*7881196^(5/11) 2329991416277373 a001 2971215073/17393796001*7881196^(5/11) 2329991416277373 a001 1134903170/6643838879*7881196^(5/11) 2329991416277373 a001 433494437/2537720636*7881196^(5/11) 2329991416277373 a001 165580141/969323029*7881196^(5/11) 2329991416277373 a001 63245986/370248451*7881196^(5/11) 2329991416277373 a001 5702887/33385282*141422324^(5/13) 2329991416277374 a001 5702887/33385282*2537720636^(1/3) 2329991416277374 a001 5702887/33385282*45537549124^(5/17) 2329991416277374 a001 4976784/4250681*312119004989^(1/5) 2329991416277374 a001 42573055163112/182717648081 2329991416277374 a001 5702887/33385282*14662949395604^(5/21) 2329991416277374 a001 5702887/33385282*(1/2+1/2*5^(1/2))^15 2329991416277374 a001 4976784/4250681*(1/2+1/2*5^(1/2))^11 2329991416277374 a001 5702887/33385282*192900153618^(5/18) 2329991416277374 a001 5702887/33385282*28143753123^(3/10) 2329991416277374 a001 5702887/33385282*10749957122^(5/16) 2329991416277374 a001 4976784/4250681*1568397607^(1/4) 2329991416277374 a001 5702887/33385282*599074578^(5/14) 2329991416277374 a001 5702887/33385282*228826127^(3/8) 2329991416277374 a001 24157817/141422324*7881196^(5/11) 2329991416277374 a001 5702887/33385282*33385282^(5/12) 2329991416277374 a001 34111385/4250681*20633239^(1/5) 2329991416277375 a004 Fibonacci(34)*Lucas(37)/(1/2+sqrt(5)/2)^58 2329991416277375 a001 267914296/12752043*20633239^(1/7) 2329991416277375 a001 24157817/12752043*20633239^(2/7) 2329991416277375 a001 9227465/228826127*7881196^(6/11) 2329991416277375 a001 24157817/33385282*7881196^(4/11) 2329991416277375 a001 39088169/33385282*7881196^(1/3) 2329991416277375 a001 39088169/12752043*141422324^(3/13) 2329991416277375 a001 39088169/12752043*2537720636^(1/5) 2329991416277375 a001 5702887/87403803*45537549124^(1/3) 2329991416277375 a001 39088169/12752043*45537549124^(3/17) 2329991416277375 a001 222915410843903/956722026041 2329991416277375 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^17/Lucas(38) 2329991416277375 a001 39088169/12752043*(1/2+1/2*5^(1/2))^9 2329991416277375 a001 39088169/12752043*192900153618^(1/6) 2329991416277375 a001 39088169/12752043*10749957122^(3/16) 2329991416277375 a001 39088169/12752043*599074578^(3/14) 2329991416277375 a004 Fibonacci(34)*Lucas(39)/(1/2+sqrt(5)/2)^60 2329991416277375 a001 5702887/817138163596*141422324^(12/13) 2329991416277376 a001 5702887/192900153618*141422324^(11/13) 2329991416277376 a001 1597/12752044*141422324^(10/13) 2329991416277376 a001 5702887/10749957122*141422324^(9/13) 2329991416277376 a001 5702887/6643838879*141422324^(2/3) 2329991416277376 a001 5702887/2537720636*141422324^(8/13) 2329991416277376 a001 5702887/599074578*141422324^(7/13) 2329991416277376 a001 34111385/4250681*17393796001^(1/7) 2329991416277376 a001 34111385/4250681*14662949395604^(1/9) 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^19/Lucas(40) 2329991416277376 a001 34111385/4250681*(1/2+1/2*5^(1/2))^7 2329991416277376 a001 34111385/4250681*599074578^(1/6) 2329991416277376 a004 Fibonacci(34)*Lucas(41)/(1/2+sqrt(5)/2)^62 2329991416277376 a001 233802911/4250681*141422324^(1/13) 2329991416277376 a001 5702887/599074578*2537720636^(7/15) 2329991416277376 a001 267914296/12752043*2537720636^(1/9) 2329991416277376 a001 5702887/599074578*17393796001^(3/7) 2329991416277376 a001 5702887/599074578*45537549124^(7/17) 2329991416277376 a001 139583862212/599074577 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^21/Lucas(42) 2329991416277376 a001 267914296/12752043*(1/2+1/2*5^(1/2))^5 2329991416277376 a001 5702887/599074578*192900153618^(7/18) 2329991416277376 a001 267914296/12752043*28143753123^(1/10) 2329991416277376 a001 5702887/599074578*10749957122^(7/16) 2329991416277376 a001 5702887/599074578*599074578^(1/2) 2329991416277376 a004 Fibonacci(34)*Lucas(43)/(1/2+sqrt(5)/2)^64 2329991416277376 a001 233802911/4250681*2537720636^(1/15) 2329991416277376 a001 233802911/4250681*45537549124^(1/17) 2329991416277376 a001 233802911/4250681*14662949395604^(1/21) 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^23/Lucas(44) 2329991416277376 a001 233802911/4250681*(1/2+1/2*5^(1/2))^3 2329991416277376 a001 233802911/4250681*192900153618^(1/18) 2329991416277376 a001 233802911/4250681*10749957122^(1/16) 2329991416277376 a001 267914296/12752043*228826127^(1/8) 2329991416277376 a001 165580141/12752043*141422324^(2/13) 2329991416277376 a001 5702887/1568397607*4106118243^(1/2) 2329991416277376 a001 233802911/4250681*599074578^(1/14) 2329991416277376 a004 Fibonacci(34)*Lucas(45)/(1/2+sqrt(5)/2)^66 2329991416277376 a001 5702887/4106118243*2537720636^(5/9) 2329991416277376 a001 5702887/14662949395604*2537720636^(14/15) 2329991416277376 a001 5702887/5600748293801*2537720636^(8/9) 2329991416277376 a001 5702887/3461452808002*2537720636^(13/15) 2329991416277376 a001 5702887/817138163596*2537720636^(4/5) 2329991416277376 a001 5702887/505019158607*2537720636^(7/9) 2329991416277376 a001 5702887/192900153618*2537720636^(11/15) 2329991416277376 a001 1597/12752044*2537720636^(2/3) 2329991416277376 a001 5702887/10749957122*2537720636^(3/5) 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^25/Lucas(46) 2329991416277376 a001 5702887/4106118243*3461452808002^(5/12) 2329991416277376 a001 5702887/4106118243*28143753123^(1/2) 2329991416277376 a004 Fibonacci(34)*Lucas(47)/(1/2+sqrt(5)/2)^68 2329991416277376 a001 5702887/10749957122*45537549124^(9/17) 2329991416277376 a001 5702887/10749957122*14662949395604^(3/7) 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^27/Lucas(48) 2329991416277376 a004 Fibonacci(48)/Lucas(34)/(1/2+sqrt(5)/2) 2329991416277376 a001 5702887/10749957122*192900153618^(1/2) 2329991416277376 a001 5702887/10749957122*10749957122^(9/16) 2329991416277376 a004 Fibonacci(34)*Lucas(49)/(1/2+sqrt(5)/2)^70 2329991416277376 a001 5702887/14662949395604*17393796001^(6/7) 2329991416277376 a001 5702887/505019158607*17393796001^(5/7) 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^29/Lucas(50) 2329991416277376 a004 Fibonacci(50)/Lucas(34)/(1/2+sqrt(5)/2)^3 2329991416277376 a001 5702887/28143753123*1322157322203^(1/2) 2329991416277376 a004 Fibonacci(34)*Lucas(51)/(1/2+sqrt(5)/2)^72 2329991416277376 a001 5702887/14662949395604*45537549124^(14/17) 2329991416277376 a001 5702887/3461452808002*45537549124^(13/17) 2329991416277376 a001 5702887/192900153618*45537549124^(11/17) 2329991416277376 a001 5702887/312119004989*45537549124^(2/3) 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^31/Lucas(52) 2329991416277376 a004 Fibonacci(52)/Lucas(34)/(1/2+sqrt(5)/2)^5 2329991416277376 a001 5702887/73681302247*9062201101803^(1/2) 2329991416277376 a004 Fibonacci(34)*Lucas(53)/(1/2+sqrt(5)/2)^74 2329991416277376 a001 5702887/192900153618*312119004989^(3/5) 2329991416277376 a001 5702887/192900153618*817138163596^(11/19) 2329991416277376 a001 5702887/192900153618*14662949395604^(11/21) 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^33/Lucas(54) 2329991416277376 a004 Fibonacci(54)/Lucas(34)/(1/2+sqrt(5)/2)^7 2329991416277376 a001 5702887/192900153618*192900153618^(11/18) 2329991416277376 a004 Fibonacci(34)*Lucas(55)/(1/2+sqrt(5)/2)^76 2329991416277376 a001 5702887/505019158607*14662949395604^(5/9) 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^35/Lucas(56) 2329991416277376 a004 Fibonacci(56)/Lucas(34)/(1/2+sqrt(5)/2)^9 2329991416277376 a004 Fibonacci(34)*Lucas(57)/(1/2+sqrt(5)/2)^78 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^37/Lucas(58) 2329991416277376 a004 Fibonacci(58)/Lucas(34)/(1/2+sqrt(5)/2)^11 2329991416277376 a004 Fibonacci(34)*Lucas(59)/(1/2+sqrt(5)/2)^80 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^39/Lucas(60) 2329991416277376 a004 Fibonacci(60)/Lucas(34)/(1/2+sqrt(5)/2)^13 2329991416277376 a004 Fibonacci(34)*Lucas(61)/(1/2+sqrt(5)/2)^82 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^41/Lucas(62) 2329991416277376 a004 Fibonacci(62)/Lucas(34)/(1/2+sqrt(5)/2)^15 2329991416277376 a004 Fibonacci(34)*Lucas(63)/(1/2+sqrt(5)/2)^84 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^43/Lucas(64) 2329991416277376 a004 Fibonacci(64)/Lucas(34)/(1/2+sqrt(5)/2)^17 2329991416277376 a004 Fibonacci(34)*Lucas(65)/(1/2+sqrt(5)/2)^86 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^45/Lucas(66) 2329991416277376 a004 Fibonacci(66)/Lucas(34)/(1/2+sqrt(5)/2)^19 2329991416277376 a004 Fibonacci(34)*Lucas(67)/(1/2+sqrt(5)/2)^88 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^47/Lucas(68) 2329991416277376 a004 Fibonacci(34)*Lucas(69)/(1/2+sqrt(5)/2)^90 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^49/Lucas(70) 2329991416277376 a004 Fibonacci(34)*Lucas(71)/(1/2+sqrt(5)/2)^92 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^51/Lucas(72) 2329991416277376 a004 Fibonacci(34)*Lucas(73)/(1/2+sqrt(5)/2)^94 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^53/Lucas(74) 2329991416277376 a004 Fibonacci(34)*Lucas(75)/(1/2+sqrt(5)/2)^96 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^55/Lucas(76) 2329991416277376 a004 Fibonacci(34)*Lucas(77)/(1/2+sqrt(5)/2)^98 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^57/Lucas(78) 2329991416277376 a004 Fibonacci(34)*Lucas(79)/(1/2+sqrt(5)/2)^100 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^59/Lucas(80) 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^61/Lucas(82) 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^63/Lucas(84) 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^65/Lucas(86) 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^67/Lucas(88) 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^69/Lucas(90) 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^71/Lucas(92) 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^73/Lucas(94) 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^75/Lucas(96) 2329991416277376 a004 Fibonacci(17)*Lucas(17)/(1/2+sqrt(5)/2)^21 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^77/Lucas(98) 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^79/Lucas(100) 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^76/Lucas(97) 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^78/Lucas(99) 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^74/Lucas(95) 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^72/Lucas(93) 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^70/Lucas(91) 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^68/Lucas(89) 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^66/Lucas(87) 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^64/Lucas(85) 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^62/Lucas(83) 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^60/Lucas(81) 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^58/Lucas(79) 2329991416277376 a004 Fibonacci(34)*Lucas(78)/(1/2+sqrt(5)/2)^99 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^56/Lucas(77) 2329991416277376 a004 Fibonacci(34)*Lucas(76)/(1/2+sqrt(5)/2)^97 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^54/Lucas(75) 2329991416277376 a004 Fibonacci(34)*Lucas(74)/(1/2+sqrt(5)/2)^95 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^52/Lucas(73) 2329991416277376 a004 Fibonacci(34)*Lucas(72)/(1/2+sqrt(5)/2)^93 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^50/Lucas(71) 2329991416277376 a004 Fibonacci(34)*Lucas(70)/(1/2+sqrt(5)/2)^91 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^48/Lucas(69) 2329991416277376 a004 Fibonacci(70)/Lucas(34)/(1/2+sqrt(5)/2)^23 2329991416277376 a004 Fibonacci(72)/Lucas(34)/(1/2+sqrt(5)/2)^25 2329991416277376 a004 Fibonacci(74)/Lucas(34)/(1/2+sqrt(5)/2)^27 2329991416277376 a004 Fibonacci(76)/Lucas(34)/(1/2+sqrt(5)/2)^29 2329991416277376 a004 Fibonacci(78)/Lucas(34)/(1/2+sqrt(5)/2)^31 2329991416277376 a004 Fibonacci(80)/Lucas(34)/(1/2+sqrt(5)/2)^33 2329991416277376 a004 Fibonacci(82)/Lucas(34)/(1/2+sqrt(5)/2)^35 2329991416277376 a004 Fibonacci(84)/Lucas(34)/(1/2+sqrt(5)/2)^37 2329991416277376 a004 Fibonacci(86)/Lucas(34)/(1/2+sqrt(5)/2)^39 2329991416277376 a004 Fibonacci(88)/Lucas(34)/(1/2+sqrt(5)/2)^41 2329991416277376 a004 Fibonacci(90)/Lucas(34)/(1/2+sqrt(5)/2)^43 2329991416277376 a004 Fibonacci(92)/Lucas(34)/(1/2+sqrt(5)/2)^45 2329991416277376 a004 Fibonacci(94)/Lucas(34)/(1/2+sqrt(5)/2)^47 2329991416277376 a004 Fibonacci(96)/Lucas(34)/(1/2+sqrt(5)/2)^49 2329991416277376 a004 Fibonacci(100)/Lucas(34)/(1/2+sqrt(5)/2)^53 2329991416277376 a004 Fibonacci(34)*Lucas(68)/(1/2+sqrt(5)/2)^89 2329991416277376 a004 Fibonacci(98)/Lucas(34)/(1/2+sqrt(5)/2)^51 2329991416277376 a004 Fibonacci(99)/Lucas(34)/(1/2+sqrt(5)/2)^52 2329991416277376 a004 Fibonacci(97)/Lucas(34)/(1/2+sqrt(5)/2)^50 2329991416277376 a004 Fibonacci(95)/Lucas(34)/(1/2+sqrt(5)/2)^48 2329991416277376 a004 Fibonacci(93)/Lucas(34)/(1/2+sqrt(5)/2)^46 2329991416277376 a004 Fibonacci(91)/Lucas(34)/(1/2+sqrt(5)/2)^44 2329991416277376 a004 Fibonacci(89)/Lucas(34)/(1/2+sqrt(5)/2)^42 2329991416277376 a004 Fibonacci(87)/Lucas(34)/(1/2+sqrt(5)/2)^40 2329991416277376 a004 Fibonacci(85)/Lucas(34)/(1/2+sqrt(5)/2)^38 2329991416277376 a004 Fibonacci(83)/Lucas(34)/(1/2+sqrt(5)/2)^36 2329991416277376 a004 Fibonacci(81)/Lucas(34)/(1/2+sqrt(5)/2)^34 2329991416277376 a004 Fibonacci(79)/Lucas(34)/(1/2+sqrt(5)/2)^32 2329991416277376 a004 Fibonacci(77)/Lucas(34)/(1/2+sqrt(5)/2)^30 2329991416277376 a004 Fibonacci(75)/Lucas(34)/(1/2+sqrt(5)/2)^28 2329991416277376 a004 Fibonacci(73)/Lucas(34)/(1/2+sqrt(5)/2)^26 2329991416277376 a004 Fibonacci(71)/Lucas(34)/(1/2+sqrt(5)/2)^24 2329991416277376 a004 Fibonacci(69)/Lucas(34)/(1/2+sqrt(5)/2)^22 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^46/Lucas(67) 2329991416277376 a004 Fibonacci(67)/Lucas(34)/(1/2+sqrt(5)/2)^20 2329991416277376 a004 Fibonacci(34)*Lucas(66)/(1/2+sqrt(5)/2)^87 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^44/Lucas(65) 2329991416277376 a004 Fibonacci(65)/Lucas(34)/(1/2+sqrt(5)/2)^18 2329991416277376 a001 5702887/14662949395604*14662949395604^(2/3) 2329991416277376 a004 Fibonacci(34)*Lucas(64)/(1/2+sqrt(5)/2)^85 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^42/Lucas(63) 2329991416277376 a004 Fibonacci(63)/Lucas(34)/(1/2+sqrt(5)/2)^16 2329991416277376 a004 Fibonacci(34)*Lucas(62)/(1/2+sqrt(5)/2)^83 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^40/Lucas(61) 2329991416277376 a004 Fibonacci(61)/Lucas(34)/(1/2+sqrt(5)/2)^14 2329991416277376 a004 Fibonacci(34)*Lucas(60)/(1/2+sqrt(5)/2)^81 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^38/Lucas(59) 2329991416277376 a004 Fibonacci(59)/Lucas(34)/(1/2+sqrt(5)/2)^12 2329991416277376 a004 Fibonacci(34)*Lucas(58)/(1/2+sqrt(5)/2)^79 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^36/Lucas(57) 2329991416277376 a004 Fibonacci(57)/Lucas(34)/(1/2+sqrt(5)/2)^10 2329991416277376 a001 5702887/14662949395604*505019158607^(3/4) 2329991416277376 a004 Fibonacci(34)*Lucas(56)/(1/2+sqrt(5)/2)^77 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^34/Lucas(55) 2329991416277376 a004 Fibonacci(55)/Lucas(34)/(1/2+sqrt(5)/2)^8 2329991416277376 a001 5702887/14662949395604*192900153618^(7/9) 2329991416277376 a004 Fibonacci(34)*Lucas(54)/(1/2+sqrt(5)/2)^75 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^32/Lucas(53) 2329991416277376 a004 Fibonacci(53)/Lucas(34)/(1/2+sqrt(5)/2)^6 2329991416277376 a001 5702887/119218851371*23725150497407^(1/2) 2329991416277376 a001 5702887/817138163596*73681302247^(9/13) 2329991416277376 a001 5702887/3461452808002*73681302247^(3/4) 2329991416277376 a001 5702887/5600748293801*73681302247^(10/13) 2329991416277376 a001 5702887/119218851371*73681302247^(8/13) 2329991416277376 a004 Fibonacci(34)*Lucas(52)/(1/2+sqrt(5)/2)^73 2329991416277376 a001 1597/12752044*45537549124^(10/17) 2329991416277376 a001 1597/12752044*312119004989^(6/11) 2329991416277376 a001 1597/12752044*14662949395604^(10/21) 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^30/Lucas(51) 2329991416277376 a004 Fibonacci(51)/Lucas(34)/(1/2+sqrt(5)/2)^4 2329991416277376 a001 1597/12752044*192900153618^(5/9) 2329991416277376 a001 5702887/505019158607*28143753123^(7/10) 2329991416277376 a001 5702887/5600748293801*28143753123^(4/5) 2329991416277376 a001 1597/12752044*28143753123^(3/5) 2329991416277376 a004 Fibonacci(34)*Lucas(50)/(1/2+sqrt(5)/2)^71 2329991416277376 a001 5702887/17393796001*17393796001^(4/7) 2329991416277376 a001 5702887/17393796001*14662949395604^(4/9) 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^28/Lucas(49) 2329991416277376 a004 Fibonacci(49)/Lucas(34)/(1/2+sqrt(5)/2)^2 2329991416277376 a001 5702887/17393796001*73681302247^(7/13) 2329991416277376 a001 5702887/119218851371*10749957122^(2/3) 2329991416277376 a001 1597/12752044*10749957122^(5/8) 2329991416277376 a001 5702887/192900153618*10749957122^(11/16) 2329991416277376 a001 5702887/312119004989*10749957122^(17/24) 2329991416277376 a001 5702887/817138163596*10749957122^(3/4) 2329991416277376 a001 5702887/2139295485799*10749957122^(19/24) 2329991416277376 a001 5702887/3461452808002*10749957122^(13/16) 2329991416277376 a001 5702887/5600748293801*10749957122^(5/6) 2329991416277376 a001 5702887/14662949395604*10749957122^(7/8) 2329991416277376 a001 5702887/17393796001*10749957122^(7/12) 2329991416277376 a004 Fibonacci(34)*Lucas(48)/(1/2+sqrt(5)/2)^69 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^26/Lucas(47) 2329991416277376 a006 5^(1/2)*Fibonacci(47)/Lucas(34)/sqrt(5) 2329991416277376 a001 5702887/6643838879*73681302247^(1/2) 2329991416277376 a001 5702887/6643838879*10749957122^(13/24) 2329991416277376 a001 1597/12752044*4106118243^(15/23) 2329991416277376 a001 5702887/17393796001*4106118243^(14/23) 2329991416277376 a001 5702887/119218851371*4106118243^(16/23) 2329991416277376 a001 5702887/312119004989*4106118243^(17/23) 2329991416277376 a001 5702887/817138163596*4106118243^(18/23) 2329991416277376 a001 5702887/2139295485799*4106118243^(19/23) 2329991416277376 a001 5702887/5600748293801*4106118243^(20/23) 2329991416277376 a001 5702887/14662949395604*4106118243^(21/23) 2329991416277376 a001 5702887/6643838879*4106118243^(13/23) 2329991416277376 a004 Fibonacci(34)*Lucas(46)/(1/2+sqrt(5)/2)^67 2329991416277376 a001 5702887/2537720636*2537720636^(8/15) 2329991416277376 a001 5702887/2537720636*45537549124^(8/17) 2329991416277376 a001 5702887/2537720636*14662949395604^(8/21) 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^24/Lucas(45) 2329991416277376 a001 1134903170/12752043*(1/2+1/2*5^(1/2))^2 2329991416277376 a001 5702887/2537720636*192900153618^(4/9) 2329991416277376 a001 5702887/2537720636*73681302247^(6/13) 2329991416277376 a001 1134903170/12752043*10749957122^(1/24) 2329991416277376 a001 1134903170/12752043*4106118243^(1/23) 2329991416277376 a001 5702887/2537720636*10749957122^(1/2) 2329991416277376 a001 1134903170/12752043*1568397607^(1/22) 2329991416277376 a001 5702887/2537720636*4106118243^(12/23) 2329991416277376 a001 5702887/17393796001*1568397607^(7/11) 2329991416277376 a001 5702887/6643838879*1568397607^(13/22) 2329991416277376 a001 1597/12752044*1568397607^(15/22) 2329991416277376 a001 1134903170/12752043*599074578^(1/21) 2329991416277376 a001 5702887/119218851371*1568397607^(8/11) 2329991416277376 a001 5702887/192900153618*1568397607^(3/4) 2329991416277376 a001 5702887/312119004989*1568397607^(17/22) 2329991416277376 a001 5702887/817138163596*1568397607^(9/11) 2329991416277376 a001 5702887/2139295485799*1568397607^(19/22) 2329991416277376 a001 5702887/5600748293801*1568397607^(10/11) 2329991416277376 a001 5702887/2537720636*1568397607^(6/11) 2329991416277376 a001 5702887/14662949395604*1568397607^(21/22) 2329991416277376 a004 Fibonacci(34)*Lucas(44)/(1/2+sqrt(5)/2)^65 2329991416277376 a001 5702887/969323029*312119004989^(2/5) 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^22/Lucas(43) 2329991416277376 a001 433494437/12752043*(1/2+1/2*5^(1/2))^4 2329991416277376 a001 2472169789339619/10610209857723 2329991416277376 a001 433494437/12752043*73681302247^(1/13) 2329991416277376 a001 433494437/12752043*10749957122^(1/12) 2329991416277376 a001 5702887/969323029*10749957122^(11/24) 2329991416277376 a001 433494437/12752043*4106118243^(2/23) 2329991416277376 a001 5702887/969323029*4106118243^(11/23) 2329991416277376 a001 433494437/12752043*1568397607^(1/11) 2329991416277376 a001 1134903170/12752043*228826127^(1/20) 2329991416277376 a001 5702887/969323029*1568397607^(1/2) 2329991416277376 a001 433494437/12752043*599074578^(2/21) 2329991416277376 a001 5702887/2537720636*599074578^(4/7) 2329991416277376 a001 5702887/6643838879*599074578^(13/21) 2329991416277376 a001 5702887/10749957122*599074578^(9/14) 2329991416277376 a001 5702887/17393796001*599074578^(2/3) 2329991416277376 a001 1597/12752044*599074578^(5/7) 2329991416277376 a001 5702887/119218851371*599074578^(16/21) 2329991416277376 a001 5702887/192900153618*599074578^(11/14) 2329991416277376 a001 5702887/312119004989*599074578^(17/21) 2329991416277376 a001 5702887/505019158607*599074578^(5/6) 2329991416277376 a001 5702887/817138163596*599074578^(6/7) 2329991416277376 a001 5702887/2139295485799*599074578^(19/21) 2329991416277376 a001 5702887/969323029*599074578^(11/21) 2329991416277376 a001 5702887/3461452808002*599074578^(13/14) 2329991416277376 a001 5702887/5600748293801*599074578^(20/21) 2329991416277376 a004 Fibonacci(34)*Lucas(42)/(1/2+sqrt(5)/2)^63 2329991416277376 a001 433494437/12752043*228826127^(1/10) 2329991416277376 a001 1134903170/12752043*87403803^(1/19) 2329991416277376 a001 5702887/370248451*2537720636^(4/9) 2329991416277376 a001 165580141/12752043*2537720636^(2/15) 2329991416277376 a001 165580141/12752043*45537549124^(2/17) 2329991416277376 a001 165580141/12752043*14662949395604^(2/21) 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^20/Lucas(41) 2329991416277376 a001 165580141/12752043*(1/2+1/2*5^(1/2))^6 2329991416277376 a001 5702887/370248451*23725150497407^(5/16) 2329991416277376 a001 944284833567067/4052739537881 2329991416277376 a001 5702887/370248451*73681302247^(5/13) 2329991416277376 a001 5702887/370248451*28143753123^(2/5) 2329991416277376 a001 165580141/12752043*10749957122^(1/8) 2329991416277376 a001 5702887/370248451*10749957122^(5/12) 2329991416277376 a001 165580141/12752043*4106118243^(3/23) 2329991416277376 a001 5702887/370248451*4106118243^(10/23) 2329991416277376 a001 165580141/12752043*1568397607^(3/22) 2329991416277376 a001 5702887/370248451*1568397607^(5/11) 2329991416277376 a001 165580141/12752043*599074578^(1/7) 2329991416277376 a001 5702887/370248451*599074578^(10/21) 2329991416277376 a001 165580141/12752043*228826127^(3/20) 2329991416277376 a001 5702887/969323029*228826127^(11/20) 2329991416277376 a001 5702887/2537720636*228826127^(3/5) 2329991416277376 a001 5702887/4106118243*228826127^(5/8) 2329991416277376 a001 5702887/6643838879*228826127^(13/20) 2329991416277376 a001 5702887/17393796001*228826127^(7/10) 2329991416277376 a001 1597/12752044*228826127^(3/4) 2329991416277376 a001 433494437/12752043*87403803^(2/19) 2329991416277376 a001 5702887/119218851371*228826127^(4/5) 2329991416277376 a001 5702887/312119004989*228826127^(17/20) 2329991416277376 a001 5702887/505019158607*228826127^(7/8) 2329991416277376 a001 5702887/370248451*228826127^(1/2) 2329991416277376 a001 5702887/817138163596*228826127^(9/10) 2329991416277376 a001 5702887/2139295485799*228826127^(19/20) 2329991416277376 a004 Fibonacci(34)*Lucas(40)/(1/2+sqrt(5)/2)^61 2329991416277376 a001 5702887/141422324*141422324^(6/13) 2329991416277376 a001 165580141/12752043*87403803^(3/19) 2329991416277376 a001 5702887/228826127*87403803^(1/2) 2329991416277376 a001 5702887/141422324*2537720636^(2/5) 2329991416277376 a001 5702887/141422324*45537549124^(6/17) 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^18/Lucas(39) 2329991416277376 a001 63245986/12752043*(1/2+1/2*5^(1/2))^8 2329991416277376 a001 180342355680791/774004377960 2329991416277376 a001 5702887/141422324*192900153618^(1/3) 2329991416277376 a001 63245986/12752043*73681302247^(2/13) 2329991416277376 a001 1134903170/12752043*33385282^(1/18) 2329991416277376 a001 63245986/12752043*10749957122^(1/6) 2329991416277376 a001 5702887/141422324*10749957122^(3/8) 2329991416277376 a001 63245986/12752043*4106118243^(4/23) 2329991416277376 a001 5702887/141422324*4106118243^(9/23) 2329991416277376 a001 63245986/12752043*1568397607^(2/11) 2329991416277376 a001 5702887/141422324*1568397607^(9/22) 2329991416277376 a001 63245986/12752043*599074578^(4/21) 2329991416277376 a001 5702887/141422324*599074578^(3/7) 2329991416277376 a001 63245986/12752043*228826127^(1/5) 2329991416277376 a001 5702887/141422324*228826127^(9/20) 2329991416277376 a001 233802911/4250681*33385282^(1/12) 2329991416277376 a001 5702887/370248451*87403803^(10/19) 2329991416277376 a001 5702887/969323029*87403803^(11/19) 2329991416277376 a001 63245986/12752043*87403803^(4/19) 2329991416277376 a001 5702887/2537720636*87403803^(12/19) 2329991416277376 a001 5702887/6643838879*87403803^(13/19) 2329991416277376 a001 39088169/12752043*33385282^(1/4) 2329991416277376 a001 5702887/17393796001*87403803^(14/19) 2329991416277376 a001 433494437/12752043*33385282^(1/9) 2329991416277376 a001 1597/12752044*87403803^(15/19) 2329991416277376 a001 5702887/119218851371*87403803^(16/19) 2329991416277376 a001 5702887/141422324*87403803^(9/19) 2329991416277376 a001 5702887/312119004989*87403803^(17/19) 2329991416277376 a001 5702887/817138163596*87403803^(18/19) 2329991416277376 a004 Fibonacci(34)*Lucas(38)/(1/2+sqrt(5)/2)^59 2329991416277376 a001 165580141/12752043*33385282^(1/6) 2329991416277376 a001 31622993/930249*710647^(1/7) 2329991416277376 a001 63245986/87403803*7881196^(4/11) 2329991416277376 a001 63245986/12752043*33385282^(2/9) 2329991416277376 a001 165580141/228826127*7881196^(4/11) 2329991416277376 a001 433494437/599074578*7881196^(4/11) 2329991416277376 a001 1134903170/1568397607*7881196^(4/11) 2329991416277376 a001 2971215073/4106118243*7881196^(4/11) 2329991416277376 a001 7778742049/10749957122*7881196^(4/11) 2329991416277376 a001 20365011074/28143753123*7881196^(4/11) 2329991416277376 a001 53316291173/73681302247*7881196^(4/11) 2329991416277376 a001 139583862445/192900153618*7881196^(4/11) 2329991416277376 a001 10610209857723/14662949395604*7881196^(4/11) 2329991416277376 a001 225851433717/312119004989*7881196^(4/11) 2329991416277376 a001 86267571272/119218851371*7881196^(4/11) 2329991416277376 a001 32951280099/45537549124*7881196^(4/11) 2329991416277376 a001 12586269025/17393796001*7881196^(4/11) 2329991416277376 a001 4807526976/6643838879*7881196^(4/11) 2329991416277376 a001 1836311903/2537720636*7881196^(4/11) 2329991416277376 a001 701408733/969323029*7881196^(4/11) 2329991416277376 a001 267914296/370248451*7881196^(4/11) 2329991416277376 a001 102334155/141422324*7881196^(4/11) 2329991416277376 a001 24157817/12752043*2537720636^(2/9) 2329991416277376 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^16/Lucas(37) 2329991416277376 a001 24157817/12752043*(1/2+1/2*5^(1/2))^10 2329991416277376 a001 5702887/54018521*23725150497407^(1/4) 2329991416277376 a001 137769300517679/591286729879 2329991416277376 a001 5702887/54018521*73681302247^(4/13) 2329991416277376 a001 24157817/12752043*28143753123^(1/5) 2329991416277376 a001 24157817/12752043*10749957122^(5/24) 2329991416277376 a001 5702887/54018521*10749957122^(1/3) 2329991416277376 a001 24157817/12752043*4106118243^(5/23) 2329991416277376 a001 5702887/54018521*4106118243^(8/23) 2329991416277376 a001 24157817/12752043*1568397607^(5/22) 2329991416277376 a001 5702887/54018521*1568397607^(4/11) 2329991416277376 a001 24157817/12752043*599074578^(5/21) 2329991416277376 a001 5702887/54018521*599074578^(8/21) 2329991416277376 a001 24157817/12752043*228826127^(1/4) 2329991416277376 a001 5702887/54018521*228826127^(2/5) 2329991416277376 a001 1134903170/12752043*12752043^(1/17) 2329991416277376 a001 24157817/12752043*87403803^(5/19) 2329991416277377 a001 5702887/54018521*87403803^(8/19) 2329991416277377 a001 5702887/141422324*33385282^(1/2) 2329991416277377 a001 5702887/370248451*33385282^(5/9) 2329991416277377 a001 39088169/54018521*7881196^(4/11) 2329991416277377 a001 5702887/599074578*33385282^(7/12) 2329991416277377 a001 5702887/969323029*33385282^(11/18) 2329991416277377 a001 24157817/12752043*33385282^(5/18) 2329991416277377 a001 5702887/2537720636*33385282^(2/3) 2329991416277377 a001 34111385/29134601*7881196^(1/3) 2329991416277377 a001 5702887/6643838879*33385282^(13/18) 2329991416277377 a001 5702887/10749957122*33385282^(3/4) 2329991416277377 a001 5702887/17393796001*33385282^(7/9) 2329991416277377 a001 433494437/12752043*12752043^(2/17) 2329991416277377 a001 5702887/54018521*33385282^(4/9) 2329991416277377 a001 1597/12752044*33385282^(5/6) 2329991416277377 a001 267914296/228826127*7881196^(1/3) 2329991416277377 a001 233802911/199691526*7881196^(1/3) 2329991416277377 a001 1836311903/1568397607*7881196^(1/3) 2329991416277377 a001 1602508992/1368706081*7881196^(1/3) 2329991416277377 a001 12586269025/10749957122*7881196^(1/3) 2329991416277377 a001 10983760033/9381251041*7881196^(1/3) 2329991416277377 a001 86267571272/73681302247*7881196^(1/3) 2329991416277377 a001 75283811239/64300051206*7881196^(1/3) 2329991416277377 a001 2504730781961/2139295485799*7881196^(1/3) 2329991416277377 a001 365435296162/312119004989*7881196^(1/3) 2329991416277377 a001 139583862445/119218851371*7881196^(1/3) 2329991416277377 a001 53316291173/45537549124*7881196^(1/3) 2329991416277377 a001 20365011074/17393796001*7881196^(1/3) 2329991416277377 a001 7778742049/6643838879*7881196^(1/3) 2329991416277377 a001 2971215073/2537720636*7881196^(1/3) 2329991416277377 a001 1134903170/969323029*7881196^(1/3) 2329991416277377 a001 433494437/370248451*7881196^(1/3) 2329991416277377 a001 5702887/119218851371*33385282^(8/9) 2329991416277378 a001 5702887/192900153618*33385282^(11/12) 2329991416277378 a001 165580141/141422324*7881196^(1/3) 2329991416277378 a001 14619165/4769326*7881196^(3/11) 2329991416277378 a001 5702887/312119004989*33385282^(17/18) 2329991416277378 a001 2178309/6643838879*4870847^(7/8) 2329991416277378 a004 Fibonacci(34)*Lucas(36)/(1/2+sqrt(5)/2)^57 2329991416277378 a001 165580141/12752043*12752043^(3/17) 2329991416277378 a001 63245986/54018521*7881196^(1/3) 2329991416277379 a001 5702887/20633239*20633239^(2/5) 2329991416277379 a001 63245986/12752043*12752043^(4/17) 2329991416277379 a001 9227465/54018521*7881196^(5/11) 2329991416277379 a001 267914296/87403803*7881196^(3/11) 2329991416277380 a001 701408733/228826127*7881196^(3/11) 2329991416277380 a001 14930352/20633239*7881196^(4/11) 2329991416277380 a001 1836311903/599074578*7881196^(3/11) 2329991416277380 a001 686789568/224056801*7881196^(3/11) 2329991416277380 a001 12586269025/4106118243*7881196^(3/11) 2329991416277380 a001 32951280099/10749957122*7881196^(3/11) 2329991416277380 a001 86267571272/28143753123*7881196^(3/11) 2329991416277380 a001 32264490531/10525900321*7881196^(3/11) 2329991416277380 a001 591286729879/192900153618*7881196^(3/11) 2329991416277380 a001 1548008755920/505019158607*7881196^(3/11) 2329991416277380 a001 1515744265389/494493258286*7881196^(3/11) 2329991416277380 a001 2504730781961/817138163596*7881196^(3/11) 2329991416277380 a001 956722026041/312119004989*7881196^(3/11) 2329991416277380 a001 365435296162/119218851371*7881196^(3/11) 2329991416277380 a001 139583862445/45537549124*7881196^(3/11) 2329991416277380 a001 53316291173/17393796001*7881196^(3/11) 2329991416277380 a001 20365011074/6643838879*7881196^(3/11) 2329991416277380 a001 7778742049/2537720636*7881196^(3/11) 2329991416277380 a001 2971215073/969323029*7881196^(3/11) 2329991416277380 a001 1134903170/370248451*7881196^(3/11) 2329991416277380 a001 433494437/141422324*7881196^(3/11) 2329991416277381 a001 165580141/54018521*7881196^(3/11) 2329991416277381 a001 24157817/12752043*12752043^(5/17) 2329991416277381 a001 433494437/33385282*7881196^(2/11) 2329991416277381 a001 9227465/12752043*141422324^(4/13) 2329991416277381 a001 9227465/12752043*2537720636^(4/15) 2329991416277381 a001 5702887/20633239*17393796001^(2/7) 2329991416277381 a001 9227465/12752043*45537549124^(4/17) 2329991416277381 a001 5702887/20633239*14662949395604^(2/9) 2329991416277381 a001 5702887/20633239*(1/2+1/2*5^(1/2))^14 2329991416277381 a001 9227465/12752043*(1/2+1/2*5^(1/2))^12 2329991416277381 a001 4047937707035/17373187209 2329991416277381 a001 9227465/12752043*73681302247^(3/13) 2329991416277381 a001 9227465/12752043*10749957122^(1/4) 2329991416277381 a001 5702887/20633239*10749957122^(7/24) 2329991416277381 a001 9227465/12752043*4106118243^(6/23) 2329991416277381 a001 5702887/20633239*4106118243^(7/23) 2329991416277381 a001 9227465/12752043*1568397607^(3/11) 2329991416277381 a001 5702887/20633239*1568397607^(7/22) 2329991416277381 a001 9227465/12752043*599074578^(2/7) 2329991416277381 a001 5702887/20633239*599074578^(1/3) 2329991416277381 a001 9227465/12752043*228826127^(3/10) 2329991416277381 a001 5702887/20633239*228826127^(7/20) 2329991416277381 a001 9227465/12752043*87403803^(6/19) 2329991416277381 a001 5702887/20633239*87403803^(7/19) 2329991416277381 a001 165580141/4870847*1860498^(2/15) 2329991416277382 a001 1134903170/12752043*4870847^(1/16) 2329991416277382 a001 9227465/12752043*33385282^(1/3) 2329991416277382 a001 5702887/20633239*33385282^(7/18) 2329991416277382 a004 Fibonacci(36)*Lucas(35)/(1/2+sqrt(5)/2)^58 2329991416277382 a001 5702887/87403803*12752043^(1/2) 2329991416277383 a001 1134903170/87403803*7881196^(2/11) 2329991416277383 a001 2971215073/228826127*7881196^(2/11) 2329991416277383 a001 7778742049/599074578*7881196^(2/11) 2329991416277383 a001 20365011074/1568397607*7881196^(2/11) 2329991416277383 a001 53316291173/4106118243*7881196^(2/11) 2329991416277383 a001 139583862445/10749957122*7881196^(2/11) 2329991416277383 a001 365435296162/28143753123*7881196^(2/11) 2329991416277383 a001 956722026041/73681302247*7881196^(2/11) 2329991416277383 a001 2504730781961/192900153618*7881196^(2/11) 2329991416277383 a001 10610209857723/817138163596*7881196^(2/11) 2329991416277383 a001 4052739537881/312119004989*7881196^(2/11) 2329991416277383 a001 1548008755920/119218851371*7881196^(2/11) 2329991416277383 a001 591286729879/45537549124*7881196^(2/11) 2329991416277383 a001 7787980473/599786069*7881196^(2/11) 2329991416277383 a001 86267571272/6643838879*7881196^(2/11) 2329991416277383 a001 32951280099/2537720636*7881196^(2/11) 2329991416277383 a001 12586269025/969323029*7881196^(2/11) 2329991416277383 a001 4807526976/370248451*7881196^(2/11) 2329991416277383 a001 5702887/54018521*12752043^(8/17) 2329991416277383 a001 14930352/119218851371*20633239^(6/7) 2329991416277383 a001 1836311903/141422324*7881196^(2/11) 2329991416277383 a001 5702887/141422324*12752043^(9/17) 2329991416277383 a001 3732588/11384387281*20633239^(4/5) 2329991416277384 a001 24157817/20633239*7881196^(1/3) 2329991416277384 a001 2178309/17393796001*4870847^(15/16) 2329991416277384 a001 701408733/54018521*7881196^(2/11) 2329991416277384 a001 7465176/5374978561*20633239^(5/7) 2329991416277384 a001 5702887/370248451*12752043^(10/17) 2329991416277384 a004 Fibonacci(38)*Lucas(35)/(1/2+sqrt(5)/2)^60 2329991416277384 a004 Fibonacci(40)*Lucas(35)/(1/2+sqrt(5)/2)^62 2329991416277384 a001 1836311903/33385282*7881196^(1/11) 2329991416277384 a004 Fibonacci(42)*Lucas(35)/(1/2+sqrt(5)/2)^64 2329991416277384 a004 Fibonacci(44)*Lucas(35)/(1/2+sqrt(5)/2)^66 2329991416277384 a004 Fibonacci(46)*Lucas(35)/(1/2+sqrt(5)/2)^68 2329991416277384 a004 Fibonacci(48)*Lucas(35)/(1/2+sqrt(5)/2)^70 2329991416277384 a004 Fibonacci(50)*Lucas(35)/(1/2+sqrt(5)/2)^72 2329991416277384 a004 Fibonacci(52)*Lucas(35)/(1/2+sqrt(5)/2)^74 2329991416277384 a004 Fibonacci(54)*Lucas(35)/(1/2+sqrt(5)/2)^76 2329991416277384 a004 Fibonacci(56)*Lucas(35)/(1/2+sqrt(5)/2)^78 2329991416277384 a004 Fibonacci(58)*Lucas(35)/(1/2+sqrt(5)/2)^80 2329991416277384 a004 Fibonacci(60)*Lucas(35)/(1/2+sqrt(5)/2)^82 2329991416277384 a004 Fibonacci(62)*Lucas(35)/(1/2+sqrt(5)/2)^84 2329991416277384 a004 Fibonacci(64)*Lucas(35)/(1/2+sqrt(5)/2)^86 2329991416277384 a004 Fibonacci(66)*Lucas(35)/(1/2+sqrt(5)/2)^88 2329991416277384 a004 Fibonacci(68)*Lucas(35)/(1/2+sqrt(5)/2)^90 2329991416277384 a004 Fibonacci(70)*Lucas(35)/(1/2+sqrt(5)/2)^92 2329991416277384 a004 Fibonacci(72)*Lucas(35)/(1/2+sqrt(5)/2)^94 2329991416277384 a004 Fibonacci(74)*Lucas(35)/(1/2+sqrt(5)/2)^96 2329991416277384 a004 Fibonacci(76)*Lucas(35)/(1/2+sqrt(5)/2)^98 2329991416277384 a004 Fibonacci(78)*Lucas(35)/(1/2+sqrt(5)/2)^100 2329991416277384 a004 Fibonacci(77)*Lucas(35)/(1/2+sqrt(5)/2)^99 2329991416277384 a004 Fibonacci(75)*Lucas(35)/(1/2+sqrt(5)/2)^97 2329991416277384 a004 Fibonacci(73)*Lucas(35)/(1/2+sqrt(5)/2)^95 2329991416277384 a004 Fibonacci(71)*Lucas(35)/(1/2+sqrt(5)/2)^93 2329991416277384 a001 2/9227465*(1/2+1/2*5^(1/2))^48 2329991416277384 a004 Fibonacci(69)*Lucas(35)/(1/2+sqrt(5)/2)^91 2329991416277384 a004 Fibonacci(67)*Lucas(35)/(1/2+sqrt(5)/2)^89 2329991416277384 a004 Fibonacci(65)*Lucas(35)/(1/2+sqrt(5)/2)^87 2329991416277384 a004 Fibonacci(63)*Lucas(35)/(1/2+sqrt(5)/2)^85 2329991416277384 a004 Fibonacci(61)*Lucas(35)/(1/2+sqrt(5)/2)^83 2329991416277384 a004 Fibonacci(59)*Lucas(35)/(1/2+sqrt(5)/2)^81 2329991416277384 a004 Fibonacci(57)*Lucas(35)/(1/2+sqrt(5)/2)^79 2329991416277384 a004 Fibonacci(55)*Lucas(35)/(1/2+sqrt(5)/2)^77 2329991416277384 a004 Fibonacci(53)*Lucas(35)/(1/2+sqrt(5)/2)^75 2329991416277384 a004 Fibonacci(51)*Lucas(35)/(1/2+sqrt(5)/2)^73 2329991416277384 a004 Fibonacci(49)*Lucas(35)/(1/2+sqrt(5)/2)^71 2329991416277384 a004 Fibonacci(47)*Lucas(35)/(1/2+sqrt(5)/2)^69 2329991416277384 a004 Fibonacci(45)*Lucas(35)/(1/2+sqrt(5)/2)^67 2329991416277384 a004 Fibonacci(43)*Lucas(35)/(1/2+sqrt(5)/2)^65 2329991416277384 a004 Fibonacci(41)*Lucas(35)/(1/2+sqrt(5)/2)^63 2329991416277385 a001 14930352/1568397607*20633239^(3/5) 2329991416277385 a004 Fibonacci(39)*Lucas(35)/(1/2+sqrt(5)/2)^61 2329991416277385 a001 14930352/969323029*20633239^(4/7) 2329991416277385 a001 5702887/969323029*12752043^(11/17) 2329991416277385 a001 39088169/312119004989*20633239^(6/7) 2329991416277385 a001 4976784/29134601*20633239^(3/7) 2329991416277385 a001 102334155/817138163596*20633239^(6/7) 2329991416277385 a001 267914296/2139295485799*20633239^(6/7) 2329991416277385 a001 701408733/5600748293801*20633239^(6/7) 2329991416277385 a001 1836311903/14662949395604*20633239^(6/7) 2329991416277385 a001 2971215073/23725150497407*20633239^(6/7) 2329991416277385 a001 1134903170/9062201101803*20633239^(6/7) 2329991416277385 a001 433494437/3461452808002*20633239^(6/7) 2329991416277385 a001 39088169/119218851371*20633239^(4/5) 2329991416277385 a004 Fibonacci(37)*Lucas(35)/(1/2+sqrt(5)/2)^59 2329991416277385 a001 165580141/1322157322203*20633239^(6/7) 2329991416277385 a001 63245986/20633239*7881196^(3/11) 2329991416277385 a001 63245986/505019158607*20633239^(6/7) 2329991416277386 a001 9303105/28374454999*20633239^(4/5) 2329991416277386 a001 66978574/204284540899*20633239^(4/5) 2329991416277386 a001 701408733/2139295485799*20633239^(4/5) 2329991416277386 a001 1836311903/5600748293801*20633239^(4/5) 2329991416277386 a001 1201881744/3665737348901*20633239^(4/5) 2329991416277386 a001 7778742049/23725150497407*20633239^(4/5) 2329991416277386 a001 2971215073/9062201101803*20633239^(4/5) 2329991416277386 a001 567451585/1730726404001*20633239^(4/5) 2329991416277386 a001 433494437/1322157322203*20633239^(4/5) 2329991416277386 a001 165580141/505019158607*20633239^(4/5) 2329991416277386 a001 31622993/96450076809*20633239^(4/5) 2329991416277386 a001 7465176/16692641*141422324^(1/3) 2329991416277386 a001 39088169/28143753123*20633239^(5/7) 2329991416277386 a001 5702887/2537720636*12752043^(12/17) 2329991416277386 a001 222915410843904/956722026041 2329991416277386 a001 7465176/16692641*(1/2+1/2*5^(1/2))^13 2329991416277386 a001 7465176/16692641*73681302247^(1/4) 2329991416277386 a001 14619165/10525900321*20633239^(5/7) 2329991416277386 a001 133957148/96450076809*20633239^(5/7) 2329991416277386 a001 701408733/505019158607*20633239^(5/7) 2329991416277386 a001 1836311903/1322157322203*20633239^(5/7) 2329991416277386 a001 14930208/10749853441*20633239^(5/7) 2329991416277386 a001 12586269025/9062201101803*20633239^(5/7) 2329991416277386 a001 32951280099/23725150497407*20633239^(5/7) 2329991416277386 a001 10182505537/7331474697802*20633239^(5/7) 2329991416277386 a001 7778742049/5600748293801*20633239^(5/7) 2329991416277386 a001 2971215073/2139295485799*20633239^(5/7) 2329991416277386 a001 567451585/408569081798*20633239^(5/7) 2329991416277386 a001 433494437/312119004989*20633239^(5/7) 2329991416277386 a001 24157817/192900153618*20633239^(6/7) 2329991416277386 a001 165580141/119218851371*20633239^(5/7) 2329991416277386 a001 9227465/12752043*12752043^(6/17) 2329991416277386 a001 31622993/22768774562*20633239^(5/7) 2329991416277386 a001 1602508992/29134601*7881196^(1/11) 2329991416277386 a001 39088169/4106118243*20633239^(3/5) 2329991416277386 a001 24157817/73681302247*20633239^(4/5) 2329991416277386 a001 31622993/16692641*20633239^(2/7) 2329991416277386 a001 14930352/54018521*20633239^(2/5) 2329991416277386 a001 12586269025/228826127*7881196^(1/11) 2329991416277386 a001 39088169/2537720636*20633239^(4/7) 2329991416277387 a001 10983760033/199691526*7881196^(1/11) 2329991416277387 a001 86267571272/1568397607*7881196^(1/11) 2329991416277387 a001 75283811239/1368706081*7881196^(1/11) 2329991416277387 a001 591286729879/10749957122*7881196^(1/11) 2329991416277387 a001 12585437040/228811001*7881196^(1/11) 2329991416277387 a001 4052739537881/73681302247*7881196^(1/11) 2329991416277387 a001 3536736619241/64300051206*7881196^(1/11) 2329991416277387 a001 6557470319842/119218851371*7881196^(1/11) 2329991416277387 a001 2504730781961/45537549124*7881196^(1/11) 2329991416277387 a001 956722026041/17393796001*7881196^(1/11) 2329991416277387 a001 365435296162/6643838879*7881196^(1/11) 2329991416277387 a001 139583862445/2537720636*7881196^(1/11) 2329991416277387 a001 53316291173/969323029*7881196^(1/11) 2329991416277387 a001 20365011074/370248451*7881196^(1/11) 2329991416277387 a001 5702887/6643838879*12752043^(13/17) 2329991416277387 a001 102334155/10749957122*20633239^(3/5) 2329991416277387 a001 7778742049/141422324*7881196^(1/11) 2329991416277387 a001 267914296/28143753123*20633239^(3/5) 2329991416277387 a001 701408733/73681302247*20633239^(3/5) 2329991416277387 a001 1836311903/192900153618*20633239^(3/5) 2329991416277387 a001 102287808/10745088481*20633239^(3/5) 2329991416277387 a001 12586269025/1322157322203*20633239^(3/5) 2329991416277387 a001 32951280099/3461452808002*20633239^(3/5) 2329991416277387 a001 86267571272/9062201101803*20633239^(3/5) 2329991416277387 a001 225851433717/23725150497407*20633239^(3/5) 2329991416277387 a001 139583862445/14662949395604*20633239^(3/5) 2329991416277387 a001 53316291173/5600748293801*20633239^(3/5) 2329991416277387 a001 20365011074/2139295485799*20633239^(3/5) 2329991416277387 a001 7778742049/817138163596*20633239^(3/5) 2329991416277387 a001 2971215073/312119004989*20633239^(3/5) 2329991416277387 a001 1134903170/119218851371*20633239^(3/5) 2329991416277387 a001 433494437/45537549124*20633239^(3/5) 2329991416277387 a001 165580141/17393796001*20633239^(3/5) 2329991416277387 a001 133957148/16692641*20633239^(1/5) 2329991416277387 a001 102334155/6643838879*20633239^(4/7) 2329991416277387 a001 63245986/6643838879*20633239^(3/5) 2329991416277387 a001 9238424/599786069*20633239^(4/7) 2329991416277387 a001 701408733/45537549124*20633239^(4/7) 2329991416277387 a001 1836311903/119218851371*20633239^(4/7) 2329991416277387 a001 4807526976/312119004989*20633239^(4/7) 2329991416277387 a001 12586269025/817138163596*20633239^(4/7) 2329991416277387 a001 32951280099/2139295485799*20633239^(4/7) 2329991416277387 a001 86267571272/5600748293801*20633239^(4/7) 2329991416277387 a001 7787980473/505618944676*20633239^(4/7) 2329991416277387 a001 365435296162/23725150497407*20633239^(4/7) 2329991416277387 a001 139583862445/9062201101803*20633239^(4/7) 2329991416277387 a001 53316291173/3461452808002*20633239^(4/7) 2329991416277387 a001 20365011074/1322157322203*20633239^(4/7) 2329991416277387 a001 7778742049/505019158607*20633239^(4/7) 2329991416277387 a001 2971215073/192900153618*20633239^(4/7) 2329991416277387 a001 1134903170/73681302247*20633239^(4/7) 2329991416277387 a001 433494437/28143753123*20633239^(4/7) 2329991416277387 a001 24157817/17393796001*20633239^(5/7) 2329991416277387 a001 165580141/10749957122*20633239^(4/7) 2329991416277387 a001 63245986/4106118243*20633239^(4/7) 2329991416277387 a001 5702887/20633239*12752043^(7/17) 2329991416277387 a004 Fibonacci(36)*Lucas(37)/(1/2+sqrt(5)/2)^60 2329991416277387 a001 701408733/33385282*20633239^(1/7) 2329991416277387 a001 39088169/228826127*20633239^(3/7) 2329991416277387 a001 2971215073/54018521*7881196^(1/11) 2329991416277387 a001 5702887/17393796001*12752043^(14/17) 2329991416277387 a001 24157817/2537720636*20633239^(3/5) 2329991416277387 a001 4976784/29134601*141422324^(5/13) 2329991416277388 a001 34111385/199691526*20633239^(3/7) 2329991416277388 a001 4976784/29134601*2537720636^(1/3) 2329991416277388 a001 4976784/29134601*45537549124^(5/17) 2329991416277388 a001 39088169/33385282*312119004989^(1/5) 2329991416277388 a001 583600122205488/2504730781961 2329991416277388 a001 4976784/29134601*14662949395604^(5/21) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^15/Lucas(38) 2329991416277388 a001 39088169/33385282*(1/2+1/2*5^(1/2))^11 2329991416277388 a001 4976784/29134601*192900153618^(5/18) 2329991416277388 a001 4976784/29134601*28143753123^(3/10) 2329991416277388 a001 4976784/29134601*10749957122^(5/16) 2329991416277388 a001 39088169/33385282*1568397607^(1/4) 2329991416277388 a001 4976784/29134601*599074578^(5/14) 2329991416277388 a001 4976784/29134601*228826127^(3/8) 2329991416277388 a001 39088169/141422324*20633239^(2/5) 2329991416277388 a001 267914296/1568397607*20633239^(3/7) 2329991416277388 a001 233802911/1368706081*20633239^(3/7) 2329991416277388 a001 1836311903/10749957122*20633239^(3/7) 2329991416277388 a001 1602508992/9381251041*20633239^(3/7) 2329991416277388 a001 12586269025/73681302247*20633239^(3/7) 2329991416277388 a001 10983760033/64300051206*20633239^(3/7) 2329991416277388 a001 86267571272/505019158607*20633239^(3/7) 2329991416277388 a001 75283811239/440719107401*20633239^(3/7) 2329991416277388 a001 2504730781961/14662949395604*20633239^(3/7) 2329991416277388 a001 139583862445/817138163596*20633239^(3/7) 2329991416277388 a001 53316291173/312119004989*20633239^(3/7) 2329991416277388 a001 20365011074/119218851371*20633239^(3/7) 2329991416277388 a001 7778742049/45537549124*20633239^(3/7) 2329991416277388 a001 2971215073/17393796001*20633239^(3/7) 2329991416277388 a001 1134903170/6643838879*20633239^(3/7) 2329991416277388 a001 433494437/2537720636*20633239^(3/7) 2329991416277388 a001 24157817/1568397607*20633239^(4/7) 2329991416277388 a001 165580141/969323029*20633239^(3/7) 2329991416277388 a001 102334155/370248451*20633239^(2/5) 2329991416277388 a001 63245986/370248451*20633239^(3/7) 2329991416277388 a004 Fibonacci(36)*Lucas(39)/(1/2+sqrt(5)/2)^62 2329991416277388 a001 14930352/2139295485799*141422324^(12/13) 2329991416277388 a001 267914296/969323029*20633239^(2/5) 2329991416277388 a001 701408733/2537720636*20633239^(2/5) 2329991416277388 a001 1836311903/6643838879*20633239^(2/5) 2329991416277388 a001 4807526976/17393796001*20633239^(2/5) 2329991416277388 a001 12586269025/45537549124*20633239^(2/5) 2329991416277388 a001 32951280099/119218851371*20633239^(2/5) 2329991416277388 a001 86267571272/312119004989*20633239^(2/5) 2329991416277388 a001 225851433717/817138163596*20633239^(2/5) 2329991416277388 a001 1548008755920/5600748293801*20633239^(2/5) 2329991416277388 a001 139583862445/505019158607*20633239^(2/5) 2329991416277388 a001 53316291173/192900153618*20633239^(2/5) 2329991416277388 a001 20365011074/73681302247*20633239^(2/5) 2329991416277388 a001 7778742049/28143753123*20633239^(2/5) 2329991416277388 a001 2971215073/10749957122*20633239^(2/5) 2329991416277388 a001 14930352/505019158607*141422324^(11/13) 2329991416277388 a001 1134903170/4106118243*20633239^(2/5) 2329991416277388 a001 433494437/1568397607*20633239^(2/5) 2329991416277388 a001 14930352/119218851371*141422324^(10/13) 2329991416277388 a001 165580141/599074578*20633239^(2/5) 2329991416277388 a001 4976784/9381251041*141422324^(9/13) 2329991416277388 a001 14930352/17393796001*141422324^(2/3) 2329991416277388 a001 14930352/6643838879*141422324^(8/13) 2329991416277388 a001 14619165/4769326*141422324^(3/13) 2329991416277388 a001 14930352/1568397607*141422324^(7/13) 2329991416277388 a001 14619165/4769326*2537720636^(1/5) 2329991416277388 a001 14930352/228826127*45537549124^(1/3) 2329991416277388 a001 14619165/4769326*45537549124^(3/17) 2329991416277388 a001 14619165/4769326*14662949395604^(1/7) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^17/Lucas(40) 2329991416277388 a001 14619165/4769326*(1/2+1/2*5^(1/2))^9 2329991416277388 a001 14619165/4769326*192900153618^(1/6) 2329991416277388 a001 14619165/4769326*10749957122^(3/16) 2329991416277388 a001 14619165/4769326*599074578^(3/14) 2329991416277388 a001 14930352/370248451*141422324^(6/13) 2329991416277388 a001 63245986/228826127*20633239^(2/5) 2329991416277388 a004 Fibonacci(36)*Lucas(41)/(1/2+sqrt(5)/2)^64 2329991416277388 a001 433494437/33385282*141422324^(2/13) 2329991416277388 a001 1836311903/33385282*141422324^(1/13) 2329991416277388 a001 133957148/16692641*17393796001^(1/7) 2329991416277388 a001 133957148/16692641*14662949395604^(1/9) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^19/Lucas(42) 2329991416277388 a001 133957148/16692641*(1/2+1/2*5^(1/2))^7 2329991416277388 a001 133957148/16692641*599074578^(1/6) 2329991416277388 a004 Fibonacci(36)*Lucas(43)/(1/2+sqrt(5)/2)^66 2329991416277388 a001 14930352/1568397607*2537720636^(7/15) 2329991416277388 a001 701408733/33385282*2537720636^(1/9) 2329991416277388 a001 14930352/1568397607*17393796001^(3/7) 2329991416277388 a001 14930352/1568397607*45537549124^(7/17) 2329991416277388 a001 14930352/1568397607*14662949395604^(1/3) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^21/Lucas(44) 2329991416277388 a001 701408733/33385282*(1/2+1/2*5^(1/2))^5 2329991416277388 a001 14930352/1568397607*192900153618^(7/18) 2329991416277388 a001 701408733/33385282*28143753123^(1/10) 2329991416277388 a001 14930352/1568397607*10749957122^(7/16) 2329991416277388 a004 Fibonacci(36)*Lucas(45)/(1/2+sqrt(5)/2)^68 2329991416277388 a001 196452/192933544679*2537720636^(8/9) 2329991416277388 a001 4976784/3020733700601*2537720636^(13/15) 2329991416277388 a001 14930352/2139295485799*2537720636^(4/5) 2329991416277388 a001 4976784/440719107401*2537720636^(7/9) 2329991416277388 a001 14930352/505019158607*2537720636^(11/15) 2329991416277388 a001 14930352/119218851371*2537720636^(2/3) 2329991416277388 a001 7465176/5374978561*2537720636^(5/9) 2329991416277388 a001 4976784/9381251041*2537720636^(3/5) 2329991416277388 a001 1836311903/33385282*2537720636^(1/15) 2329991416277388 a001 14930352/6643838879*2537720636^(8/15) 2329991416277388 a001 1836311903/33385282*45537549124^(1/17) 2329991416277388 a001 1836311903/33385282*14662949395604^(1/21) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^23/Lucas(46) 2329991416277388 a001 1836311903/33385282*(1/2+1/2*5^(1/2))^3 2329991416277388 a001 1836311903/33385282*10749957122^(1/16) 2329991416277388 a001 4976784/1368706081*4106118243^(1/2) 2329991416277388 a004 Fibonacci(36)*Lucas(47)/(1/2+sqrt(5)/2)^70 2329991416277388 a001 7465176/5374978561*312119004989^(5/11) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^25/Lucas(48) 2329991416277388 a001 7465104/103681+7465104/103681*5^(1/2) 2329991416277388 a001 7465176/5374978561*28143753123^(1/2) 2329991416277388 a004 Fibonacci(36)*Lucas(49)/(1/2+sqrt(5)/2)^72 2329991416277388 a001 4976784/440719107401*17393796001^(5/7) 2329991416277388 a001 4976784/9381251041*45537549124^(9/17) 2329991416277388 a001 3732588/11384387281*17393796001^(4/7) 2329991416277388 a001 4976784/9381251041*14662949395604^(3/7) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^27/Lucas(50) 2329991416277388 a004 Fibonacci(50)/Lucas(36)/(1/2+sqrt(5)/2) 2329991416277388 a001 4976784/9381251041*192900153618^(1/2) 2329991416277388 a004 Fibonacci(36)*Lucas(51)/(1/2+sqrt(5)/2)^74 2329991416277388 a001 4976784/3020733700601*45537549124^(13/17) 2329991416277388 a001 14930352/2139295485799*45537549124^(12/17) 2329991416277388 a001 3732588/204284540899*45537549124^(2/3) 2329991416277388 a001 14930352/505019158607*45537549124^(11/17) 2329991416277388 a001 14930352/119218851371*45537549124^(10/17) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^29/Lucas(52) 2329991416277388 a004 Fibonacci(52)/Lucas(36)/(1/2+sqrt(5)/2)^3 2329991416277388 a001 14930352/73681302247*1322157322203^(1/2) 2329991416277388 a004 Fibonacci(36)*Lucas(53)/(1/2+sqrt(5)/2)^76 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^31/Lucas(54) 2329991416277388 a004 Fibonacci(54)/Lucas(36)/(1/2+sqrt(5)/2)^5 2329991416277388 a001 2584/33385281*9062201101803^(1/2) 2329991416277388 a004 Fibonacci(36)*Lucas(55)/(1/2+sqrt(5)/2)^78 2329991416277388 a001 14930352/505019158607*312119004989^(3/5) 2329991416277388 a001 14930352/505019158607*817138163596^(11/19) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^33/Lucas(56) 2329991416277388 a004 Fibonacci(56)/Lucas(36)/(1/2+sqrt(5)/2)^7 2329991416277388 a004 Fibonacci(36)*Lucas(57)/(1/2+sqrt(5)/2)^80 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^35/Lucas(58) 2329991416277388 a004 Fibonacci(58)/Lucas(36)/(1/2+sqrt(5)/2)^9 2329991416277388 a004 Fibonacci(36)*Lucas(59)/(1/2+sqrt(5)/2)^82 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^37/Lucas(60) 2329991416277388 a004 Fibonacci(60)/Lucas(36)/(1/2+sqrt(5)/2)^11 2329991416277388 a004 Fibonacci(36)*Lucas(61)/(1/2+sqrt(5)/2)^84 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^39/Lucas(62) 2329991416277388 a004 Fibonacci(62)/Lucas(36)/(1/2+sqrt(5)/2)^13 2329991416277388 a004 Fibonacci(36)*Lucas(63)/(1/2+sqrt(5)/2)^86 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^41/Lucas(64) 2329991416277388 a004 Fibonacci(64)/Lucas(36)/(1/2+sqrt(5)/2)^15 2329991416277388 a004 Fibonacci(36)*Lucas(65)/(1/2+sqrt(5)/2)^88 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^43/Lucas(66) 2329991416277388 a004 Fibonacci(66)/Lucas(36)/(1/2+sqrt(5)/2)^17 2329991416277388 a004 Fibonacci(36)*Lucas(67)/(1/2+sqrt(5)/2)^90 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^45/Lucas(68) 2329991416277388 a004 Fibonacci(68)/Lucas(36)/(1/2+sqrt(5)/2)^19 2329991416277388 a004 Fibonacci(36)*Lucas(69)/(1/2+sqrt(5)/2)^92 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^47/Lucas(70) 2329991416277388 a004 Fibonacci(70)/Lucas(36)/(1/2+sqrt(5)/2)^21 2329991416277388 a004 Fibonacci(36)*Lucas(71)/(1/2+sqrt(5)/2)^94 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^49/Lucas(72) 2329991416277388 a004 Fibonacci(36)*Lucas(73)/(1/2+sqrt(5)/2)^96 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^51/Lucas(74) 2329991416277388 a004 Fibonacci(36)*Lucas(75)/(1/2+sqrt(5)/2)^98 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^53/Lucas(76) 2329991416277388 a004 Fibonacci(36)*Lucas(77)/(1/2+sqrt(5)/2)^100 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^55/Lucas(78) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^57/Lucas(80) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^59/Lucas(82) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^61/Lucas(84) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^63/Lucas(86) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^65/Lucas(88) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^67/Lucas(90) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^69/Lucas(92) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^71/Lucas(94) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^73/Lucas(96) 2329991416277388 a004 Fibonacci(18)*Lucas(18)/(1/2+sqrt(5)/2)^23 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^75/Lucas(98) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^76/Lucas(99) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^77/Lucas(100) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^74/Lucas(97) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^72/Lucas(95) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^70/Lucas(93) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^68/Lucas(91) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^66/Lucas(89) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^64/Lucas(87) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^62/Lucas(85) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^60/Lucas(83) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^58/Lucas(81) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^56/Lucas(79) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^54/Lucas(77) 2329991416277388 a004 Fibonacci(36)*Lucas(76)/(1/2+sqrt(5)/2)^99 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^52/Lucas(75) 2329991416277388 a004 Fibonacci(36)*Lucas(74)/(1/2+sqrt(5)/2)^97 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^50/Lucas(73) 2329991416277388 a004 Fibonacci(74)/Lucas(36)/(1/2+sqrt(5)/2)^25 2329991416277388 a004 Fibonacci(76)/Lucas(36)/(1/2+sqrt(5)/2)^27 2329991416277388 a004 Fibonacci(78)/Lucas(36)/(1/2+sqrt(5)/2)^29 2329991416277388 a004 Fibonacci(80)/Lucas(36)/(1/2+sqrt(5)/2)^31 2329991416277388 a004 Fibonacci(82)/Lucas(36)/(1/2+sqrt(5)/2)^33 2329991416277388 a004 Fibonacci(84)/Lucas(36)/(1/2+sqrt(5)/2)^35 2329991416277388 a004 Fibonacci(86)/Lucas(36)/(1/2+sqrt(5)/2)^37 2329991416277388 a004 Fibonacci(88)/Lucas(36)/(1/2+sqrt(5)/2)^39 2329991416277388 a004 Fibonacci(90)/Lucas(36)/(1/2+sqrt(5)/2)^41 2329991416277388 a004 Fibonacci(92)/Lucas(36)/(1/2+sqrt(5)/2)^43 2329991416277388 a004 Fibonacci(94)/Lucas(36)/(1/2+sqrt(5)/2)^45 2329991416277388 a004 Fibonacci(96)/Lucas(36)/(1/2+sqrt(5)/2)^47 2329991416277388 a004 Fibonacci(100)/Lucas(36)/(1/2+sqrt(5)/2)^51 2329991416277388 a004 Fibonacci(36)*Lucas(72)/(1/2+sqrt(5)/2)^95 2329991416277388 a004 Fibonacci(98)/Lucas(36)/(1/2+sqrt(5)/2)^49 2329991416277388 a004 Fibonacci(97)/Lucas(36)/(1/2+sqrt(5)/2)^48 2329991416277388 a004 Fibonacci(99)/Lucas(36)/(1/2+sqrt(5)/2)^50 2329991416277388 a004 Fibonacci(95)/Lucas(36)/(1/2+sqrt(5)/2)^46 2329991416277388 a004 Fibonacci(93)/Lucas(36)/(1/2+sqrt(5)/2)^44 2329991416277388 a004 Fibonacci(91)/Lucas(36)/(1/2+sqrt(5)/2)^42 2329991416277388 a004 Fibonacci(89)/Lucas(36)/(1/2+sqrt(5)/2)^40 2329991416277388 a004 Fibonacci(87)/Lucas(36)/(1/2+sqrt(5)/2)^38 2329991416277388 a004 Fibonacci(85)/Lucas(36)/(1/2+sqrt(5)/2)^36 2329991416277388 a004 Fibonacci(83)/Lucas(36)/(1/2+sqrt(5)/2)^34 2329991416277388 a004 Fibonacci(81)/Lucas(36)/(1/2+sqrt(5)/2)^32 2329991416277388 a004 Fibonacci(79)/Lucas(36)/(1/2+sqrt(5)/2)^30 2329991416277388 a004 Fibonacci(77)/Lucas(36)/(1/2+sqrt(5)/2)^28 2329991416277388 a004 Fibonacci(75)/Lucas(36)/(1/2+sqrt(5)/2)^26 2329991416277388 a004 Fibonacci(73)/Lucas(36)/(1/2+sqrt(5)/2)^24 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^48/Lucas(71) 2329991416277388 a004 Fibonacci(71)/Lucas(36)/(1/2+sqrt(5)/2)^22 2329991416277388 a004 Fibonacci(36)*Lucas(70)/(1/2+sqrt(5)/2)^93 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^46/Lucas(69) 2329991416277388 a004 Fibonacci(69)/Lucas(36)/(1/2+sqrt(5)/2)^20 2329991416277388 a004 Fibonacci(36)*Lucas(68)/(1/2+sqrt(5)/2)^91 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^44/Lucas(67) 2329991416277388 a004 Fibonacci(67)/Lucas(36)/(1/2+sqrt(5)/2)^18 2329991416277388 a004 Fibonacci(36)*Lucas(66)/(1/2+sqrt(5)/2)^89 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^42/Lucas(65) 2329991416277388 a004 Fibonacci(65)/Lucas(36)/(1/2+sqrt(5)/2)^16 2329991416277388 a004 Fibonacci(36)*Lucas(64)/(1/2+sqrt(5)/2)^87 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^40/Lucas(63) 2329991416277388 a004 Fibonacci(63)/Lucas(36)/(1/2+sqrt(5)/2)^14 2329991416277388 a004 Fibonacci(36)*Lucas(62)/(1/2+sqrt(5)/2)^85 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^38/Lucas(61) 2329991416277388 a004 Fibonacci(61)/Lucas(36)/(1/2+sqrt(5)/2)^12 2329991416277388 a004 Fibonacci(36)*Lucas(60)/(1/2+sqrt(5)/2)^83 2329991416277388 a001 14930352/2139295485799*14662949395604^(4/7) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^36/Lucas(59) 2329991416277388 a004 Fibonacci(59)/Lucas(36)/(1/2+sqrt(5)/2)^10 2329991416277388 a004 Fibonacci(36)*Lucas(58)/(1/2+sqrt(5)/2)^81 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^34/Lucas(57) 2329991416277388 a004 Fibonacci(57)/Lucas(36)/(1/2+sqrt(5)/2)^8 2329991416277388 a001 4976784/440719107401*505019158607^(5/8) 2329991416277388 a001 14930352/2139295485799*505019158607^(9/14) 2329991416277388 a004 Fibonacci(36)*Lucas(56)/(1/2+sqrt(5)/2)^79 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^32/Lucas(55) 2329991416277388 a004 Fibonacci(55)/Lucas(36)/(1/2+sqrt(5)/2)^6 2329991416277388 a001 14930352/312119004989*23725150497407^(1/2) 2329991416277388 a001 14930352/2139295485799*192900153618^(2/3) 2329991416277388 a001 4976784/3020733700601*192900153618^(13/18) 2329991416277388 a004 Fibonacci(36)*Lucas(54)/(1/2+sqrt(5)/2)^77 2329991416277388 a001 14930352/119218851371*312119004989^(6/11) 2329991416277388 a001 14930352/119218851371*14662949395604^(10/21) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^30/Lucas(53) 2329991416277388 a004 Fibonacci(53)/Lucas(36)/(1/2+sqrt(5)/2)^4 2329991416277388 a001 14930352/119218851371*192900153618^(5/9) 2329991416277388 a001 14930352/2139295485799*73681302247^(9/13) 2329991416277388 a001 196452/192933544679*73681302247^(10/13) 2329991416277388 a004 Fibonacci(36)*Lucas(52)/(1/2+sqrt(5)/2)^75 2329991416277388 a001 3732588/11384387281*14662949395604^(4/9) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^28/Lucas(51) 2329991416277388 a004 Fibonacci(51)/Lucas(36)/(1/2+sqrt(5)/2)^2 2329991416277388 a001 3732588/11384387281*73681302247^(7/13) 2329991416277388 a001 14930352/119218851371*28143753123^(3/5) 2329991416277388 a001 4976784/440719107401*28143753123^(7/10) 2329991416277388 a001 196452/192933544679*28143753123^(4/5) 2329991416277388 a004 Fibonacci(36)*Lucas(50)/(1/2+sqrt(5)/2)^73 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^26/Lucas(49) 2329991416277388 a006 5^(1/2)*Fibonacci(49)/Lucas(36)/sqrt(5) 2329991416277388 a001 14930352/17393796001*73681302247^(1/2) 2329991416277388 a001 4976784/9381251041*10749957122^(9/16) 2329991416277388 a001 14930352/119218851371*10749957122^(5/8) 2329991416277388 a001 3732588/11384387281*10749957122^(7/12) 2329991416277388 a001 14930352/312119004989*10749957122^(2/3) 2329991416277388 a001 14930352/505019158607*10749957122^(11/16) 2329991416277388 a001 3732588/204284540899*10749957122^(17/24) 2329991416277388 a001 14930352/2139295485799*10749957122^(3/4) 2329991416277388 a001 14930352/5600748293801*10749957122^(19/24) 2329991416277388 a001 4976784/3020733700601*10749957122^(13/16) 2329991416277388 a001 196452/192933544679*10749957122^(5/6) 2329991416277388 a001 14930352/17393796001*10749957122^(13/24) 2329991416277388 a004 Fibonacci(36)*Lucas(48)/(1/2+sqrt(5)/2)^71 2329991416277388 a001 14930352/6643838879*45537549124^(8/17) 2329991416277388 a001 14930352/6643838879*14662949395604^(8/21) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^24/Lucas(47) 2329991416277388 a001 2971215073/33385282*(1/2+1/2*5^(1/2))^2 2329991416277388 a001 14930352/6643838879*192900153618^(4/9) 2329991416277388 a001 14930352/6643838879*73681302247^(6/13) 2329991416277388 a001 2971215073/33385282*10749957122^(1/24) 2329991416277388 a001 2971215073/33385282*4106118243^(1/23) 2329991416277388 a001 14930352/6643838879*10749957122^(1/2) 2329991416277388 a001 3732588/11384387281*4106118243^(14/23) 2329991416277388 a001 14930352/17393796001*4106118243^(13/23) 2329991416277388 a001 14930352/119218851371*4106118243^(15/23) 2329991416277388 a001 2971215073/33385282*1568397607^(1/22) 2329991416277388 a001 14930352/312119004989*4106118243^(16/23) 2329991416277388 a001 3732588/204284540899*4106118243^(17/23) 2329991416277388 a001 14930352/2139295485799*4106118243^(18/23) 2329991416277388 a001 14930352/5600748293801*4106118243^(19/23) 2329991416277388 a001 196452/192933544679*4106118243^(20/23) 2329991416277388 a001 14930352/6643838879*4106118243^(12/23) 2329991416277388 a004 Fibonacci(36)*Lucas(46)/(1/2+sqrt(5)/2)^69 2329991416277388 a001 1836311903/33385282*599074578^(1/14) 2329991416277388 a001 196452/33391061*312119004989^(2/5) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^22/Lucas(45) 2329991416277388 a001 567451585/16692641*(1/2+1/2*5^(1/2))^4 2329991416277388 a001 567451585/16692641*23725150497407^(1/16) 2329991416277388 a001 567451585/16692641*73681302247^(1/13) 2329991416277388 a001 2971215073/33385282*599074578^(1/21) 2329991416277388 a001 567451585/16692641*10749957122^(1/12) 2329991416277388 a001 196452/33391061*10749957122^(11/24) 2329991416277388 a001 567451585/16692641*4106118243^(2/23) 2329991416277388 a001 196452/33391061*4106118243^(11/23) 2329991416277388 a001 567451585/16692641*1568397607^(1/11) 2329991416277388 a001 14930352/17393796001*1568397607^(13/22) 2329991416277388 a001 14930352/6643838879*1568397607^(6/11) 2329991416277388 a001 3732588/11384387281*1568397607^(7/11) 2329991416277388 a001 14930352/119218851371*1568397607^(15/22) 2329991416277388 a001 14930352/312119004989*1568397607^(8/11) 2329991416277388 a001 14930352/505019158607*1568397607^(3/4) 2329991416277388 a001 3732588/204284540899*1568397607^(17/22) 2329991416277388 a001 14930352/2139295485799*1568397607^(9/11) 2329991416277388 a001 14930352/5600748293801*1568397607^(19/22) 2329991416277388 a001 196452/33391061*1568397607^(1/2) 2329991416277388 a001 196452/192933544679*1568397607^(10/11) 2329991416277388 a004 Fibonacci(36)*Lucas(44)/(1/2+sqrt(5)/2)^67 2329991416277388 a001 567451585/16692641*599074578^(2/21) 2329991416277388 a001 2971215073/33385282*228826127^(1/20) 2329991416277388 a001 14930352/1568397607*599074578^(1/2) 2329991416277388 a001 14930352/969323029*2537720636^(4/9) 2329991416277388 a001 433494437/33385282*2537720636^(2/15) 2329991416277388 a001 433494437/33385282*45537549124^(2/17) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^20/Lucas(43) 2329991416277388 a001 433494437/33385282*(1/2+1/2*5^(1/2))^6 2329991416277388 a001 14930352/969323029*23725150497407^(5/16) 2329991416277388 a001 14930352/969323029*505019158607^(5/14) 2329991416277388 a001 14930352/969323029*73681302247^(5/13) 2329991416277388 a001 14930352/969323029*28143753123^(2/5) 2329991416277388 a001 433494437/33385282*10749957122^(1/8) 2329991416277388 a001 14930352/969323029*10749957122^(5/12) 2329991416277388 a001 433494437/33385282*4106118243^(3/23) 2329991416277388 a001 14930352/969323029*4106118243^(10/23) 2329991416277388 a001 433494437/33385282*1568397607^(3/22) 2329991416277388 a001 14930352/969323029*1568397607^(5/11) 2329991416277388 a001 433494437/33385282*599074578^(1/7) 2329991416277388 a001 196452/33391061*599074578^(11/21) 2329991416277388 a001 14930352/6643838879*599074578^(4/7) 2329991416277388 a001 14930352/17393796001*599074578^(13/21) 2329991416277388 a001 4976784/9381251041*599074578^(9/14) 2329991416277388 a001 3732588/11384387281*599074578^(2/3) 2329991416277388 a001 701408733/33385282*228826127^(1/8) 2329991416277388 a001 14930352/119218851371*599074578^(5/7) 2329991416277388 a001 567451585/16692641*228826127^(1/10) 2329991416277388 a001 14930352/312119004989*599074578^(16/21) 2329991416277388 a001 14930352/505019158607*599074578^(11/14) 2329991416277388 a001 3732588/204284540899*599074578^(17/21) 2329991416277388 a001 4976784/440719107401*599074578^(5/6) 2329991416277388 a001 14930352/2139295485799*599074578^(6/7) 2329991416277388 a001 14930352/969323029*599074578^(10/21) 2329991416277388 a001 14930352/5600748293801*599074578^(19/21) 2329991416277388 a001 4976784/3020733700601*599074578^(13/14) 2329991416277388 a001 196452/192933544679*599074578^(20/21) 2329991416277388 a004 Fibonacci(36)*Lucas(42)/(1/2+sqrt(5)/2)^65 2329991416277388 a001 433494437/33385282*228826127^(3/20) 2329991416277388 a001 2971215073/33385282*87403803^(1/19) 2329991416277388 a001 14930352/370248451*2537720636^(2/5) 2329991416277388 a001 14930352/370248451*45537549124^(6/17) 2329991416277388 a001 14930352/370248451*14662949395604^(2/7) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^18/Lucas(41) 2329991416277388 a001 165580141/33385282*(1/2+1/2*5^(1/2))^8 2329991416277388 a001 14930352/370248451*192900153618^(1/3) 2329991416277388 a001 165580141/33385282*73681302247^(2/13) 2329991416277388 a001 165580141/33385282*10749957122^(1/6) 2329991416277388 a001 14930352/370248451*10749957122^(3/8) 2329991416277388 a001 165580141/33385282*4106118243^(4/23) 2329991416277388 a001 14930352/370248451*4106118243^(9/23) 2329991416277388 a001 165580141/33385282*1568397607^(2/11) 2329991416277388 a001 14930352/370248451*1568397607^(9/22) 2329991416277388 a001 165580141/33385282*599074578^(4/21) 2329991416277388 a001 14930352/370248451*599074578^(3/7) 2329991416277388 a001 14930352/969323029*228826127^(1/2) 2329991416277388 a001 196452/33391061*228826127^(11/20) 2329991416277388 a001 165580141/33385282*228826127^(1/5) 2329991416277388 a001 14930352/6643838879*228826127^(3/5) 2329991416277388 a001 7465176/5374978561*228826127^(5/8) 2329991416277388 a001 14930352/17393796001*228826127^(13/20) 2329991416277388 a001 3732588/11384387281*228826127^(7/10) 2329991416277388 a001 567451585/16692641*87403803^(2/19) 2329991416277388 a001 14930352/119218851371*228826127^(3/4) 2329991416277388 a001 14930352/312119004989*228826127^(4/5) 2329991416277388 a001 14930352/370248451*228826127^(9/20) 2329991416277388 a001 3732588/204284540899*228826127^(17/20) 2329991416277388 a001 4976784/440719107401*228826127^(7/8) 2329991416277388 a001 14930352/2139295485799*228826127^(9/10) 2329991416277388 a001 433494437/12752043*4870847^(1/8) 2329991416277388 a001 14930352/5600748293801*228826127^(19/20) 2329991416277388 a004 Fibonacci(36)*Lucas(40)/(1/2+sqrt(5)/2)^63 2329991416277388 a001 433494437/33385282*87403803^(3/19) 2329991416277388 a001 165580141/33385282*87403803^(4/19) 2329991416277388 a001 2971215073/33385282*33385282^(1/18) 2329991416277388 a001 31622993/16692641*2537720636^(2/9) 2329991416277388 a001 31622993/16692641*312119004989^(2/11) 2329991416277388 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^16/Lucas(39) 2329991416277388 a001 31622993/16692641*(1/2+1/2*5^(1/2))^10 2329991416277388 a001 3732588/35355581*23725150497407^(1/4) 2329991416277388 a001 944284833567072/4052739537881 2329991416277388 a001 3732588/35355581*73681302247^(4/13) 2329991416277388 a001 31622993/16692641*28143753123^(1/5) 2329991416277388 a001 31622993/16692641*10749957122^(5/24) 2329991416277388 a001 3732588/35355581*10749957122^(1/3) 2329991416277388 a001 31622993/16692641*4106118243^(5/23) 2329991416277388 a001 3732588/35355581*4106118243^(8/23) 2329991416277388 a001 31622993/16692641*1568397607^(5/22) 2329991416277388 a001 3732588/35355581*1568397607^(4/11) 2329991416277388 a001 31622993/16692641*599074578^(5/21) 2329991416277388 a001 3732588/35355581*599074578^(8/21) 2329991416277388 a001 31622993/16692641*228826127^(1/4) 2329991416277388 a001 3732588/35355581*228826127^(2/5) 2329991416277388 a001 829464/33281921*87403803^(1/2) 2329991416277388 a001 14930352/370248451*87403803^(9/19) 2329991416277388 a001 14930352/969323029*87403803^(10/19) 2329991416277388 a001 1836311903/33385282*33385282^(1/12) 2329991416277388 a001 196452/33391061*87403803^(11/19) 2329991416277388 a001 14930352/6643838879*87403803^(12/19) 2329991416277388 a001 31622993/16692641*87403803^(5/19) 2329991416277388 a001 14930352/17393796001*87403803^(13/19) 2329991416277388 a001 3732588/11384387281*87403803^(14/19) 2329991416277388 a001 567451585/16692641*33385282^(1/9) 2329991416277388 a001 165580141/87403803*20633239^(2/7) 2329991416277388 a001 14930352/119218851371*87403803^(15/19) 2329991416277388 a001 3732588/35355581*87403803^(8/19) 2329991416277388 a001 14930352/312119004989*87403803^(16/19) 2329991416277388 a001 3732588/204284540899*87403803^(17/19) 2329991416277388 a001 14930352/2139295485799*87403803^(18/19) 2329991416277388 a004 Fibonacci(36)*Lucas(38)/(1/2+sqrt(5)/2)^61 2329991416277388 a001 433494437/33385282*33385282^(1/6) 2329991416277388 a001 24157817/87403803*20633239^(2/5) 2329991416277388 a001 1597/12752044*12752043^(15/17) 2329991416277388 a001 14619165/4769326*33385282^(1/4) 2329991416277388 a001 165580141/33385282*33385282^(2/9) 2329991416277388 a001 433494437/228826127*20633239^(2/7) 2329991416277388 a001 567451585/299537289*20633239^(2/7) 2329991416277388 a001 2971215073/1568397607*20633239^(2/7) 2329991416277388 a001 7778742049/4106118243*20633239^(2/7) 2329991416277388 a001 10182505537/5374978561*20633239^(2/7) 2329991416277388 a001 53316291173/28143753123*20633239^(2/7) 2329991416277388 a001 139583862445/73681302247*20633239^(2/7) 2329991416277388 a001 182717648081/96450076809*20633239^(2/7) 2329991416277388 a001 956722026041/505019158607*20633239^(2/7) 2329991416277388 a001 10610209857723/5600748293801*20633239^(2/7) 2329991416277388 a001 591286729879/312119004989*20633239^(2/7) 2329991416277388 a001 225851433717/119218851371*20633239^(2/7) 2329991416277388 a001 21566892818/11384387281*20633239^(2/7) 2329991416277388 a001 32951280099/17393796001*20633239^(2/7) 2329991416277388 a001 12586269025/6643838879*20633239^(2/7) 2329991416277388 a001 1201881744/634430159*20633239^(2/7) 2329991416277388 a001 1836311903/969323029*20633239^(2/7) 2329991416277388 a001 701408733/370248451*20633239^(2/7) 2329991416277388 a001 4976784/29134601*33385282^(5/12) 2329991416277388 a001 66978574/35355581*20633239^(2/7) 2329991416277389 a001 24157817/141422324*20633239^(3/7) 2329991416277389 a001 233802911/29134601*20633239^(1/5) 2329991416277389 a001 31622993/16692641*33385282^(5/18) 2329991416277389 a001 9238424/711491*7881196^(2/11) 2329991416277389 a001 24157817/33385282*141422324^(4/13) 2329991416277389 a001 24157817/33385282*2537720636^(4/15) 2329991416277389 a001 14930352/54018521*17393796001^(2/7) 2329991416277389 a001 24157817/33385282*45537549124^(4/17) 2329991416277389 a001 14930352/54018521*14662949395604^(2/9) 2329991416277389 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^14/Lucas(37) 2329991416277389 a001 24157817/33385282*(1/2+1/2*5^(1/2))^12 2329991416277389 a001 14930352/54018521*505019158607^(1/4) 2329991416277389 a001 24157817/33385282*73681302247^(3/13) 2329991416277389 a001 24157817/33385282*10749957122^(1/4) 2329991416277389 a001 14930352/54018521*10749957122^(7/24) 2329991416277389 a001 24157817/33385282*4106118243^(6/23) 2329991416277389 a001 14930352/54018521*4106118243^(7/23) 2329991416277389 a001 24157817/33385282*1568397607^(3/11) 2329991416277389 a001 14930352/54018521*1568397607^(7/22) 2329991416277389 a001 24157817/33385282*599074578^(2/7) 2329991416277389 a001 14930352/54018521*599074578^(1/3) 2329991416277389 a001 24157817/33385282*228826127^(3/10) 2329991416277389 a001 14930352/54018521*228826127^(7/20) 2329991416277389 a001 2971215073/33385282*12752043^(1/17) 2329991416277389 a001 24157817/33385282*87403803^(6/19) 2329991416277389 a001 14930352/54018521*87403803^(7/19) 2329991416277389 a001 1836311903/228826127*20633239^(1/5) 2329991416277389 a004 Fibonacci(38)*Lucas(37)/(1/2+sqrt(5)/2)^62 2329991416277389 a001 267084832/33281921*20633239^(1/5) 2329991416277389 a001 12586269025/1568397607*20633239^(1/5) 2329991416277389 a001 10983760033/1368706081*20633239^(1/5) 2329991416277389 a001 43133785636/5374978561*20633239^(1/5) 2329991416277389 a001 75283811239/9381251041*20633239^(1/5) 2329991416277389 a001 591286729879/73681302247*20633239^(1/5) 2329991416277389 a001 86000486440/10716675201*20633239^(1/5) 2329991416277389 a001 4052739537881/505019158607*20633239^(1/5) 2329991416277389 a001 3536736619241/440719107401*20633239^(1/5) 2329991416277389 a001 3278735159921/408569081798*20633239^(1/5) 2329991416277389 a001 2504730781961/312119004989*20633239^(1/5) 2329991416277389 a001 956722026041/119218851371*20633239^(1/5) 2329991416277389 a001 182717648081/22768774562*20633239^(1/5) 2329991416277389 a001 139583862445/17393796001*20633239^(1/5) 2329991416277389 a001 53316291173/6643838879*20633239^(1/5) 2329991416277389 a001 10182505537/1268860318*20633239^(1/5) 2329991416277389 a001 7778742049/969323029*20633239^(1/5) 2329991416277389 a001 1836311903/87403803*20633239^(1/7) 2329991416277389 a001 2971215073/370248451*20633239^(1/5) 2329991416277389 a001 3732588/35355581*33385282^(4/9) 2329991416277389 a001 14930352/370248451*33385282^(1/2) 2329991416277389 a001 567451585/70711162*20633239^(1/5) 2329991416277389 a001 14930352/969323029*33385282^(5/9) 2329991416277389 a001 14930352/1568397607*33385282^(7/12) 2329991416277389 a004 Fibonacci(40)*Lucas(37)/(1/2+sqrt(5)/2)^64 2329991416277389 a001 5702887/119218851371*12752043^(16/17) 2329991416277389 a001 102287808/4868641*20633239^(1/7) 2329991416277389 a001 196452/33391061*33385282^(11/18) 2329991416277389 a001 102334155/54018521*20633239^(2/7) 2329991416277389 a004 Fibonacci(42)*Lucas(37)/(1/2+sqrt(5)/2)^66 2329991416277389 a004 Fibonacci(44)*Lucas(37)/(1/2+sqrt(5)/2)^68 2329991416277389 a004 Fibonacci(46)*Lucas(37)/(1/2+sqrt(5)/2)^70 2329991416277389 a004 Fibonacci(48)*Lucas(37)/(1/2+sqrt(5)/2)^72 2329991416277389 a004 Fibonacci(50)*Lucas(37)/(1/2+sqrt(5)/2)^74 2329991416277389 a004 Fibonacci(52)*Lucas(37)/(1/2+sqrt(5)/2)^76 2329991416277389 a004 Fibonacci(54)*Lucas(37)/(1/2+sqrt(5)/2)^78 2329991416277389 a004 Fibonacci(56)*Lucas(37)/(1/2+sqrt(5)/2)^80 2329991416277389 a004 Fibonacci(58)*Lucas(37)/(1/2+sqrt(5)/2)^82 2329991416277389 a004 Fibonacci(60)*Lucas(37)/(1/2+sqrt(5)/2)^84 2329991416277389 a004 Fibonacci(62)*Lucas(37)/(1/2+sqrt(5)/2)^86 2329991416277389 a004 Fibonacci(64)*Lucas(37)/(1/2+sqrt(5)/2)^88 2329991416277389 a004 Fibonacci(66)*Lucas(37)/(1/2+sqrt(5)/2)^90 2329991416277389 a004 Fibonacci(68)*Lucas(37)/(1/2+sqrt(5)/2)^92 2329991416277389 a004 Fibonacci(70)*Lucas(37)/(1/2+sqrt(5)/2)^94 2329991416277389 a004 Fibonacci(72)*Lucas(37)/(1/2+sqrt(5)/2)^96 2329991416277389 a004 Fibonacci(74)*Lucas(37)/(1/2+sqrt(5)/2)^98 2329991416277389 a004 Fibonacci(76)*Lucas(37)/(1/2+sqrt(5)/2)^100 2329991416277389 a004 Fibonacci(75)*Lucas(37)/(1/2+sqrt(5)/2)^99 2329991416277389 a001 2/24157817*(1/2+1/2*5^(1/2))^50 2329991416277389 a004 Fibonacci(73)*Lucas(37)/(1/2+sqrt(5)/2)^97 2329991416277389 a004 Fibonacci(71)*Lucas(37)/(1/2+sqrt(5)/2)^95 2329991416277389 a004 Fibonacci(69)*Lucas(37)/(1/2+sqrt(5)/2)^93 2329991416277389 a004 Fibonacci(67)*Lucas(37)/(1/2+sqrt(5)/2)^91 2329991416277389 a004 Fibonacci(65)*Lucas(37)/(1/2+sqrt(5)/2)^89 2329991416277389 a004 Fibonacci(63)*Lucas(37)/(1/2+sqrt(5)/2)^87 2329991416277389 a004 Fibonacci(61)*Lucas(37)/(1/2+sqrt(5)/2)^85 2329991416277389 a004 Fibonacci(59)*Lucas(37)/(1/2+sqrt(5)/2)^83 2329991416277389 a004 Fibonacci(57)*Lucas(37)/(1/2+sqrt(5)/2)^81 2329991416277389 a004 Fibonacci(55)*Lucas(37)/(1/2+sqrt(5)/2)^79 2329991416277389 a004 Fibonacci(53)*Lucas(37)/(1/2+sqrt(5)/2)^77 2329991416277389 a004 Fibonacci(51)*Lucas(37)/(1/2+sqrt(5)/2)^75 2329991416277389 a004 Fibonacci(49)*Lucas(37)/(1/2+sqrt(5)/2)^73 2329991416277389 a004 Fibonacci(47)*Lucas(37)/(1/2+sqrt(5)/2)^71 2329991416277389 a004 Fibonacci(45)*Lucas(37)/(1/2+sqrt(5)/2)^69 2329991416277389 a004 Fibonacci(43)*Lucas(37)/(1/2+sqrt(5)/2)^67 2329991416277389 a001 12586269025/599074578*20633239^(1/7) 2329991416277389 a001 32951280099/1568397607*20633239^(1/7) 2329991416277389 a001 86267571272/4106118243*20633239^(1/7) 2329991416277389 a001 225851433717/10749957122*20633239^(1/7) 2329991416277389 a001 591286729879/28143753123*20633239^(1/7) 2329991416277389 a001 1548008755920/73681302247*20633239^(1/7) 2329991416277389 a001 4052739537881/192900153618*20633239^(1/7) 2329991416277389 a001 225749145909/10745088481*20633239^(1/7) 2329991416277389 a001 6557470319842/312119004989*20633239^(1/7) 2329991416277389 a001 2504730781961/119218851371*20633239^(1/7) 2329991416277389 a001 956722026041/45537549124*20633239^(1/7) 2329991416277389 a001 365435296162/17393796001*20633239^(1/7) 2329991416277389 a001 139583862445/6643838879*20633239^(1/7) 2329991416277389 a004 Fibonacci(41)*Lucas(37)/(1/2+sqrt(5)/2)^65 2329991416277389 a001 53316291173/2537720636*20633239^(1/7) 2329991416277389 a001 20365011074/969323029*20633239^(1/7) 2329991416277389 a001 7778742049/370248451*20633239^(1/7) 2329991416277389 a001 14930352/6643838879*33385282^(2/3) 2329991416277389 a004 Fibonacci(39)*Lucas(37)/(1/2+sqrt(5)/2)^63 2329991416277389 a001 2971215073/141422324*20633239^(1/7) 2329991416277389 a001 39088169/87403803*141422324^(1/3) 2329991416277389 a001 1527884955772561/6557470319842 2329991416277389 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^13/Lucas(38) 2329991416277389 a001 39088169/87403803*73681302247^(1/4) 2329991416277389 a001 24157817/33385282*33385282^(1/3) 2329991416277389 a001 14930352/17393796001*33385282^(13/18) 2329991416277389 a001 4976784/9381251041*33385282^(3/4) 2329991416277389 a001 14930352/54018521*33385282^(7/18) 2329991416277389 a001 3732588/11384387281*33385282^(7/9) 2329991416277390 a004 Fibonacci(38)*Lucas(39)/(1/2+sqrt(5)/2)^64 2329991416277390 a001 39088169/5600748293801*141422324^(12/13) 2329991416277390 a001 567451585/16692641*12752043^(2/17) 2329991416277390 a001 39088169/1322157322203*141422324^(11/13) 2329991416277390 a001 39088169/312119004989*141422324^(10/13) 2329991416277390 a001 39088169/228826127*141422324^(5/13) 2329991416277390 a001 39088169/73681302247*141422324^(9/13) 2329991416277390 a001 39088169/45537549124*141422324^(2/3) 2329991416277390 a001 39088169/17393796001*141422324^(8/13) 2329991416277390 a001 39088169/4106118243*141422324^(7/13) 2329991416277390 a001 39088169/969323029*141422324^(6/13) 2329991416277390 a001 39088169/228826127*2537720636^(1/3) 2329991416277390 a001 39088169/228826127*45537549124^(5/17) 2329991416277390 a001 39088169/228826127*312119004989^(3/11) 2329991416277390 a001 34111385/29134601*312119004989^(1/5) 2329991416277390 a001 39088169/228826127*14662949395604^(5/21) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^15/Lucas(40) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^11/Lucas(38) 2329991416277390 a001 39088169/228826127*192900153618^(5/18) 2329991416277390 a001 39088169/228826127*28143753123^(3/10) 2329991416277390 a001 39088169/228826127*10749957122^(5/16) 2329991416277390 a001 34111385/29134601*1568397607^(1/4) 2329991416277390 a001 14930352/119218851371*33385282^(5/6) 2329991416277390 a001 39088169/228826127*599074578^(5/14) 2329991416277390 a001 267914296/87403803*141422324^(3/13) 2329991416277390 a001 39088169/228826127*228826127^(3/8) 2329991416277390 a001 1134903170/87403803*141422324^(2/13) 2329991416277390 a004 Fibonacci(38)*Lucas(41)/(1/2+sqrt(5)/2)^66 2329991416277390 a001 1602508992/29134601*141422324^(1/13) 2329991416277390 a001 267914296/87403803*2537720636^(1/5) 2329991416277390 a001 39088169/599074578*45537549124^(1/3) 2329991416277390 a001 267914296/87403803*45537549124^(3/17) 2329991416277390 a001 267914296/87403803*817138163596^(3/19) 2329991416277390 a001 267914296/87403803*14662949395604^(1/7) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^17/Lucas(42) 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^9/Lucas(38) 2329991416277390 a001 267914296/87403803*192900153618^(1/6) 2329991416277390 a001 267914296/87403803*10749957122^(3/16) 2329991416277390 a001 267914296/87403803*599074578^(3/14) 2329991416277390 a004 Fibonacci(38)*Lucas(43)/(1/2+sqrt(5)/2)^68 2329991416277390 a001 233802911/29134601*17393796001^(1/7) 2329991416277390 a001 39088169/1568397607*817138163596^(1/3) 2329991416277390 a001 233802911/29134601*14662949395604^(1/9) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^19/Lucas(44) 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^7/Lucas(38) 2329991416277390 a004 Fibonacci(38)*Lucas(45)/(1/2+sqrt(5)/2)^70 2329991416277390 a001 39088169/23725150497407*2537720636^(13/15) 2329991416277390 a001 39088169/4106118243*2537720636^(7/15) 2329991416277390 a001 39088169/5600748293801*2537720636^(4/5) 2329991416277390 a001 39088169/3461452808002*2537720636^(7/9) 2329991416277390 a001 39088169/1322157322203*2537720636^(11/15) 2329991416277390 a001 39088169/312119004989*2537720636^(2/3) 2329991416277390 a001 39088169/73681302247*2537720636^(3/5) 2329991416277390 a001 39088169/28143753123*2537720636^(5/9) 2329991416277390 a001 39088169/17393796001*2537720636^(8/15) 2329991416277390 a001 1836311903/87403803*2537720636^(1/9) 2329991416277390 a001 39088169/4106118243*17393796001^(3/7) 2329991416277390 a001 39088169/4106118243*45537549124^(7/17) 2329991416277390 a001 1836311903/87403803*312119004989^(1/11) 2329991416277390 a001 39088169/4106118243*14662949395604^(1/3) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^21/Lucas(46) 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^5/Lucas(38) 2329991416277390 a001 39088169/4106118243*192900153618^(7/18) 2329991416277390 a001 1836311903/87403803*28143753123^(1/10) 2329991416277390 a001 39088169/4106118243*10749957122^(7/16) 2329991416277390 a004 Fibonacci(38)*Lucas(47)/(1/2+sqrt(5)/2)^72 2329991416277390 a001 1602508992/29134601*2537720636^(1/15) 2329991416277390 a001 1602508992/29134601*45537549124^(1/17) 2329991416277390 a001 1602508992/29134601*14662949395604^(1/21) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^23/Lucas(48) 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^3/Lucas(38) 2329991416277390 a001 1602508992/29134601*192900153618^(1/18) 2329991416277390 a001 1602508992/29134601*10749957122^(1/16) 2329991416277390 a004 Fibonacci(38)*Lucas(49)/(1/2+sqrt(5)/2)^74 2329991416277390 a001 39088169/3461452808002*17393796001^(5/7) 2329991416277390 a001 39088169/119218851371*17393796001^(4/7) 2329991416277390 a001 39088169/28143753123*312119004989^(5/11) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^25/Lucas(50) 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)/Lucas(38) 2329991416277390 a001 39088169/28143753123*3461452808002^(5/12) 2329991416277390 a001 39088169/28143753123*28143753123^(1/2) 2329991416277390 a004 Fibonacci(38)*Lucas(51)/(1/2+sqrt(5)/2)^76 2329991416277390 a001 39088169/73681302247*45537549124^(9/17) 2329991416277390 a001 39088169/23725150497407*45537549124^(13/17) 2329991416277390 a001 39088169/5600748293801*45537549124^(12/17) 2329991416277390 a001 39088169/2139295485799*45537549124^(2/3) 2329991416277390 a001 39088169/1322157322203*45537549124^(11/17) 2329991416277390 a001 39088169/312119004989*45537549124^(10/17) 2329991416277390 a001 39088169/73681302247*14662949395604^(3/7) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^27/Lucas(52) 2329991416277390 a004 Fibonacci(52)/Lucas(38)/(1/2+sqrt(5)/2) 2329991416277390 a001 39088169/73681302247*192900153618^(1/2) 2329991416277390 a004 Fibonacci(38)*Lucas(53)/(1/2+sqrt(5)/2)^78 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^29/Lucas(54) 2329991416277390 a004 Fibonacci(54)/Lucas(38)/(1/2+sqrt(5)/2)^3 2329991416277390 a001 39088169/192900153618*1322157322203^(1/2) 2329991416277390 a004 Fibonacci(38)*Lucas(55)/(1/2+sqrt(5)/2)^80 2329991416277390 a001 39088169/1322157322203*312119004989^(3/5) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^31/Lucas(56) 2329991416277390 a004 Fibonacci(56)/Lucas(38)/(1/2+sqrt(5)/2)^5 2329991416277390 a004 Fibonacci(38)*Lucas(57)/(1/2+sqrt(5)/2)^82 2329991416277390 a001 39088169/1322157322203*817138163596^(11/19) 2329991416277390 a001 39088169/1322157322203*14662949395604^(11/21) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^33/Lucas(58) 2329991416277390 a004 Fibonacci(58)/Lucas(38)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(38)*Lucas(59)/(1/2+sqrt(5)/2)^84 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^35/Lucas(60) 2329991416277390 a004 Fibonacci(60)/Lucas(38)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(38)*Lucas(61)/(1/2+sqrt(5)/2)^86 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^37/Lucas(62) 2329991416277390 a004 Fibonacci(62)/Lucas(38)/(1/2+sqrt(5)/2)^11 2329991416277390 a004 Fibonacci(38)*Lucas(63)/(1/2+sqrt(5)/2)^88 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^39/Lucas(64) 2329991416277390 a004 Fibonacci(64)/Lucas(38)/(1/2+sqrt(5)/2)^13 2329991416277390 a004 Fibonacci(38)*Lucas(65)/(1/2+sqrt(5)/2)^90 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^41/Lucas(66) 2329991416277390 a004 Fibonacci(66)/Lucas(38)/(1/2+sqrt(5)/2)^15 2329991416277390 a004 Fibonacci(38)*Lucas(67)/(1/2+sqrt(5)/2)^92 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^43/Lucas(68) 2329991416277390 a004 Fibonacci(68)/Lucas(38)/(1/2+sqrt(5)/2)^17 2329991416277390 a004 Fibonacci(38)*Lucas(69)/(1/2+sqrt(5)/2)^94 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^45/Lucas(70) 2329991416277390 a004 Fibonacci(70)/Lucas(38)/(1/2+sqrt(5)/2)^19 2329991416277390 a004 Fibonacci(38)*Lucas(71)/(1/2+sqrt(5)/2)^96 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^47/Lucas(72) 2329991416277390 a004 Fibonacci(72)/Lucas(38)/(1/2+sqrt(5)/2)^21 2329991416277390 a004 Fibonacci(38)*Lucas(73)/(1/2+sqrt(5)/2)^98 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^49/Lucas(74) 2329991416277390 a004 Fibonacci(74)/Lucas(38)/(1/2+sqrt(5)/2)^23 2329991416277390 a004 Fibonacci(38)*Lucas(75)/(1/2+sqrt(5)/2)^100 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^51/Lucas(76) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^53/Lucas(78) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^55/Lucas(80) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^57/Lucas(82) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^59/Lucas(84) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^61/Lucas(86) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^63/Lucas(88) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^65/Lucas(90) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^67/Lucas(92) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^69/Lucas(94) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^71/Lucas(96) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^73/Lucas(98) 2329991416277390 a004 Fibonacci(19)*Lucas(19)/(1/2+sqrt(5)/2)^25 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^72/Lucas(97) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^74/Lucas(99) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^75/Lucas(100) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^70/Lucas(95) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^68/Lucas(93) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^66/Lucas(91) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^64/Lucas(89) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^62/Lucas(87) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^60/Lucas(85) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^58/Lucas(83) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^56/Lucas(81) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^54/Lucas(79) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^52/Lucas(77) 2329991416277390 a004 Fibonacci(78)/Lucas(38)/(1/2+sqrt(5)/2)^27 2329991416277390 a004 Fibonacci(80)/Lucas(38)/(1/2+sqrt(5)/2)^29 2329991416277390 a004 Fibonacci(82)/Lucas(38)/(1/2+sqrt(5)/2)^31 2329991416277390 a004 Fibonacci(84)/Lucas(38)/(1/2+sqrt(5)/2)^33 2329991416277390 a004 Fibonacci(86)/Lucas(38)/(1/2+sqrt(5)/2)^35 2329991416277390 a004 Fibonacci(88)/Lucas(38)/(1/2+sqrt(5)/2)^37 2329991416277390 a004 Fibonacci(90)/Lucas(38)/(1/2+sqrt(5)/2)^39 2329991416277390 a004 Fibonacci(92)/Lucas(38)/(1/2+sqrt(5)/2)^41 2329991416277390 a004 Fibonacci(94)/Lucas(38)/(1/2+sqrt(5)/2)^43 2329991416277390 a004 Fibonacci(96)/Lucas(38)/(1/2+sqrt(5)/2)^45 2329991416277390 a004 Fibonacci(100)/Lucas(38)/(1/2+sqrt(5)/2)^49 2329991416277390 a004 Fibonacci(98)/Lucas(38)/(1/2+sqrt(5)/2)^47 2329991416277390 a004 Fibonacci(99)/Lucas(38)/(1/2+sqrt(5)/2)^48 2329991416277390 a004 Fibonacci(97)/Lucas(38)/(1/2+sqrt(5)/2)^46 2329991416277390 a004 Fibonacci(95)/Lucas(38)/(1/2+sqrt(5)/2)^44 2329991416277390 a004 Fibonacci(93)/Lucas(38)/(1/2+sqrt(5)/2)^42 2329991416277390 a004 Fibonacci(91)/Lucas(38)/(1/2+sqrt(5)/2)^40 2329991416277390 a004 Fibonacci(89)/Lucas(38)/(1/2+sqrt(5)/2)^38 2329991416277390 a004 Fibonacci(87)/Lucas(38)/(1/2+sqrt(5)/2)^36 2329991416277390 a004 Fibonacci(85)/Lucas(38)/(1/2+sqrt(5)/2)^34 2329991416277390 a004 Fibonacci(83)/Lucas(38)/(1/2+sqrt(5)/2)^32 2329991416277390 a004 Fibonacci(81)/Lucas(38)/(1/2+sqrt(5)/2)^30 2329991416277390 a004 Fibonacci(79)/Lucas(38)/(1/2+sqrt(5)/2)^28 2329991416277390 a004 Fibonacci(77)/Lucas(38)/(1/2+sqrt(5)/2)^26 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^50/Lucas(75) 2329991416277390 a004 Fibonacci(75)/Lucas(38)/(1/2+sqrt(5)/2)^24 2329991416277390 a004 Fibonacci(38)*Lucas(74)/(1/2+sqrt(5)/2)^99 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^48/Lucas(73) 2329991416277390 a004 Fibonacci(73)/Lucas(38)/(1/2+sqrt(5)/2)^22 2329991416277390 a004 Fibonacci(38)*Lucas(72)/(1/2+sqrt(5)/2)^97 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^46/Lucas(71) 2329991416277390 a004 Fibonacci(71)/Lucas(38)/(1/2+sqrt(5)/2)^20 2329991416277390 a004 Fibonacci(38)*Lucas(70)/(1/2+sqrt(5)/2)^95 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^44/Lucas(69) 2329991416277390 a004 Fibonacci(69)/Lucas(38)/(1/2+sqrt(5)/2)^18 2329991416277390 a004 Fibonacci(38)*Lucas(68)/(1/2+sqrt(5)/2)^93 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^42/Lucas(67) 2329991416277390 a004 Fibonacci(67)/Lucas(38)/(1/2+sqrt(5)/2)^16 2329991416277390 a004 Fibonacci(38)*Lucas(66)/(1/2+sqrt(5)/2)^91 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^40/Lucas(65) 2329991416277390 a004 Fibonacci(65)/Lucas(38)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(38)*Lucas(64)/(1/2+sqrt(5)/2)^89 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^38/Lucas(63) 2329991416277390 a004 Fibonacci(63)/Lucas(38)/(1/2+sqrt(5)/2)^12 2329991416277390 a004 Fibonacci(38)*Lucas(62)/(1/2+sqrt(5)/2)^87 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^36/Lucas(61) 2329991416277390 a004 Fibonacci(61)/Lucas(38)/(1/2+sqrt(5)/2)^10 2329991416277390 a004 Fibonacci(38)*Lucas(60)/(1/2+sqrt(5)/2)^85 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^34/Lucas(59) 2329991416277390 a004 Fibonacci(59)/Lucas(38)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(38)*Lucas(58)/(1/2+sqrt(5)/2)^83 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^32/Lucas(57) 2329991416277390 a004 Fibonacci(57)/Lucas(38)/(1/2+sqrt(5)/2)^6 2329991416277390 a004 Fibonacci(38)*Lucas(56)/(1/2+sqrt(5)/2)^81 2329991416277390 a001 39088169/312119004989*14662949395604^(10/21) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^30/Lucas(55) 2329991416277390 a004 Fibonacci(55)/Lucas(38)/(1/2+sqrt(5)/2)^4 2329991416277390 a001 39088169/1322157322203*192900153618^(11/18) 2329991416277390 a001 39088169/23725150497407*192900153618^(13/18) 2329991416277390 a001 39088169/312119004989*192900153618^(5/9) 2329991416277390 a004 Fibonacci(38)*Lucas(54)/(1/2+sqrt(5)/2)^79 2329991416277390 a001 39088169/119218851371*14662949395604^(4/9) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^28/Lucas(53) 2329991416277390 a004 Fibonacci(53)/Lucas(38)/(1/2+sqrt(5)/2)^2 2329991416277390 a001 4181/87403804*73681302247^(8/13) 2329991416277390 a001 39088169/5600748293801*73681302247^(9/13) 2329991416277390 a001 39088169/23725150497407*73681302247^(3/4) 2329991416277390 a001 39088169/119218851371*73681302247^(7/13) 2329991416277390 a004 Fibonacci(38)*Lucas(52)/(1/2+sqrt(5)/2)^77 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^26/Lucas(51) 2329991416277390 a006 5^(1/2)*Fibonacci(51)/Lucas(38)/sqrt(5) 2329991416277390 a001 39088169/45537549124*73681302247^(1/2) 2329991416277390 a001 39088169/312119004989*28143753123^(3/5) 2329991416277390 a001 39088169/3461452808002*28143753123^(7/10) 2329991416277390 a004 Fibonacci(38)*Lucas(50)/(1/2+sqrt(5)/2)^75 2329991416277390 a001 39088169/17393796001*45537549124^(8/17) 2329991416277390 a001 39088169/17393796001*14662949395604^(8/21) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^24/Lucas(49) 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^2/Lucas(38) 2329991416277390 a001 39088169/17393796001*192900153618^(4/9) 2329991416277390 a001 39088169/17393796001*73681302247^(6/13) 2329991416277390 a001 7778742049/87403803*10749957122^(1/24) 2329991416277390 a001 39088169/73681302247*10749957122^(9/16) 2329991416277390 a001 39088169/119218851371*10749957122^(7/12) 2329991416277390 a001 39088169/45537549124*10749957122^(13/24) 2329991416277390 a001 39088169/312119004989*10749957122^(5/8) 2329991416277390 a001 4181/87403804*10749957122^(2/3) 2329991416277390 a001 7778742049/87403803*4106118243^(1/23) 2329991416277390 a001 39088169/1322157322203*10749957122^(11/16) 2329991416277390 a001 39088169/2139295485799*10749957122^(17/24) 2329991416277390 a001 39088169/5600748293801*10749957122^(3/4) 2329991416277390 a001 39088169/14662949395604*10749957122^(19/24) 2329991416277390 a001 39088169/23725150497407*10749957122^(13/16) 2329991416277390 a001 39088169/17393796001*10749957122^(1/2) 2329991416277390 a004 Fibonacci(38)*Lucas(48)/(1/2+sqrt(5)/2)^73 2329991416277390 a001 39088169/10749957122*4106118243^(1/2) 2329991416277390 a001 7778742049/87403803*1568397607^(1/22) 2329991416277390 a001 39088169/6643838879*312119004989^(2/5) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^22/Lucas(47) 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^4/Lucas(38) 2329991416277390 a001 2971215073/87403803*23725150497407^(1/16) 2329991416277390 a001 2971215073/87403803*73681302247^(1/13) 2329991416277390 a001 2971215073/87403803*10749957122^(1/12) 2329991416277390 a001 39088169/6643838879*10749957122^(11/24) 2329991416277390 a001 2971215073/87403803*4106118243^(2/23) 2329991416277390 a001 39088169/45537549124*4106118243^(13/23) 2329991416277390 a001 39088169/17393796001*4106118243^(12/23) 2329991416277390 a001 39088169/119218851371*4106118243^(14/23) 2329991416277390 a001 39088169/312119004989*4106118243^(15/23) 2329991416277390 a001 4181/87403804*4106118243^(16/23) 2329991416277390 a001 39088169/2139295485799*4106118243^(17/23) 2329991416277390 a001 39088169/5600748293801*4106118243^(18/23) 2329991416277390 a001 39088169/14662949395604*4106118243^(19/23) 2329991416277390 a001 39088169/6643838879*4106118243^(11/23) 2329991416277390 a001 233802911/29134601*599074578^(1/6) 2329991416277390 a004 Fibonacci(38)*Lucas(46)/(1/2+sqrt(5)/2)^71 2329991416277390 a001 2971215073/87403803*1568397607^(1/11) 2329991416277390 a001 39088169/2537720636*2537720636^(4/9) 2329991416277390 a001 1134903170/87403803*2537720636^(2/15) 2329991416277390 a001 7778742049/87403803*599074578^(1/21) 2329991416277390 a001 1134903170/87403803*45537549124^(2/17) 2329991416277390 a001 1134903170/87403803*14662949395604^(2/21) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^20/Lucas(45) 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^6/Lucas(38) 2329991416277390 a001 39088169/2537720636*505019158607^(5/14) 2329991416277390 a001 39088169/2537720636*73681302247^(5/13) 2329991416277390 a001 39088169/2537720636*28143753123^(2/5) 2329991416277390 a001 1134903170/87403803*10749957122^(1/8) 2329991416277390 a001 39088169/2537720636*10749957122^(5/12) 2329991416277390 a001 1134903170/87403803*4106118243^(3/23) 2329991416277390 a001 39088169/2537720636*4106118243^(10/23) 2329991416277390 a001 1602508992/29134601*599074578^(1/14) 2329991416277390 a001 1134903170/87403803*1568397607^(3/22) 2329991416277390 a001 39088169/17393796001*1568397607^(6/11) 2329991416277390 a001 39088169/6643838879*1568397607^(1/2) 2329991416277390 a001 39088169/45537549124*1568397607^(13/22) 2329991416277390 a001 39088169/119218851371*1568397607^(7/11) 2329991416277390 a001 39088169/312119004989*1568397607^(15/22) 2329991416277390 a001 2971215073/87403803*599074578^(2/21) 2329991416277390 a001 4181/87403804*1568397607^(8/11) 2329991416277390 a001 39088169/1322157322203*1568397607^(3/4) 2329991416277390 a001 39088169/2139295485799*1568397607^(17/22) 2329991416277390 a001 39088169/5600748293801*1568397607^(9/11) 2329991416277390 a001 39088169/2537720636*1568397607^(5/11) 2329991416277390 a001 39088169/14662949395604*1568397607^(19/22) 2329991416277390 a004 Fibonacci(38)*Lucas(44)/(1/2+sqrt(5)/2)^69 2329991416277390 a001 1134903170/87403803*599074578^(1/7) 2329991416277390 a001 7778742049/87403803*228826127^(1/20) 2329991416277390 a001 39088169/969323029*2537720636^(2/5) 2329991416277390 a001 39088169/969323029*45537549124^(6/17) 2329991416277390 a001 39088169/969323029*14662949395604^(2/7) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^18/Lucas(43) 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^8/Lucas(38) 2329991416277390 a001 433494437/87403803*505019158607^(1/7) 2329991416277390 a001 39088169/969323029*192900153618^(1/3) 2329991416277390 a001 433494437/87403803*73681302247^(2/13) 2329991416277390 a001 433494437/87403803*10749957122^(1/6) 2329991416277390 a001 39088169/969323029*10749957122^(3/8) 2329991416277390 a001 433494437/87403803*4106118243^(4/23) 2329991416277390 a001 39088169/969323029*4106118243^(9/23) 2329991416277390 a001 433494437/87403803*1568397607^(2/11) 2329991416277390 a001 39088169/969323029*1568397607^(9/22) 2329991416277390 a001 39088169/4106118243*599074578^(1/2) 2329991416277390 a001 39088169/2537720636*599074578^(10/21) 2329991416277390 a001 39088169/6643838879*599074578^(11/21) 2329991416277390 a001 433494437/87403803*599074578^(4/21) 2329991416277390 a001 39088169/17393796001*599074578^(4/7) 2329991416277390 a001 39088169/45537549124*599074578^(13/21) 2329991416277390 a001 39088169/73681302247*599074578^(9/14) 2329991416277390 a001 39088169/119218851371*599074578^(2/3) 2329991416277390 a001 2971215073/87403803*228826127^(1/10) 2329991416277390 a001 39088169/312119004989*599074578^(5/7) 2329991416277390 a001 4181/87403804*599074578^(16/21) 2329991416277390 a001 39088169/1322157322203*599074578^(11/14) 2329991416277390 a001 39088169/2139295485799*599074578^(17/21) 2329991416277390 a001 39088169/969323029*599074578^(3/7) 2329991416277390 a001 39088169/3461452808002*599074578^(5/6) 2329991416277390 a001 1836311903/87403803*228826127^(1/8) 2329991416277390 a001 39088169/5600748293801*599074578^(6/7) 2329991416277390 a001 39088169/14662949395604*599074578^(19/21) 2329991416277390 a001 39088169/23725150497407*599074578^(13/14) 2329991416277390 a004 Fibonacci(38)*Lucas(42)/(1/2+sqrt(5)/2)^67 2329991416277390 a001 1134903170/87403803*228826127^(3/20) 2329991416277390 a001 433494437/54018521*20633239^(1/5) 2329991416277390 a001 7778742049/87403803*87403803^(1/19) 2329991416277390 a001 165580141/87403803*2537720636^(2/9) 2329991416277390 a001 165580141/87403803*312119004989^(2/11) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^16/Lucas(41) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^10/Lucas(38) 2329991416277390 a001 39088169/370248451*73681302247^(4/13) 2329991416277390 a001 165580141/87403803*28143753123^(1/5) 2329991416277390 a001 165580141/87403803*10749957122^(5/24) 2329991416277390 a001 39088169/370248451*10749957122^(1/3) 2329991416277390 a001 165580141/87403803*4106118243^(5/23) 2329991416277390 a001 39088169/370248451*4106118243^(8/23) 2329991416277390 a001 165580141/87403803*1568397607^(5/22) 2329991416277390 a001 39088169/370248451*1568397607^(4/11) 2329991416277390 a001 165580141/87403803*599074578^(5/21) 2329991416277390 a001 39088169/370248451*599074578^(8/21) 2329991416277390 a001 39088169/969323029*228826127^(9/20) 2329991416277390 a001 39088169/2537720636*228826127^(1/2) 2329991416277390 a001 39088169/6643838879*228826127^(11/20) 2329991416277390 a001 39088169/17393796001*228826127^(3/5) 2329991416277390 a001 39088169/28143753123*228826127^(5/8) 2329991416277390 a001 165580141/87403803*228826127^(1/4) 2329991416277390 a001 39088169/45537549124*228826127^(13/20) 2329991416277390 a001 39088169/119218851371*228826127^(7/10) 2329991416277390 a001 2971215073/87403803*87403803^(2/19) 2329991416277390 a001 39088169/312119004989*228826127^(3/4) 2329991416277390 a001 39088169/370248451*228826127^(2/5) 2329991416277390 a001 4181/87403804*228826127^(4/5) 2329991416277390 a001 39088169/2139295485799*228826127^(17/20) 2329991416277390 a001 39088169/3461452808002*228826127^(7/8) 2329991416277390 a001 39088169/5600748293801*228826127^(9/10) 2329991416277390 a001 39088169/14662949395604*228826127^(19/20) 2329991416277390 a004 Fibonacci(38)*Lucas(40)/(1/2+sqrt(5)/2)^65 2329991416277390 a001 1134903170/87403803*87403803^(3/19) 2329991416277390 a001 433494437/87403803*87403803^(4/19) 2329991416277390 a001 14930352/312119004989*33385282^(8/9) 2329991416277390 a001 63245986/87403803*141422324^(4/13) 2329991416277390 a001 165580141/87403803*87403803^(5/19) 2329991416277390 a001 7778742049/87403803*33385282^(1/18) 2329991416277390 a001 63245986/87403803*2537720636^(4/15) 2329991416277390 a001 39088169/141422324*17393796001^(2/7) 2329991416277390 a001 63245986/87403803*45537549124^(4/17) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^14/Lucas(39) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^12/Lucas(38) 2329991416277390 a001 2472169789339634/10610209857723 2329991416277390 a001 39088169/141422324*505019158607^(1/4) 2329991416277390 a001 63245986/87403803*192900153618^(2/9) 2329991416277390 a001 63245986/87403803*73681302247^(3/13) 2329991416277390 a001 63245986/87403803*10749957122^(1/4) 2329991416277390 a001 39088169/141422324*10749957122^(7/24) 2329991416277390 a001 63245986/87403803*4106118243^(6/23) 2329991416277390 a001 39088169/141422324*4106118243^(7/23) 2329991416277390 a001 63245986/87403803*1568397607^(3/11) 2329991416277390 a001 39088169/141422324*1568397607^(7/22) 2329991416277390 a001 63245986/87403803*599074578^(2/7) 2329991416277390 a001 39088169/141422324*599074578^(1/3) 2329991416277390 a001 63245986/87403803*228826127^(3/10) 2329991416277390 a001 14930352/505019158607*33385282^(11/12) 2329991416277390 a001 39088169/141422324*228826127^(7/20) 2329991416277390 a004 Fibonacci(40)*Lucas(39)/(1/2+sqrt(5)/2)^66 2329991416277390 a001 39088169/370248451*87403803^(8/19) 2329991416277390 a001 39088169/969323029*87403803^(9/19) 2329991416277390 a001 39088169/1568397607*87403803^(1/2) 2329991416277390 a001 102334155/14662949395604*141422324^(12/13) 2329991416277390 a001 39088169/2537720636*87403803^(10/19) 2329991416277390 a001 6765/228826126*141422324^(11/13) 2329991416277390 a001 102334155/817138163596*141422324^(10/13) 2329991416277390 a001 1602508992/29134601*33385282^(1/12) 2329991416277390 a001 39088169/6643838879*87403803^(11/19) 2329991416277390 a001 102334155/228826127*141422324^(1/3) 2329991416277390 a001 34111385/64300051206*141422324^(9/13) 2329991416277390 a004 Fibonacci(42)*Lucas(39)/(1/2+sqrt(5)/2)^68 2329991416277390 a001 102334155/119218851371*141422324^(2/3) 2329991416277390 a004 Fibonacci(44)*Lucas(39)/(1/2+sqrt(5)/2)^70 2329991416277390 a004 Fibonacci(46)*Lucas(39)/(1/2+sqrt(5)/2)^72 2329991416277390 a004 Fibonacci(48)*Lucas(39)/(1/2+sqrt(5)/2)^74 2329991416277390 a004 Fibonacci(50)*Lucas(39)/(1/2+sqrt(5)/2)^76 2329991416277390 a004 Fibonacci(52)*Lucas(39)/(1/2+sqrt(5)/2)^78 2329991416277390 a004 Fibonacci(54)*Lucas(39)/(1/2+sqrt(5)/2)^80 2329991416277390 a004 Fibonacci(56)*Lucas(39)/(1/2+sqrt(5)/2)^82 2329991416277390 a004 Fibonacci(58)*Lucas(39)/(1/2+sqrt(5)/2)^84 2329991416277390 a004 Fibonacci(60)*Lucas(39)/(1/2+sqrt(5)/2)^86 2329991416277390 a004 Fibonacci(62)*Lucas(39)/(1/2+sqrt(5)/2)^88 2329991416277390 a004 Fibonacci(64)*Lucas(39)/(1/2+sqrt(5)/2)^90 2329991416277390 a004 Fibonacci(66)*Lucas(39)/(1/2+sqrt(5)/2)^92 2329991416277390 a004 Fibonacci(68)*Lucas(39)/(1/2+sqrt(5)/2)^94 2329991416277390 a004 Fibonacci(70)*Lucas(39)/(1/2+sqrt(5)/2)^96 2329991416277390 a004 Fibonacci(72)*Lucas(39)/(1/2+sqrt(5)/2)^98 2329991416277390 a004 Fibonacci(74)*Lucas(39)/(1/2+sqrt(5)/2)^100 2329991416277390 a001 1/31622993*(1/2+1/2*5^(1/2))^52 2329991416277390 a004 Fibonacci(73)*Lucas(39)/(1/2+sqrt(5)/2)^99 2329991416277390 a004 Fibonacci(71)*Lucas(39)/(1/2+sqrt(5)/2)^97 2329991416277390 a004 Fibonacci(69)*Lucas(39)/(1/2+sqrt(5)/2)^95 2329991416277390 a004 Fibonacci(67)*Lucas(39)/(1/2+sqrt(5)/2)^93 2329991416277390 a004 Fibonacci(65)*Lucas(39)/(1/2+sqrt(5)/2)^91 2329991416277390 a004 Fibonacci(63)*Lucas(39)/(1/2+sqrt(5)/2)^89 2329991416277390 a004 Fibonacci(61)*Lucas(39)/(1/2+sqrt(5)/2)^87 2329991416277390 a004 Fibonacci(59)*Lucas(39)/(1/2+sqrt(5)/2)^85 2329991416277390 a004 Fibonacci(57)*Lucas(39)/(1/2+sqrt(5)/2)^83 2329991416277390 a004 Fibonacci(55)*Lucas(39)/(1/2+sqrt(5)/2)^81 2329991416277390 a004 Fibonacci(53)*Lucas(39)/(1/2+sqrt(5)/2)^79 2329991416277390 a004 Fibonacci(51)*Lucas(39)/(1/2+sqrt(5)/2)^77 2329991416277390 a004 Fibonacci(49)*Lucas(39)/(1/2+sqrt(5)/2)^75 2329991416277390 a004 Fibonacci(47)*Lucas(39)/(1/2+sqrt(5)/2)^73 2329991416277390 a001 102334155/45537549124*141422324^(8/13) 2329991416277390 a001 3732588/204284540899*33385282^(17/18) 2329991416277390 a004 Fibonacci(45)*Lucas(39)/(1/2+sqrt(5)/2)^71 2329991416277390 a004 Fibonacci(43)*Lucas(39)/(1/2+sqrt(5)/2)^69 2329991416277390 a001 39088169/17393796001*87403803^(12/19) 2329991416277390 a001 102334155/10749957122*141422324^(7/13) 2329991416277390 a001 267914296/9062201101803*141422324^(11/13) 2329991416277390 a001 701408733/23725150497407*141422324^(11/13) 2329991416277390 a004 Fibonacci(41)*Lucas(39)/(1/2+sqrt(5)/2)^67 2329991416277390 a001 9303105/230701876*141422324^(6/13) 2329991416277390 a001 39088169/45537549124*87403803^(13/19) 2329991416277390 a001 267914296/2139295485799*141422324^(10/13) 2329991416277390 a001 433494437/14662949395604*141422324^(11/13) 2329991416277390 a001 34111385/199691526*141422324^(5/13) 2329991416277390 a001 63245986/87403803*87403803^(6/19) 2329991416277390 a001 701408733/5600748293801*141422324^(10/13) 2329991416277390 a001 165580141/23725150497407*141422324^(12/13) 2329991416277390 a001 1836311903/14662949395604*141422324^(10/13) 2329991416277390 a001 2971215073/23725150497407*141422324^(10/13) 2329991416277390 a001 1134903170/9062201101803*141422324^(10/13) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^13/Lucas(40) 2329991416277390 a001 102334155/228826127*73681302247^(1/4) 2329991416277390 a001 267914296/505019158607*141422324^(9/13) 2329991416277390 a001 433494437/3461452808002*141422324^(10/13) 2329991416277390 a001 267914296/312119004989*141422324^(2/3) 2329991416277390 a001 233802911/440719107401*141422324^(9/13) 2329991416277390 a001 165580141/5600748293801*141422324^(11/13) 2329991416277390 a001 1836311903/3461452808002*141422324^(9/13) 2329991416277390 a001 1602508992/3020733700601*141422324^(9/13) 2329991416277390 a001 12586269025/23725150497407*141422324^(9/13) 2329991416277390 a001 7778742049/14662949395604*141422324^(9/13) 2329991416277390 a001 2971215073/5600748293801*141422324^(9/13) 2329991416277390 a001 1134903170/2139295485799*141422324^(9/13) 2329991416277390 a001 39088169/119218851371*87403803^(14/19) 2329991416277390 a001 701408733/817138163596*141422324^(2/3) 2329991416277390 a001 267914296/119218851371*141422324^(8/13) 2329991416277390 a001 433494437/817138163596*141422324^(9/13) 2329991416277390 a001 1836311903/2139295485799*141422324^(2/3) 2329991416277390 a001 4807526976/5600748293801*141422324^(2/3) 2329991416277390 a001 12586269025/14662949395604*141422324^(2/3) 2329991416277390 a001 20365011074/23725150497407*141422324^(2/3) 2329991416277390 a001 7778742049/9062201101803*141422324^(2/3) 2329991416277390 a001 2971215073/3461452808002*141422324^(2/3) 2329991416277390 a001 1134903170/1322157322203*141422324^(2/3) 2329991416277390 a001 39088169/141422324*87403803^(7/19) 2329991416277390 a001 433494437/505019158607*141422324^(2/3) 2329991416277390 a001 2971215073/87403803*33385282^(1/9) 2329991416277390 a001 3524667/1568437211*141422324^(8/13) 2329991416277390 a001 165580141/1322157322203*141422324^(10/13) 2329991416277390 a001 701408733/228826127*141422324^(3/13) 2329991416277390 a001 1836311903/817138163596*141422324^(8/13) 2329991416277390 a001 4807526976/2139295485799*141422324^(8/13) 2329991416277390 a001 12586269025/5600748293801*141422324^(8/13) 2329991416277390 a001 32951280099/14662949395604*141422324^(8/13) 2329991416277390 a001 53316291173/23725150497407*141422324^(8/13) 2329991416277390 a001 20365011074/9062201101803*141422324^(8/13) 2329991416277390 a001 7778742049/3461452808002*141422324^(8/13) 2329991416277390 a001 2971215073/1322157322203*141422324^(8/13) 2329991416277390 a001 1134903170/505019158607*141422324^(8/13) 2329991416277390 a001 267914296/28143753123*141422324^(7/13) 2329991416277390 a001 433494437/192900153618*141422324^(8/13) 2329991416277390 a001 39088169/312119004989*87403803^(15/19) 2329991416277390 a001 701408733/73681302247*141422324^(7/13) 2329991416277390 a001 165580141/312119004989*141422324^(9/13) 2329991416277390 a001 165580141/228826127*141422324^(4/13) 2329991416277390 a001 1836311903/192900153618*141422324^(7/13) 2329991416277390 a001 102287808/10745088481*141422324^(7/13) 2329991416277390 a001 12586269025/1322157322203*141422324^(7/13) 2329991416277390 a001 32951280099/3461452808002*141422324^(7/13) 2329991416277390 a001 86267571272/9062201101803*141422324^(7/13) 2329991416277390 a001 225851433717/23725150497407*141422324^(7/13) 2329991416277390 a001 139583862445/14662949395604*141422324^(7/13) 2329991416277390 a001 53316291173/5600748293801*141422324^(7/13) 2329991416277390 a001 20365011074/2139295485799*141422324^(7/13) 2329991416277390 a001 7778742049/817138163596*141422324^(7/13) 2329991416277390 a001 2971215073/312119004989*141422324^(7/13) 2329991416277390 a001 2971215073/228826127*141422324^(2/13) 2329991416277390 a001 1134903170/119218851371*141422324^(7/13) 2329991416277390 a004 Fibonacci(40)*Lucas(41)/(1/2+sqrt(5)/2)^68 2329991416277390 a001 165580141/192900153618*141422324^(2/3) 2329991416277390 a001 433494437/45537549124*141422324^(7/13) 2329991416277390 a001 267914296/6643838879*141422324^(6/13) 2329991416277390 a001 701408733/17393796001*141422324^(6/13) 2329991416277390 a001 165580141/73681302247*141422324^(8/13) 2329991416277390 a001 1836311903/45537549124*141422324^(6/13) 2329991416277390 a001 4807526976/119218851371*141422324^(6/13) 2329991416277390 a001 1144206275/28374454999*141422324^(6/13) 2329991416277390 a001 32951280099/817138163596*141422324^(6/13) 2329991416277390 a001 86267571272/2139295485799*141422324^(6/13) 2329991416277390 a001 225851433717/5600748293801*141422324^(6/13) 2329991416277390 a001 365435296162/9062201101803*141422324^(6/13) 2329991416277390 a001 139583862445/3461452808002*141422324^(6/13) 2329991416277390 a001 53316291173/1322157322203*141422324^(6/13) 2329991416277390 a001 20365011074/505019158607*141422324^(6/13) 2329991416277390 a001 7778742049/192900153618*141422324^(6/13) 2329991416277390 a001 2971215073/73681302247*141422324^(6/13) 2329991416277390 a001 12586269025/228826127*141422324^(1/13) 2329991416277390 a001 1134903170/28143753123*141422324^(6/13) 2329991416277390 a001 267914296/1568397607*141422324^(5/13) 2329991416277390 a001 133957148/299537289*141422324^(1/3) 2329991416277390 a001 433494437/10749957122*141422324^(6/13) 2329991416277390 a001 34111385/199691526*2537720636^(1/3) 2329991416277390 a001 34111385/199691526*45537549124^(5/17) 2329991416277390 a001 34111385/199691526*312119004989^(3/11) 2329991416277390 a001 267914296/228826127*312119004989^(1/5) 2329991416277390 a001 34111385/199691526*14662949395604^(5/21) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^15/Lucas(42) 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^11/Lucas(40) 2329991416277390 a001 34111385/199691526*192900153618^(5/18) 2329991416277390 a001 34111385/199691526*28143753123^(3/10) 2329991416277390 a001 34111385/199691526*10749957122^(5/16) 2329991416277390 a001 267914296/228826127*1568397607^(1/4) 2329991416277390 a001 34111385/199691526*599074578^(5/14) 2329991416277390 a001 4181/87403804*87403803^(16/19) 2329991416277390 a004 Fibonacci(40)*Lucas(43)/(1/2+sqrt(5)/2)^70 2329991416277390 a001 233802911/1368706081*141422324^(5/13) 2329991416277390 a001 165580141/17393796001*141422324^(7/13) 2329991416277390 a001 701408733/228826127*2537720636^(1/5) 2329991416277390 a001 14619165/224056801*45537549124^(1/3) 2329991416277390 a001 701408733/228826127*45537549124^(3/17) 2329991416277390 a001 701408733/228826127*14662949395604^(1/7) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^17/Lucas(44) 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^9/Lucas(40) 2329991416277390 a001 701408733/228826127*192900153618^(1/6) 2329991416277390 a001 701408733/228826127*10749957122^(3/16) 2329991416277390 a001 1836311903/10749957122*141422324^(5/13) 2329991416277390 a004 Fibonacci(40)*Lucas(45)/(1/2+sqrt(5)/2)^72 2329991416277390 a001 1602508992/9381251041*141422324^(5/13) 2329991416277390 a001 12586269025/73681302247*141422324^(5/13) 2329991416277390 a001 10983760033/64300051206*141422324^(5/13) 2329991416277390 a001 86267571272/505019158607*141422324^(5/13) 2329991416277390 a001 75283811239/440719107401*141422324^(5/13) 2329991416277390 a001 2504730781961/14662949395604*141422324^(5/13) 2329991416277390 a001 139583862445/817138163596*141422324^(5/13) 2329991416277390 a001 53316291173/312119004989*141422324^(5/13) 2329991416277390 a001 20365011074/119218851371*141422324^(5/13) 2329991416277390 a001 7778742049/45537549124*141422324^(5/13) 2329991416277390 a001 102334155/14662949395604*2537720636^(4/5) 2329991416277390 a001 34111385/3020733700601*2537720636^(7/9) 2329991416277390 a001 6765/228826126*2537720636^(11/15) 2329991416277390 a001 2971215073/17393796001*141422324^(5/13) 2329991416277390 a001 102334155/817138163596*2537720636^(2/3) 2329991416277390 a001 34111385/64300051206*2537720636^(3/5) 2329991416277390 a001 14619165/10525900321*2537720636^(5/9) 2329991416277390 a001 102334155/45537549124*2537720636^(8/15) 2329991416277390 a001 102334155/10749957122*2537720636^(7/15) 2329991416277390 a001 1836311903/228826127*17393796001^(1/7) 2329991416277390 a001 1836311903/228826127*14662949395604^(1/9) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^19/Lucas(46) 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^7/Lucas(40) 2329991416277390 a001 102334155/6643838879*2537720636^(4/9) 2329991416277390 a001 102287808/4868641*2537720636^(1/9) 2329991416277390 a004 Fibonacci(40)*Lucas(47)/(1/2+sqrt(5)/2)^74 2329991416277390 a001 12586269025/228826127*2537720636^(1/15) 2329991416277390 a001 102334155/10749957122*17393796001^(3/7) 2329991416277390 a001 102334155/10749957122*45537549124^(7/17) 2329991416277390 a001 102287808/4868641*312119004989^(1/11) 2329991416277390 a001 102334155/10749957122*14662949395604^(1/3) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^21/Lucas(48) 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^5/Lucas(40) 2329991416277390 a001 102334155/10749957122*192900153618^(7/18) 2329991416277390 a001 102287808/4868641*28143753123^(1/10) 2329991416277390 a001 102334155/10749957122*10749957122^(7/16) 2329991416277390 a004 Fibonacci(40)*Lucas(49)/(1/2+sqrt(5)/2)^76 2329991416277390 a001 34111385/3020733700601*17393796001^(5/7) 2329991416277390 a001 9303105/28374454999*17393796001^(4/7) 2329991416277390 a001 12586269025/228826127*45537549124^(1/17) 2329991416277390 a001 12586269025/228826127*14662949395604^(1/21) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^23/Lucas(50) 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^3/Lucas(40) 2329991416277390 a001 12586269025/228826127*10749957122^(1/16) 2329991416277390 a004 Fibonacci(40)*Lucas(51)/(1/2+sqrt(5)/2)^78 2329991416277390 a001 102334155/14662949395604*45537549124^(12/17) 2329991416277390 a001 102334155/5600748293801*45537549124^(2/3) 2329991416277390 a001 6765/228826126*45537549124^(11/17) 2329991416277390 a001 34111385/64300051206*45537549124^(9/17) 2329991416277390 a001 102334155/817138163596*45537549124^(10/17) 2329991416277390 a001 14619165/10525900321*312119004989^(5/11) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^25/Lucas(52) 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)/Lucas(40) 2329991416277390 a001 14619165/10525900321*3461452808002^(5/12) 2329991416277390 a004 Fibonacci(40)*Lucas(53)/(1/2+sqrt(5)/2)^80 2329991416277390 a001 34111385/64300051206*14662949395604^(3/7) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^27/Lucas(54) 2329991416277390 a004 Fibonacci(54)/Lucas(40)/(1/2+sqrt(5)/2) 2329991416277390 a001 34111385/64300051206*192900153618^(1/2) 2329991416277390 a004 Fibonacci(40)*Lucas(55)/(1/2+sqrt(5)/2)^82 2329991416277390 a001 34111385/3020733700601*312119004989^(7/11) 2329991416277390 a001 102334155/817138163596*312119004989^(6/11) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^29/Lucas(56) 2329991416277390 a004 Fibonacci(56)/Lucas(40)/(1/2+sqrt(5)/2)^3 2329991416277390 a004 Fibonacci(40)*Lucas(57)/(1/2+sqrt(5)/2)^84 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^31/Lucas(58) 2329991416277390 a004 Fibonacci(58)/Lucas(40)/(1/2+sqrt(5)/2)^5 2329991416277390 a004 Fibonacci(40)*Lucas(59)/(1/2+sqrt(5)/2)^86 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^33/Lucas(60) 2329991416277390 a004 Fibonacci(60)/Lucas(40)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(40)*Lucas(61)/(1/2+sqrt(5)/2)^88 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^35/Lucas(62) 2329991416277390 a004 Fibonacci(62)/Lucas(40)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(40)*Lucas(63)/(1/2+sqrt(5)/2)^90 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^37/Lucas(64) 2329991416277390 a004 Fibonacci(64)/Lucas(40)/(1/2+sqrt(5)/2)^11 2329991416277390 a004 Fibonacci(40)*Lucas(65)/(1/2+sqrt(5)/2)^92 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^39/Lucas(66) 2329991416277390 a004 Fibonacci(66)/Lucas(40)/(1/2+sqrt(5)/2)^13 2329991416277390 a004 Fibonacci(40)*Lucas(67)/(1/2+sqrt(5)/2)^94 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^41/Lucas(68) 2329991416277390 a004 Fibonacci(68)/Lucas(40)/(1/2+sqrt(5)/2)^15 2329991416277390 a004 Fibonacci(40)*Lucas(69)/(1/2+sqrt(5)/2)^96 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^43/Lucas(70) 2329991416277390 a004 Fibonacci(70)/Lucas(40)/(1/2+sqrt(5)/2)^17 2329991416277390 a004 Fibonacci(40)*Lucas(71)/(1/2+sqrt(5)/2)^98 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^45/Lucas(72) 2329991416277390 a004 Fibonacci(72)/Lucas(40)/(1/2+sqrt(5)/2)^19 2329991416277390 a004 Fibonacci(40)*Lucas(73)/(1/2+sqrt(5)/2)^100 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^47/Lucas(74) 2329991416277390 a004 Fibonacci(74)/Lucas(40)/(1/2+sqrt(5)/2)^21 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^49/Lucas(76) 2329991416277390 a004 Fibonacci(76)/Lucas(40)/(1/2+sqrt(5)/2)^23 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^51/Lucas(78) 2329991416277390 a004 Fibonacci(78)/Lucas(40)/(1/2+sqrt(5)/2)^25 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^53/Lucas(80) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^55/Lucas(82) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^57/Lucas(84) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^59/Lucas(86) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^61/Lucas(88) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^63/Lucas(90) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^65/Lucas(92) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^67/Lucas(94) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^69/Lucas(96) 2329991416277390 a004 Fibonacci(20)*Lucas(20)/(1/2+sqrt(5)/2)^27 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^71/Lucas(98) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^73/Lucas(100) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^70/Lucas(97) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^72/Lucas(99) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^68/Lucas(95) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^66/Lucas(93) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^64/Lucas(91) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^62/Lucas(89) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^60/Lucas(87) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^58/Lucas(85) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^56/Lucas(83) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^54/Lucas(81) 2329991416277390 a004 Fibonacci(82)/Lucas(40)/(1/2+sqrt(5)/2)^29 2329991416277390 a004 Fibonacci(84)/Lucas(40)/(1/2+sqrt(5)/2)^31 2329991416277390 a004 Fibonacci(86)/Lucas(40)/(1/2+sqrt(5)/2)^33 2329991416277390 a004 Fibonacci(88)/Lucas(40)/(1/2+sqrt(5)/2)^35 2329991416277390 a004 Fibonacci(90)/Lucas(40)/(1/2+sqrt(5)/2)^37 2329991416277390 a004 Fibonacci(92)/Lucas(40)/(1/2+sqrt(5)/2)^39 2329991416277390 a004 Fibonacci(94)/Lucas(40)/(1/2+sqrt(5)/2)^41 2329991416277390 a004 Fibonacci(96)/Lucas(40)/(1/2+sqrt(5)/2)^43 2329991416277390 a004 Fibonacci(100)/Lucas(40)/(1/2+sqrt(5)/2)^47 2329991416277390 a004 Fibonacci(98)/Lucas(40)/(1/2+sqrt(5)/2)^45 2329991416277390 a004 Fibonacci(99)/Lucas(40)/(1/2+sqrt(5)/2)^46 2329991416277390 a004 Fibonacci(97)/Lucas(40)/(1/2+sqrt(5)/2)^44 2329991416277390 a004 Fibonacci(95)/Lucas(40)/(1/2+sqrt(5)/2)^42 2329991416277390 a004 Fibonacci(93)/Lucas(40)/(1/2+sqrt(5)/2)^40 2329991416277390 a004 Fibonacci(91)/Lucas(40)/(1/2+sqrt(5)/2)^38 2329991416277390 a004 Fibonacci(89)/Lucas(40)/(1/2+sqrt(5)/2)^36 2329991416277390 a004 Fibonacci(87)/Lucas(40)/(1/2+sqrt(5)/2)^34 2329991416277390 a004 Fibonacci(85)/Lucas(40)/(1/2+sqrt(5)/2)^32 2329991416277390 a004 Fibonacci(83)/Lucas(40)/(1/2+sqrt(5)/2)^30 2329991416277390 a004 Fibonacci(81)/Lucas(40)/(1/2+sqrt(5)/2)^28 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^52/Lucas(79) 2329991416277390 a004 Fibonacci(79)/Lucas(40)/(1/2+sqrt(5)/2)^26 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^50/Lucas(77) 2329991416277390 a004 Fibonacci(77)/Lucas(40)/(1/2+sqrt(5)/2)^24 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^48/Lucas(75) 2329991416277390 a004 Fibonacci(75)/Lucas(40)/(1/2+sqrt(5)/2)^22 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^46/Lucas(73) 2329991416277390 a004 Fibonacci(73)/Lucas(40)/(1/2+sqrt(5)/2)^20 2329991416277390 a004 Fibonacci(40)*Lucas(72)/(1/2+sqrt(5)/2)^99 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^44/Lucas(71) 2329991416277390 a004 Fibonacci(71)/Lucas(40)/(1/2+sqrt(5)/2)^18 2329991416277390 a004 Fibonacci(40)*Lucas(70)/(1/2+sqrt(5)/2)^97 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^42/Lucas(69) 2329991416277390 a004 Fibonacci(69)/Lucas(40)/(1/2+sqrt(5)/2)^16 2329991416277390 a004 Fibonacci(40)*Lucas(68)/(1/2+sqrt(5)/2)^95 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^40/Lucas(67) 2329991416277390 a004 Fibonacci(67)/Lucas(40)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(40)*Lucas(66)/(1/2+sqrt(5)/2)^93 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^38/Lucas(65) 2329991416277390 a004 Fibonacci(65)/Lucas(40)/(1/2+sqrt(5)/2)^12 2329991416277390 a004 Fibonacci(40)*Lucas(64)/(1/2+sqrt(5)/2)^91 2329991416277390 a001 102334155/14662949395604*14662949395604^(4/7) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^36/Lucas(63) 2329991416277390 a004 Fibonacci(63)/Lucas(40)/(1/2+sqrt(5)/2)^10 2329991416277390 a004 Fibonacci(40)*Lucas(62)/(1/2+sqrt(5)/2)^89 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^34/Lucas(61) 2329991416277390 a004 Fibonacci(61)/Lucas(40)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(40)*Lucas(60)/(1/2+sqrt(5)/2)^87 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^32/Lucas(59) 2329991416277390 a004 Fibonacci(59)/Lucas(40)/(1/2+sqrt(5)/2)^6 2329991416277390 a004 Fibonacci(40)*Lucas(58)/(1/2+sqrt(5)/2)^85 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^30/Lucas(57) 2329991416277390 a004 Fibonacci(57)/Lucas(40)/(1/2+sqrt(5)/2)^4 2329991416277390 a001 102334155/14662949395604*505019158607^(9/14) 2329991416277390 a004 Fibonacci(40)*Lucas(56)/(1/2+sqrt(5)/2)^83 2329991416277390 a001 9303105/28374454999*14662949395604^(4/9) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^28/Lucas(55) 2329991416277390 a004 Fibonacci(55)/Lucas(40)/(1/2+sqrt(5)/2)^2 2329991416277390 a001 102334155/14662949395604*192900153618^(2/3) 2329991416277390 a004 Fibonacci(40)*Lucas(54)/(1/2+sqrt(5)/2)^81 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^26/Lucas(53) 2329991416277390 a006 5^(1/2)*Fibonacci(53)/Lucas(40)/sqrt(5) 2329991416277390 a001 9303105/28374454999*73681302247^(7/13) 2329991416277390 a001 102334155/2139295485799*73681302247^(8/13) 2329991416277390 a001 102334155/14662949395604*73681302247^(9/13) 2329991416277390 a001 102334155/119218851371*73681302247^(1/2) 2329991416277390 a004 Fibonacci(40)*Lucas(52)/(1/2+sqrt(5)/2)^79 2329991416277390 a001 102334155/45537549124*45537549124^(8/17) 2329991416277390 a001 14619165/10525900321*28143753123^(1/2) 2329991416277390 a001 102334155/45537549124*14662949395604^(8/21) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^24/Lucas(51) 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^2/Lucas(40) 2329991416277390 a001 102334155/45537549124*192900153618^(4/9) 2329991416277390 a001 102334155/45537549124*73681302247^(6/13) 2329991416277390 a001 102334155/817138163596*28143753123^(3/5) 2329991416277390 a001 20365011074/228826127*10749957122^(1/24) 2329991416277390 a001 34111385/3020733700601*28143753123^(7/10) 2329991416277390 a004 Fibonacci(40)*Lucas(50)/(1/2+sqrt(5)/2)^77 2329991416277390 a001 2971215073/228826127*2537720636^(2/15) 2329991416277390 a001 20365011074/228826127*4106118243^(1/23) 2329991416277390 a001 102334155/17393796001*312119004989^(2/5) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^22/Lucas(49) 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^4/Lucas(40) 2329991416277390 a001 7778742049/228826127*23725150497407^(1/16) 2329991416277390 a001 7778742049/228826127*73681302247^(1/13) 2329991416277390 a001 7778742049/228826127*10749957122^(1/12) 2329991416277390 a001 102334155/119218851371*10749957122^(13/24) 2329991416277390 a001 102334155/45537549124*10749957122^(1/2) 2329991416277390 a001 34111385/64300051206*10749957122^(9/16) 2329991416277390 a001 9303105/28374454999*10749957122^(7/12) 2329991416277390 a001 102334155/817138163596*10749957122^(5/8) 2329991416277390 a001 102334155/2139295485799*10749957122^(2/3) 2329991416277390 a001 6765/228826126*10749957122^(11/16) 2329991416277390 a001 102334155/5600748293801*10749957122^(17/24) 2329991416277390 a001 102334155/14662949395604*10749957122^(3/4) 2329991416277390 a001 102334155/17393796001*10749957122^(11/24) 2329991416277390 a001 7778742049/228826127*4106118243^(2/23) 2329991416277390 a004 Fibonacci(40)*Lucas(48)/(1/2+sqrt(5)/2)^75 2329991416277390 a001 20365011074/228826127*1568397607^(1/22) 2329991416277390 a001 2971215073/228826127*45537549124^(2/17) 2329991416277390 a001 2971215073/228826127*14662949395604^(2/21) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^20/Lucas(47) 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^6/Lucas(40) 2329991416277390 a001 102334155/6643838879*23725150497407^(5/16) 2329991416277390 a001 102334155/6643838879*505019158607^(5/14) 2329991416277390 a001 102334155/6643838879*73681302247^(5/13) 2329991416277390 a001 102334155/6643838879*28143753123^(2/5) 2329991416277390 a001 2971215073/228826127*10749957122^(1/8) 2329991416277390 a001 102334155/6643838879*10749957122^(5/12) 2329991416277390 a001 831985/228811001*4106118243^(1/2) 2329991416277390 a001 2971215073/228826127*4106118243^(3/23) 2329991416277390 a001 102334155/45537549124*4106118243^(12/23) 2329991416277390 a001 102334155/17393796001*4106118243^(11/23) 2329991416277390 a001 102334155/119218851371*4106118243^(13/23) 2329991416277390 a001 9303105/28374454999*4106118243^(14/23) 2329991416277390 a001 102334155/817138163596*4106118243^(15/23) 2329991416277390 a001 7778742049/228826127*1568397607^(1/11) 2329991416277390 a001 102334155/2139295485799*4106118243^(16/23) 2329991416277390 a001 102334155/5600748293801*4106118243^(17/23) 2329991416277390 a001 1134903170/6643838879*141422324^(5/13) 2329991416277390 a001 102334155/14662949395604*4106118243^(18/23) 2329991416277390 a001 102334155/6643838879*4106118243^(10/23) 2329991416277390 a004 Fibonacci(40)*Lucas(46)/(1/2+sqrt(5)/2)^73 2329991416277390 a001 2971215073/228826127*1568397607^(3/22) 2329991416277390 a001 9303105/230701876*2537720636^(2/5) 2329991416277390 a001 20365011074/228826127*599074578^(1/21) 2329991416277390 a001 9303105/230701876*45537549124^(6/17) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^18/Lucas(45) 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^8/Lucas(40) 2329991416277390 a001 1134903170/228826127*23725150497407^(1/8) 2329991416277390 a001 9303105/230701876*192900153618^(1/3) 2329991416277390 a001 1134903170/228826127*73681302247^(2/13) 2329991416277390 a001 1134903170/228826127*10749957122^(1/6) 2329991416277390 a001 9303105/230701876*10749957122^(3/8) 2329991416277390 a001 1134903170/228826127*4106118243^(4/23) 2329991416277390 a001 9303105/230701876*4106118243^(9/23) 2329991416277390 a001 701408733/228826127*599074578^(3/14) 2329991416277390 a001 12586269025/228826127*599074578^(1/14) 2329991416277390 a001 102334155/17393796001*1568397607^(1/2) 2329991416277390 a001 102334155/6643838879*1568397607^(5/11) 2329991416277390 a001 102334155/45537549124*1568397607^(6/11) 2329991416277390 a001 1134903170/228826127*1568397607^(2/11) 2329991416277390 a001 102334155/119218851371*1568397607^(13/22) 2329991416277390 a001 9303105/28374454999*1568397607^(7/11) 2329991416277390 a001 7778742049/228826127*599074578^(2/21) 2329991416277390 a001 102334155/817138163596*1568397607^(15/22) 2329991416277390 a001 102334155/2139295485799*1568397607^(8/11) 2329991416277390 a001 6765/228826126*1568397607^(3/4) 2329991416277390 a001 102334155/5600748293801*1568397607^(17/22) 2329991416277390 a001 9303105/230701876*1568397607^(9/22) 2329991416277390 a001 102334155/14662949395604*1568397607^(9/11) 2329991416277390 a001 1836311903/228826127*599074578^(1/6) 2329991416277390 a004 Fibonacci(40)*Lucas(44)/(1/2+sqrt(5)/2)^71 2329991416277390 a001 2971215073/228826127*599074578^(1/7) 2329991416277390 a001 1134903170/228826127*599074578^(4/21) 2329991416277390 a001 20365011074/228826127*228826127^(1/20) 2329991416277390 a001 433494437/228826127*2537720636^(2/9) 2329991416277390 a001 433494437/228826127*312119004989^(2/11) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^16/Lucas(43) 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^10/Lucas(40) 2329991416277390 a001 102334155/969323029*23725150497407^(1/4) 2329991416277390 a001 102334155/969323029*73681302247^(4/13) 2329991416277390 a001 433494437/228826127*28143753123^(1/5) 2329991416277390 a001 433494437/228826127*10749957122^(5/24) 2329991416277390 a001 102334155/969323029*10749957122^(1/3) 2329991416277390 a001 433494437/228826127*4106118243^(5/23) 2329991416277390 a001 102334155/969323029*4106118243^(8/23) 2329991416277390 a001 433494437/2537720636*141422324^(5/13) 2329991416277390 a001 433494437/228826127*1568397607^(5/22) 2329991416277390 a001 102334155/969323029*1568397607^(4/11) 2329991416277390 a001 9303105/230701876*599074578^(3/7) 2329991416277390 a001 102334155/6643838879*599074578^(10/21) 2329991416277390 a001 102334155/10749957122*599074578^(1/2) 2329991416277390 a001 102334155/17393796001*599074578^(11/21) 2329991416277390 a001 102334155/45537549124*599074578^(4/7) 2329991416277390 a001 701408733/1568397607*141422324^(1/3) 2329991416277390 a001 102334155/119218851371*599074578^(13/21) 2329991416277390 a001 433494437/228826127*599074578^(5/21) 2329991416277390 a001 34111385/64300051206*599074578^(9/14) 2329991416277390 a001 9303105/28374454999*599074578^(2/3) 2329991416277390 a001 7778742049/228826127*228826127^(1/10) 2329991416277390 a001 102334155/817138163596*599074578^(5/7) 2329991416277390 a001 433494437/599074578*141422324^(4/13) 2329991416277390 a001 102334155/2139295485799*599074578^(16/21) 2329991416277390 a001 102334155/969323029*599074578^(8/21) 2329991416277390 a001 6765/228826126*599074578^(11/14) 2329991416277390 a001 102334155/5600748293801*599074578^(17/21) 2329991416277390 a001 1836311903/4106118243*141422324^(1/3) 2329991416277390 a001 34111385/3020733700601*599074578^(5/6) 2329991416277390 a001 102287808/4868641*228826127^(1/8) 2329991416277390 a001 102334155/14662949395604*599074578^(6/7) 2329991416277390 a001 2403763488/5374978561*141422324^(1/3) 2329991416277390 a001 12586269025/28143753123*141422324^(1/3) 2329991416277390 a001 32951280099/73681302247*141422324^(1/3) 2329991416277390 a001 43133785636/96450076809*141422324^(1/3) 2329991416277390 a001 225851433717/505019158607*141422324^(1/3) 2329991416277390 a001 10610209857723/23725150497407*141422324^(1/3) 2329991416277390 a001 182717648081/408569081798*141422324^(1/3) 2329991416277390 a001 139583862445/312119004989*141422324^(1/3) 2329991416277390 a001 53316291173/119218851371*141422324^(1/3) 2329991416277390 a001 10182505537/22768774562*141422324^(1/3) 2329991416277390 a001 7778742049/17393796001*141422324^(1/3) 2329991416277390 a001 2971215073/6643838879*141422324^(1/3) 2329991416277390 a001 567451585/1268860318*141422324^(1/3) 2329991416277390 a004 Fibonacci(40)*Lucas(42)/(1/2+sqrt(5)/2)^69 2329991416277390 a001 2971215073/228826127*228826127^(3/20) 2329991416277390 a001 165580141/4106118243*141422324^(6/13) 2329991416277390 a001 1134903170/1568397607*141422324^(4/13) 2329991416277390 a001 2971215073/4106118243*141422324^(4/13) 2329991416277390 a001 7778742049/10749957122*141422324^(4/13) 2329991416277390 a001 20365011074/28143753123*141422324^(4/13) 2329991416277390 a001 53316291173/73681302247*141422324^(4/13) 2329991416277390 a001 139583862445/192900153618*141422324^(4/13) 2329991416277390 a001 365435296162/505019158607*141422324^(4/13) 2329991416277390 a001 10610209857723/14662949395604*141422324^(4/13) 2329991416277390 a001 225851433717/312119004989*141422324^(4/13) 2329991416277390 a001 86267571272/119218851371*141422324^(4/13) 2329991416277390 a001 32951280099/45537549124*141422324^(4/13) 2329991416277390 a001 12586269025/17393796001*141422324^(4/13) 2329991416277390 a001 4807526976/6643838879*141422324^(4/13) 2329991416277390 a001 1836311903/2537720636*141422324^(4/13) 2329991416277390 a001 1134903170/228826127*228826127^(1/5) 2329991416277390 a001 701408733/969323029*141422324^(4/13) 2329991416277390 a001 34111385/199691526*228826127^(3/8) 2329991416277390 a001 433494437/969323029*141422324^(1/3) 2329991416277390 a001 1836311903/599074578*141422324^(3/13) 2329991416277390 a001 39088169/2139295485799*87403803^(17/19) 2329991416277390 a001 433494437/228826127*228826127^(1/4) 2329991416277390 a001 20365011074/228826127*87403803^(1/19) 2329991416277390 a001 686789568/224056801*141422324^(3/13) 2329991416277390 a001 165580141/228826127*2537720636^(4/15) 2329991416277390 a001 102334155/370248451*17393796001^(2/7) 2329991416277390 a001 165580141/228826127*45537549124^(4/17) 2329991416277390 a001 102334155/370248451*14662949395604^(2/9) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^14/Lucas(41) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^12/Lucas(40) 2329991416277390 a001 165580141/228826127*192900153618^(2/9) 2329991416277390 a001 165580141/228826127*73681302247^(3/13) 2329991416277390 a001 165580141/228826127*10749957122^(1/4) 2329991416277390 a001 102334155/370248451*10749957122^(7/24) 2329991416277390 a001 165580141/228826127*4106118243^(6/23) 2329991416277390 a001 102334155/370248451*4106118243^(7/23) 2329991416277390 a001 165580141/228826127*1568397607^(3/11) 2329991416277390 a001 102334155/370248451*1568397607^(7/22) 2329991416277390 a001 12586269025/4106118243*141422324^(3/13) 2329991416277390 a001 32951280099/10749957122*141422324^(3/13) 2329991416277390 a001 86267571272/28143753123*141422324^(3/13) 2329991416277390 a001 32264490531/10525900321*141422324^(3/13) 2329991416277390 a001 591286729879/192900153618*141422324^(3/13) 2329991416277390 a001 1548008755920/505019158607*141422324^(3/13) 2329991416277390 a001 1515744265389/494493258286*141422324^(3/13) 2329991416277390 a001 2504730781961/817138163596*141422324^(3/13) 2329991416277390 a001 956722026041/312119004989*141422324^(3/13) 2329991416277390 a001 365435296162/119218851371*141422324^(3/13) 2329991416277390 a001 139583862445/45537549124*141422324^(3/13) 2329991416277390 a001 53316291173/17393796001*141422324^(3/13) 2329991416277390 a001 20365011074/6643838879*141422324^(3/13) 2329991416277390 a001 7778742049/2537720636*141422324^(3/13) 2329991416277390 a001 165580141/228826127*599074578^(2/7) 2329991416277390 a001 267914296/370248451*141422324^(4/13) 2329991416277390 a001 102334155/370248451*599074578^(1/3) 2329991416277390 a001 165580141/969323029*141422324^(5/13) 2329991416277390 a001 7778742049/599074578*141422324^(2/13) 2329991416277390 a001 2971215073/969323029*141422324^(3/13) 2329991416277390 a001 102334155/969323029*228826127^(2/5) 2329991416277390 a001 9303105/230701876*228826127^(9/20) 2329991416277390 a004 Fibonacci(42)*Lucas(41)/(1/2+sqrt(5)/2)^70 2329991416277390 a001 102334155/6643838879*228826127^(1/2) 2329991416277390 a001 102334155/17393796001*228826127^(11/20) 2329991416277390 a001 20365011074/1568397607*141422324^(2/13) 2329991416277390 a001 53316291173/4106118243*141422324^(2/13) 2329991416277390 a004 Fibonacci(44)*Lucas(41)/(1/2+sqrt(5)/2)^72 2329991416277390 a001 139583862445/10749957122*141422324^(2/13) 2329991416277390 a001 365435296162/28143753123*141422324^(2/13) 2329991416277390 a001 956722026041/73681302247*141422324^(2/13) 2329991416277390 a001 2504730781961/192900153618*141422324^(2/13) 2329991416277390 a001 10610209857723/817138163596*141422324^(2/13) 2329991416277390 a001 4052739537881/312119004989*141422324^(2/13) 2329991416277390 a001 1548008755920/119218851371*141422324^(2/13) 2329991416277390 a001 591286729879/45537549124*141422324^(2/13) 2329991416277390 a001 7787980473/599786069*141422324^(2/13) 2329991416277390 a001 86267571272/6643838879*141422324^(2/13) 2329991416277390 a001 102334155/45537549124*228826127^(3/5) 2329991416277390 a001 32951280099/2537720636*141422324^(2/13) 2329991416277390 a004 Fibonacci(46)*Lucas(41)/(1/2+sqrt(5)/2)^74 2329991416277390 a004 Fibonacci(48)*Lucas(41)/(1/2+sqrt(5)/2)^76 2329991416277390 a004 Fibonacci(50)*Lucas(41)/(1/2+sqrt(5)/2)^78 2329991416277390 a004 Fibonacci(52)*Lucas(41)/(1/2+sqrt(5)/2)^80 2329991416277390 a004 Fibonacci(54)*Lucas(41)/(1/2+sqrt(5)/2)^82 2329991416277390 a004 Fibonacci(56)*Lucas(41)/(1/2+sqrt(5)/2)^84 2329991416277390 a004 Fibonacci(58)*Lucas(41)/(1/2+sqrt(5)/2)^86 2329991416277390 a004 Fibonacci(60)*Lucas(41)/(1/2+sqrt(5)/2)^88 2329991416277390 a004 Fibonacci(62)*Lucas(41)/(1/2+sqrt(5)/2)^90 2329991416277390 a004 Fibonacci(64)*Lucas(41)/(1/2+sqrt(5)/2)^92 2329991416277390 a004 Fibonacci(66)*Lucas(41)/(1/2+sqrt(5)/2)^94 2329991416277390 a004 Fibonacci(68)*Lucas(41)/(1/2+sqrt(5)/2)^96 2329991416277390 a004 Fibonacci(70)*Lucas(41)/(1/2+sqrt(5)/2)^98 2329991416277390 a004 Fibonacci(72)*Lucas(41)/(1/2+sqrt(5)/2)^100 2329991416277390 a001 2/165580141*(1/2+1/2*5^(1/2))^54 2329991416277390 a004 Fibonacci(71)*Lucas(41)/(1/2+sqrt(5)/2)^99 2329991416277390 a004 Fibonacci(69)*Lucas(41)/(1/2+sqrt(5)/2)^97 2329991416277390 a004 Fibonacci(67)*Lucas(41)/(1/2+sqrt(5)/2)^95 2329991416277390 a004 Fibonacci(65)*Lucas(41)/(1/2+sqrt(5)/2)^93 2329991416277390 a004 Fibonacci(63)*Lucas(41)/(1/2+sqrt(5)/2)^91 2329991416277390 a004 Fibonacci(61)*Lucas(41)/(1/2+sqrt(5)/2)^89 2329991416277390 a004 Fibonacci(59)*Lucas(41)/(1/2+sqrt(5)/2)^87 2329991416277390 a004 Fibonacci(57)*Lucas(41)/(1/2+sqrt(5)/2)^85 2329991416277390 a004 Fibonacci(55)*Lucas(41)/(1/2+sqrt(5)/2)^83 2329991416277390 a004 Fibonacci(53)*Lucas(41)/(1/2+sqrt(5)/2)^81 2329991416277390 a004 Fibonacci(51)*Lucas(41)/(1/2+sqrt(5)/2)^79 2329991416277390 a004 Fibonacci(49)*Lucas(41)/(1/2+sqrt(5)/2)^77 2329991416277390 a004 Fibonacci(47)*Lucas(41)/(1/2+sqrt(5)/2)^75 2329991416277390 a001 14619165/10525900321*228826127^(5/8) 2329991416277390 a004 Fibonacci(45)*Lucas(41)/(1/2+sqrt(5)/2)^73 2329991416277390 a001 39088169/5600748293801*87403803^(18/19) 2329991416277390 a001 102334155/119218851371*228826127^(13/20) 2329991416277390 a001 10983760033/199691526*141422324^(1/13) 2329991416277390 a001 12586269025/969323029*141422324^(2/13) 2329991416277390 a004 Fibonacci(43)*Lucas(41)/(1/2+sqrt(5)/2)^71 2329991416277390 a001 165580141/228826127*228826127^(3/10) 2329991416277390 a001 9303105/28374454999*228826127^(7/10) 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^13/Lucas(42) 2329991416277390 a001 133957148/299537289*73681302247^(1/4) 2329991416277390 a001 7778742049/228826127*87403803^(2/19) 2329991416277390 a001 102334155/370248451*228826127^(7/20) 2329991416277390 a001 102334155/817138163596*228826127^(3/4) 2329991416277390 a001 86267571272/1568397607*141422324^(1/13) 2329991416277390 a001 1134903170/370248451*141422324^(3/13) 2329991416277390 a001 75283811239/1368706081*141422324^(1/13) 2329991416277390 a001 591286729879/10749957122*141422324^(1/13) 2329991416277390 a004 Fibonacci(42)*Lucas(43)/(1/2+sqrt(5)/2)^72 2329991416277390 a001 12585437040/228811001*141422324^(1/13) 2329991416277390 a001 4052739537881/73681302247*141422324^(1/13) 2329991416277390 a001 3536736619241/64300051206*141422324^(1/13) 2329991416277390 a001 6557470319842/119218851371*141422324^(1/13) 2329991416277390 a001 2504730781961/45537549124*141422324^(1/13) 2329991416277390 a001 956722026041/17393796001*141422324^(1/13) 2329991416277390 a001 365435296162/6643838879*141422324^(1/13) 2329991416277390 a001 102334155/2139295485799*228826127^(4/5) 2329991416277390 a001 139583862445/2537720636*141422324^(1/13) 2329991416277390 a001 267914296/1568397607*2537720636^(1/3) 2329991416277390 a001 267914296/1568397607*45537549124^(5/17) 2329991416277390 a001 267914296/1568397607*312119004989^(3/11) 2329991416277390 a001 233802911/199691526*312119004989^(1/5) 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^15/Lucas(44) 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^11/Lucas(42) 2329991416277390 a001 267914296/1568397607*192900153618^(5/18) 2329991416277390 a001 267914296/1568397607*28143753123^(3/10) 2329991416277390 a001 267914296/1568397607*10749957122^(5/16) 2329991416277390 a001 233802911/199691526*1568397607^(1/4) 2329991416277390 a004 Fibonacci(42)*Lucas(45)/(1/2+sqrt(5)/2)^74 2329991416277390 a001 267914296/23725150497407*2537720636^(7/9) 2329991416277390 a001 267914296/9062201101803*2537720636^(11/15) 2329991416277390 a001 267914296/2139295485799*2537720636^(2/3) 2329991416277390 a001 267914296/505019158607*2537720636^(3/5) 2329991416277390 a001 1836311903/599074578*2537720636^(1/5) 2329991416277390 a001 133957148/96450076809*2537720636^(5/9) 2329991416277390 a001 267914296/119218851371*2537720636^(8/15) 2329991416277390 a001 102334155/5600748293801*228826127^(17/20) 2329991416277390 a001 267914296/28143753123*2537720636^(7/15) 2329991416277390 a001 9238424/599786069*2537720636^(4/9) 2329991416277390 a001 267914296/4106118243*45537549124^(1/3) 2329991416277390 a001 1836311903/599074578*45537549124^(3/17) 2329991416277390 a001 1836311903/599074578*14662949395604^(1/7) 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^17/Lucas(46) 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^9/Lucas(42) 2329991416277390 a001 1836311903/599074578*192900153618^(1/6) 2329991416277390 a001 1836311903/599074578*10749957122^(3/16) 2329991416277390 a001 267914296/6643838879*2537720636^(2/5) 2329991416277390 a004 Fibonacci(42)*Lucas(47)/(1/2+sqrt(5)/2)^76 2329991416277390 a001 12586269025/599074578*2537720636^(1/9) 2329991416277390 a001 7778742049/599074578*2537720636^(2/15) 2329991416277390 a001 10983760033/199691526*2537720636^(1/15) 2329991416277390 a001 267084832/33281921*17393796001^(1/7) 2329991416277390 a001 133957148/5374978561*817138163596^(1/3) 2329991416277390 a001 267084832/33281921*14662949395604^(1/9) 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^19/Lucas(48) 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^7/Lucas(42) 2329991416277390 a004 Fibonacci(42)*Lucas(49)/(1/2+sqrt(5)/2)^78 2329991416277390 a001 267914296/28143753123*17393796001^(3/7) 2329991416277390 a001 267914296/23725150497407*17393796001^(5/7) 2329991416277390 a001 66978574/204284540899*17393796001^(4/7) 2329991416277390 a001 267914296/28143753123*45537549124^(7/17) 2329991416277390 a001 12586269025/599074578*312119004989^(1/11) 2329991416277390 a001 267914296/28143753123*14662949395604^(1/3) 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^21/Lucas(50) 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^5/Lucas(42) 2329991416277390 a001 267914296/28143753123*192900153618^(7/18) 2329991416277390 a001 12586269025/599074578*28143753123^(1/10) 2329991416277390 a004 Fibonacci(42)*Lucas(51)/(1/2+sqrt(5)/2)^80 2329991416277390 a001 10946/599074579*45537549124^(2/3) 2329991416277390 a001 267914296/9062201101803*45537549124^(11/17) 2329991416277390 a001 267914296/2139295485799*45537549124^(10/17) 2329991416277390 a001 267914296/505019158607*45537549124^(9/17) 2329991416277390 a001 10983760033/199691526*45537549124^(1/17) 2329991416277390 a001 10983760033/199691526*14662949395604^(1/21) 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^23/Lucas(52) 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^3/Lucas(42) 2329991416277390 a001 267914296/119218851371*45537549124^(8/17) 2329991416277390 a004 Fibonacci(42)*Lucas(53)/(1/2+sqrt(5)/2)^82 2329991416277390 a001 133957148/96450076809*312119004989^(5/11) 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^25/Lucas(54) 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)/Lucas(42) 2329991416277390 a001 133957148/96450076809*3461452808002^(5/12) 2329991416277390 a004 Fibonacci(42)*Lucas(55)/(1/2+sqrt(5)/2)^84 2329991416277390 a001 267914296/23725150497407*312119004989^(7/11) 2329991416277390 a001 267914296/2139295485799*312119004989^(6/11) 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^27/Lucas(56) 2329991416277390 a004 Fibonacci(56)/Lucas(42)/(1/2+sqrt(5)/2) 2329991416277390 a004 Fibonacci(42)*Lucas(57)/(1/2+sqrt(5)/2)^86 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^29/Lucas(58) 2329991416277390 a004 Fibonacci(58)/Lucas(42)/(1/2+sqrt(5)/2)^3 2329991416277390 a001 267914296/1322157322203*1322157322203^(1/2) 2329991416277390 a004 Fibonacci(42)*Lucas(59)/(1/2+sqrt(5)/2)^88 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^31/Lucas(60) 2329991416277390 a004 Fibonacci(60)/Lucas(42)/(1/2+sqrt(5)/2)^5 2329991416277390 a001 133957148/1730726404001*9062201101803^(1/2) 2329991416277390 a004 Fibonacci(42)*Lucas(61)/(1/2+sqrt(5)/2)^90 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^33/Lucas(62) 2329991416277390 a004 Fibonacci(62)/Lucas(42)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(42)*Lucas(63)/(1/2+sqrt(5)/2)^92 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^35/Lucas(64) 2329991416277390 a004 Fibonacci(64)/Lucas(42)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(42)*Lucas(65)/(1/2+sqrt(5)/2)^94 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^37/Lucas(66) 2329991416277390 a004 Fibonacci(66)/Lucas(42)/(1/2+sqrt(5)/2)^11 2329991416277390 a004 Fibonacci(42)*Lucas(67)/(1/2+sqrt(5)/2)^96 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^39/Lucas(68) 2329991416277390 a004 Fibonacci(68)/Lucas(42)/(1/2+sqrt(5)/2)^13 2329991416277390 a004 Fibonacci(42)*Lucas(69)/(1/2+sqrt(5)/2)^98 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^41/Lucas(70) 2329991416277390 a004 Fibonacci(70)/Lucas(42)/(1/2+sqrt(5)/2)^15 2329991416277390 a004 Fibonacci(42)*Lucas(71)/(1/2+sqrt(5)/2)^100 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^43/Lucas(72) 2329991416277390 a004 Fibonacci(72)/Lucas(42)/(1/2+sqrt(5)/2)^17 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^45/Lucas(74) 2329991416277390 a004 Fibonacci(74)/Lucas(42)/(1/2+sqrt(5)/2)^19 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^47/Lucas(76) 2329991416277390 a004 Fibonacci(76)/Lucas(42)/(1/2+sqrt(5)/2)^21 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^49/Lucas(78) 2329991416277390 a004 Fibonacci(78)/Lucas(42)/(1/2+sqrt(5)/2)^23 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^51/Lucas(80) 2329991416277390 a004 Fibonacci(80)/Lucas(42)/(1/2+sqrt(5)/2)^25 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^53/Lucas(82) 2329991416277390 a004 Fibonacci(82)/Lucas(42)/(1/2+sqrt(5)/2)^27 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^55/Lucas(84) 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^57/Lucas(86) 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^59/Lucas(88) 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^61/Lucas(90) 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^63/Lucas(92) 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^65/Lucas(94) 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^67/Lucas(96) 2329991416277390 a004 Fibonacci(21)*Lucas(21)/(1/2+sqrt(5)/2)^29 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^69/Lucas(98) 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^70/Lucas(99) 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^71/Lucas(100) 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^68/Lucas(97) 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^66/Lucas(95) 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^64/Lucas(93) 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^62/Lucas(91) 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^60/Lucas(89) 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^58/Lucas(87) 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^56/Lucas(85) 2329991416277390 a004 Fibonacci(86)/Lucas(42)/(1/2+sqrt(5)/2)^31 2329991416277390 a004 Fibonacci(88)/Lucas(42)/(1/2+sqrt(5)/2)^33 2329991416277390 a004 Fibonacci(90)/Lucas(42)/(1/2+sqrt(5)/2)^35 2329991416277390 a004 Fibonacci(92)/Lucas(42)/(1/2+sqrt(5)/2)^37 2329991416277390 a004 Fibonacci(94)/Lucas(42)/(1/2+sqrt(5)/2)^39 2329991416277390 a004 Fibonacci(96)/Lucas(42)/(1/2+sqrt(5)/2)^41 2329991416277390 a004 Fibonacci(98)/Lucas(42)/(1/2+sqrt(5)/2)^43 2329991416277390 a004 Fibonacci(100)/Lucas(42)/(1/2+sqrt(5)/2)^45 2329991416277390 a004 Fibonacci(97)/Lucas(42)/(1/2+sqrt(5)/2)^42 2329991416277390 a004 Fibonacci(99)/Lucas(42)/(1/2+sqrt(5)/2)^44 2329991416277390 a004 Fibonacci(95)/Lucas(42)/(1/2+sqrt(5)/2)^40 2329991416277390 a004 Fibonacci(93)/Lucas(42)/(1/2+sqrt(5)/2)^38 2329991416277390 a004 Fibonacci(91)/Lucas(42)/(1/2+sqrt(5)/2)^36 2329991416277390 a004 Fibonacci(89)/Lucas(42)/(1/2+sqrt(5)/2)^34 2329991416277390 a004 Fibonacci(87)/Lucas(42)/(1/2+sqrt(5)/2)^32 2329991416277390 a004 Fibonacci(85)/Lucas(42)/(1/2+sqrt(5)/2)^30 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^54/Lucas(83) 2329991416277390 a004 Fibonacci(83)/Lucas(42)/(1/2+sqrt(5)/2)^28 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^52/Lucas(81) 2329991416277390 a004 Fibonacci(81)/Lucas(42)/(1/2+sqrt(5)/2)^26 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^50/Lucas(79) 2329991416277390 a004 Fibonacci(79)/Lucas(42)/(1/2+sqrt(5)/2)^24 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^48/Lucas(77) 2329991416277390 a004 Fibonacci(77)/Lucas(42)/(1/2+sqrt(5)/2)^22 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^46/Lucas(75) 2329991416277390 a004 Fibonacci(75)/Lucas(42)/(1/2+sqrt(5)/2)^20 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^44/Lucas(73) 2329991416277390 a004 Fibonacci(73)/Lucas(42)/(1/2+sqrt(5)/2)^18 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^42/Lucas(71) 2329991416277390 a004 Fibonacci(71)/Lucas(42)/(1/2+sqrt(5)/2)^16 2329991416277390 a004 Fibonacci(42)*Lucas(70)/(1/2+sqrt(5)/2)^99 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^40/Lucas(69) 2329991416277390 a004 Fibonacci(69)/Lucas(42)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(42)*Lucas(68)/(1/2+sqrt(5)/2)^97 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^38/Lucas(67) 2329991416277390 a004 Fibonacci(67)/Lucas(42)/(1/2+sqrt(5)/2)^12 2329991416277390 a004 Fibonacci(42)*Lucas(66)/(1/2+sqrt(5)/2)^95 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^36/Lucas(65) 2329991416277390 a004 Fibonacci(65)/Lucas(42)/(1/2+sqrt(5)/2)^10 2329991416277390 a004 Fibonacci(42)*Lucas(64)/(1/2+sqrt(5)/2)^93 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^34/Lucas(63) 2329991416277390 a004 Fibonacci(63)/Lucas(42)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(42)*Lucas(62)/(1/2+sqrt(5)/2)^91 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^32/Lucas(61) 2329991416277390 a004 Fibonacci(61)/Lucas(42)/(1/2+sqrt(5)/2)^6 2329991416277390 a004 Fibonacci(42)*Lucas(60)/(1/2+sqrt(5)/2)^89 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^30/Lucas(59) 2329991416277390 a004 Fibonacci(59)/Lucas(42)/(1/2+sqrt(5)/2)^4 2329991416277390 a004 Fibonacci(42)*Lucas(58)/(1/2+sqrt(5)/2)^87 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^28/Lucas(57) 2329991416277390 a004 Fibonacci(57)/Lucas(42)/(1/2+sqrt(5)/2)^2 2329991416277390 a004 Fibonacci(42)*Lucas(56)/(1/2+sqrt(5)/2)^85 2329991416277390 a001 267914296/505019158607*192900153618^(1/2) 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^26/Lucas(55) 2329991416277390 a006 5^(1/2)*Fibonacci(55)/Lucas(42)/sqrt(5) 2329991416277390 a001 267914296/2139295485799*192900153618^(5/9) 2329991416277390 a001 267914296/9062201101803*192900153618^(11/18) 2329991416277390 a004 Fibonacci(42)*Lucas(54)/(1/2+sqrt(5)/2)^83 2329991416277390 a001 267914296/119218851371*14662949395604^(8/21) 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^24/Lucas(53) 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^2/Lucas(42) 2329991416277390 a001 267914296/119218851371*192900153618^(4/9) 2329991416277390 a001 267914296/312119004989*73681302247^(1/2) 2329991416277390 a001 267914296/5600748293801*73681302247^(8/13) 2329991416277390 a001 267914296/119218851371*73681302247^(6/13) 2329991416277390 a004 Fibonacci(42)*Lucas(52)/(1/2+sqrt(5)/2)^81 2329991416277390 a001 10983760033/199691526*10749957122^(1/16) 2329991416277390 a001 53316291173/599074578*10749957122^(1/24) 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^22/Lucas(51) 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^4/Lucas(42) 2329991416277390 a001 10182505537/299537289*23725150497407^(1/16) 2329991416277390 a001 10182505537/299537289*73681302247^(1/13) 2329991416277390 a001 133957148/96450076809*28143753123^(1/2) 2329991416277390 a001 267914296/2139295485799*28143753123^(3/5) 2329991416277390 a001 267914296/23725150497407*28143753123^(7/10) 2329991416277390 a001 10182505537/299537289*10749957122^(1/12) 2329991416277390 a004 Fibonacci(42)*Lucas(50)/(1/2+sqrt(5)/2)^79 2329991416277390 a001 267914296/28143753123*10749957122^(7/16) 2329991416277390 a001 53316291173/599074578*4106118243^(1/23) 2329991416277390 a001 7778742049/599074578*45537549124^(2/17) 2329991416277390 a001 7778742049/599074578*14662949395604^(2/21) 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^20/Lucas(49) 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^6/Lucas(42) 2329991416277390 a001 9238424/599786069*23725150497407^(5/16) 2329991416277390 a001 9238424/599786069*505019158607^(5/14) 2329991416277390 a001 9238424/599786069*73681302247^(5/13) 2329991416277390 a001 9238424/599786069*28143753123^(2/5) 2329991416277390 a001 7778742049/599074578*10749957122^(1/8) 2329991416277390 a001 267914296/119218851371*10749957122^(1/2) 2329991416277390 a001 66978574/11384387281*10749957122^(11/24) 2329991416277390 a001 53316291173/969323029*141422324^(1/13) 2329991416277390 a001 267914296/312119004989*10749957122^(13/24) 2329991416277390 a001 267914296/505019158607*10749957122^(9/16) 2329991416277390 a001 66978574/204284540899*10749957122^(7/12) 2329991416277390 a001 267914296/2139295485799*10749957122^(5/8) 2329991416277390 a001 10182505537/299537289*4106118243^(2/23) 2329991416277390 a001 267914296/5600748293801*10749957122^(2/3) 2329991416277390 a001 267914296/9062201101803*10749957122^(11/16) 2329991416277390 a001 10946/599074579*10749957122^(17/24) 2329991416277390 a001 9238424/599786069*10749957122^(5/12) 2329991416277390 a004 Fibonacci(42)*Lucas(48)/(1/2+sqrt(5)/2)^77 2329991416277390 a001 7778742049/599074578*4106118243^(3/23) 2329991416277390 a001 53316291173/599074578*1568397607^(1/22) 2329991416277390 a001 267914296/6643838879*45537549124^(6/17) 2329991416277390 a001 267914296/6643838879*14662949395604^(2/7) 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^18/Lucas(47) 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^8/Lucas(42) 2329991416277390 a001 2971215073/599074578*23725150497407^(1/8) 2329991416277390 a001 267914296/6643838879*192900153618^(1/3) 2329991416277390 a001 2971215073/599074578*73681302247^(2/13) 2329991416277390 a001 2971215073/599074578*10749957122^(1/6) 2329991416277390 a001 267914296/6643838879*10749957122^(3/8) 2329991416277390 a001 66978574/11384387281*4106118243^(11/23) 2329991416277390 a001 9238424/599786069*4106118243^(10/23) 2329991416277390 a001 267914296/73681302247*4106118243^(1/2) 2329991416277390 a001 267914296/119218851371*4106118243^(12/23) 2329991416277390 a001 2971215073/599074578*4106118243^(4/23) 2329991416277390 a001 267914296/312119004989*4106118243^(13/23) 2329991416277390 a001 66978574/204284540899*4106118243^(14/23) 2329991416277390 a001 10182505537/299537289*1568397607^(1/11) 2329991416277390 a001 267914296/2139295485799*4106118243^(15/23) 2329991416277390 a001 267914296/5600748293801*4106118243^(16/23) 2329991416277390 a001 10946/599074579*4106118243^(17/23) 2329991416277390 a001 267914296/6643838879*4106118243^(9/23) 2329991416277390 a001 7778742049/599074578*1568397607^(3/22) 2329991416277390 a004 Fibonacci(42)*Lucas(46)/(1/2+sqrt(5)/2)^75 2329991416277390 a001 2971215073/599074578*1568397607^(2/11) 2329991416277390 a001 567451585/299537289*2537720636^(2/9) 2329991416277390 a001 53316291173/599074578*599074578^(1/21) 2329991416277390 a001 567451585/299537289*312119004989^(2/11) 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^16/Lucas(45) 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^10/Lucas(42) 2329991416277390 a001 66978574/634430159*73681302247^(4/13) 2329991416277390 a001 567451585/299537289*28143753123^(1/5) 2329991416277390 a001 567451585/299537289*10749957122^(5/24) 2329991416277390 a001 66978574/634430159*10749957122^(1/3) 2329991416277390 a001 567451585/299537289*4106118243^(5/23) 2329991416277390 a001 66978574/634430159*4106118243^(8/23) 2329991416277390 a001 9238424/599786069*1568397607^(5/11) 2329991416277390 a001 267914296/6643838879*1568397607^(9/22) 2329991416277390 a001 10983760033/199691526*599074578^(1/14) 2329991416277390 a001 66978574/11384387281*1568397607^(1/2) 2329991416277390 a001 267914296/119218851371*1568397607^(6/11) 2329991416277390 a001 267914296/312119004989*1568397607^(13/22) 2329991416277390 a001 567451585/299537289*1568397607^(5/22) 2329991416277390 a001 66978574/204284540899*1568397607^(7/11) 2329991416277390 a001 10182505537/299537289*599074578^(2/21) 2329991416277390 a001 267914296/2139295485799*1568397607^(15/22) 2329991416277390 a001 267914296/5600748293801*1568397607^(8/11) 2329991416277390 a001 66978574/634430159*1568397607^(4/11) 2329991416277390 a001 267914296/9062201101803*1568397607^(3/4) 2329991416277390 a001 10946/599074579*1568397607^(17/22) 2329991416277390 a001 34111385/3020733700601*228826127^(7/8) 2329991416277390 a001 7778742049/599074578*599074578^(1/7) 2329991416277390 a004 Fibonacci(42)*Lucas(44)/(1/2+sqrt(5)/2)^73 2329991416277390 a001 267084832/33281921*599074578^(1/6) 2329991416277390 a001 1836311903/599074578*599074578^(3/14) 2329991416277390 a001 2971215073/599074578*599074578^(4/21) 2329991416277390 a001 267914296/1568397607*599074578^(5/14) 2329991416277390 a001 165580141/370248451*141422324^(1/3) 2329991416277390 a001 567451585/299537289*599074578^(5/21) 2329991416277390 a001 102334155/14662949395604*228826127^(9/10) 2329991416277390 a001 53316291173/599074578*228826127^(1/20) 2329991416277390 a001 433494437/599074578*2537720636^(4/15) 2329991416277390 a001 267914296/969323029*17393796001^(2/7) 2329991416277390 a001 433494437/599074578*45537549124^(4/17) 2329991416277390 a001 267914296/969323029*14662949395604^(2/9) 2329991416277390 a001 433494437/599074578*14662949395604^(4/21) 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^14/Lucas(43) 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^12/Lucas(42) 2329991416277390 a001 433494437/599074578*73681302247^(3/13) 2329991416277390 a001 433494437/599074578*10749957122^(1/4) 2329991416277390 a001 267914296/969323029*10749957122^(7/24) 2329991416277390 a001 433494437/599074578*4106118243^(6/23) 2329991416277390 a001 267914296/969323029*4106118243^(7/23) 2329991416277390 a001 433494437/599074578*1568397607^(3/11) 2329991416277390 a001 267914296/969323029*1568397607^(7/22) 2329991416277390 a001 66978574/634430159*599074578^(8/21) 2329991416277390 a001 267914296/6643838879*599074578^(3/7) 2329991416277390 a004 Fibonacci(44)*Lucas(43)/(1/2+sqrt(5)/2)^74 2329991416277390 a001 9238424/599786069*599074578^(10/21) 2329991416277390 a001 267914296/28143753123*599074578^(1/2) 2329991416277390 a001 66978574/11384387281*599074578^(11/21) 2329991416277390 a001 267914296/119218851371*599074578^(4/7) 2329991416277390 a004 Fibonacci(46)*Lucas(43)/(1/2+sqrt(5)/2)^76 2329991416277390 a004 Fibonacci(48)*Lucas(43)/(1/2+sqrt(5)/2)^78 2329991416277390 a004 Fibonacci(50)*Lucas(43)/(1/2+sqrt(5)/2)^80 2329991416277390 a004 Fibonacci(52)*Lucas(43)/(1/2+sqrt(5)/2)^82 2329991416277390 a004 Fibonacci(54)*Lucas(43)/(1/2+sqrt(5)/2)^84 2329991416277390 a004 Fibonacci(56)*Lucas(43)/(1/2+sqrt(5)/2)^86 2329991416277390 a004 Fibonacci(58)*Lucas(43)/(1/2+sqrt(5)/2)^88 2329991416277390 a004 Fibonacci(60)*Lucas(43)/(1/2+sqrt(5)/2)^90 2329991416277390 a004 Fibonacci(62)*Lucas(43)/(1/2+sqrt(5)/2)^92 2329991416277390 a004 Fibonacci(64)*Lucas(43)/(1/2+sqrt(5)/2)^94 2329991416277390 a004 Fibonacci(66)*Lucas(43)/(1/2+sqrt(5)/2)^96 2329991416277390 a004 Fibonacci(68)*Lucas(43)/(1/2+sqrt(5)/2)^98 2329991416277390 a004 Fibonacci(70)*Lucas(43)/(1/2+sqrt(5)/2)^100 2329991416277390 a001 2/433494437*(1/2+1/2*5^(1/2))^56 2329991416277390 a004 Fibonacci(69)*Lucas(43)/(1/2+sqrt(5)/2)^99 2329991416277390 a004 Fibonacci(67)*Lucas(43)/(1/2+sqrt(5)/2)^97 2329991416277390 a004 Fibonacci(65)*Lucas(43)/(1/2+sqrt(5)/2)^95 2329991416277390 a004 Fibonacci(63)*Lucas(43)/(1/2+sqrt(5)/2)^93 2329991416277390 a004 Fibonacci(61)*Lucas(43)/(1/2+sqrt(5)/2)^91 2329991416277390 a004 Fibonacci(59)*Lucas(43)/(1/2+sqrt(5)/2)^89 2329991416277390 a004 Fibonacci(57)*Lucas(43)/(1/2+sqrt(5)/2)^87 2329991416277390 a004 Fibonacci(55)*Lucas(43)/(1/2+sqrt(5)/2)^85 2329991416277390 a004 Fibonacci(53)*Lucas(43)/(1/2+sqrt(5)/2)^83 2329991416277390 a004 Fibonacci(51)*Lucas(43)/(1/2+sqrt(5)/2)^81 2329991416277390 a001 267914296/312119004989*599074578^(13/21) 2329991416277390 a004 Fibonacci(49)*Lucas(43)/(1/2+sqrt(5)/2)^79 2329991416277390 a004 Fibonacci(47)*Lucas(43)/(1/2+sqrt(5)/2)^77 2329991416277390 a001 267914296/505019158607*599074578^(9/14) 2329991416277390 a001 66978574/204284540899*599074578^(2/3) 2329991416277390 a001 433494437/599074578*599074578^(2/7) 2329991416277390 a004 Fibonacci(45)*Lucas(43)/(1/2+sqrt(5)/2)^75 2329991416277390 a001 10182505537/299537289*228826127^(1/10) 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^13/Lucas(44) 2329991416277390 a001 701408733/1568397607*73681302247^(1/4) 2329991416277390 a001 267914296/2139295485799*599074578^(5/7) 2329991416277390 a001 267914296/969323029*599074578^(1/3) 2329991416277390 a001 267914296/5600748293801*599074578^(16/21) 2329991416277390 a001 267914296/9062201101803*599074578^(11/14) 2329991416277390 a004 Fibonacci(44)*Lucas(45)/(1/2+sqrt(5)/2)^76 2329991416277390 a001 10946/599074579*599074578^(17/21) 2329991416277390 a001 701408733/23725150497407*2537720636^(11/15) 2329991416277390 a001 233802911/1368706081*2537720636^(1/3) 2329991416277390 a001 701408733/5600748293801*2537720636^(2/3) 2329991416277390 a001 233802911/440719107401*2537720636^(3/5) 2329991416277390 a001 701408733/505019158607*2537720636^(5/9) 2329991416277390 a001 3524667/1568437211*2537720636^(8/15) 2329991416277390 a001 701408733/73681302247*2537720636^(7/15) 2329991416277390 a001 701408733/45537549124*2537720636^(4/9) 2329991416277390 a001 233802911/1368706081*45537549124^(5/17) 2329991416277390 a001 233802911/1368706081*312119004989^(3/11) 2329991416277390 a001 1836311903/1568397607*312119004989^(1/5) 2329991416277390 a001 233802911/1368706081*14662949395604^(5/21) 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^15/Lucas(46) 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^11/Lucas(44) 2329991416277390 a001 233802911/1368706081*192900153618^(5/18) 2329991416277390 a001 233802911/1368706081*28143753123^(3/10) 2329991416277390 a001 701408733/17393796001*2537720636^(2/5) 2329991416277390 a001 267914296/23725150497407*599074578^(5/6) 2329991416277390 a001 233802911/1368706081*10749957122^(5/16) 2329991416277390 a001 686789568/224056801*2537720636^(1/5) 2329991416277390 a004 Fibonacci(44)*Lucas(47)/(1/2+sqrt(5)/2)^78 2329991416277390 a001 20365011074/1568397607*2537720636^(2/15) 2329991416277390 a001 32951280099/1568397607*2537720636^(1/9) 2329991416277390 a001 2971215073/1568397607*2537720636^(2/9) 2329991416277390 a001 86267571272/1568397607*2537720636^(1/15) 2329991416277390 a001 701408733/10749957122*45537549124^(1/3) 2329991416277390 a001 686789568/224056801*45537549124^(3/17) 2329991416277390 a001 686789568/224056801*14662949395604^(1/7) 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^17/Lucas(48) 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^9/Lucas(44) 2329991416277390 a001 686789568/224056801*192900153618^(1/6) 2329991416277390 a001 686789568/224056801*10749957122^(3/16) 2329991416277390 a004 Fibonacci(44)*Lucas(49)/(1/2+sqrt(5)/2)^80 2329991416277390 a001 701408733/2139295485799*17393796001^(4/7) 2329991416277390 a001 12586269025/1568397607*17393796001^(1/7) 2329991416277390 a001 701408733/73681302247*17393796001^(3/7) 2329991416277390 a001 12586269025/1568397607*14662949395604^(1/9) 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^19/Lucas(50) 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^7/Lucas(44) 2329991416277390 a004 Fibonacci(44)*Lucas(51)/(1/2+sqrt(5)/2)^82 2329991416277390 a001 701408733/73681302247*45537549124^(7/17) 2329991416277390 a001 701408733/23725150497407*45537549124^(11/17) 2329991416277390 a001 701408733/5600748293801*45537549124^(10/17) 2329991416277390 a001 233802911/440719107401*45537549124^(9/17) 2329991416277390 a001 3524667/1568437211*45537549124^(8/17) 2329991416277390 a001 32951280099/1568397607*312119004989^(1/11) 2329991416277390 a001 701408733/73681302247*14662949395604^(1/3) 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^21/Lucas(52) 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^5/Lucas(44) 2329991416277390 a001 701408733/73681302247*192900153618^(7/18) 2329991416277390 a004 Fibonacci(44)*Lucas(53)/(1/2+sqrt(5)/2)^84 2329991416277390 a001 32951280099/1568397607*28143753123^(1/10) 2329991416277390 a001 86267571272/1568397607*45537549124^(1/17) 2329991416277390 a001 86267571272/1568397607*14662949395604^(1/21) 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^23/Lucas(54) 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^3/Lucas(44) 2329991416277390 a001 86267571272/1568397607*192900153618^(1/18) 2329991416277390 a004 Fibonacci(44)*Lucas(55)/(1/2+sqrt(5)/2)^86 2329991416277390 a001 701408733/505019158607*312119004989^(5/11) 2329991416277390 a001 701408733/23725150497407*312119004989^(3/5) 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^25/Lucas(56) 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)/Lucas(44) 2329991416277390 a004 Fibonacci(44)*Lucas(57)/(1/2+sqrt(5)/2)^88 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^27/Lucas(58) 2329991416277390 a004 Fibonacci(58)/Lucas(44)/(1/2+sqrt(5)/2) 2329991416277390 a004 Fibonacci(44)*Lucas(59)/(1/2+sqrt(5)/2)^90 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^29/Lucas(60) 2329991416277390 a004 Fibonacci(60)/Lucas(44)/(1/2+sqrt(5)/2)^3 2329991416277390 a004 Fibonacci(44)*Lucas(61)/(1/2+sqrt(5)/2)^92 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^31/Lucas(62) 2329991416277390 a004 Fibonacci(62)/Lucas(44)/(1/2+sqrt(5)/2)^5 2329991416277390 a001 233802911/3020733700601*9062201101803^(1/2) 2329991416277390 a004 Fibonacci(44)*Lucas(63)/(1/2+sqrt(5)/2)^94 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^33/Lucas(64) 2329991416277390 a004 Fibonacci(64)/Lucas(44)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(44)*Lucas(65)/(1/2+sqrt(5)/2)^96 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^35/Lucas(66) 2329991416277390 a004 Fibonacci(66)/Lucas(44)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(44)*Lucas(67)/(1/2+sqrt(5)/2)^98 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^37/Lucas(68) 2329991416277390 a004 Fibonacci(68)/Lucas(44)/(1/2+sqrt(5)/2)^11 2329991416277390 a004 Fibonacci(44)*Lucas(69)/(1/2+sqrt(5)/2)^100 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^39/Lucas(70) 2329991416277390 a004 Fibonacci(70)/Lucas(44)/(1/2+sqrt(5)/2)^13 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^41/Lucas(72) 2329991416277390 a004 Fibonacci(72)/Lucas(44)/(1/2+sqrt(5)/2)^15 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^43/Lucas(74) 2329991416277390 a004 Fibonacci(74)/Lucas(44)/(1/2+sqrt(5)/2)^17 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^45/Lucas(76) 2329991416277390 a004 Fibonacci(76)/Lucas(44)/(1/2+sqrt(5)/2)^19 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^47/Lucas(78) 2329991416277390 a004 Fibonacci(78)/Lucas(44)/(1/2+sqrt(5)/2)^21 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^49/Lucas(80) 2329991416277390 a004 Fibonacci(80)/Lucas(44)/(1/2+sqrt(5)/2)^23 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^51/Lucas(82) 2329991416277390 a004 Fibonacci(82)/Lucas(44)/(1/2+sqrt(5)/2)^25 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^53/Lucas(84) 2329991416277390 a004 Fibonacci(84)/Lucas(44)/(1/2+sqrt(5)/2)^27 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^55/Lucas(86) 2329991416277390 a004 Fibonacci(86)/Lucas(44)/(1/2+sqrt(5)/2)^29 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^57/Lucas(88) 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^59/Lucas(90) 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^61/Lucas(92) 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^63/Lucas(94) 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^65/Lucas(96) 2329991416277390 a004 Fibonacci(22)*Lucas(22)/(1/2+sqrt(5)/2)^31 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^67/Lucas(98) 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^68/Lucas(99) 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^69/Lucas(100) 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^66/Lucas(97) 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^64/Lucas(95) 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^62/Lucas(93) 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^60/Lucas(91) 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^58/Lucas(89) 2329991416277390 a004 Fibonacci(90)/Lucas(44)/(1/2+sqrt(5)/2)^33 2329991416277390 a004 Fibonacci(92)/Lucas(44)/(1/2+sqrt(5)/2)^35 2329991416277390 a004 Fibonacci(94)/Lucas(44)/(1/2+sqrt(5)/2)^37 2329991416277390 a004 Fibonacci(96)/Lucas(44)/(1/2+sqrt(5)/2)^39 2329991416277390 a004 Fibonacci(98)/Lucas(44)/(1/2+sqrt(5)/2)^41 2329991416277390 a004 Fibonacci(100)/Lucas(44)/(1/2+sqrt(5)/2)^43 2329991416277390 a004 Fibonacci(97)/Lucas(44)/(1/2+sqrt(5)/2)^40 2329991416277390 a004 Fibonacci(99)/Lucas(44)/(1/2+sqrt(5)/2)^42 2329991416277390 a004 Fibonacci(95)/Lucas(44)/(1/2+sqrt(5)/2)^38 2329991416277390 a004 Fibonacci(93)/Lucas(44)/(1/2+sqrt(5)/2)^36 2329991416277390 a004 Fibonacci(91)/Lucas(44)/(1/2+sqrt(5)/2)^34 2329991416277390 a004 Fibonacci(89)/Lucas(44)/(1/2+sqrt(5)/2)^32 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^56/Lucas(87) 2329991416277390 a004 Fibonacci(87)/Lucas(44)/(1/2+sqrt(5)/2)^30 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^54/Lucas(85) 2329991416277390 a004 Fibonacci(85)/Lucas(44)/(1/2+sqrt(5)/2)^28 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^52/Lucas(83) 2329991416277390 a004 Fibonacci(83)/Lucas(44)/(1/2+sqrt(5)/2)^26 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^50/Lucas(81) 2329991416277390 a004 Fibonacci(81)/Lucas(44)/(1/2+sqrt(5)/2)^24 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^48/Lucas(79) 2329991416277390 a004 Fibonacci(79)/Lucas(44)/(1/2+sqrt(5)/2)^22 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^46/Lucas(77) 2329991416277390 a004 Fibonacci(77)/Lucas(44)/(1/2+sqrt(5)/2)^20 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^44/Lucas(75) 2329991416277390 a004 Fibonacci(75)/Lucas(44)/(1/2+sqrt(5)/2)^18 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^42/Lucas(73) 2329991416277390 a004 Fibonacci(73)/Lucas(44)/(1/2+sqrt(5)/2)^16 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^40/Lucas(71) 2329991416277390 a004 Fibonacci(71)/Lucas(44)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^38/Lucas(69) 2329991416277390 a004 Fibonacci(69)/Lucas(44)/(1/2+sqrt(5)/2)^12 2329991416277390 a004 Fibonacci(44)*Lucas(68)/(1/2+sqrt(5)/2)^99 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^36/Lucas(67) 2329991416277390 a004 Fibonacci(67)/Lucas(44)/(1/2+sqrt(5)/2)^10 2329991416277390 a004 Fibonacci(44)*Lucas(66)/(1/2+sqrt(5)/2)^97 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^34/Lucas(65) 2329991416277390 a004 Fibonacci(65)/Lucas(44)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(44)*Lucas(64)/(1/2+sqrt(5)/2)^95 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^32/Lucas(63) 2329991416277390 a004 Fibonacci(63)/Lucas(44)/(1/2+sqrt(5)/2)^6 2329991416277390 a004 Fibonacci(44)*Lucas(62)/(1/2+sqrt(5)/2)^93 2329991416277390 a001 701408733/5600748293801*14662949395604^(10/21) 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^30/Lucas(61) 2329991416277390 a004 Fibonacci(61)/Lucas(44)/(1/2+sqrt(5)/2)^4 2329991416277390 a004 Fibonacci(44)*Lucas(60)/(1/2+sqrt(5)/2)^91 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^28/Lucas(59) 2329991416277390 a004 Fibonacci(59)/Lucas(44)/(1/2+sqrt(5)/2)^2 2329991416277390 a004 Fibonacci(44)*Lucas(58)/(1/2+sqrt(5)/2)^89 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^26/Lucas(57) 2329991416277390 a004 Fibonacci(44)*Lucas(56)/(1/2+sqrt(5)/2)^87 2329991416277390 a001 3524667/1568437211*14662949395604^(8/21) 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^24/Lucas(55) 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^2/Lucas(44) 2329991416277390 a001 233802911/440719107401*192900153618^(1/2) 2329991416277390 a001 701408733/23725150497407*192900153618^(11/18) 2329991416277390 a001 3524667/1568437211*192900153618^(4/9) 2329991416277390 a004 Fibonacci(44)*Lucas(54)/(1/2+sqrt(5)/2)^85 2329991416277390 a001 701408733/119218851371*312119004989^(2/5) 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^22/Lucas(53) 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^4/Lucas(44) 2329991416277390 a001 53316291173/1568397607*23725150497407^(1/16) 2329991416277390 a001 53316291173/1568397607*73681302247^(1/13) 2329991416277390 a001 701408733/817138163596*73681302247^(1/2) 2329991416277390 a001 3524667/1568437211*73681302247^(6/13) 2329991416277390 a001 701408733/2139295485799*73681302247^(7/13) 2329991416277390 a001 701408733/14662949395604*73681302247^(8/13) 2329991416277390 a004 Fibonacci(44)*Lucas(52)/(1/2+sqrt(5)/2)^83 2329991416277390 a001 139583862445/1568397607*10749957122^(1/24) 2329991416277390 a001 20365011074/1568397607*45537549124^(2/17) 2329991416277390 a001 4807526976/370248451*141422324^(2/13) 2329991416277390 a001 20365011074/1568397607*14662949395604^(2/21) 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^20/Lucas(51) 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^6/Lucas(44) 2329991416277390 a001 701408733/45537549124*23725150497407^(5/16) 2329991416277390 a001 701408733/45537549124*505019158607^(5/14) 2329991416277390 a001 86267571272/1568397607*10749957122^(1/16) 2329991416277390 a001 701408733/45537549124*73681302247^(5/13) 2329991416277390 a001 701408733/505019158607*28143753123^(1/2) 2329991416277390 a001 701408733/5600748293801*28143753123^(3/5) 2329991416277390 a001 53316291173/1568397607*10749957122^(1/12) 2329991416277390 a001 701408733/45537549124*28143753123^(2/5) 2329991416277390 a004 Fibonacci(44)*Lucas(50)/(1/2+sqrt(5)/2)^81 2329991416277390 a001 20365011074/1568397607*10749957122^(1/8) 2329991416277390 a001 139583862445/1568397607*4106118243^(1/23) 2329991416277390 a001 701408733/17393796001*45537549124^(6/17) 2329991416277390 a001 701408733/17393796001*14662949395604^(2/7) 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^18/Lucas(49) 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^8/Lucas(44) 2329991416277390 a001 701408733/17393796001*192900153618^(1/3) 2329991416277390 a001 7778742049/1568397607*73681302247^(2/13) 2329991416277390 a001 701408733/73681302247*10749957122^(7/16) 2329991416277390 a001 701408733/119218851371*10749957122^(11/24) 2329991416277390 a001 701408733/45537549124*10749957122^(5/12) 2329991416277390 a001 3524667/1568437211*10749957122^(1/2) 2329991416277390 a001 701408733/817138163596*10749957122^(13/24) 2329991416277390 a001 7778742049/1568397607*10749957122^(1/6) 2329991416277390 a001 233802911/440719107401*10749957122^(9/16) 2329991416277390 a001 701408733/2139295485799*10749957122^(7/12) 2329991416277390 a001 53316291173/1568397607*4106118243^(2/23) 2329991416277390 a001 701408733/5600748293801*10749957122^(5/8) 2329991416277390 a001 701408733/14662949395604*10749957122^(2/3) 2329991416277390 a001 701408733/23725150497407*10749957122^(11/16) 2329991416277390 a001 12586269025/599074578*228826127^(1/8) 2329991416277390 a001 701408733/17393796001*10749957122^(3/8) 2329991416277390 a001 20365011074/1568397607*4106118243^(3/23) 2329991416277390 a004 Fibonacci(44)*Lucas(48)/(1/2+sqrt(5)/2)^79 2329991416277390 a001 7778742049/1568397607*4106118243^(4/23) 2329991416277390 a001 139583862445/1568397607*1568397607^(1/22) 2329991416277390 a001 2971215073/1568397607*312119004989^(2/11) 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^16/Lucas(47) 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^10/Lucas(44) 2329991416277390 a001 701408733/6643838879*23725150497407^(1/4) 2329991416277390 a001 701408733/6643838879*73681302247^(4/13) 2329991416277390 a001 2971215073/1568397607*28143753123^(1/5) 2329991416277390 a001 2971215073/1568397607*10749957122^(5/24) 2329991416277390 a001 701408733/6643838879*10749957122^(1/3) 2329991416277390 a001 701408733/45537549124*4106118243^(10/23) 2329991416277390 a001 701408733/17393796001*4106118243^(9/23) 2329991416277390 a001 701408733/119218851371*4106118243^(11/23) 2329991416277390 a001 233802911/64300051206*4106118243^(1/2) 2329991416277390 a001 3524667/1568437211*4106118243^(12/23) 2329991416277390 a001 701408733/817138163596*4106118243^(13/23) 2329991416277390 a001 2971215073/1568397607*4106118243^(5/23) 2329991416277390 a001 701408733/2139295485799*4106118243^(14/23) 2329991416277390 a001 53316291173/1568397607*1568397607^(1/11) 2329991416277390 a001 701408733/5600748293801*4106118243^(15/23) 2329991416277390 a001 701408733/14662949395604*4106118243^(16/23) 2329991416277390 a001 1836311903/1568397607*1568397607^(1/4) 2329991416277390 a001 701408733/6643838879*4106118243^(8/23) 2329991416277390 a001 20365011074/1568397607*1568397607^(3/22) 2329991416277390 a004 Fibonacci(44)*Lucas(46)/(1/2+sqrt(5)/2)^77 2329991416277390 a001 7778742049/1568397607*1568397607^(2/11) 2329991416277390 a001 1134903170/1568397607*2537720636^(4/15) 2329991416277390 a001 2971215073/1568397607*1568397607^(5/22) 2329991416277390 a001 139583862445/1568397607*599074578^(1/21) 2329991416277390 a001 701408733/2537720636*17393796001^(2/7) 2329991416277390 a001 1134903170/1568397607*45537549124^(4/17) 2329991416277390 a001 1134903170/1568397607*817138163596^(4/19) 2329991416277390 a001 1134903170/1568397607*14662949395604^(4/21) 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^14/Lucas(45) 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^12/Lucas(44) 2329991416277390 a001 1134903170/1568397607*192900153618^(2/9) 2329991416277390 a001 1134903170/1568397607*73681302247^(3/13) 2329991416277390 a001 1134903170/1568397607*10749957122^(1/4) 2329991416277390 a001 701408733/2537720636*10749957122^(7/24) 2329991416277390 a001 701408733/17393796001*1568397607^(9/22) 2329991416277390 a001 701408733/6643838879*1568397607^(4/11) 2329991416277390 a001 1134903170/1568397607*4106118243^(6/23) 2329991416277390 a001 701408733/2537720636*4106118243^(7/23) 2329991416277390 a001 701408733/45537549124*1568397607^(5/11) 2329991416277390 a004 Fibonacci(46)*Lucas(45)/(1/2+sqrt(5)/2)^78 2329991416277390 a001 86267571272/1568397607*599074578^(1/14) 2329991416277390 a001 701408733/119218851371*1568397607^(1/2) 2329991416277390 a001 3524667/1568437211*1568397607^(6/11) 2329991416277390 a001 701408733/817138163596*1568397607^(13/22) 2329991416277390 a004 Fibonacci(48)*Lucas(45)/(1/2+sqrt(5)/2)^80 2329991416277390 a001 1836311903/14662949395604*2537720636^(2/3) 2329991416277390 a004 Fibonacci(50)*Lucas(45)/(1/2+sqrt(5)/2)^82 2329991416277390 a004 Fibonacci(52)*Lucas(45)/(1/2+sqrt(5)/2)^84 2329991416277390 a004 Fibonacci(54)*Lucas(45)/(1/2+sqrt(5)/2)^86 2329991416277390 a004 Fibonacci(56)*Lucas(45)/(1/2+sqrt(5)/2)^88 2329991416277390 a004 Fibonacci(58)*Lucas(45)/(1/2+sqrt(5)/2)^90 2329991416277390 a004 Fibonacci(60)*Lucas(45)/(1/2+sqrt(5)/2)^92 2329991416277390 a004 Fibonacci(62)*Lucas(45)/(1/2+sqrt(5)/2)^94 2329991416277390 a004 Fibonacci(64)*Lucas(45)/(1/2+sqrt(5)/2)^96 2329991416277390 a004 Fibonacci(66)*Lucas(45)/(1/2+sqrt(5)/2)^98 2329991416277390 a004 Fibonacci(68)*Lucas(45)/(1/2+sqrt(5)/2)^100 2329991416277390 a001 1/567451585*(1/2+1/2*5^(1/2))^58 2329991416277390 a004 Fibonacci(67)*Lucas(45)/(1/2+sqrt(5)/2)^99 2329991416277390 a004 Fibonacci(65)*Lucas(45)/(1/2+sqrt(5)/2)^97 2329991416277390 a004 Fibonacci(63)*Lucas(45)/(1/2+sqrt(5)/2)^95 2329991416277390 a004 Fibonacci(61)*Lucas(45)/(1/2+sqrt(5)/2)^93 2329991416277390 a004 Fibonacci(59)*Lucas(45)/(1/2+sqrt(5)/2)^91 2329991416277390 a004 Fibonacci(57)*Lucas(45)/(1/2+sqrt(5)/2)^89 2329991416277390 a004 Fibonacci(55)*Lucas(45)/(1/2+sqrt(5)/2)^87 2329991416277390 a004 Fibonacci(53)*Lucas(45)/(1/2+sqrt(5)/2)^85 2329991416277390 a004 Fibonacci(51)*Lucas(45)/(1/2+sqrt(5)/2)^83 2329991416277390 a001 1836311903/3461452808002*2537720636^(3/5) 2329991416277390 a004 Fibonacci(49)*Lucas(45)/(1/2+sqrt(5)/2)^81 2329991416277390 a001 701408733/2139295485799*1568397607^(7/11) 2329991416277390 a001 1836311903/1322157322203*2537720636^(5/9) 2329991416277390 a001 1836311903/817138163596*2537720636^(8/15) 2329991416277390 a001 53316291173/1568397607*599074578^(2/21) 2329991416277390 a001 1134903170/1568397607*1568397607^(3/11) 2329991416277390 a004 Fibonacci(47)*Lucas(45)/(1/2+sqrt(5)/2)^79 2329991416277390 a001 1836311903/192900153618*2537720636^(7/15) 2329991416277390 a001 701408733/5600748293801*1568397607^(15/22) 2329991416277390 a001 1836311903/119218851371*2537720636^(4/9) 2329991416277390 a001 701408733/2537720636*1568397607^(7/22) 2329991416277390 a001 1836311903/45537549124*2537720636^(2/5) 2329991416277390 a001 1836311903/10749957122*2537720636^(1/3) 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^13/Lucas(46) 2329991416277390 a001 1836311903/4106118243*73681302247^(1/4) 2329991416277390 a001 701408733/14662949395604*1568397607^(8/11) 2329991416277390 a001 1602508992/3020733700601*2537720636^(3/5) 2329991416277390 a001 701408733/23725150497407*1568397607^(3/4) 2329991416277390 a001 14930208/10749853441*2537720636^(5/9) 2329991416277390 a001 12586269025/23725150497407*2537720636^(3/5) 2329991416277390 a001 12586269025/4106118243*2537720636^(1/5) 2329991416277390 a001 4807526976/2139295485799*2537720636^(8/15) 2329991416277390 a001 7778742049/4106118243*2537720636^(2/9) 2329991416277390 a001 7778742049/14662949395604*2537720636^(3/5) 2329991416277390 a001 12586269025/9062201101803*2537720636^(5/9) 2329991416277390 a001 32951280099/23725150497407*2537720636^(5/9) 2329991416277390 a001 10182505537/7331474697802*2537720636^(5/9) 2329991416277390 a001 12586269025/5600748293801*2537720636^(8/15) 2329991416277390 a001 32951280099/14662949395604*2537720636^(8/15) 2329991416277390 a001 7778742049/5600748293801*2537720636^(5/9) 2329991416277390 a001 53316291173/23725150497407*2537720636^(8/15) 2329991416277390 a001 20365011074/9062201101803*2537720636^(8/15) 2329991416277390 a004 Fibonacci(46)*Lucas(47)/(1/2+sqrt(5)/2)^80 2329991416277390 a001 102287808/10745088481*2537720636^(7/15) 2329991416277390 a001 2971215073/23725150497407*2537720636^(2/3) 2329991416277390 a001 53316291173/4106118243*2537720636^(2/15) 2329991416277390 a001 7778742049/3461452808002*2537720636^(8/15) 2329991416277390 a001 2971215073/4106118243*2537720636^(4/15) 2329991416277390 a001 4807526976/312119004989*2537720636^(4/9) 2329991416277390 a001 86267571272/4106118243*2537720636^(1/9) 2329991416277390 a001 12586269025/1322157322203*2537720636^(7/15) 2329991416277390 a001 32951280099/3461452808002*2537720636^(7/15) 2329991416277390 a001 86267571272/9062201101803*2537720636^(7/15) 2329991416277390 a001 225851433717/23725150497407*2537720636^(7/15) 2329991416277390 a001 139583862445/14662949395604*2537720636^(7/15) 2329991416277390 a001 53316291173/5600748293801*2537720636^(7/15) 2329991416277390 a001 20365011074/2139295485799*2537720636^(7/15) 2329991416277390 a001 4807526976/119218851371*2537720636^(2/5) 2329991416277390 a001 2971215073/5600748293801*2537720636^(3/5) 2329991416277390 a001 12586269025/817138163596*2537720636^(4/9) 2329991416277390 a001 75283811239/1368706081*2537720636^(1/15) 2329991416277390 a001 32951280099/2139295485799*2537720636^(4/9) 2329991416277390 a001 7778742049/817138163596*2537720636^(7/15) 2329991416277390 a001 86267571272/5600748293801*2537720636^(4/9) 2329991416277390 a001 7787980473/505618944676*2537720636^(4/9) 2329991416277390 a001 365435296162/23725150497407*2537720636^(4/9) 2329991416277390 a001 139583862445/9062201101803*2537720636^(4/9) 2329991416277390 a001 53316291173/3461452808002*2537720636^(4/9) 2329991416277390 a001 20365011074/1322157322203*2537720636^(4/9) 2329991416277390 a001 1836311903/10749957122*45537549124^(5/17) 2329991416277390 a001 1836311903/10749957122*312119004989^(3/11) 2329991416277390 a001 1602508992/1368706081*312119004989^(1/5) 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^15/Lucas(48) 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^11/Lucas(46) 2329991416277390 a001 1836311903/10749957122*192900153618^(5/18) 2329991416277390 a001 1836311903/10749957122*28143753123^(3/10) 2329991416277390 a001 7778742049/505019158607*2537720636^(4/9) 2329991416277390 a001 1836311903/10749957122*10749957122^(5/16) 2329991416277390 a001 2971215073/2139295485799*2537720636^(5/9) 2329991416277390 a001 1144206275/28374454999*2537720636^(2/5) 2329991416277390 a004 Fibonacci(46)*Lucas(49)/(1/2+sqrt(5)/2)^82 2329991416277390 a001 32951280099/817138163596*2537720636^(2/5) 2329991416277390 a001 86267571272/2139295485799*2537720636^(2/5) 2329991416277390 a001 225851433717/5600748293801*2537720636^(2/5) 2329991416277390 a001 365435296162/9062201101803*2537720636^(2/5) 2329991416277390 a001 139583862445/3461452808002*2537720636^(2/5) 2329991416277390 a001 53316291173/1322157322203*2537720636^(2/5) 2329991416277390 a001 1602508992/9381251041*2537720636^(1/3) 2329991416277390 a001 20365011074/505019158607*2537720636^(2/5) 2329991416277390 a001 1836311903/5600748293801*17393796001^(4/7) 2329991416277390 a001 1836311903/192900153618*17393796001^(3/7) 2329991416277390 a001 1836311903/28143753123*45537549124^(1/3) 2329991416277390 a001 12586269025/4106118243*45537549124^(3/17) 2329991416277390 a001 12586269025/4106118243*817138163596^(3/19) 2329991416277390 a001 12586269025/4106118243*14662949395604^(1/7) 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^17/Lucas(50) 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^9/Lucas(46) 2329991416277390 a001 12586269025/4106118243*192900153618^(1/6) 2329991416277390 a001 2971215073/1322157322203*2537720636^(8/15) 2329991416277390 a001 10983760033/1368706081*17393796001^(1/7) 2329991416277390 a004 Fibonacci(46)*Lucas(51)/(1/2+sqrt(5)/2)^84 2329991416277390 a001 1836311903/14662949395604*45537549124^(10/17) 2329991416277390 a001 1836311903/3461452808002*45537549124^(9/17) 2329991416277390 a001 1836311903/192900153618*45537549124^(7/17) 2329991416277390 a001 1836311903/817138163596*45537549124^(8/17) 2329991416277390 a001 10983760033/1368706081*14662949395604^(1/9) 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^19/Lucas(52) 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^7/Lucas(46) 2329991416277390 a004 Fibonacci(46)*Lucas(53)/(1/2+sqrt(5)/2)^86 2329991416277390 a001 75283811239/1368706081*45537549124^(1/17) 2329991416277390 a001 1836311903/192900153618*14662949395604^(1/3) 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^21/Lucas(54) 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^5/Lucas(46) 2329991416277390 a001 1836311903/192900153618*192900153618^(7/18) 2329991416277390 a004 Fibonacci(46)*Lucas(55)/(1/2+sqrt(5)/2)^88 2329991416277390 a001 1836311903/14662949395604*312119004989^(6/11) 2329991416277390 a001 1836311903/1322157322203*312119004989^(5/11) 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^23/Lucas(56) 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^3/Lucas(46) 2329991416277390 a004 Fibonacci(46)*Lucas(57)/(1/2+sqrt(5)/2)^90 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^25/Lucas(58) 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)/Lucas(46) 2329991416277390 a001 1836311903/1322157322203*3461452808002^(5/12) 2329991416277390 a004 Fibonacci(46)*Lucas(59)/(1/2+sqrt(5)/2)^92 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^27/Lucas(60) 2329991416277390 a004 Fibonacci(60)/Lucas(46)/(1/2+sqrt(5)/2) 2329991416277390 a004 Fibonacci(46)*Lucas(61)/(1/2+sqrt(5)/2)^94 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^29/Lucas(62) 2329991416277390 a004 Fibonacci(62)/Lucas(46)/(1/2+sqrt(5)/2)^3 2329991416277390 a004 Fibonacci(46)*Lucas(63)/(1/2+sqrt(5)/2)^96 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^31/Lucas(64) 2329991416277390 a004 Fibonacci(64)/Lucas(46)/(1/2+sqrt(5)/2)^5 2329991416277390 a004 Fibonacci(46)*Lucas(65)/(1/2+sqrt(5)/2)^98 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^33/Lucas(66) 2329991416277390 a004 Fibonacci(66)/Lucas(46)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(46)*Lucas(67)/(1/2+sqrt(5)/2)^100 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^35/Lucas(68) 2329991416277390 a004 Fibonacci(68)/Lucas(46)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^37/Lucas(70) 2329991416277390 a004 Fibonacci(70)/Lucas(46)/(1/2+sqrt(5)/2)^11 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^39/Lucas(72) 2329991416277390 a004 Fibonacci(72)/Lucas(46)/(1/2+sqrt(5)/2)^13 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^41/Lucas(74) 2329991416277390 a004 Fibonacci(74)/Lucas(46)/(1/2+sqrt(5)/2)^15 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^43/Lucas(76) 2329991416277390 a004 Fibonacci(76)/Lucas(46)/(1/2+sqrt(5)/2)^17 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^45/Lucas(78) 2329991416277390 a004 Fibonacci(78)/Lucas(46)/(1/2+sqrt(5)/2)^19 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^47/Lucas(80) 2329991416277390 a004 Fibonacci(80)/Lucas(46)/(1/2+sqrt(5)/2)^21 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^49/Lucas(82) 2329991416277390 a004 Fibonacci(82)/Lucas(46)/(1/2+sqrt(5)/2)^23 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^51/Lucas(84) 2329991416277390 a004 Fibonacci(84)/Lucas(46)/(1/2+sqrt(5)/2)^25 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^53/Lucas(86) 2329991416277390 a004 Fibonacci(86)/Lucas(46)/(1/2+sqrt(5)/2)^27 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^55/Lucas(88) 2329991416277390 a004 Fibonacci(88)/Lucas(46)/(1/2+sqrt(5)/2)^29 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^57/Lucas(90) 2329991416277390 a004 Fibonacci(90)/Lucas(46)/(1/2+sqrt(5)/2)^31 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^59/Lucas(92) 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^61/Lucas(94) 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^63/Lucas(96) 2329991416277390 a004 Fibonacci(23)*Lucas(23)/(1/2+sqrt(5)/2)^33 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^65/Lucas(98) 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^67/Lucas(100) 