2415700001636860 m005 (1/2*5^(1/2)+4)/(-29/63+1/9*5^(1/2)) 2415700002567115 r005 Re(z^2+c),c=-27/110+9/26*I,n=30 2415700015702243 p001 sum(1/(504*n+305)/n/(512^n),n=1..infinity) 2415700033960871 a007 Real Root Of -268*x^4-820*x^3+63*x^2+923*x-571 2415700034959160 m001 (exp(-Pi)+1/3)/(GAMMA(3/4)+1/3) 2415700042115011 b008 21+Log[47/2] 2415700042121166 m005 (1/2*exp(1)+1/7)/(2/9*Zeta(3)-8/9) 2415700050199958 r005 Re(z^2+c),c=-15/56+17/64*I,n=20 2415700051481696 a007 Real Root Of -374*x^4-712*x^3+460*x^2+152*x+382 2415700057956448 m001 (Magata-PisotVijayaraghavan)/(Pi-BesselI(0,2)) 2415700061518810 p004 log(36493/3259) 2415700063851915 a003 sin(Pi*3/116)+sin(Pi*2/39) 2415700064855339 m001 (Chi(1)-exp(1/Pi))/(polylog(4,1/2)+Niven) 2415700065350969 r002 25th iterates of z^2 + 2415700073245515 l006 ln(3151/4012) 2415700078974418 r009 Re(z^3+c),c=-1/94+7/9*I,n=19 2415700079279309 m005 (1/2*Catalan+7/8)/(7/8*Zeta(3)-1/2) 2415700086905965 m001 (exp(Pi)+Si(Pi))/(GAMMA(23/24)+ZetaQ(3)) 2415700107941978 m005 (-5/42+1/6*5^(1/2))/(5/8*Catalan-4/7) 2415700110294898 a001 341/36*12586269025^(11/15) 2415700113134942 a007 Real Root Of -32*x^4-746*x^3+689*x^2+888*x+338 2415700116903409 m005 (1/4*2^(1/2)-4/5)/(2/3*gamma-1/5) 2415700117322028 a007 Real Root Of 9*x^4+192*x^3-603*x^2+236*x-661 2415700124410167 m001 ln(GAMMA(17/24))/OneNinth*Zeta(5) 2415700128484096 r009 Im(z^3+c),c=-23/52+3/29*I,n=40 2415700136578437 a007 Real Root Of -748*x^4+199*x^3-569*x^2+333*x+119 2415700143562734 r009 Im(z^3+c),c=-7/25+37/50*I,n=28 2415700145680455 a001 440719107401/7*20365011074^(13/24) 2415700155560967 m008 (2*Pi^3-1/6)/(5/6*Pi^5+1) 2415700155990315 m001 (Catalan+cos(1))/(-ln(Pi)+MadelungNaCl) 2415700156584868 r005 Re(z^2+c),c=-61/64+15/58*I,n=18 2415700158023731 r002 5th iterates of z^2 + 2415700172297274 r005 Re(z^2+c),c=29/114+4/29*I,n=25 2415700176415986 r009 Im(z^3+c),c=-7/20+8/45*I,n=15 2415700193709845 m001 exp(HardHexagonsEntropy)*Cahen/Zeta(5)^2 2415700202996516 r005 Re(z^2+c),c=-15/82+30/59*I,n=27 2415700203219624 m001 1/ln(Riemann1stZero)^2*Bloch*Ei(1)^2 2415700209569420 r004 Re(z^2+c),c=1/10+3/19*I,z(0)=I,n=12 2415700216473816 m001 PrimesInBinary/(GAMMA(13/24)+ZetaP(4)) 2415700220914012 r009 Re(z^3+c),c=-7/22+21/61*I,n=5 2415700222776523 a007 Real Root Of 435*x^4+455*x^3-976*x^2+962*x-380 2415700233001942 a007 Real Root Of 941*x^4+928*x^3-133*x^2-946*x+220 2415700255268208 r005 Im(z^2+c),c=-7/86+3/10*I,n=7 2415700255679414 r005 Im(z^2+c),c=-19/44+8/19*I,n=15 2415700257076363 m005 (3/4*2^(1/2)+5)/(4*gamma+1/5) 2415700270479556 m001 (Zeta(1,2)-Pi^(1/2))/(Kac-MadelungNaCl) 2415700282971498 b008 -49/2+Sqrt[2/17] 2415700305772693 m004 -6+E^(Sqrt[5]*Pi)/5+5*Pi+Sqrt[5]*Pi 2415700310229744 a003 sin(Pi*23/89)-sin(Pi*23/55) 2415700324104835 r005 Re(z^2+c),c=-13/62+35/43*I,n=21 2415700325222931 a007 Real Root Of -293*x^4-706*x^3-184*x^2-556*x-244 2415700328052577 m004 -125*Pi+400*Sqrt[5]*Pi-ProductLog[Sqrt[5]*Pi] 2415700335237536 r002 51th iterates of z^2 + 2415700338806724 m005 (1/2*2^(1/2)+1/4)/(1/6*gamma+3/10) 2415700340846760 r005 Re(z^2+c),c=-35/118+39/64*I,n=52 2415700351480404 a007 Real Root Of -385*x^4-689*x^3+227*x^2-939*x-195 2415700353500517 a003 sin(Pi*4/29)*sin(Pi*8/41) 2415700356422804 r009 Re(z^3+c),c=-47/122+18/37*I,n=64 2415700357250027 r005 Im(z^2+c),c=1/106+14/53*I,n=21 2415700371952840 r005 Re(z^2+c),c=-11/16+19/62*I,n=40 2415700381157168 m005 (1/3*5^(1/2)+2/7)/(3/8*Catalan+1/12) 2415700386287208 r005 Re(z^2+c),c=27/122+11/26*I,n=58 2415700405985819 s002 sum(A112748[n]/(exp(pi*n)+1),n=1..infinity) 2415700406745170 s001 sum(exp(-Pi)^n*A112748[n],n=1..infinity) 2415700406745170 s002 sum(A112748[n]/(exp(pi*n)),n=1..infinity) 2415700407570876 s002 sum(A112748[n]/(exp(pi*n)-1),n=1..infinity) 2415700407855636 m008 (2*Pi^6+1/2)/(5/6*Pi^6-5) 2415700414367225 a001 3571/2178309*2^(33/59) 2415700415559064 m005 (37/36+1/4*5^(1/2))/(7/12*Catalan-3/5) 2415700420137460 a007 Real Root Of -81*x^4+964*x^3-450*x^2+985*x-225 2415700425570092 a007 Real Root Of -415*x^4-585*x^3+595*x^2-622*x+911 2415700427069110 m001 1/ln(BesselJ(0,1))^2*Backhouse^2/GAMMA(3/4) 2415700431705625 h001 (7/9*exp(2)+1/5)/(7/8*exp(1)+1/12) 2415700431930154 m001 exp(Pi)+MertensB2^Weierstrass 2415700448711533 r005 Re(z^2+c),c=-8/31+10/33*I,n=17 2415700452981483 r005 Re(z^2+c),c=9/26+13/58*I,n=49 2415700457320428 a007 Real Root Of 305*x^4+374*x^3-934*x^2+204*x+829 2415700458638944 a001 3/5*17711^(17/45) 2415700464456299 m001 (FeigenbaumD+GaussAGM)/(Kolakoski+Robbin) 2415700464732309 m001 ln(FeigenbaumDelta)^2/Backhouse^2/arctan(1/2) 2415700468163760 m001 (-FeigenbaumAlpha+Kolakoski)/(Si(Pi)-ln(Pi)) 2415700485648683 m005 (1/3*gamma+1/3)/(8/11*3^(1/2)+11/12) 2415700494557851 r005 Re(z^2+c),c=3/74+31/54*I,n=16 2415700498527109 m001 (FellerTornier-Magata)/(3^(1/3)+Zeta(1,-1)) 2415700507583289 a007 Real Root Of -157*x^4-262*x^3+285*x^2-315*x-771 2415700531099861 a007 Real Root Of 137*x^4+58*x^3-811*x^2+34*x+967 2415700536911228 a001 141422324/55*24157817^(17/18) 2415700538451462 a001 39603/55*139583862445^(17/18) 2415700546496880 a007 Real Root Of -444*x^4-945*x^3+154*x^2-401*x-69 2415700547776480 m001 Sarnak*(FransenRobinson-Pi) 2415700549486154 l006 ln(9611/9846) 2415700552108655 h001 (-7*exp(2)-2)/(-4*exp(4)-4) 2415700553413127 b008 EulerGamma*(41+Csch[1]) 2415700558712632 a007 Real Root Of -483*x^4-765*x^3+873*x^2-617*x-921 2415700563014152 a001 505019158607/55*4181^(17/18) 2415700564286171 l006 ln(5076/6463) 2415700570815156 m001 (Psi(2,1/3)-ln(5))/(ln(2^(1/2)+1)+Porter) 2415700574114781 r009 Re(z^3+c),c=-7/32+38/51*I,n=10 2415700585129408 m001 Riemann2ndZero^(TwinPrimes/BesselI(0,2)) 2415700586915817 a003 cos(Pi*3/91)-cos(Pi*8/35) 2415700588549972 m001 (sin(1/12*Pi)-BesselK(1,1))/(Kac+Kolakoski) 2415700588831195 r002 4th iterates of z^2 + 2415700597539228 a007 Real Root Of -487*x^4-946*x^3+449*x^2-244*x+39 2415700606661543 l006 ln(754/8443) 2415700608211715 r005 Re(z^2+c),c=-47/70+10/33*I,n=11 2415700609471417 m001 (-exp(1/Pi)+Grothendieck)/(Si(Pi)+Zeta(1,-1)) 2415700629138389 r005 Re(z^2+c),c=-11/52+15/34*I,n=31 2415700630484065 r009 Im(z^3+c),c=-39/110+11/63*I,n=8 2415700633029767 r005 Re(z^2+c),c=-19/66+7/43*I,n=23 2415700633110384 m001 (exp(1)+BesselI(1,1))/(ArtinRank2+Robbin) 2415700643694795 r005 Im(z^2+c),c=1/106+14/53*I,n=22 2415700647566738 m001 (CareFree+Lehmer)/(Chi(1)-exp(1/Pi)) 2415700652320968 m001 (Si(Pi)+polylog(4,1/2))/(-MertensB2+ZetaQ(2)) 2415700660872123 r005 Re(z^2+c),c=13/40+23/58*I,n=13 2415700660902135 m001 GAMMA(17/24)-Zeta(5)^GAMMA(19/24) 2415700663698728 m005 (1/2*5^(1/2)-6/7)/(1/12*Pi+9/11) 2415700672835563 m001 Mills*FeigenbaumD^Otter 2415700675494836 r008 a(0)=0,K{-n^6,92*n^3+112*n^2+151*n+59} 2415700677638366 r008 a(0)=0,K{-n^6,52*n^3+212*n^2+131*n+19} 2415700690589248 a007 Real Root Of 487*x^4+881*x^3-924*x^2-253*x+616 2415700703544178 a005 (1/cos(5/71*Pi))^409 2415700704140186 r005 Im(z^2+c),c=1/106+14/53*I,n=25 2415700712519932 a003 cos(Pi*7/103)-cos(Pi*9/38) 2415700719012032 r009 Im(z^3+c),c=-8/27+12/59*I,n=9 2415700722760607 m001 (sin(1)+CareFree)/(-OneNinth+RenyiParking) 2415700727979352 r005 Im(z^2+c),c=1/106+14/53*I,n=28 2415700728419900 r009 Re(z^3+c),c=-17/70+39/41*I,n=39 2415700729193474 r005 Im(z^2+c),c=1/106+14/53*I,n=29 2415700729925728 r005 Im(z^2+c),c=1/106+14/53*I,n=32 2415700730098824 r005 Im(z^2+c),c=1/106+14/53*I,n=35 2415700730101346 r005 Im(z^2+c),c=1/106+14/53*I,n=36 2415700730108352 r005 Im(z^2+c),c=1/106+14/53*I,n=39 2415700730109517 r005 Im(z^2+c),c=1/106+14/53*I,n=43 2415700730109519 r005 Im(z^2+c),c=1/106+14/53*I,n=40 2415700730109542 r005 Im(z^2+c),c=1/106+14/53*I,n=42 2415700730109576 r005 Im(z^2+c),c=1/106+14/53*I,n=46 2415700730109582 r005 Im(z^2+c),c=1/106+14/53*I,n=47 2415700730109583 r005 Im(z^2+c),c=1/106+14/53*I,n=50 2415700730109584 r005 Im(z^2+c),c=1/106+14/53*I,n=49 2415700730109584 r005 Im(z^2+c),c=1/106+14/53*I,n=53 2415700730109584 r005 Im(z^2+c),c=1/106+14/53*I,n=54 2415700730109584 r005 Im(z^2+c),c=1/106+14/53*I,n=57 2415700730109584 r005 Im(z^2+c),c=1/106+14/53*I,n=60 2415700730109584 r005 Im(z^2+c),c=1/106+14/53*I,n=61 2415700730109584 r005 Im(z^2+c),c=1/106+14/53*I,n=64 2415700730109584 r005 Im(z^2+c),c=1/106+14/53*I,n=63 2415700730109584 r005 Im(z^2+c),c=1/106+14/53*I,n=62 2415700730109584 r005 Im(z^2+c),c=1/106+14/53*I,n=58 2415700730109584 r005 Im(z^2+c),c=1/106+14/53*I,n=59 2415700730109584 r005 Im(z^2+c),c=1/106+14/53*I,n=56 2415700730109584 r005 Im(z^2+c),c=1/106+14/53*I,n=55 2415700730109584 r005 Im(z^2+c),c=1/106+14/53*I,n=52 2415700730109584 r005 Im(z^2+c),c=1/106+14/53*I,n=51 2415700730109586 r005 Im(z^2+c),c=1/106+14/53*I,n=48 2415700730109596 r005 Im(z^2+c),c=1/106+14/53*I,n=45 2415700730109607 r005 Im(z^2+c),c=1/106+14/53*I,n=44 2415700730109894 r005 Im(z^2+c),c=1/106+14/53*I,n=41 2415700730110804 r005 Im(z^2+c),c=1/106+14/53*I,n=38 2415700730113729 r005 Im(z^2+c),c=1/106+14/53*I,n=37 2415700730121341 r005 Im(z^2+c),c=1/106+14/53*I,n=33 2415700730151909 r005 Im(z^2+c),c=1/106+14/53*I,n=34 2415700730202972 r005 Im(z^2+c),c=1/106+14/53*I,n=31 2415700730796713 r005 Im(z^2+c),c=1/106+14/53*I,n=30 2415700731135466 r005 Im(z^2+c),c=1/106+14/53*I,n=24 2415700734716156 r005 Im(z^2+c),c=1/106+14/53*I,n=26 2415700735537184 r005 Im(z^2+c),c=1/106+14/53*I,n=27 2415700737618545 q001 917/3796 2415700738905669 m005 (1/3*5^(1/2)-1/8)/(9/10*5^(1/2)+5/9) 2415700740932068 r009 Im(z^3+c),c=-3/8+7/43*I,n=12 2415700744319606 a007 Real Root Of -58*x^4-23*x^3-583*x^2+551*x+167 2415700747885512 r002 20th iterates of z^2 + 2415700754678592 a007 Real Root Of 437*x^4+613*x^3-875*x^2+871*x+970 2415700755876821 m001 Backhouse^gamma(2)/ThueMorse 2415700760730275 a001 47/10946*75025^(38/39) 2415700766810181 r002 20th iterates of z^2 + 2415700768780376 r005 Re(z^2+c),c=3/26+20/51*I,n=26 2415700782155196 a007 Real Root Of 289*x^4+685*x^3+103*x^2+412*x+209 2415700785293035 l006 ln(7001/8914) 2415700791956317 r005 Im(z^2+c),c=-25/48+2/41*I,n=14 2415700801136192 s002 sum(A179832[n]/(exp(pi*n)-1),n=1..infinity) 2415700801525155 r005 Re(z^2+c),c=-25/118+11/25*I,n=22 2415700806463421 m001 (ZetaP(2)-ZetaQ(2))/(GAMMA(19/24)+PlouffeB) 2415700808435479 l006 ln(587/6573) 2415700814045959 m005 (1/2*3^(1/2)-5)/(115/126+5/14*5^(1/2)) 2415700822471209 b008 ArcCoth[5+(-4+E)^(-1)] 2415700827055377 r005 Im(z^2+c),c=-157/122+1/25*I,n=15 2415700834625690 m001 1/Niven^2*MinimumGamma^2/ln(FeigenbaumKappa) 2415700836557339 r005 Im(z^2+c),c=1/106+14/53*I,n=23 2415700841862991 r005 Re(z^2+c),c=-1/62+34/61*I,n=5 2415700846739291 m001 1/ln(Lehmer)*Bloch/GAMMA(11/24)^2 2415700853371990 s002 sum(A194016[n]/(pi^n+1),n=1..infinity) 2415700859592256 m001 (HardyLittlewoodC4+Paris)/(Pi+Zeta(1/2)) 2415700859924943 m001 (GAMMA(11/12)+DuboisRaymond)/polylog(4,1/2) 2415700861474968 m005 (1/2*2^(1/2)-7/12)/(5/11*gamma+1/4) 2415700868524026 a007 Real Root Of -450*x^4-832*x^3+191*x^2-782*x+592 2415700870650595 a007 Real Root Of -15*x^4-361*x^3+67*x^2+791*x-887 2415700887252490 a007 Real Root Of 505*x^4+997*x^3-415*x^2+565*x+644 2415700890659012 a007 Real Root Of 963*x^4-548*x^3-723*x^2-817*x+244 2415700919951561 m001 (BesselI(0,1)-Si(Pi))/(BesselI(1,2)+GaussAGM) 2415700937401730 m001 (ArtinRank2-GolombDickman)^Landau 2415700939751757 a001 76/17711*89^(44/49) 2415700941722523 r005 Re(z^2+c),c=6/23+17/39*I,n=42 2415700943354749 m001 (Sarnak-Stephens)/(FellerTornier-MertensB1) 2415700945649813 r009 Re(z^3+c),c=-3/74+27/37*I,n=2 2415700948766170 r005 Im(z^2+c),c=5/48+1/54*I,n=5 2415700959439316 r005 Im(z^2+c),c=-59/66+3/14*I,n=59 2415700961645722 m001 (Pi+exp(Pi))/(arctan(1/2)+GolombDickman) 2415700962716328 p001 sum((-1)^n/(512*n+403)/(16^n),n=0..infinity) 2415700964744571 m006 (2/3/Pi+4/5)/(1/6*exp(Pi)+1/3) 2415700967558423 m001 CopelandErdos/Psi(1,1/3)*MertensB2 2415700969051817 m001 GAMMA(1/4)*cos(Pi/5)-polylog(4,1/2) 2415700972884974 r005 Re(z^2+c),c=3/11+17/36*I,n=17 2415700986920225 a003 sin(Pi*1/100)*sin(Pi*31/111) 2415700998620672 a007 Real Root Of -438*x^4-979*x^3+73*x^2-252*x+80 2415701002531650 r005 Im(z^2+c),c=-4/7+17/56*I,n=12 2415701006430557 a007 Real Root Of 938*x^4+786*x^3-70*x^2-452*x+99 2415701006822644 r005 Im(z^2+c),c=-37/36+11/46*I,n=64 2415701026127518 a007 Real Root Of -19*x^4-445*x^3+372*x^2+792*x-830 2415701034169614 a001 (1+2^(1/2))^(617/37) 2415701038169019 h001 (3/10*exp(1)+7/12)/(8/11*exp(2)+5/12) 2415701042492803 r009 Re(z^3+c),c=-11/24+19/46*I,n=9 2415701043167515 r005 Re(z^2+c),c=-19/66+7/43*I,n=26 2415701043393100 r005 Re(z^2+c),c=-153/122+2/59*I,n=44 2415701048028325 m001 BesselJ(1,1)^2/ln(FeigenbaumB)^2/cosh(1)^2 2415701048195018 h001 (-exp(-1)+1)/(-3*exp(2)-4) 2415701053388848 a007 Real Root Of 269*x^4+424*x^3-974*x^2-677*x+865 2415701065956579 r005 Re(z^2+c),c=-19/66+7/43*I,n=28 2415701071102496 m001 (3^(1/3))^2*exp(GolombDickman)^2*gamma^2 2415701076364184 m001 Shi(1)*BesselJ(0,1)+ErdosBorwein 2415701079529780 m005 (1/2*2^(1/2)+5/11)/(5/8*5^(1/2)-11/12) 2415701081457543 m001 OneNinth*FeigenbaumB^2*exp(sinh(1)) 2415701087505946 r005 Re(z^2+c),c=-19/66+7/43*I,n=30 2415701093375617 r005 Re(z^2+c),c=-19/66+7/43*I,n=33 2415701093491756 r005 Re(z^2+c),c=-19/66+7/43*I,n=35 2415701093682005 r005 Re(z^2+c),c=-19/66+7/43*I,n=32 2415701093725055 r005 Re(z^2+c),c=-19/66+7/43*I,n=37 2415701093802274 r005 Re(z^2+c),c=-19/66+7/43*I,n=39 2415701093804400 r005 Re(z^2+c),c=-19/66+7/43*I,n=42 2415701093804882 r005 Re(z^2+c),c=-19/66+7/43*I,n=40 2415701093806836 r005 Re(z^2+c),c=-19/66+7/43*I,n=44 2415701093807777 r005 Re(z^2+c),c=-19/66+7/43*I,n=46 2415701093807853 r005 Re(z^2+c),c=-19/66+7/43*I,n=49 2415701093807877 r005 Re(z^2+c),c=-19/66+7/43*I,n=51 2415701093807881 r005 Re(z^2+c),c=-19/66+7/43*I,n=47 2415701093807889 r005 Re(z^2+c),c=-19/66+7/43*I,n=53 2415701093807890 r005 Re(z^2+c),c=-19/66+7/43*I,n=56 2415701093807890 r005 Re(z^2+c),c=-19/66+7/43*I,n=58 2415701093807890 r005 Re(z^2+c),c=-19/66+7/43*I,n=60 2415701093807891 r005 Re(z^2+c),c=-19/66+7/43*I,n=63 2415701093807891 r005 Re(z^2+c),c=-19/66+7/43*I,n=62 2415701093807891 r005 Re(z^2+c),c=-19/66+7/43*I,n=64 2415701093807891 r005 Re(z^2+c),c=-19/66+7/43*I,n=61 2415701093807891 r005 Re(z^2+c),c=-19/66+7/43*I,n=59 2415701093807891 r005 Re(z^2+c),c=-19/66+7/43*I,n=54 2415701093807891 r005 Re(z^2+c),c=-19/66+7/43*I,n=57 2415701093807891 r005 Re(z^2+c),c=-19/66+7/43*I,n=55 2415701093807896 r005 Re(z^2+c),c=-19/66+7/43*I,n=52 2415701093807915 r005 Re(z^2+c),c=-19/66+7/43*I,n=50 2415701093807932 r005 Re(z^2+c),c=-19/66+7/43*I,n=48 2415701093808316 r005 Re(z^2+c),c=-19/66+7/43*I,n=45 2415701093809999 r005 Re(z^2+c),c=-19/66+7/43*I,n=43 2415701093812379 r005 Re(z^2+c),c=-19/66+7/43*I,n=41 2415701093837845 r005 Re(z^2+c),c=-19/66+7/43*I,n=38 2415701093985752 r005 Re(z^2+c),c=-19/66+7/43*I,n=36 2415701094261039 r005 Re(z^2+c),c=-19/66+7/43*I,n=34 2415701095774818 r005 Re(z^2+c),c=-19/66+7/43*I,n=31 2415701099754044 a001 2207/1346269*2^(33/59) 2415701102875862 a007 Real Root Of -129*x^4+195*x^3+716*x^2-882*x+833 2415701108446778 r005 Re(z^2+c),c=-19/66+7/43*I,n=29 2415701112808637 r005 Re(z^2+c),c=-19/66+7/43*I,n=25 2415701115367503 a007 Real Root Of -303*x^4+570*x^3-831*x^2-230*x+2 2415701124424301 p001 sum(1/(503*n+306)/n/(512^n),n=1..infinity) 2415701125121123 k007 concat of cont frac of 2415701137389817 r005 Re(z^2+c),c=-19/66+7/43*I,n=27 2415701140027337 r009 Re(z^3+c),c=-19/58+19/51*I,n=7 2415701157713893 a001 2255/281*29^(18/55) 2415701162117870 m005 (1/2*Zeta(3)+7/8)/(3/7*gamma+4/11) 2415701162277142 a007 Real Root Of 4*x^4+963*x^3-794*x^2-368*x+837 2415701170667633 l006 ln(420/4703) 2415701186181900 m001 BesselI(1,2)^exp(1/exp(1))/AlladiGrinstead 2415701196137828 h001 (3/4*exp(2)+5/9)/(9/11*exp(1)+3/10) 2415701203409511 a007 Real Root Of 298*x^4+626*x^3-638*x^2-656*x+815 2415701203459828 a007 Real Root Of 53*x^4-352*x^3+410*x^2+57*x+627 2415701205481617 r005 Re(z^2+c),c=-15/44+27/32*I,n=4 2415701208433962 r005 Re(z^2+c),c=-19/66+7/43*I,n=24 2415701213417668 m005 (1/2*5^(1/2)+7/12)/(1/4*exp(1)-3/4) 2415701219049269 r005 Im(z^2+c),c=-103/78+7/52*I,n=4 2415701231929703 a007 Real Root Of 84*x^4+182*x^3+354*x^2+567*x-991 2415701237137241 r002 2th iterates of z^2 + 2415701256940357 m005 (1/2*5^(1/2)-5/9)/(2*2^(1/2)-1/2) 2415701260034393 r009 Im(z^3+c),c=-15/106+12/49*I,n=6 2415701261967120 m009 (2*Psi(1,1/3)+2/5)/(1/4*Psi(1,1/3)+6) 2415701262076047 m001 (Si(Pi)-gamma)/(-Conway+FeigenbaumC) 2415701262630413 m001 (BesselJ(0,1)-Zeta(3))/(ln(3)+Rabbit) 2415701264496614 r002 11th iterates of z^2 + 2415701264546697 a003 cos(Pi*13/86)-sin(Pi*24/107) 2415701269756150 m005 (1/3*2^(1/2)-1/12)/(7/8*3^(1/2)+1/11) 2415701279269598 m005 (1/3*2^(1/2)-3/4)/(3/4*gamma-4/9) 2415701284998956 a007 Real Root Of 241*x^4-966*x^3+91*x^2-593*x-163 2415701303370884 r002 23i'th iterates of 2*x/(1-x^2) of 2415701308477244 s002 sum(A256315[n]/((exp(n)-1)/n),n=1..infinity) 2415701313736266 r009 Re(z^3+c),c=-9/64+20/23*I,n=40 2415701325047260 r005 Re(z^2+c),c=9/32+7/43*I,n=23 2415701325105246 a001 13201*2^(34/39) 2415701332810054 m001 exp(FeigenbaumKappa)^2*KhintchineLevy/exp(1)^2 2415701338441232 m005 (1/3*Catalan+3/7)/(2/11*Pi-7/8) 2415701365205799 p004 log(12239/1093) 2415701366250299 r009 Re(z^3+c),c=-31/126+6/43*I,n=3 2415701368062279 l006 ln(1925/2451) 2415701374806889 r005 Im(z^2+c),c=1/106+14/53*I,n=20 2415701376522681 a003 sin(Pi*11/96)-sin(Pi*17/84) 2415701378883739 m001 exp(Riemann1stZero)^2*Porter/GAMMA(1/12) 2415701382810349 a007 Real Root Of 67*x^4-27*x^3-365*x^2+501*x+678 2415701400969706 a001 54018521/144*6765^(11/15) 2415701408744246 a001 90481/48*9227465^(11/15) 2415701415701415 q001 1877/777 2415701416669473 m005 (1/2*exp(1)+2/7)/(25/4+1/4*5^(1/2)) 2415701423136974 a007 Real Root Of -371*x^4-943*x^3-357*x^2-250*x+820 2415701425635423 b008 24+Pi*ArcCsch[20] 2415701440989180 m001 1/MadelungNaCl*MertensB1*ln(sinh(1)) 2415701449515776 a007 Real Root Of -228*x^4-396*x^3+275*x^2-99*x+338 2415701449526931 m004 75*Pi+6*Cos[Sqrt[5]*Pi]+ProductLog[Sqrt[5]*Pi] 2415701460733111 r008 a(0)=0,K{-n^6,90*n^3+115*n^2+151*n+58} 2415701460938040 r008 a(0)=0,K{-n^6,86*n^3+125*n^2+149*n+54} 2415701461570662 r008 a(0)=0,K{-n^6,74*n^3+155*n^2+143*n+42} 2415701463255442 a001 1/23184*377^(19/28) 2415701463522443 r008 a(0)=0,K{-n^6,40*n^3+240*n^2+126*n+8} 2415701464825836 r005 Re(z^2+c),c=-5/36+37/57*I,n=52 2415701469038035 m001 (Tetranacci+Trott)/(BesselI(0,1)-arctan(1/2)) 2415701484272095 h001 (7/9*exp(2)+4/9)/(1/3*exp(2)+1/10) 2415701486611471 l006 ln(673/7536) 2415701486708994 m001 FellerTornier^Conway*GAMMA(11/12) 2415701491933145 r005 Im(z^2+c),c=-37/54+2/11*I,n=5 2415701495319308 r005 Re(z^2+c),c=5/36+16/25*I,n=23 2415701496093075 r009 Re(z^3+c),c=-7/29+35/46*I,n=41 2415701505733229 r005 Re(z^2+c),c=7/24+8/47*I,n=61 2415701508497926 a007 Real Root Of -328*x^4-353*x^3+979*x^2+83*x+681 2415701529463949 m001 (CareFree-Magata)/(BesselI(1,2)-Bloch) 2415701540457477 m009 (1/4*Psi(1,1/3)-1/4)/(5/6*Psi(1,1/3)+1) 2415701548072610 r009 Im(z^3+c),c=-7/16+6/55*I,n=49 2415701553755913 m001 (-Lehmer+Tetranacci)/(exp(1)+FransenRobinson) 2415701559182580 a007 Real Root Of 514*x^4+916*x^3-577*x^2+488*x-45 2415701559513875 r009 Im(z^3+c),c=-12/25+6/59*I,n=6 2415701582026658 a007 Real Root Of -111*x^4+109*x^3-560*x^2+561*x-104 2415701586341193 r002 51th iterates of z^2 + 2415701587074992 r005 Re(z^2+c),c=-13/46+8/41*I,n=16 2415701594442815 a007 Real Root Of -211*x^4-904*x^3-859*x^2+546*x+170 2415701597981294 r005 Re(z^2+c),c=4/13+8/31*I,n=8 2415701598150961 r002 45th iterates of z^2 + 2415701599159218 r009 Im(z^3+c),c=-13/32+6/43*I,n=24 2415701600041899 a001 29134601*1346269^(10/21) 2415701600046555 a001 710647/3*32951280099^(10/21) 2415701619429973 r002 26th iterates of z^2 + 2415701653210303 r005 Re(z^2+c),c=-37/34+26/75*I,n=2 2415701660069239 r009 Im(z^3+c),c=-17/40+6/49*I,n=32 2415701675421401 m001 GAMMA(11/24)^(GAMMA(5/12)/BesselJ(1,1)) 2415701680468413 r009 Re(z^3+c),c=-41/106+27/55*I,n=33 2415701683993854 m001 Ei(1,1)^(GAMMA(3/4)*LandauRamanujan) 2415701686875901 m001 (-Conway+Grothendieck)/(2^(1/2)+LambertW(1)) 2415701687995136 r002 3th iterates of z^2 + 2415701698159222 h001 (1/7*exp(1)+11/12)/(7/11*exp(2)+7/10) 2415701715921166 m001 (3^(1/3))^2*Backhouse^2/exp(BesselK(1,1)) 2415701716263232 a007 Real Root Of 414*x^4+804*x^3-599*x^2-604*x-728 2415701727499602 r005 Im(z^2+c),c=21/50+15/61*I,n=8 2415701731598342 a007 Real Root Of -464*x^4+446*x^3-379*x^2+443*x+137 2415701734966476 m005 (1/2*5^(1/2)-4/5)/(5/12*2^(1/2)+8/11) 2415701736460930 s001 sum(exp(-3*Pi/4)^n*A261522[n],n=1..infinity) 2415701736930035 r009 Re(z^3+c),c=-47/122+18/37*I,n=59 2415701739070152 r009 Im(z^3+c),c=-19/44+3/26*I,n=35 2415701757281644 m001 (Pi-Shi(1))/(cos(1/5*Pi)+ZetaQ(2)) 2415701757937169 r009 Re(z^3+c),c=-47/118+18/35*I,n=53 2415701758827640 m001 KomornikLoreti^MertensB2*PisotVijayaraghavan 2415701759669500 m001 1/GAMMA(2/3)/exp(Riemann3rdZero)*cosh(1)^2 2415701772109428 r005 Im(z^2+c),c=1/106+14/53*I,n=19 2415701777239835 m001 ln(TwinPrimes)^2*Trott^2/Catalan^2 2415701779917845 m001 (Bloch+Grothendieck)/(BesselK(0,1)-GAMMA(2/3)) 2415701786383919 r005 Im(z^2+c),c=-15/98+13/31*I,n=3 2415701789108675 m005 (1/2*Catalan+1/5)/(3/11*3^(1/2)-1/5) 2415701794097278 h001 (-8*exp(8)+3)/(-9*exp(7)-1) 2415701801104689 p003 LerchPhi(1/64,2,105/163) 2415701812789774 r005 Im(z^2+c),c=-9/16+43/106*I,n=57 2415701816256412 s002 sum(A288323[n]/(pi^n+1),n=1..infinity) 2415701818447617 r005 Re(z^2+c),c=-27/22+20/119*I,n=12 2415701819217647 m001 (Otter+QuadraticClass)/(ln(Pi)-Conway) 2415701820547973 m006 (1/4*exp(2*Pi)-5)/(5*Pi^2+4) 2415701829608250 a003 cos(Pi*5/111)/cos(Pi*34/93) 2415701853965023 a001 267914296/123*123^(1/2) 2415701854100854 m001 GAMMA(23/24)*(BesselI(1,2)+LandauRamanujan) 2415701855898468 s002 sum(A025913[n]/(pi^n+1),n=1..infinity) 2415701856066741 r009 Re(z^3+c),c=-11/78+33/38*I,n=28 2415701857614973 m001 GAMMA(1/3)/(ln(Pi)^BesselJ(0,1)) 2415701860093086 a007 Real Root Of 469*x^4+831*x^3-362*x^2+696*x-463 2415701861621002 r002 38th iterates of z^2 + 2415701866846256 m001 1/Ei(1)^2*ln(Magata)^2/sqrt(3) 2415701867823723 a007 Real Root Of -959*x^4+649*x^3-369*x^2+516*x-109 2415701884625976 l006 ln(7607/7793) 2415701884625976 p004 log(7793/7607) 2415701892784358 m005 (1/3*Catalan-3)/(3*exp(1)+3) 2415701895471798 r005 Re(z^2+c),c=-25/122+16/35*I,n=39 2415701899024004 r005 Im(z^2+c),c=-7/9+1/113*I,n=58 2415701900825917 m001 1/exp(Sierpinski)^2/FeigenbaumC/GAMMA(17/24) 2415701905458872 a008 Real Root of x^4-x^3-14*x^2+9*x+40 2415701920374346 m005 (1/2*exp(1)+2)/(7/8*3^(1/2)-1/8) 2415701924497151 s001 sum(exp(-Pi)^n*A260135[n],n=1..infinity) 2415701924497151 s002 sum(A260135[n]/(exp(pi*n)),n=1..infinity) 2415701928763601 r005 Re(z^2+c),c=21/82+6/43*I,n=36 2415701934803316 a007 Real Root Of -110*x^4+737*x^3+275*x^2+393*x-121 2415701943359381 m001 exp(TwinPrimes)^2*TreeGrowth2nd^2/sqrt(3)^2 2415701950931851 a007 Real Root Of -540*x^4+851*x^3-179*x^2+152*x+61 2415701970986551 m001 (FeigenbaumDelta+ZetaQ(3))/(Chi(1)+ln(3)) 2415701979220122 a007 Real Root Of 31*x^4+778*x^3+711*x^2+152*x-558 2415701983187347 r009 Re(z^3+c),c=-8/23+21/52*I,n=30 2415701998270378 l006 ln(6474/8243) 2415701999421292 r005 Im(z^2+c),c=-35/38+15/62*I,n=51 2415702007057807 m001 (-BesselJ(0,1)+Gompertz)/(1-ln(2)/ln(10)) 2415702009972830 r005 Im(z^2+c),c=-55/46+1/32*I,n=29 2415702011102996 l006 ln(253/2833) 2415702020893485 r009 Re(z^3+c),c=-37/66+45/59*I,n=2 2415702022319549 m005 (25/36+1/4*5^(1/2))/(7/11*3^(1/2)-7/12) 2415702036612809 r005 Re(z^2+c),c=-119/114+5/34*I,n=2 2415702037051670 m001 (cos(1/12*Pi)+OneNinth)/(PrimesInBinary-Thue) 2415702040692223 a007 Real Root Of -264*x^4+701*x^3+827*x^2+711*x-229 2415702048224514 b008 -40+Sqrt[251] 2415702049558912 m005 (1/2*gamma+1/7)/(3/5*5^(1/2)+4/9) 2415702052060154 a007 Real Root Of -410*x^4-895*x^3-253*x^2-803*x+882 2415702058347311 r005 Im(z^2+c),c=-41/86+9/20*I,n=36 2415702063412179 q001 48/1987 2415702071837034 a007 Real Root Of 182*x^4-367*x^3+163*x^2-748*x-196 2415702077432840 a007 Real Root Of 313*x^4+938*x^3+555*x^2+300*x+50 2415702084699749 r005 Re(z^2+c),c=-27/110+9/26*I,n=35 2415702096302344 r005 Re(z^2+c),c=1/60+39/64*I,n=42 2415702108721676 r009 Re(z^3+c),c=-3/22+38/45*I,n=32 2415702121019760 r005 Im(z^2+c),c=-3/50+14/47*I,n=6 2415702122900864 m001 (Zeta(1/2)+Robbin)/(exp(1)+sin(1/5*Pi)) 2415702128115129 r005 Im(z^2+c),c=-19/70+18/47*I,n=8 2415702134617358 r005 Im(z^2+c),c=9/50+9/52*I,n=15 2415702140309803 m001 Conway*(BesselK(0,1)-CopelandErdos) 2415702144345384 m004 (125*Pi)/6+25*Sqrt[5]*Pi+Tanh[Sqrt[5]*Pi]/2 2415702156072494 m001 exp(1)^(Grothendieck/ZetaQ(2)) 2415702156072494 m001 exp(Grothendieck/ZetaQ(2)) 2415702163799412 a007 Real Root Of 418*x^4+653*x^3-804*x^2-172*x-753 2415702171575980 r005 Im(z^2+c),c=-5/6+31/189*I,n=58 2415702180196159 m008 (1/2*Pi^5+2)/(2/3*Pi^6+3/4) 2415702180516183 p003 LerchPhi(1/12,5,262/197) 2415702210290294 r005 Im(z^2+c),c=-151/102+2/29*I,n=5 2415702215708324 r009 Im(z^3+c),c=-29/126+7/31*I,n=10 2415702216748861 r002 21th iterates of z^2 + 2415702223256776 r005 Re(z^2+c),c=-83/102+1/54*I,n=18 2415702226667249 b008 3*BarnesG[(2*Pi)/9] 2415702228031701 m001 1/GAMMA(1/4)*Si(Pi)^2/exp(Zeta(1,2)) 2415702231644171 m001 Catalan/BesselJ(0,1)^2/ln(sqrt(5))^2 2415702234838800 p001 sum(1/(502*n+307)/n/(512^n),n=1..infinity) 2415702243254248 m001 ln(2^(1/2)+1)*Riemann2ndZero/ZetaP(4) 2415702247806201 m001 (BesselK(0,1)-sin(1))/(ln(2^(1/2)+1)+Thue) 2415702248192801 r005 Im(z^2+c),c=-7/58+20/63*I,n=8 2415702251407223 r008 a(0)=0,K{-n^6,82*n^3+133*n^2+148*n+51} 2415702251729025 r008 a(0)=0,K{-n^6,76*n^3+148*n^2+145*n+45} 2415702252057906 r008 a(0)=0,K{-n^6,70*n^3+163*n^2+142*n+39} 2415702254751227 a007 Real Root Of 549*x^4+931*x^3-502*x^2+789*x-736 2415702257779970 a003 cos(Pi*2/63)/cos(Pi*27/74) 2415702258207754 m001 (FeigenbaumD-MertensB2)/(Rabbit-Trott2nd) 2415702264955482 l006 ln(4549/5792) 2415702267806592 r005 Re(z^2+c),c=-19/66+7/43*I,n=22 2415702309036004 a001 3*(1/2*5^(1/2)+1/2)^4*521^(16/21) 2415702310389313 h001 (10/11*exp(1)+5/11)/(1/9*exp(1)+10/11) 2415702317585032 a001 47/34*7778742049^(5/6) 2415702331307040 m001 (gamma(2)+Mills)/(Psi(2,1/3)+exp(1/exp(1))) 2415702334959541 a007 Real Root Of 242*x^4+495*x^3-228*x^2-256*x-551 2415702335492264 a007 Real Root Of 245*x^4+658*x^3-120*x^2-512*x+396 2415702342606796 m001 (Grothendieck+Trott2nd)/(ln(2)-3^(1/3)) 2415702346042687 a007 Real Root Of 278*x^4+678*x^3+314*x^2+858*x+331 2415702355640859 m005 (1/2*exp(1)+1/2)/(5*2^(1/2)+5/8) 2415702360614586 a007 Real Root Of -378*x^4+875*x^3-420*x^2+935*x+264 2415702361847258 a003 sin(Pi*5/99)-sin(Pi*14/107) 2415702364313278 a007 Real Root Of 751*x^4-998*x^3-633*x^2-556*x-114 2415702375973878 h001 (-exp(-2)-2)/(-5*exp(-1)-7) 2415702377706079 r005 Im(z^2+c),c=-31/46+7/27*I,n=38 2415702378134425 m001 FeigenbaumB-LandauRamanujan^Stephens 2415702378900171 m005 (1/3*Pi-2/5)/(9/10*5^(1/2)+2/3) 2415702379768982 m001 Chi(1)/GaussKuzminWirsing*ZetaQ(3) 2415702382064255 r009 Im(z^3+c),c=-69/118+3/58*I,n=3 2415702383684892 r009 Re(z^3+c),c=-23/74+49/62*I,n=2 2415702388365965 r009 Re(z^3+c),c=-17/114+43/50*I,n=22 2415702394312136 m001 exp(1)+arctan(1/3)-GolombDickman 2415702398060232 m001 1/ln(GAMMA(5/6))^2*BesselK(0,1)^2*sqrt(2)^2 2415702401910779 m008 (2/3*Pi^4-1/5)/(4/5*Pi+1/6) 2415702403956221 a007 Real Root Of 90*x^4+303*x^3+454*x^2+767*x+410 2415702405107454 m001 GAMMA(1/24)/(cos(Pi/12)^sin(1)) 2415702415592367 s002 sum(A274358[n]/(16^n),n=1..infinity) 2415702418882270 m001 (Kac+Tetranacci)/(gamma-sin(1/5*Pi)) 2415702419967970 m005 (1/6*2^(1/2)-3)/(1/4*gamma+1) 2415702423409882 a007 Real Root Of 407*x^4+894*x^3-57*x^2+134*x-601 2415702428833919 l006 ln(845/9462) 2415702440579955 r005 Im(z^2+c),c=-85/98+9/47*I,n=47 2415702442113603 r009 Re(z^3+c),c=-29/86+8/21*I,n=11 2415702443441381 r005 Re(z^2+c),c=7/24+8/47*I,n=58 2415702449017932 m001 FellerTornier*LandauRamanujan2nd+ZetaQ(2) 2415702453642453 m001 Khintchine/ln(GlaisherKinkelin)^2*GAMMA(1/6) 2415702459447283 r009 Re(z^3+c),c=-37/102+17/36*I,n=10 2415702461869152 m001 1/GAMMA(17/24)*Niven/ln(sqrt(3)) 2415702469956876 a008 Real Root of x^4-x^3+37*x^2-43*x-132 2415702473139517 m001 1/exp(Zeta(5))^2/Robbin^2*sin(1) 2415702479035050 r002 10th iterates of z^2 + 2415702488337328 r005 Re(z^2+c),c=-3/14+23/53*I,n=29 2415702489990943 a003 sin(Pi*4/119)+sin(Pi*1/23) 2415702494542236 m001 Riemann3rdZero^2/exp(Paris)/GAMMA(1/24) 2415702494550380 a001 843/55*28657^(33/46) 2415702500224201 m001 2^(1/2)*Riemann2ndZero*StolarskyHarborth 2415702505652445 l006 ln(7173/9133) 2415702506560914 r005 Re(z^2+c),c=23/86+10/21*I,n=24 2415702514161741 a007 Real Root Of 34*x^4-346*x^3-614*x^2+725*x-701 2415702514362896 r009 Re(z^3+c),c=-61/114+19/36*I,n=11 2415702518185746 m001 (-MinimumGamma+Totient)/(gamma+gamma(1)) 2415702532049360 h001 (5/7*exp(2)+4/7)/(8/11*exp(1)+4/9) 2415702533340765 s002 sum(A127614[n]/(n^3*2^n+1),n=1..infinity) 2415702533454949 s002 sum(A127614[n]/(n^3*2^n-1),n=1..infinity) 2415702534251574 m001 MadelungNaCl^(PlouffeB/ln(2)*ln(10)) 2415702544894540 r005 Im(z^2+c),c=-45/98+11/26*I,n=21 2415702564638072 r009 Re(z^3+c),c=-7/52+17/20*I,n=50 2415702570804860 b008 7*(-1+(1+E)^E) 2415702580425004 r005 Im(z^2+c),c=-23/106+7/20*I,n=14 2415702588614122 a001 18/55*46368^(8/43) 2415702598835071 r009 Re(z^3+c),c=-15/46+17/59*I,n=3 2415702607070195 a007 Real Root Of -561*x^4+371*x^3+974*x^2+434*x-165 2415702607357385 l006 ln(592/6629) 2415702611044975 r005 Im(z^2+c),c=-25/38+11/40*I,n=9 2415702614851046 m001 (Stephens-ZetaQ(2))/(Lehmer+Riemann2ndZero) 2415702615995141 m005 (1/2*2^(1/2)+2)/(5/11*3^(1/2)+1/3) 2415702618112480 m009 (24*Catalan+3*Pi^2+6)/(5/2*Pi^2-5/6) 2415702629350890 r009 Re(z^3+c),c=-39/122+16/47*I,n=11 2415702629826743 a007 Real Root Of -379*x^4-818*x^3+57*x^2-800*x-890 2415702632729992 m001 GAMMA(2/3)^2*ln(FransenRobinson)^2/cos(Pi/5) 2415702634696398 r005 Im(z^2+c),c=-23/18+38/237*I,n=5 2415702640763100 r005 Re(z^2+c),c=27/74+14/61*I,n=24 2415702647815690 r009 Im(z^3+c),c=-7/13+17/45*I,n=18 2415702658203859 r005 Re(z^2+c),c=-6/29+19/42*I,n=42 2415702665222018 r004 Im(z^2+c),c=1/9+3/14*I,z(0)=exp(5/8*I*Pi),n=12 2415702665605760 a007 Real Root Of 52*x^4-99*x^3-547*x^2-117*x-257 2415702665893583 m001 exp(Pi)+GAMMA(23/24)^HardyLittlewoodC3 2415702667682430 a007 Real Root Of 520*x^4+285*x^3+966*x^2-841*x+141 2415702669078174 m001 (DuboisRaymond+ZetaP(3))/GAMMA(7/12) 2415702669498550 m005 (-1/12+1/6*5^(1/2))/(1/6*3^(1/2)+10/11) 2415702677145000 r005 Im(z^2+c),c=-5/66+31/48*I,n=61 2415702689695746 m001 (Conway+Khinchin)/(Zeta(3)-Zeta(5)) 2415702691072901 m008 (3/4*Pi-2/3)/(2/3*Pi^4+5) 2415702695732773 a007 Real Root Of -13*x^4-311*x^3+65*x^2-215*x-251 2415702696524179 m005 (1/2*2^(1/2)+1/11)/(3*Catalan+5/9) 2415702699525930 m001 1/ln(Zeta(7))/Bloch^2/sqrt(5) 2415702699737963 m001 1/(3^(1/3))*ln(Lehmer)/GAMMA(3/4)^2 2415702710455200 m002 -Csch[Pi]^2+Tanh[Pi]/4 2415702710896546 a007 Real Root Of 276*x^4+289*x^3-939*x^2-413*x-843 2415702717650519 m001 1/exp((2^(1/3)))^2*CopelandErdos^2*cos(1) 2415702721543118 a007 Real Root Of 283*x^4+657*x^3+119*x^2+563*x+290 2415702741472071 m001 Paris*ln(KhintchineHarmonic)*GAMMA(5/24) 2415702757289566 m001 (Ei(1)+(1+3^(1/2))^(1/2))/(Porter+ZetaQ(4)) 2415702763646159 m005 (1/2*3^(1/2)+9/11)/(5/7*5^(1/2)-9/10) 2415702773024875 m001 (Ei(1)-GAMMA(5/6))/(Niven+Porter) 2415702774860402 m001 exp(Pi)+MertensB2^PlouffeB 2415702776272714 m009 (3*Psi(1,1/3)+1/6)/(1/6*Psi(1,2/3)+3/4) 2415702782495928 a007 Real Root Of 392*x^4+554*x^3-986*x^2+307*x+956 2415702785619570 m001 (MinimumGamma-Robbin)/(Lehmer-MertensB1) 2415702813332737 h001 (7/11*exp(2)+4/11)/(4/9*exp(1)+8/9) 2415702813713337 h001 (7/10*exp(2)+8/11)/(4/7*exp(1)+8/9) 2415702821338698 m005 (3/5*gamma-1/3)/(5*Catalan+4/5) 2415702823763651 r009 Im(z^3+c),c=-5/26+4/17*I,n=10 2415702825172201 r002 27th iterates of z^2 + 2415702831025158 m001 (BesselK(0,1)-ThueMorse)^BesselI(0,1) 2415702835484836 r002 4th iterates of z^2 + 2415702840931072 h001 (1/9*exp(2)+8/11)/(9/11*exp(2)+4/11) 2415702846258305 b008 Sqrt[2]+Zeta[3*Pi] 2415702852546845 a007 Real Root Of 91*x^4-663*x^3+755*x^2+646*x+281 2415702854086452 m001 (Pi^(1/2)+Otter)/(arctan(1/3)-polylog(4,1/2)) 2415702859833408 r009 Re(z^3+c),c=-19/56+27/50*I,n=9 2415702865055306 m001 exp(1)^2/Conway^2/exp(sin(Pi/5)) 2415702871671583 m003 -1-Cos[1/2+Sqrt[5]/2]+7*Log[1/2+Sqrt[5]/2] 2415702873283042 m005 (1/2*exp(1)-8/11)/(6/7*exp(1)+2/7) 2415702891879211 m001 (gamma(2)+Zeta(1,2))/(ln(2)-ln(2)/ln(10)) 2415702895129830 a005 (1/cos(2/211*Pi))^1989 2415702895289730 r009 Re(z^3+c),c=-1/106+19/24*I,n=31 2415702899906804 a001 521/233*514229^(52/59) 2415702907441805 m001 (Shi(1)+Magata)/(Tribonacci+ZetaQ(3)) 2415702917796527 m001 1/Conway^2/Artin^2*exp(MadelungNaCl) 2415702922327156 m001 (3^(1/3)+GAMMA(5/6))/(GAMMA(11/12)+ZetaQ(3)) 2415702922927768 l006 ln(2624/3341) 2415702927167853 s002 sum(A183175[n]/(pi^n+1),n=1..infinity) 2415702927235535 a008 Real Root of x^4-2*x^3+31*x^2+15*x-223 2415702928140517 a001 1364*(1/2*5^(1/2)+1/2)^32*47^(14/15) 2415702937161257 p004 log(25609/2287) 2415702939033639 r002 42th iterates of z^2 + 2415702940614949 m001 (ln(gamma)-Conway)/(Kolakoski-Trott2nd) 2415702946266109 a001 31622993/161*199^(10/11) 2415702948421847 r005 Im(z^2+c),c=7/34+10/63*I,n=7 2415702950242313 r009 Im(z^3+c),c=-17/38+3/31*I,n=38 2415702951647370 m001 BesselK(0,1)*ln(TreeGrowth2nd)^2/sinh(1) 2415702956816813 m001 (Lehmer+ZetaP(2))/(GAMMA(13/24)+Khinchin) 2415702960475852 m001 1/ln(cos(Pi/5))^2*FeigenbaumAlpha^2*sqrt(3) 2415702965095933 h001 (11/12*exp(2)+2/9)/(3/4*exp(1)+6/7) 2415702988989947 a008 Real Root of (1+5*x+3*x^2-3*x^3-4*x^4-5*x^5) 2415703000778393 m005 (1/2*2^(1/2)+5/7)/(7/8*gamma+1/12) 2415703004043025 m001 (-BesselK(0,1)+Gompertz)/(BesselI(0,1)-cos(1)) 2415703015235190 m005 (1/2*Catalan-1/7)/(gamma+8/11) 2415703025869889 m001 TravellingSalesman^Trott/ThueMorse 2415703029597917 h001 (2/9*exp(2)+5/6)/(1/7*exp(1)+7/11) 2415703046107666 a007 Real Root Of 25*x^4+624*x^3+495*x^2+262*x+455 2415703047162521 r008 a(0)=0,K{-n^6,76*n^3+146*n^2+146*n+46} 2415703048422306 r008 a(0)=0,K{-n^6,(2*n+1)*(24+27*n^2+87*n)} 2415703049680551 r005 Re(z^2+c),c=-27/110+9/26*I,n=37 2415703052349368 l006 ln(339/3796) 2415703056266115 m001 (sin(1/5*Pi)+ln(3))/(GAMMA(19/24)-PlouffeB) 2415703067991570 h001 (1/11*exp(1)+1/3)/(1/4*exp(2)+5/9) 2415703071389306 a007 Real Root Of -283*x^4-378*x^3+945*x^2+647*x+357 2415703073858633 a007 Real Root Of 135*x^4+454*x^3+403*x^2+332*x+253 2415703083685062 m001 (Pi^(1/2)+FeigenbaumB)/(MertensB1-Totient) 2415703095277932 r005 Re(z^2+c),c=-29/98+11/61*I,n=5 2415703099051006 m001 (gamma+ln(5))/(-gamma(1)+FeigenbaumB) 2415703104747227 s002 sum(A223114[n]/(n^3*pi^n+1),n=1..infinity) 2415703110094468 m005 (1/3*Catalan+1/4)/(7/12*Zeta(3)-3) 2415703118548318 r005 Im(z^2+c),c=-37/78+17/39*I,n=27 2415703120771407 a007 Real Root Of 473*x^4+682*x^3-869*x^2+393*x-473 2415703122312054 a007 Real Root Of -21*x^4-514*x^3-196*x^2-792*x+762 2415703136337508 r005 Im(z^2+c),c=-53/60+7/30*I,n=13 2415703141519170 b008 (-2*(2+E))/13+Pi 2415703145099453 m002 -1-E^Pi-5/Pi^5 2415703146748005 a007 Real Root Of 338*x^4+426*x^3-922*x^2-357*x-987 2415703158494607 m001 Zeta(7)*exp(Pi)/cos(Pi/12) 2415703162226805 m001 ln(Riemann3rdZero)*Niven*BesselJ(1,1) 2415703165022960 a003 sin(Pi*15/73)-sin(Pi*38/119) 2415703171629259 h001 (5/12*exp(2)+7/8)/(4/9*exp(1)+3/7) 2415703181756545 m001 GAMMA(5/12)^2/exp(Catalan)^2/sqrt(3)^2 2415703182309792 p001 sum((-1)^n/(406*n+251)/n/(6^n),n=1..infinity) 2415703190506710 a007 Real Root Of 203*x^4+347*x^3+208*x^2+953*x-933 2415703193911589 m006 (1/4*exp(Pi)+2/3)/(1/2*exp(2*Pi)-2/3) 2415703201457455 r009 Re(z^3+c),c=-13/36+30/59*I,n=12 2415703208882313 a007 Real Root Of 457*x^4+956*x^3-150*x^2+745*x+589 2415703215979801 m001 LaplaceLimit/Champernowne^2/exp(sin(Pi/5)) 2415703221148014 m001 RenyiParking^Landau-Riemann3rdZero 2415703231710158 r005 Re(z^2+c),c=9/64+26/61*I,n=27 2415703233529989 m001 exp(GAMMA(17/24))*Bloch^2/gamma^2 2415703236567198 r009 Re(z^3+c),c=-15/64+31/35*I,n=9 2415703238172434 l006 ln(9923/9947) 2415703242501755 m001 (Porter+PrimesInBinary)/(CopelandErdos+Landau) 2415703243740505 h001 (-6*exp(3)+1)/(-7*exp(-2)-4) 2415703245276281 r005 Re(z^2+c),c=-29/102+35/58*I,n=33 2415703249037261 r002 29th iterates of z^2 + 2415703262044812 r005 Re(z^2+c),c=-27/110+9/26*I,n=40 2415703262799460 r005 Re(z^2+c),c=-3/32+25/38*I,n=21 2415703279409376 m001 (Si(Pi)*Tribonacci+Zeta(5))/Tribonacci 2415703298676161 r009 Im(z^3+c),c=-19/64+13/64*I,n=12 2415703300095920 m001 (HeathBrownMoroz-MasserGramain)/(Pi-Bloch) 2415703307766542 p001 sum(1/(433*n+416)/(100^n),n=0..infinity) 2415703315556311 m005 (1/2*Zeta(3)-5/7)/(1/8*Catalan-7/12) 2415703319671063 a007 Real Root Of -195*x^4-334*x^3-86*x^2+784*x-179 2415703323282231 a001 1134903170/199*76^(1/3) 2415703326801191 a007 Real Root Of 193*x^4+462*x^3+159*x^2+427*x+44 2415703327237389 a007 Real Root Of 225*x^4+381*x^3-207*x^2+489*x+98 2415703328758183 m001 (-ReciprocalLucas+Robbin)/(2^(1/3)+Psi(2,1/3)) 2415703330018381 m006 (2*exp(2*Pi)+1/3)/(5*Pi^2-5) 2415703337059439 r009 Re(z^3+c),c=-1/26+19/36*I,n=14 2415703338303025 p001 sum(1/(407*n+130)/n/(8^n),n=1..infinity) 2415703343047007 m001 (Cahen+QuadraticClass)/(gamma(1)-gamma(2)) 2415703344400665 m001 1/FeigenbaumD^2/exp(Kolakoski)^2/GAMMA(19/24) 2415703346949621 p001 sum(1/(501*n+308)/n/(512^n),n=1..infinity) 2415703349680454 p001 sum((-1)^n/(373*n+283)/n/(6^n),n=1..infinity) 2415703365264530 m001 LandauRamanujan2nd^HardyLittlewoodC3*Magata 2415703365340543 h001 (4/7*exp(2)+3/8)/(2/3*exp(1)+1/11) 2415703366112531 s002 sum(A279795[n]/(exp(pi*n)-1),n=1..infinity) 2415703369988260 p002 log(3^(7/3)-18^(1/5)) 2415703372731980 a001 312119004989/233*832040^(11/20) 2415703372732364 a001 1568397607/233*12586269025^(11/20) 2415703373054793 h001 (5/11*exp(2)+7/9)/(2/5*exp(1)+5/8) 2415703374660372 r009 Im(z^3+c),c=-1/56+15/58*I,n=2 2415703375459200 h001 (7/9*exp(1)+8/9)/(1/11*exp(2)+4/7) 2415703376344573 a001 11/1597*610^(9/46) 2415703378410351 a007 Real Root Of 428*x^4+976*x^3-162*x^2+277*x+798 2415703388307497 m005 (1/3*2^(1/2)-1/11)/(11/12*exp(1)-11/12) 2415703397159773 l006 ln(764/8555) 2415703415285864 r005 Re(z^2+c),c=-27/110+9/26*I,n=38 2415703420302737 m001 exp(TreeGrowth2nd)*Sierpinski*BesselK(1,1) 2415703425056787 q001 1/4139581 2415703426226197 l006 ln(5947/7572) 2415703437581695 r005 Re(z^2+c),c=-9/40+25/62*I,n=18 2415703438812735 r005 Re(z^2+c),c=-27/110+9/26*I,n=43 2415703453207953 a007 Real Root Of 207*x^4+451*x^3+43*x^2-932*x-222 2415703459488886 r009 Re(z^3+c),c=-51/122+22/41*I,n=48 2415703459804742 a007 Real Root Of -310*x^4-382*x^3+462*x^2+796*x+161 2415703467286495 m005 (-29/44+1/4*5^(1/2))/(3*2^(1/2)-1/10) 2415703469635199 r005 Re(z^2+c),c=-27/110+9/26*I,n=45 2415703470974478 a007 Real Root Of 246*x^4+181*x^3-704*x^2+990*x+674 2415703471654717 l003 hypergeom([1,2],[3/2],52/109) 2415703481742962 r005 Re(z^2+c),c=-27/110+9/26*I,n=48 2415703487030906 r005 Re(z^2+c),c=10/29+9/47*I,n=44 2415703489421139 r005 Re(z^2+c),c=-27/110+9/26*I,n=51 2415703490293487 r005 Re(z^2+c),c=-27/110+9/26*I,n=53 2415703490923087 r005 Re(z^2+c),c=-27/110+9/26*I,n=56 2415703491067448 r005 Re(z^2+c),c=-27/110+9/26*I,n=50 2415703491071230 r005 Re(z^2+c),c=-27/110+9/26*I,n=46 2415703491249895 r005 Re(z^2+c),c=-27/110+9/26*I,n=59 2415703491268541 r005 Re(z^2+c),c=-27/110+9/26*I,n=61 2415703491280445 r005 Re(z^2+c),c=-27/110+9/26*I,n=58 2415703491299447 r005 Re(z^2+c),c=-27/110+9/26*I,n=64 2415703491324726 r005 Re(z^2+c),c=-27/110+9/26*I,n=62 2415703491327050 r005 Re(z^2+c),c=-27/110+9/26*I,n=63 2415703491393986 r005 Re(z^2+c),c=-27/110+9/26*I,n=60 2415703491426007 r005 Re(z^2+c),c=-27/110+9/26*I,n=54 2415703491534306 r005 Re(z^2+c),c=-27/110+9/26*I,n=57 2415703491669239 r005 Re(z^2+c),c=-27/110+9/26*I,n=55 2415703493257207 r005 Re(z^2+c),c=-27/110+9/26*I,n=52 2415703496042421 r005 Re(z^2+c),c=-27/110+9/26*I,n=49 2415703499676875 r005 Re(z^2+c),c=-27/110+9/26*I,n=42 2415703501335410 r005 Re(z^2+c),c=-27/110+9/26*I,n=47 2415703516084962 m001 (cos(1/5*Pi)+Conway)/(Paris+StronglyCareFree) 2415703519707335 a007 Real Root Of -221*x^4-335*x^3+88*x^2-724*x+541 2415703522265766 p004 log(31387/2803) 2415703533805837 r005 Re(z^2+c),c=19/58+8/41*I,n=50 2415703538273620 r005 Re(z^2+c),c=-27/110+9/26*I,n=44 2415703539513143 m001 1/ln(GAMMA(5/12))*DuboisRaymond*Zeta(1,2) 2415703541989115 h001 (1/2*exp(1)+2/11)/(9/11*exp(2)+1/3) 2415703547778611 m001 (Pi+BesselK(1,1))/(Lehmer-RenyiParking) 2415703551175911 r005 Im(z^2+c),c=5/54+11/49*I,n=8 2415703552456539 h001 (1/10*exp(1)+1/6)/(1/3*exp(1)+10/11) 2415703552456539 m005 (1/2*exp(1)+5/6)/(1/6*exp(1)+5/11) 2415703555272626 r009 Re(z^3+c),c=-47/110+19/49*I,n=6 2415703556957728 r005 Im(z^2+c),c=-8/15+23/52*I,n=53 2415703559231286 m001 (GAMMA(17/24)-Artin)/(KhinchinLevy+Sierpinski) 2415703559892056 g007 Psi(2,11/12)+Psi(2,9/10)+Psi(2,6/7)-Psi(2,1/5) 2415703565288129 s002 sum(A034892[n]/((exp(n)+1)/n),n=1..infinity) 2415703566646588 a007 Real Root Of 346*x^4+983*x^3+386*x^2+339*x+641 2415703570009661 a007 Real Root Of -991*x^4+774*x^3-744*x^2+291*x+128 2415703571552646 r009 Re(z^3+c),c=-13/90+57/59*I,n=38 2415703584347745 r009 Im(z^3+c),c=-19/106+5/21*I,n=6 2415703589745167 r005 Re(z^2+c),c=-27/110+9/26*I,n=41 2415703609375578 h001 (3/8*exp(1)+9/11)/(11/12*exp(2)+5/6) 2415703614866602 a007 Real Root Of -385*x^4-700*x^3+497*x^2-69*x+176 2415703615275394 r005 Im(z^2+c),c=-13/56+11/31*I,n=17 2415703618340469 r009 Re(z^3+c),c=-43/82+9/59*I,n=55 2415703626271164 m001 (Salem-ZetaQ(3))/(LandauRamanujan2nd-Paris) 2415703642881294 r005 Im(z^2+c),c=-69/106+16/57*I,n=13 2415703656354812 a001 3/196418*2178309^(7/37) 2415703658901478 a007 Real Root Of -208*x^4+521*x^3+705*x^2+804*x-242 2415703662284268 a007 Real Root Of 297*x^4+790*x^3+804*x^2-361*x-124 2415703670187874 r005 Im(z^2+c),c=-13/16+20/117*I,n=42 2415703672196693 l006 ln(425/4759) 2415703672516089 r005 Re(z^2+c),c=-25/98+13/42*I,n=12 2415703688667136 a005 (1/sin(72/203*Pi))^477 2415703700903340 m001 exp(Pi)^gamma(1)*GaussKuzminWirsing 2415703705276459 r005 Re(z^2+c),c=13/106+22/41*I,n=6 2415703705893004 g005 GAMMA(2/11)/Pi/csc(1/10*Pi)/GAMMA(3/7) 2415703707484643 a007 Real Root Of -24*x^4+261*x^3-70*x^2-812*x-492 2415703707868517 m001 (Robbin-Totient)/(gamma(1)-exp(-1/2*Pi)) 2415703708437333 r002 17th iterates of z^2 + 2415703710600870 r009 Re(z^3+c),c=-3/20+30/37*I,n=5 2415703711402770 m001 1/exp(Robbin)^2*PrimesInBinary^2/Ei(1) 2415703712992940 p001 sum(1/(492*n+431)/(12^n),n=0..infinity) 2415703735228239 a007 Real Root Of -113*x^4+90*x^3+573*x^2-426*x+744 2415703738683320 a007 Real Root Of 119*x^4+66*x^3-499*x^2+70*x-41 2415703742105488 r005 Re(z^2+c),c=-21/106+25/53*I,n=27 2415703745298871 r005 Re(z^2+c),c=-69/82+11/46*I,n=10 2415703747965549 m001 Riemann2ndZero*exp(Bloch)^2/sqrt(5) 2415703764096434 r005 Re(z^2+c),c=-27/110+9/26*I,n=39 2415703768379735 a001 1/6624*21^(51/56) 2415703768521651 a003 sin(Pi*9/80)*sin(Pi*15/61) 2415703769918869 r005 Im(z^2+c),c=-7/13+3/7*I,n=48 2415703774205975 r005 Im(z^2+c),c=-59/82+13/64*I,n=48 2415703776312187 r005 Re(z^2+c),c=-27/82+18/59*I,n=3 2415703785056898 r005 Re(z^2+c),c=-11/46+13/15*I,n=33 2415703794762198 m005 (1/2*3^(1/2)-1/6)/(2/11*gamma-3) 2415703800910200 r005 Im(z^2+c),c=-59/58+1/40*I,n=8 2415703801231292 a001 3/832040*832040^(6/43) 2415703823303394 m001 (ln(3)+3^(1/3))/(Zeta(1,2)+FeigenbaumB) 2415703823654731 l006 ln(3323/4231) 2415703823654731 p004 log(4231/3323) 2415703833287297 m001 Totient*(ln(3)+CareFree) 2415703847483885 r008 a(0)=0,K{-n^6,82*n^3+129*n^2+150*n+53} 2415703847926557 r008 a(0)=0,K{-n^6,74*n^3+149*n^2+146*n+45} 2415703852105884 h001 (4/9*exp(2)+5/7)/(4/11*exp(1)+2/3) 2415703855724603 h001 (-7*exp(8)+9)/(-4*exp(3)-6) 2415703857944758 m001 Zeta(1/2)^OrthogonalArrays/CareFree 2415703862900561 m001 Khinchin-LambertW(1)*PlouffeB 2415703863991548 m001 (Zeta(5)-BesselJ(1,1))/(Landau+Tetranacci) 2415703880907500 b008 1/3+3^(5*EulerGamma) 2415703883714212 r005 Im(z^2+c),c=-13/14+29/114*I,n=8 2415703886211266 m001 1/ln(Catalan)^2*FeigenbaumB*sqrt(5) 2415703887778854 m001 Porter^2/ln(Si(Pi))^2/GAMMA(1/24) 2415703896425177 m001 (gamma-ln(Pi))/(-CopelandErdos+Sierpinski) 2415703917718115 a007 Real Root Of -511*x^4-740*x^3+656*x^2-981*x+772 2415703923232633 m001 (Salem-ZetaP(2))/(HardyLittlewoodC5-Magata) 2415703926882665 m005 (-11/36+1/4*5^(1/2))/(3/7*5^(1/2)+1/11) 2415703938004506 r005 Re(z^2+c),c=1/6+9/25*I,n=49 2415703943342849 r005 Re(z^2+c),c=-11/50+18/43*I,n=24 2415703950627016 b008 Coth[LogIntegral[Cos[1]]] 2415703956149170 m001 (sin(1/12*Pi)+Totient)/(Zeta(3)-cos(1)) 2415703958392528 a003 cos(Pi*3/97)-cos(Pi*21/92) 2415703958676218 m001 (5^(1/2)-Shi(1))/(-LaplaceLimit+ZetaP(3)) 2415703960079163 a007 Real Root Of 478*x^4+824*x^3-359*x^2+664*x-963 2415703965642420 m001 StronglyCareFree^ln(gamma)+BesselI(0,1) 2415703967134274 r005 Im(z^2+c),c=-31/50+23/61*I,n=41 2415703975932867 m001 ReciprocalLucas^Pi*OrthogonalArrays^Pi 2415703975945000 m005 (3/8+1/4*5^(1/2))/(1/9*Zeta(3)-4) 2415703989836341 m001 cos(1/12*Pi)*(Riemann3rdZero-ZetaQ(4)) 2415703998852069 m005 (1/2*Catalan+1/6)/(2^(1/2)-4) 2415703999865616 r009 Re(z^3+c),c=-29/64+28/57*I,n=20 2415704003099203 a001 843/514229*2^(33/59) 2415704011397230 m001 (DuboisRaymond+Landau)/(2^(1/2)+GAMMA(13/24)) 2415704015350049 p004 log(31397/24659) 2415704028239349 m001 (Ei(1,1)-CopelandErdos)/(GAMMA(3/4)+ln(gamma)) 2415704034540794 r005 Re(z^2+c),c=-27/110+9/26*I,n=34 2415704037121946 a001 3571*(1/2*5^(1/2)+1/2)^30*47^(14/15) 2415704046369148 b008 6+9*Sinh[2*Pi] 2415704046369148 m002 6+18*Cosh[Pi]*Sinh[Pi] 2415704062161253 m005 (1/2*exp(1)-8/11)/(1/6*5^(1/2)-1/9) 2415704066700547 a007 Real Root Of 48*x^4-412*x^3+477*x^2+281*x+711 2415704070077386 a001 17711/2207*29^(18/55) 2415704081463745 r005 Re(z^2+c),c=35/106+10/49*I,n=32 2415704083406351 l006 ln(511/5722) 2415704083830488 a001 89/39603*18^(1/40) 2415704085412841 a007 Real Root Of 266*x^4+641*x^3-283*x^2-436*x+576 2415704110481411 r005 Re(z^2+c),c=-41/78+1/2*I,n=61 2415704118127803 m001 BesselJ(0,1)*ln(Backhouse)^2*sqrt(5) 2415704145439266 l006 ln(7345/9352) 2415704167887491 a001 123/610*377^(18/43) 2415704172405723 m001 (ZetaP(3)+ZetaQ(3))/(cos(1)+Ei(1,1)) 2415704174832757 l006 ln(5603/5740) 2415704179223261 r009 Im(z^3+c),c=-5/26+4/17*I,n=13 2415704180687881 r005 Re(z^2+c),c=-4/3+34/215*I,n=8 2415704188556826 m001 (MertensB1-Mills)/(GAMMA(13/24)+Khinchin) 2415704195092235 r009 Im(z^3+c),c=-5/26+4/17*I,n=14 2415704197334407 r009 Im(z^3+c),c=-5/26+4/17*I,n=16 2415704197389223 r009 Im(z^3+c),c=-5/26+4/17*I,n=17 2415704197473474 r009 Im(z^3+c),c=-5/26+4/17*I,n=20 2415704197475357 r009 Im(z^3+c),c=-5/26+4/17*I,n=23 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=26 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=27 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=29 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=30 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=33 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=36 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=39 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=37 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=40 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=43 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=42 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=46 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=49 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=50 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=52 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=53 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=56 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=55 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=59 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=62 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=63 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=64 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=61 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=60 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=58 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=57 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=54 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=51 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=48 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=47 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=45 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=44 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=41 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=38 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=35 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=34 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=32 2415704197475389 r009 Im(z^3+c),c=-5/26+4/17*I,n=31 2415704197475390 r009 Im(z^3+c),c=-5/26+4/17*I,n=28 2415704197475390 r009 Im(z^3+c),c=-5/26+4/17*I,n=24 2415704197475392 r009 Im(z^3+c),c=-5/26+4/17*I,n=25 2415704197475470 r009 Im(z^3+c),c=-5/26+4/17*I,n=22 2415704197475654 r009 Im(z^3+c),c=-5/26+4/17*I,n=21 2415704197476629 r009 Im(z^3+c),c=-5/26+4/17*I,n=19 2415704197500512 r009 Im(z^3+c),c=-5/26+4/17*I,n=18 2415704198920156 a001 9349*(1/2*5^(1/2)+1/2)^28*47^(14/15) 2415704199136058 r009 Im(z^3+c),c=-5/26+4/17*I,n=15 2415704213742041 p001 sum(1/(413*n+2)/n/(100^n),n=1..infinity) 2415704215592485 m001 (gamma(3)+BesselI(1,1))/(1-BesselJ(0,1)) 2415704222111201 k009 concat of cont frac of 2415704222526196 a001 24476*(1/2*5^(1/2)+1/2)^26*47^(14/15) 2415704222832686 a005 (1/cos(3/179*Pi))^636 2415704225970271 a001 64079*(1/2*5^(1/2)+1/2)^24*47^(14/15) 2415704228098827 a001 39603*(1/2*5^(1/2)+1/2)^25*47^(14/15) 2415704228419107 a007 Real Root Of -910*x^4+701*x^3+990*x^2+845*x-21 2415704232943442 r005 Re(z^2+c),c=21/82+6/43*I,n=37 2415704234277503 m001 1/ln(GAMMA(1/24))^2/GolombDickman*GAMMA(3/4)^2 2415704237115532 a001 15127*(1/2*5^(1/2)+1/2)^27*47^(14/15) 2415704237120120 m001 GolombDickman^2*exp(Backhouse)*Zeta(3)^2 2415704239014821 r005 Re(z^2+c),c=-19/94+12/25*I,n=17 2415704240482724 r009 Im(z^3+c),c=-5/26+4/17*I,n=11 2415704245788481 m001 (Lehmer+Thue)/(2^(1/2)-GAMMA(2/3)) 2415704252970131 r005 Im(z^2+c),c=15/52+2/39*I,n=22 2415704264841666 a007 Real Root Of 897*x^4-870*x^3-717*x^2-273*x+117 2415704265897234 a007 Real Root Of 354*x^4-342*x^3+53*x^2-637*x-163 2415704266021503 a007 Real Root Of -13*x^4+253*x^3-66*x^2+648*x+164 2415704266797006 m001 Pi*(Psi(2,1/3)-cos(1/5*Pi))*exp(1/Pi) 2415704271068924 a007 Real Root Of -357*x^4-598*x^3+212*x^2-893*x+333 2415704272468916 m001 Zeta(1/2)^GlaisherKinkelin-MertensB2 2415704277268610 a003 cos(Pi*19/71)*cos(Pi*34/89) 2415704277456792 m001 (Si(Pi)*GAMMA(19/24)+Robbin)/GAMMA(19/24) 2415704282110451 r009 Im(z^3+c),c=-5/26+4/17*I,n=12 2415704290793521 m001 1/GAMMA(13/24)^2/Bloch^2/ln(Zeta(7))^2 2415704298916949 a001 5778*(1/2*5^(1/2)+1/2)^29*47^(14/15) 2415704307803068 m001 Zeta(1,-1)/Catalan/RenyiParking 2415704312179948 r005 Im(z^2+c),c=-27/118+17/48*I,n=21 2415704313318494 a007 Real Root Of 323*x^4+644*x^3-281*x^2-252*x-890 2415704315356455 a007 Real Root Of -315*x^4-396*x^3+786*x^2-529*x-720 2415704330739590 m006 (1/4*Pi^2+3)/(4/5*Pi-1/4) 2415704330739590 m008 (1/4*Pi^2+3)/(4/5*Pi-1/4) 2415704336227977 a001 3/3571*4^(16/21) 2415704352989893 a001 8/9349*7^(8/15) 2415704369434933 m001 (Bloch-Chi(1))/(-Tetranacci+ThueMorse) 2415704376143441 l006 ln(597/6685) 2415704387990762 q001 1046/433 2415704392541622 m001 (Trott2nd-ZetaP(4))/(exp(1/exp(1))+Gompertz) 2415704395993432 a007 Real Root Of 608*x^4+971*x^3-978*x^2+687*x+350 2415704396269956 a007 Real Root Of -354*x^4-285*x^3+966*x^2-790*x+492 2415704407189180 p001 sum((-1)^n/(417*n+406)/(25^n),n=0..infinity) 2415704407367643 m001 1/3*(Bloch-Champernowne)*3^(2/3) 2415704411299529 l006 ln(4022/5121) 2415704424836876 m001 OneNinth*ln(ErdosBorwein)^2/Zeta(9) 2415704443620710 s002 sum(A286814[n]/(n*10^n-1),n=1..infinity) 2415704456254808 m001 Pi*csc(1/24*Pi)/GAMMA(23/24)-ln(Pi)+Tribonacci 2415704457897043 g007 Psi(2,2/11)+Psi(2,2/7)+Psi(2,5/6)-Psi(2,2/9) 2415704458384936 h001 (7/10*exp(1)+4/9)/(1/7*exp(1)+7/12) 2415704460760653 p001 sum(1/(500*n+309)/n/(512^n),n=1..infinity) 2415704462800557 a007 Real Root Of 436*x^4+504*x^3-951*x^2+722*x-449 2415704475339024 b008 (3*ExpIntegralEi[EulerGamma^(-1)])/5 2415704484030982 m001 (-LaplaceLimit+ZetaQ(3))/(Chi(1)-LambertW(1)) 2415704494986079 a001 2576/321*29^(18/55) 2415704504893369 r005 Im(z^2+c),c=-43/58+3/22*I,n=16 2415704508404084 a007 Real Root Of 296*x^4+910*x^3+76*x^2-863*x+220 2415704510191625 a001 5/322*199^(41/43) 2415704523843555 m001 (gamma-Stephens)/(Pi+Psi(2,1/3)) 2415704527623455 m001 (Thue+ZetaP(2))/(Psi(2,1/3)+Chi(1)) 2415704530860565 m001 Sierpinski^2/ln(Robbin)/sin(Pi/12)^2 2415704540390609 r005 Im(z^2+c),c=-49/114+22/53*I,n=52 2415704555883444 p004 log(37277/3329) 2415704556979434 a001 121393/15127*29^(18/55) 2415704559079631 m005 (1/2*Catalan-4)/(3/5*Catalan+11/12) 2415704566024143 a001 105937/13201*29^(18/55) 2415704567343748 a001 416020/51841*29^(18/55) 2415704567536276 a001 726103/90481*29^(18/55) 2415704567655264 a001 1346269/167761*29^(18/55) 2415704568159309 a001 514229/64079*29^(18/55) 2415704571614080 a001 98209/12238*29^(18/55) 2415704571908693 a007 Real Root Of 465*x^4+652*x^3-913*x^2+592*x+114 2415704576028375 r002 6th iterates of z^2 + 2415704592181958 q001 1/4139579 2415704595160447 l006 ln(683/7648) 2415704595293436 a001 75025/9349*29^(18/55) 2415704605337011 r005 Re(z^2+c),c=-27/110+9/26*I,n=36 2415704630786389 a007 Real Root Of -185*x^4-274*x^3+740*x^2+719*x-144 2415704635922811 m001 (-Magata+Robbin)/(2^(1/3)-Champernowne) 2415704637387889 m005 (1/3*Zeta(3)-1/9)/(2/7*3^(1/2)-3/8) 2415704640377635 a001 1/329*987^(33/52) 2415704644973647 a001 7/34*377^(22/53) 2415704652858545 r008 a(0)=0,K{-n^6,(2*n+1)*(64+46*n^2+28*n)} 2415704653766190 m008 (1/4*Pi-4/5)/(3/5*Pi^4+2) 2415704653850470 r008 a(0)=0,K{-n^6,74*n^3+147*n^2+147*n+46} 2415704655032622 r008 a(0)=0,K{-n^6,54*n^3+197*n^2+137*n+26} 2415704655390794 a001 281/48*6765^(9/56) 2415704657229084 a001 2207/2*377^(7/53) 2415704661150227 a007 Real Root Of 25*x^4-907*x^3-994*x^2-555*x+14 2415704662599250 r009 Re(z^3+c),c=-35/86+9/23*I,n=6 2415704665129985 r009 Im(z^3+c),c=-61/118+6/37*I,n=21 2415704669457867 a007 Real Root Of 874*x^4-756*x^3+157*x^2-892*x+214 2415704675027068 r009 Re(z^3+c),c=-5/122+35/59*I,n=33 2415704683444557 m002 -Cosh[Pi]-20*Sinh[Pi]+Tanh[Pi] 2415704689332693 s002 sum(A098198[n]/(exp(n)-1),n=1..infinity) 2415704691502231 r002 25th iterates of z^2 + 2415704708175091 a008 Real Root of x^5-2*x^4-11*x^3+14*x^2+25*x-26 2415704710775875 r002 12th iterates of z^2 + 2415704711254118 a007 Real Root Of 287*x^4+875*x^3+556*x^2-9*x-705 2415704711595321 m005 (5/6*Catalan-1/2)/(2/5*Pi-1/6) 2415704719749150 a007 Real Root Of 370*x^4+794*x^3-251*x^2-57*x-80 2415704722510162 a001 2207*(1/2*5^(1/2)+1/2)^31*47^(14/15) 2415704732798226 r005 Im(z^2+c),c=-1+29/115*I,n=30 2415704736079248 a007 Real Root Of 573*x^4+957*x^3-742*x^2+691*x-23 2415704739913947 m006 (4/5*exp(Pi)+4)/(5/6/Pi+2/3) 2415704741530633 m001 1/Zeta(7)*GAMMA(5/12)^2*exp(sin(1))^2 2415704748157198 m001 (ZetaQ(3)-ZetaQ(4))/(Zeta(1,2)+Cahen) 2415704750721060 m005 (1/2*3^(1/2)-8/9)/(2/9*gamma+9/11) 2415704751954393 m001 1/DuboisRaymond^2/Backhouse^2*exp(Robbin) 2415704757594167 a001 28657/3571*29^(18/55) 2415704765190521 l006 ln(769/8611) 2415704772759142 r009 Re(z^3+c),c=-7/23+2/3*I,n=11 2415704774302537 r005 Im(z^2+c),c=-19/48+15/37*I,n=51 2415704776398891 m001 Bloch^2*ErdosBorwein/ln(GAMMA(5/24)) 2415704787679681 m001 (GAMMA(23/24)-GAMMA(3/4))^QuadraticClass 2415704794085006 m001 (Pi+1/2*GAMMA(13/24))/GAMMA(13/24) 2415704804181331 r005 Re(z^2+c),c=1/20+9/59*I,n=4 2415704818204020 p003 LerchPhi(1/12,6,177/205) 2415704824928753 l006 ln(4721/6011) 2415704824928753 p004 log(6011/4721) 2415704831830806 a007 Real Root Of -476*x^4-982*x^3+303*x^2+40*x+695 2415704832167998 b008 2+5*Tanh[1/12] 2415704833359390 r009 Im(z^3+c),c=-7/16+6/55*I,n=38 2415704838976293 a007 Real Root Of -31*x^4-783*x^3-828*x^2-108*x-576 2415704877286296 m001 1/Sierpinski*Niven*ln((3^(1/3))) 2415704901015694 l006 ln(855/9574) 2415704902120996 m001 (Cahen+ZetaP(4))/(Ei(1,1)-polylog(4,1/2)) 2415704910807936 m001 (3^(1/3)+Conway)/(Robbin+Weierstrass) 2415704918058536 a007 Real Root Of 225*x^4+379*x^3-234*x^2+84*x-751 2415704934425646 r005 Im(z^2+c),c=-41/50+7/45*I,n=31 2415704939499246 h001 (2/7*exp(1)+2/11)/(5/12*exp(2)+8/9) 2415704941480962 a003 cos(Pi*24/101)*cos(Pi*35/89) 2415704944804541 a007 Real Root Of -264*x^4+721*x^3+762*x^2+858*x-261 2415704950558312 r005 Re(z^2+c),c=5/52+11/42*I,n=6 2415704975494673 m001 Zeta(5)^FellerTornier+OrthogonalArrays 2415704977531710 m001 (-gamma(1)+MinimumGamma)/(2^(1/3)-Ei(1)) 2415704983508575 r005 Im(z^2+c),c=1/86+5/19*I,n=12 2415704987267037 s002 sum(A205037[n]/(pi^n),n=1..infinity) 2415704992992751 r005 Im(z^2+c),c=-53/114+16/37*I,n=41 2415704994090002 r005 Re(z^2+c),c=13/60+5/53*I,n=11 2415704995677214 m006 (1/2*Pi-3/5)/(3/4*exp(2*Pi)+1/4) 2415704997167112 r005 Im(z^2+c),c=-73/114+16/51*I,n=20 2415704997636232 r005 Re(z^2+c),c=3/10+27/56*I,n=8 2415705001519282 a007 Real Root Of 6*x^4-345*x^3-795*x^2+237*x+144 2415705002514564 a001 1/19*(1/2*5^(1/2)+1/2)^14*76^(9/23) 2415705002740106 a001 2207/5*514229^(36/55) 2415705021763302 a007 Real Root Of 848*x^4+969*x^3-162*x^2-493*x+112 2415705023189541 a007 Real Root Of -338*x^4-895*x^3-250*x^2-280*x-324 2415705029030546 m001 1/MinimumGamma/Kolakoski^2*ln(OneNinth) 2415705029383230 a003 cos(Pi*8/103)/cos(Pi*7/19) 2415705035378942 a007 Real Root Of -213*x^4-262*x^3+966*x^2+729*x-316 2415705037978794 m001 (-Kolakoski+Sierpinski)/(1-sin(1/12*Pi)) 2415705039909697 m001 (Kolakoski+Stephens)/(Psi(2,1/3)-ln(5)) 2415705041461246 r005 Re(z^2+c),c=-32/31+5/23*I,n=16 2415705050298570 m001 BesselI(1,1)*ReciprocalLucas+Mills 2415705052816847 r005 Re(z^2+c),c=-33/122+38/63*I,n=34 2415705056427257 r002 6th iterates of z^2 + 2415705056803107 r005 Re(z^2+c),c=-7/90+16/27*I,n=30 2415705069127604 m001 (gamma(3)+HardyLittlewoodC5)/Niven 2415705077275799 m001 Ei(1)*Backhouse*exp(sqrt(5))^2 2415705084925854 a007 Real Root Of -382*x^4-291*x^3+93*x^2+596*x-144 2415705096599063 r005 Re(z^2+c),c=25/122+13/30*I,n=20 2415705109043468 m001 (3^(1/2)+gamma(1))/(-Kolakoski+OneNinth) 2415705123377363 m001 (PlouffeB+Porter)/(gamma(2)-Kolakoski) 2415705124201527 r009 Re(z^3+c),c=-47/122+18/37*I,n=61 2415705128000222 a003 sin(Pi*8/103)*sin(Pi*57/115) 2415705129054829 m001 (MertensB2-Paris)/(FeigenbaumDelta-Kolakoski) 2415705131869099 l006 ln(5420/6901) 2415705132623414 r005 Re(z^2+c),c=-19/66+7/43*I,n=20 2415705138382341 a001 28657/123*521^(23/31) 2415705148143904 a007 Real Root Of -178*x^4+103*x^3+770*x^2-999*x+607 2415705149886555 a001 9349/89*2504730781961^(4/21) 2415705151140734 r009 Re(z^3+c),c=-5/122+35/59*I,n=35 2415705157297034 r005 Re(z^2+c),c=-19/66+7/43*I,n=18 2415705162000579 m005 (1/2*5^(1/2)+1)/(1/8*2^(1/2)+7/10) 2415705168672233 r005 Im(z^2+c),c=-31/118+12/35*I,n=3 2415705176936681 a001 64079/89*102334155^(4/21) 2415705182776942 a001 439204/89*4181^(4/21) 2415705189126194 m001 ReciprocalFibonacci^arctan(1/2)+Robbin 2415705216222822 a003 cos(Pi*10/89)/sin(Pi*8/63) 2415705221988829 m001 (exp(1)+Si(Pi))/(Shi(1)+GaussAGM) 2415705228433824 g005 GAMMA(7/10)*GAMMA(5/7)*GAMMA(4/7)/GAMMA(9/10) 2415705230432308 r005 Im(z^2+c),c=-45/122+19/48*I,n=19 2415705230579860 a001 47/1597*514229^(37/43) 2415705253306849 m001 LandauRamanujan^sin(1/5*Pi)-Riemann3rdZero 2415705259318809 r005 Re(z^2+c),c=-2/11+29/57*I,n=33 2415705261323952 m001 (-arctan(1/2)+3)/(-GAMMA(1/12)+1) 2415705267321715 a007 Real Root Of -31*x^4-773*x^3-605*x^2-521*x+286 2415705267752724 r009 Re(z^3+c),c=-9/62+22/23*I,n=38 2415705271591329 m005 (1/3*gamma+1/4)/(4/5*2^(1/2)+7/10) 2415705276377018 r005 Re(z^2+c),c=-3/122+31/42*I,n=49 2415705286590982 r009 Re(z^3+c),c=-27/70+19/36*I,n=20 2415705295836273 a007 Real Root Of -346*x^4-761*x^3+667*x^2+778*x-958 2415705301077830 s002 sum(A029440[n]/(pi^n+1),n=1..infinity) 2415705301577053 m005 (1/2*Zeta(3)-9/10)/(8/9*5^(1/2)-3/4) 2415705306442828 a001 11/10946*832040^(37/50) 2415705322959474 r009 Re(z^3+c),c=-43/110+16/31*I,n=23 2415705331730982 g006 Psi(1,1/12)+Psi(1,7/10)+Psi(1,1/10)-Psi(1,3/8) 2415705336817731 r005 Im(z^2+c),c=-5/17+3/8*I,n=30 2415705340091111 m001 1/ln(GAMMA(5/12))/GAMMA(1/24)/GAMMA(7/12)^2 2415705341268950 m001 1/2*(2^(1/3)*MinimumGamma+Zeta(3))*2^(2/3) 2415705343224567 r009 Im(z^3+c),c=-35/78+2/21*I,n=62 2415705352379655 a003 cos(Pi*9/110)*cos(Pi*47/112) 2415705361918096 m003 5/2-E^(1/2+Sqrt[5]/2)/5+Tanh[1/2+Sqrt[5]/2] 2415705365216304 m001 (ThueMorse+ZetaQ(3))/(BesselJ(1,1)+Conway) 2415705368683176 l006 ln(6119/7791) 2415705392037513 m001 1/exp(Zeta(1/2))/PrimesInBinary^2/Zeta(5) 2415705392905791 r005 Im(z^2+c),c=-5/18+18/53*I,n=4 2415705398259588 m002 ProductLog[Pi]/Pi^4+ProductLog[Pi]^2/5 2415705402545004 r009 Re(z^3+c),c=-35/102+24/61*I,n=17 2415705408030790 r005 Im(z^2+c),c=-13/18+13/92*I,n=19 2415705412599822 r002 2th iterates of z^2 + 2415705412599822 r002 2th iterates of z^2 + 2415705419789034 m001 HardHexagonsEntropy/(Zeta(1,-1)+OneNinth) 2415705444963325 r005 Re(z^2+c),c=-27/110+9/26*I,n=33 2415705445430099 r005 Im(z^2+c),c=-73/52+7/60*I,n=6 2415705459690296 a003 cos(2/5*Pi)+3^(1/2)-cos(3/7*Pi)+cos(8/27*Pi) 2415705461596983 m001 (3^(1/3)+FeigenbaumC)^Khinchin 2415705464199611 r008 a(0)=0,K{-n^6,90*n^3+105*n^2+156*n+63} 2415705474455428 a008 Real Root of x^3-159*x-370 2415705479681714 r005 Re(z^2+c),c=31/114+12/25*I,n=20 2415705488100253 h001 (8/11*exp(1)+7/8)/(1/7*exp(2)+1/8) 2415705507444575 m001 1/(2^(1/3))^2/exp(Riemann1stZero)/Ei(1) 2415705509953304 b008 7/3+E/33 2415705510897914 m004 3+E^(Sqrt[5]*Pi)/(Sqrt[5]*Pi)+25*Pi 2415705521085353 a007 Real Root Of -386*x^4+713*x^3-77*x^2+711*x-176 2415705534495935 m001 exp(Zeta(1,2))^2/FeigenbaumKappa^2/sin(Pi/5)^2 2415705543295113 m001 exp(RenyiParking)*ArtinRank2*GAMMA(13/24) 2415705544342397 h001 (-3*exp(-1)+7)/(-5*exp(3/2)-2) 2415705544519755 r005 Re(z^2+c),c=-29/36+3/56*I,n=40 2415705556939595 l006 ln(6818/8681) 2415705566165771 m001 LambertW(1)/exp(GAMMA(5/12))^2/gamma^2 2415705567795714 a007 Real Root Of -67*x^4+2*x^3+319*x^2-222*x-88 2415705572397011 m005 (1/2*Pi+4/5)/(2/9*Zeta(3)+5/7) 2415705576275801 p001 sum(1/(499*n+310)/n/(512^n),n=1..infinity) 2415705580999821 r005 Im(z^2+c),c=-39/40+10/43*I,n=56 2415705581741195 a007 Real Root Of -798*x^4+961*x^3-847*x^2+705*x+236 2415705582711667 a007 Real Root Of -153*x^4-58*x^3+359*x^2-543*x+986 2415705588108725 m001 Champernowne/ln(Cahen)/OneNinth^2 2415705589228412 p004 log(22093/1973) 2415705611857504 m001 MertensB2*FeigenbaumD^Thue 2415705621792965 a005 (1/sin(44/123*Pi))^298 2415705624340973 r005 Im(z^2+c),c=-9/16+79/121*I,n=6 2415705627146822 m001 (Rabbit+Trott2nd)/(ln(5)+3^(1/3)) 2415705627580066 r005 Re(z^2+c),c=11/60+21/37*I,n=51 2415705630097767 r005 Re(z^2+c),c=-11/38+5/33*I,n=11 2415705639357307 m001 (Totient+ZetaP(2))/(Si(Pi)+2*Pi/GAMMA(5/6)) 2415705654489344 m001 (GAMMA(5/6)+AlladiGrinstead)/(Artin-Salem) 2415705658419451 a007 Real Root Of 978*x^4+468*x^3-506*x^2-609*x+15 2415705676183589 a007 Real Root Of 191*x^4+82*x^3-614*x^2-774*x+221 2415705682741175 a001 7/144*377^(10/37) 2415705687361802 r005 Re(z^2+c),c=5/16+8/45*I,n=11 2415705687457334 h001 (-11*exp(3)-12)/(-5*exp(3)+4) 2415705697808634 m001 Conway-Pi*2^(1/2)/GAMMA(3/4)*GAMMA(23/24) 2415705710184375 l006 ln(7517/9571) 2415705719408035 m001 (2^(1/2)+GAMMA(19/24))/(Gompertz+Weierstrass) 2415705722046315 m005 (1/2*Catalan-10/11)/(7/11*5^(1/2)+4/9) 2415705726736391 m007 (-5*gamma+1/4)/(-1/4*gamma-1/2*ln(2)+3/5) 2415705728952251 r005 Im(z^2+c),c=-111/94+2/63*I,n=53 2415705740355856 m001 (5^(1/2))^PisotVijayaraghavan/Zeta(3) 2415705741865528 r005 Re(z^2+c),c=-17/60+12/59*I,n=7 2415705748999686 p004 log(31723/2833) 2415705751325459 r005 Re(z^2+c),c=-111/94+8/49*I,n=4 2415705754752592 m005 (1/2*Zeta(3)-8/11)/(2/7*Pi-3/8) 2415705760814656 r009 Re(z^3+c),c=-71/126+11/18*I,n=9 2415705795418847 m005 (1/2*Catalan-2/7)/(2/9*Catalan-11/12) 2415705799570673 r009 Re(z^3+c),c=-47/86+17/62*I,n=24 2415705801167444 m001 (TwinPrimes+ZetaQ(3))/(sin(1)+Tetranacci) 2415705802340516 m001 (exp(-Pi)-exp(1/Pi))/Psi(2,1/3) 2415705811728593 a007 Real Root Of -88*x^4-131*x^3-908*x^2+942*x+279 2415705813240303 m002 -(E^Pi*Cosh[Pi])+E^Pi*ProductLog[Pi]^2 2415705817771615 r005 Im(z^2+c),c=1/122+9/34*I,n=14 2415705824596294 r005 Im(z^2+c),c=-11/28+11/32*I,n=6 2415705826344043 b008 1+13*E^(1/Sqrt[3]) 2415705831161489 r005 Im(z^2+c),c=-5/27+29/38*I,n=15 2415705833634093 h005 exp(cos(Pi*6/37)/sin(Pi*5/11)) 2415705847486752 m001 (arctan(1/2)+gamma(1))/(BesselI(0,2)-Robbin) 2415705848832170 a007 Real Root Of -272*x^4-409*x^3+428*x^2-819*x-979 2415705867598267 h001 (2/5*exp(2)+7/12)/(3/7*exp(1)+3/10) 2415705870020513 a001 5473/682*29^(18/55) 2415705879598849 r005 Im(z^2+c),c=-19/52+23/58*I,n=44 2415705892352686 m001 ln(Zeta(5))^2*Rabbit*sin(Pi/12) 2415705914850032 m001 (ln(5)-arctan(1/2)*GAMMA(11/12))/arctan(1/2) 2415705915815770 r009 Re(z^3+c),c=-47/118+13/24*I,n=31 2415705920378907 a007 Real Root Of 28*x^4+680*x^3+79*x^2-155*x+937 2415705927708241 r005 Re(z^2+c),c=8/25+3/17*I,n=18 2415705934300940 r009 Im(z^3+c),c=-7/20+8/45*I,n=16 2415705937307853 m001 5^(1/2)+Artin^KhinchinHarmonic 2415705952045927 m001 (2^(1/3)-Zeta(3))/(GAMMA(11/12)+Totient) 2415705973023371 m001 (BesselI(0,2)-sin(1))/(Bloch+Champernowne) 2415705975674832 r005 Re(z^2+c),c=-27/34+11/123*I,n=44 2415706007337834 a005 (1/cos(2/173*Pi))^1337 2415706011078219 b008 1/18+ProductLog[25] 2415706011605388 m001 (Chi(1)-gamma(1))/(-Paris+PlouffeB) 2415706020373313 a007 Real Root Of 217*x^4+94*x^3-652*x^2-443*x+143 2415706023189183 a001 2/47*11^(21/29) 2415706029874727 r009 Re(z^3+c),c=-19/50+19/40*I,n=51 2415706044961739 m001 (Ei(1)+Landau)/(MinimumGamma-ZetaP(2)) 2415706047913756 a007 Real Root Of 72*x^4+244*x^3+266*x^2+172*x-149 2415706057897527 r005 Re(z^2+c),c=-19/66+9/50*I,n=7 2415706059445121 m001 (-CareFree+HardyLittlewoodC5)/(1+Ei(1,1)) 2415706068073642 l006 ln(9202/9427) 2415706090198770 a001 199/377*4181^(36/49) 2415706106414116 r009 Re(z^3+c),c=-19/50+19/40*I,n=54 2415706107351490 a007 Real Root Of -605*x^4-623*x^3-634*x^2+790*x-143 2415706115544617 l006 ln(86/963) 2415706128369357 a007 Real Root Of 153*x^4+148*x^3-890*x^2-620*x+572 2415706131175761 r005 Im(z^2+c),c=-17/18+36/155*I,n=50 2415706133356632 r005 Im(z^2+c),c=-53/102+5/13*I,n=20 2415706136093141 a007 Real Root Of -575*x^4-993*x^3+919*x^2+231*x+778 2415706136349718 r009 Im(z^3+c),c=-53/118+2/21*I,n=35 2415706142375183 m001 (3^(1/3)-ZetaQ(4))/Gompertz 2415706142455103 a007 Real Root Of 326*x^4+366*x^3-957*x^2+302*x+372 2415706149913117 a007 Real Root Of 321*x^4+628*x^3-424*x^2-471*x-742 2415706159442206 b008 2+5*ArcCot[12] 2415706164397518 m008 (1/4*Pi^6-2/3)/(3/5*Pi^2+4) 2415706169696324 m003 -5/4-Log[1/2+Sqrt[5]/2]*Sinh[1/2+Sqrt[5]/2] 2415706178363112 r005 Re(z^2+c),c=13/64+25/62*I,n=48 2415706185395144 m008 (Pi^2-3/5)/(2/5*Pi^6-5/6) 2415706189268944 a001 3571/233*34^(4/31) 2415706190238195 r005 Re(z^2+c),c=-11/56+24/49*I,n=20 2415706195052527 m001 GAMMA(11/12)+BesselI(1,2)^LaplaceLimit 2415706198649353 r005 Re(z^2+c),c=-19/66+7/43*I,n=17 2415706210018326 r005 Re(z^2+c),c=5/23+21/38*I,n=8 2415706217672204 a007 Real Root Of 596*x^4-947*x^3-659*x^2-804*x+244 2415706226427451 r009 Re(z^3+c),c=-29/90+37/54*I,n=10 2415706232214625 a007 Real Root Of -710*x^4+744*x^3+701*x^2+294*x-120 2415706233897750 a001 7/1346269*4181^(7/38) 2415706235366455 m001 (Otter-ZetaP(3))/(Gompertz-MadelungNaCl) 2415706256442079 m001 Backhouse^exp(-Pi)+exp(Pi) 2415706261878090 a007 Real Root Of -530*x^4+852*x^3-222*x^2+477*x+142 2415706266866489 r005 Re(z^2+c),c=-47/38+1/19*I,n=36 2415706274698785 m005 (1/3*3^(1/2)+1/8)/(5/12*Catalan-1/11) 2415706276930267 a007 Real Root Of -241*x^4-723*x^3-421*x^2+133*x+793 2415706277468414 a007 Real Root Of -42*x^4-975*x^3+920*x^2-850*x+789 2415706279518060 r005 Re(z^2+c),c=-23/102+17/42*I,n=28 2415706279845931 r008 a(0)=0,K{-n^6,(2*n+1)*(82+54*n^2+2*n)} 2415706280555707 m005 (1/3*2^(1/2)-3/7)/(Catalan+6/7) 2415706281031239 r008 a(0)=0,K{-n^6,86*n^3+113*n^2+155*n+60} 2415706281836049 r008 a(0)=0,K{-n^6,72*n^3+148*n^2+148*n+46} 2415706282808750 r008 a(0)=0,K{-n^6,56*n^3+188*n^2+140*n+30} 2415706283003458 m001 1/ln(GAMMA(1/24))*(2^(1/3))/sqrt(1+sqrt(3)) 2415706283843042 r008 a(0)=0,K{-n^6,40*n^3+228*n^2+132*n+14} 2415706284111930 r008 a(0)=0,K{-n^6,36*n^3+238*n^2+130*n+10} 2415706285510496 a001 39603/8*6765^(26/27) 2415706285516932 r009 Im(z^3+c),c=-19/44+3/26*I,n=36 2415706301917629 m001 (AlladiGrinstead+Grothendieck)/(1-gamma(1)) 2415706317243862 b008 -2/3+Sech[3/2] 2415706329911237 s001 sum(exp(-2*Pi/5)^n*A269668[n],n=1..infinity) 2415706329911237 s002 sum(A269668[n]/(exp(2/5*pi*n)),n=1..infinity) 2415706331485896 a007 Real Root Of -584*x^4-709*x^3+259*x^2+579*x-143 2415706336713095 m001 ln(GAMMA(1/6))^2/ErdosBorwein*log(2+sqrt(3)) 2415706339574400 a007 Real Root Of -555*x^4-774*x^3+964*x^2-978*x+1 2415706342682407 m009 (3/5*Psi(1,2/3)+2/3)/(Pi^2+1/2) 2415706347806082 p004 log(16691/13109) 2415706347919368 m005 (1/3*Pi-1/12)/(1/8*2^(1/2)+2/9) 2415706351792117 r005 Re(z^2+c),c=13/44+8/31*I,n=7 2415706359368331 q001 566/2343 2415706360444369 m001 (exp(Pi)+ln(2)/ln(10))/(-3^(1/3)+Bloch) 2415706380349973 r005 Im(z^2+c),c=-7/8+38/229*I,n=10 2415706383804808 m005 (1/2*Zeta(3)-1/10)/(2/3*5^(1/2)+7/12) 2415706386925270 m001 GAMMA(23/24)/exp(BesselK(1,1))^2/GAMMA(5/6)^2 2415706397183674 r009 Re(z^3+c),c=-33/86+17/36*I,n=20 2415706410504028 m001 (Chi(1)+cos(1))/(Bloch+Paris) 2415706428140070 a007 Real Root Of 465*x^4+819*x^3-772*x^2-133*x-106 2415706428849700 r005 Im(z^2+c),c=39/122+9/23*I,n=23 2415706435314863 m001 ln(2)*ArtinRank2+Pi*csc(11/24*Pi)/GAMMA(13/24) 2415706436592507 a007 Real Root Of -270*x^4-292*x^3+653*x^2-389*x+328 2415706437388383 m001 exp(TreeGrowth2nd)/RenyiParking^2/GAMMA(1/12) 2415706438469200 m001 (Tribonacci-Thue)/(Pi+Catalan) 2415706443071168 a001 2/89*34^(33/49) 2415706452410397 m005 (1/3*exp(1)-1/6)/(3/7*2^(1/2)-3/10) 2415706457346727 a007 Real Root Of 25*x^4+582*x^3-518*x^2+271*x-271 2415706465468953 a007 Real Root Of -432*x^4-616*x^3+712*x^2-495*x+677 2415706471695237 m001 exp(Zeta(9))^2/KhintchineLevy/sin(Pi/12) 2415706498849109 h001 (11/12*exp(2)+1/11)/(7/9*exp(1)+8/11) 2415706505855813 m001 (Magata-RenyiParking)/(gamma(1)+GAMMA(19/24)) 2415706510059477 m001 (Psi(2,1/3)-Gompertz)^Ei(1,1) 2415706510439221 r005 Im(z^2+c),c=-53/46+1/33*I,n=22 2415706523196998 r005 Im(z^2+c),c=-45/98+11/26*I,n=59 2415706523288898 m001 (ln(gamma)+Tribonacci)/(Psi(2,1/3)+3^(1/2)) 2415706535822215 m001 (gamma(1)-GAMMA(5/6))/(Artin+Champernowne) 2415706549939786 b008 19+5*Cosh[1/4] 2415706550181925 p004 log(22541/22003) 2415706554220332 r005 Re(z^2+c),c=11/122+29/50*I,n=9 2415706557391114 a007 Real Root Of 520*x^4+936*x^3-778*x^2-348*x-814 2415706578486314 a001 47/34*317811^(7/31) 2415706590395069 m005 (1/2*5^(1/2)+8/11)/(1/9*3^(1/2)+4/7) 2415706594431452 m001 (Pi+sqrt(3)*BesselK(1,1))/sqrt(3) 2415706594431452 m001 1/3*(Pi+3^(1/2)*BesselK(1,1))*3^(1/2) 2415706594431452 m001 1/3*Pi*3^(1/2)+BesselK(1,1) 2415706601853649 a007 Real Root Of -441*x^4-666*x^3+980*x^2-131*x-406 2415706602768897 a007 Real Root Of 907*x^4-293*x^3+93*x^2-933*x+221 2415706607104151 r002 24th iterates of z^2 + 2415706613849102 m001 (-arctan(1/3)+Zeta(1,-1))/(5^(1/2)-Ei(1,1)) 2415706616554008 p003 LerchPhi(1/2,1,111/214) 2415706623799496 a007 Real Root Of 414*x^4-476*x^3+19*x^2-260*x+67 2415706624160704 a007 Real Root Of 597*x^4-231*x^3-65*x^2-830*x-202 2415706630542952 p003 LerchPhi(1/5,2,10/49) 2415706646442029 r009 Im(z^3+c),c=-17/31+23/59*I,n=22 2415706654817265 r005 Re(z^2+c),c=7/24+8/47*I,n=64 2415706664354017 a007 Real Root Of -299*x^4-152*x^3+976*x^2-789*x+438 2415706674590019 a001 24476/233*4807526976^(19/22) 2415706678594101 a001 228826127/233*121393^(19/22) 2415706684791188 a007 Real Root Of -198*x^4-401*x^3+69*x^2+115*x+965 2415706693498978 p001 sum(1/(498*n+311)/n/(512^n),n=1..infinity) 2415706697548293 a007 Real Root Of 185*x^4+605*x^3+124*x^2-539*x+203 2415706714838278 a003 -1/2+2*cos(1/30*Pi)-cos(13/27*Pi)+cos(1/18*Pi) 2415706722076705 p003 LerchPhi(1/125,5,64/121) 2415706722581166 a003 sin(Pi*17/113)/cos(Pi*51/116) 2415706739503795 m005 (1/2*gamma+6/7)/(8/9*2^(1/2)-6) 2415706750399885 r005 Re(z^2+c),c=-5/7+18/103*I,n=15 2415706751323953 a007 Real Root Of 300*x^4+655*x^3-293*x^2-592*x-703 2415706752667516 a001 7/233*2584^(13/49) 2415706753023627 m001 QuadraticClass/Otter/Champernowne 2415706753251464 m005 (1/2*Pi+6/7)/(7/8*gamma+1/2) 2415706754529948 a007 Real Root Of 134*x^4+623*x^3+832*x^2+231*x-78 2415706757426971 r005 Im(z^2+c),c=-11/29+2/53*I,n=11 2415706761257033 r009 Re(z^3+c),c=-5/13+26/51*I,n=21 2415706768822271 r002 7th iterates of z^2 + 2415706773826192 r009 Im(z^3+c),c=-13/44+11/54*I,n=13 2415706784555225 m006 (4*Pi^2-2/3)/(3*exp(2*Pi)+1/6) 2415706795285057 m001 (exp(1/Pi)+gamma(1))/(Psi(2,1/3)+GAMMA(3/4)) 2415706797354525 m001 ln(Catalan)*BesselJ(0,1)^2/GAMMA(5/12) 2415706806282722 q001 2307/955 2415706809211567 r005 Im(z^2+c),c=6/19+3/61*I,n=32 2415706816378404 a007 Real Root Of 273*x^4+594*x^3-74*x^2+494*x+702 2415706820597636 r005 Re(z^2+c),c=23/78+7/41*I,n=18 2415706838387450 r005 Re(z^2+c),c=-25/122+13/22*I,n=20 2415706840381761 p003 LerchPhi(1/2,6,103/55) 2415706843346274 m005 (1/2*Pi+7/9)/(2/7*5^(1/2)+1/3) 2415706851972638 a007 Real Root Of 443*x^4+768*x^3-469*x^2+781*x+364 2415706867295511 r005 Re(z^2+c),c=4/17+24/47*I,n=62 2415706878068140 m001 (Zeta(5)-OrthogonalArrays)/(Thue+TwinPrimes) 2415706886588652 r005 Im(z^2+c),c=-21/94+40/57*I,n=6 2415706901203931 r005 Im(z^2+c),c=-151/122+9/28*I,n=13 2415706904293862 a003 cos(Pi*20/59)-cos(Pi*27/64) 2415706928202281 r005 Im(z^2+c),c=-35/34+23/114*I,n=4 2415706939156155 r005 Im(z^2+c),c=-55/106+5/12*I,n=29 2415706959338641 m001 3^(1/3)*(exp(-1/2*Pi)+Porter) 2415706963966327 m001 (MertensB2+Porter)/(HardyLittlewoodC5+Kac) 2415706978483137 m001 FeigenbaumD*exp(KhintchineLevy)^2*Catalan^2 2415706996313466 m001 (OneNinth+Weierstrass)/(Zeta(5)+exp(1/Pi)) 2415706998852871 m003 49/2+Sqrt[5]/32-Csch[1/2+Sqrt[5]/2] 2415707004206566 r005 Im(z^2+c),c=-15/58+1/29*I,n=12 2415707005632134 r009 Re(z^3+c),c=-7/48+55/59*I,n=38 2415707009223872 m001 (Lehmer+GAMMA(5/12))^ln(1+sqrt(2)) 2415707030326514 m001 (GlaisherKinkelin+RenyiParking)/(1-Catalan) 2415707044914643 m001 Catalan^2/Salem*ln(Zeta(3))^2 2415707046292772 a007 Real Root Of -38*x^4-889*x^3+740*x^2+950*x-511 2415707050818451 a007 Real Root Of -611*x^4-619*x^3-560*x^2+966*x-23 2415707065344618 m001 (exp(1)+Lehmer)/(-MasserGramainDelta+ZetaP(2)) 2415707070535034 r002 45th iterates of z^2 + 2415707081465220 r009 Im(z^3+c),c=-7/16+6/55*I,n=44 2415707087812456 m001 LandauRamanujan2nd/(Bloch^Ei(1)) 2415707096601727 m001 ln(Lehmer)/Conway*BesselK(1,1) 2415707097895541 m001 gamma*(1+3^(1/2))^(1/2)+MinimumGamma 2415707099292984 m008 (2*Pi^3-4)/(1/4*Pi^6-1/5) 2415707102188962 r008 a(0)=0,K{-n^6,(2*n+1)*(77+51*n^2+10*n)} 2415707102959010 r008 a(0)=0,K{-n^6,88*n^3+106*n^2+157*n+63} 2415707103650863 r008 a(0)=0,K{-n^6,(2*n+1)*(51+38*n^2+49*n)} 2415707103769175 r008 a(0)=0,K{-n^6,74*n^3+141*n^2+150*n+49} 2415707106060200 r008 a(0)=0,K{-n^6,38*n^3+231*n^2+132*n+13} 2415707106973856 m001 (Kolakoski-Paris)/(gamma(1)-FransenRobinson) 2415707107678484 a005 (1/sin(73/185*Pi))^428 2415707110703095 r005 Re(z^2+c),c=-3/86+27/38*I,n=36 2415707115968853 r009 Im(z^3+c),c=-17/62+7/10*I,n=62 2415707147737354 m001 Zeta(1,2)+Magata-ZetaQ(2) 2415707154032440 a001 29/832040*6765^(9/41) 2415707172079544 a005 (1/cos(28/197*Pi))^254 2415707184428790 a007 Real Root Of 91*x^4-410*x^3-301*x^2-863*x-197 2415707197820140 m001 (3^(1/2)-Zeta(5))/(-Artin+Robbin) 2415707201221166 m001 (ln(5)-arctan(1/2))/(HeathBrownMoroz-PlouffeB) 2415707204923752 l006 ln(699/890) 2415707209505225 m001 Shi(1)*(FeigenbaumMu-GAMMA(17/24)) 2415707210282042 r009 Re(z^3+c),c=-1/24+25/41*I,n=39 2415707211121712 k006 concat of cont frac of 2415707213034314 r002 7th iterates of z^2 + 2415707225066996 a007 Real Root Of -193*x^4-487*x^3-770*x^2+709*x+210 2415707225630147 r005 Re(z^2+c),c=-9/52+28/53*I,n=61 2415707235980150 a007 Real Root Of -252*x^4-567*x^3+562*x^2+914*x-483 2415707239267320 a007 Real Root Of 227*x^4+5*x^3-564*x^2-898*x+249 2415707246206683 h001 (4/7*exp(2)+5/11)/(3/8*exp(1)+11/12) 2415707256134896 r005 Im(z^2+c),c=11/40+3/34*I,n=38 2415707256542045 m005 (-1/28+1/4*5^(1/2))/(8/9*exp(1)-1/4) 2415707261378045 a007 Real Root Of 537*x^4+902*x^3-877*x^2-188*x-908 2415707262795300 r009 Im(z^3+c),c=-5/26+4/17*I,n=9 2415707263270536 a007 Real Root Of 285*x^4+662*x^3+235*x^2+829*x+258 2415707266417647 a003 sin(Pi*10/113)*sin(Pi*37/108) 2415707272669107 m001 (GAMMA(2/3)-ln(gamma))/(Ei(1)-FeigenbaumD) 2415707276200067 a007 Real Root Of -460*x^4-548*x^3+971*x^2-528*x+998 2415707285020673 r005 Re(z^2+c),c=-9/31+7/45*I,n=3 2415707285690736 m005 (1/3*5^(1/2)+2/7)/(5/7*2^(1/2)-7/12) 2415707286997629 r005 Im(z^2+c),c=-9/25+31/64*I,n=7 2415707294827280 r005 Im(z^2+c),c=-5/21+5/14*I,n=23 2415707295284026 r005 Im(z^2+c),c=-3/40+24/53*I,n=3 2415707295973965 r005 Im(z^2+c),c=-25/38+17/57*I,n=10 2415707311946782 m005 (1/3*Catalan-1/6)/(8/11*2^(1/2)-5/11) 2415707316031295 l006 ln(865/9686) 2415707316378304 m001 ln(Ei(1))*BesselK(0,1)/GAMMA(11/12)^2 2415707327687367 p003 LerchPhi(1/100,6,120/139) 2415707338475016 r002 25th iterates of z^2 + 2415707348691516 m005 (1/2*3^(1/2)+4/9)/(1/5*3^(1/2)-8/9) 2415707349021447 h001 (-4*exp(1)-5)/(-6*exp(7)+9) 2415707354760043 a007 Real Root Of 71*x^4-278*x^3-664*x^2+652*x-887 2415707355866360 a003 cos(Pi*1/118)/sin(Pi*11/81) 2415707358270772 m001 ln(5)^Si(Pi)+ZetaQ(4) 2415707361682670 r005 Im(z^2+c),c=-22/15+7/45*I,n=3 2415707376589326 a007 Real Root Of 375*x^4+387*x^3-859*x^2+693*x-628 2415707381074722 m001 (-cos(1/12*Pi)+Paris)/(5^(1/2)+GAMMA(2/3)) 2415707385347567 a007 Real Root Of 327*x^4+928*x^3+532*x^2+869*x+941 2415707385773840 m005 (2/3*Pi+3)/(4*gamma-1/5) 2415707386145776 r005 Re(z^2+c),c=-6/29+19/42*I,n=45 2415707388675086 a007 Real Root Of -313*x^4+927*x^3+642*x^2+287*x+46 2415707398677235 a007 Real Root Of 497*x^4+901*x^3-499*x^2+473*x-169 2415707408111591 r005 Im(z^2+c),c=-6/7+24/127*I,n=59 2415707410231347 r009 Re(z^3+c),c=-47/122+18/37*I,n=55 2415707412109971 a002 15^(6/5)-2^(7/10) 2415707412963815 r005 Re(z^2+c),c=-29/106+13/54*I,n=20 2415707421400205 a001 199*28657^(9/37) 2415707426182665 r005 Re(z^2+c),c=15/94+19/42*I,n=36 2415707441019628 r009 Im(z^3+c),c=-35/78+2/21*I,n=60 2415707441316220 m001 (Pi^(1/2)+Sierpinski)/(Chi(1)+cos(1/12*Pi)) 2415707444447470 a007 Real Root Of 169*x^4-882*x^3+868*x^2+366*x+729 2415707448562470 l006 ln(779/8723) 2415707448766829 r002 8th iterates of z^2 + 2415707453022929 a001 9/98209*4807526976^(1/23) 2415707453071970 a001 18/121393*75025^(1/23) 2415707454563988 m005 (1/2*Pi-5/12)/(2/5*5^(1/2)-5/12) 2415707457337302 m001 (Ei(1)-KhinchinHarmonic)/(Kolakoski-ZetaP(3)) 2415707470518286 m009 (1/3*Pi^2-1/4)/(1/5*Psi(1,3/4)+3/4) 2415707474153762 a007 Real Root Of -398*x^4-919*x^3-186*x^2-909*x-512 2415707483042092 l005 sec(765/103) 2415707484646652 a003 sin(Pi*17/57)/cos(Pi*38/97) 2415707485871494 m001 (Salem-ZetaP(4))/(ln(Pi)+Magata) 2415707488548461 m004 -1-(100*Sqrt[5])/Pi+125*Pi-Cosh[Sqrt[5]*Pi] 2415707497647469 a007 Real Root Of -857*x^4+786*x^3+866*x^2+854*x-265 2415707500065512 r002 56th iterates of z^2 + 2415707505171645 a008 Real Root of (-5+3*x+2*x^2-4*x^3-6*x^4+3*x^5) 2415707506343821 m001 (OneNinth+ZetaP(4))/(BesselJ(0,1)-gamma(3)) 2415707507750668 m001 (OrthogonalArrays+PlouffeB*Sarnak)/Sarnak 2415707519579137 m005 (1/2*exp(1)+3)/(10/11*exp(1)-2/3) 2415707523770464 r005 Im(z^2+c),c=15/52+3/44*I,n=57 2415707530388486 m009 (3/5*Psi(1,1/3)+5/6)/(1/5*Psi(1,1/3)+5/6) 2415707536894019 m001 (Backhouse-Khinchin)/(Zeta(3)-ln(2)) 2415707541195342 a008 Real Root of x^2-x-58598 2415707547451306 r005 Im(z^2+c),c=-5/8+88/195*I,n=46 2415707561572855 m001 (exp(1)+BesselI(0,1))/(GAMMA(19/24)+PlouffeB) 2415707563933968 m001 (gamma(3)+2*Pi/GAMMA(5/6))/(GAMMA(5/6)+Salem) 2415707570979161 m005 (1/2*2^(1/2)+8/9)/(5/9*2^(1/2)-1/8) 2415707571730598 m001 (Psi(2,1/3)-exp(-1/2*Pi))/(BesselI(0,2)+Trott) 2415707574461186 a008 Real Root of x^4-32*x^2-20*x+201 2415707587784613 m005 (1/2*Zeta(3)+2/7)/(5*Catalan-10/11) 2415707590715047 a001 28143753123/34*12586269025^(17/23) 2415707593837017 m001 FransenRobinson-ThueMorse^Shi(1) 2415707598208558 r009 Re(z^3+c),c=-45/74+15/32*I,n=11 2415707602439214 r005 Im(z^2+c),c=-12/29+17/49*I,n=6 2415707613604526 a007 Real Root Of -554*x^4-969*x^3+632*x^2-955*x-789 2415707613987361 l006 ln(693/7760) 2415707615929538 a007 Real Root Of 340*x^4+471*x^3-629*x^2+395*x-314 2415707616150087 a007 Real Root Of -12*x^4-303*x^3-298*x^2+477*x+539 2415707625787802 m001 (Magata-sin(1))/(MertensB2+Trott2nd) 2415707628113397 r005 Im(z^2+c),c=-137/122+6/25*I,n=43 2415707629652878 m001 (Shi(1)-Si(Pi))/(-sin(1/5*Pi)+sin(1/12*Pi)) 2415707635303737 m008 (2/5*Pi^6+3)/(1/6*Pi^6+1/5) 2415707637877032 a007 Real Root Of -85*x^4-178*x^3+412*x^2+849*x+32 2415707638660591 r009 Re(z^3+c),c=-19/50+19/40*I,n=55 2415707642524403 r005 Re(z^2+c),c=-4/17+23/61*I,n=31 2415707642798077 a001 3/322*76^(11/50) 2415707644004347 r005 Re(z^2+c),c=-21/52+1/35*I,n=2 2415707648748943 m001 ln(GAMMA(1/4))^2/CopelandErdos^2*cos(Pi/5) 2415707653100959 m001 (Tetranacci+ZetaQ(2))/(KomornikLoreti-Niven) 2415707655426374 m001 1/GAMMA(11/24)^2/ln(Ei(1))/log(2+sqrt(3))^2 2415707661281930 m005 (1/2*Zeta(3)-2/7)/(5/7*exp(1)-7/11) 2415707682373743 a007 Real Root Of -484*x^4-824*x^3+370*x^2-917*x+492 2415707682938262 r008 a(0)=0,K{-n^6,-18-49*n+48*n^2-23*n^3} 2415707683131515 a007 Real Root Of -57*x^4+243*x^3+682*x^2-435*x+336 2415707686330211 a007 Real Root Of -24*x^4+335*x^3-453*x^2-134*x-938 2415707690158577 m001 BesselJ(1,1)^2*ln(MertensB1)/Zeta(5)^2 2415707691406662 s002 sum(A164812[n]/((2^n+1)/n),n=1..infinity) 2415707710407801 h005 exp(cos(Pi*4/29)*sin(Pi*14/33)) 2415707719366990 p004 log(27809/21841) 2415707725701275 a008 Real Root of x^4-2*x^3-15*x^2-8*x+101 2415707726053679 h001 (5/7*exp(2)+7/11)/(7/10*exp(1)+6/11) 2415707726540961 m001 exp(GAMMA(3/4))^2/GlaisherKinkelin^2/cos(1)^2 2415707754547327 p004 log(26029/20443) 2415707766835752 p001 sum(1/(387*n+263)/n/(64^n),n=1..infinity) 2415707767969854 m001 ln(Riemann2ndZero)^2/ArtinRank2/GAMMA(1/24)^2 2415707774246176 m006 (2/3*Pi^2+5)/(1/4*Pi-5/6) 2415707774246176 m008 (2/3*Pi^2+5)/(1/4*Pi-5/6) 2415707780580581 a007 Real Root Of -10*x^4-235*x^3+174*x^2+341*x-673 2415707808256682 m001 exp(Pi)-gamma(1)^ln(gamma) 2415707812434113 p001 sum(1/(497*n+312)/n/(512^n),n=1..infinity) 2415707813690307 r009 Re(z^3+c),c=-7/48+27/29*I,n=54 2415707815291432 r005 Im(z^2+c),c=-17/15+7/29*I,n=13 2415707818432722 m001 (-AlladiGrinstead+Totient)/(sin(1)+GAMMA(2/3)) 2415707825247790 a007 Real Root Of 316*x^4-64*x^3+271*x^2-361*x-105 2415707826287139 l006 ln(607/6797) 2415707832763738 a007 Real Root Of 4*x^4-181*x^3-441*x^2-134*x-438 2415707836372123 a007 Real Root Of 316*x^4+500*x^3-109*x^2+930*x-830 2415707842832882 a001 4/514229*610^(15/28) 2415707847090130 p001 sum((-1)^n/(528*n+383)/(5^n),n=0..infinity) 2415707849168251 m001 (Shi(1)+Cahen)/(Gompertz+OneNinth) 2415707849603488 b008 Sqrt[2]+Coth[18/5] 2415707851301520 m001 Khintchine^2/ln(Backhouse)/Kolakoski 2415707852393298 a007 Real Root Of 341*x^4+939*x^3+33*x^2-830*x-573 2415707854949330 m001 (Kac-Thue)/(ln(5)-Cahen) 2415707858425603 a007 Real Root Of 84*x^4-611*x^3+629*x^2+597*x+640 2415707868401211 r005 Im(z^2+c),c=-7/13+19/54*I,n=12 2415707876344758 m001 (ln(5)+3^(1/3))/(KhinchinLevy+ZetaP(4)) 2415707880418137 a008 Real Root of (-5+2*x-2*x^2-6*x^3-2*x^4+2*x^5) 2415707884561983 m001 MinimumGamma^2*ln(Magata)/Trott 2415707885172822 a007 Real Root Of -189*x^4-32*x^3+866*x^2-711*x-786 2415707891582240 r005 Re(z^2+c),c=-7/86+23/37*I,n=26 2415707919691302 m006 (4*Pi^2+2/5)/(5*Pi+4/5) 2415707919691302 m008 (4*Pi^2+2/5)/(5*Pi+4/5) 2415707923041314 m001 (1-Psi(2,1/3))/(GAMMA(7/12)+Kolakoski) 2415707930481520 r008 a(0)=0,K{-n^6,88*n^3+104*n^2+158*n+64} 2415707930945803 r008 a(0)=0,K{-n^6,80*n^3+124*n^2+154*n+56} 2415707931064026 r008 a(0)=0,K{-n^6,78*n^3+129*n^2+153*n+54} 2415707931239802 r005 Re(z^2+c),c=-27/58+32/55*I,n=35 2415707931424012 r008 a(0)=0,K{-n^6,72*n^3+144*n^2+150*n+48} 2415707931545814 r008 a(0)=0,K{-n^6,70*n^3+149*n^2+149*n+46} 2415707931792189 r008 a(0)=0,K{-n^6,66*n^3+159*n^2+147*n+42} 2415707932424792 r008 a(0)=0,K{-n^6,56*n^3+184*n^2+142*n+32} 2415707932948758 r008 a(0)=0,K{-n^6,(2*n+1)*(24+24*n^2+90*n)} 2415707943810055 a007 Real Root Of 266*x^4+669*x^3-181*x^2-288*x+733 2415707951548462 m001 MertensB3^RenyiParking+Salem 2415707952652169 m001 Niven/Cahen^2/ln(Robbin)^2 2415707964320150 a001 64079/89*4807526976^(6/23) 2415707964446470 b008 JacobiND[3/4,Khinchin] 2415707964929033 a001 1149851/89*75025^(6/23) 2415707974376427 m001 (2^(1/2)-BesselI(1,1))/(Magata+OneNinth) 2415707983376514 r009 Re(z^3+c),c=-35/114+17/55*I,n=7 2415707985114450 m005 (1/2*Zeta(3)-1/2)/(-2/3+1/9*5^(1/2)) 2415707986213078 v002 sum(1/(2^n*(3*n^2-3*n+35)),n=1..infinity) 2415707987121296 r009 Re(z^3+c),c=-3/70+30/47*I,n=35 2415708001693880 r002 20th iterates of z^2 + 2415708003027225 r005 Re(z^2+c),c=9/34+9/61*I,n=36 2415708004907644 m001 1/Tribonacci*Conway^2*exp(GAMMA(1/6)) 2415708018575661 m001 (2^(1/3)-CareFree)/(FeigenbaumB+Porter) 2415708024935510 m001 (-ln(3)+KhinchinLevy)/(Shi(1)-ln(2)) 2415708029755490 r005 Im(z^2+c),c=-37/28+2/15*I,n=4 2415708035864517 a008 Real Root of (-6+2*x-4*x^2+2*x^3-3*x^4-2*x^5) 2415708036696930 r009 Re(z^3+c),c=-37/94+15/26*I,n=7 2415708043715152 m001 (Thue+ZetaP(3))/(FeigenbaumMu+Rabbit) 2415708052360174 q001 609/2521 2415708057529587 r009 Re(z^3+c),c=-1/31+13/35*I,n=10 2415708062729848 m001 (-AlladiGrinstead+CopelandErdos)/(1+exp(1/Pi)) 2415708062978984 r009 Im(z^3+c),c=-6/13+3/41*I,n=35 2415708069562135 r005 Im(z^2+c),c=5/58+21/37*I,n=7 2415708077113453 r009 Im(z^3+c),c=-3/118+12/47*I,n=5 2415708093564239 q001 1/4139573 2415708096092970 r009 Re(z^3+c),c=-23/98+1/12*I,n=8 2415708097014268 r005 Im(z^2+c),c=-71/60+11/57*I,n=18 2415708107352806 r005 Re(z^2+c),c=23/62+17/53*I,n=63 2415708108674299 l006 ln(521/5834) 2415708108881636 a007 Real Root Of -224*x^4-528*x^3+84*x^2+513*x+934 2415708113753977 m001 GAMMA(11/12)^2*exp(Robbin)^2*gamma 2415708116901852 m001 (FeigenbaumB+Robbin)/(Chi(1)-Ei(1,1)) 2415708120125759 a007 Real Root Of -557*x^4+572*x^3+522*x^2+608*x-15 2415708130510312 b008 Cosh[E^(3*(-3+Pi))] 2415708134103882 m002 Pi/15+Tanh[Pi]/Pi^3 2415708143030764 m001 log(2+sqrt(3))^2*Zeta(5)^2*exp(sin(Pi/12)) 2415708147568472 a007 Real Root Of -285*x^4-288*x^3+613*x^2-583*x+660 2415708154598972 r005 Re(z^2+c),c=-19/102+1/2*I,n=57 2415708170581697 m001 (Pi^(1/2))^GAMMA(5/6)*BesselI(0,1) 2415708170581697 m001 sqrt(Pi)^GAMMA(5/6)*BesselI(0,1) 2415708185482122 r005 Im(z^2+c),c=-3/38+27/40*I,n=21 2415708188778479 m005 (1/3*gamma+1/12)/(7/10*Zeta(3)+3/10) 2415708193960966 r005 Re(z^2+c),c=-1/15+3/5*I,n=33 2415708196263989 a001 4/514229*514229^(24/55) 2415708201034130 m001 Pi^2*exp(Ei(1))/exp(1) 2415708202082099 a007 Real Root Of 893*x^4-796*x^3-702*x^2-803*x-19 2415708202522959 a003 cos(Pi*19/90)/cos(Pi*41/104) 2415708211994866 r005 Im(z^2+c),c=-9/74+28/43*I,n=27 2415708222232290 s002 sum(A011859[n]/(n*pi^n-1),n=1..infinity) 2415708242046895 p003 LerchPhi(1/3,1,85/181) 2415708248114867 p001 sum((-1)^n/(283*n+215)/n/(8^n),n=1..infinity) 2415708248810210 s002 sum(A051083[n]/(n*10^n-1),n=1..infinity) 2415708249622201 r005 Im(z^2+c),c=3/70+7/27*I,n=4 2415708253515002 a007 Real Root Of -364*x^4-639*x^3+359*x^2-714*x-432 2415708256759858 r002 58th iterates of z^2 + 2415708261365348 r005 Im(z^2+c),c=19/60+13/33*I,n=5 2415708262668922 a007 Real Root Of -57*x^4-102*x^3-220*x^2-385*x+857 2415708265046733 r002 16th iterates of z^2 + 2415708274418147 r009 Re(z^3+c),c=-19/50+19/40*I,n=57 2415708277037292 a007 Real Root Of -151*x^4+50*x^3+813*x^2-608*x-366 2415708291901781 r001 21i'th iterates of 2*x^2-1 of 2415708309193100 a007 Real Root Of 917*x^4+798*x^3+546*x^2-676*x+16 2415708312944453 m001 (MertensB2+Porter)/(Zeta(5)-HeathBrownMoroz) 2415708313634304 m005 (2/5*exp(1)+1/2)/(1/2*Pi+5) 2415708324392373 m001 FransenRobinson-KhinchinLevy+Kolakoski 2415708326607473 m001 (GAMMA(13/24)+Conway)/(MinimumGamma-Totient) 2415708344758972 a007 Real Root Of -653*x^4+820*x^3+969*x^2+609*x-213 2415708346952202 m001 (-gamma(2)+Pi^(1/2))/(Psi(1,1/3)-exp(1)) 2415708359864130 m001 Backhouse^GAMMA(19/24)/Cahen 2415708371621637 a003 sin(Pi*10/97)/cos(Pi*49/107) 2415708382375980 b008 23+(9*Sqrt[2])/11 2415708391082680 r005 Im(z^2+c),c=-8/19+12/29*I,n=37 2415708409352402 a007 Real Root Of 327*x^4-313*x^3-747*x^2-526*x-89 2415708409776484 r009 Re(z^3+c),c=-19/56+5/13*I,n=24 2415708428430294 m005 (1/2*Catalan+9/11)/(1/7*Zeta(3)-7/10) 2415708432757077 m001 Zeta(1,2)/exp(GAMMA(7/12))/sin(1) 2415708436113803 m001 (Kac-RenyiParking)/(GAMMA(5/6)-GolombDickman) 2415708458212362 r005 Re(z^2+c),c=17/52+13/37*I,n=21 2415708468091457 m005 (1/2*exp(1)-5)/(5*Pi-7/11) 2415708468539309 m001 HardyLittlewoodC4*FeigenbaumC^Magata 2415708469673910 r005 Im(z^2+c),c=9/50+10/19*I,n=4 2415708483075513 r005 Re(z^2+c),c=-13/62+25/61*I,n=10 2415708483689971 r005 Im(z^2+c),c=-139/110+6/55*I,n=6 2415708491613270 a001 14619165/46*199^(9/11) 2415708495888362 m001 (Khinchin-ThueMorse)/(sin(1/5*Pi)-GAMMA(7/12)) 2415708502113260 m001 (Mills+Sarnak)/(1-Catalan) 2415708502717858 l006 ln(435/4871) 2415708509102253 m001 (1+Zeta(1/2))/(Champernowne+Grothendieck) 2415708516503526 a007 Real Root Of -335*x^4-381*x^3+865*x^2-374*x+86 2415708531685742 m001 (2^(1/3))/FeigenbaumAlpha^2*ln(sqrt(2))^2 2415708535752834 m001 (-BesselK(0,1)+1/3)/(-GaussKuzminWirsing+2/3) 2415708551635447 r009 Re(z^3+c),c=-53/110+4/7*I,n=27 2415708564762775 m001 3*(2^(1/3))^Zeta(1,2) 2415708568547966 p001 sum((-1)^n/(596*n+385)/(5^n),n=0..infinity) 2415708575961198 h001 (5/9*exp(2)+6/7)/(6/11*exp(1)+4/7) 2415708577591713 a005 (1/cos(14/193*Pi))^649 2415708585284236 a007 Real Root Of 353*x^4+490*x^3-429*x^2+828*x-610 2415708589254422 m001 (FeigenbaumMu+Lehmer)/(MertensB1+MinimumGamma) 2415708598729326 a005 (1/sin(98/237*Pi))^1317 2415708616993074 m008 (3/4*Pi^5+5/6)/(1/3*Pi^3-4/5) 2415708620981145 m001 FellerTornier/(Salem^Grothendieck) 2415708621995320 a001 2584/29*29^(49/50) 2415708634252623 l006 ln(7861/10009) 2415708634619785 m001 (Stephens+StolarskyHarborth)/(2^(1/2)+Mills) 2415708639833614 r009 Im(z^3+c),c=-41/64+11/28*I,n=4 2415708664934221 r009 Re(z^3+c),c=-17/24+15/46*I,n=3 2415708681601814 r005 Im(z^2+c),c=-2/11+59/64*I,n=6 2415708685067274 m001 RenyiParking*ln(Si(Pi))^2/sinh(1) 2415708685924810 a001 521/89*89^(6/19) 2415708699324985 m001 exp(GAMMA(5/12))^2*LaplaceLimit/GAMMA(5/24)^2 2415708700344121 m002 -1-Pi^2+5*Pi^3+Pi^4 2415708709190573 m001 1/Ei(1)^2*BesselK(1,1)^2*exp(GAMMA(1/24))^2 2415708711546403 a007 Real Root Of 200*x^4+285*x^3-197*x^2+651*x-71 2415708720314683 m005 (1/2*Catalan-1/10)/(8/11*3^(1/2)+2/9) 2415708723772287 m001 Chi(1)*(2*Pi/GAMMA(5/6)-FeigenbaumD) 2415708728021395 m001 (MertensB2-ln(3))^GAMMA(2/3) 2415708746703925 r009 Re(z^3+c),c=-41/110+28/61*I,n=37 2415708750949327 m002 2+5/Pi^4+Log[Pi]/Pi 2415708752498281 m001 (Si(Pi)+Zeta(5))/(ln(gamma)+KhinchinHarmonic) 2415708759950363 a007 Real Root Of 119*x^4+189*x^3-89*x^2+151*x-504 2415708763893997 r008 a(0)=0,K{-n^6,82*n^3+117*n^2+156*n+59} 2415708764553342 m001 (sin(1/5*Pi)-GAMMA(2/3))/(Niven+Porter) 2415708764575800 l006 ln(784/8779) 2415708764997868 r008 a(0)=0,K{-n^6,64*n^3+162*n^2+147*n+41} 2415708767047278 m001 (Pi-Zeta(1,2))/(KomornikLoreti-Paris) 2415708773752875 l006 ln(7162/9119) 2415708775563613 r005 Re(z^2+c),c=7/24+8/47*I,n=62 2415708778898157 m001 (3^(1/3)*Sarnak+CareFree)/Sarnak 2415708787412187 a007 Real Root Of 349*x^4+281*x^3+3*x^2-436*x+100 2415708793603882 r005 Re(z^2+c),c=-27/118+17/43*I,n=23 2415708793915327 m001 Conway^arctan(1/2)/(DuboisRaymond^arctan(1/2)) 2415708800340470 r009 Re(z^3+c),c=-2/5+15/47*I,n=3 2415708805367800 r008 a(0)=0,K{-n^6,3+46*n+4*n^2-10*n^3} 2415708805900095 m003 5/2+Sqrt[5]/8-5/(2*Log[1/2+Sqrt[5]/2]) 2415708806578386 a007 Real Root Of -269*x^4-765*x^3+79*x^2+882*x+46 2415708808092941 r005 Im(z^2+c),c=-53/98+3/7*I,n=49 2415708812260536 q001 1261/522 2415708814944931 m001 AlladiGrinstead^RenyiParking-Riemann3rdZero 2415708816281249 r002 38i'th iterates of 2*x/(1-x^2) of 2415708830269436 r005 Im(z^2+c),c=-5/4+3/68*I,n=19 2415708836681256 a001 7*(1/2*5^(1/2)+1/2)^29*11^(11/24) 2415708837003073 m005 (29/30+1/6*5^(1/2))/(2*gamma-3/5) 2415708838407696 r005 Im(z^2+c),c=-45/98+10/23*I,n=10 2415708838547566 a007 Real Root Of -155*x^4-232*x^3+465*x^2+28*x-638 2415708849091396 r009 Re(z^3+c),c=-13/90+57/59*I,n=30 2415708850494961 a007 Real Root Of -292*x^4-842*x^3-467*x^2-470*x-336 2415708855396538 a001 47*46368^(11/30) 2415708870838390 h001 (1/3*exp(1)+1/3)/(7/11*exp(2)+3/7) 2415708873654910 m001 Grothendieck^(Pi*csc(1/12*Pi)/GAMMA(11/12))*Pi 2415708880837784 m004 -Log[Sqrt[5]*Pi]/2+(5*Sec[Sqrt[5]*Pi])/2 2415708881200175 r005 Im(z^2+c),c=-39/31+3/40*I,n=16 2415708894022375 r002 3th iterates of z^2 + 2415708897061456 m001 exp(Si(Pi))^2/ArtinRank2^2/sin(Pi/5)^2 2415708897381593 r005 Re(z^2+c),c=17/54+3/16*I,n=52 2415708900682047 a001 3/2207*(1/2*5^(1/2)+1/2)^20*2207^(13/21) 2415708923979726 m001 (LandauRamanujan2nd-ZetaQ(4))/(ln(3)+Conway) 2415708927443969 m005 (1/3*exp(1)-1/2)/(2/3*Zeta(3)-9/11) 2415708930692059 a007 Real Root Of 389*x^4+792*x^3+56*x^2+669*x-793 2415708930802989 m008 (1/3*Pi^2-1/3)/(4*Pi^5-1/5) 2415708933085143 p001 sum(1/(496*n+313)/n/(512^n),n=1..infinity) 2415708943428174 l006 ln(6463/8229) 2415708944285318 r005 Re(z^2+c),c=-19/18+72/193*I,n=4 2415708948048831 l002 exp(polylog(5,89/104)) 2415708949192989 m001 (BesselI(0,1)-ln(Pi))/(-Champernowne+Kac) 2415708951452397 a007 Real Root Of -149*x^4+77*x^3+645*x^2-704*x+695 2415708958093041 r002 2th iterates of z^2 + 2415708965304813 m001 ZetaQ(3)*(3^(1/3)+ln(2+3^(1/2))) 2415708968631391 m005 (-9/28+1/4*5^(1/2))/(7/9*3^(1/2)-4/11) 2415708969404330 m005 (1/2*2^(1/2)-5/9)/(6*Catalan+7/9) 2415708978140282 m001 1/exp(GAMMA(5/6))*Champernowne/sqrt(1+sqrt(3)) 2415708990387413 a001 3*(1/2*5^(1/2)+1/2)^5*3571^(11/21) 2415708996863427 a007 Real Root Of 483*x^4+900*x^3-705*x^2-520*x-903 2415708998237543 a007 Real Root Of -410*x^4-884*x^3+148*x^2+10*x+661 2415708998773665 r005 Re(z^2+c),c=-9/31+7/51*I,n=8 2415709010594609 q001 7/28977 2415709011550121 m001 exp(Si(Pi))*Artin/Paris 2415709012128093 r009 Re(z^3+c),c=-47/122+18/37*I,n=58 2415709015511381 l006 ln(3599/3687) 2415709021111957 m005 (1/3+1/4*5^(1/2))/(9/10*gamma-8/9) 2415709027344584 a007 Real Root Of 263*x^4+139*x^3-969*x^2+621*x+158 2415709032661695 a001 2/89*514229^(12/17) 2415709033322157 a007 Real Root Of 335*x^4-601*x^3-504*x^2-800*x+230 2415709038983228 m001 BesselJ(1,1)*(2*Pi/GAMMA(5/6)-ZetaP(4)) 2415709042003686 m005 (1/2*exp(1)-5)/(8/9*exp(1)-10/11) 2415709051138905 m009 (3/2*Pi^2-1/5)/(16/5*Catalan+2/5*Pi^2-5/6) 2415709056692511 m001 (Khinchin+ZetaP(4))/(ln(Pi)-HeathBrownMoroz) 2415709063693808 r002 56th iterates of z^2 + 2415709067272000 m005 (1/2*Pi-1/12)/(1/11*3^(1/2)+6) 2415709069483530 r005 Im(z^2+c),c=-59/64+1/49*I,n=8 2415709077838461 m001 (2^(1/3))/Champernowne^2*ln(GAMMA(11/12))^2 2415709078040635 a007 Real Root Of -403*x^4-828*x^3+374*x^2+137*x+200 2415709079724901 m005 (1/2*Zeta(3)+4/5)/(1/6*Zeta(3)-6) 2415709080064794 a001 3/15127*(1/2*5^(1/2)+1/2)^32*15127^(2/21) 2415709088076092 a001 1/13201*1322157322203^(13/21) 2415709088300214 a001 3*(1/2*5^(1/2)+1/2)^13*9349^(1/21) 2415709089469643 a001 1/13201*(1/2*5^(1/2)+1/2)^16*39603^(19/21) 2415709089611549 a001 3/710647*312119004989^(16/21) 2415709089611549 a001 3/710647*1568397607^(20/21) 2415709089616332 a001 3/1568397607*23725150497407^(19/21) 2415709089618160 a001 3/1149851*119218851371^(17/21) 2415709089644348 a001 3/64079*(1/2*5^(1/2)+1/2)^15*64079^(20/21) 2415709089702167 a001 3/167761*969323029^(19/21) 2415709090621758 a001 3*(1/2*5^(1/2)+1/2)^12*15127^(2/21) 2415709090960246 l006 ln(349/3908) 2415709093208751 a007 Real Root Of 216*x^4+418*x^3-227*x^2+83*x+62 2415709102478667 r005 Re(z^2+c),c=-45/56+9/62*I,n=48 2415709109159301 m004 5*ProductLog[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi]^2 2415709115938704 a001 3/9349*(1/2*5^(1/2)+1/2)^32*9349^(1/21) 2415709116628048 r005 Re(z^2+c),c=2/25+19/56*I,n=24 2415709122647171 m001 (-StronglyCareFree+ZetaP(3))/(Lehmer-sin(1)) 2415709125203681 m001 (1-exp(1/Pi))/(-CopelandErdos+KomornikLoreti) 2415709126596393 a007 Real Root Of -181*x^4-446*x^3-53*x^2-423*x-836 2415709127780504 r005 Re(z^2+c),c=-3/19+31/55*I,n=45 2415709128272105 r005 Re(z^2+c),c=-121/102+5/31*I,n=4 2415709128592863 m001 (LambertW(1)+GAMMA(19/24))/(Rabbit+Trott) 2415709152461883 a007 Real Root Of -89*x^4+287*x^3+929*x^2-819*x-323 2415709154256500 l006 ln(5764/7339) 2415709157849990 m001 Zeta(3)^2*LaplaceLimit^2/exp(cos(Pi/12)) 2415709159495075 b008 -76/3+Zeta[Pi] 2415709161038764 m001 ln(cos(Pi/5))*GAMMA(1/6)^2/exp(1) 2415709164347027 r005 Re(z^2+c),c=25/102+32/61*I,n=21 2415709170679646 r009 Re(z^3+c),c=-7/48+46/49*I,n=32 2415709170937877 a007 Real Root Of -491*x^4+173*x^3-45*x^2+473*x+121 2415709175856176 m001 GAMMA(1/12)/Cahen*ln(sin(Pi/12)) 2415709177032616 m001 1/Paris*ln(Cahen)^2*GAMMA(3/4) 2415709179824445 a001 3/3571*(1/2*5^(1/2)+1/2)^22*3571^(11/21) 2415709197908979 r009 Im(z^3+c),c=-43/82+7/44*I,n=56 2415709197929648 m001 (-OneNinth+ZetaP(4))/(Psi(1,1/3)+exp(1)) 2415709199524246 p004 log(26393/2357) 2415709203173412 m001 (3^(1/2)+Zeta(5))/(-GAMMA(2/3)+exp(-1/2*Pi)) 2415709203718947 r005 Im(z^2+c),c=-19/22+11/64*I,n=22 2415709205655277 r005 Im(z^2+c),c=-29/70+16/39*I,n=36 2415709206695148 r005 Re(z^2+c),c=-3/4+10/249*I,n=4 2415709206752672 r005 Im(z^2+c),c=-79/58+1/30*I,n=17 2415709211022295 r005 Im(z^2+c),c=13/46+2/25*I,n=23 2415709214304094 r005 Im(z^2+c),c=-4/11+31/57*I,n=8 2415709216429606 r005 Re(z^2+c),c=-31/106+5/39*I,n=17 2415709220347615 m001 BesselI(1,1)*(CareFree+FeigenbaumMu) 2415709221160093 a001 7/377*28657^(1/39) 2415709223545269 r004 Im(z^2+c),c=9/34-1/4*I,z(0)=exp(7/24*I*Pi),n=2 2415709223721181 m002 -E^Pi+3/Pi^4-Pi/3 2415709231992684 r005 Im(z^2+c),c=-5/4+4/35*I,n=24 2415709240452896 m001 Riemann3rdZero-sin(1)^Catalan 2415709241464451 r005 Im(z^2+c),c=-21/32+19/46*I,n=36 2415709252162155 a007 Real Root Of -253*x^4-564*x^3-195*x^2-890*x-347 2415709252847283 m001 Riemann3rdZero^2*Khintchine^2*exp(Pi)^2 2415709258878049 m002 1+E^Pi+(5*Coth[Pi])/Pi^5 2415709279053372 a001 3/3571*2139295485799^(11/21) 2415709282617227 m001 OneNinth^ln(Pi)*Khinchin^ln(Pi) 2415709283757235 m001 ln(Pi)+GAMMA(7/24)*ThueMorse 2415709283757235 m001 ln(Pi)+Pi*csc(7/24*Pi)/GAMMA(17/24)*ThueMorse 2415709290921846 m001 BesselI(1,2)^ArtinRank2*ZetaP(3) 2415709294968665 r005 Re(z^2+c),c=-61/106+11/20*I,n=16 2415709307542425 a007 Real Root Of -333*x^4-931*x^3-177*x^2-28*x-819 2415709314758348 m001 1/(3^(1/3))/exp(MertensB1)^2*sin(Pi/5) 2415709318238841 m001 (ln(2+3^(1/2))-Zeta(1,2))/(GaussAGM+Paris) 2415709319640656 m001 FeigenbaumAlpha*(arctan(1/3)+Cahen) 2415709329098777 m008 (2*Pi^4+3/4)/(4/5*Pi^2+1/5) 2415709335377417 a001 54018521/3*34^(1/12) 2415709336280093 m001 FeigenbaumC^2*ln(LandauRamanujan)*GAMMA(1/3) 2415709345870530 m001 LandauRamanujan2nd*Porter-Riemann3rdZero 2415709350211994 m001 sin(1)+ln(3)+PlouffeB 2415709351503290 a005 (1/sin(52/135*Pi))^671 2415709355423294 m001 (Ei(1,1)+gamma(2))/(exp(-1/2*Pi)+TwinPrimes) 2415709358131617 m001 (Magata+StolarskyHarborth)/(ln(5)+Zeta(1,-1)) 2415709365045458 m001 1/Niven^2/ln(Magata)^2*GAMMA(11/12) 2415709368530852 a007 Real Root Of 408*x^4+967*x^3+328*x^2+677*x-541 2415709389631158 a001 46/311187*13^(9/47) 2415709392856582 m001 sin(Pi/12)^2*GAMMA(5/6)*exp(sqrt(3))^2 2415709396091742 m001 (exp(1)+3^(1/2))/(Si(Pi)+gamma(2)) 2415709396634578 a001 3*(1/2*5^(1/2)+1/2)^4*2207^(13/21) 2415709404584737 a007 Real Root Of 307*x^4+403*x^3-591*x^2+495*x-129 2415709405009984 m001 exp(1/Pi)/ln(2+sqrt(3))/exp(-Pi) 2415709405009984 m001 exp(Pi)/ln(2+3^(1/2))*exp(1/Pi) 2415709405009984 m001 exp(Pi)/ln(2+sqrt(3))*exp(1/Pi) 2415709414036443 a007 Real Root Of 270*x^4+160*x^3-849*x^2+928*x+257 2415709423275936 l006 ln(5065/6449) 2415709426044160 m005 (1/2*5^(1/2)-4/9)/(-43/66+1/6*5^(1/2)) 2415709430576450 m001 (GAMMA(11/12)-sin(1))/(FeigenbaumB+ZetaQ(2)) 2415709441828552 a007 Real Root Of 318*x^4+222*x^3-31*x^2-486*x+115 2415709443622628 r005 Im(z^2+c),c=-21/118+49/59*I,n=45 2415709449680605 r005 Im(z^2+c),c=-85/118+15/43*I,n=28 2415709450353935 r002 51th iterates of z^2 + 2415709452532951 m006 (4*exp(Pi)+5/6)/(2/Pi-1/4) 2415709454607033 a007 Real Root Of -208*x^4-644*x^3-195*x^2+246*x-263 2415709462712402 b008 3/2+Pi^(-1/13) 2415709464533300 m001 ln(2+3^(1/2))*(Artin-Zeta(1/2)) 2415709464533300 m001 ln(2+sqrt(3))*(Artin-Zeta(1/2)) 2415709468048390 r009 Re(z^3+c),c=-5/36+51/59*I,n=54 2415709473130566 m001 exp(Rabbit)^2*ErdosBorwein^2/Riemann2ndZero^2 2415709496365898 a007 Real Root Of -498*x^4-804*x^3+701*x^2-607*x+68 2415709504209303 r005 Im(z^2+c),c=-113/90+1/45*I,n=35 2415709509073497 l006 ln(612/6853) 2415709511325983 m001 1/GAMMA(13/24)^2/ln(GlaisherKinkelin)^3 2415709512219234 r005 Im(z^2+c),c=-17/46+22/59*I,n=11 2415709517073151 p003 LerchPhi(1/125,6,456/167) 2415709522045201 q001 652/2699 2415709543022566 h001 (5/7*exp(2)+5/6)/(9/10*exp(1)+1/12) 2415709548045078 r009 Im(z^3+c),c=-13/44+11/54*I,n=14 2415709556720506 m001 HardHexagonsEntropy^ErdosBorwein*2^(1/2) 2415709592108908 a007 Real Root Of -220*x^4-622*x^3-432*x^2-610*x-229 2415709595438152 m001 sinh(1)*(Sierpinski-exp(Pi)) 2415709596669795 m006 (4*ln(Pi)+1/5)/(1/6*Pi^2+1/3) 2415709601282552 r008 a(0)=0,K{-n^6,(2*n+1)*(82+52*n^2+4*n)} 2415709602314817 r008 a(0)=0,K{-n^6,86*n^3+105*n^2+159*n+64} 2415709602439517 a007 Real Root Of -317*x^4+57*x^3-366*x^2-x+23 2415709602918397 r008 a(0)=0,K{-n^6,76*n^3+130*n^2+154*n+54} 2415709603661296 m001 3^(1/3)+cos(1/12*Pi)^StronglyCareFree 2415709605011641 r008 a(0)=0,K{-n^6,(2*n+1)*(22+22*n^2+94*n)} 2415709606852275 m001 1/sinh(1)/Zeta(5)^2/ln(sqrt(Pi))^2 2415709607204961 p004 log(16651/1487) 2415709612297970 p003 LerchPhi(1/12,4,551/216) 2415709619378711 r005 Im(z^2+c),c=-9/122+7/23*I,n=6 2415709633309077 m005 (4/5*2^(1/2)+1/4)/(exp(1)+3) 2415709637502589 a007 Real Root Of -809*x^4+177*x^3+409*x^2+606*x-170 2415709641411818 a003 cos(Pi*20/87)-cos(Pi*34/103) 2415709644061079 a007 Real Root Of 123*x^4+314*x^3+240*x^2+329*x-368 2415709646358037 p001 sum(1/(569*n+497)/(3^n),n=0..infinity) 2415709662051785 m001 (GAMMA(23/24)-Conway)/(Rabbit+TreeGrowth2nd) 2415709675840905 l006 ln(875/9798) 2415709689319147 a007 Real Root Of -424*x^4-706*x^3+778*x^2+136*x+275 2415709691789034 m001 (Backhouse-KhinchinLevy)/(Sarnak-Tribonacci) 2415709698611124 a001 24157817-322*5^(1/2) 2415709710151814 a001 76*196418^(26/55) 2415709714766858 m001 (Zeta(1/2)+GAMMA(5/6))/(LaplaceLimit+Rabbit) 2415709715196174 a003 sin(Pi*5/63)-sin(Pi*19/117) 2415709718190067 m001 1/GAMMA(1/6)^2*ln(CareFree)^2/GAMMA(13/24) 2415709731234977 m001 (Zeta(5)+BesselI(1,2))/(GAMMA(17/24)-Salem) 2415709734457227 m001 Catalan+FeigenbaumKappa^MertensB3 2415709735866403 a007 Real Root Of 977*x^4+332*x^3+940*x^2-979*x-290 2415709765032333 m005 (1/2*Zeta(3)-5/8)/(7/11*gamma+5/8) 2415709776122682 r009 Re(z^3+c),c=-7/48+27/29*I,n=56 2415709778435802 l006 ln(4366/5559) 2415709781167370 m001 KomornikLoreti*MertensB2*Mills 2415709784213743 a007 Real Root Of -396*x^4-879*x^3-139*x^2-802*x-32 2415709786083733 m005 (1/2*5^(1/2)+1)/(1/5*Zeta(3)+7/11) 2415709794169487 m001 (Kac-LandauRamanujan)/(Zeta(5)-arctan(1/2)) 2415709801019475 r005 Im(z^2+c),c=-9/14+32/109*I,n=13 2415709818637700 a007 Real Root Of -379*x^4+730*x^3-595*x^2+214*x+98 2415709834801305 r005 Re(z^2+c),c=-11/18+47/56*I,n=3 2415709845251434 m001 (exp(1/Pi)+ArtinRank2)/(Gompertz+MertensB1) 2415709857597953 m001 1/exp(Si(Pi))^2/ArtinRank2/MinimumGamma 2415709861768787 r008 a(0)=0,K{-n^6,-69+51*n^3+46*n^2-32*n} 2415709864945523 r002 5th iterates of z^2 + 2415709880257067 s002 sum(A048636[n]/(n*exp(pi*n)-1),n=1..infinity) 2415709881278564 a001 5/843*521^(11/49) 2415709885409684 r002 2th iterates of z^2 + 2415709899395879 m005 (1/3*Zeta(3)-1/8)/(7/12*exp(1)-4/9) 2415709899663893 a001 1568397607/144*2584^(11/16) 2415709903742305 a007 Real Root Of -246*x^4-733*x^3-158*x^2+519*x+220 2415709905259043 r005 Im(z^2+c),c=-9/14+5/167*I,n=25 2415709905530226 m001 GAMMA(11/12)^(ln(2)/ln(10))+exp(Pi) 2415709929360020 m001 1/MinimumGamma^2*Conway*exp(Tribonacci)^2 2415709935925945 r002 23th iterates of z^2 + 2415709945828512 p001 sum((-1)^n/(551*n+368)/(3^n),n=0..infinity) 2415709949410334 a001 1970299/36*5702887^(11/16) 2415709950950624 a001 13201/48*12586269025^(11/16) 2415709956185678 r009 Re(z^3+c),c=-7/48+27/29*I,n=62 2415709960647078 a007 Real Root Of 544*x^4+763*x^3-866*x^2+991*x-322 2415709964568337 a001 123/514229*121393^(13/22) 2415709964589538 a001 123/267914296*4807526976^(13/22) 2415709972677146 m001 1/Khintchine^2/MertensB1^2/exp(GAMMA(5/12)) 2415709993822362 m002 -(Pi^3/E^Pi)+Pi^4/4+Log[Pi] 2415709994219212 m001 Magata^Rabbit/(Magata^gamma(2)) 2415709997926150 m001 Chi(1)^BesselI(0,2)+MadelungNaCl 2415709999348178 a007 Real Root Of -433*x^4+814*x^3+762*x^2+975*x-290 2415710004634206 r005 Im(z^2+c),c=-5/19+21/62*I,n=6 2415710006612716 a007 Real Root Of 589*x^4+915*x^3-985*x^2+561*x-56 2415710009724173 m001 (Kolakoski-MertensB3)/(ln(3)+GAMMA(5/6)) 2415710010549679 m001 (Trott2nd-ZetaP(3))/(exp(1/exp(1))-GaussAGM) 2415710011275396 m008 (3/5*Pi^3-5/6)/(3/4*Pi+5) 2415710018070912 m001 (BesselJ(1,1)+Trott)/(ln(gamma)-ln(2+3^(1/2))) 2415710020357575 m001 Mills/(ln(gamma)+ZetaQ(3)) 2415710027578030 s002 sum(A051097[n]/(n*10^n-1),n=1..infinity) 2415710045731199 b008 23+ArcCosh[1/3+Sqrt[2]] 2415710055456021 p001 sum(1/(495*n+314)/n/(512^n),n=1..infinity) 2415710060230133 a007 Real Root Of -39*x^4-974*x^3-748*x^2+514*x-399 2415710063907922 l006 ln(263/2945) 2415710073668938 r005 Re(z^2+c),c=-6/29+19/42*I,n=43 2415710074959943 a007 Real Root Of 280*x^4+484*x^3-471*x^2-210*x-471 2415710077325800 a007 Real Root Of 285*x^4+196*x^3-971*x^2+621*x+224 2415710077937178 a007 Real Root Of -423*x^4-769*x^3+384*x^2-314*x+565 2415710091107625 a007 Real Root Of -185*x^4+785*x^3-225*x^2+365*x+113 2415710096494327 p003 LerchPhi(1/100,1,93/224) 2415710103063912 m001 (3^(1/3))^gamma*(3^(1/3))^FeigenbaumC 2415710109513304 a007 Real Root Of 497*x^4+73*x^3+431*x^2-245*x-85 2415710115708734 r005 Re(z^2+c),c=21/82+6/43*I,n=31 2415710119110092 m004 -125*Pi+25*Sqrt[5]*Pi-150/(Pi*Log[Sqrt[5]*Pi]) 2415710121212211 k006 concat of cont frac of 2415710140619640 p001 sum((-1)^n/(479*n+411)/(64^n),n=0..infinity) 2415710141903280 r009 Re(z^3+c),c=-7/48+27/29*I,n=60 2415710153468195 m001 1/exp(GAMMA(7/12))*GAMMA(11/12)^2 2415710157832413 m001 (Cahen-exp(1))/(-RenyiParking+Robbin) 2415710163936176 r005 Re(z^2+c),c=7/24+8/47*I,n=63 2415710173057073 m001 (-exp(1/Pi)+Tetranacci)/(exp(Pi)-sin(1/12*Pi)) 2415710175508195 m001 (Zeta(1,2)+2)/(-BesselK(1,1)+5) 2415710187236995 a007 Real Root Of -206*x^4-175*x^3+641*x^2+49*x+926 2415710192224592 h001 (3/4*exp(2)+6/11)/(3/5*exp(1)+8/9) 2415710199585692 a007 Real Root Of -7*x^4+337*x^3+382*x^2-849*x+709 2415710211176903 r005 Im(z^2+c),c=9/25+18/59*I,n=10 2415710216179335 a007 Real Root Of -19*x^4+810*x^3-312*x^2+628*x-15 2415710219355660 p001 sum(1/(573*n+433)/(10^n),n=0..infinity) 2415710229722995 r002 5th iterates of z^2 + 2415710241072647 r005 Im(z^2+c),c=-25/58+22/53*I,n=50 2415710262149048 m005 (1/2*5^(1/2)+11/12)/(1/10*gamma-9/10) 2415710266459424 h001 (-3*exp(3)+2)/(-6*exp(6)+9) 2415710268463582 a007 Real Root Of 376*x^4-360*x^3-225*x^2-264*x-57 2415710268917348 m003 6+15*Cosh[1/2+Sqrt[5]/2]+Tan[1/2+Sqrt[5]/2] 2415710268996110 l006 ln(3667/4669) 2415710275592492 m001 RenyiParking*(LandauRamanujan2nd-sin(1/12*Pi)) 2415710295749812 a007 Real Root Of 339*x^4+472*x^3-478*x^2+602*x-647 2415710295915119 a001 29134601/7*89^(19/21) 2415710297161172 m003 7/12+(17*Sqrt[5])/64+3*Csch[1/2+Sqrt[5]/2] 2415710301618887 a007 Real Root Of -39*x^4-919*x^3+540*x^2-433*x+442 2415710303200761 m001 Si(Pi)^2/exp(ErdosBorwein)*Lehmer^2 2415710310041250 r005 Re(z^2+c),c=-21/118+9/20*I,n=8 2415710312084890 m001 1/CopelandErdos*Champernowne*exp(GAMMA(7/12)) 2415710314111754 a007 Real Root Of -376*x^4-824*x^3+459*x^2+539*x-188 2415710314533835 s002 sum(A186517[n]/(2^n+1),n=1..infinity) 2415710317067948 s002 sum(A094448[n]/(2^n+1),n=1..infinity) 2415710317311979 r009 Re(z^3+c),c=-23/98+1/12*I,n=9 2415710317702708 m001 (Riemann2ndZero+ZetaQ(3))/(GaussAGM-Niven) 2415710325159324 a003 sin(Pi*2/97)*sin(Pi*14/115) 2415710327771461 m001 (1+3^(1/2))^(1/2)+Lehmer^polylog(4,1/2) 2415710327771461 m001 Lehmer^polylog(4,1/2)+sqrt(1+sqrt(3)) 2415710336923433 a007 Real Root Of -35*x^4-827*x^3+485*x^2+914*x-170 2415710337427013 a001 271443/13*13^(21/22) 2415710342220746 r009 Re(z^3+c),c=-53/102+27/52*I,n=23 2415710344072058 m001 (sqrt(3)*sqrt(5)+GAMMA(7/12))/sqrt(5) 2415710344072058 m001 1/5*(5^(1/2)*3^(1/2)+GAMMA(7/12))*5^(1/2) 2415710348138672 b008 -6+ArcSinh[18] 2415710348138672 b008 3*(-2+ArcCsch[2/3]) 2415710357973583 r009 Re(z^3+c),c=-4/11+18/41*I,n=33 2415710381826109 m001 1/exp(GAMMA(23/24))/Champernowne/Zeta(3) 2415710383179589 m001 (Ei(1)+FibonacciFactorial)/(Porter-ZetaP(3)) 2415710384021740 a007 Real Root Of -513*x^4+345*x^3-366*x^2+464*x-11 2415710387095347 a003 sin(Pi*4/55)/cos(Pi*13/115) 2415710389032597 a001 121393/199*521^(11/50) 2415710392981878 m001 1/GAMMA(1/4)^2*ln(ErdosBorwein)^2/sin(1)^2 2415710404271783 m001 Si(Pi)^FeigenbaumD/(BesselI(1,1)^FeigenbaumD) 2415710407781796 a001 8/3010349*18^(42/55) 2415710412508990 a007 Real Root Of 630*x^4-228*x^3+736*x^2-541*x-179 2415710415322249 m005 (23/20+1/4*5^(1/2))/(1/7*gamma+5/8) 2415710420893131 a008 Real Root of x^4-2*x^3+4*x^2+38*x-121 2415710446986122 r008 a(0)=0,K{-n^6,80*n^3+118*n^2+157*n+59} 2415710448395781 r008 a(0)=0,K{-n^6,58*n^3+173*n^2+146*n+37} 2415710451933894 p003 LerchPhi(1/100,4,73/91) 2415710456166524 r002 47th iterates of z^2 + 2415710465883573 r009 Re(z^3+c),c=-19/50+19/40*I,n=60 2415710467913878 a003 cos(Pi*32/65)*sin(Pi*33/67) 2415710470893295 m001 (exp(1/Pi)-ln(2+3^(1/2)))^Mills 2415710471869628 m001 TreeGrowth2nd^2*LandauRamanujan^2/exp(cosh(1)) 2415710476025050 m001 2^(1/3)*(Lehmer+PisotVijayaraghavan) 2415710479686917 r009 Re(z^3+c),c=-8/23+21/52*I,n=33 2415710482567794 r005 Im(z^2+c),c=-57/82+17/54*I,n=11 2415710483045567 a007 Real Root Of -385*x^4-429*x^3+952*x^2-577*x+114 2415710487466281 m004 75*Pi+2*Log[Sqrt[5]*Pi]*ProductLog[Sqrt[5]*Pi] 2415710490815944 r005 Im(z^2+c),c=-9/40+16/25*I,n=40 2415710499921478 m001 1/3*3^(1/2)*LambertW(1)/FeigenbaumKappa 2415710499921478 m001 1/exp(LambertW(1))/FeigenbaumKappa/sqrt(3) 2415710502370394 m001 (ZetaP(4)+ZetaQ(4))/(Backhouse+KomornikLoreti) 2415710511114211 k009 concat of cont frac of 2415710513648461 a001 124/5*121393^(7/36) 2415710518142023 b008 5+E^Sqrt[6+E] 2415710545026607 a007 Real Root Of 174*x^4-364*x^3-927*x^2-283*x+127 2415710546921424 l006 ln(703/7872) 2415710559382252 r009 Re(z^3+c),c=-23/98+1/12*I,n=14 2415710559404686 r009 Re(z^3+c),c=-23/98+1/12*I,n=15 2415710559431800 r009 Re(z^3+c),c=-23/98+1/12*I,n=16 2415710559438731 r009 Re(z^3+c),c=-23/98+1/12*I,n=17 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=22 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=23 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=24 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=25 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=30 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=31 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=32 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=33 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=38 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=39 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=40 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=41 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=46 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=47 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=48 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=49 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=54 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=55 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=56 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=57 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=58 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=59 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=60 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=61 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=62 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=53 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=52 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=51 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=50 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=45 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=44 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=43 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=42 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=37 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=36 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=35 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=34 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=29 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=28 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=27 2415710559439505 r009 Re(z^3+c),c=-23/98+1/12*I,n=26 2415710559439507 r009 Re(z^3+c),c=-23/98+1/12*I,n=21 2415710559439519 r009 Re(z^3+c),c=-23/98+1/12*I,n=20 2415710559439566 r009 Re(z^3+c),c=-23/98+1/12*I,n=19 2415710559439604 r009 Re(z^3+c),c=-23/98+1/12*I,n=18 2415710559872627 r009 Re(z^3+c),c=-23/98+1/12*I,n=13 2415710563796237 r009 Re(z^3+c),c=-23/98+1/12*I,n=12 2415710565604988 m005 (1/2*2^(1/2)-6/7)/(2/11*Catalan+5/11) 2415710568137061 r009 Re(z^3+c),c=-7/48+27/29*I,n=64 2415710573957890 m005 (1/3*exp(1)-3/5)/(3/8*5^(1/2)+3/7) 2415710579243345 r009 Re(z^3+c),c=-23/98+1/12*I,n=11 2415710582762382 a007 Real Root Of -375*x^4-846*x^3-136*x^2-570*x+261 2415710588336716 r002 11th iterates of z^2 + 2415710591797348 l006 ln(6635/8448) 2415710592613877 r009 Re(z^3+c),c=-23/98+1/12*I,n=10 2415710593892228 r005 Re(z^2+c),c=-24/25+5/41*I,n=28 2415710595115997 m005 (1/2*gamma+7/12)/(6/7*Pi+11/12) 2415710603635426 a007 Real Root Of 139*x^4+37*x^3-476*x^2+513*x-195 2415710617100816 m001 Tribonacci/(LaplaceLimit+Paris) 2415710619218170 m001 (-GAMMA(17/24)+Niven)/(BesselI(0,2)-cos(1)) 2415710627075811 a003 sin(Pi*5/98)/cos(Pi*10/37) 2415710630560524 a007 Real Root Of 729*x^4+87*x^3-342*x^2-860*x+224 2415710636027216 a001 55/271443*9349^(1/52) 2415710637790858 m001 (ln(5)+Zeta(1,2))/(Kac-Magata) 2415710639881931 r008 a(0)=0,K{-n^6,-89+57*n^3+18*n^2+10*n} 2415710640524789 r005 Im(z^2+c),c=-17/90+15/44*I,n=14 2415710640730678 m003 -1/24+Sqrt[5]/64+Sinh[1/2+Sqrt[5]/2] 2415710641332246 b008 35*ArcCsc[29/2] 2415710642283142 m001 (Pi*2^(1/2)/GAMMA(3/4))^GAMMA(23/24)-MertensB3 2415710645061053 a007 Real Root Of 246*x^4+419*x^3-240*x^2+318*x-302 2415710648961173 a008 Real Root of x^3-x^2+17*x+61 2415710657973022 b008 ArcSinh[2*(1/17+E)] 2415710664052684 r009 Im(z^3+c),c=-11/56+15/64*I,n=7 2415710670197477 a007 Real Root Of -525*x^4-936*x^3+406*x^2-860*x+237 2415710683367997 a007 Real Root Of 379*x^4+721*x^3-449*x^2-59*x-265 2415710695252443 r005 Re(z^2+c),c=-27/110+9/26*I,n=31 2415710701926932 m001 1/ln(LaplaceLimit)^2/Artin*GAMMA(7/12) 2415710703922090 a007 Real Root Of 452*x^4+684*x^3-907*x^2-16*x-496 2415710708944626 m001 1/Tribonacci^2/MertensB1^2/exp((3^(1/3)))^2 2415710723829459 r005 Re(z^2+c),c=5/36+20/47*I,n=28 2415710738324285 a007 Real Root Of 195*x^4+498*x^3+232*x^2+722*x+770 2415710744920175 m001 FeigenbaumB*Conway/ln(cos(Pi/5))^2 2415710747584537 m001 BesselK(0,1)^FeigenbaumB/(BesselK(0,1)^Si(Pi)) 2415710757480186 m006 (1/4*Pi+2)/(5*exp(Pi)-2/5) 2415710758876994 m001 1/GAMMA(11/24)/Kolakoski^2*exp(cos(1))^2 2415710762477702 p003 LerchPhi(1/2,2,529/223) 2415710763478641 m001 1/cos(1)^2/ErdosBorwein^2/ln(sqrt(3)) 2415710765439088 m005 (1/3*gamma+1/4)/(3/10*Pi+8/9) 2415710765716647 p004 log(32507/2903) 2415710788593999 r005 Re(z^2+c),c=19/86+4/41*I,n=8 2415710809871393 q001 695/2877 2415710811907003 m001 (-CareFree+MadelungNaCl)/(Ei(1)-Si(Pi)) 2415710817663850 a001 17711/123*1364^(22/31) 2415710832654431 r005 Im(z^2+c),c=-3/82+17/35*I,n=3 2415710835631656 l006 ln(440/4927) 2415710836554115 r005 Re(z^2+c),c=-23/86+5/17*I,n=8 2415710838224543 m005 (1/3*Catalan-1/10)/(7/9*2^(1/2)-1/4) 2415710842241254 a007 Real Root Of 380*x^4+755*x^3-611*x^2-710*x-447 2415710856590396 m001 (Landau+Riemann2ndZero)/(ln(gamma)+3^(1/3)) 2415710858325510 r002 47th iterates of z^2 + 2415710858716964 m005 (4/5*exp(1)-4/5)/(1/6*2^(1/2)+1/3) 2415710861120446 m001 (Landau-Lehmer)/(sin(1/5*Pi)+Backhouse) 2415710865411402 m001 GAMMA(5/6)-Niven-Tribonacci 2415710874778156 h001 (2/7*exp(2)+7/9)/(3/11*exp(1)+5/11) 2415710890212987 a007 Real Root Of -389*x^4-793*x^3+669*x^2+358*x-971 2415710898484369 r009 Re(z^3+c),c=-5/36+46/53*I,n=36 2415710903665388 a001 3/1597*610^(2/51) 2415710907057357 m001 1/ErdosBorwein/exp(Artin)/BesselK(0,1)^2 2415710908577087 a007 Real Root Of 256*x^4+432*x^3-591*x^2-435*x-230 2415710912982944 r005 Im(z^2+c),c=27/74+9/50*I,n=33 2415710923628290 r005 Re(z^2+c),c=27/110+5/39*I,n=15 2415710942893334 m005 (1/2*Zeta(3)-3/8)/(3/4*2^(1/2)-1/8) 2415710948852926 r002 48th iterates of z^2 + 2415710973796997 a001 408569081798/305*832040^(11/20) 2415710973797381 a001 4106118243/610*12586269025^(11/20) 2415710975920743 a007 Real Root Of 198*x^4-127*x^3-520*x^2-637*x-126 2415710978380589 r002 62th iterates of z^2 + 2415710990622178 l006 ln(2968/3779) 2415711021121203 k006 concat of cont frac of 2415711023947834 r005 Re(z^2+c),c=-23/78+11/50*I,n=5 2415711026650762 r005 Re(z^2+c),c=-9/31+8/55*I,n=11 2415711034086388 m001 (ln(3)+Conway)/(LandauRamanujan2nd+ThueMorse) 2415711036473286 m005 (1/2*5^(1/2)-4/5)/(5/12*Catalan-1/4) 2415711041392386 m001 Artin*cos(1)^Rabbit 2415711044243545 m005 (1/2*2^(1/2)+1/6)/(2/7*Catalan+1/10) 2415711063616955 r005 Re(z^2+c),c=9/23+13/36*I,n=44 2415711065339812 a007 Real Root Of 203*x^4-663*x^3-990*x^2-644*x+222 2415711077336790 r005 Re(z^2+c),c=-11/62+23/45*I,n=17 2415711079062562 m005 (1/6*2^(1/2)-1)/(4*Catalan-1/2) 2415711092802652 a007 Real Root Of -195*x^4-125*x^3+978*x^2+377*x+82 2415711093747471 m001 (MertensB2-ZetaQ(2))/(exp(1/Pi)+Khinchin) 2415711111211611 k006 concat of cont frac of 2415711111215299 k008 concat of cont frac of 2415711111648097 m001 1/BesselK(1,1)^2/exp(Paris)*cos(Pi/12) 2415711112183121 k006 concat of cont