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^64/Lucas(97) 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^66/Lucas(99) 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^62/Lucas(95) 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^60/Lucas(93) 2329991416277390 a004 Fibonacci(94)/Lucas(46)/(1/2+sqrt(5)/2)^35 2329991416277390 a004 Fibonacci(96)/Lucas(46)/(1/2+sqrt(5)/2)^37 2329991416277390 a004 Fibonacci(100)/Lucas(46)/(1/2+sqrt(5)/2)^41 2329991416277390 a004 Fibonacci(98)/Lucas(46)/(1/2+sqrt(5)/2)^39 2329991416277390 a004 Fibonacci(97)/Lucas(46)/(1/2+sqrt(5)/2)^38 2329991416277390 a004 Fibonacci(99)/Lucas(46)/(1/2+sqrt(5)/2)^40 2329991416277390 a004 Fibonacci(95)/Lucas(46)/(1/2+sqrt(5)/2)^36 2329991416277390 a004 Fibonacci(93)/Lucas(46)/(1/2+sqrt(5)/2)^34 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^58/Lucas(91) 2329991416277390 a004 Fibonacci(91)/Lucas(46)/(1/2+sqrt(5)/2)^32 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^56/Lucas(89) 2329991416277390 a004 Fibonacci(89)/Lucas(46)/(1/2+sqrt(5)/2)^30 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^54/Lucas(87) 2329991416277390 a004 Fibonacci(87)/Lucas(46)/(1/2+sqrt(5)/2)^28 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^52/Lucas(85) 2329991416277390 a004 Fibonacci(85)/Lucas(46)/(1/2+sqrt(5)/2)^26 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^50/Lucas(83) 2329991416277390 a004 Fibonacci(83)/Lucas(46)/(1/2+sqrt(5)/2)^24 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^48/Lucas(81) 2329991416277390 a004 Fibonacci(81)/Lucas(46)/(1/2+sqrt(5)/2)^22 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^46/Lucas(79) 2329991416277390 a004 Fibonacci(79)/Lucas(46)/(1/2+sqrt(5)/2)^20 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^44/Lucas(77) 2329991416277390 a004 Fibonacci(77)/Lucas(46)/(1/2+sqrt(5)/2)^18 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^42/Lucas(75) 2329991416277390 a004 Fibonacci(75)/Lucas(46)/(1/2+sqrt(5)/2)^16 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^40/Lucas(73) 2329991416277390 a004 Fibonacci(73)/Lucas(46)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^38/Lucas(71) 2329991416277390 a004 Fibonacci(71)/Lucas(46)/(1/2+sqrt(5)/2)^12 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^36/Lucas(69) 2329991416277390 a004 Fibonacci(69)/Lucas(46)/(1/2+sqrt(5)/2)^10 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^34/Lucas(67) 2329991416277390 a004 Fibonacci(67)/Lucas(46)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(46)*Lucas(66)/(1/2+sqrt(5)/2)^99 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^32/Lucas(65) 2329991416277390 a004 Fibonacci(65)/Lucas(46)/(1/2+sqrt(5)/2)^6 2329991416277390 a004 Fibonacci(46)*Lucas(64)/(1/2+sqrt(5)/2)^97 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^30/Lucas(63) 2329991416277390 a004 Fibonacci(63)/Lucas(46)/(1/2+sqrt(5)/2)^4 2329991416277390 a004 Fibonacci(46)*Lucas(62)/(1/2+sqrt(5)/2)^95 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^28/Lucas(61) 2329991416277390 a004 Fibonacci(61)/Lucas(46)/(1/2+sqrt(5)/2)^2 2329991416277390 a004 Fibonacci(46)*Lucas(60)/(1/2+sqrt(5)/2)^93 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^26/Lucas(59) 2329991416277390 a006 5^(1/2)*Fibonacci(59)/Lucas(46)/sqrt(5) 2329991416277390 a004 Fibonacci(46)*Lucas(58)/(1/2+sqrt(5)/2)^91 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^24/Lucas(57) 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^2/Lucas(46) 2329991416277390 a004 Fibonacci(46)*Lucas(56)/(1/2+sqrt(5)/2)^89 2329991416277390 a001 1836311903/312119004989*312119004989^(2/5) 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^22/Lucas(55) 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^4/Lucas(46) 2329991416277390 a001 139583862445/4106118243*23725150497407^(1/16) 2329991416277390 a001 1836311903/817138163596*192900153618^(4/9) 2329991416277390 a001 53316291173/4106118243*45537549124^(2/17) 2329991416277390 a001 139583862445/4106118243*73681302247^(1/13) 2329991416277390 a004 Fibonacci(46)*Lucas(54)/(1/2+sqrt(5)/2)^87 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^20/Lucas(53) 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^6/Lucas(46) 2329991416277390 a001 1836311903/119218851371*23725150497407^(5/16) 2329991416277390 a001 1836311903/119218851371*505019158607^(5/14) 2329991416277390 a001 1836311903/817138163596*73681302247^(6/13) 2329991416277390 a001 1836311903/2139295485799*73681302247^(1/2) 2329991416277390 a001 1836311903/5600748293801*73681302247^(7/13) 2329991416277390 a001 86267571272/4106118243*28143753123^(1/10) 2329991416277390 a001 1836311903/119218851371*73681302247^(5/13) 2329991416277390 a004 Fibonacci(46)*Lucas(52)/(1/2+sqrt(5)/2)^85 2329991416277390 a001 1836311903/45537549124*45537549124^(6/17) 2329991416277390 a001 12586269025/4106118243*10749957122^(3/16) 2329991416277390 a001 7778742049/192900153618*2537720636^(2/5) 2329991416277390 a001 1836311903/45537549124*14662949395604^(2/7) 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^18/Lucas(51) 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^8/Lucas(46) 2329991416277390 a001 1836311903/45537549124*192900153618^(1/3) 2329991416277390 a001 20365011074/4106118243*73681302247^(2/13) 2329991416277390 a001 75283811239/1368706081*10749957122^(1/16) 2329991416277390 a001 1836311903/119218851371*28143753123^(2/5) 2329991416277390 a001 1836311903/1322157322203*28143753123^(1/2) 2329991416277390 a001 139583862445/4106118243*10749957122^(1/12) 2329991416277390 a001 1836311903/14662949395604*28143753123^(3/5) 2329991416277390 a001 53316291173/4106118243*10749957122^(1/8) 2329991416277390 a004 Fibonacci(46)*Lucas(50)/(1/2+sqrt(5)/2)^83 2329991416277390 a001 20365011074/4106118243*10749957122^(1/6) 2329991416277390 a001 365435296162/4106118243*4106118243^(1/23) 2329991416277390 a001 7778742049/4106118243*312119004989^(2/11) 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^16/Lucas(49) 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^10/Lucas(46) 2329991416277390 a001 1836311903/17393796001*23725150497407^(1/4) 2329991416277390 a001 1836311903/17393796001*73681302247^(4/13) 2329991416277390 a001 7778742049/4106118243*28143753123^(1/5) 2329991416277390 a001 1836311903/119218851371*10749957122^(5/12) 2329991416277390 a001 1836311903/45537549124*10749957122^(3/8) 2329991416277390 a001 1836311903/192900153618*10749957122^(7/16) 2329991416277390 a001 1836311903/312119004989*10749957122^(11/24) 2329991416277390 a001 1836311903/817138163596*10749957122^(1/2) 2329991416277390 a001 1836311903/2139295485799*10749957122^(13/24) 2329991416277390 a001 1836311903/3461452808002*10749957122^(9/16) 2329991416277390 a001 1836311903/5600748293801*10749957122^(7/12) 2329991416277390 a001 7778742049/4106118243*10749957122^(5/24) 2329991416277390 a001 139583862445/4106118243*4106118243^(2/23) 2329991416277390 a001 1836311903/14662949395604*10749957122^(5/8) 2329991416277390 a001 12586269025/73681302247*2537720636^(1/3) 2329991416277390 a001 1836311903/17393796001*10749957122^(1/3) 2329991416277390 a001 10983760033/64300051206*2537720636^(1/3) 2329991416277390 a001 86267571272/505019158607*2537720636^(1/3) 2329991416277390 a001 75283811239/440719107401*2537720636^(1/3) 2329991416277390 a001 2504730781961/14662949395604*2537720636^(1/3) 2329991416277390 a001 139583862445/817138163596*2537720636^(1/3) 2329991416277390 a001 53316291173/312119004989*2537720636^(1/3) 2329991416277390 a001 53316291173/4106118243*4106118243^(3/23) 2329991416277390 a001 20365011074/119218851371*2537720636^(1/3) 2329991416277390 a004 Fibonacci(46)*Lucas(48)/(1/2+sqrt(5)/2)^81 2329991416277390 a001 2971215073/312119004989*2537720636^(7/15) 2329991416277390 a001 20365011074/4106118243*4106118243^(4/23) 2329991416277390 a001 7778742049/45537549124*2537720636^(1/3) 2329991416277390 a001 7778742049/10749957122*2537720636^(4/15) 2329991416277390 a001 2971215073/192900153618*2537720636^(4/9) 2329991416277390 a001 7778742049/4106118243*4106118243^(5/23) 2329991416277390 a001 10182505537/5374978561*2537720636^(2/9) 2329991416277390 a001 20365011074/28143753123*2537720636^(4/15) 2329991416277390 a001 53316291173/73681302247*2537720636^(4/15) 2329991416277390 a001 139583862445/192900153618*2537720636^(4/15) 2329991416277390 a001 365435296162/505019158607*2537720636^(4/15) 2329991416277390 a001 225851433717/312119004989*2537720636^(4/15) 2329991416277390 a001 86267571272/119218851371*2537720636^(4/15) 2329991416277390 a001 32951280099/45537549124*2537720636^(4/15) 2329991416277390 a001 365435296162/4106118243*1568397607^(1/22) 2329991416277390 a001 32951280099/10749957122*2537720636^(1/5) 2329991416277390 a001 2971215073/73681302247*2537720636^(2/5) 2329991416277390 a001 12586269025/17393796001*2537720636^(4/15) 2329991416277390 a001 1836311903/6643838879*17393796001^(2/7) 2329991416277390 a001 2971215073/4106118243*45537549124^(4/17) 2329991416277390 a001 1836311903/6643838879*14662949395604^(2/9) 2329991416277390 a001 2971215073/4106118243*14662949395604^(4/21) 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^14/Lucas(47) 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^12/Lucas(46) 2329991416277390 a001 2971215073/4106118243*73681302247^(3/13) 2329991416277390 a001 53316291173/28143753123*2537720636^(2/9) 2329991416277390 a001 1836311903/45537549124*4106118243^(9/23) 2329991416277390 a001 1836311903/17393796001*4106118243^(8/23) 2329991416277390 a001 139583862445/73681302247*2537720636^(2/9) 2329991416277390 a001 182717648081/96450076809*2537720636^(2/9) 2329991416277390 a001 956722026041/505019158607*2537720636^(2/9) 2329991416277390 a001 10610209857723/5600748293801*2537720636^(2/9) 2329991416277390 a001 591286729879/312119004989*2537720636^(2/9) 2329991416277390 a001 2971215073/4106118243*10749957122^(1/4) 2329991416277390 a001 225851433717/119218851371*2537720636^(2/9) 2329991416277390 a001 1836311903/6643838879*10749957122^(7/24) 2329991416277390 a001 21566892818/11384387281*2537720636^(2/9) 2329991416277390 a001 1836311903/119218851371*4106118243^(10/23) 2329991416277390 a001 86267571272/28143753123*2537720636^(1/5) 2329991416277390 a001 32951280099/17393796001*2537720636^(2/9) 2329991416277390 a004 Fibonacci(48)*Lucas(47)/(1/2+sqrt(5)/2)^82 2329991416277390 a001 32264490531/10525900321*2537720636^(1/5) 2329991416277390 a001 591286729879/192900153618*2537720636^(1/5) 2329991416277390 a001 1548008755920/505019158607*2537720636^(1/5) 2329991416277390 a001 1515744265389/494493258286*2537720636^(1/5) 2329991416277390 a001 2504730781961/817138163596*2537720636^(1/5) 2329991416277390 a001 956722026041/312119004989*2537720636^(1/5) 2329991416277390 a001 365435296162/119218851371*2537720636^(1/5) 2329991416277390 a001 1836311903/312119004989*4106118243^(11/23) 2329991416277390 a001 139583862445/45537549124*2537720636^(1/5) 2329991416277390 a001 1836311903/505019158607*4106118243^(1/2) 2329991416277390 a001 139583862445/10749957122*2537720636^(2/15) 2329991416277390 a001 1836311903/817138163596*4106118243^(12/23) 2329991416277390 a001 53316291173/17393796001*2537720636^(1/5) 2329991416277390 a001 4807526976/6643838879*2537720636^(4/15) 2329991416277390 a001 225851433717/10749957122*2537720636^(1/9) 2329991416277390 a001 2971215073/17393796001*2537720636^(1/3) 2329991416277390 a001 1836311903/2139295485799*4106118243^(13/23) 2329991416277390 a004 Fibonacci(50)*Lucas(47)/(1/2+sqrt(5)/2)^84 2329991416277390 a001 1836311903/5600748293801*4106118243^(14/23) 2329991416277390 a004 Fibonacci(52)*Lucas(47)/(1/2+sqrt(5)/2)^86 2329991416277390 a004 Fibonacci(54)*Lucas(47)/(1/2+sqrt(5)/2)^88 2329991416277390 a004 Fibonacci(56)*Lucas(47)/(1/2+sqrt(5)/2)^90 2329991416277390 a004 Fibonacci(58)*Lucas(47)/(1/2+sqrt(5)/2)^92 2329991416277390 a004 Fibonacci(60)*Lucas(47)/(1/2+sqrt(5)/2)^94 2329991416277390 a004 Fibonacci(62)*Lucas(47)/(1/2+sqrt(5)/2)^96 2329991416277390 a004 Fibonacci(64)*Lucas(47)/(1/2+sqrt(5)/2)^98 2329991416277390 a004 Fibonacci(66)*Lucas(47)/(1/2+sqrt(5)/2)^100 2329991416277390 a001 2/2971215073*(1/2+1/2*5^(1/2))^60 2329991416277390 a004 Fibonacci(65)*Lucas(47)/(1/2+sqrt(5)/2)^99 2329991416277390 a004 Fibonacci(63)*Lucas(47)/(1/2+sqrt(5)/2)^97 2329991416277390 a004 Fibonacci(61)*Lucas(47)/(1/2+sqrt(5)/2)^95 2329991416277390 a004 Fibonacci(59)*Lucas(47)/(1/2+sqrt(5)/2)^93 2329991416277390 a004 Fibonacci(57)*Lucas(47)/(1/2+sqrt(5)/2)^91 2329991416277390 a004 Fibonacci(55)*Lucas(47)/(1/2+sqrt(5)/2)^89 2329991416277390 a004 Fibonacci(53)*Lucas(47)/(1/2+sqrt(5)/2)^87 2329991416277390 a001 139583862445/4106118243*1568397607^(1/11) 2329991416277390 a004 Fibonacci(51)*Lucas(47)/(1/2+sqrt(5)/2)^85 2329991416277390 a001 365435296162/28143753123*2537720636^(2/15) 2329991416277390 a001 2971215073/4106118243*4106118243^(6/23) 2329991416277390 a001 956722026041/73681302247*2537720636^(2/15) 2329991416277390 a001 2504730781961/192900153618*2537720636^(2/15) 2329991416277390 a001 10610209857723/817138163596*2537720636^(2/15) 2329991416277390 a001 4052739537881/312119004989*2537720636^(2/15) 2329991416277390 a001 1548008755920/119218851371*2537720636^(2/15) 2329991416277390 a001 1836311903/14662949395604*4106118243^(15/23) 2329991416277390 a001 591286729879/45537549124*2537720636^(2/15) 2329991416277390 a004 Fibonacci(49)*Lucas(47)/(1/2+sqrt(5)/2)^83 2329991416277390 a001 591286729879/10749957122*2537720636^(1/15) 2329991416277390 a001 1836311903/6643838879*4106118243^(7/23) 2329991416277390 a001 591286729879/28143753123*2537720636^(1/9) 2329991416277390 a001 1548008755920/73681302247*2537720636^(1/9) 2329991416277390 a001 7787980473/599786069*2537720636^(2/15) 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^13/Lucas(48) 2329991416277390 a001 4052739537881/192900153618*2537720636^(1/9) 2329991416277390 a001 2403763488/5374978561*73681302247^(1/4) 2329991416277390 a001 225749145909/10745088481*2537720636^(1/9) 2329991416277390 a001 6557470319842/312119004989*2537720636^(1/9) 2329991416277390 a001 2504730781961/119218851371*2537720636^(1/9) 2329991416277390 a001 956722026041/45537549124*2537720636^(1/9) 2329991416277390 a001 365435296162/17393796001*2537720636^(1/9) 2329991416277390 a001 12586269025/6643838879*2537720636^(2/9) 2329991416277390 a004 Fibonacci(48)*Lucas(49)/(1/2+sqrt(5)/2)^84 2329991416277390 a001 12585437040/228811001*2537720636^(1/15) 2329991416277390 a001 1201881744/3665737348901*17393796001^(4/7) 2329991416277390 a001 4052739537881/73681302247*2537720636^(1/15) 2329991416277390 a001 3536736619241/64300051206*2537720636^(1/15) 2329991416277390 a001 6557470319842/119218851371*2537720636^(1/15) 2329991416277390 a001 102287808/10745088481*17393796001^(3/7) 2329991416277390 a001 1602508992/9381251041*45537549124^(5/17) 2329991416277390 a001 1602508992/9381251041*312119004989^(3/11) 2329991416277390 a001 12586269025/10749957122*312119004989^(1/5) 2329991416277390 a001 1602508992/9381251041*14662949395604^(5/21) 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^15/Lucas(50) 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^11/Lucas(48) 2329991416277390 a001 1602508992/9381251041*192900153618^(5/18) 2329991416277390 a001 2504730781961/45537549124*2537720636^(1/15) 2329991416277390 a001 1602508992/9381251041*28143753123^(3/10) 2329991416277390 a001 43133785636/5374978561*17393796001^(1/7) 2329991416277390 a004 Fibonacci(48)*Lucas(51)/(1/2+sqrt(5)/2)^86 2329991416277390 a001 686789568/10525900321*45537549124^(1/3) 2329991416277390 a001 32951280099/10749957122*45537549124^(3/17) 2329991416277390 a001 1602508992/3020733700601*45537549124^(9/17) 2329991416277390 a001 4807526976/2139295485799*45537549124^(8/17) 2329991416277390 a001 102287808/10745088481*45537549124^(7/17) 2329991416277390 a001 32951280099/10749957122*817138163596^(3/19) 2329991416277390 a001 32951280099/10749957122*14662949395604^(1/7) 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^17/Lucas(52) 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^9/Lucas(48) 2329991416277390 a001 32951280099/10749957122*192900153618^(1/6) 2329991416277390 a001 4807526976/119218851371*45537549124^(6/17) 2329991416277390 a004 Fibonacci(48)*Lucas(53)/(1/2+sqrt(5)/2)^88 2329991416277390 a001 139583862445/10749957122*45537549124^(2/17) 2329991416277390 a001 267084832/10716675201*817138163596^(1/3) 2329991416277390 a001 43133785636/5374978561*14662949395604^(1/9) 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^19/Lucas(54) 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^7/Lucas(48) 2329991416277390 a004 Fibonacci(48)*Lucas(55)/(1/2+sqrt(5)/2)^90 2329991416277390 a001 225851433717/10749957122*312119004989^(1/11) 2329991416277390 a001 14930208/10749853441*312119004989^(5/11) 2329991416277390 a001 102287808/10745088481*14662949395604^(1/3) 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^21/Lucas(56) 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^5/Lucas(48) 2329991416277390 a004 Fibonacci(48)*Lucas(57)/(1/2+sqrt(5)/2)^92 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^23/Lucas(58) 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^3/Lucas(48) 2329991416277390 a004 Fibonacci(48)*Lucas(59)/(1/2+sqrt(5)/2)^94 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^25/Lucas(60) 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)/Lucas(48) 2329991416277390 a004 Fibonacci(48)*Lucas(61)/(1/2+sqrt(5)/2)^96 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^27/Lucas(62) 2329991416277390 a004 Fibonacci(62)/Lucas(48)/(1/2+sqrt(5)/2) 2329991416277390 a004 Fibonacci(48)*Lucas(63)/(1/2+sqrt(5)/2)^98 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^29/Lucas(64) 2329991416277390 a004 Fibonacci(64)/Lucas(48)/(1/2+sqrt(5)/2)^3 2329991416277390 a004 Fibonacci(48)*Lucas(65)/(1/2+sqrt(5)/2)^100 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^31/Lucas(66) 2329991416277390 a004 Fibonacci(66)/Lucas(48)/(1/2+sqrt(5)/2)^5 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^33/Lucas(68) 2329991416277390 a004 Fibonacci(68)/Lucas(48)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^35/Lucas(70) 2329991416277390 a004 Fibonacci(70)/Lucas(48)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^37/Lucas(72) 2329991416277390 a004 Fibonacci(72)/Lucas(48)/(1/2+sqrt(5)/2)^11 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^39/Lucas(74) 2329991416277390 a004 Fibonacci(74)/Lucas(48)/(1/2+sqrt(5)/2)^13 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^41/Lucas(76) 2329991416277390 a004 Fibonacci(76)/Lucas(48)/(1/2+sqrt(5)/2)^15 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^43/Lucas(78) 2329991416277390 a004 Fibonacci(78)/Lucas(48)/(1/2+sqrt(5)/2)^17 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^45/Lucas(80) 2329991416277390 a004 Fibonacci(80)/Lucas(48)/(1/2+sqrt(5)/2)^19 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^47/Lucas(82) 2329991416277390 a004 Fibonacci(82)/Lucas(48)/(1/2+sqrt(5)/2)^21 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^49/Lucas(84) 2329991416277390 a004 Fibonacci(84)/Lucas(48)/(1/2+sqrt(5)/2)^23 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^51/Lucas(86) 2329991416277390 a004 Fibonacci(86)/Lucas(48)/(1/2+sqrt(5)/2)^25 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^53/Lucas(88) 2329991416277390 a004 Fibonacci(88)/Lucas(48)/(1/2+sqrt(5)/2)^27 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^55/Lucas(90) 2329991416277390 a004 Fibonacci(90)/Lucas(48)/(1/2+sqrt(5)/2)^29 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^57/Lucas(92) 2329991416277390 a004 Fibonacci(92)/Lucas(48)/(1/2+sqrt(5)/2)^31 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^59/Lucas(94) 2329991416277390 a004 Fibonacci(94)/Lucas(48)/(1/2+sqrt(5)/2)^33 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^61/Lucas(96) 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^63/Lucas(98) 2329991416277390 a004 Fibonacci(24)*Lucas(24)/(1/2+sqrt(5)/2)^35 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^62/Lucas(97) 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^64/Lucas(99) 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^65/Lucas(100) 2329991416277390 a004 Fibonacci(100)/Lucas(48)/(1/2+sqrt(5)/2)^39 2329991416277390 a004 Fibonacci(98)/Lucas(48)/(1/2+sqrt(5)/2)^37 2329991416277390 a004 Fibonacci(99)/Lucas(48)/(1/2+sqrt(5)/2)^38 2329991416277390 a004 Fibonacci(97)/Lucas(48)/(1/2+sqrt(5)/2)^36 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^60/Lucas(95) 2329991416277390 a004 Fibonacci(95)/Lucas(48)/(1/2+sqrt(5)/2)^34 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^58/Lucas(93) 2329991416277390 a004 Fibonacci(93)/Lucas(48)/(1/2+sqrt(5)/2)^32 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^56/Lucas(91) 2329991416277390 a004 Fibonacci(91)/Lucas(48)/(1/2+sqrt(5)/2)^30 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^54/Lucas(89) 2329991416277390 a004 Fibonacci(89)/Lucas(48)/(1/2+sqrt(5)/2)^28 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^52/Lucas(87) 2329991416277390 a004 Fibonacci(87)/Lucas(48)/(1/2+sqrt(5)/2)^26 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^50/Lucas(85) 2329991416277390 a004 Fibonacci(85)/Lucas(48)/(1/2+sqrt(5)/2)^24 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^48/Lucas(83) 2329991416277390 a004 Fibonacci(83)/Lucas(48)/(1/2+sqrt(5)/2)^22 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^46/Lucas(81) 2329991416277390 a004 Fibonacci(81)/Lucas(48)/(1/2+sqrt(5)/2)^20 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^44/Lucas(79) 2329991416277390 a004 Fibonacci(79)/Lucas(48)/(1/2+sqrt(5)/2)^18 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^42/Lucas(77) 2329991416277390 a004 Fibonacci(77)/Lucas(48)/(1/2+sqrt(5)/2)^16 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^40/Lucas(75) 2329991416277390 a004 Fibonacci(75)/Lucas(48)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^38/Lucas(73) 2329991416277390 a004 Fibonacci(73)/Lucas(48)/(1/2+sqrt(5)/2)^12 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^36/Lucas(71) 2329991416277390 a004 Fibonacci(71)/Lucas(48)/(1/2+sqrt(5)/2)^10 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^34/Lucas(69) 2329991416277390 a004 Fibonacci(69)/Lucas(48)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^32/Lucas(67) 2329991416277390 a004 Fibonacci(67)/Lucas(48)/(1/2+sqrt(5)/2)^6 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^30/Lucas(65) 2329991416277390 a004 Fibonacci(65)/Lucas(48)/(1/2+sqrt(5)/2)^4 2329991416277390 a004 Fibonacci(48)*Lucas(64)/(1/2+sqrt(5)/2)^99 2329991416277390 a001 1201881744/3665737348901*14662949395604^(4/9) 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^28/Lucas(63) 2329991416277390 a004 Fibonacci(63)/Lucas(48)/(1/2+sqrt(5)/2)^2 2329991416277390 a004 Fibonacci(48)*Lucas(62)/(1/2+sqrt(5)/2)^97 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^26/Lucas(61) 2329991416277390 a006 5^(1/2)*Fibonacci(61)/Lucas(48)/sqrt(5) 2329991416277390 a004 Fibonacci(48)*Lucas(60)/(1/2+sqrt(5)/2)^95 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^24/Lucas(59) 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^2/Lucas(48) 2329991416277390 a001 4807526976/23725150497407*1322157322203^(1/2) 2329991416277390 a004 Fibonacci(48)*Lucas(58)/(1/2+sqrt(5)/2)^93 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^22/Lucas(57) 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^4/Lucas(48) 2329991416277390 a004 Fibonacci(48)*Lucas(56)/(1/2+sqrt(5)/2)^91 2329991416277390 a001 102287808/10745088481*192900153618^(7/18) 2329991416277390 a001 139583862445/10749957122*14662949395604^(2/21) 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^20/Lucas(55) 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^6/Lucas(48) 2329991416277390 a001 4807526976/2139295485799*192900153618^(4/9) 2329991416277390 a004 Fibonacci(48)*Lucas(54)/(1/2+sqrt(5)/2)^89 2329991416277390 a001 4807526976/119218851371*14662949395604^(2/7) 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^18/Lucas(53) 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^8/Lucas(48) 2329991416277390 a001 4807526976/119218851371*192900153618^(1/3) 2329991416277390 a001 4807526976/2139295485799*73681302247^(6/13) 2329991416277390 a001 4807526976/5600748293801*73681302247^(1/2) 2329991416277390 a001 1201881744/3665737348901*73681302247^(7/13) 2329991416277390 a001 225851433717/10749957122*28143753123^(1/10) 2329991416277390 a004 Fibonacci(48)*Lucas(52)/(1/2+sqrt(5)/2)^87 2329991416277390 a001 956722026041/10749957122*10749957122^(1/24) 2329991416277390 a001 10182505537/5374978561*312119004989^(2/11) 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^16/Lucas(51) 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^10/Lucas(48) 2329991416277390 a001 1201881744/11384387281*23725150497407^(1/4) 2329991416277390 a001 4807526976/312119004989*28143753123^(2/5) 2329991416277390 a001 1201881744/11384387281*73681302247^(4/13) 2329991416277390 a001 14930208/10749853441*28143753123^(1/2) 2329991416277390 a001 20365011074/1568397607*599074578^(1/7) 2329991416277390 a001 182717648081/5374978561*10749957122^(1/12) 2329991416277390 a001 20365011074/6643838879*2537720636^(1/5) 2329991416277390 a001 10182505537/5374978561*28143753123^(1/5) 2329991416277390 a001 139583862445/10749957122*10749957122^(1/8) 2329991416277390 a004 Fibonacci(48)*Lucas(50)/(1/2+sqrt(5)/2)^85 2329991416277390 a001 32951280099/10749957122*10749957122^(3/16) 2329991416277390 a001 1602508992/9381251041*10749957122^(5/16) 2329991416277390 a001 53316291173/10749957122*10749957122^(1/6) 2329991416277390 a001 956722026041/17393796001*2537720636^(1/15) 2329991416277390 a001 10182505537/5374978561*10749957122^(5/24) 2329991416277390 a001 4807526976/17393796001*17393796001^(2/7) 2329991416277390 a001 956722026041/10749957122*4106118243^(1/23) 2329991416277390 a001 7778742049/10749957122*45537549124^(4/17) 2329991416277390 a001 4807526976/17393796001*14662949395604^(2/9) 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^14/Lucas(49) 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^12/Lucas(48) 2329991416277390 a001 4807526976/17393796001*505019158607^(1/4) 2329991416277390 a001 7778742049/10749957122*192900153618^(2/9) 2329991416277390 a001 4807526976/119218851371*10749957122^(3/8) 2329991416277390 a001 7778742049/10749957122*73681302247^(3/13) 2329991416277390 a001 1201881744/11384387281*10749957122^(1/3) 2329991416277390 a001 4807526976/312119004989*10749957122^(5/12) 2329991416277390 a001 102287808/10745088481*10749957122^(7/16) 2329991416277390 a001 1201881744/204284540899*10749957122^(11/24) 2329991416277390 a004 Fibonacci(50)*Lucas(49)/(1/2+sqrt(5)/2)^86 2329991416277390 a001 4807526976/2139295485799*10749957122^(1/2) 2329991416277390 a001 4807526976/5600748293801*10749957122^(13/24) 2329991416277390 a001 53316291173/4106118243*1568397607^(3/22) 2329991416277390 a001 1602508992/3020733700601*10749957122^(9/16) 2329991416277390 a001 1201881744/3665737348901*10749957122^(7/12) 2329991416277390 a001 182717648081/5374978561*4106118243^(2/23) 2329991416277390 a004 Fibonacci(52)*Lucas(49)/(1/2+sqrt(5)/2)^88 2329991416277390 a004 Fibonacci(54)*Lucas(49)/(1/2+sqrt(5)/2)^90 2329991416277390 a004 Fibonacci(56)*Lucas(49)/(1/2+sqrt(5)/2)^92 2329991416277390 a004 Fibonacci(58)*Lucas(49)/(1/2+sqrt(5)/2)^94 2329991416277390 a004 Fibonacci(60)*Lucas(49)/(1/2+sqrt(5)/2)^96 2329991416277390 a004 Fibonacci(62)*Lucas(49)/(1/2+sqrt(5)/2)^98 2329991416277390 a004 Fibonacci(64)*Lucas(49)/(1/2+sqrt(5)/2)^100 2329991416277390 a001 2/7778742049*(1/2+1/2*5^(1/2))^62 2329991416277390 a004 Fibonacci(63)*Lucas(49)/(1/2+sqrt(5)/2)^99 2329991416277390 a004 Fibonacci(61)*Lucas(49)/(1/2+sqrt(5)/2)^97 2329991416277390 a004 Fibonacci(59)*Lucas(49)/(1/2+sqrt(5)/2)^95 2329991416277390 a004 Fibonacci(57)*Lucas(49)/(1/2+sqrt(5)/2)^93 2329991416277390 a004 Fibonacci(55)*Lucas(49)/(1/2+sqrt(5)/2)^91 2329991416277390 a004 Fibonacci(53)*Lucas(49)/(1/2+sqrt(5)/2)^89 2329991416277390 a001 7778742049/10749957122*10749957122^(1/4) 2329991416277390 a001 4807526976/17393796001*10749957122^(7/24) 2329991416277390 a004 Fibonacci(51)*Lucas(49)/(1/2+sqrt(5)/2)^87 2329991416277390 a001 12586269025/1322157322203*17393796001^(3/7) 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^13/Lucas(50) 2329991416277390 a001 12586269025/28143753123*73681302247^(1/4) 2329991416277390 a004 Fibonacci(50)*Lucas(51)/(1/2+sqrt(5)/2)^88 2329991416277390 a001 75283811239/9381251041*17393796001^(1/7) 2329991416277390 a001 12586269025/45537549124*17393796001^(2/7) 2329991416277390 a001 32951280099/3461452808002*17393796001^(3/7) 2329991416277390 a001 12586269025/73681302247*45537549124^(5/17) 2329991416277390 a001 12586269025/23725150497407*45537549124^(9/17) 2329991416277390 a001 12586269025/5600748293801*45537549124^(8/17) 2329991416277390 a001 12586269025/1322157322203*45537549124^(7/17) 2329991416277390 a001 12586269025/192900153618*45537549124^(1/3) 2329991416277390 a001 10983760033/9381251041*312119004989^(1/5) 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^15/Lucas(52) 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^11/Lucas(50) 2329991416277390 a001 12586269025/73681302247*192900153618^(5/18) 2329991416277390 a001 1144206275/28374454999*45537549124^(6/17) 2329991416277390 a001 139583862445/14662949395604*17393796001^(3/7) 2329991416277390 a001 86267571272/28143753123*45537549124^(3/17) 2329991416277390 a001 53316291173/5600748293801*17393796001^(3/7) 2329991416277390 a004 Fibonacci(50)*Lucas(53)/(1/2+sqrt(5)/2)^90 2329991416277390 a001 365435296162/28143753123*45537549124^(2/17) 2329991416277390 a001 12585437040/228811001*45537549124^(1/17) 2329991416277390 a001 86267571272/28143753123*14662949395604^(1/7) 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^17/Lucas(54) 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^9/Lucas(50) 2329991416277390 a001 86267571272/28143753123*192900153618^(1/6) 2329991416277390 a004 Fibonacci(50)*Lucas(55)/(1/2+sqrt(5)/2)^92 2329991416277390 a001 12586269025/505019158607*817138163596^(1/3) 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^19/Lucas(56) 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^7/Lucas(50) 2329991416277390 a001 12586269025/2139295485799*312119004989^(2/5) 2329991416277390 a004 Fibonacci(50)*Lucas(57)/(1/2+sqrt(5)/2)^94 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^21/Lucas(58) 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^5/Lucas(50) 2329991416277390 a004 Fibonacci(50)*Lucas(59)/(1/2+sqrt(5)/2)^96 2329991416277390 a001 12585437040/228811001*14662949395604^(1/21) 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^23/Lucas(60) 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^3/Lucas(50) 2329991416277390 a004 Fibonacci(50)*Lucas(61)/(1/2+sqrt(5)/2)^98 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^25/Lucas(62) 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)/Lucas(50) 2329991416277390 a004 Fibonacci(50)*Lucas(63)/(1/2+sqrt(5)/2)^100 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^27/Lucas(64) 2329991416277390 a004 Fibonacci(64)/Lucas(50)/(1/2+sqrt(5)/2) 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^29/Lucas(66) 2329991416277390 a004 Fibonacci(66)/Lucas(50)/(1/2+sqrt(5)/2)^3 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^31/Lucas(68) 2329991416277390 a004 Fibonacci(68)/Lucas(50)/(1/2+sqrt(5)/2)^5 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^33/Lucas(70) 2329991416277390 a004 Fibonacci(70)/Lucas(50)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^35/Lucas(72) 2329991416277390 a004 Fibonacci(72)/Lucas(50)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^37/Lucas(74) 2329991416277390 a004 Fibonacci(74)/Lucas(50)/(1/2+sqrt(5)/2)^11 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^39/Lucas(76) 2329991416277390 a004 Fibonacci(76)/Lucas(50)/(1/2+sqrt(5)/2)^13 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^41/Lucas(78) 2329991416277390 a004 Fibonacci(78)/Lucas(50)/(1/2+sqrt(5)/2)^15 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^43/Lucas(80) 2329991416277390 a004 Fibonacci(80)/Lucas(50)/(1/2+sqrt(5)/2)^17 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^45/Lucas(82) 2329991416277390 a004 Fibonacci(82)/Lucas(50)/(1/2+sqrt(5)/2)^19 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^47/Lucas(84) 2329991416277390 a004 Fibonacci(84)/Lucas(50)/(1/2+sqrt(5)/2)^21 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^49/Lucas(86) 2329991416277390 a004 Fibonacci(86)/Lucas(50)/(1/2+sqrt(5)/2)^23 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^51/Lucas(88) 2329991416277390 a004 Fibonacci(88)/Lucas(50)/(1/2+sqrt(5)/2)^25 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^53/Lucas(90) 2329991416277390 a004 Fibonacci(90)/Lucas(50)/(1/2+sqrt(5)/2)^27 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^55/Lucas(92) 2329991416277390 a004 Fibonacci(92)/Lucas(50)/(1/2+sqrt(5)/2)^29 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^57/Lucas(94) 2329991416277390 a004 Fibonacci(94)/Lucas(50)/(1/2+sqrt(5)/2)^31 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^59/Lucas(96) 2329991416277390 a004 Fibonacci(96)/Lucas(50)/(1/2+sqrt(5)/2)^33 2329991416277390 a004 Fibonacci(25)*Lucas(25)/(1/2+sqrt(5)/2)^37 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^61/Lucas(98) 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^62/Lucas(99) 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^63/Lucas(100) 2329991416277390 a004 Fibonacci(98)/Lucas(50)/(1/2+sqrt(5)/2)^35 2329991416277390 a004 Fibonacci(99)/Lucas(50)/(1/2+sqrt(5)/2)^36 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^60/Lucas(97) 2329991416277390 a004 Fibonacci(97)/Lucas(50)/(1/2+sqrt(5)/2)^34 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^58/Lucas(95) 2329991416277390 a004 Fibonacci(95)/Lucas(50)/(1/2+sqrt(5)/2)^32 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^56/Lucas(93) 2329991416277390 a004 Fibonacci(93)/Lucas(50)/(1/2+sqrt(5)/2)^30 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^54/Lucas(91) 2329991416277390 a004 Fibonacci(91)/Lucas(50)/(1/2+sqrt(5)/2)^28 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^52/Lucas(89) 2329991416277390 a004 Fibonacci(89)/Lucas(50)/(1/2+sqrt(5)/2)^26 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^50/Lucas(87) 2329991416277390 a004 Fibonacci(87)/Lucas(50)/(1/2+sqrt(5)/2)^24 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^48/Lucas(85) 2329991416277390 a004 Fibonacci(85)/Lucas(50)/(1/2+sqrt(5)/2)^22 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^46/Lucas(83) 2329991416277390 a004 Fibonacci(83)/Lucas(50)/(1/2+sqrt(5)/2)^20 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^44/Lucas(81) 2329991416277390 a004 Fibonacci(81)/Lucas(50)/(1/2+sqrt(5)/2)^18 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^42/Lucas(79) 2329991416277390 a004 Fibonacci(79)/Lucas(50)/(1/2+sqrt(5)/2)^16 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^40/Lucas(77) 2329991416277390 a004 Fibonacci(77)/Lucas(50)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^38/Lucas(75) 2329991416277390 a004 Fibonacci(75)/Lucas(50)/(1/2+sqrt(5)/2)^12 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^36/Lucas(73) 2329991416277390 a004 Fibonacci(73)/Lucas(50)/(1/2+sqrt(5)/2)^10 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^34/Lucas(71) 2329991416277390 a004 Fibonacci(71)/Lucas(50)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^32/Lucas(69) 2329991416277390 a004 Fibonacci(69)/Lucas(50)/(1/2+sqrt(5)/2)^6 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^30/Lucas(67) 2329991416277390 a004 Fibonacci(67)/Lucas(50)/(1/2+sqrt(5)/2)^4 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^28/Lucas(65) 2329991416277390 a004 Fibonacci(65)/Lucas(50)/(1/2+sqrt(5)/2)^2 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^26/Lucas(63) 2329991416277390 a004 Fibonacci(50)*Lucas(62)/(1/2+sqrt(5)/2)^99 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^24/Lucas(61) 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^2/Lucas(50) 2329991416277390 a004 Fibonacci(50)*Lucas(60)/(1/2+sqrt(5)/2)^97 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^22/Lucas(59) 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^4/Lucas(50) 2329991416277390 a004 Fibonacci(50)*Lucas(58)/(1/2+sqrt(5)/2)^95 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^20/Lucas(57) 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^6/Lucas(50) 2329991416277390 a001 12586269025/817138163596*505019158607^(5/14) 2329991416277390 a004 Fibonacci(50)*Lucas(56)/(1/2+sqrt(5)/2)^93 2329991416277390 a001 1144206275/28374454999*14662949395604^(2/7) 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^18/Lucas(55) 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^8/Lucas(50) 2329991416277390 a001 12586269025/23725150497407*192900153618^(1/2) 2329991416277390 a001 1144206275/28374454999*192900153618^(1/3) 2329991416277390 a004 Fibonacci(50)*Lucas(54)/(1/2+sqrt(5)/2)^91 2329991416277390 a001 139583862445/28143753123*73681302247^(2/13) 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^16/Lucas(53) 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^10/Lucas(50) 2329991416277390 a001 12586269025/119218851371*23725150497407^(1/4) 2329991416277390 a001 12586269025/817138163596*73681302247^(5/13) 2329991416277390 a001 12586269025/5600748293801*73681302247^(6/13) 2329991416277390 a001 12586269025/14662949395604*73681302247^(1/2) 2329991416277390 a001 591286729879/28143753123*28143753123^(1/10) 2329991416277390 a001 12586269025/119218851371*73681302247^(4/13) 2329991416277390 a004 Fibonacci(50)*Lucas(52)/(1/2+sqrt(5)/2)^89 2329991416277390 a001 12586269025/73681302247*28143753123^(3/10) 2329991416277390 a001 32951280099/119218851371*17393796001^(2/7) 2329991416277390 a001 86267571272/312119004989*17393796001^(2/7) 2329991416277390 a001 225851433717/817138163596*17393796001^(2/7) 2329991416277390 a001 1548008755920/5600748293801*17393796001^(2/7) 2329991416277390 a001 139583862445/505019158607*17393796001^(2/7) 2329991416277390 a001 20365011074/2139295485799*17393796001^(3/7) 2329991416277390 a001 139583862445/10749957122*4106118243^(3/23) 2329991416277390 a001 2504730781961/28143753123*10749957122^(1/24) 2329991416277390 a001 20365011074/28143753123*45537549124^(4/17) 2329991416277390 a001 12586269025/45537549124*14662949395604^(2/9) 2329991416277390 a001 20365011074/28143753123*14662949395604^(4/21) 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^14/Lucas(51) 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^12/Lucas(50) 2329991416277390 a001 12586269025/817138163596*28143753123^(2/5) 2329991416277390 a001 20365011074/28143753123*73681302247^(3/13) 2329991416277390 a001 12585437040/228811001*10749957122^(1/16) 2329991416277390 a004 Fibonacci(52)*Lucas(51)/(1/2+sqrt(5)/2)^90 2329991416277390 a001 591286729879/73681302247*17393796001^(1/7) 2329991416277390 a001 20365011074/73681302247*17393796001^(2/7) 2329991416277390 a001 12586269025/9062201101803*28143753123^(1/2) 2329991416277390 a001 956722026041/28143753123*10749957122^(1/12) 2329991416277390 a004 Fibonacci(54)*Lucas(51)/(1/2+sqrt(5)/2)^92 2329991416277390 a001 86000486440/10716675201*17393796001^(1/7) 2329991416277390 a004 Fibonacci(56)*Lucas(51)/(1/2+sqrt(5)/2)^94 2329991416277390 a004 Fibonacci(58)*Lucas(51)/(1/2+sqrt(5)/2)^96 2329991416277390 a004 Fibonacci(60)*Lucas(51)/(1/2+sqrt(5)/2)^98 2329991416277390 a004 Fibonacci(62)*Lucas(51)/(1/2+sqrt(5)/2)^100 2329991416277390 a001 1/10182505537*(1/2+1/2*5^(1/2))^64 2329991416277390 a004 Fibonacci(61)*Lucas(51)/(1/2+sqrt(5)/2)^99 2329991416277390 a004 Fibonacci(59)*Lucas(51)/(1/2+sqrt(5)/2)^97 2329991416277390 a004 Fibonacci(57)*Lucas(51)/(1/2+sqrt(5)/2)^95 2329991416277390 a001 4052739537881/505019158607*17393796001^(1/7) 2329991416277390 a004 Fibonacci(55)*Lucas(51)/(1/2+sqrt(5)/2)^93 2329991416277390 a001 3278735159921/408569081798*17393796001^(1/7) 2329991416277390 a001 2504730781961/312119004989*17393796001^(1/7) 2329991416277390 a004 Fibonacci(53)*Lucas(51)/(1/2+sqrt(5)/2)^91 2329991416277390 a001 32951280099/14662949395604*45537549124^(8/17) 2329991416277390 a001 956722026041/119218851371*17393796001^(1/7) 2329991416277390 a001 32951280099/3461452808002*45537549124^(7/17) 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^13/Lucas(52) 2329991416277390 a001 10983760033/64300051206*45537549124^(5/17) 2329991416277390 a001 32951280099/817138163596*45537549124^(6/17) 2329991416277390 a001 32951280099/505019158607*45537549124^(1/3) 2329991416277390 a001 32951280099/73681302247*73681302247^(1/4) 2329991416277390 a001 32264490531/10525900321*45537549124^(3/17) 2329991416277390 a004 Fibonacci(52)*Lucas(53)/(1/2+sqrt(5)/2)^92 2329991416277390 a001 956722026041/73681302247*45537549124^(2/17) 2329991416277390 a001 53316291173/73681302247*45537549124^(4/17) 2329991416277390 a001 10983760033/64300051206*312119004989^(3/11) 2329991416277390 a001 4052739537881/73681302247*45537549124^(1/17) 2329991416277390 a001 10983760033/64300051206*14662949395604^(5/21) 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^15/Lucas(54) 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^11/Lucas(52) 2329991416277390 a001 10983760033/64300051206*192900153618^(5/18) 2329991416277390 a001 225851433717/23725150497407*45537549124^(7/17) 2329991416277390 a001 86267571272/2139295485799*45537549124^(6/17) 2329991416277390 a004 Fibonacci(52)*Lucas(55)/(1/2+sqrt(5)/2)^94 2329991416277390 a001 139583862445/14662949395604*45537549124^(7/17) 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^17/Lucas(56) 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^9/Lucas(52) 2329991416277390 a004 Fibonacci(52)*Lucas(57)/(1/2+sqrt(5)/2)^96 2329991416277390 a001 10983760033/440719107401*817138163596^(1/3) 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^19/Lucas(58) 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^7/Lucas(52) 2329991416277390 a004 Fibonacci(52)*Lucas(59)/(1/2+sqrt(5)/2)^98 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^21/Lucas(60) 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^5/Lucas(52) 2329991416277390 a004 Fibonacci(52)*Lucas(61)/(1/2+sqrt(5)/2)^100 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^23/Lucas(62) 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^3/Lucas(52) 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^25/Lucas(64) 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)/Lucas(52) 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^27/Lucas(66) 2329991416277390 a004 Fibonacci(66)/Lucas(52)/(1/2+sqrt(5)/2) 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^29/Lucas(68) 2329991416277390 a004 Fibonacci(68)/Lucas(52)/(1/2+sqrt(5)/2)^3 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^31/Lucas(70) 2329991416277390 a004 Fibonacci(70)/Lucas(52)/(1/2+sqrt(5)/2)^5 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^33/Lucas(72) 2329991416277390 a004 Fibonacci(72)/Lucas(52)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^35/Lucas(74) 2329991416277390 a004 Fibonacci(74)/Lucas(52)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^37/Lucas(76) 2329991416277390 a004 Fibonacci(76)/Lucas(52)/(1/2+sqrt(5)/2)^11 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^39/Lucas(78) 2329991416277390 a004 Fibonacci(78)/Lucas(52)/(1/2+sqrt(5)/2)^13 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^41/Lucas(80) 2329991416277390 a004 Fibonacci(80)/Lucas(52)/(1/2+sqrt(5)/2)^15 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^43/Lucas(82) 2329991416277390 a004 Fibonacci(82)/Lucas(52)/(1/2+sqrt(5)/2)^17 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^45/Lucas(84) 2329991416277390 a004 Fibonacci(84)/Lucas(52)/(1/2+sqrt(5)/2)^19 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^47/Lucas(86) 2329991416277390 a004 Fibonacci(86)/Lucas(52)/(1/2+sqrt(5)/2)^21 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^49/Lucas(88) 2329991416277390 a004 Fibonacci(88)/Lucas(52)/(1/2+sqrt(5)/2)^23 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^51/Lucas(90) 2329991416277390 a004 Fibonacci(90)/Lucas(52)/(1/2+sqrt(5)/2)^25 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^53/Lucas(92) 2329991416277390 a004 Fibonacci(92)/Lucas(52)/(1/2+sqrt(5)/2)^27 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^55/Lucas(94) 2329991416277390 a004 Fibonacci(94)/Lucas(52)/(1/2+sqrt(5)/2)^29 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^57/Lucas(96) 2329991416277390 a004 Fibonacci(96)/Lucas(52)/(1/2+sqrt(5)/2)^31 2329991416277390 a004 Fibonacci(100)/Lucas(52)/(1/2+sqrt(5)/2)^35 2329991416277390 a004 Fibonacci(26)*Lucas(26)/(1/2+sqrt(5)/2)^39 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^59/Lucas(98) 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^60/Lucas(99) 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^61/Lucas(100) 2329991416277390 a004 Fibonacci(98)/Lucas(52)/(1/2+sqrt(5)/2)^33 2329991416277390 a004 Fibonacci(99)/Lucas(52)/(1/2+sqrt(5)/2)^34 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^58/Lucas(97) 2329991416277390 a004 Fibonacci(97)/Lucas(52)/(1/2+sqrt(5)/2)^32 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^56/Lucas(95) 2329991416277390 a004 Fibonacci(95)/Lucas(52)/(1/2+sqrt(5)/2)^30 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^54/Lucas(93) 2329991416277390 a004 Fibonacci(93)/Lucas(52)/(1/2+sqrt(5)/2)^28 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^52/Lucas(91) 2329991416277390 a004 Fibonacci(91)/Lucas(52)/(1/2+sqrt(5)/2)^26 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^50/Lucas(89) 2329991416277390 a004 Fibonacci(89)/Lucas(52)/(1/2+sqrt(5)/2)^24 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^48/Lucas(87) 2329991416277390 a004 Fibonacci(87)/Lucas(52)/(1/2+sqrt(5)/2)^22 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^46/Lucas(85) 2329991416277390 a004 Fibonacci(85)/Lucas(52)/(1/2+sqrt(5)/2)^20 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^44/Lucas(83) 2329991416277390 a004 Fibonacci(83)/Lucas(52)/(1/2+sqrt(5)/2)^18 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^42/Lucas(81) 2329991416277390 a004 Fibonacci(81)/Lucas(52)/(1/2+sqrt(5)/2)^16 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^40/Lucas(79) 2329991416277390 a004 Fibonacci(79)/Lucas(52)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^38/Lucas(77) 2329991416277390 a004 Fibonacci(77)/Lucas(52)/(1/2+sqrt(5)/2)^12 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^36/Lucas(75) 2329991416277390 a004 Fibonacci(75)/Lucas(52)/(1/2+sqrt(5)/2)^10 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^34/Lucas(73) 2329991416277390 a004 Fibonacci(73)/Lucas(52)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^32/Lucas(71) 2329991416277390 a004 Fibonacci(71)/Lucas(52)/(1/2+sqrt(5)/2)^6 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^30/Lucas(69) 2329991416277390 a004 Fibonacci(69)/Lucas(52)/(1/2+sqrt(5)/2)^4 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^28/Lucas(67) 2329991416277390 a004 Fibonacci(67)/Lucas(52)/(1/2+sqrt(5)/2)^2 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^26/Lucas(65) 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^24/Lucas(63) 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^2/Lucas(52) 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^22/Lucas(61) 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^4/Lucas(52) 2329991416277390 a004 Fibonacci(52)*Lucas(60)/(1/2+sqrt(5)/2)^99 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^20/Lucas(59) 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^6/Lucas(52) 2329991416277390 a004 Fibonacci(52)*Lucas(58)/(1/2+sqrt(5)/2)^97 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^18/Lucas(57) 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^8/Lucas(52) 2329991416277390 a001 32951280099/2139295485799*505019158607^(5/14) 2329991416277390 a004 Fibonacci(52)*Lucas(56)/(1/2+sqrt(5)/2)^95 2329991416277390 a001 139583862445/73681302247*312119004989^(2/11) 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^16/Lucas(55) 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^10/Lucas(52) 2329991416277390 a001 32951280099/3461452808002*192900153618^(7/18) 2329991416277390 a001 2504730781961/73681302247*73681302247^(1/13) 2329991416277390 a001 591286729879/9062201101803*45537549124^(1/3) 2329991416277390 a001 139583862445/3461452808002*45537549124^(6/17) 2329991416277390 a004 Fibonacci(52)*Lucas(54)/(1/2+sqrt(5)/2)^93 2329991416277390 a001 365435296162/73681302247*73681302247^(2/13) 2329991416277390 a001 139583862445/2139295485799*45537549124^(1/3) 2329991416277390 a001 139583862445/192900153618*45537549124^(4/17) 2329991416277390 a001 139583862445/817138163596*45537549124^(5/17) 2329991416277390 a001 32951280099/312119004989*73681302247^(4/13) 2329991416277390 a001 53316291173/73681302247*14662949395604^(4/21) 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^14/Lucas(53) 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^12/Lucas(52) 2329991416277390 a001 225851433717/312119004989*45537549124^(4/17) 2329991416277390 a001 32951280099/14662949395604*73681302247^(6/13) 2329991416277390 a004 Fibonacci(54)*Lucas(53)/(1/2+sqrt(5)/2)^94 2329991416277390 a001 1548008755920/505019158607*45537549124^(3/17) 2329991416277390 a001 1515744265389/494493258286*45537549124^(3/17) 2329991416277390 a001 2504730781961/192900153618*45537549124^(2/17) 2329991416277390 a001 2504730781961/817138163596*45537549124^(3/17) 2329991416277390 a004 Fibonacci(56)*Lucas(53)/(1/2+sqrt(5)/2)^96 2329991416277390 a001 53316291173/73681302247*73681302247^(3/13) 2329991416277390 a004 Fibonacci(58)*Lucas(53)/(1/2+sqrt(5)/2)^98 2329991416277390 a004 Fibonacci(60)*Lucas(53)/(1/2+sqrt(5)/2)^100 2329991416277390 a004 Fibonacci(59)*Lucas(53)/(1/2+sqrt(5)/2)^99 2329991416277390 a001 86267571272/119218851371*45537549124^(4/17) 2329991416277390 a004 Fibonacci(57)*Lucas(53)/(1/2+sqrt(5)/2)^97 2329991416277390 a004 Fibonacci(55)*Lucas(53)/(1/2+sqrt(5)/2)^95 2329991416277390 a001 1548008755920/73681302247*28143753123^(1/10) 2329991416277390 a001 10610209857723/817138163596*45537549124^(2/17) 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^13/Lucas(54) 2329991416277390 a001 4052739537881/312119004989*45537549124^(2/17) 2329991416277390 a004 Fibonacci(54)*Lucas(55)/(1/2+sqrt(5)/2)^96 2329991416277390 a001 86267571272/505019158607*312119004989^(3/11) 2329991416277390 a001 1135099622/192933544679*312119004989^(2/5) 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^15/Lucas(56) 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^11/Lucas(54) 2329991416277390 a004 Fibonacci(54)*Lucas(57)/(1/2+sqrt(5)/2)^98 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^17/Lucas(58) 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^9/Lucas(54) 2329991416277390 a004 Fibonacci(54)*Lucas(59)/(1/2+sqrt(5)/2)^100 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^19/Lucas(60) 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^7/Lucas(54) 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^21/Lucas(62) 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^5/Lucas(54) 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^23/Lucas(64) 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^3/Lucas(54) 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^25/Lucas(66) 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)/Lucas(54) 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^27/Lucas(68) 2329991416277390 a004 Fibonacci(68)/Lucas(54)/(1/2+sqrt(5)/2) 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^29/Lucas(70) 2329991416277390 a004 Fibonacci(70)/Lucas(54)/(1/2+sqrt(5)/2)^3 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^31/Lucas(72) 2329991416277390 a004 Fibonacci(72)/Lucas(54)/(1/2+sqrt(5)/2)^5 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^33/Lucas(74) 2329991416277390 a004 Fibonacci(74)/Lucas(54)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^35/Lucas(76) 2329991416277390 a004 Fibonacci(76)/Lucas(54)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^37/Lucas(78) 2329991416277390 a004 Fibonacci(78)/Lucas(54)/(1/2+sqrt(5)/2)^11 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^39/Lucas(80) 2329991416277390 a004 Fibonacci(80)/Lucas(54)/(1/2+sqrt(5)/2)^13 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^41/Lucas(82) 2329991416277390 a004 Fibonacci(82)/Lucas(54)/(1/2+sqrt(5)/2)^15 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^43/Lucas(84) 2329991416277390 a004 Fibonacci(84)/Lucas(54)/(1/2+sqrt(5)/2)^17 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^45/Lucas(86) 2329991416277390 a004 Fibonacci(86)/Lucas(54)/(1/2+sqrt(5)/2)^19 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^47/Lucas(88) 2329991416277390 a004 Fibonacci(88)/Lucas(54)/(1/2+sqrt(5)/2)^21 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^49/Lucas(90) 2329991416277390 a004 Fibonacci(90)/Lucas(54)/(1/2+sqrt(5)/2)^23 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^51/Lucas(92) 2329991416277390 a004 Fibonacci(92)/Lucas(54)/(1/2+sqrt(5)/2)^25 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^53/Lucas(94) 2329991416277390 a004 Fibonacci(94)/Lucas(54)/(1/2+sqrt(5)/2)^27 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^55/Lucas(96) 2329991416277390 a004 Fibonacci(96)/Lucas(54)/(1/2+sqrt(5)/2)^29 2329991416277390 a004 Fibonacci(100)/Lucas(54)/(1/2+sqrt(5)/2)^33 2329991416277390 a004 Fibonacci(27)*Lucas(27)/(1/2+sqrt(5)/2)^41 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^57/Lucas(98) 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^58/Lucas(99) 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^59/Lucas(100) 2329991416277390 a004 Fibonacci(98)/Lucas(54)/(1/2+sqrt(5)/2)^31 2329991416277390 a004 Fibonacci(99)/Lucas(54)/(1/2+sqrt(5)/2)^32 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^56/Lucas(97) 2329991416277390 a004 Fibonacci(97)/Lucas(54)/(1/2+sqrt(5)/2)^30 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^54/Lucas(95) 2329991416277390 a004 Fibonacci(95)/Lucas(54)/(1/2+sqrt(5)/2)^28 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^52/Lucas(93) 2329991416277390 a004 Fibonacci(93)/Lucas(54)/(1/2+sqrt(5)/2)^26 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^50/Lucas(91) 2329991416277390 a004 Fibonacci(91)/Lucas(54)/(1/2+sqrt(5)/2)^24 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^48/Lucas(89) 2329991416277390 a004 Fibonacci(89)/Lucas(54)/(1/2+sqrt(5)/2)^22 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^46/Lucas(87) 2329991416277390 a004 Fibonacci(87)/Lucas(54)/(1/2+sqrt(5)/2)^20 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^44/Lucas(85) 2329991416277390 a004 Fibonacci(85)/Lucas(54)/(1/2+sqrt(5)/2)^18 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^42/Lucas(83) 2329991416277390 a004 Fibonacci(83)/Lucas(54)/(1/2+sqrt(5)/2)^16 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^40/Lucas(81) 2329991416277390 a004 Fibonacci(81)/Lucas(54)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^38/Lucas(79) 2329991416277390 a004 Fibonacci(79)/Lucas(54)/(1/2+sqrt(5)/2)^12 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^36/Lucas(77) 2329991416277390 a004 Fibonacci(77)/Lucas(54)/(1/2+sqrt(5)/2)^10 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^34/Lucas(75) 2329991416277390 a004 Fibonacci(75)/Lucas(54)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^32/Lucas(73) 2329991416277390 a004 Fibonacci(73)/Lucas(54)/(1/2+sqrt(5)/2)^6 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^30/Lucas(71) 2329991416277390 a004 Fibonacci(71)/Lucas(54)/(1/2+sqrt(5)/2)^4 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^28/Lucas(69) 2329991416277390 a004 Fibonacci(69)/Lucas(54)/(1/2+sqrt(5)/2)^2 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^26/Lucas(67) 2329991416277390 a006 5^(1/2)*Fibonacci(67)/Lucas(54)/sqrt(5) 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^24/Lucas(65) 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^2/Lucas(54) 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^22/Lucas(63) 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^4/Lucas(54) 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^20/Lucas(61) 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^6/Lucas(54) 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^18/Lucas(59) 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^8/Lucas(54) 2329991416277390 a004 Fibonacci(54)*Lucas(58)/(1/2+sqrt(5)/2)^99 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^16/Lucas(57) 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^10/Lucas(54) 2329991416277390 a001 21566892818/204284540899*23725150497407^(1/4) 2329991416277390 a004 Fibonacci(54)*Lucas(56)/(1/2+sqrt(5)/2)^97 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^14/Lucas(55) 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^12/Lucas(54) 2329991416277390 a004 Fibonacci(56)*Lucas(55)/(1/2+sqrt(5)/2)^98 2329991416277390 a004 Fibonacci(58)*Lucas(55)/(1/2+sqrt(5)/2)^100 2329991416277390 a001 139583862445/192900153618*192900153618^(2/9) 2329991416277390 a004 Fibonacci(57)*Lucas(55)/(1/2+sqrt(5)/2)^99 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^13/Lucas(56) 2329991416277390 a004 Fibonacci(56)*Lucas(57)/(1/2+sqrt(5)/2)^100 2329991416277390 a001 225749145909/10745088481*312119004989^(1/11) 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^15/Lucas(58) 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^11/Lucas(56) 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^17/Lucas(60) 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^9/Lucas(56) 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^19/Lucas(62) 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^7/Lucas(56) 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^21/Lucas(64) 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^5/Lucas(56) 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^23/Lucas(66) 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^3/Lucas(56) 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^25/Lucas(68) 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)/Lucas(56) 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^27/Lucas(70) 2329991416277390 a004 Fibonacci(70)/Lucas(56)/(1/2+sqrt(5)/2) 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^29/Lucas(72) 2329991416277390 a004 Fibonacci(72)/Lucas(56)/(1/2+sqrt(5)/2)^3 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^31/Lucas(74) 2329991416277390 a004 Fibonacci(74)/Lucas(56)/(1/2+sqrt(5)/2)^5 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^33/Lucas(76) 2329991416277390 a004 Fibonacci(76)/Lucas(56)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^35/Lucas(78) 2329991416277390 a004 Fibonacci(78)/Lucas(56)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^37/Lucas(80) 2329991416277390 a004 Fibonacci(80)/Lucas(56)/(1/2+sqrt(5)/2)^11 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^39/Lucas(82) 2329991416277390 a004 Fibonacci(82)/Lucas(56)/(1/2+sqrt(5)/2)^13 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^41/Lucas(84) 2329991416277390 a004 Fibonacci(84)/Lucas(56)/(1/2+sqrt(5)/2)^15 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^43/Lucas(86) 2329991416277390 a004 Fibonacci(86)/Lucas(56)/(1/2+sqrt(5)/2)^17 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^45/Lucas(88) 2329991416277390 a004 Fibonacci(88)/Lucas(56)/(1/2+sqrt(5)/2)^19 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^47/Lucas(90) 2329991416277390 a004 Fibonacci(90)/Lucas(56)/(1/2+sqrt(5)/2)^21 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^49/Lucas(92) 2329991416277390 a004 Fibonacci(92)/Lucas(56)/(1/2+sqrt(5)/2)^23 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^51/Lucas(94) 2329991416277390 a004 Fibonacci(94)/Lucas(56)/(1/2+sqrt(5)/2)^25 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^53/Lucas(96) 2329991416277390 a004 Fibonacci(96)/Lucas(56)/(1/2+sqrt(5)/2)^27 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^55/Lucas(98) 2329991416277390 a004 Fibonacci(98)/Lucas(56)/(1/2+sqrt(5)/2)^29 2329991416277390 a004 Fibonacci(100)/Lucas(56)/(1/2+sqrt(5)/2)^31 2329991416277390 a004 Fibonacci(28)*Lucas(28)/(1/2+sqrt(5)/2)^43 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^54/Lucas(97) 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^56/Lucas(99) 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^57/Lucas(100) 2329991416277390 a004 Fibonacci(97)/Lucas(56)/(1/2+sqrt(5)/2)^28 2329991416277390 a004 Fibonacci(99)/Lucas(56)/(1/2+sqrt(5)/2)^30 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^52/Lucas(95) 2329991416277390 a004 Fibonacci(95)/Lucas(56)/(1/2+sqrt(5)/2)^26 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^50/Lucas(93) 2329991416277390 a004 Fibonacci(93)/Lucas(56)/(1/2+sqrt(5)/2)^24 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^48/Lucas(91) 2329991416277390 a004 Fibonacci(91)/Lucas(56)/(1/2+sqrt(5)/2)^22 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^46/Lucas(89) 2329991416277390 a004 Fibonacci(89)/Lucas(56)/(1/2+sqrt(5)/2)^20 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^44/Lucas(87) 2329991416277390 a004 Fibonacci(87)/Lucas(56)/(1/2+sqrt(5)/2)^18 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^42/Lucas(85) 2329991416277390 a004 Fibonacci(85)/Lucas(56)/(1/2+sqrt(5)/2)^16 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^40/Lucas(83) 2329991416277390 a004 Fibonacci(83)/Lucas(56)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^38/Lucas(81) 2329991416277390 a004 Fibonacci(81)/Lucas(56)/(1/2+sqrt(5)/2)^12 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^36/Lucas(79) 2329991416277390 a004 Fibonacci(79)/Lucas(56)/(1/2+sqrt(5)/2)^10 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^34/Lucas(77) 2329991416277390 a004 Fibonacci(77)/Lucas(56)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^32/Lucas(75) 2329991416277390 a004 Fibonacci(75)/Lucas(56)/(1/2+sqrt(5)/2)^6 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^30/Lucas(73) 2329991416277390 a004 Fibonacci(73)/Lucas(56)/(1/2+sqrt(5)/2)^4 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^28/Lucas(71) 2329991416277390 a004 Fibonacci(71)/Lucas(56)/(1/2+sqrt(5)/2)^2 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^26/Lucas(69) 2329991416277390 a006 5^(1/2)*Fibonacci(69)/Lucas(56)/sqrt(5) 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^24/Lucas(67) 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^2/Lucas(56) 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^22/Lucas(65) 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^4/Lucas(56) 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^20/Lucas(63) 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^6/Lucas(56) 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^18/Lucas(61) 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^8/Lucas(56) 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^16/Lucas(59) 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^10/Lucas(56) 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^14/Lucas(57) 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^12/Lucas(56) 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^13/Lucas(58) 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^15/Lucas(60) 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^11/Lucas(58) 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^17/Lucas(62) 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^9/Lucas(58) 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^19/Lucas(64) 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^7/Lucas(58) 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^21/Lucas(66) 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^5/Lucas(58) 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^23/Lucas(68) 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^3/Lucas(58) 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^25/Lucas(70) 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)/Lucas(58) 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^27/Lucas(72) 2329991416277390 a004 Fibonacci(72)/Lucas(58)/(1/2+sqrt(5)/2) 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^29/Lucas(74) 2329991416277390 a004 Fibonacci(74)/Lucas(58)/(1/2+sqrt(5)/2)^3 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^31/Lucas(76) 2329991416277390 a004 Fibonacci(76)/Lucas(58)/(1/2+sqrt(5)/2)^5 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^33/Lucas(78) 2329991416277390 a004 Fibonacci(78)/Lucas(58)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^35/Lucas(80) 2329991416277390 a004 Fibonacci(80)/Lucas(58)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^37/Lucas(82) 2329991416277390 a004 Fibonacci(82)/Lucas(58)/(1/2+sqrt(5)/2)^11 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^39/Lucas(84) 2329991416277390 a004 Fibonacci(84)/Lucas(58)/(1/2+sqrt(5)/2)^13 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^41/Lucas(86) 2329991416277390 a004 Fibonacci(86)/Lucas(58)/(1/2+sqrt(5)/2)^15 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^43/Lucas(88) 2329991416277390 a004 Fibonacci(88)/Lucas(58)/(1/2+sqrt(5)/2)^17 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^45/Lucas(90) 2329991416277390 a004 Fibonacci(90)/Lucas(58)/(1/2+sqrt(5)/2)^19 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^47/Lucas(92) 2329991416277390 a004 Fibonacci(92)/Lucas(58)/(1/2+sqrt(5)/2)^21 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^49/Lucas(94) 2329991416277390 a004 Fibonacci(94)/Lucas(58)/(1/2+sqrt(5)/2)^23 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^51/Lucas(96) 2329991416277390 a004 Fibonacci(96)/Lucas(58)/(1/2+sqrt(5)/2)^25 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^53/Lucas(98) 2329991416277390 a004 Fibonacci(98)/Lucas(58)/(1/2+sqrt(5)/2)^27 2329991416277390 a004 Fibonacci(100)/Lucas(58)/(1/2+sqrt(5)/2)^29 2329991416277390 a004 Fibonacci(29)*Lucas(29)/(1/2+sqrt(5)/2)^45 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^52/Lucas(97) 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^54/Lucas(99) 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^55/Lucas(100) 2329991416277390 a004 Fibonacci(97)/Lucas(58)/(1/2+sqrt(5)/2)^26 2329991416277390 a004 Fibonacci(99)/Lucas(58)/(1/2+sqrt(5)/2)^28 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^50/Lucas(95) 2329991416277390 a004 Fibonacci(95)/Lucas(58)/(1/2+sqrt(5)/2)^24 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^48/Lucas(93) 2329991416277390 a004 Fibonacci(93)/Lucas(58)/(1/2+sqrt(5)/2)^22 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^46/Lucas(91) 2329991416277390 a004 Fibonacci(91)/Lucas(58)/(1/2+sqrt(5)/2)^20 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^44/Lucas(89) 2329991416277390 a004 Fibonacci(89)/Lucas(58)/(1/2+sqrt(5)/2)^18 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^42/Lucas(87) 2329991416277390 a004 Fibonacci(87)/Lucas(58)/(1/2+sqrt(5)/2)^16 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^40/Lucas(85) 2329991416277390 a004 Fibonacci(85)/Lucas(58)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^38/Lucas(83) 2329991416277390 a004 Fibonacci(83)/Lucas(58)/(1/2+sqrt(5)/2)^12 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^36/Lucas(81) 2329991416277390 a004 Fibonacci(81)/Lucas(58)/(1/2+sqrt(5)/2)^10 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^34/Lucas(79) 2329991416277390 a004 Fibonacci(79)/Lucas(58)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^32/Lucas(77) 2329991416277390 a004 Fibonacci(77)/Lucas(58)/(1/2+sqrt(5)/2)^6 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^30/Lucas(75) 2329991416277390 a004 Fibonacci(75)/Lucas(58)/(1/2+sqrt(5)/2)^4 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^28/Lucas(73) 2329991416277390 a004 Fibonacci(73)/Lucas(58)/(1/2+sqrt(5)/2)^2 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^26/Lucas(71) 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^24/Lucas(69) 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^2/Lucas(58) 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^22/Lucas(67) 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^4/Lucas(58) 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^20/Lucas(65) 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^6/Lucas(58) 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^18/Lucas(63) 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^8/Lucas(58) 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^16/Lucas(61) 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^10/Lucas(58) 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^14/Lucas(59) 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^12/Lucas(58) 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^13/Lucas(60) 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^15/Lucas(62) 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^11/Lucas(60) 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^17/Lucas(64) 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^9/Lucas(60) 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^19/Lucas(66) 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^7/Lucas(60) 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^21/Lucas(68) 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^5/Lucas(60) 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^23/Lucas(70) 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^3/Lucas(60) 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^25/Lucas(72) 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)/Lucas(60) 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^27/Lucas(74) 2329991416277390 a004 Fibonacci(74)/Lucas(60)/(1/2+sqrt(5)/2) 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^29/Lucas(76) 2329991416277390 a004 Fibonacci(76)/Lucas(60)/(1/2+sqrt(5)/2)^3 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^31/Lucas(78) 2329991416277390 a004 Fibonacci(78)/Lucas(60)/(1/2+sqrt(5)/2)^5 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^33/Lucas(80) 2329991416277390 a004 Fibonacci(80)/Lucas(60)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^35/Lucas(82) 2329991416277390 a004 Fibonacci(82)/Lucas(60)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^37/Lucas(84) 2329991416277390 a004 Fibonacci(84)/Lucas(60)/(1/2+sqrt(5)/2)^11 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^39/Lucas(86) 2329991416277390 a004 Fibonacci(86)/Lucas(60)/(1/2+sqrt(5)/2)^13 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^41/Lucas(88) 2329991416277390 a004 Fibonacci(88)/Lucas(60)/(1/2+sqrt(5)/2)^15 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^43/Lucas(90) 2329991416277390 a004 Fibonacci(90)/Lucas(60)/(1/2+sqrt(5)/2)^17 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^45/Lucas(92) 2329991416277390 a004 Fibonacci(92)/Lucas(60)/(1/2+sqrt(5)/2)^19 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^47/Lucas(94) 2329991416277390 a004 Fibonacci(94)/Lucas(60)/(1/2+sqrt(5)/2)^21 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^49/Lucas(96) 2329991416277390 a004 Fibonacci(96)/Lucas(60)/(1/2+sqrt(5)/2)^23 2329991416277390 a004 Fibonacci(100)/Lucas(60)/(1/2+sqrt(5)/2)^27 2329991416277390 a004 Fibonacci(30)*Lucas(30)/(1/2+sqrt(5)/2)^47 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^51/Lucas(98) 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^52/Lucas(99) 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^53/Lucas(100) 2329991416277390 a004 Fibonacci(98)/Lucas(60)/(1/2+sqrt(5)/2)^25 2329991416277390 a004 Fibonacci(99)/Lucas(60)/(1/2+sqrt(5)/2)^26 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^50/Lucas(97) 2329991416277390 a004 Fibonacci(97)/Lucas(60)/(1/2+sqrt(5)/2)^24 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^48/Lucas(95) 2329991416277390 a004 Fibonacci(95)/Lucas(60)/(1/2+sqrt(5)/2)^22 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^46/Lucas(93) 2329991416277390 a004 Fibonacci(93)/Lucas(60)/(1/2+sqrt(5)/2)^20 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^44/Lucas(91) 2329991416277390 a004 Fibonacci(91)/Lucas(60)/(1/2+sqrt(5)/2)^18 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^42/Lucas(89) 2329991416277390 a004 Fibonacci(89)/Lucas(60)/(1/2+sqrt(5)/2)^16 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^40/Lucas(87) 2329991416277390 a004 Fibonacci(87)/Lucas(60)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^38/Lucas(85) 2329991416277390 a004 Fibonacci(85)/Lucas(60)/(1/2+sqrt(5)/2)^12 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^36/Lucas(83) 2329991416277390 a004 Fibonacci(83)/Lucas(60)/(1/2+sqrt(5)/2)^10 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^34/Lucas(81) 2329991416277390 a004 Fibonacci(81)/Lucas(60)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^32/Lucas(79) 2329991416277390 a004 Fibonacci(79)/Lucas(60)/(1/2+sqrt(5)/2)^6 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^30/Lucas(77) 2329991416277390 a004 Fibonacci(77)/Lucas(60)/(1/2+sqrt(5)/2)^4 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^28/Lucas(75) 2329991416277390 a004 Fibonacci(75)/Lucas(60)/(1/2+sqrt(5)/2)^2 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^26/Lucas(73) 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^24/Lucas(71) 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^2/Lucas(60) 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^22/Lucas(69) 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^4/Lucas(60) 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^20/Lucas(67) 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^6/Lucas(60) 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^18/Lucas(65) 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^8/Lucas(60) 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^16/Lucas(63) 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^10/Lucas(60) 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^14/Lucas(61) 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^12/Lucas(60) 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^13/Lucas(62) 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^15/Lucas(64) 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^11/Lucas(62) 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^17/Lucas(66) 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^9/Lucas(62) 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^19/Lucas(68) 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^7/Lucas(62) 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^21/Lucas(70) 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^5/Lucas(62) 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^23/Lucas(72) 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^3/Lucas(62) 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^25/Lucas(74) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)/Lucas(62) 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^27/Lucas(76) 2329991416277390 a004 Fibonacci(76)/Lucas(62)/(1/2+sqrt(5)/2) 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^29/Lucas(78) 2329991416277390 a004 Fibonacci(78)/Lucas(62)/(1/2+sqrt(5)/2)^3 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^31/Lucas(80) 2329991416277390 a004 Fibonacci(80)/Lucas(62)/(1/2+sqrt(5)/2)^5 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^33/Lucas(82) 2329991416277390 a004 Fibonacci(82)/Lucas(62)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^35/Lucas(84) 2329991416277390 a004 Fibonacci(84)/Lucas(62)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^37/Lucas(86) 2329991416277390 a004 Fibonacci(86)/Lucas(62)/(1/2+sqrt(5)/2)^11 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^39/Lucas(88) 2329991416277390 a004 Fibonacci(88)/Lucas(62)/(1/2+sqrt(5)/2)^13 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^41/Lucas(90) 2329991416277390 a004 Fibonacci(90)/Lucas(62)/(1/2+sqrt(5)/2)^15 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^43/Lucas(92) 2329991416277390 a004 Fibonacci(92)/Lucas(62)/(1/2+sqrt(5)/2)^17 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^45/Lucas(94) 2329991416277390 a004 Fibonacci(94)/Lucas(62)/(1/2+sqrt(5)/2)^19 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^47/Lucas(96) 2329991416277390 a004 Fibonacci(96)/Lucas(62)/(1/2+sqrt(5)/2)^21 2329991416277390 a004 Fibonacci(100)/Lucas(62)/(1/2+sqrt(5)/2)^25 2329991416277390 a004 Fibonacci(31)*Lucas(31)/(1/2+sqrt(5)/2)^49 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^49/Lucas(98) 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^50/Lucas(99) 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^51/Lucas(100) 2329991416277390 a004 Fibonacci(98)/Lucas(62)/(1/2+sqrt(5)/2)^23 2329991416277390 a004 Fibonacci(99)/Lucas(62)/(1/2+sqrt(5)/2)^24 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^48/Lucas(97) 2329991416277390 a004 Fibonacci(97)/Lucas(62)/(1/2+sqrt(5)/2)^22 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^46/Lucas(95) 2329991416277390 a004 Fibonacci(95)/Lucas(62)/(1/2+sqrt(5)/2)^20 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^44/Lucas(93) 2329991416277390 a004 Fibonacci(93)/Lucas(62)/(1/2+sqrt(5)/2)^18 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^42/Lucas(91) 2329991416277390 a004 Fibonacci(91)/Lucas(62)/(1/2+sqrt(5)/2)^16 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^40/Lucas(89) 2329991416277390 a004 Fibonacci(89)/Lucas(62)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^38/Lucas(87) 2329991416277390 a004 Fibonacci(87)/Lucas(62)/(1/2+sqrt(5)/2)^12 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^36/Lucas(85) 2329991416277390 a004 Fibonacci(85)/Lucas(62)/(1/2+sqrt(5)/2)^10 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^34/Lucas(83) 2329991416277390 a004 Fibonacci(83)/Lucas(62)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^32/Lucas(81) 2329991416277390 a004 Fibonacci(81)/Lucas(62)/(1/2+sqrt(5)/2)^6 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^30/Lucas(79) 2329991416277390 a004 Fibonacci(79)/Lucas(62)/(1/2+sqrt(5)/2)^4 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^28/Lucas(77) 2329991416277390 a004 Fibonacci(77)/Lucas(62)/(1/2+sqrt(5)/2)^2 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^26/Lucas(75) 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^24/Lucas(73) 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^2/Lucas(62) 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^22/Lucas(71) 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^4/Lucas(62) 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^20/Lucas(69) 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^6/Lucas(62) 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^18/Lucas(67) 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^8/Lucas(62) 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^16/Lucas(65) 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^10/Lucas(62) 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^14/Lucas(63) 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^12/Lucas(62) 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^13/Lucas(64) 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^15/Lucas(66) 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^11/Lucas(64) 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^17/Lucas(68) 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^9/Lucas(64) 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^19/Lucas(70) 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^7/Lucas(64) 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^21/Lucas(72) 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^5/Lucas(64) 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^23/Lucas(74) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^3/Lucas(64) 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^25/Lucas(76) 2329991416277390 a004 Fibonacci(76)*(1/2+sqrt(5)/2)/Lucas(64) 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^27/Lucas(78) 2329991416277390 a004 Fibonacci(78)/Lucas(64)/(1/2+sqrt(5)/2) 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^29/Lucas(80) 2329991416277390 a004 Fibonacci(80)/Lucas(64)/(1/2+sqrt(5)/2)^3 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^31/Lucas(82) 2329991416277390 a004 Fibonacci(82)/Lucas(64)/(1/2+sqrt(5)/2)^5 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^33/Lucas(84) 2329991416277390 a004 Fibonacci(84)/Lucas(64)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^35/Lucas(86) 2329991416277390 a004 Fibonacci(86)/Lucas(64)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^37/Lucas(88) 2329991416277390 a004 Fibonacci(88)/Lucas(64)/(1/2+sqrt(5)/2)^11 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^39/Lucas(90) 2329991416277390 a004 Fibonacci(90)/Lucas(64)/(1/2+sqrt(5)/2)^13 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^41/Lucas(92) 2329991416277390 a004 Fibonacci(92)/Lucas(64)/(1/2+sqrt(5)/2)^15 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^43/Lucas(94) 2329991416277390 a004 Fibonacci(94)/Lucas(64)/(1/2+sqrt(5)/2)^17 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^45/Lucas(96) 2329991416277390 a004 Fibonacci(96)/Lucas(64)/(1/2+sqrt(5)/2)^19 2329991416277390 a004 Fibonacci(100)/Lucas(64)/(1/2+sqrt(5)/2)^23 2329991416277390 a004 Fibonacci(32)*Lucas(32)/(1/2+sqrt(5)/2)^51 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^47/Lucas(98) 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^49/Lucas(100) 2329991416277390 a004 Fibonacci(98)/Lucas(64)/(1/2+sqrt(5)/2)^21 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^46/Lucas(97) 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^48/Lucas(99) 2329991416277390 a004 Fibonacci(97)/Lucas(64)/(1/2+sqrt(5)/2)^20 2329991416277390 a004 Fibonacci(99)/Lucas(64)/(1/2+sqrt(5)/2)^22 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^44/Lucas(95) 2329991416277390 a004 Fibonacci(95)/Lucas(64)/(1/2+sqrt(5)/2)^18 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^42/Lucas(93) 2329991416277390 a004 Fibonacci(93)/Lucas(64)/(1/2+sqrt(5)/2)^16 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^40/Lucas(91) 2329991416277390 a004 Fibonacci(91)/Lucas(64)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^38/Lucas(89) 2329991416277390 a004 Fibonacci(89)/Lucas(64)/(1/2+sqrt(5)/2)^12 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^36/Lucas(87) 2329991416277390 a004 Fibonacci(87)/Lucas(64)/(1/2+sqrt(5)/2)^10 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^34/Lucas(85) 2329991416277390 a004 Fibonacci(85)/Lucas(64)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^32/Lucas(83) 2329991416277390 a004 Fibonacci(83)/Lucas(64)/(1/2+sqrt(5)/2)^6 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^30/Lucas(81) 2329991416277390 a004 Fibonacci(81)/Lucas(64)/(1/2+sqrt(5)/2)^4 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^28/Lucas(79) 2329991416277390 a004 Fibonacci(79)/Lucas(64)/(1/2+sqrt(5)/2)^2 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^26/Lucas(77) 2329991416277390 a006 5^(1/2)*Fibonacci(77)/Lucas(64)/sqrt(5) 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^24/Lucas(75) 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^2/Lucas(64) 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^22/Lucas(73) 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^4/Lucas(64) 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^20/Lucas(71) 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^6/Lucas(64) 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^18/Lucas(69) 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^8/Lucas(64) 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^16/Lucas(67) 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^10/Lucas(64) 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^14/Lucas(65) 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^12/Lucas(64) 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^13/Lucas(66) 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^15/Lucas(68) 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^11/Lucas(66) 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^17/Lucas(70) 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^9/Lucas(66) 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^19/Lucas(72) 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^7/Lucas(66) 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^21/Lucas(74) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^5/Lucas(66) 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^23/Lucas(76) 2329991416277390 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^3/Lucas(66) 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^25/Lucas(78) 2329991416277390 a004 Fibonacci(78)*(1/2+sqrt(5)/2)/Lucas(66) 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^27/Lucas(80) 2329991416277390 a004 Fibonacci(80)/Lucas(66)/(1/2+sqrt(5)/2) 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^29/Lucas(82) 2329991416277390 a004 Fibonacci(82)/Lucas(66)/(1/2+sqrt(5)/2)^3 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^31/Lucas(84) 2329991416277390 a004 Fibonacci(84)/Lucas(66)/(1/2+sqrt(5)/2)^5 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^33/Lucas(86) 2329991416277390 a004 Fibonacci(86)/Lucas(66)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^35/Lucas(88) 2329991416277390 a004 Fibonacci(88)/Lucas(66)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^37/Lucas(90) 2329991416277390 a004 Fibonacci(90)/Lucas(66)/(1/2+sqrt(5)/2)^11 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^39/Lucas(92) 2329991416277390 a004 Fibonacci(92)/Lucas(66)/(1/2+sqrt(5)/2)^13 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^41/Lucas(94) 2329991416277390 a004 Fibonacci(94)/Lucas(66)/(1/2+sqrt(5)/2)^15 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^43/Lucas(96) 2329991416277390 a004 Fibonacci(96)/Lucas(66)/(1/2+sqrt(5)/2)^17 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^45/Lucas(98) 2329991416277390 a004 Fibonacci(98)/Lucas(66)/(1/2+sqrt(5)/2)^19 2329991416277390 a004 Fibonacci(100)/Lucas(66)/(1/2+sqrt(5)/2)^21 2329991416277390 a004 Fibonacci(33)*Lucas(33)/(1/2+sqrt(5)/2)^53 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^44/Lucas(97) 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^46/Lucas(99) 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^47/Lucas(100) 2329991416277390 a004 Fibonacci(97)/Lucas(66)/(1/2+sqrt(5)/2)^18 2329991416277390 a004 Fibonacci(99)/Lucas(66)/(1/2+sqrt(5)/2)^20 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^42/Lucas(95) 2329991416277390 a004 Fibonacci(95)/Lucas(66)/(1/2+sqrt(5)/2)^16 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^40/Lucas(93) 2329991416277390 a004 Fibonacci(93)/Lucas(66)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^38/Lucas(91) 2329991416277390 a004 Fibonacci(91)/Lucas(66)/(1/2+sqrt(5)/2)^12 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^36/Lucas(89) 2329991416277390 a004 Fibonacci(89)/Lucas(66)/(1/2+sqrt(5)/2)^10 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^34/Lucas(87) 2329991416277390 a004 Fibonacci(87)/Lucas(66)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^32/Lucas(85) 2329991416277390 a004 Fibonacci(85)/Lucas(66)/(1/2+sqrt(5)/2)^6 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^30/Lucas(83) 2329991416277390 a004 Fibonacci(83)/Lucas(66)/(1/2+sqrt(5)/2)^4 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^28/Lucas(81) 2329991416277390 a004 Fibonacci(81)/Lucas(66)/(1/2+sqrt(5)/2)^2 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^26/Lucas(79) 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^24/Lucas(77) 2329991416277390 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^2/Lucas(66) 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^22/Lucas(75) 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^4/Lucas(66) 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^20/Lucas(73) 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^6/Lucas(66) 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^18/Lucas(71) 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^8/Lucas(66) 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^16/Lucas(69) 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^10/Lucas(66) 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^14/Lucas(67) 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^12/Lucas(66) 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^13/Lucas(68) 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^15/Lucas(70) 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^11/Lucas(68) 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^17/Lucas(72) 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^9/Lucas(68) 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^19/Lucas(74) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^7/Lucas(68) 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^21/Lucas(76) 2329991416277390 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^5/Lucas(68) 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^23/Lucas(78) 2329991416277390 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^3/Lucas(68) 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^25/Lucas(80) 2329991416277390 a004 Fibonacci(80)*(1/2+sqrt(5)/2)/Lucas(68) 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^27/Lucas(82) 2329991416277390 a004 Fibonacci(82)/Lucas(68)/(1/2+sqrt(5)/2) 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^29/Lucas(84) 2329991416277390 a004 Fibonacci(84)/Lucas(68)/(1/2+sqrt(5)/2)^3 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^31/Lucas(86) 2329991416277390 a004 Fibonacci(86)/Lucas(68)/(1/2+sqrt(5)/2)^5 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^33/Lucas(88) 2329991416277390 a004 Fibonacci(88)/Lucas(68)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^35/Lucas(90) 2329991416277390 a004 Fibonacci(90)/Lucas(68)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^37/Lucas(92) 2329991416277390 a004 Fibonacci(92)/Lucas(68)/(1/2+sqrt(5)/2)^11 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^39/Lucas(94) 2329991416277390 a004 Fibonacci(94)/Lucas(68)/(1/2+sqrt(5)/2)^13 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^41/Lucas(96) 2329991416277390 a004 Fibonacci(96)/Lucas(68)/(1/2+sqrt(5)/2)^15 2329991416277390 a004 Fibonacci(100)/Lucas(68)/(1/2+sqrt(5)/2)^19 2329991416277390 a004 Fibonacci(34)*Lucas(34)/(1/2+sqrt(5)/2)^55 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^43/Lucas(98) 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^44/Lucas(99) 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^45/Lucas(100) 2329991416277390 a004 Fibonacci(98)/Lucas(68)/(1/2+sqrt(5)/2)^17 2329991416277390 a004 Fibonacci(99)/Lucas(68)/(1/2+sqrt(5)/2)^18 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^42/Lucas(97) 2329991416277390 a004 Fibonacci(97)/Lucas(68)/(1/2+sqrt(5)/2)^16 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^40/Lucas(95) 2329991416277390 a004 Fibonacci(95)/Lucas(68)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^38/Lucas(93) 2329991416277390 a004 Fibonacci(93)/Lucas(68)/(1/2+sqrt(5)/2)^12 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^36/Lucas(91) 2329991416277390 a004 Fibonacci(91)/Lucas(68)/(1/2+sqrt(5)/2)^10 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^34/Lucas(89) 2329991416277390 a004 Fibonacci(89)/Lucas(68)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^32/Lucas(87) 2329991416277390 a004 Fibonacci(87)/Lucas(68)/(1/2+sqrt(5)/2)^6 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^30/Lucas(85) 2329991416277390 a004 Fibonacci(85)/Lucas(68)/(1/2+sqrt(5)/2)^4 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^28/Lucas(83) 2329991416277390 a004 Fibonacci(83)/Lucas(68)/(1/2+sqrt(5)/2)^2 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^26/Lucas(81) 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^24/Lucas(79) 2329991416277390 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^2/Lucas(68) 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^22/Lucas(77) 2329991416277390 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^4/Lucas(68) 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^20/Lucas(75) 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^6/Lucas(68) 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^18/Lucas(73) 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^8/Lucas(68) 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^16/Lucas(71) 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^10/Lucas(68) 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^14/Lucas(69) 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^12/Lucas(68) 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^13/Lucas(70) 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^15/Lucas(72) 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^11/Lucas(70) 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^17/Lucas(74) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^9/Lucas(70) 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^19/Lucas(76) 2329991416277390 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^7/Lucas(70) 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^21/Lucas(78) 2329991416277390 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^5/Lucas(70) 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^23/Lucas(80) 2329991416277390 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^3/Lucas(70) 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^25/Lucas(82) 2329991416277390 a004 Fibonacci(82)*(1/2+sqrt(5)/2)/Lucas(70) 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^27/Lucas(84) 2329991416277390 a004 Fibonacci(84)/Lucas(70)/(1/2+sqrt(5)/2) 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^29/Lucas(86) 2329991416277390 a004 Fibonacci(86)/Lucas(70)/(1/2+sqrt(5)/2)^3 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^31/Lucas(88) 2329991416277390 a004 Fibonacci(88)/Lucas(70)/(1/2+sqrt(5)/2)^5 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^33/Lucas(90) 2329991416277390 a004 Fibonacci(90)/Lucas(70)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^35/Lucas(92) 2329991416277390 a004 Fibonacci(92)/Lucas(70)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^37/Lucas(94) 2329991416277390 a004 Fibonacci(94)/Lucas(70)/(1/2+sqrt(5)/2)^11 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^39/Lucas(96) 2329991416277390 a004 Fibonacci(96)/Lucas(70)/(1/2+sqrt(5)/2)^13 2329991416277390 a004 Fibonacci(100)/Lucas(70)/(1/2+sqrt(5)/2)^17 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^41/Lucas(98) 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^43/Lucas(100) 2329991416277390 a004 Fibonacci(98)/Lucas(70)/(1/2+sqrt(5)/2)^15 2329991416277390 a004 Fibonacci(35)*Lucas(35)/(1/2+sqrt(5)/2)^57 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^40/Lucas(97) 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^42/Lucas(99) 2329991416277390 a004 Fibonacci(97)/Lucas(70)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(99)/Lucas(70)/(1/2+sqrt(5)/2)^16 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^38/Lucas(95) 2329991416277390 a004 Fibonacci(95)/Lucas(70)/(1/2+sqrt(5)/2)^12 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^36/Lucas(93) 2329991416277390 a004 Fibonacci(93)/Lucas(70)/(1/2+sqrt(5)/2)^10 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^34/Lucas(91) 2329991416277390 a004 Fibonacci(91)/Lucas(70)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^32/Lucas(89) 2329991416277390 a004 Fibonacci(89)/Lucas(70)/(1/2+sqrt(5)/2)^6 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^30/Lucas(87) 2329991416277390 a004 Fibonacci(87)/Lucas(70)/(1/2+sqrt(5)/2)^4 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^28/Lucas(85) 2329991416277390 a004 Fibonacci(85)/Lucas(70)/(1/2+sqrt(5)/2)^2 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^26/Lucas(83) 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^24/Lucas(81) 2329991416277390 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^2/Lucas(70) 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^22/Lucas(79) 2329991416277390 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^4/Lucas(70) 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^20/Lucas(77) 2329991416277390 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^6/Lucas(70) 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^18/Lucas(75) 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^8/Lucas(70) 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^16/Lucas(73) 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^10/Lucas(70) 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^14/Lucas(71) 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^12/Lucas(70) 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^13/Lucas(72) 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^15/Lucas(74) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^11/Lucas(72) 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^17/Lucas(76) 2329991416277390 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^9/Lucas(72) 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^19/Lucas(78) 2329991416277390 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^7/Lucas(72) 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^21/Lucas(80) 2329991416277390 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^5/Lucas(72) 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^23/Lucas(82) 2329991416277390 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^3/Lucas(72) 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^25/Lucas(84) 2329991416277390 a004 Fibonacci(84)*(1/2+sqrt(5)/2)/Lucas(72) 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^27/Lucas(86) 2329991416277390 a004 Fibonacci(86)/Lucas(72)/(1/2+sqrt(5)/2) 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^29/Lucas(88) 2329991416277390 a004 Fibonacci(88)/Lucas(72)/(1/2+sqrt(5)/2)^3 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^31/Lucas(90) 2329991416277390 a004 Fibonacci(90)/Lucas(72)/(1/2+sqrt(5)/2)^5 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^33/Lucas(92) 2329991416277390 a004 Fibonacci(92)/Lucas(72)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^35/Lucas(94) 2329991416277390 a004 Fibonacci(94)/Lucas(72)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^37/Lucas(96) 2329991416277390 a004 Fibonacci(96)/Lucas(72)/(1/2+sqrt(5)/2)^11 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^39/Lucas(98) 2329991416277390 a004 Fibonacci(98)/Lucas(72)/(1/2+sqrt(5)/2)^13 2329991416277390 a004 Fibonacci(100)/Lucas(72)/(1/2+sqrt(5)/2)^15 2329991416277390 a004 Fibonacci(36)*Lucas(36)/(1/2+sqrt(5)/2)^59 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^38/Lucas(97) 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^40/Lucas(99) 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^41/Lucas(100) 2329991416277390 a004 Fibonacci(97)/Lucas(72)/(1/2+sqrt(5)/2)^12 2329991416277390 a004 Fibonacci(99)/Lucas(72)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^36/Lucas(95) 2329991416277390 a004 Fibonacci(95)/Lucas(72)/(1/2+sqrt(5)/2)^10 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^34/Lucas(93) 2329991416277390 a004 Fibonacci(93)/Lucas(72)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^32/Lucas(91) 2329991416277390 a004 Fibonacci(91)/Lucas(72)/(1/2+sqrt(5)/2)^6 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^30/Lucas(89) 2329991416277390 a004 Fibonacci(89)/Lucas(72)/(1/2+sqrt(5)/2)^4 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^28/Lucas(87) 2329991416277390 a004 Fibonacci(87)/Lucas(72)/(1/2+sqrt(5)/2)^2 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^26/Lucas(85) 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^24/Lucas(83) 2329991416277390 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^2/Lucas(72) 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^22/Lucas(81) 2329991416277390 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^4/Lucas(72) 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^20/Lucas(79) 2329991416277390 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^6/Lucas(72) 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^18/Lucas(77) 2329991416277390 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^8/Lucas(72) 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^16/Lucas(75) 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^10/Lucas(72) 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^14/Lucas(73) 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^12/Lucas(72) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^13/Lucas(74) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^15/Lucas(76) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^17/Lucas(78) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^19/Lucas(80) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^21/Lucas(82) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^23/Lucas(84) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^25/Lucas(86) 2329991416277390 a004 Fibonacci(86)*(1/2+sqrt(5)/2)/Lucas(74) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^27/Lucas(88) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^29/Lucas(90) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^31/Lucas(92) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^33/Lucas(94) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^35/Lucas(96) 2329991416277390 a004 Fibonacci(37)*Lucas(37)/(1/2+sqrt(5)/2)^61 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^37/Lucas(98) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^38/Lucas(99) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^39/Lucas(100) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^36/Lucas(97) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^34/Lucas(95) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^32/Lucas(93) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^30/Lucas(91) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^28/Lucas(89) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^26/Lucas(87) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^24/Lucas(85) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^22/Lucas(83) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^20/Lucas(81) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^18/Lucas(79) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^16/Lucas(77) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^14/Lucas(75) 2329991416277390 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^13/Lucas(76) 2329991416277390 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^15/Lucas(78) 2329991416277390 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^17/Lucas(80) 2329991416277390 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^19/Lucas(82) 2329991416277390 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^21/Lucas(84) 2329991416277390 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^23/Lucas(86) 2329991416277390 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^25/Lucas(88) 2329991416277390 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^27/Lucas(90) 2329991416277390 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^29/Lucas(92) 2329991416277390 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^31/Lucas(94) 2329991416277390 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^33/Lucas(96) 2329991416277390 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^35/Lucas(98) 2329991416277390 a004 Fibonacci(38)*Lucas(38)/(1/2+sqrt(5)/2)^63 2329991416277390 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^34/Lucas(97) 2329991416277390 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^36/Lucas(99) 2329991416277390 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^37/Lucas(100) 2329991416277390 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^32/Lucas(95) 2329991416277390 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^30/Lucas(93) 2329991416277390 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^28/Lucas(91) 2329991416277390 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^26/Lucas(89) 2329991416277390 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^24/Lucas(87) 2329991416277390 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^22/Lucas(85) 2329991416277390 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^20/Lucas(83) 2329991416277390 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^18/Lucas(81) 2329991416277390 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^16/Lucas(79) 2329991416277390 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^14/Lucas(77) 2329991416277390 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^13/Lucas(78) 2329991416277390 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^15/Lucas(80) 2329991416277390 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^17/Lucas(82) 2329991416277390 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^19/Lucas(84) 2329991416277390 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^21/Lucas(86) 2329991416277390 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^23/Lucas(88) 2329991416277390 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^25/Lucas(90) 2329991416277390 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^27/Lucas(92) 2329991416277390 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^29/Lucas(94) 2329991416277390 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^31/Lucas(96) 2329991416277390 a004 Fibonacci(39)*Lucas(39)/(1/2+sqrt(5)/2)^65 2329991416277390 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^33/Lucas(98) 2329991416277390 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^34/Lucas(99) 2329991416277390 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^35/Lucas(100) 2329991416277390 a004 Fibonacci(99)/Lucas(78)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^32/Lucas(97) 2329991416277390 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^30/Lucas(95) 2329991416277390 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^28/Lucas(93) 2329991416277390 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^26/Lucas(91) 2329991416277390 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^24/Lucas(89) 2329991416277390 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^22/Lucas(87) 2329991416277390 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^20/Lucas(85) 2329991416277390 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^18/Lucas(83) 2329991416277390 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^16/Lucas(81) 2329991416277390 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^14/Lucas(79) 2329991416277390 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^13/Lucas(80) 2329991416277390 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^15/Lucas(82) 2329991416277390 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^17/Lucas(84) 2329991416277390 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^19/Lucas(86) 2329991416277390 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^21/Lucas(88) 2329991416277390 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^23/Lucas(90) 2329991416277390 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^25/Lucas(92) 2329991416277390 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^27/Lucas(94) 2329991416277390 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^29/Lucas(96) 2329991416277390 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^31/Lucas(98) 2329991416277390 a004 Fibonacci(40)*Lucas(40)/(1/2+sqrt(5)/2)^67 2329991416277390 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^30/Lucas(97) 2329991416277390 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^32/Lucas(99) 2329991416277390 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^33/Lucas(100) 2329991416277390 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^28/Lucas(95) 2329991416277390 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^26/Lucas(93) 2329991416277390 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^24/Lucas(91) 2329991416277390 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^22/Lucas(89) 2329991416277390 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^20/Lucas(87) 2329991416277390 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^18/Lucas(85) 2329991416277390 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^16/Lucas(83) 2329991416277390 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^14/Lucas(81) 2329991416277390 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^13/Lucas(82) 2329991416277390 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^15/Lucas(84) 2329991416277390 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^17/Lucas(86) 2329991416277390 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^19/Lucas(88) 2329991416277390 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^21/Lucas(90) 2329991416277390 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^23/Lucas(92) 2329991416277390 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^25/Lucas(94) 2329991416277390 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^27/Lucas(96) 2329991416277390 a004 Fibonacci(41)*Lucas(41)/(1/2+sqrt(5)/2)^69 2329991416277390 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^29/Lucas(98) 2329991416277390 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^30/Lucas(99) 2329991416277390 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^31/Lucas(100) 2329991416277390 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^28/Lucas(97) 2329991416277390 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^26/Lucas(95) 2329991416277390 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^24/Lucas(93) 2329991416277390 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^22/Lucas(91) 2329991416277390 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^20/Lucas(89) 2329991416277390 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^18/Lucas(87) 2329991416277390 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^16/Lucas(85) 2329991416277390 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^14/Lucas(83) 2329991416277390 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^13/Lucas(84) 2329991416277390 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^15/Lucas(86) 2329991416277390 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^17/Lucas(88) 2329991416277390 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^19/Lucas(90) 2329991416277390 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^21/Lucas(92) 2329991416277390 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^23/Lucas(94) 2329991416277390 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^25/Lucas(96) 2329991416277390 a004 Fibonacci(42)*Lucas(42)/(1/2+sqrt(5)/2)^71 2329991416277390 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^27/Lucas(98) 2329991416277390 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^28/Lucas(99) 2329991416277390 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^29/Lucas(100) 2329991416277390 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^26/Lucas(97) 2329991416277390 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^24/Lucas(95) 2329991416277390 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^22/Lucas(93) 2329991416277390 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^20/Lucas(91) 2329991416277390 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^18/Lucas(89) 2329991416277390 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^16/Lucas(87) 2329991416277390 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^14/Lucas(85) 2329991416277390 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^13/Lucas(86) 2329991416277390 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^15/Lucas(88) 2329991416277390 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^17/Lucas(90) 2329991416277390 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^19/Lucas(92) 2329991416277390 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^7/Lucas(86) 2329991416277390 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^21/Lucas(94) 2329991416277390 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^23/Lucas(96) 2329991416277390 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^25/Lucas(98) 2329991416277390 a004 Fibonacci(43)*Lucas(43)/(1/2+sqrt(5)/2)^73 2329991416277390 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^24/Lucas(97) 2329991416277390 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^26/Lucas(99) 2329991416277390 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^27/Lucas(100) 2329991416277390 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^22/Lucas(95) 2329991416277390 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^20/Lucas(93) 2329991416277390 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^18/Lucas(91) 2329991416277390 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^16/Lucas(89) 2329991416277390 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^14/Lucas(87) 2329991416277390 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^13/Lucas(88) 2329991416277390 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^15/Lucas(90) 2329991416277390 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^17/Lucas(92) 2329991416277390 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^19/Lucas(94) 2329991416277390 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^21/Lucas(96) 2329991416277390 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^23/Lucas(98) 2329991416277390 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^25/Lucas(100) 2329991416277390 a004 Fibonacci(44)*Lucas(44)/(1/2+sqrt(5)/2)^75 2329991416277390 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^22/Lucas(97) 2329991416277390 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^24/Lucas(99) 2329991416277390 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^20/Lucas(95) 2329991416277390 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^18/Lucas(93) 2329991416277390 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^16/Lucas(91) 2329991416277390 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^14/Lucas(89) 2329991416277390 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^13/Lucas(90) 2329991416277390 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^15/Lucas(92) 2329991416277390 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^17/Lucas(94) 2329991416277390 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^19/Lucas(96) 2329991416277390 a004 Fibonacci(45)*Lucas(45)/(1/2+sqrt(5)/2)^77 2329991416277390 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^21/Lucas(98) 2329991416277390 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^22/Lucas(99) 2329991416277390 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^23/Lucas(100) 2329991416277390 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^20/Lucas(97) 2329991416277390 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^18/Lucas(95) 2329991416277390 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^16/Lucas(93) 2329991416277390 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^14/Lucas(91) 2329991416277390 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^13/Lucas(92) 2329991416277390 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^15/Lucas(94) 2329991416277390 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^17/Lucas(96) 2329991416277390 a004 Fibonacci(46)*Lucas(46)/(1/2+sqrt(5)/2)^79 2329991416277390 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^19/Lucas(98) 2329991416277390 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^20/Lucas(99) 2329991416277390 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^21/Lucas(100) 2329991416277390 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^18/Lucas(97) 2329991416277390 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^16/Lucas(95) 2329991416277390 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^12/Lucas(92) 2329991416277390 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^13/Lucas(94) 2329991416277390 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^15/Lucas(96) 2329991416277390 a004 Fibonacci(47)*Lucas(47)/(1/2+sqrt(5)/2)^81 2329991416277390 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^17/Lucas(98) 2329991416277390 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^18/Lucas(99) 2329991416277390 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^19/Lucas(100) 2329991416277390 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^16/Lucas(97) 2329991416277390 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^14/Lucas(95) 2329991416277390 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^13/Lucas(96) 2329991416277390 a004 Fibonacci(48)*Lucas(48)/(1/2+sqrt(5)/2)^83 2329991416277390 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^15/Lucas(98) 2329991416277390 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^16/Lucas(99) 2329991416277390 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^17/Lucas(100) 2329991416277390 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^14/Lucas(97) 2329991416277390 a004 Fibonacci(100)*(1/2+sqrt(5)/2)^12/Lucas(99) 2329991416277390 a004 Fibonacci(100)*(1/2+sqrt(5)/2)^13/Lucas(100) 2329991416277390 a004 Fibonacci(49)*Lucas(49)/(1/2+sqrt(5)/2)^85 2329991416277390 a004 Fibonacci(50)*Lucas(50)/(1/2+sqrt(5)/2)^87 2329991416277390 a004 Fibonacci(51)*Lucas(51)/(1/2+sqrt(5)/2)^89 2329991416277390 a004 Fibonacci(52)*Lucas(52)/(1/2+sqrt(5)/2)^91 2329991416277390 a004 Fibonacci(53)*Lucas(53)/(1/2+sqrt(5)/2)^93 2329991416277390 a004 Fibonacci(54)*Lucas(54)/(1/2+sqrt(5)/2)^95 2329991416277390 a004 Fibonacci(55)*Lucas(55)/(1/2+sqrt(5)/2)^97 2329991416277390 a004 Fibonacci(56)*Lucas(56)/(1/2+sqrt(5)/2)^99 2329991416277390 a004 Fibonacci(98)*(1/2+sqrt(5)/2)^13/Lucas(98) 2329991416277390 a004 Fibonacci(98)*(1/2+sqrt(5)/2)^14/Lucas(99) 2329991416277390 a004 Fibonacci(98)*(1/2+sqrt(5)/2)^15/Lucas(100) 2329991416277390 a004 Fibonacci(99)*(1/2+sqrt(5)/2)^13/Lucas(99) 2329991416277390 a004 Fibonacci(99)*Lucas(1)/(1/2+sqrt(5)/2)^86 2329991416277390 a004 Fibonacci(100)*(1/2+sqrt(5)/2)^10/Lucas(97) 2329991416277390 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^13/Lucas(97) 2329991416277390 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^14/Lucas(98) 2329991416277390 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^15/Lucas(99) 2329991416277390 a004 Fibonacci(97)*Lucas(1)/(1/2+sqrt(5)/2)^84 2329991416277390 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^14/Lucas(96) 2329991416277390 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^16/Lucas(98) 2329991416277390 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^15/Lucas(97) 2329991416277390 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^17/Lucas(99) 2329991416277390 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^18/Lucas(100) 2329991416277390 a004 Fibonacci(95)*Lucas(1)/(1/2+sqrt(5)/2)^82 2329991416277390 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^13/Lucas(95) 2329991416277390 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^14/Lucas(94) 2329991416277390 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^16/Lucas(96) 2329991416277390 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^18/Lucas(98) 2329991416277390 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^20/Lucas(100) 2329991416277390 a004 Fibonacci(93)*Lucas(1)/(1/2+sqrt(5)/2)^80 2329991416277390 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^17/Lucas(97) 2329991416277390 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^19/Lucas(99) 2329991416277390 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^15/Lucas(95) 2329991416277390 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^13/Lucas(93) 2329991416277390 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^14/Lucas(92) 2329991416277390 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^16/Lucas(94) 2329991416277390 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^18/Lucas(96) 2329991416277390 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^20/Lucas(98) 2329991416277390 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^19/Lucas(97) 2329991416277390 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^21/Lucas(99) 2329991416277390 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^22/Lucas(100) 2329991416277390 a004 Fibonacci(91)*Lucas(1)/(1/2+sqrt(5)/2)^78 2329991416277390 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^17/Lucas(95) 2329991416277390 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^15/Lucas(93) 2329991416277390 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^13/Lucas(91) 2329991416277390 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^12/Lucas(89) 2329991416277390 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^16/Lucas(92) 2329991416277390 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^18/Lucas(94) 2329991416277390 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^20/Lucas(96) 2329991416277390 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^22/Lucas(98) 2329991416277390 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^23/Lucas(99) 2329991416277390 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^24/Lucas(100) 2329991416277390 a004 Fibonacci(89)*Lucas(1)/(1/2+sqrt(5)/2)^76 2329991416277390 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^21/Lucas(97) 2329991416277390 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^19/Lucas(95) 2329991416277390 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^17/Lucas(93) 2329991416277390 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^15/Lucas(91) 2329991416277390 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^13/Lucas(89) 2329991416277390 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^14/Lucas(88) 2329991416277390 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^16/Lucas(90) 2329991416277390 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^18/Lucas(92) 2329991416277390 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^20/Lucas(94) 2329991416277390 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^22/Lucas(96) 2329991416277390 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^24/Lucas(98) 2329991416277390 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^25/Lucas(99) 2329991416277390 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^26/Lucas(100) 2329991416277390 a004 Fibonacci(87)*Lucas(1)/(1/2+sqrt(5)/2)^74 2329991416277390 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^23/Lucas(97) 2329991416277390 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^21/Lucas(95) 2329991416277390 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^19/Lucas(93) 2329991416277390 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^17/Lucas(91) 2329991416277390 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^15/Lucas(89) 2329991416277390 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^13/Lucas(87) 2329991416277390 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^14/Lucas(86) 2329991416277390 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^16/Lucas(88) 2329991416277390 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^18/Lucas(90) 2329991416277390 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^20/Lucas(92) 2329991416277390 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^22/Lucas(94) 2329991416277390 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^24/Lucas(96) 2329991416277390 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^26/Lucas(98) 2329991416277390 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^28/Lucas(100) 2329991416277390 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^25/Lucas(97) 2329991416277390 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^27/Lucas(99) 2329991416277390 a004 Fibonacci(85)*Lucas(1)/(1/2+sqrt(5)/2)^72 2329991416277390 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^23/Lucas(95) 2329991416277390 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^21/Lucas(93) 2329991416277390 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^19/Lucas(91) 2329991416277390 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^17/Lucas(89) 2329991416277390 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^15/Lucas(87) 2329991416277390 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^13/Lucas(85) 2329991416277390 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^14/Lucas(84) 2329991416277390 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^16/Lucas(86) 2329991416277390 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^18/Lucas(88) 2329991416277390 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^20/Lucas(90) 2329991416277390 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^22/Lucas(92) 2329991416277390 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^24/Lucas(94) 2329991416277390 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^26/Lucas(96) 2329991416277390 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^28/Lucas(98) 2329991416277390 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^29/Lucas(99) 2329991416277390 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^30/Lucas(100) 2329991416277390 a004 Fibonacci(83)*Lucas(1)/(1/2+sqrt(5)/2)^70 2329991416277390 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^27/Lucas(97) 2329991416277390 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^25/Lucas(95) 2329991416277390 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^23/Lucas(93) 2329991416277390 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^21/Lucas(91) 2329991416277390 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^19/Lucas(89) 2329991416277390 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^17/Lucas(87) 2329991416277390 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^15/Lucas(85) 2329991416277390 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^13/Lucas(83) 2329991416277390 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^14/Lucas(82) 2329991416277390 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^16/Lucas(84) 2329991416277390 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^18/Lucas(86) 2329991416277390 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^20/Lucas(88) 2329991416277390 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^22/Lucas(90) 2329991416277390 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^24/Lucas(92) 2329991416277390 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^26/Lucas(94) 2329991416277390 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^28/Lucas(96) 2329991416277390 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^30/Lucas(98) 2329991416277390 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^29/Lucas(97) 2329991416277390 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^31/Lucas(99) 2329991416277390 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^32/Lucas(100) 2329991416277390 a004 Fibonacci(81)*Lucas(1)/(1/2+sqrt(5)/2)^68 2329991416277390 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^27/Lucas(95) 2329991416277390 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^25/Lucas(93) 2329991416277390 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^23/Lucas(91) 2329991416277390 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^21/Lucas(89) 2329991416277390 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^19/Lucas(87) 2329991416277390 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^17/Lucas(85) 2329991416277390 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^15/Lucas(83) 2329991416277390 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^13/Lucas(81) 2329991416277390 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^14/Lucas(80) 2329991416277390 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^16/Lucas(82) 2329991416277390 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^18/Lucas(84) 2329991416277390 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^20/Lucas(86) 2329991416277390 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^22/Lucas(88) 2329991416277390 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^24/Lucas(90) 2329991416277390 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^26/Lucas(92) 2329991416277390 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^28/Lucas(94) 2329991416277390 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^30/Lucas(96) 2329991416277390 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^32/Lucas(98) 2329991416277390 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^33/Lucas(99) 2329991416277390 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^34/Lucas(100) 2329991416277390 a004 Fibonacci(79)*Lucas(1)/(1/2+sqrt(5)/2)^66 2329991416277390 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^31/Lucas(97) 2329991416277390 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^29/Lucas(95) 2329991416277390 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^27/Lucas(93) 2329991416277390 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^25/Lucas(91) 2329991416277390 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^23/Lucas(89) 2329991416277390 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^21/Lucas(87) 2329991416277390 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^19/Lucas(85) 2329991416277390 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^17/Lucas(83) 2329991416277390 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^15/Lucas(81) 2329991416277390 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^13/Lucas(79) 2329991416277390 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^12/Lucas(77) 2329991416277390 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^16/Lucas(80) 2329991416277390 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^18/Lucas(82) 2329991416277390 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^20/Lucas(84) 2329991416277390 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^22/Lucas(86) 2329991416277390 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^24/Lucas(88) 2329991416277390 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^26/Lucas(90) 2329991416277390 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^28/Lucas(92) 2329991416277390 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^30/Lucas(94) 2329991416277390 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^32/Lucas(96) 2329991416277390 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^34/Lucas(98) 2329991416277390 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^35/Lucas(99) 2329991416277390 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^36/Lucas(100) 2329991416277390 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^33/Lucas(97) 2329991416277390 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^31/Lucas(95) 2329991416277390 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^29/Lucas(93) 2329991416277390 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^27/Lucas(91) 2329991416277390 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^25/Lucas(89) 2329991416277390 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^23/Lucas(87) 2329991416277390 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^21/Lucas(85) 2329991416277390 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^19/Lucas(83) 2329991416277390 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^17/Lucas(81) 2329991416277390 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^15/Lucas(79) 2329991416277390 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^13/Lucas(77) 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^14/Lucas(76) 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^16/Lucas(78) 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^18/Lucas(80) 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^20/Lucas(82) 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^22/Lucas(84) 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^24/Lucas(86) 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^26/Lucas(88) 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^28/Lucas(90) 2329991416277390 a004 Fibonacci(90)/Lucas(75)/(1/2+sqrt(5)/2)^2 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^30/Lucas(92) 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^32/Lucas(94) 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^34/Lucas(96) 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^36/Lucas(98) 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^35/Lucas(97) 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^37/Lucas(99) 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^38/Lucas(100) 2329991416277390 a004 Fibonacci(75)*Lucas(1)/(1/2+sqrt(5)/2)^62 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^33/Lucas(95) 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^31/Lucas(93) 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^29/Lucas(91) 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^27/Lucas(89) 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^25/Lucas(87) 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^23/Lucas(85) 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^21/Lucas(83) 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^19/Lucas(81) 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^17/Lucas(79) 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^15/Lucas(77) 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^13/Lucas(75) 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^14/Lucas(74) 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^16/Lucas(76) 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^18/Lucas(78) 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^20/Lucas(80) 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^22/Lucas(82) 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^24/Lucas(84) 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^26/Lucas(86) 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^28/Lucas(88) 2329991416277390 a004 Fibonacci(88)/Lucas(73)/(1/2+sqrt(5)/2)^2 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^30/Lucas(90) 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^32/Lucas(92) 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^34/Lucas(94) 2329991416277390 a004 Fibonacci(94)/Lucas(73)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^36/Lucas(96) 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^38/Lucas(98) 2329991416277390 a004 Fibonacci(100)/Lucas(73)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^37/Lucas(97) 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^39/Lucas(99) 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^40/Lucas(100) 2329991416277390 a004 Fibonacci(73)*Lucas(1)/(1/2+sqrt(5)/2)^60 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^35/Lucas(95) 2329991416277390 a004 Fibonacci(95)/Lucas(73)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^33/Lucas(93) 2329991416277390 a004 Fibonacci(93)/Lucas(73)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^31/Lucas(91) 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^29/Lucas(89) 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^27/Lucas(87) 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^25/Lucas(85) 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^23/Lucas(83) 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^21/Lucas(81) 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^19/Lucas(79) 2329991416277390 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^7/Lucas(73) 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^17/Lucas(77) 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^15/Lucas(75) 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^13/Lucas(73) 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^14/Lucas(72) 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^12/Lucas(71) 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^16/Lucas(74) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^10/Lucas(71) 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^18/Lucas(76) 2329991416277390 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^8/Lucas(71) 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^20/Lucas(78) 2329991416277390 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^6/Lucas(71) 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^22/Lucas(80) 2329991416277390 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^4/Lucas(71) 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^24/Lucas(82) 2329991416277390 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^2/Lucas(71) 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^26/Lucas(84) 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^28/Lucas(86) 2329991416277390 a004 Fibonacci(86)/Lucas(71)/(1/2+sqrt(5)/2)^2 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^30/Lucas(88) 2329991416277390 a004 Fibonacci(88)/Lucas(71)/(1/2+sqrt(5)/2)^4 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^32/Lucas(90) 2329991416277390 a004 Fibonacci(90)/Lucas(71)/(1/2+sqrt(5)/2)^6 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^34/Lucas(92) 2329991416277390 a004 Fibonacci(92)/Lucas(71)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^36/Lucas(94) 2329991416277390 a004 Fibonacci(94)/Lucas(71)/(1/2+sqrt(5)/2)^10 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^38/Lucas(96) 2329991416277390 a004 Fibonacci(96)/Lucas(71)/(1/2+sqrt(5)/2)^12 2329991416277390 a004 Fibonacci(100)/Lucas(71)/(1/2+sqrt(5)/2)^16 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^39/Lucas(97) 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^40/Lucas(98) 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^41/Lucas(99) 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^42/Lucas(100) 2329991416277390 a004 Fibonacci(97)/Lucas(71)/(1/2+sqrt(5)/2)^13 2329991416277390 a004 Fibonacci(98)/Lucas(71)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(99)/Lucas(71)/(1/2+sqrt(5)/2)^15 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^37/Lucas(95) 2329991416277390 a004 Fibonacci(95)/Lucas(71)/(1/2+sqrt(5)/2)^11 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^35/Lucas(93) 2329991416277390 a004 Fibonacci(93)/Lucas(71)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^33/Lucas(91) 2329991416277390 a004 Fibonacci(91)/Lucas(71)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^31/Lucas(89) 2329991416277390 a004 Fibonacci(89)/Lucas(71)/(1/2+sqrt(5)/2)^5 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^29/Lucas(87) 2329991416277390 a004 Fibonacci(87)/Lucas(71)/(1/2+sqrt(5)/2)^3 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^27/Lucas(85) 2329991416277390 a004 Fibonacci(85)/Lucas(71)/(1/2+sqrt(5)/2) 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^25/Lucas(83) 2329991416277390 a004 Fibonacci(83)*(1/2+sqrt(5)/2)/Lucas(71) 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^23/Lucas(81) 2329991416277390 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^3/Lucas(71) 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^21/Lucas(79) 2329991416277390 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^5/Lucas(71) 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^19/Lucas(77) 2329991416277390 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^7/Lucas(71) 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^17/Lucas(75) 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^9/Lucas(71) 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^15/Lucas(73) 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^11/Lucas(71) 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^13/Lucas(71) 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^14/Lucas(70) 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^12/Lucas(69) 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^16/Lucas(72) 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^10/Lucas(69) 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^18/Lucas(74) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^8/Lucas(69) 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^20/Lucas(76) 2329991416277390 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^6/Lucas(69) 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^22/Lucas(78) 2329991416277390 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^4/Lucas(69) 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^24/Lucas(80) 2329991416277390 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^2/Lucas(69) 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^26/Lucas(82) 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^28/Lucas(84) 2329991416277390 a004 Fibonacci(84)/Lucas(69)/(1/2+sqrt(5)/2)^2 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^30/Lucas(86) 2329991416277390 a004 Fibonacci(86)/Lucas(69)/(1/2+sqrt(5)/2)^4 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^32/Lucas(88) 2329991416277390 a004 Fibonacci(88)/Lucas(69)/(1/2+sqrt(5)/2)^6 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^34/Lucas(90) 2329991416277390 a004 Fibonacci(90)/Lucas(69)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^36/Lucas(92) 2329991416277390 a004 Fibonacci(92)/Lucas(69)/(1/2+sqrt(5)/2)^10 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^38/Lucas(94) 2329991416277390 a004 Fibonacci(94)/Lucas(69)/(1/2+sqrt(5)/2)^12 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^40/Lucas(96) 2329991416277390 a004 Fibonacci(96)/Lucas(69)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(100)/Lucas(69)/(1/2+sqrt(5)/2)^18 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^42/Lucas(98) 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^43/Lucas(99) 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^44/Lucas(100) 2329991416277390 a004 Fibonacci(69)*Lucas(1)/(1/2+sqrt(5)/2)^56 2329991416277390 a004 Fibonacci(98)/Lucas(69)/(1/2+sqrt(5)/2)^16 2329991416277390 a004 Fibonacci(99)/Lucas(69)/(1/2+sqrt(5)/2)^17 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^41/Lucas(97) 2329991416277390 a004 Fibonacci(97)/Lucas(69)/(1/2+sqrt(5)/2)^15 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^39/Lucas(95) 2329991416277390 a004 Fibonacci(95)/Lucas(69)/(1/2+sqrt(5)/2)^13 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^37/Lucas(93) 2329991416277390 a004 Fibonacci(93)/Lucas(69)/(1/2+sqrt(5)/2)^11 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^35/Lucas(91) 2329991416277390 a004 Fibonacci(91)/Lucas(69)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^33/Lucas(89) 2329991416277390 a004 Fibonacci(89)/Lucas(69)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^31/Lucas(87) 2329991416277390 a004 Fibonacci(87)/Lucas(69)/(1/2+sqrt(5)/2)^5 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^29/Lucas(85) 2329991416277390 a004 Fibonacci(85)/Lucas(69)/(1/2+sqrt(5)/2)^3 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^27/Lucas(83) 2329991416277390 a004 Fibonacci(83)/Lucas(69)/(1/2+sqrt(5)/2) 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^25/Lucas(81) 2329991416277390 a004 Fibonacci(81)*(1/2+sqrt(5)/2)/Lucas(69) 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^23/Lucas(79) 2329991416277390 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^3/Lucas(69) 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^21/Lucas(77) 2329991416277390 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^5/Lucas(69) 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^19/Lucas(75) 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^7/Lucas(69) 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^17/Lucas(73) 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^9/Lucas(69) 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^15/Lucas(71) 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^11/Lucas(69) 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^13/Lucas(69) 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^14/Lucas(68) 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^12/Lucas(67) 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^16/Lucas(70) 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^10/Lucas(67) 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^18/Lucas(72) 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^8/Lucas(67) 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^20/Lucas(74) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^6/Lucas(67) 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^22/Lucas(76) 2329991416277390 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^4/Lucas(67) 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^24/Lucas(78) 2329991416277390 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^2/Lucas(67) 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^26/Lucas(80) 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^28/Lucas(82) 2329991416277390 a004 Fibonacci(82)/Lucas(67)/(1/2+sqrt(5)/2)^2 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^30/Lucas(84) 2329991416277390 a004 Fibonacci(84)/Lucas(67)/(1/2+sqrt(5)/2)^4 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^32/Lucas(86) 2329991416277390 a004 Fibonacci(86)/Lucas(67)/(1/2+sqrt(5)/2)^6 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^34/Lucas(88) 2329991416277390 a004 Fibonacci(88)/Lucas(67)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^36/Lucas(90) 2329991416277390 a004 Fibonacci(90)/Lucas(67)/(1/2+sqrt(5)/2)^10 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^38/Lucas(92) 2329991416277390 a004 Fibonacci(92)/Lucas(67)/(1/2+sqrt(5)/2)^12 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^40/Lucas(94) 2329991416277390 a004 Fibonacci(94)/Lucas(67)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^42/Lucas(96) 2329991416277390 a004 Fibonacci(96)/Lucas(67)/(1/2+sqrt(5)/2)^16 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^44/Lucas(98) 2329991416277390 a004 Fibonacci(98)/Lucas(67)/(1/2+sqrt(5)/2)^18 2329991416277390 a004 Fibonacci(100)/Lucas(67)/(1/2+sqrt(5)/2)^20 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^43/Lucas(97) 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^45/Lucas(99) 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^46/Lucas(100) 2329991416277390 a004 Fibonacci(67)*Lucas(1)/(1/2+sqrt(5)/2)^54 2329991416277390 a004 Fibonacci(97)/Lucas(67)/(1/2+sqrt(5)/2)^17 2329991416277390 a004 Fibonacci(99)/Lucas(67)/(1/2+sqrt(5)/2)^19 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^41/Lucas(95) 2329991416277390 a004 Fibonacci(95)/Lucas(67)/(1/2+sqrt(5)/2)^15 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^39/Lucas(93) 2329991416277390 a004 Fibonacci(93)/Lucas(67)/(1/2+sqrt(5)/2)^13 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^37/Lucas(91) 2329991416277390 a004 Fibonacci(91)/Lucas(67)/(1/2+sqrt(5)/2)^11 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^35/Lucas(89) 2329991416277390 a004 Fibonacci(89)/Lucas(67)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^33/Lucas(87) 2329991416277390 a004 Fibonacci(87)/Lucas(67)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^31/Lucas(85) 2329991416277390 a004 Fibonacci(85)/Lucas(67)/(1/2+sqrt(5)/2)^5 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^29/Lucas(83) 2329991416277390 a004 Fibonacci(83)/Lucas(67)/(1/2+sqrt(5)/2)^3 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^27/Lucas(81) 2329991416277390 a004 Fibonacci(81)/Lucas(67)/(1/2+sqrt(5)/2) 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^25/Lucas(79) 2329991416277390 a004 Fibonacci(79)*(1/2+sqrt(5)/2)/Lucas(67) 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^23/Lucas(77) 2329991416277390 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^3/Lucas(67) 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^21/Lucas(75) 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^5/Lucas(67) 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^19/Lucas(73) 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^7/Lucas(67) 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^17/Lucas(71) 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^9/Lucas(67) 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^15/Lucas(69) 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^11/Lucas(67) 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^13/Lucas(67) 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^14/Lucas(66) 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^12/Lucas(65) 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^16/Lucas(68) 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^10/Lucas(65) 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^18/Lucas(70) 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^8/Lucas(65) 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^20/Lucas(72) 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^6/Lucas(65) 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^22/Lucas(74) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^4/Lucas(65) 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^24/Lucas(76) 2329991416277390 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^2/Lucas(65) 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^26/Lucas(78) 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^28/Lucas(80) 2329991416277390 a004 Fibonacci(80)/Lucas(65)/(1/2+sqrt(5)/2)^2 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^30/Lucas(82) 2329991416277390 a004 Fibonacci(82)/Lucas(65)/(1/2+sqrt(5)/2)^4 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^32/Lucas(84) 2329991416277390 a004 Fibonacci(84)/Lucas(65)/(1/2+sqrt(5)/2)^6 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^34/Lucas(86) 2329991416277390 a004 Fibonacci(86)/Lucas(65)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^36/Lucas(88) 2329991416277390 a004 Fibonacci(88)/Lucas(65)/(1/2+sqrt(5)/2)^10 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^38/Lucas(90) 2329991416277390 a004 Fibonacci(90)/Lucas(65)/(1/2+sqrt(5)/2)^12 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^40/Lucas(92) 2329991416277390 a004 Fibonacci(92)/Lucas(65)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^42/Lucas(94) 2329991416277390 a004 Fibonacci(94)/Lucas(65)/(1/2+sqrt(5)/2)^16 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^44/Lucas(96) 2329991416277390 a004 Fibonacci(96)/Lucas(65)/(1/2+sqrt(5)/2)^18 2329991416277390 a004 Fibonacci(100)/Lucas(65)/(1/2+sqrt(5)/2)^22 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^46/Lucas(98) 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^47/Lucas(99) 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^48/Lucas(100) 2329991416277390 a004 Fibonacci(65)*Lucas(1)/(1/2+sqrt(5)/2)^52 2329991416277390 a004 Fibonacci(98)/Lucas(65)/(1/2+sqrt(5)/2)^20 2329991416277390 a004 Fibonacci(99)/Lucas(65)/(1/2+sqrt(5)/2)^21 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^45/Lucas(97) 2329991416277390 a004 Fibonacci(97)/Lucas(65)/(1/2+sqrt(5)/2)^19 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^43/Lucas(95) 2329991416277390 a004 Fibonacci(95)/Lucas(65)/(1/2+sqrt(5)/2)^17 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^41/Lucas(93) 2329991416277390 a004 Fibonacci(93)/Lucas(65)/(1/2+sqrt(5)/2)^15 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^39/Lucas(91) 2329991416277390 a004 Fibonacci(91)/Lucas(65)/(1/2+sqrt(5)/2)^13 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^37/Lucas(89) 2329991416277390 a004 Fibonacci(89)/Lucas(65)/(1/2+sqrt(5)/2)^11 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^35/Lucas(87) 2329991416277390 a004 Fibonacci(87)/Lucas(65)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^33/Lucas(85) 2329991416277390 a004 Fibonacci(85)/Lucas(65)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^31/Lucas(83) 2329991416277390 a004 Fibonacci(83)/Lucas(65)/(1/2+sqrt(5)/2)^5 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^29/Lucas(81) 2329991416277390 a004 Fibonacci(81)/Lucas(65)/(1/2+sqrt(5)/2)^3 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^27/Lucas(79) 2329991416277390 a004 Fibonacci(79)/Lucas(65)/(1/2+sqrt(5)/2) 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^25/Lucas(77) 2329991416277390 a004 Fibonacci(77)*(1/2+sqrt(5)/2)/Lucas(65) 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^23/Lucas(75) 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^3/Lucas(65) 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^21/Lucas(73) 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^5/Lucas(65) 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^19/Lucas(71) 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^7/Lucas(65) 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^17/Lucas(69) 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^9/Lucas(65) 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^15/Lucas(67) 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^11/Lucas(65) 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^13/Lucas(65) 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^14/Lucas(64) 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^12/Lucas(63) 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^16/Lucas(66) 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^10/Lucas(63) 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^18/Lucas(68) 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^8/Lucas(63) 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^20/Lucas(70) 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^6/Lucas(63) 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^22/Lucas(72) 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^4/Lucas(63) 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^24/Lucas(74) 2329991416277390 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^2/Lucas(63) 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^26/Lucas(76) 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^28/Lucas(78) 2329991416277390 a004 Fibonacci(78)/Lucas(63)/(1/2+sqrt(5)/2)^2 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^30/Lucas(80) 2329991416277390 a004 Fibonacci(80)/Lucas(63)/(1/2+sqrt(5)/2)^4 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^32/Lucas(82) 2329991416277390 a004 Fibonacci(82)/Lucas(63)/(1/2+sqrt(5)/2)^6 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^34/Lucas(84) 2329991416277390 a004 Fibonacci(84)/Lucas(63)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^36/Lucas(86) 2329991416277390 a004 Fibonacci(86)/Lucas(63)/(1/2+sqrt(5)/2)^10 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^38/Lucas(88) 2329991416277390 a004 Fibonacci(88)/Lucas(63)/(1/2+sqrt(5)/2)^12 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^40/Lucas(90) 2329991416277390 a004 Fibonacci(90)/Lucas(63)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^42/Lucas(92) 2329991416277390 a004 Fibonacci(92)/Lucas(63)/(1/2+sqrt(5)/2)^16 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^44/Lucas(94) 2329991416277390 a004 Fibonacci(94)/Lucas(63)/(1/2+sqrt(5)/2)^18 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^46/Lucas(96) 2329991416277390 a004 Fibonacci(96)/Lucas(63)/(1/2+sqrt(5)/2)^20 2329991416277390 a004 Fibonacci(100)/Lucas(63)/(1/2+sqrt(5)/2)^24 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^48/Lucas(98) 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^49/Lucas(99) 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^50/Lucas(100) 2329991416277390 a004 Fibonacci(63)*Lucas(1)/(1/2+sqrt(5)/2)^50 2329991416277390 a004 Fibonacci(98)/Lucas(63)/(1/2+sqrt(5)/2)^22 2329991416277390 a004 Fibonacci(99)/Lucas(63)/(1/2+sqrt(5)/2)^23 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^47/Lucas(97) 2329991416277390 a004 Fibonacci(97)/Lucas(63)/(1/2+sqrt(5)/2)^21 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^45/Lucas(95) 2329991416277390 a004 Fibonacci(95)/Lucas(63)/(1/2+sqrt(5)/2)^19 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^43/Lucas(93) 2329991416277390 a004 Fibonacci(93)/Lucas(63)/(1/2+sqrt(5)/2)^17 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^41/Lucas(91) 2329991416277390 a004 Fibonacci(91)/Lucas(63)/(1/2+sqrt(5)/2)^15 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^39/Lucas(89) 2329991416277390 a004 Fibonacci(89)/Lucas(63)/(1/2+sqrt(5)/2)^13 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^37/Lucas(87) 2329991416277390 a004 Fibonacci(87)/Lucas(63)/(1/2+sqrt(5)/2)^11 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^35/Lucas(85) 2329991416277390 a004 Fibonacci(85)/Lucas(63)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^33/Lucas(83) 2329991416277390 a004 Fibonacci(83)/Lucas(63)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^31/Lucas(81) 2329991416277390 a004 Fibonacci(81)/Lucas(63)/(1/2+sqrt(5)/2)^5 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^29/Lucas(79) 2329991416277390 a004 Fibonacci(79)/Lucas(63)/(1/2+sqrt(5)/2)^3 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^27/Lucas(77) 2329991416277390 a004 Fibonacci(77)/Lucas(63)/(1/2+sqrt(5)/2) 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^25/Lucas(75) 2329991416277390 a004 Fibonacci(75)*(1/2+sqrt(5)/2)/Lucas(63) 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^23/Lucas(73) 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^3/Lucas(63) 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^21/Lucas(71) 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^5/Lucas(63) 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^19/Lucas(69) 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^7/Lucas(63) 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^17/Lucas(67) 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^9/Lucas(63) 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^15/Lucas(65) 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^11/Lucas(63) 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^13/Lucas(63) 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^14/Lucas(62) 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^12/Lucas(61) 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^16/Lucas(64) 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^10/Lucas(61) 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^18/Lucas(66) 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^8/Lucas(61) 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^20/Lucas(68) 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^6/Lucas(61) 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^22/Lucas(70) 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^4/Lucas(61) 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^24/Lucas(72) 2329991416277390 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^2/Lucas(61) 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^26/Lucas(74) 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^28/Lucas(76) 2329991416277390 a004 Fibonacci(76)/Lucas(61)/(1/2+sqrt(5)/2)^2 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^30/Lucas(78) 2329991416277390 a004 Fibonacci(78)/Lucas(61)/(1/2+sqrt(5)/2)^4 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^32/Lucas(80) 2329991416277390 a004 Fibonacci(80)/Lucas(61)/(1/2+sqrt(5)/2)^6 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^34/Lucas(82) 2329991416277390 a004 Fibonacci(82)/Lucas(61)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^36/Lucas(84) 2329991416277390 a004 Fibonacci(84)/Lucas(61)/(1/2+sqrt(5)/2)^10 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^38/Lucas(86) 2329991416277390 a004 Fibonacci(86)/Lucas(61)/(1/2+sqrt(5)/2)^12 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^40/Lucas(88) 2329991416277390 a004 Fibonacci(88)/Lucas(61)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^42/Lucas(90) 2329991416277390 a004 Fibonacci(90)/Lucas(61)/(1/2+sqrt(5)/2)^16 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^44/Lucas(92) 2329991416277390 a004 Fibonacci(92)/Lucas(61)/(1/2+sqrt(5)/2)^18 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^46/Lucas(94) 2329991416277390 a004 Fibonacci(94)/Lucas(61)/(1/2+sqrt(5)/2)^20 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^48/Lucas(96) 2329991416277390 a004 Fibonacci(96)/Lucas(61)/(1/2+sqrt(5)/2)^22 2329991416277390 a004 Fibonacci(100)/Lucas(61)/(1/2+sqrt(5)/2)^26 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^50/Lucas(98) 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^52/Lucas(100) 2329991416277390 a004 Fibonacci(98)/Lucas(61)/(1/2+sqrt(5)/2)^24 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^49/Lucas(97) 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^51/Lucas(99) 2329991416277390 a004 Fibonacci(97)/Lucas(61)/(1/2+sqrt(5)/2)^23 2329991416277390 a004 Fibonacci(99)/Lucas(61)/(1/2+sqrt(5)/2)^25 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^47/Lucas(95) 2329991416277390 a004 Fibonacci(95)/Lucas(61)/(1/2+sqrt(5)/2)^21 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^45/Lucas(93) 2329991416277390 a004 Fibonacci(93)/Lucas(61)/(1/2+sqrt(5)/2)^19 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^43/Lucas(91) 2329991416277390 a004 Fibonacci(91)/Lucas(61)/(1/2+sqrt(5)/2)^17 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^41/Lucas(89) 2329991416277390 a004 Fibonacci(89)/Lucas(61)/(1/2+sqrt(5)/2)^15 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^39/Lucas(87) 2329991416277390 a004 Fibonacci(87)/Lucas(61)/(1/2+sqrt(5)/2)^13 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^37/Lucas(85) 2329991416277390 a004 Fibonacci(85)/Lucas(61)/(1/2+sqrt(5)/2)^11 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^35/Lucas(83) 2329991416277390 a004 Fibonacci(83)/Lucas(61)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^33/Lucas(81) 2329991416277390 a004 Fibonacci(81)/Lucas(61)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^31/Lucas(79) 2329991416277390 a004 Fibonacci(79)/Lucas(61)/(1/2+sqrt(5)/2)^5 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^29/Lucas(77) 2329991416277390 a004 Fibonacci(77)/Lucas(61)/(1/2+sqrt(5)/2)^3 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^27/Lucas(75) 2329991416277390 a004 Fibonacci(75)/Lucas(61)/(1/2+sqrt(5)/2) 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^25/Lucas(73) 2329991416277390 a004 Fibonacci(73)*(1/2+sqrt(5)/2)/Lucas(61) 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^23/Lucas(71) 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^3/Lucas(61) 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^21/Lucas(69) 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^5/Lucas(61) 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^19/Lucas(67) 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^7/Lucas(61) 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^17/Lucas(65) 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^9/Lucas(61) 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^15/Lucas(63) 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^11/Lucas(61) 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^13/Lucas(61) 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^14/Lucas(60) 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^12/Lucas(59) 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^16/Lucas(62) 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^10/Lucas(59) 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^18/Lucas(64) 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^8/Lucas(59) 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^20/Lucas(66) 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^6/Lucas(59) 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^22/Lucas(68) 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^4/Lucas(59) 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^24/Lucas(70) 2329991416277390 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^2/Lucas(59) 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^26/Lucas(72) 2329991416277390 a006 5^(1/2)*Fibonacci(72)/Lucas(59)/sqrt(5) 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^28/Lucas(74) 2329991416277390 a004 Fibonacci(74)/Lucas(59)/(1/2+sqrt(5)/2)^2 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^30/Lucas(76) 2329991416277390 a004 Fibonacci(76)/Lucas(59)/(1/2+sqrt(5)/2)^4 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^32/Lucas(78) 2329991416277390 a004 Fibonacci(78)/Lucas(59)/(1/2+sqrt(5)/2)^6 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^34/Lucas(80) 2329991416277390 a004 Fibonacci(80)/Lucas(59)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^36/Lucas(82) 2329991416277390 a004 Fibonacci(82)/Lucas(59)/(1/2+sqrt(5)/2)^10 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^38/Lucas(84) 2329991416277390 a004 Fibonacci(84)/Lucas(59)/(1/2+sqrt(5)/2)^12 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^40/Lucas(86) 2329991416277390 a004 Fibonacci(86)/Lucas(59)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^42/Lucas(88) 2329991416277390 a004 Fibonacci(88)/Lucas(59)/(1/2+sqrt(5)/2)^16 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^44/Lucas(90) 2329991416277390 a004 Fibonacci(90)/Lucas(59)/(1/2+sqrt(5)/2)^18 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^46/Lucas(92) 2329991416277390 a004 Fibonacci(92)/Lucas(59)/(1/2+sqrt(5)/2)^20 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^48/Lucas(94) 2329991416277390 a004 Fibonacci(94)/Lucas(59)/(1/2+sqrt(5)/2)^22 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^50/Lucas(96) 2329991416277390 a004 Fibonacci(96)/Lucas(59)/(1/2+sqrt(5)/2)^24 2329991416277390 a004 Fibonacci(100)/Lucas(59)/(1/2+sqrt(5)/2)^28 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^52/Lucas(98) 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^53/Lucas(99) 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^54/Lucas(100) 2329991416277390 a004 Fibonacci(98)/Lucas(59)/(1/2+sqrt(5)/2)^26 2329991416277390 a004 Fibonacci(99)/Lucas(59)/(1/2+sqrt(5)/2)^27 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^51/Lucas(97) 2329991416277390 a004 Fibonacci(97)/Lucas(59)/(1/2+sqrt(5)/2)^25 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^49/Lucas(95) 2329991416277390 a004 Fibonacci(95)/Lucas(59)/(1/2+sqrt(5)/2)^23 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^47/Lucas(93) 2329991416277390 a004 Fibonacci(93)/Lucas(59)/(1/2+sqrt(5)/2)^21 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^45/Lucas(91) 2329991416277390 a004 Fibonacci(91)/Lucas(59)/(1/2+sqrt(5)/2)^19 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^43/Lucas(89) 2329991416277390 a004 Fibonacci(89)/Lucas(59)/(1/2+sqrt(5)/2)^17 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^41/Lucas(87) 2329991416277390 a004 Fibonacci(87)/Lucas(59)/(1/2+sqrt(5)/2)^15 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^39/Lucas(85) 2329991416277390 a004 Fibonacci(85)/Lucas(59)/(1/2+sqrt(5)/2)^13 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^37/Lucas(83) 2329991416277390 a004 Fibonacci(83)/Lucas(59)/(1/2+sqrt(5)/2)^11 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^35/Lucas(81) 2329991416277390 a004 Fibonacci(81)/Lucas(59)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^33/Lucas(79) 2329991416277390 a004 Fibonacci(79)/Lucas(59)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^31/Lucas(77) 2329991416277390 a004 Fibonacci(77)/Lucas(59)/(1/2+sqrt(5)/2)^5 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^29/Lucas(75) 2329991416277390 a004 Fibonacci(75)/Lucas(59)/(1/2+sqrt(5)/2)^3 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^27/Lucas(73) 2329991416277390 a004 Fibonacci(73)/Lucas(59)/(1/2+sqrt(5)/2) 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^25/Lucas(71) 2329991416277390 a004 Fibonacci(71)*(1/2+sqrt(5)/2)/Lucas(59) 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^23/Lucas(69) 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^3/Lucas(59) 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^21/Lucas(67) 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^5/Lucas(59) 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^19/Lucas(65) 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^7/Lucas(59) 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^17/Lucas(63) 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^9/Lucas(59) 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^15/Lucas(61) 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^11/Lucas(59) 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^13/Lucas(59) 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^14/Lucas(58) 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^12/Lucas(57) 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^16/Lucas(60) 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^10/Lucas(57) 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^18/Lucas(62) 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^8/Lucas(57) 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^20/Lucas(64) 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^6/Lucas(57) 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^22/Lucas(66) 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^4/Lucas(57) 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^24/Lucas(68) 2329991416277390 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^2/Lucas(57) 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^26/Lucas(70) 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^28/Lucas(72) 2329991416277390 a004 Fibonacci(72)/Lucas(57)/(1/2+sqrt(5)/2)^2 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^30/Lucas(74) 2329991416277390 a004 Fibonacci(74)/Lucas(57)/(1/2+sqrt(5)/2)^4 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^32/Lucas(76) 2329991416277390 a004 Fibonacci(76)/Lucas(57)/(1/2+sqrt(5)/2)^6 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^34/Lucas(78) 2329991416277390 a004 Fibonacci(78)/Lucas(57)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^36/Lucas(80) 2329991416277390 a004 Fibonacci(80)/Lucas(57)/(1/2+sqrt(5)/2)^10 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^38/Lucas(82) 2329991416277390 a004 Fibonacci(82)/Lucas(57)/(1/2+sqrt(5)/2)^12 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^40/Lucas(84) 2329991416277390 a004 Fibonacci(84)/Lucas(57)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^42/Lucas(86) 2329991416277390 a004 Fibonacci(86)/Lucas(57)/(1/2+sqrt(5)/2)^16 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^44/Lucas(88) 2329991416277390 a004 Fibonacci(88)/Lucas(57)/(1/2+sqrt(5)/2)^18 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^46/Lucas(90) 2329991416277390 a004 Fibonacci(90)/Lucas(57)/(1/2+sqrt(5)/2)^20 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^48/Lucas(92) 2329991416277390 a004 Fibonacci(92)/Lucas(57)/(1/2+sqrt(5)/2)^22 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^50/Lucas(94) 2329991416277390 a004 Fibonacci(94)/Lucas(57)/(1/2+sqrt(5)/2)^24 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^52/Lucas(96) 2329991416277390 a004 Fibonacci(96)/Lucas(57)/(1/2+sqrt(5)/2)^26 2329991416277390 a004 Fibonacci(100)/Lucas(57)/(1/2+sqrt(5)/2)^30 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^53/Lucas(97) 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^54/Lucas(98) 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^55/Lucas(99) 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^56/Lucas(100) 2329991416277390 a004 Fibonacci(97)/Lucas(57)/(1/2+sqrt(5)/2)^27 2329991416277390 a004 Fibonacci(98)/Lucas(57)/(1/2+sqrt(5)/2)^28 2329991416277390 a004 Fibonacci(99)/Lucas(57)/(1/2+sqrt(5)/2)^29 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^51/Lucas(95) 2329991416277390 a004 Fibonacci(95)/Lucas(57)/(1/2+sqrt(5)/2)^25 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^49/Lucas(93) 2329991416277390 a004 Fibonacci(93)/Lucas(57)/(1/2+sqrt(5)/2)^23 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^47/Lucas(91) 2329991416277390 a004 Fibonacci(91)/Lucas(57)/(1/2+sqrt(5)/2)^21 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^45/Lucas(89) 2329991416277390 a004 Fibonacci(89)/Lucas(57)/(1/2+sqrt(5)/2)^19 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^43/Lucas(87) 2329991416277390 a004 Fibonacci(87)/Lucas(57)/(1/2+sqrt(5)/2)^17 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^41/Lucas(85) 2329991416277390 a004 Fibonacci(85)/Lucas(57)/(1/2+sqrt(5)/2)^15 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^39/Lucas(83) 2329991416277390 a004 Fibonacci(83)/Lucas(57)/(1/2+sqrt(5)/2)^13 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^37/Lucas(81) 2329991416277390 a004 Fibonacci(81)/Lucas(57)/(1/2+sqrt(5)/2)^11 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^35/Lucas(79) 2329991416277390 a004 Fibonacci(79)/Lucas(57)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^33/Lucas(77) 2329991416277390 a004 Fibonacci(77)/Lucas(57)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^31/Lucas(75) 2329991416277390 a004 Fibonacci(75)/Lucas(57)/(1/2+sqrt(5)/2)^5 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^29/Lucas(73) 2329991416277390 a004 Fibonacci(73)/Lucas(57)/(1/2+sqrt(5)/2)^3 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^27/Lucas(71) 2329991416277390 a004 Fibonacci(71)/Lucas(57)/(1/2+sqrt(5)/2) 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^25/Lucas(69) 2329991416277390 a004 Fibonacci(69)*(1/2+sqrt(5)/2)/Lucas(57) 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^23/Lucas(67) 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^3/Lucas(57) 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^21/Lucas(65) 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^5/Lucas(57) 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^19/Lucas(63) 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^7/Lucas(57) 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^17/Lucas(61) 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^9/Lucas(57) 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^15/Lucas(59) 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^11/Lucas(57) 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^13/Lucas(57) 2329991416277390 a004 Fibonacci(57)*Lucas(56)/(1/2+sqrt(5)/2)^100 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^14/Lucas(56) 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^12/Lucas(55) 2329991416277390 a004 Fibonacci(55)*Lucas(57)/(1/2+sqrt(5)/2)^99 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^16/Lucas(58) 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^10/Lucas(55) 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^18/Lucas(60) 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^8/Lucas(55) 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^20/Lucas(62) 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^6/Lucas(55) 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^22/Lucas(64) 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^4/Lucas(55) 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^24/Lucas(66) 2329991416277390 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^2/Lucas(55) 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^26/Lucas(68) 2329991416277390 a006 5^(1/2)*Fibonacci(68)/Lucas(55)/sqrt(5) 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^28/Lucas(70) 2329991416277390 a004 Fibonacci(70)/Lucas(55)/(1/2+sqrt(5)/2)^2 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^30/Lucas(72) 2329991416277390 a004 Fibonacci(72)/Lucas(55)/(1/2+sqrt(5)/2)^4 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^32/Lucas(74) 2329991416277390 a004 Fibonacci(74)/Lucas(55)/(1/2+sqrt(5)/2)^6 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^34/Lucas(76) 2329991416277390 a004 Fibonacci(76)/Lucas(55)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^36/Lucas(78) 2329991416277390 a004 Fibonacci(78)/Lucas(55)/(1/2+sqrt(5)/2)^10 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^38/Lucas(80) 2329991416277390 a004 Fibonacci(80)/Lucas(55)/(1/2+sqrt(5)/2)^12 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^40/Lucas(82) 2329991416277390 a004 Fibonacci(82)/Lucas(55)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^42/Lucas(84) 2329991416277390 a004 Fibonacci(84)/Lucas(55)/(1/2+sqrt(5)/2)^16 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^44/Lucas(86) 2329991416277390 a004 Fibonacci(86)/Lucas(55)/(1/2+sqrt(5)/2)^18 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^46/Lucas(88) 2329991416277390 a004 Fibonacci(88)/Lucas(55)/(1/2+sqrt(5)/2)^20 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^48/Lucas(90) 2329991416277390 a004 Fibonacci(90)/Lucas(55)/(1/2+sqrt(5)/2)^22 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^50/Lucas(92) 2329991416277390 a004 Fibonacci(92)/Lucas(55)/(1/2+sqrt(5)/2)^24 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^52/Lucas(94) 2329991416277390 a004 Fibonacci(94)/Lucas(55)/(1/2+sqrt(5)/2)^26 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^54/Lucas(96) 2329991416277390 a004 Fibonacci(96)/Lucas(55)/(1/2+sqrt(5)/2)^28 2329991416277390 a004 Fibonacci(100)/Lucas(55)/(1/2+sqrt(5)/2)^32 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^56/Lucas(98) 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^57/Lucas(99) 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^58/Lucas(100) 2329991416277390 a004 Fibonacci(98)/Lucas(55)/(1/2+sqrt(5)/2)^30 2329991416277390 a004 Fibonacci(99)/Lucas(55)/(1/2+sqrt(5)/2)^31 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^55/Lucas(97) 2329991416277390 a004 Fibonacci(97)/Lucas(55)/(1/2+sqrt(5)/2)^29 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^53/Lucas(95) 2329991416277390 a004 Fibonacci(95)/Lucas(55)/(1/2+sqrt(5)/2)^27 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^51/Lucas(93) 2329991416277390 a004 Fibonacci(93)/Lucas(55)/(1/2+sqrt(5)/2)^25 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^49/Lucas(91) 2329991416277390 a004 Fibonacci(91)/Lucas(55)/(1/2+sqrt(5)/2)^23 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^47/Lucas(89) 2329991416277390 a004 Fibonacci(89)/Lucas(55)/(1/2+sqrt(5)/2)^21 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^45/Lucas(87) 2329991416277390 a004 Fibonacci(87)/Lucas(55)/(1/2+sqrt(5)/2)^19 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^43/Lucas(85) 2329991416277390 a004 Fibonacci(85)/Lucas(55)/(1/2+sqrt(5)/2)^17 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^41/Lucas(83) 2329991416277390 a004 Fibonacci(83)/Lucas(55)/(1/2+sqrt(5)/2)^15 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^39/Lucas(81) 2329991416277390 a004 Fibonacci(81)/Lucas(55)/(1/2+sqrt(5)/2)^13 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^37/Lucas(79) 2329991416277390 a004 Fibonacci(79)/Lucas(55)/(1/2+sqrt(5)/2)^11 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^35/Lucas(77) 2329991416277390 a004 Fibonacci(77)/Lucas(55)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^33/Lucas(75) 2329991416277390 a004 Fibonacci(75)/Lucas(55)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^31/Lucas(73) 2329991416277390 a004 Fibonacci(73)/Lucas(55)/(1/2+sqrt(5)/2)^5 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^29/Lucas(71) 2329991416277390 a004 Fibonacci(71)/Lucas(55)/(1/2+sqrt(5)/2)^3 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^27/Lucas(69) 2329991416277390 a004 Fibonacci(69)/Lucas(55)/(1/2+sqrt(5)/2) 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^25/Lucas(67) 2329991416277390 a004 Fibonacci(67)*(1/2+sqrt(5)/2)/Lucas(55) 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^23/Lucas(65) 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^3/Lucas(55) 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^21/Lucas(63) 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^5/Lucas(55) 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^19/Lucas(61) 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^7/Lucas(55) 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^17/Lucas(59) 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^9/Lucas(55) 2329991416277390 a004 Fibonacci(55)*Lucas(58)/(1/2+sqrt(5)/2)^100 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^15/Lucas(57) 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^11/Lucas(55) 2329991416277390 a004 Fibonacci(55)*Lucas(56)/(1/2+sqrt(5)/2)^98 2329991416277390 a001 139583862445/3461452808002*192900153618^(1/3) 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^13/Lucas(55) 2329991416277390 a004 Fibonacci(56)*Lucas(54)/(1/2+sqrt(5)/2)^97 2329991416277390 a001 10610209857723/312119004989*73681302247^(1/13) 2329991416277390 a004 Fibonacci(58)*Lucas(54)/(1/2+sqrt(5)/2)^99 2329991416277390 a004 Fibonacci(59)*Lucas(54)/(1/2+sqrt(5)/2)^100 2329991416277390 a004 Fibonacci(57)*Lucas(54)/(1/2+sqrt(5)/2)^98 2329991416277390 a004 Fibonacci(55)*Lucas(54)/(1/2+sqrt(5)/2)^96 2329991416277390 a001 140728068720/28374454999*73681302247^(2/13) 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^14/Lucas(54) 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^12/Lucas(53) 2329991416277390 a001 225851433717/2139295485799*73681302247^(4/13) 2329991416277390 a001 182717648081/1730726404001*73681302247^(4/13) 2329991416277390 a004 Fibonacci(53)*Lucas(55)/(1/2+sqrt(5)/2)^95 2329991416277390 a001 225851433717/119218851371*312119004989^(2/11) 2329991416277390 a001 139583862445/1322157322203*73681302247^(4/13) 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^16/Lucas(56) 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^10/Lucas(53) 2329991416277390 a004 Fibonacci(53)*Lucas(57)/(1/2+sqrt(5)/2)^97 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^18/Lucas(58) 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^8/Lucas(53) 2329991416277390 a004 Fibonacci(53)*Lucas(59)/(1/2+sqrt(5)/2)^99 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^20/Lucas(60) 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^6/Lucas(53) 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^22/Lucas(62) 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^4/Lucas(53) 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^24/Lucas(64) 2329991416277390 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^2/Lucas(53) 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^26/Lucas(66) 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^28/Lucas(68) 2329991416277390 a004 Fibonacci(68)/Lucas(53)/(1/2+sqrt(5)/2)^2 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^30/Lucas(70) 2329991416277390 a004 Fibonacci(70)/Lucas(53)/(1/2+sqrt(5)/2)^4 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^32/Lucas(72) 2329991416277390 a004 Fibonacci(72)/Lucas(53)/(1/2+sqrt(5)/2)^6 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^34/Lucas(74) 2329991416277390 a004 Fibonacci(74)/Lucas(53)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^36/Lucas(76) 2329991416277390 a004 Fibonacci(76)/Lucas(53)/(1/2+sqrt(5)/2)^10 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^38/Lucas(78) 2329991416277390 a004 Fibonacci(78)/Lucas(53)/(1/2+sqrt(5)/2)^12 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^40/Lucas(80) 2329991416277390 a004 Fibonacci(80)/Lucas(53)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^42/Lucas(82) 2329991416277390 a004 Fibonacci(82)/Lucas(53)/(1/2+sqrt(5)/2)^16 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^44/Lucas(84) 2329991416277390 a004 Fibonacci(84)/Lucas(53)/(1/2+sqrt(5)/2)^18 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^46/Lucas(86) 2329991416277390 a004 Fibonacci(86)/Lucas(53)/(1/2+sqrt(5)/2)^20 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^48/Lucas(88) 2329991416277390 a004 Fibonacci(88)/Lucas(53)/(1/2+sqrt(5)/2)^22 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^50/Lucas(90) 2329991416277390 a004 Fibonacci(90)/Lucas(53)/(1/2+sqrt(5)/2)^24 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^52/Lucas(92) 2329991416277390 a004 Fibonacci(92)/Lucas(53)/(1/2+sqrt(5)/2)^26 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^54/Lucas(94) 2329991416277390 a004 Fibonacci(94)/Lucas(53)/(1/2+sqrt(5)/2)^28 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^56/Lucas(96) 2329991416277390 a004 Fibonacci(96)/Lucas(53)/(1/2+sqrt(5)/2)^30 2329991416277390 a004 Fibonacci(100)/Lucas(53)/(1/2+sqrt(5)/2)^34 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^58/Lucas(98) 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^59/Lucas(99) 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^60/Lucas(100) 2329991416277390 a004 Fibonacci(98)/Lucas(53)/(1/2+sqrt(5)/2)^32 2329991416277390 a004 Fibonacci(99)/Lucas(53)/(1/2+sqrt(5)/2)^33 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^57/Lucas(97) 2329991416277390 a004 Fibonacci(97)/Lucas(53)/(1/2+sqrt(5)/2)^31 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^55/Lucas(95) 2329991416277390 a004 Fibonacci(95)/Lucas(53)/(1/2+sqrt(5)/2)^29 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^53/Lucas(93) 2329991416277390 a004 Fibonacci(93)/Lucas(53)/(1/2+sqrt(5)/2)^27 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^51/Lucas(91) 2329991416277390 a004 Fibonacci(91)/Lucas(53)/(1/2+sqrt(5)/2)^25 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^49/Lucas(89) 2329991416277390 a004 Fibonacci(89)/Lucas(53)/(1/2+sqrt(5)/2)^23 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^47/Lucas(87) 2329991416277390 a004 Fibonacci(87)/Lucas(53)/(1/2+sqrt(5)/2)^21 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^45/Lucas(85) 2329991416277390 a004 Fibonacci(85)/Lucas(53)/(1/2+sqrt(5)/2)^19 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^43/Lucas(83) 2329991416277390 a004 Fibonacci(83)/Lucas(53)/(1/2+sqrt(5)/2)^17 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^41/Lucas(81) 2329991416277390 a004 Fibonacci(81)/Lucas(53)/(1/2+sqrt(5)/2)^15 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^39/Lucas(79) 2329991416277390 a004 Fibonacci(79)/Lucas(53)/(1/2+sqrt(5)/2)^13 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^37/Lucas(77) 2329991416277390 a004 Fibonacci(77)/Lucas(53)/(1/2+sqrt(5)/2)^11 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^35/Lucas(75) 2329991416277390 a004 Fibonacci(75)/Lucas(53)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^33/Lucas(73) 2329991416277390 a004 Fibonacci(73)/Lucas(53)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^31/Lucas(71) 2329991416277390 a004 Fibonacci(71)/Lucas(53)/(1/2+sqrt(5)/2)^5 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^29/Lucas(69) 2329991416277390 a004 Fibonacci(69)/Lucas(53)/(1/2+sqrt(5)/2)^3 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^27/Lucas(67) 2329991416277390 a004 Fibonacci(67)/Lucas(53)/(1/2+sqrt(5)/2) 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^25/Lucas(65) 2329991416277390 a004 Fibonacci(65)*(1/2+sqrt(5)/2)/Lucas(53) 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^23/Lucas(63) 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^3/Lucas(53) 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^21/Lucas(61) 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^5/Lucas(53) 2329991416277390 a004 Fibonacci(53)*Lucas(60)/(1/2+sqrt(5)/2)^100 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^19/Lucas(59) 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^7/Lucas(53) 2329991416277390 a004 Fibonacci(53)*Lucas(58)/(1/2+sqrt(5)/2)^98 2329991416277390 a001 365435296162/119218851371*14662949395604^(1/7) 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^17/Lucas(57) 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^9/Lucas(53) 2329991416277390 a004 Fibonacci(53)*Lucas(56)/(1/2+sqrt(5)/2)^96 2329991416277390 a001 139583862445/119218851371*312119004989^(1/5) 2329991416277390 a001 139583862445/73681302247*28143753123^(1/5) 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^15/Lucas(55) 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^11/Lucas(53) 2329991416277390 a001 4052739537881/119218851371*73681302247^(1/13) 2329991416277390 a001 53316291173/312119004989*192900153618^(5/18) 2329991416277390 a004 Fibonacci(53)*Lucas(54)/(1/2+sqrt(5)/2)^94 2329991416277390 a001 4052739537881/192900153618*28143753123^(1/10) 2329991416277390 a001 225749145909/10745088481*28143753123^(1/10) 2329991416277390 a001 53316291173/505019158607*73681302247^(4/13) 2329991416277390 a001 6557470319842/312119004989*28143753123^(1/10) 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^13/Lucas(53) 2329991416277390 a001 53316291173/3461452808002*73681302247^(5/13) 2329991416277390 a001 53316291173/23725150497407*73681302247^(6/13) 2329991416277390 a004 Fibonacci(54)*Lucas(52)/(1/2+sqrt(5)/2)^93 2329991416277390 a001 10983760033/64300051206*28143753123^(3/10) 2329991416277390 a001 6557470319842/73681302247*10749957122^(1/24) 2329991416277390 a004 Fibonacci(56)*Lucas(52)/(1/2+sqrt(5)/2)^95 2329991416277390 a004 Fibonacci(58)*Lucas(52)/(1/2+sqrt(5)/2)^97 2329991416277390 a004 Fibonacci(60)*Lucas(52)/(1/2+sqrt(5)/2)^99 2329991416277390 a004 Fibonacci(61)*Lucas(52)/(1/2+sqrt(5)/2)^100 2329991416277390 a004 Fibonacci(59)*Lucas(52)/(1/2+sqrt(5)/2)^98 2329991416277390 a001 32951280099/45537549124*45537549124^(4/17) 2329991416277390 a004 Fibonacci(57)*Lucas(52)/(1/2+sqrt(5)/2)^96 2329991416277390 a001 139583862445/28143753123*10749957122^(1/6) 2329991416277390 a004 Fibonacci(55)*Lucas(52)/(1/2+sqrt(5)/2)^94 2329991416277390 a001 2504730781961/119218851371*28143753123^(1/10) 2329991416277390 a001 182717648081/96450076809*28143753123^(1/5) 2329991416277390 a001 956722026041/505019158607*28143753123^(1/5) 2329991416277390 a001 10610209857723/5600748293801*28143753123^(1/5) 2329991416277390 a004 Fibonacci(53)*Lucas(52)/(1/2+sqrt(5)/2)^92 2329991416277390 a001 20365011074/9062201101803*45537549124^(8/17) 2329991416277390 a001 591286729879/312119004989*28143753123^(1/5) 2329991416277390 a001 20365011074/2139295485799*45537549124^(7/17) 2329991416277390 a001 20365011074/73681302247*14662949395604^(2/9) 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^14/Lucas(52) 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^12/Lucas(51) 2329991416277390 a001 20365011074/73681302247*505019158607^(1/4) 2329991416277390 a001 20365011074/505019158607*45537549124^(6/17) 2329991416277390 a001 225851433717/119218851371*28143753123^(1/5) 2329991416277390 a001 32951280099/2139295485799*28143753123^(2/5) 2329991416277390 a001 20365011074/312119004989*45537549124^(1/3) 2329991416277390 a001 86267571272/28143753123*10749957122^(3/16) 2329991416277390 a001 32951280099/45537549124*73681302247^(3/13) 2329991416277390 a001 86267571272/505019158607*28143753123^(3/10) 2329991416277390 a001 4052739537881/73681302247*10749957122^(1/16) 2329991416277390 a001 75283811239/440719107401*28143753123^(3/10) 2329991416277390 a001 139583862445/817138163596*28143753123^(3/10) 2329991416277390 a001 139583862445/45537549124*45537549124^(3/17) 2329991416277390 a001 20365011074/119218851371*45537549124^(5/17) 2329991416277390 a004 Fibonacci(51)*Lucas(53)/(1/2+sqrt(5)/2)^91 2329991416277390 a001 10610209857723/119218851371*10749957122^(1/24) 2329991416277390 a001 21566892818/11384387281*312119004989^(2/11) 2329991416277390 a001 2504730781961/45537549124*45537549124^(1/17) 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^16/Lucas(54) 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^10/Lucas(51) 2329991416277390 a001 10182505537/96450076809*23725150497407^(1/4) 2329991416277390 a004 Fibonacci(51)*Lucas(55)/(1/2+sqrt(5)/2)^93 2329991416277390 a001 10182505537/7331474697802*312119004989^(5/11) 2329991416277390 a001 10182505537/1730726404001*312119004989^(2/5) 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^18/Lucas(56) 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^8/Lucas(51) 2329991416277390 a004 Fibonacci(51)*Lucas(57)/(1/2+sqrt(5)/2)^95 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^20/Lucas(58) 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^6/Lucas(51) 2329991416277390 a004 Fibonacci(51)*Lucas(59)/(1/2+sqrt(5)/2)^97 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^22/Lucas(60) 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^4/Lucas(51) 2329991416277390 a004 Fibonacci(51)*Lucas(61)/(1/2+sqrt(5)/2)^99 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^24/Lucas(62) 2329991416277390 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^2/Lucas(51) 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^26/Lucas(64) 2329991416277390 a006 5^(1/2)*Fibonacci(64)/Lucas(51)/sqrt(5) 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^28/Lucas(66) 2329991416277390 a004 Fibonacci(66)/Lucas(51)/(1/2+sqrt(5)/2)^2 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^30/Lucas(68) 2329991416277390 a004 Fibonacci(68)/Lucas(51)/(1/2+sqrt(5)/2)^4 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^32/Lucas(70) 2329991416277390 a004 Fibonacci(70)/Lucas(51)/(1/2+sqrt(5)/2)^6 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^34/Lucas(72) 2329991416277390 a004 Fibonacci(72)/Lucas(51)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^36/Lucas(74) 2329991416277390 a004 Fibonacci(74)/Lucas(51)/(1/2+sqrt(5)/2)^10 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^38/Lucas(76) 2329991416277390 a004 Fibonacci(76)/Lucas(51)/(1/2+sqrt(5)/2)^12 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^40/Lucas(78) 2329991416277390 a004 Fibonacci(78)/Lucas(51)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^42/Lucas(80) 2329991416277390 a004 Fibonacci(80)/Lucas(51)/(1/2+sqrt(5)/2)^16 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^44/Lucas(82) 2329991416277390 a004 Fibonacci(82)/Lucas(51)/(1/2+sqrt(5)/2)^18 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^46/Lucas(84) 2329991416277390 a004 Fibonacci(84)/Lucas(51)/(1/2+sqrt(5)/2)^20 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^48/Lucas(86) 2329991416277390 a004 Fibonacci(86)/Lucas(51)/(1/2+sqrt(5)/2)^22 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^50/Lucas(88) 2329991416277390 a004 Fibonacci(88)/Lucas(51)/(1/2+sqrt(5)/2)^24 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^52/Lucas(90) 2329991416277390 a004 Fibonacci(90)/Lucas(51)/(1/2+sqrt(5)/2)^26 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^54/Lucas(92) 2329991416277390 a004 Fibonacci(92)/Lucas(51)/(1/2+sqrt(5)/2)^28 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^56/Lucas(94) 2329991416277390 a004 Fibonacci(94)/Lucas(51)/(1/2+sqrt(5)/2)^30 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^58/Lucas(96) 2329991416277390 a004 Fibonacci(96)/Lucas(51)/(1/2+sqrt(5)/2)^32 2329991416277390 a004 Fibonacci(100)/Lucas(51)/(1/2+sqrt(5)/2)^36 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^60/Lucas(98) 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^62/Lucas(100) 2329991416277390 a004 Fibonacci(51)*Lucas(1)/(1/2+sqrt(5)/2)^38 2329991416277390 a004 Fibonacci(98)/Lucas(51)/(1/2+sqrt(5)/2)^34 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^59/Lucas(97) 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^61/Lucas(99) 2329991416277390 a004 Fibonacci(97)/Lucas(51)/(1/2+sqrt(5)/2)^33 2329991416277390 a004 Fibonacci(99)/Lucas(51)/(1/2+sqrt(5)/2)^35 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^57/Lucas(95) 2329991416277390 a004 Fibonacci(95)/Lucas(51)/(1/2+sqrt(5)/2)^31 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^55/Lucas(93) 2329991416277390 a004 Fibonacci(93)/Lucas(51)/(1/2+sqrt(5)/2)^29 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^53/Lucas(91) 2329991416277390 a004 Fibonacci(91)/Lucas(51)/(1/2+sqrt(5)/2)^27 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^51/Lucas(89) 2329991416277390 a004 Fibonacci(89)/Lucas(51)/(1/2+sqrt(5)/2)^25 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^49/Lucas(87) 2329991416277390 a004 Fibonacci(87)/Lucas(51)/(1/2+sqrt(5)/2)^23 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^47/Lucas(85) 2329991416277390 a004 Fibonacci(85)/Lucas(51)/(1/2+sqrt(5)/2)^21 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^45/Lucas(83) 2329991416277390 a004 Fibonacci(83)/Lucas(51)/(1/2+sqrt(5)/2)^19 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^43/Lucas(81) 2329991416277390 a004 Fibonacci(81)/Lucas(51)/(1/2+sqrt(5)/2)^17 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^41/Lucas(79) 2329991416277390 a004 Fibonacci(79)/Lucas(51)/(1/2+sqrt(5)/2)^15 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^39/Lucas(77) 2329991416277390 a004 Fibonacci(77)/Lucas(51)/(1/2+sqrt(5)/2)^13 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^37/Lucas(75) 2329991416277390 a004 Fibonacci(75)/Lucas(51)/(1/2+sqrt(5)/2)^11 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^35/Lucas(73) 2329991416277390 a004 Fibonacci(73)/Lucas(51)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^33/Lucas(71) 2329991416277390 a004 Fibonacci(71)/Lucas(51)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^31/Lucas(69) 2329991416277390 a004 Fibonacci(69)/Lucas(51)/(1/2+sqrt(5)/2)^5 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^29/Lucas(67) 2329991416277390 a004 Fibonacci(67)/Lucas(51)/(1/2+sqrt(5)/2)^3 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^27/Lucas(65) 2329991416277390 a004 Fibonacci(65)/Lucas(51)/(1/2+sqrt(5)/2) 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^25/Lucas(63) 2329991416277390 a004 Fibonacci(63)*(1/2+sqrt(5)/2)/Lucas(51) 2329991416277390 a004 Fibonacci(51)*Lucas(62)/(1/2+sqrt(5)/2)^100 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^23/Lucas(61) 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^3/Lucas(51) 2329991416277390 a001 10182505537/7331474697802*3461452808002^(5/12) 2329991416277390 a004 Fibonacci(51)*Lucas(60)/(1/2+sqrt(5)/2)^98 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^21/Lucas(59) 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^5/Lucas(51) 2329991416277390 a004 Fibonacci(51)*Lucas(58)/(1/2+sqrt(5)/2)^96 2329991416277390 a001 10182505537/408569081798*817138163596^(1/3) 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^19/Lucas(57) 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^7/Lucas(51) 2329991416277390 a004 Fibonacci(51)*Lucas(56)/(1/2+sqrt(5)/2)^94 2329991416277390 a001 139583862445/45537549124*817138163596^(3/19) 2329991416277390 a001 139583862445/45537549124*14662949395604^(1/7) 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^17/Lucas(55) 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^9/Lucas(51) 2329991416277390 a001 20365011074/9062201101803*192900153618^(4/9) 2329991416277390 a001 139583862445/45537549124*192900153618^(1/6) 2329991416277390 a001 365435296162/23725150497407*28143753123^(2/5) 2329991416277390 a001 225851433717/45537549124*73681302247^(2/13) 2329991416277390 a004 Fibonacci(51)*Lucas(54)/(1/2+sqrt(5)/2)^92 2329991416277390 a001 10182505537/96450076809*73681302247^(4/13) 2329991416277390 a001 2504730781961/73681302247*10749957122^(1/12) 2329991416277390 a001 20365011074/119218851371*312119004989^(3/11) 2329991416277390 a001 20365011074/1322157322203*73681302247^(5/13) 2329991416277390 a001 20365011074/119218851371*14662949395604^(5/21) 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^15/Lucas(53) 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^11/Lucas(51) 2329991416277390 a001 20365011074/119218851371*192900153618^(5/18) 2329991416277390 a001 20365011074/9062201101803*73681302247^(6/13) 2329991416277390 a001 20365011074/23725150497407*73681302247^(1/2) 2329991416277390 a001 53316291173/3461452808002*28143753123^(2/5) 2329991416277390 a001 53316291173/28143753123*10749957122^(5/24) 2329991416277390 a004 Fibonacci(51)*Lucas(52)/(1/2+sqrt(5)/2)^90 2329991416277390 a001 3278735159921/96450076809*10749957122^(1/12) 2329991416277390 a001 21566892818/11384387281*28143753123^(1/5) 2329991416277390 a001 10610209857723/312119004989*10749957122^(1/12) 2329991416277390 a001 4052739537881/119218851371*10749957122^(1/12) 2329991416277390 a001 4052739537881/45537549124*10749957122^(1/24) 2329991416277390 a001 956722026041/73681302247*10749957122^(1/8) 2329991416277390 a001 20365011074/119218851371*28143753123^(3/10) 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^13/Lucas(51) 2329991416277390 a001 20365011074/1322157322203*28143753123^(2/5) 2329991416277390 a001 10182505537/22768774562*73681302247^(1/4) 2329991416277390 a001 2504730781961/45537549124*10749957122^(1/16) 2329991416277390 a001 2504730781961/192900153618*10749957122^(1/8) 2329991416277390 a004 Fibonacci(52)*Lucas(50)/(1/2+sqrt(5)/2)^89 2329991416277390 a001 10610209857723/817138163596*10749957122^(1/8) 2329991416277390 a001 4052739537881/312119004989*10749957122^(1/8) 2329991416277390 a001 7778742049/28143753123*17393796001^(2/7) 2329991416277390 a001 10182505537/7331474697802*28143753123^(1/2) 2329991416277390 a001 1548008755920/119218851371*10749957122^(1/8) 2329991416277390 a001 387002188980/11384387281*10749957122^(1/12) 2329991416277390 a004 Fibonacci(54)*Lucas(50)/(1/2+sqrt(5)/2)^91 2329991416277390 a001 12586269025/73681302247*10749957122^(5/16) 2329991416277390 a004 Fibonacci(56)*Lucas(50)/(1/2+sqrt(5)/2)^93 2329991416277390 a001 365435296162/73681302247*10749957122^(1/6) 2329991416277390 a004 Fibonacci(58)*Lucas(50)/(1/2+sqrt(5)/2)^95 2329991416277390 a004 Fibonacci(60)*Lucas(50)/(1/2+sqrt(5)/2)^97 2329991416277390 a004 Fibonacci(62)*Lucas(50)/(1/2+sqrt(5)/2)^99 2329991416277390 a001 2/12586269025*(1/2+1/2*5^(1/2))^63 2329991416277390 a004 Fibonacci(63)*Lucas(50)/(1/2+sqrt(5)/2)^100 2329991416277390 a004 Fibonacci(61)*Lucas(50)/(1/2+sqrt(5)/2)^98 2329991416277390 a004 Fibonacci(59)*Lucas(50)/(1/2+sqrt(5)/2)^96 2329991416277390 a004 Fibonacci(57)*Lucas(50)/(1/2+sqrt(5)/2)^94 2329991416277390 a004 Fibonacci(55)*Lucas(50)/(1/2+sqrt(5)/2)^92 2329991416277390 a001 2504730781961/28143753123*4106118243^(1/23) 2329991416277390 a004 Fibonacci(53)*Lucas(50)/(1/2+sqrt(5)/2)^90 2329991416277390 a001 20365011074/28143753123*10749957122^(1/4) 2329991416277390 a001 7778742049/23725150497407*17393796001^(4/7) 2329991416277390 a001 32264490531/10525900321*10749957122^(3/16) 2329991416277390 a001 2504730781961/505019158607*10749957122^(1/6) 2329991416277390 a001 10610209857723/2139295485799*10749957122^(1/6) 2329991416277390 a001 4052739537881/817138163596*10749957122^(1/6) 2329991416277390 a001 140728068720/28374454999*10749957122^(1/6) 2329991416277390 a001 591286729879/119218851371*10749957122^(1/6) 2329991416277390 a001 591286729879/45537549124*10749957122^(1/8) 2329991416277390 a001 591286729879/192900153618*10749957122^(3/16) 2329991416277390 a001 1548008755920/505019158607*10749957122^(3/16) 2329991416277390 a001 1515744265389/494493258286*10749957122^(3/16) 2329991416277390 a001 139583862445/73681302247*10749957122^(5/24) 2329991416277390 a001 956722026041/312119004989*10749957122^(3/16) 2329991416277390 a001 12586269025/119218851371*10749957122^(1/3) 2329991416277390 a001 53316291173/10749957122*4106118243^(4/23) 2329991416277390 a001 12586269025/45537549124*10749957122^(7/24) 2329991416277390 a004 Fibonacci(51)*Lucas(50)/(1/2+sqrt(5)/2)^88 2329991416277390 a001 182717648081/96450076809*10749957122^(5/24) 2329991416277390 a001 956722026041/505019158607*10749957122^(5/24) 2329991416277390 a001 591286729879/312119004989*10749957122^(5/24) 2329991416277390 a001 225851433717/119218851371*10749957122^(5/24) 2329991416277390 a001 7778742049/817138163596*17393796001^(3/7) 2329991416277390 a001 225851433717/45537549124*10749957122^(1/6) 2329991416277390 a001 86267571272/6643838879*2537720636^(2/15) 2329991416277390 a001 12586269025/17393796001*45537549124^(4/17) 2329991416277390 a001 1144206275/28374454999*10749957122^(3/8) 2329991416277390 a001 12586269025/17393796001*14662949395604^(4/21) 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^14/Lucas(50) 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^12/Lucas(49) 2329991416277390 a001 12586269025/17393796001*192900153618^(2/9) 2329991416277390 a001 12586269025/17393796001*73681302247^(3/13) 2329991416277390 a001 139583862445/45537549124*10749957122^(3/16) 2329991416277390 a001 139583862445/192900153618*10749957122^(1/4) 2329991416277390 a001 365435296162/505019158607*10749957122^(1/4) 2329991416277390 a001 225851433717/312119004989*10749957122^(1/4) 2329991416277390 a001 86267571272/119218851371*10749957122^(1/4) 2329991416277390 a001 21566892818/11384387281*10749957122^(5/24) 2329991416277390 a001 12586269025/817138163596*10749957122^(5/12) 2329991416277390 a001 6557470319842/73681302247*4106118243^(1/23) 2329991416277390 a001 32951280099/119218851371*10749957122^(7/24) 2329991416277390 a001 32951280099/45537549124*10749957122^(1/4) 2329991416277390 a001 10983760033/64300051206*10749957122^(5/16) 2329991416277390 a001 86267571272/312119004989*10749957122^(7/24) 2329991416277390 a001 12586269025/1322157322203*10749957122^(7/16) 2329991416277390 a001 139583862445/505019158607*10749957122^(7/24) 2329991416277390 a001 53316291173/192900153618*10749957122^(7/24) 2329991416277390 a001 10610209857723/119218851371*4106118243^(1/23) 2329991416277390 a001 86267571272/505019158607*10749957122^(5/16) 2329991416277390 a001 75283811239/440719107401*10749957122^(5/16) 2329991416277390 a001 12586269025/2139295485799*10749957122^(11/24) 2329991416277390 a001 32951280099/312119004989*10749957122^(1/3) 2329991416277390 a001 139583862445/817138163596*10749957122^(5/16) 2329991416277390 a001 53316291173/312119004989*10749957122^(5/16) 2329991416277390 a001 20365011074/73681302247*10749957122^(7/24) 2329991416277390 a004 Fibonacci(49)*Lucas(51)/(1/2+sqrt(5)/2)^87 2329991416277390 a001 139583862445/17393796001*17393796001^(1/7) 2329991416277390 a001 21566892818/204284540899*10749957122^(1/3) 2329991416277390 a001 225851433717/2139295485799*10749957122^(1/3) 2329991416277390 a001 182717648081/1730726404001*10749957122^(1/3) 2329991416277390 a001 139583862445/1322157322203*10749957122^(1/3) 2329991416277390 a001 53316291173/505019158607*10749957122^(1/3) 2329991416277390 a001 7778742049/14662949395604*45537549124^(9/17) 2329991416277390 a001 32951280099/817138163596*10749957122^(3/8) 2329991416277390 a001 12586269025/5600748293801*10749957122^(1/2) 2329991416277390 a001 7778742049/3461452808002*45537549124^(8/17) 2329991416277390 a001 7778742049/192900153618*45537549124^(6/17) 2329991416277390 a001 32951280099/17393796001*312119004989^(2/11) 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^16/Lucas(52) 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^10/Lucas(49) 2329991416277390 a001 7778742049/73681302247*23725150497407^(1/4) 2329991416277390 a001 7778742049/73681302247*73681302247^(4/13) 2329991416277390 a001 7778742049/119218851371*45537549124^(1/3) 2329991416277390 a001 86267571272/2139295485799*10749957122^(3/8) 2329991416277390 a004 Fibonacci(49)*Lucas(53)/(1/2+sqrt(5)/2)^89 2329991416277390 a001 225851433717/5600748293801*10749957122^(3/8) 2329991416277390 a001 7787980473/599786069*45537549124^(2/17) 2329991416277390 a001 365435296162/9062201101803*10749957122^(3/8) 2329991416277390 a001 139583862445/3461452808002*10749957122^(3/8) 2329991416277390 a001 20365011074/119218851371*10749957122^(5/16) 2329991416277390 a001 7778742049/192900153618*14662949395604^(2/7) 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^18/Lucas(54) 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^8/Lucas(49) 2329991416277390 a001 7778742049/192900153618*192900153618^(1/3) 2329991416277390 a001 53316291173/17393796001*45537549124^(3/17) 2329991416277390 a004 Fibonacci(49)*Lucas(55)/(1/2+sqrt(5)/2)^91 2329991416277390 a001 7778742049/1322157322203*312119004989^(2/5) 2329991416277390 a001 7778742049/5600748293801*312119004989^(5/11) 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^20/Lucas(56) 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^6/Lucas(49) 2329991416277390 a004 Fibonacci(49)*Lucas(57)/(1/2+sqrt(5)/2)^93 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^22/Lucas(58) 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^4/Lucas(49) 2329991416277390 a004 Fibonacci(49)*Lucas(59)/(1/2+sqrt(5)/2)^95 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^24/Lucas(60) 2329991416277390 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^2/Lucas(49) 2329991416277390 a004 Fibonacci(49)*Lucas(61)/(1/2+sqrt(5)/2)^97 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^26/Lucas(62) 2329991416277390 a004 Fibonacci(49)*Lucas(63)/(1/2+sqrt(5)/2)^99 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^28/Lucas(64) 2329991416277390 a004 Fibonacci(64)/Lucas(49)/(1/2+sqrt(5)/2)^2 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^30/Lucas(66) 2329991416277390 a004 Fibonacci(66)/Lucas(49)/(1/2+sqrt(5)/2)^4 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^32/Lucas(68) 2329991416277390 a004 Fibonacci(68)/Lucas(49)/(1/2+sqrt(5)/2)^6 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^34/Lucas(70) 2329991416277390 a004 Fibonacci(70)/Lucas(49)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^36/Lucas(72) 2329991416277390 a004 Fibonacci(72)/Lucas(49)/(1/2+sqrt(5)/2)^10 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^38/Lucas(74) 2329991416277390 a004 Fibonacci(74)/Lucas(49)/(1/2+sqrt(5)/2)^12 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^40/Lucas(76) 2329991416277390 a004 Fibonacci(76)/Lucas(49)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^42/Lucas(78) 2329991416277390 a004 Fibonacci(78)/Lucas(49)/(1/2+sqrt(5)/2)^16 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^44/Lucas(80) 2329991416277390 a004 Fibonacci(80)/Lucas(49)/(1/2+sqrt(5)/2)^18 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^46/Lucas(82) 2329991416277390 a004 Fibonacci(82)/Lucas(49)/(1/2+sqrt(5)/2)^20 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^48/Lucas(84) 2329991416277390 a004 Fibonacci(84)/Lucas(49)/(1/2+sqrt(5)/2)^22 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^50/Lucas(86) 2329991416277390 a004 Fibonacci(86)/Lucas(49)/(1/2+sqrt(5)/2)^24 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^52/Lucas(88) 2329991416277390 a004 Fibonacci(88)/Lucas(49)/(1/2+sqrt(5)/2)^26 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^54/Lucas(90) 2329991416277390 a004 Fibonacci(90)/Lucas(49)/(1/2+sqrt(5)/2)^28 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^56/Lucas(92) 2329991416277390 a004 Fibonacci(92)/Lucas(49)/(1/2+sqrt(5)/2)^30 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^58/Lucas(94) 2329991416277390 a004 Fibonacci(94)/Lucas(49)/(1/2+sqrt(5)/2)^32 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^60/Lucas(96) 2329991416277390 a004 Fibonacci(96)/Lucas(49)/(1/2+sqrt(5)/2)^34 2329991416277390 a004 Fibonacci(100)/Lucas(49)/(1/2+sqrt(5)/2)^38 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^62/Lucas(98) 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^63/Lucas(99) 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^64/Lucas(100) 2329991416277390 a004 Fibonacci(49)*Lucas(1)/(1/2+sqrt(5)/2)^36 2329991416277390 a004 Fibonacci(99)/Lucas(49)/(1/2+sqrt(5)/2)^37 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^61/Lucas(97) 2329991416277390 a004 Fibonacci(97)/Lucas(49)/(1/2+sqrt(5)/2)^35 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^59/Lucas(95) 2329991416277390 a004 Fibonacci(95)/Lucas(49)/(1/2+sqrt(5)/2)^33 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^57/Lucas(93) 2329991416277390 a004 Fibonacci(93)/Lucas(49)/(1/2+sqrt(5)/2)^31 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^55/Lucas(91) 2329991416277390 a004 Fibonacci(91)/Lucas(49)/(1/2+sqrt(5)/2)^29 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^53/Lucas(89) 2329991416277390 a004 Fibonacci(89)/Lucas(49)/(1/2+sqrt(5)/2)^27 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^51/Lucas(87) 2329991416277390 a004 Fibonacci(87)/Lucas(49)/(1/2+sqrt(5)/2)^25 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^49/Lucas(85) 2329991416277390 a004 Fibonacci(85)/Lucas(49)/(1/2+sqrt(5)/2)^23 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^47/Lucas(83) 2329991416277390 a004 Fibonacci(83)/Lucas(49)/(1/2+sqrt(5)/2)^21 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^45/Lucas(81) 2329991416277390 a004 Fibonacci(81)/Lucas(49)/(1/2+sqrt(5)/2)^19 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^43/Lucas(79) 2329991416277390 a004 Fibonacci(79)/Lucas(49)/(1/2+sqrt(5)/2)^17 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^41/Lucas(77) 2329991416277390 a004 Fibonacci(77)/Lucas(49)/(1/2+sqrt(5)/2)^15 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^39/Lucas(75) 2329991416277390 a004 Fibonacci(75)/Lucas(49)/(1/2+sqrt(5)/2)^13 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^37/Lucas(73) 2329991416277390 a004 Fibonacci(73)/Lucas(49)/(1/2+sqrt(5)/2)^11 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^35/Lucas(71) 2329991416277390 a004 Fibonacci(71)/Lucas(49)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^33/Lucas(69) 2329991416277390 a004 Fibonacci(69)/Lucas(49)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^31/Lucas(67) 2329991416277390 a004 Fibonacci(67)/Lucas(49)/(1/2+sqrt(5)/2)^5 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^29/Lucas(65) 2329991416277390 a004 Fibonacci(65)/Lucas(49)/(1/2+sqrt(5)/2)^3 2329991416277390 a004 Fibonacci(49)*Lucas(64)/(1/2+sqrt(5)/2)^100 2329991416277390 a001 7778742049/14662949395604*14662949395604^(3/7) 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^27/Lucas(63) 2329991416277390 a004 Fibonacci(63)/Lucas(49)/(1/2+sqrt(5)/2) 2329991416277390 a004 Fibonacci(49)*Lucas(62)/(1/2+sqrt(5)/2)^98 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^25/Lucas(61) 2329991416277390 a004 Fibonacci(61)*(1/2+sqrt(5)/2)/Lucas(49) 2329991416277390 a004 Fibonacci(49)*Lucas(60)/(1/2+sqrt(5)/2)^96 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^23/Lucas(59) 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^3/Lucas(49) 2329991416277390 a001 365435296162/17393796001*312119004989^(1/11) 2329991416277390 a004 Fibonacci(49)*Lucas(58)/(1/2+sqrt(5)/2)^94 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^21/Lucas(57) 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^5/Lucas(49) 2329991416277390 a004 Fibonacci(49)*Lucas(56)/(1/2+sqrt(5)/2)^92 2329991416277390 a001 139583862445/17393796001*14662949395604^(1/9) 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^19/Lucas(55) 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^7/Lucas(49) 2329991416277390 a001 7778742049/14662949395604*192900153618^(1/2) 2329991416277390 a001 591286729879/17393796001*73681302247^(1/13) 2329991416277390 a004 Fibonacci(49)*Lucas(54)/(1/2+sqrt(5)/2)^90 2329991416277390 a001 10182505537/96450076809*10749957122^(1/3) 2329991416277390 a001 32951280099/17393796001*28143753123^(1/5) 2329991416277390 a001 53316291173/17393796001*817138163596^(3/19) 2329991416277390 a001 53316291173/17393796001*14662949395604^(1/7) 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^17/Lucas(53) 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^9/Lucas(49) 2329991416277390 a001 53316291173/17393796001*192900153618^(1/6) 2329991416277390 a001 7778742049/3461452808002*73681302247^(6/13) 2329991416277390 a001 7778742049/9062201101803*73681302247^(1/2) 2329991416277390 a001 7778742049/23725150497407*73681302247^(7/13) 2329991416277390 a001 32951280099/2139295485799*10749957122^(5/12) 2329991416277390 a001 12586269025/14662949395604*10749957122^(13/24) 2329991416277390 a001 365435296162/17393796001*28143753123^(1/10) 2329991416277390 a004 Fibonacci(49)*Lucas(52)/(1/2+sqrt(5)/2)^88 2329991416277390 a001 86267571272/5600748293801*10749957122^(5/12) 2329991416277390 a001 32951280099/3461452808002*10749957122^(7/16) 2329991416277390 a001 12586269025/23725150497407*10749957122^(9/16) 2329991416277390 a001 365435296162/23725150497407*10749957122^(5/12) 2329991416277390 a001 139583862445/9062201101803*10749957122^(5/12) 2329991416277390 a001 7778742049/45537549124*45537549124^(5/17) 2329991416277390 a001 1548008755920/17393796001*10749957122^(1/24) 2329991416277390 a001 53316291173/3461452808002*10749957122^(5/12) 2329991416277390 a001 20365011074/505019158607*10749957122^(3/8) 2329991416277390 a001 86267571272/9062201101803*10749957122^(7/16) 2329991416277390 a001 225851433717/23725150497407*10749957122^(7/16) 2329991416277390 a001 32951280099/5600748293801*10749957122^(11/24) 2329991416277390 a001 20365011074/17393796001*312119004989^(1/5) 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^15/Lucas(51) 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^11/Lucas(49) 2329991416277390 a001 7778742049/45537549124*192900153618^(5/18) 2329991416277390 a001 139583862445/14662949395604*10749957122^(7/16) 2329991416277390 a001 7778742049/505019158607*28143753123^(2/5) 2329991416277390 a001 956722026041/17393796001*10749957122^(1/16) 2329991416277390 a001 53316291173/5600748293801*10749957122^(7/16) 2329991416277390 a001 956722026041/28143753123*4106118243^(2/23) 2329991416277390 a001 7778742049/5600748293801*28143753123^(1/2) 2329991416277390 a001 1135099622/192933544679*10749957122^(11/24) 2329991416277390 a001 591286729879/17393796001*10749957122^(1/12) 2329991416277390 a001 53316291173/9062201101803*10749957122^(11/24) 2329991416277390 a001 20365011074/1322157322203*10749957122^(5/12) 2329991416277390 a001 32951280099/14662949395604*10749957122^(1/2) 2329991416277390 a001 7778742049/45537549124*28143753123^(3/10) 2329991416277390 a001 12586269025/17393796001*10749957122^(1/4) 2329991416277390 a001 20365011074/2139295485799*10749957122^(7/16) 2329991416277390 a001 7787980473/599786069*10749957122^(1/8) 2329991416277390 a001 53316291173/23725150497407*10749957122^(1/2) 2329991416277390 a001 10182505537/1730726404001*10749957122^(11/24) 2329991416277390 a001 7778742049/28143753123*10749957122^(7/24) 2329991416277390 a004 Fibonacci(49)*Lucas(50)/(1/2+sqrt(5)/2)^86 2329991416277390 a001 10182505537/5374978561*4106118243^(5/23) 2329991416277390 a001 20365011074/9062201101803*10749957122^(1/2) 2329991416277390 a001 32951280099/17393796001*10749957122^(5/24) 2329991416277390 a001 2504730781961/73681302247*4106118243^(2/23) 2329991416277390 a001 53316291173/17393796001*10749957122^(3/16) 2329991416277390 a001 3278735159921/96450076809*4106118243^(2/23) 2329991416277390 a001 10610209857723/312119004989*4106118243^(2/23) 2329991416277390 a001 20365011074/23725150497407*10749957122^(13/24) 2329991416277390 a001 4052739537881/119218851371*4106118243^(2/23) 2329991416277390 a001 139583862445/6643838879*2537720636^(1/9) 2329991416277390 a001 387002188980/11384387281*4106118243^(2/23) 2329991416277390 a001 1548008755920/17393796001*4106118243^(1/23) 2329991416277390 a001 7778742049/73681302247*10749957122^(1/3) 2329991416277390 a001 365435296162/28143753123*4106118243^(3/23) 2329991416277390 a001 7778742049/45537549124*10749957122^(5/16) 2329991416277390 a001 7778742049/192900153618*10749957122^(3/8) 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^13/Lucas(49) 2329991416277390 a001 7778742049/17393796001*73681302247^(1/4) 2329991416277390 a001 7778742049/505019158607*10749957122^(5/12) 2329991416277390 a001 7778742049/817138163596*10749957122^(7/16) 2329991416277390 a001 7778742049/1322157322203*10749957122^(11/24) 2329991416277390 a004 Fibonacci(50)*Lucas(48)/(1/2+sqrt(5)/2)^85 2329991416277390 a001 956722026041/73681302247*4106118243^(3/23) 2329991416277390 a001 7778742049/3461452808002*10749957122^(1/2) 2329991416277390 a001 2504730781961/192900153618*4106118243^(3/23) 2329991416277390 a001 10610209857723/817138163596*4106118243^(3/23) 2329991416277390 a001 4052739537881/312119004989*4106118243^(3/23) 2329991416277390 a001 1548008755920/119218851371*4106118243^(3/23) 2329991416277390 a001 7778742049/9062201101803*10749957122^(13/24) 2329991416277390 a001 7778742049/14662949395604*10749957122^(9/16) 2329991416277390 a001 591286729879/45537549124*4106118243^(3/23) 2329991416277390 a001 7778742049/23725150497407*10749957122^(7/12) 2329991416277390 a001 591286729879/17393796001*4106118243^(2/23) 2329991416277390 a004 Fibonacci(52)*Lucas(48)/(1/2+sqrt(5)/2)^87 2329991416277390 a004 Fibonacci(54)*Lucas(48)/(1/2+sqrt(5)/2)^89 2329991416277390 a004 Fibonacci(56)*Lucas(48)/(1/2+sqrt(5)/2)^91 2329991416277390 a004 Fibonacci(58)*Lucas(48)/(1/2+sqrt(5)/2)^93 2329991416277390 a004 Fibonacci(60)*Lucas(48)/(1/2+sqrt(5)/2)^95 2329991416277390 a004 Fibonacci(62)*Lucas(48)/(1/2+sqrt(5)/2)^97 2329991416277390 a004 Fibonacci(64)*Lucas(48)/(1/2+sqrt(5)/2)^99 2329991416277390 a001 1/2403763488*(1/2+1/2*5^(1/2))^61 2329991416277390 a004 Fibonacci(65)*Lucas(48)/(1/2+sqrt(5)/2)^100 2329991416277390 a004 Fibonacci(63)*Lucas(48)/(1/2+sqrt(5)/2)^98 2329991416277390 a004 Fibonacci(61)*Lucas(48)/(1/2+sqrt(5)/2)^96 2329991416277390 a004 Fibonacci(59)*Lucas(48)/(1/2+sqrt(5)/2)^94 2329991416277390 a004 Fibonacci(57)*Lucas(48)/(1/2+sqrt(5)/2)^92 2329991416277390 a004 Fibonacci(55)*Lucas(48)/(1/2+sqrt(5)/2)^90 2329991416277390 a004 Fibonacci(53)*Lucas(48)/(1/2+sqrt(5)/2)^88 2329991416277390 a001 139583862445/28143753123*4106118243^(4/23) 2329991416277390 a004 Fibonacci(51)*Lucas(48)/(1/2+sqrt(5)/2)^86 2329991416277390 a001 956722026041/10749957122*1568397607^(1/22) 2329991416277390 a001 7778742049/10749957122*4106118243^(6/23) 2329991416277390 a001 365435296162/73681302247*4106118243^(4/23) 2329991416277390 a001 956722026041/192900153618*4106118243^(4/23) 2329991416277390 a001 2504730781961/505019158607*4106118243^(4/23) 2329991416277390 a001 10610209857723/2139295485799*4106118243^(4/23) 2329991416277390 a001 4052739537881/817138163596*4106118243^(4/23) 2329991416277390 a001 140728068720/28374454999*4106118243^(4/23) 2329991416277390 a001 591286729879/119218851371*4106118243^(4/23) 2329991416277390 a001 225851433717/45537549124*4106118243^(4/23) 2329991416277390 a001 7787980473/599786069*4106118243^(3/23) 2329991416277390 a001 53316291173/28143753123*4106118243^(5/23) 2329991416277390 a004 Fibonacci(49)*Lucas(48)/(1/2+sqrt(5)/2)^84 2329991416277390 a001 365435296162/6643838879*2537720636^(1/15) 2329991416277390 a001 1201881744/11384387281*4106118243^(8/23) 2329991416277390 a001 4807526976/17393796001*4106118243^(7/23) 2329991416277390 a001 139583862445/73681302247*4106118243^(5/23) 2329991416277390 a001 182717648081/96450076809*4106118243^(5/23) 2329991416277390 a001 956722026041/505019158607*4106118243^(5/23) 2329991416277390 a001 10610209857723/5600748293801*4106118243^(5/23) 2329991416277390 a001 591286729879/312119004989*4106118243^(5/23) 2329991416277390 a001 225851433717/119218851371*4106118243^(5/23) 2329991416277390 a001 2971215073/10749957122*17393796001^(2/7) 2329991416277390 a001 21566892818/11384387281*4106118243^(5/23) 2329991416277390 a001 86267571272/17393796001*4106118243^(4/23) 2329991416277390 a001 4807526976/6643838879*45537549124^(4/17) 2329991416277390 a001 4807526976/6643838879*817138163596^(4/19) 2329991416277390 a001 2971215073/10749957122*14662949395604^(2/9) 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^14/Lucas(48) 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^12/Lucas(47) 2329991416277390 a001 4807526976/6643838879*73681302247^(3/13) 2329991416277390 a001 4807526976/119218851371*4106118243^(9/23) 2329991416277390 a001 20365011074/28143753123*4106118243^(6/23) 2329991416277390 a001 20365011074/4106118243*1568397607^(2/11) 2329991416277390 a001 53316291173/73681302247*4106118243^(6/23) 2329991416277390 a001 139583862445/192900153618*4106118243^(6/23) 2329991416277390 a001 591286729879/817138163596*4106118243^(6/23) 2329991416277390 a001 225851433717/312119004989*4106118243^(6/23) 2329991416277390 a001 86267571272/119218851371*4106118243^(6/23) 2329991416277390 a001 32951280099/45537549124*4106118243^(6/23) 2329991416277390 a001 32951280099/17393796001*4106118243^(5/23) 2329991416277390 a001 4807526976/6643838879*10749957122^(1/4) 2329991416277390 a001 2971215073/10749957122*10749957122^(7/24) 2329991416277390 a001 4807526976/312119004989*4106118243^(10/23) 2329991416277390 a001 2504730781961/28143753123*1568397607^(1/22) 2329991416277390 a001 12586269025/45537549124*4106118243^(7/23) 2329991416277390 a001 12586269025/17393796001*4106118243^(6/23) 2329991416277390 a001 32951280099/119218851371*4106118243^(7/23) 2329991416277390 a001 86267571272/312119004989*4106118243^(7/23) 2329991416277390 a001 225851433717/817138163596*4106118243^(7/23) 2329991416277390 a001 1548008755920/5600748293801*4106118243^(7/23) 2329991416277390 a001 139583862445/505019158607*4106118243^(7/23) 2329991416277390 a001 53316291173/192900153618*4106118243^(7/23) 2329991416277390 a001 6557470319842/73681302247*1568397607^(1/22) 2329991416277390 a001 20365011074/73681302247*4106118243^(7/23) 2329991416277390 a001 10610209857723/119218851371*1568397607^(1/22) 2329991416277390 a001 4052739537881/45537549124*1568397607^(1/22) 2329991416277390 a004 Fibonacci(47)*Lucas(49)/(1/2+sqrt(5)/2)^83 2329991416277390 a001 12586269025/119218851371*4106118243^(8/23) 2329991416277390 a001 1201881744/204284540899*4106118243^(11/23) 2329991416277390 a001 7778742049/28143753123*4106118243^(7/23) 2329991416277390 a001 32951280099/312119004989*4106118243^(8/23) 2329991416277390 a001 21566892818/204284540899*4106118243^(8/23) 2329991416277390 a001 225851433717/2139295485799*4106118243^(8/23) 2329991416277390 a001 182717648081/1730726404001*4106118243^(8/23) 2329991416277390 a001 139583862445/1322157322203*4106118243^(8/23) 2329991416277390 a001 53316291173/505019158607*4106118243^(8/23) 2329991416277390 a001 2971215073/9062201101803*17393796001^(4/7) 2329991416277390 a001 1602508992/440719107401*4106118243^(1/2) 2329991416277390 a001 10182505537/96450076809*4106118243^(8/23) 2329991416277390 a001 2971215073/312119004989*17393796001^(3/7) 2329991416277390 a001 12586269025/6643838879*312119004989^(2/11) 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^16/Lucas(50) 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^10/Lucas(47) 2329991416277390 a001 2971215073/28143753123*23725150497407^(1/4) 2329991416277390 a001 2971215073/28143753123*73681302247^(4/13) 2329991416277390 a001 12586269025/6643838879*28143753123^(1/5) 2329991416277390 a001 1548008755920/17393796001*1568397607^(1/22) 2329991416277390 a001 1144206275/28374454999*4106118243^(9/23) 2329991416277390 a004 Fibonacci(47)*Lucas(51)/(1/2+sqrt(5)/2)^85 2329991416277390 a001 53316291173/6643838879*17393796001^(1/7) 2329991416277390 a001 4807526976/2139295485799*4106118243^(12/23) 2329991416277390 a001 2971215073/73681302247*45537549124^(6/17) 2329991416277390 a001 2971215073/23725150497407*45537549124^(10/17) 2329991416277390 a001 2971215073/5600748293801*45537549124^(9/17) 2329991416277390 a001 2971215073/1322157322203*45537549124^(8/17) 2329991416277390 a001 2971215073/312119004989*45537549124^(7/17) 2329991416277390 a001 2971215073/73681302247*14662949395604^(2/7) 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^18/Lucas(52) 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^8/Lucas(47) 2329991416277390 a001 2971215073/73681302247*192900153618^(1/3) 2329991416277390 a001 32951280099/6643838879*73681302247^(2/13) 2329991416277390 a001 86267571272/6643838879*45537549124^(2/17) 2329991416277390 a004 Fibonacci(47)*Lucas(53)/(1/2+sqrt(5)/2)^87 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^20/Lucas(54) 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^6/Lucas(47) 2329991416277390 a001 2971215073/192900153618*23725150497407^(5/16) 2329991416277390 a001 2971215073/192900153618*505019158607^(5/14) 2329991416277390 a004 Fibonacci(47)*Lucas(55)/(1/2+sqrt(5)/2)^89 2329991416277390 a001 2971215073/23725150497407*312119004989^(6/11) 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^22/Lucas(56) 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^4/Lucas(47) 2329991416277390 a001 225851433717/6643838879*23725150497407^(1/16) 2329991416277390 a004 Fibonacci(47)*Lucas(57)/(1/2+sqrt(5)/2)^91 2329991416277390 a001 2971215073/1322157322203*14662949395604^(8/21) 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^24/Lucas(58) 2329991416277390 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^2/Lucas(47) 2329991416277390 a004 Fibonacci(47)*Lucas(59)/(1/2+sqrt(5)/2)^93 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^26/Lucas(60) 2329991416277390 a006 5^(1/2)*Fibonacci(60)/Lucas(47)/sqrt(5) 2329991416277390 a004 Fibonacci(47)*Lucas(61)/(1/2+sqrt(5)/2)^95 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^28/Lucas(62) 2329991416277390 a004 Fibonacci(62)/Lucas(47)/(1/2+sqrt(5)/2)^2 2329991416277390 a004 Fibonacci(47)*Lucas(63)/(1/2+sqrt(5)/2)^97 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^30/Lucas(64) 2329991416277390 a004 Fibonacci(64)/Lucas(47)/(1/2+sqrt(5)/2)^4 2329991416277390 a004 Fibonacci(47)*Lucas(65)/(1/2+sqrt(5)/2)^99 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^32/Lucas(66) 2329991416277390 a004 Fibonacci(66)/Lucas(47)/(1/2+sqrt(5)/2)^6 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^34/Lucas(68) 2329991416277390 a004 Fibonacci(68)/Lucas(47)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^36/Lucas(70) 2329991416277390 a004 Fibonacci(70)/Lucas(47)/(1/2+sqrt(5)/2)^10 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^38/Lucas(72) 2329991416277390 a004 Fibonacci(72)/Lucas(47)/(1/2+sqrt(5)/2)^12 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^40/Lucas(74) 2329991416277390 a004 Fibonacci(74)/Lucas(47)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^42/Lucas(76) 2329991416277390 a004 Fibonacci(76)/Lucas(47)/(1/2+sqrt(5)/2)^16 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^44/Lucas(78) 2329991416277390 a004 Fibonacci(78)/Lucas(47)/(1/2+sqrt(5)/2)^18 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^46/Lucas(80) 2329991416277390 a004 Fibonacci(80)/Lucas(47)/(1/2+sqrt(5)/2)^20 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^48/Lucas(82) 2329991416277390 a004 Fibonacci(82)/Lucas(47)/(1/2+sqrt(5)/2)^22 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^50/Lucas(84) 2329991416277390 a004 Fibonacci(84)/Lucas(47)/(1/2+sqrt(5)/2)^24 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^52/Lucas(86) 2329991416277390 a004 Fibonacci(86)/Lucas(47)/(1/2+sqrt(5)/2)^26 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^54/Lucas(88) 2329991416277390 a004 Fibonacci(88)/Lucas(47)/(1/2+sqrt(5)/2)^28 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^56/Lucas(90) 2329991416277390 a004 Fibonacci(90)/Lucas(47)/(1/2+sqrt(5)/2)^30 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^58/Lucas(92) 2329991416277390 a004 Fibonacci(92)/Lucas(47)/(1/2+sqrt(5)/2)^32 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^60/Lucas(94) 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^62/Lucas(96) 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^64/Lucas(98) 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^65/Lucas(99) 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^66/Lucas(100) 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^63/Lucas(97) 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^61/Lucas(95) 2329991416277390 a004 Fibonacci(96)/Lucas(47)/(1/2+sqrt(5)/2)^36 2329991416277390 a004 Fibonacci(100)/Lucas(47)/(1/2+sqrt(5)/2)^40 2329991416277390 a004 Fibonacci(97)/Lucas(47)/(1/2+sqrt(5)/2)^37 2329991416277390 a004 Fibonacci(98)/Lucas(47)/(1/2+sqrt(5)/2)^38 2329991416277390 a004 Fibonacci(99)/Lucas(47)/(1/2+sqrt(5)/2)^39 2329991416277390 a004 Fibonacci(95)/Lucas(47)/(1/2+sqrt(5)/2)^35 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^59/Lucas(93) 2329991416277390 a004 Fibonacci(93)/Lucas(47)/(1/2+sqrt(5)/2)^33 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^57/Lucas(91) 2329991416277390 a004 Fibonacci(91)/Lucas(47)/(1/2+sqrt(5)/2)^31 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^55/Lucas(89) 2329991416277390 a004 Fibonacci(89)/Lucas(47)/(1/2+sqrt(5)/2)^29 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^53/Lucas(87) 2329991416277390 a004 Fibonacci(87)/Lucas(47)/(1/2+sqrt(5)/2)^27 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^51/Lucas(85) 2329991416277390 a004 Fibonacci(85)/Lucas(47)/(1/2+sqrt(5)/2)^25 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^49/Lucas(83) 2329991416277390 a004 Fibonacci(83)/Lucas(47)/(1/2+sqrt(5)/2)^23 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^47/Lucas(81) 2329991416277390 a004 Fibonacci(81)/Lucas(47)/(1/2+sqrt(5)/2)^21 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^45/Lucas(79) 2329991416277390 a004 Fibonacci(79)/Lucas(47)/(1/2+sqrt(5)/2)^19 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^43/Lucas(77) 2329991416277390 a004 Fibonacci(77)/Lucas(47)/(1/2+sqrt(5)/2)^17 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^41/Lucas(75) 2329991416277390 a004 Fibonacci(75)/Lucas(47)/(1/2+sqrt(5)/2)^15 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^39/Lucas(73) 2329991416277390 a004 Fibonacci(73)/Lucas(47)/(1/2+sqrt(5)/2)^13 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^37/Lucas(71) 2329991416277390 a004 Fibonacci(71)/Lucas(47)/(1/2+sqrt(5)/2)^11 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^35/Lucas(69) 2329991416277390 a004 Fibonacci(69)/Lucas(47)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^33/Lucas(67) 2329991416277390 a004 Fibonacci(67)/Lucas(47)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(47)*Lucas(66)/(1/2+sqrt(5)/2)^100 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^31/Lucas(65) 2329991416277390 a004 Fibonacci(65)/Lucas(47)/(1/2+sqrt(5)/2)^5 2329991416277390 a004 Fibonacci(47)*Lucas(64)/(1/2+sqrt(5)/2)^98 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^29/Lucas(63) 2329991416277390 a004 Fibonacci(63)/Lucas(47)/(1/2+sqrt(5)/2)^3 2329991416277390 a004 Fibonacci(47)*Lucas(62)/(1/2+sqrt(5)/2)^96 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^27/Lucas(61) 2329991416277390 a004 Fibonacci(61)/Lucas(47)/(1/2+sqrt(5)/2) 2329991416277390 a004 Fibonacci(47)*Lucas(60)/(1/2+sqrt(5)/2)^94 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^25/Lucas(59) 2329991416277390 a004 Fibonacci(59)*(1/2+sqrt(5)/2)/Lucas(47) 2329991416277390 a001 2971215073/2139295485799*3461452808002^(5/12) 2329991416277390 a004 Fibonacci(47)*Lucas(58)/(1/2+sqrt(5)/2)^92 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^23/Lucas(57) 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^3/Lucas(47) 2329991416277390 a004 Fibonacci(47)*Lucas(56)/(1/2+sqrt(5)/2)^90 2329991416277390 a001 139583862445/6643838879*312119004989^(1/11) 2329991416277390 a001 225851433717/6643838879*73681302247^(1/13) 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^21/Lucas(55) 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^5/Lucas(47) 2329991416277390 a001 2971215073/1322157322203*192900153618^(4/9) 2329991416277390 a001 2971215073/312119004989*192900153618^(7/18) 2329991416277390 a004 Fibonacci(47)*Lucas(54)/(1/2+sqrt(5)/2)^88 2329991416277390 a001 2971215073/192900153618*73681302247^(5/13) 2329991416277390 a001 2971215073/119218851371*817138163596^(1/3) 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^19/Lucas(53) 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^7/Lucas(47) 2329991416277390 a001 2971215073/1322157322203*73681302247^(6/13) 2329991416277390 a001 2971215073/3461452808002*73681302247^(1/2) 2329991416277390 a001 2971215073/9062201101803*73681302247^(7/13) 2329991416277390 a001 139583862445/6643838879*28143753123^(1/10) 2329991416277390 a004 Fibonacci(47)*Lucas(52)/(1/2+sqrt(5)/2)^86 2329991416277390 a001 2971215073/45537549124*45537549124^(1/3) 2329991416277390 a001 591286729879/6643838879*10749957122^(1/24) 2329991416277390 a001 32951280099/817138163596*4106118243^(9/23) 2329991416277390 a001 20365011074/6643838879*45537549124^(3/17) 2329991416277390 a001 2971215073/192900153618*28143753123^(2/5) 2329991416277390 a001 20365011074/6643838879*14662949395604^(1/7) 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^17/Lucas(51) 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^9/Lucas(47) 2329991416277390 a001 20365011074/6643838879*192900153618^(1/6) 2329991416277390 a001 86267571272/2139295485799*4106118243^(9/23) 2329991416277390 a001 12586269025/6643838879*10749957122^(5/24) 2329991416277390 a001 225851433717/5600748293801*4106118243^(9/23) 2329991416277390 a001 365435296162/9062201101803*4106118243^(9/23) 2329991416277390 a001 139583862445/3461452808002*4106118243^(9/23) 2329991416277390 a001 53316291173/1322157322203*4106118243^(9/23) 2329991416277390 a001 2971215073/2139295485799*28143753123^(1/2) 2329991416277390 a001 225851433717/6643838879*10749957122^(1/12) 2329991416277390 a001 2971215073/23725150497407*28143753123^(3/5) 2329991416277390 a001 20365011074/505019158607*4106118243^(9/23) 2329991416277390 a001 86267571272/6643838879*10749957122^(1/8) 2329991416277390 a001 7778742049/73681302247*4106118243^(8/23) 2329991416277390 a001 32951280099/6643838879*10749957122^(1/6) 2329991416277390 a004 Fibonacci(47)*Lucas(50)/(1/2+sqrt(5)/2)^84 2329991416277390 a001 2971215073/28143753123*10749957122^(1/3) 2329991416277390 a001 12586269025/817138163596*4106118243^(10/23) 2329991416277390 a001 20365011074/6643838879*10749957122^(3/16) 2329991416277390 a001 4807526976/5600748293801*4106118243^(13/23) 2329991416277390 a001 591286729879/6643838879*4106118243^(1/23) 2329991416277390 a001 32951280099/2139295485799*4106118243^(10/23) 2329991416277390 a001 2971215073/73681302247*10749957122^(3/8) 2329991416277390 a001 86267571272/5600748293801*4106118243^(10/23) 2329991416277390 a001 7787980473/505618944676*4106118243^(10/23) 2329991416277390 a001 365435296162/23725150497407*4106118243^(10/23) 2329991416277390 a001 139583862445/9062201101803*4106118243^(10/23) 2329991416277390 a001 2971215073/17393796001*45537549124^(5/17) 2329991416277390 a001 53316291173/3461452808002*4106118243^(10/23) 2329991416277390 a001 2971215073/17393796001*312119004989^(3/11) 2329991416277390 a001 7778742049/6643838879*312119004989^(1/5) 2329991416277390 a001 2971215073/17393796001*14662949395604^(5/21) 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^15/Lucas(49) 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^11/Lucas(47) 2329991416277390 a001 2971215073/17393796001*192900153618^(5/18) 2329991416277390 a001 2971215073/192900153618*10749957122^(5/12) 2329991416277390 a001 20365011074/1322157322203*4106118243^(10/23) 2329991416277390 a001 2971215073/17393796001*28143753123^(3/10) 2329991416277390 a001 2971215073/312119004989*10749957122^(7/16) 2329991416277390 a001 7778742049/192900153618*4106118243^(9/23) 2329991416277390 a001 2971215073/505019158607*10749957122^(11/24) 2329991416277390 a001 2971215073/1322157322203*10749957122^(1/2) 2329991416277390 a001 12586269025/2139295485799*4106118243^(11/23) 2329991416277390 a001 2971215073/3461452808002*10749957122^(13/24) 2329991416277390 a001 1201881744/3665737348901*4106118243^(14/23) 2329991416277390 a001 2971215073/5600748293801*10749957122^(9/16) 2329991416277390 a001 2971215073/9062201101803*10749957122^(7/12) 2329991416277390 a001 225851433717/6643838879*4106118243^(2/23) 2329991416277390 a001 2971215073/23725150497407*10749957122^(5/8) 2329991416277390 a001 32951280099/5600748293801*4106118243^(11/23) 2329991416277390 a001 182717648081/5374978561*1568397607^(1/11) 2329991416277390 a001 1135099622/192933544679*4106118243^(11/23) 2329991416277390 a001 139583862445/23725150497407*4106118243^(11/23) 2329991416277390 a001 12586269025/3461452808002*4106118243^(1/2) 2329991416277390 a001 53316291173/9062201101803*4106118243^(11/23) 2329991416277390 a001 2971215073/17393796001*10749957122^(5/16) 2329991416277390 a001 10182505537/1730726404001*4106118243^(11/23) 2329991416277390 a001 7778742049/505019158607*4106118243^(10/23) 2329991416277390 a001 10983760033/3020733700601*4106118243^(1/2) 2329991416277390 a001 4807526976/6643838879*4106118243^(6/23) 2329991416277390 a001 86267571272/23725150497407*4106118243^(1/2) 2329991416277390 a001 12586269025/5600748293801*4106118243^(12/23) 2329991416277390 a001 53316291173/14662949395604*4106118243^(1/2) 2329991416277390 a001 20365011074/5600748293801*4106118243^(1/2) 2329991416277390 a001 86267571272/6643838879*4106118243^(3/23) 2329991416277390 a001 32951280099/14662949395604*4106118243^(12/23) 2329991416277390 a001 53316291173/23725150497407*4106118243^(12/23) 2329991416277390 a004 Fibonacci(47)*Lucas(48)/(1/2+sqrt(5)/2)^82 2329991416277390 a001 20365011074/9062201101803*4106118243^(12/23) 2329991416277390 a001 7778742049/1322157322203*4106118243^(11/23) 2329991416277390 a001 2971215073/10749957122*4106118243^(7/23) 2329991416277390 a001 12586269025/14662949395604*4106118243^(13/23) 2329991416277390 a001 32951280099/6643838879*4106118243^(4/23) 2329991416277390 a001 7778742049/2139295485799*4106118243^(1/2) 2329991416277390 a001 1602508992/1368706081*1568397607^(1/4) 2329991416277390 a001 20365011074/23725150497407*4106118243^(13/23) 2329991416277390 a001 7778742049/3461452808002*4106118243^(12/23) 2329991416277390 a001 12586269025/6643838879*4106118243^(5/23) 2329991416277390 a001 956722026041/28143753123*1568397607^(1/11) 2329991416277390 a001 7778742049/4106118243*1568397607^(5/22) 2329991416277390 a001 2504730781961/73681302247*1568397607^(1/11) 2329991416277390 a001 7778742049/9062201101803*4106118243^(13/23) 2329991416277390 a001 3278735159921/96450076809*1568397607^(1/11) 2329991416277390 a001 10610209857723/312119004989*1568397607^(1/11) 2329991416277390 a001 4052739537881/119218851371*1568397607^(1/11) 2329991416277390 a001 387002188980/11384387281*1568397607^(1/11) 2329991416277390 a001 7778742049/23725150497407*4106118243^(14/23) 2329991416277390 a001 591286729879/17393796001*1568397607^(1/11) 2329991416277390 a001 591286729879/6643838879*1568397607^(1/22) 2329991416277390 a001 2971215073/28143753123*4106118243^(8/23) 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^13/Lucas(47) 2329991416277390 a001 2971215073/6643838879*73681302247^(1/4) 2329991416277390 a001 2971215073/73681302247*4106118243^(9/23) 2329991416277390 a001 139583862445/10749957122*1568397607^(3/22) 2329991416277390 a001 2971215073/192900153618*4106118243^(10/23) 2329991416277390 a004 Fibonacci(48)*Lucas(46)/(1/2+sqrt(5)/2)^81 2329991416277390 a001 2971215073/505019158607*4106118243^(11/23) 2329991416277390 a001 1134903170/9062201101803*2537720636^(2/3) 2329991416277390 a001 2971215073/817138163596*4106118243^(1/2) 2329991416277390 a001 2971215073/1322157322203*4106118243^(12/23) 2329991416277390 a001 365435296162/28143753123*1568397607^(3/22) 2329991416277390 a001 1836311903/2537720636*2537720636^(4/15) 2329991416277390 a001 956722026041/73681302247*1568397607^(3/22) 2329991416277390 a001 2504730781961/192900153618*1568397607^(3/22) 2329991416277390 a001 10610209857723/817138163596*1568397607^(3/22) 2329991416277390 a001 4052739537881/312119004989*1568397607^(3/22) 2329991416277390 a001 1548008755920/119218851371*1568397607^(3/22) 2329991416277390 a001 591286729879/45537549124*1568397607^(3/22) 2329991416277390 a001 2971215073/3461452808002*4106118243^(13/23) 2329991416277390 a001 12586269025/1568397607*599074578^(1/6) 2329991416277390 a004 Fibonacci(50)*Lucas(46)/(1/2+sqrt(5)/2)^83 2329991416277390 a001 7787980473/599786069*1568397607^(3/22) 2329991416277390 a001 2971215073/9062201101803*4106118243^(14/23) 2329991416277390 a004 Fibonacci(52)*Lucas(46)/(1/2+sqrt(5)/2)^85 2329991416277390 a004 Fibonacci(54)*Lucas(46)/(1/2+sqrt(5)/2)^87 2329991416277390 a004 Fibonacci(56)*Lucas(46)/(1/2+sqrt(5)/2)^89 2329991416277390 a004 Fibonacci(58)*Lucas(46)/(1/2+sqrt(5)/2)^91 2329991416277390 a004 Fibonacci(60)*Lucas(46)/(1/2+sqrt(5)/2)^93 2329991416277390 a004 Fibonacci(62)*Lucas(46)/(1/2+sqrt(5)/2)^95 2329991416277390 a004 Fibonacci(64)*Lucas(46)/(1/2+sqrt(5)/2)^97 2329991416277390 a004 Fibonacci(66)*Lucas(46)/(1/2+sqrt(5)/2)^99 2329991416277390 a001 2/1836311903*(1/2+1/2*5^(1/2))^59 2329991416277390 a004 Fibonacci(67)*Lucas(46)/(1/2+sqrt(5)/2)^100 2329991416277390 a004 Fibonacci(65)*Lucas(46)/(1/2+sqrt(5)/2)^98 2329991416277390 a004 Fibonacci(63)*Lucas(46)/(1/2+sqrt(5)/2)^96 2329991416277390 a004 Fibonacci(61)*Lucas(46)/(1/2+sqrt(5)/2)^94 2329991416277390 a004 Fibonacci(59)*Lucas(46)/(1/2+sqrt(5)/2)^92 2329991416277390 a004 Fibonacci(57)*Lucas(46)/(1/2+sqrt(5)/2)^90 2329991416277390 a004 Fibonacci(55)*Lucas(46)/(1/2+sqrt(5)/2)^88 2329991416277390 a004 Fibonacci(53)*Lucas(46)/(1/2+sqrt(5)/2)^86 2329991416277390 a001 225851433717/6643838879*1568397607^(1/11) 2329991416277390 a004 Fibonacci(51)*Lucas(46)/(1/2+sqrt(5)/2)^84 2329991416277390 a001 2971215073/23725150497407*4106118243^(15/23) 2329991416277390 a001 1134903170/2139295485799*2537720636^(3/5) 2329991416277390 a004 Fibonacci(49)*Lucas(46)/(1/2+sqrt(5)/2)^82 2329991416277390 a001 53316291173/10749957122*1568397607^(2/11) 2329991416277390 a001 567451585/408569081798*2537720636^(5/9) 2329991416277390 a001 1134903170/505019158607*2537720636^(8/15) 2329991416277390 a001 139583862445/28143753123*1568397607^(2/11) 2329991416277390 a001 365435296162/4106118243*599074578^(1/21) 2329991416277390 a001 365435296162/73681302247*1568397607^(2/11) 2329991416277390 a001 956722026041/192900153618*1568397607^(2/11) 2329991416277390 a001 2504730781961/505019158607*1568397607^(2/11) 2329991416277390 a001 10610209857723/2139295485799*1568397607^(2/11) 2329991416277390 a001 140728068720/28374454999*1568397607^(2/11) 2329991416277390 a001 591286729879/119218851371*1568397607^(2/11) 2329991416277390 a001 2971215073/4106118243*1568397607^(3/11) 2329991416277390 a001 225851433717/45537549124*1568397607^(2/11) 2329991416277390 a001 86267571272/17393796001*1568397607^(2/11) 2329991416277390 a001 86267571272/6643838879*1568397607^(3/22) 2329991416277390 a001 7778742049/599074578*228826127^(3/20) 2329991416277390 a004 Fibonacci(47)*Lucas(46)/(1/2+sqrt(5)/2)^80 2329991416277390 a001 1134903170/119218851371*2537720636^(7/15) 2329991416277390 a001 10182505537/5374978561*1568397607^(5/22) 2329991416277390 a001 1134903170/73681302247*2537720636^(4/9) 2329991416277390 a001 53316291173/28143753123*1568397607^(5/22) 2329991416277390 a001 12586269025/10749957122*1568397607^(1/4) 2329991416277390 a001 1836311903/17393796001*1568397607^(4/11) 2329991416277390 a001 1134903170/28143753123*2537720636^(2/5) 2329991416277390 a001 139583862445/73681302247*1568397607^(5/22) 2329991416277390 a001 182717648081/96450076809*1568397607^(5/22) 2329991416277390 a001 956722026041/505019158607*1568397607^(5/22) 2329991416277390 a001 10610209857723/5600748293801*1568397607^(5/22) 2329991416277390 a001 591286729879/312119004989*1568397607^(5/22) 2329991416277390 a001 225851433717/119218851371*1568397607^(5/22) 2329991416277390 a001 1836311903/6643838879*1568397607^(7/22) 2329991416277390 a001 21566892818/11384387281*1568397607^(5/22) 2329991416277390 a001 1134903170/4106118243*17393796001^(2/7) 2329991416277390 a001 32951280099/17393796001*1568397607^(5/22) 2329991416277390 a001 1836311903/2537720636*45537549124^(4/17) 2329991416277390 a001 1134903170/4106118243*14662949395604^(2/9) 2329991416277390 a001 1836311903/2537720636*14662949395604^(4/21) 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^14/Lucas(46) 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^12/Lucas(45) 2329991416277390 a001 1836311903/2537720636*73681302247^(3/13) 2329991416277390 a001 32951280099/6643838879*1568397607^(2/11) 2329991416277390 a001 1836311903/2537720636*10749957122^(1/4) 2329991416277390 a001 1134903170/4106118243*10749957122^(7/24) 2329991416277390 a001 10983760033/9381251041*1568397607^(1/4) 2329991416277390 a001 86267571272/73681302247*1568397607^(1/4) 2329991416277390 a001 75283811239/64300051206*1568397607^(1/4) 2329991416277390 a001 2504730781961/2139295485799*1568397607^(1/4) 2329991416277390 a001 365435296162/312119004989*1568397607^(1/4) 2329991416277390 a001 139583862445/119218851371*1568397607^(1/4) 2329991416277390 a001 53316291173/45537549124*1568397607^(1/4) 2329991416277390 a001 20365011074/17393796001*1568397607^(1/4) 2329991416277390 a001 7778742049/10749957122*1568397607^(3/11) 2329991416277390 a001 1836311903/45537549124*1568397607^(9/22) 2329991416277390 a001 20365011074/28143753123*1568397607^(3/11) 2329991416277390 a001 53316291173/73681302247*1568397607^(3/11) 2329991416277390 a001 139583862445/192900153618*1568397607^(3/11) 2329991416277390 a001 591286729879/817138163596*1568397607^(3/11) 2329991416277390 a001 225851433717/312119004989*1568397607^(3/11) 2329991416277390 a001 86267571272/119218851371*1568397607^(3/11) 2329991416277390 a001 32951280099/45537549124*1568397607^(3/11) 2329991416277390 a001 1836311903/2537720636*4106118243^(6/23) 2329991416277390 a001 1201881744/634430159*2537720636^(2/9) 2329991416277390 a001 12586269025/17393796001*1568397607^(3/11) 2329991416277390 a001 12586269025/6643838879*1568397607^(5/22) 2329991416277390 a001 1134903170/4106118243*4106118243^(7/23) 2329991416277390 a001 4807526976/17393796001*1568397607^(7/22) 2329991416277390 a001 956722026041/10749957122*599074578^(1/21) 2329991416277390 a001 4807526976/6643838879*1568397607^(3/11) 2329991416277390 a001 1836311903/119218851371*1568397607^(5/11) 2329991416277390 a001 1134903170/6643838879*2537720636^(1/3) 2329991416277390 a001 7778742049/1568397607*599074578^(4/21) 2329991416277390 a001 7778742049/2537720636*2537720636^(1/5) 2329991416277390 a001 7778742049/6643838879*1568397607^(1/4) 2329991416277390 a001 12586269025/45537549124*1568397607^(7/22) 2329991416277390 a001 32951280099/119218851371*1568397607^(7/22) 2329991416277390 a001 86267571272/312119004989*1568397607^(7/22) 2329991416277390 a001 1548008755920/5600748293801*1568397607^(7/22) 2329991416277390 a001 139583862445/505019158607*1568397607^(7/22) 2329991416277390 a001 53316291173/192900153618*1568397607^(7/22) 2329991416277390 a001 20365011074/73681302247*1568397607^(7/22) 2329991416277390 a001 7778742049/28143753123*1568397607^(7/22) 2329991416277390 a001 2504730781961/28143753123*599074578^(1/21) 2329991416277390 a001 6557470319842/73681302247*599074578^(1/21) 2329991416277390 a004 Fibonacci(45)*Lucas(47)/(1/2+sqrt(5)/2)^79 2329991416277390 a001 10610209857723/119218851371*599074578^(1/21) 2329991416277390 a001 4052739537881/45537549124*599074578^(1/21) 2329991416277390 a001 32951280099/2537720636*2537720636^(2/15) 2329991416277390 a001 1548008755920/17393796001*599074578^(1/21) 2329991416277390 a001 53316291173/2537720636*2537720636^(1/9) 2329991416277390 a001 1201881744/11384387281*1568397607^(4/11) 2329991416277390 a001 75283811239/1368706081*599074578^(1/14) 2329991416277390 a001 2971215073/10749957122*1568397607^(7/22) 2329991416277390 a001 1836311903/312119004989*1568397607^(1/2) 2329991416277390 a001 139583862445/2537720636*2537720636^(1/15) 2329991416277390 a001 1201881744/634430159*312119004989^(2/11) 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^16/Lucas(48) 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^10/Lucas(45) 2329991416277390 a001 12586269025/119218851371*1568397607^(4/11) 2329991416277390 a001 567451585/5374978561*73681302247^(4/13) 2329991416277390 a001 1201881744/634430159*28143753123^(1/5) 2329991416277390 a001 32951280099/312119004989*1568397607^(4/11) 2329991416277390 a001 21566892818/204284540899*1568397607^(4/11) 2329991416277390 a001 225851433717/2139295485799*1568397607^(4/11) 2329991416277390 a001 182717648081/1730726404001*1568397607^(4/11) 2329991416277390 a001 139583862445/1322157322203*1568397607^(4/11) 2329991416277390 a001 53316291173/505019158607*1568397607^(4/11) 2329991416277390 a001 10182505537/96450076809*1568397607^(4/11) 2329991416277390 a001 1201881744/634430159*10749957122^(5/24) 2329991416277390 a001 567451585/5374978561*10749957122^(1/3) 2329991416277390 a001 7778742049/73681302247*1568397607^(4/11) 2329991416277390 a004 Fibonacci(45)*Lucas(49)/(1/2+sqrt(5)/2)^81 2329991416277390 a001 567451585/1730726404001*17393796001^(4/7) 2329991416277390 a001 1134903170/28143753123*45537549124^(6/17) 2329991416277390 a001 1134903170/119218851371*17393796001^(3/7) 2329991416277390 a001 1134903170/28143753123*14662949395604^(2/7) 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^18/Lucas(50) 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^8/Lucas(45) 2329991416277390 a001 1144206275/230701876*505019158607^(1/7) 2329991416277390 a001 1134903170/28143753123*192900153618^(1/3) 2329991416277390 a001 1144206275/230701876*73681302247^(2/13) 2329991416277390 a004 Fibonacci(45)*Lucas(51)/(1/2+sqrt(5)/2)^83 2329991416277390 a001 1134903170/9062201101803*45537549124^(10/17) 2329991416277390 a001 1134903170/2139295485799*45537549124^(9/17) 2329991416277390 a001 32951280099/2537720636*45537549124^(2/17) 2329991416277390 a001 1134903170/505019158607*45537549124^(8/17) 2329991416277390 a001 32951280099/2537720636*14662949395604^(2/21) 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^20/Lucas(52) 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^6/Lucas(45) 2329991416277390 a001 1134903170/73681302247*23725150497407^(5/16) 2329991416277390 a001 1134903170/73681302247*505019158607^(5/14) 2329991416277390 a001 1134903170/119218851371*45537549124^(7/17) 2329991416277390 a001 1134903170/73681302247*73681302247^(5/13) 2329991416277390 a004 Fibonacci(45)*Lucas(53)/(1/2+sqrt(5)/2)^85 2329991416277390 a001 567451585/96450076809*312119004989^(2/5) 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^22/Lucas(54) 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^4/Lucas(45) 2329991416277390 a001 1135099622/33391061*23725150497407^(1/16) 2329991416277390 a001 139583862445/2537720636*45537549124^(1/17) 2329991416277390 a004 Fibonacci(45)*Lucas(55)/(1/2+sqrt(5)/2)^87 2329991416277390 a001 1134903170/9062201101803*312119004989^(6/11) 2329991416277390 a001 1134903170/505019158607*14662949395604^(8/21) 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^24/Lucas(56) 2329991416277390 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^2/Lucas(45) 2329991416277390 a004 Fibonacci(45)*Lucas(57)/(1/2+sqrt(5)/2)^89 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^26/Lucas(58) 2329991416277390 a006 5^(1/2)*Fibonacci(58)/Lucas(45)/sqrt(5) 2329991416277390 a004 Fibonacci(45)*Lucas(59)/(1/2+sqrt(5)/2)^91 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^28/Lucas(60) 2329991416277390 a004 Fibonacci(60)/Lucas(45)/(1/2+sqrt(5)/2)^2 2329991416277390 a004 Fibonacci(45)*Lucas(61)/(1/2+sqrt(5)/2)^93 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^30/Lucas(62) 2329991416277390 a004 Fibonacci(62)/Lucas(45)/(1/2+sqrt(5)/2)^4 2329991416277390 a004 Fibonacci(45)*Lucas(63)/(1/2+sqrt(5)/2)^95 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^32/Lucas(64) 2329991416277390 a004 Fibonacci(64)/Lucas(45)/(1/2+sqrt(5)/2)^6 2329991416277390 a004 Fibonacci(45)*Lucas(65)/(1/2+sqrt(5)/2)^97 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^34/Lucas(66) 2329991416277390 a004 Fibonacci(66)/Lucas(45)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(45)*Lucas(67)/(1/2+sqrt(5)/2)^99 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^36/Lucas(68) 2329991416277390 a004 Fibonacci(68)/Lucas(45)/(1/2+sqrt(5)/2)^10 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^38/Lucas(70) 2329991416277390 a004 Fibonacci(70)/Lucas(45)/(1/2+sqrt(5)/2)^12 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^40/Lucas(72) 2329991416277390 a004 Fibonacci(72)/Lucas(45)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^42/Lucas(74) 2329991416277390 a004 Fibonacci(74)/Lucas(45)/(1/2+sqrt(5)/2)^16 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^44/Lucas(76) 2329991416277390 a004 Fibonacci(76)/Lucas(45)/(1/2+sqrt(5)/2)^18 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^46/Lucas(78) 2329991416277390 a004 Fibonacci(78)/Lucas(45)/(1/2+sqrt(5)/2)^20 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^48/Lucas(80) 2329991416277390 a004 Fibonacci(80)/Lucas(45)/(1/2+sqrt(5)/2)^22 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^50/Lucas(82) 2329991416277390 a004 Fibonacci(82)/Lucas(45)/(1/2+sqrt(5)/2)^24 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^52/Lucas(84) 2329991416277390 a004 Fibonacci(84)/Lucas(45)/(1/2+sqrt(5)/2)^26 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^54/Lucas(86) 2329991416277390 a004 Fibonacci(86)/Lucas(45)/(1/2+sqrt(5)/2)^28 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^56/Lucas(88) 2329991416277390 a004 Fibonacci(88)/Lucas(45)/(1/2+sqrt(5)/2)^30 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^58/Lucas(90) 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^60/Lucas(92) 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^62/Lucas(94) 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^64/Lucas(96) 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^66/Lucas(98) 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^67/Lucas(99) 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^68/Lucas(100) 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^65/Lucas(97) 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^63/Lucas(95) 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^61/Lucas(93) 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^59/Lucas(91) 2329991416277390 a004 Fibonacci(92)/Lucas(45)/(1/2+sqrt(5)/2)^34 2329991416277390 a004 Fibonacci(94)/Lucas(45)/(1/2+sqrt(5)/2)^36 2329991416277390 a004 Fibonacci(96)/Lucas(45)/(1/2+sqrt(5)/2)^38 2329991416277390 a004 Fibonacci(100)/Lucas(45)/(1/2+sqrt(5)/2)^42 2329991416277390 a004 Fibonacci(98)/Lucas(45)/(1/2+sqrt(5)/2)^40 2329991416277390 a004 Fibonacci(99)/Lucas(45)/(1/2+sqrt(5)/2)^41 2329991416277390 a004 Fibonacci(97)/Lucas(45)/(1/2+sqrt(5)/2)^39 2329991416277390 a004 Fibonacci(95)/Lucas(45)/(1/2+sqrt(5)/2)^37 2329991416277390 a004 Fibonacci(93)/Lucas(45)/(1/2+sqrt(5)/2)^35 2329991416277390 a004 Fibonacci(91)/Lucas(45)/(1/2+sqrt(5)/2)^33 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^57/Lucas(89) 2329991416277390 a004 Fibonacci(89)/Lucas(45)/(1/2+sqrt(5)/2)^31 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^55/Lucas(87) 2329991416277390 a004 Fibonacci(87)/Lucas(45)/(1/2+sqrt(5)/2)^29 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^53/Lucas(85) 2329991416277390 a004 Fibonacci(85)/Lucas(45)/(1/2+sqrt(5)/2)^27 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^51/Lucas(83) 2329991416277390 a004 Fibonacci(83)/Lucas(45)/(1/2+sqrt(5)/2)^25 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^49/Lucas(81) 2329991416277390 a004 Fibonacci(81)/Lucas(45)/(1/2+sqrt(5)/2)^23 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^47/Lucas(79) 2329991416277390 a004 Fibonacci(79)/Lucas(45)/(1/2+sqrt(5)/2)^21 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^45/Lucas(77) 2329991416277390 a004 Fibonacci(77)/Lucas(45)/(1/2+sqrt(5)/2)^19 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^43/Lucas(75) 2329991416277390 a004 Fibonacci(75)/Lucas(45)/(1/2+sqrt(5)/2)^17 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^41/Lucas(73) 2329991416277390 a004 Fibonacci(73)/Lucas(45)/(1/2+sqrt(5)/2)^15 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^39/Lucas(71) 2329991416277390 a004 Fibonacci(71)/Lucas(45)/(1/2+sqrt(5)/2)^13 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^37/Lucas(69) 2329991416277390 a004 Fibonacci(69)/Lucas(45)/(1/2+sqrt(5)/2)^11 2329991416277390 a004 Fibonacci(45)*Lucas(68)/(1/2+sqrt(5)/2)^100 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^35/Lucas(67) 2329991416277390 a004 Fibonacci(67)/Lucas(45)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(45)*Lucas(66)/(1/2+sqrt(5)/2)^98 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^33/Lucas(65) 2329991416277390 a004 Fibonacci(65)/Lucas(45)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(45)*Lucas(64)/(1/2+sqrt(5)/2)^96 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^31/Lucas(63) 2329991416277390 a004 Fibonacci(63)/Lucas(45)/(1/2+sqrt(5)/2)^5 2329991416277390 a004 Fibonacci(45)*Lucas(62)/(1/2+sqrt(5)/2)^94 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^29/Lucas(61) 2329991416277390 a004 Fibonacci(61)/Lucas(45)/(1/2+sqrt(5)/2)^3 2329991416277390 a004 Fibonacci(45)*Lucas(60)/(1/2+sqrt(5)/2)^92 2329991416277390 a001 1134903170/2139295485799*14662949395604^(3/7) 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^27/Lucas(59) 2329991416277390 a004 Fibonacci(59)/Lucas(45)/(1/2+sqrt(5)/2) 2329991416277390 a004 Fibonacci(45)*Lucas(58)/(1/2+sqrt(5)/2)^90 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^25/Lucas(57) 2329991416277390 a004 Fibonacci(57)*(1/2+sqrt(5)/2)/Lucas(45) 2329991416277390 a001 1134903170/23725150497407*505019158607^(4/7) 2329991416277390 a004 Fibonacci(45)*Lucas(56)/(1/2+sqrt(5)/2)^88 2329991416277390 a001 10182505537/1268860318*17393796001^(1/7) 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^23/Lucas(55) 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^3/Lucas(45) 2329991416277390 a001 1134903170/2139295485799*192900153618^(1/2) 2329991416277390 a004 Fibonacci(45)*Lucas(54)/(1/2+sqrt(5)/2)^86 2329991416277390 a001 591286729879/6643838879*599074578^(1/21) 2329991416277390 a001 53316291173/2537720636*312119004989^(1/11) 2329991416277390 a001 1134903170/119218851371*14662949395604^(1/3) 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^21/Lucas(53) 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^5/Lucas(45) 2329991416277390 a001 1134903170/119218851371*192900153618^(7/18) 2329991416277390 a001 1134903170/505019158607*73681302247^(6/13) 2329991416277390 a001 1134903170/1322157322203*73681302247^(1/2) 2329991416277390 a001 567451585/1730726404001*73681302247^(7/13) 2329991416277390 a001 1134903170/23725150497407*73681302247^(8/13) 2329991416277390 a001 1144206275/230701876*10749957122^(1/6) 2329991416277390 a004 Fibonacci(45)*Lucas(52)/(1/2+sqrt(5)/2)^84 2329991416277390 a001 53316291173/2537720636*28143753123^(1/10) 2329991416277390 a001 1134903170/73681302247*28143753123^(2/5) 2329991416277390 a001 225851433717/2537720636*10749957122^(1/24) 2329991416277390 a001 10182505537/1268860318*14662949395604^(1/9) 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^19/Lucas(51) 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^7/Lucas(45) 2329991416277390 a001 139583862445/2537720636*10749957122^(1/16) 2329991416277390 a001 567451585/408569081798*28143753123^(1/2) 2329991416277390 a001 1135099622/33391061*10749957122^(1/12) 2329991416277390 a001 1134903170/9062201101803*28143753123^(3/5) 2329991416277390 a001 32951280099/2537720636*10749957122^(1/8) 2329991416277390 a004 Fibonacci(45)*Lucas(50)/(1/2+sqrt(5)/2)^82 2329991416277390 a001 1134903170/28143753123*10749957122^(3/8) 2329991416277390 a001 4807526976/119218851371*1568397607^(9/22) 2329991416277390 a001 225851433717/2537720636*4106118243^(1/23) 2329991416277390 a001 1134903170/17393796001*45537549124^(1/3) 2329991416277390 a001 7778742049/2537720636*45537549124^(3/17) 2329991416277390 a001 7778742049/2537720636*14662949395604^(1/7) 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^17/Lucas(49) 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^9/Lucas(45) 2329991416277390 a001 7778742049/2537720636*192900153618^(1/6) 2329991416277390 a001 1134903170/73681302247*10749957122^(5/12) 2329991416277390 a001 1134903170/119218851371*10749957122^(7/16) 2329991416277390 a001 567451585/96450076809*10749957122^(11/24) 2329991416277390 a001 1201881744/634430159*4106118243^(5/23) 2329991416277390 a001 1134903170/505019158607*10749957122^(1/2) 2329991416277390 a001 1134903170/1322157322203*10749957122^(13/24) 2329991416277390 a001 1134903170/2139295485799*10749957122^(9/16) 2329991416277390 a001 7778742049/2537720636*10749957122^(3/16) 2329991416277390 a001 567451585/1730726404001*10749957122^(7/12) 2329991416277390 a001 1135099622/33391061*4106118243^(2/23) 2329991416277390 a001 1134903170/9062201101803*10749957122^(5/8) 2329991416277390 a001 1134903170/23725150497407*10749957122^(2/3) 2329991416277390 a001 1836311903/817138163596*1568397607^(6/11) 2329991416277390 a001 32951280099/2537720636*4106118243^(3/23) 2329991416277390 a004 Fibonacci(45)*Lucas(48)/(1/2+sqrt(5)/2)^80 2329991416277390 a001 1144206275/230701876*4106118243^(4/23) 2329991416277390 a001 1144206275/28374454999*1568397607^(9/22) 2329991416277390 a001 32951280099/817138163596*1568397607^(9/22) 2329991416277390 a001 86267571272/2139295485799*1568397607^(9/22) 2329991416277390 a001 225851433717/5600748293801*1568397607^(9/22) 2329991416277390 a001 365435296162/9062201101803*1568397607^(9/22) 2329991416277390 a001 139583862445/3461452808002*1568397607^(9/22) 2329991416277390 a001 53316291173/1322157322203*1568397607^(9/22) 2329991416277390 a001 20365011074/505019158607*1568397607^(9/22) 2329991416277390 a001 567451585/5374978561*4106118243^(8/23) 2329991416277390 a001 2971215073/28143753123*1568397607^(4/11) 2329991416277390 a001 7778742049/192900153618*1568397607^(9/22) 2329991416277390 a001 225851433717/2537720636*1568397607^(1/22) 2329991416277390 a001 4807526976/312119004989*1568397607^(5/11) 2329991416277390 a001 1134903170/28143753123*4106118243^(9/23) 2329991416277390 a001 1134903170/6643838879*45537549124^(5/17) 2329991416277390 a001 1134903170/6643838879*312119004989^(3/11) 2329991416277390 a001 2971215073/2537720636*312119004989^(1/5) 2329991416277390 a001 1134903170/6643838879*14662949395604^(5/21) 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^15/Lucas(47) 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^11/Lucas(45) 2329991416277390 a001 1134903170/6643838879*192900153618^(5/18) 2329991416277390 a001 1134903170/6643838879*28143753123^(3/10) 2329991416277390 a001 1134903170/6643838879*10749957122^(5/16) 2329991416277390 a001 1134903170/73681302247*4106118243^(10/23) 2329991416277390 a001 1836311903/2139295485799*1568397607^(13/22) 2329991416277390 a001 686789568/224056801*599074578^(3/14) 2329991416277390 a001 12586269025/817138163596*1568397607^(5/11) 2329991416277390 a001 567451585/96450076809*4106118243^(11/23) 2329991416277390 a001 32951280099/2139295485799*1568397607^(5/11) 2329991416277390 a001 86267571272/5600748293801*1568397607^(5/11) 2329991416277390 a001 7787980473/505618944676*1568397607^(5/11) 2329991416277390 a001 365435296162/23725150497407*1568397607^(5/11) 2329991416277390 a001 139583862445/9062201101803*1568397607^(5/11) 2329991416277390 a001 53316291173/3461452808002*1568397607^(5/11) 2329991416277390 a001 1134903170/312119004989*4106118243^(1/2) 2329991416277390 a001 20365011074/1322157322203*1568397607^(5/11) 2329991416277390 a001 1134903170/505019158607*4106118243^(12/23) 2329991416277390 a001 7778742049/505019158607*1568397607^(5/11) 2329991416277390 a001 2971215073/73681302247*1568397607^(9/22) 2329991416277390 a001 1134903170/1322157322203*4106118243^(13/23) 2329991416277390 a001 591286729879/10749957122*599074578^(1/14) 2329991416277390 a001 567451585/1730726404001*4106118243^(14/23) 2329991416277390 a001 1135099622/33391061*1568397607^(1/11) 2329991416277390 a001 1134903170/9062201101803*4106118243^(15/23) 2329991416277390 a001 1201881744/204284540899*1568397607^(1/2) 2329991416277390 a001 1134903170/23725150497407*4106118243^(16/23) 2329991416277390 a001 12585437040/228811001*599074578^(1/14) 2329991416277390 a001 4052739537881/73681302247*599074578^(1/14) 2329991416277390 a001 3536736619241/64300051206*599074578^(1/14) 2329991416277390 a001 6557470319842/119218851371*599074578^(1/14) 2329991416277390 a001 1836311903/5600748293801*1568397607^(7/11) 2329991416277390 a001 2504730781961/45537549124*599074578^(1/14) 2329991416277390 a001 12586269025/2139295485799*1568397607^(1/2) 2329991416277390 a001 956722026041/17393796001*599074578^(1/14) 2329991416277390 a001 32951280099/5600748293801*1568397607^(1/2) 2329991416277390 a001 1135099622/192933544679*1568397607^(1/2) 2329991416277390 a001 139583862445/23725150497407*1568397607^(1/2) 2329991416277390 a001 53316291173/9062201101803*1568397607^(1/2) 2329991416277390 a001 10182505537/1730726404001*1568397607^(1/2) 2329991416277390 a001 139583862445/4106118243*599074578^(2/21) 2329991416277390 a001 7778742049/1322157322203*1568397607^(1/2) 2329991416277390 a001 1836311903/2537720636*1568397607^(3/11) 2329991416277390 a001 2971215073/192900153618*1568397607^(5/11) 2329991416277390 a001 32951280099/2537720636*1568397607^(3/22) 2329991416277390 a001 4807526976/2139295485799*1568397607^(6/11) 2329991416277390 a004 Fibonacci(45)*Lucas(46)/(1/2+sqrt(5)/2)^78 2329991416277390 a001 1836311903/14662949395604*1568397607^(15/22) 2329991416277390 a001 12586269025/5600748293801*1568397607^(6/11) 2329991416277390 a001 32951280099/14662949395604*1568397607^(6/11) 2329991416277390 a001 365435296162/6643838879*599074578^(1/14) 2329991416277390 a001 53316291173/23725150497407*1568397607^(6/11) 2329991416277390 a001 20365011074/9062201101803*1568397607^(6/11) 2329991416277390 a001 7778742049/3461452808002*1568397607^(6/11) 2329991416277390 a001 1134903170/4106118243*1568397607^(7/22) 2329991416277390 a001 2971215073/505019158607*1568397607^(1/2) 2329991416277390 a001 1144206275/230701876*1568397607^(2/11) 2329991416277390 a001 4807526976/5600748293801*1568397607^(13/22) 2329991416277390 a001 12586269025/14662949395604*1568397607^(13/22) 2329991416277390 a001 1201881744/634430159*1568397607^(5/22) 2329991416277390 a001 20365011074/23725150497407*1568397607^(13/22) 2329991416277390 a001 7778742049/9062201101803*1568397607^(13/22) 2329991416277390 a001 2971215073/1322157322203*1568397607^(6/11) 2329991416277390 a001 1201881744/3665737348901*1568397607^(7/11) 2329991416277390 a001 182717648081/5374978561*599074578^(2/21) 2329991416277390 a001 7778742049/23725150497407*1568397607^(7/11) 2329991416277390 a001 2971215073/3461452808002*1568397607^(13/22) 2329991416277390 a001 956722026041/28143753123*599074578^(2/21) 2329991416277390 a001 2504730781961/73681302247*599074578^(2/21) 2329991416277390 a001 3278735159921/96450076809*599074578^(2/21) 2329991416277390 a001 10610209857723/312119004989*599074578^(2/21) 2329991416277390 a001 4052739537881/119218851371*599074578^(2/21) 2329991416277390 a001 387002188980/11384387281*599074578^(2/21) 2329991416277390 a001 591286729879/17393796001*599074578^(2/21) 2329991416277390 a001 2971215073/1568397607*599074578^(5/21) 2329991416277390 a001 2971215073/2537720636*1568397607^(1/4) 2329991416277390 a001 2971215073/9062201101803*1568397607^(7/11) 2329991416277390 a001 225851433717/2537720636*599074578^(1/21) 2329991416277390 a001 225851433717/6643838879*599074578^(2/21) 2329991416277390 a001 567451585/5374978561*1568397607^(4/11) 2329991416277390 a001 2971215073/23725150497407*1568397607^(15/22) 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^13/Lucas(45) 2329991416277390 a001 567451585/1268860318*73681302247^(1/4) 2329991416277390 a001 1134903170/28143753123*1568397607^(9/22) 2329991416277390 a001 53316291173/4106118243*599074578^(1/7) 2329991416277390 a001 1134903170/73681302247*1568397607^(5/11) 2329991416277390 a004 Fibonacci(46)*Lucas(44)/(1/2+sqrt(5)/2)^77 2329991416277390 a001 139583862445/2537720636*599074578^(1/14) 2329991416277390 a001 567451585/96450076809*1568397607^(1/2) 2329991416277390 a001 1134903170/505019158607*1568397607^(6/11) 2329991416277390 a001 139583862445/10749957122*599074578^(1/7) 2329991416277390 a001 1134903170/1322157322203*1568397607^(13/22) 2329991416277390 a001 365435296162/28143753123*599074578^(1/7) 2329991416277390 a001 956722026041/73681302247*599074578^(1/7) 2329991416277390 a004 Fibonacci(48)*Lucas(44)/(1/2+sqrt(5)/2)^79 2329991416277390 a001 2504730781961/192900153618*599074578^(1/7) 2329991416277390 a001 10610209857723/817138163596*599074578^(1/7) 2329991416277390 a001 4052739537881/312119004989*599074578^(1/7) 2329991416277390 a001 1548008755920/119218851371*599074578^(1/7) 2329991416277390 a001 591286729879/45537549124*599074578^(1/7) 2329991416277390 a001 7787980473/599786069*599074578^(1/7) 2329991416277390 a001 10983760033/1368706081*599074578^(1/6) 2329991416277390 a004 Fibonacci(50)*Lucas(44)/(1/2+sqrt(5)/2)^81 2329991416277390 a004 Fibonacci(52)*Lucas(44)/(1/2+sqrt(5)/2)^83 2329991416277390 a004 Fibonacci(54)*Lucas(44)/(1/2+sqrt(5)/2)^85 2329991416277390 a004 Fibonacci(56)*Lucas(44)/(1/2+sqrt(5)/2)^87 2329991416277390 a004 Fibonacci(58)*Lucas(44)/(1/2+sqrt(5)/2)^89 2329991416277390 a004 Fibonacci(60)*Lucas(44)/(1/2+sqrt(5)/2)^91 2329991416277390 a004 Fibonacci(62)*Lucas(44)/(1/2+sqrt(5)/2)^93 2329991416277390 a004 Fibonacci(64)*Lucas(44)/(1/2+sqrt(5)/2)^95 2329991416277390 a004 Fibonacci(66)*Lucas(44)/(1/2+sqrt(5)/2)^97 2329991416277390 a004 Fibonacci(68)*Lucas(44)/(1/2+sqrt(5)/2)^99 2329991416277390 a001 2/701408733*(1/2+1/2*5^(1/2))^57 2329991416277390 a004 Fibonacci(69)*Lucas(44)/(1/2+sqrt(5)/2)^100 2329991416277390 a004 Fibonacci(67)*Lucas(44)/(1/2+sqrt(5)/2)^98 2329991416277390 a004 Fibonacci(65)*Lucas(44)/(1/2+sqrt(5)/2)^96 2329991416277390 a004 Fibonacci(63)*Lucas(44)/(1/2+sqrt(5)/2)^94 2329991416277390 a004 Fibonacci(61)*Lucas(44)/(1/2+sqrt(5)/2)^92 2329991416277390 a004 Fibonacci(59)*Lucas(44)/(1/2+sqrt(5)/2)^90 2329991416277390 a004 Fibonacci(57)*Lucas(44)/(1/2+sqrt(5)/2)^88 2329991416277390 a004 Fibonacci(55)*Lucas(44)/(1/2+sqrt(5)/2)^86 2329991416277390 a004 Fibonacci(53)*Lucas(44)/(1/2+sqrt(5)/2)^84 2329991416277390 a004 Fibonacci(51)*Lucas(44)/(1/2+sqrt(5)/2)^82 2329991416277390 a004 Fibonacci(49)*Lucas(44)/(1/2+sqrt(5)/2)^80 2329991416277390 a001 567451585/1730726404001*1568397607^(7/11) 2329991416277390 a001 1135099622/33391061*599074578^(2/21) 2329991416277390 a001 86267571272/6643838879*599074578^(1/7) 2329991416277390 a004 Fibonacci(47)*Lucas(44)/(1/2+sqrt(5)/2)^78 2329991416277390 a001 1134903170/9062201101803*1568397607^(15/22) 2329991416277390 a001 1134903170/23725150497407*1568397607^(8/11) 2329991416277390 a001 43133785636/5374978561*599074578^(1/6) 2329991416277390 a001 75283811239/9381251041*599074578^(1/6) 2329991416277390 a001 591286729879/73681302247*599074578^(1/6) 2329991416277390 a001 86000486440/10716675201*599074578^(1/6) 2329991416277390 a001 4052739537881/505019158607*599074578^(1/6) 2329991416277390 a001 3278735159921/408569081798*599074578^(1/6) 2329991416277390 a001 2504730781961/312119004989*599074578^(1/6) 2329991416277390 a001 956722026041/119218851371*599074578^(1/6) 2329991416277390 a001 182717648081/22768774562*599074578^(1/6) 2329991416277390 a001 139583862445/17393796001*599074578^(1/6) 2329991416277390 a001 20365011074/4106118243*599074578^(4/21) 2329991416277390 a001 53316291173/6643838879*599074578^(1/6) 2329991416277390 a001 53316291173/10749957122*599074578^(4/21) 2329991416277390 a001 233802911/1368706081*599074578^(5/14) 2329991416277390 a001 139583862445/28143753123*599074578^(4/21) 2329991416277390 a001 365435296162/73681302247*599074578^(4/21) 2329991416277390 a001 956722026041/192900153618*599074578^(4/21) 2329991416277390 a001 2504730781961/505019158607*599074578^(4/21) 2329991416277390 a001 10610209857723/2139295485799*599074578^(4/21) 2329991416277390 a001 140728068720/28374454999*599074578^(4/21) 2329991416277390 a001 591286729879/119218851371*599074578^(4/21) 2329991416277390 a001 225851433717/45537549124*599074578^(4/21) 2329991416277390 a001 86267571272/17393796001*599074578^(4/21) 2329991416277390 a001 12586269025/4106118243*599074578^(3/14) 2329991416277390 a001 1134903170/1568397607*599074578^(2/7) 2329991416277390 a001 139583862445/1568397607*228826127^(1/20) 2329991416277390 a001 32951280099/2537720636*599074578^(1/7) 2329991416277390 a001 32951280099/6643838879*599074578^(4/21) 2329991416277390 a004 Fibonacci(45)*Lucas(44)/(1/2+sqrt(5)/2)^76 2329991416277390 a001 32951280099/10749957122*599074578^(3/14) 2329991416277390 a001 86267571272/28143753123*599074578^(3/14) 2329991416277390 a001 32264490531/10525900321*599074578^(3/14) 2329991416277390 a001 591286729879/192900153618*599074578^(3/14) 2329991416277390 a001 1548008755920/505019158607*599074578^(3/14) 2329991416277390 a001 1515744265389/494493258286*599074578^(3/14) 2329991416277390 a001 956722026041/312119004989*599074578^(3/14) 2329991416277390 a001 365435296162/119218851371*599074578^(3/14) 2329991416277390 a001 139583862445/45537549124*599074578^(3/14) 2329991416277390 a001 53316291173/17393796001*599074578^(3/14) 2329991416277390 a001 7778742049/4106118243*599074578^(5/21) 2329991416277390 a001 701408733/969323029*2537720636^(4/15) 2329991416277390 a001 10182505537/1268860318*599074578^(1/6) 2329991416277390 a001 20365011074/6643838879*599074578^(3/14) 2329991416277390 a001 10182505537/5374978561*599074578^(5/21) 2329991416277390 a001 433494437/1568397607*17393796001^(2/7) 2329991416277390 a001 701408733/969323029*45537549124^(4/17) 2329991416277390 a001 433494437/1568397607*14662949395604^(2/9) 2329991416277390 a001 701408733/969323029*14662949395604^(4/21) 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^14/Lucas(44) 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^12/Lucas(43) 2329991416277390 a001 701408733/969323029*73681302247^(3/13) 2329991416277390 a001 701408733/969323029*10749957122^(1/4) 2329991416277390 a001 433494437/1568397607*10749957122^(7/24) 2329991416277390 a001 53316291173/28143753123*599074578^(5/21) 2329991416277390 a001 139583862445/73681302247*599074578^(5/21) 2329991416277390 a001 182717648081/96450076809*599074578^(5/21) 2329991416277390 a001 956722026041/505019158607*599074578^(5/21) 2329991416277390 a001 10610209857723/5600748293801*599074578^(5/21) 2329991416277390 a001 591286729879/312119004989*599074578^(5/21) 2329991416277390 a001 225851433717/119218851371*599074578^(5/21) 2329991416277390 a001 21566892818/11384387281*599074578^(5/21) 2329991416277390 a001 32951280099/17393796001*599074578^(5/21) 2329991416277390 a001 701408733/969323029*4106118243^(6/23) 2329991416277390 a001 433494437/1568397607*4106118243^(7/23) 2329991416277390 a001 701408733/2537720636*599074578^(1/3) 2329991416277390 a001 701408733/6643838879*599074578^(8/21) 2329991416277390 a001 1144206275/230701876*599074578^(4/21) 2329991416277390 a001 12586269025/6643838879*599074578^(5/21) 2329991416277390 a001 7778742049/2537720636*599074578^(3/14) 2329991416277390 a001 2971215073/4106118243*599074578^(2/7) 2329991416277390 a001 701408733/969323029*1568397607^(3/11) 2329991416277390 a001 433494437/1568397607*1568397607^(7/22) 2329991416277390 a001 7778742049/10749957122*599074578^(2/7) 2329991416277390 a001 701408733/17393796001*599074578^(3/7) 2329991416277390 a001 20365011074/28143753123*599074578^(2/7) 2329991416277390 a001 53316291173/73681302247*599074578^(2/7) 2329991416277390 a001 139583862445/192900153618*599074578^(2/7) 2329991416277390 a001 365435296162/505019158607*599074578^(2/7) 2329991416277390 a001 10610209857723/14662949395604*599074578^(2/7) 2329991416277390 a001 225851433717/312119004989*599074578^(2/7) 2329991416277390 a001 86267571272/119218851371*599074578^(2/7) 2329991416277390 a001 32951280099/45537549124*599074578^(2/7) 2329991416277390 a001 12586269025/17393796001*599074578^(2/7) 2329991416277390 a001 1201881744/634430159*599074578^(5/21) 2329991416277390 a001 4807526976/6643838879*599074578^(2/7) 2329991416277390 a001 1836311903/2537720636*599074578^(2/7) 2329991416277390 a001 1836311903/6643838879*599074578^(1/3) 2329991416277390 a001 365435296162/4106118243*228826127^(1/20) 2329991416277390 a004 Fibonacci(43)*Lucas(45)/(1/2+sqrt(5)/2)^75 2329991416277390 a001 701408733/45537549124*599074578^(10/21) 2329991416277390 a001 4807526976/17393796001*599074578^(1/3) 2329991416277390 a001 1836311903/10749957122*599074578^(5/14) 2329991416277390 a001 12586269025/45537549124*599074578^(1/3) 2329991416277390 a001 32951280099/119218851371*599074578^(1/3) 2329991416277390 a001 86267571272/312119004989*599074578^(1/3) 2329991416277390 a001 225851433717/817138163596*599074578^(1/3) 2329991416277390 a001 1548008755920/5600748293801*599074578^(1/3) 2329991416277390 a001 139583862445/505019158607*599074578^(1/3) 2329991416277390 a001 53316291173/192900153618*599074578^(1/3) 2329991416277390 a001 20365011074/73681302247*599074578^(1/3) 2329991416277390 a001 7778742049/28143753123*599074578^(1/3) 2329991416277390 a001 2971215073/10749957122*599074578^(1/3) 2329991416277390 a001 956722026041/10749957122*228826127^(1/20) 2329991416277390 a001 433494437/14662949395604*2537720636^(11/15) 2329991416277390 a001 2504730781961/28143753123*228826127^(1/20) 2329991416277390 a001 6557470319842/73681302247*228826127^(1/20) 2329991416277390 a001 10610209857723/119218851371*228826127^(1/20) 2329991416277390 a001 4052739537881/45537549124*228826127^(1/20) 2329991416277390 a001 1548008755920/17393796001*228826127^(1/20) 2329991416277390 a001 433494437/3461452808002*2537720636^(2/3) 2329991416277390 a001 1836311903/969323029*2537720636^(2/9) 2329991416277390 a001 433494437/817138163596*2537720636^(3/5) 2329991416277390 a001 591286729879/6643838879*228826127^(1/20) 2329991416277390 a001 433494437/312119004989*2537720636^(5/9) 2329991416277390 a001 433494437/192900153618*2537720636^(8/15) 2329991416277390 a001 1602508992/9381251041*599074578^(5/14) 2329991416277390 a001 701408733/73681302247*599074578^(1/2) 2329991416277390 a001 433494437/45537549124*2537720636^(7/15) 2329991416277390 a001 433494437/10749957122*2537720636^(2/5) 2329991416277390 a001 12586269025/73681302247*599074578^(5/14) 2329991416277390 a001 433494437/28143753123*2537720636^(4/9) 2329991416277390 a001 10983760033/64300051206*599074578^(5/14) 2329991416277390 a001 86267571272/505019158607*599074578^(5/14) 2329991416277390 a001 75283811239/440719107401*599074578^(5/14) 2329991416277390 a001 2504730781961/14662949395604*599074578^(5/14) 2329991416277390 a001 139583862445/817138163596*599074578^(5/14) 2329991416277390 a001 53316291173/312119004989*599074578^(5/14) 2329991416277390 a001 20365011074/119218851371*599074578^(5/14) 2329991416277390 a001 7778742049/45537549124*599074578^(5/14) 2329991416277390 a001 1836311903/969323029*312119004989^(2/11) 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^16/Lucas(46) 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^10/Lucas(43) 2329991416277390 a001 433494437/4106118243*23725150497407^(1/4) 2329991416277390 a001 433494437/4106118243*73681302247^(4/13) 2329991416277390 a001 1836311903/969323029*28143753123^(1/5) 2329991416277390 a001 1836311903/17393796001*599074578^(8/21) 2329991416277390 a001 1836311903/969323029*10749957122^(5/24) 2329991416277390 a001 433494437/4106118243*10749957122^(1/3) 2329991416277390 a001 1836311903/969323029*4106118243^(5/23) 2329991416277390 a001 2971215073/17393796001*599074578^(5/14) 2329991416277390 a001 1134903170/4106118243*599074578^(1/3) 2329991416277390 a001 433494437/4106118243*4106118243^(8/23) 2329991416277390 a004 Fibonacci(43)*Lucas(47)/(1/2+sqrt(5)/2)^77 2329991416277390 a001 12586269025/969323029*2537720636^(2/15) 2329991416277390 a001 20365011074/969323029*2537720636^(1/9) 2329991416277390 a001 701408733/119218851371*599074578^(11/21) 2329991416277390 a001 1201881744/11384387281*599074578^(8/21) 2329991416277390 a001 53316291173/969323029*2537720636^(1/15) 2329991416277390 a001 433494437/10749957122*45537549124^(6/17) 2329991416277390 a001 433494437/10749957122*14662949395604^(2/7) 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^18/Lucas(48) 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^8/Lucas(43) 2329991416277390 a001 433494437/10749957122*192900153618^(1/3) 2329991416277390 a001 4807526976/969323029*73681302247^(2/13) 2329991416277390 a001 2971215073/599074578*228826127^(1/5) 2329991416277390 a001 4807526976/969323029*10749957122^(1/6) 2329991416277390 a001 433494437/10749957122*10749957122^(3/8) 2329991416277390 a001 12586269025/119218851371*599074578^(8/21) 2329991416277390 a004 Fibonacci(43)*Lucas(49)/(1/2+sqrt(5)/2)^79 2329991416277390 a001 32951280099/312119004989*599074578^(8/21) 2329991416277390 a001 21566892818/204284540899*599074578^(8/21) 2329991416277390 a001 225851433717/2139295485799*599074578^(8/21) 2329991416277390 a001 182717648081/1730726404001*599074578^(8/21) 2329991416277390 a001 139583862445/1322157322203*599074578^(8/21) 2329991416277390 a001 53316291173/505019158607*599074578^(8/21) 2329991416277390 a001 10182505537/96450076809*599074578^(8/21) 2329991416277390 a001 433494437/1322157322203*17393796001^(4/7) 2329991416277390 a001 12586269025/969323029*45537549124^(2/17) 2329991416277390 a001 12586269025/969323029*14662949395604^(2/21) 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^20/Lucas(50) 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^6/Lucas(43) 2329991416277390 a001 433494437/28143753123*23725150497407^(5/16) 2329991416277390 a001 433494437/28143753123*73681302247^(5/13) 2329991416277390 a001 433494437/45537549124*17393796001^(3/7) 2329991416277390 a001 433494437/28143753123*28143753123^(2/5) 2329991416277390 a004 Fibonacci(43)*Lucas(51)/(1/2+sqrt(5)/2)^81 2329991416277390 a001 433494437/23725150497407*45537549124^(2/3) 2329991416277390 a001 433494437/14662949395604*45537549124^(11/17) 2329991416277390 a001 433494437/3461452808002*45537549124^(10/17) 2329991416277390 a001 433494437/192900153618*45537549124^(8/17) 2329991416277390 a001 433494437/817138163596*45537549124^(9/17) 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^22/Lucas(52) 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^4/Lucas(43) 2329991416277390 a001 32951280099/969323029*23725150497407^(1/16) 2329991416277390 a001 12586269025/969323029*10749957122^(1/8) 2329991416277390 a001 32951280099/969323029*73681302247^(1/13) 2329991416277390 a004 Fibonacci(43)*Lucas(53)/(1/2+sqrt(5)/2)^83 2329991416277390 a001 433494437/192900153618*14662949395604^(8/21) 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^24/Lucas(54) 2329991416277390 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^2/Lucas(43) 2329991416277390 a001 433494437/192900153618*192900153618^(4/9) 2329991416277390 a004 Fibonacci(43)*Lucas(55)/(1/2+sqrt(5)/2)^85 2329991416277390 a001 433494437/14662949395604*312119004989^(3/5) 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^26/Lucas(56) 2329991416277390 a006 5^(1/2)*Fibonacci(56)/Lucas(43)/sqrt(5) 2329991416277390 a004 Fibonacci(43)*Lucas(57)/(1/2+sqrt(5)/2)^87 2329991416277390 a001 433494437/1322157322203*14662949395604^(4/9) 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^28/Lucas(58) 2329991416277390 a004 Fibonacci(58)/Lucas(43)/(1/2+sqrt(5)/2)^2 2329991416277390 a004 Fibonacci(43)*Lucas(59)/(1/2+sqrt(5)/2)^89 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^30/Lucas(60) 2329991416277390 a004 Fibonacci(60)/Lucas(43)/(1/2+sqrt(5)/2)^4 2329991416277390 a004 Fibonacci(43)*Lucas(61)/(1/2+sqrt(5)/2)^91 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^32/Lucas(62) 2329991416277390 a004 Fibonacci(62)/Lucas(43)/(1/2+sqrt(5)/2)^6 2329991416277390 a004 Fibonacci(43)*Lucas(63)/(1/2+sqrt(5)/2)^93 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^34/Lucas(64) 2329991416277390 a004 Fibonacci(64)/Lucas(43)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(43)*Lucas(65)/(1/2+sqrt(5)/2)^95 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^36/Lucas(66) 2329991416277390 a004 Fibonacci(66)/Lucas(43)/(1/2+sqrt(5)/2)^10 2329991416277390 a004 Fibonacci(43)*Lucas(67)/(1/2+sqrt(5)/2)^97 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^38/Lucas(68) 2329991416277390 a004 Fibonacci(68)/Lucas(43)/(1/2+sqrt(5)/2)^12 2329991416277390 a004 Fibonacci(43)*Lucas(69)/(1/2+sqrt(5)/2)^99 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^40/Lucas(70) 2329991416277390 a004 Fibonacci(70)/Lucas(43)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^42/Lucas(72) 2329991416277390 a004 Fibonacci(72)/Lucas(43)/(1/2+sqrt(5)/2)^16 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^44/Lucas(74) 2329991416277390 a004 Fibonacci(74)/Lucas(43)/(1/2+sqrt(5)/2)^18 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^46/Lucas(76) 2329991416277390 a004 Fibonacci(76)/Lucas(43)/(1/2+sqrt(5)/2)^20 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^48/Lucas(78) 2329991416277390 a004 Fibonacci(78)/Lucas(43)/(1/2+sqrt(5)/2)^22 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^50/Lucas(80) 2329991416277390 a004 Fibonacci(80)/Lucas(43)/(1/2+sqrt(5)/2)^24 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^52/Lucas(82) 2329991416277390 a004 Fibonacci(82)/Lucas(43)/(1/2+sqrt(5)/2)^26 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^54/Lucas(84) 2329991416277390 a004 Fibonacci(84)/Lucas(43)/(1/2+sqrt(5)/2)^28 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^56/Lucas(86) 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^58/Lucas(88) 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^60/Lucas(90) 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^62/Lucas(92) 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^64/Lucas(94) 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^66/Lucas(96) 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^68/Lucas(98) 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^69/Lucas(99) 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^70/Lucas(100) 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^67/Lucas(97) 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^65/Lucas(95) 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^63/Lucas(93) 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^61/Lucas(91) 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^59/Lucas(89) 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^57/Lucas(87) 2329991416277390 a004 Fibonacci(88)/Lucas(43)/(1/2+sqrt(5)/2)^32 2329991416277390 a004 Fibonacci(90)/Lucas(43)/(1/2+sqrt(5)/2)^34 2329991416277390 a004 Fibonacci(92)/Lucas(43)/(1/2+sqrt(5)/2)^36 2329991416277390 a004 Fibonacci(94)/Lucas(43)/(1/2+sqrt(5)/2)^38 2329991416277390 a004 Fibonacci(96)/Lucas(43)/(1/2+sqrt(5)/2)^40 2329991416277390 a004 Fibonacci(100)/Lucas(43)/(1/2+sqrt(5)/2)^44 2329991416277390 a004 Fibonacci(98)/Lucas(43)/(1/2+sqrt(5)/2)^42 2329991416277390 a004 Fibonacci(99)/Lucas(43)/(1/2+sqrt(5)/2)^43 2329991416277390 a004 Fibonacci(97)/Lucas(43)/(1/2+sqrt(5)/2)^41 2329991416277390 a004 Fibonacci(95)/Lucas(43)/(1/2+sqrt(5)/2)^39 2329991416277390 a004 Fibonacci(93)/Lucas(43)/(1/2+sqrt(5)/2)^37 2329991416277390 a004 Fibonacci(91)/Lucas(43)/(1/2+sqrt(5)/2)^35 2329991416277390 a004 Fibonacci(89)/Lucas(43)/(1/2+sqrt(5)/2)^33 2329991416277390 a004 Fibonacci(87)/Lucas(43)/(1/2+sqrt(5)/2)^31 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^55/Lucas(85) 2329991416277390 a004 Fibonacci(85)/Lucas(43)/(1/2+sqrt(5)/2)^29 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^53/Lucas(83) 2329991416277390 a004 Fibonacci(83)/Lucas(43)/(1/2+sqrt(5)/2)^27 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^51/Lucas(81) 2329991416277390 a004 Fibonacci(81)/Lucas(43)/(1/2+sqrt(5)/2)^25 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^49/Lucas(79) 2329991416277390 a004 Fibonacci(79)/Lucas(43)/(1/2+sqrt(5)/2)^23 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^47/Lucas(77) 2329991416277390 a004 Fibonacci(77)/Lucas(43)/(1/2+sqrt(5)/2)^21 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^45/Lucas(75) 2329991416277390 a004 Fibonacci(75)/Lucas(43)/(1/2+sqrt(5)/2)^19 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^43/Lucas(73) 2329991416277390 a004 Fibonacci(73)/Lucas(43)/(1/2+sqrt(5)/2)^17 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^41/Lucas(71) 2329991416277390 a004 Fibonacci(71)/Lucas(43)/(1/2+sqrt(5)/2)^15 2329991416277390 a004 Fibonacci(43)*Lucas(70)/(1/2+sqrt(5)/2)^100 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^39/Lucas(69) 2329991416277390 a004 Fibonacci(69)/Lucas(43)/(1/2+sqrt(5)/2)^13 2329991416277390 a004 Fibonacci(43)*Lucas(68)/(1/2+sqrt(5)/2)^98 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^37/Lucas(67) 2329991416277390 a004 Fibonacci(67)/Lucas(43)/(1/2+sqrt(5)/2)^11 2329991416277390 a004 Fibonacci(43)*Lucas(66)/(1/2+sqrt(5)/2)^96 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^35/Lucas(65) 2329991416277390 a004 Fibonacci(65)/Lucas(43)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(43)*Lucas(64)/(1/2+sqrt(5)/2)^94 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^33/Lucas(63) 2329991416277390 a004 Fibonacci(63)/Lucas(43)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(43)*Lucas(62)/(1/2+sqrt(5)/2)^92 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^31/Lucas(61) 2329991416277390 a004 Fibonacci(61)/Lucas(43)/(1/2+sqrt(5)/2)^5 2329991416277390 a004 Fibonacci(43)*Lucas(60)/(1/2+sqrt(5)/2)^90 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^29/Lucas(59) 2329991416277390 a004 Fibonacci(59)/Lucas(43)/(1/2+sqrt(5)/2)^3 2329991416277390 a004 Fibonacci(43)*Lucas(58)/(1/2+sqrt(5)/2)^88 2329991416277390 a001 433494437/1322157322203*505019158607^(1/2) 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^27/Lucas(57) 2329991416277390 a004 Fibonacci(57)/Lucas(43)/(1/2+sqrt(5)/2) 2329991416277390 a004 Fibonacci(43)*Lucas(56)/(1/2+sqrt(5)/2)^86 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^25/Lucas(55) 2329991416277390 a004 Fibonacci(55)*(1/2+sqrt(5)/2)/Lucas(43) 2329991416277390 a001 433494437/312119004989*3461452808002^(5/12) 2329991416277390 a001 433494437/3461452808002*192900153618^(5/9) 2329991416277390 a001 433494437/14662949395604*192900153618^(11/18) 2329991416277390 a004 Fibonacci(43)*Lucas(54)/(1/2+sqrt(5)/2)^84 2329991416277390 a001 53316291173/969323029*45537549124^(1/17) 2329991416277390 a001 433494437/192900153618*73681302247^(6/13) 2329991416277390 a001 53316291173/969323029*14662949395604^(1/21) 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^23/Lucas(53) 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^3/Lucas(43) 2329991416277390 a001 53316291173/969323029*192900153618^(1/18) 2329991416277390 a001 433494437/505019158607*73681302247^(1/2) 2329991416277390 a001 433494437/1322157322203*73681302247^(7/13) 2329991416277390 a001 433494437/9062201101803*73681302247^(8/13) 2329991416277390 a004 Fibonacci(43)*Lucas(52)/(1/2+sqrt(5)/2)^82 2329991416277390 a001 433494437/45537549124*45537549124^(7/17) 2329991416277390 a001 7778742049/73681302247*599074578^(8/21) 2329991416277390 a001 86267571272/969323029*10749957122^(1/24) 2329991416277390 a001 20365011074/969323029*312119004989^(1/11) 2329991416277390 a001 433494437/45537549124*14662949395604^(1/3) 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^21/Lucas(51) 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^5/Lucas(43) 2329991416277390 a001 433494437/45537549124*192900153618^(7/18) 2329991416277390 a001 32951280099/969323029*10749957122^(1/12) 2329991416277390 a001 20365011074/969323029*28143753123^(1/10) 2329991416277390 a001 53316291173/969323029*10749957122^(1/16) 2329991416277390 a001 433494437/312119004989*28143753123^(1/2) 2329991416277390 a001 433494437/3461452808002*28143753123^(3/5) 2329991416277390 a004 Fibonacci(43)*Lucas(50)/(1/2+sqrt(5)/2)^80 2329991416277390 a001 4807526976/969323029*4106118243^(4/23) 2329991416277390 a001 433494437/28143753123*10749957122^(5/12) 2329991416277390 a001 86267571272/969323029*4106118243^(1/23) 2329991416277390 a001 7778742049/969323029*17393796001^(1/7) 2329991416277390 a001 433494437/17393796001*817138163596^(1/3) 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^19/Lucas(49) 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^7/Lucas(43) 2329991416277390 a001 433494437/73681302247*10749957122^(11/24) 2329991416277390 a001 433494437/45537549124*10749957122^(7/16) 2329991416277390 a001 433494437/192900153618*10749957122^(1/2) 2329991416277390 a001 433494437/505019158607*10749957122^(13/24) 2329991416277390 a001 433494437/817138163596*10749957122^(9/16) 2329991416277390 a001 32951280099/969323029*4106118243^(2/23) 2329991416277390 a001 433494437/1322157322203*10749957122^(7/12) 2329991416277390 a001 433494437/3461452808002*10749957122^(5/8) 2329991416277390 a001 433494437/9062201101803*10749957122^(2/3) 2329991416277390 a001 433494437/14662949395604*10749957122^(11/16) 2329991416277390 a001 433494437/23725150497407*10749957122^(17/24) 2329991416277390 a001 12586269025/969323029*4106118243^(3/23) 2329991416277390 a004 Fibonacci(43)*Lucas(48)/(1/2+sqrt(5)/2)^78 2329991416277390 a001 433494437/10749957122*4106118243^(9/23) 2329991416277390 a001 86267571272/969323029*1568397607^(1/22) 2329991416277390 a001 2971215073/28143753123*599074578^(8/21) 2329991416277390 a001 433494437/6643838879*45537549124^(1/3) 2329991416277390 a001 2971215073/969323029*45537549124^(3/17) 2329991416277390 a001 2971215073/969323029*14662949395604^(1/7) 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^17/Lucas(47) 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^9/Lucas(43) 2329991416277390 a001 2971215073/969323029*192900153618^(1/6) 2329991416277390 a001 2971215073/969323029*10749957122^(3/16) 2329991416277390 a001 433494437/28143753123*4106118243^(10/23) 2329991416277390 a001 433494437/73681302247*4106118243^(11/23) 2329991416277390 a001 433494437/119218851371*4106118243^(1/2) 2329991416277390 a001 433494437/192900153618*4106118243^(12/23) 2329991416277390 a001 1836311903/969323029*1568397607^(5/22) 2329991416277390 a001 433494437/505019158607*4106118243^(13/23) 2329991416277390 a001 433494437/1322157322203*4106118243^(14/23) 2329991416277390 a001 32951280099/969323029*1568397607^(1/11) 2329991416277390 a001 433494437/3461452808002*4106118243^(15/23) 2329991416277390 a001 433494437/9062201101803*4106118243^(16/23) 2329991416277390 a001 433494437/23725150497407*4106118243^(17/23) 2329991416277390 a001 225851433717/2537720636*228826127^(1/20) 2329991416277390 a001 12586269025/969323029*1568397607^(3/22) 2329991416277390 a004 Fibonacci(43)*Lucas(46)/(1/2+sqrt(5)/2)^76 2329991416277390 a001 4807526976/969323029*1568397607^(2/11) 2329991416277390 a001 1836311903/45537549124*599074578^(3/7) 2329991416277390 a001 433494437/4106118243*1568397607^(4/11) 2329991416277390 a001 433494437/2537720636*2537720636^(1/3) 2329991416277390 a001 1134903170/6643838879*599074578^(5/14) 2329991416277390 a001 4807526976/119218851371*599074578^(3/7) 2329991416277390 a001 3524667/1568437211*599074578^(4/7) 2329991416277390 a001 1144206275/28374454999*599074578^(3/7) 2329991416277390 a001 32951280099/817138163596*599074578^(3/7) 2329991416277390 a001 86267571272/2139295485799*599074578^(3/7) 2329991416277390 a001 225851433717/5600748293801*599074578^(3/7) 2329991416277390 a001 365435296162/9062201101803*599074578^(3/7) 2329991416277390 a001 139583862445/3461452808002*599074578^(3/7) 2329991416277390 a001 53316291173/1322157322203*599074578^(3/7) 2329991416277390 a001 20365011074/505019158607*599074578^(3/7) 2329991416277390 a001 86267571272/969323029*599074578^(1/21) 2329991416277390 a001 7778742049/192900153618*599074578^(3/7) 2329991416277390 a001 567451585/5374978561*599074578^(8/21) 2329991416277390 a001 2971215073/73681302247*599074578^(3/7) 2329991416277390 a001 433494437/2537720636*45537549124^(5/17) 2329991416277390 a001 433494437/2537720636*312119004989^(3/11) 2329991416277390 a001 1134903170/969323029*312119004989^(1/5) 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^15/Lucas(45) 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^11/Lucas(43) 2329991416277390 a001 433494437/2537720636*192900153618^(5/18) 2329991416277390 a001 433494437/2537720636*28143753123^(3/10) 2329991416277390 a001 433494437/10749957122*1568397607^(9/22) 2329991416277390 a001 433494437/2537720636*10749957122^(5/16) 2329991416277390 a001 433494437/28143753123*1568397607^(5/11) 2329991416277390 a001 53316291173/969323029*599074578^(1/14) 2329991416277390 a001 433494437/73681302247*1568397607^(1/2) 2329991416277390 a001 1836311903/119218851371*599074578^(10/21) 2329991416277390 a001 433494437/192900153618*1568397607^(6/11) 2329991416277390 a001 433494437/505019158607*1568397607^(13/22) 2329991416277390 a001 4807526976/312119004989*599074578^(10/21) 2329991416277390 a001 701408733/817138163596*599074578^(13/21) 2329991416277390 a001 1134903170/969323029*1568397607^(1/4) 2329991416277390 a001 433494437/1322157322203*1568397607^(7/11) 2329991416277390 a001 12586269025/817138163596*599074578^(10/21) 2329991416277390 a001 32951280099/2139295485799*599074578^(10/21) 2329991416277390 a001 86267571272/5600748293801*599074578^(10/21) 2329991416277390 a001 7787980473/505618944676*599074578^(10/21) 2329991416277390 a001 365435296162/23725150497407*599074578^(10/21) 2329991416277390 a001 139583862445/9062201101803*599074578^(10/21) 2329991416277390 a001 53316291173/3461452808002*599074578^(10/21) 2329991416277390 a001 20365011074/1322157322203*599074578^(10/21) 2329991416277390 a001 32951280099/969323029*599074578^(2/21) 2329991416277390 a001 7778742049/505019158607*599074578^(10/21) 2329991416277390 a001 1836311903/192900153618*599074578^(1/2) 2329991416277390 a001 433494437/3461452808002*1568397607^(15/22) 2329991416277390 a001 1134903170/28143753123*599074578^(3/7) 2329991416277390 a001 2971215073/192900153618*599074578^(10/21) 2329991416277390 a001 433494437/9062201101803*1568397607^(8/11) 2329991416277390 a001 433494437/14662949395604*1568397607^(3/4) 2329991416277390 a001 433494437/23725150497407*1568397607^(17/22) 2329991416277390 a001 102287808/10745088481*599074578^(1/2) 2329991416277390 a001 233802911/440719107401*599074578^(9/14) 2329991416277390 a001 12586269025/1322157322203*599074578^(1/2) 2329991416277390 a001 32951280099/3461452808002*599074578^(1/2) 2329991416277390 a001 86267571272/9062201101803*599074578^(1/2) 2329991416277390 a001 225851433717/23725150497407*599074578^(1/2) 2329991416277390 a001 139583862445/14662949395604*599074578^(1/2) 2329991416277390 a001 53316291173/5600748293801*599074578^(1/2) 2329991416277390 a001 20365011074/2139295485799*599074578^(1/2) 2329991416277390 a001 7778742049/817138163596*599074578^(1/2) 2329991416277390 a001 1836311903/312119004989*599074578^(11/21) 2329991416277390 a001 2971215073/312119004989*599074578^(1/2) 2329991416277390 a001 1201881744/204284540899*599074578^(11/21) 2329991416277390 a001 701408733/2139295485799*599074578^(2/3) 2329991416277390 a001 701408733/969323029*599074578^(2/7) 2329991416277390 a001 12586269025/2139295485799*599074578^(11/21) 2329991416277390 a001 32951280099/5600748293801*599074578^(11/21) 2329991416277390 a001 1135099622/192933544679*599074578^(11/21) 2329991416277390 a001 139583862445/23725150497407*599074578^(11/21) 2329991416277390 a001 53316291173/9062201101803*599074578^(11/21) 2329991416277390 a001 10182505537/1730726404001*599074578^(11/21) 2329991416277390 a001 12586269025/969323029*599074578^(1/7) 2329991416277390 a001 7778742049/1322157322203*599074578^(11/21) 2329991416277390 a004 Fibonacci(43)*Lucas(44)/(1/2+sqrt(5)/2)^74 2329991416277390 a001 1134903170/73681302247*599074578^(10/21) 2329991416277390 a001 2971215073/505019158607*599074578^(11/21) 2329991416277390 a001 53316291173/1568397607*228826127^(1/10) 2329991416277390 a001 7778742049/969323029*599074578^(1/6) 2329991416277390 a001 1836311903/817138163596*599074578^(4/7) 2329991416277390 a001 1134903170/119218851371*599074578^(1/2) 2329991416277390 a001 4807526976/2139295485799*599074578^(4/7) 2329991416277390 a001 701408733/5600748293801*599074578^(5/7) 2329991416277390 a001 4807526976/969323029*599074578^(4/21) 2329991416277390 a001 433494437/1568397607*599074578^(1/3) 2329991416277390 a001 12586269025/5600748293801*599074578^(4/7) 2329991416277390 a001 32951280099/14662949395604*599074578^(4/7) 2329991416277390 a001 53316291173/23725150497407*599074578^(4/7) 2329991416277390 a001 20365011074/9062201101803*599074578^(4/7) 2329991416277390 a001 2971215073/228826127*87403803^(3/19) 2329991416277390 a001 7778742049/3461452808002*599074578^(4/7) 2329991416277390 a001 567451585/96450076809*599074578^(11/21) 2329991416277390 a001 2971215073/1322157322203*599074578^(4/7) 2329991416277390 a001 1836311903/2139295485799*599074578^(13/21) 2329991416277390 a001 1836311903/969323029*599074578^(5/21) 2329991416277390 a001 2971215073/969323029*599074578^(3/14) 2329991416277390 a001 4807526976/5600748293801*599074578^(13/21) 2329991416277390 a001 701408733/14662949395604*599074578^(16/21) 2329991416277390 a001 12586269025/14662949395604*599074578^(13/21) 2329991416277390 a001 20365011074/23725150497407*599074578^(13/21) 2329991416277390 a001 7778742049/9062201101803*599074578^(13/21) 2329991416277390 a001 1836311903/3461452808002*599074578^(9/14) 2329991416277390 a001 1134903170/505019158607*599074578^(4/7) 2329991416277390 a001 2971215073/3461452808002*599074578^(13/21) 2329991416277390 a001 1602508992/3020733700601*599074578^(9/14) 2329991416277390 a001 701408733/23725150497407*599074578^(11/14) 2329991416277390 a001 12586269025/23725150497407*599074578^(9/14) 2329991416277390 a001 7778742049/14662949395604*599074578^(9/14) 2329991416277390 a001 1836311903/5600748293801*599074578^(2/3) 2329991416277390 a001 2971215073/5600748293801*599074578^(9/14) 2329991416277390 a001 1201881744/3665737348901*599074578^(2/3) 2329991416277390 a001 139583862445/4106118243*228826127^(1/10) 2329991416277390 a001 7778742049/23725150497407*599074578^(2/3) 2329991416277390 a001 1134903170/1322157322203*599074578^(13/21) 2329991416277390 a001 2971215073/9062201101803*599074578^(2/3) 2329991416277390 a001 182717648081/5374978561*228826127^(1/10) 2329991416277390 a001 956722026041/28143753123*228826127^(1/10) 2329991416277390 a001 2504730781961/73681302247*228826127^(1/10) 2329991416277390 a001 3278735159921/96450076809*228826127^(1/10) 2329991416277390 a001 10610209857723/312119004989*228826127^(1/10) 2329991416277390 a001 4052739537881/119218851371*228826127^(1/10) 2329991416277390 a001 387002188980/11384387281*228826127^(1/10) 2329991416277390 a001 591286729879/17393796001*228826127^(1/10) 2329991416277390 a001 1836311903/14662949395604*599074578^(5/7) 2329991416277390 a001 225851433717/6643838879*228826127^(1/10) 2329991416277390 a001 1134903170/2139295485799*599074578^(9/14) 2329991416277390 a001 32951280099/1568397607*228826127^(1/8) 2329991416277390 a001 567451585/1730726404001*599074578^(2/3) 2329991416277390 a001 2971215073/23725150497407*599074578^(5/7) 2329991416277390 a001 86267571272/969323029*228826127^(1/20) 2329991416277390 a001 1135099622/33391061*228826127^(1/10) 2329991416277390 a001 433494437/4106118243*599074578^(8/21) 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^13/Lucas(43) 2329991416277390 a001 433494437/969323029*73681302247^(1/4) 2329991416277390 a001 567451585/299537289*228826127^(1/4) 2329991416277390 a001 1134903170/9062201101803*599074578^(5/7) 2329991416277390 a001 433494437/2537720636*599074578^(5/14) 2329991416277390 a001 433494437/10749957122*599074578^(3/7) 2329991416277390 a001 1134903170/23725150497407*599074578^(16/21) 2329991416277390 a001 86267571272/4106118243*228826127^(1/8) 2329991416277390 a001 225851433717/10749957122*228826127^(1/8) 2329991416277390 a004 Fibonacci(44)*Lucas(42)/(1/2+sqrt(5)/2)^73 2329991416277390 a001 591286729879/28143753123*228826127^(1/8) 2329991416277390 a001 1548008755920/73681302247*228826127^(1/8) 2329991416277390 a001 4052739537881/192900153618*228826127^(1/8) 2329991416277390 a001 225749145909/10745088481*228826127^(1/8) 2329991416277390 a001 6557470319842/312119004989*228826127^(1/8) 2329991416277390 a001 2504730781961/119218851371*228826127^(1/8) 2329991416277390 a001 956722026041/45537549124*228826127^(1/8) 2329991416277390 a001 433494437/28143753123*599074578^(10/21) 2329991416277390 a001 365435296162/17393796001*228826127^(1/8) 2329991416277390 a001 139583862445/6643838879*228826127^(1/8) 2329991416277390 a001 433494437/45537549124*599074578^(1/2) 2329991416277390 a001 20365011074/1568397607*228826127^(3/20) 2329991416277390 a001 433494437/73681302247*599074578^(11/21) 2329991416277390 a001 53316291173/2537720636*228826127^(1/8) 2329991416277390 a001 433494437/192900153618*599074578^(4/7) 2329991416277390 a004 Fibonacci(46)*Lucas(42)/(1/2+sqrt(5)/2)^75 2329991416277390 a004 Fibonacci(48)*Lucas(42)/(1/2+sqrt(5)/2)^77 2329991416277390 a004 Fibonacci(50)*Lucas(42)/(1/2+sqrt(5)/2)^79 2329991416277390 a004 Fibonacci(52)*Lucas(42)/(1/2+sqrt(5)/2)^81 2329991416277390 a004 Fibonacci(54)*Lucas(42)/(1/2+sqrt(5)/2)^83 2329991416277390 a001 312119004989/267914296*8^(1/3) 2329991416277390 a004 Fibonacci(56)*Lucas(42)/(1/2+sqrt(5)/2)^85 2329991416277390 a004 Fibonacci(58)*Lucas(42)/(1/2+sqrt(5)/2)^87 2329991416277390 a004 Fibonacci(60)*Lucas(42)/(1/2+sqrt(5)/2)^89 2329991416277390 a004 Fibonacci(62)*Lucas(42)/(1/2+sqrt(5)/2)^91 2329991416277390 a004 Fibonacci(64)*Lucas(42)/(1/2+sqrt(5)/2)^93 2329991416277390 a004 Fibonacci(66)*Lucas(42)/(1/2+sqrt(5)/2)^95 2329991416277390 a004 Fibonacci(68)*Lucas(42)/(1/2+sqrt(5)/2)^97 2329991416277390 a004 Fibonacci(70)*Lucas(42)/(1/2+sqrt(5)/2)^99 2329991416277390 a001 1/133957148*(1/2+1/2*5^(1/2))^55 2329991416277390 a004 Fibonacci(71)*Lucas(42)/(1/2+sqrt(5)/2)^100 2329991416277390 a004 Fibonacci(69)*Lucas(42)/(1/2+sqrt(5)/2)^98 2329991416277390 a004 Fibonacci(67)*Lucas(42)/(1/2+sqrt(5)/2)^96 2329991416277390 a004 Fibonacci(65)*Lucas(42)/(1/2+sqrt(5)/2)^94 2329991416277390 a004 Fibonacci(63)*Lucas(42)/(1/2+sqrt(5)/2)^92 2329991416277390 a004 Fibonacci(61)*Lucas(42)/(1/2+sqrt(5)/2)^90 2329991416277390 a004 Fibonacci(59)*Lucas(42)/(1/2+sqrt(5)/2)^88 2329991416277390 a004 Fibonacci(57)*Lucas(42)/(1/2+sqrt(5)/2)^86 2329991416277390 a004 Fibonacci(55)*Lucas(42)/(1/2+sqrt(5)/2)^84 2329991416277390 a004 Fibonacci(53)*Lucas(42)/(1/2+sqrt(5)/2)^82 2329991416277390 a004 Fibonacci(51)*Lucas(42)/(1/2+sqrt(5)/2)^80 2329991416277390 a001 433494437/505019158607*599074578^(13/21) 2329991416277390 a004 Fibonacci(49)*Lucas(42)/(1/2+sqrt(5)/2)^78 2329991416277390 a001 53316291173/4106118243*228826127^(3/20) 2329991416277390 a004 Fibonacci(47)*Lucas(42)/(1/2+sqrt(5)/2)^76 2329991416277390 a001 433494437/817138163596*599074578^(9/14) 2329991416277390 a001 139583862445/10749957122*228826127^(3/20) 2329991416277390 a001 365435296162/28143753123*228826127^(3/20) 2329991416277390 a001 956722026041/73681302247*228826127^(3/20) 2329991416277390 a001 2504730781961/192900153618*228826127^(3/20) 2329991416277390 a001 10610209857723/817138163596*228826127^(3/20) 2329991416277390 a001 4052739537881/312119004989*228826127^(3/20) 2329991416277390 a001 1548008755920/119218851371*228826127^(3/20) 2329991416277390 a001 591286729879/45537549124*228826127^(3/20) 2329991416277390 a001 7787980473/599786069*228826127^(3/20) 2329991416277390 a001 86267571272/6643838879*228826127^(3/20) 2329991416277390 a001 433494437/1322157322203*599074578^(2/3) 2329991416277390 a004 Fibonacci(45)*Lucas(42)/(1/2+sqrt(5)/2)^74 2329991416277390 a001 32951280099/969323029*228826127^(1/10) 2329991416277390 a001 32951280099/2537720636*228826127^(3/20) 2329991416277390 a001 433494437/3461452808002*599074578^(5/7) 2329991416277390 a001 433494437/9062201101803*599074578^(16/21) 2329991416277390 a001 433494437/14662949395604*599074578^(11/14) 2329991416277390 a001 433494437/23725150497407*599074578^(17/21) 2329991416277390 a001 7778742049/1568397607*228826127^(1/5) 2329991416277390 a001 20365011074/370248451*141422324^(1/13) 2329991416277390 a001 20365011074/969323029*228826127^(1/8) 2329991416277390 a001 20365011074/4106118243*228826127^(1/5) 2329991416277390 a001 53316291173/10749957122*228826127^(1/5) 2329991416277390 a001 139583862445/28143753123*228826127^(1/5) 2329991416277390 a001 365435296162/73681302247*228826127^(1/5) 2329991416277390 a001 956722026041/192900153618*228826127^(1/5) 2329991416277390 a001 2504730781961/505019158607*228826127^(1/5) 2329991416277390 a001 10610209857723/2139295485799*228826127^(1/5) 2329991416277390 a001 4052739537881/817138163596*228826127^(1/5) 2329991416277390 a001 140728068720/28374454999*228826127^(1/5) 2329991416277390 a001 591286729879/119218851371*228826127^(1/5) 2329991416277390 a001 225851433717/45537549124*228826127^(1/5) 2329991416277390 a001 86267571272/17393796001*228826127^(1/5) 2329991416277390 a001 32951280099/6643838879*228826127^(1/5) 2329991416277390 a001 63245986/9062201101803*141422324^(12/13) 2329991416277390 a004 Fibonacci(43)*Lucas(42)/(1/2+sqrt(5)/2)^72 2329991416277390 a001 12586269025/969323029*228826127^(3/20) 2329991416277390 a001 267914296/1568397607*228826127^(3/8) 2329991416277390 a001 1144206275/230701876*228826127^(1/5) 2329991416277390 a001 433494437/599074578*228826127^(3/10) 2329991416277390 a001 53316291173/599074578*87403803^(1/19) 2329991416277390 a001 2971215073/1568397607*228826127^(1/4) 2329991416277390 a001 267914296/370248451*2537720636^(4/15) 2329991416277390 a001 165580141/599074578*17393796001^(2/7) 2329991416277390 a001 267914296/370248451*45537549124^(4/17) 2329991416277390 a001 267914296/370248451*817138163596^(4/19) 2329991416277390 a001 165580141/599074578*14662949395604^(2/9) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^14/Lucas(42) 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^12/Lucas(41) 2329991416277390 a001 267914296/370248451*192900153618^(2/9) 2329991416277390 a001 267914296/370248451*73681302247^(3/13) 2329991416277390 a001 267914296/370248451*10749957122^(1/4) 2329991416277390 a001 165580141/599074578*10749957122^(7/24) 2329991416277390 a001 267914296/370248451*4106118243^(6/23) 2329991416277390 a001 165580141/599074578*4106118243^(7/23) 2329991416277390 a001 267914296/370248451*1568397607^(3/11) 2329991416277390 a001 165580141/599074578*1568397607^(7/22) 2329991416277390 a001 7778742049/4106118243*228826127^(1/4) 2329991416277390 a001 10182505537/5374978561*228826127^(1/4) 2329991416277390 a001 53316291173/28143753123*228826127^(1/4) 2329991416277390 a001 139583862445/73681302247*228826127^(1/4) 2329991416277390 a001 182717648081/96450076809*228826127^(1/4) 2329991416277390 a001 956722026041/505019158607*228826127^(1/4) 2329991416277390 a001 10610209857723/5600748293801*228826127^(1/4) 2329991416277390 a001 591286729879/312119004989*228826127^(1/4) 2329991416277390 a001 225851433717/119218851371*228826127^(1/4) 2329991416277390 a001 21566892818/11384387281*228826127^(1/4) 2329991416277390 a001 32951280099/17393796001*228826127^(1/4) 2329991416277390 a001 12586269025/6643838879*228826127^(1/4) 2329991416277390 a001 4807526976/969323029*228826127^(1/5) 2329991416277390 a001 1201881744/634430159*228826127^(1/4) 2329991416277390 a001 267914296/969323029*228826127^(7/20) 2329991416277390 a001 66978574/634430159*228826127^(2/5) 2329991416277390 a001 267914296/370248451*599074578^(2/7) 2329991416277390 a001 165580141/599074578*599074578^(1/3) 2329991416277390 a001 1134903170/1568397607*228826127^(3/10) 2329991416277390 a001 2971215073/4106118243*228826127^(3/10) 2329991416277390 a001 7778742049/10749957122*228826127^(3/10) 2329991416277390 a001 20365011074/28143753123*228826127^(3/10) 2329991416277390 a001 53316291173/73681302247*228826127^(3/10) 2329991416277390 a001 139583862445/192900153618*228826127^(3/10) 2329991416277390 a001 365435296162/505019158607*228826127^(3/10) 2329991416277390 a001 10610209857723/14662949395604*228826127^(3/10) 2329991416277390 a001 225851433717/312119004989*228826127^(3/10) 2329991416277390 a001 86267571272/119218851371*228826127^(3/10) 2329991416277390 a001 32951280099/45537549124*228826127^(3/10) 2329991416277390 a001 12586269025/17393796001*228826127^(3/10) 2329991416277390 a001 4807526976/6643838879*228826127^(3/10) 2329991416277390 a001 1836311903/969323029*228826127^(1/4) 2329991416277390 a001 1836311903/2537720636*228826127^(3/10) 2329991416277390 a001 267914296/6643838879*228826127^(9/20) 2329991416277390 a004 Fibonacci(41)*Lucas(43)/(1/2+sqrt(5)/2)^71 2329991416277390 a001 701408733/969323029*228826127^(3/10) 2329991416277390 a001 701408733/2537720636*228826127^(7/20) 2329991416277390 a001 139583862445/1568397607*87403803^(1/19) 2329991416277390 a001 1836311903/6643838879*228826127^(7/20) 2329991416277390 a001 4807526976/17393796001*228826127^(7/20) 2329991416277390 a001 12586269025/45537549124*228826127^(7/20) 2329991416277390 a001 32951280099/119218851371*228826127^(7/20) 2329991416277390 a001 86267571272/312119004989*228826127^(7/20) 2329991416277390 a001 225851433717/817138163596*228826127^(7/20) 2329991416277390 a001 1548008755920/5600748293801*228826127^(7/20) 2329991416277390 a001 139583862445/505019158607*228826127^(7/20) 2329991416277390 a001 53316291173/192900153618*228826127^(7/20) 2329991416277390 a001 20365011074/73681302247*228826127^(7/20) 2329991416277390 a001 7778742049/28143753123*228826127^(7/20) 2329991416277390 a001 233802911/1368706081*228826127^(3/8) 2329991416277390 a001 2971215073/10749957122*228826127^(7/20) 2329991416277390 a001 9238424/599786069*228826127^(1/2) 2329991416277390 a001 1134903170/4106118243*228826127^(7/20) 2329991416277390 a001 365435296162/4106118243*87403803^(1/19) 2329991416277390 a001 701408733/370248451*2537720636^(2/9) 2329991416277390 a001 956722026041/10749957122*87403803^(1/19) 2329991416277390 a001 2504730781961/28143753123*87403803^(1/19) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^16/Lucas(44) 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^10/Lucas(41) 2329991416277390 a001 165580141/1568397607*23725150497407^(1/4) 2329991416277390 a001 165580141/1568397607*73681302247^(4/13) 2329991416277390 a001 701408733/370248451*28143753123^(1/5) 2329991416277390 a001 6557470319842/73681302247*87403803^(1/19) 2329991416277390 a001 10610209857723/119218851371*87403803^(1/19) 2329991416277390 a001 4052739537881/45537549124*87403803^(1/19) 2329991416277390 a001 701408733/370248451*10749957122^(5/24) 2329991416277390 a001 165580141/1568397607*10749957122^(1/3) 2329991416277390 a001 1548008755920/17393796001*87403803^(1/19) 2329991416277390 a001 701408733/370248451*4106118243^(5/23) 2329991416277390 a001 165580141/1568397607*4106118243^(8/23) 2329991416277390 a001 591286729879/6643838879*87403803^(1/19) 2329991416277390 a001 701408733/370248451*1568397607^(5/22) 2329991416277390 a001 165580141/1568397607*1568397607^(4/11) 2329991416277390 a001 225851433717/2537720636*87403803^(1/19) 2329991416277390 a001 1836311903/10749957122*228826127^(3/8) 2329991416277390 a004 Fibonacci(41)*Lucas(45)/(1/2+sqrt(5)/2)^73 2329991416277390 a001 1602508992/9381251041*228826127^(3/8) 2329991416277390 a001 12586269025/73681302247*228826127^(3/8) 2329991416277390 a001 10983760033/64300051206*228826127^(3/8) 2329991416277390 a001 86267571272/505019158607*228826127^(3/8) 2329991416277390 a001 75283811239/440719107401*228826127^(3/8) 2329991416277390 a001 2504730781961/14662949395604*228826127^(3/8) 2329991416277390 a001 139583862445/817138163596*228826127^(3/8) 2329991416277390 a001 53316291173/312119004989*228826127^(3/8) 2329991416277390 a001 20365011074/119218851371*228826127^(3/8) 2329991416277390 a001 7778742049/45537549124*228826127^(3/8) 2329991416277390 a001 165580141/23725150497407*2537720636^(4/5) 2329991416277390 a001 165580141/4106118243*2537720636^(2/5) 2329991416277390 a001 165580141/14662949395604*2537720636^(7/9) 2329991416277390 a001 165580141/5600748293801*2537720636^(11/15) 2329991416277390 a001 2971215073/17393796001*228826127^(3/8) 2329991416277390 a001 165580141/1322157322203*2537720636^(2/3) 2329991416277390 a001 165580141/312119004989*2537720636^(3/5) 2329991416277390 a001 165580141/119218851371*2537720636^(5/9) 2329991416277390 a001 165580141/73681302247*2537720636^(8/15) 2329991416277390 a001 165580141/10749957122*2537720636^(4/9) 2329991416277390 a001 165580141/17393796001*2537720636^(7/15) 2329991416277390 a001 165580141/4106118243*45537549124^(6/17) 2329991416277390 a001 165580141/4106118243*14662949395604^(2/7) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^18/Lucas(46) 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^8/Lucas(41) 2329991416277390 a001 165580141/4106118243*192900153618^(1/3) 2329991416277390 a001 1836311903/370248451*73681302247^(2/13) 2329991416277390 a001 1836311903/370248451*10749957122^(1/6) 2329991416277390 a001 165580141/4106118243*10749957122^(3/8) 2329991416277390 a001 1836311903/370248451*4106118243^(4/23) 2329991416277390 a001 701408733/6643838879*228826127^(2/5) 2329991416277390 a001 165580141/4106118243*4106118243^(9/23) 2329991416277390 a001 4807526976/370248451*2537720636^(2/15) 2329991416277390 a004 Fibonacci(41)*Lucas(47)/(1/2+sqrt(5)/2)^75 2329991416277390 a001 7778742049/370248451*2537720636^(1/9) 2329991416277390 a001 20365011074/370248451*2537720636^(1/15) 2329991416277390 a001 4807526976/370248451*45537549124^(2/17) 2329991416277390 a001 4807526976/370248451*14662949395604^(2/21) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^20/Lucas(48) 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^6/Lucas(41) 2329991416277390 a001 165580141/10749957122*23725150497407^(5/16) 2329991416277390 a001 165580141/10749957122*505019158607^(5/14) 2329991416277390 a001 165580141/10749957122*73681302247^(5/13) 2329991416277390 a001 165580141/10749957122*28143753123^(2/5) 2329991416277390 a001 4807526976/370248451*10749957122^(1/8) 2329991416277390 a001 165580141/10749957122*10749957122^(5/12) 2329991416277390 a004 Fibonacci(41)*Lucas(49)/(1/2+sqrt(5)/2)^77 2329991416277390 a001 165580141/14662949395604*17393796001^(5/7) 2329991416277390 a001 165580141/505019158607*17393796001^(4/7) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^22/Lucas(50) 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^4/Lucas(41) 2329991416277390 a001 12586269025/370248451*23725150497407^(1/16) 2329991416277390 a001 12586269025/370248451*73681302247^(1/13) 2329991416277390 a001 4807526976/370248451*4106118243^(3/23) 2329991416277390 a001 12586269025/370248451*10749957122^(1/12) 2329991416277390 a004 Fibonacci(41)*Lucas(51)/(1/2+sqrt(5)/2)^79 2329991416277390 a001 165580141/73681302247*45537549124^(8/17) 2329991416277390 a001 165580141/23725150497407*45537549124^(12/17) 2329991416277390 a001 165580141/9062201101803*45537549124^(2/3) 2329991416277390 a001 165580141/5600748293801*45537549124^(11/17) 2329991416277390 a001 165580141/1322157322203*45537549124^(10/17) 2329991416277390 a001 165580141/312119004989*45537549124^(9/17) 2329991416277390 a001 165580141/73681302247*14662949395604^(8/21) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^24/Lucas(52) 2329991416277390 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^2/Lucas(41) 2329991416277390 a001 165580141/73681302247*192900153618^(4/9) 2329991416277390 a001 165580141/73681302247*73681302247^(6/13) 2329991416277390 a004 Fibonacci(41)*Lucas(53)/(1/2+sqrt(5)/2)^81 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^26/Lucas(54) 2329991416277390 a004 Fibonacci(41)*Lucas(55)/(1/2+sqrt(5)/2)^83 2329991416277390 a001 165580141/1322157322203*312119004989^(6/11) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^28/Lucas(56) 2329991416277390 a004 Fibonacci(56)/Lucas(41)/(1/2+sqrt(5)/2)^2 2329991416277390 a004 Fibonacci(41)*Lucas(57)/(1/2+sqrt(5)/2)^85 2329991416277390 a001 165580141/1322157322203*14662949395604^(10/21) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^30/Lucas(58) 2329991416277390 a004 Fibonacci(58)/Lucas(41)/(1/2+sqrt(5)/2)^4 2329991416277390 a004 Fibonacci(41)*Lucas(59)/(1/2+sqrt(5)/2)^87 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^32/Lucas(60) 2329991416277390 a004 Fibonacci(60)/Lucas(41)/(1/2+sqrt(5)/2)^6 2329991416277390 a004 Fibonacci(41)*Lucas(61)/(1/2+sqrt(5)/2)^89 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^34/Lucas(62) 2329991416277390 a004 Fibonacci(62)/Lucas(41)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(41)*Lucas(63)/(1/2+sqrt(5)/2)^91 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^36/Lucas(64) 2329991416277390 a004 Fibonacci(64)/Lucas(41)/(1/2+sqrt(5)/2)^10 2329991416277390 a004 Fibonacci(41)*Lucas(65)/(1/2+sqrt(5)/2)^93 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^38/Lucas(66) 2329991416277390 a004 Fibonacci(66)/Lucas(41)/(1/2+sqrt(5)/2)^12 2329991416277390 a004 Fibonacci(41)*Lucas(67)/(1/2+sqrt(5)/2)^95 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^40/Lucas(68) 2329991416277390 a004 Fibonacci(68)/Lucas(41)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(41)*Lucas(69)/(1/2+sqrt(5)/2)^97 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^42/Lucas(70) 2329991416277390 a004 Fibonacci(70)/Lucas(41)/(1/2+sqrt(5)/2)^16 2329991416277390 a004 Fibonacci(41)*Lucas(71)/(1/2+sqrt(5)/2)^99 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^44/Lucas(72) 2329991416277390 a004 Fibonacci(72)/Lucas(41)/(1/2+sqrt(5)/2)^18 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^46/Lucas(74) 2329991416277390 a004 Fibonacci(74)/Lucas(41)/(1/2+sqrt(5)/2)^20 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^48/Lucas(76) 2329991416277390 a004 Fibonacci(76)/Lucas(41)/(1/2+sqrt(5)/2)^22 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^50/Lucas(78) 2329991416277390 a004 Fibonacci(78)/Lucas(41)/(1/2+sqrt(5)/2)^24 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^52/Lucas(80) 2329991416277390 a004 Fibonacci(80)/Lucas(41)/(1/2+sqrt(5)/2)^26 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^54/Lucas(82) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^56/Lucas(84) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^58/Lucas(86) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^60/Lucas(88) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^62/Lucas(90) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^64/Lucas(92) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^66/Lucas(94) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^68/Lucas(96) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^70/Lucas(98) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^71/Lucas(99) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^72/Lucas(100) 2329991416277390 a004 Fibonacci(41)*Lucas(1)/(1/2+sqrt(5)/2)^28 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^69/Lucas(97) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^67/Lucas(95) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^65/Lucas(93) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^63/Lucas(91) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^61/Lucas(89) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^59/Lucas(87) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^57/Lucas(85) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^55/Lucas(83) 2329991416277390 a004 Fibonacci(84)/Lucas(41)/(1/2+sqrt(5)/2)^30 2329991416277390 a004 Fibonacci(86)/Lucas(41)/(1/2+sqrt(5)/2)^32 2329991416277390 a004 Fibonacci(88)/Lucas(41)/(1/2+sqrt(5)/2)^34 2329991416277390 a004 Fibonacci(90)/Lucas(41)/(1/2+sqrt(5)/2)^36 2329991416277390 a004 Fibonacci(92)/Lucas(41)/(1/2+sqrt(5)/2)^38 2329991416277390 a004 Fibonacci(94)/Lucas(41)/(1/2+sqrt(5)/2)^40 2329991416277390 a004 Fibonacci(96)/Lucas(41)/(1/2+sqrt(5)/2)^42 2329991416277390 a004 Fibonacci(100)/Lucas(41)/(1/2+sqrt(5)/2)^46 2329991416277390 a004 Fibonacci(98)/Lucas(41)/(1/2+sqrt(5)/2)^44 2329991416277390 a004 Fibonacci(99)/Lucas(41)/(1/2+sqrt(5)/2)^45 2329991416277390 a004 Fibonacci(97)/Lucas(41)/(1/2+sqrt(5)/2)^43 2329991416277390 a004 Fibonacci(95)/Lucas(41)/(1/2+sqrt(5)/2)^41 2329991416277390 a004 Fibonacci(93)/Lucas(41)/(1/2+sqrt(5)/2)^39 2329991416277390 a004 Fibonacci(91)/Lucas(41)/(1/2+sqrt(5)/2)^37 2329991416277390 a004 Fibonacci(89)/Lucas(41)/(1/2+sqrt(5)/2)^35 2329991416277390 a004 Fibonacci(87)/Lucas(41)/(1/2+sqrt(5)/2)^33 2329991416277390 a004 Fibonacci(85)/Lucas(41)/(1/2+sqrt(5)/2)^31 2329991416277390 a004 Fibonacci(83)/Lucas(41)/(1/2+sqrt(5)/2)^29 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^53/Lucas(81) 2329991416277390 a004 Fibonacci(81)/Lucas(41)/(1/2+sqrt(5)/2)^27 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^51/Lucas(79) 2329991416277390 a004 Fibonacci(79)/Lucas(41)/(1/2+sqrt(5)/2)^25 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^49/Lucas(77) 2329991416277390 a004 Fibonacci(77)/Lucas(41)/(1/2+sqrt(5)/2)^23 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^47/Lucas(75) 2329991416277390 a004 Fibonacci(75)/Lucas(41)/(1/2+sqrt(5)/2)^21 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^45/Lucas(73) 2329991416277390 a004 Fibonacci(73)/Lucas(41)/(1/2+sqrt(5)/2)^19 2329991416277390 a004 Fibonacci(41)*Lucas(72)/(1/2+sqrt(5)/2)^100 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^43/Lucas(71) 2329991416277390 a004 Fibonacci(71)/Lucas(41)/(1/2+sqrt(5)/2)^17 2329991416277390 a004 Fibonacci(41)*Lucas(70)/(1/2+sqrt(5)/2)^98 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^41/Lucas(69) 2329991416277390 a004 Fibonacci(69)/Lucas(41)/(1/2+sqrt(5)/2)^15 2329991416277390 a004 Fibonacci(41)*Lucas(68)/(1/2+sqrt(5)/2)^96 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^39/Lucas(67) 2329991416277390 a004 Fibonacci(67)/Lucas(41)/(1/2+sqrt(5)/2)^13 2329991416277390 a004 Fibonacci(41)*Lucas(66)/(1/2+sqrt(5)/2)^94 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^37/Lucas(65) 2329991416277390 a004 Fibonacci(65)/Lucas(41)/(1/2+sqrt(5)/2)^11 2329991416277390 a004 Fibonacci(41)*Lucas(64)/(1/2+sqrt(5)/2)^92 2329991416277390 a001 165580141/14662949395604*14662949395604^(5/9) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^35/Lucas(63) 2329991416277390 a004 Fibonacci(63)/Lucas(41)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(41)*Lucas(62)/(1/2+sqrt(5)/2)^90 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^33/Lucas(61) 2329991416277390 a004 Fibonacci(61)/Lucas(41)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(41)*Lucas(60)/(1/2+sqrt(5)/2)^88 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^31/Lucas(59) 2329991416277390 a004 Fibonacci(59)/Lucas(41)/(1/2+sqrt(5)/2)^5 2329991416277390 a004 Fibonacci(41)*Lucas(58)/(1/2+sqrt(5)/2)^86 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^29/Lucas(57) 2329991416277390 a004 Fibonacci(57)/Lucas(41)/(1/2+sqrt(5)/2)^3 2329991416277390 a001 165580141/14662949395604*505019158607^(5/8) 2329991416277390 a004 Fibonacci(41)*Lucas(56)/(1/2+sqrt(5)/2)^84 2329991416277390 a001 165580141/312119004989*817138163596^(9/19) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^27/Lucas(55) 2329991416277390 a004 Fibonacci(55)/Lucas(41)/(1/2+sqrt(5)/2) 2329991416277390 a001 165580141/1322157322203*192900153618^(5/9) 2329991416277390 a001 165580141/23725150497407*192900153618^(2/3) 2329991416277390 a001 165580141/312119004989*192900153618^(1/2) 2329991416277390 a004 Fibonacci(41)*Lucas(54)/(1/2+sqrt(5)/2)^82 2329991416277390 a001 165580141/119218851371*312119004989^(5/11) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^25/Lucas(53) 2329991416277390 a004 Fibonacci(53)*(1/2+sqrt(5)/2)/Lucas(41) 2329991416277390 a001 165580141/119218851371*3461452808002^(5/12) 2329991416277390 a001 165580141/505019158607*73681302247^(7/13) 2329991416277390 a001 165580141/3461452808002*73681302247^(8/13) 2329991416277390 a001 165580141/23725150497407*73681302247^(9/13) 2329991416277390 a001 32951280099/370248451*10749957122^(1/24) 2329991416277390 a004 Fibonacci(41)*Lucas(52)/(1/2+sqrt(5)/2)^80 2329991416277390 a001 20365011074/370248451*45537549124^(1/17) 2329991416277390 a001 20365011074/370248451*14662949395604^(1/21) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^23/Lucas(51) 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^3/Lucas(41) 2329991416277390 a001 165580141/119218851371*28143753123^(1/2) 2329991416277390 a001 165580141/1322157322203*28143753123^(3/5) 2329991416277390 a001 165580141/14662949395604*28143753123^(7/10) 2329991416277390 a001 20365011074/370248451*10749957122^(1/16) 2329991416277390 a004 Fibonacci(41)*Lucas(50)/(1/2+sqrt(5)/2)^78 2329991416277390 a001 165580141/17393796001*17393796001^(3/7) 2329991416277390 a001 32951280099/370248451*4106118243^(1/23) 2329991416277390 a001 165580141/28143753123*10749957122^(11/24) 2329991416277390 a001 165580141/17393796001*45537549124^(7/17) 2329991416277390 a001 1134903170/54018521*20633239^(1/7) 2329991416277390 a001 7778742049/370248451*312119004989^(1/11) 2329991416277390 a001 165580141/17393796001*14662949395604^(1/3) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^21/Lucas(49) 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^5/Lucas(41) 2329991416277390 a001 165580141/17393796001*192900153618^(7/18) 2329991416277390 a001 7778742049/370248451*28143753123^(1/10) 2329991416277390 a001 12586269025/370248451*4106118243^(2/23) 2329991416277390 a001 165580141/73681302247*10749957122^(1/2) 2329991416277390 a001 165580141/192900153618*10749957122^(13/24) 2329991416277390 a001 165580141/312119004989*10749957122^(9/16) 2329991416277390 a001 165580141/505019158607*10749957122^(7/12) 2329991416277390 a001 165580141/1322157322203*10749957122^(5/8) 2329991416277390 a001 165580141/3461452808002*10749957122^(2/3) 2329991416277390 a001 165580141/5600748293801*10749957122^(11/16) 2329991416277390 a001 165580141/9062201101803*10749957122^(17/24) 2329991416277390 a001 165580141/23725150497407*10749957122^(3/4) 2329991416277390 a001 165580141/17393796001*10749957122^(7/16) 2329991416277390 a004 Fibonacci(41)*Lucas(48)/(1/2+sqrt(5)/2)^76 2329991416277390 a001 1836311903/370248451*1568397607^(2/11) 2329991416277390 a001 165580141/10749957122*4106118243^(10/23) 2329991416277390 a001 32951280099/370248451*1568397607^(1/22) 2329991416277390 a001 2971215073/370248451*17393796001^(1/7) 2329991416277390 a001 165580141/6643838879*817138163596^(1/3) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^19/Lucas(47) 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^7/Lucas(41) 2329991416277390 a001 165580141/28143753123*4106118243^(11/23) 2329991416277390 a001 165580141/45537549124*4106118243^(1/2) 2329991416277390 a001 165580141/73681302247*4106118243^(12/23) 2329991416277390 a001 165580141/192900153618*4106118243^(13/23) 2329991416277390 a001 12586269025/370248451*1568397607^(1/11) 2329991416277390 a001 165580141/505019158607*4106118243^(14/23) 2329991416277390 a001 165580141/1322157322203*4106118243^(15/23) 2329991416277390 a001 165580141/3461452808002*4106118243^(16/23) 2329991416277390 a001 165580141/9062201101803*4106118243^(17/23) 2329991416277390 a001 1134903170/6643838879*228826127^(3/8) 2329991416277390 a001 165580141/23725150497407*4106118243^(18/23) 2329991416277390 a001 4807526976/370248451*1568397607^(3/22) 2329991416277390 a001 433494437/1568397607*228826127^(7/20) 2329991416277390 a004 Fibonacci(41)*Lucas(46)/(1/2+sqrt(5)/2)^74 2329991416277390 a001 165580141/4106118243*1568397607^(9/22) 2329991416277390 a001 1134903170/370248451*2537720636^(1/5) 2329991416277390 a001 32951280099/370248451*599074578^(1/21) 2329991416277390 a001 165580141/2537720636*45537549124^(1/3) 2329991416277390 a001 1134903170/370248451*45537549124^(3/17) 2329991416277390 a001 1134903170/370248451*14662949395604^(1/7) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^17/Lucas(45) 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^9/Lucas(41) 2329991416277390 a001 1134903170/370248451*192900153618^(1/6) 2329991416277390 a001 1134903170/370248451*10749957122^(3/16) 2329991416277390 a001 165580141/10749957122*1568397607^(5/11) 2329991416277390 a001 20365011074/370248451*599074578^(1/14) 2329991416277390 a001 165580141/28143753123*1568397607^(1/2) 2329991416277390 a001 165580141/73681302247*1568397607^(6/11) 2329991416277390 a001 165580141/192900153618*1568397607^(13/22) 2329991416277390 a001 701408733/370248451*599074578^(5/21) 2329991416277390 a001 165580141/505019158607*1568397607^(7/11) 2329991416277390 a001 12586269025/370248451*599074578^(2/21) 2329991416277390 a001 165580141/1322157322203*1568397607^(15/22) 2329991416277390 a001 1836311903/17393796001*228826127^(2/5) 2329991416277390 a001 165580141/3461452808002*1568397607^(8/11) 2329991416277390 a001 165580141/5600748293801*1568397607^(3/4) 2329991416277390 a001 165580141/9062201101803*1568397607^(17/22) 2329991416277390 a001 165580141/23725150497407*1568397607^(9/11) 2329991416277390 a001 1201881744/11384387281*228826127^(2/5) 2329991416277390 a001 12586269025/119218851371*228826127^(2/5) 2329991416277390 a001 32951280099/312119004989*228826127^(2/5) 2329991416277390 a001 21566892818/204284540899*228826127^(2/5) 2329991416277390 a001 225851433717/2139295485799*228826127^(2/5) 2329991416277390 a001 182717648081/1730726404001*228826127^(2/5) 2329991416277390 a001 139583862445/1322157322203*228826127^(2/5) 2329991416277390 a001 53316291173/505019158607*228826127^(2/5) 2329991416277390 a001 10182505537/96450076809*228826127^(2/5) 2329991416277390 a001 7778742049/73681302247*228826127^(2/5) 2329991416277390 a001 2971215073/28143753123*228826127^(2/5) 2329991416277390 a001 4807526976/370248451*599074578^(1/7) 2329991416277390 a001 63245986/2139295485799*141422324^(11/13) 2329991416277390 a004 Fibonacci(41)*Lucas(44)/(1/2+sqrt(5)/2)^72 2329991416277390 a001 66978574/11384387281*228826127^(11/20) 2329991416277390 a001 1836311903/370248451*599074578^(4/21) 2329991416277390 a001 2971215073/370248451*599074578^(1/6) 2329991416277390 a001 567451585/5374978561*228826127^(2/5) 2329991416277390 a001 165580141/1568397607*599074578^(8/21) 2329991416277390 a001 86267571272/969323029*87403803^(1/19) 2329991416277390 a001 1134903170/370248451*599074578^(3/14) 2329991416277390 a001 701408733/17393796001*228826127^(9/20) 2329991416277390 a001 32951280099/370248451*228826127^(1/20) 2329991416277390 a001 165580141/969323029*2537720636^(1/3) 2329991416277390 a001 165580141/969323029*45537549124^(5/17) 2329991416277390 a001 165580141/969323029*312119004989^(3/11) 2329991416277390 a001 433494437/370248451*312119004989^(1/5) 2329991416277390 a001 165580141/969323029*14662949395604^(5/21) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^15/Lucas(43) 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^11/Lucas(41) 2329991416277390 a001 165580141/969323029*192900153618^(5/18) 2329991416277390 a001 165580141/969323029*28143753123^(3/10) 2329991416277390 a001 165580141/969323029*10749957122^(5/16) 2329991416277390 a001 433494437/2537720636*228826127^(3/8) 2329991416277390 a001 165580141/4106118243*599074578^(3/7) 2329991416277390 a001 433494437/370248451*1568397607^(1/4) 2329991416277390 a001 1836311903/45537549124*228826127^(9/20) 2329991416277390 a001 4807526976/119218851371*228826127^(9/20) 2329991416277390 a001 1144206275/28374454999*228826127^(9/20) 2329991416277390 a001 32951280099/817138163596*228826127^(9/20) 2329991416277390 a001 86267571272/2139295485799*228826127^(9/20) 2329991416277390 a001 225851433717/5600748293801*228826127^(9/20) 2329991416277390 a001 365435296162/9062201101803*228826127^(9/20) 2329991416277390 a001 139583862445/3461452808002*228826127^(9/20) 2329991416277390 a001 53316291173/1322157322203*228826127^(9/20) 2329991416277390 a001 20365011074/505019158607*228826127^(9/20) 2329991416277390 a001 7778742049/192900153618*228826127^(9/20) 2329991416277390 a001 165580141/10749957122*599074578^(10/21) 2329991416277390 a001 1134903170/228826127*87403803^(4/19) 2329991416277390 a001 2971215073/73681302247*228826127^(9/20) 2329991416277390 a001 433494437/4106118243*228826127^(2/5) 2329991416277390 a001 267914296/119218851371*228826127^(3/5) 2329991416277390 a001 165580141/17393796001*599074578^(1/2) 2329991416277390 a001 1134903170/28143753123*228826127^(9/20) 2329991416277390 a001 165580141/28143753123*599074578^(11/21) 2329991416277390 a001 165580141/73681302247*599074578^(4/7) 2329991416277390 a001 165580141/192900153618*599074578^(13/21) 2329991416277390 a001 165580141/312119004989*599074578^(9/14) 2329991416277390 a001 701408733/45537549124*228826127^(1/2) 2329991416277390 a001 133957148/96450076809*228826127^(5/8) 2329991416277390 a001 165580141/505019158607*599074578^(2/3) 2329991416277390 a001 12586269025/370248451*228826127^(1/10) 2329991416277390 a001 165580141/1322157322203*599074578^(5/7) 2329991416277390 a001 165580141/969323029*599074578^(5/14) 2329991416277390 a001 165580141/3461452808002*599074578^(16/21) 2329991416277390 a001 165580141/5600748293801*599074578^(11/14) 2329991416277390 a001 1836311903/119218851371*228826127^(1/2) 2329991416277390 a001 4807526976/312119004989*228826127^(1/2) 2329991416277390 a001 12586269025/817138163596*228826127^(1/2) 2329991416277390 a001 32951280099/2139295485799*228826127^(1/2) 2329991416277390 a001 86267571272/5600748293801*228826127^(1/2) 2329991416277390 a001 7787980473/505618944676*228826127^(1/2) 2329991416277390 a001 365435296162/23725150497407*228826127^(1/2) 2329991416277390 a001 139583862445/9062201101803*228826127^(1/2) 2329991416277390 a001 53316291173/3461452808002*228826127^(1/2) 2329991416277390 a001 20365011074/1322157322203*228826127^(1/2) 2329991416277390 a001 165580141/9062201101803*599074578^(17/21) 2329991416277390 a001 7778742049/505019158607*228826127^(1/2) 2329991416277390 a001 2971215073/192900153618*228826127^(1/2) 2329991416277390 a001 165580141/14662949395604*599074578^(5/6) 2329991416277390 a001 267914296/312119004989*228826127^(13/20) 2329991416277390 a001 433494437/10749957122*228826127^(9/20) 2329991416277390 a001 165580141/23725150497407*599074578^(6/7) 2329991416277390 a001 7778742049/370248451*228826127^(1/8) 2329991416277390 a001 1134903170/73681302247*228826127^(1/2) 2329991416277390 a004 Fibonacci(41)*Lucas(42)/(1/2+sqrt(5)/2)^70 2329991416277390 a001 701408733/119218851371*228826127^(11/20) 2329991416277390 a001 4807526976/370248451*228826127^(3/20) 2329991416277390 a001 267914296/370248451*228826127^(3/10) 2329991416277390 a001 1836311903/312119004989*228826127^(11/20) 2329991416277390 a001 1201881744/204284540899*228826127^(11/20) 2329991416277390 a001 12586269025/2139295485799*228826127^(11/20) 2329991416277390 a001 32951280099/5600748293801*228826127^(11/20) 2329991416277390 a001 1135099622/192933544679*228826127^(11/20) 2329991416277390 a001 139583862445/23725150497407*228826127^(11/20) 2329991416277390 a001 53316291173/9062201101803*228826127^(11/20) 2329991416277390 a001 10182505537/1730726404001*228826127^(11/20) 2329991416277390 a001 7778742049/1322157322203*228826127^(11/20) 2329991416277390 a001 2971215073/505019158607*228826127^(11/20) 2329991416277390 a001 66978574/204284540899*228826127^(7/10) 2329991416277390 a001 433494437/28143753123*228826127^(1/2) 2329991416277390 a001 567451585/96450076809*228826127^(11/20) 2329991416277390 a001 10182505537/299537289*87403803^(2/19) 2329991416277390 a001 3524667/1568437211*228826127^(3/5) 2329991416277390 a001 1836311903/370248451*228826127^(1/5) 2329991416277390 a001 165580141/599074578*228826127^(7/20) 2329991416277390 a001 1836311903/817138163596*228826127^(3/5) 2329991416277390 a001 4807526976/2139295485799*228826127^(3/5) 2329991416277390 a001 12586269025/5600748293801*228826127^(3/5) 2329991416277390 a001 32951280099/14662949395604*228826127^(3/5) 2329991416277390 a001 53316291173/23725150497407*228826127^(3/5) 2329991416277390 a001 20365011074/9062201101803*228826127^(3/5) 2329991416277390 a001 7778742049/3461452808002*228826127^(3/5) 2329991416277390 a001 2971215073/1322157322203*228826127^(3/5) 2329991416277390 a001 701408733/505019158607*228826127^(5/8) 2329991416277390 a001 267914296/2139295485799*228826127^(3/4) 2329991416277390 a001 63245986/505019158607*141422324^(10/13) 2329991416277390 a001 433494437/73681302247*228826127^(11/20) 2329991416277390 a001 1134903170/505019158607*228826127^(3/5) 2329991416277390 a001 701408733/370248451*228826127^(1/4) 2329991416277390 a001 1836311903/1322157322203*228826127^(5/8) 2329991416277390 a001 14930208/10749853441*228826127^(5/8) 2329991416277390 a001 12586269025/9062201101803*228826127^(5/8) 2329991416277390 a001 32951280099/23725150497407*228826127^(5/8) 2329991416277390 a001 10182505537/7331474697802*228826127^(5/8) 2329991416277390 a001 7778742049/5600748293801*228826127^(5/8) 2329991416277390 a001 2971215073/2139295485799*228826127^(5/8) 2329991416277390 a001 701408733/817138163596*228826127^(13/20) 2329991416277390 a001 567451585/408569081798*228826127^(5/8) 2329991416277390 a001 1836311903/2139295485799*228826127^(13/20) 2329991416277390 a001 4807526976/5600748293801*228826127^(13/20) 2329991416277390 a001 12586269025/14662949395604*228826127^(13/20) 2329991416277390 a001 20365011074/23725150497407*228826127^(13/20) 2329991416277390 a001 7778742049/9062201101803*228826127^(13/20) 2329991416277390 a001 2971215073/3461452808002*228826127^(13/20) 2329991416277390 a001 267914296/5600748293801*228826127^(4/5) 2329991416277390 a001 433494437/192900153618*228826127^(3/5) 2329991416277390 a001 1134903170/1322157322203*228826127^(13/20) 2329991416277390 a001 701408733/2139295485799*228826127^(7/10) 2329991416277390 a001 433494437/312119004989*228826127^(5/8) 2329991416277390 a001 1836311903/5600748293801*228826127^(7/10) 2329991416277390 a001 1201881744/3665737348901*228826127^(7/10) 2329991416277390 a001 7778742049/23725150497407*228826127^(7/10) 2329991416277390 a001 53316291173/1568397607*87403803^(2/19) 2329991416277390 a001 2971215073/9062201101803*228826127^(7/10) 2329991416277390 a001 10946/599074579*228826127^(17/20) 2329991416277390 a001 433494437/505019158607*228826127^(13/20) 2329991416277390 a001 567451585/1730726404001*228826127^(7/10) 2329991416277390 a001 139583862445/4106118243*87403803^(2/19) 2329991416277390 a001 182717648081/5374978561*87403803^(2/19) 2329991416277390 a001 956722026041/28143753123*87403803^(2/19) 2329991416277390 a001 2504730781961/73681302247*87403803^(2/19) 2329991416277390 a001 3278735159921/96450076809*87403803^(2/19) 2329991416277390 a001 10610209857723/312119004989*87403803^(2/19) 2329991416277390 a001 4052739537881/119218851371*87403803^(2/19) 2329991416277390 a001 387002188980/11384387281*87403803^(2/19) 2329991416277390 a001 591286729879/17393796001*87403803^(2/19) 2329991416277390 a001 225851433717/6643838879*87403803^(2/19) 2329991416277390 a001 701408733/5600748293801*228826127^(3/4) 2329991416277390 a001 267914296/23725150497407*228826127^(7/8) 2329991416277390 a001 1135099622/33391061*87403803^(2/19) 2329991416277390 a001 32951280099/370248451*87403803^(1/19) 2329991416277390 a001 1836311903/14662949395604*228826127^(3/4) 2329991416277390 a001 2971215073/23725150497407*228826127^(3/4) 2329991416277390 a001 433494437/1322157322203*228826127^(7/10) 2329991416277390 a001 1134903170/9062201101803*228826127^(3/4) 2329991416277390 a001 165580141/1568397607*228826127^(2/5) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^13/Lucas(41) 2329991416277390 a001 165580141/370248451*73681302247^(1/4) 2329991416277390 a001 32951280099/969323029*87403803^(2/19) 2329991416277390 a001 701408733/14662949395604*228826127^(4/5) 2329991416277390 a001 63245986/119218851371*141422324^(9/13) 2329991416277390 a001 433494437/3461452808002*228826127^(3/4) 2329991416277390 a001 1134903170/23725150497407*228826127^(4/5) 2329991416277390 a001 102334155/141422324*141422324^(4/13) 2329991416277390 a001 165580141/969323029*228826127^(3/8) 2329991416277390 a001 165580141/4106118243*228826127^(9/20) 2329991416277390 a004 Fibonacci(42)*Lucas(40)/(1/2+sqrt(5)/2)^69 2329991416277390 a001 433494437/9062201101803*228826127^(4/5) 2329991416277390 a001 433494437/228826127*87403803^(5/19) 2329991416277390 a001 63245986/73681302247*141422324^(2/3) 2329991416277390 a001 165580141/10749957122*228826127^(1/2) 2329991416277390 a001 433494437/23725150497407*228826127^(17/20) 2329991416277390 a001 165580141/28143753123*228826127^(11/20) 2329991416277390 a001 7778742049/599074578*87403803^(3/19) 2329991416277390 a004 Fibonacci(44)*Lucas(40)/(1/2+sqrt(5)/2)^71 2329991416277390 a001 165580141/73681302247*228826127^(3/5) 2329991416277390 a001 1134903170/87403803*33385282^(1/6) 2329991416277390 a004 Fibonacci(46)*Lucas(40)/(1/2+sqrt(5)/2)^73 2329991416277390 a004 Fibonacci(48)*Lucas(40)/(1/2+sqrt(5)/2)^75 2329991416277390 a004 Fibonacci(50)*Lucas(40)/(1/2+sqrt(5)/2)^77 2329991416277390 a004 Fibonacci(52)*Lucas(40)/(1/2+sqrt(5)/2)^79 2329991416277390 a004 Fibonacci(54)*Lucas(40)/(1/2+sqrt(5)/2)^81 2329991416277390 a004 Fibonacci(56)*Lucas(40)/(1/2+sqrt(5)/2)^83 2329991416277390 a004 Fibonacci(58)*Lucas(40)/(1/2+sqrt(5)/2)^85 2329991416277390 a004 Fibonacci(60)*Lucas(40)/(1/2+sqrt(5)/2)^87 2329991416277390 a004 Fibonacci(62)*Lucas(40)/(1/2+sqrt(5)/2)^89 2329991416277390 a004 Fibonacci(64)*Lucas(40)/(1/2+sqrt(5)/2)^91 2329991416277390 a004 Fibonacci(66)*Lucas(40)/(1/2+sqrt(5)/2)^93 2329991416277390 a004 Fibonacci(68)*Lucas(40)/(1/2+sqrt(5)/2)^95 2329991416277390 a004 Fibonacci(70)*Lucas(40)/(1/2+sqrt(5)/2)^97 2329991416277390 a004 Fibonacci(72)*Lucas(40)/(1/2+sqrt(5)/2)^99 2329991416277390 a001 2/102334155*(1/2+1/2*5^(1/2))^53 2329991416277390 a004 Fibonacci(73)*Lucas(40)/(1/2+sqrt(5)/2)^100 2329991416277390 a004 Fibonacci(71)*Lucas(40)/(1/2+sqrt(5)/2)^98 2329991416277390 a004 Fibonacci(69)*Lucas(40)/(1/2+sqrt(5)/2)^96 2329991416277390 a004 Fibonacci(67)*Lucas(40)/(1/2+sqrt(5)/2)^94 2329991416277390 a004 Fibonacci(65)*Lucas(40)/(1/2+sqrt(5)/2)^92 2329991416277390 a004 Fibonacci(63)*Lucas(40)/(1/2+sqrt(5)/2)^90 2329991416277390 a004 Fibonacci(61)*Lucas(40)/(1/2+sqrt(5)/2)^88 2329991416277390 a004 Fibonacci(59)*Lucas(40)/(1/2+sqrt(5)/2)^86 2329991416277390 a004 Fibonacci(57)*Lucas(40)/(1/2+sqrt(5)/2)^84 2329991416277390 a004 Fibonacci(55)*Lucas(40)/(1/2+sqrt(5)/2)^82 2329991416277390 a004 Fibonacci(53)*Lucas(40)/(1/2+sqrt(5)/2)^80 2329991416277390 a004 Fibonacci(51)*Lucas(40)/(1/2+sqrt(5)/2)^78 2329991416277390 a004 Fibonacci(49)*Lucas(40)/(1/2+sqrt(5)/2)^76 2329991416277390 a004 Fibonacci(47)*Lucas(40)/(1/2+sqrt(5)/2)^74 2329991416277390 a001 63245986/28143753123*141422324^(8/13) 2329991416277390 a001 165580141/119218851371*228826127^(5/8) 2329991416277390 a004 Fibonacci(45)*Lucas(40)/(1/2+sqrt(5)/2)^72 2329991416277390 a001 165580141/192900153618*228826127^(13/20) 2329991416277390 a004 Fibonacci(43)*Lucas(40)/(1/2+sqrt(5)/2)^70 2329991416277390 a001 20365011074/1568397607*87403803^(3/19) 2329991416277390 a001 53316291173/4106118243*87403803^(3/19) 2329991416277390 a001 139583862445/10749957122*87403803^(3/19) 2329991416277390 a001 165580141/505019158607*228826127^(7/10) 2329991416277390 a001 365435296162/28143753123*87403803^(3/19) 2329991416277390 a001 956722026041/73681302247*87403803^(3/19) 2329991416277390 a001 2504730781961/192900153618*87403803^(3/19) 2329991416277390 a001 10610209857723/817138163596*87403803^(3/19) 2329991416277390 a001 4052739537881/312119004989*87403803^(3/19) 2329991416277390 a001 1548008755920/119218851371*87403803^(3/19) 2329991416277390 a001 591286729879/45537549124*87403803^(3/19) 2329991416277390 a001 7787980473/599786069*87403803^(3/19) 2329991416277390 a001 86267571272/6643838879*87403803^(3/19) 2329991416277390 a001 32951280099/2537720636*87403803^(3/19) 2329991416277390 a001 12586269025/370248451*87403803^(2/19) 2329991416277390 a001 165580141/1322157322203*228826127^(3/4) 2329991416277390 a001 12586269025/969323029*87403803^(3/19) 2329991416277390 a001 165580141/3461452808002*228826127^(4/5) 2329991416277390 a001 63245986/6643838879*141422324^(7/13) 2329991416277390 a001 165580141/9062201101803*228826127^(17/20) 2329991416277390 a001 165580141/14662949395604*228826127^(7/8) 2329991416277390 a001 165580141/23725150497407*228826127^(9/10) 2329991416277390 a001 2971215073/599074578*87403803^(4/19) 2329991416277390 a004 Fibonacci(41)*Lucas(40)/(1/2+sqrt(5)/2)^68 2329991416277390 a001 63245986/1568397607*141422324^(6/13) 2329991416277390 a001 7778742049/1568397607*87403803^(4/19) 2329991416277390 a001 20365011074/4106118243*87403803^(4/19) 2329991416277390 a001 53316291173/10749957122*87403803^(4/19) 2329991416277390 a001 139583862445/28143753123*87403803^(4/19) 2329991416277390 a001 365435296162/73681302247*87403803^(4/19) 2329991416277390 a001 956722026041/192900153618*87403803^(4/19) 2329991416277390 a001 2504730781961/505019158607*87403803^(4/19) 2329991416277390 a001 10610209857723/2139295485799*87403803^(4/19) 2329991416277390 a001 4052739537881/817138163596*87403803^(4/19) 2329991416277390 a001 140728068720/28374454999*87403803^(4/19) 2329991416277390 a001 591286729879/119218851371*87403803^(4/19) 2329991416277390 a001 225851433717/45537549124*87403803^(4/19) 2329991416277390 a001 86267571272/17393796001*87403803^(4/19) 2329991416277390 a001 32951280099/6643838879*87403803^(4/19) 2329991416277390 a001 1144206275/230701876*87403803^(4/19) 2329991416277390 a001 4807526976/370248451*87403803^(3/19) 2329991416277390 a001 4807526976/969323029*87403803^(4/19) 2329991416277390 a001 165580141/228826127*87403803^(6/19) 2329991416277390 a001 20365011074/228826127*33385282^(1/18) 2329991416277390 a001 102334155/141422324*2537720636^(4/15) 2329991416277390 a001 63245986/228826127*17393796001^(2/7) 2329991416277390 a001 102334155/141422324*45537549124^(4/17) 2329991416277390 a001 102334155/141422324*817138163596^(4/19) 2329991416277390 a001 102334155/141422324*14662949395604^(4/21) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^14/Lucas(40) 2329991416277390 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^12/Lucas(39) 2329991416277390 a001 102334155/141422324*192900153618^(2/9) 2329991416277390 a001 102334155/141422324*73681302247^(3/13) 2329991416277390 a001 102334155/141422324*10749957122^(1/4) 2329991416277390 a001 63245986/228826127*10749957122^(7/24) 2329991416277390 a001 102334155/141422324*4106118243^(6/23) 2329991416277390 a001 63245986/228826127*4106118243^(7/23) 2329991416277390 a001 102334155/141422324*1568397607^(3/11) 2329991416277390 a001 63245986/228826127*1568397607^(7/22) 2329991416277390 a001 102334155/141422324*599074578^(2/7) 2329991416277390 a001 567451585/299537289*87403803^(5/19) 2329991416277390 a001 63245986/228826127*599074578^(1/3) 2329991416277390 a001 2971215073/1568397607*87403803^(5/19) 2329991416277390 a001 7778742049/4106118243*87403803^(5/19) 2329991416277390 a001 10182505537/5374978561*87403803^(5/19) 2329991416277390 a001 53316291173/28143753123*87403803^(5/19) 2329991416277390 a001 139583862445/73681302247*87403803^(5/19) 2329991416277390 a001 182717648081/96450076809*87403803^(5/19) 2329991416277390 a001 956722026041/505019158607*87403803^(5/19) 2329991416277390 a001 10610209857723/5600748293801*87403803^(5/19) 2329991416277390 a001 591286729879/312119004989*87403803^(5/19) 2329991416277390 a001 225851433717/119218851371*87403803^(5/19) 2329991416277390 a001 21566892818/11384387281*87403803^(5/19) 2329991416277390 a001 32951280099/17393796001*87403803^(5/19) 2329991416277390 a001 12586269025/6643838879*87403803^(5/19) 2329991416277390 a001 1201881744/634430159*87403803^(5/19) 2329991416277390 a001 1836311903/370248451*87403803^(4/19) 2329991416277390 a001 1836311903/969323029*87403803^(5/19) 2329991416277390 a001 102334155/370248451*87403803^(7/19) 2329991416277390 a001 102334155/141422324*228826127^(3/10) 2329991416277390 a001 102334155/969323029*87403803^(8/19) 2329991416277390 a001 63245986/228826127*228826127^(7/20) 2329991416277390 a001 63245986/370248451*141422324^(5/13) 2329991416277390 a001 433494437/141422324*141422324^(3/13) 2329991416277390 a001 433494437/599074578*87403803^(6/19) 2329991416277390 a001 1134903170/1568397607*87403803^(6/19) 2329991416277390 a001 2971215073/4106118243*87403803^(6/19) 2329991416277390 a001 7778742049/10749957122*87403803^(6/19) 2329991416277390 a001 701408733/370248451*87403803^(5/19) 2329991416277390 a001 20365011074/28143753123*87403803^(6/19) 2329991416277390 a001 53316291173/73681302247*87403803^(6/19) 2329991416277390 a001 139583862445/192900153618*87403803^(6/19) 2329991416277390 a001 10610209857723/14662949395604*87403803^(6/19) 2329991416277390 a001 225851433717/312119004989*87403803^(6/19) 2329991416277390 a001 86267571272/119218851371*87403803^(6/19) 2329991416277390 a001 32951280099/45537549124*87403803^(6/19) 2329991416277390 a001 12586269025/17393796001*87403803^(6/19) 2329991416277390 a001 4807526976/6643838879*87403803^(6/19) 2329991416277390 a001 1836311903/2537720636*87403803^(6/19) 2329991416277390 a001 701408733/969323029*87403803^(6/19) 2329991416277390 a001 1836311903/141422324*141422324^(2/13) 2329991416277390 a004 Fibonacci(39)*Lucas(41)/(1/2+sqrt(5)/2)^67 2329991416277390 a001 9303105/230701876*87403803^(9/19) 2329991416277390 a001 267914296/370248451*87403803^(6/19) 2329991416277390 a001 7778742049/141422324*141422324^(1/13) 2329991416277390 a001 34111385/1368706081*87403803^(1/2) 2329991416277390 a001 267914296/969323029*87403803^(7/19) 2329991416277390 a001 53316291173/599074578*33385282^(1/18) 2329991416277390 a001 66978574/35355581*2537720636^(2/9) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^16/Lucas(42) 2329991416277390 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^10/Lucas(39) 2329991416277390 a001 31622993/299537289*23725150497407^(1/4) 2329991416277390 a001 31622993/299537289*73681302247^(4/13) 2329991416277390 a001 66978574/35355581*28143753123^(1/5) 2329991416277390 a001 66978574/35355581*10749957122^(5/24) 2329991416277390 a001 31622993/299537289*10749957122^(1/3) 2329991416277390 a001 66978574/35355581*4106118243^(5/23) 2329991416277390 a001 31622993/299537289*4106118243^(8/23) 2329991416277390 a001 66978574/35355581*1568397607^(5/22) 2329991416277390 a001 31622993/299537289*1568397607^(4/11) 2329991416277390 a001 66978574/35355581*599074578^(5/21) 2329991416277390 a001 701408733/2537720636*87403803^(7/19) 2329991416277390 a001 1836311903/6643838879*87403803^(7/19) 2329991416277390 a001 4807526976/17393796001*87403803^(7/19) 2329991416277390 a001 12586269025/45537549124*87403803^(7/19) 2329991416277390 a001 32951280099/119218851371*87403803^(7/19) 2329991416277390 a001 86267571272/312119004989*87403803^(7/19) 2329991416277390 a001 225851433717/817138163596*87403803^(7/19) 2329991416277390 a001 139583862445/505019158607*87403803^(7/19) 2329991416277390 a001 53316291173/192900153618*87403803^(7/19) 2329991416277390 a001 20365011074/73681302247*87403803^(7/19) 2329991416277390 a001 7778742049/28143753123*87403803^(7/19) 2329991416277390 a001 2971215073/10749957122*87403803^(7/19) 2329991416277390 a001 31622993/299537289*599074578^(8/21) 2329991416277390 a001 1134903170/4106118243*87403803^(7/19) 2329991416277390 a001 433494437/1568397607*87403803^(7/19) 2329991416277390 a004 Fibonacci(39)*Lucas(43)/(1/2+sqrt(5)/2)^69 2329991416277390 a001 139583862445/1568397607*33385282^(1/18) 2329991416277390 a001 63245986/1568397607*2537720636^(2/5) 2329991416277390 a001 63245986/1568397607*45537549124^(6/17) 2329991416277390 a001 63245986/1568397607*14662949395604^(2/7) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^18/Lucas(44) 2329991416277390 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^8/Lucas(39) 2329991416277390 a001 701408733/141422324*23725150497407^(1/8) 2329991416277390 a001 63245986/1568397607*192900153618^(1/3) 2329991416277390 a001 701408733/141422324*73681302247^(2/13) 2329991416277390 a001 701408733/141422324*10749957122^(1/6) 2329991416277390 a001 63245986/1568397607*10749957122^(3/8) 2329991416277390 a001 701408733/141422324*4106118243^(4/23) 2329991416277390 a001 63245986/1568397607*4106118243^(9/23) 2329991416277390 a001 701408733/141422324*1568397607^(2/11) 2329991416277390 a001 63245986/1568397607*1568397607^(9/22) 2329991416277390 a001 365435296162/4106118243*33385282^(1/18) 2329991416277390 a001 102334155/6643838879*87403803^(10/19) 2329991416277390 a001 956722026041/10749957122*33385282^(1/18) 2329991416277390 a001 2504730781961/28143753123*33385282^(1/18) 2329991416277390 a004 Fibonacci(39)*Lucas(45)/(1/2+sqrt(5)/2)^71 2329991416277390 a001 6557470319842/73681302247*33385282^(1/18) 2329991416277390 a001 10610209857723/119218851371*33385282^(1/18) 2329991416277390 a001 4052739537881/45537549124*33385282^(1/18) 2329991416277390 a001 1548008755920/17393796001*33385282^(1/18) 2329991416277390 a001 591286729879/6643838879*33385282^(1/18) 2329991416277390 a001 63245986/4106118243*2537720636^(4/9) 2329991416277390 a001 63245986/9062201101803*2537720636^(4/5) 2329991416277390 a001 63245986/5600748293801*2537720636^(7/9) 2329991416277390 a001 63245986/2139295485799*2537720636^(11/15) 2329991416277390 a001 63245986/505019158607*2537720636^(2/3) 2329991416277390 a001 63245986/119218851371*2537720636^(3/5) 2329991416277390 a001 31622993/22768774562*2537720636^(5/9) 2329991416277390 a001 63245986/28143753123*2537720636^(8/15) 2329991416277390 a001 1836311903/141422324*2537720636^(2/15) 2329991416277390 a001 1836311903/141422324*45537549124^(2/17) 2329991416277390 a001 1836311903/141422324*14662949395604^(2/21) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^20/Lucas(46) 2329991416277390 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^6/Lucas(39) 2329991416277390 a001 63245986/4106118243*505019158607^(5/14) 2329991416277390 a001 63245986/4106118243*73681302247^(5/13) 2329991416277390 a001 63245986/4106118243*28143753123^(2/5) 2329991416277390 a001 1836311903/141422324*10749957122^(1/8) 2329991416277390 a001 63245986/4106118243*10749957122^(5/12) 2329991416277390 a001 1836311903/141422324*4106118243^(3/23) 2329991416277390 a001 63245986/6643838879*2537720636^(7/15) 2329991416277390 a001 63245986/4106118243*4106118243^(10/23) 2329991416277390 a004 Fibonacci(39)*Lucas(47)/(1/2+sqrt(5)/2)^73 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^22/Lucas(48) 2329991416277390 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^4/Lucas(39) 2329991416277390 a001 1201881744/35355581*23725150497407^(1/16) 2329991416277390 a001 1201881744/35355581*73681302247^(1/13) 2329991416277390 a001 1201881744/35355581*10749957122^(1/12) 2329991416277390 a001 7778742049/141422324*2537720636^(1/15) 2329991416277390 a001 31622993/5374978561*10749957122^(11/24) 2329991416277390 a001 1836311903/141422324*1568397607^(3/22) 2329991416277390 a001 1201881744/35355581*4106118243^(2/23) 2329991416277390 a004 Fibonacci(39)*Lucas(49)/(1/2+sqrt(5)/2)^75 2329991416277390 a001 63245986/5600748293801*17393796001^(5/7) 2329991416277390 a001 31622993/96450076809*17393796001^(4/7) 2329991416277390 a001 63245986/28143753123*45537549124^(8/17) 2329991416277390 a001 63245986/28143753123*14662949395604^(8/21) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^24/Lucas(50) 2329991416277390 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^2/Lucas(39) 2329991416277390 a001 63245986/28143753123*192900153618^(4/9) 2329991416277390 a001 63245986/28143753123*73681302247^(6/13) 2329991416277390 a001 12586269025/141422324*10749957122^(1/24) 2329991416277390 a004 Fibonacci(39)*Lucas(51)/(1/2+sqrt(5)/2)^77 2329991416277390 a001 63245986/9062201101803*45537549124^(12/17) 2329991416277390 a001 31622993/1730726404001*45537549124^(2/3) 2329991416277390 a001 63245986/2139295485799*45537549124^(11/17) 2329991416277390 a001 63245986/505019158607*45537549124^(10/17) 2329991416277390 a001 63245986/119218851371*45537549124^(9/17) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^26/Lucas(52) 2329991416277390 a006 5^(1/2)*Fibonacci(52)/Lucas(39)/sqrt(5) 2329991416277390 a001 63245986/73681302247*73681302247^(1/2) 2329991416277390 a004 Fibonacci(39)*Lucas(53)/(1/2+sqrt(5)/2)^79 2329991416277390 a001 31622993/96450076809*14662949395604^(4/9) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^28/Lucas(54) 2329991416277390 a004 Fibonacci(54)/Lucas(39)/(1/2+sqrt(5)/2)^2 2329991416277390 a004 Fibonacci(39)*Lucas(55)/(1/2+sqrt(5)/2)^81 2329991416277390 a001 63245986/505019158607*312119004989^(6/11) 2329991416277390 a001 63245986/2139295485799*312119004989^(3/5) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^30/Lucas(56) 2329991416277390 a004 Fibonacci(56)/Lucas(39)/(1/2+sqrt(5)/2)^4 2329991416277390 a004 Fibonacci(39)*Lucas(57)/(1/2+sqrt(5)/2)^83 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^32/Lucas(58) 2329991416277390 a004 Fibonacci(58)/Lucas(39)/(1/2+sqrt(5)/2)^6 2329991416277390 a004 Fibonacci(39)*Lucas(59)/(1/2+sqrt(5)/2)^85 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^34/Lucas(60) 2329991416277390 a004 Fibonacci(60)/Lucas(39)/(1/2+sqrt(5)/2)^8 2329991416277390 a004 Fibonacci(39)*Lucas(61)/(1/2+sqrt(5)/2)^87 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^36/Lucas(62) 2329991416277390 a004 Fibonacci(62)/Lucas(39)/(1/2+sqrt(5)/2)^10 2329991416277390 a004 Fibonacci(39)*Lucas(63)/(1/2+sqrt(5)/2)^89 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^38/Lucas(64) 2329991416277390 a004 Fibonacci(64)/Lucas(39)/(1/2+sqrt(5)/2)^12 2329991416277390 a004 Fibonacci(39)*Lucas(65)/(1/2+sqrt(5)/2)^91 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^40/Lucas(66) 2329991416277390 a004 Fibonacci(66)/Lucas(39)/(1/2+sqrt(5)/2)^14 2329991416277390 a004 Fibonacci(39)*Lucas(67)/(1/2+sqrt(5)/2)^93 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^42/Lucas(68) 2329991416277390 a004 Fibonacci(68)/Lucas(39)/(1/2+sqrt(5)/2)^16 2329991416277390 a004 Fibonacci(39)*Lucas(69)/(1/2+sqrt(5)/2)^95 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^44/Lucas(70) 2329991416277390 a004 Fibonacci(70)/Lucas(39)/(1/2+sqrt(5)/2)^18 2329991416277390 a004 Fibonacci(39)*Lucas(71)/(1/2+sqrt(5)/2)^97 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^46/Lucas(72) 2329991416277390 a004 Fibonacci(72)/Lucas(39)/(1/2+sqrt(5)/2)^20 2329991416277390 a004 Fibonacci(39)*Lucas(73)/(1/2+sqrt(5)/2)^99 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^48/Lucas(74) 2329991416277390 a004 Fibonacci(74)/Lucas(39)/(1/2+sqrt(5)/2)^22 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^50/Lucas(76) 2329991416277390 a004 Fibonacci(76)/Lucas(39)/(1/2+sqrt(5)/2)^24 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^52/Lucas(78) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^54/Lucas(80) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^56/Lucas(82) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^58/Lucas(84) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^60/Lucas(86) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^62/Lucas(88) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^64/Lucas(90) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^66/Lucas(92) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^68/Lucas(94) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^70/Lucas(96) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^72/Lucas(98) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^73/Lucas(99) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^74/Lucas(100) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^71/Lucas(97) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^69/Lucas(95) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^67/Lucas(93) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^65/Lucas(91) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^63/Lucas(89) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^61/Lucas(87) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^59/Lucas(85) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^57/Lucas(83) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^55/Lucas(81) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^53/Lucas(79) 2329991416277390 a004 Fibonacci(80)/Lucas(39)/(1/2+sqrt(5)/2)^28 2329991416277390 a004 Fibonacci(82)/Lucas(39)/(1/2+sqrt(5)/2)^30 2329991416277390 a004 Fibonacci(84)/Lucas(39)/(1/2+sqrt(5)/2)^32 2329991416277390 a004 Fibonacci(86)/Lucas(39)/(1/2+sqrt(5)/2)^34 2329991416277390 a004 Fibonacci(88)/Lucas(39)/(1/2+sqrt(5)/2)^36 2329991416277390 a004 Fibonacci(90)/Lucas(39)/(1/2+sqrt(5)/2)^38 2329991416277390 a004 Fibonacci(92)/Lucas(39)/(1/2+sqrt(5)/2)^40 2329991416277390 a004 Fibonacci(94)/Lucas(39)/(1/2+sqrt(5)/2)^42 2329991416277390 a004 Fibonacci(96)/Lucas(39)/(1/2+sqrt(5)/2)^44 2329991416277390 a004 Fibonacci(100)/Lucas(39)/(1/2+sqrt(5)/2)^48 2329991416277390 a004 Fibonacci(98)/Lucas(39)/(1/2+sqrt(5)/2)^46 2329991416277390 a004 Fibonacci(99)/Lucas(39)/(1/2+sqrt(5)/2)^47 2329991416277390 a004 Fibonacci(97)/Lucas(39)/(1/2+sqrt(5)/2)^45 2329991416277390 a004 Fibonacci(95)/Lucas(39)/(1/2+sqrt(5)/2)^43 2329991416277390 a004 Fibonacci(93)/Lucas(39)/(1/2+sqrt(5)/2)^41 2329991416277390 a004 Fibonacci(91)/Lucas(39)/(1/2+sqrt(5)/2)^39 2329991416277390 a004 Fibonacci(89)/Lucas(39)/(1/2+sqrt(5)/2)^37 2329991416277390 a004 Fibonacci(87)/Lucas(39)/(1/2+sqrt(5)/2)^35 2329991416277390 a004 Fibonacci(85)/Lucas(39)/(1/2+sqrt(5)/2)^33 2329991416277390 a004 Fibonacci(83)/Lucas(39)/(1/2+sqrt(5)/2)^31 2329991416277390 a004 Fibonacci(81)/Lucas(39)/(1/2+sqrt(5)/2)^29 2329991416277390 a004 Fibonacci(79)/Lucas(39)/(1/2+sqrt(5)/2)^27 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^51/Lucas(77) 2329991416277390 a004 Fibonacci(77)/Lucas(39)/(1/2+sqrt(5)/2)^25 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^49/Lucas(75) 2329991416277390 a004 Fibonacci(75)/Lucas(39)/(1/2+sqrt(5)/2)^23 2329991416277390 a004 Fibonacci(39)*Lucas(74)/(1/2+sqrt(5)/2)^100 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^47/Lucas(73) 2329991416277390 a004 Fibonacci(73)/Lucas(39)/(1/2+sqrt(5)/2)^21 2329991416277390 a004 Fibonacci(39)*Lucas(72)/(1/2+sqrt(5)/2)^98 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^45/Lucas(71) 2329991416277390 a004 Fibonacci(71)/Lucas(39)/(1/2+sqrt(5)/2)^19 2329991416277390 a004 Fibonacci(39)*Lucas(70)/(1/2+sqrt(5)/2)^96 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^43/Lucas(69) 2329991416277390 a004 Fibonacci(69)/Lucas(39)/(1/2+sqrt(5)/2)^17 2329991416277390 a004 Fibonacci(39)*Lucas(68)/(1/2+sqrt(5)/2)^94 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^41/Lucas(67) 2329991416277390 a004 Fibonacci(67)/Lucas(39)/(1/2+sqrt(5)/2)^15 2329991416277390 a004 Fibonacci(39)*Lucas(66)/(1/2+sqrt(5)/2)^92 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^39/Lucas(65) 2329991416277390 a004 Fibonacci(65)/Lucas(39)/(1/2+sqrt(5)/2)^13 2329991416277390 a004 Fibonacci(39)*Lucas(64)/(1/2+sqrt(5)/2)^90 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^37/Lucas(63) 2329991416277390 a004 Fibonacci(63)/Lucas(39)/(1/2+sqrt(5)/2)^11 2329991416277390 a004 Fibonacci(39)*Lucas(62)/(1/2+sqrt(5)/2)^88 2329991416277390 a001 63245986/5600748293801*14662949395604^(5/9) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^35/Lucas(61) 2329991416277390 a004 Fibonacci(61)/Lucas(39)/(1/2+sqrt(5)/2)^9 2329991416277390 a004 Fibonacci(39)*Lucas(60)/(1/2+sqrt(5)/2)^86 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^33/Lucas(59) 2329991416277390 a004 Fibonacci(59)/Lucas(39)/(1/2+sqrt(5)/2)^7 2329991416277390 a004 Fibonacci(39)*Lucas(58)/(1/2+sqrt(5)/2)^84 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^31/Lucas(57) 2329991416277390 a004 Fibonacci(57)/Lucas(39)/(1/2+sqrt(5)/2)^5 2329991416277390 a001 31622993/408569081798*9062201101803^(1/2) 2329991416277390 a004 Fibonacci(39)*Lucas(56)/(1/2+sqrt(5)/2)^82 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^29/Lucas(55) 2329991416277390 a004 Fibonacci(55)/Lucas(39)/(1/2+sqrt(5)/2)^3 2329991416277390 a001 63245986/312119004989*1322157322203^(1/2) 2329991416277390 a001 63245986/505019158607*192900153618^(5/9) 2329991416277390 a001 63245986/2139295485799*192900153618^(11/18) 2329991416277390 a004 Fibonacci(39)*Lucas(54)/(1/2+sqrt(5)/2)^80 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^27/Lucas(53) 2329991416277390 a004 Fibonacci(53)/Lucas(39)/(1/2+sqrt(5)/2) 2329991416277390 a001 31622993/96450076809*73681302247^(7/13) 2329991416277390 a001 63245986/119218851371*192900153618^(1/2) 2329991416277390 a001 63245986/1322157322203*73681302247^(8/13) 2329991416277390 a001 63245986/9062201101803*73681302247^(9/13) 2329991416277390 a004 Fibonacci(39)*Lucas(52)/(1/2+sqrt(5)/2)^78 2329991416277390 a001 225851433717/2537720636*33385282^(1/18) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^25/Lucas(51) 2329991416277390 a004 Fibonacci(51)*(1/2+sqrt(5)/2)/Lucas(39) 2329991416277390 a001 31622993/22768774562*3461452808002^(5/12) 2329991416277390 a001 63245986/505019158607*28143753123^(3/5) 2329991416277390 a001 63245986/5600748293801*28143753123^(7/10) 2329991416277390 a001 31622993/22768774562*28143753123^(1/2) 2329991416277390 a004 Fibonacci(39)*Lucas(50)/(1/2+sqrt(5)/2)^76 2329991416277390 a001 12586269025/141422324*4106118243^(1/23) 2329991416277390 a001 63245986/28143753123*10749957122^(1/2) 2329991416277390 a001 7778742049/141422324*45537549124^(1/17) 2329991416277390 a001 7778742049/141422324*14662949395604^(1/21) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^23/Lucas(49) 2329991416277390 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^3/Lucas(39) 2329991416277390 a001 7778742049/141422324*192900153618^(1/18) 2329991416277390 a001 7778742049/141422324*10749957122^(1/16) 2329991416277390 a001 63245986/73681302247*10749957122^(13/24) 2329991416277390 a001 63245986/119218851371*10749957122^(9/16) 2329991416277390 a001 31622993/96450076809*10749957122^(7/12) 2329991416277390 a001 2971215073/141422324*2537720636^(1/9) 2329991416277390 a001 63245986/1322157322203*10749957122^(2/3) 2329991416277390 a001 63245986/2139295485799*10749957122^(11/16) 2329991416277390 a001 31622993/1730726404001*10749957122^(17/24) 2329991416277390 a001 63245986/9062201101803*10749957122^(3/4) 2329991416277390 a001 63245986/23725150497407*10749957122^(19/24) 2329991416277390 a004 Fibonacci(39)*Lucas(48)/(1/2+sqrt(5)/2)^74 2329991416277390 a001 12586269025/141422324*1568397607^(1/22) 2329991416277390 a001 31622993/5374978561*4106118243^(11/23) 2329991416277390 a001 63245986/6643838879*17393796001^(3/7) 2329991416277390 a001 63245986/6643838879*45537549124^(7/17) 2329991416277390 a001 2971215073/141422324*312119004989^(1/11) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^21/Lucas(47) 2329991416277390 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^5/Lucas(39) 2329991416277390 a001 63245986/6643838879*192900153618^(7/18) 2329991416277390 a001 2971215073/141422324*28143753123^(1/10) 2329991416277390 a001 63245986/6643838879*10749957122^(7/16) 2329991416277390 a001 1201881744/35355581*1568397607^(1/11) 2329991416277390 a001 63245986/28143753123*4106118243^(12/23) 2329991416277390 a001 63245986/17393796001*4106118243^(1/2) 2329991416277390 a001 63245986/73681302247*4106118243^(13/23) 2329991416277390 a001 31622993/96450076809*4106118243^(14/23) 2329991416277390 a001 63245986/505019158607*4106118243^(15/23) 2329991416277390 a001 63245986/1322157322203*4106118243^(16/23) 2329991416277390 a001 31622993/1730726404001*4106118243^(17/23) 2329991416277390 a001 63245986/9062201101803*4106118243^(18/23) 2329991416277390 a001 63245986/23725150497407*4106118243^(19/23) 2329991416277390 a004 Fibonacci(39)*Lucas(46)/(1/2+sqrt(5)/2)^72 2329991416277390 a001 701408733/141422324*599074578^(4/21) 2329991416277390 a001 63245986/4106118243*1568397607^(5/11) 2329991416277390 a001 12586269025/141422324*599074578^(1/21) 2329991416277390 a001 567451585/70711162*17393796001^(1/7) 2329991416277390 a001 31622993/1268860318*817138163596^(1/3) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^19/Lucas(45) 2329991416277390 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^7/Lucas(39) 2329991416277390 a001 31622993/5374978561*1568397607^(1/2) 2329991416277390 a001 7778742049/141422324*599074578^(1/14) 2329991416277390 a001 63245986/28143753123*1568397607^(6/11) 2329991416277390 a001 63245986/73681302247*1568397607^(13/22) 2329991416277390 a001 1201881744/35355581*599074578^(2/21) 2329991416277390 a001 31622993/96450076809*1568397607^(7/11) 2329991416277390 a001 63245986/505019158607*1568397607^(15/22) 2329991416277390 a001 63245986/1322157322203*1568397607^(8/11) 2329991416277390 a001 63245986/2139295485799*1568397607^(3/4) 2329991416277390 a001 31622993/1730726404001*1568397607^(17/22) 2329991416277390 a001 63245986/9062201101803*1568397607^(9/11) 2329991416277390 a001 1836311903/141422324*599074578^(1/7) 2329991416277390 a001 63245986/23725150497407*1568397607^(19/22) 2329991416277390 a004 Fibonacci(39)*Lucas(44)/(1/2+sqrt(5)/2)^70 2329991416277390 a001 567451585/70711162*599074578^(1/6) 2329991416277390 a001 63245986/1568397607*599074578^(3/7) 2329991416277390 a001 86267571272/969323029*33385282^(1/18) 2329991416277390 a001 12586269025/141422324*228826127^(1/20) 2329991416277390 a001 433494437/141422324*2537720636^(1/5) 2329991416277390 a001 63245986/969323029*45537549124^(1/3) 2329991416277390 a001 433494437/141422324*45537549124^(3/17) 2329991416277390 a001 433494437/141422324*14662949395604^(1/7) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^17/Lucas(43) 2329991416277390 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^9/Lucas(39) 2329991416277390 a001 433494437/141422324*192900153618^(1/6) 2329991416277390 a001 433494437/141422324*10749957122^(3/16) 2329991416277390 a001 63245986/4106118243*599074578^(10/21) 2329991416277390 a001 63245986/6643838879*599074578^(1/2) 2329991416277390 a001 31622993/5374978561*599074578^(11/21) 2329991416277390 a001 63245986/28143753123*599074578^(4/7) 2329991416277390 a001 433494437/141422324*599074578^(3/14) 2329991416277390 a001 63245986/73681302247*599074578^(13/21) 2329991416277390 a001 63245986/119218851371*599074578^(9/14) 2329991416277390 a001 31622993/96450076809*599074578^(2/3) 2329991416277390 a001 1201881744/35355581*228826127^(1/10) 2329991416277390 a001 66978574/35355581*228826127^(1/4) 2329991416277390 a001 63245986/505019158607*599074578^(5/7) 2329991416277390 a001 63245986/1322157322203*599074578^(16/21) 2329991416277390 a001 63245986/2139295485799*599074578^(11/14) 2329991416277390 a001 31622993/1730726404001*599074578^(17/21) 2329991416277390 a001 63245986/5600748293801*599074578^(5/6) 2329991416277390 a001 63245986/9062201101803*599074578^(6/7) 2329991416277390 a001 2971215073/141422324*228826127^(1/8) 2329991416277390 a001 66978574/634430159*87403803^(8/19) 2329991416277390 a001 63245986/23725150497407*599074578^(19/21) 2329991416277390 a001 165580141/599074578*87403803^(7/19) 2329991416277390 a004 Fibonacci(39)*Lucas(42)/(1/2+sqrt(5)/2)^68 2329991416277390 a001 1836311903/141422324*228826127^(3/20) 2329991416277390 a001 701408733/141422324*228826127^(1/5) 2329991416277390 a001 701408733/6643838879*87403803^(8/19) 2329991416277390 a001 31622993/299537289*228826127^(2/5) 2329991416277390 a001 1836311903/17393796001*87403803^(8/19) 2329991416277390 a001 1201881744/11384387281*87403803^(8/19) 2329991416277390 a001 12586269025/119218851371*87403803^(8/19) 2329991416277390 a001 32951280099/312119004989*87403803^(8/19) 2329991416277390 a001 21566892818/204284540899*87403803^(8/19) 2329991416277390 a001 225851433717/2139295485799*87403803^(8/19) 2329991416277390 a001 182717648081/1730726404001*87403803^(8/19) 2329991416277390 a001 139583862445/1322157322203*87403803^(8/19) 2329991416277390 a001 53316291173/505019158607*87403803^(8/19) 2329991416277390 a001 10182505537/96450076809*87403803^(8/19) 2329991416277390 a001 7778742049/73681302247*87403803^(8/19) 2329991416277390 a001 2971215073/28143753123*87403803^(8/19) 2329991416277390 a001 567451585/5374978561*87403803^(8/19) 2329991416277390 a001 12586269025/228826127*33385282^(1/12) 2329991416277390 a001 433494437/4106118243*87403803^(8/19) 2329991416277390 a001 102334155/17393796001*87403803^(11/19) 2329991416277390 a001 12586269025/141422324*87403803^(1/19) 2329991416277390 a001 32951280099/370248451*33385282^(1/18) 2329991416277390 a001 63245986/370248451*2537720636^(1/3) 2329991416277390 a001 63245986/370248451*45537549124^(5/17) 2329991416277390 a001 165580141/141422324*312119004989^(1/5) 2329991416277390 a001 63245986/370248451*14662949395604^(5/21) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^15/Lucas(41) 2329991416277390 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^11/Lucas(39) 2329991416277390 a001 63245986/370248451*192900153618^(5/18) 2329991416277390 a001 63245986/370248451*28143753123^(3/10) 2329991416277390 a001 63245986/370248451*10749957122^(5/16) 2329991416277390 a001 165580141/141422324*1568397607^(1/4) 2329991416277390 a001 63245986/1568397607*228826127^(9/20) 2329991416277390 a001 63245986/370248451*599074578^(5/14) 2329991416277390 a001 267914296/6643838879*87403803^(9/19) 2329991416277390 a001 63245986/4106118243*228826127^(1/2) 2329991416277390 a001 31622993/5374978561*228826127^(11/20) 2329991416277390 a001 63245986/28143753123*228826127^(3/5) 2329991416277390 a001 701408733/17393796001*87403803^(9/19) 2329991416277390 a001 31622993/22768774562*228826127^(5/8) 2329991416277390 a001 1836311903/45537549124*87403803^(9/19) 2329991416277390 a001 4807526976/119218851371*87403803^(9/19) 2329991416277390 a001 1144206275/28374454999*87403803^(9/19) 2329991416277390 a001 165580141/1568397607*87403803^(8/19) 2329991416277390 a001 32951280099/817138163596*87403803^(9/19) 2329991416277390 a001 86267571272/2139295485799*87403803^(9/19) 2329991416277390 a001 225851433717/5600748293801*87403803^(9/19) 2329991416277390 a001 365435296162/9062201101803*87403803^(9/19) 2329991416277390 a001 139583862445/3461452808002*87403803^(9/19) 2329991416277390 a001 53316291173/1322157322203*87403803^(9/19) 2329991416277390 a001 20365011074/505019158607*87403803^(9/19) 2329991416277390 a001 7778742049/192900153618*87403803^(9/19) 2329991416277390 a001 2971215073/73681302247*87403803^(9/19) 2329991416277390 a001 1134903170/28143753123*87403803^(9/19) 2329991416277390 a001 63245986/73681302247*228826127^(13/20) 2329991416277390 a001 133957148/5374978561*87403803^(1/2) 2329991416277390 a001 433494437/10749957122*87403803^(9/19) 2329991416277390 a001 31622993/96450076809*228826127^(7/10) 2329991416277390 a001 102334155/45537549124*87403803^(12/19) 2329991416277390 a001 1201881744/35355581*87403803^(2/19) 2329991416277390 a001 63245986/505019158607*228826127^(3/4) 2329991416277390 a001 63245986/370248451*228826127^(3/8) 2329991416277390 a001 233802911/9381251041*87403803^(1/2) 2329991416277390 a001 63245986/1322157322203*228826127^(4/5) 2329991416277390 a001 1836311903/73681302247*87403803^(1/2) 2329991416277390 a001 267084832/10716675201*87403803^(1/2) 2329991416277390 a001 12586269025/505019158607*87403803^(1/2) 2329991416277390 a001 10983760033/440719107401*87403803^(1/2) 2329991416277390 a001 43133785636/1730726404001*87403803^(1/2) 2329991416277390 a001 75283811239/3020733700601*87403803^(1/2) 2329991416277390 a001 182717648081/7331474697802*87403803^(1/2) 2329991416277390 a001 139583862445/5600748293801*87403803^(1/2) 2329991416277390 a001 53316291173/2139295485799*87403803^(1/2) 2329991416277390 a001 10182505537/408569081798*87403803^(1/2) 2329991416277390 a001 7778742049/312119004989*87403803^(1/2) 2329991416277390 a001 2971215073/119218851371*87403803^(1/2) 2329991416277390 a001 567451585/22768774562*87403803^(1/2) 2329991416277390 a001 9238424/599786069*87403803^(10/19) 2329991416277390 a001 31622993/1730726404001*228826127^(17/20) 2329991416277390 a001 433494437/17393796001*87403803^(1/2) 2329991416277390 a001 63245986/5600748293801*228826127^(7/8) 2329991416277390 a001 63245986/9062201101803*228826127^(9/10) 2329991416277390 a001 63245986/23725150497407*228826127^(19/20) 2329991416277390 a001 701408733/45537549124*87403803^(10/19) 2329991416277390 a001 1836311903/119218851371*87403803^(10/19) 2329991416277390 a001 4807526976/312119004989*87403803^(10/19) 2329991416277390 a001 12586269025/817138163596*87403803^(10/19) 2329991416277390 a001 32951280099/2139295485799*87403803^(10/19) 2329991416277390 a001 86267571272/5600748293801*87403803^(10/19) 2329991416277390 a001 7787980473/505618944676*87403803^(10/19) 2329991416277390 a001 365435296162/23725150497407*87403803^(10/19) 2329991416277390 a001 139583862445/9062201101803*87403803^(10/19) 2329991416277390 a001 53316291173/3461452808002*87403803^(10/19) 2329991416277390 a001 20365011074/1322157322203*87403803^(10/19) 2329991416277390 a001 7778742049/505019158607*87403803^(10/19) 2329991416277390 a001 2971215073/192900153618*87403803^(10/19) 2329991416277390 a001 1134903170/73681302247*87403803^(10/19) 2329991416277390 a004 Fibonacci(39)*Lucas(40)/(1/2+sqrt(5)/2)^66 2329991416277390 a001 165580141/4106118243*87403803^(9/19) 2329991416277390 a001 433494437/87403803*33385282^(2/9) 2329991416277390 a001 433494437/28143753123*87403803^(10/19) 2329991416277390 a001 102334155/119218851371*87403803^(13/19) 2329991416277390 a001 1836311903/141422324*87403803^(3/19) 2329991416277390 a001 10983760033/199691526*33385282^(1/12) 2329991416277390 a001 102334155/141422324*87403803^(6/19) 2329991416277390 a001 165580141/6643838879*87403803^(1/2) 2329991416277390 a001 66978574/11384387281*87403803^(11/19) 2329991416277390 a001 86267571272/1568397607*33385282^(1/12) 2329991416277390 a001 75283811239/1368706081*33385282^(1/12) 2329991416277390 a001 591286729879/10749957122*33385282^(1/12) 2329991416277390 a001 12585437040/228811001*33385282^(1/12) 2329991416277390 a001 4052739537881/73681302247*33385282^(1/12) 2329991416277390 a001 3536736619241/64300051206*33385282^(1/12) 2329991416277390 a001 6557470319842/119218851371*33385282^(1/12) 2329991416277390 a001 2504730781961/45537549124*33385282^(1/12) 2329991416277390 a001 956722026041/17393796001*33385282^(1/12) 2329991416277390 a001 365435296162/6643838879*33385282^(1/12) 2329991416277390 a001 139583862445/2537720636*33385282^(1/12) 2329991416277390 a001 701408733/119218851371*87403803^(11/19) 2329991416277390 a001 1836311903/312119004989*87403803^(11/19) 2329991416277390 a001 1201881744/204284540899*87403803^(11/19) 2329991416277390 a001 12586269025/2139295485799*87403803^(11/19) 2329991416277390 a001 32951280099/5600748293801*87403803^(11/19) 2329991416277390 a001 1135099622/192933544679*87403803^(11/19) 2329991416277390 a001 139583862445/23725150497407*87403803^(11/19) 2329991416277390 a001 53316291173/9062201101803*87403803^(11/19) 2329991416277390 a001 10182505537/1730726404001*87403803^(11/19) 2329991416277390 a001 7778742049/1322157322203*87403803^(11/19) 2329991416277390 a001 2971215073/505019158607*87403803^(11/19) 2329991416277390 a001 53316291173/969323029*33385282^(1/12) 2329991416277390 a001 567451585/96450076809*87403803^(11/19) 2329991416277390 a001 165580141/10749957122*87403803^(10/19) 2329991416277390 a001 433494437/73681302247*87403803^(11/19) 2329991416277390 a001 701408733/141422324*87403803^(4/19) 2329991416277390 a001 9303105/28374454999*87403803^(14/19) 2329991416277390 a001 63245986/228826127*87403803^(7/19) 2329991416277390 a001 267914296/119218851371*87403803^(12/19) 2329991416277390 a001 7778742049/228826127*33385282^(1/9) 2329991416277390 a001 66978574/35355581*87403803^(5/19) 2329991416277390 a001 20365011074/370248451*33385282^(1/12) 2329991416277390 a001 3524667/1568437211*87403803^(12/19) 2329991416277390 a001 1836311903/817138163596*87403803^(12/19) 2329991416277390 a001 4807526976/2139295485799*87403803^(12/19) 2329991416277390 a001 12586269025/5600748293801*87403803^(12/19) 2329991416277390 a001 32951280099/14662949395604*87403803^(12/19) 2329991416277390 a001 53316291173/23725150497407*87403803^(12/19) 2329991416277390 a001 20365011074/9062201101803*87403803^(12/19) 2329991416277390 a001 7778742049/3461452808002*87403803^(12/19) 2329991416277390 a001 2971215073/1322157322203*87403803^(12/19) 2329991416277390 a001 1134903170/505019158607*87403803^(12/19) 2329991416277390 a001 165580141/28143753123*87403803^(11/19) 2329991416277390 a001 31622993/70711162*141422324^(1/3) 2329991416277390 a001 433494437/192900153618*87403803^(12/19) 2329991416277390 a001 102334155/817138163596*87403803^(15/19) 2329991416277390 a001 267914296/312119004989*87403803^(13/19) 2329991416277390 a001 701408733/817138163596*87403803^(13/19) 2329991416277390 a001 1836311903/2139295485799*87403803^(13/19) 2329991416277390 a001 4807526976/5600748293801*87403803^(13/19) 2329991416277390 a001 12586269025/14662949395604*87403803^(13/19) 2329991416277390 a001 20365011074/23725150497407*87403803^(13/19) 2329991416277390 a001 7778742049/9062201101803*87403803^(13/19) 2329991416277390 a001 2971215073/3461452808002*87403803^(13/19) 2329991416277390 a001 1134903170/1322157322203*87403803^(13/19) 2329991416277390 a001 165580141/73681302247*87403803^(12/19) 2329991416277390 a001 267914296/87403803*33385282^(1/4) 2329991416277390 a001 433494437/505019158607*87403803^(13/19) 2329991416277390 a001 102334155/2139295485799*87403803^(16/19) 2329991416277390 a001 66978574/204284540899*87403803^(14/19) 2329991416277390 a001 701408733/2139295485799*87403803^(14/19) 2329991416277390 a001 1836311903/5600748293801*87403803^(14/19) 2329991416277390 a001 1201881744/3665737348901*87403803^(14/19) 2329991416277390 a001 7778742049/23725150497407*87403803^(14/19) 2329991416277390 a001 2971215073/9062201101803*87403803^(14/19) 2329991416277390 a001 567451585/1730726404001*87403803^(14/19) 2329991416277390 a001 165580141/192900153618*87403803^(13/19) 2329991416277390 a001 10182505537/299537289*33385282^(1/9) 2329991416277390 a001 433494437/1322157322203*87403803^(14/19) 2329991416277390 a001 102334155/5600748293801*87403803^(17/19) 2329991416277390 a001 53316291173/1568397607*33385282^(1/9) 2329991416277390 a001 139583862445/4106118243*33385282^(1/9) 2329991416277390 a001 182717648081/5374978561*33385282^(1/9) 2329991416277390 a001 956722026041/28143753123*33385282^(1/9) 2329991416277390 a001 2504730781961/73681302247*33385282^(1/9) 2329991416277390 a001 3278735159921/96450076809*33385282^(1/9) 2329991416277390 a001 10610209857723/312119004989*33385282^(1/9) 2329991416277390 a001 4052739537881/119218851371*33385282^(1/9) 2329991416277390 a001 387002188980/11384387281*33385282^(1/9) 2329991416277390 a001 591286729879/17393796001*33385282^(1/9) 2329991416277390 a001 225851433717/6643838879*33385282^(1/9) 2329991416277390 a001 12586269025/141422324*33385282^(1/18) 2329991416277390 a001 1135099622/33391061*33385282^(1/9) 2329991416277390 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^13/Lucas(39) 2329991416277390 a001 31622993/70711162*73681302247^(1/4) 2329991416277390 a001 267914296/2139295485799*87403803^(15/19) 2329991416277390 a001 32951280099/969323029*33385282^(1/9) 2329991416277390 a001 31622993/299537289*87403803^(8/19) 2329991416277390 a001 701408733/5600748293801*87403803^(15/19) 2329991416277390 a001 1836311903/14662949395604*87403803^(15/19) 2329991416277390 a001 2971215073/23725150497407*87403803^(15/19) 2329991416277390 a001 1134903170/9062201101803*87403803^(15/19) 2329991416277390 a001 165580141/505019158607*87403803^(14/19) 2329991416277390 a001 433494437/3461452808002*87403803^(15/19) 2329991416277390 a001 102334155/14662949395604*87403803^(18/19) 2329991416277390 a001 12586269025/370248451*33385282^(1/9) 2329991416277390 a001 267914296/5600748293801*87403803^(16/19) 2329991416277390 a001 701408733/14662949395604*87403803^(16/19) 2329991416277390 a001 1134903170/23725150497407*87403803^(16/19) 2329991416277390 a001 165580141/1322157322203*87403803^(15/19) 2329991416277390 a001 433494437/9062201101803*87403803^(16/19) 2329991416277390 a001 63245986/1568397607*87403803^(9/19) 2329991416277390 a004 Fibonacci(40)*Lucas(38)/(1/2+sqrt(5)/2)^65 2329991416277390 a001 10946/599074579*87403803^(17/19) 2329991416277390 a001 31622993/1268860318*87403803^(1/2) 2329991416277390 a001 165580141/3461452808002*87403803^(16/19) 2329991416277390 a001 433494437/23725150497407*87403803^(17/19) 2329991416277390 a001 63245986/4106118243*87403803^(10/19) 2329991416277390 a001 165580141/9062201101803*87403803^(17/19) 2329991416277390 a001 7778742049/141422324*33385282^(1/12) 2329991416277390 a001 165580141/87403803*33385282^(5/18) 2329991416277390 a001 31622993/5374978561*87403803^(11/19) 2329991416277390 a004 Fibonacci(42)*Lucas(38)/(1/2+sqrt(5)/2)^67 2329991416277390 a001 2971215073/228826127*33385282^(1/6) 2329991416277390 a004 Fibonacci(44)*Lucas(38)/(1/2+sqrt(5)/2)^69 2329991416277390 a004 Fibonacci(46)*Lucas(38)/(1/2+sqrt(5)/2)^71 2329991416277390 a004 Fibonacci(48)*Lucas(38)/(1/2+sqrt(5)/2)^73 2329991416277390 a004 Fibonacci(50)*Lucas(38)/(1/2+sqrt(5)/2)^75 2329991416277390 a004 Fibonacci(52)*Lucas(38)/(1/2+sqrt(5)/2)^77 2329991416277390 a004 Fibonacci(54)*Lucas(38)/(1/2+sqrt(5)/2)^79 2329991416277390 a004 Fibonacci(56)*Lucas(38)/(1/2+sqrt(5)/2)^81 2329991416277390 a004 Fibonacci(58)*Lucas(38)/(1/2+sqrt(5)/2)^83 2329991416277390 a004 Fibonacci(60)*Lucas(38)/(1/2+sqrt(5)/2)^85 2329991416277390 a004 Fibonacci(62)*Lucas(38)/(1/2+sqrt(5)/2)^87 2329991416277390 a004 Fibonacci(64)*Lucas(38)/(1/2+sqrt(5)/2)^89 2329991416277390 a004 Fibonacci(66)*Lucas(38)/(1/2+sqrt(5)/2)^91 2329991416277390 a004 Fibonacci(68)*Lucas(38)/(1/2+sqrt(5)/2)^93 2329991416277390 a004 Fibonacci(70)*Lucas(38)/(1/2+sqrt(5)/2)^95 2329991416277390 a004 Fibonacci(72)*Lucas(38)/(1/2+sqrt(5)/2)^97 2329991416277390 a004 Fibonacci(74)*Lucas(38)/(1/2+sqrt(5)/2)^99 2329991416277390 a001 2/39088169*(1/2+1/2*5^(1/2))^51 2329991416277390 a004 Fibonacci(75)*Lucas(38)/(1/2+sqrt(5)/2)^100 2329991416277390 a004 Fibonacci(73)*Lucas(38)/(1/2+sqrt(5)/2)^98 2329991416277390 a004 Fibonacci(71)*Lucas(38)/(1/2+sqrt(5)/2)^96 2329991416277390 a004 Fibonacci(69)*Lucas(38)/(1/2+sqrt(5)/2)^94 2329991416277390 a004 Fibonacci(67)*Lucas(38)/(1/2+sqrt(5)/2)^92 2329991416277390 a004 Fibonacci(65)*Lucas(38)/(1/2+sqrt(5)/2)^90 2329991416277390 a004 Fibonacci(63)*Lucas(38)/(1/2+sqrt(5)/2)^88 2329991416277390 a004 Fibonacci(61)*Lucas(38)/(1/2+sqrt(5)/2)^86 2329991416277390 a004 Fibonacci(59)*Lucas(38)/(1/2+sqrt(5)/2)^84 2329991416277390 a004 Fibonacci(57)*Lucas(38)/(1/2+sqrt(5)/2)^82 2329991416277390 a004 Fibonacci(55)*Lucas(38)/(1/2+sqrt(5)/2)^80 2329991416277390 a004 Fibonacci(53)*Lucas(38)/(1/2+sqrt(5)/2)^78 2329991416277390 a004 Fibonacci(51)*Lucas(38)/(1/2+sqrt(5)/2)^76 2329991416277390 a004 Fibonacci(49)*Lucas(38)/(1/2+sqrt(5)/2)^74 2329991416277390 a004 Fibonacci(47)*Lucas(38)/(1/2+sqrt(5)/2)^72 2329991416277390 a004 Fibonacci(45)*Lucas(38)/(1/2+sqrt(5)/2)^70 2329991416277390 a001 165580141/23725150497407*87403803^(18/19) 2329991416277390 a004 Fibonacci(43)*Lucas(38)/(1/2+sqrt(5)/2)^68 2329991416277390 a001 63245986/28143753123*87403803^(12/19) 2329991416277390 a004 Fibonacci(41)*Lucas(38)/(1/2+sqrt(5)/2)^66 2329991416277390 a001 63245986/73681302247*87403803^(13/19) 2329991416277390 a001 31622993/96450076809*87403803^(14/19) 2329991416277390 a001 7778742049/599074578*33385282^(1/6) 2329991416277390 a001 20365011074/1568397607*33385282^(1/6) 2329991416277390 a001 53316291173/4106118243*33385282^(1/6) 2329991416277390 a001 139583862445/10749957122*33385282^(1/6) 2329991416277390 a001 365435296162/28143753123*33385282^(1/6) 2329991416277390 a001 956722026041/73681302247*33385282^(1/6) 2329991416277390 a001 2504730781961/192900153618*33385282^(1/6) 2329991416277390 a001 10610209857723/817138163596*33385282^(1/6) 2329991416277390 a001 4052739537881/312119004989*33385282^(1/6) 2329991416277390 a001 1548008755920/119218851371*33385282^(1/6) 2329991416277390 