frac of 2415711113486723 m001 GAMMA(19/24)-Zeta(1,2)*PisotVijayaraghavan 2415711113843389 m001 BesselJ(1,1)/exp(Kolakoski)^2*GAMMA(13/24)^2 2415711118064221 r008 a(0)=0,K{-n^6,67-55*n^3-35*n^2+27*n} 2415711121121311 k007 concat of cont frac of 2415711121470689 r005 Re(z^2+c),c=-11/8+2/229*I,n=24 2415711121489058 r005 Im(z^2+c),c=-71/122+9/25*I,n=15 2415711123114651 k008 concat of cont frac of 2415711128161106 k006 concat of cont frac of 2415711130077630 r002 7th iterates of z^2 + 2415711133700426 m001 (-Cahen+ZetaQ(2))/(exp(Pi)+BesselI(0,1)) 2415711135253411 k009 concat of cont frac of 2415711136074759 m001 Sierpinski/exp(Riemann2ndZero)*(2^(1/3)) 2415711138121111 k006 concat of cont frac of 2415711141146233 k006 concat of cont frac of 2415711141214122 k006 concat of cont frac of 2415711141511222 k006 concat of cont frac of 2415711143620086 m001 ln(5)^(QuadraticClass/PlouffeB) 2415711154984147 m001 BesselK(1,1)*(TwinPrimes-sin(1/12*Pi)) 2415711154984147 m001 BesselK(1,1)*(TwinPrimes-sin(Pi/12)) 2415711161474864 r005 Im(z^2+c),c=-13/60+17/27*I,n=40 2415711162785335 r009 Im(z^3+c),c=-35/78+2/21*I,n=53 2415711164583407 l006 ln(617/6909) 2415711169761059 m001 Ei(1)+ln(2)^exp(gamma) 2415711179550710 p001 sum(1/(494*n+315)/n/(512^n),n=1..infinity) 2415711182984827 a007 Real Root Of 37*x^4+931*x^3+899*x^2+4*x-296 2415711208551588 a001 3/521*(1/2*5^(1/2)+1/2)^17*521^(16/21) 2415711220308688 m001 (2*Pi/GAMMA(5/6)+CareFree)/(Sierpinski+Trott) 2415711238722520 r009 Im(z^3+c),c=-13/44+11/54*I,n=17 2415711245460608 r009 Im(z^3+c),c=-13/44+11/54*I,n=18 2415711251117111 k006 concat of cont frac of 2415711252675060 m005 (1/2*5^(1/2)+5/9)/(6/7*Pi-2) 2415711256080780 r005 Re(z^2+c),c=-35/31+11/51*I,n=22 2415711263603607 b008 ModularLambda[1+I/Pi]/5 2415711276225725 a005 (1/cos(16/87*Pi))^369 2415711283802075 m001 (Paris-ZetaQ(4))/(GAMMA(23/24)-GolombDickman) 2415711284056194 m005 (1/2*5^(1/2)-9/11)/(10/11*3^(1/2)-1/3) 2415711296125901 r009 Im(z^3+c),c=-13/44+11/54*I,n=22 2415711296881700 r008 a(0)=0,K{-n^6,82*n^3+111*n^2+159*n+62} 2415711297300908 r009 Im(z^3+c),c=-13/44+11/54*I,n=23 2415711297329883 r009 Im(z^3+c),c=-13/44+11/54*I,n=21 2415711297366855 r009 Im(z^3+c),c=-13/44+11/54*I,n=26 2415711297384073 r008 a(0)=0,K{-n^6,74*n^3+131*n^2+155*n+54} 2415711297386320 r009 Im(z^3+c),c=-13/44+11/54*I,n=27 2415711297392366 r009 Im(z^3+c),c=-13/44+11/54*I,n=30 2415711297392562 r009 Im(z^3+c),c=-13/44+11/54*I,n=31 2415711297392782 r009 Im(z^3+c),c=-13/44+11/54*I,n=35 2415711297392784 r009 Im(z^3+c),c=-13/44+11/54*I,n=34 2415711297392788 r009 Im(z^3+c),c=-13/44+11/54*I,n=39 2415711297392788 r009 Im(z^3+c),c=-13/44+11/54*I,n=40 2415711297392788 r009 Im(z^3+c),c=-13/44+11/54*I,n=43 2415711297392788 r009 Im(z^3+c),c=-13/44+11/54*I,n=44 2415711297392788 r009 Im(z^3+c),c=-13/44+11/54*I,n=47 2415711297392788 r009 Im(z^3+c),c=-13/44+11/54*I,n=48 2415711297392788 r009 Im(z^3+c),c=-13/44+11/54*I,n=52 2415711297392788 r009 Im(z^3+c),c=-13/44+11/54*I,n=51 2415711297392788 r009 Im(z^3+c),c=-13/44+11/54*I,n=53 2415711297392788 r009 Im(z^3+c),c=-13/44+11/54*I,n=56 2415711297392788 r009 Im(z^3+c),c=-13/44+11/54*I,n=57 2415711297392788 r009 Im(z^3+c),c=-13/44+11/54*I,n=60 2415711297392788 r009 Im(z^3+c),c=-13/44+11/54*I,n=61 2415711297392788 r009 Im(z^3+c),c=-13/44+11/54*I,n=64 2415711297392788 r009 Im(z^3+c),c=-13/44+11/54*I,n=63 2415711297392788 r009 Im(z^3+c),c=-13/44+11/54*I,n=62 2415711297392788 r009 Im(z^3+c),c=-13/44+11/54*I,n=59 2415711297392788 r009 Im(z^3+c),c=-13/44+11/54*I,n=58 2415711297392788 r009 Im(z^3+c),c=-13/44+11/54*I,n=55 2415711297392788 r009 Im(z^3+c),c=-13/44+11/54*I,n=54 2415711297392788 r009 Im(z^3+c),c=-13/44+11/54*I,n=49 2415711297392788 r009 Im(z^3+c),c=-13/44+11/54*I,n=50 2415711297392788 r009 Im(z^3+c),c=-13/44+11/54*I,n=46 2415711297392788 r009 Im(z^3+c),c=-13/44+11/54*I,n=45 2415711297392788 r009 Im(z^3+c),c=-13/44+11/54*I,n=42 2415711297392788 r009 Im(z^3+c),c=-13/44+11/54*I,n=41 2415711297392788 r009 Im(z^3+c),c=-13/44+11/54*I,n=38 2415711297392788 r009 Im(z^3+c),c=-13/44+11/54*I,n=36 2415711297392789 r009 Im(z^3+c),c=-13/44+11/54*I,n=37 2415711297392826 r009 Im(z^3+c),c=-13/44+11/54*I,n=33 2415711297392834 r009 Im(z^3+c),c=-13/44+11/54*I,n=32 2415711297394047 r009 Im(z^3+c),c=-13/44+11/54*I,n=29 2415711297396218 r009 Im(z^3+c),c=-13/44+11/54*I,n=28 2415711297421632 r009 Im(z^3+c),c=-13/44+11/54*I,n=25 2415711297512057 r008 a(0)=0,K{-n^6,72*n^3+136*n^2+154*n+52} 2415711297578302 r009 Im(z^3+c),c=-13/44+11/54*I,n=24 2415711297770969 r008 a(0)=0,K{-n^6,68*n^3+146*n^2+152*n+48} 2415711297901921 r008 a(0)=0,K{-n^6,66*n^3+151*n^2+151*n+46} 2415711298033885 r008 a(0)=0,K{-n^6,64*n^3+156*n^2+150*n+44} 2415711299269129 r008 a(0)=0,K{-n^6,(2*n+1)*(26+23*n^2+89*n)} 2415711299473205 m001 (Zeta(5)-gamma(2))/(MadelungNaCl+Sierpinski) 2415711302165940 r009 Im(z^3+c),c=-13/44+11/54*I,n=19 2415711305681263 r009 Im(z^3+c),c=-13/44+11/54*I,n=20 2415711308954702 r005 Re(z^2+c),c=43/110+21/61*I,n=10 2415711310204742 s002 sum(A051528[n]/(n^3*pi^n+1),n=1..infinity) 2415711312231111 k006 concat of cont frac of 2415711312231212 k006 concat of cont frac of 2415711316616239 h001 (3/5*exp(2)+7/10)/(7/10*exp(1)+2/9) 2415711322191083 m001 (2^(1/2)+Pi^(1/2))/(Landau+StronglyCareFree) 2415711322891626 p001 sum(1/(197*n+135)/n/(125^n),n=1..infinity) 2415711324806052 a007 Real Root Of -429*x^4-947*x^3+342*x^2+251*x-130 2415711325524786 m001 (exp(1/Pi)*MertensB1-Trott2nd)/exp(1/Pi) 2415711328343553 m005 (1/2*Pi+5/6)/(1/10*Zeta(3)+7/8) 2415711330402892 m001 (Grothendieck-Zeta(1,2))^QuadraticClass 2415711337819870 m001 1/TwinPrimes/GolombDickman*ln(GAMMA(1/24))^2 2415711346874003 l006 ln(794/8891) 2415711363163596 m005 (21/4+1/4*5^(1/2))/(1/9*2^(1/2)+1/12) 2415711373460756 a007 Real Root Of 315*x^3+687*x^2+131*x+748 2415711377092543 m001 BesselK(0,1)*Robbin^2*ln(Pi)^2 2415711383571153 a007 Real Root Of -307*x^4-465*x^3+461*x^2-458*x+103 2415711391414854 a007 Real Root Of 81*x^4+4*x^3-761*x^2-565*x+374 2415711391608663 m001 Catalan^2/exp(MadelungNaCl)*sqrt(1+sqrt(3)) 2415711396826044 a007 Real Root Of -465*x^4-942*x^3+249*x^2-257*x+482 2415711402229768 m001 Salem*Magata/ln(GAMMA(1/4))^2 2415711402501966 m001 GaussAGM^gamma(2)/PrimesInBinary 2415711411431631 k008 concat of cont frac of 2415711417398699 r009 Im(z^3+c),c=-41/94+8/59*I,n=6 2415711429004249 a007 Real Root Of -756*x^4+885*x^3-993*x^2+810*x-19 2415711431013212 r002 13th iterates of z^2 + 2415711432007744 m001 (arctan(1/3)-MinimumGamma)/Bloch 2415711433328294 m002 E^Pi-Log[Pi]/20+ProductLog[Pi] 2415711435152173 m005 (1/2*Catalan-2/11)/(3/11*Pi-2) 2415711435897148 a007 Real Root Of -215*x^4-375*x^3+204*x^2-233*x+282 2415711440379572 a007 Real Root Of -17*x^4+295*x^3+730*x^2-509*x-752 2415711443126671 m005 (-2/3+1/4*5^(1/2))/(69/20+9/20*5^(1/2)) 2415711445120072 h001 (5/7*exp(2)+9/10)/(9/11*exp(1)+1/3) 2415711445505371 r009 Im(z^3+c),c=-1/5+11/47*I,n=4 2415711449024365 a003 sin(Pi*8/67)*sin(Pi*11/48) 2415711460663189 m001 (gamma+ln(2))/(-cos(1/12*Pi)+BesselJ(1,1)) 2415711463894383 m001 (Riemann2ndZero-ln(3)*FeigenbaumB)/FeigenbaumB 2415711468462337 m004 E^(Sqrt[5]*Pi)/5+5*Pi+2/Log[Sqrt[5]*Pi] 2415711469223528 a007 Real Root Of -379*x^4-823*x^3-16*x^2-378*x+485 2415711473112472 k008 concat of cont frac of 2415711474612131 k008 concat of cont frac of 2415711477931094 m001 (arctan(1/3)+BesselK(1,1))/(Trott+Trott2nd) 2415711495854520 m005 (1/2*3^(1/2)+4/9)/(3*Pi-4) 2415711495911969 l006 ln(5237/6668) 2415711497305751 r005 Im(z^2+c),c=-59/110+22/53*I,n=53 2415711503085878 a005 (1/sin(55/207*Pi))^26 2415711511111111 k007 concat of cont frac of 2415711512214611 k007 concat of cont frac of 2415711515623713 a003 cos(Pi*19/64)*cos(Pi*29/79) 2415711519074322 a007 Real Root Of -560*x^4-779*x^3+942*x^2-993*x+193 2415711521530703 m005 (1/2*Zeta(3)+7/10)/(3/11*2^(1/2)+5) 2415711525683337 m005 (1/3*Zeta(3)+1/4)/(3/8*exp(1)-3/4) 2415711540491493 r009 Re(z^3+c),c=-7/48+27/29*I,n=58 2415711547639031 m001 (gamma(3)-BesselI(1,2))/(FeigenbaumB-ZetaP(3)) 2415711549655531 r005 Im(z^2+c),c=-71/106+15/43*I,n=62 2415711551670210 r005 Im(z^2+c),c=-47/78+15/47*I,n=19 2415711556804609 a007 Real Root Of -67*x^4+548*x^3+577*x^2+198*x-89 2415711559247253 p001 sum(1/(412*n+3)/n/(100^n),n=1..infinity) 2415711562688785 m001 (ln(2^(1/2)+1)+Kolakoski*Mills)/Kolakoski 2415711568886823 m001 GAMMA(11/12)^2/ln(Artin)*Zeta(1/2)^2 2415711571327156 k006 concat of cont frac of 2415711577229121 m005 (1/2*Zeta(3)-1/3)/(1/4*exp(1)+3/7) 2415711584424083 m005 (1/2*exp(1)-1/12)/(5/8*gamma-8/9) 2415711607648042 r009 Im(z^3+c),c=-13/44+11/54*I,n=16 2415711611422718 k008 concat of cont frac of 2415711612542161 k006 concat of cont frac of 2415711613147186 a001 7/75025*75025^(5/59) 2415711625225711 k007 concat of cont frac of 2415711631858096 l004 sinh(1097/118*Pi) 2415711631858096 l004 cosh(1097/118*Pi) 2415711632736540 a007 Real Root Of 567*x^4+714*x^3+927*x^2-737*x-224 2415711636079020 r005 Re(z^2+c),c=-15/94+37/61*I,n=48 2415711636401999 r005 Re(z^2+c),c=15/44+6/31*I,n=43 2415711649221562 r005 Im(z^2+c),c=-9/20+20/47*I,n=39 2415711649419701 a005 (1/sin(53/235*Pi))^61 2415711650630707 r005 Im(z^2+c),c=-17/38+21/50*I,n=64 2415711655529269 m005 (1/2*Pi+2/9)/(8/11*Zeta(3)-4/5) 2415711666124019 r005 Re(z^2+c),c=-53/66+2/33*I,n=52 2415711673196580 r009 Im(z^3+c),c=-35/78+2/21*I,n=56 2415711675412860 a007 Real Root Of -897*x^4+792*x^3+191*x^2+335*x+84 2415711685180432 m001 exp(-1/2*Pi)*GAMMA(13/24)^GaussKuzminWirsing 2415711690240893 r005 Im(z^2+c),c=-51/58+13/61*I,n=34 2415711695712135 l006 ln(7506/9557) 2415711703112111 k007 concat of cont frac of 2415711706699608 a007 Real Root Of -196*x^4-193*x^3+679*x^2-88*x-221 2415711709602095 a007 Real Root Of -980*x^4+856*x^3-586*x^2+279*x+117 2415711716612211 k007 concat of cont frac of 2415711718129496 r005 Im(z^2+c),c=-7/6+43/221*I,n=32 2415711718787279 a007 Real Root Of -305*x^4-207*x^3+176*x^2+783*x+177 2415711722332647 a001 1346269/123*3571^(3/31) 2415711725185536 m005 (1/2*2^(1/2)-3/5)/(5/6*3^(1/2)-1) 2415711727757684 a001 10946/123*9349^(19/31) 2415711730392461 r005 Re(z^2+c),c=2/7+7/43*I,n=20 2415711739870053 a001 17711/123*39603^(15/31) 2415711741005462 a001 726103/41*15127^(1/31) 2415711741151621 k006 concat of cont frac of 2415711744550740 m001 Zeta(3)+FeigenbaumC*LaplaceLimit 2415711749383682 a003 cos(Pi*19/83)-sin(Pi*53/114) 2415711754465191 r005 Re(z^2+c),c=-27/118+17/43*I,n=24 2415711756423265 m001 1/ln(Porter)^2/Backhouse/TreeGrowth2nd^2 2415711759333416 a001 105937/41*5778^(8/31) 2415711760266531 r005 Im(z^2+c),c=-23/86+15/41*I,n=17 2415711763167350 h001 (7/12*exp(2)+7/8)/(7/11*exp(1)+5/12) 2415711763418630 r005 Im(z^2+c),c=1/66+19/36*I,n=3 2415711765151938 a001 322/28657*1346269^(5/23) 2415711765744984 a001 322/317811*86267571272^(5/23) 2415711766141970 a005 (1/cos(32/195*Pi))^519 2415711771126541 r005 Re(z^2+c),c=-49/122+11/17*I,n=6 2415711777935082 r005 Im(z^2+c),c=-7/27+1/29*I,n=11 2415711789204960 a001 9/416020*28657^(17/37) 2415711800569782 m001 (Ei(1,1)+Cahen)/(FeigenbaumMu+ZetaQ(4)) 2415711800584334 m001 Pi+exp(Pi)*(Psi(1,1/3)+exp(-1/2*Pi)) 2415711810268025 m001 ZetaP(2)^ZetaR(2)/(ZetaP(2)^(2^(1/3))) 2415711810358962 r005 Im(z^2+c),c=-23/86+10/27*I,n=13 2415711819713446 a007 Real Root Of -26*x^4-627*x^3+42*x^2+345*x-879 2415711821113361 k008 concat of cont frac of 2415711826032351 r005 Re(z^2+c),c=-29/98+4/45*I,n=6 2415711827436397 a007 Real Root Of -617*x^4-994*x^3+946*x^2-858*x-594 2415711830466199 r009 Re(z^3+c),c=-23/64+5/12*I,n=8 2415711834637766 p003 LerchPhi(1/2,4,267/184) 2415711836351789 m005 (17/20+1/4*5^(1/2))/(2/3*3^(1/2)-4/7) 2415711841559270 a007 Real Root Of -314*x^4-935*x^3-771*x^2-420*x+997 2415711843058202 r005 Re(z^2+c),c=-13/16+3/113*I,n=16 2415711844490572 m001 BesselK(0,1)-Zeta(1,2)*GAMMA(5/12) 2415711845971873 r009 Im(z^3+c),c=-13/44+11/54*I,n=15 2415711853755550 m001 HardHexagonsEntropy+MertensB2^sin(1/5*Pi) 2415711861111212 k006 concat of cont frac of 2415711884139739 m001 1/Trott/exp(Conway)/Zeta(5) 2415711884646611 a001 105937/41*2207^(9/31) 2415711897130024 r009 Re(z^3+c),c=-13/90+57/59*I,n=36 2415711899298368 h001 (7/9*exp(2)+1/3)/(2/9*exp(2)+7/8) 2415711918848808 r009 Re(z^3+c),c=-5/122+35/59*I,n=37 2415711925190316 m001 MadelungNaCl*PrimesInBinary^Psi(1,1/3) 2415711929314277 r005 Re(z^2+c),c=-129/118+14/59*I,n=48 2415711930263630 r005 Im(z^2+c),c=-2/3+27/151*I,n=7 2415711937371063 m001 (2^(1/3)-Gompertz)/(-Magata+TwinPrimes) 2415711937746238 m001 (5^(1/2)-BesselJ(0,1))/(-ArtinRank2+Mills) 2415711941629866 a001 14930208*76^(1/9) 2415711947626841 q001 1476/611 2415711948504851 a007 Real Root Of 570*x^4+984*x^3-693*x^2+617*x-5 2415711948516716 r005 Re(z^2+c),c=21/82+6/43*I,n=38 2415711954078588 a003 sin(Pi*2/75)*sin(Pi*11/118) 2415711956962806 a001 13201/48*987^(37/57) 2415711962463279 a005 (1/cos(16/235*Pi))^1137 2415711982316104 l006 ln(177/1982) 2415711990927209 h001 (7/12*exp(2)+1/3)/(1/5*exp(2)+4/9) 2415711996309606 r005 Im(z^2+c),c=-21/34+25/113*I,n=7 2415712006851477 m001 FellerTornier^sin(1)/(KhinchinHarmonic^sin(1)) 2415712010662598 m001 (Landau+MinimumGamma)/(Zeta(3)-GAMMA(17/24)) 2415712037295093 m001 CareFree^2/GlaisherKinkelin/ln(GAMMA(19/24)) 2415712038970853 p003 LerchPhi(1/32,1,89/213) 2415712043928681 a007 Real Root Of -96*x^4+689*x^3-975*x^2+390*x+10 2415712048481445 m005 (1/2*2^(1/2)+2/7)/(3/8*2^(1/2)-4/7) 2415712050587010 m001 (arctan(1/2)+ln(2+3^(1/2)))^GAMMA(7/12) 2415712050587010 m001 (arctan(1/2)+ln(2+sqrt(3)))^GAMMA(7/12) 2415712064227042 a007 Real Root Of 656*x^4-978*x^3+114*x^2-878*x+217 2415712082781436 a001 2139295485799/1597*832040^(11/20) 2415712082781820 a001 10749957122/1597*12586269025^(11/20) 2415712084628691 k003 Champernowne real with 6*n^3-63/2*n^2+109/2*n-27 2415712098954260 m001 (Zeta(5)-exp(Pi))/(BesselJ(1,1)+Weierstrass) 2415712099434340 m001 Magata/GolombDickman*exp(Ei(1))^2 2415712100046949 l006 ln(8793/9008) 2415712105263343 m001 (1+2^(1/3))/(arctan(1/2)+Bloch) 2415712105921783 r009 Re(z^3+c),c=-19/50+19/40*I,n=63 2415712109929506 m001 (HardyLittlewoodC3+Totient)/(Zeta(5)-Ei(1,1)) 2415712111178981 k006 concat of cont frac of 2415712112411112 k007 concat of cont frac of 2415712113154112 k006 concat of cont frac of 2415712121495693 a001 322*(1/2*5^(1/2)+1/2)^26*4^(11/15) 2415712123112121 k007 concat of cont frac of 2415712127973816 a007 Real Root Of 381*x^4+718*x^3-201*x^2+301*x-953 2415712146790239 m001 cos(1/5*Pi)+ErdosBorwein 2415712151573103 r008 a(0)=0,K{-n^6,(2*n+1)*(81+50*n^2+7*n)} 2415712151913414 k006 concat of cont frac of 2415712152918551 r008 a(0)=0,K{-n^6,(2*n+1)*(59+39*n^2+40*n)} 2415712154519897 r008 a(0)=0,K{-n^6,54*n^3+179*n^2+146*n+35} 2415712155378993 r008 a(0)=0,K{-n^6,42*n^3+209*n^2+140*n+23} 2415712156435642 r008 a(0)=0,K{-n^6,28*n^3+244*n^2+133*n+9} 2415712156863935 l006 ln(2269/2889) 2415712170874241 m005 (1/2*Zeta(3)-6/11)/(5/6*3^(1/2)+6/7) 2415712174242738 m001 1/exp(GAMMA(2/3))^2/ArtinRank2^2/LambertW(1) 2415712187240728 m001 (Khinchin+ZetaQ(3))/(Psi(1,1/3)+Shi(1)) 2415712188121778 a007 Real Root Of 335*x^4-538*x^3-780*x^2-559*x+187 2415712210214122 k008 concat of cont frac of 2415712210244098 h001 (7/10*exp(2)+9/11)/(7/11*exp(1)+3/4) 2415712212946908 r009 Re(z^3+c),c=-2/29+27/44*I,n=8 2415712220126426 r002 4th iterates of z^2 + 2415712220126426 r002 4th iterates of z^2 + 2415712228112519 k006 concat of cont frac of 2415712231414141 k007 concat of cont frac of 2415712244577193 r005 Im(z^2+c),c=11/42+25/51*I,n=52 2415712244580171 a001 5600748293801/4181*832040^(11/20) 2415712244580554 a001 28143753123/4181*12586269025^(11/20) 2415712255489985 m001 1/ln(FeigenbaumC)*MertensB1*RenyiParking^2 2415712261058918 m003 -3+Sqrt[5]/4+ProductLog[1/2+Sqrt[5]/2]/30 2415712264000944 r009 Im(z^3+c),c=-15/32+2/27*I,n=51 2415712264727448 a001 4181/199*3571^(29/50) 2415712268186290 a001 7331474697802/5473*832040^(11/20) 2415712268186673 a001 73681302247/10946*12586269025^(11/20) 2415712271630760 a001 192900153618/28657*12586269025^(11/20) 2415712272133245 a001 505019158607/75025*12586269025^(11/20) 2415712272206557 a001 1322157322203/196418*12586269025^(11/20) 2415712272217253 a001 3461452808002/514229*12586269025^(11/20) 2415712272218813 a001 9062201101803/1346269*12586269025^(11/20) 2415712272219041 a001 23725150497407/3524578*12586269025^(11/20) 2415712272219182 a001 14662949395604/2178309*12586269025^(11/20) 2415712272219778 a001 5600748293801/832040*12586269025^(11/20) 2415712272223863 a001 2139295485799/317811*12586269025^(11/20) 2415712272251866 a001 817138163596/121393*12586269025^(11/20) 2415712272443798 a001 312119004989/46368*12586269025^(11/20) 2415712273758938 a001 23725150497407/17711*832040^(11/20) 2415712273759322 a001 119218851371/17711*12586269025^(11/20) 2415712276712042 m007 (-1/5*gamma-2/5*ln(2)-3)/(-2*gamma-1/4) 2415712282775674 a001 3020733700601/2255*832040^(11/20) 2415712282776058 a001 45537549124/6765*12586269025^(11/20) 2415712283816278 h001 (5/7*exp(1)+1/7)/(1/12*exp(1)+7/11) 2415712284886375 m001 (ln(2)-GAMMA(19/24))/(Thue-TwinPrimes) 2415712295310317 m001 1/cosh(1)/ln(MertensB1)*sqrt(5)^2 2415712301191111 k006 concat of cont frac of 2415712302843133 g007 Psi(2,3/10)+Psi(2,5/6)-Psi(2,4/11)-Psi(2,5/9) 2415712305373184 p001 sum(1/(493*n+316)/n/(512^n),n=1..infinity) 2415712305521243 b008 -7+Pi+Log[2]^(-1) 2415712311491221 k009 concat of cont frac of 2415712314284657 r005 Im(z^2+c),c=-11/26+35/62*I,n=31 2415712331515840 r005 Im(z^2+c),c=-29/74+19/47*I,n=48 2415712334285667 m005 (1/6*Catalan-2/3)/(37/30+2/5*5^(1/2)) 2415712334335333 m001 (AlladiGrinstead+Niven)/(Trott2nd+ZetaP(4)) 2415712338219003 r002 8th iterates of z^2 + 2415712342474572 a005 (1/sin(62/141*Pi))^1708 2415712344577299 a001 1730726404001/1292*832040^(11/20) 2415712344577682 a001 17393796001/2584*12586269025^(11/20) 2415712347551166 a003 sin(Pi*5/112)/cos(Pi*17/56) 2415712348907116 s002 sum(A059108[n]/(n*pi^n+1),n=1..infinity) 2415712349588746 r009 Re(z^3+c),c=-19/50+28/59*I,n=34 2415712355972317 m001 ln(Bloch)*FeigenbaumAlpha*GAMMA(17/24) 2415712361959198 m001 1/GlaisherKinkelin/ln(Champernowne)/cosh(1) 2415712379597743 a007 Real Root Of -13*x^4+318*x^3+404*x^2-652*x+993 2415712380114713 k006 concat of cont frac of 2415712381836724 m001 2^(1/2)+KhinchinLevy^ZetaQ(3) 2415712385015819 r005 Re(z^2+c),c=21/82+6/43*I,n=35 2415712408568117 a007 Real Root Of 126*x^4+136*x^3-434*x^2-457*x-945 2415712419905659 p004 log(12911/1153) 2415712426273287 r009 Re(z^3+c),c=-5/36+50/57*I,n=24 2415712426800798 a003 cos(Pi*35/118)-sin(Pi*37/117) 2415712431153449 r005 Im(z^2+c),c=-5/6+44/251*I,n=43 2415712431537896 r005 Im(z^2+c),c=-28/25+1/34*I,n=33 2415712436377044 a007 Real Root Of 352*x^4+666*x^3-265*x^2+580*x+349 2415712438236667 m001 BesselJ(1,1)^gamma(1)+GAMMA(2/3) 2415712439064921 b008 7/6+ArcTan[3] 2415712439700573 m005 (1/2*Catalan-8/11)/(4/7*3^(1/2)+1/8) 2415712439971175 a005 (1/cos(1/100*Pi))^1787 2415712462293687 r005 Im(z^2+c),c=-75/82+5/24*I,n=38 2415712463346832 r009 Re(z^3+c),c=-27/74+19/43*I,n=24 2415712465393490 a007 Real Root Of 113*x^4+415*x^3+365*x^2-200*x-611 2415712469107796 m001 (GAMMA(7/24)+3)/(polylog(4,1/2)+2) 2415712472327889 m001 (BesselI(0,2)+ZetaQ(2))/cos(1/12*Pi) 2415712477634135 m001 1/GolombDickman^2/exp(CopelandErdos)/Catalan^2 2415712488627799 m005 (1/2*Pi-5/11)/(6*Catalan-7/8) 2415712489698993 m004 -125*Pi-4/Log[Sqrt[5]*Pi]+5*Sinh[Sqrt[5]*Pi] 2415712495932166 a001 7/121393*377^(17/27) 2415712497389416 m001 1/ln(GAMMA(7/12))*Lehmer^2*cos(1)^2 2415712508293272 m001 (-Kolakoski+Trott2nd)/(Shi(1)-exp(1/Pi)) 2415712509742080 h001 (3/5*exp(1)+7/9)/(1/11*exp(1)+3/4) 2415712531987053 m001 (gamma(2)+Riemann1stZero)/(Stephens+ZetaQ(3)) 2415712532413065 r005 Re(z^2+c),c=-7/48+17/33*I,n=14 2415712534196802 m005 (1/3*Zeta(3)+2/3)/(3*3^(1/2)-7/9) 2415712538958543 m001 TwinPrimes/(Robbin^Pi) 2415712556717813 m001 3^(1/2)*Bloch*Otter 2415712561306488 m001 (Landau+ZetaQ(4))/(2^(1/2)+sin(1)) 2415712563549451 s002 sum(A245793[n]/(n^3*pi^n+1),n=1..infinity) 2415712572762639 m001 (FeigenbaumMu-Landau)/(3^(1/3)-ln(2+3^(1/2))) 2415712590234561 r005 Re(z^2+c),c=-31/106+5/29*I,n=3 2415712591476442 m005 (1/2*Pi-1/5)/(1/9*3^(1/2)+3/8) 2415712593673755 r005 Im(z^2+c),c=-11/10+1/249*I,n=4 2415712594535630 r009 Re(z^3+c),c=-19/50+19/40*I,n=58 2415712599600510 m001 GaussAGM(1,1/sqrt(2))^GAMMA(11/24)-Pi 2415712613781321 l006 ln(799/8947) 2415712614160836 r002 14th iterates of z^2 + 2415712617932772 a007 Real Root Of -279*x^4-889*x^3-431*x^2+202*x-28 2415712622089567 m005 (1/2*5^(1/2)+4/5)/(6*2^(1/2)-6/11) 2415712629491561 a001 13201*144^(31/53) 2415712645362538 m006 (2*Pi+1/6)/(1/2*exp(2*Pi)-3/4) 2415712659414757 m001 (ThueMorse-Weierstrass)/(gamma(3)+Sierpinski) 2415712659860076 p001 sum((-1)^n/(507*n+137)/n/(64^n),n=1..infinity) 2415712675407097 p004 log(33997/26701) 2415712677949274 a007 Real Root Of -34*x^4-844*x^3-567*x^2-434*x+986 2415712684688696 m005 (1/2*Pi+1/6)/(3/10*Catalan+4/9) 2415712691531587 m001 HardHexagonsEntropy^ThueMorse/Weierstrass 2415712693751204 m005 (47/44+1/4*5^(1/2))/(1/2*5^(1/2)-4/9) 2415712706936339 a007 Real Root Of -240*x^4-216*x^3+784*x^2-498*x-650 2415712707966095 v002 sum(1/(2^n*(25*n^2-45*n+47)),n=1..infinity) 2415712723564202 l006 ln(6108/7777) 2415712728134437 a001 2207*144^(1/55) 2415712737444730 m001 Pi*csc(1/24*Pi)/GAMMA(23/24)/(exp(Pi)^Sarnak) 2415712743801618 r005 Re(z^2+c),c=-25/102+28/37*I,n=19 2415712743837542 a007 Real Root Of -78*x^4+239*x^3+994*x^2+236*x+795 2415712751733113 k007 concat of cont frac of 2415712757165073 a007 Real Root Of 171*x^4+626*x^3+690*x^2+58*x-885 2415712765520029 a007 Real Root Of -268*x^4-441*x^3+519*x^2+132*x+200 2415712766912009 a003 sin(Pi*8/103)*sin(Pi*58/117) 2415712768141763 g001 abs(Psi(-7/8+I*35/8)) 2415712768172022 a001 440719107401/329*832040^(11/20) 2415712768172406 a001 6643838879/987*12586269025^(11/20) 2415712775293660 m001 (Ei(1)+FeigenbaumD)/(Zeta(3)+ln(2)) 2415712783822239 s001 sum(1/10^(n-1)*A202397[n]/n!,n=1..infinity) 2415712785677621 m005 (17/20+1/4*5^(1/2))/(31/264+5/24*5^(1/2)) 2415712793474726 l006 ln(622/6965) 2415712795957915 a007 Real Root Of 225*x^4+678*x^3+194*x^2-208*x+261 2415712806079064 m001 (Trott2nd+ZetaP(2))/(3^(1/3)+Landau) 2415712808756504 r005 Re(z^2+c),c=-7/24+7/60*I,n=6 2415712810245534 a007 Real Root Of 32*x^4+732*x^3-988*x^2+104*x+691 2415712816121149 k007 concat of cont frac of 2415712835582276 r009 Re(z^3+c),c=-19/32+8/29*I,n=48 2415712856296706 m001 1/GAMMA(1/4)*ln(Khintchine)^2/GAMMA(11/12)^2 2415712861982495 h001 (5/12*exp(1)+3/8)/(5/6*exp(2)+1/12) 2415712871018385 r005 Re(z^2+c),c=-5/34+29/48*I,n=63 2415712876263894 a005 (1/cos(3/125*Pi))^310 2415712887682723 m001 (GAMMA(5/6)-exp(Pi))/(-Champernowne+MertensB2) 2415712897007902 m001 Psi(1,1/3)*FellerTornier-sin(1) 2415712902057681 p003 LerchPhi(1/100,2,35/172) 2415712916105078 a007 Real Root Of 405*x^4+692*x^3-550*x^2+607*x+639 2415712917914949 a007 Real Root Of -195*x^4-559*x^3-582*x^2-490*x+973 2415712922291685 a001 2/89*6557470319842^(8/17) 2415712932106117 m004 (20*ProductLog[Sqrt[5]*Pi])/E^(2*Sqrt[5]*Pi) 2415712941158665 m001 1/Salem*ln(Riemann2ndZero)*cos(Pi/12)^2 2415712943122711 r005 Im(z^2+c),c=-85/126+7/41*I,n=21 2415712949274985 m001 (Ei(1)-BesselI(1,1))/(Kac-Salem) 2415712953296997 m001 (Zeta(1/2)-PlouffeB)/(RenyiParking+ZetaQ(2)) 2415712957913837 m001 Pi-1/(Ei(1)-polylog(4,1/2)) 2415712960098979 q001 781/3233 2415712960098979 r002 2th iterates of z^2 + 2415712960098979 r002 2th iterates of z^2 + 2415712960487141 p004 log(28879/2579) 2415712962143355 a001 199/832040*377^(23/59) 2415712964712348 m001 ZetaQ(2)/(Zeta(1,2)+TravellingSalesman) 2415712975884041 a007 Real Root Of -442*x^4-831*x^3+356*x^2-469*x+127 2415712989241553 a001 7/89*514229^(11/14) 2415712991100828 r005 Re(z^2+c),c=-19/31+22/61*I,n=14 2415712993988488 m008 (3/5*Pi^2-1/5)/(1/4*Pi^4-2/3) 2415713014274481 r008 a(0)=0,K{-n^6,82*n^3+107*n^2+161*n+64} 2415713015189693 r008 a(0)=0,K{-n^6,68*n^3+142*n^2+154*n+50} 2415713015460350 r008 a(0)=0,K{-n^6,64*n^3+152*n^2+152*n+46} 2415713041679623 p001 sum((-1)^n/(424*n+391)/(8^n),n=0..infinity) 2415713042482628 r005 Im(z^2+c),c=3/94+16/63*I,n=10 2415713042534384 m008 (1/5*Pi^5-4)/(5/6*Pi-1/4) 2415713046405874 r009 Re(z^3+c),c=-4/11+18/41*I,n=34 2415713058506335 l006 ln(3839/4888) 2415713091790052 a007 Real Root Of 4*x^4+963*x^3-792*x^2+388*x-746 2415713101419747 m001 (Psi(2,1/3)-gamma)/(cos(1/12*Pi)+Totient) 2415713109063400 m001 (Pi-ln(2)/ln(10)/BesselI(0,1))/Zeta(3) 2415713109829755 m008 (1/2*Pi^3-5)/(4*Pi^2+4) 2415713110221344 k009 concat of cont frac of 2415713116115164 l006 ln(445/4983) 2415713117628678 m001 (-OneNinth+2/3)/exp(Pi) 2415713117628678 m001 (2/3-OneNinth)/exp(Pi) 2415713117628678 m001 exp(-Pi)*(2/3-OneNinth) 2415713119185467 r009 Re(z^3+c),c=-8/23+21/52*I,n=36 2415713119409914 m001 (-Pi^(1/2)+Conway)/(ln(2)/ln(10)+GAMMA(13/24)) 2415713121231226 k006 concat of cont frac of 2415713125834488 a007 Real Root Of 127*x^4-681*x^3-473*x^2-477*x+152 2415713128353861 r005 Im(z^2+c),c=-10/23+5/12*I,n=56 2415713141431221 k009 concat of cont frac of 2415713142926366 r009 Im(z^3+c),c=-29/126+7/31*I,n=9 2415713144148465 m005 (1/2*3^(1/2)-4/5)/(7/11*Catalan-5/9) 2415713152679317 k007 concat of cont frac of 2415713163168629 s001 sum(exp(-Pi/3)^n*A072086[n],n=1..infinity) 2415713163211296 s001 sum(exp(-Pi/3)^(n-1)*A180094[n],n=1..infinity) 2415713167578867 a007 Real Root Of -325*x^4-811*x^3-437*x^2-965*x-146 2415713179796399 r009 Re(z^3+c),c=-39/98+33/64*I,n=40 2415713180081297 r005 Re(z^2+c),c=25/102+5/39*I,n=16 2415713193540411 a001 9349*8^(21/46) 2415713194160823 r009 Re(z^3+c),c=-19/32+8/29*I,n=52 2415713201991936 m005 (1/2*exp(1)+2/5)/(5/11*Zeta(3)+2/11) 2415713202133226 k008 concat of cont frac of 2415713211129417 k006 concat of cont frac of 2415713211967441 r009 Im(z^3+c),c=-21/86+1/52*I,n=5 2415713214976345 m001 (gamma(3)+Bloch)/(Khinchin-Sarnak) 2415713215833037 r005 Im(z^2+c),c=7/122+15/62*I,n=10 2415713217666652 r005 Re(z^2+c),c=7/20+8/49*I,n=6 2415713219350782 m005 (1/2*5^(1/2)+8/11)/(2/7*5^(1/2)+1/8) 2415713221312111 k008 concat of cont frac of 2415713229136916 m001 (cos(1/5*Pi)-sin(1))/(-Kolakoski+TwinPrimes) 2415713232114826 m001 (3^(1/3)-FeigenbaumAlpha)/(Khinchin+Niven) 2415713248591221 m001 Bloch*Champernowne*PrimesInBinary 2415713248748777 r009 Re(z^3+c),c=-9/46+6/7*I,n=19 2415713275830108 r009 Im(z^3+c),c=-61/118+3/41*I,n=10 2415713279062504 r005 Re(z^2+c),c=-11/50+32/45*I,n=7 2415713287922673 r005 Im(z^2+c),c=-27/58+12/25*I,n=29 2415713289537166 m001 exp(GolombDickman)^2/Bloch^2*cosh(1) 2415713302020556 m005 (1/3*exp(1)+2/9)/(5*Catalan+1/11) 2415713304769709 m001 FeigenbaumD-exp(1/Pi)*DuboisRaymond 2415713307798161 r005 Re(z^2+c),c=-21/26+6/115*I,n=30 2415713311116021 k006 concat of cont frac of 2415713311124181 k008 concat of cont frac of 2415713311312122 k006 concat of cont frac of 2415713311611718 k007 concat of cont frac of 2415713315220221 k008 concat of cont frac of 2415713315952998 r009 Im(z^3+c),c=-5/32+8/33*I,n=4 2415713318595610 m002 4*Pi+Cosh[Pi]-Log[Pi]/Pi^6 2415713322950217 r005 Im(z^2+c),c=-137/122+6/25*I,n=37 2415713328674138 m001 Ei(1)/(Stephens^TreeGrowth2nd) 2415713336852626 r009 Re(z^3+c),c=-19/32+8/29*I,n=64 2415713337909668 m001 (BesselI(1,2)+Niven)/(Tribonacci-Weierstrass) 2415713338140564 m001 LandauRamanujan-ln(3)+Stephens 2415713340166555 m001 1/arctan(1/2)/exp(GAMMA(13/24))/sqrt(3) 2415713345533644 r009 Re(z^3+c),c=-19/32+8/29*I,n=60 2415713347894257 r009 Re(z^3+c),c=-7/48+27/29*I,n=50 2415713356236469 r005 Re(z^2+c),c=-35/118+3/35*I,n=13 2415713358414667 a007 Real Root Of -272*x^4-390*x^3+848*x^2+307*x-442 2415713363369379 r009 Im(z^3+c),c=-29/52+5/14*I,n=11 2415713369390237 r009 Re(z^3+c),c=-19/32+8/29*I,n=56 2415713385716314 r009 Im(z^3+c),c=-35/66+7/15*I,n=48 2415713391100914 m001 GAMMA(23/24)+BesselI(0,1)^HardHexagonsEntropy 2415713392776757 m001 cos(Pi/12)/Champernowne/exp(sinh(1)) 2415713397577003 l006 ln(713/7984) 2415713403755351 r005 Re(z^2+c),c=-13/58+33/56*I,n=29 2415713404370414 m005 (-15/4+1/4*5^(1/2))/(5/7*Catalan+2/3) 2415713404460654 m005 (1/2*exp(1)+2/3)/(6/11*Pi-7/8) 2415713409582753 a007 Real Root Of -36*x^4-860*x^3+212*x^2-484*x+727 2415713420699462 m001 (-cos(1/5*Pi)+GAMMA(13/24))/(2^(1/3)-Catalan) 2415713423439191 m001 (-GlaisherKinkelin+Sarnak)/(exp(Pi)+gamma(2)) 2415713432927432 p001 sum(1/(492*n+317)/n/(512^n),n=1..infinity) 2415713436732712 l006 ln(5409/6887) 2415713441137730 m001 (Mills+Sarnak)/(3^(1/3)-BesselK(1,1)) 2415713445502091 m005 (1/2*gamma+5/11)/(1/12*Catalan+3) 2415713463054035 r005 Re(z^2+c),c=-2/11+26/51*I,n=43 2415713463588140 r005 Re(z^2+c),c=-39/70+15/41*I,n=7 2415713469685927 r005 Re(z^2+c),c=13/46+8/13*I,n=40 2415713474173159 r005 Re(z^2+c),c=19/62+13/62*I,n=14 2415713477998798 a007 Real Root Of -183*x^4-259*x^3+679*x^2+824*x+609 2415713480851939 a007 Real Root Of 342*x^4+591*x^3-24*x^2+946*x-890 2415713482154792 m001 (-Pi^(1/2)+3)/(GAMMA(7/24)+2) 2415713484026367 b008 24+Sqrt[2]/9 2415713489748978 r009 Re(z^3+c),c=-35/94+17/37*I,n=24 2415713491715211 m001 FeigenbaumMu/(BesselI(1,2)^sin(1)) 2415713491895054 r001 45i'th iterates of 2*x^2-1 of 2415713494731607 a001 4181/521*29^(18/55) 2415713510048288 m002 3/Pi^6+(E^Pi*Coth[Pi])/Pi^4 2415713511278041 m001 (Khinchin-ZetaQ(2))/(arctan(1/2)+Kac) 2415713512033883 a007 Real Root Of -547*x^4-975*x^3+713*x^2-446*x-355 2415713518264938 a007 Real Root Of -263*x^4-516*x^3+62*x^2-831*x-687 2415713521175111 k008 concat of cont frac of 2415713521881272 m005 (1/3*Catalan-1/10)/(gamma+3/11) 2415713523413366 a007 Real Root Of -146*x^4-284*x^3+91*x^2-150*x+75 2415713524388048 r005 Im(z^2+c),c=-20/23+12/61*I,n=56 2415713540438283 m001 GAMMA(7/12)^2/ln(Artin)*Zeta(7)^2 2415713554301642 m005 (1/2*Zeta(3)+3/8)/(1/10*2^(1/2)-6/11) 2415713556271438 m005 (1/3*5^(1/2)+1/11)/(4/5*gamma+3) 2415713565612227 m001 (2^(1/2)-Si(Pi))/(-MasserGramainDelta+Trott) 2415713567876222 a001 89/4*2^(7/59) 2415713583714079 b008 ArcCsch[2*(2+E^(-3))] 2415713589068123 r005 Im(z^2+c),c=-8/25+18/47*I,n=42 2415713592117222 m001 ln(RenyiParking)^2*MertensB1/Catalan 2415713592408729 r005 Im(z^2+c),c=-67/86+4/31*I,n=21 2415713594995182 a003 cos(Pi*29/69)/cos(Pi*50/107) 2415713606455596 r005 Im(z^2+c),c=-35/36+13/60*I,n=12 2415713611700612 m001 ln(gamma)/Zeta(5)/Ei(1,1) 2415713626578889 r009 Re(z^3+c),c=-19/50+19/40*I,n=48 2415713628953625 r005 Im(z^2+c),c=35/122+1/14*I,n=35 2415713629459856 m005 (1/2*5^(1/2)-1/4)/(exp(1)+7/8) 2415713633982183 h001 (-6*exp(4)+3)/(-2*exp(1)-8) 2415713642347247 r009 Re(z^3+c),c=-35/102+24/61*I,n=19 2415713642723594 a001 610/199*24476^(33/50) 2415713644787021 l006 ln(6979/8886) 2415713670032437 s002 sum(A271041[n]/(n!^3),n=1..infinity) 2415713681435124 a007 Real Root Of -12*x^4+871*x^3-963*x^2+180*x+112 2415713687897806 m002 Pi^2*ProductLog[Pi]+20*Sinh[Pi] 2415713693057787 a007 Real Root Of 285*x^4+606*x^3-33*x^2+633*x+559 2415713710448605 p001 sum((-1)^n/(342*n+313)/n/(6^n),n=1..infinity) 2415713730227347 m001 (1+BesselI(1,2))/(-Grothendieck+Rabbit) 2415713738171816 m001 TwinPrimes^ZetaQ(3)/ThueMorse 2415713753188932 m001 exp(Pi)^2/FeigenbaumDelta^2/Zeta(7)^2 2415713760573056 a003 cos(Pi*7/111)/cos(Pi*40/109) 2415713761863096 p001 sum((-1)^n/(461*n+346)/(2^n),n=0..infinity) 2415713766838047 p001 sum((-1)^n/(463*n+41)/(8^n),n=0..infinity) 2415713769269451 r009 Re(z^3+c),c=-33/82+21/40*I,n=3 2415713776288894 a007 Real Root Of 149*x^4-16*x^3-842*x^2-221*x-920 2415713779094633 a001 12238/17*377^(10/49) 2415713783994766 a007 Real Root Of 403*x^4+719*x^3-726*x^2-30*x+576 2415713786885148 m001 (Sarnak-Weierstrass)/(GAMMA(5/6)-GAMMA(23/24)) 2415713792544955 r005 Re(z^2+c),c=-19/94+15/32*I,n=23 2415713793524711 m001 (Pi+Zeta(1,-1))/(Champernowne-FeigenbaumKappa) 2415713800541070 m004 -4-125*Pi+Log[Sqrt[5]*Pi]+5*Sinh[Sqrt[5]*Pi] 2415713811264227 a007 Real Root Of -498*x^4-883*x^3+752*x^2-272*x-534 2415713816611420 m001 ln(Porter)^2*Niven/Zeta(5) 2415713817299536 m001 (Chi(1)+ln(5)*Ei(1))/ln(5) 2415713836484276 r005 Re(z^2+c),c=23/118+28/53*I,n=22 2415713863435699 a003 sin(Pi*8/113)/sin(Pi*37/101) 2415713864929510 l006 ln(268/3001) 2415713866901201 q001 824/3411 2415713867485871 h001 (5/11*exp(2)+5/7)/(3/8*exp(1)+2/3) 2415713868843297 r009 Re(z^3+c),c=-5/32+34/41*I,n=10 2415713871904997 a007 Real Root Of -244*x^4-677*x^3-204*x^2+36*x+43 2415713880269646 a007 Real Root Of 314*x^4+965*x^3+985*x^2+937*x-574 2415713882292306 r008 a(0)=0,K{-n^6,74*n^3+125*n^2+158*n+57} 2415713888490150 m001 Niven^TravellingSalesman*ZetaQ(4) 2415713890882554 r005 Re(z^2+c),c=3/86+28/47*I,n=26 2415713893069719 m001 1/GAMMA(1/4)^2/Trott^2*exp(log(2+sqrt(3))) 2415713894252955 a007 Real Root Of -272*x^4-576*x^3-112*x^2-937*x-467 2415713897263897 m001 (-ArtinRank2+MertensB1)/(3^(1/2)-gamma(1)) 2415713904595384 m001 (-FeigenbaumDelta+Thue)/(1+gamma) 2415713905403945 m001 (HardyLittlewoodC4-ZetaQ(4))/BesselI(0,1) 2415713911334480 m005 (1/2*2^(1/2)-5/8)/(9/10*Pi+4/7) 2415713923590564 r009 Re(z^3+c),c=-1/34+15/38*I,n=3 2415713929181086 r009 Re(z^3+c),c=-9/62+31/34*I,n=40 2415713934323731 m001 (3^(1/3))-RenyiParking+GAMMA(1/24) 2415713935075739 r009 Re(z^3+c),c=-8/23+21/52*I,n=39 2415713938993531 m001 (Paris-Robbin)/(Zeta(3)+GAMMA(5/6)) 2415713942099201 m001 (Ei(1)-Psi(1,1/3))/(Porter+Tetranacci) 2415713943989547 m001 FellerTornier*StronglyCareFree-ZetaQ(3) 2415713947125232 r005 Im(z^2+c),c=-15/13+17/58*I,n=11 2415713948576641 b008 Sqrt[2]+Zeta[8+Sqrt[2]] 2415713952141687 a001 9349/610*34^(4/31) 2415713953442657 r005 Re(z^2+c),c=-53/90+22/49*I,n=17 2415713955959192 a007 Real Root Of 562*x^4+473*x^3-85*x^2-288*x+7 2415713956306378 m005 (1/3*Catalan+1/12)/(4*gamma-7/10) 2415713962334759 m001 1/log(1+sqrt(2))*BesselK(0,1)^2*ln(sqrt(2))^2 2415713966680224 m001 (MadelungNaCl+TreeGrowth2nd)/(Pi-5^(1/2)) 2415713967722144 r002 6th iterates of z^2 + 2415713969019107 a007 Real Root Of 346*x^4+309*x^3-814*x^2+786*x-778 2415713975129140 a007 Real Root Of -525*x^4-895*x^3+868*x^2-220*x-335 2415713975737009 m001 (GolombDickman-sin(1))/(-Paris+ZetaQ(3)) 2415713977182151 r005 Im(z^2+c),c=-65/114+17/39*I,n=63 2415713979108010 m005 (2/3+5/12*5^(1/2))/(2*Pi+1/3) 2415713979625091 m001 (BesselI(1,1)+Landau)/(Catalan-exp(1/Pi)) 2415713983294647 a007 Real Root Of -203*x^4-380*x^3-247*x^2+771*x+196 2415713984039267 m001 Riemann1stZero^(PlouffeB/gamma(3)) 2415714008428745 m001 exp(Pi)+GAMMA(2/3)^ZetaQ(2) 2415714025777309 m001 (Cahen+Trott)/(BesselI(0,1)+3^(1/3)) 2415714027849229 a007 Real Root Of 2*x^4+485*x^3+447*x^2-400*x-628 2415714032963397 a007 Real Root Of -491*x^4-882*x^3+554*x^2-436*x+1 2415714034194574 r005 Re(z^2+c),c=-39/82+29/55*I,n=40 2415714034479539 a007 Real Root Of -371*x^4-182*x^3-748*x^2+160*x+81 2415714036973161 a001 165580141/322*199^(8/11) 2415714042689454 r005 Re(z^2+c),c=-5/78+18/29*I,n=64 2415714058909972 m002 -(E^Pi/Pi^2)-Log[Pi]+ProductLog[Pi] 2415714060139731 a007 Real Root Of -543*x^4+8*x^3-268*x^2+279*x+85 2415714069248371 m005 (1/2*3^(1/2)+5/11)/(7/11*3^(1/2)-5/9) 2415714075024968 r005 Re(z^2+c),c=-21/106+17/36*I,n=30 2415714078473538 m001 (sin(1)+DuboisRaymond)/(Magata+QuadraticClass) 2415714088393521 m005 (1/2*3^(1/2)+3/10)/(3/10*gamma-5) 2415714096190172 m001 (ErdosBorwein*Lehmer-cos(1/5*Pi))/Lehmer 2415714104650155 m001 (GAMMA(3/4)-Mills)/(RenyiParking-ThueMorse) 2415714113316220 r005 Im(z^2+c),c=-7/9+11/95*I,n=23 2415714118141581 k006 concat of cont frac of 2415714133505717 r009 Re(z^3+c),c=-17/118+30/31*I,n=20 2415714143218638 m001 (-GAMMA(3/4)+1/2)/(FeigenbaumAlpha+1/2) 2415714146490017 r009 Re(z^3+c),c=-7/48+27/29*I,n=52 2415714147989123 a007 Real Root Of -947*x^4-456*x^3-138*x^2+961*x+237 2415714152888007 a007 Real Root Of -471*x^4-623*x^3+701*x^2-949*x+874 2415714170261317 r009 Re(z^3+c),c=-7/48+27/29*I,n=46 2415714173696637 a001 9/98209*317811^(11/25) 2415714179013338 r005 Im(z^2+c),c=-33/118+13/35*I,n=18 2415714181112211 k007 concat of cont frac of 2415714186047821 r009 Re(z^3+c),c=-8/23+21/52*I,n=42 2415714197620247 r005 Im(z^2+c),c=-11/48+21/59*I,n=13 2415714207570647 m001 (5^(1/2)+FibonacciFactorial)/(Rabbit+Sarnak) 2415714212114111 k007 concat of cont frac of 2415714215506233 r005 Re(z^2+c),c=-9/50+20/39*I,n=39 2415714221102415 k006 concat of cont frac of 2415714230080143 r005 Im(z^2+c),c=-13/18+3/14*I,n=33 2415714234676564 m001 Psi(1,1/3)/(Zeta(1,2)+FeigenbaumKappa) 2415714237244814 l006 ln(895/10022) 2415714237367554 l006 ln(5194/5321) 2415714241068513 r009 Re(z^3+c),c=-67/106+12/23*I,n=6 2415714247753205 m001 (ln(3)-Lehmer)/(Riemann2ndZero-ZetaP(4)) 2415714255042036 r002 6th iterates of z^2 + 2415714262878630 r009 Re(z^3+c),c=-8/23+21/52*I,n=45 2415714279109515 a001 64079/610*4807526976^(19/22) 2415714279669520 a001 299537289/305*121393^(19/22) 2415714283873838 m001 Thue^HardHexagonsEntropy+ErdosBorwein 2415714286287180 r009 Re(z^3+c),c=-8/23+21/52*I,n=48 2415714287778361 m001 (Landau+ZetaQ(2))/(GAMMA(17/24)+KhinchinLevy) 2415714293385173 r009 Re(z^3+c),c=-8/23+21/52*I,n=51 2415714295527035 r009 Re(z^3+c),c=-8/23+21/52*I,n=54 2415714296170158 r009 Re(z^3+c),c=-8/23+21/52*I,n=57 2415714296362277 r009 Re(z^3+c),c=-8/23+21/52*I,n=60 2415714296419363 r009 Re(z^3+c),c=-8/23+21/52*I,n=63 2415714296443162 r009 Re(z^3+c),c=-8/23+21/52*I,n=64 2415714296447184 r009 Re(z^3+c),c=-8/23+21/52*I,n=61 2415714296469733 r009 Re(z^3+c),c=-8/23+21/52*I,n=58 2415714296477340 r009 Re(z^3+c),c=-8/23+21/52*I,n=62 2415714296549854 r009 Re(z^3+c),c=-8/23+21/52*I,n=59 2415714296573975 r009 Re(z^3+c),c=-8/23+21/52*I,n=55 2415714296774013 r009 Re(z^3+c),c=-8/23+21/52*I,n=56 2415714297013366 r009 Re(z^3+c),c=-8/23+21/52*I,n=52 2415714297460952 r009 Re(z^3+c),c=-8/23+21/52*I,n=53 2415714298766784 r009 Re(z^3+c),c=-8/23+21/52*I,n=49 2415714299545286 r009 Re(z^3+c),c=-8/23+21/52*I,n=50 2415714303086356 m001 (Zeta(1/2)-sin(1/12*Pi))/(gamma(1)+ZetaQ(4)) 2415714305512563 r009 Re(z^3+c),c=-8/23+21/52*I,n=46 2415714305796773 r009 Re(z^3+c),c=-8/23+21/52*I,n=47 2415714318459540 r009 Re(z^3+c),c=-7/48+44/47*I,n=36 2415714323346972 h001 (8/9*exp(2)+4/5)/(3/10*exp(2)+5/6) 2415714324288828 r009 Re(z^3+c),c=-8/23+21/52*I,n=44 2415714324751843 m001 (FellerTornier+Trott)/(ln(Pi)+CopelandErdos) 2415714324868022 m005 (1/3*Catalan-1/2)/(1/10*Catalan+5/7) 2415714330788853 r009 Re(z^3+c),c=-8/23+21/52*I,n=43 2415714337398333 m005 (1/3*2^(1/2)-1/7)/(5/6*3^(1/2)-1/12) 2415714340002761 m001 sin(Pi/5)*KhintchineLevy*exp(sqrt(Pi))^2 2415714352363676 m003 -4+Sin[1/2+Sqrt[5]/2]^3+Tan[1/2+Sqrt[5]/2] 2415714354447365 m001 (ZetaP(2)-ZetaP(4))/(ln(Pi)+HardyLittlewoodC5) 2415714354859863 r005 Re(z^2+c),c=31/110+7/43*I,n=22 2415714361580463 l006 ln(1570/1999) 2415714365399835 m001 (Chi(1)-Psi(2,1/3))/(ErdosBorwein+Rabbit) 2415714371834788 r005 Im(z^2+c),c=4/23+34/61*I,n=7 2415714374628164 a007 Real Root Of -823*x^4+39*x^3+922*x^2+896*x-268 2415714378065800 r009 Re(z^3+c),c=-8/23+21/52*I,n=41 2415714384542097 m001 (-ZetaQ(2)+ZetaQ(4))/(5^(1/2)-ZetaP(4)) 2415714389745015 m001 1/BesselK(1,1)^2/(3^(1/3))^2/ln(sqrt(3)) 2415714396384328 l006 ln(627/7021) 2415714411553122 k006 concat of cont frac of 2415714419923569 m001 (ln(1+sqrt(2))+1/2)/(exp(1)+3) 2415714420144814 a007 Real Root Of -929*x^4-159*x^3-459*x^2+84*x+48 2415714423611581 r009 Re(z^3+c),c=-8/23+21/52*I,n=40 2415714434247188 m001 (sin(1/12*Pi)+LaplaceLimit)/(Otter+Thue) 2415714453185870 r009 Re(z^3+c),c=-19/50+19/40*I,n=61 2415714455874635 b008 8+BesselY[2,1/5] 2415714464112873 a007 Real Root Of -622*x^4-992*x^3+711*x^2-978*x+686 2415714512121215 k007 concat of cont frac of 2415714515619875 a001 377/18*2^(7/34) 2415714517349327 r005 Re(z^2+c),c=19/78+25/56*I,n=58 2415714528994187 m006 (1/2*Pi^2+3)/(5/6*Pi+2/3) 2415714528994187 m008 (1/2*Pi^2+3)/(5/6*Pi+2/3) 2415714529806000 p003 LerchPhi(1/6,6,606/221) 2415714530895711 a001 4/47*(1/2*5^(1/2)+1/2)^2*47^(13/21) 2415714531105266 r009 Re(z^3+c),c=-8/23+21/52*I,n=38 2415714531472532 a001 89/64079*18^(9/47) 2415714536363996 m001 (Zeta(5)-GAMMA(13/24))/(Pi^(1/2)+Sarnak) 2415714540173116 k009 concat of cont frac of 2415714541399582 m001 (-Pi^(1/2)+FeigenbaumC)/(exp(Pi)+Zeta(3)) 2415714549546037 r009 Im(z^3+c),c=-23/38+11/42*I,n=33 2415714555222336 m001 ZetaQ(2)^CopelandErdos/exp(-1/2*Pi) 2415714561937370 r005 Im(z^2+c),c=-5/8+74/189*I,n=14 2415714562217453 p001 sum(1/(491*n+318)/n/(512^n),n=1..infinity) 2415714568930398 a007 Real Root Of 222*x^4+344*x^3-370*x^2+379*x+364 2415714571610176 k009 concat of cont frac of 2415714581016440 m001 (ln(gamma)+Rabbit)^StronglyCareFree 2415714582801864 r002 16th iterates of z^2 + 2415714585595821 m001 ln(LaplaceLimit)/FeigenbaumAlpha^2/exp(1) 2415714589130802 a003 cos(Pi*26/115)-sin(Pi*35/71) 2415714600159756 m001 BesselI(1,2)+Thue^BesselI(0,1) 2415714604114679 m006 (2/3*Pi^2+3/4)/(3*ln(Pi)-2/5) 2415714608097940 r005 Im(z^2+c),c=-95/106+1/54*I,n=20 2415714615927477 m001 (Gompertz+Porter)/(BesselK(1,1)-Backhouse) 2415714616790833 h001 (3/4*exp(2)+2/5)/(3/11*exp(2)+4/9) 2415714623589347 m005 (1/24+1/6*5^(1/2))/(8/11*Pi-4) 2415714625306758 r005 Re(z^2+c),c=21/82+6/43*I,n=44 2415714626177709 r009 Im(z^3+c),c=-11/50+8/35*I,n=8 2415714637130423 m001 1/sin(Pi/12)^2*FeigenbaumDelta*ln(sqrt(2)) 2415714638736386 h001 (2/3*exp(1)+6/7)/(3/11*exp(1)+4/11) 2415714647909619 a007 Real Root Of -487*x^4-990*x^3+802*x^2+466*x-926 2415714650911640 m001 GAMMA(11/12)/ErdosBorwein^2*ln(arctan(1/2))^2 2415714651000308 r005 Re(z^2+c),c=-29/106+13/54*I,n=18 2415714677172063 m001 exp(TwinPrimes)*Porter/sinh(1) 2415714683755920 q001 867/3589 2415714703802182 m005 (1/2*5^(1/2)-2/11)/(11/12*gamma-11/12) 2415714711483061 m001 cos(1/5*Pi)+RenyiParking+Thue 2415714725520862 m003 -6+3*Sin[1/2+Sqrt[5]/2]+Tan[1/2+Sqrt[5]/2] 2415714727130222 m005 (1/2*Zeta(3)-4/11)/(6/11*exp(1)-1/2) 2415714730657887 g007 Psi(2,1/10)+Psi(2,5/8)+Psi(2,1/6)-Psi(2,5/12) 2415714755337696 r008 a(0)=0,K{-n^6,80*n^3+108*n^2+162*n+64} 2415714755790406 a007 Real Root Of 205*x^4-203*x^3+842*x^2+214*x-1 2415714756710074 r008 a(0)=0,K{-n^6,60*n^3+158*n^2+152*n+44} 2415714759000101 r005 Re(z^2+c),c=-13/74+31/59*I,n=38 2415714759080045 r009 Re(z^3+c),c=-8/23+21/52*I,n=37 2415714760418863 a007 Real Root Of -134*x^4+222*x^3-495*x^2+412*x+132 2415714787018585 r009 Im(z^3+c),c=-4/11+9/53*I,n=13 2415714793124787 l006 ln(359/4020) 2415714800455242 a001 55*843^(28/31) 2415714810711270 m001 OneNinth^GAMMA(5/24)/(OneNinth^TwinPrimes) 2415714813669097 m001 TravellingSalesman^(3^(1/2))/exp(Pi) 2415714825753396 a001 76/55*75025^(23/50) 2415714827934580 s002 sum(A068454[n]/(n^3*pi^n+1),n=1..infinity) 2415714845784455 m001 (Si(Pi)+Catalan)/(-ln(5)+arctan(1/2)) 2415714848182794 r005 Im(z^2+c),c=-27/50+5/12*I,n=51 2415714877078958 p004 log(33179/2963) 2415714879394124 a007 Real Root Of 382*x^4+487*x^3-978*x^2+138*x-103 2415714881539326 m001 (GAMMA(5/6)+Conway)/(Zeta(1,-1)-sin(1)) 2415714898419573 r005 Re(z^2+c),c=21/82+6/43*I,n=43 2415714898673348 r005 Re(z^2+c),c=-31/102+11/19*I,n=19 2415714901897085 a001 13/18*4^(27/31) 2415714902722905 p004 log(35311/27733) 2415714923532630 m001 (3^(1/3)-exp(Pi))/(-Khinchin+KomornikLoreti) 2415714928125193 s002 sum(A280583[n]/(2^n-1),n=1..infinity) 2415714935641627 r009 Re(z^3+c),c=-43/114+35/62*I,n=25 2415714944216618 m001 GAMMA(2/3)^Artin/arctan(1/2) 2415714947134498 m001 ln(Pi)^ZetaP(2)/BesselJ(1,1) 2415714951416023 m005 (1/2*Pi-3/8)/(4/5*2^(1/2)-7/11) 2415714954260313 r009 Re(z^3+c),c=-8/23+21/52*I,n=35 2415714958619745 m005 (1/2*Pi+11/12)/(2/3*3^(1/2)-1/8) 2415714959322167 m001 (polylog(4,1/2)-ZetaP(4))/(Pi-ln(2+3^(1/2))) 2415714961557026 m001 1/GAMMA(1/24)^2*exp(Bloch)^2/GAMMA(11/24) 2415714961637580 a001 521/10946*10946^(19/45) 2415714964090467 r005 Re(z^2+c),c=1/20+29/49*I,n=12 2415714969826865 r005 Im(z^2+c),c=-11/9+15/106*I,n=6 2415714984936993 m001 (3^(1/2)-arctan(1/2))/(-gamma(1)+ZetaP(2)) 2415714986619968 r009 Re(z^3+c),c=-19/50+19/40*I,n=64 2415714990405017 r002 5th iterates of z^2 + 2415714993360598 a007 Real Root Of 522*x^4+993*x^3-244*x^2+638*x-813 2415715010979706 a007 Real Root Of 344*x^4+415*x^3-998*x^2+278*x+631 2415715024024508 m008 (2*Pi^3+4/5)/(5/6*Pi^5+5) 2415715024522493 r005 Re(z^2+c),c=-19/110+17/28*I,n=53 2415715045961342 s001 sum(exp(-3*Pi/5)^n*A138391[n],n=1..infinity) 2415715053329923 h005 exp(sin(Pi*1/8)/cos(Pi*5/14)) 2415715061133123 l006 ln(7151/9105) 2415715065455166 a007 Real Root Of -592*x^4-983*x^3+921*x^2-554*x-410 2415715070400980 m001 GAMMA(13/24)/(PrimesInBinary^BesselJ(1,1)) 2415715071670232 m001 (5^(1/2)-Cahen)^Ei(1) 2415715071670232 m001 (sqrt(5)-Cahen)^Ei(1) 2415715072553924 m001 (exp(1/exp(1))+GAMMA(7/12))^AlladiGrinstead 2415715073507273 a007 Real Root Of -83*x^4+653*x^3-551*x^2-937*x-900 2415715078417496 r005 Im(z^2+c),c=-29/74+15/37*I,n=32 2415715084733640 a001 24476/1597*34^(4/31) 2415715090110147 m005 (1/2*Catalan-5/9)/(7/8*gamma-6/11) 2415715096136163 a003 cos(Pi*14/79)-sin(Pi*16/77) 2415715099233723 m003 -3*Csc[1/2+Sqrt[5]/2]+Tan[1/2+Sqrt[5]/2] 2415715100610796 l006 ln(809/9059) 2415715100610796 p004 log(9059/809) 2415715104743978 a007 Real Root Of 121*x^4+184*x^3-39*x^2+520*x-43 2415715107858608 r009 Im(z^3+c),c=-47/102+1/15*I,n=48 2415715112171955 a001 5/271443*3571^(43/49) 2415715117481920 a007 Real Root Of -353*x^4-996*x^3-727*x^2-551*x+892 2415715121860574 a007 Real Root Of -303*x^4-356*x^3+641*x^2-292*x+854 2415715131112115 k006 concat of cont frac of 2415715131836689 m002 1+E^Pi+(Log[Pi]*Sech[Pi])/6 2415715132139974 m001 exp(TwinPrimes)/Trott/exp(1)^2 2415715146487913 r005 Im(z^2+c),c=-20/29+13/29*I,n=58 2415715148275550 m005 (1/2*3^(1/2)+1/11)/(3/4*exp(1)-6) 2415715156270222 m005 (2/3*2^(1/2)+3/5)/(1/3*Catalan+1/3) 2415715159142342 m001 1/exp(GAMMA(1/24))*Backhouse^2/LambertW(1) 2415715167944109 m001 (Gompertz-MertensB3)/(ln(5)-GAMMA(13/24)) 2415715171949610 s001 sum(exp(-Pi)^n*A211415[n],n=1..infinity) 2415715171949610 s002 sum(A211415[n]/(exp(pi*n)),n=1..infinity) 2415715179880730 a007 Real Root Of 280*x^4+708*x^3+374*x^2+450*x-650 2415715181963280 r005 Re(z^2+c),c=21/82+6/43*I,n=45 2415715186359616 m005 (1/2*Pi-7/8)/(4*gamma+4/7) 2415715202767019 a007 Real Root Of -537*x^4+311*x^3-744*x^2+846*x+254 2415715208436063 h001 (4/5*exp(2)+1/5)/(9/10*exp(1)+1/12) 2415715217498467 h001 (-8*exp(8)-3)/(-4*exp(1)+1) 2415715220898865 r005 Im(z^2+c),c=-43/122+11/28*I,n=35 2415715224014580 m001 1/Ei(1)*exp(ArtinRank2)^2/log(1+sqrt(2)) 2415715233111920 a001 11/514229*34^(1/29) 2415715233431775 k008 concat of cont frac of 2415715237956989 m001 ln(GAMMA(17/24))^2*Lehmer/cosh(1) 2415715245065919 m001 (Figure8HypebolicComplement-PlouffeB)^2 2415715249976666 a001 64079/4181*34^(4/31) 2415715252218657 a007 Real Root Of -99*x^4-197*x^3+34*x^2-310*x-353 2415715254915630 a001 5/15127*9349^(23/49) 2415715257925388 l006 ln(5581/7106) 2415715261125366 r008 a(0)=0,K{-n^6,29-64*n^3-27*n^2+66*n} 2415715267660707 a001 5/15127*64079^(19/49) 2415715268360983 a007 Real Root Of 165*x^4-17*x^3-741*x^2+682*x+113 2415715270382153 m001 cos(Pi/5)^2/Trott^2*ln(cosh(1)) 2415715271381025 m005 (1/3*gamma+1/5)/(4/5*Pi-8/9) 2415715278630928 a007 Real Root Of 526*x^4-68*x^3-125*x^2-826*x+206 2415715279506097 a001 5/167761*39603^(31/49) 2415715280682583 m005 (1/2*5^(1/2)-5/7)/(2/3*Catalan-7/9) 2415715282402028 a007 Real Root Of -816*x^4+8*x^3-249*x^2+213*x-5 2415715286860848 a001 5/439204*15127^(39/49) 2415715297471356 b008 Sin[(3+Log[3])^(-1)] 2415715299677975 a005 (1/cos(21/194*Pi))^54 2415715308811244 m001 (Backhouse+Conway)/(gamma+BesselI(1,1)) 2415715322349349 a001 5/24476*5778^(27/49) 2415715328129108 r005 Re(z^2+c),c=-25/86+35/61*I,n=22 2415715331808056 a007 Real Root Of 101*x^4-763*x^3+924*x^2+492*x+736 2415715340219851 m002 E^Pi+Tanh[Pi]+Tanh[Pi]/(5*Pi^2) 2415715341014659 r005 Re(z^2+c),c=-9/44+26/57*I,n=22 2415715345716058 r005 Re(z^2+c),c=23/118+13/33*I,n=56 2415715345916232 l006 ln(450/5039) 2415715349419002 r005 Re(z^2+c),c=-21/110+28/57*I,n=32 2415715350673128 p004 log(19319/15173) 2415715352102484 a001 39603/2584*34^(4/31) 2415715355160885 a007 Real Root Of 509*x^4-337*x^3+59*x^2-199*x-58 2415715364746033 m001 1/sqrt(2)^2*exp(GAMMA(23/24))*sqrt(3) 2415715366590538 r002 20th iterates of z^2 + 2415715373863897 a007 Real Root Of 258*x^4+491*x^3-540*x^2-880*x-839 2415715382082604 m001 (TwinPrimes-ZetaQ(3))/(ln(5)-Totient) 2415715385696548 m001 (cos(1/12*Pi)+Pi^(1/2))/(Bloch+Robbin) 2415715388597957 a001 167761/1597*4807526976^(19/22) 2415715388655477 a001 1568397607/1597*121393^(19/22) 2415715393666430 a007 Real Root Of 484*x^4+939*x^3-885*x^2-756*x+93 2415715394774905 a007 Real Root Of 286*x^4+579*x^3+17*x^2+396*x-720 2415715394815471 m001 (gamma(3)+Stephens)/(cos(1)-ln(2)/ln(10)) 2415715395677724 a007 Real Root Of -264*x^4-596*x^3+171*x^2+417*x+598 2415715406094405 r009 Im(z^3+c),c=-17/40+6/49*I,n=31 2415715413313090 a003 -cos(7/18*Pi)-2*cos(10/21*Pi)+cos(5/21*Pi) 2415715417020520 p004 log(31253/2791) 2415715423413857 q001 91/3767 2415715427573694 m006 (5/Pi+2/3)/(-4+1/2*Pi^2) 2415715428562131 h001 (4/9*exp(1)+11/12)/(1/4*exp(1)+1/5) 2415715428923432 m001 (-PlouffeB+Weierstrass)/(5^(1/2)+BesselI(1,1)) 2415715430160274 m001 Zeta(1/2)*GAMMA(5/12)^(2/3) 2415715437353482 m005 (1/3*Pi+1/10)/(7/8*Pi+2) 2415715437434616 r005 Im(z^2+c),c=-179/126+4/47*I,n=6 2415715439358530 m005 1/6*5^(1/2)/(7/11*Zeta(3)+7/9) 2415715447432070 r002 55th iterates of z^2 + 2415715452789186 m001 StolarskyHarborth*(GAMMA(3/4)+MadelungNaCl) 2415715454728002 r009 Re(z^3+c),c=-7/52+32/33*I,n=4 2415715469484830 m001 1/Khintchine^2*ln(Backhouse)*arctan(1/2) 2415715476886456 r005 Im(z^2+c),c=-7/48+14/43*I,n=16 2415715479409292 r002 5th iterates of z^2 + 2415715485794020 r009 Re(z^3+c),c=-15/82+36/43*I,n=42 2415715496796529 r002 37th iterates of z^2 + 2415715508047416 r004 Re(z^2+c),c=1/3-1/6*I,z(0)=exp(13/24*I*Pi),n=9 2415715509521458 m001 (Riemann1stZero+Trott)/(Porter-QuadraticClass) 2415715522976407 a007 Real Root Of 404*x^4-15*x^3-58*x^2-827*x+202 2415715547281693 r005 Re(z^2+c),c=13/50+22/43*I,n=21 2415715548893251 a007 Real Root Of 434*x^4+933*x^3+x^2+481*x-471 2415715549989892 m001 (-GAMMA(11/12)+Salem)/(exp(1)+BesselI(0,2)) 2415715550355471 m001 CopelandErdos^Magata/ln(2)*ln(10) 2415715550454433 a001 4106118243/4181*121393^(19/22) 2415715550470225 a001 439204/4181*4807526976^(19/22) 2415715555420142 a007 Real Root Of -245*x^4-362*x^3+218*x^2-770*x+108 2415715556864829 r005 Im(z^2+c),c=-14/31+11/26*I,n=46 2415715562721899 a007 Real Root Of 241*x^4+964*x^3+964*x^2+207*x+257 2415715571685800 m005 (1/2*3^(1/2)-3/11)/(10/11*Pi-2/5) 2415715572995488 h001 (10/11*exp(1)+7/11)/(1/6*exp(1)+5/6) 2415715574060584 a001 5374978561/5473*121393^(19/22) 2415715574087072 a001 1149851/10946*4807526976^(19/22) 2415715577504675 a001 28143753123/28657*121393^(19/22) 2415715577532724 a001 3010349/28657*4807526976^(19/22) 2415715578007161 a001 73681302247/75025*121393^(19/22) 2415715578035437 a001 7881196/75025*4807526976^(19/22) 2415715578080473 a001 96450076809/98209*121393^(19/22) 2415715578091169 a001 505019158607/514229*121393^(19/22) 2415715578092729 a001 1322157322203/1346269*121393^(19/22) 2415715578092957 a001 1730726404001/1762289*121393^(19/22) 2415715578092990 a001 9062201101803/9227465*121393^(19/22) 2415715578092995 a001 23725150497407/24157817*121393^(19/22) 2415715578092998 a001 192933544679/196452*121393^(19/22) 2415715578093011 a001 5600748293801/5702887*121393^(19/22) 2415715578093098 a001 2139295485799/2178309*121393^(19/22) 2415715578093694 a001 204284540899/208010*121393^(19/22) 2415715578097779 a001 312119004989/317811*121393^(19/22) 2415715578108782 a001 20633239/196418*4807526976^(19/22) 2415715578119483 a001 54018521/514229*4807526976^(19/22) 2415715578121045 a001 141422324/1346269*4807526976^(19/22) 2415715578121272 a001 370248451/3524578*4807526976^(19/22) 2415715578121306 a001 969323029/9227465*4807526976^(19/22) 2415715578121310 a001 2537720636/24157817*4807526976^(19/22) 2415715578121311 a001 6643838879/63245986*4807526976^(19/22) 2415715578121311 a001 17393796001/165580141*4807526976^(19/22) 2415715578121311 a001 45537549124/433494437*4807526976^(19/22) 2415715578121311 a001 119218851371/1134903170*4807526976^(19/22) 2415715578121311 a001 312119004989/2971215073*4807526976^(19/22) 2415715578121311 a001 817138163596/7778742049*4807526976^(19/22) 2415715578121311 a001 2139295485799/20365011074*4807526976^(19/22) 2415715578121311 a001 5600748293801/53316291173*4807526976^(19/22) 2415715578121311 a001 14662949395604/139583862445*4807526976^(19/22) 2415715578121311 a001 23725150497407/225851433717*4807526976^(19/22) 2415715578121311 a001 9062201101803/86267571272*4807526976^(19/22) 2415715578121311 a001 3461452808002/32951280099*4807526976^(19/22) 2415715578121311 a001 1322157322203/12586269025*4807526976^(19/22) 2415715578121311 a001 10745088481/102287808*4807526976^(19/22) 2415715578121311 a001 192900153618/1836311903*4807526976^(19/22) 2415715578121311 a001 73681302247/701408733*4807526976^(19/22) 2415715578121311 a001 28143753123/267914296*4807526976^(19/22) 2415715578121311 a001 10749957122/102334155*4807526976^(19/22) 2415715578121312 a001 4106118243/39088169*4807526976^(19/22) 2415715578121313 a001 1568397607/14930352*4807526976^(19/22) 2415715578121326 a001 599074578/5702887*4807526976^(19/22) 2415715578121413 a001 4868641/46347*4807526976^(19/22) 2415715578122009 a001 87403803/832040*4807526976^(19/22) 2415715578125782 a001 119218851371/121393*121393^(19/22) 2415715578126097 a001 33385282/317811*4807526976^(19/22) 2415715578154112 a001 12752043/121393*4807526976^(19/22) 2415715578317715 a001 11384387281/11592*121393^(19/22) 2415715578346132 a001 4870847/46368*4807526976^(19/22) 2415715578482408 a007 Real Root Of 778*x^4+20*x^3+598*x^2-595*x-181 2415715579633240 a001 17393796001/17711*121393^(19/22) 2415715579662253 a001 1860498/17711*4807526976^(19/22) 2415715579742570 r002 22th iterates of z^2 + 2415715580584519 a007 Real Root Of -221*x^4-176*x^3+728*x^2+20*x+845 2415715583765747 m001 FeigenbaumAlpha-Otter-ReciprocalLucas 2415715585515065 b008 5/7+3*ProductLog[1] 2415715586658833 a007 Real Root Of -490*x^4-807*x^3+764*x^2-243*x+265 2415715588649988 a001 6643838879/6765*121393^(19/22) 2415715588683087 a001 710647/6765*4807526976^(19/22) 2415715589038888 b008 (85*ProductLog[2])/3 2415715604576400 m001 (-BesselJ(1,1)+Kac)/(sin(1)+gamma(1)) 2415715608582774 m005 (1/2*2^(1/2)-2/3)/(7/12*Pi-2) 2415715608775910 l006 ln(4011/5107) 2415715626418775 a007 Real Root Of -66*x^4+388*x^3+610*x^2+931*x+195 2415715628812593 r005 Re(z^2+c),c=-19/78+25/41*I,n=29 2415715633043689 m001 (Ei(1)-Champernowne)/(Kac+OneNinth) 2415715635328416 r008 a(0)=0,K{-n^6,72*n^3+126*n^2+159*n+57} 2415715635747688 r008 a(0)=0,K{-n^6,66*n^3+141*n^2+156*n+51} 2415715650451697 a001 33391061/34*121393^(19/22) 2415715650512799 a001 271443/2584*4807526976^(19/22) 2415715671537446 a001 505019158607/377*832040^(11/20) 2415715671537830 a001 2537720636/377*12586269025^(11/20) 2415715683494284 m001 LambertW(1)/FeigenbaumB/exp(Zeta(5)) 2415715693247260 p001 sum(1/(490*n+319)/n/(512^n),n=1..infinity) 2415715712740701 l006 ln(541/6058) 2415715713484690 m005 (2/5*Pi+2)/(2/3*gamma-1/4) 2415715721909630 m001 (Salem-Thue)/(cos(1/12*Pi)-GaussAGM) 2415715745806811 m001 (-gamma+Riemann1stZero)/(1-Psi(2,1/3)) 2415715749778854 r005 Re(z^2+c),c=-3/28+28/47*I,n=35 2415715752534391 a007 Real Root Of 124*x^4+192*x^3+41*x^2+790*x+153 2415715762175073 a005 (1/sin(90/223*Pi))^612 2415715764047934 r005 Re(z^2+c),c=21/82+6/43*I,n=51 2415715765827667 m001 (Kac-Riemann2ndZero)/(gamma(2)-GaussAGM) 2415715772487764 m002 (3*Pi^5)/5+5*Cosh[Pi] 2415715778752719 m001 PrimesInBinary*(BesselK(1,1)-TwinPrimes) 2415715784714483 a001 2161/141*34^(4/31) 2415715786888108 r005 Re(z^2+c),c=21/82+6/43*I,n=52 2415715800398772 m005 (1/2*Pi-1/3)/(1/7*2^(1/2)-5/7) 2415715807437307 m001 (gamma(3)+Landau)/(LambertW(1)-exp(Pi)) 2415715813381272 m009 (2*Psi(1,1/3)-3/4)/(1/2*Psi(1,1/3)+3) 2415715817299031 m001 (BesselJ(0,1)-LambertW(1))/(cos(1/5*Pi)+Trott) 2415715820762346 m005 (1/2*3^(1/2)-5/9)/(4*Pi+2/7) 2415715821023682 a007 Real Root Of 393*x^4+898*x^3+76*x^2+317*x-402 2415715821056136 m005 (43/44+1/4*5^(1/2))/(55/9+1/9*5^(1/2)) 2415715841730943 a007 Real Root Of 619*x^4-707*x^3+872*x^2-915*x-284 2415715842160503 r005 Re(z^2+c),c=21/82+6/43*I,n=50 2415715843174323 r002 38th iterates of z^2 + 2415715849964116 r005 Re(z^2+c),c=21/82+6/43*I,n=53 2415715852890829 m001 (Kolakoski+Tetranacci)/(CareFree-FeigenbaumC) 2415715863225386 r005 Re(z^2+c),c=21/82+6/43*I,n=46 2415715865750790 r005 Im(z^2+c),c=-9/8+19/79*I,n=13 2415715866355847 r009 Im(z^3+c),c=-4/29+27/32*I,n=42 2415715866430017 m001 1/BesselJ(0,1)^2/ArtinRank2*exp(GAMMA(1/12)) 2415715867428749 m006 (1/5*exp(2*Pi)+1/2)/(5/6*exp(2*Pi)-5/6) 2415715868303550 r005 Re(z^2+c),c=21/82+6/43*I,n=59 2415715869676508 m005 (1/2*Catalan-4)/(1/3*3^(1/2)+8/9) 2415715870004126 r005 Re(z^2+c),c=21/82+6/43*I,n=58 2415715873012136 r005 Re(z^2+c),c=21/82+6/43*I,n=60 2415715876451004 a001 199/34*377^(37/59) 2415715878454710 r005 Re(z^2+c),c=21/82+6/43*I,n=61 2415715879456659 r005 Re(z^2+c),c=21/82+6/43*I,n=64 2415715881078161 r005 Re(z^2+c),c=21/82+6/43*I,n=63 2415715881241983 r005 Re(z^2+c),c=21/82+6/43*I,n=62 2415715882103804 r005 Re(z^2+c),c=21/82+6/43*I,n=57 2415715898923454 r005 Re(z^2+c),c=21/82+6/43*I,n=54 2415715899332518 m001 (Shi(1)+cos(1/12*Pi))/(LaplaceLimit+ZetaP(3)) 2415715901136121 r005 Re(z^2+c),c=21/82+6/43*I,n=56 2415715905792945 a001 39603/34*377^(23/45) 2415715912262689 l006 ln(6452/8215) 2415715913119906 r005 Re(z^2+c),c=21/82+6/43*I,n=55 2415715917692421 a008 Real Root of x^4-x^3-19*x^2+84*x-112 2415715919661116 m001 (HardyLittlewoodC3+OneNinth)/HardyLittlewoodC4 2415715923519990 a007 Real Root Of -255*x^4-205*x^3+883*x^2-217*x+117 2415715923835792 m001 (Zeta(1,2)+PlouffeB)^Tribonacci 2415715927259741 r005 Re(z^2+c),c=-5/31+26/47*I,n=32 2415715940870908 m001 (Magata-ln(2)/ln(10))/(Rabbit+Stephens) 2415715948650275 m001 (Psi(1,1/3)+Zeta(1/2))/(sin(1/12*Pi)+Paris) 2415715954828233 m004 -6/5-75/Pi+Tan[Sqrt[5]*Pi] 2415715955682504 r009 Re(z^3+c),c=-8/23+21/52*I,n=34 2415715973022964 a007 Real Root Of -169*x^4-468*x^3-503*x^2-491*x+907 2415715973928927 l006 ln(632/7077) 2415715976411490 a007 Real Root Of -334*x^4-852*x^3+300*x^2+828*x-387 2415715984891159 m001 (GaussAGM-cos(1))/(-Khinchin+Porter) 2415715985842440 r005 Re(z^2+c),c=9/26+8/41*I,n=38 2415715989156390 r005 Re(z^2+c),c=25/82+11/61*I,n=43 2415715993582430 m006 (3*exp(2*Pi)+3/5)/(5/6/Pi+2/5) 2415716005148408 m001 (ln(2)-arctan(1/2))/(BesselI(1,1)-TwinPrimes) 2415716016728294 r005 Re(z^2+c),c=7/32+15/28*I,n=54 2415716019091865 m001 GAMMA(5/6)*ln(GolombDickman)^2/Zeta(5) 2415716022437686 m005 (15/28+1/4*5^(1/2))/(1/5*Catalan-7/11) 2415716024365037 r009 Re(z^3+c),c=-43/122+35/58*I,n=24 2415716026918960 r002 23th iterates of z^2 + 2415716029450100 r005 Re(z^2+c),c=21/82+6/43*I,n=49 2415716034271677 a001 47/17711*233^(24/29) 2415716042456160 r009 Re(z^3+c),c=-6/11+7/11*I,n=29 2415716055059780 m001 1/sqrt(1+sqrt(3))/ln(cosh(1))*sqrt(3) 2415716073449598 a007 Real Root Of 106*x^4+220*x^3+418*x^2-730*x-198 2415716074047000 a001 969323029/987*121393^(19/22) 2415716074300034 a001 2206/21*4807526976^(19/22) 2415716075133479 r005 Im(z^2+c),c=-2/31+16/25*I,n=18 2415716075972545 a007 Real Root Of -204*x^4-475*x^3+126*x^2+234*x+81 2415716076928325 m001 (Psi(2,1/3)+ZetaQ(2))/BesselI(0,2) 2415716077630358 r009 Re(z^3+c),c=-8/23+21/52*I,n=32 2415716078335781 r002 27th iterates of z^2 + 2415716084962838 r009 Re(z^3+c),c=-7/52+35/47*I,n=7 2415716090327080 r009 Re(z^3+c),c=-53/126+29/55*I,n=39 2415716096324461 q001 1906/789 2415716098469963 r005 Re(z^2+c),c=1/6+9/25*I,n=44 2415716100498028 m001 Zeta(1/2)^(2*Pi/GAMMA(5/6))/Magata 2415716128752759 r009 Im(z^3+c),c=-51/106+29/56*I,n=48 2415716134314916 k007 concat of cont frac of 2415716143372195 g007 Psi(2,1/10)+Psi(2,5/6)+Psi(2,1/6)-Psi(2,4/9) 2415716147740411 r009 Re(z^3+c),c=-29/106+13/58*I,n=10 2415716165897766 m005 (1/2*5^(1/2)-3)/(7/10*gamma+3/8) 2415716168197149 a007 Real Root Of 248*x^4+281*x^3-746*x^2-349*x-974 2415716169368482 l006 ln(723/8096) 2415716185268830 r005 Re(z^2+c),c=41/122+12/59*I,n=64 2415716186258994 v003 sum((n^3-1/2*n^2+23/2*n)/(n!+2),n=1..infinity) 2415716197581436 r005 Re(z^2+c),c=-61/60+5/53*I,n=16 2415716197620757 a007 Real Root Of -831*x^4+168*x^3+997*x^2+738*x-236 2415716200289458 a007 Real Root Of 974*x^4+269*x^3-283*x^2-938*x+236 2415716202506389 m005 (1/3*Zeta(3)+3/5)/(4/11*Pi+3) 2415716204512784 l005 736/113/(exp(368/113)+1) 2415716207137527 m004 2+750/Pi+Tan[Sqrt[5]*Pi]^2 2415716218574276 r005 Im(z^2+c),c=-55/114+23/54*I,n=49 2415716225394730 r005 Re(z^2+c),c=21/82+6/43*I,n=48 2415716226680643 m001 1/Salem^2*Champernowne^2*ln(GAMMA(5/24))^2 2415716229298005 r005 Re(z^2+c),c=21/82+6/43*I,n=47 2415716248523350 m001 (exp(1)+4)/(exp(gamma)+1) 2415716252995620 m001 (Lehmer-ZetaP(2))/(ln(3)-polylog(4,1/2)) 2415716261749365 m001 (CareFree-gamma(1))/arctan(1/3) 2415716270361465 a007 Real Root Of -280*x^4-503*x^3+156*x^2-835*x-483 2415716275918795 a007 Real Root Of -492*x^4-885*x^3+459*x^2-867*x-494 2415716291244418 r009 Re(z^3+c),c=-31/74+29/55*I,n=45 2415716292979948 a007 Real Root Of 240*x^4+196*x^3-854*x^2-83*x-627 2415716297446725 m001 (Psi(2,1/3)+GAMMA(3/4))/(-arctan(1/3)+Paris) 2415716301094667 r002 61th iterates of z^2 + 2415716301379032 r005 Im(z^2+c),c=1/106+14/53*I,n=16 2415716309844920 r009 Re(z^3+c),c=-19/32+8/29*I,n=44 2415716309863675 m001 (Catalan-gamma)/(ln(3)+GaussKuzminWirsing) 2415716311068660 a007 Real Root Of -100*x^4+42*x^3+811*x^2+390*x+207 2415716321110223 l006 ln(814/9115) 2415716326633694 r005 Re(z^2+c),c=-43/78+11/25*I,n=24 2415716343546384 r005 Re(z^2+c),c=19/54+11/63*I,n=38 2415716345606053 r009 Im(z^3+c),c=-5/26+4/17*I,n=8 2415716363750931 r009 Re(z^3+c),c=-17/52+13/45*I,n=3 2415716365218193 a007 Real Root Of 154*x^4-778*x^3-602*x^2-780*x+234 2415716369921877 m005 (7/6+5/12*5^(1/2))/(4/5*2^(1/2)-2) 2415716371968603 m005 (1/2*3^(1/2)-8/11)/(3/7*Catalan+2/11) 2415716372572098 r005 Re(z^2+c),c=-15/86+23/44*I,n=20 2415716390104829 r009 Re(z^3+c),c=-11/48+1/25*I,n=6 2415716393897626 m005 (1/2*Catalan-2/7)/(4/11*5^(1/2)-1/10) 2415716398858115 r005 Re(z^2+c),c=-1/50+49/61*I,n=39 2415716403043556 a007 Real Root Of 534*x^4+974*x^3-558*x^2+773*x+669 2415716410945779 l006 ln(2441/3108) 2415716421001163 r009 Re(z^3+c),c=-25/74+13/34*I,n=13 2415716425553485 r009 Im(z^3+c),c=-3/29+1/4*I,n=5 2415716426324017 a007 Real Root Of -367*x^4+380*x^3-836*x^2-72*x+38 2415716439777334 r009 Re(z^3+c),c=-25/58+34/63*I,n=33 2415716444027607 r005 Im(z^2+c),c=-7/8+59/248*I,n=16 2415716444206045 m001 BesselJ(1,1)^ErdosBorwein-FeigenbaumD 2415716454741781 r005 Re(z^2+c),c=-6/29+19/42*I,n=48 2415716461516954 r005 Re(z^2+c),c=21/82+6/43*I,n=42 2415716491140235 m009 (1/5*Psi(1,2/3)+1/5)/(1/4*Psi(1,3/4)-4) 2415716511122111 k006 concat of cont frac of 2415716519751741 r005 Re(z^2+c),c=7/24+8/47*I,n=55 2415716520435986 r008 a(0)=0,K{-n^6,78*n^3+109*n^2+163*n+64} 2415716520562016 r005 Im(z^2+c),c=-19/54+16/41*I,n=19 2415716520573466 r008 a(0)=0,K{-n^6,76*n^3+114*n^2+162*n+62} 2415716521712788 r008 a(0)=0,K{-n^6,60*n^3+154*n^2+154*n+46} 2415716522795038 m005 (1/3*5^(1/2)-2/5)/(5/8*Catalan+6/7) 2415716531617211 a001 21/1149851*2^(23/57) 2415716536234268 r005 Re(z^2+c),c=-91/114+5/41*I,n=34 2415716541336364 a007 Real Root Of 383*x^4+982*x^3-200*x^2-954*x-337 2415716566510398 b008 9+10*2^(3/5) 2415716566510398 b008 9/10+2^(3/5) 2415716573853806 r005 Re(z^2+c),c=-59/64+7/17*I,n=2 2415716575786627 a007 Real Root Of 158*x^4+296*x^3-334*x^2-128*x+432 2415716580359451 m004 -17/5-25*Sqrt[5]*Pi*Sec[Sqrt[5]*Pi] 2415716603592621 m005 (1/3*Pi+1/10)/(3/8*5^(1/2)-4/11) 2415716605894792 m001 (3^(1/2)+Zeta(1/2))/(-exp(-1/2*Pi)+MertensB3) 2415716609967662 r005 Re(z^2+c),c=4/21+3/64*I,n=5 2415716620536982 r005 Re(z^2+c),c=-2/11+26/51*I,n=52 2415716623755006 a001 514229/199*76^(16/31) 2415716625413270 m001 (BesselI(1,2)+Rabbit*ZetaP(3))/Rabbit 2415716626509254 m008 (3/4*Pi-1/2)/(1/4*Pi^5+1/3) 2415716646907742 m001 (Paris+Riemann3rdZero)/(Catalan+Champernowne) 2415716652955675 a007 Real Root Of 14*x^4+312*x^3-617*x^2+374*x-259 2415716655191995 m001 (Ei(1)+GAMMA(19/24))/(CopelandErdos+MertensB2) 2415716659487141 m001 ln(CareFree)*MertensB1^2*Zeta(7) 2415716659778220 r002 38th iterates of z^2 + 2415716667176504 r009 Re(z^3+c),c=-19/82+4/63*I,n=8 2415716669100117 r009 Re(z^3+c),c=-7/48+15/16*I,n=46 2415716670318764 a003 cos(Pi*18/73)*cos(Pi*16/41) 2415716670909766 a003 -1/2+2*cos(1/12*Pi)+cos(3/10*Pi)+cos(10/27*Pi) 2415716678287594 m005 (1/2*Zeta(3)+7/12)/(4/15+1/10*5^(1/2)) 2415716690739870 m005 (1/2*Zeta(3)-6/11)/(1/4*Zeta(3)+2) 2415716698328672 a001 5/1364*2207^(12/49) 2415716700938842 r005 Im(z^2+c),c=-27/94+16/43*I,n=17 2415716701918148 m001 OneNinth^2*FibonacciFactorial/exp(sqrt(Pi)) 2415716711608018 r005 Im(z^2+c),c=-9/50+10/29*I,n=8 2415716727507121 m001 1/Ei(1)^2*exp(Sierpinski)/GAMMA(7/12) 2415716730045481 m001 Ei(1,1)^RenyiParking/(Porter^RenyiParking) 2415716740479042 h005 exp(sin(Pi*5/32)/sin(Pi*7/39)) 2415716740539358 a007 Real Root Of -410*x^4-635*x^3+691*x^2-583*x-430 2415716755062008 m004 5*Csch[Sqrt[5]*Pi]^2*ProductLog[Sqrt[5]*Pi] 2415716775732092 a003 sin(Pi*17/105)*sin(Pi*19/115) 2415716779752504 b008 1/5+BesselJ[2,15] 2415716781013910 r005 Im(z^2+c),c=-7/16+17/39*I,n=27 2415716789495778 m005 (1/2*5^(1/2)+5)/(7/12*Pi+7/10) 2415716791658377 m001 (exp(1/2)-sin(Pi/12))^GAMMA(1/3) 2415716793343391 a007 Real Root Of -546*x^4-889*x^3+920*x^2-151*x+328 2415716793979469 m006 (3/4*ln(Pi)+1/6)/(4/5*exp(2*Pi)-4) 2415716798857647 r005 Im(z^2+c),c=-45/98+11/26*I,n=32 2415716799244930 r005 Re(z^2+c),c=13/94+21/34*I,n=58 2415716817145159 r009 Re(z^3+c),c=-31/78+20/39*I,n=54 2415716826020878 p001 sum(1/(489*n+320)/n/(512^n),n=1..infinity) 2415716829742588 a007 Real Root Of -103*x^4+689*x^3-894*x^2-44*x-882 2415716834918840 r005 Im(z^2+c),c=-5/48+9/29*I,n=15 2415716838622640 a007 Real Root Of 161*x^4+20*x^3-609*x^2+599*x-200 2415716867423895 a007 Real Root Of 37*x^4+863*x^3-711*x^2+779*x-678 2415716875905375 r005 Re(z^2+c),c=-5/56+11/23*I,n=5 2415716883591827 r005 Im(z^2+c),c=-11/31+24/61*I,n=44 2415716892626450 a007 Real Root Of -63*x^4+757*x^3-982*x^2-966*x-462 2415716903197832 a003 cos(Pi*53/113)-cos(Pi*41/86) 2415716903901172 r005 Im(z^2+c),c=-27/118+17/48*I,n=19 2415716909661919 m005 (1/2*2^(1/2)-5/9)/(3/5*5^(1/2)-5/7) 2415716913384186 m001 Salem*(DuboisRaymond+Trott) 2415716928731602 s002 sum(A049253[n]/(n^3*pi^n-1),n=1..infinity) 2415716937360528 m004 -125*Pi+5*Cosh[Sqrt[5]*Pi]-4/Log[Sqrt[5]*Pi] 2415716940702214 m001 1/Paris^2*ln(LaplaceLimit)^2/FeigenbaumD^2 2415716942129489 m005 (25/36+1/4*5^(1/2))/(3/7*Catalan-4/9) 2415716945745998 p003 LerchPhi(1/4,10,8/11) 2415716952624474 m004 3+(100*Pi*Csc[Sqrt[5]*Pi])/Log[Sqrt[5]*Pi] 2415716959760795 r009 Re(z^3+c),c=-1/56+45/62*I,n=23 2415716968111212 a007 Real Root Of -511*x^4-814*x^3+756*x^2-407*x+532 2415716970219746 l006 ln(5753/7325) 2415716971917039 a007 Real Root Of 509*x^4+524*x^3-270*x^2-817*x+204 2415716985324479 m001 HardHexagonsEntropy^ln(Pi)*ZetaQ(4) 2415717005589621 l006 ln(6789/6955) 2415717006044136 s002 sum(A104496[n]/(n^2*pi^n+1),n=1..infinity) 2415717007128653 r002 27th iterates of z^2 + 2415717009521614 m001 (3^(1/3)+Artin)/(MinimumGamma-Rabbit) 2415717015590842 a007 Real Root Of 381*x^4+825*x^3-61*x^2+531*x+294 2415717017653709 h001 (-3*exp(-3)+4)/(-3*exp(-2)+2) 2415717027833942 r009 Re(z^3+c),c=-39/98+18/35*I,n=47 2415717029726282 r005 Im(z^2+c),c=-13/14+39/146*I,n=11 2415717031098516 m001 (5^(1/2)+BesselI(0,2))/(GaussAGM+MertensB2) 2415717050251874 a001 29/2*514229^(22/39) 2415717064790542 r009 Re(z^3+c),c=-19/82+4/63*I,n=9 2415717065271988 a007 Real Root Of -116*x^4-165*x^3+70*x^2-601*x-236 2415717070378980 a007 Real Root Of 942*x^4-508*x^3-711*x^2-994*x-209 2415717083436387 r005 Im(z^2+c),c=-3/7+17/41*I,n=53 2415717099554223 a007 Real Root Of -285*x^4-624*x^3+151*x^2+229*x+581 2415717110198248 r005 Im(z^2+c),c=-9/32+2/57*I,n=9 2415717119122619 a007 Real Root Of 83*x^4-38*x^3-84*x^2+871*x-768 2415717121171312 k007 concat of cont frac of 2415717123114232 k008 concat of cont frac of 2415717124415190 a001 1/3*28657^(11/57) 2415717128300328 m001 LandauRamanujan/ln(CopelandErdos)^2*TwinPrimes 2415717131154210 r009 Re(z^3+c),c=-7/50+40/59*I,n=8 2415717133355594 m001 CareFree^Robbin-MertensB2 2415717141141412 k009 concat of cont frac of 2415717141262261 k006 concat of cont frac of 2415717143321511 m001 Zeta(7)/Robbin^2*exp(sinh(1))^2 2415717153214647 a007 Real Root Of -192*x^4-72*x^3+942*x^2-37*x-63 2415717159154757 a007 Real Root Of 279*x^4+668*x^3-112*x^2-116*x+289 2415717160268793 m008 (2*Pi^2-2/5)/(5/6*Pi^6-3/5) 2415717165315163 k006 concat of cont frac of 2415717173632845 r005 Re(z^2+c),c=-9/10+73/212*I,n=4 2415717194108111 r002 32th iterates of z^2 + 2415717196922090 m005 (1/2*Pi+6)/(1/2*3^(1/2)-4) 2415717200006624 m001 (Niven+ZetaQ(2))/gamma(1) 2415717211223222 k007 concat of cont frac of 2415717214880562 r009 Im(z^3+c),c=-6/13+19/37*I,n=3 2415717215080146 h001 (1/8*exp(1)+1/11)/(5/9*exp(1)+3/11) 2415717216801683 a007 Real Root Of -229*x^4-268*x^3+428*x^2-998*x-888 2415717218310795 m001 (Zeta(5)+Zeta(1/2))/(Tetranacci-ZetaP(3)) 2415717224470656 a007 Real Root Of -327*x^4-821*x^3-148*x^2+152*x+793 2415717225663167 h001 (7/9*exp(2)+6/11)/(7/11*exp(1)+7/8) 2415717226913950 a007 Real Root Of -265*x^4-578*x^3+23*x^2-200*x+259 2415717246927585 r005 Re(z^2+c),c=-31/106+5/39*I,n=13 2415717254055032 a001 7/55*2^(49/53) 2415717262696643 r009 Re(z^3+c),c=-19/82+4/63*I,n=10 2415717267906797 a007 Real Root Of 259*x^4+557*x^3+593*x^2-461*x-139 2415717269046278 r009 Re(z^3+c),c=-19/50+19/40*I,n=62 2415717274535060 r009 Im(z^3+c),c=-45/98+2/23*I,n=23 2415717278981376 r005 Re(z^2+c),c=-9/7+18/109*I,n=6 2415717281812864 m005 (1/2*3^(1/2)-3)/(2/3*Catalan+3/11) 2415717285711753 m001 sin(1)^2*gamma/exp(sqrt(2))^2 2415717299504473 b008 -1/3+ArcCoth[ExpIntegralEi[Pi]] 2415717300020096 m001 FeigenbaumKappa*FeigenbaumC^2/ln(cosh(1))^2 2415717302247191 a001 2149988399/89 2415717310307705 r009 Re(z^3+c),c=-19/82+4/63*I,n=11 2415717311475227 a003 -3/2+cos(5/24*Pi)-cos(1/12*Pi)-cos(7/30*Pi) 2415717317197215 r005 Im(z^2+c),c=-87/94+12/59*I,n=3 2415717317969002 r009 Re(z^3+c),c=-19/82+4/63*I,n=12 2415717318472955 r009 Re(z^3+c),c=-19/82+4/63*I,n=18 2415717318472969 r009 Re(z^3+c),c=-19/82+4/63*I,n=19 2415717318472981 r009 Re(z^3+c),c=-19/82+4/63*I,n=20 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=21 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=22 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=28 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=29 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=30 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=31 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=32 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=39 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=40 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=41 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=42 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=43 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=49 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=50 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=51 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=52 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=53 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=57 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=58 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=59 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=61 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=56 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=55 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=54 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=48 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=47 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=46 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=45 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=44 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=38 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=37 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=36 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=35 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=33 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=34 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=27 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=26 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=25 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=24 2415717318472985 r009 Re(z^3+c),c=-19/82+4/63*I,n=23 2415717318473160 r009 Re(z^3+c),c=-19/82+4/63*I,n=17 2415717318475287 r009 Re(z^3+c),c=-19/82+4/63*I,n=16 2415717318487835 r009 Re(z^3+c),c=-19/82+4/63*I,n=15 2415717318537073 r009 Re(z^3+c),c=-19/82+4/63*I,n=14 2415717318617050 r009 Re(z^3+c),c=-19/82+4/63*I,n=13 2415717323644492 r002 17th iterates of z^2 + 2415717332305991 h005 exp(sin(Pi*14/41)/sin(Pi*25/53)) 2415717342248193 m001 (exp(Pi)+Zeta(5))/(-exp(1/Pi)+Artin) 2415717343079199 m001 (3^(1/2)+1/2)/(-BesselI(1,2)+2/3) 2415717345744864 m001 (3^(1/2)*Totient+Catalan)/Totient 2415717369027316 h001 (-6*exp(1/3)+7)/(-6*exp(2/3)+6) 2415717372889798 a003 cos(Pi*25/101)-sin(Pi*29/110) 2415717382222808 r005 Re(z^2+c),c=-9/14+22/201*I,n=2 2415717382414095 l006 ln(3312/4217) 2415717405643244 r005 Im(z^2+c),c=9/28+13/42*I,n=5 2415717406802954 a007 Real Root Of 414*x^4+747*x^3-122*x^2+852*x-798 2415717407478343 a007 Real Root Of -353*x^4-728*x^3+48*x^2-516*x+232 2415717411809033 r008 a(0)=0,K{-n^6,(2*n+1)*(69+41*n^2+28*n)} 2415717412364937 r008 a(0)=0,K{-n^6,74*n^3+117*n^2+162*n+61} 2415717415732084 r009 Re(z^3+c),c=-41/106+5/8*I,n=59 2415717415761144 r008 a(0)=0,K{-n^6,30*n^3+227*n^2+140*n+17} 2415717416101741 r008 a(0)=0,K{-n^6,26*n^3+237*n^2+138*n+13} 2415717424076943 m005 (1/5*Catalan-3/4)/(3/5*gamma+2) 2415717424987422 h002 exp(5^(7/12)+6^(3/5)) 2415717424987422 h007 exp(5^(7/12)+6^(3/5)) 2415717428061017 r005 Re(z^2+c),c=-1/6+21/41*I,n=13 2415717430633277 q001 1/4139557 2415717432743813 a007 Real Root Of 114*x^4-516*x^3+169*x^2-952*x+227 2415717437663837 a007 Real Root Of -393*x^4-739*x^3+715*x^2+697*x+477 2415717443961314 m001 LandauRamanujan/(BesselI(1,1)-QuadraticClass) 2415717447062210 m001 GAMMA(3/4)^Bloch-Thue 2415717449409060 m001 1/Zeta(1/2)*ln(ArtinRank2)^2*exp(1) 2415717449499184 r009 Re(z^3+c),c=-23/58+27/50*I,n=37 2415717451101117 b008 1+6*LogGamma[1/48] 2415717455094605 a007 Real Root Of 189*x^4-109*x^3-926*x^2+828*x-569 2415717464558289 m001 1/exp(Lehmer)/Kolakoski^2/GAMMA(1/4) 2415717466737958 m005 (1/2*Catalan-4/7)/(3*3^(1/2)-1/2) 2415717469736802 m001 QuadraticClass/(cos(1/12*Pi)+FeigenbaumD) 2415717469914283 m001 1/FeigenbaumC^2/Si(Pi)*exp(GAMMA(2/3))^2 2415717495942283 r005 Im(z^2+c),c=-43/106+25/49*I,n=12 2415717496713242 s002 sum(A030573[n]/(n*exp(pi*n)-1),n=1..infinity) 2415717497347599 m001 ln(sin(1))*cosh(1)^2*sin(Pi/5) 2415717498212132 r005 Im(z^2+c),c=11/40+3/34*I,n=46 2415717504106985 m001 (Robbin+ZetaP(4))/(GAMMA(3/4)+FeigenbaumC) 2415717512088037 m002 -4-E^Pi+6/Pi+ProductLog[Pi] 2415717517715906 m001 Mills*(ln(Pi)+CareFree) 2415717526705874 l006 ln(91/1019) 2415717530725295 r005 Im(z^2+c),c=-27/62+5/63*I,n=4 2415717532052732 r005 Im(z^2+c),c=-31/30+31/122*I,n=19 2415717532495773 m001 exp(exp(1))^2*GAMMA(2/3)*log(1+sqrt(2))^2 2415717532838569 m001 (5^(1/2)+Shi(1))/(Zeta(1,-1)+GAMMA(7/12)) 2415717535776543 m001 (-arctan(1/3)+QuadraticClass)/(2^(1/3)+Shi(1)) 2415717539863325 q001 2121/878 2415717564323237 m005 (1/2*3^(1/2)-5/11)/(3/7*Catalan-2/9) 2415717569787268 r002 3th iterates of z^2 + 2415717570890019 m002 Pi^3/2+(Pi^2*Coth[Pi])/Log[Pi] 2415717574019492 m001 (Rabbit-ZetaQ(4))/(Magata-PlouffeB) 2415717581919301 r009 Im(z^3+c),c=-53/102+5/43*I,n=8 2415717590817099 r005 Re(z^2+c),c=-5/58+8/13*I,n=57 2415717591960644 m001 exp(FransenRobinson)^2*ErdosBorwein^2*Magata 2415717596853484 r005 Im(z^2+c),c=19/86+1/7*I,n=24 2415717600650565 r009 Im(z^3+c),c=-17/126+15/61*I,n=6 2415717609896734 h001 (7/8*exp(1)+2/11)/(1/12*exp(1)+5/6) 2415717622621827 r005 Re(z^2+c),c=-11/54+10/21*I,n=17 2415717650840339 r005 Im(z^2+c),c=11/40+3/34*I,n=44 2415717652170096 m002 Pi^6/4+Log[Pi]*ProductLog[Pi]*Tanh[Pi] 2415717653697210 m001 (FeigenbaumD-ZetaP(2))/(ln(gamma)-Artin) 2415717658074260 s002 sum(A200554[n]/(64^n-1),n=1..infinity) 2415717665838678 m001 FeigenbaumC/MadelungNaCl/ln(cosh(1)) 2415717676709549 m001 (OneNinth+Otter)/(BesselI(0,1)+gamma(3)) 2415717686723319 r005 Re(z^2+c),c=-33/26+25/79*I,n=2 2415717689240612 h001 (-exp(-2)+8)/(-4*exp(2)-3) 2415717698805557 l006 ln(7495/9543) 2415717698825228 m002 Pi^2*Log[Pi]+Log[Pi]^2+Sinh[Pi] 2415717703243198 m001 (GAMMA(13/24)+KomornikLoreti)/(gamma+sin(1)) 2415717706352517 a007 Real Root Of -405*x^4-606*x^3+871*x^2-6*x+152 2415717714254382 m001 Ei(1)/(Robbin^sin(1/5*Pi)) 2415717744000592 m001 exp(-1/2*Pi)^LaplaceLimit/MinimumGamma 2415717756083493 h001 (7/10*exp(2)+3/11)/(2/7*exp(2)+1/7) 2415717764548190 a001 18/13*55^(5/36) 2415717779164588 m001 (MertensB1-Sarnak)/(ln(5)+GaussKuzminWirsing) 2415717790099115 r005 Im(z^2+c),c=-61/94+2/17*I,n=10 2415717791724083 a007 Real Root Of 278*x^4+189*x^3-783*x^2+574*x-847 2415717803505645 m005 (7/18+1/6*5^(1/2))/(4/9*3^(1/2)-5/11) 2415717815142282 m008 (2*Pi^5+2/5)/(1/4*Pi^4+1) 2415717822218620 a007 Real Root Of -427*x^4-894*x^3+784*x^2+829*x-634 2415717822960890 a001 165580141/123*123^(3/5) 2415717844564448 a007 Real Root Of 374*x^4+436*x^3-908*x^2+879*x+832 2415717847267291 m001 (Shi(1)+LambertW(1))/(-Pi^(1/2)+Niven) 2415717847990487 m006 (Pi^2-4/5)/(2/5*ln(Pi)-5/6) 2415717854779111 p001 sum((-1)^n/(478*n+303)/n/(5^n),n=1..infinity) 2415717868729589 a001 1/64079*47^(37/52) 2415717869299599 r005 Im(z^2+c),c=-49/114+22/53*I,n=63 2415717870988636 a005 (1/cos(23/164*Pi))^697 2415717876186194 b008 1/2+ProductLog[Pi*(1+Pi)] 2415717889581916 r005 Im(z^2+c),c=55/118+1/15*I,n=3 2415717905628684 m001 GAMMA(13/24)^2*exp(Trott)^2*Zeta(1,2)^2 2415717913315333 m002 -3+Pi^3/Log[Pi]+Log[Pi]-ProductLog[Pi] 2415717919453726 a001 1/2254*(1/2*5^(1/2)+1/2)^3*322^(1/23) 2415717922759163 r005 Re(z^2+c),c=-1+23/140*I,n=30 2415717924043637 m005 (1/2*exp(1)-11/12)/(3*gamma+1/10) 2415717928674433 m001 (-BesselJ(1,1)+ThueMorse)/(gamma+BesselI(1,1)) 2415717934837586 m001 1/Rabbit/exp(sin(Pi/5))^3 2415717937767248 m001 (GAMMA(2/3)-Psi(2,1/3))/(-PlouffeB+ZetaP(2)) 2415717941088056 a003 sin(Pi*3/118)/cos(Pi*11/28) 2415717947960532 m001 1/ln(ArtinRank2)*Cahen^2*Riemann2ndZero 2415717948254619 a007 Real Root Of -383*x^4-469*x^3-900*x^2+322*x+125 2415717949316791 l006 ln(4183/5326) 2415717950792077 m005 (1/2*5^(1/2)-9/10)/(4/11*3^(1/2)+3/11) 2415717956430584 m001 (Cahen+FeigenbaumAlpha)/(Lehmer+Rabbit) 2415717960542344 p001 sum(1/(488*n+321)/n/(512^n),n=1..infinity) 2415717964527206 h001 (-3*exp(3)+1)/(-9*exp(2/3)-7) 2415717964803189 r005 Re(z^2+c),c=-7/32+11/25*I,n=12 2415717971982097 r009 Im(z^3+c),c=-29/70+5/39*I,n=10 2415717991319105 r002 3th iterates of z^2 + 2415718001046113 a007 Real Root Of 4*x^4-181*x^3+174*x^2+356*x+540 2415718005260306 a001 377/11*199^(41/51) 2415718016697776 m001 (Zeta(1,2)-Gompertz)/(ln(3)-arctan(1/2)) 2415718030372573 a005 (1/cos(23/180*Pi))^650 2415718031657317 m001 1/FeigenbaumKappa/MadelungNaCl^2 2415718035927187 m006 (1/5*Pi+2/5)/(1/6*exp(Pi)+2/5) 2415718050475923 m001 KhinchinHarmonic*HeathBrownMoroz^Totient 2415718050615160 a007 Real Root Of 207*x^4+781*x^3+346*x^2-920*x-281 2415718052951014 m009 (1/6*Psi(1,1/3)+5)/(1/8*Pi^2-4) 2415718053844151 a003 sin(Pi*14/83)-sin(Pi*29/108) 2415718064461640 a007 Real Root Of 453*x^4-162*x^3-393*x^2-970*x+258 2415718064613289 a007 Real Root Of -208*x^4-354*x^3-406*x^2+553*x+153 2415718079452396 r009 Re(z^3+c),c=-9/25+25/58*I,n=28 2415718102089869 a001 682/305*514229^(52/59) 2415718102412517 r005 Re(z^2+c),c=21/82+15/29*I,n=61 2415718107576401 m001 1/exp(GAMMA(5/24))^2/GAMMA(1/4)/sqrt(3) 2415718111035076 r009 Re(z^3+c),c=-27/110+2/15*I,n=4 2415718111635934 a007 Real Root Of 232*x^4+375*x^3-185*x^2+745*x+265 2415718111797167 r005 Re(z^2+c),c=-13/17+48/59*I,n=3 2415718112161228 k008 concat of cont frac of 2415718117111432 k007 concat of cont frac of 2415718121977406 l004 Pi/cosh(20/83*Pi) 2415718124690027 r005 Im(z^2+c),c=-59/114+20/47*I,n=17 2415718133306367 m001 (gamma(2)+gamma(3))/(BesselI(0,1)+Ei(1)) 2415718142371160 a007 Real Root Of -829*x^4-465*x^3+796*x^2+957*x+181 2415718143736942 r005 Im(z^2+c),c=-29/60+5/12*I,n=37 2415718144911124 r005 Im(z^2+c),c=-9/10+3/160*I,n=22 2415718149072816 r005 Im(z^2+c),c=-61/70+5/26*I,n=45 2415718154952137 m005 (1/2*3^(1/2)-3/8)/(4/9*Pi+7/11) 2415718155077599 a007 Real Root Of 596*x^4-257*x^3-942*x^2-585*x-92 2415718161671338 a001 4/28657*34^(38/47) 2415718172118004 a007 Real Root Of 203*x^4+163*x^3-661*x^2+303*x-26 2415718175369385 m005 (1/3*gamma+1/12)/(4/7*Zeta(3)+5/11) 2415718179849141 m001 GAMMA(19/24)+Khinchin^Ei(1,1) 2415718184455661 a007 Real Root Of 817*x^4-561*x^3-972*x^2-783*x+251 2415718190311816 h001 (2/5*exp(2)+5/6)/(1/4*exp(1)+8/9) 2415718194113112 k006 concat of cont frac of 2415718194335533 r005 Re(z^2+c),c=21/82+6/43*I,n=39 2415718196606477 m001 1/Riemann2ndZero/exp(FeigenbaumDelta)^2*gamma 2415718196871110 r005 Re(z^2+c),c=23/86+3/20*I,n=42 2415718200475840 m001 (sin(1/5*Pi)+Kac)/(Trott2nd+Weierstrass) 2415718205401966 m002 1+E^Pi+Log[Pi]/(3*E^Pi) 2415718206842985 b008 -6/17+ArcCosh[8] 2415718209794264 r002 8th iterates of z^2 + 2415718217292779 r009 Re(z^3+c),c=-1/27+26/41*I,n=15 2415718220295768 a007 Real Root Of 228*x^4+337*x^3-290*x^2+588*x+99 2415718222786733 m001 1/Conway*exp(Cahen)^2/GAMMA(1/12) 2415718226300674 p004 log(24133/23557) 2415718246937090 m001 Mills/(Pi*2^(1/2)/GAMMA(3/4)+Grothendieck) 2415718248202605 m004 -4-125*Pi+5*Cosh[Sqrt[5]*Pi]+Log[Sqrt[5]*Pi] 2415718259152912 m001 1/GAMMA(2/3)*CareFree^2*exp(GAMMA(5/24))^2 2415718261504324 a001 199/5*55^(9/20) 2415718262317961 r005 Re(z^2+c),c=7/24+8/47*I,n=51 2415718262701113 a005 (1/cos(27/166*Pi))^57 2415718268058794 p004 log(37501/29453) 2415718268267261 a001 7/10946*55^(29/32) 2415718268861410 a007 Real Root Of -244*x^4-187*x^3+697*x^2-904*x-578 2415718273566673 q001 9/37256 2415718273793178 a001 322/3*377^(21/23) 2415718283995866 r009 Re(z^3+c),c=-5/122+35/59*I,n=39 2415718298096306 m008 (5*Pi^3-1/4)/(2/3*Pi^6-1/5) 2415718309237572 r008 a(0)=0,K{-n^6,(2*n+1)*(76+44*n^2+18*n)} 2415718310648328 r008 a(0)=0,K{-n^6,68*n^3+130*n^2+160*n+56} 2415718320820875 l006 ln(5054/6435) 2415718329766389 h001 (-9*exp(1)-4)/(-8*exp(5)+9) 2415718334375703 r005 Im(z^2+c),c=23/106+9/61*I,n=9 2415718342455784 r005 Re(z^2+c),c=-23/82+6/29*I,n=15 2415718361578451 a007 Real Root Of -308*x^4-800*x^3-330*x^2-274*x+475 2415718364385941 a007 Real Root Of -556*x^4-950*x^3+939*x^2-326*x-725 2415718365860080 m005 (1/2*3^(1/2)-1/2)/(3/7*2^(1/2)+10/11) 2415718380002055 m001 ln(2+sqrt(3))+exp(-Pi)+GAMMA(11/12) 2415718386877574 a007 Real Root Of -480*x^4-795*x^3+814*x^2+46*x+500 2415718394169969 m002 -4+5/Pi^2+Coth[Pi]*ProductLog[Pi] 2415718397970355 r005 Re(z^2+c),c=3/22+25/59*I,n=24 2415718398060080 r005 Im(z^2+c),c=3/10+1/20*I,n=60 2415718426819912 a007 Real Root Of 414*x^4+826*x^3-742*x^2-396*x+919 2415718439009256 m001 (1+Zeta(1,2))/(-GAMMA(7/12)+KomornikLoreti) 2415718442676236 r005 Im(z^2+c),c=-25/114+20/57*I,n=20 2415718443256251 r005 Im(z^2+c),c=-23/29+8/63*I,n=19 2415718459723591 m003 1/2+Sqrt[5]/4+48*Log[1/2+Sqrt[5]/2] 2415718461458206 m001 (ln(3)-ln(2+3^(1/2))*Lehmer)/ln(2+3^(1/2)) 2415718461458206 m001 (ln(3)-ln(2+sqrt(3))*Lehmer)/ln(2+sqrt(3)) 2415718464680519 r005 Im(z^2+c),c=-9/22+9/22*I,n=48 2415718465654378 a007 Real Root Of 447*x^4+651*x^3-553*x^2+763*x-975 2415718474064424 h001 (7/8*exp(2)+1/4)/(8/9*exp(1)+4/11) 2415718475661739 m001 Kolakoski*ErdosBorwein/exp(FeigenbaumB)^2 2415718476386592 m001 FeigenbaumDelta^2*ln(Backhouse)^2/GAMMA(5/6)^2 2415718485785810 m005 (1/3*2^(1/2)-1/7)/(2/5*exp(1)+3/11) 2415718486842144 m001 (Shi(1)-ln(2))/(-Zeta(1,2)+Riemann1stZero) 2415718496518605 p001 sum((-1)^n/(335*n+3)/n/(12^n),n=1..infinity) 2415718497000609 r005 Im(z^2+c),c=-33/118+37/49*I,n=3 2415718502647260 s001 sum(exp(-2*Pi/5)^n*A093740[n],n=1..infinity) 2415718502647260 s002 sum(A093740[n]/(exp(2/5*pi*n)),n=1..infinity) 2415718507399463 a007 Real Root Of -66*x^4+238*x^3+639*x^2-625*x+364 2415718514980844 b008 -1/18*Pi+ArcCsch[5] 2415718516106231 r002 12th iterates of z^2 + 2415718521699067 a007 Real Root Of 4*x^4-233*x^3-155*x^2+915*x-306 2415718546269701 a007 Real Root Of -83*x^4+88*x^3+522*x^2-72*x+847 2415718555338617 a007 Real Root Of 445*x^4+978*x^3-418*x^2-671*x-549 2415718563643192 b008 24+ArcCoth[5+Sqrt[2]] 2415718571304315 m001 (Trott2nd+TwinPrimes)/(ln(3)+MadelungNaCl) 2415718577625384 r005 Im(z^2+c),c=7/60+11/52*I,n=14 2415718582387770 m001 FransenRobinson*GolombDickman+LaplaceLimit 2415718583099614 l006 ln(5925/7544) 2415718609616492 m005 (1/2*gamma+1/4)/(4/9*Pi+5/6) 2415718625002900 r009 Re(z^3+c),c=-19/82+4/63*I,n=7 2415718631944485 m001 ln(5)+ln(2^(1/2)+1)^Niven 2415718638868564 a001 321/8*1346269^(37/60) 2415718639409351 m001 (arctan(1/3)-sin(1/12*Pi))/(ln(Pi)-Zeta(1/2)) 2415718659149825 a007 Real Root Of -845*x^4-707*x^3+182*x^2+982*x-235 2415718660379409 m001 (sin(1/5*Pi)+3^(1/3))/(1-Catalan) 2415718668932380 s002 sum(A190409[n]/((exp(n)+1)/n),n=1..infinity) 2415718669244061 b008 ArcCosh[3+Pi*Sin[1]] 2415718670296328 m005 (1/3*gamma-1/5)/(1/11*5^(1/2)+1/9) 2415718673265838 m001 CopelandErdos^FeigenbaumC*Magata 2415718673404165 m004 -3+375/Pi-Cosh[Sqrt[5]*Pi]/4 2415718689293414 r005 Re(z^2+c),c=-15/82+32/57*I,n=24 2415718689965972 m001 (Rabbit+ReciprocalLucas)/(2^(1/2)-Conway) 2415718693735932 r009 Re(z^3+c),c=-27/94+4/15*I,n=5 2415718702111025 r005 Im(z^2+c),c=-28/25+1/34*I,n=38 2415718703546711 r002 33th iterates of z^2 + 2415718706140606 r005 Im(z^2+c),c=7/78+9/40*I,n=7 2415718712591457 m001 Zeta(1/2)^2/exp(GAMMA(23/24))^2*log(1+sqrt(2)) 2415718713822814 r005 Re(z^2+c),c=9/46+3/49*I,n=6 2415718717669084 l006 ln(824/9227) 2415718717683557 q001 2336/967 2415718720540134 l006 ln(8384/8589) 2415718722002565 m001 (Ei(1)-cos(1))/(-Kac+KhinchinLevy) 2415718736180576 m005 (1/2*2^(1/2)+7/10)/(1/6*2^(1/2)-9/11) 2415718743979063 r009 Re(z^3+c),c=-11/38+32/47*I,n=61 2415718749885319 a001 5778/377*34^(4/31) 2415718758584608 r005 Re(z^2+c),c=-11/14+9/112*I,n=40 2415718759776285 r005 Re(z^2+c),c=11/86+28/45*I,n=51 2415718764243307 m005 (1/2*Catalan+1/8)/(6/7*exp(1)+1/12) 2415718767736100 r005 Re(z^2+c),c=-21/74+4/63*I,n=3 2415718770407006 m001 (-Mills+RenyiParking)/(exp(Pi)+gamma(2)) 2415718778149161 l006 ln(6796/8653) 2415718780647455 r009 Im(z^3+c),c=-1/21+33/38*I,n=18 2415718782336348 m001 (-gamma(1)+FeigenbaumB)/(Si(Pi)+Ei(1)) 2415718786102805 b008 EulerGamma-Sinh[5]/3 2415718805848318 m001 (Si(Pi)+Shi(1))/(BesselJ(1,1)+LandauRamanujan) 2415718806398352 m001 (Khinchin-StolarskyHarborth)/(Zeta(5)-ln(Pi)) 2415718818437438 r005 Re(z^2+c),c=21/82+6/43*I,n=41 2415718821625113 h001 (1/4*exp(1)+5/6)/(8/11*exp(2)+8/9) 2415718823125235 a005 (1/sin(91/237*Pi))^284 2415718825222092 p004 log(33851/3023) 2415718832290724 a003 cos(Pi*22/67)*cos(Pi*32/93) 2415718836310131 m001 ZetaQ(2)/Niven/Mills 2415718836898347 r005 Im(z^2+c),c=-37/30+43/109*I,n=3 2415718838277908 a007 Real Root Of 130*x^4+132*x^3-803*x^2-466*x+994 2415718839594159 m005 (1/3*3^(1/2)+1/2)/(5/12*Zeta(3)-6/11) 2415718851440689 m001 Pi/Psi(1,1/3)*(sin(1/12*Pi)+polylog(4,1/2)) 2415718865523899 l006 ln(733/8208) 2415718871131796 h001 (-8*exp(8)-2)/(-9*exp(7)-3) 2415718878746592 r009 Re(z^3+c),c=-8/23+21/52*I,n=29 2415718887594517 s001 sum(exp(-3*Pi/5)^n*A136509[n],n=1..infinity) 2415718899368053 m001 GAMMA(3/4)^2*exp(CopelandErdos)^2*Zeta(9)^2 2415718905882453 b008 Pi*(3+Sqrt[7*Pi]) 2415718911115242 k008 concat of cont frac of 2415718922573750 p001 sum(1/(411*n+4)/n/(100^n),n=1..infinity) 2415718928881983 l006 ln(7667/9762) 2415718932844396 a007 Real Root Of 128*x^4+428*x^3+982*x^2-796*x-244 2415718933771632 m009 (6*Psi(1,3/4)+2/5)/(32*Catalan+4*Pi^2-4) 2415718935978110 h003 exp(Pi*(10^(7/6)-6^(10/7))) 2415718935978110 h008 exp(Pi*(10^(7/6)-6^(10/7))) 2415718947624778 m001 (Sarnak+ZetaQ(3))/(cos(1/12*Pi)-LaplaceLimit) 2415718950121288 m001 1/exp(GAMMA(11/24))/Catalan/cos(Pi/5)^2 2415718954624540 a001 13/11*521^(4/35) 2415718965681580 r005 Re(z^2+c),c=-19/16+19/116*I,n=18 2415718966879709 a001 3/141422324*2^(3/16) 2415718968753519 a001 47/4181*13^(17/57) 2415718977416398 a001 370248451/377*121393^(19/22) 2415718978403896 m001 (Pi^(1/2)+KhinchinHarmonic)/(Porter-Trott) 2415718978984959 a001 39603/377*4807526976^(19/22) 2415718990689295 r002 4th iterates of z^2 + 2415718991397616 r005 Re(z^2+c),c=-37/66+14/23*I,n=10 2415718991571839 m005 (1/2*Pi+6)/(3/4*Pi+7/9) 2415718993867073 h001 (-7*exp(4)+1)/(-3*exp(4)+6) 2415718998612454 r005 Im(z^2+c),c=-11/10+31/133*I,n=21 2415719001150083 r005 Re(z^2+c),c=-141/118+5/26*I,n=28 2415719003818882 r009 Im(z^3+c),c=-5/32+50/57*I,n=12 2415719005823230 a007 Real Root Of -893*x^4+649*x^3-798*x^2+713*x+231 2415719006457496 r002 31th iterates of z^2 + 2415719008304719 a007 Real Root Of -377*x^4-741*x^3+177*x^2-673*x-266 2415719009843732 r005 Im(z^2+c),c=31/118+3/29*I,n=21 2415719014566018 h001 (-5*exp(1/3)-6)/(-7*exp(2)-2) 2415719030366333 a007 Real Root Of -600*x^4+366*x^3-459*x^2+58*x+48 2415719032821280 h001 (4/11*exp(2)+8/11)/(1/6*exp(2)+2/11) 2415719038979810 a007 Real Root Of 423*x^4+955*x^3-297*x^2-560*x-562 2415719046093072 a007 Real Root Of -99*x^4-170*x^3-106*x^2-872*x-513 2415719055293910 l006 ln(642/7189) 2415719057817386 m001 3^(1/3)*MasserGramainDelta^Thue 2415719068267465 a003 sin(Pi*12/103)*sin(Pi*25/106) 2415719092163685 m005 (1/2*Pi+7/9)/(4*5^(1/2)+7/9) 2415719096815707 p001 sum(1/(487*n+322)/n/(512^n),n=1..infinity) 2415719111451117 p004 log(27737/2477) 2415719112121934 k007 concat of cont frac of 2415719132028738 a007 Real Root Of 265*x^4+862*x^3+532*x^2+210*x+530 2415719147194559 r005 Im(z^2+c),c=-105/74+11/43*I,n=3 2415719155019189 a007 Real Root Of 21*x^4+525*x^3+435*x^2+211*x+754 2415719199912458 a007 Real Root Of -524*x^4-988*x^3+432*x^2-519*x+142 2415719213675464 m007 (-3*gamma-9*ln(2)+3/2*Pi+2/5)/(-3/4*gamma-3/4) 2415719214177758 r008 a(0)=0,K{-n^6,(2*n+1)*(65+38*n^2+35*n)} 2415719214322561 r008 a(0)=0,K{-n^6,74*n^3+113*n^2+164*n+63} 2415719214913325 r008 a(0)=0,K{-n^6,66*n^3+133*n^2+160*n+55} 2415719215523247 r008 a(0)=0,K{-n^6,58*n^3+153*n^2+156*n+47} 2415719236038346 r009 Im(z^3+c),c=-9/70+35/41*I,n=34 2415719243211664 a007 Real Root Of -260*x^4-116*x^3+935*x^2-733*x-8 2415719259145009 m008 (1/2*Pi^4+3/4)/(1/3*Pi+1) 2415719272539973 r005 Im(z^2+c),c=-49/110+21/52*I,n=23 2415719273563743 r005 Im(z^2+c),c=-57/82+14/55*I,n=49 2415719275672941 m001 (exp(1)-gamma)/(-KhinchinHarmonic+Thue) 2415719276453511 m001 cos(Pi/5)^2*ln(Ei(1))/sqrt(3) 2415719277504863 m001 1/ln(GAMMA(5/24))/Catalan^2/gamma^2 2415719280502781 a007 Real Root Of 656*x^4+793*x^3+41*x^2-581*x+14 2415719298270559 a007 Real Root Of 322*x^4+701*x^3-460*x^2-399*x+637 2415719298846635 r005 Re(z^2+c),c=-3/118+41/42*I,n=5 2415719307746519 l006 ln(551/6170) 2415719309273471 m001 Backhouse^BesselI(1,2)/(Backhouse^GAMMA(1/12)) 2415719311677928 m004 6+5*Pi+15/(Pi*Log[Sqrt[5]*Pi]) 2415719317804976 m001 1/exp(Trott)*Bloch/GAMMA(11/24) 2415719345793523 r009 Re(z^3+c),c=-6/25+45/62*I,n=43 2415719354560872 b008 67*Sqrt[13] 2415719358210292 m005 (1/2*exp(1)-1/11)/(2*5^(1/2)+7/9) 2415719373446284 r005 Im(z^2+c),c=-27/26+29/121*I,n=31 2415719378300482 m001 (Shi(1)-ln(gamma))/(-arctan(1/2)+GAMMA(5/6)) 2415719394407976 r009 Re(z^3+c),c=-9/25+16/37*I,n=19 2415719397754740 a007 Real Root Of -440*x^4-955*x^3-79*x^2-583*x+574 2415719405688736 r005 Im(z^2+c),c=-15/22+13/76*I,n=11 2415719413264428 m005 (1/2*gamma+1/9)/(83/88+7/22*5^(1/2)) 2415719415305089 r009 Re(z^3+c),c=-39/64+39/62*I,n=9 2415719425014611 m001 (Stephens+ZetaQ(4))/(Zeta(5)+GAMMA(2/3)) 2415719434352877 m001 exp(Pi)+FeigenbaumKappa^ZetaQ(2) 2415719435131157 a007 Real Root Of 676*x^4+240*x^3+324*x^2-543*x-149 2415719458460950 r005 Im(z^2+c),c=-27/94+22/59*I,n=31 2415719459916174 a007 Real Root Of -50*x^4+289*x^3+804*x^2-243*x+498 2415719463974505 r009 Im(z^3+c),c=-1/40+13/51*I,n=3 2415719472637365 r002 5th iterates of z^2 + 2415719479952202 m001 1/GAMMA(1/24)*Paris^2/ln(GAMMA(1/6)) 2415719480657601 a003 sin(Pi*4/91)-sin(Pi*13/105) 2415719486540554 r005 Im(z^2+c),c=-25/26+3/13*I,n=42 2415719487058011 a001 11/987*34^(41/47) 2415719492692347 a007 Real Root Of 990*x^4+246*x^3-332*x^2-834*x-182 2415719497709596 a007 Real Root Of -43*x^4+294*x^3-255*x^2-277*x-523 2415719499208833 a007 Real Root Of 517*x^4+739*x^3-961*x^2+569*x-206 2415719501924315 r005 Im(z^2+c),c=-23/50+23/54*I,n=44 2415719509790525 r005 Im(z^2+c),c=-31/60+1/23*I,n=20 2415719510583437 m008 (3/5*Pi^5+4/5)/(1/4*Pi^5-1/6) 2415719521774162 m005 (1/2*exp(1)+1/8)/(3/5*5^(1/2)-8/11) 2415719537602874 p001 sum(1/(478*n+417)/(64^n),n=0..infinity) 2415719539570370 p003 LerchPhi(1/10,4,110/137) 2415719563479551 r005 Re(z^2+c),c=-17/50+35/59*I,n=59 2415719566627455 r005 Re(z^2+c),c=-29/98+5/51*I,n=9 2415719569328134 m003 5/2+Sqrt[5]/2+E^(1+Sqrt[5])*Cot[1/2+Sqrt[5]/2] 2415719570923012 m001 (5^(1/2)+cos(1))/(GAMMA(23/24)+Champernowne) 2415719571712978 r005 Re(z^2+c),c=-5/6+58/181*I,n=2 2415719574538098 m005 (7/20+1/4*5^(1/2))/(5/11*gamma-3/10) 2415719582345782 a001 133957148/161*199^(7/11) 2415719615879977 a007 Real Root Of -307*x^4-815*x^3-237*x^2+186*x+798 2415719618512113 a001 1/9338*(1/2*5^(1/2)+1/2)^21*322^(5/13) 2415719620245194 a007 Real Root Of -937*x^4-499*x^3-990*x^2+890*x-147 2415719622558904 a007 Real Root Of -377*x^4-741*x^3-26*x^2-689*x+880 2415719626309383 a008 Real Root of x^4-21*x^2-6*x+74 2415719629021554 m001 (ln(3)+gamma(2))/(TreeGrowth2nd+Trott) 2415719634085621 a005 (1/cos(27/184*Pi))^8 2415719635758357 s001 sum(1/10^(n-1)*A023163[n],n=1..infinity) 2415719635758357 s001 sum(1/10^n*A023163[n],n=1..infinity) 2415719649293824 h001 (-7*exp(5)-4)/(-2*exp(3)-3) 2415719660082444 l006 ln(460/5151) 2415719660716928 m001 FeigenbaumC*(Ei(1)-Stephens) 2415719671213129 m001 1/exp(Catalan)/Trott*cos(Pi/5)^2 2415719682178346 m005 (1/2*Catalan-5)/(25/24+3/8*5^(1/2)) 2415719684317872 m005 (1/3*Catalan-1/6)/(2/11*3^(1/2)-8/9) 2415719716281800 r005 Im(z^2+c),c=-7/18+23/57*I,n=9 2415719716406778 r005 Im(z^2+c),c=-29/110+19/52*I,n=27 2415719720763295 r005 Im(z^2+c),c=-9/20+19/44*I,n=34 2415719726138532 m001 (Zeta(1,2)-GolombDickman)/(Trott+ZetaQ(2)) 2415719727156355 m001 (Psi(1,1/3)+Ei(1))/(-FeigenbaumKappa+Thue) 2415719731997436 a007 Real Root Of 829*x^4+599*x^3-740*x^2-769*x+19 2415719736397926 m001 ((1+3^(1/2))^(1/2)+Magata)/(Robbin-ZetaP(2)) 2415719758620264 a007 Real Root Of -412*x^4-429*x^3+883*x^2-936*x+569 2415719758625513 h001 (1/11*exp(2)+5/7)/(8/11*exp(2)+4/11) 2415719765415527 r009 Im(z^3+c),c=-5/74+33/38*I,n=8 2415719765480341 r005 Re(z^2+c),c=-1/7+32/55*I,n=50 2415719783061539 m001 (ln(2)*LandauRamanujan+ln(Pi))/ln(2) 2415719784783671 r005 Re(z^2+c),c=-155/126+7/37*I,n=29 2415719791878734 a007 Real Root Of 556*x^4+231*x^3-371*x^2-445*x+124 2415719796512074 m009 (40*Catalan+5*Pi^2-2/3)/(1/3*Psi(1,1/3)+1/6) 2415719800594566 m005 (1/3*Catalan-2/5)/(10/11*gamma-11/12) 2415719805110847 a007 Real Root Of 841*x^4-273*x^3-123*x^2-983*x-237 2415719814574510 m005 (1/2*3^(1/2)+1/8)/(2/7*Pi-5) 2415719820348465 r005 Im(z^2+c),c=-41/42+13/57*I,n=20 2415719823223572 m001 (BesselI(0,2)-BesselK(0,1))/(OneNinth+Robbin) 2415719833145763 r002 15th iterates of z^2 + 2415719833764147 a007 Real Root Of -313*x^4-242*x^3+841*x^2-938*x+74 2415719835809794 m001 Ei(1,1)*GAMMA(11/12)^Grothendieck 2415719848193375 m005 (1/2*2^(1/2)-1/5)/(7/11*Pi+1/10) 2415719863114791 a005 (1/cos(7/37*Pi))^225 2415719877868002 r002 58th iterates of z^2 + 2415719889682110 m001 HardyLittlewoodC3^Chi(1)+3^(1/2) 2415719894264637 l006 ln(829/9283) 2415719894264637 p004 log(9283/829) 2415719895264854 m008 (3/5*Pi^3-3)/(2/3*Pi^6+5) 2415719908822075 m005 (1/2*2^(1/2)+3/7)/(7/12*Zeta(3)+4) 2415719910503431 m001 (GAMMA(5/12)+1/2)/(BesselK(0,1)+2/3) 2415719911708271 m005 (1/2*5^(1/2)+3/7)/(11/12*gamma+1/9) 2415719913634159 m001 (3^(1/2))^MertensB2*GAMMA(2/3)^MertensB2 2415719917000407 a007 Real Root Of 417*x^4+697*x^3-993*x^2-728*x-339 2415719917395196 r005 Im(z^2+c),c=-17/86+11/32*I,n=19 2415719927786278 a007 Real Root Of -33*x^3+783*x^2+340*x+66 2415719937668888 a007 Real Root Of 441*x^4+104*x^3+257*x^2-538*x+112 2415719942444577 m001 GAMMA(1/4)*ln(TwinPrimes)^2/sin(Pi/12) 2415719945310735 m001 (Kac-ZetaP(2))/(Ei(1,1)+Zeta(1,2)) 2415719947286660 m001 exp(RenyiParking)^2*Paris^2*GAMMA(1/6) 2415719949372778 m001 (3^(1/3)+gamma(3))/(2*Pi/GAMMA(5/6)+ThueMorse) 2415719951539298 m001 (CareFree-MertensB3)/(GAMMA(3/4)+exp(1/Pi)) 2415719958504154 r005 Im(z^2+c),c=-55/64+3/16*I,n=61 2415719958551900 r005 Re(z^2+c),c=-7/44+24/43*I,n=56 2415719964687220 a007 Real Root Of -62*x^4+539*x^3+772*x^2+764*x-237 2415719976945979 r005 Re(z^2+c),c=7/24+8/47*I,n=57 2415719979584081 m001 (Sarnak+ZetaP(3))/(gamma(3)-Artin) 2415720006299257 g004 Im(GAMMA(2/15+I*11/3)) 2415720007189702 r005 Im(z^2+c),c=-15/46+16/43*I,n=9 2415720013007687 m001 1/2*(1+2*5^(1/2)*Pi/GAMMA(5/6))/Pi*GAMMA(5/6) 2415720016012120 r005 Im(z^2+c),c=-23/34+7/38*I,n=5 2415720022764054 r005 Im(z^2+c),c=-4/13+7/19*I,n=11 2415720023921938 a003 sin(Pi*8/103)*sin(Pi*59/119) 2415720029177499 m001 sinh(1)+KhinchinLevy^(2^(1/3)) 2415720029624426 m006 (1/Pi-5/6)/(2/5*exp(2*Pi)-1) 2415720032284607 r005 Re(z^2+c),c=5/17+2/13*I,n=5 2415720037386656 a007 Real Root Of -34*x^4+506*x^3+918*x^2+767*x+18 2415720042316611 a001 4/17711*196418^(7/36) 2415720043939769 a007 Real Root Of -136*x^4-317*x^3+161*x^2+553*x+559 2415720045956183 r005 Re(z^2+c),c=-13/62+23/51*I,n=15 2415720046102522 m001 (Rabbit+ZetaQ(3))/(Zeta(3)+Pi^(1/2)) 2415720054841563 r002 10th iterates of z^2 + 2415720056327867 r002 38th iterates of z^2 + 2415720080459317 a007 Real Root Of 172*x^4+372*x^3+553*x^2-577*x-167 2415720080635287 a001 29/1597*2^(7/17) 2415720104978642 l006 ln(871/1109) 2415720105343826 m005 (1/3*2^(1/2)-1/12)/(2/3*gamma-6/11) 2415720114130072 m001 Thue^exp(1/Pi)*Thue^exp(Pi) 2415720114396886 m001 (PlouffeB-Trott)/(Zeta(1/2)-arctan(1/2)) 2415720122136782 r005 Im(z^2+c),c=-5/6+33/208*I,n=30 2415720129857101 a007 Real Root Of -357*x^4-598*x^3+528*x^2-234*x+81 2415720142852669 a007 Real Root Of -348*x^4-408*x^3+937*x^2-629*x-888 2415720145495614 a003 cos(Pi*19/117)-cos(Pi*13/46) 2415720149459093 a007 Real Root Of -361*x^4-744*x^3+308*x^2-390*x-934 2415720152587903 r005 Re(z^2+c),c=-13/58+20/49*I,n=26 2415720161184762 m001 MertensB3*(Zeta(5)+StronglyCareFree) 2415720176961840 r009 Re(z^3+c),c=-8/23+21/52*I,n=31 2415720179239383 r005 Re(z^2+c),c=21/82+6/43*I,n=40 2415720186199001 l006 ln(369/4132) 2415720187717259 h001 (6/11*exp(1)+1/12)/(4/5*exp(2)+4/7) 2415720205617977 a001 2149990983/89 2415720221759806 m005 (1/2*3^(1/2)-5)/(7/11*Catalan-3/5) 2415720223087240 r005 Re(z^2+c),c=-5/26+22/35*I,n=52 2415720234354127 r005 Im(z^2+c),c=-29/48+13/33*I,n=50 2415720234845030 p001 sum(1/(486*n+323)/n/(512^n),n=1..infinity) 2415720244410294 m001 (MasserGramainDelta-Robbin)/(ln(5)-GAMMA(5/6)) 2415720253964754 a007 Real Root Of -975*x^4+3*x^3-739*x^2-209*x-4 2415720283816706 m001 (exp(-1/2*Pi)+GAMMA(19/24))/(Kac-ZetaQ(2)) 2415720302512128 m005 (1/3*Catalan+1/9)/(89/110+9/22*5^(1/2)) 2415720305199494 m001 LambertW(1)-Pi*csc(7/24*Pi)/GAMMA(17/24)+Paris 2415720305571927 r002 32th iterates of z^2 + 2415720320054673 r009 Re(z^3+c),c=-1/114+46/57*I,n=52 2415720320066484 a001 3571/1597*514229^(52/59) 2415720330080023 r005 Re(z^2+c),c=-19/26+10/71*I,n=19 2415720344135498 a008 Real Root of x^4-x^3-210*x^2+805*x+3122 2415720345262371 r005 Re(z^2+c),c=-23/74+1/30*I,n=4 2415720348522581 r005 Im(z^2+c),c=-31/86+22/57*I,n=16 2415720350922900 m005 (1/2*Pi-10/11)/(7/9*5^(1/2)+1) 2415720353115022 r005 Re(z^2+c),c=7/24+8/47*I,n=48 2415720354194172 m008 (4*Pi^4-3/4)/(1/6*Pi^6+3/4) 2415720357118677 m005 (1/2*5^(1/2)-1)/(1/2*gamma+1/5) 2415720361419763 a007 Real Root Of 281*x^4+861*x^3+843*x^2+941*x-78 2415720363417861 r002 43th iterates of z^2 + 2415720367488980 r002 13th iterates of z^2 + 2415720369114726 a007 Real Root Of 329*x^4+238*x^3-941*x^2+627*x-843 2415720371635469 a007 Real Root Of 489*x^4+985*x^3-421*x^2+20*x-262 2415720390609489 r009 Re(z^3+c),c=-19/50+19/40*I,n=59 2415720393899805 m001 MinimumGamma+MasserGramain^OneNinth 2415720394149009 m001 GAMMA(17/24)^2/Magata/ln(Zeta(9)) 2415720402455437 a007 Real Root Of -374*x^4-564*x^3+855*x^2+187*x+248 2415720408572169 r009 Im(z^3+c),c=-13/44+11/54*I,n=12 2415720411947949 a007 Real Root Of -311*x^4-994*x^3-976*x^2-919*x+54 2415720436103304 m001 (5^(1/2)+Riemann1stZero)^ReciprocalLucas 2415720451667903 m005 (1/3*5^(1/2)-3/4)/(4/9*exp(1)+5/7) 2415720454174302 a001 1322157322203/233*12586269025^(11/24) 2415720468542177 m001 ln(GAMMA(1/24))/Conway/Zeta(9) 2415720486783890 r005 Re(z^2+c),c=41/118+10/59*I,n=25 2415720495601358 m001 1/Catalan^2*exp(Riemann3rdZero)/Ei(1)^2 2415720508371514 r009 Re(z^3+c),c=-1/29+25/58*I,n=13 2415720517649346 m001 (Si(Pi)+sin(1/5*Pi))/(-Artin+Weierstrass) 2415720532291348 s001 sum(exp(-Pi/4)^n*A246718[n],n=1..infinity) 2415720552130324 r002 3th iterates of z^2 + 2415720552733738 m001 Pi/(Psi(1,1/3)+Si(Pi)+Shi(1)) 2415720553345516 m001 5^(1/2)/Shi(1)/ZetaQ(3) 2415720553765926 r002 18th iterates of z^2 + 2415720557112171 b008 EulerGamma+Erfc[Cos[3]] 2415720559050440 a001 38/305*46368^(31/44) 2415720560253882 l006 ln(647/7245) 2415720577854866 r005 Im(z^2+c),c=17/46+10/43*I,n=29 2415720579317147 a007 Real Root Of -209*x^4-84*x^3-677*x^2+842*x-162 2415720579367362 m001 Pi-1+arctan(1/3)/GAMMA(19/24) 2415720581400171 b008 21+Pi*Coth[3] 2415720585559363 m001 (2^(1/3)-Zeta(3))/(-FransenRobinson+ThueMorse) 2415720591219343 m005 (1/2*Catalan-2)/(1/7*exp(1)+1/4) 2415720592099534 r009 Im(z^3+c),c=-17/36+1/20*I,n=21 2415720593408391 a007 Real Root Of -721*x^4+415*x^3-701*x^2+107*x+3 2415720608543590 r002 52th iterates of z^2 + 2415720613440803 a003 cos(Pi*1/104)-cos(Pi*19/84) 2415720623791091 a007 Real Root Of -461*x^4-743*x^3+888*x^2+72*x+217 2415720623813809 r005 Re(z^2+c),c=-53/110+17/27*I,n=52 2415720626363366 m005 (1/2*gamma+10/11)/(6*Catalan-5) 2415720626510854 h001 (-2*exp(6)+1)/(-6*exp(4)-6) 2415720629213483 a001 2149991360/89 2415720629287092 m001 1/ln(DuboisRaymond)*Magata^3 2415720636061080 r009 Re(z^3+c),c=-39/94+13/24*I,n=59 2415720636410296 a001 233/123*24476^(29/31) 2415720643665081 a001 9349/4181*514229^(52/59) 2415720648123529 m005 (35/44+1/4*5^(1/2))/(6*Catalan+1/9) 2415720655458334 a005 (1/sin(70/153*Pi))^872 2415720664226296 a007 Real Root Of 204*x^4-859*x^3-491*x^2-898*x+257 2415720667467921 r005 Re(z^2+c),c=-43/31+25/46*I,n=2 2415720680020277 a007 Real Root Of -442*x^4-718*x^3+623*x^2-885*x-843 2415720687647265 r009 Im(z^3+c),c=-3/7+7/60*I,n=6 2415720689226974 h001 (5/6*exp(2)+7/8)/(2/7*exp(2)+4/5) 2415720690877484 a001 12238/5473*514229^(52/59) 2415720691011235 a001 2149991415/89 2415720693345108 h001 (1/12*exp(1)+5/7)/(1/2*exp(2)+1/5) 2415720699999997 a001 7464566+7465176*5^(1/2) 2415720700118624 a001 48315257/2-377/2*5^(1/2) 2415720700558715 m001 (Ei(1)-Ei(1,1))/(Zeta(1,-1)+Thue) 2415720701123595 a001 2149991424/89 2415720701573033 a001 2/89*(1/2+1/2*5^(1/2))^48 2415720701573033 a001 10749957122/89*8^(1/3) 2415720702022820 a001 39603/17711*514229^(52/59) 2415720702247191 a001 2149991425/89 2415720703670189 r005 Re(z^2+c),c=-19/26+23/94*I,n=28 2415720705617977 a001 2149991428/89 2415720708483110 a001 3/199*(1/2*5^(1/2)+1/2)^16*199^(17/21) 2415720711199097 m002 -4*Pi-Cosh[Pi]+ProductLog[Pi]/Pi^6 2415720720056354 a001 15127/6765*514229^(52/59) 2415720729213483 a001 2149991449/89 2415720733916151 a007 Real Root Of 36*x^4+845*x^3-559*x^2+854*x-789 2415720736785842 m001 (1+3^(1/2))^(1/2)+FeigenbaumKappa-Lehmer 2415720754150371 m001 2*Pi/GAMMA(5/6)/(Paris-exp(Pi)) 2415720755791718 m002 -(E^Pi*Coth[Pi])+(Pi^6*Csch[Pi])/4 2415720759693994 a001 105937/41*322^(12/31) 2415720760748676 r005 Re(z^2+c),c=37/94+8/9*I,n=2 2415720764599672 r005 Im(z^2+c),c=-99/106+13/53*I,n=22 2415720765964316 a007 Real Root Of -113*x^4+478*x^3-513*x^2+880*x-189 2415720769027157 a007 Real Root Of -732*x^4-852*x^3-621*x^2+772*x+19 2415720778146810 m001 (Ei(1)+GAMMA(19/24))/(gamma+ln(2)) 2415720785212295 r009 Im(z^3+c),c=-7/20+8/45*I,n=12 2415720795236417 r005 Re(z^2+c),c=-13/102+35/39*I,n=10 2415720802765333 r005 Re(z^2+c),c=-17/114+26/61*I,n=5 2415720809373845 r005 Im(z^2+c),c=-21/50+25/61*I,n=33 2415720813237569 r005 Re(z^2+c),c=-1/70+30/49*I,n=8 2415720825982204 a001 17*521^(14/33) 2415720842760753 m001 (sin(1)+FeigenbaumDelta)/(Niven+Stephens) 2415720843660034 a001 2889/1292*514229^(52/59) 2415720851459208 m005 (1/3*exp(1)-1/8)/(3/4*Catalan-4/11) 2415720853353734 b008 6+9*Cosh[2*Pi] 2415720853353734 m002 -3+18*Cosh[Pi]^2 2415720858466470 a007 Real Root Of -994*x^4+811*x^3-796*x^2+744*x+241 2415720859551804 r005 Re(z^2+c),c=-21/110+24/49*I,n=46 2415720861920816 h001 (5/7*exp(2)+1/2)/(6/11*exp(1)+10/11) 2415720862766766 a007 Real Root Of -31*x^4-716*x^3+807*x^2+298*x-311 2415720872476032 s001 sum(exp(-Pi)^(n-1)*A209973[n],n=1..infinity) 2415720874128136 p004 log(19697/1759) 2415720874306986 a007 Real Root Of 608*x^4-708*x^3-973*x^2-883*x+278 2415720887237187 m001 GAMMA(7/12)^2/Niven^2/exp(Zeta(3)) 2415720891011235 a001 2149991593/89 2415720896846250 m009 (4/3*Catalan+1/6*Pi^2-4/5)/(5/6*Psi(1,2/3)+6) 2415720897474439 m001 1/Ei(1)^2/ln(Conway)^2/GAMMA(13/24) 2415720898091706 m001 (-sqrt(1+sqrt(3))+1/2)/(Pi^(1/2)+3) 2415720899602677 a001 47/196418*17711^(13/55) 2415720900763044 m008 (Pi^3+4/5)/(4*Pi+3/5) 2415720901369277 r005 Im(z^2+c),c=-13/102+39/44*I,n=24 2415720902249630 r009 Re(z^3+c),c=-13/118+47/58*I,n=8 2415720903164079 r005 Im(z^2+c),c=-21/44+25/54*I,n=32 2415720908398304 s001 sum(exp(-Pi/3)^(n-1)*A183082[n],n=1..infinity) 2415720922536856 r002 3th iterates of z^2 + 2415720923813194 h001 (-5*exp(1)-8)/(-3*exp(8)+5) 2415720929296433 m001 ln(3)*(Totient+Thue) 2415720937708288 h001 (11/12*exp(2)+7/9)/(3/10*exp(2)+10/11) 2415720944236282 b008 Csch[2/3]/EulerGamma 2415720948255086 m001 BesselJ(1,1)*(3^(1/3))/exp(cos(Pi/12)) 2415720956806215 r009 Re(z^3+c),c=-61/114+19/36*I,n=14 2415720975584817 r005 Im(z^2+c),c=-43/118+17/40*I,n=12 2415720977629443 a007 Real Root Of 237*x^4+813*x^3+965*x^2+559*x-891 2415720979956469 s002 sum(A180137[n]/(n^3*pi^n-1),n=1..infinity) 2415720979970402 a007 Real Root Of 726*x^4+842*x^3+250*x^2-898*x+188 2415720992558696 m001 exp(Pi)+exp(1)*Artin 2415720999416358 r009 Re(z^3+c),c=-31/78+22/43*I,n=48 2415721000590963 m005 (1/2*Pi+1/9)/(6*Zeta(3)-1/4) 2415721005777896 m003 30+Sqrt[5]/32+(Sqrt[5]*Tan[1/2+Sqrt[5]/2])/8 2415721011125530 k009 concat of cont frac of 2415721014194847 b008 5*2^(1/2+Sqrt[Pi]) 2415721027642849 a007 Real Root Of -42*x^4+37*x^3+473*x^2+595*x+629 2415721031862938 m005 (1/2*Zeta(3)-10/11)/(2/7*5^(1/2)+7/11) 2415721032191381 r005 Re(z^2+c),c=-7/44+27/50*I,n=23 2415721032608048 r005 Re(z^2+c),c=-65/66+5/24*I,n=58 2415721041377111 a007 Real Root Of -499*x^4-971*x^3+580*x^2+206*x+418 2415721055408177 r005 Re(z^2+c),c=9/38+30/59*I,n=31 2415721056750971 l006 ln(278/3113) 2415721060161669 r005 Re(z^2+c),c=-19/102+1/2*I,n=37 2415721061610128 m001 GAMMA(17/24)/ln(Lehmer)/Zeta(7)^2 2415721066551133 a007 Real Root Of -517*x^4-646*x^3+954*x^2-908*x+739 2415721067436003 r008 a(0)=7,K{-n^6,44-41*n+58*n^2-61*n^3} 2415721072907423 b008 24+Pi*ArcCoth[20] 2415721084824011 r009 Re(z^3+c),c=-11/98+29/39*I,n=14 2415721086082501 m001 FellerTornier+Riemann3rdZero-Salem 2415721087601949 m001 (-BesselI(0,2)+BesselI(1,2))/(1+Si(Pi)) 2415721087651545 m001 (ln(2)/ln(10)+BesselI(0,2))/(Lehmer+PlouffeB) 2415721091405170 m005 (1/2*exp(1)-11/12)/(3/7*exp(1)+2/3) 2415721095973401 m005 (4*2^(1/2)-1)/(2/3*Pi-1/6) 2415721099208193 a001 55/322*199^(29/31) 2415721110278799 v002 sum(1/(2^n*(20*n^2-36*n+44)),n=1..infinity) 2415721111113528 k008 concat of cont frac of 2415721113723042 m001 1/Rabbit*MadelungNaCl^2/exp(gamma) 2415721116921627 r005 Im(z^2+c),c=-49/74+13/43*I,n=44 2415721119270726 m001 sqrt(1+sqrt(3))*FeigenbaumDelta/exp(sqrt(3))^2 2415721123367941 m001 Champernowne^BesselJ(1,1)*Champernowne^Totient 2415721128385322 b008 Pi-17*ProductLog[8] 2415721129928232 h001 (2/5*exp(1)+3/5)/(8/9*exp(2)+5/12) 2415721135938994 a007 Real Root Of -475*x^4-842*x^3+279*x^2-900*x+504 2415721136302704 r005 Re(z^2+c),c=13/42+7/36*I,n=21 2415721148012758 a001 521/89*2178309^(13/51) 2415721149396551 r005 Re(z^2+c),c=-1/19+39/64*I,n=37 2415721172763057 r009 Re(z^3+c),c=-49/118+23/47*I,n=20 2415721177303028 r005 Re(z^2+c),c=23/106+17/42*I,n=24 2415721185196641 m001 1/Robbin^2*ln(Magata)/OneNinth^2 2415721192353797 a001 2207/5*4181^(12/25) 2415721195773548 r002 55th iterates of z^2 + 2415721205193882 a007 Real Root Of 238*x^4+581*x^3+293*x^2+576*x-233 2415721211101101 k006 concat of cont frac of 2415721211214431 k006 concat of cont frac of 2415721211218337 k009 concat of cont frac of 2415721211221112 k009 concat of cont frac of 2415721211401936 m001 Lehmer^(Porter/cos(1)) 2415721217748902 a008 Real Root of x^4-x^3+x^2+12*x-25 2415721221260676 a001 29/53316291173*144^(3/10) 2415721221697309 m005 (1/2*2^(1/2)-1/6)/(5/7*3^(1/2)+1) 2415721236811414 k006 concat of cont frac of 2415721270251376 r009 Re(z^3+c),c=-19/32+8/29*I,n=40 2415721273627194 r002 22th iterates of z^2 + 2415721276893021 h001 (3/8*exp(1)+1/11)/(7/12*exp(2)+2/7) 2415721286644193 a007 Real Root Of 423*x^4+792*x^3-742*x^2-127*x+783 2415721290468135 m002 1+E^Pi+(Csch[Pi]*Log[Pi])/6 2415721296255860 a007 Real Root Of 129*x^4+49*x^3-385*x^2+384*x-528 2415721298574241 r005 Re(z^2+c),c=-25/122+16/35*I,n=44 2415721304621777 a007 Real Root Of -199*x^4-620*x^3-400*x^2+171*x+784 2415721304670215 h001 (7/8*exp(1)+4/5)/(1/12*exp(2)+7/10) 2415721314541208 a003 sin(Pi*9/116)/sin(Pi*52/107) 2415721336221053 m005 (1/6*exp(1)+3/5)/(1/2*exp(1)+3) 2415721339617676 r009 Re(z^3+c),c=-31/90+21/53*I,n=24 2415721340376715 m002 (Pi^4*Coth[Pi])/4-Log[Pi]/4 2415721342717273 r005 Im(z^2+c),c=11/48+5/37*I,n=12 2415721349450793 m001 (-Ei(1)+GAMMA(17/24))/(Catalan+ln(5)) 2415721367882281 l006 ln(7140/9091) 2415721374634387 p001 sum(1/(485*n+324)/n/(512^n),n=1..infinity) 2415721377852375 b008 LogIntegral[-2+24*Pi] 2415721382143717 m001 exp(GAMMA(17/24))*LaplaceLimit*Zeta(7) 2415721383410282 m001 Stephens*(FeigenbaumDelta-Weierstrass) 2415721384987463 a007 Real Root Of -136*x^4-400*x^3-531*x^2-619*x+596 2415721400940251 a007 Real Root Of 252*x^4+193*x^3-797*x^2+402*x-239 2415721406850378 m005 (1/3*Zeta(3)+1/2)/(2/5*5^(1/2)-6/7) 2415721415465976 r005 Re(z^2+c),c=11/60+23/39*I,n=4 2415721421720241 k006 concat of cont frac of 2415721422760729 r005 Re(z^2+c),c=-9/34+15/56*I,n=9 2415721424313453 s001 sum(exp(-Pi/2)^(n-1)*A003356[n],n=1..infinity) 2415721458381534 r005 Im(z^2+c),c=-1+48/245*I,n=4 2415721460841970 a007 Real Root Of 298*x^4+776*x^3+116*x^2+144*x+462 2415721476571068 r009 Re(z^3+c),c=-3/82+43/58*I,n=64 2415721486987528 a003 -1/2+cos(2/21*Pi)-2*cos(1/21*Pi)-cos(4/27*Pi) 2415721487988713 a007 Real Root Of -534*x^4-809*x^3+968*x^2-346*x+296 2415721489097495 l006 ln(743/8320) 2415721492128695 a007 Real Root Of -927*x^4-826*x^3-505*x^2+882*x-21 2415721495196728 p003 LerchPhi(1/25,2,154/75) 2415721500838609 a001 29*(1/2*5^(1/2)+1/2)^9*3^(1/12) 2415721500905547 b008 -179/7+Sqrt[2] 2415721507715981 m001 Tribonacci^2*ln(TreeGrowth2nd)/GAMMA(1/12) 2415721515623678 q001 2/82791 2415721525131679 m005 (1/3*2^(1/2)+1/3)/(4/9*exp(1)-7/8) 2415721531185588 m001 Paris^Mills*Paris^(ln(2)/ln(10)) 2415721534584678 r005 Re(z^2+c),c=7/122+17/26*I,n=16 2415721534669116 r005 Im(z^2+c),c=-8/25+18/47*I,n=39 2415721541469809 a007 Real Root Of 762*x^4+270*x^3+332*x^2-405*x-116 2415721543347106 l006 ln(6269/7982) 2415721568958162 a007 Real Root Of -362*x^4-567*x^3+245*x^2-871*x+801 2415721585892826 a007 Real Root Of 356*x^4+688*x^3-73*x^2+923*x+231 2415721600906420 m001 Champernowne^2/exp(Backhouse)^2/Si(Pi)^2 2415721603873832 a007 Real Root Of -470*x^4-689*x^3+948*x^2-57*x+623 2415721639717934 m001 1/log(2+sqrt(3))*MadelungNaCl/ln(sqrt(3)) 2415721641457638 s002 sum(A220854[n]/(n*2^n-1),n=1..infinity) 2415721641679412 m005 (17/20+1/4*5^(1/2))/(10/11*Catalan+5) 2415721651509291 a003 cos(Pi*30/71)/sin(Pi*53/111) 2415721655683927 m001 (Pi^(1/2)+ReciprocalFibonacci)/(Ei(1)-exp(Pi)) 2415721656674566 s002 sum(A101995[n]/((2*n)!),n=1..infinity) 2415721668633784 m001 (Zeta(3)-3^(1/3))/(BesselI(1,2)-Gompertz) 2415721684472504 m001 (-ln(2^(1/2)+1)+Landau)/(ln(2)/ln(10)+ln(3)) 2415721686129537 r005 Re(z^2+c),c=-27/118+20/49*I,n=14 2415721687890749 a003 cos(Pi*1/119)/sin(Pi*11/81) 2415721690852436 a001 2207/987*514229^(52/59) 2415721692261974 m005 (1/2+1/2*5^(1/2))/(8/11*gamma+1/4) 2415721698361500 r005 Im(z^2+c),c=-155/126+1/17*I,n=37 2415721699200651 m001 (Pi-Pi*2^(1/2)/GAMMA(3/4))/(Zeta(1/2)-Landau) 2415721706455221 m001 LaplaceLimit/GaussKuzminWirsing*exp(Zeta(3))^2 2415721709542043 r005 Re(z^2+c),c=-4/21+23/47*I,n=30 2415721711107168 k007 concat of cont frac of 2415721720382213 h001 (9/11*exp(1)+6/7)/(5/12*exp(1)+1/7) 2415721725426778 r005 Re(z^2+c),c=15/58+26/51*I,n=12 2415721732330977 r005 Re(z^2+c),c=-19/102+1/2*I,n=62 2415721739996352 m001 sin(1/5*Pi)/(BesselK(1,1)+FeigenbaumC) 2415721747575542 l006 ln(465/5207) 2415721749339705 r005 Re(z^2+c),c=-17/74+16/41*I,n=12 2415721752936908 m001 GAMMA(7/24)^2*ln(GAMMA(7/12))^2/sin(1)^2 2415721769842876 h001 (2/5*exp(2)+2/9)/(3/10*exp(1)+1/2) 2415721770655384 r009 Re(z^3+c),c=-21/62+23/60*I,n=23 2415721775436552 l006 ln(5398/6873) 2415721778863879 m001 Catalan*ln(GlaisherKinkelin)^2/GAMMA(1/24) 2415721779329871 a007 Real Root Of 556*x^4+838*x^3-930*x^2+534*x-404 2415721779490043 r005 Re(z^2+c),c=-43/54+5/64*I,n=50 2415721796774530 m008 (3/4*Pi^2+1/5)/(1/3*Pi^4-1) 2415721799867315 s002 sum(A033389[n]/(n^3*2^n+1),n=1..infinity) 2415721800850984 m001 (BesselI(1,2)+GaussAGM)/(cos(1)+arctan(1/2)) 2415721814511962 a001 3/17711*144^(1/14) 2415721818485874 m002 E^Pi+6/Pi^4+3/Pi 2415721831339026 m001 (OneNinth+Stephens)/(Magata-gamma) 2415721836755384 m001 (cos(1)+BesselK(0,1))/(Pi+Chi(1)) 2415721842182574 h001 (7/11*exp(2)+7/8)/(2/9*exp(2)+2/3) 2415721882403435 m001 (DuboisRaymond+Landau)/(ln(5)+exp(1/exp(1))) 2415721884209199 r005 Re(z^2+c),c=-49/62+2/13*I,n=50 2415721889886880 p004 log(30223/2699) 2415721901387787 a003 cos(Pi*38/117)*cos(Pi*33/68) 2415721902086286 s002 sum(A013687[n]/(exp(n)+1),n=1..infinity) 2415721913121162 k009 concat of cont frac of 2415721917269701 m001 BesselJ(1,1)*Grothendieck-GAMMA(23/24) 2415721927859250 m001 (PlouffeB+Trott2nd)/(ln(Pi)-Zeta(1,2)) 2415721939823442 m004 (15625*Pi)/2+25*Sqrt[5]*Pi-Cosh[Sqrt[5]*Pi] 2415721946747717 a007 Real Root Of -289*x^4-449*x^3+130*x^2+720*x+161 2415721946976888 p003 LerchPhi(1/8,3,352/217) 2415721964660534 m005 (1/3*gamma-1/2)/(4*Pi+1/6) 2415721964667015 a007 Real Root Of 36*x^4-67*x^3-496*x^2-546*x-595 2415721965335908 r008 a(0)=0,K{-n^6,68*n^3+122*n^2+164*n+60} 2415721991312911 k008 concat of cont frac of 2415721999818584 a007 Real Root Of -569*x^4-831*x^3+955*x^2-872*x-17 2415722004395862 r005 Re(z^2+c),c=-4/15+13/48*I,n=15 2415722012537871 m005 (1/2*3^(1/2)-3/8)/(5/4+7/20*5^(1/2)) 2415722018950452 s002 sum(A206400[n]/((10^n+1)/n),n=1..infinity) 2415722026248661 r009 Re(z^3+c),c=-31/114+9/41*I,n=10 2415722028776673 m004 (15625*Pi)/2+25*Sqrt[5]*Pi-Sinh[Sqrt[5]*Pi] 2415722030515894 m001 1/GAMMA(1/6)/Catalan/exp(GAMMA(5/24)) 2415722032227755 a007 Real Root Of -420*x^4-915*x^3+144*x^2+152*x+931 2415722037005967 m001 ln(GAMMA(11/12))^2*GAMMA(1/24)^2*GAMMA(3/4)^2 2415722041012592 m001 Paris*exp(Magata)^2*GAMMA(13/24)^2 2415722041909586 m002 2+E^Pi+5/Pi^3-Log[Pi] 2415722042129432 l006 ln(652/7301) 2415722043272976 a001 726103/41*123^(2/31) 2415722051289822 m001 BesselJ(1,1)^Conway*LandauRamanujan^Conway 2415722054318488 m001 LandauRamanujan*CopelandErdos*ln((3^(1/3)))^2 2415722067341160 m001 (GAMMA(19/24)-Champernowne)/(Ei(1)+Zeta(1/2)) 2415722073628656 m001 ln(3)*KomornikLoreti+ZetaP(2) 2415722074991814 m001 exp(GAMMA(13/24))/(3^(1/3))^2/GAMMA(23/24) 2415722078617968 r005 Im(z^2+c),c=-23/106+13/37*I,n=13 2415722079761600 m005 (1/2*Pi-9/10)/(7/9*Pi+1/3) 2415722087206608 h001 (8/11*exp(1)+9/10)/(1/9*exp(1)+8/9) 2415722091245183 m001 FibonacciFactorial+Gompertz+Lehmer 2415722094335909 r002 34th iterates of z^2 + 2415722094609719 m005 (1/3*2^(1/2)+1/11)/(4/5*Catalan-1/2) 2415722096834541 l006 ln(4527/5764) 2415722102099508 m005 (3/4*Catalan-5)/(1/4*Pi+1) 2415722110558563 m001 exp(1)^(Pi*csc(1/12*Pi)/GAMMA(11/12)*ZetaP(4)) 2415722110558563 m001 exp(Pi*csc(1/12*Pi)/GAMMA(11/12)*ZetaP(4)) 2415722111115152 k008 concat of cont frac of 2415722111373111 k006 concat of cont frac of 2415722116641542 r009 Re(z^3+c),c=-23/58+29/52*I,n=39 2415722123664766 m001 Gompertz*(exp(1)+MertensB3) 2415722134261719 m001 OneNinth^2/exp(HardHexagonsEntropy)*sin(1) 2415722137225667 m003 -7/15+Sqrt[5]/4+Sqrt[5]/(2*Log[1/2+Sqrt[5]/2]) 2415722139534216 r005 Re(z^2+c),c=-17/74+13/33*I,n=19 2415722140959105 r005 Im(z^2+c),c=-13/118+31/53*I,n=6 2415722158308017 r005 Im(z^2+c),c=-19/26+24/121*I,n=3 2415722159167362 m001 BesselJ(1,1)^2/Niven*exp(GAMMA(7/12))^2 2415722166794906 r005 Im(z^2+c),c=-13/22+19/44*I,n=26 2415722167859740 m001 1/Catalan^2/Lehmer*ln(sqrt(2))^2 2415722170463996 m001 (FeigenbaumD+Paris)/(Zeta(1,-1)+ln(2+3^(1/2))) 2415722179372823 m001 1/exp(Zeta(7))/GAMMA(17/24)/sinh(1) 2415722189950196 a007 Real Root Of -207*x^4-345*x^3+96*x^2-639*x+82 2415722190780628 r005 Im(z^2+c),c=-41/52+11/42*I,n=4 2415722191081306 a007 Real Root Of -525*x^4-833*x^3-243*x^2+976*x+240 2415722205380359 l006 ln(839/9395) 2415722211939110 k007 concat of cont frac of 2415722225995085 a007 Real Root Of -181*x^4-601*x^3-681*x^2-687*x+6 2415722233002853 a007 Real Root Of -178*x^4-316*x^3+209*x^2-78*x+199 2415722237444496 r005 Re(z^2+c),c=1/17+13/55*I,n=15 2415722250375874 h001 (3/8*exp(1)+2/11)/(4/7*exp(2)+3/4) 2415722250535682 a007 Real Root Of -777*x^4+662*x^3+375*x^2+827*x-2 2415722253408987 m001 (GaussKuzminWirsing-Rabbit)/(Pi+Zeta(1/2)) 2415722257899555 a007 Real Root Of 28*x^4+72*x^3+214*x^2+126*x-883 2415722262028994 r002 33th iterates of z^2 + 2415722272956965 a001 64079/5*63245986^(7/24) 2415722274296879 p003 LerchPhi(1/25,5,78/37) 2415722278534335 a007 Real Root Of -91*x^4+195*x^3+702*x^2-381*x+831 2415722284283258 r005 Im(z^2+c),c=-7/25+27/44*I,n=55 2415722300041853 r005 Re(z^2+c),c=-15/52+10/63*I,n=15 2415722316430179 m001 1/exp(RenyiParking)^2*Si(Pi)^2*Pi 2415722319452198 m001 (ln(2)+BesselJ(1,1))/(Kolakoski-RenyiParking) 2415722324947573 m005 (1/2*Pi+1/10)/(1/10*Zeta(3)+4/7) 2415722328409422 a003 cos(Pi*5/103)-cos(Pi*22/95) 2415722336288549 a007 Real Root Of 292*x^4+240*x^3-612*x^2+838*x-965 2415722343543338 m009 (1/5*Psi(1,3/4)-1/4)/(Psi(1,1/3)+3/5) 2415722347018633 m005 (1/2*exp(1)-1/5)/(1/10*Catalan-4/7) 2415722349336864 m001 Pi+2^(1/3)-2/3*Pi*3^(1/2)/GAMMA(2/3)+ln(2) 2415722372058451 a002 7^(5/3)-14^(1/7) 2415722379608804 m001 (1-BesselI(0,1))/(-GAMMA(5/6)+Trott2nd) 2415722385109320 r002 11th iterates of z^2 + 2415722385413873 r008 a(0)=3,K{-n^6,-2-5*n^3+7*n^2+5*n} 2415722387897629 r002 23th iterates of z^2 + 2415722415863133 a007 Real Root Of 282*x^4+887*x^3+754*x^2+340*x-678 2415722417955865 a007 Real Root Of 125*x^4+51*x^3-676*x^2+231*x+965 2415722418953891 a001 38/305*28657^(2/31) 2415722422139521 r005 Re(z^2+c),c=-5/17+3/23*I,n=7 2415722428009430 m001 (2^(1/3)+AlladiGrinstead*Thue)/AlladiGrinstead 2415722428191681 r009 Re(z^3+c),c=-14/27+30/47*I,n=2 2415722435931266 r005 Re(z^2+c),c=1/6+9/25*I,n=53 2415722441082374 m001 (-gamma(3)+LandauRamanujan)/(2^(1/3)+Ei(1)) 2415722444384090 m008 (2/5*Pi^3+3/4)/(3/5*Pi^4-4) 2415722445695819 h001 (9/11*exp(2)+9/11)/(4/5*exp(1)+2/3) 2415722450714133 m001 exp(1/Pi)^Si(Pi)*Totient 2415722453396785 a007 Real Root Of -606*x^4+230*x^3+148*x^2+999*x+238 2415722460722283 m005 (1/2*2^(1/2)-2/3)/(3/4*3^(1/2)+3/8) 2415722466471867 m001 ln(GAMMA(7/24))/Niven/sqrt(1+sqrt(3))^2 2415722468734902 p001 sum((-1)^n/(451*n+406)/(24^n),n=0..infinity) 2415722484050379 r005 Im(z^2+c),c=-11/32+5/13*I,n=14 2415722489604830 a007 Real Root Of -362*x^4+665*x^3-410*x^2+449*x+143 2415722492509634 r005 Re(z^2+c),c=4/29+35/58*I,n=44 2415722503225534 a007 Real Root Of 389*x^4+544*x^3-890*x^2+115*x-107 2415722516187866 p001 sum(1/(484*n+325)/n/(512^n),n=1..infinity) 2415722519510433 m005 (13/6+5/2*5^(1/2))/(2*gamma-5/6) 2415722526228396 b008 24+ExpIntegralEi[-1+Sqrt[2]] 2415722531671262 m001 (-Artin+Tribonacci)/(GAMMA(19/24)-LambertW(1)) 2415722536928474 m001 1/ln(GAMMA(3/4))^2/MinimumGamma^2*Zeta(1/2)^2 2415722538860483 a001 2/17711*317811^(23/38) 2415722539672476 a008 Real Root of x^4-x^3-8*x^2-27*x+7 2415722543468807 a007 Real Root Of 349*x^4+772*x^3-320*x^2-145*x+515 2415722566215252 a001 1364/28657*10946^(19/45) 2415722568447105 m005 (1/3*Catalan+1/5)/(11/9+7/18*5^(1/2)) 2415722571371268 l006 ln(3656/4655) 2415722592713724 p003 LerchPhi(1/8,6,231/124) 2415722594842089 a001 8/39603*2^(8/31) 2415722594936150 r005 Im(z^2+c),c=-39/118+17/44*I,n=28 2415722605656926 a007 Real Root Of -373*x^4-958*x^3-441*x^2-719*x+34 2415722607793842 a007 Real Root Of -397*x^4-513*x^3+798*x^2-977*x-729 2415722609732012 p001 sum((-1)^n/(538*n+407)/(25^n),n=0..infinity) 2415722620577350 r005 Im(z^2+c),c=-13/46+13/35*I,n=31 2415722632321736 a007 Real Root Of 216*x^4-803*x^3-436*x^2-389*x+130 2415722641121032 k006 concat of cont frac of 2415722644021340 a001 4870847/13*144^(3/8) 2415722651212151 k006 concat of cont frac of 2415722652254014 a001 1860498/5*610^(7/24) 2415722677156126 m001 (gamma(1)-exp(-1/2*Pi))/(Landau-Niven) 2415722682971409 s001 sum(exp(-3*Pi/5)^n*A282892[n],n=1..infinity) 2415722710385235 m001 BesselI(1,1)^(BesselI(1,2)/Zeta(1,-1)) 2415722724874191 r005 Im(z^2+c),c=-5/94+15/43*I,n=3 2415722725098218 m001 (exp(Pi)+exp(1/Pi))/(-Porter+ZetaP(2)) 2415722735200206 r002 16th iterates of z^2 + 2415722735628549 m001 exp(Pi)+Zeta(5)^ZetaP(2) 2415722739230902 m005 (1/2*Pi-8/9)/(7/9*gamma-1/6) 2415722743713516 m001 (Pi-Zeta(1,2))/(GAMMA(23/24)+LaplaceLimit) 2415722747102999 a001 76/4052739537881*514229^(17/19) 2415722749130366 r005 Im(z^2+c),c=-7/30+17/27*I,n=51 2415722757621283 a007 Real Root Of -384*x^4-424*x^3-700*x^2+852*x+242 2415722762929233 r009 Re(z^3+c),c=-5/122+35/59*I,n=41 2415722765844109 m005 (1/2*3^(1/2)-5/6)/(4/7*exp(1)-1/5) 2415722769500565 a001 2207/5*6557470319842^(7/24) 2415722771343521 m001 (gamma-ln(3))/(-exp(1/Pi)+BesselI(1,2)) 2415722771735203 r005 Re(z^2+c),c=43/110+7/51*I,n=6 2415722772027382 r005 Im(z^2+c),c=-11/86+35/59*I,n=6 2415722774575895 l006 ln(187/2094) 2415722781031673 r009 Re(z^3+c),c=-35/118+15/53*I,n=7 2415722783740637 r005 Im(z^2+c),c=-31/78+14/25*I,n=54 2415722786088447 r005 Re(z^2+c),c=-35/106+1/7*I,n=2 2415722787718523 m005 (1/2*2^(1/2)+11/12)/(5/12*3^(1/2)+6) 2415722788286363 a001 4181/18*2^(3/53) 2415722809026977 r005 Im(z^2+c),c=-39/106+25/63*I,n=31 2415722812966894 a007 Real Root Of 501*x^4-819*x^3+695*x^2-686*x+135 2415722825394859 m001 (Psi(2,1/3)+Ei(1,1))/(Niven+Riemann2ndZero) 2415722834951450 m001 1/exp(Robbin)/Bloch/GAMMA(5/12)^2 2415722840310527 r009 Re(z^3+c),c=-29/46+22/45*I,n=5 2415722841493402 r005 Re(z^2+c),c=-13/44+3/55*I,n=5 2415722846091856 a001 165580141/843*199^(10/11) 2415722882242016 m001 (ln(2^(1/2)+1)-arctan(1/2))/(GaussAGM-Robbin) 2415722882483289 a001 4106118243/5*20365011074^(1/22) 2415722882483373 a001 6643838879/5*514229^(1/22) 2415722894572848 m002 E^Pi+1/(5*Pi^2)+Tanh[Pi] 2415722895319079 r008 a(0)=0,K{-n^6,66*n^3+125*n^2+164*n+59} 2415722897506057 r008 a(0)=0,K{-n^6,(2*n+1)*(33+20*n^2+85*n)} 2415722898821466 r005 Re(z^2+c),c=-51/74+11/53*I,n=13 2415722900556413 r008 a(0)=0,K{-n^6,8*n^3+270*n^2+135*n+1} 2415722902304215 m007 (-5/6*gamma-5/3*ln(2)-1/6)/(-3/5*gamma-2/5) 2415722904895204 l006 ln(6441/8201) 2415722922575554 r009 Re(z^3+c),c=-73/126+21/38*I,n=11 2415722928081961 a001 8*18^(13/34) 2415722935107828 m005 (1/2*gamma-1/12)/(64/99+1/11*5^(1/2)) 2415722936021334 m005 (1/3*Zeta(3)+2/11)/(5/9*Catalan-3/4) 2415722937595004 v003 sum((2/3*n^3+4/3*n+21)/(n!+2),n=1..infinity) 2415722944637664 m001 (Sarnak+Totient)/(BesselK(1,1)-Backhouse) 2415722947261463 m003 -27/8+Sqrt[5]/64+Tanh[1/2+Sqrt[5]/2] 2415722955652337 m005 (1/2*Pi-2)/(5/6*3^(1/2)+1/3) 2415722958304032 h001 (5/11*exp(1)+1/12)/(5/7*exp(2)+2/11) 2415722965556542 a003 sin(Pi*1/87)*sin(Pi*7/30) 2415722969742503 r005 Re(z^2+c),c=-7/10+43/242*I,n=2 2415722975252261 m001 FeigenbaumKappa*Grothendieck 2415722975392217 m001 GlaisherKinkelin+MertensB2+Paris 2415722988747171 m001 MinimumGamma^exp(-Pi)+exp(Pi) 2415722993219711 m001 Riemann1stZero^2/exp(Cahen)^2*Robbin^2 2415722996384936 p004 log(24109/2153) 2415723017258669 a007 Real Root Of -441*x^4-771*x^3+795*x^2+409*x+498 2415723023279408 r005 Im(z^2+c),c=-23/98+37/47*I,n=9 2415723024304751 a007 Real Root Of -409*x^4+762*x^3+418*x^2+569*x-14 2415723038200296 m001 1/Ei(1)/exp(TwinPrimes)/GAMMA(5/6) 2415723043703652 m001 2^(1/2)+Pi^HeathBrownMoroz 2415723045236640 r005 Im(z^2+c),c=-17/27+1/22*I,n=52 2415723045812470 r005 Im(z^2+c),c=-11/8+10/117*I,n=7 2415723054563590 a007 Real Root Of -47*x^4+248*x^3+792*x^2+70*x+644 2415723062876971 a001 29*(1/2*5^(1/2)+1/2)*7^(16/19) 2415723072229824 a007 Real Root Of -870*x^4+209*x^3+769*x^2+903*x-263 2415723077818482 m001 exp(Lehmer)*KhintchineHarmonic*BesselJ(0,1) 2415723095570841 a007 Real Root Of -207*x^4-248*x^3+607*x^2-207*x-489 2415723099752865 r009 Re(z^3+c),c=-15/38+29/57*I,n=23 2415723104212556 r005 Re(z^2+c),c=23/86+3/20*I,n=43 2415723111312151 k006 concat of cont frac of 2415723117161101 k008 concat of cont frac of 2415723136073103 a001 2/13*3^(23/56) 2415723142252806 r005 Re(z^2+c),c=-6/29+19/42*I,n=51 2415723144345121 s002 sum(A222832[n]/(n^3*pi^n+1),n=1..infinity) 2415723157230771 m005 (9/8+1/4*5^(1/2))/(5*2^(1/2)-1/10) 2415723158191567 a007 Real Root Of 476*x^4+892*x^3-736*x^2-278*x-12 2415723167786505 p003 LerchPhi(1/3,5,100/189) 2415723168518846 a001 47/8*433494437^(13/20) 2415723169642671 m001 (-CopelandErdos+ErdosBorwein)/(gamma+gamma(2)) 2415723174712624 m001 (sin(1/5*Pi)+Weierstrass)/TreeGrowth2nd 2415723187674748 a007 Real Root Of 271*x^4+742*x^3+282*x^2+446*x+663 2415723203858153 r009 Re(z^3+c),c=-39/118+27/52*I,n=3 2415723213131713 k008 concat of cont frac of 2415723219203435 r005 Im(z^2+c),c=-53/102+11/29*I,n=22 2415723223568342 a001 28657/76*123^(22/57) 2415723228310965 r005 Re(z^2+c),c=-25/86+10/63*I,n=3 2415723228805526 r009 Im(z^3+c),c=-35/66+7/36*I,n=42 2415723238895909 r005 Im(z^2+c),c=-38/27+3/61*I,n=5 2415723239258761 a007 Real Root Of 449*x^4-755*x^3+620*x^2-309*x-123 2415723246045515 a007 Real Root Of -527*x^4+960*x^3-515*x^2+342*x+128 2415723246383071 m008 (4*Pi-5/6)/(1/2*Pi^6+5) 2415723248040898 a007 Real Root Of -441*x^4-912*x^3+923*x^2+976*x-867 2415723250426528 a007 Real Root Of 249*x^4+384*x^3-764*x^2-628*x-125 2415723257993933 r009 Re(z^3+c),c=-17/118+27/31*I,n=18 2415723259504145 r005 Im(z^2+c),c=-29/54+26/57*I,n=52 2415723294566631 r005 Im(z^2+c),c=-4/3+13/224*I,n=12 2415723299961866 a005 (1/cos(1/27*Pi))^130 2415723301856518 r009 Re(z^3+c),c=-13/54+4/35*I,n=4 2415723323036068 a007 Real Root Of 468*x^4+973*x^3-40*x^2+442*x-920 2415723324889216 m001 (Ei(1)-exp(1))/(exp(1/exp(1))+ReciprocalLucas) 2415723331980979 m008 (4/5*Pi^5+5/6)/(1/3*Pi^3-1/6) 2415723338253422 s002 sum(A207249[n]/(exp(n)),n=1..infinity) 2415723340399098 l006 ln(844/9451) 2415723342727688 l006 ln(2785/3546) 2415723345914326 m001 FellerTornier/(PisotVijayaraghavan+Trott) 2415723352194734 r005 Im(z^2+c),c=-3/23+14/43*I,n=5 2415723357326132 a007 Real Root Of 947*x^4+204*x^3-480*x^2-930*x-197 2415723365977205 m001 Riemann2ndZero^GAMMA(23/24)+2^(1/2) 2415723373421665 r009 Re(z^3+c),c=-47/122+18/37*I,n=56 2415723378214287 r005 Im(z^2+c),c=-23/98+21/59*I,n=20 2415723387791116 a007 Real Root Of -511*x^4-375*x^3-860*x^2+610*x+194 2415723392471523 a007 Real Root Of -201*x^4+473*x^3-878*x^2+515*x+183 2415723395555478 r005 Im(z^2+c),c=-43/114+2/5*I,n=46 2415723401864841 a007 Real Root Of 194*x^4+116*x^3-494*x^2+473*x-946 2415723414756012 a007 Real Root Of 766*x^4-411*x^3+281*x^2-746*x+167 2415723429922502 m001 (Ei(1)+arctan(1/3))/(exp(-1/2*Pi)+Rabbit) 2415723434585532 m001 GAMMA(2/3)^2/Sierpinski*exp(GAMMA(3/4)) 2415723435080747 m001 1/sin(1)/GAMMA(3/4)^2/ln(sqrt(Pi))^2 2415723435467448 a003 cos(Pi*19/117)/cos(Pi*13/34) 2415723439223603 a007 Real Root Of 253*x^4+242*x^3-691*x^2+89*x-957 2415723442359928 m001 (-Gompertz+ZetaP(2))/(GAMMA(19/24)-gamma) 2415723443336894 m001 1/ln(Trott)^2*Artin*GAMMA(1/12)^2 2415723460874331 a007 Real Root Of 461*x^4+958*x^3-818*x^2-672*x+956 2415723469614790 m005 (1/2*Pi-1/12)/(3/11*gamma+6) 2415723476627973 a001 3/28657*121393^(1/14) 2415723477132803 a001 3/75025*86267571272^(1/14) 2415723477443358 a001 1/15456*102334155^(1/14) 2415723478145122 p001 sum((-1)^n/(367*n+41)/(10^n),n=0..infinity) 2415723481605140 r005 Re(z^2+c),c=-4/5+8/127*I,n=36 2415723487022206 r009 Im(z^3+c),c=-7/16+6/55*I,n=35 2415723487800940 r005 Im(z^2+c),c=-107/98+13/57*I,n=4 2415723492391408 m001 (gamma+ln(Pi))/(-Sarnak+Trott) 2415723497714405 m001 (-FeigenbaumC+ThueMorse)/(3^(1/2)-ln(Pi)) 2415723501447653 l006 ln(657/7357) 2415723514323123 m005 (1/3*gamma-2/7)/(11/12*gamma-1/7) 2415723539770113 r005 Im(z^2+c),c=-15/31+23/50*I,n=44 2415723540898476 m001 KomornikLoreti/(Lehmer^Stephens) 2415723544813776 m001 (Zeta(1,-1)+Salem)/(2^(1/3)-sin(1)) 2415723550811007 m005 (1/3*gamma-1/3)/(9/11*gamma+1/9) 2415723553708230 a007 Real Root Of -266*x^4-392*x^3+304*x^2-593*x+326 2415723553884471 r005 Re(z^2+c),c=-27/34+11/125*I,n=46 2415723556905425 a007 Real Root Of 359*x^4+309*x^3-936*x^2+586*x-992 2415723569424129 a001 1/75283811239*233^(21/22) 2415723570404205 a003 cos(Pi*8/89)-cos(Pi*4/35) 2415723574845418 r005 Im(z^2+c),c=-165/122+1/63*I,n=63 2415723578266540 m001 GAMMA(5/6)*BesselK(0,1)^Grothendieck 2415723584414674 a007 Real Root Of 602*x^4-939*x^3+900*x^2-274*x-134 2415723595311733 m001 Psi(2,1/3)/(FellerTornier-exp(Pi)) 2415723606536770 m001 GAMMA(1/12)^2*exp(FeigenbaumC)^2/Zeta(1/2)^2 2415723612042675 s002 sum(A082911[n]/(n^2*2^n+1),n=1..infinity) 2415723620898534 m005 (1/2*2^(1/2)+3/4)/(1/10*gamma+6/11) 2415723622428532 m001 (FeigenbaumAlpha-Trott)^cos(1/12*Pi) 2415723627948123 m001 cos(Pi/12)^GaussAGM(1,1/sqrt(2))+exp(1/exp(1)) 2415723628468574 r002 12th iterates of z^2 + 2415723630769609 r005 Re(z^2+c),c=11/90+31/50*I,n=9 2415723633354071 m001 Khintchine^2/Champernowne*exp(Rabbit)^2 2415723640693570 a001 1/416020*196418^(31/41) 2415723644916443 m001 Sarnak^GAMMA(3/4)/(ZetaQ(2)^GAMMA(3/4)) 2415723659509566 p001 sum(1/(483*n+326)/n/(512^n),n=1..infinity) 2415723662400182 m001 KomornikLoreti/exp(1/Pi)/ZetaQ(2) 2415723662448765 m001 (Conway-Niven)/(gamma(2)-(1+3^(1/2))^(1/2)) 2415723665921615 r009 Re(z^3+c),c=-1/24+25/41*I,n=41 2415723673989759 r005 Re(z^2+c),c=-5/6+37/182*I,n=64 2415723675708183 a001 3571/75025*10946^(19/45) 2415723682225990 r009 Re(z^3+c),c=-9/62+31/34*I,n=44 2415723691886756 r009 Im(z^3+c),c=-7/20+8/45*I,n=20 2415723694263894 m001 Robbin^2*ErdosBorwein^2/exp(cosh(1)) 2415723697877528 m009 (4/5*Psi(1,3/4)-1/2)/(1/3*Psi(1,1/3)-4) 2415723699381930 s002 sum(A158311[n]/(n*10^n-1),n=1..infinity) 2415723700598330 r005 Re(z^2+c),c=-35/44+3/44*I,n=34 2415723712891586 m001 cosh(1)/Zeta(3)/ln(sin(Pi/5)) 2415723714757394 r005 Im(z^2+c),c=-28/25+1/34*I,n=37 2415723719542079 l006 ln(7484/9529) 2415723722426025 m009 (1/5*Pi^2+4)/(1/3*Psi(1,3/4)-3/5) 2415723725572341 a007 Real Root Of -910*x^4+553*x^3-629*x^2+813*x+244 2415723726655265 a007 Real Root Of 235*x^4+424*x^3-24*x^2+425*x-859 2415723728646343 r005 Re(z^2+c),c=-4/3+109/242*I,n=2 2415723729009453 a007 Real Root Of 421*x^4+827*x^3-178*x^2+397*x-681 2415723734051686 r005 Im(z^2+c),c=-11/94+11/35*I,n=10 2415723741326151 m001 exp(Pi)/Zeta(1,2)^(2/3) 2415723744392703 a003 cos(Pi*10/61)-cos(Pi*19/67) 2415723748367282 m006 (5*Pi-1)/(3/5*Pi^2+1/6) 2415723748367282 m008 (5*Pi-1)/(3/5*Pi^2+1/6) 2415723749818366 r005 Im(z^2+c),c=-65/126+23/56*I,n=39 2415723765667494 r005 Re(z^2+c),c=-41/34+13/90*I,n=62 2415723775333435 m001 GAMMA(3/4)/BesselK(1,1)*KhinchinLevy 2415723782392695 r005 Re(z^2+c),c=-9/46+23/48*I,n=37 2415723784178793 m001 exp(Champernowne)/Backhouse/LambertW(1)^2 2415723784905000 r005 Im(z^2+c),c=-19/94+19/55*I,n=16 2415723790649674 l006 ln(470/5263) 2415723792808470 r005 Re(z^2+c),c=-13/24+17/29*I,n=23 2415723796274354 a007 Real Root Of -543*x^4-923*x^3+620*x^2-972*x-486 2415723799642710 m001 1/Ei(1)/ln(Kolakoski)/GAMMA(7/24)^2 2415723801737392 m008 (4/5*Pi^5+1)/(1/3*Pi^5-1/4) 2415723802400243 a007 Real Root Of 290*x^4+161*x^3-954*x^2+888*x+106 2415723805355997 r009 Re(z^3+c),c=-29/78+25/51*I,n=15 2415723811893335 m006 (1/5*ln(Pi)+3)/(4*Pi+4/5) 2415723821937192 m001 (GAMMA(19/24)+Niven)/(3^(1/2)-cos(1)) 2415723831907031 r008 a(0)=0,K{-n^6,64*n^3+128*n^2+164*n+58} 2415723832739693 r008 a(0)=0,K{-n^6,54*n^3+153*n^2+159*n+48} 2415723832910412 r008 a(0)=0,K{-n^6,(2*n+1)*(46+26*n^2+66*n)} 2415723836839674 m005 (1/3*Pi+1/11)/(19/14+3/2*5^(1/2)) 2415723837581020 a001 9349/196418*10946^(19/45) 2415723843820794 a007 Real Root Of -403*x^4-977*x^3-96*x^2+165*x+910 2415723861197949 a001 24476/514229*10946^(19/45) 2415723861661515 a007 Real Root Of 561*x^4-47*x^3+322*x^2-559*x+115 2415723862032111 m005 (1/2*Zeta(3)-5/9)/(3/4*3^(1/2)+7/12) 2415723864603077 r005 Im(z^2+c),c=-15/22+49/116*I,n=7 2415723866773150 a001 39603/832040*10946^(19/45) 2415723868817973 m001 cos(1/5*Pi)^Artin*MertensB1 2415723875794014 a001 15127/317811*10946^(19/45) 2415723880927410 m001 Salem/(ln(gamma)^Zeta(3)) 2415723880966527 r009 Re(z^3+c),c=-61/114+19/36*I,n=17 2415723892516990 m008 (2*Pi^2+5)/(Pi^4+5) 2415723898755409 m005 (1/3*gamma-1/2)/(1/4*5^(1/2)+5/7) 2415723902109056 b008 5+E*Coth[1/7] 2415723902922960 a001 161/98209*2^(33/59) 2415723907752059 h001 (-3*exp(1/3)+4)/(-4*exp(3)+3) 2415723910521496 a007 Real Root Of -281*x^4-194*x^3+880*x^2-489*x+518 2415723930634951 a007 Real Root Of -298*x^4-864*x^3-101*x^2+804*x+500 2415723931571279 m005 (1/3*Catalan-1/7)/(2/3*5^(1/2)-9/11) 2415723933964529 m005 (1/2*5^(1/2)-5/7)/(8/9*Catalan+6/7) 2415723937623936 a001 5778/121393*10946^(19/45) 2415723942231965 m001 exp(GAMMA(1/3))/BesselK(1,1)/Zeta(9) 2415723942872160 l006 ln(4699/5983) 2415723945628234 r009 Im(z^3+c),c=-7/20+8/45*I,n=21 2415723945652082 r009 Im(z^3+c),c=-9/70+35/41*I,n=54 2415723946497341 a003 cos(Pi*7/25)-cos(Pi*20/69) 2415723953098961 m001 gamma(2)+Pi*csc(1/24*Pi)/GAMMA(23/24)+CareFree 2415723968420640 m001 (-GAMMA(5/6)+MertensB1)/(5^(1/2)+GAMMA(2/3)) 2415723976634902 m001 1/Magata/LandauRamanujan*ln(GAMMA(17/24))^2 2415723978796367 m005 (1/2*gamma-9/10)/(7/9*exp(1)+5/12) 2415723985816903 a007 Real Root Of 249*x^4+775*x^3+509*x^2+425*x+502 2415723999523636 p004 log(30559/2729) 2415724005535962 m001 GAMMA(11/12)^2/Sierpinski^2/exp(cos(Pi/12))^2 2415724024025530 a007 Real Root Of -239*x^4-123*x^3+749*x^2-862*x-48 2415724024781852 a008 Real Root of x^5-x^3-6*x^2-10*x-9 2415724031749432 a007 Real Root Of -512*x^4-830*x^3+881*x^2+146*x+947 2415724041231605 m001 exp(Pi)+GAMMA(23/24)^Cahen 2415724042981249 l006 ln(753/8432) 2415724048608775 r009 Re(z^3+c),c=-37/114+20/57*I,n=15 2415724053527562 a001 1/90481*521^(1/8) 2415724054791511 a001 267084832*18^(16/21) 2415724067241748 a007 Real Root Of -226*x^4-603*x^3-152*x^2-192*x-381 2415724077898436 r005 Im(z^2+c),c=-1+32/115*I,n=5 2415724112853086 r005 Im(z^2+c),c=-13/82+31/48*I,n=62 2415724114531141 k007 concat of cont frac of 2415724120451034 m005 (1/2*Catalan-10/11)/(5/12*exp(1)-3) 2415724143083878 a007 Real Root Of 3*x^4+725*x^3+68*x^2-74*x-1 2415724145075781 m001 Lehmer^2*DuboisRaymond^2*exp(Riemann2ndZero)^2 2415724178562917 h001 (4/11*exp(2)+3/5)/(1/3*exp(1)+5/11) 2415724180936944 r005 Re(z^2+c),c=5/102+25/42*I,n=23 2415724184775966 a001 5/1364*322^(16/49) 2415724185607000 a007 Real Root Of -570*x^4-932*x^3+844*x^2-872*x-759 2415724187850722 r005 Im(z^2+c),c=-24/29+9/55*I,n=45 2415724192656775 r005 Im(z^2+c),c=-25/44+15/49*I,n=12 2415724195256591 m001 (exp(1)-CareFree)^(2^(1/3)) 2415724195617100 l006 ln(6613/8420) 2415724202216760 r009 Re(z^3+c),c=-11/32+15/38*I,n=11 2415724211887750 r005 Re(z^2+c),c=-17/18+41/190*I,n=10 2415724215316338 m002 4/ProductLog[Pi]-Pi^3/ProductLog[Pi]+Tanh[Pi] 2415724222094276 h001 (7/12*exp(2)+5/9)/(7/12*exp(1)+3/7) 2415724246287177 a001 3/20633239*1364^(17/24) 2415724248211561 r005 Re(z^2+c),c=-5/28+31/60*I,n=59 2415724249731905 m001 (Weierstrass-ZetaQ(4))/(Kac-Sierpinski) 2415724255933996 m001 Riemann1stZero^BesselJ(0,1)/Pi 2415724256038425 a007 Real Root Of 331*x^4+442*x^3-961*x^2+51*x+690 2415724258677410 m001 (Zeta(1,-1)-Cahen)/(Khinchin+LaplaceLimit) 2415724259291355 b008 -11/E^E+Pi 2415724275488495 r005 Im(z^2+c),c=-25/23+14/57*I,n=7 2415724276621077 r005 Im(z^2+c),c=31/106+2/39*I,n=33 2415724290161178 m006 (1/5*exp(2*Pi)+3/4)/(5/6*exp(2*Pi)+1/5) 2415724301794714 r009 Im(z^3+c),c=-35/118+9/44*I,n=5 2415724301916582 g006 Psi(1,4/7)+Psi(1,4/5)-Psi(1,5/9)-Psi(1,1/5) 2415724305326069 m005 (1/2*2^(1/2)-3/7)/(5/7*2^(1/2)+1/7) 2415724308902842 a007 Real Root Of 228*x^4+566*x^3+154*x^2+573*x+700 2415724308915183 m001 BesselI(0,1)*(Cahen-GolombDickman) 2415724314824473 m001 1/5*(StronglyCareFree-CopelandErdos)*5^(1/2) 2415724316907003 a007 Real Root Of 472*x^4+841*x^3-415*x^2+932*x+455 2415724330932981 r009 Re(z^3+c),c=-61/114+19/36*I,n=20 2415724337475879 a007 Real Root Of -848*x^4+800*x^3-298*x^2+333*x+112 2415724339181440 m001 Zeta(7)*GAMMA(2/3)/exp(sqrt(3)) 2415724339580079 r002 4th iterates of z^2 + 2415724358262272 m001 2^(1/2)-MertensB3^BesselI(0,1) 2415724360030759 m009 (16/5*Catalan+2/5*Pi^2-1/2)/(1/5*Pi^2+2/3) 2415724361412525 a001 2207/46368*10946^(19/45) 2415724362317026 m005 (1/2*exp(1)-6/11)/(4/7*gamma-2/3) 2415724362831765 a001 29/1346269*4181^(30/53) 2415724363126480 a007 Real Root Of 414*x^4+877*x^3-183*x^2+420*x+347 2415724367217035 r005 Im(z^2+c),c=4/17+36/55*I,n=7 2415724368333814 m006 (5*Pi+1/5)/(1/4*exp(Pi)+4/5) 2415724371786124 m003 5/2+(3*Sqrt[5])/64+4*Cot[1/2+Sqrt[5]/2] 2415724372163294 m001 Pi*exp(Pi)/ln(2)*ln(10)-gamma(1) 2415724373779704 m001 GAMMA(11/12)^GaussKuzminWirsing+exp(Pi) 2415724373779704 m001 exp(Pi)+GAMMA(11/12)^GaussKuzminWirsing 2415724379203795 a007 Real Root Of 410*x^4-275*x^3-502*x^2-982*x+269 2415724380282678 a007 Real Root Of -178*x^4-413*x^3-600*x^2+866*x+239 2415724383143822 a007 Real Root Of 374*x^4+646*x^3-742*x^2+21*x+751 2415724398608849 r009 Re(z^3+c),c=-61/114+19/36*I,n=23 2415724405126904 m001 (-CareFree+Khinchin)/(Ei(1)-Psi(1,1/3)) 2415724406066801 b008 5+Sqrt[367] 2415724407295850 r005 Re(z^2+c),c=-5/8+135/254*I,n=5 2415724408603693 r009 Re(z^3+c),c=-61/114+19/36*I,n=26 2415724408952575 m001 exp(GlaisherKinkelin)/ErdosBorwein*OneNinth 2415724410057735 r009 Re(z^3+c),c=-61/114+19/36*I,n=29 2415724410266570 r009 Re(z^3+c),c=-61/114+19/36*I,n=32 2415724410296229 r009 Re(z^3+c),c=-61/114+19/36*I,n=35 2415724410300399 r009 Re(z^3+c),c=-61/114+19/36*I,n=38 2415724410300980 r009 Re(z^3+c),c=-61/114+19/36*I,n=41 2415724410301060 r009 Re(z^3+c),c=-61/114+19/36*I,n=44 2415724410301071 r009 Re(z^3+c),c=-61/114+19/36*I,n=47 2415724410301073 r009 Re(z^3+c),c=-61/114+19/36*I,n=50 2415724410301073 r009 Re(z^3+c),c=-61/114+19/36*I,n=53 2415724410301073 r009 Re(z^3+c),c=-61/114+19/36*I,n=56 2415724410301073 r009 Re(z^3+c),c=-61/114+19/36*I,n=59 2415724410301073 r009 Re(z^3+c),c=-61/114+19/36*I,n=62 2415724411694137 m001 3^(1/2)+LandauRamanujan^(2^(1/2)) 2415724411694137 m001 sqrt(3)+LandauRamanujan^sqrt(2) 2415724418977611 a001 15127/233*832040^(13/49) 2415724419244240 r008 a(0)=0,K{-n^6,28+28*n-34*n^2+20*n^3} 2415724426996483 r005 Im(z^2+c),c=-14/15+9/41*I,n=25 2415724438544586 r009 Re(z^3+c),c=-7/20+21/52*I,n=12 2415724446758775 m001 (Magata-Trott)/(Champernowne+GlaisherKinkelin) 2415724452422144 m001 (BesselJ(1,1)-GAMMA(7/12))/(Artin+ZetaP(4)) 2415724456143359 r002 57th iterates of z^2 + 2415724462047683 l006 ln(283/3169) 2415724462047683 p004 log(3169/283) 2415724467654611 s002 sum(A022289[n]/((2^n+1)/n),n=1..infinity) 2415724469565180 m001 Kolakoski^2/ln(Backhouse)^2*cos(1) 2415724469647875 r009 Im(z^3+c),c=-7/20+8/45*I,n=25 2415724471040726 m006 (4/5*Pi^2+3/4)/(4*ln(Pi)-1) 2415724472652321 r005 Re(z^2+c),c=23/86+3/20*I,n=41 2415724474843343 r005 Re(z^2+c),c=-15/58+21/61*I,n=8 2415724477207079 m001 (Robbin-Trott2nd)/(FeigenbaumC+Kolakoski) 2415724479732097 r009 Im(z^3+c),c=-7/20+8/45*I,n=26 2415724485448836 m005 (1/2*gamma+7/8)/(1/5*Catalan-5) 2415724486241600 m009 (2*Pi^2+3)/(5/6*Psi(1,1/3)+1) 2415724486785009 m001 Zeta(1/2)-cos(1/12*Pi)^ln(2+3^(1/2)) 2415724486785009 m001 Zeta(1/2)-cos(Pi/12)^ln(2+sqrt(3)) 2415724491070914 r009 Re(z^3+c),c=-1/74+16/23*I,n=16 2415724495106874 r009 Im(z^3+c),c=-7/20+8/45*I,n=30 2415724495484486 r009 Im(z^3+c),c=-7/20+8/45*I,n=31 2415724495932787 r009 Im(z^3+c),c=-7/20+8/45*I,n=35 2415724495946386 r009 Im(z^3+c),c=-7/20+8/45*I,n=36 2415724495959369 r009 Im(z^3+c),c=-7/20+8/45*I,n=40 2415724495959845 r009 Im(z^3+c),c=-7/20+8/45*I,n=41 2415724495960219 r009 Im(z^3+c),c=-7/20+8/45*I,n=45 2415724495960235 r009 Im(z^3+c),c=-7/20+8/45*I,n=46 2415724495960246 r009 Im(z^3+c),c=-7/20+8/45*I,n=50 2415724495960246 r009 Im(z^3+c),c=-7/20+8/45*I,n=51 2415724495960246 r009 Im(z^3+c),c=-7/20+8/45*I,n=55 2415724495960246 r009 Im(z^3+c),c=-7/20+8/45*I,n=56 2415724495960246 r009 Im(z^3+c),c=-7/20+8/45*I,n=60 2415724495960246 r009 Im(z^3+c),c=-7/20+8/45*I,n=61 2415724495960246 r009 Im(z^3+c),c=-7/20+8/45*I,n=64 2415724495960246 r009 Im(z^3+c),c=-7/20+8/45*I,n=59 2415724495960246 r009 Im(z^3+c),c=-7/20+8/45*I,n=63 2415724495960246 r009 Im(z^3+c),c=-7/20+8/45*I,n=62 2415724495960246 r009 Im(z^3+c),c=-7/20+8/45*I,n=58 2415724495960246 r009 Im(z^3+c),c=-7/20+8/45*I,n=57 2415724495960246 r009 Im(z^3+c),c=-7/20+8/45*I,n=54 2415724495960247 r009 Im(z^3+c),c=-7/20+8/45*I,n=53 2415724495960247 r009 Im(z^3+c),c=-7/20+8/45*I,n=52 2415724495960247 r009 Im(z^3+c),c=-7/20+8/45*I,n=49 2415724495960250 r009 Im(z^3+c),c=-7/20+8/45*I,n=47 2415724495960250 r009 Im(z^3+c),c=-7/20+8/45*I,n=48 2415724495960260 r009 Im(z^3+c),c=-7/20+8/45*I,n=44 2415724495960345 r009 Im(z^3+c),c=-7/20+8/45*I,n=42 2415724495960375 r009 Im(z^3+c),c=-7/20+8/45*I,n=43 2415724495960822 r009 Im(z^3+c),c=-7/20+8/45*I,n=39 2415724495962958 r009 Im(z^3+c),c=-7/20+8/45*I,n=37 2415724495964476 r009 Im(z^3+c),c=-7/20+8/45*I,n=38 2415724495983547 r009 Im(z^3+c),c=-7/20+8/45*I,n=34 2415724496031248 r009 Im(z^3+c),c=-7/20+8/45*I,n=32 2415724496098931 r009 Im(z^3+c),c=-7/20+8/45*I,n=33 2415724496866223 r009 Im(z^3+c),c=-7/20+8/45*I,n=29 2415724497690014 r009 Im(z^3+c),c=-7/20+8/45*I,n=27 2415724499353639 a007 Real Root Of 674*x^4-279*x^3+499*x^2-872*x-246 2415724500486794 r009 Im(z^3+c),c=-7/20+8/45*I,n=28 2415724514111211 k006 concat of cont frac of 2415724519702328 m001 (-gamma(3)+Gompertz)/(Zeta(1/2)-exp(Pi)) 2415724521715101 k008 concat of cont frac of 2415724523102617 r005 Re(z^2+c),c=-5/23+14/33*I,n=15 2415724527156206 r005 Im(z^2+c),c=-29/70+16/39*I,n=30 2415724530192485 r009 Im(z^3+c),c=-7/20+8/45*I,n=24 2415724531840599 m001 BesselJ(0,1)*Backhouse/exp(GAMMA(7/12)) 2415724532780366 r009 Im(z^3+c),c=-7/20+8/45*I,n=22 2415724532919847 m001 FellerTornier^ZetaQ(3)/HardyLittlewoodC5 2415724533446584 m006 (1/6*exp(Pi)-1/3)/(3/4*ln(Pi)+3/5) 2415724537411128 m001 (1-GAMMA(2/3))/(BesselJ(1,1)+GAMMA(23/24)) 2415724544005207 a007 Real Root Of 889*x^4-894*x^3+100*x^2-263*x-85 2415724545092137 r009 Re(z^3+c),c=-31/64+33/64*I,n=54 2415724546217930 m001 (Otter-Tribonacci)/(gamma(2)+Bloch) 2415724548198020 a007 Real Root Of 202*x^4+179*x^3-963*x^2-611*x-212 2415724563073827 h001 (6/7*exp(1)+1/7)/(1/8*exp(2)+1/10) 2415724564817971 m001 Champernowne/exp(ErdosBorwein)^2*ArtinRank2^2 2415724573258445 r005 Re(z^2+c),c=-27/110+9/26*I,n=26 2415724573603378 m001 BesselI(0,1)-Riemann3rdZero-ThueMorse 2415724581072187 r005 Re(z^2+c),c=25/78+10/53*I,n=30 2415724589682851 a001 199*1836311903^(13/17) 2415724591749037 b008 24+ArcCsch[19/3] 2415724593669376 g002 Psi(11/12)+Psi(8/9)-Psi(4/9)-Psi(4/7) 2415724612372139 p002 log(19^(6/7)-19^(1/12)) 2415724620473798 a001 1/710647*2^(46/59) 2415724621727626 a007 Real Root Of -132*x^4+432*x^3-516*x^2+552*x+170 2415724627311116 r009 Re(z^3+c),c=-53/102+27/52*I,n=26 2415724630476304 r009 Im(z^3+c),c=-29/64+3/34*I,n=38 2415724632392506 r008 a(0)=0,K{-n^6,46-5*n-16*n^2+17*n^3} 2415724632395052 m005 (1/3*exp(1)+3/4)/(7/11*3^(1/2)-5/12) 2415724636466615 a001 4/13*144^(17/41) 2415724638766778 m001 (Zeta(1,-1)+CareFree)/(LandauRamanujan+Porter) 2415724640002937 m001 (-FeigenbaumMu+OneNinth)/(GAMMA(17/24)-exp(1)) 2415724643028392 r009 Im(z^3+c),c=-7/20+8/45*I,n=23 2415724648048713 a007 Real Root Of -204*x^4-270*x^3+312*x^2-667*x-291 2415724664227738 a001 11/1597*5^(46/59) 2415724666176709 a007 Real Root Of -338*x^4-353*x^3+862*x^2-344*x+673 2415724666654011 a007 Real Root Of 387*x^4+627*x^3-352*x^2+982*x+86 2415724672214975 r005 Re(z^2+c),c=-53/66+7/59*I,n=14 2415724679096239 a001 1/620166*1364^(3/8) 2415724682199084 m001 cos(Pi/12)^2/Riemann3rdZero*ln(sqrt(5))^2 2415724683511399 r009 Re(z^3+c),c=-13/90+37/41*I,n=44 2415724689707601 a003 sin(Pi*25/99)-sin(Pi*48/119) 2415724704027766 m001 (LambertW(1)-GAMMA(1/4))/BesselI(0,1) 2415724706095165 h001 (1/4*exp(1)+7/9)/(7/9*exp(2)+2/7) 2415724708792552 s002 sum(A181126[n]/(n^2*exp(n)-1),n=1..infinity) 2415724713872599 r005 Im(z^2+c),c=-97/118+5/33*I,n=46 2415724720549156 m001 (ln(2)/ln(10)+FeigenbaumKappa)^MadelungNaCl 2415724721401611 m005 (1/3*gamma+1/11)/(9/10*2^(1/2)-1/10) 2415724724738405 m005 (1/3*Pi-2/11)/(1/11*exp(1)+1/9) 2415724732256771 r005 Im(z^2+c),c=-31/86+17/41*I,n=15 2415724751367887 a007 Real Root Of -397*x^4-722*x^3+281*x^2-666*x+93 2415724756824398 m001 Pi-Robbin^StronglyCareFree 2415724763753356 a007 Real Root Of -576*x^4-477*x^3+692*x^2+854*x-238 2415724763868932 r002 43th iterates of z^2 + 2415724765205609 m001 gamma(2)*(GAMMA(23/24)+Porter) 2415724765445783 a007 Real Root Of 202*x^4+351*x^3-88*x^2+196*x-944 2415724772665262 m001 GAMMA(7/12)^2*exp(Magata)/cos(1)^2 2415724773749956 m001 1/exp(Zeta(3))*GolombDickman/log(1+sqrt(2))^2 2415724774839213 r008 a(0)=0,K{-n^6,66*n^3+121*n^2+166*n+61} 2415724775677810 r008 a(0)=0,K{-n^6,56*n^3+146*n^2+161*n+51} 2415724790557709 r009 Re(z^3+c),c=-9/64+55/63*I,n=62 2415724792047848 r005 Re(z^2+c),c=-17/82+22/49*I,n=21 2415724792878416 m001 (cos(1)-ln(Pi))/(-gamma(2)+Riemann3rdZero) 2415724794023647 r005 Im(z^2+c),c=-79/60+8/57*I,n=4 2415724796057574 a007 Real Root Of 216*x^4+294*x^3-759*x^2-493*x+27 2415724797394174 a007 Real Root Of 478*x^4+532*x^3+220*x^2-530*x-135 2415724800948010 m005 (-19/4+1/4*5^(1/2))/(3/4*Zeta(3)+5/6) 2415724804603600 p001 sum(1/(482*n+327)/n/(512^n),n=1..infinity) 2415724814928854 m001 (Gompertz-ZetaQ(3))/(GAMMA(5/6)+Conway) 2415724816123066 l006 ln(1914/2437) 2415724826064440 a008 Real Root of x^4-2*x^3-6*x^2-74*x-206 2415724829621971 m005 (1/2*gamma-1/12)/(1/8*Zeta(3)-1) 2415724832361516 r005 Im(z^2+c),c=-19/25+11/56*I,n=3 2415724834670211 a007 Real Root Of -102*x^4-501*x^3-619*x^2+619*x-106 2415724842544833 m001 1/Rabbit/LandauRamanujan*ln(Pi)^2 2415724856320769 r002 3th iterates of z^2 + 2415724856762001 r005 Im(z^2+c),c=-5/58+26/59*I,n=3 2415724856848421 m005 (1/2*Pi-7/10)/(-13/88+5/22*5^(1/2)) 2415724868439396 r005 Im(z^2+c),c=-10/23+1/25*I,n=28 2415724868727577 a007 Real Root Of -405*x^4-902*x^3+116*x^2-93*x+175 2415724883467141 r005 Re(z^2+c),c=-14/13+6/25*I,n=32 2415724907408936 a007 Real Root Of 175*x^4+177*x^3-912*x^2-591*x+430 2415724914361311 k006 concat of cont frac of 2415724925653660 m001 1/ln(FeigenbaumD)^2/Si(Pi)*TwinPrimes^2 2415724929795931 a008 Real Root of x^4+8*x^2-9*x-59 2415724930003002 a007 Real Root Of -387*x^4-605*x^3+541*x^2-244*x+904 2415724931412950 r005 Im(z^2+c),c=-25/94+31/61*I,n=8 2415724932604171 a007 Real Root Of 94*x^4-148*x^3-721*x^2+592*x+350 2415724937071994 m001 (GAMMA(2/3)-exp(1/Pi))/(DuboisRaymond+Robbin) 2415724938719711 l006 ln(662/7413) 2415724938795357 a001 3/439204*1364^(7/40) 2415724943844667 a001 1/54*(1/2*5^(1/2)+1/2)^23*3^(11/17) 2415724946241407 r005 Im(z^2+c),c=-3/122+58/59*I,n=14 2415724948677203 a001 10946/29*47^(27/56) 2415724950871338 m001 Chi(1)*FeigenbaumC+ln(2^(1/2)+1) 2415724951307332 r009 Im(z^3+c),c=-41/122+5/27*I,n=9 2415724963908570 m001 (2^(1/3))-BesselI(1,1)+GAMMA(1/24) 2415724979655819 a003 cos(Pi*5/38)/cos(Pi*38/101) 2415724980249532 h001 (3/5*exp(2)+1/4)/(5/9*exp(1)+3/7) 2415725005396762 m005 (1/6*exp(1)-3/5)/(2*Pi-1/5) 2415725008497886 m005 (1/2*gamma+6)/(4/5*exp(1)+3/7) 2415725011644786 r005 Im(z^2+c),c=-13/10+8/95*I,n=8 2415725013272551 h001 (7/10*exp(2)+6/11)/(9/11*exp(1)+1/7) 2415725021675798 r009 Im(z^3+c),c=-5/36+39/47*I,n=24 2415725035232278 s002 sum(A025912[n]/(pi^n+1),n=1..infinity) 2415725036596550 m001 (Artin*MasserGramain+Robbin)/Artin 2415725044601554 r009 Im(z^3+c),c=-7/20+8/45*I,n=17 2415725047609092 a001 3/20633239*3571^(5/8) 2415725050384092 r002 44th iterates of z^2 + 2415725050534430 m003 1+(193*Sqrt[5])/4096+Cosh[1/2+Sqrt[5]/2]/2 2415725055951990 m007 (-1/6*gamma+2/5)/(-3*gamma-9*ln(2)+3/2*Pi+2) 2415725075432116 a007 Real Root Of 839*x^4-832*x^3-495*x^2-535*x+167 2415725076829157 m002 Pi^4/4-Sinh[Pi]/(6*Pi^2) 2415725077335651 m001 (Ei(1)*Totient+ArtinRank2)/Totient 2415725077665396 r005 Im(z^2+c),c=-37/90+25/61*I,n=59 2415725081536910 p001 sum(1/(477*n+461)/(5^n),n=0..infinity) 2415725087024490 r009 Re(z^3+c),c=-43/106+22/41*I,n=38 2415725087778541 m001 (GlaisherKinkelin-Mills)/(PlouffeB-Porter) 2415725097193138 r005 Re(z^2+c),c=-17/14+32/221*I,n=52 2415725100680957 r009 Im(z^3+c),c=-43/94+7/64*I,n=13 2415725108149821 m001 FeigenbaumAlpha^(BesselI(0,1)/ln(2+sqrt(3))) 2415725111992616 a001 3/167761*1364^(1/24) 2415725113276611 m001 Magata/(MasserGramainDelta-ThueMorse) 2415725119637983 r009 Re(z^3+c),c=-17/48+4/9*I,n=10 2415725119878186 a007 Real Root Of 955*x^4-388*x^3-316*x^2-686*x-156 2415725127731132 a001 433494437/322*199^(6/11) 2415725130864443 r009 Re(z^3+c),c=-8/23+21/52*I,n=26 2415725137718935 r005 Im(z^2+c),c=-29/74+15/37*I,n=19 2415725141824177 a001 3/370248451*9349^(7/8) 2415725144019837 a007 Real Root Of -952*x^4-539*x^3+7*x^2+809*x-185 2415725155028164 s002 sum(A176585[n]/(n*pi^n-1),n=1..infinity) 2415725155838165 m001 (sin(1/5*Pi)-Zeta(1,-1))/(FellerTornier-Trott) 2415725161543060 r005 Re(z^2+c),c=7/23+11/61*I,n=34 2415725162370197 r009 Im(z^3+c),c=-1/16+47/54*I,n=6 2415725162815678 a001 3/370248451*24476^(19/24) 2415725162999208 m001 arctan(1/2)^CareFree/(arctan(1/2)^Si(Pi)) 2415725164159805 a001 1/4250681*24476^(11/24) 2415725164472167 m002 Pi^6/4+Log[Pi]/5+Tanh[Pi] 2415725164927204 a001 1/620166*24476^(15/56) 2415725165516486 a001 3/439204*24476^(1/8) 2415725165787434 a001 3/7881196*64079^(3/8) 2415725165954369 a001 3/228826127*167761^(5/8) 2415725165975230 a001 1/90481*141422324^(1/24) 2415725165977280 a001 1/90481*271443^(1/16) 2415725165997059 a001 3/10749957122*439204^(7/8) 2415725166001233 a001 3/141422324*439204^(13/24) 2415725166003005 a001 3/710647*1149851^(1/8) 2415725166003233 a001 3/710647*1322157322203^(1/16) 2415725166004710 a001 1/620166*439204^(5/24) 2415725166007319 a001 1/620166*2537720636^(1/8) 2415725166007450 a001 1/620166*1860498^(3/16) 2415725166007914 a001 3/33385282*3010349^(3/8) 2415725166007915 a001 3/4870847*5600748293801^(1/8) 2415725166007979 a001 3/505019158607*7881196^(23/24) 2415725166007990 a001 1/4250681*7881196^(7/24) 2415725166007992 a001 3/2537720636*7881196^(5/8) 2415725166008012 a001 3/312119004989*20633239^(7/8) 2415725166008014 a001 3/33385282*9062201101803^(3/16) 2415725166008016 a001 3/73681302247*141422324^(17/24) 2415725166008016 a001 3/228826127*28143753123^(5/16) 2415725166008017 a001 1/9381251041*370248451^(5/8) 2415725166008017 a001 1/199691526*6643838879^(3/8) 2415725166008017 a001 1/3020733700601*969323029^(7/8) 2415725166008017 a001 3/3461452808002*2537720636^(19/24) 2415725166008017 a001 3/10749957122*14662949395604^(3/8) 2415725166008017 a001 3/10749957122*192900153618^(7/16) 2415725166008017 a001 3/312119004989*17393796001^(5/8) 2415725166008017 a001 3/73681302247*45537549124^(13/24) 2415725166008017 a001 3/3461452808002*817138163596^(5/8) 2415725166008017 a001 3/817138163596*1322157322203^(9/16) 2415725166008017 a001 3/505019158607*4106118243^(11/16) 2415725166008017 a001 3/2537720636*2537720636^(11/24) 2415725166008017 a001 3/2537720636*312119004989^(3/8) 2415725166008017 a001 3/10749957122*599074578^(9/16) 2415725166008017 a001 3/370248451*817138163596^(7/24) 2415725166008017 a001 3/141422324*141422324^(3/8) 2415725166008017 a001 3/370248451*87403803^(7/16) 2415725166008017 a001 3/3461452808002*87403803^(15/16) 2415725166008022 a001 3/20633239*45537549124^(5/24) 2415725166008027 a001 3/20633239*12752043^(5/16) 2415725166008029 a001 3/73681302247*12752043^(13/16) 2415725166008055 a001 3/7881196*4106118243^(3/16) 2415725166008283 a001 3/3010349*119218851371^(1/8) 2415725166008496 a001 3/2537720636*1860498^(11/16) 2415725166009844 a001 3/1149851*54018521^(1/8) 2415725166020540 a001 3/439204*14662949395604^(1/24) 2415725166020540 a001 3/439204*599074578^(1/16) 2415725166026459 a001 3/141422324*271443^(9/16) 2415725166423759 a001 3/167761*15127^(1/32) 2415725166681861 a001 1/4250681*39603^(7/16) 2415725167452001 a001 3/2537720636*39603^(15/16) 2415725168976484 a001 1/620166*15127^(9/32) 2415725176572892 a001 3/439204*5778^(7/48) 2415725179624236 r005 Im(z^2+c),c=5/17+1/16*I,n=34 2415725188305948 m001 exp(ArtinRank2)/ErdosBorwein*GAMMA(11/24) 2415725188619502 a001 1/620166*5778^(5/16) 2415725194693978 m005 (1/2*2^(1/2)-2/3)/(7/11*Zeta(3)+10/11) 2415725202762635 p004 log(13513/10613) 2415725210249165 a007 Real Root Of 369*x^4+576*x^3-517*x^2+809*x+525 2415725210530989 r005 Re(z^2+c),c=13/42+13/32*I,n=28 2415725212701519 m001 FeigenbaumD^FeigenbaumAlpha*FeigenbaumD^Sarnak 2415725219627137 r005 Re(z^2+c),c=11/70+25/34*I,n=5 2415725224799693 a001 3/141422324*5778^(13/16) 2415725238606091 a001 1364/3*89^(16/43) 2415725254188647 h001 (5/6*exp(2)+7/10)/(3/4*exp(1)+4/5) 2415725259756787 m001 (OneNinth+ThueMorse)/(arctan(1/3)+FeigenbaumC) 2415725259919860 m001 (Pi+Zeta(3))/(KomornikLoreti+Trott) 2415725268803408 a005 (1/cos(7/207*Pi))^156 2415725270564679 r002 10th iterates of z^2 + 2415725289244026 m001 (Salem+Totient)/(BesselI(1,1)-ErdosBorwein) 2415725294651447 l006 ln(379/4244) 2415725303692303 r005 Re(z^2+c),c=-75/94+1/27*I,n=8 2415725323687628 m001 exp(Sierpinski)*Si(Pi)/Zeta(7)^2 2415725330676527 r005 Re(z^2+c),c=-6/29+19/42*I,n=39 2415725332309091 r005 Re(z^2+c),c=6/17+11/27*I,n=11 2415725332502521 a007 Real Root Of -166*x^4-47*x^3+565*x^2-374*x+790 2415725337797173 a001 144/119218851371*4^(1/2) 2415725338324558 m005 (1/2*Zeta(3)-3/11)/(1/4*5^(1/2)+4/5) 2415725338716084 a001 39603/233*28657^(29/41) 2415725341230075 m001 ln(2)/ln(10)*ZetaP(2)+BesselI(0,2) 2415725343014750 l006 ln(4548/4559) 2415725348893517 a007 Real Root Of -78*x^4+179*x^3+807*x^2-227*x-78 2415725362794958 m001 (cos(1)-ln(3))/(Bloch+Tribonacci) 2415725365172966 b008 LogGamma[5*Sqrt[E*Pi]] 2415725366928042 m005 (1/3*5^(1/2)-3/7)/(3/11*Pi+5/11) 2415725379870190 r005 Im(z^2+c),c=-53/44+1/30*I,n=42 2415725381206035 m001 (1+Psi(2,1/3))^exp(1/Pi) 2415725381930033 a007 Real Root Of 495*x^4+409*x^3+620*x^2-546*x-164 2415725382516979 m001 Riemann1stZero*ln(MertensB1)*GAMMA(5/6)^2 2415725387059373 m001 FeigenbaumD/(ReciprocalLucas^FeigenbaumMu) 2415725389586459 p003 LerchPhi(1/2,8,45/67) 2415725406239899 m001 1/Salem*exp(Niven)/BesselJ(1,1)^2 2415725420899146 l006 ln(6785/8639) 2415725428227515 r005 Re(z^2+c),c=-2/11+29/57*I,n=36 2415725434685667 h001 (4/11*exp(2)+1/4)/(1/12*exp(2)+3/5) 2415725440179123 a007 Real Root Of 422*x^4+706*x^3-269*x^2+856*x-781 2415725456827209 r005 Im(z^2+c),c=-19/56+7/18*I,n=33 2415725463449536 m005 (1/3*Zeta(3)+1/2)/(2*2^(1/2)+9/10) 2415725469364253 r005 Re(z^2+c),c=1/6+9/25*I,n=50 2415725478967704 r005 Re(z^2+c),c=-10/23+24/61*I,n=5 2415725479652523 a007 Real Root Of 257*x^4+546*x^3-428*x^2-942*x-833 2415725488137104 h001 (1/11*exp(1)+1/3)/(7/10*exp(1)+1/2) 2415725488499708 a007 Real Root Of -265*x^4-311*x^3+499*x^2-535*x+436 2415725489530908 a007 Real Root Of -358*x^4-136*x^3+424*x^2+606*x-168 2415725499858032 a007 Real Root Of 58*x^4-229*x^3-943*x^2-59*x+157 2415725506264150 m006 (2*ln(Pi)+2/3)/(1/2*exp(Pi)+2/3) 2415725525051821 r005 Im(z^2+c),c=17/98+11/62*I,n=8 2415725525306950 p001 sum((-1)^n/(455*n+412)/(100^n),n=0..infinity) 2415725527091862 m005 (1/3*5^(1/2)-2/11)/(10/11*5^(1/2)+3/10) 2415725527342291 r002 57th iterates of z^2 + 2415725531315806 r009 Re(z^3+c),c=-27/70+25/64*I,n=6 2415725532220301 r009 Re(z^3+c),c=-5/122+35/59*I,n=43 2415725533625727 b008 4/3+Sec[Pi/8] 2415725535134119 a007 Real Root Of -337*x^4-669*x^3+228*x^2-623*x-790 2415725562016134 m001 (Psi(1,1/3)-Psi(2,1/3))/(5^(1/2)+arctan(1/2)) 2415725567623434 a001 3/55*55^(35/37) 2415725570560972 l006 ln(854/9563) 2415725574189901 m001 1/Niven^2/ln(Backhouse)^2/Zeta(7) 2415725577951374 a007 Real Root Of -173*x^4-320*x^3-89*x^2-726*x+146 2415725579554062 m001 (GAMMA(19/24)+Cahen)/(GAMMA(2/3)-BesselK(1,1)) 2415725581603446 m001 (BesselI(1,1)-Champernowne)/(Tribonacci-Trott) 2415725586294194 m001 FellerTornier-ThueMorse^MasserGramain 2415725587249588 m005 (1/2*Catalan+7/10)/(2/11*2^(1/2)+2/9) 2415725606065674 a007 Real Root Of 206*x^4+765*x^3+691*x^2+494*x+930 2415725611901939 g002 -gamma-2*ln(2)+Psi(6/7)+Psi(3/7)-Psi(3/8) 2415725619533527 r002 3th iterates of z^2 + 2415725622146751 k009 concat of cont frac of 2415725622152545 a001 10946/11*1364^(35/46) 2415725628031435 r005 Re(z^2+c),c=3/58+13/57*I,n=21 2415725638709988 a001 1346269/11*521^(5/46) 2415725643087218 r002 3th iterates of z^2 + 2415725645611397 a003 sin(Pi*8/109)/sin(Pi*47/119) 2415725651081310 m001 (ln(5)+Landau)/(Porter-Stephens) 2415725658538515 l006 ln(4871/6202) 2415725667593178 a007 Real Root Of -291*x^4-866*x^3-486*x^2+17*x+579 2415725677095640 m001 (Chi(1)+LaplaceLimit)/(-Mills+Tetranacci) 2415725682963758 m001 (ln(Pi)+3^(1/3))/(AlladiGrinstead+MertensB1) 2415725687278876 m001 (FeigenbaumD-Grothendieck)/(MertensB2-Robbin) 2415725689385310 m001 (GAMMA(17/24)-OneNinth)/(Zeta(5)+ln(gamma)) 2415725689847506 a007 Real Root Of -835*x^4-59*x^3+625*x^2+332*x-113 2415725692016417 r009 Re(z^3+c),c=-13/94+31/36*I,n=58 2415725717837411 m005 (1/2*Zeta(3)+5/11)/(9/11*gamma-3/7) 2415725724417719 a007 Real Root Of 186*x^4+278*x^3-644*x^2-582*x-63 2415725725181261 r008 a(0)=0,K{-n^6,60*n^3+134*n^2+164*n+56} 2415725727817061 r005 Re(z^2+c),c=-1/28+41/64*I,n=33 2415725730388393 p004 log(28573/22441) 2415725748135269 m005 (1/2*2^(1/2)+3/5)/(5/6*Catalan-2/9) 2415725749464711 a001 433494437/2207*199^(10/11) 2415725761921023 r009 Im(z^3+c),c=-7/20+8/45*I,n=19 2415725767833636 m008 (1/3*Pi-1/2)/(3/4*Pi^5-3) 2415725773757617 m002 -6+30*Sech[Pi]+Tanh[Pi] 2415725781690473 m001 Backhouse^arctan(1/2)+GAMMA(3/4) 2415725790707676 l006 ln(475/5319) 2415725791878958 m005 (1/2*Zeta(3)+1/9)/(8/11*gamma-1/8) 2415725797027839 m006 (1/4*Pi^2+4)/(5*exp(2*Pi)-1/4) 2415725797132033 r002 23th iterates of z^2 + 2415725797701500 a007 Real Root Of 34*x^4+799*x^3-553*x^2-329*x-266 2415725803394946 a001 3/439204*843^(3/16) 2415725815264199 r005 Re(z^2+c),c=17/106+17/28*I,n=8 2415725830415728 s002 sum(A086699[n]/(n!^3),n=1..infinity) 2415725834397913 m002 -(E^Pi/Pi^5)+(E^Pi*Pi)/3 2415725839273903 a007 Real Root Of 415*x^4+671*x^3-278*x^2+939*x-783 2415725844905059 m004 -Cos[Sqrt[5]*Pi]/3+Log[Sqrt[5]*Pi]/4 2415725859062140 r005 Im(z^2+c),c=-5/6+19/82*I,n=17 2415725860478951 m001 (LambertW(1)+Otter)/(-Porter+ZetaQ(3)) 2415725864514893 l006 ln(7828/9967) 2415725865981021 m001 1/Kolakoski^2/ArtinRank2^2*exp(Zeta(9))^2 2415725867431187 m001 (Cahen-MertensB1)/(gamma(2)+BesselI(1,2)) 2415725875682634 r005 Im(z^2+c),c=-25/27+3/14*I,n=25 2415725882468802 m005 (1/2*Pi+6/7)/(1/7*Zeta(3)+5/6) 2415725889246589 r009 Re(z^3+c),c=-5/46+23/28*I,n=8 2415725892701487 r009 Im(z^3+c),c=-10/21+4/45*I,n=26 2415725894740702 a007 Real Root Of 366*x^4+315*x^3-951*x^2+630*x-952 2415725903933088 a007 Real Root Of -254*x^4-420*x^3+862*x^2+852*x-243 2415725917565492 r005 Im(z^2+c),c=-117/118+3/13*I,n=6 2415725936741237 r005 Im(z^2+c),c=-9/19+6/13*I,n=32 2415725940689153 a001 17*843^(13/33) 2415725941247530 r005 Im(z^2+c),c=-28/25+1/34*I,n=42 2415725942761639 a003 cos(Pi*1/24)/cos(Pi*19/52) 2415725951474094 p001 sum(1/(481*n+328)/n/(512^n),n=1..infinity) 2415725960316737 m001 Magata^HardyLittlewoodC5*MinimumGamma 2415725973709999 r005 Im(z^2+c),c=-25/82+27/37*I,n=8 2415725983949019 m006 (1/2*exp(Pi)-4/5)/(5/6*exp(2*Pi)-2/5) 2415725988486898 h001 (-11*exp(4)-1)/(-12*exp(3)-8) 2415725998306117 a001 7/34*28657^(13/28) 2415726020100324 l006 ln(1595/1634) 2415726023695636 a007 Real Root Of 273*x^4+302*x^3-710*x^2+725*x+855 2415726038881857 g005 GAMMA(2/11)/GAMMA(7/10)/GAMMA(5/8)/GAMMA(5/6) 2415726063049966 r005 Im(z^2+c),c=-53/122+8/19*I,n=34 2415726080555993 r009 Re(z^3+c),c=-35/106+41/63*I,n=43 2415726115850076 r005 Re(z^2+c),c=-13/74+20/39*I,n=7 2415726116232132 k006 concat of cont frac of 2415726119963776 l006 ln(571/6394) 2415726126953628 a007 Real Root Of -110*x^4+206*x^3+806*x^2-663*x+345 2415726127045717 m001 (-FeigenbaumKappa+Rabbit)/(sin(1)+FeigenbaumC) 2415726127175124 k006 concat of cont frac of 2415726129237578 m002 -4+4*E^Pi+Pi^5/2 2415726141701801 m005 (1/3*5^(1/2)-2/7)/(7/9*3^(1/2)+5/9) 2415726152868444 b008 2/9+FresnelS[1/3] 2415726156146750 m001 (Tribonacci-Thue)/(LandauRamanujan-Sarnak) 2415726163875624 m001 (ln(3)-BesselJ(1,1))/(FeigenbaumD-Otter) 2415726163907565 h005 exp(cos(Pi*7/26)/sin(Pi*13/48)) 2415726171834419 m001 1/Zeta(5)^2*GAMMA(1/24)^2/ln(cos(Pi/5)) 2415726173061685 a001 567451585/2889*199^(10/11) 2415726175207286 m005 (1/2*Pi-2/3)/(1/9*3^(1/2)+2/11) 2415726179073754 r005 Re(z^2+c),c=17/56+9/50*I,n=35 2415726183309339 a001 521*1346269^(5/46) 2415726187445737 a001 4181/18*3^(1/28) 2415726195653807 a007 Real Root Of -15*x^4+328*x^3-221*x^2-843*x-787 2415726196865856 a007 Real Root Of -121*x^4-560*x^3-633*x^2+742*x-134 2415726197362876 m001 (FeigenbaumMu+Mills)/(Ei(1)+Champernowne) 2415726200323301 a007 Real Root Of 220*x^4+213*x^3-918*x^2-490*x-316 2415726200374001 a001 4870847/89*34^(8/19) 2415726200867550 m002 Pi^3*Sinh[Pi]-Sinh[Pi]^2/Log[Pi] 2415726203815167 l006 ln(2957/3765) 2415726206153778 m009 (1/4*Psi(1,1/3)-1/6)/(32/5*Catalan+4/5*Pi^2-4) 2415726208509110 m001 ln(LandauRamanujan)^2*Backhouse/TwinPrimes^2 2415726212651140 r009 Re(z^3+c),c=-29/74+19/34*I,n=25 2415726216131115 k009 concat of cont frac of 2415726217572491 h001 (6/11*exp(2)+5/6)/(5/11*exp(1)+7/9) 2415726221818276 a007 Real Root Of -307*x^4+689*x^3-872*x^2+581*x+202 2415726227787202 b008 CosIntegral[ArcTan[Log[Pi]]] 2415726234863663 a001 2971215073/15127*199^(10/11) 2415726243880450 a001 7778742049/39603*199^(10/11) 2415726245195982 a001 10182505537/51841*199^(10/11) 2415726245387915 a001 53316291173/271443*199^(10/11) 2415726245415918 a001 139583862445/710647*199^(10/11) 2415726245420004 a001 182717648081/930249*199^(10/11) 2415726245420600 a001 956722026041/4870847*199^(10/11) 2415726245420687 a001 2504730781961/12752043*199^(10/11) 2415726245420699 a001 3278735159921/16692641*199^(10/11) 2415726245420702 a001 10610209857723/54018521*199^(10/11) 2415726245420707 a001 4052739537881/20633239*199^(10/11) 2415726245420741 a001 387002188980/1970299*199^(10/11) 2415726245420968 a001 591286729879/3010349*199^(10/11) 2415726245422529 a001 225851433717/1149851*199^(10/11) 2415726245433225 a001 196418*199^(10/11) 2415726245506537 a001 32951280099/167761*199^(10/11) 2415726245951247 r005 Re(z^2+c),c=15/118+25/39*I,n=49 2415726246009025 a001 12586269025/64079*199^(10/11) 2415726249453132 a001 1201881744/6119*199^(10/11) 2415726253919180 r005 Re(z^2+c),c=-43/106+1/46*I,n=2 2415726254528591 a007 Real Root Of 304*x^4+512*x^3-321*x^2+620*x+236 2415726264510401 a003 cos(Pi*15/53)-sin(Pi*31/92) 2415726272821545 a007 Real Root Of -353*x^4-757*x^3+471*x^2+774*x+471 2415726273059388 a001 1836311903/9349*199^(10/11) 2415726274427354 m001 TreeGrowth2nd^2/exp(Paris)*GAMMA(19/24)^2 2415726275344458 a007 Real Root Of -103*x^4+60*x^3-243*x^2+337*x-8 2415726279123643 r005 Re(z^2+c),c=-13/74+23/44*I,n=46 2415726282963988 r005 Re(z^2+c),c=-11/14+4/79*I,n=6 2415726291537272 m005 (1/2*gamma-7/9)/(9/11*Pi-6/11) 2415726302288012 a007 Real Root Of 37*x^4+893*x^3-58*x^2-923*x+8 2415726305487081 a001 76/1597*8^(25/32) 2415726307458251 b008 E*(79+Pi^2) 2415726310563932 m001 exp(GAMMA(11/12))*Catalan^2*Zeta(9) 2415726312282797 a007 Real Root Of -556*x^4-866*x^3+992*x^2-350*x+92 2415726323567944 r009 Re(z^3+c),c=-19/50+19/40*I,n=56 2415726325495212 a007 Real Root Of -180*x^4-296*x^3+392*x^2+782*x-207 2415726333783660 a007 Real Root Of -280*x^4-546*x^3-14*x^2+691*x+161 2415726336099066 m001 (ln(gamma)+GAMMA(7/12))/(Magata+MasserGramain) 2415726337535470 m001 (PlouffeB+QuadraticClass)/(Psi(2,1/3)-Shi(1)) 2415726340253602 m001 1/exp(Si(Pi))*Cahen^2/GAMMA(13/24)^2 2415726341573170 r002 48th iterates of z^2 + 2415726343062653 g006 Psi(1,7/12)-Psi(1,9/11)-Psi(1,6/11)-Psi(1,2/9) 2415726354441442 l006 ln(667/7469) 2415726373086284 a001 2584/11*3571^(39/46) 2415726377228677 m001 Si(Pi)*GaussAGM(1,1/sqrt(2))^2/exp(Niven) 2415726385651071 m001 (-KhinchinLevy+MertensB3)/(cos(1)-ln(Pi)) 2415726403514323 r009 Re(z^3+c),c=-13/32+25/46*I,n=57 2415726414170794 m002 E^Pi/Pi^2+Pi^2/(6*E^Pi) 2415726416240062 r005 Re(z^2+c),c=-3/20+20/47*I,n=5 2415726419070622 m001 (BesselJ(1,1)+Kac)/(MadelungNaCl-Mills) 2415726419258174 m001 3^(1/3)-Ei(1)-ReciprocalLucas 2415726419637820 m005 (1/3*Zeta(3)-3/5)/(1/10*Catalan-11/12) 2415726425927728 a001 13/7*7^(5/37) 2415726434096362 r002 13th iterates of z^2 + 2415726434859087 a001 701408733/3571*199^(10/11) 2415726436572562 a007 Real Root Of -167*x^4-177*x^3+588*x^2+328*x+553 2415726439280476 m008 (3*Pi^6+2/5)/(2/5*Pi^5-3) 2415726445679291 m001 Zeta(1,2)*(BesselI(1,1)-HardyLittlewoodC4) 2415726446736078 m001 MinimumGamma+LandauRamanujan^ZetaP(3) 2415726449423373 m001 exp(Pi)+ln(3)^ZetaP(3) 2415726469339757 m001 FransenRobinson*ErdosBorwein*exp(Pi)^2 2415726473416620 r005 Im(z^2+c),c=-17/18+23/100*I,n=43 2415726475371959 a007 Real Root Of -218*x^4-805*x^3-425*x^2+265*x-804 2415726486548558 m001 (-HeathBrownMoroz+Mills)/(Psi(2,1/3)+ln(3)) 2415726494673255 a005 (1/cos(50/237*Pi))^236 2415726498116152 r005 Im(z^2+c),c=-23/18+13/216*I,n=26 2415726501444830 m001 (2^(1/2)-ThueMorse)/PrimesInBinary 2415726501836865 a007 Real Root Of 451*x^4+567*x^3-996*x^2+831*x+454 2415726506200017 r005 Re(z^2+c),c=-31/38+1/61*I,n=52 2415726508463018 r005 Re(z^2+c),c=19/74+34/55*I,n=38 2415726518680018 p004 log(21481/16871) 2415726522251231 a007 Real Root Of -305*x^4-405*x^3+644*x^2-299*x+197 2415726527082770 m001 (2^(1/3)-Psi(2,1/3))/(3^(1/2)+BesselK(1,1)) 2415726527715697 r005 Im(z^2+c),c=19/86+1/7*I,n=21 2415726529915519 l006 ln(763/8544) 2415726542345235 a007 Real Root Of 384*x^4+529*x^3-825*x^2+162*x-414 2415726547884941 a007 Real Root Of -328*x^4-794*x^3-131*x^2+93*x+966 2415726560400688 h001 (5/8*exp(2)+1/3)/(1/6*exp(2)+9/11) 2415726567449413 a007 Real Root Of 358*x^4+208*x^3+405*x^2-762*x-206 2415726567737642 m005 (1/3*gamma+1/2)/(-61/88+2/11*5^(1/2)) 2415726568438981 r005 Im(z^2+c),c=-7/10+18/101*I,n=5 2415726576049075 m001 (arctan(1/2)-gamma(3))/(GAMMA(17/24)+Kac) 2415726576972844 m002 Pi^6/4+Sinh[Pi]/(3*Pi) 2415726585595021 l006 ln(6957/8858) 2415726587428469 a007 Real Root Of 291*x^4+889*x^3+933*x^2+958*x-508 2415726601589592 a007 Real Root Of -44*x^4+713*x^3-89*x^2+84*x-25 2415726605455183 a001 2178309/11*9349^(1/46) 2415726607897018 a001 10946/11*24476^(25/46) 2415726610060972 r005 Re(z^2+c),c=-47/58+5/44*I,n=8 2415726619517167 m001 Bloch^ReciprocalFibonacci-arctan(1/3) 2415726623377665 r005 Re(z^2+c),c=23/74+7/38*I,n=39 2415726624914380 a001 18*21^(29/34) 2415726625384127 a001 (2+3^(1/2))^(236/13) 2415726626192301 r009 Re(z^3+c),c=-17/30+19/64*I,n=12 2415726634651955 a007 Real Root Of -34*x^4-840*x^3-434*x^2+418*x+408 2415726635609336 r009 Re(z^3+c),c=-41/110+28/61*I,n=38 2415726637815700 r002 21th iterates of z^2 + 2415726652737026 m001 (polylog(4,1/2)+3)/Backhouse 2415726660922596 r002 43th iterates of z^2 + 2415726661024320 m001 (-MertensB3+ZetaQ(3))/(Psi(2,1/3)+arctan(1/3)) 2415726666168360 l006 ln(859/9619) 2415726666168360 p004 log(9619/859) 2415726671065615 r005 Im(z^2+c),c=-3/25+1/34*I,n=10 2415726681493199 r008 a(0)=0,K{-n^6,64*n^3+122*n^2+167*n+61} 2415726681664727 r008 a(0)=0,K{-n^6,62*n^3+127*n^2+166*n+59} 2415726682130797 m001 Ei(1,1)*ZetaQ(4)+gamma(3) 2415726684236496 m001 (GaussAGM-cos(1))/(Kac+Lehmer) 2415726691653301 m001 ReciprocalLucas/Rabbit/ln(Pi) 2415726698690959 a007 Real Root Of 149*x^4-35*x^3-928*x^2+443*x+918 2415726702531273 m001 (Zeta(3)+Kac)/(MertensB3-Stephens) 2415726714283455 b008 E^Pi+Cosh[2/11] 2415726715093689 r009 Re(z^3+c),c=-7/48+15/16*I,n=52 2415726718795928 a007 Real Root Of -524*x^4-840*x^3+706*x^2-412*x+888 2415726722922294 m005 (1/2*2^(1/2)-4/7)/(4/5*Zeta(3)-2/5) 2415726724320580 m001 exp(FransenRobinson)*Artin*GolombDickman^2 2415726728520326 r005 Re(z^2+c),c=-9/31+9/62*I,n=13 2415726742345121 a007 Real Root Of 197*x^4+54*x^3-601*x^2-432*x+138 2415726771465255 a007 Real Root Of -299*x^4-713*x^3+22*x^2+181*x+440 2415726771543955 m006 (3/4*exp(2*Pi)+2)/(5*Pi+1) 2415726773506332 a008 Real Root of x^3-x^2+195*x+491 2415726787443642 r005 Im(z^2+c),c=-11/25+25/54*I,n=27 2415726800124028 m001 1/exp(Paris)*FransenRobinson*GAMMA(7/24)^2 2415726810324479 m001 1/LandauRamanujan^2*ln(Bloch)^2*Riemann3rdZero 2415726834293890 r005 Re(z^2+c),c=-6/29+19/42*I,n=54 2415726845530173 m001 (sin(1/5*Pi)+exp(1/exp(1)))/(Kac-Porter) 2415726859648760 m005 (1/2*Pi+1)/(8/9*Catalan+1/4) 2415726867825769 l006 ln(4000/5093) 2415726871692717 m001 exp(GAMMA(17/24))/GAMMA(1/24)^2/exp(1) 2415726871854096 r008 a(0)=3,K{-n^6,-63+7*n^3+57*n^2+n} 2415726873553285 a007 Real Root Of -426*x^4-850*x^3+418*x^2-148*x-272 2415726876670100 s002 sum(A255433[n]/((10^n+1)/n),n=1..infinity) 2415726876670105 s002 sum(A255433[n]/((10^n-1)/n),n=1..infinity) 2415726879189386 r009 Re(z^3+c),c=-31/82+21/44*I,n=16 2415726883588212 a007 Real Root Of -437*x^4-763*x^3+337*x^2-898*x-10 2415726891514205 r005 Re(z^2+c),c=-77/106+6/37*I,n=40 2415726895012058 a007 Real Root Of -399*x^4-980*x^3-196*x^2-374*x+13 2415726904609315 a007 Real Root Of 530*x^4+983*x^3-353*x^2+870*x-30 2415726904979062 m005 (1/2*Catalan+7/10)/(1/4*Pi-5/6) 2415726906925855 p003 LerchPhi(1/16,4,52/205) 2415726913854491 a005 (1/sin(112/235*Pi))^326 2415726921123034 m001 (1/3)^exp(sqrt(2))+BesselJZeros(0,1) 2415726937017021 h001 (-8*exp(6)-7)/(-exp(2)-6) 2415726947166210 a007 Real Root Of -260*x^4-915*x^3-775*x^2-48*x+362 2415726953934383 m001 (-GAMMA(7/24)+3)/(Artin+3) 2415726954102556 m001 (BesselI(0,1)-sin(1/5*Pi))/FransenRobinson 2415726963673154 m001 (BesselI(0,1)-PrimesInBinary)^exp(Pi) 2415726968069037 a007 Real Root Of 431*x^4+791*x^3-282*x^2+561*x-526 2415726968806911 r005 Re(z^2+c),c=-1+31/188*I,n=58 2415726970939888 a007 Real Root Of 508*x^4+736*x^3-952*x^2+327*x-579 2415726973015134 r005 Im(z^2+c),c=-28/25+1/34*I,n=41 2415726975920560 m005 (1/2*5^(1/2)-2)/(1/9*Pi-4) 2415726977473934 r002 22th iterates of z^2 + 2415726977508327 r009 Re(z^3+c),c=-5/38+47/56*I,n=64 2415726988839945 r005 Im(z^2+c),c=-51/94+17/31*I,n=39 2415726993441959 a003 sin(Pi*1/18)/cos(Pi*23/94) 2415726994862016 r009 Re(z^3+c),c=-37/70+19/56*I,n=21 2415727001367465 m005 (1/2*5^(1/2)+6/11)/(5*gamma+4) 2415727012898292 a001 55/3010349*3^(15/59) 2415727015022666 r005 Im(z^2+c),c=-49/54+13/59*I,n=14 2415727018364699 p004 log(16607/13043) 2415727019456083 r005 Im(z^2+c),c=-11/25+22/43*I,n=40 2415727023272006 r009 Re(z^3+c),c=-43/94+8/21*I,n=6 2415727027542255 r008 a(0)=0,K{-n^6,-57+5*n^3+21*n^2-9*n} 2415727034568598 m001 (1-Psi(1,1/3))/(AlladiGrinstead+Otter) 2415727035129825 m001 LambertW(1)*ln(Cahen)*cos(Pi/12) 2415727037730936 m005 (1/2*5^(1/2)-1/12)/(2*Pi-2) 2415727047131436 r005 Re(z^2+c),c=-15/52+19/37*I,n=11 2415727049153081 m001 (Pi+ln(5))/(MertensB1+Niven) 2415727075308185 r005 Re(z^2+c),c=45/122+17/53*I,n=63 2415727087205074 r005 Re(z^2+c),c=-7/36+13/27*I,n=39 2415727088143779 m001 (Chi(1)+TreeGrowth2nd)/(ZetaP(2)+ZetaP(4)) 2415727089715646 a001 3/2*34^(5/37) 2415727100125186 p001 sum(1/(480*n+329)/n/(512^n),n=1..infinity) 2415727104778708 r005 Im(z^2+c),c=1/48+5/8*I,n=59 2415727110216349 m001 (-BesselI(1,2)+Salem)/(ln(2)/ln(10)+2^(1/2)) 2415727113990496 m003 -1+(65*Sqrt[5])/64+3*Sech[1/2+Sqrt[5]/2] 2415727114822776 r009 Re(z^3+c),c=-5/122+35/59*I,n=45 2415727129131132 k008 concat of cont frac of 2415727132185600 m001 FeigenbaumC/(Champernowne-QuadraticClass) 2415727139281235 r005 Re(z^2+c),c=21/64+3/50*I,n=30 2415727140760030 a001 47/55*144^(39/58) 2415727146435077 r005 Im(z^2+c),c=-17/58+11/29*I,n=13 2415727152200415 m005 (17/4+1/4*5^(1/2))/(2/3*5^(1/2)+1/2) 2415727155188302 r009 Re(z^3+c),c=-9/62+31/34*I,n=52 2415727178849425 r002 47th iterates of z^2 + 2415727197371481 m001 (Shi(1)-gamma(1))/(FeigenbaumDelta+ZetaQ(3)) 2415727206142803 a007 Real Root Of -173*x^4-217*x^3-985*x+453 2415727213088907 m001 (KhinchinHarmonic-Khinchin)/(Mills+Sierpinski) 2415727215709627 r009 Re(z^3+c),c=-18/31+26/47*I,n=11 2415727216987016 r005 Re(z^2+c),c=-5/106+41/61*I,n=6 2415727231251182 k008 concat of cont frac of 2415727238260925 r009 Re(z^3+c),c=-8/29+35/51*I,n=32 2415727247026841 r005 Re(z^2+c),c=1/6+9/25*I,n=54 2415727257173230 l006 ln(5043/6421) 2415727266102734 a001 843/17711*10946^(19/45) 2415727271238733 r005 Im(z^2+c),c=-16/31+5/8*I,n=19 2415727273581231 m002 -(E^Pi*Pi^3)+Pi^6-Sinh[Pi]/5 2415727276626202 m003 2+(4*E^(-1/2-Sqrt[5]/2)*Cosh[1/2+Sqrt[5]/2])/5 2415727289163268 r002 27th iterates of z^2 + 2415727295650280 m001 ln(GAMMA(19/24))/Trott^2*sqrt(Pi) 2415727297248778 a005 (1/cos(34/193*Pi))^390 2415727302309871 m009 (6*Psi(1,3/4)-2/3)/(6*Psi(1,1/3)-1/5) 2415727304719538 a007 Real Root Of 947*x^4-651*x^3+584*x^2-532*x-175 2415727305555493 r005 Im(z^2+c),c=-9/106+23/52*I,n=3 2415727313944809 r002 13th iterates of z^2 + 2415727319139793 a003 cos(Pi*10/93)-sin(Pi*49/117) 2415727324446355 r004 Im(z^2+c),c=-11/10+4/15*I,z(0)=-1,n=6 2415727333274789 r005 Im(z^2+c),c=-29/70+23/56*I,n=51 2415727333542529 a003 cos(Pi*36/107)*cos(Pi*36/107) 2415727344782101 a005 (1/sin(77/179*Pi))^416 2415727345656334 m001 1/LandauRamanujan/ln(Si(Pi))/Zeta(1,2)^2 2415727346861110 m001 (5^(1/2)+ln(3))/(-Champernowne+MertensB1) 2415727348443493 a007 Real Root Of -398*x^4+617*x^3-83*x^2+457*x-11 2415727357978773 r002 52th iterates of z^2 + 2415727361855100 r002 2th iterates of z^2 + 2415727368270404 m001 (Conway-Sarnak)/(exp(1/Pi)+GAMMA(23/24)) 2415727373330331 m001 1/GAMMA(11/12)*Backhouse^2/ln(Zeta(7)) 2415727384700966 a007 Real Root Of 250*x^4+696*x^3+486*x^2+905*x+648 2415727398610707 r005 Re(z^2+c),c=-25/118+19/43*I,n=23 2415727409193603 h001 (1/4*exp(2)+1/2)/(1/7*exp(1)+7/12) 2415727411048434 h001 (-12*exp(2)-1)/(-7*exp(4)+11) 2415727411966539 a007 Real Root Of 207*x^4-74*x^3+439*x^2-916*x+196 2415727429347296 r005 Re(z^2+c),c=31/94+5/13*I,n=13 2415727430079248 m001 (cos(1/12*Pi)-BesselJ(1,1))/(Porter+Rabbit) 2415727431652019 r002 50th iterates of z^2 + 2415727438469134 m001 (GAMMA(11/12)+Trott2nd)/(2^(1/2)-cos(1/12*Pi)) 2415727444671705 r005 Re(z^2+c),c=-32/25+2/39*I,n=44 2415727454995699 p004 log(35419/3163) 2415727461814406 m005 (1/2*5^(1/2)-7/9)/(3/10*3^(1/2)+8/9) 2415727462163524 a007 Real Root Of 477*x^4+782*x^3-427*x^2+718*x-994 2415727495134035 a001 8/123*370248451^(8/15) 2415727497603540 a001 843/377*514229^(52/59) 2415727502850366 m001 1/KhintchineLevy/exp(Conway)*GAMMA(11/12) 2415727503048313 a001 1/4250681*843^(11/16) 2415727506705893 h001 (-8*exp(3)+12)/(-3*exp(1)+2) 2415727506712278 m005 (1/2*2^(1/2)+1/3)/(1/8*exp(1)+1/11) 2415727513070337 l006 ln(6086/7749) 2415727514106161 m001 (gamma+BesselI(1,1))/(-Champernowne+Gompertz) 2415727516350940 a003 -1/2+2*cos(1/8*Pi)+cos(10/21*Pi)+cos(1/27*Pi) 2415727519551857 a007 Real Root Of 169*x^4+151*x^3-919*x^2-352*x+886 2415727524194031 r005 Re(z^2+c),c=-23/29+3/32*I,n=40 2415727530425956 a001 34/64079*76^(7/20) 2415727534956522 m005 (1/2*Pi+5/11)/(1/5*2^(1/2)+5/9) 2415727542606946 a007 Real Root Of 36*x^4+859*x^3-272*x^2-338*x+260 2415727543851307 a001 66978574/341*199^(10/11) 2415727557434351 m001 Gompertz^CareFree+Pi*csc(1/24*Pi)/GAMMA(23/24) 2415727560755956 a007 Real Root Of 250*x^4+251*x^3-687*x^2+542*x+343 2415727563287571 r005 Im(z^2+c),c=-28/25+1/34*I,n=46 2415727590443827 m001 exp(Pi)+MasserGramainDelta^Trott2nd 2415727607516569 a007 Real Root Of -33*x^4+412*x^3-644*x^2-301*x-199 2415727619152148 h001 (-4*exp(8)+6)/(-6*exp(2)-5) 2415727624544080 r002 51th iterates of z^2 + 2415727625840021 a001 144/710647*3^(4/25) 2415727640163638 r005 Re(z^2+c),c=-7/50+32/55*I,n=47 2415727644858441 r008 a(0)=0,K{-n^6,66*n^3+115*n^2+169*n+64} 2415727651101752 a007 Real Root Of 372*x^4+40*x^3-90*x^2-139*x+37 2415727658176281 m001 GAMMA(2/3)+Zeta(5)^exp(1/2) 2415727659331862 m001 (1+3^(1/2))^(1/2)-Zeta(1,2)^Pi 2415727659331862 m001 Zeta(1,2)^Pi-sqrt(1+sqrt(3)) 2415727659703557 m001 ln(GAMMA(1/12))/Robbin*cos(Pi/5)^2 2415727671015785 h003 exp(Pi*(6^(7/3)-19^(5/6))) 2415727671015785 h008 exp(Pi*(6^(7/3)-19^(5/6))) 2415727673133641 m001 (2*Pi/GAMMA(5/6)+PlouffeB)/Riemann3rdZero 2415727674782511 m006 (1/6/Pi-1/6)/(2*exp(Pi)+3/4) 2415727676094724 m008 (1/4*Pi+3)/(1/2*Pi^3+1/6) 2415727680130059 m001 AlladiGrinstead^CopelandErdos-Rabbit 2415727686259033 m001 cos(1/12*Pi)^FeigenbaumKappa+MinimumGamma 2415727690090352 a007 Real Root Of 121*x^4+23*x^3-580*x^2+50*x-291 2415727694089987 l006 ln(7129/9077) 2415727694748662 a007 Real Root Of 170*x^4+184*x^3-419*x^2-40*x-847 2415727695577644 m005 (1/2*5^(1/2)+1/3)/(2*exp(1)+4/7) 2415727698419070 a001 5778/5*34^(25/29) 2415727699126539 a007 Real Root Of 551*x^4+930*x^3-451*x^2+924*x-790 2415727711142755 r005 Im(z^2+c),c=-28/25+1/34*I,n=45 2415727713314890 r005 Im(z^2+c),c=-53/122+26/63*I,n=33 2415727715440086 h001 (5/9*exp(1)+2/11)/(1/10*exp(1)+3/7) 2415727721178618 r002 56th iterates of z^2 + 2415727725017104 r005 Im(z^2+c),c=39/106+2/11*I,n=27 2415727728742784 a007 Real Root Of -256*x^4-166*x^3+794*x^2+608*x-190 2415727730574001 r005 Im(z^2+c),c=-19/30+42/113*I,n=7 2415727737158067 m006 (1/6*exp(Pi)-5)/(4/Pi-4/5) 2415727749093926 l006 ln(96/1075) 2415727761828542 a001 521/89*13^(21/38) 2415727777762218 p001 sum((-1)^n/(572*n+353)/(2^n),n=0..infinity) 2415727778142072 m005 (-1/4+1/4*5^(1/2))/(5/11*2^(1/2)+7/11) 2415727786686415 r002 55th iterates of z^2 + 2415727791018169 m001 (Si(Pi)+ln(3))/(-Champernowne+HeathBrownMoroz) 2415727795379754 m001 (cos(1)-exp(-1/2*Pi))/(-Artin+Riemann1stZero) 2415727803387772 a007 Real Root Of 222*x^4-520*x^3+987*x^2-556*x-200 2415727811470945 a007 Real Root Of -378*x^4-688*x^3+278*x^2-716*x-178 2415727811481385 m001 ReciprocalFibonacci/(Zeta(1,-1)-GAMMA(3/4)) 2415727815749799 r005 Im(z^2+c),c=-3/25+1/34*I,n=12 2415727817854900 r002 60th iterates of z^2 + 2415727828531440 r005 Im(z^2+c),c=-28/25+1/34*I,n=52 2415727830325952 r002 59th iterates of z^2 + 2415727830900148 r005 Im(z^2+c),c=-28/25+1/34*I,n=56 2415727833982490 r005 Im(z^2+c),c=-28/25+1/34*I,n=50 2415727835862333 a007 Real Root Of 481*x^4+871*x^3-423*x^2+838*x+391 2415727835962025 r005 Im(z^2+c),c=-28/25+1/34*I,n=51 2415727836472646 r005 Im(z^2+c),c=-28/25+1/34*I,n=49 2415727836517193 r005 Im(z^2+c),c=-28/25+1/34*I,n=55 2415727837307154 r005 Im(z^2+c),c=-28/25+1/34*I,n=60 2415727838060998 r002 64th iterates of z^2 + 2415727839296738 r005 Im(z^2+c),c=-28/25+1/34*I,n=59 2415727839554665 r002 63th iterates of z^2 + 2415727839940844 r005 Im(z^2+c),c=-28/25+1/34*I,n=64 2415727840467493 r005 Im(z^2+c),c=-28/25+1/34*I,n=63 2415727840558983 r005 Im(z^2+c),c=-3/25+1/34*I,n=15 2415727840866413 r005 Im(z^2+c),c=-3/25+1/34*I,n=17 2415727840898467 r005 Im(z^2+c),c=-3/25+1/34*I,n=19 2415727840900592 r005 Im(z^2+c),c=-3/25+1/34*I,n=21 2415727840900705 r005 Im(z^2+c),c=-3/25+1/34*I,n=23 2415727840900709 r005 Im(z^2+c),c=-3/25+1/34*I,n=25 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=27 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=28 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=30 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=32 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=34 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=36 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=38 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=40 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=43 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=42 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=45 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=47 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=49 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=51 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=53 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=55 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=58 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=60 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=62 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=63 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=64 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=61 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=59 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=57 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=56 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=54 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=52 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=50 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=48 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=46 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=44 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=41 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=39 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=37 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=35 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=33 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=31 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=29 2415727840900710 r005 Im(z^2+c),c=-3/25+1/34*I,n=26 2415727840900711 r005 Im(z^2+c),c=-3/25+1/34*I,n=24 2415727840900735 r005 Im(z^2+c),c=-3/25+1/34*I,n=22 2415727840901235 r005 Im(z^2+c),c=-3/25+1/34*I,n=20 2415727840909779 r005 Im(z^2+c),c=-3/25+1/34*I,n=18 2415727841018546 r005 Im(z^2+c),c=-3/25+1/34*I,n=16 2415727841521557 r005 Im(z^2+c),c=-3/25+1/34*I,n=14 2415727841760056 r005 Im(z^2+c),c=-28/25+1/34*I,n=61 2415727842343813 r005 Im(z^2+c),c=-3/25+1/34*I,n=13 2415727842814833 r005 Im(z^2+c),c=-28/25+1/34*I,n=62 2415727843686757 r005 Im(z^2+c),c=-28/25+1/34*I,n=57 2415727844512333 m001 CopelandErdos/(ln(2^(1/2)+1)^DuboisRaymond) 2415727844993243 r002 61th iterates of z^2 + 2415727846723361 r005 Im(z^2+c),c=-28/25+1/34*I,n=53 2415727847188315 r005 Im(z^2+c),c=-28/25+1/34*I,n=58 2415727849722000 r002 62th iterates of z^2 + 2415727854464921 r005 Im(z^2+c),c=-28/25+1/34*I,n=54 2415727856813632 r005 Re(z^2+c),c=17/56+7/12*I,n=28 2415727858496205 m003 3+Sqrt[5]/64-(3*Csch[1/2+Sqrt[5]/2])/2 2415727865423485 a007 Real Root Of 219*x^4+282*x^3-550*x^2+462*x+843 2415727865709149 r002 57th iterates of z^2 + 2415727869677845 a007 Real Root Of 41*x^4+999*x^3+230*x^2+564*x-41 2415727877016641 a003 -3/2+cos(2/5*Pi)-cos(1/12*Pi)-cos(5/12*Pi) 2415727877374578 h001 (1/9*exp(2)+4/11)/(5/8*exp(2)+2/7) 2415727878525977 r005 Im(z^2+c),c=-28/25+1/34*I,n=47 2415727895035161 s002 sum(A151700[n]/(n^3*pi^n+1),n=1..infinity) 2415727895366161 r002 58th iterates of z^2 + 2415727896576176 s002 sum(A218039[n]/((exp(n)+1)*n),n=1..infinity) 2415727899629550 r005 Im(z^2+c),c=-4/11+13/33*I,n=18 2415727900773772 m005 (1/2*Catalan-6/7)/(4/7*Pi-1/7) 2415727903397927 m001 (Otter+Tetranacci)/(cos(1/12*Pi)+GAMMA(11/12)) 2415727918736842 r005 Im(z^2+c),c=-28/25+1/34*I,n=48 2415727918891766 r009 Re(z^3+c),c=-9/62+31/34*I,n=54 2415727923990467 m005 (1/2*gamma+2)/(3/7*gamma+7/10) 2415727927303449 m001 1/LaplaceLimit^2/FransenRobinson*ln(sin(1))^2 2415727928374629 m001 Pi^DuboisRaymond*Pi^Stephens 2415727930482342 m005 (1/2*Zeta(3)-7/8)/(1/4*exp(1)+5/11) 2415727934922222 q001 1/4139539 2415727946148058 r005 Re(z^2+c),c=-13/82+33/59*I,n=56 2415727947429550 a007 Real Root Of -410*x^4+191*x^3+113*x^2+652*x+155 2415727949900444 r005 Im(z^2+c),c=19/82+7/52*I,n=7 2415727952418852 r002 53th iterates of z^2 + 2415727969239666 r009 Re(z^3+c),c=-5/122+35/59*I,n=47 2415727976832462 a007 Real Root Of 103*x^4+69*x^3-449*x^2-205*x-410 2415727995709930 a007 Real Root Of -276*x^4-492*x^3+888*x^2+834*x-704 2415727997383718 a005 (1/sin(88/189*Pi))^1332 2415728003688047 r005 Re(z^2+c),c=-3/25+27/47*I,n=29 2415728007256690 r005 Im(z^2+c),c=-7/46+20/61*I,n=21 2415728007632860 r005 Re(z^2+c),c=13/66+2/33*I,n=15 2415728013089521 a007 Real Root Of -270*x^4-320*x^3+699*x^2-603*x-852 2415728025175752 m001 Pi/ln(2)*ln(10)/Ei(1)/BesselI(0,2) 2415728032219390 r005 Im(z^2+c),c=-3/25+1/34*I,n=11 2415728041719948 m002 -(E^Pi*Coth[Pi])-Log[Pi]+ProductLog[Pi]/5 2415728055293067 a001 1730726404001/305*12586269025^(11/24) 2415728056276025 r005 Im(z^2+c),c=-25/18+1/38*I,n=3 2415728081009996 m005 (1/3*5^(1/2)-1/10)/(3/8*3^(1/2)-11/12) 2415728082630105 p004 log(31231/2789) 2415728086430737 r002 62th iterates of z^2 + 2415728088475027 r002 54th iterates of z^2 + 2415728089907215 a007 Real Root Of -657*x^4-532*x^3+11*x^2+575*x+133 2415728092132351 h001 (4/7*exp(1)+5/7)/(2/11*exp(1)+4/9) 2415728092208294 m001 HardyLittlewoodC3*(Pi+Robbin) 2415728095927101 r005 Re(z^2+c),c=-7/34+47/58*I,n=30 2415728099282982 r009 Im(z^3+c),c=-19/64+13/64*I,n=11 2415728101126262 m009 (6*Catalan+3/4*Pi^2+4/5)/(1/8*Pi^2-2/3) 2415728104103246 a003 sin(Pi*3/25)*sin(Pi*18/79) 2415728114917410 r009 Re(z^3+c),c=-11/48+35/57*I,n=3 2415728118343846 m006 (5/6/Pi-1/4)/(3/5*ln(Pi)-3/4) 2415728118356490 m006 (Pi^2+3/5)/(4/5*exp(2*Pi)+5) 2415728123287781 p003 LerchPhi(1/25,3,240/149) 2415728124436090 m001 2^(1/2)+FeigenbaumAlpha^ZetaQ(4) 2415728128623772 r009 Re(z^3+c),c=-7/48+15/16*I,n=54 2415728137273197 r005 Re(z^2+c),c=15/56+32/63*I,n=4 2415728143977177 r005 Re(z^2+c),c=-129/118+11/48*I,n=24 2415728162825261 r005 Im(z^2+c),c=-13/86+27/64*I,n=3 2415728169442938 p004 log(24781/2213) 2415728178019532 r002 6th iterates of z^2 + 2415728192729520 m001 (BesselJ(0,1)-Gompertz)/(-Rabbit+Trott) 2415728195780663 r005 Im(z^2+c),c=-1+17/69*I,n=17 2415728196225259 a008 Real Root of x^2-x-58599 2415728196870586 r005 Im(z^2+c),c=-28/25+1/34*I,n=43 2415728203556538 m001 1/exp(Khintchine)^2*Si(Pi)^2/TwinPrimes 2415728210472654 b008 E^2*Pi+Tanh[Sqrt[Pi]] 2415728210641676 a001 1/7787980473*17711^(3/10) 2415728211103721 a001 29/956722026041*2178309^(3/10) 2415728211103752 a001 29/4052739537881*267914296^(3/10) 2415728211725244 a001 521/21*2178309^(16/51) 2415728212040334 a007 Real Root Of 26*x^4+667*x^3+906*x^2-785*x+864 2415728217440329 m001 (cos(1)*GAMMA(11/24)-gamma)/GAMMA(11/24) 2415728232710309 m001 ArtinRank2-HardyLittlewoodC4-ZetaR(2) 2415728234709620 r002 49th iterates of z^2 + 2415728237282761 m001 exp(Pi)+BesselK(1,1)+PrimesInBinary 2415728240121863 b008 11+27*E*Pi 2415728242448252 m001 (Porter+Sarnak)/(Catalan-MasserGramainDelta) 2415728250457608 r005 Re(z^2+c),c=1/6+9/25*I,n=57 2415728250561028 p001 sum(1/(479*n+330)/n/(512^n),n=1..infinity) 2415728283460571 r005 Im(z^2+c),c=-25/74+25/64*I,n=17 2415728290175895 r009 Im(z^3+c),c=-47/82+8/33*I,n=53 2415728295848177 m001 cos(1)^GAMMA(11/24)/(2^(1/3)) 2415728307938389 m005 (1/3*Pi-1/2)/(1/10*Zeta(3)-1/7) 2415728309954859 a007 Real Root Of 63*x^4-249*x^3-595*x^2+569*x-809 2415728314758838 r002 4th iterates of z^2 + 2415728321576246 m001 1/FeigenbaumAlpha/exp(Conway)*Bloch^2 2415728324808198 a007 Real Root Of 259*x^4+540*x^3-203*x^2+301*x+704 2415728333517591 m009 (3/5*Psi(1,3/4)+5)/(3/8*Pi^2-1) 2415728363636080 m001 GAMMA(1/24)*exp(Kolakoski)/arctan(1/2)^2 2415728365855572 a001 123*13^(5/19) 2415728372840739 m002 -Pi^(-6)+4*Pi+Cosh[Pi] 2415728387292570 a007 Real Root Of -266*x^4-300*x^3+898*x^2+19*x-365 2415728391484698 a001 267914296/843*199^(9/11) 2415728407179210 m001 (ln(gamma)+exp(1/Pi))/(polylog(4,1/2)-Thue) 2415728409176895 r005 Re(z^2+c),c=-6/29+19/42*I,n=56 2415728409646496 r009 Re(z^3+c),c=-5/122+35/59*I,n=49 2415728419142229 h001 (8/9*exp(1)+9/11)/(1/10*exp(2)+3/5) 2415728426122427 r002 41th iterates of z^2 + 2415728434439347 r002 3th iterates of z^2 + 2415728445789729 m001 ln(2)+Pi*csc(1/24*Pi)/GAMMA(23/24)+ZetaQ(4) 2415728450795311 a007 Real Root Of 473*x^4+903*x^3-244*x^2+624*x-447 2415728450980295 m005 (2/5*Pi-5)/(3/5*Catalan+1) 2415728461695423 r005 Re(z^2+c),c=35/114+2/11*I,n=50 2415728463485428 r009 Re(z^3+c),c=-3/74+25/43*I,n=22 2415728475622058 a001 39603/55*1597^(41/52) 2415728480436718 s002 sum(A029439[n]/(pi^n+1),n=1..infinity) 2415728480816216 a007 Real Root Of -853*x^4-12*x^3-665*x^2+993*x-198 2415728493751379 r009 Re(z^3+c),c=-7/48+15/16*I,n=60 2415728499319608 r005 Re(z^2+c),c=-6/29+19/42*I,n=57 2415728500864290 r005 Re(z^2+c),c=-6/29+19/42*I,n=59 2415728504652184 m001 Zeta(3)/exp(FeigenbaumAlpha)^2*sqrt(3)^2 2415728512754483 a005 (1/sin(63/155*Pi))^1071 2415728514722605 m001 ZetaQ(4)^(MasserGramainDelta/ln(3)) 2415728522148623 a007 Real Root Of 32*x^4+808*x^3+868*x^2+601*x+924 2415728527855996 a007 Real Root Of 966*x^4-340*x^3-143*x^2-961*x+242 2415728537911720 r005 Re(z^2+c),c=-8/27+5/56*I,n=14 2415728538407368 r005 Re(z^2+c),c=-9/52+28/53*I,n=59 2415728541878665 r009 Re(z^3+c),c=-47/122+31/64*I,n=26 2415728542869179 r005 Im(z^2+c),c=19/86+1/7*I,n=29 2415728543709463 s001 sum(exp(-2*Pi)^(n-1)*A265646[n],n=1..infinity) 2415728550427247 a008 Real Root of x^4-x^3-6*x^2+29*x-55 2415728560541564 m001 CareFree-QuadraticClass^BesselJ(1,1) 2415728579243359 r005 Im(z^2+c),c=19/86+1/7*I,n=30 2415728591411905 m001 ln(Ei(1))^2/Robbin^2*sin(Pi/12) 2415728606850936 r009 Re(z^3+c),c=-7/48+15/16*I,n=58 2415728610158064 a007 Real Root Of 404*x^4+891*x^3-34*x^2+460*x+112 2415728613386207 r005 Im(z^2+c),c=-28/25+1/34*I,n=44 2415728616430482 r008 a(0)=0,K{-n^6,54*n^3+143*n^2+164*n+53} 2415728616801214 r008 a(0)=0,K{-n^6,(2*n+1)*(49+25*n^2+64*n)} 2415728616801214 r008 a(0)=0,K{-n^6,50*n^3+153*n^2+162*n+49} 2415728627428613 r009 Re(z^3+c),c=-5/122+35/59*I,n=51 2415728628320030 h001 (3/11*exp(1)+6/7)/(9/11*exp(2)+4/7) 2415728637583186 r005 Re(z^2+c),c=-23/18+21/194*I,n=8 2415728642175540 a007 Real Root Of 422*x^4+790*x^3-437*x^2+133*x-363 2415728658750600 r005 Im(z^2+c),c=-17/114+17/40*I,n=3 2415728665126223 m005 (1/3*Zeta(3)+3/8)/(1/5*gamma-1/12) 2415728684443564 m001 1/exp(FeigenbaumKappa)^2*Magata/Zeta(1,2) 2415728688168582 m005 (1/2*Pi+1/8)/(1/7*3^(1/2)+5/11) 2415728688646860 m005 (1/2*5^(1/2)-4)/(4*Pi-7/11) 2415728690521248 r005 Re(z^2+c),c=-37/30+23/107*I,n=2 2415728702555664 r002 48th iterates of z^2 + 2415728703092075 a007 Real Root Of 545*x^4-517*x^3-658*x^2-870*x+254 2415728713131930 m001 QuadraticClass/Cahen/LambertW(1) 2415728716186361 m001 (BesselJ(1,1)+GAMMA(7/12))^GAMMA(1/12) 2415728718515405 m001 1/exp(Pi)^2*Catalan/sin(1)^2 2415728725399539 r002 50th iterates of z^2 + 2415728727977460 a007 Real Root Of 402*x^4+921*x^3-122*x^2+283*x+689 2415728730853312 r009 Re(z^3+c),c=-5/122+35/59*I,n=53 2415728733389123 m001 (3^(1/2)-Si(Pi))/(BesselI(0,2)+FeigenbaumD) 2415728739325331 a007 Real Root Of -30*x^4-718*x^3+165*x^2+35*x-728 2415728740896367 a007 Real Root Of -390*x^4-848*x^3+78*x^2-132*x+553 2415728750356067 l006 ln(1043/1328) 2415728751651805 r005 Re(z^2+c),c=-6/29+19/42*I,n=62 2415728760605008 m002 -4*Pi-Cosh[Pi]+Tanh[Pi]/Pi^6 2415728761229164 r005 Re(z^2+c),c=27/110+30/53*I,n=32 2415728770139370 m001 Zeta(5)+Zeta(3)^KhinchinHarmonic 2415728777910310 r009 Re(z^3+c),c=-5/122+35/59*I,n=55 2415728784767219 m005 (1/2*Zeta(3)-7/11)/(11/12*3^(1/2)-1/8) 2415728786797513 a008 Real Root of x^4-2*x^3-14*x^2-54*x-111 2415728794080173 m005 (1/2*Pi+2)/(5/12*2^(1/2)+8/9) 2415728798286230 r009 Re(z^3+c),c=-5/122+35/59*I,n=57 2415728802338106 a007 Real Root Of -401*x^4-478*x^3+734*x^2-963*x+308 2415728805852668 a001 6765/7*199^(9/52) 2415728806566749 r009 Re(z^3+c),c=-5/122+35/59*I,n=59 2415728809633057 r009 Re(z^3+c),c=-5/122+35/59*I,n=61 2415728810153448 r009 Re(z^3+c),c=-5/122+35/59*I,n=64 2415728810593133 r009 Re(z^3+c),c=-5/122+35/59*I,n=63 2415728810625527 r009 Re(z^3+c),c=-5/122+35/59*I,n=62 2415728812392732 r009 Re(z^3+c),c=-5/122+35/59*I,n=60 2415728817505609 r009 Re(z^3+c),c=-5/122+35/59*I,n=58 2415728819556596 l006 ln(869/9731) 2415728827752806 a001 47/196418*6765^(40/51) 2415728830615565 r009 Re(z^3+c),c=-5/122+35/59*I,n=56 2415728830744248 r002 45th iterates of z^2 + 2415728835414567 m001 (Psi(1,1/3)+Conway)/(-FellerTornier+Kolakoski) 2415728838483390 r009 Re(z^3+c),c=-7/48+15/16*I,n=64 2415728846478520 m001 (cos(1)+BesselK(1,1))/(Pi^(1/2)+Otter) 2415728855391225 r005 Im(z^2+c),c=-5/34+19/42*I,n=3 2415728856438181 a007 Real Root Of -588*x^4+67*x^3+4*x^2+767*x+188 2415728858089184 a007 Real Root Of 747*x^4-693*x^3+586*x^2-567*x+110 2415728861792882 r009 Re(z^3+c),c=-5/122+35/59*I,n=54 2415728870838152 b008 E^Pi+Coth[12/5] 2415728876335063 r008 a(0)=0,K{-n^6,-89+21*n^3+15*n^2+12*n} 2415728886456583 b008 Pi*(4+ArcSinh[20]) 2415728897341049 a008 Real Root of (1+4*x+x^3-6*x^4-x^5) 2415728900150701 m001 1/OneNinth^2*DuboisRaymond^2/ln(sin(Pi/12)) 2415728900847290 m001 (exp(Pi)*GAMMA(17/24)+Mills)/GAMMA(17/24) 2415728901504250 m001 (5^(1/2)+2/3*Pi*3^(1/2)/GAMMA(2/3))^2 2415728905807501 m009 (2*Psi(1,2/3)+4/5)/(3/8*Pi^2-5/6) 2415728913569744 a007 Real Root Of -431*x^4-884*x^3+318*x^2-5*x+348 2415728914830460 m001 (Thue+TwinPrimes)/(BesselK(0,1)+exp(-1/2*Pi)) 2415728917511370 r005 Im(z^2+c),c=-29/52+9/22*I,n=62 2415728917596513 r009 Re(z^3+c),c=-13/90+28/31*I,n=36 2415728924219272 a007 Real Root Of -841*x^4-522*x^3+928*x^2+704*x-214 2415728924308553 a007 Real Root Of 465*x^4+521*x^3-892*x^2+959*x-969 2415728927316696 r009 Re(z^3+c),c=-17/46+23/47*I,n=10 2415728931951073 r009 Re(z^3+c),c=-5/122+35/59*I,n=52 2415728952498840 l006 ln(773/8656) 2415728957291980 r009 Im(z^3+c),c=-45/98+3/58*I,n=51 2415728960063643 r005 Im(z^2+c),c=-127/106+9/58*I,n=64 2415728960138795 m001 (FeigenbaumB+Khinchin)/(Kolakoski+Robbin) 2415728975318370 a005 (1/cos(7/200*Pi))^1286 2415728976848461 r005 Re(z^2+c),c=1/6+9/25*I,n=58 2415728981503853 r009 Re(z^3+c),c=-9/62+22/23*I,n=34 2415728982894780 m006 (5/6/Pi-1/3)/(5/6*Pi+1/5) 2415728984753167 r005 Im(z^2+c),c=-15/38+20/39*I,n=20 2415728998571136 r002 19th iterates of z^2 + 2415729005820321 a007 Real Root Of -911*x^4-430*x^3-162*x^2+474*x+121 2415729009439083 a007 Real Root Of -341*x^4-496*x^3+679*x^2+38*x+750 2415729020759875 r009 Re(z^3+c),c=-7/48+15/16*I,n=62 2415729037648364 m001 (Zeta(5)-3^(1/3))/(Cahen-PlouffeB) 2415729060044116 m001 (Psi(2,1/3)+Kolakoski)/(Porter+Riemann2ndZero) 2415729061052002 a008 Real Root of x^3-951*x-8876 2415729082801778 r009 Re(z^3+c),c=-5/122+35/59*I,n=50 2415729092386813 r005 Re(z^2+c),c=-7/25+10/33*I,n=5 2415729100062408 r005 Re(z^2+c),c=-6/29+19/42*I,n=60 2415729102071077 q001 1/4139537 2415729105167722 m001 GAMMA(1/6)^2*Porter/ln(cosh(1))^2 2415729109054465 r005 Re(z^2+c),c=-15/56+17/64*I,n=23 2415729114513698 m001 1/GAMMA(17/24)/ln(MinimumGamma)^2/sqrt(5) 2415729121131581 k008 concat of cont frac of 2415729122434406 a007 Real Root Of 84*x^4-134*x^3-590*x^2+425*x-280 2415729123144028 l006 ln(677/7581) 2415729132960067 r005 Im(z^2+c),c=-12/29+11/27*I,n=26 2415729137065188 a007 Real Root Of 329*x^4-174*x^3-887*x^2-931*x+278 2415729142656269 k002 Champernowne real with 1/2*n^2+263/2*n-108 2415729164285348 a001 9062201101803/1597*12586269025^(11/24) 2415729186236573 r005 Re(z^2+c),c=-6/29+19/42*I,n=53 2415729202514290 m005 (1/4*2^(1/2)+5/6)/(5*Catalan+1/3) 2415729213735881 a007 Real Root Of -441*x^4-869*x^3+882*x^2+792*x-466 2415729217014092 m001 TwinPrimes*ln(FeigenbaumDelta)^3 2415729223647996 a007 Real Root Of 147*x^4+398*x^3-213*x^2-396*x+891 2415729232191116 k006 concat of cont frac of 2415729233321805 a007 Real Root Of -475*x^4-984*x^3+789*x^2+868*x-203 2415729238660300 r005 Re(z^2+c),c=-6/29+19/42*I,n=64 2415729238902599 m001 (-polylog(4,1/2)+MertensB2)/(3^(1/2)-exp(Pi)) 2415729242877438 r005 Re(z^2+c),c=-6/29+19/42*I,n=63 2415729242956870 k002 Champernowne real with n^2+130*n-107 2415729248036464 m005 (-1/66+1/6*5^(1/2))/(1/4*Zeta(3)-2/7) 2415729251033429 a007 Real Root Of 95*x^4-238*x^3-338*x^2-861*x+21 2415729251982317 r009 Im(z^3+c),c=-7/20+8/45*I,n=18 2415729259890771 m001 Thue/(Pi+PrimesInBinary) 2415729262315948 m001 (Stephens+StolarskyHarborth)/(Pi-BesselK(0,1)) 2415729275521530 m001 1/GAMMA(3/4)/ln(Porter)/log(1+sqrt(2)) 2415729278025328 r005 Re(z^2+c),c=-6/29+19/42*I,n=46 2415729289337661 r005 Im(z^2+c),c=-23/18+9/191*I,n=63 2415729298304944 r005 Re(z^2+c),c=7/24+8/47*I,n=56 2415729299265925 m001 Landau/(2^(1/2)+GaussAGM) 2415729314072522 m001 1/ln(Riemann3rdZero)^2*Magata^2/arctan(1/2) 2415729315572478 m005 (1/2*Catalan+8/9)/(1/10*exp(1)+2/7) 2415729316106590 a007 Real Root Of -576*x^4-900*x^3+935*x^2-291*x+769 2415729321380151 l003 Pi*cos(Pi*17/77) 2415729321380151 l003 Pi*cos(Pi*60/77) 2415729326085226 a001 23725150497407/4181*12586269025^(11/24) 2415729336419652 m005 (1/2*Zeta(3)-3/7)/(6/11*2^(1/2)-7/10) 2415729336696018 r005 Re(z^2+c),c=-27/86+28/45*I,n=9 2415729337474353 a007 Real Root Of -284*x^4-571*x^3+50*x^2-393*x+381 2415729337707420 r005 Re(z^2+c),c=-15/22+9/41*I,n=13 2415729343257471 k002 Champernowne real with 3/2*n^2+257/2*n-106 2415729343499350 m001 (Psi(1,1/3)+GAMMA(2/3))/(Magata+MertensB3) 2415729343986326 m005 (1/2*gamma+3/10)/(2*exp(1)-3) 2415729350181385 l006 ln(581/6506) 2415729355169686 m001 gamma(1)^(Cahen/KhinchinLevy) 2415729356779073 r009 Re(z^3+c),c=-25/66+25/53*I,n=29 2415729380850586 m001 (Grothendieck-Salem)/(Sierpinski-ZetaP(4)) 2415729394065012 r009 Re(z^3+c),c=-5/122+35/59*I,n=48 2415729399743328 r005 Re(z^2+c),c=-17/26+10/81*I,n=2 2415729402785783 p001 sum(1/(478*n+331)/n/(512^n),n=1..infinity) 2415729404471840 r005 Re(z^2+c),c=-27/110+9/26*I,n=28 2415729407050897 m005 (1/2*2^(1/2)-2)/(4/7*3^(1/2)-5/11) 2415729426083061 a001 192933544679/34*12586269025^(11/24) 2415729426768051 a001 521/3*317811^(43/46) 2415729428519774 a007 Real Root Of -627*x^4+939*x^3-920*x^2+393*x+164 2415729432806345 m005 (1/2*Catalan+11/12)/(1/8*Catalan+5/11) 2415729435771016 m001 (Cahen+ReciprocalLucas)/(Psi(1,1/3)+ln(2)) 2415729437099874 m001 (ln(3)-Gompertz)/(TwinPrimes-ZetaP(2)) 2415729440864741 a007 Real Root Of 207*x^4-963*x^3+708*x^2+781*x+508 2415729443558072 k002 Champernowne real with 2*n^2+127*n-105 2415729446471577 m001 GAMMA(3/4)^2*Robbin/exp(sqrt(2)) 2415729451321618 a007 Real Root Of 704*x^4-834*x^3+677*x^2-316*x-130 2415729455111433 r005 Im(z^2+c),c=-12/23+23/53*I,n=47 2415729468800442 a007 Real Root Of -512*x^4-992*x^3+472*x^2-49*x+579 2415729482662559 r005 Re(z^2+c),c=-19/54+5/43*I,n=2 2415729483256637 r002 54th iterates of z^2 + 2415729505350347 m001 LandauRamanujan2nd/(ZetaP(2)-ln(2)) 2415729505779967 m003 193/8+(Sqrt[5]*Tanh[1/2+Sqrt[5]/2])/64 2415729507465826 g002 Psi(1/12)+Psi(1/11)+Psi(5/8)-Psi(5/7) 2415729507861574 r002 42th iterates of z^2 + 2415729516672101 m009 (3/5*Psi(1,3/4)+5)/(4/5*Psi(1,2/3)+1/4) 2415729522545396 a007 Real Root Of 531*x^4+932*x^3-600*x^2+465*x-320 2415729528529466 r005 Re(z^2+c),c=-6/29+19/42*I,n=61 2415729530061968 m001 (Ei(1,1)-GlaisherKinkelin)/BesselJ(1,1) 2415729530293837 m001 (sin(1)+Khinchin)/(-MinimumGamma+ZetaQ(4)) 2415729543858673 k002 Champernowne real with 5/2*n^2+251/2*n-104 2415729548026142 a007 Real Root Of -299*x^4-710*x^3-263*x^2-715*x-19 2415729548092680 a007 Real Root Of 350*x^4+357*x^3-869*x^2+374*x-912 2415729575539725 m005 (1/2*3^(1/2)-3/8)/(5/12*exp(1)+9/10) 2415729577834278 m001 (Niven+ZetaQ(3))/(2*Pi/GAMMA(5/6)+GAMMA(7/12)) 2415729583687333 r002 44th iterates of z^2 + 2415729585209067 r005 Im(z^2+c),c=19/86+1/7*I,n=31 2415729588527566 h001 (-2*exp(2/3)+7)/(-6*exp(3)-8) 2415729591850425 r008 a(0)=0,K{-n^6,(2*n+1)*(78+39*n^2+21*n)} 2415729593795563 r008 a(0)=0,K{-n^6,56*n^3+136*n^2+166*n+56} 2415729599305562 a001 24157656-161*5^(1/2) 2415729599616124 a001 24157817-233*5^(1/2) 2415729599905180 p004 log(33857/26591) 2415729599906466 m001 GAMMA(7/12)^2*DuboisRaymond*ln(sin(Pi/5)) 2415729601123595 a001 2149999345/89 2415729616019501 a005 (1/cos(19/188*Pi))^601 2415729620011057 r009 Re(z^3+c),c=-7/48+15/16*I,n=48 2415729621820768 p001 sum(1/(494*n+451)/(6^n),n=0..infinity) 2415729644159274 k002 Champernowne real with 3*n^2+124*n-103 2415729648320222 m001 (exp(1)+3^(1/2))/(ln(Pi)+ArtinRank2) 2415729653081482 h001 (9/11*exp(2)+5/12)/(3/4*exp(1)+7/11) 2415729658468315 m005 (1/3*Zeta(3)+3/4)/(5/6*Catalan+4) 2415729667097362 l006 ln(485/5431) 2415729667795363 a007 Real Root Of 477*x^4+994*x^3+14*x^2+915*x-103 2415729669151909 r004 Im(z^2+c),c=-41/34+6/17*I,z(0)=-1,n=8 2415729691766435 r002 2th iterates of z^2 + 2415729696722979 r005 Im(z^2+c),c=-5/17+4/5*I,n=3 2415729697003316 r005 Im(z^2+c),c=-7/8+41/196*I,n=4 2415729699028969 r002 31th iterates of z^2 + 2415729724188288 m001 2*Pi/GAMMA(5/6)/(ArtinRank2+ErdosBorwein) 2415729732329404 r005 Re(z^2+c),c=-11/8+2/199*I,n=8 2415729744459875 k002 Champernowne real with 7/2*n^2+245/2*n-102 2415729752183801 a001 1322157322203*2^(20/23) 2415729757999597 l006 ln(7473/9515) 2415729764337273 r009 Re(z^3+c),c=-53/102+27/52*I,n=29 2415729779783274 a007 Real Root Of -489*x^4-618*x^3+30*x^2+914*x+212 2415729784111831 a007 Real Root Of 7*x^4+158*x^3-260*x^2+185*x-300 2415729787019916 a007 Real Root Of -71*x^4-180*x^3-235*x^2-293*x+544 2415729788228322 h001 (10/11*exp(2)+1/9)/(1/3*exp(2)+4/11) 2415729794468179 r009 Im(z^3+c),c=-7/16+6/55*I,n=42 2415729794711480 r005 Im(z^2+c),c=-28/25+1/34*I,n=39 2415729797860857 r005 Im(z^2+c),c=-57/122+17/40*I,n=38 2415729807202804 h001 (-4*exp(2)+8)/(-6*exp(1/2)+9) 2415729810332911 m001 FeigenbaumAlpha*polylog(4,1/2)^ZetaQ(2) 2415729827560546 r009 Re(z^3+c),c=-5/17+11/37*I,n=2 2415729830321438 m005 (1/2*Zeta(3)-4/11)/(3/5*gamma+7/11) 2415729832365856 m001 (-Thue+ZetaQ(2))/(2^(1/2)-MadelungNaCl) 2415729844760476 k002 Champernowne real with 4*n^2+121*n-101 2415729845591748 m002 5/Pi+E^Pi*Pi^2+Cosh[Pi] 2415729847017006 m001 (-Conway+Mills)/(ln(2)/ln(10)+Zeta(1/2)) 2415729847868054 r009 Re(z^3+c),c=-35/82+27/56*I,n=9 2415729849680780 a001 5600748293801/987*12586269025^(11/24) 2415729851410540 m001 (cos(1/12*Pi)-Thue)^HardyLittlewoodC3 2415729858518176 m001 exp(cosh(1))*ErdosBorwein^2*sqrt(2)^2 2415729859076413 a007 Real Root Of -473*x^4-990*x^3+232*x^2-125*x+496 2415729861375601 p004 log(25889/20333) 2415729863509783 m005 (1/2*Pi+5/7)/(7/11*gamma-3/11) 2415729873064863 m005 (1/2*3^(1/2)-4/7)/(9/10*gamma+7/10) 2415729877770284 l006 ln(874/9787) 2415729879789085 m001 LandauRamanujan^GAMMA(2/3)+GAMMA(1/24) 2415729880915486 m001 Trott2nd*(cos(1/5*Pi)-gamma(1)) 2415729885036526 r009 Re(z^3+c),c=-7/48+15/16*I,n=56 2415729888620149 r005 Re(z^2+c),c=1/6+9/25*I,n=62 2415729894447109 r005 Im(z^2+c),c=-13/48+18/49*I,n=19 2415729895219898 m001 1/(2^(1/3))^2*ln(Cahen)/GAMMA(1/12) 2415729913452643 a001 377/3*2^(33/35) 2415729919676745 a001 521/20365011074*2178309^(2/13) 2415729919676761 a001 521/139583862445*591286729879^(2/13) 2415729919676761 a001 521/53316291173*1134903170^(2/13) 2415729920705028 b008 -25+Erf[1] 2415729920705028 b008 24+Erfc[1] 2415729920790532 m001 PlouffeB/ErdosBorwein/GAMMA(3/4) 2415729921447830 l006 ln(6430/8187) 2415729922519620 m006 (3/5*ln(Pi)+3/4)/(2/5*Pi^2+2) 2415729923243381 m001 1/Khintchine*FransenRobinson*ln((2^(1/3))) 2415729923928873 a001 521/7778742049*4181^(2/13) 2415729930287926 r005 Re(z^2+c),c=-1+31/188*I,n=40 2415729942746419 m001 arctan(1/3)*Conway*Stephens 2415729945061077 k002 Champernowne real with 9/2*n^2+239/2*n-100 2415729946137175 m005 (1/2*Pi-1)/(7/11*Pi+4/11) 2415729949153672 r005 Re(z^2+c),c=1/6+9/25*I,n=61 2415729951928263 m005 (1/2*Zeta(3)-3/10)/(9/10*5^(1/2)-2) 2415729954789582 m001 ArtinRank2/CareFree/HardyLittlewoodC5 2415729966048005 a001 55/843*47^(17/50) 2415729968352653 m001 Pi*2^(1/2)/GAMMA(3/4)/Shi(1)*CareFree 2415729968730559 r005 Re(z^2+c),c=-87/118+8/47*I,n=36 2415729973144470 m001 (ln(2)-ln(2)/ln(10))/(-MertensB3+Otter) 2415729989091581 m005 (1/2*Zeta(3)+3)/(1/9*Pi-1/5) 2415729992142268 a007 Real Root Of -453*x^4-770*x^3+406*x^2-731*x+437 2415729994535578 b008 LogIntegral[3+EulerGamma/2] 2415730010803176 r009 Re(z^3+c),c=-5/122+35/59*I,n=46 2415730013962470 m005 (1/2*Pi+2)/(-1/84+1/14*5^(1/2)) 2415730015095425 m001 (1+ln(2)/ln(10))/(Paris+TreeGrowth2nd) 2415730030802342 m001 1/Catalan^2*exp(CareFree)*Zeta(9) 2415730040038645 m001 (ln(2^(1/2)+1)+Artin)/(Gompertz-ZetaP(4)) 2415730040862198 a001 11/514229*2^(10/57) 2415730043470638 r005 Im(z^2+c),c=-139/98+9/23*I,n=3 2415730045361678 k002 Champernowne real with 5*n^2+118*n-99 2415730050576451 a007 Real Root Of -90*x^4+664*x^3-658*x^2-791*x-545 2415730056121414 s001 sum(exp(-Pi/3)^(n-1)*A057788[n],n=1..infinity) 2415730058998285 p004 log(31567/2819) 2415730070106078 r002 52th iterates of z^2 + 2415730092950609 a007 Real Root Of -577*x^4+885*x^3-31*x^2+647*x-165 2415730100136761 m001 1/2*Pi*2^(1/2)-BesselI(0,1)-Zeta(1/2) 2415730101070909 r009 Re(z^3+c),c=-13/90+29/32*I,n=28 2415730103226629 r005 Re(z^2+c),c=-155/122+7/30*I,n=6 2415730103613302 m001 (GAMMA(17/24)-KomornikLoreti)/exp(-1/2*Pi) 2415730104174103 a007 Real Root Of 487*x^4+985*x^3-343*x^2+475*x+450 2415730107842588 a001 377/2*3^(7/31) 2415730112655878 r002 46th iterates of z^2 + 2415730113524825 a003 cos(Pi*16/65)-sin(Pi*23/91) 2415730113600753 m001 (GAMMA(23/24)-ZetaQ(3))/BesselK(0,1) 2415730113674202 r009 Re(z^3+c),c=-1/4+8/53*I,n=6 2415730119761351 r005 Im(z^2+c),c=7/82+13/55*I,n=4 2415730122041822 m001 Kolakoski^2*CopelandErdos*ln(Salem) 2415730125466750 a008 Real Root of (13+11*x-17*x^2-8*x^3) 2415730126560445 m005 (1/2*Pi-4/5)/(4/11*2^(1/2)-5/6) 2415730132691688 a001 47/28657*17711^(44/59) 2415730136573017 m005 (1/2*gamma+4/5)/(2/7*gamma+2/7) 2415730140434404 l006 ln(389/4356) 2415730145662279 k002 Champernowne real with 11/2*n^2+233/2*n-98 2415730148187876 l006 ln(5387/6859) 2415730154825778 a001 47/2584*987^(39/55) 2415730164544986 r005 Re(z^2+c),c=-6/29+19/42*I,n=58 2415730173114775 h001 (1/3*exp(2)+3/4)/(1/12*exp(2)+5/7) 2415730174175353 m001 (Ei(1,1)+GAMMA(23/24))/(MadelungNaCl+Magata) 2415730178167352 a007 Real Root Of -146*x^4+52*x^3+585*x^2-708*x+581 2415730183395308 p001 sum(1/(594*n+421)/(25^n),n=0..infinity) 2415730193534512 r009 Re(z^3+c),c=-8/21+16/29*I,n=23 2415730195974467 r005 Im(z^2+c),c=-43/98+18/43*I,n=37 2415730211681053 r005 Im(z^2+c),c=19/86+1/7*I,n=37 2415730212179148 r005 Im(z^2+c),c=-83/118+14/47*I,n=11 2415730225559393 r009 Im(z^3+c),c=-63/122+8/59*I,n=2 2415730226945150 r005 Im(z^2+c),c=19/86+1/7*I,n=36 2415730227986919 m001 (-polylog(4,1/2)+ZetaP(3))/(gamma+sin(1)) 2415730231641129 m001 exp(GAMMA(5/6))/GAMMA(17/24)*Zeta(9)^2 2415730235899861 a007 Real Root Of 44*x^4-168*x^3-336*x^2-286*x-52 2415730241971653 m005 (-29/44+1/4*5^(1/2))/(4/11*2^(1/2)-1/10) 2415730245031692 r005 Im(z^2+c),c=19/86+1/7*I,n=38 2415730245962880 k002 Champernowne real with 6*n^2+115*n-97 2415730254785993 a007 Real Root Of 114*x^4-36*x^3-322*x^2+940*x-240 2415730254965453 r002 41th iterates of z^2 + 2415730262738285 a001 3/439204*322^(7/32) 2415730263000309 m005 (1/2*Zeta(3)+9/11)/(3*5^(1/2)-5/6) 2415730276772887 r005 Im(z^2+c),c=19/86+1/7*I,n=44 2415730277767356 r005 Im(z^2+c),c=19/86+1/7*I,n=45 2415730278047909 r005 Im(z^2+c),c=19/86+1/7*I,n=43 2415730278400334 r005 Im(z^2+c),c=19/86+1/7*I,n=39 2415730279090650 r005 Im(z^2+c),c=19/86+1/7*I,n=46 2415730279260008 r005 Im(z^2+c),c=19/86+1/7*I,n=51 2415730279284126 r005 Im(z^2+c),c=19/86+1/7*I,n=52 2415730279334388 r005 Im(z^2+c),c=19/86+1/7*I,n=53 2415730279336306 r005 Im(z^2+c),c=19/86+1/7*I,n=50 2415730279350555 r005 Im(z^2+c),c=19/86+1/7*I,n=58 2415730279350833 r005 Im(z^2+c),c=19/86+1/7*I,n=59 2415730279352650 r005 Im(z^2+c),c=19/86+1/7*I,n=60 2415730279353847 r005 Im(z^2+c),c=19/86+1/7*I,n=64 2415730279354024 r005 Im(z^2+c),c=19/86+1/7*I,n=61 2415730279354191 r005 Im(z^2+c),c=19/86+1/7*I,n=63 2415730279354418 r005 Im(z^2+c),c=19/86+1/7*I,n=62 2415730279354524 r005 Im(z^2+c),c=19/86+1/7*I,n=57 2415730279363320 r005 Im(z^2+c),c=19/86+1/7*I,n=56 2415730279365809 r005 Im(z^2+c),c=19/86+1/7*I,n=54 2415730279371363 r005 Im(z^2+c),c=19/86+1/7*I,n=55 2415730279552270 r005 Im(z^2+c),c=19/86+1/7*I,n=49 2415730279773945 r005 Im(z^2+c),c=19/86+1/7*I,n=47 2415730279802519 r005 Im(z^2+c),c=19/86+1/7*I,n=48 2415730281496815 m005 (1/2*Pi-1/8)/(3/11*exp(1)-1/7) 2415730282074090 r002 50th iterates of z^2 + 2415730283133917 r005 Im(z^2+c),c=19/86+1/7*I,n=42 2415730290330571 r005 Im(z^2+c),c=19/86+1/7*I,n=41 2415730291577127 m005 (4/5*2^(1/2)+2/3)/(1/4*gamma+3/5) 2415730292317618 r005 Im(z^2+c),c=19/86+1/7*I,n=40 2415730296790696 m001 (3^(1/2)+Thue)/(ThueMorse+TwinPrimes) 2415730306854684 a007 Real Root Of 131*x^4+14*x^3-810*x^2-457*x-641 2415730307324423 a007 Real Root Of -40*x^4-926*x^3+932*x^2-968*x+746 2415730311932734 m006 (4*Pi-3/5)/(4/5/Pi-3/4) 2415730312562160 m001 sin(1/5*Pi)^(2^(1/3))*Bloch 2415730323378076 a007 Real Root Of 511*x^4+876*x^3-795*x^2-121*x-706 2415730326072033 a007 Real Root Of -726*x^4-183*x^3+638*x^2+496*x-152 2415730337078651 b008 215/89 2415730337078651 q001 215/89 2415730337078651 q001 43/178 2415730337078651 r002 2th iterates of z^2 + 2415730337078651 r005 Im(z^2+c),c=-1+43/178*I,n=1 2415730341390456 r005 Im(z^2+c),c=19/86+1/7*I,n=35 2415730342124357 r005 Im(z^2+c),c=-25/122+24/61*I,n=5 2415730342837409 m001 BesselK(0,1)*HardyLittlewoodC3-FeigenbaumD 2415730343099855 r005 Re(z^2+c),c=-1/7+18/31*I,n=28 2415730346263481 k002 Champernowne real with 13/2*n^2+227/2*n-96 2415730352697989 r005 Im(z^2+c),c=-8/31+4/11*I,n=24 2415730354625685 a007 Real Root Of 141*x^4+466*x^3+435*x^2+392*x+176 2415730359655875 m001 (Shi(1)-Mills)^(2/3*Pi*3^(1/2)/GAMMA(2/3)) 2415730371876681 r002 39th iterates of z^2 + 2415730373014885 m005 (1/3*Pi-1/12)/(7/10*2^(1/2)+3) 2415730378291213 r009 Im(z^3+c),c=-13/32+6/43*I,n=25 2415730382449907 r005 Re(z^2+c),c=23/86+3/20*I,n=49 2415730390723561 m001 (Niven-ZetaQ(2))/(ln(3)-Grothendieck) 2415730392795628 r005 Im(z^2+c),c=19/86+1/7*I,n=32 2415730392877471 m001 1/3*Pi/Psi(1,1/3)*3^(1/2)+5^(1/2) 2415730396264960 m001 ln(Sierpinski)/MadelungNaCl^2*log(1+sqrt(2))^2 2415730415509364 a007 Real Root Of -460*x^4+78*x^3+395*x^2+900*x-240 2415730417722218 r002 32th iterates of z^2 + 2415730425409993 a005 (1/cos(21/199*Pi))^98 2415730436490008 m001 (Zeta(3)+exp(-1/2*Pi))/(Lehmer-Salem) 2415730445010009 r005 Re(z^2+c),c=-29/30+11/117*I,n=28 2415730446564082 k002 Champernowne real with 7*n^2+112*n-95 2415730448653955 r009 Re(z^3+c),c=-5/21+12/17*I,n=33 2415730455107179 a001 4/21*6557470319842^(10/21) 2415730467820874 a003 cos(Pi*9/118)-sin(Pi*55/117) 2415730470567004 m001 ln(CopelandErdos)^2*ErdosBorwein*FeigenbaumD^2 2415730477044922 l006 ln(682/7637) 2415730479119589 m004 Cot[Sqrt[5]*Pi]/3+4/Log[Sqrt[5]*Pi] 2415730480417532 m001 (PlouffeB-ZetaQ(2))/(Pi-HardHexagonsEntropy) 2415730480719692 m001 Zeta(7)^2/ln(FeigenbaumDelta)^2/sqrt(Pi) 2415730483809066 l006 ln(4344/5531) 2415730484285537 a003 sin(Pi*8/85)*sin(Pi*14/45) 2415730501600794 m001 1/cosh(1)^2*Artin^2*exp(sqrt(2)) 2415730504180424 m001 (-Mills+Tetranacci)/(ln(3)-sin(1)) 2415730509752329 r002 52th iterates of z^2 + 2415730512587443 r009 Im(z^3+c),c=-45/98+5/63*I,n=48 2415730514325139 h001 (7/9*exp(1)+7/8)/(1/7*exp(2)+2/11) 2415730523144770 a007 Real Root Of 297*x^4+619*x^3+229*x^2+954*x-420 2415730526580806 m001 (sin(1/12*Pi)-GAMMA(7/12))/(Bloch+ZetaQ(2)) 2415730534151224 r005 Im(z^2+c),c=-53/94+1/44*I,n=3 2415730536860817 r005 Im(z^2+c),c=19/86+1/7*I,n=34 2415730546645685 m001 GAMMA(7/12)^2/FeigenbaumAlpha^2*ln(sqrt(5))^2 2415730546864683 k002 Champernowne real with 15/2*n^2+221/2*n-94 2415730549072853 r005 Im(z^2+c),c=-129/110+13/44*I,n=4 2415730555170154 r005 Im(z^2+c),c=2/7+4/55*I,n=55 2415730556803628 p001 sum(1/(477*n+332)/n/(512^n),n=1..infinity) 2415730556997983 m001 (-ThueMorse+ZetaP(2))/(Chi(1)+AlladiGrinstead) 2415730571709843 m001 1/BesselK(0,1)/exp(KhintchineLevy)*gamma^2 2415730578270698 r008 a(0)=0,K{-n^6,58*n^3+129*n^2+168*n+59} 2415730579342869 b008 EulerGamma+(3+Pi^2)/7 2415730582890373 m006 (2/5*exp(2*Pi)+4/5)/(1/6*exp(2*Pi)-1/4) 2415730593173027 a007 Real Root Of 36*x^4+868*x^3-47*x^2-175*x-244 2415730601636847 m001 1/Kolakoski*exp(MertensB1)^2/Zeta(1,2)^2 2415730611222117 r005 Re(z^2+c),c=-6/23+17/58*I,n=20 2415730615303628 r009 Re(z^3+c),c=-14/23+27/52*I,n=48 2415730615476705 h001 (1/7*exp(1)+7/9)/(7/11*exp(2)+1/8) 2415730616645303 a007 Real Root Of -407*x^4-846*x^3-204*x^2-923*x+895 2415730621620881 h001 (7/8*exp(1)+7/8)/(3/7*exp(1)+2/11) 2415730623488592 b008 Pi*(1-(2*ArcCoth[3])/3) 2415730623488592 b008 Pi*(1-Log[2]/3) 2415730647165284 k002 Champernowne real with 8*n^2+109*n-93 2415730650013070 r005 Im(z^2+c),c=19/86+1/7*I,n=33 2415730651561654 m001 (ln(2)/ln(10))^ln(3)-FeigenbaumD 2415730652178391 p004 log(25117/2243) 2415730665300156 m001 (Psi(1,1/3)+ln(gamma))/(-Bloch+ZetaP(4)) 2415730668780651 m001 (Pi^(1/2)+Kac)/(BesselK(0,1)-arctan(1/3)) 2415730672060187 m001 (Psi(1,1/3)+ln(Pi))/(arctan(1/2)+ZetaQ(4)) 2415730673129212 a001 701408733/322*199^(5/11) 2415730680899498 a007 Real Root Of 546*x^4+676*x^3-460*x^2-855*x+222 2415730686575951 h005 exp(cos(Pi*5/22)/sin(Pi*19/58)) 2415730689436731 r002 13th iterates of z^2 + 2415730695539711 p003 LerchPhi(1/100,5,64/121) 2415730700129988 r005 Im(z^2+c),c=23/78+1/18*I,n=64 2415730702870873 r009 Re(z^3+c),c=-55/102+7/24*I,n=4 2415730704517876 a007 Real Root Of 885*x^4-751*x^3-645*x^2-737*x-154 2415730707081870 s002 sum(A033371[n]/(n^3*pi^n-1),n=1..infinity) 2415730707690478 a005 (1/sin(48/131*Pi))^238 2415730720302369 l006 ln(7645/9734) 2415730732423412 r009 Re(z^3+c),c=-43/110+18/35*I,n=24 2415730744228598 m001 GAMMA(2/3)*ln(MinimumGamma)/GAMMA(5/12) 2415730744862066 m001 FeigenbaumC/ln(Khintchine)^2/log(1+sqrt(2))^2 2415730747465885 k002 Champernowne real with 17/2*n^2+215/2*n-92 2415730748641611 m001 Grothendieck+HardyLittlewoodC3-ZetaQ(4) 2415730755038735 a007 Real Root Of -428*x^4-698*x^3+313*x^2-792*x+996 2415730758114331 r005 Re(z^2+c),c=-23/122+24/53*I,n=10 2415730759844554 m001 ZetaP(3)*(sin(1/5*Pi)+Kolakoski) 2415730772621057 h001 (-4*exp(1)+4)/(-3*exp(1)+11) 2415730772621057 m005 (1/3*exp(1)-1/3)/(1/4*exp(1)-11/12) 2415730777384218 r005 Re(z^2+c),c=-25/114+13/31*I,n=21 2415730780611864 r005 Re(z^2+c),c=1/6+9/25*I,n=63 2415730787590469 r009 Re(z^3+c),c=-4/21+16/17*I,n=12 2415730816890953 m002 -E^Pi+Pi/5-Pi^2/6 2415730820723190 a007 Real Root Of 217*x^4-389*x^3-713*x^2-843*x+250 2415730836982372 r005 Im(z^2+c),c=-71/106+17/62*I,n=23 2415730842363912 a007 Real Root Of -163*x^4+132*x^3-499*x^2+823*x-171 2415730847766486 k002 Champernowne real with 9*n^2+106*n-91 2415730851250747 m001 (BesselJ(0,1)-gamma)/(-GAMMA(2/3)+Stephens) 2415730852412013 r005 Re(z^2+c),c=23/86+3/20*I,n=50 2415730853739929 a007 Real Root Of -906*x^4-469*x^3-219*x^2+685*x-143 2415730853995554 r009 Re(z^3+c),c=-59/98+30/53*I,n=2 2415730868495073 r005 Re(z^2+c),c=9/34+9/61*I,n=34 2415730873671439 p001 sum((-1)^n/(509*n+135)/n/(64^n),n=1..infinity) 2415730882822609 m001 (Pi+GAMMA(7/12))/(Cahen-LaplaceLimit) 2415730889430156 m005 (1/3*Zeta(3)+1/6)/(1/2*Pi+7/9) 2415730900154013 r005 Im(z^2+c),c=-115/102+17/64*I,n=10 2415730900517314 r009 Re(z^3+c),c=-55/126+17/33*I,n=37 2415730901593295 r005 Re(z^2+c),c=1/6+9/25*I,n=64 2415730910287120 r005 Re(z^2+c),c=1/6+9/25*I,n=46 2415730919083534 a005 (1/cos(10/163*Pi))^1156 2415730919691023 m001 1/exp(Pi)/GAMMA(1/6)^2*sqrt(3) 2415730922603682 a007 Real Root Of -487*x^4-614*x^3-240*x^2+941*x-203 2415730923944034 l006 ln(293/3281) 2415730930900959 a003 cos(Pi*18/59)/cos(Pi*36/85) 2415730933029999 m001 1/ln(GaussKuzminWirsing)/Cahen^2/Catalan^2 2415730933619701 r005 Im(z^2+c),c=-13/14+43/206*I,n=14 2415730938291335 m002 (-9*ProductLog[Pi])/4 2415730948067087 k002 Champernowne real with 19/2*n^2+209/2*n-90 2415730953081148 r005 Re(z^2+c),c=9/94+15/38*I,n=8 2415730958178671 r009 Re(z^3+c),c=-17/31+7/25*I,n=39 2415730969689681 m005 (1/2*5^(1/2)+4/7)/(1/2*3^(1/2)-1/6) 2415730971861418 s002 sum(A240836[n]/(n^3*10^n-1),n=1..infinity) 2415730980939570 r005 Im(z^2+c),c=19/86+1/7*I,n=28 2415730982161648 a007 Real Root Of 361*x^4+863*x^3+188*x^2+681*x+420 2415730985880093 m001 (Robbin+Trott)/(ln(2+3^(1/2))+Porter) 2415731031519236 l006 ln(3301/4203) 2415731032041883 r005 Re(z^2+c),c=13/86+17/50*I,n=26 2415731033861996 a007 Real Root Of -232*x^4-84*x^3+828*x^2-483*x+718 2415731039897638 m005 (1/3*3^(1/2)-2/5)/(Catalan-2/11) 2415731048367688 k002 Champernowne real with 10*n^2+103*n-89 2415731049915231 m005 (1/2*3^(1/2)-2/5)/(9/10*5^(1/2)-1/12) 2415731053552525 p003 LerchPhi(1/2,4,520/197) 2415731061340132 m001 Grothendieck^TwinPrimes*ZetaQ(4) 2415731064812374 r009 Re(z^3+c),c=-11/78+55/61*I,n=14 2415731065548294 a007 Real Root Of 4*x^4+965*x^3-310*x^2+538*x+680 2415731073007140 m005 (1/2*Pi+5/11)/(7/8*gamma+1/3) 2415731075135700 a007 Real Root Of -388*x^4-951*x^3-54*x^2-130*x-192 2415731081099468 m001 (Pi+1)/(BesselI(1,1)-BesselI(0,2)) 2415731081889009 a001 76/701408733*6765^(1/11) 2415731082346965 r005 Re(z^2+c),c=-19/70+5/22*I,n=6 2415731082848741 a001 76/1836311903*267914296^(1/11) 2415731082848741 a001 76/2971215073*53316291173^(1/11) 2415731082848741 a001 19/1201881744*10610209857723^(1/11) 2415731082848765 a001 38/567451585*1346269^(1/11) 2415731112101111 k006 concat of cont frac of 2415731116893296 m001 GAMMA(1/24)^2/BesselK(1,1)^2*exp(arctan(1/2)) 2415731122131144 k006 concat of cont frac of 2415731130290912 r002 5th iterates of z^2 + 2415731134961304 r009 Re(z^3+c),c=-5/122+35/59*I,n=31 2415731138482680 a007 Real Root Of 408*x^4-112*x^3+977*x^2-703*x+113 2415731143195422 m005 (23/28+1/4*5^(1/2))/(1/11*Pi-6) 2415731145912018 a007 Real Root Of 261*x^4+793*x^3+425*x^2-88*x-402 2415731148668289 k002 Champernowne real with 21/2*n^2+203/2*n-88 2415731151388466 m001 Tribonacci*CopelandErdos^2/exp((3^(1/3))) 2415731154174566 m001 ((1+3^(1/2))^(1/2))^Salem/RenyiParking 2415731170910309 h001 (1/3*exp(2)+1/12)/(1/8*exp(1)+5/7) 2415731173029583 r005 Im(z^2+c),c=-20/27+1/55*I,n=5 2415731178871763 r009 Im(z^3+c),c=-9/19+3/38*I,n=55 2415731180967420 r009 Re(z^3+c),c=-5/122+35/59*I,n=44 2415731182955785 a001 47/10946*28657^(29/47) 2415731191894616 a001 3571/13*32951280099^(3/8) 2415731203103959 r005 Re(z^2+c),c=-5/32+30/53*I,n=48 2415731213093430 m001 (MasserGramainDelta+Weierstrass)/(gamma+Artin) 2415731214922100 m001 HardyLittlewoodC4-gamma+Khinchin 2415731216871760 a008 Real Root of x^2-x-58116 2415731237363953 m001 (3^(1/2)+Salem)/(-Sarnak+Tetranacci) 2415731241162788 a005 (1/cos(7/121*Pi))^885 2415731241629465 a007 Real Root Of 127*x^4-37*x^3-777*x^2+429*x+724 2415731245182766 m001 (Gompertz-exp(Pi))/(HardyLittlewoodC4+Kac) 2415731248968890 k002 Champernowne real with 11*n^2+100*n-87 2415731252161135 k008 concat of cont frac of 2415731252511440 r005 Im(z^2+c),c=7/58+9/43*I,n=19 2415731253272187 a007 Real Root Of 18*x^4+431*x^3-104*x^2-242*x+829 2415731258966412 a007 Real Root Of -231*x^4-387*x^3+11*x^2-736*x+569 2415731266248142 r005 Re(z^2+c),c=9/38+6/13*I,n=58 2415731276408225 m001 1/PrimesInBinary^2/ln(ArtinRank2)/Sierpinski^2 2415731277706835 m001 ln(3)/(Trott2nd^Thue) 2415731278285008 r009 Im(z^3+c),c=-16/31+6/41*I,n=12 2415731280415356 a007 Real Root Of 524*x^4+863*x^3-985*x^2-260*x-559 2415731285370553 r009 Re(z^3+c),c=-17/44+22/45*I,n=57 2415731294864218 a001 701408733/2207*199^(9/11) 2415731295823566 b008 Pi-ProductLog[3/2] 2415731302885529 r005 Re(z^2+c),c=-6/29+19/42*I,n=55 2415731313196993 l006 ln(783/8768) 2415731315312133 k008 concat of cont frac of 2415731316976456 m001 1/Zeta(3)*GAMMA(11/12)^2*ln(sinh(1))^2 2415731319135487 r005 Im(z^2+c),c=-49/66+3/47*I,n=39 2415731328902379 a005 (1/cos(11/213*Pi))^1286 2415731331911011 k007 concat of cont frac of 2415731332076309 m005 (1/3*exp(1)-1/6)/(7/9*gamma-1/7) 2415731334419813 m001 (gamma(1)-gamma(3))/(FeigenbaumAlpha+Gompertz) 2415731338737926 a003 cos(Pi*2/117)*sin(Pi*7/90) 2415731349269491 k002 Champernowne real with 23/2*n^2+197/2*n-86 2415731353867535 r009 Im(z^3+c),c=-10/21+1/11*I,n=33 2415731354021161 m001 (-Zeta(1,2)+GAMMA(17/24))/(cos(1)+Zeta(1/2)) 2415731354808860 r005 Re(z^2+c),c=-9/32+11/54*I,n=12 2415731366399874 p001 sum(1/(431*n+416)/(100^n),n=0..infinity) 2415731373579371 a007 Real Root Of -361*x^4-431*x^3+802*x^2-565*x+173 2415731377096314 m001 (-GAMMA(19/24)+Thue)/(Si(Pi)+ln(gamma)) 2415731377372664 a001 1149851/13*6765^(3/8) 2415731380745064 a001 64079/13*14930352^(3/8) 2415731381364382 a001 271443/13*317811^(3/8) 2415731382850045 a003 cos(Pi*5/84)/sin(Pi*2/15) 2415731388210461 m001 (Thue-TwinPrimes)/(BesselI(0,2)-Backhouse) 2415731391890450 a001 15127/13*701408733^(3/8) 2415731392512912 m001 exp(Pi)+GAMMA(23/24)^MasserGramain 2415731393539762 m001 Champernowne*FeigenbaumDelta+Tribonacci 2415731394836501 r005 Re(z^2+c),c=-12/19+31/41*I,n=3 2415731400503859 m001 1/Zeta(1,2)/GAMMA(1/24)*ln(sin(Pi/5)) 2415731418770337 r005 Re(z^2+c),c=19/60+10/53*I,n=49 2415731424642840 r009 Re(z^3+c),c=-29/74+29/57*I,n=32 2415731425398744 r005 Re(z^2+c),c=23/86+3/20*I,n=44 2415731436372170 q001 1/4139533 2415731442787398 r002 58th iterates of z^2 + 2415731446211967 m001 Sierpinski/Conway/ln(BesselJ(1,1)) 2415731449570092 k002 Champernowne real with 12*n^2+97*n-85 2415731451255834 m001 StronglyCareFree/PisotVijayaraghavan*ThueMorse 2415731451621815 h001 (4/5*exp(2)+3/10)/(10/11*exp(1)+1/10) 2415731452738865 m001 (FeigenbaumD-Shi(1))/(Gompertz+ZetaP(4)) 2415731459519392 l006 ln(5559/7078) 2415731460031456 r005 Im(z^2+c),c=-25/94+21/55*I,n=8 2415731463435168 p003 LerchPhi(1/8,5,503/238) 2415731466460354 m001 (sin(1/5*Pi)+Champernowne)/(FeigenbaumMu-Kac) 2415731470386874 h001 (3/7*exp(1)+1/12)/(7/12*exp(2)+6/7) 2415731481993705 a007 Real Root Of 155*x^4+117*x^3-311*x^2+607*x-348 2415731487567889 m005 (1/3*5^(1/2)+3/4)/(5/9*2^(1/2)-1/6) 2415731487880343 a007 Real Root Of -242*x^4-416*x^3+236*x^2-478*x-155 2415731499427565 r002 35th iterates of z^2 + 2415731500787513 a001 199/377*28657^(19/51) 2415731511414934 r005 Re(z^2+c),c=1/6+9/25*I,n=60 2415731524996564 a007 Real Root Of -401*x^4-508*x^3+843*x^2-963*x-751 2415731528068291 r005 Re(z^2+c),c=-5/4+99/133*I,n=2 2415731532695119 r005 Re(z^2+c),c=23/86+3/20*I,n=48 2415731543483824 m001 (GAMMA(5/6)+Robbin)/(1-sin(1/12*Pi)) 2415731545954303 l006 ln(490/5487) 2415731549870693 k002 Champernowne real with 25/2*n^2+191/2*n-84 2415731557305538 r005 Re(z^2+c),c=25/74+4/15*I,n=24 2415731563314557 m001 HeathBrownMoroz-cos(1/12*Pi)*Riemann3rdZero 2415731568305718 r008 a(0)=0,K{-n^6,(2*n+1)*(80+39*n^2+19*n)} 2415731570893359 r008 a(0)=0,K{-n^6,50*n^3+147*n^2+165*n+52} 2415731574100000 s001 sum(1/10^(n-1)*A123792[n],n=1..infinity) 2415731574100000 s001 sum(1/10^n*A123792[n],n=1..infinity) 2415731576524237 m001 (5^(1/2)-Psi(2,1/3))/(BesselK(1,1)+Pi^(1/2)) 2415731579746914 a007 Real Root Of -84*x^4+162*x^3+674*x^2-294*x+501 2415731583451197 a007 Real Root Of -213*x^4+10*x^3+47*x^2+252*x+59 2415731587514388 m001 BesselK(1,1)*exp(GolombDickman)*arctan(1/2)^2 2415731591290797 r009 Re(z^3+c),c=-53/102+27/52*I,n=32 2415731603172488 a007 Real Root Of 262*x^4+280*x^3-742*x^2+383*x+280 2415731608456746 m001 (CareFree-Conway)/(Otter-PlouffeB) 2415731610314697 m001 gamma(2)/Robbin*ZetaQ(4) 2415731614805434 p004 log(29641/2647) 2415731615670139 r005 Im(z^2+c),c=-21/38+26/45*I,n=47 2415731623122204 k006 concat of cont frac of 2415731631581939 r005 Re(z^2+c),c=-25/102+20/57*I,n=5 2415731640257331 l006 ln(7817/9953) 2415731650004439 m001 (MertensB2+Mills)^Zeta(5) 2415731650171294 k002 Champernowne real with 13*n^2+94*n-83 2415731654779406 a007 Real Root Of 299*x^4+391*x^3-701*x^2-157*x-959 2415731658234227 r005 Im(z^2+c),c=-37/40+13/59*I,n=38 2415731667629276 r005 Re(z^2+c),c=10/29+7/60*I,n=31 2415731667655833 r005 Re(z^2+c),c=-5/48+46/51*I,n=46 2415731668088515 m001 Salem^Trott/PrimesInBinary 2415731668375121 m001 1/ln(BesselK(0,1))*Khintchine/GAMMA(17/24) 2415731668759032 r005 Re(z^2+c),c=1/6+9/25*I,n=59 2415731691515057 a007 Real Root Of -355*x^4+792*x^3+198*x^2+743*x-201 2415731695357380 r005 Re(z^2+c),c=-15/74+9/13*I,n=7 2415731708825087 m005 (1/2*5^(1/2)+9/11)/(17/24+1/24*5^(1/2)) 2415731711099405 r009 Im(z^3+c),c=-39/82+3/29*I,n=19 2415731712618754 p001 sum(1/(476*n+333)/n/(512^n),n=1..infinity) 2415731716890401 m005 (1/2*2^(1/2)+11/12)/(3/11*Zeta(3)-1) 2415731718462165 a001 1836311903/5778*199^(9/11) 2415731723963660 a008 Real Root of x^4-x^3-6*x^2-60*x+160 2415731730588065 a007 Real Root Of 521*x^4+912*x^3-720*x^2+155*x-310 2415731734356940 r002 7th iterates of z^2 + 2415731739956979 m005 (-17/44+1/4*5^(1/2))/(4/5*2^(1/2)-5/12) 2415731741333569 m001 2^(1/2)+Salem-ZetaP(3) 2415731743919329 m001 1/GAMMA(1/4)^2*Catalan*ln(cos(Pi/12)) 2415731748853598 r009 Re(z^3+c),c=-11/32+15/38*I,n=20 2415731750471895 k002 Champernowne real with 27/2*n^2+185/2*n-82 2415731752565904 r005 Im(z^2+c),c=-65/54+1/33*I,n=29 2415731759304241 a007 Real Root Of 933*x^4-788*x^3+841*x^2-429*x-167 2415731764061449 m001 GolombDickman-gamma^MadelungNaCl 2415731764061449 m001 gamma^MadelungNaCl-GolombDickman 2415731767546901 m001 (arctan(1/2)+Cahen)/(QuadraticClass-Totient) 2415731773924423 m001 (Zeta(5)*OneNinth+ZetaR(2))/OneNinth 2415731779009499 m001 exp(CareFree)^2*GolombDickman^2/TwinPrimes 2415731779953430 a003 cos(Pi*52/119)+cos(Pi*17/35) 2415731780264285 a001 686789568/2161*199^(9/11) 2415731783366335 r005 Re(z^2+c),c=-5/4+25/236*I,n=14 2415731784334131 m001 1/Khintchine^2/exp(MertensB1)/Riemann2ndZero^2 2415731789281093 a001 12586269025/39603*199^(9/11) 2415731790596627 a001 32951280099/103682*199^(9/11) 2415731790788561 a001 86267571272/271443*199^(9/11) 2415731790816564 a001 317811*199^(9/11) 2415731790820649 a001 591286729879/1860498*199^(9/11) 2415731790821246 a001 1548008755920/4870847*199^(9/11) 2415731790821332 a001 4052739537881/12752043*199^(9/11) 2415731790821345 a001 1515744265389/4769326*199^(9/11) 2415731790821353 a001 6557470319842/20633239*199^(9/11) 2415731790821386 a001 2504730781961/7881196*199^(9/11) 2415731790821614 a001 956722026041/3010349*199^(9/11) 2415731790823174 a001 365435296162/1149851*199^(9/11) 2415731790833871 a001 139583862445/439204*199^(9/11) 2415731790907183 a001 53316291173/167761*199^(9/11) 2415731791409672 a001 20365011074/64079*199^(9/11) 2415731791576490 r005 Re(z^2+c),c=-12/31+15/26*I,n=19 2415731794853786 a001 7778742049/24476*199^(9/11) 2415731803096201 m001 (Catalan+ln(5))/(arctan(1/3)+Sarnak) 2415731811236585 l006 ln(687/7693) 2415731818460097 a001 2971215073/9349*199^(9/11) 2415731821037638 a007 Real Root Of 43*x^4-579*x^3+654*x^2+860*x+804 2415731826660272 a007 Real Root Of -172*x^4-109*x^3+851*x^2+205*x-150 2415731827312189 r005 Re(z^2+c),c=-23/118+13/27*I,n=32 2415731832817764 r009 Im(z^3+c),c=-9/62+32/37*I,n=6 2415731841529715 a001 12586269025/843*76^(1/9) 2415731842113863 a007 Real Root Of -873*x^4+306*x^3-753*x^2+591*x+194 2415731845330806 r005 Im(z^2+c),c=-65/46+11/36*I,n=3 2415731846782900 m001 Catalan-Khinchin-MasserGramain 2415731850772496 k002 Champernowne real with 14*n^2+91*n-81 2415731858401047 a007 Real Root Of -528*x^4+780*x^3+425*x^2+178*x-77 2415731859088688 s002 sum(A011849[n]/((2^n+1)/n),n=1..infinity) 2415731859854543 m001 GAMMA(11/12)^GAMMA(2/3)+Totient 2415731875648996 r005 Im(z^2+c),c=-23/18+10/179*I,n=27 2415731879900436 m001 1/Sierpinski^2/GolombDickman^2*exp(Tribonacci) 2415731884949540 r005 Im(z^2+c),c=7/58+9/43*I,n=20 2415731888702470 m001 (-QuadraticClass+Weierstrass)/(Shi(1)+Kac) 2415731897504243 r005 Im(z^2+c),c=-41/60+1/29*I,n=49 2415731902084258 s002 sum(A007157[n]/(exp(pi*n)+1),n=1..infinity) 2415731904335205 m005 (-1/12+1/6*5^(1/2))/(2/5*gamma-1/9) 2415731905427127 b008 Sqrt[Pi]-2*ProductLog[17] 2415731909454234 h001 (5/11*exp(1)+1/3)/(4/5*exp(2)+7/12) 2415731909830585 m001 (-Conway+FeigenbaumMu)/(2^(1/3)-arctan(1/3)) 2415731914111116 k008 concat of cont frac of 2415731917900770 a007 Real Root Of 307*x^4+569*x^3-161*x^2+236*x-924 2415731919677308 m001 (Zeta(3)-exp(1/Pi))^cos(1/5*Pi) 2415731919677308 m001 (Zeta(3)-exp(1/Pi))^cos(Pi/5) 2415731925847324 m001 1/exp(LambertW(1))^2*TwinPrimes/Zeta(1,2)^2 2415731929237433 r005 Im(z^2+c),c=11/64+11/61*I,n=7 2415731934334085 m004 (2500*Sech[Sqrt[5]*Pi])/Pi+Tanh[Sqrt[5]*Pi] 2415731937479792 a007 Real Root Of -358*x^4-572*x^3+701*x^2+218*x+564 2415731938771067 m001 (-Trott2nd+ZetaQ(4))/(AlladiGrinstead-Catalan) 2415731941452403 a007 Real Root Of 844*x^4+324*x^3+989*x^2-596*x-200 2415731943717244 b008 17*JacobiDS[3,1/2] 2415731951073097 k002 Champernowne real with 29/2*n^2+179/2*n-80 2415731958282163 l006 ln(884/9899) 2415731962558168 r005 Re(z^2+c),c=23/86+3/20*I,n=51 2415731980260167 a001 1134903170/3571*199^(9/11) 2415731991310824 a001 2207/13*1597^(9/25) 2415731992603447 m001 FeigenbaumB*MertensB1^2*ln(GAMMA(7/12)) 2415731997263161 m001 Zeta(1/2)*((1+3^(1/2))^(1/2)+HeathBrownMoroz) 2415731998439948 r009 Re(z^3+c),c=-3/13+24/25*I,n=27 2415732005609442 r005 Re(z^2+c),c=23/86+3/20*I,n=56 2415732010777468 r004 Re(z^2+c),c=-1/11-13/22*I,z(0)=I,n=35 2415732011092043 a001 39603/610*832040^(13/49) 2415732016409454 s001 sum(exp(-Pi/2)^n*A117410[n],n=1..infinity) 2415732018256709 m001 ln(LaplaceLimit)*FeigenbaumAlpha*GAMMA(1/24) 2415732021512285 a007 Real Root Of 48*x^4-166*x^3-473*x^2+800*x+718 2415732029961490 r005 Im(z^2+c),c=-33/26+4/127*I,n=19 2415732036111721 p002 log(18^(9/10)-18^(2/7)) 2415732038599868 r009 Re(z^3+c),c=-11/78+23/26*I,n=24 2415732039551592 r005 Re(z^2+c),c=23/86+3/20*I,n=57 2415732039730474 a007 Real Root Of -407*x^4-710*x^3+904*x^2+878*x+697 2415732040609024 m001 FeigenbaumC-GAMMA(7/12)-exp(1) 2415732043443258 m001 (Otter-ZetaQ(4))/(3^(1/3)-Ei(1,1)) 2415732051345283 m002 (Pi^6*Sinh[Pi]*Tanh[Pi])/(4*Log[Pi]) 2415732051373698 k002 Champernowne real with 15*n^2+88*n-79 2415732056666411 m001 1/GAMMA(1/24)^2*MadelungNaCl^2/exp(exp(1))^2 2415732065477003 m001 cos(1)^2/Porter^2*exp(gamma) 2415732073957847 m002 E^Pi+E^Pi/Pi^6+Tanh[Pi]^2 2415732077413490 r005 Im(z^2+c),c=-65/126+27/64*I,n=51 2415732083014936 b008 ArcCosh[6^(1/62)] 2415732085218434 l006 ln(2258/2875) 2415732103730760 r005 Im(z^2+c),c=-11/9+27/115*I,n=5 2415732108706053 a007 Real Root Of -558*x^4-759*x^3+899*x^2-868*x+960 2415732111241112 k006 concat of cont frac of 2415732112290866 m001 Conway*(Pi*2^(1/2)/GAMMA(3/4)-Pi^(1/2)) 2415732118319387 m001 1/(3^(1/3))*ln(TwinPrimes)*Catalan^2 2415732119350955 m005 (5*gamma-3/5)/(3/5*gamma+3/5) 2415732119350955 m007 (-5*gamma+3/5)/(-3/5*gamma-3/5) 2415732135318215 a007 Real Root Of 121*x^4+150*x^3-559*x^2-842*x-778 2415732141110613 k007 concat of cont frac of 2415732141311117 k006 concat of cont frac of 2415732144774630 r005 Im(z^2+c),c=-28/25+1/34*I,n=40 2415732149537913 m001 (ln(2)/ln(10)+2^(1/2))/(-Gompertz+Mills) 2415732151674299 k002 Champernowne real with 31/2*n^2+173/2*n-78 2415732156456307 r005 Re(z^2+c),c=-1/7+29/50*I,n=49 2415732167123063 m001 (-CopelandErdos+Gompertz)/(GAMMA(3/4)-exp(1)) 2415732169513304 m001 1/Lehmer*ln(Khintchine)^2*Porter 2415732175904095 m005 (1/2*Zeta(3)-5/9)/(7/11*gamma-5/9) 2415732180041522 a007 Real Root Of 388*x^4+489*x^3-547*x^2+945*x-845 2415732183936972 r005 Re(z^2+c),c=23/86+3/20*I,n=58 2415732190334294 r005 Re(z^2+c),c=-49/62+3/28*I,n=34 2415732190888506 a007 Real Root Of 244*x^4+223*x^3-595*x^2+384*x-766 2415732194949750 r009 Re(z^3+c),c=-11/26+24/43*I,n=63 2415732201261513 r005 Re(z^2+c),c=23/86+3/20*I,n=55 2415732202224220 r002 51th iterates of z^2 + 2415732205940409 m001 sqrt(1+sqrt(3))^sqrt(2)*GAMMA(5/6)^sqrt(2) 2415732211311111 k009 concat of cont frac of 2415732212218421 k006 concat of cont frac of 2415732216343140 r005 Re(z^2+c),c=23/86+3/20*I,n=63 2415732216526546 r005 Re(z^2+c),c=23/86+3/20*I,n=64 2415732218815462 a007 Real Root Of 476*x^4+951*x^3-751*x^2-483*x+412 2415732219505093 g003 Im(GAMMA(293/60+I*(-11/3))) 2415732219729697 m001 (MinimumGamma-Niven)/(Zeta(1,-1)+GAMMA(19/24)) 2415732227956651 r002 59th iterates of z^2 + 2415732234864282 r009 Re(z^3+c),c=-53/102+27/52*I,n=35 2415732236562863 r008 a(0)=0,K{-n^6,-35-24*n^3+92*n^2-70*n} 2415732236918153 m008 (2/5*Pi+2/3)/(5/6*Pi^6-5) 2415732241395038 a007 Real Root Of 227*x^4+474*x^3-483*x^2-573*x+386 2415732242675758 r009 Im(z^3+c),c=-57/106+17/35*I,n=6 2415732243714782 m001 (GAMMA(2/3)+ErdosBorwein)/(FeigenbaumB-Rabbit) 2415732245336913 a001 2/167761*4^(27/53) 2415732245621184 r005 Re(z^2+c),c=-25/62+16/33*I,n=5 2415732247998054 r005 Re(z^2+c),c=23/86+3/20*I,n=62 2415732251974810 k002 Champernowne real with 16*n^2+85*n-77 2415732260723322 a007 Real Root Of -61*x^4-137*x^3+215*x^2+829*x+894 2415732267630380 s001 sum(exp(-Pi)^n*A007157[n],n=1..infinity) 2415732267630380 s002 sum(A007157[n]/(exp(pi*n)),n=1..infinity) 2415732268068079 a007 Real Root Of -2*x^4+999*x^3+266*x^2+987*x+237 2415732268801008 r005 Re(z^2+c),c=-3/4+9/224*I,n=4 2415732270984110 r005 Re(z^2+c),c=-97/122+1/11*I,n=6 2415732292074014 r005 Im(z^2+c),c=-107/82+25/51*I,n=3 2415732300466051 p004 log(29753/2657) 2415732301951075 r005 Re(z^2+c),c=23/86+3/20*I,n=61 2415732302986918 a005 (1/sin(93/215*Pi))^39 2415732304097114 r005 Re(z^2+c),c=23/86+3/20*I,n=59 2415732304151938 b008 (1/2+Sqrt[2])^Pi*Pi 2415732321611173 k007 concat of cont frac of 2415732330996608 a003 sin(Pi*17/95)-sin(Pi*11/39) 2415732334179107 m001 1/exp(BesselJ(0,1))^2*Porter/GAMMA(1/4)^2 2415732337858898 r005 Re(z^2+c),c=23/86+3/20*I,n=60 2415732352275410 k002 Champernowne real with 33/2*n^2+167/2*n-76 2415732352698361 m005 (1/2*Catalan-10/11)/(-53/20+7/20*5^(1/2)) 2415732354843294 m001 HardHexagonsEntropy+Salem^Champernowne 2415732358745357 a007 Real Root Of 111*x^4+94*x^3-77*x^2+769*x-148 2415732372716323 a001 29/28657*832040^(3/47) 2415732385214103 r002 51th iterates of z^2 + 2415732385270477 r005 Re(z^2+c),c=-2/11+22/43*I,n=27 2415732388632710 b008 9*(26+Sin[1]) 2415732388728922 s001 sum(exp(-Pi/3)^(n-1)*A183209[n],n=1..infinity) 2415732389736231 a007 Real Root Of -202*x^4-223*x^3+588*x^2-301*x-423 2415732413341266 m001 1/ln(GAMMA(1/12))/(3^(1/3))/sinh(1) 2415732417121333 k006 concat of cont frac of 2415732432437722 m001 (Bloch-GaussAGM)/(Pi-GAMMA(13/24)) 2415732441316109 m001 Si(Pi)*BesselI(0,2)/MadelungNaCl 2415732441316109 m001 Si(Pi)/MadelungNaCl*BesselI(0,2) 2415732450562418 a007 Real Root Of -609*x^4-968*x^3+763*x^2-914*x+433 2415732452576010 k002 Champernowne real with 17*n^2+82*n-75 2415732453677971 m005 (1/2*2^(1/2)-4/5)/(1/7*Pi-5/6) 2415732458279108 p001 sum(1/(547*n+430)/(12^n),n=0..infinity) 2415732459684829 r009 Re(z^3+c),c=-53/102+27/52*I,n=38 2415732461418293 m001 (Paris-Trott)/(FeigenbaumDelta-MertensB2) 2415732471075459 l006 ln(197/2206) 2415732492319830 r009 Re(z^3+c),c=-45/98+29/57*I,n=53 2415732496563225 r002 3th iterates of z^2 + 2415732506040215 r005 Re(z^2+c),c=-55/102+21/34*I,n=5 2415732511113241 k006 concat of cont frac of 2415732517173439 m001 (-ln(3)+PisotVijayaraghavan)/(Catalan-Si(Pi)) 2415732520866458 r005 Im(z^2+c),c=15/94+26/45*I,n=49 2415732534209452 r005 Re(z^2+c),c=17/42+15/44*I,n=30 2415732535692681 m001 exp(GAMMA(11/12))^2*PrimesInBinary^2/sin(Pi/5) 2415732537638779 r009 Re(z^3+c),c=-53/102+27/52*I,n=41 2415732539860087 m005 (1/2*3^(1/2)+6/11)/(1/9*2^(1/2)-6) 2415732546079182 r005 Re(z^2+c),c=-19/86+27/62*I,n=14 2415732547815869 a003 sin(Pi*20/73)-sin(Pi*50/101) 2415732550013172 a007 Real Root Of -223*x^4-457*x^3+318*x^2+488*x+475 2415732552876610 k002 Champernowne real with 35/2*n^2+161/2*n-74 2415732554223373 g005 GAMMA(7/12)*GAMMA(6/7)/GAMMA(9/10)/GAMMA(1/7) 2415732555320591 m001 GAMMA(5/6)^ln(3)/(exp(sqrt(2))^ln(3)) 2415732556172173 a003 cos(Pi*2/105)/cos(Pi*43/118) 2415732557334937 m001 1/ln(Bloch)^2/Cahen^2/BesselK(0,1)^2 2415732564486992 r009 Re(z^3+c),c=-53/102+27/52*I,n=44 2415732569245421 r008 a(0)=0,K{-n^6,58*n^3+125*n^2+170*n+61} 2415732569438728 r008 a(0)=0,K{-n^6,56*n^3+130*n^2+169*n+59} 2415732573676937 r009 Re(z^3+c),c=-53/102+27/52*I,n=47 2415732574020320 p003 LerchPhi(1/12,3,118/73) 2415732576804635 r009 Re(z^3+c),c=-53/102+27/52*I,n=50 2415732577863412 r009 Re(z^3+c),c=-53/102+27/52*I,n=53 2415732578220005 r009 Re(z^3+c),c=-53/102+27/52*I,n=56 2415732578339519 r009 Re(z^3+c),c=-53/102+27/52*I,n=59 2415732578379386 r009 Re(z^3+c),c=-53/102+27/52*I,n=62 2415732579311988 r009 Im(z^3+c),c=-4/29+52/61*I,n=56 2415732584702020 r005 Re(z^2+c),c=-6/29+19/42*I,n=50 2415732592258227 r005 Re(z^2+c),c=23/86+3/20*I,n=54 2415732593241778 a003 cos(Pi*3/77)*sin(Pi*9/115) 2415732614290001 a007 Real Root Of 476*x^4+560*x^3-965*x^2+771*x-822 2415732621089952 a007 Real Root Of -611*x^4+997*x^3+445*x^2+646*x-194 2415732627809757 a007 Real Root Of 56*x^4+88*x^3-366*x^2-619*x-26 2415732633181829 s002 sum(A007157[n]/(exp(pi*n)-1),n=1..infinity) 2415732633268639 a001 5778/13*832040^(17/58) 2415732637683219 m001 GAMMA(5/6)-BesselI(1,1)-sin(Pi/5) 2415732637683219 m001 sin(1/5*Pi)+BesselI(1,1)-GAMMA(5/6) 2415732639164468 a007 Real Root Of 266*x^4-702*x^3-108*x^2-801*x-198 2415732639973934 m003 -4-E^(1+Sqrt[5])+4/ProductLog[1/2+Sqrt[5]/2] 2415732640537490 r005 Re(z^2+c),c=-27/98+7/31*I,n=9 2415732644992225 r009 Re(z^3+c),c=-7/30+3/40*I,n=5 2415732647566381 h001 (7/9*exp(1)+5/9)/(1/10*exp(1)+5/6) 2415732649086851 a001 1/24447*(1/2*5^(1/2)+1/2)^19*843^(8/13) 2415732653177210 k002 Champernowne real with 18*n^2+79*n-73 2415732667203409 s002 sum(A275773[n]/((2*n)!),n=1..infinity) 2415732681087956 a007 Real Root Of 158*x^4+159*x^3-187*x^2+474*x-903 2415732691551242 m001 Pi*2^(1/2)/GAMMA(3/4)/(ZetaQ(4)+ZetaR(2)) 2415732692138826 l006 ln(5731/7297) 2415732700540053 l006 ln(9161/9385) 2415732702777965 h001 (11/12*exp(1)+3/4)/(1/6*exp(1)+8/9) 2415732703619653 a007 Real Root Of -208*x^4-73*x^3+720*x^2-928*x-389 