a001 591286729879/45537549124*33385282^(1/6) 2329991416277390 a001 7787980473/599786069*33385282^(1/6) 2329991416277390 a001 86267571272/6643838879*33385282^(1/6) 2329991416277390 a001 1201881744/35355581*33385282^(1/9) 2329991416277390 a001 32951280099/2537720636*33385282^(1/6) 2329991416277390 a001 12586269025/969323029*33385282^(1/6) 2329991416277390 a001 63245986/505019158607*87403803^(15/19) 2329991416277390 a001 4807526976/370248451*33385282^(1/6) 2329991416277390 a001 63245986/1322157322203*87403803^(16/19) 2329991416277390 a001 31622993/1730726404001*87403803^(17/19) 2329991416277390 a001 63245986/9062201101803*87403803^(18/19) 2329991416277390 a001 1134903170/228826127*33385282^(2/9) 2329991416277390 a004 Fibonacci(39)*Lucas(38)/(1/2+sqrt(5)/2)^64 2329991416277390 a001 433494437/33385282*12752043^(3/17) 2329991416277390 a001 39088169/54018521*141422324^(4/13) 2329991416277390 a001 2971215073/599074578*33385282^(2/9) 2329991416277390 a001 7778742049/1568397607*33385282^(2/9) 2329991416277390 a001 20365011074/4106118243*33385282^(2/9) 2329991416277390 a001 53316291173/10749957122*33385282^(2/9) 2329991416277390 a001 139583862445/28143753123*33385282^(2/9) 2329991416277390 a001 365435296162/73681302247*33385282^(2/9) 2329991416277390 a001 956722026041/192900153618*33385282^(2/9) 2329991416277390 a001 2504730781961/505019158607*33385282^(2/9) 2329991416277390 a001 10610209857723/2139295485799*33385282^(2/9) 2329991416277390 a001 4052739537881/817138163596*33385282^(2/9) 2329991416277390 a001 140728068720/28374454999*33385282^(2/9) 2329991416277390 a001 591286729879/119218851371*33385282^(2/9) 2329991416277390 a001 225851433717/45537549124*33385282^(2/9) 2329991416277390 a001 86267571272/17393796001*33385282^(2/9) 2329991416277390 a001 32951280099/6643838879*33385282^(2/9) 2329991416277390 a001 1836311903/141422324*33385282^(1/6) 2329991416277390 a001 1144206275/230701876*33385282^(2/9) 2329991416277390 a001 4807526976/969323029*33385282^(2/9) 2329991416277390 a001 701408733/228826127*33385282^(1/4) 2329991416277390 a001 1836311903/370248451*33385282^(2/9) 2329991416277390 a001 39088169/54018521*2537720636^(4/15) 2329991416277390 a001 24157817/87403803*17393796001^(2/7) 2329991416277390 a001 39088169/54018521*45537549124^(4/17) 2329991416277390 a001 39088169/54018521*817138163596^(4/19) 2329991416277390 a001 24157817/87403803*14662949395604^(2/9) 2329991416277390 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^14/Lucas(38) 2329991416277390 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^12/Lucas(37) 2329991416277390 a001 39088169/54018521*192900153618^(2/9) 2329991416277390 a001 39088169/54018521*73681302247^(3/13) 2329991416277390 a001 39088169/54018521*10749957122^(1/4) 2329991416277390 a001 24157817/87403803*10749957122^(7/24) 2329991416277390 a001 39088169/54018521*4106118243^(6/23) 2329991416277390 a001 24157817/87403803*4106118243^(7/23) 2329991416277390 a001 39088169/54018521*1568397607^(3/11) 2329991416277390 a001 24157817/87403803*1568397607^(7/22) 2329991416277390 a001 39088169/54018521*599074578^(2/7) 2329991416277390 a001 24157817/87403803*599074578^(1/3) 2329991416277390 a001 39088169/54018521*228826127^(3/10) 2329991416277390 a001 63245986/87403803*33385282^(1/3) 2329991416277390 a001 24157817/87403803*228826127^(7/20) 2329991416277390 a001 1836311903/599074578*33385282^(1/4) 2329991416277390 a001 39088169/228826127*33385282^(5/12) 2329991416277390 a001 686789568/224056801*33385282^(1/4) 2329991416277390 a001 12586269025/4106118243*33385282^(1/4) 2329991416277390 a001 32951280099/10749957122*33385282^(1/4) 2329991416277390 a001 86267571272/28143753123*33385282^(1/4) 2329991416277390 a001 32264490531/10525900321*33385282^(1/4) 2329991416277390 a001 591286729879/192900153618*33385282^(1/4) 2329991416277390 a001 1548008755920/505019158607*33385282^(1/4) 2329991416277390 a001 1515744265389/494493258286*33385282^(1/4) 2329991416277390 a001 2504730781961/817138163596*33385282^(1/4) 2329991416277390 a001 956722026041/312119004989*33385282^(1/4) 2329991416277390 a001 365435296162/119218851371*33385282^(1/4) 2329991416277390 a001 139583862445/45537549124*33385282^(1/4) 2329991416277390 a001 53316291173/17393796001*33385282^(1/4) 2329991416277390 a001 20365011074/6643838879*33385282^(1/4) 2329991416277390 a001 7778742049/2537720636*33385282^(1/4) 2329991416277390 a001 2971215073/969323029*33385282^(1/4) 2329991416277390 a001 7778742049/87403803*12752043^(1/17) 2329991416277390 a001 433494437/228826127*33385282^(5/18) 2329991416277390 a001 1134903170/370248451*33385282^(1/4) 2329991416277391 a001 567451585/299537289*33385282^(5/18) 2329991416277391 a001 2971215073/1568397607*33385282^(5/18) 2329991416277391 a001 701408733/141422324*33385282^(2/9) 2329991416277391 a001 7778742049/4106118243*33385282^(5/18) 2329991416277391 a001 10182505537/5374978561*33385282^(5/18) 2329991416277391 a001 53316291173/28143753123*33385282^(5/18) 2329991416277391 a001 139583862445/73681302247*33385282^(5/18) 2329991416277391 a001 182717648081/96450076809*33385282^(5/18) 2329991416277391 a001 956722026041/505019158607*33385282^(5/18) 2329991416277391 a001 10610209857723/5600748293801*33385282^(5/18) 2329991416277391 a001 591286729879/312119004989*33385282^(5/18) 2329991416277391 a001 225851433717/119218851371*33385282^(5/18) 2329991416277391 a001 21566892818/11384387281*33385282^(5/18) 2329991416277391 a001 32951280099/17393796001*33385282^(5/18) 2329991416277391 a001 12586269025/6643838879*33385282^(5/18) 2329991416277391 a001 1201881744/634430159*33385282^(5/18) 2329991416277391 a001 1836311903/969323029*33385282^(5/18) 2329991416277391 a001 39088169/54018521*87403803^(6/19) 2329991416277391 a001 701408733/370248451*33385282^(5/18) 2329991416277391 a001 24157817/87403803*87403803^(7/19) 2329991416277391 a001 39088169/141422324*33385282^(7/18) 2329991416277391 a001 39088169/370248451*33385282^(4/9) 2329991416277391 a001 433494437/141422324*33385282^(1/4) 2329991416277391 a001 165580141/228826127*33385282^(1/3) 2329991416277391 a004 Fibonacci(37)*Lucas(39)/(1/2+sqrt(5)/2)^63 2329991416277391 a001 66978574/35355581*33385282^(5/18) 2329991416277391 a001 24157817/3461452808002*141422324^(12/13) 2329991416277391 a001 433494437/599074578*33385282^(1/3) 2329991416277391 a001 1134903170/1568397607*33385282^(1/3) 2329991416277391 a001 2971215073/4106118243*33385282^(1/3) 2329991416277391 a001 7778742049/10749957122*33385282^(1/3) 2329991416277391 a001 20365011074/28143753123*33385282^(1/3) 2329991416277391 a001 53316291173/73681302247*33385282^(1/3) 2329991416277391 a001 139583862445/192900153618*33385282^(1/3) 2329991416277391 a001 10610209857723/14662949395604*33385282^(1/3) 2329991416277391 a001 225851433717/312119004989*33385282^(1/3) 2329991416277391 a001 86267571272/119218851371*33385282^(1/3) 2329991416277391 a001 32951280099/45537549124*33385282^(1/3) 2329991416277391 a001 12586269025/17393796001*33385282^(1/3) 2329991416277391 a001 4807526976/6643838879*33385282^(1/3) 2329991416277391 a001 1836311903/2537720636*33385282^(1/3) 2329991416277391 a001 701408733/969323029*33385282^(1/3) 2329991416277391 a001 24157817/817138163596*141422324^(11/13) 2329991416277391 a001 267914296/370248451*33385282^(1/3) 2329991416277391 a001 24157817/192900153618*141422324^(10/13) 2329991416277391 a001 24157817/45537549124*141422324^(9/13) 2329991416277391 a001 24157817/28143753123*141422324^(2/3) 2329991416277391 a001 24157817/10749957122*141422324^(8/13) 2329991416277391 a001 24157817/2537720636*141422324^(7/13) 2329991416277391 a001 24157817/599074578*141422324^(6/13) 2329991416277391 a001 39088169/969323029*33385282^(1/2) 2329991416277391 a001 102334155/54018521*2537720636^(2/9) 2329991416277391 a001 102334155/54018521*312119004989^(2/11) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^16/Lucas(40) 2329991416277391 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^10/Lucas(37) 2329991416277391 a001 24157817/228826127*23725150497407^(1/4) 2329991416277391 a001 24157817/228826127*73681302247^(4/13) 2329991416277391 a001 102334155/54018521*28143753123^(1/5) 2329991416277391 a001 102334155/54018521*10749957122^(5/24) 2329991416277391 a001 24157817/228826127*10749957122^(1/3) 2329991416277391 a001 102334155/54018521*4106118243^(5/23) 2329991416277391 a001 24157817/228826127*4106118243^(8/23) 2329991416277391 a001 102334155/54018521*1568397607^(5/22) 2329991416277391 a001 24157817/228826127*1568397607^(4/11) 2329991416277391 a001 102334155/54018521*599074578^(5/21) 2329991416277391 a001 24157817/228826127*599074578^(8/21) 2329991416277391 a001 102334155/54018521*228826127^(1/4) 2329991416277391 a001 102334155/141422324*33385282^(1/3) 2329991416277391 a001 24157817/228826127*228826127^(2/5) 2329991416277391 a001 701408733/54018521*141422324^(2/13) 2329991416277391 a004 Fibonacci(37)*Lucas(41)/(1/2+sqrt(5)/2)^65 2329991416277391 a001 9227465/73681302247*20633239^(6/7) 2329991416277391 a001 102334155/370248451*33385282^(7/18) 2329991416277391 a001 165580141/54018521*141422324^(3/13) 2329991416277391 a001 2971215073/54018521*141422324^(1/13) 2329991416277391 a001 24157817/599074578*2537720636^(2/5) 2329991416277391 a001 24157817/599074578*45537549124^(6/17) 2329991416277391 a001 24157817/599074578*14662949395604^(2/7) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^18/Lucas(42) 2329991416277391 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^8/Lucas(37) 2329991416277391 a001 24157817/599074578*192900153618^(1/3) 2329991416277391 a001 267914296/54018521*73681302247^(2/13) 2329991416277391 a001 267914296/54018521*10749957122^(1/6) 2329991416277391 a001 24157817/599074578*10749957122^(3/8) 2329991416277391 a001 267914296/54018521*4106118243^(4/23) 2329991416277391 a001 24157817/599074578*4106118243^(9/23) 2329991416277391 a001 267914296/54018521*1568397607^(2/11) 2329991416277391 a001 24157817/599074578*1568397607^(9/22) 2329991416277391 a001 267914296/54018521*599074578^(4/21) 2329991416277391 a001 24157817/599074578*599074578^(3/7) 2329991416277391 a004 Fibonacci(37)*Lucas(43)/(1/2+sqrt(5)/2)^67 2329991416277391 a001 24157817/1568397607*2537720636^(4/9) 2329991416277391 a001 701408733/54018521*2537720636^(2/15) 2329991416277391 a001 701408733/54018521*45537549124^(2/17) 2329991416277391 a001 701408733/54018521*14662949395604^(2/21) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^20/Lucas(44) 2329991416277391 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^6/Lucas(37) 2329991416277391 a001 24157817/1568397607*23725150497407^(5/16) 2329991416277391 a001 24157817/1568397607*505019158607^(5/14) 2329991416277391 a001 24157817/1568397607*73681302247^(5/13) 2329991416277391 a001 24157817/1568397607*28143753123^(2/5) 2329991416277391 a001 701408733/54018521*10749957122^(1/8) 2329991416277391 a001 24157817/1568397607*10749957122^(5/12) 2329991416277391 a001 701408733/54018521*4106118243^(3/23) 2329991416277391 a001 24157817/1568397607*4106118243^(10/23) 2329991416277391 a001 701408733/54018521*1568397607^(3/22) 2329991416277391 a001 24157817/1568397607*1568397607^(5/11) 2329991416277391 a004 Fibonacci(37)*Lucas(45)/(1/2+sqrt(5)/2)^69 2329991416277391 a001 24157817/23725150497407*2537720636^(8/9) 2329991416277391 a001 24157817/14662949395604*2537720636^(13/15) 2329991416277391 a001 24157817/3461452808002*2537720636^(4/5) 2329991416277391 a001 24157817/2139295485799*2537720636^(7/9) 2329991416277391 a001 24157817/817138163596*2537720636^(11/15) 2329991416277391 a001 24157817/192900153618*2537720636^(2/3) 2329991416277391 a001 24157817/45537549124*2537720636^(3/5) 2329991416277391 a001 24157817/10749957122*2537720636^(8/15) 2329991416277391 a001 24157817/17393796001*2537720636^(5/9) 2329991416277391 a001 20365011074/228826127*12752043^(1/17) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^22/Lucas(46) 2329991416277391 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^4/Lucas(37) 2329991416277391 a001 1836311903/54018521*23725150497407^(1/16) 2329991416277391 a001 1836311903/54018521*73681302247^(1/13) 2329991416277391 a001 1836311903/54018521*10749957122^(1/12) 2329991416277391 a001 24157817/4106118243*10749957122^(11/24) 2329991416277391 a001 1836311903/54018521*4106118243^(2/23) 2329991416277391 a001 24157817/4106118243*4106118243^(11/23) 2329991416277391 a004 Fibonacci(37)*Lucas(47)/(1/2+sqrt(5)/2)^71 2329991416277391 a001 1836311903/54018521*1568397607^(1/11) 2329991416277391 a001 24157817/10749957122*45537549124^(8/17) 2329991416277391 a001 24157817/10749957122*14662949395604^(8/21) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^24/Lucas(48) 2329991416277391 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^2/Lucas(37) 2329991416277391 a001 24157817/10749957122*192900153618^(4/9) 2329991416277391 a001 24157817/10749957122*73681302247^(6/13) 2329991416277391 a001 701408733/54018521*599074578^(1/7) 2329991416277391 a001 4807526976/54018521*10749957122^(1/24) 2329991416277391 a001 4807526976/54018521*4106118243^(1/23) 2329991416277391 a001 24157817/10749957122*10749957122^(1/2) 2329991416277391 a004 Fibonacci(37)*Lucas(49)/(1/2+sqrt(5)/2)^73 2329991416277391 a001 24157817/2139295485799*17393796001^(5/7) 2329991416277391 a001 24157817/73681302247*17393796001^(4/7) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^26/Lucas(50) 2329991416277391 a001 24157817/28143753123*73681302247^(1/2) 2329991416277391 a004 Fibonacci(37)*Lucas(51)/(1/2+sqrt(5)/2)^75 2329991416277391 a001 24157817/14662949395604*45537549124^(13/17) 2329991416277391 a001 24157817/3461452808002*45537549124^(12/17) 2329991416277391 a001 24157817/1322157322203*45537549124^(2/3) 2329991416277391 a001 24157817/192900153618*45537549124^(10/17) 2329991416277391 a001 24157817/817138163596*45537549124^(11/17) 2329991416277391 a001 24157817/73681302247*14662949395604^(4/9) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^28/Lucas(52) 2329991416277391 a004 Fibonacci(52)/Lucas(37)/(1/2+sqrt(5)/2)^2 2329991416277391 a001 24157817/73681302247*505019158607^(1/2) 2329991416277391 a001 24157817/73681302247*73681302247^(7/13) 2329991416277391 a004 Fibonacci(37)*Lucas(53)/(1/2+sqrt(5)/2)^77 2329991416277391 a001 24157817/192900153618*312119004989^(6/11) 2329991416277391 a001 24157817/192900153618*14662949395604^(10/21) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^30/Lucas(54) 2329991416277391 a004 Fibonacci(54)/Lucas(37)/(1/2+sqrt(5)/2)^4 2329991416277391 a001 24157817/192900153618*192900153618^(5/9) 2329991416277391 a004 Fibonacci(37)*Lucas(55)/(1/2+sqrt(5)/2)^79 2329991416277391 a001 24157817/2139295485799*312119004989^(7/11) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^32/Lucas(56) 2329991416277391 a004 Fibonacci(56)/Lucas(37)/(1/2+sqrt(5)/2)^6 2329991416277391 a004 Fibonacci(37)*Lucas(57)/(1/2+sqrt(5)/2)^81 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^34/Lucas(58) 2329991416277391 a004 Fibonacci(58)/Lucas(37)/(1/2+sqrt(5)/2)^8 2329991416277391 a004 Fibonacci(37)*Lucas(59)/(1/2+sqrt(5)/2)^83 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^36/Lucas(60) 2329991416277391 a004 Fibonacci(60)/Lucas(37)/(1/2+sqrt(5)/2)^10 2329991416277391 a004 Fibonacci(37)*Lucas(61)/(1/2+sqrt(5)/2)^85 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^38/Lucas(62) 2329991416277391 a004 Fibonacci(62)/Lucas(37)/(1/2+sqrt(5)/2)^12 2329991416277391 a004 Fibonacci(37)*Lucas(63)/(1/2+sqrt(5)/2)^87 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^40/Lucas(64) 2329991416277391 a004 Fibonacci(64)/Lucas(37)/(1/2+sqrt(5)/2)^14 2329991416277391 a004 Fibonacci(37)*Lucas(65)/(1/2+sqrt(5)/2)^89 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^42/Lucas(66) 2329991416277391 a004 Fibonacci(66)/Lucas(37)/(1/2+sqrt(5)/2)^16 2329991416277391 a004 Fibonacci(37)*Lucas(67)/(1/2+sqrt(5)/2)^91 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^44/Lucas(68) 2329991416277391 a004 Fibonacci(68)/Lucas(37)/(1/2+sqrt(5)/2)^18 2329991416277391 a004 Fibonacci(37)*Lucas(69)/(1/2+sqrt(5)/2)^93 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^46/Lucas(70) 2329991416277391 a004 Fibonacci(70)/Lucas(37)/(1/2+sqrt(5)/2)^20 2329991416277391 a004 Fibonacci(37)*Lucas(71)/(1/2+sqrt(5)/2)^95 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^48/Lucas(72) 2329991416277391 a004 Fibonacci(72)/Lucas(37)/(1/2+sqrt(5)/2)^22 2329991416277391 a004 Fibonacci(37)*Lucas(73)/(1/2+sqrt(5)/2)^97 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^50/Lucas(74) 2329991416277391 a004 Fibonacci(37)*Lucas(75)/(1/2+sqrt(5)/2)^99 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^52/Lucas(76) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^54/Lucas(78) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^56/Lucas(80) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^58/Lucas(82) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^60/Lucas(84) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^62/Lucas(86) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^64/Lucas(88) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^66/Lucas(90) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^68/Lucas(92) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^70/Lucas(94) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^72/Lucas(96) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^74/Lucas(98) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^73/Lucas(97) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^75/Lucas(99) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^76/Lucas(100) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^71/Lucas(95) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^69/Lucas(93) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^67/Lucas(91) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^65/Lucas(89) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^63/Lucas(87) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^61/Lucas(85) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^59/Lucas(83) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^57/Lucas(81) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^55/Lucas(79) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^53/Lucas(77) 2329991416277391 a004 Fibonacci(37)*Lucas(76)/(1/2+sqrt(5)/2)^100 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^51/Lucas(75) 2329991416277391 a004 Fibonacci(76)/Lucas(37)/(1/2+sqrt(5)/2)^26 2329991416277391 a004 Fibonacci(78)/Lucas(37)/(1/2+sqrt(5)/2)^28 2329991416277391 a004 Fibonacci(80)/Lucas(37)/(1/2+sqrt(5)/2)^30 2329991416277391 a004 Fibonacci(82)/Lucas(37)/(1/2+sqrt(5)/2)^32 2329991416277391 a004 Fibonacci(84)/Lucas(37)/(1/2+sqrt(5)/2)^34 2329991416277391 a004 Fibonacci(86)/Lucas(37)/(1/2+sqrt(5)/2)^36 2329991416277391 a004 Fibonacci(88)/Lucas(37)/(1/2+sqrt(5)/2)^38 2329991416277391 a004 Fibonacci(90)/Lucas(37)/(1/2+sqrt(5)/2)^40 2329991416277391 a004 Fibonacci(92)/Lucas(37)/(1/2+sqrt(5)/2)^42 2329991416277391 a004 Fibonacci(94)/Lucas(37)/(1/2+sqrt(5)/2)^44 2329991416277391 a004 Fibonacci(96)/Lucas(37)/(1/2+sqrt(5)/2)^46 2329991416277391 a004 Fibonacci(98)/Lucas(37)/(1/2+sqrt(5)/2)^48 2329991416277391 a004 Fibonacci(100)/Lucas(37)/(1/2+sqrt(5)/2)^50 2329991416277391 a004 Fibonacci(37)*Lucas(74)/(1/2+sqrt(5)/2)^98 2329991416277391 a004 Fibonacci(97)/Lucas(37)/(1/2+sqrt(5)/2)^47 2329991416277391 a004 Fibonacci(99)/Lucas(37)/(1/2+sqrt(5)/2)^49 2329991416277391 a004 Fibonacci(95)/Lucas(37)/(1/2+sqrt(5)/2)^45 2329991416277391 a004 Fibonacci(93)/Lucas(37)/(1/2+sqrt(5)/2)^43 2329991416277391 a004 Fibonacci(91)/Lucas(37)/(1/2+sqrt(5)/2)^41 2329991416277391 a004 Fibonacci(89)/Lucas(37)/(1/2+sqrt(5)/2)^39 2329991416277391 a004 Fibonacci(87)/Lucas(37)/(1/2+sqrt(5)/2)^37 2329991416277391 a004 Fibonacci(85)/Lucas(37)/(1/2+sqrt(5)/2)^35 2329991416277391 a004 Fibonacci(83)/Lucas(37)/(1/2+sqrt(5)/2)^33 2329991416277391 a004 Fibonacci(81)/Lucas(37)/(1/2+sqrt(5)/2)^31 2329991416277391 a004 Fibonacci(79)/Lucas(37)/(1/2+sqrt(5)/2)^29 2329991416277391 a004 Fibonacci(77)/Lucas(37)/(1/2+sqrt(5)/2)^27 2329991416277391 a004 Fibonacci(75)/Lucas(37)/(1/2+sqrt(5)/2)^25 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^49/Lucas(73) 2329991416277391 a004 Fibonacci(73)/Lucas(37)/(1/2+sqrt(5)/2)^23 2329991416277391 a004 Fibonacci(37)*Lucas(72)/(1/2+sqrt(5)/2)^96 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^47/Lucas(71) 2329991416277391 a004 Fibonacci(71)/Lucas(37)/(1/2+sqrt(5)/2)^21 2329991416277391 a004 Fibonacci(37)*Lucas(70)/(1/2+sqrt(5)/2)^94 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^45/Lucas(69) 2329991416277391 a004 Fibonacci(69)/Lucas(37)/(1/2+sqrt(5)/2)^19 2329991416277391 a004 Fibonacci(37)*Lucas(68)/(1/2+sqrt(5)/2)^92 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^43/Lucas(67) 2329991416277391 a004 Fibonacci(67)/Lucas(37)/(1/2+sqrt(5)/2)^17 2329991416277391 a004 Fibonacci(37)*Lucas(66)/(1/2+sqrt(5)/2)^90 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^41/Lucas(65) 2329991416277391 a004 Fibonacci(65)/Lucas(37)/(1/2+sqrt(5)/2)^15 2329991416277391 a001 24157817/14662949395604*14662949395604^(13/21) 2329991416277391 a004 Fibonacci(37)*Lucas(64)/(1/2+sqrt(5)/2)^88 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^39/Lucas(63) 2329991416277391 a004 Fibonacci(63)/Lucas(37)/(1/2+sqrt(5)/2)^13 2329991416277391 a004 Fibonacci(37)*Lucas(62)/(1/2+sqrt(5)/2)^86 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^37/Lucas(61) 2329991416277391 a004 Fibonacci(61)/Lucas(37)/(1/2+sqrt(5)/2)^11 2329991416277391 a004 Fibonacci(37)*Lucas(60)/(1/2+sqrt(5)/2)^84 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^35/Lucas(59) 2329991416277391 a004 Fibonacci(59)/Lucas(37)/(1/2+sqrt(5)/2)^9 2329991416277391 a004 Fibonacci(37)*Lucas(58)/(1/2+sqrt(5)/2)^82 2329991416277391 a001 24157817/817138163596*14662949395604^(11/21) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^33/Lucas(57) 2329991416277391 a004 Fibonacci(57)/Lucas(37)/(1/2+sqrt(5)/2)^7 2329991416277391 a001 24157817/2139295485799*505019158607^(5/8) 2329991416277391 a004 Fibonacci(37)*Lucas(56)/(1/2+sqrt(5)/2)^80 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^31/Lucas(55) 2329991416277391 a004 Fibonacci(55)/Lucas(37)/(1/2+sqrt(5)/2)^5 2329991416277391 a001 24157817/312119004989*9062201101803^(1/2) 2329991416277391 a001 24157817/14662949395604*192900153618^(13/18) 2329991416277391 a004 Fibonacci(37)*Lucas(54)/(1/2+sqrt(5)/2)^78 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^29/Lucas(53) 2329991416277391 a004 Fibonacci(53)/Lucas(37)/(1/2+sqrt(5)/2)^3 2329991416277391 a001 24157817/119218851371*1322157322203^(1/2) 2329991416277391 a001 24157817/505019158607*73681302247^(8/13) 2329991416277391 a001 24157817/3461452808002*73681302247^(9/13) 2329991416277391 a001 24157817/14662949395604*73681302247^(3/4) 2329991416277391 a001 24157817/23725150497407*73681302247^(10/13) 2329991416277391 a004 Fibonacci(37)*Lucas(52)/(1/2+sqrt(5)/2)^76 2329991416277391 a001 24157817/45537549124*45537549124^(9/17) 2329991416277391 a001 24157817/45537549124*14662949395604^(3/7) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^27/Lucas(51) 2329991416277391 a004 Fibonacci(51)/Lucas(37)/(1/2+sqrt(5)/2) 2329991416277391 a001 24157817/45537549124*192900153618^(1/2) 2329991416277391 a001 24157817/192900153618*28143753123^(3/5) 2329991416277391 a001 24157817/2139295485799*28143753123^(7/10) 2329991416277391 a001 24157817/23725150497407*28143753123^(4/5) 2329991416277391 a004 Fibonacci(37)*Lucas(50)/(1/2+sqrt(5)/2)^74 2329991416277391 a001 24157817/17393796001*312119004989^(5/11) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^25/Lucas(49) 2329991416277391 a004 Fibonacci(49)*(1/2+sqrt(5)/2)/Lucas(37) 2329991416277391 a001 24157817/17393796001*3461452808002^(5/12) 2329991416277391 a001 24157817/28143753123*10749957122^(13/24) 2329991416277391 a001 24157817/17393796001*28143753123^(1/2) 2329991416277391 a001 24157817/73681302247*10749957122^(7/12) 2329991416277391 a001 24157817/45537549124*10749957122^(9/16) 2329991416277391 a001 24157817/192900153618*10749957122^(5/8) 2329991416277391 a001 24157817/505019158607*10749957122^(2/3) 2329991416277391 a001 24157817/817138163596*10749957122^(11/16) 2329991416277391 a001 24157817/1322157322203*10749957122^(17/24) 2329991416277391 a001 24157817/3461452808002*10749957122^(3/4) 2329991416277391 a001 24157817/9062201101803*10749957122^(19/24) 2329991416277391 a001 24157817/14662949395604*10749957122^(13/16) 2329991416277391 a001 24157817/23725150497407*10749957122^(5/6) 2329991416277391 a004 Fibonacci(37)*Lucas(48)/(1/2+sqrt(5)/2)^72 2329991416277391 a001 4807526976/54018521*1568397607^(1/22) 2329991416277391 a001 2971215073/54018521*2537720636^(1/15) 2329991416277391 a001 24157817/10749957122*4106118243^(12/23) 2329991416277391 a001 2971215073/54018521*45537549124^(1/17) 2329991416277391 a001 2971215073/54018521*14662949395604^(1/21) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^23/Lucas(47) 2329991416277391 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^3/Lucas(37) 2329991416277391 a001 2971215073/54018521*192900153618^(1/18) 2329991416277391 a001 2971215073/54018521*10749957122^(1/16) 2329991416277391 a001 24157817/28143753123*4106118243^(13/23) 2329991416277391 a001 24157817/73681302247*4106118243^(14/23) 2329991416277391 a001 24157817/192900153618*4106118243^(15/23) 2329991416277391 a001 24157817/505019158607*4106118243^(16/23) 2329991416277391 a001 24157817/1322157322203*4106118243^(17/23) 2329991416277391 a001 24157817/3461452808002*4106118243^(18/23) 2329991416277391 a001 24157817/9062201101803*4106118243^(19/23) 2329991416277391 a001 24157817/23725150497407*4106118243^(20/23) 2329991416277391 a001 24157817/6643838879*4106118243^(1/2) 2329991416277391 a004 Fibonacci(37)*Lucas(46)/(1/2+sqrt(5)/2)^70 2329991416277391 a001 24157817/2537720636*2537720636^(7/15) 2329991416277391 a001 4807526976/54018521*599074578^(1/21) 2329991416277391 a001 1134903170/54018521*2537720636^(1/9) 2329991416277391 a001 24157817/4106118243*1568397607^(1/2) 2329991416277391 a001 24157817/2537720636*17393796001^(3/7) 2329991416277391 a001 24157817/2537720636*45537549124^(7/17) 2329991416277391 a001 1134903170/54018521*312119004989^(1/11) 2329991416277391 a001 24157817/2537720636*14662949395604^(1/3) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^21/Lucas(45) 2329991416277391 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^5/Lucas(37) 2329991416277391 a001 24157817/2537720636*192900153618^(7/18) 2329991416277391 a001 1134903170/54018521*28143753123^(1/10) 2329991416277391 a001 24157817/2537720636*10749957122^(7/16) 2329991416277391 a001 1836311903/54018521*599074578^(2/21) 2329991416277391 a001 24157817/10749957122*1568397607^(6/11) 2329991416277391 a001 2971215073/54018521*599074578^(1/14) 2329991416277391 a001 24157817/28143753123*1568397607^(13/22) 2329991416277391 a001 24157817/73681302247*1568397607^(7/11) 2329991416277391 a001 24157817/192900153618*1568397607^(15/22) 2329991416277391 a001 24157817/505019158607*1568397607^(8/11) 2329991416277391 a001 24157817/817138163596*1568397607^(3/4) 2329991416277391 a001 24157817/1322157322203*1568397607^(17/22) 2329991416277391 a001 24157817/3461452808002*1568397607^(9/11) 2329991416277391 a001 24157817/9062201101803*1568397607^(19/22) 2329991416277391 a001 24157817/23725150497407*1568397607^(10/11) 2329991416277391 a004 Fibonacci(37)*Lucas(44)/(1/2+sqrt(5)/2)^68 2329991416277391 a001 24157817/1568397607*599074578^(10/21) 2329991416277391 a001 4807526976/54018521*228826127^(1/20) 2329991416277391 a001 267914296/54018521*228826127^(1/5) 2329991416277391 a001 433494437/54018521*17393796001^(1/7) 2329991416277391 a001 24157817/969323029*817138163596^(1/3) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^19/Lucas(43) 2329991416277391 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^7/Lucas(37) 2329991416277391 a001 24157817/4106118243*599074578^(11/21) 2329991416277391 a001 433494437/54018521*599074578^(1/6) 2329991416277391 a001 24157817/2537720636*599074578^(1/2) 2329991416277391 a001 24157817/10749957122*599074578^(4/7) 2329991416277391 a001 24157817/28143753123*599074578^(13/21) 2329991416277391 a001 24157817/45537549124*599074578^(9/14) 2329991416277391 a001 1836311903/54018521*228826127^(1/10) 2329991416277391 a001 24157817/73681302247*599074578^(2/3) 2329991416277391 a001 24157817/192900153618*599074578^(5/7) 2329991416277391 a001 24157817/505019158607*599074578^(16/21) 2329991416277391 a001 24157817/817138163596*599074578^(11/14) 2329991416277391 a001 24157817/1322157322203*599074578^(17/21) 2329991416277391 a001 24157817/2139295485799*599074578^(5/6) 2329991416277391 a001 24157817/3461452808002*599074578^(6/7) 2329991416277391 a001 701408733/54018521*228826127^(3/20) 2329991416277391 a001 24157817/9062201101803*599074578^(19/21) 2329991416277391 a001 1134903170/54018521*228826127^(1/8) 2329991416277391 a001 24157817/14662949395604*599074578^(13/14) 2329991416277391 a001 24157817/23725150497407*599074578^(20/21) 2329991416277391 a004 Fibonacci(37)*Lucas(42)/(1/2+sqrt(5)/2)^66 2329991416277391 a001 267914296/969323029*33385282^(7/18) 2329991416277391 a001 24157817/599074578*228826127^(9/20) 2329991416277391 a001 701408733/2537720636*33385282^(7/18) 2329991416277391 a001 1836311903/6643838879*33385282^(7/18) 2329991416277391 a001 4807526976/17393796001*33385282^(7/18) 2329991416277391 a001 12586269025/45537549124*33385282^(7/18) 2329991416277391 a001 32951280099/119218851371*33385282^(7/18) 2329991416277391 a001 86267571272/312119004989*33385282^(7/18) 2329991416277391 a001 225851433717/817138163596*33385282^(7/18) 2329991416277391 a001 1548008755920/5600748293801*33385282^(7/18) 2329991416277391 a001 139583862445/505019158607*33385282^(7/18) 2329991416277391 a001 53316291173/192900153618*33385282^(7/18) 2329991416277391 a001 20365011074/73681302247*33385282^(7/18) 2329991416277391 a001 7778742049/28143753123*33385282^(7/18) 2329991416277391 a001 2971215073/10749957122*33385282^(7/18) 2329991416277391 a001 1134903170/4106118243*33385282^(7/18) 2329991416277391 a001 433494437/1568397607*33385282^(7/18) 2329991416277391 a001 4807526976/54018521*87403803^(1/19) 2329991416277391 a001 165580141/54018521*2537720636^(1/5) 2329991416277391 a001 24157817/370248451*45537549124^(1/3) 2329991416277391 a001 165580141/54018521*45537549124^(3/17) 2329991416277391 a001 165580141/54018521*14662949395604^(1/7) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^17/Lucas(41) 2329991416277391 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^9/Lucas(37) 2329991416277391 a001 165580141/54018521*192900153618^(1/6) 2329991416277391 a001 165580141/54018521*10749957122^(3/16) 2329991416277391 a001 165580141/54018521*599074578^(3/14) 2329991416277391 a001 24157817/1568397607*228826127^(1/2) 2329991416277391 a001 34111385/199691526*33385282^(5/12) 2329991416277391 a001 24157817/4106118243*228826127^(11/20) 2329991416277391 a001 165580141/599074578*33385282^(7/18) 2329991416277391 a001 24157817/10749957122*228826127^(3/5) 2329991416277391 a001 24157817/17393796001*228826127^(5/8) 2329991416277391 a001 24157817/28143753123*228826127^(13/20) 2329991416277391 a001 24157817/73681302247*228826127^(7/10) 2329991416277391 a001 1836311903/54018521*87403803^(2/19) 2329991416277391 a001 24157817/192900153618*228826127^(3/4) 2329991416277391 a001 24157817/505019158607*228826127^(4/5) 2329991416277391 a001 102334155/54018521*87403803^(5/19) 2329991416277391 a001 24157817/1322157322203*228826127^(17/20) 2329991416277391 a001 53316291173/599074578*12752043^(1/17) 2329991416277391 a001 24157817/2139295485799*228826127^(7/8) 2329991416277391 a001 24157817/3461452808002*228826127^(9/10) 2329991416277391 a001 24157817/9062201101803*228826127^(19/20) 2329991416277391 a001 139583862445/1568397607*12752043^(1/17) 2329991416277391 a001 365435296162/4106118243*12752043^(1/17) 2329991416277391 a001 956722026041/10749957122*12752043^(1/17) 2329991416277391 a001 2504730781961/28143753123*12752043^(1/17) 2329991416277391 a001 6557470319842/73681302247*12752043^(1/17) 2329991416277391 a001 10610209857723/119218851371*12752043^(1/17) 2329991416277391 a001 4052739537881/45537549124*12752043^(1/17) 2329991416277391 a001 1548008755920/17393796001*12752043^(1/17) 2329991416277391 a001 591286729879/6643838879*12752043^(1/17) 2329991416277391 a004 Fibonacci(37)*Lucas(40)/(1/2+sqrt(5)/2)^64 2329991416277391 a001 225851433717/2537720636*12752043^(1/17) 2329991416277391 a001 86267571272/969323029*12752043^(1/17) 2329991416277391 a001 701408733/54018521*87403803^(3/19) 2329991416277391 a001 267914296/54018521*87403803^(4/19) 2329991416277391 a001 39088169/2537720636*33385282^(5/9) 2329991416277391 a001 32951280099/370248451*12752043^(1/17) 2329991416277391 a001 267914296/1568397607*33385282^(5/12) 2329991416277391 a001 233802911/1368706081*33385282^(5/12) 2329991416277391 a001 24157817/141422324*141422324^(5/13) 2329991416277391 a001 1836311903/10749957122*33385282^(5/12) 2329991416277391 a001 1602508992/9381251041*33385282^(5/12) 2329991416277391 a001 12586269025/73681302247*33385282^(5/12) 2329991416277391 a001 10983760033/64300051206*33385282^(5/12) 2329991416277391 a001 86267571272/505019158607*33385282^(5/12) 2329991416277391 a001 75283811239/440719107401*33385282^(5/12) 2329991416277391 a001 2504730781961/14662949395604*33385282^(5/12) 2329991416277391 a001 139583862445/817138163596*33385282^(5/12) 2329991416277391 a001 53316291173/312119004989*33385282^(5/12) 2329991416277391 a001 20365011074/119218851371*33385282^(5/12) 2329991416277391 a001 7778742049/45537549124*33385282^(5/12) 2329991416277391 a001 2971215073/17393796001*33385282^(5/12) 2329991416277391 a001 1134903170/6643838879*33385282^(5/12) 2329991416277391 a001 433494437/2537720636*33385282^(5/12) 2329991416277391 a001 24157817/228826127*87403803^(8/19) 2329991416277391 a001 63245986/228826127*33385282^(7/18) 2329991416277391 a001 102334155/969323029*33385282^(4/9) 2329991416277391 a001 165580141/969323029*33385282^(5/12) 2329991416277391 a001 39088169/4106118243*33385282^(7/12) 2329991416277391 a001 4807526976/54018521*33385282^(1/18) 2329991416277391 a001 24157817/141422324*2537720636^(1/3) 2329991416277391 a001 24157817/141422324*45537549124^(5/17) 2329991416277391 a001 24157817/141422324*312119004989^(3/11) 2329991416277391 a001 63245986/54018521*312119004989^(1/5) 2329991416277391 a001 24157817/141422324*14662949395604^(5/21) 2329991416277391 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^15/Lucas(39) 2329991416277391 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^11/Lucas(37) 2329991416277391 a001 24157817/141422324*192900153618^(5/18) 2329991416277391 a001 24157817/141422324*28143753123^(3/10) 2329991416277391 a001 24157817/141422324*10749957122^(5/16) 2329991416277391 a001 63245986/54018521*1568397607^(1/4) 2329991416277391 a001 24157817/141422324*599074578^(5/14) 2329991416277391 a001 66978574/634430159*33385282^(4/9) 2329991416277391 a001 701408733/6643838879*33385282^(4/9) 2329991416277391 a001 1836311903/17393796001*33385282^(4/9) 2329991416277391 a001 1201881744/11384387281*33385282^(4/9) 2329991416277391 a001 12586269025/119218851371*33385282^(4/9) 2329991416277391 a001 32951280099/312119004989*33385282^(4/9) 2329991416277391 a001 21566892818/204284540899*33385282^(4/9) 2329991416277391 a001 225851433717/2139295485799*33385282^(4/9) 2329991416277391 a001 182717648081/1730726404001*33385282^(4/9) 2329991416277391 a001 139583862445/1322157322203*33385282^(4/9) 2329991416277391 a001 53316291173/505019158607*33385282^(4/9) 2329991416277391 a001 10182505537/96450076809*33385282^(4/9) 2329991416277391 a001 7778742049/73681302247*33385282^(4/9) 2329991416277391 a001 2971215073/28143753123*33385282^(4/9) 2329991416277391 a001 567451585/5374978561*33385282^(4/9) 2329991416277391 a001 433494437/4106118243*33385282^(4/9) 2329991416277391 a001 24157817/141422324*228826127^(3/8) 2329991416277391 a001 24157817/599074578*87403803^(9/19) 2329991416277391 a001 165580141/1568397607*33385282^(4/9) 2329991416277391 a001 24157817/969323029*87403803^(1/2) 2329991416277391 a001 24157817/1568397607*87403803^(10/19) 2329991416277391 a001 12586269025/141422324*12752043^(1/17) 2329991416277391 a001 39088169/6643838879*33385282^(11/18) 2329991416277391 a001 2971215073/54018521*33385282^(1/12) 2329991416277391 a001 24157817/4106118243*87403803^(11/19) 2329991416277391 a001 24157817/10749957122*87403803^(12/19) 2329991416277391 a001 9303105/230701876*33385282^(1/2) 2329991416277391 a001 63245986/370248451*33385282^(5/12) 2329991416277391 a001 24157817/28143753123*87403803^(13/19) 2329991416277391 a001 24157817/73681302247*87403803^(14/19) 2329991416277391 a001 1836311903/54018521*33385282^(1/9) 2329991416277391 a001 267914296/6643838879*33385282^(1/2) 2329991416277391 a001 31622993/299537289*33385282^(4/9) 2329991416277391 a001 24157817/192900153618*87403803^(15/19) 2329991416277391 a001 701408733/17393796001*33385282^(1/2) 2329991416277391 a001 1836311903/45537549124*33385282^(1/2) 2329991416277391 a001 4807526976/119218851371*33385282^(1/2) 2329991416277391 a001 1144206275/28374454999*33385282^(1/2) 2329991416277391 a001 32951280099/817138163596*33385282^(1/2) 2329991416277391 a001 86267571272/2139295485799*33385282^(1/2) 2329991416277391 a001 225851433717/5600748293801*33385282^(1/2) 2329991416277391 a001 591286729879/14662949395604*33385282^(1/2) 2329991416277391 a001 365435296162/9062201101803*33385282^(1/2) 2329991416277391 a001 139583862445/3461452808002*33385282^(1/2) 2329991416277391 a001 53316291173/1322157322203*33385282^(1/2) 2329991416277391 a001 20365011074/505019158607*33385282^(1/2) 2329991416277391 a001 7778742049/192900153618*33385282^(1/2) 2329991416277391 a001 2971215073/73681302247*33385282^(1/2) 2329991416277391 a001 1134903170/28143753123*33385282^(1/2) 2329991416277391 a001 433494437/10749957122*33385282^(1/2) 2329991416277391 a001 24157817/505019158607*87403803^(16/19) 2329991416277391 a001 165580141/4106118243*33385282^(1/2) 2329991416277391 a001 24157817/1322157322203*87403803^(17/19) 2329991416277391 a001 24157817/3461452808002*87403803^(18/19) 2329991416277391 a001 39088169/17393796001*33385282^(2/3) 2329991416277391 a001 9227465/28143753123*20633239^(4/5) 2329991416277391 a004 Fibonacci(37)*Lucas(38)/(1/2+sqrt(5)/2)^62 2329991416277391 a001 102334155/6643838879*33385282^(5/9) 2329991416277391 a001 701408733/54018521*33385282^(1/6) 2329991416277391 a001 9238424/599786069*33385282^(5/9) 2329991416277391 a001 701408733/45537549124*33385282^(5/9) 2329991416277391 a001 63245986/1568397607*33385282^(1/2) 2329991416277391 a001 1836311903/119218851371*33385282^(5/9) 2329991416277391 a001 4807526976/312119004989*33385282^(5/9) 2329991416277391 a001 12586269025/817138163596*33385282^(5/9) 2329991416277391 a001 32951280099/2139295485799*33385282^(5/9) 2329991416277391 a001 86267571272/5600748293801*33385282^(5/9) 2329991416277391 a001 7787980473/505618944676*33385282^(5/9) 2329991416277391 a001 365435296162/23725150497407*33385282^(5/9) 2329991416277391 a001 139583862445/9062201101803*33385282^(5/9) 2329991416277391 a001 53316291173/3461452808002*33385282^(5/9) 2329991416277391 a001 20365011074/1322157322203*33385282^(5/9) 2329991416277391 a001 7778742049/505019158607*33385282^(5/9) 2329991416277391 a001 2971215073/192900153618*33385282^(5/9) 2329991416277391 a001 1134903170/73681302247*33385282^(5/9) 2329991416277391 a001 433494437/28143753123*33385282^(5/9) 2329991416277391 a001 102334155/10749957122*33385282^(7/12) 2329991416277391 a001 165580141/10749957122*33385282^(5/9) 2329991416277391 a001 39088169/54018521*33385282^(1/3) 2329991416277391 a001 9227465/33385282*20633239^(2/5) 2329991416277391 a001 39088169/45537549124*33385282^(13/18) 2329991416277391 a001 267914296/28143753123*33385282^(7/12) 2329991416277391 a001 701408733/73681302247*33385282^(7/12) 2329991416277391 a001 1836311903/192900153618*33385282^(7/12) 2329991416277391 a001 102287808/10745088481*33385282^(7/12) 2329991416277391 a001 12586269025/1322157322203*33385282^(7/12) 2329991416277391 a001 32951280099/3461452808002*33385282^(7/12) 2329991416277391 a001 86267571272/9062201101803*33385282^(7/12) 2329991416277391 a001 225851433717/23725150497407*33385282^(7/12) 2329991416277391 a001 139583862445/14662949395604*33385282^(7/12) 2329991416277391 a001 53316291173/5600748293801*33385282^(7/12) 2329991416277391 a001 20365011074/2139295485799*33385282^(7/12) 2329991416277391 a001 7778742049/817138163596*33385282^(7/12) 2329991416277391 a001 2971215073/312119004989*33385282^(7/12) 2329991416277391 a001 1134903170/119218851371*33385282^(7/12) 2329991416277391 a001 433494437/45537549124*33385282^(7/12) 2329991416277391 a001 102334155/17393796001*33385282^(11/18) 2329991416277391 a001 165580141/17393796001*33385282^(7/12) 2329991416277391 a001 267914296/54018521*33385282^(2/9) 2329991416277391 a001 39088169/73681302247*33385282^(3/4) 2329991416277391 a001 66978574/11384387281*33385282^(11/18) 2329991416277391 a001 701408733/119218851371*33385282^(11/18) 2329991416277391 a001 1836311903/312119004989*33385282^(11/18) 2329991416277391 a001 1201881744/204284540899*33385282^(11/18) 2329991416277391 a001 12586269025/2139295485799*33385282^(11/18) 2329991416277391 a001 32951280099/5600748293801*33385282^(11/18) 2329991416277391 a001 1135099622/192933544679*33385282^(11/18) 2329991416277391 a001 139583862445/23725150497407*33385282^(11/18) 2329991416277391 a001 53316291173/9062201101803*33385282^(11/18) 2329991416277391 a001 10182505537/1730726404001*33385282^(11/18) 2329991416277391 a001 7778742049/1322157322203*33385282^(11/18) 2329991416277391 a001 2971215073/505019158607*33385282^(11/18) 2329991416277391 a001 63245986/4106118243*33385282^(5/9) 2329991416277391 a001 567451585/96450076809*33385282^(11/18) 2329991416277391 a001 433494437/73681302247*33385282^(11/18) 2329991416277391 a001 165580141/28143753123*33385282^(11/18) 2329991416277391 a001 165580141/33385282*12752043^(4/17) 2329991416277391 a001 24157817/87403803*33385282^(7/18) 2329991416277391 a001 39088169/119218851371*33385282^(7/9) 2329991416277391 a001 102334155/54018521*33385282^(5/18) 2329991416277391 a001 63245986/6643838879*33385282^(7/12) 2329991416277391 a001 165580141/54018521*33385282^(1/4) 2329991416277391 a001 102334155/45537549124*33385282^(2/3) 2329991416277391 a001 2971215073/87403803*12752043^(2/17) 2329991416277391 a001 267914296/119218851371*33385282^(2/3) 2329991416277391 a001 3524667/1568437211*33385282^(2/3) 2329991416277391 a001 1836311903/817138163596*33385282^(2/3) 2329991416277391 a001 4807526976/2139295485799*33385282^(2/3) 2329991416277391 a001 12586269025/5600748293801*33385282^(2/3) 2329991416277391 a001 32951280099/14662949395604*33385282^(2/3) 2329991416277391 a001 53316291173/23725150497407*33385282^(2/3) 2329991416277391 a001 20365011074/9062201101803*33385282^(2/3) 2329991416277391 a001 7778742049/3461452808002*33385282^(2/3) 2329991416277391 a001 2971215073/1322157322203*33385282^(2/3) 2329991416277391 a001 31622993/5374978561*33385282^(11/18) 2329991416277391 a001 1134903170/505019158607*33385282^(2/3) 2329991416277391 a001 433494437/192900153618*33385282^(2/3) 2329991416277391 a001 165580141/73681302247*33385282^(2/3) 2329991416277391 a001 39088169/312119004989*33385282^(5/6) 2329991416277391 a001 102334155/119218851371*33385282^(13/18) 2329991416277391 a001 267914296/312119004989*33385282^(13/18) 2329991416277391 a001 701408733/817138163596*33385282^(13/18) 2329991416277391 a001 1836311903/2139295485799*33385282^(13/18) 2329991416277391 a001 4807526976/5600748293801*33385282^(13/18) 2329991416277391 a001 12586269025/14662949395604*33385282^(13/18) 2329991416277391 a001 20365011074/23725150497407*33385282^(13/18) 2329991416277391 a001 7778742049/9062201101803*33385282^(13/18) 2329991416277391 a001 2971215073/3461452808002*33385282^(13/18) 2329991416277391 a001 63245986/28143753123*33385282^(2/3) 2329991416277391 a001 1134903170/1322157322203*33385282^(13/18) 2329991416277391 a001 433494437/505019158607*33385282^(13/18) 2329991416277391 a001 34111385/64300051206*33385282^(3/4) 2329991416277391 a001 165580141/192900153618*33385282^(13/18) 2329991416277391 a001 4181/87403804*33385282^(8/9) 2329991416277391 a001 24157817/54018521*141422324^(1/3) 2329991416277391 a001 267914296/505019158607*33385282^(3/4) 2329991416277391 a001 9227465/6643838879*20633239^(5/7) 2329991416277391 a001 233802911/440719107401*33385282^(3/4) 2329991416277391 a001 1836311903/3461452808002*33385282^(3/4) 2329991416277391 a001 1602508992/3020733700601*33385282^(3/4) 2329991416277391 a001 12586269025/23725150497407*33385282^(3/4) 2329991416277391 a001 7778742049/14662949395604*33385282^(3/4) 2329991416277391 a001 2971215073/5600748293801*33385282^(3/4) 2329991416277392 a001 1134903170/2139295485799*33385282^(3/4) 2329991416277392 a001 433494437/817138163596*33385282^(3/4) 2329991416277392 a001 9303105/28374454999*33385282^(7/9) 2329991416277392 a001 165580141/312119004989*33385282^(3/4) 2329991416277392 a001 583600122205489/2504730781961 2329991416277392 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^13/Lucas(37) 2329991416277392 a001 24157817/54018521*73681302247^(1/4) 2329991416277392 a001 39088169/1322157322203*33385282^(11/12) 2329991416277392 a001 66978574/204284540899*33385282^(7/9) 2329991416277392 a001 701408733/2139295485799*33385282^(7/9) 2329991416277392 a001 1836311903/5600748293801*33385282^(7/9) 2329991416277392 a001 1201881744/3665737348901*33385282^(7/9) 2329991416277392 a001 7778742049/23725150497407*33385282^(7/9) 2329991416277392 a001 2971215073/9062201101803*33385282^(7/9) 2329991416277392 a001 63245986/73681302247*33385282^(13/18) 2329991416277392 a001 567451585/1730726404001*33385282^(7/9) 2329991416277392 a001 433494437/1322157322203*33385282^(7/9) 2329991416277392 a001 7778742049/228826127*12752043^(2/17) 2329991416277392 a001 4807526976/54018521*12752043^(1/17) 2329991416277392 a001 165580141/505019158607*33385282^(7/9) 2329991416277392 a001 39088169/2139295485799*33385282^(17/18) 2329991416277392 a001 10182505537/299537289*12752043^(2/17) 2329991416277392 a001 24157817/228826127*33385282^(4/9) 2329991416277392 a001 63245986/119218851371*33385282^(3/4) 2329991416277392 a001 53316291173/1568397607*12752043^(2/17) 2329991416277392 a001 139583862445/4106118243*12752043^(2/17) 2329991416277392 a001 182717648081/5374978561*12752043^(2/17) 2329991416277392 a001 956722026041/28143753123*12752043^(2/17) 2329991416277392 a001 2504730781961/73681302247*12752043^(2/17) 2329991416277392 a001 3278735159921/96450076809*12752043^(2/17) 2329991416277392 a001 10610209857723/312119004989*12752043^(2/17) 2329991416277392 a001 4052739537881/119218851371*12752043^(2/17) 2329991416277392 a001 387002188980/11384387281*12752043^(2/17) 2329991416277392 a001 591286729879/17393796001*12752043^(2/17) 2329991416277392 a001 225851433717/6643838879*12752043^(2/17) 2329991416277392 a001 1135099622/33391061*12752043^(2/17) 2329991416277392 a001 32951280099/969323029*12752043^(2/17) 2329991416277392 a001 102334155/817138163596*33385282^(5/6) 2329991416277392 a001 12586269025/370248451*12752043^(2/17) 2329991416277392 a001 267914296/2139295485799*33385282^(5/6) 2329991416277392 a001 701408733/5600748293801*33385282^(5/6) 2329991416277392 a001 1836311903/14662949395604*33385282^(5/6) 2329991416277392 a001 2971215073/23725150497407*33385282^(5/6) 2329991416277392 a001 31622993/96450076809*33385282^(7/9) 2329991416277392 a001 1134903170/9062201101803*33385282^(5/6) 2329991416277392 a001 433494437/3461452808002*33385282^(5/6) 2329991416277392 a001 165580141/1322157322203*33385282^(5/6) 2329991416277392 a004 Fibonacci(38)*Lucas(36)/(1/2+sqrt(5)/2)^61 2329991416277392 a001 24157817/141422324*33385282^(5/12) 2329991416277392 a001 1201881744/35355581*12752043^(2/17) 2329991416277392 a001 102334155/2139295485799*33385282^(8/9) 2329991416277392 a001 24157817/599074578*33385282^(1/2) 2329991416277392 a001 267914296/5600748293801*33385282^(8/9) 2329991416277392 a001 701408733/14662949395604*33385282^(8/9) 2329991416277392 a001 63245986/505019158607*33385282^(5/6) 2329991416277392 a001 1134903170/23725150497407*33385282^(8/9) 2329991416277392 a001 433494437/9062201101803*33385282^(8/9) 2329991416277392 a001 6765/228826126*33385282^(11/12) 2329991416277392 a001 165580141/3461452808002*33385282^(8/9) 2329991416277392 a001 267914296/9062201101803*33385282^(11/12) 2329991416277392 a001 701408733/23725150497407*33385282^(11/12) 2329991416277392 a001 433494437/14662949395604*33385282^(11/12) 2329991416277392 a001 102334155/5600748293801*33385282^(17/18) 2329991416277392 a001 165580141/5600748293801*33385282^(11/12) 2329991416277392 a001 24157817/1568397607*33385282^(5/9) 2329991416277392 a001 10946/599074579*33385282^(17/18) 2329991416277392 a001 63245986/1322157322203*33385282^(8/9) 2329991416277392 a001 433494437/23725150497407*33385282^(17/18) 2329991416277392 a001 165580141/9062201101803*33385282^(17/18) 2329991416277392 a001 24157817/2537720636*33385282^(7/12) 2329991416277392 a001 63245986/2139295485799*33385282^(11/12) 2329991416277392 a004 Fibonacci(40)*Lucas(36)/(1/2+sqrt(5)/2)^63 2329991416277392 a001 1134903170/20633239*7881196^(1/11) 2329991416277392 a001 24157817/4106118243*33385282^(11/18) 2329991416277392 a004 Fibonacci(42)*Lucas(36)/(1/2+sqrt(5)/2)^65 2329991416277392 a004 Fibonacci(44)*Lucas(36)/(1/2+sqrt(5)/2)^67 2329991416277392 a004 Fibonacci(46)*Lucas(36)/(1/2+sqrt(5)/2)^69 2329991416277392 a004 Fibonacci(48)*Lucas(36)/(1/2+sqrt(5)/2)^71 2329991416277392 a004 Fibonacci(50)*Lucas(36)/(1/2+sqrt(5)/2)^73 2329991416277392 a004 Fibonacci(52)*Lucas(36)/(1/2+sqrt(5)/2)^75 2329991416277392 a004 Fibonacci(54)*Lucas(36)/(1/2+sqrt(5)/2)^77 2329991416277392 a004 Fibonacci(56)*Lucas(36)/(1/2+sqrt(5)/2)^79 2329991416277392 a004 Fibonacci(58)*Lucas(36)/(1/2+sqrt(5)/2)^81 2329991416277392 a004 Fibonacci(60)*Lucas(36)/(1/2+sqrt(5)/2)^83 2329991416277392 a004 Fibonacci(62)*Lucas(36)/(1/2+sqrt(5)/2)^85 2329991416277392 a004 Fibonacci(64)*Lucas(36)/(1/2+sqrt(5)/2)^87 2329991416277392 a004 Fibonacci(66)*Lucas(36)/(1/2+sqrt(5)/2)^89 2329991416277392 a004 Fibonacci(68)*Lucas(36)/(1/2+sqrt(5)/2)^91 2329991416277392 a004 Fibonacci(70)*Lucas(36)/(1/2+sqrt(5)/2)^93 2329991416277392 a004 Fibonacci(72)*Lucas(36)/(1/2+sqrt(5)/2)^95 2329991416277392 a004 Fibonacci(74)*Lucas(36)/(1/2+sqrt(5)/2)^97 2329991416277392 a004 Fibonacci(76)*Lucas(36)/(1/2+sqrt(5)/2)^99 2329991416277392 a004 Fibonacci(77)*Lucas(36)/(1/2+sqrt(5)/2)^100 2329991416277392 a004 Fibonacci(75)*Lucas(36)/(1/2+sqrt(5)/2)^98 2329991416277392 a004 Fibonacci(73)*Lucas(36)/(1/2+sqrt(5)/2)^96 2329991416277392 a001 1/7465176*(1/2+1/2*5^(1/2))^49 2329991416277392 a004 Fibonacci(71)*Lucas(36)/(1/2+sqrt(5)/2)^94 2329991416277392 a004 Fibonacci(69)*Lucas(36)/(1/2+sqrt(5)/2)^92 2329991416277392 a004 Fibonacci(67)*Lucas(36)/(1/2+sqrt(5)/2)^90 2329991416277392 a004 Fibonacci(65)*Lucas(36)/(1/2+sqrt(5)/2)^88 2329991416277392 a004 Fibonacci(63)*Lucas(36)/(1/2+sqrt(5)/2)^86 2329991416277392 a004 Fibonacci(61)*Lucas(36)/(1/2+sqrt(5)/2)^84 2329991416277392 a004 Fibonacci(59)*Lucas(36)/(1/2+sqrt(5)/2)^82 2329991416277392 a004 Fibonacci(57)*Lucas(36)/(1/2+sqrt(5)/2)^80 2329991416277392 a004 Fibonacci(55)*Lucas(36)/(1/2+sqrt(5)/2)^78 2329991416277392 a004 Fibonacci(53)*Lucas(36)/(1/2+sqrt(5)/2)^76 2329991416277392 a004 Fibonacci(51)*Lucas(36)/(1/2+sqrt(5)/2)^74 2329991416277392 a004 Fibonacci(49)*Lucas(36)/(1/2+sqrt(5)/2)^72 2329991416277392 a004 Fibonacci(47)*Lucas(36)/(1/2+sqrt(5)/2)^70 2329991416277392 a001 31622993/1730726404001*33385282^(17/18) 2329991416277392 a004 Fibonacci(45)*Lucas(36)/(1/2+sqrt(5)/2)^68 2329991416277392 a004 Fibonacci(43)*Lucas(36)/(1/2+sqrt(5)/2)^66 2329991416277392 a004 Fibonacci(41)*Lucas(36)/(1/2+sqrt(5)/2)^64 2329991416277392 a001 9227465/969323029*20633239^(3/5) 2329991416277392 a001 24157817/10749957122*33385282^(2/3) 2329991416277392 a004 Fibonacci(39)*Lucas(36)/(1/2+sqrt(5)/2)^62 2329991416277392 a001 1134903170/87403803*12752043^(3/17) 2329991416277392 a001 31622993/16692641*12752043^(5/17) 2329991416277392 a001 24157817/28143753123*33385282^(13/18) 2329991416277392 a001 9227465/599074578*20633239^(4/7) 2329991416277392 a001 24157817/45537549124*33385282^(3/4) 2329991416277392 a001 24157817/73681302247*33385282^(7/9) 2329991416277392 a001 1836311903/54018521*12752043^(2/17) 2329991416277392 a001 2971215073/228826127*12752043^(3/17) 2329991416277392 a001 7778742049/599074578*12752043^(3/17) 2329991416277392 a001 20365011074/1568397607*12752043^(3/17) 2329991416277392 a001 53316291173/4106118243*12752043^(3/17) 2329991416277392 a001 139583862445/10749957122*12752043^(3/17) 2329991416277392 a001 365435296162/28143753123*12752043^(3/17) 2329991416277392 a001 956722026041/73681302247*12752043^(3/17) 2329991416277392 a001 2504730781961/192900153618*12752043^(3/17) 2329991416277392 a001 10610209857723/817138163596*12752043^(3/17) 2329991416277392 a001 4052739537881/312119004989*12752043^(3/17) 2329991416277392 a001 1548008755920/119218851371*12752043^(3/17) 2329991416277392 a001 591286729879/45537549124*12752043^(3/17) 2329991416277392 a001 7787980473/599786069*12752043^(3/17) 2329991416277392 a001 86267571272/6643838879*12752043^(3/17) 2329991416277392 a001 32951280099/2537720636*12752043^(3/17) 2329991416277392 a001 12586269025/969323029*12752043^(3/17) 2329991416277392 a001 24157817/192900153618*33385282^(5/6) 2329991416277392 a001 4807526976/370248451*12752043^(3/17) 2329991416277393 a001 1836311903/141422324*12752043^(3/17) 2329991416277393 a001 24157817/505019158607*33385282^(8/9) 2329991416277393 a001 24157817/817138163596*33385282^(11/12) 2329991416277393 a001 24157817/1322157322203*33385282^(17/18) 2329991416277393 a004 Fibonacci(37)*Lucas(36)/(1/2+sqrt(5)/2)^60 2329991416277393 a001 433494437/87403803*12752043^(4/17) 2329991416277393 a001 701408733/54018521*12752043^(3/17) 2329991416277393 a001 1134903170/228826127*12752043^(4/17) 2329991416277393 a001 14930352/20633239*141422324^(4/13) 2329991416277393 a001 2971215073/599074578*12752043^(4/17) 2329991416277393 a001 7778742049/1568397607*12752043^(4/17) 2329991416277393 a001 20365011074/4106118243*12752043^(4/17) 2329991416277393 a001 53316291173/10749957122*12752043^(4/17) 2329991416277393 a001 139583862445/28143753123*12752043^(4/17) 2329991416277393 a001 365435296162/73681302247*12752043^(4/17) 2329991416277393 a001 956722026041/192900153618*12752043^(4/17) 2329991416277393 a001 2504730781961/505019158607*12752043^(4/17) 2329991416277393 a001 10610209857723/2139295485799*12752043^(4/17) 2329991416277393 a001 140728068720/28374454999*12752043^(4/17) 2329991416277393 a001 591286729879/119218851371*12752043^(4/17) 2329991416277393 a001 225851433717/45537549124*12752043^(4/17) 2329991416277393 a001 86267571272/17393796001*12752043^(4/17) 2329991416277393 a001 32951280099/6643838879*12752043^(4/17) 2329991416277393 a001 1144206275/230701876*12752043^(4/17) 2329991416277393 a001 4807526976/969323029*12752043^(4/17) 2329991416277393 a001 14930352/20633239*2537720636^(4/15) 2329991416277393 a001 9227465/33385282*17393796001^(2/7) 2329991416277393 a001 14930352/20633239*45537549124^(4/17) 2329991416277393 a001 9227465/33385282*(1/2+1/2*5^(1/2))^14 2329991416277393 a001 14930352/20633239*(1/2+1/2*5^(1/2))^12 2329991416277393 a001 137769300517680/591286729879 2329991416277393 a001 14930352/20633239*192900153618^(2/9) 2329991416277393 a001 14930352/20633239*73681302247^(3/13) 2329991416277393 a001 14930352/20633239*10749957122^(1/4) 2329991416277393 a001 9227465/33385282*10749957122^(7/24) 2329991416277393 a001 14930352/20633239*4106118243^(6/23) 2329991416277393 a001 9227465/33385282*4106118243^(7/23) 2329991416277393 a001 14930352/20633239*1568397607^(3/11) 2329991416277393 a001 9227465/33385282*1568397607^(7/22) 2329991416277393 a001 14930352/20633239*599074578^(2/7) 2329991416277393 a001 9227465/33385282*599074578^(1/3) 2329991416277393 a001 1836311903/370248451*12752043^(4/17) 2329991416277393 a001 14930352/20633239*228826127^(3/10) 2329991416277393 a001 9227465/33385282*228826127^(7/20) 2329991416277393 a001 3524578/28143753123*7881196^(10/11) 2329991416277393 a001 14930352/20633239*87403803^(6/19) 2329991416277393 a001 701408733/141422324*12752043^(4/17) 2329991416277393 a001 9227465/33385282*87403803^(7/19) 2329991416277394 a001 39088169/20633239*20633239^(2/7) 2329991416277394 a001 24157817/33385282*12752043^(6/17) 2329991416277394 a001 9227465/54018521*20633239^(3/7) 2329991416277394 a001 165580141/87403803*12752043^(5/17) 2329991416277394 a001 2971215073/33385282*4870847^(1/16) 2329991416277394 a001 14930352/20633239*33385282^(1/3) 2329991416277394 a001 165580141/12752043*4870847^(3/16) 2329991416277394 a001 267914296/54018521*12752043^(4/17) 2329991416277394 a001 433494437/228826127*12752043^(5/17) 2329991416277394 a001 9227465/33385282*33385282^(7/18) 2329991416277394 a001 567451585/299537289*12752043^(5/17) 2329991416277394 a001 2971215073/1568397607*12752043^(5/17) 2329991416277394 a001 7778742049/4106118243*12752043^(5/17) 2329991416277394 a001 10182505537/5374978561*12752043^(5/17) 2329991416277394 a001 53316291173/28143753123*12752043^(5/17) 2329991416277394 a001 139583862445/73681302247*12752043^(5/17) 2329991416277394 a001 182717648081/96450076809*12752043^(5/17) 2329991416277394 a001 956722026041/505019158607*12752043^(5/17) 2329991416277394 a001 10610209857723/5600748293801*12752043^(5/17) 2329991416277394 a001 591286729879/312119004989*12752043^(5/17) 2329991416277394 a001 225851433717/119218851371*12752043^(5/17) 2329991416277394 a001 21566892818/11384387281*12752043^(5/17) 2329991416277394 a001 32951280099/17393796001*12752043^(5/17) 2329991416277394 a001 12586269025/6643838879*12752043^(5/17) 2329991416277394 a001 1201881744/634430159*12752043^(5/17) 2329991416277394 a001 1836311903/969323029*12752043^(5/17) 2329991416277394 a001 701408733/370248451*12752043^(5/17) 2329991416277394 a001 66978574/35355581*12752043^(5/17) 2329991416277394 a001 165580141/20633239*20633239^(1/5) 2329991416277395 a001 14930352/54018521*12752043^(7/17) 2329991416277395 a004 Fibonacci(35)*Lucas(37)/(1/2+sqrt(5)/2)^59 2329991416277395 a001 433494437/20633239*20633239^(1/7) 2329991416277395 a001 3732588/35355581*12752043^(8/17) 2329991416277395 a001 63245986/87403803*12752043^(6/17) 2329991416277395 a001 102334155/54018521*12752043^(5/17) 2329991416277395 a001 14930352/228826127*12752043^(1/2) 2329991416277395 a001 165580141/228826127*12752043^(6/17) 2329991416277395 a001 433494437/599074578*12752043^(6/17) 2329991416277395 a001 1134903170/1568397607*12752043^(6/17) 2329991416277395 a001 2971215073/4106118243*12752043^(6/17) 2329991416277395 a001 7778742049/10749957122*12752043^(6/17) 2329991416277395 a001 20365011074/28143753123*12752043^(6/17) 2329991416277395 a001 53316291173/73681302247*12752043^(6/17) 2329991416277395 a001 139583862445/192900153618*12752043^(6/17) 2329991416277395 a001 10610209857723/14662949395604*12752043^(6/17) 2329991416277395 a001 591286729879/817138163596*12752043^(6/17) 2329991416277395 a001 225851433717/312119004989*12752043^(6/17) 2329991416277395 a001 86267571272/119218851371*12752043^(6/17) 2329991416277395 a001 32951280099/45537549124*12752043^(6/17) 2329991416277395 a001 12586269025/17393796001*12752043^(6/17) 2329991416277395 a001 4807526976/6643838879*12752043^(6/17) 2329991416277395 a001 1836311903/2537720636*12752043^(6/17) 2329991416277395 a001 701408733/969323029*12752043^(6/17) 2329991416277395 a001 267914296/370248451*12752043^(6/17) 2329991416277395 a001 102334155/141422324*12752043^(6/17) 2329991416277395 a001 39088169/20633239*2537720636^(2/9) 2329991416277395 a001 39088169/20633239*312119004989^(2/11) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^16/Lucas(38) 2329991416277395 a001 39088169/20633239*(1/2+1/2*5^(1/2))^10 2329991416277395 a001 9227465/87403803*73681302247^(4/13) 2329991416277395 a001 39088169/20633239*28143753123^(1/5) 2329991416277395 a001 39088169/20633239*10749957122^(5/24) 2329991416277395 a001 9227465/87403803*10749957122^(1/3) 2329991416277395 a001 39088169/20633239*4106118243^(5/23) 2329991416277395 a001 9227465/87403803*4106118243^(8/23) 2329991416277395 a001 39088169/20633239*1568397607^(5/22) 2329991416277395 a001 9227465/87403803*1568397607^(4/11) 2329991416277395 a001 39088169/20633239*599074578^(5/21) 2329991416277395 a001 9227465/87403803*599074578^(8/21) 2329991416277395 a001 39088169/20633239*228826127^(1/4) 2329991416277395 a001 9227465/87403803*228826127^(2/5) 2329991416277395 a001 39088169/20633239*87403803^(5/19) 2329991416277395 a001 9227465/87403803*87403803^(8/19) 2329991416277395 a004 Fibonacci(35)*Lucas(39)/(1/2+sqrt(5)/2)^61 2329991416277395 a001 9227465/1322157322203*141422324^(12/13) 2329991416277395 a001 9227465/312119004989*141422324^(11/13) 2329991416277395 a001 9227465/228826127*141422324^(6/13) 2329991416277395 a001 9227465/73681302247*141422324^(10/13) 2329991416277395 a001 9227465/17393796001*141422324^(9/13) 2329991416277395 a001 9227465/10749957122*141422324^(2/3) 2329991416277395 a001 9227465/4106118243*141422324^(8/13) 2329991416277395 a001 9227465/969323029*141422324^(7/13) 2329991416277395 a001 9227465/228826127*2537720636^(2/5) 2329991416277395 a001 9227465/228826127*45537549124^(6/17) 2329991416277395 a001 9227465/228826127*14662949395604^(2/7) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^18/Lucas(40) 2329991416277395 a001 9303105/1875749*(1/2+1/2*5^(1/2))^8 2329991416277395 a001 9227465/228826127*192900153618^(1/3) 2329991416277395 a001 9303105/1875749*73681302247^(2/13) 2329991416277395 a001 9303105/1875749*10749957122^(1/6) 2329991416277395 a001 9227465/228826127*10749957122^(3/8) 2329991416277395 a001 9303105/1875749*4106118243^(4/23) 2329991416277395 a001 9227465/228826127*4106118243^(9/23) 2329991416277395 a001 9303105/1875749*1568397607^(2/11) 2329991416277395 a001 9227465/228826127*1568397607^(9/22) 2329991416277395 a001 9303105/1875749*599074578^(4/21) 2329991416277395 a001 9227465/228826127*599074578^(3/7) 2329991416277395 a001 9303105/1875749*228826127^(1/5) 2329991416277395 a001 9227465/228826127*228826127^(9/20) 2329991416277395 a001 9238424/711491*141422324^(2/13) 2329991416277395 a004 Fibonacci(35)*Lucas(41)/(1/2+sqrt(5)/2)^63 2329991416277395 a001 1134903170/20633239*141422324^(1/13) 2329991416277395 a001 9227465/599074578*2537720636^(4/9) 2329991416277395 a001 9238424/711491*2537720636^(2/15) 2329991416277395 a001 9238424/711491*45537549124^(2/17) 2329991416277395 a001 9238424/711491*14662949395604^(2/21) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^20/Lucas(42) 2329991416277395 a001 9238424/711491*(1/2+1/2*5^(1/2))^6 2329991416277395 a001 2472169789339640/10610209857723 2329991416277395 a001 9227465/599074578*505019158607^(5/14) 2329991416277395 a001 9227465/599074578*73681302247^(5/13) 2329991416277395 a001 9227465/599074578*28143753123^(2/5) 2329991416277395 a001 9238424/711491*10749957122^(1/8) 2329991416277395 a001 9227465/599074578*10749957122^(5/12) 2329991416277395 a001 9238424/711491*4106118243^(3/23) 2329991416277395 a001 9227465/599074578*4106118243^(10/23) 2329991416277395 a001 9238424/711491*1568397607^(3/22) 2329991416277395 a001 9227465/599074578*1568397607^(5/11) 2329991416277395 a001 9238424/711491*599074578^(1/7) 2329991416277395 a001 9227465/599074578*599074578^(10/21) 2329991416277395 a004 Fibonacci(35)*Lucas(43)/(1/2+sqrt(5)/2)^65 2329991416277395 a001 9227465/1568397607*312119004989^(2/5) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^22/Lucas(44) 2329991416277395 a001 701408733/20633239*(1/2+1/2*5^(1/2))^4 2329991416277395 a001 701408733/20633239*23725150497407^(1/16) 2329991416277395 a001 701408733/20633239*73681302247^(1/13) 2329991416277395 a001 701408733/20633239*10749957122^(1/12) 2329991416277395 a001 9227465/1568397607*10749957122^(11/24) 2329991416277395 a001 701408733/20633239*4106118243^(2/23) 2329991416277395 a001 9227465/1568397607*4106118243^(11/23) 2329991416277395 a001 701408733/20633239*1568397607^(1/11) 2329991416277395 a001 9227465/1568397607*1568397607^(1/2) 2329991416277395 a004 Fibonacci(35)*Lucas(45)/(1/2+sqrt(5)/2)^67 2329991416277395 a001 9227465/23725150497407*2537720636^(14/15) 2329991416277395 a001 9227465/4106118243*2537720636^(8/15) 2329991416277395 a001 701408733/20633239*599074578^(2/21) 2329991416277395 a001 9227465/9062201101803*2537720636^(8/9) 2329991416277395 a001 9227465/5600748293801*2537720636^(13/15) 2329991416277395 a001 9227465/1322157322203*2537720636^(4/5) 2329991416277395 a001 9227465/817138163596*2537720636^(7/9) 2329991416277395 a001 9227465/312119004989*2537720636^(11/15) 2329991416277395 a001 9227465/73681302247*2537720636^(2/3) 2329991416277395 a001 9227465/17393796001*2537720636^(3/5) 2329991416277395 a001 9227465/6643838879*2537720636^(5/9) 2329991416277395 a001 9227465/4106118243*45537549124^(8/17) 2329991416277395 a001 9227465/4106118243*14662949395604^(8/21) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^24/Lucas(46) 2329991416277395 a001 1836311903/20633239*(1/2+1/2*5^(1/2))^2 2329991416277395 a001 9227465/4106118243*192900153618^(4/9) 2329991416277395 a001 9227465/4106118243*73681302247^(6/13) 2329991416277395 a001 1836311903/20633239*10749957122^(1/24) 2329991416277395 a001 1836311903/20633239*4106118243^(1/23) 2329991416277395 a001 9227465/4106118243*10749957122^(1/2) 2329991416277395 a001 1836311903/20633239*1568397607^(1/22) 2329991416277395 a001 9227465/4106118243*4106118243^(12/23) 2329991416277395 a004 Fibonacci(35)*Lucas(47)/(1/2+sqrt(5)/2)^69 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^26/Lucas(48) 2329991416277395 a001 9227465/10749957122*73681302247^(1/2) 2329991416277395 a001 9227465/10749957122*10749957122^(13/24) 2329991416277395 a004 Fibonacci(35)*Lucas(49)/(1/2+sqrt(5)/2)^71 2329991416277395 a001 9227465/28143753123*17393796001^(4/7) 2329991416277395 a001 9227465/23725150497407*17393796001^(6/7) 2329991416277395 a001 9227465/817138163596*17393796001^(5/7) 2329991416277395 a001 9227465/28143753123*14662949395604^(4/9) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^28/Lucas(50) 2329991416277395 a004 Fibonacci(50)/Lucas(35)/(1/2+sqrt(5)/2)^2 2329991416277395 a001 9227465/28143753123*505019158607^(1/2) 2329991416277395 a001 9227465/28143753123*73681302247^(7/13) 2329991416277395 a004 Fibonacci(35)*Lucas(51)/(1/2+sqrt(5)/2)^73 2329991416277395 a001 9227465/73681302247*45537549124^(10/17) 2329991416277395 a001 9227465/23725150497407*45537549124^(14/17) 2329991416277395 a001 9227465/5600748293801*45537549124^(13/17) 2329991416277395 a001 9227465/1322157322203*45537549124^(12/17) 2329991416277395 a001 9227465/505019158607*45537549124^(2/3) 2329991416277395 a001 9227465/312119004989*45537549124^(11/17) 2329991416277395 a001 9227465/73681302247*312119004989^(6/11) 2329991416277395 a001 9227465/73681302247*14662949395604^(10/21) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^30/Lucas(52) 2329991416277395 a004 Fibonacci(52)/Lucas(35)/(1/2+sqrt(5)/2)^4 2329991416277395 a001 9227465/73681302247*192900153618^(5/9) 2329991416277395 a004 Fibonacci(35)*Lucas(53)/(1/2+sqrt(5)/2)^75 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^32/Lucas(54) 2329991416277395 a004 Fibonacci(54)/Lucas(35)/(1/2+sqrt(5)/2)^6 2329991416277395 a001 9227465/192900153618*23725150497407^(1/2) 2329991416277395 a004 Fibonacci(35)*Lucas(55)/(1/2+sqrt(5)/2)^77 2329991416277395 a001 9227465/9062201101803*312119004989^(8/11) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^34/Lucas(56) 2329991416277395 a004 Fibonacci(56)/Lucas(35)/(1/2+sqrt(5)/2)^8 2329991416277395 a004 Fibonacci(35)*Lucas(57)/(1/2+sqrt(5)/2)^79 2329991416277395 a001 9227465/1322157322203*14662949395604^(4/7) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^36/Lucas(58) 2329991416277395 a004 Fibonacci(58)/Lucas(35)/(1/2+sqrt(5)/2)^10 2329991416277395 a004 Fibonacci(35)*Lucas(59)/(1/2+sqrt(5)/2)^81 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^38/Lucas(60) 2329991416277395 a004 Fibonacci(60)/Lucas(35)/(1/2+sqrt(5)/2)^12 2329991416277395 a004 Fibonacci(35)*Lucas(61)/(1/2+sqrt(5)/2)^83 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^40/Lucas(62) 2329991416277395 a004 Fibonacci(62)/Lucas(35)/(1/2+sqrt(5)/2)^14 2329991416277395 a004 Fibonacci(35)*Lucas(63)/(1/2+sqrt(5)/2)^85 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^42/Lucas(64) 2329991416277395 a004 Fibonacci(64)/Lucas(35)/(1/2+sqrt(5)/2)^16 2329991416277395 a004 Fibonacci(35)*Lucas(65)/(1/2+sqrt(5)/2)^87 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^44/Lucas(66) 2329991416277395 a004 Fibonacci(66)/Lucas(35)/(1/2+sqrt(5)/2)^18 2329991416277395 a004 Fibonacci(35)*Lucas(67)/(1/2+sqrt(5)/2)^89 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^46/Lucas(68) 2329991416277395 a004 Fibonacci(68)/Lucas(35)/(1/2+sqrt(5)/2)^20 2329991416277395 a004 Fibonacci(35)*Lucas(69)/(1/2+sqrt(5)/2)^91 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^48/Lucas(70) 2329991416277395 a004 Fibonacci(35)*Lucas(71)/(1/2+sqrt(5)/2)^93 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^50/Lucas(72) 2329991416277395 a004 Fibonacci(35)*Lucas(73)/(1/2+sqrt(5)/2)^95 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^52/Lucas(74) 2329991416277395 a004 Fibonacci(35)*Lucas(75)/(1/2+sqrt(5)/2)^97 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^54/Lucas(76) 2329991416277395 a004 Fibonacci(35)*Lucas(77)/(1/2+sqrt(5)/2)^99 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^56/Lucas(78) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^58/Lucas(80) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^60/Lucas(82) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^62/Lucas(84) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^64/Lucas(86) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^66/Lucas(88) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^68/Lucas(90) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^70/Lucas(92) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^72/Lucas(94) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^74/Lucas(96) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^76/Lucas(98) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^75/Lucas(97) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^77/Lucas(99) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^78/Lucas(100) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^73/Lucas(95) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^71/Lucas(93) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^69/Lucas(91) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^67/Lucas(89) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^65/Lucas(87) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^63/Lucas(85) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^61/Lucas(83) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^59/Lucas(81) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^57/Lucas(79) 2329991416277395 a004 Fibonacci(35)*Lucas(78)/(1/2+sqrt(5)/2)^100 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^55/Lucas(77) 2329991416277395 a004 Fibonacci(35)*Lucas(76)/(1/2+sqrt(5)/2)^98 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^53/Lucas(75) 2329991416277395 a004 Fibonacci(35)*Lucas(74)/(1/2+sqrt(5)/2)^96 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^51/Lucas(73) 2329991416277395 a004 Fibonacci(35)*Lucas(72)/(1/2+sqrt(5)/2)^94 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^49/Lucas(71) 2329991416277395 a004 Fibonacci(72)/Lucas(35)/(1/2+sqrt(5)/2)^24 2329991416277395 a004 Fibonacci(74)/Lucas(35)/(1/2+sqrt(5)/2)^26 2329991416277395 a004 Fibonacci(76)/Lucas(35)/(1/2+sqrt(5)/2)^28 2329991416277395 a004 Fibonacci(78)/Lucas(35)/(1/2+sqrt(5)/2)^30 2329991416277395 a004 Fibonacci(80)/Lucas(35)/(1/2+sqrt(5)/2)^32 2329991416277395 a004 Fibonacci(82)/Lucas(35)/(1/2+sqrt(5)/2)^34 2329991416277395 a004 Fibonacci(84)/Lucas(35)/(1/2+sqrt(5)/2)^36 2329991416277395 a004 Fibonacci(86)/Lucas(35)/(1/2+sqrt(5)/2)^38 2329991416277395 a004 Fibonacci(88)/Lucas(35)/(1/2+sqrt(5)/2)^40 2329991416277395 a004 Fibonacci(90)/Lucas(35)/(1/2+sqrt(5)/2)^42 2329991416277395 a004 Fibonacci(92)/Lucas(35)/(1/2+sqrt(5)/2)^44 2329991416277395 a004 Fibonacci(94)/Lucas(35)/(1/2+sqrt(5)/2)^46 2329991416277395 a004 Fibonacci(96)/Lucas(35)/(1/2+sqrt(5)/2)^48 2329991416277395 a004 Fibonacci(100)/Lucas(35)/(1/2+sqrt(5)/2)^52 2329991416277395 a004 Fibonacci(35)*Lucas(70)/(1/2+sqrt(5)/2)^92 2329991416277395 a004 Fibonacci(98)/Lucas(35)/(1/2+sqrt(5)/2)^50 2329991416277395 a004 Fibonacci(99)/Lucas(35)/(1/2+sqrt(5)/2)^51 2329991416277395 a004 Fibonacci(97)/Lucas(35)/(1/2+sqrt(5)/2)^49 2329991416277395 a004 Fibonacci(95)/Lucas(35)/(1/2+sqrt(5)/2)^47 2329991416277395 a004 Fibonacci(93)/Lucas(35)/(1/2+sqrt(5)/2)^45 2329991416277395 a004 Fibonacci(91)/Lucas(35)/(1/2+sqrt(5)/2)^43 2329991416277395 a004 Fibonacci(89)/Lucas(35)/(1/2+sqrt(5)/2)^41 2329991416277395 a004 Fibonacci(87)/Lucas(35)/(1/2+sqrt(5)/2)^39 2329991416277395 a004 Fibonacci(85)/Lucas(35)/(1/2+sqrt(5)/2)^37 2329991416277395 a004 Fibonacci(83)/Lucas(35)/(1/2+sqrt(5)/2)^35 2329991416277395 a004 Fibonacci(81)/Lucas(35)/(1/2+sqrt(5)/2)^33 2329991416277395 a004 Fibonacci(79)/Lucas(35)/(1/2+sqrt(5)/2)^31 2329991416277395 a004 Fibonacci(77)/Lucas(35)/(1/2+sqrt(5)/2)^29 2329991416277395 a004 Fibonacci(75)/Lucas(35)/(1/2+sqrt(5)/2)^27 2329991416277395 a004 Fibonacci(73)/Lucas(35)/(1/2+sqrt(5)/2)^25 2329991416277395 a004 Fibonacci(71)/Lucas(35)/(1/2+sqrt(5)/2)^23 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^47/Lucas(69) 2329991416277395 a004 Fibonacci(69)/Lucas(35)/(1/2+sqrt(5)/2)^21 2329991416277395 a004 Fibonacci(35)*Lucas(68)/(1/2+sqrt(5)/2)^90 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^45/Lucas(67) 2329991416277395 a004 Fibonacci(67)/Lucas(35)/(1/2+sqrt(5)/2)^19 2329991416277395 a004 Fibonacci(35)*Lucas(66)/(1/2+sqrt(5)/2)^88 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^43/Lucas(65) 2329991416277395 a004 Fibonacci(65)/Lucas(35)/(1/2+sqrt(5)/2)^17 2329991416277395 a004 Fibonacci(35)*Lucas(64)/(1/2+sqrt(5)/2)^86 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^41/Lucas(63) 2329991416277395 a004 Fibonacci(63)/Lucas(35)/(1/2+sqrt(5)/2)^15 2329991416277395 a004 Fibonacci(35)*Lucas(62)/(1/2+sqrt(5)/2)^84 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^39/Lucas(61) 2329991416277395 a004 Fibonacci(61)/Lucas(35)/(1/2+sqrt(5)/2)^13 2329991416277395 a004 Fibonacci(35)*Lucas(60)/(1/2+sqrt(5)/2)^82 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^37/Lucas(59) 2329991416277395 a004 Fibonacci(59)/Lucas(35)/(1/2+sqrt(5)/2)^11 2329991416277395 a004 Fibonacci(35)*Lucas(58)/(1/2+sqrt(5)/2)^80 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^35/Lucas(57) 2329991416277395 a004 Fibonacci(57)/Lucas(35)/(1/2+sqrt(5)/2)^9 2329991416277395 a001 9227465/1322157322203*505019158607^(9/14) 2329991416277395 a001 9227465/23725150497407*505019158607^(3/4) 2329991416277395 a004 Fibonacci(35)*Lucas(56)/(1/2+sqrt(5)/2)^78 2329991416277395 a001 9227465/312119004989*817138163596^(11/19) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^33/Lucas(55) 2329991416277395 a004 Fibonacci(55)/Lucas(35)/(1/2+sqrt(5)/2)^7 2329991416277395 a001 9227465/1322157322203*192900153618^(2/3) 2329991416277395 a001 9227465/5600748293801*192900153618^(13/18) 2329991416277395 a001 9227465/23725150497407*192900153618^(7/9) 2329991416277395 a001 9227465/312119004989*192900153618^(11/18) 2329991416277395 a004 Fibonacci(35)*Lucas(54)/(1/2+sqrt(5)/2)^76 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^31/Lucas(53) 2329991416277395 a004 Fibonacci(53)/Lucas(35)/(1/2+sqrt(5)/2)^5 2329991416277395 a001 9227465/119218851371*9062201101803^(1/2) 2329991416277395 a001 9227465/192900153618*73681302247^(8/13) 2329991416277395 a001 9227465/1322157322203*73681302247^(9/13) 2329991416277395 a001 9227465/5600748293801*73681302247^(3/4) 2329991416277395 a004 Fibonacci(35)*Lucas(52)/(1/2+sqrt(5)/2)^74 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^29/Lucas(51) 2329991416277395 a004 Fibonacci(51)/Lucas(35)/(1/2+sqrt(5)/2)^3 2329991416277395 a001 9227465/45537549124*1322157322203^(1/2) 2329991416277395 a001 9227465/73681302247*28143753123^(3/5) 2329991416277395 a001 9227465/817138163596*28143753123^(7/10) 2329991416277395 a001 9227465/9062201101803*28143753123^(4/5) 2329991416277395 a004 Fibonacci(35)*Lucas(50)/(1/2+sqrt(5)/2)^72 2329991416277395 a001 9227465/17393796001*45537549124^(9/17) 2329991416277395 a001 9227465/17393796001*817138163596^(9/19) 2329991416277395 a001 9227465/17393796001*14662949395604^(3/7) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^27/Lucas(49) 2329991416277395 a004 Fibonacci(49)/Lucas(35)/(1/2+sqrt(5)/2) 2329991416277395 a001 9227465/17393796001*192900153618^(1/2) 2329991416277395 a001 9227465/28143753123*10749957122^(7/12) 2329991416277395 a001 9227465/73681302247*10749957122^(5/8) 2329991416277395 a001 9227465/192900153618*10749957122^(2/3) 2329991416277395 a001 9227465/312119004989*10749957122^(11/16) 2329991416277395 a001 9227465/505019158607*10749957122^(17/24) 2329991416277395 a001 9227465/1322157322203*10749957122^(3/4) 2329991416277395 a001 9227465/3461452808002*10749957122^(19/24) 2329991416277395 a001 9227465/5600748293801*10749957122^(13/16) 2329991416277395 a001 9227465/9062201101803*10749957122^(5/6) 2329991416277395 a001 9227465/23725150497407*10749957122^(7/8) 2329991416277395 a001 9227465/17393796001*10749957122^(9/16) 2329991416277395 a004 Fibonacci(35)*Lucas(48)/(1/2+sqrt(5)/2)^70 2329991416277395 a001 9227465/6643838879*312119004989^(5/11) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^25/Lucas(47) 2329991416277395 a001 9227465/6643838879*3461452808002^(5/12) 2329991416277395 a001 9227465/6643838879*28143753123^(1/2) 2329991416277395 a001 9227465/10749957122*4106118243^(13/23) 2329991416277395 a001 9227465/28143753123*4106118243^(14/23) 2329991416277395 a001 9227465/73681302247*4106118243^(15/23) 2329991416277395 a001 9227465/192900153618*4106118243^(16/23) 2329991416277395 a001 9227465/505019158607*4106118243^(17/23) 2329991416277395 a001 9227465/1322157322203*4106118243^(18/23) 2329991416277395 a001 9227465/3461452808002*4106118243^(19/23) 2329991416277395 a001 9227465/9062201101803*4106118243^(20/23) 2329991416277395 a001 9227465/23725150497407*4106118243^(21/23) 2329991416277395 a004 Fibonacci(35)*Lucas(46)/(1/2+sqrt(5)/2)^68 2329991416277395 a001 1836311903/20633239*599074578^(1/21) 2329991416277395 a001 9238424/711491*228826127^(3/20) 2329991416277395 a001 1134903170/20633239*2537720636^(1/15) 2329991416277395 a001 1134903170/20633239*45537549124^(1/17) 2329991416277395 a001 1134903170/20633239*14662949395604^(1/21) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^23/Lucas(45) 2329991416277395 a001 1134903170/20633239*(1/2+1/2*5^(1/2))^3 2329991416277395 a001 1134903170/20633239*192900153618^(1/18) 2329991416277395 a001 1134903170/20633239*10749957122^(1/16) 2329991416277395 a001 9227465/4106118243*1568397607^(6/11) 2329991416277395 a001 9227465/2537720636*4106118243^(1/2) 2329991416277395 a001 9227465/10749957122*1568397607^(13/22) 2329991416277395 a001 9227465/28143753123*1568397607^(7/11) 2329991416277395 a001 9227465/73681302247*1568397607^(15/22) 2329991416277395 a001 9227465/192900153618*1568397607^(8/11) 2329991416277395 a001 9227465/312119004989*1568397607^(3/4) 2329991416277395 a001 9227465/505019158607*1568397607^(17/22) 2329991416277395 a001 9227465/1322157322203*1568397607^(9/11) 2329991416277395 a001 9227465/3461452808002*1568397607^(19/22) 2329991416277395 a001 1134903170/20633239*599074578^(1/14) 2329991416277395 a001 9227465/9062201101803*1568397607^(10/11) 2329991416277395 a001 9227465/23725150497407*1568397607^(21/22) 2329991416277395 a004 Fibonacci(35)*Lucas(44)/(1/2+sqrt(5)/2)^66 2329991416277395 a001 1836311903/20633239*228826127^(1/20) 2329991416277395 a001 9227465/969323029*2537720636^(7/15) 2329991416277395 a001 433494437/20633239*2537720636^(1/9) 2329991416277395 a001 9227465/1568397607*599074578^(11/21) 2329991416277395 a001 9227465/969323029*17393796001^(3/7) 2329991416277395 a001 9227465/969323029*45537549124^(7/17) 2329991416277395 a001 433494437/20633239*312119004989^(1/11) 2329991416277395 a001 9227465/969323029*14662949395604^(1/3) 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^21/Lucas(43) 2329991416277395 a001 433494437/20633239*(1/2+1/2*5^(1/2))^5 2329991416277395 a001 9227465/969323029*192900153618^(7/18) 2329991416277395 a001 433494437/20633239*28143753123^(1/10) 2329991416277395 a001 9227465/969323029*10749957122^(7/16) 2329991416277395 a001 701408733/20633239*228826127^(1/10) 2329991416277395 a001 9227465/4106118243*599074578^(4/7) 2329991416277395 a001 9227465/10749957122*599074578^(13/21) 2329991416277395 a001 9227465/17393796001*599074578^(9/14) 2329991416277395 a001 9227465/28143753123*599074578^(2/3) 2329991416277395 a001 9227465/73681302247*599074578^(5/7) 2329991416277395 a001 9227465/192900153618*599074578^(16/21) 2329991416277395 a001 9227465/312119004989*599074578^(11/14) 2329991416277395 a001 9227465/505019158607*599074578^(17/21) 2329991416277395 a001 9227465/817138163596*599074578^(5/6) 2329991416277395 a001 9227465/1322157322203*599074578^(6/7) 2329991416277395 a001 9227465/969323029*599074578^(1/2) 2329991416277395 a001 9227465/3461452808002*599074578^(19/21) 2329991416277395 a001 9227465/5600748293801*599074578^(13/14) 2329991416277395 a001 9227465/9062201101803*599074578^(20/21) 2329991416277395 a004 Fibonacci(35)*Lucas(42)/(1/2+sqrt(5)/2)^64 2329991416277395 a001 433494437/20633239*228826127^(1/8) 2329991416277395 a001 9227465/599074578*228826127^(1/2) 2329991416277395 a001 1836311903/20633239*87403803^(1/19) 2329991416277395 a001 165580141/20633239*17393796001^(1/7) 2329991416277395 a001 117529611982505/504420793834 2329991416277395 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^19/Lucas(41) 2329991416277395 a001 165580141/20633239*(1/2+1/2*5^(1/2))^7 2329991416277395 a001 165580141/20633239*599074578^(1/6) 2329991416277395 a001 9303105/1875749*87403803^(4/19) 2329991416277395 a001 9227465/1568397607*228826127^(11/20) 2329991416277395 a001 9227465/4106118243*228826127^(3/5) 2329991416277395 a001 9227465/6643838879*228826127^(5/8) 2329991416277395 a001 9227465/10749957122*228826127^(13/20) 2329991416277395 a001 9227465/28143753123*228826127^(7/10) 2329991416277395 a001 701408733/20633239*87403803^(2/19) 2329991416277395 a001 9227465/73681302247*228826127^(3/4) 2329991416277395 a001 9227465/192900153618*228826127^(4/5) 2329991416277395 a001 9227465/505019158607*228826127^(17/20) 2329991416277395 a001 9227465/817138163596*228826127^(7/8) 2329991416277395 a001 14930352/370248451*12752043^(9/17) 2329991416277395 a001 9227465/1322157322203*228826127^(9/10) 2329991416277395 a001 9238424/711491*87403803^(3/19) 2329991416277395 a001 9227465/3461452808002*228826127^(19/20) 2329991416277395 a004 Fibonacci(35)*Lucas(40)/(1/2+sqrt(5)/2)^62 2329991416277395 a001 39088169/54018521*12752043^(6/17) 2329991416277395 a001 63245986/20633239*141422324^(3/13) 2329991416277396 a001 9227465/228826127*87403803^(9/19) 2329991416277396 a001 1836311903/20633239*33385282^(1/18) 2329991416277396 a001 63245986/20633239*2537720636^(1/5) 2329991416277396 a001 9227465/141422324*45537549124^(1/3) 2329991416277396 a001 63245986/20633239*45537549124^(3/17) 2329991416277396 a001 583600122205490/2504730781961 2329991416277396 a001 63245986/20633239*14662949395604^(1/7) 2329991416277396 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^17/Lucas(39) 2329991416277396 a001 63245986/20633239*(1/2+1/2*5^(1/2))^9 2329991416277396 a001 63245986/20633239*192900153618^(1/6) 2329991416277396 a001 63245986/20633239*10749957122^(3/16) 2329991416277396 a001 63245986/20633239*599074578^(3/14) 2329991416277396 a001 9227465/599074578*87403803^(10/19) 2329991416277396 a001 9227465/370248451*87403803^(1/2) 2329991416277396 a001 1134903170/20633239*33385282^(1/12) 2329991416277396 a001 9227465/1568397607*87403803^(11/19) 2329991416277396 a001 9227465/4106118243*87403803^(12/19) 2329991416277396 a001 9227465/10749957122*87403803^(13/19) 2329991416277396 a001 9227465/28143753123*87403803^(14/19) 2329991416277396 a001 701408733/20633239*33385282^(1/9) 2329991416277396 a001 39088169/141422324*12752043^(7/17) 2329991416277396 a001 9227465/73681302247*87403803^(15/19) 2329991416277396 a001 9227465/192900153618*87403803^(16/19) 2329991416277396 a001 9227465/505019158607*87403803^(17/19) 2329991416277396 a001 39088169/20633239*33385282^(5/18) 2329991416277396 a001 9227465/1322157322203*87403803^(18/19) 2329991416277396 a004 Fibonacci(35)*Lucas(38)/(1/2+sqrt(5)/2)^60 2329991416277396 a001 9238424/711491*33385282^(1/6) 2329991416277396 a001 7778742049/87403803*4870847^(1/16) 2329991416277396 a001 102334155/370248451*12752043^(7/17) 2329991416277396 a001 9303105/1875749*33385282^(2/9) 2329991416277396 a001 267914296/969323029*12752043^(7/17) 2329991416277396 a001 701408733/2537720636*12752043^(7/17) 2329991416277396 a001 1836311903/6643838879*12752043^(7/17) 2329991416277396 a001 4807526976/17393796001*12752043^(7/17) 2329991416277396 a001 12586269025/45537549124*12752043^(7/17) 2329991416277396 a001 32951280099/119218851371*12752043^(7/17) 2329991416277396 a001 86267571272/312119004989*12752043^(7/17) 2329991416277396 a001 225851433717/817138163596*12752043^(7/17) 2329991416277396 a001 1548008755920/5600748293801*12752043^(7/17) 2329991416277396 a001 139583862445/505019158607*12752043^(7/17) 2329991416277396 a001 53316291173/192900153618*12752043^(7/17) 2329991416277396 a001 20365011074/73681302247*12752043^(7/17) 2329991416277396 a001 7778742049/28143753123*12752043^(7/17) 2329991416277396 a001 2971215073/10749957122*12752043^(7/17) 2329991416277396 a001 1134903170/4106118243*12752043^(7/17) 2329991416277396 a001 433494437/1568397607*12752043^(7/17) 2329991416277396 a001 165580141/599074578*12752043^(7/17) 2329991416277396 a001 63245986/228826127*12752043^(7/17) 2329991416277396 a001 20365011074/228826127*4870847^(1/16) 2329991416277396 a001 9227465/87403803*33385282^(4/9) 2329991416277396 a001 63245986/20633239*33385282^(1/4) 2329991416277396 a001 53316291173/599074578*4870847^(1/16) 2329991416277396 a001 139583862445/1568397607*4870847^(1/16) 2329991416277396 a001 365435296162/4106118243*4870847^(1/16) 2329991416277396 a001 956722026041/10749957122*4870847^(1/16) 2329991416277396 a001 2504730781961/28143753123*4870847^(1/16) 2329991416277396 a001 6557470319842/73681302247*4870847^(1/16) 2329991416277396 a001 10610209857723/119218851371*4870847^(1/16) 2329991416277396 a001 4052739537881/45537549124*4870847^(1/16) 2329991416277396 a001 1548008755920/17393796001*4870847^(1/16) 2329991416277396 a001 591286729879/6643838879*4870847^(1/16) 2329991416277396 a001 225851433717/2537720636*4870847^(1/16) 2329991416277396 a001 86267571272/969323029*4870847^(1/16) 2329991416277396 a001 32951280099/370248451*4870847^(1/16) 2329991416277396 a001 9227465/54018521*141422324^(5/13) 2329991416277396 a001 12586269025/141422324*4870847^(1/16) 2329991416277396 a001 9227465/54018521*2537720636^(1/3) 2329991416277396 a001 9227465/54018521*45537549124^(5/17) 2329991416277396 a001 9227465/54018521*312119004989^(3/11) 2329991416277396 a001 24157817/20633239*312119004989^(1/5) 2329991416277396 a001 222915410843905/956722026041 2329991416277396 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^15/Lucas(37) 2329991416277396 a001 24157817/20633239*(1/2+1/2*5^(1/2))^11 2329991416277396 a001 9227465/54018521*192900153618^(5/18) 2329991416277396 a001 9227465/54018521*28143753123^(3/10) 2329991416277396 a001 9227465/54018521*10749957122^(5/16) 2329991416277396 a001 24157817/20633239*1568397607^(1/4) 2329991416277396 a001 9227465/54018521*599074578^(5/14) 2329991416277396 a001 9227465/54018521*228826127^(3/8) 2329991416277396 a001 1836311903/20633239*12752043^(1/17) 2329991416277396 a001 14930352/969323029*12752043^(10/17) 2329991416277396 a001 24157817/87403803*12752043^(7/17) 2329991416277396 a001 39088169/370248451*12752043^(8/17) 2329991416277396 a001 9227465/228826127*33385282^(1/2) 2329991416277397 a001 9227465/599074578*33385282^(5/9) 2329991416277397 a001 9227465/969323029*33385282^(7/12) 2329991416277397 a001 102334155/969323029*12752043^(8/17) 2329991416277397 a001 66978574/634430159*12752043^(8/17) 2329991416277397 a001 701408733/6643838879*12752043^(8/17) 2329991416277397 a001 1836311903/17393796001*12752043^(8/17) 2329991416277397 a001 1201881744/11384387281*12752043^(8/17) 2329991416277397 a001 12586269025/119218851371*12752043^(8/17) 2329991416277397 a001 32951280099/312119004989*12752043^(8/17) 2329991416277397 a001 21566892818/204284540899*12752043^(8/17) 2329991416277397 a001 225851433717/2139295485799*12752043^(8/17) 2329991416277397 a001 182717648081/1730726404001*12752043^(8/17) 2329991416277397 a001 139583862445/1322157322203*12752043^(8/17) 2329991416277397 a001 53316291173/505019158607*12752043^(8/17) 2329991416277397 a001 10182505537/96450076809*12752043^(8/17) 2329991416277397 a001 7778742049/73681302247*12752043^(8/17) 2329991416277397 a001 2971215073/28143753123*12752043^(8/17) 2329991416277397 a001 567451585/5374978561*12752043^(8/17) 2329991416277397 a001 433494437/4106118243*12752043^(8/17) 2329991416277397 a001 9227465/1568397607*33385282^(11/18) 2329991416277397 a001 165580141/1568397607*12752043^(8/17) 2329991416277397 a001 3524578/6643838879*7881196^(9/11) 2329991416277397 a001 39088169/599074578*12752043^(1/2) 2329991416277397 a001 31622993/299537289*12752043^(8/17) 2329991416277397 a001 9227465/4106118243*33385282^(2/3) 2329991416277397 a001 4807526976/54018521*4870847^(1/16) 2329991416277397 a001 9227465/10749957122*33385282^(13/18) 2329991416277397 a001 9227465/17393796001*33385282^(3/4) 2329991416277397 a001 9227465/28143753123*33385282^(7/9) 2329991416277397 a001 14619165/224056801*12752043^(1/2) 2329991416277397 a001 9227465/54018521*33385282^(5/12) 2329991416277397 a001 267914296/4106118243*12752043^(1/2) 2329991416277397 a001 701408733/20633239*12752043^(2/17) 2329991416277397 a001 701408733/10749957122*12752043^(1/2) 2329991416277397 a001 1836311903/28143753123*12752043^(1/2) 2329991416277397 a001 686789568/10525900321*12752043^(1/2) 2329991416277397 a001 12586269025/192900153618*12752043^(1/2) 2329991416277397 a001 32951280099/505019158607*12752043^(1/2) 2329991416277397 a001 86267571272/1322157322203*12752043^(1/2) 2329991416277397 a001 32264490531/494493258286*12752043^(1/2) 2329991416277397 a001 1548008755920/23725150497407*12752043^(1/2) 2329991416277397 a001 139583862445/2139295485799*12752043^(1/2) 2329991416277397 a001 53316291173/817138163596*12752043^(1/2) 2329991416277397 a001 20365011074/312119004989*12752043^(1/2) 2329991416277397 a001 7778742049/119218851371*12752043^(1/2) 2329991416277397 a001 2971215073/45537549124*12752043^(1/2) 2329991416277397 a001 1134903170/17393796001*12752043^(1/2) 2329991416277397 a001 433494437/6643838879*12752043^(1/2) 2329991416277397 a001 196452/33391061*12752043^(11/17) 2329991416277397 a001 165580141/2537720636*12752043^(1/2) 2329991416277397 a001 9227465/73681302247*33385282^(5/6) 2329991416277397 a001 39088169/969323029*12752043^(9/17) 2329991416277397 a001 63245986/969323029*12752043^(1/2) 2329991416277397 a001 9227465/192900153618*33385282^(8/9) 2329991416277397 a001 9227465/312119004989*33385282^(11/12) 2329991416277397 a001 9227465/505019158607*33385282^(17/18) 2329991416277397 a001 24157817/228826127*12752043^(8/17) 2329991416277397 a001 9303105/230701876*12752043^(9/17) 2329991416277397 a004 Fibonacci(35)*Lucas(36)/(1/2+sqrt(5)/2)^58 2329991416277398 a001 267914296/6643838879*12752043^(9/17) 2329991416277398 a001 701408733/17393796001*12752043^(9/17) 2329991416277398 a001 1836311903/45537549124*12752043^(9/17) 2329991416277398 a001 4807526976/119218851371*12752043^(9/17) 2329991416277398 a001 1144206275/28374454999*12752043^(9/17) 2329991416277398 a001 32951280099/817138163596*12752043^(9/17) 2329991416277398 a001 86267571272/2139295485799*12752043^(9/17) 2329991416277398 a001 225851433717/5600748293801*12752043^(9/17) 2329991416277398 a001 365435296162/9062201101803*12752043^(9/17) 2329991416277398 a001 139583862445/3461452808002*12752043^(9/17) 2329991416277398 a001 53316291173/1322157322203*12752043^(9/17) 2329991416277398 a001 20365011074/505019158607*12752043^(9/17) 2329991416277398 a001 7778742049/192900153618*12752043^(9/17) 2329991416277398 a001 2971215073/73681302247*12752043^(9/17) 2329991416277398 a001 1134903170/28143753123*12752043^(9/17) 2329991416277398 a001 433494437/10749957122*12752043^(9/17) 2329991416277398 a001 165580141/4106118243*12752043^(9/17) 2329991416277398 a001 63245986/1568397607*12752043^(9/17) 2329991416277398 a001 24157817/370248451*12752043^(1/2) 2329991416277398 a001 9238424/711491*12752043^(3/17) 2329991416277398 a001 14930352/6643838879*12752043^(12/17) 2329991416277398 a001 39088169/2537720636*12752043^(10/17) 2329991416277398 a001 24157817/599074578*12752043^(9/17) 2329991416277398 a001 102334155/6643838879*12752043^(10/17) 2329991416277398 a001 9238424/599786069*12752043^(10/17) 2329991416277398 a001 701408733/45537549124*12752043^(10/17) 2329991416277398 a001 1836311903/119218851371*12752043^(10/17) 2329991416277398 a001 4807526976/312119004989*12752043^(10/17) 2329991416277398 a001 12586269025/817138163596*12752043^(10/17) 2329991416277398 a001 32951280099/2139295485799*12752043^(10/17) 2329991416277398 a001 86267571272/5600748293801*12752043^(10/17) 2329991416277398 a001 7787980473/505618944676*12752043^(10/17) 2329991416277398 a001 365435296162/23725150497407*12752043^(10/17) 2329991416277398 a001 139583862445/9062201101803*12752043^(10/17) 2329991416277398 a001 53316291173/3461452808002*12752043^(10/17) 2329991416277398 a001 20365011074/1322157322203*12752043^(10/17) 2329991416277398 a001 7778742049/505019158607*12752043^(10/17) 2329991416277398 a001 2971215073/192900153618*12752043^(10/17) 2329991416277398 a001 1134903170/73681302247*12752043^(10/17) 2329991416277398 a001 433494437/28143753123*12752043^(10/17) 2329991416277398 a001 14930352/20633239*12752043^(6/17) 2329991416277398 a001 165580141/10749957122*12752043^(10/17) 2329991416277398 a001 63245986/4106118243*12752043^(10/17) 2329991416277399 a001 9303105/1875749*12752043^(4/17) 2329991416277399 a001 14930352/17393796001*12752043^(13/17) 2329991416277399 a001 39088169/6643838879*12752043^(11/17) 2329991416277399 a001 24157817/1568397607*12752043^(10/17) 2329991416277399 a001 102334155/17393796001*12752043^(11/17) 2329991416277399 a001 66978574/11384387281*12752043^(11/17) 2329991416277399 a001 701408733/119218851371*12752043^(11/17) 2329991416277399 a001 1836311903/312119004989*12752043^(11/17) 2329991416277399 a001 1201881744/204284540899*12752043^(11/17) 2329991416277399 a001 12586269025/2139295485799*12752043^(11/17) 2329991416277399 a001 32951280099/5600748293801*12752043^(11/17) 2329991416277399 a001 1135099622/192933544679*12752043^(11/17) 2329991416277399 a001 139583862445/23725150497407*12752043^(11/17) 2329991416277399 a001 53316291173/9062201101803*12752043^(11/17) 2329991416277399 a001 10182505537/1730726404001*12752043^(11/17) 2329991416277399 a001 7778742049/1322157322203*12752043^(11/17) 2329991416277399 a001 2971215073/505019158607*12752043^(11/17) 2329991416277399 a001 567451585/96450076809*12752043^(11/17) 2329991416277399 a001 433494437/73681302247*12752043^(11/17) 2329991416277399 a001 9227465/33385282*12752043^(7/17) 2329991416277399 a001 165580141/28143753123*12752043^(11/17) 2329991416277399 a001 39088169/20633239*12752043^(5/17) 2329991416277399 a001 31622993/5374978561*12752043^(11/17) 2329991416277399 a001 5702887/7881196*7881196^(4/11) 2329991416277400 a001 3732588/11384387281*12752043^(14/17) 2329991416277400 a001 39088169/17393796001*12752043^(12/17) 2329991416277400 a001 102334155/45537549124*12752043^(12/17) 2329991416277400 a001 24157817/4106118243*12752043^(11/17) 2329991416277400 a001 267914296/119218851371*12752043^(12/17) 2329991416277400 a001 3524667/1568437211*12752043^(12/17) 2329991416277400 a001 1836311903/817138163596*12752043^(12/17) 2329991416277400 a001 4807526976/2139295485799*12752043^(12/17) 2329991416277400 a001 12586269025/5600748293801*12752043^(12/17) 2329991416277400 a001 32951280099/14662949395604*12752043^(12/17) 2329991416277400 a001 53316291173/23725150497407*12752043^(12/17) 2329991416277400 a001 20365011074/9062201101803*12752043^(12/17) 2329991416277400 a001 7778742049/3461452808002*12752043^(12/17) 2329991416277400 a001 2971215073/1322157322203*12752043^(12/17) 2329991416277400 a001 1134903170/505019158607*12752043^(12/17) 2329991416277400 a001 433494437/192900153618*12752043^(12/17) 2329991416277400 a001 165580141/73681302247*12752043^(12/17) 2329991416277400 a001 567451585/16692641*4870847^(1/8) 2329991416277400 a001 3524578/1568397607*7881196^(8/11) 2329991416277400 a001 63245986/28143753123*12752043^(12/17) 2329991416277400 a001 63245986/12752043*4870847^(1/4) 2329991416277400 a001 14930352/119218851371*12752043^(15/17) 2329991416277401 a001 39088169/45537549124*12752043^(13/17) 2329991416277401 a001 9227465/20633239*141422324^(1/3) 2329991416277401 a001 102334155/119218851371*12752043^(13/17) 2329991416277401 a001 24157817/10749957122*12752043^(12/17) 2329991416277401 a001 85146110326225/365435296162 2329991416277401 a001 9227465/20633239*(1/2+1/2*5^(1/2))^13 2329991416277401 a001 9227465/20633239*73681302247^(1/4) 2329991416277401 a001 267914296/312119004989*12752043^(13/17) 2329991416277401 a001 701408733/817138163596*12752043^(13/17) 2329991416277401 a001 1836311903/2139295485799*12752043^(13/17) 2329991416277401 a001 4807526976/5600748293801*12752043^(13/17) 2329991416277401 a001 12586269025/14662949395604*12752043^(13/17) 2329991416277401 a001 20365011074/23725150497407*12752043^(13/17) 2329991416277401 a001 7778742049/9062201101803*12752043^(13/17) 2329991416277401 a001 2971215073/3461452808002*12752043^(13/17) 2329991416277401 a001 1134903170/1322157322203*12752043^(13/17) 2329991416277401 a001 433494437/505019158607*12752043^(13/17) 2329991416277401 a001 165580141/192900153618*12752043^(13/17) 2329991416277401 a001 63245986/73681302247*12752043^(13/17) 2329991416277401 a001 14930352/312119004989*12752043^(16/17) 2329991416277401 a001 39088169/119218851371*12752043^(14/17) 2329991416277402 a001 1836311903/20633239*4870847^(1/16) 2329991416277402 a001 9303105/28374454999*12752043^(14/17) 2329991416277402 a001 24157817/28143753123*12752043^(13/17) 2329991416277402 a001 66978574/204284540899*12752043^(14/17) 2329991416277402 a001 701408733/2139295485799*12752043^(14/17) 2329991416277402 a001 1836311903/5600748293801*12752043^(14/17) 2329991416277402 a001 1201881744/3665737348901*12752043^(14/17) 2329991416277402 a001 7778742049/23725150497407*12752043^(14/17) 2329991416277402 a001 2971215073/9062201101803*12752043^(14/17) 2329991416277402 a001 567451585/1730726404001*12752043^(14/17) 2329991416277402 a001 433494437/1322157322203*12752043^(14/17) 2329991416277402 a001 165580141/505019158607*12752043^(14/17) 2329991416277402 a001 9227465/87403803*12752043^(8/17) 2329991416277402 a001 31622993/96450076809*12752043^(14/17) 2329991416277402 a001 2971215073/87403803*4870847^(1/8) 2329991416277402 a001 7778742049/228826127*4870847^(1/8) 2329991416277402 a004 Fibonacci(36)*Lucas(34)/(1/2+sqrt(5)/2)^57 2329991416277402 a001 10182505537/299537289*4870847^(1/8) 2329991416277402 a001 53316291173/1568397607*4870847^(1/8) 2329991416277402 a001 139583862445/4106118243*4870847^(1/8) 2329991416277402 a001 182717648081/5374978561*4870847^(1/8) 2329991416277402 a001 956722026041/28143753123*4870847^(1/8) 2329991416277402 a001 2504730781961/73681302247*4870847^(1/8) 2329991416277402 a001 3278735159921/96450076809*4870847^(1/8) 2329991416277402 a001 10610209857723/312119004989*4870847^(1/8) 2329991416277402 a001 4052739537881/119218851371*4870847^(1/8) 2329991416277402 a001 387002188980/11384387281*4870847^(1/8) 2329991416277402 a001 591286729879/17393796001*4870847^(1/8) 2329991416277402 a001 225851433717/6643838879*4870847^(1/8) 2329991416277402 a001 1135099622/33391061*4870847^(1/8) 2329991416277402 a001 32951280099/969323029*4870847^(1/8) 2329991416277402 a001 12586269025/370248451*4870847^(1/8) 2329991416277402 a001 39088169/312119004989*12752043^(15/17) 2329991416277402 a001 1201881744/35355581*4870847^(1/8) 2329991416277402 a001 1762289/299537289*7881196^(2/3) 2329991416277403 a001 102334155/817138163596*12752043^(15/17) 2329991416277403 a001 24157817/73681302247*12752043^(14/17) 2329991416277403 a001 267914296/2139295485799*12752043^(15/17) 2329991416277403 a001 701408733/5600748293801*12752043^(15/17) 2329991416277403 a001 1836311903/14662949395604*12752043^(15/17) 2329991416277403 a001 2971215073/23725150497407*12752043^(15/17) 2329991416277403 a001 1134903170/9062201101803*12752043^(15/17) 2329991416277403 a001 433494437/3461452808002*12752043^(15/17) 2329991416277403 a001 165580141/1322157322203*12752043^(15/17) 2329991416277403 a001 9227465/141422324*12752043^(1/2) 2329991416277403 a001 63245986/505019158607*12752043^(15/17) 2329991416277403 a001 9227465/228826127*12752043^(9/17) 2329991416277403 a001 1836311903/54018521*4870847^(1/8) 2329991416277403 a001 4181/87403804*12752043^(16/17) 2329991416277403 a001 102334155/2139295485799*12752043^(16/17) 2329991416277403 a001 24157817/192900153618*12752043^(15/17) 2329991416277403 a001 267914296/5600748293801*12752043^(16/17) 2329991416277403 a001 701408733/14662949395604*12752043^(16/17) 2329991416277403 a001 1134903170/23725150497407*12752043^(16/17) 2329991416277403 a001 433494437/9062201101803*12752043^(16/17) 2329991416277403 a001 165580141/3461452808002*12752043^(16/17) 2329991416277404 a001 63245986/1322157322203*12752043^(16/17) 2329991416277404 a001 3524578/370248451*7881196^(7/11) 2329991416277404 a001 9227465/599074578*12752043^(10/17) 2329991416277404 a001 102334155/4870847*1860498^(1/6) 2329991416277404 a004 Fibonacci(38)*Lucas(34)/(1/2+sqrt(5)/2)^59 2329991416277404 a004 Fibonacci(40)*Lucas(34)/(1/2+sqrt(5)/2)^61 2329991416277404 a001 24157817/505019158607*12752043^(16/17) 2329991416277404 a004 Fibonacci(42)*Lucas(34)/(1/2+sqrt(5)/2)^63 2329991416277404 a004 Fibonacci(44)*Lucas(34)/(1/2+sqrt(5)/2)^65 2329991416277404 a004 Fibonacci(46)*Lucas(34)/(1/2+sqrt(5)/2)^67 2329991416277404 a004 Fibonacci(48)*Lucas(34)/(1/2+sqrt(5)/2)^69 2329991416277404 a004 Fibonacci(50)*Lucas(34)/(1/2+sqrt(5)/2)^71 2329991416277404 a004 Fibonacci(52)*Lucas(34)/(1/2+sqrt(5)/2)^73 2329991416277404 a004 Fibonacci(54)*Lucas(34)/(1/2+sqrt(5)/2)^75 2329991416277404 a004 Fibonacci(56)*Lucas(34)/(1/2+sqrt(5)/2)^77 2329991416277404 a004 Fibonacci(58)*Lucas(34)/(1/2+sqrt(5)/2)^79 2329991416277404 a004 Fibonacci(60)*Lucas(34)/(1/2+sqrt(5)/2)^81 2329991416277404 a004 Fibonacci(62)*Lucas(34)/(1/2+sqrt(5)/2)^83 2329991416277404 a004 Fibonacci(64)*Lucas(34)/(1/2+sqrt(5)/2)^85 2329991416277404 a004 Fibonacci(66)*Lucas(34)/(1/2+sqrt(5)/2)^87 2329991416277404 a004 Fibonacci(68)*Lucas(34)/(1/2+sqrt(5)/2)^89 2329991416277404 a004 Fibonacci(70)*Lucas(34)/(1/2+sqrt(5)/2)^91 2329991416277404 a004 Fibonacci(72)*Lucas(34)/(1/2+sqrt(5)/2)^93 2329991416277404 a004 Fibonacci(74)*Lucas(34)/(1/2+sqrt(5)/2)^95 2329991416277404 a004 Fibonacci(76)*Lucas(34)/(1/2+sqrt(5)/2)^97 2329991416277404 a004 Fibonacci(78)*Lucas(34)/(1/2+sqrt(5)/2)^99 2329991416277404 a004 Fibonacci(79)*Lucas(34)/(1/2+sqrt(5)/2)^100 2329991416277404 a004 Fibonacci(77)*Lucas(34)/(1/2+sqrt(5)/2)^98 2329991416277404 a004 Fibonacci(75)*Lucas(34)/(1/2+sqrt(5)/2)^96 2329991416277404 a004 Fibonacci(73)*Lucas(34)/(1/2+sqrt(5)/2)^94 2329991416277404 a004 Fibonacci(71)*Lucas(34)/(1/2+sqrt(5)/2)^92 2329991416277404 a004 Fibonacci(69)*Lucas(34)/(1/2+sqrt(5)/2)^90 2329991416277404 a001 2/5702887*(1/2+1/2*5^(1/2))^47 2329991416277404 a004 Fibonacci(67)*Lucas(34)/(1/2+sqrt(5)/2)^88 2329991416277404 a004 Fibonacci(65)*Lucas(34)/(1/2+sqrt(5)/2)^86 2329991416277404 a004 Fibonacci(63)*Lucas(34)/(1/2+sqrt(5)/2)^84 2329991416277404 a004 Fibonacci(61)*Lucas(34)/(1/2+sqrt(5)/2)^82 2329991416277404 a004 Fibonacci(59)*Lucas(34)/(1/2+sqrt(5)/2)^80 2329991416277404 a004 Fibonacci(57)*Lucas(34)/(1/2+sqrt(5)/2)^78 2329991416277404 a004 Fibonacci(55)*Lucas(34)/(1/2+sqrt(5)/2)^76 2329991416277404 a004 Fibonacci(53)*Lucas(34)/(1/2+sqrt(5)/2)^74 2329991416277404 a004 Fibonacci(51)*Lucas(34)/(1/2+sqrt(5)/2)^72 2329991416277404 a004 Fibonacci(49)*Lucas(34)/(1/2+sqrt(5)/2)^70 2329991416277404 a004 Fibonacci(47)*Lucas(34)/(1/2+sqrt(5)/2)^68 2329991416277404 a004 Fibonacci(45)*Lucas(34)/(1/2+sqrt(5)/2)^66 2329991416277404 a004 Fibonacci(43)*Lucas(34)/(1/2+sqrt(5)/2)^64 2329991416277404 a004 Fibonacci(41)*Lucas(34)/(1/2+sqrt(5)/2)^62 2329991416277404 a004 Fibonacci(39)*Lucas(34)/(1/2+sqrt(5)/2)^60 2329991416277405 a001 9227465/1568397607*12752043^(11/17) 2329991416277405 a004 Fibonacci(37)*Lucas(34)/(1/2+sqrt(5)/2)^58 2329991416277406 a001 9227465/4106118243*12752043^(12/17) 2329991416277406 a001 433494437/33385282*4870847^(3/16) 2329991416277406 a001 9227465/10749957122*12752043^(13/17) 2329991416277407 a001 3524578/87403803*7881196^(6/11) 2329991416277407 a001 24157817/12752043*4870847^(5/16) 2329991416277407 a001 9227465/28143753123*12752043^(14/17) 2329991416277408 a001 701408733/20633239*4870847^(1/8) 2329991416277408 a001 1134903170/87403803*4870847^(3/16) 2329991416277408 a001 9227465/73681302247*12752043^(15/17) 2329991416277408 a001 2971215073/228826127*4870847^(3/16) 2329991416277408 a001 7778742049/599074578*4870847^(3/16) 2329991416277408 a001 20365011074/1568397607*4870847^(3/16) 2329991416277408 a001 53316291173/4106118243*4870847^(3/16) 2329991416277408 a001 139583862445/10749957122*4870847^(3/16) 2329991416277408 a001 365435296162/28143753123*4870847^(3/16) 2329991416277408 a001 956722026041/73681302247*4870847^(3/16) 2329991416277408 a001 2504730781961/192900153618*4870847^(3/16) 2329991416277408 a001 10610209857723/817138163596*4870847^(3/16) 2329991416277408 a001 4052739537881/312119004989*4870847^(3/16) 2329991416277408 a001 1548008755920/119218851371*4870847^(3/16) 2329991416277408 a001 591286729879/45537549124*4870847^(3/16) 2329991416277408 a001 7787980473/599786069*4870847^(3/16) 2329991416277408 a001 86267571272/6643838879*4870847^(3/16) 2329991416277408 a001 32951280099/2537720636*4870847^(3/16) 2329991416277408 a001 12586269025/969323029*4870847^(3/16) 2329991416277408 a001 4807526976/370248451*4870847^(3/16) 2329991416277408 a001 1836311903/141422324*4870847^(3/16) 2329991416277409 a001 9227465/192900153618*12752043^(16/17) 2329991416277409 a001 701408733/54018521*4870847^(3/16) 2329991416277410 a004 Fibonacci(35)*Lucas(34)/(1/2+sqrt(5)/2)^56 2329991416277411 a001 3524578/12752043*20633239^(2/5) 2329991416277412 a001 165580141/33385282*4870847^(1/4) 2329991416277413 a001 5702887/7881196*141422324^(4/13) 2329991416277413 a001 5702887/7881196*2537720636^(4/15) 2329991416277413 a001 3524578/12752043*17393796001^(2/7) 2329991416277413 a001 5702887/7881196*45537549124^(4/17) 2329991416277413 a001 5702887/7881196*817138163596^(4/19) 2329991416277413 a001 3524578/12752043*14662949395604^(2/9) 2329991416277413 a001 3524578/12752043*(1/2+1/2*5^(1/2))^14 2329991416277413 a001 5702887/7881196*(1/2+1/2*5^(1/2))^12 2329991416277413 a001 10050135028343/43133785636 2329991416277413 a001 5702887/7881196*73681302247^(3/13) 2329991416277413 a001 5702887/7881196*10749957122^(1/4) 2329991416277413 a001 3524578/12752043*10749957122^(7/24) 2329991416277413 a001 5702887/7881196*4106118243^(6/23) 2329991416277413 a001 3524578/12752043*4106118243^(7/23) 2329991416277413 a001 5702887/7881196*1568397607^(3/11) 2329991416277413 a001 3524578/12752043*1568397607^(7/22) 2329991416277413 a001 5702887/7881196*599074578^(2/7) 2329991416277413 a001 3524578/12752043*599074578^(1/3) 2329991416277413 a001 5702887/7881196*228826127^(3/10) 2329991416277413 a001 3524578/12752043*228826127^(7/20) 2329991416277413 a001 5702887/7881196*87403803^(6/19) 2329991416277413 a001 3524578/12752043*87403803^(7/19) 2329991416277414 a001 9238424/711491*4870847^(3/16) 2329991416277414 a001 5702887/7881196*33385282^(1/3) 2329991416277414 a001 3524578/12752043*33385282^(7/18) 2329991416277414 a001 433494437/87403803*4870847^(1/4) 2329991416277414 a001 1134903170/228826127*4870847^(1/4) 2329991416277414 a001 2971215073/599074578*4870847^(1/4) 2329991416277414 a001 7778742049/1568397607*4870847^(1/4) 2329991416277414 a001 20365011074/4106118243*4870847^(1/4) 2329991416277414 a001 53316291173/10749957122*4870847^(1/4) 2329991416277414 a001 139583862445/28143753123*4870847^(1/4) 2329991416277414 a001 365435296162/73681302247*4870847^(1/4) 2329991416277414 a001 956722026041/192900153618*4870847^(1/4) 2329991416277414 a001 2504730781961/505019158607*4870847^(1/4) 2329991416277414 a001 10610209857723/2139295485799*4870847^(1/4) 2329991416277414 a001 140728068720/28374454999*4870847^(1/4) 2329991416277414 a001 591286729879/119218851371*4870847^(1/4) 2329991416277414 a001 225851433717/45537549124*4870847^(1/4) 2329991416277414 a001 86267571272/17393796001*4870847^(1/4) 2329991416277414 a001 32951280099/6643838879*4870847^(1/4) 2329991416277414 a001 1144206275/230701876*4870847^(1/4) 2329991416277414 a001 4807526976/969323029*4870847^(1/4) 2329991416277415 a001 1836311903/370248451*4870847^(1/4) 2329991416277415 a001 701408733/141422324*4870847^(1/4) 2329991416277415 a001 267914296/54018521*4870847^(1/4) 2329991416277416 a001 3524578/20633239*7881196^(5/11) 2329991416277418 a001 9227465/12752043*4870847^(3/8) 2329991416277418 a001 24157817/7881196*7881196^(3/11) 2329991416277418 a001 5702887/7881196*12752043^(6/17) 2329991416277419 a001 31622993/16692641*4870847^(5/16) 2329991416277419 a001 3524578/12752043*12752043^(7/17) 2329991416277420 a001 9303105/1875749*4870847^(1/4) 2329991416277420 a001 165580141/87403803*4870847^(5/16) 2329991416277420 a001 9227465/7881196*7881196^(1/3) 2329991416277420 a001 1134903170/12752043*1860498^(1/15) 2329991416277421 a001 102334155/7881196*7881196^(2/11) 2329991416277421 a001 433494437/228826127*4870847^(5/16) 2329991416277421 a001 567451585/299537289*4870847^(5/16) 2329991416277421 a001 2971215073/1568397607*4870847^(5/16) 2329991416277421 a001 7778742049/4106118243*4870847^(5/16) 2329991416277421 a001 10182505537/5374978561*4870847^(5/16) 2329991416277421 a001 53316291173/28143753123*4870847^(5/16) 2329991416277421 a001 139583862445/73681302247*4870847^(5/16) 2329991416277421 a001 182717648081/96450076809*4870847^(5/16) 2329991416277421 a001 956722026041/505019158607*4870847^(5/16) 2329991416277421 a001 10610209857723/5600748293801*4870847^(5/16) 2329991416277421 a001 591286729879/312119004989*4870847^(5/16) 2329991416277421 a001 225851433717/119218851371*4870847^(5/16) 2329991416277421 a001 21566892818/11384387281*4870847^(5/16) 2329991416277421 a001 32951280099/17393796001*4870847^(5/16) 2329991416277421 a001 12586269025/6643838879*4870847^(5/16) 2329991416277421 a001 1201881744/634430159*4870847^(5/16) 2329991416277421 a001 1836311903/969323029*4870847^(5/16) 2329991416277421 a001 701408733/370248451*4870847^(5/16) 2329991416277421 a001 66978574/35355581*4870847^(5/16) 2329991416277421 a001 102334155/54018521*4870847^(5/16) 2329991416277422 a004 Fibonacci(33)*Lucas(35)/(1/2+sqrt(5)/2)^55 2329991416277423 a001 3524578/28143753123*20633239^(6/7) 2329991416277423 a001 1762289/5374978561*20633239^(4/5) 2329991416277424 a001 1762289/1268860318*20633239^(5/7) 2329991416277424 a001 3732588/1970299*20633239^(2/7) 2329991416277424 a001 433494437/7881196*7881196^(1/11) 2329991416277424 a001 5702887/20633239*4870847^(7/16) 2329991416277424 a001 3524578/370248451*20633239^(3/5) 2329991416277424 a001 3524578/228826127*20633239^(4/7) 2329991416277425 a001 3732588/1970299*2537720636^(2/9) 2329991416277425 a001 1762289/16692641*(1/2+1/2*5^(1/2))^16 2329991416277425 a001 3732588/1970299*(1/2+1/2*5^(1/2))^10 2329991416277425 a001 1762289/16692641*23725150497407^(1/4) 2329991416277425 a001 17541063397152/75283811239 2329991416277425 a001 1762289/16692641*73681302247^(4/13) 2329991416277425 a001 3732588/1970299*28143753123^(1/5) 2329991416277425 a001 3732588/1970299*10749957122^(5/24) 2329991416277425 a001 1762289/16692641*10749957122^(1/3) 2329991416277425 a001 3732588/1970299*4106118243^(5/23) 2329991416277425 a001 1762289/16692641*4106118243^(8/23) 2329991416277425 a001 3732588/1970299*1568397607^(5/22) 2329991416277425 a001 1762289/16692641*1568397607^(4/11) 2329991416277425 a001 3732588/1970299*599074578^(5/21) 2329991416277425 a001 1762289/16692641*599074578^(8/21) 2329991416277425 a001 3732588/1970299*228826127^(1/4) 2329991416277425 a001 1762289/16692641*228826127^(2/5) 2329991416277425 a001 3732588/1970299*87403803^(5/19) 2329991416277425 a001 24157817/33385282*4870847^(3/8) 2329991416277425 a001 1762289/16692641*87403803^(8/19) 2329991416277426 a001 5702887/54018521*4870847^(1/2) 2329991416277426 a001 39088169/20633239*4870847^(5/16) 2329991416277426 a001 3732588/1970299*33385282^(5/18) 2329991416277426 a001 1762289/16692641*33385282^(4/9) 2329991416277426 a001 31622993/3940598*20633239^(1/5) 2329991416277427 a001 63245986/87403803*4870847^(3/8) 2329991416277427 a004 Fibonacci(33)*Lucas(37)/(1/2+sqrt(5)/2)^57 2329991416277427 a001 165580141/7881196*20633239^(1/7) 2329991416277427 a001 165580141/228826127*4870847^(3/8) 2329991416277427 a001 433494437/599074578*4870847^(3/8) 2329991416277427 a001 1134903170/1568397607*4870847^(3/8) 2329991416277427 a001 2971215073/4106118243*4870847^(3/8) 2329991416277427 a001 7778742049/10749957122*4870847^(3/8) 2329991416277427 a001 20365011074/28143753123*4870847^(3/8) 2329991416277427 a001 53316291173/73681302247*4870847^(3/8) 2329991416277427 a001 139583862445/192900153618*4870847^(3/8) 2329991416277427 a001 10610209857723/14662949395604*4870847^(3/8) 2329991416277427 a001 225851433717/312119004989*4870847^(3/8) 2329991416277427 a001 86267571272/119218851371*4870847^(3/8) 2329991416277427 a001 32951280099/45537549124*4870847^(3/8) 2329991416277427 a001 12586269025/17393796001*4870847^(3/8) 2329991416277427 a001 4807526976/6643838879*4870847^(3/8) 2329991416277427 a001 1836311903/2537720636*4870847^(3/8) 2329991416277427 a001 701408733/969323029*4870847^(3/8) 2329991416277427 a001 267914296/370248451*4870847^(3/8) 2329991416277427 a001 102334155/141422324*4870847^(3/8) 2329991416277427 a001 3524578/87403803*141422324^(6/13) 2329991416277427 a001 3524578/87403803*2537720636^(2/5) 2329991416277427 a001 3524578/87403803*45537549124^(6/17) 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^18/Lucas(38) 2329991416277427 a001 39088169/7881196*(1/2+1/2*5^(1/2))^8 2329991416277427 a001 39088169/7881196*23725150497407^(1/8) 2329991416277427 a001 137769300517682/591286729879 2329991416277427 a001 3524578/87403803*192900153618^(1/3) 2329991416277427 a001 39088169/7881196*73681302247^(2/13) 2329991416277427 a001 39088169/7881196*10749957122^(1/6) 2329991416277427 a001 3524578/87403803*10749957122^(3/8) 2329991416277427 a001 39088169/7881196*4106118243^(4/23) 2329991416277427 a001 3524578/87403803*4106118243^(9/23) 2329991416277427 a001 39088169/7881196*1568397607^(2/11) 2329991416277427 a001 3524578/87403803*1568397607^(9/22) 2329991416277427 a001 39088169/7881196*599074578^(4/21) 2329991416277427 a001 3524578/87403803*599074578^(3/7) 2329991416277427 a001 39088169/7881196*228826127^(1/5) 2329991416277427 a001 3524578/87403803*228826127^(9/20) 2329991416277427 a001 39088169/7881196*87403803^(4/19) 2329991416277427 a001 39088169/54018521*4870847^(3/8) 2329991416277427 a001 3524578/87403803*87403803^(9/19) 2329991416277427 a004 Fibonacci(33)*Lucas(39)/(1/2+sqrt(5)/2)^59 2329991416277427 a001 3524578/505019158607*141422324^(12/13) 2329991416277427 a001 3524578/119218851371*141422324^(11/13) 2329991416277427 a001 3524578/28143753123*141422324^(10/13) 2329991416277427 a001 3524578/6643838879*141422324^(9/13) 2329991416277427 a001 3524578/4106118243*141422324^(2/3) 2329991416277427 a001 3524578/1568397607*141422324^(8/13) 2329991416277427 a001 102334155/7881196*141422324^(2/13) 2329991416277427 a001 3524578/370248451*141422324^(7/13) 2329991416277427 a001 3524578/228826127*2537720636^(4/9) 2329991416277427 a001 102334155/7881196*2537720636^(2/15) 2329991416277427 a001 102334155/7881196*45537549124^(2/17) 2329991416277427 a001 102334155/7881196*14662949395604^(2/21) 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^20/Lucas(40) 2329991416277427 a001 102334155/7881196*(1/2+1/2*5^(1/2))^6 2329991416277427 a001 3524578/228826127*505019158607^(5/14) 2329991416277427 a001 3524578/228826127*73681302247^(5/13) 2329991416277427 a001 3524578/228826127*28143753123^(2/5) 2329991416277427 a001 102334155/7881196*10749957122^(1/8) 2329991416277427 a001 3524578/228826127*10749957122^(5/12) 2329991416277427 a001 102334155/7881196*4106118243^(3/23) 2329991416277427 a001 3524578/228826127*4106118243^(10/23) 2329991416277427 a001 102334155/7881196*1568397607^(3/22) 2329991416277427 a001 3524578/228826127*1568397607^(5/11) 2329991416277427 a001 102334155/7881196*599074578^(1/7) 2329991416277427 a001 3524578/228826127*599074578^(10/21) 2329991416277427 a001 102334155/7881196*228826127^(3/20) 2329991416277427 a001 3524578/228826127*228826127^(1/2) 2329991416277427 a004 Fibonacci(33)*Lucas(41)/(1/2+sqrt(5)/2)^61 2329991416277427 a001 1762289/299537289*312119004989^(2/5) 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^22/Lucas(42) 2329991416277427 a001 66978574/1970299*(1/2+1/2*5^(1/2))^4 2329991416277427 a001 66978574/1970299*23725150497407^(1/16) 2329991416277427 a001 66978574/1970299*73681302247^(1/13) 2329991416277427 a001 66978574/1970299*10749957122^(1/12) 2329991416277427 a001 1762289/299537289*10749957122^(11/24) 2329991416277427 a001 433494437/7881196*141422324^(1/13) 2329991416277427 a001 66978574/1970299*4106118243^(2/23) 2329991416277427 a001 1762289/299537289*4106118243^(11/23) 2329991416277427 a001 66978574/1970299*1568397607^(1/11) 2329991416277427 a001 1762289/299537289*1568397607^(1/2) 2329991416277427 a001 66978574/1970299*599074578^(2/21) 2329991416277427 a001 1762289/299537289*599074578^(11/21) 2329991416277427 a004 Fibonacci(33)*Lucas(43)/(1/2+sqrt(5)/2)^63 2329991416277427 a001 66978574/1970299*228826127^(1/10) 2329991416277427 a001 3524578/1568397607*2537720636^(8/15) 2329991416277427 a001 3524578/1568397607*45537549124^(8/17) 2329991416277427 a001 3524578/1568397607*14662949395604^(8/21) 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^24/Lucas(44) 2329991416277427 a001 3524667/39604*(1/2+1/2*5^(1/2))^2 2329991416277427 a001 824056596446558/3536736619241 2329991416277427 a001 3524578/1568397607*192900153618^(4/9) 2329991416277427 a001 3524578/1568397607*73681302247^(6/13) 2329991416277427 a001 3524667/39604*10749957122^(1/24) 2329991416277427 a001 3524667/39604*4106118243^(1/23) 2329991416277427 a001 3524578/1568397607*10749957122^(1/2) 2329991416277427 a001 3524667/39604*1568397607^(1/22) 2329991416277427 a001 3524578/1568397607*4106118243^(12/23) 2329991416277427 a001 3524667/39604*599074578^(1/21) 2329991416277427 a001 3524578/1568397607*1568397607^(6/11) 2329991416277427 a004 Fibonacci(33)*Lucas(45)/(1/2+sqrt(5)/2)^65 2329991416277427 a001 3524578/9062201101803*2537720636^(14/15) 2329991416277427 a001 1762289/1730726404001*2537720636^(8/9) 2329991416277427 a001 3524578/2139295485799*2537720636^(13/15) 2329991416277427 a001 3524578/505019158607*2537720636^(4/5) 2329991416277427 a001 3524578/312119004989*2537720636^(7/9) 2329991416277427 a001 3524578/119218851371*2537720636^(11/15) 2329991416277427 a001 3524578/28143753123*2537720636^(2/3) 2329991416277427 a001 3524578/6643838879*2537720636^(3/5) 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^26/Lucas(46) 2329991416277427 a006 5^(1/2)*Fibonacci(46)/Lucas(33)/sqrt(5) 2329991416277427 a001 3524578/4106118243*73681302247^(1/2) 2329991416277427 a001 3524578/4106118243*10749957122^(13/24) 2329991416277427 a001 3524578/4106118243*4106118243^(13/23) 2329991416277427 a004 Fibonacci(33)*Lucas(47)/(1/2+sqrt(5)/2)^67 2329991416277427 a001 1762289/5374978561*17393796001^(4/7) 2329991416277427 a001 1762289/5374978561*14662949395604^(4/9) 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^28/Lucas(48) 2329991416277427 a004 Fibonacci(48)/Lucas(33)/(1/2+sqrt(5)/2)^2 2329991416277427 a001 1762289/5374978561*73681302247^(7/13) 2329991416277427 a001 1762289/5374978561*10749957122^(7/12) 2329991416277427 a004 Fibonacci(33)*Lucas(49)/(1/2+sqrt(5)/2)^69 2329991416277427 a001 3524578/9062201101803*17393796001^(6/7) 2329991416277427 a001 3524578/312119004989*17393796001^(5/7) 2329991416277427 a001 3524578/28143753123*45537549124^(10/17) 2329991416277427 a001 3524578/28143753123*312119004989^(6/11) 2329991416277427 a001 3524578/28143753123*14662949395604^(10/21) 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^30/Lucas(50) 2329991416277427 a004 Fibonacci(50)/Lucas(33)/(1/2+sqrt(5)/2)^4 2329991416277427 a001 3524578/28143753123*192900153618^(5/9) 2329991416277427 a001 3524578/28143753123*28143753123^(3/5) 2329991416277427 a004 Fibonacci(33)*Lucas(51)/(1/2+sqrt(5)/2)^71 2329991416277427 a001 3524578/9062201101803*45537549124^(14/17) 2329991416277427 a001 3524578/2139295485799*45537549124^(13/17) 2329991416277427 a001 1762289/96450076809*45537549124^(2/3) 2329991416277427 a001 3524578/505019158607*45537549124^(12/17) 2329991416277427 a001 3524578/119218851371*45537549124^(11/17) 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^32/Lucas(52) 2329991416277427 a004 Fibonacci(52)/Lucas(33)/(1/2+sqrt(5)/2)^6 2329991416277427 a001 3524578/73681302247*23725150497407^(1/2) 2329991416277427 a001 3524578/73681302247*505019158607^(4/7) 2329991416277427 a001 3524578/73681302247*73681302247^(8/13) 2329991416277427 a004 Fibonacci(33)*Lucas(53)/(1/2+sqrt(5)/2)^73 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^34/Lucas(54) 2329991416277427 a004 Fibonacci(54)/Lucas(33)/(1/2+sqrt(5)/2)^8 2329991416277427 a004 Fibonacci(33)*Lucas(55)/(1/2+sqrt(5)/2)^75 2329991416277427 a001 3524578/23725150497407*312119004989^(4/5) 2329991416277427 a001 1762289/1730726404001*312119004989^(8/11) 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^36/Lucas(56) 2329991416277427 a004 Fibonacci(56)/Lucas(33)/(1/2+sqrt(5)/2)^10 2329991416277427 a001 3524578/1322157322203*817138163596^(2/3) 2329991416277427 a004 Fibonacci(33)*Lucas(57)/(1/2+sqrt(5)/2)^77 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^38/Lucas(58) 2329991416277427 a004 Fibonacci(58)/Lucas(33)/(1/2+sqrt(5)/2)^12 2329991416277427 a004 Fibonacci(33)*Lucas(59)/(1/2+sqrt(5)/2)^79 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^40/Lucas(60) 2329991416277427 a004 Fibonacci(60)/Lucas(33)/(1/2+sqrt(5)/2)^14 2329991416277427 a001 1762289/1730726404001*23725150497407^(5/8) 2329991416277427 a004 Fibonacci(33)*Lucas(61)/(1/2+sqrt(5)/2)^81 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^42/Lucas(62) 2329991416277427 a004 Fibonacci(62)/Lucas(33)/(1/2+sqrt(5)/2)^16 2329991416277427 a004 Fibonacci(33)*Lucas(63)/(1/2+sqrt(5)/2)^83 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^44/Lucas(64) 2329991416277427 a004 Fibonacci(64)/Lucas(33)/(1/2+sqrt(5)/2)^18 2329991416277427 a004 Fibonacci(33)*Lucas(65)/(1/2+sqrt(5)/2)^85 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^46/Lucas(66) 2329991416277427 a004 Fibonacci(33)*Lucas(67)/(1/2+sqrt(5)/2)^87 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^48/Lucas(68) 2329991416277427 a004 Fibonacci(33)*Lucas(69)/(1/2+sqrt(5)/2)^89 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^50/Lucas(70) 2329991416277427 a004 Fibonacci(33)*Lucas(71)/(1/2+sqrt(5)/2)^91 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^52/Lucas(72) 2329991416277427 a004 Fibonacci(33)*Lucas(73)/(1/2+sqrt(5)/2)^93 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^54/Lucas(74) 2329991416277427 a004 Fibonacci(33)*Lucas(75)/(1/2+sqrt(5)/2)^95 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^56/Lucas(76) 2329991416277427 a004 Fibonacci(33)*Lucas(77)/(1/2+sqrt(5)/2)^97 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^58/Lucas(78) 2329991416277427 a004 Fibonacci(33)*Lucas(79)/(1/2+sqrt(5)/2)^99 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^60/Lucas(80) 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^62/Lucas(82) 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^64/Lucas(84) 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^66/Lucas(86) 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^68/Lucas(88) 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^70/Lucas(90) 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^72/Lucas(92) 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^74/Lucas(94) 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^76/Lucas(96) 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^78/Lucas(98) 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^80/Lucas(100) 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^77/Lucas(97) 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^79/Lucas(99) 2329991416277427 a004 Fibonacci(33)*Lucas(1)/(1/2+sqrt(5)/2)^20 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^75/Lucas(95) 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^73/Lucas(93) 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^71/Lucas(91) 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^69/Lucas(89) 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^67/Lucas(87) 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^65/Lucas(85) 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^63/Lucas(83) 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^61/Lucas(81) 2329991416277427 a004 Fibonacci(33)*Lucas(80)/(1/2+sqrt(5)/2)^100 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^59/Lucas(79) 2329991416277427 a004 Fibonacci(33)*Lucas(78)/(1/2+sqrt(5)/2)^98 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^57/Lucas(77) 2329991416277427 a004 Fibonacci(33)*Lucas(76)/(1/2+sqrt(5)/2)^96 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^55/Lucas(75) 2329991416277427 a004 Fibonacci(33)*Lucas(74)/(1/2+sqrt(5)/2)^94 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^53/Lucas(73) 2329991416277427 a004 Fibonacci(33)*Lucas(72)/(1/2+sqrt(5)/2)^92 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^51/Lucas(71) 2329991416277427 a004 Fibonacci(33)*Lucas(70)/(1/2+sqrt(5)/2)^90 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^49/Lucas(69) 2329991416277427 a004 Fibonacci(33)*Lucas(68)/(1/2+sqrt(5)/2)^88 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^47/Lucas(67) 2329991416277427 a004 Fibonacci(68)/Lucas(33)/(1/2+sqrt(5)/2)^22 2329991416277427 a004 Fibonacci(70)/Lucas(33)/(1/2+sqrt(5)/2)^24 2329991416277427 a004 Fibonacci(72)/Lucas(33)/(1/2+sqrt(5)/2)^26 2329991416277427 a004 Fibonacci(74)/Lucas(33)/(1/2+sqrt(5)/2)^28 2329991416277427 a004 Fibonacci(76)/Lucas(33)/(1/2+sqrt(5)/2)^30 2329991416277427 a004 Fibonacci(78)/Lucas(33)/(1/2+sqrt(5)/2)^32 2329991416277427 a004 Fibonacci(80)/Lucas(33)/(1/2+sqrt(5)/2)^34 2329991416277427 a004 Fibonacci(82)/Lucas(33)/(1/2+sqrt(5)/2)^36 2329991416277427 a004 Fibonacci(84)/Lucas(33)/(1/2+sqrt(5)/2)^38 2329991416277427 a004 Fibonacci(86)/Lucas(33)/(1/2+sqrt(5)/2)^40 2329991416277427 a004 Fibonacci(88)/Lucas(33)/(1/2+sqrt(5)/2)^42 2329991416277427 a004 Fibonacci(90)/Lucas(33)/(1/2+sqrt(5)/2)^44 2329991416277427 a004 Fibonacci(92)/Lucas(33)/(1/2+sqrt(5)/2)^46 2329991416277427 a004 Fibonacci(94)/Lucas(33)/(1/2+sqrt(5)/2)^48 2329991416277427 a004 Fibonacci(96)/Lucas(33)/(1/2+sqrt(5)/2)^50 2329991416277427 a004 Fibonacci(100)/Lucas(33)/(1/2+sqrt(5)/2)^54 2329991416277427 a004 Fibonacci(33)*Lucas(66)/(1/2+sqrt(5)/2)^86 2329991416277427 a004 Fibonacci(98)/Lucas(33)/(1/2+sqrt(5)/2)^52 2329991416277427 a004 Fibonacci(99)/Lucas(33)/(1/2+sqrt(5)/2)^53 2329991416277427 a004 Fibonacci(97)/Lucas(33)/(1/2+sqrt(5)/2)^51 2329991416277427 a004 Fibonacci(95)/Lucas(33)/(1/2+sqrt(5)/2)^49 2329991416277427 a004 Fibonacci(93)/Lucas(33)/(1/2+sqrt(5)/2)^47 2329991416277427 a004 Fibonacci(91)/Lucas(33)/(1/2+sqrt(5)/2)^45 2329991416277427 a004 Fibonacci(89)/Lucas(33)/(1/2+sqrt(5)/2)^43 2329991416277427 a004 Fibonacci(87)/Lucas(33)/(1/2+sqrt(5)/2)^41 2329991416277427 a004 Fibonacci(85)/Lucas(33)/(1/2+sqrt(5)/2)^39 2329991416277427 a004 Fibonacci(83)/Lucas(33)/(1/2+sqrt(5)/2)^37 2329991416277427 a004 Fibonacci(81)/Lucas(33)/(1/2+sqrt(5)/2)^35 2329991416277427 a004 Fibonacci(79)/Lucas(33)/(1/2+sqrt(5)/2)^33 2329991416277427 a004 Fibonacci(77)/Lucas(33)/(1/2+sqrt(5)/2)^31 2329991416277427 a004 Fibonacci(75)/Lucas(33)/(1/2+sqrt(5)/2)^29 2329991416277427 a004 Fibonacci(73)/Lucas(33)/(1/2+sqrt(5)/2)^27 2329991416277427 a004 Fibonacci(71)/Lucas(33)/(1/2+sqrt(5)/2)^25 2329991416277427 a004 Fibonacci(69)/Lucas(33)/(1/2+sqrt(5)/2)^23 2329991416277427 a004 Fibonacci(67)/Lucas(33)/(1/2+sqrt(5)/2)^21 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^45/Lucas(65) 2329991416277427 a004 Fibonacci(65)/Lucas(33)/(1/2+sqrt(5)/2)^19 2329991416277427 a004 Fibonacci(33)*Lucas(64)/(1/2+sqrt(5)/2)^84 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^43/Lucas(63) 2329991416277427 a004 Fibonacci(63)/Lucas(33)/(1/2+sqrt(5)/2)^17 2329991416277427 a004 Fibonacci(33)*Lucas(62)/(1/2+sqrt(5)/2)^82 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^41/Lucas(61) 2329991416277427 a004 Fibonacci(61)/Lucas(33)/(1/2+sqrt(5)/2)^15 2329991416277427 a004 Fibonacci(33)*Lucas(60)/(1/2+sqrt(5)/2)^80 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^39/Lucas(59) 2329991416277427 a004 Fibonacci(59)/Lucas(33)/(1/2+sqrt(5)/2)^13 2329991416277427 a004 Fibonacci(33)*Lucas(58)/(1/2+sqrt(5)/2)^78 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^37/Lucas(57) 2329991416277427 a004 Fibonacci(57)/Lucas(33)/(1/2+sqrt(5)/2)^11 2329991416277427 a004 Fibonacci(33)*Lucas(56)/(1/2+sqrt(5)/2)^76 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^35/Lucas(55) 2329991416277427 a004 Fibonacci(55)/Lucas(33)/(1/2+sqrt(5)/2)^9 2329991416277427 a001 3524578/312119004989*505019158607^(5/8) 2329991416277427 a001 3524578/505019158607*192900153618^(2/3) 2329991416277427 a001 3524578/2139295485799*192900153618^(13/18) 2329991416277427 a001 3524578/9062201101803*192900153618^(7/9) 2329991416277427 a004 Fibonacci(33)*Lucas(54)/(1/2+sqrt(5)/2)^74 2329991416277427 a001 3524578/119218851371*312119004989^(3/5) 2329991416277427 a001 3524578/119218851371*14662949395604^(11/21) 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^33/Lucas(53) 2329991416277427 a004 Fibonacci(53)/Lucas(33)/(1/2+sqrt(5)/2)^7 2329991416277427 a001 3524578/119218851371*192900153618^(11/18) 2329991416277427 a001 3524578/505019158607*73681302247^(9/13) 2329991416277427 a001 3524578/2139295485799*73681302247^(3/4) 2329991416277427 a001 1762289/1730726404001*73681302247^(10/13) 2329991416277427 a001 3524578/23725150497407*73681302247^(11/13) 2329991416277427 a004 Fibonacci(33)*Lucas(52)/(1/2+sqrt(5)/2)^72 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^31/Lucas(51) 2329991416277427 a004 Fibonacci(51)/Lucas(33)/(1/2+sqrt(5)/2)^5 2329991416277427 a001 1762289/22768774562*9062201101803^(1/2) 2329991416277427 a001 3524578/312119004989*28143753123^(7/10) 2329991416277427 a001 1762289/1730726404001*28143753123^(4/5) 2329991416277427 a004 Fibonacci(33)*Lucas(50)/(1/2+sqrt(5)/2)^70 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^29/Lucas(49) 2329991416277427 a004 Fibonacci(49)/Lucas(33)/(1/2+sqrt(5)/2)^3 2329991416277427 a001 3524578/17393796001*1322157322203^(1/2) 2329991416277427 a001 3524578/28143753123*10749957122^(5/8) 2329991416277427 a001 3524578/73681302247*10749957122^(2/3) 2329991416277427 a001 3524578/119218851371*10749957122^(11/16) 2329991416277427 a001 1762289/96450076809*10749957122^(17/24) 2329991416277427 a001 3524578/505019158607*10749957122^(3/4) 2329991416277427 a001 3524578/1322157322203*10749957122^(19/24) 2329991416277427 a001 3524578/2139295485799*10749957122^(13/16) 2329991416277427 a001 1762289/1730726404001*10749957122^(5/6) 2329991416277427 a001 3524578/9062201101803*10749957122^(7/8) 2329991416277427 a001 3524578/23725150497407*10749957122^(11/12) 2329991416277427 a004 Fibonacci(33)*Lucas(48)/(1/2+sqrt(5)/2)^68 2329991416277427 a001 3524578/6643838879*45537549124^(9/17) 2329991416277427 a001 3524578/6643838879*817138163596^(9/19) 2329991416277427 a001 3524578/6643838879*14662949395604^(3/7) 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^27/Lucas(47) 2329991416277427 a004 Fibonacci(47)/Lucas(33)/(1/2+sqrt(5)/2) 2329991416277427 a001 3524578/6643838879*192900153618^(1/2) 2329991416277427 a001 1762289/5374978561*4106118243^(14/23) 2329991416277427 a001 3524578/6643838879*10749957122^(9/16) 2329991416277427 a001 3524578/28143753123*4106118243^(15/23) 2329991416277427 a001 3524578/73681302247*4106118243^(16/23) 2329991416277427 a001 1762289/96450076809*4106118243^(17/23) 2329991416277427 a001 3524578/505019158607*4106118243^(18/23) 2329991416277427 a001 3524578/1322157322203*4106118243^(19/23) 2329991416277427 a001 1762289/1730726404001*4106118243^(20/23) 2329991416277427 a001 3524578/9062201101803*4106118243^(21/23) 2329991416277427 a001 3524578/23725150497407*4106118243^(22/23) 2329991416277427 a004 Fibonacci(33)*Lucas(46)/(1/2+sqrt(5)/2)^66 2329991416277427 a001 1762289/1268860318*2537720636^(5/9) 2329991416277427 a001 1762289/1268860318*312119004989^(5/11) 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^25/Lucas(45) 2329991416277427 a004 Fibonacci(45)*(1/2+sqrt(5)/2)/Lucas(33) 2329991416277427 a001 1762289/1268860318*3461452808002^(5/12) 2329991416277427 a001 1762289/1268860318*28143753123^(1/2) 2329991416277427 a001 3524578/4106118243*1568397607^(13/22) 2329991416277427 a001 1762289/5374978561*1568397607^(7/11) 2329991416277427 a001 3524578/28143753123*1568397607^(15/22) 2329991416277427 a001 3524578/73681302247*1568397607^(8/11) 2329991416277427 a001 3524578/119218851371*1568397607^(3/4) 2329991416277427 a001 1762289/96450076809*1568397607^(17/22) 2329991416277427 a001 3524578/505019158607*1568397607^(9/11) 2329991416277427 a001 3524578/1322157322203*1568397607^(19/22) 2329991416277427 a001 1762289/1730726404001*1568397607^(10/11) 2329991416277427 a001 3524578/9062201101803*1568397607^(21/22) 2329991416277427 a004 Fibonacci(33)*Lucas(44)/(1/2+sqrt(5)/2)^64 2329991416277427 a001 3524667/39604*228826127^(1/20) 2329991416277427 a001 433494437/7881196*2537720636^(1/15) 2329991416277427 a001 433494437/7881196*45537549124^(1/17) 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^23/Lucas(43) 2329991416277427 a001 433494437/7881196*14662949395604^(1/21) 2329991416277427 a001 433494437/7881196*(1/2+1/2*5^(1/2))^3 2329991416277427 a001 433494437/7881196*192900153618^(1/18) 2329991416277427 a001 433494437/7881196*10749957122^(1/16) 2329991416277427 a001 3524578/969323029*4106118243^(1/2) 2329991416277427 a001 3524578/1568397607*599074578^(4/7) 2329991416277427 a001 433494437/7881196*599074578^(1/14) 2329991416277427 a001 102334155/7881196*87403803^(3/19) 2329991416277427 a001 3524578/4106118243*599074578^(13/21) 2329991416277427 a001 3524578/6643838879*599074578^(9/14) 2329991416277427 a001 1762289/5374978561*599074578^(2/3) 2329991416277427 a001 3524578/28143753123*599074578^(5/7) 2329991416277427 a001 3524578/73681302247*599074578^(16/21) 2329991416277427 a001 3524578/119218851371*599074578^(11/14) 2329991416277427 a001 1762289/96450076809*599074578^(17/21) 2329991416277427 a001 3524578/312119004989*599074578^(5/6) 2329991416277427 a001 3524578/505019158607*599074578^(6/7) 2329991416277427 a001 3524578/1322157322203*599074578^(19/21) 2329991416277427 a001 3524578/2139295485799*599074578^(13/14) 2329991416277427 a001 1762289/1730726404001*599074578^(20/21) 2329991416277427 a004 Fibonacci(33)*Lucas(42)/(1/2+sqrt(5)/2)^62 2329991416277427 a001 3524667/39604*87403803^(1/19) 2329991416277427 a001 3524578/370248451*2537720636^(7/15) 2329991416277427 a001 165580141/7881196*2537720636^(1/9) 2329991416277427 a001 3524578/370248451*17393796001^(3/7) 2329991416277427 a001 3524578/370248451*45537549124^(7/17) 2329991416277427 a001 165580141/7881196*312119004989^(1/11) 2329991416277427 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^21/Lucas(41) 2329991416277427 a001 165580141/7881196*(1/2+1/2*5^(1/2))^5 2329991416277427 a001 3524578/370248451*192900153618^(7/18) 2329991416277427 a001 165580141/7881196*28143753123^(1/10) 2329991416277427 a001 3524578/370248451*10749957122^(7/16) 2329991416277427 a001 1762289/299537289*228826127^(11/20) 2329991416277427 a001 3524578/370248451*599074578^(1/2) 2329991416277427 a001 165580141/7881196*228826127^(1/8) 2329991416277427 a001 66978574/1970299*87403803^(2/19) 2329991416277427 a001 3524578/1568397607*228826127^(3/5) 2329991416277427 a001 1762289/1268860318*228826127^(5/8) 2329991416277427 a001 3524578/4106118243*228826127^(13/20) 2329991416277427 a001 1762289/5374978561*228826127^(7/10) 2329991416277427 a001 3524578/28143753123*228826127^(3/4) 2329991416277427 a001 3524578/73681302247*228826127^(4/5) 2329991416277427 a001 1762289/96450076809*228826127^(17/20) 2329991416277427 a001 3524578/312119004989*228826127^(7/8) 2329991416277427 a001 3524578/505019158607*228826127^(9/10) 2329991416277427 a001 3524578/1322157322203*228826127^(19/20) 2329991416277427 a004 Fibonacci(33)*Lucas(40)/(1/2+sqrt(5)/2)^60 2329991416277428 a001 3524667/39604*33385282^(1/18) 2329991416277428 a001 3524578/228826127*87403803^(10/19) 2329991416277428 a001 31622993/3940598*17393796001^(1/7) 2329991416277428 a001 1762289/70711162*817138163596^(1/3) 2329991416277428 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^19/Lucas(39) 2329991416277428 a001 31622993/3940598*(1/2+1/2*5^(1/2))^7 2329991416277428 a001 31622993/3940598*599074578^(1/6) 2329991416277428 a001 39088169/7881196*33385282^(2/9) 2329991416277428 a001 1762289/299537289*87403803^(11/19) 2329991416277428 a001 433494437/7881196*33385282^(1/12) 2329991416277428 a001 3524578/1568397607*87403803^(12/19) 2329991416277428 a001 3524578/4106118243*87403803^(13/19) 2329991416277428 a001 1762289/5374978561*87403803^(14/19) 2329991416277428 a001 66978574/1970299*33385282^(1/9) 2329991416277428 a001 3524578/28143753123*87403803^(15/19) 2329991416277428 a001 3524578/73681302247*87403803^(16/19) 2329991416277428 a001 1762289/70711162*87403803^(1/2) 2329991416277428 a001 1762289/96450076809*87403803^(17/19) 2329991416277428 a001 3524578/505019158607*87403803^(18/19) 2329991416277428 a001 102334155/7881196*33385282^(1/6) 2329991416277428 a004 Fibonacci(33)*Lucas(38)/(1/2+sqrt(5)/2)^58 2329991416277428 a001 3524578/87403803*33385282^(1/2) 2329991416277428 a001 24157817/7881196*141422324^(3/13) 2329991416277428 a001 24157817/7881196*2537720636^(1/5) 2329991416277428 a001 3524578/54018521*45537549124^(1/3) 2329991416277428 a001 24157817/7881196*45537549124^(3/17) 2329991416277428 a001 24157817/7881196*817138163596^(3/19) 2329991416277428 a001 24157817/7881196*14662949395604^(1/7) 2329991416277428 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^17/Lucas(37) 2329991416277428 a001 24157817/7881196*(1/2+1/2*5^(1/2))^9 2329991416277428 a001 24157817/7881196*192900153618^(1/6) 2329991416277428 a001 24157817/7881196*10749957122^(3/16) 2329991416277428 a001 24157817/7881196*599074578^(3/14) 2329991416277428 a001 3524667/39604*12752043^(1/17) 2329991416277429 a001 3524578/228826127*33385282^(5/9) 2329991416277429 a001 3524578/370248451*33385282^(7/12) 2329991416277429 a001 1762289/299537289*33385282^(11/18) 2329991416277429 a001 24157817/7881196*33385282^(1/4) 2329991416277429 a001 3524578/1568397607*33385282^(2/3) 2329991416277429 a001 3524578/4106118243*33385282^(13/18) 2329991416277429 a001 3524578/6643838879*33385282^(3/4) 2329991416277429 a001 1762289/5374978561*33385282^(7/9) 2329991416277429 a001 66978574/1970299*12752043^(2/17) 2329991416277429 a001 3524578/28143753123*33385282^(5/6) 2329991416277429 a001 3524578/73681302247*33385282^(8/9) 2329991416277429 a001 3524578/119218851371*33385282^(11/12) 2329991416277429 a001 1762289/96450076809*33385282^(17/18) 2329991416277430 a004 Fibonacci(33)*Lucas(36)/(1/2+sqrt(5)/2)^56 2329991416277430 a001 3732588/1970299*12752043^(5/17) 2329991416277430 a001 102334155/7881196*12752043^(3/17) 2329991416277430 a001 14930352/20633239*4870847^(3/8) 2329991416277431 a001 39088169/7881196*12752043^(4/17) 2329991416277431 a001 3524578/20633239*20633239^(3/7) 2329991416277431 a001 5702887/141422324*4870847^(9/16) 2329991416277432 a001 14930352/54018521*4870847^(7/16) 2329991416277432 a001 1762289/16692641*12752043^(8/17) 2329991416277433 a001 39088169/141422324*4870847^(7/16) 2329991416277433 a001 2971215073/33385282*1860498^(1/15) 2329991416277433 a001 102334155/370248451*4870847^(7/16) 2329991416277433 a001 3524578/20633239*141422324^(5/13) 2329991416277433 a001 267914296/969323029*4870847^(7/16) 2329991416277433 a001 701408733/2537720636*4870847^(7/16) 2329991416277433 a001 1836311903/6643838879*4870847^(7/16) 2329991416277433 a001 4807526976/17393796001*4870847^(7/16) 2329991416277433 a001 12586269025/45537549124*4870847^(7/16) 2329991416277433 a001 32951280099/119218851371*4870847^(7/16) 2329991416277433 a001 86267571272/312119004989*4870847^(7/16) 2329991416277433 a001 225851433717/817138163596*4870847^(7/16) 2329991416277433 a001 1548008755920/5600748293801*4870847^(7/16) 2329991416277433 a001 139583862445/505019158607*4870847^(7/16) 2329991416277433 a001 53316291173/192900153618*4870847^(7/16) 2329991416277433 a001 20365011074/73681302247*4870847^(7/16) 2329991416277433 a001 7778742049/28143753123*4870847^(7/16) 2329991416277433 a001 2971215073/10749957122*4870847^(7/16) 2329991416277433 a001 1134903170/4106118243*4870847^(7/16) 2329991416277433 a001 433494437/1568397607*4870847^(7/16) 2329991416277433 a001 165580141/599074578*4870847^(7/16) 2329991416277433 a001 3524578/20633239*2537720636^(1/3) 2329991416277433 a001 3524578/20633239*45537549124^(5/17) 2329991416277433 a001 73085213786/313671601 2329991416277433 a001 3524578/20633239*312119004989^(3/11) 2329991416277433 a001 3524578/20633239*14662949395604^(5/21) 2329991416277433 a001 3524578/20633239*(1/2+1/2*5^(1/2))^15 2329991416277433 a001 9227465/7881196*(1/2+1/2*5^(1/2))^11 2329991416277433 a001 3524578/20633239*192900153618^(5/18) 2329991416277433 a001 3524578/20633239*28143753123^(3/10) 2329991416277433 a001 3524578/20633239*10749957122^(5/16) 2329991416277433 a001 9227465/7881196*1568397607^(1/4) 2329991416277433 a001 3524578/20633239*599074578^(5/14) 2329991416277433 a001 3524578/20633239*228826127^(3/8) 2329991416277433 a001 63245986/228826127*4870847^(7/16) 2329991416277433 a001 24157817/87403803*4870847^(7/16) 2329991416277434 a001 3524667/39604*4870847^(1/16) 2329991416277434 a001 3524578/20633239*33385282^(5/12) 2329991416277435 a001 7778742049/87403803*1860498^(1/15) 2329991416277435 a001 3524578/87403803*12752043^(9/17) 2329991416277435 a001 20365011074/228826127*1860498^(1/15) 2329991416277435 a001 53316291173/599074578*1860498^(1/15) 2329991416277435 a001 139583862445/1568397607*1860498^(1/15) 2329991416277435 a001 365435296162/4106118243*1860498^(1/15) 2329991416277435 a001 956722026041/10749957122*1860498^(1/15) 2329991416277435 a001 2504730781961/28143753123*1860498^(1/15) 2329991416277435 a001 6557470319842/73681302247*1860498^(1/15) 2329991416277435 a001 10610209857723/119218851371*1860498^(1/15) 2329991416277435 a001 4052739537881/45537549124*1860498^(1/15) 2329991416277435 a001 1548008755920/17393796001*1860498^(1/15) 2329991416277435 a001 591286729879/6643838879*1860498^(1/15) 2329991416277435 a001 225851433717/2537720636*1860498^(1/15) 2329991416277435 a001 86267571272/969323029*1860498^(1/15) 2329991416277435 a001 32951280099/370248451*1860498^(1/15) 2329991416277435 a001 12586269025/141422324*1860498^(1/15) 2329991416277435 a001 3524578/54018521*12752043^(1/2) 2329991416277436 a001 4807526976/54018521*1860498^(1/15) 2329991416277436 a001 3524578/228826127*12752043^(10/17) 2329991416277436 a001 9227465/33385282*4870847^(7/16) 2329991416277437 a001 1762289/299537289*12752043^(11/17) 2329991416277437 a001 5702887/370248451*4870847^(5/8) 2329991416277437 a001 3732588/35355581*4870847^(1/2) 2329991416277438 a001 3524578/1568397607*12752043^(12/17) 2329991416277438 a001 3524578/4106118243*12752043^(13/17) 2329991416277439 a001 39088169/370248451*4870847^(1/2) 2329991416277439 a001 102334155/969323029*4870847^(1/2) 2329991416277439 a001 66978574/634430159*4870847^(1/2) 2329991416277439 a001 701408733/6643838879*4870847^(1/2) 2329991416277439 a001 1836311903/17393796001*4870847^(1/2) 2329991416277439 a001 1201881744/11384387281*4870847^(1/2) 2329991416277439 a001 12586269025/119218851371*4870847^(1/2) 2329991416277439 a001 32951280099/312119004989*4870847^(1/2) 2329991416277439 a001 21566892818/204284540899*4870847^(1/2) 2329991416277439 a001 225851433717/2139295485799*4870847^(1/2) 2329991416277439 a001 182717648081/1730726404001*4870847^(1/2) 2329991416277439 a001 139583862445/1322157322203*4870847^(1/2) 2329991416277439 a001 53316291173/505019158607*4870847^(1/2) 2329991416277439 a001 10182505537/96450076809*4870847^(1/2) 2329991416277439 a001 7778742049/73681302247*4870847^(1/2) 2329991416277439 a001 2971215073/28143753123*4870847^(1/2) 2329991416277439 a001 567451585/5374978561*4870847^(1/2) 2329991416277439 a001 433494437/4106118243*4870847^(1/2) 2329991416277439 a001 165580141/1568397607*4870847^(1/2) 2329991416277439 a001 31622993/299537289*4870847^(1/2) 2329991416277439 a001 1762289/5374978561*12752043^(14/17) 2329991416277440 a001 66978574/1970299*4870847^(1/8) 2329991416277440 a001 24157817/228826127*4870847^(1/2) 2329991416277440 a001 3524578/28143753123*12752043^(15/17) 2329991416277440 a001 1836311903/20633239*1860498^(1/15) 2329991416277441 a001 3524578/73681302247*12752043^(16/17) 2329991416277442 a004 Fibonacci(33)*Lucas(34)/(1/2+sqrt(5)/2)^54 2329991416277443 a001 233802911/4250681*1860498^(1/10) 2329991416277443 a001 14930352/370248451*4870847^(9/16) 2329991416277443 a001 5702887/969323029*4870847^(11/16) 2329991416277444 a001 9227465/87403803*4870847^(1/2) 2329991416277445 a001 39088169/969323029*4870847^(9/16) 2329991416277445 a001 9303105/230701876*4870847^(9/16) 2329991416277445 a001 267914296/6643838879*4870847^(9/16) 2329991416277445 a001 701408733/17393796001*4870847^(9/16) 2329991416277445 a001 1836311903/45537549124*4870847^(9/16) 2329991416277445 a001 4807526976/119218851371*4870847^(9/16) 2329991416277445 a001 1144206275/28374454999*4870847^(9/16) 2329991416277445 a001 32951280099/817138163596*4870847^(9/16) 2329991416277445 a001 86267571272/2139295485799*4870847^(9/16) 2329991416277445 a001 225851433717/5600748293801*4870847^(9/16) 2329991416277445 a001 365435296162/9062201101803*4870847^(9/16) 2329991416277445 a001 139583862445/3461452808002*4870847^(9/16) 2329991416277445 a001 53316291173/1322157322203*4870847^(9/16) 2329991416277445 a001 20365011074/505019158607*4870847^(9/16) 2329991416277445 a001 7778742049/192900153618*4870847^(9/16) 2329991416277445 a001 2971215073/73681302247*4870847^(9/16) 2329991416277445 a001 1134903170/28143753123*4870847^(9/16) 2329991416277445 a001 433494437/10749957122*4870847^(9/16) 2329991416277445 a001 165580141/4106118243*4870847^(9/16) 2329991416277445 a001 63245986/1568397607*4870847^(9/16) 2329991416277446 a001 102334155/7881196*4870847^(3/16) 2329991416277446 a001 24157817/599074578*4870847^(9/16) 2329991416277449 a001 14930352/969323029*4870847^(5/8) 2329991416277449 a001 5702887/2537720636*4870847^(3/4) 2329991416277450 a001 5702887/7881196*4870847^(3/8) 2329991416277451 a001 9227465/228826127*4870847^(9/16) 2329991416277451 a001 39088169/2537720636*4870847^(5/8) 2329991416277451 a001 102334155/6643838879*4870847^(5/8) 2329991416277451 a001 9238424/599786069*4870847^(5/8) 2329991416277451 a001 701408733/45537549124*4870847^(5/8) 2329991416277451 a001 1836311903/119218851371*4870847^(5/8) 2329991416277451 a001 4807526976/312119004989*4870847^(5/8) 2329991416277451 a001 12586269025/817138163596*4870847^(5/8) 2329991416277451 a001 32951280099/2139295485799*4870847^(5/8) 2329991416277451 a001 86267571272/5600748293801*4870847^(5/8) 2329991416277451 a001 7787980473/505618944676*4870847^(5/8) 2329991416277451 a001 365435296162/23725150497407*4870847^(5/8) 2329991416277451 a001 139583862445/9062201101803*4870847^(5/8) 2329991416277451 a001 53316291173/3461452808002*4870847^(5/8) 2329991416277451 a001 20365011074/1322157322203*4870847^(5/8) 2329991416277451 a001 7778742049/505019158607*4870847^(5/8) 2329991416277451 a001 2971215073/192900153618*4870847^(5/8) 2329991416277451 a001 1134903170/73681302247*4870847^(5/8) 2329991416277451 a001 433494437/28143753123*4870847^(5/8) 2329991416277451 a001 165580141/10749957122*4870847^(5/8) 2329991416277451 a001 63245986/4106118243*4870847^(5/8) 2329991416277452 a001 39088169/7881196*4870847^(1/4) 2329991416277452 a001 24157817/1568397607*4870847^(5/8) 2329991416277455 a001 1836311903/33385282*1860498^(1/10) 2329991416277455 a001 196452/33391061*4870847^(11/16) 2329991416277455 a001 5702887/6643838879*4870847^(13/16) 2329991416277456 a001 3732588/1970299*4870847^(5/16) 2329991416277456 a001 3524578/12752043*4870847^(7/16) 2329991416277457 a001 9227465/599074578*4870847^(5/8) 2329991416277457 a001 1602508992/29134601*1860498^(1/10) 2329991416277457 a001 39088169/6643838879*4870847^(11/16) 2329991416277457 a001 12586269025/228826127*1860498^(1/10) 2329991416277457 a001 10983760033/199691526*1860498^(1/10) 2329991416277457 a001 86267571272/1568397607*1860498^(1/10) 2329991416277457 a001 75283811239/1368706081*1860498^(1/10) 2329991416277457 a001 591286729879/10749957122*1860498^(1/10) 2329991416277457 a001 12585437040/228811001*1860498^(1/10) 2329991416277457 a001 4052739537881/73681302247*1860498^(1/10) 2329991416277457 a001 3536736619241/64300051206*1860498^(1/10) 2329991416277457 a001 6557470319842/119218851371*1860498^(1/10) 2329991416277457 a001 2504730781961/45537549124*1860498^(1/10) 2329991416277457 a001 956722026041/17393796001*1860498^(1/10) 2329991416277457 a001 365435296162/6643838879*1860498^(1/10) 2329991416277457 a001 139583862445/2537720636*1860498^(1/10) 2329991416277457 a001 53316291173/969323029*1860498^(1/10) 2329991416277457 a001 20365011074/370248451*1860498^(1/10) 2329991416277457 a001 7778742049/141422324*1860498^(1/10) 2329991416277457 a001 102334155/17393796001*4870847^(11/16) 2329991416277457 a001 66978574/11384387281*4870847^(11/16) 2329991416277457 a001 701408733/119218851371*4870847^(11/16) 2329991416277457 a001 1836311903/312119004989*4870847^(11/16) 2329991416277457 a001 1201881744/204284540899*4870847^(11/16) 2329991416277457 a001 12586269025/2139295485799*4870847^(11/16) 2329991416277457 a001 32951280099/5600748293801*4870847^(11/16) 2329991416277457 a001 1135099622/192933544679*4870847^(11/16) 2329991416277457 a001 139583862445/23725150497407*4870847^(11/16) 2329991416277457 a001 53316291173/9062201101803*4870847^(11/16) 2329991416277457 a001 10182505537/1730726404001*4870847^(11/16) 2329991416277457 a001 7778742049/1322157322203*4870847^(11/16) 2329991416277457 a001 2971215073/505019158607*4870847^(11/16) 2329991416277457 a001 567451585/96450076809*4870847^(11/16) 2329991416277457 a001 433494437/73681302247*4870847^(11/16) 2329991416277457 a001 165580141/28143753123*4870847^(11/16) 2329991416277458 a001 31622993/5374978561*4870847^(11/16) 2329991416277458 a001 2971215073/54018521*1860498^(1/10) 2329991416277458 a001 24157817/4106118243*4870847^(11/16) 2329991416277461 a001 14930352/6643838879*4870847^(3/4) 2329991416277462 a001 5702887/17393796001*4870847^(7/8) 2329991416277463 a001 1134903170/20633239*1860498^(1/10) 2329991416277463 a001 9227465/1568397607*4870847^(11/16) 2329991416277463 a001 39088169/17393796001*4870847^(3/4) 2329991416277464 a001 102334155/45537549124*4870847^(3/4) 2329991416277464 a001 267914296/119218851371*4870847^(3/4) 2329991416277464 a001 3524667/1568437211*4870847^(3/4) 2329991416277464 a001 1836311903/817138163596*4870847^(3/4) 2329991416277464 a001 4807526976/2139295485799*4870847^(3/4) 2329991416277464 a001 12586269025/5600748293801*4870847^(3/4) 2329991416277464 a001 32951280099/14662949395604*4870847^(3/4) 2329991416277464 a001 53316291173/23725150497407*4870847^(3/4) 2329991416277464 a001 20365011074/9062201101803*4870847^(3/4) 2329991416277464 a001 7778742049/3461452808002*4870847^(3/4) 2329991416277464 a001 2971215073/1322157322203*4870847^(3/4) 2329991416277464 a001 1134903170/505019158607*4870847^(3/4) 2329991416277464 a001 433494437/192900153618*4870847^(3/4) 2329991416277464 a001 165580141/73681302247*4870847^(3/4) 2329991416277464 a001 63245986/28143753123*4870847^(3/4) 2329991416277464 a001 24157817/10749957122*4870847^(3/4) 2329991416277465 a001 1762289/3940598*141422324^(1/3) 2329991416277465 a001 12422650078084/53316291173 2329991416277465 a001 1762289/3940598*(1/2+1/2*5^(1/2))^13 2329991416277465 a001 1762289/3940598*73681302247^(1/4) 2329991416277465 a001 433494437/12752043*1860498^(2/15) 2329991416277468 a001 14930352/17393796001*4870847^(13/16) 2329991416277468 a001 1597/12752044*4870847^(15/16) 2329991416277469 a001 9227465/4106118243*4870847^(3/4) 2329991416277469 a001 39088169/45537549124*4870847^(13/16) 2329991416277470 a001 102334155/119218851371*4870847^(13/16) 2329991416277470 a001 267914296/312119004989*4870847^(13/16) 2329991416277470 a001 701408733/817138163596*4870847^(13/16) 2329991416277470 a001 1836311903/2139295485799*4870847^(13/16) 2329991416277470 a001 4807526976/5600748293801*4870847^(13/16) 2329991416277470 a001 12586269025/14662949395604*4870847^(13/16) 2329991416277470 a001 20365011074/23725150497407*4870847^(13/16) 2329991416277470 a001 7778742049/9062201101803*4870847^(13/16) 2329991416277470 a001 2971215073/3461452808002*4870847^(13/16) 2329991416277470 a001 1134903170/1322157322203*4870847^(13/16) 2329991416277470 a001 433494437/505019158607*4870847^(13/16) 2329991416277470 a001 165580141/192900153618*4870847^(13/16) 2329991416277470 a001 63245986/73681302247*4870847^(13/16) 2329991416277471 a001 24157817/28143753123*4870847^(13/16) 2329991416277472 a001 24157817/4870847*1860498^(4/15) 2329991416277472 a001 3524667/39604*1860498^(1/15) 2329991416277474 a001 3732588/11384387281*4870847^(7/8) 2329991416277474 a004 Fibonacci(34)*Lucas(32)/(1/2+sqrt(5)/2)^53 2329991416277474 a001 1762289/16692641*4870847^(1/2) 2329991416277475 a001 9227465/10749957122*4870847^(13/16) 2329991416277476 a001 39088169/119218851371*4870847^(7/8) 2329991416277476 a001 9303105/28374454999*4870847^(7/8) 2329991416277476 a001 66978574/204284540899*4870847^(7/8) 2329991416277476 a001 701408733/2139295485799*4870847^(7/8) 2329991416277476 a001 1836311903/5600748293801*4870847^(7/8) 2329991416277476 a001 1201881744/3665737348901*4870847^(7/8) 2329991416277476 a001 7778742049/23725150497407*4870847^(7/8) 2329991416277476 a001 2971215073/9062201101803*4870847^(7/8) 2329991416277476 a001 567451585/1730726404001*4870847^(7/8) 2329991416277476 a001 433494437/1322157322203*4870847^(7/8) 2329991416277476 a001 165580141/505019158607*4870847^(7/8) 2329991416277476 a001 31622993/96450076809*4870847^(7/8) 2329991416277477 a001 24157817/73681302247*4870847^(7/8) 2329991416277478 a001 567451585/16692641*1860498^(2/15) 2329991416277479 a001 2971215073/87403803*1860498^(2/15) 2329991416277480 a001 7778742049/228826127*1860498^(2/15) 2329991416277480 a001 10182505537/299537289*1860498^(2/15) 2329991416277480 a001 53316291173/1568397607*1860498^(2/15) 2329991416277480 a001 139583862445/4106118243*1860498^(2/15) 2329991416277480 a001 182717648081/5374978561*1860498^(2/15) 2329991416277480 a001 956722026041/28143753123*1860498^(2/15) 2329991416277480 a001 2504730781961/73681302247*1860498^(2/15) 2329991416277480 a001 3278735159921/96450076809*1860498^(2/15) 2329991416277480 a001 10610209857723/312119004989*1860498^(2/15) 2329991416277480 a001 4052739537881/119218851371*1860498^(2/15) 2329991416277480 a001 387002188980/11384387281*1860498^(2/15) 2329991416277480 a001 591286729879/17393796001*1860498^(2/15) 2329991416277480 a001 225851433717/6643838879*1860498^(2/15) 2329991416277480 a001 1135099622/33391061*1860498^(2/15) 2329991416277480 a001 32951280099/969323029*1860498^(2/15) 2329991416277480 a001 12586269025/370248451*1860498^(2/15) 2329991416277480 a001 1201881744/35355581*1860498^(2/15) 2329991416277480 a001 14930352/119218851371*4870847^(15/16) 2329991416277480 a001 1836311903/54018521*1860498^(2/15) 2329991416277481 a001 9227465/28143753123*4870847^(7/8) 2329991416277482 a001 39088169/312119004989*4870847^(15/16) 2329991416277482 a001 102334155/817138163596*4870847^(15/16) 2329991416277482 a001 267914296/2139295485799*4870847^(15/16) 2329991416277482 a001 701408733/5600748293801*4870847^(15/16) 2329991416277482 a001 1836311903/14662949395604*4870847^(15/16) 2329991416277482 a001 2971215073/23725150497407*4870847^(15/16) 2329991416277482 a001 1134903170/9062201101803*4870847^(15/16) 2329991416277482 a001 433494437/3461452808002*4870847^(15/16) 2329991416277482 a001 165580141/1322157322203*4870847^(15/16) 2329991416277482 a001 63245986/505019158607*4870847^(15/16) 2329991416277482 a001 3524578/87403803*4870847^(9/16) 2329991416277483 a001 24157817/192900153618*4870847^(15/16) 2329991416277485 a001 701408733/20633239*1860498^(2/15) 2329991416277486 a004 Fibonacci(36)*Lucas(32)/(1/2+sqrt(5)/2)^55 2329991416277487 a001 9227465/73681302247*4870847^(15/16) 2329991416277488 a001 267914296/12752043*1860498^(1/6) 2329991416277488 a004 Fibonacci(38)*Lucas(32)/(1/2+sqrt(5)/2)^57 2329991416277488 a004 Fibonacci(40)*Lucas(32)/(1/2+sqrt(5)/2)^59 2329991416277488 a004 Fibonacci(42)*Lucas(32)/(1/2+sqrt(5)/2)^61 2329991416277488 a004 Fibonacci(44)*Lucas(32)/(1/2+sqrt(5)/2)^63 2329991416277488 a004 Fibonacci(46)*Lucas(32)/(1/2+sqrt(5)/2)^65 2329991416277488 a004 Fibonacci(48)*Lucas(32)/(1/2+sqrt(5)/2)^67 2329991416277488 a004 Fibonacci(50)*Lucas(32)/(1/2+sqrt(5)/2)^69 2329991416277488 a004 Fibonacci(52)*Lucas(32)/(1/2+sqrt(5)/2)^71 2329991416277488 a004 Fibonacci(54)*Lucas(32)/(1/2+sqrt(5)/2)^73 2329991416277488 a004 Fibonacci(56)*Lucas(32)/(1/2+sqrt(5)/2)^75 2329991416277488 a004 Fibonacci(58)*Lucas(32)/(1/2+sqrt(5)/2)^77 2329991416277488 a004 Fibonacci(60)*Lucas(32)/(1/2+sqrt(5)/2)^79 2329991416277488 a004 Fibonacci(62)*Lucas(32)/(1/2+sqrt(5)/2)^81 2329991416277488 a004 Fibonacci(64)*Lucas(32)/(1/2+sqrt(5)/2)^83 2329991416277488 a004 Fibonacci(66)*Lucas(32)/(1/2+sqrt(5)/2)^85 2329991416277488 a004 Fibonacci(68)*Lucas(32)/(1/2+sqrt(5)/2)^87 2329991416277488 a004 Fibonacci(70)*Lucas(32)/(1/2+sqrt(5)/2)^89 2329991416277488 a004 Fibonacci(72)*Lucas(32)/(1/2+sqrt(5)/2)^91 2329991416277488 a004 Fibonacci(74)*Lucas(32)/(1/2+sqrt(5)/2)^93 2329991416277488 a004 Fibonacci(76)*Lucas(32)/(1/2+sqrt(5)/2)^95 2329991416277488 a004 Fibonacci(78)*Lucas(32)/(1/2+sqrt(5)/2)^97 2329991416277488 a004 Fibonacci(80)*Lucas(32)/(1/2+sqrt(5)/2)^99 2329991416277488 a004 Fibonacci(81)*Lucas(32)/(1/2+sqrt(5)/2)^100 2329991416277488 a004 Fibonacci(79)*Lucas(32)/(1/2+sqrt(5)/2)^98 2329991416277488 a004 Fibonacci(77)*Lucas(32)/(1/2+sqrt(5)/2)^96 2329991416277488 a004 Fibonacci(75)*Lucas(32)/(1/2+sqrt(5)/2)^94 2329991416277488 a004 Fibonacci(73)*Lucas(32)/(1/2+sqrt(5)/2)^92 2329991416277488 a004 Fibonacci(71)*Lucas(32)/(1/2+sqrt(5)/2)^90 2329991416277488 a004 Fibonacci(69)*Lucas(32)/(1/2+sqrt(5)/2)^88 2329991416277488 a004 Fibonacci(67)*Lucas(32)/(1/2+sqrt(5)/2)^86 2329991416277488 a004 Fibonacci(65)*Lucas(32)/(1/2+sqrt(5)/2)^84 2329991416277488 a001 2/2178309*(1/2+1/2*5^(1/2))^45 2329991416277488 a004 Fibonacci(63)*Lucas(32)/(1/2+sqrt(5)/2)^82 2329991416277488 a004 Fibonacci(61)*Lucas(32)/(1/2+sqrt(5)/2)^80 2329991416277488 a004 Fibonacci(59)*Lucas(32)/(1/2+sqrt(5)/2)^78 2329991416277488 a004 Fibonacci(57)*Lucas(32)/(1/2+sqrt(5)/2)^76 2329991416277488 a004 Fibonacci(55)*Lucas(32)/(1/2+sqrt(5)/2)^74 2329991416277488 a004 Fibonacci(53)*Lucas(32)/(1/2+sqrt(5)/2)^72 2329991416277488 a004 Fibonacci(51)*Lucas(32)/(1/2+sqrt(5)/2)^70 2329991416277488 a004 Fibonacci(49)*Lucas(32)/(1/2+sqrt(5)/2)^68 2329991416277488 a004 Fibonacci(47)*Lucas(32)/(1/2+sqrt(5)/2)^66 2329991416277488 a004 Fibonacci(45)*Lucas(32)/(1/2+sqrt(5)/2)^64 2329991416277488 a004 Fibonacci(43)*Lucas(32)/(1/2+sqrt(5)/2)^62 2329991416277488 a004 Fibonacci(41)*Lucas(32)/(1/2+sqrt(5)/2)^60 2329991416277488 a004 Fibonacci(39)*Lucas(32)/(1/2+sqrt(5)/2)^58 2329991416277489 a001 3524578/228826127*4870847^(5/8) 2329991416277489 a004 Fibonacci(37)*Lucas(32)/(1/2+sqrt(5)/2)^56 2329991416277492 a001 14930352/4870847*1860498^(3/10) 2329991416277494 a004 Fibonacci(35)*Lucas(32)/(1/2+sqrt(5)/2)^54 2329991416277495 a001 433494437/7881196*1860498^(1/10) 2329991416277495 a001 1762289/299537289*4870847^(11/16) 2329991416277500 a001 701408733/33385282*1860498^(1/6) 2329991416277501 a001 3524578/1568397607*4870847^(3/4) 2329991416277502 a001 1836311903/87403803*1860498^(1/6) 2329991416277502 a001 102287808/4868641*1860498^(1/6) 2329991416277502 a001 12586269025/599074578*1860498^(1/6) 2329991416277502 a001 32951280099/1568397607*1860498^(1/6) 2329991416277502 a001 86267571272/4106118243*1860498^(1/6) 2329991416277502 a001 225851433717/10749957122*1860498^(1/6) 2329991416277502 a001 591286729879/28143753123*1860498^(1/6) 2329991416277502 a001 1548008755920/73681302247*1860498^(1/6) 2329991416277502 a001 4052739537881/192900153618*1860498^(1/6) 2329991416277502 a001 225749145909/10745088481*1860498^(1/6) 2329991416277502 a001 6557470319842/312119004989*1860498^(1/6) 2329991416277502 a001 2504730781961/119218851371*1860498^(1/6) 2329991416277502 a001 956722026041/45537549124*1860498^(1/6) 2329991416277502 a001 365435296162/17393796001*1860498^(1/6) 2329991416277502 a001 139583862445/6643838879*1860498^(1/6) 2329991416277502 a001 53316291173/2537720636*1860498^(1/6) 2329991416277502 a001 20365011074/969323029*1860498^(1/6) 2329991416277502 a001 7778742049/370248451*1860498^(1/6) 2329991416277502 a001 2971215073/141422324*1860498^(1/6) 2329991416277503 a001 1134903170/54018521*1860498^(1/6) 2329991416277507 a001 3524578/4106118243*4870847^(13/16) 2329991416277508 a001 433494437/20633239*1860498^(1/6) 2329991416277510 a001 165580141/12752043*1860498^(1/5) 2329991416277513 a001 1762289/5374978561*4870847^(7/8) 2329991416277517 a001 66978574/1970299*1860498^(2/15) 2329991416277520 a001 3524578/28143753123*4870847^(15/16) 2329991416277522 a001 9227465/4870847*1860498^(1/3) 2329991416277522 a001 433494437/33385282*1860498^(1/5) 2329991416277524 a001 1134903170/87403803*1860498^(1/5) 2329991416277525 a001 2971215073/228826127*1860498^(1/5) 2329991416277525 a001 7778742049/599074578*1860498^(1/5) 2329991416277525 a001 20365011074/1568397607*1860498^(1/5) 2329991416277525 a001 53316291173/4106118243*1860498^(1/5) 2329991416277525 a001 139583862445/10749957122*1860498^(1/5) 2329991416277525 a001 365435296162/28143753123*1860498^(1/5) 2329991416277525 a001 956722026041/73681302247*1860498^(1/5) 2329991416277525 a001 2504730781961/192900153618*1860498^(1/5) 2329991416277525 a001 10610209857723/817138163596*1860498^(1/5) 2329991416277525 a001 4052739537881/312119004989*1860498^(1/5) 2329991416277525 a001 1548008755920/119218851371*1860498^(1/5) 2329991416277525 a001 591286729879/45537549124*1860498^(1/5) 2329991416277525 a001 7787980473/599786069*1860498^(1/5) 2329991416277525 a001 86267571272/6643838879*1860498^(1/5) 2329991416277525 a001 32951280099/2537720636*1860498^(1/5) 2329991416277525 a001 12586269025/969323029*1860498^(1/5) 2329991416277525 a001 4807526976/370248451*1860498^(1/5) 2329991416277525 a001 1836311903/141422324*1860498^(1/5) 2329991416277525 a001 701408733/54018521*1860498^(1/5) 2329991416277526 a004 Fibonacci(33)*Lucas(32)/(1/2+sqrt(5)/2)^52 2329991416277530 a001 9238424/711491*1860498^(1/5) 2329991416277535 a001 2178309/3010349*7881196^(4/11) 2329991416277540 a001 165580141/7881196*1860498^(1/6) 2329991416277547 a001 1346269/4870847*20633239^(2/5) 2329991416277549 a001 2178309/3010349*141422324^(4/13) 2329991416277549 a001 2178309/3010349*2537720636^(4/15) 2329991416277549 a001 1346269/4870847*17393796001^(2/7) 2329991416277549 a001 2178309/3010349*45537549124^(4/17) 2329991416277549 a001 2178309/3010349*817138163596^(4/19) 2329991416277549 a001 1346269/4870847*14662949395604^(2/9) 2329991416277549 a001 1346269/4870847*(1/2+1/2*5^(1/2))^14 2329991416277549 a001 2178309/3010349*(1/2+1/2*5^(1/2))^12 2329991416277549 a001 2178309/3010349*73681302247^(3/13) 2329991416277549 a001 2932589879121/12586269025 2329991416277549 a001 2178309/3010349*10749957122^(1/4) 2329991416277549 a001 1346269/4870847*10749957122^(7/24) 2329991416277549 a001 2178309/3010349*4106118243^(6/23) 2329991416277549 a001 1346269/4870847*4106118243^(7/23) 2329991416277549 a001 2178309/3010349*1568397607^(3/11) 2329991416277549 a001 1346269/4870847*1568397607^(7/22) 2329991416277549 a001 2178309/3010349*599074578^(2/7) 2329991416277549 a001 1346269/4870847*599074578^(1/3) 2329991416277549 a001 2178309/3010349*228826127^(3/10) 2329991416277549 a001 1346269/4870847*228826127^(7/20) 2329991416277549 a001 2178309/3010349*87403803^(6/19) 2329991416277549 a001 1346269/4870847*87403803^(7/19) 2329991416277550 a001 2178309/3010349*33385282^(1/3) 2329991416277550 a001 1346269/4870847*33385282^(7/18) 2329991416277554 a001 2178309/3010349*12752043^(6/17) 2329991416277555 a001 1346269/4870847*12752043^(7/17) 2329991416277555 a001 63245986/12752043*1860498^(4/15) 2329991416277562 a001 102334155/7881196*1860498^(1/5) 2329991416277567 a001 165580141/33385282*1860498^(4/15) 2329991416277569 a001 433494437/87403803*1860498^(4/15) 2329991416277569 a001 1134903170/228826127*1860498^(4/15) 2329991416277569 a001 2971215073/599074578*1860498^(4/15) 2329991416277569 a001 7778742049/1568397607*1860498^(4/15) 2329991416277569 a001 20365011074/4106118243*1860498^(4/15) 2329991416277569 a001 53316291173/10749957122*1860498^(4/15) 2329991416277569 a001 139583862445/28143753123*1860498^(4/15) 2329991416277569 a001 365435296162/73681302247*1860498^(4/15) 2329991416277569 a001 956722026041/192900153618*1860498^(4/15) 2329991416277569 a001 2504730781961/505019158607*1860498^(4/15) 2329991416277569 a001 10610209857723/2139295485799*1860498^(4/15) 2329991416277569 a001 4052739537881/817138163596*1860498^(4/15) 2329991416277569 a001 140728068720/28374454999*1860498^(4/15) 2329991416277569 a001 591286729879/119218851371*1860498^(4/15) 2329991416277569 a001 225851433717/45537549124*1860498^(4/15) 2329991416277569 a001 86267571272/17393796001*1860498^(4/15) 2329991416277569 a001 32951280099/6643838879*1860498^(4/15) 2329991416277569 a001 1144206275/230701876*1860498^(4/15) 2329991416277569 a001 4807526976/969323029*1860498^(4/15) 2329991416277569 a001 1836311903/370248451*1860498^(4/15) 2329991416277570 a001 701408733/141422324*1860498^(4/15) 2329991416277570 a001 267914296/54018521*1860498^(4/15) 2329991416277575 a001 9303105/1875749*1860498^(4/15) 2329991416277577 a001 39088169/12752043*1860498^(3/10) 2329991416277586 a001 2178309/3010349*4870847^(3/8) 2329991416277590 a001 14619165/4769326*1860498^(3/10) 2329991416277592 a001 267914296/87403803*1860498^(3/10) 2329991416277592 a001 1346269/4870847*4870847^(7/16) 2329991416277592 a001 701408733/228826127*1860498^(3/10) 2329991416277592 a001 1836311903/599074578*1860498^(3/10) 2329991416277592 a001 686789568/224056801*1860498^(3/10) 2329991416277592 a001 12586269025/4106118243*1860498^(3/10) 2329991416277592 a001 32951280099/10749957122*1860498^(3/10) 2329991416277592 a001 86267571272/28143753123*1860498^(3/10) 2329991416277592 a001 32264490531/10525900321*1860498^(3/10) 2329991416277592 a001 591286729879/192900153618*1860498^(3/10) 2329991416277592 a001 1515744265389/494493258286*1860498^(3/10) 2329991416277592 a001 2504730781961/817138163596*1860498^(3/10) 2329991416277592 a001 956722026041/312119004989*1860498^(3/10) 2329991416277592 a001 365435296162/119218851371*1860498^(3/10) 2329991416277592 a001 139583862445/45537549124*1860498^(3/10) 2329991416277592 a001 53316291173/17393796001*1860498^(3/10) 2329991416277592 a001 20365011074/6643838879*1860498^(3/10) 2329991416277592 a001 7778742049/2537720636*1860498^(3/10) 2329991416277592 a001 2971215073/969323029*1860498^(3/10) 2329991416277592 a001 1134903170/370248451*1860498^(3/10) 2329991416277592 a001 433494437/141422324*1860498^(3/10) 2329991416277593 a001 165580141/54018521*1860498^(3/10) 2329991416277597 a001 63245986/20633239*1860498^(3/10) 2329991416277598 a001 3524578/4870847*1860498^(2/5) 2329991416277601 a001 24157817/12752043*1860498^(1/3) 2329991416277607 a001 39088169/7881196*1860498^(4/15) 2329991416277610 a004 Fibonacci(31)*Lucas(33)/(1/2+sqrt(5)/2)^51 2329991416277612 a001 31622993/16692641*1860498^(1/3) 2329991416277613 a001 1346269/10749957122*7881196^(10/11) 2329991416277614 a001 726103/4250681*1860498^(1/2) 2329991416277614 a001 165580141/87403803*1860498^(1/3) 2329991416277614 a001 433494437/228826127*1860498^(1/3) 2329991416277614 a001 567451585/299537289*1860498^(1/3) 2329991416277614 a001 2971215073/1568397607*1860498^(1/3) 2329991416277614 a001 7778742049/4106118243*1860498^(1/3) 2329991416277614 a001 10182505537/5374978561*1860498^(1/3) 2329991416277614 a001 53316291173/28143753123*1860498^(1/3) 2329991416277614 a001 139583862445/73681302247*1860498^(1/3) 2329991416277614 a001 182717648081/96450076809*1860498^(1/3) 2329991416277614 a001 956722026041/505019158607*1860498^(1/3) 2329991416277614 a001 10610209857723/5600748293801*1860498^(1/3) 2329991416277614 a001 591286729879/312119004989*1860498^(1/3) 2329991416277614 a001 225851433717/119218851371*1860498^(1/3) 2329991416277614 a001 21566892818/11384387281*1860498^(1/3) 2329991416277614 a001 32951280099/17393796001*1860498^(1/3) 2329991416277614 a001 12586269025/6643838879*1860498^(1/3) 2329991416277614 a001 1201881744/634430159*1860498^(1/3) 2329991416277614 a001 1836311903/969323029*1860498^(1/3) 2329991416277614 a001 701408733/370248451*1860498^(1/3) 2329991416277614 a001 66978574/35355581*1860498^(1/3) 2329991416277615 a001 102334155/54018521*1860498^(1/3) 2329991416277616 a001 1346269/2537720636*7881196^(9/11) 2329991416277619 a001 39088169/20633239*1860498^(1/3) 2329991416277620 a001 1346269/599074578*7881196^(8/11) 2329991416277621 a001 433494437/4870847*710647^(1/14) 2329991416277622 a001 1346269/228826127*7881196^(2/3) 2329991416277623 a001 1346269/141422324*7881196^(7/11) 2329991416277624 a001 1346269/33385282*7881196^(6/11) 2329991416277630 a001 24157817/7881196*1860498^(3/10) 2329991416277631 a001 5702887/3010349*20633239^(2/7) 2329991416277633 a001 5702887/3010349*2537720636^(2/9) 2329991416277633 a001 5702887/3010349*312119004989^(2/11) 2329991416277633 a001 1346269/12752043*(1/2+1/2*5^(1/2))^16 2329991416277633 a001 1346269/12752043*23725150497407^(1/4) 2329991416277633 a001 5702887/3010349*(1/2+1/2*5^(1/2))^10 2329991416277633 a001 1346269/12752043*73681302247^(4/13) 2329991416277633 a001 7677619978603/32951280099 2329991416277633 a001 5702887/3010349*28143753123^(1/5) 2329991416277633 a001 5702887/3010349*10749957122^(5/24) 2329991416277633 a001 1346269/12752043*10749957122^(1/3) 2329991416277633 a001 5702887/3010349*4106118243^(5/23) 2329991416277633 a001 1346269/12752043*4106118243^(8/23) 2329991416277633 a001 5702887/3010349*1568397607^(5/22) 2329991416277633 a001 1346269/12752043*1568397607^(4/11) 2329991416277633 a001 5702887/3010349*599074578^(5/21) 2329991416277633 a001 1346269/12752043*599074578^(8/21) 2329991416277633 a001 5702887/3010349*228826127^(1/4) 2329991416277633 a001 1346269/12752043*228826127^(2/5) 2329991416277633 a001 5702887/3010349*87403803^(5/19) 2329991416277633 a001 1346269/12752043*87403803^(8/19) 2329991416277633 a001 5702887/3010349*33385282^(5/18) 2329991416277634 a001 1346269/12752043*33385282^(4/9) 2329991416277637 a001 5702887/3010349*12752043^(5/17) 2329991416277639 a001 1346269/12752043*12752043^(8/17) 2329991416277640 a001 39088169/3010349*7881196^(2/11) 2329991416277642 a004 Fibonacci(31)*Lucas(35)/(1/2+sqrt(5)/2)^53 2329991416277642 a001 24157817/710647*271443^(2/13) 2329991416277642 a001 9227465/3010349*7881196^(3/11) 2329991416277642 a001 1346269/10749957122*20633239^(6/7) 2329991416277643 a001 1346269/4106118243*20633239^(4/5) 2329991416277643 a001 1346269/969323029*20633239^(5/7) 2329991416277643 a001 2178309/7881196*1860498^(7/15) 2329991416277644 a001 1346269/87403803*20633239^(4/7) 2329991416277644 a001 165580141/3010349*7881196^(1/11) 2329991416277644 a001 1346269/141422324*20633239^(3/5) 2329991416277645 a001 1346269/33385282*141422324^(6/13) 2329991416277645 a001 1346269/33385282*2537720636^(2/5) 2329991416277645 a001 1346269/33385282*45537549124^(6/17) 2329991416277645 a001 1346269/33385282*14662949395604^(2/7) 2329991416277645 a001 1346269/33385282*(1/2+1/2*5^(1/2))^18 2329991416277645 a001 14930352/3010349*(1/2+1/2*5^(1/2))^8 2329991416277645 a001 1346269/33385282*192900153618^(1/3) 2329991416277645 a001 7778742282/33385283 2329991416277645 a001 14930352/3010349*73681302247^(2/13) 2329991416277645 a001 14930352/3010349*10749957122^(1/6) 2329991416277645 a001 1346269/33385282*10749957122^(3/8) 2329991416277645 a001 14930352/3010349*4106118243^(4/23) 2329991416277645 a001 1346269/33385282*4106118243^(9/23) 2329991416277645 a001 14930352/3010349*1568397607^(2/11) 2329991416277645 a001 1346269/33385282*1568397607^(9/22) 2329991416277645 a001 14930352/3010349*599074578^(4/21) 2329991416277645 a001 1346269/33385282*599074578^(3/7) 2329991416277645 a001 14930352/3010349*228826127^(1/5) 2329991416277645 a001 1346269/33385282*228826127^(9/20) 2329991416277645 a001 14930352/3010349*87403803^(4/19) 2329991416277645 a001 1346269/33385282*87403803^(9/19) 2329991416277645 a001 14930352/3010349*33385282^(2/9) 2329991416277646 a001 1346269/33385282*33385282^(1/2) 2329991416277646 a004 Fibonacci(31)*Lucas(37)/(1/2+sqrt(5)/2)^55 2329991416277646 a001 63245986/3010349*20633239^(1/7) 2329991416277647 a001 39088169/3010349*141422324^(2/13) 2329991416277647 a001 1346269/87403803*2537720636^(4/9) 2329991416277647 a001 39088169/3010349*2537720636^(2/15) 2329991416277647 a001 39088169/3010349*45537549124^(2/17) 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^20/Lucas(38) 2329991416277647 a001 1346269/87403803*23725150497407^(5/16) 2329991416277647 a001 39088169/3010349*(1/2+1/2*5^(1/2))^6 2329991416277647 a001 1346269/87403803*505019158607^(5/14) 2329991416277647 a001 1346269/87403803*73681302247^(5/13) 2329991416277647 a001 1346269/87403803*28143753123^(2/5) 2329991416277647 a001 39088169/3010349*10749957122^(1/8) 2329991416277647 a001 1346269/87403803*10749957122^(5/12) 2329991416277647 a001 39088169/3010349*4106118243^(3/23) 2329991416277647 a001 1346269/87403803*4106118243^(10/23) 2329991416277647 a001 39088169/3010349*1568397607^(3/22) 2329991416277647 a001 1346269/87403803*1568397607^(5/11) 2329991416277647 a001 39088169/3010349*599074578^(1/7) 2329991416277647 a001 1346269/87403803*599074578^(10/21) 2329991416277647 a001 39088169/3010349*228826127^(3/20) 2329991416277647 a001 24157817/3010349*20633239^(1/5) 2329991416277647 a001 1346269/87403803*228826127^(1/2) 2329991416277647 a001 39088169/3010349*87403803^(3/19) 2329991416277647 a001 1346269/87403803*87403803^(10/19) 2329991416277647 a004 Fibonacci(31)*Lucas(39)/(1/2+sqrt(5)/2)^57 2329991416277647 a001 1346269/192900153618*141422324^(12/13) 2329991416277647 a001 1346269/45537549124*141422324^(11/13) 2329991416277647 a001 1346269/10749957122*141422324^(10/13) 2329991416277647 a001 1346269/2537720636*141422324^(9/13) 2329991416277647 a001 1346269/1568397607*141422324^(2/3) 2329991416277647 a001 1346269/599074578*141422324^(8/13) 2329991416277647 a001 1346269/228826127*312119004989^(2/5) 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^22/Lucas(40) 2329991416277647 a001 102334155/3010349*(1/2+1/2*5^(1/2))^4 2329991416277647 a001 102334155/3010349*23725150497407^(1/16) 2329991416277647 a001 102334155/3010349*73681302247^(1/13) 2329991416277647 a001 102334155/3010349*10749957122^(1/12) 2329991416277647 a001 1346269/228826127*10749957122^(11/24) 2329991416277647 a001 102334155/3010349*4106118243^(2/23) 2329991416277647 a001 1346269/228826127*4106118243^(11/23) 2329991416277647 a001 102334155/3010349*1568397607^(1/11) 2329991416277647 a001 1346269/228826127*1568397607^(1/2) 2329991416277647 a001 102334155/3010349*599074578^(2/21) 2329991416277647 a001 1346269/228826127*599074578^(11/21) 2329991416277647 a001 102334155/3010349*228826127^(1/10) 2329991416277647 a001 1346269/228826127*228826127^(11/20) 2329991416277647 a004 Fibonacci(31)*Lucas(41)/(1/2+sqrt(5)/2)^59 2329991416277647 a001 102334155/3010349*87403803^(2/19) 2329991416277647 a001 1346269/599074578*2537720636^(8/15) 2329991416277647 a001 1346269/599074578*45537549124^(8/17) 2329991416277647 a001 1346269/599074578*14662949395604^(8/21) 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^24/Lucas(42) 2329991416277647 a001 267914296/3010349*(1/2+1/2*5^(1/2))^2 2329991416277647 a001 45085588920203/193501094490 2329991416277647 a001 1346269/599074578*192900153618^(4/9) 2329991416277647 a001 1346269/599074578*73681302247^(6/13) 2329991416277647 a001 267914296/3010349*10749957122^(1/24) 2329991416277647 a001 267914296/3010349*4106118243^(1/23) 2329991416277647 a001 1346269/599074578*10749957122^(1/2) 2329991416277647 a001 267914296/3010349*1568397607^(1/22) 2329991416277647 a001 1346269/599074578*4106118243^(12/23) 2329991416277647 a001 267914296/3010349*599074578^(1/21) 2329991416277647 a001 1346269/599074578*1568397607^(6/11) 2329991416277647 a001 267914296/3010349*228826127^(1/20) 2329991416277647 a001 1346269/599074578*599074578^(4/7) 2329991416277647 a004 Fibonacci(31)*Lucas(43)/(1/2+sqrt(5)/2)^61 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^26/Lucas(44) 2329991416277647 a001 701408733/3010349 2329991416277647 a001 1346269/1568397607*73681302247^(1/2) 2329991416277647 a001 1346269/1568397607*10749957122^(13/24) 2329991416277647 a001 1346269/1568397607*4106118243^(13/23) 2329991416277647 a001 1346269/1568397607*1568397607^(13/22) 2329991416277647 a004 Fibonacci(31)*Lucas(45)/(1/2+sqrt(5)/2)^63 2329991416277647 a001 1346269/3461452808002*2537720636^(14/15) 2329991416277647 a001 1346269/1322157322203*2537720636^(8/9) 2329991416277647 a001 1346269/817138163596*2537720636^(13/15) 2329991416277647 a001 1346269/192900153618*2537720636^(4/5) 2329991416277647 a001 1346269/119218851371*2537720636^(7/9) 2329991416277647 a001 1346269/45537549124*2537720636^(11/15) 2329991416277647 a001 1346269/10749957122*2537720636^(2/3) 2329991416277647 a001 1346269/4106118243*17393796001^(4/7) 2329991416277647 a001 1346269/4106118243*14662949395604^(4/9) 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^28/Lucas(46) 2329991416277647 a004 Fibonacci(46)/Lucas(31)/(1/2+sqrt(5)/2)^2 2329991416277647 a001 1346269/4106118243*505019158607^(1/2) 2329991416277647 a001 1346269/4106118243*73681302247^(7/13) 2329991416277647 a001 1346269/4106118243*10749957122^(7/12) 2329991416277647 a001 1346269/4106118243*4106118243^(14/23) 2329991416277647 a004 Fibonacci(31)*Lucas(47)/(1/2+sqrt(5)/2)^65 2329991416277647 a001 1346269/10749957122*45537549124^(10/17) 2329991416277647 a001 1346269/10749957122*312119004989^(6/11) 2329991416277647 a001 1346269/10749957122*14662949395604^(10/21) 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^30/Lucas(48) 2329991416277647 a004 Fibonacci(48)/Lucas(31)/(1/2+sqrt(5)/2)^4 2329991416277647 a001 1346269/10749957122*192900153618^(5/9) 2329991416277647 a001 1346269/10749957122*28143753123^(3/5) 2329991416277647 a004 Fibonacci(31)*Lucas(49)/(1/2+sqrt(5)/2)^67 2329991416277647 a001 1346269/10749957122*10749957122^(5/8) 2329991416277647 a001 1346269/3461452808002*17393796001^(6/7) 2329991416277647 a001 1346269/119218851371*17393796001^(5/7) 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^32/Lucas(50) 2329991416277647 a001 1346269/28143753123*23725150497407^(1/2) 2329991416277647 a004 Fibonacci(50)/Lucas(31)/(1/2+sqrt(5)/2)^6 2329991416277647 a001 1346269/28143753123*73681302247^(8/13) 2329991416277647 a001 1346269/73681302247*45537549124^(2/3) 2329991416277647 a004 Fibonacci(31)*Lucas(51)/(1/2+sqrt(5)/2)^69 2329991416277647 a001 1346269/14662949395604*45537549124^(15/17) 2329991416277647 a001 1346269/3461452808002*45537549124^(14/17) 2329991416277647 a001 1346269/192900153618*45537549124^(12/17) 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^34/Lucas(52) 2329991416277647 a004 Fibonacci(52)/Lucas(31)/(1/2+sqrt(5)/2)^8 2329991416277647 a004 Fibonacci(31)*Lucas(53)/(1/2+sqrt(5)/2)^71 2329991416277647 a001 1346269/192900153618*14662949395604^(4/7) 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^36/Lucas(54) 2329991416277647 a004 Fibonacci(54)/Lucas(31)/(1/2+sqrt(5)/2)^10 2329991416277647 a001 1346269/192900153618*505019158607^(9/14) 2329991416277647 a004 Fibonacci(31)*Lucas(55)/(1/2+sqrt(5)/2)^73 2329991416277647 a001 1346269/14662949395604*312119004989^(9/11) 2329991416277647 a001 1346269/1322157322203*312119004989^(8/11) 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^38/Lucas(56) 2329991416277647 a004 Fibonacci(56)/Lucas(31)/(1/2+sqrt(5)/2)^12 2329991416277647 a004 Fibonacci(31)*Lucas(57)/(1/2+sqrt(5)/2)^75 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^40/Lucas(58) 2329991416277647 a001 1346269/1322157322203*23725150497407^(5/8) 2329991416277647 a004 Fibonacci(58)/Lucas(31)/(1/2+sqrt(5)/2)^14 2329991416277647 a004 Fibonacci(31)*Lucas(59)/(1/2+sqrt(5)/2)^77 2329991416277647 a001 1346269/3461452808002*14662949395604^(2/3) 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^42/Lucas(60) 2329991416277647 a004 Fibonacci(60)/Lucas(31)/(1/2+sqrt(5)/2)^16 2329991416277647 a004 Fibonacci(31)*Lucas(61)/(1/2+sqrt(5)/2)^79 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^44/Lucas(62) 2329991416277647 a004 Fibonacci(31)*Lucas(63)/(1/2+sqrt(5)/2)^81 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^46/Lucas(64) 2329991416277647 a004 Fibonacci(31)*Lucas(65)/(1/2+sqrt(5)/2)^83 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^48/Lucas(66) 2329991416277647 a004 Fibonacci(31)*Lucas(67)/(1/2+sqrt(5)/2)^85 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^50/Lucas(68) 2329991416277647 a004 Fibonacci(31)*Lucas(69)/(1/2+sqrt(5)/2)^87 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^52/Lucas(70) 2329991416277647 a004 Fibonacci(31)*Lucas(71)/(1/2+sqrt(5)/2)^89 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^54/Lucas(72) 2329991416277647 a004 Fibonacci(31)*Lucas(73)/(1/2+sqrt(5)/2)^91 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^56/Lucas(74) 2329991416277647 a004 Fibonacci(31)*Lucas(75)/(1/2+sqrt(5)/2)^93 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^58/Lucas(76) 2329991416277647 a004 Fibonacci(31)*Lucas(77)/(1/2+sqrt(5)/2)^95 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^60/Lucas(78) 2329991416277647 a004 Fibonacci(31)*Lucas(79)/(1/2+sqrt(5)/2)^97 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^62/Lucas(80) 2329991416277647 a004 Fibonacci(31)*Lucas(81)/(1/2+sqrt(5)/2)^99 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^64/Lucas(82) 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^66/Lucas(84) 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^68/Lucas(86) 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^70/Lucas(88) 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^72/Lucas(90) 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^74/Lucas(92) 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^76/Lucas(94) 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^78/Lucas(96) 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^80/Lucas(98) 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^81/Lucas(99) 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^82/Lucas(100) 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^79/Lucas(97) 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^77/Lucas(95) 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^75/Lucas(93) 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^73/Lucas(91) 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^71/Lucas(89) 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^69/Lucas(87) 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^67/Lucas(85) 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^65/Lucas(83) 2329991416277647 a004 Fibonacci(31)*Lucas(82)/(1/2+sqrt(5)/2)^100 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^63/Lucas(81) 2329991416277647 a004 Fibonacci(31)*Lucas(80)/(1/2+sqrt(5)/2)^98 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^61/Lucas(79) 2329991416277647 a004 Fibonacci(31)*Lucas(78)/(1/2+sqrt(5)/2)^96 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^59/Lucas(77) 2329991416277647 a004 Fibonacci(31)*Lucas(76)/(1/2+sqrt(5)/2)^94 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^57/Lucas(75) 2329991416277647 a004 Fibonacci(31)*Lucas(74)/(1/2+sqrt(5)/2)^92 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^55/Lucas(73) 2329991416277647 a004 Fibonacci(31)*Lucas(72)/(1/2+sqrt(5)/2)^90 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^53/Lucas(71) 2329991416277647 a004 Fibonacci(31)*Lucas(70)/(1/2+sqrt(5)/2)^88 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^51/Lucas(69) 2329991416277647 a004 Fibonacci(31)*Lucas(68)/(1/2+sqrt(5)/2)^86 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^49/Lucas(67) 2329991416277647 a004 Fibonacci(31)*Lucas(66)/(1/2+sqrt(5)/2)^84 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^47/Lucas(65) 2329991416277647 a004 Fibonacci(31)*Lucas(64)/(1/2+sqrt(5)/2)^82 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^45/Lucas(63) 2329991416277647 a004 Fibonacci(64)/Lucas(31)/(1/2+sqrt(5)/2)^20 2329991416277647 a004 Fibonacci(66)/Lucas(31)/(1/2+sqrt(5)/2)^22 2329991416277647 a004 Fibonacci(68)/Lucas(31)/(1/2+sqrt(5)/2)^24 2329991416277647 a004 Fibonacci(70)/Lucas(31)/(1/2+sqrt(5)/2)^26 2329991416277647 a004 Fibonacci(72)/Lucas(31)/(1/2+sqrt(5)/2)^28 2329991416277647 a004 Fibonacci(74)/Lucas(31)/(1/2+sqrt(5)/2)^30 2329991416277647 a004 Fibonacci(76)/Lucas(31)/(1/2+sqrt(5)/2)^32 2329991416277647 a004 Fibonacci(78)/Lucas(31)/(1/2+sqrt(5)/2)^34 2329991416277647 a004 Fibonacci(80)/Lucas(31)/(1/2+sqrt(5)/2)^36 2329991416277647 a004 Fibonacci(82)/Lucas(31)/(1/2+sqrt(5)/2)^38 2329991416277647 a004 Fibonacci(84)/Lucas(31)/(1/2+sqrt(5)/2)^40 2329991416277647 a004 Fibonacci(86)/Lucas(31)/(1/2+sqrt(5)/2)^42 2329991416277647 a004 Fibonacci(88)/Lucas(31)/(1/2+sqrt(5)/2)^44 2329991416277647 a004 Fibonacci(90)/Lucas(31)/(1/2+sqrt(5)/2)^46 2329991416277647 a004 Fibonacci(92)/Lucas(31)/(1/2+sqrt(5)/2)^48 2329991416277647 a004 Fibonacci(94)/Lucas(31)/(1/2+sqrt(5)/2)^50 2329991416277647 a004 Fibonacci(96)/Lucas(31)/(1/2+sqrt(5)/2)^52 2329991416277647 a004 Fibonacci(100)/Lucas(31)/(1/2+sqrt(5)/2)^56 2329991416277647 a004 Fibonacci(31)*Lucas(62)/(1/2+sqrt(5)/2)^80 2329991416277647 a004 Fibonacci(97)/Lucas(31)/(1/2+sqrt(5)/2)^53 2329991416277647 a004 Fibonacci(98)/Lucas(31)/(1/2+sqrt(5)/2)^54 2329991416277647 a004 Fibonacci(99)/Lucas(31)/(1/2+sqrt(5)/2)^55 2329991416277647 a004 Fibonacci(95)/Lucas(31)/(1/2+sqrt(5)/2)^51 2329991416277647 a004 Fibonacci(93)/Lucas(31)/(1/2+sqrt(5)/2)^49 2329991416277647 a004 Fibonacci(91)/Lucas(31)/(1/2+sqrt(5)/2)^47 2329991416277647 a004 Fibonacci(89)/Lucas(31)/(1/2+sqrt(5)/2)^45 2329991416277647 a004 Fibonacci(87)/Lucas(31)/(1/2+sqrt(5)/2)^43 2329991416277647 a004 Fibonacci(85)/Lucas(31)/(1/2+sqrt(5)/2)^41 2329991416277647 a004 Fibonacci(83)/Lucas(31)/(1/2+sqrt(5)/2)^39 2329991416277647 a004 Fibonacci(81)/Lucas(31)/(1/2+sqrt(5)/2)^37 2329991416277647 a004 Fibonacci(79)/Lucas(31)/(1/2+sqrt(5)/2)^35 2329991416277647 a004 Fibonacci(77)/Lucas(31)/(1/2+sqrt(5)/2)^33 2329991416277647 a004 Fibonacci(75)/Lucas(31)/(1/2+sqrt(5)/2)^31 2329991416277647 a004 Fibonacci(73)/Lucas(31)/(1/2+sqrt(5)/2)^29 2329991416277647 a004 Fibonacci(71)/Lucas(31)/(1/2+sqrt(5)/2)^27 2329991416277647 a004 Fibonacci(69)/Lucas(31)/(1/2+sqrt(5)/2)^25 2329991416277647 a004 Fibonacci(67)/Lucas(31)/(1/2+sqrt(5)/2)^23 2329991416277647 a004 Fibonacci(65)/Lucas(31)/(1/2+sqrt(5)/2)^21 2329991416277647 a004 Fibonacci(63)/Lucas(31)/(1/2+sqrt(5)/2)^19 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^43/Lucas(61) 2329991416277647 a004 Fibonacci(61)/Lucas(31)/(1/2+sqrt(5)/2)^17 2329991416277647 a004 Fibonacci(31)*Lucas(60)/(1/2+sqrt(5)/2)^78 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^41/Lucas(59) 2329991416277647 a004 Fibonacci(59)/Lucas(31)/(1/2+sqrt(5)/2)^15 2329991416277647 a004 Fibonacci(31)*Lucas(58)/(1/2+sqrt(5)/2)^76 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^39/Lucas(57) 2329991416277647 a004 Fibonacci(57)/Lucas(31)/(1/2+sqrt(5)/2)^13 2329991416277647 a001 1346269/3461452808002*505019158607^(3/4) 2329991416277647 a004 Fibonacci(31)*Lucas(56)/(1/2+sqrt(5)/2)^74 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^37/Lucas(55) 2329991416277647 a004 Fibonacci(55)/Lucas(31)/(1/2+sqrt(5)/2)^11 2329991416277647 a001 1346269/817138163596*192900153618^(13/18) 2329991416277647 a001 1346269/14662949395604*192900153618^(5/6) 2329991416277647 a004 Fibonacci(31)*Lucas(54)/(1/2+sqrt(5)/2)^72 2329991416277647 a001 1346269/119218851371*312119004989^(7/11) 2329991416277647 a001 1346269/119218851371*14662949395604^(5/9) 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^35/Lucas(53) 2329991416277647 a004 Fibonacci(53)/Lucas(31)/(1/2+sqrt(5)/2)^9 2329991416277647 a001 1346269/119218851371*505019158607^(5/8) 2329991416277647 a001 1346269/192900153618*73681302247^(9/13) 2329991416277647 a001 1346269/1322157322203*73681302247^(10/13) 2329991416277647 a001 1346269/9062201101803*73681302247^(11/13) 2329991416277647 a001 1346269/45537549124*45537549124^(11/17) 2329991416277647 a004 Fibonacci(31)*Lucas(52)/(1/2+sqrt(5)/2)^70 2329991416277647 a001 1346269/45537549124*312119004989^(3/5) 2329991416277647 a001 1346269/45537549124*14662949395604^(11/21) 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^33/Lucas(51) 2329991416277647 a004 Fibonacci(51)/Lucas(31)/(1/2+sqrt(5)/2)^7 2329991416277647 a001 1346269/45537549124*192900153618^(11/18) 2329991416277647 a001 1346269/119218851371*28143753123^(7/10) 2329991416277647 a001 1346269/1322157322203*28143753123^(4/5) 2329991416277647 a001 1346269/14662949395604*28143753123^(9/10) 2329991416277647 a004 Fibonacci(31)*Lucas(50)/(1/2+sqrt(5)/2)^68 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^31/Lucas(49) 2329991416277647 a001 1346269/17393796001*9062201101803^(1/2) 2329991416277647 a004 Fibonacci(49)/Lucas(31)/(1/2+sqrt(5)/2)^5 2329991416277647 a001 1346269/28143753123*10749957122^(2/3) 2329991416277647 a001 1346269/73681302247*10749957122^(17/24) 2329991416277647 a001 1346269/45537549124*10749957122^(11/16) 2329991416277647 a001 1346269/192900153618*10749957122^(3/4) 2329991416277647 a001 1346269/505019158607*10749957122^(19/24) 2329991416277647 a001 1346269/817138163596*10749957122^(13/16) 2329991416277647 a001 1346269/1322157322203*10749957122^(5/6) 2329991416277647 a001 1346269/3461452808002*10749957122^(7/8) 2329991416277647 a001 1346269/9062201101803*10749957122^(11/12) 2329991416277647 a001 1346269/14662949395604*10749957122^(15/16) 2329991416277647 a001 1346269/23725150497407*10749957122^(23/24) 2329991416277647 a004 Fibonacci(31)*Lucas(48)/(1/2+sqrt(5)/2)^66 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^29/Lucas(47) 2329991416277647 a004 Fibonacci(47)/Lucas(31)/(1/2+sqrt(5)/2)^3 2329991416277647 a001 1346269/6643838879*1322157322203^(1/2) 2329991416277647 a001 1346269/10749957122*4106118243^(15/23) 2329991416277647 a001 1346269/28143753123*4106118243^(16/23) 2329991416277647 a001 1346269/73681302247*4106118243^(17/23) 2329991416277647 a001 1346269/192900153618*4106118243^(18/23) 2329991416277647 a001 1346269/505019158607*4106118243^(19/23) 2329991416277647 a001 1346269/1322157322203*4106118243^(20/23) 2329991416277647 a001 1346269/3461452808002*4106118243^(21/23) 2329991416277647 a001 1346269/9062201101803*4106118243^(22/23) 2329991416277647 a004 Fibonacci(31)*Lucas(46)/(1/2+sqrt(5)/2)^64 2329991416277647 a001 1346269/2537720636*2537720636^(3/5) 2329991416277647 a001 1346269/2537720636*45537549124^(9/17) 2329991416277647 a001 1346269/2537720636*817138163596^(9/19) 2329991416277647 a001 1346269/2537720636*14662949395604^(3/7) 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^27/Lucas(45) 2329991416277647 a004 Fibonacci(45)/Lucas(31)/(1/2+sqrt(5)/2) 2329991416277647 a001 1346269/2537720636*192900153618^(1/2) 2329991416277647 a001 1346269/2537720636*10749957122^(9/16) 2329991416277647 a001 1346269/4106118243*1568397607^(7/11) 2329991416277647 a001 1346269/10749957122*1568397607^(15/22) 2329991416277647 a001 1346269/28143753123*1568397607^(8/11) 2329991416277647 a001 1346269/45537549124*1568397607^(3/4) 2329991416277647 a001 1346269/73681302247*1568397607^(17/22) 2329991416277647 a001 1346269/192900153618*1568397607^(9/11) 2329991416277647 a001 1346269/505019158607*1568397607^(19/22) 2329991416277647 a001 1346269/1322157322203*1568397607^(10/11) 2329991416277647 a001 1346269/3461452808002*1568397607^(21/22) 2329991416277647 a004 Fibonacci(31)*Lucas(44)/(1/2+sqrt(5)/2)^62 2329991416277647 a001 1346269/969323029*2537720636^(5/9) 2329991416277647 a001 1346269/969323029*312119004989^(5/11) 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^25/Lucas(43) 2329991416277647 a004 Fibonacci(43)*(1/2+sqrt(5)/2)/Lucas(31) 2329991416277647 a001 1346269/969323029*3461452808002^(5/12) 2329991416277647 a001 1346269/969323029*28143753123^(1/2) 2329991416277647 a001 1346269/1568397607*599074578^(13/21) 2329991416277647 a001 1346269/4106118243*599074578^(2/3) 2329991416277647 a001 1346269/2537720636*599074578^(9/14) 2329991416277647 a001 1346269/10749957122*599074578^(5/7) 2329991416277647 a001 1346269/28143753123*599074578^(16/21) 2329991416277647 a001 1346269/45537549124*599074578^(11/14) 2329991416277647 a001 1346269/73681302247*599074578^(17/21) 2329991416277647 a001 1346269/119218851371*599074578^(5/6) 2329991416277647 a001 1346269/192900153618*599074578^(6/7) 2329991416277647 a001 1346269/505019158607*599074578^(19/21) 2329991416277647 a001 1346269/817138163596*599074578^(13/14) 2329991416277647 a001 1346269/1322157322203*599074578^(20/21) 2329991416277647 a004 Fibonacci(31)*Lucas(42)/(1/2+sqrt(5)/2)^60 2329991416277647 a001 165580141/3010349*141422324^(1/13) 2329991416277647 a001 267914296/3010349*87403803^(1/19) 2329991416277647 a001 165580141/3010349*2537720636^(1/15) 2329991416277647 a001 165580141/3010349*45537549124^(1/17) 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^23/Lucas(41) 2329991416277647 a001 165580141/3010349*14662949395604^(1/21) 2329991416277647 a001 165580141/3010349*(1/2+1/2*5^(1/2))^3 2329991416277647 a001 165580141/3010349*192900153618^(1/18) 2329991416277647 a001 165580141/3010349*10749957122^(1/16) 2329991416277647 a001 1346269/370248451*4106118243^(1/2) 2329991416277647 a001 165580141/3010349*599074578^(1/14) 2329991416277647 a001 1346269/599074578*228826127^(3/5) 2329991416277647 a001 1346269/1568397607*228826127^(13/20) 2329991416277647 a001 1346269/969323029*228826127^(5/8) 2329991416277647 a001 1346269/4106118243*228826127^(7/10) 2329991416277647 a001 1346269/10749957122*228826127^(3/4) 2329991416277647 a001 1346269/28143753123*228826127^(4/5) 2329991416277647 a001 1346269/73681302247*228826127^(17/20) 2329991416277647 a001 1346269/119218851371*228826127^(7/8) 2329991416277647 a001 1346269/192900153618*228826127^(9/10) 2329991416277647 a001 1346269/505019158607*228826127^(19/20) 2329991416277647 a001 39088169/3010349*33385282^(1/6) 2329991416277647 a004 Fibonacci(31)*Lucas(40)/(1/2+sqrt(5)/2)^58 2329991416277647 a001 1346269/141422324*141422324^(7/13) 2329991416277647 a001 267914296/3010349*33385282^(1/18) 2329991416277647 a001 1346269/141422324*2537720636^(7/15) 2329991416277647 a001 63245986/3010349*2537720636^(1/9) 2329991416277647 a001 1346269/141422324*17393796001^(3/7) 2329991416277647 a001 1346269/141422324*45537549124^(7/17) 2329991416277647 a001 1346269/141422324*14662949395604^(1/3) 2329991416277647 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^21/Lucas(39) 2329991416277647 a001 63245986/3010349*(1/2+1/2*5^(1/2))^5 2329991416277647 a001 1346269/141422324*192900153618^(7/18) 2329991416277647 a001 63245986/3010349*28143753123^(1/10) 2329991416277647 a001 1346269/141422324*10749957122^(7/16) 2329991416277647 a001 1346269/141422324*599074578^(1/2) 2329991416277647 a001 63245986/3010349*228826127^(1/8) 2329991416277647 a001 1346269/228826127*87403803^(11/19) 2329991416277647 a001 1346269/599074578*87403803^(12/19) 2329991416277647 a001 102334155/3010349*33385282^(1/9) 2329991416277647 a001 165580141/3010349*33385282^(1/12) 2329991416277647 a001 1346269/1568397607*87403803^(13/19) 2329991416277647 a001 1346269/4106118243*87403803^(14/19) 2329991416277647 a001 1346269/10749957122*87403803^(15/19) 2329991416277647 a001 1346269/28143753123*87403803^(16/19) 2329991416277647 a001 1346269/73681302247*87403803^(17/19) 2329991416277647 a001 1346269/192900153618*87403803^(18/19) 2329991416277647 a004 Fibonacci(31)*Lucas(38)/(1/2+sqrt(5)/2)^56 2329991416277648 a001 24157817/3010349*17393796001^(1/7) 2329991416277648 a001 32522920134773/139583862445 2329991416277648 a001 1346269/54018521*817138163596^(1/3) 2329991416277648 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^19/Lucas(37) 2329991416277648 a001 24157817/3010349*(1/2+1/2*5^(1/2))^7 2329991416277648 a001 24157817/3010349*599074578^(1/6) 2329991416277648 a001 267914296/3010349*12752043^(1/17) 2329991416277648 a001 1346269/87403803*33385282^(5/9) 2329991416277648 a001 1346269/54018521*87403803^(1/2) 2329991416277648 a001 1346269/228826127*33385282^(11/18) 2329991416277648 a001 14930352/3010349*12752043^(4/17) 2329991416277648 a001 1346269/141422324*33385282^(7/12) 2329991416277648 a001 1346269/599074578*33385282^(2/3) 2329991416277649 a001 1346269/1568397607*33385282^(13/18) 2329991416277649 a001 1346269/2537720636*33385282^(3/4) 2329991416277649 a001 1346269/4106118243*33385282^(7/9) 2329991416277649 a001 102334155/3010349*12752043^(2/17) 2329991416277649 a001 1346269/10749957122*33385282^(5/6) 2329991416277649 a001 1346269/28143753123*33385282^(8/9) 2329991416277649 a001 1346269/45537549124*33385282^(11/12) 2329991416277649 a001 1346269/73681302247*33385282^(17/18) 2329991416277649 a004 Fibonacci(31)*Lucas(36)/(1/2+sqrt(5)/2)^54 2329991416277649 a001 39088169/3010349*12752043^(3/17) 2329991416277650 a001 3732588/1970299*1860498^(1/3) 2329991416277650 a001 9227465/12752043*1860498^(2/5) 2329991416277652 a001 9227465/3010349*141422324^(3/13) 2329991416277653 a001 9227465/3010349*2537720636^(1/5) 2329991416277653 a001 1346269/20633239*45537549124^(1/3) 2329991416277653 a001 9227465/3010349*45537549124^(3/17) 2329991416277653 a001 12422650078085/53316291173 2329991416277653 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^17/Lucas(35) 2329991416277653 a001 9227465/3010349*14662949395604^(1/7) 2329991416277653 a001 9227465/3010349*(1/2+1/2*5^(1/2))^9 2329991416277653 a001 9227465/3010349*192900153618^(1/6) 2329991416277653 a001 9227465/3010349*10749957122^(3/16) 2329991416277653 a001 9227465/3010349*599074578^(3/14) 2329991416277653 a001 1346269/33385282*12752043^(9/17) 2329991416277653 a001 9227465/3010349*33385282^(1/4) 2329991416277653 a001 267914296/3010349*4870847^(1/16) 2329991416277655 a001 1346269/87403803*12752043^(10/17) 2329991416277656 a001 2178309/20633239*1860498^(8/15) 2329991416277656 a001 1346269/228826127*12752043^(11/17) 2329991416277657 a001 1346269/599074578*12752043^(12/17) 2329991416277658 a001 24157817/33385282*1860498^(2/5) 2329991416277658 a001 1346269/1568397607*12752043^(13/17) 2329991416277659 a001 1346269/4106118243*12752043^(14/17) 2329991416277659 a001 63245986/87403803*1860498^(2/5) 2329991416277659 a001 165580141/228826127*1860498^(2/5) 2329991416277659 a001 433494437/599074578*1860498^(2/5) 2329991416277659 a001 1134903170/1568397607*1860498^(2/5) 2329991416277659 a001 2971215073/4106118243*1860498^(2/5) 2329991416277659 a001 7778742049/10749957122*1860498^(2/5) 2329991416277659 a001 20365011074/28143753123*1860498^(2/5) 2329991416277659 a001 53316291173/73681302247*1860498^(2/5) 2329991416277659 a001 139583862445/192900153618*1860498^(2/5) 2329991416277659 a001 10610209857723/14662949395604*1860498^(2/5) 2329991416277659 a001 225851433717/312119004989*1860498^(2/5) 2329991416277659 a001 86267571272/119218851371*1860498^(2/5) 2329991416277659 a001 32951280099/45537549124*1860498^(2/5) 2329991416277659 a001 12586269025/17393796001*1860498^(2/5) 2329991416277659 a001 4807526976/6643838879*1860498^(2/5) 2329991416277659 a001 1836311903/2537720636*1860498^(2/5) 2329991416277659 a001 701408733/969323029*1860498^(2/5) 2329991416277659 a001 267914296/370248451*1860498^(2/5) 2329991416277659 a001 102334155/141422324*1860498^(2/5) 2329991416277659 a001 102334155/3010349*4870847^(1/8) 2329991416277660 a001 39088169/54018521*1860498^(2/5) 2329991416277660 a001 1346269/20633239*12752043^(1/2) 2329991416277660 a001 1346269/10749957122*12752043^(15/17) 2329991416277661 a001 1346269/28143753123*12752043^(16/17) 2329991416277661 a004 Fibonacci(31)*Lucas(34)/(1/2+sqrt(5)/2)^52 2329991416277663 a001 14930352/20633239*1860498^(2/5) 2329991416277663 a001 5702887/3010349*4870847^(5/16) 2329991416277665 a001 39088169/3010349*4870847^(3/16) 2329991416277668 a001 1346269/7881196*7881196^(5/11) 2329991416277670 a001 14930352/3010349*4870847^(1/4) 2329991416277672 a001 3524578/3010349*7881196^(1/3) 2329991416277682 a001 1346269/12752043*4870847^(1/2) 2329991416277682 a001 1346269/7881196*20633239^(3/7) 2329991416277682 a001 5702887/7881196*1860498^(2/5) 2329991416277685 a001 1346269/7881196*141422324^(5/13) 2329991416277685 a001 1346269/7881196*2537720636^(1/3) 2329991416277685 a001 2372515049741/10182505537 2329991416277685 a001 1346269/7881196*45537549124^(5/17) 2329991416277685 a001 1346269/7881196*312119004989^(3/11) 2329991416277685 a001 3524578/3010349*312119004989^(1/5) 2329991416277685 a001 1346269/7881196*14662949395604^(5/21) 2329991416277685 a001 1346269/7881196*(1/2+1/2*5^(1/2))^15 2329991416277685 a001 3524578/3010349*(1/2+1/2*5^(1/2))^11 2329991416277685 a001 1346269/7881196*192900153618^(5/18) 2329991416277685 a001 1346269/7881196*28143753123^(3/10) 2329991416277685 a001 1346269/7881196*10749957122^(5/16) 2329991416277685 a001 3524578/3010349*1568397607^(1/4) 2329991416277685 a001 1346269/7881196*599074578^(5/14) 2329991416277685 a001 1346269/7881196*228826127^(3/8) 2329991416277685 a001 1346269/7881196*33385282^(5/12) 2329991416277692 a001 267914296/3010349*1860498^(1/15) 2329991416277695 a001 5702887/20633239*1860498^(7/15) 2329991416277696 a001 2178309/54018521*1860498^(3/5) 2329991416277700 a001 1346269/33385282*4870847^(9/16) 2329991416277703 a001 14930352/54018521*1860498^(7/15) 2329991416277704 a001 39088169/141422324*1860498^(7/15) 2329991416277704 a001 102334155/370248451*1860498^(7/15) 2329991416277704 a001 267914296/969323029*1860498^(7/15) 2329991416277704 a001 701408733/2537720636*1860498^(7/15) 2329991416277704 a001 1836311903/6643838879*1860498^(7/15) 2329991416277704 a001 4807526976/17393796001*1860498^(7/15) 2329991416277704 a001 12586269025/45537549124*1860498^(7/15) 2329991416277704 a001 32951280099/119218851371*1860498^(7/15) 2329991416277704 a001 86267571272/312119004989*1860498^(7/15) 2329991416277704 a001 225851433717/817138163596*1860498^(7/15) 2329991416277704 a001 1548008755920/5600748293801*1860498^(7/15) 2329991416277704 a001 139583862445/505019158607*1860498^(7/15) 2329991416277704 a001 53316291173/192900153618*1860498^(7/15) 2329991416277704 a001 20365011074/73681302247*1860498^(7/15) 2329991416277704 a001 7778742049/28143753123*1860498^(7/15) 2329991416277704 a001 2971215073/10749957122*1860498^(7/15) 2329991416277704 a001 1134903170/4106118243*1860498^(7/15) 2329991416277704 a001 433494437/1568397607*1860498^(7/15) 2329991416277704 a001 165580141/599074578*1860498^(7/15) 2329991416277704 a001 63245986/228826127*1860498^(7/15) 2329991416277705 a001 24157817/87403803*1860498^(7/15) 2329991416277705 a001 1134903170/12752043*710647^(1/14) 2329991416277706 a001 24157817/1860498*710647^(3/14) 2329991416277707 a001 9227465/33385282*1860498^(7/15) 2329991416277708 a001 1346269/87403803*4870847^(5/8) 2329991416277710 a001 5702887/33385282*1860498^(1/2) 2329991416277714 a001 165580141/3010349*1860498^(1/10) 2329991416277715 a001 1346269/228826127*4870847^(11/16) 2329991416277717 a001 2971215073/33385282*710647^(1/14) 2329991416277719 a001 7778742049/87403803*710647^(1/14) 2329991416277719 a001 20365011074/228826127*710647^(1/14) 2329991416277719 a001 53316291173/599074578*710647^(1/14) 2329991416277719 a001 139583862445/1568397607*710647^(1/14) 2329991416277719 a001 365435296162/4106118243*710647^(1/14) 2329991416277719 a001 956722026041/10749957122*710647^(1/14) 2329991416277719 a001 2504730781961/28143753123*710647^(1/14) 2329991416277719 a001 6557470319842/73681302247*710647^(1/14) 2329991416277719 a001 10610209857723/119218851371*710647^(1/14) 2329991416277719 a001 4052739537881/45537549124*710647^(1/14) 2329991416277719 a001 1548008755920/17393796001*710647^(1/14) 2329991416277719 a001 591286729879/6643838879*710647^(1/14) 2329991416277719 a001 225851433717/2537720636*710647^(1/14) 2329991416277719 a001 86267571272/969323029*710647^(1/14) 2329991416277719 a001 32951280099/370248451*710647^(1/14) 2329991416277720 a001 12586269025/141422324*710647^(1/14) 2329991416277720 a001 4807526976/54018521*710647^(1/14) 2329991416277721 a001 1346269/599074578*4870847^(3/4) 2329991416277724 a001 4976784/29134601*1860498^(1/2) 2329991416277725 a001 1836311903/20633239*710647^(1/14) 2329991416277726 a001 39088169/228826127*1860498^(1/2) 2329991416277726 a001 34111385/199691526*1860498^(1/2) 2329991416277726 a001 267914296/1568397607*1860498^(1/2) 2329991416277726 a001 233802911/1368706081*1860498^(1/2) 2329991416277726 a001 1836311903/10749957122*1860498^(1/2) 2329991416277726 a001 1602508992/9381251041*1860498^(1/2) 2329991416277726 a001 12586269025/73681302247*1860498^(1/2) 2329991416277726 a001 10983760033/64300051206*1860498^(1/2) 2329991416277726 a001 86267571272/505019158607*1860498^(1/2) 2329991416277726 a001 75283811239/440719107401*1860498^(1/2) 2329991416277726 a001 2504730781961/14662949395604*1860498^(1/2) 2329991416277726 a001 139583862445/817138163596*1860498^(1/2) 2329991416277726 a001 53316291173/312119004989*1860498^(1/2) 2329991416277726 a001 20365011074/119218851371*1860498^(1/2) 2329991416277726 a001 7778742049/45537549124*1860498^(1/2) 2329991416277726 a001 2971215073/17393796001*1860498^(1/2) 2329991416277726 a001 1134903170/6643838879*1860498^(1/2) 2329991416277726 a001 433494437/2537720636*1860498^(1/2) 2329991416277727 a001 165580141/969323029*1860498^(1/2) 2329991416277727 a001 63245986/370248451*1860498^(1/2) 2329991416277727 a001 1346269/1568397607*4870847^(13/16) 2329991416277727 a001 3524578/12752043*1860498^(7/15) 2329991416277727 a001 24157817/141422324*1860498^(1/2) 2329991416277733 a001 9227465/54018521*1860498^(1/2) 2329991416277733 a001 1346269/4106118243*4870847^(7/8) 2329991416277735 a001 5702887/54018521*1860498^(8/15) 2329991416277737 a001 102334155/3010349*1860498^(2/15) 2329991416277739 a001 1346269/10749957122*4870847^(15/16) 2329991416277741 a001 2178309/141422324*1860498^(2/3) 2329991416277745 a004 Fibonacci(31)*Lucas(32)/(1/2+sqrt(5)/2)^50 2329991416277747 a001 3732588/35355581*1860498^(8/15) 2329991416277749 a001 39088169/370248451*1860498^(8/15) 2329991416277749 a001 102334155/969323029*1860498^(8/15) 2329991416277749 a001 66978574/634430159*1860498^(8/15) 2329991416277749 a001 701408733/6643838879*1860498^(8/15) 2329991416277749 a001 1836311903/17393796001*1860498^(8/15) 2329991416277749 a001 1201881744/11384387281*1860498^(8/15) 2329991416277749 a001 12586269025/119218851371*1860498^(8/15) 2329991416277749 a001 32951280099/312119004989*1860498^(8/15) 2329991416277749 a001 21566892818/204284540899*1860498^(8/15) 2329991416277749 a001 225851433717/2139295485799*1860498^(8/15) 2329991416277749 a001 182717648081/1730726404001*1860498^(8/15) 2329991416277749 a001 139583862445/1322157322203*1860498^(8/15) 2329991416277749 a001 53316291173/505019158607*1860498^(8/15) 2329991416277749 a001 10182505537/96450076809*1860498^(8/15) 2329991416277749 a001 7778742049/73681302247*1860498^(8/15) 2329991416277749 a001 2971215073/28143753123*1860498^(8/15) 2329991416277749 a001 567451585/5374978561*1860498^(8/15) 2329991416277749 a001 433494437/4106118243*1860498^(8/15) 2329991416277749 a001 165580141/1568397607*1860498^(8/15) 2329991416277749 a001 31622993/299537289*1860498^(8/15) 2329991416277750 a001 24157817/228826127*1860498^(8/15) 2329991416277754 a001 9227465/87403803*1860498^(8/15) 2329991416277757 a001 3524667/39604*710647^(1/14) 2329991416277759 a001 63245986/3010349*1860498^(1/6) 2329991416277763 a001 46347/4868641*1860498^(7/10) 2329991416277769 a001 3524578/20633239*1860498^(1/2) 2329991416277780 a001 5702887/141422324*1860498^(3/5) 2329991416277781 a001 39088169/3010349*1860498^(1/5) 2329991416277784 a001 1762289/16692641*1860498^(8/15) 2329991416277785 a001 2178309/370248451*1860498^(11/15) 2329991416277792 a001 14930352/370248451*1860498^(3/5) 2329991416277794 a001 39088169/969323029*1860498^(3/5) 2329991416277794 a001 9303105/230701876*1860498^(3/5) 2329991416277794 a001 267914296/6643838879*1860498^(3/5) 2329991416277794 a001 701408733/17393796001*1860498^(3/5) 2329991416277794 a001 1836311903/45537549124*1860498^(3/5) 2329991416277794 a001 4807526976/119218851371*1860498^(3/5) 2329991416277794 a001 1144206275/28374454999*1860498^(3/5) 2329991416277794 a001 32951280099/817138163596*1860498^(3/5) 2329991416277794 a001 86267571272/2139295485799*1860498^(3/5) 2329991416277794 a001 225851433717/5600748293801*1860498^(3/5) 2329991416277794 a001 365435296162/9062201101803*1860498^(3/5) 2329991416277794 a001 139583862445/3461452808002*1860498^(3/5) 2329991416277794 a001 53316291173/1322157322203*1860498^(3/5) 2329991416277794 a001 20365011074/505019158607*1860498^(3/5) 2329991416277794 a001 7778742049/192900153618*1860498^(3/5) 2329991416277794 a001 2971215073/73681302247*1860498^(3/5) 2329991416277794 a001 1134903170/28143753123*1860498^(3/5) 2329991416277794 a001 433494437/10749957122*1860498^(3/5) 2329991416277794 a001 165580141/4106118243*1860498^(3/5) 2329991416277794 a001 63245986/1568397607*1860498^(3/5) 2329991416277795 a001 24157817/599074578*1860498^(3/5) 2329991416277799 a001 9227465/228826127*1860498^(3/5) 2329991416277810 a001 63245986/1149851*439204^(1/9) 2329991416277818 a001 2178309/3010349*1860498^(2/5) 2329991416277824 a001 5702887/370248451*1860498^(2/3) 2329991416277824 a001 14930352/3010349*1860498^(4/15) 2329991416277830 a001 2178309/969323029*1860498^(4/5) 2329991416277831 a001 3524578/87403803*1860498^(3/5) 2329991416277837 a001 14930352/969323029*1860498^(2/3) 2329991416277838 a001 39088169/2537720636*1860498^(2/3) 2329991416277839 a001 102334155/6643838879*1860498^(2/3) 2329991416277839 a001 9238424/599786069*1860498^(2/3) 2329991416277839 a001 701408733/45537549124*1860498^(2/3) 2329991416277839 a001 1836311903/119218851371*1860498^(2/3) 2329991416277839 a001 4807526976/312119004989*1860498^(2/3) 2329991416277839 a001 12586269025/817138163596*1860498^(2/3) 2329991416277839 a001 32951280099/2139295485799*1860498^(2/3) 2329991416277839 a001 86267571272/5600748293801*1860498^(2/3) 2329991416277839 a001 7787980473/505618944676*1860498^(2/3) 2329991416277839 a001 365435296162/23725150497407*1860498^(2/3) 2329991416277839 a001 139583862445/9062201101803*1860498^(2/3) 2329991416277839 a001 53316291173/3461452808002*1860498^(2/3) 2329991416277839 a001 20365011074/1322157322203*1860498^(2/3) 2329991416277839 a001 7778742049/505019158607*1860498^(2/3) 2329991416277839 a001 2971215073/192900153618*1860498^(2/3) 2329991416277839 a001 1134903170/73681302247*1860498^(2/3) 2329991416277839 a001 433494437/28143753123*1860498^(2/3) 2329991416277839 a001 165580141/10749957122*1860498^(2/3) 2329991416277839 a001 63245986/4106118243*1860498^(2/3) 2329991416277839 a001 24157817/1568397607*1860498^(2/3) 2329991416277844 a001 9227465/599074578*1860498^(2/3) 2329991416277847 a001 5702887/599074578*1860498^(7/10) 2329991416277853 a001 311187/224056801*1860498^(5/6) 2329991416277854 a001 9227465/3010349*1860498^(3/10) 2329991416277857 a001 5702887/3010349*1860498^(1/3) 2329991416277859 a001 14930352/1568397607*1860498^(7/10) 2329991416277861 a001 39088169/4106118243*1860498^(7/10) 2329991416277861 a001 102334155/10749957122*1860498^(7/10) 2329991416277861 a001 267914296/28143753123*1860498^(7/10) 2329991416277861 a001 701408733/73681302247*1860498^(7/10) 2329991416277861 a001 1836311903/192900153618*1860498^(7/10) 2329991416277861 a001 102287808/10745088481*1860498^(7/10) 2329991416277861 a001 12586269025/1322157322203*1860498^(7/10) 2329991416277861 a001 32951280099/3461452808002*1860498^(7/10) 2329991416277861 a001 86267571272/9062201101803*1860498^(7/10) 2329991416277861 a001 225851433717/23725150497407*1860498^(7/10) 2329991416277861 a001 139583862445/14662949395604*1860498^(7/10) 2329991416277861 a001 53316291173/5600748293801*1860498^(7/10) 2329991416277861 a001 20365011074/2139295485799*1860498^(7/10) 2329991416277861 a001 7778742049/817138163596*1860498^(7/10) 2329991416277861 a001 2971215073/312119004989*1860498^(7/10) 2329991416277861 a001 1134903170/119218851371*1860498^(7/10) 2329991416277861 a001 433494437/45537549124*1860498^(7/10) 2329991416277861 a001 165580141/17393796001*1860498^(7/10) 2329991416277861 a001 63245986/6643838879*1860498^(7/10) 2329991416277862 a001 24157817/2537720636*1860498^(7/10) 2329991416277863 a001 1346269/4870847*1860498^(7/15) 2329991416277867 a001 9227465/969323029*1860498^(7/10) 2329991416277868 a001 829464/103361*710647^(1/4) 2329991416277869 a001 5702887/969323029*1860498^(11/15) 2329991416277875 a001 2178309/2537720636*1860498^(13/15) 2329991416277876 a001 3524578/228826127*1860498^(2/3) 2329991416277881 a001 196452/33391061*1860498^(11/15) 2329991416277883 a001 39088169/6643838879*1860498^(11/15) 2329991416277884 a001 102334155/17393796001*1860498^(11/15) 2329991416277884 a001 66978574/11384387281*1860498^(11/15) 2329991416277884 a001 701408733/119218851371*1860498^(11/15) 2329991416277884 a001 1836311903/312119004989*1860498^(11/15) 2329991416277884 a001 1201881744/204284540899*1860498^(11/15) 2329991416277884 a001 12586269025/2139295485799*1860498^(11/15) 2329991416277884 a001 32951280099/5600748293801*1860498^(11/15) 2329991416277884 a001 1135099622/192933544679*1860498^(11/15) 2329991416277884 a001 139583862445/23725150497407*1860498^(11/15) 2329991416277884 a001 53316291173/9062201101803*1860498^(11/15) 2329991416277884 a001 10182505537/1730726404001*1860498^(11/15) 2329991416277884 a001 7778742049/1322157322203*1860498^(11/15) 2329991416277884 a001 2971215073/505019158607*1860498^(11/15) 2329991416277884 a001 567451585/96450076809*1860498^(11/15) 2329991416277884 a001 433494437/73681302247*1860498^(11/15) 2329991416277884 a001 165580141/28143753123*1860498^(11/15) 2329991416277884 a001 31622993/5374978561*1860498^(11/15) 2329991416277884 a001 24157817/4106118243*1860498^(11/15) 2329991416277889 a001 9227465/1568397607*1860498^(11/15) 2329991416277898 a001 726103/1368706081*1860498^(9/10) 2329991416277899 a001 3524578/370248451*1860498^(7/10) 2329991416277904 a001 1346269/3010349*141422324^(1/3) 2329991416277904 a001 1812440220361/7778742049 2329991416277904 a001 1346269/3010349*(1/2+1/2*5^(1/2))^13 2329991416277904 a001 1346269/3010349*73681302247^(1/4) 2329991416277914 a001 5702887/2537720636*1860498^(4/5) 2329991416277920 a001 2178309/6643838879*1860498^(14/15) 2329991416277921 a001 1762289/299537289*1860498^(11/15) 2329991416277926 a001 14930352/6643838879*1860498^(4/5) 2329991416277928 a001 39088169/17393796001*1860498^(4/5) 2329991416277928 a001 102334155/45537549124*1860498^(4/5) 2329991416277928 a001 267914296/119218851371*1860498^(4/5) 2329991416277928 a001 3524667/1568437211*1860498^(4/5) 2329991416277928 a001 1836311903/817138163596*1860498^(4/5) 2329991416277928 a001 4807526976/2139295485799*1860498^(4/5) 2329991416277928 a001 12586269025/5600748293801*1860498^(4/5) 2329991416277928 a001 32951280099/14662949395604*1860498^(4/5) 2329991416277928 a001 53316291173/23725150497407*1860498^(4/5) 2329991416277928 a001 20365011074/9062201101803*1860498^(4/5) 2329991416277928 a001 7778742049/3461452808002*1860498^(4/5) 2329991416277928 a001 2971215073/1322157322203*1860498^(4/5) 2329991416277928 a001 1134903170/505019158607*1860498^(4/5) 2329991416277928 a001 433494437/192900153618*1860498^(4/5) 2329991416277928 a001 165580141/73681302247*1860498^(4/5) 2329991416277929 a001 63245986/28143753123*1860498^(4/5) 2329991416277929 a001 24157817/10749957122*1860498^(4/5) 2329991416277934 a001 9227465/4106118243*1860498^(4/5) 2329991416277937 a001 5702887/4106118243*1860498^(5/6) 2329991416277949 a001 7465176/5374978561*1860498^(5/6) 2329991416277951 a001 39088169/28143753123*1860498^(5/6) 2329991416277951 a001 14619165/10525900321*1860498^(5/6) 2329991416277951 a001 165580141/4870847*710647^(1/7) 2329991416277951 a001 133957148/96450076809*1860498^(5/6) 2329991416277951 a001 701408733/505019158607*1860498^(5/6) 2329991416277951 a001 1836311903/1322157322203*1860498^(5/6) 2329991416277951 a001 14930208/10749853441*1860498^(5/6) 2329991416277951 a001 12586269025/9062201101803*1860498^(5/6) 2329991416277951 a001 32951280099/23725150497407*1860498^(5/6) 2329991416277951 a001 10182505537/7331474697802*1860498^(5/6) 2329991416277951 a001 7778742049/5600748293801*1860498^(5/6) 2329991416277951 a001 2971215073/2139295485799*1860498^(5/6) 2329991416277951 a001 567451585/408569081798*1860498^(5/6) 2329991416277951 a001 433494437/312119004989*1860498^(5/6) 2329991416277951 a001 165580141/119218851371*1860498^(5/6) 2329991416277951 a001 31622993/22768774562*1860498^(5/6) 2329991416277952 a001 24157817/17393796001*1860498^(5/6) 2329991416277956 a001 9227465/6643838879*1860498^(5/6) 2329991416277959 a001 5702887/6643838879*1860498^(13/15) 2329991416277965 a004 Fibonacci(32)*Lucas(30)/(1/2+sqrt(5)/2)^49 2329991416277966 a001 3524578/1568397607*1860498^(4/5) 2329991416277971 a001 14930352/17393796001*1860498^(13/15) 2329991416277973 a001 39088169/45537549124*1860498^(13/15) 2329991416277973 a001 102334155/119218851371*1860498^(13/15) 2329991416277973 a001 267914296/312119004989*1860498^(13/15) 2329991416277973 a001 701408733/817138163596*1860498^(13/15) 2329991416277973 a001 1836311903/2139295485799*1860498^(13/15) 2329991416277973 a001 4807526976/5600748293801*1860498^(13/15) 2329991416277973 a001 12586269025/14662949395604*1860498^(13/15) 2329991416277973 a001 20365011074/23725150497407*1860498^(13/15) 2329991416277973 a001 7778742049/9062201101803*1860498^(13/15) 2329991416277973 a001 2971215073/3461452808002*1860498^(13/15) 2329991416277973 a001 1134903170/1322157322203*1860498^(13/15) 2329991416277973 a001 433494437/505019158607*1860498^(13/15) 2329991416277973 a001 165580141/192900153618*1860498^(13/15) 2329991416277973 a001 63245986/73681302247*1860498^(13/15) 2329991416277974 a001 24157817/28143753123*1860498^(13/15) 2329991416277977 a001 267914296/3010349*710647^(1/14) 2329991416277979 a001 9227465/10749957122*1860498^(13/15) 2329991416277981 a001 5702887/10749957122*1860498^(9/10) 2329991416277988 a001 1762289/1268860318*1860498^(5/6) 2329991416277992 a001 1346269/12752043*1860498^(8/15) 2329991416277994 a001 4976784/9381251041*1860498^(9/10) 2329991416277995 a001 39088169/73681302247*1860498^(9/10) 2329991416277996 a001 34111385/64300051206*1860498^(9/10) 2329991416277996 a001 267914296/505019158607*1860498^(9/10) 2329991416277996 a001 233802911/440719107401*1860498^(9/10) 2329991416277996 a001 1836311903/3461452808002*1860498^(9/10) 2329991416277996 a001 1602508992/3020733700601*1860498^(9/10) 2329991416277996 a001 12586269025/23725150497407*1860498^(9/10) 2329991416277996 a001 7778742049/14662949395604*1860498^(9/10) 2329991416277996 a001 2971215073/5600748293801*1860498^(9/10) 2329991416277996 a001 1134903170/2139295485799*1860498^(9/10) 2329991416277996 a001 433494437/817138163596*1860498^(9/10) 2329991416277996 a001 165580141/312119004989*1860498^(9/10) 2329991416277996 a001 63245986/119218851371*1860498^(9/10) 2329991416277997 a001 24157817/45537549124*1860498^(9/10) 2329991416278001 a001 9227465/17393796001*1860498^(9/10) 2329991416278004 a001 5702887/17393796001*1860498^(14/15) 2329991416278011 a001 3524578/4106118243*1860498^(13/15) 2329991416278016 a001 3732588/11384387281*1860498^(14/15) 2329991416278018 a001 39088169/119218851371*1860498^(14/15) 2329991416278018 a001 9303105/28374454999*1860498^(14/15) 2329991416278018 a001 66978574/204284540899*1860498^(14/15) 2329991416278018 a001 701408733/2139295485799*1860498^(14/15) 2329991416278018 a001 1836311903/5600748293801*1860498^(14/15) 2329991416278018 a001 1201881744/3665737348901*1860498^(14/15) 2329991416278018 a001 7778742049/23725150497407*1860498^(14/15) 2329991416278018 a001 2971215073/9062201101803*1860498^(14/15) 2329991416278018 a001 567451585/1730726404001*1860498^(14/15) 2329991416278018 a001 433494437/1322157322203*1860498^(14/15) 2329991416278018 a001 165580141/505019158607*1860498^(14/15) 2329991416278018 a001 31622993/96450076809*1860498^(14/15) 2329991416278019 a001 24157817/73681302247*1860498^(14/15) 2329991416278021 a001 1346269/7881196*1860498^(1/2) 2329991416278024 a001 9227465/28143753123*1860498^(14/15) 2329991416278033 a001 3524578/6643838879*1860498^(9/10) 2329991416278035 a001 433494437/12752043*710647^(1/7) 2329991416278040 a001 9227465/1860498*710647^(2/7) 2329991416278047 a001 567451585/16692641*710647^(1/7) 2329991416278049 a001 2971215073/87403803*710647^(1/7) 2329991416278049 a004 Fibonacci(34)*Lucas(30)/(1/2+sqrt(5)/2)^51 2329991416278049 a001 1346269/33385282*1860498^(3/5) 2329991416278049 a001 7778742049/228826127*710647^(1/7) 2329991416278049 a001 10182505537/299537289*710647^(1/7) 2329991416278049 a001 53316291173/1568397607*710647^(1/7) 2329991416278049 a001 139583862445/4106118243*710647^(1/7) 2329991416278049 a001 182717648081/5374978561*710647^(1/7) 2329991416278049 a001 956722026041/28143753123*710647^(1/7) 2329991416278049 a001 2504730781961/73681302247*710647^(1/7) 2329991416278049 a001 3278735159921/96450076809*710647^(1/7) 2329991416278049 a001 10610209857723/312119004989*710647^(1/7) 2329991416278049 a001 4052739537881/119218851371*710647^(1/7) 2329991416278049 a001 387002188980/11384387281*710647^(1/7) 2329991416278049 a001 591286729879/17393796001*710647^(1/7) 2329991416278049 a001 225851433717/6643838879*710647^(1/7) 2329991416278049 a001 1135099622/33391061*710647^(1/7) 2329991416278049 a001 32951280099/969323029*710647^(1/7) 2329991416278049 a001 12586269025/370248451*710647^(1/7) 2329991416278049 a001 1201881744/35355581*710647^(1/7) 2329991416278050 a001 1836311903/54018521*710647^(1/7) 2329991416278054 a001 701408733/20633239*710647^(1/7) 2329991416278056 a001 1762289/5374978561*1860498^(14/15) 2329991416278061 a004 Fibonacci(36)*Lucas(30)/(1/2+sqrt(5)/2)^53 2329991416278063 a004 Fibonacci(38)*Lucas(30)/(1/2+sqrt(5)/2)^55 2329991416278063 a004 Fibonacci(40)*Lucas(30)/(1/2+sqrt(5)/2)^57 2329991416278063 a004 Fibonacci(42)*Lucas(30)/(1/2+sqrt(5)/2)^59 2329991416278063 a004 Fibonacci(44)*Lucas(30)/(1/2+sqrt(5)/2)^61 2329991416278063 a004 Fibonacci(46)*Lucas(30)/(1/2+sqrt(5)/2)^63 2329991416278063 a004 Fibonacci(48)*Lucas(30)/(1/2+sqrt(5)/2)^65 2329991416278063 a004 Fibonacci(50)*Lucas(30)/(1/2+sqrt(5)/2)^67 2329991416278063 a004 Fibonacci(52)*Lucas(30)/(1/2+sqrt(5)/2)^69 2329991416278063 a004 Fibonacci(54)*Lucas(30)/(1/2+sqrt(5)/2)^71 2329991416278063 a004 Fibonacci(56)*Lucas(30)/(1/2+sqrt(5)/2)^73 2329991416278063 a004 Fibonacci(58)*Lucas(30)/(1/2+sqrt(5)/2)^75 2329991416278063 a004 Fibonacci(60)*Lucas(30)/(1/2+sqrt(5)/2)^77 2329991416278063 a004 Fibonacci(62)*Lucas(30)/(1/2+sqrt(5)/2)^79 2329991416278063 a004 Fibonacci(64)*Lucas(30)/(1/2+sqrt(5)/2)^81 2329991416278063 a004 Fibonacci(66)*Lucas(30)/(1/2+sqrt(5)/2)^83 2329991416278063 a004 Fibonacci(68)*Lucas(30)/(1/2+sqrt(5)/2)^85 2329991416278063 a004 Fibonacci(70)*Lucas(30)/(1/2+sqrt(5)/2)^87 2329991416278063 a004 Fibonacci(72)*Lucas(30)/(1/2+sqrt(5)/2)^89 2329991416278063 a004 Fibonacci(74)*Lucas(30)/(1/2+sqrt(5)/2)^91 2329991416278063 a004 Fibonacci(76)*Lucas(30)/(1/2+sqrt(5)/2)^93 2329991416278063 a004 Fibonacci(78)*Lucas(30)/(1/2+sqrt(5)/2)^95 2329991416278063 a004 Fibonacci(80)*Lucas(30)/(1/2+sqrt(5)/2)^97 2329991416278063 a004 Fibonacci(82)*Lucas(30)/(1/2+sqrt(5)/2)^99 2329991416278063 a004 Fibonacci(83)*Lucas(30)/(1/2+sqrt(5)/2)^100 2329991416278063 a004 Fibonacci(81)*Lucas(30)/(1/2+sqrt(5)/2)^98 2329991416278063 a004 Fibonacci(79)*Lucas(30)/(1/2+sqrt(5)/2)^96 2329991416278063 a004 Fibonacci(77)*Lucas(30)/(1/2+sqrt(5)/2)^94 2329991416278063 a004 Fibonacci(75)*Lucas(30)/(1/2+sqrt(5)/2)^92 2329991416278063 a004 Fibonacci(73)*Lucas(30)/(1/2+sqrt(5)/2)^90 2329991416278063 a004 Fibonacci(71)*Lucas(30)/(1/2+sqrt(5)/2)^88 2329991416278063 a004 Fibonacci(69)*Lucas(30)/(1/2+sqrt(5)/2)^86 2329991416278063 a004 Fibonacci(67)*Lucas(30)/(1/2+sqrt(5)/2)^84 2329991416278063 a004 Fibonacci(65)*Lucas(30)/(1/2+sqrt(5)/2)^82 2329991416278063 a004 Fibonacci(63)*Lucas(30)/(1/2+sqrt(5)/2)^80 2329991416278063 a004 Fibonacci(61)*Lucas(30)/(1/2+sqrt(5)/2)^78 2329991416278063 a001 1/416020*(1/2+1/2*5^(1/2))^43 2329991416278063 a004 Fibonacci(59)*Lucas(30)/(1/2+sqrt(5)/2)^76 2329991416278063 a004 Fibonacci(57)*Lucas(30)/(1/2+sqrt(5)/2)^74 2329991416278063 a004 Fibonacci(55)*Lucas(30)/(1/2+sqrt(5)/2)^72 2329991416278063 a004 Fibonacci(53)*Lucas(30)/(1/2+sqrt(5)/2)^70 2329991416278063 a004 Fibonacci(51)*Lucas(30)/(1/2+sqrt(5)/2)^68 2329991416278063 a004 Fibonacci(49)*Lucas(30)/(1/2+sqrt(5)/2)^66 2329991416278063 a004 Fibonacci(47)*Lucas(30)/(1/2+sqrt(5)/2)^64 2329991416278063 a004 Fibonacci(45)*Lucas(30)/(1/2+sqrt(5)/2)^62 2329991416278063 a004 Fibonacci(43)*Lucas(30)/(1/2+sqrt(5)/2)^60 2329991416278063 a004 Fibonacci(41)*Lucas(30)/(1/2+sqrt(5)/2)^58 2329991416278063 a004 Fibonacci(39)*Lucas(30)/(1/2+sqrt(5)/2)^56 2329991416278064 a004 Fibonacci(37)*Lucas(30)/(1/2+sqrt(5)/2)^54 2329991416278069 a004 Fibonacci(35)*Lucas(30)/(1/2+sqrt(5)/2)^52 2329991416278087 a001 66978574/1970299*710647^(1/7) 2329991416278095 a001 1346269/87403803*1860498^(2/3) 2329991416278101 a004 Fibonacci(33)*Lucas(30)/(1/2+sqrt(5)/2)^50 2329991416278118 a001 1346269/141422324*1860498^(7/10) 2329991416278141 a001 1346269/228826127*1860498^(11/15) 2329991416278186 a001 1346269/599074578*1860498^(4/5) 2329991416278208 a001 1346269/969323029*1860498^(5/6) 2329991416278230 a001 1346269/1568397607*1860498^(13/15) 2329991416278253 a001 1346269/2537720636*1860498^(9/10) 2329991416278275 a001 1346269/4106118243*1860498^(14/15) 2329991416278280 a001 63245986/4870847*710647^(3/14) 2329991416278306 a001 102334155/3010349*710647^(1/7) 2329991416278320 a004 Fibonacci(31)*Lucas(30)/(1/2+sqrt(5)/2)^48 2329991416278364 a001 165580141/12752043*710647^(3/14) 2329991416278376 a001 433494437/33385282*710647^(3/14) 2329991416278378 a001 1134903170/87403803*710647^(3/14) 2329991416278379 a001 2971215073/228826127*710647^(3/14) 2329991416278379 a001 7778742049/599074578*710647^(3/14) 2329991416278379 a001 20365011074/1568397607*710647^(3/14) 2329991416278379 a001 53316291173/4106118243*710647^(3/14) 2329991416278379 a001 139583862445/10749957122*710647^(3/14) 2329991416278379 a001 365435296162/28143753123*710647^(3/14) 2329991416278379 a001 956722026041/73681302247*710647^(3/14) 2329991416278379 a001 2504730781961/192900153618*710647^(3/14) 2329991416278379 a001 10610209857723/817138163596*710647^(3/14) 2329991416278379 a001 4052739537881/312119004989*710647^(3/14) 2329991416278379 a001 1548008755920/119218851371*710647^(3/14) 2329991416278379 a001 591286729879/45537549124*710647^(3/14) 2329991416278379 a001 7787980473/599786069*710647^(3/14) 2329991416278379 a001 86267571272/6643838879*710647^(3/14) 2329991416278379 a001 32951280099/2537720636*710647^(3/14) 2329991416278379 a001 12586269025/969323029*710647^(3/14) 2329991416278379 a001 4807526976/370248451*710647^(3/14) 2329991416278379 a001 1836311903/141422324*710647^(3/14) 2329991416278379 a001 701408733/54018521*710647^(3/14) 2329991416278384 a001 9238424/711491*710647^(3/14) 2329991416278402 a001 1762289/930249*710647^(5/14) 2329991416278416 a001 102334155/7881196*710647^(3/14) 2329991416278445 a001 39088169/4870847*710647^(1/4) 2329991416278465 a001 832040/1149851*7881196^(4/11) 2329991416278477 a001 514229/1860498*20633239^(2/5) 2329991416278479 a001 832040/1149851*141422324^(4/13) 2329991416278479 a001 832040/1149851*2537720636^(4/15) 2329991416278479 a001 514229/1860498*17393796001^(2/7) 2329991416278479 a001 832040/1149851*45537549124^(4/17) 2329991416278479 a001 514229/1860498*14662949395604^(2/9) 2329991416278479 a001 514229/1860498*(1/2+1/2*5^(1/2))^14 2329991416278479 a001 832040/1149851*(1/2+1/2*5^(1/2))^12 2329991416278479 a001 514229/1860498*505019158607^(1/4) 2329991416278479 a001 832040/1149851*192900153618^(2/9) 2329991416278479 a001 832040/1149851*73681302247^(3/13) 2329991416278479 a001 832040/1149851*10749957122^(1/4) 2329991416278479 a001 514229/1860498*10749957122^(7/24) 2329991416278479 a001 832040/1149851*4106118243^(6/23) 2329991416278479 a001 514229/1860498*4106118243^(7/23) 2329991416278479 a001 427859097160/1836311903 2329991416278479 a001 832040/1149851*1568397607^(3/11) 2329991416278479 a001 514229/1860498*1568397607^(7/22) 2329991416278479 a001 832040/1149851*599074578^(2/7) 2329991416278479 a001 514229/1860498*599074578^(1/3) 2329991416278479 a001 832040/1149851*228826127^(3/10) 2329991416278479 a001 514229/1860498*228826127^(7/20) 2329991416278479 a001 832040/1149851*87403803^(6/19) 2329991416278479 a001 514229/1860498*87403803^(7/19) 2329991416278480 a001 832040/1149851*33385282^(1/3) 2329991416278480 a001 514229/1860498*33385282^(7/18) 2329991416278484 a001 832040/1149851*12752043^(6/17) 2329991416278485 a001 514229/1860498*12752043^(7/17) 2329991416278516 a001 832040/1149851*4870847^(3/8) 2329991416278522 a001 514229/1860498*4870847^(7/16) 2329991416278529 a001 34111385/4250681*710647^(1/4) 2329991416278541 a001 133957148/16692641*710647^(1/4) 2329991416278543 a001 233802911/29134601*710647^(1/4) 2329991416278543 a001 1836311903/228826127*710647^(1/4) 2329991416278543 a001 267084832/33281921*710647^(1/4) 2329991416278543 a001 12586269025/1568397607*710647^(1/4) 2329991416278543 a001 10983760033/1368706081*710647^(1/4) 2329991416278543 a001 43133785636/5374978561*710647^(1/4) 2329991416278543 a001 75283811239/9381251041*710647^(1/4) 2329991416278543 a001 591286729879/73681302247*710647^(1/4) 2329991416278543 a001 86000486440/10716675201*710647^(1/4) 2329991416278543 a001 4052739537881/505019158607*710647^(1/4) 2329991416278543 a001 3278735159921/408569081798*710647^(1/4) 2329991416278543 a001 2504730781961/312119004989*710647^(1/4) 2329991416278543 a001 956722026041/119218851371*710647^(1/4) 2329991416278543 a001 182717648081/22768774562*710647^(1/4) 2329991416278543 a001 139583862445/17393796001*710647^(1/4) 2329991416278543 a001 53316291173/6643838879*710647^(1/4) 2329991416278543 a001 10182505537/1268860318*710647^(1/4) 2329991416278543 a001 7778742049/969323029*710647^(1/4) 2329991416278543 a001 2971215073/370248451*710647^(1/4) 2329991416278543 a001 567451585/70711162*710647^(1/4) 2329991416278544 a001 433494437/54018521*710647^(1/4) 2329991416278549 a001 165580141/20633239*710647^(1/4) 2329991416278581 a001 31622993/3940598*710647^(1/4) 2329991416278611 a001 24157817/4870847*710647^(2/7) 2329991416278635 a001 39088169/3010349*710647^(3/14) 2329991416278694 a001 63245986/12752043*710647^(2/7) 2329991416278706 a001 165580141/33385282*710647^(2/7) 2329991416278708 a001 433494437/87403803*710647^(2/7) 2329991416278708 a001 1134903170/228826127*710647^(2/7) 2329991416278708 a001 2971215073/599074578*710647^(2/7) 2329991416278708 a001 7778742049/1568397607*710647^(2/7) 2329991416278708 a001 20365011074/4106118243*710647^(2/7) 2329991416278708 a001 53316291173/10749957122*710647^(2/7) 2329991416278708 a001 139583862445/28143753123*710647^(2/7) 2329991416278708 a001 365435296162/73681302247*710647^(2/7) 2329991416278708 a001 956722026041/192900153618*710647^(2/7) 2329991416278708 a001 2504730781961/505019158607*710647^(2/7) 2329991416278708 a001 10610209857723/2139295485799*710647^(2/7) 2329991416278708 a001 4052739537881/817138163596*710647^(2/7) 2329991416278708 a001 140728068720/28374454999*710647^(2/7) 2329991416278708 a001 591286729879/119218851371*710647^(2/7) 2329991416278708 a001 225851433717/45537549124*710647^(2/7) 2329991416278708 a001 86267571272/17393796001*710647^(2/7) 2329991416278708 a001 32951280099/6643838879*710647^(2/7) 2329991416278708 a001 1144206275/230701876*710647^(2/7) 2329991416278708 a001 4807526976/969323029*710647^(2/7) 2329991416278708 a001 1836311903/370248451*710647^(2/7) 2329991416278708 a001 701408733/141422324*710647^(2/7) 2329991416278709 a001 267914296/54018521*710647^(2/7) 2329991416278714 a001 9303105/1875749*710647^(2/7) 2329991416278732 a001 196418/87403803*439204^(8/9) 2329991416278745 a001 39088169/7881196*710647^(2/7) 2329991416278748 a001 832040/1149851*1860498^(2/5) 2329991416278793 a001 514229/1860498*1860498^(7/15) 2329991416278801 a001 24157817/3010349*710647^(1/4) 2329991416278895 a004 Fibonacci(29)*Lucas(31)/(1/2+sqrt(5)/2)^47 2329991416278945 a001 9227465/4870847*710647^(5/14) 2329991416278951 a001 1346269/1860498*710647^(3/7) 2329991416278963 a001 14930352/3010349*710647^(2/7) 2329991416279024 a001 24157817/12752043*710647^(5/14) 2329991416279036 a001 31622993/16692641*710647^(5/14) 2329991416279037 a001 165580141/87403803*710647^(5/14) 2329991416279038 a001 433494437/228826127*710647^(5/14) 2329991416279038 a001 567451585/299537289*710647^(5/14) 2329991416279038 a001 2971215073/1568397607*710647^(5/14) 2329991416279038 a001 7778742049/4106118243*710647^(5/14) 2329991416279038 a001 10182505537/5374978561*710647^(5/14) 2329991416279038 a001 53316291173/28143753123*710647^(5/14) 2329991416279038 a001 139583862445/73681302247*710647^(5/14) 2329991416279038 a001 182717648081/96450076809*710647^(5/14) 2329991416279038 a001 956722026041/505019158607*710647^(5/14) 2329991416279038 a001 10610209857723/5600748293801*710647^(5/14) 2329991416279038 a001 591286729879/312119004989*710647^(5/14) 2329991416279038 a001 225851433717/119218851371*710647^(5/14) 2329991416279038 a001 21566892818/11384387281*710647^(5/14) 2329991416279038 a001 32951280099/17393796001*710647^(5/14) 2329991416279038 a001 12586269025/6643838879*710647^(5/14) 2329991416279038 a001 1201881744/634430159*710647^(5/14) 2329991416279038 a001 1836311903/969323029*710647^(5/14) 2329991416279038 a001 701408733/370248451*710647^(5/14) 2329991416279038 a001 66978574/35355581*710647^(5/14) 2329991416279038 a001 102334155/54018521*710647^(5/14) 2329991416279043 a001 39088169/20633239*710647^(5/14) 2329991416279052 a001 2178309/1149851*20633239^(2/7) 2329991416279054 a001 2178309/1149851*2537720636^(2/9) 2329991416279054 a001 2178309/1149851*312119004989^(2/11) 2329991416279054 a001 514229/4870847*(1/2+1/2*5^(1/2))^16 2329991416279054 a001 2178309/1149851*(1/2+1/2*5^(1/2))^10 2329991416279054 a001 514229/4870847*73681302247^(4/13) 2329991416279054 a001 2178309/1149851*28143753123^(1/5) 2329991416279054 a001 2178309/1149851*10749957122^(5/24) 2329991416279054 a001 514229/4870847*10749957122^(1/3) 2329991416279054 a001 1134903403/4870848 2329991416279054 a001 2178309/1149851*4106118243^(5/23) 2329991416279054 a001 514229/4870847*4106118243^(8/23) 2329991416279054 a001 2178309/1149851*1568397607^(5/22) 2329991416279054 a001 514229/4870847*1568397607^(4/11) 2329991416279054 a001 2178309/1149851*599074578^(5/21) 2329991416279054 a001 514229/4870847*599074578^(8/21) 2329991416279054 a001 2178309/1149851*228826127^(1/4) 2329991416279054 a001 514229/4870847*228826127^(2/5) 2329991416279054 a001 2178309/1149851*87403803^(5/19) 2329991416279054 a001 514229/4870847*87403803^(8/19) 2329991416279055 a001 2178309/1149851*33385282^(5/18) 2329991416279055 a001 514229/4870847*33385282^(4/9) 2329991416279058 a001 2178309/1149851*12752043^(5/17) 2329991416279061 a001 514229/4870847*12752043^(8/17) 2329991416279073 a001 3732588/1970299*710647^(5/14) 2329991416279085 a001 2178309/1149851*4870847^(5/16) 2329991416279103 a001 514229/4870847*4870847^(1/2) 2329991416279115 a004 Fibonacci(29)*Lucas(33)/(1/2+sqrt(5)/2)^49 2329991416279117 a001 514229/12752043*7881196^(6/11) 2329991416279118 a001 514229/4106118243*7881196^(10/11) 2329991416279122 a001 514229/969323029*7881196^(9/11) 2329991416279125 a001 514229/228826127*7881196^(8/11) 2329991416279127 a001 514229/87403803*7881196^(2/3) 2329991416279129 a001 514229/54018521*7881196^(7/11) 2329991416279138 a001 514229/12752043*141422324^(6/13) 2329991416279138 a001 514229/12752043*2537720636^(2/5) 2329991416279138 a001 514229/12752043*45537549124^(6/17) 2329991416279138 a001 514229/12752043*14662949395604^(2/7) 2329991416279138 a001 514229/12752043*(1/2+1/2*5^(1/2))^18 2329991416279138 a001 5702887/1149851*(1/2+1/2*5^(1/2))^8 2329991416279138 a001 5702887/1149851*23725150497407^(1/8) 2329991416279138 a001 514229/12752043*192900153618^(1/3) 2329991416279138 a001 5702887/1149851*73681302247^(2/13) 2329991416279138 a001 2932589879123/12586269025 2329991416279138 a001 5702887/1149851*10749957122^(1/6) 2329991416279138 a001 514229/12752043*10749957122^(3/8) 2329991416279138 a001 5702887/1149851*4106118243^(4/23) 2329991416279138 a001 514229/12752043*4106118243^(9/23) 2329991416279138 a001 5702887/1149851*1568397607^(2/11) 2329991416279138 a001 514229/12752043*1568397607^(9/22) 2329991416279138 a001 5702887/1149851*599074578^(4/21) 2329991416279138 a001 514229/12752043*599074578^(3/7) 2329991416279138 a001 5702887/1149851*228826127^(1/5) 2329991416279138 a001 514229/12752043*228826127^(9/20) 2329991416279138 a001 5702887/1149851*87403803^(4/19) 2329991416279138 a001 514229/12752043*87403803^(9/19) 2329991416279138 a001 5702887/1149851*33385282^(2/9) 2329991416279139 a001 514229/12752043*33385282^(1/2) 2329991416279141 a001 5702887/1149851*12752043^(4/17) 2329991416279143 a001 14930352/1149851*7881196^(2/11) 2329991416279145 a001 514229/12752043*12752043^(9/17) 2329991416279147 a004 Fibonacci(29)*Lucas(35)/(1/2+sqrt(5)/2)^51 2329991416279147 a001 514229/33385282*20633239^(4/7) 2329991416279148 a001 514229/4106118243*20633239^(6/7) 2329991416279148 a001 514229/1568397607*20633239^(4/5) 2329991416279148 a001 514229/370248451*20633239^(5/7) 2329991416279149 a001 63245986/1149851*7881196^(1/11) 2329991416279149 a001 165580141/1860498*271443^(1/13) 2329991416279150 a001 514229/54018521*20633239^(3/5) 2329991416279150 a001 14930352/1149851*141422324^(2/13) 2329991416279150 a001 514229/33385282*2537720636^(4/9) 2329991416279150 a001 14930352/1149851*2537720636^(2/15) 2329991416279150 a001 14930352/1149851*45537549124^(2/17) 2329991416279150 a001 514229/33385282*(1/2+1/2*5^(1/2))^20 2329991416279150 a001 514229/33385282*23725150497407^(5/16) 2329991416279150 a001 14930352/1149851*14662949395604^(2/21) 2329991416279150 a001 14930352/1149851*(1/2+1/2*5^(1/2))^6 2329991416279150 a001 514229/33385282*505019158607^(5/14) 2329991416279150 a001 514229/33385282*73681302247^(5/13) 2329991416279150 a001 2559206659536/10983760033 2329991416279150 a001 514229/33385282*28143753123^(2/5) 2329991416279150 a001 14930352/1149851*10749957122^(1/8) 2329991416279150 a001 514229/33385282*10749957122^(5/12) 2329991416279150 a001 14930352/1149851*4106118243^(3/23) 2329991416279150 a001 514229/33385282*4106118243^(10/23) 2329991416279150 a001 14930352/1149851*1568397607^(3/22) 2329991416279150 a001 514229/33385282*1568397607^(5/11) 2329991416279150 a001 14930352/1149851*599074578^(1/7) 2329991416279150 a001 514229/33385282*599074578^(10/21) 2329991416279150 a001 14930352/1149851*228826127^(3/20) 2329991416279150 a001 514229/33385282*228826127^(1/2) 2329991416279150 a001 14930352/1149851*87403803^(3/19) 2329991416279150 a001 514229/33385282*87403803^(10/19) 2329991416279150 a001 14930352/1149851*33385282^(1/6) 2329991416279151 a001 514229/33385282*33385282^(5/9) 2329991416279151 a004 Fibonacci(29)*Lucas(37)/(1/2+sqrt(5)/2)^53 2329991416279152 a001 514229/87403803*312119004989^(2/5) 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^22/Lucas(38) 2329991416279152 a001 39088169/1149851*(1/2+1/2*5^(1/2))^4 2329991416279152 a001 39088169/1149851*23725150497407^(1/16) 2329991416279152 a001 39088169/1149851*73681302247^(1/13) 2329991416279152 a001 20100270056701/86267571272 2329991416279152 a001 39088169/1149851*10749957122^(1/12) 2329991416279152 a001 514229/87403803*10749957122^(11/24) 2329991416279152 a001 39088169/1149851*4106118243^(2/23) 2329991416279152 a001 514229/87403803*4106118243^(11/23) 2329991416279152 a001 39088169/1149851*1568397607^(1/11) 2329991416279152 a001 514229/87403803*1568397607^(1/2) 2329991416279152 a001 39088169/1149851*599074578^(2/21) 2329991416279152 a001 514229/87403803*599074578^(11/21) 2329991416279152 a001 39088169/1149851*228826127^(1/10) 2329991416279152 a001 514229/87403803*228826127^(11/20) 2329991416279152 a001 39088169/1149851*87403803^(2/19) 2329991416279152 a001 514229/87403803*87403803^(11/19) 2329991416279152 a004 Fibonacci(29)*Lucas(39)/(1/2+sqrt(5)/2)^55 2329991416279152 a001 514229/228826127*141422324^(8/13) 2329991416279152 a001 514229/73681302247*141422324^(12/13) 2329991416279152 a001 514229/17393796001*141422324^(11/13) 2329991416279152 a001 514229/4106118243*141422324^(10/13) 2329991416279152 a001 514229/599074578*141422324^(2/3) 2329991416279152 a001 514229/969323029*141422324^(9/13) 2329991416279152 a001 39088169/1149851*33385282^(1/9) 2329991416279152 a001 514229/228826127*2537720636^(8/15) 2329991416279152 a001 514229/228826127*45537549124^(8/17) 2329991416279152 a001 514229/228826127*14662949395604^(8/21) 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^24/Lucas(40) 2329991416279152 a001 102334155/1149851*(1/2+1/2*5^(1/2))^2 2329991416279152 a001 2505866199595/10754830177 2329991416279152 a001 514229/228826127*192900153618^(4/9) 2329991416279152 a001 514229/228826127*73681302247^(6/13) 2329991416279152 a001 102334155/1149851*10749957122^(1/24) 2329991416279152 a001 102334155/1149851*4106118243^(1/23) 2329991416279152 a001 514229/228826127*10749957122^(1/2) 2329991416279152 a001 102334155/1149851*1568397607^(1/22) 2329991416279152 a001 514229/228826127*4106118243^(12/23) 2329991416279152 a001 102334155/1149851*599074578^(1/21) 2329991416279152 a001 514229/228826127*1568397607^(6/11) 2329991416279152 a001 102334155/1149851*228826127^(1/20) 2329991416279152 a001 514229/228826127*599074578^(4/7) 2329991416279152 a001 102334155/1149851*87403803^(1/19) 2329991416279152 a001 514229/228826127*228826127^(3/5) 2329991416279152 a004 Fibonacci(29)*Lucas(41)/(1/2+sqrt(5)/2)^57 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^26/Lucas(42) 2329991416279152 a001 267914296/1149851 2329991416279152 a001 514229/599074578*73681302247^(1/2) 2329991416279152 a001 514229/599074578*10749957122^(13/24) 2329991416279152 a001 514229/599074578*4106118243^(13/23) 2329991416279152 a001 514229/599074578*1568397607^(13/22) 2329991416279152 a004 Fibonacci(29)*Lucas(43)/(1/2+sqrt(5)/2)^59 2329991416279152 a001 514229/599074578*599074578^(13/21) 2329991416279152 a001 514229/1568397607*17393796001^(4/7) 2329991416279152 a001 514229/1568397607*14662949395604^(4/9) 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^28/Lucas(44) 2329991416279152 a001 120228237120619/516002918640 2329991416279152 a004 Fibonacci(44)/Lucas(29)/(1/2+sqrt(5)/2)^2 2329991416279152 a001 514229/1568397607*73681302247^(7/13) 2329991416279152 a001 514229/1568397607*10749957122^(7/12) 2329991416279152 a001 514229/1568397607*4106118243^(14/23) 2329991416279152 a001 514229/4106118243*2537720636^(2/3) 2329991416279152 a004 Fibonacci(29)*Lucas(45)/(1/2+sqrt(5)/2)^61 2329991416279152 a001 514229/1568397607*1568397607^(7/11) 2329991416279152 a001 514229/1322157322203*2537720636^(14/15) 2329991416279152 a001 514229/505019158607*2537720636^(8/9) 2329991416279152 a001 514229/312119004989*2537720636^(13/15) 2329991416279152 a001 514229/73681302247*2537720636^(4/5) 2329991416279152 a001 514229/45537549124*2537720636^(7/9) 2329991416279152 a001 514229/17393796001*2537720636^(11/15) 2329991416279152 a001 514229/4106118243*45537549124^(10/17) 2329991416279152 a001 514229/4106118243*312119004989^(6/11) 2329991416279152 a001 514229/4106118243*14662949395604^(10/21) 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^30/Lucas(46) 2329991416279152 a001 944284833567787/4052739537881 2329991416279152 a004 Fibonacci(46)/Lucas(29)/(1/2+sqrt(5)/2)^4 2329991416279152 a001 514229/4106118243*192900153618^(5/9) 2329991416279152 a001 514229/4106118243*28143753123^(3/5) 2329991416279152 a001 514229/4106118243*10749957122^(5/8) 2329991416279152 a004 Fibonacci(29)*Lucas(47)/(1/2+sqrt(5)/2)^63 2329991416279152 a001 514229/4106118243*4106118243^(15/23) 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^32/Lucas(48) 2329991416279152 a001 2504731296192/10749959329 2329991416279152 a004 Fibonacci(48)/Lucas(29)/(1/2+sqrt(5)/2)^6 2329991416279152 a001 514229/10749957122*505019158607^(4/7) 2329991416279152 a001 514229/10749957122*73681302247^(8/13) 2329991416279152 a004 Fibonacci(29)*Lucas(49)/(1/2+sqrt(5)/2)^65 2329991416279152 a001 514229/10749957122*10749957122^(2/3) 2329991416279152 a001 514229/1322157322203*17393796001^(6/7) 2329991416279152 a001 514229/45537549124*17393796001^(5/7) 2329991416279152 a001 514229/28143753123*45537549124^(2/3) 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^34/Lucas(50) 2329991416279152 a004 Fibonacci(50)/Lucas(29)/(1/2+sqrt(5)/2)^8 2329991416279152 a001 514229/73681302247*45537549124^(12/17) 2329991416279152 a004 Fibonacci(29)*Lucas(51)/(1/2+sqrt(5)/2)^67 2329991416279152 a001 514229/23725150497407*45537549124^(16/17) 2329991416279152 a001 514229/5600748293801*45537549124^(15/17) 2329991416279152 a001 514229/1322157322203*45537549124^(14/17) 2329991416279152 a001 514229/312119004989*45537549124^(13/17) 2329991416279152 a001 514229/73681302247*14662949395604^(4/7) 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^36/Lucas(52) 2329991416279152 a004 Fibonacci(52)/Lucas(29)/(1/2+sqrt(5)/2)^10 2329991416279152 a001 514229/73681302247*505019158607^(9/14) 2329991416279152 a001 514229/73681302247*192900153618^(2/3) 2329991416279152 a004 Fibonacci(29)*Lucas(53)/(1/2+sqrt(5)/2)^69 2329991416279152 a001 514229/73681302247*73681302247^(9/13) 2329991416279152 a001 514229/192900153618*817138163596^(2/3) 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^38/Lucas(54) 2329991416279152 a004 Fibonacci(54)/Lucas(29)/(1/2+sqrt(5)/2)^12 2329991416279152 a001 514229/505019158607*312119004989^(8/11) 2329991416279152 a004 Fibonacci(29)*Lucas(55)/(1/2+sqrt(5)/2)^71 2329991416279152 a001 514229/3461452808002*312119004989^(4/5) 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^40/Lucas(56) 2329991416279152 a001 514229/505019158607*23725150497407^(5/8) 2329991416279152 a004 Fibonacci(56)/Lucas(29)/(1/2+sqrt(5)/2)^14 2329991416279152 a004 Fibonacci(29)*Lucas(57)/(1/2+sqrt(5)/2)^73 2329991416279152 a001 514229/1322157322203*14662949395604^(2/3) 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^42/Lucas(58) 2329991416279152 a004 Fibonacci(29)*Lucas(59)/(1/2+sqrt(5)/2)^75 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^44/Lucas(60) 2329991416279152 a004 Fibonacci(29)*Lucas(61)/(1/2+sqrt(5)/2)^77 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^46/Lucas(62) 2329991416279152 a004 Fibonacci(29)*Lucas(63)/(1/2+sqrt(5)/2)^79 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^48/Lucas(64) 2329991416279152 a004 Fibonacci(29)*Lucas(65)/(1/2+sqrt(5)/2)^81 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^50/Lucas(66) 2329991416279152 a004 Fibonacci(29)*Lucas(67)/(1/2+sqrt(5)/2)^83 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^52/Lucas(68) 2329991416279152 a004 Fibonacci(29)*Lucas(69)/(1/2+sqrt(5)/2)^85 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^54/Lucas(70) 2329991416279152 a004 Fibonacci(29)*Lucas(71)/(1/2+sqrt(5)/2)^87 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^56/Lucas(72) 2329991416279152 a004 Fibonacci(29)*Lucas(73)/(1/2+sqrt(5)/2)^89 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^58/Lucas(74) 2329991416279152 a004 Fibonacci(29)*Lucas(75)/(1/2+sqrt(5)/2)^91 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^60/Lucas(76) 2329991416279152 a004 Fibonacci(29)*Lucas(77)/(1/2+sqrt(5)/2)^93 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^62/Lucas(78) 2329991416279152 a004 Fibonacci(29)*Lucas(79)/(1/2+sqrt(5)/2)^95 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^64/Lucas(80) 2329991416279152 a004 Fibonacci(29)*Lucas(81)/(1/2+sqrt(5)/2)^97 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^66/Lucas(82) 2329991416279152 a004 Fibonacci(29)*Lucas(83)/(1/2+sqrt(5)/2)^99 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^68/Lucas(84) 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^70/Lucas(86) 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^72/Lucas(88) 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^74/Lucas(90) 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^76/Lucas(92) 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^78/Lucas(94) 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^80/Lucas(96) 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^82/Lucas(98) 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^83/Lucas(99) 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^84/Lucas(100) 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^81/Lucas(97) 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^79/Lucas(95) 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^77/Lucas(93) 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^75/Lucas(91) 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^73/Lucas(89) 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^71/Lucas(87) 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^69/Lucas(85) 2329991416279152 a004 Fibonacci(29)*Lucas(84)/(1/2+sqrt(5)/2)^100 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^67/Lucas(83) 2329991416279152 a004 Fibonacci(29)*Lucas(82)/(1/2+sqrt(5)/2)^98 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^65/Lucas(81) 2329991416279152 a004 Fibonacci(29)*Lucas(80)/(1/2+sqrt(5)/2)^96 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^63/Lucas(79) 2329991416279152 a004 Fibonacci(29)*Lucas(78)/(1/2+sqrt(5)/2)^94 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^61/Lucas(77) 2329991416279152 a004 Fibonacci(29)*Lucas(76)/(1/2+sqrt(5)/2)^92 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^59/Lucas(75) 2329991416279152 a004 Fibonacci(29)*Lucas(74)/(1/2+sqrt(5)/2)^90 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^57/Lucas(73) 2329991416279152 a004 Fibonacci(29)*Lucas(72)/(1/2+sqrt(5)/2)^88 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^55/Lucas(71) 2329991416279152 a004 Fibonacci(29)*Lucas(70)/(1/2+sqrt(5)/2)^86 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^53/Lucas(69) 2329991416279152 a004 Fibonacci(29)*Lucas(68)/(1/2+sqrt(5)/2)^84 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^51/Lucas(67) 2329991416279152 a004 Fibonacci(29)*Lucas(66)/(1/2+sqrt(5)/2)^82 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^49/Lucas(65) 2329991416279152 a004 Fibonacci(29)*Lucas(64)/(1/2+sqrt(5)/2)^80 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^47/Lucas(63) 2329991416279152 a004 Fibonacci(29)*Lucas(62)/(1/2+sqrt(5)/2)^78 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^45/Lucas(61) 2329991416279152 a004 Fibonacci(29)*Lucas(60)/(1/2+sqrt(5)/2)^76 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^43/Lucas(59) 2329991416279152 a004 Fibonacci(60)/Lucas(29)/(1/2+sqrt(5)/2)^18 2329991416279152 a004 Fibonacci(62)/Lucas(29)/(1/2+sqrt(5)/2)^20 2329991416279152 a004 Fibonacci(64)/Lucas(29)/(1/2+sqrt(5)/2)^22 2329991416279152 a004 Fibonacci(66)/Lucas(29)/(1/2+sqrt(5)/2)^24 2329991416279152 a004 Fibonacci(68)/Lucas(29)/(1/2+sqrt(5)/2)^26 2329991416279152 a004 Fibonacci(70)/Lucas(29)/(1/2+sqrt(5)/2)^28 2329991416279152 a004 Fibonacci(72)/Lucas(29)/(1/2+sqrt(5)/2)^30 2329991416279152 a004 Fibonacci(74)/Lucas(29)/(1/2+sqrt(5)/2)^32 2329991416279152 a004 Fibonacci(76)/Lucas(29)/(1/2+sqrt(5)/2)^34 2329991416279152 a004 Fibonacci(78)/Lucas(29)/(1/2+sqrt(5)/2)^36 2329991416279152 a004 Fibonacci(80)/Lucas(29)/(1/2+sqrt(5)/2)^38 2329991416279152 a004 Fibonacci(82)/Lucas(29)/(1/2+sqrt(5)/2)^40 2329991416279152 a004 Fibonacci(84)/Lucas(29)/(1/2+sqrt(5)/2)^42 2329991416279152 a004 Fibonacci(86)/Lucas(29)/(1/2+sqrt(5)/2)^44 2329991416279152 a004 Fibonacci(88)/Lucas(29)/(1/2+sqrt(5)/2)^46 2329991416279152 a004 Fibonacci(90)/Lucas(29)/(1/2+sqrt(5)/2)^48 2329991416279152 a004 Fibonacci(92)/Lucas(29)/(1/2+sqrt(5)/2)^50 2329991416279152 a004 Fibonacci(94)/Lucas(29)/(1/2+sqrt(5)/2)^52 2329991416279152 a004 Fibonacci(96)/Lucas(29)/(1/2+sqrt(5)/2)^54 2329991416279152 a004 Fibonacci(100)/Lucas(29)/(1/2+sqrt(5)/2)^58 2329991416279152 a004 Fibonacci(29)*Lucas(58)/(1/2+sqrt(5)/2)^74 2329991416279152 a004 Fibonacci(97)/Lucas(29)/(1/2+sqrt(5)/2)^55 2329991416279152 a004 Fibonacci(98)/Lucas(29)/(1/2+sqrt(5)/2)^56 2329991416279152 a004 Fibonacci(99)/Lucas(29)/(1/2+sqrt(5)/2)^57 2329991416279152 a004 Fibonacci(95)/Lucas(29)/(1/2+sqrt(5)/2)^53 2329991416279152 a004 Fibonacci(93)/Lucas(29)/(1/2+sqrt(5)/2)^51 2329991416279152 a004 Fibonacci(91)/Lucas(29)/(1/2+sqrt(5)/2)^49 2329991416279152 a004 Fibonacci(89)/Lucas(29)/(1/2+sqrt(5)/2)^47 2329991416279152 a004 Fibonacci(87)/Lucas(29)/(1/2+sqrt(5)/2)^45 2329991416279152 a004 Fibonacci(85)/Lucas(29)/(1/2+sqrt(5)/2)^43 2329991416279152 a004 Fibonacci(83)/Lucas(29)/(1/2+sqrt(5)/2)^41 2329991416279152 a004 Fibonacci(81)/Lucas(29)/(1/2+sqrt(5)/2)^39 2329991416279152 a004 Fibonacci(79)/Lucas(29)/(1/2+sqrt(5)/2)^37 2329991416279152 a004 Fibonacci(77)/Lucas(29)/(1/2+sqrt(5)/2)^35 2329991416279152 a004 Fibonacci(75)/Lucas(29)/(1/2+sqrt(5)/2)^33 2329991416279152 a004 Fibonacci(73)/Lucas(29)/(1/2+sqrt(5)/2)^31 2329991416279152 a004 Fibonacci(71)/Lucas(29)/(1/2+sqrt(5)/2)^29 2329991416279152 a004 Fibonacci(69)/Lucas(29)/(1/2+sqrt(5)/2)^27 2329991416279152 a004 Fibonacci(67)/Lucas(29)/(1/2+sqrt(5)/2)^25 2329991416279152 a004 Fibonacci(65)/Lucas(29)/(1/2+sqrt(5)/2)^23 2329991416279152 a004 Fibonacci(63)/Lucas(29)/(1/2+sqrt(5)/2)^21 2329991416279152 a004 Fibonacci(61)/Lucas(29)/(1/2+sqrt(5)/2)^19 2329991416279152 a004 Fibonacci(59)/Lucas(29)/(1/2+sqrt(5)/2)^17 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^41/Lucas(57) 2329991416279152 a004 Fibonacci(57)/Lucas(29)/(1/2+sqrt(5)/2)^15 2329991416279152 a001 514229/1322157322203*505019158607^(3/4) 2329991416279152 a004 Fibonacci(29)*Lucas(56)/(1/2+sqrt(5)/2)^72 2329991416279152 a001 514229/312119004989*14662949395604^(13/21) 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^39/Lucas(55) 2329991416279152 a004 Fibonacci(55)/Lucas(29)/(1/2+sqrt(5)/2)^13 2329991416279152 a001 514229/1322157322203*192900153618^(7/9) 2329991416279152 a004 Fibonacci(29)*Lucas(54)/(1/2+sqrt(5)/2)^70 2329991416279152 a001 514229/312119004989*192900153618^(13/18) 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^37/Lucas(53) 2329991416279152 a004 Fibonacci(53)/Lucas(29)/(1/2+sqrt(5)/2)^11 2329991416279152 a001 514229/505019158607*73681302247^(10/13) 2329991416279152 a001 514229/312119004989*73681302247^(3/4) 2329991416279152 a001 514229/3461452808002*73681302247^(11/13) 2329991416279152 a001 514229/23725150497407*73681302247^(12/13) 2329991416279152 a004 Fibonacci(29)*Lucas(52)/(1/2+sqrt(5)/2)^68 2329991416279152 a001 514229/45537549124*312119004989^(7/11) 2329991416279152 a001 514229/45537549124*14662949395604^(5/9) 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^35/Lucas(51) 2329991416279152 a004 Fibonacci(51)/Lucas(29)/(1/2+sqrt(5)/2)^9 2329991416279152 a001 514229/45537549124*505019158607^(5/8) 2329991416279152 a001 514229/505019158607*28143753123^(4/5) 2329991416279152 a001 514229/5600748293801*28143753123^(9/10) 2329991416279152 a004 Fibonacci(29)*Lucas(50)/(1/2+sqrt(5)/2)^66 2329991416279152 a001 514229/45537549124*28143753123^(7/10) 2329991416279152 a001 514229/17393796001*45537549124^(11/17) 2329991416279152 a001 514229/17393796001*312119004989^(3/5) 2329991416279152 a001 514229/17393796001*14662949395604^(11/21) 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^33/Lucas(49) 2329991416279152 a004 Fibonacci(49)/Lucas(29)/(1/2+sqrt(5)/2)^7 2329991416279152 a001 514229/17393796001*192900153618^(11/18) 2329991416279152 a001 514229/28143753123*10749957122^(17/24) 2329991416279152 a001 514229/73681302247*10749957122^(3/4) 2329991416279152 a001 514229/192900153618*10749957122^(19/24) 2329991416279152 a001 514229/312119004989*10749957122^(13/16) 2329991416279152 a001 514229/505019158607*10749957122^(5/6) 2329991416279152 a001 514229/1322157322203*10749957122^(7/8) 2329991416279152 a001 514229/3461452808002*10749957122^(11/12) 2329991416279152 a001 514229/5600748293801*10749957122^(15/16) 2329991416279152 a001 514229/9062201101803*10749957122^(23/24) 2329991416279152 a004 Fibonacci(29)*Lucas(48)/(1/2+sqrt(5)/2)^64 2329991416279152 a001 514229/17393796001*10749957122^(11/16) 2329991416279152 a001 1527884955773717/6557470319842 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^31/Lucas(47) 2329991416279152 a004 Fibonacci(47)/Lucas(29)/(1/2+sqrt(5)/2)^5 2329991416279152 a001 514229/10749957122*4106118243^(16/23) 2329991416279152 a001 514229/28143753123*4106118243^(17/23) 2329991416279152 a001 514229/73681302247*4106118243^(18/23) 2329991416279152 a001 514229/192900153618*4106118243^(19/23) 2329991416279152 a001 514229/505019158607*4106118243^(20/23) 2329991416279152 a001 514229/1322157322203*4106118243^(21/23) 2329991416279152 a001 514229/3461452808002*4106118243^(22/23) 2329991416279152 a004 Fibonacci(29)*Lucas(46)/(1/2+sqrt(5)/2)^62 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^29/Lucas(45) 2329991416279152 a001 514229/2537720636*1322157322203^(1/2) 2329991416279152 a004 Fibonacci(45)/Lucas(29)/(1/2+sqrt(5)/2)^3 2329991416279152 a001 514229/4106118243*1568397607^(15/22) 2329991416279152 a001 514229/10749957122*1568397607^(8/11) 2329991416279152 a001 514229/17393796001*1568397607^(3/4) 2329991416279152 a001 514229/28143753123*1568397607^(17/22) 2329991416279152 a001 514229/73681302247*1568397607^(9/11) 2329991416279152 a001 514229/192900153618*1568397607^(19/22) 2329991416279152 a001 514229/505019158607*1568397607^(10/11) 2329991416279152 a001 514229/1322157322203*1568397607^(21/22) 2329991416279152 a004 Fibonacci(29)*Lucas(44)/(1/2+sqrt(5)/2)^60 2329991416279152 a001 514229/969323029*2537720636^(3/5) 2329991416279152 a001 514229/969323029*45537549124^(9/17) 2329991416279152 a001 514229/969323029*817138163596^(9/19) 2329991416279152 a001 222915410844073/956722026041 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^27/Lucas(43) 2329991416279152 a004 Fibonacci(43)/Lucas(29)/(1/2+sqrt(5)/2) 2329991416279152 a001 514229/969323029*192900153618^(1/2) 2329991416279152 a001 514229/969323029*10749957122^(9/16) 2329991416279152 a001 514229/1568397607*599074578^(2/3) 2329991416279152 a001 514229/4106118243*599074578^(5/7) 2329991416279152 a001 514229/10749957122*599074578^(16/21) 2329991416279152 a001 514229/17393796001*599074578^(11/14) 2329991416279152 a001 514229/28143753123*599074578^(17/21) 2329991416279152 a001 514229/45537549124*599074578^(5/6) 2329991416279152 a001 514229/73681302247*599074578^(6/7) 2329991416279152 a001 514229/192900153618*599074578^(19/21) 2329991416279152 a001 514229/312119004989*599074578^(13/14) 2329991416279152 a001 514229/505019158607*599074578^(20/21) 2329991416279152 a004 Fibonacci(29)*Lucas(42)/(1/2+sqrt(5)/2)^58 2329991416279152 a001 514229/969323029*599074578^(9/14) 2329991416279152 a001 24157817/1149851*20633239^(1/7) 2329991416279152 a001 514229/370248451*2537720636^(5/9) 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^25/Lucas(41) 2329991416279152 a001 514229/370248451*3461452808002^(5/12) 2329991416279152 a001 165580141/2299702+165580141/2299702*5^(1/2) 2329991416279152 a001 514229/370248451*28143753123^(1/2) 2329991416279152 a001 514229/599074578*228826127^(13/20) 2329991416279152 a001 514229/1568397607*228826127^(7/10) 2329991416279152 a001 514229/4106118243*228826127^(3/4) 2329991416279152 a001 514229/10749957122*228826127^(4/5) 2329991416279152 a001 514229/28143753123*228826127^(17/20) 2329991416279152 a001 514229/45537549124*228826127^(7/8) 2329991416279152 a001 514229/73681302247*228826127^(9/10) 2329991416279152 a001 514229/192900153618*228826127^(19/20) 2329991416279152 a004 Fibonacci(29)*Lucas(40)/(1/2+sqrt(5)/2)^56 2329991416279152 a001 514229/370248451*228826127^(5/8) 2329991416279152 a001 102334155/1149851*33385282^(1/18) 2329991416279152 a001 63245986/1149851*141422324^(1/13) 2329991416279152 a001 63245986/1149851*2537720636^(1/15) 2329991416279152 a001 63245986/1149851*45537549124^(1/17) 2329991416279152 a001 32522920134794/139583862445 2329991416279152 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^23/Lucas(39) 2329991416279152 a001 63245986/1149851*14662949395604^(1/21) 2329991416279152 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^3/Lucas(29) 2329991416279152 a001 63245986/1149851*10749957122^(1/16) 2329991416279152 a001 514229/141422324*4106118243^(1/2) 2329991416279152 a001 63245986/1149851*599074578^(1/14) 2329991416279152 a001 514229/228826127*87403803^(12/19) 2329991416279152 a001 514229/599074578*87403803^(13/19) 2329991416279152 a001 514229/1568397607*87403803^(14/19) 2329991416279152 a001 514229/4106118243*87403803^(15/19) 2329991416279152 a001 514229/10749957122*87403803^(16/19) 2329991416279152 a001 514229/28143753123*87403803^(17/19) 2329991416279152 a001 514229/73681302247*87403803^(18/19) 2329991416279152 a001 63245986/1149851*33385282^(1/12) 2329991416279153 a004 Fibonacci(29)*Lucas(38)/(1/2+sqrt(5)/2)^54 2329991416279153 a001 14930352/1149851*12752043^(3/17) 2329991416279153 a001 514229/54018521*141422324^(7/13) 2329991416279153 a001 514229/54018521*2537720636^(7/15) 2329991416279153 a001 102334155/1149851*12752043^(1/17) 2329991416279153 a001 24157817/1149851*2537720636^(1/9) 2329991416279153 a001 514229/54018521*17393796001^(3/7) 2329991416279153 a001 514229/54018521*45537549124^(7/17) 2329991416279153 a001 12422650078093/53316291173 2329991416279153 a001 24157817/1149851*312119004989^(1/11) 2329991416279153 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^21/Lucas(37) 2329991416279153 a001 24157817/1149851*(1/2+1/2*5^(1/2))^5 2329991416279153 a001 514229/54018521*192900153618^(7/18) 2329991416279153 a001 24157817/1149851*28143753123^(1/10) 2329991416279153 a001 514229/54018521*10749957122^(7/16) 2329991416279153 a001 514229/54018521*599074578^(1/2) 2329991416279153 a001 24157817/1149851*228826127^(1/8) 2329991416279153 a001 514229/87403803*33385282^(11/18) 2329991416279154 a001 514229/228826127*33385282^(2/3) 2329991416279154 a001 39088169/1149851*12752043^(2/17) 2329991416279154 a001 514229/599074578*33385282^(13/18) 2329991416279154 a001 514229/969323029*33385282^(3/4) 2329991416279154 a001 514229/1568397607*33385282^(7/9) 2329991416279154 a001 514229/4106118243*33385282^(5/6) 2329991416279154 a001 514229/10749957122*33385282^(8/9) 2329991416279154 a001 514229/17393796001*33385282^(11/12) 2329991416279154 a001 514229/28143753123*33385282^(17/18) 2329991416279154 a001 514229/54018521*33385282^(7/12) 2329991416279154 a004 Fibonacci(29)*Lucas(36)/(1/2+sqrt(5)/2)^52 2329991416279157 a001 9227465/1149851*20633239^(1/5) 2329991416279158 a001 4745030099485/20365011074 2329991416279158 a001 9227465/1149851*17393796001^(1/7) 2329991416279158 a001 514229/20633239*817138163596^(1/3) 2329991416279158 a001 514229/20633239*(1/2+1/2*5^(1/2))^19 2329991416279158 a001 9227465/1149851*(1/2+1/2*5^(1/2))^7 2329991416279158 a001 9227465/1149851*599074578^(1/6) 2329991416279158 a001 514229/20633239*87403803^(1/2) 2329991416279158 a001 102334155/1149851*4870847^(1/16) 2329991416279159 a001 514229/33385282*12752043^(10/17) 2329991416279161 a001 514229/87403803*12752043^(11/17) 2329991416279162 a001 514229/228826127*12752043^(12/17) 2329991416279162 a001 5702887/1149851*4870847^(1/4) 2329991416279163 a001 514229/599074578*12752043^(13/17) 2329991416279164 a001 514229/1568397607*12752043^(14/17) 2329991416279164 a001 39088169/1149851*4870847^(1/8) 2329991416279165 a001 514229/4106118243*12752043^(15/17) 2329991416279166 a001 514229/10749957122*12752043^(16/17) 2329991416279167 a004 Fibonacci(29)*Lucas(34)/(1/2+sqrt(5)/2)^50 2329991416279169 a001 14930352/1149851*4870847^(3/16) 2329991416279179 a001 3524578/1149851*7881196^(3/11) 2329991416279190 a001 3524578/1149851*141422324^(3/13) 2329991416279190 a001 3524578/1149851*2537720636^(1/5) 2329991416279190 a001 1812440220362/7778742049 2329991416279190 a001 514229/7881196*45537549124^(1/3) 2329991416279190 a001 3524578/1149851*45537549124^(3/17) 2329991416279190 a001 514229/7881196*(1/2+1/2*5^(1/2))^17 2329991416279190 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^17/Lucas(33) 2329991416279190 a001 3524578/1149851*14662949395604^(1/7) 2329991416279190 a001 3524578/1149851*(1/2+1/2*5^(1/2))^9 2329991416279190 a001 3524578/1149851*192900153618^(1/6) 2329991416279190 a001 3524578/1149851*10749957122^(3/16) 2329991416279190 a001 3524578/1149851*599074578^(3/14) 2329991416279190 a001 3524578/1149851*33385282^(1/4) 2329991416279193 a001 514229/12752043*4870847^(9/16) 2329991416279197 a001 514229/7881196*12752043^(1/2) 2329991416279197 a001 102334155/1149851*1860498^(1/15) 2329991416279211 a001 514229/33385282*4870847^(5/8) 2329991416279219 a001 514229/87403803*4870847^(11/16) 2329991416279220 a001 63245986/1149851*1860498^(1/10) 2329991416279226 a001 514229/228826127*4870847^(3/4) 2329991416279232 a001 514229/599074578*4870847^(13/16) 2329991416279238 a001 514229/1568397607*4870847^(7/8) 2329991416279242 a001 39088169/1149851*1860498^(2/15) 2329991416279244 a001 514229/4106118243*4870847^(15/16) 2329991416279250 a004 Fibonacci(29)*Lucas(32)/(1/2+sqrt(5)/2)^48 2329991416279265 a001 24157817/1149851*1860498^(1/6) 2329991416279278 a001 2178309/1149851*1860498^(1/3) 2329991416279280 a001 5702887/3010349*710647^(5/14) 2329991416279281 a001 832040/3010349*710647^(1/2) 2329991416279285 a001 14930352/1149851*1860498^(1/5) 2329991416279307 a001 3524578/4870847*710647^(3/7) 2329991416279317 a001 5702887/1149851*1860498^(4/15) 2329991416279358 a001 9227465/12752043*710647^(3/7) 2329991416279366 a001 24157817/33385282*710647^(3/7) 2329991416279367 a001 63245986/87403803*710647^(3/7) 2329991416279367 a001 165580141/228826127*710647^(3/7) 2329991416279367 a001 433494437/599074578*710647^(3/7) 2329991416279367 a001 1134903170/1568397607*710647^(3/7) 2329991416279367 a001 2971215073/4106118243*710647^(3/7) 2329991416279367 a001 7778742049/10749957122*710647^(3/7) 2329991416279367 a001 20365011074/28143753123*710647^(3/7) 2329991416279367 a001 53316291173/73681302247*710647^(3/7) 2329991416279367 a001 139583862445/192900153618*710647^(3/7) 2329991416279367 a001 365435296162/505019158607*710647^(3/7) 2329991416279367 a001 10610209857723/14662949395604*710647^(3/7) 2329991416279367 a001 225851433717/312119004989*710647^(3/7) 2329991416279367 a001 86267571272/119218851371*710647^(3/7) 2329991416279367 a001 32951280099/45537549124*710647^(3/7) 2329991416279367 a001 12586269025/17393796001*710647^(3/7) 2329991416279367 a001 4807526976/6643838879*710647^(3/7) 2329991416279367 a001 1836311903/2537720636*710647^(3/7) 2329991416279367 a001 701408733/969323029*710647^(3/7) 2329991416279367 a001 267914296/370248451*710647^(3/7) 2329991416279367 a001 102334155/141422324*710647^(3/7) 2329991416279368 a001 39088169/54018521*710647^(3/7) 2329991416279371 a001 14930352/20633239*710647^(3/7) 2329991416279390 a001 5702887/7881196*710647^(3/7) 2329991416279391 a001 208010/1970299*710647^(4/7) 2329991416279392 a001 3524578/1149851*1860498^(3/10) 2329991416279392 a001 514229/3010349*7881196^(5/11) 2329991416279397 a001 1346269/1149851*7881196^(1/3) 2329991416279407 a001 514229/3010349*20633239^(3/7) 2329991416279409 a001 514229/3010349*141422324^(5/13) 2329991416279409 a001 514229/3010349*2537720636^(1/3) 2329991416279409 a001 692290561601/2971215073 2329991416279409 a001 514229/3010349*45537549124^(5/17) 2329991416279409 a001 514229/3010349*312119004989^(3/11) 2329991416279409 a001 1346269/1149851*312119004989^(1/5) 2329991416279409 a001 514229/3010349*(1/2+1/2*5^(1/2))^15 2329991416279409 a001 1346269/1149851*(1/2+1/2*5^(1/2))^11 2329991416279409 a001 514229/3010349*192900153618^(5/18) 2329991416279409 a001 514229/3010349*28143753123^(3/10) 2329991416279409 a001 514229/3010349*10749957122^(5/16) 2329991416279409 a001 1346269/1149851*1568397607^(1/4) 2329991416279409 a001 514229/3010349*599074578^(5/14) 2329991416279409 a001 514229/3010349*228826127^(3/8) 2329991416279410 a001 514229/3010349*33385282^(5/12) 2329991416279413 a001 514229/4870847*1860498^(8/15) 2329991416279482 a001 102334155/1149851*710647^(1/14) 2329991416279487 a001 317811/439204*439204^(4/9) 2329991416279526 a001 2178309/3010349*710647^(3/7) 2329991416279542 a001 514229/12752043*1860498^(3/5) 2329991416279599 a001 514229/33385282*1860498^(2/3) 2329991416279624 a001 514229/54018521*1860498^(7/10) 2329991416279636 a001 2178309/7881196*710647^(1/2) 2329991416279646 a001 514229/87403803*1860498^(11/15) 2329991416279688 a001 5702887/20633239*710647^(1/2) 2329991416279688 a001 75640/1875749*710647^(9/14) 2329991416279691 a001 514229/228826127*1860498^(4/5) 2329991416279695 a001 14930352/54018521*710647^(1/2) 2329991416279697 a001 39088169/141422324*710647^(1/2) 2329991416279697 a001 102334155/370248451*710647^(1/2) 2329991416279697 a001 267914296/969323029*710647^(1/2) 2329991416279697 a001 701408733/2537720636*710647^(1/2) 2329991416279697 a001 1836311903/6643838879*710647^(1/2) 2329991416279697 a001 4807526976/17393796001*710647^(1/2) 2329991416279697 a001 12586269025/45537549124*710647^(1/2) 2329991416279697 a001 32951280099/119218851371*710647^(1/2) 2329991416279697 a001 86267571272/312119004989*710647^(1/2) 2329991416279697 a001 225851433717/817138163596*710647^(1/2) 2329991416279697 a001 1548008755920/5600748293801*710647^(1/2) 2329991416279697 a001 139583862445/505019158607*710647^(1/2) 2329991416279697 a001 53316291173/192900153618*710647^(1/2) 2329991416279697 a001 20365011074/73681302247*710647^(1/2) 2329991416279697 a001 7778742049/28143753123*710647^(1/2) 2329991416279697 a001 2971215073/10749957122*710647^(1/2) 2329991416279697 a001 1134903170/4106118243*710647^(1/2) 2329991416279697 a001 433494437/1568397607*710647^(1/2) 2329991416279697 a001 165580141/599074578*710647^(1/2) 2329991416279697 a001 63245986/228826127*710647^(1/2) 2329991416279697 a001 24157817/87403803*710647^(1/2) 2329991416279700 a001 9227465/33385282*710647^(1/2) 2329991416279713 a001 514229/370248451*1860498^(5/6) 2329991416279720 a001 3524578/12752043*710647^(1/2) 2329991416279724 a001 433494437/4870847*271443^(1/13) 2329991416279736 a001 514229/599074578*1860498^(13/15) 2329991416279746 a001 514229/3010349*1860498^(1/2) 2329991416279758 a001 514229/969323029*1860498^(9/10) 2329991416279780 a001 514229/1568397607*1860498^(14/15) 2329991416279808 a001 1134903170/12752043*271443^(1/13) 2329991416279811 a001 39088169/1149851*710647^(1/7) 2329991416279820 a001 2971215073/33385282*271443^(1/13) 2329991416279822 a001 7778742049/87403803*271443^(1/13) 2329991416279822 a001 20365011074/228826127*271443^(1/13) 2329991416279822 a001 53316291173/599074578*271443^(1/13) 2329991416279822 a001 139583862445/1568397607*271443^(1/13) 2329991416279822 a001 365435296162/4106118243*271443^(1/13) 2329991416279822 a001 956722026041/10749957122*271443^(1/13) 2329991416279822 a001 2504730781961/28143753123*271443^(1/13) 2329991416279822 a001 6557470319842/73681302247*271443^(1/13) 2329991416279822 a001 10610209857723/119218851371*271443^(1/13) 2329991416279822 a001 4052739537881/45537549124*271443^(1/13) 2329991416279822 a001 1548008755920/17393796001*271443^(1/13) 2329991416279822 a001 591286729879/6643838879*271443^(1/13) 2329991416279822 a001 225851433717/2537720636*271443^(1/13) 2329991416279822 a001 86267571272/969323029*271443^(1/13) 2329991416279822 a001 32951280099/370248451*271443^(1/13) 2329991416279823 a001 12586269025/141422324*271443^(1/13) 2329991416279823 a001 4807526976/54018521*271443^(1/13) 2329991416279825 a004 Fibonacci(29)*Lucas(30)/(1/2+sqrt(5)/2)^46 2329991416279828 a001 1836311903/20633239*271443^(1/13) 2329991416279856 a001 1346269/4870847*710647^(1/2) 2329991416279860 a001 3524667/39604*271443^(1/13) 2329991416279934 a001 2178309/20633239*710647^(4/7) 2329991416280013 a001 5702887/54018521*710647^(4/7) 2329991416280013 a001 832040/54018521*710647^(5/7) 2329991416280024 a001 3732588/35355581*710647^(4/7) 2329991416280026 a001 39088169/370248451*710647^(4/7) 2329991416280026 a001 102334155/969323029*710647^(4/7) 2329991416280026 a001 66978574/634430159*710647^(4/7) 2329991416280026 a001 701408733/6643838879*710647^(4/7) 2329991416280026 a001 1836311903/17393796001*710647^(4/7) 2329991416280026 a001 1201881744/11384387281*710647^(4/7) 2329991416280026 a001 12586269025/119218851371*710647^(4/7) 2329991416280026 a001 32951280099/312119004989*710647^(4/7) 2329991416280026 a001 21566892818/204284540899*710647^(4/7) 2329991416280026 a001 225851433717/2139295485799*710647^(4/7) 2329991416280026 a001 182717648081/1730726404001*710647^(4/7) 2329991416280026 a001 139583862445/1322157322203*710647^(4/7) 2329991416280026 a001 53316291173/505019158607*710647^(4/7) 2329991416280026 a001 10182505537/96450076809*710647^(4/7) 2329991416280026 a001 7778742049/73681302247*710647^(4/7) 2329991416280026 a001 2971215073/28143753123*710647^(4/7) 2329991416280026 a001 567451585/5374978561*710647^(4/7) 2329991416280026 a001 433494437/4106118243*710647^(4/7) 2329991416280026 a001 165580141/1568397607*710647^(4/7) 2329991416280026 a001 31622993/299537289*710647^(4/7) 2329991416280027 a001 24157817/228826127*710647^(4/7) 2329991416280031 a001 9227465/87403803*710647^(4/7) 2329991416280062 a001 1762289/16692641*710647^(4/7) 2329991416280079 a001 9227465/710647*271443^(3/13) 2329991416280080 a001 267914296/3010349*271443^(1/13) 2329991416280080 a001 196418/20633239*439204^(7/9) 2329991416280139 a001 14930352/1149851*710647^(3/14) 2329991416280177 a001 832040/87403803*710647^(3/4) 2329991416280258 a001 2178309/54018521*710647^(9/14) 2329991416280269 a001 1346269/12752043*710647^(4/7) 2329991416280311 a001 9227465/1149851*710647^(1/4) 2329991416280342 a001 5702887/141422324*710647^(9/14) 2329991416280342 a001 208010/35355581*710647^(11/14) 2329991416280354 a001 14930352/370248451*710647^(9/14) 2329991416280356 a001 39088169/969323029*710647^(9/14) 2329991416280356 a001 9303105/230701876*710647^(9/14) 2329991416280356 a001 267914296/6643838879*710647^(9/14) 2329991416280356 a001 701408733/17393796001*710647^(9/14) 2329991416280356 a001 1836311903/45537549124*710647^(9/14) 2329991416280356 a001 4807526976/119218851371*710647^(9/14) 2329991416280356 a001 1144206275/28374454999*710647^(9/14) 2329991416280356 a001 32951280099/817138163596*710647^(9/14) 2329991416280356 a001 86267571272/2139295485799*710647^(9/14) 2329991416280356 a001 225851433717/5600748293801*710647^(9/14) 2329991416280356 a001 365435296162/9062201101803*710647^(9/14) 2329991416280356 a001 139583862445/3461452808002*710647^(9/14) 2329991416280356 a001 53316291173/1322157322203*710647^(9/14) 2329991416280356 a001 20365011074/505019158607*710647^(9/14) 2329991416280356 a001 7778742049/192900153618*710647^(9/14) 2329991416280356 a001 2971215073/73681302247*710647^(9/14) 2329991416280356 a001 1134903170/28143753123*710647^(9/14) 2329991416280356 a001 433494437/10749957122*710647^(9/14) 2329991416280356 a001 165580141/4106118243*710647^(9/14) 2329991416280356 a001 63245986/1568397607*710647^(9/14) 2329991416280357 a001 24157817/599074578*710647^(9/14) 2329991416280361 a001 9227465/228826127*710647^(9/14) 2329991416280393 a001 3524578/87403803*710647^(9/14) 2329991416280456 a001 5702887/1149851*710647^(2/7) 2329991416280456 a001 832040/1149851*710647^(3/7) 2329991416280587 a001 2178309/141422324*710647^(5/7) 2329991416280611 a001 1346269/33385282*710647^(9/14) 2329991416280671 a001 5702887/370248451*710647^(5/7) 2329991416280671 a001 832040/370248451*710647^(6/7) 2329991416280683 a001 14930352/969323029*710647^(5/7) 2329991416280685 a001 39088169/2537720636*710647^(5/7) 2329991416280685 a001 102334155/6643838879*710647^(5/7) 2329991416280685 a001 9238424/599786069*710647^(5/7) 2329991416280685 a001 701408733/45537549124*710647^(5/7) 2329991416280685 a001 1836311903/119218851371*710647^(5/7) 2329991416280685 a001 4807526976/312119004989*710647^(5/7) 2329991416280685 a001 12586269025/817138163596*710647^(5/7) 2329991416280685 a001 32951280099/2139295485799*710647^(5/7) 2329991416280685 a001 86267571272/5600748293801*710647^(5/7) 2329991416280685 a001 7787980473/505618944676*710647^(5/7) 2329991416280685 a001 365435296162/23725150497407*710647^(5/7) 2329991416280685 a001 139583862445/9062201101803*710647^(5/7) 2329991416280685 a001 53316291173/3461452808002*710647^(5/7) 2329991416280685 a001 20365011074/1322157322203*710647^(5/7) 2329991416280685 a001 7778742049/505019158607*710647^(5/7) 2329991416280685 a001 2971215073/192900153618*710647^(5/7) 2329991416280685 a001 1134903170/73681302247*710647^(5/7) 2329991416280685 a001 433494437/28143753123*710647^(5/7) 2329991416280685 a001 165580141/10749957122*710647^(5/7) 2329991416280686 a001 63245986/4106118243*710647^(5/7) 2329991416280686 a001 24157817/1568397607*710647^(5/7) 2329991416280691 a001 9227465/599074578*710647^(5/7) 2329991416280702 a001 2178309/1149851*710647^(5/14) 2329991416280723 a001 3524578/228826127*710647^(5/7) 2329991416280752 a001 46347/4868641*710647^(3/4) 2329991416280786 a001 514229/1860498*710647^(1/2) 2329991416280836 a001 5702887/599074578*710647^(3/4) 2329991416280848 a001 14930352/1568397607*710647^(3/4) 2329991416280850 a001 39088169/4106118243*710647^(3/4) 2329991416280850 a001 102334155/10749957122*710647^(3/4) 2329991416280850 a001 267914296/28143753123*710647^(3/4) 2329991416280850 a001 701408733/73681302247*710647^(3/4) 2329991416280850 a001 1836311903/192900153618*710647^(3/4) 2329991416280850 a001 102287808/10745088481*710647^(3/4) 2329991416280850 a001 12586269025/1322157322203*710647^(3/4) 2329991416280850 a001 32951280099/3461452808002*710647^(3/4) 2329991416280850 a001 86267571272/9062201101803*710647^(3/4) 2329991416280850 a001 225851433717/23725150497407*710647^(3/4) 2329991416280850 a001 139583862445/14662949395604*710647^(3/4) 2329991416280850 a001 53316291173/5600748293801*710647^(3/4) 2329991416280850 a001 20365011074/2139295485799*710647^(3/4) 2329991416280850 a001 7778742049/817138163596*710647^(3/4) 2329991416280850 a001 2971215073/312119004989*710647^(3/4) 2329991416280850 a001 1134903170/119218851371*710647^(3/4) 2329991416280850 a001 433494437/45537549124*710647^(3/4) 2329991416280850 a001 165580141/17393796001*710647^(3/4) 2329991416280850 a001 63245986/6643838879*710647^(3/4) 2329991416280851 a001 24157817/2537720636*710647^(3/4) 2329991416280856 a001 9227465/969323029*710647^(3/4) 2329991416280888 a001 3524578/370248451*710647^(3/4) 2329991416280914 a001 514229/1149851*141422324^(1/3) 2329991416280914 a001 264431464441/1134903170 2329991416280914 a001 514229/1149851*(1/2+1/2*5^(1/2))^13 2329991416280914 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^13/Lucas(29) 2329991416280914 a001 514229/1149851*73681302247^(1/4) 2329991416280917 a001 2178309/370248451*710647^(11/14) 2329991416280942 a001 1346269/87403803*710647^(5/7) 2329991416281001 a001 5702887/969323029*710647^(11/14) 2329991416281001 a001 832040/969323029*710647^(13/14) 2329991416281013 a001 196452/33391061*710647^(11/14) 2329991416281015 a001 39088169/6643838879*710647^(11/14) 2329991416281015 a001 102334155/17393796001*710647^(11/14) 2329991416281015 a001 66978574/11384387281*710647^(11/14) 2329991416281015 a001 701408733/119218851371*710647^(11/14) 2329991416281015 a001 1836311903/312119004989*710647^(11/14) 2329991416281015 a001 1201881744/204284540899*710647^(11/14) 2329991416281015 a001 12586269025/2139295485799*710647^(11/14) 2329991416281015 a001 32951280099/5600748293801*710647^(11/14) 2329991416281015 a001 1135099622/192933544679*710647^(11/14) 2329991416281015 a001 139583862445/23725150497407*710647^(11/14) 2329991416281015 a001 53316291173/9062201101803*710647^(11/14) 2329991416281015 a001 10182505537/1730726404001*710647^(11/14) 2329991416281015 a001 7778742049/1322157322203*710647^(11/14) 2329991416281015 a001 2971215073/505019158607*710647^(11/14) 2329991416281015 a001 567451585/96450076809*710647^(11/14) 2329991416281015 a001 433494437/73681302247*710647^(11/14) 2329991416281015 a001 165580141/28143753123*710647^(11/14) 2329991416281015 a001 31622993/5374978561*710647^(11/14) 2329991416281016 a001 24157817/4106118243*710647^(11/14) 2329991416281020 a001 9227465/1568397607*710647^(11/14) 2329991416281052 a001 1762289/299537289*710647^(11/14) 2329991416281107 a001 1346269/141422324*710647^(3/4) 2329991416281246 a001 2178309/969323029*710647^(6/7) 2329991416281272 a001 1346269/228826127*710647^(11/14) 2329991416281318 a001 196418/4870847*439204^(2/3) 2329991416281330 a001 5702887/2537720636*710647^(6/7) 2329991416281330 a004 Fibonacci(30)*Lucas(28)/(1/2+sqrt(5)/2)^45 2329991416281342 a001 14930352/6643838879*710647^(6/7) 2329991416281344 a001 39088169/17393796001*710647^(6/7) 2329991416281344 a001 102334155/45537549124*710647^(6/7) 2329991416281344 a001 267914296/119218851371*710647^(6/7) 2329991416281345 a001 3524667/1568437211*710647^(6/7) 2329991416281345 a001 1836311903/817138163596*710647^(6/7) 2329991416281345 a001 4807526976/2139295485799*710647^(6/7) 2329991416281345 a001 12586269025/5600748293801*710647^(6/7) 2329991416281345 a001 32951280099/14662949395604*710647^(6/7) 2329991416281345 a001 53316291173/23725150497407*710647^(6/7) 2329991416281345 a001 20365011074/9062201101803*710647^(6/7) 2329991416281345 a001 7778742049/3461452808002*710647^(6/7) 2329991416281345 a001 2971215073/1322157322203*710647^(6/7) 2329991416281345 a001 1134903170/505019158607*710647^(6/7) 2329991416281345 a001 433494437/192900153618*710647^(6/7) 2329991416281345 a001 165580141/73681302247*710647^(6/7) 2329991416281345 a001 63245986/28143753123*710647^(6/7) 2329991416281345 a001 24157817/10749957122*710647^(6/7) 2329991416281350 a001 9227465/4106118243*710647^(6/7) 2329991416281382 a001 3524578/1568397607*710647^(6/7) 2329991416281576 a001 2178309/2537720636*710647^(13/14) 2329991416281582 a001 31622993/930249*271443^(2/13) 2329991416281585 a001 102334155/1149851*271443^(1/13) 2329991416281602 a001 1346269/599074578*710647^(6/7) 2329991416281660 a001 5702887/6643838879*710647^(13/14) 2329991416281672 a001 14930352/17393796001*710647^(13/14) 2329991416281674 a001 39088169/45537549124*710647^(13/14) 2329991416281674 a001 102334155/119218851371*710647^(13/14) 2329991416281674 a001 267914296/312119004989*710647^(13/14) 2329991416281674 a001 701408733/817138163596*710647^(13/14) 2329991416281674 a001 1836311903/2139295485799*710647^(13/14) 2329991416281674 a001 4807526976/5600748293801*710647^(13/14) 2329991416281674 a001 12586269025/14662949395604*710647^(13/14) 2329991416281674 a001 20365011074/23725150497407*710647^(13/14) 2329991416281674 a001 7778742049/9062201101803*710647^(13/14) 2329991416281674 a001 2971215073/3461452808002*710647^(13/14) 2329991416281674 a001 1134903170/1322157322203*710647^(13/14) 2329991416281674 a001 433494437/505019158607*710647^(13/14) 2329991416281674 a001 165580141/192900153618*710647^(13/14) 2329991416281674 a001 63245986/73681302247*710647^(13/14) 2329991416281675 a001 24157817/28143753123*710647^(13/14) 2329991416281680 a001 9227465/10749957122*710647^(13/14) 2329991416281690 a001 514229/4870847*710647^(4/7) 2329991416281712 a001 3524578/4106118243*710647^(13/14) 2329991416281807 a001 14619165/101521*103682^(1/24) 2329991416281897 a001 9227465/271443*103682^(1/6) 2329991416281905 a004 Fibonacci(32)*Lucas(28)/(1/2+sqrt(5)/2)^47 2329991416281931 a001 1346269/1568397607*710647^(13/14) 2329991416281989 a004 Fibonacci(34)*Lucas(28)/(1/2+sqrt(5)/2)^49 2329991416282002 a004 Fibonacci(36)*Lucas(28)/(1/2+sqrt(5)/2)^51 2329991416282003 a004 Fibonacci(38)*Lucas(28)/(1/2+sqrt(5)/2)^53 2329991416282004 a004 Fibonacci(40)*Lucas(28)/(1/2+sqrt(5)/2)^55 2329991416282004 a004 Fibonacci(42)*Lucas(28)/(1/2+sqrt(5)/2)^57 2329991416282004 a004 Fibonacci(44)*Lucas(28)/(1/2+sqrt(5)/2)^59 2329991416282004 a004 Fibonacci(46)*Lucas(28)/(1/2+sqrt(5)/2)^61 2329991416282004 a004 Fibonacci(48)*Lucas(28)/(1/2+sqrt(5)/2)^63 2329991416282004 a004 Fibonacci(50)*Lucas(28)/(1/2+sqrt(5)/2)^65 2329991416282004 a004 Fibonacci(52)*Lucas(28)/(1/2+sqrt(5)/2)^67 2329991416282004 a004 Fibonacci(54)*Lucas(28)/(1/2+sqrt(5)/2)^69 2329991416282004 a004 Fibonacci(56)*Lucas(28)/(1/2+sqrt(5)/2)^71 2329991416282004 a004 Fibonacci(58)*Lucas(28)/(1/2+sqrt(5)/2)^73 2329991416282004 a004 Fibonacci(60)*Lucas(28)/(1/2+sqrt(5)/2)^75 2329991416282004 a004 Fibonacci(62)*Lucas(28)/(1/2+sqrt(5)/2)^77 2329991416282004 a004 Fibonacci(64)*Lucas(28)/(1/2+sqrt(5)/2)^79 2329991416282004 a004 Fibonacci(66)*Lucas(28)/(1/2+sqrt(5)/2)^81 2329991416282004 a004 Fibonacci(68)*Lucas(28)/(1/2+sqrt(5)/2)^83 2329991416282004 a004 Fibonacci(70)*Lucas(28)/(1/2+sqrt(5)/2)^85 2329991416282004 a004 Fibonacci(72)*Lucas(28)/(1/2+sqrt(5)/2)^87 2329991416282004 a004 Fibonacci(74)*Lucas(28)/(1/2+sqrt(5)/2)^89 2329991416282004 a004 Fibonacci(76)*Lucas(28)/(1/2+sqrt(5)/2)^91 2329991416282004 a004 Fibonacci(78)*Lucas(28)/(1/2+sqrt(5)/2)^93 2329991416282004 a004 Fibonacci(80)*Lucas(28)/(1/2+sqrt(5)/2)^95 2329991416282004 a004 Fibonacci(82)*Lucas(28)/(1/2+sqrt(5)/2)^97 2329991416282004 a004 Fibonacci(84)*Lucas(28)/(1/2+sqrt(5)/2)^99 2329991416282004 a004 Fibonacci(85)*Lucas(28)/(1/2+sqrt(5)/2)^100 2329991416282004 a004 Fibonacci(83)*Lucas(28)/(1/2+sqrt(5)/2)^98 2329991416282004 a004 Fibonacci(81)*Lucas(28)/(1/2+sqrt(5)/2)^96 2329991416282004 a004 Fibonacci(79)*Lucas(28)/(1/2+sqrt(5)/2)^94 2329991416282004 a004 Fibonacci(77)*Lucas(28)/(1/2+sqrt(5)/2)^92 2329991416282004 a004 Fibonacci(75)*Lucas(28)/(1/2+sqrt(5)/2)^90 2329991416282004 a004 Fibonacci(73)*Lucas(28)/(1/2+sqrt(5)/2)^88 2329991416282004 a004 Fibonacci(71)*Lucas(28)/(1/2+sqrt(5)/2)^86 2329991416282004 a004 Fibonacci(69)*Lucas(28)/(1/2+sqrt(5)/2)^84 2329991416282004 a004 Fibonacci(67)*Lucas(28)/(1/2+sqrt(5)/2)^82 2329991416282004 a004 Fibonacci(65)*Lucas(28)/(1/2+sqrt(5)/2)^80 2329991416282004 a004 Fibonacci(63)*Lucas(28)/(1/2+sqrt(5)/2)^78 2329991416282004 a004 Fibonacci(61)*Lucas(28)/(1/2+sqrt(5)/2)^76 2329991416282004 a004 Fibonacci(59)*Lucas(28)/(1/2+sqrt(5)/2)^74 2329991416282004 a004 Fibonacci(57)*Lucas(28)/(1/2+sqrt(5)/2)^72 2329991416282004 a001 2/317811*(1/2+1/2*5^(1/2))^41 2329991416282004 a004 Fibonacci(55)*Lucas(28)/(1/2+sqrt(5)/2)^70 2329991416282004 a004 Fibonacci(53)*Lucas(28)/(1/2+sqrt(5)/2)^68 2329991416282004 a004 Fibonacci(51)*Lucas(28)/(1/2+sqrt(5)/2)^66 2329991416282004 a004 Fibonacci(49)*Lucas(28)/(1/2+sqrt(5)/2)^64 2329991416282004 a004 Fibonacci(47)*Lucas(28)/(1/2+sqrt(5)/2)^62 2329991416282004 a004 Fibonacci(45)*Lucas(28)/(1/2+sqrt(5)/2)^60 2329991416282004 a004 Fibonacci(43)*Lucas(28)/(1/2+sqrt(5)/2)^58 2329991416282004 a004 Fibonacci(41)*Lucas(28)/(1/2+sqrt(5)/2)^56 2329991416282004 a004 Fibonacci(39)*Lucas(28)/(1/2+sqrt(5)/2)^54 2329991416282004 a004 Fibonacci(37)*Lucas(28)/(1/2+sqrt(5)/2)^52 2329991416282009 a004 Fibonacci(35)*Lucas(28)/(1/2+sqrt(5)/2)^50 2329991416282041 a004 Fibonacci(33)*Lucas(28)/(1/2+sqrt(5)/2)^48 2329991416282104 a001 514229/12752043*710647^(9/14) 2329991416282157 a001 165580141/4870847*271443^(2/13) 2329991416282241 a001 433494437/12752043*271443^(2/13) 2329991416282253 a001 567451585/16692641*271443^(2/13) 2329991416282255 a001 2971215073/87403803*271443^(2/13) 2329991416282255 a001 7778742049/228826127*271443^(2/13) 2329991416282255 a001 10182505537/299537289*271443^(2/13) 2329991416282255 a001 53316291173/1568397607*271443^(2/13) 2329991416282255 a001 139583862445/4106118243*271443^(2/13) 2329991416282255 a001 182717648081/5374978561*271443^(2/13) 2329991416282255 a001 956722026041/28143753123*271443^(2/13) 2329991416282255 a001 2504730781961/73681302247*271443^(2/13) 2329991416282255 a001 3278735159921/96450076809*271443^(2/13) 2329991416282255 a001 10610209857723/312119004989*271443^(2/13) 2329991416282255 a001 4052739537881/119218851371*271443^(2/13) 2329991416282255 a001 387002188980/11384387281*271443^(2/13) 2329991416282255 a001 591286729879/17393796001*271443^(2/13) 2329991416282255 a001 225851433717/6643838879*271443^(2/13) 2329991416282255 a001 1135099622/33391061*271443^(2/13) 2329991416282255 a001 32951280099/969323029*271443^(2/13) 2329991416282255 a001 12586269025/370248451*271443^(2/13) 2329991416282255 a001 1201881744/35355581*271443^(2/13) 2329991416282256 a001 1836311903/54018521*271443^(2/13) 2329991416282260 a001 701408733/20633239*271443^(2/13) 2329991416282261 a004 Fibonacci(31)*Lucas(28)/(1/2+sqrt(5)/2)^46 2329991416282292 a001 66978574/1970299*271443^(2/13) 2329991416282446 a001 514229/33385282*710647^(5/7) 2329991416282512 a001 102334155/3010349*271443^(2/13) 2329991416282544 a001 3524578/710647*271443^(4/13) 2329991416282613 a001 514229/54018521*710647^(3/4) 2329991416282689 a001 28657/103682*64079^(14/23) 2329991416282777 a001 514229/87403803*710647^(11/14) 2329991416283107 a001 514229/228826127*710647^(6/7) 2329991416283436 a001 514229/599074578*710647^(13/14) 2329991416283766 a004 Fibonacci(29)*Lucas(28)/(1/2+sqrt(5)/2)^44 2329991416283974 a001 317811/710647*271443^(1/2) 2329991416284015 a001 24157817/1860498*271443^(3/13) 2329991416284017 a001 39088169/1149851*271443^(2/13) 2329991416284521 a001 196418/1149851*439204^(5/9) 2329991416284589 a001 63245986/4870847*271443^(3/13) 2329991416284673 a001 165580141/12752043*271443^(3/13) 2329991416284685 a001 433494437/33385282*271443^(3/13) 2329991416284687 a001 1134903170/87403803*271443^(3/13) 2329991416284687 a001 2971215073/228826127*271443^(3/13) 2329991416284687 a001 7778742049/599074578*271443^(3/13) 2329991416284687 a001 20365011074/1568397607*271443^(3/13) 2329991416284687 a001 53316291173/4106118243*271443^(3/13) 2329991416284687 a001 139583862445/10749957122*271443^(3/13) 2329991416284687 a001 365435296162/28143753123*271443^(3/13) 2329991416284687 a001 956722026041/73681302247*271443^(3/13) 2329991416284687 a001 2504730781961/192900153618*271443^(3/13) 2329991416284687 a001 10610209857723/817138163596*271443^(3/13) 2329991416284687 a001 4052739537881/312119004989*271443^(3/13) 2329991416284687 a001 1548008755920/119218851371*271443^(3/13) 2329991416284687 a001 591286729879/45537549124*271443^(3/13) 2329991416284687 a001 7787980473/599786069*271443^(3/13) 2329991416284687 a001 86267571272/6643838879*271443^(3/13) 2329991416284687 a001 32951280099/2537720636*271443^(3/13) 2329991416284687 a001 12586269025/969323029*271443^(3/13) 2329991416284687 a001 4807526976/370248451*271443^(3/13) 2329991416284688 a001 1836311903/141422324*271443^(3/13) 2329991416284688 a001 701408733/54018521*271443^(3/13) 2329991416284693 a001 9238424/711491*271443^(3/13) 2329991416284725 a001 102334155/7881196*271443^(3/13) 2329991416284841 a001 317811/439204*7881196^(4/11) 2329991416284853 a001 196418/710647*20633239^(2/5) 2329991416284855 a001 317811/439204*141422324^(4/13) 2329991416284855 a001 317811/439204*2537720636^(4/15) 2329991416284855 a001 196418/710647*17393796001^(2/7) 2329991416284855 a001 317811/439204*45537549124^(4/17) 2329991416284855 a001 196418/710647*14662949395604^(2/9) 2329991416284855 a001 196418/710647*(1/2+1/2*5^(1/2))^14 2329991416284855 a001 317811/439204*14662949395604^(4/21) 2329991416284855 a001 317811/439204*(1/2+1/2*5^(1/2))^12 2329991416284855 a001 317811/439204*192900153618^(2/9) 2329991416284855 a001 317811/439204*73681302247^(3/13) 2329991416284855 a001 317811/439204*10749957122^(1/4) 2329991416284855 a001 196418/710647*10749957122^(7/24) 2329991416284855 a001 317811/439204*4106118243^(6/23) 2329991416284855 a001 196418/710647*4106118243^(7/23) 2329991416284855 a001 317811/439204*1568397607^(3/11) 2329991416284855 a001 196418/710647*1568397607^(7/22) 2329991416284855 a001 317811/439204*599074578^(2/7) 2329991416284855 a001 196418/710647*599074578^(1/3) 2329991416284855 a001 82790187/355324 2329991416284855 a001 317811/439204*228826127^(3/10) 2329991416284855 a001 196418/710647*228826127^(7/20) 2329991416284855 a001 317811/439204*87403803^(6/19) 2329991416284855 a001 196418/710647*87403803^(7/19) 2329991416284856 a001 317811/439204*33385282^(1/3) 2329991416284856 a001 196418/710647*33385282^(7/18) 2329991416284860 a001 317811/439204*12752043^(6/17) 2329991416284861 a001 196418/710647*12752043^(7/17) 2329991416284892 a001 317811/439204*4870847^(3/8) 2329991416284898 a001 196418/710647*4870847^(7/16) 2329991416284944 a001 39088169/3010349*271443^(3/13) 2329991416285124 a001 317811/439204*1860498^(2/5) 2329991416285169 a001 196418/710647*1860498^(7/15) 2329991416285196 a001 1346269/710647*271443^(5/13) 2329991416285700 a001 1346269/439204*439204^(1/3) 2329991416285748 a001 133957148/930249*103682^(1/24) 2329991416286170 a001 9227465/167761*64079^(3/23) 2329991416286323 a001 701408733/4870847*103682^(1/24) 2329991416286407 a001 1836311903/12752043*103682^(1/24) 2329991416286419 a001 14930208/103681*103682^(1/24) 2329991416286421 a001 12586269025/87403803*103682^(1/24) 2329991416286421 a001 32951280099/228826127*103682^(1/24) 2329991416286421 a001 43133785636/299537289*103682^(1/24) 2329991416286421 a001 32264490531/224056801*103682^(1/24) 2329991416286421 a001 591286729879/4106118243*103682^(1/24) 2329991416286421 a001 774004377960/5374978561*103682^(1/24) 2329991416286421 a001 4052739537881/28143753123*103682^(1/24) 2329991416286421 a001 1515744265389/10525900321*103682^(1/24) 2329991416286421 a001 3278735159921/22768774562*103682^(1/24) 2329991416286421 a001 2504730781961/17393796001*103682^(1/24) 2329991416286421 a001 956722026041/6643838879*103682^(1/24) 2329991416286421 a001 182717648081/1268860318*103682^(1/24) 2329991416286421 a001 139583862445/969323029*103682^(1/24) 2329991416286421 a001 53316291173/370248451*103682^(1/24) 2329991416286421 a001 10182505537/70711162*103682^(1/24) 2329991416286422 a001 7778742049/54018521*103682^(1/24) 2329991416286426 a001 2971215073/20633239*103682^(1/24) 2329991416286448 a001 14930352/1149851*271443^(3/13) 2329991416286452 a001 9227465/1860498*271443^(4/13) 2329991416286458 a001 567451585/3940598*103682^(1/24) 2329991416286678 a001 433494437/3010349*103682^(1/24) 2329991416286770 a001 5702887/439204*439204^(2/9) 2329991416286832 a001 317811/439204*710647^(3/7) 2329991416287023 a001 24157817/4870847*271443^(4/13) 2329991416287106 a001 63245986/12752043*271443^(4/13) 2329991416287118 a001 165580141/33385282*271443^(4/13) 2329991416287120 a001 433494437/87403803*271443^(4/13) 2329991416287120 a001 1134903170/228826127*271443^(4/13) 2329991416287120 a001 2971215073/599074578*271443^(4/13) 2329991416287120 a001 7778742049/1568397607*271443^(4/13) 2329991416287120 a001 20365011074/4106118243*271443^(4/13) 2329991416287120 a001 53316291173/10749957122*271443^(4/13) 2329991416287120 a001 139583862445/28143753123*271443^(4/13) 2329991416287120 a001 365435296162/73681302247*271443^(4/13) 2329991416287120 a001 956722026041/192900153618*271443^(4/13) 2329991416287120 a001 2504730781961/505019158607*271443^(4/13) 2329991416287120 a001 10610209857723/2139295485799*271443^(4/13) 2329991416287120 a001 4052739537881/817138163596*271443^(4/13) 2329991416287120 a001 140728068720/28374454999*271443^(4/13) 2329991416287120 a001 591286729879/119218851371*271443^(4/13) 2329991416287120 a001 225851433717/45537549124*271443^(4/13) 2329991416287120 a001 86267571272/17393796001*271443^(4/13) 2329991416287120 a001 32951280099/6643838879*271443^(4/13) 2329991416287120 a001 1144206275/230701876*271443^(4/13) 2329991416287120 a001 4807526976/969323029*271443^(4/13) 2329991416287120 a001 1836311903/370248451*271443^(4/13) 2329991416287120 a001 701408733/141422324*271443^(4/13) 2329991416287121 a001 267914296/54018521*271443^(4/13) 2329991416287125 a001 9303105/1875749*271443^(4/13) 2329991416287157 a001 39088169/7881196*271443^(4/13) 2329991416287162 a001 196418/710647*710647^(1/2) 2329991416287375 a001 14930352/3010349*271443^(4/13) 2329991416287706 a004 Fibonacci(27)*Lucas(29)/(1/2+sqrt(5)/2)^43 2329991416288127 a001 24157817/439204*439204^(1/9) 2329991416288183 a001 165580141/1149851*103682^(1/24) 2329991416288794 a001 208010/109801*20633239^(2/7) 2329991416288796 a001 208010/109801*2537720636^(2/9) 2329991416288796 a001 98209/930249*(1/2+1/2*5^(1/2))^16 2329991416288796 a001 98209/930249*23725150497407^(1/4) 2329991416288796 a001 208010/109801*312119004989^(2/11) 2329991416288796 a001 208010/109801*(1/2+1/2*5^(1/2))^10 2329991416288796 a001 98209/930249*73681302247^(4/13) 2329991416288796 a001 208010/109801*28143753123^(1/5) 2329991416288796 a001 208010/109801*10749957122^(5/24) 2329991416288796 a001 98209/930249*10749957122^(1/3) 2329991416288796 a001 208010/109801*4106118243^(5/23) 2329991416288796 a001 98209/930249*4106118243^(8/23) 2329991416288796 a001 208010/109801*1568397607^(5/22) 2329991416288796 a001 98209/930249*1568397607^(4/11) 2329991416288796 a001 163427632720/701408733 2329991416288796 a001 208010/109801*599074578^(5/21) 2329991416288796 a001 98209/930249*599074578^(8/21) 2329991416288796 a001 208010/109801*228826127^(1/4) 2329991416288796 a001 98209/930249*228826127^(2/5) 2329991416288796 a001 208010/109801*87403803^(5/19) 2329991416288796 a001 98209/930249*87403803^(8/19) 2329991416288796 a001 208010/109801*33385282^(5/18) 2329991416288796 a001 98209/930249*33385282^(4/9) 2329991416288800 a001 208010/109801*12752043^(5/17) 2329991416288802 a001 98209/930249*12752043^(8/17) 2329991416288826 a001 208010/109801*4870847^(5/16) 2329991416288845 a001 98209/930249*4870847^(1/2) 2329991416288868 a001 5702887/1149851*271443^(4/13) 2329991416288917 a001 1762289/930249*271443^(5/13) 2329991416289020 a001 208010/109801*1860498^(1/3) 2329991416289134 a001 514229/710647*271443^(6/13) 2329991416289155 a001 98209/930249*1860498^(8/15) 2329991416289212 a004 Fibonacci(27)*Lucas(31)/(1/2+sqrt(5)/2)^45 2329991416289254 a001 3524578/64079*24476^(1/7) 2329991416289350 a001 196418/4870847*7881196^(6/11) 2329991416289370 a001 196418/4870847*141422324^(6/13) 2329991416289370 a001 196418/4870847*2537720636^(2/5) 2329991416289370 a001 196418/4870847*45537549124^(6/17) 2329991416289370 a001 196418/4870847*14662949395604^(2/7) 2329991416289370 a001 196418/4870847*(1/2+1/2*5^(1/2))^18 2329991416289370 a001 196418/4870847*192900153618^(1/3) 2329991416289370 a001 2178309/439204*(1/2+1/2*5^(1/2))^8 2329991416289370 a001 2178309/439204*23725150497407^(1/8) 2329991416289370 a001 2178309/439204*505019158607^(1/7) 2329991416289370 a001 2178309/439204*73681302247^(2/13) 2329991416289370 a001 2178309/439204*10749957122^(1/6) 2329991416289370 a001 196418/4870847*10749957122^(3/8) 2329991416289370 a001 2178309/439204*4106118243^(4/23) 2329991416289370 a001 196418/4870847*4106118243^(9/23) 2329991416289370 a001 427859097162/1836311903 2329991416289370 a001 2178309/439204*1568397607^(2/11) 2329991416289370 a001 196418/4870847*1568397607^(9/22) 2329991416289370 a001 2178309/439204*599074578^(4/21) 2329991416289370 a001 196418/4870847*599074578^(3/7) 2329991416289370 a001 2178309/439204*228826127^(1/5) 2329991416289370 a001 196418/4870847*228826127^(9/20) 2329991416289371 a001 2178309/439204*87403803^(4/19) 2329991416289371 a001 196418/4870847*87403803^(9/19) 2329991416289371 a001 2178309/439204*33385282^(2/9) 2329991416289372 a001 196418/4870847*33385282^(1/2) 2329991416289374 a001 2178309/439204*12752043^(4/17) 2329991416289378 a001 196418/4870847*12752043^(9/17) 2329991416289395 a001 2178309/439204*4870847^(1/4) 2329991416289426 a001 196418/4870847*4870847^(9/16) 2329991416289431 a004 Fibonacci(27)*Lucas(33)/(1/2+sqrt(5)/2)^47 2329991416289435 a001 196418/1568397607*7881196^(10/11) 2329991416289438 a001 196418/370248451*7881196^(9/11) 2329991416289441 a001 196418/87403803*7881196^(8/11) 2329991416289442 a001 98209/16692641*7881196^(2/3) 2329991416289448 a001 5702887/439204*7881196^(2/11) 2329991416289450 a001 196418/20633239*7881196^(7/11) 2329991416289451 a001 196418/12752043*20633239^(4/7) 2329991416289454 a001 5702887/439204*141422324^(2/13) 2329991416289454 a001 196418/12752043*2537720636^(4/9) 2329991416289454 a001 5702887/439204*2537720636^(2/15) 2329991416289454 a001 5702887/439204*45537549124^(2/17) 2329991416289454 a001 196418/12752043*(1/2+1/2*5^(1/2))^20 2329991416289454 a001 196418/12752043*23725150497407^(5/16) 2329991416289454 a001 196418/12752043*505019158607^(5/14) 2329991416289454 a001 5702887/439204*14662949395604^(2/21) 2329991416289454 a001 5702887/439204*(1/2+1/2*5^(1/2))^6 2329991416289454 a001 196418/12752043*73681302247^(5/13) 2329991416289454 a001 196418/12752043*28143753123^(2/5) 2329991416289454 a001 5702887/439204*10749957122^(1/8) 2329991416289454 a001 196418/12752043*10749957122^(5/12) 2329991416289454 a001 5702887/439204*4106118243^(3/23) 2329991416289454 a001 560074829383/2403763488 2329991416289454 a001 196418/12752043*4106118243^(10/23) 2329991416289454 a001 5702887/439204*1568397607^(3/22) 2329991416289454 a001 196418/12752043*1568397607^(5/11) 2329991416289454 a001 5702887/439204*599074578^(1/7) 2329991416289454 a001 196418/12752043*599074578^(10/21) 2329991416289454 a001 5702887/439204*228826127^(3/20) 2329991416289454 a001 196418/12752043*228826127^(1/2) 2329991416289454 a001 5702887/439204*87403803^(3/19) 2329991416289455 a001 196418/12752043*87403803^(10/19) 2329991416289455 a001 5702887/439204*33385282^(1/6) 2329991416289456 a001 196418/12752043*33385282^(5/9) 2329991416289457 a001 5702887/439204*12752043^(3/17) 2329991416289460 a001 9227465/4870847*271443^(5/13) 2329991416289463 a001 196418/12752043*12752043^(10/17) 2329991416289463 a004 Fibonacci(27)*Lucas(35)/(1/2+sqrt(5)/2)^49 2329991416289464 a001 196418/1568397607*20633239^(6/7) 2329991416289464 a001 98209/299537289*20633239^(4/5) 2329991416289465 a001 98209/70711162*20633239^(5/7) 2329991416289466 a001 24157817/439204*7881196^(1/11) 2329991416289467 a001 98209/16692641*312119004989^(2/5) 2329991416289467 a001 98209/16692641*(1/2+1/2*5^(1/2))^22 2329991416289467 a001 196452/5779*(1/2+1/2*5^(1/2))^4 2329991416289467 a001 196452/5779*23725150497407^(1/16) 2329991416289467 a001 196452/5779*73681302247^(1/13) 2329991416289467 a001 196452/5779*10749957122^(1/12) 2329991416289467 a001 2932589879136/12586269025 2329991416289467 a001 98209/16692641*10749957122^(11/24) 2329991416289467 a001 196452/5779*4106118243^(2/23) 2329991416289467 a001 98209/16692641*4106118243^(11/23) 2329991416289467 a001 196452/5779*1568397607^(1/11) 2329991416289467 a001 98209/16692641*1568397607^(1/2) 2329991416289467 a001 196452/5779*599074578^(2/21) 2329991416289467 a001 98209/16692641*599074578^(11/21) 2329991416289467 a001 196452/5779*228826127^(1/10) 2329991416289467 a001 98209/16692641*228826127^(11/20) 2329991416289467 a001 196452/5779*87403803^(2/19) 2329991416289467 a001 98209/16692641*87403803^(11/19) 2329991416289467 a001 196452/5779*33385282^(1/9) 2329991416289468 a001 98209/16692641*33385282^(11/18) 2329991416289468 a004 Fibonacci(27)*Lucas(37)/(1/2+sqrt(5)/2)^51 2329991416289468 a001 196452/5779*12752043^(2/17) 2329991416289468 a001 196418/87403803*141422324^(8/13) 2329991416289468 a001 196418/87403803*2537720636^(8/15) 2329991416289468 a001 196418/87403803*45537549124^(8/17) 2329991416289468 a001 196418/87403803*14662949395604^(8/21) 2329991416289468 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^24/Lucas(38) 2329991416289468 a001 196418/87403803*192900153618^(4/9) 2329991416289468 a001 39088169/439204*(1/2+1/2*5^(1/2))^2 2329991416289468 a001 196418/87403803*73681302247^(6/13) 2329991416289468 a001 7677619978642/32951280099 2329991416289468 a001 39088169/439204*10749957122^(1/24) 2329991416289468 a001 39088169/439204*4106118243^(1/23) 2329991416289468 a001 196418/87403803*10749957122^(1/2) 2329991416289468 a001 39088169/439204*1568397607^(1/22) 2329991416289468 a001 196418/87403803*4106118243^(12/23) 2329991416289468 a001 39088169/439204*599074578^(1/21) 2329991416289468 a001 196418/87403803*1568397607^(6/11) 2329991416289468 a001 39088169/439204*228826127^(1/20) 2329991416289468 a001 196418/87403803*599074578^(4/7) 2329991416289468 a001 39088169/439204*87403803^(1/19) 2329991416289468 a001 196418/87403803*228826127^(3/5) 2329991416289468 a001 39088169/439204*33385282^(1/18) 2329991416289469 a001 196418/228826127*141422324^(2/3) 2329991416289469 a004 Fibonacci(27)*Lucas(39)/(1/2+sqrt(5)/2)^53 2329991416289469 a001 196418/87403803*87403803^(12/19) 2329991416289469 a001 196418/28143753123*141422324^(12/13) 2329991416289469 a001 196418/6643838879*141422324^(11/13) 2329991416289469 a001 196418/1568397607*141422324^(10/13) 2329991416289469 a001 196418/370248451*141422324^(9/13) 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^26/Lucas(40) 2329991416289469 a001 102334155/439204 2329991416289469 a001 196418/228826127*73681302247^(1/2) 2329991416289469 a001 196418/228826127*10749957122^(13/24) 2329991416289469 a001 196418/228826127*4106118243^(13/23) 2329991416289469 a001 196418/228826127*1568397607^(13/22) 2329991416289469 a001 196418/228826127*599074578^(13/21) 2329991416289469 a004 Fibonacci(27)*Lucas(41)/(1/2+sqrt(5)/2)^55 2329991416289469 a001 196418/228826127*228826127^(13/20) 2329991416289469 a001 98209/299537289*17393796001^(4/7) 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^28/Lucas(42) 2329991416289469 a001 139584058864/599075421 2329991416289469 a004 Fibonacci(42)/Lucas(27)/(1/2+sqrt(5)/2)^2 2329991416289469 a001 98209/299537289*73681302247^(7/13) 2329991416289469 a001 98209/299537289*10749957122^(7/12) 2329991416289469 a001 98209/299537289*4106118243^(14/23) 2329991416289469 a001 98209/299537289*1568397607^(7/11) 2329991416289469 a004 Fibonacci(27)*Lucas(43)/(1/2+sqrt(5)/2)^57 2329991416289469 a001 98209/299537289*599074578^(2/3) 2329991416289469 a001 196418/1568397607*2537720636^(2/3) 2329991416289469 a001 196418/1568397607*45537549124^(10/17) 2329991416289469 a001 196418/1568397607*312119004989^(6/11) 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^30/Lucas(44) 2329991416289469 a001 137769300518394/591286729879 2329991416289469 a001 196418/1568397607*192900153618^(5/9) 2329991416289469 a004 Fibonacci(44)/Lucas(27)/(1/2+sqrt(5)/2)^4 2329991416289469 a001 196418/1568397607*28143753123^(3/5) 2329991416289469 a001 196418/1568397607*10749957122^(5/8) 2329991416289469 a001 196418/1568397607*4106118243^(15/23) 2329991416289469 a004 Fibonacci(27)*Lucas(45)/(1/2+sqrt(5)/2)^59 2329991416289469 a001 196418/505019158607*2537720636^(14/15) 2329991416289469 a001 98209/96450076809*2537720636^(8/9) 2329991416289469 a001 196418/119218851371*2537720636^(13/15) 2329991416289469 a001 196418/1568397607*1568397607^(15/22) 2329991416289469 a001 196418/28143753123*2537720636^(4/5) 2329991416289469 a001 196418/17393796001*2537720636^(7/9) 2329991416289469 a001 196418/6643838879*2537720636^(11/15) 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^32/Lucas(46) 2329991416289469 a001 180342355681727/774004377960 2329991416289469 a004 Fibonacci(46)/Lucas(27)/(1/2+sqrt(5)/2)^6 2329991416289469 a001 196418/4106118243*73681302247^(8/13) 2329991416289469 a001 196418/4106118243*10749957122^(2/3) 2329991416289469 a004 Fibonacci(27)*Lucas(47)/(1/2+sqrt(5)/2)^61 2329991416289469 a001 196418/4106118243*4106118243^(16/23) 2329991416289469 a001 98209/5374978561*45537549124^(2/3) 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^34/Lucas(48) 2329991416289469 a001 944284833571968/4052739537881 2329991416289469 a004 Fibonacci(48)/Lucas(27)/(1/2+sqrt(5)/2)^8 2329991416289469 a004 Fibonacci(27)*Lucas(49)/(1/2+sqrt(5)/2)^63 2329991416289469 a001 196418/505019158607*17393796001^(6/7) 2329991416289469 a001 98209/5374978561*10749957122^(17/24) 2329991416289469 a001 196418/28143753123*45537549124^(12/17) 2329991416289469 a001 196418/28143753123*14662949395604^(4/7) 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^36/Lucas(50) 2329991416289469 a001 196418/28143753123*192900153618^(2/3) 2329991416289469 a004 Fibonacci(50)/Lucas(27)/(1/2+sqrt(5)/2)^10 2329991416289469 a001 196418/28143753123*73681302247^(9/13) 2329991416289469 a004 Fibonacci(27)*Lucas(51)/(1/2+sqrt(5)/2)^65 2329991416289469 a001 196418/9062201101803*45537549124^(16/17) 2329991416289469 a001 196418/2139295485799*45537549124^(15/17) 2329991416289469 a001 196418/505019158607*45537549124^(14/17) 2329991416289469 a001 196418/119218851371*45537549124^(13/17) 2329991416289469 a001 196418/73681302247*817138163596^(2/3) 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^38/Lucas(52) 2329991416289469 a004 Fibonacci(52)/Lucas(27)/(1/2+sqrt(5)/2)^12 2329991416289469 a004 Fibonacci(27)*Lucas(53)/(1/2+sqrt(5)/2)^67 2329991416289469 a001 98209/96450076809*312119004989^(8/11) 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^40/Lucas(54) 2329991416289469 a001 98209/96450076809*23725150497407^(5/8) 2329991416289469 a004 Fibonacci(27)*Lucas(55)/(1/2+sqrt(5)/2)^69 2329991416289469 a001 196418/1322157322203*312119004989^(4/5) 2329991416289469 a001 196418/2139295485799*312119004989^(9/11) 2329991416289469 a001 196418/505019158607*817138163596^(14/19) 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^42/Lucas(56) 2329991416289469 a004 Fibonacci(27)*Lucas(57)/(1/2+sqrt(5)/2)^71 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^44/Lucas(58) 2329991416289469 a001 196418/1322157322203*23725150497407^(11/16) 2329991416289469 a004 Fibonacci(27)*Lucas(59)/(1/2+sqrt(5)/2)^73 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^46/Lucas(60) 2329991416289469 a004 Fibonacci(27)*Lucas(61)/(1/2+sqrt(5)/2)^75 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^48/Lucas(62) 2329991416289469 a004 Fibonacci(27)*Lucas(63)/(1/2+sqrt(5)/2)^77 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^50/Lucas(64) 2329991416289469 a004 Fibonacci(27)*Lucas(65)/(1/2+sqrt(5)/2)^79 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^52/Lucas(66) 2329991416289469 a004 Fibonacci(27)*Lucas(67)/(1/2+sqrt(5)/2)^81 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^54/Lucas(68) 2329991416289469 a004 Fibonacci(27)*Lucas(69)/(1/2+sqrt(5)/2)^83 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^56/Lucas(70) 2329991416289469 a004 Fibonacci(27)*Lucas(71)/(1/2+sqrt(5)/2)^85 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^58/Lucas(72) 2329991416289469 a004 Fibonacci(27)*Lucas(73)/(1/2+sqrt(5)/2)^87 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^60/Lucas(74) 2329991416289469 a004 Fibonacci(27)*Lucas(75)/(1/2+sqrt(5)/2)^89 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^62/Lucas(76) 2329991416289469 a004 Fibonacci(27)*Lucas(77)/(1/2+sqrt(5)/2)^91 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^64/Lucas(78) 2329991416289469 a004 Fibonacci(27)*Lucas(79)/(1/2+sqrt(5)/2)^93 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^66/Lucas(80) 2329991416289469 a004 Fibonacci(27)*Lucas(81)/(1/2+sqrt(5)/2)^95 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^68/Lucas(82) 2329991416289469 a004 Fibonacci(27)*Lucas(83)/(1/2+sqrt(5)/2)^97 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^70/Lucas(84) 2329991416289469 a004 Fibonacci(27)*Lucas(85)/(1/2+sqrt(5)/2)^99 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^72/Lucas(86) 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^74/Lucas(88) 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^76/Lucas(90) 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^78/Lucas(92) 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^80/Lucas(94) 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^82/Lucas(96) 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^84/Lucas(98) 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^85/Lucas(99) 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^86/Lucas(100) 2329991416289469 a004 Fibonacci(27)*Lucas(1)/(1/2+sqrt(5)/2)^14 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^83/Lucas(97) 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^81/Lucas(95) 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^79/Lucas(93) 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^77/Lucas(91) 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^75/Lucas(89) 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^73/Lucas(87) 2329991416289469 a004 Fibonacci(27)*Lucas(86)/(1/2+sqrt(5)/2)^100 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^71/Lucas(85) 2329991416289469 a004 Fibonacci(27)*Lucas(84)/(1/2+sqrt(5)/2)^98 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^69/Lucas(83) 2329991416289469 a004 Fibonacci(27)*Lucas(82)/(1/2+sqrt(5)/2)^96 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^67/Lucas(81) 2329991416289469 a004 Fibonacci(27)*Lucas(80)/(1/2+sqrt(5)/2)^94 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^65/Lucas(79) 2329991416289469 a004 Fibonacci(27)*Lucas(78)/(1/2+sqrt(5)/2)^92 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^63/Lucas(77) 2329991416289469 a004 Fibonacci(27)*Lucas(76)/(1/2+sqrt(5)/2)^90 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^61/Lucas(75) 2329991416289469 a004 Fibonacci(27)*Lucas(74)/(1/2+sqrt(5)/2)^88 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^59/Lucas(73) 2329991416289469 a004 Fibonacci(27)*Lucas(72)/(1/2+sqrt(5)/2)^86 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^57/Lucas(71) 2329991416289469 a004 Fibonacci(27)*Lucas(70)/(1/2+sqrt(5)/2)^84 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^55/Lucas(69) 2329991416289469 a004 Fibonacci(27)*Lucas(68)/(1/2+sqrt(5)/2)^82 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^53/Lucas(67) 2329991416289469 a004 Fibonacci(27)*Lucas(66)/(1/2+sqrt(5)/2)^80 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^51/Lucas(65) 2329991416289469 a004 Fibonacci(27)*Lucas(64)/(1/2+sqrt(5)/2)^78 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^49/Lucas(63) 2329991416289469 a004 Fibonacci(27)*Lucas(62)/(1/2+sqrt(5)/2)^76 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^47/Lucas(61) 2329991416289469 a004 Fibonacci(27)*Lucas(60)/(1/2+sqrt(5)/2)^74 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^45/Lucas(59) 2329991416289469 a004 Fibonacci(27)*Lucas(58)/(1/2+sqrt(5)/2)^72 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^43/Lucas(57) 2329991416289469 a001 98209/7331474697802*505019158607^(7/8) 2329991416289469 a004 Fibonacci(27)*Lucas(56)/(1/2+sqrt(5)/2)^70 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^41/Lucas(55) 2329991416289469 a001 196418/505019158607*192900153618^(7/9) 2329991416289469 a001 196418/2139295485799*192900153618^(5/6) 2329991416289469 a004 Fibonacci(56)/Lucas(27)/(1/2+sqrt(5)/2)^16 2329991416289469 a004 Fibonacci(58)/Lucas(27)/(1/2+sqrt(5)/2)^18 2329991416289469 a004 Fibonacci(60)/Lucas(27)/(1/2+sqrt(5)/2)^20 2329991416289469 a004 Fibonacci(62)/Lucas(27)/(1/2+sqrt(5)/2)^22 2329991416289469 a004 Fibonacci(64)/Lucas(27)/(1/2+sqrt(5)/2)^24 2329991416289469 a004 Fibonacci(66)/Lucas(27)/(1/2+sqrt(5)/2)^26 2329991416289469 a004 Fibonacci(68)/Lucas(27)/(1/2+sqrt(5)/2)^28 2329991416289469 a004 Fibonacci(70)/Lucas(27)/(1/2+sqrt(5)/2)^30 2329991416289469 a004 Fibonacci(72)/Lucas(27)/(1/2+sqrt(5)/2)^32 2329991416289469 a004 Fibonacci(74)/Lucas(27)/(1/2+sqrt(5)/2)^34 2329991416289469 a004 Fibonacci(76)/Lucas(27)/(1/2+sqrt(5)/2)^36 2329991416289469 a004 Fibonacci(78)/Lucas(27)/(1/2+sqrt(5)/2)^38 2329991416289469 a004 Fibonacci(80)/Lucas(27)/(1/2+sqrt(5)/2)^40 2329991416289469 a004 Fibonacci(82)/Lucas(27)/(1/2+sqrt(5)/2)^42 2329991416289469 a004 Fibonacci(84)/Lucas(27)/(1/2+sqrt(5)/2)^44 2329991416289469 a004 Fibonacci(86)/Lucas(27)/(1/2+sqrt(5)/2)^46 2329991416289469 a004 Fibonacci(88)/Lucas(27)/(1/2+sqrt(5)/2)^48 2329991416289469 a004 Fibonacci(90)/Lucas(27)/(1/2+sqrt(5)/2)^50 2329991416289469 a004 Fibonacci(92)/Lucas(27)/(1/2+sqrt(5)/2)^52 2329991416289469 a004 Fibonacci(94)/Lucas(27)/(1/2+sqrt(5)/2)^54 2329991416289469 a004 Fibonacci(96)/Lucas(27)/(1/2+sqrt(5)/2)^56 2329991416289469 a004 Fibonacci(100)/Lucas(27)/(1/2+sqrt(5)/2)^60 2329991416289469 a004 Fibonacci(27)*Lucas(54)/(1/2+sqrt(5)/2)^68 2329991416289469 a004 Fibonacci(98)/Lucas(27)/(1/2+sqrt(5)/2)^58 2329991416289469 a004 Fibonacci(97)/Lucas(27)/(1/2+sqrt(5)/2)^57 2329991416289469 a004 Fibonacci(99)/Lucas(27)/(1/2+sqrt(5)/2)^59 2329991416289469 a004 Fibonacci(95)/Lucas(27)/(1/2+sqrt(5)/2)^55 2329991416289469 a004 Fibonacci(93)/Lucas(27)/(1/2+sqrt(5)/2)^53 2329991416289469 a004 Fibonacci(91)/Lucas(27)/(1/2+sqrt(5)/2)^51 2329991416289469 a004 Fibonacci(89)/Lucas(27)/(1/2+sqrt(5)/2)^49 2329991416289469 a004 Fibonacci(87)/Lucas(27)/(1/2+sqrt(5)/2)^47 2329991416289469 a004 Fibonacci(85)/Lucas(27)/(1/2+sqrt(5)/2)^45 2329991416289469 a004 Fibonacci(83)/Lucas(27)/(1/2+sqrt(5)/2)^43 2329991416289469 a004 Fibonacci(81)/Lucas(27)/(1/2+sqrt(5)/2)^41 2329991416289469 a004 Fibonacci(79)/Lucas(27)/(1/2+sqrt(5)/2)^39 2329991416289469 a004 Fibonacci(77)/Lucas(27)/(1/2+sqrt(5)/2)^37 2329991416289469 a004 Fibonacci(75)/Lucas(27)/(1/2+sqrt(5)/2)^35 2329991416289469 a004 Fibonacci(73)/Lucas(27)/(1/2+sqrt(5)/2)^33 2329991416289469 a004 Fibonacci(71)/Lucas(27)/(1/2+sqrt(5)/2)^31 2329991416289469 a004 Fibonacci(69)/Lucas(27)/(1/2+sqrt(5)/2)^29 2329991416289469 a004 Fibonacci(67)/Lucas(27)/(1/2+sqrt(5)/2)^27 2329991416289469 a004 Fibonacci(65)/Lucas(27)/(1/2+sqrt(5)/2)^25 2329991416289469 a004 Fibonacci(63)/Lucas(27)/(1/2+sqrt(5)/2)^23 2329991416289469 a004 Fibonacci(61)/Lucas(27)/(1/2+sqrt(5)/2)^21 2329991416289469 a004 Fibonacci(59)/Lucas(27)/(1/2+sqrt(5)/2)^19 2329991416289469 a004 Fibonacci(57)/Lucas(27)/(1/2+sqrt(5)/2)^17 2329991416289469 a004 Fibonacci(55)/Lucas(27)/(1/2+sqrt(5)/2)^15 2329991416289469 a001 196418/119218851371*14662949395604^(13/21) 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^39/Lucas(53) 2329991416289469 a001 196418/119218851371*192900153618^(13/18) 2329991416289469 a004 Fibonacci(53)/Lucas(27)/(1/2+sqrt(5)/2)^13 2329991416289469 a001 98209/96450076809*73681302247^(10/13) 2329991416289469 a001 196418/1322157322203*73681302247^(11/13) 2329991416289469 a001 196418/9062201101803*73681302247^(12/13) 2329991416289469 a004 Fibonacci(27)*Lucas(52)/(1/2+sqrt(5)/2)^66 2329991416289469 a001 196418/119218851371*73681302247^(3/4) 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^37/Lucas(51) 2329991416289469 a004 Fibonacci(51)/Lucas(27)/(1/2+sqrt(5)/2)^11 2329991416289469 a001 196418/17393796001*17393796001^(5/7) 2329991416289469 a001 98209/96450076809*28143753123^(4/5) 2329991416289469 a001 196418/2139295485799*28143753123^(9/10) 2329991416289469 a004 Fibonacci(27)*Lucas(50)/(1/2+sqrt(5)/2)^64 2329991416289469 a001 196418/17393796001*312119004989^(7/11) 2329991416289469 a001 196418/17393796001*14662949395604^(5/9) 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^35/Lucas(49) 2329991416289469 a001 196418/17393796001*505019158607^(5/8) 2329991416289469 a004 Fibonacci(49)/Lucas(27)/(1/2+sqrt(5)/2)^9 2329991416289469 a001 196418/17393796001*28143753123^(7/10) 2329991416289469 a001 196418/28143753123*10749957122^(3/4) 2329991416289469 a001 196418/73681302247*10749957122^(19/24) 2329991416289469 a001 196418/119218851371*10749957122^(13/16) 2329991416289469 a001 98209/96450076809*10749957122^(5/6) 2329991416289469 a001 196418/505019158607*10749957122^(7/8) 2329991416289469 a001 196418/1322157322203*10749957122^(11/12) 2329991416289469 a001 196418/2139295485799*10749957122^(15/16) 2329991416289469 a001 98209/1730726404001*10749957122^(23/24) 2329991416289469 a004 Fibonacci(27)*Lucas(48)/(1/2+sqrt(5)/2)^62 2329991416289469 a001 196418/6643838879*45537549124^(11/17) 2329991416289469 a001 196418/6643838879*312119004989^(3/5) 2329991416289469 a001 196418/6643838879*817138163596^(11/19) 2329991416289469 a001 196418/6643838879*14662949395604^(11/21) 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^33/Lucas(47) 2329991416289469 a001 196418/6643838879*192900153618^(11/18) 2329991416289469 a004 Fibonacci(47)/Lucas(27)/(1/2+sqrt(5)/2)^7 2329991416289469 a001 196418/6643838879*10749957122^(11/16) 2329991416289469 a001 98209/5374978561*4106118243^(17/23) 2329991416289469 a001 196418/28143753123*4106118243^(18/23) 2329991416289469 a001 196418/73681302247*4106118243^(19/23) 2329991416289469 a001 98209/96450076809*4106118243^(20/23) 2329991416289469 a001 196418/505019158607*4106118243^(21/23) 2329991416289469 a001 196418/1322157322203*4106118243^(22/23) 2329991416289469 a004 Fibonacci(27)*Lucas(46)/(1/2+sqrt(5)/2)^60 2329991416289469 a001 222915410845060/956722026041 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^31/Lucas(45) 2329991416289469 a004 Fibonacci(45)/Lucas(27)/(1/2+sqrt(5)/2)^5 2329991416289469 a001 196418/4106118243*1568397607^(8/11) 2329991416289469 a001 98209/5374978561*1568397607^(17/22) 2329991416289469 a001 196418/6643838879*1568397607^(3/4) 2329991416289469 a001 196418/28143753123*1568397607^(9/11) 2329991416289469 a001 196418/73681302247*1568397607^(19/22) 2329991416289469 a001 98209/96450076809*1568397607^(10/11) 2329991416289469 a001 196418/505019158607*1568397607^(21/22) 2329991416289469 a004 Fibonacci(27)*Lucas(44)/(1/2+sqrt(5)/2)^58 2329991416289469 a001 42573055163333/182717648081 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^29/Lucas(43) 2329991416289469 a001 196418/969323029*1322157322203^(1/2) 2329991416289469 a004 Fibonacci(43)/Lucas(27)/(1/2+sqrt(5)/2)^3 2329991416289469 a001 196418/1568397607*599074578^(5/7) 2329991416289469 a001 196418/4106118243*599074578^(16/21) 2329991416289469 a001 196418/6643838879*599074578^(11/14) 2329991416289469 a001 98209/5374978561*599074578^(17/21) 2329991416289469 a001 196418/17393796001*599074578^(5/6) 2329991416289469 a001 196418/28143753123*599074578^(6/7) 2329991416289469 a001 196418/73681302247*599074578^(19/21) 2329991416289469 a001 196418/119218851371*599074578^(13/14) 2329991416289469 a001 98209/96450076809*599074578^(20/21) 2329991416289469 a004 Fibonacci(27)*Lucas(42)/(1/2+sqrt(5)/2)^56 2329991416289469 a001 196418/370248451*2537720636^(3/5) 2329991416289469 a001 196418/370248451*45537549124^(9/17) 2329991416289469 a001 32522920134938/139583862445 2329991416289469 a001 196418/370248451*14662949395604^(3/7) 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^27/Lucas(41) 2329991416289469 a001 196418/370248451*192900153618^(1/2) 2329991416289469 a004 Fibonacci(41)/Lucas(27)/(1/2+sqrt(5)/2) 2329991416289469 a001 196418/370248451*10749957122^(9/16) 2329991416289469 a001 196418/370248451*599074578^(9/14) 2329991416289469 a001 98209/299537289*228826127^(7/10) 2329991416289469 a001 196418/1568397607*228826127^(3/4) 2329991416289469 a001 196418/4106118243*228826127^(4/5) 2329991416289469 a001 98209/5374978561*228826127^(17/20) 2329991416289469 a001 196418/17393796001*228826127^(7/8) 2329991416289469 a001 196418/28143753123*228826127^(9/10) 2329991416289469 a001 196418/73681302247*228826127^(19/20) 2329991416289469 a004 Fibonacci(27)*Lucas(40)/(1/2+sqrt(5)/2)^54 2329991416289469 a001 98209/70711162*2537720636^(5/9) 2329991416289469 a001 12422650078148/53316291173 2329991416289469 a001 98209/70711162*312119004989^(5/11) 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^25/Lucas(39) 2329991416289469 a001 98209/70711162*3461452808002^(5/12) 2329991416289469 a001 31622993/439204+31622993/439204*5^(1/2) 2329991416289469 a001 98209/70711162*28143753123^(1/2) 2329991416289469 a001 98209/70711162*228826127^(5/8) 2329991416289469 a001 196418/228826127*87403803^(13/19) 2329991416289469 a001 98209/299537289*87403803^(14/19) 2329991416289469 a001 196418/1568397607*87403803^(15/19) 2329991416289469 a001 196418/4106118243*87403803^(16/19) 2329991416289469 a001 98209/5374978561*87403803^(17/19) 2329991416289469 a001 196418/28143753123*87403803^(18/19) 2329991416289469 a004 Fibonacci(27)*Lucas(38)/(1/2+sqrt(5)/2)^52 2329991416289469 a001 39088169/439204*12752043^(1/17) 2329991416289469 a001 24157817/439204*141422324^(1/13) 2329991416289469 a001 24157817/439204*2537720636^(1/15) 2329991416289469 a001 2372515049753/10182505537 2329991416289469 a001 24157817/439204*45537549124^(1/17) 2329991416289469 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^23/Lucas(37) 2329991416289469 a001 24157817/439204*14662949395604^(1/21) 2329991416289469 a001 24157817/439204*(1/2+1/2*5^(1/2))^3 2329991416289469 a001 24157817/439204*192900153618^(1/18) 2329991416289469 a001 24157817/439204*10749957122^(1/16) 2329991416289469 a001 196418/54018521*4106118243^(1/2) 2329991416289469 a001 24157817/439204*599074578^(1/14) 2329991416289470 a001 24157817/439204*33385282^(1/12) 2329991416289470 a001 196418/87403803*33385282^(2/3) 2329991416289470 a001 196418/228826127*33385282^(13/18) 2329991416289470 a001 196418/370248451*33385282^(3/4) 2329991416289470 a001 98209/299537289*33385282^(7/9) 2329991416289470 a001 196418/1568397607*33385282^(5/6) 2329991416289471 a001 196418/4106118243*33385282^(8/9) 2329991416289471 a001 196418/6643838879*33385282^(11/12) 2329991416289471 a001 98209/5374978561*33385282^(17/18) 2329991416289471 a004 Fibonacci(27)*Lucas(36)/(1/2+sqrt(5)/2)^50 2329991416289471 a001 196418/20633239*20633239^(3/5) 2329991416289473 a001 5702887/439204*4870847^(3/16) 2329991416289473 a001 9227465/439204*20633239^(1/7) 2329991416289474 a001 196418/20633239*141422324^(7/13) 2329991416289474 a001 196418/20633239*2537720636^(7/15) 2329991416289474 a001 9227465/439204*2537720636^(1/9) 2329991416289474 a001 139418478490/598364773 2329991416289474 a001 196418/20633239*17393796001^(3/7) 2329991416289474 a001 196418/20633239*45537549124^(7/17) 2329991416289474 a001 196418/20633239*14662949395604^(1/3) 2329991416289474 a001 196418/20633239*(1/2+1/2*5^(1/2))^21 2329991416289474 a001 196418/20633239*192900153618^(7/18) 2329991416289474 a001 9227465/439204*312119004989^(1/11) 2329991416289474 a001 9227465/439204*(1/2+1/2*5^(1/2))^5 2329991416289474 a001 9227465/439204*28143753123^(1/10) 2329991416289474 a001 196418/20633239*10749957122^(7/16) 2329991416289474 a001 196418/20633239*599074578^(1/2) 2329991416289474 a001 9227465/439204*228826127^(1/8) 2329991416289475 a001 39088169/439204*4870847^(1/16) 2329991416289475 a001 196418/20633239*33385282^(7/12) 2329991416289476 a001 98209/16692641*12752043^(11/17) 2329991416289478 a001 196418/87403803*12752043^(12/17) 2329991416289479 a001 196452/5779*4870847^(1/8) 2329991416289480 a001 196418/228826127*12752043^(13/17) 2329991416289480 a001 98209/299537289*12752043^(14/17) 2329991416289481 a001 196418/1568397607*12752043^(15/17) 2329991416289482 a001 196418/4106118243*12752043^(16/17) 2329991416289483 a004 Fibonacci(27)*Lucas(34)/(1/2+sqrt(5)/2)^48 2329991416289505 a001 1762289/219602*20633239^(1/5) 2329991416289506 a001 692290561604/2971215073 2329991416289506 a001 1762289/219602*17393796001^(1/7) 2329991416289506 a001 98209/3940598*(1/2+1/2*5^(1/2))^19 2329991416289506 a001 1762289/219602*14662949395604^(1/9) 2329991416289506 a001 1762289/219602*(1/2+1/2*5^(1/2))^7 2329991416289506 a001 1762289/219602*599074578^(1/6) 2329991416289506 a001 98209/3940598*87403803^(1/2) 2329991416289513 a001 39088169/439204*1860498^(1/15) 2329991416289516 a001 196418/12752043*4870847^(5/8) 2329991416289534 a001 98209/16692641*4870847^(11/16) 2329991416289537 a001 24157817/439204*1860498^(1/10) 2329991416289539 a001 24157817/12752043*271443^(5/13) 2329991416289542 a001 196418/87403803*4870847^(3/4) 2329991416289548 a001 196418/228826127*4870847^(13/16) 2329991416289550 a001 2178309/439204*1860498^(4/15) 2329991416289550 a001 31622993/16692641*271443^(5/13) 2329991416289552 a001 165580141/87403803*271443^(5/13) 2329991416289552 a001 433494437/228826127*271443^(5/13) 2329991416289552 a001 567451585/299537289*271443^(5/13) 2329991416289552 a001 2971215073/1568397607*271443^(5/13) 2329991416289552 a001 7778742049/4106118243*271443^(5/13) 2329991416289552 a001 10182505537/5374978561*271443^(5/13) 2329991416289552 a001 53316291173/28143753123*271443^(5/13) 2329991416289552 a001 139583862445/73681302247*271443^(5/13) 2329991416289552 a001 182717648081/96450076809*271443^(5/13) 2329991416289552 a001 956722026041/505019158607*271443^(5/13) 2329991416289552 a001 10610209857723/5600748293801*271443^(5/13) 2329991416289552 a001 591286729879/312119004989*271443^(5/13) 2329991416289552 a001 225851433717/119218851371*271443^(5/13) 2329991416289552 a001 21566892818/11384387281*271443^(5/13) 2329991416289552 a001 32951280099/17393796001*271443^(5/13) 2329991416289552 a001 12586269025/6643838879*271443^(5/13) 2329991416289552 a001 1201881744/634430159*271443^(5/13) 2329991416289552 a001 1836311903/969323029*271443^(5/13) 2329991416289552 a001 701408733/370248451*271443^(5/13) 2329991416289553 a001 66978574/35355581*271443^(5/13) 2329991416289553 a001 102334155/54018521*271443^(5/13) 2329991416289555 a001 98209/299537289*4870847^(7/8) 2329991416289556 a001 196452/5779*1860498^(2/15) 2329991416289558 a001 39088169/20633239*271443^(5/13) 2329991416289561 a001 196418/1568397607*4870847^(15/16) 2329991416289567 a004 Fibonacci(27)*Lucas(32)/(1/2+sqrt(5)/2)^46 2329991416289586 a001 9227465/439204*1860498^(1/6) 2329991416289588 a001 3732588/1970299*271443^(5/13) 2329991416289589 a001 5702887/439204*1860498^(1/5) 2329991416289716 a001 1346269/439204*7881196^(3/11) 2329991416289726 a001 1346269/439204*141422324^(3/13) 2329991416289726 a001 7777396013/33379505 2329991416289726 a001 1346269/439204*2537720636^(1/5) 2329991416289726 a001 196418/3010349*45537549124^(1/3) 2329991416289726 a001 1346269/439204*45537549124^(3/17) 2329991416289726 a001 196418/3010349*(1/2+1/2*5^(1/2))^17 2329991416289726 a001 1346269/439204*817138163596^(3/19) 2329991416289726 a001 1346269/439204*14662949395604^(1/7) 2329991416289726 a001 1346269/439204*(1/2+1/2*5^(1/2))^9 2329991416289726 a001 1346269/439204*192900153618^(1/6) 2329991416289726 a001 1346269/439204*10749957122^(3/16) 2329991416289726 a001 1346269/439204*599074578^(3/14) 2329991416289726 a001 1346269/439204*33385282^(1/4) 2329991416289733 a001 196418/3010349*12752043^(1/2) 2329991416289774 a001 196418/4870847*1860498^(3/5) 2329991416289795 a001 5702887/3010349*271443^(5/13) 2329991416289798 a001 39088169/439204*710647^(1/14) 2329991416289903 a001 196418/12752043*1860498^(2/3) 2329991416289928 a001 1346269/439204*1860498^(3/10) 2329991416289945 a001 196418/20633239*1860498^(7/10) 2329991416289960 a001 98209/16692641*1860498^(11/15) 2329991416290007 a001 196418/87403803*1860498^(4/5) 2329991416290030 a001 98209/70711162*1860498^(5/6) 2329991416290052 a001 196418/228826127*1860498^(13/15) 2329991416290075 a001 196418/370248451*1860498^(9/10) 2329991416290097 a001 98209/299537289*1860498^(14/15) 2329991416290126 a001 196452/5779*710647^(1/7) 2329991416290142 a004 Fibonacci(27)*Lucas(30)/(1/2+sqrt(5)/2)^44 2329991416290443 a001 5702887/439204*710647^(3/14) 2329991416290443 a001 208010/109801*710647^(5/14) 2329991416290660 a001 1762289/219602*710647^(1/4) 2329991416290689 a001 2178309/439204*710647^(2/7) 2329991416290838 a001 63245986/710647*103682^(1/12) 2329991416290908 a001 5702887/271443*103682^(5/24) 2329991416291214 a001 196418/1149851*7881196^(5/11) 2329991416291217 a001 2178309/1149851*271443^(5/13) 2329991416291218 a001 514229/439204*7881196^(1/3) 2329991416291229 a001 196418/1149851*20633239^(3/7) 2329991416291231 a001 196418/1149851*141422324^(5/13) 2329991416291231 a001 101003831722/433494437 2329991416291231 a001 196418/1149851*2537720636^(1/3) 2329991416291231 a001 196418/1149851*45537549124^(5/17) 2329991416291231 a001 196418/1149851*312119004989^(3/11) 2329991416291231 a001 196418/1149851*14662949395604^(5/21) 2329991416291231 a001 196418/1149851*(1/2+1/2*5^(1/2))^15 2329991416291231 a001 196418/1149851*192900153618^(5/18) 2329991416291231 a001 514229/439204*312119004989^(1/5) 2329991416291231 a001 514229/439204*(1/2+1/2*5^(1/2))^11 2329991416291231 a001 196418/1149851*28143753123^(3/10) 2329991416291231 a001 196418/1149851*10749957122^(5/16) 2329991416291231 a001 514229/439204*1568397607^(1/4) 2329991416291231 a001 196418/1149851*599074578^(5/14) 2329991416291231 a001 196418/1149851*228826127^(3/8) 2329991416291232 a001 196418/1149851*33385282^(5/12) 2329991416291432 a001 98209/930249*710647^(4/7) 2329991416291566 a001 317811/1149851*271443^(7/13) 2329991416291568 a001 196418/1149851*1860498^(1/2) 2329991416291569 a001 1346269/1860498*271443^(6/13) 2329991416291855 a001 416020/930249*271443^(1/2) 2329991416291901 a001 39088169/439204*271443^(1/13) 2329991416291924 a001 3524578/4870847*271443^(6/13) 2329991416291976 a001 9227465/12752043*271443^(6/13) 2329991416291984 a001 24157817/33385282*271443^(6/13) 2329991416291985 a001 63245986/87403803*271443^(6/13) 2329991416291985 a001 165580141/228826127*271443^(6/13) 2329991416291985 a001 433494437/599074578*271443^(6/13) 2329991416291985 a001 1134903170/1568397607*271443^(6/13) 2329991416291985 a001 2971215073/4106118243*271443^(6/13) 2329991416291985 a001 7778742049/10749957122*271443^(6/13) 2329991416291985 a001 20365011074/28143753123*271443^(6/13) 2329991416291985 a001 53316291173/73681302247*271443^(6/13) 2329991416291985 a001 139583862445/192900153618*271443^(6/13) 2329991416291985 a001 365435296162/505019158607*271443^(6/13) 2329991416291985 a001 10610209857723/14662949395604*271443^(6/13) 2329991416291985 a001 225851433717/312119004989*271443^(6/13) 2329991416291985 a001 86267571272/119218851371*271443^(6/13) 2329991416291985 a001 32951280099/45537549124*271443^(6/13) 2329991416291985 a001 12586269025/17393796001*271443^(6/13) 2329991416291985 a001 4807526976/6643838879*271443^(6/13) 2329991416291985 a001 1836311903/2537720636*271443^(6/13) 2329991416291985 a001 701408733/969323029*271443^(6/13) 2329991416291985 a001 267914296/370248451*271443^(6/13) 2329991416291985 a001 102334155/141422324*271443^(6/13) 2329991416291985 a001 39088169/54018521*271443^(6/13) 2329991416291988 a001 14930352/20633239*271443^(6/13) 2329991416292008 a001 5702887/7881196*271443^(6/13) 2329991416292144 a001 2178309/3010349*271443^(6/13) 2329991416292336 a001 196418/4870847*710647^(9/14) 2329991416292493 a001 317811/3010349*271443^(8/13) 2329991416292750 a001 196418/12752043*710647^(5/7) 2329991416292934 a001 196418/20633239*710647^(3/4) 2329991416293005 a001 2178309/4870847*271443^(1/2) 2329991416293074 a001 832040/1149851*271443^(6/13) 2329991416293092 a001 98209/16692641*710647^(11/14) 2329991416293173 a001 5702887/12752043*271443^(1/2) 2329991416293197 a001 7465176/16692641*271443^(1/2) 2329991416293201 a001 39088169/87403803*271443^(1/2) 2329991416293201 a001 102334155/228826127*271443^(1/2) 2329991416293201 a001 133957148/299537289*271443^(1/2) 2329991416293201 a001 701408733/1568397607*271443^(1/2) 2329991416293201 a001 1836311903/4106118243*271443^(1/2) 2329991416293201 a001 2403763488/5374978561*271443^(1/2) 2329991416293201 a001 12586269025/28143753123*271443^(1/2) 2329991416293201 a001 32951280099/73681302247*271443^(1/2) 2329991416293201 a001 43133785636/96450076809*271443^(1/2) 2329991416293201 a001 225851433717/505019158607*271443^(1/2) 2329991416293201 a001 10610209857723/23725150497407*271443^(1/2) 2329991416293201 a001 182717648081/408569081798*271443^(1/2) 2329991416293201 a001 139583862445/312119004989*271443^(1/2) 2329991416293201 a001 53316291173/119218851371*271443^(1/2) 2329991416293201 a001 10182505537/22768774562*271443^(1/2) 2329991416293201 a001 7778742049/17393796001*271443^(1/2) 2329991416293201 a001 2971215073/6643838879*271443^(1/2) 2329991416293201 a001 567451585/1268860318*271443^(1/2) 2329991416293201 a001 433494437/969323029*271443^(1/2) 2329991416293201 a001 165580141/370248451*271443^(1/2) 2329991416293201 a001 31622993/70711162*271443^(1/2) 2329991416293203 a001 24157817/54018521*271443^(1/2) 2329991416293212 a001 9227465/20633239*271443^(1/2) 2329991416293276 a001 1762289/3940598*271443^(1/2) 2329991416293423 a001 196418/87403803*710647^(6/7) 2329991416293715 a001 1346269/3010349*271443^(1/2) 2329991416293753 a001 196418/228826127*710647^(13/14) 2329991416293850 a001 75025/4870847*167761^(4/5) 2329991416294001 a001 832040/3010349*271443^(7/13) 2329991416294082 a004 Fibonacci(27)*Lucas(28)/(1/2+sqrt(5)/2)^42 2329991416294332 a001 196452/5779*271443^(2/13) 2329991416294357 a001 2178309/7881196*271443^(7/13) 2329991416294409 a001 5702887/20633239*271443^(7/13) 2329991416294416 a001 14930352/54018521*271443^(7/13) 2329991416294417 a001 39088169/141422324*271443^(7/13) 2329991416294417 a001 102334155/370248451*271443^(7/13) 2329991416294417 a001 267914296/969323029*271443^(7/13) 2329991416294417 a001 701408733/2537720636*271443^(7/13) 2329991416294417 a001 1836311903/6643838879*271443^(7/13) 2329991416294417 a001 4807526976/17393796001*271443^(7/13) 2329991416294417 a001 12586269025/45537549124*271443^(7/13) 2329991416294417 a001 32951280099/119218851371*271443^(7/13) 2329991416294417 a001 86267571272/312119004989*271443^(7/13) 2329991416294417 a001 225851433717/817138163596*271443^(7/13) 2329991416294417 a001 139583862445/505019158607*271443^(7/13) 2329991416294417 a001 53316291173/192900153618*271443^(7/13) 2329991416294417 a001 20365011074/73681302247*271443^(7/13) 2329991416294417 a001 7778742049/28143753123*271443^(7/13) 2329991416294417 a001 2971215073/10749957122*271443^(7/13) 2329991416294417 a001 1134903170/4106118243*271443^(7/13) 2329991416294417 a001 433494437/1568397607*271443^(7/13) 2329991416294417 a001 165580141/599074578*271443^(7/13) 2329991416294418 a001 63245986/228826127*271443^(7/13) 2329991416294418 a001 24157817/87403803*271443^(7/13) 2329991416294421 a001 9227465/33385282*271443^(7/13) 2329991416294441 a001 3524578/12752043*271443^(7/13) 2329991416294576 a001 1346269/4870847*271443^(7/13) 2329991416294706 a001 317811/7881196*271443^(9/13) 2329991416294779 a001 165580141/1860498*103682^(1/12) 2329991416295354 a001 433494437/4870847*103682^(1/12) 2329991416295438 a001 1134903170/12752043*103682^(1/12) 2329991416295450 a001 2971215073/33385282*103682^(1/12) 2329991416295452 a001 7778742049/87403803*103682^(1/12) 2329991416295452 a001 20365011074/228826127*103682^(1/12) 2329991416295452 a001 53316291173/599074578*103682^(1/12) 2329991416295452 a001 139583862445/1568397607*103682^(1/12) 2329991416295452 a001 365435296162/4106118243*103682^(1/12) 2329991416295452 a001 956722026041/10749957122*103682^(1/12) 2329991416295452 a001 2504730781961/28143753123*103682^(1/12) 2329991416295452 a001 6557470319842/73681302247*103682^(1/12) 2329991416295452 a001 10610209857723/119218851371*103682^(1/12) 2329991416295452 a001 4052739537881/45537549124*103682^(1/12) 2329991416295452 a001 1548008755920/17393796001*103682^(1/12) 2329991416295452 a001 591286729879/6643838879*103682^(1/12) 2329991416295452 a001 225851433717/2537720636*103682^(1/12) 2329991416295452 a001 86267571272/969323029*103682^(1/12) 2329991416295452 a001 32951280099/370248451*103682^(1/12) 2329991416295452 a001 12586269025/141422324*103682^(1/12) 2329991416295453 a001 4807526976/54018521*103682^(1/12) 2329991416295457 a001 1836311903/20633239*103682^(1/12) 2329991416295489 a001 3524667/39604*103682^(1/12) 2329991416295507 a001 514229/1860498*271443^(7/13) 2329991416295709 a001 267914296/3010349*103682^(1/12) 2329991416296214 a001 208010/1970299*271443^(8/13) 2329991416296726 a001 514229/1149851*271443^(1/2) 2329991416296752 a001 5702887/439204*271443^(3/13) 2329991416296757 a001 2178309/20633239*271443^(8/13) 2329991416296836 a001 5702887/54018521*271443^(8/13) 2329991416296848 a001 3732588/35355581*271443^(8/13) 2329991416296850 a001 39088169/370248451*271443^(8/13) 2329991416296850 a001 102334155/969323029*271443^(8/13) 2329991416296850 a001 66978574/634430159*271443^(8/13) 2329991416296850 a001 701408733/6643838879*271443^(8/13) 2329991416296850 a001 1836311903/17393796001*271443^(8/13) 2329991416296850 a001 1201881744/11384387281*271443^(8/13) 2329991416296850 a001 12586269025/119218851371*271443^(8/13) 2329991416296850 a001 32951280099/312119004989*271443^(8/13) 2329991416296850 a001 21566892818/204284540899*271443^(8/13) 2329991416296850 a001 225851433717/2139295485799*271443^(8/13) 2329991416296850 a001 182717648081/1730726404001*271443^(8/13) 2329991416296850 a001 139583862445/1322157322203*271443^(8/13) 2329991416296850 a001 53316291173/505019158607*271443^(8/13) 2329991416296850 a001 10182505537/96450076809*271443^(8/13) 2329991416296850 a001 7778742049/73681302247*271443^(8/13) 2329991416296850 a001 2971215073/28143753123*271443^(8/13) 2329991416296850 a001 567451585/5374978561*271443^(8/13) 2329991416296850 a001 433494437/4106118243*271443^(8/13) 2329991416296850 a001 165580141/1568397607*271443^(8/13) 2329991416296850 a001 31622993/299537289*271443^(8/13) 2329991416296851 a001 24157817/228826127*271443^(8/13) 2329991416296855 a001 9227465/87403803*271443^(8/13) 2329991416296885 a001 1762289/16692641*271443^(8/13) 2329991416297093 a001 1346269/12752043*271443^(8/13) 2329991416297107 a001 10959/711491*271443^(10/13) 2329991416297214 a001 102334155/1149851*103682^(1/12) 2329991416298500 a001 31622993/219602*103682^(1/24) 2329991416298514 a001 514229/4870847*271443^(8/13) 2329991416298615 a001 75640/1875749*271443^(9/13) 2329991416299100 a001 2178309/439204*271443^(4/13) 2329991416299185 a001 2178309/54018521*271443^(9/13) 2329991416299268 a001 5702887/141422324*271443^(9/13) 2329991416299280 a001 14930352/370248451*271443^(9/13) 2329991416299282 a001 39088169/969323029*271443^(9/13) 2329991416299282 a001 9303105/230701876*271443^(9/13) 2329991416299282 a001 267914296/6643838879*271443^(9/13) 2329991416299282 a001 701408733/17393796001*271443^(9/13) 2329991416299282 a001 1836311903/45537549124*271443^(9/13) 2329991416299282 a001 4807526976/119218851371*271443^(9/13) 2329991416299282 a001 1144206275/28374454999*271443^(9/13) 2329991416299282 a001 32951280099/817138163596*271443^(9/13) 2329991416299282 a001 86267571272/2139295485799*271443^(9/13) 2329991416299282 a001 225851433717/5600748293801*271443^(9/13) 2329991416299282 a001 365435296162/9062201101803*271443^(9/13) 2329991416299282 a001 139583862445/3461452808002*271443^(9/13) 2329991416299282 a001 53316291173/1322157322203*271443^(9/13) 2329991416299282 a001 20365011074/505019158607*271443^(9/13) 2329991416299282 a001 7778742049/192900153618*271443^(9/13) 2329991416299282 a001 2971215073/73681302247*271443^(9/13) 2329991416299282 a001 1134903170/28143753123*271443^(9/13) 2329991416299282 a001 433494437/10749957122*271443^(9/13) 2329991416299282 a001 165580141/4106118243*271443^(9/13) 2329991416299283 a001 63245986/1568397607*271443^(9/13) 2329991416299283 a001 24157817/599074578*271443^(9/13) 2329991416299288 a001 9227465/228826127*271443^(9/13) 2329991416299320 a001 3524578/87403803*271443^(9/13) 2329991416299450 a001 317811/439204*271443^(6/13) 2329991416299535 a001 317811/54018521*271443^(11/13) 2329991416299537 a001 1346269/33385282*271443^(9/13) 2329991416299869 a001 39088169/710647*103682^(1/8) 2329991416299991 a001 3524578/271443*103682^(1/4) 2329991416300958 a001 208010/109801*271443^(5/13) 2329991416301030 a001 514229/12752043*271443^(9/13) 2329991416301043 a001 832040/54018521*271443^(10/13) 2329991416301547 a001 98209/219602*141422324^(1/3) 2329991416301547 a001 38580030724/165580141 2329991416301547 a001 98209/219602*(1/2+1/2*5^(1/2))^13 2329991416301547 a001 98209/219602*73681302247^(1/4) 2329991416301617 a001 2178309/141422324*271443^(10/13) 2329991416301701 a001 5702887/370248451*271443^(10/13) 2329991416301713 a001 14930352/969323029*271443^(10/13) 2329991416301715 a001 39088169/2537720636*271443^(10/13) 2329991416301715 a001 102334155/6643838879*271443^(10/13) 2329991416301715 a001 9238424/599786069*271443^(10/13) 2329991416301715 a001 701408733/45537549124*271443^(10/13) 2329991416301715 a001 1836311903/119218851371*271443^(10/13) 2329991416301715 a001 4807526976/312119004989*271443^(10/13) 2329991416301715 a001 12586269025/817138163596*271443^(10/13) 2329991416301715 a001 32951280099/2139295485799*271443^(10/13) 2329991416301715 a001 86267571272/5600748293801*271443^(10/13) 2329991416301715 a001 7787980473/505618944676*271443^(10/13) 2329991416301715 a001 365435296162/23725150497407*271443^(10/13) 2329991416301715 a001 139583862445/9062201101803*271443^(10/13) 2329991416301715 a001 53316291173/3461452808002*271443^(10/13) 2329991416301715 a001 20365011074/1322157322203*271443^(10/13) 2329991416301715 a001 7778742049/505019158607*271443^(10/13) 2329991416301715 a001 2971215073/192900153618*271443^(10/13) 2329991416301715 a001 1134903170/73681302247*271443^(10/13) 2329991416301715 a001 433494437/28143753123*271443^(10/13) 2329991416301715 a001 165580141/10749957122*271443^(10/13) 2329991416301715 a001 63245986/4106118243*271443^(10/13) 2329991416301716 a001 24157817/1568397607*271443^(10/13) 2329991416301720 a001 9227465/599074578*271443^(10/13) 2329991416301752 a001 3524578/228826127*271443^(10/13) 2329991416301883 a001 196418/710647*271443^(7/13) 2329991416301963 a001 28657/4870847*64079^(22/23) 2329991416301966 a001 317811/141422324*271443^(12/13) 2329991416301972 a001 1346269/87403803*271443^(10/13) 2329991416303474 a001 208010/35355581*271443^(11/13) 2329991416303475 a001 514229/33385282*271443^(10/13) 2329991416303810 a001 831985/15126*103682^(1/8) 2329991416304049 a001 2178309/370248451*271443^(11/13) 2329991416304133 a001 5702887/969323029*271443^(11/13) 2329991416304145 a001 196452/33391061*271443^(11/13) 2329991416304147 a001 39088169/6643838879*271443^(11/13) 2329991416304147 a001 102334155/17393796001*271443^(11/13) 2329991416304147 a001 66978574/11384387281*271443^(11/13) 2329991416304147 a001 701408733/119218851371*271443^(11/13) 2329991416304147 a001 1836311903/312119004989*271443^(11/13) 2329991416304147 a001 1201881744/204284540899*271443^(11/13) 2329991416304147 a001 12586269025/2139295485799*271443^(11/13) 2329991416304147 a001 32951280099/5600748293801*271443^(11/13) 2329991416304147 a001 1135099622/192933544679*271443^(11/13) 2329991416304147 a001 139583862445/23725150497407*271443^(11/13) 2329991416304147 a001 53316291173/9062201101803*271443^(11/13) 2329991416304147 a001 10182505537/1730726404001*271443^(11/13) 2329991416304147 a001 7778742049/1322157322203*271443^(11/13) 2329991416304147 a001 2971215073/505019158607*271443^(11/13) 2329991416304147 a001 567451585/96450076809*271443^(11/13) 2329991416304147 a001 433494437/73681302247*271443^(11/13) 2329991416304147 a001 165580141/28143753123*271443^(11/13) 2329991416304148 a001 31622993/5374978561*271443^(11/13) 2329991416304148 a001 24157817/4106118243*271443^(11/13) 2329991416304153 a001 9227465/1568397607*271443^(11/13) 2329991416304185 a001 1762289/299537289*271443^(11/13) 2329991416304385 a001 267914296/4870847*103682^(1/8) 2329991416304399 a004 Fibonacci(28)*Lucas(26)/(1/2+sqrt(5)/2)^41 2329991416304405 a001 1346269/228826127*271443^(11/13) 2329991416304469 a001 233802911/4250681*103682^(1/8) 2329991416304481 a001 1836311903/33385282*103682^(1/8) 2329991416304483 a001 1602508992/29134601*103682^(1/8) 2329991416304483 a001 12586269025/228826127*103682^(1/8) 2329991416304483 a001 10983760033/199691526*103682^(1/8) 2329991416304483 a001 86267571272/1568397607*103682^(1/8) 2329991416304483 a001 75283811239/1368706081*103682^(1/8) 2329991416304483 a001 591286729879/10749957122*103682^(1/8) 2329991416304483 a001 12585437040/228811001*103682^(1/8) 2329991416304483 a001 4052739537881/73681302247*103682^(1/8) 2329991416304483 a001 3536736619241/64300051206*103682^(1/8) 2329991416304483 a001 6557470319842/119218851371*103682^(1/8) 2329991416304483 a001 2504730781961/45537549124*103682^(1/8) 2329991416304483 a001 956722026041/17393796001*103682^(1/8) 2329991416304483 a001 365435296162/6643838879*103682^(1/8) 2329991416304483 a001 139583862445/2537720636*103682^(1/8) 2329991416304483 a001 53316291173/969323029*103682^(1/8) 2329991416304483 a001 20365011074/370248451*103682^(1/8) 2329991416304483 a001 7778742049/141422324*103682^(1/8) 2329991416304484 a001 2971215073/54018521*103682^(1/8) 2329991416304488 a001 1134903170/20633239*103682^(1/8) 2329991416304520 a001 433494437/7881196*103682^(1/8) 2329991416304620 a001 17711/64079*39603^(7/11) 2329991416304740 a001 165580141/3010349*103682^(1/8) 2329991416305907 a001 832040/370248451*271443^(12/13) 2329991416305909 a001 514229/87403803*271443^(11/13) 2329991416306245 a001 63245986/1149851*103682^(1/8) 2329991416306482 a001 2178309/969323029*271443^(12/13) 2329991416306566 a001 5702887/2537720636*271443^(12/13) 2329991416306578 a001 14930352/6643838879*271443^(12/13) 2329991416306580 a001 39088169/17393796001*271443^(12/13) 2329991416306580 a001 102334155/45537549124*271443^(12/13) 2329991416306580 a001 267914296/119218851371*271443^(12/13) 2329991416306580 a001 3524667/1568437211*271443^(12/13) 2329991416306580 a001 1836311903/817138163596*271443^(12/13) 2329991416306580 a001 4807526976/2139295485799*271443^(12/13) 2329991416306580 a001 12586269025/5600748293801*271443^(12/13) 2329991416306580 a001 32951280099/14662949395604*271443^(12/13) 2329991416306580 a001 53316291173/23725150497407*271443^(12/13) 2329991416306580 a001 20365011074/9062201101803*271443^(12/13) 2329991416306580 a001 7778742049/3461452808002*271443^(12/13) 2329991416306580 a001 2971215073/1322157322203*271443^(12/13) 2329991416306580 a001 1134903170/505019158607*271443^(12/13) 2329991416306580 a001 433494437/192900153618*271443^(12/13) 2329991416306580 a001 165580141/73681302247*271443^(12/13) 2329991416306580 a001 63245986/28143753123*271443^(12/13) 2329991416306581 a001 24157817/10749957122*271443^(12/13) 2329991416306585 a001 9227465/4106118243*271443^(12/13) 2329991416306617 a001 3524578/1568397607*271443^(12/13) 2329991416306837 a001 1346269/599074578*271443^(12/13) 2329991416307530 a001 39088169/439204*103682^(1/12) 2329991416308256 a001 98209/930249*271443^(8/13) 2329991416308339 a004 Fibonacci(30)*Lucas(26)/(1/2+sqrt(5)/2)^43 2329991416308342 a001 514229/228826127*271443^(12/13) 2329991416308886 a001 726103/90481*103682^(7/24) 2329991416308901 a001 24157817/710647*103682^(1/6) 2329991416308914 a004 Fibonacci(32)*Lucas(26)/(1/2+sqrt(5)/2)^45 2329991416308998 a004 Fibonacci(34)*Lucas(26)/(1/2+sqrt(5)/2)^47 2329991416309010 a004 Fibonacci(36)*Lucas(26)/(1/2+sqrt(5)/2)^49 2329991416309012 a004 Fibonacci(38)*Lucas(26)/(1/2+sqrt(5)/2)^51 2329991416309012 a004 Fibonacci(40)*Lucas(26)/(1/2+sqrt(5)/2)^53 2329991416309012 a004 Fibonacci(42)*Lucas(26)/(1/2+sqrt(5)/2)^55 2329991416309012 a004 Fibonacci(44)*Lucas(26)/(1/2+sqrt(5)/2)^57 2329991416309012 a004 Fibonacci(46)*Lucas(26)/(1/2+sqrt(5)/2)^59 2329991416309012 a004 Fibonacci(48)*Lucas(26)/(1/2+sqrt(5)/2)^61 2329991416309012 a004 Fibonacci(50)*Lucas(26)/(1/2+sqrt(5)/2)^63 2329991416309012 a004 Fibonacci(52)*Lucas(26)/(1/2+sqrt(5)/2)^65 2329991416309012 a004 Fibonacci(54)*Lucas(26)/(1/2+sqrt(5)/2)^67 2329991416309012 a004 Fibonacci(56)*Lucas(26)/(1/2+sqrt(5)/2)^69 2329991416309012 a004 Fibonacci(58)*Lucas(26)/(1/2+sqrt(5)/2)^71 2329991416309012 a004 Fibonacci(60)*Lucas(26)/(1/2+sqrt(5)/2)^73 2329991416309012 a004 Fibonacci(62)*Lucas(26)/(1/2+sqrt(5)/2)^75 2329991416309012 a004 Fibonacci(64)*Lucas(26)/(1/2+sqrt(5)/2)^77 2329991416309012 a004 Fibonacci(66)*Lucas(26)/(1/2+sqrt(5)/2)^79 2329991416309012 a004 Fibonacci(68)*Lucas(26)/(1/2+sqrt(5)/2)^81 2329991416309012 a004 Fibonacci(70)*Lucas(26)/(1/2+sqrt(5)/2)^83 2329991416309012 a004 Fibonacci(72)*Lucas(26)/(1/2+sqrt(5)/2)^85 2329991416309012 a004 Fibonacci(74)*Lucas(26)/(1/2+sqrt(5)/2)^87 2329991416309012 a004 Fibonacci(76)*Lucas(26)/(1/2+sqrt(5)/2)^89 2329991416309012 a004 Fibonacci(78)*Lucas(26)/(1/2+sqrt(5)/2)^91 2329991416309012 a004 Fibonacci(80)*Lucas(26)/(1/2+sqrt(5)/2)^93 2329991416309012 a004 Fibonacci(82)*Lucas(26)/(1/2+sqrt(5)/2)^95 2329991416309012 a004 Fibonacci(84)*Lucas(26)/(1/2+sqrt(5)/2)^97 2329991416309012 a004 Fibonacci(86)*Lucas(26)/(1/2+sqrt(5)/2)^99 2329991416309012 a004 Fibonacci(87)*Lucas(26)/(1/2+sqrt(5)/2)^100 2329991416309012 a004 Fibonacci(85)*Lucas(26)/(1/2+sqrt(5)/2)^98 2329991416309012 a004 Fibonacci(83)*Lucas(26)/(1/2+sqrt(5)/2)^96 2329991416309012 a004 Fibonacci(81)*Lucas(26)/(1/2+sqrt(5)/2)^94 2329991416309012 a004 Fibonacci(79)*Lucas(26)/(1/2+sqrt(5)/2)^92 2329991416309012 a004 Fibonacci(77)*Lucas(26)/(1/2+sqrt(5)/2)^90 2329991416309012 a004 Fibonacci(75)*Lucas(26)/(1/2+sqrt(5)/2)^88 2329991416309012 a004 Fibonacci(73)*Lucas(26)/(1/2+sqrt(5)/2)^86 2329991416309012 a004 Fibonacci(71)*Lucas(26)/(1/2+sqrt(5)/2)^84 2329991416309012 a004 Fibonacci(69)*Lucas(26)/(1/2+sqrt(5)/2)^82 2329991416309012 a004 Fibonacci(67)*Lucas(26)/(1/2+sqrt(5)/2)^80 2329991416309012 a004 Fibonacci(65)*Lucas(26)/(1/2+sqrt(5)/2)^78 2329991416309012 a004 Fibonacci(63)*Lucas(26)/(1/2+sqrt(5)/2)^76 2329991416309012 a004 Fibonacci(61)*Lucas(26)/(1/2+sqrt(5)/2)^74 2329991416309012 a004 Fibonacci(59)*Lucas(26)/(1/2+sqrt(5)/2)^72 2329991416309012 a004 Fibonacci(57)*Lucas(26)/(1/2+sqrt(5)/2)^70 2329991416309012 a004 Fibonacci(55)*Lucas(26)/(1/2+sqrt(5)/2)^68 2329991416309012 a004 Fibonacci(53)*Lucas(26)/(1/2+sqrt(5)/2)^66 2329991416309012 a001 2/121393*(1/2+1/2*5^(1/2))^39 2329991416309012 a004 Fibonacci(51)*Lucas(26)/(1/2+sqrt(5)/2)^64 2329991416309012 a004 Fibonacci(49)*Lucas(26)/(1/2+sqrt(5)/2)^62 2329991416309012 a004 Fibonacci(47)*Lucas(26)/(1/2+sqrt(5)/2)^60 2329991416309012 a004 Fibonacci(45)*Lucas(26)/(1/2+sqrt(5)/2)^58 2329991416309012 a004 Fibonacci(43)*Lucas(26)/(1/2+sqrt(5)/2)^56 2329991416309013 a004 Fibonacci(41)*Lucas(26)/(1/2+sqrt(5)/2)^54 2329991416309013 a004 Fibonacci(39)*Lucas(26)/(1/2+sqrt(5)/2)^52 2329991416309013 a004 Fibonacci(37)*Lucas(26)/(1/2+sqrt(5)/2)^50 2329991416309018 a004 Fibonacci(35)*Lucas(26)/(1/2+sqrt(5)/2)^48 2329991416309050 a004 Fibonacci(33)*Lucas(26)/(1/2+sqrt(5)/2)^46 2329991416309270 a004 Fibonacci(31)*Lucas(26)/(1/2+sqrt(5)/2)^44 2329991416310775 a004 Fibonacci(29)*Lucas(26)/(1/2+sqrt(5)/2)^42 2329991416310834 a001 14930352/167761*64079^(2/23) 2329991416311263 a001 196418/4870847*271443^(9/13) 2329991416312841 a001 31622993/930249*103682^(1/6) 2329991416313294 a001 39088169/271443*39603^(1/22) 2329991416313416 a001 165580141/4870847*103682^(1/6) 2329991416313500 a001 433494437/12752043*103682^(1/6) 2329991416313512 a001 567451585/16692641*103682^(1/6) 2329991416313514 a001 2971215073/87403803*103682^(1/6) 2329991416313514 a001 7778742049/228826127*103682^(1/6) 2329991416313514 a001 10182505537/299537289*103682^(1/6) 2329991416313514 a001 53316291173/1568397607*103682^(1/6) 2329991416313514 a001 139583862445/4106118243*103682^(1/6) 2329991416313514 a001 182717648081/5374978561*103682^(1/6) 2329991416313514 a001 956722026041/28143753123*103682^(1/6) 2329991416313514 a001 2504730781961/73681302247*103682^(1/6) 2329991416313514 a001 3278735159921/96450076809*103682^(1/6) 2329991416313514 a001 10610209857723/312119004989*103682^(1/6) 2329991416313514 a001 4052739537881/119218851371*103682^(1/6) 2329991416313514 a001 387002188980/11384387281*103682^(1/6) 2329991416313514 a001 591286729879/17393796001*103682^(1/6) 2329991416313514 a001 225851433717/6643838879*103682^(1/6) 2329991416313514 a001 1135099622/33391061*103682^(1/6) 2329991416313514 a001 32951280099/969323029*103682^(1/6) 2329991416313514 a001 12586269025/370248451*103682^(1/6) 2329991416313514 a001 1201881744/35355581*103682^(1/6) 2329991416313515 a001 1836311903/54018521*103682^(1/6) 2329991416313519 a001 701408733/20633239*103682^(1/6) 2329991416313551 a001 66978574/1970299*103682^(1/6) 2329991416313771 a001 102334155/3010349*103682^(1/6) 2329991416313779 a001 196418/12752043*271443^(10/13) 2329991416315276 a001 39088169/1149851*103682^(1/6) 2329991416316224 a001 98209/16692641*271443^(11/13) 2329991416316563 a001 24157817/439204*103682^(1/8) 2329991416317359 a001 98209/219602*271443^(1/2) 2329991416317929 a001 14930352/710647*103682^(5/24) 2329991416318273 a001 1346269/271443*103682^(1/3) 2329991416318658 a001 196418/87403803*271443^(12/13) 2329991416319059 a001 726103/13201*15127^(3/20) 2329991416321091 a004 Fibonacci(27)*Lucas(26)/(1/2+sqrt(5)/2)^40 2329991416321872 a001 39088169/1860498*103682^(5/24) 2329991416322447 a001 102334155/4870847*103682^(5/24) 2329991416322450 a001 317811/167761*167761^(2/5) 2329991416322531 a001 267914296/12752043*103682^(5/24) 2329991416322543 a001 701408733/33385282*103682^(5/24) 2329991416322545 a001 1836311903/87403803*103682^(5/24) 2329991416322545 a001 102287808/4868641*103682^(5/24) 2329991416322545 a001 12586269025/599074578*103682^(5/24) 2329991416322545 a001 32951280099/1568397607*103682^(5/24) 2329991416322545 a001 86267571272/4106118243*103682^(5/24) 2329991416322545 a001 225851433717/10749957122*103682^(5/24) 2329991416322545 a001 591286729879/28143753123*103682^(5/24) 2329991416322545 a001 1548008755920/73681302247*103682^(5/24) 2329991416322545 a001 4052739537881/192900153618*103682^(5/24) 2329991416322545 a001 225749145909/10745088481*103682^(5/24) 2329991416322545 a001 6557470319842/312119004989*103682^(5/24) 2329991416322545 a001 2504730781961/119218851371*103682^(5/24) 2329991416322545 a001 956722026041/45537549124*103682^(5/24) 2329991416322545 a001 365435296162/17393796001*103682^(5/24) 2329991416322545 a001 139583862445/6643838879*103682^(5/24) 2329991416322545 a001 53316291173/2537720636*103682^(5/24) 2329991416322545 a001 20365011074/969323029*103682^(5/24) 2329991416322545 a001 7778742049/370248451*103682^(5/24) 2329991416322545 a001 2971215073/141422324*103682^(5/24) 2329991416322546 a001 1134903170/54018521*103682^(5/24) 2329991416322550 a001 433494437/20633239*103682^(5/24) 2329991416322583 a001 165580141/7881196*103682^(5/24) 2329991416322584 a001 75025/439204*167761^(3/5) 2329991416322802 a001 63245986/3010349*103682^(5/24) 2329991416323188 a001 121393/167761*439204^(4/9) 2329991416324308 a001 24157817/1149851*103682^(5/24) 2329991416325591 a001 196452/5779*103682^(1/6) 2329991416326373 a001 832040/271443*103682^(3/8) 2329991416326968 a001 9227465/710647*103682^(1/4) 2329991416326990 a001 28657/3010349*64079^(21/23) 2329991416328543 a001 121393/167761*7881196^(4/11) 2329991416328554 a001 75025/271443*20633239^(2/5) 2329991416328556 a001 121393/167761*141422324^(4/13) 2329991416328556 a001 121393/167761*2537720636^(4/15) 2329991416328556 a001 75025/271443*17393796001^(2/7) 2329991416328556 a001 75025/271443*14662949395604^(2/9) 2329991416328556 a001 75025/271443*(1/2+1/2*5^(1/2))^14 2329991416328556 a001 121393/167761*45537549124^(4/17) 2329991416328556 a001 121393/167761*14662949395604^(4/21) 2329991416328556 a001 121393/167761*(1/2+1/2*5^(1/2))^12 2329991416328556 a001 121393/167761*192900153618^(2/9) 2329991416328556 a001 121393/167761*73681302247^(3/13) 2329991416328556 a001 75025/271443*10749957122^(7/24) 2329991416328556 a001 121393/167761*10749957122^(1/4) 2329991416328556 a001 121393/167761*4106118243^(6/23) 2329991416328556 a001 75025/271443*4106118243^(7/23) 2329991416328556 a001 121393/167761*1568397607^(3/11) 2329991416328556 a001 75025/271443*1568397607^(7/22) 2329991416328556 a001 121393/167761*599074578^(2/7) 2329991416328556 a001 75025/271443*599074578^(1/3) 2329991416328556 a001 121393/167761*228826127^(3/10) 2329991416328556 a001 75025/271443*228826127^(7/20) 2329991416328556 a001 121393/167761*87403803^(6/19) 2329991416328556 a001 75025/271443*87403803^(7/19) 2329991416328557 a001 9107509825/39088169 2329991416328557 a001 121393/167761*33385282^(1/3) 2329991416328557 a001 75025/271443*33385282^(7/18) 2329991416328561 a001 121393/167761*12752043^(6/17) 2329991416328562 a001 75025/271443*12752043^(7/17) 2329991416328593 a001 121393/167761*4870847^(3/8) 2329991416328599 a001 75025/271443*4870847^(7/16) 2329991416328826 a001 121393/167761*1860498^(2/5) 2329991416328870 a001 75025/271443*1860498^(7/15) 2329991416330534 a001 121393/167761*710647^(3/7) 2329991416330790 a001 1762289/51841*39603^(2/11) 2329991416330863 a001 75025/271443*710647^(1/2) 2329991416330904 a001 24157817/1860498*103682^(1/4) 2329991416331478 a001 63245986/4870847*103682^(1/4) 2329991416331548 a001 121393/271443*103682^(13/24) 2329991416331562 a001 165580141/12752043*103682^(1/4) 2329991416331574 a001 433494437/33385282*103682^(1/4) 2329991416331576 a001 1134903170/87403803*103682^(1/4) 2329991416331576 a001 2971215073/228826127*103682^(1/4) 2329991416331576 a001 7778742049/599074578*103682^(1/4) 2329991416331576 a001 20365011074/1568397607*103682^(1/4) 2329991416331576 a001 53316291173/4106118243*103682^(1/4) 2329991416331576 a001 139583862445/10749957122*103682^(1/4) 2329991416331576 a001 365435296162/28143753123*103682^(1/4) 2329991416331576 a001 956722026041/73681302247*103682^(1/4) 2329991416331576 a001 2504730781961/192900153618*103682^(1/4) 2329991416331576 a001 10610209857723/817138163596*103682^(1/4) 2329991416331576 a001 4052739537881/312119004989*103682^(1/4) 2329991416331576 a001 1548008755920/119218851371*103682^(1/4) 2329991416331576 a001 591286729879/45537549124*103682^(1/4) 2329991416331576 a001 7787980473/599786069*103682^(1/4) 2329991416331576 a001 86267571272/6643838879*103682^(1/4) 2329991416331576 a001 32951280099/2537720636*103682^(1/4) 2329991416331576 a001 12586269025/969323029*103682^(1/4) 2329991416331576 a001 4807526976/370248451*103682^(1/4) 2329991416331576 a001 1836311903/141422324*103682^(1/4) 2329991416331577 a001 701408733/54018521*103682^(1/4) 2329991416331581 a001 9238424/711491*103682^(1/4) 2329991416331613 a001 102334155/7881196*103682^(1/4) 2329991416331833 a001 39088169/3010349*103682^(1/4) 2329991416332032 a001 46368/64079*64079^(12/23) 2329991416333336 a001 14930352/1149851*103682^(1/4) 2329991416334629 a001 9227465/439204*103682^(5/24) 2329991416335508 a001 24157817/167761*64079^(1/23) 2329991416335979 a001 5702887/710647*103682^(7/24) 2329991416337840 a001 514229/271443*103682^(5/12) 2329991416339932 a001 829464/103361*103682^(7/24) 2329991416340303 a001 14619165/101521*39603^(1/22) 2329991416340495 a001 105937/90481*103682^(11/24) 2329991416340508 a001 39088169/4870847*103682^(7/24) 2329991416340593 a001 34111385/4250681*103682^(7/24) 2329991416340605 a001 133957148/16692641*103682^(7/24) 2329991416340607 a001 233802911/29134601*103682^(7/24) 2329991416340607 a001 1836311903/228826127*103682^(7/24) 2329991416340607 a001 267084832/33281921*103682^(7/24) 2329991416340607 a001 12586269025/1568397607*103682^(7/24) 2329991416340607 a001 10983760033/1368706081*103682^(7/24) 2329991416340607 a001 43133785636/5374978561*103682^(7/24) 2329991416340607 a001 75283811239/9381251041*103682^(7/24) 2329991416340607 a001 591286729879/73681302247*103682^(7/24) 2329991416340607 a001 86000486440/10716675201*103682^(7/24) 2329991416340607 a001 4052739537881/505019158607*103682^(7/24) 2329991416340607 a001 3278735159921/408569081798*103682^(7/24) 2329991416340607 a001 2504730781961/312119004989*103682^(7/24) 2329991416340607 a001 956722026041/119218851371*103682^(7/24) 2329991416340607 a001 182717648081/22768774562*103682^(7/24) 2329991416340607 a001 139583862445/17393796001*103682^(7/24) 2329991416340607 a001 53316291173/6643838879*103682^(7/24) 2329991416340607 a001 10182505537/1268860318*103682^(7/24) 2329991416340607 a001 7778742049/969323029*103682^(7/24) 2329991416340607 a001 2971215073/370248451*103682^(7/24) 2329991416340607 a001 567451585/70711162*103682^(7/24) 2329991416340608 a001 433494437/54018521*103682^(7/24) 2329991416340612 a001 165580141/20633239*103682^(7/24) 2329991416340645 a001 31622993/3940598*103682^(7/24) 2329991416340865 a001 24157817/3010349*103682^(7/24) 2329991416342375 a001 9227465/1149851*103682^(7/24) 2329991416343151 a001 121393/167761*271443^(6/13) 2329991416343640 a001 5702887/439204*103682^(1/4) 2329991416343659 a001 3524578/167761*167761^(1/5) 2329991416344243 a001 133957148/930249*39603^(1/22) 2329991416344818 a001 701408733/4870847*39603^(1/22) 2329991416344902 a001 1836311903/12752043*39603^(1/22) 2329991416344915 a001 14930208/103681*39603^(1/22) 2329991416344916 a001 12586269025/87403803*39603^(1/22) 2329991416344917 a001 32951280099/228826127*39603^(1/22) 2329991416344917 a001 43133785636/299537289*39603^(1/22) 2329991416344917 a001 32264490531/224056801*39603^(1/22) 2329991416344917 a001 591286729879/4106118243*39603^(1/22) 2329991416344917 a001 774004377960/5374978561*39603^(1/22) 2329991416344917 a001 4052739537881/28143753123*39603^(1/22) 2329991416344917 a001 1515744265389/10525900321*39603^(1/22) 2329991416344917 a001 3278735159921/22768774562*39603^(1/22) 2329991416344917 a001 2504730781961/17393796001*39603^(1/22) 2329991416344917 a001 956722026041/6643838879*39603^(1/22) 2329991416344917 a001 182717648081/1268860318*39603^(1/22) 2329991416344917 a001 139583862445/969323029*39603^(1/22) 2329991416344917 a001 53316291173/370248451*39603^(1/22) 2329991416344917 a001 10182505537/70711162*39603^(1/22) 2329991416344917 a001 7778742049/54018521*39603^(1/22) 2329991416344922 a001 2971215073/20633239*39603^(1/22) 2329991416344954 a001 567451585/3940598*39603^(1/22) 2329991416345062 a001 3524578/710647*103682^(1/3) 2329991416345174 a001 433494437/3010349*39603^(1/22) 2329991416345584 a001 75025/271443*271443^(7/13) 2329991416346679 a001 165580141/1149851*39603^(1/22) 2329991416348100 a004 Fibonacci(25)*Lucas(27)/(1/2+sqrt(5)/2)^39 2329991416348970 a001 9227465/1860498*103682^(1/3) 2329991416349440 a001 75025/33385282*439204^(8/9) 2329991416349541 a001 24157817/4870847*103682^(1/3) 2329991416349624 a001 63245986/12752043*103682^(1/3) 2329991416349636 a001 165580141/33385282*103682^(1/3) 2329991416349638 a001 433494437/87403803*103682^(1/3) 2329991416349638 a001 1134903170/228826127*103682^(1/3) 2329991416349638 a001 2971215073/599074578*103682^(1/3) 2329991416349638 a001 7778742049/1568397607*103682^(1/3) 2329991416349638 a001 20365011074/4106118243*103682^(1/3) 2329991416349638 a001 53316291173/10749957122*103682^(1/3) 2329991416349638 a001 139583862445/28143753123*103682^(1/3) 2329991416349638 a001 365435296162/73681302247*103682^(1/3) 2329991416349638 a001 956722026041/192900153618*103682^(1/3) 2329991416349638 a001 2504730781961/505019158607*103682^(1/3) 2329991416349638 a001 10610209857723/2139295485799*103682^(1/3) 2329991416349638 a001 140728068720/28374454999*103682^(1/3) 2329991416349638 a001 591286729879/119218851371*103682^(1/3) 2329991416349638 a001 225851433717/45537549124*103682^(1/3) 2329991416349638 a001 86267571272/17393796001*103682^(1/3) 2329991416349638 a001 32951280099/6643838879*103682^(1/3) 2329991416349638 a001 1144206275/230701876*103682^(1/3) 2329991416349638 a001 4807526976/969323029*103682^(1/3) 2329991416349638 a001 1836311903/370248451*103682^(1/3) 2329991416349638 a001 701408733/141422324*103682^(1/3) 2329991416349639 a001 267914296/54018521*103682^(1/3) 2329991416349643 a001 9303105/1875749*103682^(1/3) 2329991416349675 a001 39088169/7881196*103682^(1/3) 2329991416349893 a001 14930352/3010349*103682^(1/3) 2329991416350731 a001 28657/1860498*64079^(20/23) 2329991416350822 a001 75025/7881196*439204^(7/9) 2329991416351386 a001 5702887/1149851*103682^(1/3) 2329991416351453 a001 75025/1860498*439204^(2/3) 2329991416352723 a001 1762289/219602*103682^(7/24) 2329991416353957 a001 311187/101521*103682^(3/8) 2329991416355564 a001 317811/167761*20633239^(2/7) 2329991416355565 a001 317811/167761*2537720636^(2/9) 2329991416355565 a001 75025/710647*(1/2+1/2*5^(1/2))^16 2329991416355565 a001 75025/710647*23725150497407^(1/4) 2329991416355565 a001 75025/710647*73681302247^(4/13) 2329991416355565 a001 317811/167761*312119004989^(2/11) 2329991416355565 a001 317811/167761*(1/2+1/2*5^(1/2))^10 2329991416355565 a001 317811/167761*28143753123^(1/5) 2329991416355565 a001 75025/710647*10749957122^(1/3) 2329991416355565 a001 317811/167761*10749957122^(5/24) 2329991416355565 a001 317811/167761*4106118243^(5/23) 2329991416355565 a001 75025/710647*4106118243^(8/23) 2329991416355565 a001 317811/167761*1568397607^(5/22) 2329991416355565 a001 75025/710647*1568397607^(4/11) 2329991416355565 a001 317811/167761*599074578^(5/21) 2329991416355565 a001 75025/710647*599074578^(8/21) 2329991416355565 a001 317811/167761*228826127^(1/4) 2329991416355565 a001 75025/710647*228826127^(2/5) 2329991416355565 a001 1589584685/6822277 2329991416355565 a001 317811/167761*87403803^(5/19) 2329991416355565 a001 75025/710647*87403803^(8/19) 2329991416355566 a001 317811/167761*33385282^(5/18) 2329991416355566 a001 75025/710647*33385282^(4/9) 2329991416355569 a001 317811/167761*12752043^(5/17) 2329991416355572 a001 75025/710647*12752043^(8/17) 2329991416355596 a001 317811/167761*4870847^(5/16) 2329991416355614 a001 75025/710647*4870847^(1/2) 2329991416355790 a001 317811/167761*1860498^(1/3) 2329991416355924 a001 75025/710647*1860498^(8/15) 2329991416356995 a001 31622993/219602*39603^(1/22) 2329991416357213 a001 317811/167761*710647^(5/14) 2329991416357396 a001 2178309/167761*439204^(2/9) 2329991416357915 a001 514229/167761*439204^(1/3) 2329991416357982 a001 5702887/1860498*103682^(3/8) 2329991416358202 a001 75025/710647*710647^(4/7) 2329991416358417 a004 Fibonacci(25)*Lucas(29)/(1/2+sqrt(5)/2)^41 2329991416358569 a001 14930352/4870847*103682^(3/8) 2329991416358654 a001 39088169/12752043*103682^(3/8) 2329991416358667 a001 14619165/4769326*103682^(3/8) 2329991416358669 a001 267914296/87403803*103682^(3/8) 2329991416358669 a001 701408733/228826127*103682^(3/8) 2329991416358669 a001 1836311903/599074578*103682^(3/8) 2329991416358669 a001 686789568/224056801*103682^(3/8) 2329991416358669 a001 12586269025/4106118243*103682^(3/8) 2329991416358669 a001 32951280099/10749957122*103682^(3/8) 2329991416358669 a001 86267571272/28143753123*103682^(3/8) 2329991416358669 a001 32264490531/10525900321*103682^(3/8) 2329991416358669 a001 591286729879/192900153618*103682^(3/8) 2329991416358669 a001 1548008755920/505019158607*103682^(3/8) 2329991416358669 a001 1515744265389/494493258286*103682^(3/8) 2329991416358669 a001 956722026041/312119004989*103682^(3/8) 2329991416358669 a001 365435296162/119218851371*103682^(3/8) 2329991416358669 a001 139583862445/45537549124*103682^(3/8) 2329991416358669 a001 53316291173/17393796001*103682^(3/8) 2329991416358669 a001 20365011074/6643838879*103682^(3/8) 2329991416358669 a001 7778742049/2537720636*103682^(3/8) 2329991416358669 a001 2971215073/969323029*103682^(3/8) 2329991416358669 a001 1134903170/370248451*103682^(3/8) 2329991416358669 a001 433494437/141422324*103682^(3/8) 2329991416358670 a001 165580141/54018521*103682^(3/8) 2329991416358675 a001 63245986/20633239*103682^(3/8) 2329991416358707 a001 24157817/7881196*103682^(3/8) 2329991416358842 a001 9227465/167761*439204^(1/9) 2329991416358932 a001 9227465/3010349*103682^(3/8) 2329991416359485 a001 75025/1860498*7881196^(6/11) 2329991416359506 a001 75025/1860498*141422324^(6/13) 2329991416359506 a001 75025/1860498*2537720636^(2/5) 2329991416359506 a001 75025/1860498*45537549124^(6/17) 2329991416359506 a001 75025/1860498*14662949395604^(2/7) 2329991416359506 a001 75025/1860498*(1/2+1/2*5^(1/2))^18 2329991416359506 a001 75025/1860498*192900153618^(1/3) 2329991416359506 a001 75640/15251*(1/2+1/2*5^(1/2))^8 2329991416359506 a001 75640/15251*23725150497407^(1/8) 2329991416359506 a001 75640/15251*505019158607^(1/7) 2329991416359506 a001 75640/15251*73681302247^(2/13) 2329991416359506 a001 75640/15251*10749957122^(1/6) 2329991416359506 a001 75025/1860498*10749957122^(3/8) 2329991416359506 a001 75640/15251*4106118243^(4/23) 2329991416359506 a001 75025/1860498*4106118243^(9/23) 2329991416359506 a001 75640/15251*1568397607^(2/11) 2329991416359506 a001 75025/1860498*1568397607^(9/22) 2329991416359506 a001 75640/15251*599074578^(4/21) 2329991416359506 a001 75025/1860498*599074578^(3/7) 2329991416359506 a001 7802975125/33489287 2329991416359506 a001 75640/15251*228826127^(1/5) 2329991416359506 a001 75025/1860498*228826127^(9/20) 2329991416359506 a001 75640/15251*87403803^(4/19) 2329991416359506 a001 75025/1860498*87403803^(9/19) 2329991416359506 a001 75640/15251*33385282^(2/9) 2329991416359507 a001 75025/1860498*33385282^(1/2) 2329991416359509 a001 75640/15251*12752043^(4/17) 2329991416359513 a001 75025/1860498*12752043^(9/17) 2329991416359530 a001 75640/15251*4870847^(1/4) 2329991416359561 a001 75025/1860498*4870847^(9/16) 2329991416359685 a001 75640/15251*1860498^(4/15) 2329991416359910 a001 75025/1860498*1860498^(3/5) 2329991416359922 a004 Fibonacci(25)*Lucas(31)/(1/2+sqrt(5)/2)^43 2329991416360074 a001 2178309/167761*7881196^(2/11) 2329991416360078 a001 75025/4870847*20633239^(4/7) 2329991416360081 a001 2178309/167761*141422324^(2/13) 2329991416360081 a001 75025/4870847*2537720636^(4/9) 2329991416360081 a001 2178309/167761*2537720636^(2/15) 2329991416360081 a001 75025/4870847*(1/2+1/2*5^(1/2))^20 2329991416360081 a001 75025/4870847*23725150497407^(5/16) 2329991416360081 a001 75025/4870847*505019158607^(5/14) 2329991416360081 a001 75025/4870847*73681302247^(5/13) 2329991416360081 a001 75025/4870847*28143753123^(2/5) 2329991416360081 a001 2178309/167761*45537549124^(2/17) 2329991416360081 a001 2178309/167761*14662949395604^(2/21) 2329991416360081 a001 2178309/167761*(1/2+1/2*5^(1/2))^6 2329991416360081 a001 2178309/167761*10749957122^(1/8) 2329991416360081 a001 75025/4870847*10749957122^(5/12) 2329991416360081 a001 2178309/167761*4106118243^(3/23) 2329991416360081 a001 75025/4870847*4106118243^(10/23) 2329991416360081 a001 2178309/167761*1568397607^(3/22) 2329991416360081 a001 75025/4870847*1568397607^(5/11) 2329991416360081 a001 2178309/167761*599074578^(1/7) 2329991416360081 a001 54475877575/233802911 2329991416360081 a001 75025/4870847*599074578^(10/21) 2329991416360081 a001 2178309/167761*228826127^(3/20) 2329991416360081 a001 75025/4870847*228826127^(1/2) 2329991416360081 a001 2178309/167761*87403803^(3/19) 2329991416360081 a001 75025/4870847*87403803^(10/19) 2329991416360081 a001 2178309/167761*33385282^(1/6) 2329991416360082 a001 75025/4870847*33385282^(5/9) 2329991416360083 a001 2178309/167761*12752043^(3/17) 2329991416360089 a001 75025/4870847*12752043^(10/17) 2329991416360099 a001 2178309/167761*4870847^(3/16) 2329991416360140 a001 75025/12752043*7881196^(2/3) 2329991416360141 a004 Fibonacci(25)*Lucas(33)/(1/2+sqrt(5)/2)^45 2329991416360142 a001 75025/4870847*4870847^(5/8) 2329991416360145 a001 75025/599074578*7881196^(10/11) 2329991416360148 a001 75025/141422324*7881196^(9/11) 2329991416360149 a001 75025/33385282*7881196^(8/11) 2329991416360165 a001 75025/12752043*312119004989^(2/5) 2329991416360165 a001 75025/12752043*(1/2+1/2*5^(1/2))^22 2329991416360165 a001 5702887/167761*(1/2+1/2*5^(1/2))^4 2329991416360165 a001 5702887/167761*23725150497407^(1/16) 2329991416360165 a001 5702887/167761*73681302247^(1/13) 2329991416360165 a001 5702887/167761*10749957122^(1/12) 2329991416360165 a001 75025/12752043*10749957122^(11/24) 2329991416360165 a001 5702887/167761*4106118243^(2/23) 2329991416360165 a001 75025/12752043*4106118243^(11/23) 2329991416360165 a001 5702887/167761*1568397607^(1/11) 2329991416360165 a001 427859097175/1836311903 2329991416360165 a001 75025/12752043*1568397607^(1/2) 2329991416360165 a001 5702887/167761*599074578^(2/21) 2329991416360165 a001 75025/12752043*599074578^(11/21) 2329991416360165 a001 5702887/167761*228826127^(1/10) 2329991416360165 a001 75025/12752043*228826127^(11/20) 2329991416360165 a001 5702887/167761*87403803^(2/19) 2329991416360165 a001 75025/12752043*87403803^(11/19) 2329991416360165 a001 5702887/167761*33385282^(1/9) 2329991416360166 a001 75025/12752043*33385282^(11/18) 2329991416360166 a001 5702887/167761*12752043^(2/17) 2329991416360173 a004 Fibonacci(25)*Lucas(35)/(1/2+sqrt(5)/2)^47 2329991416360174 a001 75025/12752043*12752043^(11/17) 2329991416360174 a001 75025/599074578*20633239^(6/7) 2329991416360174 a001 75025/228826127*20633239^(4/5) 2329991416360176 a001 75025/54018521*20633239^(5/7) 2329991416360177 a001 75025/33385282*141422324^(8/13) 2329991416360177 a001 75025/33385282*2537720636^(8/15) 2329991416360177 a001 75025/33385282*45537549124^(8/17) 2329991416360177 a001 75025/33385282*14662949395604^(8/21) 2329991416360177 a001 75025/33385282*(1/2+1/2*5^(1/2))^24 2329991416360177 a001 75025/33385282*192900153618^(4/9) 2329991416360177 a001 75025/33385282*73681302247^(6/13) 2329991416360177 a001 14930352/167761*(1/2+1/2*5^(1/2))^2 2329991416360177 a001 14930352/167761*10749957122^(1/24) 2329991416360177 a001 14930352/167761*4106118243^(1/23) 2329991416360177 a001 75025/33385282*10749957122^(1/2) 2329991416360177 a001 7778817075/33385604 2329991416360177 a001 14930352/167761*1568397607^(1/22) 2329991416360177 a001 75025/33385282*4106118243^(12/23) 2329991416360177 a001 14930352/167761*599074578^(1/21) 2329991416360177 a001 75025/33385282*1568397607^(6/11) 2329991416360177 a001 14930352/167761*228826127^(1/20) 2329991416360177 a001 75025/33385282*599074578^(4/7) 2329991416360177 a001 14930352/167761*87403803^(1/19) 2329991416360177 a001 75025/33385282*228826127^(3/5) 2329991416360177 a001 5702887/167761*4870847^(1/8) 2329991416360177 a001 14930352/167761*33385282^(1/18) 2329991416360177 a001 75025/33385282*87403803^(12/19) 2329991416360178 a001 14930352/167761*12752043^(1/17) 2329991416360178 a004 Fibonacci(25)*Lucas(37)/(1/2+sqrt(5)/2)^49 2329991416360178 a001 75025/33385282*33385282^(2/3) 2329991416360178 a001 75025/87403803*141422324^(2/3) 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^26/Lucas(38) 2329991416360179 a001 75025/87403803*73681302247^(1/2) 2329991416360179 a001 39088169/167761 2329991416360179 a001 75025/87403803*10749957122^(13/24) 2329991416360179 a001 75025/87403803*4106118243^(13/23) 2329991416360179 a001 75025/87403803*1568397607^(13/22) 2329991416360179 a001 75025/87403803*599074578^(13/21) 2329991416360179 a001 75025/87403803*228826127^(13/20) 2329991416360179 a004 Fibonacci(25)*Lucas(39)/(1/2+sqrt(5)/2)^51 2329991416360179 a001 75025/10749957122*141422324^(12/13) 2329991416360179 a001 75025/2537720636*141422324^(11/13) 2329991416360179 a001 75025/87403803*87403803^(13/19) 2329991416360179 a001 75025/599074578*141422324^(10/13) 2329991416360179 a001 75025/228826127*17393796001^(4/7) 2329991416360179 a001 75025/228826127*14662949395604^(4/9) 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^28/Lucas(40) 2329991416360179 a001 75025/228826127*73681302247^(7/13) 2329991416360179 a001 2559206659625/10983760033 2329991416360179 a004 Fibonacci(40)/Lucas(25)/(1/2+sqrt(5)/2)^2 2329991416360179 a001 75025/228826127*10749957122^(7/12) 2329991416360179 a001 75025/228826127*4106118243^(14/23) 2329991416360179 a001 75025/228826127*1568397607^(7/11) 2329991416360179 a001 75025/228826127*599074578^(2/3) 2329991416360179 a004 Fibonacci(25)*Lucas(41)/(1/2+sqrt(5)/2)^53 2329991416360179 a001 75025/228826127*228826127^(7/10) 2329991416360179 a001 75025/599074578*2537720636^(2/3) 2329991416360179 a001 75025/599074578*45537549124^(10/17) 2329991416360179 a001 75025/599074578*312119004989^(6/11) 2329991416360179 a001 75025/599074578*14662949395604^(10/21) 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^30/Lucas(42) 2329991416360179 a001 75025/599074578*192900153618^(5/9) 2329991416360179 a001 2512533757175/10783446409 2329991416360179 a001 75025/599074578*28143753123^(3/5) 2329991416360179 a004 Fibonacci(42)/Lucas(25)/(1/2+sqrt(5)/2)^4 2329991416360179 a001 75025/599074578*10749957122^(5/8) 2329991416360179 a001 75025/599074578*4106118243^(15/23) 2329991416360179 a001 75025/599074578*1568397607^(15/22) 2329991416360179 a004 Fibonacci(25)*Lucas(43)/(1/2+sqrt(5)/2)^55 2329991416360179 a001 75025/599074578*599074578^(5/7) 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^32/Lucas(44) 2329991416360179 a001 75025/1568397607*23725150497407^(1/2) 2329991416360179 a001 17541063397775/75283811239 2329991416360179 a001 75025/1568397607*73681302247^(8/13) 2329991416360179 a004 Fibonacci(44)/Lucas(25)/(1/2+sqrt(5)/2)^6 2329991416360179 a001 75025/1568397607*10749957122^(2/3) 2329991416360179 a001 75025/1568397607*4106118243^(16/23) 2329991416360179 a004 Fibonacci(25)*Lucas(45)/(1/2+sqrt(5)/2)^57 2329991416360179 a001 75025/192900153618*2537720636^(14/15) 2329991416360179 a001 75025/73681302247*2537720636^(8/9) 2329991416360179 a001 75025/45537549124*2537720636^(13/15) 2329991416360179 a001 75025/10749957122*2537720636^(4/5) 2329991416360179 a001 75025/1568397607*1568397607^(8/11) 2329991416360179 a001 75025/6643838879*2537720636^(7/9) 2329991416360179 a001 75025/4106118243*45537549124^(2/3) 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^34/Lucas(46) 2329991416360179 a001 137769300522575/591286729879 2329991416360179 a004 Fibonacci(46)/Lucas(25)/(1/2+sqrt(5)/2)^8 2329991416360179 a001 75025/4106118243*10749957122^(17/24) 2329991416360179 a004 Fibonacci(25)*Lucas(47)/(1/2+sqrt(5)/2)^59 2329991416360179 a001 75025/4106118243*4106118243^(17/23) 2329991416360179 a001 75025/10749957122*45537549124^(12/17) 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^36/Lucas(48) 2329991416360179 a001 500950988020/2150012161 2329991416360179 a001 75025/10749957122*192900153618^(2/3) 2329991416360179 a001 75025/10749957122*73681302247^(9/13) 2329991416360179 a004 Fibonacci(48)/Lucas(25)/(1/2+sqrt(5)/2)^10 2329991416360179 a004 Fibonacci(25)*Lucas(49)/(1/2+sqrt(5)/2)^61 2329991416360179 a001 75025/192900153618*17393796001^(6/7) 2329991416360179 a001 75025/10749957122*10749957122^(3/4) 2329991416360179 a001 75025/28143753123*817138163596^(2/3) 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^38/Lucas(50) 2329991416360179 a004 Fibonacci(25)*Lucas(51)/(1/2+sqrt(5)/2)^63 2329991416360179 a001 75025/3461452808002*45537549124^(16/17) 2329991416360179 a001 75025/192900153618*45537549124^(14/17) 2329991416360179 a001 75025/73681302247*312119004989^(8/11) 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^40/Lucas(52) 2329991416360179 a001 75025/73681302247*23725150497407^(5/8) 2329991416360179 a004 Fibonacci(25)*Lucas(53)/(1/2+sqrt(5)/2)^65 2329991416360179 a001 75025/73681302247*73681302247^(10/13) 2329991416360179 a001 75025/192900153618*14662949395604^(2/3) 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^42/Lucas(54) 2329991416360179 a001 75025/192900153618*505019158607^(3/4) 2329991416360179 a001 75025/505019158607*312119004989^(4/5) 2329991416360179 a004 Fibonacci(25)*Lucas(55)/(1/2+sqrt(5)/2)^67 2329991416360179 a001 75025/817138163596*312119004989^(9/11) 2329991416360179 a001 75025/192900153618*192900153618^(7/9) 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^44/Lucas(56) 2329991416360179 a004 Fibonacci(25)*Lucas(57)/(1/2+sqrt(5)/2)^69 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^46/Lucas(58) 2329991416360179 a004 Fibonacci(25)*Lucas(59)/(1/2+sqrt(5)/2)^71 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^48/Lucas(60) 2329991416360179 a004 Fibonacci(25)*Lucas(61)/(1/2+sqrt(5)/2)^73 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^50/Lucas(62) 2329991416360179 a004 Fibonacci(25)*Lucas(63)/(1/2+sqrt(5)/2)^75 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^52/Lucas(64) 2329991416360179 a004 Fibonacci(25)*Lucas(65)/(1/2+sqrt(5)/2)^77 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^54/Lucas(66) 2329991416360179 a004 Fibonacci(25)*Lucas(67)/(1/2+sqrt(5)/2)^79 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^56/Lucas(68) 2329991416360179 a004 Fibonacci(25)*Lucas(69)/(1/2+sqrt(5)/2)^81 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^58/Lucas(70) 2329991416360179 a004 Fibonacci(25)*Lucas(71)/(1/2+sqrt(5)/2)^83 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^60/Lucas(72) 2329991416360179 a004 Fibonacci(25)*Lucas(73)/(1/2+sqrt(5)/2)^85 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^62/Lucas(74) 2329991416360179 a004 Fibonacci(25)*Lucas(75)/(1/2+sqrt(5)/2)^87 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^64/Lucas(76) 2329991416360179 a004 Fibonacci(25)*Lucas(77)/(1/2+sqrt(5)/2)^89 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^66/Lucas(78) 2329991416360179 a004 Fibonacci(25)*Lucas(79)/(1/2+sqrt(5)/2)^91 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^68/Lucas(80) 2329991416360179 a004 Fibonacci(25)*Lucas(81)/(1/2+sqrt(5)/2)^93 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^70/Lucas(82) 2329991416360179 a004 Fibonacci(25)*Lucas(83)/(1/2+sqrt(5)/2)^95 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^72/Lucas(84) 2329991416360179 a004 Fibonacci(25)*Lucas(85)/(1/2+sqrt(5)/2)^97 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^74/Lucas(86) 2329991416360179 a004 Fibonacci(25)*Lucas(87)/(1/2+sqrt(5)/2)^99 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^76/Lucas(88) 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^78/Lucas(90) 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^80/Lucas(92) 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^82/Lucas(94) 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^84/Lucas(96) 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^86/Lucas(98) 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^87/Lucas(99) 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^88/Lucas(100) 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^85/Lucas(97) 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^83/Lucas(95) 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^81/Lucas(93) 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^79/Lucas(91) 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^77/Lucas(89) 2329991416360179 a004 Fibonacci(25)*Lucas(88)/(1/2+sqrt(5)/2)^100 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^75/Lucas(87) 2329991416360179 a004 Fibonacci(25)*Lucas(86)/(1/2+sqrt(5)/2)^98 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^73/Lucas(85) 2329991416360179 a004 Fibonacci(25)*Lucas(84)/(1/2+sqrt(5)/2)^96 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^71/Lucas(83) 2329991416360179 a004 Fibonacci(25)*Lucas(82)/(1/2+sqrt(5)/2)^94 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^69/Lucas(81) 2329991416360179 a004 Fibonacci(25)*Lucas(80)/(1/2+sqrt(5)/2)^92 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^67/Lucas(79) 2329991416360179 a004 Fibonacci(25)*Lucas(78)/(1/2+sqrt(5)/2)^90 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^65/Lucas(77) 2329991416360179 a004 Fibonacci(25)*Lucas(76)/(1/2+sqrt(5)/2)^88 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^63/Lucas(75) 2329991416360179 a004 Fibonacci(25)*Lucas(74)/(1/2+sqrt(5)/2)^86 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^61/Lucas(73) 2329991416360179 a004 Fibonacci(25)*Lucas(72)/(1/2+sqrt(5)/2)^84 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^59/Lucas(71) 2329991416360179 a004 Fibonacci(25)*Lucas(70)/(1/2+sqrt(5)/2)^82 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^57/Lucas(69) 2329991416360179 a004 Fibonacci(25)*Lucas(68)/(1/2+sqrt(5)/2)^80 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^55/Lucas(67) 2329991416360179 a004 Fibonacci(25)*Lucas(66)/(1/2+sqrt(5)/2)^78 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^53/Lucas(65) 2329991416360179 a001 75025/14662949395604*14662949395604^(17/21) 2329991416360179 a004 Fibonacci(25)*Lucas(64)/(1/2+sqrt(5)/2)^76 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^51/Lucas(63) 2329991416360179 a004 Fibonacci(25)*Lucas(62)/(1/2+sqrt(5)/2)^74 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^49/Lucas(61) 2329991416360179 a004 Fibonacci(25)*Lucas(60)/(1/2+sqrt(5)/2)^72 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^47/Lucas(59) 2329991416360179 a004 Fibonacci(25)*Lucas(58)/(1/2+sqrt(5)/2)^70 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^45/Lucas(57) 2329991416360179 a001 75025/5600748293801*505019158607^(7/8) 2329991416360179 a001 75025/23725150497407*505019158607^(13/14) 2329991416360179 a004 Fibonacci(25)*Lucas(56)/(1/2+sqrt(5)/2)^68 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^43/Lucas(55) 2329991416360179 a001 75025/3461452808002*192900153618^(8/9) 2329991416360179 a001 75025/14662949395604*192900153618^(17/18) 2329991416360179 a004 Fibonacci(25)*Lucas(54)/(1/2+sqrt(5)/2)^66 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^41/Lucas(53) 2329991416360179 a001 75025/45537549124*45537549124^(13/17) 2329991416360179 a001 75025/505019158607*73681302247^(11/13) 2329991416360179 a001 75025/3461452808002*73681302247^(12/13) 2329991416360179 a004 Fibonacci(25)*Lucas(52)/(1/2+sqrt(5)/2)^64 2329991416360179 a001 763942477913425/3278735159921 2329991416360179 a001 75025/45537549124*14662949395604^(13/21) 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^39/Lucas(51) 2329991416360179 a001 75025/45537549124*192900153618^(13/18) 2329991416360179 a001 75025/45537549124*73681302247^(3/4) 2329991416360179 a001 75025/73681302247*28143753123^(4/5) 2329991416360179 a004 Fibonacci(52)/Lucas(25)/(1/2+sqrt(5)/2)^14 2329991416360179 a001 75025/817138163596*28143753123^(9/10) 2329991416360179 a004 Fibonacci(54)/Lucas(25)/(1/2+sqrt(5)/2)^16 2329991416360179 a004 Fibonacci(56)/Lucas(25)/(1/2+sqrt(5)/2)^18 2329991416360179 a004 Fibonacci(58)/Lucas(25)/(1/2+sqrt(5)/2)^20 2329991416360179 a004 Fibonacci(60)/Lucas(25)/(1/2+sqrt(5)/2)^22 2329991416360179 a004 Fibonacci(62)/Lucas(25)/(1/2+sqrt(5)/2)^24 2329991416360179 a004 Fibonacci(64)/Lucas(25)/(1/2+sqrt(5)/2)^26 2329991416360179 a004 Fibonacci(66)/Lucas(25)/(1/2+sqrt(5)/2)^28 2329991416360179 a004 Fibonacci(68)/Lucas(25)/(1/2+sqrt(5)/2)^30 2329991416360179 a004 Fibonacci(70)/Lucas(25)/(1/2+sqrt(5)/2)^32 2329991416360179 a004 Fibonacci(72)/Lucas(25)/(1/2+sqrt(5)/2)^34 2329991416360179 a004 Fibonacci(74)/Lucas(25)/(1/2+sqrt(5)/2)^36 2329991416360179 a004 Fibonacci(76)/Lucas(25)/(1/2+sqrt(5)/2)^38 2329991416360179 a004 Fibonacci(78)/Lucas(25)/(1/2+sqrt(5)/2)^40 2329991416360179 a004 Fibonacci(80)/Lucas(25)/(1/2+sqrt(5)/2)^42 2329991416360179 a004 Fibonacci(82)/Lucas(25)/(1/2+sqrt(5)/2)^44 2329991416360179 a004 Fibonacci(84)/Lucas(25)/(1/2+sqrt(5)/2)^46 2329991416360179 a004 Fibonacci(86)/Lucas(25)/(1/2+sqrt(5)/2)^48 2329991416360179 a004 Fibonacci(88)/Lucas(25)/(1/2+sqrt(5)/2)^50 2329991416360179 a004 Fibonacci(90)/Lucas(25)/(1/2+sqrt(5)/2)^52 2329991416360179 a004 Fibonacci(92)/Lucas(25)/(1/2+sqrt(5)/2)^54 2329991416360179 a004 Fibonacci(94)/Lucas(25)/(1/2+sqrt(5)/2)^56 2329991416360179 a004 Fibonacci(96)/Lucas(25)/(1/2+sqrt(5)/2)^58 2329991416360179 a004 Fibonacci(98)/Lucas(25)/(1/2+sqrt(5)/2)^60 2329991416360179 a004 Fibonacci(25)*Lucas(50)/(1/2+sqrt(5)/2)^62 2329991416360179 a004 Fibonacci(97)/Lucas(25)/(1/2+sqrt(5)/2)^59 2329991416360179 a004 Fibonacci(99)/Lucas(25)/(1/2+sqrt(5)/2)^61 2329991416360179 a004 Fibonacci(95)/Lucas(25)/(1/2+sqrt(5)/2)^57 2329991416360179 a004 Fibonacci(93)/Lucas(25)/(1/2+sqrt(5)/2)^55 2329991416360179 a004 Fibonacci(91)/Lucas(25)/(1/2+sqrt(5)/2)^53 2329991416360179 a004 Fibonacci(89)/Lucas(25)/(1/2+sqrt(5)/2)^51 2329991416360179 a004 Fibonacci(87)/Lucas(25)/(1/2+sqrt(5)/2)^49 2329991416360179 a004 Fibonacci(85)/Lucas(25)/(1/2+sqrt(5)/2)^47 2329991416360179 a004 Fibonacci(83)/Lucas(25)/(1/2+sqrt(5)/2)^45 2329991416360179 a004 Fibonacci(81)/Lucas(25)/(1/2+sqrt(5)/2)^43 2329991416360179 a004 Fibonacci(79)/Lucas(25)/(1/2+sqrt(5)/2)^41 2329991416360179 a004 Fibonacci(77)/Lucas(25)/(1/2+sqrt(5)/2)^39 2329991416360179 a004 Fibonacci(75)/Lucas(25)/(1/2+sqrt(5)/2)^37 2329991416360179 a004 Fibonacci(73)/Lucas(25)/(1/2+sqrt(5)/2)^35 2329991416360179 a004 Fibonacci(71)/Lucas(25)/(1/2+sqrt(5)/2)^33 2329991416360179 a004 Fibonacci(69)/Lucas(25)/(1/2+sqrt(5)/2)^31 2329991416360179 a004 Fibonacci(67)/Lucas(25)/(1/2+sqrt(5)/2)^29 2329991416360179 a004 Fibonacci(65)/Lucas(25)/(1/2+sqrt(5)/2)^27 2329991416360179 a004 Fibonacci(63)/Lucas(25)/(1/2+sqrt(5)/2)^25 2329991416360179 a004 Fibonacci(61)/Lucas(25)/(1/2+sqrt(5)/2)^23 2329991416360179 a004 Fibonacci(59)/Lucas(25)/(1/2+sqrt(5)/2)^21 2329991416360179 a004 Fibonacci(57)/Lucas(25)/(1/2+sqrt(5)/2)^19 2329991416360179 a004 Fibonacci(55)/Lucas(25)/(1/2+sqrt(5)/2)^17 2329991416360179 a004 Fibonacci(53)/Lucas(25)/(1/2+sqrt(5)/2)^15 2329991416360179 a004 Fibonacci(51)/Lucas(25)/(1/2+sqrt(5)/2)^13 2329991416360179 a001 583600122226225/2504730781961 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^37/Lucas(49) 2329991416360179 a004 Fibonacci(49)/Lucas(25)/(1/2+sqrt(5)/2)^11 2329991416360179 a001 75025/28143753123*10749957122^(19/24) 2329991416360179 a001 75025/73681302247*10749957122^(5/6) 2329991416360179 a001 75025/45537549124*10749957122^(13/16) 2329991416360179 a001 75025/192900153618*10749957122^(7/8) 2329991416360179 a001 75025/505019158607*10749957122^(11/12) 2329991416360179 a001 75025/817138163596*10749957122^(15/16) 2329991416360179 a001 75025/1322157322203*10749957122^(23/24) 2329991416360179 a004 Fibonacci(25)*Lucas(48)/(1/2+sqrt(5)/2)^60 2329991416360179 a001 75025/6643838879*17393796001^(5/7) 2329991416360179 a001 75025/6643838879*312119004989^(7/11) 2329991416360179 a001 222915410851825/956722026041 2329991416360179 a001 75025/6643838879*14662949395604^(5/9) 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^35/Lucas(47) 2329991416360179 a001 75025/6643838879*28143753123^(7/10) 2329991416360179 a004 