2415732714119936 r002 40th iterates of z^2 + 2415732718314155 r005 Im(z^2+c),c=-117/82+27/62*I,n=3 2415732719990233 m005 (1/3*Catalan+3/7)/(1/6*gamma-2/5) 2415732722611191 k007 concat of cont frac of 2415732723961611 m005 (1/2*gamma+6/7)/(2/11*2^(1/2)-5) 2415732726636253 r009 Re(z^3+c),c=-29/70+34/63*I,n=59 2415732737864517 a007 Real Root Of 306*x^4+619*x^3-59*x^2+256*x-732 2415732753066734 a001 2139295485799/377*12586269025^(11/24) 2415732753477810 k002 Champernowne real with 37/2*n^2+155/2*n-72 2415732758575852 a007 Real Root Of 617*x^4+484*x^3-169*x^2-702*x-155 2415732759075662 m001 exp(GAMMA(1/12))/GolombDickman*GAMMA(7/12) 2415732767247928 r005 Re(z^2+c),c=23/86+3/20*I,n=52 2415732769010049 a001 6643838879/13*317811^(7/23) 2415732769011504 a001 228826127/13*20365011074^(7/23) 2415732772424150 a007 Real Root Of 91*x^4+34*x^3+168*x^2-639*x-164 2415732773688317 m001 Trott2nd^FeigenbaumAlpha*Trott2nd^ZetaP(2) 2415732778874275 m001 TwinPrimes/Lehmer^2/exp(GAMMA(23/24))^2 2415732790016182 m001 (gamma(1)+gamma(3))/(5^(1/2)+ln(2)) 2415732792496177 r009 Im(z^3+c),c=-27/62+8/59*I,n=6 2415732798274240 a007 Real Root Of 404*x^4+784*x^3+7*x^2+736*x-969 2415732799575923 a007 Real Root Of 16*x^4-286*x^3+257*x^2+638*x+446 2415732805042569 r002 2th iterates of z^2 + 2415732809274673 m001 1/CareFree^2/ln(MertensB1)^2/arctan(1/2) 2415732812302467 r005 Re(z^2+c),c=1/6+9/25*I,n=56 2415732812482460 r005 Re(z^2+c),c=-6/29+19/42*I,n=52 2415732815757347 a007 Real Root Of -323*x^4-576*x^3+701*x^2+825*x+782 2415732820893735 l004 Shi(530/101) 2415732841745398 r005 Re(z^2+c),c=-69/118+22/47*I,n=7 2415732848073228 m005 (1/2*2^(1/2)+9/10)/(1/12*Catalan-1/7) 2415732853778410 k002 Champernowne real with 19*n^2+76*n-71 2415732865440500 m001 Magata^2*FeigenbaumAlpha*ln(Zeta(7)) 2415732870235363 p001 sum(1/(475*n+334)/n/(512^n),n=1..infinity) 2415732883974921 r005 Im(z^2+c),c=-9/16+43/104*I,n=38 2415732890737220 r009 Im(z^3+c),c=-1/16+35/41*I,n=2 2415732909014229 r005 Im(z^2+c),c=-3/86+11/39*I,n=4 2415732911658436 r005 Re(z^2+c),c=23/86+3/20*I,n=53 2415732914241655 a007 Real Root Of 92*x^4-100*x^3-864*x^2-443*x-571 2415732917375539 m001 exp(MadelungNaCl)*Backhouse^2/Rabbit^2 2415732921276737 m001 1/Zeta(5)^2/Riemann1stZero/exp(Zeta(9)) 2415732922032776 a007 Real Root Of 25*x^4+643*x^3+931*x^2-349*x-991 2415732932785949 r005 Im(z^2+c),c=7/58+9/43*I,n=16 2415732936859959 m001 Shi(1)*GAMMA(2/3)/Lehmer 2415732943498235 m001 MasserGramainDelta^GaussAGM+BesselJ(0,1) 2415732951145161 m001 ZetaQ(4)^(FeigenbaumC*Rabbit) 2415732952624908 r005 Im(z^2+c),c=-37/114+17/46*I,n=11 2415732954079010 k002 Champernowne real with 39/2*n^2+149/2*n-70 2415732954663711 s002 sum(A140704[n]/((exp(n)-1)/n),n=1..infinity) 2415732960482061 h001 (5/12*exp(1)+7/12)/(1/5*exp(1)+1/6) 2415732965986630 a007 Real Root Of -170*x^4-793*x^3-982*x^2-91*x+121 2415732968237439 r005 Im(z^2+c),c=7/58+9/43*I,n=24 2415732971795983 r005 Im(z^2+c),c=-25/78+5/13*I,n=20 2415732972283466 m001 (LambertW(1)-exp(1))/(-GAMMA(2/3)+arctan(1/2)) 2415732978406725 m001 (GaussKuzminWirsing+Mills)^Si(Pi) 2415732980984392 l006 ln(889/9955) 2415732981907192 m005 (1/2*gamma+7/9)/(7/12*exp(1)-6) 2415732994008455 r009 Im(z^3+c),c=-7/74+31/36*I,n=40 2415733004509835 r009 Im(z^3+c),c=-31/78+1/61*I,n=2 2415733004896435 s002 sum(A020907[n]/(10^n+1),n=1..infinity) 2415733005184082 r005 Im(z^2+c),c=7/58+9/43*I,n=25 2415733012460136 r009 Re(z^3+c),c=-7/48+15/16*I,n=50 2415733016171487 a007 Real Root Of 464*x^4+744*x^3-812*x^2+341*x+249 2415733030130529 m004 3+225*Sqrt[5]*Pi*ProductLog[Sqrt[5]*Pi] 2415733034061324 r005 Im(z^2+c),c=7/58+9/43*I,n=29 2415733034403841 r009 Im(z^3+c),c=-31/86+11/64*I,n=11 2415733035709121 r005 Im(z^2+c),c=7/58+9/43*I,n=30 2415733036407022 r005 Im(z^2+c),c=7/58+9/43*I,n=34 2415733036468592 r005 Im(z^2+c),c=7/58+9/43*I,n=33 2415733036471757 r005 Im(z^2+c),c=7/58+9/43*I,n=35 2415733036485923 r005 Im(z^2+c),c=7/58+9/43*I,n=39 2415733036486771 r005 Im(z^2+c),c=7/58+9/43*I,n=38 2415733036488270 r005 Im(z^2+c),c=7/58+9/43*I,n=40 2415733036488436 r005 Im(z^2+c),c=7/58+9/43*I,n=43 2415733036488445 r005 Im(z^2+c),c=7/58+9/43*I,n=44 2415733036488520 r005 Im(z^2+c),c=7/58+9/43*I,n=48 2415733036488522 r005 Im(z^2+c),c=7/58+9/43*I,n=49 2415733036488524 r005 Im(z^2+c),c=7/58+9/43*I,n=53 2415733036488524 r005 Im(z^2+c),c=7/58+9/43*I,n=54 2415733036488524 r005 Im(z^2+c),c=7/58+9/43*I,n=58 2415733036488524 r005 Im(z^2+c),c=7/58+9/43*I,n=59 2415733036488524 r005 Im(z^2+c),c=7/58+9/43*I,n=63 2415733036488524 r005 Im(z^2+c),c=7/58+9/43*I,n=62 2415733036488524 r005 Im(z^2+c),c=7/58+9/43*I,n=64 2415733036488524 r005 Im(z^2+c),c=7/58+9/43*I,n=61 2415733036488524 r005 Im(z^2+c),c=7/58+9/43*I,n=57 2415733036488524 r005 Im(z^2+c),c=7/58+9/43*I,n=60 2415733036488524 r005 Im(z^2+c),c=7/58+9/43*I,n=55 2415733036488524 r005 Im(z^2+c),c=7/58+9/43*I,n=56 2415733036488524 r005 Im(z^2+c),c=7/58+9/43*I,n=52 2415733036488524 r005 Im(z^2+c),c=7/58+9/43*I,n=50 2415733036488525 r005 Im(z^2+c),c=7/58+9/43*I,n=51 2415733036488525 r005 Im(z^2+c),c=7/58+9/43*I,n=45 2415733036488529 r005 Im(z^2+c),c=7/58+9/43*I,n=47 2415733036488544 r005 Im(z^2+c),c=7/58+9/43*I,n=46 2415733036488745 r005 Im(z^2+c),c=7/58+9/43*I,n=42 2415733036489110 r005 Im(z^2+c),c=7/58+9/43*I,n=41 2415733036497012 r005 Im(z^2+c),c=7/58+9/43*I,n=37 2415733036504524 r005 Im(z^2+c),c=7/58+9/43*I,n=36 2415733036791683 r005 Im(z^2+c),c=7/58+9/43*I,n=32 2415733036890186 r005 Im(z^2+c),c=7/58+9/43*I,n=31 2415733037009546 r005 Im(z^2+c),c=7/58+9/43*I,n=28 2415733040487543 r009 Re(z^3+c),c=-27/86+15/46*I,n=12 2415733040900161 a001 4/21*610^(37/49) 2415733042780130 m001 TravellingSalesman*(Magata-Trott2nd) 2415733045274673 r005 Im(z^2+c),c=7/58+9/43*I,n=26 2415733046702006 r005 Im(z^2+c),c=7/58+9/43*I,n=27 2415733054379610 k002 Champernowne real with 20*n^2+73*n-69 2415733069371571 p004 log(25453/2273) 2415733086379928 r009 Re(z^3+c),c=-23/50+23/47*I,n=11 2415733086733175 l006 ln(3473/4422) 2415733088501325 r005 Im(z^2+c),c=7/58+9/43*I,n=23 2415733089254933 a001 433494437/1364*199^(9/11) 2415733103285862 a007 Real Root Of 413*x^4+689*x^3-998*x^2-253*x+861 2415733104040670 s001 sum(1/10^(n-1)*A028227[n]/n^n,n=1..infinity) 2415733106718963 m005 (1/2*3^(1/2)-5)/(81/80+5/16*5^(1/2)) 2415733118429421 a001 2/4052739537881*4181^(4/21) 2415733119206915 g001 Psi(1,14/67) 2415733119206915 l003 Psi(1,14/67) 2415733119537948 m005 (1/2*2^(1/2)+6/7)/(1/11*gamma-7/10) 2415733121213521 k008 concat of cont frac of 2415733125273374 m001 (-GAMMA(2/3)+Backhouse)/(2^(1/3)-Chi(1)) 2415733126146280 l006 ln(692/7749) 2415733132859680 r005 Re(z^2+c),c=-11/58+21/34*I,n=64 2415733136097058 m003 39/10+Sqrt[5]/8-5/ProductLog[1/2+Sqrt[5]/2] 2415733138943196 m009 (4/5*Psi(1,1/3)+1/4)/(5/6*Psi(1,2/3)-6) 2415733148087914 r005 Re(z^2+c),c=-11/52+16/37*I,n=16 2415733148816557 a008 Real Root of x^4-x^3-7*x^2+32*x+70 2415733154680210 k002 Champernowne real with 41/2*n^2+143/2*n-68 2415733155383971 m005 (1/3*3^(1/2)-1/3)/(1/5*2^(1/2)+8/11) 2415733155493108 m001 (FransenRobinson-Magata)/(Otter-Weierstrass) 2415733156371721 m001 (GAMMA(19/24)-Tetranacci)/(GAMMA(3/4)+Ei(1)) 2415733157042984 a007 Real Root Of 128*x^4+5*x^3-332*x^2+917*x-136 2415733158907810 a007 Real Root Of 453*x^4+665*x^3-503*x^2+948*x-827 2415733177098461 r005 Im(z^2+c),c=7/58+9/43*I,n=21 2415733190149188 r005 Im(z^2+c),c=11/40+3/34*I,n=45 2415733191355353 m001 1/ln((3^(1/3)))*Riemann3rdZero^2*sqrt(2) 2415733193355061 p001 sum(1/(499*n+228)/n/(6^n),n=1..infinity) 2415733198183197 h001 (7/12*exp(2)+11/12)/(3/4*exp(1)+1/8) 2415733198236668 m001 (-Champernowne+Salem)/(exp(1)+GAMMA(13/24)) 2415733203711788 m005 (1/3*Zeta(3)+1/8)/(3*gamma+4/9) 2415733206109233 m001 AlladiGrinstead/CareFree/PlouffeB 2415733210785721 m001 1/ln(GAMMA(7/24))^2/MinimumGamma/sqrt(5) 2415733238627356 a007 Real Root Of 111*x^4+95*x^3-604*x^2-791*x-827 2415733244475484 r005 Im(z^2+c),c=-5/27+18/53*I,n=13 2415733250346252 m005 (1/2*2^(1/2)-7/10)/(1/8*Zeta(3)-4/9) 2415733254980811 k002 Champernowne real with 21*n^2+70*n-67 2415733257783155 m001 polylog(4,1/2)^gamma+3^(1/2) 2415733257783155 m001 polylog(4,1/2)^gamma+sqrt(3) 2415733258290175 a001 21/103682*2^(15/59) 2415733258662982 r009 Re(z^3+c),c=-7/19+25/56*I,n=12 2415733275826610 r009 Re(z^3+c),c=-65/122+17/64*I,n=12 2415733282586828 h001 (-10*exp(4)+5)/(-11*exp(3)-3) 2415733291487327 r009 Re(z^3+c),c=-5/122+35/59*I,n=42 2415733292876101 a003 cos(Pi*3/83)/cos(Pi*23/63) 2415733319711983 m001 (Otter+Salem)/(Catalan+Kolakoski) 2415733339984095 a007 Real Root Of -32*x^4-806*x^3-833*x^2-861*x+586 2415733340184839 m001 gamma(3)*OneNinth^gamma(1) 2415733355281411 k002 Champernowne real with 43/2*n^2+137/2*n-66 2415733363409912 r005 Im(z^2+c),c=7/58+9/43*I,n=22 2415733363834038 p004 log(10391/8161) 2415733376852506 r005 Re(z^2+c),c=-27/56+17/45*I,n=5 2415733379333393 r005 Im(z^2+c),c=-51/118+14/53*I,n=3 2415733386851114 l006 ln(495/5543) 2415733401505437 m001 ArtinRank2^GAMMA(11/12)+3^(1/2) 2415733401655258 r005 Im(z^2+c),c=-21/38+5/22*I,n=3 2415733429854567 h001 (3/8*exp(1)+7/10)/(10/11*exp(2)+2/5) 2415733435315637 r005 Im(z^2+c),c=-55/52+17/64*I,n=11 2415733436304550 a007 Real Root Of 360*x^4+717*x^3-596*x^2-630*x-196 2415733437820679 r005 Re(z^2+c),c=9/46+8/27*I,n=4 2415733450238112 m001 (ln(2)-Salem)/(Totient+TwinPrimes) 2415733452406730 m001 Riemann3rdZero^Niven-sin(1/5*Pi) 2415733455582011 k002 Champernowne real with 22*n^2+67*n-65 2415733460602303 m001 (-exp(1/Pi)+ReciprocalLucas)/(exp(Pi)+Zeta(3)) 2415733473482293 m001 Bloch/(exp(-1/2*Pi)+KhinchinHarmonic) 2415733477179498 r005 Re(z^2+c),c=-127/106+3/19*I,n=4 2415733478387037 m001 1/GAMMA(5/6)*FeigenbaumB*ln(sqrt(Pi))^2 2415733480870327 a007 Real Root Of -412*x^4-907*x^3+271*x^2-183*x-779 2415733483456923 r005 Re(z^2+c),c=-5/31+5/12*I,n=5 2415733486455361 r005 Re(z^2+c),c=-6/29+19/42*I,n=49 2415733490693298 r005 Re(z^2+c),c=-15/98+29/52*I,n=37 2415733497692772 m002 6+Pi-Cosh[Pi]+ProductLog[Pi]/Pi^3 2415733503635940 r009 Im(z^3+c),c=-47/126+10/61*I,n=15 2415733508966200 m008 (2*Pi^4-1/3)/(5/6*Pi^4-2/3) 2415733516868283 m004 1+(2500*Sech[Sqrt[5]*Pi])/Pi 2415733521635200 m002 1+E^Pi+16/Pi^6 2415733529270874 a007 Real Root Of -553*x^4-357*x^3-440*x^2+834*x+224 2415733544990703 m008 (1/2*Pi^2+3/5)/(3/4*Pi^5-2/5) 2415733555882611 k002 Champernowne real with 45/2*n^2+131/2*n-64 2415733557007518 a001 1/29*(1/2*5^(1/2)+1/2)^9*1364^(4/13) 2415733565683300 a007 Real Root Of -17*x^4-410*x^3+56*x^2+944*x-364 2415733566013279 r009 Re(z^3+c),c=-3/74+29/50*I,n=20 2415733566932436 a007 Real Root Of -68*x^4-154*x^3-247*x^2-840*x-443 2415733569118013 l006 ln(4688/5969) 2415733573280611 m001 ln(GAMMA(5/24))*CopelandErdos/Zeta(3)^2 2415733575720061 r008 a(0)=0,K{-n^6,58*n^3+123*n^2+171*n+62} 2415733576515815 m001 1/GAMMA(1/6)*BesselJ(0,1)^2*exp(exp(1))^2 2415733576516089 r008 a(0)=0,K{-n^6,50*n^3+143*n^2+167*n+54} 2415733576924687 r008 a(0)=0,K{-n^6,(2*n+1)*(50+23*n^2+65*n)} 2415733583223951 r002 60th iterates of z^2 + 2415733587075750 r009 Re(z^3+c),c=-17/118+37/44*I,n=10 2415733591180581 m001 gamma(2)/Zeta(5)*Sierpinski 2415733607172761 m005 (1/3*exp(1)+3/5)/(1/9*5^(1/2)+3/8) 2415733608696366 m005 (5/6*gamma-1)/(73/60+5/12*5^(1/2)) 2415733614351367 l006 ln(793/8880) 2415733616896514 m001 Landau/(FeigenbaumB-Shi(1)) 2415733617026131 r009 Im(z^3+c),c=-43/106+7/50*I,n=21 2415733620209383 r005 Im(z^2+c),c=-53/122+5/12*I,n=42 2415733623788994 m001 GAMMA(5/24)^2/ln(Paris)/sin(Pi/5)^2 2415733641314850 a005 (1/sin(47/129*Pi))^550 2415733645489557 m001 exp(1)^LaplaceLimit+PlouffeB 2415733649029668 s002 sum(A034892[n]/((exp(n)-1)/n),n=1..infinity) 2415733656183211 k002 Champernowne real with 23*n^2+64*n-63 2415733664568970 r005 Re(z^2+c),c=13/42+9/49*I,n=64 2415733674763877 r005 Im(z^2+c),c=-25/122+8/23*I,n=11 2415733678449603 m001 (3^(1/2)+Ei(1))/(-Kac+StronglyCareFree) 2415733687428379 r005 Re(z^2+c),c=-13/94+36/61*I,n=55 2415733689440167 r005 Re(z^2+c),c=-15/62+5/14*I,n=26 2415733702950828 p001 sum(1/(409*n+6)/n/(100^n),n=1..infinity) 2415733710277829 r009 Im(z^3+c),c=-27/82+10/53*I,n=10 2415733727622254 a001 1/64003*(1/2*5^(1/2)+1/2)^21*2207^(7/13) 2415733733329497 a007 Real Root Of 126*x^4-675*x^3+487*x^2+637*x+844 2415733733459873 r005 Re(z^2+c),c=-29/106+13/54*I,n=22 2415733736712096 s004 Continued Fraction of A270379 2415733736712096 s004 Continued fraction of A270379 2415733747307695 m001 1/ln(Ei(1))/Salem/GAMMA(1/24)^2 2415733750884592 a007 Real Root Of 931*x^4-744*x^3+355*x^2-371*x-124 2415733754210505 r009 Re(z^3+c),c=-19/56+5/13*I,n=27 2415733755364044 m001 (Kac-Weierstrass)/(ln(gamma)+GAMMA(19/24)) 2415733756483811 k002 Champernowne real with 47/2*n^2+125/2*n-62 2415733763346870 r005 Im(z^2+c),c=-39/118+11/20*I,n=10 2415733769862767 r005 Re(z^2+c),c=-43/54+3/26*I,n=34 2415733777216931 a007 Real Root Of -475*x^4-719*x^3+736*x^2-607*x+279 2415733784211496 m001 gamma(2)/(Tribonacci^BesselI(0,2)) 2415733791320917 r005 Im(z^2+c),c=-11/74+16/35*I,n=3 2415733792062321 a001 831985*123^(7/10) 2415733793521613 p004 log(28517/22397) 2415733802108705 r002 2th iterates of z^2 + 2415733811542730 m005 (1/2*2^(1/2)+3/5)/(1/10*3^(1/2)-5/7) 2415733821566369 m001 GAMMA(7/12)/ln(Paris)/sqrt(1+sqrt(3))^2 2415733822624177 a007 Real Root Of -980*x^4-345*x^3-466*x^2+109*x+52 2415733825579885 r005 Im(z^2+c),c=-31/54+2/9*I,n=3 2415733833277969 r005 Im(z^2+c),c=-7/18+25/62*I,n=38 2415733835891227 h001 (4/7*exp(2)+9/10)/(1/6*exp(2)+8/9) 2415733842928919 m005 (1/2*Catalan+1/8)/(4/5*Pi-1/10) 2415733844198624 m001 Riemann1stZero^2*Conway*ln(Riemann2ndZero)^2 2415733847951483 m001 (MinimumGamma-RenyiParking)/Otter 2415733848665849 m002 36-E^Pi+Pi^2*Log[Pi] 2415733849230042 m001 (-arctan(1/2)+MinimumGamma)/(5^(1/2)+Ei(1)) 2415733849373357 a007 Real Root Of 841*x^4-977*x^3+414*x^2-332*x-121 2415733852926665 l006 ln(5903/7516) 2415733856784411 k002 Champernowne real with 24*n^2+61*n-61 2415733868508456 a007 Real Root Of -660*x^4+148*x^3-27*x^2+820*x+204 2415733883844992 r009 Re(z^3+c),c=-37/86+12/31*I,n=6 2415733887872257 r005 Im(z^2+c),c=-7/15+19/45*I,n=47 2415733888657596 a005 (1/sin(75/221*Pi))^439 2415733892804019 m001 MertensB3^Grothendieck+RenyiParking 2415733907246140 m001 (Si(Pi)-ln(2+3^(1/2)))/(FeigenbaumKappa+Thue) 2415733907990183 m001 1/cosh(1)^2/exp(GAMMA(11/12))*sqrt(1+sqrt(3)) 2415733908029252 a007 Real Root Of -102*x^4+111*x^3+336*x^2-976*x+720 2415733910838009 r009 Re(z^3+c),c=-17/62+7/31*I,n=11 2415733915431752 r005 Re(z^2+c),c=-11/122+32/53*I,n=26 2415733925751603 h001 (3/7*exp(1)+5/8)/(11/12*exp(2)+7/11) 2415733926869792 m001 (FeigenbaumD+Rabbit)/(2^(1/2)+gamma(2)) 2415733927381303 a001 1/29*(1/2*5^(1/2)+1/2)^11*3571^(2/13) 2415733927579604 a007 Real Root Of -287*x^4-798*x^3-367*x^2-262*x+33 2415733936890271 a001 433494437/843*199^(8/11) 2415733943829660 a007 Real Root Of 107*x^4+574*x^3+984*x^2-854*x-256 2415733946327978 a003 sin(Pi*6/95)/sin(Pi*24/79) 2415733948404937 a001 1/438683*(1/2*5^(1/2)+1/2)^29*15127^(3/13) 2415733950959666 a001 1/167562*(1/2*5^(1/2)+1/2)^15*5778^(12/13) 2415733953838437 r005 Im(z^2+c),c=-23/22+29/126*I,n=32 2415733954712536 m001 GAMMA(5/6)*(exp(-1/2*Pi)+GAMMA(11/24)) 2415733956215574 a001 1/29*(1/2*5^(1/2)+1/2)^12*24476^(1/13) 2415733956254227 a001 1/29*(1/2*5^(1/2)+1/2)^3*64079^(6/13) 2415733956288799 a001 1/1148487*(1/2*5^(1/2)+1/2)^17*39603^(11/13) 2415733956525762 a001 1/29*2139295485799^(3/13) 2415733956842553 a001 1/1858291*(1/2*5^(1/2)+1/2)^26*64079^(6/13) 2415733957085011 k002 Champernowne real with 49/2*n^2+119/2*n-60 2415733958962009 a001 1/29*(1/2*5^(1/2)+1/2)^9*15127^(3/13) 2415733959879357 a007 Real Root Of -252*x^4-494*x^3-255*x^2+270*x+74 2415733962903941 a001 1/271121*(1/2*5^(1/2)+1/2)^18*9349^(10/13) 2415733966784801 r005 Im(z^2+c),c=-151/126+5/33*I,n=44 2415733971695182 h001 (-exp(-3)+1)/(-6*exp(2)+5) 2415733972638554 m001 (-Ei(1)+Salem)/(Chi(1)-cos(1)) 2415733989582916 r002 31th iterates of z^2 + 2415733992245969 l006 ln(298/3337) 2415733993323454 m001 (GAMMA(5/6)+Salem)/(ln(2^(1/2)+1)-gamma(1)) 2415733994221708 m009 (3*Psi(1,1/3)-2)/(5*Psi(1,3/4)-1) 2415734000217699 b008 -1+ArcCosh[13+Sqrt[5]] 2415734001255641 r005 Re(z^2+c),c=-3/19+19/34*I,n=60 2415734003994015 m005 (1/3*exp(1)+1/10)/(3/11*Catalan+1/6) 2415734009983440 m001 (Tribonacci+TwinPrimes)/MertensB2 2415734029657673 p001 sum(1/(474*n+335)/n/(512^n),n=1..infinity) 2415734039846436 l006 ln(7118/9063) 2415734057273756 r009 Re(z^3+c),c=-25/86+17/63*I,n=8 2415734057385611 k002 Champernowne real with 25*n^2+58*n-59 2415734068986104 a007 Real Root Of 664*x^4+256*x^3+936*x^2-359*x-140 2415734069492077 r005 Im(z^2+c),c=-33/58+23/63*I,n=26 2415734077611968 a007 Real Root Of 380*x^4+684*x^3-220*x^2+870*x+87 2415734091451907 m001 (Pi-sin(1/5*Pi))/(ln(gamma)+ErdosBorwein) 2415734094224056 m001 ln(FeigenbaumD)*Artin*cos(Pi/5)^2 2415734108853685 l006 ln(7566/7751) 2415734114121171 k009 concat of cont frac of 2415734116820291 a001 1/103559*(1/2*5^(1/2)+1/2)^28*3571^(2/13) 2415734124591923 m001 ln(cos(1))*PisotVijayaraghavan^2*sqrt(5) 2415734134806916 r005 Re(z^2+c),c=-4/29+37/64*I,n=41 2415734136609694 a007 Real Root Of 204*x^4+350*x^3-280*x^2-110*x-645 2415734139799581 s002 sum(A139820[n]/(n*pi^n-1),n=1..infinity) 2415734141585735 m001 1/Riemann2ndZero/ln(Paris)*Salem 2415734156037250 m005 (1/2*2^(1/2)+9/11)/(6*Catalan+9/11) 2415734157686211 k002 Champernowne real with 51/2*n^2+113/2*n-58 2415734160522358 p003 LerchPhi(1/100,3,64/185) 2415734170835966 m009 (3/4*Psi(1,3/4)-1/5)/(2/3*Psi(1,1/3)+1/3) 2415734172354835 a007 Real Root Of -512*x^4+731*x^3+748*x^2+500*x-173 2415734174668407 b008 -1+BesselY[6,3/2] 2415734174784336 m004 (2500*Csch[Sqrt[5]*Pi])/Pi+Tanh[Sqrt[5]*Pi] 2415734174897926 r005 Im(z^2+c),c=6/25+7/60*I,n=4 2415734183723592 m001 TwinPrimes*Magata^2/exp(gamma)^2 2415734200843202 r005 Re(z^2+c),c=-37/102+5/49*I,n=2 2415734201514214 a007 Real Root Of -207*x^4-378*x^3+415*x^2+580*x+700 2415734202546701 m001 ErdosBorwein^(Zeta(3)/MasserGramain) 2415734204517041 m001 cos(1)*ln(KhintchineLevy)^2/cos(Pi/5)^2 2415734215753604 a007 Real Root Of 140*x^4+335*x^3+197*x^2+305*x-458 2415734223579882 a001 1/29*(1/2*5^(1/2)+1/2)^5*2207^(7/13) 2415734225959389 r005 Im(z^2+c),c=-49/122+19/50*I,n=13 2415734226239633 r005 Re(z^2+c),c=-19/102+1/2*I,n=59 2415734232504425 a007 Real Root Of -260*x^4-362*x^3+655*x^2-180*x-506 2415734237758407 m001 ln(GAMMA(7/24))^2/Lehmer^2*sin(Pi/12)^2 2415734237982394 r005 Im(z^2+c),c=-3/25+1/34*I,n=9 2415734239026506 a007 Real Root Of -737*x^4-84*x^3+739*x^2+971*x-274 2415734249134070 m001 (FeigenbaumMu+GaussAGM)/(2^(1/3)-3^(1/3)) 2415734251822114 k006 concat of cont frac of 2415734257986812 k002 Champernowne real with 26*n^2+55*n-57 2415734265159538 a001 167761/2*10610209857723^(22/23) 2415734265245374 a001 6643838879/2*165580141^(22/23) 2415734268911787 a007 Real Root Of -860*x^4+924*x^3-405*x^2+506*x-12 2415734269154109 m001 (PisotVijayaraghavan+Porter)/(ln(gamma)+Niven) 2415734269880687 m001 (arctan(1/3)*exp(-1/2*Pi)+Trott)/arctan(1/3) 2415734272696186 a007 Real Root Of -415*x^4+420*x^3+716*x^2+806*x-241 2415734277116851 a001 47/10946*13^(33/49) 2415734284091673 r005 Re(z^2+c),c=31/122+5/36*I,n=12 2415734294403129 a005 (1/cos(3/110*Pi))^240 2415734297030734 m001 (BesselJ(1,1)+Paris)/(2^(1/3)-Zeta(5)) 2415734298181500 s001 sum(exp(-2*Pi/3)^n*A227249[n],n=1..infinity) 2415734298417805 m005 (1/3*3^(1/2)+1/3)/(4/9*3^(1/2)+3) 2415734305508473 r005 Re(z^2+c),c=23/86+3/20*I,n=47 2415734305655458 r005 Im(z^2+c),c=-1/13+43/48*I,n=6 2415734320986025 m005 (1/2*5^(1/2)+5/12)/(6*Catalan+6/7) 2415734326823914 p004 log(30089/2687) 2415734345558894 m001 OrthogonalArrays*Tribonacci^FeigenbaumDelta 2415734347840688 m001 (-GAMMA(19/24)+Paris)/(exp(1)+3^(1/2)) 2415734349614142 m001 1/GAMMA(1/6)^2*exp(Kolakoski)^2/cos(Pi/5)^2 2415734358287412 k002 Champernowne real with 53/2*n^2+107/2*n-56 2415734366473185 m001 (-Champernowne+RenyiParking)/(1-GAMMA(23/24)) 2415734375020167 m001 (Conway+ZetaQ(4))/cos(1) 2415734383768539 m001 (ln(Pi)-BesselI(1,1))/(CopelandErdos-PlouffeB) 2415734399053827 m005 (1/2*3^(1/2)+3/4)/(1/3*Catalan+4/11) 2415734410782401 p001 sum(1/(195*n+137)/n/(125^n),n=1..infinity) 2415734422189008 l006 ln(697/7805) 2415734440114878 m001 (Rabbit-Robbin)/(arctan(1/2)-LaplaceLimit) 2415734443910441 a007 Real Root Of -770*x^4+502*x^3+556*x^2+831*x+178 2415734452211278 h003 exp(Pi*(7^(7/2)-18^(6/5))) 2415734452211278 h008 exp(Pi*(7^(7/2)-18^(6/5))) 2415734454312601 a007 Real Root Of 225*x^4+83*x^3-757*x^2+678*x-437 2415734454636502 m001 (3^(1/3)-gamma(3))/(Pi^(1/2)-Salem) 2415734458588012 k002 Champernowne real with 27*n^2+52*n-55 2415734461199108 r005 Im(z^2+c),c=-7/10+53/221*I,n=40 2415734470258311 r005 Im(z^2+c),c=-23/70+29/61*I,n=10 2415734478115248 m001 KhinchinLevy^LaplaceLimit/arctan(1/2) 2415734480350687 r005 Re(z^2+c),c=-21/94+25/61*I,n=24 2415734483140365 a001 1364*121393^(23/36) 2415734492357218 a007 Real Root Of 367*x^4+759*x^3-349*x^2+14*x+272 2415734501343777 m001 (-Trott+TwinPrimes)/(2^(1/3)-GAMMA(7/12)) 2415734504917476 b008 29*SinIntegral[1/12] 2415734509452486 m001 (GAMMA(1/6)+5)/(Artin+4) 2415734511835007 m009 (20/3*Catalan+5/6*Pi^2-1/3)/(2*Psi(1,2/3)-1/3) 2415734513090307 m001 sin(1/12*Pi)^ErdosBorwein/Bloch 2415734514227295 m001 (ln(5)-gamma(1))/(Cahen-Totient) 2415734520221906 m005 (1/2*Pi+1/6)/(2*Pi+10/11) 2415734527920494 h001 (-4*exp(8)+5)/(-9*exp(4)-2) 2415734532955549 a001 5/29*3571^(29/48) 2415734537735694 a007 Real Root Of -452*x^4-751*x^3+325*x^2-867*x+815 2415734539452866 m006 (1/4*ln(Pi)-2)/(2/3*Pi+5) 2415734541196198 b008 (11*E^7)/5+Pi 2415734541271204 r005 Im(z^2+c),c=7/16+17/39*I,n=6 2415734546395453 m005 (3/44+1/4*5^(1/2))/(7/9*5^(1/2)+6/7) 2415734552822317 m001 BesselK(1,1)-GAMMA(7/12)*CopelandErdos 2415734555114147 r005 Re(z^2+c),c=-4/17+23/61*I,n=29 2415734555925565 a007 Real Root Of -350*x^4-371*x^3+937*x^2-809*x-733 2415734558411145 m009 (1/6*Psi(1,3/4)-3)/(16/3*Catalan+2/3*Pi^2-4/5) 2415734558888612 k002 Champernowne real with 55/2*n^2+101/2*n-54 2415734566358865 r002 29th iterates of z^2 + 2415734567786170 m001 (-OneNinth+ReciprocalLucas)/(ln(5)-sin(1)) 2415734579469253 a001 4/956722026041*144^(6/17) 2415734582221433 b008 5-8*Pi^7 2415734584258998 m003 -3*Cot[1/2+Sqrt[5]/2]^2+Sinh[1/2+Sqrt[5]/2] 2415734585363384 r005 Im(z^2+c),c=-5/11+1/2*I,n=35 2415734592381922 a007 Real Root Of -408*x^4-620*x^3+924*x^2-34*x-320 2415734610153228 a007 Real Root Of -236*x^4-510*x^3+46*x^2-522*x-682 2415734610226140 r005 Re(z^2+c),c=-37/86+23/58*I,n=5 2415734611368483 m004 750*Pi+(25*Sqrt[5]*Pi)/3+Tanh[Sqrt[5]*Pi] 2415734612686325 m007 (-3/5*gamma-6/5*ln(2)+3/4)/(-gamma+2/5) 2415734613329277 r002 26th iterates of z^2 + 2415734619162970 r005 Re(z^2+c),c=25/122+7/15*I,n=25 2415734620528913 m005 (1/3*gamma+1/12)/(7/8*gamma+7/11) 2415734623463604 a007 Real Root Of -975*x^4-531*x^3+494*x^2+240*x-76 2415734634934611 r005 Im(z^2+c),c=-34/27+21/52*I,n=5 2415734636828945 a007 Real Root Of 414*x^4+461*x^3-997*x^2+902*x+397 2415734643142605 m001 Backhouse*(ln(2)+cos(1/12*Pi)) 2415734643142605 m001 Backhouse*(ln(2)+cos(Pi/12)) 2415734659189212 k002 Champernowne real with 28*n^2+49*n-53 2415734670331736 r005 Re(z^2+c),c=5/58+11/24*I,n=5 2415734675976137 m001 TreeGrowth2nd^gamma(1)+GAMMA(2/3) 2415734685721854 m002 -13/6-Tanh[Pi]/4 2415734688355216 s002 sum(A007154[n]/(exp(pi*n)+1),n=1..infinity) 2415734694565239 m001 1/GAMMA(11/12)*exp(FeigenbaumC)^2*cos(Pi/5)^2 2415734695098296 a007 Real Root Of -380*x^4-698*x^3+590*x^2+7*x-325 2415734698595719 r005 Re(z^2+c),c=-29/118+20/59*I,n=12 2415734703558467 m002 2*Coth[Pi]-(Cosh[Pi]*Log[Pi])/3 2415734711745502 h001 (7/12*exp(1)+8/11)/(1/11*exp(2)+2/7) 2415734712093393 a003 sin(Pi*7/97)/cos(Pi*8/67) 2415734734551660 m001 TreeGrowth2nd^2/exp(CopelandErdos)^2*sqrt(2)^2 2415734734909547 m001 (Stephens-ThueMorse)/(Zeta(3)+2*Pi/GAMMA(5/6)) 2415734743299227 l006 ln(399/4468) 2415734744913381 a001 32951280099/2207*76^(1/9) 2415734749535786 m001 (1-BesselI(1,2))/(Grothendieck+LaplaceLimit) 2415734753168850 m001 exp(Pi)+GAMMA(3/4)^StolarskyHarborth 2415734759489812 k002 Champernowne real with 57/2*n^2+95/2*n-52 2415734764046585 a007 Real Root Of -349*x^4-708*x^3+705*x^2+721*x-468 2415734780674245 a001 843/13*1548008755920^(3/8) 2415734784855052 r005 Im(z^2+c),c=4/19+53/63*I,n=3 2415734801535315 m005 (1/2*Catalan+9/11)/(3/10*Zeta(3)-8/9) 2415734803117212 k009 concat of cont frac of 2415734804357807 r002 44th iterates of z^2 + 2415734806647566 h001 (4/9*exp(1)+3/7)/(9/10*exp(2)+1/8) 2415734811416228 a001 11/28657*8^(23/26) 2415734812186555 r002 35th iterates of z^2 + 2415734820416786 r005 Im(z^2+c),c=-29/27+13/56*I,n=44 2415734827586646 r005 Re(z^2+c),c=1/6+9/25*I,n=48 2415734839724140 a007 Real Root Of -188*x^4-140*x^3+774*x^2-344*x-919 2415734843251314 r005 Re(z^2+c),c=1/6+9/25*I,n=55 2415734844590806 r005 Re(z^2+c),c=1/6+9/25*I,n=52 2415734855442053 a001 1/39556*(1/2*5^(1/2)+1/2)^24*1364^(4/13) 2415734859790412 k002 Champernowne real with 29*n^2+46*n-51 2415734867956796 r005 Re(z^2+c),c=-15/58+39/44*I,n=6 2415734870808237 r009 Re(z^3+c),c=-39/98+25/48*I,n=38 2415734872119849 r009 Im(z^3+c),c=-5/26+4/17*I,n=6 2415734878900771 m001 Stephens*(FeigenbaumMu+GolombDickman) 2415734903285287 r005 Im(z^2+c),c=-35/38+13/45*I,n=9 2415734904257181 a001 1364/13*2178309^(2/35) 2415734923295272 r002 28th iterates of z^2 + 2415734927144725 r009 Re(z^3+c),c=-8/23+21/52*I,n=28 2415734935778937 a007 Real Root Of -415*x^4-827*x^3+332*x^2+96*x+769 2415734940624627 a003 -3^(1/2)+cos(2/9*Pi)-cos(2/7*Pi)-cos(4/21*Pi) 2415734947984172 l006 ln(1215/1547) 2415734950187232 m005 (1/2*Catalan+5)/(6/11*2^(1/2)-6/11) 2415734960091012 k002 Champernowne real with 59/2*n^2+89/2*n-50 2415734964428963 m001 3^(1/2)*HardHexagonsEntropy-HeathBrownMoroz 2415734968241573 s001 sum(1/10^(n-1)*A171126[n],n=1..infinity) 2415734968241573 s001 sum(1/10^n*A171126[n],n=1..infinity) 2415734975640261 r005 Im(z^2+c),c=-27/52+2/49*I,n=19 2415734978707113 r005 Re(z^2+c),c=13/42+9/49*I,n=46 2415734992006437 s002 sum(A044661[n]/(16^n-1),n=1..infinity) 2415734992257803 l006 ln(899/10067) 2415734995874485 m009 (6*Psi(1,2/3)-3/4)/(2*Catalan+1/4*Pi^2+3) 2415735035180508 a007 Real Root Of 355*x^4+874*x^3+203*x^2+792*x+960 2415735053907230 s001 sum(exp(-Pi)^n*A007154[n],n=1..infinity) 2415735053907230 s002 sum(A007154[n]/(exp(pi*n)),n=1..infinity) 2415735060391612 k002 Champernowne real with 30*n^2+43*n-49 2415735061169551 m001 exp(GAMMA(1/4))^2*Conway^2*Zeta(7) 2415735062244130 a007 Real Root Of 367*x^4+905*x^3+459*x^2+589*x-996 2415735069287332 m001 Zeta(3)*exp(Robbin)*Zeta(5) 2415735071259450 m005 (1/2*3^(1/2)-1/4)/(9/11*gamma-8/11) 2415735085426625 r005 Re(z^2+c),c=-9/38+19/51*I,n=30 2415735087591253 r005 Im(z^2+c),c=-1/94+17/62*I,n=7 2415735091491536 r005 Re(z^2+c),c=-5/26+27/62*I,n=7 2415735100621118 a001 72/161*(1/2+1/2*5^(1/2))^37 2415735112363304 m001 ln(2^(1/2)+1)+FransenRobinson^PrimesInBinary 2415735118248705 r005 Re(z^2+c),c=23/86+3/20*I,n=37 2415735118293788 p001 sum(1/(587*n+438)/(8^n),n=0..infinity) 2415735125919293 r005 Re(z^2+c),c=-5/28+31/60*I,n=62 2415735130553920 m001 Zeta(1/2)*Zeta(1,-1) 2415735133782841 a007 Real Root Of 390*x^4+494*x^3-902*x^2+370*x-160 2415735144131159 r002 16th iterates of z^2 + 2415735145024468 a001 102334155/521*199^(10/11) 2415735146800214 a001 3/167761*123^(1/16) 2415735149443990 r002 4th iterates of z^2 + 2415735154609388 r005 Re(z^2+c),c=-77/122+9/23*I,n=7 2415735154859562 r005 Im(z^2+c),c=-13/40+22/57*I,n=18 2415735160692212 k002 Champernowne real with 61/2*n^2+83/2*n-48 2415735168511932 a001 43133785636/2889*76^(1/9) 2415735170227451 h001 (5/6*exp(2)+7/9)/(3/8*exp(2)+1/10) 2415735175891340 m009 (2/5*Psi(1,1/3)-4)/(1/5*Psi(1,3/4)-2/3) 2415735177338728 m005 (1/2*2^(1/2)-3/5)/(1/4*Zeta(3)+1/7) 2415735186194351 m001 (3^(1/3))*BesselJ(1,1)+exp(gamma) 2415735187896347 a007 Real Root Of 255*x^4+165*x^3-195*x^2-761*x-171 2415735189929241 m002 -3-E^Pi*Coth[Pi]+ProductLog[Pi]+Tanh[Pi] 2415735190889912 p001 sum(1/(473*n+336)/n/(512^n),n=1..infinity) 2415735190926701 l006 ln(500/5599) 2415735230314140 a001 32264490531/2161*76^(1/9) 2415735233442396 m001 (ln(2+3^(1/2))-GAMMA(11/12))/(Artin-Backhouse) 2415735236335124 k009 concat of cont frac of 2415735239330961 a001 591286729879/39603*76^(1/9) 2415735240646498 a001 774004377960/51841*76^(1/9) 2415735240838432 a001 4052739537881/271443*76^(1/9) 2415735240866435 a001 1515744265389/101521*76^(1/9) 2415735240883742 a001 3278735159921/219602*76^(1/9) 2415735240957054 a001 2504730781961/167761*76^(1/9) 2415735241459544 a001 956722026041/64079*76^(1/9) 2415735244903663 a001 182717648081/12238*76^(1/9) 2415735250569349 m001 1/cosh(1)*Cahen/ln(sin(1)) 2415735251066946 m005 (1/2*gamma-1/9)/(4/11*Zeta(3)-4/11) 2415735260992813 k002 Champernowne real with 31*n^2+40*n-47 2415735265773451 r005 Re(z^2+c),c=-21/26+5/86*I,n=24 2415735268510007 a001 139583862445/9349*76^(1/9) 2415735283940366 r005 Re(z^2+c),c=-9/62+29/50*I,n=50 2415735286854165 h001 (1/7*exp(1)+9/11)/(1/7*exp(1)+1/9) 2415735289194536 m005 (7/6+1/4*5^(1/2))/(10/11*2^(1/2)-2) 2415735293713314 m001 StronglyCareFree/(ThueMorse^GlaisherKinkelin) 2415735293933800 m009 (2/5*Psi(1,1/3)+1/4)/(3/5*Psi(1,3/4)+1/4) 2415735295340959 m005 (1/2*3^(1/2)-10/11)/(5/12*2^(1/2)-4/7) 2415735303782403 a007 Real Root Of -276*x^4-513*x^3+441*x^2-79*x-597 2415735313912237 a007 Real Root Of -564*x^4-917*x^3+636*x^2-954*x+264 2415735320832048 m005 (1/3*Catalan-2/3)/(5*Pi-3/4) 2415735320948726 r009 Re(z^3+c),c=-47/126+35/57*I,n=64 2415735329385185 m005 (1/3*5^(1/2)-1/8)/(3/11*Pi-3/5) 2415735330849272 m005 (1/2*Pi+5/6)/(4/7*Pi-4/5) 2415735332229452 a001 48*11^(31/46) 2415735332722361 r009 Re(z^3+c),c=-1/24+25/41*I,n=43 2415735338282792 a007 Real Root Of 567*x^4-471*x^3-154*x^2-722*x-174 2415735344896236 m005 (1/2*exp(1)+3/7)/(5/9*3^(1/2)-2/9) 2415735361293413 k002 Champernowne real with 63/2*n^2+77/2*n-46 2415735384380078 r005 Im(z^2+c),c=-7/10+29/122*I,n=26 2415735405483584 h001 (3/11*exp(2)+1/11)/(1/10*exp(1)+3/5) 2415735417570566 m001 (exp(sqrt(2))+5)/(Pi^(1/2)+2) 2415735419464572 s002 sum(A007154[n]/(exp(pi*n)-1),n=1..infinity) 2415735424423566 m005 (1/2*Catalan-2/9)/(39/56+1/8*5^(1/2)) 2415735427109510 a003 cos(Pi*13/61)-cos(Pi*20/63) 2415735428178141 s002 sum(A198284[n]/((exp(n)+1)/n),n=1..infinity) 2415735430051053 r005 Im(z^2+c),c=-19/54+20/49*I,n=15 2415735430310309 a001 53316291173/3571*76^(1/9) 2415735435216496 r005 Im(z^2+c),c=-17/94+2/63*I,n=8 2415735436583860 r001 39i'th iterates of 2*x^2-1 of 2415735441033168 m001 (-PlouffeB+Sarnak)/(BesselJ(0,1)+MertensB1) 2415735448290091 a007 Real Root Of -549*x^4-253*x^3+827*x^2+721*x-217 2415735450220598 r009 Re(z^3+c),c=-4/19+15/23*I,n=3 2415735460670741 r005 Im(z^2+c),c=-5/34+15/46*I,n=17 2415735461594013 k002 Champernowne real with 32*n^2+37*n-45 2415735472333347 a007 Real Root Of -188*x^4-213*x^3+437*x^2-314*x+91 2415735473831969 m001 (GAMMA(7/12)+Riemann3rdZero)/ln(3) 2415735476356067 r005 Re(z^2+c),c=-11/27+34/59*I,n=8 2415735478601548 m001 (Bloch+Rabbit)/(ThueMorse+ZetaP(4)) 2415735483743874 m002 -Pi+Pi^6/4+5/Log[Pi] 2415735488103565 l006 ln(601/6730) 2415735491053045 a007 Real Root Of 361*x^4+782*x^3-520*x^2-526*x+494 2415735495319780 r005 Im(z^2+c),c=-17/42+11/27*I,n=38 2415735496259263 m001 2^(1/3)+Pi*csc(5/12*Pi)/GAMMA(7/12)*Landau 2415735496766007 r005 Re(z^2+c),c=-25/102+8/13*I,n=43 2415735497923881 a001 3/2*2^(11/16) 2415735497923881 b008 3/2^(5/16) 2415735503634916 m001 (-Rabbit+TwinPrimes)/(1-Kolakoski) 2415735507266390 m001 (BesselJ(0,1)+Otter)/(1+cos(1)) 2415735536020594 r005 Re(z^2+c),c=-27/22+3/43*I,n=24 2415735543336232 m001 (exp(1)-gamma(2))/(-Niven+Stephens) 2415735552238133 a007 Real Root Of -413*x^4-792*x^3+216*x^2-518*x+388 2415735561894613 k002 Champernowne real with 65/2*n^2+71/2*n-44 2415735565415485 s002 sum(A058195[n]/((exp(n)-1)/n),n=1..infinity) 2415735570031145 s002 sum(A204989[n]/(n^3*exp(n)-1),n=1..infinity) 2415735570174814 r005 Re(z^2+c),c=-23/102+23/57*I,n=21 2415735571687957 a001 10716675201/8*832040^(11/20) 2415735571688341 a001 969323029/144*12586269025^(11/20) 2415735576892658 a007 Real Root Of -765*x^4+703*x^3+673*x^2+711*x+145 2415735579600179 g005 1/2*GAMMA(7/10)*GAMMA(5/6)^2/GAMMA(7/8)/Pi 2415735598293141 m001 (polylog(4,1/2)-PlouffeB)/(sin(1/5*Pi)+ln(Pi)) 2415735602139177 p004 log(14591/1303) 2415735609130980 m005 (1/2*3^(1/2)+4/7)/(2/7*Catalan+1/3) 2415735611051228 r008 a(0)=0,K{-n^6,58*n^3+119*n^2+173*n+64} 2415735611818731 a007 Real Root Of 185*x^4+475*x^3-300*x^2-656*x+562 2415735612139256 r002 13i'th iterates of 2*x/(1-x^2) of 2415735612725140 r008 a(0)=0,K{-n^6,(2*n+1)*(48+21*n^2+69*n)} 2415735613222708 p001 sum((-1)^n/(416*n+379)/(5^n),n=0..infinity) 2415735614129548 r005 Im(z^2+c),c=-79/78+13/56*I,n=26 2415735621873131 m001 (Trott+ThueMorse)/(Salem+Stephens) 2415735626954090 a007 Real Root Of 481*x^4+995*x^3-64*x^2+838*x+44 2415735628139610 a001 1/203*(1/2*5^(1/2)+1/2)^3*29^(1/23) 2415735629214544 a007 Real Root Of 508*x^4+422*x^3-75*x^2-938*x-218 2415735636883363 m005 (1/2*exp(1)-7/8)/(2*Zeta(3)-2/5) 2415735644866460 a007 Real Root Of -580*x^4-988*x^3+838*x^2+3*x+941 2415735652774860 p004 log(30313/2707) 2415735662195213 k002 Champernowne real with 33*n^2+34*n-43 2415735663136836 a003 cos(Pi*1/120)/sin(Pi*11/81) 2415735665862927 a007 Real Root Of 523*x^4+838*x^3-870*x^2+677*x+715 2415735668392728 a001 1/19*(1/2*5^(1/2)+1/2)^8*76^(10/19) 2415735675057318 r005 Im(z^2+c),c=-4/3+3/170*I,n=62 2415735676265727 m005 (1/2*2^(1/2)+5/7)/(1/7*Zeta(3)+5/12) 2415735676613214 m001 (Niven+TwinPrimes)/(Catalan-Ei(1)) 2415735695661367 m005 (1/2*gamma-4/11)/(6/11*5^(1/2)-10/11) 2415735699767945 l006 ln(702/7861) 2415735710172547 r005 Re(z^2+c),c=-57/46+17/40*I,n=5 2415735710834291 h001 (5/7*exp(2)+1/5)/(4/7*exp(1)+5/7) 2415735712541488 r005 Im(z^2+c),c=-55/82+3/62*I,n=52 2415735722416593 r005 Im(z^2+c),c=7/58+9/43*I,n=18 2415735725948927 m005 (1/2*Zeta(3)+7/10)/(4/5*3^(1/2)+4) 2415735742418461 a007 Real Root Of -34*x^4-825*x^3-93*x^2-148*x-757 2415735749040477 p004 log(20549/16139) 2415735757299510 a007 Real Root Of 312*x^4+527*x^3-814*x^2-905*x-632 2415735757318535 m004 1+(2500*Csch[Sqrt[5]*Pi])/Pi 2415735760786299 m001 Pi-exp(Pi)*Zeta(3)+polylog(4,1/2) 2415735762495813 k002 Champernowne real with 67/2*n^2+65/2*n-42 2415735763539933 a008 Real Root of x^4-2*x^3+33*x^2+180*x+180 2415735764159461 m005 (1/3*3^(1/2)+1/7)/(2/9*Pi-2/5) 2415735776001014 r005 Im(z^2+c),c=-13/18+34/55*I,n=4 2415735783567408 a007 Real Root Of -798*x^4-404*x^3+530*x^2+714*x-195 2415735800707761 m001 (1+Ei(1))/(-GaussAGM+TravellingSalesman) 2415735803010418 r009 Im(z^3+c),c=-35/78+2/21*I,n=63 2415735806321256 g002 Psi(4/7)-Psi(5/11)-Psi(7/9)-Psi(6/7) 2415735812592110 m001 (-Bloch+QuadraticClass)/(5^(1/2)-cos(1)) 2415735813937623 a007 Real Root Of -393*x^4-992*x^3-633*x^2-881*x+965 2415735814256463 l006 ln(7462/9501) 2415735817159889 r005 Im(z^2+c),c=-8/21+7/18*I,n=16 2415735821948616 m001 1/cos(Pi/5)/ln(GAMMA(11/24))/log(1+sqrt(2))^2 2415735824633467 a007 Real Root Of 419*x^4-491*x^3+653*x^2-491*x+86 2415735829609272 a007 Real Root Of -5*x^4-91*x^3+747*x^2+670*x+178 2415735830770620 r009 Re(z^3+c),c=-1/78+31/35*I,n=10 2415735835558948 a007 Real Root Of 504*x^4+806*x^3-874*x^2-91*x-921 2415735849755818 r009 Im(z^3+c),c=-51/118+7/61*I,n=24 2415735858186710 l006 ln(803/8992) 2415735858678337 s002 sum(A029438[n]/(pi^n+1),n=1..infinity) 2415735862796413 k002 Champernowne real with 34*n^2+31*n-41 2415735864638258 r009 Re(z^3+c),c=-7/50+20/23*I,n=62 2415735870054944 m001 3^(1/3)+CareFree^ZetaP(4) 2415735878927261 r005 Im(z^2+c),c=-6/17+11/28*I,n=39 2415735886150730 a007 Real Root Of 274*x^4+842*x^3+127*x^2-514*x+556 2415735894660799 r009 Re(z^3+c),c=-23/58+23/45*I,n=57 2415735899857994 r009 Re(z^3+c),c=-3/11+34/35*I,n=7 2415735900596258 m001 Shi(1)^BesselI(0,2)/(MertensB1^BesselI(0,2)) 2415735900602989 a001 1/774004377960*75025^(6/23) 2415735904317245 b008 E^(8-Sqrt[2])/3 2415735912199618 m001 Sierpinski^Paris-Totient 2415735913440181 a003 cos(Pi*16/93)*cos(Pi*9/22) 2415735927499139 r005 Im(z^2+c),c=-51/118+7/15*I,n=20 2415735928097354 m001 (exp(1)+Landau)/(-OrthogonalArrays+ZetaQ(2)) 2415735928137743 a003 1/2-cos(5/18*Pi)-cos(7/27*Pi)-2*cos(5/24*Pi) 2415735931080596 a008 Real Root of (-6+6*x+3*x^2+6*x^3+4*x^4-3*x^5) 2415735931288071 b008 29-3*(1/5+Sqrt[2]) 2415735933669379 r009 Re(z^3+c),c=-8/23+21/52*I,n=23 2415735934141774 m002 E^Pi+6*Sech[Pi]+Sinh[Pi]/E^Pi 2415735941248823 h001 (-8*exp(8)-7)/(-9*exp(7)-5) 2415735963029384 r002 22th iterates of z^2 + 2415735963097013 k002 Champernowne real with 69/2*n^2+59/2*n-40 2415735968997460 r005 Im(z^2+c),c=-7/8+22/119*I,n=19 2415735973719712 m001 (CareFree+OneNinth)/(exp(1)+Cahen) 2415735980238901 m005 (1/2*3^(1/2)+1/11)/(5/12*Catalan-7/9) 2415735980797894 b008 5+3*E^EllipticK[1/2] 2415735982740660 l006 ln(6247/7954) 2415736004661244 m001 exp(arctan(1/2))^2/Kolakoski/log(2+sqrt(3)) 2415736006841725 m001 (Ei(1)+OneNinth)/(StolarskyHarborth+ZetaQ(4)) 2415736020739681 r005 Re(z^2+c),c=21/82+6/43*I,n=34 2415736028132622 r005 Im(z^2+c),c=-30/23+9/59*I,n=5 2415736035136165 a007 Real Root Of -991*x^4+404*x^3+856*x^2+893*x-268 2415736035625406 p004 log(30269/23773) 2415736038503991 m001 (gamma+BesselI(0,1))^(3^(1/3)) 2415736040010537 a007 Real Root Of 98*x^4-190*x^3-919*x^2+445*x+422 2415736044060305 r005 Im(z^2+c),c=-27/46+1/24*I,n=27 2415736048052606 r005 Im(z^2+c),c=19/86+1/7*I,n=27 2415736048429491 a001 1/29*(1/2*5^(1/2)+1/2)^5*843^(8/13) 2415736051464851 p003 LerchPhi(1/2,6,197/228) 2415736053067917 m001 cos(1/12*Pi)*(HeathBrownMoroz-Riemann3rdZero) 2415736054466326 m001 (GAMMA(2/3)-Otter)/(Salem-Tribonacci) 2415736059371006 r005 Im(z^2+c),c=-28/25+1/34*I,n=35 2415736063397613 k002 Champernowne real with 35*n^2+28*n-39 2415736066949728 m001 (Pi+GAMMA(2/3))/(GAMMA(17/24)+Stephens) 2415736080277688 m006 (3/4*exp(Pi)+1/2)/(5/6*Pi^2-5/6) 2415736080323356 r005 Re(z^2+c),c=13/86+4/9*I,n=28 2415736085473185 r002 11th iterates of z^2 + 2415736087558510 a001 1/620166*322^(15/32) 2415736090379237 a003 sin(Pi*41/111)/cos(Pi*44/117) 2415736093413783 r005 Re(z^2+c),c=5/26+7/18*I,n=19 2415736098051152 r005 Re(z^2+c),c=-9/58+9/16*I,n=58 2415736100790114 a007 Real Root Of 446*x^4+857*x^3-916*x^2-520*x+982 2415736116971455 m001 (3^(1/2)+Catalan)/(ln(gamma)+TreeGrowth2nd) 2415736118953893 r005 Re(z^2+c),c=-7/8+47/223*I,n=36 2415736127313352 r005 Im(z^2+c),c=-95/106+8/39*I,n=39 2415736131040207 r005 Im(z^2+c),c=-39/46+2/11*I,n=63 2415736160745543 r005 Im(z^2+c),c=-11/26+12/29*I,n=44 2415736163698213 k002 Champernowne real with 71/2*n^2+53/2*n-38 2415736165106921 a007 Real Root Of 785*x^4+87*x^3+540*x^2-915*x-254 2415736177455566 a007 Real Root Of -481*x^4+659*x^3-466*x^2+608*x+185 2415736185545467 a007 Real Root Of -569*x^4-41*x^3+136*x^2+851*x-211 2415736190841348 a007 Real Root Of -280*x^4-412*x^3+127*x^2-939*x+718 2415736192885901 r002 14th iterates of z^2 + 2415736194666047 a007 Real Root Of -339*x^4-670*x^3+92*x^2-454*x+466 2415736210293777 p003 LerchPhi(1/5,2,77/36) 2415736218540022 a001 567451585/161*199^(4/11) 2415736232587451 l006 ln(5032/6407) 2415736241832039 m001 (Zeta(5)+GAMMA(5/6))/(HardyLittlewoodC5-Mills) 2415736246088034 r009 Re(z^3+c),c=-67/126+7/37*I,n=32 2415736262909297 m001 (-sin(1)+2/3)/(5+5^(1/2)) 2415736263998814 k002 Champernowne real with 36*n^2+25*n-37 2415736269557244 l006 ln(5971/6117) 2415736269763520 m001 1/GAMMA(1/4)*ln(TreeGrowth2nd)/Zeta(1,2) 2415736269789753 a007 Real Root Of 359*x^4+697*x^3-664*x^2-358*x+610 2415736282015337 m005 (-1/6+1/4*5^(1/2))/(29/33+1/3*5^(1/2)) 2415736289321005 r009 Re(z^3+c),c=-37/118+21/64*I,n=8 2415736289506489 r009 Im(z^3+c),c=-43/82+4/13*I,n=8 2415736297444196 a003 sin(Pi*11/107)*sin(Pi*19/69) 2415736304354853 m001 (FeigenbaumC-ZetaP(3))^MadelungNaCl 2415736308908562 r005 Im(z^2+c),c=-79/106+5/43*I,n=13 2415736315313683 a007 Real Root Of -230*x^4-355*x^3+411*x^2-519*x-824 2415736324268119 a007 Real Root Of 311*x^4+752*x^3+195*x^2+332*x-326 2415736328509914 r005 Im(z^2+c),c=19/86+1/7*I,n=25 2415736329330994 a007 Real Root Of -745*x^4+235*x^3+892*x^2+870*x-263 2415736332653398 m001 exp(Zeta(3))/GAMMA(11/12)^2*cos(Pi/5) 2415736339139791 m001 Ei(1,1)-StronglyCareFree^(2*Pi/GAMMA(5/6)) 2415736340560459 a007 Real Root Of 343*x^4+535*x^3-686*x^2-133*x-457 2415736341146782 s002 sum(A066046[n]/(10^n+1),n=1..infinity) 2415736341151613 s002 sum(A066046[n]/(10^n-1),n=1..infinity) 2415736343676872 m006 (2*exp(2*Pi)+1/5)/(3*ln(Pi)+1) 2415736345816216 a007 Real Root Of -560*x^4-967*x^3+533*x^2-610*x+855 2415736351172105 r005 Im(z^2+c),c=-37/30+1/31*I,n=7 2415736352160336 r004 Re(z^2+c),c=1/12-1/4*I,z(0)=I,n=10 2415736353936322 p001 sum(1/(472*n+337)/n/(512^n),n=1..infinity) 2415736358665336 r005 Re(z^2+c),c=15/98+36/59*I,n=43 2415736360986458 r009 Re(z^3+c),c=-13/32+16/29*I,n=56 2415736361407962 a007 Real Root Of 490*x^4+951*x^3-307*x^2+604*x-30 2415736364299414 k002 Champernowne real with 73/2*n^2+47/2*n-36 2415736365580864 m005 (1/2*Pi+9/10)/(9/10*2^(1/2)-1/4) 2415736370126209 r005 Re(z^2+c),c=-17/21+1/13*I,n=14 2415736378985554 a007 Real Root Of -359*x^4-495*x^3+839*x^2-384*x-576 2415736387808681 m005 (1/2*2^(1/2)+6/7)/(8/9*Catalan-1/6) 2415736389260609 m001 Paris^2*exp(Artin)^2*sinh(1) 2415736392678546 p004 log(34949/3121) 2415736396838954 a008 Real Root of x^4-29*x+36 2415736397388165 m001 (KomornikLoreti+Robbin)/(ln(2^(1/2)+1)-Ei(1)) 2415736409780918 a007 Real Root Of -308*x^4-455*x^3+718*x^2+330*x+682 2415736414211712 r009 Re(z^3+c),c=-43/110+25/51*I,n=23 2415736421508008 a007 Real Root Of 26*x^4-107*x^3-228*x^2+417*x-56 2415736444358408 a003 cos(Pi*1/20)*sin(Pi*7/89) 2415736453625963 r005 Re(z^2+c),c=21/110+1/48*I,n=3 2415736456990385 m001 (FransenRobinson+GlaisherKinkelin)/(1+ln(2)) 2415736459612018 a007 Real Root Of -308*x^4-249*x^3+874*x^2-569*x+504 2415736461009127 r005 Im(z^2+c),c=-53/114+14/33*I,n=62 2415736463514690 r005 Re(z^2+c),c=-13/60+23/54*I,n=21 2415736464510001 k002 Champernowne real with 37*n^2+22*n-35 2415736478288539 m005 (1/2*Catalan-2/11)/(1/12*exp(1)+11/12) 2415736480626053 a007 Real Root Of -223*x^4+245*x^3+496*x^2+788*x-222 2415736487259027 s002 sum(A145981[n]/(n^3*pi^n+1),n=1..infinity) 2415736488397783 m005 (1/2*3^(1/2)+5/8)/(17/10+2*5^(1/2)) 2415736493057326 m005 (1/2*3^(1/2)-4/7)/(7/11*Zeta(3)+5/11) 2415736497844407 a007 Real Root Of -344*x^4-575*x^3+116*x^2-804*x+990 2415736500120363 m001 (2*Pi/GAMMA(5/6)-Artin)/(Bloch+Riemann2ndZero) 2415736512031104 a007 Real Root Of -973*x^4+695*x^3+85*x^2+819*x+206 2415736530728936 m001 CareFree+(3^(1/3))^Porter 2415736539306658 a001 10182505537/682*76^(1/9) 2415736545023951 a007 Real Root Of 499*x^4+742*x^3-973*x^2+13*x-824 2415736552424319 r005 Im(z^2+c),c=-4/3+3/170*I,n=50 2415736562049167 a007 Real Root Of 979*x^4-131*x^3-159*x^2-895*x+224 2415736564810061 k002 Champernowne real with 75/2*n^2+41/2*n-34 2415736567899262 a007 Real Root Of -88*x^4+689*x^3+148*x^2+549*x+134 2415736582476716 a007 Real Root Of 84*x^4-980*x^3-448*x^2-258*x+102 2415736583776645 a001 233/29*29^(17/52) 2415736584871048 m002 -(E^Pi*Coth[Pi])-E^Pi*Csch[Pi]+ProductLog[Pi] 2415736590460046 b008 LogBarnesG[3+4^E] 2415736593632891 a007 Real Root Of -388*x^4-704*x^3+282*x^2-927*x-596 2415736601593998 a007 Real Root Of 432*x^4+668*x^3-878*x^2+80*x+22 2415736615031574 r005 Im(z^2+c),c=-13/30+20/49*I,n=20 2415736634026499 m001 (2^(1/2)+OneNinth)/(-Rabbit+Totient) 2415736641123453 r008 a(0)=0,K{-n^6,48*n^3+142*n^2+169*n+55} 2415736641493097 l006 ln(3817/4860) 2415736641556358 r008 a(0)=0,K{-n^6,(2*n+1)*(51+22*n^2+65*n)} 2415736646247038 r005 Im(z^2+c),c=-73/56+21/43*I,n=3 2415736647944934 s002 sum(A033471[n]/(64^n-1),n=1..infinity) 2415736659017650 r009 Im(z^3+c),c=-8/17+7/64*I,n=6 2415736663196842 p001 sum(1/(409*n+16)/n/(10^n),n=1..infinity) 2415736665110121 k002 Champernowne real with 38*n^2+19*n-33 2415736666842589 r005 Re(z^2+c),c=-13/16+18/103*I,n=10 2415736667252727 r005 Re(z^2+c),c=23/86+3/20*I,n=45 2415736670941720 r005 Re(z^2+c),c=-19/66+7/43*I,n=10 2415736675904118 a007 Real Root Of -317*x^4-736*x^3-75*x^2-752*x-959 2415736685248959 m006 (1/4*exp(2*Pi)-1/6)/(1/2*Pi^2+3/5) 2415736689267707 m008 (4/5*Pi^5+4/5)/(1/3*Pi^5-1/3) 2415736703300696 a001 844/13*832040^(13/49) 2415736710348781 m005 (1/2*Catalan+1/4)/(7/8*Pi+2/11) 2415736710372599 r005 Re(z^2+c),c=17/52+11/56*I,n=59 2415736722955366 m001 (Pi*2^(1/2)/GAMMA(3/4))^(Catalan*RenyiParking) 2415736722955366 m001 GAMMA(1/4)^(Catalan*RenyiParking) 2415736731650705 r005 Im(z^2+c),c=7/17+13/49*I,n=7 2415736734449077 m001 (-Zeta(1,2)+Stephens)/(GAMMA(3/4)-Si(Pi)) 2415736746925781 r005 Re(z^2+c),c=-35/122+7/41*I,n=9 2415736748899970 r005 Re(z^2+c),c=-19/34+50/103*I,n=43 2415736752920888 r009 Im(z^3+c),c=-7/16+6/55*I,n=43 2415736755568167 m001 (LambertW(1)-exp(1))/(-Kac+TravellingSalesman) 2415736763708106 m001 (ln(2)-Ei(1,1))/(GAMMA(5/6)+FeigenbaumB) 2415736765332903 s001 sum(exp(-3*Pi/4)^n*A275725[n],n=1..infinity) 2415736765410181 k002 Champernowne real with 77/2*n^2+35/2*n-32 2415736767589392 r009 Re(z^3+c),c=-25/52+21/44*I,n=45 2415736770667993 b008 1/4+22^(1/4) 2415736772282741 a007 Real Root Of -15*x^4+305*x^3-210*x^2-867*x-469 2415736774570508 m005 (1/2*Catalan-7/9)/(1/7*Pi+7/8) 2415736775687415 r009 Re(z^3+c),c=-47/114+35/64*I,n=24 2415736784348122 m001 (ln(gamma)+HardyLittlewoodC3)/(Khinchin+Thue) 2415736796952984 a007 Real Root Of 549*x^4+978*x^3-560*x^2+975*x+714 2415736797767473 r005 Im(z^2+c),c=2/29+49/61*I,n=3 2415736798047946 r002 10th iterates of z^2 + 2415736799144904 m001 (QuadraticClass-Zeta(1,2)*Gompertz)/Gompertz 2415736808155644 m001 sin(Pi/5)*ln(GAMMA(2/3))^2/sqrt(5) 2415736821710937 a007 Real Root Of -346*x^4-677*x^3+664*x^2+420*x-621 2415736822719376 m001 (arctan(1/2)+Khinchin)/Conway 2415736825260113 m001 (Otter+Weierstrass)/(sin(1/5*Pi)+FeigenbaumB) 2415736829347507 a007 Real Root Of 25*x^4+595*x^3-194*x^2+513*x-345 2415736834538646 h001 (7/10*exp(2)+4/5)/(1/4*exp(2)+5/8) 2415736840276455 a001 1134903170/2207*199^(8/11) 2415736847153359 m008 (1/2*Pi^3-2/3)/(Pi+3) 2415736851813104 r005 Re(z^2+c),c=-25/86+6/49*I,n=6 2415736855704421 r009 Re(z^3+c),c=-5/122+35/59*I,n=40 2415736862050096 r009 Re(z^3+c),c=-7/62+28/37*I,n=46 2415736865710241 k002 Champernowne real with 39*n^2+16*n-31 2415736866060240 m001 (GaussAGM-Kolakoski)/(exp(-1/2*Pi)-Artin) 2415736874861094 a007 Real Root Of 407*x^4-146*x^3-754*x^2-258*x+107 2415736877512064 a001 2/987*610^(41/55) 2415736879876943 a007 Real Root Of -826*x^4+625*x^3-464*x^2+113*x+66 2415736889750074 r005 Im(z^2+c),c=1/4+7/60*I,n=16 2415736906371001 r005 Re(z^2+c),c=13/64+1/13*I,n=6 2415736913016066 r005 Re(z^2+c),c=-31/21+36/53*I,n=2 2415736915969816 m001 Psi(1,1/3)/GAMMA(17/24)*HardyLittlewoodC4 2415736918340776 m001 (cos(1)-ln(3))/(CareFree+ErdosBorwein) 2415736927458357 h001 (4/11*exp(2)+9/11)/(2/5*exp(1)+4/11) 2415736934854741 a001 1/198*(1/2*5^(1/2)+1/2)*18^(3/8) 2415736959274861 l006 ln(101/1131) 2415736962043515 l006 ln(6419/8173) 2415736963647852 m005 (1/2*Zeta(3)-5/11)/(3/7*2^(1/2)-6/11) 2415736965749795 m001 (-TreeGrowth2nd+Tribonacci)/(gamma+gamma(3)) 2415736966010301 k002 Champernowne real with 79/2*n^2+29/2*n-30 2415736972750137 m005 (1/3*Zeta(3)+1/6)/(5/6*exp(1)+1/12) 2415736977567700 a007 Real Root Of 230*x^4+637*x^3+518*x^2+817*x+98 2415736985802640 r009 Re(z^3+c),c=-19/50+19/40*I,n=53 2415736986568929 r005 Re(z^2+c),c=23/86+3/20*I,n=46 2415736987870925 r008 a(0)=7,K{-n^6,10+22*n+23*n^2-55*n^3} 2415736988661345 a007 Real Root Of -483*x^4-760*x^3+607*x^2-740*x+405 2415736999196006 a007 Real Root Of 990*x^4-351*x^3-287*x^2-632*x+171 2415737002820486 r005 Re(z^2+c),c=-29/106+13/54*I,n=25 2415737006815747 a003 sin(Pi*3/49)/sin(Pi*34/117) 2415737008396957 m001 ln(GAMMA(1/6))/Tribonacci*sin(Pi/12) 2415737025261261 r005 Re(z^2+c),c=-3/31+35/59*I,n=26 2415737033415851 m001 GAMMA(1/12)^2/Salem^2*exp(arctan(1/2))^2 2415737034389621 a007 Real Root Of -314*x^4-923*x^3-306*x^2-80*x-726 2415737035107361 a007 Real Root Of 432*x^4+968*x^3-205*x^2+345*x+964 2415737039636472 m001 1/cos(1)/GAMMA(1/4)^2/exp(log(1+sqrt(2)))^2 2415737053038898 r002 29th iterates of z^2 + 2415737053329091 m001 (PrimesInBinary+Salem)/(Trott-ZetaP(4)) 2415737062195049 m001 1/GAMMA(1/3)/exp(CopelandErdos)^2*Zeta(5) 2415737065658153 r005 Im(z^2+c),c=7/29+1/8*I,n=20 2415737066310361 k002 Champernowne real with 40*n^2+13*n-29 2415737068463577 m002 -Pi^5+(4*Pi^5)/E^Pi+Sinh[Pi] 2415737079796516 a005 (1/cos(11/167*Pi))^468 2415737080523697 a007 Real Root Of -106*x^4-424*x^3-582*x^2-570*x-348 2415737089956813 a007 Real Root Of -221*x^4-706*x^3-789*x^2-909*x-18 2415737098222557 r009 Re(z^3+c),c=-23/56+23/47*I,n=20 2415737101110397 r009 Re(z^3+c),c=-29/86+27/64*I,n=7 2415737104664663 r005 Im(z^2+c),c=-49/102+22/59*I,n=13 2415737106507264 m001 Riemann3rdZero-StronglyCareFree^GolombDickman 2415737110883694 m001 (Robbin-ZetaP(4))/(FeigenbaumD-MertensB1) 2415737117755456 r005 Re(z^2+c),c=-19/102+10/17*I,n=32 2415737123189676 r009 Re(z^3+c),c=-27/118+1/30*I,n=3 2415737124287847 a007 Real Root Of 553*x^4+970*x^3-701*x^2+439*x-7 2415737137921658 a007 Real Root Of 37*x^4+866*x^3-647*x^2+610*x+74 2415737138389685 s002 sum(A031114[n]/(pi^n+1),n=1..infinity) 2415737143630817 r005 Im(z^2+c),c=-6/11+16/35*I,n=41 2415737145936397 r005 Re(z^2+c),c=-31/106+5/39*I,n=15 2415737148479536 p001 sum((-1)^n/(461*n+408)/(32^n),n=0..infinity) 2415737148961950 a007 Real Root Of -700*x^4-936*x^3-490*x^2+899*x-173 2415737155242095 a007 Real Root Of 417*x^4+836*x^3-575*x^2-620*x-558 2415737157796102 r005 Re(z^2+c),c=-7/24+2/13*I,n=7 2415737164792828 r005 Im(z^2+c),c=-15/26+21/50*I,n=39 2415737166412111 k008 concat of cont frac of 2415737166610421 k002 Champernowne real with 81/2*n^2+23/2*n-28 2415737174570987 m001 GAMMA(3/4)^ln(3)*GAMMA(11/24) 2415737174570987 m001 GAMMA(3/4)^ln(3)*Pi*csc(11/24*Pi)/GAMMA(13/24) 2415737176359844 m001 QuadraticClass*ThueMorse^MinimumGamma 2415737182455530 s002 sum(A081896[n]/(exp(n)+1),n=1..infinity) 2415737189045978 p001 sum((-1)^n/(607*n+404)/(16^n),n=0..infinity) 2415737192493030 a003 cos(Pi*17/55)*cos(Pi*37/103) 2415737193383392 a007 Real Root Of 33*x^4+817*x^3+490*x^2+316*x+910 2415737202247247 a001 24157817-199*5^(1/2) 2415737207851999 a007 Real Root Of 806*x^4-680*x^3-805*x^2-928*x+278 2415737224918276 r005 Re(z^2+c),c=-11/54+29/63*I,n=34 2415737233283840 r005 Im(z^2+c),c=1/110+47/57*I,n=56 2415737238154798 m001 cos(1/12*Pi)+(2*Pi/GAMMA(5/6))^FeigenbaumC 2415737247619190 m001 exp(Pi)*BesselK(1,1)*log(2+sqrt(3))^2 2415737253140042 r009 Re(z^3+c),c=-3/16+47/56*I,n=7 2415737257573969 a007 Real Root Of 75*x^4-276*x^3-898*x^2+538*x+95 2415737263875374 a001 2971215073/5778*199^(8/11) 2415737266875194 r002 42th iterates of z^2 + 2415737266910481 k002 Champernowne real with 41*n^2+10*n-27 2415737277515491 r005 Im(z^2+c),c=-17/44+24/43*I,n=28 2415737282836613 r005 Re(z^2+c),c=-5/17+6/53*I,n=13 2415737291246507 r002 17th iterates of z^2 + 2415737293841084 m001 FeigenbaumC/(Lehmer-Zeta(1,-1)) 2415737295266948 p004 log(28051/22031) 2415737295443253 m001 (ln(3)+BesselI(0,2))/(KhinchinLevy-Sierpinski) 2415737297395010 m005 (1/2*Pi-5/6)/(5*gamma+1/6) 2415737297577356 a001 75025/123*18^(10/21) 2415737304975686 a001 5/7*1364^(20/41) 2415737315809060 a007 Real Root Of -519*x^4-931*x^3+542*x^2-311*x+636 2415737318760714 r009 Re(z^3+c),c=-41/122+20/53*I,n=20 2415737325677636 a001 7778742049/15127*199^(8/11) 2415737334694464 a001 20365011074/39603*199^(8/11) 2415737336010002 a001 53316291173/103682*199^(8/11) 2415737336201936 a001 139583862445/271443*199^(8/11) 2415737336229939 a001 365435296162/710647*199^(8/11) 2415737336234025 a001 956722026041/1860498*199^(8/11) 2415737336234621 a001 2504730781961/4870847*199^(8/11) 2415737336234708 a001 6557470319842/12752043*199^(8/11) 2415737336234728 a001 10610209857723/20633239*199^(8/11) 2415737336234762 a001 4052739537881/7881196*199^(8/11) 2415737336234989 a001 1548008755920/3010349*199^(8/11) 2415737336236550 a001 514229*199^(8/11) 2415737336247246 a001 225851433717/439204*199^(8/11) 2415737336320558 a001 86267571272/167761*199^(8/11) 2415737336823049 a001 32951280099/64079*199^(8/11) 2415737340267171 a001 12586269025/24476*199^(8/11) 2415737353531003 r002 58th iterates of z^2 + 2415737354413614 a007 Real Root Of 371*x^4+446*x^3-646*x^2+980*x-210 2415737363873536 a001 4807526976/9349*199^(8/11) 2415737367210541 k002 Champernowne real with 83/2*n^2+17/2*n-26 2415737382119577 m001 BesselK(1,1)^2*FeigenbaumKappa/ln(GAMMA(3/4)) 2415737389761494 a001 47/1346269*8^(40/43) 2415737390157287 r002 2th iterates of z^2 + 2415737397561567 m005 (1/2*3^(1/2)+1/2)/(-149/220+1/20*5^(1/2)) 2415737401194022 r005 Re(z^2+c),c=3/13+10/23*I,n=63 2415737401820602 m009 (2/3*Psi(1,1/3)+3/5)/(3/8*Pi^2-2/3) 2415737404701331 m004 750*Pi+(25*Sqrt[5]*Pi*Sec[Sqrt[5]*Pi])/4 2415737405410468 m001 (-sin(1/5*Pi)+Niven)/(1+Pi*2^(1/2)/GAMMA(3/4)) 2415737409253357 m001 (BesselJ(1,1)+Gompertz)/(Niven+Sierpinski) 2415737431535440 m001 1/ln(FeigenbaumDelta)^2/Conway^2/GAMMA(23/24) 2415737432274452 l006 ln(2602/3313) 2415737437941378 s001 sum(exp(-3*Pi/4)^n*A188527[n],n=1..infinity) 2415737447830647 m005 (1+1/4*5^(1/2))/(4/9*Zeta(3)+1/9) 2415737452443138 r005 Im(z^2+c),c=-11/31+11/30*I,n=8 2415737465908505 m001 Lehmer^KhinchinLevy*Lehmer^GAMMA(7/12) 2415737467510601 k002 Champernowne real with 42*n^2+7*n-25 2415737497811074 a007 Real Root Of 11*x^4-262*x^3-850*x^2-330*x+95 2415737501427361 a007 Real Root Of -452*x^4-886*x^3+381*x^2-564*x-683 2415737509691717 m005 (1/3*exp(1)-2/9)/(7/12*3^(1/2)-8/11) 2415737518801161 p001 sum(1/(471*n+338)/n/(512^n),n=1..infinity) 2415737520857382 a001 1364/53316291173*2178309^(2/13) 2415737520857398 a001 682/182717648081*591286729879^(2/13) 2415737520857398 a001 1364/139583862445*1134903170^(2/13) 2415737523382043 r005 Im(z^2+c),c=-31/122+5/8*I,n=64 2415737525109523 a001 682/10182505537*4181^(2/13) 2415737525673978 a001 1836311903/3571*199^(8/11) 2415737535205347 m001 Kolakoski^MertensB3/(gamma(1)^MertensB3) 2415737535700083 a007 Real Root Of 125*x^4+110*x^3-284*x^2+784*x+845 2415737546814985 r002 4th iterates of z^2 + 2415737547602144 m005 (2/3+1/4*5^(1/2))/(4/9*Pi-8/9) 2415737548079989 g007 Psi(2,10/11)+Psi(2,7/11)-Psi(2,7/8)-Psi(2,2/5) 2415737554015396 m002 -6+Pi*Log[Pi]-Sinh[Pi]/Pi^6 2415737560957768 p004 log(32911/2939) 2415737566560109 m001 Sierpinski^2*ln(LandauRamanujan)^2*sqrt(5)^2 2415737567810661 k002 Champernowne real with 85/2*n^2+11/2*n-24 2415737572075414 r002 40th iterates of z^2 + 2415737598718121 a003 -1-cos(2/7*Pi)-2*cos(10/21*Pi)-cos(5/18*Pi) 2415737602999775 a007 Real Root Of -13*x^4+297*x^3-676*x^2+413*x-797 2415737621925819 a007 Real Root Of 199*x^4+268*x^3-634*x^2+22*x+754 2415737629085134 b008 (2*Pi+Tanh[2])/3 2415737634003925 g005 Pi^(1/2)*GAMMA(1/11)*GAMMA(5/8)/GAMMA(6/7) 2415737636966936 r002 30th iterates of z^2 + 2415737642201591 a007 Real Root Of -680*x^4-749*x^3-960*x^2+953*x+278 2415737650007129 m005 (1/2*3^(1/2)+3/11)/(6/11*2^(1/2)-3/10) 2415737651718554 m001 1/FeigenbaumD/CareFree^2*ln(LambertW(1))^2 2415737664183600 a001 2584/3*1322157322203^(17/18) 2415737668110721 k002 Champernowne real with 43*n^2+4*n-23 2415737675932916 r005 Re(z^2+c),c=21/122+19/40*I,n=36 2415737680131827 r008 a(0)=0,K{-n^6,28*n^3+190*n^2+160*n+36} 2415737682378526 r008 a(0)=0,K{-n^6,10*n^3+235*n^2+151*n+18} 2415737685368807 a003 cos(Pi*25/74)/cos(Pi*37/85) 2415737685416810 m005 (1/2*Catalan-7/12)/(2/11*Zeta(3)-1/6) 2415737685447443 m001 exp(1)/Porter/ZetaP(4) 2415737690219947 m001 GolombDickman^(ln(gamma)*Magata) 2415737699121877 m005 (39/44+1/4*5^(1/2))/(2*Pi-3/10) 2415737701271272 p001 sum((-1)^n/(577*n+407)/(24^n),n=0..infinity) 2415737715046105 a001 591286729879/3*9349^(7/9) 2415737715350836 a007 Real Root Of -185*x^4-230*x^3+164*x^2-476*x+951 2415737716055231 m005 (5/6*gamma-2/5)/(1/4*2^(1/2)+3) 2415737726317779 r009 Re(z^3+c),c=-9/62+31/34*I,n=60 2415737728938390 m005 (1/2*gamma+4)/(5/7*Zeta(3)+11/12) 2415737734049017 r005 Im(z^2+c),c=-33/94+33/52*I,n=53 2415737736216115 a001 516002918640*64079^(5/9) 2415737736538180 a001 105937*9062201101803^(13/18) 2415737736541339 a001 2971215073/3*1149851^(8/9) 2415737736542265 a001 832040/3*312119004989^(7/9) 2415737736542845 a001 956722026041/3*3010349^(4/9) 2415737736542962 a001 233802911*54018521^(7/9) 2415737736542963 a001 34111385*2139295485799^(5/9) 2415737736542963 a001 12586269025/3*370248451^(5/9) 2415737736542963 a001 20365011074/3*17393796001^(4/9) 2415737736542963 a001 2504730781961/3*119218851371^(2/9) 2415737736542963 a001 956722026041/3*9062201101803^(2/9) 2415737736542963 a001 139583862445/3*23725150497407^(5/18) 2415737736542963 a001 20365011074/3*505019158607^(7/18) 2415737736542963 a001 516002918640*4106118243^(5/18) 2415737736542963 a001 2971215073/3*1322157322203^(4/9) 2415737736542963 a001 6557470319842/3*1568397607^(2/9) 2415737736542963 a001 1134903170/3*28143753123^(5/9) 2415737736542963 a001 165580141/3*73681302247^(11/18) 2415737736542963 a001 165580141/3*1568397607^(13/18) 2415737736542963 a001 139583862445/3*228826127^(4/9) 2415737736542963 a001 591286729879/3*87403803^(7/18) 2415737736542964 a001 63245986/3*87403803^(8/9) 2415737736542964 a001 24157817/3*4106118243^(7/9) 2415737736542969 a001 9227465/3*228826127^(17/18) 2415737736542972 a001 10983760033*12752043^(11/18) 2415737736543020 a001 139583862445/3*4870847^(5/9) 2415737736543230 a001 1346269/3*6643838879^(8/9) 2415737736546684 a001 20365011074/3*710647^(7/9) 2415737736566642 a001 86267571272/3*271443^(13/18) 2415737736725267 m001 (BesselI(0,2)-Psi(1,1/3))/(-Artin+ArtinRank2) 2415737737131290 a001 28657/3*23725150497407^(7/9) 2415737737227522 a001 6557470319842/3*39603^(4/9) 2415737737997652 a001 10983760033*39603^(17/18) 2415737742521551 m005 (1/2*2^(1/2)+4/5)/(5/6*gamma+1/7) 2415737743856033 m001 Trott^2/ArtinRank2^2 2415737744848664 m005 (1/2*2^(1/2)-11/12)/(3*Pi-3/4) 2415737745927042 a001 139583862445/3*15127^(8/9) 2415737764686701 m001 1/5*(GaussAGM-exp(1/Pi))*5^(1/2) 2415737768410781 k002 Champernowne real with 87/2*n^2+5/2*n-22 2415737768510791 k004 Champernowne real with floor(exp(1)*(16*n^2+n-8)) 2415737788098401 m005 (41/36+1/4*5^(1/2))/(8/11*2^(1/2)+6) 2415737797872569 r005 Im(z^2+c),c=-21/34+5/108*I,n=38 2415737797879910 r005 Im(z^2+c),c=-17/18+54/241*I,n=26 2415737798070908 m001 (Chi(1)-FellerTornier)/(-Kac+ThueMorse) 2415737800744058 h001 (6/7*exp(2)+5/6)/(3/10*exp(2)+3/4) 2415737805711155 m001 Zeta(1/2)/(FeigenbaumC-FibonacciFactorial) 2415737808960717 m005 (1/3*2^(1/2)+1/3)/(3*Catalan+7/12) 2415737818137224 r002 53th iterates of z^2 + 2415737824746031 a007 Real Root Of -378*x^4-522*x^3+752*x^2-394*x+174 2415737824847881 m001 1/GAMMA(1/12)^2*exp(Paris)/sin(Pi/5)^2 2415737838976017 r008 a(0)=0,K{-n^6,45+56*n-40*n^2-20*n^3} 2415737841185800 a001 521/63245986*317811^(4/15) 2415737841187076 a001 521/433494437*433494437^(4/15) 2415737841187076 a001 521/2971215073*591286729879^(4/15) 2415737842548892 m001 (PlouffeB+PrimesInBinary)/(1+Khinchin) 2415737848850316 a007 Real Root Of 30*x^4+697*x^3-669*x^2-25*x-998 2415737851927089 r005 Re(z^2+c),c=-5/28+31/60*I,n=63 2415737857250524 a001 36/6119*47^(55/57) 2415737865166652 b008 2+(4+Sqrt[5])/15 2415737868710841 k002 Champernowne real with 44*n^2+n-21 2415737869231926 h005 exp(sin(Pi*2/59)+sin(Pi*13/46)) 2415737870484207 m001 (Salem-ZetaP(3))/(Zeta(1/2)-Khinchin) 2415737870653839 r009 Re(z^3+c),c=-11/27+5/9*I,n=54 2415737880816219 m004 -125*Pi-3*Sin[Sqrt[5]*Pi]+5*Sinh[Sqrt[5]*Pi] 2415737884395321 r009 Re(z^3+c),c=-7/48+15/16*I,n=38 2415737886491876 m001 1/GAMMA(5/24)^2*Khintchine^2*ln(sqrt(5))^2 2415737890234132 l006 ln(6591/8392) 2415737897301415 a005 (1/cos(11/236*Pi))^938 2415737899632666 p001 sum(1/(599*n+447)/(6^n),n=0..infinity) 2415737901211623 r005 Im(z^2+c),c=-103/118+12/61*I,n=55 2415737906335303 m001 (GAMMA(3/4)+Ei(1))/(LandauRamanujan2nd+Rabbit) 2415737907788823 m001 (-GAMMA(5/6)+Backhouse)/(Ei(1)-cos(1)) 2415737928913179 m001 (ln(Pi)+Zeta(1,2))/(MertensB3-Weierstrass) 2415737930399019 h001 (4/11*exp(1)+2/5)/(1/9*exp(1)+3/11) 2415737932742265 m005 (1/2*Zeta(3)-5/8)/(3/7*3^(1/2)+1/4) 2415737938465614 r005 Im(z^2+c),c=-11/28+19/46*I,n=22 2415737942221632 a001 5/7*15127^(15/41) 2415737942818886 r005 Re(z^2+c),c=-19/98+14/29*I,n=39 2415737944140547 h001 (1/9*exp(2)+4/7)/(3/4*exp(2)+2/9) 2415737953628613 r005 Im(z^2+c),c=-17/19+4/23*I,n=6 2415737962213491 r005 Im(z^2+c),c=-35/74+1/4*I,n=3 2415737969010901 k002 Champernowne real with 89/2*n^2-1/2*n-20 2415737969689869 m008 (5*Pi^5-1)/(2/3*Pi^2-1/4) 2415737975962889 a007 Real Root Of 39*x^4+954*x^3+251*x^2-837*x+532 2415737991815426 m001 Rabbit^2/exp(PrimesInBinary)/GAMMA(19/24)^2 2415738000268801 m001 (DuboisRaymond+Rabbit)/(Pi+BesselK(1,1)) 2415738003245295 r005 Im(z^2+c),c=19/64+7/16*I,n=9 2415738012919746 m001 1/cos(Pi/12)*exp(MadelungNaCl)^2*sin(1)^2 2415738013947170 h001 (1/2*exp(1)+3/10)/(8/9*exp(2)+3/10) 2415738017488373 a003 sin(Pi*20/97)/cos(Pi*47/112) 2415738017565862 r005 Re(z^2+c),c=31/110+5/41*I,n=7 2415738039628671 a001 6557470319842/3*2207^(11/18) 2415738042027880 m001 1/sqrt(5)/exp(KhintchineHarmonic)^2*sqrt(Pi) 2415738046818301 l006 ln(813/9104) 2415738049170713 h001 (6/11*exp(2)+3/4)/(2/3*exp(1)+1/6) 2415738052219878 a007 Real Root Of 395*x^4+583*x^3-624*x^2+774*x+278 2415738054148535 r005 Re(z^2+c),c=-13/60+14/23*I,n=17 2415738054697595 a007 Real Root Of 317*x^4+479*x^3-497*x^2+425*x-116 2415738060937338 r009 Re(z^3+c),c=-21/52+5/9*I,n=51 2415738061816559 r002 61th iterates of z^2 + 2415738063351890 m001 (BesselK(0,1)-ln(2+3^(1/2)))/(Pi+LambertW(1)) 2415738069310961 k002 Champernowne real with 45*n^2-2*n-19 2415738069843930 m001 (GAMMA(19/24)-exp(1/Pi))/FeigenbaumB 2415738089639938 v003 sum((1/2*n^3+1/2*n+4)*n!/n^n,n=1..infinity) 2415738092746287 r005 Re(z^2+c),c=-23/29+4/33*I,n=58 2415738099374891 m001 Rabbit^2/exp(FransenRobinson)^2*log(2+sqrt(3)) 2415738104200452 r002 11th iterates of z^2 + 2415738117988730 a007 Real Root Of 534*x^4+978*x^3-904*x^2-89*x+662 2415738118591077 a007 Real Root Of -481*x^4+570*x^3-250*x^2+951*x+254 2415738122351716 a007 Real Root Of 127*x^4-119*x^3-609*x^2+839*x-422 2415738134123369 m005 (1/3*gamma-1/9)/(2/3*3^(1/2)-9/11) 2415738136168870 m001 sin(Pi/5)^2*exp(HardHexagonsEntropy)*sqrt(3) 2415738136699335 m001 (BesselI(1,1)-Shi(1))/(CareFree+MertensB3) 2415738142083683 s001 sum(1/10^(n-1)*A005619[n]/n!^2,n=1..infinity) 2415738143648377 s001 sum(exp(-Pi/4)^(n-1)*A283608[n],n=1..infinity) 2415738144094695 m009 (1/3*Psi(1,3/4)-1/3)/(3/10*Pi^2-5/6) 2415738158234293 s001 sum(exp(-2*Pi/5)^n*A192281[n],n=1..infinity) 2415738158234293 s002 sum(A192281[n]/(exp(2/5*pi*n)),n=1..infinity) 2415738165500903 r005 Im(z^2+c),c=-27/22+9/83*I,n=3 2415738169611021 k002 Champernowne real with 91/2*n^2-7/2*n-18 2415738174858519 m005 (1/2*Pi+6/7)/(7/10*2^(1/2)-1) 2415738187050948 m001 (FeigenbaumD+GolombDickman)/(Pi-Pi^(1/2)) 2415738188472329 m001 1/exp(cos(Pi/5))^2/Magata^2*sqrt(2) 2415738188958383 l006 ln(3989/5079) 2415738198679514 m001 ln(Catalan)*Bloch^2/cos(Pi/5) 2415738201090519 l006 ln(712/7973) 2415738201372753 b008 E^3+2*Pi*Sech[1] 2415738201716363 m001 Zeta(3)*Pi*csc(1/12*Pi)/GAMMA(11/12)*ZetaP(3) 2415738205047661 a001 4106118243/89*1836311903^(16/17) 2415738205048358 a001 1860498/89*6557470319842^(16/17) 2415738205049380 a001 9062201101803/89*514229^(16/17) 2415738208255302 v003 sum((7*n^2-17*n+26)/(n!+1),n=1..infinity) 2415738212250604 m001 GAMMA(11/12)+Mills+ZetaQ(2) 2415738212622221 k008 concat of cont frac of 2415738219775787 m001 (5^(1/2)-Si(Pi))/(-CopelandErdos+ZetaP(4)) 2415738220626628 a007 Real Root Of 164*x^4+71*x^3-x^2-979*x-236 2415738222518764 r002 3th iterates of z^2 + 2415738228664304 r005 Re(z^2+c),c=-11/46+23/62*I,n=14 2415738229125643 a007 Real Root Of -30*x^4-758*x^3-805*x^2-38*x-289 2415738229929644 m001 ln(OneNinth)^2/Backhouse*sin(1)^2 2415738232312903 r005 Im(z^2+c),c=-3/7+19/46*I,n=35 2415738246289966 r005 Re(z^2+c),c=35/106+11/62*I,n=20 2415738249160159 a007 Real Root Of -330*x^4+625*x^3+832*x^2+711*x-228 2415738254804452 r005 Re(z^2+c),c=-109/114+21/47*I,n=2 2415738254848581 r002 15th iterates of z^2 + 2415738255972081 r002 46th iterates of z^2 + 2415738265641973 p003 LerchPhi(1/1024,3,167/104) 2415738269911081 k002 Champernowne real with 46*n^2-5*n-17 2415738274021068 r005 Im(z^2+c),c=25/86+4/61*I,n=36 2415738274928276 s002 sum(A220235[n]/((2^n-1)/n),n=1..infinity) 2415738277017686 m001 (-Landau+ZetaP(4))/(gamma+GAMMA(2/3)) 2415738277096600 m001 PrimesInBinary*LaplaceLimit^2*exp(Sierpinski) 2415738277113104 m007 (-1/5*gamma+5/6)/(-2*gamma-6*ln(2)+Pi-4/5) 2415738298632661 a007 Real Root Of -737*x^4-405*x^3+588*x^2+753*x-208 2415738320899074 m001 1/KhintchineLevy/Conway/ln(BesselJ(0,1)) 2415738323191819 m001 (Paris-Salem)/(Champernowne+FellerTornier) 2415738325560997 m003 -6+6*Csc[1/2+Sqrt[5]/2]-Sinh[1/2+Sqrt[5]/2] 2415738325602062 a007 Real Root Of 146*x^4-915*x^3-968*x^2-729*x+245 2415738353545863 m001 Riemann3rdZero-TravellingSalesman^Bloch 2415738354417736 m005 (1/3*Zeta(3)+1/11)/(4/11*3^(1/2)-5/6) 2415738354513435 m005 (1/2*Catalan+1/3)/(3/8*gamma+1/9) 2415738354819621 m005 (1/3*2^(1/2)-1/10)/(7/8*2^(1/2)+3/10) 2415738370211141 k002 Champernowne real with 93/2*n^2-13/2*n-16 2415738377153063 a001 64079/144*233^(9/29) 2415738395049524 l003 Pi^(47/61) 2415738399387523 m001 LambertW(1)-cos(1)^MasserGramainDelta 2415738402266908 r005 Im(z^2+c),c=-11/41*I,n=17 2415738404333737 a005 (1/cos(13/186*Pi))^1268 2415738406365954 l006 ln(611/6842) 2415738416121500 m008 (4/5*Pi^6-5/6)/(1/3*Pi^4-2/3) 2415738416614544 a007 Real Root Of -556*x^4-944*x^3+761*x^2-895*x-976 2415738416773479 m001 (cos(1)+Zeta(1,-1))/(-OrthogonalArrays+Otter) 2415738442011383 m001 (Ei(1)*GAMMA(11/12)-ln(gamma))/GAMMA(11/12) 2415738442011383 m001 (Ei(1)*GAMMA(11/12)-log(gamma))/GAMMA(11/12) 2415738442209318 m001 Pi*(Psi(2,1/3)+Ei(1))*exp(1/exp(1)) 2415738443189348 h002 exp(14^(7/10)+7^(12/11)) 2415738443189348 h007 exp(14^(7/10)+7^(12/11)) 2415738465461166 m005 (1/3*exp(1)+1/3)/(3/7*Pi-5/6) 2415738469534112 a001 48/281*2^(1/2) 2415738470511201 k002 Champernowne real with 47*n^2-8*n-15 2415738471554501 m001 (-FeigenbaumAlpha+PolyaRandomWalk3D)/(1-Ei(1)) 2415738490284374 p004 log(15083/14723) 2415738514728414 r005 Im(z^2+c),c=-39/98+21/52*I,n=28 2415738524915715 a007 Real Root Of -40*x^4+344*x^3-299*x^2-487*x-566 2415738537118615 r005 Re(z^2+c),c=-29/106+13/54*I,n=23 2415738538056739 m001 (3^(1/3)+BesselI(1,2))/(Artin+QuadraticClass) 2415738547903667 h003 exp(Pi*(12^(1/3)/(13^(1/2)+5^(1/4))^(1/2))) 2415738548423411 m001 cos(1/5*Pi)^RenyiParking-Riemann3rdZero 2415738550556658 m005 (1/2*3^(1/2)-3/4)/(2/11*Pi-1/11) 2415738555195637 l006 ln(5376/6845) 2415738555915356 m003 1/3+4*Coth[1/2+Sqrt[5]/2]*Log[1/2+Sqrt[5]/2] 2415738568850921 r005 Re(z^2+c),c=-29/106+13/54*I,n=27 2415738570811261 k002 Champernowne real with 95/2*n^2-19/2*n-14 2415738571571693 b008 2*(-2+Pi)+Csch[E] 2415738573003306 a007 Real Root Of -233*x^4-160*x^3+723*x^2-638*x-81 2415738581435334 r002 16th iterates of z^2 + 2415738586574021 m005 (1/2*5^(1/2)+2/11)/(2/7*gamma-1/9) 2415738586582618 m001 (LaplaceLimit-Niven)/(Pi+GAMMA(19/24)) 2415738588229310 a007 Real Root Of 416*x^4+270*x^3-293*x^2-816*x+209 2415738596393965 m005 (1/2*exp(1)-10/11)/(38/33+7/22*5^(1/2)) 2415738600127254 m005 (1/2*Catalan+1/4)/(3/8*5^(1/2)-6/11) 2415738604087019 m002 1+E^Pi+(6*Sech[Pi])/Pi^3 2415738611828681 r005 Im(z^2+c),c=11/38+4/63*I,n=31 2415738613575454 m005 (1/2*2^(1/2)-7/11)/(2*2^(1/2)+1/10) 2415738620508836 a007 Real Root Of 925*x^4-168*x^3-872*x^2-517*x+175 2415738629699941 m001 (gamma+cos(1))/(Zeta(1,2)+Weierstrass) 2415738629854691 a001 3571/139583862445*2178309^(2/13) 2415738629854707 a001 3571/956722026041*591286729879^(2/13) 2415738629854707 a001 3571/365435296162*1134903170^(2/13) 2415738634106834 a001 3571/53316291173*4181^(2/13) 2415738634671289 a001 701408733/1364*199^(8/11) 2415738637858657 m001 (ArtinRank2-Zeta(1,2)*Bloch)/Bloch 2415738645772835 a007 Real Root Of -59*x^4+184*x^3+540*x^2-190*x+993 2415738648197144 a007 Real Root Of -22*x^4-562*x^3-698*x^2+951*x-198 2415738663314966 r005 Re(z^2+c),c=31/90+8/21*I,n=18 2415738670435455 m001 (ln(Pi)-Pi^(1/2))/(MertensB1-ZetaQ(4)) 2415738671111321 k002 Champernowne real with 48*n^2-11*n-13 2415738674521555 m005 (4/5*Catalan+4)/(1/2*exp(1)+3/5) 2415738675706066 m001 GolombDickman-MasserGramainDelta^Si(Pi) 2415738680049723 s002 sum(A136591[n]/((exp(n)+1)/n),n=1..infinity) 2415738680470920 r002 5th iterates of z^2 + 2415738680865030 s002 sum(A136591[n]/((exp(n)-1)/n),n=1..infinity) 2415738681068497 m001 Porter/exp(KhintchineHarmonic)^2*cos(1) 2415738685488698 p001 sum(1/(470*n+339)/n/(512^n),n=1..infinity) 2415738686715151 m005 (1/2*exp(1)-2)/(7/9*3^(1/2)-4) 2415738688832486 m005 (1/2*2^(1/2)+5/7)/(5/8*2^(1/2)+5) 2415738692946491 l006 ln(510/5711) 2415738694889093 r002 7th iterates of z^2 + 2415738707474993 m005 (1/3*Zeta(3)-1/12)/(5*exp(1)-5/11) 2415738717554980 a007 Real Root Of 3*x^4+725*x^3+66*x^2-302*x+20 2415738718901432 m001 CareFree^ZetaP(2)-Riemann3rdZero 2415738721261352 r008 a(0)=0,K{-n^6,(2*n+1)*(67+29*n^2+42*n)} 2415738722350497 m001 exp(1/2)-sin(Pi/12)+GAMMA(23/24) 2415738722792754 r008 a(0)=0,K{-n^6,44*n^3+148*n^2+169*n+53} 2415738729820300 b008 3*SinIntegral[Pi/39] 2415738730516004 m001 (Conway+Paris)/(Robbin-StolarskyHarborth) 2415738735943607 r009 Re(z^3+c),c=-1/4+8/53*I,n=7 2415738749756111 r005 Im(z^2+c),c=-25/74+7/18*I,n=23 2415738752167877 m001 ln(GolombDickman)^2/Si(Pi)^2*GAMMA(11/24)^2 2415738756905769 m001 sqrt(1+sqrt(3))^2*arctan(1/2)^2*exp(sqrt(2)) 2415738758831641 m001 (gamma+1)/(-sqrt(1+sqrt(3))+1) 2415738771212252 l006 ln(6763/8611) 2415738771411381 k002 Champernowne real with 97/2*n^2-25/2*n-12 2415738777820159 m001 (5^(1/2)*ZetaP(2)+StolarskyHarborth)/ZetaP(2) 2415738778810035 a007 Real Root Of 33*x^4+815*x^3+435*x^2+118*x+21 2415738791655218 a001 9349/365435296162*2178309^(2/13) 2415738791655233 a001 9349/2504730781961*591286729879^(2/13) 2415738791655233 a001 9349/956722026041*1134903170^(2/13) 2415738794118813 r009 Re(z^3+c),c=-17/74+2/43*I,n=4 2415738795907361 a001 9349/139583862445*4181^(2/13) 2415738801503508 a007 Real Root Of -28*x^4+604*x^3+648*x^2+384*x-139 2415738814642809 m005 (5/12+1/4*5^(1/2))/(4*Catalan+3/8) 2415738815261597 a001 24476/956722026041*2178309^(2/13) 2415738815261612 a001 12238/3278735159921*591286729879^(2/13) 2415738815261612 a001 24476/2504730781961*1134903170^(2/13) 2415738815885656 h001 (3/8*exp(1)+1/4)/(5/8*exp(2)+7/11) 2415738816693609 r005 Re(z^2+c),c=-4/17+33/59*I,n=20 2415738818705721 a001 64079/2504730781961*2178309^(2/13) 2415738818705736 a001 64079/6557470319842*1134903170^(2/13) 2415738819208212 a001 167761/6557470319842*2178309^(2/13) 2415738819326834 a001 90481/3536736619241*2178309^(2/13) 2415738819513740 a001 12238/182717648081*4181^(2/13) 2415738819518768 a001 103682/4052739537881*2178309^(2/13) 2415738819518784 a001 2206/225749145909*1134903170^(2/13) 2415738820834307 a001 13201/516002918640*2178309^(2/13) 2415738820834322 a001 13201/3536736619241*591286729879^(2/13) 2415738820834322 a001 39603/4052739537881*1134903170^(2/13) 2415738822957864 a001 64079/956722026041*4181^(2/13) 2415738823460355 a001 167761/2504730781961*4181^(2/13) 2415738823533667 a001 219602/3278735159921*4181^(2/13) 2415738823550974 a001 101521/1515744265389*4181^(2/13) 2415738823578977 a001 271443/4052739537881*4181^(2/13) 2415738823770912 a001 51841/774004377960*4181^(2/13) 2415738825086450 a001 39603/591286729879*4181^(2/13) 2415738828076458 m001 (Sierpinski+Tribonacci)/(Zeta(5)+Kolakoski) 2415738829851141 a001 15127/591286729879*2178309^(2/13) 2415738829851157 a001 15127/4052739537881*591286729879^(2/13) 2415738829851157 a001 15127/1548008755920*1134903170^(2/13) 2415738834103284 a001 2161/32264490531*4181^(2/13) 2415738834665855 a007 Real Root Of 200*x^4+585*x^3+163*x^2-194*x+16 2415738846839828 a003 sin(Pi*12/101)-sin(Pi*17/82) 2415738857179594 a007 Real Root Of -637*x^4-162*x^3-950*x^2+276*x+122 2415738859248224 r005 Re(z^2+c),c=-21/106+12/25*I,n=23 2415738861118917 a007 Real Root Of -981*x^4-708*x^3-616*x^2+897*x+246 2415738865546100 r005 Re(z^2+c),c=-5/34+23/40*I,n=44 2415738869386997 r005 Re(z^2+c),c=-15/56+17/64*I,n=25 2415738871711441 k002 Champernowne real with 49*n^2-14*n-11 2415738877594142 a001 35355581/36*121393^(19/22) 2415738884251482 a007 Real Root Of 298*x^4+637*x^3+31*x^2+386*x-417 2415738888179551 a001 15127/144*4807526976^(19/22) 2415738891653443 a001 1926/75283811239*2178309^(2/13) 2415738891653458 a001 321/86000486440*591286729879^(2/13) 2415738891653458 a001 5778/591286729879*1134903170^(2/13) 2415738894983935 r005 Re(z^2+c),c=-99/122+2/41*I,n=16 2415738895905586 a001 2889/43133785636*4181^(2/13) 2415738897806013 r005 Re(z^2+c),c=-15/58+23/37*I,n=53 2415738899452603 r005 Im(z^2+c),c=-1/94+15/56*I,n=5 2415738906229531 r005 Re(z^2+c),c=-29/106+13/54*I,n=30 2415738907597415 r009 Re(z^3+c),c=-7/48+27/29*I,n=44 2415738910917746 m001 (Si(Pi)-Zeta(3)*Grothendieck)/Zeta(3) 2415738920341033 m005 (1/2*exp(1)+3/8)/(5/6*2^(1/2)+6) 2415738941853565 m001 Ei(1)*(gamma+ArtinRank2) 2415738963502367 a007 Real Root Of -302*x^4-877*x^3-50*x^2+399*x-823 2415738972011501 k002 Champernowne real with 99/2*n^2-31/2*n-10 2415738976305020 r005 Im(z^2+c),c=11/42+5/48*I,n=27 2415738981437977 a007 Real Root Of 119*x^4-736*x^3-498*x^2-894*x+255 2415738994482532 r005 Re(z^2+c),c=-29/106+13/54*I,n=32 2415738997665902 r005 Re(z^2+c),c=-29/30+11/117*I,n=30 2415739006216987 r005 Im(z^2+c),c=-7/10+4/111*I,n=8 2415739010555660 r002 7th iterates of z^2 + 2415739015369290 a007 Real Root Of 260*x^4+252*x^3-775*x^2+20*x-731 2415739024216355 r005 Re(z^2+c),c=-29/106+13/54*I,n=35 2415739028820308 r005 Re(z^2+c),c=-29/106+13/54*I,n=37 2415739031220923 r005 Re(z^2+c),c=-29/106+13/54*I,n=40 2415739031431823 r005 Re(z^2+c),c=-29/106+13/54*I,n=42 2415739031614500 r005 Re(z^2+c),c=-29/106+13/54*I,n=45 2415739031621655 r005 Re(z^2+c),c=-29/106+13/54*I,n=47 2415739031631276 r005 Re(z^2+c),c=-29/106+13/54*I,n=44 2415739031634708 r005 Re(z^2+c),c=-29/106+13/54*I,n=49 2415739031634939 r005 Re(z^2+c),c=-29/106+13/54*I,n=52 2415739031634940 r005 Re(z^2+c),c=-29/106+13/54*I,n=50 2415739031635763 r005 Re(z^2+c),c=-29/106+13/54*I,n=54 2415739031635836 r005 Re(z^2+c),c=-29/106+13/54*I,n=57 2415739031635869 r005 Re(z^2+c),c=-29/106+13/54*I,n=55 2415739031635887 r005 Re(z^2+c),c=-29/106+13/54*I,n=59 2415739031635895 r005 Re(z^2+c),c=-29/106+13/54*I,n=62 2415739031635898 r005 Re(z^2+c),c=-29/106+13/54*I,n=64 2415739031635899 r005 Re(z^2+c),c=-29/106+13/54*I,n=60 2415739031635902 r005 Re(z^2+c),c=-29/106+13/54*I,n=63 2415739031635903 r005 Re(z^2+c),c=-29/106+13/54*I,n=61 2415739031635934 r005 Re(z^2+c),c=-29/106+13/54*I,n=58 2415739031635975 r005 Re(z^2+c),c=-29/106+13/54*I,n=56 2415739031636376 r005 Re(z^2+c),c=-29/106+13/54*I,n=53 2415739031637229 r005 Re(z^2+c),c=-29/106+13/54*I,n=51 2415739031642126 r005 Re(z^2+c),c=-29/106+13/54*I,n=48 2415739031658143 r005 Re(z^2+c),c=-29/106+13/54*I,n=46 2415739031712240 r005 Re(z^2+c),c=-29/106+13/54*I,n=43 2415739031766614 r005 Re(z^2+c),c=-29/106+13/54*I,n=39 2415739031992600 r005 Re(z^2+c),c=-29/106+13/54*I,n=41 2415739032487877 r005 Re(z^2+c),c=-29/106+13/54*I,n=38 2415739033660025 a007 Real Root Of -329*x^4+596*x^3+544*x^2+980*x-24 2415739036517857 r005 Re(z^2+c),c=-29/106+13/54*I,n=34 2415739037151269 r005 Re(z^2+c),c=-29/106+13/54*I,n=36 2415739039611027 r005 Re(z^2+c),c=-29/106+13/54*I,n=33 2415739071863371 r009 Re(z^3+c),c=-39/94+21/40*I,n=39 2415739072311561 k002 Champernowne real with 50*n^2-17*n-9 2415739073660425 a001 2207/144*34^(4/31) 2415739075524018 r005 Re(z^2+c),c=-29/106+13/54*I,n=28 2415739083870340 m005 (1/2*2^(1/2)+3/8)/(4/7*gamma-7/9) 2415739099072930 m001 (CareFree+Sarnak)/(Zeta(1,2)+GAMMA(7/12)) 2415739114057366 r005 Re(z^2+c),c=-29/106+13/54*I,n=31 2415739115907234 m001 (Porter-QuadraticClass)/(Khinchin-MertensB1) 2415739117143653 r005 Re(z^2+c),c=-37/46+2/35*I,n=50 2415739117787167 r005 Im(z^2+c),c=-33/64+18/41*I,n=46 2415739121065428 l006 ln(409/4580) 2415739124964851 m001 Mills+BesselI(0,1)^TreeGrowth2nd 2415739128891176 m001 (Robbin-Sierpinski)/(ArtinRank2+Paris) 2415739138971880 a001 1597/7*1364^(17/52) 2415739146027626 r005 Re(z^2+c),c=-29/106+13/54*I,n=29 2415739149127777 m002 -E^Pi-ProductLog[Pi]+ProductLog[Pi]/(6*Pi) 2415739150866110 m008 (1/2*Pi^6-2/3)/(2/3*Pi^3-4/5) 2415739157960167 a001 38/305*4181^(16/45) 2415739166668477 r008 a(0)=0,K{-n^6,51+43*n-31*n^2-22*n^3} 2415739171180692 m005 (1/3*3^(1/2)+1/10)/(6/7*Pi+1/9) 2415739172611621 k002 Champernowne real with 101/2*n^2-37/2*n-8 2415739183948925 g007 Psi(2,8/9)+Psi(2,1/5)-Psi(2,7/11)-Psi(2,7/9) 2415739191679767 m001 (Psi(2,1/3)+GAMMA(19/24))/(-Khinchin+ZetaP(2)) 2415739191883658 a007 Real Root Of 258*x^4+924*x^3+527*x^2-590*x-261 2415739194244295 r005 Im(z^2+c),c=-43/44+7/30*I,n=56 2415739200050678 m001 BesselK(0,1)-Shi(1)*FeigenbaumD 2415739205561564 m001 1/exp(Robbin)^2/PisotVijayaraghavan*Zeta(3) 2415739205627966 m001 (Riemann3rdZero+TreeGrowth2nd)/(Bloch-gamma) 2415739209533699 a007 Real Root Of -221*x^4-175*x^3+649*x^2-683*x-378 2415739210670290 a007 Real Root Of 408*x^4+676*x^3-911*x^2-66*x+792 2415739213011503 r005 Im(z^2+c),c=-109/98+11/52*I,n=8 2415739231526417 a007 Real Root Of -401*x^4+896*x^3-156*x^2+939*x-229 2415739233023507 r005 Im(z^2+c),c=-23/86+18/25*I,n=3 2415739233802970 p002 log(5^(4/7)+7^(10/9)) 2415739249437711 r005 Re(z^2+c),c=-2/15+23/39*I,n=53 2415739251347867 m001 BesselJ(1,1)^GlaisherKinkelin/exp(1/exp(1)) 2415739257980784 a007 Real Root Of 123*x^4+121*x^3-651*x^2-380*x+398 2415739259921046 m001 (Pi-cosh(1))/Robbin 2415739265434563 a001 4/53316291173*144^(4/17) 2415739265986345 a003 cos(Pi*21/65)*cos(Pi*38/109) 2415739266275392 a007 Real Root Of 204*x^4+822*x^3+589*x^2-848*x-845 2415739267280713 a003 sin(Pi*5/57)-sin(Pi*17/99) 2415739270195253 r005 Re(z^2+c),c=-5/4+3/179*I,n=58 2415739271891555 m001 1/exp(Riemann1stZero)*CareFree^2*sin(Pi/12)^2 2415739272457838 m001 (ArtinRank2-Conway)/(MertensB3+Salem) 2415739272911681 k002 Champernowne real with 51*n^2-20*n-7 2415739285379664 m001 (Cahen-RenyiParking)/(GAMMA(5/6)-ArtinRank2) 2415739293740478 r005 Re(z^2+c),c=-13/50+8/27*I,n=15 2415739295015142 r005 Re(z^2+c),c=-17/18+33/194*I,n=48 2415739300716114 m001 (GAMMA(5/6)-Gompertz)/(Pi+Zeta(1,2)) 2415739301156441 p003 LerchPhi(1/512,4,97/68) 2415739303383511 r005 Re(z^2+c),c=-23/102+21/50*I,n=14 2415739309950272 s002 sum(A127854[n]/(pi^n-1),n=1..infinity) 2415739315252721 a001 2207/86267571272*2178309^(2/13) 2415739315252737 a001 2207/591286729879*591286729879^(2/13) 2415739315252737 a001 2207/225851433717*1134903170^(2/13) 2415739319091205 a007 Real Root Of 172*x^4+219*x^3-789*x^2-936*x-427 2415739319504866 a001 2207/32951280099*4181^(2/13) 2415739327102925 m001 Porter^exp(-Pi)+exp(Pi) 2415739328157654 m001 GAMMA(5/12)^2*ln(Conway)^2/log(2+sqrt(3)) 2415739329600944 a007 Real Root Of -180*x^4+227*x^3-529*x^2+912*x+255 2415739333740356 a007 Real Root Of 157*x^4+308*x^3+22*x^2+467*x-5 2415739335244867 m003 -5/2+Sqrt[5]/16-Sin[1/2+Sqrt[5]/2]/18 2415739341685759 p004 log(33247/2969) 2415739348166816 m005 (1/2*Zeta(3)+10/11)/(1/6*Catalan-7/9) 2415739349501839 a007 Real Root Of -103*x^4+90*x^3+890*x^2+282*x+264 2415739351942327 m001 (Stephens-ZetaQ(4))/(Pi-LandauRamanujan) 2415739357308805 r005 Im(z^2+c),c=-7/6+51/211*I,n=19 2415739362403836 m005 (1/3*gamma+1/5)/(9/10*Catalan+4/5) 2415739364401217 a001 969323029/3*377^(8/11) 2415739366897725 m001 1/Si(Pi)/ln(Artin)*BesselJ(1,1) 2415739368880798 m008 (2*Pi^3+1/6)/(1/5*Pi^2+3/5) 2415739368985026 a001 123/10946*75025^(3/44) 2415739369773663 m001 (Thue-ZetaQ(3))/(Pi^(1/2)+MadelungNaCl) 2415739373211741 k002 Champernowne real with 103/2*n^2-43/2*n-6 2415739381512647 m001 GAMMA(3/4)*Robbin*ln(sin(1))^2 2415739392423324 a007 Real Root Of -430*x^4-965*x^3-43*x^2-375*x+385 2415739392500804 m001 (Artin-BesselI(0,1))/(DuboisRaymond+ZetaP(3)) 2415739393411487 r005 Re(z^2+c),c=-27/98+5/16*I,n=5 2415739404054081 a007 Real Root Of 896*x^4-374*x^3+799*x^2-847*x+20 2415739409342690 h001 (8/9*exp(1)+7/10)/(3/7*exp(1)+1/8) 2415739410735688 m005 (1/2*2^(1/2)-4/9)/(5/11*3^(1/2)+3/10) 2415739414160924 m005 (1/2*Pi+5/11)/(1/7*2^(1/2)+7/11) 2415739417536002 m001 (Pi-BesselI(0,2))/(FeigenbaumMu-ZetaQ(4)) 2415739424170120 a007 Real Root Of -489*x^4-769*x^3+760*x^2-804*x-565 2415739425585063 l006 ln(717/8029) 2415739431223375 m001 LambertW(1)*ln(GAMMA(5/12))/sqrt(Pi) 2415739431381526 m001 GaussAGM^(Pi^(1/2))-Pi 2415739436108037 a007 Real Root Of -722*x^4+589*x^3+425*x^2+381*x+78 2415739442432399 m001 (LambertW(1)-Zeta(1,-1))/(Otter+ZetaP(4)) 2415739451056721 s002 sum(A047426[n]/(2^n-1),n=1..infinity) 2415739453117345 a005 (1/sin(92/193*Pi))^1186 2415739458699182 r009 Re(z^3+c),c=-12/29+27/50*I,n=59 2415739459009343 r009 Re(z^3+c),c=-8/23+21/52*I,n=20 2415739473354194 m001 (Si(Pi)-gamma)/(Zeta(1,2)+HardyLittlewoodC5) 2415739473511801 k002 Champernowne real with 52*n^2-23*n-5 2415739479943914 m001 (Khinchin+ZetaQ(3))/(Bloch+Cahen) 2415739482308572 a001 233802911/281*199^(7/11) 2415739492460297 r005 Im(z^2+c),c=27/94+1/27*I,n=22 2415739499781033 a007 Real Root Of 460*x^4-865*x^3+352*x^2-214*x-86 2415739501852546 m001 (Psi(2,1/3)-ln(5))/(Pi^(1/2)+Stephens) 2415739506933387 a001 3*(1/2*5^(1/2)+1/2)^12*123^(4/21) 2415739508815011 a001 1597/7*3571^(15/52) 2415739508888113 m002 -Log[Pi]-Sinh[Pi]/(4*Pi^3)+Tanh[Pi] 2415739520506689 h001 (3/10*exp(1)+2/7)/(3/5*exp(2)+1/8) 2415739523139384 m001 (sin(Pi/5)+1/2)/(FeigenbaumAlpha+2) 2415739524223901 r004 Im(z^2+c),c=-7/20+9/23*I,z(0)=-1,n=32 2415739531892975 a007 Real Root Of 181*x^4+370*x^3-448*x^2-850*x-387 2415739534069047 m001 GAMMA(13/24)^BesselI(1,2)+Ei(1,1) 2415739536967963 m004 -5+125*Pi+Sqrt[5]*Pi-5*Sinh[Sqrt[5]*Pi] 2415739544982143 r005 Im(z^2+c),c=-9/10+38/189*I,n=15 2415739553569923 r005 Im(z^2+c),c=-27/29+9/38*I,n=11 2415739554742920 m001 ln(GAMMA(17/24))*Conway*exp(1)^2 2415739558106751 r009 Re(z^3+c),c=-29/98+13/46*I,n=9 2415739561156355 s002 sum(A075801[n]/(2^n+1),n=1..infinity) 2415739568605002 m006 (4*Pi^2-3/5)/(2/3*exp(Pi)+2/3) 2415739573811861 k002 Champernowne real with 105/2*n^2-49/2*n-4 2415739580054655 m005 (1/3*Zeta(3)-2/5)/(-59/20+1/20*5^(1/2)) 2415739581773499 r005 Re(z^2+c),c=-9/52+3/5*I,n=41 2415739592639677 r005 Re(z^2+c),c=-27/110+9/26*I,n=25 2415739595644760 m001 1/LandauRamanujan^2*Backhouse^2/ln(Magata)^2 2415739607609367 m001 (-exp(1/exp(1))+Zeta(1,2))/(1-ln(3)) 2415739608490737 l006 ln(1387/1766) 2415739622032130 a007 Real Root Of 812*x^4+809*x^3+510*x^2-786*x-211 2415739632400711 m001 (Artin-TreeGrowth2nd)/(Zeta(3)+GAMMA(7/12)) 2415739639204764 a007 Real Root Of -498*x^4+931*x^3+445*x^2+611*x-185 2415739642850574 a007 Real Root Of -675*x^4+653*x^3+667*x^2+977*x-24 2415739646527050 m005 (7/18+1/6*5^(1/2))/(11/12*Pi+3/11) 2415739652906704 m005 (1/2*2^(1/2)+9/10)/(4/7*2^(1/2)-1/7) 2415739660594767 m001 cos(Pi/5)^GAMMA(1/3)/GAMMA(1/24) 2415739663808087 a007 Real Root Of -23*x^4+461*x^3+999*x^2-547*x+131 2415739664836197 m001 Bloch*(FibonacciFactorial-TravellingSalesman) 2415739665605241 r005 Re(z^2+c),c=-43/36+9/55*I,n=28 2415739673814940 r009 Re(z^3+c),c=-11/42+39/59*I,n=4 2415739674111921 k002 Champernowne real with 53*n^2-26*n-3 2415739683627685 r005 Re(z^2+c),c=-21/122+18/29*I,n=42 2415739684326050 m001 (-MadelungNaCl+Niven)/(BesselK(0,1)-Gompertz) 2415739687262959 m005 (1/2*3^(1/2)+5/9)/(4/11*exp(1)-2/5) 2415739690977749 r005 Im(z^2+c),c=-35/34+19/81*I,n=40 2415739691789901 s002 sum(A146336[n]/(n^3*pi^n+1),n=1..infinity) 2415739696519116 m001 1/Robbin^2/ln(Rabbit)*GAMMA(1/4) 2415739703633918 m001 (gamma(1)+ArtinRank2)/(exp(Pi)+exp(1)) 2415739709641549 b008 2+Sqrt[14]/9 2415739715183622 m001 (TwinPrimes+ZetaP(2))/(Porter-Tetranacci) 2415739716248309 r005 Re(z^2+c),c=17/66+9/26*I,n=3 2415739719759499 h001 (11/12*exp(2)+3/11)/(3/10*exp(2)+7/10) 2415739727204290 m002 Cosh[Pi]+ProductLog[Pi]*Sinh[Pi]+Tanh[Pi]/6 2415739730213089 p001 sum((-1)^n/(488*n+365)/(3^n),n=0..infinity) 2415739732619659 m001 1/ln(Trott)^2/GaussKuzminWirsing*GAMMA(3/4)^2 2415739733253626 a001 7/121393*89^(15/47) 2415739737738979 a001 521/86267571272*8^(2/3) 2415739739426952 a003 cos(Pi*22/115)-sin(Pi*22/111) 2415739739984372 r005 Re(z^2+c),c=-31/98+7/44*I,n=2 2415739750403264 r005 Re(z^2+c),c=-9/50+38/63*I,n=47 2415739762613992 m001 (arctan(1/2)-gamma)/(KhinchinHarmonic+Otter) 2415739769649437 r002 5i'th iterates of 2*x/(1-x^2) of 2415739772545261 r008 a(0)=0,K{-n^6,(2*n+1)*(78+34*n^2+26*n)} 2415739774411981 k002 Champernowne real with 107/2*n^2-55/2*n-2 2415739776330818 r008 a(0)=0,K{-n^6,34*n^3+171*n^2+165*n+44} 2415739777101454 a007 Real Root Of 337*x^4+716*x^3-203*x^2+304*x+536 2415739780105460 a007 Real Root Of 473*x^4+659*x^3+567*x^2-731*x-202 2415739781081568 m005 (1/6*Catalan-1/3)/(3*Catalan-2) 2415739787561872 m001 (KhinchinLevy*Magata-Salem)/KhinchinLevy 2415739794264818 r005 Im(z^2+c),c=-65/74+10/49*I,n=45 2415739804299065 g007 Psi(2,5/11)-Psi(2,7/12)-Psi(2,8/9)-Psi(2,2/5) 2415739814827878 m005 (1/3*5^(1/2)-2/3)/(3/10*2^(1/2)-3/4) 2415739816252217 m001 Rabbit^2*ln(FibonacciFactorial)*GAMMA(1/24) 2415739818617232 m001 1/RenyiParking/exp(CareFree)^2*exp(1)^2 2415739821472929 m001 (GAMMA(2/3)-Ei(1))/(KomornikLoreti+ZetaP(2)) 2415739828754656 m001 2^(1/2)+Shi(1)^Trott2nd 2415739829963266 l006 ln(308/3449) 2415739830210415 m001 (-5^(1/2)+(1+3^(1/2))^(1/2))/(exp(Pi)+1) 2415739840678966 a007 Real Root Of -263*x^4-423*x^3+713*x^2+547*x+154 2415739843967996 r009 Re(z^3+c),c=-19/56+5/13*I,n=30 2415739844057986 a007 Real Root Of -375*x^4+930*x^3-487*x^2+630*x+195 2415739848611516 r005 Re(z^2+c),c=1/24+10/37*I,n=12 2415739854003214 p001 sum(1/(469*n+340)/n/(512^n),n=1..infinity) 2415739856436014 m001 OrthogonalArrays*(ln(Pi)+Stephens) 2415739869848082 r005 Re(z^2+c),c=9/34+9/61*I,n=30 2415739870593738 p001 sum(1/(386*n+345)/n/(6^n),n=1..infinity) 2415739874712041 k002 Champernowne real with 54*n^2-29*n-1 2415739893341405 r009 Im(z^3+c),c=-11/50+8/35*I,n=11 2415739900072126 m001 (Zeta(1,2)+ZetaQ(4))/(Shi(1)-exp(1/exp(1))) 2415739900219650 a007 Real Root Of 430*x^4-598*x^3+618*x^2-559*x-181 2415739918958141 r005 Im(z^2+c),c=-45/98+3/58*I,n=8 2415739921869704 m001 exp(KhintchineLevy)^2*ArtinRank2/GAMMA(1/6)^2 2415739923492438 a007 Real Root Of -221*x^4-270*x^3+455*x^2-204*x+572 2415739924257124 a007 Real Root Of 494*x^4+55*x^3-963*x^2-622*x+204 2415739930515284 r005 Re(z^2+c),c=-5/23+26/61*I,n=31 2415739956768935 r009 Re(z^3+c),c=-9/38+2/21*I,n=5 2415739961915502 r005 Re(z^2+c),c=7/38+31/61*I,n=50 2415739969370783 a001 8/843*1364^(33/43) 2415739970732239 m001 (ln(5)+Backhouse)/(HardyLittlewoodC5+Thue) 2415739975012101 k002 Champernowne real with 109/2*n^2-61/2*n 2415739977787457 m001 gamma(2)^Sarnak/exp(1/exp(1)) 2415739992531031 a007 Real Root Of 352*x^4+705*x^3-230*x^2+187*x-255 2415740001319317 r009 Re(z^3+c),c=-41/110+28/61*I,n=40 2415740005362236 l006 ln(4376/4483) 2415740032084786 m003 -12/5+Cos[1/2+Sqrt[5]/2]/3 2415740034706408 a007 Real Root Of -511*x^4-983*x^3+429*x^2-650*x-529 2415740041469276 m005 (3/4*Catalan-1/4)/(4*gamma-1/2) 2415740042105996 r005 Re(z^2+c),c=-25/118+24/53*I,n=17 2415740042931457 m001 (Zeta(1/2)-gamma(1))/(BesselI(0,2)-Niven) 2415740043239865 m005 (1/2*2^(1/2)-5)/(3/4*5^(1/2)+1/10) 2415740046752240 r005 Re(z^2+c),c=-55/78+8/45*I,n=17 2415740052240720 a008 Real Root of x^2-58358 2415740067759116 b008 Pi*ArcTan[Zeta[3]]^2 2415740070943770 r005 Im(z^2+c),c=-65/82+4/31*I,n=41 2415740072209985 m001 (QuadraticClass-TwinPrimes)/(ln(2)-ln(5)) 2415740075312161 k002 Champernowne real with 55*n^2-32*n+1 2415740076195703 a007 Real Root Of -238*x^4-278*x^3+767*x^2+329*x+505 2415740080152036 m001 Porter^2/exp(LandauRamanujan)^2/GAMMA(11/24) 2415740090535410 m005 (1/2*Catalan-5/7)/(1/4*gamma+11/12) 2415740095810970 a003 cos(Pi*23/118)/cos(Pi*39/100) 2415740104007751 m005 (1/2*gamma-3/11)/(2/3*5^(1/2)-5/6) 2415740111015761 m001 exp(Pi)/(Tribonacci-ln(2^(1/2)+1)) 2415740118898609 m001 (ln(2)+Bloch)/(HardyLittlewoodC4+ZetaP(3)) 2415740127828906 m001 (-LandauRamanujan2nd+Paris)/(Zeta(1/2)-cos(1)) 2415740130880664 m001 Paris*exp(KhintchineLevy)*RenyiParking 2415740147775829 a003 cos(Pi*2/81)/cos(Pi*35/96) 2415740149886003 a001 505019158607/89*1836311903^(14/17) 2415740149886003 a001 599074578/89*6557470319842^(14/17) 2415740160688238 m001 (arctan(1/2)-Landau*Riemann3rdZero)/Landau 2415740175612221 k002 Champernowne real with 111/2*n^2-67/2*n+2 2415740176386339 a007 Real Root Of 128*x^4+18*x^3-945*x^2-251*x+803 2415740182258602 l006 ln(823/9216) 2415740204931447 a001 1/277221*(1/2*5^(1/2)+1/2)^3*39603^(11/23) 2415740214414184 a001 521/9227465*233^(4/15) 2415740219384389 r008 a(0)=0,K{-n^6,-69+5*n^3-62*n^2+84*n} 2415740220931285 h001 (1/10*exp(2)+9/11)/(9/11*exp(2)+2/5) 2415740221941596 r005 Re(z^2+c),c=-29/106+13/54*I,n=26 2415740223872876 a007 Real Root Of 4*x^4+969*x^3+655*x^2+439*x+687 2415740228066174 a007 Real Root Of 16*x^4-295*x^3+337*x^2+513*x+408 2415740229550238 r002 22th iterates of z^2 + 2415740230926447 r002 51th iterates of z^2 + 2415740246255036 a003 sin(Pi*38/103)/cos(Pi*41/109) 2415740262298753 m001 (exp(1)+cos(1/5*Pi))/(-KhinchinLevy+MertensB3) 2415740275912281 k002 Champernowne real with 56*n^2-35*n+3 2415740287502698 r005 Im(z^2+c),c=-43/114+3/5*I,n=5 2415740291152553 m005 (1/2*2^(1/2)-4/9)/(43/56+1/7*5^(1/2)) 2415740294293630 a007 Real Root Of -358*x^4-932*x^3-122*x^2-82*x-433 2415740296052600 m001 ln(GAMMA(7/24))/Cahen*sinh(1)^2 2415740296398267 a001 18/514229*1597^(31/54) 2415740301139890 r005 Im(z^2+c),c=-16/13+9/23*I,n=3 2415740301333853 a007 Real Root Of 335*x^4+837*x^3-13*x^2-175*x+44 2415740301507042 r005 Im(z^2+c),c=19/86+1/7*I,n=26 2415740314079672 m001 GlaisherKinkelin/ln(Si(Pi))*Magata^2 2415740319890356 m001 (exp(1)+ln(2))/(-DuboisRaymond+ErdosBorwein) 2415740333346722 m001 (gamma(3)-MertensB1)/(Paris+ZetaQ(3)) 2415740338873136 r005 Im(z^2+c),c=-75/122+37/59*I,n=4 2415740339838421 r005 Re(z^2+c),c=-23/118+22/45*I,n=23 2415740376212341 k002 Champernowne real with 113/2*n^2-73/2*n+4 2415740377016311 a007 Real Root Of 303*x^4-895*x^3-97*x^2-860*x+225 2415740379641629 m001 (PlouffeB+Sarnak)/(Pi+MasserGramainDelta) 2415740387062990 r002 9th iterates of z^2 + 2415740392951676 l006 ln(515/5767) 2415740397383870 m001 HardHexagonsEntropy+GAMMA(3/4)^Paris 2415740404137690 a007 Real Root Of 529*x^4-32*x^3+134*x^2-335*x-91 2415740404699881 a001 123/610*832040^(13/25) 2415740405242380 l006 ln(7107/9049) 2415740406099188 m001 (Shi(1)+BesselI(0,1))/(sin(1/5*Pi)+Artin) 2415740418868431 r005 Re(z^2+c),c=-4/23+27/53*I,n=22 2415740430807031 m006 (1/Pi-2/5)/(1/3*ln(Pi)+3) 2415740435564379 a007 Real Root Of -347*x^4-315*x^3+845*x^2-723*x+699 2415740439793654 r009 Re(z^3+c),c=-33/62+15/52*I,n=4 2415740440004302 m001 Pi-ln(2)/ln(10)/exp(1/exp(1))-polylog(4,1/2) 2415740446409315 m001 exp(Pi)+FeigenbaumC^Trott2nd 2415740457270826 m001 exp(1)^2*ln(RenyiParking)^2/sin(Pi/12) 2415740461830807 a007 Real Root Of -343*x^4-663*x^3+402*x^2-177*x-439 2415740462831191 r009 Re(z^3+c),c=-7/48+15/16*I,n=44 2415740465020476 s001 sum(exp(-Pi/3)^n*A154679[n],n=1..infinity) 2415740466259407 m001 (OneNinth+Salem)/(GAMMA(19/24)-Niven) 2415740476512401 k002 Champernowne real with 57*n^2-38*n+5 2415740488838097 r005 Im(z^2+c),c=-9/29+19/50*I,n=32 2415740527825397 m001 (LaplaceLimit-MinimumGamma)/(Pi-Zeta(1,-1)) 2415740530515188 r005 Re(z^2+c),c=3/58+13/57*I,n=18 2415740562329963 m005 (1/3*3^(1/2)-3/4)/(5/9*2^(1/2)-6/7) 2415740566031251 r005 Im(z^2+c),c=-11/14+18/173*I,n=21 2415740576812461 k002 Champernowne real with 115/2*n^2-79/2*n+6 2415740584860931 r002 39th iterates of z^2 + 2415740598440715 l006 ln(5720/7283) 2415740611643621 m001 (Catalan-gamma)/(-Backhouse+ZetaQ(2)) 2415740614845346 m001 KhinchinHarmonic^Kolakoski+Thue 2415740617689331 r002 42th iterates of z^2 + 2415740619778537 m001 (-MinimumGamma+ZetaP(3))/(Psi(2,1/3)+Si(Pi)) 2415740620554482 a007 Real Root Of 871*x^4-78*x^3-658*x^2-805*x+231 2415740633118380 l006 ln(722/8085) 2415740642509241 b008 -1/3+Sqrt[6+Tan[1]] 2415740674159970 r005 Im(z^2+c),c=-23/82+19/51*I,n=15 2415740675226685 r002 2th iterates of z^2 + 2415740677112521 k002 Champernowne real with 58*n^2-41*n+7 2415740685856139 a007 Real Root Of 487*x^4+995*x^3-255*x^2+34*x-988 2415740688474213 a007 Real Root Of -244*x^4-252*x^3+866*x^2-239*x-874 2415740690445543 a001 165580141/521*199^(9/11) 2415740693234599 a007 Real Root Of 25*x^4-140*x^3-735*x^2-763*x-379 2415740693951943 p002 log(12^(11/12)+13^(1/7)) 2415740697963931 m005 (1/2*5^(1/2)+8/9)/(1/7*3^(1/2)+7/12) 2415740719871850 m001 (cos(1/5*Pi)+3^(1/3))/(gamma(1)-Thue) 2415740727369567 a007 Real Root Of -394*x^4-692*x^3+876*x^2+415*x-447 2415740740740740 r004 Im(z^2+c),c=1/3+1/20*I,z(0)=I,n=3 2415740758302387 a007 Real Root Of 361*x^4+705*x^3-536*x^2-362*x-102 2415740766045213 r005 Re(z^2+c),c=-17/110+35/62*I,n=38 2415740768588864 m005 (3/4*exp(1)-1/4)/(5*2^(1/2)+1/3) 2415740777412581 k002 Champernowne real with 117/2*n^2-85/2*n+8 2415740779876439 p003 LerchPhi(1/16,2,289/140) 2415740786974233 r005 Re(z^2+c),c=-15/94+33/59*I,n=41 2415740792174204 r005 Im(z^2+c),c=-21/40+2/47*I,n=40 2415740793332247 r002 37th iterates of z^2 + 2415740801595607 a007 Real Root Of -333*x^4-740*x^3-211*x^2-803*x+200 2415740805440660 m001 (FeigenbaumD+Lehmer)/(Catalan+BesselJ(1,1)) 2415740817640064 m001 (3^(1/2)-3^(1/3))/(PolyaRandomWalk3D+Thue) 2415740819208987 r009 Re(z^3+c),c=-13/36+22/51*I,n=17 2415740821680819 m005 (1/2*2^(1/2)+3/4)/(1/10*exp(1)-7/8) 2415740828180111 r005 Re(z^2+c),c=-1/66+37/56*I,n=32 2415740833585466 r005 Re(z^2+c),c=-25/114+26/59*I,n=14 2415740848925231 a001 76/3*2178309^(50/53) 2415740850182124 m005 (1/2*2^(1/2)+2/5)/(7/11*Catalan+4) 2415740859429780 m005 (1/2*exp(1)-7/11)/(5/6*gamma-2/11) 2415740865812962 r009 Re(z^3+c),c=-9/62+31/34*I,n=62 2415740877570620 a007 Real Root Of 439*x^4+949*x^3+141*x^2+832*x-385 2415740877712641 k002 Champernowne real with 59*n^2-44*n+9 2415740884499342 a005 (1/sin(51/143*Pi))^118 2415740893305828 m005 (1/2*3^(1/2)-8/11)/(9/10*Catalan-1/4) 2415740900171980 s002 sum(A168670[n]/(exp(n)+1),n=1..infinity) 2415740901028877 r008 a(0)=0,K{-n^6,61+22*n-17*n^2-25*n^3} 2415740901594476 m005 (1/2*2^(1/2)+1/2)/(1/4*Pi-2/7) 2415740907778470 m001 (Ei(1)*GAMMA(1/24)+ln(2+sqrt(3)))/Ei(1) 2415740908580179 m001 (Catalan-ln(2))/(RenyiParking+ZetaP(3)) 2415740910906909 h001 (1/8*exp(1)+4/5)/(5/8*exp(2)+1/10) 2415740915325213 l006 ln(4333/5517) 2415740917015537 a007 Real Root Of -18*x^4-455*x^3-513*x^2-621*x+70 2415740918261461 m005 (1/2*3^(1/2)-6/11)/(71/99+3/11*5^(1/2)) 2415740919689697 m001 arctan(1/2)/(GAMMA(2/3)+BesselI(1,1)) 2415740920394670 m001 exp(OneNinth)*Lehmer/sqrt(1+sqrt(3))^2 2415740926280139 r002 30i'th iterates of 2*x/(1-x^2) of 2415740942787547 a007 Real Root Of -2*x^4-480*x^3+758*x^2-613*x-976 2415740945136154 a007 Real Root Of 558*x^4-481*x^3-713*x^2-869*x-177 2415740952935212 r005 Re(z^2+c),c=-15/56+17/64*I,n=28 2415740969614884 a007 Real Root Of -785*x^4+727*x^3+700*x^2+644*x-204 2415740974064663 a001 9349/3*2178309^(27/35) 2415740977868449 m001 (2^(1/3))^BesselI(1,2)/(Sarnak^BesselI(1,2)) 2415740978012701 k002 Champernowne real with 119/2*n^2-91/2*n+10 2415740988319738 m001 1/BesselK(1,1)^2*ln(Niven)*GAMMA(13/24) 2415740993383842 a005 (1/sin(74/163*Pi))^743 2415741008302985 b008 E^3+22*Cosh[3] 2415741009228184 r009 Re(z^3+c),c=-19/56+5/13*I,n=28 2415741010302647 r005 Re(z^2+c),c=5/19+29/59*I,n=9 2415741011082394 r005 Re(z^2+c),c=-19/102+1/2*I,n=54 2415741013783312 r005 Im(z^2+c),c=-25/102+23/64*I,n=22 2415741021050779 a007 Real Root Of -617*x^4+101*x^3-409*x^2+855*x-182 2415741024349007 p001 sum(1/(468*n+341)/n/(512^n),n=1..infinity) 2415741037822403 m001 (GAMMA(2/3)-arctan(1/3))/(CareFree-Robbin) 2415741041514621 a007 Real Root Of 230*x^4+381*x^3-858*x^2-874*x+434 2415741041750294 r002 7th iterates of z^2 + 2415741047132916 a007 Real Root Of -515*x^4-904*x^3+731*x^2-418*x-481 2415741047422744 r002 34i'th iterates of 2*x/(1-x^2) of 2415741050945809 r009 Im(z^3+c),c=-11/50+8/35*I,n=14 2415741053625042 a007 Real Root Of 513*x^4+964*x^3-761*x^2-513*x-679 2415741065953207 r009 Im(z^3+c),c=-11/50+8/35*I,n=15 2415741068008642 m001 Riemann2ndZero/RenyiParking*Thue 2415741070205266 r009 Im(z^3+c),c=-11/50+8/35*I,n=18 2415741070392632 r009 Im(z^3+c),c=-11/50+8/35*I,n=21 2415741070394941 r009 Im(z^3+c),c=-11/50+8/35*I,n=22 2415741070395655 r009 Im(z^3+c),c=-11/50+8/35*I,n=25 2415741070395685 r009 Im(z^3+c),c=-11/50+8/35*I,n=28 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=29 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=32 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=35 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=36 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=39 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=42 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=43 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=46 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=49 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=50 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=53 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=56 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=57 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=60 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=63 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=64 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=61 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=62 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=59 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=58 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=54 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=55 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=52 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=51 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=47 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=48 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=45 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=44 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=40 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=41 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=38 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=37 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=33 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=34 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=31 2415741070395686 r009 Im(z^3+c),c=-11/50+8/35*I,n=30 2415741070395688 r009 Im(z^3+c),c=-11/50+8/35*I,n=27 2415741070395688 r009 Im(z^3+c),c=-11/50+8/35*I,n=26 2415741070395704 r009 Im(z^3+c),c=-11/50+8/35*I,n=24 2415741070396032 r009 Im(z^3+c),c=-11/50+8/35*I,n=23 2415741070409366 r009 Im(z^3+c),c=-11/50+8/35*I,n=20 2415741070411846 r009 Im(z^3+c),c=-11/50+8/35*I,n=19 2415741070490105 r009 Im(z^3+c),c=-11/50+8/35*I,n=17 2415741072559410 r009 Im(z^3+c),c=-11/50+8/35*I,n=16 2415741073069167 a007 Real Root Of -996*x^4-117*x^3+215*x^2+943*x+217 2415741075875563 r002 4th iterates of z^2 + 2415741078312761 k002 Champernowne real with 60*n^2-47*n+11 2415741081810010 m001 (MinimumGamma-Robbin*Weierstrass)/Weierstrass 2415741111121213 k006 concat of cont frac of 2415741115123132 k009 concat of cont frac of 2415741120132316 p001 sum(1/(408*n+7)/n/(100^n),n=1..infinity) 2415741123662731 m001 Niven^Psi(1,1/3)/(ReciprocalLucas^Psi(1,1/3)) 2415741123825668 r005 Im(z^2+c),c=-19/82+16/45*I,n=16 2415741131874831 m004 6+5*Pi+Log[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi]/2 2415741140218418 a007 Real Root Of -539*x^4-308*x^3+396*x^2+526*x-144 2415741145031584 a007 Real Root Of 742*x^4+434*x^3-288*x^2-904*x+22 2415741153881147 r009 Im(z^3+c),c=-11/50+8/35*I,n=13 2415741157301916 m005 (3/5*2^(1/2)-5/6)/(1/4*Catalan+2/5) 2415741159126600 m001 (Pi^(1/2)-Conway)/(CopelandErdos+Niven) 2415741164340089 l006 ln(7279/9268) 2415741167663020 a007 Real Root Of 484*x^4+400*x^3+490*x^2-815*x+161 2415741177265642 a007 Real Root Of 253*x^4+303*x^3-607*x^2+61*x-655 2415741178612821 k002 Champernowne real with 121/2*n^2-97/2*n+12 2415741178844903 r009 Im(z^3+c),c=-11/50+8/35*I,n=12 2415741185663891 m001 (Pi^(1/2)+Khinchin)/(PlouffeB-TwinPrimes) 2415741210052584 m001 AlladiGrinstead*PrimesInBinary-gamma 2415741211001541 m004 13/2+5*Pi+Log[Sqrt[5]*Pi] 2415741221315594 m006 (3/5*exp(Pi)-2/3)/(1/4*ln(Pi)-5/6) 2415741224379285 r009 Re(z^3+c),c=-19/56+5/13*I,n=31 2415741224951277 r002 10th iterates of z^2 + 2415741226374152 m001 PlouffeB*(FeigenbaumDelta+HardyLittlewoodC5) 2415741227294128 r005 Re(z^2+c),c=-19/122+5/8*I,n=56 2415741228401204 a007 Real Root Of 288*x^4+359*x^3-773*x^2-132*x-555 2415741230634327 l006 ln(207/2318) 2415741230839982 a001 161/17*5^(32/55) 2415741231775125 s001 sum(exp(-Pi/2)^(n-1)*A124519[n],n=1..infinity) 2415741232051033 h001 (3/7*exp(1)+1/11)/(2/3*exp(2)+3/11) 2415741232160931 a007 Real Root Of -627*x^4+410*x^3+800*x^2+247*x-110 2415741241936607 m001 TreeGrowth2nd-ln(2+3^(1/2))*polylog(4,1/2) 2415741246093318 m001 (Bloch-exp(1))/(-HardyLittlewoodC5+Totient) 2415741251521692 r005 Im(z^2+c),c=7/60+11/52*I,n=15 2415741253891609 r009 Re(z^3+c),c=-19/56+5/13*I,n=33 2415741271885881 m001 (Backhouse+Otter)/(GAMMA(5/6)+ArtinRank2) 2415741278912881 k002 Champernowne real with 61*n^2-50*n+13 2415741281157681 r002 23th iterates of z^2 + 2415741304615225 r005 Re(z^2+c),c=-29/106+13/54*I,n=24 2415741310336676 m001 (Lehmer+Robbin)/(2*Pi/GAMMA(5/6)-Artin) 2415741313421832 k006 concat of cont frac of 2415741313583654 a007 Real Root Of 424*x^4-603*x^3-858*x^2-935*x+283 2415741317071608 r008 a(0)=2,K{-n^6,-27+34*n^3-34*n^2+25*n} 2415741318055129 m001 1/Zeta(9)/ln(Conway)^2/sin(Pi/5) 2415741346734018 a003 sin(Pi*5/69)/cos(Pi*13/112) 2415741352926465 l004 sinh(377/61) 2415741365346151 r009 Re(z^3+c),c=-7/19+23/51*I,n=18 2415741367541986 m001 (3^(1/2)-CopelandErdos)/(-Robbin+Sarnak) 2415741376386343 h001 (6/7*exp(2)+4/7)/(5/7*exp(1)+11/12) 2415741377349426 r009 Im(z^3+c),c=-11/78+38/45*I,n=40 2415741379212941 k002 Champernowne real with 123/2*n^2-103/2*n+14 2415741384873280 p004 log(31321/2797) 2415741398387694 a007 Real Root Of -431*x^4-679*x^3+690*x^2-578*x-317 2415741401936472 m009 (1/5*Psi(1,1/3)+4)/(1/5*Psi(1,3/4)-3) 2415741403214494 r002 32th iterates of z^2 + 2415741409169291 r005 Re(z^2+c),c=4/13+11/60*I,n=27 2415741414141132 r005 Re(z^2+c),c=-13/14+32/153*I,n=46 2415741415077743 a003 cos(Pi*49/120)-cos(Pi*18/37) 2415741416633122 k006 concat of cont frac of 2415741418663049 a007 Real Root Of -534*x^4-388*x^3+225*x^2+634*x-159 2415741421577729 a003 -1+cos(7/24*Pi)-cos(7/27*Pi)-2*cos(4/15*Pi) 2415741426884510 r005 Re(z^2+c),c=-13/44+2/37*I,n=5 2415741429122385 m001 (3^(1/2)-ln(5))/(-Artin+QuadraticClass) 2415741438474685 m005 (1/2*3^(1/2)-5/12)/(7/9*Pi-7/12) 2415741442094278 m005 (1/2*Pi+6/11)/(5*3^(1/2)+1/10) 2415741452031208 m001 BesselI(0,1)^(2^(1/3))*BesselI(1,2)^(2^(1/3)) 2415741452031208 m001 BesselI(1,2)^(2^(1/3))*BesselI(0,1)^(2^(1/3)) 2415741454380686 r002 6th iterates of z^2 + 2415741456117814 r009 Re(z^3+c),c=-19/44+31/58*I,n=40 2415741460063683 a007 Real Root Of -837*x^4+602*x^3+145*x^2+816*x+200 2415741462166914 a007 Real Root Of 667*x^4-105*x^3+140*x^2-687*x+157 2415741471738435 r009 Re(z^3+c),c=-19/56+5/13*I,n=34 2415741475729852 r002 5th iterates of z^2 + 2415741477143386 m001 GolombDickman/(Champernowne^MadelungNaCl) 2415741479513001 k002 Champernowne real with 62*n^2-53*n+15 2415741486947573 r009 Re(z^3+c),c=-25/106+23/26*I,n=5 2415741495673291 m001 (Tetranacci-Trott2nd)/(ReciprocalLucas-Salem) 2415741496974642 m001 BesselJ(0,1)*(exp(1/Pi)+Grothendieck) 2415741497699447 r005 Re(z^2+c),c=23/74+5/58*I,n=9 2415741500746264 h003 exp(Pi*(3^(7/2)-5^(4/7))) 2415741500746264 h008 exp(Pi*(3^(7/2)-5^(4/7))) 2415741505134341 m005 (1/3*Catalan+1/2)/(3/7*2^(1/2)-3/11) 2415741505366105 m001 (3^(1/2)-Catalan)/(ln(3)+BesselI(0,2)) 2415741507519181 r005 Re(z^2+c),c=-3/13+16/41*I,n=25 2415741511473056 r005 Im(z^2+c),c=-43/70+27/58*I,n=7 2415741518315857 s002 sum(A257323[n]/(n*2^n+1),n=1..infinity) 2415741521408326 a007 Real Root Of -307*x^4-663*x^3-347*x^2+439*x+118 2415741522872953 r005 Im(z^2+c),c=-5/31+23/56*I,n=3 2415741523845211 r005 Re(z^2+c),c=-1/40+31/48*I,n=22 2415741530593117 l006 ln(2946/3751) 2415741533420975 m005 (1/3*Pi-1/11)/(5/12*gamma-7/11) 2415741550347885 r009 Im(z^3+c),c=-11/50+8/35*I,n=10 2415741556161553 r005 Re(z^2+c),c=-83/102+11/60*I,n=40 2415741565367949 r009 Re(z^3+c),c=-19/56+5/13*I,n=36 2415741574876295 m001 (Chi(1)-ln(5))/(-GAMMA(5/6)+AlladiGrinstead) 2415741575673374 a005 (1/cos(13/119*Pi))^53 2415741577893451 m005 (1/2*gamma+9/10)/(1/12*3^(1/2)-7/11) 2415741579813061 k002 Champernowne real with 125/2*n^2-109/2*n+16 2415741583879602 r009 Re(z^3+c),c=-19/56+5/13*I,n=37 2415741598487953 a007 Real Root Of -954*x^4-392*x^3-897*x^2+974*x-23 2415741606539506 s001 sum(exp(-2*Pi/3)^n*A041532[n],n=1..infinity) 2415741609127762 m001 BesselK(1,1)^(1/2)+GAMMA(13/24) 2415741609734978 a007 Real Root Of -268*x^4-491*x^3+138*x^2-916*x-813 2415741611025198 m001 1/TwinPrimes/TreeGrowth2nd^2/exp(sin(Pi/5))^2 2415741624623762 r009 Re(z^3+c),c=-19/56+5/13*I,n=40 2415741629532296 a007 Real Root Of -35*x^4-880*x^3-865*x^2-750*x+440 2415741629825937 r009 Re(z^3+c),c=-19/56+5/13*I,n=39 2415741637926768 r009 Re(z^3+c),c=-19/56+5/13*I,n=43 2415741641837495 r009 Re(z^3+c),c=-19/56+5/13*I,n=42 2415741641991915 r009 Re(z^3+c),c=-19/56+5/13*I,n=46 2415741642163504 r005 Re(z^2+c),c=-3/118+19/31*I,n=50 2415741643176712 r009 Re(z^3+c),c=-19/56+5/13*I,n=49 2415741643509358 r009 Re(z^3+c),c=-19/56+5/13*I,n=52 2415741643599825 r009 Re(z^3+c),c=-19/56+5/13*I,n=55 2415741643623725 r009 Re(z^3+c),c=-19/56+5/13*I,n=58 2415741643629865 r009 Re(z^3+c),c=-19/56+5/13*I,n=61 2415741643631398 r009 Re(z^3+c),c=-19/56+5/13*I,n=64 2415741643632015 r009 Re(z^3+c),c=-19/56+5/13*I,n=62 2415741643632623 r009 Re(z^3+c),c=-19/56+5/13*I,n=63 2415741643633270 r009 Re(z^3+c),c=-19/56+5/13*I,n=59 2415741643634399 r009 Re(z^3+c),c=-19/56+5/13*I,n=60 2415741643639999 r009 Re(z^3+c),c=-19/56+5/13*I,n=57 2415741643640439 r009 Re(z^3+c),c=-19/56+5/13*I,n=56 2415741643643524 r009 Re(z^3+c),c=-19/56+5/13*I,n=45 2415741643656184 r009 Re(z^3+c),c=-19/56+5/13*I,n=54 2415741643676282 r009 Re(z^3+c),c=-19/56+5/13*I,n=53 2415741643696051 r009 Re(z^3+c),c=-19/56+5/13*I,n=51 2415741643758755 r009 Re(z^3+c),c=-19/56+5/13*I,n=48 2415741643842212 r009 Re(z^3+c),c=-19/56+5/13*I,n=50 2415741644570983 r009 Re(z^3+c),c=-19/56+5/13*I,n=47 2415741647645503 r009 Re(z^3+c),c=-19/56+5/13*I,n=44 2415741660189576 r009 Re(z^3+c),c=-19/56+5/13*I,n=41 2415741675075681 q001 2394/991 2415741680113121 k002 Champernowne real with 63*n^2-56*n+17 2415741681351977 a007 Real Root Of 565*x^4+923*x^3-596*x^2+889*x-604 2415741681864458 a007 Real Root Of 545*x^4-498*x^3-288*x^2-145*x+57 2415741693775852 r002 39th iterates of z^2 + 2415741706800456 m001 Zeta(1,2)/(2/3*Pi*3^(1/2)/GAMMA(2/3)+Zeta(3)) 2415741706800456 m001 Zeta(1,2)/(GAMMA(1/3)+Zeta(3)) 2415741707467910 m002 -Pi^2+Log[Pi]+9*Tanh[Pi] 2415741709868745 r009 Re(z^3+c),c=-19/56+5/13*I,n=38 2415741714760150 a007 Real Root Of 454*x^4+786*x^3+280*x^2-894*x+187 2415741720339097 r005 Re(z^2+c),c=13/106+21/59*I,n=10 2415741730062538 a001 521/46368*377^(4/31) 2415741731088994 m001 (Shi(1)+LambertW(1))/(-MertensB3+TwinPrimes) 2415741731429812 a007 Real Root Of 340*x^4+342*x^3-911*x^2+927*x+798 2415741741768785 r005 Re(z^2+c),c=17/64+4/27*I,n=22 2415741751043846 r002 17th iterates of z^2 + 2415741754322258 r005 Re(z^2+c),c=-15/56+17/64*I,n=30 2415741763963562 a001 1836311903/322*199^(3/11) 2415741766478849 m005 (1/2*gamma-2/3)/(3*gamma-1/6) 2415741766478849 m007 (-1/2*gamma+2/3)/(-3*gamma+1/6) 2415741766918430 m005 (4/5*Catalan+1/3)/(5*Catalan-1/6) 2415741769416323 m001 (-Bloch+ReciprocalLucas)/(BesselJ(1,1)-Shi(1)) 2415741777625205 r005 Im(z^2+c),c=-41/44+1/48*I,n=8 2415741780413181 k002 Champernowne real with 127/2*n^2-115/2*n+18 2415741781136966 a001 3/4*64079^(16/51) 2415741794300623 m001 1/exp(Backhouse)^2*Artin/sin(1) 2415741803529708 r005 Im(z^2+c),c=-25/122+9/26*I,n=22 2415741809021423 a001 9349/3*2971215073^(8/11) 2415741811131111 k007 concat of cont frac of 2415741813101993 a007 Real Root Of -339*x^4+72*x^3+43*x^2+756*x-185 2415741813471483 h001 (3/8*exp(2)+5/9)/(1/5*exp(1)+5/6) 2415741815497298 m001 Champernowne*(exp(1/Pi)+LandauRamanujan2nd) 2415741815508961 h001 (7/11*exp(1)+3/4)/(1/12*exp(1)+4/5) 2415741824040458 l006 ln(727/8141) 2415741826804819 m005 (1/2*5^(1/2)-6/11)/(5/7*exp(1)+3/7) 2415741836647762 a001 439204/3*14930352^(8/11) 2415741836722707 a001 20633239/3*75025^(8/11) 2415741840510090 m001 GolombDickman/exp(DuboisRaymond)/GAMMA(5/12) 2415741851568454 m001 1/TwinPrimes*ln(Salem)^2/sqrt(1+sqrt(3)) 2415741852392067 h001 (1/6*exp(1)+3/4)/(5/9*exp(2)+7/8) 2415741866691789 m005 (1/2*gamma-11/12)/(5/8*Pi+7/11) 2415741870473970 m001 CopelandErdos/Niven*ZetaP(3) 2415741873446717 r005 Re(z^2+c),c=-25/94+17/56*I,n=8 2415741880713241 k002 Champernowne real with 64*n^2-59*n+19 2415741888391493 l006 ln(7451/9487) 2415741889338539 m001 MinimumGamma^Bloch*MinimumGamma^Si(Pi) 2415741895935568 a007 Real Root Of -578*x^4+986*x^3+895*x^2+405*x-162 2415741901157880 r009 Re(z^3+c),c=-19/56+5/13*I,n=35 2415741901912658 r005 Re(z^2+c),c=-15/56+17/64*I,n=33 2415741916066505 v002 sum(1/(2^n+(6*n^2+31*n-34)),n=1..infinity) 2415741917255380 m001 (Champernowne-Trott2nd)/(exp(1/Pi)-Pi^(1/2)) 2415741918648194 r005 Re(z^2+c),c=-11/62+27/52*I,n=52 2415741927877491 m001 (Stephens-ZetaP(3))/(exp(-1/2*Pi)-Artin) 2415741932583016 a001 161/4*75025^(31/40) 2415741943721516 m001 FeigenbaumAlpha/(MertensB3^Champernowne) 2415741946768852 r005 Im(z^2+c),c=-57/118+29/63*I,n=44 2415741947879318 r005 Re(z^2+c),c=19/106+9/19*I,n=31 2415741948540038 a005 (1/cos(29/126*Pi))^123 2415741967452087 r005 Re(z^2+c),c=-15/56+17/64*I,n=35 2415741970985598 a007 Real Root Of -799*x^4-35*x^3+627*x^2+371*x-123 2415741977751047 r005 Re(z^2+c),c=-15/56+17/64*I,n=38 2415741980799873 r005 Re(z^2+c),c=-15/56+17/64*I,n=31 2415741981013301 k002 Champernowne real with 129/2*n^2-121/2*n+20 2415741983091438 r005 Re(z^2+c),c=-15/56+17/64*I,n=40 2415741983143750 r005 Re(z^2+c),c=-15/56+17/64*I,n=36 2415741983796486 r005 Re(z^2+c),c=-15/56+17/64*I,n=43 2415741984155711 r005 Re(z^2+c),c=-15/56+17/64*I,n=41 2415741984230157 r005 Re(z^2+c),c=-15/56+17/64*I,n=45 2415741984277215 r005 Re(z^2+c),c=-15/56+17/64*I,n=48 2415741984300291 r005 Re(z^2+c),c=-15/56+17/64*I,n=46 2415741984312319 r005 Re(z^2+c),c=-15/56+17/64*I,n=50 2415741984315350 r005 Re(z^2+c),c=-15/56+17/64*I,n=53 2415741984316753 r005 Re(z^2+c),c=-15/56+17/64*I,n=51 2415741984318183 r005 Re(z^2+c),c=-15/56+17/64*I,n=55 2415741984318368 r005 Re(z^2+c),c=-15/56+17/64*I,n=58 2415741984318446 r005 Re(z^2+c),c=-15/56+17/64*I,n=56 2415741984318596 r005 Re(z^2+c),c=-15/56+17/64*I,n=60 2415741984318607 r005 Re(z^2+c),c=-15/56+17/64*I,n=63 2415741984318610 r005 Re(z^2+c),c=-15/56+17/64*I,n=61 2415741984318637 r005 Re(z^2+c),c=-15/56+17/64*I,n=64 2415741984318654 r005 Re(z^2+c),c=-15/56+17/64*I,n=62 2415741984318756 r005 Re(z^2+c),c=-15/56+17/64*I,n=59 2415741984318962 r005 Re(z^2+c),c=-15/56+17/64*I,n=57 2415741984320313 r005 Re(z^2+c),c=-15/56+17/64*I,n=54 2415741984322719 r005 Re(z^2+c),c=-15/56+17/64*I,n=52 2415741984340658 r005 Re(z^2+c),c=-15/56+17/64*I,n=49 2415741984368348 r005 Re(z^2+c),c=-15/56+17/64*I,n=47 2415741984605645 r005 Re(z^2+c),c=-15/56+17/64*I,n=44 2415741984919967 r005 Re(z^2+c),c=-15/56+17/64*I,n=42 2415741988047191 r005 Re(z^2+c),c=-15/56+17/64*I,n=39 2415741989657168 a007 Real Root Of -814*x^4-916*x^3+293*x^2+573*x-14 2415741991555090 r005 Re(z^2+c),c=-15/56+17/64*I,n=37 2415742003128449 a007 Real Root Of -379*x^4-438*x^3+821*x^2-968*x-397 2415742004989438 a001 3/4*2207^(23/51) 2415742009542802 m001 ArtinRank2^TreeGrowth2nd-Riemann3rdZero 2415742010982642 r005 Im(z^2+c),c=-101/126+8/63*I,n=40 2415742013191065 m002 E^Pi+Tanh[Pi]+(2*Tanh[Pi])/Pi^4 2415742013556047 m001 (3^(1/3)*FellerTornier-Landau)/FellerTornier 2415742017636783 m001 LambertW(1)/(GolombDickman-Thue) 2415742022930603 a007 Real Root Of 366*x^4+891*x^3+314*x^2+320*x-963 2415742030687793 m001 GAMMA(2/3)+(2^(1/3))^sin(1/12*Pi) 2415742030687793 m001 GAMMA(2/3)+(2^(1/3))^sin(Pi/12) 2415742032622105 r005 Re(z^2+c),c=-15/56+17/64*I,n=34 2415742034452342 a005 (1/cos(10/153*Pi))^150 2415742044682172 a003 sin(Pi*5/113)/cos(Pi*11/36) 2415742060261646 l006 ln(520/5823) 2415742061370665 a007 Real Root Of -912*x^4+213*x^3+955*x^2+312*x-131 2415742070916060 r005 Re(z^2+c),c=-15/56+17/64*I,n=32 2415742074273163 r005 Re(z^2+c),c=13/44+9/52*I,n=40 2415742081313361 k002 Champernowne real with 65*n^2-62*n+21 2415742083366028 r002 24th iterates of z^2 + 2415742084693249 r005 Re(z^2+c),c=-15/56+17/64*I,n=26 2415742085467111 r009 Re(z^3+c),c=-19/50+19/40*I,n=45 2415742094725912 a001 192900153618/89*6557470319842^(12/17) 2415742098906463 m005 (1/2*2^(1/2)-1)/(6/7*Zeta(3)-10/11) 2415742105363971 r005 Im(z^2+c),c=-55/82+11/24*I,n=27 2415742108653929 m001 (LambertW(1)+1)/(-exp(1/2)+1) 2415742117351504 r005 Re(z^2+c),c=-17/98+25/46*I,n=7 2415742120556896 r005 Im(z^2+c),c=-51/122+7/17*I,n=63 2415742121543201 m006 (2/5*exp(Pi)+5)/(3/5/Pi-1/4) 2415742122370179 l006 ln(4505/5736) 2415742127142548 r002 18th iterates of z^2 + 2415742133921895 r004 Im(z^2+c),c=-23/24+4/17*I,z(0)=-1,n=38 2415742134423518 a005 (1/cos(52/131*Pi))^45 2415742134967429 h002 exp(14^(3/10)+15^(6/7)) 2415742134967429 h007 exp(14^(3/10)+15^(6/7)) 2415742141038148 a007 Real Root Of 313*x^4+264*x^3-707*x^2+991*x-418 2415742142896670 r005 Re(z^2+c),c=-6/29+19/42*I,n=47 2415742143970505 m001 (3^(1/3))^GAMMA(13/24)+Lehmer 2415742143970505 m001 Lehmer+(3^(1/3))^GAMMA(13/24) 2415742148211022 m005 (1/3*exp(1)+2/11)/(1/6*Zeta(3)+1/4) 2415742149512442 m001 GAMMA(13/24)*Tribonacci^2/exp(exp(1))^2 2415742154874644 a007 Real Root Of 279*x^4-120*x^3-468*x^2-959*x-207 2415742157072472 m001 (Zeta(5)-Khinchin)/(Rabbit-Trott2nd) 2415742161964496 r005 Im(z^2+c),c=10/29+17/58*I,n=5 2415742162833415 l005 862/69/(exp(431/69)+1) 2415742176928322 r005 Im(z^2+c),c=-53/118+25/58*I,n=34 2415742176987939 p003 LerchPhi(1/1024,5,478/227) 2415742181613421 k002 Champernowne real with 131/2*n^2-127/2*n+22 2415742186261074 m001 (Lehmer+Mills)/(polylog(4,1/2)-Conway) 2415742193630436 a007 Real Root Of -513*x^4-798*x^3+755*x^2-736*x+37 2415742196530385 p001 sum(1/(467*n+342)/n/(512^n),n=1..infinity) 2415742198127451 k006 concat of cont frac of 2415742204929291 k003 Champernowne real with 13/2*n^3-69/2*n^2+60*n-30 2415742211646734 k006 concat of cont frac of 2415742218645370 a001 281/10983760033*2178309^(2/13) 2415742218645386 a001 1/267913919*591286729879^(2/13) 2415742218645386 a001 843/86267571272*1134903170^(2/13) 2415742222897519 a001 843/12586269025*4181^(2/13) 2415742232827654 m008 (3/4*Pi^5-4)/(3*Pi^3+1/3) 2415742249087450 r002 61th iterates of z^2 + 2415742255268632 r005 Re(z^2+c),c=33/94+8/23*I,n=53 2415742259774739 r009 Im(z^3+c),c=-19/106+5/21*I,n=7 2415742264742858 r002 19th iterates of z^2 + 2415742266423430 l006 ln(833/9328) 2415742271345172 h001 (6/11*exp(1)+2/9)/(5/6*exp(2)+9/10) 2415742281913482 k002 Champernowne real with 66*n^2-65*n+23 2415742291518229 r005 Im(z^2+c),c=-15/14+5/183*I,n=10 2415742291826450 m002 -Pi^3/2+3*Log[Pi]*Sinh[Pi] 2415742301578611 a007 Real Root Of -480*x^4-965*x^3+880*x^2+781*x-506 2415742309593225 a007 Real Root Of 345*x^4+911*x^3+359*x^2+807*x+948 2415742311653414 r009 Re(z^3+c),c=-5/122+35/59*I,n=38 2415742316152212 m001 (ln(3)+1)/(-Zeta(3)+1/3) 2415742322870983 a007 Real Root Of 188*x^4+108*x^3-737*x^2-19*x-625 2415742328477754 m004 -125*Pi+5*Cosh[Sqrt[5]*Pi]-3*Sin[Sqrt[5]*Pi] 2415742345151771 m001 (Ei(1,1)+MertensB1)/(BesselJ(0,1)+GAMMA(3/4)) 2415742345877326 m001 2*Pi/GAMMA(5/6)/(Si(Pi)+ZetaP(2)) 2415742351030862 m009 (2/3*Psi(1,2/3)-3)/(4*Psi(1,1/3)-3/4) 2415742351622997 m001 (GAMMA(3/4)+ln(Pi))/(Backhouse-Weierstrass) 2415742365242048 m001 (-Grothendieck+Porter)/(Psi(1,1/3)-exp(Pi)) 2415742367080223 m001 MertensB2*Sierpinski-sin(1/12*Pi) 2415742373726001 a007 Real Root Of 39*x^4+980*x^3+921*x^2+141*x-322 2415742381421931 m001 ZetaR(2)/Otter/exp(-1/2*Pi) 2415742382213542 k002 Champernowne real with 133/2*n^2-133/2*n+24 2415742385232896 g006 Psi(1,3/10)+Psi(1,1/4)-Psi(1,9/11)-Psi(1,2/3) 2415742385701422 a001 1836311903/2207*199^(7/11) 2415742398120241 a007 Real Root Of -195*x^4-138*x^3+374*x^2-671*x+892 2415742402235823 m001 1/GAMMA(7/12)/Si(Pi)^2*ln(GAMMA(7/24))^2 2415742409866081 l006 ln(6064/7721) 2415742416983188 h001 (-9*exp(4)+11)/(-10*exp(3)+2) 2415742427487140 a001 8/7*47^(42/53) 2415742437160208 m001 (Catalan-Psi(2,1/3))/(GAMMA(17/24)+MertensB2) 2415742439150886 m005 (1/2*Catalan+9/11)/(2/9*gamma+2/5) 2415742448725482 m005 (1/3*5^(1/2)-2/5)/(9/11*Pi-4) 2415742457806893 m001 (Zeta(1/2)-gamma(1))/(BesselK(1,1)-Salem) 2415742463013302 a007 Real Root Of -549*x^4+309*x^3-974*x^2+680*x+17 2415742465281660 m001 ReciprocalLucas/(Pi^(1/2)-Sierpinski) 2415742468346368 m001 GAMMA(5/12)^2*ln(Niven) 2415742476717700 r005 Re(z^2+c),c=-29/30+11/117*I,n=38 2415742482149926 s002 sum(A261579[n]/(exp(n)-1),n=1..infinity) 2415742482513602 k002 Champernowne real with 67*n^2-68*n+25 2415742488169872 a007 Real Root Of 405*x^4+795*x^3-17*x^2+914*x-278 2415742501773111 m001 (ln(3)-ln(Pi))/(ReciprocalLucas-ZetaQ(2)) 2415742508695615 m001 FransenRobinson/(PrimesInBinary+RenyiParking) 2415742536571864 m005 (1/3*exp(1)-5)/(1/3*Catalan-2) 2415742536577607 a007 Real Root Of -655*x^4+34*x^3+757*x^2+627*x+110 2415742544202351 r009 Im(z^3+c),c=-37/106+8/45*I,n=8 2415742548419122 r009 Re(z^3+c),c=-17/60+12/47*I,n=5 2415742550242694 r005 Re(z^2+c),c=-29/30+11/117*I,n=40 2415742573575123 r005 Re(z^2+c),c=-17/14+23/251*I,n=16 2415742579768877 l006 ln(7623/9706) 2415742580381020 m001 Robbin^LambertW(1)*Champernowne^LambertW(1) 2415742582813662 k002 Champernowne real with 135/2*n^2-139/2*n+26 2415742584446977 s001 sum(exp(-3*Pi/4)^n*A062443[n],n=1..infinity) 2415742585766170 a003 cos(Pi*19/115)*cos(Pi*16/39) 2415742586720050 m005 (1/2*3^(1/2)-1/2)/(3/7*Zeta(3)+1) 2415742588122993 a001 28657/18*7^(3/14) 2415742590389262 r005 Re(z^2+c),c=-29/30+11/117*I,n=48 2415742590988573 r005 Re(z^2+c),c=-29/30+11/117*I,n=50 2415742591437619 r005 Re(z^2+c),c=-29/30+11/117*I,n=58 2415742591442114 r005 Re(z^2+c),c=-29/30+11/117*I,n=60 2415742591447273 r005 Re(z^2+c),c=-29/30+11/117*I,n=62 2415742591447933 r005 Re(z^2+c),c=-29/30+11/117*I,n=64 2415742591462494 r005 Re(z^2+c),c=-29/30+11/117*I,n=56 2415742591493233 r005 Re(z^2+c),c=-29/30+11/117*I,n=52 2415742591532395 r005 Re(z^2+c),c=-29/30+11/117*I,n=54 2415742592555293 r005 Re(z^2+c),c=-29/30+11/117*I,n=46 2415742594423740 p004 log(26479/25847) 2415742598724769 r005 Re(z^2+c),c=-29/30+11/117*I,n=42 2415742599947761 r005 Re(z^2+c),c=-29/30+11/117*I,n=44 2415742608435052 r005 Re(z^2+c),c=-15/56+17/64*I,n=29 2415742608928537 l006 ln(313/3505) 2415742615064910 a003 sin(Pi*19/110)-sin(Pi*23/84) 2415742617141101 k009 concat of cont frac of 2415742617259732 r009 Re(z^3+c),c=-19/56+5/13*I,n=32 2415742618902712 a007 Real Root Of -242*x^4-342*x^3+298*x^2-419*x+669 2415742625129836 a007 Real Root Of 308*x^4+789*x^3-92*x^2-242*x+586 2415742634266222 r005 Re(z^2+c),c=13/54+5/11*I,n=43 2415742637715834 a007 Real Root Of -255*x^4+29*x^3-205*x^2+711*x+185 2415742646439175 m001 (FeigenbaumKappa+ZetaP(3))/(3^(1/2)-ln(3)) 2415742653810835 r005 Re(z^2+c),c=-5/8+14/165*I,n=2 2415742654771177 m001 (DuboisRaymond+Otter)/(2^(1/2)-exp(1)) 2415742655936952 a007 Real Root Of 517*x^4+937*x^3-556*x^2+327*x-363 2415742658089975 r005 Re(z^2+c),c=-29/30+11/117*I,n=36 2415742660756197 a001 199/10610209857723*317811^(13/23) 2415742669888046 m001 (Psi(1,1/3)-ln(5))^ThueMorse 2415742682469282 m001 sin(1/12*Pi)^(ErdosBorwein/GAMMA(7/12)) 2415742682927491 r009 Re(z^3+c),c=-6/25+27/38*I,n=38 2415742683113722 k002 Champernowne real with 68*n^2-71*n+27 2415742689594813 r005 Im(z^2+c),c=-11/41*I,n=18 2415742723318758 m005 (1/2*Catalan+1/3)/(2/11*exp(1)-1/6) 2415742724466662 m005 (1/2*5^(1/2)+3/5)/(2/5*Pi-6/11) 2415742727576039 m006 (2*exp(Pi)-3)/(1/3*exp(2*Pi)+2/3) 2415742727968680 a007 Real Root Of -508*x^4-923*x^3+685*x^2+77*x+477 2415742738279550 r009 Re(z^3+c),c=-6/25+31/42*I,n=22 2415742750723688 r005 Im(z^2+c),c=29/98+3/59*I,n=55 2415742753462599 a003 -1/2-cos(2/7*Pi)-2*cos(7/24*Pi)-cos(10/21*Pi) 2415742755242832 m001 1/exp(Zeta(1,2))*BesselJ(1,1)*arctan(1/2)^2 2415742758002595 m001 (3^(1/2)+CopelandErdos*Kolakoski)/Kolakoski 2415742761531218 m005 (1/2*gamma+1/6)/(6/7*3^(1/2)+2/5) 2415742769133299 m005 (1/2*2^(1/2)-5/7)/(7/11*Catalan-2/7) 2415742776529104 m001 (Trott2nd+ZetaQ(3))/(Zeta(5)-KhinchinLevy) 2415742783413782 k002 Champernowne real with 137/2*n^2-145/2*n+28 2415742788924492 r005 Im(z^2+c),c=3/98+14/53*I,n=4 2415742793791574 q001 2179/902 2415742800807372 m001 1/Tribonacci*MertensB1/exp(sqrt(Pi)) 2415742806363889 r009 Re(z^3+c),c=-31/82+26/55*I,n=19 2415742809301313 a001 267084832/321*199^(7/11) 2415742832456833 r009 Re(z^3+c),c=-1/24+25/41*I,n=45 2415742836630527 m001 ln(GAMMA(11/24))^2*Robbin*sin(1) 2415742842463396 a007 Real Root Of -772*x^4+562*x^3+904*x^2+807*x-253 2415742869867882 r005 Im(z^2+c),c=17/110+2/11*I,n=4 2415742871103717 a001 12586269025/15127*199^(7/11) 2415742878908929 h001 (2/3*exp(2)+4/11)/(4/7*exp(1)+7/11) 2415742880120566 a001 10983760033/13201*199^(7/11) 2415742881436107 a001 43133785636/51841*199^(7/11) 2415742881628041 a001 75283811239/90481*199^(7/11) 2415742881656044 a001 591286729879/710647*199^(7/11) 2415742881660130 a001 832040*199^(7/11) 2415742881660726 a001 4052739537881/4870847*199^(7/11) 2415742881660813 a001 3536736619241/4250681*199^(7/11) 2415742881660867 a001 3278735159921/3940598*199^(7/11) 2415742881661094 a001 2504730781961/3010349*199^(7/11) 2415742881662655 a001 956722026041/1149851*199^(7/11) 2415742881673351 a001 182717648081/219602*199^(7/11) 2415742881746664 a001 139583862445/167761*199^(7/11) 2415742882249156 a001 53316291173/64079*199^(7/11) 2415742883713842 k002 Champernowne real with 69*n^2-74*n+29 2415742885693286 a001 10182505537/12238*199^(7/11) 2415742892190979 m001 (Kac+ZetaQ(4))/(Shi(1)-ln(2+3^(1/2))) 2415742894353867 r005 Im(z^2+c),c=-37/122+13/34*I,n=13 2415742894493967 r009 Im(z^3+c),c=-5/18+4/19*I,n=8 2415742898871092 m001 exp(1/exp(1))*(3^(1/3))^OrthogonalArrays 2415742900541285 m001 (-FeigenbaumB+MertensB3)/(5^(1/2)+Zeta(1,-1)) 2415742901010824 m001 (MertensB2+Stephens)/(Champernowne+Landau) 2415742901694427 m002 -Pi^4-Log[Pi]+6*ProductLog[Pi]*Sinh[Pi] 2415742909299704 a001 7778742049/9349*199^(7/11) 2415742914555316 r009 Im(z^3+c),c=-17/40+6/49*I,n=33 2415742916429179 a007 Real Root Of -73*x^4-102*x^3+275*x^2+69*x-390 2415742917827508 a001 1/29*(1/2*5^(1/2)+1/2)^9*322^(5/13) 2415742923798040 m001 GolombDickman/Cahen^2*ln(GAMMA(19/24)) 2415742945921021 m005 (1/3*3^(1/2)+1/12)/(5/11*Catalan-1/7) 2415742962994769 a007 Real Root Of 374*x^4+772*x^3-207*x^2+437*x+410 2415742964127090 s002 sum(A034968[n]/(n*2^n-1),n=1..infinity) 2415742965497506 r002 3th iterates of z^2 + 2415742971485904 r005 Re(z^2+c),c=-41/52+2/31*I,n=6 2415742973703872 r005 Im(z^2+c),c=-25/122+9/26*I,n=21 2415742975578422 m001 (exp(1)+GAMMA(3/4))/(-Zeta(1,-1)+Porter) 2415742977128187 r008 a(0)=0,K{-n^6,(2*n+1)*(85+36*n^2+17*n)} 2415742979823070 r008 a(0)=0,K{-n^6,48*n^3+130*n^2+175*n+61} 2415742983640584 r008 a(0)=0,K{-n^6,18*n^3+205*n^2+160*n+31} 2415742983849491 r009 Re(z^3+c),c=-4/11+18/41*I,n=30 2415742984013902 k002 Champernowne real with 139/2*n^2-151/2*n+30 2415742991985872 r005 Im(z^2+c),c=7/58+9/43*I,n=17 2415742996582351 a007 Real Root Of 507*x^4+824*x^3-865*x^2+265*x+38 2415742996744535 a007 Real Root Of -298*x^4-609*x^3-14*x^2+682*x+158 2415742998691719 l006 ln(732/8197) 2415743003609062 s002 sum(A081896[n]/(exp(n)),n=1..infinity) 2415743011061136 a007 Real Root Of 39*x^4-307*x^3-980*x^2+111*x+331 2415743014100722 r005 Re(z^2+c),c=-15/56+17/64*I,n=27 2415743015240708 a007 Real Root Of -363*x^4-765*x^3+289*x^2-140*x-447 2415743023558403 a007 Real Root Of 212*x^4+140*x^3-887*x^2-231*x-628 2415743031919967 s002 sum(A276150[n]/(n*2^n-1),n=1..infinity) 2415743033460902 m002 -Pi^2+E^Pi*Pi^2+E^Pi*Tanh[Pi] 2415743044382775 r002 2th iterates of z^2 + 2415743045488835 r009 Re(z^3+c),c=-19/56+5/13*I,n=25 2415743068436933 m005 (1/2*3^(1/2)+5/12)/(3/11*2^(1/2)-11/12) 2415743071100518 a001 2971215073/3571*199^(7/11) 2415743071298896 r009 Re(z^3+c),c=-19/48+26/47*I,n=37 2415743076446164 m001 BesselJ(0,1)^Zeta(1/2)-Zeta(1,2) 2415743084313962 k002 Champernowne real with 70*n^2-77*n+31 2415743085611149 r009 Im(z^3+c),c=-12/29+5/51*I,n=5 2415743094738146 m001 GAMMA(23/24)*Ei(1)^Totient 2415743099082063 r002 53th iterates of z^2 + 2415743103463012 r005 Im(z^2+c),c=-91/106+9/50*I,n=19 2415743104682896 p004 log(12889/1151) 2415743118476711 r009 Re(z^3+c),c=-23/64+11/27*I,n=5 2415743122099813 l006 ln(7157/7332) 2415743123688583 m001 (Shi(1)+OneNinth)/(5^(1/2)-exp(1)) 2415743125356307 p002 log(13^(3/5)+5^(7/6)) 2415743128055970 m001 Porter^BesselI(1,2)+Stephens 2415743131687669 r005 Re(z^2+c),c=-6/29+43/63*I,n=52 2415743150626263 m001 Zeta(7)^2*GAMMA(13/24)/exp(cos(Pi/12))^2 2415743151138601 m001 Zeta(1/2)^GAMMA(5/6)*DuboisRaymond^GAMMA(5/6) 2415743154720632 p003 LerchPhi(1/256,6,93/50) 2415743162674605 r009 Im(z^3+c),c=-5/12+3/23*I,n=25 2415743179927689 m001 FeigenbaumB/HeathBrownMoroz/MertensB1 2415743184614022 k002 Champernowne real with 141/2*n^2-157/2*n+32 2415743191445804 h001 (-5*exp(3)+11)/(-7*exp(4)+12) 2415743191507002 m005 (1/2*Zeta(3)+4/5)/(7/12*gamma-11/12) 2415743192484350 a007 Real Root Of 398*x^4+451*x^3+540*x^2-387*x-120 2415743198833298 a007 Real Root Of 431*x^4+907*x^3-x^2+755*x-62 2415743224912644 m001 StolarskyHarborth^GAMMA(23/24)-Zeta(1,-1) 2415743228232757 r009 Im(z^3+c),c=-11/25+4/37*I,n=20 2415743240635142 l006 ln(1559/1985) 2415743243619169 a007 Real Root Of 60*x^4-153*x^3-287*x^2+819*x-547 2415743260740930 m005 (1/2*Catalan-1/5)/(4/7*Pi-8/11) 2415743263378060 s002 sum(A203662[n]/((exp(n)-1)/n),n=1..infinity) 2415743284914082 k002 Champernowne real with 71*n^2-80*n+33 2415743287516948 a001 199/377*832040^(37/47) 2415743289310390 m001 GAMMA(13/24)/ln(Champernowne)*GAMMA(7/24) 2415743289491614 m001 BesselI(0,1)+Salem^Thue 2415743289851228 l006 ln(419/4692) 2415743293762659 m001 (Zeta(3)-GAMMA(3/4))/(Ei(1,1)+RenyiParking) 2415743294711295 r009 Im(z^3+c),c=-41/90+3/34*I,n=35 2415743296411708 r009 Re(z^3+c),c=-27/64+7/18*I,n=6 2415743298998360 m001 KhinchinLevy+OrthogonalArrays-ZetaP(3) 2415743301763138 a007 Real Root Of -287*x^4-887*x^3-355*x^2+151*x-294 2415743306269256 s002 sum(A186095[n]/(n!^3),n=1..infinity) 2415743343540641 a007 Real Root Of 296*x^4+397*x^3-928*x^2-437*x-124 2415743353722953 r009 Re(z^3+c),c=-41/102+25/48*I,n=53 2415743354181909 m005 (1/2*5^(1/2)+3/10)/(2/9*2^(1/2)+3/11) 2415743359462958 m001 (GAMMA(7/12)+Khinchin)/(MertensB2+Rabbit) 2415743370496867 r005 Im(z^2+c),c=-15/44+7/18*I,n=26 2415743370551672 p001 sum(1/(466*n+343)/n/(512^n),n=1..infinity) 2415743374416827 r005 Im(z^2+c),c=-79/86+11/50*I,n=57 2415743376011588 m001 (sin(1/12*Pi)+GAMMA(7/12))/(Lehmer-MertensB3) 2415743385214142 k002 Champernowne real with 143/2*n^2-163/2*n+34 2415743390265017 m001 (Porter+ZetaP(2))/Kolakoski 2415743393515261 a007 Real Root Of -486*x^4-871*x^3+735*x^2+226*x+529 2415743403261272 r005 Re(z^2+c),c=37/122+7/39*I,n=36 2415743407576401 m001 MinimumGamma^2*ln(LaplaceLimit)^2*Sierpinski^2 2415743407612301 a007 Real Root Of -186*x^4-411*x^3+129*x^2+208*x+290 2415743423711506 r005 Re(z^2+c),c=-29/30+11/117*I,n=34 2415743427384175 r002 6th iterates of z^2 + 2415743430137884 g006 Psi(1,1/3)-Psi(1,5/12)-2*Psi(1,1/11) 2415743430499937 m001 log(1+sqrt(2))*exp(Robbin)*sqrt(2) 2415743445248601 a001 199/55*8^(21/23) 2415743457638579 m001 (exp(1)+ReciprocalFibonacci)/(Salem+Totient) 2415743471470084 m001 ln(KhintchineLevy)^2/CareFree/PrimesInBinary^2 2415743483058172 a003 sin(Pi*5/78)/cos(Pi*18/95) 2415743484937089 m001 1/ln(Zeta(9))^2/CopelandErdos^2*cos(1) 2415743485514202 k002 Champernowne real with 72*n^2-83*n+35 2415743488123271 a007 Real Root Of -724*x^4-786*x^3-429*x^2+673*x+179 2415743494235571 a007 Real Root Of 397*x^4+322*x^3-971*x^2-804*x+245 2415743513671893 m005 (4/5*2^(1/2)-3/4)/(5/6+1/3*5^(1/2)) 2415743521803037 r009 Re(z^3+c),c=-9/38+2/21*I,n=7 2415743528260248 m001 exp(GAMMA(5/6))*GAMMA(19/24)^2*LambertW(1) 2415743537304655 m008 (1/5*Pi^4+4/5)/(4/5*Pi^2+1/2) 2415743546185096 a007 Real Root Of -361*x^4+96*x^3-774*x^2+564*x+184 2415743552089766 r005 Im(z^2+c),c=-43/64+6/23*I,n=38 2415743566402344 a007 Real Root Of 9*x^4+218*x^3+34*x^2+474*x-171 2415743566882192 r005 Re(z^2+c),c=-29/30+11/117*I,n=32 2415743581251249 m001 (Pi^(1/2)-Kac)/(Magata+Totient) 2415743581670021 a007 Real Root Of -369*x^4-542*x^3+927*x^2-147*x-839 2415743585814262 k002 Champernowne real with 145/2*n^2-169/2*n+36 2415743587596297 m005 (3/4*gamma+2)/(5*2^(1/2)+3) 2415743589969943 m009 (4*Psi(1,1/3)-3/4)/(1/5*Pi^2-1/3) 2415743591160008 m001 Zeta(3)/DuboisRaymond^2/ln(Zeta(5))^2 2415743596476251 m005 (-1/3+1/3*5^(1/2))/(-13/5+2/5*5^(1/2)) 2415743600970188 m005 (13/30+1/10*5^(1/2))/(5*gamma-1/6) 2415743601905065 a007 Real Root Of -402*x^4-729*x^3+706*x^2+622*x+796 2415743603685443 a005 (1/sin(24/55*Pi))^845 2415743612250565 m005 (1/2*Zeta(3)+9/10)/(43/8+3/8*5^(1/2)) 2415743616885172 r005 Im(z^2+c),c=11/42+5/48*I,n=29 2415743618015512 a001 1/11*(1/2*5^(1/2)+1/2)^4*47^(19/20) 2415743627122286 m001 (Pi-2^(1/2))/(ln(2+3^(1/2))-BesselK(1,1)) 2415743627165699 r005 Re(z^2+c),c=-13/16+11/58*I,n=4 2415743675552054 r002 60th iterates of z^2 + 2415743677024354 h001 (6/11*exp(1)+3/8)/(11/12*exp(2)+11/12) 2415743683027731 m001 exp(Pi)+FibonacciFactorial^StolarskyHarborth 2415743686114322 k002 Champernowne real with 73*n^2-86*n+37 2415743688639133 h001 (7/12*exp(2)+3/5)/(5/12*exp(1)+9/10) 2415743690913915 m001 (-Totient+Trott)/(2^(1/3)-Rabbit) 2415743691034629 r002 43th iterates of z^2 + 2415743691155482 m001 FeigenbaumC^(FibonacciFactorial/sin(1)) 2415743692891532 h001 (-6*exp(-1)+5)/(-9*exp(1/3)+1) 2415743695810631 l006 ln(525/5879) 2415743709576066 r005 Re(z^2+c),c=23/86+3/20*I,n=40 2415743721676145 r005 Im(z^2+c),c=-83/126+1/35*I,n=29 2415743721873134 p003 LerchPhi(1/512,4,241/95) 2415743736964807 h001 (1/10*exp(2)+1/2)/(7/12*exp(2)+9/11) 2415743752367185 m008 (1/6*Pi-1/3)/(4/5*Pi^4+5/6) 2415743754881533 r009 Re(z^3+c),c=-1/22+33/52*I,n=18 2415743762670466 r009 Re(z^3+c),c=-45/94+34/59*I,n=53 2415743762978199 m005 (-1/3+1/4*5^(1/2))/(2/7*5^(1/2)-6/11) 2415743764125626 m001 1/GAMMA(5/24)*ln(Khintchine)*Zeta(5)^2 2415743765424252 s002 sum(A214773[n]/(n*10^n-1),n=1..infinity) 2415743776084372 m001 1/Zeta(1/2)/GAMMA(17/24)^2/exp(cos(1)) 2415743778874407 m001 (BesselK(0,1)-ln(Pi))/(GAMMA(7/12)+Porter) 2415743786414382 k002 Champernowne real with 147/2*n^2-175/2*n+38 2415743790704165 a001 76/5*21^(7/46) 2415743791901190 m001 (Kac-ThueMorse)/(Zeta(1,2)+GAMMA(23/24)) 2415743795928669 m001 FeigenbaumD+Riemann2ndZero+ZetaP(2) 2415743803324157 a007 Real Root Of 223*x^4-59*x^3+452*x^2-756*x+18 2415743815723881 p004 log(31769/2837) 2415743821424221 r009 Re(z^3+c),c=-7/30+19/27*I,n=17 2415743834495347 m001 PrimesInBinary/(cos(1)+Salem) 2415743837580479 r008 a(0)=0,K{-n^6,-5+8*n^3-7*n^2+2*n} 2415743837580479 r008 a(0)=0,K{-n^6,5-8*n^3+7*n^2-2*n} 2415743846368721 m001 (Pi^(1/2)-FeigenbaumD)/(Paris-PlouffeB) 2415743846561088 r009 Re(z^3+c),c=-25/74+12/31*I,n=10 2415743848317809 m001 (gamma(3)-Kac)/(Kolakoski+KomornikLoreti) 2415743848654977 m002 Pi^5+6*Pi^5*Coth[Pi]*Log[Pi] 2415743853160799 m001 (Shi(1)-cos(1/5*Pi))/(-3^(1/3)+PrimesInBinary) 2415743859996318 a007 Real Root Of -364*x^4-803*x^3+418*x^2+246*x-769 2415743867970092 r002 9th iterates of z^2 + 2415743869055642 h001 (1/6*exp(1)+7/8)/(2/3*exp(2)+4/7) 2415743883259700 b008 1-49/E^(2/3) 2415743886182135 p004 log(20011/1787) 2415743886714442 k002 Champernowne real with 74*n^2-89*n+39 2415743889449947 m001 1/BesselJ(0,1)*Sierpinski^2/exp(GAMMA(17/24)) 2415743902674112 s002 sum(A206904[n]/(10^n+1),n=1..infinity) 2415743902674222 s002 sum(A189472[n]/(10^n+1),n=1..infinity) 2415743903565636 m001 (Robbin-Trott)/(MertensB1-Otter) 2415743911812225 h001 (7/11*exp(2)+5/9)/(3/5*exp(1)+6/11) 2415743914722888 a007 Real Root Of 358*x^4-917*x^3-925*x^2-883*x+279 2415743925306352 a007 Real Root Of -404*x^4-835*x^3-71*x^2-723*x+655 2415743927068750 m005 (1/2*2^(1/2)-4/7)/(4/9*gamma-9/11) 2415743943558733 m001 cos(Pi/5)*exp(TwinPrimes)*cosh(1) 2415743945048295 r009 Re(z^3+c),c=-13/31+10/19*I,n=42 2415743951408962 a001 4/2971215073*144^(2/17) 2415743965377877 l006 ln(631/7066) 2415743978593635 r005 Re(z^2+c),c=-15/19+3/40*I,n=40 2415743983781962 a007 Real Root Of -220*x^4-463*x^3+320*x^2+157*x-523 2415743984629498 m004 -5+125*Pi+Sqrt[5]*Pi-5*Cosh[Sqrt[5]*Pi] 2415743986257124 r005 Im(z^2+c),c=45/122+4/15*I,n=61 2415743987014502 k002 Champernowne real with 149/2*n^2-181/2*n+40 2415743991194250 m007 (-1/6*gamma+4)/(-4*gamma-12*ln(2)-2*Pi+3/4) 2415743995286894 r005 Im(z^2+c),c=-9/14+26/193*I,n=14 2415743999808062 a001 48315401/2-233/2*5^(1/2) 2415743999999997 a001 7464799+7465176*5^(1/2) 2415744010611436 h001 (2/9*exp(1)+5/6)/(7/10*exp(2)+7/9) 2415744012788194 m005 (1/2*gamma+4/7)/(5/6*gamma-1/8) 2415744014234601 r002 26th iterates of z^2 + 2415744014682010 a007 Real Root Of 467*x^4-877*x^3-382*x^2-898*x+250 2415744026806050 l006 ln(6408/8159) 2415744031088036 m001 ln(5)^GAMMA(19/24)/Sarnak 2415744037492135 m001 (-GaussAGM+TreeGrowth2nd)/(2^(1/3)+Artin) 2415744042538505 r009 Re(z^3+c),c=-11/27+29/63*I,n=9 2415744051785107 a007 Real Root Of 762*x^4-834*x^3+996*x^2-27*x-79 2415744051814339 m001 (-3^(1/2)+ln(2+3^(1/2)))/(1-exp(1)) 2415744064280927 r008 a(0)=0,K{-n^6,50*n^3+123*n^2+177*n+64} 2415744064783268 r009 Re(z^3+c),c=-43/118+26/59*I,n=18 2415744069495807 a001 1/13*10946^(34/55) 2415744076072050 m001 (Bloch-Si(Pi))/(-MadelungNaCl+Salem) 2415744077306221 a007 Real Root Of 366*x^4+63*x^3-281*x^2-737*x-162 2415744087314562 k002 Champernowne real with 75*n^2-92*n+41 2415744098481681 r005 Re(z^2+c),c=7/58+38/61*I,n=9 2415744104552684 a007 Real Root Of 171*x^4+559*x^3+654*x^2+841*x+272 2415744110857369 m001 Otter/LandauRamanujan2nd*PlouffeB 2415744118634887 a005 (1/cos(16/195*Pi))^1534 2415744120193187 m001 (BesselI(1,2)-FeigenbaumD)/ZetaP(2) 2415744123059051 r005 Re(z^2+c),c=-15/23+11/31*I,n=59 2415744125276726 a001 1/966*(1/2*5^(1/2)+1/2)*3^(1/3) 2415744132047515 m001 (Zeta(5)+GAMMA(7/12))/(MertensB2+Trott2nd) 2415744136569744 s002 sum(A168268[n]/(exp(n)),n=1..infinity) 2415744137241125 m001 (Robbin-Trott)/(BesselI(0,2)+PrimesInBinary) 2415744140508124 a001 7778742049/521*76^(1/9) 2415744144255568 a008 Real Root of x^4-8*x^2-40*x-84 2415744145207494 a007 Real Root Of 646*x^4-523*x^3-377*x^2-602*x-133 2415744147544673 r009 Re(z^3+c),c=-2/7+46/63*I,n=11 2415744157403347 l006 ln(737/8253) 2415744157441574 q001 1964/813 2415744163312138 m001 (cos(1/12*Pi)-Mills)/(RenyiParking+Robbin) 2415744167997863 a001 7*(1/2*5^(1/2)+1/2)^14*76^(6/7) 2415744168500743 a007 Real Root Of -449*x^4-831*x^3+325*x^2-581*x+276 2415744173915822 a007 Real Root Of -165*x^4-36*x^3+895*x^2-228*x-662 2415744175236504 r004 Im(z^2+c),c=5/26+1/8*I,z(0)=exp(5/12*I*Pi),n=3 2415744175304259 m001 (1/3)^Zeta(1/2)*GAMMA(13/24)^Zeta(1/2) 2415744176014586 m001 (-polylog(4,1/2)+TwinPrimes)/(1-BesselI(1,2)) 2415744180100375 a001 567451585/682*199^(7/11) 2415744187614622 k002 Champernowne real with 151/2*n^2-187/2*n+42 2415744196561131 a001 199*3^(3/17) 2415744206699268 h001 (-5*exp(1/3)+1)/(-8*exp(1)-3) 2415744210934547 m006 (1/2/Pi+1/5)/(4/5*Pi-4) 2415744212191318 r005 Im(z^2+c),c=-9/82+5/16*I,n=11 2415744216488150 a008 Real Root of x^4-31*x^2-22*x+200 2415744226999371 r009 Im(z^3+c),c=-9/20+4/43*I,n=38 2415744231680958 m001 ln(Robbin)/FibonacciFactorial*GAMMA(1/3)^2 2415744261142894 m001 1/cos(1)^2*exp(Pi)^2*log(2+sqrt(3)) 2415744266528045 m001 (KhinchinLevy+Landau)^ln(5) 2415744273968777 a007 Real Root Of 71*x^4+284*x^3+665*x^2+563*x-935 2415744275954629 m001 (BesselJ(1,1)-Shi(1))/(FeigenbaumC+Sarnak) 2415744277856461 r002 31th iterates of z^2 + 2415744279567523 l006 ln(4849/6174) 2415744285676019 r005 Re(z^2+c),c=-11/38+13/48*I,n=5 2415744287914682 k002 Champernowne real with 76*n^2-95*n+43 2415744292444385 a001 4/2889*64079^(29/43) 2415744301137690 l006 ln(843/9440) 2415744308365883 a001 1/4*55^(30/53) 2415744311394488 m001 (2^(1/3))*exp(Riemann1stZero)/GAMMA(1/3)^2 2415744315300439 r005 Im(z^2+c),c=-11/41*I,n=21 2415744315436735 a001 39603/233*3^(8/25) 2415744322535651 a007 Real Root Of -487*x^4-870*x^3+774*x^2-64*x-351 2415744335565664 a007 Real Root Of 87*x^4+48*x^3-600*x^2-816*x-756 2415744340118384 m001 (Zeta(5)-sin(Pi/12)*BesselI(1,2))/sin(Pi/12) 2415744348555672 a007 Real Root Of 260*x^4+876*x^3+565*x^2-134*x-126 2415744355899046 a007 Real Root Of 789*x^4-300*x^3-550*x^2-572*x-113 2415744361850370 a001 8/64079*24476^(42/43) 2415744364307153 m001 (sin(1)-Paris)/HardyLittlewoodC4 2415744366410097 a007 Real Root Of -321*x^4-346*x^3+766*x^2-301*x+857 2415744370822259 a007 Real Root Of -561*x^4-898*x^3+987*x^2-587*x-732 2415744388214742 k002 Champernowne real with 153/2*n^2-193/2*n+44 2415744392319596 a001 9062201101803/55*591286729879^(11/21) 2415744396431589 a001 4/21*2^(12/35) 2415744396799519 m001 Zeta(5)^2*exp(Riemann2ndZero)^2/cos(Pi/5) 2415744398827395 m001 GAMMA(7/12)+ErdosBorwein+Riemann2ndZero 2415744400607645 r005 Im(z^2+c),c=-25/54+2/49*I,n=30 2415744448826856 m001 BesselK(0,1)/(FibonacciFactorial^exp(1)) 2415744448899584 h001 (-5*exp(2)+9)/(-3*exp(2/3)+7) 2415744451670152 a007 Real Root Of -336*x^4-433*x^3+954*x^2+283*x+455 2415744456423159 m002 -2+18/Pi^3-Tanh[Pi] 2415744461457455 m009 (3/10*Pi^2+1/2)/(1/4*Psi(1,2/3)+2/3) 2415744467948592 m006 (4/5*exp(Pi)-2/3)/(3/4/Pi+1/2) 2415744470010214 r002 40th iterates of z^2 + 2415744475918941 r005 Re(z^2+c),c=-33/122+14/55*I,n=18 2415744477507068 r005 Re(z^2+c),c=-1/54+31/52*I,n=28 2415744480724566 m001 (ThueMorse+ZetaQ(4))/(cos(1/12*Pi)-Kolakoski) 2415744483679430 m005 (1/2*exp(1)-2/7)/(7/9*Pi+2) 2415744488514802 k002 Champernowne real with 77*n^2-98*n+45 2415744494062803 r005 Im(z^2+c),c=-51/74+15/43*I,n=44 2415744527834523 p004 log(36629/3271) 2415744534257463 m005 (1/3*2^(1/2)-1/4)/(1/8*3^(1/2)+7/10) 2415744538470870 m001 (LambertW(1)-gamma(2))/(GAMMA(7/12)+Thue) 2415744546417204 p001 sum(1/(465*n+344)/n/(512^n),n=1..infinity) 2415744565545071 s002 sum(A001682[n]/((exp(n)-1)/n),n=1..infinity) 2415744574634643 m001 (1+Paris)/(ReciprocalLucas+Sierpinski) 2415744574950535 r005 Im(z^2+c),c=-39/118+4/11*I,n=4 2415744576941021 a001 76/1597*317811^(33/49) 2415744588814862 k002 Champernowne real with 155/2*n^2-199/2*n+46 2415744596791200 r005 Re(z^2+c),c=-43/29+1/25*I,n=14 2415744597263617 r005 Re(z^2+c),c=25/78+5/26*I,n=47 2415744601731757 m001 FeigenbaumDelta^(1/2*ln(Pi)) 2415744618028960 m001 (GAMMA(13/24)+Totient)/(cos(1)+ln(2)) 2415744632261279 m005 (1/12+5/12*5^(1/2))/(5*Catalan-5) 2415744632552476 m003 3*Csc[1/2+Sqrt[5]/2]+Tan[1/2+Sqrt[5]/2]/36 2415744652268222 r005 Im(z^2+c),c=-15/98+19/31*I,n=6 2415744662350395 a007 Real Root Of 222*x^4+615*x^3+643*x^2+868*x-546 2415744689114922 k002 Champernowne real with 78*n^2-101*n+47 2415744695607728 m001 Magata^2*exp(GlaisherKinkelin)*gamma 2415744725628228 r009 Re(z^3+c),c=-11/64+51/52*I,n=6 2415744725897920 r009 Re(z^3+c),c=-6/25+3/23*I,n=2 2415744726437851 r005 Re(z^2+c),c=-17/94+34/55*I,n=59 2415744730889032 a007 Real Root Of -32*x^4-806*x^3-807*x^2-265*x-140 2415744735238997 m001 (Zeta(5)+Niven)/(TwinPrimes+Weierstrass) 2415744747703665 a001 4/2504730781961*1836311903^(4/17) 2415744747704095 a001 2/182717648081*514229^(4/17) 2415744747846618 m001 (Zeta(3)+Magata)^gamma 2415744751806758 r005 Re(z^2+c),c=-11/114+17/27*I,n=44 2415744753958381 r005 Im(z^2+c),c=-65/66+13/58*I,n=20 2415744767095815 m001 (2^(1/3)+ln(Pi))/(-Niven+Rabbit) 2415744767285576 h001 (10/11*exp(2)+2/3)/(3/8*exp(2)+2/7) 2415744770146225 m005 (1/2*3^(1/2)-1/12)/(1/9*Catalan+2/9) 2415744771876172 l006 ln(3290/4189) 2415744786726253 r005 Im(z^2+c),c=29/98+3/56*I,n=51 2415744788871383 r005 Im(z^2+c),c=-11/41*I,n=24 2415744789414982 k002 Champernowne real with 157/2*n^2-205/2*n+48 2415744790326730 q001 939/3887 2415744792839876 m005 (1/2*Zeta(3)+5)/(-45/88+1/8*5^(1/2)) 2415744792979934 r009 Re(z^3+c),c=-9/62+31/34*I,n=64 2415744794855257 a001 521/2178309*233^(14/33) 2415744800594290 m001 (1+3^(1/2))^(1/2)-Zeta(1/2)-ArtinRank2 2415744801318022 a007 Real Root Of 357*x^4+981*x^3-23*x^2-974*x-547 2415744805857613 a007 Real Root Of 965*x^4-403*x^3+494*x^2-987*x+212 2415744808052825 m001 (Artin+Magata)/(1+BesselI(1,1)) 2415744814485891 b008 ArcSec[121/2]^2 2415744819604619 r005 Re(z^2+c),c=-29/30+11/117*I,n=26 2415744820694762 r005 Im(z^2+c),c=-11/41*I,n=25 2415744826406868 m001 (-FeigenbaumD+Magata)/(Si(Pi)+ln(Pi)) 2415744832520386 r005 Im(z^2+c),c=-11/41*I,n=28 2415744835996301 r005 Im(z^2+c),c=-11/41*I,n=31 2415744836232488 r005 Im(z^2+c),c=-11/41*I,n=32 2415744836318498 r005 Im(z^2+c),c=-11/41*I,n=35 2415744836344010 r005 Im(z^2+c),c=-11/41*I,n=38 2415744836345763 r005 Im(z^2+c),c=-11/41*I,n=39 2415744836346388 r005 Im(z^2+c),c=-11/41*I,n=42 2415744836346575 r005 Im(z^2+c),c=-11/41*I,n=45 2415744836346588 r005 Im(z^2+c),c=-11/41*I,n=46 2415744836346593 r005 Im(z^2+c),c=-11/41*I,n=49 2415744836346594 r005 Im(z^2+c),c=-11/41*I,n=52 2415744836346595 r005 Im(z^2+c),c=-11/41*I,n=53 2415744836346595 r005 Im(z^2+c),c=-11/41*I,n=56 2415744836346595 r005 Im(z^2+c),c=-11/41*I,n=59 2415744836346595 r005 Im(z^2+c),c=-11/41*I,n=60 2415744836346595 r005 Im(z^2+c),c=-11/41*I,n=63 2415744836346595 r005 Im(z^2+c),c=-11/41*I,n=62 2415744836346595 r005 Im(z^2+c),c=-11/41*I,n=64 2415744836346595 r005 Im(z^2+c),c=-11/41*I,n=61 2415744836346595 r005 Im(z^2+c),c=-11/41*I,n=55 2415744836346595 r005 Im(z^2+c),c=-11/41*I,n=57 2415744836346595 r005 Im(z^2+c),c=-11/41*I,n=58 2415744836346595 r005 Im(z^2+c),c=-11/41*I,n=54 2415744836346595 r005 Im(z^2+c),c=-11/41*I,n=48 2415744836346595 r005 Im(z^2+c),c=-11/41*I,n=50 2415744836346595 r005 Im(z^2+c),c=-11/41*I,n=51 2415744836346601 r005 Im(z^2+c),c=-11/41*I,n=47 2415744836346618 r005 Im(z^2+c),c=-11/41*I,n=41 2415744836346634 r005 Im(z^2+c),c=-11/41*I,n=43 2415744836346636 r005 Im(z^2+c),c=-11/41*I,n=44 2415744836347413 r005 Im(z^2+c),c=-11/41*I,n=40 2415744836350008 r005 Im(z^2+c),c=-11/41*I,n=34 2415744836351971 r005 Im(z^2+c),c=-11/41*I,n=36 2415744836352308 r005 Im(z^2+c),c=-11/41*I,n=37 2415744836457890 r005 Im(z^2+c),c=-11/41*I,n=33 2415744836846004 r005 Im(z^2+c),c=-11/41*I,n=27 2415744837070266 r005 Im(z^2+c),c=-11/41*I,n=29 2415744837126485 r005 Im(z^2+c),c=-11/41*I,n=30 2415744837248818 m002 -1-Log[Pi]-Pi*Sech[Pi] 2415744839296704 r002 10th iterates of z^2 + 2415744843217500 m005 (1/2*Pi-5/12)/(4/7*5^(1/2)-4/5) 2415744849930982 m005 (1/2*Pi+8/9)/(1/5*Zeta(3)+7/9) 2415744850548649 m002 1+E^Pi+(6*Csch[Pi])/Pi^3 2415744851471802 r005 Im(z^2+c),c=-11/41*I,n=26 2415744854648756 r005 Re(z^2+c),c=-19/102+1/2*I,n=50 2415744856934920 s002 sum(A275729[n]/(n*2^n-1),n=1..infinity) 2415744857039069 m001 (ln(gamma)-gamma(3))/(GAMMA(13/24)+Cahen) 2415744858691004 q001 1/413951 2415744865112806 m001 Trott2nd/(ZetaQ(4)-gamma(2)) 2415744870808059 h005 exp(cos(Pi*3/13)/sin(Pi*10/31)) 2415744873425201 a001 89/1149851*7^(31/53) 2415744879882960 m001 1/GAMMA(5/12)/exp(Salem)^2*cos(1) 2415744883895960 r002 45th iterates of z^2 + 2415744889715042 k002 Champernowne real with 79*n^2-104*n+49 2415744890655288 r009 Re(z^3+c),c=-25/64+17/38*I,n=8 2415744895585385 r005 Re(z^2+c),c=-2/7+11/62*I,n=9 2415744907882742 m009 (1/2*Pi^2+3/4)/(5/6*Psi(1,2/3)-1/5) 2415744909053792 r005 Im(z^2+c),c=-11/41*I,n=20 2415744917383963 m005 (1/2*Catalan+7/9)/(1/5*gamma+5) 2415744933740675 r005 Im(z^2+c),c=-11/41*I,n=22 2415744941685328 r005 Im(z^2+c),c=-41/106+1/26*I,n=15 2415744942805947 r005 Im(z^2+c),c=-11/41*I,n=23 2415744953915419 r002 6th iterates of z^2 + 2415744954248338 a007 Real Root Of 869*x^4-149*x^3+153*x^2-856*x+197 2415744957678463 a005 (1/sin(107/227*Pi))^786 2415744975088008 a007 Real Root Of 170*x^4-761*x^3+601*x^2-876*x-258 2415744979075531 h003 exp(Pi*(1/7*(6^(1/2)+7^(1/3))*7^(1/4))) 2415744987030455 b008 99*ProductLog[28] 2415744990015102 k002 Champernowne real with 159/2*n^2-211/2*n+50 2415744996051320 m001 (ln(gamma)-ln(5))/(Zeta(1,2)+FeigenbaumC) 2415745000489741 p003 LerchPhi(1/5,5,313/235) 2415745004464577 a001 8/3571*2207^(39/43) 2415745006220176 m001 (BesselJ(1,1)-Paris)/(Porter-ZetaQ(2)) 2415745010237010 r005 Re(z^2+c),c=7/26+9/52*I,n=4 2415745020669050 r009 Re(z^3+c),c=-37/78+31/52*I,n=12 2415745024701589 m009 (3/4*Psi(1,1/3)-2)/(3/4*Psi(1,3/4)+2/5) 2415745025605134 r005 Re(z^2+c),c=41/110+5/54*I,n=42 2415745027739604 a001 1134903170/843*199^(6/11) 2415745039052028 r005 Re(z^2+c),c=23/66+5/18*I,n=39 2415745060143049 m001 GAMMA(17/24)^ln(2+3^(1/2))/Stephens 2415745062308384 m001 (Si(Pi)-ln(5))/(-Backhouse+ZetaP(2)) 2415745073664821 a001 199/987*2178309^(17/35) 2415745074589171 a007 Real Root Of -450*x^4-812*x^3+667*x^2-141*x-355 2415745081583372 r005 Re(z^2+c),c=-1/8+18/37*I,n=8 2415745090315162 k002 Champernowne real with 80*n^2-107*n+51 2415745100399749 r005 Re(z^2+c),c=-15/56+17/64*I,n=21 2415745101308692 r005 Re(z^2+c),c=41/122+11/63*I,n=18 2415745104342682 r009 Re(z^3+c),c=-57/94+31/59*I,n=21 2415745115097734 a007 Real Root Of 292*x^4+500*x^3-366*x^2+175*x-337 2415745121085983 a007 Real Root Of -460*x^4-821*x^3+739*x^2+411*x+772 2415745123650083 r009 Re(z^3+c),c=-13/32+16/31*I,n=34 2415745131902207 m002 Cosh[Pi]+Pi^2/ProductLog[Pi]+Pi*ProductLog[Pi] 2415745138689847 a007 Real Root Of 526*x^4+924*x^3-870*x^2+299*x+912 2415745139115113 k007 concat of cont frac of 2415745152477562 a008 Real Root of (-4+5*x+x^2-4*x^3-6*x^4+3*x^5) 2415745158031732 r008 a(0)=0,K{-n^6,44*n^3+136*n^2+175*n+59} 2415745162728637 m008 (2/5*Pi^6-4)/(1/2*Pi^3+1/4) 2415745178457799 m001 Artin^gamma/GAMMA(1/24) 2415745190615222 k002 Champernowne real with 161/2*n^2-217/2*n+52 2415745195054835 m001 (-GAMMA(7/12)+GaussAGM)/(GAMMA(5/6)-sin(1)) 2415745207546957 r005 Re(z^2+c),c=-17/94+16/31*I,n=32 2415745219191351 r009 Re(z^3+c),c=-19/56+5/13*I,n=29 2415745220095800 m001 cos(1/5*Pi)*Artin-exp(1) 2415745220095800 m001 exp(1)-cos(Pi/5)*Artin 2415745224160144 m001 Otter-TravellingSalesman+ZetaP(3) 2415745226513623 a001 610/3*3^(8/51) 2415745232132895 m005 (1/2*Zeta(3)+3/10)/(7/11*exp(1)+2) 2415745238027313 a001 377/312119004989*4^(1/2) 2415745239871823 r009 Re(z^3+c),c=-33/94+15/49*I,n=3 2415745240428749 r005 Re(z^2+c),c=-6/23+17/58*I,n=22 2415745242961335 m001 (Pi^(1/2)-CareFree)/(gamma(3)+BesselJ(1,1)) 2415745247320213 l006 ln(5021/6393) 2415745249941569 r005 Im(z^2+c),c=-55/114+11/26*I,n=40 2415745250329091 a007 Real Root Of 20*x^4+511*x^3+639*x^2-786*x+742 2415745251069242 r005 Re(z^2+c),c=33/122+21/44*I,n=40 2415745260812408 b008 (5*Pi)/18+Cosh[1] 2415745274261949 m001 (3^(1/2))^sin(1/5*Pi)+MertensB2 2415745279370859 m001 Riemann3rdZero/ArtinRank2/ZetaR(2) 2415745279813644 m006 (1/2*exp(Pi)+1/6)/(3/4*ln(Pi)+4) 2415745281213536 m001 (GAMMA(2/3)+ZetaQ(4))/(1-Psi(2,1/3)) 2415745285424105 a001 29/1597*21^(3/32) 2415745286464475 r005 Im(z^2+c),c=-7/17+25/61*I,n=48 2415745290915282 k002 Champernowne real with 81*n^2-110*n+53 2415745300497600 l006 ln(106/1187) 2415745301073214 b008 6+Sqrt[6]+5*Pi 2415745302345351 r005 Re(z^2+c),c=1/6+9/25*I,n=51 2415745307775345 r005 Im(z^2+c),c=-20/17+7/39*I,n=28 2415745311142933 l004 Ssi(291/58) 2415745314811594 p003 LerchPhi(1/64,6,147/116) 2415745319043722 a007 Real Root Of -750*x^4+447*x^3-455*x^2+731*x+212 2415745322702671 a007 Real Root Of -273*x^4-454*x^3+909*x^2+805*x-463 2415745323265820 a007 Real Root Of 198*x^4+306*x^3-102*x^2+753*x-15 2415745325935299 m006 (2/5*exp(2*Pi)+3/5)/(1/6*exp(2*Pi)-1/3) 2415745337769667 m005 (1/2*5^(1/2)-11/12)/(1/9*Zeta(3)+7/10) 2415745345245101 m001 (2^(1/3))*FeigenbaumD^2/exp(GAMMA(1/4)) 2415745348553754 r009 Re(z^3+c),c=-5/122+35/59*I,n=32 2415745354683381 r009 Im(z^3+c),c=-7/34+13/56*I,n=10 2415745354858535 a007 Real Root Of -839*x^4-291*x^3-566*x^2+568*x+169 2415745381384731 a007 Real Root Of -489*x^4-804*x^3+619*x^2-822*x-279 2415745385166475 g006 Psi(1,1/12)+Psi(1,1/10)-Psi(1,9/10)-Psi(1,5/8) 2415745385392083 r005 Im(z^2+c),c=-7/10+34/139*I,n=64 2415745387949124 m001 Sarnak/(GAMMA(7/12)^Sierpinski) 2415745388144883 r002 58th iterates of z^2 + 2415745391215342 k002 Champernowne real with 163/2*n^2-223/2*n+54 2415745409264820 m001 BesselK(0,1)/exp(GolombDickman)^2*sqrt(2)^2 2415745411275105 m001 1/exp(Niven)^2/ErdosBorwein*sinh(1) 2415745421612114 a007 Real Root Of -104*x^4+731*x^3-801*x^2-580*x-688 2415745433434929 m001 exp(Pi)+GAMMA(11/12)^HardyLittlewoodC4 2415745435521810 r009 Re(z^3+c),c=-7/48+41/44*I,n=38 2415745442391362 a001 1364/165580141*317811^(4/15) 2415745442392638 a001 1364/7778742049*591286729879^(4/15) 2415745442392638 a001 682/567451585*433494437^(4/15) 2415745442566143 a007 Real Root Of 540*x^4+777*x^3-998*x^2+896*x+552 2415745445415307 b008 45/2+ArcCosh[E] 2415745472659719 m001 Pi/(ln(2)/ln(10)*BesselK(0,1)+GAMMA(19/24)) 2415745473584098 m005 (1/2*gamma-2/3)/(3/7*exp(1)+2/5) 2415745476094292 a007 Real Root Of 207*x^4-440*x^3+751*x^2-763*x+18 2415745477395123 m001 (ln(5)+HardyLittlewoodC5)/(Kac-MinimumGamma) 2415745478175872 g002 Psi(5/12)+Psi(6/7)-Psi(8/9)-Psi(4/9) 2415745478986510 l006 ln(6752/8597) 2415745483317700 m008 (3*Pi^4-2/3)/(2/5*Pi^3-1/3) 2415745483957940 q001 896/3709 2415745491515402 k002 Champernowne real with 82*n^2-113*n+55 2415745493892695 a003 cos(Pi*1/37)-cos(Pi*23/101) 2415745498212289 m001 (Pi^(1/2)+QuadraticClass)/ln(3) 2415745508596323 r005 Re(z^2+c),c=7/27+25/49*I,n=13 2415745509257855 a001 47/3*(1/2*5^(1/2)+1/2)^5*3^(3/10) 2415745517860254 m001 ln(BesselJ(0,1))*KhintchineLevy/GAMMA(1/4)^2 2415745523806251 m001 ln(GAMMA(3/4))^2/MertensB1*GAMMA(7/12) 2415745530594932 m001 1/exp(BesselJ(0,1))^2*Niven*cos(Pi/5)^2 2415745538706224 p004 log(28909/28219) 2415745545662850 r005 Re(z^2+c),c=-3/14+19/44*I,n=21 2415745556796694 a008 Real Root of (-4+4*x-3*x^2-6*x^3-2*x^4+2*x^5) 2415745556982930 a003 cos(Pi*19/65)*cos(Pi*44/119) 2415745564256752 m005 (1/2*exp(1)-7/9)/(2/11*5^(1/2)+2) 2415745568415549 m001 (Artin-GolombDickman)^GAMMA(23/24) 2415745573143228 r005 Im(z^2+c),c=-93/94+5/21*I,n=35 2415745573280680 r005 Im(z^2+c),c=-45/44+8/33*I,n=41 2415745575086267 a001 9349/13*610^(39/43) 2415745575912263 r009 Im(z^3+c),c=-23/110+46/61*I,n=32 2415745578255339 m001 FellerTornier-Pi^(1/2)-cos(1/12*Pi) 2415745580794419 m005 (1/2*gamma-1/11)/(5/6*3^(1/2)-5/8) 2415745591815462 k002 Champernowne real with 165/2*n^2-229/2*n+56 2415745593369045 g005 GAMMA(7/12)*GAMMA(3/7)*GAMMA(3/5)/GAMMA(5/11) 2415745595041287 r005 Im(z^2+c),c=-11/118+19/46*I,n=3 2415745598015670 g005 GAMMA(9/11)*GAMMA(3/5)^2/GAMMA(1/11) 2415745604536131 m001 (sin(1/12*Pi)-FeigenbaumC)/(Landau+OneNinth) 2415745608265104 b008 Pi+ArcCot[21]^(-1) 2415745613925309 r009 Re(z^3+c),c=-37/122+18/55*I,n=4 2415745633584617 a001 3/233*46368^(19/39) 2415745638700862 r005 Im(z^2+c),c=-37/90+25/61*I,n=57 2415745645476769 m001 GAMMA(17/24)-exp(sqrt(2))+ThueMorse 2415745649691714 m001 OrthogonalArrays/GAMMA(17/24)/ZetaP(2) 2415745663543459 m001 (GAMMA(23/24)-Zeta(3)*Riemann3rdZero)/Zeta(3) 2415745677351276 r009 Re(z^3+c),c=-23/56+25/44*I,n=62 2415745684390932 a007 Real Root Of 508*x^4+809*x^3-779*x^2+610*x+124 2415745692115522 k002 Champernowne real with 83*n^2-116*n+57 2415745695945685 s002 sum(A238096[n]/(pi^n+1),n=1..infinity) 2415745707639590 h001 (1/5*exp(1)+2/11)/(7/9*exp(1)+8/9) 2415745708343183 r009 Im(z^3+c),c=-35/66+14/39*I,n=7 2415745724131333 p001 sum(1/(464*n+345)/n/(512^n),n=1..infinity) 2415745724283814 m009 (2/5*Psi(1,1/3)-3)/(1/2*Psi(1,1/3)-3/4) 2415745724289905 a008 Real Root of (-5-5*x^2+2*x^3-3*x^4-2*x^5) 2415745726467001 m001 (Pi+1)/(gamma(1)+KomornikLoreti) 2415745728898038 v002 sum(1/(5^n+(5/3*n^3-20/3*n+5)),n=1..infinity) 2415745737736923 r009 Re(z^3+c),c=-29/122+38/55*I,n=12 2415745741680057 m005 (1/2*exp(1)+1/9)/(5/7*Zeta(3)-1/4) 2415745747525668 a007 Real Root Of -849*x^4+776*x^3+800*x^2+848*x+172 2415745752574945 m001 1/ln(Khintchine)*Bloch^2/cos(Pi/12)^2 2415745757485653 a007 Real Root Of 144*x^4+139*x^3-364*x^2+530*x+460 2415745770443647 r009 Im(z^3+c),c=-43/106+7/51*I,n=10 2415745776690179 s002 sum(A082116[n]/((10^n-1)/n),n=1..infinity) 2415745780768145 r009 Re(z^3+c),c=-7/48+59/63*I,n=36 2415745791144106 a007 Real Root Of 215*x^4+687*x^3+271*x^2-451*x-308 2415745792415582 k002 Champernowne real with 167/2*n^2-235/2*n+58 2415745797529142 a001 4/377*1597^(25/59) 2415745798826747 m001 1/exp(GAMMA(5/6))*GAMMA(5/24)^2/sin(Pi/12) 2415745799818220 m003 -6+6*Sin[1/2+Sqrt[5]/2]+Sinh[1/2+Sqrt[5]/2] 2415745802726623 r009 Im(z^3+c),c=-13/44+11/54*I,n=11 2415745806316731 r002 57i'th iterates of 2*x/(1-x^2) of 2415745809849749 s002 sum(A223052[n]/(n^3*pi^n+1),n=1..infinity) 2415745812031718 a008 Real Root of x^4+13*x^2-84*x+93 2415745830221000 r005 Re(z^2+c),c=-17/26+42/121*I,n=27 2415745840271002 m002 E^Pi+(E^Pi*Sech[Pi])/Pi^4+Tanh[Pi] 2415745841621642 m001 (-FeigenbaumD+Lehmer)/(2^(1/2)-BesselI(0,2)) 2415745843866240 a007 Real Root Of 401*x^4+915*x^3-81*x^2+124*x+15 2415745850024925 s001 sum(exp(-Pi/3)^n*A140482[n],n=1..infinity) 2415745856353591 q001 1749/724 2415745862121105 a001 7/18*(1/2*5^(1/2)+1/2)^22*18^(20/21) 2415745863675281 m006 (3/5/Pi+2)/(Pi^2-4/5) 2415745865861664 p001 sum(1/(473*n+415)/n/(5^n),n=1..infinity) 2415745869482874 m001 KhinchinHarmonic/FeigenbaumDelta*MasserGramain 2415745873499583 r005 Re(z^2+c),c=-15/98+37/62*I,n=51 2415745892715642 k002 Champernowne real with 84*n^2-119*n+59 2415745900965952 m001 ArtinRank2^BesselJ(1,1)-Riemann3rdZero 2415745918782418 a005 (1/cos(10/221*Pi))^87 2415745928051133 a007 Real Root Of -172*x^4-193*x^3+429*x^2-643*x-920 2415745932813295 a008 Real Root of x^3-x^2-72*x-154 2415745940999364 m001 FellerTornier^Si(Pi)*ReciprocalLucas 2415745944688419 m001 1/Champernowne/ErdosBorwein^2/exp(MertensB1) 2415745954094174 a007 Real Root Of 363*x^4+928*x^3+370*x^2+640*x+107 2415745962355192 p002 log(12^(6/7)+6^(4/7)) 2415745964192633 r005 Im(z^2+c),c=-2/29+19/64*I,n=12 2415745966996479 m001 (Grothendieck-Landau)/(gamma(1)-BesselJ(1,1)) 2415745974467446 a005 (1/sin(78/235*Pi))^179 2415745975926213 r009 Re(z^3+c),c=-19/82+4/63*I,n=6 2415745978237300 m001 (BesselJ(1,1)+Paris)/(exp(Pi)-sin(1)) 2415745979581914 m002 -Pi^2+5*Pi^3+Pi^4-Tanh[Pi] 2415745983678178 r005 Im(z^2+c),c=-7/17+20/49*I,n=33 2415745993015702 k002 Champernowne real with 169/2*n^2-241/2*n+60 2415745997673626 r005 Im(z^2+c),c=-1/30+14/43*I,n=3 2415746003442212 m001 (ln(5)+GAMMA(5/6))/(GAMMA(23/24)+OneNinth) 2415746006625166 m001 Zeta(7)/GAMMA(17/24)^2/exp(arctan(1/2))^2 2415746013486208 m001 BesselK(1,1)*exp(TwinPrimes)^2/cos(Pi/12)^2 2415746025933069 a007 Real Root Of -54*x^4-336*x^3-902*x^2-794*x+448 2415746063708191 h001 (-3*exp(3)-4)/(-5*exp(4)+7) 2415746065477525 a007 Real Root Of 273*x^4+436*x^3+919*x^2-880*x-261 2415746071545950 a001 13/18*3010349^(4/17) 2415746071546013 a001 13/18*9062201101803^(2/17) 2415746079281892 a007 Real Root Of 442*x^4-236*x^3-130*x^2-860*x-205 2415746081929319 m005 (1/2*5^(1/2)-2/7)/(9/11*Pi+7/8) 2415746086822710 a007 Real Root Of -41*x^4+262*x^3+777*x^2+42*x+657 2415746090271477 h001 (-8*exp(7)-3)/(-9*exp(6)-2) 2415746090911948 m001 1/GAMMA(5/24)*GAMMA(11/12)^2/exp(sinh(1))^2 2415746093315762 k002 Champernowne real with 85*n^2-122*n+61 2415746096365926 m005 (1/3*3^(1/2)-1/3)/(1/8*2^(1/2)+5/6) 2415746097364960 s002 sum(A168336[n]/(n^3*pi^n-1),n=1..infinity) 2415746118684365 p004 log(34591/3089) 2415746119533305 a001 7/233*10946^(25/53) 2415746139898979 r005 Im(z^2+c),c=-28/25+1/34*I,n=36 2415746141836053 a007 Real Root Of -978*x^4+513*x^3-889*x^2+201*x+111 2415746150965958 l006 ln(1731/2204) 2415746156720517 a003 sin(Pi*2/29)/sin(Pi*22/63) 2415746173292431 a007 Real Root Of -251*x^4-362*x^3+151*x^2-663*x+962 2415746175442474 a007 Real Root Of 320*x^4+676*x^3-648*x^2-913*x+208 2415746184462285 a007 Real Root Of -135*x^4+x^3+889*x^2+157*x-197 2415746190224726 r005 Im(z^2+c),c=13/44+1/27*I,n=60 2415746191615222 k002 Champernowne real with 151/2*n^2-449/2*n+151 2415746193615822 k002 Champernowne real with 171/2*n^2-247/2*n+62 2415746203079591 a007 Real Root Of -615*x^4-950*x^3+786*x^2-854*x+902 2415746204936770 a007 Real Root Of -152*x^4-106*x^3+845*x^2+813*x+715 2415746206892713 r005 Im(z^2+c),c=7/50+1/62*I,n=6 2415746214563579 m004 16+E^(Sqrt[5]*Pi)/5+Cos[Sqrt[5]*Pi] 2415746235879348 a001 267914296/521*199^(8/11) 2415746236028486 r009 Re(z^3+c),c=-2/29+16/23*I,n=18 2415746237830192 b008 24+ArcCoth[Sqrt[41]] 2415746239811451 m005 (7/44+1/4*5^(1/2))/(1/5*gamma+2/11) 2415746242464572 a001 521/317811*28657^(18/37) 2415746247521948 q001 853/3531 2415746255317893 r005 Re(z^2+c),c=-1+29/176*I,n=38 2415746257988825 r008 a(0)=0,K{-n^6,(2*n+1)*(72+28*n^2+38*n)} 2415746259218141 r008 a(0)=0,K{-n^6,46*n^3+129*n^2+177*n+62} 2415746274681192 m002 E^Pi*Sinh[Pi]+6*Pi^3*Sinh[Pi] 2415746277149884 m001 exp(1/exp(1))^Thue/(polylog(4,1/2)^Thue) 2415746288140704 l006 ln(853/9552) 2415746292488171 a001 11/144*75025^(4/39) 2415746293915882 k002 Champernowne real with 86*n^2-125*n+63 2415746296372651 m001 (Ei(1)-GAMMA(1/24))^Zeta(5) 2415746296372651 m001 (Ei(1)-Pi*csc(1/24*Pi)/GAMMA(23/24))^Zeta(5) 2415746304729008 r009 Im(z^3+c),c=-7/34+13/56*I,n=11 2415746310016561 m001 (Zeta(1/2)+PrimesInBinary)/(1-LambertW(1)) 2415746317714156 m001 (arctan(1/3)-Trott)/(GAMMA(2/3)-GAMMA(3/4)) 2415746324556634 m001 1/Champernowne^2*exp(Cahen)^2*Zeta(7)^2 2415746327043201 b008 Pi+Coth[1/21] 2415746343176787 m001 1/ln(FeigenbaumKappa)^2/Lehmer^2/GAMMA(5/6)^2 2415746349016608 r005 Re(z^2+c),c=-9/52+28/53*I,n=64 2415746360461198 m001 BesselI(1,1)^Catalan+MasserGramainDelta 2415746375413123 r002 34th iterates of z^2 + 2415746378276292 a007 Real Root Of -486*x^4-342*x^3-589*x^2+707*x+202 2415746394215942 k002 Champernowne real with 173/2*n^2-253/2*n+64 2415746395434459 a007 Real Root Of -455*x^4-887*x^3-635*x^2+554*x-13 2415746405270763 r005 Re(z^2+c),c=-19/62+37/64*I,n=17 2415746406786257 r002 11th iterates of z^2 + 2415746407829236 m001 gamma+Zeta(1,2)+BesselK(1,1) 2415746408636831 a007 Real Root Of 315*x^4+612*x^3-585*x^2-339*x+495 2415746408782142 r005 Re(z^2+c),c=31/78+5/38*I,n=39 2415746410153180 r002 10th iterates of z^2 + 2415746411755484 m002 -(Pi^6/E^Pi)+(3*Cosh[Pi])/2 2415746412116481 a007 Real Root Of -948*x^4-596*x^3+988*x^2+763*x-19 2415746426771499 m001 (-Pi^(1/2)+MertensB2)/(2^(1/2)+GAMMA(13/24)) 2415746428288107 l006 ln(747/8365) 2415746435711064 m001 (GAMMA(19/24)-ThueMorse)/(Pi-gamma(2)) 2415746438221189 m001 (ln(3)*Riemann3rdZero+Zeta(1,2))/ln(3) 2415746441539285 a007 Real Root Of 464*x^4-845*x^3-316*x^2-982*x+266 2415746443972387 a007 Real Root Of 436*x^4-426*x^3-55*x^2-622*x-15 2415746463687134 m006 (exp(2*Pi)-1/2)/(1/4*Pi-3) 2415746465521360 m001 Catalan-CopelandErdos*Riemann1stZero 2415746484852091 m001 (Gompertz-Salem)/(exp(1/Pi)+GAMMA(23/24)) 2415746494516002 k002 Champernowne real with 87*n^2-128*n+65 2415746520174600 p004 log(15647/12289) 2415746537369015 a001 76/1346269*987^(29/33) 2415746538594995 r005 Im(z^2+c),c=17/60+6/61*I,n=11 2415746540632367 m001 1/Lehmer^2/KhintchineHarmonic*ln(GAMMA(5/24)) 2415746542602852 r002 25th iterates of z^2 + 2415746543423388 r005 Im(z^2+c),c=27/110+5/48*I,n=6 2415746546125188 p004 log(22721/2029) 2415746547923138 m001 1/Zeta(3)*ln(Artin)^2/gamma^2 2415746548919061 r005 Re(z^2+c),c=-33/62+32/63*I,n=53 2415746550362922 m001 (Trott2nd-Weierstrass)/(GAMMA(17/24)-Conway) 2415746551392308 a001 3571/433494437*317811^(4/15) 2415746551393583 a001 3571/20365011074*591286729879^(4/15) 2415746551393583 a001 3571/2971215073*433494437^(4/15) 2415746594816062 k002 Champernowne real with 175/2*n^2-259/2*n+66 2415746610089022 r009 Im(z^3+c),c=-47/106+6/59*I,n=31 2415746614786882 l006 ln(641/7178) 2415746614917889 a007 Real Root Of -259*x^3-633*x^2+157*x+422 2415746617161801 m001 StronglyCareFree^Lehmer*FransenRobinson 2415746619028970 a007 Real Root Of -53*x^4+170*x^3+674*x^2-299*x-454 2415746640493747 m001 (ln(gamma)-Paris)/FeigenbaumD 2415746650097618 m001 ln(sin(1))*Zeta(1,2)/sin(Pi/12)^2 2415746656347531 r005 Re(z^2+c),c=-13/54+11/18*I,n=48 2415746668169687 r009 Re(z^3+c),c=-23/66+11/30*I,n=6 2415746675391656 a001 76/75025*5^(27/50) 2415746677463813 a007 Real Root Of -682*x^4+386*x^3+765*x^2+506*x-170 2415746684961349 a007 Real Root Of -307*x^4-643*x^3-38*x^2-946*x-673 2415746689515288 m001 FibonacciFactorial^FeigenbaumKappa*FeigenbaumC 2415746692547275 a001 2/10182505537*1836311903^(2/17) 2415746692547275 a001 4/53316291173*6557470319842^(2/17) 2415746692547490 a001 4/7778742049*514229^(2/17) 2415746694442230 r009 Im(z^3+c),c=-7/34+13/56*I,n=14 2415746695116122 k002 Champernowne real with 88*n^2-131*n+67 2415746699704331 a007 Real Root Of -197*x^4-425*x^3-304*x^2+673*x+175 2415746707019791 r009 Im(z^3+c),c=-7/34+13/56*I,n=17 2415746707234442 r009 Im(z^3+c),c=-7/34+13/56*I,n=18 2415746707248344 r009 Im(z^3+c),c=-7/34+13/56*I,n=20 2415746707249049 r009 Im(z^3+c),c=-7/34+13/56*I,n=21 2415746707250182 r009 Im(z^3+c),c=-7/34+13/56*I,n=24 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=27 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=28 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=31 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=30 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=34 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=37 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=35 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=38 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=41 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=44 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=45 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=47 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=48 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=51 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=54 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=55 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=58 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=57 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=61 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=62 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=64 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=63 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=60 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=59 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=56 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=52 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=53 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=50 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=49 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=46 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=43 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=42 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=40 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=39 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=36 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=33 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=32 2415746707250211 r009 Im(z^3+c),c=-7/34+13/56*I,n=29 2415746707250213 r009 Im(z^3+c),c=-7/34+13/56*I,n=25 2415746707250213 r009 Im(z^3+c),c=-7/34+13/56*I,n=26 2415746707250248 r009 Im(z^3+c),c=-7/34+13/56*I,n=23 2415746707250530 r009 Im(z^3+c),c=-7/34+13/56*I,n=22 2415746707269768 r009 Im(z^3+c),c=-7/34+13/56*I,n=19 2415746707944744 r009 Im(z^3+c),c=-7/34+13/56*I,n=16 2415746708900545 r009 Im(z^3+c),c=-7/34+13/56*I,n=15 2415746711820988 r009 Im(z^3+c),c=-7/34+13/56*I,n=13 2415746713193365 a001 9349/1134903170*317811^(4/15) 2415746713194641 a001 9349/53316291173*591286729879^(4/15) 2415746713194641 a001 9349/7778742049*433494437^(4/15) 2415746719229187 m001 1/cos(1)/ln(TreeGrowth2nd)/cos(Pi/12)^2 2415746729641620 m008 (3/4*Pi^2+1/3)/(1/3*Pi^6-1/4) 2415746730647544 m001 Landau^Gompertz+Pi*csc(1/24*Pi)/GAMMA(23/24) 2415746736234486 m001 (ln(2)/ln(10)+gamma(2))/(Landau+LaplaceLimit) 2415746736799821 a001 24476/2971215073*317811^(4/15) 2415746736801097 a001 24476/139583862445*591286729879^(4/15) 2415746736801097 a001 12238/10182505537*433494437^(4/15) 2415746736911682 a008 Real Root of x^3+197*x-490 2415746740243957 a001 64079/7778742049*317811^(4/15) 2415746740245232 a001 64079/365435296162*591286729879^(4/15) 2415746740245232 a001 64079/53316291173*433494437^(4/15) 2415746740652797 m005 (1/2*5^(1/2)-3/5)/(9/11*3^(1/2)+8/11) 2415746740746449 a001 167761/20365011074*317811^(4/15) 2415746740747725 a001 167761/956722026041*591286729879^(4/15) 2415746740747725 a001 167761/139583862445*433494437^(4/15) 2415746740819762 a001 439204/53316291173*317811^(4/15) 2415746740821038 a001 439204/2504730781961*591286729879^(4/15) 2415746740821038 a001 219602/182717648081*433494437^(4/15) 2415746740830458 a001 1149851/139583862445*317811^(4/15) 2415746740831734 a001 1149851/6557470319842*591286729879^(4/15) 2415746740831734 a001 1149851/956722026041*433494437^(4/15) 2415746740832019 a001 3010349/365435296162*317811^(4/15) 2415746740832246 a001 7881196/956722026041*317811^(4/15) 2415746740832280 a001 20633239/2504730781961*317811^(4/15) 2415746740832285 a001 54018521/6557470319842*317811^(4/15) 2415746740832286 a001 29134601/3536736619241*317811^(4/15) 2415746740832288 a001 33385282/4052739537881*317811^(4/15) 2415746740832300 a001 4250681/516002918640*317811^(4/15) 2415746740832387 a001 4870847/591286729879*317811^(4/15) 2415746740832983 a001 620166/75283811239*317811^(4/15) 2415746740833294 a001 3010349/2504730781961*433494437^(4/15) 2415746740833522 a001 3940598/3278735159921*433494437^(4/15) 2415746740833576 a001 4250681/3536736619241*433494437^(4/15) 2415746740833663 a001 4870847/4052739537881*433494437^(4/15) 2415746740834259 a001 620166/3536736619241*591286729879^(4/15) 2415746740834259 a001 1/832040*433494437^(4/15) 2415746740837069 a001 710647/86267571272*317811^(4/15) 2415746740838344 a001 710647/4052739537881*591286729879^(4/15) 2415746740838344 a001 710647/591286729879*433494437^(4/15) 2415746740865072 a001 1/121393*317811^(4/15) 2415746740866347 a001 90481/516002918640*591286729879^(4/15) 2415746740866347 a001 90481/75283811239*433494437^(4/15) 2415746741057007 a001 103682/12586269025*317811^(4/15) 2415746741058282 a001 103682/591286729879*591286729879^(4/15) 2415746741058282 a001 51841/43133785636*433494437^(4/15) 2415746742372550 a001 13201/1602508992*317811^(4/15) 2415746742373825 a001 13201/75283811239*591286729879^(4/15) 2415746742373825 a001 13201/10983760033*433494437^(4/15) 2415746751389413 a001 15127/1836311903*317811^(4/15) 2415746751390689 a001 15127/86267571272*591286729879^(4/15) 2415746751390689 a001 15127/12586269025*433494437^(4/15) 2415746772962777 a007 Real Root Of 294*x^4+863*x^3+321*x^2-66*x+121 2415746775060467 r002 2th iterates of z^2 + 2415746776032681 r005 Im(z^2+c),c=-53/46+15/49*I,n=13 2415746777513762 r005 Im(z^2+c),c=-39/44+10/49*I,n=52 2415746778614674 a007 Real Root Of 207*x^4-597*x^3+524*x^2-647*x-196 2415746785856987 m001 (gamma(3)+Bloch)/(DuboisRaymond+ZetaQ(4)) 2415746789822498 m009 (3*Pi^2+2/5)/(4*Psi(1,2/3)+1/6) 2415746790369134 l006 ln(7096/9035) 2415746794416292 m001 (Porter-PrimesInBinary)/(ln(2)-GAMMA(5/6)) 2415746795416182 k002 Champernowne real with 177/2*n^2-265/2*n+68 2415746799127353 m001 cos(1)/Conway*exp(log(1+sqrt(2)))^2 2415746802791237 m001 (-Si(Pi)+5)/(-arctan(1/2)+1/3) 2415746806249752 a007 Real Root Of -144*x^4-343*x^3-265*x^2-325*x+830 2415746813191918 a001 1926/233802911*317811^(4/15) 2415746813193194 a001 1926/10983760033*591286729879^(4/15) 2415746813193194 a001 321/267084832*433494437^(4/15) 2415746820731816 a007 Real Root Of 313*x^4+549*x^3-622*x^2-661*x-887 2415746825503840 m001 (BesselI(1,2)+Thue)/(Chi(1)-Si(Pi)) 2415746830423081 r005 Im(z^2+c),c=-173/126+2/63*I,n=22 2415746833087882 a005 (1/sin(73/213*Pi))^25 2415746860245330 m001 1/OneNinth^2/Cahen*ln(GAMMA(7/12))^2 2415746863543337 r009 Re(z^3+c),c=-5/14+17/40*I,n=22 2415746867169379 a007 Real Root Of 712*x^4+240*x^3-507*x^2-953*x+254 2415746870199791 r009 Im(z^3+c),c=-7/34+13/56*I,n=12 2415746870722425 r002 12th iterates of z^2 + 2415746875187918 l006 ln(535/5991) 2415746875651776 r005 Re(z^2+c),c=-13/54+34/39*I,n=9 2415746891838476 r005 Im(z^2+c),c=-11/41*I,n=19 2415746893838467 m001 1/exp(GAMMA(1/6))/Trott/Zeta(1/2) 2415746895716242 k002 Champernowne real with 89*n^2-134*n+69 2415746900588662 a007 Real Root Of -245*x^4-604*x^3+430*x^2+723*x-934 2415746903698421 p001 sum(1/(463*n+346)/n/(512^n),n=1..infinity) 2415746908752996 m004 750/Pi+(5*Log[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi])/Pi 2415746909838827 g006 Psi(1,3/5)-Psi(1,7/11)-2*Psi(1,3/10) 2415746911020627 r002 5th iterates of z^2 + 2415746912680116 a007 Real Root Of 956*x^4+615*x^3+301*x^2-614*x-15 2415746924400984 m002 Pi+4*Pi^3+Pi^2*Cosh[Pi] 2415746926289120 a003 cos(Pi*3/68)*sin(Pi*4/51) 2415746929979354 r005 Re(z^2+c),c=-3/19+25/54*I,n=8 2415746934604201 r005 Im(z^2+c),c=-11/9+4/113*I,n=61 2415746937081150 m001 (GaussKuzminWirsing+Trott2nd)^GAMMA(17/24) 2415746938924280 m005 (1/2*Catalan+1/11)/(7/11*3^(1/2)-7/8) 2415746945510762 a007 Real Root Of 509*x^4+839*x^3-716*x^2+838*x+696 2415746949162961 r005 Re(z^2+c),c=11/74+21/58*I,n=9 2415746953288060 m001 FeigenbaumD/ln(Backhouse)*Tribonacci^2 2415746982302254 r001 60i'th iterates of 2*x^2-1 of 2415746985964835 r005 Re(z^2+c),c=13/42+6/23*I,n=8 2415746986148666 a001 19/36*377^(10/39) 2415746993192927 r005 Re(z^2+c),c=9/34+9/61*I,n=37 2415746993209201 a007 Real Root Of 773*x^4-444*x^3-243*x^2-630*x+170 2415746996016302 k002 Champernowne real with 179/2*n^2-271/2*n+70 2415746996142372 m001 (TwinPrimes-ZetaP(4))/(Stephens+Tribonacci) 2415746996670504 l006 ln(5365/6831) 2415747011499062 a007 Real Root Of -830*x^4-490*x^3-251*x^2+370*x-65 2415747020654906 m001 Robbin/ReciprocalLucas/HardHexagonsEntropy 2415747021989123 r002 27th iterates of z^2 + 2415747025287364 m001 1/TreeGrowth2nd/ln(FeigenbaumD)^2/cos(Pi/12) 2415747031405820 m001 PlouffeB^FeigenbaumD+BesselI(0,2) 2415747039061247 a007 Real Root Of 64*x^4-283*x^3-697*x^2+608*x-633 2415747039556563 r005 Re(z^2+c),c=-3/5+5/126*I,n=2 2415747049706815 a007 Real Root Of -307*x^4-773*x^3-235*x^2-383*x+4 2415747056313095 m001 (FeigenbaumD-GaussAGM)/BesselJ(0,1) 2415747064654068 r005 Im(z^2+c),c=-59/110+23/43*I,n=49 2415747066511469 m001 exp(Zeta(1/2))^2/Bloch^2/Zeta(9) 2415747070655086 m008 (2/3*Pi^5+3)/(1/6*Pi+1/3) 2415747081552542 r002 54th iterates of z^2 + 2415747082882943 r005 Re(z^2+c),c=-13/122+27/46*I,n=29 2415747092156277 q001 81/3353 2415747096316362 k002 Champernowne real with 90*n^2-137*n+71 2415747111104138 s001 sum(exp(-Pi/2)^(n-1)*A129616[n],n=1..infinity) 2415747113419859 m001 (3^(1/2)+Zeta(3))/(-GAMMA(3/4)+Trott) 2415747127468634 m001 (1-Zeta(5))/(-FeigenbaumC+ReciprocalFibonacci) 2415747128198330 m004 -4+5*Pi+Sqrt[5]*Pi+4*Sec[Sqrt[5]*Pi] 2415747142046173 r005 Im(z^2+c),c=-19/18+61/250*I,n=29 2415747151554419 a007 Real Root Of -155*x^4-295*x^3-126*x^2-982*x-517 2415747152084247 m008 (1/3*Pi-3/4)/(4*Pi^3-1) 2415747170486273 a003 cos(Pi*1/46)/cos(Pi*39/107) 2415747175145686 a001 322/6765*10946^(19/45) 2415747178565678 g007 Psi(2,3/11)-Psi(2,5/12)-Psi(2,7/11)-Psi(2,2/7) 2415747185825861 a003 cos(Pi*9/104)-sin(Pi*29/113) 2415747188865330 m005 (1/2*3^(1/2)-10/11)/(6/11*exp(1)+3/10) 2415747190121292 m001 (2^(1/2)+3^(1/2))/(BesselK(0,1)+ln(2^(1/2)+1)) 2415747195359915 a007 Real Root Of -383*x^4-823*x^3+91*x^2-253*x+299 2415747196616422 k002 Champernowne real with 181/2*n^2-277/2*n+72 2415747196684279 m005 (1/2*Zeta(3)+1/4)/(3*Zeta(3)-1/12) 2415747196964765 a007 Real Root Of -575*x^4-265*x^3-168*x^2+923*x+231 2415747207753628 r005 Re(z^2+c),c=-69/64+10/43*I,n=54 2415747211547029 m001 Ei(1)*(Si(Pi)-gamma) 2415747213654056 a001 23725150497407/21*14930352^(15/17) 2415747213654058 a001 17393796001/21*53316291173^(15/17) 2415747216105550 m001 (Lehmer+Tetranacci)/(GAMMA(13/24)-FeigenbaumD) 2415747216172303 r005 Re(z^2+c),c=-55/54+19/64*I,n=8 2415747218910994 a007 Real Root Of 254*x^4+403*x^3-205*x^2+360*x-903 2415747226094070 m001 KhinchinLevy/(Ei(1)-OrthogonalArrays) 2415747236644849 a008 Real Root of (4+15*x-5*x^2+6*x^3) 2415747236792586 a001 2207/267914296*317811^(4/15) 2415747236793861 a001 2207/12586269025*591286729879^(4/15) 2415747236793861 a001 2207/1836311903*433494437^(4/15) 2415747240744842 m001 (2*Pi/GAMMA(5/6)+Khinchin)/(Magata+ZetaQ(3)) 2415747241997252 r005 Im(z^2+c),c=-1/34+7/25*I,n=8 2415747259402461 r005 Im(z^2+c),c=-7/27+10/29*I,n=3 2415747264271857 l006 ln(429/4804) 2415747267822673 m002 -Pi+3*Pi^2-Sinh[Pi]/5 2415747268706791 r005 Re(z^2+c),c=-8/27+35/57*I,n=31 2415747269769214 a007 Real Root Of 981*x^4+695*x^3-89*x^2-778*x+180 2415747270266441 r008 a(0)=3,K{-n^6,5+34*n-27*n^2+3*n^3} 2415747271364463 r002 54th iterates of z^2 + 2415747276105901 m001 Bloch^2*exp(FibonacciFactorial)^2*cos(Pi/12)^2 2415747276921356 a007 Real Root Of -270*x^4-433*x^3+565*x^2-98*x-443 2415747280557792 a007 Real Root Of -966*x^4-721*x^3+136*x^2+532*x-123 2415747283756695 m005 (1/2*Zeta(3)-9/10)/(5/7*Catalan+7/12) 2415747291395953 m005 (1/3*gamma+1/12)/(1/10*2^(1/2)+1) 2415747294182327 h001 (4/5*exp(2)+2/7)/(5/6*exp(1)+3/10) 2415747296830309 m005 (1/2*5^(1/2)+2)/(2/3*5^(1/2)-1/5) 2415747296916482 k002 Champernowne real with 91*n^2-140*n+73 2415747308103964 a007 Real Root Of 304*x^4+151*x^3-843*x^2+986*x-923 2415747309399831 a001 2971215073/322*199^(2/11) 2415747309808791 s001 sum(exp(-2*Pi)^(n-1)*A064104[n],n=1..infinity) 2415747312396484 r005 Re(z^2+c),c=-137/110+1/47*I,n=30 2415747313453973 r002 34th iterates of z^2 + 2415747323265978 m005 (1/2*gamma-3)/(61/144+5/16*5^(1/2)) 2415747324442639 m001 1/Rabbit/KhintchineLevy^2*exp(log(1+sqrt(2))) 2415747333109804 m001 MertensB3^(2^(1/3))/(Robbin^(2^(1/3))) 2415747336125450 p004 log(32441/2897) 2415747338950508 a001 1364/225851433717*8^(2/3) 2415747341253743 a007 Real Root Of -552*x^4-863*x^3+712*x^2-714*x+753 2415747342841648 a007 Real Root Of -320*x^4+900*x^3-171*x^2+713*x+196 2415747345085445 a008 Real Root of x^4-36*x^2-36*x+263 2415747349167289 r009 Re(z^3+c),c=-1/24+25/41*I,n=47 2415747359007943 h001 (-8*exp(5)-7)/(-9*exp(4)-3) 2415747359226404 m001 (LambertW(1)-Zeta(3))/(Pi+exp(Pi)) 2415747362726768 m001 Paris^CopelandErdos*Paris^ReciprocalFibonacci 2415747367449965 m005 (1/2*Catalan+2)/(2/11*3^(1/2)-5/12) 2415747369165290 r008 a(0)=0,K{-n^6,46*n^3+127*n^2+178*n+63} 2415747369944144 r008 a(0)=0,K{-n^6,40*n^3+142*n^2+175*n+57} 2415747372134429 r008 a(0)=0,K{-n^6,24*n^3+182*n^2+167*n+41} 2415747374505797 r008 a(0)=0,K{-n^6,8*n^3+222*n^2+159*n+25} 2415747383915740 m001 (-Catalan+1/3)/(-sin(Pi/12)+1/2) 2415747397216542 k002 Champernowne real with 183/2*n^2-283/2*n+74 2415747398541390 m001 GAMMA(5/12)^2*ln(GAMMA(19/24))*gamma^2 2415747399508830 l006 ln(3634/4627) 2415747410281373 r009 Im(z^3+c),c=-61/110+10/41*I,n=59 2415747433395596 r009 Re(z^3+c),c=-39/110+18/43*I,n=20 2415747449395241 a005 (1/cos(4/153*Pi))^1625 2415747454553610 r005 Re(z^2+c),c=-1/82+35/61*I,n=15 2415747455394252 m001 LambertW(1)*GAMMA(3/4)+GAMMA(1/24) 2415747466604191 a007 Real Root Of -489*x^4-656*x^3+877*x^2-788*x+384 2415747469550275 a007 Real Root Of -979*x^4-996*x^3-643*x^2+724*x-120 2415747480701590 m001 (-GAMMA(23/24)+Stephens)/(gamma+GAMMA(17/24)) 2415747489277647 r005 Im(z^2+c),c=-7/66+4/13*I,n=7 2415747489571428 m001 DuboisRaymond^ZetaR(2)-GAMMA(23/24) 2415747492810496 r002 61th iterates of z^2 + 2415747495618523 a007 Real Root Of 192*x^4+533*x^3+100*x^2+174*x+812 2415747497516602 k002 Champernowne real with 92*n^2-143*n+75 2415747504451479 a007 Real Root Of 299*x^4+875*x^3+815*x^2+824*x-613 2415747526055613 r005 Im(z^2+c),c=-25/28+1/51*I,n=5 2415747526093094 a001 377/1860498*3^(4/25) 2415747535735408 r009 Im(z^3+c),c=-11/24+3/37*I,n=61 2415747536897029 l002 exp(polylog(4,97/117)) 2415747537218729 m001 (GAMMA(19/24)+Kac)/(MasserGramain+Paris) 2415747538268734 m005 (1/2*2^(1/2)-1/4)/(4*gamma-5/12) 2415747541080152 l006 ln(752/8421) 2415747547758178 a007 Real Root Of 31*x^4+707*x^3-972*x^2+969*x+207 2415747553460263 m001 (-Porter+ThueMorse)/(2^(1/3)-Conway) 2415747553670276 m001 Trott2nd/(GlaisherKinkelin-ZetaR(2)) 2415747565620441 r005 Im(z^2+c),c=-121/106+7/34*I,n=46 2415747571841687 a007 Real Root Of 405*x^4+979*x^3+892*x^2-995*x-280 2415747575576862 a007 Real Root Of 989*x^4-345*x^3-530*x^2-748*x-158 2415747582674405 a007 Real Root Of 285*x^4+525*x^3-603*x^2-722*x-530 2415747586682948 a007 Real Root Of -498*x^4-805*x^3+738*x^2-490*x+121 2415747596934672 a007 Real Root Of 824*x^4+487*x^3+638*x^2-525*x-160 2415747597816662 k002 Champernowne real with 185/2*n^2-289/2*n+76 2415747602199401 r009 Re(z^3+c),c=-9/62+31/34*I,n=58 2415747608671101 r009 Im(z^3+c),c=-41/70+31/47*I,n=7 2415747630756073 a007 Real Root Of -37*x^4-914*x^3-517*x^2-707*x+231 2415747653292700 a007 Real Root Of 75*x^4-727*x^3-400*x^2-942*x+23 2415747656738562 a007 Real Root Of 74*x^4+12*x^3+128*x^2-949*x-23 2415747657552510 a007 Real Root Of 36*x^4+865*x^3-96*x^2+383*x-549 2415747659405991 r009 Im(z^3+c),c=-7/34+13/56*I,n=8 2415747660031448 r005 Im(z^2+c),c=-5/17+3/8*I,n=32 2415747690845991 s004 Continued fraction of A054083 2415747698044231 r002 13th iterates of z^2 + 2415747698116722 k002 Champernowne real with 93*n^2-146*n+77 2415747699597086 a007 Real Root Of 522*x^4+798*x^3-826*x^2+852*x+351 2415747701990067 m001 Pi*csc(1/24*Pi)/GAMMA(23/24)+Gompertz+Paris 2415747704561947 a007 Real Root Of 529*x^4-76*x^3-527*x^2-675*x-16 2415747705562837 a007 Real Root Of -367*x^4-559*x^3+725*x^2-51*x+264 2415747708238740 r005 Im(z^2+c),c=-2/25+40/57*I,n=63 2415747709659217 m008 (1/3*Pi^4+2/3)/(1/5*Pi-2) 2415747715809783 a001 1364/3*13^(28/43) 2415747721088440 m001 (2^(1/2)+3^(1/2))/(Si(Pi)+ln(gamma)) 2415747725754575 r005 Im(z^2+c),c=39/118+3/61*I,n=31 2415747741595316 a007 Real Root Of -328*x^4-908*x^3-661*x^2-602*x+773 2415747747549968 r009 Re(z^3+c),c=-39/122+18/53*I,n=17 2415747749020396 m001 LandauRamanujan*Conway^2*exp(MinimumGamma)^2 2415747757590431 a005 (1/sin(49/181*Pi))^245 2415747768320384 r005 Im(z^2+c),c=-14/15+11/47*I,n=55 2415747777301474 a007 Real Root Of -731*x^4+488*x^3-717*x^2+678*x+215 2415747778073643 a007 Real Root Of 62*x^4-447*x^3-373*x^2-725*x+203 2415747780613463 m001 (PrimesInBinary+Trott2nd)/(Cahen+KhinchinLevy) 2415747789833471 l006 ln(5537/7050) 2415747791898735 r005 Im(z^2+c),c=-13/28+21/52*I,n=25 2415747795119255 r005 Im(z^2+c),c=-2/5+23/56*I,n=27 2415747798416782 k002 Champernowne real with 187/2*n^2-295/2*n+78 2415747799552110 m001 (Ei(1,1)-GAMMA(5/6))/(FellerTornier+ZetaQ(2)) 2415747815627218 a001 1364/24157817*233^(4/15) 2415747827540215 m005 (1/2*Zeta(3)-1/3)/(4/9*exp(1)-1/10) 2415747848486178 a005 (1/sin(98/215*Pi))^1997 2415747854607027 m008 (5/6*Pi^6-2/3)/(1/3*Pi^4+2/3) 2415747858663267 r005 Im(z^2+c),c=-27/70+17/42*I,n=27 2415747864742112 a007 Real Root Of -199*x^4-444*x^3-563*x^2+715*x+200 2415747870733913 r005 Im(z^2+c),c=-19/52+21/53*I,n=29 2415747871199181 r009 Re(z^3+c),c=-17/42+31/56*I,n=59 2415747874303457 a007 Real Root Of -733*x^4+64*x^3+623*x^2+506*x-157 2415747874782823 r002 32th iterates of z^2 + 2415747876831223 a007 Real Root Of 467*x^4+900*x^3-952*x^2-941*x+66 2415747898716842 k002 Champernowne real with 94*n^2-149*n+79 2415747908729441 l006 ln(323/3617) 2415747922213212 m006 (3/5*ln(Pi)+5)/(exp(Pi)+2/5) 2415747927126502 h001 (9/10*exp(2)+2/9)/(8/9*exp(1)+3/7) 2415747931139118 a001 2971215073/2207*199^(6/11) 2415747938632014 r005 Re(z^2+c),c=-23/30+3/31*I,n=4 2415747960313124 r009 Re(z^3+c),c=-7/48+15/16*I,n=42 2415747961669819 m001 Lehmer^Backhouse*polylog(4,1/2) 2415747961669819 m001 polylog(4,1/2)*Lehmer^Backhouse 2415747966362610 m004 -5+(25*Sqrt[5]*Pi)/6-Sin[Sqrt[5]*Pi]/6 2415747977044442 r009 Re(z^3+c),c=-29/126+3/59*I,n=4 2415747980483969 l006 ln(7440/9473) 2415747999016902 k002 Champernowne real with 189/2*n^2-301/2*n+80 2415748008388633 a001 9349/3*832040^(15/47) 2415748014962247 m001 (RenyiParking+Salem)/(GAMMA(11/12)-Si(Pi)) 2415748015120919 p003 LerchPhi(1/10,6,196/227) 2415748018822097 r009 Im(z^3+c),c=-61/110+10/39*I,n=33 2415748021688670 r005 Im(z^2+c),c=-23/60+17/28*I,n=16 2415748022288267 h001 (5/7*exp(2)+7/10)/(7/12*exp(1)+8/9) 2415748023104943 r009 Re(z^3+c),c=-13/48+8/37*I,n=7 2415748026394344 l006 ln(2781/2849) 2415748031496062 q001 1534/635 2415748035734581 a007 Real Root Of -294*x^4-386*x^3+728*x^2-208*x-180 2415748045913384 m001 Pi^Zeta(1/2)*Pi^Ei(1,1) 2415748053811244 m001 (Rabbit+Tribonacci)/(Shi(1)-gamma(3)) 2415748064141432 h001 (5/12*exp(1)+1/12)/(3/5*exp(2)+3/5) 2415748066498635 r005 Re(z^2+c),c=43/110+11/32*I,n=5 2415748067802320 a003 sin(Pi*25/69)/cos(Pi*20/53) 2415748070110750 m004 1/12-Log[Sqrt[5]*Pi]/6 2415748073308728 m001 (sin(1/12*Pi)+GaussAGM)/(Salem-Sarnak) 2415748076007781 m001 (Thue-ZetaP(4))/(Ei(1,1)-Landau) 2415748085122847 p001 sum(1/(462*n+347)/n/(512^n),n=1..infinity) 2415748099316962 k002 Champernowne real with 95*n^2-152*n+81 2415748103368967 m001 Zeta(1/2)^Salem/MasserGramain 2415748107510301 r005 Im(z^2+c),c=-95/98+8/35*I,n=5 2415748108439919 m001 BesselJ(1,1)+BesselI(1,2)^Porter 2415748110016403 a007 Real Root Of 125*x^4-148*x^3-723*x^2+845*x-83 2415748113192416 r005 Re(z^2+c),c=-41/70+22/57*I,n=5 2415748118893455 g005 2/3*Pi*3^(1/2)/GAMMA(3/4)^2 2415748125554249 p001 sum((-1)^n/(302*n+41)/(12^n),n=0..infinity) 2415748125612282 r009 Im(z^3+c),c=-47/126+10/61*I,n=13 2415748131143546 g007 Psi(2,1/7)-Psi(2,7/10)-Psi(2,5/7)-Psi(2,1/6) 2415748141148186 a007 Real Root Of 153*x^4+633*x^3+752*x^2+679*x+965 2415748141431761 a001 987/817138163596*4^(1/2) 2415748141810782 a007 Real Root Of 326*x^4+712*x^3-690*x^2-880*x+836 2415748150277290 a007 Real Root Of 56*x^4-347*x^3-755*x^2+604*x-934 2415748153721833 m001 1/Zeta(3)^2*Riemann1stZero^2/ln(sqrt(Pi)) 2415748155924667 m001 (ln(2)+gamma(2))/((1+3^(1/2))^(1/2)+Salem) 2415748164956455 r005 Im(z^2+c),c=9/122+15/64*I,n=8 2415748190088284 m001 MinimumGamma^Catalan+1 2415748190205839 r009 Re(z^3+c),c=-11/36+15/49*I,n=16 2415748190714734 a007 Real Root Of 625*x^4-187*x^3-927*x^2-428*x+158 2415748192521827 a003 cos(Pi*19/97)/cos(Pi*16/41) 2415748199617022 k002 Champernowne real with 191/2*n^2-307/2*n+82 2415748206408865 r005 Im(z^2+c),c=11/29+11/49*I,n=25 2415748210168272 r005 Re(z^2+c),c=-5/34+18/31*I,n=59 2415748226248705 m001 (PrimesInBinary-ZetaQ(3))/(Zeta(5)+Cahen) 2415748226905911 r005 Im(z^2+c),c=-19/74+13/36*I,n=12 2415748228320082 r005 Re(z^2+c),c=-5/86+16/29*I,n=8 2415748229091168 l006 ln(863/9664) 2415748236298232 b008 -1/2*E^4+Pi 2415748236298232 b008 5*(E^4-2*Pi) 2415748242195014 g004 Im(GAMMA(49/20+I*17/60)) 2415748256087798 r005 Re(z^2+c),c=11/56+7/17*I,n=4 2415748258733428 a007 Real Root Of 457*x^4+950*x^3-466*x^2-220*x+17 2415748258963552 r005 Im(z^2+c),c=-9/10+47/223*I,n=25 2415748262807947 m002 -Pi^2+Pi^3-4*Cosh[Pi]+ProductLog[Pi] 2415748277308772 a008 Real Root of x^4+5*x^2-15*x-27 2415748279924061 m001 (Robbin+ZetaQ(4))/(arctan(1/3)-Gompertz) 2415748283070380 m001 Riemann1stZero^2*Paris^2*exp((2^(1/3)))^2 2415748299917082 k002 Champernowne real with 96*n^2-155*n+83 2415748308187614 m001 1/Rabbit^2/FeigenbaumC*ln(OneNinth) 2415748310021714 k002 Champernowne real with 193/2*n^2-313/2*n+84 2415748314547575 a007 Real Root Of -12*x^4+233*x^3+776*x^2+604*x+624 2415748321459470 r004 Re(z^2+c),c=1/4+1/23*I,z(0)=exp(3/8*I*Pi),n=4 2415748331397830 m002 -1+Pi+Pi^2/36 2415748332523984 r005 Im(z^2+c),c=-1/40+13/19*I,n=6 2415748340191575 m001 GAMMA(1/12)^(2/3)-GAMMA(1/3) 2415748347478203 a007 Real Root Of -399*x^4-810*x^3+23*x^2-674*x+407 2415748354739982 a001 7778742049/5778*199^(6/11) 2415748355170817 m008 (1/6*Pi^2-1/4)/(3/5*Pi^6+3/5) 2415748363786940 m001 (BesselJ(1,1)+CareFree)/(ln(2)-Ei(1,1)) 2415748377059610 a007 Real Root Of -516*x^4-763*x^3+815*x^2-540*x+756 2415748381328136 m001 (Lehmer+TravellingSalesman)/(gamma(3)-Landau) 2415748381908047 r009 Re(z^3+c),c=-29/78+26/57*I,n=26 2415748387988297 m001 1/PisotVijayaraghavan^2*Artin^2*ln(GAMMA(2/3)) 2415748388101274 r009 Im(z^3+c),c=-11/25+3/23*I,n=6 2415748395743986 r005 Im(z^2+c),c=-7/18+23/57*I,n=34 2415748402713142 r005 Re(z^2+c),c=-19/102+1/2*I,n=56 2415748403954594 r009 Re(z^3+c),c=-39/98+18/35*I,n=57 2415748404345182 a003 cos(Pi*32/65)*sin(Pi*34/69) 2415748408252471 a007 Real Root Of -40*x^4-944*x^3+552*x^2+341*x+474 2415748410051720 k002 Champernowne real with 97*n^2-158*n+85 2415748416542527 a001 20365011074/15127*199^(6/11) 2415748420714892 l006 ln(540/6047) 2415748425559397 a001 53316291173/39603*199^(6/11) 2415748426874941 a001 139583862445/103682*199^(6/11) 2415748427066876 a001 365435296162/271443*199^(6/11) 2415748427094879 a001 956722026041/710647*199^(6/11) 2415748427098965 a001 2504730781961/1860498*199^(6/11) 2415748427099561 a001 6557470319842/4870847*199^(6/11) 2415748427099702 a001 10610209857723/7881196*199^(6/11) 2415748427099929 a001 1346269*199^(6/11) 2415748427101490 a001 1548008755920/1149851*199^(6/11) 2415748427112186 a001 591286729879/439204*199^(6/11) 2415748427185499 a001 225851433717/167761*199^(6/11) 2415748427687992 a001 86267571272/64079*199^(6/11) 2415748431132130 a001 32951280099/24476*199^(6/11) 2415748434111739 r005 Re(z^2+c),c=5/21+34/63*I,n=61 2415748437142620 r009 Re(z^3+c),c=-4/29+54/55*I,n=8 2415748441228967 m001 (Pi-ln(gamma))/(ln(Pi)+Riemann1stZero) 2415748447952325 a001 3571/591286729879*8^(2/3) 2415748453821958 r009 Re(z^3+c),c=-9/58+51/61*I,n=35 2415748454738603 a001 12586269025/9349*199^(6/11) 2415748456665487 m005 (1/2*3^(1/2)+5)/(5/11*2^(1/2)-2/5) 2415748476327481 m001 (GAMMA(3/4)+GAMMA(13/24))^Chi(1) 2415748479146824 a007 Real Root Of 53*x^4-937*x^3+646*x^2-959*x+207 2415748482696280 r005 Re(z^2+c),c=23/110+45/64*I,n=2 2415748485083547 r002 19th iterates of z^2 + 2415748485913966 r004 Im(z^2+c),c=-14/11+1/14*I,z(0)=-1,n=36 2415748487723742 r008 a(0)=0,K{-n^6,46*n^3+125*n^2+179*n+64} 2415748488249482 r008 a(0)=0,K{-n^6,(2*n+1)*(60+21*n^2+57*n)} 2415748489258284 m001 (Pi+sin(1/5*Pi))/(Porter+ZetaP(4)) 2415748503566340 h001 (-5*exp(3/2)+2)/(-9*exp(-3)-8) 2415748510081726 k002 Champernowne real with 195/2*n^2-319/2*n+86 2415748519881598 m008 (5/6*Pi^4-4)/(1/3*Pi^6-1) 2415748535203762 l006 ln(1903/2423) 2415748549621044 a007 Real Root Of 275*x^4+315*x^3+673*x^2-516*x+80 2415748554009060 h001 (-4*exp(4)+4)/(-6*exp(5)+3) 2415748555396907 p001 sum(1/(407*n+8)/n/(100^n),n=1..infinity) 2415748557591654 r002 3th iterates of z^2 + 2415748558180285 r005 Im(z^2+c),c=-5/17+3/8*I,n=29 2415748559027520 h001 (6/7*exp(2)+4/11)/(3/10*exp(2)+5/9) 2415748560419695 r005 Re(z^2+c),c=-13/46+6/31*I,n=11 2415748563411094 m001 (cos(1)-ln(Pi))/(LaplaceLimit+Tribonacci) 2415748565032762 a001 2584/2139295485799*4^(1/2) 2415748577268013 r005 Re(z^2+c),c=-3/19+14/25*I,n=51 2415748581596723 m005 (1/2*2^(1/2)-6/7)/(1/10*5^(1/2)-2/7) 2415748588954446 m001 FellerTornier*(PisotVijayaraghavan-Stephens) 2415748591218547 r005 Im(z^2+c),c=-9/62+24/55*I,n=3 2415748595057350 r005 Im(z^2+c),c=-15/26+44/91*I,n=29 2415748609753509 a001 9349/1548008755920*8^(2/3) 2415748610111732 k002 Champernowne real with 98*n^2-161*n+87 2415748616539787 a001 4807526976/3571*199^(6/11) 2415748617920211 r005 Im(z^2+c),c=-14/29+17/36*I,n=49 2415748618382284 m001 cos(1)*ln(MertensB1)/sqrt(3)^2 2415748626124177 a007 Real Root Of -294*x^4-762*x^3-221*x^2-411*x-433 2415748626835315 a001 6765/5600748293801*4^(1/2) 2415748632654678 a007 Real Root Of 283*x^4-732*x^3-545*x^2-939*x+268 2415748633359984 a001 24476/4052739537881*8^(2/3) 2415748635852186 a001 17711/14662949395604*4^(1/2) 2415748636804122 a001 64079/10610209857723*8^(2/3) 2415748637392451 a001 40/165580141 2415748637392451 a001 4/433494437*(1/2+1/2*5^(1/2))^2 2415748637392451 a001 2/567451585*(1/2+1/2*5^(1/2))^4 2415748637392451 a001 4/2971215073*(1/2+1/2*5^(1/2))^6 2415748637392451 a001 4/7778742049*(1/2+1/2*5^(1/2))^8 2415748637392451 a001 2/10182505537*(1/2+1/2*5^(1/2))^10 2415748637392451 a001 4/53316291173*(1/2+1/2*5^(1/2))^12 2415748637392451 a001 4/139583862445*(1/2+1/2*5^(1/2))^14 2415748637392451 a001 2/182717648081*(1/2+1/2*5^(1/2))^16 2415748637392451 a001 4/2504730781961*(1/2+1/2*5^(1/2))^20 2415748637392451 a001 2/3278735159921*(1/2+1/2*5^(1/2))^22 2415748637392451 a001 4/10610209857723*(1/2+1/2*5^(1/2))^23 2415748637392451 a001 1/387002188980*(1/2+1/2*5^(1/2))^19 2415748637392451 a001 4/225851433717*(1/2+1/2*5^(1/2))^15 2415748637392451 a001 1/21566892818*(1/2+1/2*5^(1/2))^13 2415748637392451 a001 4/32951280099*(1/2+1/2*5^(1/2))^11 2415748637392451 a001 4/12586269025*(1/2+1/2*5^(1/2))^9 2415748637392451 a001 1/1201881744*(1/2+1/2*5^(1/2))^7 2415748637392451 a001 4/1836311903*(1/2+1/2*5^(1/2))^5 2415748637392451 a001 4/701408733*(1/2+1/2*5^(1/2))^3 2415748637392451 a001 1/133957148+1/133957148*5^(1/2) 2415748637980780 a001 28657/23725150497407*4^(1/2) 2415748638932717 a001 39603/6557470319842*8^(2/3) 2415748639170956 l006 ln(757/8477) 2415748641424918 a001 10946/9062201101803*4^(1/2) 2415748642274643 m001 (BesselI(0,1)-Si(Pi))/(-ln(Pi)+FeigenbaumMu) 2415748642666882 b008 -4+EllipticE[-1/29] 2415748643939626 r009 Im(z^3+c),c=-23/40+23/50*I,n=42 2415748647949587 a001 15127/2504730781961*8^(2/3) 2415748651000579 s002 sum(A017684[n]/(exp(n)+1),n=1..infinity) 2415748658669723 m005 (37/36+1/4*5^(1/2))/(4*2^(1/2)-5) 2415748665031393 a001 4181/3461452808002*4^(1/2) 2415748675157092 a003 cos(Pi*3/26)/cos(Pi*31/83) 2415748677155267 r005 Im(z^2+c),c=-37/70+32/61*I,n=4 2415748682464447 r005 Re(z^2+c),c=-3/14+23/53*I,n=32 2415748692777012 m001 (-3^(1/3)+Otter)/(GAMMA(3/4)-Si(Pi)) 2415748698766417 r005 Im(z^2+c),c=-53/50+6/23*I,n=59 2415748701223910 a007 Real Root Of 25*x^4+85*x^3+199*x^2+434*x+234 2415748704163432 m001 (Kolakoski+ZetaP(4))/(CopelandErdos-Gompertz) 2415748709752141 a001 5778/956722026041*8^(2/3) 2415748710141738 k002 Champernowne real with 197/2*n^2-325/2*n+88 2415748716079880 m001 (3^(1/3)-exp(1))/(-Ei(1,1)+RenyiParking) 2415748731569635 r005 Im(z^2+c),c=-9/23+23/57*I,n=33 2415748738318377 r009 Re(z^3+c),c=-1/106+37/56*I,n=4 2415748745553020 a007 Real Root Of -37*x^4-908*x^3-343*x^2+13*x+674 2415748748319840 r002 33th iterates of z^2 + 2415748755099548 m005 (1/6*5^(1/2)-7/12)/(1/6*3^(1/2)+7/12) 2415748755283795 a007 Real Root Of -475*x^4+163*x^3-2*x^2+716*x+177 2415748756796359 m001 exp(-1/2*Pi)+PrimesInBinary*StolarskyHarborth 2415748758117333 a007 Real Root Of -104*x^4-202*x^3+64*x^2+263*x+956 2415748766022792 m005 (Catalan-4)/(4*Pi+1/5) 2415748771091911 m006 (5/6*exp(2*Pi)+5)/(4/5*exp(Pi)+1/6) 2415748774871843 m001 (FeigenbaumDelta+Thue)/(Backhouse+FeigenbaumB) 2415748776066927 a007 Real Root Of -18*x^4+305*x^3+980*x^2+294*x-96 2415748777520430 a007 Real Root Of 371*x^4+748*x^3-379*x^2-144*x-226 2415748780230714 m001 1/exp(cos(1))^2*MinimumGamma^2*gamma^2 2415748790347155 p003 LerchPhi(1/6,2,479/226) 2415748796150245 m001 (GAMMA(7/12)+Kac)/(ln(Pi)-GAMMA(11/12)) 2415748810171744 k002 Champernowne real with 99*n^2-164*n+89 2415748819830814 m009 (4*Psi(1,3/4)+1/4)/(5/12*Pi^2+1/5) 2415748820703163 a007 Real Root Of 302*x^4+468*x^3-285*x^2+888*x+121 2415748826832577 a001 1597/1322157322203*4^(1/2) 2415748827084509 m001 Zeta(9)*exp(MadelungNaCl)/cosh(1)^2 2415748831234743 m001 (KomornikLoreti+Lehmer)/(MertensB1+Sarnak) 2415748851078938 a008 Real Root of x^2-x-58600 2415748863730513 m001 ln(Rabbit)/HardHexagonsEntropy/Zeta(7)^2 2415748868927677 r005 Re(z^2+c),c=-29/106+26/33*I,n=4 2415748869525508 g007 Psi(2,2/11)+Psi(2,1/10)+Psi(2,2/7)-Psi(2,2/3) 2415748876077135 a007 Real Root Of 245*x^4+390*x^3-796*x^2-860*x-278 2415748881012019 m001 BesselI(1,2)/(GAMMA(5/6)-KomornikLoreti) 2415748886665188 a007 Real Root Of 235*x^4+367*x^3-502*x^2-46*x-11 2415748887252735 a007 Real Root Of 369*x^4+898*x^3+503*x^2+771*x-980 2415748899116766 a005 (1/cos(5/79*Pi))^1780 2415748902927245 m001 cos(Pi/5)/GAMMA(5/12)^2*ln(sin(Pi/12)) 2415748903879809 m002 -3+E^Pi+4*Pi^3+Pi^4 2415748910201750 k002 Champernowne real with 199/2*n^2-331/2*n+90 2415748914137321 a007 Real Root Of -160*x^4-329*x^3-87*x^2-586*x-97 2415748915732064 r005 Im(z^2+c),c=-43/114+2/5*I,n=39 2415748923145207 p004 log(27091/21277) 2415748924629254 a001 3571/63245986*233^(4/15) 2415748932992686 m001 GAMMA(13/24)^2/exp(Riemann1stZero)/cos(Pi/5) 2415748934464170 m003 95/32+Sqrt[5]/64-Tan[1/2+Sqrt[5]/2] 2415748938440420 r005 Re(z^2+c),c=9/28+9/28*I,n=11 2415748939794592 r005 Re(z^2+c),c=-1/7+29/50*I,n=47 2415748943774168 q001 1/4139503 2415748961379669 a001 11/10946*75025^(21/43) 2415748970184702 r005 Re(z^2+c),c=-87/94+7/27*I,n=38 2415748976259114 a007 Real Root Of 600*x^4-258*x^3-932*x^2-806*x-146 2415748986899686 m001 (Shi(1)+Chi(1))/(Zeta(1,2)+Thue) 2415748986899686 m001 Ei(1)/(Zeta(1,2)+Thue) 2415748991296729 p001 sum((-1)^n/(481*n+411)/(64^n),n=0..infinity) 2415749008210343 r005 Im(z^2+c),c=-99/98+15/47*I,n=27 2415749009149449 a007 Real Root Of -478*x^4-712*x^3+897*x^2-38*x+915 2415749010231756 k002 Champernowne real with 100*n^2-167*n+91 2415749015600595 r002 15th iterates of z^2 + 2415749036267641 m001 Backhouse^Ei(1)*Backhouse^ZetaP(2) 2415749036754331 a007 Real Root Of -386*x^4-788*x^3+686*x^2+783*x-75 2415749043995106 m001 (-sin(1/5*Pi)+ZetaQ(2))/(Zeta(5)-exp(Pi)) 2415749059137586 r005 Im(z^2+c),c=-101/90+11/39*I,n=56 2415749065408674 l006 ln(7784/9911) 2415749070477376 r009 Re(z^3+c),c=-23/102+18/29*I,n=3 2415749082415749 q001 724/2997 2415749086430470 a001 9349/165580141*233^(4/15) 2415749096916248 a003 sin(Pi*16/63)/cos(Pi*26/53) 2415749097730410 a007 Real Root Of 279*x^4+816*x^3+288*x^2-525*x-947 2415749102066675 a001 4/55*34^(16/47) 2415749110036950 a001 24476/433494437*233^(4/15) 2415749110261762 k002 Champernowne real with 201/2*n^2-337/2*n+92 2415749110726837 r005 Im(z^2+c),c=-31/122+19/52*I,n=13 2415749113481089 a001 64079/1134903170*233^(4/15) 2415749113983582 a001 167761/2971215073*233^(4/15) 2415749114056895 a001 439204/7778742049*233^(4/15) 2415749114067591 a001 1149851/20365011074*233^(4/15) 2415749114069151 a001 3010349/53316291173*233^(4/15) 2415749114069379 a001 7881196/139583862445*233^(4/15) 2415749114069412 a001 20633239/365435296162*233^(4/15) 2415749114069417 a001 54018521/956722026041*233^(4/15) 2415749114069418 a001 141422324/2504730781961*233^(4/15) 2415749114069418 a001 370248451/6557470319842*233^(4/15) 2415749114069418 a001 199691526/3536736619241*233^(4/15) 2415749114069418 a001 228826127/4052739537881*233^(4/15) 2415749114069418 a001 29134601/516002918640*233^(4/15) 2415749114069420 a001 33385282/591286729879*233^(4/15) 2415749114069433 a001 4250681/75283811239*233^(4/15) 2415749114069520 a001 4870847/86267571272*233^(4/15) 2415749114070116 a001 620166/10983760033*233^(4/15) 2415749114074201 a001 710647/12586269025*233^(4/15) 2415749114102204 a001 90481/1602508992*233^(4/15) 2415749114294140 a001 103682/1836311903*233^(4/15) 2415749114590020 m001 GAMMA(1/4)^2*ln(Champernowne)^2/cosh(1)^2 2415749115609684 a001 1/17711*233^(4/15) 2415749122423679 r005 Re(z^2+c),c=-7/8+47/136*I,n=6 2415749124626556 a001 15127/267914296*233^(4/15) 2415749126691628 m001 (LandauRamanujan+Totient)/(2^(1/2)-Landau) 2415749133353141 a001 2207/365435296162*8^(2/3) 2415749143150371 m001 exp(GAMMA(5/6))^2*Riemann2ndZero*Zeta(3) 2415749149966015 r005 Im(z^2+c),c=-97/126+1/55*I,n=12 2415749158499654 a001 505019158607/21*591286729879^(13/17) 2415749161113073 m002 -2-E^Pi-4/Pi^5+Tanh[Pi] 2415749165079210 m001 1/ln(GAMMA(11/24))/FeigenbaumKappa/arctan(1/2) 2415749176040974 a007 Real Root Of 257*x^4+436*x^3-742*x^2-751*x-90 2415749180262616 m005 (1/2*2^(1/2)+5/8)/(4/11*2^(1/2)+5) 2415749182794134 l006 ln(217/2430) 2415749186429122 a001 1926/34111385*233^(4/15) 2415749195699580 m001 FeigenbaumMu/(KomornikLoreti-Pi^(1/2)) 2415749196747256 m009 (32*Catalan+4*Pi^2+1/2)/(5/6*Psi(1,3/4)+3/4) 2415749209024925 a007 Real Root Of 676*x^4+80*x^3+188*x^2-136*x-45 2415749210291768 k002 Champernowne real with 101*n^2-170*n+93 2415749211619666 m001 exp(Pi)^Bloch/MasserGramainDelta 2415749236974720 l006 ln(5881/7488) 2415749262740580 a007 Real Root Of 206*x^4+404*x^3+174*x^2+586*x-920 2415749265238737 r009 Re(z^3+c),c=-5/122+35/59*I,n=36 2415749268409002 p001 sum(1/(461*n+348)/n/(512^n),n=1..infinity) 2415749269072920 m001 BesselI(1,2)*Trott-sin(1/12*Pi) 2415749286091990 a007 Real Root Of 386*x^4+657*x^3-940*x^2-267*x+957 2415749296408504 m001 BesselI(0,1)*exp(-1/2*Pi)-GAMMA(1/3) 2415749310321774 k002 Champernowne real with 203/2*n^2-343/2*n+94 2415749328807810 m009 (1/4*Psi(1,2/3)+2/3)/(2/3*Psi(1,1/3)-4/5) 2415749331088401 a001 1364/121393*377^(4/31) 2415749343807596 m001 (-Conway+Mills)/(gamma-ln(2)) 2415749346832095 a007 Real Root Of 985*x^4-167*x^3+168*x^2-587*x+131 2415749349707112 h001 (2/5*exp(1)+5/9)/(10/11*exp(2)+1/12) 2415749350584758 m005 (1/2*Zeta(3)+3/8)/(7/8*gamma-10/11) 2415749353841652 m005 (1/2*Zeta(3)+1/12)/(8/9*exp(1)+5/12) 2415749357002557 m001 (arctan(1/2)+2/3)/(GAMMA(1/3)+2) 2415749362113399 h001 (-6*exp(1/3)+9)/(-4*exp(3/2)-8) 2415749362527645 a007 Real Root Of 755*x^4-594*x^3-704*x^2-224*x+101 2415749372431670 p004 log(12553/9859) 2415749373483827 m001 (5^(1/2)-Cahen)/(-Conway+ReciprocalLucas) 2415749375302979 a001 521/514229*233^(32/55) 2415749379504985 a007 Real Root Of 477*x^4+715*x^3-709*x^2+901*x+149 2415749384489077 a007 Real Root Of -263*x^4-359*x^3+545*x^2-198*x+237 2415749388889249 m004 -Log[Sqrt[5]*Pi]/6+Tanh[Sqrt[5]*Pi]/12 2415749409386488 a001 2/17*514229^(29/50) 2415749410351780 k002 Champernowne real with 102*n^2-173*n+95 2415749413512747 m001 MadelungNaCl+Rabbit^Salem 2415749416958537 m001 1/GAMMA(3/4)^2*OneNinth^2/exp(sqrt(3))^2 2415749418108579 r002 32th iterates of z^2 + 2415749422189297 a007 Real Root Of 467*x^4+100*x^3+587*x^2-586*x-176 2415749435488884 a007 Real Root Of 343*x^4+744*x^3-586*x^2-628*x+710 2415749438560625 r005 Im(z^2+c),c=-13/44+17/49*I,n=4 2415749443017532 a007 Real Root Of -177*x^4-33*x^3+563*x^2-590*x+852 2415749445157923 m001 ln(2)/ln(10)*GAMMA(2/3)*Lehmer 2415749446187306 h002 exp(15^(1/12)+17^(7/6)) 2415749446187306 h007 exp(15^(1/12)+17^(7/6)) 2415749446971548 a007 Real Root Of -258*x^4-437*x^3+682*x^2+236*x-784 2415749450295827 m001 (Magata+ZetaP(2))/(BesselJ(0,1)+FeigenbaumB) 2415749462131336 a007 Real Root Of -192*x^4+885*x^3-863*x^2+648*x-118 2415749472019165 m001 (2^(1/2)-Catalan)/(BesselI(1,2)+Bloch) 2415749497383204 a007 Real Root Of 300*x^4+565*x^3-252*x^2+645*x+777 2415749500429184 a001 5628696336/233 2415749500621124 a001 24157817-144*5^(1/2) 2415749501123623 a001 48315435/2-199/2*5^(1/2) 2415749502668517 m002 E^Pi/(6*Pi)+Pi^6/4 2415749509452129 m001 LandauRamanujan2nd/Zeta(1/2)/ZetaQ(4) 2415749510381786 k002 Champernowne real with 205/2*n^2-349/2*n+96 2415749516241369 a001 18/1597*514229^(20/49) 2415749521958563 r005 Re(z^2+c),c=5/62+17/50*I,n=15 2415749526287502 s001 sum(exp(-2*Pi)^(n-1)*A192838[n],n=1..infinity) 2415749532778098 m003 -3*Cos[1/2+Sqrt[5]/2]^2+Sinh[1/2+Sqrt[5]/2] 2415749539639012 r005 Re(z^2+c),c=-119/118+7/58*I,n=4 2415749547936359 m001 (GaussAGM+ZetaP(2))/(Psi(2,1/3)+Si(Pi)) 2415749550342889 a007 Real Root Of 213*x^4+572*x^3+127*x^2-45*x-40 2415749555478331 a007 Real Root Of 826*x^4-952*x^3-688*x^2-277*x-43 2415749567264671 m005 (1/2*Pi+6/11)/(6/7*Catalan+1/11) 2415749572688662 l006 ln(3978/5065) 2415749578813379 r002 25th iterates of z^2 + 2415749582092672 r009 Im(z^3+c),c=-23/40+23/50*I,n=51 2415749600613171 r005 Re(z^2+c),c=7/29+7/57*I,n=9 2415749610030206 a001 2207/39088169*233^(4/15) 2415749610411792 k002 Champernowne real with 103*n^2-176*n+97 2415749615800391 r002 9th iterates of z^2 + 2415749628366350 a001 1346269/123*29^(34/37) 2415749633478121 a001 2/121393*377^(2/31) 2415749636508052 r009 Im(z^3+c),c=-23/40+23/50*I,n=60 2415749640694467 m001 Salem^Zeta(1,-1)+3^(1/3) 2415749641669801 m001 GAMMA(13/24)-sin(1/12*Pi)+MertensB2 2415749661506968 m001 1/GAMMA(11/24)/FeigenbaumB^2*exp(GAMMA(19/24)) 2415749663371400 a007 Real Root Of -237*x^4-300*x^3+666*x^2+338*x+772 2415749667350938 m002 -E^Pi-2/Pi^4-Tanh[Pi] 2415749669391576 m001 1/BesselK(1,1)^2*ln(LaplaceLimit)*GAMMA(5/12) 2415749675725575 a007 Real Root Of -769*x^4+58*x^3-716*x^2+880*x-169 2415749681604246 a007 Real Root Of 588*x^4+990*x^3-864*x^2+155*x-652 2415749682250824 r005 Re(z^2+c),c=-3/13+25/64*I,n=22 2415749682484837 a007 Real Root Of -245*x^4-29*x^3+832*x^2-935*x+821 2415749689016333 m001 (AlladiGrinstead+Magata)/KhinchinHarmonic 2415749696789502 a007 Real Root Of 3*x^4+726*x^3+308*x^2-4*x+788 2415749697427512 a007 Real Root Of 183*x^4+146*x^3-658*x^2-269*x-984 2415749703186069 r002 26i'th iterates of 2*x/(1-x^2) of 2415749703460996 a007 Real Root Of 232*x^4+341*x^3+144*x^2-669*x-166 2415749703795725 m001 (Mills-Rabbit)/(Zeta(1,2)+Magata) 2415749706491741 r005 Im(z^2+c),c=-11/122+10/23*I,n=3 2415749710441798 k002 Champernowne real with 207/2*n^2-355/2*n+98 2415749710973495 m001 BesselJ(1,1)^(Mills*PisotVijayaraghavan) 2415749713066763 a007 Real Root Of 507*x^4+813*x^3-974*x^2-228*x-672 2415749713621894 p004 log(17837/14009) 2415749718924483 m001 1/GAMMA(1/6)^2/ln(DuboisRaymond)*GAMMA(3/4) 2415749722849938 l006 ln(762/8533) 2415749725542190 a001 1836311903/1364*199^(6/11) 2415749734119803 m005 (31/10+1/10*5^(1/2))/(5*exp(1)+1/6) 2415749739615536 a007 Real Root Of -75*x^4-15*x^3+43*x^2-957*x-220 2415749744761616 a003 cos(Pi*25/109)-sin(Pi*43/93) 2415749761269316 a001 63245986/123*123^(4/5) 2415749770431482 m001 Ei(1,1)+Pi*csc(1/24*Pi)/GAMMA(23/24)+PlouffeB 2415749771206313 h001 (-9*exp(1)-1)/(-7*exp(1/2)+1) 2415749777043607 m001 (-Zeta(1,2)+GAMMA(13/24))/(Shi(1)-gamma(2)) 2415749778775053 p003 LerchPhi(1/1024,4,106/235) 2415749781797176 a001 1836311903/199*76^(2/9) 2415749782701173 m001 Lehmer-ln(5)-exp(Pi) 2415749784870283 a007 Real Root Of 353*x^4+764*x^3-121*x^2+609*x+926 2415749786719002 a007 Real Root Of 610*x^4+54*x^3-967*x^2-842*x+257 2415749788077746 a007 Real Root Of -738*x^4-47*x^3+738*x^2+373*x-130 2415749796525070 r005 Re(z^2+c),c=9/34+9/61*I,n=42 2415749804226028 a007 Real Root Of -45*x^4+123*x^3+297*x^2+689*x+151 2415749805420724 r005 Im(z^2+c),c=-3/74+49/50*I,n=15 2415749810471804 k002 Champernowne real with 104*n^2-179*n+99 2415749814422949 r005 Im(z^2+c),c=-3/98+26/53*I,n=3 2415749815931519 m005 (1/2*Pi-7/9)/(2/9*gamma+1/5) 2415749827808568 h005 exp(cos(Pi*17/58)+cos(Pi*23/56)) 2415749835403763 m001 (Psi(2,1/3)+BesselJ(0,1))/(Cahen+ErdosBorwein) 2415749847160881 m001 (-polylog(4,1/2)+Thue)/(3^(1/2)-BesselI(1,2)) 2415749876310093 m009 (16*Catalan+2*Pi^2+3/5)/(5*Psi(1,2/3)-5/6) 2415749876858102 m001 (ThueMorse-Weierstrass)/(Riemann3rdZero+Thue) 2415749877282668 r005 Re(z^2+c),c=19/118+23/51*I,n=37 2415749881920947 r005 Re(z^2+c),c=7/50+23/55*I,n=18 2415749888319377 a007 Real Root Of 15*x^4-453*x^3-787*x^2+547*x-983 2415749895711983 a001 1/29*(1/2*5^(1/2)+1/2)^2*1364^(3/22) 2415749896316552 b008 E^(1/60)+E^Pi 2415749898863060 l006 ln(6053/7707) 2415749903329525 m001 ErdosBorwein^Champernowne+FeigenbaumKappa 2415749910501810 k002 Champernowne real with 209/2*n^2-361/2*n+100 2415749913102908 r002 5th iterates of z^2 + 2415749923563296 a003 sin(Pi*27/91)/cos(Pi*20/51) 2415749924983797 r002 14th iterates of z^2 + 2415749926798778 m001 (Ei(1,1)+MertensB1)/(Chi(1)-Zeta(5)) 2415749927729651 h001 (1/12*exp(1)+4/9)/(11/12*exp(1)+2/7) 2415749935834394 a001 610/505019158607*4^(1/2) 2415749937018574 r009 Re(z^3+c),c=-1/24+25/41*I,n=49 2415749937881250 l006 ln(545/6103) 2415749944620128 s002 sum(A079777[n]/((10^n-1)/n),n=1..infinity) 2415749947146193 r004 Re(z^2+c),c=3/14-1/9*I,z(0)=exp(5/12*I*Pi),n=9 2415749954058515 a007 Real Root Of 332*x^4+774*x^3+271*x^2+728*x-218 2415749968033677 s002 sum(A184083[n]/((exp(n)+1)/n),n=1..infinity) 2415749986587028 m001 (FellerTornier+Khinchin)/(Sierpinski-Totient) 2415749995083544 m005 (5/6*Pi+2/5)/(Catalan+1/3) 2415750004216868 r005 Im(z^2+c),c=-41/38+10/41*I,n=58 2415750004510704 m001 (exp(-1/2*Pi)+Robbin)/(exp(1)+ln(2^(1/2)+1)) 2415750010531816 k002 Champernowne real with 105*n^2-182*n+101 2415750018812515 m001 exp(Tribonacci)^2/Khintchine^2*BesselJ(1,1) 2415750021224212 m001 (2^(1/2)-GAMMA(19/24))/(Landau+ZetaP(2)) 2415750025655824 h001 (10/11*exp(1)+1/8)/(3/11*exp(1)+1/3) 2415750025685950 a007 Real Root Of 392*x^4+425*x^3-888*x^2+694*x-500 2415750027738768 r005 Re(z^2+c),c=-15/56+17/64*I,n=24 2415750036349677 a001 21/1364*199^(4/47) 2415750047386517 m005 (1/2*Zeta(3)+7/8)/(4*3^(1/2)-9/11) 2415750050336806 m001 ln(2)/ln(10)+Grothendieck*KhinchinLevy 2415750066452171 a001 7/8*8^(21/43) 2415750068810383 g006 Psi(1,6/11)+Psi(1,1/3)-Psi(1,3/10)-Psi(1,1/5) 2415750072745652 a001 1/29*(1/2*5^(1/2)+1/2)^3*64079^(1/22) 2415750072955689 a001 1/709804*(1/2*5^(1/2)+1/2)^5*24476^(21/22) 2415750073333982 a001 1/1858291*(1/2*5^(1/2)+1/2)^26*64079^(1/22) 2415750075507084 r009 Re(z^3+c),c=-7/62+41/56*I,n=14 2415750085233847 m001 1/GAMMA(1/24)*BesselJ(1,1)*ln(GAMMA(1/4)) 2415750091617139 a001 1/271121*(1/2*5^(1/2)+1/2)^17*9349^(7/22) 2415750093933324 r005 Im(z^2+c),c=19/98+8/49*I,n=9 2415750097770836 m001 Tribonacci^2/Lehmer^2*ln(GAMMA(17/24)) 2415750105370740 m001 (BesselI(1,2)+MertensB2)/(BesselJ(0,1)-Si(Pi)) 2415750108050995 m001 (Ei(1)+FeigenbaumDelta)/(BesselJ(0,1)-Zeta(5)) 2415750110384675 r005 Im(z^2+c),c=-31/82+26/57*I,n=15 2415750110561822 k002 Champernowne real with 211/2*n^2-367/2*n+102 2415750110943323 q001 1/4139501 2415750114164435 r005 Im(z^2+c),c=-17/70+20/33*I,n=5 2415750125571774 l006 ln(873/9776) 2415750129151125 m004 -1-(75*Sqrt[5])/Pi+25*Pi*Tanh[Sqrt[5]*Pi] 2415750134067347 m001 (-Ei(1,1)+MertensB1)/(ln(2)/ln(10)+3^(1/3)) 2415750139091102 m001 (ln(5)+gamma(2))/(gamma(3)+TwinPrimes) 2415750140194755 a001 281/34111385*317811^(4/15) 2415750140196030 a001 281/1602508992*591286729879^(4/15) 2415750140196030 a001 281/233802911*433494437^(4/15) 2415750150270678 a001 1/103559*(1/2*5^(1/2)+1/2)^11*3571^(13/22) 2415750165727325 a007 Real Root Of 151*x^4+89*x^3-732*x^2+17*x+425 2415750167674446 a007 Real Root Of 883*x^4+383*x^3+46*x^2-827*x-20 2415750185211452 a001 24157817/322*521^(12/13) 2415750185315249 a007 Real Root Of 433*x^4+874*x^3-478*x^2-191*x-97 2415750186993347 r005 Im(z^2+c),c=-43/98+1/25*I,n=19 2415750188667085 r005 Im(z^2+c),c=-65/54+10/51*I,n=20 2415750202618465 m001 exp(Tribonacci)^2/Paris*BesselK(1,1) 2415750205465915 r005 Im(z^2+c),c=-41/110+19/48*I,n=14 2415750206522942 r005 Re(z^2+c),c=-25/118+14/37*I,n=5 2415750207871582 a007 Real Root Of -427*x^4-728*x^3+904*x^2+795*x+924 2415750210591828 k002 Champernowne real with 106*n^2-185*n+103 2415750211207040 m001 (Pi+Zeta(3))/(GAMMA(19/24)+GolombDickman) 2415750224451572 r002 41th iterates of z^2 + 2415750224695997 a003 cos(Pi*1/54)/cos(Pi*37/76) 2415750225855446 h001 (2/3*exp(2)+1/6)/(4/9*exp(1)+9/10) 2415750226847465 m001 exp(1)*GAMMA(1/24)^2*ln(sinh(1)) 2415750228818039 a007 Real Root Of 644*x^4+300*x^3+222*x^2-940*x-238 2415750231876171 a001 521/1597*832040^(6/19) 2415750232781547 r002 8th iterates of z^2 + 2415750242330869 a007 Real Root Of -337*x^4-557*x^3+408*x^2-817*x-730 2415750249442482 a001 199/8*225851433717^(2/23) 2415750254195475 m005 (1/2*2^(1/2)-3/10)/(11/12*Zeta(3)+7/12) 2415750266051791 q001 681/2819 2415750267854185 r005 Im(z^2+c),c=-41/118+15/38*I,n=20 2415750276510330 r005 Im(z^2+c),c=35/118+2/49*I,n=57 2415750278256185 m005 (1/2*gamma-10/11)/(1/7*Zeta(3)-3/7) 2415750309071871 m001 gamma(3)^sin(1/12*Pi)*gamma(3)^FeigenbaumC 2415750310621834 k002 Champernowne real with 213/2*n^2-373/2*n+104 2415750315617522 a007 Real Root Of 153*x^4+145*x^3-605*x^2-200*x-119 2415750316623234 m001 1/Catalan*exp(Paris)^2/GAMMA(1/24)^2 2415750317605748 m001 1/exp(Tribonacci)/FeigenbaumB^2/GAMMA(7/24)^2 2415750324487377 a007 Real Root Of 377*x^4+667*x^3-896*x^2-947*x-495 2415750341669917 a001 28143753123/55*433494437^(17/22) 2415750356334686 r005 Im(z^2+c),c=-21/22+2/91*I,n=5 2415750363792837 a007 Real Root Of -290*x^4+553*x^3+23*x^2+463*x-120 2415750365994706 m001 (OrthogonalArrays+Tetranacci)/(Khinchin-Mills) 2415750367191559 m006 (1/4*Pi^2-4/5)/(3*exp(Pi)-2/5) 2415750380899709 a007 Real Root Of -297*x^4-467*x^3+253*x^2-721*x+313 2415750394706173 m002 -6/Pi^5-Pi^3+6*Log[Pi] 2415750410651840 k002 Champernowne real with 107*n^2-188*n+105 2415750420728313 a001 521/28657*7778742049^(6/19) 2415750423912145 s002 sum(A233087[n]/(n^3*2^n+1),n=1..infinity) 2415750424835482 r009 Re(z^3+c),c=-35/102+20/51*I,n=8 2415750426370859 m001 (GAMMA(11/12)-Kac)/(KhinchinLevy+Lehmer) 2415750429500889 a001 987/4870847*3^(4/25) 2415750432960595 m001 (1+2^(1/3))/(gamma(3)+Zeta(1,2)) 2415750433353414 a007 Real Root Of -362*x^4-940*x^3+49*x^2+619*x+286 2415750437435523 l006 ln(328/3673) 2415750440063129 a001 3571/317811*377^(4/31) 2415750442991688 m001 (Lehmer-ReciprocalLucas)/(Stephens-ZetaQ(3)) 2415750449443633 a003 -1/2-cos(1/8*Pi)-cos(5/12*Pi)-cos(5/21*Pi) 2415750453561293 p001 sum(1/(460*n+349)/n/(512^n),n=1..infinity) 2415750460974952 m002 Tanh[Pi]/2+(Sinh[Pi]*Tanh[Pi])/6 2415750475269560 r009 Re(z^3+c),c=-41/106+24/49*I,n=54 2415750476500379 a007 Real Root Of -233*x^4-302*x^3+697*x^2+67*x-228 2415750477319159 s002 sum(A081896[n]/(exp(n)-1),n=1..infinity) 2415750481931419 m001 (exp(1)-ln(3))/(Robbin+ZetaQ(3)) 2415750488752972 b008 1+18*E^(2*Sqrt[6]) 2415750493254089 m001 (ln(3)*ThueMorse+Landau)/ThueMorse 2415750496637242 m001 (Pi*2^(1/2)/GAMMA(3/4))^PrimesInBinary+Rabbit 2415750498932110 r002 3th iterates of z^2 + 2415750499298204 m005 (1/3*gamma+2/9)/(-89/198+5/18*5^(1/2)) 2415750500865894 r009 Im(z^3+c),c=-13/32+6/43*I,n=23 2415750501022588 h001 (-4*exp(-3)+5)/(-4*exp(1)-9) 2415750501525175 m001 1/GAMMA(17/24)^2*exp(OneNinth)^2*LambertW(1)^2 2415750510211981 m006 (2/5*exp(Pi)+1)/(4*ln(Pi)-1/3) 2415750510599932 a001 18/121393*10946^(23/42) 2415750510681846 k002 Champernowne real with 215/2*n^2-379/2*n+106 2415750515002723 h001 (4/5*exp(2)+5/9)/(8/11*exp(1)+7/10) 2415750515182614 m001 Kolakoski/RenyiParking/TreeGrowth2nd 2415750519569002 m001 ZetaP(2)^MertensB1*ZetaP(2)^GAMMA(7/12) 2415750524174719 l006 ln(2075/2642) 2415750526222541 m001 (Pi+GAMMA(3/4))/(BesselI(0,2)-Bloch) 2415750553993467 a005 (1/sin(78/175*Pi))^1636 2415750556054880 m002 E^Pi+4/Pi^5+Coth[Pi] 2415750556681653 h001 (3/5*exp(2)+1/7)/(3/8*exp(1)+7/8) 2415750559524226 s002 sum(A128354[n]/(exp(pi*n)+1),n=1..infinity) 2415750563270335 m001 ln(GAMMA(1/12))^2/Champernowne*sqrt(5)^2 2415750564950766 r005 Im(z^2+c),c=-27/52+42/61*I,n=20 2415750568946730 m001 1/BesselK(0,1)^2/ln(Salem)^2*GAMMA(5/6) 2415750569277508 m001 (Mills+ZetaP(3))/(cos(1)-gamma(1)) 2415750573183365 a001 1836311903/843*199^(5/11) 2415750573406575 r005 Re(z^2+c),c=9/34+9/61*I,n=43 2415750575983504 a005 (1/cos(5/211*Pi))^318 2415750576834912 b008 1+(5*(1/4+Sqrt[3]))/7 2415750576834912 m005 (1/2*3^(1/2)+3/7)/(2*3^(1/2)-4) 2415750582751689 r005 Re(z^2+c),c=-21/26+5/98*I,n=32 2415750593949004 r002 36th iterates of z^2 + 2415750596256466 m001 Si(Pi)^(Tribonacci/GAMMA(17/24)) 2415750599153067 a001 29*(1/2*5^(1/2)+1/2)^25*7^(14/17) 2415750601860361 a001 9349/832040*377^(4/31) 2415750605274674 a005 (1/sin(55/137*Pi))^680 2415750610711852 k002 Champernowne real with 108*n^2-191*n+107 2415750613819929 m001 GAMMA(5/6)^2/BesselJ(1,1)^2/exp(Zeta(9)) 2415750623029651 a007 Real Root Of 337*x^4-358*x^3-329*x^2-902*x+241 2415750625466260 a001 24476/2178309*377^(4/31) 2415750630590670 r005 Re(z^2+c),c=-25/118+19/44*I,n=16 2415750630857974 m001 (Niven+Porter)/(Ei(1)-LandauRamanujan2nd) 2415750636712647 a007 Real Root Of 28*x^4-620*x^3-959*x^2-577*x+204 2415750638105180 m001 ((1+3^(1/2))^(1/2)+Kac)/(Zeta(3)-sin(1/12*Pi)) 2415750640055507 a001 15127/1346269*377^(4/31) 2415750642167811 m001 Psi(1,1/3)+gamma(1)+Riemann1stZero 2415750646134282 a001 18/1346269*3^(7/13) 2415750664473482 r005 Im(z^2+c),c=23/82+17/37*I,n=46 2415750694252649 a007 Real Root Of -283*x^4-516*x^3+139*x^2-333*x+748 2415750694528324 q001 1/41395 2415750701666983 r002 24th iterates of z^2 + 2415750701856550 a001 5778/514229*377^(4/31) 2415750706276626 l006 ln(4139/4140) 2415750710741858 k002 Champernowne real with 217/2*n^2-385/2*n+108 2415750713651593 p004 log(33113/2957) 2415750720438222 r005 Im(z^2+c),c=3/56+10/41*I,n=12 2415750731524716 m001 Otter^ArtinRank2/(GaussAGM^ArtinRank2) 2415750746527346 r009 Re(z^3+c),c=-3/74+34/49*I,n=29 2415750747071896 r008 a(0)=0,K{-n^6,(2*n+1)*(98+39*n^2+n)} 2415750751899043 r008 a(0)=0,K{-n^6,40*n^3+136*n^2+178*n+60} 2415750756386277 r008 a(0)=0,K{-n^6,10*n^3+211*n^2+163*n+30} 2415750763738172 m005 (1/3*Zeta(3)-2/3)/(1/2*Zeta(3)+1/2) 2415750764708542 r009 Re(z^3+c),c=-9/23+27/55*I,n=23 2415750770660515 m009 (1/6*Psi(1,3/4)-3/4)/(5*Psi(1,3/4)+4/5) 2415750782220743 a001 29/21*196418^(25/59) 2415750784192975 a001 55/18*73681302247^(4/15) 2415750784210461 a001 55/18*271443^(8/15) 2415750792398968 l006 ln(767/8589) 2415750793907040 p001 sum((-1)^n/(479*n+180)/n/(6^n),n=1..infinity) 2415750797884904 r005 Re(z^2+c),c=19/74+7/50*I,n=22 2415750798856897 r005 Im(z^2+c),c=-15/34+23/55*I,n=62 2415750799446190 m001 (-Zeta(1/2)+ZetaQ(4))/(2^(1/2)-cos(1/5*Pi)) 2415750800292814 r005 Re(z^2+c),c=-9/56+26/47*I,n=64 2415750802583923 r005 Re(z^2+c),c=-5/34+34/57*I,n=60 2415750806737148 r005 Im(z^2+c),c=-27/62+1/25*I,n=23 2415750810771864 k002 Champernowne real with 109*n^2-194*n+109 2415750822283348 m001 (GAMMA(19/24)+Totient)/(ZetaQ(3)+ZetaQ(4)) 2415750823391251 m009 (3/8*Pi^2+3)/(1/5*Pi^2+4/5) 2415750841882761 a007 Real Root Of -318*x^4-693*x^3+460*x^2+508*x-397 2415750842987167 m001 MertensB1-Sierpinski^Zeta(5) 2415750847842024 m001 (5^(1/2)+KomornikLoreti)/(-Landau+Rabbit) 2415750853126634 r005 Re(z^2+c),c=-2/3+59/190*I,n=58 2415750860763968 m005 (1/3*gamma-1/8)/(9/10*5^(1/2)+7/9) 2415750864746601 a008 Real Root of x^5-x^4-5*x^3+6*x^2-9*x+9 2415750869801976 a001 39088169/322*521^(11/13) 2415750875721331 m001 1/Sierpinski^2/exp(Artin)*GAMMA(1/24) 2415750892732421 m001 (MertensB3-Riemann3rdZero)/(GAMMA(2/3)-Artin) 2415750896027396 a007 Real Root Of -402*x^4-600*x^3+931*x^2-154*x-573 2415750907712075 a007 Real Root Of 304*x^4+442*x^3-894*x^2-176*x+670 2415750909921104 m001 (2^(1/3))^2/ln(Champernowne)^2/GAMMA(3/4)^2 2415750910801870 k002 Champernowne real with 219/2*n^2-391/2*n+110 2415750911779448 a007 Real Root Of -106*x^4+22*x^3+881*x^2+633*x+308 2415750912465269 r009 Im(z^3+c),c=-23/40+23/50*I,n=33 2415750915750915 q001 1319/546 2415750923261603 a007 Real Root Of -222*x^4+461*x^3-752*x^2-191*x+5 2415750924211421 r005 Im(z^2+c),c=-61/52+14/57*I,n=37 2415750927043665 a003 cos(Pi*8/67)-cos(Pi*5/36) 2415750931283190 g002 Psi(5/12)+Psi(5/9)-Psi(8/9)-Psi(4/5) 2415750933116787 h005 exp(cos(Pi*11/53)+cos(Pi*17/36)) 2415750935924985 a003 sin(Pi*6/73)*sin(Pi*47/119) 2415750936625416 m001 (2*Pi/GAMMA(5/6)+Salem)/(exp(1)-gamma(1)) 2415750937332332 r005 Re(z^2+c),c=-25/31+6/47*I,n=6 2415750939256339 r005 Re(z^2+c),c=-1/52+41/57*I,n=16 2415750940767171 p001 sum((-1)^n/(249*n+88)/n/(12^n),n=1..infinity) 2415750974158867 r002 12th iterates of z^2 + 2415750980735127 a005 (1/sin(62/145*Pi))^122 2415750984835622 m001 (-CopelandErdos+Khinchin)/(Chi(1)-Si(Pi)) 2415750990977379 r002 16th iterates of z^2 + 2415750999215069 a002 3^(1/6)+7^(1/10) 2415751000422786 m005 (1/2*Pi+8/11)/(5/8*Zeta(3)+1/5) 2415751001611915 m002 -Pi+(9*Csch[Pi])/ProductLog[Pi] 2415751010831876 k002 Champernowne real with 110*n^2-197*n+111 2415751012125186 r005 Im(z^2+c),c=-89/110+9/61*I,n=27 2415751014918462 m001 Si(Pi)+BesselK(1,1)^GAMMA(5/6) 2415751027257311 r009 Re(z^3+c),c=-23/66+21/52*I,n=15 2415751030400427 m001 (FeigenbaumD*Khinchin-Sarnak)/FeigenbaumD 2415751034260582 m005 (1/2*Zeta(3)+4)/(1/2*exp(1)+6/11) 2415751041778388 m001 DuboisRaymond+KhinchinLevy+MertensB2 2415751043311704 m001 MertensB2/MasserGramain/LaplaceLimit 2415751044533398 m005 (1/3*Catalan-1/10)/(1/8*gamma+7/9) 2415751055811852 a007 Real Root Of -136*x^4-265*x^3-468*x^2+153*x+61 2415751057610754 l006 ln(439/4916) 2415751063237981 m001 (gamma+gamma(2))/(-CopelandErdos+Sierpinski) 2415751094699415 m005 (1/3*Pi-1/6)/(1/8*Catalan+1/4) 2415751095351658 r005 Im(z^2+c),c=-11/31+24/61*I,n=41 2415751110861882 k002 Champernowne real with 221/2*n^2-397/2*n+112 2415751114575593 a007 Real Root Of -333*x^4-372*x^3+645*x^2-576*x+941 2415751115860078 l006 ln(6397/8145) 2415751125447204 a001 2207/196418*377^(4/31) 2415751131283112 k007 concat of cont frac of 2415751133612324 a007 Real Root Of 186*x^4+295*x^3-209*x^2+409*x+32 2415751161603112 r009 Im(z^3+c),c=-7/74+31/36*I,n=50 2415751165424760 b008 1-18*LogGamma[Sqrt[Pi]] 2415751166096692 m001 (ln(2+3^(1/2))+Paris)/(Pi+exp(1)) 2415751184779148 r008 a(0)=3,K{-n^6,-31+7*n^3+73*n^2-47*n} 2415751193872289 m006 (1/2*Pi^2+4/5)/(2*Pi^2+4) 2415751193872289 m008 (1/2*Pi^2+4/5)/(2*Pi^2+4) 2415751193872289 m009 (1/2*Pi^2+4/5)/(2*Pi^2+4) 2415751194155300 a001 1/39556*(1/2*5^(1/2)+1/2)^17*1364^(3/22) 2415751201127131 k006 concat of cont frac of 2415751210891888 k002 Champernowne real with 111*n^2-200*n+113 2415751211732410 a007 Real Root Of 39*x^4+942*x^3-19*x^2-346*x+714 2415751214025949 a001 55/18*2207^(13/15) 2415751217902336 m001 (5^(1/2)-Shi(1))/(-Catalan+OrthogonalArrays) 2415751221465908 m005 (1/2*2^(1/2)+2/5)/(9/11*3^(1/2)-6) 2415751222531737 k007 concat of cont frac of 2415751222965938 m001 (2^(1/2)-GaussAGM)/(-PrimesInBinary+ZetaP(3)) 2415751223022559 r005 Re(z^2+c),c=-7/29+14/39*I,n=17 2415751225595833 h001 (5/12*exp(1)+7/10)/(1/12*exp(2)+1/7) 2415751228679666 a007 Real Root Of -71*x^4-123*x^3+20*x^2-44*x+461 2415751234017844 m005 (3*Pi-4/5)/(1/6*2^(1/2)-1/5) 2415751240891527 a007 Real Root Of -276*x^4-865*x^3-269*x^2+693*x+449 2415751243492410 r005 Im(z^2+c),c=-7/8+47/243*I,n=33 2415751247323106 a007 Real Root Of -251*x^4-354*x^3+682*x^2-141*x-763 2415751266201020 a007 Real Root Of 548*x^4+929*x^3-821*x^2+539*x+527 2415751267461951 r005 Im(z^2+c),c=-31/60+6/13*I,n=22 2415751283645592 r005 Im(z^2+c),c=-65/66+10/31*I,n=9 2415751289942098 m001 (OneNinth+TwinPrimes)/(2^(1/2)-3^(1/2)) 2415751310153055 m001 Zeta(7)*exp(Salem)*exp(1)^2 2415751310921894 k002 Champernowne real with 223/2*n^2-403/2*n+114 2415751311795941 a007 Real Root Of -201*x^4-142*x^3+962*x^2+629*x+749 2415751312511313 k007 concat of cont frac of 2415751324245442 a007 Real Root Of 798*x^4-491*x^3+938*x^2-876*x-276 2415751324921655 a007 Real Root Of 505*x^4+991*x^3-271*x^2+335*x-837 2415751343914822 a001 41*(1/2*5^(1/2)+1/2)^12*3^(11/20) 2415751345929892 a007 Real Root Of 501*x^4+788*x^3-569*x^2+981*x-263 2415751348257478 m001 (1-LambertW(1))/(-FeigenbaumKappa+Salem) 2415751358305798 r009 Re(z^3+c),c=-1/24+25/41*I,n=51 2415751362134611 m001 GlaisherKinkelin*Otter-exp(1/Pi) 2415751367033288 r005 Im(z^2+c),c=-87/110+4/29*I,n=54 2415751367176347 r005 Im(z^2+c),c=-27/82+27/53*I,n=8 2415751377394473 a003 2^(1/2)-cos(5/21*Pi)+cos(1/24*Pi)+cos(7/30*Pi) 2415751389082233 m005 (1/2*3^(1/2)+4/7)/(6*Catalan+5/11) 2415751396227775 r009 Re(z^3+c),c=-9/62+31/34*I,n=56 2415751399165430 m001 ln(3)^MinimumGamma/Weierstrass 2415751399929275 l006 ln(4322/5503) 2415751402870283 m001 cos(1/5*Pi)*Thue+Pi*csc(1/24*Pi)/GAMMA(23/24) 2415751410737600 r002 42i'th iterates of 2*x/(1-x^2) of 2415751410951900 k002 Champernowne real with 112*n^2-203*n+115 2415751413102389 a007 Real Root Of -36*x^4+256*x^3+445*x^2-799*x+308 2415751421423412 a001 2/987*3^(4/25) 2415751421680475 a007 Real Root Of -157*x^4-206*x^3+690*x^2+974*x+769 2415751425827735 m001 1/GAMMA(2/3)*ln(Paris)/sin(1)^2 2415751427460526 l006 ln(550/6159) 2415751428752028 m005 (3*exp(1)-3/4)/(5/6*exp(1)+4/5) 2415751428885466 h001 (9/10*exp(2)+7/10)/(10/11*exp(1)+4/7) 2415751431762828 m005 (1/2*3^(1/2)-5/9)/(8/11*2^(1/2)-9/10) 2415751471426340 a007 Real Root Of -451*x^4-818*x^3+352*x^2-891*x-379 2415751472892775 r009 Re(z^3+c),c=-5/122+39/64*I,n=19 2415751474092653 a007 Real Root Of 404*x^4-491*x^3-98*x^2-623*x-15 2415751477166885 m001 Zeta(5)*ln(Robbin)/sqrt(Pi) 2415751486182110 m001 1/CareFree^2*exp(Cahen)/(2^(1/3))^2 2415751489828592 h005 exp(cos(Pi*1/51)-cos(Pi*25/54)) 2415751493387718 m005 (-1/44+1/4*5^(1/2))/(4/7*exp(1)+2/3) 2415751494235172 r009 Re(z^3+c),c=-23/94+3/23*I,n=5 2415751494988713 r005 Re(z^2+c),c=-19/78+31/52*I,n=31 2415751500957313 m001 (-cos(1)+Niven)/(5^(1/2)-exp(1)) 2415751504612893 m001 1/Porter/Conway*exp(BesselJ(0,1))^2 2415751510981906 k002 Champernowne real with 225/2*n^2-409/2*n+116 2415751515548406 r005 Re(z^2+c),c=-23/20+13/44*I,n=8 2415751520195779 r005 Im(z^2+c),c=-5/12+19/46*I,n=34 2415751522271377 a007 Real Root Of 482*x^4+851*x^3-475*x^2+366*x-762 2415751524634412 a002 15^(4/7)-18^(2/7) 2415751525073084 r009 Re(z^3+c),c=-49/78+14/47*I,n=26 2415751536785461 r009 Re(z^3+c),c=-11/46+24/25*I,n=3 2415751543304562 a007 Real Root Of 333*x^4+561*x^3-846*x^2-676*x-128 2415751545728296 r005 Re(z^2+c),c=29/82+17/62*I,n=51 2415751547543403 m001 (BesselI(0,1)+Otter)/ZetaP(3) 2415751547946249 m001 GAMMA(5/12)-exp(1/exp(1))*GAMMA(13/24) 2415751549277659 a007 Real Root Of -137*x^4-12*x^3+733*x^2-113*x-54 2415751554392696 a001 31622993/161*521^(10/13) 2415751562993805 m001 (Zeta(3)+Riemann1stZero)/(Sarnak-TwinPrimes) 2415751568796762 r009 Re(z^3+c),c=-41/126+6/17*I,n=17 2415751593596875 a007 Real Root Of -393*x^4-789*x^3+239*x^2-280*x+190 2415751594154537 m006 (1/4*Pi^2-2/5)/(5/6*Pi^2+1/3) 2415751594154537 m008 (1/4*Pi^2-2/5)/(5/6*Pi^2+1/3) 2415751594154537 m009 (1/8*Pi^2-1/5)/(5/12*Pi^2+1/6) 2415751595721248 m005 (1/3*3^(1/2)-1/4)/(5/12*Zeta(3)-7/11) 2415751597507957 m001 ((2^(1/3))-exp(1/2))/ln(5) 2415751597507957 m001 (2^(1/3)-exp(1/2))/ln(5) 2415751601364832 r009 Re(z^3+c),c=-17/62+7/31*I,n=12 2415751606738078 m001 1/exp(GAMMA(23/24))*LaplaceLimit*Zeta(7)^2 2415751609238924 q001 638/2641 2415751611011912 k002 Champernowne real with 113*n^2-206*n+117 2415751624562865 a005 (1/cos(36/125*Pi))^64 2415751627384970 m003 -24-Coth[1/2+Sqrt[5]/2]+Tanh[1/2+Sqrt[5]/2] 2415751634166179 a001 28657/29*76^(31/42) 2415751640584137 p001 sum(1/(459*n+350)/n/(512^n),n=1..infinity) 2415751646651073 a007 Real Root Of 406*x^4+623*x^3-529*x^2+979*x+408 2415751649855822 r005 Im(z^2+c),c=-29/74+25/62*I,n=31 2415751654377801 m002 1+E^Pi+Tanh[Pi]/(6*Pi^2) 2415751660353225 r009 Re(z^3+c),c=-45/98+31/61*I,n=53 2415751673094414 l006 ln(661/7402) 2415751675969870 m001 Pi+(1-Si(Pi))/GAMMA(19/24) 2415751676560512 l006 ln(6569/8364) 2415751676696706 r009 Im(z^3+c),c=-21/38+9/34*I,n=16 2415751677363392 r005 Im(z^2+c),c=-3/5+29/114*I,n=7 2415751682344262 a007 Real Root Of -101*x^4-166*x^3-112*x^2-313*x+997 2415751689571071 a007 Real Root Of -733*x^4+833*x^3+15*x^2+251*x+74 2415751707837087 a001 7/8*317811^(11/42) 2415751709890457 l006 ln(9529/9762) 2415751711041918 k002 Champernowne real with 227/2*n^2-415/2*n+118 2415751723088879 r002 56th iterates of z^2 + 2415751726037302 m001 (ln(5)-arctan(1/2))/(KomornikLoreti+Otter) 2415751733124555 s002 sum(A103540[n]/((exp(n)+1)*n),n=1..infinity) 2415751740540774 r005 Re(z^2+c),c=15/86+29/62*I,n=64 2415751745740602 r002 6th iterates of z^2 + 2415751756379264 r009 Re(z^3+c),c=-12/19+23/36*I,n=4 2415751781325882 a001 433494437/521*199^(7/11) 2415751782073571 r005 Im(z^2+c),c=-17/82+17/49*I,n=23 2415751782213186 r009 Re(z^3+c),c=-43/118+26/59*I,n=35 2415751790116140 m001 (-ArtinRank2+CareFree)/(GAMMA(5/6)-sin(1)) 2415751794599424 r005 Re(z^2+c),c=-31/118+22/59*I,n=6 2415751801183912 a003 cos(Pi*17/94)-cos(Pi*33/112) 2415751806061626 a001 29*(1/2*5^(1/2)+1/2)^17*76^(8/11) 2415751806454662 m001 StolarskyHarborth^(Khinchin/AlladiGrinstead) 2415751811071924 k002 Champernowne real with 114*n^2-209*n+119 2415751815997530 a007 Real Root Of -344*x^4-361*x^3+606*x^2-964*x+761 2415751819680390 m001 (Kac-LandauRamanujan)/(Zeta(3)-ln(Pi)) 2415751832755822 b008 ArcTan[121/2]^2 2415751834369609 r005 Im(z^2+c),c=13/114+37/61*I,n=31 2415751838996177 m001 Zeta(7)^2/GAMMA(7/12)/ln(log(2+sqrt(3))) 2415751841761768 b008 -77*Pi+ArcCsch[3] 2415751844513830 p001 sum((-1)^n/(457*n+412)/(100^n),n=0..infinity) 2415751848092614 l006 ln(772/8645) 2415751849289933 m001 Tribonacci^2*exp(CopelandErdos)/BesselK(0,1)^2 2415751853987106 a007 Real Root Of -569*x^4+917*x^3+715*x^2+521*x+99 2415751869359529 l006 ln(8269/8289) 2415751885273012 a001 76/1346269*2971215073^(5/18) 2415751885306573 a001 76/121393*514229^(5/18) 2415751896635052 r008 a(0)=0,K{-n^6,42*n^3+129*n^2+180*n+63} 2415751897039427 v003 sum((2*n^3-4*n^2+5*n+9)/(n!+1),n=1..infinity) 2415751897486220 r008 a(0)=0,K{-n^6,36*n^3+144*n^2+177*n+57} 2415751911101930 k002 Champernowne real with 229/2*n^2-421/2*n+120 2415751921831955 p004 log(31033/24373) 2415751929080908 a007 Real Root Of -107*x^4-173*x^3-21*x^2-300*x+603 2415751929840530 r009 Re(z^3+c),c=-19/62+24/43*I,n=6 2415751938333905 m006 (1/4*Pi^2-4/5)/(3/4*Pi^2-1/2) 2415751938333905 m008 (1/4*Pi^2-4/5)/(3/4*Pi^2-1/2) 2415751938333905 m009 (1/8*Pi^2-2/5)/(3/8*Pi^2-1/4) 2415751946896931 m001 (Paris-PlouffeB)/(Artin+KhinchinLevy) 2415751957377614 a008 Real Root of x^2-x-58117 2415751962708641 m001 Riemann3rdZero*(Paris-gamma(3)) 2415751965734456 m001 LambertW(1)*(GAMMA(17/24)-Thue) 2415751974285282 m001 1/GAMMA(5/6)^2*MinimumGamma/exp(GAMMA(7/24))^2 2415751979093511 l006 ln(883/9888) 2415751999801524 r005 Im(z^2+c),c=-1/106+31/43*I,n=34 2415752002361230 m001 (StolarskyHarborth+ZetaP(3))/(5^(1/2)-Salem) 2415752010431254 m005 (23/28+1/4*5^(1/2))/(1/11*2^(1/2)-7/10) 2415752011131936 k002 Champernowne real with 115*n^2-212*n+121 2415752014063761 m001 exp(Pi)+ln(Pi)^Champernowne 2415752014315352 a007 Real Root Of -135*x^4-526*x^3-664*x^2-241*x+475 2415752016558878 m005 (1/2*3^(1/2)-2/7)/(5/9*2^(1/2)-6/11) 2415752018295006 m001 1/GAMMA(5/6)^2/exp(Salem)/Zeta(9) 2415752026885006 r005 Im(z^2+c),c=2/29+13/55*I,n=11 2415752029959433 m005 (1/2*Catalan+6/11)/(3/10*5^(1/2)-2/3) 2415752032973471 p004 log(21019/1877) 2415752036757589 a001 843/139583862445*8^(2/3) 2415752051188252 r005 Re(z^2+c),c=-15/58+34/41*I,n=10 2415752058987625 r002 3th iterates of z^2 + 2415752066515025 m009 (5/12*Pi^2+1/6)/(1/3*Psi(1,2/3)+3/4) 2415752080690502 m001 BesselJ(0,1)^Lehmer-Riemann3rdZero 2415752090369336 m001 (ZetaP(2)-ZetaP(4))/(Ei(1)-PolyaRandomWalk3D) 2415752090404704 m001 (OrthogonalArrays+Otter)/(gamma(1)-OneNinth) 2415752094877499 m001 1/Catalan/Conway/ln(cos(Pi/12)) 2415752095426685 a001 1/15109*(1/2*5^(1/2)+1/2)^7*521^(17/22) 2415752107947153 a001 21/2207*521^(7/47) 2415752108930739 r009 Re(z^3+c),c=-1/24+25/41*I,n=53 2415752111161942 k002 Champernowne real with 231/2*n^2-427/2*n+122 2415752119082301 m001 BesselJ(0,1)-KhinchinHarmonic*ZetaP(2) 2415752126123155 m001 Niven^BesselK(1,1)+Zeta(5) 2415752133750224 r002 3th iterates of z^2 + 2415752141994384 r005 Re(z^2+c),c=5/17+31/52*I,n=4 2415752145339916 a001 5/7*322^(25/41) 2415752158908434 a007 Real Root Of -837*x^4+226*x^3+774*x^2+238*x-103 2415752166613371 m001 (Sarnak-Trott)/(Ei(1)+GAMMA(11/12)) 2415752166989135 m001 (Zeta(3)-FeigenbaumMu)/(Tribonacci-Thue) 2415752173554090 m001 1/Trott^2/Tribonacci*exp(sqrt(1+sqrt(3))) 2415752179545593 a007 Real Root Of -359*x^4-495*x^3+597*x^2-777*x-113 2415752181537204 a007 Real Root Of -258*x^4-239*x^3+379*x^2-937*x+942 2415752183684432 m001 HardHexagonsEntropy+ln(Pi)^ZetaR(2) 2415752195830397 b008 JacobiNS[ArcCoth[2],5] 2415752196547041 m005 (1/2*Zeta(3)+5/8)/(1/24+5/24*5^(1/2)) 2415752206773098 l004 Chi(519/64) 2415752208483421 r005 Im(z^2+c),c=3/8+9/55*I,n=35 2415752208647810 l006 ln(2247/2861) 2415752211191948 k002 Champernowne real with 116*n^2-215*n+123 2415752215233227 k007 concat of cont frac of 2415752223905589 a001 610/3010349*3^(4/25) 2415752234613055 m001 (Zeta(1/2)+gamma(1))/(Cahen-ZetaQ(3)) 2415752235448936 s002 sum(A233087[n]/(n^3*2^n-1),n=1..infinity) 2415752238983609 a001 14619165/46*521^(9/13) 2415752244362549 m001 (Ei(1)-exp(Pi))/(-gamma(3)+QuadraticClass) 2415752247380874 r005 Im(z^2+c),c=-2/3+9/179*I,n=46 2415752257476801 p004 log(28477/2543) 2415752261600789 m001 (3^(1/3))^2*GaussKuzminWirsing/exp(GAMMA(1/6)) 2415752288384150 m001 1/cos(Pi/5)^2/Trott^2/exp(sin(1))^2 2415752293278710 m001 1/LaplaceLimit*exp(Khintchine)/Catalan 2415752299271153 r005 Im(z^2+c),c=-2/9+23/54*I,n=5 2415752302778499 h001 (9/10*exp(2)+7/11)/(8/9*exp(1)+3/5) 2415752311221954 k002 Champernowne real with 233/2*n^2-433/2*n+124 2415752314488254 a007 Real Root Of -779*x^4+769*x^3-490*x^2-108*x+16 2415752315323859 m001 (RenyiParking+Sarnak)/(FeigenbaumD+Magata) 2415752341050048 r002 10th iterates of z^2 + 2415752353857305 m001 (5^(1/2)-sin(1/5*Pi))/(-ln(2)+Trott) 2415752356575481 a003 cos(Pi*4/39)/sin(Pi*14/109) 2415752368132389 a007 Real Root Of 197*x^4+41*x^3-953*x^2+615*x+916 2415752368738736 a007 Real Root Of -359*x^4-606*x^3+479*x^2-406*x-93 2415752379210229 a003 sin(Pi*52/109)-sin(Pi*41/83) 2415752392587406 m001 ln(BesselJ(1,1))/Sierpinski/GAMMA(1/4)^2 2415752405434945 r005 Re(z^2+c),c=-1/6+33/61*I,n=51 2415752411251960 k002 Champernowne real with 117*n^2-218*n+125 2415752411710193 k007 concat of cont frac of 2415752415655513 b008 1/56+Log[11] 2415752417666546 p003 LerchPhi(1/3,10,8/11) 2415752418517382 m005 (1/2*Catalan-4)/(5/7*Pi-7/9) 2415752422350061 m005 (1/3*3^(1/2)-2/5)/(1/2*exp(1)-5/8) 2415752427864410 r005 Im(z^2+c),c=-2/9+31/51*I,n=3 2415752429237843 r005 Im(z^2+c),c=-29/30+25/111*I,n=32 2415752445285018 q001 1/4139497 2415752458801389 a003 cos(Pi*27/64)*sin(Pi*34/73) 2415752459178685 m006 (1/4*exp(Pi)+3)/(2/Pi+3) 2415752470425396 a007 Real Root Of 191*x^4-799*x^3-798*x^2-645*x+213 2415752477635815 r005 Im(z^2+c),c=-11/54+9/26*I,n=10 2415752483358515 r005 Im(z^2+c),c=17/58+1/27*I,n=25 2415752487558729 m001 (2^(1/3))+GAMMA(11/12)^GAMMA(1/3) 2415752490105940 r009 Re(z^3+c),c=-1/24+25/41*I,n=55 2415752499763961 m009 (1/8*Pi^2-3/5)/(1/3*Pi^2-2/3) 2415752500405380 r002 8th iterates of z^2 + 2415752511281966 k002 Champernowne real with 235/2*n^2-439/2*n+126 2415752513435229 a001 281/4976784*233^(4/15) 2415752525700265 m001 1/Zeta(5)^2/ln(Trott)*sinh(1) 2415752530546588 r009 Im(z^3+c),c=-11/40+11/52*I,n=8 2415752531627411 k006 concat of cont frac of 2415752536500025 a007 Real Root Of 109*x^4+43*x^3-501*x^2+169*x+226 2415752536541071 m001 GAMMA(1/4)^FeigenbaumAlpha-cos(Pi/12) 2415752540273454 l004 Shi(519/64) 2415752541403286 m001 ArtinRank2^BesselI(1,2)+Si(Pi) 2415752542037669 m005 (-25/44+1/4*5^(1/2))/(7/9*Zeta(3)-5/9) 2415752555122570 m001 gamma(2)/(CopelandErdos-Zeta(1,-1)) 2415752564937225 m005 (1/2*Pi+1/9)/(5/9*3^(1/2)+6) 2415752569879604 b008 Sinh[1+ArcCot[Sqrt[2]]] 2415752574132137 m001 MasserGramain^LaplaceLimit*FellerTornier 2415752574381918 r005 Im(z^2+c),c=-9/20+20/51*I,n=15 2415752579121646 r005 Re(z^2+c),c=-15/98+31/54*I,n=51 2415752597418712 r005 Im(z^2+c),c=-13/20+2/7*I,n=27 2415752598588530 r008 a(0)=0,K{-n^6,-4+4*n^3+6*n^2-8*n} 2415752598764665 a003 sin(Pi*5/73)/cos(Pi*11/71) 2415752602945771 r005 Im(z^2+c),c=21/58+5/34*I,n=28 2415752611311972 k002 Champernowne real with 118*n^2-221*n+127 2415752623199770 p003 LerchPhi(1/125,2,373/183) 2415752630159482 m001 exp(Pi)+Tribonacci^Trott2nd 2415752635265104 s001 sum(exp(-Pi/4)^(n-1)*A106703[n],n=1..infinity) 2415752651570272 r005 Re(z^2+c),c=-21/86+20/57*I,n=13 2415752653013224 m009 (2/3*Psi(1,1/3)+2/3)/(3*Psi(1,1/3)+1/3) 2415752653357959 a001 204284540899/36*12586269025^(11/24) 2415752656753455 m006 (3/5*exp(2*Pi)-4)/(3/5*exp(Pi)-3/4) 2415752660588334 r005 Re(z^2+c),c=13/38+10/61*I,n=27 2415752672338086 a008 Real Root of x^4-x^3-2*x^2+18*x+7 2415752675597630 r009 Re(z^3+c),c=-1/24+25/41*I,n=57 2415752677455682 m001 (BesselI(0,2)-GAMMA(17/24))/(Magata+Rabbit) 2415752690460669 r002 50th iterates of z^2 + 2415752707825748 m006 (4/5*exp(2*Pi)+1)/(1/3*exp(2*Pi)-3/4) 2415752711341978 k002 Champernowne real with 237/2*n^2-445/2*n+128 2415752714257717 l006 ln(6913/8802) 2415752719862289 m001 (exp(1/Pi)-Bloch)/(GolombDickman-Robbin) 2415752722824561 m005 (1/2*Zeta(3)-1/3)/(3/10*Catalan+5/6) 2415752725685384 a001 1/5771*(1/2*5^(1/2)+1/2)^17*199^(9/13) 2415752741774675 q001 2423/1003 2415752743568849 m001 (Backhouse+Tribonacci)/(ln(Pi)+Ei(1,1)) 2415752752179489 m001 Kolakoski-MertensB3^Champernowne 2415752761419666 r009 Re(z^3+c),c=-1/24+25/41*I,n=59 2415752762843759 m001 exp(BesselK(0,1))/Riemann2ndZero/sqrt(3)^2 2415752767289188 m001 (Si(Pi)+Magata)/(RenyiParking+Riemann2ndZero) 2415752774181620 a007 Real Root Of -356*x^4-618*x^3+758*x^2+86*x-804 2415752777052057 m005 (1/2*Pi+7/9)/(5/7*5^(1/2)-5/8) 2415752791064065 r005 Im(z^2+c),c=-37/26+7/99*I,n=6 2415752794131690 m008 (1/4*Pi^2-1/4)/(3*Pi^5-1/6) 2415752798574479 r009 Re(z^3+c),c=-1/24+25/41*I,n=61 2415752799017417 m001 Pi*csc(7/24*Pi)/GAMMA(17/24)-ln(2)+Trott2nd 2415752808395880 a005 (1/cos(6/163*Pi))^1506 2415752810744557 p001 sum(1/(471*n+452)/(6^n),n=0..infinity) 2415752811371984 k002 Champernowne real with 119*n^2-224*n+129 2415752813117563 r009 Re(z^3+c),c=-1/24+25/41*I,n=63 2415752815227038 r009 Re(z^3+c),c=-1/24+25/41*I,n=64 2415752822199253 r005 Im(z^2+c),c=-2/3+61/229*I,n=38 2415752823785136 r009 Re(z^3+c),c=-1/24+25/41*I,n=62 2415752823859781 m004 4/3+(5*Sqrt[5]*Pi*Log[Sqrt[5]*Pi])/3 2415752823946839 a007 Real Root Of -89*x^4+630*x^3-437*x^2-963*x-974 2415752829481970 p001 sum(1/(458*n+351)/n/(512^n),n=1..infinity) 2415752831599505 r009 Re(z^3+c),c=-2/5+14/27*I,n=64 2415752834324841 m001 (Magata+PlouffeB)/(Conway+GaussKuzminWirsing) 2415752835151227 m001 TreeGrowth2nd^2/ln(Porter)^2*GAMMA(2/3)^2 2415752837135762 a007 Real Root Of -315*x^4-379*x^3+633*x^2-673*x+65 2415752847407386 r009 Re(z^3+c),c=-1/24+25/41*I,n=60 2415752854848830 a001 14930208*199^(1/11) 2415752856624193 m001 (GAMMA(3/4)-exp(-1/2*Pi))/(ThueMorse+ZetaQ(3)) 2415752859483093 p003 LerchPhi(1/512,2,47/231) 2415752861183219 a001 3/28657*6765^(36/41) 2415752864371969 m009 (1/8*Pi^2-2/5)/(4/5*Psi(1,2/3)+1) 2415752873549101 a007 Real Root Of -936*x^4-565*x^3-722*x^2+992*x+277 2415752876262369 m005 (1/2*Zeta(3)+1/5)/(2/7*gamma+1/6) 2415752882914452 p003 LerchPhi(1/6,4,139/173) 2415752883054949 m001 Bloch^2/Backhouse^2*ln(Kolakoski) 2415752887802049 r005 Im(z^2+c),c=-47/36+1/14*I,n=22 2415752889700986 a001 1364/5*317811^(33/46) 2415752890198376 l006 ln(111/1243) 2415752904432790 r009 Re(z^3+c),c=-1/24+25/41*I,n=58 2415752906652721 a007 Real Root Of -212*x^4-105*x^3+820*x^2-422*x-65 2415752909060357 a007 Real Root Of -38*x^4-958*x^3-947*x^2+462*x-299 2415752911401990 k002 Champernowne real with 239/2*n^2-451/2*n+130 2415752923073784 m001 ln(Salem)^2/GlaisherKinkelin*Trott^2 2415752923574716 a001 165580141/322*521^(8/13) 2415752945014817 s002 sum(A146374[n]/(pi^n+1),n=1..infinity) 2415752945032572 s002 sum(A146374[n]/(pi^n),n=1..infinity) 2415752945057722 s002 sum(A146374[n]/(pi^n-1),n=1..infinity) 2415752945945401 m001 (-Tribonacci+ThueMorse)/(1-BesselI(1,2)) 2415752946031063 r005 Im(z^2+c),c=-7/6+13/68*I,n=58 2415752949563493 h001 (2/7*exp(1)+3/4)/(3/4*exp(2)+7/9) 2415752957743661 l006 ln(4666/5941) 2415752976588953 r005 Re(z^2+c),c=43/126+11/32*I,n=55 2415752977310321 a007 Real Root Of -24*x^4+520*x^3+886*x^2-899*x+806 2415752978717748 m001 GAMMA(1/24)^2*Magata*ln(GAMMA(1/4)) 2415752979988733 r009 Re(z^3+c),c=-5/58+31/41*I,n=17 2415752981175808 g006 Psi(1,7/8)+Psi(1,2/5)-Psi(1,10/11)-Psi(1,2/11) 2415753011431996 k002 Champernowne real with 120*n^2-227*n+131 2415753031497132 r009 Re(z^3+c),c=-1/24+25/41*I,n=56 2415753032318191 l005 113569/1156/(exp(337/34)^2-1) 2415753034789088 b008 ArcTanh[(1/3)!!] 