Fibonacci(47)/Lucas(25)/(1/2+sqrt(5)/2)^9 2329991416360179 a001 75025/10749957122*4106118243^(18/23) 2329991416360179 a001 75025/2537720636*2537720636^(11/15) 2329991416360179 a001 75025/28143753123*4106118243^(19/23) 2329991416360179 a001 75025/73681302247*4106118243^(20/23) 2329991416360179 a001 75025/192900153618*4106118243^(21/23) 2329991416360179 a001 75025/505019158607*4106118243^(22/23) 2329991416360179 a004 Fibonacci(25)*Lucas(46)/(1/2+sqrt(5)/2)^58 2329991416360179 a001 75025/2537720636*45537549124^(11/17) 2329991416360179 a001 75025/2537720636*312119004989^(3/5) 2329991416360179 a001 42573055164625/182717648081 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^33/Lucas(45) 2329991416360179 a001 75025/2537720636*192900153618^(11/18) 2329991416360179 a004 Fibonacci(45)/Lucas(25)/(1/2+sqrt(5)/2)^7 2329991416360179 a001 75025/2537720636*10749957122^(11/16) 2329991416360179 a001 75025/4106118243*1568397607^(17/22) 2329991416360179 a001 75025/10749957122*1568397607^(9/11) 2329991416360179 a001 75025/28143753123*1568397607^(19/22) 2329991416360179 a001 75025/73681302247*1568397607^(10/11) 2329991416360179 a001 75025/192900153618*1568397607^(21/22) 2329991416360179 a004 Fibonacci(25)*Lucas(44)/(1/2+sqrt(5)/2)^56 2329991416360179 a001 75025/2537720636*1568397607^(3/4) 2329991416360179 a001 6504584027185/27916772489 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^31/Lucas(43) 2329991416360179 a001 75025/969323029*9062201101803^(1/2) 2329991416360179 a004 Fibonacci(43)/Lucas(25)/(1/2+sqrt(5)/2)^5 2329991416360179 a001 75025/1568397607*599074578^(16/21) 2329991416360179 a001 75025/4106118243*599074578^(17/21) 2329991416360179 a001 75025/2537720636*599074578^(11/14) 2329991416360179 a001 75025/6643838879*599074578^(5/6) 2329991416360179 a001 75025/10749957122*599074578^(6/7) 2329991416360179 a001 75025/28143753123*599074578^(19/21) 2329991416360179 a001 75025/45537549124*599074578^(13/14) 2329991416360179 a001 75025/73681302247*599074578^(20/21) 2329991416360179 a004 Fibonacci(25)*Lucas(42)/(1/2+sqrt(5)/2)^54 2329991416360179 a001 12422650078525/53316291173 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^29/Lucas(41) 2329991416360179 a001 75025/370248451*1322157322203^(1/2) 2329991416360179 a004 Fibonacci(41)/Lucas(25)/(1/2+sqrt(5)/2)^3 2329991416360179 a001 75025/599074578*228826127^(3/4) 2329991416360179 a001 75025/1568397607*228826127^(4/5) 2329991416360179 a001 75025/141422324*141422324^(9/13) 2329991416360179 a001 75025/4106118243*228826127^(17/20) 2329991416360179 a001 75025/6643838879*228826127^(7/8) 2329991416360179 a001 75025/10749957122*228826127^(9/10) 2329991416360179 a001 75025/28143753123*228826127^(19/20) 2329991416360179 a004 Fibonacci(25)*Lucas(40)/(1/2+sqrt(5)/2)^52 2329991416360179 a001 75025/141422324*2537720636^(3/5) 2329991416360179 a001 2372515049825/10182505537 2329991416360179 a001 75025/141422324*45537549124^(9/17) 2329991416360179 a001 75025/141422324*14662949395604^(3/7) 2329991416360179 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^27/Lucas(39) 2329991416360179 a001 75025/141422324*192900153618^(1/2) 2329991416360179 a004 Fibonacci(39)/Lucas(25)/(1/2+sqrt(5)/2) 2329991416360179 a001 75025/141422324*10749957122^(9/16) 2329991416360179 a001 75025/141422324*599074578^(9/14) 2329991416360179 a001 75025/228826127*87403803^(14/19) 2329991416360179 a001 75025/599074578*87403803^(15/19) 2329991416360179 a001 75025/1568397607*87403803^(16/19) 2329991416360179 a001 75025/4106118243*87403803^(17/19) 2329991416360179 a001 75025/10749957122*87403803^(18/19) 2329991416360179 a004 Fibonacci(25)*Lucas(38)/(1/2+sqrt(5)/2)^50 2329991416360180 a001 75025/54018521*2537720636^(5/9) 2329991416360180 a001 1812440220425/7778742049 2329991416360180 a001 75025/54018521*312119004989^(5/11) 2329991416360180 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^25/Lucas(37) 2329991416360180 a001 75025/54018521*3461452808002^(5/12) 2329991416360180 a001 75025/54018521*28143753123^(1/2) 2329991416360180 a001 24157817/335522+24157817/335522*5^(1/2) 2329991416360180 a001 75025/54018521*228826127^(5/8) 2329991416360180 a001 75025/87403803*33385282^(13/18) 2329991416360180 a001 75025/228826127*33385282^(7/9) 2329991416360181 a001 75025/141422324*33385282^(3/4) 2329991416360181 a001 75025/599074578*33385282^(5/6) 2329991416360181 a001 75025/1568397607*33385282^(8/9) 2329991416360181 a001 75025/2537720636*33385282^(11/12) 2329991416360181 a001 75025/4106118243*33385282^(17/18) 2329991416360181 a001 9227465/167761*7881196^(1/11) 2329991416360181 a004 Fibonacci(25)*Lucas(36)/(1/2+sqrt(5)/2)^48 2329991416360183 a001 14930352/167761*4870847^(1/16) 2329991416360184 a001 9227465/167761*141422324^(1/13) 2329991416360184 a001 692290561625/2971215073 2329991416360184 a001 9227465/167761*2537720636^(1/15) 2329991416360184 a001 75025/20633239*(1/2+1/2*5^(1/2))^23 2329991416360184 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^23/Lucas(35) 2329991416360184 a001 9227465/167761*45537549124^(1/17) 2329991416360184 a001 9227465/167761*14662949395604^(1/21) 2329991416360184 a001 9227465/167761*(1/2+1/2*5^(1/2))^3 2329991416360184 a001 9227465/167761*10749957122^(1/16) 2329991416360184 a001 75025/20633239*4106118243^(1/2) 2329991416360184 a001 9227465/167761*599074578^(1/14) 2329991416360185 a001 9227465/167761*33385282^(1/12) 2329991416360187 a001 75025/33385282*12752043^(12/17) 2329991416360190 a001 75025/87403803*12752043^(13/17) 2329991416360191 a001 75025/228826127*12752043^(14/17) 2329991416360192 a001 75025/599074578*12752043^(15/17) 2329991416360192 a001 75025/1568397607*12752043^(16/17) 2329991416360193 a001 75025/7881196*7881196^(7/11) 2329991416360193 a004 Fibonacci(25)*Lucas(34)/(1/2+sqrt(5)/2)^46 2329991416360213 a001 75025/7881196*20633239^(3/5) 2329991416360215 a001 2178309/167761*1860498^(1/5) 2329991416360216 a001 3524578/167761*20633239^(1/7) 2329991416360216 a001 75025/7881196*141422324^(7/13) 2329991416360216 a001 26443146445/113490317 2329991416360216 a001 75025/7881196*2537720636^(7/15) 2329991416360216 a001 3524578/167761*2537720636^(1/9) 2329991416360216 a001 75025/7881196*17393796001^(3/7) 2329991416360216 a001 75025/7881196*45537549124^(7/17) 2329991416360216 a001 75025/7881196*14662949395604^(1/3) 2329991416360216 a001 75025/7881196*(1/2+1/2*5^(1/2))^21 2329991416360216 a001 75025/7881196*192900153618^(7/18) 2329991416360216 a001 3524578/167761*312119004989^(1/11) 2329991416360216 a001 3524578/167761*(1/2+1/2*5^(1/2))^5 2329991416360216 a001 3524578/167761*28143753123^(1/10) 2329991416360216 a001 75025/7881196*10749957122^(7/16) 2329991416360216 a001 75025/7881196*599074578^(1/2) 2329991416360216 a001 3524578/167761*228826127^(1/8) 2329991416360218 a001 75025/7881196*33385282^(7/12) 2329991416360222 a001 14930352/167761*1860498^(1/15) 2329991416360232 a001 75025/12752043*4870847^(11/16) 2329991416360250 a001 75025/33385282*4870847^(3/4) 2329991416360252 a001 9227465/167761*1860498^(1/10) 2329991416360254 a001 5702887/167761*1860498^(2/15) 2329991416360258 a001 75025/87403803*4870847^(13/16) 2329991416360265 a001 75025/228826127*4870847^(7/8) 2329991416360271 a001 75025/599074578*4870847^(15/16) 2329991416360277 a004 Fibonacci(25)*Lucas(32)/(1/2+sqrt(5)/2)^44 2329991416360329 a001 3524578/167761*1860498^(1/6) 2329991416360435 a001 1346269/167761*20633239^(1/5) 2329991416360436 a001 101003831725/433494437 2329991416360436 a001 75025/3010349*817138163596^(1/3) 2329991416360436 a001 75025/3010349*(1/2+1/2*5^(1/2))^19 2329991416360436 a001 1346269/167761*17393796001^(1/7) 2329991416360436 a001 1346269/167761*14662949395604^(1/9) 2329991416360436 a001 1346269/167761*(1/2+1/2*5^(1/2))^7 2329991416360436 a001 1346269/167761*599074578^(1/6) 2329991416360436 a001 75025/3010349*87403803^(1/2) 2329991416360469 a001 3524578/1149851*103682^(3/8) 2329991416360506 a001 14930352/167761*710647^(1/14) 2329991416360529 a001 75025/4870847*1860498^(2/3) 2329991416360658 a001 75025/12752043*1860498^(11/15) 2329991416360688 a001 75025/7881196*1860498^(7/10) 2329991416360715 a001 75025/33385282*1860498^(4/5) 2329991416360741 a001 75025/54018521*1860498^(5/6) 2329991416360762 a001 75025/87403803*1860498^(13/15) 2329991416360785 a001 75025/141422324*1860498^(9/10) 2329991416360807 a001 75025/228826127*1860498^(14/15) 2329991416360824 a001 5702887/167761*710647^(1/7) 2329991416360824 a001 75640/15251*710647^(2/7) 2329991416360852 a004 Fibonacci(25)*Lucas(30)/(1/2+sqrt(5)/2)^42 2329991416361069 a001 2178309/167761*710647^(3/14) 2329991416361589 a001 1346269/167761*710647^(1/4) 2329991416361619 a001 2178309/439204*103682^(1/3) 2329991416361931 a001 514229/167761*7881196^(3/11) 2329991416361941 a001 514229/167761*141422324^(3/13) 2329991416361941 a001 38580030725/165580141 2329991416361941 a001 514229/167761*2537720636^(1/5) 2329991416361941 a001 75025/1149851*45537549124^(1/3) 2329991416361941 a001 75025/1149851*(1/2+1/2*5^(1/2))^17 2329991416361941 a001 514229/167761*45537549124^(3/17) 2329991416361941 a001 514229/167761*14662949395604^(1/7) 2329991416361941 a001 514229/167761*(1/2+1/2*5^(1/2))^9 2329991416361941 a001 514229/167761*192900153618^(1/6) 2329991416361941 a001 514229/167761*10749957122^(3/16) 2329991416361941 a001 514229/167761*599074578^(3/14) 2329991416361942 a001 514229/167761*33385282^(1/4) 2329991416361948 a001 75025/1149851*12752043^(1/2) 2329991416362143 a001 514229/167761*1860498^(3/10) 2329991416362472 a001 75025/1860498*710647^(9/14) 2329991416362609 a001 14930352/167761*271443^(1/13) 2329991416363343 a001 1346269/710647*103682^(5/12) 2329991416363376 a001 75025/4870847*710647^(5/7) 2329991416363677 a001 75025/7881196*710647^(3/4) 2329991416363790 a001 75025/12752043*710647^(11/14) 2329991416364131 a001 75025/33385282*710647^(6/7) 2329991416364463 a001 75025/87403803*710647^(13/14) 2329991416364793 a004 Fibonacci(25)*Lucas(28)/(1/2+sqrt(5)/2)^40 2329991416365030 a001 5702887/167761*271443^(2/13) 2329991416365547 a001 75025/439204*439204^(5/9) 2329991416366218 a001 196418/271443*103682^(1/2) 2329991416367064 a001 1762289/930249*103682^(5/12) 2329991416367378 a001 2178309/167761*271443^(3/13) 2329991416367607 a001 9227465/4870847*103682^(5/12) 2329991416367687 a001 24157817/12752043*103682^(5/12) 2329991416367698 a001 31622993/16692641*103682^(5/12) 2329991416367700 a001 165580141/87403803*103682^(5/12) 2329991416367700 a001 433494437/228826127*103682^(5/12) 2329991416367700 a001 567451585/299537289*103682^(5/12) 2329991416367700 a001 2971215073/1568397607*103682^(5/12) 2329991416367700 a001 7778742049/4106118243*103682^(5/12) 2329991416367700 a001 10182505537/5374978561*103682^(5/12) 2329991416367700 a001 53316291173/28143753123*103682^(5/12) 2329991416367700 a001 139583862445/73681302247*103682^(5/12) 2329991416367700 a001 182717648081/96450076809*103682^(5/12) 2329991416367700 a001 956722026041/505019158607*103682^(5/12) 2329991416367700 a001 10610209857723/5600748293801*103682^(5/12) 2329991416367700 a001 591286729879/312119004989*103682^(5/12) 2329991416367700 a001 225851433717/119218851371*103682^(5/12) 2329991416367700 a001 21566892818/11384387281*103682^(5/12) 2329991416367700 a001 32951280099/17393796001*103682^(5/12) 2329991416367700 a001 12586269025/6643838879*103682^(5/12) 2329991416367700 a001 1201881744/634430159*103682^(5/12) 2329991416367700 a001 1836311903/969323029*103682^(5/12) 2329991416367700 a001 701408733/370248451*103682^(5/12) 2329991416367700 a001 66978574/35355581*103682^(5/12) 2329991416367701 a001 102334155/54018521*103682^(5/12) 2329991416367705 a001 39088169/20633239*103682^(5/12) 2329991416367728 a001 317811/167761*271443^(5/13) 2329991416367735 a001 3732588/1970299*103682^(5/12) 2329991416367943 a001 5702887/3010349*103682^(5/12) 2329991416369211 a001 24157817/167761*103682^(1/24) 2329991416369236 a001 75640/15251*271443^(4/13) 2329991416369364 a001 2178309/1149851*103682^(5/12) 2329991416371005 a001 1346269/439204*103682^(3/8) 2329991416371444 a001 832040/710647*103682^(11/24) 2329991416372241 a001 75025/439204*7881196^(5/11) 2329991416372245 a001 196418/167761*7881196^(1/3) 2329991416372255 a001 75025/439204*20633239^(3/7) 2329991416372257 a001 7368130225/31622993 2329991416372258 a001 75025/439204*141422324^(5/13) 2329991416372258 a001 75025/439204*2537720636^(1/3) 2329991416372258 a001 75025/439204*45537549124^(5/17) 2329991416372258 a001 75025/439204*312119004989^(3/11) 2329991416372258 a001 75025/439204*14662949395604^(5/21) 2329991416372258 a001 75025/439204*(1/2+1/2*5^(1/2))^15 2329991416372258 a001 75025/439204*192900153618^(5/18) 2329991416372258 a001 75025/439204*28143753123^(3/10) 2329991416372258 a001 196418/167761*312119004989^(1/5) 2329991416372258 a001 196418/167761*(1/2+1/2*5^(1/2))^11 2329991416372258 a001 75025/439204*10749957122^(5/16) 2329991416372258 a001 196418/167761*1568397607^(1/4) 2329991416372258 a001 75025/439204*599074578^(5/14) 2329991416372258 a001 75025/439204*228826127^(3/8) 2329991416372258 a001 75025/439204*33385282^(5/12) 2329991416372594 a001 75025/439204*1860498^(1/2) 2329991416375025 a001 75025/710647*271443^(8/13) 2329991416375960 a001 726103/620166*103682^(11/24) 2329991416376619 a001 5702887/4870847*103682^(11/24) 2329991416376619 a001 121393/710647*103682^(5/8) 2329991416376715 a001 4976784/4250681*103682^(11/24) 2329991416376729 a001 39088169/33385282*103682^(11/24) 2329991416376731 a001 34111385/29134601*103682^(11/24) 2329991416376731 a001 267914296/228826127*103682^(11/24) 2329991416376731 a001 233802911/199691526*103682^(11/24) 2329991416376731 a001 1836311903/1568397607*103682^(11/24) 2329991416376731 a001 1602508992/1368706081*103682^(11/24) 2329991416376731 a001 12586269025/10749957122*103682^(11/24) 2329991416376731 a001 10983760033/9381251041*103682^(11/24) 2329991416376731 a001 86267571272/73681302247*103682^(11/24) 2329991416376731 a001 75283811239/64300051206*103682^(11/24) 2329991416376731 a001 2504730781961/2139295485799*103682^(11/24) 2329991416376731 a001 365435296162/312119004989*103682^(11/24) 2329991416376731 a001 139583862445/119218851371*103682^(11/24) 2329991416376731 a001 53316291173/45537549124*103682^(11/24) 2329991416376731 a001 20365011074/17393796001*103682^(11/24) 2329991416376731 a001 7778742049/6643838879*103682^(11/24) 2329991416376731 a001 2971215073/2537720636*103682^(11/24) 2329991416376731 a001 1134903170/969323029*103682^(11/24) 2329991416376731 a001 433494437/370248451*103682^(11/24) 2329991416376731 a001 165580141/141422324*103682^(11/24) 2329991416376732 a001 63245986/54018521*103682^(11/24) 2329991416376737 a001 24157817/20633239*103682^(11/24) 2329991416376774 a001 9227465/7881196*103682^(11/24) 2329991416377026 a001 3524578/3010349*103682^(11/24) 2329991416377838 a001 28657/1149851*64079^(19/23) 2329991416378239 a001 14930352/167761*103682^(1/12) 2329991416378750 a001 1346269/1149851*103682^(11/24) 2329991416379106 a001 208010/109801*103682^(5/12) 2329991416380822 a001 24157817/271443*39603^(1/11) 2329991416381398 a001 75025/1860498*271443^(9/13) 2329991416382911 a001 514229/710647*103682^(1/2) 2329991416384280 a001 121393/439204*103682^(7/12) 2329991416384406 a001 75025/4870847*271443^(10/13) 2329991416385346 a001 1346269/1860498*103682^(1/2) 2329991416385566 a001 317811/710647*103682^(13/24) 2329991416385701 a001 3524578/4870847*103682^(1/2) 2329991416385753 a001 9227465/12752043*103682^(1/2) 2329991416385761 a001 24157817/33385282*103682^(1/2) 2329991416385762 a001 63245986/87403803*103682^(1/2) 2329991416385762 a001 165580141/228826127*103682^(1/2) 2329991416385762 a001 433494437/599074578*103682^(1/2) 2329991416385762 a001 1134903170/1568397607*103682^(1/2) 2329991416385762 a001 2971215073/4106118243*103682^(1/2) 2329991416385762 a001 7778742049/10749957122*103682^(1/2) 2329991416385762 a001 20365011074/28143753123*103682^(1/2) 2329991416385762 a001 53316291173/73681302247*103682^(1/2) 2329991416385762 a001 139583862445/192900153618*103682^(1/2) 2329991416385762 a001 365435296162/505019158607*103682^(1/2) 2329991416385762 a001 10610209857723/14662949395604*103682^(1/2) 2329991416385762 a001 225851433717/312119004989*103682^(1/2) 2329991416385762 a001 86267571272/119218851371*103682^(1/2) 2329991416385762 a001 32951280099/45537549124*103682^(1/2) 2329991416385762 a001 12586269025/17393796001*103682^(1/2) 2329991416385762 a001 4807526976/6643838879*103682^(1/2) 2329991416385762 a001 1836311903/2537720636*103682^(1/2) 2329991416385762 a001 701408733/969323029*103682^(1/2) 2329991416385762 a001 267914296/370248451*103682^(1/2) 2329991416385762 a001 102334155/141422324*103682^(1/2) 2329991416385763 a001 39088169/54018521*103682^(1/2) 2329991416385765 a001 14930352/20633239*103682^(1/2) 2329991416385785 a001 5702887/7881196*103682^(1/2) 2329991416385921 a001 2178309/3010349*103682^(1/2) 2329991416386851 a001 832040/1149851*103682^(1/2) 2329991416386922 a001 75025/12752043*271443^(11/13) 2329991416387277 a001 9227465/167761*103682^(1/8) 2329991416389367 a001 75025/33385282*271443^(12/13) 2329991416390572 a001 514229/439204*103682^(11/24) 2329991416391801 a004 Fibonacci(25)*Lucas(26)/(1/2+sqrt(5)/2)^38 2329991416392026 a001 121393/1149851*103682^(2/3) 2329991416393227 a001 317811/439204*103682^(1/2) 2329991416393447 a001 416020/930249*103682^(13/24) 2329991416394597 a001 2178309/4870847*103682^(13/24) 2329991416394764 a001 5702887/12752043*103682^(13/24) 2329991416394789 a001 7465176/16692641*103682^(13/24) 2329991416394792 a001 39088169/87403803*103682^(13/24) 2329991416394793 a001 102334155/228826127*103682^(13/24) 2329991416394793 a001 133957148/299537289*103682^(13/24) 2329991416394793 a001 701408733/1568397607*103682^(13/24) 2329991416394793 a001 1836311903/4106118243*103682^(13/24) 2329991416394793 a001 2403763488/5374978561*103682^(13/24) 2329991416394793 a001 12586269025/28143753123*103682^(13/24) 2329991416394793 a001 32951280099/73681302247*103682^(13/24) 2329991416394793 a001 43133785636/96450076809*103682^(13/24) 2329991416394793 a001 225851433717/505019158607*103682^(13/24) 2329991416394793 a001 10610209857723/23725150497407*103682^(13/24) 2329991416394793 a001 182717648081/408569081798*103682^(13/24) 2329991416394793 a001 139583862445/312119004989*103682^(13/24) 2329991416394793 a001 53316291173/119218851371*103682^(13/24) 2329991416394793 a001 10182505537/22768774562*103682^(13/24) 2329991416394793 a001 7778742049/17393796001*103682^(13/24) 2329991416394793 a001 2971215073/6643838879*103682^(13/24) 2329991416394793 a001 567451585/1268860318*103682^(13/24) 2329991416394793 a001 433494437/969323029*103682^(13/24) 2329991416394793 a001 165580141/370248451*103682^(13/24) 2329991416394793 a001 31622993/70711162*103682^(13/24) 2329991416394795 a001 24157817/54018521*103682^(13/24) 2329991416394804 a001 9227465/20633239*103682^(13/24) 2329991416394868 a001 1762289/3940598*103682^(13/24) 2329991416395307 a001 1346269/3010349*103682^(13/24) 2329991416396134 a001 28657/710647*64079^(18/23) 2329991416396289 a001 5702887/167761*103682^(1/6) 2329991416398181 a001 46347/2206*39603^(5/22) 2329991416398318 a001 514229/1149851*103682^(13/24) 2329991416398621 a001 121393/1860498*103682^(17/24) 2329991416400973 a001 317811/1149851*103682^(7/12) 2329991416403408 a001 832040/3010349*103682^(7/12) 2329991416403763 a001 2178309/7881196*103682^(7/12) 2329991416403815 a001 5702887/20633239*103682^(7/12) 2329991416403823 a001 14930352/54018521*103682^(7/12) 2329991416403824 a001 39088169/141422324*103682^(7/12) 2329991416403824 a001 102334155/370248451*103682^(7/12) 2329991416403824 a001 267914296/969323029*103682^(7/12) 2329991416403824 a001 701408733/2537720636*103682^(7/12) 2329991416403824 a001 1836311903/6643838879*103682^(7/12) 2329991416403824 a001 4807526976/17393796001*103682^(7/12) 2329991416403824 a001 12586269025/45537549124*103682^(7/12) 2329991416403824 a001 32951280099/119218851371*103682^(7/12) 2329991416403824 a001 86267571272/312119004989*103682^(7/12) 2329991416403824 a001 1548008755920/5600748293801*103682^(7/12) 2329991416403824 a001 139583862445/505019158607*103682^(7/12) 2329991416403824 a001 53316291173/192900153618*103682^(7/12) 2329991416403824 a001 20365011074/73681302247*103682^(7/12) 2329991416403824 a001 7778742049/28143753123*103682^(7/12) 2329991416403824 a001 2971215073/10749957122*103682^(7/12) 2329991416403824 a001 1134903170/4106118243*103682^(7/12) 2329991416403824 a001 433494437/1568397607*103682^(7/12) 2329991416403824 a001 165580141/599074578*103682^(7/12) 2329991416403824 a001 63245986/228826127*103682^(7/12) 2329991416403825 a001 24157817/87403803*103682^(7/12) 2329991416403827 a001 9227465/33385282*103682^(7/12) 2329991416403847 a001 3524578/12752043*103682^(7/12) 2329991416403983 a001 1346269/4870847*103682^(7/12) 2329991416404913 a001 514229/1860498*103682^(7/12) 2329991416405371 a001 3524578/167761*103682^(5/24) 2329991416407568 a001 105937/620166*103682^(5/8) 2329991416407830 a001 63245986/710647*39603^(1/11) 2329991416408583 a001 121393/3010349*103682^(3/4) 2329991416411289 a001 196418/710647*103682^(7/12) 2329991416411770 a001 165580141/1860498*39603^(1/11) 2329991416412084 a001 832040/4870847*103682^(5/8) 2329991416412345 a001 433494437/4870847*39603^(1/11) 2329991416412429 a001 1134903170/12752043*39603^(1/11) 2329991416412441 a001 2971215073/33385282*39603^(1/11) 2329991416412443 a001 7778742049/87403803*39603^(1/11) 2329991416412443 a001 20365011074/228826127*39603^(1/11) 2329991416412443 a001 53316291173/599074578*39603^(1/11) 2329991416412443 a001 139583862445/1568397607*39603^(1/11) 2329991416412443 a001 365435296162/4106118243*39603^(1/11) 2329991416412443 a001 956722026041/10749957122*39603^(1/11) 2329991416412443 a001 2504730781961/28143753123*39603^(1/11) 2329991416412443 a001 6557470319842/73681302247*39603^(1/11) 2329991416412443 a001 10610209857723/119218851371*39603^(1/11) 2329991416412443 a001 4052739537881/45537549124*39603^(1/11) 2329991416412443 a001 1548008755920/17393796001*39603^(1/11) 2329991416412443 a001 591286729879/6643838879*39603^(1/11) 2329991416412443 a001 225851433717/2537720636*39603^(1/11) 2329991416412443 a001 86267571272/969323029*39603^(1/11) 2329991416412443 a001 32951280099/370248451*39603^(1/11) 2329991416412443 a001 12586269025/141422324*39603^(1/11) 2329991416412444 a001 4807526976/54018521*39603^(1/11) 2329991416412449 a001 1836311903/20633239*39603^(1/11) 2329991416412481 a001 3524667/39604*39603^(1/11) 2329991416412700 a001 267914296/3010349*39603^(1/11) 2329991416412743 a001 726103/4250681*103682^(5/8) 2329991416412839 a001 5702887/33385282*103682^(5/8) 2329991416412853 a001 4976784/29134601*103682^(5/8) 2329991416412855 a001 39088169/228826127*103682^(5/8) 2329991416412855 a001 34111385/199691526*103682^(5/8) 2329991416412855 a001 267914296/1568397607*103682^(5/8) 2329991416412855 a001 233802911/1368706081*103682^(5/8) 2329991416412855 a001 1836311903/10749957122*103682^(5/8) 2329991416412855 a001 1602508992/9381251041*103682^(5/8) 2329991416412855 a001 12586269025/73681302247*103682^(5/8) 2329991416412855 a001 10983760033/64300051206*103682^(5/8) 2329991416412855 a001 86267571272/505019158607*103682^(5/8) 2329991416412855 a001 75283811239/440719107401*103682^(5/8) 2329991416412855 a001 2504730781961/14662949395604*103682^(5/8) 2329991416412855 a001 139583862445/817138163596*103682^(5/8) 2329991416412855 a001 53316291173/312119004989*103682^(5/8) 2329991416412855 a001 20365011074/119218851371*103682^(5/8) 2329991416412855 a001 7778742049/45537549124*103682^(5/8) 2329991416412855 a001 2971215073/17393796001*103682^(5/8) 2329991416412855 a001 1134903170/6643838879*103682^(5/8) 2329991416412855 a001 433494437/2537720636*103682^(5/8) 2329991416412855 a001 165580141/969323029*103682^(5/8) 2329991416412855 a001 63245986/370248451*103682^(5/8) 2329991416412856 a001 24157817/141422324*103682^(5/8) 2329991416412861 a001 9227465/54018521*103682^(5/8) 2329991416412898 a001 3524578/20633239*103682^(5/8) 2329991416413150 a001 1346269/7881196*103682^(5/8) 2329991416414206 a001 102334155/1149851*39603^(1/11) 2329991416414267 a001 2178309/167761*103682^(1/4) 2329991416414874 a001 514229/3010349*103682^(5/8) 2329991416417258 a001 121393/4870847*103682^(19/24) 2329991416417530 a001 317811/3010349*103682^(2/3) 2329991416418468 a001 28657/271443*64079^(16/23) 2329991416418951 a001 98209/219602*103682^(13/24) 2329991416421250 a001 208010/1970299*103682^(2/3) 2329991416421793 a001 2178309/20633239*103682^(2/3) 2329991416421873 a001 5702887/54018521*103682^(2/3) 2329991416421884 a001 3732588/35355581*103682^(2/3) 2329991416421886 a001 39088169/370248451*103682^(2/3) 2329991416421886 a001 102334155/969323029*103682^(2/3) 2329991416421886 a001 66978574/634430159*103682^(2/3) 2329991416421886 a001 701408733/6643838879*103682^(2/3) 2329991416421886 a001 1836311903/17393796001*103682^(2/3) 2329991416421886 a001 1201881744/11384387281*103682^(2/3) 2329991416421886 a001 12586269025/119218851371*103682^(2/3) 2329991416421886 a001 32951280099/312119004989*103682^(2/3) 2329991416421886 a001 21566892818/204284540899*103682^(2/3) 2329991416421886 a001 225851433717/2139295485799*103682^(2/3) 2329991416421886 a001 182717648081/1730726404001*103682^(2/3) 2329991416421886 a001 139583862445/1322157322203*103682^(2/3) 2329991416421886 a001 53316291173/505019158607*103682^(2/3) 2329991416421886 a001 10182505537/96450076809*103682^(2/3) 2329991416421886 a001 7778742049/73681302247*103682^(2/3) 2329991416421886 a001 2971215073/28143753123*103682^(2/3) 2329991416421886 a001 567451585/5374978561*103682^(2/3) 2329991416421886 a001 433494437/4106118243*103682^(2/3) 2329991416421886 a001 165580141/1568397607*103682^(2/3) 2329991416421886 a001 31622993/299537289*103682^(2/3) 2329991416421887 a001 24157817/228826127*103682^(2/3) 2329991416421891 a001 9227465/87403803*103682^(2/3) 2329991416421922 a001 1762289/16692641*103682^(2/3) 2329991416422129 a001 1346269/12752043*103682^(2/3) 2329991416423550 a001 514229/4870847*103682^(2/3) 2329991416423653 a001 1346269/167761*103682^(7/24) 2329991416424522 a001 39088169/439204*39603^(1/11) 2329991416426205 a001 317811/4870847*103682^(17/24) 2329991416426425 a001 121393/7881196*103682^(5/6) 2329991416426696 a001 196418/1149851*103682^(5/8) 2329991416427706 a001 24157817/167761*39603^(1/22) 2329991416430230 a001 832040/12752043*103682^(17/24) 2329991416430817 a001 311187/4769326*103682^(17/24) 2329991416430902 a001 5702887/87403803*103682^(17/24) 2329991416430915 a001 14930352/228826127*103682^(17/24) 2329991416430917 a001 39088169/599074578*103682^(17/24) 2329991416430917 a001 14619165/224056801*103682^(17/24) 2329991416430917 a001 267914296/4106118243*103682^(17/24) 2329991416430917 a001 701408733/10749957122*103682^(17/24) 2329991416430917 a001 1836311903/28143753123*103682^(17/24) 2329991416430917 a001 686789568/10525900321*103682^(17/24) 2329991416430917 a001 12586269025/192900153618*103682^(17/24) 2329991416430917 a001 32951280099/505019158607*103682^(17/24) 2329991416430917 a001 86267571272/1322157322203*103682^(17/24) 2329991416430917 a001 32264490531/494493258286*103682^(17/24) 2329991416430917 a001 591286729879/9062201101803*103682^(17/24) 2329991416430917 a001 1548008755920/23725150497407*103682^(17/24) 2329991416430917 a001 139583862445/2139295485799*103682^(17/24) 2329991416430917 a001 53316291173/817138163596*103682^(17/24) 2329991416430917 a001 20365011074/312119004989*103682^(17/24) 2329991416430917 a001 7778742049/119218851371*103682^(17/24) 2329991416430917 a001 2971215073/45537549124*103682^(17/24) 2329991416430917 a001 1134903170/17393796001*103682^(17/24) 2329991416430917 a001 433494437/6643838879*103682^(17/24) 2329991416430917 a001 165580141/2537720636*103682^(17/24) 2329991416430917 a001 63245986/969323029*103682^(17/24) 2329991416430918 a001 24157817/370248451*103682^(17/24) 2329991416430923 a001 9227465/141422324*103682^(17/24) 2329991416430955 a001 3524578/54018521*103682^(17/24) 2329991416431180 a001 1346269/20633239*103682^(17/24) 2329991416431754 a001 75640/15251*103682^(1/3) 2329991416432717 a001 514229/7881196*103682^(17/24) 2329991416433292 a001 98209/930249*103682^(2/3) 2329991416435372 a001 317811/7881196*103682^(3/4) 2329991416435404 a001 121393/12752043*103682^(7/8) 2329991416436928 a001 121393/167761*103682^(1/2) 2329991416437497 a001 28657/439204*64079^(17/23) 2329991416439280 a001 75640/1875749*103682^(3/4) 2329991416439851 a001 2178309/54018521*103682^(3/4) 2329991416439934 a001 5702887/141422324*103682^(3/4) 2329991416439946 a001 14930352/370248451*103682^(3/4) 2329991416439948 a001 39088169/969323029*103682^(3/4) 2329991416439948 a001 9303105/230701876*103682^(3/4) 2329991416439948 a001 267914296/6643838879*103682^(3/4) 2329991416439948 a001 701408733/17393796001*103682^(3/4) 2329991416439948 a001 1836311903/45537549124*103682^(3/4) 2329991416439948 a001 4807526976/119218851371*103682^(3/4) 2329991416439948 a001 1144206275/28374454999*103682^(3/4) 2329991416439948 a001 32951280099/817138163596*103682^(3/4) 2329991416439948 a001 86267571272/2139295485799*103682^(3/4) 2329991416439948 a001 225851433717/5600748293801*103682^(3/4) 2329991416439948 a001 591286729879/14662949395604*103682^(3/4) 2329991416439948 a001 365435296162/9062201101803*103682^(3/4) 2329991416439948 a001 139583862445/3461452808002*103682^(3/4) 2329991416439948 a001 53316291173/1322157322203*103682^(3/4) 2329991416439948 a001 20365011074/505019158607*103682^(3/4) 2329991416439948 a001 7778742049/192900153618*103682^(3/4) 2329991416439948 a001 2971215073/73681302247*103682^(3/4) 2329991416439948 a001 1134903170/28143753123*103682^(3/4) 2329991416439948 a001 433494437/10749957122*103682^(3/4) 2329991416439948 a001 165580141/4106118243*103682^(3/4) 2329991416439948 a001 63245986/1568397607*103682^(3/4) 2329991416439949 a001 24157817/599074578*103682^(3/4) 2329991416439954 a001 9227465/228826127*103682^(3/4) 2329991416439985 a001 3524578/87403803*103682^(3/4) 2329991416440203 a001 1346269/33385282*103682^(3/4) 2329991416441696 a001 514229/12752043*103682^(3/4) 2329991416442967 a001 5628750625/24157817 2329991416442968 a001 75025/167761*141422324^(1/3) 2329991416442968 a001 75025/167761*(1/2+1/2*5^(1/2))^13 2329991416442968 a001 75025/167761*73681302247^(1/4) 2329991416443220 a001 514229/167761*103682^(3/8) 2329991416443253 a001 196418/3010349*103682^(17/24) 2329991416444351 a001 105937/4250681*103682^(19/24) 2329991416444455 a001 121393/20633239*103682^(11/12) 2329991416445875 a001 317811/167761*103682^(5/12) 2329991416448304 a001 416020/16692641*103682^(19/24) 2329991416448345 a001 4976784/90481*39603^(3/22) 2329991416448881 a001 726103/29134601*103682^(19/24) 2329991416448965 a001 5702887/228826127*103682^(19/24) 2329991416448977 a001 829464/33281921*103682^(19/24) 2329991416448979 a001 39088169/1568397607*103682^(19/24) 2329991416448979 a001 34111385/1368706081*103682^(19/24) 2329991416448979 a001 133957148/5374978561*103682^(19/24) 2329991416448979 a001 233802911/9381251041*103682^(19/24) 2329991416448979 a001 1836311903/73681302247*103682^(19/24) 2329991416448979 a001 267084832/10716675201*103682^(19/24) 2329991416448979 a001 12586269025/505019158607*103682^(19/24) 2329991416448979 a001 10983760033/440719107401*103682^(19/24) 2329991416448979 a001 43133785636/1730726404001*103682^(19/24) 2329991416448979 a001 75283811239/3020733700601*103682^(19/24) 2329991416448979 a001 182717648081/7331474697802*103682^(19/24) 2329991416448979 a001 139583862445/5600748293801*103682^(19/24) 2329991416448979 a001 53316291173/2139295485799*103682^(19/24) 2329991416448979 a001 10182505537/408569081798*103682^(19/24) 2329991416448979 a001 7778742049/312119004989*103682^(19/24) 2329991416448979 a001 2971215073/119218851371*103682^(19/24) 2329991416448979 a001 567451585/22768774562*103682^(19/24) 2329991416448979 a001 433494437/17393796001*103682^(19/24) 2329991416448979 a001 165580141/6643838879*103682^(19/24) 2329991416448979 a001 31622993/1268860318*103682^(19/24) 2329991416448980 a001 24157817/969323029*103682^(19/24) 2329991416448985 a001 9227465/370248451*103682^(19/24) 2329991416449017 a001 1762289/70711162*103682^(19/24) 2329991416449237 a001 1346269/54018521*103682^(19/24) 2329991416450747 a001 514229/20633239*103682^(19/24) 2329991416451929 a001 196418/4870847*103682^(3/4) 2329991416453402 a001 10959/711491*103682^(5/6) 2329991416453479 a001 121393/33385282*103682^(23/24) 2329991416454990 a001 75025/271443*103682^(7/12) 2329991416457338 a001 832040/54018521*103682^(5/6) 2329991416457912 a001 2178309/141422324*103682^(5/6) 2329991416457982 a001 10946/710647*24476^(20/21) 2329991416457996 a001 5702887/370248451*103682^(5/6) 2329991416458008 a001 14930352/969323029*103682^(5/6) 2329991416458010 a001 39088169/2537720636*103682^(5/6) 2329991416458010 a001 102334155/6643838879*103682^(5/6) 2329991416458010 a001 9238424/599786069*103682^(5/6) 2329991416458010 a001 701408733/45537549124*103682^(5/6) 2329991416458010 a001 1836311903/119218851371*103682^(5/6) 2329991416458010 a001 4807526976/312119004989*103682^(5/6) 2329991416458010 a001 12586269025/817138163596*103682^(5/6) 2329991416458010 a001 32951280099/2139295485799*103682^(5/6) 2329991416458010 a001 86267571272/5600748293801*103682^(5/6) 2329991416458010 a001 7787980473/505618944676*103682^(5/6) 2329991416458010 a001 365435296162/23725150497407*103682^(5/6) 2329991416458010 a001 139583862445/9062201101803*103682^(5/6) 2329991416458010 a001 53316291173/3461452808002*103682^(5/6) 2329991416458010 a001 20365011074/1322157322203*103682^(5/6) 2329991416458010 a001 7778742049/505019158607*103682^(5/6) 2329991416458010 a001 2971215073/192900153618*103682^(5/6) 2329991416458010 a001 1134903170/73681302247*103682^(5/6) 2329991416458010 a001 433494437/28143753123*103682^(5/6) 2329991416458010 a001 165580141/10749957122*103682^(5/6) 2329991416458010 a001 63245986/4106118243*103682^(5/6) 2329991416458011 a001 24157817/1568397607*103682^(5/6) 2329991416458016 a001 9227465/599074578*103682^(5/6) 2329991416458048 a001 3524578/228826127*103682^(5/6) 2329991416458267 a001 1346269/87403803*103682^(5/6) 2329991416458653 a001 17711/24476*24476^(4/7) 2329991416458779 a001 75025/167761*271443^(1/2) 2329991416459770 a001 514229/33385282*103682^(5/6) 2329991416461095 a001 98209/3940598*103682^(19/24) 2329991416462425 a001 317811/33385282*103682^(7/8) 2329991416462512 a004 Fibonacci(26)*Lucas(24)/(1/2+sqrt(5)/2)^37 2329991416466063 a001 1346269/103682*39603^(3/11) 2329991416466368 a001 832040/87403803*103682^(7/8) 2329991416466943 a001 46347/4868641*103682^(7/8) 2329991416467027 a001 5702887/599074578*103682^(7/8) 2329991416467039 a001 14930352/1568397607*103682^(7/8) 2329991416467041 a001 39088169/4106118243*103682^(7/8) 2329991416467041 a001 102334155/10749957122*103682^(7/8) 2329991416467041 a001 267914296/28143753123*103682^(7/8) 2329991416467041 a001 701408733/73681302247*103682^(7/8) 2329991416467041 a001 1836311903/192900153618*103682^(7/8) 2329991416467041 a001 102287808/10745088481*103682^(7/8) 2329991416467041 a001 12586269025/1322157322203*103682^(7/8) 2329991416467041 a001 32951280099/3461452808002*103682^(7/8) 2329991416467041 a001 86267571272/9062201101803*103682^(7/8) 2329991416467041 a001 225851433717/23725150497407*103682^(7/8) 2329991416467041 a001 139583862445/14662949395604*103682^(7/8) 2329991416467041 a001 53316291173/5600748293801*103682^(7/8) 2329991416467041 a001 20365011074/2139295485799*103682^(7/8) 2329991416467041 a001 7778742049/817138163596*103682^(7/8) 2329991416467041 a001 2971215073/312119004989*103682^(7/8) 2329991416467041 a001 1134903170/119218851371*103682^(7/8) 2329991416467041 a001 433494437/45537549124*103682^(7/8) 2329991416467041 a001 165580141/17393796001*103682^(7/8) 2329991416467041 a001 63245986/6643838879*103682^(7/8) 2329991416467042 a001 24157817/2537720636*103682^(7/8) 2329991416467047 a001 9227465/969323029*103682^(7/8) 2329991416467079 a001 3524578/370248451*103682^(7/8) 2329991416467298 a001 1346269/141422324*103682^(7/8) 2329991416468804 a001 514229/54018521*103682^(7/8) 2329991416470075 a001 196418/12752043*103682^(5/6) 2329991416471459 a001 317811/54018521*103682^(11/12) 2329991416471599 a001 196418/167761*103682^(11/24) 2329991416474408 a001 5702887/64079*24476^(2/21) 2329991416475356 a001 39088169/710647*39603^(3/22) 2329991416475399 a001 208010/35355581*103682^(11/12) 2329991416475974 a001 2178309/370248451*103682^(11/12) 2329991416476058 a001 5702887/969323029*103682^(11/12) 2329991416476070 a001 196452/33391061*103682^(11/12) 2329991416476072 a001 39088169/6643838879*103682^(11/12) 2329991416476072 a001 102334155/17393796001*103682^(11/12) 2329991416476072 a001 66978574/11384387281*103682^(11/12) 2329991416476072 a001 701408733/119218851371*103682^(11/12) 2329991416476072 a001 1836311903/312119004989*103682^(11/12) 2329991416476072 a001 1201881744/204284540899*103682^(11/12) 2329991416476072 a001 12586269025/2139295485799*103682^(11/12) 2329991416476072 a001 32951280099/5600748293801*103682^(11/12) 2329991416476072 a001 1135099622/192933544679*103682^(11/12) 2329991416476072 a001 139583862445/23725150497407*103682^(11/12) 2329991416476072 a001 53316291173/9062201101803*103682^(11/12) 2329991416476072 a001 10182505537/1730726404001*103682^(11/12) 2329991416476072 a001 7778742049/1322157322203*103682^(11/12) 2329991416476072 a001 2971215073/505019158607*103682^(11/12) 2329991416476072 a001 567451585/96450076809*103682^(11/12) 2329991416476072 a001 433494437/73681302247*103682^(11/12) 2329991416476072 a001 165580141/28143753123*103682^(11/12) 2329991416476072 a001 31622993/5374978561*103682^(11/12) 2329991416476073 a001 24157817/4106118243*103682^(11/12) 2329991416476078 a001 9227465/1568397607*103682^(11/12) 2329991416476110 a001 1762289/299537289*103682^(11/12) 2329991416476329 a001 1346269/228826127*103682^(11/12) 2329991416477834 a001 514229/87403803*103682^(11/12) 2329991416479125 a001 196418/20633239*103682^(7/8) 2329991416479297 a001 831985/15126*39603^(3/22) 2329991416479872 a001 267914296/4870847*39603^(3/22) 2329991416479956 a001 233802911/4250681*39603^(3/22) 2329991416479968 a001 1836311903/33385282*39603^(3/22) 2329991416479970 a001 1602508992/29134601*39603^(3/22) 2329991416479970 a001 12586269025/228826127*39603^(3/22) 2329991416479970 a001 10983760033/199691526*39603^(3/22) 2329991416479970 a001 86267571272/1568397607*39603^(3/22) 2329991416479970 a001 75283811239/1368706081*39603^(3/22) 2329991416479970 a001 591286729879/10749957122*39603^(3/22) 2329991416479970 a001 12585437040/228811001*39603^(3/22) 2329991416479970 a001 4052739537881/73681302247*39603^(3/22) 2329991416479970 a001 3536736619241/64300051206*39603^(3/22) 2329991416479970 a001 6557470319842/119218851371*39603^(3/22) 2329991416479970 a001 2504730781961/45537549124*39603^(3/22) 2329991416479970 a001 956722026041/17393796001*39603^(3/22) 2329991416479970 a001 365435296162/6643838879*39603^(3/22) 2329991416479970 a001 139583862445/2537720636*39603^(3/22) 2329991416479970 a001 53316291173/969323029*39603^(3/22) 2329991416479970 a001 20365011074/370248451*39603^(3/22) 2329991416479970 a001 7778742049/141422324*39603^(3/22) 2329991416479971 a001 2971215073/54018521*39603^(3/22) 2329991416479975 a001 1134903170/20633239*39603^(3/22) 2329991416480008 a001 433494437/7881196*39603^(3/22) 2329991416480227 a001 165580141/3010349*39603^(3/22) 2329991416480489 a001 105937/29134601*103682^(23/24) 2329991416481732 a001 63245986/1149851*39603^(3/22) 2329991416484430 a001 832040/228826127*103682^(23/24) 2329991416485005 a001 726103/199691526*103682^(23/24) 2329991416485089 a001 5702887/1568397607*103682^(23/24) 2329991416485101 a001 4976784/1368706081*103682^(23/24) 2329991416485103 a001 39088169/10749957122*103682^(23/24) 2329991416485103 a001 831985/228811001*103682^(23/24) 2329991416485103 a001 267914296/73681302247*103682^(23/24) 2329991416485103 a001 233802911/64300051206*103682^(23/24) 2329991416485103 a001 1836311903/505019158607*103682^(23/24) 2329991416485103 a001 1602508992/440719107401*103682^(23/24) 2329991416485103 a001 12586269025/3461452808002*103682^(23/24) 2329991416485103 a001 10983760033/3020733700601*103682^(23/24) 2329991416485103 a001 86267571272/23725150497407*103682^(23/24) 2329991416485103 a001 53316291173/14662949395604*103682^(23/24) 2329991416485103 a001 20365011074/5600748293801*103682^(23/24) 2329991416485103 a001 7778742049/2139295485799*103682^(23/24) 2329991416485103 a001 2971215073/817138163596*103682^(23/24) 2329991416485103 a001 1134903170/312119004989*103682^(23/24) 2329991416485103 a001 433494437/119218851371*103682^(23/24) 2329991416485103 a001 165580141/45537549124*103682^(23/24) 2329991416485103 a001 63245986/17393796001*103682^(23/24) 2329991416485104 a001 24157817/6643838879*103682^(23/24) 2329991416485109 a001 9227465/2537720636*103682^(23/24) 2329991416485141 a001 3524578/969323029*103682^(23/24) 2329991416485360 a001 1346269/370248451*103682^(23/24) 2329991416486866 a001 514229/141422324*103682^(23/24) 2329991416488149 a001 98209/16692641*103682^(11/12) 2329991416489521 a004 Fibonacci(28)*Lucas(24)/(1/2+sqrt(5)/2)^39 2329991416492050 a001 24157817/439204*39603^(3/22) 2329991416493461 a004 Fibonacci(30)*Lucas(24)/(1/2+sqrt(5)/2)^41 2329991416494036 a004 Fibonacci(32)*Lucas(24)/(1/2+sqrt(5)/2)^43 2329991416494120 a004 Fibonacci(34)*Lucas(24)/(1/2+sqrt(5)/2)^45 2329991416494132 a004 Fibonacci(36)*Lucas(24)/(1/2+sqrt(5)/2)^47 2329991416494134 a004 Fibonacci(38)*Lucas(24)/(1/2+sqrt(5)/2)^49 2329991416494134 a004 Fibonacci(40)*Lucas(24)/(1/2+sqrt(5)/2)^51 2329991416494134 a004 Fibonacci(42)*Lucas(24)/(1/2+sqrt(5)/2)^53 2329991416494134 a004 Fibonacci(44)*Lucas(24)/(1/2+sqrt(5)/2)^55 2329991416494134 a004 Fibonacci(46)*Lucas(24)/(1/2+sqrt(5)/2)^57 2329991416494134 a004 Fibonacci(48)*Lucas(24)/(1/2+sqrt(5)/2)^59 2329991416494134 a004 Fibonacci(50)*Lucas(24)/(1/2+sqrt(5)/2)^61 2329991416494134 a004 Fibonacci(52)*Lucas(24)/(1/2+sqrt(5)/2)^63 2329991416494134 a004 Fibonacci(54)*Lucas(24)/(1/2+sqrt(5)/2)^65 2329991416494134 a004 Fibonacci(56)*Lucas(24)/(1/2+sqrt(5)/2)^67 2329991416494134 a004 Fibonacci(58)*Lucas(24)/(1/2+sqrt(5)/2)^69 2329991416494134 a004 Fibonacci(60)*Lucas(24)/(1/2+sqrt(5)/2)^71 2329991416494134 a004 Fibonacci(62)*Lucas(24)/(1/2+sqrt(5)/2)^73 2329991416494134 a004 Fibonacci(64)*Lucas(24)/(1/2+sqrt(5)/2)^75 2329991416494134 a004 Fibonacci(66)*Lucas(24)/(1/2+sqrt(5)/2)^77 2329991416494134 a004 Fibonacci(68)*Lucas(24)/(1/2+sqrt(5)/2)^79 2329991416494134 a004 Fibonacci(70)*Lucas(24)/(1/2+sqrt(5)/2)^81 2329991416494134 a004 Fibonacci(72)*Lucas(24)/(1/2+sqrt(5)/2)^83 2329991416494134 a004 Fibonacci(74)*Lucas(24)/(1/2+sqrt(5)/2)^85 2329991416494134 a004 Fibonacci(76)*Lucas(24)/(1/2+sqrt(5)/2)^87 2329991416494134 a004 Fibonacci(78)*Lucas(24)/(1/2+sqrt(5)/2)^89 2329991416494134 a004 Fibonacci(80)*Lucas(24)/(1/2+sqrt(5)/2)^91 2329991416494134 a004 Fibonacci(82)*Lucas(24)/(1/2+sqrt(5)/2)^93 2329991416494134 a004 Fibonacci(84)*Lucas(24)/(1/2+sqrt(5)/2)^95 2329991416494134 a004 Fibonacci(86)*Lucas(24)/(1/2+sqrt(5)/2)^97 2329991416494134 a004 Fibonacci(88)*Lucas(24)/(1/2+sqrt(5)/2)^99 2329991416494134 a004 Fibonacci(89)*Lucas(24)/(1/2+sqrt(5)/2)^100 2329991416494134 a004 Fibonacci(87)*Lucas(24)/(1/2+sqrt(5)/2)^98 2329991416494134 a004 Fibonacci(85)*Lucas(24)/(1/2+sqrt(5)/2)^96 2329991416494134 a004 Fibonacci(83)*Lucas(24)/(1/2+sqrt(5)/2)^94 2329991416494134 a004 Fibonacci(81)*Lucas(24)/(1/2+sqrt(5)/2)^92 2329991416494134 a004 Fibonacci(79)*Lucas(24)/(1/2+sqrt(5)/2)^90 2329991416494134 a004 Fibonacci(77)*Lucas(24)/(1/2+sqrt(5)/2)^88 2329991416494134 a004 Fibonacci(75)*Lucas(24)/(1/2+sqrt(5)/2)^86 2329991416494134 a004 Fibonacci(73)*Lucas(24)/(1/2+sqrt(5)/2)^84 2329991416494134 a004 Fibonacci(71)*Lucas(24)/(1/2+sqrt(5)/2)^82 2329991416494134 a004 Fibonacci(69)*Lucas(24)/(1/2+sqrt(5)/2)^80 2329991416494134 a004 Fibonacci(67)*Lucas(24)/(1/2+sqrt(5)/2)^78 2329991416494134 a004 Fibonacci(65)*Lucas(24)/(1/2+sqrt(5)/2)^76 2329991416494134 a004 Fibonacci(63)*Lucas(24)/(1/2+sqrt(5)/2)^74 2329991416494134 a004 Fibonacci(61)*Lucas(24)/(1/2+sqrt(5)/2)^72 2329991416494134 a004 Fibonacci(59)*Lucas(24)/(1/2+sqrt(5)/2)^70 2329991416494134 a004 Fibonacci(57)*Lucas(24)/(1/2+sqrt(5)/2)^68 2329991416494134 a004 Fibonacci(55)*Lucas(24)/(1/2+sqrt(5)/2)^66 2329991416494134 a004 Fibonacci(53)*Lucas(24)/(1/2+sqrt(5)/2)^64 2329991416494134 a004 Fibonacci(51)*Lucas(24)/(1/2+sqrt(5)/2)^62 2329991416494134 a004 Fibonacci(49)*Lucas(24)/(1/2+sqrt(5)/2)^60 2329991416494134 a001 1/23184*(1/2+1/2*5^(1/2))^37 2329991416494134 a004 Fibonacci(47)*Lucas(24)/(1/2+sqrt(5)/2)^58 2329991416494134 a004 Fibonacci(45)*Lucas(24)/(1/2+sqrt(5)/2)^56 2329991416494134 a004 Fibonacci(43)*Lucas(24)/(1/2+sqrt(5)/2)^54 2329991416494134 a004 Fibonacci(41)*Lucas(24)/(1/2+sqrt(5)/2)^52 2329991416494134 a004 Fibonacci(39)*Lucas(24)/(1/2+sqrt(5)/2)^50 2329991416494135 a004 Fibonacci(37)*Lucas(24)/(1/2+sqrt(5)/2)^48 2329991416494140 a004 Fibonacci(35)*Lucas(24)/(1/2+sqrt(5)/2)^46 2329991416494172 a004 Fibonacci(33)*Lucas(24)/(1/2+sqrt(5)/2)^44 2329991416494391 a004 Fibonacci(31)*Lucas(24)/(1/2+sqrt(5)/2)^42 2329991416495230 a001 14930352/167761*39603^(1/11) 2329991416495896 a004 Fibonacci(29)*Lucas(24)/(1/2+sqrt(5)/2)^40 2329991416497183 a001 196418/54018521*103682^(23/24) 2329991416500061 a001 75025/710647*103682^(2/3) 2329991416506213 a004 Fibonacci(27)*Lucas(24)/(1/2+sqrt(5)/2)^38 2329991416507723 a001 75025/439204*103682^(5/8) 2329991416515468 a001 75025/1149851*103682^(17/24) 2329991416515880 a001 9227465/271443*39603^(2/11) 2329991416522064 a001 75025/1860498*103682^(3/4) 2329991416532025 a001 75025/3010349*103682^(19/24) 2329991416532659 a001 416020/51841*39603^(7/22) 2329991416540701 a001 75025/4870847*103682^(5/6) 2329991416542884 a001 24157817/710647*39603^(2/11) 2329991416546824 a001 31622993/930249*39603^(2/11) 2329991416547399 a001 165580141/4870847*39603^(2/11) 2329991416547482 a001 433494437/12752043*39603^(2/11) 2329991416547495 a001 567451585/16692641*39603^(2/11) 2329991416547496 a001 2971215073/87403803*39603^(2/11) 2329991416547497 a001 7778742049/228826127*39603^(2/11) 2329991416547497 a001 10182505537/299537289*39603^(2/11) 2329991416547497 a001 53316291173/1568397607*39603^(2/11) 2329991416547497 a001 139583862445/4106118243*39603^(2/11) 2329991416547497 a001 182717648081/5374978561*39603^(2/11) 2329991416547497 a001 956722026041/28143753123*39603^(2/11) 2329991416547497 a001 2504730781961/73681302247*39603^(2/11) 2329991416547497 a001 3278735159921/96450076809*39603^(2/11) 2329991416547497 a001 10610209857723/312119004989*39603^(2/11) 2329991416547497 a001 4052739537881/119218851371*39603^(2/11) 2329991416547497 a001 387002188980/11384387281*39603^(2/11) 2329991416547497 a001 591286729879/17393796001*39603^(2/11) 2329991416547497 a001 225851433717/6643838879*39603^(2/11) 2329991416547497 a001 1135099622/33391061*39603^(2/11) 2329991416547497 a001 32951280099/969323029*39603^(2/11) 2329991416547497 a001 12586269025/370248451*39603^(2/11) 2329991416547497 a001 1201881744/35355581*39603^(2/11) 2329991416547497 a001 1836311903/54018521*39603^(2/11) 2329991416547502 a001 701408733/20633239*39603^(2/11) 2329991416547534 a001 66978574/1970299*39603^(2/11) 2329991416547754 a001 102334155/3010349*39603^(2/11) 2329991416549259 a001 39088169/1149851*39603^(2/11) 2329991416549868 a001 75025/7881196*103682^(7/8) 2329991416557551 a001 28657/167761*64079^(15/23) 2329991416558847 a001 75025/12752043*103682^(11/12) 2329991416559573 a001 196452/5779*39603^(2/11) 2329991416560371 a001 75025/167761*103682^(13/24) 2329991416562764 a001 9227465/167761*39603^(3/22) 2329991416566496 a001 121393/64079*64079^(10/23) 2329991416567898 a001 75025/20633239*103682^(23/24) 2329991416569762 a001 7465176/51841*15127^(1/20) 2329991416576923 a004 Fibonacci(25)*Lucas(24)/(1/2+sqrt(5)/2)^36 2329991416583386 a001 5702887/271443*39603^(5/22) 2329991416602621 a001 514229/103682*39603^(4/11) 2329991416610408 a001 14930352/710647*39603^(5/22) 2329991416614350 a001 39088169/1860498*39603^(5/22) 2329991416614925 a001 102334155/4870847*39603^(5/22) 2329991416615009 a001 267914296/12752043*39603^(5/22) 2329991416615021 a001 701408733/33385282*39603^(5/22) 2329991416615023 a001 1836311903/87403803*39603^(5/22) 2329991416615023 a001 102287808/4868641*39603^(5/22) 2329991416615023 a001 12586269025/599074578*39603^(5/22) 2329991416615023 a001 32951280099/1568397607*39603^(5/22) 2329991416615023 a001 86267571272/4106118243*39603^(5/22) 2329991416615023 a001 225851433717/10749957122*39603^(5/22) 2329991416615023 a001 591286729879/28143753123*39603^(5/22) 2329991416615023 a001 1548008755920/73681302247*39603^(5/22) 2329991416615023 a001 4052739537881/192900153618*39603^(5/22) 2329991416615023 a001 225749145909/10745088481*39603^(5/22) 2329991416615023 a001 6557470319842/312119004989*39603^(5/22) 2329991416615023 a001 2504730781961/119218851371*39603^(5/22) 2329991416615023 a001 956722026041/45537549124*39603^(5/22) 2329991416615023 a001 365435296162/17393796001*39603^(5/22) 2329991416615023 a001 139583862445/6643838879*39603^(5/22) 2329991416615023 a001 53316291173/2537720636*39603^(5/22) 2329991416615023 a001 20365011074/969323029*39603^(5/22) 2329991416615023 a001 7778742049/370248451*39603^(5/22) 2329991416615024 a001 2971215073/141422324*39603^(5/22) 2329991416615024 a001 1134903170/54018521*39603^(5/22) 2329991416615029 a001 433494437/20633239*39603^(5/22) 2329991416615061 a001 165580141/7881196*39603^(5/22) 2329991416615281 a001 63245986/3010349*39603^(5/22) 2329991416616786 a001 24157817/1149851*39603^(5/22) 2329991416622721 a001 46368/64079*439204^(4/9) 2329991416627108 a001 9227465/439204*39603^(5/22) 2329991416628076 a001 46368/64079*7881196^(4/11) 2329991416628087 a001 28657/103682*20633239^(2/5) 2329991416628089 a001 46368/64079*141422324^(4/13) 2329991416628089 a001 28657/103682*17393796001^(2/7) 2329991416628089 a001 28657/103682*14662949395604^(2/9) 2329991416628089 a001 28657/103682*(1/2+1/2*5^(1/2))^14 2329991416628089 a001 28657/103682*505019158607^(1/4) 2329991416628089 a001 28657/103682*10749957122^(7/24) 2329991416628089 a001 46368/64079*2537720636^(4/15) 2329991416628089 a001 28657/103682*4106118243^(7/23) 2329991416628089 a001 46368/64079*45537549124^(4/17) 2329991416628089 a001 46368/64079*817138163596^(4/19) 2329991416628089 a001 46368/64079*14662949395604^(4/21) 2329991416628089 a001 46368/64079*(1/2+1/2*5^(1/2))^12 2329991416628089 a001 46368/64079*192900153618^(2/9) 2329991416628089 a001 46368/64079*73681302247^(3/13) 2329991416628089 a001 46368/64079*10749957122^(1/4) 2329991416628089 a001 46368/64079*4106118243^(6/23) 2329991416628089 a001 28657/103682*1568397607^(7/22) 2329991416628089 a001 46368/64079*1568397607^(3/11) 2329991416628090 a001 46368/64079*599074578^(2/7) 2329991416628090 a001 28657/103682*599074578^(1/3) 2329991416628090 a001 46368/64079*228826127^(3/10) 2329991416628090 a001 28657/103682*228826127^(7/20) 2329991416628090 a001 46368/64079*87403803^(6/19) 2329991416628090 a001 28657/103682*87403803^(7/19) 2329991416628090 a001 46368/64079*33385282^(1/3) 2329991416628090 a001 28657/103682*33385282^(7/18) 2329991416628095 a001 46368/64079*12752043^(6/17) 2329991416628095 a001 28657/103682*12752043^(7/17) 2329991416628104 a001 1328767776/5702887 2329991416628126 a001 46368/64079*4870847^(3/8) 2329991416628132 a001 28657/103682*4870847^(7/16) 2329991416628359 a001 46368/64079*1860498^(2/5) 2329991416628404 a001 28657/103682*1860498^(7/15) 2329991416630067 a001 46368/64079*710647^(3/7) 2329991416630271 a001 5702887/167761*39603^(2/11) 2329991416630396 a001 28657/103682*710647^(1/2) 2329991416634869 a001 196418/64079*64079^(9/23) 2329991416642685 a001 46368/64079*271443^(6/13) 2329991416642848 a001 317811/64079*64079^(8/23) 2329991416645117 a001 28657/103682*271443^(7/13) 2329991416650965 a001 3524578/271443*39603^(3/11) 2329991416656237 a001 75025/64079*64079^(11/23) 2329991416659634 a001 9227465/64079*24476^(1/21) 2329991416659880 a001 5473/219602*24476^(19/21) 2329991416663772 a001 317811/103682*39603^(9/22) 2329991416673896 a001 514229/64079*64079^(7/23) 2329991416677942 a001 9227465/710647*39603^(3/11) 2329991416681878 a001 24157817/1860498*39603^(3/11) 2329991416682452 a001 63245986/4870847*39603^(3/11) 2329991416682536 a001 165580141/12752043*39603^(3/11) 2329991416682548 a001 433494437/33385282*39603^(3/11) 2329991416682550 a001 1134903170/87403803*39603^(3/11) 2329991416682550 a001 2971215073/228826127*39603^(3/11) 2329991416682550 a001 7778742049/599074578*39603^(3/11) 2329991416682550 a001 20365011074/1568397607*39603^(3/11) 2329991416682550 a001 53316291173/4106118243*39603^(3/11) 2329991416682550 a001 139583862445/10749957122*39603^(3/11) 2329991416682550 a001 365435296162/28143753123*39603^(3/11) 2329991416682550 a001 956722026041/73681302247*39603^(3/11) 2329991416682550 a001 2504730781961/192900153618*39603^(3/11) 2329991416682550 a001 10610209857723/817138163596*39603^(3/11) 2329991416682550 a001 4052739537881/312119004989*39603^(3/11) 2329991416682550 a001 1548008755920/119218851371*39603^(3/11) 2329991416682550 a001 591286729879/45537549124*39603^(3/11) 2329991416682550 a001 7787980473/599786069*39603^(3/11) 2329991416682550 a001 86267571272/6643838879*39603^(3/11) 2329991416682550 a001 32951280099/2537720636*39603^(3/11) 2329991416682550 a001 12586269025/969323029*39603^(3/11) 2329991416682550 a001 4807526976/370248451*39603^(3/11) 2329991416682550 a001 1836311903/141422324*39603^(3/11) 2329991416682551 a001 701408733/54018521*39603^(3/11) 2329991416682556 a001 9238424/711491*39603^(3/11) 2329991416682588 a001 102334155/7881196*39603^(3/11) 2329991416682807 a001 39088169/3010349*39603^(3/11) 2329991416684310 a001 14930352/1149851*39603^(3/11) 2329991416694614 a001 5702887/439204*39603^(3/11) 2329991416696132 a001 832040/64079*64079^(6/23) 2329991416697850 a001 3524578/167761*39603^(5/22) 2329991416718356 a001 726103/90481*39603^(7/22) 2329991416721734 a001 1346269/64079*64079^(5/23) 2329991416721748 a001 23184/51841*39603^(13/22) 2329991416736462 a001 46368/64079*103682^(1/2) 2329991416745449 a001 5702887/710647*39603^(7/22) 2329991416746050 a001 2178309/64079*64079^(4/23) 2329991416747991 a001 98209/51841*39603^(5/11) 2329991416749402 a001 829464/103361*39603^(7/22) 2329991416749978 a001 39088169/4870847*39603^(7/22) 2329991416750062 a001 34111385/4250681*39603^(7/22) 2329991416750075 a001 133957148/16692641*39603^(7/22) 2329991416750076 a001 233802911/29134601*39603^(7/22) 2329991416750077 a001 1836311903/228826127*39603^(7/22) 2329991416750077 a001 267084832/33281921*39603^(7/22) 2329991416750077 a001 12586269025/1568397607*39603^(7/22) 2329991416750077 a001 10983760033/1368706081*39603^(7/22) 2329991416750077 a001 43133785636/5374978561*39603^(7/22) 2329991416750077 a001 75283811239/9381251041*39603^(7/22) 2329991416750077 a001 591286729879/73681302247*39603^(7/22) 2329991416750077 a001 86000486440/10716675201*39603^(7/22) 2329991416750077 a001 4052739537881/505019158607*39603^(7/22) 2329991416750077 a001 3536736619241/440719107401*39603^(7/22) 2329991416750077 a001 3278735159921/408569081798*39603^(7/22) 2329991416750077 a001 2504730781961/312119004989*39603^(7/22) 2329991416750077 a001 956722026041/119218851371*39603^(7/22) 2329991416750077 a001 182717648081/22768774562*39603^(7/22) 2329991416750077 a001 139583862445/17393796001*39603^(7/22) 2329991416750077 a001 53316291173/6643838879*39603^(7/22) 2329991416750077 a001 10182505537/1268860318*39603^(7/22) 2329991416750077 a001 7778742049/969323029*39603^(7/22) 2329991416750077 a001 2971215073/370248451*39603^(7/22) 2329991416750077 a001 567451585/70711162*39603^(7/22) 2329991416750078 a001 433494437/54018521*39603^(7/22) 2329991416750082 a001 165580141/20633239*39603^(7/22) 2329991416750114 a001 31622993/3940598*39603^(7/22) 2329991416750335 a001 24157817/3010349*39603^(7/22) 2329991416751845 a001 9227465/1149851*39603^(7/22) 2329991416754524 a001 28657/103682*103682^(7/12) 2329991416754885 a001 39088169/271443*15127^(1/20) 2329991416762045 a004 Fibonacci(23)*Lucas(25)/(1/2+sqrt(5)/2)^35 2329991416762193 a001 1762289/219602*39603^(7/22) 2329991416765241 a001 2178309/167761*39603^(3/11) 2329991416770857 a001 3524578/64079*64079^(3/23) 2329991416771817 a001 121393/103682*39603^(1/2) 2329991416777929 a001 28657/1860498*167761^(4/5) 2329991416780096 a001 121393/64079*167761^(2/5) 2329991416781895 a001 14619165/101521*15127^(1/20) 2329991416785835 a001 133957148/930249*15127^(1/20) 2329991416786238 a001 1346269/271443*39603^(4/11) 2329991416786410 a001 701408733/4870847*15127^(1/20) 2329991416786494 a001 1836311903/12752043*15127^(1/20) 2329991416786506 a001 14930208/103681*15127^(1/20) 2329991416786508 a001 12586269025/87403803*15127^(1/20) 2329991416786508 a001 32951280099/228826127*15127^(1/20) 2329991416786508 a001 43133785636/299537289*15127^(1/20) 2329991416786508 a001 32264490531/224056801*15127^(1/20) 2329991416786508 a001 591286729879/4106118243*15127^(1/20) 2329991416786508 a001 774004377960/5374978561*15127^(1/20) 2329991416786508 a001 4052739537881/28143753123*15127^(1/20) 2329991416786508 a001 1515744265389/10525900321*15127^(1/20) 2329991416786508 a001 3278735159921/22768774562*15127^(1/20) 2329991416786508 a001 2504730781961/17393796001*15127^(1/20) 2329991416786508 a001 956722026041/6643838879*15127^(1/20) 2329991416786508 a001 182717648081/1268860318*15127^(1/20) 2329991416786508 a001 139583862445/969323029*15127^(1/20) 2329991416786508 a001 53316291173/370248451*15127^(1/20) 2329991416786508 a001 10182505537/70711162*15127^(1/20) 2329991416786509 a001 7778742049/54018521*15127^(1/20) 2329991416786514 a001 2971215073/20633239*15127^(1/20) 2329991416786546 a001 567451585/3940598*15127^(1/20) 2329991416786765 a001 433494437/3010349*15127^(1/20) 2329991416788271 a001 165580141/1149851*15127^(1/20) 2329991416795476 a001 5702887/64079*64079^(2/23) 2329991416798587 a001 31622993/219602*15127^(1/20) 2329991416801384 a001 10946/271443*24476^(6/7) 2329991416813027 a001 3524578/710647*39603^(4/11) 2329991416813210 a001 121393/64079*20633239^(2/7) 2329991416813211 a001 28657/271443*(1/2+1/2*5^(1/2))^16 2329991416813211 a001 28657/271443*23725150497407^(1/4) 2329991416813211 a001 28657/271443*73681302247^(4/13) 2329991416813211 a001 28657/271443*10749957122^(1/3) 2329991416813211 a001 28657/271443*4106118243^(8/23) 2329991416813211 a001 121393/64079*2537720636^(2/9) 2329991416813211 a001 121393/64079*312119004989^(2/11) 2329991416813211 a001 121393/64079*(1/2+1/2*5^(1/2))^10 2329991416813211 a001 121393/64079*28143753123^(1/5) 2329991416813211 a001 121393/64079*10749957122^(5/24) 2329991416813211 a001 121393/64079*4106118243^(5/23) 2329991416813211 a001 28657/271443*1568397607^(4/11) 2329991416813211 a001 121393/64079*1568397607^(5/22) 2329991416813211 a001 121393/64079*599074578^(5/21) 2329991416813211 a001 28657/271443*599074578^(8/21) 2329991416813211 a001 121393/64079*228826127^(1/4) 2329991416813211 a001 28657/271443*228826127^(2/5) 2329991416813211 a001 121393/64079*87403803^(5/19) 2329991416813211 a001 28657/271443*87403803^(8/19) 2329991416813212 a001 121393/64079*33385282^(5/18) 2329991416813212 a001 28657/271443*33385282^(4/9) 2329991416813213 a001 3478759201/14930352 2329991416813215 a001 121393/64079*12752043^(5/17) 2329991416813218 a001 28657/271443*12752043^(8/17) 2329991416813242 a001 121393/64079*4870847^(5/16) 2329991416813260 a001 28657/271443*4870847^(1/2) 2329991416813436 a001 121393/64079*1860498^(1/3) 2329991416813570 a001 28657/271443*1860498^(8/15) 2329991416814859 a001 121393/64079*710647^(5/14) 2329991416815848 a001 28657/271443*710647^(4/7) 2329991416816936 a001 9227465/1860498*39603^(4/11) 2329991416817506 a001 24157817/4870847*39603^(4/11) 2329991416817589 a001 63245986/12752043*39603^(4/11) 2329991416817601 a001 165580141/33385282*39603^(4/11) 2329991416817603 a001 433494437/87403803*39603^(4/11) 2329991416817603 a001 1134903170/228826127*39603^(4/11) 2329991416817603 a001 2971215073/599074578*39603^(4/11) 2329991416817603 a001 7778742049/1568397607*39603^(4/11) 2329991416817603 a001 20365011074/4106118243*39603^(4/11) 2329991416817603 a001 53316291173/10749957122*39603^(4/11) 2329991416817603 a001 139583862445/28143753123*39603^(4/11) 2329991416817603 a001 365435296162/73681302247*39603^(4/11) 2329991416817603 a001 956722026041/192900153618*39603^(4/11) 2329991416817603 a001 2504730781961/505019158607*39603^(4/11) 2329991416817603 a001 10610209857723/2139295485799*39603^(4/11) 2329991416817603 a001 140728068720/28374454999*39603^(4/11) 2329991416817603 a001 591286729879/119218851371*39603^(4/11) 2329991416817603 a001 225851433717/45537549124*39603^(4/11) 2329991416817603 a001 86267571272/17393796001*39603^(4/11) 2329991416817603 a001 32951280099/6643838879*39603^(4/11) 2329991416817603 a001 1144206275/230701876*39603^(4/11) 2329991416817603 a001 4807526976/969323029*39603^(4/11) 2329991416817603 a001 1836311903/370248451*39603^(4/11) 2329991416817604 a001 701408733/141422324*39603^(4/11) 2329991416817604 a001 267914296/54018521*39603^(4/11) 2329991416817609 a001 9303105/1875749*39603^(4/11) 2329991416817641 a001 39088169/7881196*39603^(4/11) 2329991416817858 a001 14930352/3010349*39603^(4/11) 2329991416819351 a001 5702887/1149851*39603^(4/11) 2329991416820168 a001 9227465/64079*64079^(1/23) 2329991416825374 a001 121393/64079*271443^(5/13) 2329991416828533 a001 1346269/39603*15127^(1/5) 2329991416828533 a001 1346269/64079*167761^(1/5) 2329991416829584 a001 2178309/439204*39603^(4/11) 2329991416832168 a001 28657/710647*439204^(2/3) 2329991416832671 a001 28657/271443*271443^(8/13) 2329991416832755 a004 Fibonacci(23)*Lucas(27)/(1/2+sqrt(5)/2)^37 2329991416833123 a001 1346269/167761*39603^(7/22) 2329991416834083 a001 28657/12752043*439204^(8/9) 2329991416835696 a001 28657/3010349*439204^(7/9) 2329991416840200 a001 28657/710647*7881196^(6/11) 2329991416840220 a001 28657/710647*141422324^(6/13) 2329991416840220 a001 28657/710647*2537720636^(2/5) 2329991416840220 a001 28657/710647*45537549124^(6/17) 2329991416840220 a001 28657/710647*14662949395604^(2/7) 2329991416840220 a001 28657/710647*(1/2+1/2*5^(1/2))^18 2329991416840220 a001 28657/710647*192900153618^(1/3) 2329991416840220 a001 28657/710647*10749957122^(3/8) 2329991416840220 a001 28657/710647*4106118243^(9/23) 2329991416840220 a001 317811/64079*(1/2+1/2*5^(1/2))^8 2329991416840220 a001 317811/64079*23725150497407^(1/8) 2329991416840220 a001 317811/64079*505019158607^(1/7) 2329991416840220 a001 317811/64079*73681302247^(2/13) 2329991416840220 a001 317811/64079*10749957122^(1/6) 2329991416840220 a001 317811/64079*4106118243^(4/23) 2329991416840220 a001 317811/64079*1568397607^(2/11) 2329991416840220 a001 28657/710647*1568397607^(9/22) 2329991416840220 a001 317811/64079*599074578^(4/21) 2329991416840220 a001 28657/710647*599074578^(3/7) 2329991416840220 a001 317811/64079*228826127^(1/5) 2329991416840220 a001 28657/710647*228826127^(9/20) 2329991416840220 a001 317811/64079*87403803^(4/19) 2329991416840220 a001 28657/710647*87403803^(9/19) 2329991416840220 a001 9107509827/39088169 2329991416840221 a001 317811/64079*33385282^(2/9) 2329991416840221 a001 28657/710647*33385282^(1/2) 2329991416840223 a001 317811/64079*12752043^(4/17) 2329991416840228 a001 28657/710647*12752043^(9/17) 2329991416840245 a001 317811/64079*4870847^(1/4) 2329991416840275 a001 28657/710647*4870847^(9/16) 2329991416840400 a001 317811/64079*1860498^(4/15) 2329991416840624 a001 28657/710647*1860498^(3/5) 2329991416841476 a001 832040/64079*439204^(2/9) 2329991416841538 a001 317811/64079*710647^(2/7) 2329991416842960 a001 1597/15127*3571^(16/17) 2329991416843071 a004 Fibonacci(23)*Lucas(29)/(1/2+sqrt(5)/2)^39 2329991416843186 a001 28657/710647*710647^(9/14) 2329991416843529 a001 3524578/64079*439204^(1/9) 2329991416844154 a001 832040/64079*7881196^(2/11) 2329991416844157 a001 28657/1860498*20633239^(4/7) 2329991416844161 a001 832040/64079*141422324^(2/13) 2329991416844161 a001 28657/1860498*2537720636^(4/9) 2329991416844161 a001 28657/1860498*(1/2+1/2*5^(1/2))^20 2329991416844161 a001 28657/1860498*23725150497407^(5/16) 2329991416844161 a001 28657/1860498*505019158607^(5/14) 2329991416844161 a001 28657/1860498*73681302247^(5/13) 2329991416844161 a001 28657/1860498*28143753123^(2/5) 2329991416844161 a001 28657/1860498*10749957122^(5/12) 2329991416844161 a001 28657/1860498*4106118243^(10/23) 2329991416844161 a001 832040/64079*2537720636^(2/15) 2329991416844161 a001 832040/64079*45537549124^(2/17) 2329991416844161 a001 832040/64079*14662949395604^(2/21) 2329991416844161 a001 832040/64079*(1/2+1/2*5^(1/2))^6 2329991416844161 a001 832040/64079*10749957122^(1/8) 2329991416844161 a001 832040/64079*4106118243^(3/23) 2329991416844161 a001 832040/64079*1568397607^(3/22) 2329991416844161 a001 28657/1860498*1568397607^(5/11) 2329991416844161 a001 832040/64079*599074578^(1/7) 2329991416844161 a001 28657/1860498*599074578^(10/21) 2329991416844161 a001 832040/64079*228826127^(3/20) 2329991416844161 a001 28657/1860498*228826127^(1/2) 2329991416844161 a001 433523096/1860621 2329991416844161 a001 832040/64079*87403803^(3/19) 2329991416844161 a001 28657/1860498*87403803^(10/19) 2329991416844161 a001 832040/64079*33385282^(1/6) 2329991416844162 a001 28657/1860498*33385282^(5/9) 2329991416844163 a001 832040/64079*12752043^(3/17) 2329991416844169 a001 28657/1860498*12752043^(10/17) 2329991416844179 a001 832040/64079*4870847^(3/16) 2329991416844222 a001 28657/1860498*4870847^(5/8) 2329991416844295 a001 832040/64079*1860498^(1/5) 2329991416844577 a004 Fibonacci(23)*Lucas(31)/(1/2+sqrt(5)/2)^41 2329991416844609 a001 28657/1860498*1860498^(2/3) 2329991416844711 a001 28657/4870847*7881196^(2/3) 2329991416844736 a001 28657/4870847*312119004989^(2/5) 2329991416844736 a001 28657/4870847*(1/2+1/2*5^(1/2))^22 2329991416844736 a001 28657/4870847*10749957122^(11/24) 2329991416844736 a001 28657/4870847*4106118243^(11/23) 2329991416844736 a001 2178309/64079*(1/2+1/2*5^(1/2))^4 2329991416844736 a001 2178309/64079*23725150497407^(1/16) 2329991416844736 a001 2178309/64079*73681302247^(1/13) 2329991416844736 a001 2178309/64079*10749957122^(1/12) 2329991416844736 a001 2178309/64079*4106118243^(2/23) 2329991416844736 a001 2178309/64079*1568397607^(1/11) 2329991416844736 a001 28657/4870847*1568397607^(1/2) 2329991416844736 a001 2178309/64079*599074578^(2/21) 2329991416844736 a001 28657/4870847*599074578^(11/21) 2329991416844736 a001 2178309/64079*228826127^(1/10) 2329991416844736 a001 62423801013/267914296 2329991416844736 a001 28657/4870847*228826127^(11/20) 2329991416844736 a001 2178309/64079*87403803^(2/19) 2329991416844736 a001 28657/4870847*87403803^(11/19) 2329991416844736 a001 2178309/64079*33385282^(1/9) 2329991416844737 a001 28657/4870847*33385282^(11/18) 2329991416844737 a001 2178309/64079*12752043^(2/17) 2329991416844745 a001 28657/4870847*12752043^(11/17) 2329991416844748 a001 2178309/64079*4870847^(1/8) 2329991416844792 a001 28657/12752043*7881196^(8/11) 2329991416844796 a004 Fibonacci(23)*Lucas(33)/(1/2+sqrt(5)/2)^43 2329991416844800 a001 28657/228826127*7881196^(10/11) 2329991416844803 a001 28657/4870847*4870847^(11/16) 2329991416844804 a001 28657/54018521*7881196^(9/11) 2329991416844819 a001 28657/12752043*141422324^(8/13) 2329991416844819 a001 28657/12752043*2537720636^(8/15) 2329991416844819 a001 28657/12752043*45537549124^(8/17) 2329991416844819 a001 28657/12752043*14662949395604^(8/21) 2329991416844819 a001 28657/12752043*(1/2+1/2*5^(1/2))^24 2329991416844819 a001 28657/12752043*192900153618^(4/9) 2329991416844819 a001 28657/12752043*73681302247^(6/13) 2329991416844819 a001 28657/12752043*10749957122^(1/2) 2329991416844819 a001 28657/12752043*4106118243^(12/23) 2329991416844819 a001 5702887/64079*(1/2+1/2*5^(1/2))^2 2329991416844819 a001 5702887/64079*10749957122^(1/24) 2329991416844819 a001 5702887/64079*4106118243^(1/23) 2329991416844819 a001 5702887/64079*1568397607^(1/22) 2329991416844819 a001 5702887/64079*599074578^(1/21) 2329991416844819 a001 28657/12752043*1568397607^(6/11) 2329991416844819 a001 163427632759/701408733 2329991416844819 a001 5702887/64079*228826127^(1/20) 2329991416844819 a001 28657/12752043*599074578^(4/7) 2329991416844819 a001 5702887/64079*87403803^(1/19) 2329991416844819 a001 28657/12752043*228826127^(3/5) 2329991416844820 a001 5702887/64079*33385282^(1/18) 2329991416844820 a001 28657/12752043*87403803^(12/19) 2329991416844820 a001 5702887/64079*12752043^(1/17) 2329991416844821 a001 28657/12752043*33385282^(2/3) 2329991416844825 a001 2178309/64079*1860498^(2/15) 2329991416844826 a001 5702887/64079*4870847^(1/16) 2329991416844828 a004 Fibonacci(23)*Lucas(35)/(1/2+sqrt(5)/2)^45 2329991416844829 a001 28657/228826127*20633239^(6/7) 2329991416844829 a001 28657/87403803*20633239^(4/5) 2329991416844830 a001 28657/12752043*12752043^(12/17) 2329991416844832 a001 28657/33385282*141422324^(2/3) 2329991416844832 a001 28657/33385282*(1/2+1/2*5^(1/2))^26 2329991416844832 a001 28657/33385282*73681302247^(1/2) 2329991416844832 a001 28657/33385282*10749957122^(13/24) 2329991416844832 a001 28657/33385282*4106118243^(13/23) 2329991416844832 a001 14930352/64079 2329991416844832 a001 28657/33385282*1568397607^(13/22) 2329991416844832 a001 28657/33385282*599074578^(13/21) 2329991416844832 a001 28657/33385282*228826127^(13/20) 2329991416844832 a001 28657/33385282*87403803^(13/19) 2329991416844833 a004 Fibonacci(23)*Lucas(37)/(1/2+sqrt(5)/2)^47 2329991416844833 a001 28657/33385282*33385282^(13/18) 2329991416844833 a001 28657/87403803*17393796001^(4/7) 2329991416844833 a001 28657/87403803*14662949395604^(4/9) 2329991416844833 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^28/Lucas(38) 2329991416844833 a001 28657/87403803*505019158607^(1/2) 2329991416844833 a001 28657/87403803*73681302247^(7/13) 2329991416844833 a001 28657/87403803*10749957122^(7/12) 2329991416844833 a001 1120149659033/4807526976 2329991416844833 a001 28657/87403803*4106118243^(14/23) 2329991416844833 a004 Fibonacci(38)/Lucas(23)/(1/2+sqrt(5)/2)^2 2329991416844833 a001 28657/87403803*1568397607^(7/11) 2329991416844833 a001 28657/87403803*599074578^(2/3) 2329991416844833 a001 28657/87403803*228826127^(7/10) 2329991416844834 a001 28657/228826127*141422324^(10/13) 2329991416844834 a004 Fibonacci(23)*Lucas(39)/(1/2+sqrt(5)/2)^49 2329991416844834 a001 28657/4106118243*141422324^(12/13) 2329991416844834 a001 28657/969323029*141422324^(11/13) 2329991416844834 a001 28657/87403803*87403803^(14/19) 2329991416844834 a001 28657/228826127*2537720636^(2/3) 2329991416844834 a001 28657/228826127*45537549124^(10/17) 2329991416844834 a001 28657/228826127*312119004989^(6/11) 2329991416844834 a001 28657/228826127*14662949395604^(10/21) 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^30/Lucas(40) 2329991416844834 a001 28657/228826127*192900153618^(5/9) 2329991416844834 a001 28657/228826127*28143753123^(3/5) 2329991416844834 a001 53319815997/228841255 2329991416844834 a001 28657/228826127*10749957122^(5/8) 2329991416844834 a001 28657/228826127*4106118243^(15/23) 2329991416844834 a004 Fibonacci(40)/Lucas(23)/(1/2+sqrt(5)/2)^4 2329991416844834 a001 28657/228826127*1568397607^(15/22) 2329991416844834 a001 28657/228826127*599074578^(5/7) 2329991416844834 a004 Fibonacci(23)*Lucas(41)/(1/2+sqrt(5)/2)^51 2329991416844834 a001 28657/228826127*228826127^(3/4) 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^32/Lucas(42) 2329991416844834 a001 28657/599074578*23725150497407^(1/2) 2329991416844834 a001 28657/599074578*505019158607^(4/7) 2329991416844834 a001 28657/599074578*73681302247^(8/13) 2329991416844834 a001 7677619980472/32951280099 2329991416844834 a001 28657/599074578*10749957122^(2/3) 2329991416844834 a001 28657/599074578*4106118243^(16/23) 2329991416844834 a004 Fibonacci(42)/Lucas(23)/(1/2+sqrt(5)/2)^6 2329991416844834 a001 28657/599074578*1568397607^(8/11) 2329991416844834 a004 Fibonacci(23)*Lucas(43)/(1/2+sqrt(5)/2)^53 2329991416844834 a001 28657/599074578*599074578^(16/21) 2329991416844834 a001 28657/1568397607*45537549124^(2/3) 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^34/Lucas(44) 2329991416844834 a001 20100270061581/86267571272 2329991416844834 a001 28657/1568397607*10749957122^(17/24) 2329991416844834 a001 28657/1568397607*4106118243^(17/23) 2329991416844834 a004 Fibonacci(44)/Lucas(23)/(1/2+sqrt(5)/2)^8 2329991416844834 a001 28657/4106118243*2537720636^(4/5) 2329991416844834 a004 Fibonacci(23)*Lucas(45)/(1/2+sqrt(5)/2)^55 2329991416844834 a001 28657/73681302247*2537720636^(14/15) 2329991416844834 a001 28657/28143753123*2537720636^(8/9) 2329991416844834 a001 28657/17393796001*2537720636^(13/15) 2329991416844834 a001 28657/1568397607*1568397607^(17/22) 2329991416844834 a001 28657/4106118243*45537549124^(12/17) 2329991416844834 a001 28657/4106118243*14662949395604^(4/7) 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^36/Lucas(46) 2329991416844834 a001 28657/4106118243*505019158607^(9/14) 2329991416844834 a001 28657/4106118243*192900153618^(2/3) 2329991416844834 a001 28657/4106118243*73681302247^(9/13) 2329991416844834 a001 28657/4106118243*10749957122^(3/4) 2329991416844834 a004 Fibonacci(23)*Lucas(47)/(1/2+sqrt(5)/2)^57 2329991416844834 a001 28657/4106118243*4106118243^(18/23) 2329991416844834 a001 28657/10749957122*817138163596^(2/3) 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^38/Lucas(48) 2329991416844834 a001 137769300551232/591286729879 2329991416844834 a004 Fibonacci(23)*Lucas(49)/(1/2+sqrt(5)/2)^59 2329991416844834 a001 28657/73681302247*17393796001^(6/7) 2329991416844834 a001 28657/10749957122*10749957122^(19/24) 2329991416844834 a001 28657/28143753123*312119004989^(8/11) 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^40/Lucas(50) 2329991416844834 a001 28657/28143753123*23725150497407^(5/8) 2329991416844834 a001 28657/28143753123*73681302247^(10/13) 2329991416844834 a001 28657/73681302247*45537549124^(14/17) 2329991416844834 a004 Fibonacci(23)*Lucas(51)/(1/2+sqrt(5)/2)^61 2329991416844834 a001 28657/1322157322203*45537549124^(16/17) 2329991416844834 a001 28657/312119004989*45537549124^(15/17) 2329991416844834 a001 28657/28143753123*28143753123^(4/5) 2329991416844834 a001 28657/73681302247*14662949395604^(2/3) 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^42/Lucas(52) 2329991416844834 a001 28657/73681302247*505019158607^(3/4) 2329991416844834 a001 28657/73681302247*192900153618^(7/9) 2329991416844834 a004 Fibonacci(23)*Lucas(53)/(1/2+sqrt(5)/2)^63 2329991416844834 a001 28657/192900153618*312119004989^(4/5) 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^44/Lucas(54) 2329991416844834 a001 2472169789941704/10610209857723 2329991416844834 a004 Fibonacci(23)*Lucas(55)/(1/2+sqrt(5)/2)^65 2329991416844834 a001 28657/3461452808002*312119004989^(10/11) 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^46/Lucas(56) 2329991416844834 a004 Fibonacci(23)*Lucas(57)/(1/2+sqrt(5)/2)^67 2329991416844834 a001 28657/1322157322203*14662949395604^(16/21) 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^48/Lucas(58) 2329991416844834 a004 Fibonacci(23)*Lucas(59)/(1/2+sqrt(5)/2)^69 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^50/Lucas(60) 2329991416844834 a004 Fibonacci(23)*Lucas(61)/(1/2+sqrt(5)/2)^71 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^52/Lucas(62) 2329991416844834 a004 Fibonacci(23)*Lucas(63)/(1/2+sqrt(5)/2)^73 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^54/Lucas(64) 2329991416844834 a004 Fibonacci(23)*Lucas(65)/(1/2+sqrt(5)/2)^75 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^56/Lucas(66) 2329991416844834 a004 Fibonacci(23)*Lucas(67)/(1/2+sqrt(5)/2)^77 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^58/Lucas(68) 2329991416844834 a004 Fibonacci(23)*Lucas(69)/(1/2+sqrt(5)/2)^79 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^60/Lucas(70) 2329991416844834 a004 Fibonacci(23)*Lucas(71)/(1/2+sqrt(5)/2)^81 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^62/Lucas(72) 2329991416844834 a004 Fibonacci(23)*Lucas(73)/(1/2+sqrt(5)/2)^83 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^64/Lucas(74) 2329991416844834 a004 Fibonacci(23)*Lucas(75)/(1/2+sqrt(5)/2)^85 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^66/Lucas(76) 2329991416844834 a004 Fibonacci(23)*Lucas(77)/(1/2+sqrt(5)/2)^87 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^68/Lucas(78) 2329991416844834 a004 Fibonacci(23)*Lucas(79)/(1/2+sqrt(5)/2)^89 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^70/Lucas(80) 2329991416844834 a004 Fibonacci(23)*Lucas(81)/(1/2+sqrt(5)/2)^91 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^72/Lucas(82) 2329991416844834 a004 Fibonacci(23)*Lucas(83)/(1/2+sqrt(5)/2)^93 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^74/Lucas(84) 2329991416844834 a004 Fibonacci(23)*Lucas(85)/(1/2+sqrt(5)/2)^95 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^76/Lucas(86) 2329991416844834 a004 Fibonacci(23)*Lucas(87)/(1/2+sqrt(5)/2)^97 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^78/Lucas(88) 2329991416844834 a004 Fibonacci(23)*Lucas(89)/(1/2+sqrt(5)/2)^99 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^80/Lucas(90) 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^82/Lucas(92) 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^84/Lucas(94) 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^86/Lucas(96) 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^88/Lucas(98) 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^87/Lucas(97) 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^89/Lucas(99) 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^90/Lucas(100) 2329991416844834 a004 Fibonacci(23)*Lucas(1)/(1/2+sqrt(5)/2)^10 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^85/Lucas(95) 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^83/Lucas(93) 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^81/Lucas(91) 2329991416844834 a004 Fibonacci(23)*Lucas(90)/(1/2+sqrt(5)/2)^100 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^79/Lucas(89) 2329991416844834 a004 Fibonacci(23)*Lucas(88)/(1/2+sqrt(5)/2)^98 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^77/Lucas(87) 2329991416844834 a004 Fibonacci(23)*Lucas(86)/(1/2+sqrt(5)/2)^96 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^75/Lucas(85) 2329991416844834 a004 Fibonacci(23)*Lucas(84)/(1/2+sqrt(5)/2)^94 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^73/Lucas(83) 2329991416844834 a004 Fibonacci(23)*Lucas(82)/(1/2+sqrt(5)/2)^92 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^71/Lucas(81) 2329991416844834 a004 Fibonacci(23)*Lucas(80)/(1/2+sqrt(5)/2)^90 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^69/Lucas(79) 2329991416844834 a004 Fibonacci(23)*Lucas(78)/(1/2+sqrt(5)/2)^88 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^67/Lucas(77) 2329991416844834 a004 Fibonacci(23)*Lucas(76)/(1/2+sqrt(5)/2)^86 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^65/Lucas(75) 2329991416844834 a004 Fibonacci(23)*Lucas(74)/(1/2+sqrt(5)/2)^84 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^63/Lucas(73) 2329991416844834 a004 Fibonacci(23)*Lucas(72)/(1/2+sqrt(5)/2)^82 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^61/Lucas(71) 2329991416844834 a004 Fibonacci(23)*Lucas(70)/(1/2+sqrt(5)/2)^80 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^59/Lucas(69) 2329991416844834 a004 Fibonacci(23)*Lucas(68)/(1/2+sqrt(5)/2)^78 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^57/Lucas(67) 2329991416844834 a004 Fibonacci(23)*Lucas(66)/(1/2+sqrt(5)/2)^76 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^55/Lucas(65) 2329991416844834 a004 Fibonacci(23)*Lucas(64)/(1/2+sqrt(5)/2)^74 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^53/Lucas(63) 2329991416844834 a004 Fibonacci(23)*Lucas(62)/(1/2+sqrt(5)/2)^72 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^51/Lucas(61) 2329991416844834 a004 Fibonacci(23)*Lucas(60)/(1/2+sqrt(5)/2)^70 2329991416844834 a001 28657/2139295485799*14662949395604^(7/9) 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^49/Lucas(59) 2329991416844834 a004 Fibonacci(23)*Lucas(58)/(1/2+sqrt(5)/2)^68 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^47/Lucas(57) 2329991416844834 a001 28657/2139295485799*505019158607^(7/8) 2329991416844834 a004 Fibonacci(23)*Lucas(56)/(1/2+sqrt(5)/2)^66 2329991416844834 a001 28657/312119004989*14662949395604^(5/7) 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^45/Lucas(55) 2329991416844834 a001 28657/1322157322203*192900153618^(8/9) 2329991416844834 a001 28657/5600748293801*192900153618^(17/18) 2329991416844834 a004 Fibonacci(23)*Lucas(54)/(1/2+sqrt(5)/2)^64 2329991416844834 a001 28657/312119004989*192900153618^(5/6) 2329991416844834 a001 1527884956144661/6557470319842 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^43/Lucas(53) 2329991416844834 a001 28657/192900153618*73681302247^(11/13) 2329991416844834 a001 28657/1322157322203*73681302247^(12/13) 2329991416844834 a004 Fibonacci(23)*Lucas(52)/(1/2+sqrt(5)/2)^62 2329991416844834 a001 583600122347618/2504730781961 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^41/Lucas(51) 2329991416844834 a001 28657/312119004989*28143753123^(9/10) 2329991416844834 a004 Fibonacci(23)*Lucas(50)/(1/2+sqrt(5)/2)^60 2329991416844834 a001 28657/17393796001*45537549124^(13/17) 2329991416844834 a001 222915410898193/956722026041 2329991416844834 a001 28657/17393796001*14662949395604^(13/21) 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^39/Lucas(49) 2329991416844834 a001 28657/17393796001*192900153618^(13/18) 2329991416844834 a001 28657/17393796001*73681302247^(3/4) 2329991416844834 a001 28657/28143753123*10749957122^(5/6) 2329991416844834 a001 28657/73681302247*10749957122^(7/8) 2329991416844834 a001 28657/192900153618*10749957122^(11/12) 2329991416844834 a001 28657/312119004989*10749957122^(15/16) 2329991416844834 a001 28657/505019158607*10749957122^(23/24) 2329991416844834 a004 Fibonacci(23)*Lucas(48)/(1/2+sqrt(5)/2)^58 2329991416844834 a001 28657/17393796001*10749957122^(13/16) 2329991416844834 a001 85146110346961/365435296162 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^37/Lucas(47) 2329991416844834 a001 28657/2537720636*2537720636^(7/9) 2329991416844834 a001 28657/10749957122*4106118243^(19/23) 2329991416844834 a001 28657/28143753123*4106118243^(20/23) 2329991416844834 a004 Fibonacci(48)/Lucas(23)/(1/2+sqrt(5)/2)^12 2329991416844834 a001 28657/73681302247*4106118243^(21/23) 2329991416844834 a001 28657/192900153618*4106118243^(22/23) 2329991416844834 a004 Fibonacci(50)/Lucas(23)/(1/2+sqrt(5)/2)^14 2329991416844834 a004 Fibonacci(52)/Lucas(23)/(1/2+sqrt(5)/2)^16 2329991416844834 a004 Fibonacci(54)/Lucas(23)/(1/2+sqrt(5)/2)^18 2329991416844834 a004 Fibonacci(56)/Lucas(23)/(1/2+sqrt(5)/2)^20 2329991416844834 a004 Fibonacci(58)/Lucas(23)/(1/2+sqrt(5)/2)^22 2329991416844834 a004 Fibonacci(60)/Lucas(23)/(1/2+sqrt(5)/2)^24 2329991416844834 a004 Fibonacci(62)/Lucas(23)/(1/2+sqrt(5)/2)^26 2329991416844834 a004 Fibonacci(64)/Lucas(23)/(1/2+sqrt(5)/2)^28 2329991416844834 a004 Fibonacci(66)/Lucas(23)/(1/2+sqrt(5)/2)^30 2329991416844834 a004 Fibonacci(68)/Lucas(23)/(1/2+sqrt(5)/2)^32 2329991416844834 a004 Fibonacci(70)/Lucas(23)/(1/2+sqrt(5)/2)^34 2329991416844834 a004 Fibonacci(72)/Lucas(23)/(1/2+sqrt(5)/2)^36 2329991416844834 a004 Fibonacci(74)/Lucas(23)/(1/2+sqrt(5)/2)^38 2329991416844834 a004 Fibonacci(76)/Lucas(23)/(1/2+sqrt(5)/2)^40 2329991416844834 a004 Fibonacci(78)/Lucas(23)/(1/2+sqrt(5)/2)^42 2329991416844834 a004 Fibonacci(80)/Lucas(23)/(1/2+sqrt(5)/2)^44 2329991416844834 a004 Fibonacci(82)/Lucas(23)/(1/2+sqrt(5)/2)^46 2329991416844834 a004 Fibonacci(84)/Lucas(23)/(1/2+sqrt(5)/2)^48 2329991416844834 a004 Fibonacci(86)/Lucas(23)/(1/2+sqrt(5)/2)^50 2329991416844834 a004 Fibonacci(88)/Lucas(23)/(1/2+sqrt(5)/2)^52 2329991416844834 a004 Fibonacci(90)/Lucas(23)/(1/2+sqrt(5)/2)^54 2329991416844834 a004 Fibonacci(23)*Lucas(46)/(1/2+sqrt(5)/2)^56 2329991416844834 a004 Fibonacci(94)/Lucas(23)/(1/2+sqrt(5)/2)^58 2329991416844834 a004 Fibonacci(96)/Lucas(23)/(1/2+sqrt(5)/2)^60 2329991416844834 a004 Fibonacci(100)/Lucas(23)/(1/2+sqrt(5)/2)^64 2329991416844834 a004 Fibonacci(98)/Lucas(23)/(1/2+sqrt(5)/2)^62 2329991416844834 a004 Fibonacci(99)/Lucas(23)/(1/2+sqrt(5)/2)^63 2329991416844834 a004 Fibonacci(97)/Lucas(23)/(1/2+sqrt(5)/2)^61 2329991416844834 a004 Fibonacci(95)/Lucas(23)/(1/2+sqrt(5)/2)^59 2329991416844834 a004 Fibonacci(93)/Lucas(23)/(1/2+sqrt(5)/2)^57 2329991416844834 a004 Fibonacci(91)/Lucas(23)/(1/2+sqrt(5)/2)^55 2329991416844834 a004 Fibonacci(89)/Lucas(23)/(1/2+sqrt(5)/2)^53 2329991416844834 a004 Fibonacci(87)/Lucas(23)/(1/2+sqrt(5)/2)^51 2329991416844834 a004 Fibonacci(85)/Lucas(23)/(1/2+sqrt(5)/2)^49 2329991416844834 a004 Fibonacci(83)/Lucas(23)/(1/2+sqrt(5)/2)^47 2329991416844834 a004 Fibonacci(81)/Lucas(23)/(1/2+sqrt(5)/2)^45 2329991416844834 a004 Fibonacci(79)/Lucas(23)/(1/2+sqrt(5)/2)^43 2329991416844834 a004 Fibonacci(77)/Lucas(23)/(1/2+sqrt(5)/2)^41 2329991416844834 a004 Fibonacci(75)/Lucas(23)/(1/2+sqrt(5)/2)^39 2329991416844834 a004 Fibonacci(73)/Lucas(23)/(1/2+sqrt(5)/2)^37 2329991416844834 a004 Fibonacci(71)/Lucas(23)/(1/2+sqrt(5)/2)^35 2329991416844834 a004 Fibonacci(69)/Lucas(23)/(1/2+sqrt(5)/2)^33 2329991416844834 a004 Fibonacci(67)/Lucas(23)/(1/2+sqrt(5)/2)^31 2329991416844834 a004 Fibonacci(65)/Lucas(23)/(1/2+sqrt(5)/2)^29 2329991416844834 a004 Fibonacci(63)/Lucas(23)/(1/2+sqrt(5)/2)^27 2329991416844834 a004 Fibonacci(61)/Lucas(23)/(1/2+sqrt(5)/2)^25 2329991416844834 a004 Fibonacci(59)/Lucas(23)/(1/2+sqrt(5)/2)^23 2329991416844834 a004 Fibonacci(57)/Lucas(23)/(1/2+sqrt(5)/2)^21 2329991416844834 a004 Fibonacci(55)/Lucas(23)/(1/2+sqrt(5)/2)^19 2329991416844834 a004 Fibonacci(53)/Lucas(23)/(1/2+sqrt(5)/2)^17 2329991416844834 a004 Fibonacci(51)/Lucas(23)/(1/2+sqrt(5)/2)^15 2329991416844834 a004 Fibonacci(49)/Lucas(23)/(1/2+sqrt(5)/2)^13 2329991416844834 a004 Fibonacci(47)/Lucas(23)/(1/2+sqrt(5)/2)^11 2329991416844834 a001 28657/2537720636*17393796001^(5/7) 2329991416844834 a001 6504584028538/27916772489 2329991416844834 a001 28657/2537720636*312119004989^(7/11) 2329991416844834 a001 28657/2537720636*14662949395604^(5/9) 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^35/Lucas(45) 2329991416844834 a001 28657/2537720636*505019158607^(5/8) 2329991416844834 a001 28657/2537720636*28143753123^(7/10) 2329991416844834 a004 Fibonacci(45)/Lucas(23)/(1/2+sqrt(5)/2)^9 2329991416844834 a001 28657/4106118243*1568397607^(9/11) 2329991416844834 a001 28657/10749957122*1568397607^(19/22) 2329991416844834 a001 28657/28143753123*1568397607^(10/11) 2329991416844834 a001 28657/73681302247*1568397607^(21/22) 2329991416844834 a004 Fibonacci(23)*Lucas(44)/(1/2+sqrt(5)/2)^54 2329991416844834 a001 28657/969323029*2537720636^(11/15) 2329991416844834 a001 28657/969323029*45537549124^(11/17) 2329991416844834 a001 12422650081109/53316291173 2329991416844834 a001 28657/969323029*312119004989^(3/5) 2329991416844834 a001 28657/969323029*817138163596^(11/19) 2329991416844834 a001 28657/969323029*14662949395604^(11/21) 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^33/Lucas(43) 2329991416844834 a001 28657/969323029*192900153618^(11/18) 2329991416844834 a001 28657/969323029*10749957122^(11/16) 2329991416844834 a004 Fibonacci(43)/Lucas(23)/(1/2+sqrt(5)/2)^7 2329991416844834 a001 28657/969323029*1568397607^(3/4) 2329991416844834 a001 28657/1568397607*599074578^(17/21) 2329991416844834 a001 28657/4106118243*599074578^(6/7) 2329991416844834 a001 28657/2537720636*599074578^(5/6) 2329991416844834 a001 28657/10749957122*599074578^(19/21) 2329991416844834 a001 28657/17393796001*599074578^(13/14) 2329991416844834 a001 28657/28143753123*599074578^(20/21) 2329991416844834 a004 Fibonacci(23)*Lucas(42)/(1/2+sqrt(5)/2)^52 2329991416844834 a001 28657/969323029*599074578^(11/14) 2329991416844834 a001 4745030100637/20365011074 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^31/Lucas(41) 2329991416844834 a001 28657/370248451*9062201101803^(1/2) 2329991416844834 a004 Fibonacci(41)/Lucas(23)/(1/2+sqrt(5)/2)^5 2329991416844834 a001 28657/599074578*228826127^(4/5) 2329991416844834 a001 28657/1568397607*228826127^(17/20) 2329991416844834 a001 28657/2537720636*228826127^(7/8) 2329991416844834 a001 28657/4106118243*228826127^(9/10) 2329991416844834 a001 28657/10749957122*228826127^(19/20) 2329991416844834 a004 Fibonacci(23)*Lucas(40)/(1/2+sqrt(5)/2)^50 2329991416844834 a001 1812440220802/7778742049 2329991416844834 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^29/Lucas(39) 2329991416844834 a001 28657/141422324*1322157322203^(1/2) 2329991416844834 a004 Fibonacci(39)/Lucas(23)/(1/2+sqrt(5)/2)^3 2329991416844834 a001 28657/228826127*87403803^(15/19) 2329991416844834 a001 28657/599074578*87403803^(16/19) 2329991416844834 a001 28657/1568397607*87403803^(17/19) 2329991416844834 a001 28657/4106118243*87403803^(18/19) 2329991416844834 a004 Fibonacci(23)*Lucas(38)/(1/2+sqrt(5)/2)^48 2329991416844834 a001 28657/54018521*141422324^(9/13) 2329991416844835 a001 28657/54018521*2537720636^(3/5) 2329991416844835 a001 692290561769/2971215073 2329991416844835 a001 28657/54018521*45537549124^(9/17) 2329991416844835 a001 28657/54018521*817138163596^(9/19) 2329991416844835 a001 28657/54018521*14662949395604^(3/7) 2329991416844835 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^27/Lucas(37) 2329991416844835 a001 28657/54018521*192900153618^(1/2) 2329991416844835 a001 28657/54018521*10749957122^(9/16) 2329991416844835 a004 Fibonacci(37)/Lucas(23)/(1/2+sqrt(5)/2) 2329991416844835 a001 28657/54018521*599074578^(9/14) 2329991416844835 a001 28657/87403803*33385282^(7/9) 2329991416844835 a001 28657/20633239*20633239^(5/7) 2329991416844835 a001 28657/228826127*33385282^(5/6) 2329991416844836 a001 28657/599074578*33385282^(8/9) 2329991416844836 a001 28657/969323029*33385282^(11/12) 2329991416844836 a001 28657/1568397607*33385282^(17/18) 2329991416844836 a004 Fibonacci(23)*Lucas(36)/(1/2+sqrt(5)/2)^46 2329991416844836 a001 28657/54018521*33385282^(3/4) 2329991416844839 a001 52886292901/226980634 2329991416844839 a001 28657/20633239*2537720636^(5/9) 2329991416844839 a001 28657/20633239*312119004989^(5/11) 2329991416844839 a001 28657/20633239*(1/2+1/2*5^(1/2))^25 2329991416844839 a001 28657/20633239*3461452808002^(5/12) 2329991416844839 a001 28657/20633239*28143753123^(1/2) 2329991416844839 a001 9227465/128158+9227465/128158*5^(1/2) 2329991416844839 a001 28657/20633239*228826127^(5/8) 2329991416844843 a001 28657/33385282*12752043^(13/17) 2329991416844845 a001 28657/87403803*12752043^(14/17) 2329991416844846 a001 28657/228826127*12752043^(15/17) 2329991416844847 a001 28657/599074578*12752043^(16/17) 2329991416844848 a004 Fibonacci(23)*Lucas(34)/(1/2+sqrt(5)/2)^44 2329991416844864 a001 5702887/64079*1860498^(1/15) 2329991416844868 a001 3524578/64079*7881196^(1/11) 2329991416844871 a001 3524578/64079*141422324^(1/13) 2329991416844871 a001 101003831746/433494437 2329991416844871 a001 28657/7881196*(1/2+1/2*5^(1/2))^23 2329991416844871 a001 28657/7881196*4106118243^(1/2) 2329991416844871 a001 3524578/64079*2537720636^(1/15) 2329991416844871 a001 3524578/64079*45537549124^(1/17) 2329991416844871 a001 3524578/64079*14662949395604^(1/21) 2329991416844871 a001 3524578/64079*(1/2+1/2*5^(1/2))^3 2329991416844871 a001 3524578/64079*192900153618^(1/18) 2329991416844871 a001 3524578/64079*10749957122^(1/16) 2329991416844871 a001 3524578/64079*599074578^(1/14) 2329991416844871 a001 3524578/64079*33385282^(1/12) 2329991416844893 a001 28657/12752043*4870847^(3/4) 2329991416844911 a001 28657/33385282*4870847^(13/16) 2329991416844919 a001 28657/87403803*4870847^(7/8) 2329991416844926 a001 28657/228826127*4870847^(15/16) 2329991416844932 a004 Fibonacci(23)*Lucas(32)/(1/2+sqrt(5)/2)^42 2329991416844939 a001 3524578/64079*1860498^(1/10) 2329991416845067 a001 28657/3010349*7881196^(7/11) 2329991416845088 a001 28657/3010349*20633239^(3/5) 2329991416845090 a001 1346269/64079*20633239^(1/7) 2329991416845091 a001 28657/3010349*141422324^(7/13) 2329991416845091 a001 38580030733/165580141 2329991416845091 a001 28657/3010349*2537720636^(7/15) 2329991416845091 a001 28657/3010349*17393796001^(3/7) 2329991416845091 a001 28657/3010349*45537549124^(7/17) 2329991416845091 a001 28657/3010349*14662949395604^(1/3) 2329991416845091 a001 28657/3010349*(1/2+1/2*5^(1/2))^21 2329991416845091 a001 28657/3010349*192900153618^(7/18) 2329991416845091 a001 28657/3010349*10749957122^(7/16) 2329991416845091 a001 1346269/64079*2537720636^(1/9) 2329991416845091 a001 1346269/64079*312119004989^(1/11) 2329991416845091 a001 1346269/64079*(1/2+1/2*5^(1/2))^5 2329991416845091 a001 1346269/64079*28143753123^(1/10) 2329991416845091 a001 28657/3010349*599074578^(1/2) 2329991416845091 a001 1346269/64079*228826127^(1/8) 2329991416845092 a001 28657/3010349*33385282^(7/12) 2329991416845149 a001 5702887/64079*710647^(1/14) 2329991416845149 a001 832040/64079*710647^(3/14) 2329991416845203 a001 1346269/64079*1860498^(1/6) 2329991416845229 a001 28657/4870847*1860498^(11/15) 2329991416845358 a001 28657/12752043*1860498^(4/5) 2329991416845395 a001 2178309/64079*710647^(1/7) 2329991416845400 a001 28657/20633239*1860498^(5/6) 2329991416845415 a001 28657/33385282*1860498^(13/15) 2329991416845440 a001 28657/54018521*1860498^(9/10) 2329991416845462 a001 28657/87403803*1860498^(14/15) 2329991416845507 a004 Fibonacci(23)*Lucas(30)/(1/2+sqrt(5)/2)^40 2329991416845562 a001 28657/3010349*1860498^(7/10) 2329991416846595 a001 514229/64079*20633239^(1/5) 2329991416846596 a001 14736260453/63245986 2329991416846596 a001 28657/1149851*817138163596^(1/3) 2329991416846596 a001 28657/1149851*(1/2+1/2*5^(1/2))^19 2329991416846596 a001 514229/64079*17393796001^(1/7) 2329991416846596 a001 514229/64079*14662949395604^(1/9) 2329991416846596 a001 514229/64079*(1/2+1/2*5^(1/2))^7 2329991416846596 a001 514229/64079*599074578^(1/6) 2329991416846596 a001 28657/1149851*87403803^(1/2) 2329991416847252 a001 5702887/64079*271443^(1/13) 2329991416847456 a001 28657/1860498*710647^(5/7) 2329991416847749 a001 514229/64079*710647^(1/4) 2329991416848361 a001 28657/4870847*710647^(11/14) 2329991416848551 a001 28657/3010349*710647^(3/4) 2329991416848774 a001 28657/12752043*710647^(6/7) 2329991416849116 a001 28657/33385282*710647^(13/14) 2329991416849447 a004 Fibonacci(23)*Lucas(28)/(1/2+sqrt(5)/2)^38 2329991416849601 a001 2178309/64079*271443^(2/13) 2329991416849950 a001 317811/64079*271443^(4/13) 2329991416851458 a001 832040/64079*271443^(3/13) 2329991416852834 a001 832040/271443*39603^(9/22) 2329991416852886 a001 196418/64079*439204^(1/3) 2329991416853870 a001 9227465/64079*103682^(1/24) 2329991416856902 a001 196418/64079*7881196^(3/11) 2329991416856912 a001 5628750626/24157817 2329991416856912 a001 196418/64079*141422324^(3/13) 2329991416856912 a001 28657/439204*45537549124^(1/3) 2329991416856912 a001 28657/439204*(1/2+1/2*5^(1/2))^17 2329991416856912 a001 196418/64079*2537720636^(1/5) 2329991416856912 a001 196418/64079*45537549124^(3/17) 2329991416856912 a001 196418/64079*14662949395604^(1/7) 2329991416856912 a001 196418/64079*(1/2+1/2*5^(1/2))^9 2329991416856912 a001 196418/64079*192900153618^(1/6) 2329991416856912 a001 196418/64079*10749957122^(3/16) 2329991416856912 a001 196418/64079*599074578^(3/14) 2329991416856913 a001 196418/64079*33385282^(1/4) 2329991416856920 a001 28657/439204*12752043^(1/2) 2329991416857114 a001 196418/64079*1860498^(3/10) 2329991416862113 a001 28657/710647*271443^(9/13) 2329991416862881 a001 5702887/64079*103682^(1/12) 2329991416868486 a001 28657/1860498*271443^(10/13) 2329991416869298 a001 24157817/167761*15127^(1/20) 2329991416871493 a001 28657/4870847*271443^(11/13) 2329991416871964 a001 3524578/64079*103682^(1/8) 2329991416874009 a001 28657/12752043*271443^(12/13) 2329991416876456 a004 Fibonacci(23)*Lucas(26)/(1/2+sqrt(5)/2)^36 2329991416877949 a001 28657/167761*167761^(3/5) 2329991416880418 a001 311187/101521*39603^(9/22) 2329991416880860 a001 2178309/64079*103682^(1/6) 2329991416884443 a001 5702887/1860498*39603^(9/22) 2329991416885030 a001 14930352/4870847*39603^(9/22) 2329991416885116 a001 39088169/12752043*39603^(9/22) 2329991416885128 a001 14619165/4769326*39603^(9/22) 2329991416885130 a001 267914296/87403803*39603^(9/22) 2329991416885130 a001 701408733/228826127*39603^(9/22) 2329991416885130 a001 1836311903/599074578*39603^(9/22) 2329991416885130 a001 686789568/224056801*39603^(9/22) 2329991416885130 a001 12586269025/4106118243*39603^(9/22) 2329991416885130 a001 32951280099/10749957122*39603^(9/22) 2329991416885130 a001 86267571272/28143753123*39603^(9/22) 2329991416885130 a001 32264490531/10525900321*39603^(9/22) 2329991416885130 a001 591286729879/192900153618*39603^(9/22) 2329991416885130 a001 1548008755920/505019158607*39603^(9/22) 2329991416885130 a001 1515744265389/494493258286*39603^(9/22) 2329991416885130 a001 2504730781961/817138163596*39603^(9/22) 2329991416885130 a001 956722026041/312119004989*39603^(9/22) 2329991416885130 a001 365435296162/119218851371*39603^(9/22) 2329991416885130 a001 139583862445/45537549124*39603^(9/22) 2329991416885130 a001 53316291173/17393796001*39603^(9/22) 2329991416885130 a001 20365011074/6643838879*39603^(9/22) 2329991416885130 a001 7778742049/2537720636*39603^(9/22) 2329991416885130 a001 2971215073/969323029*39603^(9/22) 2329991416885130 a001 1134903170/370248451*39603^(9/22) 2329991416885130 a001 433494437/141422324*39603^(9/22) 2329991416885131 a001 165580141/54018521*39603^(9/22) 2329991416885136 a001 63245986/20633239*39603^(9/22) 2329991416885168 a001 24157817/7881196*39603^(9/22) 2329991416885393 a001 9227465/3010349*39603^(9/22) 2329991416886930 a001 3524578/1149851*39603^(9/22) 2329991416890246 a001 1346269/64079*103682^(5/24) 2329991416897466 a001 1346269/439204*39603^(9/22) 2329991416898347 a001 832040/64079*103682^(1/4) 2329991416899719 a001 75640/15251*39603^(4/11) 2329991416903521 a001 121393/64079*103682^(5/12) 2329991416909813 a001 514229/64079*103682^(7/24) 2329991416912366 a001 9227465/64079*39603^(1/22) 2329991416912468 a001 317811/64079*103682^(1/3) 2329991416920912 a001 28657/167761*439204^(5/9) 2329991416922797 a001 514229/271443*39603^(5/11) 2329991416927606 a001 28657/167761*7881196^(5/11) 2329991416927610 a001 75025/64079*7881196^(1/3) 2329991416927617 a001 429998285/1845493 2329991416927620 a001 28657/167761*20633239^(3/7) 2329991416927623 a001 28657/167761*141422324^(5/13) 2329991416927623 a001 28657/167761*2537720636^(1/3) 2329991416927623 a001 28657/167761*45537549124^(5/17) 2329991416927623 a001 28657/167761*312119004989^(3/11) 2329991416927623 a001 28657/167761*14662949395604^(5/21) 2329991416927623 a001 28657/167761*(1/2+1/2*5^(1/2))^15 2329991416927623 a001 28657/167761*192900153618^(5/18) 2329991416927623 a001 28657/167761*28143753123^(3/10) 2329991416927623 a001 28657/167761*10749957122^(5/16) 2329991416927623 a001 75025/64079*312119004989^(1/5) 2329991416927623 a001 75025/64079*(1/2+1/2*5^(1/2))^11 2329991416927623 a001 75025/64079*1568397607^(1/4) 2329991416927623 a001 28657/167761*599074578^(5/14) 2329991416927623 a001 28657/167761*228826127^(3/8) 2329991416927624 a001 28657/167761*33385282^(5/12) 2329991416927959 a001 28657/167761*1860498^(1/2) 2329991416938192 a001 196418/64079*103682^(3/8) 2329991416948300 a001 1346269/710647*39603^(5/11) 2329991416952021 a001 1762289/930249*39603^(5/11) 2329991416952564 a001 9227465/4870847*39603^(5/11) 2329991416952643 a001 24157817/12752043*39603^(5/11) 2329991416952655 a001 31622993/16692641*39603^(5/11) 2329991416952657 a001 165580141/87403803*39603^(5/11) 2329991416952657 a001 433494437/228826127*39603^(5/11) 2329991416952657 a001 567451585/299537289*39603^(5/11) 2329991416952657 a001 2971215073/1568397607*39603^(5/11) 2329991416952657 a001 7778742049/4106118243*39603^(5/11) 2329991416952657 a001 10182505537/5374978561*39603^(5/11) 2329991416952657 a001 53316291173/28143753123*39603^(5/11) 2329991416952657 a001 139583862445/73681302247*39603^(5/11) 2329991416952657 a001 182717648081/96450076809*39603^(5/11) 2329991416952657 a001 956722026041/505019158607*39603^(5/11) 2329991416952657 a001 10610209857723/5600748293801*39603^(5/11) 2329991416952657 a001 591286729879/312119004989*39603^(5/11) 2329991416952657 a001 225851433717/119218851371*39603^(5/11) 2329991416952657 a001 21566892818/11384387281*39603^(5/11) 2329991416952657 a001 32951280099/17393796001*39603^(5/11) 2329991416952657 a001 12586269025/6643838879*39603^(5/11) 2329991416952657 a001 1201881744/634430159*39603^(5/11) 2329991416952657 a001 1836311903/969323029*39603^(5/11) 2329991416952657 a001 701408733/370248451*39603^(5/11) 2329991416952657 a001 66978574/35355581*39603^(5/11) 2329991416952658 a001 102334155/54018521*39603^(5/11) 2329991416952662 a001 39088169/20633239*39603^(5/11) 2329991416952692 a001 3732588/1970299*39603^(5/11) 2329991416952900 a001 5702887/3010349*39603^(5/11) 2329991416953755 a001 75025/103682*39603^(6/11) 2329991416954321 a001 2178309/1149851*39603^(5/11) 2329991416957707 a001 28657/271443*103682^(2/3) 2329991416964062 a001 208010/109801*39603^(5/11) 2329991416969681 a001 514229/167761*39603^(9/22) 2329991416979873 a001 5702887/64079*39603^(1/11) 2329991416983947 a001 105937/90481*39603^(1/2) 2329991416986674 a001 5473/51841*24476^(16/21) 2329991417002778 a001 28657/710647*103682^(3/4) 2329991417010440 a001 28657/439204*103682^(17/24) 2329991417014897 a001 832040/710647*39603^(1/2) 2329991417018185 a001 28657/1149851*103682^(19/24) 2329991417019412 a001 726103/620166*39603^(1/2) 2329991417020071 a001 5702887/4870847*39603^(1/2) 2329991417020167 a001 4976784/4250681*39603^(1/2) 2329991417020181 a001 39088169/33385282*39603^(1/2) 2329991417020183 a001 34111385/29134601*39603^(1/2) 2329991417020183 a001 267914296/228826127*39603^(1/2) 2329991417020184 a001 233802911/199691526*39603^(1/2) 2329991417020184 a001 1836311903/1568397607*39603^(1/2) 2329991417020184 a001 1602508992/1368706081*39603^(1/2) 2329991417020184 a001 12586269025/10749957122*39603^(1/2) 2329991417020184 a001 10983760033/9381251041*39603^(1/2) 2329991417020184 a001 86267571272/73681302247*39603^(1/2) 2329991417020184 a001 75283811239/64300051206*39603^(1/2) 2329991417020184 a001 2504730781961/2139295485799*39603^(1/2) 2329991417020184 a001 365435296162/312119004989*39603^(1/2) 2329991417020184 a001 139583862445/119218851371*39603^(1/2) 2329991417020184 a001 53316291173/45537549124*39603^(1/2) 2329991417020184 a001 20365011074/17393796001*39603^(1/2) 2329991417020184 a001 7778742049/6643838879*39603^(1/2) 2329991417020184 a001 2971215073/2537720636*39603^(1/2) 2329991417020184 a001 1134903170/969323029*39603^(1/2) 2329991417020184 a001 433494437/370248451*39603^(1/2) 2329991417020184 a001 165580141/141422324*39603^(1/2) 2329991417020184 a001 63245986/54018521*39603^(1/2) 2329991417020190 a001 24157817/20633239*39603^(1/2) 2329991417020227 a001 9227465/7881196*39603^(1/2) 2329991417020478 a001 3524578/3010349*39603^(1/2) 2329991417022203 a001 1346269/1149851*39603^(1/2) 2329991417024781 a001 28657/1860498*103682^(5/6) 2329991417026964 a001 75025/64079*103682^(11/24) 2329991417030832 a001 317811/167761*39603^(5/11) 2329991417034025 a001 514229/439204*39603^(1/2) 2329991417034742 a001 28657/3010349*103682^(7/8) 2329991417041923 a001 15456/90481*39603^(15/22) 2329991417043418 a001 28657/4870847*103682^(11/12) 2329991417047451 a001 3524578/64079*39603^(3/22) 2329991417052585 a001 28657/7881196*103682^(23/24) 2329991417061578 a004 Fibonacci(23)*Lucas(24)/(1/2+sqrt(5)/2)^34 2329991417063088 a001 28657/167761*103682^(5/8) 2329991417068166 a001 196418/271443*39603^(6/11) 2329991417078888 a001 9227465/103682*15127^(1/10) 2329991417084859 a001 514229/710647*39603^(6/11) 2329991417087294 a001 1346269/1860498*39603^(6/11) 2329991417087650 a001 3524578/4870847*39603^(6/11) 2329991417087701 a001 9227465/12752043*39603^(6/11) 2329991417087709 a001 24157817/33385282*39603^(6/11) 2329991417087710 a001 63245986/87403803*39603^(6/11) 2329991417087710 a001 165580141/228826127*39603^(6/11) 2329991417087710 a001 433494437/599074578*39603^(6/11) 2329991417087710 a001 1134903170/1568397607*39603^(6/11) 2329991417087710 a001 2971215073/4106118243*39603^(6/11) 2329991417087710 a001 7778742049/10749957122*39603^(6/11) 2329991417087710 a001 20365011074/28143753123*39603^(6/11) 2329991417087710 a001 53316291173/73681302247*39603^(6/11) 2329991417087710 a001 139583862445/192900153618*39603^(6/11) 2329991417087710 a001 10610209857723/14662949395604*39603^(6/11) 2329991417087710 a001 225851433717/312119004989*39603^(6/11) 2329991417087710 a001 86267571272/119218851371*39603^(6/11) 2329991417087710 a001 32951280099/45537549124*39603^(6/11) 2329991417087710 a001 12586269025/17393796001*39603^(6/11) 2329991417087710 a001 4807526976/6643838879*39603^(6/11) 2329991417087710 a001 1836311903/2537720636*39603^(6/11) 2329991417087710 a001 701408733/969323029*39603^(6/11) 2329991417087710 a001 267914296/370248451*39603^(6/11) 2329991417087710 a001 102334155/141422324*39603^(6/11) 2329991417087711 a001 39088169/54018521*39603^(6/11) 2329991417087714 a001 14930352/20633239*39603^(6/11) 2329991417087733 a001 5702887/7881196*39603^(6/11) 2329991417087869 a001 2178309/3010349*39603^(6/11) 2329991417088799 a001 832040/1149851*39603^(6/11) 2329991417088808 a001 46368/167761*39603^(7/11) 2329991417091548 a001 28657/64079*64079^(13/23) 2329991417091992 a001 121393/271443*39603^(13/22) 2329991417095175 a001 317811/439204*39603^(6/11) 2329991417101001 a001 10946/167761*24476^(17/21) 2329991417111998 a001 6765/24476*15127^(7/10) 2329991417114842 a001 2178309/64079*39603^(2/11) 2329991417115051 a001 196418/167761*39603^(1/2) 2329991417138877 a001 121393/167761*39603^(6/11) 2329991417146010 a001 317811/710647*39603^(13/22) 2329991417153151 a001 11592/109801*39603^(8/11) 2329991417153891 a001 416020/930249*39603^(13/22) 2329991417155041 a001 2178309/4870847*39603^(13/22) 2329991417155208 a001 5702887/12752043*39603^(13/22) 2329991417155233 a001 7465176/16692641*39603^(13/22) 2329991417155236 a001 39088169/87403803*39603^(13/22) 2329991417155237 a001 102334155/228826127*39603^(13/22) 2329991417155237 a001 133957148/299537289*39603^(13/22) 2329991417155237 a001 701408733/1568397607*39603^(13/22) 2329991417155237 a001 1836311903/4106118243*39603^(13/22) 2329991417155237 a001 2403763488/5374978561*39603^(13/22) 2329991417155237 a001 12586269025/28143753123*39603^(13/22) 2329991417155237 a001 32951280099/73681302247*39603^(13/22) 2329991417155237 a001 43133785636/96450076809*39603^(13/22) 2329991417155237 a001 225851433717/505019158607*39603^(13/22) 2329991417155237 a001 10610209857723/23725150497407*39603^(13/22) 2329991417155237 a001 182717648081/408569081798*39603^(13/22) 2329991417155237 a001 139583862445/312119004989*39603^(13/22) 2329991417155237 a001 53316291173/119218851371*39603^(13/22) 2329991417155237 a001 10182505537/22768774562*39603^(13/22) 2329991417155237 a001 7778742049/17393796001*39603^(13/22) 2329991417155237 a001 2971215073/6643838879*39603^(13/22) 2329991417155237 a001 567451585/1268860318*39603^(13/22) 2329991417155237 a001 433494437/969323029*39603^(13/22) 2329991417155237 a001 165580141/370248451*39603^(13/22) 2329991417155237 a001 31622993/70711162*39603^(13/22) 2329991417155239 a001 24157817/54018521*39603^(13/22) 2329991417155248 a001 9227465/20633239*39603^(13/22) 2329991417155312 a001 1762289/3940598*39603^(13/22) 2329991417155751 a001 1346269/3010349*39603^(13/22) 2329991417158761 a001 514229/1149851*39603^(13/22) 2329991417179394 a001 98209/219602*39603^(13/22) 2329991417182724 a001 1346269/64079*39603^(5/22) 2329991417203220 a001 121393/439204*39603^(7/11) 2329991417203986 a001 6624/101521*39603^(17/22) 2329991417219912 a001 317811/1149851*39603^(7/11) 2329991417222348 a001 832040/3010349*39603^(7/11) 2329991417222703 a001 2178309/7881196*39603^(7/11) 2329991417222755 a001 5702887/20633239*39603^(7/11) 2329991417222762 a001 14930352/54018521*39603^(7/11) 2329991417222763 a001 39088169/141422324*39603^(7/11) 2329991417222764 a001 102334155/370248451*39603^(7/11) 2329991417222764 a001 267914296/969323029*39603^(7/11) 2329991417222764 a001 701408733/2537720636*39603^(7/11) 2329991417222764 a001 1836311903/6643838879*39603^(7/11) 2329991417222764 a001 4807526976/17393796001*39603^(7/11) 2329991417222764 a001 12586269025/45537549124*39603^(7/11) 2329991417222764 a001 32951280099/119218851371*39603^(7/11) 2329991417222764 a001 86267571272/312119004989*39603^(7/11) 2329991417222764 a001 225851433717/817138163596*39603^(7/11) 2329991417222764 a001 1548008755920/5600748293801*39603^(7/11) 2329991417222764 a001 139583862445/505019158607*39603^(7/11) 2329991417222764 a001 53316291173/192900153618*39603^(7/11) 2329991417222764 a001 20365011074/73681302247*39603^(7/11) 2329991417222764 a001 7778742049/28143753123*39603^(7/11) 2329991417222764 a001 2971215073/10749957122*39603^(7/11) 2329991417222764 a001 1134903170/4106118243*39603^(7/11) 2329991417222764 a001 433494437/1568397607*39603^(7/11) 2329991417222764 a001 165580141/599074578*39603^(7/11) 2329991417222764 a001 63245986/228826127*39603^(7/11) 2329991417222764 a001 24157817/87403803*39603^(7/11) 2329991417222767 a001 9227465/33385282*39603^(7/11) 2329991417222787 a001 3524578/12752043*39603^(7/11) 2329991417222923 a001 1346269/4870847*39603^(7/11) 2329991417223853 a001 514229/1860498*39603^(7/11) 2329991417230229 a001 196418/710647*39603^(7/11) 2329991417249321 a001 832040/64079*39603^(3/11) 2329991417254054 a001 121393/710647*39603^(15/22) 2329991417264005 a001 24157817/271443*15127^(1/10) 2329991417273930 a001 75025/271443*39603^(7/11) 2329991417277888 a001 46368/1149851*39603^(9/11) 2329991417285004 a001 105937/620166*39603^(15/22) 2329991417289519 a001 832040/4870847*39603^(15/22) 2329991417290178 a001 726103/4250681*39603^(15/22) 2329991417290274 a001 5702887/33385282*39603^(15/22) 2329991417290288 a001 4976784/29134601*39603^(15/22) 2329991417290290 a001 39088169/228826127*39603^(15/22) 2329991417290290 a001 34111385/199691526*39603^(15/22) 2329991417290290 a001 267914296/1568397607*39603^(15/22) 2329991417290290 a001 233802911/1368706081*39603^(15/22) 2329991417290290 a001 1836311903/10749957122*39603^(15/22) 2329991417290290 a001 1602508992/9381251041*39603^(15/22) 2329991417290290 a001 12586269025/73681302247*39603^(15/22) 2329991417290290 a001 10983760033/64300051206*39603^(15/22) 2329991417290290 a001 86267571272/505019158607*39603^(15/22) 2329991417290290 a001 75283811239/440719107401*39603^(15/22) 2329991417290290 a001 2504730781961/14662949395604*39603^(15/22) 2329991417290290 a001 139583862445/817138163596*39603^(15/22) 2329991417290290 a001 53316291173/312119004989*39603^(15/22) 2329991417290290 a001 20365011074/119218851371*39603^(15/22) 2329991417290290 a001 7778742049/45537549124*39603^(15/22) 2329991417290290 a001 2971215073/17393796001*39603^(15/22) 2329991417290290 a001 1134903170/6643838879*39603^(15/22) 2329991417290290 a001 433494437/2537720636*39603^(15/22) 2329991417290290 a001 165580141/969323029*39603^(15/22) 2329991417290290 a001 63245986/370248451*39603^(15/22) 2329991417290291 a001 24157817/141422324*39603^(15/22) 2329991417290297 a001 9227465/54018521*39603^(15/22) 2329991417290333 a001 3524578/20633239*39603^(15/22) 2329991417290585 a001 1346269/7881196*39603^(15/22) 2329991417291013 a001 63245986/710647*15127^(1/10) 2329991417292310 a001 514229/3010349*39603^(15/22) 2329991417294953 a001 165580141/1860498*15127^(1/10) 2329991417295528 a001 433494437/4870847*15127^(1/10) 2329991417295612 a001 1134903170/12752043*15127^(1/10) 2329991417295624 a001 2971215073/33385282*15127^(1/10) 2329991417295626 a001 7778742049/87403803*15127^(1/10) 2329991417295627 a001 20365011074/228826127*15127^(1/10) 2329991417295627 a001 53316291173/599074578*15127^(1/10) 2329991417295627 a001 139583862445/1568397607*15127^(1/10) 2329991417295627 a001 365435296162/4106118243*15127^(1/10) 2329991417295627 a001 956722026041/10749957122*15127^(1/10) 2329991417295627 a001 2504730781961/28143753123*15127^(1/10) 2329991417295627 a001 6557470319842/73681302247*15127^(1/10) 2329991417295627 a001 10610209857723/119218851371*15127^(1/10) 2329991417295627 a001 4052739537881/45537549124*15127^(1/10) 2329991417295627 a001 1548008755920/17393796001*15127^(1/10) 2329991417295627 a001 591286729879/6643838879*15127^(1/10) 2329991417295627 a001 225851433717/2537720636*15127^(1/10) 2329991417295627 a001 86267571272/969323029*15127^(1/10) 2329991417295627 a001 32951280099/370248451*15127^(1/10) 2329991417295627 a001 12586269025/141422324*15127^(1/10) 2329991417295627 a001 4807526976/54018521*15127^(1/10) 2329991417295632 a001 1836311903/20633239*15127^(1/10) 2329991417295664 a001 3524667/39604*15127^(1/10) 2329991417295884 a001 267914296/3010349*15127^(1/10) 2329991417297389 a001 102334155/1149851*15127^(1/10) 2329991417304131 a001 196418/1149851*39603^(15/22) 2329991417307705 a001 39088169/439204*15127^(1/10) 2329991417319283 a001 514229/64079*39603^(7/22) 2329991417320815 a001 75025/167761*39603^(13/22) 2329991417327957 a001 121393/1149851*39603^(8/11) 2329991417336721 a001 832040/39603*15127^(1/4) 2329991417342980 a001 2576/103361*39603^(19/22) 2329991417353460 a001 317811/3010349*39603^(8/11) 2329991417353958 a001 9227465/64079*15127^(1/20) 2329991417357181 a001 208010/1970299*39603^(8/11) 2329991417357724 a001 2178309/20633239*39603^(8/11) 2329991417357803 a001 5702887/54018521*39603^(8/11) 2329991417357815 a001 3732588/35355581*39603^(8/11) 2329991417357817 a001 39088169/370248451*39603^(8/11) 2329991417357817 a001 102334155/969323029*39603^(8/11) 2329991417357817 a001 66978574/634430159*39603^(8/11) 2329991417357817 a001 701408733/6643838879*39603^(8/11) 2329991417357817 a001 1836311903/17393796001*39603^(8/11) 2329991417357817 a001 1201881744/11384387281*39603^(8/11) 2329991417357817 a001 12586269025/119218851371*39603^(8/11) 2329991417357817 a001 32951280099/312119004989*39603^(8/11) 2329991417357817 a001 21566892818/204284540899*39603^(8/11) 2329991417357817 a001 225851433717/2139295485799*39603^(8/11) 2329991417357817 a001 182717648081/1730726404001*39603^(8/11) 2329991417357817 a001 139583862445/1322157322203*39603^(8/11) 2329991417357817 a001 53316291173/505019158607*39603^(8/11) 2329991417357817 a001 10182505537/96450076809*39603^(8/11) 2329991417357817 a001 7778742049/73681302247*39603^(8/11) 2329991417357817 a001 2971215073/28143753123*39603^(8/11) 2329991417357817 a001 567451585/5374978561*39603^(8/11) 2329991417357817 a001 433494437/4106118243*39603^(8/11) 2329991417357817 a001 165580141/1568397607*39603^(8/11) 2329991417357817 a001 31622993/299537289*39603^(8/11) 2329991417357818 a001 24157817/228826127*39603^(8/11) 2329991417357822 a001 9227465/87403803*39603^(8/11) 2329991417357852 a001 1762289/16692641*39603^(8/11) 2329991417358060 a001 1346269/12752043*39603^(8/11) 2329991417359481 a001 514229/4870847*39603^(8/11) 2329991417360527 a001 2178309/24476*9349^(2/19) 2329991417369223 a001 98209/930249*39603^(8/11) 2329991417378413 a001 14930352/167761*15127^(1/10) 2329991417380434 a001 317811/64079*39603^(4/11) 2329991417385158 a001 75025/439204*39603^(15/22) 2329991417393048 a001 121393/1860498*39603^(17/22) 2329991417411437 a001 46368/3010349*39603^(10/11) 2329991417412240 a001 821223649/3524578 2329991417412278 a001 28657/64079*141422324^(1/3) 2329991417412278 a001 28657/64079*(1/2+1/2*5^(1/2))^13 2329991417412278 a001 28657/64079*73681302247^(1/4) 2329991417420632 a001 317811/4870847*39603^(17/22) 2329991417424656 a001 832040/12752043*39603^(17/22) 2329991417425243 a001 311187/4769326*39603^(17/22) 2329991417425329 a001 5702887/87403803*39603^(17/22) 2329991417425342 a001 14930352/228826127*39603^(17/22) 2329991417425343 a001 39088169/599074578*39603^(17/22) 2329991417425344 a001 14619165/224056801*39603^(17/22) 2329991417425344 a001 267914296/4106118243*39603^(17/22) 2329991417425344 a001 701408733/10749957122*39603^(17/22) 2329991417425344 a001 1836311903/28143753123*39603^(17/22) 2329991417425344 a001 686789568/10525900321*39603^(17/22) 2329991417425344 a001 12586269025/192900153618*39603^(17/22) 2329991417425344 a001 32951280099/505019158607*39603^(17/22) 2329991417425344 a001 86267571272/1322157322203*39603^(17/22) 2329991417425344 a001 32264490531/494493258286*39603^(17/22) 2329991417425344 a001 1548008755920/23725150497407*39603^(17/22) 2329991417425344 a001 139583862445/2139295485799*39603^(17/22) 2329991417425344 a001 53316291173/817138163596*39603^(17/22) 2329991417425344 a001 20365011074/312119004989*39603^(17/22) 2329991417425344 a001 7778742049/119218851371*39603^(17/22) 2329991417425344 a001 2971215073/45537549124*39603^(17/22) 2329991417425344 a001 1134903170/17393796001*39603^(17/22) 2329991417425344 a001 433494437/6643838879*39603^(17/22) 2329991417425344 a001 165580141/2537720636*39603^(17/22) 2329991417425344 a001 63245986/969323029*39603^(17/22) 2329991417425344 a001 24157817/370248451*39603^(17/22) 2329991417425349 a001 9227465/141422324*39603^(17/22) 2329991417425382 a001 3524578/54018521*39603^(17/22) 2329991417425606 a001 1346269/20633239*39603^(17/22) 2329991417427143 a001 514229/7881196*39603^(17/22) 2329991417428089 a001 28657/64079*271443^(1/2) 2329991417435992 a001 75025/710647*39603^(8/11) 2329991417437680 a001 196418/3010349*39603^(17/22) 2329991417438410 a001 46368/64079*39603^(6/11) 2329991417461505 a001 121393/3010349*39603^(9/11) 2329991417463686 a001 4181/103682*9349^(18/19) 2329991417464653 a001 196418/64079*39603^(9/22) 2329991417478608 a001 46368/4870847*39603^(21/22) 2329991417488294 a001 317811/7881196*39603^(9/11) 2329991417488478 a001 121393/64079*39603^(5/11) 2329991417492203 a001 75640/1875749*39603^(9/11) 2329991417492773 a001 2178309/54018521*39603^(9/11) 2329991417492856 a001 5702887/141422324*39603^(9/11) 2329991417492868 a001 14930352/370248451*39603^(9/11) 2329991417492870 a001 39088169/969323029*39603^(9/11) 2329991417492870 a001 9303105/230701876*39603^(9/11) 2329991417492870 a001 267914296/6643838879*39603^(9/11) 2329991417492870 a001 701408733/17393796001*39603^(9/11) 2329991417492870 a001 1836311903/45537549124*39603^(9/11) 2329991417492870 a001 4807526976/119218851371*39603^(9/11) 2329991417492870 a001 1144206275/28374454999*39603^(9/11) 2329991417492870 a001 32951280099/817138163596*39603^(9/11) 2329991417492870 a001 86267571272/2139295485799*39603^(9/11) 2329991417492870 a001 225851433717/5600748293801*39603^(9/11) 2329991417492870 a001 365435296162/9062201101803*39603^(9/11) 2329991417492870 a001 139583862445/3461452808002*39603^(9/11) 2329991417492870 a001 53316291173/1322157322203*39603^(9/11) 2329991417492870 a001 20365011074/505019158607*39603^(9/11) 2329991417492870 a001 7778742049/192900153618*39603^(9/11) 2329991417492870 a001 2971215073/73681302247*39603^(9/11) 2329991417492870 a001 1134903170/28143753123*39603^(9/11) 2329991417492870 a001 433494437/10749957122*39603^(9/11) 2329991417492870 a001 165580141/4106118243*39603^(9/11) 2329991417492870 a001 63245986/1568397607*39603^(9/11) 2329991417492871 a001 24157817/599074578*39603^(9/11) 2329991417492876 a001 9227465/228826127*39603^(9/11) 2329991417492908 a001 3524578/87403803*39603^(9/11) 2329991417493125 a001 1346269/33385282*39603^(9/11) 2329991417494618 a001 514229/12752043*39603^(9/11) 2329991417504851 a001 196418/4870847*39603^(9/11) 2329991417509895 a001 75025/1149851*39603^(17/22) 2329991417528676 a001 121393/4870847*39603^(19/22) 2329991417529681 a001 28657/64079*103682^(13/24) 2329991417546233 a004 Fibonacci(24)*Lucas(22)/(1/2+sqrt(5)/2)^33 2329991417555769 a001 105937/4250681*39603^(19/22) 2329991417559722 a001 416020/16692641*39603^(19/22) 2329991417560299 a001 726103/29134601*39603^(19/22) 2329991417560383 a001 5702887/228826127*39603^(19/22) 2329991417560395 a001 829464/33281921*39603^(19/22) 2329991417560397 a001 39088169/1568397607*39603^(19/22) 2329991417560397 a001 34111385/1368706081*39603^(19/22) 2329991417560397 a001 133957148/5374978561*39603^(19/22) 2329991417560397 a001 233802911/9381251041*39603^(19/22) 2329991417560397 a001 1836311903/73681302247*39603^(19/22) 2329991417560397 a001 267084832/10716675201*39603^(19/22) 2329991417560397 a001 12586269025/505019158607*39603^(19/22) 2329991417560397 a001 10983760033/440719107401*39603^(19/22) 2329991417560397 a001 43133785636/1730726404001*39603^(19/22) 2329991417560397 a001 75283811239/3020733700601*39603^(19/22) 2329991417560397 a001 182717648081/7331474697802*39603^(19/22) 2329991417560397 a001 139583862445/5600748293801*39603^(19/22) 2329991417560397 a001 53316291173/2139295485799*39603^(19/22) 2329991417560397 a001 10182505537/408569081798*39603^(19/22) 2329991417560397 a001 7778742049/312119004989*39603^(19/22) 2329991417560397 a001 2971215073/119218851371*39603^(19/22) 2329991417560397 a001 567451585/22768774562*39603^(19/22) 2329991417560397 a001 433494437/17393796001*39603^(19/22) 2329991417560397 a001 165580141/6643838879*39603^(19/22) 2329991417560397 a001 31622993/1268860318*39603^(19/22) 2329991417560398 a001 24157817/969323029*39603^(19/22) 2329991417560403 a001 9227465/370248451*39603^(19/22) 2329991417560435 a001 1762289/70711162*39603^(19/22) 2329991417560655 a001 1346269/54018521*39603^(19/22) 2329991417562165 a001 514229/20633239*39603^(19/22) 2329991417572513 a001 98209/3940598*39603^(19/22) 2329991417573463 a001 28657/103682*39603^(7/11) 2329991417574986 a001 75025/1860498*39603^(9/11) 2329991417587986 a001 5702887/103682*15127^(3/20) 2329991417596339 a001 121393/7881196*39603^(10/11) 2329991417623316 a001 10959/711491*39603^(10/11) 2329991417627251 a001 832040/54018521*39603^(10/11) 2329991417627826 a001 2178309/141422324*39603^(10/11) 2329991417627909 a001 5702887/370248451*39603^(10/11) 2329991417627922 a001 14930352/969323029*39603^(10/11) 2329991417627923 a001 39088169/2537720636*39603^(10/11) 2329991417627924 a001 102334155/6643838879*39603^(10/11) 2329991417627924 a001 9238424/599786069*39603^(10/11) 2329991417627924 a001 701408733/45537549124*39603^(10/11) 2329991417627924 a001 1836311903/119218851371*39603^(10/11) 2329991417627924 a001 4807526976/312119004989*39603^(10/11) 2329991417627924 a001 12586269025/817138163596*39603^(10/11) 2329991417627924 a001 32951280099/2139295485799*39603^(10/11) 2329991417627924 a001 86267571272/5600748293801*39603^(10/11) 2329991417627924 a001 7787980473/505618944676*39603^(10/11) 2329991417627924 a001 365435296162/23725150497407*39603^(10/11) 2329991417627924 a001 139583862445/9062201101803*39603^(10/11) 2329991417627924 a001 53316291173/3461452808002*39603^(10/11) 2329991417627924 a001 20365011074/1322157322203*39603^(10/11) 2329991417627924 a001 7778742049/505019158607*39603^(10/11) 2329991417627924 a001 2971215073/192900153618*39603^(10/11) 2329991417627924 a001 1134903170/73681302247*39603^(10/11) 2329991417627924 a001 433494437/28143753123*39603^(10/11) 2329991417627924 a001 165580141/10749957122*39603^(10/11) 2329991417627924 a001 63245986/4106118243*39603^(10/11) 2329991417627925 a001 24157817/1568397607*39603^(10/11) 2329991417627929 a001 9227465/599074578*39603^(10/11) 2329991417627961 a001 3524578/228826127*39603^(10/11) 2329991417628181 a001 1346269/87403803*39603^(10/11) 2329991417629684 a001 514229/33385282*39603^(10/11) 2329991417639988 a001 196418/12752043*39603^(10/11) 2329991417643443 a001 75025/3010349*39603^(19/22) 2329991417663814 a001 121393/12752043*39603^(21/22) 2329991417670416 a001 75025/64079*39603^(1/2) 2329991417690835 a001 317811/33385282*39603^(21/22) 2329991417694777 a001 832040/87403803*39603^(21/22) 2329991417695352 a001 46347/4868641*39603^(21/22) 2329991417695436 a001 5702887/599074578*39603^(21/22) 2329991417695448 a001 14930352/1568397607*39603^(21/22) 2329991417695450 a001 39088169/4106118243*39603^(21/22) 2329991417695450 a001 102334155/10749957122*39603^(21/22) 2329991417695450 a001 267914296/28143753123*39603^(21/22) 2329991417695450 a001 701408733/73681302247*39603^(21/22) 2329991417695450 a001 1836311903/192900153618*39603^(21/22) 2329991417695450 a001 102287808/10745088481*39603^(21/22) 2329991417695450 a001 12586269025/1322157322203*39603^(21/22) 2329991417695450 a001 32951280099/3461452808002*39603^(21/22) 2329991417695450 a001 86267571272/9062201101803*39603^(21/22) 2329991417695450 a001 225851433717/23725150497407*39603^(21/22) 2329991417695450 a001 139583862445/14662949395604*39603^(21/22) 2329991417695450 a001 53316291173/5600748293801*39603^(21/22) 2329991417695450 a001 20365011074/2139295485799*39603^(21/22) 2329991417695450 a001 7778742049/817138163596*39603^(21/22) 2329991417695450 a001 2971215073/312119004989*39603^(21/22) 2329991417695450 a001 1134903170/119218851371*39603^(21/22) 2329991417695450 a001 433494437/45537549124*39603^(21/22) 2329991417695450 a001 165580141/17393796001*39603^(21/22) 2329991417695451 a001 63245986/6643838879*39603^(21/22) 2329991417695451 a001 24157817/2537720636*39603^(21/22) 2329991417695456 a001 9227465/969323029*39603^(21/22) 2329991417695488 a001 3524578/370248451*39603^(21/22) 2329991417695708 a001 1346269/141422324*39603^(21/22) 2329991417697214 a001 514229/54018521*39603^(21/22) 2329991417707535 a001 196418/20633239*39603^(21/22) 2329991417710614 a001 75025/4870847*39603^(10/11) 2329991417726180 a001 832040/15127*5778^(1/6) 2329991417731355 a004 Fibonacci(26)*Lucas(22)/(1/2+sqrt(5)/2)^35 2329991417758363 a004 Fibonacci(28)*Lucas(22)/(1/2+sqrt(5)/2)^37 2329991417762304 a004 Fibonacci(30)*Lucas(22)/(1/2+sqrt(5)/2)^39 2329991417762879 a004 Fibonacci(32)*Lucas(22)/(1/2+sqrt(5)/2)^41 2329991417762963 a004 Fibonacci(34)*Lucas(22)/(1/2+sqrt(5)/2)^43 2329991417762975 a004 Fibonacci(36)*Lucas(22)/(1/2+sqrt(5)/2)^45 2329991417762977 a004 Fibonacci(38)*Lucas(22)/(1/2+sqrt(5)/2)^47 2329991417762977 a004 Fibonacci(40)*Lucas(22)/(1/2+sqrt(5)/2)^49 2329991417762977 a004 Fibonacci(42)*Lucas(22)/(1/2+sqrt(5)/2)^51 2329991417762977 a004 Fibonacci(44)*Lucas(22)/(1/2+sqrt(5)/2)^53 2329991417762977 a004 Fibonacci(46)*Lucas(22)/(1/2+sqrt(5)/2)^55 2329991417762977 a004 Fibonacci(48)*Lucas(22)/(1/2+sqrt(5)/2)^57 2329991417762977 a004 Fibonacci(50)*Lucas(22)/(1/2+sqrt(5)/2)^59 2329991417762977 a004 Fibonacci(52)*Lucas(22)/(1/2+sqrt(5)/2)^61 2329991417762977 a004 Fibonacci(54)*Lucas(22)/(1/2+sqrt(5)/2)^63 2329991417762977 a004 Fibonacci(56)*Lucas(22)/(1/2+sqrt(5)/2)^65 2329991417762977 a004 Fibonacci(58)*Lucas(22)/(1/2+sqrt(5)/2)^67 2329991417762977 a004 Fibonacci(60)*Lucas(22)/(1/2+sqrt(5)/2)^69 2329991417762977 a004 Fibonacci(62)*Lucas(22)/(1/2+sqrt(5)/2)^71 2329991417762977 a004 Fibonacci(64)*Lucas(22)/(1/2+sqrt(5)/2)^73 2329991417762977 a004 Fibonacci(66)*Lucas(22)/(1/2+sqrt(5)/2)^75 2329991417762977 a004 Fibonacci(68)*Lucas(22)/(1/2+sqrt(5)/2)^77 2329991417762977 a004 Fibonacci(70)*Lucas(22)/(1/2+sqrt(5)/2)^79 2329991417762977 a004 Fibonacci(72)*Lucas(22)/(1/2+sqrt(5)/2)^81 2329991417762977 a004 Fibonacci(74)*Lucas(22)/(1/2+sqrt(5)/2)^83 2329991417762977 a004 Fibonacci(76)*Lucas(22)/(1/2+sqrt(5)/2)^85 2329991417762977 a004 Fibonacci(78)*Lucas(22)/(1/2+sqrt(5)/2)^87 2329991417762977 a004 Fibonacci(80)*Lucas(22)/(1/2+sqrt(5)/2)^89 2329991417762977 a004 Fibonacci(82)*Lucas(22)/(1/2+sqrt(5)/2)^91 2329991417762977 a004 Fibonacci(84)*Lucas(22)/(1/2+sqrt(5)/2)^93 2329991417762977 a004 Fibonacci(86)*Lucas(22)/(1/2+sqrt(5)/2)^95 2329991417762977 a004 Fibonacci(88)*Lucas(22)/(1/2+sqrt(5)/2)^97 2329991417762977 a004 Fibonacci(90)*Lucas(22)/(1/2+sqrt(5)/2)^99 2329991417762977 a004 Fibonacci(91)*Lucas(22)/(1/2+sqrt(5)/2)^100 2329991417762977 a004 Fibonacci(89)*Lucas(22)/(1/2+sqrt(5)/2)^98 2329991417762977 a004 Fibonacci(87)*Lucas(22)/(1/2+sqrt(5)/2)^96 2329991417762977 a004 Fibonacci(85)*Lucas(22)/(1/2+sqrt(5)/2)^94 2329991417762977 a004 Fibonacci(83)*Lucas(22)/(1/2+sqrt(5)/2)^92 2329991417762977 a004 Fibonacci(81)*Lucas(22)/(1/2+sqrt(5)/2)^90 2329991417762977 a004 Fibonacci(79)*Lucas(22)/(1/2+sqrt(5)/2)^88 2329991417762977 a004 Fibonacci(77)*Lucas(22)/(1/2+sqrt(5)/2)^86 2329991417762977 a004 Fibonacci(75)*Lucas(22)/(1/2+sqrt(5)/2)^84 2329991417762977 a004 Fibonacci(73)*Lucas(22)/(1/2+sqrt(5)/2)^82 2329991417762977 a004 Fibonacci(71)*Lucas(22)/(1/2+sqrt(5)/2)^80 2329991417762977 a004 Fibonacci(69)*Lucas(22)/(1/2+sqrt(5)/2)^78 2329991417762977 a004 Fibonacci(67)*Lucas(22)/(1/2+sqrt(5)/2)^76 2329991417762977 a004 Fibonacci(65)*Lucas(22)/(1/2+sqrt(5)/2)^74 2329991417762977 a004 Fibonacci(63)*Lucas(22)/(1/2+sqrt(5)/2)^72 2329991417762977 a004 Fibonacci(61)*Lucas(22)/(1/2+sqrt(5)/2)^70 2329991417762977 a004 Fibonacci(59)*Lucas(22)/(1/2+sqrt(5)/2)^68 2329991417762977 a004 Fibonacci(57)*Lucas(22)/(1/2+sqrt(5)/2)^66 2329991417762977 a004 Fibonacci(55)*Lucas(22)/(1/2+sqrt(5)/2)^64 2329991417762977 a004 Fibonacci(53)*Lucas(22)/(1/2+sqrt(5)/2)^62 2329991417762977 a004 Fibonacci(51)*Lucas(22)/(1/2+sqrt(5)/2)^60 2329991417762977 a004 Fibonacci(49)*Lucas(22)/(1/2+sqrt(5)/2)^58 2329991417762977 a004 Fibonacci(47)*Lucas(22)/(1/2+sqrt(5)/2)^56 2329991417762977 a004 Fibonacci(45)*Lucas(22)/(1/2+sqrt(5)/2)^54 2329991417762977 a001 2/17711*(1/2+1/2*5^(1/2))^35 2329991417762977 a004 Fibonacci(43)*Lucas(22)/(1/2+sqrt(5)/2)^52 2329991417762977 a004 Fibonacci(41)*Lucas(22)/(1/2+sqrt(5)/2)^50 2329991417762977 a004 Fibonacci(39)*Lucas(22)/(1/2+sqrt(5)/2)^48 2329991417762978 a004 Fibonacci(37)*Lucas(22)/(1/2+sqrt(5)/2)^46 2329991417762983 a004 Fibonacci(35)*Lucas(22)/(1/2+sqrt(5)/2)^44 2329991417763015 a004 Fibonacci(33)*Lucas(22)/(1/2+sqrt(5)/2)^42 2329991417763234 a004 Fibonacci(31)*Lucas(22)/(1/2+sqrt(5)/2)^40 2329991417764739 a004 Fibonacci(29)*Lucas(22)/(1/2+sqrt(5)/2)^38 2329991417773120 a001 4976784/90481*15127^(3/20) 2329991417775056 a004 Fibonacci(27)*Lucas(22)/(1/2+sqrt(5)/2)^36 2329991417778277 a001 75025/7881196*39603^(21/22) 2329991417800131 a001 39088169/710647*15127^(3/20) 2329991417804072 a001 831985/15126*15127^(3/20) 2329991417804647 a001 267914296/4870847*15127^(3/20) 2329991417804731 a001 233802911/4250681*15127^(3/20) 2329991417804743 a001 1836311903/33385282*15127^(3/20) 2329991417804745 a001 1602508992/29134601*15127^(3/20) 2329991417804745 a001 12586269025/228826127*15127^(3/20) 2329991417804745 a001 10983760033/199691526*15127^(3/20) 2329991417804745 a001 86267571272/1568397607*15127^(3/20) 2329991417804745 a001 75283811239/1368706081*15127^(3/20) 2329991417804745 a001 591286729879/10749957122*15127^(3/20) 2329991417804745 a001 12585437040/228811001*15127^(3/20) 2329991417804745 a001 4052739537881/73681302247*15127^(3/20) 2329991417804745 a001 3536736619241/64300051206*15127^(3/20) 2329991417804745 a001 6557470319842/119218851371*15127^(3/20) 2329991417804745 a001 2504730781961/45537549124*15127^(3/20) 2329991417804745 a001 956722026041/17393796001*15127^(3/20) 2329991417804745 a001 365435296162/6643838879*15127^(3/20) 2329991417804745 a001 139583862445/2537720636*15127^(3/20) 2329991417804745 a001 53316291173/969323029*15127^(3/20) 2329991417804745 a001 20365011074/370248451*15127^(3/20) 2329991417804745 a001 7778742049/141422324*15127^(3/20) 2329991417804746 a001 2971215073/54018521*15127^(3/20) 2329991417804750 a001 1134903170/20633239*15127^(3/20) 2329991417804782 a001 433494437/7881196*15127^(3/20) 2329991417805002 a001 165580141/3010349*15127^(3/20) 2329991417806507 a001 63245986/1149851*15127^(3/20) 2329991417816824 a001 24157817/439204*15127^(3/20) 2329991417845766 a004 Fibonacci(25)*Lucas(22)/(1/2+sqrt(5)/2)^34 2329991417848275 a001 514229/39603*15127^(3/10) 2329991417863056 a001 5702887/64079*15127^(1/10) 2329991417887539 a001 9227465/167761*15127^(3/20) 2329991417893638 a001 28657/271443*39603^(8/11) 2329991417940523 a001 28657/167761*39603^(15/22) 2329991417956067 a001 10946/64079*24476^(5/7) 2329991418004866 a001 28657/439204*39603^(17/22) 2329991418055701 a001 28657/710647*39603^(9/11) 2329991418097156 a001 1762289/51841*15127^(1/5) 2329991418097907 a001 11592/6119*24476^(10/21) 2329991418129603 a001 28657/1149851*39603^(19/22) 2329991418194694 a001 28657/1860498*39603^(10/11) 2329991418263151 a001 28657/3010349*39603^(21/22) 2329991418282246 a001 9227465/271443*15127^(1/5) 2329991418290125 a001 28657/64079*39603^(13/22) 2329991418309250 a001 24157817/710647*15127^(1/5) 2329991418313190 a001 31622993/930249*15127^(1/5) 2329991418313765 a001 165580141/4870847*15127^(1/5) 2329991418313849 a001 433494437/12752043*15127^(1/5) 2329991418313861 a001 567451585/16692641*15127^(1/5) 2329991418313863 a001 2971215073/87403803*15127^(1/5) 2329991418313863 a001 7778742049/228826127*15127^(1/5) 2329991418313863 a001 10182505537/299537289*15127^(1/5) 2329991418313863 a001 53316291173/1568397607*15127^(1/5) 2329991418313863 a001 139583862445/4106118243*15127^(1/5) 2329991418313863 a001 182717648081/5374978561*15127^(1/5) 2329991418313863 a001 956722026041/28143753123*15127^(1/5) 2329991418313863 a001 2504730781961/73681302247*15127^(1/5) 2329991418313863 a001 3278735159921/96450076809*15127^(1/5) 2329991418313863 a001 10610209857723/312119004989*15127^(1/5) 2329991418313863 a001 4052739537881/119218851371*15127^(1/5) 2329991418313863 a001 387002188980/11384387281*15127^(1/5) 2329991418313863 a001 591286729879/17393796001*15127^(1/5) 2329991418313863 a001 225851433717/6643838879*15127^(1/5) 2329991418313863 a001 1135099622/33391061*15127^(1/5) 2329991418313863 a001 32951280099/969323029*15127^(1/5) 2329991418313863 a001 12586269025/370248451*15127^(1/5) 2329991418313863 a001 1201881744/35355581*15127^(1/5) 2329991418313864 a001 1836311903/54018521*15127^(1/5) 2329991418313869 a001 701408733/20633239*15127^(1/5) 2329991418313901 a001 66978574/1970299*15127^(1/5) 2329991418314120 a001 102334155/3010349*15127^(1/5) 2329991418315625 a001 39088169/1149851*15127^(1/5) 2329991418325940 a001 196452/5779*15127^(1/5) 2329991418330421 a004 Fibonacci(23)*Lucas(22)/(1/2+sqrt(5)/2)^32 2329991418335720 a001 10946/39603*64079^(14/23) 2329991418351017 a001 105937/13201*15127^(7/20) 2329991418372226 a001 3524578/64079*15127^(3/20) 2329991418385063 a001 17711/24476*64079^(12/23) 2329991418396638 a001 5702887/167761*15127^(1/5) 2329991418582646 a001 75025/24476*24476^(3/7) 2329991418606139 a001 46347/2206*15127^(1/4) 2329991418653440 a001 121393/24476*24476^(8/21) 2329991418669065 a001 5702887/39603*5778^(1/18) 2329991418675752 a001 17711/24476*439204^(4/9) 2329991418681107 a001 17711/24476*7881196^(4/11) 2329991418681118 a001 10946/39603*20633239^(2/5) 2329991418681120 a001 17711/24476*141422324^(4/13) 2329991418681121 a001 10946/39603*17393796001^(2/7) 2329991418681121 a001 10946/39603*14662949395604^(2/9) 2329991418681121 a001 10946/39603*(1/2+1/2*5^(1/2))^14 2329991418681121 a001 10946/39603*505019158607^(1/4) 2329991418681121 a001 10946/39603*10749957122^(7/24) 2329991418681121 a001 10946/39603*4106118243^(7/23) 2329991418681121 a001 10946/39603*1568397607^(7/22) 2329991418681121 a001 10946/39603*599074578^(1/3) 2329991418681121 a001 17711/24476*2537720636^(4/15) 2329991418681121 a001 17711/24476*45537549124^(4/17) 2329991418681121 a001 17711/24476*817138163596^(4/19) 2329991418681121 a001 17711/24476*14662949395604^(4/21) 2329991418681121 a001 17711/24476*(1/2+1/2*5^(1/2))^12 2329991418681121 a001 17711/24476*192900153618^(2/9) 2329991418681121 a001 17711/24476*73681302247^(3/13) 2329991418681121 a001 17711/24476*10749957122^(1/4) 2329991418681121 a001 17711/24476*4106118243^(6/23) 2329991418681121 a001 17711/24476*1568397607^(3/11) 2329991418681121 a001 17711/24476*599074578^(2/7) 2329991418681121 a001 10946/39603*228826127^(7/20) 2329991418681121 a001 17711/24476*228826127^(3/10) 2329991418681121 a001 17711/24476*87403803^(6/19) 2329991418681121 a001 10946/39603*87403803^(7/19) 2329991418681121 a001 17711/24476*33385282^(1/3) 2329991418681121 a001 10946/39603*33385282^(7/18) 2329991418681126 a001 17711/24476*12752043^(6/17) 2329991418681126 a001 10946/39603*12752043^(7/17) 2329991418681157 a001 17711/24476*4870847^(3/8) 2329991418681163 a001 10946/39603*4870847^(7/16) 2329991418681390 a001 17711/24476*1860498^(2/5) 2329991418681435 a001 10946/39603*1860498^(7/15) 2329991418681794 a001 96932303/416020 2329991418683098 a001 17711/24476*710647^(3/7) 2329991418683427 a001 10946/39603*710647^(1/2) 2329991418695716 a001 17711/24476*271443^(6/13) 2329991418696890 a001 28657/24476*24476^(11/21) 2329991418698148 a001 10946/39603*271443^(7/13) 2329991418763704 a001 1762289/12238*9349^(1/19) 2329991418789493 a001 17711/24476*103682^(1/2) 2329991418791345 a001 5702887/271443*15127^(1/4) 2329991418807555 a001 10946/39603*103682^(7/12) 2329991418818366 a001 14930352/710647*15127^(1/4) 2329991418822308 a001 39088169/1860498*15127^(1/4) 2329991418822883 a001 102334155/4870847*15127^(1/4) 2329991418822967 a001 267914296/12752043*15127^(1/4) 2329991418822979 a001 701408733/33385282*15127^(1/4) 2329991418822981 a001 1836311903/87403803*15127^(1/4) 2329991418822981 a001 102287808/4868641*15127^(1/4) 2329991418822981 a001 12586269025/599074578*15127^(1/4) 2329991418822981 a001 32951280099/1568397607*15127^(1/4) 2329991418822981 a001 86267571272/4106118243*15127^(1/4) 2329991418822981 a001 225851433717/10749957122*15127^(1/4) 2329991418822981 a001 591286729879/28143753123*15127^(1/4) 2329991418822981 a001 1548008755920/73681302247*15127^(1/4) 2329991418822981 a001 4052739537881/192900153618*15127^(1/4) 2329991418822981 a001 225749145909/10745088481*15127^(1/4) 2329991418822981 a001 6557470319842/312119004989*15127^(1/4) 2329991418822981 a001 2504730781961/119218851371*15127^(1/4) 2329991418822981 a001 956722026041/45537549124*15127^(1/4) 2329991418822981 a001 365435296162/17393796001*15127^(1/4) 2329991418822981 a001 139583862445/6643838879*15127^(1/4) 2329991418822981 a001 53316291173/2537720636*15127^(1/4) 2329991418822981 a001 20365011074/969323029*15127^(1/4) 2329991418822981 a001 7778742049/370248451*15127^(1/4) 2329991418822982 a001 2971215073/141422324*15127^(1/4) 2329991418822982 a001 1134903170/54018521*15127^(1/4) 2329991418822987 a001 433494437/20633239*15127^(1/4) 2329991418823019 a001 165580141/7881196*15127^(1/4) 2329991418823239 a001 63245986/3010349*15127^(1/4) 2329991418824745 a001 24157817/1149851*15127^(1/4) 2329991418835066 a001 9227465/439204*15127^(1/4) 2329991418876828 a001 196418/39603*15127^(2/5) 2329991418881209 a001 2178309/64079*15127^(1/5) 2329991418882347 a001 98209/12238*24476^(1/3) 2329991418905808 a001 3524578/167761*15127^(1/4) 2329991419000926 a001 4181/39603*9349^(16/19) 2329991419050860 a001 10959/844*24476^(2/7) 2329991419115613 a001 1346269/103682*15127^(3/10) 2329991419242442 a001 514229/24476*24476^(5/21) 2329991419300515 a001 3524578/271443*15127^(3/10) 2329991419327492 a001 9227465/710647*15127^(3/10) 2329991419331427 a001 24157817/1860498*15127^(3/10) 2329991419332002 a001 63245986/4870847*15127^(3/10) 2329991419332085 a001 165580141/12752043*15127^(3/10) 2329991419332098 a001 433494437/33385282*15127^(3/10) 2329991419332099 a001 1134903170/87403803*15127^(3/10) 2329991419332100 a001 2971215073/228826127*15127^(3/10) 2329991419332100 a001 7778742049/599074578*15127^(3/10) 2329991419332100 a001 20365011074/1568397607*15127^(3/10) 2329991419332100 a001 53316291173/4106118243*15127^(3/10) 2329991419332100 a001 139583862445/10749957122*15127^(3/10) 2329991419332100 a001 365435296162/28143753123*15127^(3/10) 2329991419332100 a001 956722026041/73681302247*15127^(3/10) 2329991419332100 a001 2504730781961/192900153618*15127^(3/10) 2329991419332100 a001 10610209857723/817138163596*15127^(3/10) 2329991419332100 a001 4052739537881/312119004989*15127^(3/10) 2329991419332100 a001 1548008755920/119218851371*15127^(3/10) 2329991419332100 a001 591286729879/45537549124*15127^(3/10) 2329991419332100 a001 7787980473/599786069*15127^(3/10) 2329991419332100 a001 86267571272/6643838879*15127^(3/10) 2329991419332100 a001 32951280099/2537720636*15127^(3/10) 2329991419332100 a001 12586269025/969323029*15127^(3/10) 2329991419332100 a001 4807526976/370248451*15127^(3/10) 2329991419332100 a001 1836311903/141422324*15127^(3/10) 2329991419332101 a001 701408733/54018521*15127^(3/10) 2329991419332105 a001 9238424/711491*15127^(3/10) 2329991419332137 a001 102334155/7881196*15127^(3/10) 2329991419332357 a001 39088169/3010349*15127^(3/10) 2329991419333860 a001 14930352/1149851*15127^(3/10) 2329991419342245 a001 121393/39603*15127^(9/20) 2329991419344164 a001 5702887/439204*15127^(3/10) 2329991419390682 a001 1346269/64079*15127^(1/4) 2329991419414791 a001 2178309/167761*15127^(3/10) 2329991419425212 a001 208010/6119*24476^(4/21) 2329991419491441 a001 17711/24476*39603^(6/11) 2329991419555220 a001 5473/51841*64079^(16/23) 2329991419599264 a004 Fibonacci(21)*Lucas(23)/(1/2+sqrt(5)/2)^31 2329991419611348 a001 1346269/24476*24476^(1/7) 2329991419623262 a001 5473/930249*64079^(22/23) 2329991419623801 a001 416020/51841*15127^(7/20) 2329991419626494 a001 10946/39603*39603^(7/11) 2329991419650369 a001 10946/1149851*64079^(21/23) 2329991419650916 a001 4181/64079*9349^(17/19) 2329991419668665 a001 10946/710647*64079^(20/23) 2329991419671512 a001 4181/5778*5778^(2/3) 2329991419690999 a001 10946/271443*64079^(18/23) 2329991419703249 a001 11592/6119*64079^(10/23) 2329991419710029 a001 5473/219602*64079^(19/23) 2329991419796198 a001 2178309/24476*24476^(2/21) 2329991419809497 a001 726103/90481*15127^(7/20) 2329991419830082 a001 10946/167761*64079^(17/23) 2329991419836590 a001 5702887/710647*15127^(7/20) 2329991419840543 a001 829464/103361*15127^(7/20) 2329991419841120 a001 39088169/4870847*15127^(7/20) 2329991419841204 a001 34111385/4250681*15127^(7/20) 2329991419841216 a001 133957148/16692641*15127^(7/20) 2329991419841218 a001 233802911/29134601*15127^(7/20) 2329991419841218 a001 1836311903/228826127*15127^(7/20) 2329991419841218 a001 267084832/33281921*15127^(7/20) 2329991419841218 a001 12586269025/1568397607*15127^(7/20) 2329991419841218 a001 10983760033/1368706081*15127^(7/20) 2329991419841218 a001 43133785636/5374978561*15127^(7/20) 2329991419841218 a001 75283811239/9381251041*15127^(7/20) 2329991419841218 a001 591286729879/73681302247*15127^(7/20) 2329991419841218 a001 86000486440/10716675201*15127^(7/20) 2329991419841218 a001 3536736619241/440719107401*15127^(7/20) 2329991419841218 a001 3278735159921/408569081798*15127^(7/20) 2329991419841218 a001 2504730781961/312119004989*15127^(7/20) 2329991419841218 a001 956722026041/119218851371*15127^(7/20) 2329991419841218 a001 182717648081/22768774562*15127^(7/20) 2329991419841218 a001 139583862445/17393796001*15127^(7/20) 2329991419841218 a001 53316291173/6643838879*15127^(7/20) 2329991419841218 a001 10182505537/1268860318*15127^(7/20) 2329991419841218 a001 7778742049/969323029*15127^(7/20) 2329991419841218 a001 2971215073/370248451*15127^(7/20) 2329991419841218 a001 567451585/70711162*15127^(7/20) 2329991419841219 a001 433494437/54018521*15127^(7/20) 2329991419841224 a001 165580141/20633239*15127^(7/20) 2329991419841256 a001 31622993/3940598*15127^(7/20) 2329991419841476 a001 24157817/3010349*15127^(7/20) 2329991419842986 a001 9227465/1149851*15127^(7/20) 2329991419853334 a001 1762289/219602*15127^(7/20) 2329991419898870 a001 832040/64079*15127^(3/10) 2329991419916848 a001 11592/6119*167761^(2/5) 2329991419924264 a001 1346269/167761*15127^(7/20) 2329991419924754 a001 17711/39603*15127^(13/20) 2329991419937713 a001 121393/24476*64079^(8/23) 2329991419937920 a001 7465176/51841*5778^(1/18) 2329991419949962 a001 11592/6119*20633239^(2/7) 2329991419949963 a001 5473/51841*(1/2+1/2*5^(1/2))^16 2329991419949963 a001 5473/51841*23725150497407^(1/4) 2329991419949963 a001 5473/51841*73681302247^(4/13) 2329991419949963 a001 5473/51841*10749957122^(1/3) 2329991419949963 a001 5473/51841*4106118243^(8/23) 2329991419949963 a001 5473/51841*1568397607^(4/11) 2329991419949963 a001 5473/51841*599074578^(8/21) 2329991419949963 a001 11592/6119*2537720636^(2/9) 2329991419949963 a001 11592/6119*312119004989^(2/11) 2329991419949963 a001 11592/6119*(1/2+1/2*5^(1/2))^10 2329991419949963 a001 11592/6119*28143753123^(1/5) 2329991419949963 a001 11592/6119*10749957122^(5/24) 2329991419949963 a001 11592/6119*4106118243^(5/23) 2329991419949963 a001 11592/6119*1568397607^(5/22) 2329991419949963 a001 11592/6119*599074578^(5/21) 2329991419949963 a001 11592/6119*228826127^(1/4) 2329991419949963 a001 5473/51841*228826127^(2/5) 2329991419949964 a001 11592/6119*87403803^(5/19) 2329991419949964 a001 5473/51841*87403803^(8/19) 2329991419949964 a001 11592/6119*33385282^(5/18) 2329991419949964 a001 5473/51841*33385282^(4/9) 2329991419949968 a001 11592/6119*12752043^(5/17) 2329991419949970 a001 5473/51841*12752043^(8/17) 2329991419949994 a001 11592/6119*4870847^(5/16) 2329991419950013 a001 5473/51841*4870847^(1/2) 2329991419950062 a001 24168768/103729 2329991419950188 a001 11592/6119*1860498^(1/3) 2329991419950322 a001 5473/51841*1860498^(8/15) 2329991419951611 a001 11592/6119*710647^(5/14) 2329991419952600 a001 5473/51841*710647^(4/7) 2329991419962126 a001 11592/6119*271443^(5/13) 2329991419965775 a001 75025/39603*15127^(1/2) 2329991419969424 a001 5473/51841*271443^(8/13) 2329991419981540 a001 1762289/12238*24476^(1/21) 2329991420006086 a001 98209/12238*64079^(7/23) 2329991420014065 a001 10959/844*64079^(6/23) 2329991420027453 a001 75025/24476*64079^(9/23) 2329991420040274 a001 11592/6119*103682^(5/12) 2329991420045113 a001 514229/24476*64079^(5/23) 2329991420067349 a001 208010/6119*64079^(4/23) 2329991420083919 a004 Fibonacci(21)*Lucas(25)/(1/2+sqrt(5)/2)^33 2329991420092950 a001 1346269/24476*64079^(3/23) 2329991420094460 a001 5473/51841*103682^(2/3) 2329991420095863 a001 10946/710647*167761^(4/5) 2329991420117267 a001 2178309/24476*64079^(2/23) 2329991420123043 a001 39088169/271443*5778^(1/18) 2329991420127033 a001 10946/271443*439204^(2/3) 2329991420135065 a001 10946/271443*7881196^(6/11) 2329991420135085 a001 10946/271443*141422324^(6/13) 2329991420135085 a001 10946/271443*2537720636^(2/5) 2329991420135085 a001 10946/271443*45537549124^(6/17) 2329991420135085 a001 10946/271443*14662949395604^(2/7) 2329991420135085 a001 10946/271443*(1/2+1/2*5^(1/2))^18 2329991420135085 a001 10946/271443*192900153618^(1/3) 2329991420135085 a001 10946/271443*10749957122^(3/8) 2329991420135085 a001 10946/271443*4106118243^(9/23) 2329991420135085 a001 10946/271443*1568397607^(9/22) 2329991420135085 a001 10946/271443*599074578^(3/7) 2329991420135085 a001 121393/24476*(1/2+1/2*5^(1/2))^8 2329991420135085 a001 121393/24476*23725150497407^(1/8) 2329991420135085 a001 121393/24476*505019158607^(1/7) 2329991420135085 a001 121393/24476*73681302247^(2/13) 2329991420135085 a001 121393/24476*10749957122^(1/6) 2329991420135085 a001 121393/24476*4106118243^(4/23) 2329991420135085 a001 121393/24476*1568397607^(2/11) 2329991420135085 a001 121393/24476*599074578^(4/21) 2329991420135085 a001 121393/24476*228826127^(1/5) 2329991420135085 a001 10946/271443*228826127^(9/20) 2329991420135085 a001 121393/24476*87403803^(4/19) 2329991420135085 a001 10946/271443*87403803^(9/19) 2329991420135086 a001 121393/24476*33385282^(2/9) 2329991420135086 a001 10946/271443*33385282^(1/2) 2329991420135089 a001 121393/24476*12752043^(4/17) 2329991420135093 a001 10946/271443*12752043^(9/17) 2329991420135099 a001 1328767778/5702887 2329991420135110 a001 121393/24476*4870847^(1/4) 2329991420135140 a001 10946/271443*4870847^(9/16) 2329991420135265 a001 121393/24476*1860498^(4/15) 2329991420135354 a001 514229/103682*15127^(2/5) 2329991420135489 a001 10946/271443*1860498^(3/5) 2329991420136403 a001 121393/24476*710647^(2/7) 2329991420138051 a001 10946/271443*710647^(9/14) 2329991420142074 a001 1762289/12238*64079^(1/23) 2329991420144815 a001 121393/24476*271443^(4/13) 2329991420150053 a001 14619165/101521*5778^(1/18) 2329991420151912 a001 514229/24476*167761^(1/5) 2329991420153993 a001 133957148/930249*5778^(1/18) 2329991420154568 a001 701408733/4870847*5778^(1/18) 2329991420154629 a004 Fibonacci(21)*Lucas(27)/(1/2+sqrt(5)/2)^35 2329991420154652 a001 1836311903/12752043*5778^(1/18) 2329991420154664 a001 14930208/103681*5778^(1/18) 2329991420154666 a001 12586269025/87403803*5778^(1/18) 2329991420154666 a001 32951280099/228826127*5778^(1/18) 2329991420154666 a001 43133785636/299537289*5778^(1/18) 2329991420154666 a001 32264490531/224056801*5778^(1/18) 2329991420154666 a001 591286729879/4106118243*5778^(1/18) 2329991420154666 a001 774004377960/5374978561*5778^(1/18) 2329991420154666 a001 4052739537881/28143753123*5778^(1/18) 2329991420154666 a001 1515744265389/10525900321*5778^(1/18) 2329991420154666 a001 3278735159921/22768774562*5778^(1/18) 2329991420154666 a001 2504730781961/17393796001*5778^(1/18) 2329991420154666 a001 956722026041/6643838879*5778^(1/18) 2329991420154666 a001 182717648081/1268860318*5778^(1/18) 2329991420154666 a001 139583862445/969323029*5778^(1/18) 2329991420154666 a001 53316291173/370248451*5778^(1/18) 2329991420154666 a001 10182505537/70711162*5778^(1/18) 2329991420154667 a001 7778742049/54018521*5778^(1/18) 2329991420154672 a001 2971215073/20633239*5778^(1/18) 2329991420154704 a001 567451585/3940598*5778^(1/18) 2329991420154923 a001 433494437/3010349*5778^(1/18) 2329991420155873 a001 10946/4870847*439204^(8/9) 2329991420156429 a001 165580141/1149851*5778^(1/18) 2329991420156978 a001 10946/271443*271443^(9/13) 2329991420159075 a001 10946/1149851*439204^(7/9) 2329991420159410 a001 10959/844*439204^(2/9) 2329991420162087 a001 10959/844*7881196^(2/11) 2329991420162091 a001 10946/710647*20633239^(4/7) 2329991420162094 a001 10959/844*141422324^(2/13) 2329991420162094 a001 10946/710647*2537720636^(4/9) 2329991420162094 a001 10946/710647*(1/2+1/2*5^(1/2))^20 2329991420162094 a001 10946/710647*23725150497407^(5/16) 2329991420162094 a001 10946/710647*505019158607^(5/14) 2329991420162094 a001 10946/710647*73681302247^(5/13) 2329991420162094 a001 10946/710647*28143753123^(2/5) 2329991420162094 a001 10946/710647*10749957122^(5/12) 2329991420162094 a001 10946/710647*4106118243^(10/23) 2329991420162094 a001 10946/710647*1568397607^(5/11) 2329991420162094 a001 10946/710647*599074578^(10/21) 2329991420162094 a001 10959/844*2537720636^(2/15) 2329991420162094 a001 10959/844*45537549124^(2/17) 2329991420162094 a001 10959/844*14662949395604^(2/21) 2329991420162094 a001 10959/844*(1/2+1/2*5^(1/2))^6 2329991420162094 a001 10959/844*10749957122^(1/8) 2329991420162094 a001 10959/844*4106118243^(3/23) 2329991420162094 a001 10959/844*1568397607^(3/22) 2329991420162094 a001 10959/844*599074578^(1/7) 2329991420162094 a001 10959/844*228826127^(3/20) 2329991420162094 a001 10946/710647*228826127^(1/2) 2329991420162094 a001 10959/844*87403803^(3/19) 2329991420162094 a001 10946/710647*87403803^(10/19) 2329991420162094 a001 10959/844*33385282^(1/6) 2329991420162095 a001 10946/710647*33385282^(5/9) 2329991420162096 a001 579793201/2488392 2329991420162097 a001 10959/844*12752043^(3/17) 2329991420162102 a001 10946/710647*12752043^(10/17) 2329991420162112 a001 10959/844*4870847^(3/16) 2329991420162155 a001 10946/710647*4870847^(5/8) 2329991420162229 a001 10959/844*1860498^(1/5) 2329991420162543 a001 10946/710647*1860498^(2/3) 2329991420163083 a001 10959/844*710647^(3/14) 2329991420164945 a004 Fibonacci(21)*Lucas(29)/(1/2+sqrt(5)/2)^37 2329991420165390 a001 10946/710647*710647^(5/7) 2329991420165623 a001 1346269/24476*439204^(1/9) 2329991420166010 a001 5473/930249*7881196^(2/3) 2329991420166035 a001 5473/930249*312119004989^(2/5) 2329991420166035 a001 5473/930249*(1/2+1/2*5^(1/2))^22 2329991420166035 a001 5473/930249*10749957122^(11/24) 2329991420166035 a001 5473/930249*4106118243^(11/23) 2329991420166035 a001 5473/930249*1568397607^(1/2) 2329991420166035 a001 5473/930249*599074578^(11/21) 2329991420166035 a001 208010/6119*(1/2+1/2*5^(1/2))^4 2329991420166035 a001 208010/6119*23725150497407^(1/16) 2329991420166035 a001 208010/6119*73681302247^(1/13) 2329991420166035 a001 208010/6119*10749957122^(1/12) 2329991420166035 a001 208010/6119*4106118243^(2/23) 2329991420166035 a001 208010/6119*1568397607^(1/11) 2329991420166035 a001 208010/6119*599074578^(2/21) 2329991420166035 a001 208010/6119*228826127^(1/10) 2329991420166035 a001 5473/930249*228826127^(11/20) 2329991420166035 a001 208010/6119*87403803^(2/19) 2329991420166035 a001 5473/930249*87403803^(11/19) 2329991420166035 a001 208010/6119*33385282^(1/9) 2329991420166035 a001 9107509840/39088169 2329991420166036 a001 5473/930249*33385282^(11/18) 2329991420166036 a001 208010/6119*12752043^(2/17) 2329991420166044 a001 5473/930249*12752043^(11/17) 2329991420166047 a001 208010/6119*4870847^(1/8) 2329991420166102 a001 5473/930249*4870847^(11/16) 2329991420166124 a001 208010/6119*1860498^(2/15) 2329991420166451 a004 Fibonacci(21)*Lucas(31)/(1/2+sqrt(5)/2)^39 2329991420166528 a001 5473/930249*1860498^(11/15) 2329991420166582 a001 10946/4870847*7881196^(8/11) 2329991420166609 a001 10946/4870847*141422324^(8/13) 2329991420166610 a001 10946/4870847*2537720636^(8/15) 2329991420166610 a001 10946/4870847*45537549124^(8/17) 2329991420166610 a001 10946/4870847*14662949395604^(8/21) 2329991420166610 a001 10946/4870847*(1/2+1/2*5^(1/2))^24 2329991420166610 a001 10946/4870847*192900153618^(4/9) 2329991420166610 a001 10946/4870847*73681302247^(6/13) 2329991420166610 a001 10946/4870847*10749957122^(1/2) 2329991420166610 a001 10946/4870847*4106118243^(12/23) 2329991420166610 a001 10946/4870847*1568397607^(6/11) 2329991420166610 a001 10946/4870847*599074578^(4/7) 2329991420166610 a001 2178309/24476*(1/2+1/2*5^(1/2))^2 2329991420166610 a001 2178309/24476*10749957122^(1/24) 2329991420166610 a001 2178309/24476*4106118243^(1/23) 2329991420166610 a001 2178309/24476*1568397607^(1/22) 2329991420166610 a001 2178309/24476*599074578^(1/21) 2329991420166610 a001 2178309/24476*228826127^(1/20) 2329991420166610 a001 2178309/24476*87403803^(1/19) 2329991420166610 a001 10946/4870847*228826127^(3/5) 2329991420166610 a001 1135417634/4873055 2329991420166610 a001 2178309/24476*33385282^(1/18) 2329991420166610 a001 10946/4870847*87403803^(12/19) 2329991420166610 a001 2178309/24476*12752043^(1/17) 2329991420166611 a001 10946/4870847*33385282^(2/3) 2329991420166616 a001 2178309/24476*4870847^(1/16) 2329991420166620 a001 10946/4870847*12752043^(12/17) 2329991420166654 a001 2178309/24476*1860498^(1/15) 2329991420166670 a004 Fibonacci(21)*Lucas(33)/(1/2+sqrt(5)/2)^41 2329991420166673 a001 10946/87403803*7881196^(10/11) 2329991420166683 a001 10946/20633239*7881196^(9/11) 2329991420166683 a001 10946/4870847*4870847^(3/4) 2329991420166693 a001 10946/12752043*141422324^(2/3) 2329991420166693 a001 10946/12752043*(1/2+1/2*5^(1/2))^26 2329991420166693 a001 10946/12752043*73681302247^(1/2) 2329991420166693 a001 10946/12752043*10749957122^(13/24) 2329991420166693 a001 10946/12752043*4106118243^(13/23) 2329991420166693 a001 10946/12752043*1568397607^(13/22) 2329991420166693 a001 10946/12752043*599074578^(13/21) 2329991420166693 a001 5702887/24476 2329991420166693 a001 10946/12752043*228826127^(13/20) 2329991420166694 a001 10946/12752043*87403803^(13/19) 2329991420166694 a001 208010/6119*710647^(1/7) 2329991420166695 a001 10946/12752043*33385282^(13/18) 2329991420166701 a001 5473/16692641*20633239^(4/5) 2329991420166702 a004 Fibonacci(21)*Lucas(35)/(1/2+sqrt(5)/2)^43 2329991420166703 a001 10946/87403803*20633239^(6/7) 2329991420166704 a001 10946/12752043*12752043^(13/17) 2329991420166706 a001 5473/16692641*17393796001^(4/7) 2329991420166706 a001 5473/16692641*14662949395604^(4/9) 2329991420166706 a001 5473/16692641*(1/2+1/2*5^(1/2))^28 2329991420166706 a001 5473/16692641*73681302247^(7/13) 2329991420166706 a001 5473/16692641*10749957122^(7/12) 2329991420166706 a001 5473/16692641*4106118243^(14/23) 2329991420166706 a001 5473/16692641*1568397607^(7/11) 2329991420166706 a001 54475877664/233802911 2329991420166706 a001 5473/16692641*599074578^(2/3) 2329991420166706 a004 Fibonacci(36)/Lucas(21)/(1/2+sqrt(5)/2)^2 2329991420166706 a001 5473/16692641*228826127^(7/10) 2329991420166706 a001 5473/16692641*87403803^(14/19) 2329991420166707 a004 Fibonacci(21)*Lucas(37)/(1/2+sqrt(5)/2)^45 2329991420166707 a001 5473/16692641*33385282^(7/9) 2329991420166707 a001 10946/87403803*141422324^(10/13) 2329991420166707 a001 10946/87403803*2537720636^(2/3) 2329991420166707 a001 10946/87403803*45537549124^(10/17) 2329991420166707 a001 10946/87403803*312119004989^(6/11) 2329991420166707 a001 10946/87403803*14662949395604^(10/21) 2329991420166707 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^30/Lucas(38) 2329991420166707 a001 10946/87403803*192900153618^(5/9) 2329991420166707 a001 10946/87403803*28143753123^(3/5) 2329991420166707 a001 10946/87403803*10749957122^(5/8) 2329991420166707 a001 10946/87403803*4106118243^(15/23) 2329991420166707 a001 427859097874/1836311903 2329991420166707 a001 10946/87403803*1568397607^(15/22) 2329991420166707 a001 10946/87403803*599074578^(5/7) 2329991420166707 a004 Fibonacci(38)/Lucas(21)/(1/2+sqrt(5)/2)^4 2329991420166707 a001 10946/87403803*228826127^(3/4) 2329991420166708 a004 Fibonacci(21)*Lucas(39)/(1/2+sqrt(5)/2)^47 2329991420166708 a001 10946/1568397607*141422324^(12/13) 2329991420166708 a001 10946/370248451*141422324^(11/13) 2329991420166708 a001 10946/87403803*87403803^(15/19) 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^32/Lucas(40) 2329991420166708 a001 10946/228826127*23725150497407^(1/2) 2329991420166708 a001 10946/228826127*505019158607^(4/7) 2329991420166708 a001 10946/228826127*73681302247^(8/13) 2329991420166708 a001 10946/228826127*10749957122^(2/3) 2329991420166708 a001 26670230015/114464928 2329991420166708 a001 10946/228826127*4106118243^(16/23) 2329991420166708 a001 10946/228826127*1568397607^(8/11) 2329991420166708 a001 10946/228826127*599074578^(16/21) 2329991420166708 a004 Fibonacci(40)/Lucas(21)/(1/2+sqrt(5)/2)^6 2329991420166708 a004 Fibonacci(21)*Lucas(41)/(1/2+sqrt(5)/2)^49 2329991420166708 a001 10946/228826127*228826127^(4/5) 2329991420166708 a001 5473/299537289*45537549124^(2/3) 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^34/Lucas(42) 2329991420166708 a001 2932589884016/12586269025 2329991420166708 a001 5473/299537289*10749957122^(17/24) 2329991420166708 a001 5473/299537289*4106118243^(17/23) 2329991420166708 a001 5473/299537289*1568397607^(17/22) 2329991420166708 a004 Fibonacci(21)*Lucas(43)/(1/2+sqrt(5)/2)^51 2329991420166708 a001 10946/1568397607*2537720636^(4/5) 2329991420166708 a001 5473/299537289*599074578^(17/21) 2329991420166708 a001 10946/1568397607*45537549124^(12/17) 2329991420166708 a001 10946/1568397607*14662949395604^(4/7) 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^36/Lucas(44) 2329991420166708 a001 10946/1568397607*505019158607^(9/14) 2329991420166708 a001 10946/1568397607*192900153618^(2/3) 2329991420166708 a001 10946/1568397607*73681302247^(9/13) 2329991420166708 a001 2559206663806/10983760033 2329991420166708 a001 10946/1568397607*10749957122^(3/4) 2329991420166708 a001 10946/1568397607*4106118243^(18/23) 2329991420166708 a004 Fibonacci(21)*Lucas(45)/(1/2+sqrt(5)/2)^53 2329991420166708 a001 5473/5374978561*2537720636^(8/9) 2329991420166708 a001 10946/28143753123*2537720636^(14/15) 2329991420166708 a001 10946/6643838879*2537720636^(13/15) 2329991420166708 a001 10946/1568397607*1568397607^(9/11) 2329991420166708 a001 10946/4106118243*817138163596^(2/3) 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^38/Lucas(46) 2329991420166708 a001 10050135045119/43133785636 2329991420166708 a001 10946/4106118243*10749957122^(19/24) 2329991420166708 a004 Fibonacci(21)*Lucas(47)/(1/2+sqrt(5)/2)^55 2329991420166708 a001 10946/4106118243*4106118243^(19/23) 2329991420166708 a001 5473/5374978561*312119004989^(8/11) 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^40/Lucas(48) 2329991420166708 a001 192758938752/827294629 2329991420166708 a001 5473/5374978561*73681302247^(10/13) 2329991420166708 a001 5473/5374978561*28143753123^(4/5) 2329991420166708 a001 10946/28143753123*17393796001^(6/7) 2329991420166708 a004 Fibonacci(21)*Lucas(49)/(1/2+sqrt(5)/2)^57 2329991420166708 a001 10946/28143753123*45537549124^(14/17) 2329991420166708 a001 5473/5374978561*10749957122^(5/6) 2329991420166708 a001 10946/28143753123*817138163596^(14/19) 2329991420166708 a001 10946/28143753123*14662949395604^(2/3) 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^42/Lucas(50) 2329991420166708 a001 10946/28143753123*505019158607^(3/4) 2329991420166708 a001 10946/28143753123*192900153618^(7/9) 2329991420166708 a004 Fibonacci(21)*Lucas(51)/(1/2+sqrt(5)/2)^59 2329991420166708 a001 10946/505019158607*45537549124^(16/17) 2329991420166708 a001 10946/119218851371*45537549124^(15/17) 2329991420166708 a001 10946/73681302247*312119004989^(4/5) 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^44/Lucas(52) 2329991420166708 a001 10946/73681302247*23725150497407^(11/16) 2329991420166708 a001 60114118660609/258001459320 2329991420166708 a004 Fibonacci(21)*Lucas(53)/(1/2+sqrt(5)/2)^61 2329991420166708 a001 10946/73681302247*73681302247^(11/13) 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^46/Lucas(54) 2329991420166708 a001 944284835143312/4052739537881 2329991420166708 a004 Fibonacci(21)*Lucas(55)/(1/2+sqrt(5)/2)^63 2329991420166708 a001 10946/1322157322203*312119004989^(10/11) 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^48/Lucas(56) 2329991420166708 a004 Fibonacci(21)*Lucas(57)/(1/2+sqrt(5)/2)^65 2329991420166708 a001 10946/2139295485799*817138163596^(17/19) 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^50/Lucas(58) 2329991420166708 a001 10946/1322157322203*3461452808002^(5/6) 2329991420166708 a004 Fibonacci(21)*Lucas(59)/(1/2+sqrt(5)/2)^67 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^52/Lucas(60) 2329991420166708 a004 Fibonacci(21)*Lucas(61)/(1/2+sqrt(5)/2)^69 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^54/Lucas(62) 2329991420166708 a004 Fibonacci(21)*Lucas(63)/(1/2+sqrt(5)/2)^71 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^56/Lucas(64) 2329991420166708 a004 Fibonacci(21)*Lucas(65)/(1/2+sqrt(5)/2)^73 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^58/Lucas(66) 2329991420166708 a004 Fibonacci(21)*Lucas(67)/(1/2+sqrt(5)/2)^75 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^60/Lucas(68) 2329991420166708 a004 Fibonacci(21)*Lucas(69)/(1/2+sqrt(5)/2)^77 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^62/Lucas(70) 2329991420166708 a004 Fibonacci(21)*Lucas(71)/(1/2+sqrt(5)/2)^79 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^64/Lucas(72) 2329991420166708 a004 Fibonacci(21)*Lucas(73)/(1/2+sqrt(5)/2)^81 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^66/Lucas(74) 2329991420166708 a004 Fibonacci(21)*Lucas(75)/(1/2+sqrt(5)/2)^83 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^68/Lucas(76) 2329991420166708 a004 Fibonacci(21)*Lucas(77)/(1/2+sqrt(5)/2)^85 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^70/Lucas(78) 2329991420166708 a004 Fibonacci(21)*Lucas(79)/(1/2+sqrt(5)/2)^87 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^72/Lucas(80) 2329991420166708 a004 Fibonacci(21)*Lucas(81)/(1/2+sqrt(5)/2)^89 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^74/Lucas(82) 2329991420166708 a004 Fibonacci(21)*Lucas(83)/(1/2+sqrt(5)/2)^91 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^76/Lucas(84) 2329991420166708 a004 Fibonacci(21)*Lucas(85)/(1/2+sqrt(5)/2)^93 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^78/Lucas(86) 2329991420166708 a004 Fibonacci(21)*Lucas(87)/(1/2+sqrt(5)/2)^95 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^80/Lucas(88) 2329991420166708 a004 Fibonacci(21)*Lucas(89)/(1/2+sqrt(5)/2)^97 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^82/Lucas(90) 2329991420166708 a004 Fibonacci(21)*Lucas(91)/(1/2+sqrt(5)/2)^99 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^84/Lucas(92) 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^86/Lucas(94) 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^88/Lucas(96) 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^90/Lucas(98) 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^92/Lucas(100) 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^89/Lucas(97) 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^91/Lucas(99) 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^87/Lucas(95) 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^85/Lucas(93) 2329991420166708 a004 Fibonacci(21)*Lucas(92)/(1/2+sqrt(5)/2)^100 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^83/Lucas(91) 2329991420166708 a004 Fibonacci(21)*Lucas(90)/(1/2+sqrt(5)/2)^98 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^81/Lucas(89) 2329991420166708 a004 Fibonacci(21)*Lucas(88)/(1/2+sqrt(5)/2)^96 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^79/Lucas(87) 2329991420166708 a004 Fibonacci(21)*Lucas(86)/(1/2+sqrt(5)/2)^94 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^77/Lucas(85) 2329991420166708 a004 Fibonacci(21)*Lucas(84)/(1/2+sqrt(5)/2)^92 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^75/Lucas(83) 2329991420166708 a004 Fibonacci(21)*Lucas(82)/(1/2+sqrt(5)/2)^90 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^73/Lucas(81) 2329991420166708 a004 Fibonacci(21)*Lucas(80)/(1/2+sqrt(5)/2)^88 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^71/Lucas(79) 2329991420166708 a004 Fibonacci(21)*Lucas(78)/(1/2+sqrt(5)/2)^86 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^69/Lucas(77) 2329991420166708 a004 Fibonacci(21)*Lucas(76)/(1/2+sqrt(5)/2)^84 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^67/Lucas(75) 2329991420166708 a004 Fibonacci(21)*Lucas(74)/(1/2+sqrt(5)/2)^82 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^65/Lucas(73) 2329991420166708 a004 Fibonacci(21)*Lucas(72)/(1/2+sqrt(5)/2)^80 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^63/Lucas(71) 2329991420166708 a004 Fibonacci(21)*Lucas(70)/(1/2+sqrt(5)/2)^78 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^61/Lucas(69) 2329991420166708 a004 Fibonacci(21)*Lucas(68)/(1/2+sqrt(5)/2)^76 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^59/Lucas(67) 2329991420166708 a004 Fibonacci(21)*Lucas(66)/(1/2+sqrt(5)/2)^74 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^57/Lucas(65) 2329991420166708 a004 Fibonacci(21)*Lucas(64)/(1/2+sqrt(5)/2)^72 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^55/Lucas(63) 2329991420166708 a004 Fibonacci(21)*Lucas(62)/(1/2+sqrt(5)/2)^70 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^53/Lucas(61) 2329991420166708 a004 Fibonacci(21)*Lucas(60)/(1/2+sqrt(5)/2)^68 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^51/Lucas(59) 2329991420166708 a004 Fibonacci(21)*Lucas(58)/(1/2+sqrt(5)/2)^66 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^49/Lucas(57) 2329991420166708 a001 5473/1730726404001*505019158607^(13/14) 2329991420166708 a004 Fibonacci(21)*Lucas(56)/(1/2+sqrt(5)/2)^64 2329991420166708 a001 139583862445/599074577 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^47/Lucas(55) 2329991420166708 a001 10946/505019158607*192900153618^(8/9) 2329991420166708 a001 10946/2139295485799*192900153618^(17/18) 2329991420166708 a004 Fibonacci(21)*Lucas(54)/(1/2+sqrt(5)/2)^62 2329991420166708 a001 10946/119218851371*312119004989^(9/11) 2329991420166708 a001 10946/119218851371*14662949395604^(5/7) 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^45/Lucas(53) 2329991420166708 a001 10946/119218851371*192900153618^(5/6) 2329991420166708 a001 10946/505019158607*73681302247^(12/13) 2329991420166708 a004 Fibonacci(21)*Lucas(52)/(1/2+sqrt(5)/2)^60 2329991420166708 a001 222915411216004/956722026041 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^43/Lucas(51) 2329991420166708 a001 10946/119218851371*28143753123^(9/10) 2329991420166708 a004 Fibonacci(21)*Lucas(50)/(1/2+sqrt(5)/2)^58 2329991420166708 a001 42573055234177/182717648081 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^41/Lucas(49) 2329991420166708 a001 10946/28143753123*10749957122^(7/8) 2329991420166708 a001 10946/73681302247*10749957122^(11/12) 2329991420166708 a001 10946/119218851371*10749957122^(15/16) 2329991420166708 a001 5473/96450076809*10749957122^(23/24) 2329991420166708 a004 Fibonacci(21)*Lucas(48)/(1/2+sqrt(5)/2)^56 2329991420166708 a001 10946/6643838879*45537549124^(13/17) 2329991420166708 a001 32522920189058/139583862445 2329991420166708 a001 10946/6643838879*14662949395604^(13/21) 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^39/Lucas(47) 2329991420166708 a001 10946/6643838879*192900153618^(13/18) 2329991420166708 a001 10946/6643838879*73681302247^(3/4) 2329991420166708 a001 10946/6643838879*10749957122^(13/16) 2329991420166708 a001 5473/5374978561*4106118243^(20/23) 2329991420166708 a001 10946/28143753123*4106118243^(21/23) 2329991420166708 a001 10946/73681302247*4106118243^(22/23) 2329991420166708 a004 Fibonacci(21)*Lucas(46)/(1/2+sqrt(5)/2)^54 2329991420166708 a001 12422650098820/53316291173 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^37/Lucas(45) 2329991420166708 a001 10946/4106118243*1568397607^(19/22) 2329991420166708 a001 5473/5374978561*1568397607^(10/11) 2329991420166708 a001 10946/28143753123*1568397607^(21/22) 2329991420166708 a004 Fibonacci(21)*Lucas(44)/(1/2+sqrt(5)/2)^52 2329991420166708 a001 10946/969323029*2537720636^(7/9) 2329991420166708 a001 10946/969323029*17393796001^(5/7) 2329991420166708 a001 2372515053701/10182505537 2329991420166708 a001 10946/969323029*312119004989^(7/11) 2329991420166708 a001 10946/969323029*14662949395604^(5/9) 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^35/Lucas(43) 2329991420166708 a001 10946/969323029*505019158607^(5/8) 2329991420166708 a001 10946/969323029*28143753123^(7/10) 2329991420166708 a001 10946/1568397607*599074578^(6/7) 2329991420166708 a004 Fibonacci(44)/Lucas(21)/(1/2+sqrt(5)/2)^10 2329991420166708 a001 10946/4106118243*599074578^(19/21) 2329991420166708 a001 10946/6643838879*599074578^(13/14) 2329991420166708 a001 5473/5374978561*599074578^(20/21) 2329991420166708 a004 Fibonacci(46)/Lucas(21)/(1/2+sqrt(5)/2)^12 2329991420166708 a004 Fibonacci(48)/Lucas(21)/(1/2+sqrt(5)/2)^14 2329991420166708 a004 Fibonacci(50)/Lucas(21)/(1/2+sqrt(5)/2)^16 2329991420166708 a004 Fibonacci(52)/Lucas(21)/(1/2+sqrt(5)/2)^18 2329991420166708 a004 Fibonacci(54)/Lucas(21)/(1/2+sqrt(5)/2)^20 2329991420166708 a004 Fibonacci(56)/Lucas(21)/(1/2+sqrt(5)/2)^22 2329991420166708 a004 Fibonacci(58)/Lucas(21)/(1/2+sqrt(5)/2)^24 2329991420166708 a004 Fibonacci(60)/Lucas(21)/(1/2+sqrt(5)/2)^26 2329991420166708 a004 Fibonacci(62)/Lucas(21)/(1/2+sqrt(5)/2)^28 2329991420166708 a004 Fibonacci(64)/Lucas(21)/(1/2+sqrt(5)/2)^30 2329991420166708 a004 Fibonacci(66)/Lucas(21)/(1/2+sqrt(5)/2)^32 2329991420166708 a004 Fibonacci(68)/Lucas(21)/(1/2+sqrt(5)/2)^34 2329991420166708 a004 Fibonacci(70)/Lucas(21)/(1/2+sqrt(5)/2)^36 2329991420166708 a004 Fibonacci(72)/Lucas(21)/(1/2+sqrt(5)/2)^38 2329991420166708 a004 Fibonacci(74)/Lucas(21)/(1/2+sqrt(5)/2)^40 2329991420166708 a004 Fibonacci(76)/Lucas(21)/(1/2+sqrt(5)/2)^42 2329991420166708 a004 Fibonacci(78)/Lucas(21)/(1/2+sqrt(5)/2)^44 2329991420166708 a004 Fibonacci(80)/Lucas(21)/(1/2+sqrt(5)/2)^46 2329991420166708 a004 Fibonacci(82)/Lucas(21)/(1/2+sqrt(5)/2)^48 2329991420166708 a004 Fibonacci(21)*Lucas(42)/(1/2+sqrt(5)/2)^50 2329991420166708 a004 Fibonacci(86)/Lucas(21)/(1/2+sqrt(5)/2)^52 2329991420166708 a004 Fibonacci(88)/Lucas(21)/(1/2+sqrt(5)/2)^54 2329991420166708 a004 Fibonacci(90)/Lucas(21)/(1/2+sqrt(5)/2)^56 2329991420166708 a004 Fibonacci(92)/Lucas(21)/(1/2+sqrt(5)/2)^58 2329991420166708 a004 Fibonacci(94)/Lucas(21)/(1/2+sqrt(5)/2)^60 2329991420166708 a004 Fibonacci(96)/Lucas(21)/(1/2+sqrt(5)/2)^62 2329991420166708 a004 Fibonacci(100)/Lucas(21)/(1/2+sqrt(5)/2)^66 2329991420166708 a004 Fibonacci(98)/Lucas(21)/(1/2+sqrt(5)/2)^64 2329991420166708 a004 Fibonacci(97)/Lucas(21)/(1/2+sqrt(5)/2)^63 2329991420166708 a004 Fibonacci(99)/Lucas(21)/(1/2+sqrt(5)/2)^65 2329991420166708 a004 Fibonacci(95)/Lucas(21)/(1/2+sqrt(5)/2)^61 2329991420166708 a004 Fibonacci(93)/Lucas(21)/(1/2+sqrt(5)/2)^59 2329991420166708 a004 Fibonacci(91)/Lucas(21)/(1/2+sqrt(5)/2)^57 2329991420166708 a004 Fibonacci(89)/Lucas(21)/(1/2+sqrt(5)/2)^55 2329991420166708 a004 Fibonacci(87)/Lucas(21)/(1/2+sqrt(5)/2)^53 2329991420166708 a004 Fibonacci(85)/Lucas(21)/(1/2+sqrt(5)/2)^51 2329991420166708 a004 Fibonacci(83)/Lucas(21)/(1/2+sqrt(5)/2)^49 2329991420166708 a004 Fibonacci(81)/Lucas(21)/(1/2+sqrt(5)/2)^47 2329991420166708 a004 Fibonacci(79)/Lucas(21)/(1/2+sqrt(5)/2)^45 2329991420166708 a004 Fibonacci(77)/Lucas(21)/(1/2+sqrt(5)/2)^43 2329991420166708 a004 Fibonacci(75)/Lucas(21)/(1/2+sqrt(5)/2)^41 2329991420166708 a004 Fibonacci(73)/Lucas(21)/(1/2+sqrt(5)/2)^39 2329991420166708 a004 Fibonacci(71)/Lucas(21)/(1/2+sqrt(5)/2)^37 2329991420166708 a004 Fibonacci(69)/Lucas(21)/(1/2+sqrt(5)/2)^35 2329991420166708 a004 Fibonacci(67)/Lucas(21)/(1/2+sqrt(5)/2)^33 2329991420166708 a004 Fibonacci(65)/Lucas(21)/(1/2+sqrt(5)/2)^31 2329991420166708 a004 Fibonacci(63)/Lucas(21)/(1/2+sqrt(5)/2)^29 2329991420166708 a004 Fibonacci(61)/Lucas(21)/(1/2+sqrt(5)/2)^27 2329991420166708 a004 Fibonacci(59)/Lucas(21)/(1/2+sqrt(5)/2)^25 2329991420166708 a004 Fibonacci(57)/Lucas(21)/(1/2+sqrt(5)/2)^23 2329991420166708 a004 Fibonacci(55)/Lucas(21)/(1/2+sqrt(5)/2)^21 2329991420166708 a004 Fibonacci(53)/Lucas(21)/(1/2+sqrt(5)/2)^19 2329991420166708 a004 Fibonacci(51)/Lucas(21)/(1/2+sqrt(5)/2)^17 2329991420166708 a004 Fibonacci(49)/Lucas(21)/(1/2+sqrt(5)/2)^15 2329991420166708 a004 Fibonacci(47)/Lucas(21)/(1/2+sqrt(5)/2)^13 2329991420166708 a004 Fibonacci(45)/Lucas(21)/(1/2+sqrt(5)/2)^11 2329991420166708 a001 10946/969323029*599074578^(5/6) 2329991420166708 a004 Fibonacci(43)/Lucas(21)/(1/2+sqrt(5)/2)^9 2329991420166708 a001 10946/370248451*2537720636^(11/15) 2329991420166708 a001 139418478722/598364773 2329991420166708 a001 10946/370248451*45537549124^(11/17) 2329991420166708 a001 10946/370248451*312119004989^(3/5) 2329991420166708 a001 10946/370248451*817138163596^(11/19) 2329991420166708 a001 10946/370248451*14662949395604^(11/21) 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^33/Lucas(41) 2329991420166708 a001 10946/370248451*192900153618^(11/18) 2329991420166708 a001 10946/370248451*10749957122^(11/16) 2329991420166708 a001 10946/370248451*1568397607^(3/4) 2329991420166708 a001 10946/370248451*599074578^(11/14) 2329991420166708 a004 Fibonacci(41)/Lucas(21)/(1/2+sqrt(5)/2)^7 2329991420166708 a001 5473/299537289*228826127^(17/20) 2329991420166708 a001 10946/1568397607*228826127^(9/10) 2329991420166708 a001 10946/969323029*228826127^(7/8) 2329991420166708 a001 10946/4106118243*228826127^(19/20) 2329991420166708 a004 Fibonacci(21)*Lucas(40)/(1/2+sqrt(5)/2)^48 2329991420166708 a001 692290562756/2971215073 2329991420166708 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^31/Lucas(39) 2329991420166708 a001 5473/70711162*9062201101803^(1/2) 2329991420166708 a004 Fibonacci(39)/Lucas(21)/(1/2+sqrt(5)/2)^5 2329991420166708 a001 10946/228826127*87403803^(16/19) 2329991420166708 a001 5473/299537289*87403803^(17/19) 2329991420166708 a001 10946/1568397607*87403803^(18/19) 2329991420166708 a004 Fibonacci(21)*Lucas(38)/(1/2+sqrt(5)/2)^46 2329991420166709 a001 132215732441/567451585 2329991420166709 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^29/Lucas(37) 2329991420166709 a001 10946/54018521*1322157322203^(1/2) 2329991420166709 a004 Fibonacci(37)/Lucas(21)/(1/2+sqrt(5)/2)^3 2329991420166709 a001 10946/87403803*33385282^(5/6) 2329991420166710 a001 10946/228826127*33385282^(8/9) 2329991420166710 a001 10946/370248451*33385282^(11/12) 2329991420166710 a001 5473/299537289*33385282^(17/18) 2329991420166710 a004 Fibonacci(21)*Lucas(36)/(1/2+sqrt(5)/2)^44 2329991420166713 a001 10946/20633239*141422324^(9/13) 2329991420166713 a001 101003831890/433494437 2329991420166713 a001 10946/20633239*2537720636^(3/5) 2329991420166713 a001 10946/20633239*45537549124^(9/17) 2329991420166713 a001 10946/20633239*14662949395604^(3/7) 2329991420166713 a001 10946/20633239*(1/2+1/2*5^(1/2))^27 2329991420166713 a001 10946/20633239*192900153618^(1/2) 2329991420166713 a001 10946/20633239*10749957122^(9/16) 2329991420166713 a001 10946/20633239*599074578^(9/14) 2329991420166713 a004 Fibonacci(35)/Lucas(21)/(1/2+sqrt(5)/2) 2329991420166715 a001 10946/20633239*33385282^(3/4) 2329991420166717 a001 5473/16692641*12752043^(14/17) 2329991420166720 a001 10946/87403803*12752043^(15/17) 2329991420166721 a001 10946/228826127*12752043^(16/17) 2329991420166722 a004 Fibonacci(21)*Lucas(34)/(1/2+sqrt(5)/2)^42 2329991420166741 a001 5473/3940598*20633239^(5/7) 2329991420166745 a001 31622993/219602*5778^(1/18) 2329991420166745 a001 38580030788/165580141 2329991420166745 a001 5473/3940598*2537720636^(5/9) 2329991420166745 a001 5473/3940598*312119004989^(5/11) 2329991420166745 a001 5473/3940598*(1/2+1/2*5^(1/2))^25 2329991420166745 a001 5473/3940598*3461452808002^(5/12) 2329991420166745 a001 5473/3940598*28143753123^(1/2) 2329991420166745 a001 1762289/24476+1762289/24476*5^(1/2) 2329991420166745 a001 5473/3940598*228826127^(5/8) 2329991420166773 a001 10946/12752043*4870847^(13/16) 2329991420166792 a001 5473/16692641*4870847^(7/8) 2329991420166799 a001 10946/87403803*4870847^(15/16) 2329991420166806 a004 Fibonacci(21)*Lucas(32)/(1/2+sqrt(5)/2)^40 2329991420166939 a001 2178309/24476*710647^(1/14) 2329991420166961 a001 1346269/24476*7881196^(1/11) 2329991420166965 a001 7368130237/31622993 2329991420166965 a001 1346269/24476*141422324^(1/13) 2329991420166965 a001 10946/3010349*(1/2+1/2*5^(1/2))^23 2329991420166965 a001 10946/3010349*4106118243^(1/2) 2329991420166965 a001 1346269/24476*2537720636^(1/15) 2329991420166965 a001 1346269/24476*45537549124^(1/17) 2329991420166965 a001 1346269/24476*14662949395604^(1/21) 2329991420166965 a001 1346269/24476*(1/2+1/2*5^(1/2))^3 2329991420166965 a001 1346269/24476*192900153618^(1/18) 2329991420166965 a001 1346269/24476*10749957122^(1/16) 2329991420166965 a001 1346269/24476*599074578^(1/14) 2329991420166965 a001 1346269/24476*33385282^(1/12) 2329991420167032 a001 1346269/24476*1860498^(1/10) 2329991420167148 a001 10946/4870847*1860498^(4/5) 2329991420167277 a001 10946/12752043*1860498^(13/15) 2329991420167306 a001 5473/3940598*1860498^(5/6) 2329991420167319 a001 10946/20633239*1860498^(9/10) 2329991420167334 a001 5473/16692641*1860498^(14/15) 2329991420167381 a004 Fibonacci(21)*Lucas(30)/(1/2+sqrt(5)/2)^38 2329991420168446 a001 10946/1149851*7881196^(7/11) 2329991420168467 a001 10946/1149851*20633239^(3/5) 2329991420168469 a001 5628750634/24157817 2329991420168469 a001 514229/24476*20633239^(1/7) 2329991420168470 a001 10946/1149851*141422324^(7/13) 2329991420168470 a001 10946/1149851*2537720636^(7/15) 2329991420168470 a001 10946/1149851*17393796001^(3/7) 2329991420168470 a001 10946/1149851*45537549124^(7/17) 2329991420168470 a001 10946/1149851*14662949395604^(1/3) 2329991420168470 a001 10946/1149851*(1/2+1/2*5^(1/2))^21 2329991420168470 a001 10946/1149851*192900153618^(7/18) 2329991420168470 a001 10946/1149851*10749957122^(7/16) 2329991420168470 a001 10946/1149851*599074578^(1/2) 2329991420168470 a001 514229/24476*2537720636^(1/9) 2329991420168470 a001 514229/24476*312119004989^(1/11) 2329991420168470 a001 514229/24476*(1/2+1/2*5^(1/2))^5 2329991420168470 a001 514229/24476*28143753123^(1/10) 2329991420168470 a001 514229/24476*228826127^(1/8) 2329991420168471 a001 10946/1149851*33385282^(7/12) 2329991420168582 a001 514229/24476*1860498^(1/6) 2329991420168941 a001 10946/1149851*1860498^(7/10) 2329991420169042 a001 2178309/24476*271443^(1/13) 2329991420169392 a001 10959/844*271443^(3/13) 2329991420169660 a001 5473/930249*710647^(11/14) 2329991420170564 a001 10946/4870847*710647^(6/7) 2329991420170900 a001 208010/6119*271443^(2/13) 2329991420170978 a001 10946/12752043*710647^(13/14) 2329991420171321 a004 Fibonacci(21)*Lucas(28)/(1/2+sqrt(5)/2)^36 2329991420171930 a001 10946/1149851*710647^(3/4) 2329991420175360 a001 15456/13201*15127^(11/20) 2329991420175776 a001 1762289/12238*103682^(1/24) 2329991420178781 a001 165383956/709805 2329991420178785 a001 98209/12238*20633239^(1/5) 2329991420178786 a001 5473/219602*817138163596^(1/3) 2329991420178786 a001 5473/219602*(1/2+1/2*5^(1/2))^19 2329991420178786 a001 98209/12238*17393796001^(1/7) 2329991420178786 a001 98209/12238*14662949395604^(1/9) 2329991420178786 a001 98209/12238*(1/2+1/2*5^(1/2))^7 2329991420178786 a001 98209/12238*599074578^(1/6) 2329991420178787 a001 5473/219602*87403803^(1/2) 2329991420179940 a001 98209/12238*710647^(1/4) 2329991420184672 a001 2178309/24476*103682^(1/12) 2329991420186419 a001 10946/710647*271443^(10/13) 2329991420192792 a001 5473/930249*271443^(11/13) 2329991420194058 a001 1346269/24476*103682^(1/8) 2329991420195800 a001 10946/4870847*271443^(12/13) 2329991420198330 a004 Fibonacci(21)*Lucas(26)/(1/2+sqrt(5)/2)^34 2329991420202159 a001 208010/6119*103682^(1/6) 2329991420207333 a001 121393/24476*103682^(1/3) 2329991420213625 a001 514229/24476*103682^(5/24) 2329991420216280 a001 10959/844*103682^(1/4) 2329991420234272 a001 1762289/12238*39603^(1/22) 2329991420237456 a001 24157817/167761*5778^(1/18) 2329991420242004 a001 98209/12238*103682^(7/24) 2329991420245470 a001 75025/24476*439204^(1/3) 2329991420249459 a001 410611825/1762289 2329991420249486 a001 75025/24476*7881196^(3/11) 2329991420249497 a001 75025/24476*141422324^(3/13) 2329991420249497 a001 10946/167761*45537549124^(1/3) 2329991420249497 a001 10946/167761*(1/2+1/2*5^(1/2))^17 2329991420249497 a001 75025/24476*2537720636^(1/5) 2329991420249497 a001 75025/24476*45537549124^(3/17) 2329991420249497 a001 75025/24476*817138163596^(3/19) 2329991420249497 a001 75025/24476*14662949395604^(1/7) 2329991420249497 a001 75025/24476*(1/2+1/2*5^(1/2))^9 2329991420249497 a001 75025/24476*192900153618^(1/6) 2329991420249497 a001 75025/24476*10749957122^(3/16) 2329991420249497 a001 75025/24476*599074578^(3/14) 2329991420249497 a001 75025/24476*33385282^(1/4) 2329991420249504 a001 10946/167761*12752043^(1/2) 2329991420249699 a001 75025/24476*1860498^(3/10) 2329991420297643 a001 10946/271443*103682^(3/4) 2329991420301663 a001 2178309/24476*39603^(1/11) 2329991420318971 a001 1346269/271443*15127^(2/5) 2329991420330776 a001 75025/24476*103682^(3/8) 2329991420342714 a001 10946/710647*103682^(5/6) 2329991420345760 a001 3524578/710647*15127^(2/5) 2329991420349669 a001 9227465/1860498*15127^(2/5) 2329991420350239 a001 24157817/4870847*15127^(2/5) 2329991420350322 a001 63245986/12752043*15127^(2/5) 2329991420350334 a001 165580141/33385282*15127^(2/5) 2329991420350336 a001 433494437/87403803*15127^(2/5) 2329991420350336 a001 1134903170/228826127*15127^(2/5) 2329991420350336 a001 2971215073/599074578*15127^(2/5) 2329991420350336 a001 7778742049/1568397607*15127^(2/5) 2329991420350336 a001 20365011074/4106118243*15127^(2/5) 2329991420350336 a001 53316291173/10749957122*15127^(2/5) 2329991420350336 a001 139583862445/28143753123*15127^(2/5) 2329991420350336 a001 365435296162/73681302247*15127^(2/5) 2329991420350336 a001 956722026041/192900153618*15127^(2/5) 2329991420350336 a001 2504730781961/505019158607*15127^(2/5) 2329991420350336 a001 10610209857723/2139295485799*15127^(2/5) 2329991420350336 a001 4052739537881/817138163596*15127^(2/5) 2329991420350336 a001 140728068720/28374454999*15127^(2/5) 2329991420350336 a001 591286729879/119218851371*15127^(2/5) 2329991420350336 a001 225851433717/45537549124*15127^(2/5) 2329991420350336 a001 86267571272/17393796001*15127^(2/5) 2329991420350336 a001 32951280099/6643838879*15127^(2/5) 2329991420350336 a001 1144206275/230701876*15127^(2/5) 2329991420350336 a001 4807526976/969323029*15127^(2/5) 2329991420350336 a001 1836311903/370248451*15127^(2/5) 2329991420350337 a001 701408733/141422324*15127^(2/5) 2329991420350337 a001 267914296/54018521*15127^(2/5) 2329991420350342 a001 9303105/1875749*15127^(2/5) 2329991420350374 a001 39088169/7881196*15127^(2/5) 2329991420350376 a001 5473/219602*103682^(19/24) 2329991420350591 a001 14930352/3010349*15127^(2/5) 2329991420352084 a001 5702887/1149851*15127^(2/5) 2329991420358121 a001 10946/1149851*103682^(7/8) 2329991420362317 a001 2178309/439204*15127^(2/5) 2329991420364079 a001 10946/64079*64079^(15/23) 2329991420364717 a001 5473/930249*103682^(11/12) 2329991420369545 a001 1346269/24476*39603^(3/22) 2329991420374678 a001 10946/3010349*103682^(23/24) 2329991420383452 a004 Fibonacci(21)*Lucas(24)/(1/2+sqrt(5)/2)^32 2329991420403024 a001 10946/167761*103682^(17/24) 2329991420410424 a001 514229/64079*15127^(7/20) 2329991420432452 a001 75640/15251*15127^(2/5) 2329991420436141 a001 208010/6119*39603^(2/11) 2329991420462765 a001 28657/24476*64079^(11/23) 2329991420506103 a001 514229/24476*39603^(5/22) 2329991420567254 a001 10959/844*39603^(3/11) 2329991420625230 a001 11592/6119*39603^(5/11) 2329991420638097 a001 317811/103682*15127^(9/20) 2329991420651473 a001 98209/12238*39603^(7/22) 2329991420675299 a001 121393/24476*39603^(4/11) 2329991420675864 a001 1762289/12238*15127^(1/20) 2329991420684478 a001 10946/64079*167761^(3/5) 2329991420722116 a001 9227465/64079*5778^(1/18) 2329991420727441 a001 10946/64079*439204^(5/9) 2329991420733894 a001 313679522/1346269 2329991420734134 a001 10946/64079*7881196^(5/11) 2329991420734139 a001 28657/24476*7881196^(1/3) 2329991420734149 a001 10946/64079*20633239^(3/7) 2329991420734152 a001 10946/64079*141422324^(5/13) 2329991420734152 a001 10946/64079*2537720636^(1/3) 2329991420734152 a001 10946/64079*45537549124^(5/17) 2329991420734152 a001 10946/64079*312119004989^(3/11) 2329991420734152 a001 10946/64079*14662949395604^(5/21) 2329991420734152 a001 10946/64079*(1/2+1/2*5^(1/2))^15 2329991420734152 a001 10946/64079*192900153618^(5/18) 2329991420734152 a001 10946/64079*28143753123^(3/10) 2329991420734152 a001 10946/64079*10749957122^(5/16) 2329991420734152 a001 10946/64079*599074578^(5/14) 2329991420734152 a001 28657/24476*312119004989^(1/5) 2329991420734152 a001 28657/24476*(1/2+1/2*5^(1/2))^11 2329991420734152 a001 28657/24476*1568397607^(1/4) 2329991420734152 a001 10946/64079*228826127^(3/8) 2329991420734152 a001 10946/64079*33385282^(5/12) 2329991420734488 a001 10946/64079*1860498^(1/2) 2329991420827159 a001 832040/271443*15127^(9/20) 2329991420833493 a001 28657/24476*103682^(11/24) 2329991420854743 a001 311187/101521*15127^(9/20) 2329991420857237 a001 75025/24476*39603^(9/22) 2329991420858767 a001 5702887/1860498*15127^(9/20) 2329991420859354 a001 14930352/4870847*15127^(9/20) 2329991420859440 a001 39088169/12752043*15127^(9/20) 2329991420859453 a001 14619165/4769326*15127^(9/20) 2329991420859454 a001 267914296/87403803*15127^(9/20) 2329991420859455 a001 701408733/228826127*15127^(9/20) 2329991420859455 a001 1836311903/599074578*15127^(9/20) 2329991420859455 a001 686789568/224056801*15127^(9/20) 2329991420859455 a001 12586269025/4106118243*15127^(9/20) 2329991420859455 a001 32951280099/10749957122*15127^(9/20) 2329991420859455 a001 86267571272/28143753123*15127^(9/20) 2329991420859455 a001 32264490531/10525900321*15127^(9/20) 2329991420859455 a001 591286729879/192900153618*15127^(9/20) 2329991420859455 a001 1548008755920/505019158607*15127^(9/20) 2329991420859455 a001 1515744265389/494493258286*15127^(9/20) 2329991420859455 a001 956722026041/312119004989*15127^(9/20) 2329991420859455 a001 365435296162/119218851371*15127^(9/20) 2329991420859455 a001 139583862445/45537549124*15127^(9/20) 2329991420859455 a001 53316291173/17393796001*15127^(9/20) 2329991420859455 a001 20365011074/6643838879*15127^(9/20) 2329991420859455 a001 7778742049/2537720636*15127^(9/20) 2329991420859455 a001 2971215073/969323029*15127^(9/20) 2329991420859455 a001 1134903170/370248451*15127^(9/20) 2329991420859455 a001 433494437/141422324*15127^(9/20) 2329991420859456 a001 165580141/54018521*15127^(9/20) 2329991420859460 a001 63245986/20633239*15127^(9/20) 2329991420859493 a001 24157817/7881196*15127^(9/20) 2329991420859717 a001 9227465/3010349*15127^(9/20) 2329991420861254 a001 3524578/1149851*15127^(9/20) 2329991420869617 a001 10946/64079*103682^(5/8) 2329991420871791 a001 1346269/439204*15127^(9/20) 2329991420913167 a001 317811/64079*15127^(2/5) 2329991420944006 a001 514229/167761*15127^(9/20) 2329991421030391 a001 5473/51841*39603^(8/11) 2329991421163908 a001 98209/51841*15127^(1/2) 2329991421184846 a001 2178309/24476*15127^(1/10) 2329991421338713 a001 514229/271443*15127^(1/2) 2329991421350566 a001 10946/271443*39603^(9/11) 2329991421364216 a001 1346269/710647*15127^(1/2) 2329991421367937 a001 1762289/930249*15127^(1/2) 2329991421368480 a001 9227465/4870847*15127^(1/2) 2329991421368559 a001 24157817/12752043*15127^(1/2) 2329991421368571 a001 31622993/16692641*15127^(1/2) 2329991421368573 a001 165580141/87403803*15127^(1/2) 2329991421368573 a001 433494437/228826127*15127^(1/2) 2329991421368573 a001 567451585/299537289*15127^(1/2) 2329991421368573 a001 2971215073/1568397607*15127^(1/2) 2329991421368573 a001 7778742049/4106118243*15127^(1/2) 2329991421368573 a001 10182505537/5374978561*15127^(1/2) 2329991421368573 a001 53316291173/28143753123*15127^(1/2) 2329991421368573 a001 139583862445/73681302247*15127^(1/2) 2329991421368573 a001 182717648081/96450076809*15127^(1/2) 2329991421368573 a001 956722026041/505019158607*15127^(1/2) 2329991421368573 a001 10610209857723/5600748293801*15127^(1/2) 2329991421368573 a001 591286729879/312119004989*15127^(1/2) 2329991421368573 a001 225851433717/119218851371*15127^(1/2) 2329991421368573 a001 21566892818/11384387281*15127^(1/2) 2329991421368573 a001 32951280099/17393796001*15127^(1/2) 2329991421368573 a001 12586269025/6643838879*15127^(1/2) 2329991421368573 a001 1201881744/634430159*15127^(1/2) 2329991421368573 a001 1836311903/969323029*15127^(1/2) 2329991421368573 a001 701408733/370248451*15127^(1/2) 2329991421368573 a001 66978574/35355581*15127^(1/2) 2329991421368574 a001 102334155/54018521*15127^(1/2) 2329991421368578 a001 39088169/20633239*15127^(1/2) 2329991421368608 a001 3732588/1970299*15127^(1/2) 2329991421368816 a001 5702887/3010349*15127^(1/2) 2329991421370237 a001 2178309/1149851*15127^(1/2) 2329991421379979 a001 208010/109801*15127^(1/2) 2329991421397450 a001 10946/167761*39603^(17/22) 2329991421438597 a001 832040/9349*3571^(2/17) 2329991421438977 a001 196418/64079*15127^(9/20) 2329991421446748 a001 317811/167761*15127^(1/2) 2329991421461794 a001 5473/219602*39603^(19/22) 2329991421468666 a001 28657/39603*15127^(3/5) 2329991421476945 a001 28657/24476*39603^(1/2) 2329991421512628 a001 10946/710647*39603^(10/11) 2329991421586531 a001 10946/1149851*39603^(21/22) 2329991421605892 a001 514229/15127*5778^(2/9) 2329991421629325 a001 121393/103682*15127^(11/20) 2329991421648353 a001 5473/12238*24476^(13/21) 2329991421652295 a004 Fibonacci(21)*Lucas(22)/(1/2+sqrt(5)/2)^30 2329991421694320 a001 1346269/24476*15127^(3/20) 2329991421747052 a001 10946/64079*39603^(15/22) 2329991421841455 a001 105937/90481*15127^(11/20) 2329991421872405 a001 832040/710647*15127^(11/20) 2329991421876920 a001 726103/620166*15127^(11/20) 2329991421877579 a001 5702887/4870847*15127^(11/20) 2329991421877675 a001 4976784/4250681*15127^(11/20) 2329991421877689 a001 39088169/33385282*15127^(11/20) 2329991421877691 a001 34111385/29134601*15127^(11/20) 2329991421877691 a001 267914296/228826127*15127^(11/20) 2329991421877691 a001 233802911/199691526*15127^(11/20) 2329991421877691 a001 1836311903/1568397607*15127^(11/20) 2329991421877691 a001 1602508992/1368706081*15127^(11/20) 2329991421877691 a001 12586269025/10749957122*15127^(11/20) 2329991421877691 a001 10983760033/9381251041*15127^(11/20) 2329991421877691 a001 86267571272/73681302247*15127^(11/20) 2329991421877691 a001 75283811239/64300051206*15127^(11/20) 2329991421877691 a001 2504730781961/2139295485799*15127^(11/20) 2329991421877691 a001 365435296162/312119004989*15127^(11/20) 2329991421877691 a001 139583862445/119218851371*15127^(11/20) 2329991421877691 a001 53316291173/45537549124*15127^(11/20) 2329991421877691 a001 20365011074/17393796001*15127^(11/20) 2329991421877691 a001 7778742049/6643838879*15127^(11/20) 2329991421877691 a001 2971215073/2537720636*15127^(11/20) 2329991421877691 a001 1134903170/969323029*15127^(11/20) 2329991421877691 a001 433494437/370248451*15127^(11/20) 2329991421877691 a001 165580141/141422324*15127^(11/20) 2329991421877692 a001 63245986/54018521*15127^(11/20) 2329991421877698 a001 24157817/20633239*15127^(11/20) 2329991421877734 a001 9227465/7881196*15127^(11/20) 2329991421877986 a001 3524578/3010349*15127^(11/20) 2329991421879711 a001 1346269/1149851*15127^(11/20) 2329991421891532 a001 514229/439204*15127^(11/20) 2329991421904394 a001 121393/64079*15127^(1/2) 2329991421972559 a001 196418/167761*15127^(11/20) 2329991422185158 a007 Real Root Of -367*x^4-627*x^3+377*x^2-193*x+389 2329991422202508 a001 208010/6119*15127^(1/5) 2329991422211833 a001 17711/103682*15127^(3/4) 2329991422252854 a001 75025/103682*15127^(3/5) 2329991422367266 a001 196418/271443*15127^(3/5) 2329991422383958 a001 514229/710647*15127^(3/5) 2329991422386394 a001 1346269/1860498*15127^(3/5) 2329991422386749 a001 3524578/4870847*15127^(3/5) 2329991422386801 a001 9227465/12752043*15127^(3/5) 2329991422386808 a001 24157817/33385282*15127^(3/5) 2329991422386809 a001 63245986/87403803*15127^(3/5) 2329991422386810 a001 165580141/228826127*15127^(3/5) 2329991422386810 a001 433494437/599074578*15127^(3/5) 2329991422386810 a001 1134903170/1568397607*15127^(3/5) 2329991422386810 a001 2971215073/4106118243*15127^(3/5) 2329991422386810 a001 7778742049/10749957122*15127^(3/5) 2329991422386810 a001 20365011074/28143753123*15127^(3/5) 2329991422386810 a001 53316291173/73681302247*15127^(3/5) 2329991422386810 a001 139583862445/192900153618*15127^(3/5) 2329991422386810 a001 10610209857723/14662949395604*15127^(3/5) 2329991422386810 a001 591286729879/817138163596*15127^(3/5) 2329991422386810 a001 225851433717/312119004989*15127^(3/5) 2329991422386810 a001 86267571272/119218851371*15127^(3/5) 2329991422386810 a001 32951280099/45537549124*15127^(3/5) 2329991422386810 a001 12586269025/17393796001*15127^(3/5) 2329991422386810 a001 4807526976/6643838879*15127^(3/5) 2329991422386810 a001 1836311903/2537720636*15127^(3/5) 2329991422386810 a001 701408733/969323029*15127^(3/5) 2329991422386810 a001 267914296/370248451*15127^(3/5) 2329991422386810 a001 102334155/141422324*15127^(3/5) 2329991422386810 a001 39088169/54018521*15127^(3/5) 2329991422386813 a001 14930352/20633239*15127^(3/5) 2329991422386833 a001 5702887/7881196*15127^(3/5) 2329991422386969 a001 2178309/3010349*15127^(3/5) 2329991422387899 a001 832040/1149851*15127^(3/5) 2329991422394275 a001 317811/439204*15127^(3/5) 2329991422437976 a001 121393/167761*15127^(3/5) 2329991422462439 a001 23184/51841*15127^(13/20) 2329991422486903 a001 17711/64079*15127^(7/10) 2329991422527924 a001 75025/64079*15127^(11/20) 2329991422546393 a001 3524578/39603*5778^(1/9) 2329991422714062 a001 514229/24476*15127^(1/4) 2329991422737509 a001 46368/64079*15127^(3/5) 2329991422832683 a001 121393/271443*15127^(13/20) 2329991422886701 a001 317811/710647*15127^(13/20) 2329991422894582 a001 416020/930249*15127^(13/20) 2329991422895732 a001 2178309/4870847*15127^(13/20) 2329991422895899 a001 5702887/12752043*15127^(13/20) 2329991422895924 a001 7465176/16692641*15127^(13/20) 2329991422895927 a001 39088169/87403803*15127^(13/20) 2329991422895928 a001 102334155/228826127*15127^(13/20) 2329991422895928 a001 133957148/299537289*15127^(13/20) 2329991422895928 a001 701408733/1568397607*15127^(13/20) 2329991422895928 a001 1836311903/4106118243*15127^(13/20) 2329991422895928 a001 2403763488/5374978561*15127^(13/20) 2329991422895928 a001 12586269025/28143753123*15127^(13/20) 2329991422895928 a001 32951280099/73681302247*15127^(13/20) 2329991422895928 a001 43133785636/96450076809*15127^(13/20) 2329991422895928 a001 225851433717/505019158607*15127^(13/20) 2329991422895928 a001 591286729879/1322157322203*15127^(13/20) 2329991422895928 a001 10610209857723/23725150497407*15127^(13/20) 2329991422895928 a001 139583862445/312119004989*15127^(13/20) 2329991422895928 a001 53316291173/119218851371*15127^(13/20) 2329991422895928 a001 10182505537/22768774562*15127^(13/20) 2329991422895928 a001 7778742049/17393796001*15127^(13/20) 2329991422895928 a001 2971215073/6643838879*15127^(13/20) 2329991422895928 a001 567451585/1268860318*15127^(13/20) 2329991422895928 a001 433494437/969323029*15127^(13/20) 2329991422895928 a001 165580141/370248451*15127^(13/20) 2329991422895928 a001 31622993/70711162*15127^(13/20) 2329991422895930 a001 24157817/54018521*15127^(13/20) 2329991422895939 a001 9227465/20633239*15127^(13/20) 2329991422896003 a001 1762289/3940598*15127^(13/20) 2329991422896442 a001 1346269/3010349*15127^(13/20) 2329991422899452 a001 514229/1149851*15127^(13/20) 2329991422920085 a001 98209/219602*15127^(13/20) 2329991423020485 a001 17711/167761*15127^(4/5) 2329991423061506 a001 75025/167761*15127^(13/20) 2329991423216804 a001 10959/844*15127^(3/10) 2329991423271091 a001 46368/167761*15127^(7/10) 2329991423385502 a001 121393/439204*15127^(7/10) 2329991423402195 a001 317811/1149851*15127^(7/10) 2329991423404630 a001 832040/3010349*15127^(7/10) 2329991423404986 a001 2178309/7881196*15127^(7/10) 2329991423405037 a001 5702887/20633239*15127^(7/10) 2329991423405045 a001 14930352/54018521*15127^(7/10) 2329991423405046 a001 39088169/141422324*15127^(7/10) 2329991423405046 a001 102334155/370248451*15127^(7/10) 2329991423405046 a001 267914296/969323029*15127^(7/10) 2329991423405046 a001 701408733/2537720636*15127^(7/10) 2329991423405046 a001 1836311903/6643838879*15127^(7/10) 2329991423405046 a001 4807526976/17393796001*15127^(7/10) 2329991423405046 a001 12586269025/45537549124*15127^(7/10) 2329991423405046 a001 32951280099/119218851371*15127^(7/10) 2329991423405046 a001 86267571272/312119004989*15127^(7/10) 2329991423405046 a001 225851433717/817138163596*15127^(7/10) 2329991423405046 a001 139583862445/505019158607*15127^(7/10) 2329991423405046 a001 53316291173/192900153618*15127^(7/10) 2329991423405046 a001 20365011074/73681302247*15127^(7/10) 2329991423405046 a001 7778742049/28143753123*15127^(7/10) 2329991423405046 a001 2971215073/10749957122*15127^(7/10) 2329991423405046 a001 1134903170/4106118243*15127^(7/10) 2329991423405046 a001 433494437/1568397607*15127^(7/10) 2329991423405046 a001 165580141/599074578*15127^(7/10) 2329991423405046 a001 63245986/228826127*15127^(7/10) 2329991423405047 a001 24157817/87403803*15127^(7/10) 2329991423405050 a001 9227465/33385282*15127^(7/10) 2329991423405069 a001 3524578/12752043*15127^(7/10) 2329991423405205 a001 1346269/4870847*15127^(7/10) 2329991423406135 a001 514229/1860498*15127^(7/10) 2329991423412511 a001 196418/710647*15127^(7/10) 2329991423415191 a001 17711/271443*15127^(17/20) 2329991423456213 a001 75025/271443*15127^(7/10) 2329991423665798 a001 15456/90481*15127^(3/4) 2329991423735296 a001 5473/12238*64079^(13/23) 2329991423742615 a001 98209/12238*15127^(7/20) 2329991423755746 a001 28657/103682*15127^(7/10) 2329991423815204 a001 9227465/103682*5778^(1/9) 2329991423877928 a001 121393/710647*15127^(3/4) 2329991423908878 a001 105937/620166*15127^(3/4) 2329991423913393 a001 832040/4870847*15127^(3/4) 2329991423914052 a001 726103/4250681*15127^(3/4) 2329991423914148 a001 5702887/33385282*15127^(3/4) 2329991423914162 a001 4976784/29134601*15127^(3/4) 2329991423914164 a001 39088169/228826127*15127^(3/4) 2329991423914165 a001 34111385/199691526*15127^(3/4) 2329991423914165 a001 267914296/1568397607*15127^(3/4) 2329991423914165 a001 233802911/1368706081*15127^(3/4) 2329991423914165 a001 1836311903/10749957122*15127^(3/4) 2329991423914165 a001 1602508992/9381251041*15127^(3/4) 2329991423914165 a001 12586269025/73681302247*15127^(3/4) 2329991423914165 a001 10983760033/64300051206*15127^(3/4) 2329991423914165 a001 86267571272/505019158607*15127^(3/4) 2329991423914165 a001 75283811239/440719107401*15127^(3/4) 2329991423914165 a001 2504730781961/14662949395604*15127^(3/4) 2329991423914165 a001 139583862445/817138163596*15127^(3/4) 2329991423914165 a001 53316291173/312119004989*15127^(3/4) 2329991423914165 a001 20365011074/119218851371*15127^(3/4) 2329991423914165 a001 7778742049/45537549124*15127^(3/4) 2329991423914165 a001 2971215073/17393796001*15127^(3/4) 2329991423914165 a001 1134903170/6643838879*15127^(3/4) 2329991423914165 a001 433494437/2537720636*15127^(3/4) 2329991423914165 a001 165580141/969323029*15127^(3/4) 2329991423914165 a001 63245986/370248451*15127^(3/4) 2329991423914165 a001 24157817/141422324*15127^(3/4) 2329991423914171 a001 9227465/54018521*15127^(3/4) 2329991423914208 a001 3524578/20633239*15127^(3/4) 2329991423914459 a001 1346269/7881196*15127^(3/4) 2329991423916184 a001 514229/3010349*15127^(3/4) 2329991423928006 a001 196418/1149851*15127^(3/4) 2329991423968011 a001 17711/439204*15127^(9/10) 2329991424000321 a001 24157817/271443*5778^(1/9) 2329991424009032 a001 75025/439204*15127^(3/4) 2329991424027329 a001 63245986/710647*5778^(1/9) 2329991424030816 a001 28657/64079*15127^(13/20) 2329991424031270 a001 165580141/1860498*5778^(1/9) 2329991424031845 a001 433494437/4870847*5778^(1/9) 2329991424031928 a001 1134903170/12752043*5778^(1/9) 2329991424031941 a001 2971215073/33385282*5778^(1/9) 2329991424031942 a001 7778742049/87403803*5778^(1/9) 2329991424031943 a001 20365011074/228826127*5778^(1/9) 2329991424031943 a001 53316291173/599074578*5778^(1/9) 2329991424031943 a001 139583862445/1568397607*5778^(1/9) 2329991424031943 a001 365435296162/4106118243*5778^(1/9) 2329991424031943 a001 956722026041/10749957122*5778^(1/9) 2329991424031943 a001 2504730781961/28143753123*5778^(1/9) 2329991424031943 a001 6557470319842/73681302247*5778^(1/9) 2329991424031943 a001 10610209857723/119218851371*5778^(1/9) 2329991424031943 a001 4052739537881/45537549124*5778^(1/9) 2329991424031943 a001 1548008755920/17393796001*5778^(1/9) 2329991424031943 a001 591286729879/6643838879*5778^(1/9) 2329991424031943 a001 225851433717/2537720636*5778^(1/9) 2329991424031943 a001 86267571272/969323029*5778^(1/9) 2329991424031943 a001 32951280099/370248451*5778^(1/9) 2329991424031943 a001 12586269025/141422324*5778^(1/9) 2329991424031944 a001 4807526976/54018521*5778^(1/9) 2329991424031948 a001 1836311903/20633239*5778^(1/9) 2329991424031980 a001 3524667/39604*5778^(1/9) 2329991424032200 a001 267914296/3010349*5778^(1/9) 2329991424033705 a001 102334155/1149851*5778^(1/9) 2329991424044021 a001 39088169/439204*5778^(1/9) 2329991424044022 a001 1762289/12238*5778^(1/18) 2329991424054263 a001 119814916/514229 2329991424056025 a001 5473/12238*141422324^(1/3) 2329991424056026 a001 5473/12238*(1/2+1/2*5^(1/2))^13 2329991424056026 a001 5473/12238*73681302247^(1/4) 2329991424071837 a001 5473/12238*271443^(1/2) 2329991424114730 a001 14930352/167761*5778^(1/9) 2329991424173429 a001 5473/12238*103682^(13/24) 2329991424208032 a001 121393/24476*15127^(2/5) 2329991424218617 a001 11592/109801*15127^(4/5) 2329991424393423 a001 121393/1149851*15127^(4/5) 2329991424418926 a001 317811/3010349*15127^(4/5) 2329991424422647 a001 208010/1970299*15127^(4/5) 2329991424423190 a001 2178309/20633239*15127^(4/5) 2329991424423269 a001 5702887/54018521*15127^(4/5) 2329991424423281 a001 3732588/35355581*15127^(4/5) 2329991424423283 a001 39088169/370248451*15127^(4/5) 2329991424423283 a001 102334155/969323029*15127^(4/5) 2329991424423283 a001 66978574/634430159*15127^(4/5) 2329991424423283 a001 701408733/6643838879*15127^(4/5) 2329991424423283 a001 1836311903/17393796001*15127^(4/5) 2329991424423283 a001 1201881744/11384387281*15127^(4/5) 2329991424423283 a001 12586269025/119218851371*15127^(4/5) 2329991424423283 a001 32951280099/312119004989*15127^(4/5) 2329991424423283 a001 21566892818/204284540899*15127^(4/5) 2329991424423283 a001 225851433717/2139295485799*15127^(4/5) 2329991424423283 a001 182717648081/1730726404001*15127^(4/5) 2329991424423283 a001 139583862445/1322157322203*15127^(4/5) 2329991424423283 a001 53316291173/505019158607*15127^(4/5) 2329991424423283 a001 10182505537/96450076809*15127^(4/5) 2329991424423283 a001 7778742049/73681302247*15127^(4/5) 2329991424423283 a001 2971215073/28143753123*15127^(4/5) 2329991424423283 a001 567451585/5374978561*15127^(4/5) 2329991424423283 a001 433494437/4106118243*15127^(4/5) 2329991424423283 a001 165580141/1568397607*15127^(4/5) 2329991424423283 a001 31622993/299537289*15127^(4/5) 2329991424423284 a001 24157817/228826127*15127^(4/5) 2329991424423288 a001 9227465/87403803*15127^(4/5) 2329991424423318 a001 1762289/16692641*15127^(4/5) 2329991424423526 a001 1346269/12752043*15127^(4/5) 2329991424424947 a001 514229/4870847*15127^(4/5) 2329991424434688 a001 98209/930249*15127^(4/5) 2329991424460437 a001 17711/710647*15127^(19/20) 2329991424501458 a001 75025/710647*15127^(4/5) 2329991424564397 a001 28657/167761*15127^(3/4) 2329991424599372 a001 5702887/64079*5778^(1/9) 2329991424711043 a001 6624/101521*15127^(17/20) 2329991424790540 a001 17711/24476*15127^(3/5) 2329991424831561 a001 75025/24476*15127^(9/20) 2329991424900105 a001 121393/1860498*15127^(17/20) 2329991424927689 a001 317811/4870847*15127^(17/20) 2329991424931714 a001 832040/12752043*15127^(17/20) 2329991424932301 a001 311187/4769326*15127^(17/20) 2329991424932387 a001 5702887/87403803*15127^(17/20) 2329991424932399 a001 14930352/228826127*15127^(17/20) 2329991424932401 a001 39088169/599074578*15127^(17/20) 2329991424932401 a001 14619165/224056801*15127^(17/20) 2329991424932401 a001 267914296/4106118243*15127^(17/20) 2329991424932401 a001 701408733/10749957122*15127^(17/20) 2329991424932401 a001 1836311903/28143753123*15127^(17/20) 2329991424932401 a001 686789568/10525900321*15127^(17/20) 2329991424932401 a001 12586269025/192900153618*15127^(17/20) 2329991424932401 a001 32951280099/505019158607*15127^(17/20) 2329991424932401 a001 86267571272/1322157322203*15127^(17/20) 2329991424932401 a001 32264490531/494493258286*15127^(17/20) 2329991424932401 a001 1548008755920/23725150497407*15127^(17/20) 2329991424932401 a001 139583862445/2139295485799*15127^(17/20) 2329991424932401 a001 53316291173/817138163596*15127^(17/20) 2329991424932401 a001 20365011074/312119004989*15127^(17/20) 2329991424932401 a001 7778742049/119218851371*15127^(17/20) 2329991424932401 a001 2971215073/45537549124*15127^(17/20) 2329991424932401 a001 1134903170/17393796001*15127^(17/20) 2329991424932401 a001 433494437/6643838879*15127^(17/20) 2329991424932401 a001 165580141/2537720636*15127^(17/20) 2329991424932401 a001 63245986/969323029*15127^(17/20) 2329991424932402 a001 24157817/370248451*15127^(17/20) 2329991424932407 a001 9227465/141422324*15127^(17/20) 2329991424932439 a001 3524578/54018521*15127^(17/20) 2329991424932664 a001 1346269/20633239*15127^(17/20) 2329991424933873 a001 5473/12238*39603^(13/22) 2329991424934201 a001 514229/7881196*15127^(17/20) 2329991424944737 a001 196418/3010349*15127^(17/20) 2329991424959104 a001 28657/271443*15127^(4/5) 2329991424974169 a004 Fibonacci(22)*Lucas(20)/(1/2+sqrt(5)/2)^29 2329991425016952 a001 75025/1149851*15127^(17/20) 2329991425041147 a001 11592/6119*15127^(1/2) 2329991425226538 a001 46368/1149851*15127^(9/10) 2329991425410154 a001 121393/3010349*15127^(9/10) 2329991425436943 a001 317811/7881196*15127^(9/10) 2329991425440852 a001 75640/1875749*15127^(9/10) 2329991425441422 a001 2178309/54018521*15127^(9/10) 2329991425441505 a001 5702887/141422324*15127^(9/10) 2329991425441517 a001 14930352/370248451*15127^(9/10) 2329991425441519 a001 39088169/969323029*15127^(9/10) 2329991425441519 a001 9303105/230701876*15127^(9/10) 2329991425441519 a001 267914296/6643838879*15127^(9/10) 2329991425441519 a001 701408733/17393796001*15127^(9/10) 2329991425441519 a001 1836311903/45537549124*15127^(9/10) 2329991425441519 a001 4807526976/119218851371*15127^(9/10) 2329991425441519 a001 1144206275/28374454999*15127^(9/10) 2329991425441519 a001 32951280099/817138163596*15127^(9/10) 2329991425441519 a001 86267571272/2139295485799*15127^(9/10) 2329991425441519 a001 225851433717/5600748293801*15127^(9/10) 2329991425441519 a001 365435296162/9062201101803*15127^(9/10) 2329991425441519 a001 139583862445/3461452808002*15127^(9/10) 2329991425441519 a001 53316291173/1322157322203*15127^(9/10) 2329991425441519 a001 20365011074/505019158607*15127^(9/10) 2329991425441519 a001 7778742049/192900153618*15127^(9/10) 2329991425441519 a001 2971215073/73681302247*15127^(9/10) 2329991425441519 a001 1134903170/28143753123*15127^(9/10) 2329991425441519 a001 433494437/10749957122*15127^(9/10) 2329991425441520 a001 165580141/4106118243*15127^(9/10) 2329991425441520 a001 63245986/1568397607*15127^(9/10) 2329991425441520 a001 24157817/599074578*15127^(9/10) 2329991425441525 a001 9227465/228826127*15127^(9/10) 2329991425441557 a001 3524578/87403803*15127^(9/10) 2329991425441775 a001 1346269/33385282*15127^(9/10) 2329991425443267 a001 514229/12752043*15127^(9/10) 2329991425453500 a001 196418/4870847*15127^(9/10) 2329991425476792 a001 317811/15127*5778^(5/18) 2329991425511924 a001 28657/439204*15127^(17/20) 2329991425523635 a001 75025/1860498*15127^(9/10) 2329991425733220 a001 2576/103361*15127^(19/20) 2329991425778872 a001 4181/24476*9349^(15/19) 2329991425808777 a001 10946/39603*15127^(7/10) 2329991425918917 a001 121393/4870847*15127^(19/20) 2329991425946010 a001 105937/4250681*15127^(19/20) 2329991425949963 a001 416020/16692641*15127^(19/20) 2329991425950539 a001 726103/29134601*15127^(19/20) 2329991425950623 a001 5702887/228826127*15127^(19/20) 2329991425950636 a001 829464/33281921*15127^(19/20) 2329991425950637 a001 39088169/1568397607*15127^(19/20) 2329991425950638 a001 34111385/1368706081*15127^(19/20) 2329991425950638 a001 133957148/5374978561*15127^(19/20) 2329991425950638 a001 233802911/9381251041*15127^(19/20) 2329991425950638 a001 1836311903/73681302247*15127^(19/20) 2329991425950638 a001 267084832/10716675201*15127^(19/20) 2329991425950638 a001 12586269025/505019158607*15127^(19/20) 2329991425950638 a001 10983760033/440719107401*15127^(19/20) 2329991425950638 a001 43133785636/1730726404001*15127^(19/20) 2329991425950638 a001 75283811239/3020733700601*15127^(19/20) 2329991425950638 a001 182717648081/7331474697802*15127^(19/20) 2329991425950638 a001 139583862445/5600748293801*15127^(19/20) 2329991425950638 a001 53316291173/2139295485799*15127^(19/20) 2329991425950638 a001 10182505537/408569081798*15127^(19/20) 2329991425950638 a001 7778742049/312119004989*15127^(19/20) 2329991425950638 a001 2971215073/119218851371*15127^(19/20) 2329991425950638 a001 567451585/22768774562*15127^(19/20) 2329991425950638 a001 433494437/17393796001*15127^(19/20) 2329991425950638 a001 165580141/6643838879*15127^(19/20) 2329991425950638 a001 31622993/1268860318*15127^(19/20) 2329991425950639 a001 24157817/969323029*15127^(19/20) 2329991425950643 a001 9227465/370248451*15127^(19/20) 2329991425950675 a001 1762289/70711162*15127^(19/20) 2329991425950896 a001 1346269/54018521*15127^(19/20) 2329991425952406 a001 514229/20633239*15127^(19/20) 2329991425962754 a001 98209/3940598*15127^(19/20) 2329991426004350 a001 28657/710647*15127^(9/10) 2329991426033684 a001 75025/3010349*15127^(19/20) 2329991426243012 a004 Fibonacci(24)*Lucas(20)/(1/2+sqrt(5)/2)^31 2329991426334453 a001 28657/24476*15127^(11/20) 2329991426423534 a001 726103/13201*5778^(1/6) 2329991426428134 a004 Fibonacci(26)*Lucas(20)/(1/2+sqrt(5)/2)^33 2329991426455142 a004 Fibonacci(28)*Lucas(20)/(1/2+sqrt(5)/2)^35 2329991426459083 a004 Fibonacci(30)*Lucas(20)/(1/2+sqrt(5)/2)^37 2329991426459658 a004 Fibonacci(32)*Lucas(20)/(1/2+sqrt(5)/2)^39 2329991426459742 a004 Fibonacci(34)*Lucas(20)/(1/2+sqrt(5)/2)^41 2329991426459754 a004 Fibonacci(36)*Lucas(20)/(1/2+sqrt(5)/2)^43 2329991426459756 a004 Fibonacci(38)*Lucas(20)/(1/2+sqrt(5)/2)^45 2329991426459756 a004 Fibonacci(40)*Lucas(20)/(1/2+sqrt(5)/2)^47 2329991426459756 a004 Fibonacci(42)*Lucas(20)/(1/2+sqrt(5)/2)^49 2329991426459756 a004 Fibonacci(44)*Lucas(20)/(1/2+sqrt(5)/2)^51 2329991426459756 a004 Fibonacci(46)*Lucas(20)/(1/2+sqrt(5)/2)^53 2329991426459756 a004 Fibonacci(48)*Lucas(20)/(1/2+sqrt(5)/2)^55 2329991426459756 a004 Fibonacci(50)*Lucas(20)/(1/2+sqrt(5)/2)^57 2329991426459756 a004 Fibonacci(52)*Lucas(20)/(1/2+sqrt(5)/2)^59 2329991426459756 a004 Fibonacci(54)*Lucas(20)/(1/2+sqrt(5)/2)^61 2329991426459756 a004 Fibonacci(56)*Lucas(20)/(1/2+sqrt(5)/2)^63 2329991426459756 a004 Fibonacci(58)*Lucas(20)/(1/2+sqrt(5)/2)^65 2329991426459756 a004 Fibonacci(60)*Lucas(20)/(1/2+sqrt(5)/2)^67 2329991426459756 a004 Fibonacci(62)*Lucas(20)/(1/2+sqrt(5)/2)^69 2329991426459756 a004 Fibonacci(64)*Lucas(20)/(1/2+sqrt(5)/2)^71 2329991426459756 a004 Fibonacci(66)*Lucas(20)/(1/2+sqrt(5)/2)^73 2329991426459756 a004 Fibonacci(68)*Lucas(20)/(1/2+sqrt(5)/2)^75 2329991426459756 a004 Fibonacci(70)*Lucas(20)/(1/2+sqrt(5)/2)^77 2329991426459756 a004 Fibonacci(72)*Lucas(20)/(1/2+sqrt(5)/2)^79 2329991426459756 a004 Fibonacci(74)*Lucas(20)/(1/2+sqrt(5)/2)^81 2329991426459756 a004 Fibonacci(76)*Lucas(20)/(1/2+sqrt(5)/2)^83 2329991426459756 a004 Fibonacci(78)*Lucas(20)/(1/2+sqrt(5)/2)^85 2329991426459756 a004 Fibonacci(80)*Lucas(20)/(1/2+sqrt(5)/2)^87 2329991426459756 a004 Fibonacci(82)*Lucas(20)/(1/2+sqrt(5)/2)^89 2329991426459756 a004 Fibonacci(84)*Lucas(20)/(1/2+sqrt(5)/2)^91 2329991426459756 a004 Fibonacci(86)*Lucas(20)/(1/2+sqrt(5)/2)^93 2329991426459756 a004 Fibonacci(88)*Lucas(20)/(1/2+sqrt(5)/2)^95 2329991426459756 a004 Fibonacci(90)*Lucas(20)/(1/2+sqrt(5)/2)^97 2329991426459756 a004 Fibonacci(92)*Lucas(20)/(1/2+sqrt(5)/2)^99 2329991426459756 a004 Fibonacci(93)*Lucas(20)/(1/2+sqrt(5)/2)^100 2329991426459756 a004 Fibonacci(91)*Lucas(20)/(1/2+sqrt(5)/2)^98 2329991426459756 a004 Fibonacci(89)*Lucas(20)/(1/2+sqrt(5)/2)^96 2329991426459756 a004 Fibonacci(87)*Lucas(20)/(1/2+sqrt(5)/2)^94 2329991426459756 a004 Fibonacci(85)*Lucas(20)/(1/2+sqrt(5)/2)^92 2329991426459756 a004 Fibonacci(83)*Lucas(20)/(1/2+sqrt(5)/2)^90 2329991426459756 a004 Fibonacci(81)*Lucas(20)/(1/2+sqrt(5)/2)^88 2329991426459756 a004 Fibonacci(79)*Lucas(20)/(1/2+sqrt(5)/2)^86 2329991426459756 a004 Fibonacci(77)*Lucas(20)/(1/2+sqrt(5)/2)^84 2329991426459756 a004 Fibonacci(75)*Lucas(20)/(1/2+sqrt(5)/2)^82 2329991426459756 a004 Fibonacci(73)*Lucas(20)/(1/2+sqrt(5)/2)^80 2329991426459756 a004 Fibonacci(71)*Lucas(20)/(1/2+sqrt(5)/2)^78 2329991426459756 a004 Fibonacci(69)*Lucas(20)/(1/2+sqrt(5)/2)^76 2329991426459756 a004 Fibonacci(67)*Lucas(20)/(1/2+sqrt(5)/2)^74 2329991426459756 a004 Fibonacci(65)*Lucas(20)/(1/2+sqrt(5)/2)^72 2329991426459756 a004 Fibonacci(63)*Lucas(20)/(1/2+sqrt(5)/2)^70 2329991426459756 a004 Fibonacci(61)*Lucas(20)/(1/2+sqrt(5)/2)^68 2329991426459756 a004 Fibonacci(59)*Lucas(20)/(1/2+sqrt(5)/2)^66 2329991426459756 a004 Fibonacci(57)*Lucas(20)/(1/2+sqrt(5)/2)^64 2329991426459756 a004 Fibonacci(55)*Lucas(20)/(1/2+sqrt(5)/2)^62 2329991426459756 a004 Fibonacci(53)*Lucas(20)/(1/2+sqrt(5)/2)^60 2329991426459756 a004 Fibonacci(51)*Lucas(20)/(1/2+sqrt(5)/2)^58 2329991426459756 a004 Fibonacci(49)*Lucas(20)/(1/2+sqrt(5)/2)^56 2329991426459756 a004 Fibonacci(47)*Lucas(20)/(1/2+sqrt(5)/2)^54 2329991426459756 a004 Fibonacci(45)*Lucas(20)/(1/2+sqrt(5)/2)^52 2329991426459756 a004 Fibonacci(43)*Lucas(20)/(1/2+sqrt(5)/2)^50 2329991426459756 a004 Fibonacci(41)*Lucas(20)/(1/2+sqrt(5)/2)^48 2329991426459756 a001 2/6765*(1/2+1/2*5^(1/2))^33 2329991426459756 a004 Fibonacci(39)*Lucas(20)/(1/2+sqrt(5)/2)^46 2329991426459757 a004 Fibonacci(37)*Lucas(20)/(1/2+sqrt(5)/2)^44 2329991426459762 a004 Fibonacci(35)*Lucas(20)/(1/2+sqrt(5)/2)^42 2329991426459794 a004 Fibonacci(33)*Lucas(20)/(1/2+sqrt(5)/2)^40 2329991426460013 a004 Fibonacci(31)*Lucas(20)/(1/2+sqrt(5)/2)^38 2329991426461518 a004 Fibonacci(29)*Lucas(20)/(1/2+sqrt(5)/2)^36 2329991426471835 a004 Fibonacci(27)*Lucas(20)/(1/2+sqrt(5)/2)^34 2329991426519844 a001 28657/1149851*15127^(19/20) 2329991426542545 a004 Fibonacci(25)*Lucas(20)/(1/2+sqrt(5)/2)^32 2329991427027200 a004 Fibonacci(23)*Lucas(20)/(1/2+sqrt(5)/2)^30 2329991427419173 a001 17711/9349*9349^(10/19) 2329991427426063 a001 2584/9349*5778^(7/9) 2329991427692461 a001 5702887/103682*5778^(1/6) 2329991427877594 a001 4976784/90481*5778^(1/6) 2329991427904605 a001 39088169/710647*5778^(1/6) 2329991427908546 a001 831985/15126*5778^(1/6) 2329991427909121 a001 267914296/4870847*5778^(1/6) 2329991427909205 a001 233802911/4250681*5778^(1/6) 2329991427909217 a001 1836311903/33385282*5778^(1/6) 2329991427909219 a001 1602508992/29134601*5778^(1/6) 2329991427909219 a001 12586269025/228826127*5778^(1/6) 2329991427909219 a001 10983760033/199691526*5778^(1/6) 2329991427909219 a001 86267571272/1568397607*5778^(1/6) 2329991427909219 a001 75283811239/1368706081*5778^(1/6) 2329991427909219 a001 591286729879/10749957122*5778^(1/6) 2329991427909219 a001 12585437040/228811001*5778^(1/6) 2329991427909219 a001 4052739537881/73681302247*5778^(1/6) 2329991427909219 a001 3536736619241/64300051206*5778^(1/6) 2329991427909219 a001 6557470319842/119218851371*5778^(1/6) 2329991427909219 a001 2504730781961/45537549124*5778^(1/6) 2329991427909219 a001 956722026041/17393796001*5778^(1/6) 2329991427909219 a001 365435296162/6643838879*5778^(1/6) 2329991427909219 a001 139583862445/2537720636*5778^(1/6) 2329991427909219 a001 53316291173/969323029*5778^(1/6) 2329991427909219 a001 20365011074/370248451*5778^(1/6) 2329991427909219 a001 7778742049/141422324*5778^(1/6) 2329991427909220 a001 2971215073/54018521*5778^(1/6) 2329991427909225 a001 1134903170/20633239*5778^(1/6) 2329991427909257 a001 433494437/7881196*5778^(1/6) 2329991427909476 a001 165580141/3010349*5778^(1/6) 2329991427910982 a001 63245986/1149851*5778^(1/6) 2329991427921162 a001 2178309/24476*5778^(1/9) 2329991427921299 a001 24157817/439204*5778^(1/6) 2329991427992014 a001 9227465/167761*5778^(1/6) 2329991428095856 a001 5473/51841*15127^(4/5) 2329991428370926 a001 10946/64079*15127^(3/4) 2329991428476700 a001 3524578/64079*5778^(1/6) 2329991428904508 a001 10946/167761*15127^(17/20) 2329991429299215 a001 10946/271443*15127^(9/10) 2329991429370761 a001 196418/15127*5778^(1/3) 2329991429852034 a001 5473/219602*15127^(19/20) 2329991430159926 a001 4181/15127*24476^(2/3) 2329991430301165 a001 1346269/39603*5778^(2/9) 2329991430349074 a004 Fibonacci(21)*Lucas(20)/(1/2+sqrt(5)/2)^28 2329991430530337 a001 6765/9349*24476^(4/7) 2329991430674564 a001 5473/12238*15127^(13/20) 2329991430875245 a001 28657/9349*9349^(9/19) 2329991431391037 a001 10946/9349*9349^(11/19) 2329991431494098 a001 46368/9349*9349^(8/19) 2329991431569789 a001 1762289/51841*5778^(2/9) 2329991431754878 a001 9227465/271443*5778^(2/9) 2329991431781883 a001 24157817/710647*5778^(2/9) 2329991431785823 a001 31622993/930249*5778^(2/9) 2329991431786397 a001 165580141/4870847*5778^(2/9) 2329991431786481 a001 433494437/12752043*5778^(2/9) 2329991431786493 a001 567451585/16692641*5778^(2/9) 2329991431786495 a001 2971215073/87403803*5778^(2/9) 2329991431786495 a001 7778742049/228826127*5778^(2/9) 2329991431786496 a001 10182505537/299537289*5778^(2/9) 2329991431786496 a001 53316291173/1568397607*5778^(2/9) 2329991431786496 a001 139583862445/4106118243*5778^(2/9) 2329991431786496 a001 182717648081/5374978561*5778^(2/9) 2329991431786496 a001 956722026041/28143753123*5778^(2/9) 2329991431786496 a001 2504730781961/73681302247*5778^(2/9) 2329991431786496 a001 3278735159921/96450076809*5778^(2/9) 2329991431786496 a001 10610209857723/312119004989*5778^(2/9) 2329991431786496 a001 4052739537881/119218851371*5778^(2/9) 2329991431786496 a001 387002188980/11384387281*5778^(2/9) 2329991431786496 a001 591286729879/17393796001*5778^(2/9) 2329991431786496 a001 225851433717/6643838879*5778^(2/9) 2329991431786496 a001 1135099622/33391061*5778^(2/9) 2329991431786496 a001 32951280099/969323029*5778^(2/9) 2329991431786496 a001 12586269025/370248451*5778^(2/9) 2329991431786496 a001 1201881744/35355581*5778^(2/9) 2329991431786496 a001 1836311903/54018521*5778^(2/9) 2329991431786501 a001 701408733/20633239*5778^(2/9) 2329991431786533 a001 66978574/1970299*5778^(2/9) 2329991431786753 a001 102334155/3010349*5778^(2/9) 2329991431788257 a001 39088169/1149851*5778^(2/9) 2329991431798572 a001 196452/5779*5778^(2/9) 2329991431798794 a001 1346269/24476*5778^(1/6) 2329991431869270 a001 5702887/167761*5778^(2/9) 2329991432008119 a001 317811/3571*1364^(2/15) 2329991432187478 a001 1346269/9349*3571^(1/17) 2329991432353841 a001 2178309/64079*5778^(2/9) 2329991432407404 a001 4181/15127*64079^(14/23) 2329991432456747 a001 6765/9349*64079^(12/23) 2329991432747436 a001 6765/9349*439204^(4/9) 2329991432752791 a001 6765/9349*7881196^(4/11) 2329991432752802 a001 4181/15127*20633239^(2/5) 2329991432752804 a001 4181/15127*17393796001^(2/7) 2329991432752804 a001 4181/15127*14662949395604^(2/9) 2329991432752804 a001 4181/15127*(1/2+1/2*5^(1/2))^14 2329991432752804 a001 4181/15127*10749957122^(7/24) 2329991432752804 a001 4181/15127*4106118243^(7/23) 2329991432752804 a001 4181/15127*1568397607^(7/22) 2329991432752804 a001 4181/15127*599074578^(1/3) 2329991432752804 a001 4181/15127*228826127^(7/20) 2329991432752805 a001 4181/15127*87403803^(7/19) 2329991432752805 a001 6765/9349*141422324^(4/13) 2329991432752805 a001 6765/9349*2537720636^(4/15) 2329991432752805 a001 6765/9349*45537549124^(4/17) 2329991432752805 a001 6765/9349*817138163596^(4/19) 2329991432752805 a001 6765/9349*14662949395604^(4/21) 2329991432752805 a001 6765/9349*(1/2+1/2*5^(1/2))^12 2329991432752805 a001 6765/9349*192900153618^(2/9) 2329991432752805 a001 6765/9349*73681302247^(3/13) 2329991432752805 a001 6765/9349*10749957122^(1/4) 2329991432752805 a001 6765/9349*4106118243^(6/23) 2329991432752805 a001 6765/9349*1568397607^(3/11) 2329991432752805 a001 6765/9349*599074578^(2/7) 2329991432752805 a001 6765/9349*228826127^(3/10) 2329991432752805 a001 6765/9349*87403803^(6/19) 2329991432752805 a001 4181/15127*33385282^(7/18) 2329991432752805 a001 6765/9349*33385282^(1/3) 2329991432752810 a001 6765/9349*12752043^(6/17) 2329991432752810 a001 4181/15127*12752043^(7/17) 2329991432752842 a001 6765/9349*4870847^(3/8) 2329991432752847 a001 4181/15127*4870847^(7/16) 2329991432753074 a001 6765/9349*1860498^(2/5) 2329991432753119 a001 4181/15127*1860498^(7/15) 2329991432754782 a001 6765/9349*710647^(3/7) 2329991432755111 a001 4181/15127*710647^(1/2) 2329991432767400 a001 6765/9349*271443^(6/13) 2329991432769832 a001 4181/15127*271443^(7/13) 2329991432784427 a001 28284465/121393 2329991432861177 a001 6765/9349*103682^(1/2) 2329991432879239 a001 4181/15127*103682^(7/12) 2329991433196672 a001 75025/9349*9349^(7/19) 2329991433204336 a001 121393/15127*5778^(7/18) 2329991433563125 a001 6765/9349*39603^(6/11) 2329991433698178 a001 4181/15127*39603^(7/11) 2329991434177512 a001 832040/39603*5778^(5/18) 2329991434485302 a001 121393/9349*9349^(6/19) 2329991435337867 a007 Real Root Of 594*x^4+898*x^3-696*x^2+934*x-193 2329991435446929 a001 46347/2206*5778^(5/18) 2329991435632135 a001 5702887/271443*5778^(5/18) 2329991435659156 a001 14930352/710647*5778^(5/18) 2329991435663099 a001 39088169/1860498*5778^(5/18) 2329991435663674 a001 102334155/4870847*5778^(5/18) 2329991435663758 a001 267914296/12752043*5778^(5/18) 2329991435663770 a001 701408733/33385282*5778^(5/18) 2329991435663772 a001 1836311903/87403803*5778^(5/18) 2329991435663772 a001 102287808/4868641*5778^(5/18) 2329991435663772 a001 12586269025/599074578*5778^(5/18) 2329991435663772 a001 32951280099/1568397607*5778^(5/18) 2329991435663772 a001 86267571272/4106118243*5778^(5/18) 2329991435663772 a001 225851433717/10749957122*5778^(5/18) 2329991435663772 a001 591286729879/28143753123*5778^(5/18) 2329991435663772 a001 1548008755920/73681302247*5778^(5/18) 2329991435663772 a001 4052739537881/192900153618*5778^(5/18) 2329991435663772 a001 225749145909/10745088481*5778^(5/18) 2329991435663772 a001 6557470319842/312119004989*5778^(5/18) 2329991435663772 a001 2504730781961/119218851371*5778^(5/18) 2329991435663772 a001 956722026041/45537549124*5778^(5/18) 2329991435663772 a001 365435296162/17393796001*5778^(5/18) 2329991435663772 a001 139583862445/6643838879*5778^(5/18) 2329991435663772 a001 53316291173/2537720636*5778^(5/18) 2329991435663772 a001 20365011074/969323029*5778^(5/18) 2329991435663772 a001 7778742049/370248451*5778^(5/18) 2329991435663772 a001 2971215073/141422324*5778^(5/18) 2329991435663773 a001 1134903170/54018521*5778^(5/18) 2329991435663777 a001 433494437/20633239*5778^(5/18) 2329991435663809 a001 165580141/7881196*5778^(5/18) 2329991435664029 a001 63245986/3010349*5778^(5/18) 2329991435665535 a001 24157817/1149851*5778^(5/18) 2329991435675140 a001 208010/6119*5778^(2/9) 2329991435675856 a001 9227465/439204*5778^(5/18) 2329991435746598 a001 3524578/167761*5778^(5/18) 2329991435932044 a001 196418/9349*9349^(5/19) 2329991435992077 a001 311187/2161*2207^(1/16) 2329991436173255 a001 105937/1926*2207^(3/16) 2329991436231473 a001 1346269/64079*5778^(5/18) 2329991437196024 a001 75025/15127*5778^(4/9) 2329991437318393 a001 317811/9349*9349^(4/19) 2329991438057223 a001 514229/39603*5778^(1/3) 2329991438486294 a001 4181/39603*24476^(16/21) 2329991438727810 a001 514229/9349*9349^(3/19) 2329991438862224 a001 6765/9349*15127^(3/5) 2329991439045853 a004 Fibonacci(19)*Lucas(21)/(1/2+sqrt(5)/2)^27 2329991439199436 a001 4181/271443*24476^(20/21) 2329991439324561 a001 1346269/103682*5778^(1/3) 2329991439384725 a001 4181/103682*24476^(6/7) 2329991439499053 a001 4181/167761*24476^(19/21) 2329991439509463 a001 3524578/271443*5778^(1/3) 2329991439536440 a001 9227465/710647*5778^(1/3) 2329991439540376 a001 24157817/1860498*5778^(1/3) 2329991439540950 a001 63245986/4870847*5778^(1/3) 2329991439541034 a001 165580141/12752043*5778^(1/3) 2329991439541046 a001 433494437/33385282*5778^(1/3) 2329991439541048 a001 1134903170/87403803*5778^(1/3) 2329991439541048 a001 2971215073/228826127*5778^(1/3) 2329991439541048 a001 7778742049/599074578*5778^(1/3) 2329991439541048 a001 20365011074/1568397607*5778^(1/3) 2329991439541048 a001 53316291173/4106118243*5778^(1/3) 2329991439541048 a001 139583862445/10749957122*5778^(1/3) 2329991439541048 a001 365435296162/28143753123*5778^(1/3) 2329991439541048 a001 956722026041/73681302247*5778^(1/3) 2329991439541048 a001 2504730781961/192900153618*5778^(1/3) 2329991439541048 a001 10610209857723/817138163596*5778^(1/3) 2329991439541048 a001 4052739537881/312119004989*5778^(1/3) 2329991439541048 a001 1548008755920/119218851371*5778^(1/3) 2329991439541048 a001 591286729879/45537549124*5778^(1/3) 2329991439541048 a001 7787980473/599786069*5778^(1/3) 2329991439541048 a001 86267571272/6643838879*5778^(1/3) 2329991439541048 a001 32951280099/2537720636*5778^(1/3) 2329991439541048 a001 12586269025/969323029*5778^(1/3) 2329991439541048 a001 4807526976/370248451*5778^(1/3) 2329991439541048 a001 1836311903/141422324*5778^(1/3) 2329991439541049 a001 701408733/54018521*5778^(1/3) 2329991439541054 a001 9238424/711491*5778^(1/3) 2329991439541086 a001 102334155/7881196*5778^(1/3) 2329991439541305 a001 39088169/3010349*5778^(1/3) 2329991439542809 a001 14930352/1149851*5778^(1/3) 2329991439553113 a001 5702887/439204*5778^(1/3) 2329991439554852 a001 514229/24476*5778^(5/18) 2329991439597528 a001 17711/9349*24476^(10/21) 2329991439623739 a001 2178309/167761*5778^(1/3) 2329991439880461 a001 4181/15127*15127^(7/10) 2329991440107819 a001 832040/64079*5778^(1/3) 2329991440128416 a001 832040/9349*9349^(2/19) 2329991440354119 a001 4181/64079*24476^(17/21) 2329991440773767 a001 6624/2161*5778^(1/2) 2329991441054840 a001 4181/39603*64079^(16/23) 2329991441202869 a001 17711/9349*64079^(10/23) 2329991441236782 a001 46368/9349*24476^(8/21) 2329991441416468 a001 17711/9349*167761^(2/5) 2329991441449582 a001 17711/9349*20633239^(2/7) 2329991441449583 a001 4181/39603*(1/2+1/2*5^(1/2))^16 2329991441449583 a001 4181/39603*23725150497407^(1/4) 2329991441449583 a001 4181/39603*73681302247^(4/13) 2329991441449583 a001 4181/39603*10749957122^(1/3) 2329991441449583 a001 4181/39603*4106118243^(8/23) 2329991441449583 a001 4181/39603*1568397607^(4/11) 2329991441449583 a001 4181/39603*599074578^(8/21) 2329991441449583 a001 4181/39603*228826127^(2/5) 2329991441449584 a001 4181/39603*87403803^(8/19) 2329991441449584 a001 17711/9349*2537720636^(2/9) 2329991441449584 a001 17711/9349*312119004989^(2/11) 2329991441449584 a001 17711/9349*(1/2+1/2*5^(1/2))^10 2329991441449584 a001 17711/9349*28143753123^(1/5) 2329991441449584 a001 17711/9349*10749957122^(5/24) 2329991441449584 a001 17711/9349*4106118243^(5/23) 2329991441449584 a001 17711/9349*1568397607^(5/22) 2329991441449584 a001 17711/9349*599074578^(5/21) 2329991441449584 a001 17711/9349*228826127^(1/4) 2329991441449584 a001 17711/9349*87403803^(5/19) 2329991441449584 a001 17711/9349*33385282^(5/18) 2329991441449584 a001 4181/39603*33385282^(4/9) 2329991441449588 a001 17711/9349*12752043^(5/17) 2329991441449590 a001 4181/39603*12752043^(8/17) 2329991441449614 a001 17711/9349*4870847^(5/16) 2329991441449633 a001 4181/39603*4870847^(1/2) 2329991441449808 a001 17711/9349*1860498^(1/3) 2329991441449942 a001 4181/39603*1860498^(8/15) 2329991441451231 a001 17711/9349*710647^(5/14) 2329991441452220 a001 4181/39603*710647^(4/7) 2329991441454197 a001 74049691/317811 2329991441461746 a001 17711/9349*271443^(5/13) 2329991441469043 a001 4181/39603*271443^(8/13) 2329991441532387 a001 1346269/9349*9349^(1/19) 2329991441539894 a001 17711/9349*103682^(5/12) 2329991441594080 a001 4181/39603*103682^(2/3) 2329991441721521 a001 75025/9349*24476^(1/3) 2329991441792315 a001 121393/9349*24476^(2/7) 2329991441835764 a001 28657/9349*24476^(3/7) 2329991441928124 a001 105937/13201*5778^(7/18) 2329991442021222 a001 196418/9349*24476^(5/21) 2329991442124851 a001 17711/9349*39603^(5/11) 2329991442189735 a001 317811/9349*24476^(4/21) 2329991442274340 a001 4181/103682*64079^(18/23) 2329991442367727 a004 Fibonacci(19)*Lucas(23)/(1/2+sqrt(5)/2)^29 2329991442381316 a001 514229/9349*24476^(1/7) 2329991442387785 a001 4181/710647*64079^(22/23) 2329991442410119 a001 4181/271443*64079^(20/23) 2329991442429149 a001 4181/439204*64079^(21/23) 2329991442521055 a001 46368/9349*64079^(8/23) 2329991442530011 a001 4181/39603*39603^(8/11) 2329991442549202 a001 4181/167761*64079^(19/23) 2329991442564087 a001 832040/9349*24476^(2/21) 2329991442710374 a001 4181/103682*439204^(2/3) 2329991442718406 a001 4181/103682*7881196^(6/11) 2329991442718426 a001 4181/103682*141422324^(6/13) 2329991442718426 a001 4181/103682*2537720636^(2/5) 2329991442718426 a001 4181/103682*45537549124^(6/17) 2329991442718426 a001 4181/103682*14662949395604^(2/7) 2329991442718426 a001 4181/103682*(1/2+1/2*5^(1/2))^18 2329991442718426 a001 4181/103682*192900153618^(1/3) 2329991442718426 a001 4181/103682*10749957122^(3/8) 2329991442718426 a001 4181/103682*4106118243^(9/23) 2329991442718426 a001 4181/103682*1568397607^(9/22) 2329991442718426 a001 4181/103682*599074578^(3/7) 2329991442718426 a001 4181/103682*228826127^(9/20) 2329991442718427 a001 4181/103682*87403803^(9/19) 2329991442718427 a001 46368/9349*(1/2+1/2*5^(1/2))^8 2329991442718427 a001 46368/9349*23725150497407^(1/8) 2329991442718427 a001 46368/9349*505019158607^(1/7) 2329991442718427 a001 46368/9349*73681302247^(2/13) 2329991442718427 a001 46368/9349*10749957122^(1/6) 2329991442718427 a001 46368/9349*4106118243^(4/23) 2329991442718427 a001 46368/9349*1568397607^(2/11) 2329991442718427 a001 46368/9349*599074578^(4/21) 2329991442718427 a001 46368/9349*228826127^(1/5) 2329991442718427 a001 46368/9349*87403803^(4/19) 2329991442718427 a001 46368/9349*33385282^(2/9) 2329991442718427 a001 4181/103682*33385282^(1/2) 2329991442718430 a001 46368/9349*12752043^(4/17) 2329991442718434 a001 4181/103682*12752043^(9/17) 2329991442718451 a001 46368/9349*4870847^(1/4) 2329991442718482 a001 4181/103682*4870847^(9/16) 2329991442718606 a001 46368/9349*1860498^(4/15) 2329991442718830 a001 4181/103682*1860498^(3/5) 2329991442719100 a001 24233076/104005 2329991442719745 a001 46368/9349*710647^(2/7) 2329991442721392 a001 4181/103682*710647^(9/14) 2329991442728157 a001 46368/9349*271443^(4/13) 2329991442740319 a001 4181/103682*271443^(9/13) 2329991442750222 a001 1346269/9349*24476^(1/21) 2329991442755520 a001 121393/9349*64079^(6/23) 2329991442790675 a001 46368/9349*103682^(1/3) 2329991442823892 a001 196418/9349*64079^(5/23) 2329991442831871 a001 317811/9349*64079^(4/23) 2329991442837317 a001 4181/271443*167761^(4/5) 2329991442845260 a001 75025/9349*64079^(7/23) 2329991442852382 a004 Fibonacci(19)*Lucas(25)/(1/2+sqrt(5)/2)^31 2329991442862919 a001 514229/9349*64079^(3/23) 2329991442880985 a001 4181/103682*103682^(3/4) 2329991442885155 a001 832040/9349*64079^(2/23) 2329991442900864 a001 121393/9349*439204^(2/9) 2329991442903542 a001 121393/9349*7881196^(2/11) 2329991442903545 a001 4181/271443*20633239^(4/7) 2329991442903548 a001 4181/271443*2537720636^(4/9) 2329991442903548 a001 4181/271443*(1/2+1/2*5^(1/2))^20 2329991442903548 a001 4181/271443*23725150497407^(5/16) 2329991442903548 a001 4181/271443*505019158607^(5/14) 2329991442903548 a001 4181/271443*73681302247^(5/13) 2329991442903548 a001 4181/271443*28143753123^(2/5) 2329991442903548 a001 4181/271443*10749957122^(5/12) 2329991442903548 a001 4181/271443*4106118243^(10/23) 2329991442903548 a001 4181/271443*1568397607^(5/11) 2329991442903548 a001 4181/271443*599074578^(10/21) 2329991442903548 a001 4181/271443*228826127^(1/2) 2329991442903548 a001 4181/271443*87403803^(10/19) 2329991442903548 a001 121393/9349*141422324^(2/13) 2329991442903548 a001 121393/9349*2537720636^(2/15) 2329991442903548 a001 121393/9349*45537549124^(2/17) 2329991442903548 a001 121393/9349*14662949395604^(2/21) 2329991442903548 a001 121393/9349*(1/2+1/2*5^(1/2))^6 2329991442903548 a001 121393/9349*10749957122^(1/8) 2329991442903548 a001 121393/9349*4106118243^(3/23) 2329991442903548 a001 121393/9349*1568397607^(3/22) 2329991442903548 a001 121393/9349*599074578^(1/7) 2329991442903548 a001 121393/9349*228826127^(3/20) 2329991442903548 a001 121393/9349*87403803^(3/19) 2329991442903549 a001 121393/9349*33385282^(1/6) 2329991442903549 a001 4181/271443*33385282^(5/9) 2329991442903551 a001 121393/9349*12752043^(3/17) 2329991442903557 a001 4181/271443*12752043^(10/17) 2329991442903567 a001 121393/9349*4870847^(3/16) 2329991442903609 a001 4181/271443*4870847^(5/8) 2329991442903646 a001 507544133/2178309 2329991442903683 a001 121393/9349*1860498^(1/5) 2329991442903997 a001 4181/271443*1860498^(2/3) 2329991442904537 a001 121393/9349*710647^(3/14) 2329991442906844 a001 4181/271443*710647^(5/7) 2329991442910757 a001 1346269/9349*64079^(1/23) 2329991442910846 a001 121393/9349*271443^(3/13) 2329991442923092 a004 Fibonacci(19)*Lucas(27)/(1/2+sqrt(5)/2)^33 2329991442923761 a001 4181/1860498*439204^(8/9) 2329991442927873 a001 4181/271443*271443^(10/13) 2329991442930532 a001 4181/710647*7881196^(2/3) 2329991442930557 a001 4181/710647*312119004989^(2/5) 2329991442930557 a001 4181/710647*(1/2+1/2*5^(1/2))^22 2329991442930557 a001 4181/710647*10749957122^(11/24) 2329991442930557 a001 4181/710647*4106118243^(11/23) 2329991442930557 a001 4181/710647*1568397607^(1/2) 2329991442930557 a001 4181/710647*599074578^(11/21) 2329991442930557 a001 4181/710647*228826127^(11/20) 2329991442930557 a001 4181/710647*87403803^(11/19) 2329991442930557 a001 317811/9349*(1/2+1/2*5^(1/2))^4 2329991442930557 a001 317811/9349*23725150497407^(1/16) 2329991442930557 a001 317811/9349*73681302247^(1/13) 2329991442930557 a001 317811/9349*10749957122^(1/12) 2329991442930557 a001 317811/9349*4106118243^(2/23) 2329991442930557 a001 317811/9349*1568397607^(1/11) 2329991442930557 a001 317811/9349*599074578^(2/21) 2329991442930557 a001 317811/9349*228826127^(1/10) 2329991442930557 a001 317811/9349*87403803^(2/19) 2329991442930558 a001 317811/9349*33385282^(1/9) 2329991442930558 a001 4181/710647*33385282^(11/18) 2329991442930559 a001 317811/9349*12752043^(2/17) 2329991442930566 a001 4181/710647*12752043^(11/17) 2329991442930570 a001 317811/9349*4870847^(1/8) 2329991442930571 a001 1328767791/5702887 2329991442930625 a001 4181/710647*4870847^(11/16) 2329991442930647 a001 317811/9349*1860498^(2/15) 2329991442930692 a001 196418/9349*167761^(1/5) 2329991442931051 a001 4181/710647*1860498^(11/15) 2329991442931216 a001 317811/9349*710647^(1/7) 2329991442933408 a004 Fibonacci(19)*Lucas(29)/(1/2+sqrt(5)/2)^35 2329991442934182 a001 4181/710647*710647^(11/14) 2329991442934470 a001 4181/1860498*7881196^(8/11) 2329991442934497 a001 4181/1860498*141422324^(8/13) 2329991442934498 a001 4181/1860498*2537720636^(8/15) 2329991442934498 a001 4181/1860498*45537549124^(8/17) 2329991442934498 a001 4181/1860498*14662949395604^(8/21) 2329991442934498 a001 4181/1860498*(1/2+1/2*5^(1/2))^24 2329991442934498 a001 4181/1860498*192900153618^(4/9) 2329991442934498 a001 4181/1860498*73681302247^(6/13) 2329991442934498 a001 4181/1860498*10749957122^(1/2) 2329991442934498 a001 4181/1860498*4106118243^(12/23) 2329991442934498 a001 4181/1860498*1568397607^(6/11) 2329991442934498 a001 4181/1860498*599074578^(4/7) 2329991442934498 a001 4181/1860498*228826127^(3/5) 2329991442934498 a001 4181/1860498*87403803^(12/19) 2329991442934498 a001 832040/9349*(1/2+1/2*5^(1/2))^2 2329991442934498 a001 832040/9349*10749957122^(1/24) 2329991442934498 a001 832040/9349*4106118243^(1/23) 2329991442934498 a001 832040/9349*1568397607^(1/22) 2329991442934498 a001 832040/9349*599074578^(1/21) 2329991442934498 a001 832040/9349*228826127^(1/20) 2329991442934498 a001 832040/9349*87403803^(1/19) 2329991442934498 a001 832040/9349*33385282^(1/18) 2329991442934499 a001 832040/9349*12752043^(1/17) 2329991442934499 a001 4181/1860498*33385282^(2/3) 2329991442934500 a001 434844905/1866294 2329991442934504 a001 832040/9349*4870847^(1/16) 2329991442934508 a001 4181/1860498*12752043^(12/17) 2329991442934543 a001 832040/9349*1860498^(1/15) 2329991442934571 a001 4181/1860498*4870847^(3/4) 2329991442934827 a001 832040/9349*710647^(1/14) 2329991442934914 a004 Fibonacci(19)*Lucas(31)/(1/2+sqrt(5)/2)^37 2329991442935036 a001 4181/1860498*1860498^(4/5) 2329991442935072 a001 4181/4870847*141422324^(2/3) 2329991442935072 a001 4181/4870847*(1/2+1/2*5^(1/2))^26 2329991442935072 a001 4181/4870847*73681302247^(1/2) 2329991442935072 a001 4181/4870847*10749957122^(13/24) 2329991442935072 a001 4181/4870847*4106118243^(13/23) 2329991442935072 a001 4181/4870847*1568397607^(13/22) 2329991442935072 a001 4181/4870847*599074578^(13/21) 2329991442935072 a001 4181/4870847*228826127^(13/20) 2329991442935073 a001 4181/4870847*87403803^(13/19) 2329991442935073 a001 2178309/9349 2329991442935074 a001 4181/4870847*33385282^(13/18) 2329991442935083 a001 4181/4870847*12752043^(13/17) 2329991442935133 a004 Fibonacci(19)*Lucas(33)/(1/2+sqrt(5)/2)^39 2329991442935134 a001 4181/33385282*7881196^(10/11) 2329991442935152 a001 4181/12752043*20633239^(4/5) 2329991442935152 a001 4181/4870847*4870847^(13/16) 2329991442935156 a001 4181/12752043*17393796001^(4/7) 2329991442935156 a001 4181/12752043*14662949395604^(4/9) 2329991442935156 a001 4181/12752043*(1/2+1/2*5^(1/2))^28 2329991442935156 a001 4181/12752043*73681302247^(7/13) 2329991442935156 a001 4181/12752043*10749957122^(7/12) 2329991442935156 a001 4181/12752043*4106118243^(14/23) 2329991442935156 a001 4181/12752043*1568397607^(7/11) 2329991442935156 a001 4181/12752043*599074578^(2/3) 2329991442935156 a001 4181/12752043*228826127^(7/10) 2329991442935156 a001 23843770547/102334155 2329991442935157 a001 4181/12752043*87403803^(14/19) 2329991442935157 a004 Fibonacci(34)/Lucas(19)/(1/2+sqrt(5)/2)^2 2329991442935158 a001 4181/12752043*33385282^(7/9) 2329991442935164 a001 4181/33385282*20633239^(6/7) 2329991442935165 a004 Fibonacci(19)*Lucas(35)/(1/2+sqrt(5)/2)^41 2329991442935168 a001 4181/12752043*12752043^(14/17) 2329991442935168 a001 4181/33385282*141422324^(10/13) 2329991442935169 a001 4181/33385282*2537720636^(2/3) 2329991442935169 a001 4181/33385282*45537549124^(10/17) 2329991442935169 a001 4181/33385282*312119004989^(6/11) 2329991442935169 a001 4181/33385282*14662949395604^(10/21) 2329991442935169 a001 4181/33385282*(1/2+1/2*5^(1/2))^30 2329991442935169 a001 4181/33385282*192900153618^(5/9) 2329991442935169 a001 4181/33385282*28143753123^(3/5) 2329991442935169 a001 4181/33385282*10749957122^(5/8) 2329991442935169 a001 4181/33385282*4106118243^(15/23) 2329991442935169 a001 4181/33385282*1568397607^(15/22) 2329991442935169 a001 4181/33385282*599074578^(5/7) 2329991442935169 a001 7802975214/33489287 2329991442935169 a001 4181/33385282*228826127^(3/4) 2329991442935169 a001 4181/33385282*87403803^(15/19) 2329991442935169 a004 Fibonacci(36)/Lucas(19)/(1/2+sqrt(5)/2)^4 2329991442935170 a004 Fibonacci(19)*Lucas(37)/(1/2+sqrt(5)/2)^43 2329991442935170 a001 4181/33385282*33385282^(5/6) 2329991442935170 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^32/Lucas(38) 2329991442935170 a001 4181/87403803*23725150497407^(1/2) 2329991442935170 a001 4181/87403803*505019158607^(4/7) 2329991442935170 a001 4181/87403803*73681302247^(8/13) 2329991442935170 a001 4181/87403803*10749957122^(2/3) 2329991442935170 a001 4181/87403803*4106118243^(16/23) 2329991442935170 a001 4181/87403803*1568397607^(8/11) 2329991442935170 a001 163427634589/701408733 2329991442935170 a001 4181/87403803*599074578^(16/21) 2329991442935170 a001 4181/87403803*228826127^(4/5) 2329991442935171 a004 Fibonacci(19)*Lucas(39)/(1/2+sqrt(5)/2)^45 2329991442935171 a001 4181/599074578*141422324^(12/13) 2329991442935171 a001 4181/87403803*87403803^(16/19) 2329991442935171 a001 4181/228826127*45537549124^(2/3) 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^34/Lucas(40) 2329991442935171 a001 4181/228826127*10749957122^(17/24) 2329991442935171 a001 4181/228826127*4106118243^(17/23) 2329991442935171 a001 427859102055/1836311903 2329991442935171 a001 4181/228826127*1568397607^(17/22) 2329991442935171 a001 4181/228826127*599074578^(17/21) 2329991442935171 a004 Fibonacci(19)*Lucas(41)/(1/2+sqrt(5)/2)^47 2329991442935171 a001 4181/599074578*2537720636^(4/5) 2329991442935171 a001 4181/228826127*228826127^(17/20) 2329991442935171 a001 4181/599074578*45537549124^(12/17) 2329991442935171 a001 4181/599074578*14662949395604^(4/7) 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^36/Lucas(42) 2329991442935171 a001 4181/599074578*505019158607^(9/14) 2329991442935171 a001 4181/599074578*192900153618^(2/3) 2329991442935171 a001 4181/599074578*73681302247^(9/13) 2329991442935171 a001 4181/599074578*10749957122^(3/4) 2329991442935171 a001 140018708947/600940872 2329991442935171 a001 4181/599074578*4106118243^(18/23) 2329991442935171 a001 4181/599074578*1568397607^(9/11) 2329991442935171 a004 Fibonacci(19)*Lucas(43)/(1/2+sqrt(5)/2)^49 2329991442935171 a001 4181/1568397607*817138163596^(2/3) 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^38/Lucas(44) 2329991442935171 a001 2932589912673/12586269025 2329991442935171 a001 4181/1568397607*10749957122^(19/24) 2329991442935171 a001 4181/599074578*599074578^(6/7) 2329991442935171 a001 4181/1568397607*4106118243^(19/23) 2329991442935171 a001 4181/4106118243*2537720636^(8/9) 2329991442935171 a004 Fibonacci(19)*Lucas(45)/(1/2+sqrt(5)/2)^51 2329991442935171 a001 4181/10749957122*2537720636^(14/15) 2329991442935171 a001 4181/4106118243*312119004989^(8/11) 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^40/Lucas(46) 2329991442935171 a001 4181/4106118243*23725150497407^(5/8) 2329991442935171 a001 4181/4106118243*73681302247^(10/13) 2329991442935171 a001 7677620066443/32951280099 2329991442935171 a001 4181/4106118243*28143753123^(4/5) 2329991442935171 a001 4181/1568397607*1568397607^(19/22) 2329991442935171 a001 4181/4106118243*10749957122^(5/6) 2329991442935171 a004 Fibonacci(19)*Lucas(47)/(1/2+sqrt(5)/2)^53 2329991442935171 a001 4181/10749957122*17393796001^(6/7) 2329991442935171 a001 4181/10749957122*45537549124^(14/17) 2329991442935171 a001 4181/10749957122*14662949395604^(2/3) 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^42/Lucas(48) 2329991442935171 a001 4181/10749957122*505019158607^(3/4) 2329991442935171 a001 4181/10749957122*192900153618^(7/9) 2329991442935171 a001 2512533785832/10783446409 2329991442935171 a001 4181/4106118243*4106118243^(20/23) 2329991442935171 a004 Fibonacci(19)*Lucas(49)/(1/2+sqrt(5)/2)^55 2329991442935171 a001 4181/28143753123*312119004989^(4/5) 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^44/Lucas(50) 2329991442935171 a001 4181/28143753123*23725150497407^(11/16) 2329991442935171 a001 4181/28143753123*73681302247^(11/13) 2329991442935171 a001 4181/10749957122*10749957122^(7/8) 2329991442935171 a004 Fibonacci(19)*Lucas(51)/(1/2+sqrt(5)/2)^57 2329991442935171 a001 4181/192900153618*45537549124^(16/17) 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^46/Lucas(52) 2329991442935171 a001 137769302093919/591286729879 2329991442935171 a004 Fibonacci(19)*Lucas(53)/(1/2+sqrt(5)/2)^59 2329991442935171 a001 4181/192900153618*14662949395604^(16/21) 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^48/Lucas(54) 2329991442935171 a001 45085589436029/193501094490 2329991442935171 a001 4181/505019158607*312119004989^(10/11) 2329991442935171 a004 Fibonacci(19)*Lucas(55)/(1/2+sqrt(5)/2)^61 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^50/Lucas(56) 2329991442935171 a001 4181/192900153618*192900153618^(8/9) 2329991442935171 a004 Fibonacci(19)*Lucas(57)/(1/2+sqrt(5)/2)^63 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^52/Lucas(58) 2329991442935171 a001 2472169817624099/10610209857723 2329991442935171 a004 Fibonacci(19)*Lucas(59)/(1/2+sqrt(5)/2)^65 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^54/Lucas(60) 2329991442935171 a004 Fibonacci(19)*Lucas(61)/(1/2+sqrt(5)/2)^67 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^56/Lucas(62) 2329991442935171 a004 Fibonacci(19)*Lucas(63)/(1/2+sqrt(5)/2)^69 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^58/Lucas(64) 2329991442935171 a004 Fibonacci(19)*Lucas(65)/(1/2+sqrt(5)/2)^71 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^60/Lucas(66) 2329991442935171 a004 Fibonacci(19)*Lucas(67)/(1/2+sqrt(5)/2)^73 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^62/Lucas(68) 2329991442935171 a004 Fibonacci(19)*Lucas(69)/(1/2+sqrt(5)/2)^75 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^64/Lucas(70) 2329991442935171 a004 Fibonacci(19)*Lucas(71)/(1/2+sqrt(5)/2)^77 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^66/Lucas(72) 2329991442935171 a004 Fibonacci(19)*Lucas(73)/(1/2+sqrt(5)/2)^79 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^68/Lucas(74) 2329991442935171 a004 Fibonacci(19)*Lucas(75)/(1/2+sqrt(5)/2)^81 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^70/Lucas(76) 2329991442935171 a004 Fibonacci(19)*Lucas(77)/(1/2+sqrt(5)/2)^83 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^72/Lucas(78) 2329991442935171 a004 Fibonacci(19)*Lucas(79)/(1/2+sqrt(5)/2)^85 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^74/Lucas(80) 2329991442935171 a004 Fibonacci(19)*Lucas(81)/(1/2+sqrt(5)/2)^87 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^76/Lucas(82) 2329991442935171 a004 Fibonacci(19)*Lucas(83)/(1/2+sqrt(5)/2)^89 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^78/Lucas(84) 2329991442935171 a004 Fibonacci(19)*Lucas(85)/(1/2+sqrt(5)/2)^91 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^80/Lucas(86) 2329991442935171 a004 Fibonacci(19)*Lucas(87)/(1/2+sqrt(5)/2)^93 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^82/Lucas(88) 2329991442935171 a004 Fibonacci(19)*Lucas(89)/(1/2+sqrt(5)/2)^95 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^84/Lucas(90) 2329991442935171 a004 Fibonacci(19)*Lucas(91)/(1/2+sqrt(5)/2)^97 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^86/Lucas(92) 2329991442935171 a004 Fibonacci(19)*Lucas(93)/(1/2+sqrt(5)/2)^99 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^88/Lucas(94) 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^90/Lucas(96) 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^92/Lucas(98) 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^93/Lucas(99) 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^94/Lucas(100) 2329991442935171 a004 Fibonacci(19)*Lucas(1)/(1/2+sqrt(5)/2)^6 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^91/Lucas(97) 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^89/Lucas(95) 2329991442935171 a004 Fibonacci(19)*Lucas(94)/(1/2+sqrt(5)/2)^100 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^87/Lucas(93) 2329991442935171 a004 Fibonacci(19)*Lucas(92)/(1/2+sqrt(5)/2)^98 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^85/Lucas(91) 2329991442935171 a004 Fibonacci(19)*Lucas(90)/(1/2+sqrt(5)/2)^96 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^83/Lucas(89) 2329991442935171 a004 Fibonacci(19)*Lucas(88)/(1/2+sqrt(5)/2)^94 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^81/Lucas(87) 2329991442935171 a004 Fibonacci(19)*Lucas(86)/(1/2+sqrt(5)/2)^92 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^79/Lucas(85) 2329991442935171 a004 Fibonacci(19)*Lucas(84)/(1/2+sqrt(5)/2)^90 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^77/Lucas(83) 2329991442935171 a004 Fibonacci(19)*Lucas(82)/(1/2+sqrt(5)/2)^88 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^75/Lucas(81) 2329991442935171 a004 Fibonacci(19)*Lucas(80)/(1/2+sqrt(5)/2)^86 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^73/Lucas(79) 2329991442935171 a004 Fibonacci(19)*Lucas(78)/(1/2+sqrt(5)/2)^84 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^71/Lucas(77) 2329991442935171 a004 Fibonacci(19)*Lucas(76)/(1/2+sqrt(5)/2)^82 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^69/Lucas(75) 2329991442935171 a004 Fibonacci(19)*Lucas(74)/(1/2+sqrt(5)/2)^80 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^67/Lucas(73) 2329991442935171 a004 Fibonacci(19)*Lucas(72)/(1/2+sqrt(5)/2)^78 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^65/Lucas(71) 2329991442935171 a004 Fibonacci(19)*Lucas(70)/(1/2+sqrt(5)/2)^76 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^63/Lucas(69) 2329991442935171 a004 Fibonacci(19)*Lucas(68)/(1/2+sqrt(5)/2)^74 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^61/Lucas(67) 2329991442935171 a004 Fibonacci(19)*Lucas(66)/(1/2+sqrt(5)/2)^72 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^59/Lucas(65) 2329991442935171 a004 Fibonacci(19)*Lucas(64)/(1/2+sqrt(5)/2)^70 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^57/Lucas(63) 2329991442935171 a004 Fibonacci(19)*Lucas(62)/(1/2+sqrt(5)/2)^68 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^55/Lucas(61) 2329991442935171 a004 Fibonacci(19)*Lucas(60)/(1/2+sqrt(5)/2)^66 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^53/Lucas(59) 2329991442935171 a004 Fibonacci(19)*Lucas(58)/(1/2+sqrt(5)/2)^64 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^51/Lucas(57) 2329991442935171 a001 4181/1322157322203*505019158607^(13/14) 2329991442935171 a004 Fibonacci(19)*Lucas(56)/(1/2+sqrt(5)/2)^62 2329991442935171 a001 4181/312119004989*14662949395604^(7/9) 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^49/Lucas(55) 2329991442935171 a001 4181/312119004989*505019158607^(7/8) 2329991442935171 a004 Fibonacci(19)*Lucas(54)/(1/2+sqrt(5)/2)^60 2329991442935171 a001 4181/817138163596*192900153618^(17/18) 2329991442935171 a001 4181/45537549124*45537549124^(15/17) 2329991442935171 a001 222915413394313/956722026041 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^47/Lucas(53) 2329991442935171 a001 4181/192900153618*73681302247^(12/13) 2329991442935171 a004 Fibonacci(19)*Lucas(52)/(1/2+sqrt(5)/2)^58 2329991442935171 a001 4181/45537549124*312119004989^(9/11) 2329991442935171 a001 10182505537/43701901 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^45/Lucas(51) 2329991442935171 a001 4181/45537549124*192900153618^(5/6) 2329991442935171 a004 Fibonacci(19)*Lucas(50)/(1/2+sqrt(5)/2)^56 2329991442935171 a001 4181/45537549124*28143753123^(9/10) 2329991442935171 a001 32522920506869/139583862445 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^43/Lucas(49) 2329991442935171 a001 4181/28143753123*10749957122^(11/12) 2329991442935171 a001 4181/73681302247*10749957122^(23/24) 2329991442935171 a001 4181/45537549124*10749957122^(15/16) 2329991442935171 a004 Fibonacci(19)*Lucas(48)/(1/2+sqrt(5)/2)^54 2329991442935171 a001 4181/2537720636*2537720636^(13/15) 2329991442935171 a001 12422650220213/53316291173 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^41/Lucas(47) 2329991442935171 a001 4181/10749957122*4106118243^(21/23) 2329991442935171 a001 4181/28143753123*4106118243^(22/23) 2329991442935171 a004 Fibonacci(19)*Lucas(46)/(1/2+sqrt(5)/2)^52 2329991442935171 a001 2372515076885/10182505537 2329991442935171 a001 4181/2537720636*45537549124^(13/17) 2329991442935171 a001 4181/2537720636*14662949395604^(13/21) 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^39/Lucas(45) 2329991442935171 a001 4181/2537720636*192900153618^(13/18) 2329991442935171 a001 4181/2537720636*73681302247^(3/4) 2329991442935171 a001 4181/2537720636*10749957122^(13/16) 2329991442935171 a001 4181/4106118243*1568397607^(10/11) 2329991442935171 a001 4181/10749957122*1568397607^(21/22) 2329991442935171 a004 Fibonacci(19)*Lucas(44)/(1/2+sqrt(5)/2)^50 2329991442935171 a001 1812440241097/7778742049 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^37/Lucas(43) 2329991442935171 a001 4181/1568397607*599074578^(19/21) 2329991442935171 a001 4181/4106118243*599074578^(20/21) 2329991442935171 a001 4181/2537720636*599074578^(13/14) 2329991442935171 a004 Fibonacci(19)*Lucas(42)/(1/2+sqrt(5)/2)^48 2329991442935171 a001 4181/370248451*2537720636^(7/9) 2329991442935171 a001 692290569521/2971215073 2329991442935171 a001 4181/370248451*17393796001^(5/7) 2329991442935171 a001 4181/370248451*312119004989^(7/11) 2329991442935171 a001 4181/370248451*14662949395604^(5/9) 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^35/Lucas(41) 2329991442935171 a001 4181/370248451*505019158607^(5/8) 2329991442935171 a001 4181/370248451*28143753123^(7/10) 2329991442935171 a001 4181/141422324*141422324^(11/13) 2329991442935171 a001 4181/370248451*599074578^(5/6) 2329991442935171 a001 4181/599074578*228826127^(9/10) 2329991442935171 a001 4181/1568397607*228826127^(19/20) 2329991442935171 a004 Fibonacci(19)*Lucas(40)/(1/2+sqrt(5)/2)^46 2329991442935171 a001 4181/370248451*228826127^(7/8) 2329991442935171 a001 132215733733/567451585 2329991442935171 a001 4181/141422324*2537720636^(11/15) 2329991442935171 a001 4181/141422324*45537549124^(11/17) 2329991442935171 a001 4181/141422324*312119004989^(3/5) 2329991442935171 a001 4181/141422324*817138163596^(11/19) 2329991442935171 a001 4181/141422324*14662949395604^(11/21) 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^33/Lucas(39) 2329991442935171 a001 4181/141422324*192900153618^(11/18) 2329991442935171 a001 4181/141422324*10749957122^(11/16) 2329991442935171 a001 4181/141422324*1568397607^(3/4) 2329991442935171 a001 4181/141422324*599074578^(11/14) 2329991442935171 a001 4181/228826127*87403803^(17/19) 2329991442935171 a004 Fibonacci(40)/Lucas(19)/(1/2+sqrt(5)/2)^8 2329991442935171 a001 4181/599074578*87403803^(18/19) 2329991442935171 a004 Fibonacci(42)/Lucas(19)/(1/2+sqrt(5)/2)^10 2329991442935171 a004 Fibonacci(44)/Lucas(19)/(1/2+sqrt(5)/2)^12 2329991442935171 a004 Fibonacci(46)/Lucas(19)/(1/2+sqrt(5)/2)^14 2329991442935171 a004 Fibonacci(48)/Lucas(19)/(1/2+sqrt(5)/2)^16 2329991442935171 a004 Fibonacci(50)/Lucas(19)/(1/2+sqrt(5)/2)^18 2329991442935171 a004 Fibonacci(52)/Lucas(19)/(1/2+sqrt(5)/2)^20 2329991442935171 a004 Fibonacci(54)/Lucas(19)/(1/2+sqrt(5)/2)^22 2329991442935171 a004 Fibonacci(56)/Lucas(19)/(1/2+sqrt(5)/2)^24 2329991442935171 a004 Fibonacci(58)/Lucas(19)/(1/2+sqrt(5)/2)^26 2329991442935171 a004 Fibonacci(60)/Lucas(19)/(1/2+sqrt(5)/2)^28 2329991442935171 a004 Fibonacci(62)/Lucas(19)/(1/2+sqrt(5)/2)^30 2329991442935171 a004 Fibonacci(64)/Lucas(19)/(1/2+sqrt(5)/2)^32 2329991442935171 a004 Fibonacci(66)/Lucas(19)/(1/2+sqrt(5)/2)^34 2329991442935171 a004 Fibonacci(68)/Lucas(19)/(1/2+sqrt(5)/2)^36 2329991442935171 a004 Fibonacci(70)/Lucas(19)/(1/2+sqrt(5)/2)^38 2329991442935171 a004 Fibonacci(72)/Lucas(19)/(1/2+sqrt(5)/2)^40 2329991442935171 a004 Fibonacci(74)/Lucas(19)/(1/2+sqrt(5)/2)^42 2329991442935171 a004 Fibonacci(19)*Lucas(38)/(1/2+sqrt(5)/2)^44 2329991442935171 a004 Fibonacci(78)/Lucas(19)/(1/2+sqrt(5)/2)^46 2329991442935171 a004 Fibonacci(80)/Lucas(19)/(1/2+sqrt(5)/2)^48 2329991442935171 a004 Fibonacci(82)/Lucas(19)/(1/2+sqrt(5)/2)^50 2329991442935171 a004 Fibonacci(84)/Lucas(19)/(1/2+sqrt(5)/2)^52 2329991442935171 a004 Fibonacci(86)/Lucas(19)/(1/2+sqrt(5)/2)^54 2329991442935171 a004 Fibonacci(88)/Lucas(19)/(1/2+sqrt(5)/2)^56 2329991442935171 a004 Fibonacci(90)/Lucas(19)/(1/2+sqrt(5)/2)^58 2329991442935171 a004 Fibonacci(92)/Lucas(19)/(1/2+sqrt(5)/2)^60 2329991442935171 a004 Fibonacci(94)/Lucas(19)/(1/2+sqrt(5)/2)^62 2329991442935171 a004 Fibonacci(96)/Lucas(19)/(1/2+sqrt(5)/2)^64 2329991442935171 a004 Fibonacci(98)/Lucas(19)/(1/2+sqrt(5)/2)^66 2329991442935171 a004 Fibonacci(100)/Lucas(19)/(1/2+sqrt(5)/2)^68 2329991442935171 a004 Fibonacci(97)/Lucas(19)/(1/2+sqrt(5)/2)^65 2329991442935171 a004 Fibonacci(99)/Lucas(19)/(1/2+sqrt(5)/2)^67 2329991442935171 a004 Fibonacci(95)/Lucas(19)/(1/2+sqrt(5)/2)^63 2329991442935171 a004 Fibonacci(93)/Lucas(19)/(1/2+sqrt(5)/2)^61 2329991442935171 a004 Fibonacci(91)/Lucas(19)/(1/2+sqrt(5)/2)^59 2329991442935171 a004 Fibonacci(89)/Lucas(19)/(1/2+sqrt(5)/2)^57 2329991442935171 a004 Fibonacci(87)/Lucas(19)/(1/2+sqrt(5)/2)^55 2329991442935171 a004 Fibonacci(85)/Lucas(19)/(1/2+sqrt(5)/2)^53 2329991442935171 a004 Fibonacci(83)/Lucas(19)/(1/2+sqrt(5)/2)^51 2329991442935171 a004 Fibonacci(81)/Lucas(19)/(1/2+sqrt(5)/2)^49 2329991442935171 a004 Fibonacci(79)/Lucas(19)/(1/2+sqrt(5)/2)^47 2329991442935171 a004 Fibonacci(77)/Lucas(19)/(1/2+sqrt(5)/2)^45 2329991442935171 a004 Fibonacci(75)/Lucas(19)/(1/2+sqrt(5)/2)^43 2329991442935171 a004 Fibonacci(73)/Lucas(19)/(1/2+sqrt(5)/2)^41 2329991442935171 a004 Fibonacci(71)/Lucas(19)/(1/2+sqrt(5)/2)^39 2329991442935171 a004 Fibonacci(69)/Lucas(19)/(1/2+sqrt(5)/2)^37 2329991442935171 a004 Fibonacci(67)/Lucas(19)/(1/2+sqrt(5)/2)^35 2329991442935171 a004 Fibonacci(65)/Lucas(19)/(1/2+sqrt(5)/2)^33 2329991442935171 a004 Fibonacci(63)/Lucas(19)/(1/2+sqrt(5)/2)^31 2329991442935171 a004 Fibonacci(61)/Lucas(19)/(1/2+sqrt(5)/2)^29 2329991442935171 a004 Fibonacci(59)/Lucas(19)/(1/2+sqrt(5)/2)^27 2329991442935171 a004 Fibonacci(57)/Lucas(19)/(1/2+sqrt(5)/2)^25 2329991442935171 a004 Fibonacci(55)/Lucas(19)/(1/2+sqrt(5)/2)^23 2329991442935171 a004 Fibonacci(53)/Lucas(19)/(1/2+sqrt(5)/2)^21 2329991442935171 a004 Fibonacci(51)/Lucas(19)/(1/2+sqrt(5)/2)^19 2329991442935171 a004 Fibonacci(49)/Lucas(19)/(1/2+sqrt(5)/2)^17 2329991442935171 a004 Fibonacci(47)/Lucas(19)/(1/2+sqrt(5)/2)^15 2329991442935171 a004 Fibonacci(45)/Lucas(19)/(1/2+sqrt(5)/2)^13 2329991442935171 a004 Fibonacci(43)/Lucas(19)/(1/2+sqrt(5)/2)^11 2329991442935171 a004 Fibonacci(41)/Lucas(19)/(1/2+sqrt(5)/2)^9 2329991442935171 a004 Fibonacci(39)/Lucas(19)/(1/2+sqrt(5)/2)^7 2329991442935171 a001 101003832877/433494437 2329991442935171 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^31/Lucas(37) 2329991442935171 a001 4181/54018521*9062201101803^(1/2) 2329991442935172 a004 Fibonacci(37)/Lucas(19)/(1/2+sqrt(5)/2)^5 2329991442935172 a001 4181/87403803*33385282^(8/9) 2329991442935173 a001 4181/228826127*33385282^(17/18) 2329991442935173 a001 4181/141422324*33385282^(11/12) 2329991442935173 a004 Fibonacci(19)*Lucas(36)/(1/2+sqrt(5)/2)^42 2329991442935176 a001 38580031165/165580141 2329991442935176 a001 4181/20633239*(1/2+1/2*5^(1/2))^29 2329991442935176 a001 4181/20633239*1322157322203^(1/2) 2329991442935176 a004 Fibonacci(35)/Lucas(19)/(1/2+sqrt(5)/2)^3 2329991442935177 a001 4181/7881196*7881196^(9/11) 2329991442935181 a001 4181/33385282*12752043^(15/17) 2329991442935184 a001 4181/87403803*12752043^(16/17) 2329991442935185 a004 Fibonacci(19)*Lucas(34)/(1/2+sqrt(5)/2)^40 2329991442935208 a001 7368130309/31622993 2329991442935208 a001 4181/7881196*141422324^(9/13) 2329991442935208 a001 4181/7881196*2537720636^(3/5) 2329991442935208 a001 4181/7881196*45537549124^(9/17) 2329991442935208 a001 4181/7881196*817138163596^(9/19) 2329991442935208 a001 4181/7881196*14662949395604^(3/7) 2329991442935208 a001 4181/7881196*(1/2+1/2*5^(1/2))^27 2329991442935208 a001 4181/7881196*192900153618^(1/2) 2329991442935208 a001 4181/7881196*10749957122^(9/16) 2329991442935208 a001 4181/7881196*599074578^(9/14) 2329991442935208 a004 Fibonacci(33)/Lucas(19)/(1/2+sqrt(5)/2) 2329991442935210 a001 4181/7881196*33385282^(3/4) 2329991442935242 a001 4181/12752043*4870847^(7/8) 2329991442935261 a001 4181/33385282*4870847^(15/16) 2329991442935269 a004 Fibonacci(19)*Lucas(32)/(1/2+sqrt(5)/2)^38 2329991442935422 a001 317811/9349*271443^(2/13) 2329991442935424 a001 4181/3010349*20633239^(5/7) 2329991442935427 a001 5628750689/24157817 2329991442935428 a001 4181/3010349*2537720636^(5/9) 2329991442935428 a001 4181/3010349*312119004989^(5/11) 2329991442935428 a001 4181/3010349*(1/2+1/2*5^(1/2))^25 2329991442935428 a001 4181/3010349*3461452808002^(5/12) 2329991442935428 a001 4181/3010349*28143753123^(1/2) 2329991442935428 a001 4181/3010349*228826127^(5/8) 2329991442935428 a001 1346269/18698+1346269/18698*5^(1/2) 2329991442935591 a001 514229/9349*439204^(1/9) 2329991442935656 a001 4181/4870847*1860498^(13/15) 2329991442935785 a001 4181/12752043*1860498^(14/15) 2329991442935814 a001 4181/7881196*1860498^(9/10) 2329991442935844 a004 Fibonacci(19)*Lucas(30)/(1/2+sqrt(5)/2)^36 2329991442935989 a001 4181/3010349*1860498^(5/6) 2329991442936927 a001 2149991449/9227465 2329991442936930 a001 514229/9349*7881196^(1/11) 2329991442936930 a001 832040/9349*271443^(1/13) 2329991442936933 a001 4181/1149851*(1/2+1/2*5^(1/2))^23 2329991442936933 a001 4181/1149851*4106118243^(1/2) 2329991442936933 a001 514229/9349*141422324^(1/13) 2329991442936933 a001 514229/9349*2537720636^(1/15) 2329991442936933 a001 514229/9349*45537549124^(1/17) 2329991442936933 a001 514229/9349*14662949395604^(1/21) 2329991442936933 a001 514229/9349*(1/2+1/2*5^(1/2))^3 2329991442936933 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^3/Lucas(19) 2329991442936933 a001 514229/9349*10749957122^(1/16) 2329991442936933 a001 514229/9349*599074578^(1/14) 2329991442936933 a001 514229/9349*33385282^(1/12) 2329991442937001 a001 514229/9349*1860498^(1/10) 2329991442937855 a001 4181/439204*439204^(7/9) 2329991442938452 a001 4181/1860498*710647^(6/7) 2329991442939357 a001 4181/4870847*710647^(13/14) 2329991442939784 a004 Fibonacci(19)*Lucas(28)/(1/2+sqrt(5)/2)^34 2329991442944459 a001 1346269/9349*103682^(1/24) 2329991442947212 a001 410611829/1762289 2329991442947226 a001 4181/439204*7881196^(7/11) 2329991442947246 a001 4181/439204*20633239^(3/5) 2329991442947249 a001 196418/9349*20633239^(1/7) 2329991442947249 a001 4181/439204*141422324^(7/13) 2329991442947249 a001 4181/439204*2537720636^(7/15) 2329991442947249 a001 4181/439204*17393796001^(3/7) 2329991442947249 a001 4181/439204*45537549124^(7/17) 2329991442947249 a001 4181/439204*14662949395604^(1/3) 2329991442947249 a001 4181/439204*(1/2+1/2*5^(1/2))^21 2329991442947249 a001 4181/439204*192900153618^(7/18) 2329991442947249 a001 4181/439204*10749957122^(7/16) 2329991442947249 a001 4181/439204*599074578^(1/2) 2329991442947250 a001 196418/9349*2537720636^(1/9) 2329991442947250 a001 196418/9349*312119004989^(1/11) 2329991442947250 a001 196418/9349*(1/2+1/2*5^(1/2))^5 2329991442947250 a001 196418/9349*28143753123^(1/10) 2329991442947250 a001 196418/9349*228826127^(1/8) 2329991442947251 a001 4181/439204*33385282^(7/12) 2329991442947362 a001 196418/9349*1860498^(1/6) 2329991442947721 a001 4181/439204*1860498^(7/10) 2329991442950710 a001 4181/439204*710647^(3/4) 2329991442952560 a001 832040/9349*103682^(1/12) 2329991442957315 a001 4181/710647*271443^(11/13) 2329991442957734 a001 121393/9349*103682^(1/4) 2329991442963688 a001 4181/1860498*271443^(12/13) 2329991442964026 a001 514229/9349*103682^(1/8) 2329991442966681 a001 317811/9349*103682^(1/6) 2329991442966793 a004 Fibonacci(19)*Lucas(26)/(1/2+sqrt(5)/2)^32 2329991442992405 a001 196418/9349*103682^(5/24) 2329991443002955 a001 1346269/9349*39603^(1/22) 2329991443017702 a001 313679525/1346269 2329991443017959 a001 75025/9349*20633239^(1/5) 2329991443017960 a001 4181/167761*817138163596^(1/3) 2329991443017960 a001 4181/167761*(1/2+1/2*5^(1/2))^19 2329991443017960 a001 4181/167761*87403803^(1/2) 2329991443017960 a001 75025/9349*17393796001^(1/7) 2329991443017960 a001 75025/9349*14662949395604^(1/9) 2329991443017960 a001 75025/9349*(1/2+1/2*5^(1/2))^7 2329991443017960 a001 75025/9349*599074578^(1/6) 2329991443019113 a001 75025/9349*710647^(1/4) 2329991443069551 a001 832040/9349*39603^(1/11) 2329991443081177 a001 75025/9349*103682^(7/24) 2329991443083199 a001 4181/64079*64079^(17/23) 2329991443084168 a001 4181/271443*103682^(5/6) 2329991443129239 a001 4181/710647*103682^(11/12) 2329991443136901 a001 4181/439204*103682^(7/8) 2329991443139513 a001 514229/9349*39603^(3/22) 2329991443144646 a001 4181/1149851*103682^(23/24) 2329991443151915 a004 Fibonacci(19)*Lucas(24)/(1/2+sqrt(5)/2)^30 2329991443189549 a001 4181/167761*103682^(19/24) 2329991443200664 a001 317811/9349*39603^(2/11) 2329991443200907 a001 416020/51841*5778^(7/18) 2329991443258640 a001 46368/9349*39603^(4/11) 2329991443280572 a001 28657/9349*64079^(9/23) 2329991443284883 a001 196418/9349*39603^(5/22) 2329991443308709 a001 121393/9349*39603^(3/11) 2329991443386604 a001 726103/90481*5778^(7/18) 2329991443413697 a001 5702887/710647*5778^(7/18) 2329991443417650 a001 829464/103361*5778^(7/18) 2329991443418226 a001 39088169/4870847*5778^(7/18) 2329991443418310 a001 34111385/4250681*5778^(7/18) 2329991443418323 a001 133957148/16692641*5778^(7/18) 2329991443418325 a001 233802911/29134601*5778^(7/18) 2329991443418325 a001 1836311903/228826127*5778^(7/18) 2329991443418325 a001 267084832/33281921*5778^(7/18) 2329991443418325 a001 12586269025/1568397607*5778^(7/18) 2329991443418325 a001 10983760033/1368706081*5778^(7/18) 2329991443418325 a001 43133785636/5374978561*5778^(7/18) 2329991443418325 a001 75283811239/9381251041*5778^(7/18) 2329991443418325 a001 591286729879/73681302247*5778^(7/18) 2329991443418325 a001 86000486440/10716675201*5778^(7/18) 2329991443418325 a001 4052739537881/505019158607*5778^(7/18) 2329991443418325 a001 3536736619241/440719107401*5778^(7/18) 2329991443418325 a001 3278735159921/408569081798*5778^(7/18) 2329991443418325 a001 2504730781961/312119004989*5778^(7/18) 2329991443418325 a001 956722026041/119218851371*5778^(7/18) 2329991443418325 a001 182717648081/22768774562*5778^(7/18) 2329991443418325 a001 139583862445/17393796001*5778^(7/18) 2329991443418325 a001 53316291173/6643838879*5778^(7/18) 2329991443418325 a001 10182505537/1268860318*5778^(7/18) 2329991443418325 a001 7778742049/969323029*5778^(7/18) 2329991443418325 a001 2971215073/370248451*5778^(7/18) 2329991443418325 a001 567451585/70711162*5778^(7/18) 2329991443418326 a001 433494437/54018521*5778^(7/18) 2329991443418330 a001 165580141/20633239*5778^(7/18) 2329991443418362 a001 31622993/3940598*5778^(7/18) 2329991443418583 a001 24157817/3010349*5778^(7/18) 2329991443420093 a001 9227465/1149851*5778^(7/18) 2329991443425753 a001 10959/844*5778^(1/3) 2329991443430441 a001 1762289/219602*5778^(7/18) 2329991443444546 a001 1346269/9349*15127^(1/20) 2329991443490647 a001 75025/9349*39603^(7/22) 2329991443498589 a001 28657/9349*439204^(1/3) 2329991443500852 a001 119814917/514229 2329991443501371 a001 1346269/167761*5778^(7/18) 2329991443502605 a001 28657/9349*7881196^(3/11) 2329991443502614 a001 4181/64079*45537549124^(1/3) 2329991443502614 a001 4181/64079*(1/2+1/2*5^(1/2))^17 2329991443502615 a001 28657/9349*141422324^(3/13) 2329991443502615 a001 28657/9349*2537720636^(1/5) 2329991443502615 a001 28657/9349*45537549124^(3/17) 2329991443502615 a001 28657/9349*14662949395604^(1/7) 2329991443502615 a001 28657/9349*(1/2+1/2*5^(1/2))^9 2329991443502615 a001 28657/9349*192900153618^(1/6) 2329991443502615 a001 28657/9349*10749957122^(3/16) 2329991443502615 a001 28657/9349*599074578^(3/14) 2329991443502615 a001 28657/9349*33385282^(1/4) 2329991443502622 a001 4181/64079*12752043^(1/2) 2329991443502817 a001 28657/9349*1860498^(3/10) 2329991443583894 a001 28657/9349*103682^(3/8) 2329991443656142 a001 4181/64079*103682^(17/24) 2329991443933907 a001 4181/103682*39603^(9/11) 2329991443952734 a001 832040/9349*15127^(1/10) 2329991443987531 a001 514229/64079*5778^(7/18) 2329991444046404 a001 4181/24476*24476^(5/7) 2329991444110355 a001 28657/9349*39603^(9/22) 2329991444254082 a001 4181/271443*39603^(10/11) 2329991444300967 a001 4181/167761*39603^(19/22) 2329991444365310 a001 4181/439204*39603^(21/22) 2329991444411030 r005 Im(z^2+c),c=-13/118+3/10*I,n=19 2329991444420758 a004 Fibonacci(19)*Lucas(22)/(1/2+sqrt(5)/2)^28 2329991444464288 a001 514229/9349*15127^(3/20) 2329991444650568 a001 4181/64079*39603^(17/22) 2329991444688940 a001 5702887/39603*2207^(1/16) 2329991444787227 a001 10946/9349*24476^(11/21) 2329991444967031 a001 317811/9349*15127^(1/5) 2329991445435232 a001 28657/15127*5778^(5/9) 2329991445492841 a001 196418/9349*15127^(1/4) 2329991445822093 a001 196418/39603*5778^(4/9) 2329991445957795 a001 7465176/51841*2207^(1/16) 2329991445958258 a001 121393/9349*15127^(3/10) 2329991446142918 a001 39088169/271443*2207^(1/16) 2329991446169927 a001 14619165/101521*2207^(1/16) 2329991446173868 a001 133957148/930249*2207^(1/16) 2329991446174443 a001 701408733/4870847*2207^(1/16) 2329991446174527 a001 1836311903/12752043*2207^(1/16) 2329991446174539 a001 14930208/103681*2207^(1/16) 2329991446174541 a001 12586269025/87403803*2207^(1/16) 2329991446174541 a001 32951280099/228826127*2207^(1/16) 2329991446174541 a001 43133785636/299537289*2207^(1/16) 2329991446174541 a001 32264490531/224056801*2207^(1/16) 2329991446174541 a001 591286729879/4106118243*2207^(1/16) 2329991446174541 a001 774004377960/5374978561*2207^(1/16) 2329991446174541 a001 4052739537881/28143753123*2207^(1/16) 2329991446174541 a001 1515744265389/10525900321*2207^(1/16) 2329991446174541 a001 3278735159921/22768774562*2207^(1/16) 2329991446174541 a001 2504730781961/17393796001*2207^(1/16) 2329991446174541 a001 956722026041/6643838879*2207^(1/16) 2329991446174541 a001 182717648081/1268860318*2207^(1/16) 2329991446174541 a001 139583862445/969323029*2207^(1/16) 2329991446174541 a001 53316291173/370248451*2207^(1/16) 2329991446174541 a001 10182505537/70711162*2207^(1/16) 2329991446174542 a001 7778742049/54018521*2207^(1/16) 2329991446174547 a001 2971215073/20633239*2207^(1/16) 2329991446174579 a001 567451585/3940598*2207^(1/16) 2329991446174798 a001 433494437/3010349*2207^(1/16) 2329991446176303 a001 165580141/1149851*2207^(1/16) 2329991446186620 a001 31622993/219602*2207^(1/16) 2329991446257331 a001 24157817/167761*2207^(1/16) 2329991446317251 a001 6765/15127*5778^(13/18) 2329991446454416 a001 4181/24476*64079^(15/23) 2329991446540767 a001 17711/9349*15127^(1/2) 2329991446553103 a001 10946/9349*64079^(11/23) 2329991446581788 a001 75025/9349*15127^(7/20) 2329991446741990 a001 9227465/64079*2207^(1/16) 2329991446774815 a001 4181/24476*167761^(3/5) 2329991446791373 a001 46368/9349*15127^(2/5) 2329991446812410 a001 22882613/98209 2329991446812705 a001 1346269/9349*5778^(1/18) 2329991446817778 a001 4181/24476*439204^(5/9) 2329991446824471 a001 4181/24476*7881196^(5/11) 2329991446824476 a001 10946/9349*7881196^(1/3) 2329991446824486 a001 4181/24476*20633239^(3/7) 2329991446824488 a001 4181/24476*141422324^(5/13) 2329991446824489 a001 4181/24476*2537720636^(1/3) 2329991446824489 a001 4181/24476*45537549124^(5/17) 2329991446824489 a001 4181/24476*312119004989^(3/11) 2329991446824489 a001 4181/24476*14662949395604^(5/21) 2329991446824489 a001 4181/24476*(1/2+1/2*5^(1/2))^15 2329991446824489 a001 4181/24476*192900153618^(5/18) 2329991446824489 a001 4181/24476*28143753123^(3/10) 2329991446824489 a001 4181/24476*10749957122^(5/16) 2329991446824489 a001 4181/24476*599074578^(5/14) 2329991446824489 a001 4181/24476*228826127^(3/8) 2329991446824489 a001 10946/9349*312119004989^(1/5) 2329991446824489 a001 10946/9349*(1/2+1/2*5^(1/2))^11 2329991446824489 a001 10946/9349*1568397607^(1/4) 2329991446824489 a001 4181/24476*33385282^(5/12) 2329991446824825 a001 4181/24476*1860498^(1/2) 2329991446923830 a001 10946/9349*103682^(11/24) 2329991446959954 a001 4181/24476*103682^(5/8) 2329991447080619 a001 514229/103682*5778^(4/9) 2329991447259477 a001 17711/15127*5778^(11/18) 2329991447264236 a001 1346269/271443*5778^(4/9) 2329991447291025 a001 3524578/710647*5778^(4/9) 2329991447294934 a001 9227465/1860498*5778^(4/9) 2329991447295504 a001 24157817/4870847*5778^(4/9) 2329991447295587 a001 63245986/12752043*5778^(4/9) 2329991447295599 a001 165580141/33385282*5778^(4/9) 2329991447295601 a001 433494437/87403803*5778^(4/9) 2329991447295601 a001 1134903170/228826127*5778^(4/9) 2329991447295601 a001 2971215073/599074578*5778^(4/9) 2329991447295601 a001 7778742049/1568397607*5778^(4/9) 2329991447295601 a001 20365011074/4106118243*5778^(4/9) 2329991447295601 a001 53316291173/10749957122*5778^(4/9) 2329991447295601 a001 139583862445/28143753123*5778^(4/9) 2329991447295601 a001 365435296162/73681302247*5778^(4/9) 2329991447295601 a001 956722026041/192900153618*5778^(4/9) 2329991447295601 a001 2504730781961/505019158607*5778^(4/9) 2329991447295601 a001 10610209857723/2139295485799*5778^(4/9) 2329991447295601 a001 4052739537881/817138163596*5778^(4/9) 2329991447295601 a001 140728068720/28374454999*5778^(4/9) 2329991447295601 a001 591286729879/119218851371*5778^(4/9) 2329991447295601 a001 225851433717/45537549124*5778^(4/9) 2329991447295601 a001 86267571272/17393796001*5778^(4/9) 2329991447295601 a001 32951280099/6643838879*5778^(4/9) 2329991447295601 a001 1144206275/230701876*5778^(4/9) 2329991447295601 a001 4807526976/969323029*5778^(4/9) 2329991447295601 a001 1836311903/370248451*5778^(4/9) 2329991447295601 a001 701408733/141422324*5778^(4/9) 2329991447295602 a001 267914296/54018521*5778^(4/9) 2329991447295607 a001 9303105/1875749*5778^(4/9) 2329991447295638 a001 39088169/7881196*5778^(4/9) 2329991447295856 a001 14930352/3010349*5778^(4/9) 2329991447297349 a001 5702887/1149851*5778^(4/9) 2329991447307582 a001 2178309/439204*5778^(4/9) 2329991447319721 a001 98209/12238*5778^(7/18) 2329991447377717 a001 75640/15251*5778^(4/9) 2329991447567282 a001 10946/9349*39603^(1/2) 2329991447837389 a001 4181/24476*39603^(15/22) 2329991447858431 a001 317811/64079*5778^(4/9) 2329991448084680 a001 28657/9349*15127^(9/20) 2329991449595476 a001 4181/39603*15127^(4/5) 2329991449655668 a001 121393/39603*5778^(1/2) 2329991450063897 a001 1762289/12238*2207^(1/16) 2329991450388759 m001 LaplaceLimit*(Riemann1stZero+Riemann2ndZero) 2329991450689051 a001 832040/9349*5778^(1/9) 2329991450951520 a001 317811/103682*5778^(1/2) 2329991451140582 a001 832040/271443*5778^(1/2) 2329991451153297 a001 121393/24476*5778^(4/9) 2329991451168166 a001 311187/101521*5778^(1/2) 2329991451172190 a001 5702887/1860498*5778^(1/2) 2329991451172777 a001 14930352/4870847*5778^(1/2) 2329991451172863 a001 39088169/12752043*5778^(1/2) 2329991451172876 a001 14619165/4769326*5778^(1/2) 2329991451172877 a001 267914296/87403803*5778^(1/2) 2329991451172878 a001 701408733/228826127*5778^(1/2) 2329991451172878 a001 1836311903/599074578*5778^(1/2) 2329991451172878 a001 686789568/224056801*5778^(1/2) 2329991451172878 a001 12586269025/4106118243*5778^(1/2) 2329991451172878 a001 32951280099/10749957122*5778^(1/2) 2329991451172878 a001 86267571272/28143753123*5778^(1/2) 2329991451172878 a001 32264490531/10525900321*5778^(1/2) 2329991451172878 a001 591286729879/192900153618*5778^(1/2) 2329991451172878 a001 1548008755920/505019158607*5778^(1/2) 2329991451172878 a001 1515744265389/494493258286*5778^(1/2) 2329991451172878 a001 2504730781961/817138163596*5778^(1/2) 2329991451172878 a001 956722026041/312119004989*5778^(1/2) 2329991451172878 a001 365435296162/119218851371*5778^(1/2) 2329991451172878 a001 139583862445/45537549124*5778^(1/2) 2329991451172878 a001 53316291173/17393796001*5778^(1/2) 2329991451172878 a001 20365011074/6643838879*5778^(1/2) 2329991451172878 a001 7778742049/2537720636*5778^(1/2) 2329991451172878 a001 2971215073/969323029*5778^(1/2) 2329991451172878 a001 1134903170/370248451*5778^(1/2) 2329991451172878 a001 433494437/141422324*5778^(1/2) 2329991451172879 a001 165580141/54018521*5778^(1/2) 2329991451172883 a001 63245986/20633239*5778^(1/2) 2329991451172916 a001 24157817/7881196*5778^(1/2) 2329991451173140 a001 9227465/3010349*5778^(1/2) 2329991451174677 a001 3524578/1149851*5778^(1/2) 2329991451185214 a001 1346269/439204*5778^(1/2) 2329991451257429 a001 514229/167761*5778^(1/2) 2329991451353417 a001 4181/9349*9349^(13/19) 2329991451752400 a001 196418/64079*5778^(1/2) 2329991451882556 a001 4181/103682*15127^(9/10) 2329991452157626 a001 4181/64079*15127^(17/20) 2329991452424790 a001 10946/9349*15127^(11/20) 2329991452691208 a001 4181/167761*15127^(19/20) 2329991453028151 m001 (BesselI(1,2)+Khinchin)/(2^(1/2)+BesselK(0,1)) 2329991453117537 a004 Fibonacci(19)*Lucas(20)/(1/2+sqrt(5)/2)^26 2329991453138294 m005 (11/30+1/6*5^(1/2))/(3/10*gamma+3) 2329991453647356 a001 75025/39603*5778^(5/9) 2329991454461263 a001 4181/24476*15127^(3/4) 2329991454568763 a001 514229/9349*5778^(1/6) 2329991454809657 r005 Re(z^2+c),c=-21/86+7/23*I,n=25 2329991454845489 a001 98209/51841*5778^(5/9) 2329991455020294 a001 514229/271443*5778^(5/9) 2329991455045798 a001 1346269/710647*5778^(5/9) 2329991455049519 a001 1762289/930249*5778^(5/9) 2329991455050061 a001 9227465/4870847*5778^(5/9) 2329991455050141 a001 24157817/12752043*5778^(5/9) 2329991455050152 a001 31622993/16692641*5778^(5/9) 2329991455050154 a001 165580141/87403803*5778^(5/9) 2329991455050154 a001 433494437/228826127*5778^(5/9) 2329991455050154 a001 567451585/299537289*5778^(5/9) 2329991455050154 a001 2971215073/1568397607*5778^(5/9) 2329991455050154 a001 7778742049/4106118243*5778^(5/9) 2329991455050154 a001 10182505537/5374978561*5778^(5/9) 2329991455050154 a001 53316291173/28143753123*5778^(5/9) 2329991455050154 a001 139583862445/73681302247*5778^(5/9) 2329991455050154 a001 182717648081/96450076809*5778^(5/9) 2329991455050154 a001 956722026041/505019158607*5778^(5/9) 2329991455050154 a001 10610209857723/5600748293801*5778^(5/9) 2329991455050154 a001 591286729879/312119004989*5778^(5/9) 2329991455050154 a001 225851433717/119218851371*5778^(5/9) 2329991455050154 a001 21566892818/11384387281*5778^(5/9) 2329991455050154 a001 32951280099/17393796001*5778^(5/9) 2329991455050154 a001 12586269025/6643838879*5778^(5/9) 2329991455050154 a001 1201881744/634430159*5778^(5/9) 2329991455050154 a001 1836311903/969323029*5778^(5/9) 2329991455050154 a001 701408733/370248451*5778^(5/9) 2329991455050154 a001 66978574/35355581*5778^(5/9) 2329991455050155 a001 102334155/54018521*5778^(5/9) 2329991455050159 a001 39088169/20633239*5778^(5/9) 2329991455050190 a001 3732588/1970299*5778^(5/9) 2329991455050397 a001 5702887/3010349*5778^(5/9) 2329991455051818 a001 2178309/1149851*5778^(5/9) 2329991455061560 a001 208010/109801*5778^(5/9) 2329991455128329 a001 317811/167761*5778^(5/9) 2329991455144984 a001 75025/24476*5778^(1/2) 2329991455585975 a001 121393/64079*5778^(5/9) 2329991456511659 a001 10946/15127*5778^(2/3) 2329991457225099 a001 15456/13201*5778^(11/18) 2329991458425958 r005 Re(z^2+c),c=-35/122+1/34*I,n=21 2329991458439663 a001 317811/9349*5778^(2/9) 2329991458679064 a001 121393/103682*5778^(11/18) 2329991458722728 a001 11592/6119*5778^(5/9) 2329991458891194 a001 105937/90481*5778^(11/18) 2329991458922144 a001 832040/710647*5778^(11/18) 2329991458926659 a001 726103/620166*5778^(11/18) 2329991458927318 a001 5702887/4870847*5778^(11/18) 2329991458927414 a001 4976784/4250681*5778^(11/18) 2329991458927428 a001 39088169/33385282*5778^(11/18) 2329991458927430 a001 34111385/29134601*5778^(11/18) 2329991458927431 a001 267914296/228826127*5778^(11/18) 2329991458927431 a001 233802911/199691526*5778^(11/18) 2329991458927431 a001 1836311903/1568397607*5778^(11/18) 2329991458927431 a001 1602508992/1368706081*5778^(11/18) 2329991458927431 a001 12586269025/10749957122*5778^(11/18) 2329991458927431 a001 10983760033/9381251041*5778^(11/18) 2329991458927431 a001 86267571272/73681302247*5778^(11/18) 2329991458927431 a001 75283811239/64300051206*5778^(11/18) 2329991458927431 a001 2504730781961/2139295485799*5778^(11/18) 2329991458927431 a001 365435296162/312119004989*5778^(11/18) 2329991458927431 a001 139583862445/119218851371*5778^(11/18) 2329991458927431 a001 53316291173/45537549124*5778^(11/18) 2329991458927431 a001 20365011074/17393796001*5778^(11/18) 2329991458927431 a001 7778742049/6643838879*5778^(11/18) 2329991458927431 a001 2971215073/2537720636*5778^(11/18) 2329991458927431 a001 1134903170/969323029*5778^(11/18) 2329991458927431 a001 433494437/370248451*5778^(11/18) 2329991458927431 a001 165580141/141422324*5778^(11/18) 2329991458927432 a001 63245986/54018521*5778^(11/18) 2329991458927437 a001 24157817/20633239*5778^(11/18) 2329991458927474 a001 9227465/7881196*5778^(11/18) 2329991458927725 a001 3524578/3010349*5778^(11/18) 2329991458929450 a001 1346269/1149851*5778^(11/18) 2329991458941272 a001 514229/439204*5778^(11/18) 2329991459022298 a001 196418/167761*5778^(11/18) 2329991459577663 a001 75025/64079*5778^(11/18) 2329991461886564 a001 28657/39603*5778^(2/3) 2329991462333632 a001 196418/9349*5778^(5/18) 2329991462670752 a001 75025/103682*5778^(2/3) 2329991462768583 a001 2255/13201*5778^(5/6) 2329991462785163 a001 196418/271443*5778^(2/3) 2329991462801856 a001 514229/710647*5778^(2/3) 2329991462804291 a001 1346269/1860498*5778^(2/3) 2329991462804646 a001 3524578/4870847*5778^(2/3) 2329991462804698 a001 9227465/12752043*5778^(2/3) 2329991462804706 a001 24157817/33385282*5778^(2/3) 2329991462804707 a001 63245986/87403803*5778^(2/3) 2329991462804707 a001 165580141/228826127*5778^(2/3) 2329991462804707 a001 433494437/599074578*5778^(2/3) 2329991462804707 a001 1134903170/1568397607*5778^(2/3) 2329991462804707 a001 2971215073/4106118243*5778^(2/3) 2329991462804707 a001 7778742049/10749957122*5778^(2/3) 2329991462804707 a001 20365011074/28143753123*5778^(2/3) 2329991462804707 a001 53316291173/73681302247*5778^(2/3) 2329991462804707 a001 139583862445/192900153618*5778^(2/3) 2329991462804707 a001 365435296162/505019158607*5778^(2/3) 2329991462804707 a001 10610209857723/14662949395604*5778^(2/3) 2329991462804707 a001 225851433717/312119004989*5778^(2/3) 2329991462804707 a001 86267571272/119218851371*5778^(2/3) 2329991462804707 a001 32951280099/45537549124*5778^(2/3) 2329991462804707 a001 12586269025/17393796001*5778^(2/3) 2329991462804707 a001 4807526976/6643838879*5778^(2/3) 2329991462804707 a001 1836311903/2537720636*5778^(2/3) 2329991462804707 a001 701408733/969323029*5778^(2/3) 2329991462804707 a001 267914296/370248451*5778^(2/3) 2329991462804707 a001 102334155/141422324*5778^(2/3) 2329991462804708 a001 39088169/54018521*5778^(2/3) 2329991462804710 a001 14930352/20633239*5778^(2/3) 2329991462804730 a001 5702887/7881196*5778^(2/3) 2329991462804866 a001 2178309/3010349*5778^(2/3) 2329991462805796 a001 832040/1149851*5778^(2/3) 2329991462812172 a001 317811/439204*5778^(2/3) 2329991462855873 a001 121393/167761*5778^(2/3) 2329991463155407 a001 46368/64079*5778^(2/3) 2329991463384192 a001 28657/24476*5778^(11/18) 2329991463710809 a001 17711/39603*5778^(13/18) 2329991464266211 a001 6765/24476*5778^(7/9) 2329991464431058 a001 1597/9349*3571^(15/17) 2329991465208438 a001 17711/24476*5778^(2/3) 2329991465889584 a001 1346269/15127*2207^(1/8) 2329991466087098 a001 98209/2889*2207^(1/4) 2329991466167207 a001 121393/9349*5778^(1/3) 2329991466248495 a001 23184/51841*5778^(13/18) 2329991466618738 a001 121393/271443*5778^(13/18) 2329991466672756 a001 317811/710647*5778^(13/18) 2329991466680637 a001 416020/930249*5778^(13/18) 2329991466681787 a001 2178309/4870847*5778^(13/18) 2329991466681955 a001 5702887/12752043*5778^(13/18) 2329991466681979 a001 7465176/16692641*5778^(13/18) 2329991466681983 a001 39088169/87403803*5778^(13/18) 2329991466681983 a001 102334155/228826127*5778^(13/18) 2329991466681984 a001 133957148/299537289*5778^(13/18) 2329991466681984 a001 701408733/1568397607*5778^(13/18) 2329991466681984 a001 1836311903/4106118243*5778^(13/18) 2329991466681984 a001 2403763488/5374978561*5778^(13/18) 2329991466681984 a001 12586269025/28143753123*5778^(13/18) 2329991466681984 a001 32951280099/73681302247*5778^(13/18) 2329991466681984 a001 43133785636/96450076809*5778^(13/18) 2329991466681984 a001 225851433717/505019158607*5778^(13/18) 2329991466681984 a001 591286729879/1322157322203*5778^(13/18) 2329991466681984 a001 10610209857723/23725150497407*5778^(13/18) 2329991466681984 a001 139583862445/312119004989*5778^(13/18) 2329991466681984 a001 53316291173/119218851371*5778^(13/18) 2329991466681984 a001 10182505537/22768774562*5778^(13/18) 2329991466681984 a001 7778742049/17393796001*5778^(13/18) 2329991466681984 a001 2971215073/6643838879*5778^(13/18) 2329991466681984 a001 567451585/1268860318*5778^(13/18) 2329991466681984 a001 433494437/969323029*5778^(13/18) 2329991466681984 a001 165580141/370248451*5778^(13/18) 2329991466681984 a001 31622993/70711162*5778^(13/18) 2329991466681985 a001 24157817/54018521*5778^(13/18) 2329991466681994 a001 9227465/20633239*5778^(13/18) 2329991466682059 a001 1762289/3940598*5778^(13/18) 2329991466682498 a001 1346269/3010349*5778^(13/18) 2329991466685508 a001 514229/1149851*5778^(13/18) 2329991466706141 a001 98209/219602*5778^(13/18) 2329991466847561 a001 75025/167761*5778^(13/18) 2329991467185279 a001 4181/9349*24476^(13/21) 2329991467816871 a001 28657/64079*5778^(13/18) 2329991468112092 h001 (8/11*exp(2)+7/9)/(3/11*exp(2)+5/8) 2329991468698890 a001 6765/64079*5778^(8/9) 2329991469272223 a001 4181/9349*64079^(13/23) 2329991469510163 a001 17480761/75025 2329991469592952 a001 4181/9349*141422324^(1/3) 2329991469592952 a001 4181/9349*(1/2+1/2*5^(1/2))^13 2329991469592952 a001 4181/9349*73681302247^(1/4) 2329991469608763 a001 4181/9349*271443^(1/2) 2329991469641117 a001 17711/64079*5778^(7/9) 2329991469710355 a001 4181/9349*103682^(13/24) 2329991470158895 a001 75025/9349*5778^(7/18) 2329991470425305 a001 46368/167761*5778^(7/9) 2329991470470799 a001 4181/9349*39603^(13/22) 2329991470539716 a001 121393/439204*5778^(7/9) 2329991470556409 a001 317811/1149851*5778^(7/9) 2329991470558844 a001 832040/3010349*5778^(7/9) 2329991470559199 a001 2178309/7881196*5778^(7/9) 2329991470559251 a001 5702887/20633239*5778^(7/9) 2329991470559259 a001 14930352/54018521*5778^(7/9) 2329991470559260 a001 39088169/141422324*5778^(7/9) 2329991470559260 a001 102334155/370248451*5778^(7/9) 2329991470559260 a001 267914296/969323029*5778^(7/9) 2329991470559260 a001 701408733/2537720636*5778^(7/9) 2329991470559260 a001 1836311903/6643838879*5778^(7/9) 2329991470559260 a001 4807526976/17393796001*5778^(7/9) 2329991470559260 a001 12586269025/45537549124*5778^(7/9) 2329991470559260 a001 32951280099/119218851371*5778^(7/9) 2329991470559260 a001 86267571272/312119004989*5778^(7/9) 2329991470559260 a001 225851433717/817138163596*5778^(7/9) 2329991470559260 a001 1548008755920/5600748293801*5778^(7/9) 2329991470559260 a001 139583862445/505019158607*5778^(7/9) 2329991470559260 a001 53316291173/192900153618*5778^(7/9) 2329991470559260 a001 20365011074/73681302247*5778^(7/9) 2329991470559260 a001 7778742049/28143753123*5778^(7/9) 2329991470559260 a001 2971215073/10749957122*5778^(7/9) 2329991470559260 a001 1134903170/4106118243*5778^(7/9) 2329991470559260 a001 433494437/1568397607*5778^(7/9) 2329991470559260 a001 165580141/599074578*5778^(7/9) 2329991470559260 a001 63245986/228826127*5778^(7/9) 2329991470559261 a001 24157817/87403803*5778^(7/9) 2329991470559263 a001 9227465/33385282*5778^(7/9) 2329991470559283 a001 3524578/12752043*5778^(7/9) 2329991470559419 a001 1346269/4870847*5778^(7/9) 2329991470560349 a001 514229/1860498*5778^(7/9) 2329991470566725 a001 196418/710647*5778^(7/9) 2329991470610426 a001 75025/271443*5778^(7/9) 2329991470724066 a007 Real Root Of -628*x^4-142*x^3-789*x^2+464*x+151 2329991470909960 a001 28657/103682*5778^(7/9) 2329991471791979 a001 6765/103682*5778^(17/18) 2329991472734205 a001 17711/103682*5778^(5/6) 2329991472832580 a001 1346269/9349*2207^(1/16) 2329991472962991 a001 10946/39603*5778^(7/9) 2329991473736638 a001 46368/9349*5778^(4/9) 2329991474188170 a001 15456/90481*5778^(5/6) 2329991474400300 a001 121393/710647*5778^(5/6) 2329991474431250 a001 105937/620166*5778^(5/6) 2329991474435765 a001 832040/4870847*5778^(5/6) 2329991474436424 a001 726103/4250681*5778^(5/6) 2329991474436520 a001 5702887/33385282*5778^(5/6) 2329991474436534 a001 4976784/29134601*5778^(5/6) 2329991474436536 a001 39088169/228826127*5778^(5/6) 2329991474436536 a001 34111385/199691526*5778^(5/6) 2329991474436536 a001 267914296/1568397607*5778^(5/6) 2329991474436536 a001 233802911/1368706081*5778^(5/6) 2329991474436536 a001 1836311903/10749957122*5778^(5/6) 2329991474436536 a001 1602508992/9381251041*5778^(5/6) 2329991474436536 a001 12586269025/73681302247*5778^(5/6) 2329991474436536 a001 10983760033/64300051206*5778^(5/6) 2329991474436536 a001 86267571272/505019158607*5778^(5/6) 2329991474436536 a001 75283811239/440719107401*5778^(5/6) 2329991474436536 a001 2504730781961/14662949395604*5778^(5/6) 2329991474436536 a001 139583862445/817138163596*5778^(5/6) 2329991474436536 a001 53316291173/312119004989*5778^(5/6) 2329991474436536 a001 20365011074/119218851371*5778^(5/6) 2329991474436536 a001 7778742049/45537549124*5778^(5/6) 2329991474436536 a001 2971215073/17393796001*5778^(5/6) 2329991474436536 a001 1134903170/6643838879*5778^(5/6) 2329991474436536 a001 433494437/2537720636*5778^(5/6) 2329991474436537 a001 165580141/969323029*5778^(5/6) 2329991474436537 a001 63245986/370248451*5778^(5/6) 2329991474436537 a001 24157817/141422324*5778^(5/6) 2329991474436543 a001 9227465/54018521*5778^(5/6) 2329991474436579 a001 3524578/20633239*5778^(5/6) 2329991474436831 a001 1346269/7881196*5778^(5/6) 2329991474438556 a001 514229/3010349*5778^(5/6) 2329991474450377 a001 196418/1149851*5778^(5/6) 2329991474460619 a001 5473/12238*5778^(13/18) 2329991474531404 a001 75025/439204*5778^(5/6) 2329991474586143 a001 3524578/39603*2207^(1/8) 2329991475086769 a001 28657/167761*5778^(5/6) 2329991475854954 a001 9227465/103682*2207^(1/8) 2329991475885999 a004 Fibonacci(20)*Lucas(18)/(1/2+sqrt(5)/2)^25 2329991476040071 a001 24157817/271443*2207^(1/8) 2329991476067079 a001 63245986/710647*2207^(1/8) 2329991476071020 a001 165580141/1860498*2207^(1/8) 2329991476071595 a001 433494437/4870847*2207^(1/8) 2329991476071678 a001 1134903170/12752043*2207^(1/8) 2329991476071691 a001 2971215073/33385282*2207^(1/8) 2329991476071693 a001 7778742049/87403803*2207^(1/8) 2329991476071693 a001 20365011074/228826127*2207^(1/8) 2329991476071693 a001 53316291173/599074578*2207^(1/8) 2329991476071693 a001 139583862445/1568397607*2207^(1/8) 2329991476071693 a001 365435296162/4106118243*2207^(1/8) 2329991476071693 a001 956722026041/10749957122*2207^(1/8) 2329991476071693 a001 2504730781961/28143753123*2207^(1/8) 2329991476071693 a001 6557470319842/73681302247*2207^(1/8) 2329991476071693 a001 10610209857723/119218851371*2207^(1/8) 2329991476071693 a001 4052739537881/45537549124*2207^(1/8) 2329991476071693 a001 1548008755920/17393796001*2207^(1/8) 2329991476071693 a001 591286729879/6643838879*2207^(1/8) 2329991476071693 a001 225851433717/2537720636*2207^(1/8) 2329991476071693 a001 86267571272/969323029*2207^(1/8) 2329991476071693 a001 32951280099/370248451*2207^(1/8) 2329991476071693 a001 12586269025/141422324*2207^(1/8) 2329991476071694 a001 4807526976/54018521*2207^(1/8) 2329991476071698 a001 1836311903/20633239*2207^(1/8) 2329991476071730 a001 3524667/39604*2207^(1/8) 2329991476071950 a001 267914296/3010349*2207^(1/8) 2329991476073455 a001 102334155/1149851*2207^(1/8) 2329991476083771 a001 39088169/439204*2207^(1/8) 2329991476154480 a001 14930352/167761*2207^(1/8) 2329991476211490 a001 4181/9349*15127^(13/20) 2329991476639122 a001 5702887/64079*2207^(1/8) 2329991476911015 a001 17711/167761*5778^(8/9) 2329991478109147 a001 11592/109801*5778^(8/9) 2329991478283953 a001 121393/1149851*5778^(8/9) 2329991478309456 a001 317811/3010349*5778^(8/9) 2329991478313177 a001 208010/1970299*5778^(8/9) 2329991478313720 a001 2178309/20633239*5778^(8/9) 2329991478313799 a001 5702887/54018521*5778^(8/9) 2329991478313811 a001 3732588/35355581*5778^(8/9) 2329991478313813 a001 39088169/370248451*5778^(8/9) 2329991478313813 a001 102334155/969323029*5778^(8/9) 2329991478313813 a001 66978574/634430159*5778^(8/9) 2329991478313813 a001 701408733/6643838879*5778^(8/9) 2329991478313813 a001 1836311903/17393796001*5778^(8/9) 2329991478313813 a001 1201881744/11384387281*5778^(8/9) 2329991478313813 a001 12586269025/119218851371*5778^(8/9) 2329991478313813 a001 32951280099/312119004989*5778^(8/9) 2329991478313813 a001 21566892818/204284540899*5778^(8/9) 2329991478313813 a001 225851433717/2139295485799*5778^(8/9) 2329991478313813 a001 182717648081/1730726404001*5778^(8/9) 2329991478313813 a001 139583862445/1322157322203*5778^(8/9) 2329991478313813 a001 53316291173/505019158607*5778^(8/9) 2329991478313813 a001 10182505537/96450076809*5778^(8/9) 2329991478313813 a001 7778742049/73681302247*5778^(8/9) 2329991478313813 a001 2971215073/28143753123*5778^(8/9) 2329991478313813 a001 567451585/5374978561*5778^(8/9) 2329991478313813 a001 433494437/4106118243*5778^(8/9) 2329991478313813 a001 165580141/1568397607*5778^(8/9) 2329991478313813 a001 31622993/299537289*5778^(8/9) 2329991478313814 a001 24157817/228826127*5778^(8/9) 2329991478313818 a001 9227465/87403803*5778^(8/9) 2329991478313848 a001 1762289/16692641*5778^(8/9) 2329991478314056 a001 1346269/12752043*5778^(8/9) 2329991478315477 a001 514229/4870847*5778^(8/9) 2329991478325219 a001 98209/930249*5778^(8/9) 2329991478391988 a001 75025/710647*5778^(8/9) 2329991478398103 a001 28657/9349*5778^(1/2) 2329991478849634 a001 28657/271443*5778^(8/9) 2329991478893298 a001 10946/64079*5778^(5/6) 2329991478908402 m002 -E^Pi/2+Pi^3+Cosh[Pi]/3 2329991479280122 a001 6765/9349*5778^(2/3) 2329991479403927 a001 1597/2207*2207^(3/4) 2329991479960913 a001 2178309/24476*2207^(1/8) 2329991480222348 a001 17711/9349*5778^(5/9) 2329991480351679 r009 Re(z^3+c),c=-17/122+41/45*I,n=24 2329991480673880 a001 17711/271443*5778^(17/18) 2329991481330677 a001 6765/3571*3571^(10/17) 2329991481969732 a001 6624/101521*5778^(17/18) 2329991481986387 a001 5473/51841*5778^(8/9) 2329991482158794 a001 121393/1860498*5778^(17/18) 2329991482186378 a001 317811/4870847*5778^(17/18) 2329991482190402 a001 832040/12752043*5778^(17/18) 2329991482190989 a001 311187/4769326*5778^(17/18) 2329991482191075 a001 5702887/87403803*5778^(17/18) 2329991482191087 a001 14930352/228826127*5778^(17/18) 2329991482191089 a001 39088169/599074578*5778^(17/18) 2329991482191089 a001 14619165/224056801*5778^(17/18) 2329991482191089 a001 267914296/4106118243*5778^(17/18) 2329991482191089 a001 701408733/10749957122*5778^(17/18) 2329991482191089 a001 1836311903/28143753123*5778^(17/18) 2329991482191089 a001 686789568/10525900321*5778^(17/18) 2329991482191089 a001 12586269025/192900153618*5778^(17/18) 2329991482191089 a001 32951280099/505019158607*5778^(17/18) 2329991482191089 a001 86267571272/1322157322203*5778^(17/18) 2329991482191089 a001 32264490531/494493258286*5778^(17/18) 2329991482191089 a001 1548008755920/23725150497407*5778^(17/18) 2329991482191089 a001 139583862445/2139295485799*5778^(17/18) 2329991482191089 a001 53316291173/817138163596*5778^(17/18) 2329991482191089 a001 20365011074/312119004989*5778^(17/18) 2329991482191089 a001 7778742049/119218851371*5778^(17/18) 2329991482191089 a001 2971215073/45537549124*5778^(17/18) 2329991482191089 a001 1134903170/17393796001*5778^(17/18) 2329991482191089 a001 433494437/6643838879*5778^(17/18) 2329991482191089 a001 165580141/2537720636*5778^(17/18) 2329991482191090 a001 63245986/969323029*5778^(17/18) 2329991482191090 a001 24157817/370248451*5778^(17/18) 2329991482191095 a001 9227465/141422324*5778^(17/18) 2329991482191128 a001 3524578/54018521*5778^(17/18) 2329991482191352 a001 1346269/20633239*5778^(17/18) 2329991482192889 a001 514229/7881196*5778^(17/18) 2329991482203425 a001 196418/3010349*5778^(17/18) 2329991482275641 a001 75025/1149851*5778^(17/18) 2329991482632662 a007 Real Root Of -19*x^4-401*x^3+949*x^2-531*x-120 2329991482770612 a001 28657/439204*5778^(17/18) 2329991484582779 a004 Fibonacci(22)*Lucas(18)/(1/2+sqrt(5)/2)^27 2329991485851622 a004 Fibonacci(24)*Lucas(18)/(1/2+sqrt(5)/2)^29 2329991486036743 a004 Fibonacci(26)*Lucas(18)/(1/2+sqrt(5)/2)^31 2329991486063752 a004 Fibonacci(28)*Lucas(18)/(1/2+sqrt(5)/2)^33 2329991486067693 a004 Fibonacci(30)*Lucas(18)/(1/2+sqrt(5)/2)^35 2329991486068268 a004 Fibonacci(32)*Lucas(18)/(1/2+sqrt(5)/2)^37 2329991486068352 a004 Fibonacci(34)*Lucas(18)/(1/2+sqrt(5)/2)^39 2329991486068364 a004 Fibonacci(36)*Lucas(18)/(1/2+sqrt(5)/2)^41 2329991486068366 a004 Fibonacci(38)*Lucas(18)/(1/2+sqrt(5)/2)^43 2329991486068366 a004 Fibonacci(40)*Lucas(18)/(1/2+sqrt(5)/2)^45 2329991486068366 a004 Fibonacci(42)*Lucas(18)/(1/2+sqrt(5)/2)^47 2329991486068366 a004 Fibonacci(44)*Lucas(18)/(1/2+sqrt(5)/2)^49 2329991486068366 a004 Fibonacci(46)*Lucas(18)/(1/2+sqrt(5)/2)^51 2329991486068366 a004 Fibonacci(48)*Lucas(18)/(1/2+sqrt(5)/2)^53 2329991486068366 a004 Fibonacci(50)*Lucas(18)/(1/2+sqrt(5)/2)^55 2329991486068366 a004 Fibonacci(52)*Lucas(18)/(1/2+sqrt(5)/2)^57 2329991486068366 a004 Fibonacci(54)*Lucas(18)/(1/2+sqrt(5)/2)^59 2329991486068366 a004 Fibonacci(56)*Lucas(18)/(1/2+sqrt(5)/2)^61 2329991486068366 a004 Fibonacci(58)*Lucas(18)/(1/2+sqrt(5)/2)^63 2329991486068366 a004 Fibonacci(60)*Lucas(18)/(1/2+sqrt(5)/2)^65 2329991486068366 a004 Fibonacci(62)*Lucas(18)/(1/2+sqrt(5)/2)^67 2329991486068366 a004 Fibonacci(64)*Lucas(18)/(1/2+sqrt(5)/2)^69 2329991486068366 a004 Fibonacci(66)*Lucas(18)/(1/2+sqrt(5)/2)^71 2329991486068366 a004 Fibonacci(68)*Lucas(18)/(1/2+sqrt(5)/2)^73 2329991486068366 a004 Fibonacci(70)*Lucas(18)/(1/2+sqrt(5)/2)^75 2329991486068366 a004 Fibonacci(72)*Lucas(18)/(1/2+sqrt(5)/2)^77 2329991486068366 a004 Fibonacci(74)*Lucas(18)/(1/2+sqrt(5)/2)^79 2329991486068366 a004 Fibonacci(76)*Lucas(18)/(1/2+sqrt(5)/2)^81 2329991486068366 a004 Fibonacci(78)*Lucas(18)/(1/2+sqrt(5)/2)^83 2329991486068366 a004 Fibonacci(80)*Lucas(18)/(1/2+sqrt(5)/2)^85 2329991486068366 a004 Fibonacci(82)*Lucas(18)/(1/2+sqrt(5)/2)^87 2329991486068366 a004 Fibonacci(84)*Lucas(18)/(1/2+sqrt(5)/2)^89 2329991486068366 a004 Fibonacci(86)*Lucas(18)/(1/2+sqrt(5)/2)^91 2329991486068366 a004 Fibonacci(88)*Lucas(18)/(1/2+sqrt(5)/2)^93 2329991486068366 a004 Fibonacci(90)*Lucas(18)/(1/2+sqrt(5)/2)^95 2329991486068366 a004 Fibonacci(92)*Lucas(18)/(1/2+sqrt(5)/2)^97 2329991486068366 a004 Fibonacci(94)*Lucas(18)/(1/2+sqrt(5)/2)^99 2329991486068366 a004 Fibonacci(95)*Lucas(18)/(1/2+sqrt(5)/2)^100 2329991486068366 a004 Fibonacci(93)*Lucas(18)/(1/2+sqrt(5)/2)^98 2329991486068366 a004 Fibonacci(91)*Lucas(18)/(1/2+sqrt(5)/2)^96 2329991486068366 a004 Fibonacci(89)*Lucas(18)/(1/2+sqrt(5)/2)^94 2329991486068366 a004 Fibonacci(87)*Lucas(18)/(1/2+sqrt(5)/2)^92 2329991486068366 a004 Fibonacci(85)*Lucas(18)/(1/2+sqrt(5)/2)^90 2329991486068366 a004 Fibonacci(83)*Lucas(18)/(1/2+sqrt(5)/2)^88 2329991486068366 a004 Fibonacci(81)*Lucas(18)/(1/2+sqrt(5)/2)^86 2329991486068366 a004 Fibonacci(79)*Lucas(18)/(1/2+sqrt(5)/2)^84 2329991486068366 a004 Fibonacci(77)*Lucas(18)/(1/2+sqrt(5)/2)^82 2329991486068366 a004 Fibonacci(75)*Lucas(18)/(1/2+sqrt(5)/2)^80 2329991486068366 a004 Fibonacci(73)*Lucas(18)/(1/2+sqrt(5)/2)^78 2329991486068366 a004 Fibonacci(71)*Lucas(18)/(1/2+sqrt(5)/2)^76 2329991486068366 a004 Fibonacci(69)*Lucas(18)/(1/2+sqrt(5)/2)^74 2329991486068366 a004 Fibonacci(67)*Lucas(18)/(1/2+sqrt(5)/2)^72 2329991486068366 a004 Fibonacci(65)*Lucas(18)/(1/2+sqrt(5)/2)^70 2329991486068366 a004 Fibonacci(63)*Lucas(18)/(1/2+sqrt(5)/2)^68 2329991486068366 a004 Fibonacci(61)*Lucas(18)/(1/2+sqrt(5)/2)^66 2329991486068366 a004 Fibonacci(59)*Lucas(18)/(1/2+sqrt(5)/2)^64 2329991486068366 a004 Fibonacci(57)*Lucas(18)/(1/2+sqrt(5)/2)^62 2329991486068366 a004 Fibonacci(55)*Lucas(18)/(1/2+sqrt(5)/2)^60 2329991486068366 a004 Fibonacci(53)*Lucas(18)/(1/2+sqrt(5)/2)^58 2329991486068366 a004 Fibonacci(51)*Lucas(18)/(1/2+sqrt(5)/2)^56 2329991486068366 a004 Fibonacci(49)*Lucas(18)/(1/2+sqrt(5)/2)^54 2329991486068366 a004 Fibonacci(47)*Lucas(18)/(1/2+sqrt(5)/2)^52 2329991486068366 a004 Fibonacci(45)*Lucas(18)/(1/2+sqrt(5)/2)^50 2329991486068366 a004 Fibonacci(43)*Lucas(18)/(1/2+sqrt(5)/2)^48 2329991486068366 a004 Fibonacci(41)*Lucas(18)/(1/2+sqrt(5)/2)^46 2329991486068366 a004 Fibonacci(39)*Lucas(18)/(1/2+sqrt(5)/2)^44 2329991486068367 a004 Fibonacci(37)*Lucas(18)/(1/2+sqrt(5)/2)^42 2329991486068368 a001 1/1292*(1/2+1/2*5^(1/2))^31 2329991486068371 a004 Fibonacci(35)*Lucas(18)/(1/2+sqrt(5)/2)^40 2329991486068403 a004 Fibonacci(33)*Lucas(18)/(1/2+sqrt(5)/2)^38 2329991486068623 a004 Fibonacci(31)*Lucas(18)/(1/2+sqrt(5)/2)^36 2329991486070128 a004 Fibonacci(29)*Lucas(18)/(1/2+sqrt(5)/2)^34 2329991486080445 a004 Fibonacci(27)*Lucas(18)/(1/2+sqrt(5)/2)^32 2329991486151155 a004 Fibonacci(25)*Lucas(18)/(1/2+sqrt(5)/2)^30 2329991486163196 a001 10946/167761*5778^(17/18) 2329991486635810 a004 Fibonacci(23)*Lucas(18)/(1/2+sqrt(5)/2)^28 2329991487034675 a001 4181/15127*5778^(7/9) 2329991488273417 m001 1/exp(Salem)^2/Artin*Catalan 2329991489387490 r005 Re(z^2+c),c=-35/122+1/34*I,n=23 2329991489474530 a001 10946/9349*5778^(11/18) 2329991489957684 a004 Fibonacci(21)*Lucas(18)/(1/2+sqrt(5)/2)^26 2329991493148128 m008 (1/2*Pi^5+1/2)/(3/5*Pi^2+2/3) 2329991493895653 m001 (CareFree-FeigenbaumB)/(Kac-ZetaP(4)) 2329991495785805 a001 832040/15127*2207^(3/16) 2329991495940549 a001 121393/5778*2207^(5/16) 2329991500208249 r005 Re(z^2+c),c=-35/122+1/34*I,n=25 2329991500306228 m006 (3/4*exp(Pi)+1)/(2/3/Pi-1) 2329991502375159 l006 ln(727/7472) 2329991502728801 a001 832040/9349*2207^(1/8) 2329991503391203 r005 Re(z^2+c),c=-35/122+1/34*I,n=27 2329991503486007 a001 4181/39603*5778^(8/9) 2329991504245480 r005 Re(z^2+c),c=-35/122+1/34*I,n=29 2329991504461420 r005 Re(z^2+c),c=-35/122+1/34*I,n=31 2329991504483159 a001 726103/13201*2207^(3/16) 2329991504513626 r005 Re(z^2+c),c=-35/122+1/34*I,n=33 2329991504525796 r005 Re(z^2+c),c=-35/122+1/34*I,n=35 2329991504528544 r005 Re(z^2+c),c=-35/122+1/34*I,n=37 2329991504529147 r005 Re(z^2+c),c=-35/122+1/34*I,n=39 2329991504529275 r005 Re(z^2+c),c=-35/122+1/34*I,n=41 2329991504529301 r005 Re(z^2+c),c=-35/122+1/34*I,n=43 2329991504529307 r005 Re(z^2+c),c=-35/122+1/34*I,n=45 2329991504529308 r005 Re(z^2+c),c=-35/122+1/34*I,n=47 2329991504529308 r005 Re(z^2+c),c=-35/122+1/34*I,n=49 2329991504529308 r005 Re(z^2+c),c=-35/122+1/34*I,n=51 2329991504529308 r005 Re(z^2+c),c=-35/122+1/34*I,n=53 2329991504529308 r005 Re(z^2+c),c=-35/122+1/34*I,n=56 2329991504529308 r005 Re(z^2+c),c=-35/122+1/34*I,n=58 2329991504529308 r005 Re(z^2+c),c=-35/122+1/34*I,n=54 2329991504529308 r005 Re(z^2+c),c=-35/122+1/34*I,n=60 2329991504529308 r005 Re(z^2+c),c=-35/122+1/34*I,n=62 2329991504529308 r005 Re(z^2+c),c=-35/122+1/34*I,n=64 2329991504529308 r005 Re(z^2+c),c=-35/122+1/34*I,n=63 2329991504529308 r005 Re(z^2+c),c=-35/122+1/34*I,n=61 2329991504529308 r005 Re(z^2+c),c=-35/122+1/34*I,n=59 2329991504529308 r005 Re(z^2+c),c=-35/122+1/34*I,n=57 2329991504529308 r005 Re(z^2+c),c=-35/122+1/34*I,n=55 2329991504529308 r005 Re(z^2+c),c=-35/122+1/34*I,n=52 2329991504529308 r005 Re(z^2+c),c=-35/122+1/34*I,n=50 2329991504529308 r005 Re(z^2+c),c=-35/122+1/34*I,n=48 2329991504529308 r005 Re(z^2+c),c=-35/122+1/34*I,n=46 2329991504529311 r005 Re(z^2+c),c=-35/122+1/34*I,n=44 2329991504529322 r005 Re(z^2+c),c=-35/122+1/34*I,n=42 2329991504529381 r005 Re(z^2+c),c=-35/122+1/34*I,n=40 2329991504529660 r005 Re(z^2+c),c=-35/122+1/34*I,n=38 2329991504530951 r005 Re(z^2+c),c=-35/122+1/34*I,n=36 2329991504536756 r005 Re(z^2+c),c=-35/122+1/34*I,n=34 2329991504562069 r005 Re(z^2+c),c=-35/122+1/34*I,n=32 2329991504668770 r005 Re(z^2+c),c=-35/122+1/34*I,n=30 2329991504983636 a001 4181/24476*5778^(5/6) 2329991505100988 r005 Re(z^2+c),c=-35/122+1/34*I,n=28 2329991505752086 a001 5702887/103682*2207^(3/16) 2329991505937220 a001 4976784/90481*2207^(3/16) 2329991505964231 a001 39088169/710647*2207^(3/16) 2329991505968172 a001 831985/15126*2207^(3/16) 2329991505968747 a001 267914296/4870847*2207^(3/16) 2329991505968831 a001 233802911/4250681*2207^(3/16) 2329991505968843 a001 1836311903/33385282*2207^(3/16) 2329991505968845 a001 1602508992/29134601*2207^(3/16) 2329991505968845 a001 12586269025/228826127*2207^(3/16) 2329991505968845 a001 10983760033/199691526*2207^(3/16) 2329991505968845 a001 86267571272/1568397607*2207^(3/16) 2329991505968845 a001 75283811239/1368706081*2207^(3/16) 2329991505968845 a001 591286729879/10749957122*2207^(3/16) 2329991505968845 a001 12585437040/228811001*2207^(3/16) 2329991505968845 a001 4052739537881/73681302247*2207^(3/16) 2329991505968845 a001 3536736619241/64300051206*2207^(3/16) 2329991505968845 a001 6557470319842/119218851371*2207^(3/16) 2329991505968845 a001 2504730781961/45537549124*2207^(3/16) 2329991505968845 a001 956722026041/17393796001*2207^(3/16) 2329991505968845 a001 365435296162/6643838879*2207^(3/16) 2329991505968845 a001 139583862445/2537720636*2207^(3/16) 2329991505968845 a001 53316291173/969323029*2207^(3/16) 2329991505968845 a001 20365011074/370248451*2207^(3/16) 2329991505968845 a001 7778742049/141422324*2207^(3/16) 2329991505968846 a001 2971215073/54018521*2207^(3/16) 2329991505968850 a001 1134903170/20633239*2207^(3/16) 2329991505968882 a001 433494437/7881196*2207^(3/16) 2329991505969102 a001 165580141/3010349*2207^(3/16) 2329991505970607 a001 63245986/1149851*2207^(3/16) 2329991505980924 a001 24157817/439204*2207^(3/16) 2329991506051639 a001 9227465/167761*2207^(3/16) 2329991506150312 a001 10946/3571*3571^(9/17) 2329991506536326 a001 3524578/64079*2207^(3/16) 2329991506764722 r005 Re(z^2+c),c=-35/122+1/34*I,n=26 2329991507422874 a001 4181/3571*3571^(11/17) 2329991509416315 a001 4181/64079*5778^(17/18) 2329991509558982 a001 1597/5778*9349^(14/19) 2329991509858420 a001 1346269/24476*2207^(3/16) 2329991511523357 a001 17711/3571*3571^(8/17) 2329991512365076 a001 2584/3571*9349^(12/19) 2329991512719842 r005 Re(z^2+c),c=-35/122+1/34*I,n=24 2329991512726148 a004 Fibonacci(19)*Lucas(18)/(1/2+sqrt(5)/2)^24 2329991515504403 a001 514229/3571*1364^(1/15) 2329991519997547 a001 4181/9349*5778^(13/18) 2329991520575414 a007 Real Root Of 484*x^4+584*x^3+295*x^2-562*x-141 2329991522772898 m005 (1/3*Catalan-1/8)/(7/9*5^(1/2)+6) 2329991524324339 a001 28657/3571*3571^(7/17) 2329991525685393 a001 514229/15127*2207^(1/4) 2329991525952113 a001 75025/5778*2207^(3/8) 2329991526080201 a007 Real Root Of -409*x^4-801*x^3+18*x^2-538*x+571 2329991526608679 a001 1597/5778*24476^(2/3) 2329991526979103 a001 2584/3571*24476^(4/7) 2329991528856157 a001 1597/5778*64079^(14/23) 2329991528905512 a001 2584/3571*64079^(12/23) 2329991529196202 a001 2584/3571*439204^(4/9) 2329991529201556 a001 1597/5778*20633239^(2/5) 2329991529201556 a001 2584/3571*7881196^(4/11) 2329991529201558 a001 1597/5778*17393796001^(2/7) 2329991529201558 a001 1597/5778*14662949395604^(2/9) 2329991529201558 a001 1597/5778*(1/2+1/2*5^(1/2))^14 2329991529201558 a001 1597/5778*505019158607^(1/4) 2329991529201558 a001 1597/5778*10749957122^(7/24) 2329991529201558 a001 1597/5778*4106118243^(7/23) 2329991529201558 a001 1597/5778*1568397607^(7/22) 2329991529201558 a001 1597/5778*599074578^(1/3) 2329991529201558 a001 1597/5778*228826127^(7/20) 2329991529201558 a001 1597/5778*87403803^(7/19) 2329991529201559 a001 1597/5778*33385282^(7/18) 2329991529201564 a001 1597/5778*12752043^(7/17) 2329991529201570 a001 2584/3571*141422324^(4/13) 2329991529201570 a001 2584/3571*2537720636^(4/15) 2329991529201570 a001 2584/3571*45537549124^(4/17) 2329991529201570 a001 2584/3571*817138163596^(4/19) 2329991529201570 a001 2584/3571*14662949395604^(4/21) 2329991529201570 a001 2584/3571*(1/2+1/2*5^(1/2))^12 2329991529201570 a001 2584/3571*192900153618^(2/9) 2329991529201570 a001 2584/3571*73681302247^(3/13) 2329991529201570 a001 2584/3571*10749957122^(1/4) 2329991529201570 a001 2584/3571*4106118243^(6/23) 2329991529201570 a001 2584/3571*1568397607^(3/11) 2329991529201570 a001 2584/3571*599074578^(2/7) 2329991529201570 a001 2584/3571*228826127^(3/10) 2329991529201570 a001 2584/3571*87403803^(6/19) 2329991529201571 a001 2584/3571*33385282^(1/3) 2329991529201575 a001 2584/3571*12752043^(6/17) 2329991529201601 a001 1597/5778*4870847^(7/16) 2329991529201607 a001 2584/3571*4870847^(3/8) 2329991529201839 a001 2584/3571*1860498^(2/5) 2329991529201872 a001 1597/5778*1860498^(7/15) 2329991529203547 a001 2584/3571*710647^(3/7) 2329991529203865 a001 1597/5778*710647^(1/2) 2329991529216165 a001 2584/3571*271443^(6/13) 2329991529218585 a001 1597/5778*271443^(7/13) 2329991529309942 a001 2584/3571*103682^(1/2) 2329991529327992 a001 1597/5778*103682^(7/12) 2329991530011890 a001 2584/3571*39603^(6/11) 2329991530146932 a001 1597/5778*39603^(7/11) 2329991530687143 a001 4126648/17711 2329991531597639 r005 Re(z^2+c),c=-35/122+1/34*I,n=22 2329991532628389 a001 514229/9349*2207^(3/16) 2329991533369231 m001 (-LaplaceLimit+Tetranacci)/(Psi(2,1/3)+Chi(1)) 2329991534288102 a001 46368/3571*3571^(6/17) 2329991534380667 a001 1346269/39603*2207^(1/4) 2329991535310990 a001 2584/3571*15127^(3/5) 2329991535649291 a001 1762289/51841*2207^(1/4) 2329991535834380 a001 9227465/271443*2207^(1/4) 2329991535861384 a001 24157817/710647*2207^(1/4) 2329991535865324 a001 31622993/930249*2207^(1/4) 2329991535865899 a001 165580141/4870847*2207^(1/4) 2329991535865983 a001 433494437/12752043*2207^(1/4) 2329991535865995 a001 567451585/16692641*2207^(1/4) 2329991535865997 a001 2971215073/87403803*2207^(1/4) 2329991535865997 a001 7778742049/228826127*2207^(1/4) 2329991535865997 a001 10182505537/299537289*2207^(1/4) 2329991535865997 a001 53316291173/1568397607*2207^(1/4) 2329991535865997 a001 139583862445/4106118243*2207^(1/4) 2329991535865997 a001 182717648081/5374978561*2207^(1/4) 2329991535865997 a001 956722026041/28143753123*2207^(1/4) 2329991535865997 a001 2504730781961/73681302247*2207^(1/4) 2329991535865997 a001 3278735159921/96450076809*2207^(1/4) 2329991535865997 a001 10610209857723/312119004989*2207^(1/4) 2329991535865997 a001 4052739537881/119218851371*2207^(1/4) 2329991535865997 a001 387002188980/11384387281*2207^(1/4) 2329991535865997 a001 591286729879/17393796001*2207^(1/4) 2329991535865997 a001 225851433717/6643838879*2207^(1/4) 2329991535865997 a001 1135099622/33391061*2207^(1/4) 2329991535865997 a001 32951280099/969323029*2207^(1/4) 2329991535865997 a001 12586269025/370248451*2207^(1/4) 2329991535865997 a001 1201881744/35355581*2207^(1/4) 2329991535865998 a001 1836311903/54018521*2207^(1/4) 2329991535866003 a001 701408733/20633239*2207^(1/4) 2329991535866035 a001 66978574/1970299*2207^(1/4) 2329991535866254 a001 102334155/3010349*2207^(1/4) 2329991535867759 a001 39088169/1149851*2207^(1/4) 2329991535878074 a001 196452/5779*2207^(1/4) 2329991535948772 a001 5702887/167761*2207^(1/4) 2329991536329215 a001 1597/5778*15127^(7/10) 2329991536433343 a001 2178309/64079*2207^(1/4) 2329991539198147 a001 987/3571*2207^(7/8) 2329991539384218 p004 log(34439/27281) 2329991539754642 a001 208010/6119*2207^(1/4) 2329991541886511 a001 3010349*144^(7/17) 2329991545335586 a001 75025/3571*3571^(5/17) 2329991548417757 m001 (-Tetranacci+Totient)/(Catalan+ErdosBorwein) 2329991551399588 a007 Real Root Of 356*x^4+606*x^3-158*x^2+585*x-606 2329991552768548 m001 (BesselK(1,1)+GolombDickman)/(3^(1/3)-Catalan) 2329991555549732 a001 2576/321*2207^(7/16) 2329991555576170 a001 317811/15127*2207^(5/16) 2329991555969125 a001 121393/3571*3571^(4/17) 2329991557277918 m001 Catalan/Trott/ln(Zeta(5)) 2329991558599889 a007 Real Root Of -115*x^4-44*x^3+121*x^2-733*x+468 2329991560630105 r005 Im(z^2+c),c=-13/86+11/35*I,n=9 2329991562519166 a001 317811/9349*2207^(1/4) 2329991563397767 m002 -Pi^4/4+Pi^4/(4*E^Pi) 2329991564276890 a001 832040/39603*2207^(5/16) 2329991565546308 a001 46347/2206*2207^(5/16) 2329991565731513 a001 5702887/271443*2207^(5/16) 2329991565758534 a001 14930352/710647*2207^(5/16) 2329991565762477 a001 39088169/1860498*2207^(5/16) 2329991565763052 a001 102334155/4870847*2207^(5/16) 2329991565763136 a001 267914296/12752043*2207^(5/16) 2329991565763148 a001 701408733/33385282*2207^(5/16) 2329991565763150 a001 1836311903/87403803*2207^(5/16) 2329991565763150 a001 102287808/4868641*2207^(5/16) 2329991565763150 a001 12586269025/599074578*2207^(5/16) 2329991565763150 a001 32951280099/1568397607*2207^(5/16) 2329991565763150 a001 86267571272/4106118243*2207^(5/16) 2329991565763150 a001 225851433717/10749957122*2207^(5/16) 2329991565763150 a001 591286729879/28143753123*2207^(5/16) 2329991565763150 a001 1548008755920/73681302247*2207^(5/16) 2329991565763150 a001 4052739537881/192900153618*2207^(5/16) 2329991565763150 a001 225749145909/10745088481*2207^(5/16) 2329991565763150 a001 6557470319842/312119004989*2207^(5/16) 2329991565763150 a001 2504730781961/119218851371*2207^(5/16) 2329991565763150 a001 956722026041/45537549124*2207^(5/16) 2329991565763150 a001 365435296162/17393796001*2207^(5/16) 2329991565763150 a001 139583862445/6643838879*2207^(5/16) 2329991565763150 a001 53316291173/2537720636*2207^(5/16) 2329991565763150 a001 20365011074/969323029*2207^(5/16) 2329991565763150 a001 7778742049/370248451*2207^(5/16) 2329991565763150 a001 2971215073/141422324*2207^(5/16) 2329991565763151 a001 1134903170/54018521*2207^(5/16) 2329991565763156 a001 433494437/20633239*2207^(5/16) 2329991565763188 a001 165580141/7881196*2207^(5/16) 2329991565763407 a001 63245986/3010349*2207^(5/16) 2329991565764913 a001 24157817/1149851*2207^(5/16) 2329991565775234 a001 9227465/439204*2207^(5/16) 2329991565845977 a001 3524578/167761*2207^(5/16) 2329991566330851 a001 1346269/64079*2207^(5/16) 2329991566361511 a001 1597/15127*9349^(16/19) 2329991566760777 a001 196418/3571*3571^(3/17) 2329991568943948 a007 Real Root Of 495*x^4+899*x^3-256*x^2+853*x+160 2329991569654230 a001 514229/24476*2207^(5/16) 2329991569825987 r008 a(0)=0,K{-n^6,-64+19*n^3-30*n^2+34*n} 2329991572252208 a001 1597/39603*9349^(18/19) 2329991572334754 a004 Fibonacci(17)*Lucas(19)/(1/2+sqrt(5)/2)^23 2329991574779773 a001 6765/3571*9349^(10/19) 2329991575728890 a001 2584/3571*5778^(2/3) 2329991577070614 r005 Re(z^2+c),c=-35/122+1/34*I,n=17 2329991577209486 r005 Re(z^2+c),c=-35/122+1/34*I,n=20 2329991577492036 a001 317811/3571*3571^(2/17) 2329991579030155 a001 1597/24476*9349^(17/19) 2329991580235157 l006 ln(7108/8973) 2329991580677746 a001 416020/2889*843^(1/14) 2329991581090588 r005 Re(z^2+c),c=-9/74+17/29*I,n=56 2329991583483431 a001 1597/5778*5778^(7/9) 2329991585490015 a001 196418/15127*2207^(3/8) 2329991585846880 a001 1597/15127*24476^(16/21) 2329991586231073 a001 28657/5778*2207^(1/2) 2329991586282635 a001 17711/3571*9349^(8/19) 2329991586958128 a001 6765/3571*24476^(10/21) 2329991588246363 a001 514229/3571*3571^(1/17) 2329991588415427 a001 1597/15127*64079^(16/23) 2329991588563470 a001 6765/3571*64079^(10/23) 2329991588777069 a001 6765/3571*167761^(2/5) 2329991588810170 a001 1597/15127*(1/2+1/2*5^(1/2))^16 2329991588810170 a001 1597/15127*23725150497407^(1/4) 2329991588810170 a001 1597/15127*73681302247^(4/13) 2329991588810170 a001 1597/15127*10749957122^(1/3) 2329991588810170 a001 1597/15127*4106118243^(8/23) 2329991588810170 a001 1597/15127*1568397607^(4/11) 2329991588810170 a001 1597/15127*599074578^(8/21) 2329991588810170 a001 1597/15127*228826127^(2/5) 2329991588810171 a001 1597/15127*87403803^(8/19) 2329991588810171 a001 1597/15127*33385282^(4/9) 2329991588810177 a001 1597/15127*12752043^(8/17) 2329991588810183 a001 6765/3571*20633239^(2/7) 2329991588810185 a001 6765/3571*2537720636^(2/9) 2329991588810185 a001 6765/3571*312119004989^(2/11) 2329991588810185 a001 6765/3571*(1/2+1/2*5^(1/2))^10 2329991588810185 a001 6765/3571*28143753123^(1/5) 2329991588810185 a001 6765/3571*10749957122^(5/24) 2329991588810185 a001 6765/3571*4106118243^(5/23) 2329991588810185 a001 6765/3571*1568397607^(5/22) 2329991588810185 a001 6765/3571*599074578^(5/21) 2329991588810185 a001 6765/3571*228826127^(1/4) 2329991588810185 a001 6765/3571*87403803^(5/19) 2329991588810185 a001 6765/3571*33385282^(5/18) 2329991588810189 a001 6765/3571*12752043^(5/17) 2329991588810215 a001 6765/3571*4870847^(5/16) 2329991588810219 a001 1597/15127*4870847^(1/2) 2329991588810409 a001 6765/3571*1860498^(1/3) 2329991588810529 a001 1597/15127*1860498^(8/15) 2329991588811832 a001 6765/3571*710647^(5/14) 2329991588812807 a001 1597/15127*710647^(4/7) 2329991588822347 a001 6765/3571*271443^(5/13) 2329991588829630 a001 1597/15127*271443^(8/13) 2329991588900495 a001 6765/3571*103682^(5/12) 2329991588954667 a001 1597/15127*103682^(2/3) 2329991589026915 a001 3601235/15456 2329991589485452 a001 6765/3571*39603^(5/11) 2329991589738707 a001 28657/3571*9349^(7/19) 2329991589866025 a007 Real Root Of -305*x^4-650*x^3-19*x^2-13*x+840 2329991589890598 a001 1597/15127*39603^(8/11) 2329991590254499 a001 10946/3571*9349^(9/19) 2329991590357560 a001 46368/3571*9349^(6/19) 2329991592060135 a001 75025/3571*9349^(5/19) 2329991592433012 a001 196418/9349*2207^(5/16) 2329991592717875 a003 cos(Pi*9/31)/cos(Pi*27/65) 2329991593348764 a001 121393/3571*9349^(4/19) 2329991593611506 r005 Re(z^2+c),c=-35/122+1/34*I,n=18 2329991593901368 a001 6765/3571*15127^(1/2) 2329991594173249 a001 1597/39603*24476^(6/7) 2329991594176478 a001 514229/39603*2207^(3/8) 2329991594795507 a001 196418/3571*9349^(3/19) 2329991595071681 a001 1597/103682*24476^(20/21) 2329991595103219 a004 Fibonacci(17)*Lucas(21)/(1/2+sqrt(5)/2)^25 2329991595443816 a001 1346269/103682*2207^(3/8) 2329991595628718 a001 3524578/271443*2207^(3/8) 2329991595655695 a001 9227465/710647*2207^(3/8) 2329991595659631 a001 24157817/1860498*2207^(3/8) 2329991595660205 a001 63245986/4870847*2207^(3/8) 2329991595660289 a001 165580141/12752043*2207^(3/8) 2329991595660301 a001 433494437/33385282*2207^(3/8) 2329991595660303 a001 1134903170/87403803*2207^(3/8) 2329991595660303 a001 2971215073/228826127*2207^(3/8) 2329991595660303 a001 7778742049/599074578*2207^(3/8) 2329991595660303 a001 20365011074/1568397607*2207^(3/8) 2329991595660303 a001 53316291173/4106118243*2207^(3/8) 2329991595660303 a001 139583862445/10749957122*2207^(3/8) 2329991595660303 a001 365435296162/28143753123*2207^(3/8) 2329991595660303 a001 956722026041/73681302247*2207^(3/8) 2329991595660303 a001 2504730781961/192900153618*2207^(3/8) 2329991595660303 a001 10610209857723/817138163596*2207^(3/8) 2329991595660303 a001 4052739537881/312119004989*2207^(3/8) 2329991595660303 a001 1548008755920/119218851371*2207^(3/8) 2329991595660303 a001 591286729879/45537549124*2207^(3/8) 2329991595660303 a001 7787980473/599786069*2207^(3/8) 2329991595660303 a001 86267571272/6643838879*2207^(3/8) 2329991595660303 a001 32951280099/2537720636*2207^(3/8) 2329991595660303 a001 12586269025/969323029*2207^(3/8) 2329991595660303 a001 4807526976/370248451*2207^(3/8) 2329991595660303 a001 1836311903/141422324*2207^(3/8) 2329991595660304 a001 701408733/54018521*2207^(3/8) 2329991595660309 a001 9238424/711491*2207^(3/8) 2329991595660341 a001 102334155/7881196*2207^(3/8) 2329991595660560 a001 39088169/3010349*2207^(3/8) 2329991595662063 a001 14930352/1149851*2207^(3/8) 2329991595672368 a001 5702887/439204*2207^(3/8) 2329991595742994 a001 2178309/167761*2207^(3/8) 2329991596025319 a001 17711/3571*24476^(8/21) 2329991596041074 a001 1597/64079*24476^(19/21) 2329991596181856 a001 317811/3571*9349^(2/19) 2329991596227074 a001 832040/64079*2207^(3/8) 2329991596956064 a001 1597/15127*15127^(4/5) 2329991597062864 a001 1597/39603*64079^(18/23) 2329991597309593 a001 17711/3571*64079^(8/23) 2329991597498898 a001 1597/39603*439204^(2/3) 2329991597506930 a001 1597/39603*7881196^(6/11) 2329991597506950 a001 1597/39603*141422324^(6/13) 2329991597506950 a001 1597/39603*2537720636^(2/5) 2329991597506950 a001 1597/39603*45537549124^(6/17) 2329991597506950 a001 1597/39603*14662949395604^(2/7) 2329991597506950 a001 1597/39603*(1/2+1/2*5^(1/2))^18 2329991597506950 a001 1597/39603*192900153618^(1/3) 2329991597506950 a001 1597/39603*10749957122^(3/8) 2329991597506950 a001 1597/39603*4106118243^(9/23) 2329991597506950 a001 1597/39603*1568397607^(9/22) 2329991597506950 a001 1597/39603*599074578^(3/7) 2329991597506950 a001 1597/39603*228826127^(9/20) 2329991597506950 a001 1597/39603*87403803^(9/19) 2329991597506951 a001 1597/39603*33385282^(1/2) 2329991597506958 a001 1597/39603*12752043^(9/17) 2329991597506964 a001 17711/3571*(1/2+1/2*5^(1/2))^8 2329991597506964 a001 17711/3571*23725150497407^(1/8) 2329991597506964 a001 17711/3571*505019158607^(1/7) 2329991597506964 a001 17711/3571*73681302247^(2/13) 2329991597506964 a001 17711/3571*10749957122^(1/6) 2329991597506964 a001 17711/3571*4106118243^(4/23) 2329991597506964 a001 17711/3571*1568397607^(2/11) 2329991597506964 a001 17711/3571*599074578^(4/21) 2329991597506964 a001 17711/3571*228826127^(1/5) 2329991597506964 a001 17711/3571*87403803^(4/19) 2329991597506965 a001 17711/3571*33385282^(2/9) 2329991597506968 a001 17711/3571*12752043^(4/17) 2329991597506989 a001 17711/3571*4870847^(1/4) 2329991597507005 a001 1597/39603*4870847^(9/16) 2329991597507144 a001 17711/3571*1860498^(4/15) 2329991597507354 a001 1597/39603*1860498^(3/5) 2329991597508283 a001 17711/3571*710647^(2/7) 2329991597509916 a001 1597/39603*710647^(9/14) 2329991597516694 a001 17711/3571*271443^(4/13) 2329991597528843 a001 1597/39603*271443^(9/13) 2329991597538573 a001 28284467/121393 2329991597579212 a001 17711/3571*103682^(1/3) 2329991597591273 a001 514229/3571*9349^(1/19) 2329991597664574 a001 46368/3571*24476^(2/7) 2329991597669508 a001 1597/39603*103682^(3/4) 2329991598047178 a001 17711/3571*39603^(4/11) 2329991598149312 a001 75025/3571*24476^(5/21) 2329991598220107 a001 121393/3571*24476^(4/21) 2329991598263556 a001 28657/3571*24476^(1/3) 2329991598282364 a001 1597/103682*64079^(20/23) 2329991598418142 a001 1597/271443*64079^(22/23) 2329991598425093 a004 Fibonacci(17)*Lucas(23)/(1/2+sqrt(5)/2)^27 2329991598449014 a001 196418/3571*24476^(1/7) 2329991598557225 a001 1597/167761*64079^(21/23) 2329991598617527 a001 317811/3571*24476^(2/21) 2329991598627779 a001 46368/3571*64079^(6/23) 2329991598709562 a001 1597/103682*167761^(4/5) 2329991598722431 a001 1597/39603*39603^(9/11) 2329991598773123 a001 46368/3571*439204^(2/9) 2329991598775790 a001 1597/103682*20633239^(4/7) 2329991598775793 a001 1597/103682*2537720636^(4/9) 2329991598775793 a001 1597/103682*(1/2+1/2*5^(1/2))^20 2329991598775793 a001 1597/103682*23725150497407^(5/16) 2329991598775793 a001 1597/103682*505019158607^(5/14) 2329991598775793 a001 1597/103682*73681302247^(5/13) 2329991598775793 a001 1597/103682*28143753123^(2/5) 2329991598775793 a001 1597/103682*10749957122^(5/12) 2329991598775793 a001 1597/103682*4106118243^(10/23) 2329991598775793 a001 1597/103682*1568397607^(5/11) 2329991598775793 a001 1597/103682*599074578^(10/21) 2329991598775793 a001 1597/103682*228826127^(1/2) 2329991598775793 a001 1597/103682*87403803^(10/19) 2329991598775794 a001 1597/103682*33385282^(5/9) 2329991598775801 a001 46368/3571*7881196^(2/11) 2329991598775801 a001 1597/103682*12752043^(10/17) 2329991598775807 a001 46368/3571*141422324^(2/13) 2329991598775807 a001 46368/3571*2537720636^(2/15) 2329991598775807 a001 46368/3571*45537549124^(2/17) 2329991598775807 a001 46368/3571*14662949395604^(2/21) 2329991598775807 a001 46368/3571*(1/2+1/2*5^(1/2))^6 2329991598775807 a001 46368/3571*10749957122^(1/8) 2329991598775807 a001 46368/3571*4106118243^(3/23) 2329991598775807 a001 46368/3571*1568397607^(3/22) 2329991598775807 a001 46368/3571*599074578^(1/7) 2329991598775807 a001 46368/3571*228826127^(3/20) 2329991598775807 a001 46368/3571*87403803^(3/19) 2329991598775808 a001 46368/3571*33385282^(1/6) 2329991598775810 a001 46368/3571*12752043^(3/17) 2329991598775826 a001 46368/3571*4870847^(3/16) 2329991598775854 a001 1597/103682*4870847^(5/8) 2329991598775942 a001 46368/3571*1860498^(1/5) 2329991598776242 a001 1597/103682*1860498^(2/3) 2329991598776796 a001 46368/3571*710647^(3/14) 2329991598779089 a001 1597/103682*710647^(5/7) 2329991598780407 a001 24683232/105937 2329991598783105 a001 46368/3571*271443^(3/13) 2329991598800118 a001 1597/103682*271443^(10/13) 2329991598809108 a001 514229/3571*24476^(1/21) 2329991598829993 a001 46368/3571*103682^(1/4) 2329991598862243 a001 121393/3571*64079^(4/23) 2329991598909748 a004 Fibonacci(17)*Lucas(25)/(1/2+sqrt(5)/2)^29 2329991598930616 a001 196418/3571*64079^(3/23) 2329991598938595 a001 317811/3571*64079^(2/23) 2329991598951983 a001 75025/3571*64079^(5/23) 2329991598956413 a001 1597/103682*103682^(5/6) 2329991598960890 a001 1597/271443*7881196^(2/3) 2329991598960915 a001 1597/271443*312119004989^(2/5) 2329991598960915 a001 1597/271443*(1/2+1/2*5^(1/2))^22 2329991598960915 a001 1597/271443*10749957122^(11/24) 2329991598960915 a001 1597/271443*4106118243^(11/23) 2329991598960915 a001 1597/271443*1568397607^(1/2) 2329991598960915 a001 1597/271443*599074578^(11/21) 2329991598960915 a001 1597/271443*228826127^(11/20) 2329991598960915 a001 1597/271443*87403803^(11/19) 2329991598960916 a001 1597/271443*33385282^(11/18) 2329991598960924 a001 1597/271443*12752043^(11/17) 2329991598960929 a001 121393/3571*(1/2+1/2*5^(1/2))^4 2329991598960929 a001 121393/3571*23725150497407^(1/16) 2329991598960929 a001 121393/3571*73681302247^(1/13) 2329991598960929 a001 121393/3571*10749957122^(1/12) 2329991598960929 a001 121393/3571*4106118243^(2/23) 2329991598960929 a001 121393/3571*1568397607^(1/11) 2329991598960929 a001 121393/3571*599074578^(2/21) 2329991598960929 a001 121393/3571*228826127^(1/10) 2329991598960929 a001 121393/3571*87403803^(2/19) 2329991598960929 a001 121393/3571*33385282^(1/9) 2329991598960931 a001 121393/3571*12752043^(2/17) 2329991598960941 a001 121393/3571*4870847^(1/8) 2329991598960982 a001 1597/271443*4870847^(11/16) 2329991598961019 a001 121393/3571*1860498^(2/15) 2329991598961408 a001 1597/271443*1860498^(11/15) 2329991598961588 a001 193864621/832040 2329991598961588 a001 121393/3571*710647^(1/7) 2329991598964540 a001 1597/271443*710647^(11/14) 2329991598965794 a001 121393/3571*271443^(2/13) 2329991598969642 a001 514229/3571*64079^(1/23) 2329991598977187 a001 1597/710647*439204^(8/9) 2329991598980459 a004 Fibonacci(17)*Lucas(27)/(1/2+sqrt(5)/2)^31 2329991598987672 a001 1597/271443*271443^(11/13) 2329991598987896 a001 1597/710647*7881196^(8/11) 2329991598987924 a001 1597/710647*141422324^(8/13) 2329991598987924 a001 1597/710647*2537720636^(8/15) 2329991598987924 a001 1597/710647*45537549124^(8/17) 2329991598987924 a001 1597/710647*14662949395604^(8/21) 2329991598987924 a001 1597/710647*(1/2+1/2*5^(1/2))^24 2329991598987924 a001 1597/710647*192900153618^(4/9) 2329991598987924 a001 1597/710647*73681302247^(6/13) 2329991598987924 a001 1597/710647*10749957122^(1/2) 2329991598987924 a001 1597/710647*4106118243^(12/23) 2329991598987924 a001 1597/710647*1568397607^(6/11) 2329991598987924 a001 1597/710647*599074578^(4/7) 2329991598987924 a001 1597/710647*228826127^(3/5) 2329991598987924 a001 1597/710647*87403803^(12/19) 2329991598987925 a001 1597/710647*33385282^(2/3) 2329991598987934 a001 1597/710647*12752043^(12/17) 2329991598987938 a001 317811/3571*(1/2+1/2*5^(1/2))^2 2329991598987938 a001 317811/3571*10749957122^(1/24) 2329991598987938 a001 317811/3571*4106118243^(1/23) 2329991598987938 a001 317811/3571*1568397607^(1/22) 2329991598987938 a001 317811/3571*599074578^(1/21) 2329991598987938 a001 317811/3571*228826127^(1/20) 2329991598987938 a001 317811/3571*87403803^(1/19) 2329991598987938 a001 317811/3571*33385282^(1/18) 2329991598987939 a001 317811/3571*12752043^(1/17) 2329991598987944 a001 317811/3571*4870847^(1/16) 2329991598987983 a001 317811/3571*1860498^(1/15) 2329991598987997 a001 1597/710647*4870847^(3/4) 2329991598988022 a001 169181389/726103 2329991598988268 a001 317811/3571*710647^(1/14) 2329991598988462 a001 1597/710647*1860498^(4/5) 2329991598990370 a001 317811/3571*271443^(1/13) 2329991598990775 a004 Fibonacci(17)*Lucas(29)/(1/2+sqrt(5)/2)^33 2329991598991864 a001 1597/1860498*141422324^(2/3) 2329991598991864 a001 1597/1860498*(1/2+1/2*5^(1/2))^26 2329991598991864 a001 1597/1860498*73681302247^(1/2) 2329991598991864 a001 1597/1860498*10749957122^(13/24) 2329991598991864 a001 1597/1860498*4106118243^(13/23) 2329991598991864 a001 1597/1860498*1568397607^(13/22) 2329991598991864 a001 1597/1860498*599074578^(13/21) 2329991598991864 a001 1597/1860498*228826127^(13/20) 2329991598991864 a001 1597/1860498*87403803^(13/19) 2329991598991866 a001 1597/1860498*33385282^(13/18) 2329991598991875 a001 1597/1860498*12752043^(13/17) 2329991598991878 a001 1597/710647*710647^(6/7) 2329991598991879 a001 832040/3571 2329991598991944 a001 1597/1860498*4870847^(13/16) 2329991598992280 a004 Fibonacci(17)*Lucas(31)/(1/2+sqrt(5)/2)^35 2329991598992435 a001 1597/4870847*20633239^(4/5) 2329991598992439 a001 1597/4870847*17393796001^(4/7) 2329991598992439 a001 1597/4870847*14662949395604^(4/9) 2329991598992439 a001 1597/4870847*(1/2+1/2*5^(1/2))^28 2329991598992439 a001 1597/4870847*73681302247^(7/13) 2329991598992439 a001 1597/4870847*10749957122^(7/12) 2329991598992439 a001 1597/4870847*4106118243^(14/23) 2329991598992439 a001 1597/4870847*1568397607^(7/11) 2329991598992439 a001 1597/4870847*599074578^(2/3) 2329991598992439 a001 1597/4870847*228826127^(7/10) 2329991598992439 a001 1597/4870847*87403803^(14/19) 2329991598992441 a001 1597/4870847*33385282^(7/9) 2329991598992441 a001 1159586491/4976784 2329991598992448 a001 1597/1860498*1860498^(13/15) 2329991598992451 a001 1597/4870847*12752043^(14/17) 2329991598992453 a004 Fibonacci(32)/Lucas(17)/(1/2+sqrt(5)/2)^2 2329991598992489 a001 1597/12752043*7881196^(10/11) 2329991598992500 a004 Fibonacci(17)*Lucas(33)/(1/2+sqrt(5)/2)^37 2329991598992518 a001 1597/12752043*20633239^(6/7) 2329991598992523 a001 1597/12752043*141422324^(10/13) 2329991598992523 a001 1597/12752043*2537720636^(2/3) 2329991598992523 a001 1597/12752043*45537549124^(10/17) 2329991598992523 a001 1597/12752043*312119004989^(6/11) 2329991598992523 a001 1597/12752043*14662949395604^(10/21) 2329991598992523 a001 1597/12752043*(1/2+1/2*5^(1/2))^30 2329991598992523 a001 1597/12752043*192900153618^(5/9) 2329991598992523 a001 1597/12752043*28143753123^(3/5) 2329991598992523 a001 1597/12752043*10749957122^(5/8) 2329991598992523 a001 1597/12752043*4106118243^(15/23) 2329991598992523 a001 1597/12752043*1568397607^(15/22) 2329991598992523 a001 1597/12752043*599074578^(5/7) 2329991598992523 a001 1597/12752043*228826127^(3/4) 2329991598992523 a001 1597/12752043*87403803^(15/19) 2329991598992523 a001 9107510539/39088169 2329991598992525 a001 1597/12752043*33385282^(5/6) 2329991598992525 a001 1597/4870847*4870847^(7/8) 2329991598992532 a004 Fibonacci(17)*Lucas(35)/(1/2+sqrt(5)/2)^39 2329991598992535 a001 1597/33385282*(1/2+1/2*5^(1/2))^32 2329991598992535 a001 1597/33385282*23725150497407^(1/2) 2329991598992535 a001 1597/33385282*73681302247^(8/13) 2329991598992535 a001 1597/33385282*10749957122^(2/3) 2329991598992535 a001 1597/33385282*4106118243^(16/23) 2329991598992535 a001 1597/33385282*1568397607^(8/11) 2329991598992535 a001 1597/33385282*599074578^(16/21) 2329991598992535 a001 1597/33385282*228826127^(4/5) 2329991598992535 a001 7947924048/34111385 2329991598992535 a001 1597/33385282*87403803^(16/19) 2329991598992536 a001 1597/12752043*12752043^(15/17) 2329991598992537 a004 Fibonacci(17)*Lucas(37)/(1/2+sqrt(5)/2)^41 2329991598992537 a001 1597/87403803*45537549124^(2/3) 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^34/Lucas(38) 2329991598992537 a001 1597/87403803*10749957122^(17/24) 2329991598992537 a001 1597/87403803*4106118243^(17/23) 2329991598992537 a001 1597/87403803*1568397607^(17/22) 2329991598992537 a001 1597/87403803*599074578^(17/21) 2329991598992537 a001 62423805893/267914296 2329991598992537 a001 1597/87403803*228826127^(17/20) 2329991598992537 a001 1597/33385282*33385282^(8/9) 2329991598992537 a001 1597/228826127*141422324^(12/13) 2329991598992537 a004 Fibonacci(17)*Lucas(39)/(1/2+sqrt(5)/2)^43 2329991598992537 a001 1597/228826127*2537720636^(4/5) 2329991598992537 a001 1597/228826127*45537549124^(12/17) 2329991598992537 a001 1597/228826127*14662949395604^(4/7) 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^36/Lucas(40) 2329991598992537 a001 1597/228826127*505019158607^(9/14) 2329991598992537 a001 1597/228826127*192900153618^(2/3) 2329991598992537 a001 1597/228826127*73681302247^(9/13) 2329991598992537 a001 1597/228826127*10749957122^(3/4) 2329991598992537 a001 1597/228826127*4106118243^(18/23) 2329991598992537 a001 1597/228826127*1568397607^(9/11) 2329991598992537 a001 54475881845/233802911 2329991598992537 a001 1597/228826127*599074578^(6/7) 2329991598992537 a001 1597/87403803*87403803^(17/19) 2329991598992537 a004 Fibonacci(17)*Lucas(41)/(1/2+sqrt(5)/2)^45 2329991598992537 a001 1597/599074578*817138163596^(2/3) 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^38/Lucas(42) 2329991598992537 a001 1597/599074578*10749957122^(19/24) 2329991598992537 a001 1597/599074578*4106118243^(19/23) 2329991598992537 a001 427859130712/1836311903 2329991598992537 a001 1597/599074578*1568397607^(19/22) 2329991598992537 a001 1597/228826127*228826127^(9/10) 2329991598992537 a004 Fibonacci(17)*Lucas(43)/(1/2+sqrt(5)/2)^47 2329991598992537 a001 1597/1568397607*2537720636^(8/9) 2329991598992537 a001 1597/1568397607*312119004989^(8/11) 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^40/Lucas(44) 2329991598992537 a001 1597/1568397607*23725150497407^(5/8) 2329991598992537 a001 1597/1568397607*73681302247^(10/13) 2329991598992537 a001 1597/1568397607*28143753123^(4/5) 2329991598992537 a001 1597/1568397607*10749957122^(5/6) 2329991598992537 a001 373383248867/1602508992 2329991598992537 a001 1597/1568397607*4106118243^(20/23) 2329991598992537 a001 1597/599074578*599074578^(19/21) 2329991598992537 a001 1597/4106118243*2537720636^(14/15) 2329991598992537 a004 Fibonacci(17)*Lucas(45)/(1/2+sqrt(5)/2)^49 2329991598992537 a001 1597/4106118243*17393796001^(6/7) 2329991598992537 a001 1597/4106118243*45537549124^(14/17) 2329991598992537 a001 1597/4106118243*14662949395604^(2/3) 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^42/Lucas(46) 2329991598992537 a001 1597/4106118243*505019158607^(3/4) 2329991598992537 a001 1597/4106118243*192900153618^(7/9) 2329991598992537 a001 2932590109091/12586269025 2329991598992537 a001 1597/4106118243*10749957122^(7/8) 2329991598992537 a001 1597/1568397607*1568397607^(10/11) 2329991598992537 a004 Fibonacci(17)*Lucas(47)/(1/2+sqrt(5)/2)^51 2329991598992537 a001 1597/10749957122*312119004989^(4/5) 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^44/Lucas(48) 2329991598992537 a001 1597/10749957122*23725150497407^(11/16) 2329991598992537 a001 1597/10749957122*73681302247^(11/13) 2329991598992537 a001 2559206860224/10983760033 2329991598992537 a001 1597/4106118243*4106118243^(21/23) 2329991598992537 a004 Fibonacci(17)*Lucas(49)/(1/2+sqrt(5)/2)^53 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^46/Lucas(50) 2329991598992537 a001 20100271632925/86267571272 2329991598992537 a001 1597/10749957122*10749957122^(11/12) 2329991598992537 a001 1597/73681302247*45537549124^(16/17) 2329991598992537 a004 Fibonacci(17)*Lucas(51)/(1/2+sqrt(5)/2)^55 2329991598992537 a001 1597/73681302247*14662949395604^(16/21) 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^48/Lucas(52) 2329991598992537 a001 1597/73681302247*192900153618^(8/9) 2329991598992537 a004 Fibonacci(17)*Lucas(53)/(1/2+sqrt(5)/2)^57 2329991598992537 a001 1597/192900153618*312119004989^(10/11) 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^50/Lucas(54) 2329991598992537 a001 137769311321384/591286729879 2329991598992537 a001 1597/73681302247*73681302247^(12/13) 2329991598992537 a004 Fibonacci(17)*Lucas(55)/(1/2+sqrt(5)/2)^59 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^52/Lucas(56) 2329991598992537 a001 1597/505019158607*23725150497407^(13/16) 2329991598992537 a001 120228246548683/516002918640 2329991598992537 a004 Fibonacci(17)*Lucas(57)/(1/2+sqrt(5)/2)^61 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^54/Lucas(58) 2329991598992537 a004 Fibonacci(17)*Lucas(59)/(1/2+sqrt(5)/2)^63 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^56/Lucas(60) 2329991598992537 a004 Fibonacci(17)*Lucas(61)/(1/2+sqrt(5)/2)^65 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^58/Lucas(62) 2329991598992537 a004 Fibonacci(17)*Lucas(63)/(1/2+sqrt(5)/2)^67 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^60/Lucas(64) 2329991598992537 a004 Fibonacci(17)*Lucas(65)/(1/2+sqrt(5)/2)^69 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^62/Lucas(66) 2329991598992537 a004 Fibonacci(17)*Lucas(67)/(1/2+sqrt(5)/2)^71 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^64/Lucas(68) 2329991598992537 a004 Fibonacci(17)*Lucas(69)/(1/2+sqrt(5)/2)^73 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^66/Lucas(70) 2329991598992537 a004 Fibonacci(17)*Lucas(71)/(1/2+sqrt(5)/2)^75 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^68/Lucas(72) 2329991598992537 a004 Fibonacci(17)*Lucas(73)/(1/2+sqrt(5)/2)^77 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^70/Lucas(74) 2329991598992537 a004 Fibonacci(17)*Lucas(75)/(1/2+sqrt(5)/2)^79 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^72/Lucas(76) 2329991598992537 a004 Fibonacci(17)*Lucas(77)/(1/2+sqrt(5)/2)^81 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^74/Lucas(78) 2329991598992537 a004 Fibonacci(17)*Lucas(79)/(1/2+sqrt(5)/2)^83 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^76/Lucas(80) 2329991598992537 a004 Fibonacci(17)*Lucas(81)/(1/2+sqrt(5)/2)^85 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^78/Lucas(82) 2329991598992537 a004 Fibonacci(17)*Lucas(83)/(1/2+sqrt(5)/2)^87 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^80/Lucas(84) 2329991598992537 a004 Fibonacci(17)*Lucas(85)/(1/2+sqrt(5)/2)^89 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^82/Lucas(86) 2329991598992537 a004 Fibonacci(17)*Lucas(87)/(1/2+sqrt(5)/2)^91 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^84/Lucas(88) 2329991598992537 a004 Fibonacci(17)*Lucas(89)/(1/2+sqrt(5)/2)^93 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^86/Lucas(90) 2329991598992537 a004 Fibonacci(17)*Lucas(91)/(1/2+sqrt(5)/2)^95 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^88/Lucas(92) 2329991598992537 a004 Fibonacci(17)*Lucas(93)/(1/2+sqrt(5)/2)^97 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^90/Lucas(94) 2329991598992537 a004 Fibonacci(17)*Lucas(95)/(1/2+sqrt(5)/2)^99 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^92/Lucas(96) 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^94/Lucas(98) 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^95/Lucas(99) 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^96/Lucas(100) 2329991598992537 a004 Fibonacci(17)*Lucas(1)/(1/2+sqrt(5)/2)^4 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^93/Lucas(97) 2329991598992537 a004 Fibonacci(17)*Lucas(96)/(1/2+sqrt(5)/2)^100 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^91/Lucas(95) 2329991598992537 a004 Fibonacci(17)*Lucas(94)/(1/2+sqrt(5)/2)^98 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^89/Lucas(93) 2329991598992537 a004 Fibonacci(17)*Lucas(92)/(1/2+sqrt(5)/2)^96 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^87/Lucas(91) 2329991598992537 a004 Fibonacci(17)*Lucas(90)/(1/2+sqrt(5)/2)^94 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^85/Lucas(89) 2329991598992537 a004 Fibonacci(17)*Lucas(88)/(1/2+sqrt(5)/2)^92 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^83/Lucas(87) 2329991598992537 a004 Fibonacci(17)*Lucas(86)/(1/2+sqrt(5)/2)^90 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^81/Lucas(85) 2329991598992537 a004 Fibonacci(17)*Lucas(84)/(1/2+sqrt(5)/2)^88 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^79/Lucas(83) 2329991598992537 a004 Fibonacci(17)*Lucas(82)/(1/2+sqrt(5)/2)^86 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^77/Lucas(81) 2329991598992537 a004 Fibonacci(17)*Lucas(80)/(1/2+sqrt(5)/2)^84 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^75/Lucas(79) 2329991598992537 a004 Fibonacci(17)*Lucas(78)/(1/2+sqrt(5)/2)^82 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^73/Lucas(77) 2329991598992537 a004 Fibonacci(17)*Lucas(76)/(1/2+sqrt(5)/2)^80 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^71/Lucas(75) 2329991598992537 a004 Fibonacci(17)*Lucas(74)/(1/2+sqrt(5)/2)^78 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^69/Lucas(73) 2329991598992537 a004 Fibonacci(17)*Lucas(72)/(1/2+sqrt(5)/2)^76 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^67/Lucas(71) 2329991598992537 a004 Fibonacci(17)*Lucas(70)/(1/2+sqrt(5)/2)^74 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^65/Lucas(69) 2329991598992537 a004 Fibonacci(17)*Lucas(68)/(1/2+sqrt(5)/2)^72 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^63/Lucas(67) 2329991598992537 a004 Fibonacci(17)*Lucas(66)/(1/2+sqrt(5)/2)^70 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^61/Lucas(65) 2329991598992537 a004 Fibonacci(17)*Lucas(64)/(1/2+sqrt(5)/2)^68 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^59/Lucas(63) 2329991598992537 a004 Fibonacci(17)*Lucas(62)/(1/2+sqrt(5)/2)^66 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^57/Lucas(61) 2329991598992537 a004 Fibonacci(17)*Lucas(60)/(1/2+sqrt(5)/2)^64 2329991598992537 a001 1527885075587477/6557470319842 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^55/Lucas(59) 2329991598992537 a004 Fibonacci(17)*Lucas(58)/(1/2+sqrt(5)/2)^62 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^53/Lucas(57) 2329991598992537 a004 Fibonacci(17)*Lucas(56)/(1/2+sqrt(5)/2)^60 2329991598992537 a001 1597/312119004989*14662949395604^(17/21) 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^51/Lucas(55) 2329991598992537 a004 Fibonacci(17)*Lucas(54)/(1/2+sqrt(5)/2)^58 2329991598992537 a001 1597/312119004989*192900153618^(17/18) 2329991598992537 a001 1597/119218851371*14662949395604^(7/9) 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^49/Lucas(53) 2329991598992537 a001 1597/119218851371*505019158607^(7/8) 2329991598992537 a004 Fibonacci(17)*Lucas(52)/(1/2+sqrt(5)/2)^56 2329991598992537 a001 32522922685178/139583862445 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^47/Lucas(51) 2329991598992537 a004 Fibonacci(17)*Lucas(50)/(1/2+sqrt(5)/2)^54 2329991598992537 a001 1597/17393796001*45537549124^(15/17) 2329991598992537 a001 12422651052253/53316291173 2329991598992537 a001 1597/17393796001*312119004989^(9/11) 2329991598992537 a001 1597/17393796001*14662949395604^(5/7) 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^45/Lucas(49) 2329991598992537 a001 1597/17393796001*192900153618^(5/6) 2329991598992537 a001 1597/17393796001*28143753123^(9/10) 2329991598992537 a001 1597/28143753123*10749957122^(23/24) 2329991598992537 a004 Fibonacci(17)*Lucas(48)/(1/2+sqrt(5)/2)^52 2329991598992537 a001 1597/17393796001*10749957122^(15/16) 2329991598992537 a001 2971215073/12752042 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^43/Lucas(47) 2329991598992537 a001 1597/10749957122*4106118243^(22/23) 2329991598992537 a004 Fibonacci(17)*Lucas(46)/(1/2+sqrt(5)/2)^50 2329991598992537 a001 1812440362490/7778742049 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^41/Lucas(45) 2329991598992537 a001 1597/4106118243*1568397607^(21/22) 2329991598992537 a004 Fibonacci(17)*Lucas(44)/(1/2+sqrt(5)/2)^48 2329991598992537 a001 1597/969323029*2537720636^(13/15) 2329991598992537 a001 692290615889/2971215073 2329991598992537 a001 1597/969323029*45537549124^(13/17) 2329991598992537 a001 1597/969323029*14662949395604^(13/21) 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^39/Lucas(43) 2329991598992537 a001 1597/969323029*192900153618^(13/18) 2329991598992537 a001 1597/969323029*73681302247^(3/4) 2329991598992537 a001 1597/969323029*10749957122^(13/16) 2329991598992537 a001 1597/1568397607*599074578^(20/21) 2329991598992537 a004 Fibonacci(17)*Lucas(42)/(1/2+sqrt(5)/2)^46 2329991598992537 a001 1597/969323029*599074578^(13/14) 2329991598992537 a001 264431485177/1134903170 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^37/Lucas(41) 2329991598992537 a001 1597/599074578*228826127^(19/20) 2329991598992537 a004 Fibonacci(17)*Lucas(40)/(1/2+sqrt(5)/2)^44 2329991598992537 a001 101003839642/433494437 2329991598992537 a001 1597/141422324*2537720636^(7/9) 2329991598992537 a001 1597/141422324*17393796001^(5/7) 2329991598992537 a001 1597/141422324*312119004989^(7/11) 2329991598992537 a001 1597/141422324*14662949395604^(5/9) 2329991598992537 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^35/Lucas(39) 2329991598992537 a001 1597/141422324*505019158607^(5/8) 2329991598992537 a001 1597/141422324*28143753123^(7/10) 2329991598992537 a001 1597/141422324*599074578^(5/6) 2329991598992537 a001 1597/141422324*228826127^(7/8) 2329991598992538 a001 1597/228826127*87403803^(18/19) 2329991598992538 a004 Fibonacci(17)*Lucas(38)/(1/2+sqrt(5)/2)^42 2329991598992538 a001 1597/54018521*141422324^(11/13) 2329991598992538 a001 38580033749/165580141 2329991598992538 a001 1597/54018521*2537720636^(11/15) 2329991598992538 a001 1597/54018521*45537549124^(11/17) 2329991598992538 a001 1597/54018521*312119004989^(3/5) 2329991598992538 a001 1597/54018521*14662949395604^(11/21) 2329991598992538 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^33/Lucas(37) 2329991598992538 a001 1597/54018521*192900153618^(11/18) 2329991598992538 a001 1597/54018521*10749957122^(11/16) 2329991598992538 a001 1597/54018521*1568397607^(3/4) 2329991598992538 a001 1597/54018521*599074578^(11/14) 2329991598992539 a001 1597/87403803*33385282^(17/18) 2329991598992539 a004 Fibonacci(17)*Lucas(36)/(1/2+sqrt(5)/2)^40 2329991598992540 a001 1597/54018521*33385282^(11/12) 2329991598992543 a001 14736261605/63245986 2329991598992543 a001 1597/20633239*(1/2+1/2*5^(1/2))^31 2329991598992543 a001 1597/20633239*9062201101803^(1/2) 2329991598992549 a001 1597/33385282*12752043^(16/17) 2329991598992550 a004 Fibonacci(36)/Lucas(17)/(1/2+sqrt(5)/2)^6 2329991598992551 a004 Fibonacci(38)/Lucas(17)/(1/2+sqrt(5)/2)^8 2329991598992552 a004 Fibonacci(40)/Lucas(17)/(1/2+sqrt(5)/2)^10 2329991598992552 a004 Fibonacci(42)/Lucas(17)/(1/2+sqrt(5)/2)^12 2329991598992552 a004 Fibonacci(44)/Lucas(17)/(1/2+sqrt(5)/2)^14 2329991598992552 a004 Fibonacci(46)/Lucas(17)/(1/2+sqrt(5)/2)^16 2329991598992552 a004 Fibonacci(48)/Lucas(17)/(1/2+sqrt(5)/2)^18 2329991598992552 a004 Fibonacci(50)/Lucas(17)/(1/2+sqrt(5)/2)^20 2329991598992552 a004 Fibonacci(52)/Lucas(17)/(1/2+sqrt(5)/2)^22 2329991598992552 a004 Fibonacci(54)/Lucas(17)/(1/2+sqrt(5)/2)^24 2329991598992552 a004 Fibonacci(56)/Lucas(17)/(1/2+sqrt(5)/2)^26 2329991598992552 a004 Fibonacci(58)/Lucas(17)/(1/2+sqrt(5)/2)^28 2329991598992552 a004 Fibonacci(60)/Lucas(17)/(1/2+sqrt(5)/2)^30 2329991598992552 a004 Fibonacci(62)/Lucas(17)/(1/2+sqrt(5)/2)^32 2329991598992552 a004 Fibonacci(64)/Lucas(17)/(1/2+sqrt(5)/2)^34 2329991598992552 a004 Fibonacci(66)/Lucas(17)/(1/2+sqrt(5)/2)^36 2329991598992552 a004 Fibonacci(17)*Lucas(34)/(1/2+sqrt(5)/2)^38 2329991598992552 a004 Fibonacci(70)/Lucas(17)/(1/2+sqrt(5)/2)^40 2329991598992552 a004 Fibonacci(72)/Lucas(17)/(1/2+sqrt(5)/2)^42 2329991598992552 a004 Fibonacci(74)/Lucas(17)/(1/2+sqrt(5)/2)^44 2329991598992552 a004 Fibonacci(76)/Lucas(17)/(1/2+sqrt(5)/2)^46 2329991598992552 a004 Fibonacci(78)/Lucas(17)/(1/2+sqrt(5)/2)^48 2329991598992552 a004 Fibonacci(80)/Lucas(17)/(1/2+sqrt(5)/2)^50 2329991598992552 a004 Fibonacci(82)/Lucas(17)/(1/2+sqrt(5)/2)^52 2329991598992552 a004 Fibonacci(84)/Lucas(17)/(1/2+sqrt(5)/2)^54 2329991598992552 a004 Fibonacci(86)/Lucas(17)/(1/2+sqrt(5)/2)^56 2329991598992552 a004 Fibonacci(88)/Lucas(17)/(1/2+sqrt(5)/2)^58 2329991598992552 a004 Fibonacci(90)/Lucas(17)/(1/2+sqrt(5)/2)^60 2329991598992552 a004 Fibonacci(92)/Lucas(17)/(1/2+sqrt(5)/2)^62 2329991598992552 a004 Fibonacci(94)/Lucas(17)/(1/2+sqrt(5)/2)^64 2329991598992552 a004 Fibonacci(96)/Lucas(17)/(1/2+sqrt(5)/2)^66 2329991598992552 a004 Fibonacci(98)/Lucas(17)/(1/2+sqrt(5)/2)^68 2329991598992552 a004 Fibonacci(100)/Lucas(17)/(1/2+sqrt(5)/2)^70 2329991598992552 a004 Fibonacci(97)/Lucas(17)/(1/2+sqrt(5)/2)^67 2329991598992552 a004 Fibonacci(99)/Lucas(17)/(1/2+sqrt(5)/2)^69 2329991598992552 a004 Fibonacci(95)/Lucas(17)/(1/2+sqrt(5)/2)^65 2329991598992552 a004 Fibonacci(93)/Lucas(17)/(1/2+sqrt(5)/2)^63 2329991598992552 a004 Fibonacci(91)/Lucas(17)/(1/2+sqrt(5)/2)^61 2329991598992552 a004 Fibonacci(89)/Lucas(17)/(1/2+sqrt(5)/2)^59 2329991598992552 a004 Fibonacci(87)/Lucas(17)/(1/2+sqrt(5)/2)^57 2329991598992552 a004 Fibonacci(85)/Lucas(17)/(1/2+sqrt(5)/2)^55 2329991598992552 a004 Fibonacci(83)/Lucas(17)/(1/2+sqrt(5)/2)^53 2329991598992552 a004 Fibonacci(81)/Lucas(17)/(1/2+sqrt(5)/2)^51 2329991598992552 a004 Fibonacci(79)/Lucas(17)/(1/2+sqrt(5)/2)^49 2329991598992552 a004 Fibonacci(77)/Lucas(17)/(1/2+sqrt(5)/2)^47 2329991598992552 a004 Fibonacci(75)/Lucas(17)/(1/2+sqrt(5)/2)^45 2329991598992552 a004 Fibonacci(73)/Lucas(17)/(1/2+sqrt(5)/2)^43 2329991598992552 a004 Fibonacci(71)/Lucas(17)/(1/2+sqrt(5)/2)^41 2329991598992552 a004 Fibonacci(69)/Lucas(17)/(1/2+sqrt(5)/2)^39 2329991598992552 a004 Fibonacci(67)/Lucas(17)/(1/2+sqrt(5)/2)^37 2329991598992552 a004 Fibonacci(65)/Lucas(17)/(1/2+sqrt(5)/2)^35 2329991598992552 a004 Fibonacci(63)/Lucas(17)/(1/2+sqrt(5)/2)^33 2329991598992552 a004 Fibonacci(61)/Lucas(17)/(1/2+sqrt(5)/2)^31 2329991598992552 a004 Fibonacci(59)/Lucas(17)/(1/2+sqrt(5)/2)^29 2329991598992552 a004 Fibonacci(57)/Lucas(17)/(1/2+sqrt(5)/2)^27 2329991598992552 a004 Fibonacci(55)/Lucas(17)/(1/2+sqrt(5)/2)^25 2329991598992552 a004 Fibonacci(53)/Lucas(17)/(1/2+sqrt(5)/2)^23 2329991598992552 a004 Fibonacci(51)/Lucas(17)/(1/2+sqrt(5)/2)^21 2329991598992552 a004 Fibonacci(49)/Lucas(17)/(1/2+sqrt(5)/2)^19 2329991598992552 a004 Fibonacci(47)/Lucas(17)/(1/2+sqrt(5)/2)^17 2329991598992552 a004 Fibonacci(45)/Lucas(17)/(1/2+sqrt(5)/2)^15 2329991598992552 a004 Fibonacci(43)/Lucas(17)/(1/2+sqrt(5)/2)^13 2329991598992552 a004 Fibonacci(41)/Lucas(17)/(1/2+sqrt(5)/2)^11 2329991598992552 a004 Fibonacci(39)/Lucas(17)/(1/2+sqrt(5)/2)^9 2329991598992552 a004 Fibonacci(37)/Lucas(17)/(1/2+sqrt(5)/2)^7 2329991598992557 a004 Fibonacci(35)/Lucas(17)/(1/2+sqrt(5)/2)^5 2329991598992574 a001 5628751066/24157817 2329991598992575 a001 1597/7881196*(1/2+1/2*5^(1/2))^29 2329991598992575 a001 1597/7881196*1322157322203^(1/2) 2329991598992589 a004 Fibonacci(33)/Lucas(17)/(1/2+sqrt(5)/2)^3 2329991598992615 a001 1597/12752043*4870847^(15/16) 2329991598992636 a004 Fibonacci(17)*Lucas(32)/(1/2+sqrt(5)/2)^36 2329991598992764 a001 1597/3010349*7881196^(9/11) 2329991598992789 a001 2149991593/9227465 2329991598992794 a001 1597/3010349*141422324^(9/13) 2329991598992794 a001 1597/3010349*2537720636^(3/5) 2329991598992794 a001 1597/3010349*45537549124^(9/17) 2329991598992794 a001 1597/3010349*817138163596^(9/19) 2329991598992794 a001 1597/3010349*14662949395604^(3/7) 2329991598992794 a001 1597/3010349*(1/2+1/2*5^(1/2))^27 2329991598992794 a001 1597/3010349*192900153618^(1/2) 2329991598992794 a001 1597/3010349*10749957122^(9/16) 2329991598992794 a001 1597/3010349*599074578^(9/14) 2329991598992796 a001 1597/3010349*33385282^(3/4) 2329991598992809 a004 Fibonacci(31)/Lucas(17)/(1/2+sqrt(5)/2) 2329991598993067 a001 1597/4870847*1860498^(14/15) 2329991598993210 a004 Fibonacci(17)*Lucas(30)/(1/2+sqrt(5)/2)^34 2329991598993400 a001 1597/3010349*1860498^(9/10) 2329991598994262 a001 821223713/3524578 2329991598994296 a001 1597/1149851*20633239^(5/7) 2329991598994300 a001 1597/1149851*2537720636^(5/9) 2329991598994300 a001 1597/1149851*312119004989^(5/11) 2329991598994300 a001 1597/1149851*(1/2+1/2*5^(1/2))^25 2329991598994300 a001 1597/1149851*3461452808002^(5/12) 2329991598994300 a001 1597/1149851*28143753123^(1/2) 2329991598994300 a001 1597/1149851*228826127^(5/8) 2329991598994314 a001 514229/7142+514229/7142*5^(1/2) 2329991598994861 a001 1597/1149851*1860498^(5/6) 2329991598996148 a001 1597/1860498*710647^(13/14) 2329991598997053 a001 121393/3571*103682^(1/6) 2329991598997151 a004 Fibonacci(17)*Lucas(28)/(1/2+sqrt(5)/2)^32 2329991599003288 a001 196418/3571*439204^(1/9) 2329991599003345 a001 514229/3571*103682^(1/24) 2329991599004359 a001 313679546/1346269 2329991599004616 a001 1597/439204*(1/2+1/2*5^(1/2))^23 2329991599004616 a001 1597/439204*4106118243^(1/2) 2329991599004627 a001 196418/3571*7881196^(1/11) 2329991599004630 a001 196418/3571*141422324^(1/13) 2329991599004630 a001 196418/3571*2537720636^(1/15) 2329991599004630 a001 196418/3571*45537549124^(1/17) 2329991599004630 a001 196418/3571*14662949395604^(1/21) 2329991599004630 a001 196418/3571*(1/2+1/2*5^(1/2))^3 2329991599004630 a001 196418/3571*10749957122^(1/16) 2329991599004630 a001 196418/3571*599074578^(1/14) 2329991599004631 a001 196418/3571*33385282^(1/12) 2329991599004698 a001 196418/3571*1860498^(1/10) 2329991599006000 a001 317811/3571*103682^(1/12) 2329991599017114 a001 1597/710647*271443^(12/13) 2329991599024160 a004 Fibonacci(17)*Lucas(26)/(1/2+sqrt(5)/2)^30 2329991599031723 a001 196418/3571*103682^(1/8) 2329991599058783 a001 75025/3571*167761^(1/5) 2329991599061841 a001 514229/3571*39603^(1/22) 2329991599065932 a001 1597/167761*439204^(7/9) 2329991599073564 a001 119814925/514229 2329991599075302 a001 1597/167761*7881196^(7/11) 2329991599075323 a001 1597/167761*20633239^(3/5) 2329991599075326 a001 1597/167761*141422324^(7/13) 2329991599075326 a001 1597/167761*2537720636^(7/15) 2329991599075326 a001 1597/167761*17393796001^(3/7) 2329991599075326 a001 1597/167761*45537549124^(7/17) 2329991599075326 a001 1597/167761*14662949395604^(1/3) 2329991599075326 a001 1597/167761*(1/2+1/2*5^(1/2))^21 2329991599075326 a001 1597/167761*192900153618^(7/18) 2329991599075326 a001 1597/167761*10749957122^(7/16) 2329991599075326 a001 1597/167761*599074578^(1/2) 2329991599075327 a001 1597/167761*33385282^(7/12) 2329991599075340 a001 75025/3571*20633239^(1/7) 2329991599075341 a001 75025/3571*2537720636^(1/9) 2329991599075341 a001 75025/3571*312119004989^(1/11) 2329991599075341 a001 75025/3571*(1/2+1/2*5^(1/2))^5 2329991599075341 a001 75025/3571*28143753123^(1/10) 2329991599075341 a001 75025/3571*228826127^(1/8) 2329991599075453 a001 75025/3571*1860498^(1/6) 2329991599075797 a001 1597/167761*1860498^(7/10) 2329991599078787 a001 1597/167761*710647^(3/4) 2329991599091223 a001 1597/64079*64079^(19/23) 2329991599120496 a001 75025/3571*103682^(5/24) 2329991599122991 a001 317811/3571*39603^(1/11) 2329991599159597 a001 1597/271443*103682^(11/12) 2329991599180968 a001 46368/3571*39603^(3/11) 2329991599207210 a001 196418/3571*39603^(3/22) 2329991599209282 a004 Fibonacci(17)*Lucas(24)/(1/2+sqrt(5)/2)^28 2329991599212329 a001 1597/439204*103682^(23/24) 2329991599231036 a001 121393/3571*39603^(2/11) 2329991599264978 a001 1597/167761*103682^(7/8) 2329991599387295 a001 28657/3571*64079^(7/23) 2329991599412974 a001 75025/3571*39603^(5/22) 2329991599503432 a001 514229/3571*15127^(1/20) 2329991599545008 a001 10959/844*2207^(3/8) 2329991599547902 a001 45765229/196418 2329991599559981 a001 1597/64079*817138163596^(1/3) 2329991599559981 a001 1597/64079*(1/2+1/2*5^(1/2))^19 2329991599559981 a001 1597/64079*87403803^(1/2) 2329991599559994 a001 28657/3571*20633239^(1/5) 2329991599559996 a001 28657/3571*17393796001^(1/7) 2329991599559996 a001 28657/3571*14662949395604^(1/9) 2329991599559996 a001 28657/3571*(1/2+1/2*5^(1/2))^7 2329991599559996 a001 28657/3571*599074578^(1/6) 2329991599561149 a001 28657/3571*710647^(1/4) 2329991599623213 a001 28657/3571*103682^(7/24) 2329991599731570 a001 1597/64079*103682^(19/24) 2329991599733360 a001 1597/24476*24476^(17/21) 2329991600006175 a001 317811/3571*15127^(1/10) 2329991600032682 a001 28657/3571*39603^(7/22) 2329991600126327 a001 1597/103682*39603^(10/11) 2329991600478125 a004 Fibonacci(17)*Lucas(22)/(1/2+sqrt(5)/2)^26 2329991600493387 a001 1597/167761*39603^(21/22) 2329991600531985 a001 196418/3571*15127^(3/20) 2329991600842988 a001 1597/64079*39603^(19/22) 2329991600997402 a001 121393/3571*15127^(1/5) 2329991601215019 a001 10946/3571*24476^(3/7) 2329991601579911 a001 17711/3571*15127^(2/5) 2329991601620932 a001 75025/3571*15127^(1/4) 2329991601830517 a001 46368/3571*15127^(3/10) 2329991602462440 a001 1597/24476*64079^(17/23) 2329991602659826 a001 10946/3571*64079^(9/23) 2329991602799066 a001 17480762/75025 2329991602871591 a001 514229/3571*5778^(1/18) 2329991602877844 a001 10946/3571*439204^(1/3) 2329991602881855 a001 1597/24476*45537549124^(1/3) 2329991602881855 a001 1597/24476*(1/2+1/2*5^(1/2))^17 2329991602881860 a001 10946/3571*7881196^(3/11) 2329991602881863 a001 1597/24476*12752043^(1/2) 2329991602881870 a001 10946/3571*141422324^(3/13) 2329991602881870 a001 10946/3571*2537720636^(1/5) 2329991602881870 a001 10946/3571*45537549124^(3/17) 2329991602881870 a001 10946/3571*14662949395604^(1/7) 2329991602881870 a001 10946/3571*(1/2+1/2*5^(1/2))^9 2329991602881870 a001 10946/3571*192900153618^(1/6) 2329991602881870 a001 10946/3571*10749957122^(3/16) 2329991602881870 a001 10946/3571*599074578^(3/14) 2329991602881870 a001 10946/3571*33385282^(1/4) 2329991602882072 a001 10946/3571*1860498^(3/10) 2329991602963149 a001 10946/3571*103682^(3/8) 2329991603035383 a001 1597/24476*103682^(17/24) 2329991603123824 a001 28657/3571*15127^(7/20) 2329991603489610 a001 10946/3571*39603^(9/22) 2329991604029809 a001 1597/24476*39603^(17/22) 2329991604604702 a001 1597/9349*9349^(15/19) 2329991606671080 a001 1597/39603*15127^(9/10) 2329991606742491 a001 317811/3571*5778^(1/9) 2329991607463935 a001 10946/3571*15127^(9/20) 2329991607603901 b008 24+Zeta[3/17] 2329991609174904 a004 Fibonacci(17)*Lucas(20)/(1/2+sqrt(5)/2)^24 2329991609233230 a001 1597/64079*15127^(19/20) 2329991610216881 a001 4181/3571*9349^(11/19) 2329991610636461 a001 196418/3571*5778^(1/6) 2329991611536867 a001 1597/24476*15127^(17/20) 2329991611650586 a007 Real Root Of 376*x^4+511*x^3-691*x^2+323*x-114 2329991614075196 a001 17711/5778*2207^(9/16) 2329991614202748 a007 Real Root Of 404*x^4+951*x^3-95*x^2-131*x+333 2329991614470036 a001 121393/3571*5778^(2/9) 2329991615343467 a001 121393/15127*2207^(7/16) 2329991618461724 a001 75025/3571*5778^(5/18) 2329991621087343 m001 KhinchinHarmonic+Bloch^TravellingSalesman 2329991621225728 r009 Re(z^3+c),c=-19/48+15/26*I,n=61 2329991622039468 a001 46368/3571*5778^(1/3) 2329991622286464 a001 121393/9349*2207^(3/8) 2329991622872236 a001 1597/9349*24476^(5/7) 2329991623613073 a001 4181/3571*24476^(11/21) 2329991624067256 a001 105937/13201*2207^(7/16) 2329991624737746 b008 5/3+Sqrt[11]/5 2329991625082876 a001 6677057/28657 2329991625280248 a001 1597/9349*64079^(15/23) 2329991625340039 a001 416020/51841*2207^(7/16) 2329991625378948 a001 4181/3571*64079^(11/23) 2329991625525736 a001 726103/90481*2207^(7/16) 2329991625552829 a001 5702887/710647*2207^(7/16) 2329991625556782 a001 829464/103361*2207^(7/16) 2329991625557358 a001 39088169/4870847*2207^(7/16) 2329991625557442 a001 34111385/4250681*2207^(7/16) 2329991625557455 a001 133957148/16692641*2207^(7/16) 2329991625557456 a001 233802911/29134601*2207^(7/16) 2329991625557457 a001 1836311903/228826127*2207^(7/16) 2329991625557457 a001 267084832/33281921*2207^(7/16) 2329991625557457 a001 12586269025/1568397607*2207^(7/16) 2329991625557457 a001 10983760033/1368706081*2207^(7/16) 2329991625557457 a001 43133785636/5374978561*2207^(7/16) 2329991625557457 a001 75283811239/9381251041*2207^(7/16) 2329991625557457 a001 591286729879/73681302247*2207^(7/16) 2329991625557457 a001 86000486440/10716675201*2207^(7/16) 2329991625557457 a001 4052739537881/505019158607*2207^(7/16) 2329991625557457 a001 3278735159921/408569081798*2207^(7/16) 2329991625557457 a001 2504730781961/312119004989*2207^(7/16) 2329991625557457 a001 956722026041/119218851371*2207^(7/16) 2329991625557457 a001 182717648081/22768774562*2207^(7/16) 2329991625557457 a001 139583862445/17393796001*2207^(7/16) 2329991625557457 a001 53316291173/6643838879*2207^(7/16) 2329991625557457 a001 10182505537/1268860318*2207^(7/16) 2329991625557457 a001 7778742049/969323029*2207^(7/16) 2329991625557457 a001 2971215073/370248451*2207^(7/16) 2329991625557457 a001 567451585/70711162*2207^(7/16) 2329991625557458 a001 433494437/54018521*2207^(7/16) 2329991625557462 a001 165580141/20633239*2207^(7/16) 2329991625557494 a001 31622993/3940598*2207^(7/16) 2329991625557715 a001 24157817/3010349*2207^(7/16) 2329991625559225 a001 9227465/1149851*2207^(7/16) 2329991625569573 a001 1762289/219602*2207^(7/16) 2329991625600647 a001 1597/9349*167761^(3/5) 2329991625640503 a001 1346269/167761*2207^(7/16) 2329991625643610 a001 1597/9349*439204^(5/9) 2329991625650303 a001 1597/9349*7881196^(5/11) 2329991625650318 a001 1597/9349*20633239^(3/7) 2329991625650320 a001 1597/9349*141422324^(5/13) 2329991625650320 a001 1597/9349*2537720636^(1/3) 2329991625650320 a001 1597/9349*45537549124^(5/17) 2329991625650320 a001 1597/9349*312119004989^(3/11) 2329991625650320 a001 1597/9349*14662949395604^(5/21) 2329991625650320 a001 1597/9349*(1/2+1/2*5^(1/2))^15 2329991625650320 a001 1597/9349*192900153618^(5/18) 2329991625650320 a001 1597/9349*28143753123^(3/10) 2329991625650320 a001 1597/9349*10749957122^(5/16) 2329991625650320 a001 1597/9349*599074578^(5/14) 2329991625650320 a001 1597/9349*228826127^(3/8) 2329991625650321 a001 1597/9349*33385282^(5/12) 2329991625650322 a001 4181/3571*7881196^(1/3) 2329991625650334 a001 4181/3571*312119004989^(1/5) 2329991625650334 a001 4181/3571*(1/2+1/2*5^(1/2))^11 2329991625650334 a001 4181/3571*1568397607^(1/4) 2329991625650657 a001 1597/9349*1860498^(1/2) 2329991625749676 a001 4181/3571*103682^(11/24) 2329991625785786 a001 1597/9349*103682^(5/8) 2329991626126663 a001 514229/64079*2207^(7/16) 2329991626393128 a001 4181/3571*39603^(1/2) 2329991626663221 a001 1597/9349*39603^(15/22) 2329991626700933 a001 28657/3571*5778^(7/18) 2329991627582952 a001 6765/3571*5778^(5/9) 2329991628525178 a001 17711/3571*5778^(4/9) 2329991628891468 a001 514229/3571*2207^(1/16) 2329991629458854 a001 98209/12238*2207^(7/16) 2329991629894315 r005 Im(z^2+c),c=-23/98+13/38*I,n=25 2329991631250636 a001 4181/3571*15127^(11/20) 2329991632846766 a007 Real Root Of -428*x^4-990*x^3-103*x^2-287*x-18 2329991633287096 a001 1597/9349*15127^(3/4) 2329991637777360 a001 10946/3571*5778^(1/2) 2329991640286935 a001 311187/2161*843^(1/14) 2329991640467357 a001 121393/2207*843^(3/14) 2329991641984342 a001 1597/3571*3571^(13/17) 2329991645355032 a001 75025/15127*2207^(1/2) 2329991648983799 a001 5702887/39603*843^(1/14) 2329991649347255 a001 5473/2889*2207^(5/8) 2329991650252654 a001 7465176/51841*843^(1/14) 2329991650437777 a001 39088169/271443*843^(1/14) 2329991650464787 a001 14619165/101521*843^(1/14) 2329991650468727 a001 133957148/930249*843^(1/14) 2329991650469302 a001 701408733/4870847*843^(1/14) 2329991650469386 a001 1836311903/12752043*843^(1/14) 2329991650469398 a001 14930208/103681*843^(1/14) 2329991650469400 a001 12586269025/87403803*843^(1/14) 2329991650469400 a001 32951280099/228826127*843^(1/14) 2329991650469400 a001 43133785636/299537289*843^(1/14) 2329991650469400 a001 32264490531/224056801*843^(1/14) 2329991650469400 a001 591286729879/4106118243*843^(1/14) 2329991650469400 a001 774004377960/5374978561*843^(1/14) 2329991650469400 a001 4052739537881/28143753123*843^(1/14) 2329991650469400 a001 1515744265389/10525900321*843^(1/14) 2329991650469400 a001 3278735159921/22768774562*843^(1/14) 2329991650469400 a001 2504730781961/17393796001*843^(1/14) 2329991650469400 a001 956722026041/6643838879*843^(1/14) 2329991650469400 a001 182717648081/1268860318*843^(1/14) 2329991650469400 a001 139583862445/969323029*843^(1/14) 2329991650469400 a001 53316291173/370248451*843^(1/14) 2329991650469400 a001 10182505537/70711162*843^(1/14) 2329991650469401 a001 7778742049/54018521*843^(1/14) 2329991650469406 a001 2971215073/20633239*843^(1/14) 2329991650469438 a001 567451585/3940598*843^(1/14) 2329991650469657 a001 433494437/3010349*843^(1/14) 2329991650471163 a001 165580141/1149851*843^(1/14) 2329991650481479 a001 31622993/219602*843^(1/14) 2329991650552190 a001 24157817/167761*843^(1/14) 2329991650846598 a001 1597/15127*5778^(8/9) 2329991651036850 a001 9227465/64079*843^(1/14) 2329991651767274 r005 Im(z^2+c),c=29/102+1/27*I,n=24 2329991652298029 a001 75025/9349*2207^(7/16) 2329991653981102 a001 196418/39603*2207^(1/2) 2329991654347048 m002 -4+5*Pi+Cosh[Pi] 2329991654358756 a001 1762289/12238*843^(1/14) 2329991655239629 a001 514229/103682*2207^(1/2) 2329991655333747 m001 (-Niven+Porter)/(BesselJ(0,1)-KomornikLoreti) 2329991655423245 a001 1346269/271443*2207^(1/2) 2329991655450035 a001 3524578/710647*2207^(1/2) 2329991655453943 a001 9227465/1860498*2207^(1/2) 2329991655454513 a001 24157817/4870847*2207^(1/2) 2329991655454597 a001 63245986/12752043*2207^(1/2) 2329991655454609 a001 165580141/33385282*2207^(1/2) 2329991655454610 a001 433494437/87403803*2207^(1/2) 2329991655454611 a001 1134903170/228826127*2207^(1/2) 2329991655454611 a001 2971215073/599074578*2207^(1/2) 2329991655454611 a001 7778742049/1568397607*2207^(1/2) 2329991655454611 a001 20365011074/4106118243*2207^(1/2) 2329991655454611 a001 53316291173/10749957122*2207^(1/2) 2329991655454611 a001 139583862445/28143753123*2207^(1/2) 2329991655454611 a001 365435296162/73681302247*2207^(1/2) 2329991655454611 a001 956722026041/192900153618*2207^(1/2) 2329991655454611 a001 2504730781961/505019158607*2207^(1/2) 2329991655454611 a001 10610209857723/2139295485799*2207^(1/2) 2329991655454611 a001 140728068720/28374454999*2207^(1/2) 2329991655454611 a001 591286729879/119218851371*2207^(1/2) 2329991655454611 a001 225851433717/45537549124*2207^(1/2) 2329991655454611 a001 86267571272/17393796001*2207^(1/2) 2329991655454611 a001 32951280099/6643838879*2207^(1/2) 2329991655454611 a001 1144206275/230701876*2207^(1/2) 2329991655454611 a001 4807526976/969323029*2207^(1/2) 2329991655454611 a001 1836311903/370248451*2207^(1/2) 2329991655454611 a001 701408733/141422324*2207^(1/2) 2329991655454612 a001 267914296/54018521*2207^(1/2) 2329991655454616 a001 9303105/1875749*2207^(1/2) 2329991655454648 a001 39088169/7881196*2207^(1/2) 2329991655454866 a001 14930352/3010349*2207^(1/2) 2329991655456359 a001 5702887/1149851*2207^(1/2) 2329991655466591 a001 2178309/439204*2207^(1/2) 2329991655536727 a001 75640/15251*2207^(1/2) 2329991656017441 a001 317811/64079*2207^(1/2) 2329991658782246 a001 317811/3571*2207^(1/8) 2329991659312306 a001 121393/24476*2207^(1/2) 2329991665172724 a001 2255/1926*2207^(11/16) 2329991665358415 a001 1292/2889*2207^(13/16) 2329991666874174 r005 Re(z^2+c),c=-7/52+30/47*I,n=46 2329991667290734 m001 exp(-1/2*Pi)^Porter*Grothendieck^Porter 2329991668300379 a001 4181/3571*5778^(11/18) 2329991668783519 a004 Fibonacci(17)*Lucas(18)/(1/2+sqrt(5)/2)^22 2329991668795560 a001 1597/24476*5778^(17/18) 2329991674952653 a001 6624/2161*2207^(9/16) 2329991677127441 a001 1346269/9349*843^(1/14) 2329991678610436 m005 (1/2*exp(1)-5/9)/(1/7*2^(1/2)+1/7) 2329991681272789 m005 (1/2*Pi+5/8)/(1/3*gamma+3/4) 2329991681895650 a001 46368/9349*2207^(1/2) 2329991683809472 a001 1597/9349*5778^(5/6) 2329991683834555 a001 121393/39603*2207^(9/16) 2329991685130407 a001 317811/103682*2207^(9/16) 2329991685319469 a001 832040/271443*2207^(9/16) 2329991685347053 a001 311187/101521*2207^(9/16) 2329991685351078 a001 5702887/1860498*2207^(9/16) 2329991685351665 a001 14930352/4870847*2207^(9/16) 2329991685351750 a001 39088169/12752043*2207^(9/16) 2329991685351763 a001 14619165/4769326*2207^(9/16) 2329991685351765 a001 267914296/87403803*2207^(9/16) 2329991685351765 a001 701408733/228826127*2207^(9/16) 2329991685351765 a001 1836311903/599074578*2207^(9/16) 2329991685351765 a001 686789568/224056801*2207^(9/16) 2329991685351765 a001 12586269025/4106118243*2207^(9/16) 2329991685351765 a001 32951280099/10749957122*2207^(9/16) 2329991685351765 a001 86267571272/28143753123*2207^(9/16) 2329991685351765 a001 32264490531/10525900321*2207^(9/16) 2329991685351765 a001 591286729879/192900153618*2207^(9/16) 2329991685351765 a001 1548008755920/505019158607*2207^(9/16) 2329991685351765 a001 1515744265389/494493258286*2207^(9/16) 2329991685351765 a001 2504730781961/817138163596*2207^(9/16) 2329991685351765 a001 956722026041/312119004989*2207^(9/16) 2329991685351765 a001 365435296162/119218851371*2207^(9/16) 2329991685351765 a001 139583862445/45537549124*2207^(9/16) 2329991685351765 a001 53316291173/17393796001*2207^(9/16) 2329991685351765 a001 20365011074/6643838879*2207^(9/16) 2329991685351765 a001 7778742049/2537720636*2207^(9/16) 2329991685351765 a001 2971215073/969323029*2207^(9/16) 2329991685351765 a001 1134903170/370248451*2207^(9/16) 2329991685351765 a001 433494437/141422324*2207^(9/16) 2329991685351766 a001 165580141/54018521*2207^(9/16) 2329991685351771 a001 63245986/20633239*2207^(9/16) 2329991685351803 a001 24157817/7881196*2207^(9/16) 2329991685352028 a001 9227465/3010349*2207^(9/16) 2329991685353565 a001 3524578/1149851*2207^(9/16) 2329991685364101 a001 1346269/439204*2207^(9/16) 2329991685436316 a001 514229/167761*2207^(9/16) 2329991685931288 a001 196418/64079*2207^(9/16) 2329991688545243 m001 (Conway+Tribonacci)/(GAMMA(3/4)+Champernowne) 2329991688692250 m007 (-3*gamma-3/4)/(-5*gamma-10*ln(2)-5/6) 2329991688696092 a001 196418/3571*2207^(3/16) 2329991689323872 a001 75025/24476*2207^(9/16) 2329991689439028 a001 281/4976784*89^(6/19) 2329991691138154 l006 ln(709/7287) 2329991692846252 m001 (Paris-Rabbit)/(ReciprocalLucas+TwinPrimes) 2329991696232688 m001 (MertensB2+Rabbit)/(gamma(1)-gamma(3)) 2329991699322652 m001 (GAMMA(3/4)+gamma(3))/(FeigenbaumD+Sierpinski) 2329991704787721 m001 ln(GAMMA(1/6))^2*Tribonacci^2*GAMMA(7/12)^2 2329991705633996 a001 28657/15127*2207^(5/8) 2329991707344654 r005 Re(z^2+c),c=-9/17+11/18*I,n=38 2329991709640109 r005 Im(z^2+c),c=-7/46+28/43*I,n=50 2329991712576993 a001 28657/9349*2207^(9/16) 2329991713846121 a001 75025/39603*2207^(5/8) 2329991715044254 a001 98209/51841*2207^(5/8) 2329991715219059 a001 514229/271443*2207^(5/8) 2329991715244563 a001 1346269/710647*2207^(5/8) 2329991715248284 a001 1762289/930249*2207^(5/8) 2329991715248827 a001 9227465/4870847*2207^(5/8) 2329991715248906 a001 24157817/12752043*2207^(5/8) 2329991715248918 a001 31622993/16692641*2207^(5/8) 2329991715248919 a001 165580141/87403803*2207^(5/8) 2329991715248920 a001 433494437/228826127*2207^(5/8) 2329991715248920 a001 567451585/299537289*2207^(5/8) 2329991715248920 a001 2971215073/1568397607*2207^(5/8) 2329991715248920 a001 7778742049/4106118243*2207^(5/8) 2329991715248920 a001 10182505537/5374978561*2207^(5/8) 2329991715248920 a001 53316291173/28143753123*2207^(5/8) 2329991715248920 a001 139583862445/73681302247*2207^(5/8) 2329991715248920 a001 182717648081/96450076809*2207^(5/8) 2329991715248920 a001 956722026041/505019158607*2207^(5/8) 2329991715248920 a001 10610209857723/5600748293801*2207^(5/8) 2329991715248920 a001 591286729879/312119004989*2207^(5/8) 2329991715248920 a001 225851433717/119218851371*2207^(5/8) 2329991715248920 a001 21566892818/11384387281*2207^(5/8) 2329991715248920 a001 32951280099/17393796001*2207^(5/8) 2329991715248920 a001 12586269025/6643838879*2207^(5/8) 2329991715248920 a001 1201881744/634430159*2207^(5/8) 2329991715248920 a001 1836311903/969323029*2207^(5/8) 2329991715248920 a001 701408733/370248451*2207^(5/8) 2329991715248920 a001 66978574/35355581*2207^(5/8) 2329991715248921 a001 102334155/54018521*2207^(5/8) 2329991715248925 a001 39088169/20633239*2207^(5/8) 2329991715248955 a001 3732588/1970299*2207^(5/8) 2329991715249163 a001 5702887/3010349*2207^(5/8) 2329991715250584 a001 2178309/1149851*2207^(5/8) 2329991715260325 a001 208010/109801*2207^(5/8) 2329991715327095 a001 317811/167761*2207^(5/8) 2329991715784741 a001 121393/64079*2207^(5/8) 2329991718549546 a001 121393/3571*2207^(1/4) 2329991718921494 a001 11592/6119*2207^(5/8) 2329991731910030 a001 4181/5778*2207^(3/4) 2329991732649314 r005 Im(z^2+c),c=-39/31+10/53*I,n=3 2329991733478120 a001 17711/15127*2207^(11/16) 2329991734930313 m002 -5/6+E^Pi+Tanh[Pi]^2 2329991736994981 r009 Re(z^3+c),c=-17/122+11/12*I,n=62 2329991740421117 a001 17711/9349*2207^(5/8) 2329991741847815 p001 sum(1/(185*n+43)/(100^n),n=0..infinity) 2329991742534878 r009 Re(z^3+c),c=-23/82+13/48*I,n=9 2329991743443743 a001 15456/13201*2207^(11/16) 2329991744897708 a001 121393/103682*2207^(11/16) 2329991745109839 a001 105937/90481*2207^(11/16) 2329991745140788 a001 832040/710647*2207^(11/16) 2329991745145304 a001 726103/620166*2207^(11/16) 2329991745145962 a001 5702887/4870847*2207^(11/16) 2329991745146058 a001 4976784/4250681*2207^(11/16) 2329991745146072 a001 39088169/33385282*2207^(11/16) 2329991745146074 a001 34111385/29134601*2207^(11/16) 2329991745146075 a001 267914296/228826127*2207^(11/16) 2329991745146075 a001 233802911/199691526*2207^(11/16) 2329991745146075 a001 1836311903/1568397607*2207^(11/16) 2329991745146075 a001 1602508992/1368706081*2207^(11/16) 2329991745146075 a001 12586269025/10749957122*2207^(11/16) 2329991745146075 a001 10983760033/9381251041*2207^(11/16) 2329991745146075 a001 86267571272/73681302247*2207^(11/16) 2329991745146075 a001 75283811239/64300051206*2207^(11/16) 2329991745146075 a001 2504730781961/2139295485799*2207^(11/16) 2329991745146075 a001 365435296162/312119004989*2207^(11/16) 2329991745146075 a001 139583862445/119218851371*2207^(11/16) 2329991745146075 a001 53316291173/45537549124*2207^(11/16) 2329991745146075 a001 20365011074/17393796001*2207^(11/16) 2329991745146075 a001 7778742049/6643838879*2207^(11/16) 2329991745146075 a001 2971215073/2537720636*2207^(11/16) 2329991745146075 a001 1134903170/969323029*2207^(11/16) 2329991745146075 a001 433494437/370248451*2207^(11/16) 2329991745146075 a001 165580141/141422324*2207^(11/16) 2329991745146076 a001 63245986/54018521*2207^(11/16) 2329991745146081 a001 24157817/20633239*2207^(11/16) 2329991745146118 a001 9227465/7881196*2207^(11/16) 2329991745146369 a001 3524578/3010349*2207^(11/16) 2329991745148094 a001 1346269/1149851*2207^(11/16) 2329991745159916 a001 514229/439204*2207^(11/16) 2329991745240943 a001 196418/167761*2207^(11/16) 2329991745796308 a001 75025/64079*2207^(11/16) 2329991746146354 m005 (1/3*gamma+2/11)/(3/4*2^(1/2)+6/11) 2329991746631884 r009 Re(z^3+c),c=-17/122+11/12*I,n=58 2329991748561112 a001 75025/3571*2207^(5/16) 2329991749602837 a001 28657/24476*2207^(11/16) 2329991751705948 a007 Real Root Of 254*x^4+165*x^3-837*x^2+115*x-587 2329991763468176 a001 1597/3571*9349^(13/19) 2329991763935968 a001 646/341*1364^(2/3) 2329991768750181 a001 10946/15127*2207^(3/4) 2329991774125087 a001 28657/39603*2207^(3/4) 2329991774909275 a001 75025/103682*2207^(3/4) 2329991775023687 a001 196418/271443*2207^(3/4) 2329991775040379 a001 514229/710647*2207^(3/4) 2329991775042814 a001 1346269/1860498*2207^(3/4) 2329991775043170 a001 3524578/4870847*2207^(3/4) 2329991775043221 a001 9227465/12752043*2207^(3/4) 2329991775043229 a001 24157817/33385282*2207^(3/4) 2329991775043230 a001 63245986/87403803*2207^(3/4) 2329991775043230 a001 165580141/228826127*2207^(3/4) 2329991775043230 a001 433494437/599074578*2207^(3/4) 2329991775043230 a001 1134903170/1568397607*2207^(3/4) 2329991775043230 a001 2971215073/4106118243*2207^(3/4) 2329991775043230 a001 7778742049/10749957122*2207^(3/4) 2329991775043230 a001 20365011074/28143753123*2207^(3/4) 2329991775043230 a001 53316291173/73681302247*2207^(3/4) 2329991775043230 a001 139583862445/192900153618*2207^(3/4) 2329991775043230 a001 10610209857723/14662949395604*2207^(3/4) 2329991775043230 a001 225851433717/312119004989*2207^(3/4) 2329991775043230 a001 86267571272/119218851371*2207^(3/4) 2329991775043230 a001 32951280099/45537549124*2207^(3/4) 2329991775043230 a001 12586269025/17393796001*2207^(3/4) 2329991775043230 a001 4807526976/6643838879*2207^(3/4) 2329991775043230 a001 1836311903/2537720636*2207^(3/4) 2329991775043230 a001 701408733/969323029*2207^(3/4) 2329991775043230 a001 267914296/370248451*2207^(3/4) 2329991775043230 a001 102334155/141422324*2207^(3/4) 2329991775043231 a001 39088169/54018521*2207^(3/4) 2329991775043234 a001 14930352/20633239*2207^(3/4) 2329991775043254 a001 5702887/7881196*2207^(3/4) 2329991775043389 a001 2178309/3010349*2207^(3/4) 2329991775044319 a001 832040/1149851*2207^(3/4) 2329991775050695 a001 317811/439204*2207^(3/4) 2329991775094397 a001 121393/167761*2207^(3/4) 2329991775393930 a001 46368/64079*2207^(3/4) 2329991775693178 a001 10946/9349*2207^(11/16) 2329991777446961 a001 17711/24476*2207^(3/4) 2329991777818381 a001 2550409/10946 2329991778158735 a001 46368/3571*2207^(3/8) 2329991779300040 a001 1597/3571*24476^(13/21) 2329991780078468 a001 123/610*3^(5/38) 2329991781386984 a001 1597/3571*64079^(13/23) 2329991781707713 a001 1597/3571*141422324^(1/3) 2329991781707713 a001 1597/3571*(1/2+1/2*5^(1/2))^13 2329991781707713 a001 1597/3571*73681302247^(1/4) 2329991781723525 a001 1597/3571*271443^(1/2) 2329991781825117 a001 1597/3571*103682^(13/24) 2329991782585560 a001 1597/3571*39603^(13/22) 2329991784575651 a001 6765/15127*2207^(13/16) 2329991784761342 a001 2584/15127*2207^(15/16) 2329991785001528 m005 (1/2*2^(1/2)+2/5)/(1/9*5^(1/2)-5) 2329991787866376 h001 (11/12*exp(2)+1/10)/(7/8*exp(1)+4/7) 2329991788326252 a001 1597/3571*15127^(13/20) 2329991791518648 a001 6765/9349*2207^(3/4) 2329991791704339 a001 2584/9349*2207^(7/8) 2329991792927725 r005 Im(z^2+c),c=1/38+15/61*I,n=8 2329991795503015 r005 Re(z^2+c),c=15/106+19/58*I,n=16 2329991798006491 a001 1836311903/3*123^(5/18) 2329991801969211 a001 17711/39603*2207^(13/16) 2329991804506898 a001 23184/51841*2207^(13/16) 2329991804877141 a001 121393/271443*2207^(13/16) 2329991804931159 a001 317811/710647*2207^(13/16) 2329991804939040 a001 416020/930249*2207^(13/16) 2329991804940190 a001 2178309/4870847*2207^(13/16) 2329991804940358 a001 5702887/12752043*2207^(13/16) 2329991804940382 a001 7465176/16692641*2207^(13/16) 2329991804940386 a001 39088169/87403803*2207^(13/16) 2329991804940386 a001 102334155/228826127*2207^(13/16) 2329991804940386 a001 133957148/299537289*2207^(13/16) 2329991804940386 a001 701408733/1568397607*2207^(13/16) 2329991804940386 a001 1836311903/4106118243*2207^(13/16) 2329991804940386 a001 2403763488/5374978561*2207^(13/16) 2329991804940386 a001 12586269025/28143753123*2207^(13/16) 2329991804940386 a001 32951280099/73681302247*2207^(13/16) 2329991804940386 a001 43133785636/96450076809*2207^(13/16) 2329991804940386 a001 225851433717/505019158607*2207^(13/16) 2329991804940386 a001 10610209857723/23725150497407*2207^(13/16) 2329991804940386 a001 182717648081/408569081798*2207^(13/16) 2329991804940386 a001 139583862445/312119004989*2207^(13/16) 2329991804940386 a001 53316291173/119218851371*2207^(13/16) 2329991804940386 a001 10182505537/22768774562*2207^(13/16) 2329991804940386 a001 7778742049/17393796001*2207^(13/16) 2329991804940386 a001 2971215073/6643838879*2207^(13/16) 2329991804940386 a001 567451585/1268860318*2207^(13/16) 2329991804940386 a001 433494437/969323029*2207^(13/16) 2329991804940386 a001 165580141/370248451*2207^(13/16) 2329991804940386 a001 31622993/70711162*2207^(13/16) 2329991804940388 a001 24157817/54018521*2207^(13/16) 2329991804940397 a001 9227465/20633239*2207^(13/16) 2329991804940461 a001 1762289/3940598*2207^(13/16) 2329991804940900 a001 1346269/3010349*2207^(13/16) 2329991804943911 a001 514229/1149851*2207^(13/16) 2329991804964544 a001 98209/219602*2207^(13/16) 2329991805105964 a001 75025/167761*2207^(13/16) 2329991806075274 a001 28657/64079*2207^(13/16) 2329991808840079 a001 28657/3571*2207^(7/16) 2329991812719023 a001 5473/12238*2207^(13/16) 2329991814872208 a001 514229/5778*843^(1/7) 2329991824546824 m001 (Shi(1)+BesselJ(0,1))/(-exp(1/Pi)+Lehmer) 2329991824840866 a004 Fibonacci(18)*Lucas(16)/(1/2+sqrt(5)/2)^21 2329991827256304 m001 ln(gamma)^ln(3)-FeigenbaumC 2329991828544493 a001 6765/24476*2207^(7/8) 2329991831505014 m001 (ln(2)+StolarskyHarborth)/(exp(Pi)+Psi(1,1/3)) 2329991832112315 a001 1597/3571*5778^(13/18) 2329991833186343 a001 514229/3571*843^(1/14) 2329991833919399 a001 17711/64079*2207^(7/8) 2329991834703587 a001 46368/167761*2207^(7/8) 2329991834774213 r009 Re(z^3+c),c=-17/48+9/20*I,n=28 2329991834817999 a001 121393/439204*2207^(7/8) 2329991834834691 a001 317811/1149851*2207^(7/8) 2329991834837126 a001 832040/3010349*2207^(7/8) 2329991834837482 a001 2178309/7881196*2207^(7/8) 2329991834837534 a001 5702887/20633239*2207^(7/8) 2329991834837541 a001 14930352/54018521*2207^(7/8) 2329991834837542 a001 39088169/141422324*2207^(7/8) 2329991834837542 a001 102334155/370248451*2207^(7/8) 2329991834837542 a001 267914296/969323029*2207^(7/8) 2329991834837542 a001 701408733/2537720636*2207^(7/8) 2329991834837542 a001 1836311903/6643838879*2207^(7/8) 2329991834837542 a001 4807526976/17393796001*2207^(7/8) 2329991834837542 a001 12586269025/45537549124*2207^(7/8) 2329991834837542 a001 32951280099/119218851371*2207^(7/8) 2329991834837542 a001 86267571272/312119004989*2207^(7/8) 2329991834837542 a001 225851433717/817138163596*2207^(7/8) 2329991834837542 a001 1548008755920/5600748293801*2207^(7/8) 2329991834837542 a001 139583862445/505019158607*2207^(7/8) 2329991834837542 a001 53316291173/192900153618*2207^(7/8) 2329991834837542 a001 20365011074/73681302247*2207^(7/8) 2329991834837542 a001 7778742049/28143753123*2207^(7/8) 2329991834837542 a001 2971215073/10749957122*2207^(7/8) 2329991834837542 a001 1134903170/4106118243*2207^(7/8) 2329991834837542 a001 433494437/1568397607*2207^(7/8) 2329991834837542 a001 165580141/599074578*2207^(7/8) 2329991834837542 a001 63245986/228826127*2207^(7/8) 2329991834837543 a001 24157817/87403803*2207^(7/8) 2329991834837546 a001 9227465/33385282*2207^(7/8) 2329991834837566 a001 3524578/12752043*2207^(7/8) 2329991834837701 a001 1346269/4870847*2207^(7/8) 2329991834838632 a001 514229/1860498*2207^(7/8) 2329991834845007 a001 196418/710647*2207^(7/8) 2329991834888709 a001 75025/271443*2207^(7/8) 2329991835188242 a001 28657/103682*2207^(7/8) 2329991836684204 a001 17711/3571*2207^(1/2) 2329991836715112 m001 1/cos(Pi/12)*Trott^2/exp(sqrt(1+sqrt(3))) 2329991837241273 a001 10946/39603*2207^(7/8) 2329991838425636 m005 (1/2*3^(1/2)-3)/(1/8*5^(1/2)+7/11) 2329991844618042 h001 (1/5*exp(2)+8/9)/(1/12*exp(2)+2/5) 2329991848162233 p002 log(11^(1/2)+6^(2/3)+7^(2/3)) 2329991851312960 a001 4181/15127*2207^(7/8) 2329991851793754 r005 Im(z^2+c),c=-57/118+19/46*I,n=64 2329991851826852 a007 Real Root Of -403*x^4+809*x^3-180*x^2-121*x-7 2329991853066743 a001 2255/13201*2207^(15/16) 2329991853760535 p001 sum((-1)^n/(560*n+429)/(1000^n),n=0..infinity) 2329991858255957 a001 4181/9349*2207^(13/16) 2329991863032367 a001 17711/103682*2207^(15/16) 2329991864486332 a001 15456/90481*2207^(15/16) 2329991864698463 a001 121393/710647*2207^(15/16) 2329991864729412 a001 105937/620166*2207^(15/16) 2329991864733928 a001 832040/4870847*2207^(15/16) 2329991864734587 a001 726103/4250681*2207^(15/16) 2329991864734683 a001 5702887/33385282*2207^(15/16) 2329991864734697 a001 4976784/29134601*2207^(15/16) 2329991864734699 a001 39088169/228826127*2207^(15/16) 2329991864734699 a001 34111385/199691526*2207^(15/16) 2329991864734699 a001 267914296/1568397607*2207^(15/16) 2329991864734699 a001 233802911/1368706081*2207^(15/16) 2329991864734699 a001 1836311903/10749957122*2207^(15/16) 2329991864734699 a001 1602508992/9381251041*2207^(15/16) 2329991864734699 a001 12586269025/73681302247*2207^(15/16) 2329991864734699 a001 10983760033/64300051206*2207^(15/16) 2329991864734699 a001 86267571272/505019158607*2207^(15/16) 2329991864734699 a001 75283811239/440719107401*2207^(15/16) 2329991864734699 a001 2504730781961/14662949395604*2207^(15/16) 2329991864734699 a001 139583862445/817138163596*2207^(15/16) 2329991864734699 a001 53316291173/312119004989*2207^(15/16) 2329991864734699 a001 20365011074/119218851371*2207^(15/16) 2329991864734699 a001 7778742049/45537549124*2207^(15/16) 2329991864734699 a001 2971215073/17393796001*2207^(15/16) 2329991864734699 a001 1134903170/6643838879*2207^(15/16) 2329991864734699 a001 433494437/2537720636*2207^(15/16) 2329991864734699 a001 165580141/969323029*2207^(15/16) 2329991864734699 a001 63245986/370248451*2207^(15/16) 2329991864734700 a001 24157817/141422324*2207^(15/16) 2329991864734705 a001 9227465/54018521*2207^(15/16) 2329991864734742 a001 3524578/20633239*2207^(15/16) 2329991864734994 a001 1346269/7881196*2207^(15/16) 2329991864736718 a001 514229/3010349*2207^(15/16) 2329991864748540 a001 196418/1149851*2207^(15/16) 2329991864829567 a001 75025/439204*2207^(15/16) 2329991865384932 a001 28657/167761*2207^(15/16) 2329991866541089 g007 Psi(2,4/9)-Psi(2,7/12)-Psi(2,5/6)-Psi(2,2/5) 2329991869191462 a001 10946/64079*2207^(15/16) 2329991871956266 a001 10946/3571*2207^(9/16) 2329991872121376 q001 86/3691 2329991873800220 m001 exp(1)*MinimumGamma/Niven 2329991874479323 a001 1346269/15127*843^(1/7) 2329991874773801 a001 75025/2207*843^(2/7) 2329991880223369 m005 (1/2*gamma-1/11)/(7/10*gamma+4/9) 2329991883067107 a001 75025/843*322^(1/6) 2329991883175884 a001 3524578/39603*843^(1/7) 2329991884444695 a001 9227465/103682*843^(1/7) 2329991884449488 a004 Fibonacci(20)*Lucas(16)/(1/2+sqrt(5)/2)^23 2329991884629812 a001 24157817/271443*843^(1/7) 2329991884656821 a001 63245986/710647*843^(1/7) 2329991884660761 a001 165580141/1860498*843^(1/7) 2329991884661336 a001 433494437/4870847*843^(1/7) 2329991884661420 a001 1134903170/12752043*843^(1/7) 2329991884661432 a001 2971215073/33385282*843^(1/7) 2329991884661434 a001 7778742049/87403803*843^(1/7) 2329991884661434 a001 20365011074/228826127*843^(1/7) 2329991884661434 a001 53316291173/599074578*843^(1/7) 2329991884661434 a001 139583862445/1568397607*843^(1/7) 2329991884661434 a001 365435296162/4106118243*843^(1/7) 2329991884661434 a001 956722026041/10749957122*843^(1/7) 2329991884661434 a001 2504730781961/28143753123*843^(1/7) 2329991884661434 a001 6557470319842/73681302247*843^(1/7) 2329991884661434 a001 10610209857723/119218851371*843^(1/7) 2329991884661434 a001 4052739537881/45537549124*843^(1/7) 2329991884661434 a001 1548008755920/17393796001*843^(1/7) 2329991884661434 a001 591286729879/6643838879*843^(1/7) 2329991884661434 a001 225851433717/2537720636*843^(1/7) 2329991884661434 a001 86267571272/969323029*843^(1/7) 2329991884661434 a001 32951280099/370248451*843^(1/7) 2329991884661434 a001 12586269025/141422324*843^(1/7) 2329991884661435 a001 4807526976/54018521*843^(1/7) 2329991884661440 a001 1836311903/20633239*843^(1/7) 2329991884661472 a001 3524667/39604*843^(1/7) 2329991884661691 a001 267914296/3010349*843^(1/7) 2329991884663196 a001 102334155/1149851*843^(1/7) 2329991884673513 a001 39088169/439204*843^(1/7) 2329991884744221 a001 14930352/167761*843^(1/7) 2329991885228864 a001 5702887/64079*843^(1/7) 2329991887695412 r009 Re(z^3+c),c=-17/122+11/12*I,n=64 2329991887781737 a001 6765/3571*2207^(5/8) 2329991887967428 a001 2584/3571*2207^(3/4) 2329991888550655 a001 2178309/24476*843^(1/7) 2329991889735363 l006 ln(691/7102) 2329991893146269 a004 Fibonacci(22)*Lucas(16)/(1/2+sqrt(5)/2)^25 2329991894415112 a004 Fibonacci(24)*Lucas(16)/(1/2+sqrt(5)/2)^27 2329991894600233 a004 Fibonacci(26)*Lucas(16)/(1/2+sqrt(5)/2)^29 2329991894627242 a004 Fibonacci(28)*Lucas(16)/(1/2+sqrt(5)/2)^31 2329991894631183 a004 Fibonacci(30)*Lucas(16)/(1/2+sqrt(5)/2)^33 2329991894631758 a004 Fibonacci(32)*Lucas(16)/(1/2+sqrt(5)/2)^35 2329991894631842 a004 Fibonacci(34)*Lucas(16)/(1/2+sqrt(5)/2)^37 2329991894631854 a004 Fibonacci(36)*Lucas(16)/(1/2+sqrt(5)/2)^39 2329991894631856 a004 Fibonacci(38)*Lucas(16)/(1/2+sqrt(5)/2)^41 2329991894631856 a004 Fibonacci(40)*Lucas(16)/(1/2+sqrt(5)/2)^43 2329991894631856 a004 Fibonacci(42)*Lucas(16)/(1/2+sqrt(5)/2)^45 2329991894631856 a004 Fibonacci(44)*Lucas(16)/(1/2+sqrt(5)/2)^47 2329991894631856 a004 Fibonacci(46)*Lucas(16)/(1/2+sqrt(5)/2)^49 2329991894631856 a004 Fibonacci(48)*Lucas(16)/(1/2+sqrt(5)/2)^51 2329991894631856 a004 Fibonacci(50)*Lucas(16)/(1/2+sqrt(5)/2)^53 2329991894631856 a004 Fibonacci(52)*Lucas(16)/(1/2+sqrt(5)/2)^55 2329991894631856 a004 Fibonacci(54)*Lucas(16)/(1/2+sqrt(5)/2)^57 2329991894631856 a004 Fibonacci(56)*Lucas(16)/(1/2+sqrt(5)/2)^59 2329991894631856 a004 Fibonacci(58)*Lucas(16)/(1/2+sqrt(5)/2)^61 2329991894631856 a004 Fibonacci(60)*Lucas(16)/(1/2+sqrt(5)/2)^63 2329991894631856 a004 Fibonacci(62)*Lucas(16)/(1/2+sqrt(5)/2)^65 2329991894631856 a004 Fibonacci(64)*Lucas(16)/(1/2+sqrt(5)/2)^67 2329991894631856 a004 Fibonacci(66)*Lucas(16)/(1/2+sqrt(5)/2)^69 2329991894631856 a004 Fibonacci(68)*Lucas(16)/(1/2+sqrt(5)/2)^71 2329991894631856 a004 Fibonacci(70)*Lucas(16)/(1/2+sqrt(5)/2)^73 2329991894631856 a004 Fibonacci(72)*Lucas(16)/(1/2+sqrt(5)/2)^75 2329991894631856 a004 Fibonacci(74)*Lucas(16)/(1/2+sqrt(5)/2)^77 2329991894631856 a004 Fibonacci(76)*Lucas(16)/(1/2+sqrt(5)/2)^79 2329991894631856 a004 Fibonacci(78)*Lucas(16)/(1/2+sqrt(5)/2)^81 2329991894631856 a004 Fibonacci(80)*Lucas(16)/(1/2+sqrt(5)/2)^83 2329991894631856 a004 Fibonacci(82)*Lucas(16)/(1/2+sqrt(5)/2)^85 2329991894631856 a004 Fibonacci(84)*Lucas(16)/(1/2+sqrt(5)/2)^87 2329991894631856 a004 Fibonacci(86)*Lucas(16)/(1/2+sqrt(5)/2)^89 2329991894631856 a004 Fibonacci(88)*Lucas(16)/(1/2+sqrt(5)/2)^91 2329991894631856 a004 Fibonacci(90)*Lucas(16)/(1/2+sqrt(5)/2)^93 2329991894631856 a004 Fibonacci(92)*Lucas(16)/(1/2+sqrt(5)/2)^95 2329991894631856 a004 Fibonacci(94)*Lucas(16)/(1/2+sqrt(5)/2)^97 2329991894631856 a004 Fibonacci(96)*Lucas(16)/(1/2+sqrt(5)/2)^99 2329991894631856 a004 Fibonacci(97)*Lucas(16)/(1/2+sqrt(5)/2)^100 2329991894631856 a004 Fibonacci(95)*Lucas(16)/(1/2+sqrt(5)/2)^98 2329991894631856 a004 Fibonacci(93)*Lucas(16)/(1/2+sqrt(5)/2)^96 2329991894631856 a004 Fibonacci(91)*Lucas(16)/(1/2+sqrt(5)/2)^94 2329991894631856 a004 Fibonacci(89)*Lucas(16)/(1/2+sqrt(5)/2)^92 2329991894631856 a004 Fibonacci(87)*Lucas(16)/(1/2+sqrt(5)/2)^90 2329991894631856 a004 Fibonacci(85)*Lucas(16)/(1/2+sqrt(5)/2)^88 2329991894631856 a004 Fibonacci(83)*Lucas(16)/(1/2+sqrt(5)/2)^86 2329991894631856 a004 Fibonacci(81)*Lucas(16)/(1/2+sqrt(5)/2)^84 2329991894631856 a004 Fibonacci(79)*Lucas(16)/(1/2+sqrt(5)/2)^82 2329991894631856 a004 Fibonacci(77)*Lucas(16)/(1/2+sqrt(5)/2)^80 2329991894631856 a004 Fibonacci(75)*Lucas(16)/(1/2+sqrt(5)/2)^78 2329991894631856 a004 Fibonacci(73)*Lucas(16)/(1/2+sqrt(5)/2)^76 2329991894631856 a004 Fibonacci(71)*Lucas(16)/(1/2+sqrt(5)/2)^74 2329991894631856 a004 Fibonacci(69)*Lucas(16)/(1/2+sqrt(5)/2)^72 2329991894631856 a004 Fibonacci(67)*Lucas(16)/(1/2+sqrt(5)/2)^70 2329991894631856 a004 Fibonacci(65)*Lucas(16)/(1/2+sqrt(5)/2)^68 2329991894631856 a004 Fibonacci(63)*Lucas(16)/(1/2+sqrt(5)/2)^66 2329991894631856 a004 Fibonacci(61)*Lucas(16)/(1/2+sqrt(5)/2)^64 2329991894631856 a004 Fibonacci(59)*Lucas(16)/(1/2+sqrt(5)/2)^62 2329991894631856 a004 Fibonacci(57)*Lucas(16)/(1/2+sqrt(5)/2)^60 2329991894631856 a004 Fibonacci(55)*Lucas(16)/(1/2+sqrt(5)/2)^58 2329991894631856 a004 Fibonacci(53)*Lucas(16)/(1/2+sqrt(5)/2)^56 2329991894631856 a004 Fibonacci(51)*Lucas(16)/(1/2+sqrt(5)/2)^54 2329991894631856 a004 Fibonacci(49)*Lucas(16)/(1/2+sqrt(5)/2)^52 2329991894631856 a004 Fibonacci(47)*Lucas(16)/(1/2+sqrt(5)/2)^50 2329991894631856 a004 Fibonacci(45)*Lucas(16)/(1/2+sqrt(5)/2)^48 2329991894631856 a004 Fibonacci(43)*Lucas(16)/(1/2+sqrt(5)/2)^46 2329991894631856 a004 Fibonacci(41)*Lucas(16)/(1/2+sqrt(5)/2)^44 2329991894631856 a004 Fibonacci(39)*Lucas(16)/(1/2+sqrt(5)/2)^42 2329991894631857 a004 Fibonacci(37)*Lucas(16)/(1/2+sqrt(5)/2)^40 2329991894631862 a004 Fibonacci(35)*Lucas(16)/(1/2+sqrt(5)/2)^38 2329991894631894 a004 Fibonacci(33)*Lucas(16)/(1/2+sqrt(5)/2)^36 2329991894631954 a001 2/987*(1/2+1/2*5^(1/2))^29 2329991894632113 a004 Fibonacci(31)*Lucas(16)/(1/2+sqrt(5)/2)^34 2329991894633618 a004 Fibonacci(29)*Lucas(16)/(1/2+sqrt(5)/2)^32 2329991894643935 a004 Fibonacci(27)*Lucas(16)/(1/2+sqrt(5)/2)^30 2329991894714645 a004 Fibonacci(25)*Lucas(16)/(1/2+sqrt(5)/2)^28 2329991895199300 a004 Fibonacci(23)*Lucas(16)/(1/2+sqrt(5)/2)^26 2329991895281804 a001 4181/24476*2207^(15/16) 2329991898521175 a004 Fibonacci(21)*Lucas(16)/(1/2+sqrt(5)/2)^24 2329991899073343 a003 cos(Pi*18/91)-cos(Pi*10/33) 2329991903186159 a007 Real Root Of -522*x^4-900*x^3+536*x^2-744*x-643 2329991903730756 m009 (5/6*Psi(1,1/3)-3/5)/(5/6*Psi(1,2/3)+4/5) 2329991908051759 m001 GAMMA(11/24)*exp(GAMMA(11/12))^2*Zeta(1/2) 2329991909606523 m005 (1/2*Pi+7/11)/(8/11*Catalan-4/7) 2329991910443620 r005 Im(z^2+c),c=-7/86+13/45*I,n=8 2329991910523386 a007 Real Root Of 230*x^4+882*x^3+699*x^2-158*x+215 2329991911318547 a001 832040/9349*843^(1/7) 2329991914187170 m004 25*Pi+4*Cosh[Sqrt[5]*Pi]+6/Log[Sqrt[5]*Pi] 2329991921289642 a004 Fibonacci(19)*Lucas(16)/(1/2+sqrt(5)/2)^22 2329991932952211 a001 1597/1364*1364^(11/15) 2329991938085023 m001 (-Conway+Kac)/(Chi(1)-GAMMA(5/6)) 2329991943874665 a001 4181/1364*1364^(3/5) 2329991945130677 r009 Re(z^3+c),c=-11/86+21/25*I,n=46 2329991947761731 a001 1597/5778*2207^(7/8) 2329991949676367 r005 Re(z^2+c),c=-35/102+19/30*I,n=40 2329991953753284 m001 (BesselI(0,1)-sin(1))/(Ei(1)+gamma(1)) 2329991954519049 a001 4181/3571*2207^(11/16) 2329991962968866 m005 (1/2*Catalan-1/11)/(1/9*5^(1/2)-1/11) 2329991972157285 m001 GAMMA(2/3)+cos(1/12*Pi)^CareFree 2329991974234734 r002 11th iterates of z^2 + 2329991986653007 r009 Re(z^3+c),c=-11/82+34/37*I,n=6 2329991990524435 a001 615/124*1364^(8/15) 2329991995300310 r005 Re(z^2+c),c=19/106+28/43*I,n=5 2329992008350561 a001 98209/682*521^(1/13) 2329992008628835 p003 LerchPhi(1/10,6,369/134) 2329992008652121 a007 Real Root Of 270*x^4+687*x^3-25*x^2-258*x+267 2329992013326656 a007 Real Root Of 5*x^4-226*x^3-122*x^2+969*x-86 2329992015371051 r009 Im(z^3+c),c=-2/25+53/61*I,n=28 2329992016309639 r002 21th iterates of z^2 + 2329992022356285 h001 (2/11*exp(1)+9/11)/(3/4*exp(2)+1/11) 2329992024437463 m001 exp(-Pi)-GAMMA(5/12)^ln(Pi) 2329992032467958 m004 -1+125*Pi-6*Sqrt[5]*Pi*Cosh[Sqrt[5]*Pi] 2329992035935843 a001 2207/377*4181^(28/39) 2329992039799667 a001 610/2207*3571^(14/17) 2329992049057883 a001 105937/1926*843^(3/14) 2329992052625367 a007 Real Root Of -586*x^4-642*x^3-198*x^2+565*x+136 2329992058014235 a003 cos(Pi*1/37)-cos(Pi*19/85) 2329992061296148 a001 