2415753037076815 m005 (1/2*Catalan+11/12)/(1/6*2^(1/2)+1/3) 2415753041006969 m001 GAMMA(7/24)/TwinPrimes/GAMMA(11/24) 2415753044473949 m001 (-GAMMA(3/4)+1/3)/(-Zeta(5)+1) 2415753046202774 r008 a(0)=0,K{-n^6,(2*n+1)*(98+38*n^2+2*n)} 2415753050670792 r008 a(0)=0,K{-n^6,42*n^3+127*n^2+181*n+64} 2415753057896371 m001 (gamma+Conway)/(-FeigenbaumB+ZetaQ(2)) 2415753060272644 p004 log(20903/16417) 2415753077985376 r005 Im(z^2+c),c=13/32+15/49*I,n=19 2415753082299459 m005 (1/3*Pi+1/12)/(5*Catalan+1/10) 2415753092746867 m001 1/KhintchineLevy/exp(Artin)^2/GAMMA(17/24)^2 2415753099158188 m001 Tribonacci/ln(FeigenbaumC)^2/(3^(1/3))^2 2415753110471190 m001 (Totient+ZetaQ(3))/(Zeta(1,-1)+Sarnak) 2415753117487903 r005 Re(z^2+c),c=31/98+9/49*I,n=24 2415753120955121 m001 1/Robbin^2*Riemann1stZero*ln(BesselK(0,1))^2 2415753121792537 m006 (1/4*ln(Pi)-2/5)/(2*exp(Pi)+5/6) 2415753132165569 s002 sum(A101218[n]/(n^3*10^n+1),n=1..infinity) 2415753132964246 r005 Im(z^2+c),c=-3/7+16/39*I,n=20 2415753136133312 m001 (MadelungNaCl+OneNinth)/(ln(5)-sin(1)) 2415753136632441 r009 Im(z^3+c),c=-7/74+31/36*I,n=48 2415753140078622 m005 (3*gamma+5/6)/(4/5*gamma+3/5) 2415753140078622 m007 (-3*gamma-5/6)/(-4/5*gamma-3/5) 2415753141928707 m001 (MertensB3-Rabbit)/(polylog(4,1/2)-Landau) 2415753146569224 q001 595/2463 2415753151422212 k006 concat of cont frac of 2415753156440512 a001 21/64079*1364^(28/47) 2415753194032484 r004 Im(z^2+c),c=-19/26+2/23*I,z(0)=-1,n=24 2415753195318579 l006 ln(7085/9021) 2415753197418422 m001 ErdosBorwein/Backhouse*exp(cosh(1))^2 2415753197642138 r005 Im(z^2+c),c=-4/3+3/170*I,n=54 2415753209378054 r002 22th iterates of z^2 + 2415753215209893 m005 (1/2*2^(1/2)+1/2)/(5/11*Catalan+1/12) 2415753217130693 h001 (1/7*exp(1)+2/9)/(8/9*exp(1)+1/9) 2415753220289118 r002 52th iterates of z^2 + 2415753225562746 r005 Im(z^2+c),c=-17/62+18/49*I,n=12 2415753227940608 l006 ln(6748/6913) 2415753235897224 m001 (LambertW(1)+Ei(1))/(arctan(1/3)+ArtinRank2) 2415753245419099 b008 Tanh[1/9+E^(-2)] 2415753251306877 r009 Im(z^3+c),c=-21/64+7/37*I,n=14 2415753254794389 m001 1/exp(Paris)^2*GlaisherKinkelin/TwinPrimes^2 2415753256576888 m004 (8*Sqrt[5]*Pi)/3+4*Sec[Sqrt[5]*Pi] 2415753258575711 m001 (TwinPrimes+ZetaQ(3))/(3^(1/2)+Zeta(5)) 2415753279052196 m001 (Pi+Zeta(5))/(Ei(1)+Zeta(1,-1)) 2415753285983227 r009 Re(z^3+c),c=-17/62+7/31*I,n=15 2415753293629775 r005 Im(z^2+c),c=-125/102+1/43*I,n=33 2415753295979772 m005 (1/3*exp(1)-1/3)/(149/110+5/11*5^(1/2)) 2415753296366582 a007 Real Root Of -191*x^4-243*x^3+915*x^2+983*x+114 2415753298917364 r009 Re(z^3+c),c=-1/24+25/41*I,n=54 2415753299863035 r005 Re(z^2+c),c=17/70+4/31*I,n=11 2415753302848154 m005 (1/2*Pi-2/3)/(3*2^(1/2)-1/2) 2415753303560860 m001 (AlladiGrinstead+Cahen)/(Lehmer+ZetaQ(3)) 2415753306903370 m001 exp(MinimumGamma)^2*GolombDickman*(3^(1/3))^2 2415753321872918 m001 Zeta(1/2)^(FeigenbaumKappa/LandauRamanujan2nd) 2415753326606230 m008 (1/4*Pi^5+3/4)/(1/3*Pi^6-2/3) 2415753329956127 r005 Re(z^2+c),c=7/82+37/64*I,n=2 2415753331995339 a001 1/76*(1/2*5^(1/2)+1/2)^14*7^(2/5) 2415753338372385 r005 Re(z^2+c),c=-13/18+17/84*I,n=2 2415753347527780 r005 Re(z^2+c),c=9/118+38/61*I,n=48 2415753355553241 m005 (1/2*Catalan-3/7)/(6/11*3^(1/2)+3/11) 2415753360917463 m001 (gamma(3)+FeigenbaumAlpha)/Zeta(5) 2415753369643795 a001 2207/13*4181^(22/37) 2415753371474894 m001 GAMMA(5/24)*GAMMA(1/4)*exp(exp(1)) 2415753374919853 r005 Im(z^2+c),c=-25/54+14/33*I,n=60 2415753381576769 m001 Khinchin*sin(Pi/12)+GAMMA(1/24) 2415753396272876 r005 Re(z^2+c),c=-65/102+8/23*I,n=32 2415753397748803 m001 arctan(1/2)^ln(2^(1/2)+1)*PlouffeB 2415753420536657 h005 exp(cos(Pi*8/51)/sin(Pi*16/33)) 2415753427654058 p001 sum((-1)^n/(401*n+3)/n/(10^n),n=1..infinity) 2415753431381641 m001 gamma(1)^ArtinRank2*gamma(1)^Sarnak 2415753442638841 r009 Re(z^3+c),c=-19/58+11/38*I,n=3 2415753444980212 r005 Im(z^2+c),c=-55/102+11/26*I,n=63 2415753448694193 a007 Real Root Of -389*x^4-588*x^3+402*x^2-841*x+581 2415753455763285 m003 1/2+Sqrt[5]/8-12/Log[1/2+Sqrt[5]/2] 2415753463551787 r009 Im(z^3+c),c=-35/78+2/21*I,n=64 2415753476589544 a001 4807526976/2207*199^(5/11) 2415753484483001 m005 (1/2*3^(1/2)-5/9)/(9/10*5^(1/2)-8/11) 2415753508751323 m002 E^Pi+(E^Pi*Csch[Pi])/Pi^4+Tanh[Pi] 2415753511129191 m001 (Chi(1)-ln(2+3^(1/2)))/(Cahen+Totient) 2415753515439625 a007 Real Root Of 230*x^4+26*x^3-721*x^2+938*x-993 2415753525181888 a007 Real Root Of -35*x^4+350*x^3+683*x^2-915*x-70 2415753527536493 a007 Real Root Of -253*x^4+832*x^3-922*x^2+433*x+171 2415753541771026 m001 (GAMMA(3/4)-cos(1/12*Pi))/(Robbin+ThueMorse) 2415753544584071 r005 Im(z^2+c),c=-51/106+35/58*I,n=62 2415753547682438 a007 Real Root Of 286*x^4+702*x^3+88*x^2+479*x+800 2415753552108805 m001 1/(2^(1/3))^2/Khintchine/ln(GAMMA(1/3))^2 2415753569584249 a001 3/139583862445*1597^(20/21) 2415753583613709 a007 Real Root Of -489*x^4-899*x^3+533*x^2-381*x-51 2415753589968445 m005 (1/2*5^(1/2)-3/11)/(5/12*Zeta(3)-4) 2415753608166017 a001 133957148/161*521^(7/13) 2415753613295757 r005 Im(z^2+c),c=-67/78+1/61*I,n=13 2415753626561013 r005 Im(z^2+c),c=-31/94+22/57*I,n=43 2415753643067630 a003 sin(Pi*4/33)*sin(Pi*25/111) 2415753651547889 m005 (1/2*Pi-7/9)/(7/8*gamma-5/6) 2415753653575928 l006 ln(2419/3080) 2415753656527690 r009 Re(z^3+c),c=-17/62+7/31*I,n=16 2415753659889188 r009 Re(z^3+c),c=-17/62+7/31*I,n=19 2415753666451120 r009 Re(z^3+c),c=-17/62+7/31*I,n=18 2415753666818870 r009 Re(z^3+c),c=-17/62+7/31*I,n=23 2415753666865615 r009 Re(z^3+c),c=-17/62+7/31*I,n=22 2415753666941724 r009 Re(z^3+c),c=-17/62+7/31*I,n=26 2415753666942264 r009 Re(z^3+c),c=-17/62+7/31*I,n=27 2415753666944334 r009 Re(z^3+c),c=-17/62+7/31*I,n=30 2415753666944369 r009 Re(z^3+c),c=-17/62+7/31*I,n=31 2415753666944402 r009 Re(z^3+c),c=-17/62+7/31*I,n=34 2415753666944404 r009 Re(z^3+c),c=-17/62+7/31*I,n=35 2415753666944404 r009 Re(z^3+c),c=-17/62+7/31*I,n=38 2415753666944404 r009 Re(z^3+c),c=-17/62+7/31*I,n=39 2415753666944404 r009 Re(z^3+c),c=-17/62+7/31*I,n=42 2415753666944404 r009 Re(z^3+c),c=-17/62+7/31*I,n=43 2415753666944404 r009 Re(z^3+c),c=-17/62+7/31*I,n=46 2415753666944404 r009 Re(z^3+c),c=-17/62+7/31*I,n=47 2415753666944404 r009 Re(z^3+c),c=-17/62+7/31*I,n=50 2415753666944404 r009 Re(z^3+c),c=-17/62+7/31*I,n=54 2415753666944404 r009 Re(z^3+c),c=-17/62+7/31*I,n=53 2415753666944404 r009 Re(z^3+c),c=-17/62+7/31*I,n=57 2415753666944404 r009 Re(z^3+c),c=-17/62+7/31*I,n=58 2415753666944404 r009 Re(z^3+c),c=-17/62+7/31*I,n=61 2415753666944404 r009 Re(z^3+c),c=-17/62+7/31*I,n=62 2415753666944404 r009 Re(z^3+c),c=-17/62+7/31*I,n=64 2415753666944404 r009 Re(z^3+c),c=-17/62+7/31*I,n=63 2415753666944404 r009 Re(z^3+c),c=-17/62+7/31*I,n=60 2415753666944404 r009 Re(z^3+c),c=-17/62+7/31*I,n=59 2415753666944404 r009 Re(z^3+c),c=-17/62+7/31*I,n=55 2415753666944404 r009 Re(z^3+c),c=-17/62+7/31*I,n=56 2415753666944404 r009 Re(z^3+c),c=-17/62+7/31*I,n=49 2415753666944404 r009 Re(z^3+c),c=-17/62+7/31*I,n=51 2415753666944404 r009 Re(z^3+c),c=-17/62+7/31*I,n=52 2415753666944404 r009 Re(z^3+c),c=-17/62+7/31*I,n=48 2415753666944404 r009 Re(z^3+c),c=-17/62+7/31*I,n=45 2415753666944404 r009 Re(z^3+c),c=-17/62+7/31*I,n=44 2415753666944404 r009 Re(z^3+c),c=-17/62+7/31*I,n=41 2415753666944404 r009 Re(z^3+c),c=-17/62+7/31*I,n=40 2415753666944404 r009 Re(z^3+c),c=-17/62+7/31*I,n=37 2415753666944404 r009 Re(z^3+c),c=-17/62+7/31*I,n=36 2415753666944408 r009 Re(z^3+c),c=-17/62+7/31*I,n=33 2415753666944415 r009 Re(z^3+c),c=-17/62+7/31*I,n=32 2415753666944678 r009 Re(z^3+c),c=-17/62+7/31*I,n=29 2415753666944846 r009 Re(z^3+c),c=-17/62+7/31*I,n=28 2415753666959696 r009 Re(z^3+c),c=-17/62+7/31*I,n=24 2415753666960887 r009 Re(z^3+c),c=-17/62+7/31*I,n=25 2415753667269671 r009 Re(z^3+c),c=-17/62+7/31*I,n=20 2415753667890318 r009 Re(z^3+c),c=-17/62+7/31*I,n=21 2415753681937428 r005 Im(z^2+c),c=-3/8+39/61*I,n=40 2415753695395079 s001 sum(exp(-2*Pi)^(n-1)*A289155[n],n=1..infinity) 2415753716415036 a007 Real Root Of -480*x^4+716*x^3+859*x^2+159*x-97 2415753717512767 m001 ln(LandauRamanujan)^2/Cahen*arctan(1/2)^2 2415753719045389 r009 Re(z^3+c),c=-17/62+7/31*I,n=17 2415753726994339 r009 Im(z^3+c),c=-12/29+8/55*I,n=7 2415753728536287 m001 (Pi+2^(1/2))/(KomornikLoreti+Paris) 2415753734737117 b008 EulerGamma/2^((2*Pi)/5) 2415753751773485 m005 (1/2*exp(1)+1/8)/(4/5*3^(1/2)-2) 2415753754368535 m001 ArtinRank2^Conway/sin(1/12*Pi) 2415753763624301 m001 (Catalan-Lehmer)/(-Rabbit+Stephens) 2415753768359890 m005 (1/2*gamma-1/4)/(5/8*2^(1/2)+5/7) 2415753782185314 m001 (2*Pi/GAMMA(5/6)+Bloch)/(Shi(1)+3^(1/3)) 2415753791099683 l006 ln(893/10000) 2415753794108465 a007 Real Root Of -829*x^4+521*x^3-407*x^2+406*x+132 2415753796349609 a001 7/90481*3571^(33/47) 2415753808344484 h001 (8/11*exp(2)+5/6)/(7/10*exp(1)+2/3) 2415753813926690 m005 (1/2*5^(1/2)-10/11)/(2/7*gamma+7/10) 2415753820922700 r009 Re(z^3+c),c=-53/102+13/22*I,n=12 2415753823785094 m001 (AlladiGrinstead-Conway)/(KhinchinLevy+Thue) 2415753826382756 a001 76*(1/2*5^(1/2)+1/2)^16*4^(5/19) 2415753826683940 r009 Re(z^3+c),c=-53/102+3/5*I,n=60 2415753828421557 r005 Re(z^2+c),c=-11/50+21/50*I,n=22 2415753829083415 a007 Real Root Of 382*x^4+731*x^3-471*x^2+391*x+989 2415753834548635 m001 (Bloch-sin(1))/(-ErdosBorwein+ZetaP(4)) 2415753836516486 r009 Re(z^3+c),c=-1/24+25/41*I,n=52 2415753841351194 r005 Im(z^2+c),c=-37/114+17/45*I,n=8 2415753841572224 m005 (1/2*Catalan+2/5)/(exp(1)+5/6) 2415753843139842 r005 Re(z^2+c),c=-1/13+45/49*I,n=7 2415753843692483 a001 1/610*28657^(18/37) 2415753844599330 s001 sum(exp(-Pi)^(n-1)*A069300[n],n=1..infinity) 2415753846407740 r009 Re(z^3+c),c=-17/62+7/31*I,n=14 2415753854446444 m008 (4/5*Pi^6-3/4)/(Pi^3+4/5) 2415753858627970 p001 sum(1/(383*n+267)/n/(64^n),n=1..infinity) 2415753858714132 a007 Real Root Of 272*x^4+510*x^3-100*x^2+890*x+660 2415753867326297 r005 Im(z^2+c),c=-2/3+8/31*I,n=20 2415753881280515 m005 (1/3*2^(1/2)-4)/(3/4*2^(1/2)+2/5) 2415753883147849 m001 exp(Pi)+FeigenbaumDelta^Trott 2415753893404787 r009 Re(z^3+c),c=-1/21+45/61*I,n=39 2415753900191380 a001 12586269025/5778*199^(5/11) 2415753905539667 m008 (3/5*Pi^5+2/5)/(1/4*Pi^5-1/3) 2415753910588320 a001 21/439204*9349^(32/47) 2415753911242921 m001 1/BesselJ(0,1)*exp(CopelandErdos)*Zeta(1/2) 2415753917798268 r005 Im(z^2+c),c=-11/31+17/50*I,n=6 2415753918976913 l006 ln(782/8757) 2415753920462956 r009 Im(z^3+c),c=-14/25+15/61*I,n=52 2415753927258468 r005 Im(z^2+c),c=7/24+13/31*I,n=9 2415753928266224 a001 21/64079*24476^(20/47) 2415753928321578 m001 (Bloch+ErdosBorwein)/(HeathBrownMoroz+Thue) 2415753930218661 m001 (ArtinRank2-Catalan)/(DuboisRaymond+Rabbit) 2415753934699200 a001 21/64079*15127^(21/47) 2415753936186436 m001 GAMMA(2/3)*(Zeta(3)+LandauRamanujan2nd) 2415753943340671 m001 1/ln(Pi)^2/KhintchineHarmonic^2/Zeta(5) 2415753957104590 m001 exp(Pi)^MadelungNaCl-TravellingSalesman 2415753957247288 m001 GAMMA(1/3)*OneNinth^2*exp(GAMMA(23/24))^2 2415753961994068 a001 32951280099/15127*199^(5/11) 2415753967783184 m001 (Riemann3rdZero+TwinPrimes)/(Pi^(1/2)-Rabbit) 2415753971010959 a001 86267571272/39603*199^(5/11) 2415753972326505 a001 225851433717/103682*199^(5/11) 2415753972518441 a001 591286729879/271443*199^(5/11) 2415753972546444 a001 1548008755920/710647*199^(5/11) 2415753972550530 a001 4052739537881/1860498*199^(5/11) 2415753972551126 a001 2178309*199^(5/11) 2415753972551494 a001 6557470319842/3010349*199^(5/11) 2415753972553055 a001 2504730781961/1149851*199^(5/11) 2415753972563751 a001 956722026041/439204*199^(5/11) 2415753972637064 a001 365435296162/167761*199^(5/11) 2415753973139558 a001 139583862445/64079*199^(5/11) 2415753976583704 a001 53316291173/24476*199^(5/11) 2415753980728552 m001 gamma(2)-ZetaP(3)^Chi(1) 2415753981315205 r005 Re(z^2+c),c=29/90+8/41*I,n=40 2415753982452977 r005 Im(z^2+c),c=-47/90+3/56*I,n=12 2415753989417699 m001 sin(1/12*Pi)/(Totient^CopelandErdos) 2415753989438946 a001 21/1149851*5778^(39/47) 2415753990154264 a007 Real Root Of 206*x^4-545*x^3-359*x^2+8*x+26 2415753996604033 m001 (GlaisherKinkelin+Porter)/(Zeta(1,-1)+Conway) 2415753998672662 m005 (1/2*Zeta(3)-3/7)/(5/9*2^(1/2)-5/7) 2415754000190231 a001 20365011074/9349*199^(5/11) 2415754005227778 m005 (1/2*Pi+5/11)/(1/7*Zeta(3)+2/3) 2415754019695760 m001 (-exp(-1/2*Pi)+Kac)/(BesselI(0,1)+arctan(1/2)) 2415754020259237 p001 sum(1/(457*n+352)/n/(512^n),n=1..infinity) 2415754027065572 r005 Im(z^2+c),c=-125/106+2/63*I,n=31 2415754027778703 r005 Im(z^2+c),c=-59/64+13/55*I,n=7 2415754028780734 a001 843/75025*377^(4/31) 2415754030469259 h001 (3/4*exp(2)+2/11)/(2/9*exp(2)+8/11) 2415754039903926 m001 Zeta(3)^2*GAMMA(17/24)/ln(arctan(1/2)) 2415754054455070 a007 Real Root Of -106*x^4+28*x^3+897*x^2+238*x-655 2415754055327933 a007 Real Root Of 282*x^4+947*x^3+279*x^2-790*x+210 2415754056496704 r002 41i'th iterates of 2*x/(1-x^2) of 2415754065847673 r005 Im(z^2+c),c=-89/102+6/31*I,n=48 2415754072361880 r009 Re(z^3+c),c=-11/29+25/41*I,n=54 2415754082372220 r005 Im(z^2+c),c=-107/102+6/25*I,n=17 2415754083219086 m001 GAMMA(5/12)*GAMMA(23/24)*exp(Zeta(3))^2 2415754084908986 a001 7*(1/2*5^(1/2)+1/2)^12*4^(1/20) 2415754088463724 m001 (exp(1)+LambertW(1))/(-Pi^(1/2)+ThueMorse) 2415754089162232 l006 ln(671/7514) 2415754090354581 m001 sin(1/5*Pi)/(5^(1/2)-FeigenbaumDelta) 2415754090354581 m001 sin(Pi/5)/(FeigenbaumDelta-sqrt(5)) 2415754090613642 l006 ln(7429/9459) 2415754092422048 a007 Real Root Of 351*x^4+913*x^3+426*x^2+858*x+504 2415754110418040 m004 -1+25*Pi-(75*Sqrt[5]*Coth[Sqrt[5]*Pi])/Pi 2415754110536391 r002 16th iterates of z^2 + 2415754118117031 a007 Real Root Of -415*x^4+980*x^3-317*x^2+502*x+155 2415754118759291 a001 21/3571*64079^(6/47) 2415754126062182 m001 3^(1/2)*MertensB3+OneNinth 2415754136232559 a007 Real Root Of -375*x^4+471*x^3+17*x^2+733*x+184 2415754136256906 a001 1/182717648081*34^(8/19) 2415754139693314 h001 (-8*exp(6)-9)/(-9*exp(5)-4) 2415754139718024 m001 LandauRamanujan-exp(gamma)-exp(Pi) 2415754141837829 a007 Real Root Of 175*x^4+400*x^3+187*x^2-932*x+208 2415754142239157 r005 Re(z^2+c),c=-15/56+17/64*I,n=22 2415754154984989 a001 987/76*76^(27/40) 2415754161991787 a001 7778742049/3571*199^(5/11) 2415754170893375 m005 (1/2*gamma+5/7)/(3/5*2^(1/2)-5) 2415754172025007 m001 (Catalan-gamma(2))/(Bloch+ReciprocalFibonacci) 2415754175776324 r005 Im(z^2+c),c=-37/66+14/37*I,n=29 2415754182408201 r005 Re(z^2+c),c=-39/40+1/27*I,n=6 2415754193015571 r002 10th iterates of z^2 + 2415754196363876 a001 24157817-123*5^(1/2) 2415754207289719 m001 (Landau+Sierpinski)/(Zeta(1/2)-Zeta(1,-1)) 2415754211469143 m001 (Paris+Robbin)/(3^(1/3)+Niven) 2415754215018885 r008 a(0)=0,K{-n^6,34*n^3+145*n^2+178*n+57} 2415754218878848 h005 exp(sin(Pi*14/31)/cos(Pi*13/27)) 2415754224415836 r005 Im(z^2+c),c=-11/74+10/33*I,n=4 2415754225105681 m001 Salem^2/ArtinRank2/ln(TreeGrowth2nd) 2415754233864081 r002 3th iterates of z^2 + 2415754235138334 r005 Re(z^2+c),c=17/58+30/49*I,n=17 2415754236828682 h001 (2/3*exp(2)+2/9)/(7/12*exp(1)+6/11) 2415754245104444 a001 8/199*7^(47/51) 2415754254711381 a007 Real Root Of 298*x^4+630*x^3-409*x^2-148*x+762 2415754255733672 m001 1/exp(LambertW(1))*FransenRobinson^2*cos(1) 2415754264117877 m001 (MertensB2-MinimumGamma)/(Cahen-Kac) 2415754264564622 r005 Im(z^2+c),c=-29/66+8/17*I,n=27 2415754277704895 m001 gamma(1)/(ThueMorse^GAMMA(2/3)) 2415754281135311 m005 (1/2*Pi-9/11)/(1/5*gamma+3) 2415754289660959 m001 (1+ln(2)/ln(10))/(Psi(2,1/3)+BesselI(0,1)) 2415754291750092 r005 Re(z^2+c),c=-7/40+34/63*I,n=27 2415754292757513 a001 433494437/322*521^(6/13) 2415754295078178 r005 Im(z^2+c),c=-23/50+25/58*I,n=31 2415754296606453 r005 Re(z^2+c),c=-7/8+59/197*I,n=4 2415754296826496 a007 Real Root Of 163*x^4-586*x^3-544*x^2-677*x+203 2415754298091279 m001 (exp(-1/2*Pi)+MinimumGamma)/(ln(2)-gamma(3)) 2415754298696851 r009 Re(z^3+c),c=-5/122+35/59*I,n=34 2415754301630448 l006 ln(5010/6379) 2415754302089837 m001 (GAMMA(3/4)+DuboisRaymond)/sin(1/5*Pi) 2415754302669101 a007 Real Root Of -985*x^4-437*x^3-996*x^2+483*x+172 2415754304569866 a007 Real Root Of 594*x^4-60*x^3+564*x^2-642*x+121 2415754306283009 r005 Re(z^2+c),c=-13/48+3/13*I,n=6 2415754321321350 m004 -100/Pi-30*Sqrt[5]*Pi+Tanh[Sqrt[5]*Pi] 2415754326813825 l006 ln(560/6271) 2415754330396729 a001 21/439204*2207^(38/47) 2415754331626037 r009 Re(z^3+c),c=-27/52+28/47*I,n=6 2415754349845841 m001 Pi^(1/2)*MertensB3+ZetaQ(2) 2415754351561684 m005 (3/4*exp(1)-2/3)/(1/4*exp(1)+5) 2415754360686352 r009 Re(z^3+c),c=-19/56+5/13*I,n=26 2415754385432067 m001 polylog(4,1/2)*(PrimesInBinary-QuadraticClass) 2415754396456245 m001 (ln(5)+cos(1/12*Pi))/(GAMMA(19/24)-OneNinth) 2415754401209710 r009 Im(z^3+c),c=-7/74+31/36*I,n=52 2415754414458392 s001 sum(exp(-2*Pi)^(n-1)*A101861[n],n=1..infinity) 2415754425938102 p004 log(16057/12611) 2415754436346678 a007 Real Root Of 110*x^4-22*x^3-695*x^2-42*x-102 2415754449402711 b008 (113*EulerGamma)/27 2415754454887875 a007 Real Root Of 344*x^4+566*x^3-865*x^2-430*x+273 2415754455220663 r009 Im(z^3+c),c=-9/86+37/43*I,n=18 2415754457695142 s002 sum(A088120[n]/(n!^3),n=1..infinity) 2415754458902872 m005 (1/3*gamma+1/5)/(221/198+5/22*5^(1/2)) 2415754476544225 a007 Real Root Of 202*x^4+835*x^3+983*x^2+114*x-569 2415754480625978 a007 Real Root Of -263*x^4+408*x^3-871*x^2+923*x-177 2415754482548519 r002 5th iterates of z^2 + 2415754484855637 p004 log(11299/1009) 2415754489554775 r008 a(0)=0,K{-n^6,-93+42*n^3-50*n^2+60*n} 2415754490170203 r009 Im(z^3+c),c=-21/64+7/37*I,n=15 2415754502710426 a001 123/4181*55^(31/59) 2415754504698896 r005 Re(z^2+c),c=-38/29+5/29*I,n=4 2415754507872234 l006 ln(7601/9678) 2415754515443914 s001 sum(exp(-4*Pi/5)^n*A031408[n],n=1..infinity) 2415754529036198 m001 (gamma(3)+Gompertz)/(ThueMorse-TwinPrimes) 2415754529535360 a007 Real Root Of 153*x^4-873*x^3-134*x^2-72*x+37 2415754538357815 m001 (ln(gamma)-sin(1))/(-sin(1/12*Pi)+GaussAGM) 2415754544495282 a007 Real Root Of 380*x^4+581*x^3-545*x^2+311*x-819 2415754549692343 a007 Real Root Of -829*x^4+409*x^3+606*x^2+363*x-126 2415754554262435 m001 ln(GAMMA(1/3))*Riemann1stZero*log(2+sqrt(3))^2 2415754555040322 m001 Salem*Magata^2/exp(sqrt(3)) 2415754558810166 a007 Real Root Of -966*x^4+604*x^3+553*x^2+979*x-274 2415754563662219 r005 Im(z^2+c),c=-61/98+8/21*I,n=37 2415754573261574 r005 Re(z^2+c),c=-13/58+23/41*I,n=17 2415754574210849 a007 Real Root Of 20*x^4+477*x^3-148*x^2-26*x-973 2415754585479315 r009 Re(z^3+c),c=-7/26+9/44*I,n=3 2415754587447100 r005 Im(z^2+c),c=-7/94+23/61*I,n=3 2415754588335267 a007 Real Root Of 938*x^4-736*x^3+998*x^2-779*x-260 2415754603192213 r009 Im(z^3+c),c=-11/50+8/35*I,n=9 2415754639296176 m004 -5+5*Pi-(5*E^(Sqrt[5]*Pi)*Sec[Sqrt[5]*Pi])/Pi 2415754654111699 m001 (5^(1/2)+Zeta(5))/(ln(2)+Robbin) 2415754663361567 a005 (1/cos(8/179*Pi))^1719 2415754669140720 r005 Im(z^2+c),c=-5/54+23/56*I,n=3 2415754681967883 l006 ln(449/5028) 2415754708123455 m001 GAMMA(2/3)*Magata^2/ln(GAMMA(23/24))^2 2415754708514437 r005 Im(z^2+c),c=-69/110+1/22*I,n=50 2415754710611829 r005 Re(z^2+c),c=13/44+14/55*I,n=7 2415754729222167 m001 arctan(1/2)-ln(2+3^(1/2))+Riemann3rdZero 2415754740501198 m005 (1/2*Zeta(3)+1/9)/(3*Catalan+1/5) 2415754742582874 b008 1+Sqrt[2]*Zeta[Pi^2] 2415754748751560 r009 Re(z^3+c),c=-69/110+18/37*I,n=59 2415754758913164 r005 Im(z^2+c),c=-28/25+1/34*I,n=31 2415754778531688 a003 cos(Pi*23/111)*cos(Pi*45/112) 2415754782942709 a007 Real Root Of 101*x^4-930*x^3+68*x^2-829*x+20 2415754783067907 m001 (LambertW(1)*Trott2nd+MasserGramain)/Trott2nd 2415754791170988 m001 (Sarnak+ThueMorse)/(Ei(1)+FransenRobinson) 2415754802246852 r005 Im(z^2+c),c=-19/30+5/109*I,n=48 2415754814611219 m001 (Riemann3rdZero-Trott)/(Zeta(5)-gamma(3)) 2415754826613801 r002 30th iterates of z^2 + 2415754828755347 p001 sum(1/(611*n+425)/(16^n),n=0..infinity) 2415754829315479 m001 1/GAMMA(1/24)^2*exp(Magata)^2*Zeta(1/2) 2415754838700186 m001 Zeta(9)/exp(GAMMA(1/24))^2/sqrt(3) 2415754845161766 m001 (PrimesInBinary-ZetaQ(3))/(Artin+Mills) 2415754846117744 m001 (arctan(1/3)+Zeta(1,2))/(Rabbit+Tribonacci) 2415754848891628 m005 (1/2*Zeta(3)-1/6)/(4/5*2^(1/2)+2/3) 2415754850425190 m005 (1/2*Zeta(3)-1/3)/(4/7*2^(1/2)+3/10) 2415754855499615 r005 Re(z^2+c),c=-45/34+13/89*I,n=8 2415754858494207 m005 (1/2*exp(1)+1/5)/(1/6*5^(1/2)+3/11) 2415754862554326 m001 1/Tribonacci*KhintchineLevy*exp(TwinPrimes)^2 2415754868833307 r009 Re(z^3+c),c=-37/98+11/24*I,n=17 2415754874400729 r009 Re(z^3+c),c=-1/24+25/41*I,n=50 2415754896444070 m001 Magata^OrthogonalArrays/exp(Pi) 2415754900937088 a008 Real Root of x^5-2*x^4-11*x^3+12*x^2+31*x-4 2415754906664714 l006 ln(2591/3299) 2415754906664714 p004 log(3299/2591) 2415754916246981 m001 (Zeta(1,2)+Porter)/(Chi(1)+GAMMA(2/3)) 2415754919430780 r009 Re(z^3+c),c=-25/66+17/36*I,n=40 2415754923413566 q001 1104/457 2415754923768222 r005 Re(z^2+c),c=-9/58+25/42*I,n=48 2415754934682257 l006 ln(787/8813) 2415754935186612 m001 (2^(1/3))^2/Khintchine*ln(Ei(1))^2 2415754939347294 r005 Re(z^2+c),c=-11/10+38/157*I,n=22 2415754947191600 r005 Re(z^2+c),c=-13/74+18/37*I,n=10 2415754952367983 a001 17/38*370248451^(11/14) 2415754952696689 a001 3571/2178309*28657^(18/37) 2415754953845700 a007 Real Root Of 457*x^4+698*x^3-922*x^2+224*x+198 2415754959012344 r009 Im(z^3+c),c=-7/34+13/56*I,n=9 2415754961725541 r005 Re(z^2+c),c=-17/14+17/196*I,n=16 2415754962187937 a007 Real Root Of 437*x^4+880*x^3-726*x^2-332*x+958 2415754966978782 p001 sum(1/(209*n+42)/(12^n),n=0..infinity) 2415754970479942 a001 521/610*8^(1/2) 2415754972550458 r009 Re(z^3+c),c=-19/50+19/40*I,n=50 2415754977349202 a001 701408733/322*521^(5/13) 2415754980643661 m005 (1/2*3^(1/2)+2/3)/(3*5^(1/2)-4/11) 2415754986721072 m001 (3^(1/3)+ReciprocalLucas)/(Pi-3^(1/2)) 2415754987686741 r005 Re(z^2+c),c=-13/118+29/33*I,n=54 2415754988207312 r002 35th iterates of z^2 + 2415755000711743 a001 48/281*2537720636^(13/15) 2415755000711743 a001 48/281*45537549124^(13/17) 2415755000711743 a001 48/281*14662949395604^(13/21) 2415755000711743 a001 48/281*(1/2+1/2*5^(1/2))^39 2415755000711743 a001 48/281*192900153618^(13/18) 2415755000711743 a001 48/281*73681302247^(3/4) 2415755000711743 a001 48/281*10749957122^(13/16) 2415755000711743 a001 48/281*599074578^(13/14) 2415755000931682 a001 377/322*2537720636^(7/9) 2415755000931682 a001 377/322*17393796001^(5/7) 2415755000931682 a001 377/322*312119004989^(7/11) 2415755000931682 a001 377/322*14662949395604^(5/9) 2415755000931682 a001 377/322*(1/2+1/2*5^(1/2))^35 2415755000931682 a001 377/322*505019158607^(5/8) 2415755000931682 a001 377/322*28143753123^(7/10) 2415755000931682 a001 377/322*599074578^(5/6) 2415755000931682 a001 377/322*228826127^(7/8) 2415755005073268 r002 19th iterates of z^2 + 2415755006963124 m001 (Artin+GAMMA(11/24))^GAMMA(11/12) 2415755025735446 m008 (3/5*Pi+1/3)/(3*Pi^5+1/5) 2415755029791392 r005 Re(z^2+c),c=37/118+9/20*I,n=56 2415755039113591 m001 Ei(1)^2/exp(Salem)^2/sqrt(2) 2415755044577602 r005 Im(z^2+c),c=-8/7+1/33*I,n=31 2415755047161430 m005 (1/2*Pi+7/8)/(7/10*3^(1/2)-1/5) 2415755047367731 a007 Real Root Of -307*x^4-405*x^3+524*x^2-909*x-508 2415755048894498 r009 Im(z^3+c),c=-17/40+6/49*I,n=38 2415755051467407 r009 Im(z^3+c),c=-4/31+10/41*I,n=2 2415755056265362 r009 Re(z^3+c),c=-19/46+6/11*I,n=17 2415755063874969 a007 Real Root Of 174*x^4+54*x^3-550*x^2+404*x-979 2415755066783611 a007 Real Root Of 105*x^4+53*x^3-301*x^2+383*x-147 2415755078970458 r005 Re(z^2+c),c=-41/98+32/55*I,n=24 2415755113786334 s002 sum(A190369[n]/(10^n+1),n=1..infinity) 2415755115517028 s002 sum(A142576[n]/(exp(n)+1),n=1..infinity) 2415755116080004 r005 Im(z^2+c),c=-41/86+26/61*I,n=49 2415755129285761 a003 sin(Pi*9/64)-sin(Pi*7/30) 2415755137533003 m001 MadelungNaCl*ErdosBorwein^2*exp(Pi)^2 2415755143690440 r005 Re(z^2+c),c=9/34+9/61*I,n=44 2415755151366617 m001 OrthogonalArrays+Otter^Trott 2415755156115672 r009 Re(z^3+c),c=-17/114+14/15*I,n=14 2415755160635897 m001 (Rabbit-Salem)/(ln(3)+FeigenbaumB) 2415755178675320 p003 LerchPhi(1/8,5,73/138) 2415755180140609 r005 Re(z^2+c),c=-7/6+39/200*I,n=26 2415755183932841 a007 Real Root Of 604*x^4+322*x^3-933*x^2-754*x+230 2415755185940250 a007 Real Root Of -345*x^4-321*x^3+843*x^2-882*x+174 2415755187338766 m001 1/arctan(1/2)^2*PrimesInBinary^2*ln(gamma)^2 2415755206386420 a007 Real Root Of -356*x^4+81*x^3+818*x^2+643*x-203 2415755208333333 r005 Im(z^2+c),c=-53/48+1/30*I,n=3 2415755212920401 p001 sum(1/(456*n+353)/n/(512^n),n=1..infinity) 2415755220050682 m001 ln(Salem)^2/FeigenbaumDelta/GAMMA(7/12)^2 2415755226356233 a003 cos(Pi*5/109)/cos(Pi*56/115) 2415755227904869 a001 21/1364*39603^(2/47) 2415755234065317 a007 Real Root Of -428*x^4-897*x^3+402*x^2+304*x+319 2415755234701242 p004 log(23531/18481) 2415755243446056 m001 (BesselI(0,2)+Robbin)/(ln(Pi)-gamma(1)) 2415755244345871 r005 Re(z^2+c),c=-8/27+4/45*I,n=12 2415755244631808 p003 LerchPhi(1/12,2,361/174) 2415755249810356 m005 (1/3*Pi+1/9)/(5/9*gamma-3/11) 2415755253883184 r005 Im(z^2+c),c=-19/44+25/57*I,n=9 2415755264437881 r005 Re(z^2+c),c=9/26+22/61*I,n=10 2415755268298543 r002 3th iterates of z^2 + 2415755269529433 a007 Real Root Of 253*x^4+121*x^3-471*x^2-762*x+209 2415755270388530 l006 ln(338/3785) 2415755270996736 a001 2971215073/1364*199^(5/11) 2415755280644307 m001 sinh(1)^2*Zeta(1,2)^2/ln(sqrt(1+sqrt(3))) 2415755281258765 m005 (1/2*Catalan+9/11)/(27/14+3/2*5^(1/2)) 2415755286659090 a001 521/987*4181^(36/49) 2415755291961538 a003 sin(Pi*1/14)/cos(Pi*7/55) 2415755308928315 m009 (4/5*Psi(1,1/3)+5)/(5/6*Psi(1,1/3)-3) 2415755309121809 a007 Real Root Of -171*x^4-112*x^3+837*x^2+507*x+585 2415755330445830 a007 Real Root Of -116*x^4-110*x^3+441*x^2+98*x+63 2415755337192833 a005 (1/cos(31/110*Pi))^12 2415755340128100 r005 Re(z^2+c),c=23/74+17/36*I,n=3 2415755343546380 m001 (GlaisherKinkelin+MertensB2*Salem)/MertensB2 2415755345221643 r005 Re(z^2+c),c=-33/118+7/33*I,n=12 2415755356020290 b008 InverseGudermannian[2*CosIntegral[3]] 2415755356188525 r005 Re(z^2+c),c=-1/21+16/23*I,n=27 2415755358310879 a003 sin(Pi*9/91)*sin(Pi*29/100) 2415755365738127 m006 (1/5*exp(Pi)+4)/(2/3*exp(2*Pi)+1/6) 2415755375902529 m005 (1/2*Zeta(3)-4/9)/(6/11*gamma+1/3) 2415755379642935 r005 Im(z^2+c),c=-11/41*I,n=13 2415755382434756 m005 (1/2*3^(1/2)-3/8)/(7/12*Pi+1/5) 2415755389576288 m001 (Pi+Pi^(1/2))/(FeigenbaumDelta-Riemann3rdZero) 2415755397776579 a007 Real Root Of 281*x^4+123*x^3-10*x^2-432*x-103 2415755401713648 a007 Real Root Of 379*x^4-229*x^3-956*x^2-680*x+222 2415755402921030 a005 (1/cos(31/139*Pi))^89 2415755408647709 m001 GAMMA(3/4)^2/(2^(1/3))^2/exp(Zeta(1,2)) 2415755412673867 m001 FeigenbaumC^ZetaQ(2)-Shi(1) 2415755413083642 m001 MadelungNaCl^exp(1/Pi)+MertensB1 2415755413612755 a001 47/3*34^(7/57) 2415755417788714 m001 GAMMA(13/24)*(Robbin-cos(1/5*Pi)) 2415755418516442 m005 (1/2*Pi+4/9)/(1/7*gamma-11/12) 2415755419080634 a007 Real Root Of -362*x^4+791*x^3-15*x^2+658*x-168 2415755423086190 m005 (41/36+1/4*5^(1/2))/(9/11*3^(1/2)-5/7) 2415755445006347 m001 Gompertz*ZetaP(2)-Khinchin 2415755446783818 a005 (1/cos(18/235*Pi))^739 2415755452844691 p001 sum(1/(411*n+43)/(3^n),n=0..infinity) 2415755472824874 l006 ln(5354/6817) 2415755474089698 r002 16th iterates of z^2 + 2415755487539235 r005 Im(z^2+c),c=-7/10+37/101*I,n=45 2415755488915082 m001 (Cahen+PrimesInBinary)/(gamma(3)-BesselJ(1,1)) 2415755496186359 m001 1/Pi/HeathBrownMoroz 2415755505572216 r002 19th iterates of z^2 + 2415755527660513 m001 1/exp((3^(1/3)))/Salem*Zeta(3) 2415755528638592 r005 Im(z^2+c),c=-9/22+9/26*I,n=6 2415755529084187 a007 Real Root Of 856*x^4+561*x^3+210*x^2-951*x-237 2415755533875456 m001 GAMMA(3/4)^2/Magata^2/exp(Pi)^2 2415755535615185 r004 Re(z^2+c),c=-7/26+1/9*I,z(0)=exp(7/8*I*Pi),n=8 2415755559676896 m001 (1+Cahen)/(-OrthogonalArrays+Sarnak) 2415755565208207 r005 Re(z^2+c),c=11/78+31/55*I,n=48 2415755571303379 a007 Real Root Of 207*x^4+593*x^3+296*x^2-91*x-637 2415755571625262 a001 726103/41*3^(13/46) 2415755575684652 a007 Real Root Of -301*x^4-616*x^3-205*x^2-828*x+763 2415755576360812 m001 (Conway-GlaisherKinkelin)/ZetaQ(3) 2415755581687313 r005 Im(z^2+c),c=-8/19+14/33*I,n=19 2415755591705749 m001 (Chi(1)-cos(1/5*Pi))/(-ErdosBorwein+ThueMorse) 2415755601246322 r005 Re(z^2+c),c=-29/106+13/54*I,n=21 2415755605235774 a008 Real Root of x^4-x^3+6*x^2+87*x+127 2415755605842986 a007 Real Root Of 731*x^4+110*x^3+25*x^2-433*x-107 2415755611632009 m001 1/LandauRamanujan/Artin^2/exp(GAMMA(2/3)) 2415755613227263 m001 1/ln(GAMMA(13/24))^2*ErdosBorwein/exp(1) 2415755635985416 r009 Re(z^3+c),c=-23/78+23/34*I,n=49 2415755638098982 a001 2207/1346269*28657^(18/37) 2415755661941085 a001 567451585/161*521^(4/13) 2415755667028906 b008 (2+Sqrt[2])^(-2+E) 2415755674089983 a005 (1/cos(1/52*Pi))^483 2415755676936040 r005 Im(z^2+c),c=-7/8+46/241*I,n=31 2415755677111475 m005 (3/4*2^(1/2)+5/6)/(9/4+5/2*5^(1/2)) 2415755678103360 m001 (ln(2)/ln(10)-ln(gamma))/(BesselI(1,1)+Otter) 2415755686350284 r005 Im(z^2+c),c=-27/26+22/67*I,n=7 2415755689987339 a007 Real Root Of -981*x^4-549*x^3-227*x^2+970*x-210 2415755697749067 r005 Im(z^2+c),c=-19/36+6/13*I,n=63 2415755702935449 m001 1/2/(BesselK(0,1)+exp(1/2)) 2415755705759324 m004 -Cos[Sqrt[5]*Pi]/25+3*Csch[Sqrt[5]*Pi] 2415755712923939 a001 3/514229*75025^(23/31) 2415755713926550 m001 (2^(1/2))^(ln(2+3^(1/2))/polylog(4,1/2)) 2415755713926550 m001 sqrt(2)^(ln(2+sqrt(3))/polylog(4,1/2)) 2415755714353856 m001 (Robbin-ZetaP(4))/(Kolakoski-Riemann3rdZero) 2415755716462012 m001 1/Zeta(7)/LaplaceLimit*ln(sinh(1)) 2415755720992894 a007 Real Root Of 48*x^4-793*x^3+788*x^2-603*x-203 2415755725467753 r009 Re(z^3+c),c=-17/106+43/58*I,n=31 2415755732166035 m001 1/log(2+sqrt(3))^2/ln(Niven)*sqrt(5) 2415755738000443 l006 ln(565/6327) 2415755744826827 r005 Im(z^2+c),c=-51/56+9/37*I,n=11 2415755748190622 r009 Re(z^3+c),c=-57/110+31/50*I,n=6 2415755763619090 m001 (Ei(1,1)+BesselI(0,2))/(Zeta(3)-ln(3)) 2415755769723555 s001 sum(exp(-2*Pi/5)^n*A061397[n],n=1..infinity) 2415755769723555 s002 sum(A061397[n]/(exp(2/5*pi*n)),n=1..infinity) 2415755773514828 a001 11/10946*46368^(4/49) 2415755784816225 a007 Real Root Of 322*x^4+778*x^3+393*x^2+680*x-649 2415755807967112 a005 (1/cos(9/196*Pi))^305 2415755820397827 a007 Real Root Of -181*x^4-228*x^3+736*x^2+188*x-891 2415755824280926 a007 Real Root Of -377*x^4-765*x^3+89*x^2-359*x+668 2415755825095037 m005 (2/3*exp(1)+1/4)/(3/4*Catalan+1/6) 2415755830003428 a007 Real Root Of 31*x^4+783*x^3+811*x^2-357*x-949 2415755846772640 r005 Im(z^2+c),c=-39/118+19/49*I,n=13 2415755861492297 a007 Real Root Of -385*x^4-805*x^3+154*x^2-499*x-341 2415755875572065 r005 Im(z^2+c),c=33/118+1/12*I,n=20 2415755876047195 a007 Real Root Of 342*x^4+580*x^3-518*x^2+317*x+318 2415755882571218 a007 Real Root Of 258*x^4+910*x^3+452*x^2-177*x+977 2415755895836404 r005 Im(z^2+c),c=-45/98+19/51*I,n=13 2415755902418158 r002 19th iterates of z^2 + 2415755906356386 a007 Real Root Of -360*x^4+27*x^3+42*x^2+428*x-105 2415755909800238 r009 Im(z^3+c),c=-37/62+13/56*I,n=28 2415755913642453 r009 Im(z^3+c),c=-25/54+21/41*I,n=3 2415755914905950 a007 Real Root Of 461*x^4+910*x^3-398*x^2-179*x-981 2415755918761616 m001 ln(Salem)/DuboisRaymond/sin(Pi/5)^2 2415755920139309 a007 Real Root Of -22*x^4+340*x^3+500*x^2-918*x+407 2415755924672883 s002 sum(A003222[n]/(n^3*10^n-1),n=1..infinity) 2415755927122735 m005 (1/3*5^(1/2)-2/9)/(11/12*Pi-5/7) 2415755933918909 m007 (-2/3*gamma-4)/(-1/2*gamma-ln(2)-5/6) 2415755937562026 l006 ln(792/8869) 2415755940620460 m001 (Tribonacci-Thue)/(ln(2^(1/2)+1)-PlouffeB) 2415755942120150 r009 Re(z^3+c),c=-9/70+26/31*I,n=42 2415755946806020 q001 1/4139491 2415755950787934 m005 (1/2*Pi-8/11)/(11/12*exp(1)+1) 2415755951014059 r005 Im(z^2+c),c=-45/118+34/57*I,n=47 2415755957350821 r005 Re(z^2+c),c=-45/34+3/124*I,n=44 2415755986684760 m001 (MadelungNaCl-Mills)/(GAMMA(5/6)+ArtinRank2) 2415755995343147 r009 Re(z^3+c),c=-17/44+22/45*I,n=49 2415756000467893 s002 sum(A034122[n]/(n*2^n-1),n=1..infinity) 2415756003740869 l006 ln(2763/3518) 2415756008810857 p001 sum(1/(406*n+9)/n/(100^n),n=1..infinity) 2415756022905234 m001 FeigenbaumAlpha^Backhouse*HardyLittlewoodC3 2415756048211954 p004 log(11411/1019) 2415756049144372 m005 (1/2*2^(1/2)-7/10)/(4/5*Pi+3/7) 2415756066290627 h005 exp(sin(Pi*1/43)+sin(Pi*3/10)) 2415756072002907 m001 BesselK(1,1)*(Artin+Trott2nd) 2415756078549401 m001 (Conway-FeigenbaumC)/(GAMMA(5/6)+GAMMA(11/12)) 2415756088119230 r005 Re(z^2+c),c=-8/25+22/37*I,n=17 2415756095404137 m003 1/8+Sqrt[5]/4+5/(6*Log[1/2+Sqrt[5]/2]) 2415756098767015 r005 Im(z^2+c),c=-15/34+17/40*I,n=34 2415756099793908 a001 21/64079*843^(30/47) 2415756106364777 h001 (6/11*exp(1)+1/7)/(5/6*exp(2)+4/7) 2415756108087652 a007 Real Root Of -507*x^4-948*x^3+645*x^2+315*x+899 2415756109120981 r009 Re(z^3+c),c=-9/32+12/49*I,n=10 2415756115337428 m001 1/arctan(1/2)^2/Si(Pi)^2*exp(gamma) 2415756118639856 a001 2971215073/843*199^(4/11) 2415756122669619 r002 17th iterates of z^2 + 2415756128074581 m004 6/E^(Sqrt[5]*Pi)-Cos[Sqrt[5]*Pi]/25 2415756128824645 r009 Re(z^3+c),c=-15/44+19/43*I,n=7 2415756136317258 a007 Real Root Of 628*x^4-385*x^3-885*x^2-675*x+218 2415756144801581 a003 cos(Pi*8/83)-sin(Pi*24/95) 2415756146152260 r005 Re(z^2+c),c=-17/98+29/55*I,n=57 2415756151695354 m005 (1/2*5^(1/2)+7/11)/(8/11*5^(1/2)-9/10) 2415756157932055 m001 Backhouse^BesselI(1,1)*Backhouse^Grothendieck 2415756165427752 a001 2/17711*4181^(18/49) 2415756170867892 r008 a(0)=5,K{-n^6,43-62*n^2+19*n} 2415756175076117 r005 Re(z^2+c),c=-5/4+18/229*I,n=10 2415756178315794 m001 (Catalan+ln(gamma))/(PolyaRandomWalk3D+Salem) 2415756179514005 m001 gamma(2)*(KhinchinLevy+Mills) 2415756181249485 a007 Real Root Of -223*x^4-488*x^3-78*x^2-188*x+716 2415756183275583 m002 -E^Pi-Pi-Pi^5+Pi^4/ProductLog[Pi] 2415756186160279 a007 Real Root Of -612*x^4+362*x^3-725*x^2+801*x+243 2415756190585497 a007 Real Root Of 16*x^4-122*x^3-501*x^2-493*x+150 2415756195690340 r002 59th iterates of z^2 + 2415756198883876 r005 Im(z^2+c),c=-61/98+16/47*I,n=39 2415756210784503 r005 Re(z^2+c),c=13/42+9/49*I,n=56 2415756211367062 a007 Real Root Of 478*x^4+759*x^3-860*x^2-26*x-623 2415756245188427 m001 ln(GAMMA(23/24))*Catalan^2*GAMMA(5/6) 2415756246662626 a007 Real Root Of 292*x^4+707*x^3+372*x^2+749*x-339 2415756250233231 b008 -4+E^CosIntegral[Sqrt[Pi]] 2415756250737437 m005 (1/3*2^(1/2)+2/5)/(exp(1)+8/9) 2415756264285569 m001 FibonacciFactorial/Champernowne/exp(sqrt(2)) 2415756270281763 m001 (Psi(1,1/3)+GAMMA(13/24))/(Trott+Weierstrass) 2415756271718143 a007 Real Root Of 406*x^4+694*x^3-466*x^2+810*x+633 2415756290615679 r009 Im(z^3+c),c=-55/122+1/11*I,n=31 2415756297617322 m005 (1/2*Catalan-11/12)/(3^(1/2)+1/6) 2415756302532216 m001 ZetaQ(4)^FeigenbaumDelta/BesselK(0,1) 2415756309305773 r009 Re(z^3+c),c=-7/50+33/38*I,n=50 2415756323244398 a007 Real Root Of -286*x^4-318*x^3+453*x^2-711*x+896 2415756336071591 m001 (-3^(1/3)+RenyiParking)/(BesselI(0,1)+ln(5)) 2415756346533163 a001 1836311903/322*521^(3/13) 2415756347373133 r005 Im(z^2+c),c=-23/62+13/33*I,n=21 2415756371405092 r005 Re(z^2+c),c=-21/94+23/56*I,n=25 2415756388907002 m005 (1/2*gamma-3)/(3/7*gamma+7/8) 2415756394702987 a007 Real Root Of -557*x^4-973*x^3+748*x^2-696*x-794 2415756397953669 m008 (2/5*Pi^3+5)/(3/4*Pi^6-2/3) 2415756403256284 r005 Re(z^2+c),c=11/122+14/57*I,n=14 2415756407205315 a007 Real Root Of -214*x^4-605*x^3-61*x^2+142*x-542 2415756407469937 p001 sum(1/(455*n+354)/n/(512^n),n=1..infinity) 2415756424665657 r009 Re(z^3+c),c=-17/62+7/31*I,n=13 2415756434267996 l006 ln(227/2542) 2415756436750650 r005 Im(z^2+c),c=-42/31+2/17*I,n=7 2415756443841757 m005 (1/2*Zeta(3)+4/9)/(4/5*Catalan-3/10) 2415756444845158 h001 (-2*exp(3)+8)/(-9*exp(5)+4) 2415756447601938 r009 Re(z^3+c),c=-7/46+53/61*I,n=12 2415756453552714 r002 30th iterates of z^2 + 2415756454617114 r005 Im(z^2+c),c=-7/17+25/61*I,n=41 2415756458912979 r009 Re(z^3+c),c=-9/32+12/49*I,n=11 2415756459555078 m006 (5/6*exp(Pi)-1/6)/(1/3*exp(Pi)+1/5) 2415756464326443 m009 (5*Psi(1,3/4)+1/4)/(1/4*Psi(1,3/4)-6) 2415756473732783 r009 Re(z^3+c),c=-7/27+39/59*I,n=8 2415756474310951 a007 Real Root Of 435*x^4+669*x^3-771*x^2+707*x+824 2415756476273099 m005 (1/2*5^(1/2)-2/9)/(-3+3*5^(1/2)) 2415756488470376 r009 Re(z^3+c),c=-8/23+25/42*I,n=4 2415756490397960 m001 exp(Tribonacci)^2*FeigenbaumDelta/BesselJ(0,1) 2415756494277389 h001 (4/9*exp(1)+3/5)/(8/9*exp(2)+11/12) 2415756497834927 a007 Real Root Of -389*x^4-702*x^3+696*x^2+92*x-488 2415756502604346 l006 ln(5698/7255) 2415756505449282 b008 -1/2+(-6+Pi^2)^(-1) 2415756505449282 m006 (1/4*Pi^2-2)/(1/2*Pi^2-3) 2415756505449282 m008 (1/4*Pi^2-2)/(1/2*Pi^2-3) 2415756505449282 m009 (1/12*Pi^2-2/3)/(-1+1/6*Pi^2) 2415756505836910 m001 (Grothendieck-Otter)/(Trott+Weierstrass) 2415756515420647 r009 Re(z^3+c),c=-25/64+31/60*I,n=23 2415756516512717 r005 Re(z^2+c),c=-9/31+8/55*I,n=16 2415756518294937 a007 Real Root Of 352*x^4+588*x^3-952*x^2-532*x+572 2415756527567790 r009 Im(z^3+c),c=-2/7+11/53*I,n=8 2415756530769379 a007 Real Root Of 21*x^4-562*x^3+927*x^2+409*x+810 2415756533516992 s001 sum(exp(-Pi/4)^(n-1)*A059654[n],n=1..infinity) 2415756541582117 a007 Real Root Of -392*x^4-607*x^3+490*x^2-992*x-463 2415756545096389 a001 75025/123*7^(29/41) 2415756548125404 m001 GAMMA(1/4)^exp(gamma)*exp(1/2)^exp(gamma) 2415756550389170 m004 -Cos[Sqrt[5]*Pi]/25+3*Sech[Sqrt[5]*Pi] 2415756555270206 a008 Real Root of x^4-2*x^3-27*x^2-20*x+47 2415756559070121 m001 (MasserGramain-Zeta(1,-1))/ReciprocalFibonacci 2415756562432522 r009 Re(z^3+c),c=-23/60+27/56*I,n=43 2415756564556236 a007 Real Root Of -456*x^4-678*x^3+815*x^2-564*x-147 2415756567999756 r008 a(0)=0,K{-n^6,(2*n+1)*(67+21*n^2+50*n)} 2415756572829784 m002 -Pi^3-5/ProductLog[Pi]+Sinh[Pi]*Tanh[Pi] 2415756580017910 a001 9349/144*832040^(13/49) 2415756588286885 r009 Re(z^3+c),c=-43/106+36/47*I,n=2 2415756595086639 m001 (BesselI(1,1)+TreeGrowth2nd)/(exp(1)+3^(1/3)) 2415756597478119 r009 Re(z^3+c),c=-3/10+12/41*I,n=11 2415756607686412 r005 Re(z^2+c),c=9/34+9/61*I,n=50 2415756611781700 r009 Re(z^3+c),c=-37/98+23/49*I,n=34 2415756612322047 a001 64079/377*3^(8/25) 2415756617702770 m001 (Pi^(1/2)+KhinchinHarmonic)/(Kolakoski+Robbin) 2415756621922420 r009 Re(z^3+c),c=-15/38+22/43*I,n=38 2415756622011432 r005 Im(z^2+c),c=-11/50+20/57*I,n=15 2415756622327396 r009 Im(z^3+c),c=-7/74+31/36*I,n=62 2415756624634314 r005 Re(z^2+c),c=9/34+9/61*I,n=41 2415756633286333 r005 Re(z^2+c),c=-9/38+13/23*I,n=14 2415756637702754 a001 11/1346269*2178309^(23/59) 2415756650458047 m001 exp(Khintchine)^2/Bloch^2*Riemann3rdZero 2415756650667231 g001 GAMMA(1/10,61/63) 2415756657635333 r005 Re(z^2+c),c=-53/74+18/59*I,n=51 2415756659093396 a007 Real Root Of 406*x^4+983*x^3-84*x^2+21*x+572 2415756670465807 r005 Re(z^2+c),c=-3/31+27/29*I,n=7 2415756674239220 r005 Im(z^2+c),c=-27/58+2/49*I,n=23 2415756684455776 r005 Im(z^2+c),c=-55/56+9/38*I,n=13 2415756685385518 a007 Real Root Of 292*x^4+763*x^3-242*x^2-566*x+857 2415756686109245 m001 Psi(2,1/3)^GAMMA(5/6)*MertensB1 2415756687046448 m001 (-Conway+Trott)/(Psi(2,1/3)+ln(5)) 2415756688129341 r004 Re(z^2+c),c=1/38-3/8*I,z(0)=exp(5/24*I*Pi),n=2 2415756690592575 r005 Re(z^2+c),c=-6/31+15/31*I,n=43 2415756694511568 a003 sin(Pi*1/104)*sin(Pi*18/61) 2415756696292399 m001 TwinPrimes^2*Khintchine^2*ln(arctan(1/2)) 2415756702813375 r005 Re(z^2+c),c=9/34+9/61*I,n=49 2415756707072603 m001 (Pi+BesselJ(1,1))/(Kolakoski-MasserGramain) 2415756713637923 r009 Im(z^3+c),c=-7/74+31/36*I,n=64 2415756718329831 r005 Im(z^2+c),c=-45/122+9/23*I,n=9 2415756740964725 r009 Re(z^3+c),c=-31/60+29/62*I,n=51 2415756747859287 a003 sin(Pi*8/97)*sin(Pi*29/74) 2415756766346254 a003 sin(Pi*11/93)*sin(Pi*19/82) 2415756770351040 m001 (GaussAGM-ReciprocalLucas)/(Pi+GAMMA(7/12)) 2415756773402970 m001 (Catalan-FeigenbaumMu)/ln(3) 2415756785525671 r009 Re(z^3+c),c=-8/27+3/5*I,n=6 2415756787786496 r002 8th iterates of z^2 + 2415756792004547 p004 log(36943/3299) 2415756801650467 a001 123/55*46368^(51/59) 2415756801861679 r009 Re(z^3+c),c=-1/24+25/41*I,n=48 2415756806713657 r005 Im(z^2+c),c=11/90+6/31*I,n=3 2415756813177385 r005 Re(z^2+c),c=-41/34+9/110*I,n=2 2415756815833364 h001 (4/7*exp(1)+1/4)/(1/9*exp(1)+4/9) 2415756821960443 m005 (1/2*3^(1/2)-10/11)/(1/2*3^(1/2)+11/12) 2415756823940025 a007 Real Root Of -193*x^4-733*x^3-730*x^2-102*x+253 2415756832968051 r009 Im(z^3+c),c=-1/6+23/31*I,n=11 2415756834187907 r002 2th iterates of z^2 + 2415756846658161 r009 Re(z^3+c),c=-45/118+11/23*I,n=36 2415756851639372 r009 Re(z^3+c),c=-43/98+12/25*I,n=11 2415756865135679 m005 (1/3*exp(1)+1/2)/(-43/99+5/11*5^(1/2)) 2415756865328140 r009 Im(z^3+c),c=-19/56+7/38*I,n=2 2415756873056454 m001 LaplaceLimit*Weierstrass^FeigenbaumKappa 2415756874398768 l006 ln(3967/4064) 2415756884499109 r009 Im(z^3+c),c=-7/74+31/36*I,n=60 2415756885997619 h001 (8/11*exp(2)+1/2)/(8/11*exp(1)+5/11) 2415756888926841 a008 Real Root of x^4-2*x^3-17*x^2-48*x-79 2415756894972256 r005 Im(z^2+c),c=-13/28+17/40*I,n=49 2415756903910671 a007 Real Root Of -361*x^4-822*x^3+494*x^2+519*x-923 2415756907691796 a007 Real Root Of -103*x^4+478*x^3+97*x^2+629*x-164 2415756927239040 m009 (1/12*Pi^2+1/4)/(8/5*Catalan+1/5*Pi^2+1) 2415756927857624 l006 ln(797/8925) 2415756934584477 m001 (3^(1/2)+Ei(1))/(GAMMA(23/24)+PlouffeB) 2415756947144971 r005 Re(z^2+c),c=-33/118+7/32*I,n=7 2415756947232294 r005 Im(z^2+c),c=-51/118+7/13*I,n=61 2415756963685314 a007 Real Root Of -405*x^4-486*x^3+760*x^2-886*x+366 2415756972232870 l006 ln(2935/3737) 2415756975328399 m001 Trott*Paris/exp(Ei(1))^2 2415756976546394 a001 1364/1346269*233^(32/55) 2415756983464140 r005 Im(z^2+c),c=-11/18+2/93*I,n=7 2415756983732819 m001 Pi*(Psi(1,1/3)-2^(1/2)/sin(1/5*Pi)) 2415756987740368 m001 (Zeta(5)+sin(1/5*Pi))/(Robbin+Trott) 2415756994072295 m001 3^(1/2)*GlaisherKinkelin+DuboisRaymond 2415756996694402 r002 39th iterates of z^2 + 2415756999143949 a008 Real Root of x^4-x^3-9*x^2+129*x+316 2415756999151828 r005 Im(z^2+c),c=-11/24+11/26*I,n=54 2415757000474608 q001 509/2107 2415757001553279 m001 (FeigenbaumB-ZetaP(2))/(GAMMA(2/3)+Ei(1,1)) 2415757008655644 a007 Real Root Of 628*x^4+280*x^3-480*x^2-377*x+113 2415757012405749 a001 47/144*987^(9/31) 2415757013775331 m001 (cos(1/5*Pi)-ln(2))/(Trott2nd+ZetaP(2)) 2415757021988343 m001 exp(PrimesInBinary)*MinimumGamma/Catalan 2415757026481561 s002 sum(A121014[n]/((10^n+1)/n),n=1..infinity) 2415757026481561 s002 sum(A153519[n]/((10^n+1)/n),n=1..infinity) 2415757031125434 a001 2971215073/322*521^(2/13) 2415757043903844 m001 1/sin(Pi/5)*Sierpinski*ln(sqrt(3)) 2415757049467991 m005 (1/2*Pi+3/5)/(1/6*Pi+3/8) 2415757058193903 m005 (1/2*exp(1)+8/9)/(1/2*exp(1)-3/7) 2415757063441845 m005 (1/2*gamma+7/12)/(3/10*exp(1)-5/11) 2415757077080779 r002 12th iterates of z^2 + 2415757083695736 r005 Re(z^2+c),c=7/19+23/64*I,n=24 2415757087867119 a007 Real Root Of 365*x^4+944*x^3-166*x^2-631*x+322 2415757088527301 m008 (4*Pi^5-1/6)/(2/5*Pi-3/4) 2415757098804677 a007 Real Root Of 363*x^4+637*x^3-763*x^2-417*x+63 2415757101639344 a001 1473611832/61 2415757110543918 m001 (-FeigenbaumKappa+Stephens)/(Si(Pi)+exp(1/Pi)) 2415757111307818 r005 Re(z^2+c),c=9/34+9/61*I,n=51 2415757124427461 l006 ln(570/6383) 2415757125627001 a007 Real Root Of -349*x^4-506*x^3+732*x^2+x+483 2415757133614031 h003 exp(Pi*(1/5*(5*23^(1/2)+5^(1/3))^(1/2))) 2415757142663322 m001 FeigenbaumMu-GAMMA(11/12)-Paris 2415757152496809 m001 (Lehmer+Sierpinski)/(Bloch-KomornikLoreti) 2415757159947441 r005 Re(z^2+c),c=-21/110+23/47*I,n=39 2415757169206596 b008 Sqrt[2]+Cosh[1/18] 2415757176275427 r005 Im(z^2+c),c=-6/25+9/14*I,n=22 2415757178999658 m001 BesselJ(1,1)/((2^(1/3))-GAMMA(7/24)) 2415757187388110 s002 sum(A219172[n]/(n*exp(pi*n)-1),n=1..infinity) 2415757188393041 a007 Real Root Of 871*x^4-530*x^3-429*x^2-760*x-169 2415757188426498 a001 9227465/322*1364^(14/15) 2415757189844343 r005 Im(z^2+c),c=-6/19+21/55*I,n=17 2415757192890295 m008 (Pi-3)/(3/5*Pi^4+1/6) 2415757199416542 a007 Real Root Of 430*x^4+488*x^3-935*x^2+833*x-296 2415757201604261 a003 cos(Pi*5/59)/cos(Pi*24/65) 2415757205638621 r009 Re(z^3+c),c=-31/102+13/43*I,n=11 2415757209511319 r005 Re(z^2+c),c=-51/106+19/30*I,n=11 2415757220588928 r005 Im(z^2+c),c=-61/74+4/25*I,n=61 2415757226807675 r005 Re(z^2+c),c=13/42+9/49*I,n=63 2415757227427797 m008 (4*Pi^4+3)/(1/2*Pi^3+3/4) 2415757230068821 p004 log(16607/1483) 2415757246802333 r009 Re(z^3+c),c=-19/60+9/28*I,n=6 2415757253963884 r005 Re(z^2+c),c=-3/11+7/27*I,n=8 2415757259853307 a007 Real Root Of -154*x^4-272*x^3+202*x^2+93*x+456 2415757271842195 a001 24476/233*2504730781961^(4/21) 2415757273533402 m005 (1/2*Zeta(3)-5)/(8/9*5^(1/2)-1/6) 2415757274989618 a001 7465176/161*1364^(13/15) 2415757275788841 a001 167761/233*102334155^(4/21) 2415757281137429 a001 1149851/233*4181^(4/21) 2415757281371738 m001 ln(Pi)*(Riemann2ndZero+StolarskyHarborth) 2415757282253922 a003 cos(Pi*19/61)-cos(Pi*31/78) 2415757290848218 m005 (1/3*exp(1)+2/7)/(5/12*Catalan-7/8) 2415757299889454 b008 7*(1-2*E^(4/5)) 2415757301805407 r009 Im(z^3+c),c=-13/32+6/43*I,n=30 2415757306896420 r005 Im(z^2+c),c=-101/122+8/51*I,n=13 2415757307998260 m009 (4*Psi(1,3/4)-5/6)/(Psi(1,2/3)+4/5) 2415757312253546 h001 (11/12*exp(1)+3/11)/(3/8*exp(1)+1/8) 2415757320496666 h001 (-8*exp(2)-8)/(-2*exp(2)+12) 2415757325477942 r009 Im(z^3+c),c=-8/13+5/22*I,n=15 2415757326783576 m001 (Zeta(3)+BesselI(1,1))/(BesselI(1,2)-Thue) 2415757326785147 a001 701408733/521*199^(6/11) 2415757334833370 m005 (1/2*Pi+6/7)/(79/132+2/11*5^(1/2)) 2415757342898049 m001 Salem^2*Robbin/ln(cos(1))^2 2415757350151707 m002 E^Pi+(2*Coth[Pi])/Pi^4+Tanh[Pi] 2415757356268631 a001 13/7*29^(16/21) 2415757361552751 a001 24157817/322*1364^(4/5) 2415757368144563 r005 Im(z^2+c),c=-43/102+26/63*I,n=55 2415757377646540 r009 Im(z^3+c),c=-7/74+31/36*I,n=54 2415757387153279 r005 Re(z^2+c),c=-13/86+23/38*I,n=16 2415757390823807 r002 21th iterates of z^2 + 2415757394269235 a001 1/15129*(1/2*5^(1/2)+1/2)^7*123^(10/19) 2415757402126382 m001 1/ln(GAMMA(1/24))*OneNinth*sin(1)^2 2415757402697299 a007 Real Root Of -159*x^4-173*x^3+226*x^2-893*x-500 2415757402965968 m005 (1/2*5^(1/2)-1/5)/(5/9*Catalan-8/9) 2415757411359568 m005 (4*Pi+1/4)/(1/3*Catalan+5) 2415757412941502 a007 Real Root Of -2*x^4+340*x^3+426*x^2-595*x+938 2415757413840891 a007 Real Root Of -486*x^4-868*x^3+763*x^2+149*x+222 2415757415123173 l006 ln(6042/7693) 2415757417550873 m001 GAMMA(1/3)*ln(KhintchineLevy)^2*GAMMA(7/24) 2415757425334613 r005 Re(z^2+c),c=9/34+9/61*I,n=57 2415757438418004 r002 3th iterates of z^2 + 2415757444870192 m009 (6*Psi(1,1/3)-3/5)/(1/6*Psi(1,1/3)+4/5) 2415757448115884 a001 39088169/322*1364^(11/15) 2415757459202236 a007 Real Root Of -426*x^4-980*x^3+110*x^2-333*x-754 2415757463042632 r005 Re(z^2+c),c=9/34+9/61*I,n=56 2415757476137950 r005 Re(z^2+c),c=9/34+9/61*I,n=58 2415757483482033 m001 (1-GAMMA(17/24))/(-RenyiParking+Tetranacci) 2415757485886587 a007 Real Root Of 341*x^4+326*x^3-746*x^2+830*x-659 2415757489103768 a007 Real Root Of 544*x^4+850*x^3-640*x^2+950*x-514 2415757493330988 m001 (-GolombDickman+Magata)/(2^(1/3)-ln(Pi)) 2415757497086070 m001 (Porter+ZetaP(2))/(3^(1/2)+Zeta(1,2)) 2415757501530926 m005 (5/12+1/4*5^(1/2))/(3/7*Zeta(3)-5/9) 2415757502440867 a007 Real Root Of 148*x^4-506*x^3+380*x^2-677*x+148 2415757503443484 m006 (Pi+1/3)/(3/5*exp(Pi)+1/2) 2415757510000275 r005 Im(z^2+c),c=-7/10+30/239*I,n=41 2415757513675684 m001 (1-ThueMorse*ZetaQ(3))/ThueMorse 2415757514207166 r005 Re(z^2+c),c=-15/58+11/36*I,n=11 2415757531567244 r005 Re(z^2+c),c=9/34+9/61*I,n=64 2415757532392093 a001 6119/36*28657^(29/41) 2415757534679021 a001 31622993/161*1364^(2/3) 2415757537045923 a001 233/192900153618*4^(1/2) 2415757539605794 r005 Re(z^2+c),c=9/34+9/61*I,n=63 2415757540329726 m001 (2^(1/2)+Ei(1))/(MasserGramain+Sarnak) 2415757541666522 m001 (Backhouse-FeigenbaumC)/(Ei(1,1)-Pi^(1/2)) 2415757544310355 h002 exp(13^(9/10)+6^(12/5)) 2415757544310355 h007 exp(13^(9/10)+6^(12/5)) 2415757546322901 r005 Re(z^2+c),c=9/34+9/61*I,n=59 2415757546470685 r005 Re(z^2+c),c=9/62+16/29*I,n=14 2415757547550815 r005 Re(z^2+c),c=13/50+7/15*I,n=37 2415757553091712 r005 Im(z^2+c),c=-10/21+26/61*I,n=49 2415757561348224 r005 Re(z^2+c),c=9/34+9/61*I,n=62 2415757563349642 m005 (1/2*2^(1/2)-5/6)/(2/5*Zeta(3)-3/7) 2415757567746317 m001 (exp(Pi)+sin(1))/(-BesselK(0,1)+arctan(1/3)) 2415757571572553 a001 11/8*2178309^(17/48) 2415757575757575 q001 1993/825 2415757576243555 r005 Re(z^2+c),c=-7/25+9/43*I,n=16 2415757581179964 l006 ln(343/3841) 2415757581479260 m001 Zeta(3)^Champernowne*Zeta(3)^FeigenbaumDelta 2415757584536330 r005 Re(z^2+c),c=9/34+9/61*I,n=61 2415757584637637 r005 Im(z^2+c),c=-31/110+10/27*I,n=17 2415757585210173 r005 Re(z^2+c),c=-19/102+1/2*I,n=53 2415757585723887 r005 Re(z^2+c),c=9/34+9/61*I,n=60 2415757586927449 a007 Real Root Of -538*x^4-806*x^3+697*x^2-958*x+578 2415757593825300 m001 Trott2nd/(MertensB1-HardHexagonsEntropy) 2415757593846547 r009 Im(z^3+c),c=-7/74+31/36*I,n=58 2415757597662447 s001 sum(exp(-Pi)^n*A116995[n],n=1..infinity) 2415757597662447 s002 sum(A116995[n]/(exp(pi*n)),n=1..infinity) 2415757603912335 p001 sum(1/(454*n+355)/n/(512^n),n=1..infinity) 2415757604875655 a007 Real Root Of 246*x^4+419*x^3-321*x^2+9*x-576 2415757610768378 m005 (1/2*Catalan-2/9)/(4/11*2^(1/2)-5/12) 2415757613612703 b008 1-19*Sqrt[163] 2415757614558429 r005 Im(z^2+c),c=25/126+6/37*I,n=6 2415757614959013 m001 (Pi-gamma(3))/(Sarnak+Stephens) 2415757618999132 r005 Re(z^2+c),c=9/34+9/61*I,n=55 2415757621242161 a001 14619165/46*1364^(3/5) 2415757632787327 a005 (1/cos(24/203*Pi))^958 2415757651171654 r005 Re(z^2+c),c=9/34+9/61*I,n=52 2415757666358677 r005 Im(z^2+c),c=-13/25+23/57*I,n=34 2415757668129171 r005 Im(z^2+c),c=-45/122+11/27*I,n=17 2415757668472752 m001 GAMMA(19/24)*(BesselJ(1,1)-Riemann2ndZero) 2415757669901827 r005 Im(z^2+c),c=-65/106+5/24*I,n=5 2415757675043802 p001 sum(1/(193*n+139)/n/(125^n),n=1..infinity) 2415757686186637 m001 (-Artin+Kolakoski)/(LambertW(1)+GAMMA(19/24)) 2415757691303805 a007 Real Root Of 153*x^4+275*x^3-324*x^2-190*x+98 2415757691828804 a001 123/4181*701408733^(5/9) 2415757696575353 r005 Re(z^2+c),c=27/122+26/55*I,n=3 2415757698400712 r009 Re(z^3+c),c=-29/122+49/52*I,n=7 2415757701529737 a007 Real Root Of -831*x^4+431*x^3+422*x^2+686*x+150 2415757703826084 a001 2207/55*75025^(50/51) 2415757706209583 m007 (-gamma-1/4)/(-3*gamma-9*ln(2)+3/2*Pi-1/6) 2415757707805304 a001 165580141/322*1364^(8/15) 2415757708545395 m001 (Zeta(5)+GAMMA(2/3))/(Bloch-MinimumGamma) 2415757715717899 a001 14930208*521^(1/13) 2415757719466022 a001 123/514229*4052739537881^(5/9) 2415757719692572 a001 41/15456*53316291173^(5/9) 2415757720290867 m001 (Shi(1)+GAMMA(5/6))/(Cahen+MertensB1) 2415757720757894 a007 Real Root Of -296*x^4-330*x^3+497*x^2-751*x+714 2415757731509311 m001 (-Otter+Tetranacci)/(cos(1)-cos(1/12*Pi)) 2415757742240483 m001 1/2*ZetaQ(4)/FibonacciFactorial/Pi*GAMMA(5/6) 2415757746780602 r005 Re(z^2+c),c=-9/46+25/64*I,n=5 2415757754139646 a001 377/64079*47^(55/57) 2415757756897200 r002 43th iterates of z^2 + 2415757761421961 m001 (Artin+Rabbit)/(GAMMA(23/24)-gamma) 2415757767439866 r005 Re(z^2+c),c=9/34+9/61*I,n=48 2415757782865141 a007 Real Root Of 87*x^4+283*x^3+514*x^2+666*x-364 2415757786104524 m005 (1/2*3^(1/2)+4/11)/(-1/2+5/2*5^(1/2)) 2415757789743425 m001 (Ei(1)+GAMMA(23/24))/(Champernowne-MertensB3) 2415757793724106 m005 (1/4*Catalan+3)/(4*Pi+4/5) 2415757794368450 a001 133957148/161*1364^(7/15) 2415757796178992 r005 Im(z^2+c),c=-35/58+2/7*I,n=12 2415757799839342 p001 sum(1/(481*n+435)/(10^n),n=0..infinity) 2415757809317342 m008 (5*Pi^3-1/6)/(2/3*Pi^4-5/6) 2415757810374800 p003 LerchPhi(1/256,2,112/55) 2415757813927192 m001 (cos(1/12*Pi)-GolombDickman)/(Mills+OneNinth) 2415757819419117 r005 Im(z^2+c),c=-79/86+8/33*I,n=11 2415757820992287 r005 Re(z^2+c),c=9/34+9/61*I,n=54 2415757833495553 l006 ln(3107/3956) 2415757853634819 s001 sum(1/10^(n-1)*A118962[n]/n!,n=1..infinity) 2415757880931599 a001 433494437/322*1364^(2/5) 2415757886028649 r005 Im(z^2+c),c=-41/56+8/57*I,n=9 2415757891122299 r005 Re(z^2+c),c=9/34+9/61*I,n=53 2415757903249066 r005 Im(z^2+c),c=-115/126+3/14*I,n=58 2415757904123244 a001 144/2207*(1/2+1/2*5^(1/2))^41 2415757904347864 a001 141/46*141422324^(11/13) 2415757904347864 a001 141/46*2537720636^(11/15) 2415757904347864 a001 141/46*45537549124^(11/17) 2415757904347864 a001 141/46*312119004989^(3/5) 2415757904347864 a001 141/46*817138163596^(11/19) 2415757904347864 a001 141/46*14662949395604^(11/21) 2415757904347864 a001 141/46*(1/2+1/2*5^(1/2))^33 2415757904347864 a001 141/46*192900153618^(11/18) 2415757904347864 a001 141/46*10749957122^(11/16) 2415757904347864 a001 141/46*1568397607^(3/4) 2415757904347864 a001 141/46*599074578^(11/14) 2415757904347866 a001 141/46*33385282^(11/12) 2415757905804435 l006 ln(802/8981) 2415757919016233 m001 polylog(4,1/2)^Si(Pi)*sin(1/12*Pi)^Si(Pi) 2415757919016233 m001 polylog(4,1/2)^Si(Pi)*sin(Pi/12)^Si(Pi) 2415757921928969 r002 13i'th iterates of 2*x/(1-x^2) of 2415757926553082 r005 Im(z^2+c),c=-3/13+17/48*I,n=14 2415757931766743 m001 (Backhouse-LambertW(1))/(-OneNinth+PlouffeB) 2415757934796296 r009 Re(z^3+c),c=-15/28+9/28*I,n=44 2415757942190624 r005 Im(z^2+c),c=-11/41*I,n=15 2415757949671965 m002 1+E^Pi+1/(6*Pi^2) 2415757949874575 s002 sum(A243627[n]/(exp(n)+1),n=1..infinity) 2415757967494751 a001 701408733/322*1364^(1/3) 2415757977969015 m005 (1/2*exp(1)-3/11)/(4*Catalan+5/6) 2415757994922519 a001 1364/4181*832040^(6/19) 2415758002209160 r005 Im(z^2+c),c=9/34+6/59*I,n=19 2415758002620369 a003 cos(Pi*36/107)/cos(Pi*10/23) 2415758003283009 r005 Re(z^2+c),c=21/82+6/43*I,n=32 2415758014172428 m001 LandauRamanujan^GAMMA(23/24)/Pi 2415758022475952 a001 1364/75025*7778742049^(6/19) 2415758043480088 r005 Re(z^2+c),c=17/90+2/57*I,n=4 2415758054057906 a001 567451585/161*1364^(4/15) 2415758054193242 a007 Real Root Of 36*x^4+894*x^3+554*x^2-803*x+259 2415758074738339 a007 Real Root Of 479*x^4+891*x^3-677*x^2+145*x+549 2415758079883260 m001 LandauRamanujan/ThueMorse/ZetaP(4) 2415758089860776 r004 Re(z^2+c),c=3/14-11/16*I,z(0)=I,n=6 2415758092332988 a001 4181/29*2^(35/47) 2415758095095520 r009 Im(z^3+c),c=-23/90+12/55*I,n=8 2415758101102276 h001 (8/9*exp(2)+4/7)/(3/4*exp(1)+11/12) 2415758102987731 r005 Re(z^2+c),c=-25/102+8/23*I,n=19 2415758108051401 r002 5th iterates of z^2 + 2415758108779560 m005 (1/3*Pi-2/11)/(7/8*Pi+5/6) 2415758113457020 a007 Real Root Of 704*x^4-439*x^3-574*x^2-984*x+275 2415758116085216 r002 36th iterates of z^2 + 2415758117696360 m001 (GAMMA(7/12)+FeigenbaumC)/(Gompertz+Kolakoski) 2415758126712460 a007 Real Root Of -322*x^4-543*x^3+759*x^2+556*x+225 2415758129585791 a003 cos(Pi*40/101)-cos(Pi*47/99) 2415758140621065 a001 1836311903/322*1364^(1/5) 2415758148388665 l006 ln(459/5140) 2415758156457249 r005 Im(z^2+c),c=-11/31+19/29*I,n=25 2415758176412289 q001 975/4036 2415758177594511 a007 Real Root Of -472*x^4-684*x^3+927*x^2-496*x-176 2415758180685365 r009 Im(z^3+c),c=-7/74+31/36*I,n=56 2415758188675422 r005 Im(z^2+c),c=-65/126+17/41*I,n=37 2415758189661654 a007 Real Root Of 9*x^4+227*x^3+250*x^2+429*x-449 2415758195673660 a007 Real Root Of -46*x^4+36*x^3+91*x^2-883*x-590 2415758203087172 m009 (1/4*Psi(1,1/3)+5)/(2/5*Pi^2-5/6) 2415758206192509 m005 (1/3*gamma+1/4)/(55/63+3/7*5^(1/2)) 2415758210644959 a001 38579658624/1597 2415758211899746 m007 (-2*gamma-4*ln(2)+3/5)/(-gamma-4/5) 2415758219055239 m001 (GAMMA(7/12)+Kac)/(Shi(1)+Zeta(1,-1)) 2415758222013287 a001 1762289/161*3571^(16/17) 2415758227184226 a001 2971215073/322*1364^(2/15) 2415758229331102 l006 ln(6386/8131) 2415758231983910 a007 Real Root Of 315*x^4-365*x^3+950*x^2-995*x+189 2415758232633031 r005 Im(z^2+c),c=-29/62+19/33*I,n=17 2415758233156815 a001 5702887/322*3571^(15/17) 2415758233158822 a007 Real Root Of -331*x^4-487*x^3+734*x^2+181*x+561 2415758236534518 m001 exp(-1/2*Pi)/(ln(2)^HardyLittlewoodC5) 2415758236838167 m001 (BesselJ(0,1)-KhinchinHarmonic)/(Pi+Catalan) 2415758239180562 r009 Im(z^3+c),c=-17/38+3/62*I,n=24 2415758239689611 r005 Im(z^2+c),c=23/82+5/62*I,n=48 2415758240977409 r009 Im(z^3+c),c=-27/62+7/54*I,n=6 2415758244300417 a001 9227465/322*3571^(14/17) 2415758255443991 a001 7465176/161*3571^(13/17) 2415758257346889 m008 (3*Pi^3-1/5)/(2/5*Pi^6-1/3) 2415758257770383 m005 (1/2*Zeta(3)+1/10)/(4/5*exp(1)+8/11) 2415758266587575 a001 24157817/322*3571^(12/17) 2415758270590319 a007 Real Root Of 9*x^4-330*x^3-427*x^2+772*x-602 2415758277731156 a001 39088169/322*3571^(11/17) 2415758282402676 a007 Real Root Of 527*x^4+918*x^3-975*x^2-247*x+87 2415758288583921 r005 Re(z^2+c),c=11/126+34/41*I,n=4 2415758288874738 a001 31622993/161*3571^(10/17) 2415758290996774 m001 (-CareFree+ZetaQ(4))/(Chi(1)-GAMMA(5/6)) 2415758292584093 a007 Real Root Of 258*x^4+462*x^3-72*x^2+619*x-358 2415758300018320 a001 14619165/46*3571^(9/17) 2415758311161902 a001 165580141/322*3571^(8/17) 2415758313747391 a001 14930208*1364^(1/15) 2415758322305484 a001 133957148/161*3571^(7/17) 2415758326597614 a003 cos(Pi*1/39)*sin(Pi*6/77) 2415758326848573 a007 Real Root Of -37*x^4-926*x^3-752*x^2+633*x+623 2415758327725856 a001 8/321*(1/2+1/2*5^(1/2))^43 2415758327950577 a001 1292/161*(1/2+1/2*5^(1/2))^31 2415758327950577 a001 1292/161*9062201101803^(1/2) 2415758328992392 a003 sin(Pi*3/65)/cos(Pi*29/98) 2415758331232512 a001 2207/55*1597^(5/9) 2415758333449066 a001 433494437/322*3571^(6/17) 2415758334304331 m005 (1/2*Catalan-5)/(5/8*Pi-1/12) 2415758344592648 a001 701408733/322*3571^(5/17) 2415758351338198 m001 1/GAMMA(3/4)*GlaisherKinkelin^2*exp(sin(Pi/5)) 2415758351341086 a007 Real Root Of -607*x^4-984*x^3+988*x^2-468*x-96 2415758352979711 r009 Im(z^3+c),c=-20/29+10/19*I,n=63 2415758353277789 p001 sum(1/(207*n+43)/(5^n),n=0..infinity) 2415758355736230 a001 567451585/161*3571^(4/17) 2415758366879812 a001 1836311903/322*3571^(3/17) 2415758369595278 m005 (1/3*2^(1/2)+1/10)/(299/220+9/20*5^(1/2)) 2415758372446783 a001 101002857552/4181 2415758374126458 a001 1346269/322*9349^(18/19) 2415758375580777 a001 311187/46*9349^(17/19) 2415758376650007 m001 Kolakoski^gamma(1)+exp(Pi) 2415758377035605 a001 1762289/161*9349^(16/19) 2415758378023394 a001 2971215073/322*3571^(2/17) 2415758378490238 a001 5702887/322*9349^(15/19) 2415758379944946 a001 9227465/322*9349^(14/19) 2415758381399625 a001 7465176/161*9349^(13/19) 2415758382854315 a001 24157817/322*9349^(12/19) 2415758383519215 r005 Im(z^2+c),c=-31/42+2/17*I,n=40 2415758384309001 a001 39088169/322*9349^(11/19) 2415758385763688 a001 31622993/161*9349^(10/19) 2415758387218375 a001 14619165/46*9349^(9/19) 2415758388673062 a001 165580141/322*9349^(8/19) 2415758389166976 a001 14930208*3571^(1/17) 2415758389528657 a001 144/15127*45537549124^(15/17) 2415758389528657 a001 144/15127*312119004989^(9/11) 2415758389528657 a001 144/15127*14662949395604^(5/7) 2415758389528657 a001 144/15127*(1/2+1/2*5^(1/2))^45 2415758389528657 a001 144/15127*192900153618^(5/6) 2415758389528657 a001 144/15127*28143753123^(9/10) 2415758389528657 a001 144/15127*10749957122^(15/16) 2415758389753379 a001 6765/322*(1/2+1/2*5^(1/2))^29 2415758389753379 a001 6765/322*1322157322203^(1/2) 2415758390127749 a001 133957148/161*9349^(7/19) 2415758391582436 a001 433494437/322*9349^(6/19) 2415758393037123 a001 701408733/322*9349^(5/19) 2415758394491810 a001 567451585/161*9349^(4/19) 2415758395946497 a001 1836311903/322*9349^(3/19) 2415758396053352 a001 132214457016/5473 2415758396471925 a001 514229/322*24476^(20/21) 2415758396661423 a001 416020/161*24476^(19/21) 2415758396854411 a001 1346269/322*24476^(6/7) 2415758397046065 a001 311187/46*24476^(17/21) 2415758397238229 a001 1762289/161*24476^(16/21) 2415758397401184 a001 2971215073/322*9349^(2/19) 2415758397430198 a001 5702887/322*24476^(5/7) 2415758397622242 a001 9227465/322*24476^(2/3) 2415758397814257 a001 7465176/161*24476^(13/21) 2415758398006283 a001 24157817/322*24476^(4/7) 2415758398198305 a001 39088169/322*24476^(11/21) 2415758398390328 a001 31622993/161*24476^(10/21) 2415758398545564 a001 48/13201*(1/2+1/2*5^(1/2))^47 2415758398582351 a001 14619165/46*24476^(3/7) 2415758398770255 a001 17711/322*7881196^(9/11) 2415758398770287 a001 17711/322*141422324^(9/13) 2415758398770287 a001 17711/322*2537720636^(3/5) 2415758398770287 a001 17711/322*45537549124^(9/17) 2415758398770287 a001 17711/322*817138163596^(9/19) 2415758398770287 a001 17711/322*14662949395604^(3/7) 2415758398770287 a001 17711/322*(1/2+1/2*5^(1/2))^27 2415758398770287 a001 17711/322*192900153618^(1/2) 2415758398770287 a001 17711/322*10749957122^(9/16) 2415758398770287 a001 17711/322*599074578^(9/14) 2415758398770288 a001 17711/322*33385282^(3/4) 2415758398770915 a001 17711/322*1860498^(9/10) 2415758398774374 a001 165580141/322*24476^(8/21) 2415758398855871 a001 14930208*9349^(1/19) 2415758398966397 a001 133957148/161*24476^(1/3) 2415758399158420 a001 433494437/322*24476^(2/7) 2415758399350443 a001 701408733/322*24476^(5/21) 2415758399497504 a001 692283884544/28657 2415758399542466 a001 567451585/161*24476^(4/21) 2415758399729932 r009 Re(z^3+c),c=-11/27+31/58*I,n=62 2415758399734489 a001 1836311903/322*24476^(1/7) 2415758399760330 a001 98209/161*64079^(22/23) 2415758399768603 a001 317811/322*64079^(21/23) 2415758399800793 a001 514229/322*64079^(20/23) 2415758399823848 a001 416020/161*64079^(19/23) 2415758399850392 a001 1346269/322*64079^(18/23) 2415758399861113 a001 72/51841*14662949395604^(7/9) 2415758399861113 a001 72/51841*(1/2+1/2*5^(1/2))^49 2415758399861113 a001 72/51841*505019158607^(7/8) 2415758399875603 a001 311187/46*64079^(17/23) 2415758399901323 a001 1762289/161*64079^(16/23) 2415758399926512 a001 2971215073/322*24476^(2/21) 2415758399926849 a001 5702887/322*64079^(15/23) 2415758399952449 a001 9227465/322*64079^(14/23) 2415758399978021 a001 7465176/161*64079^(13/23) 2415758399999997 a001 7464943+7465176*5^(1/2) 2415758400003604 a001 24157817/322*64079^(12/23) 2415758400029182 a001 39088169/322*64079^(11/23) 2415758400053049 a001 48/90481*14662949395604^(17/21) 2415758400053049 a001 48/90481*(1/2+1/2*5^(1/2))^51 2415758400053049 a001 48/90481*192900153618^(17/18) 2415758400054762 a001 31622993/161*64079^(10/23) 2415758400073313 a001 2372492167128/98209 2415758400080342 a001 14619165/46*64079^(9/23) 2415758400081052 a001 144/710647*(1/2+1/2*5^(1/2))^53 2415758400084009 a001 12422530263168/514229 2415758400085138 a001 8/103361*(1/2+1/2*5^(1/2))^55 2415758400085138 a001 8/103361*3461452808002^(11/12) 2415758400085569 a001 32522606455248/1346269 2415758400085734 a001 144/4870847*14662949395604^(19/21) 2415758400085734 a001 144/4870847*(1/2+1/2*5^(1/2))^57 2415758400085797 a001 42572644551288/1762289 2415758400085821 a001 48/4250681*(1/2+1/2*5^(1/2))^59 2415758400085830 a001 44582652170496/1845493 2415758400085832 a001 144*20633239^(5/7) 2415758400085834 a001 72/16692641*(1/2+1/2*5^(1/2))^61 2415758400085835 a001 583594493454864/24157817 2415758400085836 a001 763935109756056/31622993 2415758400085836 a001 144*2537720636^(5/9) 2415758400085836 a001 144*312119004989^(5/11) 2415758400085836 a001 144*3461452808002^(5/12) 2415758400085836 a001 144*28143753123^(1/2) 2415758400085836 a001 144*228826127^(5/8) 2415758400085836 a001 944275726057248/39088169 2415758400085838 a001 2504730781961/103683 2415758400085842 a001 144/20633239*14662949395604^(20/21) 2415758400085842 a001 144/20633239*(1/2+1/2*5^(1/2))^60 2415758400085851 a001 137767971749904/5702887 2415758400085875 a001 36/1970299*(1/2+1/2*5^(1/2))^58 2415758400085938 a001 17540894215776/726103 2415758400086102 a001 144/3010349*14662949395604^(8/9) 2415758400086102 a001 144/3010349*(1/2+1/2*5^(1/2))^56 2415758400086417 a001 144*1860498^(5/6) 2415758400086534 a001 502501904802/20801 2415758400087663 a001 144/1149851*14662949395604^(6/7) 2415758400087663 a001 144/1149851*(1/2+1/2*5^(1/2))^54 2415758400090619 a001 2559181976304/105937 2415758400098359 a001 36/109801*(1/2+1/2*5^(1/2))^52 2415758400098359 a001 36/109801*23725150497407^(13/16) 2415758400098359 a001 36/109801*505019158607^(13/14) 2415758400105922 a001 165580141/322*64079^(8/23) 2415758400118535 a001 14930208*24476^(1/21) 2415758400118622 a001 2932561594656/121393 2415758400131501 a001 133957148/161*64079^(7/23) 2415758400157081 a001 433494437/322*64079^(6/23) 2415758400171672 a001 144/167761*312119004989^(10/11) 2415758400171672 a001 144/167761*(1/2+1/2*5^(1/2))^50 2415758400171672 a001 144/167761*3461452808002^(5/6) 2415758400182660 a001 701408733/322*64079^(5/23) 2415758400208240 a001 567451585/161*64079^(4/23) 2415758400233820 a001 1836311903/322*64079^(3/23) 2415758400243717 a001 514229/322*167761^(4/5) 2415758400259042 a001 5702887/322*167761^(3/5) 2415758400259399 a001 2971215073/322*64079^(2/23) 2415758400276224 a001 31622993/161*167761^(2/5) 2415758400277772 a001 121393/322*(1/2+1/2*5^(1/2))^23 2415758400277772 a001 121393/322*4106118243^(1/2) 2415758400284979 a001 14930208*64079^(1/23) 2415758400293391 a001 701408733/322*167761^(1/5) 2415758400296035 a001 317811/322*439204^(7/9) 2415758400302476 a001 1346269/322*439204^(2/3) 2415758400303586 a001 5702887/322*439204^(5/9) 2415758400304993 a001 24157817/322*439204^(4/9) 2415758400305750 a001 317811/322*7881196^(7/11) 2415758400305772 a001 317811/322*20633239^(3/5) 2415758400305775 a001 317811/322*141422324^(7/13) 2415758400305775 a001 317811/322*2537720636^(7/15) 2415758400305775 a001 317811/322*17393796001^(3/7) 2415758400305775 a001 317811/322*45537549124^(7/17) 2415758400305775 a001 317811/322*14662949395604^(1/3) 2415758400305775 a001 317811/322*(1/2+1/2*5^(1/2))^21 2415758400305775 a001 317811/322*192900153618^(7/18) 2415758400305775 a001 317811/322*10749957122^(7/16) 2415758400305775 a001 317811/322*599074578^(1/2) 2415758400305776 a001 317811/322*33385282^(7/12) 2415758400306264 a001 317811/322*1860498^(7/10) 2415758400306384 a001 14619165/46*439204^(1/3) 2415758400307776 a001 433494437/322*439204^(2/9) 2415758400309167 a001 1836311903/322*439204^(1/9) 2415758400309363 a001 317811/322*710647^(3/4) 2415758400309861 a001 416020/161*817138163596^(1/3) 2415758400309861 a001 416020/161*(1/2+1/2*5^(1/2))^19 2415758400309861 a001 416020/161*87403803^(1/2) 2415758400310457 a001 311187/46*45537549124^(1/3) 2415758400310457 a001 311187/46*(1/2+1/2*5^(1/2))^17 2415758400310464 a001 311187/46*12752043^(1/2) 2415758400310526 a001 5702887/322*7881196^(5/11) 2415758400310541 a001 5702887/322*20633239^(3/7) 2415758400310544 a001 5702887/322*141422324^(5/13) 2415758400310544 a001 5702887/322*2537720636^(1/3) 2415758400310544 a001 5702887/322*45537549124^(5/17) 2415758400310544 a001 5702887/322*312119004989^(3/11) 2415758400310544 a001 5702887/322*14662949395604^(5/21) 2415758400310544 a001 5702887/322*(1/2+1/2*5^(1/2))^15 2415758400310544 a001 5702887/322*192900153618^(5/18) 2415758400310544 a001 5702887/322*28143753123^(3/10) 2415758400310544 a001 5702887/322*10749957122^(5/16) 2415758400310544 a001 5702887/322*599074578^(5/14) 2415758400310544 a001 5702887/322*228826127^(3/8) 2415758400310545 a001 5702887/322*33385282^(5/12) 2415758400310545 a001 24157817/322*7881196^(4/11) 2415758400310545 a001 39088169/322*7881196^(1/3) 2415758400310548 a001 14619165/46*7881196^(3/11) 2415758400310551 a001 433494437/322*7881196^(2/11) 2415758400310555 a001 1836311903/322*7881196^(1/11) 2415758400310556 a001 7465176/161*141422324^(1/3) 2415758400310556 a001 7465176/161*(1/2+1/2*5^(1/2))^13 2415758400310556 a001 7465176/161*73681302247^(1/4) 2415758400310557 a001 31622993/161*20633239^(2/7) 2415758400310557 a001 133957148/161*20633239^(1/5) 2415758400310558 a001 701408733/322*20633239^(1/7) 2415758400310558 a001 39088169/322*312119004989^(1/5) 2415758400310558 a001 39088169/322*(1/2+1/2*5^(1/2))^11 2415758400310558 a001 39088169/322*1568397607^(1/4) 2415758400310558 a001 14619165/46*141422324^(3/13) 2415758400310558 a001 14619165/46*2537720636^(1/5) 2415758400310558 a001 14619165/46*45537549124^(3/17) 2415758400310558 a001 14619165/46*14662949395604^(1/7) 2415758400310558 a001 14619165/46*(1/2+1/2*5^(1/2))^9 2415758400310558 a001 14619165/46*192900153618^(1/6) 2415758400310558 a001 14619165/46*10749957122^(3/16) 2415758400310558 a001 14619165/46*599074578^(3/14) 2415758400310558 a001 433494437/322*141422324^(2/13) 2415758400310558 a001 1836311903/322*141422324^(1/13) 2415758400310558 a001 133957148/161*17393796001^(1/7) 2415758400310558 a001 133957148/161*14662949395604^(1/9) 2415758400310558 a001 133957148/161*(1/2+1/2*5^(1/2))^7 2415758400310559 a001 133957148/161*599074578^(1/6) 2415758400310559 a001 701408733/322*2537720636^(1/9) 2415758400310559 a001 701408733/322*312119004989^(1/11) 2415758400310559 a001 701408733/322*(1/2+1/2*5^(1/2))^5 2415758400310559 a001 701408733/322*28143753123^(1/10) 2415758400310559 a001 1836311903/322*2537720636^(1/15) 2415758400310559 a001 1836311903/322*45537549124^(1/17) 2415758400310559 a001 1836311903/322*14662949395604^(1/21) 2415758400310559 a001 1836311903/322*(1/2+1/2*5^(1/2))^3 2415758400310559 a001 1836311903/322*192900153618^(1/18) 2415758400310559 a001 1836311903/322*10749957122^(1/16) 2415758400310559 a001 7465104+7465104*5^(1/2) 2415758400310559 a006 5^(1/2)*Fibonacci(49)/Lucas(12)/sqrt(5) 2415758400310559 a001 2971215073/322*(1/2+1/2*5^(1/2))^2 2415758400310559 a001 2971215073/322*10749957122^(1/24) 2415758400310559 a001 2971215073/322*4106118243^(1/23) 2415758400310559 a001 2971215073/322*1568397607^(1/22) 2415758400310559 a001 1836311903/322*599074578^(1/14) 2415758400310559 a001 567451585/161*(1/2+1/2*5^(1/2))^4 2415758400310559 a001 567451585/161*23725150497407^(1/16) 2415758400310559 a001 567451585/161*73681302247^(1/13) 2415758400310559 a001 2971215073/322*599074578^(1/21) 2415758400310559 a001 567451585/161*10749957122^(1/12) 2415758400310559 a001 567451585/161*4106118243^(2/23) 2415758400310559 a001 567451585/161*1568397607^(1/11) 2415758400310559 a001 567451585/161*599074578^(2/21) 2415758400310559 a001 2971215073/322*228826127^(1/20) 2415758400310559 a001 433494437/322*2537720636^(2/15) 2415758400310559 a001 433494437/322*45537549124^(2/17) 2415758400310559 a001 433494437/322*14662949395604^(2/21) 2415758400310559 a001 433494437/322*(1/2+1/2*5^(1/2))^6 2415758400310559 a001 433494437/322*10749957122^(1/8) 2415758400310559 a001 433494437/322*4106118243^(3/23) 2415758400310559 a001 433494437/322*1568397607^(3/22) 2415758400310559 a001 433494437/322*599074578^(1/7) 2415758400310559 a001 701408733/322*228826127^(1/8) 2415758400310559 a001 567451585/161*228826127^(1/10) 2415758400310559 a001 433494437/322*228826127^(3/20) 2415758400310559 a001 2971215073/322*87403803^(1/19) 2415758400310559 a001 165580141/322*(1/2+1/2*5^(1/2))^8 2415758400310559 a001 165580141/322*23725150497407^(1/8) 2415758400310559 a001 165580141/322*505019158607^(1/7) 2415758400310559 a001 165580141/322*73681302247^(2/13) 2415758400310559 a001 165580141/322*10749957122^(1/6) 2415758400310559 a001 165580141/322*4106118243^(4/23) 2415758400310559 a001 165580141/322*1568397607^(2/11) 2415758400310559 a001 165580141/322*599074578^(4/21) 2415758400310559 a001 165580141/322*228826127^(1/5) 2415758400310559 a001 567451585/161*87403803^(2/19) 2415758400310559 a001 433494437/322*87403803^(3/19) 2415758400310559 a001 165580141/322*87403803^(4/19) 2415758400310559 a001 2971215073/322*33385282^(1/18) 2415758400310559 a001 31622993/161*2537720636^(2/9) 2415758400310559 a001 31622993/161*312119004989^(2/11) 2415758400310559 a001 31622993/161*(1/2+1/2*5^(1/2))^10 2415758400310559 a001 31622993/161*28143753123^(1/5) 2415758400310559 a001 31622993/161*10749957122^(5/24) 2415758400310559 a001 31622993/161*4106118243^(5/23) 2415758400310559 a001 31622993/161*1568397607^(5/22) 2415758400310559 a001 31622993/161*599074578^(5/21) 2415758400310559 a001 31622993/161*228826127^(1/4) 2415758400310559 a001 1836311903/322*33385282^(1/12) 2415758400310559 a001 31622993/161*87403803^(5/19) 2415758400310559 a001 567451585/161*33385282^(1/9) 2415758400310559 a001 433494437/322*33385282^(1/6) 2415758400310559 a001 14619165/46*33385282^(1/4) 2415758400310559 a001 165580141/322*33385282^(2/9) 2415758400310559 a001 31622993/161*33385282^(5/18) 2415758400310559 a001 24157817/322*141422324^(4/13) 2415758400310559 a001 24157817/322*2537720636^(4/15) 2415758400310559 a001 24157817/322*45537549124^(4/17) 2415758400310559 a001 24157817/322*817138163596^(4/19) 2415758400310559 a001 24157817/322*14662949395604^(4/21) 2415758400310559 a001 24157817/322*(1/2+1/2*5^(1/2))^12 2415758400310559 a001 24157817/322*192900153618^(2/9) 2415758400310559 a001 24157817/322*73681302247^(3/13) 2415758400310559 a001 24157817/322*10749957122^(1/4) 2415758400310559 a001 24157817/322*4106118243^(6/23) 2415758400310559 a001 24157817/322*1568397607^(3/11) 2415758400310559 a001 24157817/322*599074578^(2/7) 2415758400310559 a001 24157817/322*228826127^(3/10) 2415758400310559 a001 2971215073/322*12752043^(1/17) 2415758400310559 a001 24157817/322*87403803^(6/19) 2415758400310560 a001 24157817/322*33385282^(1/3) 2415758400310560 a001 567451585/161*12752043^(2/17) 2415758400310561 a001 433494437/322*12752043^(3/17) 2415758400310562 a001 24157745-72*5^(1/2) 2415758400310562 a001 9227465/322*20633239^(2/5) 2415758400310562 a001 165580141/322*12752043^(4/17) 2415758400310563 a001 31622993/161*12752043^(5/17) 2415758400310564 a001 9227465/322*17393796001^(2/7) 2415758400310564 a001 9227465/322*14662949395604^(2/9) 2415758400310564 a001 9227465/322*(1/2+1/2*5^(1/2))^14 2415758400310564 a001 9227465/322*10749957122^(7/24) 2415758400310564 a001 9227465/322*4106118243^(7/23) 2415758400310564 a001 9227465/322*1568397607^(7/22) 2415758400310564 a001 9227465/322*599074578^(1/3) 2415758400310564 a001 9227465/322*228826127^(7/20) 2415758400310564 a001 9227465/322*87403803^(7/19) 2415758400310565 a001 24157817/322*12752043^(6/17) 2415758400310565 a001 2971215073/322*4870847^(1/16) 2415758400310565 a001 9227465/322*33385282^(7/18) 2415758400310570 a001 9227465/322*12752043^(7/17) 2415758400310571 a001 567451585/161*4870847^(1/8) 2415758400310578 a001 433494437/322*4870847^(3/16) 2415758400310584 a001 165580141/322*4870847^(1/4) 2415758400310590 a001 31622993/161*4870847^(5/16) 2415758400310597 a001 1762289/161*(1/2+1/2*5^(1/2))^16 2415758400310597 a001 1762289/161*23725150497407^(1/4) 2415758400310597 a001 1762289/161*73681302247^(4/13) 2415758400310597 a001 1762289/161*10749957122^(1/3) 2415758400310597 a001 1762289/161*4106118243^(8/23) 2415758400310597 a001 1762289/161*1568397607^(4/11) 2415758400310597 a001 1762289/161*599074578^(8/21) 2415758400310597 a001 1762289/161*228826127^(2/5) 2415758400310598 a001 24157817/322*4870847^(3/8) 2415758400310598 a001 1762289/161*87403803^(8/19) 2415758400310598 a001 1762289/161*33385282^(4/9) 2415758400310604 a001 1762289/161*12752043^(8/17) 2415758400310605 a001 2971215073/322*1860498^(1/15) 2415758400310609 a001 9227465/322*4870847^(7/16) 2415758400310628 a001 1836311903/322*1860498^(1/10) 2415758400310648 a001 1762289/161*4870847^(1/2) 2415758400310652 a001 567451585/161*1860498^(2/15) 2415758400310675 a001 701408733/322*1860498^(1/6) 2415758400310698 a001 433494437/322*1860498^(1/5) 2415758400310745 a001 165580141/322*1860498^(4/15) 2415758400310768 a001 14619165/46*1860498^(3/10) 2415758400310791 a001 31622993/161*1860498^(1/3) 2415758400310804 a001 1346269/322*7881196^(6/11) 2415758400310825 a001 1346269/322*141422324^(6/13) 2415758400310825 a001 1346269/322*2537720636^(2/5) 2415758400310825 a001 1346269/322*45537549124^(6/17) 2415758400310825 a001 1346269/322*14662949395604^(2/7) 2415758400310825 a001 1346269/322*(1/2+1/2*5^(1/2))^18 2415758400310825 a001 1346269/322*192900153618^(1/3) 2415758400310825 a001 1346269/322*10749957122^(3/8) 2415758400310825 a001 1346269/322*4106118243^(9/23) 2415758400310825 a001 1346269/322*1568397607^(9/22) 2415758400310825 a001 1346269/322*599074578^(3/7) 2415758400310825 a001 1346269/322*228826127^(9/20) 2415758400310825 a001 1346269/322*87403803^(9/19) 2415758400310826 a001 1346269/322*33385282^(1/2) 2415758400310833 a001 1346269/322*12752043^(9/17) 2415758400310838 a001 24157817/322*1860498^(2/5) 2415758400310882 a001 1346269/322*4870847^(9/16) 2415758400310890 a001 9227465/322*1860498^(7/15) 2415758400310893 a001 5702887/322*1860498^(1/2) 2415758400310900 a001 2971215073/322*710647^(1/14) 2415758400310970 a001 1762289/161*1860498^(8/15) 2415758400311242 a001 567451585/161*710647^(1/7) 2415758400311244 a001 1346269/322*1860498^(3/5) 2415758400311584 a001 433494437/322*710647^(3/14) 2415758400311754 a001 133957148/161*710647^(1/4) 2415758400311925 a001 165580141/322*710647^(2/7) 2415758400312267 a001 31622993/161*710647^(5/14) 2415758400312382 a001 514229/322*20633239^(4/7) 2415758400312386 a001 514229/322*2537720636^(4/9) 2415758400312386 a001 514229/322*(1/2+1/2*5^(1/2))^20 2415758400312386 a001 514229/322*23725150497407^(5/16) 2415758400312386 a001 514229/322*505019158607^(5/14) 2415758400312386 a001 514229/322*73681302247^(5/13) 2415758400312386 a001 514229/322*28143753123^(2/5) 2415758400312386 a001 514229/322*10749957122^(5/12) 2415758400312386 a001 514229/322*4106118243^(10/23) 2415758400312386 a001 514229/322*1568397607^(5/11) 2415758400312386 a001 514229/322*599074578^(10/21) 2415758400312386 a001 514229/322*228826127^(1/2) 2415758400312386 a001 514229/322*87403803^(10/19) 2415758400312387 a001 514229/322*33385282^(5/9) 2415758400312394 a001 514229/322*12752043^(10/17) 2415758400312449 a001 514229/322*4870847^(5/8) 2415758400312609 a001 24157817/322*710647^(3/7) 2415758400312851 a001 514229/322*1860498^(2/3) 2415758400312956 a001 9227465/322*710647^(1/2) 2415758400313081 a001 2971215073/322*271443^(1/13) 2415758400313331 a001 1762289/161*710647^(4/7) 2415758400313900 a001 1346269/322*710647^(9/14) 2415758400315603 a001 567451585/161*271443^(2/13) 2415758400315802 a001 514229/322*710647^(5/7) 2415758400318125 a001 433494437/322*271443^(3/13) 2415758400319922 a001 14930208*103682^(1/24) 2415758400320647 a001 165580141/322*271443^(4/13) 2415758400323056 a001 98209/161*7881196^(2/3) 2415758400323082 a001 98209/161*312119004989^(2/5) 2415758400323082 a001 98209/161*(1/2+1/2*5^(1/2))^22 2415758400323082 a001 98209/161*10749957122^(11/24) 2415758400323082 a001 98209/161*4106118243^(11/23) 2415758400323082 a001 98209/161*1568397607^(1/2) 2415758400323082 a001 98209/161*599074578^(11/21) 2415758400323082 a001 98209/161*228826127^(11/20) 2415758400323082 a001 98209/161*87403803^(11/19) 2415758400323083 a001 98209/161*33385282^(11/18) 2415758400323091 a001 98209/161*12752043^(11/17) 2415758400323152 a001 98209/161*4870847^(11/16) 2415758400323169 a001 31622993/161*271443^(5/13) 2415758400323594 a001 98209/161*1860498^(11/15) 2415758400325692 a001 24157817/322*271443^(6/13) 2415758400326840 a001 98209/161*710647^(11/14) 2415758400326950 a001 7465176/161*271443^(1/2) 2415758400328218 a001 9227465/322*271443^(7/13) 2415758400329285 a001 2971215073/322*103682^(1/12) 2415758400330774 a001 1762289/161*271443^(8/13) 2415758400333523 a001 1346269/322*271443^(9/13) 2415758400337606 a001 514229/322*271443^(10/13) 2415758400338649 a001 1836311903/322*103682^(1/8) 2415758400348012 a001 567451585/161*103682^(1/6) 2415758400350824 a001 98209/161*271443^(11/13) 2415758400357376 a001 701408733/322*103682^(5/24) 2415758400366739 a001 433494437/322*103682^(1/4) 2415758400376103 a001 133957148/161*103682^(7/24) 2415758400380571 a001 14930208*39603^(1/22) 2415758400385263 a001 75025/322*439204^(8/9) 2415758400385466 a001 165580141/322*103682^(1/3) 2415758400394829 a001 14619165/46*103682^(3/8) 2415758400396367 a001 75025/322*7881196^(8/11) 2415758400396395 a001 75025/322*141422324^(8/13) 2415758400396395 a001 75025/322*2537720636^(8/15) 2415758400396395 a001 75025/322*45537549124^(8/17) 2415758400396395 a001 75025/322*14662949395604^(8/21) 2415758400396395 a001 75025/322*(1/2+1/2*5^(1/2))^24 2415758400396395 a001 75025/322*192900153618^(4/9) 2415758400396395 a001 75025/322*73681302247^(6/13) 2415758400396395 a001 75025/322*10749957122^(1/2) 2415758400396395 a001 75025/322*4106118243^(12/23) 2415758400396395 a001 75025/322*1568397607^(6/11) 2415758400396395 a001 75025/322*599074578^(4/7) 2415758400396395 a001 75025/322*228826127^(3/5) 2415758400396395 a001 75025/322*87403803^(12/19) 2415758400396396 a001 75025/322*33385282^(2/3) 2415758400396405 a001 75025/322*12752043^(12/17) 2415758400396471 a001 75025/322*4870847^(3/4) 2415758400396953 a001 75025/322*1860498^(4/5) 2415758400400495 a001 75025/322*710647^(6/7) 2415758400404193 a001 31622993/161*103682^(5/12) 2415758400413556 a001 39088169/322*103682^(11/24) 2415758400422921 a001 24157817/322*103682^(1/2) 2415758400426659 a001 75025/322*271443^(12/13) 2415758400432281 a001 7465176/161*103682^(13/24) 2415758400441652 a001 9227465/322*103682^(7/12) 2415758400450583 a001 2971215073/322*39603^(1/11) 2415758400450995 a001 5702887/322*103682^(5/8) 2415758400460412 a001 1762289/161*103682^(2/3) 2415758400469635 a001 311187/46*103682^(17/24) 2415758400479367 a001 1346269/322*103682^(3/4) 2415758400487766 a001 416020/161*103682^(19/24) 2415758400493131 a001 121393/322*103682^(23/24) 2415758400499654 a001 514229/322*103682^(5/6) 2415758400502407 a001 317811/322*103682^(7/8) 2415758400520596 a001 1836311903/322*39603^(3/22) 2415758400529078 a001 98209/161*103682^(11/12) 2415758400590608 a001 567451585/161*39603^(2/11) 2415758400660620 a001 701408733/322*39603^(5/22) 2415758400674167 a001 144/64079*45537549124^(16/17) 2415758400674167 a001 144/64079*14662949395604^(16/21) 2415758400674167 a001 144/64079*(1/2+1/2*5^(1/2))^48 2415758400674167 a001 144/64079*192900153618^(8/9) 2415758400674167 a001 144/64079*73681302247^(12/13) 2415758400730633 a001 433494437/322*39603^(3/11) 2415758400800645 a001 133957148/161*39603^(7/22) 2415758400838417 a001 14930208*15127^(1/20) 2415758400870657 a001 165580141/322*39603^(4/11) 2415758400898890 a001 28657/322*141422324^(2/3) 2415758400898890 a001 28657/322*(1/2+1/2*5^(1/2))^26 2415758400898890 a001 28657/322*73681302247^(1/2) 2415758400898890 a001 28657/322*10749957122^(13/24) 2415758400898890 a001 28657/322*4106118243^(13/23) 2415758400898890 a001 28657/322*1568397607^(13/22) 2415758400898890 a001 28657/322*599074578^(13/21) 2415758400898890 a001 28657/322*228826127^(13/20) 2415758400898890 a001 28657/322*87403803^(13/19) 2415758400898891 a001 28657/322*33385282^(13/18) 2415758400898901 a001 28657/322*12752043^(13/17) 2415758400898973 a001 28657/322*4870847^(13/16) 2415758400899495 a001 28657/322*1860498^(13/15) 2415758400903332 a001 28657/322*710647^(13/14) 2415758400940670 a001 14619165/46*39603^(9/22) 2415758401010682 a001 31622993/161*39603^(5/11) 2415758401080694 a001 39088169/322*39603^(1/2) 2415758401150708 a001 24157817/322*39603^(6/11) 2415758401220717 a001 7465176/161*39603^(13/22) 2415758401290737 a001 9227465/322*39603^(7/11) 2415758401360729 a001 5702887/322*39603^(15/22) 2415758401366276 a001 2971215073/322*15127^(1/10) 2415758401430795 a001 1762289/161*39603^(8/11) 2415758401500667 a001 311187/46*39603^(17/22) 2415758401571047 a001 1346269/322*39603^(9/11) 2415758401626108 a001 427854970512/17711 2415758401640095 a001 416020/161*39603^(19/22) 2415758401712633 a001 514229/322*39603^(10/11) 2415758401776034 a001 317811/322*39603^(21/22) 2415758401894135 a001 1836311903/322*15127^(3/20) 2415758402421994 a001 567451585/161*15127^(1/5) 2415758402949853 a001 701408733/322*15127^(1/4) 2415758403477712 a001 433494437/322*15127^(3/10) 2415758404005571 a001 133957148/161*15127^(7/20) 2415758404118319 a001 36/6119*(1/2+1/2*5^(1/2))^46 2415758404118319 a001 36/6119*10749957122^(23/24) 2415758404330557 a001 14930208*5778^(1/18) 2415758404343038 a001 5473/161*20633239^(4/5) 2415758404343042 a001 5473/161*17393796001^(4/7) 2415758404343042 a001 5473/161*14662949395604^(4/9) 2415758404343042 a001 5473/161*(1/2+1/2*5^(1/2))^28 2415758404343042 a001 5473/161*73681302247^(7/13) 2415758404343042 a001 5473/161*10749957122^(7/12) 2415758404343042 a001 5473/161*4106118243^(14/23) 2415758404343042 a001 5473/161*1568397607^(7/11) 2415758404343042 a001 5473/161*599074578^(2/3) 2415758404343042 a001 5473/161*228826127^(7/10) 2415758404343042 a001 5473/161*87403803^(14/19) 2415758404343044 a001 5473/161*33385282^(7/9) 2415758404343054 a001 5473/161*12752043^(14/17) 2415758404343131 a001 5473/161*4870847^(7/8) 2415758404343693 a001 5473/161*1860498^(14/15) 2415758404533430 a001 165580141/322*15127^(2/5) 2415758405061289 a001 14619165/46*15127^(9/20) 2415758405589148 a001 31622993/161*15127^(1/2) 2415758406117007 a001 39088169/322*15127^(11/20) 2415758406644867 a001 24157817/322*15127^(3/5) 2415758407172723 a001 7465176/161*15127^(13/20) 2415758407700590 a001 9227465/322*15127^(7/10) 2415758408228428 a001 5702887/322*15127^(3/4) 2415758408350556 a001 2971215073/322*5778^(1/9) 2415758408756341 a001 1762289/161*15127^(4/5) 2415758409284059 a001 311187/46*15127^(17/20) 2415758409812286 a001 1346269/322*15127^(9/10) 2415758410339181 a001 416020/161*15127^(19/20) 2415758410643015 a001 10895070432/451 2415758412370555 a001 1836311903/322*5778^(1/6) 2415758415635252 r005 Im(z^2+c),c=-41/90+25/59*I,n=32 2415758416390554 a001 567451585/161*5778^(2/9) 2415758416896344 m001 (ArtinRank2+Conway)/(CopelandErdos+Lehmer) 2415758420410553 a001 701408733/322*5778^(5/18) 2415758422553186 a007 Real Root Of 50*x^4-122*x^3-490*x^2+537*x+734 2415758424095477 a007 Real Root Of 362*x^4+827*x^3-183*x^2-282*x-283 2415758424430552 a001 433494437/322*5778^(1/3) 2415758427635163 m001 Niven^KhinchinLevy*GlaisherKinkelin 2415758427724890 a001 144/9349*312119004989^(4/5) 2415758427724890 a001 144/9349*(1/2+1/2*5^(1/2))^44 2415758427724890 a001 144/9349*23725150497407^(11/16) 2415758427724890 a001 144/9349*73681302247^(11/13) 2415758427724890 a001 144/9349*10749957122^(11/12) 2415758427724890 a001 144/9349*4106118243^(22/23) 2415758427949577 a001 4181/322*7881196^(10/11) 2415758427949607 a001 4181/322*20633239^(6/7) 2415758427949612 a001 4181/322*141422324^(10/13) 2415758427949612 a001 4181/322*2537720636^(2/3) 2415758427949612 a001 4181/322*45537549124^(10/17) 2415758427949612 a001 4181/322*312119004989^(6/11) 2415758427949612 a001 4181/322*14662949395604^(10/21) 2415758427949612 a001 4181/322*(1/2+1/2*5^(1/2))^30 2415758427949612 a001 4181/322*192900153618^(5/9) 2415758427949612 a001 4181/322*28143753123^(3/5) 2415758427949612 a001 4181/322*10749957122^(5/8) 2415758427949612 a001 4181/322*4106118243^(15/23) 2415758427949612 a001 4181/322*1568397607^(15/22) 2415758427949612 a001 4181/322*599074578^(5/7) 2415758427949612 a001 4181/322*228826127^(3/4) 2415758427949612 a001 4181/322*87403803^(15/19) 2415758427949614 a001 4181/322*33385282^(5/6) 2415758427949625 a001 4181/322*12752043^(15/17) 2415758427949708 a001 4181/322*4870847^(15/16) 2415758428450551 a001 133957148/161*5778^(7/18) 2415758430066895 a007 Real Root Of 504*x^4+43*x^3-985*x^2-761*x+239 2415758431308224 a001 14930208*2207^(1/16) 2415758432470550 a001 165580141/322*5778^(4/9) 2415758435736344 r009 Im(z^3+c),c=-17/40+6/49*I,n=37 2415758436490549 a001 14619165/46*5778^(1/2) 2415758440510548 a001 31622993/161*5778^(5/9) 2415758443461764 r005 Re(z^2+c),c=19/70+2/13*I,n=24 2415758443935019 r005 Re(z^2+c),c=19/60+10/53*I,n=56 2415758444530547 a001 39088169/322*5778^(11/18) 2415758448550547 a001 24157817/322*5778^(2/3) 2415758452338576 a007 Real Root Of 161*x^4-268*x^3+404*x^2-315*x-104 2415758452570543 a001 7465176/161*5778^(13/18) 2415758456590550 a001 9227465/322*5778^(7/9) 2415758460610528 a001 5702887/322*5778^(5/6) 2415758462305890 a001 2971215073/322*2207^(1/8) 2415758464630581 a001 1762289/161*5778^(8/9) 2415758468650440 a001 311187/46*5778^(17/18) 2415758472445820 a001 7802899866/323 2415758485671514 r009 Re(z^3+c),c=-13/36+40/57*I,n=35 2415758486740833 l006 ln(575/6439) 2415758490228812 m001 BesselI(1,1)/Backhouse/ErdosBorwein 2415758493303556 a001 1836311903/322*2207^(3/16) 2415758494890589 m001 Pi*ln(2)/ln(10)-Zeta(1/2)-gamma(2) 2415758498468890 r005 Im(z^2+c),c=-31/94+22/57*I,n=40 2415758505346516 a001 39603/34*10946^(4/51) 2415758507495307 m001 (ThueMorse-ZetaQ(4))/(ln(3)+BesselK(1,1)) 2415758516979738 r005 Re(z^2+c),c=-19/66+7/45*I,n=8 2415758517789442 a007 Real Root Of -216*x^4-532*x^3-484*x^2-928*x+439 2415758523426359 m001 (KomornikLoreti+Salem)/FibonacciFactorial 2415758524301222 a001 567451585/161*2207^(1/4) 2415758538908187 r005 Im(z^2+c),c=-21/50+32/53*I,n=40 2415758541509688 a001 843/514229*28657^(18/37) 2415758555298889 a001 701408733/322*2207^(5/16) 2415758557187743 g004 Im(Psi(-15/8+I*17/8)) 2415758564810443 m001 (Ei(1)+Kac)/(Niven-Robbin) 2415758580777620 a007 Real Root Of -65*x^4+67*x^3+367*x^2-225*x+473 2415758586296557 a001 433494437/322*2207^(3/8) 2415758589526743 a001 144/3571*2537720636^(14/15) 2415758589526743 a001 144/3571*17393796001^(6/7) 2415758589526743 a001 144/3571*45537549124^(14/17) 2415758589526743 a001 144/3571*14662949395604^(2/3) 2415758589526743 a001 144/3571*(1/2+1/2*5^(1/2))^42 2415758589526743 a001 144/3571*505019158607^(3/4) 2415758589526743 a001 144/3571*192900153618^(7/9) 2415758589526743 a001 144/3571*10749957122^(7/8) 2415758589526743 a001 144/3571*4106118243^(21/23) 2415758589526743 a001 144/3571*1568397607^(21/22) 2415758589751450 a001 1597/322*(1/2+1/2*5^(1/2))^32 2415758589751450 a001 1597/322*23725150497407^(1/2) 2415758589751450 a001 1597/322*73681302247^(8/13) 2415758589751450 a001 1597/322*10749957122^(2/3) 2415758589751450 a001 1597/322*4106118243^(16/23) 2415758589751450 a001 1597/322*1568397607^(8/11) 2415758589751450 a001 1597/322*599074578^(16/21) 2415758589751451 a001 1597/322*228826127^(4/5) 2415758589751451 a001 1597/322*87403803^(16/19) 2415758589751452 a001 1597/322*33385282^(8/9) 2415758589751464 a001 1597/322*12752043^(16/17) 2415758600371273 m001 Zeta(3)^2*ln(GaussAGM(1,1/sqrt(2)))*Zeta(7) 2415758604403076 l006 ln(3279/4175) 2415758606148751 m001 ZetaP(4)^GolombDickman*Totient^GolombDickman 2415758617294225 a001 133957148/161*2207^(7/16) 2415758627562824 r005 Im(z^2+c),c=-53/122+17/41*I,n=38 2415758642089027 r005 Re(z^2+c),c=-5/23+25/56*I,n=14 2415758643123177 a001 14930208*843^(1/14) 2415758646527120 a007 Real Root Of -250*x^4-270*x^3+604*x^2-142*x+840 2415758648291893 a001 165580141/322*2207^(1/2) 2415758667352659 a007 Real Root Of -311*x^4-608*x^3+326*x^2-252*x-491 2415758679289561 a001 14619165/46*2207^(9/16) 2415758683988801 r005 Re(z^2+c),c=1/15+13/41*I,n=16 2415758705608532 m002 -Log[Pi]-6/ProductLog[Pi]+Pi^3*Tanh[Pi] 2415758707458731 r005 Im(z^2+c),c=-83/106+3/25*I,n=37 2415758710287230 a001 31622993/161*2207^(5/8) 2415758710871988 r005 Re(z^2+c),c=-17/14+19/122*I,n=34 2415758711492788 l006 ln(691/7738) 2415758713242822 a007 Real Root Of 433*x^4-802*x^3+966*x^2-434*x-174 2415758713444070 m001 (BesselI(0,1)-Chi(1))/(gamma(2)+Grothendieck) 2415758720483047 m001 (FeigenbaumC+Sarnak)/(gamma(3)+GAMMA(11/12)) 2415758741284899 a001 39088169/322*2207^(11/16) 2415758743408369 m001 Pi/Psi(2,1/3)-Ei(1)-arctan(1/2) 2415758743464320 a007 Real Root Of -540*x^4-657*x^3-534*x^2+444*x+131 2415758745880595 r009 Im(z^3+c),c=-35/78+2/21*I,n=59 2415758746195472 a007 Real Root Of 181*x^4+133*x^3-332*x^2+791*x-441 2415758752484039 r005 Im(z^2+c),c=-133/106+1/53*I,n=7 2415758753795960 m001 (-LaplaceLimit+ZetaQ(4))/(sin(1)+Ei(1)) 2415758755518058 a007 Real Root Of 255*x^4+711*x^3+192*x^2+167*x+622 2415758765060584 m005 (1/3*exp(1)+2/5)/(2/11*5^(1/2)+5) 2415758770956554 a001 1/987*233^(32/55) 2415758771276271 m001 (Conway-Tetranacci)/(Zeta(3)+Zeta(1/2)) 2415758772282570 a001 24157817/322*2207^(3/4) 2415758772609124 p001 sum((-1)^n/(495*n+7)/n/(8^n),n=1..infinity) 2415758778116035 a007 Real Root Of 413*x^4+718*x^3-915*x^2-754*x-425 2415758778579020 r005 Re(z^2+c),c=-23/106+20/47*I,n=15 2415758793862874 r009 Re(z^3+c),c=-7/18+16/29*I,n=26 2415758794169559 a007 Real Root Of 860*x^4-212*x^3+266*x^2-913*x-242 2415758799410639 a001 1836311903/123*47^(1/8) 2415758802252099 p001 sum(1/(453*n+356)/n/(512^n),n=1..infinity) 2415758803280237 a001 7465176/161*2207^(13/16) 2415758810026938 p004 log(29663/23297) 2415758821115278 m005 (1/2*Pi+1/3)/(3*exp(1)-3/11) 2415758830604454 r002 28th iterates of z^2 + 2415758834277916 a001 9227465/322*2207^(7/8) 2415758836700785 a007 Real Root Of -253*x^4-516*x^3+509*x^2+629*x-109 2415758852264710 a007 Real Root Of -405*x^4-756*x^3-867*x^2+661*x+201 2415758864675509 r009 Re(z^3+c),c=-19/48+24/43*I,n=39 2415758865275566 a001 5702887/322*2207^(15/16) 2415758867814756 m001 ln(2)/exp(1)/GAMMA(11/12) 2415758870064495 m005 (1/2*2^(1/2)+8/9)/(3/4*2^(1/2)-2/5) 2415758871224998 r009 Re(z^3+c),c=-9/38+2/21*I,n=8 2415758871632007 l006 ln(807/9037) 2415758872376072 m001 1/log(2+sqrt(3))/ln(Conway)^2*sqrt(5) 2415758873041201 m008 (2*Pi^3-3/5)/(5/6*Pi^5-4/5) 2415758876950146 r005 Re(z^2+c),c=-29/114+19/60*I,n=18 2415758885136147 m008 (2*Pi^2-5/6)/(4/5*Pi^4+1/3) 2415758885935819 a001 2971215073/322*843^(1/7) 2415758896048632 a001 7947846768/329 2415758908659179 r005 Im(z^2+c),c=3/52+6/25*I,n=6 2415758915982791 m002 -6+Pi^4-4*Pi^6*Csch[Pi] 2415758920350497 m001 exp(Pi)+cos(1/5*Pi)+exp(-1/2*Pi) 2415758920350497 m001 exp(Pi)+cos(Pi/5)+exp(-1/2*Pi) 2415758922142251 r005 Re(z^2+c),c=4/17+7/59*I,n=10 2415758923599828 r005 Im(z^2+c),c=-5/7+5/38*I,n=64 2415758926849995 l003 BesselJ(2,16/115) 2415758946794203 r009 Re(z^3+c),c=-17/58+40/59*I,n=5 2415758960303453 l006 ln(6730/8569) 2415758961283603 r008 a(0)=0,K{-n^6,34*n^3+137*n^2+182*n+61} 2415758961305610 m001 (Mills-Robbin)/(ln(2^(1/2)+1)+KomornikLoreti) 2415758964695457 r008 a(0)=0,K{-n^6,14*n^3+187*n^2+172*n+41} 2415758965287839 a001 123/1134903170*13^(5/16) 2415758975000929 a007 Real Root Of -180*x^4+767*x^3+514*x^2+971*x+216 2415758976567277 r009 Im(z^3+c),c=-5/18+4/19*I,n=9 2415758982054611 r005 Re(z^2+c),c=-125/102+11/59*I,n=2 2415758991354111 a001 105937/41*11^(55/59) 2415759001999203 m001 PrimesInBinary^ln(Pi)*Robbin 2415759012284000 m001 (Cahen-ZetaP(3))/(exp(1/Pi)+BesselI(1,1)) 2415759013050725 m001 ErdosBorwein+Gompertz^HardyLittlewoodC5 2415759019680860 m001 (Pi^(1/2))^Weierstrass/Landau 2415759022052700 a001 7778742049/2207*199^(4/11) 2415759029657235 m001 (GaussAGM-Kac)/(ThueMorse+ZetaP(2)) 2415759031822770 m001 (5^(1/2))^(HardyLittlewoodC5/Artin) 2415759048360811 a007 Real Root Of 564*x^4+881*x^3-991*x^2+603*x+452 2415759056281366 m001 (-Porter+Tetranacci)/(2^(1/3)+MasserGramain) 2415759063370539 r002 50i'th iterates of 2*x/(1-x^2) of 2415759069522420 a005 (1/cos(13/176*Pi))^1897 2415759071502849 m009 (4/5*Psi(1,2/3)-1/5)/(24/5*Catalan+3/5*Pi^2-1) 2415759072909606 a007 Real Root Of -174*x^4-102*x^3+682*x^2+29*x+578 2415759079316988 r004 Im(z^2+c),c=-19/34+1/23*I,z(0)=-1,n=44 2415759079838523 m001 exp(Pi)+Gompertz*Niven 2415759080686882 m005 (1/2*3^(1/2)-1/9)/(5^(1/2)+8/9) 2415759091446810 m005 (1/2*Zeta(3)-9/10)/(19/28+1/4*5^(1/2)) 2415759092413515 m001 PrimesInBinary/(sin(1/5*Pi)+GAMMA(5/6)) 2415759096105443 m001 (BesselK(0,1)-ln(3))/(-MadelungNaCl+Porter) 2415759121731678 m001 gamma(2)/(GAMMA(11/12)+Otter) 2415759125375293 r005 Re(z^2+c),c=9/34+9/61*I,n=45 2415759127535804 a001 3571/10946*832040^(6/19) 2415759128748486 a001 1836311903/322*843^(3/14) 2415759129903049 m001 ln(Sierpinski)^2/Riemann3rdZero*sin(Pi/12)^2 2415759131555986 a001 3571/196418*7778742049^(6/19) 2415759136112453 r002 24th iterates of z^2 + 2415759139872526 m001 Paris*Cahen/exp(cos(Pi/12)) 2415759140182989 a007 Real Root Of 43*x^4-145*x^3-740*x^2-67*x+648 2415759143665887 a008 Real Root of x^4-2*x^3+19*x^2+34*x-91 2415759144934145 r005 Re(z^2+c),c=-11/40+11/47*I,n=16 2415759152648618 h001 (2/3*exp(2)+9/11)/(1/5*exp(2)+9/10) 2415759153675241 p001 sum(1/(248*n+15)/n/(16^n),n=1..infinity) 2415759159438115 m001 (GAMMA(7/12)*Backhouse+Porter)/GAMMA(7/12) 2415759163832076 p001 sum(1/(476*n+417)/(64^n),n=0..infinity) 2415759165768529 r005 Im(z^2+c),c=-13/28+24/61*I,n=18 2415759179382857 r005 Im(z^2+c),c=-101/114+1/56*I,n=24 2415759183814187 r005 Im(z^2+c),c=-1/3+12/31*I,n=33 2415759185424344 a003 sin(Pi*4/117)-sin(Pi*11/97) 2415759198666996 m001 ((1+3^(1/2))^(1/2))^ln(2)*Niven 2415759199887570 a007 Real Root Of -959*x^4+897*x^3-88*x^2+985*x+259 2415759204139961 m001 ErdosBorwein*OrthogonalArrays^Zeta(3) 2415759204816523 r009 Re(z^3+c),c=-17/44+22/45*I,n=60 2415759212627078 a007 Real Root Of 309*x^4+713*x^3-323*x^2-402*x+442 2415759216315263 r005 Im(z^2+c),c=-45/82+23/57*I,n=12 2415759228575293 m001 1/exp(Pi)/Si(Pi)/cos(Pi/12) 2415759228575293 m001 exp(-Pi)/cos(Pi/12)/Si(Pi) 2415759230738132 m001 Gompertz/(GAMMA(5/6)+Totient) 2415759257764540 s002 sum(A112641[n]/(n^3*pi^n+1),n=1..infinity) 2415759265767171 r009 Im(z^3+c),c=-41/98+7/54*I,n=12 2415759271275196 m001 (Chi(1)-gamma)/(-BesselK(1,1)+Rabbit) 2415759271602462 r005 Re(z^2+c),c=-17/94+21/41*I,n=44 2415759280131322 m001 Shi(1)^(ln(2)/ln(10))+exp(Pi) 2415759292781857 a001 9349/28657*832040^(6/19) 2415759293368582 a001 9349/514229*7778742049^(6/19) 2415759295512952 r005 Im(z^2+c),c=-27/56+27/62*I,n=51 2415759298465521 l006 ln(3451/4394) 2415759302076325 m001 (-gamma(3)+RenyiParking)/(3^(1/2)+GAMMA(2/3)) 2415759316890931 a001 24476/75025*832040^(6/19) 2415759316976722 a001 24476/1346269*7778742049^(6/19) 2415759320408398 a001 64079/196418*832040^(6/19) 2415759320421103 a001 64079/3524578*7778742049^(6/19) 2415759320921589 a001 167761/514229*832040^(6/19) 2415759320923631 a001 167761/9227465*7778742049^(6/19) 2415759320996463 a001 439204/1346269*832040^(6/19) 2415759320996949 a001 439204/24157817*7778742049^(6/19) 2415759321007387 a001 1149851/3524578*832040^(6/19) 2415759321007646 a001 1149851/63245986*7778742049^(6/19) 2415759321008981 a001 3010349/9227465*832040^(6/19) 2415759321009207 a001 3010349/165580141*7778742049^(6/19) 2415759321009213 a001 7881196/24157817*832040^(6/19) 2415759321009247 a001 20633239/63245986*832040^(6/19) 2415759321009252 a001 54018521/165580141*832040^(6/19) 2415759321009253 a001 141422324/433494437*832040^(6/19) 2415759321009253 a001 370248451/1134903170*832040^(6/19) 2415759321009253 a001 969323029/2971215073*832040^(6/19) 2415759321009253 a001 2537720636/7778742049*832040^(6/19) 2415759321009253 a001 6643838879/20365011074*832040^(6/19) 2415759321009253 a001 17393796001/53316291173*832040^(6/19) 2415759321009253 a001 45537549124/139583862445*832040^(6/19) 2415759321009253 a001 119218851371/365435296162*832040^(6/19) 2415759321009253 a001 312119004989/956722026041*832040^(6/19) 2415759321009253 a001 1322157322203/4052739537881*832040^(6/19) 2415759321009253 a001 505019158607/1548008755920*832040^(6/19) 2415759321009253 a001 192900153618/591286729879*832040^(6/19) 2415759321009253 a001 10525900321/32264490531*832040^(6/19) 2415759321009253 a001 28143753123/86267571272*832040^(6/19) 2415759321009253 a001 10749957122/32951280099*832040^(6/19) 2415759321009253 a001 4106118243/12586269025*832040^(6/19) 2415759321009253 a001 224056801/686789568*832040^(6/19) 2415759321009253 a001 599074578/1836311903*832040^(6/19) 2415759321009253 a001 228826127/701408733*832040^(6/19) 2415759321009253 a001 87403803/267914296*832040^(6/19) 2415759321009255 a001 4769326/14619165*832040^(6/19) 2415759321009268 a001 12752043/39088169*832040^(6/19) 2415759321009357 a001 4870847/14930352*832040^(6/19) 2415759321009434 a001 7881196/433494437*7778742049^(6/19) 2415759321009468 a001 20633239/1134903170*7778742049^(6/19) 2415759321009472 a001 54018521/2971215073*7778742049^(6/19) 2415759321009473 a001 141422324/7778742049*7778742049^(6/19) 2415759321009473 a001 370248451/20365011074*7778742049^(6/19) 2415759321009473 a001 969323029/53316291173*7778742049^(6/19) 2415759321009473 a001 2537720636/139583862445*7778742049^(6/19) 2415759321009473 a001 6643838879/365435296162*7778742049^(6/19) 2415759321009473 a001 17393796001/956722026041*7778742049^(6/19) 2415759321009473 a001 45537549124/2504730781961*7778742049^(6/19) 2415759321009473 a001 119218851371/6557470319842*7778742049^(6/19) 2415759321009473 a001 64300051206/3536736619241*7778742049^(6/19) 2415759321009473 a001 73681302247/4052739537881*7778742049^(6/19) 2415759321009473 a001 228811001/12585437040*7778742049^(6/19) 2415759321009473 a001 10749957122/591286729879*7778742049^(6/19) 2415759321009473 a001 1368706081/75283811239*7778742049^(6/19) 2415759321009473 a001 1568397607/86267571272*7778742049^(6/19) 2415759321009473 a001 199691526/10983760033*7778742049^(6/19) 2415759321009473 a001 228826127/12586269025*7778742049^(6/19) 2415759321009474 a001 29134601/1602508992*7778742049^(6/19) 2415759321009475 a001 33385282/1836311903*7778742049^(6/19) 2415759321009488 a001 4250681/233802911*7778742049^(6/19) 2415759321009575 a001 4870847/267914296*7778742049^(6/19) 2415759321009966 a001 1860498/5702887*832040^(6/19) 2415759321010171 a001 15126/831985*7778742049^(6/19) 2415759321014138 a001 101521/311187*832040^(6/19) 2415759321014257 a001 710647/39088169*7778742049^(6/19) 2415759321042262 a001 90481/4976784*7778742049^(6/19) 2415759321042737 a001 271443/832040*832040^(6/19) 2415759321234211 a001 103682/5702887*7778742049^(6/19) 2415759321238759 a001 103682/317811*832040^(6/19) 2415759321879609 a005 (1/cos(6/233*Pi))^1675 2415759322549847 a001 13201/726103*7778742049^(6/19) 2415759322582312 a001 39603/121393*832040^(6/19) 2415759327667049 a007 Real Root Of 600*x^4-172*x^3+640*x^2-750*x-223 2415759331567354 a001 15127/832040*7778742049^(6/19) 2415759331775470 r005 Im(z^2+c),c=-41/78+19/48*I,n=29 2415759331791159 a001 2161/6624*832040^(6/19) 2415759335044855 a007 Real Root Of -29*x^4-712*x^3-244*x^2+747*x-697 2415759349782184 a007 Real Root Of 892*x^4+336*x^3-142*x^2-981*x-227 2415759360775253 a007 Real Root Of 512*x^4+787*x^3-766*x^2+635*x-338 2415759366610622 m005 (1/3*Zeta(3)-2/3)/(1/5*2^(1/2)+9/11) 2415759366720022 m001 exp(Pi)+ln(2)*Porter 2415759367741589 r002 15i'th iterates of 2*x/(1-x^2) of 2415759368199108 r005 Im(z^2+c),c=-11/41*I,n=16 2415759371561178 a001 567451585/161*843^(2/7) 2415759375277314 r002 4th iterates of z^2 + 2415759375411856 m001 ln(Trott)^2*Niven/Zeta(3)^2 2415759378379720 m001 GAMMA(23/24)+Tribonacci^cos(1) 2415759379197588 r005 Im(z^2+c),c=-89/118+13/56*I,n=6 2415759379874262 m005 (1/2*exp(1)+8/11)/(6/7*Zeta(3)-1/6) 2415759384300348 r002 59i'th iterates of 2*x/(1-x^2) of 2415759390780392 m001 (Psi(2,1/3)-BesselK(1,1))^Ei(1,1) 2415759392009467 p004 log(30977/24329) 2415759393374266 a001 1926/105937*7778742049^(6/19) 2415759394909535 a001 5778/17711*832040^(6/19) 2415759405580069 r009 Re(z^3+c),c=-4/23+33/41*I,n=4 2415759407795841 r005 Re(z^2+c),c=-6/31+15/31*I,n=38 2415759412568386 m002 -3+3/Pi^2-Pi^2-Cosh[Pi] 2415759414194202 a007 Real Root Of -543*x^4-736*x^3+967*x^2-697*x+790 2415759423181917 r009 Re(z^3+c),c=-10/27+28/61*I,n=15 2415759424541619 m001 (Ei(1)-FeigenbaumB)/TreeGrowth2nd 2415759430479908 m001 Trott*ln(Robbin)^2/BesselJ(0,1) 2415759436440016 r005 Re(z^2+c),c=9/34+9/61*I,n=47 2415759436712666 m001 Zeta(5)^2/ln(TwinPrimes)*cos(Pi/12)^2 2415759440562014 b008 4/11+CosIntegral[Pi/10] 2415759442468128 a007 Real Root Of 344*x^4+596*x^3-303*x^2+462*x-429 2415759445655509 a001 10182505537/2889*199^(4/11) 2415759451247737 a001 440719107401*8^(9/11) 2415759460860549 q001 466/1929 2415759463214689 a007 Real Root Of -359*x^4+34*x^3+590*x^2+883*x-247 2415759466887593 m001 exp(FeigenbaumC)/GaussKuzminWirsing*Trott^2 2415759474261299 r002 7th iterates of z^2 + 2415759487810093 a007 Real Root Of 151*x^4+199*x^3-502*x^2+23*x+648 2415759493822153 a005 (1/cos(1/83*Pi))^1231 2415759504474888 r005 Im(z^2+c),c=-57/98+1/34*I,n=13 2415759507458338 a001 53316291173/15127*199^(4/11) 2415759516475250 a001 139583862445/39603*199^(4/11) 2415759517790799 a001 182717648081/51841*199^(4/11) 2415759517982735 a001 956722026041/271443*199^(4/11) 2415759518010738 a001 2504730781961/710647*199^(4/11) 2415759518014824 a001 3278735159921/930249*199^(4/11) 2415759518015789 a001 10610209857723/3010349*199^(4/11) 2415759518017349 a001 4052739537881/1149851*199^(4/11) 2415759518028045 a001 387002188980/109801*199^(4/11) 2415759518101358 a001 591286729879/167761*199^(4/11) 2415759518603854 a001 225851433717/64079*199^(4/11) 2415759522048007 a001 21566892818/6119*199^(4/11) 2415759536748174 r009 Im(z^3+c),c=-59/98+12/41*I,n=12 2415759538096974 a007 Real Root Of -83*x^4+579*x^3-978*x^2+297*x-346 2415759540753042 a007 Real Root Of 206*x^4+45*x^3-984*x^2-29*x-709 2415759543595511 a007 Real Root Of -203*x^4-258*x^3+343*x^2+883*x-229 2415759545654589 a001 32951280099/9349*199^(4/11) 2415759552905857 m001 (Niven+Rabbit)/(Artin+Kac) 2415759557904225 r005 Re(z^2+c),c=-13/44+3/56*I,n=5 2415759572457855 l006 ln(9120/9343) 2415759583175869 a007 Real Root Of 428*x^4+587*x^3-884*x^2+657*x+445 2415759601303584 r005 Im(z^2+c),c=-5/4+3/98*I,n=61 2415759608505133 r005 Re(z^2+c),c=21/82+6/43*I,n=33 2415759614373894 a001 701408733/322*843^(5/14) 2415759615216238 b008 PolyGamma[2,Tan[1/5]] 2415759620183168 l006 ln(7074/9007) 2415759630456422 m001 Totient^Rabbit/(Totient^(2*Pi/GAMMA(5/6))) 2415759645850602 m001 1/GAMMA(7/24)^2*ln(GAMMA(13/24))^2*Zeta(1,2) 2415759656094938 a003 sin(Pi*8/95)*sin(Pi*3/8) 2415759662807527 a007 Real Root Of -350*x^4-582*x^3+574*x^2+211*x+875 2415759664937686 m001 (Zeta(5)+BesselI(1,2))/(Artin-MinimumGamma) 2415759664981623 m001 (-Ei(1)+Landau)/(Chi(1)-Psi(2,1/3)) 2415759666564173 a007 Real Root Of -323*x^4-498*x^3+37*x^2+331*x-74 2415759674876986 r005 Re(z^2+c),c=41/122+7/47*I,n=21 2415759695702118 s002 sum(A236014[n]/(n^3*pi^n-1),n=1..infinity) 2415759698533724 a001 36/341*2537720636^(8/9) 2415759698533724 a001 36/341*312119004989^(8/11) 2415759698533724 a001 36/341*(1/2+1/2*5^(1/2))^40 2415759698533724 a001 36/341*23725150497407^(5/8) 2415759698533724 a001 36/341*73681302247^(10/13) 2415759698533724 a001 36/341*28143753123^(4/5) 2415759698533724 a001 36/341*10749957122^(5/6) 2415759698533724 a001 36/341*4106118243^(20/23) 2415759698533724 a001 36/341*1568397607^(10/11) 2415759698533724 a001 36/341*599074578^(20/21) 2415759698757749 a001 305/161*45537549124^(2/3) 2415759698757749 a001 305/161*(1/2+1/2*5^(1/2))^34 2415759698757749 a001 305/161*10749957122^(17/24) 2415759698757749 a001 305/161*4106118243^(17/23) 2415759698757749 a001 305/161*1568397607^(17/22) 2415759698757749 a001 305/161*599074578^(17/21) 2415759698757749 a001 305/161*228826127^(17/20) 2415759698757749 a001 305/161*87403803^(17/19) 2415759698757751 a001 305/161*33385282^(17/18) 2415759705924055 h001 (-11*exp(4)+2)/(-2*exp(2)-10) 2415759706420133 m001 GAMMA(5/12)^Zeta(3)/GAMMA(23/24) 2415759707404211 r009 Re(z^3+c),c=-23/56+15/28*I,n=64 2415759707456516 a001 12586269025/3571*199^(4/11) 2415759707550310 r009 Im(z^3+c),c=-13/32+6/43*I,n=29 2415759721244575 m001 1/exp(Zeta(3))*GAMMA(1/24)/cos(1)^2 2415759722387622 m005 (1/2*5^(1/2)+5/8)/(1/7*Pi+3/11) 2415759724533659 m001 (exp(1)+Chi(1))/(exp(1/exp(1))+Trott2nd) 2415759728325040 r005 Re(z^2+c),c=-24/31+4/39*I,n=34 2415759739899375 a007 Real Root Of -386*x^4-887*x^3+331*x^2+879*x+833 2415759753021693 m001 (ln(5)+gamma(1))/(2*Pi/GAMMA(5/6)+Kolakoski) 2415759753990456 m001 (1-Zeta(3))/(cos(1/5*Pi)+Trott2nd) 2415759758047063 r005 Im(z^2+c),c=13/54+1/8*I,n=14 2415759762618450 m001 (MinimumGamma*Stephens-ln(gamma))/Stephens 2415759767975344 r002 6th iterates of z^2 + 2415759769736001 m001 BesselK(0,1)^2*Lehmer^2/ln(BesselK(1,1))^2 2415759771609203 g006 Psi(1,1/11)+Psi(1,5/6)-Psi(1,1/12)-Psi(1,7/11) 2415759779481192 a007 Real Root Of 199*x^4+116*x^3-919*x^2+286*x+912 2415759782172660 m001 (Bloch+ErdosBorwein)/(Zeta(1,-1)+GAMMA(23/24)) 2415759785553582 a007 Real Root Of 240*x^4-774*x^3+404*x^2-897*x-252 2415759793893666 p003 LerchPhi(1/5,4,211/147) 2415759794306968 a007 Real Root Of -9*x^4-178*x^3+993*x^2+998*x+330 2415759805087107 p001 sum((-1)^n/(464*n+41)/(8^n),n=0..infinity) 2415759805136479 m005 (1/3*2^(1/2)-1/3)/(1/11*Pi-6/7) 2415759812703029 m001 GaussKuzminWirsing/(FeigenbaumDelta^ZetaR(2)) 2415759812717509 r005 Im(z^2+c),c=-9/32+23/62*I,n=25 2415759816786397 r005 Re(z^2+c),c=-13/66+10/21*I,n=34 2415759817005143 a001 2207/121393*7778742049^(6/19) 2415759823989851 r005 Re(z^2+c),c=-19/122+32/59*I,n=19 2415759825125879 a001 233/1149851*3^(4/25) 2415759825564234 l006 ln(116/1299) 2415759827529321 a001 2207/6765*832040^(6/19) 2415759844771407 h001 (-exp(4)-3)/(-8*exp(8)+5) 2415759856644830 g006 Psi(1,8/9)+Psi(1,3/8)+Psi(1,4/7)+Psi(1,1/3) 2415759857186634 a001 433494437/322*843^(3/7) 2415759859893421 a007 Real Root Of -650*x^4+474*x^3+802*x^2+893*x-267 2415759873940201 m001 (Kolakoski+Riemann3rdZero)/(Bloch+Gompertz) 2415759875516496 m001 1/exp(FeigenbaumD)/Porter^2/GAMMA(1/4)^2 2415759880303129 m001 exp(TwinPrimes)^2/Khintchine/gamma 2415759886245577 m002 Pi^3*Csch[Pi]+(E^Pi*Tanh[Pi])/ProductLog[Pi] 2415759892487204 m001 Zeta(1/2)^exp(1/Pi)-GAMMA(1/24) 2415759895731852 m005 (3/5+1/10*5^(1/2))/(3*2^(1/2)-5/6) 2415759901106708 r005 Im(z^2+c),c=3/25+13/62*I,n=13 2415759904044506 m004 -2-125*Pi+5*Sinh[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi] 2415759919639959 r005 Im(z^2+c),c=-51/110+19/44*I,n=26 2415759926627432 l006 ln(3623/4613) 2415759938316380 m005 (1/5*2^(1/2)-4)/(3/4*exp(1)-1/2) 2415759938885031 m001 1/ln(GAMMA(1/4))/MadelungNaCl^2/GAMMA(23/24)^2 2415759953269829 m001 Ei(1,1)*(Psi(1,1/3)+Catalan) 2415759956003611 a003 cos(Pi*39/92)/sin(Pi*24/55) 2415759968536980 m001 (Zeta(1,2)+Kac)/(Stephens+TravellingSalesman) 2415759997559646 m001 1/BesselJ(0,1)/ln(ArtinRank2)/GAMMA(3/4)^2 2415760002493747 p001 sum(1/(452*n+357)/n/(512^n),n=1..infinity) 2415760003550188 a007 Real Root Of 446*x^4+533*x^3-898*x^2+964*x-106 2415760006087261 m005 (3/5*Pi+4)/(5^(1/2)+1/5) 2415760013687194 m001 1/ln(TreeGrowth2nd)^2*Paris*GAMMA(17/24)^2 2415760015118694 a007 Real Root Of 285*x^4+502*x^3-716*x^2-934*x-707 2415760015545739 m001 (cos(1/5*Pi)*ln(Pi)+Tribonacci)/ln(Pi) 2415760016485703 m001 (Otter-RenyiParking)/(GAMMA(2/3)-BesselJ(1,1)) 2415760027440073 m001 CareFree/(Lehmer-ln(2)/ln(10)) 2415760029162239 r005 Re(z^2+c),c=5/126+22/35*I,n=44 2415760029420663 r005 Im(z^2+c),c=-8/17+23/54*I,n=49 2415760032491000 a001 7/317811*233^(1/59) 2415760049124643 a007 Real Root Of -270*x^4-250*x^3+624*x^2-612*x+551 2415760049462088 r005 Im(z^2+c),c=-9/22+23/54*I,n=22 2415760050024474 r005 Re(z^2+c),c=11/32+4/29*I,n=22 2415760063232424 a001 167761/233*4807526976^(6/23) 2415760063340386 a001 3010349/233*75025^(6/23) 2415760070965205 p004 log(35129/3137) 2415760072335996 m001 (ln(gamma)+Trott)/(2^(1/3)-Zeta(5)) 2415760073295326 a001 17711/123*76^(28/43) 2415760076339135 a003 sin(Pi*8/79)*sin(Pi*25/89) 2415760084744466 r005 Im(z^2+c),c=-6/5+13/71*I,n=15 2415760089245905 a007 Real Root Of -918*x^4+92*x^3-738*x^2+652*x+205 2415760096641155 m006 (4/5*exp(2*Pi)+4/5)/(1/3*exp(2*Pi)-5/6) 2415760099999399 a001 133957148/161*843^(1/2) 2415760132664292 h001 (1/8*exp(1)+1/11)/(1/7*exp(2)+8/11) 2415760138563426 m001 PrimesInBinary^2/CopelandErdos/ln(gamma)^2 2415760141145292 m005 (1/2*Pi+8/11)/(2/11*3^(1/2)+7/11) 2415760143493741 m001 gamma(2)/FeigenbaumDelta/Thue 2415760145082216 r005 Re(z^2+c),c=7/22+3/17*I,n=18 2415760152306766 r005 Im(z^2+c),c=-75/118+2/45*I,n=45 2415760154195301 h001 (9/10*exp(1)+7/9)/(1/3*exp(1)+3/7) 2415760170110487 a007 Real Root Of 800*x^4-234*x^3+652*x^2+199*x+4 2415760172126546 r008 a(0)=0,K{-n^6,32*n^3+140*n^2+182*n+60} 2415760172799838 r008 a(0)=0,K{-n^6,28*n^3+150*n^2+180*n+56} 2415760173231813 m001 (ThueMorse+ZetaP(2))/(ArtinRank2-Robbin) 2415760176223954 r005 Im(z^2+c),c=-12/25+26/61*I,n=54 2415760177414385 a005 (1/cos(17/233*Pi))^1684 2415760182163659 a007 Real Root Of -348*x^4-561*x^3+740*x^2-131*x-692 2415760195329776 r005 Re(z^2+c),c=15/106+37/54*I,n=14 2415760208441277 a007 Real Root Of -586*x^4-623*x^3-466*x^2+731*x+197 2415760210475413 a007 Real Root Of -39*x^4-966*x^3-548*x^2+722*x+959 2415760218860738 l006 ln(7418/9445) 2415760231857194 a007 Real Root Of -729*x^4-620*x^3-466*x^2+319*x+98 2415760233577575 r002 19th iterates of z^2 + 2415760234003278 a001 13/18*322^(31/51) 2415760234748565 r002 54th iterates of z^2 + 2415760240033701 r009 Re(z^3+c),c=-1/24+25/41*I,n=46 2415760247894491 m001 1/Catalan^2/ln(Porter)*log(1+sqrt(2))^2 2415760262475834 m001 1/exp(Salem)^2/PrimesInBinary/GAMMA(7/24)^2 2415760277357163 m005 (1/3*Catalan-1/11)/(1/4*3^(1/2)+5/11) 2415760290472200 a007 Real Root Of -510*x^4-920*x^3+794*x^2+492*x+954 2415760294070351 h001 (1/6*exp(1)+4/11)/(11/12*exp(1)+8/9) 2415760295300006 r005 Re(z^2+c),c=-13/44+8/39*I,n=5 2415760302200205 r005 Re(z^2+c),c=-5/4+25/217*I,n=6 2415760305433590 m001 (exp(1)+Si(Pi))/(-ln(2)+Sierpinski) 2415760316369186 m001 Niven/(LandauRamanujan2nd^Cahen) 2415760316409802 a007 Real Root Of -26*x^4-621*x^3+188*x^2+405*x+133 2415760322422199 a007 Real Root Of -22*x^4+183*x^3-495*x^2+830*x-947 2415760326096919 m005 (1/2*2^(1/2)-4/5)/(2/3*3^(1/2)-5) 2415760340635820 m001 (1+BesselI(1,1))/(MasserGramain+ZetaQ(4)) 2415760341942762 a001 14930208*322^(1/12) 2415760342812188 a001 165580141/322*843^(4/7) 2415760345861745 p001 sum(1/(303*n+50)/n/(12^n),n=1..infinity) 2415760364001345 m001 (ArtinRank2*Porter+Robbin)/ArtinRank2 2415760382586010 m002 Cosh[Pi]/5+25/Log[Pi] 2415760388188889 r009 Im(z^3+c),c=-13/34+6/35*I,n=2 2415760391557248 a007 Real Root Of -555*x^4-880*x^3+823*x^2-668*x+79 2415760392226386 r009 Im(z^3+c),c=-17/40+6/49*I,n=39 2415760393310194 m001 Mills^LandauRamanujan2nd*Mills^exp(1) 2415760396834822 m001 (ln(2)+Mills)/(QuadraticClass-ZetaQ(2)) 2415760404489382 s001 sum(exp(-2*Pi/3)^n*A184503[n],n=1..infinity) 2415760414426638 m006 (3*Pi^2+2)/(3/5*exp(Pi)-4/5) 2415760416316166 r005 Re(z^2+c),c=9/34+9/61*I,n=46 2415760422278512 m005 (1/2*2^(1/2)-2/5)/(4/9*Pi-1/8) 2415760433840778 a007 Real Root Of 42*x^4-347*x^3+63*x^2-589*x-151 2415760435301627 m001 Ei(1)^2*Si(Pi)/ln(log(2+sqrt(3))) 2415760439257533 a007 Real Root Of -410*x^4-676*x^3+865*x^2-68*x-779 2415760444463791 m001 1/GAMMA(1/3)^2*ln(Robbin)^2*Zeta(7)^2 2415760449734739 h001 (9/11*exp(2)+7/11)/(3/4*exp(1)+8/11) 2415760452459640 a001 55/18*29^(35/57) 2415760458174789 m008 (5/6*Pi^6-3/4)/(4/5*Pi+4/5) 2415760472310167 r009 Im(z^3+c),c=-13/32+6/43*I,n=31 2415760477321752 b008 Sinh[4*Sech[1/4]] 2415760478809016 m001 1/exp(MadelungNaCl)^2*Kolakoski*Zeta(9) 2415760483499310 m001 (-Lehmer+MertensB2)/(ln(2)/ln(10)+GAMMA(7/12)) 2415760484430668 m001 Sierpinski*ln(Artin)^2*cos(Pi/12) 2415760485969284 m001 (QuadraticClass-Stephens)^Psi(2,1/3) 2415760486740632 r005 Im(z^2+c),c=-29/110+21/62*I,n=6 2415760488470812 p001 sum((-1)^n/(615*n+401)/(12^n),n=0..infinity) 2415760491679009 m001 (-sin(1/12*Pi)+ZetaQ(2))/(Psi(1,1/3)-ln(5)) 2415760492346935 r009 Re(z^3+c),c=-9/38+2/21*I,n=13 2415760493199760 r009 Re(z^3+c),c=-9/38+2/21*I,n=14 2415760493513238 r009 Re(z^3+c),c=-9/38+2/21*I,n=15 2415760493554777 r009 Re(z^3+c),c=-9/38+2/21*I,n=20 2415760493554791 r009 Re(z^3+c),c=-9/38+2/21*I,n=21 2415760493554798 r009 Re(z^3+c),c=-9/38+2/21*I,n=22 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=27 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=28 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=29 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=34 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=35 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=36 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=37 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=41 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=42 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=43 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=44 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=49 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=48 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=50 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=51 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=56 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=55 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=57 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=58 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=60 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=61 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=62 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=63 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=64 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=59 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=54 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=53 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=52 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=47 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=46 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=45 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=40 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=39 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=38 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=33 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=32 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=30 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=31 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=26 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=25 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=23 2415760493554799 r009 Re(z^3+c),c=-9/38+2/21*I,n=24 2415760493554830 r009 Re(z^3+c),c=-9/38+2/21*I,n=19 2415760493555457 r009 Re(z^3+c),c=-9/38+2/21*I,n=18 2415760493558036 r009 Re(z^3+c),c=-9/38+2/21*I,n=17 2415760493559703 r009 Re(z^3+c),c=-9/38+2/21*I,n=16 2415760494117716 r009 Re(z^3+c),c=-9/38+2/21*I,n=12 2415760497849205 l006 ln(3795/4832) 2415760504900271 s002 sum(A206826[n]/(pi^n+1),n=1..infinity) 2415760518063546 m001 (MertensB3+Tribonacci)/(cos(1/12*Pi)-GaussAGM) 2415760523325303 r009 Re(z^3+c),c=-9/38+2/21*I,n=11 2415760523990534 h001 (-exp(3)+1)/(-2*exp(-3)+8) 2415760529258804 m001 FeigenbaumDelta^(GAMMA(5/24)/GAMMA(5/12)) 2415760529651683 m005 (1/2*exp(1)+1/11)/(5/7*Catalan-5/7) 2415760543850761 r005 Re(z^2+c),c=-5/74+33/52*I,n=51 2415760548464816 r002 15th iterates of z^2 + 2415760563930461 a003 cos(Pi*4/21)/cos(Pi*7/18) 2415760568110361 h001 (1/9*exp(2)+7/11)/(7/9*exp(2)+2/7) 2415760569120980 a007 Real Root Of -37*x^4-924*x^3-767*x^2-962*x-947 2415760583113686 r009 Re(z^3+c),c=-13/90+55/61*I,n=40 2415760583399737 r009 Re(z^3+c),c=-39/70+17/59*I,n=40 2415760585625001 a001 14619165/46*843^(9/14) 2415760593428824 r002 6th iterates of z^2 + 2415760597241498 r002 29th iterates of z^2 + 2415760604373375 m001 (5^(1/2)+LambertW(1))/(Zeta(5)+Champernowne) 2415760608040224 m001 (3^(1/3)+MinimumGamma)/Zeta(3) 2415760623379589 a003 cos(Pi*9/71)-cos(Pi*11/42) 2415760625505331 m005 (1/2*Catalan+2)/(3*Pi+3/4) 2415760633470864 m005 (4/5*exp(1)+3/4)/(2/3*Catalan+3/5) 2415760640114241 h001 (4/9*exp(2)+5/6)/(3/10*exp(1)+8/9) 2415760649906986 m001 (ErdosBorwein-Trott)/(sin(1/5*Pi)-gamma(1)) 2415760657056641 a001 987/167761*47^(55/57) 2415760658736808 r009 Re(z^3+c),c=-9/38+2/21*I,n=10 2415760660709815 m005 (1/2*3^(1/2)+5/8)/(2*Pi-1/9) 2415760669762116 a007 Real Root Of -338*x^4-479*x^3+902*x^2+576*x+886 2415760695556211 m001 1/FransenRobinson^2/Artin^2/exp(GAMMA(1/4)) 2415760697604074 m001 (GolombDickman+Paris)/(FeigenbaumMu-gamma) 2415760706404979 m001 (gamma(3)+MasserGramain)/(Paris+Sierpinski) 2415760723058167 m001 2/3/(BesselJ(1,1)-ThueMorse) 2415760746804983 m001 (Lehmer-Otter)/(cos(1/5*Pi)-KomornikLoreti) 2415760750376853 a007 Real Root Of 193*x^4+438*x^3+316*x^2+679*x-602 2415760756524746 m005 (1/3*5^(1/2)-2/7)/(1/7*gamma-3/11) 2415760760861223 a007 Real Root Of 948*x^4+475*x^3+239*x^2-757*x+159 2415760764473322 l006 ln(7762/9883) 2415760764620413 a007 Real Root Of 74*x^4-130*x^3-432*x^2+363*x-955 2415760765413251 m001 exp(1)*GaussAGM(1,1/sqrt(2))*exp(sinh(1))^2 2415760767819532 l006 ln(817/9149) 2415760779647275 a007 Real Root Of -62*x^4+223*x^3+785*x^2-56*x+539 2415760780100596 m001 (ln(3)+BesselI(1,1)*Bloch)/BesselI(1,1) 2415760790653863 r005 Re(z^2+c),c=15/64+7/60*I,n=15 2415760792903386 m001 Riemann1stZero^2*Paris^2/ln(sqrt(5)) 2415760806971725 r005 Re(z^2+c),c=-17/14+13/44*I,n=10 2415760812425972 m001 FeigenbaumC/exp(Niven)/GAMMA(19/24)^2 2415760816464011 a001 1201881744/341*199^(4/11) 2415760820055683 b008 -36/119+E 2415760827331448 r009 Re(z^3+c),c=-9/38+2/21*I,n=9 2415760828437839 a001 31622993/161*843^(5/7) 2415760834634832 m001 Backhouse+GlaisherKinkelin^Zeta(1,-1) 2415760836696337 m001 (1+Zeta(1/2))/(-BesselI(0,2)+Artin) 2415760848560457 r009 Re(z^3+c),c=-17/44+24/49*I,n=35 2415760862800524 r002 6th iterates of z^2 + 2415760866387763 r009 Re(z^3+c),c=-23/66+15/37*I,n=22 2415760867721471 a007 Real Root Of 268*x^4+465*x^3-48*x^2+959*x+25 2415760869254095 r009 Re(z^3+c),c=-15/106+31/33*I,n=10 2415760869565217 q001 889/368 2415760872009814 a007 Real Root Of 64*x^4+171*x^3+121*x^2+29*x-405 2415760873749740 m001 (KomornikLoreti+ZetaP(4))/(Chi(1)-ln(5)) 2415760879924026 m001 (Bloch+Niven)/(OneNinth-Paris) 2415760881646722 m001 BesselI(1,2)+GAMMA(5/6)-GaussKuzminWirsing 2415760881646722 m001 BesselI(1,2)-GaussKuzminWirsing+GAMMA(5/6) 2415760881959023 m005 (1/3*Zeta(3)+1/10)/(21/22+1/2*5^(1/2)) 2415760890884702 p001 sum((-1)^n/(134*n+41)/(24^n),n=0..infinity) 2415760893942424 a007 Real Root Of 386*x^4+399*x^3-787*x^2+893*x-771 2415760915787127 r005 Im(z^2+c),c=-17/14+20/89*I,n=6 2415760920523582 a007 Real Root Of 901*x^4-385*x^3-354*x^2-281*x+7 2415760923741864 l006 ln(701/7850) 2415760930419424 m001 (-BesselK(0,1)+Magata)/(1-5^(1/2)) 2415760930419424 m001 cos(1/5*Pi)*(BesselK(0,1)-Magata) 2415760931169566 m005 (1/2*Pi+4)/(9/11*3^(1/2)+8/9) 2415760933546777 m001 (2*Pi/GAMMA(5/6)-FeigenbaumB)/(Trott+ZetaQ(3)) 2415760950491884 r005 Im(z^2+c),c=-145/126+7/29*I,n=25 2415760963127520 a007 Real Root Of 234*x^4+577*x^3+510*x^2+799*x-881 2415760979932667 r009 Re(z^3+c),c=-33/86+29/60*I,n=41 2415760979957168 r005 Re(z^2+c),c=-6/29+31/39*I,n=24 2415760980226025 r009 Re(z^3+c),c=-67/118+15/52*I,n=19 2415760980310069 m001 Si(Pi)+FellerTornier*MadelungNaCl 2415760990700638 s002 sum(A283050[n]/((2^n-1)/n),n=1..infinity) 2415760997565956 r005 Im(z^2+c),c=-39/74+3/47*I,n=10 2415761011211214 k006 concat of cont frac of 2415761015581952 m005 (1/2*Zeta(3)+3/7)/(1/7*Pi-7/8) 2415761019537224 l006 ln(3967/5051) 2415761019537224 p004 log(5051/3967) 2415761019574247 m001 (-GlaisherKinkelin+Thue)/(cos(1/12*Pi)-exp(1)) 2415761025548918 m001 (cos(1)+Rabbit)/polylog(4,1/2) 2415761036165225 m001 (-Gompertz+Lehmer)/(2^(1/2)+Champernowne) 2415761047682573 a007 Real Root Of 64*x^4+188*x^3+268*x^2+258*x-470 2415761048976855 h001 (2/5*exp(1)+7/12)/(1/11*exp(1)+4/9) 2415761052981326 m005 (1/2*Catalan-2)/(9/11*Catalan-1/9) 2415761057595457 m001 (Salem+ZetaQ(3))/(GAMMA(17/24)-Kolakoski) 2415761057907249 r005 Im(z^2+c),c=-39/94+25/48*I,n=28 2415761066275973 a007 Real Root Of -130*x^4+692*x^3+894*x^2+859*x-269 2415761071250701 a001 39088169/322*843^(11/14) 2415761072191628 a007 Real Root Of 26*x^4+662*x^3+854*x^2+882*x+878 2415761073658705 m001 (Cahen+1/3)/(exp(-Pi)+4) 2415761074560882 m001 3^(1/2)-Zeta(5)+Pi*csc(1/24*Pi)/GAMMA(23/24) 2415761074560882 m001 Zeta(5)-sqrt(3)-GAMMA(1/24) 2415761080586523 a001 34/5779*47^(55/57) 2415761085086166 a001 64079/34*610^(28/37) 2415761085635002 a007 Real Root Of -509*x^4-313*x^3+510*x^2+370*x-113 2415761092936872 m005 (1/4*Pi+1/3)/(3/5*exp(1)+3) 2415761093461490 m001 Khinchin^BesselJ(0,1)/QuadraticClass 2415761111105113 k007 concat of cont frac of 2415761118850554 a001 123/377*9227465^(5/9) 2415761120949451 a007 Real Root Of -218*x^4-381*x^3+785*x^2+659*x-936 2415761137381773 m001 ArtinRank2+Conway+PrimesInBinary 2415761139812385 r005 Im(z^2+c),c=-63/62+13/54*I,n=41 2415761140125227 r005 Re(z^2+c),c=-3/4+8/199*I,n=4 2415761141500019 l006 ln(585/6551) 2415761142378700 a001 6765/1149851*47^(55/57) 2415761143695151 m001 Rabbit^2*KhintchineLevy^2*exp(GAMMA(3/4)) 2415761145496669 s001 sum(exp(-Pi/4)^(n-1)*A247715[n],n=1..infinity) 2415761148242420 a005 (1/cos(37/106*Pi))^7 2415761151394057 a001 17711/3010349*47^(55/57) 2415761153522294 a001 28657/4870847*47^(55/57) 2415761156268682 m001 1/Kolakoski*Si(Pi)*ln(Riemann3rdZero)^2 2415761156965854 a001 5473/930249*47^(55/57) 2415761180568366 a001 4181/710647*47^(55/57) 2415761188841676 a001 121393/123*3^(22/27) 2415761194072972 r005 Im(z^2+c),c=-7/13+20/47*I,n=60 2415761198899362 m001 (PrimesInBinary+Sarnak)/(Conway-FeigenbaumB) 2415761200396407 m001 ln(2)/ln(10)/(exp(1/2)^BesselJ(1,1)) 2415761202029961 m002 3/(E^Pi*Pi^2)+ProductLog[Pi]/Pi^4 2415761204641813 p001 sum(1/(451*n+358)/n/(512^n),n=1..infinity) 2415761213197309 h001 (-9*exp(2)+9)/(-12*exp(3)+3) 2415761216235840 r005 Im(z^2+c),c=-49/94+8/13*I,n=38 2415761222253842 h001 (3/11*exp(1)+10/11)/(9/10*exp(2)+2/11) 2415761235101746 m001 MertensB1*(Landau-Porter) 2415761249415692 a001 1/615*17711^(8/29) 2415761254546034 m005 (1/3*exp(1)+3/7)/(-93/140+1/20*5^(1/2)) 2415761270645586 m001 1/exp(GAMMA(11/24))/BesselK(1,1)*Zeta(9)^2 2415761273287978 a001 377/2207*2^(1/2) 2415761275253955 m005 (1/2*exp(1)+7/12)/(6*2^(1/2)-4/9) 2415761294739393 r005 Im(z^2+c),c=-33/98+1/27*I,n=16 2415761309845556 a007 Real Root Of 220*x^4+591*x^3+480*x^2+808*x-10 2415761313264329 m001 (Bloch-Otter)/(Stephens+ZetaP(2)) 2415761313602978 m005 (1/2*Pi-6)/(2/11*Catalan-2) 2415761314063589 a001 24157817/322*843^(6/7) 2415761325948225 r001 25i'th iterates of 2*x^2-1 of 2415761333928058 a007 Real Root Of -341*x^4-912*x^3-596*x^2-773*x+367 2415761342342385 a001 1597/271443*47^(55/57) 2415761347017974 a007 Real Root Of 218*x^4+655*x^3+534*x^2+817*x+667 2415761352974792 m001 (-Mills+TreeGrowth2nd)/(2^(1/2)-GAMMA(11/12)) 2415761353610484 r009 Re(z^3+c),c=-41/110+28/61*I,n=43 2415761367973735 a008 Real Root of (-6+2*x+5*x^2-5*x^3-6*x^4+3*x^5) 2415761376685533 a007 Real Root Of 245*x^4+732*x^3+799*x^2-848*x-242 2415761388024590 r008 a(0)=0,K{-n^6,(2*n+1)*(89+30*n^2+19*n)} 2415761389577519 a007 Real Root Of -333*x^4+100*x^3+447*x^2+963*x-259 2415761392117629 r008 a(0)=0,K{-n^6,34*n^3+133*n^2+184*n+63} 2415761392796379 r008 a(0)=0,K{-n^6,30*n^3+143*n^2+182*n+59} 2415761393812694 m001 Niven/arctan(1/3)/Ei(1,1) 2415761398774029 m001 (-arctan(1/2)+Landau)/(exp(1)+gamma) 2415761400529195 r005 Im(z^2+c),c=-31/122+14/37*I,n=8 2415761403729502 a007 Real Root Of 231*x^4+707*x^3+138*x^2-615*x-191 2415761410074411 a007 Real Root Of -31*x^4+747*x^3-787*x^2+631*x+209 2415761411574431 a007 Real Root Of -385*x^4-930*x^3+478*x^2+901*x-612 2415761411596913 m001 (1-ln(Pi))/(-cos(1/12*Pi)+GAMMA(23/24)) 2415761412806904 r005 Re(z^2+c),c=19/48+7/26*I,n=27 2415761431760561 a007 Real Root Of 162*x^4+178*x^3-223*x^2+297*x-989 2415761432861111 k008 concat of cont frac of 2415761437321352 a001 3/2*7^(12/49) 2415761458526995 r008 a(0)=2,K{-n^6,25-61*n+4*n^2+30*n^3} 2415761466976407 l006 ln(469/5252) 2415761469893821 m001 (ln(Pi)+Gompertz)^BesselI(1,2) 2415761485343552 a007 Real Root Of -533*x^4+364*x^3+723*x^2+387*x-139 2415761486541894 m005 (1/2*2^(1/2)+3/5)/(5/12*2^(1/2)-6) 2415761497523148 a007 Real Root Of 196*x^4+298*x^3-946*x^2-894*x+887 2415761497866756 l006 ln(4139/5270) 2415761503311119 r005 Im(z^2+c),c=-67/106+4/15*I,n=16 2415761528603523 m001 MadelungNaCl^GAMMA(2/3)/QuadraticClass 2415761529138866 a007 Real Root Of -148*x^4-561*x^3-700*x^2-420*x+202 2415761539040924 r005 Re(z^2+c),c=-23/31+8/61*I,n=27 2415761551602120 m001 FeigenbaumC/(exp(-1/2*Pi)-cos(1/12*Pi)) 2415761556876497 a001 7465176/161*843^(13/14) 2415761562509872 r005 Im(z^2+c),c=-19/78+14/39*I,n=24 2415761569540911 r005 Re(z^2+c),c=-25/122+16/35*I,n=18 2415761571620506 a007 Real Root Of -164*x^4-45*x^3+985*x^2+121*x-505 2415761573548128 m001 (-Grothendieck+MertensB2)/(Catalan-GAMMA(3/4)) 2415761574162813 a003 sin(Pi*7/79)*sin(Pi*40/117) 2415761585258190 m001 BesselK(0,1)/exp(Backhouse)^2*GAMMA(11/12) 2415761590774293 m005 (1/2*2^(1/2)-5/11)/(1/2*Zeta(3)+4/9) 2415761590996477 r009 Re(z^3+c),c=-17/42+25/53*I,n=14 2415761592542612 a007 Real Root Of -563*x^4-521*x^3-97*x^2+662*x-145 2415761598960643 a007 Real Root Of 185*x^4+332*x^3+11*x^2+869*x+415 2415761616833761 m001 (5^(1/2)+MertensB1)/(Thue+ZetaP(3)) 2415761623719276 a007 Real Root Of 338*x^4+671*x^3-202*x^2+204*x-380 2415761639811805 m001 1/Bloch*ln(Cahen)*Sierpinski 2415761649539196 l006 ln(5153/5279) 2415761649539196 p004 log(5279/5153) 2415761664109077 a001 1602508992/281*199^(3/11) 2415761667480998 m001 (-GAMMA(17/24)+FeigenbaumMu)/(Pi^(1/2)-exp(1)) 2415761672294363 m001 GaussAGM+HardHexagonsEntropy^exp(1/Pi) 2415761674373182 a001 843/832040*233^(32/55) 2415761681194543 m001 BesselK(1,1)^2/ln(Magata)^2*Zeta(9) 2415761690524927 a007 Real Root Of 921*x^4+889*x^3+222*x^2-838*x-206 2415761698610998 l006 ln(822/9205) 2415761703334352 b008 8/5+ArcSinh[Sin[2]] 2415761706852946 m005 (1/2*gamma-1/10)/(-1/56+5/14*5^(1/2)) 2415761708433149 m001 (gamma+ln(gamma))/(-BesselK(1,1)+MadelungNaCl) 2415761709877459 r009 Re(z^3+c),c=-19/56+5/13*I,n=22 2415761711318865 m001 (Niven+ZetaP(2))/(GAMMA(5/6)-CopelandErdos) 2415761744289196 r005 Re(z^2+c),c=-63/110+32/59*I,n=8 2415761745513095 s002 sum(A069277[n]/((2^n+1)/n),n=1..infinity) 2415761746595808 a007 Real Root Of 182*x^4-65*x^3-923*x^2+987*x+656 2415761748178214 p003 LerchPhi(1/32,5,83/99) 2415761750161929 m005 (3*exp(1)-1/5)/(1/2*2^(1/2)-4) 2415761755038712 r005 Re(z^2+c),c=-21/38+14/25*I,n=3 2415761768525190 a003 sin(Pi*22/85)/cos(Pi*29/72) 2415761769185290 m001 Kolakoski^((1+3^(1/2))^(1/2))+3^(1/2) 2415761772230659 a003 -1/2+1/2*3^(1/2)-2*cos(4/27*Pi)-cos(1/30*Pi) 2415761780611237 r005 Im(z^2+c),c=-17/44+37/64*I,n=49 2415761791527727 r005 Re(z^2+c),c=13/44+9/52*I,n=38 2415761794878001 a007 Real Root Of -261*x^4-602*x^3-13*x^2-524*x-788 2415761795148735 m005 (1/5*gamma+2)/(19/6+5/2*5^(1/2)) 2415761796349894 r005 Re(z^2+c),c=-5/17+25/54*I,n=6 2415761798181938 a001 48315511/2-123/2*5^(1/2) 2415761798995000 a001 24157817-89*5^(1/2) 2415761799469496 a001 9107421984/377 2415761804174644 m001 ThueMorse*(Porter-ln(2^(1/2)+1)) 2415761808890069 a007 Real Root Of 112*x^4+162*x^3-493*x^2-427*x+315 2415761824953300 m001 (Conway-MadelungNaCl)/(ln(2)+ln(Pi)) 2415761832643590 a003 cos(Pi*6/73)/cos(Pi*38/103) 2415761834473832 b008 Zeta[Pi,Pi/18] 2415761836181188 r005 Im(z^2+c),c=-119/106+16/63*I,n=40 2415761842882028 m001 (Pi-GAMMA(2/3))/(BesselI(1,1)+ZetaP(3)) 2415761845564828 r005 Im(z^2+c),c=-49/114+17/41*I,n=31 2415761855737654 r005 Re(z^2+c),c=19/60+10/53*I,n=57 2415761864165995 a007 Real Root Of 744*x^4-642*x^3+45*x^2-729*x+180 2415761869923755 r005 Im(z^2+c),c=-5/8+89/211*I,n=13 2415761877305604 m005 (1/2*2^(1/2)-6)/(-11/4+1/4*5^(1/2)) 2415761878696935 m001 (-Totient+TwinPrimes)/(5^(1/2)+gamma) 2415761879433076 r005 Re(z^2+c),c=-13/98+36/61*I,n=53 2415761883677550 m008 (1/2*Pi^2-3)/(5/6*Pi^6-1/4) 2415761888765632 r005 Re(z^2+c),c=-17/32+32/49*I,n=7 2415761893355995 r009 Re(z^3+c),c=-1/26+31/58*I,n=15 2415761897165571 a007 Real Root Of 270*x^4+779*x^3+102*x^2-812*x-770 2415761908950873 m001 (-LambertW(1)+4)/(BesselK(0,1)+1) 2415761911334086 h001 (2/5*exp(1)+2/5)/(9/11*exp(2)+1/9) 2415761917054548 m001 (Zeta(3)+gamma(2))/(GAMMA(7/12)+Magata) 2415761920520857 r005 Re(z^2+c),c=11/70+16/55*I,n=4 2415761921656190 h001 (-9*exp(1/3)+9)/(-5*exp(2/3)-5) 2415761938027545 l006 ln(4311/5489) 2415761944009763 r005 Im(z^2+c),c=1/4+7/60*I,n=23 2415761946153888 m001 2/3-TwinPrimes*FeigenbaumDelta 2415761946464829 m004 -3-750/Pi+(25*Sqrt[5]*Pi)/E^(Sqrt[5]*Pi) 2415761949608821 s001 sum(exp(-3*Pi/4)^n*A192130[n],n=1..infinity) 2415761950646471 m001 (-GAMMA(5/12)+1/2)/(-GAMMA(19/24)+1/2) 2415761951725990 m001 1/GAMMA(19/24)*Robbin^2*ln(sqrt(5))^2 2415761981421404 m005 (5/6*2^(1/2)-1/3)/(1/5*Catalan+1/6) 2415761982637748 r009 Re(z^3+c),c=-31/90+27/52*I,n=9 2415761989720961 a007 Real Root Of -699*x^4+874*x^3-776*x^2+879*x-177 2415761990708932 m005 (1/2*Zeta(3)-2/7)/(5/11*Catalan+8/9) 2415762003525372 a007 Real Root Of -375*x^4-916*x^3+486*x^2+932*x-727 2415762004051196 a007 Real Root Of 439*x^4+527*x^3-860*x^2+721*x-761 2415762006363388 l006 ln(353/3953) 2415762007312008 r005 Re(z^2+c),c=-15/118+16/33*I,n=8 2415762027549252 m006 (1/5*exp(2*Pi)+4/5)/(5/6*exp(2*Pi)+2/5) 2415762027741197 r009 Im(z^3+c),c=-13/32+6/43*I,n=36 2415762036832488 m001 ln(GAMMA(1/4))/Niven^2/GAMMA(2/3)^2 2415762040360087 r005 Im(z^2+c),c=-21/34+7/92*I,n=18 2415762050417836 l004 cosh(377/61) 2415762053941504 a003 cos(Pi*33/97)/cos(Pi*41/94) 2415762055569197 h001 (1/4*exp(1)+1/2)/(5/9*exp(2)+7/9) 2415762081016502 a007 Real Root Of 390*x^4+707*x^3-818*x^2-319*x+688 2415762089935562 m001 ln(BesselJ(1,1))*Riemann2ndZero^2/GAMMA(3/4)^2 2415762090676005 r009 Im(z^3+c),c=-13/32+6/43*I,n=35 2415762096197790 r009 Im(z^3+c),c=-29/78+10/59*I,n=6 2415762098147950 r009 Re(z^3+c),c=-19/74+4/23*I,n=8 2415762098674429 m001 (ln(3)+CareFree)/(HardyLittlewoodC3-Rabbit) 2415762105757449 h001 (1/12*exp(1)+2/7)/(1/6*exp(2)+8/9) 2415762114132500 m001 gamma(3)*GAMMA(5/6)^Totient 2415762114350211 m001 LandauRamanujan*Lehmer+ReciprocalLucas 2415762114371416 r005 Re(z^2+c),c=-11/14+21/214*I,n=50 2415762118794631 a001 322/12586269025*2178309^(2/13) 2415762118794647 a001 161/43133785636*591286729879^(2/13) 2415762118794647 a001 322/32951280099*1134903170^(2/13) 2415762123046815 a001 1/14930208*4181^(2/13) 2415762136414260 m001 1/Sierpinski*exp(GlaisherKinkelin)*sqrt(3) 2415762142294427 a007 Real Root Of 804*x^4-759*x^3-285*x^2-808*x-192 2415762142909005 m001 1/(3^(1/3))/Khintchine*exp(sqrt(5)) 2415762143578357 m001 (Kolakoski-Niven)/(Paris-PlouffeB) 2415762146854789 m002 (-8*Pi^2)/E^Pi+Tanh[Pi] 2415762160582706 a007 Real Root Of -595*x^4+651*x^3+288*x^2+611*x+142 2415762168482577 r005 Re(z^2+c),c=-45/44+2/53*I,n=4 2415762182031653 a007 Real Root Of 956*x^4-653*x^3-146*x^2-412*x+114 2415762182108720 m001 Zeta(1/2)/KhinchinLevy*ReciprocalLucas 2415762190103871 m001 (LambertW(1)-ln(2+3^(1/2)))/(Salem+Tetranacci) 2415762190827192 r002 15th iterates of z^2 + 2415762197734295 a007 Real Root Of 462*x^4+991*x^3-250*x^2+422*x+715 2415762201488954 r009 Re(z^3+c),c=-39/94+24/47*I,n=28 2415762221931146 a007 Real Root Of -319*x^4-651*x^3+273*x^2-275*x-571 2415762232332479 p004 log(25073/2239) 2415762239469281 m001 (ln(2)/ln(10)+Zeta(3))/(-MertensB2+ThueMorse) 2415762243597196 m001 (MinimumGamma+Salem)/(ln(5)-polylog(4,1/2)) 2415762245094619 a007 Real Root Of 467*x^4+832*x^3-674*x^2+452*x+850 2415762252565287 a007 Real Root Of 969*x^4+157*x^3+825*x^2-918*x-271 2415762253077612 p001 sum(1/(456*n+427)/(16^n),n=0..infinity) 2415762261369971 m001 (Cahen-KomornikLoreti)/(MertensB3-Thue) 2415762277921607 m001 Trott2nd^(BesselI(1,1)*FeigenbaumC) 2415762279586279 r005 Re(z^2+c),c=-6/23+13/44*I,n=13 2415762283576526 a001 2971215073/322*322^(1/6) 2415762300381761 r005 Re(z^2+c),c=31/122+13/25*I,n=17 2415762300448544 a008 Real Root of x^4-33*x^2-30*x+231 2415762300543298 a007 Real Root Of 376*x^4+993*x^3+450*x^2+458*x-326 2415762327413544 r009 Im(z^3+c),c=-21/64+7/37*I,n=19 2415762331033584 a007 Real Root Of 316*x^4+802*x^3-89*x^2-714*x-661 2415762333697693 r005 Re(z^2+c),c=-33/122+17/62*I,n=8 2415762334554259 m005 (1/3*Pi+1/5)/(-17/110+3/10*5^(1/2)) 2415762336532813 r009 Im(z^3+c),c=-13/32+6/43*I,n=37 2415762343312609 m001 (HardyLittlewoodC3+Trott)/(2^(1/3)+2^(1/2)) 2415762344412875 l006 ln(4483/5708) 2415762349355856 r005 Im(z^2+c),c=-25/122+9/26*I,n=24 2415762361922815 a001 1364/3*233^(43/59) 2415762370470332 r009 Re(z^3+c),c=-11/36+15/49*I,n=17 2415762378789417 a001 4/2178309*233^(26/55) 2415762385636021 a007 Real Root Of -387*x^4-868*x^3-25*x^2-296*x+374 2415762386355874 a007 Real Root Of 444*x^4+876*x^3-855*x^2-712*x+498 2415762400091984 m004 (-75*Sqrt[5])/Pi+25*Pi-Coth[Sqrt[5]*Pi] 2415762400092235 m004 -2-(75*Sqrt[5])/Pi+25*Pi+Tanh[Sqrt[5]*Pi] 2415762401455607 r009 Im(z^3+c),c=-13/32+6/43*I,n=41 2415762406941869 r009 Im(z^3+c),c=-13/32+6/43*I,n=42 2415762408700843 p001 sum(1/(450*n+359)/n/(512^n),n=1..infinity) 2415762413804417 m001 GAMMA(1/4)^2*Catalan*ln(Zeta(9)) 2415762416468999 m001 Ei(1)*Riemann2ndZero^2/ln(cos(Pi/12)) 2415762417409576 m001 (ln(gamma)+gamma(1))/(Sierpinski-ZetaQ(3)) 2415762421473443 q001 423/1751 2415762434496018 r009 Im(z^3+c),c=-13/32+6/43*I,n=47 2415762434688797 r009 Im(z^3+c),c=-13/32+6/43*I,n=43 2415762435130120 l006 ln(590/6607) 2415762435744162 r009 Im(z^3+c),c=-13/32+6/43*I,n=48 2415762437645125 r009 Im(z^3+c),c=-13/32+6/43*I,n=53 2415762437803685 r009 Im(z^3+c),c=-13/32+6/43*I,n=54 2415762437854509 r009 Im(z^3+c),c=-13/32+6/43*I,n=52 2415762437923615 r009 Im(z^3+c),c=-13/32+6/43*I,n=59 2415762437932800 r009 Im(z^3+c),c=-13/32+6/43*I,n=58 2415762437940268 r009 Im(z^3+c),c=-13/32+6/43*I,n=60 2415762437946902 r009 Im(z^3+c),c=-13/32+6/43*I,n=64 2415762437950701 r009 Im(z^3+c),c=-13/32+6/43*I,n=63 2415762437954400 r009 Im(z^3+c),c=-13/32+6/43*I,n=61 2415762437955876 r009 Im(z^3+c),c=-13/32+6/43*I,n=62 2415762437984572 r009 Im(z^3+c),c=-13/32+6/43*I,n=57 2415762437990682 r009 Im(z^3+c),c=-13/32+6/43*I,n=55 2415762438036805 r009 Im(z^3+c),c=-13/32+6/43*I,n=56 2415762438086062 r009 Im(z^3+c),c=-13/32+6/43*I,n=49 2415762438166714 r009 Im(z^3+c),c=-13/32+6/43*I,n=46 2415762438520763 r009 Im(z^3+c),c=-13/32+6/43*I,n=51 2415762438980956 r009 Im(z^3+c),c=-13/32+6/43*I,n=50 2415762443660779 h001 (1/6*exp(1)+9/10)/(7/10*exp(2)+3/7) 2415762443709959 m002 1+Pi^6/4+Log[Pi]/5 2415762446286004 r009 Im(z^3+c),c=-13/32+6/43*I,n=45 2415762449292414 r009 Im(z^3+c),c=-13/32+6/43*I,n=44 2415762451158011 a001 305/51841*47^(55/57) 2415762451234073 m005 (1/2*3^(1/2)-1/3)/(96/77+3/7*5^(1/2)) 2415762451250168 r005 Im(z^2+c),c=-41/106+23/59*I,n=16 2415762458167483 r009 Im(z^3+c),c=-13/32+6/43*I,n=40 2415762464316033 a001 341/646*4181^(36/49) 2415762468315328 r005 Re(z^2+c),c=-17/86+26/55*I,n=27 2415762473587451 m001 (HardHexagonsEntropy+Kac)/(gamma(3)+GaussAGM) 2415762473651089 g007 -Psi(2,4/11)-Psi(2,2/9)-Psi(2,3/5)-Psi(2,3/4) 2415762482902274 r004 Re(z^2+c),c=-1/34-12/13*I,z(0)=I,n=5 2415762485647463 a007 Real Root Of 203*x^4+471*x^3+345*x^2+767*x-434 2415762489310656 m001 2/3-ThueMorse^cos(Pi/12) 2415762499645945 r009 Im(z^3+c),c=-21/64+7/37*I,n=20 2415762499759665 a007 Real Root Of 455*x^4+895*x^3-408*x^2+203*x-7 2415762501883098 m001 (GAMMA(11/12)-MertensB3)/(ln(Pi)+gamma(3)) 2415762503826865 r002 50th iterates of z^2 + 2415762512094787 m005 (1/2*5^(1/2)+5/9)/(10/11*Zeta(3)-2/5) 2415762527809604 m008 (4/5*Pi^5+2/5)/(1/3*Pi^5-1/2) 2415762528722197 a007 Real Root Of 442*x^4+707*x^3-380*x^2+819*x-890 2415762534946164 m005 (1/2*gamma-6)/(7/9*exp(1)+1/4) 2415762545536327 r009 Re(z^3+c),c=-47/86+16/57*I,n=31 2415762549237074 a008 Real Root of x^5-x^3-7*x^2-8*x-8 2415762551531516 r009 Im(z^3+c),c=-13/32+6/43*I,n=39 2415762552385129 r009 Im(z^3+c),c=-13/32+6/43*I,n=38 2415762553389685 r002 12i'th iterates of 2*x/(1-x^2) of 2415762571292506 m005 (1/2*2^(1/2)+6)/(1/10*5^(1/2)-3) 2415762572659719 m006 (3*ln(Pi)-1/2)/(1/4*Pi-2) 2415762580687708 a007 Real Root Of 177*x^4-476*x^3-525*x^2-237*x+94 2415762587751677 r009 Im(z^3+c),c=-19/48+4/27*I,n=13 2415762608500891 m001 (-MasserGramain+MertensB1)/(5^(1/2)-Cahen) 2415762608850478 r009 Im(z^3+c),c=-21/64+7/37*I,n=24 2415762614169402 r009 Im(z^3+c),c=-21/64+7/37*I,n=25 2415762614206557 r009 Im(z^3+c),c=-21/64+7/37*I,n=23 2415762615107120 r009 Im(z^3+c),c=-21/64+7/37*I,n=28 2415762615125102 r009 Im(z^3+c),c=-21/64+7/37*I,n=29 2415762615235455 r009 Im(z^3+c),c=-21/64+7/37*I,n=33 2415762615237890 r009 Im(z^3+c),c=-21/64+7/37*I,n=34 2415762615239426 r009 Im(z^3+c),c=-21/64+7/37*I,n=38 2415762615239501 r009 Im(z^3+c),c=-21/64+7/37*I,n=39 2415762615239501 r009 Im(z^3+c),c=-21/64+7/37*I,n=37 2415762615239514 r009 Im(z^3+c),c=-21/64+7/37*I,n=42 2415762615239514 r009 Im(z^3+c),c=-21/64+7/37*I,n=43 2415762615239516 r009 Im(z^3+c),c=-21/64+7/37*I,n=47 2415762615239516 r009 Im(z^3+c),c=-21/64+7/37*I,n=48 2415762615239516 r009 Im(z^3+c),c=-21/64+7/37*I,n=52 2415762615239516 r009 Im(z^3+c),c=-21/64+7/37*I,n=51 2415762615239516 r009 Im(z^3+c),c=-21/64+7/37*I,n=53 2415762615239516 r009 Im(z^3+c),c=-21/64+7/37*I,n=56 2415762615239516 r009 Im(z^3+c),c=-21/64+7/37*I,n=57 2415762615239516 r009 Im(z^3+c),c=-21/64+7/37*I,n=61 2415762615239516 r009 Im(z^3+c),c=-21/64+7/37*I,n=62 2415762615239516 r009 Im(z^3+c),c=-21/64+7/37*I,n=64 2415762615239516 r009 Im(z^3+c),c=-21/64+7/37*I,n=63 2415762615239516 r009 Im(z^3+c),c=-21/64+7/37*I,n=60 2415762615239516 r009 Im(z^3+c),c=-21/64+7/37*I,n=58 2415762615239516 r009 Im(z^3+c),c=-21/64+7/37*I,n=59 2415762615239516 r009 Im(z^3+c),c=-21/64+7/37*I,n=55 2415762615239516 r009 Im(z^3+c),c=-21/64+7/37*I,n=54 2415762615239516 r009 Im(z^3+c),c=-21/64+7/37*I,n=50 2415762615239516 r009 Im(z^3+c),c=-21/64+7/37*I,n=49 2415762615239516 r009 Im(z^3+c),c=-21/64+7/37*I,n=46 2415762615239516 r009 Im(z^3+c),c=-21/64+7/37*I,n=44 2415762615239516 r009 Im(z^3+c),c=-21/64+7/37*I,n=45 2415762615239522 r009 Im(z^3+c),c=-21/64+7/37*I,n=41 2415762615239531 r009 Im(z^3+c),c=-21/64+7/37*I,n=40 2415762615239945 r009 Im(z^3+c),c=-21/64+7/37*I,n=36 2415762615240013 r009 Im(z^3+c),c=-21/64+7/37*I,n=35 2415762615243446 r009 Im(z^3+c),c=-21/64+7/37*I,n=30 2415762615243522 r009 Im(z^3+c),c=-21/64+7/37*I,n=32 2415762615263502 r009 Im(z^3+c),c=-21/64+7/37*I,n=31 2415762615673019 r009 Im(z^3+c),c=-21/64+7/37*I,n=27 2415762616320657 r009 Im(z^3+c),c=-21/64+7/37*I,n=26 2415762618146577 l006 ln(827/9261) 2415762620289712 a007 Real Root Of -305*x^4-832*x^3-10*x^2+170*x-873 2415762623413656 r008 a(0)=0,K{-n^6,28*n^3+146*n^2+182*n+58} 2415762628369393 m009 (2*Psi(1,2/3)+2)/(16*Catalan+2*Pi^2-3/4) 2415762630055199 m001 1/GAMMA(11/24)^2*Backhouse/ln(sinh(1)) 2415762631544877 m005 (1/2*Catalan-1/11)/(9/10*gamma+1) 2415762645729191 r009 Im(z^3+c),c=-21/64+7/37*I,n=22 2415762646532432 r002 21th iterates of z^2 + 2415762649142833 m002 -2-E^Pi*Coth[Pi]+ProductLog[Pi]*Tanh[Pi] 2415762650449427 r009 Im(z^3+c),c=-21/64+7/37*I,n=21 2415762653511800 a007 Real Root Of 248*x^4+432*x^3-633*x^2-888*x-807 2415762654388938 m001 FeigenbaumAlpha/(Zeta(1,2)^ln(gamma)) 2415762654388938 m001 FeigenbaumAlpha/(Zeta(1,2)^log(gamma)) 2415762655464609 m005 (1/2*Catalan-1/6)/(3/5*3^(1/2)+1/6) 2415762666082075 m001 (gamma(1)+TreeGrowth2nd)/(BesselK(0,1)+ln(3)) 2415762675141994 a007 Real Root Of -102*x^4+340*x^3+966*x^2-786*x+731 2415762682445759 r009 Re(z^3+c),c=-19/25+31/39*I,n=2 2415762684394500 a003 cos(Pi*28/75)/cos(Pi*35/78) 2415762688190310 a001 1/98209*34^(44/49) 2415762692864581 a007 Real Root Of -441*x^4-419*x^3+826*x^2+688*x-207 2415762698285531 r002 2th iterates of z^2 + 2415762698685188 m005 (1/2*Catalan+3/7)/(1/4*3^(1/2)-4/5) 2415762700459725 r002 52i'th iterates of 2*x/(1-x^2) of 2415762716599074 m004 (-75*Sqrt[5])/Pi+25*Pi-Tanh[Sqrt[5]*Pi] 2415762720614368 a001 281/15456*7778742049^(6/19) 2415762720766707 l006 ln(4655/5927) 2415762725226179 a007 Real Root Of -213*x^4-714*x^3-989*x^2-897*x+793 2415762729787075 m005 (1/3*exp(1)+1/8)/(5/7*2^(1/2)-7/12) 2415762732553940 s002 sum(A040594[n]/(n!^3),n=1..infinity) 2415762737324465 m001 1-Kolakoski^Zeta(3) 2415762742696064 m005 (1/2*5^(1/2)-2/7)/(Catalan-4/7) 2415762744188572 a007 Real Root Of 236*x^4+809*x^3+333*x^2-280*x+748 2415762749674240 m001 1/Tribonacci^2/exp(FeigenbaumDelta)^2/OneNinth 2415762755374442 m001 (Artin-StronglyCareFree)/(ln(3)+BesselI(1,1)) 2415762755799609 r002 2th iterates of z^2 + 2415762758982966 h001 (7/8*exp(2)+1/11)/(11/12*exp(1)+2/9) 2415762768186689 m001 1/Paris^2*Backhouse^2/ln(Sierpinski)^2 2415762771429147 a007 Real Root Of -120*x^4+216*x^3+915*x^2-602*x+338 2415762775089344 a007 Real Root Of -228*x^4-624*x^3-328*x^2-159*x+498 2415762775230134 b008 ExpIntegralEi[25/21] 2415762777221184 a007 Real Root Of 944*x^4+566*x^3+453*x^2-614*x-170 2415762790425999 m001 Pi/(BesselK(1,1)-Bloch) 2415762791917271 m001 TreeGrowth2nd/(polylog(4,1/2)+Conway) 2415762792749538 a001 843/2584*832040^(6/19) 2415762792824002 m005 (1/2*gamma-5)/(11/12*5^(1/2)-4) 2415762798047465 r005 Im(z^2+c),c=-3/56+25/53*I,n=3 2415762801922169 m001 (Landau+ZetaQ(3))/(1+GAMMA(17/24)) 2415762803416058 m001 Pi/cosh(1)*KhinchinLevy 2415762823740963 a007 Real Root Of 157*x^4+96*x^3-184*x^2+904*x-736 2415762825109322 m005 (1/2*gamma+8/9)/(8/11*Zeta(3)+4) 2415762838069279 a005 (1/sin(37/94*Pi))^865 2415762843619811 m001 Catalan*MertensB1+gamma(3) 2415762855842053 a007 Real Root Of -50*x^4+447*x^3+829*x^2+931*x+183 2415762868172838 a008 Real Root of x^5-2*x^4-15*x^3+10*x^2+66*x+40 2415762872257141 a001 1134903170/521*199^(5/11) 2415762872327789 r005 Re(z^2+c),c=-7/46+21/40*I,n=17 2415762874852244 m004 (-75*Sqrt[5])/Pi+25*Pi-Tanh[Sqrt[5]*Pi]^2 2415762881815649 m001 1/exp(Trott)^2*Artin*TwinPrimes 2415762886638582 r009 Im(z^3+c),c=-21/64+7/37*I,n=16 2415762898051922 r009 Im(z^3+c),c=-13/32+6/43*I,n=34 2415762901039547 r009 Im(z^3+c),c=-21/64+7/37*I,n=18 2415762912452946 a001 4*(1/2*5^(1/2)+1/2)^7*3^(2/3) 2415762915368427 r005 Re(z^2+c),c=-47/90+32/51*I,n=24 2415762916848464 m006 (1/Pi-3/4)/(1/3*exp(2*Pi)+1/5) 2415762918500758 r009 Im(z^3+c),c=-17/40+6/49*I,n=44 2415762925698460 a007 Real Root Of -334*x^4-545*x^3+154*x^2-919*x+573 2415762977229065 m006 (2/5*exp(2*Pi)-1/4)/(4*exp(Pi)-4) 2415762979303867 a007 Real Root Of 488*x^4+805*x^3-822*x^2+94*x-247 2415762989759870 a001 48/13201*18^(19/29) 2415762989986186 m005 (1/2*gamma-7/11)/(3/4*Pi-11/12) 2415762992700981 r005 Re(z^2+c),c=-5/34+17/27*I,n=22 2415762994929140 v002 sum(1/(3^n*(45/2*n^2-31/2*n+8)),n=1..infinity) 2415763009229926 p003 LerchPhi(1/3,6,411/220) 2415763010916830 g005 1/GAMMA(5/11)/GAMMA(4/5)/GAMMA(3/5)/GAMMA(3/4) 2415763012682517 r005 Im(z^2+c),c=3/34+7/31*I,n=7 2415763028467551 a007 Real Root Of 461*x^4+664*x^3-791*x^2+893*x+434 2415763042513736 a007 Real Root Of 377*x^4+823*x^3-577*x^2-857*x+60 2415763048335146 r002 37th iterates of z^2 + 2415763052300684 m008 (2/5*Pi^5-4)/(5*Pi^2-1/3) 2415763070299370 l006 ln(4827/6146) 2415763070370352 m001 (-LandauRamanujan+ZetaP(3))/(exp(Pi)+2^(1/3)) 2415763073757021 l006 ln(237/2654) 2415763075950025 a001 2/233*1836311903^(10/17) 2415763081244110 m001 ln(HardHexagonsEntropy)/Backhouse*GAMMA(11/12) 2415763086007192 r005 Re(z^2+c),c=-13/16+1/29*I,n=40 2415763086097085 a001 3010349*144^(15/17) 2415763099324588 m007 (-3/5*gamma-6/5*ln(2)-1/5)/(-1/6*gamma+2/3) 2415763101597542 m002 -5-Pi^4*Log[Pi]+Pi^3*Sinh[Pi] 2415763104239044 h001 (4/9*exp(1)+4/9)/(8/9*exp(2)+3/11) 2415763112926560 m001 (Ei(1)+GolombDickman)/(Si(Pi)-cos(1/5*Pi)) 2415763114774330 a007 Real Root Of 416*x^4+699*x^3-527*x^2+921*x+987 2415763125010380 a007 Real Root Of -287*x^4-899*x^3-251*x^2+358*x-570 2415763130773737 m001 (3^(1/2)-cos(1/12*Pi))/(-CopelandErdos+Magata) 2415763139974544 r002 14th iterates of z^2 + 2415763140553644 a007 Real Root Of 455*x^4-222*x^3+944*x^2+235*x-3 2415763151855399 r005 Im(z^2+c),c=-13/10+29/243*I,n=3 2415763166095067 a007 Real Root Of -16*x^4+834*x^3+348*x^2+960*x+23 2415763167684424 m005 (1/2*5^(1/2)+11/12)/(5/9*5^(1/2)-2/5) 2415763168012302 r005 Re(z^2+c),c=-19/102+3/10*I,n=2 2415763175303529 m005 (17/20+1/4*5^(1/2))/(7/12*Pi+4) 2415763186199143 a007 Real Root Of 551*x^4+971*x^3-886*x^2+351*x+942 2415763190121214 m001 Robbin^ZetaQ(3)/ThueMorse 2415763191088911 m001 (Mills-ZetaQ(4))/(Zeta(1,-1)+2*Pi/GAMMA(5/6)) 2415763199454477 r005 Re(z^2+c),c=7/86+16/55*I,n=23 2415763210297471 r005 Im(z^2+c),c=-107/126+6/31*I,n=26 2415763215631669 r002 51th iterates of z^2 + 2415763220638965 m006 (4*ln(Pi)+1/4)/(2*Pi^2+1/4) 2415763224403130 a007 Real Root Of 928*x^4-711*x^3+466*x^2-698*x-209 2415763241712042 m001 1/Robbin*exp(Backhouse)/FeigenbaumD 2415763259631252 a007 Real Root Of -680*x^4-27*x^3+790*x^2+909*x-263 2415763262104556 a007 Real Root Of 51*x^4-326*x^3-932*x^2+31*x-819 2415763262704214 m001 (ln(5)+Ei(1))/(arctan(1/3)-Pi^(1/2)) 2415763274133710 a003 cos(Pi*28/85)*cos(Pi*35/102) 2415763284291904 a007 Real Root Of 974*x^4-607*x^3+680*x^2-838*x-254 2415763303357157 m005 (1/2*2^(1/2)+3/10)/(1/11*2^(1/2)-6/11) 2415763305547483 m001 FeigenbaumKappa/Porter*exp(GAMMA(1/6)) 2415763311203060 a007 Real Root Of 174*x^4+383*x^3-159*x^2-523*x-862 2415763311221172 k006 concat of cont frac of 2415763318795055 m001 Pi*csc(1/24*Pi)/GAMMA(23/24)+gamma^Robbin 2415763329874557 m001 (-Porter+QuadraticClass)/(exp(Pi)+ln(3)) 2415763341076369 a007 Real Root Of 941*x^4+323*x^3-269*x^2-766*x-168 2415763345176782 m001 Riemann3rdZero-Zeta(3)*Rabbit 2415763353676949 r005 Im(z^2+c),c=-4/7+41/103*I,n=34 2415763357810730 p001 sum((-1)^n/(377*n+123)/n/(8^n),n=1..infinity) 2415763370402267 m001 1/GAMMA(1/4)^2/ln(GAMMA(1/24))*Zeta(9) 2415763378025152 r005 Im(z^2+c),c=-5/12+24/59*I,n=28 2415763390070620 m001 (GAMMA(2/3)+MadelungNaCl)/(OneNinth+Salem) 2415763394650243 a007 Real Root Of -407*x^4-787*x^3+402*x^2-371*x-476 2415763395779365 l006 ln(4999/6365) 2415763400253416 s002 sum(A058831[n]/(n*pi^n+1),n=1..infinity) 2415763400569336 s002 sum(A058831[n]/(n*pi^n-1),n=1..infinity) 2415763402665663 m001 Ei(1,1)^LambertW(1)/(Khinchin^LambertW(1)) 2415763404265733 r009 Im(z^3+c),c=-31/64+4/49*I,n=16 2415763409388267 b008 ArcCsc[E^EllipticE[1/3]] 2415763422476696 a007 Real Root Of 350*x^4-445*x^3-861*x^2-781*x+244 2415763426226324 p004 log(11971/1069) 2415763427732170 m003 -13/8+Sqrt[5]/2+(Sqrt[5]*Tan[1/2+Sqrt[5]/2])/2 2415763430606816 r005 Im(z^2+c),c=-3/44+8/27*I,n=11 2415763436932641 r005 Re(z^2+c),c=-9/74+28/47*I,n=50 2415763440238883 r005 Im(z^2+c),c=-7/78+27/62*I,n=3 2415763445385346 r009 Im(z^3+c),c=-13/32+6/43*I,n=32 2415763459531617 a007 Real Root Of -288*x^4-461*x^3+238*x^2-968*x-418 2415763462166696 m004 -2-125*Pi-Cosh[Sqrt[5]*Pi]+6*Sinh[Sqrt[5]*Pi] 2415763464189594 r009 Re(z^3+c),c=-25/66+25/53*I,n=28 2415763470165963 m002 -Pi^6/4-Log[Pi]*ProductLog[Pi] 2415763480941368 a008 Real Root of (3+16*x+17*x^2+9*x^3) 2415763486182888 a001 64079/55*610^(26/55) 2415763498952184 r005 Re(z^2+c),c=-23/82+16/53*I,n=5 2415763511521857 a001 3571/6765*4181^(36/49) 2415763517457321 a007 Real Root Of 425*x^4+908*x^3-264*x^2+74*x+46 2415763517503684 b008 1/2+Pi*Sinh[EulerGamma] 2415763526629216 l006 ln(832/9317) 2415763537843073 m001 Thue^Grothendieck+(1+3^(1/2))^(1/2) 2415763542510097 a007 Real Root Of -265*x^4-892*x^3-468*x^2+53*x-691 2415763546798029 q001 2452/1015 2415763554284962 m001 1/FeigenbaumD^2/Si(Pi)^2*ln(GAMMA(1/12))^2 2415763554586130 m001 1/MertensB1^2/ln(GolombDickman)/GAMMA(17/24) 2415763562321145 a007 Real Root Of 317*x^4-840*x^3-600*x^2-775*x+233 2415763563054985 r005 Re(z^2+c),c=-6/29+19/42*I,n=44 2415763569053471 a007 Real Root Of -362*x^4-901*x^3-257*x^2-109*x+863 2415763580751852 r005 Im(z^2+c),c=-47/78+11/30*I,n=14 2415763585363775 r009 Im(z^3+c),c=-17/40+6/49*I,n=45 2415763609563524 r009 Im(z^3+c),c=-17/40+6/49*I,n=43 2415763614675399 p001 sum(1/(449*n+360)/n/(512^n),n=1..infinity) 2415763625040222 a007 Real Root Of 422*x^4+764*x^3-471*x^2+57*x-715 2415763630687116 m001 (ln(2)+HardyLittlewoodC4)/(1-2^(1/2)) 2415763635125157 m005 (1/2*Catalan-1/7)/(1/4*5^(1/2)-3/7) 2415763664307123 a001 9349/17711*4181^(36/49) 2415763665140425 m005 (7/20+1/4*5^(1/2))/(5/8*Zeta(3)-3/8) 2415763666088922 r005 Re(z^2+c),c=-17/74+19/63*I,n=4 2415763677215710 h001 (1/12*exp(2)+5/7)/(7/10*exp(2)+1/3) 2415763680747528 a001 1364/1597*8^(1/2) 2415763683456514 m001 ln(Sierpinski)*FeigenbaumC/FeigenbaumD^2 2415763686598193 a001 6119/11592*4181^(36/49) 2415763686676715 a007 Real Root Of 347*x^4+777*x^3+146*x^2+916*x+497 2415763691860401 a001 39603/75025*4181^(36/49) 2415763696069080 v002 sum(1/(2^n+(n^3+n^2+8*n-6)),n=1..infinity) 2415763697663311 m008 (1/4*Pi^4-4)/(3*Pi-1) 2415763698654496 m008 (1/6*Pi^5-3)/(2/3*Pi^3-4/5) 2415763698755704 m001 (Psi(1,1/3)*BesselI(0,2)+exp(1/Pi))/Psi(1,1/3) 2415763699606842 l006 ln(5171/6584) 2415763699809057 a007 Real Root Of 4*x^4+965*x^3-318*x^2-636*x-339 2415763700374832 a001 15127/28657*4181^(36/49) 2415763707016907 l006 ln(595/6663) 2415763715605227 m001 1/TwinPrimes/ln(ErdosBorwein)/GAMMA(1/12)^2 2415763722794865 a007 Real Root Of -58*x^4+203*x^3+832*x^2-26*x-81 2415763728046878 m001 exp(Lehmer)^2*LaplaceLimit*GAMMA(11/12)^2 2415763728158907 r005 Im(z^2+c),c=-23/22+1/38*I,n=8 2415763730238293 m004 -2-125*Pi*Coth[Sqrt[5]*Pi]+5*Sinh[Sqrt[5]*Pi] 2415763749328024 a007 Real Root Of -176*x^4-502*x^3-957*x^2-312*x-26 2415763758733610 a001 2889/5473*4181^(36/49) 2415763771201701 r005 Re(z^2+c),c=-7/40+21/41*I,n=25 2415763781224546 r009 Re(z^3+c),c=-31/78+29/63*I,n=11 2415763782047003 a007 Real Root Of -213*x^4-484*x^3-119*x^2-703*x-573 2415763782822650 r005 Im(z^2+c),c=-17/27+21/62*I,n=48 2415763784956783 b008 1+LogGamma[Sqrt[Pi]/8] 2415763787279435 a001 15127/2*75025^(3/29) 2415763789675432 m001 (Niven-Otter)/(ErdosBorwein+FeigenbaumMu) 2415763798126862 m001 (ln(3)-ArtinRank2)/(Kac+MertensB2) 2415763818409294 s001 sum(exp(-3*Pi/4)^n*A117538[n],n=1..infinity) 2415763827896408 a007 Real Root Of -456*x^4-942*x^3+152*x^2-815*x-606 2415763831802063 a003 cos(Pi*11/119)-sin(Pi*11/25) 2415763846520301 m001 (ln(2^(1/2)+1)-CareFree)/(Sarnak+ZetaQ(3)) 2415763847084242 r005 Re(z^2+c),c=-5/28+14/29*I,n=13 2415763860000370 r008 a(0)=0,K{-n^6,(2*n+1)*(81+25*n^2+32*n)} 2415763863455482 a007 Real Root Of 314*x^4+692*x^3-424*x^2-799*x-394 2415763867939222 r008 a(0)=0,K{-n^6,(2*n+1)*(37+3*n^2+98*n)} 2415763867939222 r008 a(0)=0,K{-n^6,6*n^3+199*n^2+172*n+37} 2415763872391362 p004 log(33577/26371) 2415763893169567 m005 (1/2*Catalan-9/11)/(9/10*Catalan+2/3) 2415763898071548 r005 Im(z^2+c),c=-57/82+1/61*I,n=11 2415763899315176 r009 Im(z^3+c),c=-13/32+6/43*I,n=33 2415763904051482 m001 (2^(1/3)-Psi(1,1/3))^MinimumGamma 2415763904208657 m001 (2^(1/3))^2*exp(Riemann2ndZero)*GAMMA(5/6) 2415763929611683 r005 Re(z^2+c),c=-2/13+24/43*I,n=40 2415763937719423 m001 (1-BesselJ(1,1)*Porter)/Porter 2415763939087361 a007 Real Root Of 475*x^4+869*x^3-353*x^2+907*x+325 2415763957096933 r009 Im(z^3+c),c=-13/32+6/43*I,n=20 2415763963154909 m005 (1/2*exp(1)-2/5)/(-103/22+7/22*5^(1/2)) 2415763967718253 m001 BesselI(1,2)*((2^(1/3))+sin(Pi/12)) 2415763967718253 m001 BesselI(1,2)*(2^(1/3)+sin(1/12*Pi)) 2415763969120425 r008 a(0)=0,K{-n^6,59-17*n+45*n^2-46*n^3} 2415763979975602 m001 (3^(1/3)-ln(2+3^(1/2)))/(KhinchinLevy-Niven) 2415763983872894 l006 ln(5343/6803) 2415763994346945 m001 BesselI(1,2)+Cahen*GlaisherKinkelin 2415763995402480 m005 (1/2*exp(1)+5/11)/(3/8*Zeta(3)+3/10) 2415763995778710 a007 Real Root Of 281*x^4+456*x^3-852*x^2-882*x-300 2415763995978164 m001 Landau-KhinchinLevy-Pi^(1/2) 2415764002157682 a007 Real Root Of 766*x^4-168*x^3-502*x^2-66*x+45 2415764003183701 p004 log(22699/2027) 2415764012018337 m005 (19/28+1/4*5^(1/2))/(5/7*gamma+1/10) 2415764018252654 r005 Re(z^2+c),c=11/30+5/31*I,n=14 2415764021651400 a007 Real Root Of -217*x^4-489*x^3+306*x^2+472*x-149 2415764025441694 a001 1/2529*(1/2*5^(1/2)+1/2)^3*3^(1/3) 2415764029344076 a003 -1+2*cos(2/21*Pi)+cos(4/15*Pi)+cos(5/27*Pi) 2415764047844307 m001 (2^(1/3)-Landau)/(Otter+Trott) 2415764050779092 r005 Re(z^2+c),c=7/23+6/49*I,n=8 2415764060146885 r009 Im(z^3+c),c=-17/40+6/49*I,n=50 2415764064866612 a007 Real Root Of -631*x^4+999*x^3+72*x^2+716*x+185 2415764067070341 m001 (FeigenbaumMu-Kolakoski)/(Salem-Trott2nd) 2415764067346876 a001 29/14930352*121393^(14/23) 2415764067366831 a001 29/12586269025*7778742049^(14/23) 2415764068069038 r009 Re(z^3+c),c=-1/31+43/61*I,n=27 2415764070191700 m001 (ArtinRank2+CopelandErdos)/(exp(1)+ln(Pi)) 2415764077419459 r005 Im(z^2+c),c=-51/106+13/35*I,n=15 2415764079352847 p002 log(12^(4/7)+6^(12/11)) 2415764084655079 m001 BesselK(0,1)^2/exp(MinimumGamma)*sin(Pi/5) 2415764093253168 r005 Re(z^2+c),c=9/64+14/43*I,n=21 2415764102422116 m001 (Totient+TreeGrowth2nd)/(Zeta(1/2)+Sarnak) 2415764110856530 a007 Real Root Of -163*x^4+42*x^3+789*x^2-801*x-396 2415764117061164 q001 1/4139477 2415764119943385 r005 Re(z^2+c),c=-25/122+16/35*I,n=41 2415764122230977 a007 Real Root Of -234*x^4+8*x^3-69*x^2+497*x+125 2415764123615681 m001 1/exp(MadelungNaCl)*Khintchine/BesselJ(1,1)^2 2415764126241806 l006 ln(358/4009) 2415764135405855 r009 Re(z^3+c),c=-2/13+44/59*I,n=5 2415764139161139 r009 Im(z^3+c),c=-17/40+6/49*I,n=51 2415764139590854 q001 803/3324 2415764148233266 r005 Re(z^2+c),c=-13/20+7/59*I,n=2 2415764158730623 a001 2207/4181*4181^(36/49) 2415764184779552 m003 -5/2+ProductLog[1/2+Sqrt[5]/2]/9 2415764186037073 a007 Real Root Of -314*x^4-849*x^3-60*x^2+154*x-553 2415764188563876 r009 Im(z^3+c),c=-17/40+6/49*I,n=49 2415764204765539 a007 Real Root Of 398*x^4+641*x^3-405*x^2+670*x-536 2415764219721676 a007 Real Root Of -591*x^4+777*x^3+34*x^2+377*x-102 2415764223073007 r009 Im(z^3+c),c=-17/40+6/49*I,n=56 2415764224726918 r005 Im(z^2+c),c=-17/46+32/57*I,n=31 2415764225211851 a001 1836311903/322*322^(1/4) 2415764231704741 r009 Im(z^3+c),c=-17/40+6/49*I,n=57 2415764232975868 r002 10th iterates of z^2 + 2415764236175146 p004 log(25409/2269) 2415764239363802 m001 1/ln(BesselJ(1,1))/Lehmer*sinh(1) 2415764245600981 r009 Im(z^3+c),c=-17/40+6/49*I,n=55 2415764245922761 r009 Im(z^3+c),c=-17/40+6/49*I,n=62 2415764246732315 r009 Im(z^3+c),c=-17/40+6/49*I,n=63 2415764249345932 r009 Im(z^3+c),c=-17/40+6/49*I,n=64 2415764249719318 r009 Im(z^3+c),c=-17/40+6/49*I,n=61 2415764250095174 r009 Im(z^3+c),c=-17/40+6/49*I,n=58 2415764250407747 l006 ln(5515/7022) 2415764251104758 s002 sum(A195318[n]/(exp(n)),n=1..infinity) 2415764254959591 m001 Pi-(1+Zeta(3))*ln(2+3^(1/2)) 2415764256667050 r009 Im(z^3+c),c=-17/40+6/49*I,n=60 2415764257595832 a007 Real Root Of -324*x^4-744*x^3-299*x^2-853*x+230 2415764259383122 r009 Im(z^3+c),c=-17/40+6/49*I,n=59 2415764261550807 a007 Real Root Of -34*x^4-844*x^3-515*x^2+778*x+159 2415764266434501 r009 Im(z^3+c),c=-17/40+6/49*I,n=52 2415764268369327 a007 Real Root Of 414*x^4+921*x^3+183*x^2+540*x-879 2415764268457126 a007 Real Root Of 950*x^4-614*x^3-760*x^2-448*x+158 2415764276529846 b008 141+37*E 2415764276866080 a007 Real Root Of 409*x^4+516*x^3-960*x^2+47*x-939 2415764279425188 a007 Real Root Of -x^4-4*x^3+445*x^2-997*x+403 2415764283408048 r005 Im(z^2+c),c=-19/62+19/54*I,n=4 2415764286292161 s002 sum(A064906[n]/(10^n+1),n=1..infinity) 2415764289981320 a007 Real Root Of 37*x^4+891*x^3-44*x^2+591*x+18 2415764294078874 r009 Im(z^3+c),c=-17/40+6/49*I,n=54 2415764298091487 m001 (Pi^(1/2)-MertensB2)/(ln(5)+exp(1/exp(1))) 2415764303770656 s002 sum(A285394[n]/((exp(n)+1)*n),n=1..infinity) 2415764317054034 r009 Im(z^3+c),c=-21/64+7/37*I,n=17 2415764320450981 a007 Real Root Of 213*x^4+520*x^3+222*x^2+168*x-813 2415764320536652 r009 Im(z^3+c),c=-17/40+6/49*I,n=53 2415764323298762 s002 sum(A285394[n]/(n*exp(n)+1),n=1..infinity) 2415764325589030 s002 sum(A285394[n]/(n*exp(n)-1),n=1..infinity) 2415764334011670 a007 Real Root Of -904*x^4-555*x^3+805*x^2+840*x-239 2415764336041573 r005 Im(z^2+c),c=-41/78+1/23*I,n=22 2415764346752573 a005 (1/cos(11/151*Pi))^382 2415764348533930 m004 -125*Pi-2*Coth[Sqrt[5]*Pi]+5*Sinh[Sqrt[5]*Pi] 2415764350116469 m004 -3-125*Pi+5*Sinh[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi] 2415764351699003 m004 -2-125*Pi+5*Sinh[Sqrt[5]*Pi] 2415764353281537 m004 -1-125*Pi+5*Sinh[Sqrt[5]*Pi]-Tanh[Sqrt[5]*Pi] 2415764354864072 m004 -125*Pi+5*Sinh[Sqrt[5]*Pi]-2*Tanh[Sqrt[5]*Pi] 2415764355316136 r005 Re(z^2+c),c=-12/23+9/17*I,n=3 2415764369755546 m001 TwinPrimes^2/FeigenbaumKappa*exp(Zeta(7))^2 2415764371182856 r005 Re(z^2+c),c=-17/110+33/58*I,n=51 2415764371298906 m009 (1/3*Psi(1,3/4)+4/5)/(32*Catalan+4*Pi^2-3/5) 2415764376878797 r009 Re(z^3+c),c=-9/62+31/34*I,n=48 2415764378064822 a007 Real Root Of -334*x^4-814*x^3+97*x^2+550*x+662 2415764383278739 m005 (3/5*2^(1/2)+5/6)/(1/6*gamma+3/5) 2415764398942335 m001 (-Trott2nd+ZetaQ(3))/(Chi(1)-ln(5)) 2415764404863103 m001 (GAMMA(2/3)-sin(1))/(DuboisRaymond+Tetranacci) 2415764405465699 r005 Im(z^2+c),c=-3/5+5/112*I,n=46 2415764424257010 l006 ln(837/9373) 2415764434136951 m001 (Otter-PolyaRandomWalk3D)/(polylog(4,1/2)-Kac) 2415764449229321 m001 (Pi+1)/BesselI(0,1)/GAMMA(2/3) 2415764451543494 m001 BesselJ(0,1)+Zeta(1/2)-GAMMA(1/24) 2415764452194071 r009 Im(z^3+c),c=-17/40+6/49*I,n=46 2415764466823577 a007 Real Root Of -412*x^4-927*x^3+386*x^2+560*x+63 2415764472422875 r005 Re(z^2+c),c=-23/90+5/16*I,n=19 2415764483861130 r002 10th iterates of z^2 + 2415764499404500 a007 Real Root Of -419*x^4-596*x^3+703*x^2-539*x+463 2415764500820210 l006 ln(5687/7241) 2415764510034329 a008 Real Root of x^4-28*x^2-16*x+168 2415764521374894 r009 Im(z^3+c),c=-17/40+6/49*I,n=48 2415764535972614 a007 Real Root Of -519*x^4-985*x^3+506*x^2-518*x-415 2415764547620965 m009 (5/2*Pi^2+1/3)/(48*Catalan+6*Pi^2+1/3) 2415764567528586 a001 12586269025/2207*199^(3/11) 2415764568141292 a003 sin(Pi*2/33)/cos(Pi*19/89) 2415764569447498 m001 1/exp(GAMMA(11/24))/OneNinth^2*GAMMA(5/24)^2 2415764579272511 p004 log(30829/2753) 2415764580369079 a001 2584/3*47^(15/56) 2415764585759376 r005 Im(z^2+c),c=-11/14+21/223*I,n=24 2415764586971477 s002 sum(A217561[n]/((pi^n-1)/n),n=1..infinity) 2415764600292118 m001 (Pi+MertensB1)/(Salem-Sierpinski) 2415764600315411 a001 329/1926*2^(1/2) 2415764615158335 r005 Im(z^2+c),c=-9/14+8/175*I,n=61 2415764615496372 m001 ln(Lehmer)^2*FeigenbaumAlpha^2/Rabbit 2415764620723358 r009 Im(z^3+c),c=-4/27+47/55*I,n=42 2415764627832220 r002 4th iterates of z^2 + 2415764631657650 a007 Real Root Of 219*x^4+296*x^3-772*x^2-324*x+437 2415764637862487 l006 ln(6339/6494) 2415764645098010 r009 Re(z^3+c),c=-11/36+15/49*I,n=20 2415764646990653 l006 ln(479/5364) 2415764653882984 a007 Real Root Of 228*x^4+273*x^3-378*x^2+915*x+500 2415764653907655 m001 (Khinchin+Otter)/(Ei(1)+BesselJ(1,1)) 2415764665880571 r005 Im(z^2+c),c=-37/46+5/44*I,n=18 2415764669629278 a007 Real Root Of 481*x^4+970*x^3-393*x^2+539*x+889 2415764676001852 a007 Real Root Of -371*x^4-652*x^3+823*x^2+932*x+892 2415764684984780 r005 Im(z^2+c),c=-29/122+11/31*I,n=12 2415764689432579 r005 Re(z^2+c),c=25/82+11/61*I,n=49 2415764705883371 a001 24157817-76*5^(1/2) 2415764713207121 a001 199/1134903170*3^(7/24) 2415764720153476 a007 Real Root Of 417*x^4+718*x^3-789*x^2-310*x-224 2415764730083221 r002 9th iterates of z^2 + 2415764736530179 l006 ln(5859/7460) 2415764744044004 a003 -1+cos(11/24*Pi)-cos(8/21*Pi)+cos(1/27*Pi) 2415764745044641 m001 ZetaQ(2)^(MertensB3/MasserGramain) 2415764752724561 r009 Im(z^3+c),c=-17/40+6/49*I,n=47 2415764752754116 m001 1/cos(1)/BesselK(0,1)*ln(gamma) 2415764752754116 m001 ln(gamma)/BesselK(0,1)/cos(1) 2415764752754116 m001 log(gamma)/BesselK(0,1)/cos(1) 2415764767516949 m001 exp(Pi)+Zeta(5)^arctan(1/2) 2415764768011883 m001 GAMMA(5/6)-Khinchin-Thue 2415764770576242 m001 1/BesselJ(0,1)^2*exp(Bloch)^2*GAMMA(1/24)^2 2415764771526866 r005 Re(z^2+c),c=1/32+25/56*I,n=4 2415764772409568 r005 Im(z^2+c),c=-13/14+40/183*I,n=8 2415764781402727 a008 Real Root of x^4-x^3-38*x^2+216*x-320 2415764784397130 a007 Real Root Of 562*x^4+989*x^3-645*x^2+804*x+509 2415764804620117 m005 (1/3*5^(1/2)-1/9)/(-71/198+5/18*5^(1/2)) 2415764806151410 m001 (TravellingSalesman+Tribonacci)/(Chi(1)-Ei(1)) 2415764806151410 m001 (TravellingSalesman+Tribonacci)/Shi(1) 2415764808354654 m001 (-Weierstrass+ZetaQ(4))/(BesselI(0,1)+ln(2)) 2415764822570057 p001 sum(1/(448*n+361)/n/(512^n),n=1..infinity) 2415764826424076 r005 Re(z^2+c),c=-37/38+3/59*I,n=6 2415764832485877 r005 Im(z^2+c),c=-11/48+47/57*I,n=15 2415764846539637 h001 (11/12*exp(1)+2/11)/(1/9*exp(2)+2/7) 2415764873201648 r009 Im(z^3+c),c=-43/94+3/37*I,n=46 2415764876520969 a001 64079/610*2504730781961^(4/21) 2415764877096779 a001 219602/305*102334155^(4/21) 2415764882373631 a001 3010349/610*4181^(4/21) 2415764883293982 r005 Im(z^2+c),c=11/74+25/39*I,n=3 2415764885596385 a003 cos(Pi*25/106)-sin(Pi*37/85) 2415764896891483 m001 OneNinth/(exp(1/Pi)+GAMMA(7/24)) 2415764905090610 r005 Im(z^2+c),c=1/122+9/34*I,n=18 2415764935971320 m001 BesselI(1,2)^Zeta(1,2)/GAMMA(1/3) 2415764947849508 b008 E^4-4*Cosh[E] 2415764948926466 r005 Im(z^2+c),c=-31/26+5/123*I,n=8 2415764950363854 m001 (Sierpinski+Trott2nd)/(Catalan-Zeta(1,-1)) 2415764951559111 a001 3571/4181*8^(1/2) 2415764951679943 m005 (1/2*exp(1)-1/10)/(6/7*2^(1/2)+4) 2415764951721922 a007 Real Root Of 435*x^4+616*x^3-741*x^2+869*x+293 2415764957704003 l006 ln(600/6719) 2415764958795567 l006 ln(6031/7679) 2415764962796837 m001 1/Khintchine/CareFree^2*ln(Riemann3rdZero) 2415764971838689 r005 Re(z^2+c),c=-9/38+19/51*I,n=33 2415764972954125 m001 (3^(1/3)-gamma)/(FeigenbaumMu+Trott) 2415764973158730 m004 -2+5*Sinh[Sqrt[5]*Pi]-125*Pi*Tanh[Sqrt[5]*Pi] 2415764979733318 a001 2/39603*7^(37/46) 2415764989380950 a007 Real Root Of -314*x^4-675*x^3-771*x^2+718*x+210 2415764991132367 a001 10983760033/1926*199^(3/11) 2415764994667853 m005 (1/3*Catalan-3/7)/(11/12*Zeta(3)+4) 2415764996235831 a007 Real Root Of 542*x^4+841*x^3-998*x^2+11*x-752 2415764997465284 h001 (5/8*exp(2)+5/6)/(2/3*exp(1)+4/9) 2415764997612274 a007 Real Root Of -323*x^4-580*x^3+784*x^2+812*x+210 2415765000215038 a007 Real Root Of -322*x^4-401*x^3+785*x^2-183*x+290 2415765001807399 a003 cos(Pi*23/90)-sin(Pi*27/70) 2415765006387159 r009 Re(z^3+c),c=-11/36+15/49*I,n=19 2415765011880236 a007 Real Root Of 314*x^4+961*x^3+919*x^2+890*x-359 2415765022265270 a005 (1/sin(59/139*Pi))^1651 2415765025559022 a007 Real Root Of -349*x^4+243*x^3-83*x^2+540*x-13 2415765026370107 m006 (3/5*exp(2*Pi)+1/2)/(1/4*exp(2*Pi)-2/3) 2415765028396852 r009 Re(z^3+c),c=-6/25+25/36*I,n=16 2415765033035104 a007 Real Root Of -193*x^4+125*x^3-423*x^2+673*x-139 2415765037650087 s002 sum(A137811[n]/((pi^n-1)/n),n=1..infinity) 2415765043470503 h001 (-3*exp(1/3)-9)/(-4*exp(-2)+6) 2415765044284162 r009 Im(z^3+c),c=-7/74+31/36*I,n=28 2415765049408567 m001 HardyLittlewoodC3^Gompertz+(1+3^(1/2))^(1/2) 2415765052935338 a001 86267571272/15127*199^(3/11) 2415765056257166 m005 (1/2*Zeta(3)-9/10)/(8/11*Catalan+4/7) 2415765061952270 a001 75283811239/13201*199^(3/11) 2415765062167812 a001 521/2178309*377^(23/59) 2415765063267823 a001 591286729879/103682*199^(3/11) 2415765063459760 a001 516002918640/90481*199^(3/11) 2415765063487763 a001 4052739537881/710647*199^(3/11) 2415765063491848 a001 3536736619241/620166*199^(3/11) 2415765063494373 a001 6557470319842/1149851*199^(3/11) 2415765063505070 a001 2504730781961/439204*199^(3/11) 2415765063578383 a001 956722026041/167761*199^(3/11) 2415765064080879 a001 365435296162/64079*199^(3/11) 2415765066028755 r005 Im(z^2+c),c=-49/66+9/50*I,n=22 2415765067525041 a001 139583862445/24476*199^(3/11) 2415765069551777 q001 1563/647 2415765073583108 m005 (1/2*2^(1/2)-3/10)/(2/5*Pi+3/7) 2415765080742292 m001 (ThueMorse-Weierstrass)/(ln(Pi)+3^(1/3)) 2415765081844061 a007 Real Root Of 639*x^4-675*x^3+544*x^2-842*x+179 2415765082735203 a007 Real Root Of -371*x^4-718*x^3+391*x^2-301*x-496 2415765085722269 a001 2584/15127*2^(1/2) 2415765086048502 a007 Real Root Of 866*x^4-399*x^3+372*x^2-657*x-189 2415765091131676 a001 53316291173/9349*199^(3/11) 2415765095876766 m008 (5*Pi^3-2/5)/(2/3*Pi^6-5/6) 2415765100585723 r005 Re(z^2+c),c=9/28+9/47*I,n=50 2415765107078250 r005 Re(z^2+c),c=7/24+17/47*I,n=3 2415765109205479 r005 Re(z^2+c),c=-6/31+14/29*I,n=24 2415765128535470 r005 Re(z^2+c),c=15/56+17/36*I,n=24 2415765136968036 a001 9349/10946*8^(1/2) 2415765140861687 r002 23i'th iterates of 2*x/(1-x^2) of 2415765155557319 r005 Im(z^2+c),c=-69/82+11/54*I,n=11 2415765156542178 a001 2255/13201*2^(1/2) 2415765157024482 r009 Im(z^3+c),c=-7/74+31/36*I,n=46 2415765158358092 r005 Im(z^2+c),c=-6/13+14/33*I,n=43 2415765164018834 a001 24476/28657*8^(1/2) 2415765164127937 l006 ln(721/8074) 2415765166874663 a001 17711/103682*2^(1/2) 2415765167965493 a001 64079/75025*8^(1/2) 2415765168382152 a001 15456/90481*2^(1/2) 2415765168541302 a001 167761/196418*8^(1/2) 2415765168602092 a001 121393/710647*2^(1/2) 2415765168625312 a001 439204/514229*8^(1/2) 2415765168634181 a001 105937/620166*2^(1/2) 2415765168637569 a001 1149851/1346269*8^(1/2) 2415765168638863 a001 832040/4870847*2^(1/2) 2415765168639357 a001 3010349/3524578*8^(1/2) 2415765168639546 a001 726103/4250681*2^(1/2) 2415765168639618 a001 7881196/9227465*8^(1/2) 2415765168639645 a001 5702887/33385282*2^(1/2) 2415765168639656 a001 20633239/24157817*8^(1/2) 2415765168639660 a001 4976784/29134601*2^(1/2) 2415765168639661 a001 54018521/63245986*8^(1/2) 2415765168639662 a001 39088169/228826127*2^(1/2) 2415765168639662 a001 141422324/165580141*8^(1/2) 2415765168639662 a001 34111385/199691526*2^(1/2) 2415765168639662 a001 370248451/433494437*8^(1/2) 2415765168639662 a001 267914296/1568397607*2^(1/2) 2415765168639662 a001 969323029/1134903170*8^(1/2) 2415765168639662 a001 233802911/1368706081*2^(1/2) 2415765168639662 a001 2537720636/2971215073*8^(1/2) 2415765168639662 a001 1836311903/10749957122*2^(1/2) 2415765168639662 a001 6643838879/7778742049*8^(1/2) 2415765168639662 a001 1602508992/9381251041*2^(1/2) 2415765168639662 a001 17393796001/20365011074*8^(1/2) 2415765168639662 a001 12586269025/73681302247*2^(1/2) 2415765168639662 a001 45537549124/53316291173*8^(1/2) 2415765168639662 a001 10983760033/64300051206*2^(1/2) 2415765168639662 a001 119218851371/139583862445*8^(1/2) 2415765168639662 a001 86267571272/505019158607*2^(1/2) 2415765168639662 a001 312119004989/365435296162*8^(1/2) 2415765168639662 a001 75283811239/440719107401*2^(1/2) 2415765168639662 a001 817138163596/956722026041*8^(1/2) 2415765168639662 a001 2139295485799/2504730781961*8^(1/2) 2415765168639662 b008 Sqrt[2]*(5-3*Sqrt[5]) 2415765168639662 a001 2504730781961/14662949395604*2^(1/2) 2415765168639662 a001 505019158607/591286729879*8^(1/2) 2415765168639662 a001 139583862445/817138163596*2^(1/2) 2415765168639662 a001 64300051206/75283811239*8^(1/2) 2415765168639662 a001 53316291173/312119004989*2^(1/2) 2415765168639662 a001 73681302247/86267571272*8^(1/2) 2415765168639662 a001 20365011074/119218851371*2^(1/2) 2415765168639662 a001 9381251041/10983760033*8^(1/2) 2415765168639662 a001 7778742049/45537549124*2^(1/2) 2415765168639662 a001 10749957122/12586269025*8^(1/2) 2415765168639662 a001 2971215073/17393796001*2^(1/2) 2415765168639662 a001 1368706081/1602508992*8^(1/2) 2415765168639662 a001 1134903170/6643838879*2^(1/2) 2415765168639662 a001 1568397607/1836311903*8^(1/2) 2415765168639662 a001 433494437/2537720636*2^(1/2) 2415765168639662 a001 199691526/233802911*8^(1/2) 2415765168639662 a001 165580141/969323029*2^(1/2) 2415765168639662 a001 228826127/267914296*8^(1/2) 2415765168639662 a001 63245986/370248451*2^(1/2) 2415765168639663 a001 29134601/34111385*8^(1/2) 2415765168639663 a001 24157817/141422324*2^(1/2) 2415765168639665 a001 33385282/39088169*8^(1/2) 2415765168639669 a001 9227465/54018521*2^(1/2) 2415765168639679 a001 4250681/4976784*8^(1/2) 2415765168639707 a001 3524578/20633239*2^(1/2) 2415765168639779 a001 4870847/5702887*8^(1/2) 2415765168639968 a001 1346269/7881196*2^(1/2) 2415765168640462 a001 620166/726103*8^(1/2) 2415765168641756 a001 514229/3010349*2^(1/2) 2415765168645144 a001 710647/832040*8^(1/2) 2415765168654013 a001 196418/1149851*2^(1/2) 2415765168677232 a001 90481/105937*8^(1/2) 2415765168734771 l006 ln(6203/7898) 2415765168738022 a001 75025/439204*2^(1/2) 2415765168897172 a001 103682/121393*8^(1/2) 2415765169313832 a001 28657/167761*2^(1/2) 2415765170404661 a001 13201/15456*8^(1/2) 2415765173260490 a001 10946/64079*2^(1/2) 2415765178995976 p001 sum((-1)^n/(210*n+191)/n/(10^n),n=1..infinity) 2415765180737147 a001 15127/17711*8^(1/2) 2415765183002165 a007 Real Root Of 712*x^4-907*x^3+211*x^2-656*x-186 2415765184230945 r005 Im(z^2+c),c=-45/98+11/26*I,n=64 2415765196414455 m001 BesselK(1,1)*ln(GolombDickman)/GAMMA(19/24) 2415765199742376 m001 FeigenbaumKappa*ln(Champernowne)/GAMMA(19/24) 2415765200311288 a001 4181/24476*2^(1/2) 2415765208711837 m001 sin(1)^FeigenbaumMu-Otter 2415765216062763 p002 log(13^(12/11)-18^(4/7)) 2415765217548020 r005 Im(z^2+c),c=1/122+9/34*I,n=15 2415765229084912 m002 15/Pi^3+Cosh[Pi]/6 2415765230129039 m001 (Catalan-ln(Pi))/(FellerTornier+GolombDickman) 2415765240175385 m001 1/GAMMA(7/12)^2*TwinPrimes^2*exp(sin(Pi/12)) 2415765241231310 m004 -2+E^(Sqrt[5]*Pi)-125*Pi+3*Sinh[Sqrt[5]*Pi] 2415765243854286 m001 (Ei(1)-arctan(1/2))/(BesselI(1,1)+Trott2nd) 2415765251557056 a001 1926/2255*8^(1/2) 2415765252933976 a001 20365011074/3571*199^(3/11) 2415765259591321 a001 1597/18*3^(31/34) 2415765279371068 a007 Real Root Of 121*x^4+55*x^3+5*x^2-507*x+121 2415765286467116 a001 17/51841*18^(38/55) 2415765297989867 r005 Re(z^2+c),c=23/86+3/20*I,n=39 2415765308138881 m001 (Shi(1)+exp(1/exp(1)))/(Artin+Robbin) 2415765308212522 a007 Real Root Of -344*x^4-565*x^3+784*x^2+286*x-134 2415765311223350 l006 ln(842/9429) 2415765312983877 r005 Im(z^2+c),c=-3/4+25/183*I,n=9 2415765321681970 m001 (Paris-Sierpinski)/(Zeta(1,2)+GaussAGM) 2415765332620106 m001 (Lehmer+ThueMorse)/(exp(1)+3^(1/3)) 2415765355738205 m001 1/Trott^2*ln(HardHexagonsEntropy)/GAMMA(19/24) 2415765357573629 m001 (Pi*csc(5/12*Pi)/GAMMA(7/12))^gamma(3)+2^(1/2) 2415765367170325 r005 Im(z^2+c),c=-47/66+1/5*I,n=3 2415765367345488 l006 ln(6375/8117) 2415765371760931 a007 Real Root Of 676*x^4-515*x^3+659*x^2-240*x-106 2415765376985967 a007 Real Root Of -677*x^4-244*x^3+826*x^2+470*x-156 2415765385720219 a001 1597/9349*2^(1/2) 2415765388267369 a007 Real Root Of 301*x^4-726*x^3-682*x^2-811*x+20 2415765391929165 m001 (2^(1/3))*OneNinth*exp(gamma) 2415765391929165 m001 (2^(1/3))*exp(gamma)*OneNinth 2415765397318229 r005 Re(z^2+c),c=-19/106+17/33*I,n=54 2415765406662593 r005 Im(z^2+c),c=-17/12+11/41*I,n=3 2415765413693482 a007 Real Root Of -26*x^4-624*x^3+95*x^2-117*x-479 2415765420156662 m002 -E^Pi-Log[Pi]+(Cosh[Pi]*ProductLog[Pi])/Pi^4 2415765428733906 r002 19th iterates of z^2 + 2415765432632409 m001 (RenyiParking+Trott)/(Pi-gamma(3)) 2415765441581847 m001 (BesselK(1,1)+Riemann2ndZero)/(1-Ei(1)) 2415765465772602 m001 gamma(2)*(Pi*csc(1/24*Pi)/GAMMA(23/24)+Porter) 2415765469868276 p003 LerchPhi(1/16,6,188/101) 2415765471453713 r009 Re(z^3+c),c=-11/56+29/40*I,n=12 2415765478762755 m001 (Riemann2ndZero+Weierstrass)/(Porter-gamma) 2415765479308994 r005 Im(z^2+c),c=-1/19+9/31*I,n=13 2415765480829010 b008 7+22*FresnelC[1] 2415765490404536 r005 Im(z^2+c),c=-4/3+14/249*I,n=7 2415765492166636 m001 GAMMA(23/24)*(MinimumGamma-Riemann3rdZero) 2415765502793484 a007 Real Root Of -100*x^4+57*x^3+200*x^2-965*x+711 2415765513603455 a007 Real Root Of 303*x^4-129*x^3+199*x^2-619*x-164 2415765519793114 r005 Im(z^2+c),c=-8/25+18/47*I,n=37 2415765526426531 m001 GaussKuzminWirsing-ln(gamma)-Riemann3rdZero 2415765527657778 a007 Real Root Of -419*x^4-795*x^3+494*x^2+21*x+230 2415765536417908 a001 11/233*34^(25/54) 2415765536452898 m001 (GAMMA(19/24)+CareFree)/(Sarnak+ZetaQ(2)) 2415765536736376 r002 11th iterates of z^2 + 2415765538297597 m001 1/GAMMA(1/3)/exp(Riemann1stZero)^2*GAMMA(3/4) 2415765549259956 r005 Im(z^2+c),c=-23/34+5/119*I,n=53 2415765555520567 l006 ln(6547/8336) 2415765563349137 r002 32th iterates of z^2 + 2415765566372264 m001 (GAMMA(13/24)+Khinchin)/(Kolakoski-Sierpinski) 2415765576884978 m001 (ln(3)-ln(5))/(Champernowne+Riemann2ndZero) 2415765581404825 m001 DuboisRaymond*Porter^BesselI(1,1) 2415765587122900 r005 Re(z^2+c),c=-25/31+3/58*I,n=46 2415765590125552 r009 Im(z^3+c),c=-71/106+3/29*I,n=2 2415765590754398 r009 Re(z^3+c),c=-11/36+15/49*I,n=23 2415765592678897 m001 1/Robbin^2*exp(CopelandErdos)^2*TwinPrimes 2415765606026600 m001 1/GAMMA(2/3)/ln(Riemann3rdZero)/GAMMA(7/24)^2 2415765616199683 m001 GAMMA(1/12)/exp(Cahen)^2/GAMMA(1/4)^2 2415765624398711 a007 Real Root Of -362*x^4-850*x^3+384*x^2+754*x-74 2415765634839159 m001 (BesselJ(0,1)-sin(1))/(Bloch+Khinchin) 2415765640813759 r004 Re(z^2+c),c=9/38+1/8*I,z(0)=exp(3/8*I*Pi),n=5 2415765641216399 m005 (3/5*gamma+3/4)/(4/5*gamma-5) 2415765641216399 m007 (-3/5*gamma-3/4)/(-4/5*gamma+5) 2415765645175452 r005 Re(z^2+c),c=-35/29+12/61*I,n=10 2415765656616194 r005 Im(z^2+c),c=-4/15+28/45*I,n=30 2415765664103162 m001 (Pi^(1/2)+Kac)/(Kolakoski-KomornikLoreti) 2415765671758262 m001 1/2*(2^(1/2)*GaussAGM+5^(1/2))*2^(1/2) 2415765685807365 a007 Real Root Of -394*x^4-725*x^3+879*x^2+960*x+387 2415765688847539 m001 CareFree-exp(1/Pi)-KhinchinHarmonic 2415765692469069 m001 1/exp(LambertW(1))^2/GolombDickman/Zeta(1/2)^2 2415765694328808 a003 cos(Pi*13/105)/cos(Pi*20/41) 2415765713856138 m001 (Shi(1)-ln(5))/(ZetaP(3)+ZetaQ(2)) 2415765717031070 a007 Real Root Of -444*x^4-973*x^3-57*x^2-928*x-505 2415765717327676 m001 HeathBrownMoroz*gamma(3)^MasserGramain 2415765722385222 m001 (Bloch-GaussKuzminWirsing)/(Sarnak-Trott2nd) 2415765728714702 m001 (sin(1/5*Pi)+KhinchinLevy)/(Sarnak+Trott) 2415765729914518 m005 (1/2*Zeta(3)-2/9)/(5/12*5^(1/2)+7/11) 2415765730581874 a001 39088169/123*123^(9/10) 2415765734061438 l006 ln(6719/8555) 2415765734534654 p004 log(36473/3257) 2415765734670142 m005 (1/3*exp(1)-2/3)/(7/11*3^(1/2)-1/9) 2415765736963947 a001 2207/2584*8^(1/2) 2415765740017891 r009 Re(z^3+c),c=-11/36+15/49*I,n=26 2415765745245654 a001 4/930249*76^(40/43) 2415765747511593 a007 Real Root Of -325*x^4-688*x^3+5*x^2-450*x+253 2415765750648218 r009 Re(z^3+c),c=-11/36+15/49*I,n=27 2415765753878336 r009 Re(z^3+c),c=-11/36+15/49*I,n=30 2415765754599773 r009 Re(z^3+c),c=-11/36+15/49*I,n=29 2415765754850658 r009 Re(z^3+c),c=-11/36+15/49*I,n=33 2415765754990489 r009 Re(z^3+c),c=-11/36+15/49*I,n=36 2415765754997774 r009 Re(z^3+c),c=-11/36+15/49*I,n=37 2415765755001798 r009 Re(z^3+c),c=-11/36+15/49*I,n=40 2415765755002777 r009 Re(z^3+c),c=-11/36+15/49*I,n=43 2415765755002827 r009 Re(z^3+c),c=-11/36+15/49*I,n=39 2415765755002906 r009 Re(z^3+c),c=-11/36+15/49*I,n=46 2415765755002910 r009 Re(z^3+c),c=-11/36+15/49*I,n=47 2415765755002914 r009 Re(z^3+c),c=-11/36+15/49*I,n=44 2415765755002914 r009 Re(z^3+c),c=-11/36+15/49*I,n=50 2415765755002915 r009 Re(z^3+c),c=-11/36+15/49*I,n=53 2415765755002915 r009 Re(z^3+c),c=-11/36+15/49*I,n=54 2415765755002915 r009 Re(z^3+c),c=-11/36+15/49*I,n=56 2415765755002915 r009 Re(z^3+c),c=-11/36+15/49*I,n=57 2415765755002915 r009 Re(z^3+c),c=-11/36+15/49*I,n=60 2415765755002915 r009 Re(z^3+c),c=-11/36+15/49*I,n=63 2415765755002915 r009 Re(z^3+c),c=-11/36+15/49*I,n=64 2415765755002915 r009 Re(z^3+c),c=-11/36+15/49*I,n=62 2415765755002915 r009 Re(z^3+c),c=-11/36+15/49*I,n=61 2415765755002915 r009 Re(z^3+c),c=-11/36+15/49*I,n=59 2415765755002915 r009 Re(z^3+c),c=-11/36+15/49*I,n=58 2415765755002916 r009 Re(z^3+c),c=-11/36+15/49*I,n=55 2415765755002916 r009 Re(z^3+c),c=-11/36+15/49*I,n=52 2415765755002916 r009 Re(z^3+c),c=-11/36+15/49*I,n=49 2415765755002916 r009 Re(z^3+c),c=-11/36+15/49*I,n=51 2415765755002920 r009 Re(z^3+c),c=-11/36+15/49*I,n=48 2415765755002951 r009 Re(z^3+c),c=-11/36+15/49*I,n=45 2415765755003088 r009 Re(z^3+c),c=-11/36+15/49*I,n=42 2415765755003269 r009 Re(z^3+c),c=-11/36+15/49*I,n=41 2415765755007524 r009 Re(z^3+c),c=-11/36+15/49*I,n=38 2415765755010563 r009 Re(z^3+c),c=-11/36+15/49*I,n=34 2415765755038452 r009 Re(z^3+c),c=-11/36+15/49*I,n=35 2415765755153782 r009 Re(z^3+c),c=-11/36+15/49*I,n=32 2415765755436155 r009 Re(z^3+c),c=-11/36+15/49*I,n=31 2415765756570466 a001 1597/199*29^(18/55) 2415765757356132 a007 Real Root Of -278*x^4+734*x^3-532*x^2+189*x+88 2415765760013429 r009 Re(z^3+c),c=-11/36+15/49*I,n=28 2415765761455633 r005 Re(z^2+c),c=-21/94+16/39*I,n=32 2415765773096816 r009 Re(z^3+c),c=-11/36+15/49*I,n=24 2415765780083941 s002 sum(A169584[n]/(2^n-1),n=1..infinity) 2415765781213209 r005 Re(z^2+c),c=37/94+9/40*I,n=22 2415765788519592 a001 41/7*4181^(13/18) 2415765790422249 r009 Re(z^3+c),c=-11/36+15/49*I,n=25 2415765791634309 a007 Real Root Of 348*x^4+481*x^3-954*x^2-59*x+354 2415765801777902 a007 Real Root Of -49*x^4+113*x^3-908*x^2+742*x+234 2415765802717098 m009 (6*Psi(1,1/3)-5/6)/(1/3*Psi(1,3/4)-3/5) 2415765804752394 r005 Re(z^2+c),c=-17/60+2/41*I,n=3 2415765826078377 a007 Real Root Of -896*x^4-609*x^3+559*x^2+948*x-250 2415765858328952 r009 Im(z^3+c),c=-17/40+6/49*I,n=42 2415765872328865 a001 1135099622*3^(11/16) 2415765878103653 r009 Re(z^3+c),c=-11/36+15/49*I,n=22 2415765882992503 r005 Im(z^2+c),c=-5/8+97/230*I,n=34 2415765885312013 r005 Im(z^2+c),c=-11/14+19/113*I,n=5 2415765889778600 m005 (1/3*3^(1/2)-1/10)/(2/7*Pi-7/10) 2415765894595073 a003 sin(Pi*27/115)-sin(Pi*29/79) 2415765899546997 r009 Re(z^3+c),c=-35/94+11/24*I,n=33 2415765903689513 l006 ln(6891/8774) 2415765915997760 h001 (-2*exp(5)+3)/(-3*exp(6)-6) 2415765928985081 r005 Re(z^2+c),c=-21/94+11/27*I,n=18 2415765942461193 r005 Im(z^2+c),c=-28/27+11/46*I,n=34 2415765945120945 a007 Real Root Of 902*x^4+36*x^3-360*x^2-793*x+209 2415765952411443 r005 Im(z^2+c),c=-17/36+17/33*I,n=55 2415765959918939 a007 Real Root Of -367*x^4+743*x^3+896*x^2+536*x-191 2415765962987138 m001 1/BesselJ(1,1)*exp(KhintchineLevy)/GAMMA(7/24) 2415765975494707 a001 29/610*1346269^(26/43) 2415765986032650 a001 167761/1597*2504730781961^(4/21) 2415765986116659 a001 1149851/1597*102334155^(4/21) 2415765991338817 a007 Real Root Of -150*x^4-407*x^3-403*x^2-812*x-239 2415765991383046 a001 7881196/1597*4181^(4/21) 2415765997914696 r002 35th iterates of z^2 + 2415766006490883 r005 Im(z^2+c),c=-97/102+13/50*I,n=24 2415766019555322 r009 Re(z^3+c),c=-1/24+25/41*I,n=32 2415766020886299 r005 Im(z^2+c),c=1/122+9/34*I,n=17 2415766021210558 m001 (-Porter+Riemann1stZero)/(1-PlouffeB) 2415766021618828 a007 Real Root Of 196*x^4-598*x^3+884*x^2-883*x-274 2415766028546224 m001 (ln(2)-HeathBrownMoroz)/(Landau-Magata) 2415766030357926 m001 ZetaP(2)*(Psi(2,1/3)+Niven) 2415766032389408 p001 sum(1/(447*n+362)/n/(512^n),n=1..infinity) 2415766036184222 a007 Real Root Of -850*x^4-977*x^3+218*x^2+906*x-22 2415766041134574 m001 Zeta(1,-1)/(Bloch^FeigenbaumMu) 2415766052129688 q001 38/1573 2415766052129688 r005 Im(z^2+c),c=-17/26+95/121*I,n=2 2415766064385904 a007 Real Root Of 205*x^4+192*x^3-745*x^2+347*x+911 2415766065055932 l006 ln(7063/8993) 2415766067809837 a007 Real Root Of -317*x^4-593*x^3+681*x^2+883*x+595 2415766075474576 a007 Real Root Of 41*x^4+973*x^3-463*x^2-955*x+920 2415766085795070 r005 Im(z^2+c),c=1/17+7/29*I,n=9 2415766094718580 m001 PrimesInBinary^2/Lehmer/ln(sqrt(2))^2 2415766100745065 r009 Re(z^3+c),c=-1/24+25/41*I,n=44 2415766102400129 a001 5778/55*832040^(48/53) 2415766103946462 a007 Real Root Of 213*x^4-640*x^3-74*x^2-548*x+145 2415766106803507 h001 (4/11*exp(1)+1/9)/(1/2*exp(2)+6/7) 2415766111378203 m001 FeigenbaumMu*(Magata+ReciprocalFibonacci) 2415766124374355 m001 (Lehmer-Shi(1))/(-Robbin+Sierpinski) 2415766127020546 m006 (2/5*ln(Pi)-5/6)/(5*Pi-1/6) 2415766130763617 m004 -2+2*E^(Sqrt[5]*Pi)-125*Pi+Sinh[Sqrt[5]*Pi] 2415766131720492 a007 Real Root Of -226*x^4+471*x^3+558*x^2+783*x+164 2415766135634922 r005 Im(z^2+c),c=-22/31+1/34*I,n=12 2415766141058688 a001 1/98209*514229^(16/17) 2415766141069492 a001 2/433494437*1836311903^(16/17) 2415766141069492 a001 2/956722026041*6557470319842^(16/17) 2415766147908308 a001 439204/4181*2504730781961^(4/21) 2415766147920564 a001 3010349/4181*102334155^(4/21) 2415766148223266 m001 (sin(1/12*Pi)*Lehmer+Bloch)/sin(1/12*Pi) 2415766152243921 m001 (Artin-FellerTornier)/(ln(3)+GAMMA(23/24)) 2415766153185424 a001 20633239/4181*4181^(4/21) 2415766155388167 m001 1/Porter*exp(GolombDickman)^2*Zeta(7)^2 2415766155569636 r009 Re(z^3+c),c=-3/8+13/28*I,n=33 2415766163649955 h001 (10/11*exp(1)+3/10)/(1/11*exp(1)+9/10) 2415766166337014 m004 (150*Pi)/Log[Sqrt[5]*Pi]-Tan[Sqrt[5]*Pi]/6 2415766166848736 a001 567451585/161*322^(1/3) 2415766169410788 r005 Im(z^2+c),c=-13/29+24/47*I,n=45 2415766169531425 m008 (4*Pi^3-3)/(5*Pi^2+3/4) 2415766171525650 a001 1149851/10946*2504730781961^(4/21) 2415766171527438 a001 3940598/5473*102334155^(4/21) 2415766174971373 a001 3010349/28657*2504730781961^(4/21) 2415766174971634 a001 20633239/28657*102334155^(4/21) 2415766175474098 a001 7881196/75025*2504730781961^(4/21) 2415766175474136 a001 54018521/75025*102334155^(4/21) 2415766175547444 a001 20633239/196418*2504730781961^(4/21) 2415766175547450 a001 70711162/98209*102334155^(4/21) 2415766175558145 a001 54018521/514229*2504730781961^(4/21) 2415766175558146 a001 370248451/514229*102334155^(4/21) 2415766175559707 a001 141422324/1346269*2504730781961^(4/21) 2415766175559707 a001 969323029/1346269*102334155^(4/21) 2415766175559934 a001 370248451/3524578*2504730781961^(4/21) 2415766175559934 a001 1268860318/1762289*102334155^(4/21) 2415766175559968 a001 6643838879/9227465*102334155^(4/21) 2415766175559968 a001 969323029/9227465*2504730781961^(4/21) 2415766175559973 a001 17393796001/24157817*102334155^(4/21) 2415766175559973 a001 2537720636/24157817*2504730781961^(4/21) 2415766175559973 a001 22768774562/31622993*102334155^(4/21) 2415766175559973 a001 6643838879/63245986*2504730781961^(4/21) 2415766175559973 a001 119218851371/165580141*102334155^(4/21) 2415766175559973 a001 17393796001/165580141*2504730781961^(4/21) 2415766175559973 a001 312119004989/433494437*102334155^(4/21) 2415766175559973 a001 408569081798/567451585*102334155^(4/21) 2415766175559973 a001 2139295485799/2971215073*102334155^(4/21) 2415766175559973 a001 5600748293801/7778742049*102334155^(4/21) 2415766175559973 a001 7331474697802/10182505537*102334155^(4/21) 2415766175559973 a001 23725150497407/32951280099*102334155^(4/21) 2415766175559973 a001 9062201101803/12586269025*102334155^(4/21) 2415766175559973 a001 10749853441/14930208*102334155^(4/21) 2415766175559973 a001 1322157322203/1836311903*102334155^(4/21) 2415766175559973 a001 505019158607/701408733*102334155^(4/21) 2415766175559973 a001 45537549124/433494437*2504730781961^(4/21) 2415766175559973 a001 96450076809/133957148*102334155^(4/21) 2415766175559973 a001 119218851371/1134903170*2504730781961^(4/21) 2415766175559973 a001 312119004989/2971215073*2504730781961^(4/21) 2415766175559973 a001 817138163596/7778742049*2504730781961^(4/21) 2415766175559973 a001 2139295485799/20365011074*2504730781961^(4/21) 2415766175559973 a001 5600748293801/53316291173*2504730781961^(4/21) 2415766175559973 a001 9062201101803/86267571272*2504730781961^(4/21) 2415766175559973 a001 3461452808002/32951280099*2504730781961^(4/21) 2415766175559973 a001 1322157322203/12586269025*2504730781961^(4/21) 2415766175559973 a001 10745088481/102287808*2504730781961^(4/21) 2415766175559973 a001 192900153618/1836311903*2504730781961^(4/21) 2415766175559973 a001 73681302247/701408733*2504730781961^(4/21) 2415766175559973 a001 28143753123/267914296*2504730781961^(4/21) 2415766175559973 a001 10525900321/14619165*102334155^(4/21) 2415766175559973 a001 10749957122/102334155*2504730781961^(4/21) 2415766175559974 a001 28143753123/39088169*102334155^(4/21) 2415766175559974 a001 4106118243/39088169*2504730781961^(4/21) 2415766175559976 a001 5374978561/7465176*102334155^(4/21) 2415766175559976 a001 1568397607/14930352*2504730781961^(4/21) 2415766175559988 a001 4106118243/5702887*102334155^(4/21) 2415766175559988 a001 599074578/5702887*2504730781961^(4/21) 2415766175560075 a001 224056801/311187*102334155^(4/21) 2415766175560075 a001 4868641/46347*2504730781961^(4/21) 2415766175560671 a001 299537289/416020*102334155^(4/21) 2415766175560672 a001 87403803/832040*2504730781961^(4/21) 2415766175564757 a001 228826127/317811*102334155^(4/21) 2415766175564759 a001 33385282/317811*2504730781961^(4/21) 2415766175592760 a001 87403803/121393*102334155^(4/21) 2415766175592775 a001 12752043/121393*2504730781961^(4/21) 2415766175784699 a001 103681/144*102334155^(4/21) 2415766175784799 a001 4870847/46368*2504730781961^(4/21) 2415766176792075 a001 54018521/10946*4181^(4/21) 2415766177035145 r002 36th iterates of z^2 + 2415766177100265 a001 12752043/17711*102334155^(4/21) 2415766177100948 a001 1860498/17711*2504730781961^(4/21) 2415766180236238 a001 141422324/28657*4181^(4/21) 2415766180738735 a001 370248451/75025*4181^(4/21) 2415766180812049 a001 969323029/196418*4181^(4/21) 2415766180822745 a001 2537720636/514229*4181^(4/21) 2415766180824305 a001 6643838879/1346269*4181^(4/21) 2415766180824533 a001 17393796001/3524578*4181^(4/21) 2415766180824566 a001 45537549124/9227465*4181^(4/21) 2415766180824571 a001 119218851371/24157817*4181^(4/21) 2415766180824572 a001 312119004989/63245986*4181^(4/21) 2415766180824572 a001 817138163596/165580141*4181^(4/21) 2415766180824572 a001 2139295485799/433494437*4181^(4/21) 2415766180824572 a001 5600748293801/1134903170*4181^(4/21) 2415766180824572 a001 14662949395604/2971215073*4181^(4/21) 2415766180824572 a001 23725150497407/4807526976*4181^(4/21) 2415766180824572 a001 9062201101803/1836311903*4181^(4/21) 2415766180824572 a001 3461452808002/701408733*4181^(4/21) 2415766180824572 a001 1322157322203/267914296*4181^(4/21) 2415766180824572 a001 505019158607/102334155*4181^(4/21) 2415766180824572 a001 192900153618/39088169*4181^(4/21) 2415766180824574 a001 73681302247/14930352*4181^(4/21) 2415766180824587 a001 28143753123/5702887*4181^(4/21) 2415766180824674 a001 4870846/987*4181^(4/21) 2415766180825270 a001 4106118243/832040*4181^(4/21) 2415766180829355 a001 1568397607/317811*4181^(4/21) 2415766180857359 a001 599074578/121393*4181^(4/21) 2415766181049295 a001 228826127/46368*4181^(4/21) 2415766182364849 a001 87403803/17711*4181^(4/21) 2415766186117288 a001 4870847/6765*102334155^(4/21) 2415766186121970 a001 710647/6765*2504730781961^(4/21) 2415766187717060 l006 ln(121/1355) 2415766187755858 r005 Re(z^2+c),c=-97/122+5/46*I,n=38 2415766191381787 a001 33385282/6765*4181^(4/21) 2415766202650748 r009 Im(z^3+c),c=-17/40+6/49*I,n=40 2415766209821533 m004 2+Pi/Sqrt[5]+25*Sqrt[5]*Pi*Sec[Sqrt[5]*Pi] 2415766213166443 m001 1/Trott*Lehmer^2/ln((3^(1/3)))^2 2415766217044891 a007 Real Root Of 386*x^4+539*x^3-634*x^2+766*x+3 2415766218749915 l006 ln(7235/9212) 2415766235509012 a007 Real Root Of 843*x^4-615*x^3-171*x^2-597*x+160 2415766241956807 m001 (ln(gamma)+GAMMA(5/6))/(Otter+Riemann2ndZero) 2415766243935316 h001 (8/11*exp(2)+7/9)/(9/10*exp(1)+1/10) 2415766247920888 a001 930249/1292*102334155^(4/21) 2415766247952977 a001 271443/2584*2504730781961^(4/21) 2415766251450236 m005 (1/3*Zeta(3)-3/5)/(Catalan-1/11) 2415766253184804 a001 12752043/2584*4181^(4/21) 2415766258166451 r005 Im(z^2+c),c=-37/64+18/47*I,n=40 2415766269669111 r009 Re(z^3+c),c=-11/36+15/49*I,n=21 2415766289268782 m006 (1/2*Pi-1/4)/(1/4*Pi^2+3) 2415766289268782 m008 (1/2*Pi-1/4)/(1/4*Pi^2+3) 2415766319958693 a007 Real Root Of -176*x^4-650*x^3-779*x^2-593*x-56 2415766326094093 a007 Real Root Of -420*x^4-552*x^3+923*x^2-824*x-855 2415766329598693 m005 (1/2*Pi+10/11)/(3/4*Zeta(3)+1/8) 2415766335212633 r005 Re(z^2+c),c=-9/32+7/34*I,n=10 2415766335764162 m001 Bloch/Riemann1stZero*Sarnak 2415766337035615 a007 Real Root Of 298*x^4+984*x^3+413*x^2-782*x-576 2415766337927446 a007 Real Root Of 53*x^4+287*x^3+665*x^2-530*x+85 2415766340551321 r005 Im(z^2+c),c=-51/58+10/57*I,n=7 2415766360267428 r009 Re(z^3+c),c=-3/122+30/53*I,n=3 2415766361944016 a001 7778742049/1364*199^(3/11) 2415766365305956 l006 ln(7407/9431) 2415766367059833 a001 76/55*3^(30/59) 2415766368297952 r009 Re(z^3+c),c=-39/122+19/56*I,n=12 2415766371962609 m001 (Cahen+MertensB3)/(exp(-1/2*Pi)-GAMMA(23/24)) 2415766378694388 m001 (-Weierstrass+ZetaQ(2))/(ln(2)/ln(10)+3^(1/3)) 2415766384345094 r005 Im(z^2+c),c=-53/122+1/25*I,n=24 2415766409646862 a007 Real Root Of 283*x^4+293*x^3-605*x^2+565*x-612 2415766414432415 r002 10th iterates of z^2 + 2415766418101890 m001 (GAMMA(3/4)+FeigenbaumDelta)/(exp(Pi)+2^(1/3)) 2415766428176948 r009 Im(z^3+c),c=-3/16+13/55*I,n=7 2415766446921152 a007 Real Root Of -21*x^4+190*x^3+493*x^2-531*x-766 2415766451543310 m001 Trott^2*CareFree^2/exp(log(1+sqrt(2))) 2415766463435976 a007 Real Root Of 182*x^4-882*x^3+724*x^2+423*x+989 2415766473894426 m001 (MertensB2+Tetranacci)/(Kac-Si(Pi)) 2415766475500234 m005 (1/2*Catalan+9/10)/(1/9*Zeta(3)+3/7) 2415766477436627 r002 19i'th iterates of 2*x/(1-x^2) of 2415766479132766 r002 15th iterates of z^2 + 2415766481780682 r005 Re(z^2+c),c=-23/82+6/29*I,n=17 2415766484506843 r005 Re(z^2+c),c=-17/86+9/19*I,n=33 2415766499453411 m004 1+375*Pi*Sech[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi] 2415766505210024 l006 ln(7579/9650) 2415766506953682 g007 Psi(2,1/11)-Psi(2,2/9)-2*Psi(2,2/5) 2415766512042375 r005 Im(z^2+c),c=-23/34+27/124*I,n=20 2415766513955874 h001 (1/9*exp(2)+11/12)/(8/9*exp(2)+5/8) 2415766518174003 r005 Im(z^2+c),c=-35/54+1/47*I,n=3 2415766525324372 b008 E^Pi+Pi*Sinh[Pi^(-1)] 2415766528291480 a003 sin(Pi*18/77)/cos(Pi*39/95) 2415766534220738 a001 13/76*199^(3/46) 2415766558294183 a007 Real Root Of 469*x^4+928*x^3-251*x^2+840*x+604 2415766559124713 r009 Im(z^3+c),c=-5/11+2/23*I,n=47 2415766567772033 r005 Re(z^2+c),c=17/50+1/5*I,n=48 2415766567905986 r009 Re(z^3+c),c=-47/122+18/37*I,n=53 2415766575529771 m004 -2+(5*E^(Sqrt[5]*Pi))/2-125*Pi 2415766590699173 m008 (2/5*Pi^2-1)/(2/5*Pi^3-1/5) 2415766604388131 a007 Real Root Of -367*x^4-511*x^3+587*x^2-648*x+304 2415766624240645 r002 4th iterates of z^2 + 2415766628457294 b008 -1/4+Zeta[Pi,7] 2415766628829972 m001 1/ErdosBorwein*exp(Artin)^2*FeigenbaumKappa^2 2415766638154152 r005 Im(z^2+c),c=-5/9-29/71*I,n=50 2415766638904957 l006 ln(7751/9869) 2415766643407317 m001 (arctan(1/2)-cos(1/12*Pi))/(Artin+Niven) 2415766643694464 r005 Im(z^2+c),c=-39/106+24/59*I,n=17 2415766647655508 m001 GAMMA(2/3)+Porter*Sarnak 2415766654061298 r009 Re(z^3+c),c=-3/110+2/9*I,n=3 2415766656532030 a001 610/3571*2^(1/2) 2415766656614261 h001 (2/7*exp(1)+3/7)/(3/5*exp(2)+5/9) 2415766671529149 a001 101521/141*102334155^(4/21) 2415766671749089 a001 2206/21*2504730781961^(4/21) 2415766673158874 m005 (1/2*Catalan-1/4)/(3*exp(1)+5/11) 2415766676789067 a001 4870847/987*4181^(4/21) 2415766676976155 a007 Real Root Of 172*x^4-241*x^3+354*x^2-937*x-251 2415766679402600 b008 -5+3^Sqrt[3*Pi] 2415766680785770 m005 (1/2*5^(1/2)-1/8)/(11/12*Catalan-3/7) 2415766684218571 l006 ln(7525/7709) 2415766693542745 m001 exp(GAMMA(5/6))/Backhouse/Zeta(1,2)^2 2415766709091960 a007 Real Root Of 224*x^4+590*x^3+11*x^2-543*x-687 2415766724270901 a007 Real Root Of -352*x^4-510*x^3+535*x^2-337*x+862 2415766725194676 m005 (1/2*Catalan-7/8)/(8/11*5^(1/2)+1/10) 2415766735065295 r005 Im(z^2+c),c=-31/94+22/57*I,n=41 2415766738660907 q001 2237/926 2415766755280897 r005 Re(z^2+c),c=29/98+5/31*I,n=12 2415766766795135 l006 ln(7923/10088) 2415766771388170 h001 (7/11*exp(2)+6/7)/(7/11*exp(1)+4/7) 2415766787760673 a007 Real Root Of -105*x^4+739*x^3+164*x^2+707*x+172 2415766803284722 m001 ((1+3^(1/2))^(1/2)-1)/(-CareFree+Magata) 2415766830088256 r005 Im(z^2+c),c=-127/98+1/45*I,n=49 2415766836150297 p001 sum(1/(507*n+422)/(24^n),n=0..infinity) 2415766850514478 m001 Zeta(1,2)+Tribonacci-TwinPrimes 2415766870092969 m001 1/ln(GAMMA(11/12))/CareFree^2/cosh(1) 2415766871932988 m001 (-MertensB1+Otter)/(Psi(1,1/3)+Shi(1)) 2415766873873416 r009 Re(z^3+c),c=-3/13+2/35*I,n=3 2415766881457497 m001 (Pi-BesselJ(0,1))/(ln(5)-Kac) 2415766886354835 m006 (2*exp(Pi)+4/5)/(2*Pi^2-1/4) 2415766888818077 r005 Re(z^2+c),c=43/94+15/43*I,n=21 2415766900350724 a001 843/1597*4181^(36/49) 2415766908821018 a007 Real Root Of 274*x^4+783*x^3+717*x^2+910*x-279 2415766910930495 r005 Im(z^2+c),c=-103/82+25/59*I,n=3 2415766913937627 a007 Real Root Of -225*x^4-688*x^3-398*x^2-455*x-813 2415766914151300 a001 75025/47*199^(55/58) 2415766920415224 r005 Re(z^2+c),c=-45/34+54/125*I,n=2 2415766927355152 a007 Real Root Of -35*x^4+87*x^3+412*x^2+382*x+937 2415766928620468 a007 Real Root Of 536*x^4+829*x^3-809*x^2+927*x+393 2415766928864040 a001 1/6621*(1/2*5^(1/2)+1/2)^5*3^(1/3) 2415766930864347 m001 (-AlladiGrinstead+Mills)/(1+Shi(1)) 2415766937350558 r005 Im(z^2+c),c=-19/82+21/59*I,n=11 2415766946660685 r005 Re(z^2+c),c=-7/36+25/51*I,n=23 2415766965796840 m001 (-ln(5)+Pi^(1/2))/(3^(1/2)-Shi(1)) 2415766969292453 a007 Real Root Of -457*x^4-789*x^3+258*x^2-809*x+981 2415766971332942 m001 GAMMA(5/24)/Sierpinski^2/exp(Zeta(9)) 2415766971451241 m005 (1/2*2^(1/2)-7/9)/(1/7*gamma-3/8) 2415766974458070 m001 (MertensB2+ZetaQ(2))/(ln(3)+Magata) 2415766983015759 a007 Real Root Of -39*x^4+275*x^3+802*x^2-55*x+392 2415766984989964 r005 Re(z^2+c),c=-17/23+8/55*I,n=46 2415766987124488 m001 (-Sarnak+ZetaP(2))/(1+Champernowne) 2415766988171079 r005 Re(z^2+c),c=-21/106+25/52*I,n=18 2415766998353869 a007 Real Root Of 502*x^4+822*x^3-585*x^2+506*x-872 2415767002266252 a007 Real Root Of 297*x^4+420*x^3+951*x^2+19*x-46 2415767020295924 m004 -2+2*E^(Sqrt[5]*Pi)-125*Pi+Cosh[Sqrt[5]*Pi] 2415767023878953 a007 Real Root Of 478*x^4+135*x^3+742*x^2-211*x-94 2415767031320080 a007 Real Root Of 415*x^4+604*x^3-502*x^2+972*x-341 2415767035880346 m001 Niven^cos(1/12*Pi)/ln(2) 2415767040902929 s001 sum(exp(-Pi/2)^(n-1)*A240066[n],n=1..infinity) 2415767040902929 s001 sum(exp(-Pi/2)^(n-1)*A240067[n],n=1..infinity) 2415767044939145 r005 Re(z^2+c),c=-157/126+3/56*I,n=14 2415767053922530 l006 ln(852/9541) 2415767055718173 a001 2584/11*521^(19/51) 2415767064615674 r002 55th iterates of z^2 + 2415767067621300 a007 Real Root Of -379*x^4-782*x^3+197*x^2+6*x+748 2415767069632717 a007 Real Root Of 278*x^4+230*x^3-732*x^2+853*x+107 2415767086875450 s002 sum(A270221[n]/((10^n-1)/n),n=1..infinity) 2415767086883929 s002 sum(A270689[n]/((10^n-1)/n),n=1..infinity) 2415767089495655 h001 (9/11*exp(2)+11/12)/(3/8*exp(2)+1/9) 2415767089565854 m001 (KhinchinHarmonic+MertensB1)/(Mills-PlouffeB) 2415767106735955 m001 CareFree/(GAMMA(5/6)+KomornikLoreti) 2415767113113631 p001 sum((-1)^n/(513*n+131)/n/(64^n),n=1..infinity) 2415767133266780 m004 3-Sin[Sqrt[5]*Pi]+Sin[Sqrt[5]*Pi]^2/5 2415767136868591 m001 GAMMA(1/6)*exp(MadelungNaCl)^2*log(2+sqrt(3)) 2415767140031831 m001 1/exp(GAMMA(1/4))^2*Trott*Pi 2415767155154135 m001 (QuadraticClass+ZetaQ(4))/(Zeta(1,2)-exp(1)) 2415767159410921 r002 5th iterates of z^2 + 2415767176858263 r005 Im(z^2+c),c=-37/94+17/32*I,n=20 2415767184738599 m001 (Chi(1)*GaussAGM+ln(2+3^(1/2)))/GaussAGM 2415767185145675 m001 BesselI(0,1)^GaussAGM/(BesselJ(1,1)^GaussAGM) 2415767194974933 m001 ln(Salem)*FeigenbaumAlpha^2/BesselK(0,1) 2415767197302569 l006 ln(731/8186) 2415767199037366 r005 Re(z^2+c),c=-13/44+5/44*I,n=7 2415767206258836 r005 Im(z^2+c),c=-49/46+9/37*I,n=22 2415767206362060 m001 (Magata+ZetaP(2))/(Shi(1)+cos(1)) 2415767209591028 a001 7778742049/843*199^(2/11) 2415767214743838 m001 Cahen^BesselI(1,1)/FellerTornier 2415767218833789 a001 1/36*832040^(19/58) 2415767220612143 a007 Real Root Of -217*x^4-221*x^3+897*x^2+440*x+103 2415767228189563 m001 (2^(1/2)+BesselJ(0,1))/(Kolakoski+OneNinth) 2415767244138057 p001 sum(1/(446*n+363)/n/(512^n),n=1..infinity) 2415767253436824 r009 Im(z^3+c),c=-14/25+11/37*I,n=28 2415767258398606 m005 (1/2*3^(1/2)-7/12)/(4/7*Pi-5/8) 2415767259695851 m001 (-GAMMA(5/6)+3)/(-GAMMA(3/4)+2) 2415767273116708 a007 Real Root Of -31*x^4-716*x^3+818*x^2+583*x+366 2415767276435077 r002 54th iterates of z^2 + 2415767278397936 m001 (Psi(1,1/3)+ln(3))/(FibonacciFactorial+Magata) 2415767287610085 r009 Re(z^3+c),c=-1/16+29/41*I,n=10 2415767290131409 a007 Real Root Of -211*x^4-377*x^3+711*x^2+782*x-389 2415767293665528 p003 LerchPhi(1/1024,7,8/47) 2415767298043398 a001 161/72*514229^(52/59) 2415767299497500 a001 48315545/2-89/2*5^(1/2) 2415767299808061 a001 144/521*817138163596^(2/3) 2415767299808061 a001 144/521*(1/2+1/2*5^(1/2))^38 2415767299808061 a001 144/521*10749957122^(19/24) 2415767299808061 a001 144/521*4106118243^(19/23) 2415767299808061 a001 144/521*1568397607^(19/22) 2415767299808061 a001 144/521*599074578^(19/21) 2415767299808061 a001 144/521*228826127^(19/20) 2415767299999997 a001 7465032+7465176*5^(1/2) 2415767299999997 a001 233/322*141422324^(12/13) 2415767299999997 a001 233/322*2537720636^(4/5) 2415767299999997 a001 233/322*45537549124^(12/17) 2415767299999997 a001 233/322*14662949395604^(4/7) 2415767299999997 a001 233/322*(1/2+1/2*5^(1/2))^36 2415767299999997 a001 233/322*192900153618^(2/3) 2415767299999997 a001 233/322*73681302247^(9/13) 2415767299999997 a001 233/322*10749957122^(3/4) 2415767299999997 a001 233/322*4106118243^(18/23) 2415767299999997 a001 233/322*1568397607^(9/11) 2415767299999997 a001 233/322*599074578^(6/7) 2415767299999997 a001 233/322*228826127^(9/10) 2415767299999998 a001 233/322*87403803^(18/19) 2415767303415325 p003 LerchPhi(1/256,7,8/47) 2415767314543955 m001 (Stephens+ZetaP(2))/(cos(1)-cos(1/12*Pi)) 2415767323697331 p003 LerchPhi(1/100,7,8/47) 2415767324278604 m001 (-Zeta(5)+Landau)/(sin(1)+Zeta(3)) 2415767325778679 m001 ZetaQ(3)^ThueMorse*Niven 2415767328230160 r009 Re(z^3+c),c=-15/94+28/33*I,n=42 2415767340792229 m001 BesselK(0,1)^Si(Pi)/(MertensB1^Si(Pi)) 2415767342422096 p003 LerchPhi(1/64,7,8/47) 2415767348455663 b008 ArcSec[-ArcSinh[Sqrt[Pi]]] 2415767352468235 a001 1/17334*(1/2*5^(1/2)+1/2)^7*3^(1/3) 2415767363584796 a007 Real Root Of -230*x^4-117*x^3+992*x^2-141*x+54 2415767369279967 m001 (Zeta(5)+FeigenbaumMu)/(Porter+TreeGrowth2nd) 2415767376451883 r005 Im(z^2+c),c=-31/90+16/41*I,n=31 2415767376483928 a007 Real Root Of -938*x^4-422*x^3-995*x^2+512*x+179 2415767378496949 m001 (MertensB3+Trott2nd)/(GAMMA(19/24)-Psi(2,1/3)) 2415767395175293 m001 exp(cos(Pi/5))^2/Artin^2*sin(Pi/12)^2 2415767395703157 m001 (FeigenbaumAlpha-Niven)/(3^(1/3)-Pi^(1/2)) 2415767397564492 l006 ln(610/6831) 2415767402388189 m002 -E^Pi+Pi/E^Pi-ProductLog[Pi]^2 2415767406128514 a007 Real Root Of 322*x^4+830*x^3-92*x^2-466*x+146 2415767408221673 r005 Im(z^2+c),c=7/60+11/52*I,n=11 2415767414271267 a001 1/45381*(1/2*5^(1/2)+1/2)^9*3^(1/3) 2415767414497008 s002 sum(A134382[n]/(n^3*10^n-1),n=1..infinity) 2415767416255886 m006 (4*exp(2*Pi)-2/3)/(1/6/Pi+5/6) 2415767418263645 a007 Real Root Of 406*x^4+561*x^3-647*x^2+699*x-454 2415767422038939 r005 Re(z^2+c),c=5/17+5/29*I,n=21 2415767423288208 a001 1/118809*(1/2*5^(1/2)+1/2)^11*3^(1/3) 2415767423595148 p003 LerchPhi(1/25,7,8/47) 2415767425416819 a001 1/192237*(1/2*5^(1/2)+1/2)^12*3^(1/3) 2415767426886880 a008 Real Root of x^4-2*x^3+16*x^2-15*x-63 2415767427446296 r005 Re(z^2+c),c=-9/32+3/10*I,n=5 2415767428860984 a001 1/73428*(1/2*5^(1/2)+1/2)^10*3^(1/3) 2415767436403911 m001 1/ln(GAMMA(1/6))^2*TreeGrowth2nd^2/exp(1) 2415767444350473 m003 (Coth[1/2+Sqrt[5]/2]^2*Csch[1/2+Sqrt[5]/2])/2 2415767452467643 a001 1/28047*(1/2*5^(1/2)+1/2)^8*3^(1/3) 2415767454152883 a007 Real Root Of -367*x^4-598*x^3+446*x^2-935*x-793 2415767466474883 r009 Im(z^3+c),c=-39/86+27/43*I,n=6 2415767468502661 r005 Re(z^2+c),c=-4/13+28/51*I,n=8 2415767472373656 r009 Re(z^3+c),c=-19/62+17/48*I,n=4 2415767481195109 r005 Re(z^2+c),c=-7/8+43/188*I,n=22 2415767484914204 r005 Im(z^2+c),c=-10/27+25/47*I,n=15 2415767485052173 a001 233/11*2^(11/58) 2415767487361046 m001 GAMMA(23/24)^TwinPrimes+exp(Pi) 2415767487361046 m001 exp(Pi)+GAMMA(23/24)^TwinPrimes 2415767487554446 m005 (11/30+1/6*5^(1/2))/(3/10*Zeta(3)-2/3) 2415767489718498 m001 ln(GAMMA(5/6))^2/GAMMA(17/24)^2*exp(1) 2415767498571026 p003 LerchPhi(1/16,7,8/47) 2415767511708802 r005 Re(z^2+c),c=-53/46+5/28*I,n=4 2415767515949245 m001 FeigenbaumKappa^GAMMA(17/24)-Zeta(1,2) 2415767521760285 a007 Real Root Of -370*x^4-527*x^3+620*x^2-992*x-843 2415767526221715 m001 (Magata-PolyaRandomWalk3D)/(Ei(1)-Kac) 2415767526433848 m005 (1/2*gamma-1/12)/(5/11*5^(1/2)-1/6) 2415767527059964 p004 log(11621/9127) 2415767557640049 m006 (1/2/Pi+1/6)/(1/4*exp(2*Pi)+1) 2415767557744426 m001 (ln(gamma)-ln(5))/(Conway-HardyLittlewoodC5) 2415767565247485 p001 sum(1/(527*n+426)/(16^n),n=0..infinity) 2415767575333023 m001 (gamma(3)+Lehmer)/(ln(Pi)+ln(2+3^(1/2))) 2415767575715193 r005 Re(z^2+c),c=-5/31+27/44*I,n=50 2415767579711410 a001 17711/7*123^(18/19) 2415767588146224 a007 Real Root Of -928*x^4-991*x^3-178*x^2+395*x+95 2415767589956355 p001 sum(1/(479*n+441)/(8^n),n=0..infinity) 2415767608836820 r005 Im(z^2+c),c=-37/102+4/11*I,n=8 2415767614270100 a001 1/10713*(1/2*5^(1/2)+1/2)^6*3^(1/3) 2415767619703748 m004 1+(750*Pi*Sin[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 2415767623631505 p003 LerchPhi(1/10,7,8/47) 2415767635857066 m001 (1+3^(1/2))^(1/2)*Riemann1stZero+Kolakoski 2415767636682588 r005 Im(z^2+c),c=-23/17+1/48*I,n=63 2415767640683634 a007 Real Root Of 467*x^4+888*x^3-904*x^2-875*x-224 2415767642671665 r008 a(0)=0,K{-n^6,(2*n+1)*(82+24*n^2+32*n)} 2415767644155084 m005 (1/2*exp(1)-1/11)/(3/11*Catalan+5) 2415767645905039 r008 a(0)=0,K{-n^6,30*n^3+133*n^2+187*n+64} 2415767647030523 m001 1/GAMMA(1/6)*exp(MertensB1)/cos(Pi/12) 2415767648642795 r008 a(0)=0,K{-n^6,(2*n+1)*(50+8*n^2+80*n)} 2415767661156892 m005 (1/2*Zeta(3)+7/11)/(2/11*exp(1)-6/11) 2415767661621848 a001 123/12586269025*102334155^(4/23) 2415767661621848 a001 123/86267571272*6557470319842^(4/23) 2415767664549133 a001 219602/305*4807526976^(6/23) 2415767664584009 a001 3940598/305*75025^(6/23) 2415767664841505 m001 MinimumGamma^Psi(1,1/3)/(MinimumGamma^Niven) 2415767664977295 b008 33*(-1+Sqrt[3]) 2415767664977295 m005 (1/2*3^(1/2)+7/10)/(2/11*3^(1/2)+1/3) 2415767666347593 m001 (StronglyCareFree+ZetaP(3))/(Zeta(5)-Cahen) 2415767674249135 r005 Im(z^2+c),c=-67/118+23/55*I,n=64 2415767677055291 m001 1/ln(sin(Pi/5))/GAMMA(7/12)^2*sqrt(3)^2 2415767681366837 m008 (Pi^6-2)/(2/5*Pi^4+3/4) 2415767693350803 a001 199/121393*3^(6/17) 2415767694568216 a001 123/1836311903*1597^(4/23) 2415767696933467 l006 ln(489/5476) 2415767702304373 r005 Im(z^2+c),c=-23/114+22/39*I,n=3 2415767707075508 p003 LerchPhi(1/8,7,8/47) 2415767718399765 a007 Real Root Of -313*x^4-621*x^3+453*x^2-6*x-753 2415767719328039 m001 TreeGrowth2nd^2/CareFree^2/ln(sinh(1)) 2415767735477099 a001 18*1346269^(33/49) 2415767756133313 r009 Im(z^3+c),c=-17/40+6/49*I,n=41 2415767772117957 a001 54018521*144^(13/17) 2415767779214296 r005 Im(z^2+c),c=-49/106+19/45*I,n=32 2415767779718164 m009 (2*Psi(1,1/3)+2/5)/(40*Catalan+5*Pi^2-3/4) 2415767791899982 h001 (-8*exp(7)+9)/(-9*exp(6)+3) 2415767792161510 r008 a(0)=0,K{-n^6,-15-55*n-14*n^2+43*n^3} 2415767794127805 m001 3^(1/3)/(cos(1)^Chi(1)) 2415767804498672 a005 (1/cos(1/94*Pi))^1579 2415767804870540 r009 Re(z^3+c),c=-21/58+13/27*I,n=9 2415767830859256 r005 Re(z^2+c),c=-5/46+36/59*I,n=45 2415767834301447 a008 Real Root of (1+3*x-4*x^2+4*x^3+5*x^4+3*x^5) 2415767835165939 a007 Real Root Of -185*x^4-170*x^3+223*x^2-776*x+728 2415767839069458 r005 Re(z^2+c),c=-1+31/188*I,n=48 2415767851132617 s002 sum(A163724[n]/((2^n+1)/n),n=1..infinity) 2415767862668508 m004 4+(375*Sin[Sqrt[5]*Pi])/(4*Pi) 2415767878752409 m004 5+5*Pi+Cos[Sqrt[5]*Pi]+2*Sec[Sqrt[5]*Pi] 2415767881630093 r005 Im(z^2+c),c=-7/82+10/33*I,n=11 2415767886064633 r005 Im(z^2+c),c=1/122+9/34*I,n=21 2415767891999683 r005 Re(z^2+c),c=-21/74+4/21*I,n=10 2415767892641324 a007 Real Root Of 274*x^4+650*x^3-22*x^2+93*x+185 2415767902420480 r009 Re(z^3+c),c=-19/50+19/40*I,n=35 2415767909828231 m004 -2+E^(Sqrt[5]*Pi)-125*Pi+3*Cosh[Sqrt[5]*Pi] 2415767910019847 l006 ln(857/9597) 2415767923470119 m001 1/log(1+sqrt(2))/GAMMA(1/4)/exp(sin(Pi/12)) 2415767925473760 r005 Im(z^2+c),c=8/21+41/48*I,n=3 2415767932564837 m001 exp(GAMMA(1/12))/MadelungNaCl/GAMMA(7/12)^2 2415767939341212 r005 Re(z^2+c),c=-6/29+19/42*I,n=32 2415767941860939 m001 (2^(1/2)+FeigenbaumC)/(-Kolakoski+TwinPrimes) 2415767948481695 r005 Re(z^2+c),c=-15/98+4/7*I,n=54 2415767955998935 r005 Im(z^2+c),c=-25/62+17/42*I,n=28 2415767957748653 p003 LerchPhi(1/5,7,8/47) 2415767958567966 m001 (StolarskyHarborth-ZetaP(4))/(Rabbit+Salem) 2415767961550278 a008 Real Root of x^4-x^3-52*x^2+83*x+83 2415767962008153 s002 sum(A040041[n]/(exp(n)+1),n=1..infinity) 2415767965039747 a007 Real Root Of 255*x^4+29*x^3-990*x^2+761*x-660 2415767983154969 a001 3/2161*47^(23/31) 2415767997120053 s001 sum(exp(-Pi/4)^n*A100236[n],n=1..infinity) 2415768000365213 m001 Trott*ArtinRank2*exp(sqrt(3))^2 2415768008202745 m001 ((1+3^(1/2))^(1/2)+Rabbit)^GAMMA(23/24) 2415768022004643 m001 Riemann3rdZero^2/RenyiParking/exp(sqrt(Pi))^2 2415768026905266 p003 LerchPhi(1/16,6,289/228) 2415768034829991 m001 (cos(1/5*Pi)-sin(1))/(MertensB3+Trott) 2415768036796747 p001 sum((-1)^n/(219*n+41)/(16^n),n=0..infinity) 2415768046632528 m001 Pi+exp(Pi)/(exp(-1/2*Pi)-GAMMA(11/12)) 2415768052703798 r005 Im(z^2+c),c=-55/122+21/50*I,n=50 2415768055254176 h005 exp(sin(Pi*7/51)/cos(Pi*12/35)) 2415768055970192 m001 (-Pi^(1/2)+Khinchin)/(3^(1/2)-GAMMA(2/3)) 2415768058292666 a001 2/4181*514229^(14/17) 2415768067852528 a007 Real Root Of -116*x^4+195*x^3+966*x^2-583*x-346 2415768079550585 h005 exp(cos(Pi*1/54)*cos(Pi*9/58)) 2415768080922672 s001 sum(exp(-Pi/4)^n*A087130[n],n=1..infinity) 2415768082294069 r005 Im(z^2+c),c=-5/32+16/21*I,n=27 2415768085354436 a007 Real Root Of 261*x^4+729*x^3+576*x^2+700*x-282 2415768085930286 a001 1/1762289*1836311903^(14/17) 2415768085930325 a001 2/2971215073*6557470319842^(14/17) 2415768094306143 a007 Real Root Of 416*x^4+927*x^3-310*x^2-320*x-63 2415768104375941 r002 13th iterates of z^2 + 2415768108487182 a001 701408733/322*322^(5/12) 2415768116740311 r002 22th iterates of z^2 + 2415768125151594 p003 LerchPhi(1/4,7,8/47) 2415768136057090 m001 (Si(Pi)+BesselJ(1,1))/(-LandauRamanujan+Thue) 2415768137350107 m001 (FeigenbaumD-ZetaQ(3))/(arctan(1/2)+Cahen) 2415768145638911 r005 Re(z^2+c),c=23/86+3/20*I,n=38 2415768158826384 r005 Im(z^2+c),c=-13/27+11/24*I,n=41 2415768173353112 l006 ln(8711/8924) 2415768174424819 m001 exp(OneNinth)/Salem^2/gamma^2 2415768177022276 m001 exp((2^(1/3)))*Khintchine^2/GAMMA(23/24)^2 2415768177899829 m004 -2+5*Cosh[Sqrt[5]*Pi]-125*Pi*Coth[Sqrt[5]*Pi] 2415768193169886 l006 ln(368/4121) 2415768194070080 q001 717/2968 2415768196464242 a007 Real Root Of 439*x^4+760*x^3-753*x^2+37*x+247 2415768198582019 r005 Im(z^2+c),c=-19/30+4/19*I,n=3 2415768206185731 s001 sum(exp(-Pi/4)^n*A051930[n],n=1..infinity) 2415768214102163 m001 HeathBrownMoroz^sin(1/12*Pi)+5^(1/2) 2415768224016697 r005 Im(z^2+c),c=1/122+9/34*I,n=22 2415768232400344 a007 Real Root Of -181*x^4-634*x^3-636*x^2-43*x+834 2415768234428468 r005 Im(z^2+c),c=5/42+33/53*I,n=45 2415768239086978 r005 Im(z^2+c),c=-17/38+24/47*I,n=32 2415768239770179 r009 Re(z^3+c),c=-21/52+15/26*I,n=63 2415768240816656 r002 48th iterates of z^2 + 2415768241259349 a007 Real Root Of 477*x^4+817*x^3-525*x^2+925*x+571 2415768246057094 a007 Real Root Of 433*x^4+870*x^3-183*x^2+324*x-631 2415768259122948 m001 1/Rabbit*ln(PisotVijayaraghavan)/GAMMA(13/24) 2415768264309683 r005 Im(z^2+c),c=1/122+9/34*I,n=25 2415768265482663 r009 Re(z^3+c),c=-39/110+23/55*I,n=18 2415768272364025 r005 Im(z^2+c),c=-61/62+11/49*I,n=22 2415768284304342 a007 Real Root Of -13*x^4-310*x^3+94*x^2-79*x+330 2415768285035796 r005 Im(z^2+c),c=1/122+9/34*I,n=24 2415768286721501 m001 (BesselI(1,2)+FeigenbaumC)/(Totient+ZetaP(4)) 2415768287142663 m005 (1/2*Zeta(3)-2/5)/(3*exp(1)+1/6) 2415768287703527 r005 Im(z^2+c),c=1/122+9/34*I,n=28 2415768289423005 r005 Im(z^2+c),c=1/122+9/34*I,n=29 2415768289993759 r005 Im(z^2+c),c=1/122+9/34*I,n=32 2415768290168717 r005 Im(z^2+c),c=1/122+9/34*I,n=35 2415768290175698 r005 Im(z^2+c),c=1/122+9/34*I,n=36 2415768290181570 r005 Im(z^2+c),c=1/122+9/34*I,n=39 2415768290182825 r005 Im(z^2+c),c=1/122+9/34*I,n=42 2415768290182836 r005 Im(z^2+c),c=1/122+9/34*I,n=43 2415768290182888 r005 Im(z^2+c),c=1/122+9/34*I,n=46 2415768290182897 r005 Im(z^2+c),c=1/122+9/34*I,n=47 2415768290182897 r005 Im(z^2+c),c=1/122+9/34*I,n=50 2415768290182897 r005 Im(z^2+c),c=1/122+9/34*I,n=49 2415768290182897 r005 Im(z^2+c),c=1/122+9/34*I,n=53 2415768290182897 r005 Im(z^2+c),c=1/122+9/34*I,n=54 2415768290182897 r005 Im(z^2+c),c=1/122+9/34*I,n=57 2415768290182897 r005 Im(z^2+c),c=1/122+9/34*I,n=56 2415768290182897 r005 Im(z^2+c),c=1/122+9/34*I,n=60 2415768290182897 r005 Im(z^2+c),c=1/122+9/34*I,n=61 2415768290182897 r005 Im(z^2+c),c=1/122+9/34*I,n=64 2415768290182897 r005 Im(z^2+c),c=1/122+9/34*I,n=63 2415768290182897 r005 Im(z^2+c),c=1/122+9/34*I,n=62 2415768290182897 r005 Im(z^2+c),c=1/122+9/34*I,n=59 2415768290182897 r005 Im(z^2+c),c=1/122+9/34*I,n=58 2415768290182897 r005 Im(z^2+c),c=1/122+9/34*I,n=55 2415768290182897 r005 Im(z^2+c),c=1/122+9/34*I,n=52 2415768290182898 r005 Im(z^2+c),c=1/122+9/34*I,n=51 2415768290182900 r005 Im(z^2+c),c=1/122+9/34*I,n=48 2415768290182907 r005 Im(z^2+c),c=1/122+9/34*I,n=45 2415768290182927 r005 Im(z^2+c),c=1/122+9/34*I,n=44 2415768290182952 r005 Im(z^2+c),c=1/122+9/34*I,n=40 2415768290183209 r005 Im(z^2+c),c=1/122+9/34*I,n=41 2415768290183721 r005 Im(z^2+c),c=1/122+9/34*I,n=38 2415768290187716 r005 Im(z^2+c),c=1/122+9/34*I,n=37 2415768290209092 r005 Im(z^2+c),c=1/122+9/34*I,n=33 2415768290223767 r005 Im(z^2+c),c=1/122+9/34*I,n=34 2415768290224209 r005 Im(z^2+c),c=1/122+9/34*I,n=31 2415768290929910 r005 Im(z^2+c),c=1/122+9/34*I,n=30 2415768293436841 a007 Real Root Of 503*x^4+902*x^3-755*x^2+208*x+494 2415768295272064 r005 Im(z^2+c),c=1/122+9/34*I,n=27 2415768296385912 r005 Im(z^2+c),c=1/122+9/34*I,n=26 2415768300181908 m005 (3*exp(1)+2/3)/(-55/12+5/12*5^(1/2)) 2415768302879860 a007 Real Root Of 294*x^4+761*x^3-9*x^2-688*x+155 2415768309441824 p004 log(23371/2087) 2415768312566015 m008 (5*Pi^6+3/4)/(2/3*Pi^5-5) 2415768313296327 m001 Kolakoski^2/GaussAGM(1,1/sqrt(2))*exp(Salem) 2415768317867196 m001 GlaisherKinkelin/(5^(1/2)-Niven) 2415768324371219 a007 Real Root Of -463*x^4+219*x^3+81*x^2+950*x-23 2415768327089494 r009 Re(z^3+c),c=-11/26+33/62*I,n=37 2415768328537878 r009 Re(z^3+c),c=-1/24+17/25*I,n=27 2415768329091300 a001 29/3*832040^(31/34) 2415768332867527 a007 Real Root Of 342*x^4+269*x^3+493*x^2-670*x-188 2415768346586006 r009 Im(z^3+c),c=-59/110+14/37*I,n=60 2415768351632545 p001 sum((-1)^n/(482*n+411)/(64^n),n=0..infinity) 2415768355433591 r005 Im(z^2+c),c=-14/31+17/36*I,n=32 2415768359113594 r005 Im(z^2+c),c=-73/54+1/30*I,n=40 2415768364582707 r005 Im(z^2+c),c=-19/16+3/94*I,n=39 2415768368224366 r005 Re(z^2+c),c=-2/13+9/16*I,n=35 2415768371947858 r002 8th iterates of z^2 + 2415768385627905 a001 1364/233*89^(6/19) 2415768394479064 m001 ((1+3^(1/2))^(1/2))^(exp(Pi)*Bloch) 2415768400893366 r005 Im(z^2+c),c=1/122+9/34*I,n=23 2415768401084615 m001 HardHexagonsEntropy*(ZetaP(3)-ZetaQ(4)) 2415768403116640 a001 47/233*17711^(24/25) 2415768404675922 p003 LerchPhi(1/3,7,8/47) 2415768409380895 h001 (7/11*exp(1)+1/10)/(10/11*exp(2)+6/7) 2415768413292470 h001 (-3*exp(3)-5)/(-6*exp(-3)+3) 2415768417741865 a001 1836311903/521*199^(4/11) 2415768432278763 a007 Real Root Of -888*x^4+481*x^3+572*x^2+521*x-163 2415768443522368 r005 Im(z^2+c),c=-25/58+22/53*I,n=31 2415768448766704 r005 Re(z^2+c),c=4/25+14/31*I,n=35 2415768452996203 b008 1-59*Sqrt[2/11] 2415768454366754 m001 (Kolakoski+TwinPrimes)/(Chi(1)-CopelandErdos) 2415768455640029 m001 (GAMMA(2/3)-Psi(1,1/3))/(LaplaceLimit+Otter) 2415768457820625 p001 sum(1/(445*n+364)/n/(512^n),n=1..infinity) 2415768458698753 r009 Re(z^3+c),c=-29/70+33/61*I,n=59 2415768459768130 m001 (Chi(1)+sin(1))/(BesselJ(0,1)+Zeta(1/2)) 2415768462339702 a007 Real Root Of -105*x^4-56*x^3+624*x^2+255*x-239 2415768470661035 a007 Real Root Of 978*x^4-312*x^3-709*x^2-309*x-41 2415768489219981 r005 Im(z^2+c),c=-63/118+23/51*I,n=64 2415768496961983 m001 GAMMA(5/12)^cos(1)*BesselJZeros(0,1)^cos(1) 2415768498099349 r009 Im(z^3+c),c=-25/58+5/43*I,n=25 2415768508647227 r005 Re(z^2+c),c=-11/62+27/52*I,n=49 2415768520112378 m001 Mills^exp(Pi)*exp(1/exp(1))^exp(Pi) 2415768550569641 m001 exp(Pi)+LandauRamanujan2nd*MadelungNaCl 2415768558887250 m001 (cos(1)-ln(3))/(Champernowne+OneNinth) 2415768561039952 r009 Im(z^3+c),c=-27/56+9/52*I,n=6 2415768562796381 r005 Im(z^2+c),c=-31/34+25/113*I,n=55 2415768564135669 a007 Real Root Of -343*x^4+949*x^3+655*x^2+988*x+215 2415768572929200 r009 Im(z^3+c),c=-17/48+10/57*I,n=12 2415768580917869 a007 Real Root Of -480*x^4-736*x^3+690*x^2-786*x+46 2415768587738180 l006 ln(615/6887) 2415768592201663 a007 Real Root Of -44*x^4+104*x^3+168*x^2-732*x+216 2415768597903721 m001 1/Paris/exp(FransenRobinson)^2*cos(Pi/5)^2 2415768603279169 r005 Im(z^2+c),c=17/56+27/47*I,n=28 2415768610490245 a007 Real Root Of 561*x^4+492*x^3+307*x^2-877*x+21 2415768621803522 r005 Im(z^2+c),c=-9/26+31/53*I,n=26 2415768630957197 r005 Re(z^2+c),c=7/82+17/27*I,n=12 2415768631905944 p003 LerchPhi(1/5,6,189/149) 2415768637964773 m001 1/OneNinth/LaplaceLimit^2/exp(sqrt(5))^2 2415768650634488 r005 Re(z^2+c),c=-11/52+36/59*I,n=43 2415768651410525 m001 Trott2nd^Magata/(Trott2nd^(3^(1/2))) 2415768679885580 m001 (FeigenbaumMu+MertensB2)/(1-AlladiGrinstead) 2415768693234153 r005 Re(z^2+c),c=-15/86+10/19*I,n=7 2415768703470037 m005 (1/2*Zeta(3)-10/11)/(5/8*Catalan-7/10) 2415768706499393 r005 Im(z^2+c),c=-37/114+20/51*I,n=15 2415768723281224 a001 1/4092*(1/2*5^(1/2)+1/2)^4*3^(1/3) 2415768736168140 a007 Real Root Of 411*x^4+562*x^3+548*x^2-826*x-225 2415768737101902 a001 39603/89*8^(48/59) 2415768739955859 m004 1+375*Pi*Csch[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi] 2415768746915001 r005 Re(z^2+c),c=-11/38+8/53*I,n=10 2415768747475279 h005 exp(cos(Pi*5/23)/sin(Pi*13/38)) 2415768751233744 r005 Re(z^2+c),c=47/126+17/53*I,n=53 2415768756184922 l006 ln(862/9653) 2415768765340049 r005 Im(z^2+c),c=27/94+3/43*I,n=40 2415768766717682 r005 Re(z^2+c),c=-9/38+19/51*I,n=35 2415768769456522 m005 (3/4*Pi-5)/(2/3*Pi-1) 2415768769456522 m006 (5/Pi-3/4)/(1/Pi-2/3) 2415768769456522 m008 (3/4*Pi-5)/(2/3*Pi-1) 2415768772327334 m001 exp(FeigenbaumAlpha)^2*DuboisRaymond/Zeta(3) 2415768773570293 a001 1149851/1597*4807526976^(6/23) 2415768773594507 a001 20633239/1597*75025^(6/23) 2415768790944513 a007 Real Root Of -411*x^4-937*x^3+256*x^2+455*x+393 2415768796195465 m004 -125*Pi+5*Cosh[Sqrt[5]*Pi]-2*Coth[Sqrt[5]*Pi] 2415768797778004 m004 -3-125*Pi+5*Cosh[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi] 2415768799360539 m004 -2-125*Pi+5*Cosh[Sqrt[5]*Pi] 2415768800943073 m004 -1-125*Pi+5*Cosh[Sqrt[5]*Pi]-Tanh[Sqrt[5]*Pi] 2415768802525607 m004 -125*Pi+5*Cosh[Sqrt[5]*Pi]-2*Tanh[Sqrt[5]*Pi] 2415768803189809 m003 1/18+(3*Sqrt[5])/32+Cos[1/2+Sqrt[5]/2]/2 2415768818940802 m001 Riemann2ndZero^2/ln(MertensB1)^2/Zeta(7)^2 2415768825312493 a001 38/5473*89^(5/18) 2415768830727904 r005 Re(z^2+c),c=37/106+11/31*I,n=14 2415768837945430 m001 1/Sierpinski^2*Paris^2*ln(GAMMA(1/4))^2 2415768854198410 r009 Re(z^3+c),c=-5/13+16/33*I,n=29 2415768855968383 h001 (8/9*exp(1)+5/9)/(2/5*exp(1)+1/7) 2415768863207800 r005 Re(z^2+c),c=4/25+13/37*I,n=19 2415768865671052 m005 (4*Pi-5/6)/(4*2^(1/2)-4/5) 2415768870816356 m001 ln(2)+gamma(3)+Pi*csc(1/24*Pi)/GAMMA(23/24) 2415768880466617 g006 Psi(1,7/10)+Psi(1,1/5)-Psi(1,7/9)-Psi(1,3/4) 2415768881881384 r005 Im(z^2+c),c=1/122+9/34*I,n=20 2415768888592831 a001 4/377*233^(8/53) 2415768892431672 a003 sin(Pi*5/66)/sin(Pi*43/100) 2415768897150588 m001 Kolakoski*exp(ErdosBorwein)/GAMMA(13/24) 2415768897495782 r005 Im(z^2+c),c=-9/34+22/39*I,n=11 2415768906742014 m001 1/Trott^2/LaplaceLimit*ln(cosh(1))^2 2415768918857447 m005 (1/2*exp(1)-2/3)/(5/9*Catalan-2/9) 2415768926402634 r005 Im(z^2+c),c=-11/14+23/235*I,n=20 2415768930485362 r008 a(0)=0,K{-n^6,(2*n+1)*(51+8*n^2+79*n)} 2415768934836769 s001 sum(exp(-Pi/2)^n*A224131[n],n=1..infinity) 2415768935374385 a001 3010349/4181*4807526976^(6/23) 2415768935397043 a001 54018521/4181*75025^(6/23) 2415768937341870 r005 Im(z^2+c),c=-33/82+17/35*I,n=20 2415768953983744 r005 Re(z^2+c),c=-11/46+28/61*I,n=9 2415768956829023 r002 12th iterates of z^2 + 2415768958605822 a007 Real Root Of 990*x^4-970*x^3-94*x^2-126*x-42 2415768958981286 a001 3940598/5473*4807526976^(6/23) 2415768959003716 a001 70711162/5473*75025^(6/23) 2415768962425486 a001 20633239/28657*4807526976^(6/23) 2415768962447884 a001 370248451/28657*75025^(6/23) 2415768962927988 a001 54018521/75025*4807526976^(6/23) 2415768962950381 a001 969323029/75025*75025^(6/23) 2415768963001302 a001 70711162/98209*4807526976^(6/23) 2415768963011998 a001 370248451/514229*4807526976^(6/23) 2415768963013559 a001 969323029/1346269*4807526976^(6/23) 2415768963013787 a001 1268860318/1762289*4807526976^(6/23) 2415768963013820 a001 6643838879/9227465*4807526976^(6/23) 2415768963013825 a001 17393796001/24157817*4807526976^(6/23) 2415768963013826 a001 22768774562/31622993*4807526976^(6/23) 2415768963013826 a001 119218851371/165580141*4807526976^(6/23) 2415768963013826 a001 312119004989/433494437*4807526976^(6/23) 2415768963013826 a001 408569081798/567451585*4807526976^(6/23) 2415768963013826 a001 2139295485799/2971215073*4807526976^(6/23) 2415768963013826 a001 5600748293801/7778742049*4807526976^(6/23) 2415768963013826 a001 7331474697802/10182505537*4807526976^(6/23) 2415768963013826 a001 23725150497407/32951280099*4807526976^(6/23) 2415768963013826 a001 9062201101803/12586269025*4807526976^(6/23) 2415768963013826 a001 10749853441/14930208*4807526976^(6/23) 2415768963013826 a001 1322157322203/1836311903*4807526976^(6/23) 2415768963013826 a001 505019158607/701408733*4807526976^(6/23) 2415768963013826 a001 96450076809/133957148*4807526976^(6/23) 2415768963013826 a001 10525900321/14619165*4807526976^(6/23) 2415768963013826 a001 28143753123/39088169*4807526976^(6/23) 2415768963013828 a001 5374978561/7465176*4807526976^(6/23) 2415768963013840 a001 4106118243/5702887*4807526976^(6/23) 2415768963013927 a001 224056801/311187*4807526976^(6/23) 2415768963014524 a001 299537289/416020*4807526976^(6/23) 2415768963018609 a001 228826127/317811*4807526976^(6/23) 2415768963023694 a001 1268860318/98209*75025^(6/23) 2415768963034391 a001 6643838879/514229*75025^(6/23) 2415768963035951 a001 17393796001/1346269*75025^(6/23) 2415768963036179 a001 22768774562/1762289*75025^(6/23) 2415768963036212 a001 119218851371/9227465*75025^(6/23) 2415768963036217 a001 312119004989/24157817*75025^(6/23) 2415768963036218 a001 408569081798/31622993*75025^(6/23) 2415768963036218 a001 2139295485799/165580141*75025^(6/23) 2415768963036218 a001 5600748293801/433494437*75025^(6/23) 2415768963036218 a001 7331474697802/567451585*75025^(6/23) 2415768963036218 a001 23725150497407/1836311903*75025^(6/23) 2415768963036218 a001 3020733700601/233802911*75025^(6/23) 2415768963036218 a001 1730726404001/133957148*75025^(6/23) 2415768963036218 a001 440719107401/34111385*75025^(6/23) 2415768963036218 a001 505019158607/39088169*75025^(6/23) 2415768963036220 a001 33385281/2584*75025^(6/23) 2415768963036233 a001 73681302247/5702887*75025^(6/23) 2415768963036320 a001 9381251041/726103*75025^(6/23) 2415768963036916 a001 5374978561/416020*75025^(6/23) 2415768963041001 a001 1368706081/105937*75025^(6/23) 2415768963046613 a001 87403803/121393*4807526976^(6/23) 2415768963069005 a001 1568397607/121393*75025^(6/23) 2415768963238551 a001 103681/144*4807526976^(6/23) 2415768963260941 a001 33281921/2576*75025^(6/23) 2415768964554119 a001 12752043/17711*4807526976^(6/23) 2415768964576496 a001 228826127/17711*75025^(6/23) 2415768965720251 p003 LerchPhi(1/2,7,8/47) 2415768968996538 m001 gamma(2)*(Riemann3rdZero-StolarskyHarborth) 2415768970354208 r005 Re(z^2+c),c=-73/126+37/63*I,n=3 2415768973571153 a001 4870847/6765*4807526976^(6/23) 2415768973593443 a001 29134601/2255*75025^(6/23) 2415768974867902 r005 Im(z^2+c),c=-23/86+11/30*I,n=26 2415768976111132 m001 (Landau-MasserGramain)/(ln(2)+FeigenbaumMu) 2415768977401076 r002 7th iterates of z^2 + 2415768983328503 m001 (Artin+Cahen)/(Weierstrass-ZetaQ(2)) 2415768989997983 a005 (1/cos(2/185*Pi))^1529 2415768995117868 m001 (GAMMA(13/24)-Landau)/(arctan(1/2)+gamma(2)) 2415768996832047 m005 (5/6*exp(1)-3)/(-11/30+3/10*5^(1/2)) 2415769005261571 r009 Im(z^3+c),c=-13/32+6/43*I,n=26 2415769013947174 m001 (cos(1/5*Pi)-exp(1))/(-Ei(1)+Khinchin) 2415769018377117 m001 (MertensB2-ZetaQ(4))/(BesselI(1,2)+Khinchin) 2415769022204407 m001 GaussAGM^ln(3)/(Artin^ln(3)) 2415769035374824 a001 930249/1292*4807526976^(6/23) 2415769035396520 a001 16692641/1292*75025^(6/23) 2415769035504101 m001 (ln(2+3^(1/2))+Magata)/(Porter-Riemann2ndZero) 2415769039651042 a007 Real Root Of -397*x^4-664*x^3+482*x^2-274*x+685 2415769043995387 a003 cos(Pi*22/115)/cos(Pi*45/92) 2415769053492199 s001 sum(exp(-Pi/2)^n*A275123[n],n=1..infinity) 2415769053492199 s001 sum(exp(-Pi/2)^n*A275217[n],n=1..infinity) 2415769054436216 m001 (-CareFree+ZetaQ(4))/(Si(Pi)+Shi(1)) 2415769063992946 a001 281/329*8^(1/2) 2415769074903675 r005 Im(z^2+c),c=-4/5+6/47*I,n=12 2415769075042881 a007 Real Root Of 392*x^4+564*x^3-979*x^2+190*x+773 2415769079514478 r009 Im(z^3+c),c=-6/23+1/54*I,n=4 2415769084436968 m001 OneNinth^ln(Pi)-ZetaQ(2) 2415769087293902 m001 MertensB2*(exp(Pi)+exp(-1/2*Pi)) 2415769087784535 a007 Real Root Of 792*x^4-173*x^3+199*x^2-742*x-196 2415769088153104 a001 76/433494437*34^(1/11) 2415769089333542 a007 Real Root Of 2*x^4+483*x^3-41*x^2-930*x-499 2415769093874539 a003 cos(Pi*36/83)+cos(Pi*22/45) 2415769110864660 m001 1/exp(LambertW(1))/CopelandErdos*Zeta(9)^2 2415769115188384 r005 Im(z^2+c),c=1/106+14/53*I,n=13 2415769116972355 p001 sum((-1)^n/(263*n+139)/n/(10^n),n=1..infinity) 2415769120691807 r009 Re(z^3+c),c=-12/31+30/61*I,n=32 2415769120786255 m001 cos(1)^KhinchinHarmonic/Riemann1stZero 2415769130662247 a008 Real Root of (11+14*x-13*x^2-7*x^3) 2415769133186345 r002 3th iterates of z^2 + 2415769142813712 m001 1/GAMMA(19/24)^2*ln(LaplaceLimit)*cos(Pi/5) 2415769149804681 a003 cos(Pi*21/92)*cos(Pi*24/49) 2415769155107341 m003 241/10+(Sqrt[5]*Csch[1/2+Sqrt[5]/2])/16 2415769155336768 m001 1/exp(cosh(1))/Lehmer*sin(Pi/12)^2 2415769156389675 m005 (1/2*2^(1/2)-1/4)/(9/10*3^(1/2)+1/3) 2415769161959893 m001 (Zeta(3)-Zeta(5))/(Zeta(1/2)+GAMMA(7/12)) 2415769175482111 m001 GAMMA(13/24)^GAMMA(11/24)/OneNinth 2415769175483953 a007 Real Root Of -985*x^4+563*x^3-405*x^2+617*x-130 2415769175596726 l006 ln(247/2766) 2415769182060095 r009 Re(z^3+c),c=-9/25+23/37*I,n=40 2415769183478381 m001 GAMMA(13/24)+GaussAGM^OrthogonalArrays 2415769183992551 m001 (Ei(1,1)+FeigenbaumKappa)/(LaplaceLimit-Trott) 2415769188471392 a007 Real Root Of 263*x^4+753*x^3+784*x^2+918*x-699 2415769204999070 m001 Zeta(9)*ln(GAMMA(11/24))/sqrt(1+sqrt(3))^2 2415769229575003 m005 (1/2*Zeta(3)-4/7)/(4/9*Catalan+9/11) 2415769246721570 a007 Real Root Of 183*x^4-655*x^3+261*x^2-698*x+162 2415769266697742 a007 Real Root Of -307*x^4-191*x^3+859*x^2-902*x+571 2415769268872704 r009 Re(z^3+c),c=-3/8+29/61*I,n=18 2415769279076981 a007 Real Root Of -36*x^4-833*x^3+885*x^2-46*x-510 2415769282907059 r005 Re(z^2+c),c=-11/14+8/105*I,n=40 2415769288693852 r005 Re(z^2+c),c=-49/62+4/55*I,n=32 2415769297979079 a003 cos(Pi*11/71)-sin(Pi*34/99) 2415769308130545 a007 Real Root Of 447*x^4+997*x^3-669*x^2-965*x+405 2415769316184038 m001 (Zeta(5)-3^(1/3))/(Niven-Trott2nd) 2415769329805557 r009 Im(z^3+c),c=-35/66+23/50*I,n=33 2415769330343463 r005 Im(z^2+c),c=-59/98+15/41*I,n=14 2415769356309862 a007 Real Root Of -386*x^4-772*x^3+159*x^2-360*x+465 2415769359829073 h001 (1/6*exp(1)+4/9)/(5/12*exp(2)+7/11) 2415769361384573 r005 Re(z^2+c),c=-23/106+26/61*I,n=24 2415769366859797 r005 Im(z^2+c),c=-115/114+15/62*I,n=33 2415769367528254 b008 Sqrt[6]+3*(5+Sqrt[5]) 2415769368769345 r005 Im(z^2+c),c=-59/82+1/44*I,n=24 2415769381774431 r005 Im(z^2+c),c=-29/98+1/28*I,n=15 2415769390651570 m001 Ei(1)+BesselK(1,1)-StolarskyHarborth 2415769400580135 p003 LerchPhi(1/100,6,266/143) 2415769400858369 a001 5628742704/233 2415769401626123 a001 24157817-55*5^(1/2) 2415769402941685 a001 24157779-38*5^(1/2) 2415769418416884 r005 Im(z^2+c),c=19/48+11/54*I,n=36 2415769418434879 m001 (Stephens-Trott2nd)/(Khinchin-PrimesInBinary) 2415769420820265 m004 -2+5*Cosh[Sqrt[5]*Pi]-125*Pi*Tanh[Sqrt[5]*Pi] 2415769428167438 r002 20th iterates of z^2 + 2415769430468945 r009 Re(z^3+c),c=-41/110+28/61*I,n=41 2415769432275341 a003 cos(Pi*14/61)-sin(Pi*6/13) 2415769441234383 p004 log(15241/1361) 2415769453811670 m001 (3^(1/2)-BesselI(0,1))/(Gompertz+MertensB3) 2415769458438994 m001 (-ln(3)+ln(2+3^(1/2)))/(Psi(1,1/3)-Shi(1)) 2415769458983574 a001 101521/141*4807526976^(6/23) 2415769459001197 a001 4250681/329*75025^(6/23) 2415769464504129 s002 sum(A030618[n]/(n^2*pi^n+1),n=1..infinity) 2415769473878922 r009 Re(z^3+c),c=-7/19+34/57*I,n=35 2415769479666159 r005 Re(z^2+c),c=33/106+5/27*I,n=48 2415769482790056 m001 gamma(2)+FeigenbaumDelta*ZetaQ(2) 2415769488915985 r005 Im(z^2+c),c=1/122+9/34*I,n=19 2415769490116509 m003 19/8+(9*Sqrt[5])/32-Tan[1/2+Sqrt[5]/2] 2415769497575182 m001 Riemann3rdZero/(FransenRobinson-Pi^(1/2)) 2415769498611517 m001 BesselI(0,1)/(Zeta(1,2)+MinimumGamma) 2415769511631526 m001 (Shi(1)-cos(1))/(-FeigenbaumD+Landau) 2415769517093378 m001 (ArtinRank2-Salem)/(gamma(2)+exp(-1/2*Pi)) 2415769546171523 m007 (-3/5*gamma+3/4)/(-4*gamma-12*ln(2)-2*Pi+1/5) 2415769549810554 h001 (-9*exp(7)+3)/(-exp(6)-5) 2415769562269593 a007 Real Root Of 204*x^4+536*x^3-144*x^2-354*x+594 2415769566260452 m001 (Si(Pi)+Ei(1))/(-Pi^(1/2)+Tetranacci) 2415769569053789 a007 Real Root Of -448*x^4-963*x^3+560*x^2+615*x-101 2415769569700112 b008 (5*LogGamma[1+E])/3 2415769574987361 a001 271443/377*102334155^(4/21) 2415769575140563 a007 Real Root Of 110*x^4-712*x^3+954*x^2-604*x-212 2415769575495295 m001 (Stephens+Weierstrass)/(Zeta(5)-BesselK(1,1)) 2415769576494853 a001 39603/377*2504730781961^(4/21) 2415769577941656 m002 E^Pi+(10*Coth[Pi])/Pi^2 2415769578898971 a001 124/5*2971215073^(8/19) 2415769580219878 a001 1860498/377*4181^(4/21) 2415769592577920 m005 (1/2*Zeta(3)-3/7)/(8/3+2*5^(1/2)) 2415769592589603 l006 ln(867/9709) 2415769592769698 m001 1/KhintchineHarmonic*exp(Si(Pi))*Robbin 2415769601209926 a007 Real Root Of 55*x^4-200*x^3-397*x^2+938*x-110 2415769606350020 r002 7th iterates of z^2 + 2415769617215414 a001 1/76*(1/2*5^(1/2)+1/2)^5*4^(4/11) 2415769621906735 r005 Re(z^2+c),c=-11/14+13/126*I,n=64 2415769624118754 a007 Real Root Of -551*x^4-937*x^3+984*x^2-280*x-863 2415769625746638 a007 Real Root Of -127*x^4+75*x^3-388*x^2+372*x+114 2415769630246752 r002 54th iterates of z^2 + 2415769633543023 m009 (1/10*Pi^2+4/5)/(2/3*Psi(1,1/3)+2/3) 2415769641139896 a007 Real Root Of 259*x^4+480*x^3-562*x^2-298*x+506 2415769647129454 m001 (3^(1/2))^sin(1)*(3^(1/2))^LandauRamanujan 2415769647129454 m001 sqrt(3)^sin(1)*sqrt(3)^LandauRamanujan 2415769650972890 r005 Im(z^2+c),c=-49/44+5/21*I,n=34 2415769652760573 r002 15i'th iterates of 2*x/(1-x^2) of 2415769654888339 m005 (11/30+1/5*5^(1/2))/(3/5*exp(1)-5) 2415769662530603 m001 Artin^HardyLittlewoodC5+MadelungNaCl 2415769668113945 a007 Real Root Of -510*x^4-691*x^3+789*x^2-965*x+692 2415769670519499 r002 5th iterates of z^2 + 2415769673441746 p001 sum(1/(444*n+365)/n/(512^n),n=1..infinity) 2415769675064917 m001 MertensB2/(Trott2nd^CopelandErdos) 2415769675651532 a007 Real Root Of -564*x^4-345*x^3-902*x^2+929*x-165 2415769678984524 a007 Real Root Of -228*x^4-303*x^3+394*x^2-503*x-21 2415769684306961 m001 (-Kolakoski+ZetaQ(3))/(LambertW(1)+Khinchin) 2415769688892846 m004 -2-125*Pi+6*Cosh[Sqrt[5]*Pi]-Sinh[Sqrt[5]*Pi] 2415769689834729 m001 Sierpinski/(Niven-HardyLittlewoodC3) 2415769694222187 m001 (Salem+ZetaQ(2))/(3^(1/2)+ReciprocalFibonacci) 2415769700309989 m001 (ErdosBorwein+Totient)/(2^(1/2)-DuboisRaymond) 2415769707191930 a007 Real Root Of -537*x^4-907*x^3+859*x^2-231*x-69 2415769708696262 r009 Re(z^3+c),c=-5/122+19/32*I,n=25 2415769711564194 m001 (KomornikLoreti+TwinPrimes)/(ln(5)-Gompertz) 2415769716417098 m001 (-arctan(1/2)+2/3)/(-GAMMA(19/24)+1/3) 2415769728131422 a005 (1/cos(12/137*Pi))^23 2415769729155632 a001 7/89*89^(1/4) 2415769738527018 m002 -Pi^3+25*Pi^4+Sinh[Pi] 2415769740941731 v003 sum((7/2*n^2+23/2*n-5)/(n!+2),n=1..infinity) 2415769741719742 r005 Re(z^2+c),c=-111/110+8/61*I,n=34 2415769758714136 l006 ln(620/6943) 2415769759777070 r005 Re(z^2+c),c=-19/82+16/47*I,n=7 2415769771050362 r005 Im(z^2+c),c=-25/82+14/37*I,n=31 2415769772341429 m001 GAMMA(23/24)^ln(Pi)*GAMMA(1/24) 2415769773641458 m001 (KomornikLoreti-GaussKuzminWirsing)^(5^(1/2)) 2415769775722573 m005 (1/2*5^(1/2)-3/4)/(3/11*Pi+2/3) 2415769778565544 m002 5/4+(Sinh[Pi]*Tanh[Pi])/Pi^2 2415769782071263 a007 Real Root Of -156*x^4-299*x^3-263*x^2-783*x+741 2415769784633580 r009 Re(z^3+c),c=-7/48+40/43*I,n=36 2415769802062616 m001 (Pi+GAMMA(3/4))/(FeigenbaumKappa+ZetaP(2)) 2415769808355667 r005 Re(z^2+c),c=9/34+9/61*I,n=40 2415769854593749 g005 GAMMA(11/12)*GAMMA(4/7)^2/GAMMA(10/11) 2415769857936232 a003 cos(Pi*22/75)-sin(Pi*35/109) 2415769860633885 m001 cos(1)/exp(Pi)*MertensB2 2415769862121590 a007 Real Root Of 248*x^4+601*x^3-155*x^2-330*x+134 2415769867343584 m005 (1/4*Catalan+1/3)/(4/5*Catalan-1/2) 2415769872132669 a007 Real Root Of -209*x^4-600*x^3-568*x^2-546*x+655 2415769881204785 a007 Real Root Of -95*x^4+196*x^3+789*x^2-662*x-205 2415769884108520 m001 (OneNinth+Thue)/(gamma(2)+HardyLittlewoodC5) 2415769902816713 a007 Real Root Of -625*x^4-95*x^3+605*x^2+812*x-228 2415769903205047 p004 log(22133/17383) 2415769909156388 m001 (ln(gamma)+gamma(2))/(PlouffeB+Tribonacci) 2415769912144174 r005 Re(z^2+c),c=-19/15+11/62*I,n=15 2415769912827933 a007 Real Root Of 52*x^4-239*x^3-590*x^2+578*x-301 2415769932249742 m001 TreeGrowth2nd/exp(Lehmer)^2/GAMMA(1/6) 2415769940130080 s002 sum(A177609[n]/(10^n+1),n=1..infinity) 2415769942204576 m005 (1/2*Pi+5/8)/(7/8*Zeta(3)-1/7) 2415769946009400 m001 Trott^2/Conway/exp(log(2+sqrt(3))) 2415769946181242 r005 Im(z^2+c),c=-53/110+25/58*I,n=60 2415769946303019 m001 ZetaR(2)^PlouffeB*ZetaR(2)^FeigenbaumD 2415769956416567 m005 (1/2*Zeta(3)-1/9)/(5/11*Pi+3/5) 2415769958931567 r005 Im(z^2+c),c=-17/14+7/200*I,n=36 2415769965606948 s001 sum(1/10^n*A177609[n],n=1..infinity) 2415769981696734 r005 Re(z^2+c),c=-7/31+21/52*I,n=30 2415769990221813 m005 (1/3*3^(1/2)-1/7)/(5/8*Zeta(3)-4/7) 2415769991085881 s002 sum(A177609[n]/(10^n-1),n=1..infinity) 2415770003030312 m001 (CopelandErdos+Stephens)/ReciprocalFibonacci 2415770005123704 a007 Real Root Of 110*x^4+110*x^3-690*x^2-977*x-529 2415770013364472 r005 Re(z^2+c),c=-5/4+5/192*I,n=38 2415770020967000 a007 Real Root Of 624*x^4-769*x^3+973*x^2-564*x-206 2415770030204390 a001 2/28657*1836311903^(12/17) 2415770030792718 a001 2/9227465*6557470319842^(12/17) 2415770035602275 a007 Real Root Of 185*x^4+81*x^3-723*x^2+547*x+382 2415770040409272 a001 322/39088169*317811^(4/15) 2415770040410547 a001 322/1836311903*591286729879^(4/15) 2415770040410547 a001 161/133957148*433494437^(4/15) 2415770043008432 r005 Im(z^2+c),c=8/21+4/17*I,n=23 2415770044802962 m001 Sarnak^PrimesInBinary/(Sarnak^Pi) 2415770050127188 a001 433494437/322*322^(1/2) 2415770051093364 a001 233/39603*47^(55/57) 2415770055016955 r005 Im(z^2+c),c=-5/8+44/155*I,n=16 2415770065584666 a001 46/3*75025^(14/57) 2415770068073078 m001 (ln(2)-Zeta(1/2))/(polylog(4,1/2)+Artin) 2415770071433313 r005 Re(z^2+c),c=-13/36+23/64*I,n=3 2415770071874771 m005 (1/2*Catalan-2/11)/(1/4*3^(1/2)-4/9) 2415770079441662 a003 -1-cos(1/7*Pi)-2*cos(10/21*Pi)-cos(8/21*Pi) 2415770083256436 r005 Im(z^2+c),c=-11/21+17/42*I,n=32 2415770085426338 a001 63245986/843*521^(12/13) 2415770107913249 m001 1/ln(GAMMA(1/24))^2/GolombDickman^2*Zeta(1,2) 2415770113017202 a001 20365011074/2207*199^(2/11) 2415770116782060 a007 Real Root Of 432*x^4+889*x^3-287*x^2+156*x-128 2415770127052519 s001 sum(exp(-2*Pi)^(n-1)*A224991[n],n=1..infinity) 2415770134613637 r005 Re(z^2+c),c=-11/50+13/31*I,n=33 2415770135949914 r009 Re(z^3+c),c=-15/62+36/41*I,n=46 2415770136991683 m005 (1/3*Zeta(3)+3/5)/(3/5*3^(1/2)-5/8) 2415770138858314 m001 GAMMA(1/6)^GAMMA(1/4)/(GAMMA(3/4)^GAMMA(1/4)) 2415770141932241 a003 cos(Pi*23/106)/cos(Pi*19/48) 2415770144853359 l006 ln(373/4177) 2415770144853359 p004 log(4177/373) 2415770164969851 r005 Re(z^2+c),c=-17/98+21/40*I,n=37 2415770171291560 a001 55/843*7^(37/55) 2415770177068749 r002 3th iterates of z^2 + 2415770191774034 a007 Real Root Of -647*x^4+836*x^3+337*x^2+810*x+190 2415770192727886 r005 Im(z^2+c),c=-109/122+5/23*I,n=32 2415770193772282 m001 (Paris+Thue)/(FeigenbaumAlpha+MinimumGamma) 2415770194530523 m001 1/exp(1)/ArtinRank2^2*exp(sqrt(3))^2 2415770195716873 m001 1/TreeGrowth2nd^2*Rabbit*ln(GAMMA(11/24)) 2415770195862478 a005 (1/cos(7/76*Pi))^75 2415770222275509 a007 Real Root Of 237*x^4+601*x^3+166*x^2+6*x-553 2415770225558450 m001 (Rabbit-Trott)/(exp(-1/2*Pi)+Khinchin) 2415770227412305 m001 FeigenbaumD*QuadraticClass^FeigenbaumB 2415770241968495 a007 Real Root Of -26*x^4-652*x^3-603*x^2-658*x-934 2415770242441707 a007 Real Root Of -275*x^4-504*x^3+335*x^2+743*x-191 2415770253419172 a007 Real Root Of 343*x^4+877*x^3-106*x^2-459*x+192 2415770253489382 m001 (OrthogonalArrays-TwinPrimes)/(Pi^(1/2)+Mills) 2415770264745408 r002 27th iterates of z^2 + 2415770266110822 r005 Re(z^2+c),c=-10/13+3/47*I,n=46 2415770287678170 m001 (ln(gamma)+Zeta(1,2))/(GolombDickman-ZetaQ(3)) 2415770291599942 r005 Re(z^2+c),c=29/86+8/39*I,n=58 2415770302522452 m009 (1/4*Psi(1,1/3)+4/5)/(2/3*Psi(1,2/3)-2/3) 2415770303872173 a007 Real Root Of -364*x^4-946*x^3+36*x^2+411*x-157 2415770314774123 r002 17th iterates of z^2 + 2415770315008284 a003 sin(Pi*6/79)/sin(Pi*49/113) 2415770323765936 r009 Re(z^3+c),c=-49/106+19/36*I,n=38 2415770326721665 p001 sum(1/(593*n+421)/(25^n),n=0..infinity) 2415770327675788 m001 (2^(1/3)+exp(1))/(-KhinchinHarmonic+Paris) 2415770330234867 m001 (Stephens+Trott2nd)/(5^(1/2)+MertensB1) 2415770336831787 m001 (-CopelandErdos+ErdosBorwein)/(gamma-ln(Pi)) 2415770350331979 m001 Catalan^2*BesselK(0,1)^2/ln(cos(1)) 2415770353026418 h001 (4/7*exp(1)+1/5)/(1/6*exp(1)+3/11) 2415770361642220 a007 Real Root Of -896*x^4+545*x^3-334*x^2+769*x+216 2415770361716505 a007 Real Root Of -319*x^4-678*x^3-90*x^2-924*x-401 2415770364263727 a001 2584/11*9349^(13/51) 2415770367558624 m001 1/FeigenbaumKappa/exp(MinimumGamma)/sin(1)^2 2415770368093540 m001 (ln(2)/ln(10)+2^(1/2))/(-Zeta(5)+cos(1/12*Pi)) 2415770384734546 m005 (1/2*3^(1/2)-1/12)/(1/7*3^(1/2)-4/7) 2415770387291027 b008 Sinh[5*(-1+Sqrt[5])] 2415770389108986 m001 GAMMA(13/24)*(Gompertz+Riemann1stZero) 2415770398256110 r005 Im(z^2+c),c=-99/106+8/35*I,n=41 2415770399829956 a007 Real Root Of -346*x^4-896*x^3+188*x^2+842*x+89 2415770407414798 b008 -2+CoshIntegral[2*Sqrt[2]] 2415770408221482 m001 (BesselI(0,2)+Conway)/(ln(2)-sin(1)) 2415770409968312 a001 24476/21*34^(49/57) 2415770413631900 r005 Re(z^2+c),c=-83/78+17/53*I,n=4 2415770419401799 l006 ln(872/9765) 2415770424707328 s003 concatenated sequence A222002 2415770432807840 a007 Real Root Of 279*x^4+453*x^3-752*x^2-755*x-551 2415770448572299 s002 sum(A232567[n]/(n^3*pi^n+1),n=1..infinity) 2415770448836837 a007 Real Root Of 260*x^4+406*x^3-910*x^2-867*x+85 2415770460425831 m001 GAMMA(5/12)^(LandauRamanujan*GAMMA(7/12)) 2415770466037304 r009 Im(z^3+c),c=-19/64+1/62*I,n=8 2415770471678688 a007 Real Root Of -325*x^4-537*x^3+569*x^2-6*x+163 2415770472759899 b008 ArcCosh[4*ArcSec[2*Pi]] 2415770474290409 g007 Psi(2,3/10)+Psi(2,2/9)-Psi(2,7/12)-Psi(2,1/11) 2415770483770964 r009 Re(z^3+c),c=-65/126+7/22*I,n=11 2415770498295909 r009 Im(z^3+c),c=-13/32+6/43*I,n=28 2415770499479199 a007 Real Root Of -501*x^4-747*x^3+852*x^2-985*x-820 2415770504474647 p004 log(28703/22543) 2415770526717843 s002 sum(A091366[n]/(n!^3),n=1..infinity) 2415770530679489 a007 Real Root Of -117*x^4-55*x^3+706*x^2+632*x+616 2415770531123879 r009 Im(z^3+c),c=-7/20+8/45*I,n=14 2415770532893604 m001 (-Paris+PolyaRandomWalk3D)/(1+HeathBrownMoroz) 2415770534753823 s002 sum(A158051[n]/(n!