987/1364*3571^(12/17) 2329992067372019 a001 317811/3571*843^(1/7) 2329992070243271 r004 Re(z^2+c),c=2/7-4/15*I,z(0)=exp(7/12*I*Pi),n=6 2329992074107670 a001 1597/9349*2207^(15/16) 2329992077347041 a004 Fibonacci(17)*Lucas(16)/(1/2+sqrt(5)/2)^20 2329992080527673 r009 Re(z^3+c),c=-45/118+26/51*I,n=36 2329992086002994 a007 Real Root Of -338*x^4-509*x^3+814*x^2+254*x-304 2329992088086051 a001 5473/682*1364^(7/15) 2329992088762764 m002 1+Log[Pi]*ProductLog[Pi]+Tanh[Pi]/Pi^2 2329992095564576 p001 sum(1/(562*n+125)/n/(625^n),n=1..infinity) 2329992096275337 m001 (-Porter+Riemann3rdZero)/(Si(Pi)-sin(1)) 2329992098955856 l006 ln(673/6917) 2329992098955856 p004 log(6917/673) 2329992108666324 a001 46368/2207*843^(5/14) 2329992108670449 a001 832040/15127*843^(3/14) 2329992117367806 a001 726103/13201*843^(3/14) 2329992118636733 a001 5702887/103682*843^(3/14) 2329992118821867 a001 4976784/90481*843^(3/14) 2329992118848878 a001 39088169/710647*843^(3/14) 2329992118852818 a001 831985/15126*843^(3/14) 2329992118853393 a001 267914296/4870847*843^(3/14) 2329992118853477 a001 233802911/4250681*843^(3/14) 2329992118853489 a001 1836311903/33385282*843^(3/14) 2329992118853491 a001 1602508992/29134601*843^(3/14) 2329992118853492 a001 12586269025/228826127*843^(3/14) 2329992118853492 a001 10983760033/199691526*843^(3/14) 2329992118853492 a001 86267571272/1568397607*843^(3/14) 2329992118853492 a001 75283811239/1368706081*843^(3/14) 2329992118853492 a001 591286729879/10749957122*843^(3/14) 2329992118853492 a001 12585437040/228811001*843^(3/14) 2329992118853492 a001 4052739537881/73681302247*843^(3/14) 2329992118853492 a001 3536736619241/64300051206*843^(3/14) 2329992118853492 a001 6557470319842/119218851371*843^(3/14) 2329992118853492 a001 2504730781961/45537549124*843^(3/14) 2329992118853492 a001 956722026041/17393796001*843^(3/14) 2329992118853492 a001 365435296162/6643838879*843^(3/14) 2329992118853492 a001 139583862445/2537720636*843^(3/14) 2329992118853492 a001 53316291173/969323029*843^(3/14) 2329992118853492 a001 20365011074/370248451*843^(3/14) 2329992118853492 a001 7778742049/141422324*843^(3/14) 2329992118853492 a001 2971215073/54018521*843^(3/14) 2329992118853497 a001 1134903170/20633239*843^(3/14) 2329992118853529 a001 433494437/7881196*843^(3/14) 2329992118853749 a001 165580141/3010349*843^(3/14) 2329992118855254 a001 63245986/1149851*843^(3/14) 2329992118865571 a001 24157817/439204*843^(3/14) 2329992118936286 a001 9227465/167761*843^(3/14) 2329992119420973 a001 3524578/64079*843^(3/14) 2329992122743068 a001 1346269/24476*843^(3/14) 2329992135176806 r005 Re(z^2+c),c=-3/26+37/62*I,n=62 2329992142324175 a007 Real Root Of 186*x^4+459*x^3+319*x^2+484*x-280 2329992143512418 r009 Re(z^3+c),c=-57/94+26/49*I,n=30 2329992145513043 a001 514229/9349*843^(3/14) 2329992146711903 a007 Real Root Of 35*x^4+784*x^3-722*x^2+248*x-673 2329992166201076 a001 17711/1364*1364^(2/5) 2329992170370771 a001 1597/3571*2207^(13/16) 2329992170628434 a001 610/2207*9349^(14/19) 2329992173435092 a001 987/1364*9349^(12/19) 2329992177919851 a005 (1/cos(22/239*Pi))^400 2329992181793655 m001 1/ln(GAMMA(1/4))^2*CopelandErdos*GAMMA(13/24) 2329992187096692 r005 Im(z^2+c),c=-4/15+18/55*I,n=6 2329992187678137 a001 610/2207*24476^(2/3) 2329992188049123 a001 987/1364*24476^(4/7) 2329992189925615 a001 610/2207*64079^(14/23) 2329992189975533 a001 987/1364*64079^(12/23) 2329992190266222 a001 987/1364*439204^(4/9) 2329992190271014 a001 610/2207*20633239^(2/5) 2329992190271016 a001 610/2207*17393796001^(2/7) 2329992190271016 a001 610/2207*14662949395604^(2/9) 2329992190271016 a001 610/2207*(1/2+1/2*5^(1/2))^14 2329992190271016 a001 610/2207*10749957122^(7/24) 2329992190271016 a001 610/2207*4106118243^(7/23) 2329992190271016 a001 610/2207*1568397607^(7/22) 2329992190271016 a001 610/2207*599074578^(1/3) 2329992190271016 a001 610/2207*228826127^(7/20) 2329992190271016 a001 610/2207*87403803^(7/19) 2329992190271017 a001 610/2207*33385282^(7/18) 2329992190271022 a001 610/2207*12752043^(7/17) 2329992190271059 a001 610/2207*4870847^(7/16) 2329992190271330 a001 610/2207*1860498^(7/15) 2329992190271577 a001 987/1364*7881196^(4/11) 2329992190271591 a001 987/1364*141422324^(4/13) 2329992190271591 a001 987/1364*2537720636^(4/15) 2329992190271591 a001 987/1364*45537549124^(4/17) 2329992190271591 a001 987/1364*817138163596^(4/19) 2329992190271591 a001 987/1364*14662949395604^(4/21) 2329992190271591 a001 987/1364*(1/2+1/2*5^(1/2))^12 2329992190271591 a001 987/1364*73681302247^(3/13) 2329992190271591 a001 987/1364*10749957122^(1/4) 2329992190271591 a001 987/1364*4106118243^(6/23) 2329992190271591 a001 987/1364*1568397607^(3/11) 2329992190271591 a001 987/1364*599074578^(2/7) 2329992190271591 a001 987/1364*228826127^(3/10) 2329992190271591 a001 987/1364*87403803^(6/19) 2329992190271592 a001 987/1364*33385282^(1/3) 2329992190271596 a001 987/1364*12752043^(6/17) 2329992190271628 a001 987/1364*4870847^(3/8) 2329992190271860 a001 987/1364*1860498^(2/5) 2329992190273323 a001 610/2207*710647^(1/2) 2329992190273568 a001 987/1364*710647^(3/7) 2329992190286186 a001 987/1364*271443^(6/13) 2329992190288043 a001 610/2207*271443^(7/13) 2329992190379963 a001 987/1364*103682^(1/2) 2329992190397450 a001 610/2207*103682^(7/12) 2329992191081911 a001 987/1364*39603^(6/11) 2329992191216390 a001 610/2207*39603^(7/11) 2329992193408388 r005 Re(z^2+c),c=15/52+11/62*I,n=29 2329992196381013 a001 987/1364*15127^(3/5) 2329992197398675 a001 610/2207*15127^(7/10) 2329992198842304 b008 EulerGamma*ArcCsch[3]^7 2329992200241439 a001 610/843*843^(6/7) 2329992203308528 m005 (1/3*5^(1/2)-2/11)/(-127/220+3/20*5^(1/2)) 2329992209611523 r004 Re(z^2+c),c=5/38+5/9*I,z(0)=I,n=45 2329992215706733 m001 1/FeigenbaumAlpha/Cahen^2*exp(log(1+sqrt(2))) 2329992219626604 p001 sum((-1)^n/(520*n+401)/(6^n),n=0..infinity) 2329992224587588 m001 (-Bloch+ReciprocalLucas)/(1-GAMMA(13/24)) 2329992225153871 r009 Re(z^3+c),c=-7/19+29/60*I,n=26 2329992229711632 m005 (1/2*Pi+9/11)/(1/9*gamma-1/6) 2329992230401016 m001 Conway*ln(Backhouse)/Riemann2ndZero 2329992231205345 r005 Im(z^2+c),c=2/5+2/45*I,n=4 2329992234180503 m005 (1/2*5^(1/2)+1/7)/(8/11*Catalan-1/8) 2329992236798923 a001 987/1364*5778^(2/3) 2329992243604068 r005 Re(z^2+c),c=-25/82+9/62*I,n=2 2329992244552904 a001 610/2207*5778^(7/9) 2329992251744042 a001 28657/1364*1364^(1/3) 2329992253029800 m001 GAMMA(23/24)*(BesselJ(1,1)+FeigenbaumC) 2329992257804963 r005 Im(z^2+c),c=-61/66+9/41*I,n=47 2329992260061919 a001 301035/1292 2329992262533515 r002 51th iterates of z^2 + 2329992264239328 m005 (1/2*2^(1/2)-1/3)/(4/5*Pi-10/11) 2329992267887989 r005 Im(z^2+c),c=-51/98+19/37*I,n=10 2329992273374506 r002 2th iterates of z^2 + 2329992279929929 r005 Re(z^2+c),c=-9/70+23/37*I,n=58 2329992281179793 m005 (1/3*2^(1/2)+2/7)/(3/5*3^(1/2)-5/7) 2329992283266649 a001 98209/2889*843^(2/7) 2329992284047265 m005 (1/2*exp(1)+7/8)/(1/5*Zeta(3)-1/4) 2329992301580787 a001 196418/3571*843^(3/14) 2329992304288399 a001 46/14619165*832040^(6/19) 2329992304288612 a001 322/1836311903*7778742049^(6/19) 2329992317048297 m001 1/Zeta(3)^2/RenyiParking^2*ln(cosh(1))^2 2329992318002236 b008 (1+Erfi[3])/7 2329992319675444 l006 ln(655/6732) 2329992324477631 k003 Champernowne real with 19/6*n^3-13/2*n^2-5/3*n+7 2329992328125090 m001 (BesselI(0,2)+GAMMA(7/12))/(Shi(1)+gamma) 2329992334316931 k002 Champernowne real with 32*n^2-90*n+81 2329992334449791 a001 11592/341*1364^(4/15) 2329992335570925 m001 (Otter-Paris)/(BesselK(1,1)+GolombDickman) 2329992337172473 r009 Im(z^3+c),c=-37/78+3/40*I,n=55 2329992342864965 a001 514229/15127*843^(2/7) 2329992343642593 a001 28657/2207*843^(3/7) 2329992347448074 r005 Im(z^2+c),c=-27/31+9/40*I,n=48 2329992351057171 r002 18th iterates of z^2 + 2329992351560242 a001 1346269/39603*843^(2/7) 2329992352828866 a001 1762289/51841*843^(2/7) 2329992353013955 a001 9227465/271443*843^(2/7) 2329992353040960 a001 24157817/710647*843^(2/7) 2329992353044900 a001 31622993/930249*843^(2/7) 2329992353045474 a001 165580141/4870847*843^(2/7) 2329992353045558 a001 433494437/12752043*843^(2/7) 2329992353045570 a001 567451585/16692641*843^(2/7) 2329992353045572 a001 2971215073/87403803*843^(2/7) 2329992353045572 a001 7778742049/228826127*843^(2/7) 2329992353045573 a001 10182505537/299537289*843^(2/7) 2329992353045573 a001 53316291173/1568397607*843^(2/7) 2329992353045573 a001 139583862445/4106118243*843^(2/7) 2329992353045573 a001 182717648081/5374978561*843^(2/7) 2329992353045573 a001 956722026041/28143753123*843^(2/7) 2329992353045573 a001 2504730781961/73681302247*843^(2/7) 2329992353045573 a001 3278735159921/96450076809*843^(2/7) 2329992353045573 a001 10610209857723/312119004989*843^(2/7) 2329992353045573 a001 4052739537881/119218851371*843^(2/7) 2329992353045573 a001 387002188980/11384387281*843^(2/7) 2329992353045573 a001 591286729879/17393796001*843^(2/7) 2329992353045573 a001 225851433717/6643838879*843^(2/7) 2329992353045573 a001 1135099622/33391061*843^(2/7) 2329992353045573 a001 32951280099/969323029*843^(2/7) 2329992353045573 a001 12586269025/370248451*843^(2/7) 2329992353045573 a001 1201881744/35355581*843^(2/7) 2329992353045573 a001 1836311903/54018521*843^(2/7) 2329992353045578 a001 701408733/20633239*843^(2/7) 2329992353045610 a001 66978574/1970299*843^(2/7) 2329992353045830 a001 102334155/3010349*843^(2/7) 2329992353047334 a001 39088169/1149851*843^(2/7) 2329992353057649 a001 196452/5779*843^(2/7) 2329992353128347 a001 5702887/167761*843^(2/7) 2329992353612918 a001 2178309/64079*843^(2/7) 2329992356934219 a001 208010/6119*843^(2/7) 2329992363806081 a003 cos(Pi*1/42)/cos(Pi*37/103) 2329992365530892 m001 (Zeta(1/2)+cos(1/12*Pi))/(GAMMA(17/24)-Magata) 2329992367608294 a001 11/89*5^(13/33) 2329992370210294 r009 Re(z^3+c),c=-29/94+42/55*I,n=4 2329992379698751 a001 317811/9349*843^(2/7) 2329992385149151 r005 Im(z^2+c),c=-7/29+23/51*I,n=5 2329992390841574 a003 sin(Pi*24/115)/cos(Pi*37/89) 2329992398846726 a007 Real Root Of -213*x^4+150*x^3-895*x^2+639*x+200 2329992403857936 a007 Real Root Of -813*x^4-43*x^3-460*x^2-25*x+21 2329992415645463 a007 Real Root Of 596*x^4+863*x^3-979*x^2+941*x+858 2329992416249314 r009 Re(z^3+c),c=-11/32+13/31*I,n=11 2329992418239264 a001 75025/1364*1364^(1/5) 2329992426652893 a007 Real Root Of 493*x^4+869*x^3-671*x^2-412*x-855 2329992426867344 a001 305/2889*3571^(16/17) 2329992434345882 a007 Real Root Of 124*x^4-400*x^3-681*x^2-762*x-146 2329992462245015 m009 (8/3*Catalan+1/3*Pi^2+3)/(2/5*Pi^2-1/5) 2329992477293678 a008 Real Root of (3+13*x+x^2+2*x^3) 2329992485910395 a004 Fibonacci(15)*Lucas(17)/(1/2+sqrt(5)/2)^19 2329992491355746 a001 646/341*3571^(10/17) 2329992493271057 m001 Lehmer^TwinPrimes-Weierstrass 2329992501614796 a001 121393/1364*1364^(2/15) 2329992506970612 m001 1/Robbin^2*CareFree/exp(GAMMA(11/24)) 2329992510737640 r005 Im(z^2+c),c=-21/22+17/80*I,n=24 2329992516736745 m001 (Zeta(1,2)+MasserGramain)/(2^(1/3)+gamma(2)) 2329992517415045 a001 121393/5778*843^(5/14) 2329992526491410 a008 Real Root of x^3-105*x-232 2329992528112953 r009 Re(z^3+c),c=-8/21+23/45*I,n=45 2329992531745766 a007 Real Root Of -180*x^4+866*x^3-330*x^2+651*x-15 2329992532128610 m001 (ThueMorse+ZetaQ(3))/(1-FransenRobinson) 2329992535301720 m001 1/exp(cos(Pi/12))*FeigenbaumKappa^2*gamma^2 2329992535729185 a001 121393/3571*843^(2/7) 2329992537083581 m001 (Psi(2,1/3)+2^(1/2))/(GAMMA(5/6)+Salem) 2329992543231491 m001 ln(FransenRobinson)^2/Backhouse/Pi 2329992548484002 l006 ln(1151/1453) 2329992548484002 p004 log(1453/1151) 2329992549037550 a001 987/1364*2207^(3/4) 2329992549990435 m001 (FellerTornier+KomornikLoreti)/(Pi-5^(1/2)) 2329992550794677 m009 (6*Psi(1,1/3)+4/5)/(1/4*Pi^2+1/6) 2329992552868928 l006 ln(637/6547) 2329992562955049 m008 (1/6*Pi^5-2/3)/(3/5*Pi^3+3) 2329992565388141 m001 1/BesselJ(0,1)^2/Porter^2/exp(GAMMA(3/4)) 2329992572460296 a001 615/124*3571^(8/17) 2329992575781664 a001 17711/2207*843^(1/2) 2329992576385961 a001 305/2889*9349^(16/19) 2329992577050692 a001 317811/15127*843^(5/14) 2329992584804882 a001 646/341*9349^(10/19) 2329992585148444 a001 98209/682*1364^(1/15) 2329992585751416 a001 832040/39603*843^(5/14) 2329992587020834 a001 46347/2206*843^(5/14) 2329992587134811 m005 (1/2*exp(1)-3/8)/(4/9*5^(1/2)-4/7) 2329992587206040 a001 5702887/271443*843^(5/14) 2329992587233061 a001 14930352/710647*843^(5/14) 2329992587237004 a001 39088169/1860498*843^(5/14) 2329992587237579 a001 102334155/4870847*843^(5/14) 2329992587237663 a001 267914296/12752043*843^(5/14) 2329992587237675 a001 701408733/33385282*843^(5/14) 2329992587237677 a001 1836311903/87403803*843^(5/14) 2329992587237677 a001 102287808/4868641*843^(5/14) 2329992587237677 a001 12586269025/599074578*843^(5/14) 2329992587237677 a001 32951280099/1568397607*843^(5/14) 2329992587237677 a001 86267571272/4106118243*843^(5/14) 2329992587237677 a001 225851433717/10749957122*843^(5/14) 2329992587237677 a001 591286729879/28143753123*843^(5/14) 2329992587237677 a001 1548008755920/73681302247*843^(5/14) 2329992587237677 a001 4052739537881/192900153618*843^(5/14) 2329992587237677 a001 225749145909/10745088481*843^(5/14) 2329992587237677 a001 6557470319842/312119004989*843^(5/14) 2329992587237677 a001 2504730781961/119218851371*843^(5/14) 2329992587237677 a001 956722026041/45537549124*843^(5/14) 2329992587237677 a001 365435296162/17393796001*843^(5/14) 2329992587237677 a001 139583862445/6643838879*843^(5/14) 2329992587237677 a001 53316291173/2537720636*843^(5/14) 2329992587237677 a001 20365011074/969323029*843^(5/14) 2329992587237677 a001 7778742049/370248451*843^(5/14) 2329992587237677 a001 2971215073/141422324*843^(5/14) 2329992587237678 a001 1134903170/54018521*843^(5/14) 2329992587237683 a001 433494437/20633239*843^(5/14) 2329992587237715 a001 165580141/7881196*843^(5/14) 2329992587237934 a001 63245986/3010349*843^(5/14) 2329992587239440 a001 24157817/1149851*843^(5/14) 2329992587249761 a001 9227465/439204*843^(5/14) 2329992587320504 a001 3524578/167761*843^(5/14) 2329992587805378 a001 1346269/64079*843^(5/14) 2329992591128759 a001 514229/24476*843^(5/14) 2329992595871338 a001 305/2889*24476^(16/21) 2329992596983243 a001 646/341*24476^(10/21) 2329992597279943 a001 5473/682*3571^(7/17) 2329992598439886 a001 305/2889*64079^(16/23) 2329992598552506 a001 4181/1364*3571^(9/17) 2329992598588586 a001 646/341*64079^(10/23) 2329992598802185 a001 646/341*167761^(2/5) 2329992598834629 a001 305/2889*(1/2+1/2*5^(1/2))^16 2329992598834629 a001 305/2889*23725150497407^(1/4) 2329992598834629 a001 305/2889*73681302247^(4/13) 2329992598834629 a001 305/2889*10749957122^(1/3) 2329992598834629 a001 305/2889*4106118243^(8/23) 2329992598834629 a001 305/2889*1568397607^(4/11) 2329992598834629 a001 305/2889*599074578^(8/21) 2329992598834629 a001 305/2889*228826127^(2/5) 2329992598834630 a001 305/2889*87403803^(8/19) 2329992598834630 a001 305/2889*33385282^(4/9) 2329992598834636 a001 305/2889*12752043^(8/17) 2329992598834679 a001 305/2889*4870847^(1/2) 2329992598834988 a001 305/2889*1860498^(8/15) 2329992598835299 a001 646/341*20633239^(2/7) 2329992598835300 a001 646/341*2537720636^(2/9) 2329992598835300 a001 646/341*312119004989^(2/11) 2329992598835300 a001 646/341*(1/2+1/2*5^(1/2))^10 2329992598835300 a001 646/341*28143753123^(1/5) 2329992598835300 a001 646/341*10749957122^(5/24) 2329992598835300 a001 646/341*4106118243^(5/23) 2329992598835300 a001 646/341*1568397607^(5/22) 2329992598835300 a001 646/341*599074578^(5/21) 2329992598835301 a001 646/341*228826127^(1/4) 2329992598835301 a001 646/341*87403803^(5/19) 2329992598835301 a001 646/341*33385282^(5/18) 2329992598835305 a001 646/341*12752043^(5/17) 2329992598835331 a001 646/341*4870847^(5/16) 2329992598835525 a001 646/341*1860498^(1/3) 2329992598836948 a001 646/341*710647^(5/14) 2329992598837266 a001 305/2889*710647^(4/7) 2329992598847463 a001 646/341*271443^(5/13) 2329992598854090 a001 305/2889*271443^(8/13) 2329992598925611 a001 646/341*103682^(5/12) 2329992598979126 a001 305/2889*103682^(2/3) 2329992599510568 a001 646/341*39603^(5/11) 2329992599915057 a001 305/2889*39603^(8/11) 2329992602652991 a001 17711/1364*3571^(6/17) 2329992603926486 a001 646/341*15127^(1/2) 2329992606980527 a001 305/2889*15127^(4/5) 2329992608298488 m001 GAMMA(19/24)*FeigenbaumD/ln(sin(Pi/12)) 2329992608831307 a001 610/2207*2207^(7/8) 2329992609016999 a001 315248/1353 2329992613907550 a001 196418/9349*843^(5/14) 2329992615453979 a001 28657/1364*3571^(5/17) 2329992616857306 s002 sum(A153437[n]/(n*10^n-1),n=1..infinity) 2329992625417746 a001 11592/341*3571^(4/17) 2329992626419180 a007 Real Root Of 188*x^4-7*x^3-710*x^2+630*x-307 2329992629785688 m002 1+E^Pi+3/Pi^2-Log[Pi] 2329992633188516 a001 610/15127*9349^(18/19) 2329992636465235 a001 75025/1364*3571^(3/17) 2329992637608084 a001 646/341*5778^(5/9) 2329992641967846 a004 Fibonacci(15)*Lucas(19)/(1/2+sqrt(5)/2)^21 2329992647098779 a001 121393/1364*3571^(2/17) 2329992647219608 a001 615/124*9349^(8/19) 2329992648573725 m001 1/RenyiParking^2/ln(Artin)^2*(2^(1/3)) 2329992650969005 r005 Im(z^2+c),c=-55/118+27/64*I,n=31 2329992654665415 r009 Re(z^3+c),c=-13/62+44/47*I,n=57 2329992655109567 a001 610/15127*24476^(6/7) 2329992656962297 a001 615/124*24476^(8/21) 2329992657890437 a001 98209/682*3571^(1/17) 2329992657999183 a001 610/15127*64079^(18/23) 2329992658246571 a001 615/124*64079^(8/23) 2329992658435217 a001 610/15127*439204^(2/3) 2329992658443249 a001 610/15127*7881196^(6/11) 2329992658443269 a001 610/15127*141422324^(6/13) 2329992658443269 a001 610/15127*2537720636^(2/5) 2329992658443269 a001 610/15127*45537549124^(6/17) 2329992658443269 a001 610/15127*14662949395604^(2/7) 2329992658443269 a001 610/15127*(1/2+1/2*5^(1/2))^18 2329992658443269 a001 610/15127*192900153618^(1/3) 2329992658443269 a001 610/15127*10749957122^(3/8) 2329992658443269 a001 610/15127*4106118243^(9/23) 2329992658443269 a001 610/15127*1568397607^(9/22) 2329992658443269 a001 610/15127*599074578^(3/7) 2329992658443269 a001 610/15127*228826127^(9/20) 2329992658443269 a001 610/15127*87403803^(9/19) 2329992658443270 a001 610/15127*33385282^(1/2) 2329992658443277 a001 610/15127*12752043^(9/17) 2329992658443325 a001 610/15127*4870847^(9/16) 2329992658443673 a001 610/15127*1860498^(3/5) 2329992658443942 a001 615/124*(1/2+1/2*5^(1/2))^8 2329992658443942 a001 615/124*23725150497407^(1/8) 2329992658443942 a001 615/124*505019158607^(1/7) 2329992658443942 a001 615/124*73681302247^(2/13) 2329992658443942 a001 615/124*10749957122^(1/6) 2329992658443942 a001 615/124*4106118243^(4/23) 2329992658443942 a001 615/124*1568397607^(2/11) 2329992658443942 a001 615/124*599074578^(4/21) 2329992658443942 a001 615/124*228826127^(1/5) 2329992658443942 a001 615/124*87403803^(4/19) 2329992658443943 a001 615/124*33385282^(2/9) 2329992658443946 a001 615/124*12752043^(4/17) 2329992658443967 a001 615/124*4870847^(1/4) 2329992658444122 a001 615/124*1860498^(4/15) 2329992658445261 a001 615/124*710647^(2/7) 2329992658446235 a001 610/15127*710647^(9/14) 2329992658453672 a001 615/124*271443^(4/13) 2329992658465162 a001 610/15127*271443^(9/13) 2329992658516191 a001 615/124*103682^(1/3) 2329992658605828 a001 610/15127*103682^(3/4) 2329992658722475 a001 17711/1364*9349^(6/19) 2329992658984156 a001 615/124*39603^(4/11) 2329992659658750 a001 610/15127*39603^(9/11) 2329992659928857 a001 4126650/17711 2329992660871084 a001 305/2889*5778^(8/9) 2329992661520575 m002 -(Cosh[Pi]/Pi)+Log[Pi]/4+ProductLog[Pi] 2329992662178549 a001 28657/1364*9349^(5/19) 2329992662516891 a001 615/124*15127^(2/5) 2329992662694341 a001 5473/682*9349^(7/19) 2329992662797402 a001 11592/341*9349^(4/19) 2329992663435939 a001 610/39603*24476^(20/21) 2329992664499977 a001 75025/1364*9349^(3/19) 2329992664736321 a004 Fibonacci(15)*Lucas(21)/(1/2+sqrt(5)/2)^23 2329992665788608 a001 121393/1364*9349^(2/19) 2329992666029492 a001 17711/1364*24476^(2/7) 2329992666646623 a001 610/39603*64079^(20/23) 2329992666992697 a001 17711/1364*64079^(6/23) 2329992667073822 a001 610/39603*167761^(4/5) 2329992667138042 a001 17711/1364*439204^(2/9) 2329992667140050 a001 610/39603*20633239^(4/7) 2329992667140053 a001 610/39603*2537720636^(4/9) 2329992667140053 a001 610/39603*(1/2+1/2*5^(1/2))^20 2329992667140053 a001 610/39603*23725150497407^(5/16) 2329992667140053 a001 610/39603*505019158607^(5/14) 2329992667140053 a001 610/39603*73681302247^(5/13) 2329992667140053 a001 610/39603*28143753123^(2/5) 2329992667140053 a001 610/39603*10749957122^(5/12) 2329992667140053 a001 610/39603*4106118243^(10/23) 2329992667140053 a001 610/39603*1568397607^(5/11) 2329992667140053 a001 610/39603*599074578^(10/21) 2329992667140053 a001 610/39603*228826127^(1/2) 2329992667140053 a001 610/39603*87403803^(10/19) 2329992667140054 a001 610/39603*33385282^(5/9) 2329992667140061 a001 610/39603*12752043^(10/17) 2329992667140114 a001 610/39603*4870847^(5/8) 2329992667140502 a001 610/39603*1860498^(2/3) 2329992667140719 a001 17711/1364*7881196^(2/11) 2329992667140726 a001 17711/1364*141422324^(2/13) 2329992667140726 a001 17711/1364*2537720636^(2/15) 2329992667140726 a001 17711/1364*45537549124^(2/17) 2329992667140726 a001 17711/1364*14662949395604^(2/21) 2329992667140726 a001 17711/1364*(1/2+1/2*5^(1/2))^6 2329992667140726 a001 17711/1364*10749957122^(1/8) 2329992667140726 a001 17711/1364*4106118243^(3/23) 2329992667140726 a001 17711/1364*1568397607^(3/22) 2329992667140726 a001 17711/1364*599074578^(1/7) 2329992667140726 a001 17711/1364*228826127^(3/20) 2329992667140726 a001 17711/1364*87403803^(3/19) 2329992667140726 a001 17711/1364*33385282^(1/6) 2329992667140729 a001 17711/1364*12752043^(3/17) 2329992667140744 a001 17711/1364*4870847^(3/16) 2329992667140861 a001 17711/1364*1860498^(1/5) 2329992667141715 a001 17711/1364*710647^(3/14) 2329992667143348 a001 610/39603*710647^(5/7) 2329992667148024 a001 17711/1364*271443^(3/13) 2329992667164378 a001 610/39603*271443^(10/13) 2329992667194912 a001 17711/1364*103682^(1/4) 2329992667235351 a001 98209/682*9349^(1/19) 2329992667320673 a001 610/39603*103682^(5/6) 2329992667356797 a001 5401855/23184 2329992667545886 a001 17711/1364*39603^(3/11) 2329992667607404 a001 610/15127*15127^(9/10) 2329992667668747 a001 11592/341*24476^(4/21) 2329992667866124 a001 305/51841*64079^(22/23) 2329992668058197 a004 Fibonacci(15)*Lucas(23)/(1/2+sqrt(5)/2)^25 2329992668153486 a001 75025/1364*24476^(1/7) 2329992668224280 a001 121393/1364*24476^(2/21) 2329992668267730 a001 28657/1364*24476^(5/21) 2329992668310884 a001 11592/341*64079^(4/23) 2329992668408872 a001 305/51841*7881196^(2/3) 2329992668408897 a001 305/51841*312119004989^(2/5) 2329992668408897 a001 305/51841*(1/2+1/2*5^(1/2))^22 2329992668408897 a001 305/51841*10749957122^(11/24) 2329992668408897 a001 305/51841*4106118243^(11/23) 2329992668408897 a001 305/51841*1568397607^(1/2) 2329992668408897 a001 305/51841*599074578^(11/21) 2329992668408897 a001 305/51841*228826127^(11/20) 2329992668408897 a001 305/51841*87403803^(11/19) 2329992668408898 a001 305/51841*33385282^(11/18) 2329992668408906 a001 305/51841*12752043^(11/17) 2329992668408964 a001 305/51841*4870847^(11/16) 2329992668409390 a001 305/51841*1860498^(11/15) 2329992668409570 a001 11592/341*(1/2+1/2*5^(1/2))^4 2329992668409570 a001 11592/341*23725150497407^(1/16) 2329992668409570 a001 11592/341*73681302247^(1/13) 2329992668409570 a001 11592/341*10749957122^(1/12) 2329992668409570 a001 11592/341*4106118243^(2/23) 2329992668409570 a001 11592/341*1568397607^(1/11) 2329992668409570 a001 11592/341*599074578^(2/21) 2329992668409570 a001 11592/341*228826127^(1/10) 2329992668409570 a001 11592/341*87403803^(2/19) 2329992668409570 a001 11592/341*33385282^(1/9) 2329992668409571 a001 11592/341*12752043^(2/17) 2329992668409582 a001 11592/341*4870847^(1/8) 2329992668409659 a001 11592/341*1860498^(2/15) 2329992668410229 a001 11592/341*710647^(1/7) 2329992668412522 a001 305/51841*710647^(11/14) 2329992668414435 a001 11592/341*271443^(2/13) 2329992668435654 a001 305/51841*271443^(11/13) 2329992668440519 a001 28284480/121393 2329992668445694 a001 11592/341*103682^(1/6) 2329992668453187 a001 98209/682*24476^(1/21) 2329992668490587 a001 610/39603*39603^(10/11) 2329992668542852 a004 Fibonacci(15)*Lucas(25)/(1/2+sqrt(5)/2)^27 2329992668545349 a001 121393/1364*64079^(2/23) 2329992668583282 a001 610/271443*439204^(8/9) 2329992668593991 a001 610/271443*7881196^(8/11) 2329992668594018 a001 610/271443*141422324^(8/13) 2329992668594018 a001 610/271443*2537720636^(8/15) 2329992668594018 a001 610/271443*45537549124^(8/17) 2329992668594018 a001 610/271443*14662949395604^(8/21) 2329992668594018 a001 610/271443*(1/2+1/2*5^(1/2))^24 2329992668594018 a001 610/271443*192900153618^(4/9) 2329992668594018 a001 610/271443*73681302247^(6/13) 2329992668594018 a001 610/271443*10749957122^(1/2) 2329992668594018 a001 610/271443*4106118243^(12/23) 2329992668594018 a001 610/271443*1568397607^(6/11) 2329992668594018 a001 610/271443*599074578^(4/7) 2329992668594018 a001 610/271443*228826127^(3/5) 2329992668594019 a001 610/271443*87403803^(12/19) 2329992668594020 a001 610/271443*33385282^(2/3) 2329992668594028 a001 610/271443*12752043^(12/17) 2329992668594092 a001 610/271443*4870847^(3/4) 2329992668594557 a001 610/271443*1860498^(4/5) 2329992668594691 a001 121393/1364*(1/2+1/2*5^(1/2))^2 2329992668594691 a001 121393/1364*10749957122^(1/24) 2329992668594691 a001 121393/1364*4106118243^(1/23) 2329992668594691 a001 121393/1364*1568397607^(1/22) 2329992668594691 a001 121393/1364*599074578^(1/21) 2329992668594691 a001 121393/1364*228826127^(1/20) 2329992668594691 a001 121393/1364*87403803^(1/19) 2329992668594692 a001 121393/1364*33385282^(1/18) 2329992668594692 a001 121393/1364*12752043^(1/17) 2329992668594698 a001 121393/1364*4870847^(1/16) 2329992668594736 a001 121393/1364*1860498^(1/15) 2329992668595021 a001 121393/1364*710647^(1/14) 2329992668597124 a001 121393/1364*271443^(1/13) 2329992668597973 a001 610/271443*710647^(6/7) 2329992668598632 a001 74049730/317811 2329992668607579 a001 305/51841*103682^(11/12) 2329992668612754 a001 121393/1364*103682^(1/12) 2329992668613562 a004 Fibonacci(15)*Lucas(27)/(1/2+sqrt(5)/2)^29 2329992668613721 a001 98209/682*64079^(1/23) 2329992668621027 a001 610/710647*141422324^(2/3) 2329992668621027 a001 610/710647*(1/2+1/2*5^(1/2))^26 2329992668621027 a001 610/710647*73681302247^(1/2) 2329992668621027 a001 610/710647*10749957122^(13/24) 2329992668621027 a001 610/710647*4106118243^(13/23) 2329992668621027 a001 610/710647*1568397607^(13/22) 2329992668621027 a001 610/710647*599074578^(13/21) 2329992668621027 a001 610/710647*228826127^(13/20) 2329992668621027 a001 610/710647*87403803^(13/19) 2329992668621029 a001 610/710647*33385282^(13/18) 2329992668621038 a001 610/710647*12752043^(13/17) 2329992668621107 a001 610/710647*4870847^(13/16) 2329992668621611 a001 610/710647*1860498^(13/15) 2329992668621700 a001 317811/1364 2329992668623208 a001 610/271443*271443^(12/13) 2329992668623879 a004 Fibonacci(15)*Lucas(29)/(1/2+sqrt(5)/2)^31 2329992668624963 a001 305/930249*20633239^(4/5) 2329992668624968 a001 305/930249*17393796001^(4/7) 2329992668624968 a001 305/930249*14662949395604^(4/9) 2329992668624968 a001 305/930249*(1/2+1/2*5^(1/2))^28 2329992668624968 a001 305/930249*505019158607^(1/2) 2329992668624968 a001 305/930249*73681302247^(7/13) 2329992668624968 a001 305/930249*10749957122^(7/12) 2329992668624968 a001 305/930249*4106118243^(14/23) 2329992668624968 a001 305/930249*1568397607^(7/11) 2329992668624968 a001 305/930249*599074578^(2/3) 2329992668624968 a001 305/930249*228826127^(7/10) 2329992668624968 a001 305/930249*87403803^(14/19) 2329992668624969 a001 305/930249*33385282^(7/9) 2329992668624980 a001 305/930249*12752043^(14/17) 2329992668625054 a001 305/930249*4870847^(7/8) 2329992668625066 a001 507544400/2178309 2329992668625311 a001 610/710647*710647^(13/14) 2329992668625384 a004 Fibonacci(15)*Lucas(31)/(1/2+sqrt(5)/2)^33 2329992668625509 a001 610/4870847*7881196^(10/11) 2329992668625538 a001 610/4870847*20633239^(6/7) 2329992668625543 a001 610/4870847*141422324^(10/13) 2329992668625543 a001 610/4870847*2537720636^(2/3) 2329992668625543 a001 610/4870847*45537549124^(10/17) 2329992668625543 a001 610/4870847*312119004989^(6/11) 2329992668625543 a001 610/4870847*14662949395604^(10/21) 2329992668625543 a001 610/4870847*(1/2+1/2*5^(1/2))^30 2329992668625543 a001 610/4870847*192900153618^(5/9) 2329992668625543 a001 610/4870847*28143753123^(3/5) 2329992668625543 a001 610/4870847*10749957122^(5/8) 2329992668625543 a001 610/4870847*4106118243^(15/23) 2329992668625543 a001 610/4870847*1568397607^(15/22) 2329992668625543 a001 610/4870847*599074578^(5/7) 2329992668625543 a001 610/4870847*228826127^(3/4) 2329992668625543 a001 610/4870847*87403803^(15/19) 2329992668625544 a001 610/4870847*33385282^(5/6) 2329992668625555 a001 610/4870847*12752043^(15/17) 2329992668625557 a001 1328768490/5702887 2329992668625596 a001 305/930249*1860498^(14/15) 2329992668625603 a004 Fibonacci(15)*Lucas(33)/(1/2+sqrt(5)/2)^35 2329992668625627 a001 610/12752043*(1/2+1/2*5^(1/2))^32 2329992668625627 a001 610/12752043*23725150497407^(1/2) 2329992668625627 a001 610/12752043*73681302247^(8/13) 2329992668625627 a001 610/12752043*10749957122^(2/3) 2329992668625627 a001 610/12752043*4106118243^(16/23) 2329992668625627 a001 610/12752043*1568397607^(8/11) 2329992668625627 a001 610/12752043*599074578^(16/21) 2329992668625627 a001 610/12752043*228826127^(4/5) 2329992668625627 a001 610/12752043*87403803^(16/19) 2329992668625628 a001 610/12752043*33385282^(8/9) 2329992668625629 a001 1739380535/7465176 2329992668625635 a001 610/4870847*4870847^(15/16) 2329992668625635 a004 Fibonacci(15)*Lucas(35)/(1/2+sqrt(5)/2)^37 2329992668625639 a001 305/16692641*45537549124^(2/3) 2329992668625639 a001 305/16692641*(1/2+1/2*5^(1/2))^34 2329992668625639 a001 305/16692641*10749957122^(17/24) 2329992668625639 a001 305/16692641*4106118243^(17/23) 2329992668625639 a001 305/16692641*1568397607^(17/22) 2329992668625639 a001 305/16692641*599074578^(17/21) 2329992668625639 a001 305/16692641*228826127^(17/20) 2329992668625639 a001 305/16692641*87403803^(17/19) 2329992668625639 a001 9107514720/39088169 2329992668625640 a001 610/12752043*12752043^(16/17) 2329992668625640 a004 Fibonacci(15)*Lucas(37)/(1/2+sqrt(5)/2)^39 2329992668625641 a001 610/87403803*141422324^(12/13) 2329992668625641 a001 610/87403803*2537720636^(4/5) 2329992668625641 a001 610/87403803*45537549124^(12/17) 2329992668625641 a001 610/87403803*14662949395604^(4/7) 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^36/Lucas(38) 2329992668625641 a001 610/87403803*505019158607^(9/14) 2329992668625641 a001 610/87403803*192900153618^(2/3) 2329992668625641 a001 610/87403803*73681302247^(9/13) 2329992668625641 a001 610/87403803*10749957122^(3/4) 2329992668625641 a001 610/87403803*4106118243^(18/23) 2329992668625641 a001 610/87403803*1568397607^(9/11) 2329992668625641 a001 610/87403803*599074578^(6/7) 2329992668625641 a001 610/87403803*228826127^(9/10) 2329992668625641 a001 4768756618/20466831 2329992668625641 a004 Fibonacci(15)*Lucas(39)/(1/2+sqrt(5)/2)^41 2329992668625641 a001 305/16692641*33385282^(17/18) 2329992668625641 a001 610/228826127*817138163596^(2/3) 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^38/Lucas(40) 2329992668625641 a001 610/228826127*10749957122^(19/24) 2329992668625641 a001 610/228826127*4106118243^(19/23) 2329992668625641 a001 610/228826127*1568397607^(19/22) 2329992668625641 a001 610/228826127*599074578^(19/21) 2329992668625641 a001 31211917275/133957148 2329992668625641 a004 Fibonacci(15)*Lucas(41)/(1/2+sqrt(5)/2)^43 2329992668625641 a001 610/87403803*87403803^(18/19) 2329992668625641 a001 305/299537289*2537720636^(8/9) 2329992668625641 a001 305/299537289*312119004989^(8/11) 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^40/Lucas(42) 2329992668625641 a001 305/299537289*23725150497407^(5/8) 2329992668625641 a001 305/299537289*73681302247^(10/13) 2329992668625641 a001 305/299537289*28143753123^(4/5) 2329992668625641 a001 305/299537289*10749957122^(5/6) 2329992668625641 a001 305/299537289*4106118243^(20/23) 2329992668625641 a001 305/299537289*1568397607^(10/11) 2329992668625641 a001 163427720560/701408733 2329992668625641 a004 Fibonacci(15)*Lucas(43)/(1/2+sqrt(5)/2)^45 2329992668625641 a001 610/228826127*228826127^(19/20) 2329992668625641 a001 610/1568397607*2537720636^(14/15) 2329992668625641 a001 610/1568397607*17393796001^(6/7) 2329992668625641 a001 610/1568397607*45537549124^(14/17) 2329992668625641 a001 610/1568397607*14662949395604^(2/3) 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^42/Lucas(44) 2329992668625641 a001 610/1568397607*505019158607^(3/4) 2329992668625641 a001 610/1568397607*192900153618^(7/9) 2329992668625641 a001 610/1568397607*10749957122^(7/8) 2329992668625641 a001 610/1568397607*4106118243^(21/23) 2329992668625641 a001 427859327130/1836311903 2329992668625641 a004 Fibonacci(15)*Lucas(45)/(1/2+sqrt(5)/2)^47 2329992668625641 a001 305/299537289*599074578^(20/21) 2329992668625641 a001 610/4106118243*312119004989^(4/5) 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^44/Lucas(46) 2329992668625641 a001 610/4106118243*23725150497407^(11/16) 2329992668625641 a001 610/4106118243*73681302247^(11/13) 2329992668625641 a001 610/4106118243*10749957122^(11/12) 2329992668625641 a001 560075130415/2403763488 2329992668625641 a004 Fibonacci(15)*Lucas(47)/(1/2+sqrt(5)/2)^49 2329992668625641 a001 610/1568397607*1568397607^(21/22) 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^46/Lucas(48) 2329992668625641 a001 586518291072/2517253805 2329992668625641 a004 Fibonacci(15)*Lucas(49)/(1/2+sqrt(5)/2)^51 2329992668625641 a001 610/4106118243*4106118243^(22/23) 2329992668625641 a001 610/28143753123*45537549124^(16/17) 2329992668625641 a001 610/28143753123*14662949395604^(16/21) 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^48/Lucas(50) 2329992668625641 a001 610/28143753123*192900153618^(8/9) 2329992668625641 a001 610/28143753123*73681302247^(12/13) 2329992668625641 a001 7677624105250/32951280099 2329992668625641 a004 Fibonacci(15)*Lucas(51)/(1/2+sqrt(5)/2)^53 2329992668625641 a001 305/5374978561*10749957122^(23/24) 2329992668625641 a001 610/73681302247*312119004989^(10/11) 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^50/Lucas(52) 2329992668625641 a001 610/73681302247*3461452808002^(5/6) 2329992668625641 a001 10050140430195/43133785636 2329992668625641 a004 Fibonacci(15)*Lucas(53)/(1/2+sqrt(5)/2)^55 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^52/Lucas(54) 2329992668625641 a001 305/96450076809*23725150497407^(13/16) 2329992668625641 a001 305/96450076809*505019158607^(13/14) 2329992668625641 a001 52623218475920/225851433717 2329992668625641 a004 Fibonacci(15)*Lucas(55)/(1/2+sqrt(5)/2)^57 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^54/Lucas(56) 2329992668625641 a001 137769374567370/591286729879 2329992668625641 a004 Fibonacci(15)*Lucas(57)/(1/2+sqrt(5)/2)^59 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^56/Lucas(58) 2329992668625641 a004 Fibonacci(15)*Lucas(59)/(1/2+sqrt(5)/2)^61 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^58/Lucas(60) 2329992668625641 a004 Fibonacci(15)*Lucas(61)/(1/2+sqrt(5)/2)^63 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^60/Lucas(62) 2329992668625641 a004 Fibonacci(15)*Lucas(63)/(1/2+sqrt(5)/2)^65 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^62/Lucas(64) 2329992668625641 a004 Fibonacci(15)*Lucas(65)/(1/2+sqrt(5)/2)^67 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^64/Lucas(66) 2329992668625641 a004 Fibonacci(15)*Lucas(67)/(1/2+sqrt(5)/2)^69 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^66/Lucas(68) 2329992668625641 a004 Fibonacci(15)*Lucas(69)/(1/2+sqrt(5)/2)^71 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^68/Lucas(70) 2329992668625641 a004 Fibonacci(15)*Lucas(71)/(1/2+sqrt(5)/2)^73 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^70/Lucas(72) 2329992668625641 a004 Fibonacci(15)*Lucas(73)/(1/2+sqrt(5)/2)^75 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^72/Lucas(74) 2329992668625641 a004 Fibonacci(15)*Lucas(75)/(1/2+sqrt(5)/2)^77 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^74/Lucas(76) 2329992668625641 a004 Fibonacci(15)*Lucas(77)/(1/2+sqrt(5)/2)^79 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^76/Lucas(78) 2329992668625641 a004 Fibonacci(15)*Lucas(79)/(1/2+sqrt(5)/2)^81 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^78/Lucas(80) 2329992668625641 a004 Fibonacci(15)*Lucas(81)/(1/2+sqrt(5)/2)^83 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^80/Lucas(82) 2329992668625641 a004 Fibonacci(15)*Lucas(83)/(1/2+sqrt(5)/2)^85 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^82/Lucas(84) 2329992668625641 a004 Fibonacci(15)*Lucas(85)/(1/2+sqrt(5)/2)^87 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^84/Lucas(86) 2329992668625641 a004 Fibonacci(15)*Lucas(87)/(1/2+sqrt(5)/2)^89 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^86/Lucas(88) 2329992668625641 a004 Fibonacci(15)*Lucas(89)/(1/2+sqrt(5)/2)^91 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^88/Lucas(90) 2329992668625641 a004 Fibonacci(15)*Lucas(91)/(1/2+sqrt(5)/2)^93 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^90/Lucas(92) 2329992668625641 a004 Fibonacci(15)*Lucas(93)/(1/2+sqrt(5)/2)^95 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^92/Lucas(94) 2329992668625641 a004 Fibonacci(15)*Lucas(95)/(1/2+sqrt(5)/2)^97 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^94/Lucas(96) 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^96/Lucas(98) 2329992668625641 a004 Fibonacci(15)*Lucas(97)/(1/2+sqrt(5)/2)^99 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^95/Lucas(97) 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^97/Lucas(99) 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^98/Lucas(100) 2329992668625641 a004 Fibonacci(15)*Lucas(98)/(1/2+sqrt(5)/2)^100 2329992668625641 a004 Fibonacci(15)*Lucas(96)/(1/2+sqrt(5)/2)^98 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^93/Lucas(95) 2329992668625641 a004 Fibonacci(15)*Lucas(94)/(1/2+sqrt(5)/2)^96 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^91/Lucas(93) 2329992668625641 a004 Fibonacci(15)*Lucas(92)/(1/2+sqrt(5)/2)^94 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^89/Lucas(91) 2329992668625641 a004 Fibonacci(15)*Lucas(90)/(1/2+sqrt(5)/2)^92 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^87/Lucas(89) 2329992668625641 a004 Fibonacci(15)*Lucas(88)/(1/2+sqrt(5)/2)^90 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^85/Lucas(87) 2329992668625641 a004 Fibonacci(15)*Lucas(86)/(1/2+sqrt(5)/2)^88 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^83/Lucas(85) 2329992668625641 a004 Fibonacci(15)*Lucas(84)/(1/2+sqrt(5)/2)^86 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^81/Lucas(83) 2329992668625641 a004 Fibonacci(15)*Lucas(82)/(1/2+sqrt(5)/2)^84 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^79/Lucas(81) 2329992668625641 a004 Fibonacci(15)*Lucas(80)/(1/2+sqrt(5)/2)^82 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^77/Lucas(79) 2329992668625641 a004 Fibonacci(15)*Lucas(78)/(1/2+sqrt(5)/2)^80 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^75/Lucas(77) 2329992668625641 a004 Fibonacci(15)*Lucas(76)/(1/2+sqrt(5)/2)^78 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^73/Lucas(75) 2329992668625641 a004 Fibonacci(15)*Lucas(74)/(1/2+sqrt(5)/2)^76 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^71/Lucas(73) 2329992668625641 a004 Fibonacci(15)*Lucas(72)/(1/2+sqrt(5)/2)^74 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^69/Lucas(71) 2329992668625641 a004 Fibonacci(15)*Lucas(70)/(1/2+sqrt(5)/2)^72 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^67/Lucas(69) 2329992668625641 a004 Fibonacci(15)*Lucas(68)/(1/2+sqrt(5)/2)^70 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^65/Lucas(67) 2329992668625641 a004 Fibonacci(15)*Lucas(66)/(1/2+sqrt(5)/2)^68 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^63/Lucas(65) 2329992668625641 a004 Fibonacci(15)*Lucas(64)/(1/2+sqrt(5)/2)^66 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^61/Lucas(63) 2329992668625641 a004 Fibonacci(15)*Lucas(62)/(1/2+sqrt(5)/2)^64 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^59/Lucas(61) 2329992668625641 a004 Fibonacci(15)*Lucas(60)/(1/2+sqrt(5)/2)^62 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^57/Lucas(59) 2329992668625641 a004 Fibonacci(15)*Lucas(58)/(1/2+sqrt(5)/2)^60 2329992668625641 a001 222915530658820/956722026041 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^55/Lucas(57) 2329992668625641 a004 Fibonacci(15)*Lucas(56)/(1/2+sqrt(5)/2)^58 2329992668625641 a001 42573078045725/182717648081 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^53/Lucas(55) 2329992668625641 a004 Fibonacci(15)*Lucas(54)/(1/2+sqrt(5)/2)^56 2329992668625641 a001 6504587523106/27916772489 2329992668625641 a001 610/119218851371*817138163596^(17/19) 2329992668625641 a001 610/119218851371*14662949395604^(17/21) 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^51/Lucas(53) 2329992668625641 a001 610/119218851371*192900153618^(17/18) 2329992668625641 a004 Fibonacci(15)*Lucas(52)/(1/2+sqrt(5)/2)^54 2329992668625641 a001 12422656755140/53316291173 2329992668625641 a001 305/22768774562*14662949395604^(7/9) 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^49/Lucas(51) 2329992668625641 a001 305/22768774562*505019158607^(7/8) 2329992668625641 a004 Fibonacci(15)*Lucas(50)/(1/2+sqrt(5)/2)^52 2329992668625641 a001 2372516324945/10182505537 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^47/Lucas(49) 2329992668625641 a004 Fibonacci(15)*Lucas(48)/(1/2+sqrt(5)/2)^50 2329992668625641 a001 1812441194530/7778742049 2329992668625641 a001 610/6643838879*45537549124^(15/17) 2329992668625641 a001 610/6643838879*312119004989^(9/11) 2329992668625641 a001 610/6643838879*14662949395604^(5/7) 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^45/Lucas(47) 2329992668625641 a001 610/6643838879*192900153618^(5/6) 2329992668625641 a001 610/6643838879*28143753123^(9/10) 2329992668625641 a001 610/6643838879*10749957122^(15/16) 2329992668625641 a004 Fibonacci(15)*Lucas(46)/(1/2+sqrt(5)/2)^48 2329992668625641 a001 692290933700/2971215073 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^43/Lucas(45) 2329992668625641 a004 Fibonacci(15)*Lucas(44)/(1/2+sqrt(5)/2)^46 2329992668625641 a001 433494437/1860497 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^41/Lucas(43) 2329992668625641 a004 Fibonacci(15)*Lucas(42)/(1/2+sqrt(5)/2)^44 2329992668625641 a001 101003886010/433494437 2329992668625641 a001 610/370248451*2537720636^(13/15) 2329992668625641 a001 610/370248451*45537549124^(13/17) 2329992668625641 a001 610/370248451*14662949395604^(13/21) 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^39/Lucas(41) 2329992668625641 a001 610/370248451*192900153618^(13/18) 2329992668625641 a001 610/370248451*73681302247^(3/4) 2329992668625641 a001 610/370248451*10749957122^(13/16) 2329992668625641 a001 610/370248451*599074578^(13/14) 2329992668625641 a004 Fibonacci(15)*Lucas(40)/(1/2+sqrt(5)/2)^42 2329992668625641 a001 38580051460/165580141 2329992668625641 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^37/Lucas(39) 2329992668625641 a004 Fibonacci(15)*Lucas(38)/(1/2+sqrt(5)/2)^40 2329992668625642 a001 7368134185/31622993 2329992668625642 a001 610/54018521*2537720636^(7/9) 2329992668625642 a001 610/54018521*17393796001^(5/7) 2329992668625642 a001 610/54018521*312119004989^(7/11) 2329992668625642 a001 610/54018521*14662949395604^(5/9) 2329992668625642 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^35/Lucas(37) 2329992668625642 a001 610/54018521*505019158607^(5/8) 2329992668625642 a001 610/54018521*28143753123^(7/10) 2329992668625642 a001 610/54018521*599074578^(5/6) 2329992668625642 a001 610/54018521*228826127^(7/8) 2329992668625643 a004 Fibonacci(15)*Lucas(36)/(1/2+sqrt(5)/2)^38 2329992668625646 a001 5628753650/24157817 2329992668625646 a001 610/20633239*141422324^(11/13) 2329992668625646 a001 610/20633239*2537720636^(11/15) 2329992668625646 a001 610/20633239*45537549124^(11/17) 2329992668625646 a001 610/20633239*312119004989^(3/5) 2329992668625646 a001 610/20633239*14662949395604^(11/21) 2329992668625646 a001 610/20633239*(1/2+1/2*5^(1/2))^33 2329992668625646 a001 610/20633239*192900153618^(11/18) 2329992668625646 a001 610/20633239*10749957122^(11/16) 2329992668625646 a001 610/20633239*1568397607^(3/4) 2329992668625646 a001 610/20633239*599074578^(11/14) 2329992668625648 a001 610/20633239*33385282^(11/12) 2329992668625655 a004 Fibonacci(15)*Lucas(34)/(1/2+sqrt(5)/2)^36 2329992668625673 a001 429998516/1845493 2329992668625678 a001 305/3940598*(1/2+1/2*5^(1/2))^31 2329992668625678 a001 305/3940598*9062201101803^(1/2) 2329992668625739 a004 Fibonacci(15)*Lucas(32)/(1/2+sqrt(5)/2)^34 2329992668625861 a001 410612045/1762289 2329992668625898 a001 610/3010349*(1/2+1/2*5^(1/2))^29 2329992668625898 a001 610/3010349*1322157322203^(1/2) 2329992668626216 a004 Fibonacci(32)/Lucas(15)/(1/2+sqrt(5)/2)^4 2329992668626300 a004 Fibonacci(34)/Lucas(15)/(1/2+sqrt(5)/2)^6 2329992668626312 a004 Fibonacci(36)/Lucas(15)/(1/2+sqrt(5)/2)^8 2329992668626314 a004 Fibonacci(38)/Lucas(15)/(1/2+sqrt(5)/2)^10 2329992668626314 a004 Fibonacci(40)/Lucas(15)/(1/2+sqrt(5)/2)^12 2329992668626314 a004 Fibonacci(42)/Lucas(15)/(1/2+sqrt(5)/2)^14 2329992668626314 a004 Fibonacci(44)/Lucas(15)/(1/2+sqrt(5)/2)^16 2329992668626314 a004 Fibonacci(46)/Lucas(15)/(1/2+sqrt(5)/2)^18 2329992668626314 a004 Fibonacci(48)/Lucas(15)/(1/2+sqrt(5)/2)^20 2329992668626314 a004 Fibonacci(50)/Lucas(15)/(1/2+sqrt(5)/2)^22 2329992668626314 a004 Fibonacci(52)/Lucas(15)/(1/2+sqrt(5)/2)^24 2329992668626314 a004 Fibonacci(54)/Lucas(15)/(1/2+sqrt(5)/2)^26 2329992668626314 a004 Fibonacci(56)/Lucas(15)/(1/2+sqrt(5)/2)^28 2329992668626314 a004 Fibonacci(58)/Lucas(15)/(1/2+sqrt(5)/2)^30 2329992668626314 a004 Fibonacci(15)*Lucas(30)/(1/2+sqrt(5)/2)^32 2329992668626314 a004 Fibonacci(62)/Lucas(15)/(1/2+sqrt(5)/2)^34 2329992668626314 a004 Fibonacci(64)/Lucas(15)/(1/2+sqrt(5)/2)^36 2329992668626314 a004 Fibonacci(66)/Lucas(15)/(1/2+sqrt(5)/2)^38 2329992668626314 a004 Fibonacci(68)/Lucas(15)/(1/2+sqrt(5)/2)^40 2329992668626314 a004 Fibonacci(70)/Lucas(15)/(1/2+sqrt(5)/2)^42 2329992668626314 a004 Fibonacci(72)/Lucas(15)/(1/2+sqrt(5)/2)^44 2329992668626314 a004 Fibonacci(74)/Lucas(15)/(1/2+sqrt(5)/2)^46 2329992668626314 a004 Fibonacci(76)/Lucas(15)/(1/2+sqrt(5)/2)^48 2329992668626314 a004 Fibonacci(78)/Lucas(15)/(1/2+sqrt(5)/2)^50 2329992668626314 a004 Fibonacci(80)/Lucas(15)/(1/2+sqrt(5)/2)^52 2329992668626314 a004 Fibonacci(82)/Lucas(15)/(1/2+sqrt(5)/2)^54 2329992668626314 a004 Fibonacci(84)/Lucas(15)/(1/2+sqrt(5)/2)^56 2329992668626314 a004 Fibonacci(86)/Lucas(15)/(1/2+sqrt(5)/2)^58 2329992668626314 a004 Fibonacci(88)/Lucas(15)/(1/2+sqrt(5)/2)^60 2329992668626314 a004 Fibonacci(90)/Lucas(15)/(1/2+sqrt(5)/2)^62 2329992668626314 a004 Fibonacci(92)/Lucas(15)/(1/2+sqrt(5)/2)^64 2329992668626314 a004 Fibonacci(94)/Lucas(15)/(1/2+sqrt(5)/2)^66 2329992668626314 a004 Fibonacci(96)/Lucas(15)/(1/2+sqrt(5)/2)^68 2329992668626314 a004 Fibonacci(100)/Lucas(15)/(1/2+sqrt(5)/2)^72 2329992668626314 a004 Fibonacci(98)/Lucas(15)/(1/2+sqrt(5)/2)^70 2329992668626314 a004 Fibonacci(99)/Lucas(15)/(1/2+sqrt(5)/2)^71 2329992668626314 a004 Fibonacci(97)/Lucas(15)/(1/2+sqrt(5)/2)^69 2329992668626314 a004 Fibonacci(95)/Lucas(15)/(1/2+sqrt(5)/2)^67 2329992668626314 a004 Fibonacci(93)/Lucas(15)/(1/2+sqrt(5)/2)^65 2329992668626314 a004 Fibonacci(91)/Lucas(15)/(1/2+sqrt(5)/2)^63 2329992668626314 a004 Fibonacci(89)/Lucas(15)/(1/2+sqrt(5)/2)^61 2329992668626314 a004 Fibonacci(87)/Lucas(15)/(1/2+sqrt(5)/2)^59 2329992668626314 a004 Fibonacci(85)/Lucas(15)/(1/2+sqrt(5)/2)^57 2329992668626314 a004 Fibonacci(83)/Lucas(15)/(1/2+sqrt(5)/2)^55 2329992668626314 a004 Fibonacci(81)/Lucas(15)/(1/2+sqrt(5)/2)^53 2329992668626314 a004 Fibonacci(79)/Lucas(15)/(1/2+sqrt(5)/2)^51 2329992668626314 a004 Fibonacci(77)/Lucas(15)/(1/2+sqrt(5)/2)^49 2329992668626314 a004 Fibonacci(75)/Lucas(15)/(1/2+sqrt(5)/2)^47 2329992668626314 a004 Fibonacci(73)/Lucas(15)/(1/2+sqrt(5)/2)^45 2329992668626314 a004 Fibonacci(71)/Lucas(15)/(1/2+sqrt(5)/2)^43 2329992668626314 a004 Fibonacci(69)/Lucas(15)/(1/2+sqrt(5)/2)^41 2329992668626314 a004 Fibonacci(67)/Lucas(15)/(1/2+sqrt(5)/2)^39 2329992668626314 a004 Fibonacci(65)/Lucas(15)/(1/2+sqrt(5)/2)^37 2329992668626314 a004 Fibonacci(63)/Lucas(15)/(1/2+sqrt(5)/2)^35 2329992668626314 a004 Fibonacci(61)/Lucas(15)/(1/2+sqrt(5)/2)^33 2329992668626314 a004 Fibonacci(59)/Lucas(15)/(1/2+sqrt(5)/2)^31 2329992668626314 a004 Fibonacci(57)/Lucas(15)/(1/2+sqrt(5)/2)^29 2329992668626314 a004 Fibonacci(55)/Lucas(15)/(1/2+sqrt(5)/2)^27 2329992668626314 a004 Fibonacci(53)/Lucas(15)/(1/2+sqrt(5)/2)^25 2329992668626314 a004 Fibonacci(51)/Lucas(15)/(1/2+sqrt(5)/2)^23 2329992668626314 a004 Fibonacci(49)/Lucas(15)/(1/2+sqrt(5)/2)^21 2329992668626314 a004 Fibonacci(47)/Lucas(15)/(1/2+sqrt(5)/2)^19 2329992668626314 a004 Fibonacci(45)/Lucas(15)/(1/2+sqrt(5)/2)^17 2329992668626314 a004 Fibonacci(43)/Lucas(15)/(1/2+sqrt(5)/2)^15 2329992668626314 a004 Fibonacci(41)/Lucas(15)/(1/2+sqrt(5)/2)^13 2329992668626314 a004 Fibonacci(39)/Lucas(15)/(1/2+sqrt(5)/2)^11 2329992668626315 a004 Fibonacci(37)/Lucas(15)/(1/2+sqrt(5)/2)^9 2329992668626320 a004 Fibonacci(35)/Lucas(15)/(1/2+sqrt(5)/2)^7 2329992668626352 a004 Fibonacci(33)/Lucas(15)/(1/2+sqrt(5)/2)^5 2329992668626571 a004 Fibonacci(31)/Lucas(15)/(1/2+sqrt(5)/2)^3 2329992668627146 a001 313679690/1346269 2329992668627373 a001 610/1149851*7881196^(9/11) 2329992668627403 a001 610/1149851*141422324^(9/13) 2329992668627403 a001 610/1149851*2537720636^(3/5) 2329992668627403 a001 610/1149851*45537549124^(9/17) 2329992668627403 a001 610/1149851*817138163596^(9/19) 2329992668627403 a001 610/1149851*14662949395604^(3/7) 2329992668627403 a001 610/1149851*(1/2+1/2*5^(1/2))^27 2329992668627403 a001 610/1149851*192900153618^(1/2) 2329992668627403 a001 610/1149851*10749957122^(9/16) 2329992668627403 a001 610/1149851*599074578^(9/14) 2329992668627405 a001 610/1149851*33385282^(3/4) 2329992668628009 a001 610/1149851*1860498^(9/10) 2329992668628076 a004 Fibonacci(29)/Lucas(15)/(1/2+sqrt(5)/2) 2329992668630255 a004 Fibonacci(15)*Lucas(28)/(1/2+sqrt(5)/2)^30 2329992668635089 a001 75025/1364*64079^(3/23) 2329992668635957 a001 119814980/514229 2329992668637716 a001 305/219602*20633239^(5/7) 2329992668637720 a001 305/219602*2537720636^(5/9) 2329992668637720 a001 305/219602*312119004989^(5/11) 2329992668637720 a001 305/219602*(1/2+1/2*5^(1/2))^25 2329992668637720 a001 305/219602*3461452808002^(5/12) 2329992668637720 a001 305/219602*28143753123^(1/2) 2329992668637720 a001 305/219602*228826127^(5/8) 2329992668638281 a001 305/219602*1860498^(5/6) 2329992668638393 a001 98209/1364+98209/1364*5^(1/2) 2329992668647424 a001 98209/682*103682^(1/24) 2329992668657264 a004 Fibonacci(15)*Lucas(26)/(1/2+sqrt(5)/2)^28 2329992668674984 a001 610/64079*64079^(21/23) 2329992668679677 a001 11592/341*39603^(2/11) 2329992668696351 a001 22882625/98209 2329992668705920 a001 98209/682*39603^(1/22) 2329992668707761 a001 75025/1364*439204^(1/9) 2329992668708430 a001 610/167761*(1/2+1/2*5^(1/2))^23 2329992668708430 a001 610/167761*4106118243^(1/2) 2329992668709100 a001 75025/1364*7881196^(1/11) 2329992668709103 a001 75025/1364*141422324^(1/13) 2329992668709103 a001 75025/1364*2537720636^(1/15) 2329992668709103 a001 75025/1364*45537549124^(1/17) 2329992668709103 a001 75025/1364*14662949395604^(1/21) 2329992668709103 a001 75025/1364*(1/2+1/2*5^(1/2))^3 2329992668709103 a001 75025/1364*192900153618^(1/18) 2329992668709103 a001 75025/1364*10749957122^(1/16) 2329992668709103 a001 75025/1364*599074578^(1/14) 2329992668709103 a001 75025/1364*33385282^(1/12) 2329992668709170 a001 75025/1364*1860498^(1/10) 2329992668729745 a001 121393/1364*39603^(1/11) 2329992668736196 a001 75025/1364*103682^(1/8) 2329992668842385 a004 Fibonacci(15)*Lucas(24)/(1/2+sqrt(5)/2)^26 2329992668911683 a001 75025/1364*39603^(3/22) 2329992668916143 a001 610/167761*103682^(23/24) 2329992668996052 a001 305/12238*24476^(19/21) 2329992669070401 a001 28657/1364*64079^(5/23) 2329992669110296 a001 3496154/15005 2329992669147511 a001 98209/682*15127^(1/20) 2329992669177200 a001 28657/1364*167761^(1/5) 2329992669183690 a001 610/64079*439204^(7/9) 2329992669193061 a001 610/64079*7881196^(7/11) 2329992669193082 a001 610/64079*20633239^(3/5) 2329992669193085 a001 610/64079*141422324^(7/13) 2329992669193085 a001 610/64079*2537720636^(7/15) 2329992669193085 a001 610/64079*17393796001^(3/7) 2329992669193085 a001 610/64079*45537549124^(7/17) 2329992669193085 a001 610/64079*14662949395604^(1/3) 2329992669193085 a001 610/64079*(1/2+1/2*5^(1/2))^21 2329992669193085 a001 610/64079*192900153618^(7/18) 2329992669193085 a001 610/64079*10749957122^(7/16) 2329992669193085 a001 610/64079*599074578^(1/2) 2329992669193086 a001 610/64079*33385282^(7/12) 2329992669193556 a001 610/64079*1860498^(7/10) 2329992669193757 a001 28657/1364*20633239^(1/7) 2329992669193758 a001 28657/1364*2537720636^(1/9) 2329992669193758 a001 28657/1364*312119004989^(1/11) 2329992669193758 a001 28657/1364*(1/2+1/2*5^(1/2))^5 2329992669193758 a001 28657/1364*28143753123^(1/10) 2329992669193758 a001 28657/1364*228826127^(1/8) 2329992669193870 a001 28657/1364*1860498^(1/6) 2329992669196545 a001 610/64079*710647^(3/4) 2329992669238913 a001 28657/1364*103682^(5/24) 2329992669382736 a001 610/64079*103682^(7/8) 2329992669531392 a001 28657/1364*39603^(5/22) 2329992669612929 a001 121393/1364*15127^(1/10) 2329992670111229 a004 Fibonacci(15)*Lucas(22)/(1/2+sqrt(5)/2)^24 2329992670195438 a001 17711/1364*15127^(3/10) 2329992670236459 a001 75025/1364*15127^(3/20) 2329992670446044 a001 11592/341*15127^(1/5) 2329992670611146 a001 610/64079*39603^(21/22) 2329992671219194 a001 5473/682*24476^(1/3) 2329992671431725 a001 610/9349*9349^(17/19) 2329992671739351 a001 28657/1364*15127^(1/4) 2329992671947517 a001 6677060/28657 2329992672046203 a001 305/12238*64079^(19/23) 2329992672342934 a001 5473/682*64079^(7/23) 2329992672514961 a001 305/12238*817138163596^(1/3) 2329992672514961 a001 305/12238*(1/2+1/2*5^(1/2))^19 2329992672514961 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^19/Lucas(21) 2329992672514961 a001 305/12238*87403803^(1/2) 2329992672515633 a001 5473/682*20633239^(1/5) 2329992672515634 a001 5473/682*17393796001^(1/7) 2329992672515634 a001 5473/682*14662949395604^(1/9) 2329992672515634 a001 5473/682*(1/2+1/2*5^(1/2))^7 2329992672515634 a001 5473/682*599074578^(1/6) 2329992672515671 a001 98209/682*5778^(1/18) 2329992672516787 a001 5473/682*710647^(1/4) 2329992672578851 a001 5473/682*103682^(7/24) 2329992672686550 a001 305/12238*103682^(19/24) 2329992672988321 a001 5473/682*39603^(7/22) 2329992673797969 a001 305/12238*39603^(19/22) 2329992676079464 a001 5473/682*15127^(7/20) 2329992676349248 a001 121393/1364*5778^(1/9) 2329992678808013 a004 Fibonacci(15)*Lucas(20)/(1/2+sqrt(5)/2)^22 2329992680340938 a001 75025/1364*5778^(1/6) 2329992682188214 a001 305/12238*15127^(19/20) 2329992682656732 a001 4181/1364*9349^(9/19) 2329992683918684 a001 11592/341*5778^(2/9) 2329992688580151 a001 28657/1364*5778^(5/18) 2329992689462170 a001 615/124*5778^(4/9) 2329992690121553 a001 610/3571*3571^(15/17) 2329992690404397 a001 17711/1364*5778^(1/3) 2329992691394116 a001 1275205/5473 2329992692134939 a001 610/9349*24476^(17/21) 2329992693617258 a001 4181/1364*24476^(3/7) 2329992693864323 a007 Real Root Of -40*x^4+329*x^3+931*x^2+266*x+906 2329992694864021 a001 610/9349*64079^(17/23) 2329992695062066 a001 4181/1364*64079^(9/23) 2329992695280083 a001 4181/1364*439204^(1/3) 2329992695283436 a001 610/9349*45537549124^(1/3) 2329992695283436 a001 610/9349*(1/2+1/2*5^(1/2))^17 2329992695283443 a001 610/9349*12752043^(1/2) 2329992695284099 a001 4181/1364*7881196^(3/11) 2329992695284109 a001 4181/1364*141422324^(3/13) 2329992695284109 a001 4181/1364*2537720636^(1/5) 2329992695284109 a001 4181/1364*45537549124^(3/17) 2329992695284109 a001 4181/1364*14662949395604^(1/7) 2329992695284109 a001 4181/1364*(1/2+1/2*5^(1/2))^9 2329992695284109 a001 4181/1364*192900153618^(1/6) 2329992695284109 a001 4181/1364*10749957122^(3/16) 2329992695284109 a001 4181/1364*599074578^(3/14) 2329992695284110 a001 4181/1364*33385282^(1/4) 2329992695284311 a001 4181/1364*1860498^(3/10) 2329992695365388 a001 4181/1364*103682^(3/8) 2329992695436964 a001 610/9349*103682^(17/24) 2329992695891850 a001 4181/1364*39603^(9/22) 2329992696431391 a001 610/9349*39603^(17/22) 2329992698535560 a001 98209/682*2207^(1/16) 2329992699656583 a001 5473/682*5778^(7/18) 2329992699866176 a001 4181/1364*15127^(9/20) 2329992703938452 a001 610/9349*15127^(17/20) 2329992705410753 m005 (1/2*gamma+7/10)/(3/4*2^(1/2)-7/11) 2329992728389027 a001 121393/1364*2207^(1/8) 2329992730179616 a001 4181/1364*5778^(1/2) 2329992733114037 a001 1597/1364*3571^(11/17) 2329992738416654 a004 Fibonacci(15)*Lucas(18)/(1/2+sqrt(5)/2)^20 2329992751721578 a001 75025/5778*843^(3/7) 2329992752912024 r005 Im(z^2+c),c=-67/126+20/49*I,n=53 2329992755277305 m001 (FransenRobinson+MinimumGamma)/(1+FeigenbaumB) 2329992755668523 r005 Im(z^2+c),c=-27/29+11/49*I,n=61 2329992758158652 r009 Im(z^3+c),c=-13/62+30/41*I,n=34 2329992758382727 r005 Re(z^2+c),c=-4/21+26/57*I,n=52 2329992758400606 a001 75025/1364*2207^(3/16) 2329992761197172 a001 610/9349*5778^(17/18) 2329992765179776 m002 -4/E^Pi+E^Pi+Tanh[Pi]/3 2329992769867839 m001 (-gamma(3)+BesselJ(1,1))/(BesselJ(0,1)-gamma) 2329992770035720 a001 75025/3571*843^(5/14) 2329992778108555 m001 (2^(1/2))^BesselJ(0,1)*KomornikLoreti 2329992787998241 a001 11592/341*2207^(1/4) 2329992797877577 a007 Real Root Of 213*x^4+336*x^3-56*x^2+347*x-915 2329992798657046 a001 29/75025*55^(13/29) 2329992799624493 l006 ln(619/6362) 2329992810616207 a001 317811/2207*322^(1/12) 2329992810670178 m002 -Pi^3+2*Cosh[Pi]+Pi^3*Coth[Pi] 2329992811259512 a001 196418/15127*843^(3/7) 2329992812287197 h001 (-7*exp(7)+4)/(-3*exp(7)-3) 2329992815348699 a001 10946/2207*843^(4/7) 2329992818679599 a001 28657/1364*2207^(5/16) 2329992819945979 a001 514229/39603*843^(3/7) 2329992821213318 a001 1346269/103682*843^(3/7) 2329992821398220 a001 3524578/271443*843^(3/7) 2329992821425197 a001 9227465/710647*843^(3/7) 2329992821429133 a001 24157817/1860498*843^(3/7) 2329992821429707 a001 63245986/4870847*843^(3/7) 2329992821429791 a001 165580141/12752043*843^(3/7) 2329992821429803 a001 433494437/33385282*843^(3/7) 2329992821429805 a001 1134903170/87403803*843^(3/7) 2329992821429805 a001 2971215073/228826127*843^(3/7) 2329992821429805 a001 7778742049/599074578*843^(3/7) 2329992821429805 a001 20365011074/1568397607*843^(3/7) 2329992821429805 a001 53316291173/4106118243*843^(3/7) 2329992821429805 a001 139583862445/10749957122*843^(3/7) 2329992821429805 a001 365435296162/28143753123*843^(3/7) 2329992821429805 a001 956722026041/73681302247*843^(3/7) 2329992821429805 a001 2504730781961/192900153618*843^(3/7) 2329992821429805 a001 10610209857723/817138163596*843^(3/7) 2329992821429805 a001 4052739537881/312119004989*843^(3/7) 2329992821429805 a001 1548008755920/119218851371*843^(3/7) 2329992821429805 a001 591286729879/45537549124*843^(3/7) 2329992821429805 a001 7787980473/599786069*843^(3/7) 2329992821429805 a001 86267571272/6643838879*843^(3/7) 2329992821429805 a001 32951280099/2537720636*843^(3/7) 2329992821429805 a001 12586269025/969323029*843^(3/7) 2329992821429805 a001 4807526976/370248451*843^(3/7) 2329992821429805 a001 1836311903/141422324*843^(3/7) 2329992821429806 a001 701408733/54018521*843^(3/7) 2329992821429811 a001 9238424/711491*843^(3/7) 2329992821429843 a001 102334155/7881196*843^(3/7) 2329992821430062 a001 39088169/3010349*843^(3/7) 2329992821431565 a001 14930352/1149851*843^(3/7) 2329992821441869 a001 5702887/439204*843^(3/7) 2329992821512496 a001 2178309/167761*843^(3/7) 2329992821996576 a001 832040/64079*843^(3/7) 2329992824683090 a001 974170/4181 2329992825314512 a001 10959/844*843^(3/7) 2329992830295271 a001 610/3571*9349^(15/19) 2329992833395551 m001 OneNinth-exp(sqrt(2))*Lehmer 2329992835605548 a001 305/682*1364^(13/15) 2329992835908098 a001 1597/1364*9349^(11/19) 2329992839720978 r005 Re(z^2+c),c=-15/62+19/61*I,n=15 2329992841803865 q001 651/2794 2329992846523736 a001 17711/1364*2207^(3/8) 2329992848055980 a001 121393/9349*843^(3/7) 2329992848562815 a001 610/3571*24476^(5/7) 2329992849033190 m005 (29/36+1/4*5^(1/2))/(9/11*2^(1/2)-4/7) 2329992849304297 a001 1597/1364*24476^(11/21) 2329992850970829 a001 610/3571*64079^(15/23) 2329992851070173 a001 1597/1364*64079^(11/23) 2329992851291227 a001 610/3571*167761^(3/5) 2329992851334190 a001 610/3571*439204^(5/9) 2329992851340884 a001 610/3571*7881196^(5/11) 2329992851340899 a001 610/3571*20633239^(3/7) 2329992851340901 a001 610/3571*141422324^(5/13) 2329992851340901 a001 610/3571*2537720636^(1/3) 2329992851340901 a001 610/3571*45537549124^(5/17) 2329992851340901 a001 610/3571*312119004989^(3/11) 2329992851340901 a001 610/3571*14662949395604^(5/21) 2329992851340901 a001 610/3571*(1/2+1/2*5^(1/2))^15 2329992851340901 a001 610/3571*192900153618^(5/18) 2329992851340901 a001 610/3571*28143753123^(3/10) 2329992851340901 a001 610/3571*10749957122^(5/16) 2329992851340901 a001 610/3571*599074578^(5/14) 2329992851340901 a001 610/3571*228826127^(3/8) 2329992851340902 a001 610/3571*33385282^(5/12) 2329992851341237 a001 610/3571*1860498^(1/2) 2329992851341547 a001 1597/1364*7881196^(1/3) 2329992851341560 a001 1597/1364*312119004989^(1/5) 2329992851341560 a001 1597/1364*(1/2+1/2*5^(1/2))^11 2329992851341560 a001 1597/1364*1568397607^(1/4) 2329992851440901 a001 1597/1364*103682^(11/24) 2329992851476366 a001 610/3571*103682^(5/8) 2329992852084354 a001 1597/1364*39603^(1/2) 2329992852353802 a001 610/3571*39603^(15/22) 2329992856941864 a001 1597/1364*15127^(11/20) 2329992858977680 a001 610/3571*15127^(3/4) 2329992862130199 r008 a(0)=0,K{-n^6,-18+35*n+42*n^2-55*n^3} 2329992865739317 m008 (1/4*Pi^4+3)/(1/5*Pi^2-4/5) 2329992873834484 h001 (8/11*exp(2)+5/8)/(4/5*exp(1)+2/5) 2329992881795814 a001 5473/682*2207^(7/16) 2329992882085096 r009 Re(z^3+c),c=-5/122+17/27*I,n=37 2329992890123536 a003 cos(Pi*6/115)/cos(Pi*35/97) 2329992893077454 p003 LerchPhi(1/2,6,209/75) 2329992893991627 a001 1597/1364*5778^(11/18) 2329992897621291 a001 615/124*2207^(1/2) 2329992897806982 a001 646/341*2207^(5/8) 2329992901238036 r005 Im(z^2+c),c=-27/70+12/31*I,n=49 2329992902830529 a001 98209/682*843^(1/14) 2329992909500083 a001 610/3571*5778^(5/6) 2329992918786072 a001 987/521*521^(10/13) 2329992923051053 a007 Real Root Of 353*x^4+267*x^3-848*x^2+657*x-892 2329992928740418 a001 18/13*1597^(41/59) 2329992931569655 m001 AlladiGrinstead+ReciprocalFibonacci-Tribonacci 2329992937153108 r002 7i'th iterates of 2*x/(1-x^2) of 2329992944133010 m005 (1/2*5^(1/2)+9/11)/(1/3*Catalan-2/9) 2329992954921974 r005 Im(z^2+c),c=-23/94+7/20*I,n=10 2329992955656278 a007 Real Root Of 423*x^4+952*x^3+63*x^2+239*x-210 2329992964358632 a001 4181/1364*2207^(9/16) 2329992968497646 a007 Real Root Of 167*x^4-357*x^3-866*x^2-811*x+240 2329992969673720 h001 (1/11*exp(2)+2/3)/(2/3*exp(2)+9/11) 2329992972812904 a007 Real Root Of -542*x^4-869*x^3+717*x^2-456*x+27 2329992985614189 a001 2576/321*843^(1/2) 2329992988841589 a007 Real Root Of -423*x^4-789*x^3+466*x^2+146*x+297 2329993003928333 a001 46368/3571*843^(3/7) 2329993004409444 r005 Re(z^2+c),c=-4/21+26/57*I,n=51 2329993012184382 m001 (GAMMA(5/6)-Cahen)/(CopelandErdos-Trott2nd) 2329993021170131 r005 Im(z^2+c),c=3/56+7/30*I,n=20 2329993029824174 r005 Re(z^2+c),c=-19/82+37/59*I,n=6 2329993031132199 a007 Real Root Of -384*x^4-565*x^3+432*x^2-380*x+940 2329993035469156 a001 6765/2207*843^(9/14) 2329993036096880 m001 (ln(2)/ln(10))^(Pi^(1/2))*Zeta(1/2)^(Pi^(1/2)) 2329993045407961 a001 121393/15127*843^(1/2) 2329993049362970 m001 gamma/(OneNinth-Sierpinski) 2329993054131755 a001 105937/13201*843^(1/2) 2329993054991567 a007 Real Root Of 400*x^4+781*x^3-694*x^2-508*x+674 2329993055404539 a001 416020/51841*843^(1/2) 2329993055590236 a001 726103/90481*843^(1/2) 2329993055617329 a001 5702887/710647*843^(1/2) 2329993055621281 a001 829464/103361*843^(1/2) 2329993055621858 a001 39088169/4870847*843^(1/2) 2329993055621942 a001 34111385/4250681*843^(1/2) 2329993055621955 a001 133957148/16692641*843^(1/2) 2329993055621956 a001 233802911/29134601*843^(1/2) 2329993055621957 a001 1836311903/228826127*843^(1/2) 2329993055621957 a001 267084832/33281921*843^(1/2) 2329993055621957 a001 12586269025/1568397607*843^(1/2) 2329993055621957 a001 10983760033/1368706081*843^(1/2) 2329993055621957 a001 43133785636/5374978561*843^(1/2) 2329993055621957 a001 75283811239/9381251041*843^(1/2) 2329993055621957 a001 591286729879/73681302247*843^(1/2) 2329993055621957 a001 86000486440/10716675201*843^(1/2) 2329993055621957 a001 4052739537881/505019158607*843^(1/2) 2329993055621957 a001 3278735159921/408569081798*843^(1/2) 2329993055621957 a001 2504730781961/312119004989*843^(1/2) 2329993055621957 a001 956722026041/119218851371*843^(1/2) 2329993055621957 a001 182717648081/22768774562*843^(1/2) 2329993055621957 a001 139583862445/17393796001*843^(1/2) 2329993055621957 a001 53316291173/6643838879*843^(1/2) 2329993055621957 a001 10182505537/1268860318*843^(1/2) 2329993055621957 a001 7778742049/969323029*843^(1/2) 2329993055621957 a001 2971215073/370248451*843^(1/2) 2329993055621957 a001 567451585/70711162*843^(1/2) 2329993055621957 a001 433494437/54018521*843^(1/2) 2329993055621962 a001 165580141/20633239*843^(1/2) 2329993055621994 a001 31622993/3940598*843^(1/2) 2329993055622215 a001 24157817/3010349*843^(1/2) 2329993055623724 a001 9227465/1149851*843^(1/2) 2329993055634073 a001 1762289/219602*843^(1/2) 2329993055705003 a001 1346269/167761*843^(1/2) 2329993056191163 a001 514229/64079*843^(1/2) 2329993059523356 a001 98209/12238*843^(1/2) 2329993060068982 m001 cosh(1)/ln(GAMMA(5/24))*sqrt(5) 2329993061160691 l006 ln(601/6177) 2329993065688514 m001 MertensB1/Mills/Thue 2329993072377701 a007 Real Root Of -958*x^4-202*x^3+363*x^2+783*x+163 2329993075386027 p001 sum((-1)^n/(538*n+429)/(1024^n),n=0..infinity) 2329993081587945 r009 Im(z^3+c),c=-11/19+4/17*I,n=21 2329993082362545 a001 75025/9349*843^(1/2) 2329993087365996 m005 (1/2*Zeta(3)-1/6)/(7/9*exp(1)-1/4) 2329993095141914 r009 Re(z^3+c),c=-41/118+17/40*I,n=9 2329993108322961 r005 Im(z^2+c),c=13/60+4/29*I,n=20 2329993110020976 r005 Im(z^2+c),c=-105/94+11/48*I,n=22 2329993122705218 a007 Real Root Of 125*x^4-169*x^3-921*x^2+357*x+10 2329993122724384 r009 Re(z^3+c),c=-9/64+35/38*I,n=16 2329993125351446 m001 OneNinth^gamma(1)/(OneNinth^Totient) 2329993132822628 a007 Real Root Of 791*x^4-797*x^3+952*x^2-785*x-247 2329993136978987 a001 121393/1364*843^(1/7) 2329993142841914 r005 Im(z^2+c),c=-8/31+14/39*I,n=8 2329993146980364 a004 Fibonacci(15)*Lucas(16)/(1/2+sqrt(5)/2)^18 2329993152190553 r005 Im(z^2+c),c=-33/94+9/14*I,n=8 2329993155842570 a007 Real Root Of -451*x^4-439*x^3+944*x^2-713*x+953 2329993156057551 m001 Kolakoski^2/FeigenbaumDelta^2*ln(sqrt(5)) 2329993157806724 r009 Re(z^3+c),c=-9/32+3/11*I,n=10 2329993159381928 a007 Real Root Of 528*x^4+895*x^3-805*x^2-272*x-504 2329993164432559 a007 Real Root Of 926*x^4-447*x^3+221*x^2-243*x-77 2329993165817494 r005 Re(z^2+c),c=-19/16+19/126*I,n=24 2329993167960237 a005 (1/cos(7/190*Pi))^126 2329993171091194 a003 -3/2-cos(1/5*Pi)+cos(3/10*Pi)-cos(7/24*Pi) 2329993176893540 a007 Real Root Of -402*x^4-336*x^3+994*x^2-832*x+263 2329993180210447 a001 1597/1364*2207^(11/16) 2329993180316640 r005 Im(z^2+c),c=27/86+17/52*I,n=5 2329993181888760 m001 ReciprocalLucas/MasserGramain/Conway 2329993182681969 r009 Re(z^3+c),c=-17/122+11/12*I,n=56 2329993184300416 r005 Im(z^2+c),c=3/56+7/30*I,n=17 2329993191200202 r009 Re(z^3+c),c=-1/24+29/45*I,n=30 2329993203665375 r005 Re(z^2+c),c=5/54+29/51*I,n=20 2329993207697625 m001 (arctan(1/3)+Cahen)/(KhinchinLevy+Otter) 2329993219183870 a001 416020/2889*322^(1/12) 2329993220590546 a001 28657/5778*843^(4/7) 2329993231738892 m001 Catalan^2*exp(Riemann2ndZero)^2/cos(Pi/5)^2 2329993234867475 m001 1/RenyiParking/ln(Backhouse)*cos(Pi/5)^2 2329993235767365 m001 (GAMMA(13/24)+OrthogonalArrays)/Mills 2329993237105154 m005 (1/2*Zeta(3)-5/12)/(7/12*gamma+5/11) 2329993238904691 a001 28657/3571*843^(1/2) 2329993244231433 s001 sum(exp(-Pi/3)^(n-1)*A126826[n],n=1..infinity) 2329993247618880 m001 (Ei(1,1)+Gompertz)/(BesselI(0,1)-Catalan) 2329993253856139 g007 -Psi(2,11/12)-2*Psi(2,7/10)-Psi(2,2/3) 2329993258824668 a007 Real Root Of 867*x^4-125*x^3-58*x^2-922*x+217 2329993261797814 m001 log(1+sqrt(2))^2*ln(LaplaceLimit)^2*sqrt(Pi) 2329993265544960 p001 sum((-1)^n/(343*n+85)/n/(100^n),n=1..infinity) 2329993266989096 a007 Real Root Of -339*x^4-564*x^3+430*x^2-208*x+38 2329993269746718 s002 sum(A217613[n]/(pi^n-1),n=1..infinity) 2329993272795265 r009 Re(z^3+c),c=-9/16+17/31*I,n=2 2329993278318840 h001 (1/11*exp(1)+2/11)/(7/11*exp(1)+1/9) 2329993278793101 a001 311187/2161*322^(1/12) 2329993279714546 a001 75025/15127*843^(4/7) 2329993287489971 a001 5702887/39603*322^(1/12) 2329993288340622 a001 196418/39603*843^(4/7) 2329993288758827 a001 7465176/51841*322^(1/12) 2329993288943950 a001 39088169/271443*322^(1/12) 2329993288970960 a001 14619165/101521*322^(1/12) 2329993288974900 a001 133957148/930249*322^(1/12) 2329993288975475 a001 701408733/4870847*322^(1/12) 2329993288975559 a001 1836311903/12752043*322^(1/12) 2329993288975571 a001 14930208/103681*322^(1/12) 2329993288975573 a001 12586269025/87403803*322^(1/12) 2329993288975573 a001 32951280099/228826127*322^(1/12) 2329993288975573 a001 43133785636/299537289*322^(1/12) 2329993288975573 a001 32264490531/224056801*322^(1/12) 2329993288975573 a001 591286729879/4106118243*322^(1/12) 2329993288975573 a001 774004377960/5374978561*322^(1/12) 2329993288975573 a001 4052739537881/28143753123*322^(1/12) 2329993288975573 a001 1515744265389/10525900321*322^(1/12) 2329993288975573 a001 3278735159921/22768774562*322^(1/12) 2329993288975573 a001 2504730781961/17393796001*322^(1/12) 2329993288975573 a001 956722026041/6643838879*322^(1/12) 2329993288975573 a001 182717648081/1268860318*322^(1/12) 2329993288975573 a001 139583862445/969323029*322^(1/12) 2329993288975573 a001 53316291173/370248451*322^(1/12) 2329993288975573 a001 10182505537/70711162*322^(1/12) 2329993288975574 a001 7778742049/54018521*322^(1/12) 2329993288975579 a001 2971215073/20633239*322^(1/12) 2329993288975611 a001 567451585/3940598*322^(1/12) 2329993288975830 a001 433494437/3010349*322^(1/12) 2329993288977336 a001 165580141/1149851*322^(1/12) 2329993288987652 a001 31622993/219602*322^(1/12) 2329993289058363 a001 24157817/167761*322^(1/12) 2329993289543023 a001 9227465/64079*322^(1/12) 2329993289599150 a001 514229/103682*843^(4/7) 2329993289782766 a001 1346269/271443*843^(4/7) 2329993289809556 a001 3524578/710647*843^(4/7) 2329993289813464 a001 9227465/1860498*843^(4/7) 2329993289814034 a001 24157817/4870847*843^(4/7) 2329993289814118 a001 63245986/12752043*843^(4/7) 2329993289814130 a001 165580141/33385282*843^(4/7) 2329993289814131 a001 433494437/87403803*843^(4/7) 2329993289814132 a001 1134903170/228826127*843^(4/7) 2329993289814132 a001 2971215073/599074578*843^(4/7) 2329993289814132 a001 7778742049/1568397607*843^(4/7) 2329993289814132 a001 20365011074/4106118243*843^(4/7) 2329993289814132 a001 53316291173/10749957122*843^(4/7) 2329993289814132 a001 139583862445/28143753123*843^(4/7) 2329993289814132 a001 365435296162/73681302247*843^(4/7) 2329993289814132 a001 956722026041/192900153618*843^(4/7) 2329993289814132 a001 2504730781961/505019158607*843^(4/7) 2329993289814132 a001 10610209857723/2139295485799*843^(4/7) 2329993289814132 a001 4052739537881/817138163596*843^(4/7) 2329993289814132 a001 140728068720/28374454999*843^(4/7) 2329993289814132 a001 591286729879/119218851371*843^(4/7) 2329993289814132 a001 225851433717/45537549124*843^(4/7) 2329993289814132 a001 86267571272/17393796001*843^(4/7) 2329993289814132 a001 32951280099/6643838879*843^(4/7) 2329993289814132 a001 1144206275/230701876*843^(4/7) 2329993289814132 a001 4807526976/969323029*843^(4/7) 2329993289814132 a001 1836311903/370248451*843^(4/7) 2329993289814132 a001 701408733/141422324*843^(4/7) 2329993289814133 a001 267914296/54018521*843^(4/7) 2329993289814137 a001 9303105/1875749*843^(4/7) 2329993289814169 a001 39088169/7881196*843^(4/7) 2329993289814387 a001 14930352/3010349*843^(4/7) 2329993289815880 a001 5702887/1149851*843^(4/7) 2329993289826112 a001 2178309/439204*843^(4/7) 2329993289896248 a001 75640/15251*843^(4/7) 2329993290376962 a001 317811/64079*843^(4/7) 2329993292864932 a001 1762289/12238*322^(1/12) 2329993293531385 r005 Im(z^2+c),c=-43/32+1/60*I,n=56 2329993293671830 a001 121393/24476*843^(4/7) 2329993293868387 r005 Im(z^2+c),c=3/56+7/30*I,n=24 2329993295972473 g001 Re(GAMMA(23/15+I*23/6)) 2329993296184091 m005 (1/2*3^(1/2)+2/11)/(4*Catalan+5/6) 2329993299798486 a001 610/3571*2207^(15/16) 2329993301850566 r002 30th iterates of z^2 + 2329993303206608 r005 Im(z^2+c),c=3/56+7/30*I,n=21 2329993306063547 r005 Re(z^2+c),c=-4/21+26/57*I,n=54 2329993306501506 a001 4181/2207*843^(5/7) 2329993306732588 r005 Im(z^2+c),c=3/56+7/30*I,n=28 2329993307250483 r005 Im(z^2+c),c=3/56+7/30*I,n=25 2329993307339348 r005 Im(z^2+c),c=3/56+7/30*I,n=32 2329993307367423 r005 Im(z^2+c),c=3/56+7/30*I,n=29 2329993307367963 r005 Im(z^2+c),c=3/56+7/30*I,n=36 2329993307369312 r005 Im(z^2+c),c=3/56+7/30*I,n=40 2329993307369343 r005 Im(z^2+c),c=3/56+7/30*I,n=35 2329993307369375 r005 Im(z^2+c),c=3/56+7/30*I,n=39 2329993307369376 r005 Im(z^2+c),c=3/56+7/30*I,n=44 2329993307369379 r005 Im(z^2+c),c=3/56+7/30*I,n=43 2329993307369379 r005 Im(z^2+c),c=3/56+7/30*I,n=48 2329993307369379 r005 Im(z^2+c),c=3/56+7/30*I,n=47 2329993307369379 r005 Im(z^2+c),c=3/56+7/30*I,n=52 2329993307369379 r005 Im(z^2+c),c=3/56+7/30*I,n=51 2329993307369379 r005 Im(z^2+c),c=3/56+7/30*I,n=56 2329993307369379 r005 Im(z^2+c),c=3/56+7/30*I,n=55 2329993307369379 r005 Im(z^2+c),c=3/56+7/30*I,n=60 2329993307369379 r005 Im(z^2+c),c=3/56+7/30*I,n=59 2329993307369379 r005 Im(z^2+c),c=3/56+7/30*I,n=64 2329993307369379 r005 Im(z^2+c),c=3/56+7/30*I,n=63 2329993307369379 r005 Im(z^2+c),c=3/56+7/30*I,n=61 2329993307369379 r005 Im(z^2+c),c=3/56+7/30*I,n=62 2329993307369379 r005 Im(z^2+c),c=3/56+7/30*I,n=57 2329993307369379 r005 Im(z^2+c),c=3/56+7/30*I,n=58 2329993307369379 r005 Im(z^2+c),c=3/56+7/30*I,n=53 2329993307369379 r005 Im(z^2+c),c=3/56+7/30*I,n=54 2329993307369379 r005 Im(z^2+c),c=3/56+7/30*I,n=49 2329993307369379 r005 Im(z^2+c),c=3/56+7/30*I,n=50 2329993307369379 r005 Im(z^2+c),c=3/56+7/30*I,n=45 2329993307369380 r005 Im(z^2+c),c=3/56+7/30*I,n=46 2329993307369380 r005 Im(z^2+c),c=3/56+7/30*I,n=41 2329993307369391 r005 Im(z^2+c),c=3/56+7/30*I,n=37 2329993307369393 r005 Im(z^2+c),c=3/56+7/30*I,n=42 2329993307369407 r005 Im(z^2+c),c=3/56+7/30*I,n=31 2329993307369459 r005 Im(z^2+c),c=3/56+7/30*I,n=33 2329993307369686 r005 Im(z^2+c),c=3/56+7/30*I,n=38 2329993307375900 r005 Im(z^2+c),c=3/56+7/30*I,n=34 2329993307386791 r005 Im(z^2+c),c=3/56+7/30*I,n=27 2329993307507668 r005 Im(z^2+c),c=3/56+7/30*I,n=30 2329993308095136 r005 Im(z^2+c),c=3/56+7/30*I,n=23 2329993310301552 r005 Im(z^2+c),c=3/56+7/30*I,n=26 2329993312262264 r005 Re(z^2+c),c=23/54+15/23*I,n=4 2329993312318512 r005 Re(z^2+c),c=-2/13+25/61*I,n=5 2329993315472072 b008 1+(4*Sin[3/2])/3 2329993315633633 a001 1346269/9349*322^(1/12) 2329993316255190 a001 46368/9349*843^(4/7) 2329993330317391 r005 Im(z^2+c),c=3/56+7/30*I,n=19 2329993334769526 r005 Im(z^2+c),c=-67/86+3/29*I,n=46 2329993338846563 l006 ln(583/5992) 2329993342982376 s002 sum(A071599[n]/(n*pi^n+1),n=1..infinity) 2329993343076765 s002 sum(A071599[n]/(n*pi^n-1),n=1..infinity) 2329993349792201 a007 Real Root Of 266*x^4-x^3-981*x^2+705*x-884 2329993353582774 a001 47/521*(1/2*5^(1/2)+1/2)^32*521^(4/15) 2329993357665487 r002 5th iterates of z^2 + 2329993369531425 r005 Im(z^2+c),c=3/56+7/30*I,n=22 2329993370474930 r005 Re(z^2+c),c=-13/44+32/55*I,n=9 2329993371285582 a001 75025/1364*843^(3/14) 2329993404355256 m005 (1/2*Catalan-5/11)/(1/11*gamma-1/5) 2329993424653595 l006 ln(7855/9916) 2329993442168661 a007 Real Root Of 131*x^4+445*x^3+441*x^2+358*x+208 2329993444244863 a001 2584/2207*843^(11/14) 2329993444406671 r005 Im(z^2+c),c=-41/102+17/30*I,n=46 2329993450640202 m005 (1/2*Catalan+2/3)/(3/10*gamma-5) 2329993452729705 a001 17711/5778*843^(9/14) 2329993453694616 m004 -6-(30*Sqrt[5])/Pi+6*Sin[Sqrt[5]*Pi] 2329993455898934 m001 GAMMA(2/3)^2*MertensB1^2/exp(sin(1))^2 2329993463150776 m001 BesselK(0,1)*cos(1/12*Pi)/KhinchinHarmonic 2329993471043852 a001 17711/3571*843^(4/7) 2329993471692644 a001 514229/3571*322^(1/12) 2329993485328233 a007 Real Root Of -356*x^4-601*x^3+684*x^2+16*x-786 2329993486172336 a001 377/199*199^(10/11) 2329993499764147 m005 (1/3*5^(1/2)+2/5)/(1/6*2^(1/2)-8/11) 2329993499981862 r005 Re(z^2+c),c=-19/25+1/37*I,n=4 2329993504065375 a001 987/2207*843^(13/14) 2329993513162569 r005 Im(z^2+c),c=-1/4+17/49*I,n=37 2329993513607211 a001 6624/2161*843^(9/14) 2329993520954301 r005 Re(z^2+c),c=-51/64+1/12*I,n=56 2329993522489119 a001 121393/39603*843^(9/14) 2329993523784972 a001 317811/103682*843^(9/14) 2329993523974035 a001 832040/271443*843^(9/14) 2329993524001619 a001 311187/101521*843^(9/14) 2329993524005643 a001 5702887/1860498*843^(9/14) 2329993524006230 a001 14930352/4870847*843^(9/14) 2329993524006316 a001 39088169/12752043*843^(9/14) 2329993524006328 a001 14619165/4769326*843^(9/14) 2329993524006330 a001 267914296/87403803*843^(9/14) 2329993524006330 a001 701408733/228826127*843^(9/14) 2329993524006330 a001 1836311903/599074578*843^(9/14) 2329993524006330 a001 686789568/224056801*843^(9/14) 2329993524006330 a001 12586269025/4106118243*843^(9/14) 2329993524006330 a001 32951280099/10749957122*843^(9/14) 2329993524006330 a001 86267571272/28143753123*843^(9/14) 2329993524006330 a001 32264490531/10525900321*843^(9/14) 2329993524006330 a001 591286729879/192900153618*843^(9/14) 2329993524006330 a001 1548008755920/505019158607*843^(9/14) 2329993524006330 a001 1515744265389/494493258286*843^(9/14) 2329993524006330 a001 2504730781961/817138163596*843^(9/14) 2329993524006330 a001 956722026041/312119004989*843^(9/14) 2329993524006330 a001 365435296162/119218851371*843^(9/14) 2329993524006330 a001 139583862445/45537549124*843^(9/14) 2329993524006330 a001 53316291173/17393796001*843^(9/14) 2329993524006330 a001 20365011074/6643838879*843^(9/14) 2329993524006330 a001 7778742049/2537720636*843^(9/14) 2329993524006330 a001 2971215073/969323029*843^(9/14) 2329993524006330 a001 1134903170/370248451*843^(9/14) 2329993524006331 a001 433494437/141422324*843^(9/14) 2329993524006331 a001 165580141/54018521*843^(9/14) 2329993524006336 a001 63245986/20633239*843^(9/14) 2329993524006369 a001 24157817/7881196*843^(9/14) 2329993524006593 a001 9227465/3010349*843^(9/14) 2329993524008130 a001 3524578/1149851*843^(9/14) 2329993524018666 a001 1346269/439204*843^(9/14) 2329993524090882 a001 514229/167761*843^(9/14) 2329993524585854 a001 196418/64079*843^(9/14) 2329993527978441 a001 75025/24476*843^(9/14) 2329993538308893 r005 Re(z^2+c),c=37/106+11/53*I,n=49 2329993549703382 m009 (1/12*Pi^2+5/6)/(1/6*Psi(1,2/3)+1/5) 2329993551231580 a001 28657/9349*843^(9/14) 2329993554049382 r005 Im(z^2+c),c=-45/56+10/53*I,n=3 2329993558232200 h001 (3/4*exp(2)+1/10)/(8/11*exp(1)+4/9) 2329993560477643 m005 (1/3*2^(1/2)+1/4)/(10/11*exp(1)+5/8) 2329993562565277 r005 Re(z^2+c),c=-5/8+97/239*I,n=26 2329993568139457 a007 Real Root Of -24*x^4-531*x^3+634*x^2-565*x-666 2329993571168818 b008 6+ArcCosh[6]^Pi 2329993572300250 m001 (-HardyLittlewoodC5+Niven)/(Bloch-Psi(2,1/3)) 2329993575081870 l006 ln(6704/8463) 2329993576233405 m001 (Kac-Lehmer)/(Zeta(1,-1)+HardyLittlewoodC4) 2329993582411010 m001 2^(1/2)+HardyLittlewoodC5^Paris 2329993591246270 m001 (1+Catalan)/(-polylog(4,1/2)+Totient) 2329993595022545 m001 Riemann2ndZero/(MertensB1^ZetaP(4)) 2329993604053999 r005 Re(z^2+c),c=-17/58+11/46*I,n=3 2329993605178256 a001 11592/341*843^(2/7) 2329993613313262 a007 Real Root Of -598*x^4-896*x^3+899*x^2-489*x+271 2329993613371895 h001 (1/6*exp(1)+2/3)/(4/7*exp(2)+7/12) 2329993615513999 m004 -1-5*Sqrt[5]*Pi+25/Log[Sqrt[5]*Pi] 2329993622910760 m001 (ln(2)/ln(10)+3^(1/2))/(sin(1/5*Pi)+Zeta(1/2)) 2329993629344334 m001 (KhinchinLevy-Lehmer)/(Rabbit+Tribonacci) 2329993634225608 l006 ln(565/5807) 2329993643228215 r009 Re(z^3+c),c=-7/16+19/36*I,n=43 2329993654900039 h001 (5/6*exp(2)+1/12)/(7/8*exp(1)+3/10) 2329993662419714 m001 FeigenbaumDelta^2/ln(Backhouse)^2/LaplaceLimit 2329993672687580 r005 Re(z^2+c),c=3/13+11/23*I,n=57 2329993675731451 q001 7/30043 2329993677273894 m001 1/exp(Salem)^2/CopelandErdos/sqrt(3) 2329993683242677 r005 Im(z^2+c),c=33/118+3/41*I,n=45 2329993687217484 a007 Real Root Of -467*x^4-603*x^3+932*x^2-741*x-650 2329993688054855 m001 Artin^exp(-Pi)/exp(sqrt(2)) 2329993689406683 l006 ln(8272/8467) 2329993692296830 a001 5473/2889*843^(5/7) 2329993694890292 r005 Re(z^2+c),c=3/16+2/37*I,n=4 2329993706919261 m001 (Gompertz-exp(1))/(-Kolakoski+Niven) 2329993710610979 a001 10946/3571*843^(9/14) 2329993714088113 r005 Re(z^2+c),c=29/90+13/63*I,n=16 2329993716373408 m001 GAMMA(7/24)/(GAMMA(13/24)^BesselI(1,1)) 2329993721200005 a001 521/75025*6765^(7/51) 2329993722384473 m001 GAMMA(1/4)^2/Riemann1stZero^2/ln(sin(Pi/5))^2 2329993738259236 a001 372100/1597 2329993740891741 p001 sum(1/(560*n+127)/n/(625^n),n=1..infinity) 2329993748583621 a001 28657/15127*843^(5/7) 2329993749582183 a005 (1/cos(9/40*Pi))^146 2329993755466132 a001 15456/281*322^(1/4) 2329993756731058 m001 (ln(5)-Rabbit)/(TreeGrowth2nd-ZetaQ(2)) 2329993756795753 a001 75025/39603*843^(5/7) 2329993757993887 a001 98209/51841*843^(5/7) 2329993758168692 a001 514229/271443*843^(5/7) 2329993758194196 a001 1346269/710647*843^(5/7) 2329993758197917 a001 1762289/930249*843^(5/7) 2329993758198460 a001 9227465/4870847*843^(5/7) 2329993758198539 a001 24157817/12752043*843^(5/7) 2329993758198551 a001 31622993/16692641*843^(5/7) 2329993758198552 a001 165580141/87403803*843^(5/7) 2329993758198553 a001 433494437/228826127*843^(5/7) 2329993758198553 a001 567451585/299537289*843^(5/7) 2329993758198553 a001 2971215073/1568397607*843^(5/7) 2329993758198553 a001 7778742049/4106118243*843^(5/7) 2329993758198553 a001 10182505537/5374978561*843^(5/7) 2329993758198553 a001 53316291173/28143753123*843^(5/7) 2329993758198553 a001 139583862445/73681302247*843^(5/7) 2329993758198553 a001 182717648081/96450076809*843^(5/7) 2329993758198553 a001 956722026041/505019158607*843^(5/7) 2329993758198553 a001 10610209857723/5600748293801*843^(5/7) 2329993758198553 a001 591286729879/312119004989*843^(5/7) 2329993758198553 a001 225851433717/119218851371*843^(5/7) 2329993758198553 a001 21566892818/11384387281*843^(5/7) 2329993758198553 a001 32951280099/17393796001*843^(5/7) 2329993758198553 a001 12586269025/6643838879*843^(5/7) 2329993758198553 a001 1201881744/634430159*843^(5/7) 2329993758198553 a001 1836311903/969323029*843^(5/7) 2329993758198553 a001 701408733/370248451*843^(5/7) 2329993758198553 a001 66978574/35355581*843^(5/7) 2329993758198553 a001 102334155/54018521*843^(5/7) 2329993758198558 a001 39088169/20633239*843^(5/7) 2329993758198588 a001 3732588/1970299*843^(5/7) 2329993758198795 a001 5702887/3010349*843^(5/7) 2329993758200217 a001 2178309/1149851*843^(5/7) 2329993758209958 a001 208010/109801*843^(5/7) 2329993758276728 a001 317811/167761*843^(5/7) 2329993758734374 a001 121393/64079*843^(5/7) 2329993761871130 a001 11592/6119*843^(5/7) 2329993767252252 r005 Im(z^2+c),c=-1/4+17/49*I,n=39 2329993768269538 a001 141422324/55*55^(11/20) 2329993774023732 m001 (GAMMA(23/24)-QuadraticClass)/(Robbin-Sarnak) 2329993781251739 a001 305/682*3571^(13/17) 2329993783370772 a001 17711/9349*843^(5/7) 2329993787870285 l006 ln(5553/7010) 2329993794104678 a007 Real Root Of 549*x^4+829*x^3-757*x^2+317*x-846 2329993795469099 r005 Im(z^2+c),c=-35/36+11/47*I,n=45 2329993801867899 r005 Im(z^2+c),c=-31/60+2/49*I,n=43 2329993801892568 a007 Real Root Of -797*x^4-687*x^3-691*x^2+716*x+198 2329993807034775 r002 27th iterates of z^2 + 2329993808791996 a007 Real Root Of 199*x^4-97*x^3-997*x^2+465*x-596 2329993810746326 r005 Re(z^2+c),c=-23/118+22/53*I,n=10 2329993840154675 a001 28657/1364*843^(5/14) 2329993853026070 a007 Real Root Of 431*x^4-126*x^3+698*x^2-971*x-267 2329993854592546 r005 Re(z^2+c),c=-1/60+33/50*I,n=27 2329993865857576 g007 Psi(2,1/8)-Psi(2,9/11)-Psi(2,1/11)-Psi(2,1/7) 2329993866781320 r005 Im(z^2+c),c=-41/86+19/49*I,n=18 2329993870183185 m005 (1/2*5^(1/2)+8/9)/(1/4*Catalan-1/7) 2329993883863420 r009 Re(z^3+c),c=-11/46+7/12*I,n=3 2329993892709273 p001 sum((-1)^n/(562*n+429)/(1000^n),n=0..infinity) 2329993894535625 r005 Re(z^2+c),c=-13/102+32/57*I,n=32 2329993897714056 a001 144/15127*7^(23/50) 2329993900296882 m001 (Pi^(1/2))^Salem/sin(1) 2329993902735684 a001 305/682*9349^(13/19) 2329993905143051 m001 1/ln(Zeta(7))/LaplaceLimit^2/sinh(1) 2329993912417370 a001 2255/1926*843^(11/14) 2329993918553102 a007 Real Root Of -53*x^4+139*x^3+985*x^2+955*x+198 2329993918567563 a001 305/682*24476^(13/21) 2329993920654509 a001 305/682*64079^(13/23) 2329993920975238 a001 305/682*141422324^(1/3) 2329993920975238 a001 305/682*(1/2+1/2*5^(1/2))^13 2329993920975238 a001 305/682*73681302247^(1/4) 2329993920991049 a001 305/682*271443^(1/2) 2329993921092641 a001 305/682*103682^(13/24) 2329993921747841 r005 Re(z^2+c),c=-35/122+1/35*I,n=11 2329993921853086 a001 305/682*39603^(13/22) 2329993926903785 a001 47/46368*610^(39/46) 2329993927593783 a001 305/682*15127^(13/20) 2329993929971777 r005 Re(z^2+c),c=-3/20+25/46*I,n=53 2329993930731521 a001 6765/3571*843^(5/7) 2329993930943453 a001 1597/2207*843^(6/7) 2329993932198667 h001 (1/6*exp(1)+8/11)/(7/11*exp(2)+4/11) 2329993937088590 r009 Im(z^3+c),c=-59/122+3/35*I,n=53 2329993944400490 r005 Im(z^2+c),c=-1/4+17/49*I,n=32 2329993949044495 l006 ln(547/5622) 2329993949764682 a007 Real Root Of -384*x^4-701*x^3+647*x^2+170*x-666 2329993954221946 r005 Im(z^2+c),c=3/56+7/30*I,n=15 2329993955784360 a007 Real Root Of 213*x^4+448*x^3-236*x^2-280*x+18 2329993971379886 a001 305/682*5778^(13/18) 2329993980722832 a001 17711/15127*843^(11/14) 2329993981326671 r005 Im(z^2+c),c=-1/4+17/49*I,n=42 2329993989201867 a001 610/521*521^(11/13) 2329993990688465 a001 15456/13201*843^(11/14) 2329993992142431 a001 121393/103682*843^(11/14) 2329993992354562 a001 105937/90481*843^(11/14) 2329993992385512 a001 832040/710647*843^(11/14) 2329993992390027 a001 726103/620166*843^(11/14) 2329993992390686 a001 5702887/4870847*843^(11/14) 2329993992390782 a001 4976784/4250681*843^(11/14) 2329993992390796 a001 39088169/33385282*843^(11/14) 2329993992390798 a001 34111385/29134601*843^(11/14) 2329993992390798 a001 267914296/228826127*843^(11/14) 2329993992390798 a001 233802911/199691526*843^(11/14) 2329993992390798 a001 1836311903/1568397607*843^(11/14) 2329993992390798 a001 1602508992/1368706081*843^(11/14) 2329993992390798 a001 12586269025/10749957122*843^(11/14) 2329993992390798 a001 10983760033/9381251041*843^(11/14) 2329993992390798 a001 86267571272/73681302247*843^(11/14) 2329993992390798 a001 75283811239/64300051206*843^(11/14) 2329993992390798 a001 2504730781961/2139295485799*843^(11/14) 2329993992390798 a001 365435296162/312119004989*843^(11/14) 2329993992390798 a001 139583862445/119218851371*843^(11/14) 2329993992390798 a001 53316291173/45537549124*843^(11/14) 2329993992390798 a001 20365011074/17393796001*843^(11/14) 2329993992390798 a001 7778742049/6643838879*843^(11/14) 2329993992390798 a001 2971215073/2537720636*843^(11/14) 2329993992390798 a001 1134903170/969323029*843^(11/14) 2329993992390798 a001 433494437/370248451*843^(11/14) 2329993992390798 a001 165580141/141422324*843^(11/14) 2329993992390799 a001 63245986/54018521*843^(11/14) 2329993992390805 a001 24157817/20633239*843^(11/14) 2329993992390841 a001 9227465/7881196*843^(11/14) 2329993992391093 a001 3524578/3010349*843^(11/14) 2329993992392818 a001 1346269/1149851*843^(11/14) 2329993992404639 a001 514229/439204*843^(11/14) 2329993992485666 a001 196418/167761*843^(11/14) 2329993993041032 a001 75025/64079*843^(11/14) 2329993993669037 r005 Re(z^2+c),c=-4/21+26/57*I,n=57 2329993994302125 a007 Real Root Of -630*x^4+984*x^3+857*x^2+845*x-254 2329993996847565 a001 28657/24476*843^(11/14) 2329993998406268 s002 sum(A166827[n]/(16^n-1),n=1..infinity) 2329994005546290 h001 (-8*exp(6)-5)/(-4*exp(1)-3) 2329994006403371 m006 (2/5*ln(Pi)-2)/(1/4*exp(Pi)+5/6) 2329994010964365 r005 Im(z^2+c),c=-1/4+17/49*I,n=36 2329994012333265 r005 Im(z^2+c),c=-61/110+1/25*I,n=23 2329994014365589 r009 Im(z^3+c),c=-19/62+11/58*I,n=13 2329994014754456 m006 (5/6/Pi+3/5)/(1/3*exp(Pi)-4) 2329994021517456 r005 Im(z^2+c),c=-53/82+14/33*I,n=27 2329994021913534 a007 Real Root Of -355*x^4-904*x^3-686*x^2-773*x+951 2329994022937931 a001 10946/9349*843^(11/14) 2329994027454089 r005 Im(z^2+c),c=23/114+7/47*I,n=10 2329994048260851 a008 Real Root of 1/407*x^3+20/407*x^2-75/407*x+4/37 2329994056506817 a001 11/2178309*13^(31/52) 2329994056670053 r005 Re(z^2+c),c=-13/82+29/55*I,n=39 2329994057953668 r009 Re(z^3+c),c=-7/25+17/63*I,n=8 2329994061543986 m005 (1/2*Catalan-1/8)/(11/12*gamma+9/10) 2329994065808298 m001 (Conway+ReciprocalFibonacci)/(Robbin+Totient) 2329994067803780 a007 Real Root Of 351*x^4+919*x^3+473*x^2+567*x+33 2329994072293896 a001 17711/1364*843^(3/7) 2329994075887456 r005 Re(z^2+c),c=7/20+10/59*I,n=32 2329994080891292 m001 Sierpinski*(1-Paris) 2329994081083327 a001 2584/3*1364^(45/58) 2329994081134643 r009 Re(z^3+c),c=-35/114+16/47*I,n=8 2329994083435384 m001 (ln(5)+Trott)/(Pi-Psi(1,1/3)) 2329994083818890 r005 Im(z^2+c),c=-35/122+43/58*I,n=8 2329994084653453 r005 Re(z^2+c),c=-49/58+11/56*I,n=14 2329994089735565 a007 Real Root Of 263*x^4+194*x^3-718*x^2+771*x+397 2329994090808747 r005 Im(z^2+c),c=-1/4+17/49*I,n=45 2329994093482872 r005 Im(z^2+c),c=-1/4+17/49*I,n=47 2329994094476318 r005 Im(z^2+c),c=-1/4+17/49*I,n=44 2329994104952423 r005 Im(z^2+c),c=-1/4+17/49*I,n=50 2329994106203224 a007 Real Root Of 343*x^4+563*x^3-202*x^2+609*x-472 2329994109048874 r005 Im(z^2+c),c=-1/4+17/49*I,n=52 2329994109422256 r005 Im(z^2+c),c=-1/4+17/49*I,n=55 2329994109672132 r005 Im(z^2+c),c=-1/4+17/49*I,n=53 2329994109995945 r005 Im(z^2+c),c=-1/4+17/49*I,n=58 2329994110131904 r005 Im(z^2+c),c=-1/4+17/49*I,n=60 2329994110165541 r005 Im(z^2+c),c=-1/4+17/49*I,n=63 2329994110191827 r005 Im(z^2+c),c=-1/4+17/49*I,n=61 2329994110216321 r005 Im(z^2+c),c=-1/4+17/49*I,n=64 2329994110239881 r005 Im(z^2+c),c=-1/4+17/49*I,n=62 2329994110276106 r005 Im(z^2+c),c=-1/4+17/49*I,n=57 2329994110365660 r005 Im(z^2+c),c=-1/4+17/49*I,n=59 2329994110485867 r005 Im(z^2+c),c=-1/4+17/49*I,n=56 2329994111242328 r005 Im(z^2+c),c=-1/4+17/49*I,n=54 2329994111935142 l006 ln(4402/5557) 2329994113502815 r005 Im(z^2+c),c=-1/4+17/49*I,n=49 2329994113826034 r005 Im(z^2+c),c=-1/4+17/49*I,n=51 2329994114623015 r005 Im(z^2+c),c=-1/4+17/49*I,n=48 2329994117445426 m001 Robbin/exp(CopelandErdos)^2/sqrt(Pi) 2329994130193664 a001 9/1292*8^(18/31) 2329994131824180 m001 ArtinRank2^Sierpinski/(GAMMA(3/4)^Sierpinski) 2329994133903757 m001 1/exp(FeigenbaumD)^2*Backhouse/cos(1)^2 2329994136340415 r005 Im(z^2+c),c=-1/4+17/49*I,n=46 2329994151159406 m001 1/ln(Kolakoski)^2*Backhouse^2/PrimesInBinary^2 2329994158517097 r005 Im(z^2+c),c=-1/4+17/49*I,n=40 2329994163878294 m002 Pi^3-Sinh[Pi]+(E^Pi*Tanh[Pi])/6 2329994165170941 m001 GAMMA(7/12)*Champernowne^2 2329994176334449 a007 Real Root Of 446*x^4+889*x^3-155*x^2+852*x+927 2329994176430107 a001 1/7*(1/2*5^(1/2)+1/2)^29*3^(7/22) 2329994183449822 a001 4181/5778*843^(6/7) 2329994186402446 r005 Im(z^2+c),c=-1/4+17/49*I,n=43 2329994188389142 m001 (1-Chi(1))/(-ArtinRank2+ZetaQ(4)) 2329994194161533 a007 Real Root Of 43*x^4+977*x^3-569*x^2+219*x-929 2329994201763974 a001 4181/3571*843^(11/14) 2329994216612538 a004 Fibonacci(16)*Lucas(14)/(1/2+sqrt(5)/2)^17 2329994219428215 r005 Im(z^2+c),c=-1/4+17/49*I,n=41 2329994220290012 a001 10946/15127*843^(6/7) 2329994224364252 r005 Re(z^2+c),c=-35/122+1/34*I,n=15 2329994225664923 a001 28657/39603*843^(6/7) 2329994226449112 a001 75025/103682*843^(6/7) 2329994226563524 a001 196418/271443*843^(6/7) 2329994226580216 a001 514229/710647*843^(6/7) 2329994226582652 a001 1346269/1860498*843^(6/7) 2329994226583007 a001 3524578/4870847*843^(6/7) 2329994226583059 a001 9227465/12752043*843^(6/7) 2329994226583066 a001 24157817/33385282*843^(6/7) 2329994226583067 a001 63245986/87403803*843^(6/7) 2329994226583068 a001 165580141/228826127*843^(6/7) 2329994226583068 a001 433494437/599074578*843^(6/7) 2329994226583068 a001 1134903170/1568397607*843^(6/7) 2329994226583068 a001 2971215073/4106118243*843^(6/7) 2329994226583068 a001 7778742049/10749957122*843^(6/7) 2329994226583068 a001 20365011074/28143753123*843^(6/7) 2329994226583068 a001 53316291173/73681302247*843^(6/7) 2329994226583068 a001 139583862445/192900153618*843^(6/7) 2329994226583068 a001 10610209857723/14662949395604*843^(6/7) 2329994226583068 a001 591286729879/817138163596*843^(6/7) 2329994226583068 a001 225851433717/312119004989*843^(6/7) 2329994226583068 a001 86267571272/119218851371*843^(6/7) 2329994226583068 a001 32951280099/45537549124*843^(6/7) 2329994226583068 a001 12586269025/17393796001*843^(6/7) 2329994226583068 a001 4807526976/6643838879*843^(6/7) 2329994226583068 a001 1836311903/2537720636*843^(6/7) 2329994226583068 a001 701408733/969323029*843^(6/7) 2329994226583068 a001 267914296/370248451*843^(6/7) 2329994226583068 a001 102334155/141422324*843^(6/7) 2329994226583068 a001 39088169/54018521*843^(6/7) 2329994226583071 a001 14930352/20633239*843^(6/7) 2329994226583091 a001 5702887/7881196*843^(6/7) 2329994226583227 a001 2178309/3010349*843^(6/7) 2329994226584157 a001 832040/1149851*843^(6/7) 2329994226590533 a001 317811/439204*843^(6/7) 2329994226634234 a001 121393/167761*843^(6/7) 2329994226933768 a001 46368/64079*843^(6/7) 2329994228986801 a001 17711/24476*843^(6/7) 2329994240144525 a001 1597/521*521^(9/13) 2329994240783208 m001 (LambertW(1)*GAMMA(17/24)+Lehmer)/LambertW(1) 2329994243058502 a001 6765/9349*843^(6/7) 2329994254122249 a007 Real Root Of -122*x^4+845*x^3-61*x^2+751*x-182 2329994263729789 a007 Real Root Of 64*x^4-318*x^3-546*x^2+835*x-999 2329994266490483 m001 ln(Robbin)^2/MinimumGamma^2*cos(1)^2 2329994267245903 m005 (1/2*3^(1/2)+4/11)/(4/7*5^(1/2)-3/4) 2329994269247092 a007 Real Root Of 186*x^4+352*x^3-444*x^2-388*x+477 2329994272311913 r005 Im(z^2+c),c=-7/12+2/47*I,n=55 2329994274080299 h001 (1/6*exp(1)+4/5)/(5/7*exp(2)+1/10) 2329994285287621 l006 ln(529/5437) 2329994286601731 r005 Im(z^2+c),c=-35/94+23/60*I,n=34 2329994288245657 a001 233/123*7^(5/47) 2329994295945193 m001 1/Zeta(1/2)^2/ln(GlaisherKinkelin)/cos(Pi/5) 2329994297422609 a007 Real Root Of 569*x^4+913*x^3-773*x^2+299*x-328 2329994301950232 m001 (-Riemann3rdZero+Totient)/(cos(1)+PlouffeB) 2329994309638652 a001 305/682*2207^(13/16) 2329994311861085 a001 5473/682*843^(1/2) 2329994316028260 a007 Real Root Of -260*x^4-507*x^3-25*x^2-265*x+768 2329994321193230 a001 1292/2889*843^(13/14) 2329994337665853 a007 Real Root Of 231*x^4+77*x^3-844*x^2+831*x+684 2329994339507384 a001 2584/3571*843^(6/7) 2329994347075885 l006 ln(7653/9661) 2329994348708368 p001 sum(1/(595*n+431)/(100^n),n=0..infinity) 2329994349348594 a005 (1/cos(3/167*Pi))^1976 2329994350781827 m005 (1/2*Catalan-2)/(1/11*gamma-5/7) 2329994353780777 m001 1/GAMMA(11/24)*BesselK(1,1)^2/ln(sqrt(5)) 2329994354305076 m001 DuboisRaymond^(ln(2)/ln(10)*Otter) 2329994363377565 h005 exp(cos(Pi*13/51)/sin(Pi*4/13)) 2329994365506030 m002 -Pi^3-Pi^4-Pi^4*ProductLog[Pi] 2329994369248117 r002 42th iterates of z^2 + 2329994381177132 m001 Trott^2/ln(Conway)^2/GAMMA(1/3)^2 2329994388080036 a007 Real Root Of 370*x^4+593*x^3-661*x^2-20*x+138 2329994389747376 a001 7/4*(1/2*5^(1/2)+1/2)^3*4^(19/23) 2329994390463764 m001 (2^(1/3))/ln(Niven)*Pi^2 2329994393153114 m001 LaplaceLimit/(Landau-sin(1/12*Pi)) 2329994402534557 a007 Real Root Of 188*x^4-925*x^3+913*x^2-460*x-169 2329994403661352 r005 Im(z^2+c),c=-9/86+25/34*I,n=3 2329994412228395 a007 Real Root Of 336*x^4+526*x^3-350*x^2+237*x-797 2329994413047897 h001 (-9*exp(-1)-3)/(-exp(3)-7) 2329994414718432 a007 Real Root Of 423*x^4+676*x^3-682*x^2+332*x+560 2329994429826310 r005 Re(z^2+c),c=-1/5+27/61*I,n=14 2329994432487642 r005 Im(z^2+c),c=-19/26+29/127*I,n=8 2329994437611145 r002 26th iterates of z^2 + 2329994440410602 a001 6765/15127*843^(13/14) 2329994442592126 m001 Trott/MadelungNaCl^2/exp(BesselK(0,1)) 2329994444439197 a007 Real Root Of 343*x^4+749*x^3-580*x^2-827*x+587 2329994451767357 a007 Real Root Of -841*x^4+229*x^3+214*x^2+971*x+220 2329994451851474 r009 Im(z^3+c),c=-11/28+8/63*I,n=5 2329994454784349 r005 Re(z^2+c),c=1/106+7/36*I,n=4 2329994457804182 a001 17711/39603*843^(13/14) 2329994460341871 a001 23184/51841*843^(13/14) 2329994460712115 a001 121393/271443*843^(13/14) 2329994460766133 a001 317811/710647*843^(13/14) 2329994460774014 a001 416020/930249*843^(13/14) 2329994460775164 a001 2178309/4870847*843^(13/14) 2329994460775332 a001 5702887/12752043*843^(13/14) 2329994460775356 a001 7465176/16692641*843^(13/14) 2329994460775360 a001 39088169/87403803*843^(13/14) 2329994460775360 a001 102334155/228826127*843^(13/14) 2329994460775360 a001 133957148/299537289*843^(13/14) 2329994460775360 a001 701408733/1568397607*843^(13/14) 2329994460775360 a001 1836311903/4106118243*843^(13/14) 2329994460775360 a001 2403763488/5374978561*843^(13/14) 2329994460775360 a001 12586269025/28143753123*843^(13/14) 2329994460775360 a001 32951280099/73681302247*843^(13/14) 2329994460775360 a001 43133785636/96450076809*843^(13/14) 2329994460775360 a001 225851433717/505019158607*843^(13/14) 2329994460775360 a001 591286729879/1322157322203*843^(13/14) 2329994460775360 a001 10610209857723/23725150497407*843^(13/14) 2329994460775360 a001 139583862445/312119004989*843^(13/14) 2329994460775360 a001 53316291173/119218851371*843^(13/14) 2329994460775360 a001 10182505537/22768774562*843^(13/14) 2329994460775360 a001 7778742049/17393796001*843^(13/14) 2329994460775360 a001 2971215073/6643838879*843^(13/14) 2329994460775360 a001 567451585/1268860318*843^(13/14) 2329994460775360 a001 433494437/969323029*843^(13/14) 2329994460775360 a001 165580141/370248451*843^(13/14) 2329994460775361 a001 31622993/70711162*843^(13/14) 2329994460775362 a001 24157817/54018521*843^(13/14) 2329994460775371 a001 9227465/20633239*843^(13/14) 2329994460775435 a001 1762289/3940598*843^(13/14) 2329994460775875 a001 1346269/3010349*843^(13/14) 2329994460778885 a001 514229/1149851*843^(13/14) 2329994460799518 a001 98209/219602*843^(13/14) 2329994460940939 a001 75025/167761*843^(13/14) 2329994461910250 a001 28657/64079*843^(13/14) 2329994468554006 a001 5473/12238*843^(13/14) 2329994469162615 m001 MertensB3+exp(-1/2*Pi)^ZetaQ(4) 2329994480639278 a003 cos(Pi*4/77)-cos(Pi*21/92) 2329994481142425 m004 -4-25*Pi-4*Sinh[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi] 2329994481345915 a007 Real Root Of -258*x^4-218*x^3+400*x^2-939*x+487 2329994491490603 m001 (-gamma(3)+Thue)/(5^(1/2)+3^(1/3)) 2329994503394079 r002 26th iterates of z^2 + 2329994514090992 a001 4181/9349*843^(13/14) 2329994521302748 m005 (1/2*exp(1)-1/10)/(7/10*gamma+5) 2329994529913398 h001 (8/11*exp(2)+3/4)/(9/10*exp(1)+2/11) 2329994531981683 a001 615/124*843^(4/7) 2329994532404175 r005 Re(z^2+c),c=-4/21+26/57*I,n=60 2329994538342786 m001 (Robbin+ZetaP(3))/(GaussAGM-PlouffeB) 2329994541337583 a001 98209/682*322^(1/12) 2329994542817829 a007 Real Root Of -488*x^4-779*x^3+644*x^2-387*x+131 2329994554985891 a007 Real Root Of -546*x^4-874*x^3+835*x^2-41*x+408 2329994557004011 s002 sum(A158552[n]/(n^3*pi^n-1),n=1..infinity) 2329994564693568 a007 Real Root Of -465*x^4-660*x^3+714*x^2-776*x-328 2329994565536821 p001 sum(1/(559*n+128)/n/(625^n),n=1..infinity) 2329994567456470 m005 (1/2*Pi-1/5)/(1/7*exp(1)+1/5) 2329994575096225 r005 Re(z^2+c),c=-17/122+23/41*I,n=47 2329994583692195 m002 -Pi+E^Pi*Pi^2+Pi^3/4 2329994584846715 m005 (1/2*gamma+3)/(6/7*gamma+11/12) 2329994609989940 r009 Re(z^3+c),c=-11/102+50/63*I,n=29 2329994611338748 a007 Real Root Of -479*x^4-901*x^3+612*x^2-9*x-623 2329994613176207 r009 Im(z^3+c),c=-9/38+3/14*I,n=8 2329994617141999 p002 log(1/3*(9*3^(1/4)+2^(3/4))*3^(3/4)) 2329994619866914 m001 BesselK(0,1)/DuboisRaymond*OneNinth 2329994620715403 m009 (2/5*Psi(1,2/3)+6)/(3/8*Pi^2-3/5) 2329994625004209 r005 Im(z^2+c),c=3/56+7/30*I,n=18 2329994625176603 a004 Fibonacci(18)*Lucas(14)/(1/2+sqrt(5)/2)^19 2329994645218982 l006 ln(511/5252) 2329994647926508 a001 2584/521*521^(8/13) 2329994650996426 r002 26th iterates of z^2 + 2329994651514226 a001 75025/521*199^(1/11) 2329994665467001 l006 ln(3251/4104) 2329994672463104 r009 Im(z^3+c),c=-49/82+11/23*I,n=42 2329994673065530 m001 (BesselJ(0,1)+Zeta(3))/(-gamma(2)+GaussAGM) 2329994678078065 a007 Real Root Of -119*x^4-37*x^3+195*x^2-620*x+536 2329994679756299 m001 Khintchine*DuboisRaymond*exp(RenyiParking)^2 2329994683332204 a001 196418/2207*322^(1/6) 2329994684785296 a004 Fibonacci(20)*Lucas(14)/(1/2+sqrt(5)/2)^21 2329994685410840 a005 (1/cos(2/143*Pi))^876 2329994686095715 m008 (3/5*Pi^2-1/3)/(1/4*Pi^6-1/2) 2329994688895406 m001 GAMMA(11/24)^2/exp(Lehmer)*GAMMA(5/6) 2329994693482087 a004 Fibonacci(22)*Lucas(14)/(1/2+sqrt(5)/2)^23 2329994694750932 a004 Fibonacci(24)*Lucas(14)/(1/2+sqrt(5)/2)^25 2329994694936054 a004 Fibonacci(26)*Lucas(14)/(1/2+sqrt(5)/2)^27 2329994694963063 a004 Fibonacci(28)*Lucas(14)/(1/2+sqrt(5)/2)^29 2329994694967004 a004 Fibonacci(30)*Lucas(14)/(1/2+sqrt(5)/2)^31 2329994694967579 a004 Fibonacci(32)*Lucas(14)/(1/2+sqrt(5)/2)^33 2329994694967662 a004 Fibonacci(34)*Lucas(14)/(1/2+sqrt(5)/2)^35 2329994694967675 a004 Fibonacci(36)*Lucas(14)/(1/2+sqrt(5)/2)^37 2329994694967676 a004 Fibonacci(38)*Lucas(14)/(1/2+sqrt(5)/2)^39 2329994694967677 a004 Fibonacci(40)*Lucas(14)/(1/2+sqrt(5)/2)^41 2329994694967677 a004 Fibonacci(42)*Lucas(14)/(1/2+sqrt(5)/2)^43 2329994694967677 a004 Fibonacci(44)*Lucas(14)/(1/2+sqrt(5)/2)^45 2329994694967677 a004 Fibonacci(46)*Lucas(14)/(1/2+sqrt(5)/2)^47 2329994694967677 a004 Fibonacci(48)*Lucas(14)/(1/2+sqrt(5)/2)^49 2329994694967677 a004 Fibonacci(50)*Lucas(14)/(1/2+sqrt(5)/2)^51 2329994694967677 a004 Fibonacci(52)*Lucas(14)/(1/2+sqrt(5)/2)^53 2329994694967677 a004 Fibonacci(54)*Lucas(14)/(1/2+sqrt(5)/2)^55 2329994694967677 a004 Fibonacci(56)*Lucas(14)/(1/2+sqrt(5)/2)^57 2329994694967677 a004 Fibonacci(58)*Lucas(14)/(1/2+sqrt(5)/2)^59 2329994694967677 a004 Fibonacci(60)*Lucas(14)/(1/2+sqrt(5)/2)^61 2329994694967677 a004 Fibonacci(62)*Lucas(14)/(1/2+sqrt(5)/2)^63 2329994694967677 a004 Fibonacci(64)*Lucas(14)/(1/2+sqrt(5)/2)^65 2329994694967677 a004 Fibonacci(66)*Lucas(14)/(1/2+sqrt(5)/2)^67 2329994694967677 a004 Fibonacci(68)*Lucas(14)/(1/2+sqrt(5)/2)^69 2329994694967677 a004 Fibonacci(70)*Lucas(14)/(1/2+sqrt(5)/2)^71 2329994694967677 a004 Fibonacci(72)*Lucas(14)/(1/2+sqrt(5)/2)^73 2329994694967677 a004 Fibonacci(74)*Lucas(14)/(1/2+sqrt(5)/2)^75 2329994694967677 a004 Fibonacci(76)*Lucas(14)/(1/2+sqrt(5)/2)^77 2329994694967677 a004 Fibonacci(78)*Lucas(14)/(1/2+sqrt(5)/2)^79 2329994694967677 a004 Fibonacci(80)*Lucas(14)/(1/2+sqrt(5)/2)^81 2329994694967677 a004 Fibonacci(82)*Lucas(14)/(1/2+sqrt(5)/2)^83 2329994694967677 a004 Fibonacci(84)*Lucas(14)/(1/2+sqrt(5)/2)^85 2329994694967677 a004 Fibonacci(86)*Lucas(14)/(1/2+sqrt(5)/2)^87 2329994694967677 a004 Fibonacci(88)*Lucas(14)/(1/2+sqrt(5)/2)^89 2329994694967677 a004 Fibonacci(90)*Lucas(14)/(1/2+sqrt(5)/2)^91 2329994694967677 a004 Fibonacci(92)*Lucas(14)/(1/2+sqrt(5)/2)^93 2329994694967677 a004 Fibonacci(94)*Lucas(14)/(1/2+sqrt(5)/2)^95 2329994694967677 a004 Fibonacci(96)*Lucas(14)/(1/2+sqrt(5)/2)^97 2329994694967677 a004 Fibonacci(98)*Lucas(14)/(1/2+sqrt(5)/2)^99 2329994694967677 a004 Fibonacci(99)*Lucas(14)/(1/2+sqrt(5)/2)^100 2329994694967677 a004 Fibonacci(97)*Lucas(14)/(1/2+sqrt(5)/2)^98 2329994694967677 a004 Fibonacci(95)*Lucas(14)/(1/2+sqrt(5)/2)^96 2329994694967677 a004 Fibonacci(93)*Lucas(14)/(1/2+sqrt(5)/2)^94 2329994694967677 a004 Fibonacci(91)*Lucas(14)/(1/2+sqrt(5)/2)^92 2329994694967677 a004 Fibonacci(89)*Lucas(14)/(1/2+sqrt(5)/2)^90 2329994694967677 a004 Fibonacci(87)*Lucas(14)/(1/2+sqrt(5)/2)^88 2329994694967677 a004 Fibonacci(85)*Lucas(14)/(1/2+sqrt(5)/2)^86 2329994694967677 a004 Fibonacci(83)*Lucas(14)/(1/2+sqrt(5)/2)^84 2329994694967677 a004 Fibonacci(81)*Lucas(14)/(1/2+sqrt(5)/2)^82 2329994694967677 a004 Fibonacci(79)*Lucas(14)/(1/2+sqrt(5)/2)^80 2329994694967677 a004 Fibonacci(77)*Lucas(14)/(1/2+sqrt(5)/2)^78 2329994694967677 a004 Fibonacci(75)*Lucas(14)/(1/2+sqrt(5)/2)^76 2329994694967677 a004 Fibonacci(73)*Lucas(14)/(1/2+sqrt(5)/2)^74 2329994694967677 a004 Fibonacci(71)*Lucas(14)/(1/2+sqrt(5)/2)^72 2329994694967677 a004 Fibonacci(69)*Lucas(14)/(1/2+sqrt(5)/2)^70 2329994694967677 a004 Fibonacci(67)*Lucas(14)/(1/2+sqrt(5)/2)^68 2329994694967677 a004 Fibonacci(65)*Lucas(14)/(1/2+sqrt(5)/2)^66 2329994694967677 a004 Fibonacci(63)*Lucas(14)/(1/2+sqrt(5)/2)^64 2329994694967677 a004 Fibonacci(61)*Lucas(14)/(1/2+sqrt(5)/2)^62 2329994694967677 a004 Fibonacci(59)*Lucas(14)/(1/2+sqrt(5)/2)^60 2329994694967677 a004 Fibonacci(57)*Lucas(14)/(1/2+sqrt(5)/2)^58 2329994694967677 a004 Fibonacci(55)*Lucas(14)/(1/2+sqrt(5)/2)^56 2329994694967677 a004 Fibonacci(53)*Lucas(14)/(1/2+sqrt(5)/2)^54 2329994694967677 a004 Fibonacci(51)*Lucas(14)/(1/2+sqrt(5)/2)^52 2329994694967677 a004 Fibonacci(49)*Lucas(14)/(1/2+sqrt(5)/2)^50 2329994694967677 a004 Fibonacci(47)*Lucas(14)/(1/2+sqrt(5)/2)^48 2329994694967677 a004 Fibonacci(45)*Lucas(14)/(1/2+sqrt(5)/2)^46 2329994694967677 a004 Fibonacci(43)*Lucas(14)/(1/2+sqrt(5)/2)^44 2329994694967677 a004 Fibonacci(41)*Lucas(14)/(1/2+sqrt(5)/2)^42 2329994694967677 a004 Fibonacci(39)*Lucas(14)/(1/2+sqrt(5)/2)^40 2329994694967678 a004 Fibonacci(37)*Lucas(14)/(1/2+sqrt(5)/2)^38 2329994694967682 a004 Fibonacci(35)*Lucas(14)/(1/2+sqrt(5)/2)^36 2329994694967714 a004 Fibonacci(33)*Lucas(14)/(1/2+sqrt(5)/2)^34 2329994694967934 a004 Fibonacci(31)*Lucas(14)/(1/2+sqrt(5)/2)^32 2329994694969439 a004 Fibonacci(29)*Lucas(14)/(1/2+sqrt(5)/2)^30 2329994694972290 a001 2/377*(1/2+1/2*5^(1/2))^27 2329994694979756 a004 Fibonacci(27)*Lucas(14)/(1/2+sqrt(5)/2)^28 2329994695050466 a004 Fibonacci(25)*Lucas(14)/(1/2+sqrt(5)/2)^26 2329994695535121 a004 Fibonacci(23)*Lucas(14)/(1/2+sqrt(5)/2)^24 2329994698857000 a004 Fibonacci(21)*Lucas(14)/(1/2+sqrt(5)/2)^22 2329994700756141 a001 610/11*199^(16/59) 2329994713224842 r002 60th iterates of z^2 + 2329994717691544 r005 Re(z^2+c),c=-4/21+26/57*I,n=55 2329994721625495 a004 Fibonacci(19)*Lucas(14)/(1/2+sqrt(5)/2)^20 2329994721717790 a007 Real Root Of 71*x^4-229*x^3+208*x^2-685*x+151 2329994728518713 q001 442/1897 2329994736899394 r005 Re(z^2+c),c=19/74+22/43*I,n=29 2329994737294826 r005 Im(z^2+c),c=7/114+7/31*I,n=3 2329994739396968 r005 Im(z^2+c),c=-1/4+17/49*I,n=38 2329994740457506 m008 (3/5*Pi^6+1/6)/(1/6*Pi-3) 2329994749336603 r009 Im(z^3+c),c=-1/122+14/57*I,n=8 2329994749475491 r005 Im(z^2+c),c=17/110+11/61*I,n=17 2329994753292736 m001 (-exp(1/exp(1))+Sarnak)/(Catalan-GAMMA(3/4)) 2329994759079140 r009 Re(z^3+c),c=-13/38+19/45*I,n=22 2329994761078683 r009 Re(z^3+c),c=-2/9+1/23*I,n=6 2329994785184986 r005 Re(z^2+c),c=-13/56+21/61*I,n=32 2329994786203517 m005 (1/2*3^(1/2)-4/11)/(3/4*3^(1/2)+6/7) 2329994793052814 r005 Im(z^2+c),c=-4/5+13/100*I,n=56 2329994797257800 b008 Pi*Sqrt[Csch[E/2]] 2329994803014207 a001 4181/1364*843^(9/14) 2329994809733749 a007 Real Root Of 225*x^4+396*x^3-138*x^2+579*x+476 2329994825157400 m001 5^(1/2)+KhinchinHarmonic*ZetaQ(2) 2329994826206161 a001 1597/3571*843^(13/14) 2329994842496983 r005 Im(z^2+c),c=-13/14+29/113*I,n=56 2329994842591162 a007 Real Root Of 169*x^4+454*x^3-61*x^2-588*x-277 2329994849091599 r005 Im(z^2+c),c=-127/110+14/61*I,n=43 2329994851361644 m001 ln(GAMMA(1/4))*FibonacciFactorial^2*Zeta(3) 2329994854015087 m005 (1/2*3^(1/2)+5/12)/(2/7*3^(1/2)-6) 2329994854866026 r005 Re(z^2+c),c=-4/21+26/57*I,n=63 2329994855779465 m001 Khinchin*((2^(1/3))-GAMMA(5/12)) 2329994855779465 m001 Khinchin*(2^(1/3)-Pi*csc(5/12*Pi)/GAMMA(7/12)) 2329994857798346 r002 2th iterates of z^2 + 2329994859340358 m009 (3*Psi(1,2/3)-6)/(6*Catalan+3/4*Pi^2+4/5) 2329994862846846 r009 Re(z^3+c),c=-31/52+16/33*I,n=30 2329994873626159 r009 Im(z^3+c),c=-5/44+44/51*I,n=34 2329994874809353 a007 Real Root Of 188*x^4+294*x^3-611*x^2-582*x+139 2329994877683081 a004 Fibonacci(17)*Lucas(14)/(1/2+sqrt(5)/2)^18 2329994883063751 m007 (-2*gamma+5/6)/(-3/5*gamma-6/5*ln(2)-1/5) 2329994884982742 r004 Im(z^2+c),c=-3/22+4/13*I,z(0)=I,n=15 2329994898793145 m005 (1/2*exp(1)+7/12)/(15/77+2/7*5^(1/2)) 2329994900363899 m001 1/GAMMA(1/4)^2/exp(Lehmer)^2*Zeta(9) 2329994901697633 m001 ln(Zeta(7))*Conway*arctan(1/2)^2 2329994909101247 p001 sum((-1)^n/(563*n+429)/(1000^n),n=0..infinity) 2329994915685596 m001 Zeta(1,-1)^Lehmer*polylog(4,1/2)^Lehmer 2329994915918688 r005 Re(z^2+c),c=-4/21+26/57*I,n=48 2329994915934271 s002 sum(A028036[n]/(64^n),n=1..infinity) 2329994916132051 r005 Im(z^2+c),c=37/90+30/47*I,n=5 2329994922212745 m001 (exp(-1/2*Pi)-exp(1))/(-KomornikLoreti+Rabbit) 2329994922568923 p001 sum(1/(314*n+43)/(64^n),n=0..infinity) 2329994940757652 a001 646/341*843^(5/7) 2329994946191408 a001 505618944676/13*144^(14/17) 2329994975252915 r005 Im(z^2+c),c=-35/74+29/64*I,n=34 2329994979673064 r009 Re(z^3+c),c=-19/102+41/58*I,n=3 2329994982896428 r005 Im(z^2+c),c=-17/30+31/47*I,n=9 2329994992192933 r002 8th iterates of z^2 + 2329995000578202 a001 987/1364*843^(6/7) 2329995001144012 r005 Re(z^2+c),c=-23/16+1/91*I,n=10 2329995022655115 a007 Real Root Of 495*x^4+993*x^3-206*x^2+321*x-162 2329995031433219 l006 ln(493/5067) 2329995048253987 p003 LerchPhi(1/4,5,71/84) 2329995060726145 r005 Re(z^2+c),c=-25/22+26/97*I,n=54 2329995060983673 a007 Real Root Of 558*x^4+979*x^3-617*x^2-59*x-850 2329995061733398 a007 Real Root Of -379*x^4-729*x^3-135*x^2-875*x+643 2329995067465677 m005 (1/2*3^(1/2)-1/2)/(5/7*Catalan+11/12) 2329995068887920 m001 (gamma(3)-BesselK(1,1))/(Trott2nd-ZetaQ(4)) 2329995070890418 m001 (Bloch+Salem)/(5^(1/2)-GAMMA(7/12)) 2329995074261752 a007 Real Root Of -656*x^4+785*x^3-22*x^2+871*x+216 2329995074675757 r005 Re(z^2+c),c=-9/11+1/32*I,n=32 2329995081830622 b008 3^(1/4)+Cosh[1/6] 2329995082951980 a007 Real Root Of 20*x^4-172*x^3-394*x^2+255*x-32 2329995085593754 s002 sum(A149419[n]/(pi^n-1),n=1..infinity) 2329995091885938 a001 514229/5778*322^(1/6) 2329995093399083 r009 Im(z^3+c),c=-1/122+14/57*I,n=10 2329995094185177 a001 196418/3*3571^(9/58) 2329995100170858 m001 Champernowne^Totient/(Champernowne^Cahen) 2329995101853612 r009 Im(z^3+c),c=-1/122+14/57*I,n=12 2329995102056700 r009 Im(z^3+c),c=-1/122+14/57*I,n=14 2329995102061444 r009 Im(z^3+c),c=-1/122+14/57*I,n=16 2329995102061551 r009 Im(z^3+c),c=-1/122+14/57*I,n=18 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=20 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=22 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=24 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=27 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=29 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=31 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=33 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=35 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=37 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=39 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=41 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=43 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=45 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=47 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=49 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=51 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=52 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=53 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=54 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=55 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=50 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=48 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=46 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=44 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=42 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=40 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=38 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=36 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=34 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=32 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=30 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=28 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=26 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=25 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=23 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=21 2329995102061554 r009 Im(z^3+c),c=-1/122+14/57*I,n=19 2329995102061570 r009 Im(z^3+c),c=-1/122+14/57*I,n=17 2329995102062286 r009 Im(z^3+c),c=-1/122+14/57*I,n=15 2329995102093448 r009 Im(z^3+c),c=-1/122+14/57*I,n=13 2329995103407871 r009 Im(z^3+c),c=-1/122+14/57*I,n=11 2329995105613381 a007 Real Root Of 529*x^4+978*x^3-922*x^2-798*x-74 2329995110684897 m001 exp(1/exp(1))+AlladiGrinstead^Stephens 2329995120222793 a001 105937*9349^(5/58) 2329995120829946 l006 ln(5351/6755) 2329995138291015 a007 Real Root Of 407*x^4+490*x^3-651*x^2+582*x-907 2329995142124195 m001 (-Gompertz+Tetranacci)/(2^(1/3)-FeigenbaumC) 2329995146254952 m001 (FellerTornier-StronglyCareFree)/DuboisRaymond 2329995146832270 a007 Real Root Of -237*x^4-142*x^3+569*x^2-757*x+336 2329995149564356 r002 3th iterates of z^2 + 2329995151493137 a001 1346269/15127*322^(1/6) 2329995157482190 r009 Im(z^3+c),c=-1/122+14/57*I,n=9 2329995159199819 h005 exp(cos(Pi*3/28)-cos(Pi*15/32)) 2329995160189710 a001 3524578/39603*322^(1/6) 2329995161458523 a001 9227465/103682*322^(1/6) 2329995161643640 a001 24157817/271443*322^(1/6) 2329995161670648 a001 63245986/710647*322^(1/6) 2329995161674589 a001 165580141/1860498*322^(1/6) 2329995161675164 a001 433494437/4870847*322^(1/6) 2329995161675248 a001 1134903170/12752043*322^(1/6) 2329995161675260 a001 2971215073/33385282*322^(1/6) 2329995161675262 a001 7778742049/87403803*322^(1/6) 2329995161675262 a001 20365011074/228826127*322^(1/6) 2329995161675262 a001 53316291173/599074578*322^(1/6) 2329995161675262 a001 139583862445/1568397607*322^(1/6) 2329995161675262 a001 365435296162/4106118243*322^(1/6) 2329995161675262 a001 956722026041/10749957122*322^(1/6) 2329995161675262 a001 2504730781961/28143753123*322^(1/6) 2329995161675262 a001 6557470319842/73681302247*322^(1/6) 2329995161675262 a001 10610209857723/119218851371*322^(1/6) 2329995161675262 a001 4052739537881/45537549124*322^(1/6) 2329995161675262 a001 1548008755920/17393796001*322^(1/6) 2329995161675262 a001 591286729879/6643838879*322^(1/6) 2329995161675262 a001 225851433717/2537720636*322^(1/6) 2329995161675262 a001 86267571272/969323029*322^(1/6) 2329995161675262 a001 32951280099/370248451*322^(1/6) 2329995161675262 a001 12586269025/141422324*322^(1/6) 2329995161675263 a001 4807526976/54018521*322^(1/6) 2329995161675267 a001 1836311903/20633239*322^(1/6) 2329995161675299 a001 3524667/39604*322^(1/6) 2329995161675519 a001 267914296/3010349*322^(1/6) 2329995161677024 a001 102334155/1149851*322^(1/6) 2329995161687340 a001 39088169/439204*322^(1/6) 2329995161758049 a001 14930352/167761*322^(1/6) 2329995162242692 a001 5702887/64079*322^(1/6) 2329995165564488 a001 2178309/24476*322^(1/6) 2329995167892600 a001 514229^(13/17) 2329995168471120 m001 (ln(5)-gamma(1))/(Sarnak-ZetaQ(4)) 2329995174897826 m001 ((1+3^(1/2))^(1/2)-5^(1/2))/FeigenbaumAlpha 2329995174897826 m001 (sqrt(5)-sqrt(1+sqrt(3)))/FeigenbaumAlpha 2329995175722719 r005 Im(z^2+c),c=-79/98+4/29*I,n=58 2329995177693395 m001 1/MinimumGamma^2/ArtinRank2^2/ln(Robbin) 2329995179535618 a007 Real Root Of -38*x^4-899*x^3-311*x^2+110*x-652 2329995182621852 r009 Im(z^3+c),c=-55/122+31/54*I,n=6 2329995185503670 a007 Real Root Of -49*x^4+425*x^3+59*x^2+651*x+154 2329995186680169 r005 Im(z^2+c),c=-119/110+15/62*I,n=49 2329995187295761 m005 (1/2*3^(1/2)-6)/(2*2^(1/2)-5/8) 2329995188332413 a001 832040/9349*322^(1/6) 2329995194835775 r005 Im(z^2+c),c=-33/52+13/64*I,n=3 2329995196394626 m001 (-MinimumGamma+Rabbit)/(Si(Pi)+exp(1/Pi)) 2329995204426268 m009 (3/4*Psi(1,2/3)-1/4)/(16/5*Catalan+2/5*Pi^2-6) 2329995227298721 m001 exp(Ei(1))^2/FeigenbaumD/sin(1)^2 2329995235312782 l006 ln(968/9949) 2329995238450700 m001 (Magata+Mills)/(CopelandErdos+KomornikLoreti) 2329995243489941 m001 (-Lehmer+Thue)/(exp(1/exp(1))-ln(2)/ln(10)) 2329995245247651 m001 1/TwinPrimes*Artin*exp(sqrt(2)) 2329995245247651 m001 Artin/TwinPrimes*exp(sqrt(2)) 2329995245310813 m001 ln(GAMMA(1/24))*LaplaceLimit*GAMMA(11/12)^2 2329995245574287 a001 5/1149851*1364^(10/43) 2329995250313665 r005 Re(z^2+c),c=-109/118+12/59*I,n=40 2329995253470812 r005 Re(z^2+c),c=17/58+23/56*I,n=48 2329995274940468 r005 Re(z^2+c),c=-4/21+26/57*I,n=62 2329995276048464 m001 (Porter-sin(1))/(Riemann3rdZero+Tribonacci) 2329995278299869 m008 (2*Pi^6-1/6)/(1/4*Pi^3+1/2) 2329995281685774 a007 Real Root Of -210*x^4-334*x^3+178*x^2-576*x-344 2329995284830865 s002 sum(A135786[n]/(n^3*pi^n-1),n=1..infinity) 2329995290724842 r005 Re(z^2+c),c=-4/21+26/57*I,n=58 2329995296829210 m001 (ThueMorse-ZetaQ(3))/(FeigenbaumC-Paris) 2329995299356817 r005 Re(z^2+c),c=-4/21+26/57*I,n=64 2329995302009091 m001 exp(1/Pi)^exp(gamma)+LambertW(1) 2329995306950040 m001 (gamma(1)+AlladiGrinstead)/(Backhouse+Niven) 2329995308181095 a007 Real Root Of 528*x^4+610*x^3-909*x^2+890*x-837 2329995314798499 a007 Real Root Of -754*x^4+559*x^3+213*x^2+436*x-118 2329995319512657 l006 ln(7451/9406) 2329995322014095 a005 (1/cos(27/233*Pi))^556 2329995322252672 m001 ln(Pi)+2*Lehmer 2329995323989926 h001 (5/6*exp(2)+1/10)/(7/9*exp(1)+4/7) 2329995326628455 m001 OrthogonalArrays*(GAMMA(23/24)-Khinchin) 2329995337067230 a007 Real Root Of -544*x^4-717*x^3+836*x^2-670*x+864 2329995342106134 r009 Re(z^3+c),c=-17/122+11/12*I,n=50 2329995344386104 a001 317811/3571*322^(1/6) 2329995357104628 r009 Re(z^3+c),c=-21/52+22/41*I,n=39 2329995362600832 r005 Re(z^2+c),c=-4/21+26/57*I,n=61 2329995365331034 m001 gamma(2)*(BesselI(1,1)+Tribonacci) 2329995367024319 m001 FeigenbaumD/exp(GlaisherKinkelin)^2*GAMMA(5/6) 2329995384646150 r002 8th iterates of z^2 + 2329995404664009 a001 4181/521*521^(7/13) 2329995409175466 r002 19th iterates of z^2 + 2329995409533056 r005 Im(z^2+c),c=-15/106+14/45*I,n=15 2329995412237850 s002 sum(A066523[n]/(n^2*10^n-1),n=1..infinity) 2329995419488760 a007 Real Root Of -504*x^4-882*x^3+926*x^2+338*x-542 2329995423827716 m001 (Khinchin+PrimesInBinary)^RenyiParking 2329995424406582 a007 Real Root Of -397*x^4-843*x^3+238*x^2-19*x-299 2329995425163033 m008 (1/6*Pi^6+3/5)/(1/6*Pi+1/6) 2329995427456555 a001 1597/1364*843^(11/14) 2329995428533463 a003 cos(Pi*5/32)*cos(Pi*39/94) 2329995433319099 r004 Im(z^2+c),c=-1/16*I,z(0)=exp(1/12*I*Pi),n=5 2329995446918264 l006 ln(475/4882) 2329995454961480 m001 (LambertW(1)+gamma(3))/(Magata+Riemann2ndZero) 2329995456547892 m001 (GAMMA(13/24)+Grothendieck)/(Porter+ZetaQ(4)) 2329995459358704 m001 ZetaQ(2)^AlladiGrinstead+5^(1/2) 2329995463574279 a007 Real Root Of -477*x^4-639*x^3+674*x^2-735*x+604 2329995467956850 r005 Re(z^2+c),c=-6/31+13/29*I,n=27 2329995468743639 m001 (-Magata+Stephens)/(Grothendieck-LambertW(1)) 2329995471680565 b008 1+Zeta[1/10,-2] 2329995475611418 r005 Re(z^2+c),c=-1/54+30/49*I,n=50 2329995489819250 m001 (cos(1/5*Pi)+MertensB3)/(Trott-ZetaQ(4)) 2329995493121000 m004 -Pi-3*Sqrt[5]*Pi+Tan[Sqrt[5]*Pi] 2329995506809804 b008 Sqrt[2]+50/E^4 2329995513528265 m001 GAMMA(1/6)^(1/3)/BesselJ(1,1)^(1/3) 2329995517944766 b008 -23+ProductLog[-2/9] 2329995527448643 m001 BesselJ(0,1)^2*PrimesInBinary^2*exp(Pi) 2329995530622632 a007 Real Root Of -480*x^4-834*x^3+370*x^2-378*x+708 2329995536694807 a001 5/271443*24476^(1/43) 2329995537376378 a001 341/646*34^(8/19) 2329995539872417 p003 LerchPhi(1/12,2,243/115) 2329995540014355 m005 (1/2*2^(1/2)+4/5)/(1/10*exp(1)+3/8) 2329995551456044 p004 log(17359/13751) 2329995552441198 a001 233/843*1364^(14/15) 2329995563511917 m005 (1/3*Pi+2/5)/(4/11*Zeta(3)-3/8) 2329995568122605 m001 sqrt(3)^exp(1/2)/(Zeta(5)^exp(1/2)) 2329995568463300 m001 (Grothendieck-Otter)/(Pi+Ei(1)) 2329995569170338 m001 (Kolakoski-ZetaP(3))/(exp(1/Pi)+GAMMA(17/24)) 2329995575010676 r005 Im(z^2+c),c=-2/21+11/31*I,n=3 2329995576950507 r009 Re(z^3+c),c=-5/36+47/49*I,n=32 2329995576964506 r005 Im(z^2+c),c=-2/19+1/36*I,n=5 2329995578237600 r005 Re(z^2+c),c=-9/62+27/49*I,n=49 2329995581327123 a001 5/439204*2207^(4/43) 2329995598818458 m001 (ln(2)/ln(10)+exp(1))/(-Riemann1stZero+Salem) 2329995600149531 a007 Real Root Of -397*x^4-767*x^3+360*x^2+387*x+946 2329995603576229 a007 Real Root Of -370*x^4-313*x^3+906*x^2-861*x+21 2329995605737148 m001 (1+gamma(1))/(-ThueMorse+ZetaP(2)) 2329995609078097 a007 Real Root Of 15*x^4-247*x^3-401*x^2+256*x-793 2329995617202582 m001 (GAMMA(13/24)*GaussAGM+Stephens)/GaussAGM 2329995618608635 a003 cos(Pi*27/83)-cos(Pi*24/59) 2329995623072017 r005 Re(z^2+c),c=-1/26+26/47*I,n=12 2329995623561771 r005 Re(z^2+c),c=-25/26+15/79*I,n=48 2329995628950385 a001 28657/843*322^(1/3) 2329995630521694 a001 7/7778742049*514229^(17/22) 2329995631376624 r005 Im(z^2+c),c=-1/4+17/49*I,n=35 2329995634781974 p004 log(33619/3271) 2329995641130480 m001 (2^(1/2)-3^(1/3))/(arctan(1/3)+QuadraticClass) 2329995659699789 m005 (1/2*gamma+3/10)/(3/7*gamma-1/2) 2329995659743377 a003 sin(Pi*21/64)/cos(Pi*19/50) 2329995666697300 l006 ln(932/9579) 2329995667542118 r005 Re(z^2+c),c=-4/21+26/57*I,n=59 2329995671862167 a001 521/2584*1597^(1/51) 2329995681703320 a001 233/3*199^(11/53) 2329995689232472 m001 (Otter+Tetranacci)/(LambertW(1)+GAMMA(7/12)) 2329995693144211 r005 Im(z^2+c),c=-4/21+20/61*I,n=14 2329995697376177 a007 Real Root Of 89*x^4+315*x^3+424*x^2+80*x-754 2329995709142809 r002 31th iterates of z^2 + 2329995715898734 h005 exp(cos(Pi*11/53)/sin(Pi*7/18)) 2329995719448321 a001 377/521*1364^(4/5) 2329995721698458 a007 Real Root Of 559*x^4+889*x^3-684*x^2+387*x-615 2329995728112987 r005 Im(z^2+c),c=-83/118+1/33*I,n=14 2329995730631904 m001 (GAMMA(2/3)+3)/(Zeta(3)+2/3) 2329995731979533 m005 (1/3*gamma+1/7)/(8/9*2^(1/2)+2/11) 2329995734117842 m001 Backhouse*Lehmer+Porter 2329995756637238 a007 Real Root Of 523*x^4+825*x^3-724*x^2+473*x+54 2329995757906219 a007 Real Root Of 483*x^4+827*x^3-608*x^2+11*x-448 2329995759323859 a001 105937/6*521^(32/41) 2329995762822438 r005 Im(z^2+c),c=-131/126+13/55*I,n=31 2329995773718394 a001 2/47*119218851371^(1/15) 2329995774271803 r005 Re(z^2+c),c=-13/56+21/61*I,n=35 2329995779294333 b008 -25+ArcSinh[Sqrt[7]] 2329995779890793 r005 Im(z^2+c),c=17/42+22/61*I,n=5 2329995781453778 m001 (Tetranacci+Trott2nd)/(Niven-Psi(1,1/3)) 2329995781845633 a007 Real Root Of 502*x^4+784*x^3-885*x^2-219*x-584 2329995795997483 a007 Real Root Of -27*x^4-629*x^3+21*x^2+477*x+964 2329995796132979 m001 MertensB3+Mills^gamma(2) 2329995797191693 r005 Im(z^2+c),c=-83/98+1/59*I,n=10 2329995804420676 r005 Im(z^2+c),c=-21/52+20/51*I,n=54 2329995816519854 r009 Re(z^3+c),c=-33/118+15/56*I,n=7 2329995825775111 l006 ln(2100/2651) 2329995832895644 m001 (2*Pi/GAMMA(5/6)-Otter)^QuadraticClass 2329995844234529 r005 Re(z^2+c),c=-19/66+2/49*I,n=6 2329995852902730 h001 (-7*exp(7)-3)/(-3*exp(7)-6) 2329995858010073 m001 (-GAMMA(19/24)+Paris)/(2^(1/2)+Zeta(1/2)) 2329995865055155 m001 ln(Pi)^FeigenbaumMu+Rabbit 2329995868671620 r005 Re(z^2+c),c=-9/50+19/49*I,n=5 2329995871000867 a007 Real Root Of -228*x^4-492*x^3-185*x^2-393*x+585 2329995873919744 m001 exp(TreeGrowth2nd)^2*GaussKuzminWirsing/Pi 2329995894279878 r008 a(0)=0,K{-n^6,30-55*n-33*n^2+54*n^3} 2329995895132790 l006 ln(457/4697) 2329995905335270 a003 sin(Pi*1/119)*sin(Pi*21/61) 2329995916959516 a003 cos(Pi*20/97)-cos(Pi*17/55) 2329995923907933 h001 (-7*exp(4)-8)/(-8*exp(1)+5) 2329995926251889 r009 Im(z^3+c),c=-61/110+15/38*I,n=52 2329995933669010 r005 Im(z^2+c),c=-31/29+7/27*I,n=34 2329995936995589 m001 (CopelandErdos+ZetaP(3))/(Shi(1)+CareFree) 2329995947317690 a004 Fibonacci(15)*Lucas(14)/(1/2+sqrt(5)/2)^16 2329995952948574 m001 1/cos(Pi/12)^2*ln(Bloch)/sin(Pi/5)^2 2329995959696467 m004 -750*Pi+24*Cot[Sqrt[5]*Pi] 2329995966097156 r009 Im(z^3+c),c=-13/64+44/47*I,n=38 2329995975198350 m001 GAMMA(7/12)^(OrthogonalArrays/CareFree) 2329995983183733 r005 Im(z^2+c),c=-59/122+15/38*I,n=22 2329995998192558 m001 (Zeta(1,-1)-Grothendieck)/(Kac-MinimumGamma) 2329996003572340 a007 Real Root Of -605*x^4-970*x^3+783*x^2-577*x-34 2329996016438912 a001 377/3*3571^(4/53) 2329996028112584 a001 6765/521*521^(6/13) 2329996033058240 m001 (Kac+KomornikLoreti)/(Zeta(5)-HeathBrownMoroz) 2329996038107680 m001 (Zeta(3)-GAMMA(7/12))/(ArtinRank2+CareFree) 2329996043613400 m001 (1/2*GAMMA(13/24)-Zeta(3))/GAMMA(13/24) 2329996061530453 a001 54018521*144^(5/17) 2329996063836415 b008 -24+Csch[2*EulerGamma] 2329996069435783 r009 Re(z^3+c),c=-11/26+27/59*I,n=2 2329996087246201 a007 Real Root Of 296*x^4+316*x^3-764*x^2-30*x-649 2329996094364896 m001 1/exp(GAMMA(1/6))^2*BesselK(1,1)^2*GAMMA(5/24) 2329996104077867 m001 (cos(1/12*Pi)+KhinchinLevy)/(Landau-Porter) 2329996112011360 r005 Im(z^2+c),c=-37/82+26/59*I,n=4 2329996121085339 m001 KhinchinHarmonic/(3^(1/3)-ln(2)) 2329996132746436 l006 ln(896/9209) 2329996136820511 a007 Real Root Of -351*x^4-371*x^3+948*x^2-556*x-790 2329996140733431 r005 Re(z^2+c),c=-61/86+16/45*I,n=35 2329996143697895 h001 (1/10*exp(1)+1/3)/(1/4*exp(2)+3/4) 2329996144449517 r005 Im(z^2+c),c=6/23+2/25*I,n=6 2329996145344781 m005 (1/3*exp(1)-2/3)/(3/11*Catalan+7/9) 2329996156066237 r002 24th iterates of z^2 + 2329996157592909 a003 cos(Pi*10/81)-cos(Pi*10/39) 2329996164733710 a007 Real Root Of -779*x^4+25*x^3-232*x^2+775*x-166 2329996168637353 m001 Trott2nd/(Trott-KhinchinLevy) 2329996170486798 a007 Real Root Of -200*x^4-198*x^3+604*x^2+285*x+775 2329996171632372 m001 1/(3^(1/3))^2*Artin^2*ln(sqrt(2)) 2329996182580419 m001 TwinPrimes*Salem^2*ln(GAMMA(23/24)) 2329996190749299 m001 (3^(1/2))^Shi(1)*Conway 2329996196239314 p001 sum((-1)^n/(541*n+429)/(1024^n),n=0..infinity) 2329996205501128 a007 Real Root Of 374*x^4+854*x^3+193*x^2+867*x+752 2329996218805911 p001 sum(1/(557*n+130)/n/(625^n),n=1..infinity) 2329996220343073 a003 sin(Pi*5/64)*sin(Pi*29/71) 2329996220816997 m005 (1/2*Zeta(3)-1/6)/(1/5*5^(1/2)-3/7) 2329996224194224 s001 sum(exp(-Pi)^n*A138381[n],n=1..infinity) 2329996224194224 s002 sum(A138381[n]/(exp(pi*n)),n=1..infinity) 2329996250273018 a007 Real Root Of 553*x^4+191*x^3-724*x^2-677*x+193 2329996254208226 m006 (2/Pi-2/3)/(4/5*Pi^2+5) 2329996255487010 m001 (-GAMMA(13/24)+1/2)/(-OneNinth+5) 2329996260207039 m004 -4-2*E^(Sqrt[5]*Pi)-25*Pi+Tan[Sqrt[5]*Pi] 2329996262316532 m008 (3/5*Pi^3-4/5)/(4/5*Pi^6-5) 2329996266257354 m001 GaussAGM(1,1/sqrt(2))-TwinPrimes^GAMMA(19/24) 2329996267547410 a001 7/34*34^(2/57) 2329996267845268 p003 LerchPhi(1/512,6,167/131) 2329996276809319 a001 2/13*1346269^(1/34) 2329996278486008 m001 (AlladiGrinstead+Weierstrass)/Psi(2,1/3) 2329996278865637 r005 Re(z^2+c),c=-13/94+22/39*I,n=53 2329996284892924 b008 4-3*E^(-2+Sqrt[2]) 2329996287450067 m005 (1/2*Zeta(3)-1/11)/(6/7*5^(1/2)+3/11) 2329996288042909 b008 1/3+4*(2+Sqrt[14]) 2329996292007973 a007 Real Root Of 23*x^4+569*x^3+763*x^2-217*x-578 2329996310103581 m001 1/DuboisRaymond/ln(Cahen)^2*log(1+sqrt(2)) 2329996346145004 l006 ln(7249/9151) 2329996348333528 m001 (cos(1/12*Pi)+Stephens)/(Zeta(3)-cos(1)) 2329996352440052 b008 (-1/7+E)^(-1)-E 2329996353304326 r005 Re(z^2+c),c=-13/56+21/61*I,n=33 2329996366450994 m001 (Zeta(1,-1)+GAMMA(23/24))/(1-Zeta(5)) 2329996366462695 a007 Real Root Of -385*x^4+386*x^3-68*x^2+768*x-179 2329996367776537 a008 Real Root of x^4-x^3-16*x^2+22*x+96 2329996378813174 m005 (1/2*gamma+5/11)/(3*Zeta(3)-5/12) 2329996380102723 l006 ln(439/4512) 2329996390311558 a007 Real Root Of 374*x^4+381*x^3-848*x^2+275*x-959 2329996398193443 a007 Real Root Of 36*x^4+803*x^3-806*x^2+676*x+491 2329996400795331 r005 Re(z^2+c),c=7/24+7/39*I,n=48 2329996413625223 a001 7/14930352*6557470319842^(4/9) 2329996413625319 a001 1/311187*86267571272^(4/9) 2329996413629835 a001 7/317811*1134903170^(4/9) 2329996413841965 a001 1/6624*14930352^(4/9) 2329996413994577 a001 121393/1364*322^(1/6) 2329996416307043 b008 LogGamma[Cosh[Coth[1/2]]] 2329996423812978 a001 7/6765*196418^(4/9) 2329996427713532 m005 (1/2*gamma+1/2)/(1/8*Catalan-1/9) 2329996448598624 r005 Re(z^2+c),c=-25/78+30/47*I,n=14 2329996451272588 m005 (17/66+1/6*5^(1/2))/(6/7*exp(1)+3/8) 2329996453143929 s001 sum(exp(-2*Pi/3)^n*A087970[n],n=1..infinity) 2329996457663788 h001 (2/7*exp(2)+7/10)/(1/7*exp(1)+9/11) 2329996458085837 m001 (LambertW(1)+Gompertz)/(Pi+Si(Pi)) 2329996467143888 a001 64079/3*13^(2/59) 2329996472949336 m001 (5^(1/2)+gamma)/(-Ei(1,1)+Paris) 2329996478321759 r005 Im(z^2+c),c=-2/13+35/46*I,n=36 2329996483509748 a001 8/4870847*11^(7/48) 2329996486807229 p003 LerchPhi(1/1024,2,19/29) 2329996488691250 m001 (2^(1/2)-ln(3))/(-Sarnak+Thue) 2329996497161272 r005 Re(z^2+c),c=-13/56+21/61*I,n=38 2329996501693350 a007 Real Root Of 169*x^4+340*x^3-294*x^2-715*x-750 2329996504251246 l005 808/99/(exp(808/99)-1) 2329996513729871 m001 (Zeta(3)-ArtinRank2)/(Mills+Thue) 2329996528072987 s002 sum(A257155[n]/((exp(n)+1)*n),n=1..infinity) 2329996532004047 a007 Real Root Of 236*x^4+367*x^3-240*x^2+592*x+369 2329996534089916 m005 (1/3*exp(1)+1/3)/(1/7*5^(1/2)+5) 2329996534734059 a008 Real Root of (15+16*x+16*x^2-11*x^3) 2329996544669497 r005 Im(z^2+c),c=-41/86+13/32*I,n=35 2329996546761877 r009 Im(z^3+c),c=-23/98+37/40*I,n=26 2329996547403206 a001 3571/6765*34^(8/19) 2329996548153261 q001 675/2897 2329996550403863 h001 (7/12*exp(1)+1/11)/(9/10*exp(2)+6/11) 2329996553552702 m001 1/ln(Tribonacci)*TreeGrowth2nd/GAMMA(1/6)^2 2329996555989312 a001 121393/2207*322^(1/4) 2329996558375871 l006 ln(5149/6500) 2329996560672097 m001 Khinchin^HardyLittlewoodC5/Cahen 2329996567010662 m001 (FeigenbaumC-ZetaQ(2))/(Zeta(1/2)+ArtinRank2) 2329996570830606 a001 233/843*3571^(14/17) 2329996574701451 m001 1/ln(Si(Pi))/Champernowne*BesselK(0,1)^2 2329996577791925 a007 Real Root Of -549*x^4+812*x^3-21*x^2+987*x+243 2329996578651554 m001 ln(2)/ln(10)*(FeigenbaumC-Shi(1)) 2329996583542173 m005 (1/2*Zeta(3)-1/3)/(19/36+5/18*5^(1/2)) 2329996586947444 s002 sum(A066921[n]/(n*2^n-1),n=1..infinity) 2329996587934175 m001 (-DuboisRaymond+Rabbit)/(GAMMA(23/24)-exp(Pi)) 2329996591790909 r009 Re(z^3+c),c=-17/50+26/63*I,n=11 2329996592353563 a001 377/521*3571^(12/17) 2329996593732393 a007 Real Root Of -546*x^4-892*x^3+796*x^2-423*x-498 2329996594635746 m001 (Robbin-ZetaP(2))/(CareFree+DuboisRaymond) 2329996598515746 m001 (ln(3)+Porter)/(Psi(1,1/3)+Catalan) 2329996615306343 s002 sum(A112087[n]/(n^2*pi^n-1),n=1..infinity) 2329996617199208 r005 Re(z^2+c),c=-4/21+26/57*I,n=56 2329996621470272 m001 Robbin^2*FibonacciFactorial*ln(cosh(1)) 2329996629734587 m001 (Cahen-Kac)/(ArtinRank2-Backhouse) 2329996637813394 l006 ln(860/8839) 2329996642984988 m001 (3^(1/3))^(ln(3)/PlouffeB) 2329996646484119 r005 Im(z^2+c),c=-1+61/253*I,n=18 2329996647305357 r009 Im(z^3+c),c=-19/42+6/59*I,n=14 2329996656024629 m001 Trott2nd*(3^(1/2)-QuadraticClass) 2329996661843639 r005 Re(z^2+c),c=-13/56+21/61*I,n=40 2329996671328483 p001 sum(1/(457*n+430)/(256^n),n=0..infinity) 2329996672086374 a007 Real Root Of 31*x^4-482*x^3-599*x^2-907*x-185 2329996685831866 a007 Real Root Of 139*x^4-108*x^3-590*x^2+560*x-955 2329996687541259 a007 Real Root Of -69*x^4+84*x^3+490*x^2-397*x-489 2329996687725398 a001 199/10946*514229^(1/53) 2329996688544285 r002 18th iterates of z^2 + 2329996694764129 a001 9349/17711*34^(8/19) 2329996695198586 r005 Re(z^2+c),c=-13/56+21/61*I,n=43 2329996701659628 a001 233/843*9349^(14/19) 2329996702130488 a007 Real Root Of -414*x^4-506*x^3+897*x^2-753*x-823 2329996702473271 a001 10946/521*521^(5/13) 2329996704492725 a001 377/521*9349^(12/19) 2329996706912730 a007 Real Root Of 317*x^4+773*x^3+458*x^2+877*x-8 2329996709481858 m001 Totient^MadelungNaCl+LaplaceLimit 2329996713735922 r005 Re(z^2+c),c=-13/56+21/61*I,n=41 2329996716263798 a001 6119/11592*34^(8/19) 2329996718709363 a001 233/843*24476^(2/3) 2329996719106784 a001 377/521*24476^(4/7) 2329996719400558 a001 64079/121393*34^(8/19) 2329996719858205 a001 167761/317811*34^(8/19) 2329996719924975 a001 109801/208010*34^(8/19) 2329996719934716 a001 1149851/2178309*34^(8/19) 2329996719936137 a001 3010349/5702887*34^(8/19) 2329996719936345 a001 1970299/3732588*34^(8/19) 2329996719936375 a001 20633239/39088169*34^(8/19) 2329996719936379 a001 54018521/102334155*34^(8/19) 2329996719936380 a001 35355581/66978574*34^(8/19) 2329996719936380 a001 370248451/701408733*34^(8/19) 2329996719936380 a001 969323029/1836311903*34^(8/19) 2329996719936380 a001 634430159/1201881744*34^(8/19) 2329996719936380 a001 6643838879/12586269025*34^(8/19) 2329996719936380 a001 17393796001/32951280099*34^(8/19) 2329996719936380 a001 11384387281/21566892818*34^(8/19) 2329996719936380 a001 119218851371/225851433717*34^(8/19) 2329996719936380 a001 312119004989/591286729879*34^(8/19) 2329996719936380 a001 204284540899/387002188980*34^(8/19) 2329996719936380 a001 1322157322203/2504730781961*34^(8/19) 2329996719936380 a001 505019158607/956722026041*34^(8/19) 2329996719936380 a001 96450076809/182717648081*34^(8/19) 2329996719936380 a001 73681302247/139583862445*34^(8/19) 2329996719936380 a001 28143753123/53316291173*34^(8/19) 2329996719936380 a001 5374978561/10182505537*34^(8/19) 2329996719936380 a001 4106118243/7778742049*34^(8/19) 2329996719936380 a001 1568397607/2971215073*34^(8/19) 2329996719936380 a001 299537289/567451585*34^(8/19) 2329996719936380 a001 228826127/433494437*34^(8/19) 2329996719936381 a001 87403803/165580141*34^(8/19) 2329996719936382 a001 16692641/31622993*34^(8/19) 2329996719936394 a001 12752043/24157817*34^(8/19) 2329996719936473 a001 4870847/9227465*34^(8/19) 2329996719937016 a001 930249/1762289*34^(8/19) 2329996719940737 a001 710647/1346269*34^(8/19) 2329996719966241 a001 271443/514229*34^(8/19) 2329996720141046 a001 51841/98209*34^(8/19) 2329996720956846 a001 233/843*64079^(14/23) 2329996721033198 a001 377/521*64079^(12/23) 2329996721302245 a001 233/843*20633239^(2/5) 2329996721302248 a001 233/843*17393796001^(2/7) 2329996721302248 a001 233/843*14662949395604^(2/9) 2329996721302248 a001 233/843*(1/2+1/2*5^(1/2))^14 2329996721302248 a001 233/843*10749957122^(7/24) 2329996721302248 a001 233/843*4106118243^(7/23) 2329996721302248 a001 233/843*1568397607^(7/22) 2329996721302248 a001 233/843*599074578^(1/3) 2329996721302248 a001 233/843*228826127^(7/20) 2329996721302248 a001 233/843*87403803^(7/19) 2329996721302248 a001 233/843*33385282^(7/18) 2329996721302253 a001 233/843*12752043^(7/17) 2329996721302291 a001 233/843*4870847^(7/16) 2329996721302562 a001 233/843*1860498^(7/15) 2329996721304554 a001 233/843*710647^(1/2) 2329996721319275 a001 233/843*271443^(7/13) 2329996721323888 a001 377/521*439204^(4/9) 2329996721329243 a001 377/521*7881196^(4/11) 2329996721329256 a001 377/521*141422324^(4/13) 2329996721329257 a001 377/521*2537720636^(4/15) 2329996721329257 a001 377/521*45537549124^(4/17) 2329996721329257 a001 377/521*817138163596^(4/19) 2329996721329257 a001 377/521*14662949395604^(4/21) 2329996721329257 a001 377/521*(1/2+1/2*5^(1/2))^12 2329996721329257 a001 377/521*73681302247^(3/13) 2329996721329257 a001 377/521*10749957122^(1/4) 2329996721329257 a001 377/521*4106118243^(6/23) 2329996721329257 a001 377/521*1568397607^(3/11) 2329996721329257 a001 377/521*599074578^(2/7) 2329996721329257 a001 377/521*228826127^(3/10) 2329996721329257 a001 377/521*87403803^(6/19) 2329996721329257 a001 377/521*33385282^(1/3) 2329996721329262 a001 377/521*12752043^(6/17) 2329996721329293 a001 377/521*4870847^(3/8) 2329996721329526 a001 377/521*1860498^(2/5) 2329996721331234 a001 377/521*710647^(3/7) 2329996721339182 a001 39603/75025*34^(8/19) 2329996721343852 a001 377/521*271443^(6/13) 2329996721347749 r005 Re(z^2+c),c=-13/56+21/61*I,n=46 2329996721428682 a001 233/843*103682^(7/12) 2329996721437629 a001 377/521*103682^(1/2) 2329996722139579 a001 377/521*39603^(6/11) 2329996722247623 a001 233/843*39603^(7/11) 2329996727438690 a001 377/521*15127^(3/5) 2329996727690437 r005 Re(z^2+c),c=-13/56+21/61*I,n=48 2329996728429920 a001 233/843*15127^(7/10) 2329996728805203 r005 Re(z^2+c),c=-13/56+21/61*I,n=51 2329996729385195 r005 Re(z^2+c),c=-13/56+21/61*I,n=49 2329996729551324 a001 15127/28657*34^(8/19) 2329996729749945 r005 Re(z^2+c),c=-13/56+21/61*I,n=54 2329996729993470 r005 Re(z^2+c),c=-13/56+21/61*I,n=56 2329996730030325 r005 Re(z^2+c),c=-13/56+21/61*I,n=59 2329996730047905 r005 Re(z^2+c),c=-13/56+21/61*I,n=57 2329996730064415 r005 Re(z^2+c),c=-13/56+21/61*I,n=62 2329996730073738 r005 Re(z^2+c),c=-13/56+21/61*I,n=64 2329996730082445 r005 Re(z^2+c),c=-13/56+21/61*I,n=61 2329996730085456 r005 Re(z^2+c),c=-13/56+21/61*I,n=63 2329996730092125 r005 Re(z^2+c),c=-13/56+21/61*I,n=60 2329996730139791 r005 Re(z^2+c),c=-13/56+21/61*I,n=58 2329996730217827 r005 Re(z^2+c),c=-13/56+21/61*I,n=53 2329996730319279 r005 Re(z^2+c),c=-13/56+21/61*I,n=55 2329996730436858 m001 exp(Pi)+Trott+ZetaR(2) 2329996730522276 r005 Re(z^2+c),c=-13/56+21/61*I,n=52 2329996730831834 a007 Real Root Of -920*x^4-534*x^3+850*x^2+937*x-255 2329996730995174 a001 18/165580141*5^(9/19) 2329996731765560 r005 Re(z^2+c),c=-13/56+21/61*I,n=50 2329996733446814 r005 Re(z^2+c),c=-13/56+21/61*I,n=45 2329996736736664 r005 Re(z^2+c),c=-13/56+21/61*I,n=47 2329996738411320 m005 (1/2*3^(1/2)-7/11)/(5/9*2^(1/2)+1/5) 2329996742841937 r005 Re(z^2+c),c=-13/56+21/61*I,n=44 2329996759530560 a007 Real Root Of 371*x^4+560*x^3-711*x^2+239*x+566 2329996767856680 a001 377/521*5778^(2/3) 2329996772843524 m001 1/OneNinth^2*ErdosBorwein^2/exp(GAMMA(5/6))^2 2329996775174311 r005 Re(z^2+c),c=-13/56+21/61*I,n=42 2329996775584241 a001 233/843*5778^(7/9) 2329996785838188 a001 2889/5473*34^(8/19) 2329996802226533 m001 TreeGrowth2nd*ln(FeigenbaumD)^2/Tribonacci 2329996807611888 m005 (1/3*Catalan-3/7)/(7/9*3^(1/2)-9/11) 2329996808823366 r005 Re(z^2+c),c=-13/56+21/61*I,n=37 2329996817786969 a007 Real Root Of -183*x^4+618*x^3+811*x^2+518*x-172 2329996820913021 a001 7/144*63245986^(3/5) 2329996831882215 r005 Re(z^2+c),c=-17/60+1/10*I,n=5 2329996841645983 r009 Re(z^3+c),c=-15/58+13/62*I,n=5 2329996853231610 l006 ln(3733/3821) 2329996853231610 p004 log(3821/3733) 2329996859482547 m005 (1/3*Pi+1/5)/(-29/5+1/5*5^(1/2)) 2329996860962527 a001 1/141*2584^(4/9) 2329996868474459 m001 1/GAMMA(1/12)^2*FeigenbaumDelta/exp(exp(1)) 2329996872023031 m001 (sin(1/12*Pi)+Conway)/(MertensB2-Niven) 2329996886396323 m001 (Ei(1,1)*Tribonacci+OneNinth)/Ei(1,1) 2329996902508664 r008 a(0)=0,K{-n^6,-14-57*n^3+50*n^2+25*n} 2329996903055756 v003 sum((2*n^3-3*n^2+4*n+6)/(n!+1),n=1..infinity) 2329996906542503 l006 ln(421/4327) 2329996906542503 p004 log(4327/421) 2329996908024826 r005 Re(z^2+c),c=19/74+4/31*I,n=7 2329996912682991 r005 Re(z^2+c),c=-13/56+21/61*I,n=39 2329996918471638 r009 Im(z^3+c),c=-2/17+45/52*I,n=16 2329996928090507 r005 Im(z^2+c),c=-1+22/91*I,n=25 2329996931641604 r002 12th iterates of z^2 + 2329996932669192 m001 (2/3*Pi*3^(1/2)/GAMMA(2/3))^Thue-ZetaQ(4) 2329996935751407 p001 sum((-1)^n/(565*n+429)/(1000^n),n=0..infinity) 2329996953907697 h003 exp(Pi*(6^(1/3)/(10^(2/3)-4^(3/4)))) 2329996954634486 m001 Pi-ThueMorse^CopelandErdos 2329996964548003 a007 Real Root Of 260*x^4+620*x^3-9*x^2-53*x+105 2329996964580700 a001 105937/1926*322^(1/4) 2329996964642935 m009 (8*Catalan+Pi^2+1/3)/(1/4*Psi(1,1/3)+5) 2329996965476481 a001 305/682*843^(13/14) 2329996972284469 a007 Real Root Of 702*x^4-177*x^3-620*x^2-758*x+18 2329996976052205 s002 sum(A224519[n]/(2^n+1),n=1..infinity) 2329996977176843 r002 14th iterates of z^2 + 2329996984973551 m004 5*Pi*Csc[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi]/20 2329996988675003 a007 Real Root Of -178*x^4-517*x^3-141*x^2-15*x-563 2329996991535296 m001 GAMMA(1/24)/Lehmer*exp(sqrt(Pi)) 2329997005698296 a007 Real Root Of -735*x^4+888*x^3+944*x^2+450*x+67 2329997023307841 r005 Im(z^2+c),c=-53/122+23/49*I,n=22 2329997024193392 a001 832040/15127*322^(1/4) 2329997024202029 a007 Real Root Of -265*x^4-54*x^3+867*x^2-883*x+363 2329997029792595 p002 log(17^(1/2)*2^(3/4)+5^(3/4)) 2329997032890767 a001 726103/13201*322^(1/4) 2329997033980583 m001 (Grothendieck-cos(1))/(-Kolakoski+MertensB1) 2329997034159697 a001 5702887/103682*322^(1/4) 2329997034204612 r009 Re(z^3+c),c=-53/98+4/15*I,n=24 2329997034344831 a001 4976784/90481*322^(1/4) 2329997034371842 a001 39088169/710647*322^(1/4) 2329997034375783 a001 831985/15126*322^(1/4) 2329997034376358 a001 267914296/4870847*322^(1/4) 2329997034376441 a001 233802911/4250681*322^(1/4) 2329997034376454 a001 1836311903/33385282*322^(1/4) 2329997034376455 a001 1602508992/29134601*322^(1/4) 2329997034376456 a001 12586269025/228826127*322^(1/4) 2329997034376456 a001 10983760033/199691526*322^(1/4) 2329997034376456 a001 86267571272/1568397607*322^(1/4) 2329997034376456 a001 75283811239/1368706081*322^(1/4) 2329997034376456 a001 591286729879/10749957122*322^(1/4) 2329997034376456 a001 12585437040/228811001*322^(1/4) 2329997034376456 a001 4052739537881/73681302247*322^(1/4) 2329997034376456 a001 3536736619241/64300051206*322^(1/4) 2329997034376456 a001 6557470319842/119218851371*322^(1/4) 2329997034376456 a001 2504730781961/45537549124*322^(1/4) 2329997034376456 a001 956722026041/17393796001*322^(1/4) 2329997034376456 a001 365435296162/6643838879*322^(1/4) 2329997034376456 a001 139583862445/2537720636*322^(1/4) 2329997034376456 a001 53316291173/969323029*322^(1/4) 2329997034376456 a001 20365011074/370248451*322^(1/4) 2329997034376456 a001 7778742049/141422324*322^(1/4) 2329997034376457 a001 2971215073/54018521*322^(1/4) 2329997034376461 a001 1134903170/20633239*322^(1/4) 2329997034376493 a001 433494437/7881196*322^(1/4) 2329997034376713 a001 165580141/3010349*322^(1/4) 2329997034378218 a001 63245986/1149851*322^(1/4) 2329997034388535 a001 24157817/439204*322^(1/4) 2329997034459250 a001 9227465/167761*322^(1/4) 2329997034943938 a001 3524578/64079*322^(1/4) 2329997036356052 a007 Real Root Of 80*x^4-169*x^3-452*x^2+790*x-201 2329997038266040 a001 1346269/24476*322^(1/4) 2329997041494349 m006 (ln(Pi)+1/6)/(1/5*Pi+5) 2329997047436327 p001 sum(1/(556*n+131)/n/(625^n),n=1..infinity) 2329997049431770 p001 sum(1/(139*n+43)/(125^n),n=0..infinity) 2329997052123451 m001 Ei(1)^2/Salem/ln(Pi)^2 2329997053672894 m005 (2*2^(1/2)+1/2)/(5/6*2^(1/2)+1/4) 2329997054282274 r002 34th iterates of z^2 + 2329997061036063 a001 514229/9349*322^(1/4) 2329997062954913 l006 ln(3049/3849) 2329997065933369 m005 (7/12+1/4*5^(1/2))/(7/10*exp(1)+3) 2329997066868009 b008 Csch[(-2+Sqrt[7])^2] 2329997080095914 a001 377/521*2207^(3/4) 2329997081986976 m001 1/Zeta(1,2)^2*Rabbit/ln(sqrt(2)) 2329997088597538 r009 Re(z^3+c),c=-33/86+12/23*I,n=34 2329997094193603 m001 RenyiParking-cos(Pi/12)^BesselI(1,1) 2329997094193603 m001 cos(1/12*Pi)^BesselI(1,1)-RenyiParking 2329997094503477 r005 Re(z^2+c),c=-13/56+21/61*I,n=36 2329997097159529 r005 Im(z^2+c),c=1/36+12/49*I,n=9 2329997098247908 m001 1/GAMMA(11/12)/ln(BesselK(0,1))*GAMMA(5/12) 2329997102272568 m009 (5/12*Pi^2+1/4)/(1/5*Psi(1,2/3)-4/5) 2329997110960479 a007 Real Root Of -24*x^4+593*x^3+962*x^2-863*x+975 2329997119713413 r005 Re(z^2+c),c=13/44+12/41*I,n=7 2329997126593940 m001 Pi/exp(Pi)/(Shi(1)-GAMMA(13/24)) 2329997127397107 a001 1/3*199^(18/49) 2329997134456813 a007 Real Root Of 726*x^4+240*x^3+749*x^2-898*x-249 2329997139863353 a001 233/843*2207^(7/8) 2329997140115750 r005 Re(z^2+c),c=-4/15+4/19*I,n=20 2329997145789279 r005 Im(z^2+c),c=-63/58+11/47*I,n=61 2329997149761637 m001 (1-gamma)/(sin(1/5*Pi)+FibonacciFactorial) 2329997154880383 h001 (-9*exp(5)+5)/(-8*exp(2)+2) 2329997166956367 r009 Im(z^3+c),c=-4/27+49/58*I,n=52 2329997171634089 a001 2207/4181*34^(8/19) 2329997181454978 l005 239/19/(exp(239/38)+1) 2329997187012127 l006 ln(824/8469) 2329997194562978 m001 ReciprocalLucas^FeigenbaumDelta-Trott 2329997200439077 r005 Im(z^2+c),c=-17/54+11/30*I,n=38 2329997203006340 r005 Re(z^2+c),c=-8/29+5/33*I,n=8 2329997211582193 r009 Re(z^3+c),c=-7/19+14/29*I,n=45 2329997215487411 a007 Real Root Of -892*x^4-178*x^3-515*x^2+608*x+170 2329997217104137 a001 196418/3571*322^(1/4) 2329997221120919 m001 (cos(1/5*Pi)-FeigenbaumMu)/(OneNinth+Trott) 2329997222473305 a007 Real Root Of -349*x^4-750*x^3+619*x^2+868*x-539 2329997226708274 r005 Im(z^2+c),c=-19/22+22/119*I,n=45 2329997232239307 p001 sum((-1)^n/(542*n+429)/(1024^n),n=0..infinity) 2329997245552319 a007 Real Root Of 541*x^4+828*x^3-763*x^2+518*x-122 2329997255034912 r005 Im(z^2+c),c=-17/122+10/27*I,n=3 2329997257688547 r005 Re(z^2+c),c=-9/62+26/47*I,n=19 2329997266131031 r005 Re(z^2+c),c=25/94+27/44*I,n=29 2329997275136001 g005 GAMMA(1/11)*GAMMA(9/10)*GAMMA(1/9)/GAMMA(2/9) 2329997280481888 m001 1/TreeGrowth2nd*Niven^2*exp((2^(1/3))) 2329997282551352 r005 Im(z^2+c),c=-13/31+21/53*I,n=45 2329997292944719 s002 sum(A084731[n]/(n*10^n-1),n=1..infinity) 2329997292944719 s002 sum(A066180[n]/(n*10^n-1),n=1..infinity) 2329997294706784 m001 (gamma(1)+CareFree)/(FeigenbaumMu-Thue) 2329997298994056 r005 Im(z^2+c),c=-1/4+17/49*I,n=33 2329997304551956 r005 Re(z^2+c),c=-157/122+1/23*I,n=48 2329997307625231 s002 sum(A130325[n]/(n*10^n-1),n=1..infinity) 2329997325937616 r005 Im(z^2+c),c=-49/102+28/57*I,n=54 2329997331301394 m001 BesselI(0,2)/(ZetaP(3)^MertensB3) 2329997336130475 r009 Im(z^3+c),c=-1/122+14/57*I,n=7 2329997348559820 m001 1/ln(BesselK(0,1))^2/GlaisherKinkelin*sqrt(5) 2329997351189319 s002 sum(A189686[n]/(n^2*10^n-1),n=1..infinity) 2329997355009196 m001 Artin*Riemann1stZero-Otter 2329997357387515 a001 17711/521*521^(4/13) 2329997359103518 r009 Re(z^3+c),c=-1/56+14/19*I,n=37 2329997360412077 m001 (1-GAMMA(23/24))/(-Gompertz+Niven) 2329997362729517 a007 Real Root Of 289*x^4+716*x^3-235*x^2-888*x-254 2329997386963347 s001 sum(exp(-Pi/4)^(n-1)*A025565[n],n=1..infinity) 2329997392121484 m001 exp(BesselJ(1,1))^2*Riemann3rdZero/sin(Pi/12) 2329997392499978 s002 sum(A154097[n]/(n*10^n-1),n=1..infinity) 2329997397266784 m001 Catalan+Mills+OneNinth 2329997421892710 s002 sum(A123487[n]/(n*10^n-1),n=1..infinity) 2329997431633411 l006 ln(7047/8896) 2329997431945060 b008 1/6+(3*Sqrt[13])/5 2329997433923530 q001 908/3897 2329997443715471 a001 18/28657*3524578^(2/23) 2329997444200124 a001 18/75025*225851433717^(2/23) 2329997444221870 r005 Im(z^2+c),c=11/26+17/53*I,n=5 2329997468598249 a001 55/271443*76^(1/31) 2329997471052615 b008 Sqrt[2]+(4*Log[Pi])/5 2329997471649131 a007 Real Root Of 792*x^4-362*x^3+580*x^2-971*x+197 2329997480008846 l006 ln(403/4142) 2329997490348369 r005 Im(z^2+c),c=-135/94+2/59*I,n=9 2329997493946945 r005 Im(z^2+c),c=-5/54+15/31*I,n=3 2329997495039254 r005 Im(z^2+c),c=-131/118+1/35*I,n=12 2329997498866815 b008 2+SphericalBesselY[0,3] 2329997498866815 b008 2-Cos[3]/3 2329997499598918 a001 17711/843*322^(5/12) 2329997508915687 m005 (1/3*Zeta(3)-1/4)/(5/11*gamma-10/11) 2329997509728444 a007 Real Root Of 537*x^4+810*x^3-96*x^2-449*x+98 2329997514135548 m001 GaussKuzminWirsing^2/Cahen^2/exp(GAMMA(5/6))^2 2329997514187437 r009 Re(z^3+c),c=-31/106+10/17*I,n=6 2329997520064457 a007 Real Root Of -3*x^4-696*x^3+703*x^2+969*x-830 2329997532536637 m001 1/Riemann2ndZero/Kolakoski^2*exp(GAMMA(5/6)) 2329997535695359 m001 BesselI(0,2)+Riemann2ndZero-ZetaQ(4) 2329997537714570 h001 (-6*exp(8)+9)/(-7*exp(7)+4) 2329997538410127 a005 (1/sin(92/235*Pi))^869 2329997553502568 q001 2/85837 2329997554849506 a007 Real Root Of 926*x^4-658*x^3-360*x^2-214*x+75 2329997562899887 a001 23725150497407/13*13^(2/21) 2329997563970357 m001 1/2*(2^(1/2)-2^(1/3)*FeigenbaumKappa)*2^(2/3) 2329997565136818 r005 Re(z^2+c),c=-7/26+3/11*I,n=5 2329997571747097 r002 27th iterates of z^2 + 2329997572360764 m001 CareFree^2*ErdosBorwein*ln(GAMMA(11/12))^2 2329997577077596 a001 9062201101803/34*39088169^(18/23) 2329997577077596 a001 1568397607/34*2504730781961^(18/23) 2329997577431091 m001 1/GAMMA(11/12)*ln(Salem)^2*cos(Pi/12)^2 2329997577765019 m005 (1/2*Catalan-5/9)/(1/6*Catalan-4/7) 2329997580717974 a003 cos(Pi*7/82)*cos(Pi*32/65) 2329997584830510 a007 Real Root Of 113*x^4-133*x^3-994*x^2-541*x-877 2329997592452345 m001 cos(1)^2*GAMMA(19/24)^2/ln(sin(1)) 2329997600147500 p002 log(5+6^(1/2)+4^(3/4)) 2329997602113703 r005 Im(z^2+c),c=-43/74+1/54*I,n=4 2329997604003218 a007 Real Root Of -535*x^4-586*x^3+999*x^2-994*x+616 2329997613098532 a007 Real Root Of -420*x^4-669*x^3+439*x^2-921*x-613 2329997614835292 s002 sum(A234517[n]/(n^2*10^n-1),n=1..infinity) 2329997615296301 m001 GAMMA(17/24)/(ZetaQ(4)^ZetaP(2)) 2329997641320102 r002 42th iterates of z^2 + 2329997644386471 m005 (1/3*Zeta(3)-1/6)/(3*gamma-8/11) 2329997666027196 r002 58th iterates of z^2 + 2329997683586154 r005 Im(z^2+c),c=-1+31/129*I,n=6 2329997686180400 m001 ln(GAMMA(11/24))/Riemann1stZero*sqrt(5)^2 2329997706793443 m001 (1+BesselK(0,1))/(-3^(1/3)+FeigenbaumB) 2329997712799170 l006 ln(3998/5047) 2329997715519938 r005 Im(z^2+c),c=-35/118+20/61*I,n=6 2329997715810665 s002 sum(A224254[n]/(n*10^n-1),n=1..infinity) 2329997716013299 s002 sum(A107604[n]/(n*10^n-1),n=1..infinity) 2329997716407166 m001 Khintchine^2/exp(GlaisherKinkelin)^2/cosh(1)^2 2329997717762408 s002 sum(A080647[n]/(n*10^n-1),n=1..infinity) 2329997724777121 a001 3/196418*34^(17/22) 2329997725122033 m009 (48*Catalan+6*Pi^2+2/5)/(5/12*Pi^2+1/3) 2329997727680490 g007 Psi(2,2/11)+Psi(2,1/10)+Psi(2,3/4)-Psi(2,4/7) 2329997728492578 a007 Real Root Of -254*x^4+859*x^3-44*x^2+309*x+86 2329997730526069 h001 (7/10*exp(1)+2/5)/(1/7*exp(1)+3/5) 2329997735087785 a007 Real Root Of 12*x^4+319*x^3+955*x^2+897*x+827 2329997735136713 m001 exp(Trott)^2/Magata*log(1+sqrt(2))^2 2329997737775402 r009 Re(z^3+c),c=-7/18+19/36*I,n=50 2329997740628447 m005 (1/2*Pi+7/10)/(10/11*3^(1/2)-3/5) 2329997741761301 m001 (gamma(3)+DuboisRaymond)/(ln(2)/ln(10)-ln(Pi)) 2329997741768040 p004 log(28439/2767) 2329997743325426 r004 Re(z^2+c),c=-13/16+1/20*I,z(0)=-1,n=53 2329997757453158 a007 Real Root Of 452*x^4+640*x^3-898*x^2+291*x+327 2329997761386196 m001 (MinimumGamma+PrimesInBinary)/(Thue-ZetaQ(2)) 2329997768040089 m005 (37/36+1/4*5^(1/2))/(5*Zeta(3)+4/5) 2329997770318991 r005 Re(z^2+c),c=-19/102+23/49*I,n=23 2329997776991112 r005 Im(z^2+c),c=6/29+8/55*I,n=16 2329997780661820 r009 Re(z^3+c),c=-19/78+10/63*I,n=7 2329997786391110 l006 ln(788/8099) 2329997787857220 a007 Real Root Of -632*x^4-263*x^3+300*x^2+991*x-242 2329997792965520 h001 (3/4*exp(2)+1/12)/(7/9*exp(1)+3/10) 2329997795904642 m001 (1-ln(2)/ln(10))/(-Pi*2^(1/2)/GAMMA(3/4)+Kac) 2329997802119165 m001 Robbin^2*ln(FibonacciFactorial)^2*GAMMA(5/6)^2 2329997803126618 a001 1/646*55^(5/49) 2329997804964811 m001 Zeta(9)*Rabbit*ln(sqrt(Pi))^2 2329997810615392 r009 Re(z^3+c),c=-25/86+11/37*I,n=9 2329997811889819 m005 (1/2*2^(1/2)+7/8)/(1/9*Zeta(3)+6/11) 2329997812726964 a007 Real Root Of 704*x^4+559*x^3+762*x^2-316*x-110 2329997815399733 a007 Real Root Of -576*x^4-713*x^3+965*x^2-941*x+526 2329997817288260 g007 Psi(2,4/5)+Psi(2,1/5)+14*Zeta(3)-Psi(2,5/7) 2329997817334220 m001 arctan(1/2)/Kolakoski^2*exp(gamma)^2 2329997830802784 m001 (ln(gamma)+ln(5))/(arctan(1/2)-ZetaQ(3)) 2329997831227049 m005 (-7/36+1/4*5^(1/2))/(3/7*gamma-1/11) 2329997843183731 r002 58th iterates of z^2 + 2329997855670512 m001 GlaisherKinkelin^(Pi^(1/2))+StronglyCareFree 2329997864459401 a007 Real Root Of -379*x^4-856*x^3-69*x^2-100*x+484 2329997873419862 m005 (1/3*2^(1/2)+1/11)/(11/12*5^(1/2)+4/11) 2329997873885919 m001 (Artin+Totient)/(ln(gamma)+GAMMA(17/24)) 2329997876629065 r005 Re(z^2+c),c=-11/94+20/33*I,n=48 2329997882432666 m005 (1/2*2^(1/2)-1/6)/(-41/90+1/10*5^(1/2)) 2329997900253728 m002 -Pi^(-4)+(2*Sinh[Pi])/Pi^2 2329997900896797 r005 Im(z^2+c),c=-15/46+27/47*I,n=21 2329997903375385 m001 1/3*Landau^KomornikLoreti*3^(2/3) 2329997905710045 m001 exp(GAMMA(1/6))^2*RenyiParking^2/GAMMA(13/24) 2329997912303088 m001 GAMMA(13/24)^(GAMMA(3/4)*HardHexagonsEntropy) 2329997916336540 h001 (5/8*exp(2)+1/10)/(5/7*exp(1)+1/12) 2329997922024972 p004 log(28069/2731) 2329997922729852 m005 (1/3*gamma+1/6)/(5/6*Catalan+7/9) 2329997924540874 r002 5th iterates of z^2 + 2329997930096373 m001 ln(Robbin)/FeigenbaumAlpha/sin(1)^2 2329997932581112 r005 Re(z^2+c),c=-13/56+21/61*I,n=34 2329997937928521 a001 7881196/89*46368^(7/23) 2329997938026147 a001 271443/89*2971215073^(7/23) 2329997939272727 m001 1/CareFree^2*Artin*exp(GAMMA(5/6)) 2329997944309627 a001 322/39088169*8^(1/2) 2329997946021918 p001 sum((-1)^n/(566*n+429)/(1000^n),n=0..infinity) 2329997950304193 m001 GAMMA(5/6)^2*HardHexagonsEntropy*ln(Pi)^2 2329997965187732 m001 OneNinth^Zeta(5)*BesselI(0,2)^Zeta(5) 2329997965740940 a007 Real Root Of 67*x^4-949*x^3-241*x^2-154*x-35 2329997975759466 p003 LerchPhi(1/2,4,145/99) 2329997985007528 r005 Im(z^2+c),c=-1/4+17/49*I,n=28 2329997990735788 s002 sum(A050293[n]/(n^2*10^n-1),n=1..infinity) 2329998010601204 a007 Real Root Of 365*x^4+500*x^3-630*x^2+778*x+800 2329998010732958 h001 (3/10*exp(2)+5/7)/(1/5*exp(1)+5/7) 2329998019729900 a001 28657/521*521^(3/13) 2329998022662759 m005 (1/3*5^(1/2)-3/5)/(-16/55+9/22*5^(1/2)) 2329998033912207 r005 Im(z^2+c),c=-43/90+17/40*I,n=22 2329998039271653 m004 -4-25*Pi-4*Cosh[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi] 2329998040416989 h001 (-6*exp(-2)-8)/(-9*exp(-2)+5) 2329998055271450 a007 Real Root Of 205*x^4+406*x^3+225*x^2+954*x+95 2329998058958001 r002 46th iterates of z^2 + 2329998060061525 r005 Re(z^2+c),c=-2/23+27/43*I,n=12 2329998094195376 m001 exp(sqrt(2))^(GAMMA(17/24)/gamma) 2329998105700180 m001 (-ln(5)+cos(1/12*Pi))/(gamma-ln(2)/ln(10)) 2329998107097640 l006 ln(385/3957) 2329998113319694 l006 ln(4947/6245) 2329998120088430 m001 (Kac+ZetaP(2))/(Pi-2/3*Pi*3^(1/2)/GAMMA(2/3)) 2329998121701651 h001 (-6*exp(-1)+7)/(-8*exp(-1)+5) 2329998146399816 a001 123/10946*9227465^(10/21) 2329998150288886 a001 123/1346269*225851433717^(10/21) 2329998150478744 m007 (-3*gamma-1/3)/(-5/6*gamma-5/3*ln(2)+3/4) 2329998163896842 m001 (Weierstrass+ZetaQ(2))/(cos(1/5*Pi)-Zeta(1/2)) 2329998167604457 a007 Real Root Of -9*x^4-241*x^3-699*x^2+713*x+167 2329998171723910 a007 Real Root Of 503*x^4+904*x^3-580*x^2+464*x+840 2329998175790729 r005 Im(z^2+c),c=-79/94+11/61*I,n=50 2329998184405328 m001 (2*Pi/GAMMA(5/6)-Rabbit)/(Pi-Shi(1)) 2329998184804780 a007 Real Root Of 166*x^4+155*x^3-5*x^2+987*x-605 2329998189315396 a007 Real Root Of 468*x^4+876*x^3-92*x^2+685*x-617 2329998204565728 m001 BesselJ(1,1)^Lehmer*DuboisRaymond^Lehmer 2329998214043494 m001 Si(Pi)*Champernowne^2/ln(GAMMA(5/6)) 2329998243172047 m005 (1/2*gamma+3/8)/(2/3*gamma-1/10) 2329998253885988 m005 (1/2*exp(1)+7/11)/(5/9*Pi-8/9) 2329998256871952 r002 3th iterates of z^2 + 2329998256871952 r002 3th iterates of z^2 + 2329998262058254 m001 (KhinchinLevy+Paris)/(ln(gamma)-gamma(3)) 2329998268339916 a007 Real Root Of -400*x^4-577*x^3+644*x^2-313*x+265 2329998284297148 m005 (1/3*gamma-2/9)/(2/3*3^(1/2)+1/8) 2329998286811189 a001 75025/1364*322^(1/4) 2329998296510486 m001 (-MertensB2+Paris)/(LambertW(1)+Zeta(1,-1)) 2329998297181641 p004 log(27329/2659) 2329998306787296 m001 exp(GAMMA(1/6))^2*Champernowne^2*sqrt(5) 2329998310768327 a007 Real Root Of -87*x^4+810*x^3+746*x^2+367*x-136 2329998325512347 a007 Real Root Of -171*x^4-158*x^3+71*x^2-854*x+666 2329998346129831 m001 FeigenbaumAlpha^GAMMA(13/24)/GAMMA(11/24) 2329998346469956 a007 Real Root Of -495*x^4+702*x^3-290*x^2+731*x-162 2329998348992725 m005 (1/2*gamma+2/9)/(1/3*gamma+2) 2329998348992725 m007 (-3/4*gamma-1/3)/(-1/2*gamma-3) 2329998358356305 a007 Real Root Of -427*x^4-755*x^3+309*x^2-352*x+537 2329998359688216 m005 (1/3*Catalan+3/5)/(1/8*Catalan-4) 2329998365140054 a007 Real Root Of 690*x^4+314*x^3-860*x^2-581*x+14 2329998368275209 h001 (11/12*exp(2)+3/11)/(9/11*exp(1)+4/5) 2329998378490811 r005 Re(z^2+c),c=-31/110+6/61*I,n=6 2329998384907381 l006 ln(5896/7443) 2329998394073766 m001 (Zeta(5)-gamma)/(GAMMA(3/4)+RenyiParking) 2329998395392178 a007 Real Root Of 18*x^4-356*x^3-806*x^2+606*x+754 2329998400471237 m001 FeigenbaumKappa^2*KhintchineLevy/exp(sqrt(5)) 2329998402069365 r005 Im(z^2+c),c=-13/14+9/43*I,n=36 2329998409227550 m001 (2*Pi/GAMMA(5/6)+Tribonacci)/(2^(1/2)-3^(1/2)) 2329998414646498 a007 Real Root Of 62*x^4-71*x^3-389*x^2-74*x-786 2329998428806038 a001 75025/2207*322^(1/3) 2329998443157031 l006 ln(752/7729) 2329998450691242 b008 -56/69+Pi 2329998457477352 a001 1/47*(1/2*5^(1/2)+1/2)^28*7^(2/9) 2329998461804128 a007 Real Root Of 309*x^4+465*x^3-316*x^2+702*x+126 2329998465942977 m001 (Trott2nd-Thue)/(ErdosBorwein+ReciprocalLucas) 2329998472511437 a007 Real Root Of 362*x^4+615*x^3-673*x^2+37*x+850 2329998484558354 a001 3/5*610^(11/52) 2329998506816043 a007 Real Root Of 299*x^4+864*x^3+339*x^2+266*x+896 2329998513659186 a007 Real Root Of -37*x^4+400*x^3+358*x^2+758*x-201 2329998514965112 m001 1/Catalan*ln(Salem)*GAMMA(1/4)^2 2329998515866091 r005 Re(z^2+c),c=-7/29+17/53*I,n=11 2329998516968089 m001 1/OneNinth/ln(GolombDickman)^2*GAMMA(1/6) 2329998517469406 r005 Re(z^2+c),c=-13/56+21/61*I,n=29 2329998543919173 h003 exp(Pi*(6^(5/6)-11^(5/12))) 2329998543919173 h008 exp(Pi*(6^(5/6)-11^(5/12))) 2329998546586765 m001 (1+2^(1/3))/(-Paris+ZetaQ(4)) 2329998554594089 a001 72/51841*199^(30/31) 2329998554836596 m001 (-gamma(1)+Cahen)/(5^(1/2)+Chi(1)) 2329998571677889 r005 Im(z^2+c),c=-11/14+23/248*I,n=22 2329998577091797 r002 4th iterates of z^2 + 2329998579814256 a007 Real Root Of -948*x^4-237*x^3-325*x^2+320*x+92 2329998581188500 l006 ln(6845/8641) 2329998583658976 a007 Real Root Of -643*x^4+90*x^3-670*x^2+921*x+254 2329998593267421 m001 (-Paris+Riemann3rdZero)/(Psi(1,1/3)+Gompertz) 2329998597244926 a007 Real Root Of 493*x^4+908*x^3-737*x^2-138*x+635 2329998601117550 r009 Re(z^3+c),c=-13/40+21/55*I,n=21 2329998605127307 m001 1/ln(Tribonacci)/Cahen^2*sin(Pi/5) 2329998608401061 r005 Re(z^2+c),c=-17/14+41/252*I,n=64 2329998609527465 a007 Real Root Of -170*x^4-489*x^3+14*x^2+861*x+755 2329998625592637 r005 Re(z^2+c),c=-4/21+26/57*I,n=53 2329998632235730 m009 (2*Pi^2-1)/(2/3*Psi(1,2/3)+6) 2329998636879046 a007 Real Root Of -187*x^4-174*x^3+471*x^2+32*x+828 2329998649405785 r005 Re(z^2+c),c=31/98+11/58*I,n=24 2329998650791010 r009 Re(z^3+c),c=-3/44+23/33*I,n=8 2329998653887366 m009 (3/4*Psi(1,3/4)-2)/(2/5*Psi(1,3/4)+3) 2329998657836812 r005 Im(z^2+c),c=-11/23+23/55*I,n=16 2329998658756109 m001 (ln(3)+Zeta(1/2))/(Mills-MinimumGamma) 2329998679235245 a001 46368/521*521^(2/13) 2329998679436473 r005 Im(z^2+c),c=-9/38+13/38*I,n=14 2329998681258321 b008 Tan[19/83] 2329998684255973 s001 sum(exp(-Pi/4)^(n-1)*A155947[n],n=1..infinity) 2329998684364487 p004 log(28319/22433) 2329998686773581 a001 987/521*1364^(2/3) 2329998698494194 a007 Real Root Of -735*x^4+155*x^3+736*x^2+353*x-122 2329998700449920 p001 sum(1/(373*n+301)/n/(64^n),n=1..infinity) 2329998708704991 p001 sum(1/(554*n+133)/n/(625^n),n=1..infinity) 2329998710564768 m001 (GAMMA(7/12)+ErdosBorwein)/(Khinchin-Totient) 2329998712967152 r005 Re(z^2+c),c=13/50+7/46*I,n=22 2329998720731824 a007 Real Root Of -326*x^4-871*x^3-623*x^2-857*x-24 2329998722864867 m001 (CopelandErdos-FellerTornier)^Gompertz 2329998729671109 l006 ln(7794/9839) 2329998740762129 r005 Im(z^2+c),c=-19/34+35/102*I,n=19 2329998747647135 a004 Fibonacci(13)*Lucas(15)/(1/2+sqrt(5)/2)^15 2329998749594845 r005 Re(z^2+c),c=-29/122+19/32*I,n=14 2329998750199266 r005 Re(z^2+c),c=39/106+3/13*I,n=59 2329998750515785 m001 Niven^((1+3^(1/2))^(1/2))/Zeta(5) 2329998768861209 a007 Real Root Of -457*x^4-673*x^3+930*x^2+75*x+82 2329998770483368 a007 Real Root Of -551*x^4-905*x^3+848*x^2-131*x-117 2329998785565760 a007 Real Root Of 333*x^4+947*x^3+425*x^2-255*x-737 2329998793158586 a007 Real Root Of -2*x^4-75*x^3-661*x^2+30*x+308 2329998795698777 l006 ln(367/3772) 2329998798047600 m001 FeigenbaumC^2/GolombDickman*ln(cosh(1)) 2329998801681170 m001 Pi+(ln(2)/ln(10)-3^(1/2))*LambertW(1) 2329998802104544 r005 Im(z^2+c),c=-49/118+17/43*I,n=42 2329998805969516 m005 (1/3*Catalan+3/7)/(5/7*gamma-8/11) 2329998812489664 a007 Real Root Of 138*x^4+176*x^3+753*x^2-180*x-81 2329998814544186 r005 Re(z^2+c),c=-19/86+20/53*I,n=16 2329998815263536 r005 Im(z^2+c),c=-3/122+11/41*I,n=4 2329998821638531 r005 Re(z^2+c),c=-57/122+23/49*I,n=10 2329998837300035 a001 98209/2889*322^(1/3) 2329998840796088 r005 Im(z^2+c),c=35/114+27/38*I,n=4 2329998841535217 h001 (-6*exp(8)+2)/(-7*exp(7)+1) 2329998849574520 m001 (Salem-ln(Pi))/GAMMA(2/3) 2329998858026577 a007 Real Root Of -393*x^4+541*x^3+334*x^2+507*x+108 2329998864794483 r005 Re(z^2+c),c=5/17+8/33*I,n=8 2329998869733237 r005 Re(z^2+c),c=-8/31+1/4*I,n=11 2329998875482120 b008 Pi+22*Log[5/2] 2329998880111600 r005 Im(z^2+c),c=-33/82+20/51*I,n=20 2329998896898518 a001 514229/15127*322^(1/3) 2329998900337861 m001 1/ln(GAMMA(5/6))^2*GAMMA(23/24)/sqrt(3)^2 2329998905593820 a001 1346269/39603*322^(1/3) 2329998906461478 a007 Real Root Of -357*x^4-867*x^3+240*x^2+679*x-166 2329998906862447 a001 1762289/51841*322^(1/3) 2329998907047537 a001 9227465/271443*322^(1/3) 2329998907074542 a001 24157817/710647*322^(1/3) 2329998907078482 a001 31622993/930249*322^(1/3) 2329998907079056 a001 165580141/4870847*322^(1/3) 2329998907079140 a001 433494437/12752043*322^(1/3) 2329998907079153 a001 567451585/16692641*322^(1/3) 2329998907079154 a001 2971215073/87403803*322^(1/3) 2329998907079155 a001 7778742049/228826127*322^(1/3) 2329998907079155 a001 10182505537/299537289*322^(1/3) 2329998907079155 a001 53316291173/1568397607*322^(1/3) 2329998907079155 a001 139583862445/4106118243*322^(1/3) 2329998907079155 a001 182717648081/5374978561*322^(1/3) 2329998907079155 a001 956722026041/28143753123*322^(1/3) 2329998907079155 a001 2504730781961/73681302247*322^(1/3) 2329998907079155 a001 3278735159921/96450076809*322^(1/3) 2329998907079155 a001 10610209857723/312119004989*322^(1/3) 2329998907079155 a001 4052739537881/119218851371*322^(1/3) 2329998907079155 a001 387002188980/11384387281*322^(1/3) 2329998907079155 a001 591286729879/17393796001*322^(1/3) 2329998907079155 a001 225851433717/6643838879*322^(1/3) 2329998907079155 a001 1135099622/33391061*322^(1/3) 2329998907079155 a001 32951280099/969323029*322^(1/3) 2329998907079155 a001 12586269025/370248451*322^(1/3) 2329998907079155 a001 1201881744/35355581*322^(1/3) 2329998907079155 a001 1836311903/54018521*322^(1/3) 2329998907079160 a001 701408733/20633239*322^(1/3) 2329998907079192 a001 66978574/1970299*322^(1/3) 2329998907079412 a001 102334155/3010349*322^(1/3) 2329998907080917 a001 39088169/1149851*322^(1/3) 2329998907091231 a001 196452/5779*322^(1/3) 2329998907161930 a001 5702887/167761*322^(1/3) 2329998907502167 m005 (1/2*Catalan+2/9)/(2*2^(1/2)+1/11) 2329998907646502 a001 2178309/64079*322^(1/3) 2329998910967812 a001 208010/6119*322^(1/3) 2329998911163450 m005 (1/2*2^(1/2)+5)/(1/4*Zeta(3)-6/11) 2329998911760112 a001 98209/38*9349^(32/43) 2329998915485729 a001 322/317811*2504730781961^(4/21) 2329998915697861 a001 1/144*102334155^(4/21) 2329998927706580 m002 6+Pi+Pi^6/(4*ProductLog[Pi]) 2329998928607427 a007 Real Root Of -453*x^4-676*x^3+466*x^2-874*x+234 2329998928750887 a001 121393/76*24476^(31/43) 2329998930741203 a001 322/6765*4181^(4/21) 2329998932258619 m001 1/(3^(1/3))^2/Cahen^2*ln(Zeta(9)) 2329998933732408 a001 317811/9349*322^(1/3) 2329998936483899 m001 Paris*Artin^Porter 2329998937800324 m001 (ln(2)/ln(10)+gamma(3))/(CareFree+Gompertz) 2329998938491740 a007 Real Root Of -312*x^4-210*x^3+743*x^2-844*x+539 2329998941389090 a001 28657/76*15127^(39/43) 2329998953772716 m005 (1/3*exp(1)-3/5)/(4/5*2^(1/2)-1) 2329998954821295 m001 1/ln(BesselK(1,1))^2/Rabbit/GAMMA(1/24) 2329998958675795 m002 Pi+Pi^4+5*E^Pi*Log[Pi] 2329998963719564 m001 (Riemann1stZero+Thue)/(ln(5)-cos(1/12*Pi)) 2329998967763518 m005 (1/3*Zeta(3)+1/10)/(6/7*Catalan-1) 2329998970773517 m005 (-1/2+1/6*5^(1/2))/(1/4*2^(1/2)-9/10) 2329998978656692 a001 514229/76*5778^(29/43) 2329998981725779 r005 Re(z^2+c),c=19/56+16/59*I,n=19 2329998987387285 m001 Otter^BesselI(1,1)/(Robbin^BesselI(1,1)) 2329998989000908 m005 (1/2*5^(1/2)+3)/(4/11*Pi+5/8) 2329998990632211 g006 -Psi(1,9/11)-Psi(1,9/10)-Psi(1,8/9)-Psi(1,1/4) 2329998997772569 a007 Real Root Of 204*x^4+558*x^3+28*x^2-648*x-616 2329999000565955 r005 Re(z^2+c),c=33/106+7/36*I,n=63 2329999000649868 s002 sum(A160666[n]/((10^n+1)/n),n=1..infinity) 2329999001213449 a007 Real Root Of -589*x^4-886*x^3+984*x^2-337*x+25 2329999014313175 m001 (-Kac+ZetaP(4))/(3^(1/2)+GolombDickman) 2329999030798433 m001 (Cahen-Otter)/(arctan(1/2)-Backhouse) 2329999044044757 r005 Re(z^2+c),c=-13/46+5/54*I,n=6 2329999054899105 a007 Real Root Of 4*x^4+932*x^3+2*x^2+446*x+122 2329999056685394 a007 Real Root Of -381*x^4-816*x^3+407*x^2+831*x+634 2329999059121956 m001 MadelungNaCl^ThueMorse/cos(1) 2329999060534710 m001 2/3*GaussKuzminWirsing+GAMMA(5/12) 2329999063330962 r002 25th iterates of z^2 + 2329999069516327 h005 exp(sin(Pi*14/43)*sin(Pi*16/35)) 2329999072551220 a005 (1/cos(3/101*Pi))^194 2329999079297659 r009 Re(z^3+c),c=-29/94+13/38*I,n=17 2329999080613731 m005 (1/3*Catalan+1/5)/(8/11*3^(1/2)+10/11) 2329999083698886 v002 sum(1/(2^n*(23*n^2-59*n+68)),n=1..infinity) 2329999083918159 r009 Im(z^3+c),c=-61/110+11/23*I,n=6 2329999084616024 m001 GAMMA(23/24)/(FeigenbaumC-KomornikLoreti) 2329999089763281 a001 121393/3571*322^(1/3) 2329999090726637 m002 Pi^(-3)+Coth[Pi]/5 2329999098445251 a005 (1/cos(1/77*Pi))^1016 2329999098823602 a007 Real Root Of -156*x^4+4*x^3+841*x^2-199*x-381 2329999105115402 a005 (1/cos(19/149*Pi))^94 2329999124588967 r002 16th iterates of z^2 + 2329999132585813 r005 Im(z^2+c),c=-41/32+5/57*I,n=13 2329999136145354 r005 Re(z^2+c),c=-17/118+26/47*I,n=44 2329999139750492 m001 (3^(1/2)+Chi(1))/(Zeta(1,-1)+Zeta(1,2)) 2329999150789196 r005 Im(z^2+c),c=-25/18+1/212*I,n=38 2329999151288125 m001 (Magata-Tribonacci)/(ln(Pi)-Bloch) 2329999164971578 m001 (Kolakoski-Trott)/(GAMMA(13/24)-Conway) 2329999165965953 l006 ln(716/7359) 2329999166987910 m001 (Zeta(5)-GAMMA(2/3))/(KhinchinLevy+ZetaP(3)) 2329999176780359 m001 (Pi+exp(Pi))/(gamma-Niven) 2329999180128366 m001 GAMMA(7/12)^ln(Pi)+CareFree 2329999182642349 m001 1/exp(cos(Pi/12))^2/GAMMA(5/24)/sqrt(2) 2329999182707767 m001 CareFree^2/exp(DuboisRaymond)^2*FeigenbaumB^2 2329999193362667 m005 (-1/30+1/6*5^(1/2))/(10/11*Zeta(3)+4/11) 2329999195060187 r009 Re(z^3+c),c=-37/118+17/35*I,n=4 2329999207069362 r005 Im(z^2+c),c=-9/10+27/134*I,n=52 2329999209650216 m001 (Conway-Thue)/(cos(1/5*Pi)+ln(3)) 2329999218955886 r005 Re(z^2+c),c=-9/82+35/54*I,n=36 2329999224499695 m001 (gamma+Salem*Tribonacci)/Salem 2329999225847882 r005 Im(z^2+c),c=-41/122+22/59*I,n=18 2329999232917764 r002 18th iterates of z^2 + 2329999238804503 a001 29/233*28657^(26/51) 2329999250707811 r005 Im(z^2+c),c=-33/86+33/62*I,n=23 2329999253124676 m005 (-1/5+2/5*5^(1/2))/(4/5*2^(1/2)-5/6) 2329999254450001 r005 Re(z^2+c),c=-3/23+25/43*I,n=58 2329999262318797 a001 2584/521*1364^(8/15) 2329999262799546 r002 7th iterates of z^2 + 2329999268682602 a007 Real Root Of 268*x^4+170*x^3-800*x^2+628*x+58 2329999271226215 m001 exp(-1/2*Pi)/(GAMMA(19/24)-Psi(1,1/3)) 2329999280578796 a003 cos(Pi*1/24)-sin(Pi*53/117) 2329999285966940 m008 (2/3*Pi^3-2)/(5/6*Pi^6+1/6) 2329999288813034 m001 (2^(1/2)+ZetaP(2))^FeigenbaumKappa 2329999294067512 r002 47th iterates of z^2 + 2329999294067512 r002 47th iterates of z^2 + 2329999297375948 r005 Re(z^2+c),c=-19/78+19/62*I,n=23 2329999297852257 p001 sum((-1)^n/(544*n+429)/(1024^n),n=0..infinity) 2329999300671620 a001 76/377*89^(1/31) 2329999311115990 g005 Pi^(1/2)*GAMMA(1/11)*GAMMA(3/5)/GAMMA(7/9) 2329999311803832 r009 Re(z^3+c),c=-23/66+28/59*I,n=9 2329999312675722 a001 11/514229*13^(27/29) 2329999320243855 r005 Im(z^2+c),c=-21/34+2/85*I,n=13 2329999330684140 r005 Im(z^2+c),c=-9/20+24/61*I,n=25 2329999335896891 m001 (Salem-TreeGrowth2nd)/(GAMMA(23/24)-Rabbit) 2329999338619488 r009 Im(z^3+c),c=-25/98+13/62*I,n=4 2329999339824502 a001 75025/521*521^(1/13) 2329999342844894 p004 log(23017/18233) 2329999344082439 m005 (1/2*Zeta(3)+7/12)/(5/11*exp(1)-8/11) 2329999349676073 a001 233/2207*3571^(16/17) 2329999350187411 a007 Real Root Of 38*x^4+855*x^3-748*x^2-937*x-287 2329999350456290 a007 Real Root Of 566*x^4+92*x^3-813*x^2-415*x+138 2329999354331737 a001 98209/38*2207^(38/43) 2329999369124893 m001 (ZetaP(4)+ZetaQ(3))/(Ei(1)+Pi^(1/2)) 2329999371599298 r005 Re(z^2+c),c=15/74+19/47*I,n=44 2329999374862405 m002 -6*Pi^4+Log[Pi]+Pi^5*Log[Pi] 2329999376522808 r005 Im(z^2+c),c=-9/46+19/30*I,n=46 2329999377676915 a001 10946/843*322^(1/2) 2329999389373134 r005 Re(z^2+c),c=-19/50+19/35*I,n=11 2329999389489343 b008 E^2*Pi+Csch[Pi] 2329999393299250 r005 Im(z^2+c),c=31/106+4/61*I,n=5 2329999397868095 a001 2207*514229^(9/17) 2329999402971398 m005 (1/2*5^(1/2)-11/12)/(8/11*gamma+4/9) 2329999404162916 h001 (1/10*exp(1)+2/5)/(3/10*exp(2)+2/3) 2329999410151136 a007 Real Root Of -114*x^4+452*x^3+230*x^2+401*x+87 2329999414195520 a001 987/521*3571^(10/17) 2329999419290074 r005 Re(z^2+c),c=-23/114+37/59*I,n=46 2329999431335584 a001 1597/521*1364^(3/5) 2329999435331746 m006 (4*Pi-1/6)/(3/5*Pi^2-3/5) 2329999435331746 m008 (4*Pi-1/6)/(3/5*Pi^2-3/5) 2329999435747017 r002 5th iterates of z^2 + 2329999442258074 a001 4181/521*1364^(7/15) 2329999444544592 b008 6+E^E*(-2+Pi) 2329999451008785 r005 Re(z^2+c),c=4/11+12/55*I,n=4 2329999460520145 a007 Real Root Of 884*x^4-125*x^3+846*x^2-845*x-247 2329999472745279 r009 Re(z^3+c),c=-17/122+11/12*I,n=48 2329999475079401 m001 1/TwinPrimes^2/ln(Sierpinski)/Zeta(5) 2329999481546940 a007 Real Root Of -373*x^4-774*x^3+243*x^2+180*x+303 2329999484268389 a003 sin(Pi*1/80)*sin(Pi*18/89) 2329999488140302 p001 sum((-1)^n/(476*n+423)/(32^n),n=0..infinity) 2329999488907994 a001 6765/521*1364^(2/5) 2329999493825186 m001 (RenyiParking-ZetaQ(4))/(Ei(1)+Mills) 2329999496286952 a007 Real Root Of -280*x^4-651*x^3-397*x^2-706*x+528 2329999499195134 a001 233/2207*9349^(16/19) 2329999503046318 r005 Im(z^2+c),c=-19/52+22/37*I,n=24 2329999507644934 a001 987/521*9349^(10/19) 2329999510260159 a007 Real Root Of -192*x^4-715*x^3-846*x^2-286*x+541 2329999513383260 r005 Im(z^2+c),c=-37/110+22/59*I,n=29 2329999518466885 a007 Real Root Of 469*x^4+875*x^3-434*x^2+150*x-49 2329999518680569 a001 233/2207*24476^(16/21) 2329999519823331 a001 987/521*24476^(10/21) 2329999521249124 a001 233/2207*64079^(16/23) 2329999521428678 a001 987/521*64079^(10/23) 2329999521642278 a001 987/521*167761^(2/5) 2329999521643869 a001 233/2207*(1/2+1/2*5^(1/2))^16 2329999521643869 a001 233/2207*23725150497407^(1/4) 2329999521643869 a001 233/2207*73681302247^(4/13) 2329999521643869 a001 233/2207*10749957122^(1/3) 2329999521643869 a001 233/2207*4106118243^(8/23) 2329999521643869 a001 233/2207*1568397607^(4/11) 2329999521643869 a001 233/2207*599074578^(8/21) 2329999521643869 a001 233/2207*228826127^(2/5) 2329999521643869 a001 233/2207*87403803^(8/19) 2329999521643870 a001 233/2207*33385282^(4/9) 2329999521643876 a001 233/2207*12752043^(8/17) 2329999521643918 a001 233/2207*4870847^(1/2) 2329999521644228 a001 233/2207*1860498^(8/15) 2329999521646506 a001 233/2207*710647^(4/7) 2329999521663329 a001 233/2207*271443^(8/13) 2329999521675392 a001 987/521*20633239^(2/7) 2329999521675394 a001 987/521*2537720636^(2/9) 2329999521675394 a001 987/521*312119004989^(2/11) 2329999521675394 a001 987/521*(1/2+1/2*5^(1/2))^10 2329999521675394 a001 987/521*28143753123^(1/5) 2329999521675394 a001 987/521*10749957122^(5/24) 2329999521675394 a001 987/521*4106118243^(5/23) 2329999521675394 a001 987/521*1568397607^(5/22) 2329999521675394 a001 987/521*599074578^(5/21) 2329999521675394 a001 987/521*228826127^(1/4) 2329999521675394 a001 987/521*87403803^(5/19) 2329999521675394 a001 987/521*33385282^(5/18) 2329999521675398 a001 987/521*12752043^(5/17) 2329999521675424 a001 987/521*4870847^(5/16) 2329999521675618 a001 987/521*1860498^(1/3) 2329999521677042 a001 987/521*710647^(5/14) 2329999521687556 a001 987/521*271443^(5/13) 2329999521765704 a001 987/521*103682^(5/12) 2329999521788366 a001 233/2207*103682^(2/3) 2329999522350663 a001 987/521*39603^(5/11) 2329999522724300 a001 233/2207*39603^(8/11) 2329999525775854 r005 Im(z^2+c),c=-45/122+13/34*I,n=40 2329999526766595 a001 987/521*15127^(1/2) 2329999529789791 a001 233/2207*15127^(4/5) 2329999529958685 r005 Im(z^2+c),c=-12/29+32/61*I,n=23 2329999531641333 a001 377/521*843^(6/7) 2329999532436463 m001 (-KhinchinLevy+Niven)/(exp(Pi)-ln(2^(1/2)+1)) 2329999537462731 r009 Re(z^3+c),c=-17/122+57/62*I,n=26 2329999537623792 r009 Re(z^3+c),c=-31/98+13/36*I,n=17 2329999539017249 r005 Re(z^2+c),c=-13/48+10/53*I,n=12 2329999541349708 p001 sum(1/(553*n+134)/n/(625^n),n=1..infinity) 2329999543182216 m001 (arctan(1/3)+Niven)/(Trott+Thue) 2329999546774647 m006 (1/3/Pi-3/4)/(1/2*ln(Pi)-3/5) 2329999547235714 m002 -E^Pi+Pi+3*Pi^3-Pi^5 2329999555329855 l006 ln(349/3587) 2329999555406098 m001 Weierstrass^LandauRamanujan2nd-ln(2^(1/2)+1) 2329999560448293 a001 987/521*5778^(5/9) 2329999569253862 r005 Im(z^2+c),c=9/58+9/50*I,n=12 2329999569606983 r005 Re(z^2+c),c=-21/22+15/86*I,n=6 2329999570892209 m001 FeigenbaumDelta*Stephens^(2^(1/3)) 2329999575109767 a007 Real Root Of -202*x^4-246*x^3+438*x^2+182*x+888 2329999583680508 a001 233/2207*5778^(8/9) 2329999586469924 a001 10946/521*1364^(1/3) 2329999588913606 a007 Real Root Of 181*x^4-665*x^3-160*x^2-677*x-158 2329999598403018 r002 18th iterates of z^2 + 2329999614515023 r005 Re(z^2+c),c=-4/15+4/19*I,n=22 2329999625518867 a001 5473/38*29^(1/7) 2329999635568513 r005 Im(z^2+c),c=-7/40+19/35*I,n=3 2329999646340227 a001 5/271443*47^(29/44) 2329999648624391 m001 FeigenbaumC^ln(2)+cos(1/5*Pi) 2329999664585200 a001 17711/521*1364^(4/15) 2329999668945080 m005 (1/2*Catalan+3/7)/(1/3*2^(1/2)-1/11) 2329999675436375 r009 Re(z^3+c),c=-19/52+11/23*I,n=24 2329999681411014 a007 Real Root Of 264*x^4+664*x^3+590*x^2+875*x-546 2329999689497619 a007 Real Root Of -436*x^4-137*x^3+142*x^2+829*x+185 2329999699978667 r005 Re(z^2+c),c=11/36+3/56*I,n=10 2329999714835817 a001 228826127/233*514229^(16/17) 2329999715050903 a001 103682/233*1836311903^(16/17) 2329999716272070 b008 EulerGamma*(4+Sech[4]) 2329999726946740 m002 -E^Pi+Pi*Csch[Pi]-5*Sech[Pi] 2329999735501441 r005 Im(z^2+c),c=-19/86+21/62*I,n=13 2329999738690792 a003 -2^(1/2)+1/2*3^(1/2)-cos(4/21*Pi)-cos(2/21*Pi) 2329999739256735 h001 (-8*exp(1/3)+2)/(-6*exp(2)+5) 2329999747819646 m001 Lehmer^2*ln(GaussKuzminWirsing)*GAMMA(1/6) 2329999749202874 a001 28657/322*123^(1/5) 2329999750128441 a001 28657/521*1364^(1/5) 2329999758749943 a007 Real Root Of 244*x^4+588*x^3+91*x^2-186*x-681 2329999759087536 m001 (-Grothendieck+Robbin)/(2^(1/2)-Ei(1)) 2329999760797904 r005 Im(z^2+c),c=-8/15+23/50*I,n=57 2329999771250360 s002 sum(A181058[n]/(n*10^n-1),n=1..infinity) 2329999781002644 a007 Real Root Of -804*x^4+540*x^3+782*x^2+245*x-104 2329999781581654 a007 Real Root Of 15*x^4-228*x^3-334*x^2+333*x-737 2329999782796512 m001 1/exp(GAMMA(1/6))^2/Porter*GAMMA(7/12)^2 2329999784593762 a001 521/2584*6557470319842^(16/17) 2329999788189359 a007 Real Root Of -244*x^4-311*x^3+467*x^2-552*x-564 2329999792930299 a007 Real Root Of -8*x^4-195*x^3-240*x^2-917*x+143 2329999796750326 r005 Re(z^2+c),c=9/98+17/56*I,n=35 2329999800654667 l006 ln(949/1198) 2329999807899014 b008 ArcCsc[1+ArcCosh[14]] 2329999815426647 a007 Real Root Of -385*x^4-604*x^3+530*x^2-629*x-636 2329999815918324 a001 843/1597*34^(8/19) 2329999817284179 a004 Fibonacci(13)*Lucas(17)/(1/2+sqrt(5)/2)^17 2329999820647964 a001 987/521*2207^(5/8) 2329999823425167 r002 28th iterates of z^2 + 2329999827858675 h001 (9/10*exp(2)+8/9)/(7/8*exp(1)+6/7) 2329999832834456 a001 46368/521*1364^(2/15) 2329999844256474 a001 2584/521*3571^(8/17) 2329999849181533 r005 Im(z^2+c),c=-13/22+5/117*I,n=51 2329999850177485 r005 Im(z^2+c),c=1/24+11/46*I,n=8 2329999852591457 a005 (1/cos(55/189*Pi))^109 2329999852601525 m005 (1/2*Catalan-10/11)/(1/3*Pi+8/9) 2329999857243181 m001 5^(1/2)/(GlaisherKinkelin^Zeta(1,-1)) 2329999866441259 m001 GAMMA(23/24)+GAMMA(3/4)^Mills 2329999868058227 r009 Im(z^3+c),c=-17/126+25/31*I,n=12 2329999868918380 m005 (1/2*gamma-2/11)/(2*5^(1/2)+1/9) 2329999878693018 m001 (ln(2)/ln(10))^GaussAGM+ReciprocalLucas 2329999881794865 m001 GAMMA(5/6)/(MertensB1^cos(1)) 2329999883293270 r005 Im(z^2+c),c=-71/98+9/55*I,n=64 2329999884409554 m001 (cos(1/12*Pi)-Backhouse)/(Bloch-MertensB1) 2329999887280711 m002 -Pi^2+Cosh[Pi]+6*Pi*Log[Pi] 2329999896743332 r005 Re(z^2+c),c=-21/74+2/23*I,n=13 2329999897848201 h001 (7/9*exp(1)+9/10)/(1/5*exp(1)+3/4) 2329999900164584 m001 1/Zeta(3)*GAMMA(5/24)^2/exp(cos(Pi/12))^2 2329999903522776 r009 Im(z^3+c),c=-17/74+8/37*I,n=6 2329999904545782 r009 Im(z^3+c),c=-1/34+12/49*I,n=3 2329999904953936 a001 233/5778*9349^(18/19) 2329999906468006 m005 (3*gamma-3/5)/(4*2^(1/2)-4/5) 2329999906666616 a007 Real Root Of 215*x^4+196*x^3-841*x^2-713*x-953 2329999916624199 a001 75025/521*1364^(1/15) 2329999919016019 a001 2584/521*9349^(8/19) 2329999925361280 a001 6765/521*3571^(6/17) 2329999926875055 a001 233/5778*24476^(6/7) 2329999928758739 a001 2584/521*24476^(8/21) 2329999929764680 a001 233/5778*64079^(18/23) 2329999930043017 a001 2584/521*64079^(8/23) 2329999930200716 a001 233/5778*439204^(2/3) 2329999930208748 a001 233/5778*7881196^(6/11) 2329999930208768 a001 233/5778*141422324^(6/13) 2329999930208768 a001 233/5778*2537720636^(2/5) 2329999930208768 a001 233/5778*45537549124^(6/17) 2329999930208768 a001 233/5778*14662949395604^(2/7) 2329999930208768 a001 233/5778*(1/2+1/2*5^(1/2))^18 2329999930208768 a001 233/5778*192900153618^(1/3) 2329999930208768 a001 233/5778*10749957122^(3/8) 2329999930208768 a001 233/5778*4106118243^(9/23) 2329999930208768 a001 233/5778*1568397607^(9/22) 2329999930208768 a001 233/5778*599074578^(3/7) 2329999930208768 a001 233/5778*228826127^(9/20) 2329999930208769 a001 233/5778*87403803^(9/19) 2329999930208769 a001 233/5778*33385282^(1/2) 2329999930208776 a001 233/5778*12752043^(9/17) 2329999930208824 a001 233/5778*4870847^(9/16) 2329999930209172 a001 233/5778*1860498^(3/5) 2329999930211734 a001 233/5778*710647^(9/14) 2329999930230661 a001 233/5778*271443^(9/13) 2329999930240389 a001 2584/521*(1/2+1/2*5^(1/2))^8 2329999930240389 a001 2584/521*23725150497407^(1/8) 2329999930240389 a001 2584/521*73681302247^(2/13) 2329999930240389 a001 2584/521*10749957122^(1/6) 2329999930240389 a001 2584/521*4106118243^(4/23) 2329999930240389 a001 2584/521*1568397607^(2/11) 2329999930240389 a001 2584/521*599074578^(4/21) 2329999930240389 a001 2584/521*228826127^(1/5) 2329999930240389 a001 2584/521*87403803^(4/19) 2329999930240389 a001 2584/521*33385282^(2/9) 2329999930240392 a001 2584/521*12752043^(4/17) 2329999930240414 a001 2584/521*4870847^(1/4) 2329999930240569 a001 2584/521*1860498^(4/15) 2329999930241707 a001 2584/521*710647^(2/7) 2329999930250119 a001 2584/521*271443^(4/13) 2329999930312637 a001 2584/521*103682^(1/3) 2329999930371327 a001 233/5778*103682^(3/4) 2329999930780605 a001 2584/521*39603^(4/11) 2329999931424253 a001 233/5778*39603^(9/11) 2329999934313350 a001 2584/521*15127^(2/5) 2329999935077875 a001 11/121393*3^(49/57) 2329999939372931 a001 233/5778*15127^(9/10) 2329999940039853 m001 exp(FeigenbaumC)*Porter^2*log(2+sqrt(3))^2 2329999946461728 a007 Real Root Of -192*x^4-652*x^3-636*x^2-634*x-613 2329999946686156 m001 HardyLittlewoodC3^Conway*BesselK(0,1) 2329999950181006 a001 10946/521*3571^(5/17) 2329999950348348 s002 sum(A244896[n]/(n^2*10^n-1),n=1..infinity) 2329999951453572 a001 4181/521*3571^(7/17) 2329999955554070 a001 17711/521*3571^(4/17) 2329999957512087 s002 sum(A274765[n]/(n^3*2^n-1),n=1..infinity) 2329999960312097 r002 16th iterates of z^2 + 2329999960484432 p001 sum((-1)^n/(568*n+429)/(1000^n),n=0..infinity) 2329999961258714 a001 2584/521*5778^(4/9) 2329999961532595 m001 ln(GAMMA(17/24))/FeigenbaumC/sin(Pi/5) 2329999965306976 l006 ln(680/6989) 2329999968355099 a001 28657/521*3571^(3/17) 2329999972715689 a007 Real Root Of 89*x^4-832*x^3-976*x^2-544*x+190 2329999973342121 a004 Fibonacci(13)*Lucas(19)/(1/2+sqrt(5)/2)^19 2329999978318897 a001 46368/521*3571^(2/17) 2329999978668655 m001 sin(Pi/12)/ln(OneNinth)^2/sqrt(5) 2329999981430941 a001 6765/521*9349^(6/19) 2329999982382328 r005 Im(z^2+c),c=-27/98+11/31*I,n=31 2329999986113470 a001 233/15127*24476^(20/21) 2329999988737981 a001 6765/521*24476^(2/7) 2329999989324165 a001 233/15127*64079^(20/23) 2329999989366422 a001 75025/521*3571^(1/17) 2329999989701189 a001 6765/521*64079^(6/23) 2329999989751364 a001 233/15127*167761^(4/5) 2329999989814473 m001 exp(1)/(BesselJ(1,1)-ErdosBorwein) 2329999989817593 a001 233/15127*20633239^(4/7) 2329999989817596 a001 233/15127*2537720636^(4/9) 2329999989817596 a001 233/15127*(1/2+1/2*5^(1/2))^20 2329999989817596 a001 233/15127*23725150497407^(5/16) 2329999989817596 a001 233/15127*505019158607^(5/14) 2329999989817596 a001 233/15127*73681302247^(5/13) 2329999989817596 a001 233/15127*28143753123^(2/5) 2329999989817596 a001 233/15127*10749957122^(5/12) 2329999989817596 a001 233/15127*4106118243^(10/23) 2329999989817596 a001 233/15127*1568397607^(5/11) 2329999989817596 a001 233/15127*599074578^(10/21) 2329999989817596 a001 233/15127*228826127^(1/2) 2329999989817596 a001 233/15127*87403803^(10/19) 2329999989817597 a001 233/15127*33385282^(5/9) 2329999989817604 a001 233/15127*12752043^(10/17) 2329999989817657 a001 233/15127*4870847^(5/8) 2329999989818045 a001 233/15127*1860498^(2/3) 2329999989820891 a001 233/15127*710647^(5/7) 2329999989841921 a001 233/15127*271443^(10/13) 2329999989846534 a001 6765/521*439204^(2/9) 2329999989849212 a001 6765/521*7881196^(2/11) 2329999989849218 a001 6765/521*141422324^(2/13) 2329999989849218 a001 6765/521*2537720636^(2/15) 2329999989849218 a001 6765/521*45537549124^(2/17) 2329999989849218 a001 6765/521*14662949395604^(2/21) 2329999989849218 a001 6765/521*(1/2+1/2*5^(1/2))^6 2329999989849218 a001 6765/521*10749957122^(1/8) 2329999989849218 a001 6765/521*4106118243^(3/23) 2329999989849218 a001 6765/521*1568397607^(3/22) 2329999989849218 a001 6765/521*599074578^(1/7) 2329999989849218 a001 6765/521*228826127^(3/20) 2329999989849219 a001 6765/521*87403803^(3/19) 2329999989849219 a001 6765/521*33385282^(1/6) 2329999989849221 a001 6765/521*12752043^(3/17) 2329999989849237 a001 6765/521*4870847^(3/16) 2329999989849353 a001 6765/521*1860498^(1/5) 2329999989850207 a001 6765/521*710647^(3/14) 2329999989856516 a001 6765/521*271443^(3/13) 2329999989903405 a001 6765/521*103682^(1/4) 2329999989998217 a001 233/15127*103682^(5/6) 2329999990254380 a001 6765/521*39603^(3/11) 2329999991168135 a001 233/15127*39603^(10/11) 2329999992903940 a001 6765/521*15127^(3/10) 2329999992933844 a001 17711/521*9349^(4/19) 2329999996110667 a004 Fibonacci(13)*Lucas(21)/(1/2+sqrt(5)/2)^21 2329999996389929 a001 28657/521*9349^(3/19) 2329999996905723 a001 10946/521*9349^(5/19) 2329999997008785 a001 46368/521*9349^(2/19) 2329999997805204 a001 17711/521*24476^(4/21) 2329999997971632 a001 233/39603*64079^(22/23) 2329999998447343 a001 17711/521*64079^(4/23) 2329999998514382 a001 233/39603*7881196^(2/3) 2329999998514407 a001 233/39603*312119004989^(2/5) 2329999998514407 a001 233/39603*(1/2+1/2*5^(1/2))^22 2329999998514407 a001 233/39603*10749957122^(11/24) 2329999998514407 a001 233/39603*4106118243^(11/23) 2329999998514407 a001 233/39603*1568397607^(1/2) 2329999998514407 a001 233/39603*599074578^(11/21) 2329999998514407 a001 233/39603*228826127^(11/20) 2329999998514407 a001 233/39603*87403803^(11/19) 2329999998514408 a001 233/39603*33385282^(11/18) 2329999998514416 a001 233/39603*12752043^(11/17) 2329999998514474 a001 233/39603*4870847^(11/16) 2329999998514900 a001 233/39603*1860498^(11/15) 2329999998518032 a001 233/39603*710647^(11/14) 2329999998541164 a001 233/39603*271443^(11/13) 2329999998546029 a001 17711/521*(1/2+1/2*5^(1/2))^4 2329999998546029 a001 17711/521*23725150497407^(1/16) 2329999998546029 a001 17711/521*73681302247^(1/13) 2329999998546029 a001 17711/521*10749957122^(1/12) 2329999998546029 a001 17711/521*4106118243^(2/23) 2329999998546029 a001 17711/521*1568397607^(1/11) 2329999998546030 a001 17711/521*599074578^(2/21) 2329999998546030 a001 17711/521*228826127^(1/10) 2329999998546030 a001 17711/521*87403803^(2/19) 2329999998546030 a001 17711/521*33385282^(1/9) 2329999998546031 a001 17711/521*12752043^(2/17) 2329999998546042 a001 17711/521*4870847^(1/8) 2329999998546119 a001 17711/521*1860498^(2/15) 2329999998546689 a001 17711/521*710647^(1/7) 2329999998550895 a001 17711/521*271443^(2/13) 2329999998582154 a001 17711/521*103682^(1/6) 2329999998711365 a001 75025/521*9349^(1/19) 2329999998713090 a001 233/39603*103682^(11/12) 2329999998816137 a001 17711/521*39603^(2/11) 2329999999432554 a004 Fibonacci(13)*Lucas(23)/(1/2+sqrt(5)/2)^23 2329999999444465 a001 46368/521*24476^(2/21) 2329999999765534 a001 46368/521*64079^(2/23) 2329999999772518 a001 233/103682*439204^(8/9) 2329999999783227 a001 233/103682*7881196^(8/11) 2329999999783254 a001 233/103682*141422324^(8/13) 2329999999783254 a001 233/103682*2537720636^(8/15) 2329999999783254 a001 233/103682*45537549124^(8/17) 2329999999783254 a001 233/103682*14662949395604^(8/21) 2329999999783254 a001 233/103682*(1/2+1/2*5^(1/2))^24 2329999999783254 a001 233/103682*192900153618^(4/9) 2329999999783254 a001 233/103682*73681302247^(6/13) 2329999999783254 a001 233/103682*10749957122^(1/2) 2329999999783254 a001 233/103682*4106118243^(12/23) 2329999999783254 a001 233/103682*1568397607^(6/11) 2329999999783254 a001 233/103682*599074578^(4/7) 2329999999783254 a001 233/103682*228826127^(3/5) 2329999999783255 a001 233/103682*87403803^(12/19) 2329999999783256 a001 233/103682*33385282^(2/3) 2329999999783265 a001 233/103682*12752043^(12/17) 2329999999783328 a001 233/103682*4870847^(3/4) 2329999999783793 a001 233/103682*1860498^(4/5) 2329999999787209 a001 233/103682*710647^(6/7) 2329999999812445 a001 233/103682*271443^(12/13) 2329999999814877 a001 46368/521*(1/2+1/2*5^(1/2))^2 2329999999814877 a001 46368/521*10749957122^(1/24) 2329999999814877 a001 46368/521*4106118243^(1/23) 2329999999814877 a001 46368/521*1568397607^(1/22) 2329999999814877 a001 46368/521*599074578^(1/21) 2329999999814877 a001 46368/521*228826127^(1/20) 2329999999814877 a001 46368/521*87403803^(1/19) 2329999999814877 a001 46368/521*33385282^(1/18) 2329999999814878 a001 46368/521*12752043^(1/17) 2329999999814883 a001 46368/521*4870847^(1/16) 2329999999814922 a001 46368/521*1860498^(1/15) 2329999999815207 a001 46368/521*710647^(1/14) 2329999999817310 a001 46368/521*271443^(1/13) 2329999999832939 a001 46368/521*103682^(1/12) 2329999999917210 a004 Fibonacci(13)*Lucas(25)/(1/2+sqrt(5)/2)^25 2329999999929205 a001 75025/521*24476^(1/21) 2329999999949931 a001 46368/521*39603^(1/11) 2329999999968377 a001 233/271443*141422324^(2/3) 2329999999968377 a001 233/271443*(1/2+1/2*5^(1/2))^26 2329999999968377 a001 233/271443*73681302247^(1/2) 2329999999968377 a001 233/271443*10749957122^(13/24) 2329999999968377 a001 233/271443*4106118243^(13/23) 2329999999968377 a001 233/271443*1568397607^(13/22) 2329999999968377 a001 233/271443*599074578^(13/21) 2329999999968377 a001 233/271443*228826127^(13/20) 2329999999968377 a001 233/271443*87403803^(13/19) 2329999999968378 a001 233/271443*33385282^(13/18) 2329999999968388 a001 233/271443*12752043^(13/17) 2329999999968457 a001 233/271443*4870847^(13/16) 2329999999968960 a001 233/271443*1860498^(13/15) 2329999999972661 a001 233/271443*710647^(13/14) 2329999999987921 a004 Fibonacci(13)*Lucas(27)/(1/2+sqrt(5)/2)^27 2329999999995381 a001 233/710647*20633239^(4/5) 2329999999995386 a001 233/710647*17393796001^(4/7) 2329999999995386 a001 233/710647*14662949395604^(4/9) 2329999999995386 a001 233/710647*(1/2+1/2*5^(1/2))^28 2329999999995386 a001 233/710647*73681302247^(7/13) 2329999999995386 a001 233/710647*10749957122^(7/12) 2329999999995386 a001 233/710647*4106118243^(14/23) 2329999999995386 a001 233/710647*1568397607^(7/11) 2329999999995386 a001 233/710647*599074578^(2/3) 2329999999995386 a001 233/710647*228826127^(7/10) 2329999999995386 a001 233/710647*87403803^(14/19) 2329999999995387 a001 233/710647*33385282^(7/9) 2329999999995398 a001 233/710647*12752043^(14/17) 2329999999995472 a001 233/710647*4870847^(7/8) 2329999999996014 a001 233/710647*1860498^(14/15) 2329999999998237 a004 Fibonacci(13)*Lucas(29)/(1/2+sqrt(5)/2)^29 2329999999999292 a001 233/1860498*7881196^(10/11) 2329999999999322 a001 233/1860498*20633239^(6/7) 2329999999999326 a001 233/1860498*141422324^(10/13) 2329999999999326 a001 233/1860498*2537720636^(2/3) 2329999999999326 a001 233/1860498*45537549124^(10/17) 2329999999999326 a001 233/1860498*312119004989^(6/11) 2329999999999326 a001 233/1860498*14662949395604^(10/21) 2329999999999326 a001 233/1860498*(1/2+1/2*5^(1/2))^30 2329999999999326 a001 233/1860498*192900153618^(5/9) 2329999999999326 a001 233/1860498*28143753123^(3/5) 2329999999999326 a001 233/1860498*10749957122^(5/8) 2329999999999326 a001 233/1860498*4106118243^(15/23) 2329999999999326 a001 233/1860498*1568397607^(15/22) 2329999999999326 a001 233/1860498*599074578^(5/7) 2329999999999326 a001 233/1860498*228826127^(3/4) 2329999999999327 a001 233/1860498*87403803^(15/19) 2329999999999328 a001 233/1860498*33385282^(5/6) 2329999999999339 a001 233/1860498*12752043^(15/17) 2329999999999418 a001 233/1860498*4870847^(15/16) 2329999999999742 a004 Fibonacci(13)*Lucas(31)/(1/2+sqrt(5)/2)^31 2329999999999901 a001 233/4870847*(1/2+1/2*5^(1/2))^32 2329999999999901 a001 233/4870847*23725150497407^(1/2) 2329999999999901 a001 233/4870847*505019158607^(4/7) 2329999999999901 a001 233/4870847*73681302247^(8/13) 2329999999999901 a001 233/4870847*10749957122^(2/3) 2329999999999901 a001 233/4870847*4106118243^(16/23) 2329999999999901 a001 233/4870847*1568397607^(8/11) 2329999999999901 a001 233/4870847*599074578^(16/21) 2329999999999901 a001 233/4870847*228826127^(4/5) 2329999999999902 a001 233/4870847*87403803^(16/19) 2329999999999903 a001 233/4870847*33385282^(8/9) 2329999999999915 a001 233/4870847*12752043^(16/17) 2329999999999962 a004 Fibonacci(13)*Lucas(33)/(1/2+sqrt(5)/2)^33 2329999999999985 a001 233/12752043*45537549124^(2/3) 2329999999999985 a001 233/12752043*(1/2+1/2*5^(1/2))^34 2329999999999985 a001 233/12752043*10749957122^(17/24) 2329999999999985 a001 233/12752043*4106118243^(17/23) 2329999999999985 a001 233/12752043*1568397607^(17/22) 2329999999999985 a001 233/12752043*599074578^(17/21) 2329999999999985 a001 233/12752043*228826127^(17/20) 2329999999999985 a001 233/12752043*87403803^(17/19) 2329999999999987 a001 233/12752043*33385282^(17/18) 2329999999999994 a004 Fibonacci(13)*Lucas(35)/(1/2+sqrt(5)/2)^35 2329999999999997 a001 233/33385282*141422324^(12/13) 2329999999999997 a001 233/33385282*2537720636^(4/5) 2329999999999997 a001 233/33385282*45537549124^(12/17) 2329999999999997 a001 233/33385282*14662949395604^(4/7) 2329999999999997 a001 233/33385282*(1/2+1/2*5^(1/2))^36 2329999999999997 a001 233/33385282*505019158607^(9/14) 2329999999999997 a001 233/33385282*192900153618^(2/3) 2329999999999997 a001 233/33385282*73681302247^(9/13) 2329999999999997 a001 233/33385282*10749957122^(3/4) 2329999999999997 a001 233/33385282*4106118243^(18/23) 2329999999999997 a001 233/33385282*1568397607^(9/11) 2329999999999997 a001 233/33385282*599074578^(6/7) 2329999999999997 a001 233/33385282*228826127^(9/10) 2329999999999998 a001 233/33385282*87403803^(18/19) 2329999999999999 a004 Fibonacci(13)*Lucas(37)/(1/2+sqrt(5)/2)^37 2329999999999999 a001 233/87403803*817138163596^(2/3) 2329999999999999 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^38/Lucas(38) 2329999999999999 a001 233/87403803*10749957122^(19/24) 2329999999999999 a001 233/87403803*4106118243^(19/23) 2329999999999999 a001 233/87403803*1568397607^(19/22) 2329999999999999 a001 233/87403803*599074578^(19/21) 2329999999999999 a001 233/87403803*228826127^(19/20) 2329999999999999 a004 Fibonacci(13)*Lucas(39)/(1/2+sqrt(5)/2)^39 2329999999999999 a001 233/228826127*2537720636^(8/9) 2329999999999999 a001 233/228826127*312119004989^(8/11) 2329999999999999 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^40/Lucas(40) 2329999999999999 a001 233/228826127*23725150497407^(5/8) 2329999999999999 a001 233/228826127*73681302247^(10/13) 2329999999999999 a001 233/228826127*28143753123^(4/5) 2329999999999999 a001 233/228826127*10749957122^(5/6) 2329999999999999 a001 233/228826127*4106118243^(20/23) 2329999999999999 a001 233/228826127*1568397607^(10/11) 2329999999999999 a001 233/228826127*599074578^(20/21) 2329999999999999 a004 Fibonacci(13)*Lucas(41)/(1/2+sqrt(5)/2)^41 2329999999999999 a001 233/599074578*2537720636^(14/15) 2329999999999999 a001 233/599074578*17393796001^(6/7) 2329999999999999 a001 233/599074578*45537549124^(14/17) 2329999999999999 a001 233/599074578*817138163596^(14/19) 2329999999999999 a001 233/599074578*14662949395604^(2/3) 2329999999999999 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^42/Lucas(42) 2329999999999999 a001 233/599074578*505019158607^(3/4) 2329999999999999 a001 233/599074578*192900153618^(7/9) 2329999999999999 a001 233/599074578*10749957122^(7/8) 2329999999999999 a001 233/599074578*4106118243^(21/23) 2329999999999999 a001 233/599074578*1568397607^(21/22) 2329999999999999 a004 Fibonacci(13)*Lucas(43)/(1/2+sqrt(5)/2)^43 2329999999999999 a001 233/1568397607*312119004989^(4/5) 2329999999999999 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^44/Lucas(44) 2329999999999999 a001 233/1568397607*23725150497407^(11/16) 2329999999999999 a001 233/1568397607*73681302247^(11/13) 2329999999999999 a001 233/1568397607*10749957122^(11/12) 2329999999999999 a001 233/1568397607*4106118243^(22/23) 2329999999999999 a004 Fibonacci(13)*Lucas(45)/(1/2+sqrt(5)/2)^45 2329999999999999 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^46/Lucas(46) 2329999999999999 a001 233/4106118243*10749957122^(23/24) 2329999999999999 a004 Fibonacci(13)*Lucas(47)/(1/2+sqrt(5)/2)^47 2329999999999999 a001 233/10749957122*45537549124^(16/17) 2329999999999999 a001 233/10749957122*14662949395604^(16/21) 2329999999999999 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^48/Lucas(48) 2329999999999999 a001 233/10749957122*192900153618^(8/9) 2329999999999999 a001 233/10749957122*73681302247^(12/13) 2329999999999999 a004 Fibonacci(13)*Lucas(49)/(1/2+sqrt(5)/2)^49 2329999999999999 a001 233/28143753123*312119004989^(10/11) 2329999999999999 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^50/Lucas(50) 2329999999999999 a001 233/28143753123*3461452808002^(5/6) 2329999999999999 a004 Fibonacci(13)*Lucas(51)/(1/2+sqrt(5)/2)^51 2329999999999999 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^52/Lucas(52) 2329999999999999 a001 233/73681302247*23725150497407^(13/16) 2329999999999999 a001 233/73681302247*505019158607^(13/14) 2329999999999999 a004 Fibonacci(13)*Lucas(53)/(1/2+sqrt(5)/2)^53 2329999999999999 a001 233/192900153618*14662949395604^(6/7) 2329999999999999 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^54/Lucas(54) 2329999999999999 a004 Fibonacci(13)*Lucas(55)/(1/2+sqrt(5)/2)^55 2329999999999999 a001 233/505019158607*14662949395604^(8/9) 2329999999999999 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^56/Lucas(56) 2329999999999999 a004 Fibonacci(13)*Lucas(57)/(1/2+sqrt(5)/2)^57 2329999999999999 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^58/Lucas(58) 2329999999999999 a004 Fibonacci(13)*Lucas(59)/(1/2+sqrt(5)/2)^59 2329999999999999 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^60/Lucas(60) 2329999999999999 a004 Fibonacci(13)*Lucas(61)/(1/2+sqrt(5)/2)^61 2329999999999999 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^62/Lucas(62) 2329999999999999 a004 Fibonacci(13)*Lucas(63)/(1/2+sqrt(5)/2)^63 2329999999999999 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^64/Lucas(64) 2329999999999999 a004 Fibonacci(13)*Lucas(65)/(1/2+sqrt(5)/2)^65 2329999999999999 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^66/Lucas(66) 2329999999999999 a004 Fibonacci(13)*Lucas(67)/(1/2+sqrt(5)/2)^67 2329999999999999 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^68/Lucas(68) 2329999999999999 a004 Fibonacci(13)*Lucas(69)/(1/2+sqrt(5)/2)^69 2329999999999999 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^70/Lucas(70) 2329999999999999 a004 Fibonacci(13)*Lucas(71)/(1/2+sqrt(5)/2)^71 2329999999999999 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^72/Lucas(72) 2329999999999999 a004 Fibonacci(13)*Lucas(73)/(1/2+sqrt(5)/2)^73 2329999999999999 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^74/Lucas(74) 2329999999999999 a004 Fibonacci(13)*Lucas(75)/(1/2+sqrt(5)/2)^75 2329999999999999 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^76/Lucas(76) 2329999999999999 a004 Fibonacci(13)*Lucas(77)/(1/2+sqrt(5)/2)^77 2329999999999999 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^78/Lucas(78) 2329999999999999 a004 Fibonacci(13)*Lucas(79)/(1/2+sqrt(5)/2)^79 2329999999999999 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^80/Lucas(80) 2329999999999999 a004 Fibonacci(13)*Lucas(81)/(1/2+sqrt(5)/2)^81 2329999999999999 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^82/Lucas(82) 2329999999999999 a004 Fibonacci(13)*Lucas(83)/(1/2+sqrt(5)/2)^83 2329999999999999 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^84/Lucas(84) 2329999999999999 a004 Fibonacci(13)*Lucas(85)/(1/2+sqrt(5)/2)^85 2329999999999999 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^86/Lucas(86) 2329999999999999 a004 Fibonacci(13)*Lucas(87)/(1/2+sqrt(5)/2)^87 2329999999999999 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^88/Lucas(88) 2329999999999999 a004 Fibonacci(13)*Lucas(89)/(1/2+sqrt(5)/2)^89