^3),n=1..infinity) 2415770535783176 r009 Re(z^3+c),c=-11/56+20/23*I,n=2 2415770536153328 a001 4052739537881/47*7^(9/17) 2415770536621955 a001 53316291173/5778*199^(2/11) 2415770545664270 a007 Real Root Of 530*x^4+154*x^3+388*x^2-864*x-231 2415770561748270 a007 Real Root Of 424*x^4+944*x^3-9*x^2+37*x-990 2415770562843521 a003 cos(Pi*42/103)/cos(Pi*49/106) 2415770563804043 r005 Im(z^2+c),c=-5/32+44/53*I,n=36 2415770580297871 r009 Re(z^3+c),c=-11/31+13/20*I,n=9 2415770582820958 m001 (BesselI(0,1)+sin(1/5*Pi))/(Lehmer+ZetaP(3)) 2415770598425068 a001 139583862445/15127*199^(2/11) 2415770607442021 a001 365435296162/39603*199^(2/11) 2415770608757577 a001 956722026041/103682*199^(2/11) 2415770608949514 a001 2504730781961/271443*199^(2/11) 2415770608977517 a001 6557470319842/710647*199^(2/11) 2415770608984128 a001 10610209857723/1149851*199^(2/11) 2415770608994824 a001 4052739537881/439204*199^(2/11) 2415770609068137 a001 140728068720/15251*199^(2/11) 2415770609318996 q001 337/1395 2415770609570635 a001 591286729879/64079*199^(2/11) 2415770613014804 a001 7787980473/844*199^(2/11) 2415770617763653 a001 199/233*514229^(21/22) 2415770623106761 a007 Real Root Of -96*x^4-203*x^3-283*x^2-787*x+158 2415770624625333 l006 ln(499/5588) 2415770624928061 a007 Real Root Of -428*x^4-640*x^3+870*x^2-555*x-864 2415770626934158 m001 FeigenbaumMu*(PlouffeB-Weierstrass) 2415770628386082 r005 Re(z^2+c),c=-4/25+33/50*I,n=22 2415770632980420 a007 Real Root Of -400*x^4-588*x^3+822*x^2-251*x-70 2415770636621494 a001 86267571272/9349*199^(2/11) 2415770637898096 m001 LandauRamanujan*(Khinchin+PlouffeB) 2415770658759829 a007 Real Root Of 301*x^4+485*x^3+457*x^2-829*x+2 2415770663559900 p003 LerchPhi(1/125,4,331/232) 2415770667382593 a007 Real Root Of -468*x^4-719*x^3+799*x^2-182*x+700 2415770671906888 a001 11/17711*1597^(38/47) 2415770675159995 a007 Real Root Of 729*x^4+290*x^3+790*x^2-516*x+12 2415770680605640 r005 Im(z^2+c),c=-41/114+17/43*I,n=30 2415770688040087 g006 2*Psi(1,5/7)-Psi(1,2/9)-Psi(1,3/8) 2415770688236722 r005 Im(z^2+c),c=-15/52+11/30*I,n=11 2415770696443203 a007 Real Root Of 642*x^4-135*x^3-693*x^2-761*x+224 2415770712714951 a001 21/1149851*18^(3/31) 2415770722575562 m006 (4/5*Pi+3/5)/(1/4*exp(2*Pi)-5) 2415770724129394 a005 (1/cos(17/106*Pi))^24 2415770729330645 r005 Im(z^2+c),c=-9/17+25/54*I,n=63 2415770729569845 m001 (Pi^(1/2)+ZetaP(2))/(exp(-1/2*Pi)-GAMMA(5/6)) 2415770741460465 a007 Real Root Of 294*x^4+566*x^3+432*x^2-740*x-197 2415770746128432 b008 31*Gamma[Pi,10] 2415770748262499 a008 Real Root of x^5-x^4-9*x^3+8*x^2+24*x-26 2415770749359505 m001 ln(-ln(2)/ln(10)+Pi*csc(1/12*Pi)/GAMMA(11/12)) 2415770758103959 m001 (-KhinchinLevy+Robbin)/(2^(1/2)-exp(Pi)) 2415770770022503 a001 34111385/281*521^(11/13) 2415770779316831 a007 Real Root Of -108*x^4+125*x^3+824*x^2-264*x-6 2415770779911869 r005 Im(z^2+c),c=-29/86+22/57*I,n=19 2415770792141258 r005 Re(z^2+c),c=-15/86+21/40*I,n=48 2415770798213974 m001 CopelandErdos^2/Cahen^2*exp(sin(Pi/5)) 2415770798424165 a001 32951280099/3571*199^(2/11) 2415770809399620 a007 Real Root Of -673*x^4-622*x^3-927*x^2+341*x+130 2415770816701318 m001 (gamma(2)+Artin)/(Kac-Weierstrass) 2415770828186232 m008 (3/5*Pi^6-5)/(2/3*Pi^3+3) 2415770828405472 m001 (Khinchin-Sarnak)/(Trott2nd+ZetaQ(2)) 2415770846664786 m001 GAMMA(13/24)^2*exp(Kolakoski)^2*GAMMA(2/3)^2 2415770848902340 m002 -Tanh[Pi]/4+Pi^3*Sech[Pi]*Tanh[Pi] 2415770855197495 a003 sin(Pi*8/77)/cos(Pi*27/59) 2415770857267818 a007 Real Root Of 448*x^4+985*x^3+68*x^2+515*x-524 2415770857310416 h001 (1/9*exp(1)+1/3)/(7/10*exp(1)+8/11) 2415770857838350 r005 Re(z^2+c),c=-127/122+3/11*I,n=12 2415770867299604 a007 Real Root Of -436*x^4-577*x^3+451*x^2+894*x+183 2415770867537483 m002 -Pi^5+(30*Pi^4)/ProductLog[Pi] 2415770876762519 a001 64079/55*317811^(8/19) 2415770881620048 a005 (1/cos(9/149*Pi))^1447 2415770889625747 m005 (1/3*Pi+3/4)/(5/154+7/22*5^(1/2)) 2415770890846236 a007 Real Root Of -493*x^4+666*x^3-205*x^2+360*x+110 2415770891006070 p001 sum(1/(443*n+366)/n/(512^n),n=1..infinity) 2415770892441267 m001 BesselJ(0,1)-exp(Pi)-Grothendieck 2415770902588870 r005 Im(z^2+c),c=-15/26+51/127*I,n=55 2415770910953138 l006 ln(625/6999) 2415770913365464 p004 log(12569/12269) 2415770922561613 r005 Re(z^2+c),c=-25/114+8/19*I,n=29 2415770928459343 r002 29th iterates of z^2 + 2415770935206507 a007 Real Root Of 494*x^4+920*x^3-186*x^2+803*x-829 2415770938410190 a003 cos(Pi*15/76)/cos(Pi*25/64) 2415770944788000 a007 Real Root Of -318*x^4-529*x^3+993*x^2+670*x-804 2415770963489326 m001 (-gamma+ReciprocalLucas)/(5^(1/2)-Psi(2,1/3)) 2415770970353481 p001 sum(1/(404*n+11)/n/(100^n),n=1..infinity) 2415770970978190 m005 (1/2*Catalan+1/12)/(2/3*exp(1)+3/7) 2415770978111774 p004 log(37463/29423) 2415770981798796 r009 Im(z^3+c),c=-25/54+4/53*I,n=56 2415770990636145 m001 3^(1/3)*KhinchinLevy+CareFree 2415771002213825 a007 Real Root Of -484*x^4-862*x^3+976*x^2+559*x-14 2415771004712862 r005 Re(z^2+c),c=-13/60+17/38*I,n=11 2415771006259900 m004 -1+25*Pi-(75*Sqrt[5]*Tanh[Sqrt[5]*Pi])/Pi 2415771009828331 m001 exp(Pi)+KhinchinLevy^Paris 2415771016644242 m001 (FeigenbaumD+MertensB2)/(sin(1)+ArtinRank2) 2415771021908301 r005 Im(z^2+c),c=-29/30+15/71*I,n=3 2415771033527353 a007 Real Root Of 635*x^4+177*x^3-401*x^2-771*x+205 2415771033730505 m001 (Artin+GAMMA(13/24))^(2^(1/3)) 2415771033730505 m001 (GAMMA(13/24)+Artin)^(2^(1/3)) 2415771041261201 h001 (-10*exp(2)+12)/(-12*exp(1)+7) 2415771043257889 a007 Real Root Of -717*x^4-811*x^3+361*x^2+824*x+169 2415771058672705 a007 Real Root Of 474*x^4+937*x^3-176*x^2+405*x-928 2415771073596800 m001 ln(Catalan)/FeigenbaumDelta*GAMMA(17/24) 2415771076966861 p001 sum(1/(548*n+439)/(8^n),n=0..infinity) 2415771081577418 s002 sum(A155217[n]/(n^2*2^n+1),n=1..infinity) 2415771093304084 s002 sum(A155217[n]/(n^2*2^n-1),n=1..infinity) 2415771093575189 m001 (KomornikLoreti+Mills)/(Chi(1)-cos(1/12*Pi)) 2415771099330643 h005 exp(cos(Pi*11/45)/sin(Pi*17/56)) 2415771101202858 l006 ln(751/8410) 2415771109115914 m008 (5/6*Pi-2)/(5/6*Pi^5+4/5) 2415771112865658 a007 Real Root Of 972*x^4+369*x^3-187*x^2-409*x-86 2415771118620424 r009 Re(z^3+c),c=-11/36+15/49*I,n=18 2415771124021321 a007 Real Root Of 158*x^4-116*x^3-285*x^2-146*x+53 2415771124436949 a007 Real Root Of 9*x^4+197*x^3-491*x^2+45*x-247 2415771129123869 m001 1/cos(1)/FeigenbaumKappa/exp(sqrt(3)) 2415771145924827 m001 exp(OneNinth)^2*Niven^2*sin(Pi/12)^2 2415771160964792 m001 ZetaP(4)^Conway/Backhouse 2415771177227614 r005 Re(z^2+c),c=-25/102+17/49*I,n=18 2415771190480505 a001 24157817-47*5^(1/2) 2415771196483258 m001 1/GAMMA(5/24)^2*ln(Riemann1stZero)/LambertW(1) 2415771197155763 r002 4th iterates of z^2 + 2415771200376821 m001 KhinchinLevy*(LaplaceLimit-Riemann2ndZero) 2415771203854246 m001 (arctan(1/2)-Otter)^cos(1/12*Pi) 2415771218374656 a008 Real Root of x^4-2*x^3-44*x^2+30*x+267 2415771229198277 s002 sum(A073064[n]/(n!^3),n=1..infinity) 2415771229198277 s002 sum(A155075[n]/(n!^3),n=1..infinity) 2415771230961831 a008 Real Root of (18+3*x+15*x^2-8*x^3) 2415771236785591 l006 ln(877/9821) 2415771237931635 a007 Real Root Of 242*x^4-818*x^3+661*x^2-550*x+105 2415771240275125 m005 (1/2*gamma-4)/(7/11*2^(1/2)+7/11) 2415771259073093 a007 Real Root Of -333*x^4-268*x^3+993*x^2-404*x+792 2415771264869011 m005 (1/2*3^(1/2)+3/11)/(7/11*2^(1/2)-3/7) 2415771271938783 m007 (-3/4*gamma+5)/(-3*gamma-6*ln(2)+4) 2415771275448107 a007 Real Root Of 182*x^4+685*x^3+827*x^2+266*x-725 2415771278770904 r009 Im(z^3+c),c=-23/98+39/41*I,n=20 2415771280257060 m001 (GAMMA(19/24)+FellerTornier)/(Robbin-Sarnak) 2415771280761262 a001 21/64079*322^(35/47) 2415771282988200 r005 Im(z^2+c),c=-11/36+18/47*I,n=13 2415771304912072 r005 Re(z^2+c),c=-9/38+19/51*I,n=38 2415771311313411 k006 concat of cont frac of 2415771320606564 a007 Real Root Of -391*x^4-424*x^3+684*x^2+933*x-258 2415771337170325 m001 (Paris+Weierstrass)/(BesselK(1,1)+Pi^(1/2)) 2415771350445935 m001 (Zeta(5)+ZetaQ(3))/(1-LambertW(1)) 2415771354757754 r002 8th iterates of z^2 + 2415771356205619 r002 9i'th iterates of 2*x/(1-x^2) of 2415771359216629 h001 (1/8*exp(2)+7/11)/(5/6*exp(2)+3/10) 2415771360043628 a007 Real Root Of 49*x^4-567*x^3+2*x^2-864*x-217 2415771364496053 r005 Im(z^2+c),c=-41/98+2/51*I,n=15 2415771366251979 m001 ErdosBorwein^FeigenbaumC/Paris 2415771366620033 r005 Re(z^2+c),c=-19/24+5/64*I,n=6 2415771369432319 a001 1/322*76^(9/19) 2415771370534709 a007 Real Root Of -438*x^4-767*x^3+821*x^2+354*x+168 2415771374006033 r005 Re(z^2+c),c=23/82+18/37*I,n=47 2415771387959347 r005 Re(z^2+c),c=-83/102+1/35*I,n=64 2415771400450516 a007 Real Root Of -364*x^4-786*x^3+194*x^2+27*x+249 2415771401049229 r005 Im(z^2+c),c=-5/8+97/230*I,n=41 2415771404475560 a001 4181/11*843^(14/51) 2415771413632902 m001 (3^(1/3)-exp(Pi))/(-FellerTornier+ThueMorse) 2415771420554071 r005 Re(z^2+c),c=-11/14+19/138*I,n=48 2415771423281404 a007 Real Root Of 196*x^4+236*x^3-597*x^2+188*x+590 2415771424028861 r005 Re(z^2+c),c=-17/82+5/8*I,n=64 2415771426531115 m001 (GaussAGM+Magata)/(ln(gamma)+Artin) 2415771441228166 r009 Re(z^3+c),c=-37/102+16/33*I,n=6 2415771450053496 m005 (1/3*Catalan+2/11)/(9/11*Zeta(3)-3) 2415771450086727 m001 (-Conway+FransenRobinson)/(BesselI(0,1)-Cahen) 2415771454618862 a001 165580141/843*521^(10/13) 2415771469777983 r005 Im(z^2+c),c=-43/98+17/50*I,n=8 2415771480120811 r009 Re(z^3+c),c=-43/110+25/43*I,n=15 2415771481735491 m001 (LambertW(1)-sin(1))/(Zeta(5)+Paris) 2415771496362177 m001 exp(Pi)+GAMMA(23/24)^Robbin 2415771506507173 m001 (ErdosBorwein+PlouffeB)/(2^(1/3)-GAMMA(19/24)) 2415771510993436 m001 (LaplaceLimit+Trott2nd)/(gamma+BesselI(0,2)) 2415771511283201 r005 Re(z^2+c),c=25/82+11/61*I,n=47 2415771512572880 a003 -1+2*cos(1/8*Pi)-cos(7/15*Pi)-cos(1/18*Pi) 2415771513157971 m001 cos(1/5*Pi)+GAMMA(2/3)*KhinchinLevy 2415771516919761 m001 (ln(Pi)-sin(1))/(ln(2^(1/2)+1)+Artin) 2415771521325954 m001 1/Niven/exp(Khintchine)^2/GAMMA(5/6) 2415771539796770 a001 4/121393*233^(26/33) 2415771559600701 r005 Re(z^2+c),c=-7/30+19/31*I,n=46 2415771561139649 r005 Re(z^2+c),c=-9/38+19/51*I,n=32 2415771562493288 a001 11/1597*8^(35/58) 2415771579496025 r005 Im(z^2+c),c=-65/106+20/59*I,n=8 2415771595491697 a007 Real Root Of -234*x^4-559*x^3-315*x^2-546*x+608 2415771604095333 m001 (Bloch+Otter)/(Riemann1stZero+ZetaQ(2)) 2415771604963792 m001 Pi/(FeigenbaumKappa-GAMMA(3/4)) 2415771605462183 a007 Real Root Of 251*x^4+349*x^3-447*x^2+384*x-92 2415771607433606 h001 (5/6*exp(1)+4/11)/(3/10*exp(1)+3/11) 2415771612912163 m006 (3/4*Pi+5)/(3/Pi-4) 2415771630396840 m005 (1/2*Pi+4/5)/(3/8*5^(1/2)+1/7) 2415771641459927 m001 (Si(Pi)+Landau)/(-OrthogonalArrays+ThueMorse) 2415771642985541 r005 Im(z^2+c),c=7/60+11/52*I,n=19 2415771643808790 r005 Re(z^2+c),c=-19/110+27/32*I,n=28 2415771644161939 m001 (Lehmer+OneNinth)/(5^(1/2)+LaplaceLimit) 2415771648441369 m001 1/LambertW(1)^2/CareFree/ln(sin(Pi/12))^2 2415771652701586 s001 sum(exp(-Pi/3)^(n-1)*A247661[n],n=1..infinity) 2415771654324562 a007 Real Root Of -467*x^4-959*x^3+167*x^2-732*x-358 2415771655875891 r005 Re(z^2+c),c=-3/7+19/33*I,n=64 2415771659098878 r008 a(0)=0,K{-n^6,11+53*n+24*n^2-47*n^3} 2415771667223905 m001 arctan(1/2)^RenyiParking/(arctan(1/2)^Ei(1)) 2415771672173751 m001 (FeigenbaumMu+RenyiParking)/KomornikLoreti 2415771680678043 r009 Im(z^3+c),c=-47/126+8/49*I,n=8 2415771681009513 r005 Im(z^2+c),c=-89/122+9/37*I,n=62 2415771681090456 m005 (1/2*5^(1/2)+8/11)/(5/7*5^(1/2)-5/6) 2415771682833427 m001 (Pi^(1/2)-Zeta(3)*Zeta(1/2))/Zeta(1/2) 2415771682833427 m001 (Zeta(3)*Zeta(1/2)-sqrt(Pi))/Zeta(1/2) 2415771683529698 m001 (FeigenbaumAlpha+Lehmer)/(Psi(1,1/3)+exp(1)) 2415771685871772 m001 GaussKuzminWirsing*exp(Zeta(5))^2 2415771694230971 m005 (1/2*exp(1)+8/11)/(3/8*2^(1/2)+1/3) 2415771702494776 m005 (1/2*gamma+2/7)/(2*Catalan+6/11) 2415771705776988 a007 Real Root Of -127*x^4-392*x^3-680*x^2-768*x+912 2415771715994634 r005 Re(z^2+c),c=-31/38+1/61*I,n=50 2415771716705888 a007 Real Root Of 239*x^4+99*x^3-829*x^2+888*x+239 2415771722858246 r005 Im(z^2+c),c=-5/21+15/43*I,n=9 2415771724946861 m001 exp(Pi)+Si(Pi)^Trott2nd 2415771739547883 m001 Sierpinski^AlladiGrinstead+sin(1/12*Pi) 2415771743355443 a001 4/6765*75025^(20/27) 2415771746263110 a001 610/11*15127^(20/51) 2415771753667198 m001 (ln(gamma)+Trott)/(exp(Pi)-sin(1)) 2415771758420001 m001 Cahen^2/exp(Backhouse)*FeigenbaumAlpha 2415771763259184 a007 Real Root Of -503*x^4-835*x^3-473*x^2+403*x+10 2415771769401787 r002 40th iterates of z^2 + 2415771778203103 a007 Real Root Of -942*x^4+204*x^3+138*x^2+716*x+171 2415771791382200 m001 GAMMA(5/6)^2*exp(OneNinth)^2*GAMMA(7/12) 2415771808026244 a007 Real Root Of 27*x^4+680*x^3+634*x^2-894*x-486 2415771809504483 r009 Re(z^3+c),c=-3/8+20/43*I,n=27 2415771810178716 m001 GlaisherKinkelin^GaussAGM*ReciprocalLucas 2415771813636788 p003 LerchPhi(1/512,4,106/235) 2415771813685807 r005 Im(z^2+c),c=-20/21+9/40*I,n=21 2415771817763921 a007 Real Root Of 109*x^4+129*x^3-88*x^2+527*x-107 2415771818884630 r009 Re(z^3+c),c=-27/58+11/29*I,n=6 2415771823738086 r005 Im(z^2+c),c=-61/66+9/41*I,n=45 2415771835804222 m004 -2+75*Pi+(25*Tanh[Sqrt[5]*Pi])/Pi 2415771840447293 m001 (FeigenbaumB-Paris)/(Sierpinski+ZetaP(2)) 2415771847824428 m001 Weierstrass-ln(gamma)-BesselI(0,1) 2415771860529894 m001 arctan(1/2)+ln(2+3^(1/2))+HardyLittlewoodC3 2415771872276683 r009 Re(z^3+c),c=-8/29+34/49*I,n=63 2415771877901391 r005 Re(z^2+c),c=-1/5+29/64*I,n=16 2415771883620671 m001 (Totient-Trott2nd)/Landau 2415771886283371 p001 sum((-1)^n/(513*n+403)/(16^n),n=0..infinity) 2415771887435131 m005 (1/3*5^(1/2)+3/7)/(6*Catalan-7/11) 2415771896673381 r005 Im(z^2+c),c=-23/17+1/36*I,n=49 2415771901922642 a007 Real Root Of -20*x^4-469*x^3+333*x^2-215*x+22 2415771907436751 a001 1144206275/124*199^(2/11) 2415771912929183 a001 123/11*(1/2*5^(1/2)+1/2)^18*11^(11/20) 2415771914612726 a007 Real Root Of 419*x^4+602*x^3-671*x^2+376*x-959 2415771918525635 m005 (1/2*gamma-10/11)/(1/2*gamma-6/11) 2415771936987729 a001 322/53316291173*8^(2/3) 2415771937333414 m005 (1/3*2^(1/2)+1/9)/(5/9*Catalan-3/4) 2415771968500772 m005 (1/2*Zeta(3)-10/11)/(-5/66+1/11*5^(1/2)) 2415771971917596 m001 1/LambertW(1)/exp(Artin)^2/sin(Pi/5)^2 2415771972018727 m001 Salem^2/ln(FeigenbaumB)^2*sin(Pi/5) 2415771972463796 r005 Re(z^2+c),c=-85/106+4/63*I,n=62 2415771975068354 a001 2/28657*6557470319842^(10/17) 2415771978364932 m001 (-KhinchinLevy+PlouffeB)/(2^(1/2)+GAMMA(7/12)) 2415771980823995 m001 (BesselI(1,1)+Otter)/(QuadraticClass+Stephens) 2415771985243314 a001 610/11*2207^(25/51) 2415771991768755 a001 133957148/161*322^(7/12) 2415771994772348 r005 Im(z^2+c),c=-55/118+29/63*I,n=32 2415771999882511 b008 1/3+E+(4+E)*Pi 2415772030408967 m001 MadelungNaCl*CopelandErdos/ln(Robbin)^2 2415772034247018 r005 Re(z^2+c),c=-113/102+7/31*I,n=60 2415772035882308 h001 (1/3*exp(1)+8/11)/(9/10*exp(2)+1/9) 2415772035921777 r005 Re(z^2+c),c=-17/74+11/28*I,n=24 2415772039953207 a007 Real Root Of 379*x^4+412*x^3-886*x^2+428*x-895 2415772044901336 l006 ln(126/1411) 2415772050651186 a007 Real Root Of 325*x^4-109*x^3-131*x^2-356*x-81 2415772052660160 a007 Real Root Of -416*x^4-964*x^3+100*x^2-31*x-81 2415772062632708 m001 (Zeta(1/2)-cos(1))/(-Zeta(1,-1)+LaplaceLimit) 2415772078582244 m003 1/150-Sinh[1/2+Sqrt[5]/2] 2415772093552125 a001 5473/38*11^(11/51) 2415772104037352 b008 Tan[Pi^ArcCsc[7]] 2415772110518263 p001 sum(1/(442*n+367)/n/(512^n),n=1..infinity) 2415772116057112 m001 1/RenyiParking^2/MinimumGamma^2/ln(cos(Pi/12)) 2415772121077723 r009 Re(z^3+c),c=-19/70+9/43*I,n=3 2415772121450000 b008 ArcCsch[EulerGamma]+Log[3] 2415772124189079 m001 Pi*(1/5*5^(1/2)+arctan(1/3)) 2415772128884863 r005 Im(z^2+c),c=-97/82+1/57*I,n=6 2415772133017857 s002 sum(A040570[n]/(n^2*2^n-1),n=1..infinity) 2415772138065229 m001 cos(1/12*Pi)^GAMMA(2/3)+MinimumGamma 2415772139215414 a001 267914296/843*521^(9/13) 2415772143449139 a007 Real Root Of -47*x^4-294*x^3-986*x^2-931*x+961 2415772144875308 r005 Im(z^2+c),c=-7/102+15/52*I,n=4 2415772156136454 k006 concat of cont frac of 2415772156649015 b008 241+EulerGamma 2415772158726116 r009 Re(z^3+c),c=-9/62+22/23*I,n=32 2415772173014261 m001 (BesselI(1,1)+Khinchin)/(ln(gamma)+Ei(1)) 2415772194042545 r009 Re(z^3+c),c=-13/50+7/38*I,n=5 2415772215216664 r005 Im(z^2+c),c=5/38+13/64*I,n=12 2415772229372799 m001 CareFree^2/Artin/ln(sqrt(3)) 2415772231549029 m001 (Zeta(1,2)-LandauRamanujan)/CareFree 2415772232964624 m002 -3+4/Pi^2+ProductLog[Pi]/6 2415772233213356 m001 (Zeta(5)-GaussAGM)/(MadelungNaCl-Sierpinski) 2415772237669006 a007 Real Root Of -160*x^4-712*x^3-803*x^2+13*x+129 2415772243609134 m001 (exp(1/Pi)+Trott)/(5^(1/2)-Psi(2,1/3)) 2415772249622796 s001 sum(exp(-3*Pi/4)^n*A001060[n],n=1..infinity) 2415772250275991 r005 Im(z^2+c),c=-31/94+26/51*I,n=8 2415772251462150 m001 BesselI(0,1)^BesselJ(1,1)+Mills 2415772252597972 m001 (Artin+FeigenbaumB)/(Pi+Si(Pi)) 2415772257801862 r005 Im(z^2+c),c=-43/110+17/42*I,n=30 2415772264426330 a001 3/7778742049*8^(15/17) 2415772277907214 m001 Artin^TreeGrowth2nd/Khinchin 2415772278984380 m001 FeigenbaumD^Catalan-ZetaQ(2) 2415772302769268 m002 E^Pi-Log[Pi]^2/E^Pi+ProductLog[Pi] 2415772304291845 a001 5628749469/233 2415772325229891 k003 Champernowne real with 7*n^3-75/2*n^2+131/2*n-33 2415772326240653 m001 Riemann1stZero^(Thue/PrimesInBinary) 2415772349467894 m005 (19/44+1/4*5^(1/2))/(5/7*2^(1/2)-3/5) 2415772349667895 h001 (-8*exp(1/2)+3)/(-9*exp(-2)-3) 2415772349857206 m001 (BesselK(0,1)-gamma)/(Trott+ZetaQ(2)) 2415772358513034 s001 sum(exp(-Pi/3)^n*A105001[n],n=1..infinity) 2415772362434843 a001 4870847/377*75025^(6/23) 2415772362445136 a001 271443/377*4807526976^(6/23) 2415772368528161 m001 (Thue-TwinPrimes)/(sin(1/5*Pi)+CopelandErdos) 2415772380016212 r005 Im(z^2+c),c=-37/98+25/57*I,n=15 2415772381973561 m001 (Zeta(1,2)+Gompertz)/(Riemann1stZero-Trott) 2415772395488776 r005 Re(z^2+c),c=-7/58+47/61*I,n=15 2415772398302969 q001 968/4007 2415772401041015 a001 7/196418*17711^(25/58) 2415772403918840 a007 Real Root Of 169*x^4+176*x^3-418*x^2+135*x-509 2415772409650674 m001 AlladiGrinstead/(sin(1/12*Pi)^cos(1/5*Pi)) 2415772409736993 r005 Re(z^2+c),c=11/118+5/8*I,n=11 2415772410093107 r005 Im(z^2+c),c=-20/17+14/57*I,n=43 2415772412531020 r005 Im(z^2+c),c=-27/58+19/53*I,n=6 2415772413669308 a001 322/5702887*233^(4/15) 2415772415913241 r009 Re(z^3+c),c=-7/32+23/34*I,n=9 2415772421555182 a007 Real Root Of 615*x^4+324*x^3+141*x^2-713*x-178 2415772422415249 m001 (GolombDickman-Kolakoski)/CareFree 2415772425205173 a007 Real Root Of -335*x^4-930*x^3-7*x^2+320*x-888 2415772428364191 m002 Pi^6/4+Cosh[Pi]/(3*Pi) 2415772455438213 a005 (1/cos(17/193*Pi))^1685 2415772458147654 a001 969323029*144^(11/17) 2415772462749908 m001 GAMMA(1/6)*exp(Kolakoski)^2/GAMMA(5/6) 2415772466194423 b008 EulerGamma*InverseErfc[Pi/3] 2415772468603329 m001 (1-BesselI(0,2))/(-CareFree+ZetaP(3)) 2415772472998618 a007 Real Root Of 353*x^4+731*x^3-300*x^2+72*x+208 2415772479991449 h001 (1/12*exp(1)+3/11)/(5/7*exp(1)+1/8) 2415772480619451 r005 Re(z^2+c),c=-9/38+19/24*I,n=3 2415772484644303 m001 (Salem+Trott)/(Pi+Pi^(1/2)) 2415772503880070 r005 Im(z^2+c),c=-37/114+36/59*I,n=29 2415772506309498 m005 (1/2*2^(1/2)-5/12)/(1/11*Pi+11/12) 2415772507695990 p003 LerchPhi(1/100,3,233/145) 2415772524671281 m001 GAMMA(19/24)*(Riemann2ndZero-TreeGrowth2nd) 2415772530030477 l006 ln(172/219) 2415772542713030 r005 Im(z^2+c),c=-11/28+17/42*I,n=42 2415772544797066 r005 Re(z^2+c),c=33/122+1/7*I,n=8 2415772552372466 m001 1/ln(Si(Pi))^2/FeigenbaumDelta^2*sqrt(2)^2 2415772553915943 m005 (15/44+1/4*5^(1/2))/(3/10*Catalan-4) 2415772556145956 m007 (-2/5*gamma-6/5*ln(2)-1/5*Pi-1)/(-5*gamma+4) 2415772560907131 m001 (Psi(2,1/3)+ln(5))/(-FransenRobinson+Lehmer) 2415772568988976 s002 sum(A025925[n]/((pi^n+1)/n),n=1..infinity) 2415772571150387 m001 ln(Conway)*ErdosBorwein*LambertW(1) 2415772573712678 r005 Im(z^2+c),c=-67/50+7/46*I,n=5 2415772586833804 r005 Re(z^2+c),c=-2/19+34/61*I,n=17 2415772592155173 a007 Real Root Of 226*x^4+749*x^3+648*x^2+294*x-209 2415772598957990 m001 (Stephens+ZetaP(3))/(ln(Pi)+ReciprocalLucas) 2415772600957714 m001 (2^(1/3)+sin(1))/(-Zeta(1,-1)+CareFree) 2415772605171630 a007 Real Root Of 292*x^4-684*x^3+598*x^2-598*x-190 2415772606342464 r005 Im(z^2+c),c=-13/20+13/51*I,n=18 2415772620992367 r005 Im(z^2+c),c=-17/30+20/49*I,n=64 2415772622798112 m001 (Pi-ln(2))/(MasserGramain-RenyiParking) 2415772623030779 m001 cos(1)/(Zeta(1,-1)^FeigenbaumB) 2415772634324100 r005 Im(z^2+c),c=-25/34+19/72*I,n=6 2415772651082152 m001 Riemann2ndZero*Kolakoski^2/ln(sqrt(3)) 2415772667521347 m001 exp(BesselJ(1,1))/Kolakoski/cos(Pi/5) 2415772675671538 r005 Im(z^2+c),c=-33/52+1/8*I,n=14 2415772678838954 g007 Psi(2,1/12)+Psi(2,8/11)-Psi(2,5/11)-Psi(2,1/8) 2415772686616712 r005 Im(z^2+c),c=-31/94+22/57*I,n=36 2415772688307564 a007 Real Root Of -749*x^4+33*x^3+267*x^2+942*x+215 2415772689174828 a007 Real Root Of -756*x^4+166*x^3+401*x^2+198*x-71 2415772697705032 a008 Real Root of x^2-x-58118 2415772708428606 m005 (1/3*Pi+3/5)/(9/10*Zeta(3)-2/5) 2415772711624303 r009 Re(z^3+c),c=-19/122+43/46*I,n=8 2415772711654852 a003 cos(Pi*24/103)-sin(Pi*45/101) 2415772721462851 b008 -3+ArcCsch[GoldenRatio] 2415772725598052 m001 (Cahen-Catalan)/(-GaussAGM+ReciprocalLucas) 2415772727896995 a001 5628750456/233 2415772735782326 b008 EulerGamma+Cosh[ArcTan[E]] 2415772751940986 a007 Real Root Of 469*x^4+745*x^3-800*x^2+720*x+938 2415772752335459 a007 Real Root Of -36*x^4+394*x^3+871*x^2-579*x+299 2415772755085709 a001 12586269025/843*199^(1/11) 2415772758497560 r005 Im(z^2+c),c=-4/27+18/55*I,n=11 2415772760486052 m001 (ln(2)/ln(10))^Catalan*CareFree^Catalan 2415772763162631 m001 exp((3^(1/3)))*Sierpinski/GAMMA(5/12)^2 2415772774129882 a001 7/55*3^(7/12) 2415772778455941 r005 Im(z^2+c),c=-13/10+16/183*I,n=10 2415772781348028 a003 cos(Pi*8/77)*cos(Pi*28/67) 2415772788116041 r005 Re(z^2+c),c=33/118+9/49*I,n=8 2415772788197292 r005 Im(z^2+c),c=-39/64+9/32*I,n=14 2415772789699570 a001 5628750600/233 2415772794527296 r005 Im(z^2+c),c=-13/36+17/43*I,n=33 2415772798712446 a001 5628750621/233 2415772799999997 a001 7465087+7465176*5^(1/2) 2415772800257510 a001 2/233*(1/2+1/2*5^(1/2))^50 2415772800257510 a001 28143753123/233*8^(1/3) 2415772800429184 a001 5628750625/233 2415772800813061 a001 48315579/2-55/2*5^(1/2) 2415772800858369 a001 5628750626/233 2415772801434595 r005 Im(z^2+c),c=-5/54+12/41*I,n=4 2415772804291845 a001 5628750634/233 2415772804699658 a007 Real Root Of 254*x^4+246*x^3+189*x^2-874*x+21 2415772817326303 m005 (1/2*3^(1/2)+1/6)/(3/10*Catalan+4) 2415772818650761 m001 Si(Pi)^2/ln(Artin)*FeigenbaumB^2 2415772823812161 a001 433494437/843*521^(8/13) 2415772826534787 a007 Real Root Of 235*x^4+651*x^3+110*x^2+105*x+786 2415772827896995 a001 5628750689/233 2415772840974662 a007 Real Root Of 441*x^4+691*x^3-847*x^2+288*x+361 2415772842961408 p003 LerchPhi(1/512,2,287/141) 2415772843793783 m001 Backhouse+AlladiGrinstead^DuboisRaymond 2415772843905776 l006 ln(887/9933) 2415772847877090 m005 (1/3*2^(1/2)+1/7)/(2*2^(1/2)-2/7) 2415772853217772 r005 Im(z^2+c),c=-45/82+8/21*I,n=29 2415772863611139 r005 Im(z^2+c),c=-57/122+14/33*I,n=57 2415772891970070 r005 Im(z^2+c),c=-17/18+55/238*I,n=59 2415772896598718 r005 Re(z^2+c),c=-113/94+2/17*I,n=12 2415772903896664 m001 (Mills+Trott)/(Psi(2,1/3)+Gompertz) 2415772904284897 m001 (Lehmer+Sarnak)/(Psi(2,1/3)+HardyLittlewoodC3) 2415772909792687 r005 Re(z^2+c),c=-9/38+19/51*I,n=41 2415772927385547 a007 Real Root Of 366*x^4+290*x^3-924*x^2+915*x-774 2415772937329240 m001 (OneNinth+ThueMorse)/(ln(2)/ln(10)+Si(Pi)) 2415772939397795 p001 sum((-1)^n/(515*n+397)/(10^n),n=0..infinity) 2415772945507105 r002 3th iterates of z^2 + 2415772947623965 m005 (1/2*exp(1)+4/11)/(4/5*2^(1/2)+6) 2415772951646971 r005 Re(z^2+c),c=-9/29+2/53*I,n=4 2415772961019105 b008 24+InverseGudermannian[Pi/20] 2415772964775375 r005 Im(z^2+c),c=-49/106+19/47*I,n=25 2415772973729939 h001 (-exp(1/2)+2)/(-7*exp(1/2)-3) 2415772976198171 l006 ln(761/8522) 2415772988855968 a001 165580141/2207*521^(12/13) 2415772989699570 a001 5628751066/233 2415772990331487 h002 exp(18^(3/10)+5^(5/3)) 2415772990331487 h007 exp(18^(3/10)+5^(5/3)) 2415772997886015 a007 Real Root Of -333*x^4-332*x^3+674*x^2-898*x+558 2415773002740418 r005 Im(z^2+c),c=7/60+11/52*I,n=20 2415773005391705 r005 Re(z^2+c),c=7/36+3/53*I,n=7 2415773006052287 r009 Re(z^3+c),c=-33/86+25/52*I,n=25 2415773008240963 m005 (17/66+1/6*5^(1/2))/(1/2*5^(1/2)-6/7) 2415773037683718 m001 (FeigenbaumC-Trott)/(GAMMA(3/4)-Bloch) 2415773050788263 r009 Re(z^3+c),c=-21/52+22/49*I,n=9 2415773051492851 a003 sin(Pi*7/86)*sin(Pi*19/47) 2415773051941243 a003 cos(Pi*10/111)*cos(Pi*44/105) 2415773055242367 a007 Real Root Of 236*x^4+825*x^3+683*x^2+254*x+221 2415773055590617 a007 Real Root Of 611*x^4-515*x^3-190*x^2-388*x+110 2415773060767970 r005 Im(z^2+c),c=-15/46+13/42*I,n=3 2415773065213304 m001 (ln(gamma)+GAMMA(11/12))/(Robbin-ZetaP(2)) 2415773065386713 m001 BesselK(1,1)^2*ArtinRank2*exp(GAMMA(5/6))^2 2415773074536591 m001 (Zeta(3)+gamma(1))/(BesselJ(1,1)+Trott2nd) 2415773075490228 r005 Re(z^2+c),c=41/114+5/32*I,n=5 2415773082442439 a001 4870847/13*514229^(16/19) 2415773083163642 a001 7/9227465*55^(19/22) 2415773102639638 a001 12238*233^(29/53) 2415773103765078 m001 (MertensB1+Mills)/(2^(1/2)-BesselJ(0,1)) 2415773104022576 a001 29/2178309*3^(32/59) 2415773105863908 b008 -26/5+Sqrt[58] 2415773109390489 a007 Real Root Of 529*x^4+818*x^3-972*x^2+298*x-92 2415773116203486 m001 GAMMA(23/24)*HeathBrownMoroz*KomornikLoreti 2415773116488258 m001 (sin(1)+MinimumGamma)^Shi(1) 2415773123430775 a005 (1/sin(116/237*Pi))^1606 2415773124715142 a007 Real Root Of 194*x^4+553*x^3+731*x^2+991*x-683 2415773129368246 r009 Re(z^3+c),c=-4/29+25/29*I,n=24 2415773131614827 a003 sin(Pi*13/106)*sin(Pi*2/9) 2415773141368509 m001 (LaplaceLimit+Trott2nd)/(ln(5)-Ei(1)) 2415773156236622 m005 (1/3*gamma+3/7)/(8/11*Pi+2/7) 2415773160012510 r009 Im(z^3+c),c=-53/94+7/15*I,n=45 2415773160990826 l006 ln(635/7111) 2415773175537527 m001 GAMMA(7/12)*Rabbit/ln(cos(Pi/5))^2 2415773182550469 r005 Im(z^2+c),c=-21/44+18/43*I,n=27 2415773183081601 r009 Re(z^3+c),c=-3/74+10/17*I,n=19 2415773196884794 m001 (FeigenbaumMu+Khinchin)/(ln(Pi)+exp(1/exp(1))) 2415773200464366 a007 Real Root Of 456*x^4+629*x^3-797*x^2+819*x-33 2415773211735013 a007 Real Root Of 112*x^4-752*x^3+762*x^2+838*x+316 2415773220003199 m001 GAMMA(11/12)^(ln(5)/Paris) 2415773221264745 m005 (1/2*Pi+5/12)/(1/12*5^(1/2)+7/11) 2415773227224456 m005 (1/2*5^(1/2)+1)/(7/110+4/11*5^(1/2)) 2415773229747777 m006 (1/4*Pi+3/5)/(1/2*Pi^2+4/5) 2415773229747777 m008 (1/4*Pi+3/5)/(1/2*Pi^2+4/5) 2415773232036792 r005 Im(z^2+c),c=-79/82+4/19*I,n=3 2415773242538841 r005 Re(z^2+c),c=-9/38+19/51*I,n=43 2415773247029112 m004 -2-125*Pi+5*Cosh[Sqrt[5]*Pi]*Coth[Sqrt[5]*Pi] 2415773261015906 a007 Real Root Of 162*x^4-918*x^3-125*x^2-736*x-184 2415773277656188 a007 Real Root Of 894*x^4-470*x^3+601*x^2-921*x+191 2415773282433052 m005 (1/2*Zeta(3)-7/9)/(3*gamma-1) 2415773291826564 r005 Re(z^2+c),c=-1/4+9/26*I,n=5 2415773293309961 m001 GAMMA(23/24)*ln(GAMMA(2/3))*log(1+sqrt(2))^2 2415773307534423 m001 Backhouse+cos(1/12*Pi)^KhinchinLevy 2415773316609238 a007 Real Root Of -269*x^4-384*x^3+319*x^2-994*x-515 2415773319193895 r009 Re(z^3+c),c=-37/90+30/59*I,n=25 2415773319197682 a001 89/199*9349^(47/50) 2415773331141873 m001 GaussAGM(1,1/sqrt(2))+exp(1/Pi)^sqrt(2) 2415773331983002 p001 sum(1/(441*n+368)/n/(512^n),n=1..infinity) 2415773335575642 r005 Re(z^2+c),c=11/48+7/17*I,n=12 2415773336562214 m001 Zeta(7)*exp(TreeGrowth2nd)*cosh(1) 2415773345190472 r005 Re(z^2+c),c=-9/38+19/51*I,n=46 2415773349352828 m001 ErdosBorwein/(Thue^Khinchin) 2415773351616434 m001 (-FibonacciFactorial+Niven)/(Cahen-sin(1)) 2415773353751914 q001 631/2612 2415773357463341 m001 (ln(5)+GAMMA(7/12))/(TreeGrowth2nd+Thue) 2415773362949760 r005 Im(z^2+c),c=-5/4+79/195*I,n=6 2415773376956944 b008 EulerGamma*EllipticK[Tanh[Pi]] 2415773387767112 r009 Im(z^3+c),c=-17/40+6/49*I,n=36 2415773391871662 m001 1/GAMMA(11/12)/exp(Ei(1))^2*GAMMA(5/6) 2415773412461226 a001 433494437/5778*521^(12/13) 2415773425426933 r005 Im(z^2+c),c=-31/94+22/57*I,n=48 2415773429080405 r005 Re(z^2+c),c=-9/38+19/51*I,n=49 2415773430917343 r005 Re(z^2+c),c=-9/38+19/51*I,n=44 2415773436586211 m001 AlladiGrinstead*OneNinth-FeigenbaumAlpha 2415773437272118 l006 ln(509/5700) 2415773442761785 r005 Im(z^2+c),c=-5/8+96/209*I,n=19 2415773453925792 r005 Re(z^2+c),c=-9/38+19/51*I,n=51 2415773457347225 r005 Re(z^2+c),c=-9/38+19/51*I,n=54 2415773459763145 r005 Re(z^2+c),c=-9/38+19/51*I,n=52 2415773461599904 r005 Re(z^2+c),c=-9/38+19/51*I,n=57 2415773463301792 r005 Re(z^2+c),c=-9/38+19/51*I,n=59 2415773463359688 r005 Re(z^2+c),c=-9/38+19/51*I,n=60 2415773463359813 r005 Re(z^2+c),c=-9/38+19/51*I,n=62 2415773463762615 r005 Re(z^2+c),c=-9/38+19/51*I,n=63 2415773463780713 r005 Re(z^2+c),c=-9/38+19/51*I,n=64 2415773464198253 r005 Re(z^2+c),c=-9/38+19/51*I,n=61 2415773464857333 r005 Re(z^2+c),c=-9/38+19/51*I,n=56 2415773465143039 r005 Re(z^2+c),c=-9/38+19/51*I,n=58 2415773465671323 r005 Re(z^2+c),c=-9/38+19/51*I,n=55 2415773472228654 r005 Re(z^2+c),c=-9/38+19/51*I,n=53 2415773473071027 r009 Im(z^3+c),c=-17/21+4/49*I,n=2 2415773474264413 a001 1134903170/15127*521^(12/13) 2415773475914206 r005 Re(z^2+c),c=-9/38+19/51*I,n=48 2415773483281376 a001 2971215073/39603*521^(12/13) 2415773483300327 m001 Shi(1)/cos(1)*Champernowne 2415773484596933 a001 7778742049/103682*521^(12/13) 2415773484788871 a001 20365011074/271443*521^(12/13) 2415773484816874 a001 53316291173/710647*521^(12/13) 2415773484820960 a001 139583862445/1860498*521^(12/13) 2415773484821556 a001 365435296162/4870847*521^(12/13) 2415773484821643 a001 956722026041/12752043*521^(12/13) 2415773484821655 a001 2504730781961/33385282*521^(12/13) 2415773484821657 a001 6557470319842/87403803*521^(12/13) 2415773484821658 a001 10610209857723/141422324*521^(12/13) 2415773484821658 a001 4052739537881/54018521*521^(12/13) 2415773484821663 a001 140728068720/1875749*521^(12/13) 2415773484821696 a001 591286729879/7881196*521^(12/13) 2415773484821924 a001 225851433717/3010349*521^(12/13) 2415773484823485 a001 86267571272/1149851*521^(12/13) 2415773484834181 a001 32951280099/439204*521^(12/13) 2415773484907494 a001 75025*521^(12/13) 2415773485409993 a001 4807526976/64079*521^(12/13) 2415773488854166 a001 1836311903/24476*521^(12/13) 2415773491195309 r005 Re(z^2+c),c=-9/38+19/51*I,n=50 2415773501694254 m001 1/FeigenbaumD*ln(Cahen)^2/sqrt(3)^2 2415773508409102 a001 233802911/281*521^(7/13) 2415773510616433 r005 Re(z^2+c),c=-9/38+19/51*I,n=47 2415773512460884 a001 701408733/9349*521^(12/13) 2415773512607919 h001 (5/8*exp(2)+1/11)/(7/12*exp(1)+4/11) 2415773512736486 r005 Im(z^2+c),c=13/48+4/43*I,n=18 2415773521117575 r005 Re(z^2+c),c=-9/38+19/51*I,n=40 2415773545453955 m001 (Riemann1stZero-Thue)/ln(gamma) 2415773557923142 r009 Re(z^3+c),c=-41/106+23/47*I,n=40 2415773561483605 m001 Pi/exp(Pi)/cos(1)+gamma(2) 2415773562738097 m001 (Niven+Sierpinski)/(GAMMA(5/6)-Mills) 2415773566866224 r005 Re(z^2+c),c=-9/38+19/51*I,n=36 2415773571918586 a007 Real Root Of -25*x^4-642*x^3-884*x^2+861*x+163 2415773573890583 r005 Im(z^2+c),c=-8/29+23/63*I,n=11 2415773578406507 a001 2207/13*4807526976^(16/19) 2415773579051447 m003 -3+Cos[1/2+Sqrt[5]/2]/12+Tan[1/2+Sqrt[5]/2] 2415773582654440 r005 Re(z^2+c),c=-11/74+42/47*I,n=22 2415773585645879 m005 (1/2*exp(1)-7/11)/(9/10*exp(1)+6/11) 2415773590394194 r005 Re(z^2+c),c=-9/26+15/26*I,n=35 2415773602798184 r005 Re(z^2+c),c=-9/38+19/51*I,n=45 2415773603966397 a007 Real Root Of -383*x^4-977*x^3-439*x^2-626*x+320 2415773617979005 m005 (1/2*Catalan+2/11)/(8/11*Pi+4/11) 2415773633952140 l006 ln(892/9989) 2415773636750440 a007 Real Root Of -835*x^4+558*x^3+123*x^2+271*x+69 2415773657736843 r005 Re(z^2+c),c=1/8+31/53*I,n=51 2415773658014316 m001 (Psi(2,1/3)-Si(Pi))/(GAMMA(23/24)+MertensB3) 2415773659024827 a007 Real Root Of 32*x^4-341*x^3-520*x^2+882*x-732 2415773673452956 a001 267914296/2207*521^(11/13) 2415773674263747 a001 267914296/3571*521^(12/13) 2415773680799873 s002 sum(A032709[n]/((pi^n+1)/n),n=1..infinity) 2415773693411493 m001 1/exp(1)*exp(ErdosBorwein)*log(2+sqrt(3)) 2415773694590267 m001 exp(LaplaceLimit)^2/Artin^2/GAMMA(11/12)^2 2415773697115942 r005 Im(z^2+c),c=7/60+11/52*I,n=24 2415773701045324 r005 Im(z^2+c),c=-11/78+16/49*I,n=8 2415773714193793 a007 Real Root Of 305*x^4+829*x^3+621*x^2+838*x-300 2415773720927251 r005 Im(z^2+c),c=-31/94+22/57*I,n=46 2415773720987343 a007 Real Root Of -349*x^4-444*x^3+909*x^2+99*x+561 2415773724485282 m005 (1/2*3^(1/2)+2/7)/(3*3^(1/2)-3/7) 2415773728297128 r005 Re(z^2+c),c=-41/102+1/29*I,n=2 2415773735771263 m005 (1/3*2^(1/2)+3)/(3/4*Catalan+3/4) 2415773753652367 r005 Im(z^2+c),c=7/60+11/52*I,n=23 2415773755469550 r005 Im(z^2+c),c=7/60+11/52*I,n=25 2415773755904695 a003 cos(Pi*5/71)*sin(Pi*9/113) 2415773755985334 a007 Real Root Of -265*x^4-352*x^3+974*x^2+530*x-341 2415773756283122 m001 (BesselK(0,1)+Paris)/(LambertW(1)-exp(1)) 2415773759809876 r004 Im(z^2+c),c=-1/9-5/9*I,z(0)=exp(1/8*I*Pi),n=11 2415773760423111 m005 (1/2*5^(1/2)-1/7)/(3/5*gamma-3/4) 2415773767296798 r005 Im(z^2+c),c=7/60+11/52*I,n=29 2415773767678976 r005 Im(z^2+c),c=7/60+11/52*I,n=28 2415773769431587 r005 Im(z^2+c),c=7/60+11/52*I,n=30 2415773769432706 r005 Im(z^2+c),c=7/60+11/52*I,n=33 2415773769464225 r005 Im(z^2+c),c=7/60+11/52*I,n=34 2415773769522503 r005 Im(z^2+c),c=7/60+11/52*I,n=38 2415773769524722 r005 Im(z^2+c),c=7/60+11/52*I,n=39 2415773769526111 r005 Im(z^2+c),c=7/60+11/52*I,n=43 2415773769526212 r005 Im(z^2+c),c=7/60+11/52*I,n=44 2415773769526233 r005 Im(z^2+c),c=7/60+11/52*I,n=42 2415773769526238 r005 Im(z^2+c),c=7/60+11/52*I,n=48 2415773769526239 r005 Im(z^2+c),c=7/60+11/52*I,n=47 2415773769526242 r005 Im(z^2+c),c=7/60+11/52*I,n=49 2415773769526242 r005 Im(z^2+c),c=7/60+11/52*I,n=52 2415773769526242 r005 Im(z^2+c),c=7/60+11/52*I,n=53 2415773769526242 r005 Im(z^2+c),c=7/60+11/52*I,n=57 2415773769526242 r005 Im(z^2+c),c=7/60+11/52*I,n=58 2415773769526242 r005 Im(z^2+c),c=7/60+11/52*I,n=62 2415773769526242 r005 Im(z^2+c),c=7/60+11/52*I,n=63 2415773769526242 r005 Im(z^2+c),c=7/60+11/52*I,n=61 2415773769526242 r005 Im(z^2+c),c=7/60+11/52*I,n=64 2415773769526242 r005 Im(z^2+c),c=7/60+11/52*I,n=59 2415773769526242 r005 Im(z^2+c),c=7/60+11/52*I,n=60 2415773769526242 r005 Im(z^2+c),c=7/60+11/52*I,n=56 2415773769526242 r005 Im(z^2+c),c=7/60+11/52*I,n=54 2415773769526242 r005 Im(z^2+c),c=7/60+11/52*I,n=55 2415773769526242 r005 Im(z^2+c),c=7/60+11/52*I,n=51 2415773769526243 r005 Im(z^2+c),c=7/60+11/52*I,n=50 2415773769526256 r005 Im(z^2+c),c=7/60+11/52*I,n=46 2415773769526267 r005 Im(z^2+c),c=7/60+11/52*I,n=45 2415773769526758 r005 Im(z^2+c),c=7/60+11/52*I,n=41 2415773769526795 r005 Im(z^2+c),c=7/60+11/52*I,n=40 2415773769528611 r005 Im(z^2+c),c=7/60+11/52*I,n=37 2415773769534100 r005 Im(z^2+c),c=7/60+11/52*I,n=35 2415773769543632 r005 Im(z^2+c),c=7/60+11/52*I,n=36 2415773769681948 r005 Im(z^2+c),c=7/60+11/52*I,n=32 2415773770057611 r005 Im(z^2+c),c=7/60+11/52*I,n=31 2415773776637717 r005 Im(z^2+c),c=7/60+11/52*I,n=27 2415773777889786 r009 Im(z^3+c),c=-15/98+47/55*I,n=62 2415773778717074 a007 Real Root Of 723*x^4-406*x^3-328*x^2-124*x-19 2415773779887439 m001 (Zeta(5)+Mills)/(5^(1/2)-BesselI(0,1)) 2415773784053422 r005 Im(z^2+c),c=7/60+11/52*I,n=26 2415773790391357 r005 Im(z^2+c),c=-39/34+13/66*I,n=14 2415773793578509 a007 Real Root Of -553*x^4-512*x^3-707*x^2+377*x+127 2415773802922886 a007 Real Root Of 841*x^4-746*x^3+868*x^2-712*x+129 2415773844824185 m009 (1/3*Psi(1,3/4)-1/2)/(1/2*Psi(1,3/4)+1/6) 2415773856969458 r005 Re(z^2+c),c=-7/60+7/11*I,n=57 2415773858758372 a001 17/7331474697802*47^(14/23) 2415773865470033 m001 gamma^2/Bloch^2*ln(sinh(1)) 2415773867448275 r005 Re(z^2+c),c=-23/34+23/71*I,n=56 2415773867648455 a001 48/41*521^(15/31) 2415773887391902 m002 Log[Pi]*ProductLog[Pi]*Sech[Pi]+Sinh[Pi]/5 2415773895336234 l006 ln(383/4289) 2415773895336234 p004 log(4289/383) 2415773897769103 m005 (1/2*exp(1)+7/11)/(4/7*exp(1)-8/11) 2415773901485497 r002 51th iterates of z^2 + 2415773914664605 m001 (Trott2nd+ZetaP(4))/(exp(1)+BesselI(1,2)) 2415773921916405 r005 Re(z^2+c),c=-7/36+15/31*I,n=29 2415773927990502 m001 3^(1/3)+GaussAGM^ZetaR(2) 2415773928524785 a001 322/28657*377^(4/31) 2415773933040807 r005 Re(z^2+c),c=-55/98+16/25*I,n=25 2415773933411883 a001 165580141/322*322^(2/3) 2415773945750227 m001 ZetaP(3)^gamma(2)+exp(Pi) 2415773945813798 m002 E^Pi+5/(4*Log[Pi]*ProductLog[Pi]) 2415773958434645 m001 (HardyLittlewoodC4+Robbin)/(Stephens-ZetaP(3)) 2415773958544743 m001 (CopelandErdos+ZetaP(4))/(Ei(1)-BesselK(1,1)) 2415773961250930 h005 exp(sin(Pi*17/57)/sin(Pi*11/30)) 2415773963239319 a001 2971215073/521*199^(3/11) 2415773971027352 r005 Re(z^2+c),c=-9/38+19/51*I,n=42 2415773973786204 b008 25+Zeta[4/15] 2415773986973648 a007 Real Root Of -260*x^4-781*x^3-845*x^2-822*x+790 2415773987472303 a001 7/3524578*365435296162^(11/14) 2415773989012623 a001 7/17711*433494437^(11/14) 2415773990065829 p003 LerchPhi(1/8,2,413/197) 2415773991981979 m001 exp(Riemann1stZero)^2*KhintchineLevy*Zeta(5)^2 2415773998896057 r002 5th iterates of z^2 + 2415774001543254 a007 Real Root Of 451*x^4+533*x^3-996*x^2+667*x-422 2415774009857563 a007 Real Root Of -374*x^4-669*x^3+686*x^2+660*x+897 2415774011049576 r005 Re(z^2+c),c=-7/29+14/39*I,n=24 2415774011160199 r005 Re(z^2+c),c=-11/78+17/29*I,n=56 2415774018322570 s002 sum(A176179[n]/(n!^3),n=1..infinity) 2415774027537471 m001 (-BesselI(1,2)+Otter)/(LambertW(1)-gamma(3)) 2415774029449102 r005 Im(z^2+c),c=-1/86+41/51*I,n=9 2415774038338270 a001 11/5*144^(52/55) 2415774042673157 m001 (FeigenbaumC+Weierstrass)^GAMMA(11/12) 2415774044586830 r005 Im(z^2+c),c=7/60+11/52*I,n=22 2415774048847652 m004 -13/5+(5*Sqrt[5]*Cos[Sqrt[5]*Pi])/Pi 2415774087810880 r005 Re(z^2+c),c=-39/38+11/46*I,n=16 2415774088208318 m005 (1/3*Catalan-1/8)/(1/11*2^(1/2)-7/8) 2415774093928857 r005 Im(z^2+c),c=-13/14+43/193*I,n=64 2415774094717200 r009 Im(z^3+c),c=-41/90+3/35*I,n=57 2415774095240252 a001 48315587/2-47/2*5^(1/2) 2415774096412713 m005 (1/2*Catalan+5/9)/(1/11*exp(1)-2/3) 2415774097058334 a001 233802911/1926*521^(11/13) 2415774097368876 a001 24157817-34*5^(1/2) 2415774098712446 a001 5628753650/233 2415774099318403 q001 2481/1027 2415774108130410 r005 Im(z^2+c),c=7/60+11/52*I,n=21 2415774115479341 m001 1/Salem^2/Khintchine^2*exp(TreeGrowth2nd)^2 2415774116237887 a007 Real Root Of 58*x^4-74*x^3-875*x^2-507*x+863 2415774119456020 r002 29th iterates of z^2 + 2415774126360533 m001 (MertensB2-OneNinth)/(Otter+QuadraticClass) 2415774138512833 m001 PisotVijayaraghavan*(5^(1/2)-ThueMorse) 2415774145047768 a007 Real Root Of -66*x^4+390*x^3-336*x^2-331*x-490 2415774152099701 m001 ((2^(1/3))-Zeta(1/2))^ln(1+sqrt(2)) 2415774152099701 m001 (2^(1/3)-Zeta(1/2))^ln(2^(1/2)+1) 2415774156427226 m001 (Zeta(5)-Rabbit)/GAMMA(2/3) 2415774157198489 r002 39th iterates of z^2 + 2415774158861538 a001 1836311903/15127*521^(11/13) 2415774164974368 m001 1/Zeta(5)/exp(Tribonacci)^2/Zeta(7) 2415774167878504 a001 1602508992/13201*521^(11/13) 2415774169194061 a001 12586269025/103682*521^(11/13) 2415774169385999 a001 121393*521^(11/13) 2415774169414002 a001 86267571272/710647*521^(11/13) 2415774169418088 a001 75283811239/620166*521^(11/13) 2415774169418684 a001 591286729879/4870847*521^(11/13) 2415774169418771 a001 516002918640/4250681*521^(11/13) 2415774169418783 a001 4052739537881/33385282*521^(11/13) 2415774169418785 a001 3536736619241/29134601*521^(11/13) 2415774169418786 a001 6557470319842/54018521*521^(11/13) 2415774169418791 a001 2504730781961/20633239*521^(11/13) 2415774169418824 a001 956722026041/7881196*521^(11/13) 2415774169419052 a001 365435296162/3010349*521^(11/13) 2415774169420613 a001 139583862445/1149851*521^(11/13) 2415774169431309 a001 53316291173/439204*521^(11/13) 2415774169504623 a001 20365011074/167761*521^(11/13) 2415774170007121 a001 7778742049/64079*521^(11/13) 2415774173104953 r008 a(0)=0,K{-n^6,13+3*n^3+10*n^2+16*n} 2415774173451295 a001 2971215073/24476*521^(11/13) 2415774184664683 m001 exp(Pi)+GAMMA(23/24)^LaplaceLimit 2415774187439298 m001 exp(Pi)+Shi(1)^GaussKuzminWirsing 2415774191109106 r005 Im(z^2+c),c=-97/114+10/51*I,n=3 2415774193006237 a001 1134903170/843*521^(6/13) 2415774195299047 r009 Re(z^3+c),c=-41/110+28/61*I,n=46 2415774195715956 m005 (1/2*2^(1/2)-2/3)/(6/7*Catalan+8/9) 2415774197058020 a001 1134903170/9349*521^(11/13) 2415774200370919 p004 log(34807/27337) 2415774209804552 r009 Re(z^3+c),c=-17/62+7/31*I,n=10 2415774216917268 r005 Im(z^2+c),c=-27/70+12/35*I,n=6 2415774221657810 p004 log(34369/26993) 2415774227193079 m001 (ZetaQ(3)-ZetaQ(4))/(BesselI(0,2)+Robbin) 2415774231542415 k006 concat of cont frac of 2415774239390625 p001 sum(1/(469*n+422)/(25^n),n=0..infinity) 2415774240212794 g006 Psi(1,4/7)+Psi(1,1/4)-Psi(1,2/9)-Psi(1,6/7) 2415774244184639 m001 FeigenbaumKappa*(MertensB2+RenyiParking) 2415774251455179 m001 (-exp(-1/2*Pi)+Landau)/(Si(Pi)-arctan(1/2)) 2415774259640201 l006 ln(640/7167) 2415774269871035 m008 (1/6*Pi^5-4)/(2*Pi^4-1/4) 2415774279654656 a005 (1/cos(13/121*Pi))^1046 2415774282253256 m001 Pi-2^(1/3)/Catalan/Ei(1) 2415774285801458 l005 659/37/(exp(659/74)+1) 2415774289642126 r005 Im(z^2+c),c=-99/86+11/39*I,n=21 2415774289698575 a003 sin(Pi*7/106)/cos(Pi*7/40) 2415774292821979 m005 (1/2*exp(1)-8/11)/(5/8*exp(1)+11/12) 2415774299635727 r005 Re(z^2+c),c=-1/94+27/47*I,n=15 2415774304100353 r009 Im(z^3+c),c=-2/11+38/43*I,n=20 2415774310405038 r005 Im(z^2+c),c=-43/118+25/63*I,n=30 2415774318336371 m001 PisotVijayaraghavan^(3^(1/2))*ZetaR(2) 2415774353617132 q001 925/3829 2415774358050137 a001 433494437/2207*521^(10/13) 2415774358860929 a001 433494437/3571*521^(11/13) 2415774369680226 a001 14930208*123^(1/10) 2415774370907822 m001 Pi/(exp(Pi)+gamma(1))+BesselI(0,2) 2415774373165229 r005 Im(z^2+c),c=-17/14+59/243*I,n=32 2415774383690875 m001 (3^(1/2)+BesselI(0,2))/(-GAMMA(19/24)+Totient) 2415774392308514 a007 Real Root Of 8*x^4-179*x^3-724*x^2-920*x+267 2415774401880994 m001 cos(1/5*Pi)/(HardyLittlewoodC4+Trott2nd) 2415774405871913 m005 (1/2*Pi+2/7)/(8/9*Zeta(3)-3/10) 2415774413052296 m001 (Pi-exp(1/exp(1)))/(Kac+ZetaP(4)) 2415774415190238 l006 ln(897/10045) 2415774428148940 a001 47/4052739537881*377^(9/10) 2415774430930130 m001 (-Sarnak+Weierstrass)/(ErdosBorwein-gamma) 2415774439699455 a007 Real Root Of -540*x^4-991*x^3+813*x^2+326*x+463 2415774452290701 a007 Real Root Of 506*x^4+790*x^3-746*x^2+371*x-846 2415774459317174 m001 1/exp(GAMMA(5/24))*Riemann2ndZero*cos(Pi/12)^2 2415774473247218 m006 (1/5*Pi^2-3/4)/(2/5*Pi-3/4) 2415774473247218 m008 (1/5*Pi^2-3/4)/(2/5*Pi-3/4) 2415774479497877 m001 1/FeigenbaumDelta^2*Backhouse^2/ln(Zeta(9))^2 2415774483702483 a007 Real Root Of 487*x^4+938*x^3-373*x^2+583*x+223 2415774489599101 r005 Re(z^2+c),c=-9/38+19/51*I,n=39 2415774493570188 m001 (OneNinth-Robbin)/(BesselI(1,1)-Kolakoski) 2415774517105174 r002 6th iterates of z^2 + 2415774518859075 a001 11/987*121393^(17/37) 2415774527437959 m001 Pi/AlladiGrinstead/ErdosBorwein 2415774530814784 r009 Re(z^3+c),c=-41/102+25/54*I,n=11 2415774533647109 h001 (5/7*exp(2)+4/11)/(5/8*exp(1)+7/11) 2415774540874356 a007 Real Root Of 38*x^4+894*x^3-614*x^2-851*x-511 2415774542370590 r005 Im(z^2+c),c=-5/8+97/230*I,n=62 2415774545635879 r005 Im(z^2+c),c=-16/13+7/52*I,n=12 2415774549553929 r005 Im(z^2+c),c=5/18+5/58*I,n=22 2415774555404984 p001 sum(1/(440*n+369)/n/(512^n),n=1..infinity) 2415774568508483 r005 Im(z^2+c),c=-25/54+22/53*I,n=16 2415774569363291 a007 Real Root Of -89*x^4+689*x^3-656*x^2-823*x-866 2415774582602453 m001 (exp(1)+ln(Pi))/((1+3^(1/2))^(1/2)-ZetaQ(2)) 2415774598892021 m001 CopelandErdos^Magata*Sarnak^Magata 2415774611732571 m004 75*Pi+5*Cot[Sqrt[5]*Pi]^2 2415774612849534 r002 12th iterates of z^2 + 2415774624476407 a001 4/3*75025^(8/31) 2415774626628704 a007 Real Root Of -418*x^4-655*x^3+996*x^2+723*x+936 2415774629104184 m001 (ln(gamma)+ln(Pi))/(Ei(1,1)-FeigenbaumD) 2415774633375223 m001 (Bloch-ZetaQ(2))/(Pi*2^(1/2)/GAMMA(3/4)-Ei(1)) 2415774635605611 m001 cos(1/12*Pi)*(Robbin+Tribonacci) 2415774637174114 m001 (2^(1/2))^(2^(1/3))*(2^(1/2))^GAMMA(17/24) 2415774637174114 m001 sqrt(2)^(2^(1/3))*sqrt(2)^GAMMA(17/24) 2415774637898415 r005 Im(z^2+c),c=-5/23+7/20*I,n=15 2415774639987567 a007 Real Root Of 627*x^4-535*x^3-908*x^2-255*x+120 2415774648421370 m009 (3/4*Psi(1,3/4)+4)/(1/6*Pi^2+4/5) 2415774660804313 m001 GAMMA(5/12)/Robbin*exp(Zeta(7))^2 2415774660959023 m001 2*Pi/GAMMA(5/6)*Paris-HardyLittlewoodC4 2415774673135037 r005 Im(z^2+c),c=-5/8+97/230*I,n=55 2415774680976482 a007 Real Root Of -906*x^4+386*x^3-624*x^2-66*x+29 2415774696034685 a001 1/76*(1/2*5^(1/2)+1/2)^19*199^(9/16) 2415774716129975 m001 Tribonacci/ln(LaplaceLimit)*cos(1) 2415774725485341 r005 Im(z^2+c),c=7/60+11/52*I,n=18 2415774725910497 m001 exp((3^(1/3)))/MadelungNaCl/Zeta(9) 2415774738577088 r009 Re(z^3+c),c=-17/118+57/62*I,n=10 2415774744362323 m001 cosh(1)-ln(2)/ln(10)+GAMMA(19/24) 2415774744424499 m005 (1/2*gamma+1/12)/(11/12*Catalan+7/10) 2415774755498334 r005 Im(z^2+c),c=-55/64+1/60*I,n=11 2415774756036423 a007 Real Root Of 204*x^4-966*x^3-82*x^2+56*x+4 2415774758775260 m001 gamma(2)*(FeigenbaumC+Robbin) 2415774772936630 r002 64th iterates of z^2 + 2415774776936175 m001 Catalan/exp(BesselK(1,1))^2*Zeta(1,2)^2 2415774781655635 a001 567451585/2889*521^(10/13) 2415774783277653 a001 9303105/124*521^(12/13) 2415774784222246 r005 Im(z^2+c),c=-43/102+27/64*I,n=27 2415774785809796 h001 (-12*exp(3)-4)/(-5*exp(3)-1) 2415774788958483 m006 (3/5*Pi-5)/(2*ln(Pi)-1) 2415774790478446 r005 Im(z^2+c),c=-11/58+15/44*I,n=18 2415774791414253 a007 Real Root Of -871*x^4+708*x^3+243*x^2+655*x+157 2415774800308172 p004 log(25609/20113) 2415774802552093 l006 ln(257/2878) 2415774806884114 a007 Real Root Of -549*x^4+251*x^3-79*x^2+749*x-178 2415774817289995 m001 exp(Riemann2ndZero)^2*Champernowne*OneNinth 2415774821955854 h003 exp(Pi*(5^(1/3)/(10^(1/3)-5)^(1/2))) 2415774830958247 m001 (-Pi^(1/2)+3)/(-sin(1)+1/3) 2415774843354688 m001 (CopelandErdos*Mills+MertensB1)/CopelandErdos 2415774843458857 a001 2971215073/15127*521^(10/13) 2415774852475825 a001 7778742049/39603*521^(10/13) 2415774853791384 a001 10182505537/51841*521^(10/13) 2415774853983321 a001 53316291173/271443*521^(10/13) 2415774854011324 a001 139583862445/710647*521^(10/13) 2415774854015410 a001 182717648081/930249*521^(10/13) 2415774854016006 a001 956722026041/4870847*521^(10/13) 2415774854016093 a001 2504730781961/12752043*521^(10/13) 2415774854016105 a001 3278735159921/16692641*521^(10/13) 2415774854016108 a001 10610209857723/54018521*521^(10/13) 2415774854016113 a001 4052739537881/20633239*521^(10/13) 2415774854016147 a001 387002188980/1970299*521^(10/13) 2415774854016374 a001 591286729879/3010349*521^(10/13) 2415774854017935 a001 225851433717/1149851*521^(10/13) 2415774854028631 a001 196418*521^(10/13) 2415774854101945 a001 32951280099/167761*521^(10/13) 2415774854604443 a001 12586269025/64079*521^(10/13) 2415774858048619 a001 1201881744/6119*521^(10/13) 2415774862170524 r005 Re(z^2+c),c=-29/50+13/27*I,n=61 2415774865340861 m001 FeigenbaumB^gamma(2)/PrimesInBinary 2415774865726411 r005 Re(z^2+c),c=17/50+10/49*I,n=47 2415774877603565 a001 1836311903/843*521^(5/13) 2415774881516304 m001 (GAMMA(17/24)+ErdosBorwein)/(Shi(1)+Zeta(1,2)) 2415774881655350 a001 1836311903/9349*521^(10/13) 2415774890279785 r005 Im(z^2+c),c=-127/98+1/45*I,n=45 2415774895085861 m006 (2/5*exp(2*Pi)+1/5)/(1/6*exp(2*Pi)-1/2) 2415774901186240 a001 377/843*(1/2+1/2*5^(1/2))^37 2415774904388722 h003 exp(Pi*(1/13*(18-10^(2/3))^(1/2)*13^(1/2))) 2415774914355845 a007 Real Root Of 808*x^4-505*x^3-195*x^2-652*x-156 2415774926299847 r005 Im(z^2+c),c=-71/106+13/57*I,n=20 2415774934710479 r009 Re(z^3+c),c=-7/48+40/43*I,n=42 2415774940591195 m001 GolombDickman*MadelungNaCl+PisotVijayaraghavan 2415774943817892 r005 Im(z^2+c),c=-5/8+97/230*I,n=48 2415774953388512 a007 Real Root Of -183*x^4-9*x^3+790*x^2-381*x+575 2415774969463783 a007 Real Root Of -399*x^4-553*x^3+790*x^2-807*x-767 2415774970484765 m001 sin(Pi/12)/FeigenbaumC^2/exp(sqrt(3))^2 2415774976754879 m001 GAMMA(2/3)^(FeigenbaumKappa/ZetaQ(3)) 2415774982077470 m001 (exp(1/Pi)+GAMMA(11/12))/(GAMMA(3/4)-Ei(1,1)) 2415774987210512 r005 Re(z^2+c),c=-21/118+29/56*I,n=43 2415774987559854 m004 -1-(75*Sqrt[5])/Pi+25*Pi*Coth[Sqrt[5]*Pi] 2415774992153510 a008 Real Root of x^4-2*x^3-35*x^2-8*x+4 2415775002621446 m001 (Sierpinski-Trott)/(arctan(1/2)+BesselK(1,1)) 2415775005091437 r005 Re(z^2+c),c=-1+31/188*I,n=56 2415775019212749 m009 (Psi(1,3/4)-2/5)/(4/3*Catalan+1/6*Pi^2+6) 2415775022260606 m001 Zeta(1,2)*Stephens+Otter 2415775022288321 r005 Im(z^2+c),c=-7/122+12/41*I,n=9 2415775022749519 m001 Porter*MertensB1^2/ln(TwinPrimes) 2415775042647513 a001 701408733/2207*521^(9/13) 2415775043458305 a001 701408733/3571*521^(10/13) 2415775062658486 r005 Re(z^2+c),c=9/34+9/61*I,n=38 2415775078210668 r005 Re(z^2+c),c=-11/90+25/43*I,n=35 2415775078654776 m001 Lehmer^GaussKuzminWirsing-Riemann3rdZero 2415775079835215 r005 Im(z^2+c),c=-127/98+1/45*I,n=53 2415775082944308 r009 Im(z^3+c),c=-5/14+9/52*I,n=8 2415775085933775 r009 Im(z^3+c),c=-5/44+6/7*I,n=44 2415775089337397 b008 24+CoshIntegral[3/5] 2415775093083418 s002 sum(A111276[n]/(n^3*10^n+1),n=1..infinity) 2415775096802752 a007 Real Root Of -184*x^4-543*x^3-588*x^2-678*x+405 2415775106872351 a007 Real Root Of -398*x^4-734*x^3+489*x^2-234*x-212 2415775110472848 s002 sum(A111276[n]/(n^3*10^n-1),n=1..infinity) 2415775117267792 m001 (exp(gamma)+2)/(BesselI(1,1)+1) 2415775121800862 a003 sin(Pi*8/77)*sin(Pi*22/81) 2415775123225449 k008 concat of cont frac of 2415775124464465 m001 1/3*((1+3^(1/2))^(1/2)+FeigenbaumC)*3^(2/3) 2415775134200354 m001 (-Conway+MadelungNaCl)/(1+Chi(1)) 2415775138071134 m001 arctan(1/2)*polylog(4,1/2)+ZetaQ(4) 2415775144251568 r009 Re(z^3+c),c=-71/122+16/55*I,n=31 2415775151070691 r005 Re(z^2+c),c=-73/90+3/56*I,n=16 2415775154354444 p004 log(33181/2963) 2415775154700278 a007 Real Root Of 49*x^4-179*x^3+873*x^2-432*x-158 2415775157621789 r005 Re(z^2+c),c=-19/74+16/51*I,n=11 2415775159394223 m006 (3*exp(Pi)+1/2)/(2/3*Pi+4/5) 2415775170663684 m001 (GAMMA(23/24)-Si(Pi))/(GaussAGM+Sierpinski) 2415775173397014 p004 log(34439/33617) 2415775174392388 m002 2-E^Pi*Log[Pi]+Tanh[Pi]/3 2415775180158326 r009 Re(z^3+c),c=-13/42+37/56*I,n=35 2415775200215952 a001 11/196418*2584^(8/43) 2415775201514674 a007 Real Root Of -456*x^4+398*x^3+689*x^2+388*x-138 2415775206356071 r005 Im(z^2+c),c=-23/18+6/167*I,n=15 2415775206906141 r009 Re(z^3+c),c=-35/66+35/46*I,n=2 2415775213158030 m001 (-GAMMA(13/24)+Artin)/(Psi(2,1/3)+exp(1)) 2415775215402865 a001 24157817-29*5^(1/2) 2415775216064484 a003 cos(Pi*11/45)-sin(Pi*23/56) 2415775248530946 m001 (ln(Pi)+Conway)/(GaussKuzminWirsing+Rabbit) 2415775250346503 m005 (1/2*gamma-3)/(2/7*exp(1)-8/9) 2415775259465436 p002 log(3^(7/3)-2^(5/6)) 2415775268976858 m001 1/exp(cos(1))/Niven/sqrt(2) 2415775281001942 a007 Real Root Of 381*x^4+821*x^3-88*x^2+137*x-557 2415775281655537 r005 Re(z^2+c),c=-11/82+35/61*I,n=35 2415775282376070 r005 Re(z^2+c),c=-9/98+36/59*I,n=54 2415775284711826 r009 Im(z^3+c),c=-13/66+52/53*I,n=14 2415775291195060 r005 Im(z^2+c),c=-47/66+5/36*I,n=11 2415775297713056 a007 Real Root Of 387*x^4+995*x^3+282*x^2+653*x+779 2415775297956274 r005 Re(z^2+c),c=-9/8+65/237*I,n=16 2415775319009022 m001 1/Riemann2ndZero^2*ln(Si(Pi))/gamma 2415775319605081 r005 Re(z^2+c),c=-3/11+39/64*I,n=56 2415775341255074 l006 ln(645/7223) 2415775357010268 a005 (1/sin(87/179*Pi))^916 2415775366810345 a001 233/1364*2^(1/2) 2415775390820098 m001 FellerTornier/LandauRamanujan/MadelungNaCl 2415775392169203 m005 (1/3*5^(1/2)-1/10)/(5/12*3^(1/2)-5/11) 2415775395386132 m008 (1/2*Pi-5/6)/(Pi^5-3/4) 2415775401069518 q001 1807/748 2415775403216094 a007 Real Root Of -403*x^4-550*x^3+815*x^2-657*x-372 2415775404607951 r005 Re(z^2+c),c=25/106+5/42*I,n=13 2415775429765840 a007 Real Root Of -449*x^4-915*x^3+489*x^2+528*x+814 2415775430821272 s002 sum(A176196[n]/(n!^3),n=1..infinity) 2415775438913787 s001 sum(exp(-2*Pi/3)^n*A140135[n],n=1..infinity) 2415775442874943 s002 sum(A164762[n]/(exp(n)-1),n=1..infinity) 2415775454807450 r005 Im(z^2+c),c=-31/82+24/59*I,n=20 2415775457080535 r005 Im(z^2+c),c=-39/86+27/64*I,n=48 2415775466253131 a001 1836311903/5778*521^(9/13) 2415775467875149 a001 165580141/1364*521^(11/13) 2415775473556900 m001 1/ln(cos(Pi/5))*Si(Pi)^2/sin(Pi/12)^2 2415775488066005 m008 (1/2*Pi+2/3)/(3*Pi^3-2/5) 2415775488514451 m001 1/Tribonacci*ln(CopelandErdos)^2*GAMMA(5/12) 2415775491391989 m001 exp(1/Pi)/(KomornikLoreti-Psi(2,1/3)) 2415775505764052 m005 (1/2*Zeta(3)+3/7)/(1/9*2^(1/2)-7/12) 2415775509665132 r002 30th iterates of z^2 + 2415775518665685 r005 Im(z^2+c),c=-23/44+11/26*I,n=56 2415775518938735 m004 -6+Tan[Sqrt[5]*Pi]/2+(25*Tanh[Sqrt[5]*Pi])/Pi 2415775524365992 a001 2/305*55^(9/10) 2415775528056370 a001 686789568/2161*521^(9/13) 2415775537073341 a001 12586269025/39603*521^(9/13) 2415775538388900 a001 32951280099/103682*521^(9/13) 2415775538580837 a001 86267571272/271443*521^(9/13) 2415775538608840 a001 317811*521^(9/13) 2415775538612926 a001 591286729879/1860498*521^(9/13) 2415775538613522 a001 1548008755920/4870847*521^(9/13) 2415775538613609 a001 4052739537881/12752043*521^(9/13) 2415775538613622 a001 1515744265389/4769326*521^(9/13) 2415775538613629 a001 6557470319842/20633239*521^(9/13) 2415775538613663 a001 2504730781961/7881196*521^(9/13) 2415775538613890 a001 956722026041/3010349*521^(9/13) 2415775538615451 a001 365435296162/1149851*521^(9/13) 2415775538626147 a001 139583862445/439204*521^(9/13) 2415775538699461 a001 53316291173/167761*521^(9/13) 2415775539201959 a001 20365011074/64079*521^(9/13) 2415775542646136 a001 7778742049/24476*521^(9/13) 2415775543461702 m005 (1/3*Catalan+1/5)/(11/12*exp(1)-2/5) 2415775544001891 m001 Weierstrass^FeigenbaumC*Weierstrass^ZetaP(4) 2415775544938248 r009 Re(z^3+c),c=-1/24+25/41*I,n=42 2415775559760771 a001 1364*233^(29/55) 2415775562201088 a001 2971215073/843*521^(4/13) 2415775565276854 a007 Real Root Of -27*x^4-657*x^3-88*x^2+661*x+490 2415775566252874 a001 2971215073/9349*521^(9/13) 2415775575511414 a007 Real Root Of 223*x^4+218*x^3-491*x^2+770*x+204 2415775579046245 a007 Real Root Of -157*x^4-365*x^3+108*x^2+368*x+460 2415775582360636 r009 Re(z^3+c),c=-25/86+12/17*I,n=44 2415775592977234 m006 (1/5*Pi+2)/(4/5/Pi+5/6) 2415775603975730 m007 (-4/5*gamma-8/5*ln(2)+5/6)/(-5*gamma-1/6) 2415775606210659 h001 (-2*exp(1)+7)/(-12*exp(4)+8) 2415775627034355 r005 Im(z^2+c),c=-18/31+12/53*I,n=5 2415775627064685 r005 Re(z^2+c),c=-37/46+7/62*I,n=14 2415775630769705 r005 Re(z^2+c),c=-3/14+14/37*I,n=7 2415775633472639 h001 (-8*exp(1)-3)/(-5*exp(1/2)-2) 2415775638213589 a007 Real Root Of 68*x^4+39*x^3-341*x^2-964*x+252 2415775645863216 r005 Re(z^2+c),c=-9/38+19/51*I,n=37 2415775646588445 m001 (exp(1)-ln(gamma))/(Zeta(1/2)+OneNinth) 2415775658064584 m001 MadelungNaCl/MertensB1*exp(GAMMA(17/24)) 2415775658518547 a001 32951280099/2207*199^(1/11) 2415775675099920 r002 42th iterates of z^2 + 2415775687621439 a001 9*34^(7/25) 2415775692909291 a007 Real Root Of 81*x^4-3*x^3-353*x^2+440*x+322 2415775698076218 l006 ln(388/4345) 2415775700471116 m001 (Pi*Khinchin-GaussAGM(1,1/sqrt(2)))/Pi 2415775706043674 m006 (5/6/Pi-3)/(1/2*exp(Pi)-1/4) 2415775715108428 m005 (1/2*Catalan+5/7)/(5*Catalan+3/11) 2415775716114421 r005 Re(z^2+c),c=-5/17+2/17*I,n=9 2415775716556338 r005 Im(z^2+c),c=-20/21+5/22*I,n=50 2415775727245083 a001 1134903170/2207*521^(8/13) 2415775728055875 a001 1134903170/3571*521^(9/13) 2415775732449193 m001 exp(FeigenbaumD)*Riemann3rdZero*TwinPrimes 2415775763680013 r005 Im(z^2+c),c=-91/122+4/35*I,n=36 2415775764000720 a007 Real Root Of 758*x^4-308*x^3+446*x^2-588*x-175 2415775764636129 m001 1/OneNinth^2/TreeGrowth2nd/exp(GAMMA(5/24)) 2415775780788917 p001 sum(1/(439*n+370)/n/(512^n),n=1..infinity) 2415775797342990 m005 (5/6+1/6*5^(1/2))/(8/11*Zeta(3)-3/8) 2415775800006753 r005 Im(z^2+c),c=-7/12+3/68*I,n=51 2415775804451285 a007 Real Root Of -305*x^4-647*x^3+67*x^2-722*x-869 2415775818327007 r002 25th iterates of z^2 + 2415775820012540 m001 Mills+Niven^DuboisRaymond 2415775822706198 h001 (9/11*exp(1)+2/7)/(1/10*exp(2)+3/10) 2415775825807174 a007 Real Root Of 120*x^4-170*x^3-867*x^2+315*x-663 2415775846368325 r009 Re(z^3+c),c=-17/44+22/45*I,n=63 2415775875056571 a001 14619165/46*322^(3/4) 2415775890042864 r009 Im(z^3+c),c=-43/102+1/8*I,n=16 2415775893187763 p001 sum(1/(455*n+81)/n/(8^n),n=1..infinity) 2415775893716136 a007 Real Root Of -235*x^4-577*x^3-32*x^2-199*x-425 2415775901456435 r005 Re(z^2+c),c=-79/56+1/25*I,n=4 2415775916864869 a007 Real Root Of -107*x^4-255*x^3+157*x^2+106*x-611 2415775919599152 m001 Chi(1)/BesselI(0,1)/Trott2nd 2415775919637857 r005 Im(z^2+c),c=-21/31+14/51*I,n=61 2415775940510549 r005 Im(z^2+c),c=-25/56+13/31*I,n=55 2415775955911852 m001 (exp(Pi)+ln(5))/(-Zeta(1,-1)+Thue) 2415775956085851 r005 Re(z^2+c),c=-9/40+19/47*I,n=16 2415775959315294 m001 Riemann1stZero^2*exp(Artin)/Zeta(3) 2415775961346635 m001 (2^(1/2)+Si(Pi))/(sin(1/5*Pi)+LandauRamanujan) 2415775973302536 r005 Re(z^2+c),c=8/25+18/41*I,n=42 2415775975189797 a001 47/5*46368^(19/26) 2415775977130191 h001 (1/3*exp(2)+6/7)/(1/6*exp(2)+1/7) 2415775977331252 h001 (1/4*exp(1)+3/11)/(5/11*exp(2)+7/12) 2415775989775403 a001 144/11*3^(29/52) 2415775992391250 r005 Re(z^2+c),c=-3/17+21/40*I,n=35 2415775998514816 m001 (1-2/3*Pi*3^(1/2)/GAMMA(2/3))/(Gompertz+Paris) 2415776000797633 r005 Re(z^2+c),c=-13/10+7/146*I,n=48 2415776000935861 a007 Real Root Of 155*x^4+383*x^3+175*x^2+538*x+399 2415776006655755 m001 Zeta(7)^2*ln(BesselJ(1,1))/sin(Pi/5)^2 2415776023453358 m001 1/exp(LambertW(1))^2*OneNinth^2/cosh(1) 2415776027626621 r005 Im(z^2+c),c=-8/31+4/11*I,n=29 2415776042082055 r005 Im(z^2+c),c=-25/62+20/49*I,n=34 2415776043691932 m001 FeigenbaumB/Bloch^2/exp(GAMMA(1/24)) 2415776049765322 a007 Real Root Of -459*x^4+921*x^3-219*x^2+603*x+173 2415776069943018 a008 Real Root of x^4-6*x^2-48*x-115 2415776072748482 p004 log(16411/12889) 2415776082124273 a001 43133785636/2889*199^(1/11) 2415776083947244 m005 (1/2*Catalan-1/3)/(1/3*Zeta(3)-11/12) 2415776099327658 r005 Im(z^2+c),c=-7/8+29/138*I,n=63 2415776113890642 r005 Im(z^2+c),c=-13/48+23/63*I,n=14 2415776119676009 a001 4/28657*233^(52/55) 2415776123715880 m001 (Zeta(5)-ThueMorse)/Sierpinski 2415776141524284 l006 ln(519/5812) 2415776143927528 a001 32264490531/2161*199^(1/11) 2415776150239751 m001 (Rabbit+Riemann1stZero)/(2^(1/3)-BesselI(0,1)) 2415776150519698 a007 Real Root Of -476*x^4-737*x^3+752*x^2-603*x-24 2415776150850820 a001 2971215073/5778*521^(8/13) 2415776152472839 a001 66978574/341*521^(10/13) 2415776152944502 a001 591286729879/39603*199^(1/11) 2415776154260060 a001 774004377960/51841*199^(1/11) 2415776154451998 a001 4052739537881/271443*199^(1/11) 2415776154480001 a001 1515744265389/101521*199^(1/11) 2415776154497308 a001 3278735159921/219602*199^(1/11) 2415776154570622 a001 2504730781961/167761*199^(1/11) 2415776155073120 a001 956722026041/64079*199^(1/11) 2415776155489975 r009 Re(z^3+c),c=-19/54+17/41*I,n=16 2415776158517298 a001 182717648081/12238*199^(1/11) 2415776168772232 m001 Rabbit^2/ln(Magata)*sin(Pi/5) 2415776169337831 r005 Re(z^2+c),c=-1/13+37/61*I,n=20 2415776175801235 m001 (Catalan-GolombDickman)/(-Gompertz+PlouffeB) 2415776182124042 a001 139583862445/9349*199^(1/11) 2415776182454702 m001 (GAMMA(17/24)-MasserGramain)/(Zeta(3)+3^(1/3)) 2415776191599102 h001 (5/6*exp(1)+1/8)/(1/3*exp(1)+1/12) 2415776191599102 m005 (5*exp(1)+3/4)/(2*exp(1)+1/2) 2415776198684438 a001 24157800-17*5^(1/2) 2415776199999997 a001 7465121+7465176*5^(1/2) 2415776208426003 a007 Real Root Of -40*x^4-941*x^3+578*x^2-838*x-726 2415776212654077 a001 7778742049/15127*521^(8/13) 2415776213639800 m004 -1+25*Pi+25*Sqrt[5]*Pi-5*Pi*Cos[Sqrt[5]*Pi] 2415776221671051 a001 20365011074/39603*521^(8/13) 2415776222986610 a001 53316291173/103682*521^(8/13) 2415776223178547 a001 139583862445/271443*521^(8/13) 2415776223206550 a001 365435296162/710647*521^(8/13) 2415776223210636 a001 956722026041/1860498*521^(8/13) 2415776223211232 a001 2504730781961/4870847*521^(8/13) 2415776223211319 a001 6557470319842/12752043*521^(8/13) 2415776223211339 a001 10610209857723/20633239*521^(8/13) 2415776223211373 a001 4052739537881/7881196*521^(8/13) 2415776223211600 a001 1548008755920/3010349*521^(8/13) 2415776223213161 a001 514229*521^(8/13) 2415776223223857 a001 225851433717/439204*521^(8/13) 2415776223297171 a001 86267571272/167761*521^(8/13) 2415776223799670 a001 32951280099/64079*521^(8/13) 2415776227243847 a001 12586269025/24476*521^(8/13) 2415776232898143 m008 (3*Pi^2-4)/(1/3*Pi^5+4) 2415776234204131 a007 Real Root Of 337*x^4+743*x^3-31*x^2+413*x+176 2415776235529787 r005 Im(z^2+c),c=-11/27+9/22*I,n=42 2415776246798805 a001 1602508992/281*521^(3/13) 2415776250850592 a001 4807526976/9349*521^(8/13) 2415776254053840 a007 Real Root Of -257*x^4-884*x^3-555*x^2+505*x+749 2415776262361847 a007 Real Root Of 244*x^4-328*x^3+836*x^2-682*x-219 2415776266905900 m001 1/ln(Riemann1stZero)^2/Conway/GAMMA(5/12)^2 2415776272750243 m001 (FellerTornier-Trott)/(Zeta(1,-1)+Backhouse) 2415776274287713 r005 Im(z^2+c),c=-27/46+1/15*I,n=8 2415776283803564 m001 ln((2^(1/3)))^2/PrimesInBinary^2/GAMMA(17/24) 2415776287595244 m001 Magata/(LaplaceLimit+RenyiParking) 2415776296537934 m001 (Sarnak-ZetaQ(3))/((1+3^(1/2))^(1/2)+Mills) 2415776302791929 r005 Re(z^2+c),c=-7/36+23/44*I,n=18 2415776312357858 m001 (-Kac+Lehmer)/(CareFree-sin(1)) 2415776322304455 m005 (1/2*gamma+7/8)/(1/2*5^(1/2)-7/11) 2415776324583957 a001 1/1563*(1/2*5^(1/2)+1/2)^2*3^(1/3) 2415776333859728 r002 4th iterates of z^2 + 2415776343927084 a001 53316291173/3571*199^(1/11) 2415776356134202 r009 Re(z^3+c),c=-11/48+1/25*I,n=5 2415776358214900 a005 (1/cos(11/151*Pi))^1515 2415776361016113 r005 Re(z^2+c),c=-1+31/188*I,n=64 2415776361797332 m002 -16-Cosh[Pi]+3*Log[Pi] 2415776363956215 m005 (1/2*Zeta(3)+5/12)/(5/11*3^(1/2)-5) 2415776372919512 a007 Real Root Of -200*x^4-593*x^3-793*x^2-982*x+707 2415776390333306 b008 -5/2+PolyLog[3,1/12] 2415776394989026 m001 1/cos(Pi/12)^2/ln(arctan(1/2))/gamma 2415776406228575 l006 ln(650/7279) 2415776409847074 a001 55/7*521^(23/42) 2415776411842846 a001 1836311903/2207*521^(7/13) 2415776412653638 a001 1836311903/3571*521^(8/13) 2415776418546319 s002 sum(A247693[n]/(n^3*10^n-1),n=1..infinity) 2415776435711718 a007 Real Root Of -39*x^4+571*x^3-789*x^2-667*x-506 2415776444228941 s002 sum(A098420[n]/(pi^n+1),n=1..infinity) 2415776451492964 m001 1/exp(GAMMA(5/6))^2*FeigenbaumB^2/sqrt(3)^2 2415776459473817 m003 15+24*Sech[1/2+Sqrt[5]/2] 2415776462743764 a007 Real Root Of -x^4-10*x^3+328*x^2-355*x-394 2415776467583582 a007 Real Root Of 60*x^4-980*x^3-759*x^2-642*x+213 2415776471124750 m001 (HeathBrownMoroz-Landau)/(ln(3)+ln(Pi)) 2415776490231544 r005 Im(z^2+c),c=-21/44+26/61*I,n=49 2415776490630202 r001 5i'th iterates of 2*x^2-1 of 2415776493189687 m001 Otter+ln(gamma)^QuadraticClass 2415776499589153 q001 294/1217 2415776508336308 s002 sum(A078233[n]/(n^2*pi^n+1),n=1..infinity) 2415776509365642 a001 6119/36*3^(8/25) 2415776533616932 a007 Real Root Of -49*x^4+116*x^3+509*x^2+217*x+858 2415776549341348 m001 Rabbit-TravellingSalesman^ZetaR(2) 2415776553090982 a007 Real Root Of -307*x^4-702*x^3+249*x^2+282*x-213 2415776570780257 m001 (ln(2)-ln(Pi)*Trott2nd)/Trott2nd 2415776582133179 l006 ln(781/8746) 2415776591460898 m001 (sin(1)+GAMMA(7/12))/(-Backhouse+Weierstrass) 2415776599477041 m001 (Chi(1)-Ei(1,1))/(StolarskyHarborth+ZetaP(3)) 2415776609223938 m001 (2*Pi/GAMMA(5/6)+MinimumGamma)/(Si(Pi)+Shi(1)) 2415776620534663 a007 Real Root Of -151*x^4-197*x^3+837*x^2+751*x-705 2415776627278741 m001 1/Catalan/MinimumGamma/exp(GAMMA(5/6)) 2415776635618855 a007 Real Root Of -184*x^4-297*x^3+295*x^2-250*x-246 2415776643267441 s002 sum(A155999[n]/(n^2*pi^n+1),n=1..infinity) 2415776647982421 a003 sin(Pi*17/93)-sin(Pi*27/94) 2415776649668903 p004 log(18959/1693) 2415776651427918 r005 Re(z^2+c),c=-53/46+7/36*I,n=10 2415776657128404 m001 (3^(1/2))^exp(Pi)/((3^(1/2))^Stephens) 2415776658231177 r002 5th iterates of z^2 + 2415776674032745 m001 exp(Ei(1))/BesselK(0,1)*GAMMA(7/12) 2415776677482150 a007 Real Root Of 248*x^4+631*x^3-62*x^2-965*x+227 2415776680978660 m001 (MertensB3+Otter)/(BesselK(0,1)+GAMMA(2/3)) 2415776684868697 r005 Im(z^2+c),c=-117/98+1/31*I,n=57 2415776689316368 m005 (1/3*Catalan-1/4)/(7/10*Pi+1/11) 2415776698185618 m001 (GaussKuzminWirsing+1)/(Zeta(1/2)+2) 2415776704152886 a003 sin(Pi*13/72)-sin(Pi*27/95) 2415776707214956 r005 Re(z^2+c),c=23/118+22/47*I,n=31 2415776707806280 m005 (25/4+1/4*5^(1/2))/(2/3*gamma-2/3) 2415776709247147 a007 Real Root Of 258*x^4+843*x^3+487*x^2+246*x+850 2415776734905503 r009 Re(z^3+c),c=-7/48+57/58*I,n=10 2415776739973123 m001 (Trott+Weierstrass)/(GaussAGM+Salem) 2415776742090153 a007 Real Root Of -398*x^4-414*x^3+889*x^2-761*x+692 2415776742654216 m001 1/BesselK(1,1)/ln(Lehmer)/GAMMA(1/4)^2 2415776745671055 m001 (ArtinRank2+MertensB3)/(1-Catalan) 2415776751917429 m001 (-Shi(1)+Paris)/(3^(1/2)+5^(1/2)) 2415776761133829 a003 cos(Pi*8/31)*cos(Pi*22/57) 2415776761625605 r009 Re(z^3+c),c=-49/122+20/41*I,n=20 2415776762795298 m001 (Shi(1)-sin(1))/(LambertW(1)+Zeta(1/2)) 2415776767941539 r005 Im(z^2+c),c=-17/18-56/251*I,n=44 2415776768668838 m002 -Pi^2+Pi^4-Pi^5-2*Sinh[Pi] 2415776775464132 a003 cos(Pi*16/59)*cos(Pi*35/92) 2415776782156627 m001 BesselJZeros(0,1)/ln(Pi)*GAMMA(1/12) 2415776793846593 m002 E^Pi+20/Pi^6+Tanh[Pi] 2415776798005994 m001 Zeta(1/2)-ln(Pi)*GaussAGM 2415776811320427 r005 Im(z^2+c),c=-23/34+22/83*I,n=36 2415776833017977 m008 (5/6*Pi^4-3)/(1/6*Pi-1/5) 2415776835448704 a001 267084832/321*521^(7/13) 2415776836655633 a007 Real Root Of 516*x^4+824*x^3-783*x^2+557*x-42 2415776837070723 a001 433494437/1364*521^(9/13) 2415776845669124 r008 a(0)=0,K{-n^6,(2*n+1)*(81+20*n^2+37*n)} 2415776846619942 m001 (KhinchinHarmonic-Rabbit)/(RenyiParking-Salem) 2415776850087559 a007 Real Root Of 305*x^4+996*x^3+597*x^2-397*x-789 2415776852326003 r008 a(0)=0,K{-n^6,(2*n+1)*(51+5*n^2+82*n)} 2415776854294252 a007 Real Root Of 106*x^4-748*x^3+927*x^2+523*x+262 2415776857294910 r002 18th iterates of z^2 + 2415776857568383 h001 (1/8*exp(2)+5/6)/(10/11*exp(2)+5/9) 2415776858729036 m008 (2*Pi^2+1)/(1/4*Pi^3+5/6) 2415776862334033 m001 (MadelungNaCl-Totient)/(ln(Pi)+Landau) 2415776874036782 a007 Real Root Of 422*x^4+678*x^3-596*x^2+442*x-268 2415776897251978 a001 12586269025/15127*521^(7/13) 2415776898464485 r002 3th iterates of z^2 + 2415776899814748 m001 ln(2+3^(1/2))^PlouffeB/Bloch 2415776900974084 m001 (ln(2)-Salem)/(Pi-exp(Pi)) 2415776903482603 m001 1/ln((2^(1/3)))^2*KhintchineLevy^2*Catalan 2415776906268954 a001 10983760033/13201*521^(7/13) 2415776907029132 m005 (1/2*Catalan+3/11)/(1/11*gamma+1/4) 2415776907584514 a001 43133785636/51841*521^(7/13) 2415776907776451 a001 75283811239/90481*521^(7/13) 2415776907804454 a001 591286729879/710647*521^(7/13) 2415776907808540 a001 832040*521^(7/13) 2415776907809136 a001 4052739537881/4870847*521^(7/13) 2415776907809223 a001 3536736619241/4250681*521^(7/13) 2415776907809277 a001 3278735159921/3940598*521^(7/13) 2415776907809504 a001 2504730781961/3010349*521^(7/13) 2415776907811065 a001 956722026041/1149851*521^(7/13) 2415776907821761 a001 182717648081/219602*521^(7/13) 2415776907895075 a001 139583862445/167761*521^(7/13) 2415776908397574 a001 53316291173/64079*521^(7/13) 2415776911841752 a001 10182505537/12238*521^(7/13) 2415776913818335 m006 (1/5*exp(2*Pi)-3/5)/(1/2/Pi-3/5) 2415776914193252 m008 (4/5*Pi^3-1)/(1/4*Pi+1/5) 2415776917359960 s002 sum(A010020[n]/(n^3*2^n+1),n=1..infinity) 2415776918451167 a007 Real Root Of -595*x^4-987*x^3+879*x^2-553*x-116 2415776919578192 m001 (2^(1/3)-sin(1))/(ArtinRank2+MertensB2) 2415776919970939 m001 GAMMA(1/12)*GolombDickman^2*exp(Zeta(1/2))^2 2415776925623536 m001 Sierpinski*Khintchine/exp(GAMMA(11/12)) 2415776931396716 a001 7778742049/843*521^(2/13) 2415776935448504 a001 7778742049/9349*521^(7/13) 2415776936372946 r005 Im(z^2+c),c=-7/10+1/62*I,n=11 2415776943865346 m001 (GAMMA(13/24)+ThueMorse)^FibonacciFactorial 2415776962181294 m001 (3^(1/3)-ln(2)/ln(10))/(ln(2+3^(1/2))+Magata) 2415776974902905 r005 Re(z^2+c),c=-7/31+23/57*I,n=24 2415776975807793 a007 Real Root Of 286*x^4+527*x^3-247*x^2+749*x+940 2415776980700607 a007 Real Root Of 66*x^4-568*x^3+823*x^2+255*x+341 2415776984429678 m005 (1/3*3^(1/2)+1/6)/(7/9*Pi+7/11) 2415776992544057 r002 49th iterates of z^2 + 2415776994171045 a001 322/1346269*233^(14/33) 2415776996200202 a007 Real Root Of 35*x^4-513*x^3-211*x^2-331*x-75 2415777001894701 a007 Real Root Of 370*x^4+55*x^3-629*x^2-953*x-194 2415777002131147 a001 14736239713/610 2415777004257247 a001 24157817-21*5^(1/2) 2415777007701432 a001 48315605/2-29/2*5^(1/2) 2415777008139526 p001 sum(1/(438*n+371)/n/(512^n),n=1..infinity) 2415777012116097 a007 Real Root Of 144*x^4+235*x^3-59*x^2+570*x+130 2415777029717290 m001 GAMMA(5/12)^BesselI(0,2)*exp(-Pi) 2415777029717290 m001 GAMMA(5/12)^BesselI(0,2)/exp(Pi) 2415777032289024 a001 9349/13*832040^(4/45) 2415777034836426 a007 Real Root Of -143*x^4+973*x^3-35*x^2+616*x-160 2415777036441112 m001 (3^(1/3)-ln(2)/ln(10))/(arctan(1/2)+ZetaQ(3)) 2415777037459102 m001 ln(Khintchine)*GaussAGM(1,1/sqrt(2))^2*Magata 2415777039329316 p001 sum(1/(381*n+269)/n/(64^n),n=1..infinity) 2415777060120622 m005 (5/6*Catalan-4/5)/(5/6*gamma-2) 2415777063126466 m001 1/ln(Zeta(9))^2*Zeta(3)*cos(Pi/5) 2415777073128016 a007 Real Root Of -98*x^4+322*x^3+812*x^2+308*x-126 2415777078946471 r009 Im(z^3+c),c=-25/54+7/64*I,n=14 2415777079671781 a001 2/17*377^(27/53) 2415777088699071 a001 24157817/843*1364^(14/15) 2415777089056097 m001 (Rabbit+ZetaQ(2))/(ln(2^(1/2)+1)+BesselI(0,2)) 2415777095912455 a001 3571/610*89^(6/19) 2415777096440804 a001 2971215073/2207*521^(6/13) 2415777097251596 a001 2971215073/3571*521^(7/13) 2415777106087428 m001 1/ln(LambertW(1))^2*LandauRamanujan*Zeta(7)^2 2415777107586592 r005 Im(z^2+c),c=-61/106+13/29*I,n=12 2415777114883215 m001 QuadraticClass^(2^(1/3))-Riemann3rdZero 2415777118813398 m001 sin(Pi/12)*GAMMA(17/24)^2*exp(sqrt(3)) 2415777133149157 r005 Re(z^2+c),c=-11/62+32/61*I,n=32 2415777133624337 m001 (-Conway+Lehmer)/(2^(1/2)+GAMMA(7/12)) 2415777135345360 a007 Real Root Of -417*x^4-760*x^3+835*x^2+595*x+52 2415777141245416 h001 (6/11*exp(2)+7/10)/(4/9*exp(1)+3/4) 2415777142000449 m001 (Si(Pi)+1)/(GaussAGM(1,1/sqrt(2))+1/3) 2415777144186439 a001 17393796001*144^(9/17) 2415777146278200 m001 1/GAMMA(7/12)^2/Bloch^2/exp(Zeta(5))^2 2415777158172433 a001 47*(1/2*5^(1/2)+1/2)^30*9349^(13/15) 2415777168142576 r005 Im(z^2+c),c=-41/50+5/32*I,n=63 2415777169651456 r005 Re(z^2+c),c=11/106+7/11*I,n=36 2415777172629709 a007 Real Root Of 466*x^4+840*x^3-812*x^2-289*x+12 2415777175262911 a001 39088169/843*1364^(13/15) 2415777179844733 m001 Robbin/HeathBrownMoroz/exp(-1/2*Pi) 2415777181577353 a001 47*(1/2*5^(1/2)+1/2)^25*64079^(14/15) 2415777184079906 a007 Real Root Of -820*x^4-971*x^3-181*x^2+465*x+112 2415777186244671 a007 Real Root Of -293*x^4-715*x^3-99*x^2-11*x+450 2415777191912611 r005 Im(z^2+c),c=-1/54+13/42*I,n=3 2415777193095863 m001 (OneNinth+ZetaP(3))/(LambertW(1)+BesselK(1,1)) 2415777213837848 r005 Im(z^2+c),c=-29/60+1/37*I,n=5 2415777216349537 s002 sum(A259993[n]/((exp(n)+1)/n),n=1..infinity) 2415777225892325 m001 (5^(1/2)-gamma(2))/(-Artin+Conway) 2415777244184067 a007 Real Root Of -278*x^4-802*x^3-297*x^2+174*x+315 2415777248659998 a007 Real Root Of 173*x^4-84*x^3-946*x^2+848*x+493 2415777249029958 r005 Re(z^2+c),c=-3/19+23/41*I,n=38 2415777250099680 a007 Real Root Of 694*x^4-236*x^3+85*x^2-954*x+23 2415777261826755 a001 63245986/843*1364^(4/5) 2415777270052453 m001 (MinimumGamma-Tribonacci)/(Zeta(1,2)-Kac) 2415777294962959 m005 (1/2*Zeta(3)+3)/(1/8*5^(1/2)-3/7) 2415777300946750 a007 Real Root Of -215*x^4+216*x^3+642*x^2+868*x+176 2415777333033963 m005 (1/2*5^(1/2)+4/5)/(6*Zeta(3)+8/11) 2415777348390601 a001 34111385/281*1364^(11/15) 2415777363928672 r002 61th iterates of z^2 + 2415777373657956 m001 ((1+3^(1/2))^(1/2))^(FeigenbaumD/GAMMA(7/12)) 2415777378137338 r002 10th iterates of z^2 + 2415777381229344 r005 Im(z^2+c),c=-19/14+17/173*I,n=4 2415777382104330 a007 Real Root Of -470*x^4-837*x^3+936*x^2+424*x-231 2415777404679918 m001 ZetaQ(3)-GAMMA(23/24)-exp(Pi) 2415777405055257 r005 Re(z^2+c),c=-1+31/188*I,n=60 2415777426909315 m001 ((1+3^(1/2))^(1/2)-Cahen)/(Lehmer-ZetaP(3)) 2415777434954451 a001 165580141/843*1364^(2/3) 2415777452038894 m001 (1+Gompertz)/(-Rabbit+StronglyCareFree) 2415777452942215 a001 10182505537/682*199^(1/11) 2415777454941830 l006 ln(131/1467) 2415777456335854 a003 cos(Pi*29/114)*cos(Pi*43/111) 2415777476852825 a007 Real Root Of -420*x^4-733*x^3+611*x^2+234*x+970 2415777477285085 m009 (1/5*Psi(1,3/4)+4)/(4/3*Catalan+1/6*Pi^2-1) 2415777483025920 m001 (Pi+Chi(1))/(HardyLittlewoodC4+Totient) 2415777486228281 r005 Re(z^2+c),c=1/6+9/25*I,n=47 2415777488532959 m001 GAMMA(11/12)^BesselJ(0,1)/((1/3)^BesselJ(0,1)) 2415777490407646 m001 exp(Zeta(9))^2/BesselK(0,1)^2*gamma 2415777502843905 m001 (exp(-1/2*Pi)-Kac)/(Ei(1)+Zeta(1,-1)) 2415777513656250 m005 (1/2*5^(1/2)+1)/(1/3*Catalan+4/7) 2415777520046781 a001 7778742049/5778*521^(6/13) 2415777521518304 a001 267914296/843*1364^(3/5) 2415777521668801 a001 701408733/1364*521^(8/13) 2415777550322139 m001 (Mills-PrimesInBinary)/(Pi-ln(gamma)) 2415777574344876 m001 Khinchin^GolombDickman/ZetaP(4) 2415777581850073 a001 20365011074/15127*521^(6/13) 2415777590867052 a001 53316291173/39603*521^(6/13) 2415777591164380 h001 (-exp(1)+5)/(-3*exp(3/2)+4) 2415777592182612 a001 139583862445/103682*521^(6/13) 2415777592374549 a001 365435296162/271443*521^(6/13) 2415777592402552 a001 956722026041/710647*521^(6/13) 2415777592406638 a001 2504730781961/1860498*521^(6/13) 2415777592407234 a001 6557470319842/4870847*521^(6/13) 2415777592407375 a001 10610209857723/7881196*521^(6/13) 2415777592407603 a001 1346269*521^(6/13) 2415777592409163 a001 1548008755920/1149851*521^(6/13) 2415777592419859 a001 591286729879/439204*521^(6/13) 2415777592493173 a001 225851433717/167761*521^(6/13) 2415777592995672 a001 86267571272/64079*521^(6/13) 2415777593038789 a007 Real Root Of 608*x^4-585*x^3+420*x^2-776*x-19 2415777596439852 a001 32951280099/24476*521^(6/13) 2415777599533106 m001 KomornikLoreti+LaplaceLimit^GAMMA(5/6) 2415777605791310 a007 Real Root Of 2*x^4+65*x^3+367*x^2-856*x+365 2415777608082160 a001 433494437/843*1364^(8/15) 2415777609828714 r005 Im(z^2+c),c=-29/122+16/43*I,n=8 2415777614733103 a003 cos(Pi*26/109)-sin(Pi*35/82) 2415777615994821 a001 12586269025/843*521^(1/13) 2415777619795982 r009 Re(z^3+c),c=-23/54+23/42*I,n=13 2415777620046610 a001 12586269025/9349*521^(6/13) 2415777621697806 l006 ln(1186/1215) 2415777627577685 b008 1-6*6^(4/5) 2415777629474485 a001 48/41*1364^(13/31) 2415777631824569 m008 (3/5*Pi^6+5)/(1/4*Pi^6+1/2) 2415777632990095 a001 521/13*55^(13/29) 2415777637907703 g005 GAMMA(2/3)/GAMMA(7/11)/GAMMA(4/9)^2 2415777647035902 g007 Psi(2,9/11)+Psi(2,1/8)-Psi(2,1/12)-Psi(13/10) 2415777647900064 m001 1/Robbin*ln(Conway)^2/GAMMA(5/24) 2415777674924668 m005 (1/2*3^(1/2)-3/5)/(7/12*Zeta(3)+2/5) 2415777675077640 a001 24157817-18*5^(1/2) 2415777676377945 a007 Real Root Of 526*x^4+655*x^3+106*x^2-895*x+199 2415777694646019 a001 233802911/281*1364^(7/15) 2415777698594805 m001 (Kac-Tribonacci)/(Trott2nd+Weierstrass) 2415777707315455 m001 (FellerTornier+Niven)/(gamma(3)-sin(1)) 2415777707439465 m005 (1/2*Catalan-4/9)/(8/11*Zeta(3)-9/11) 2415777708607407 m001 1/LaplaceLimit/exp(Catalan)^2 2415777716532486 a001 9349/21*6765^(39/40) 2415777725184859 r005 Im(z^2+c),c=-29/62+29/63*I,n=32 2415777728548462 m005 (1/2*gamma-10/11)/(7/9*Pi+1/8) 2415777731292804 h001 (1/3*exp(2)+11/12)/(1/11*exp(2)+8/11) 2415777746744206 r005 Im(z^2+c),c=-39/98+13/32*I,n=35 2415777755350284 m005 (1/2*5^(1/2)-2/3)/(131/112+5/16*5^(1/2)) 2415777756987491 a007 Real Root Of 786*x^4-225*x^3+448*x^2-843*x+178 2415777758559204 m001 (Chi(1)-ln(gamma))/(-Stephens+ZetaQ(4)) 2415777771438938 r005 Im(z^2+c),c=-31/94+22/57*I,n=51 2415777772426099 m001 gamma(3)*PisotVijayaraghavan^gamma 2415777781038955 a001 4807526976/2207*521^(5/13) 2415777781209881 a001 1134903170/843*1364^(2/5) 2415777781849748 a001 4807526976/3571*521^(6/13) 2415777795240337 m001 (ln(2)/ln(10)-ln(5))/(-Landau+ZetaQ(4)) 2415777797772856 m001 (Khinchin-Thue)/(BesselI(1,2)-GaussAGM) 2415777799711597 r005 Re(z^2+c),c=11/90+19/41*I,n=4 2415777804456666 m001 TreeGrowth2nd^Backhouse-exp(1) 2415777804621658 a001 377/2207*2537720636^(13/15) 2415777804621658 a001 377/2207*45537549124^(13/17) 2415777804621658 a001 377/2207*14662949395604^(13/21) 2415777804621658 a001 377/2207*(1/2+1/2*5^(1/2))^39 2415777804621658 a001 377/2207*192900153618^(13/18) 2415777804621658 a001 377/2207*73681302247^(3/4) 2415777804621658 a001 377/2207*10749957122^(13/16) 2415777804621658 a001 377/2207*599074578^(13/14) 2415777804626340 a001 329/281*2537720636^(7/9) 2415777804626340 a001 329/281*17393796001^(5/7) 2415777804626340 a001 329/281*312119004989^(7/11) 2415777804626340 a001 329/281*14662949395604^(5/9) 2415777804626340 a001 329/281*(1/2+1/2*5^(1/2))^35 2415777804626340 a001 329/281*505019158607^(5/8) 2415777804626340 a001 329/281*28143753123^(7/10) 2415777804626340 a001 329/281*599074578^(5/6) 2415777804626340 a001 329/281*228826127^(7/8) 2415777811363630 r005 Re(z^2+c),c=-6/23+17/58*I,n=19 2415777811540764 r009 Im(z^3+c),c=-5/36+29/34*I,n=44 2415777816702820 a001 31622993/161*322^(5/6) 2415777819851333 a001 1/47*(1/2*5^(1/2)+1/2)^32*11^(6/17) 2415777824717900 a007 Real Root Of -182*x^4-60*x^3+580*x^2-856*x-100 2415777830881051 m001 ln(log(2+sqrt(3)))^2/Trott*sin(Pi/5)^2 2415777836306096 m005 (1/3*3^(1/2)+1/4)/(3*Pi-6) 2415777841306306 a001 19/36*196418^(16/51) 2415777844270153 r005 Re(z^2+c),c=-17/94+14/27*I,n=29 2415777858680583 r009 Re(z^3+c),c=-35/82+32/63*I,n=26 2415777861472595 g001 abs(Psi(-3+I*1/24)) 2415777867773746 a001 1836311903/843*1364^(1/3) 2415777874517785 r005 Re(z^2+c),c=-11/106+33/58*I,n=20 2415777882348213 a003 sin(Pi*1/97)*sin(Pi*26/97) 2415777882487669 r005 Im(z^2+c),c=-61/78+7/47*I,n=48 2415777887842091 p003 LerchPhi(1/16,4,60/133) 2415777894390899 m004 6+25*Sqrt[5]*Pi+(125*Pi*Tan[Sqrt[5]*Pi])/6 2415777905771204 r005 Im(z^2+c),c=-37/106+29/49*I,n=56 2415777914709077 r005 Im(z^2+c),c=-9/38+21/59*I,n=14 2415777922269366 r005 Re(z^2+c),c=-4/21+23/36*I,n=33 2415777934232282 r009 Im(z^3+c),c=-41/90+5/59*I,n=46 2415777937517179 r005 Im(z^2+c),c=-37/56+16/53*I,n=33 2415777948134226 a007 Real Root Of 676*x^4+370*x^3+267*x^2-109*x-39 2415777949925979 r005 Re(z^2+c),c=-5/48+30/49*I,n=63 2415777954337615 a001 2971215073/843*1364^(4/15) 2415777958541180 r009 Re(z^3+c),c=-3/28+22/27*I,n=24 2415777966045391 m002 -6+Pi^3-5*Pi^2*Tanh[Pi] 2415777975665439 b008 2+Pi-5*(E+Pi) 2415777988009539 m001 (GaussAGM-ThueMorse)/MadelungNaCl 2415777993889759 a007 Real Root Of 76*x^4-197*x^3-586*x^2+974*x+407 2415777999042961 h001 (2/11*exp(2)+3/8)/(8/9*exp(2)+6/11) 2415778005941902 r009 Re(z^3+c),c=-17/70+6/41*I,n=2 2415778010906510 r005 Im(z^2+c),c=-39/94+33/61*I,n=46 2415778020833112 m001 (FeigenbaumAlpha+MasserGramain)/Conway 2415778028155699 a007 Real Root Of 27*x^4+627*x^3-638*x^2-711*x-968 2415778040901486 a001 1602508992/281*1364^(1/5) 2415778043172444 p001 sum((-1)^n/(459*n+412)/(100^n),n=0..infinity) 2415778046051540 m001 (3^(1/3)+GAMMA(23/24))/(sin(1/5*Pi)-ln(5)) 2415778046640675 h001 (-8*exp(8)-5)/(-9*exp(7)-4) 2415778046993263 m001 1/GAMMA(5/24)^2/exp(Lehmer)^2/cos(Pi/5)^2 2415778062793983 m001 1/KhintchineHarmonic*ln(Artin)^2*TwinPrimes^2 2415778073473466 m001 exp(1)^Stephens/(sin(1/5*Pi)^Stephens) 2415778074439380 r002 54th iterates of z^2 + 2415778077066252 a007 Real Root Of 594*x^4+878*x^3-881*x^2+820*x-730 2415778078832762 a008 Real Root of x^4-x^3+4*x^2-95*x-301 2415778079720016 m001 1/exp(Trott)/FeigenbaumC/sqrt(5) 2415778081862944 h001 (-exp(1/2)+1)/(-8*exp(3/2)+9) 2415778082850052 r009 Re(z^3+c),c=-7/26+33/59*I,n=3 2415778085488064 a007 Real Root Of -490*x^4-691*x^3+962*x^2-439*x+272 2415778103535486 m005 (1/2*Zeta(3)+5/9)/(4/9*gamma+2/9) 2415778105237851 r002 30th iterates of z^2 + 2415778107329754 a007 Real Root Of -206*x^4-36*x^3+954*x^2-445*x-134 2415778107993633 m001 Riemann2ndZero^Catalan*ZetaR(2) 2415778111021236 k006 concat of cont frac of 2415778111145898 a001 38579976435/1597 2415778114783746 a007 Real Root Of -927*x^4+873*x^3+97*x^2+986*x+248 2415778116040735 a007 Real Root Of 130*x^4+256*x^3-145*x^2+229*x+581 2415778122294346 a001 9227465/843*3571^(16/17) 2415778127465361 a001 7778742049/843*1364^(2/15) 2415778127823584 a007 Real Root Of 294*x^4+370*x^3-516*x^2+879*x+338 2415778133438011 a001 4976784/281*3571^(15/17) 2415778144581688 a001 24157817/843*3571^(14/17) 2415778149818766 m001 (Trott+ZetaP(2))/(ln(5)+HardyLittlewoodC4) 2415778153274094 a001 9062201101803/8*987^(7/9) 2415778155725360 a001 39088169/843*3571^(13/17) 2415778166846352 a005 (1/cos(9/67*Pi))^787 2415778166869034 a001 63245986/843*3571^(12/17) 2415778171814731 r002 9th iterates of z^2 + 2415778173679704 r005 Im(z^2+c),c=-51/122+29/62*I,n=20 2415778175901730 m001 (Porter+ZetaP(2))/(Bloch+FellerTornier) 2415778178012707 a001 34111385/281*3571^(11/17) 2415778180999132 m005 (1/2*2^(1/2)-1)/(7/9*Catalan+1/2) 2415778183414068 m008 (1/3*Pi^3-3/4)/(4*Pi^2+1/5) 2415778187942287 m001 (MertensB2-PlouffeB)/exp(Pi) 2415778189156381 a001 165580141/843*3571^(10/17) 2415778193160136 r005 Im(z^2+c),c=-19/25+3/50*I,n=41 2415778200300054 a001 267914296/843*3571^(9/17) 2415778200884308 r002 64th iterates of z^2 + 2415778204645053 a001 12586269025/5778*521^(5/13) 2415778206012849 a007 Real Root Of -205*x^4-719*x^3-748*x^2-201*x+725 2415778206267074 a001 567451585/682*521^(7/13) 2415778206402327 m001 (Totient+ZetaP(4))/(Champernowne-Rabbit) 2415778211443728 a001 433494437/843*3571^(8/17) 2415778214029239 a001 12586269025/843*1364^(1/15) 2415778215127100 r005 Im(z^2+c),c=-25/46+20/51*I,n=12 2415778222587402 a001 233802911/281*3571^(7/17) 2415778224320842 m001 1/Sierpinski*ln(ErdosBorwein)*log(2+sqrt(3)) 2415778228227760 a001 377/5778*(1/2+1/2*5^(1/2))^41 2415778228232541 a001 2584/843*141422324^(11/13) 2415778228232541 a001 2584/843*2537720636^(11/15) 2415778228232541 a001 2584/843*45537549124^(11/17) 2415778228232541 a001 2584/843*312119004989^(3/5) 2415778228232541 a001 2584/843*14662949395604^(11/21) 2415778228232541 a001 2584/843*(1/2+1/2*5^(1/2))^33 2415778228232541 a001 2584/843*192900153618^(11/18) 2415778228232541 a001 2584/843*10749957122^(11/16) 2415778228232541 a001 2584/843*1568397607^(3/4) 2415778228232541 a001 2584/843*599074578^(11/14) 2415778228232543 a001 2584/843*33385282^(11/12) 2415778232400814 r005 Im(z^2+c),c=-29/28+13/56*I,n=32 2415778233731076 a001 1134903170/843*3571^(6/17) 2415778237461552 p001 sum(1/(437*n+372)/n/(512^n),n=1..infinity) 2415778244501303 r009 Re(z^3+c),c=-31/78+23/45*I,n=33 2415778244874749 a001 1836311903/843*3571^(5/17) 2415778245875280 r005 Im(z^2+c),c=-31/94+22/57*I,n=45 2415778247846875 a007 Real Root Of -534*x^4-297*x^3+797*x^2+921*x-263 2415778250086231 m001 BesselJ(1,1)/(gamma(2)+FeigenbaumC) 2415778251599147 q001 1133/469 2415778252638238 a007 Real Root Of -206*x^4-438*x^3-64*x^2-398*x+253 2415778256018423 a001 2971215073/843*3571^(4/17) 2415778260673141 a001 312119004989/34*6557470319842^(11/19) 2415778261122905 m001 (BesselK(1,1)-GaussKuzminWirsing)/Champernowne 2415778264060230 a003 cos(Pi*29/113)*cos(Pi*22/45) 2415778266448362 a001 32951280099/15127*521^(5/13) 2415778267162097 a001 1602508992/281*3571^(3/17) 2415778272949055 a001 101003689592/4181 2415778274408576 a001 3524578/843*9349^(18/19) 2415778274685676 m001 1/exp(1)^2*exp(BesselJ(0,1))^2/sin(Pi/12) 2415778275465344 a001 86267571272/39603*521^(5/13) 2415778275863221 a001 5702887/843*9349^(17/19) 2415778276780904 a001 225851433717/103682*521^(5/13) 2415778276972841 a001 591286729879/271443*521^(5/13) 2415778277000845 a001 1548008755920/710647*521^(5/13) 2415778277004930 a001 4052739537881/1860498*521^(5/13) 2415778277005526 a001 2178309*521^(5/13) 2415778277005895 a001 6557470319842/3010349*521^(5/13) 2415778277007455 a001 2504730781961/1149851*521^(5/13) 2415778277018152 a001 956722026041/439204*521^(5/13) 2415778277091465 a001 365435296162/167761*521^(5/13) 2415778277317941 a001 9227465/843*9349^(16/19) 2415778277593964 a001 139583862445/64079*521^(5/13) 2415778278305771 a001 7778742049/843*3571^(2/17) 2415778278772632 a001 4976784/281*9349^(15/19) 2415778280227334 a001 24157817/843*9349^(14/19) 2415778281038145 a001 53316291173/24476*521^(5/13) 2415778281682032 a001 39088169/843*9349^(13/19) 2415778283136731 a001 63245986/843*9349^(12/19) 2415778284591430 a001 34111385/281*9349^(11/19) 2415778285700715 m001 (2^(1/3))^Psi(1,1/3)/(arctan(1/2)^Psi(1,1/3)) 2415778286046129 a001 165580141/843*9349^(10/19) 2415778287500828 a001 267914296/843*9349^(9/19) 2415778288955527 a001 433494437/843*9349^(8/19) 2415778289449445 a001 12586269025/843*3571^(1/17) 2415778290031070 a001 377/15127*(1/2+1/2*5^(1/2))^43 2415778290035853 a001 2255/281*(1/2+1/2*5^(1/2))^31 2415778290035853 a001 2255/281*9062201101803^(1/2) 2415778290410226 a001 233802911/281*9349^(7/19) 2415778290438799 p003 LerchPhi(1/3,4,79/175) 2415778291864925 a001 1134903170/843*9349^(6/19) 2415778293319624 a001 1836311903/843*9349^(5/19) 2415778294774323 a001 2971215073/843*9349^(4/19) 2415778296229022 a001 1602508992/281*9349^(3/19) 2415778296555819 a001 20340853257/842 2415778296752894 a001 1346269/843*24476^(20/21) 2415778296944550 a001 726103/281*24476^(19/21) 2415778297136715 a001 3524578/843*24476^(6/7) 2415778297328686 a001 5702887/843*24476^(17/21) 2415778297520731 a001 9227465/843*24476^(16/21) 2415778297683721 a001 7778742049/843*9349^(2/19) 2415778297712748 a001 4976784/281*24476^(5/7) 2415778297904776 a001 24157817/843*24476^(2/3) 2415778298096799 a001 39088169/843*24476^(13/21) 2415778298288824 a001 63245986/843*24476^(4/7) 2415778298480849 a001 34111385/281*24476^(11/21) 2415778298672873 a001 165580141/843*24476^(10/21) 2415778298864898 a001 267914296/843*24476^(3/7) 2415778299048051 a001 377/39603*45537549124^(15/17) 2415778299048051 a001 377/39603*312119004989^(9/11) 2415778299048051 a001 377/39603*14662949395604^(5/7) 2415778299048051 a001 377/39603*(1/2+1/2*5^(1/2))^45 2415778299048051 a001 377/39603*192900153618^(5/6) 2415778299048051 a001 377/39603*28143753123^(9/10) 2415778299048051 a001 377/39603*10749957122^(15/16) 2415778299052835 a001 17711/843*(1/2+1/2*5^(1/2))^29 2415778299052835 a001 17711/843*1322157322203^(1/2) 2415778299056922 a001 433494437/843*24476^(8/21) 2415778299138420 a001 12586269025/843*9349^(1/19) 2415778299176981 a001 12752043/233*34^(8/19) 2415778299248947 a001 233802911/281*24476^(1/3) 2415778299440972 a001 1134903170/843*24476^(2/7) 2415778299632996 a001 1836311903/843*24476^(5/21) 2415778299825021 a001 2971215073/843*24476^(4/21) 2415778299999997 a001 7465142+7465176*5^(1/2) 2415778300017045 a001 1602508992/281*24476^(1/7) 2415778300032190 a001 514229/843*64079^(22/23) 2415778300055245 a001 832040/843*64079^(21/23) 2415778300081789 a001 1346269/843*64079^(20/23) 2415778300107001 a001 726103/281*64079^(19/23) 2415778300132721 a001 3524578/843*64079^(18/23) 2415778300158247 a001 5702887/843*64079^(17/23) 2415778300183848 a001 9227465/843*64079^(16/23) 2415778300209070 a001 7778742049/843*24476^(2/21) 2415778300209420 a001 4976784/281*64079^(15/23) 2415778300235002 a001 24157817/843*64079^(14/23) 2415778300260581 a001 39088169/843*64079^(13/23) 2415778300286161 a001 63245986/843*64079^(12/23) 2415778300311741 a001 34111385/281*64079^(11/23) 2415778300337321 a001 165580141/843*64079^(10/23) 2415778300362901 a001 267914296/843*64079^(9/23) 2415778300363611 a001 377/103682*(1/2+1/2*5^(1/2))^47 2415778300368363 a001 15456/281*7881196^(9/11) 2415778300368395 a001 15456/281*141422324^(9/13) 2415778300368395 a001 15456/281*2537720636^(3/5) 2415778300368395 a001 15456/281*45537549124^(9/17) 2415778300368395 a001 15456/281*14662949395604^(3/7) 2415778300368395 a001 15456/281*(1/2+1/2*5^(1/2))^27 2415778300368395 a001 15456/281*192900153618^(1/2) 2415778300368395 a001 15456/281*10749957122^(9/16) 2415778300368395 a001 15456/281*599074578^(9/14) 2415778300368396 a001 15456/281*33385282^(3/4) 2415778300369023 a001 15456/281*1860498^(9/10) 2415778300388481 a001 433494437/843*64079^(8/23) 2415778300401095 a001 12586269025/843*24476^(1/21) 2415778300414060 a001 233802911/281*64079^(7/23) 2415778300439640 a001 1134903170/843*64079^(6/23) 2415778300465220 a001 1836311903/843*64079^(5/23) 2415778300490800 a001 2971215073/843*64079^(4/23) 2415778300502499 a001 1812437669952/75025 2415778300516380 a001 1602508992/281*64079^(3/23) 2415778300524716 a001 1346269/843*167761^(4/5) 2415778300541615 a001 4976784/281*167761^(3/5) 2415778300541960 a001 7778742049/843*64079^(2/23) 2415778300555549 a001 377/271443*14662949395604^(7/9) 2415778300555549 a001 377/271443*(1/2+1/2*5^(1/2))^49 2415778300555549 a001 377/271443*505019158607^(7/8) 2415778300558784 a001 165580141/843*167761^(2/5) 2415778300560328 a001 121393/843*20633239^(5/7) 2415778300560332 a001 121393/843*2537720636^(5/9) 2415778300560332 a001 121393/843*312119004989^(5/11) 2415778300560332 a001 121393/843*(1/2+1/2*5^(1/2))^25 2415778300560332 a001 121393/843*3461452808002^(5/12) 2415778300560332 a001 121393/843*28143753123^(1/2) 2415778300560332 a001 121393/843*228826127^(5/8) 2415778300560914 a001 121393/843*1860498^(5/6) 2415778300567539 a001 12586269025/843*64079^(1/23) 2415778300575812 a001 4745023422425/196418 2415778300575952 a001 1836311903/843*167761^(1/5) 2415778300582681 a001 832040/843*439204^(7/9) 2415778300583552 a001 377/710647*817138163596^(17/19) 2415778300583552 a001 377/710647*14662949395604^(17/21) 2415778300583552 a001 377/710647*(1/2+1/2*5^(1/2))^51 2415778300583552 a001 377/710647*192900153618^(17/18) 2415778300584809 a001 3524578/843*439204^(2/3) 2415778300586160 a001 4976784/281*439204^(5/9) 2415778300586509 a001 12422632597323/514229 2415778300587553 a001 63245986/843*439204^(4/9) 2415778300587638 a001 377/1860498*(1/2+1/2*5^(1/2))^53 2415778300588069 a001 32522874369544/1346269 2415778300588234 a001 377/4870847*(1/2+1/2*5^(1/2))^55 2415778300588234 a001 377/4870847*3461452808002^(11/12) 2415778300588297 a001 85145990511309/3524578 2415778300588321 a001 377/12752043*14662949395604^(19/21) 2415778300588321 a001 377/12752043*(1/2+1/2*5^(1/2))^57 2415778300588330 a001 17147315166491/709805 2415778300588334 a001 377/33385282*(1/2+1/2*5^(1/2))^59 2415778300588335 a001 583599300981840/24157817 2415778300588336 a001 1527882805781137/63245986 2415778300588336 a001 4000049116361571/165580141 2415778300588336 a001 377*4106118243^(1/2) 2415778300588336 a001 2472166310580434/102334155 2415778300588336 a001 944283504799297/39088169 2415778300588337 a001 377/54018521*14662949395604^(20/21) 2415778300588338 a001 360684203817457/14930352 2415778300588341 a001 13/711491*(1/2+1/2*5^(1/2))^58 2415778300588351 a001 137769106653074/5702887 2415778300588375 a001 377/7881196*14662949395604^(8/9) 2415778300588375 a001 377/7881196*(1/2+1/2*5^(1/2))^56 2415778300588438 a001 52623116141765/2178309 2415778300588602 a001 377/3010349*14662949395604^(6/7) 2415778300588602 a001 377/3010349*(1/2+1/2*5^(1/2))^54 2415778300588945 a001 267914296/843*439204^(1/3) 2415778300589034 a001 20100241772221/832040 2415778300590163 a001 377/1149851*(1/2+1/2*5^(1/2))^52 2415778300590163 a001 377/1149851*23725150497407^(13/16) 2415778300590163 a001 377/1149851*505019158607^(13/14) 2415778300590336 a001 1134903170/843*439204^(2/9) 2415778300591728 a001 1602508992/281*439204^(1/9) 2415778300592397 a001 832040/843*7881196^(7/11) 2415778300592418 a001 832040/843*20633239^(3/5) 2415778300592421 a001 832040/843*141422324^(7/13) 2415778300592421 a001 832040/843*2537720636^(7/15) 2415778300592421 a001 832040/843*17393796001^(3/7) 2415778300592421 a001 832040/843*45537549124^(7/17) 2415778300592421 a001 832040/843*14662949395604^(1/3) 2415778300592421 a001 832040/843*(1/2+1/2*5^(1/2))^21 2415778300592421 a001 832040/843*192900153618^(7/18) 2415778300592421 a001 832040/843*10749957122^(7/16) 2415778300592421 a001 832040/843*599074578^(1/2) 2415778300592423 a001 832040/843*33385282^(7/12) 2415778300592910 a001 832040/843*1860498^(7/10) 2415778300593017 a001 726103/281*817138163596^(1/3) 2415778300593017 a001 726103/281*(1/2+1/2*5^(1/2))^19 2415778300593018 a001 726103/281*87403803^(1/2) 2415778300593099 a001 4976784/281*7881196^(5/11) 2415778300593104 a001 5702887/843*45537549124^(1/3) 2415778300593104 a001 5702887/843*(1/2+1/2*5^(1/2))^17 2415778300593105 a001 63245986/843*7881196^(4/11) 2415778300593106 a001 34111385/281*7881196^(1/3) 2415778300593109 a001 267914296/843*7881196^(3/11) 2415778300593112 a001 5702887/843*12752043^(1/2) 2415778300593112 a001 1134903170/843*7881196^(2/11) 2415778300593115 a001 4976784/281*20633239^(3/7) 2415778300593116 a001 1602508992/281*7881196^(1/11) 2415778300593117 a001 4976784/281*141422324^(5/13) 2415778300593117 a001 4976784/281*2537720636^(1/3) 2415778300593117 a001 4976784/281*45537549124^(5/17) 2415778300593117 a001 4976784/281*312119004989^(3/11) 2415778300593117 a001 4976784/281*14662949395604^(5/21) 2415778300593117 a001 4976784/281*(1/2+1/2*5^(1/2))^15 2415778300593117 a001 4976784/281*192900153618^(5/18) 2415778300593117 a001 4976784/281*28143753123^(3/10) 2415778300593117 a001 4976784/281*10749957122^(5/16) 2415778300593117 a001 4976784/281*599074578^(5/14) 2415778300593117 a001 4976784/281*228826127^(3/8) 2415778300593118 a001 165580141/843*20633239^(2/7) 2415778300593118 a001 24157817/843*20633239^(2/5) 2415778300593118 a001 4976784/281*33385282^(5/12) 2415778300593118 a001 233802911/281*20633239^(1/5) 2415778300593118 a001 1836311903/843*20633239^(1/7) 2415778300593119 a001 39088169/843*141422324^(1/3) 2415778300593119 a001 39088169/843*(1/2+1/2*5^(1/2))^13 2415778300593119 a001 39088169/843*73681302247^(1/4) 2415778300593119 a001 34111385/281*312119004989^(1/5) 2415778300593119 a001 34111385/281*(1/2+1/2*5^(1/2))^11 2415778300593119 a001 34111385/281*1568397607^(1/4) 2415778300593119 a001 267914296/843*141422324^(3/13) 2415778300593119 a001 1134903170/843*141422324^(2/13) 2415778300593119 a001 1602508992/281*141422324^(1/13) 2415778300593119 a001 267914296/843*2537720636^(1/5) 2415778300593119 a001 267914296/843*45537549124^(3/17) 2415778300593119 a001 267914296/843*14662949395604^(1/7) 2415778300593119 a001 267914296/843*(1/2+1/2*5^(1/2))^9 2415778300593119 a001 267914296/843*192900153618^(1/6) 2415778300593119 a001 267914296/843*10749957122^(3/16) 2415778300593119 a001 267914296/843*599074578^(3/14) 2415778300593119 a001 233802911/281*17393796001^(1/7) 2415778300593119 a001 233802911/281*14662949395604^(1/9) 2415778300593119 a001 233802911/281*(1/2+1/2*5^(1/2))^7 2415778300593119 a001 1836311903/843*2537720636^(1/9) 2415778300593119 a001 1836311903/843*312119004989^(1/11) 2415778300593119 a001 1836311903/843*(1/2+1/2*5^(1/2))^5 2415778300593119 a001 1836311903/843*28143753123^(1/10) 2415778300593119 a001 1602508992/281*2537720636^(1/15) 2415778300593119 a001 1602508992/281*45537549124^(1/17) 2415778300593119 a001 1602508992/281*14662949395604^(1/21) 2415778300593119 a001 1602508992/281*(1/2+1/2*5^(1/2))^3 2415778300593119 a001 1602508992/281*192900153618^(1/18) 2415778300593119 a001 1602508992/281*10749957122^(1/16) 2415778300593119 a001 12586269025/1686+12586269025/1686*5^(1/2) 2415778300593119 a006 5^(1/2)*Fibonacci(51)/Lucas(14)/sqrt(5) 2415778300593119 a001 7778742049/843*(1/2+1/2*5^(1/2))^2 2415778300593119 a001 7778742049/843*10749957122^(1/24) 2415778300593119 a001 7778742049/843*4106118243^(1/23) 2415778300593119 a001 7778742049/843*1568397607^(1/22) 2415778300593119 a001 2971215073/843*(1/2+1/2*5^(1/2))^4 2415778300593119 a001 2971215073/843*23725150497407^(1/16) 2415778300593119 a001 2971215073/843*73681302247^(1/13) 2415778300593119 a001 2971215073/843*10749957122^(1/12) 2415778300593119 a001 2971215073/843*4106118243^(2/23) 2415778300593119 a001 233802911/281*599074578^(1/6) 2415778300593119 a001 2971215073/843*1568397607^(1/11) 2415778300593119 a001 1134903170/843*2537720636^(2/15) 2415778300593119 a001 7778742049/843*599074578^(1/21) 2415778300593119 a001 1134903170/843*45537549124^(2/17) 2415778300593119 a001 1134903170/843*14662949395604^(2/21) 2415778300593119 a001 1134903170/843*(1/2+1/2*5^(1/2))^6 2415778300593119 a001 1134903170/843*10749957122^(1/8) 2415778300593119 a001 1134903170/843*4106118243^(3/23) 2415778300593119 a001 1602508992/281*599074578^(1/14) 2415778300593119 a001 1134903170/843*1568397607^(3/22) 2415778300593119 a001 2971215073/843*599074578^(2/21) 2415778300593119 a001 1134903170/843*599074578^(1/7) 2415778300593119 a001 7778742049/843*228826127^(1/20) 2415778300593119 a001 433494437/843*(1/2+1/2*5^(1/2))^8 2415778300593119 a001 433494437/843*23725150497407^(1/8) 2415778300593119 a001 433494437/843*505019158607^(1/7) 2415778300593119 a001 433494437/843*73681302247^(2/13) 2415778300593119 a001 433494437/843*10749957122^(1/6) 2415778300593119 a001 433494437/843*4106118243^(4/23) 2415778300593119 a001 433494437/843*1568397607^(2/11) 2415778300593119 a001 433494437/843*599074578^(4/21) 2415778300593119 a001 2971215073/843*228826127^(1/10) 2415778300593119 a001 1836311903/843*228826127^(1/8) 2415778300593119 a001 1134903170/843*228826127^(3/20) 2415778300593119 a001 433494437/843*228826127^(1/5) 2415778300593119 a001 7778742049/843*87403803^(1/19) 2415778300593119 a001 165580141/843*2537720636^(2/9) 2415778300593119 a001 165580141/843*312119004989^(2/11) 2415778300593119 a001 165580141/843*(1/2+1/2*5^(1/2))^10 2415778300593119 a001 165580141/843*28143753123^(1/5) 2415778300593119 a001 165580141/843*10749957122^(5/24) 2415778300593119 a001 165580141/843*4106118243^(5/23) 2415778300593119 a001 165580141/843*1568397607^(5/22) 2415778300593119 a001 165580141/843*599074578^(5/21) 2415778300593119 a001 165580141/843*228826127^(1/4) 2415778300593119 a001 2971215073/843*87403803^(2/19) 2415778300593119 a001 1134903170/843*87403803^(3/19) 2415778300593119 a001 433494437/843*87403803^(4/19) 2415778300593119 a001 63245986/843*141422324^(4/13) 2415778300593119 a001 165580141/843*87403803^(5/19) 2415778300593119 a001 7778742049/843*33385282^(1/18) 2415778300593119 a001 63245986/843*2537720636^(4/15) 2415778300593119 a001 63245986/843*45537549124^(4/17) 2415778300593119 a001 63245986/843*817138163596^(4/19) 2415778300593119 a001 63245986/843*14662949395604^(4/21) 2415778300593119 a001 63245986/843*(1/2+1/2*5^(1/2))^12 2415778300593119 a001 63245986/843*192900153618^(2/9) 2415778300593119 a001 63245986/843*73681302247^(3/13) 2415778300593119 a001 63245986/843*10749957122^(1/4) 2415778300593119 a001 63245986/843*4106118243^(6/23) 2415778300593119 a001 63245986/843*1568397607^(3/11) 2415778300593119 a001 63245986/843*599074578^(2/7) 2415778300593119 a001 63245986/843*228826127^(3/10) 2415778300593119 a001 1602508992/281*33385282^(1/12) 2415778300593120 a001 63245986/843*87403803^(6/19) 2415778300593120 a001 2971215073/843*33385282^(1/9) 2415778300593120 a001 1134903170/843*33385282^(1/6) 2415778300593120 a001 433494437/843*33385282^(2/9) 2415778300593120 a001 267914296/843*33385282^(1/4) 2415778300593120 a001 165580141/843*33385282^(5/18) 2415778300593120 a001 24157817/843*17393796001^(2/7) 2415778300593120 a001 24157817/843*14662949395604^(2/9) 2415778300593120 a001 24157817/843*(1/2+1/2*5^(1/2))^14 2415778300593120 a001 24157817/843*10749957122^(7/24) 2415778300593120 a001 24157817/843*4106118243^(7/23) 2415778300593120 a001 24157817/843*1568397607^(7/22) 2415778300593120 a001 24157817/843*599074578^(1/3) 2415778300593120 a001 63245986/843*33385282^(1/3) 2415778300593120 a001 24157817/843*228826127^(7/20) 2415778300593120 a001 7778742049/843*12752043^(1/17) 2415778300593120 a001 24157817/843*87403803^(7/19) 2415778300593121 a001 24157817/843*33385282^(7/18) 2415778300593121 a001 2971215073/843*12752043^(2/17) 2415778300593122 a001 1134903170/843*12752043^(3/17) 2415778300593123 a001 433494437/843*12752043^(4/17) 2415778300593124 a001 165580141/843*12752043^(5/17) 2415778300593125 a001 63245986/843*12752043^(6/17) 2415778300593125 a001 9227465/843*(1/2+1/2*5^(1/2))^16 2415778300593125 a001 9227465/843*23725150497407^(1/4) 2415778300593125 a001 9227465/843*73681302247^(4/13) 2415778300593125 a001 9227465/843*10749957122^(1/3) 2415778300593125 a001 9227465/843*4106118243^(8/23) 2415778300593125 a001 9227465/843*1568397607^(4/11) 2415778300593125 a001 9227465/843*599074578^(8/21) 2415778300593125 a001 9227465/843*228826127^(2/5) 2415778300593125 a001 9227465/843*87403803^(8/19) 2415778300593126 a001 7778742049/843*4870847^(1/16) 2415778300593126 a001 9227465/843*33385282^(4/9) 2415778300593126 a001 24157817/843*12752043^(7/17) 2415778300593132 a001 9227465/843*12752043^(8/17) 2415778300593132 a001 2971215073/843*4870847^(1/8) 2415778300593137 a001 3524578/843*7881196^(6/11) 2415778300593138 a001 1134903170/843*4870847^(3/16) 2415778300593145 a001 433494437/843*4870847^(1/4) 2415778300593151 a001 165580141/843*4870847^(5/16) 2415778300593158 a001 63245986/843*4870847^(3/8) 2415778300593158 a001 3524578/843*141422324^(6/13) 2415778300593158 a001 3524578/843*2537720636^(2/5) 2415778300593158 a001 3524578/843*45537549124^(6/17) 2415778300593158 a001 3524578/843*14662949395604^(2/7) 2415778300593158 a001 3524578/843*(1/2+1/2*5^(1/2))^18 2415778300593158 a001 3524578/843*192900153618^(1/3) 2415778300593158 a001 3524578/843*10749957122^(3/8) 2415778300593158 a001 3524578/843*4106118243^(9/23) 2415778300593158 a001 3524578/843*1568397607^(9/22) 2415778300593158 a001 3524578/843*599074578^(3/7) 2415778300593158 a001 3524578/843*228826127^(9/20) 2415778300593158 a001 3524578/843*87403803^(9/19) 2415778300593159 a001 3524578/843*33385282^(1/2) 2415778300593165 a001 24157817/843*4870847^(7/16) 2415778300593166 a001 7778742049/843*1860498^(1/15) 2415778300593166 a001 3524578/843*12752043^(9/17) 2415778300593176 a001 9227465/843*4870847^(1/2) 2415778300593189 a001 1602508992/281*1860498^(1/10) 2415778300593212 a001 2971215073/843*1860498^(2/15) 2415778300593215 a001 3524578/843*4870847^(9/16) 2415778300593236 a001 1836311903/843*1860498^(1/6) 2415778300593259 a001 1134903170/843*1860498^(1/5) 2415778300593305 a001 433494437/843*1860498^(4/15) 2415778300593329 a001 267914296/843*1860498^(3/10) 2415778300593352 a001 165580141/843*1860498^(1/3) 2415778300593383 a001 1346269/843*20633239^(4/7) 2415778300593386 a001 1346269/843*2537720636^(4/9) 2415778300593386 a001 1346269/843*(1/2+1/2*5^(1/2))^20 2415778300593386 a001 1346269/843*23725150497407^(5/16) 2415778300593386 a001 1346269/843*505019158607^(5/14) 2415778300593386 a001 1346269/843*73681302247^(5/13) 2415778300593386 a001 1346269/843*28143753123^(2/5) 2415778300593386 a001 1346269/843*10749957122^(5/12) 2415778300593386 a001 1346269/843*4106118243^(10/23) 2415778300593386 a001 1346269/843*1568397607^(5/11) 2415778300593386 a001 1346269/843*599074578^(10/21) 2415778300593386 a001 1346269/843*228826127^(1/2) 2415778300593386 a001 1346269/843*87403803^(10/19) 2415778300593387 a001 1346269/843*33385282^(5/9) 2415778300593395 a001 1346269/843*12752043^(10/17) 2415778300593399 a001 63245986/843*1860498^(2/5) 2415778300593446 a001 24157817/843*1860498^(7/15) 2415778300593450 a001 1346269/843*4870847^(5/8) 2415778300593461 a001 7778742049/843*710647^(1/14) 2415778300593466 a001 4976784/281*1860498^(1/2) 2415778300593497 a001 9227465/843*1860498^(8/15) 2415778300593577 a001 3524578/843*1860498^(3/5) 2415778300593803 a001 2971215073/843*710647^(1/7) 2415778300593851 a001 1346269/843*1860498^(2/3) 2415778300594144 a001 1134903170/843*710647^(3/14) 2415778300594315 a001 233802911/281*710647^(1/4) 2415778300594486 a001 433494437/843*710647^(2/7) 2415778300594511 a001 196418/843*439204^(8/9) 2415778300594828 a001 165580141/843*710647^(5/14) 2415778300594921 a001 514229/843*7881196^(2/3) 2415778300594946 a001 514229/843*312119004989^(2/5) 2415778300594946 a001 514229/843*(1/2+1/2*5^(1/2))^22 2415778300594946 a001 514229/843*10749957122^(11/24) 2415778300594946 a001 514229/843*4106118243^(11/23) 2415778300594946 a001 514229/843*1568397607^(1/2) 2415778300594946 a001 514229/843*599074578^(11/21) 2415778300594946 a001 514229/843*228826127^(11/20) 2415778300594947 a001 514229/843*87403803^(11/19) 2415778300594948 a001 514229/843*33385282^(11/18) 2415778300594956 a001 514229/843*12752043^(11/17) 2415778300595016 a001 514229/843*4870847^(11/16) 2415778300595170 a001 63245986/843*710647^(3/7) 2415778300595458 a001 514229/843*1860498^(11/15) 2415778300595512 a001 24157817/843*710647^(1/2) 2415778300595641 a001 7778742049/843*271443^(1/13) 2415778300595858 a001 9227465/843*710647^(4/7) 2415778300596009 a001 832040/843*710647^(3/4) 2415778300596233 a001 3524578/843*710647^(9/14) 2415778300596803 a001 1346269/843*710647^(5/7) 2415778300598163 a001 2971215073/843*271443^(2/13) 2415778300598705 a001 514229/843*710647^(11/14) 2415778300600686 a001 1134903170/843*271443^(3/13) 2415778300600859 a001 377/439204*312119004989^(10/11) 2415778300600859 a001 377/439204*(1/2+1/2*5^(1/2))^50 2415778300600859 a001 377/439204*3461452808002^(5/6) 2415778300602483 a001 12586269025/843*103682^(1/24) 2415778300603208 a001 433494437/843*271443^(4/13) 2415778300605614 a001 196418/843*7881196^(8/11) 2415778300605643 a001 196418/843*141422324^(8/13) 2415778300605643 a001 196418/843*2537720636^(8/15) 2415778300605643 a001 196418/843*45537549124^(8/17) 2415778300605643 a001 196418/843*14662949395604^(8/21) 2415778300605643 a001 196418/843*(1/2+1/2*5^(1/2))^24 2415778300605643 a001 196418/843*192900153618^(4/9) 2415778300605643 a001 196418/843*73681302247^(6/13) 2415778300605643 a001 196418/843*10749957122^(1/2) 2415778300605643 a001 196418/843*4106118243^(12/23) 2415778300605643 a001 196418/843*1568397607^(6/11) 2415778300605643 a001 196418/843*599074578^(4/7) 2415778300605643 a001 196418/843*228826127^(3/5) 2415778300605643 a001 196418/843*87403803^(12/19) 2415778300605644 a001 196418/843*33385282^(2/3) 2415778300605653 a001 196418/843*12752043^(12/17) 2415778300605719 a001 196418/843*4870847^(3/4) 2415778300605730 a001 165580141/843*271443^(5/13) 2415778300606201 a001 196418/843*1860498^(4/5) 2415778300608252 a001 63245986/843*271443^(6/13) 2415778300609512 a001 39088169/843*271443^(1/2) 2415778300609743 a001 196418/843*710647^(6/7) 2415778300610775 a001 24157817/843*271443^(7/13) 2415778300611846 a001 7778742049/843*103682^(1/12) 2415778300613302 a001 9227465/843*271443^(8/13) 2415778300615857 a001 3524578/843*271443^(9/13) 2415778300618607 a001 1346269/843*271443^(10/13) 2415778300621123 a001 2932585752473/121393 2415778300621210 a001 1602508992/281*103682^(1/8) 2415778300622689 a001 514229/843*271443^(11/13) 2415778300630573 a001 2971215073/843*103682^(1/6) 2415778300635908 a001 196418/843*271443^(12/13) 2415778300639937 a001 1836311903/843*103682^(5/24) 2415778300649300 a001 1134903170/843*103682^(1/4) 2415778300658664 a001 233802911/281*103682^(7/24) 2415778300663132 a001 12586269025/843*39603^(1/22) 2415778300668027 a001 433494437/843*103682^(1/3) 2415778300674173 a001 377/167761*45537549124^(16/17) 2415778300674173 a001 377/167761*14662949395604^(16/21) 2415778300674173 a001 377/167761*(1/2+1/2*5^(1/2))^48 2415778300674173 a001 377/167761*192900153618^(8/9) 2415778300674173 a001 377/167761*73681302247^(12/13) 2415778300677391 a001 267914296/843*103682^(3/8) 2415778300678956 a001 75025/843*141422324^(2/3) 2415778300678956 a001 75025/843*(1/2+1/2*5^(1/2))^26 2415778300678956 a001 75025/843*73681302247^(1/2) 2415778300678956 a001 75025/843*10749957122^(13/24) 2415778300678956 a001 75025/843*4106118243^(13/23) 2415778300678956 a001 75025/843*1568397607^(13/22) 2415778300678956 a001 75025/843*599074578^(13/21) 2415778300678956 a001 75025/843*228826127^(13/20) 2415778300678957 a001 75025/843*87403803^(13/19) 2415778300678958 a001 75025/843*33385282^(13/18) 2415778300678968 a001 75025/843*12752043^(13/17) 2415778300679039 a001 75025/843*4870847^(13/16) 2415778300679561 a001 75025/843*1860498^(13/15) 2415778300683398 a001 75025/843*710647^(13/14) 2415778300686755 a001 165580141/843*103682^(5/12) 2415778300696118 a001 34111385/281*103682^(11/24) 2415778300705482 a001 63245986/843*103682^(1/2) 2415778300714845 a001 39088169/843*103682^(13/24) 2415778300724209 a001 24157817/843*103682^(7/12) 2415778300733145 a001 7778742049/843*39603^(1/11) 2415778300733570 a001 4976784/281*103682^(5/8) 2415778300742941 a001 9227465/843*103682^(2/3) 2415778300752284 a001 5702887/843*103682^(17/24) 2415778300761702 a001 3524578/843*103682^(3/4) 2415778300770924 a001 726103/281*103682^(19/24) 2415778300780656 a001 1346269/843*103682^(5/6) 2415778300789055 a001 832040/843*103682^(7/8) 2415778300800944 a001 514229/843*103682^(11/12) 2415778300803158 a001 1602508992/281*39603^(3/22) 2415778300803697 a001 377*103682^(23/24) 2415778300813060 a001 1120148082521/46368 2415778300873171 a001 2971215073/843*39603^(2/11) 2415778300943184 a001 1836311903/843*39603^(5/22) 2415778301013197 a001 1134903170/843*39603^(3/11) 2415778301083210 a001 233802911/281*39603^(7/22) 2415778301120983 a001 12586269025/843*15127^(1/20) 2415778301153223 a001 433494437/843*39603^(4/11) 2415778301176672 a001 377/64079*(1/2+1/2*5^(1/2))^46 2415778301176672 a001 377/64079*10749957122^(23/24) 2415778301181451 a001 28657/843*20633239^(4/5) 2415778301181456 a001 28657/843*17393796001^(4/7) 2415778301181456 a001 28657/843*14662949395604^(4/9) 2415778301181456 a001 28657/843*(1/2+1/2*5^(1/2))^28 2415778301181456 a001 28657/843*73681302247^(7/13) 2415778301181456 a001 28657/843*10749957122^(7/12) 2415778301181456 a001 28657/843*4106118243^(14/23) 2415778301181456 a001 28657/843*1568397607^(7/11) 2415778301181456 a001 28657/843*599074578^(2/3) 2415778301181456 a001 28657/843*228826127^(7/10) 2415778301181456 a001 28657/843*87403803^(14/19) 2415778301181457 a001 28657/843*33385282^(7/9) 2415778301181468 a001 28657/843*12752043^(14/17) 2415778301181545 a001 28657/843*4870847^(7/8) 2415778301182107 a001 28657/843*1860498^(14/15) 2415778301223236 a001 267914296/843*39603^(9/22) 2415778301293249 a001 165580141/843*39603^(5/11) 2415778301363261 a001 34111385/281*39603^(1/2) 2415778301433275 a001 63245986/843*39603^(6/11) 2415778301503287 a001 39088169/843*39603^(13/22) 2415778301573301 a001 24157817/843*39603^(7/11) 2415778301643311 a001 4976784/281*39603^(15/22) 2415778301648846 a001 7778742049/843*15127^(1/10) 2415778301713332 a001 9227465/843*39603^(8/11) 2415778301783324 a001 5702887/843*39603^(17/22) 2415778301853391 a001 3524578/843*39603^(9/11) 2415778301916266 m001 (Catalan-ln(5))/(-BesselI(1,2)+Conway) 2415778301923263 a001 726103/281*39603^(19/22) 2415778301993644 a001 1346269/843*39603^(10/11) 2415778302062693 a001 832040/843*39603^(21/22) 2415778302128620 a001 427858495090/17711 2415778302128623 a001 48315613/2-21/2*5^(1/2) 2415778302176709 a001 1602508992/281*15127^(3/20) 2415778302704573 a001 2971215073/843*15127^(1/5) 2415778303232436 a001 1836311903/843*15127^(1/4) 2415778303760299 a001 1134903170/843*15127^(3/10) 2415778304288162 a001 233802911/281*15127^(7/20) 2415778304613151 a001 12586269025/843*5778^(1/18) 2415778304620853 a001 13/844*312119004989^(4/5) 2415778304620853 a001 13/844*(1/2+1/2*5^(1/2))^44 2415778304620853 a001 13/844*23725150497407^(11/16) 2415778304620853 a001 13/844*73681302247^(11/13) 2415778304620853 a001 13/844*10749957122^(11/12) 2415778304620853 a001 13/844*4106118243^(22/23) 2415778304625601 a001 10946/843*7881196^(10/11) 2415778304625631 a001 10946/843*20633239^(6/7) 2415778304625636 a001 10946/843*141422324^(10/13) 2415778304625636 a001 10946/843*2537720636^(2/3) 2415778304625636 a001 10946/843*45537549124^(10/17) 2415778304625636 a001 10946/843*312119004989^(6/11) 2415778304625636 a001 10946/843*14662949395604^(10/21) 2415778304625636 a001 10946/843*(1/2+1/2*5^(1/2))^30 2415778304625636 a001 10946/843*192900153618^(5/9) 2415778304625636 a001 10946/843*28143753123^(3/5) 2415778304625636 a001 10946/843*10749957122^(5/8) 2415778304625636 a001 10946/843*4106118243^(15/23) 2415778304625636 a001 10946/843*1568397607^(15/22) 2415778304625636 a001 10946/843*599074578^(5/7) 2415778304625636 a001 10946/843*228826127^(3/4) 2415778304625636 a001 10946/843*87403803^(15/19) 2415778304625638 a001 10946/843*33385282^(5/6) 2415778304625649 a001 10946/843*12752043^(15/17) 2415778304625732 a001 10946/843*4870847^(15/16) 2415778304644909 a001 20365011074/9349*521^(5/13) 2415778304816026 a001 433494437/843*15127^(2/5) 2415778305169468 r002 6th iterates of z^2 + 2415778305343889 a001 267914296/843*15127^(9/20) 2415778305871752 a001 165580141/843*15127^(1/2) 2415778306399616 a001 34111385/281*15127^(11/20) 2415778306927479 a001 63245986/843*15127^(3/5) 2415778307455342 a001 39088169/843*15127^(13/20) 2415778307983206 a001 24157817/843*15127^(7/10) 2415778308511067 a001 4976784/281*15127^(3/4) 2415778308633183 a001 7778742049/843*5778^(1/9) 2415778309038938 a001 9227465/843*15127^(4/5) 2415778309291281 r005 Re(z^2+c),c=-83/102+8/61*I,n=8 2415778309309969 l006 ln(7901/10060) 2415778309566781 a001 5702887/843*15127^(17/20) 2415778310094698 a001 3524578/843*15127^(9/10) 2415778310622420 a001 726103/281*15127^(19/20) 2415778311145602 a001 163427402749/6765 2415778312378110 a001 2/3*317811^(20/43) 2415778312653215 a001 1602508992/281*5778^(1/6) 2415778316673248 a001 2971215073/843*5778^(2/9) 2415778316715489 l006 ln(791/8858) 2415778317839354 m001 GAMMA(23/24)*GAMMA(19/24)*ln(Zeta(9)) 2415778320693280 a001 1836311903/843*5778^(5/18) 2415778322635474 r005 Im(z^2+c),c=-29/86+1/27*I,n=17 2415778324431207 s004 Continued Fraction of A246052 2415778324431207 s004 Continued fraction of A246052 2415778324713312 a001 1134903170/843*5778^(1/3) 2415778328227617 a001 377/9349*2537720636^(14/15) 2415778328227617 a001 377/9349*17393796001^(6/7) 2415778328227617 a001 377/9349*45537549124^(14/17) 2415778328227617 a001 377/9349*14662949395604^(2/3) 2415778328227617 a001 377/9349*(1/2+1/2*5^(1/2))^42 2415778328227617 a001 377/9349*505019158607^(3/4) 2415778328227617 a001 377/9349*192900153618^(7/9) 2415778328227617 a001 377/9349*10749957122^(7/8) 2415778328227617 a001 377/9349*4106118243^(21/23) 2415778328227617 a001 377/9349*1568397607^(21/22) 2415778328232401 a001 4181/843*(1/2+1/2*5^(1/2))^32 2415778328232401 a001 4181/843*23725150497407^(1/2) 2415778328232401 a001 4181/843*73681302247^(8/13) 2415778328232401 a001 4181/843*10749957122^(2/3) 2415778328232401 a001 4181/843*4106118243^(16/23) 2415778328232401 a001 4181/843*1568397607^(8/11) 2415778328232401 a001 4181/843*599074578^(16/21) 2415778328232401 a001 4181/843*228826127^(4/5) 2415778328232401 a001 4181/843*87403803^(16/19) 2415778328232403 a001 4181/843*33385282^(8/9) 2415778328232415 a001 4181/843*12752043^(16/17) 2415778328733344 a001 233802911/281*5778^(7/18) 2415778328914147 r005 Re(z^2+c),c=-45/46+9/29*I,n=10 2415778330979792 p003 LerchPhi(1/125,5,377/179) 2415778331591040 a001 12586269025/843*2207^(1/16) 2415778332753376 a001 433494437/843*5778^(4/9) 2415778336173147 r009 Im(z^3+c),c=-63/110+29/62*I,n=30 2415778336773408 a001 267914296/843*5778^(1/2) 2415778340793440 a001 165580141/843*5778^(5/9) 2415778344813472 a001 34111385/281*5778^(11/18) 2415778348833504 a001 63245986/843*5778^(2/3) 2415778352253900 m001 (GAMMA(3/4)-ArtinRank2)/(MinimumGamma+Sarnak) 2415778352853536 a001 39088169/843*5778^(13/18) 2415778354209698 s002 sum(A016588[n]/((exp(n)+1)/n),n=1..infinity) 2415778356873569 a001 24157817/843*5778^(7/9) 2415778358976194 m005 (1/3*2^(1/2)+1/2)/(6/7*gamma-5/11) 2415778359383861 m005 (1/2*exp(1)+1/12)/(1/6*Catalan+4/9) 2415778360893599 a001 4976784/281*5778^(5/6) 2415778362141726 h001 (1/3*exp(1)+2/7)/(3/5*exp(2)+1/2) 2415778362588961 a001 7778742049/843*2207^(1/8) 2415778364913639 a001 9227465/843*5778^(8/9) 2415778366730426 a001 9349/1597*89^(6/19) 2415778368933650 a001 5702887/843*5778^(17/18) 2415778372948916 a001 62423713157/2584 2415778374060223 m001 (GolombDickman+Kolakoski)/(3^(1/2)-ln(Pi)) 2415778375214266 r005 Im(z^2+c),c=-19/94+11/32*I,n=12 2415778390347467 b008 -2+Zeta[10,EulerGamma] 2415778393586883 a001 1602508992/281*2207^(3/16) 2415778394518588 p004 log(16249/1451) 2415778402583367 m008 (5*Pi^5+2/5)/(1/3*Pi^3-4) 2415778403894575 a007 Real Root Of 413*x^4+826*x^3-790*x^2-665*x+583 2415778423581080 m001 (Catalan+cos(1/5*Pi))/(-Kac+Totient) 2415778424584805 a001 2971215073/843*2207^(1/4) 2415778431125879 r002 9th iterates of z^2 + 2415778437921145 l006 ln(7729/9841) 2415778441782716 a001 161/98209*28657^(18/37) 2415778452222127 m001 (Landau-Trott2nd)/(ln(2)+3^(1/3)) 2415778455582727 a001 1836311903/843*2207^(5/16) 2415778465637301 a001 7778742049/2207*521^(4/13) 2415778466448094 a001 7778742049/3571*521^(5/13) 2415778478616296 p001 sum(1/(403*n+12)/n/(100^n),n=1..infinity) 2415778482017465 a007 Real Root Of -618*x^4-988*x^3+966*x^2-790*x-427 2415778486580650 a001 1134903170/843*2207^(3/8) 2415778487764415 l006 ln(660/7391) 2415778490030803 a001 377/3571*2537720636^(8/9) 2415778490030803 a001 377/3571*312119004989^(8/11) 2415778490030803 a001 377/3571*(1/2+1/2*5^(1/2))^40 2415778490030803 a001 377/3571*23725150497407^(5/8) 2415778490030803 a001 377/3571*73681302247^(10/13) 2415778490030803 a001 377/3571*28143753123^(4/5) 2415778490030803 a001 377/3571*10749957122^(5/6) 2415778490030803 a001 377/3571*4106118243^(20/23) 2415778490030803 a001 377/3571*1568397607^(10/11) 2415778490030803 a001 377/3571*599074578^(20/21) 2415778490035572 a001 1597/843*45537549124^(2/3) 2415778490035572 a001 1597/843*(1/2+1/2*5^(1/2))^34 2415778490035572 a001 1597/843*10749957122^(17/24) 2415778490035572 a001 1597/843*4106118243^(17/23) 2415778490035572 a001 1597/843*1568397607^(17/22) 2415778490035572 a001 1597/843*599074578^(17/21) 2415778490035572 a001 1597/843*228826127^(17/20) 2415778490035572 a001 1597/843*87403803^(17/19) 2415778490035574 a001 1597/843*33385282^(17/18) 2415778501823657 m005 (1/2*Pi+1/5)/(1/4*3^(1/2)+3/10) 2415778514820098 m001 HeathBrownMoroz-BesselI(1,1)-Si(Pi) 2415778517578573 a001 233802911/281*2207^(7/16) 2415778523562293 m001 (BesselI(0,1)+ln(3))/(-GAMMA(11/12)+ZetaP(4)) 2415778533785122 r009 Re(z^3+c),c=-31/126+42/61*I,n=17 2415778539013557 a001 109801/2*2504730781961^(7/9) 2415778539026069 a001 5374978561/4*5702887^(7/9) 2415778539026081 a001 370248451/8*433494437^(7/9) 2415778539026096 a001 12752043/8*32951280099^(7/9) 2415778539092843 a001 312119004989/8*75025^(7/9) 2415778543407738 a001 12586269025/843*843^(1/14) 2415778547799732 m008 (1/5*Pi^5+1/4)/(5/6*Pi^3-2/5) 2415778548576496 a001 433494437/843*2207^(1/2) 2415778552140367 a001 24476/4181*89^(6/19) 2415778556048494 m001 1/ln(cos(1))/Lehmer*log(1+sqrt(2)) 2415778560635654 r005 Im(z^2+c),c=-31/94+22/57*I,n=53 2415778567071747 r005 Im(z^2+c),c=-24/29+7/44*I,n=62 2415778568814947 r005 Im(z^2+c),c=-51/46+1/4*I,n=26 2415778572386791 l006 ln(7557/9622) 2415778575027719 a001 1/3*225851433717^(22/23) 2415778576568041 a001 13201*3524578^(22/23) 2415778578870409 p001 sum((-1)^(n+1)/(91*n+41)/(32^n),n=0..infinity) 2415778579191315 a001 64079/10946*89^(6/19) 2415778579574420 a001 267914296/843*2207^(9/16) 2415778580960691 r005 Re(z^2+c),c=-11/50+4/7*I,n=17 2415778583137995 a001 167761/28657*89^(6/19) 2415778583713808 a001 439204/75025*89^(6/19) 2415778583797818 a001 1149851/196418*89^(6/19) 2415778583810075 a001 3010349/514229*89^(6/19) 2415778583811863 a001 7881196/1346269*89^(6/19) 2415778583812124 a001 20633239/3524578*89^(6/19) 2415778583812162 a001 54018521/9227465*89^(6/19) 2415778583812168 a001 141422324/24157817*89^(6/19) 2415778583812168 a001 370248451/63245986*89^(6/19) 2415778583812169 a001 969323029/165580141*89^(6/19) 2415778583812169 a001 2537720636/433494437*89^(6/19) 2415778583812169 a001 6643838879/1134903170*89^(6/19) 2415778583812169 a001 17393796001/2971215073*89^(6/19) 2415778583812169 a001 45537549124/7778742049*89^(6/19) 2415778583812169 a001 119218851371/20365011074*89^(6/19) 2415778583812169 a001 312119004989/53316291173*89^(6/19) 2415778583812169 a001 817138163596/139583862445*89^(6/19) 2415778583812169 a001 2139295485799/365435296162*89^(6/19) 2415778583812169 a001 14662949395604/2504730781961*89^(6/19) 2415778583812169 a001 440719107401/75283811239*89^(6/19) 2415778583812169 a001 505019158607/86267571272*89^(6/19) 2415778583812169 a001 64300051206/10983760033*89^(6/19) 2415778583812169 a001 73681302247/12586269025*89^(6/19) 2415778583812169 a001 9381251041/1602508992*89^(6/19) 2415778583812169 a001 10749957122/1836311903*89^(6/19) 2415778583812169 a001 1368706081/233802911*89^(6/19) 2415778583812169 a001 1568397607/267914296*89^(6/19) 2415778583812169 a001 199691526/34111385*89^(6/19) 2415778583812169 a001 228826127/39088169*89^(6/19) 2415778583812171 a001 29134601/4976784*89^(6/19) 2415778583812186 a001 33385282/5702887*89^(6/19) 2415778583812285 a001 4250681/726103*89^(6/19) 2415778583812968 a001 4870847/832040*89^(6/19) 2415778583817650 a001 620166/105937*89^(6/19) 2415778583849739 a001 710647/121393*89^(6/19) 2415778584069680 a001 90481/15456*89^(6/19) 2415778585577178 a001 103682/17711*89^(6/19) 2415778588584866 r005 Im(z^2+c),c=-23/25+8/41*I,n=8 2415778595909720 a001 13201/2255*89^(6/19) 2415778599775539 m001 (-polylog(4,1/2)+Salem)/(BesselI(1,1)-Chi(1)) 2415778610572345 a001 165580141/843*2207^(5/8) 2415778641570269 a001 34111385/281*2207^(11/16) 2415778658802315 m001 Tribonacci^2/ln(Si(Pi))*BesselJ(1,1) 2415778659730445 s001 sum(exp(-3*Pi/5)^n*A150120[n],n=1..infinity) 2415778666366250 m001 1/sinh(1)^2/ln(cos(Pi/5))/sqrt(2) 2415778666730025 a001 15127/2584*89^(6/19) 2415778667708345 m001 1/LaplaceLimit*exp(Backhouse)/GAMMA(1/3) 2415778671973601 m001 Thue^Zeta(3)/(ThueMorse^Zeta(3)) 2415778672568195 a001 63245986/843*2207^(3/4) 2415778684496676 r009 Re(z^3+c),c=-27/64+9/17*I,n=48 2415778687203788 a007 Real Root Of 243*x^4+201*x^3-608*x^2+989*x+495 2415778703566120 a001 39088169/843*2207^(13/16) 2415778713115967 l006 ln(7385/9403) 2415778714472459 m001 (Sierpinski+Stephens)/(BesselJ(0,1)+Landau) 2415778716529686 r005 Im(z^2+c),c=-27/58+27/62*I,n=36 2415778734564047 a001 24157817/843*2207^(7/8) 2415778743529390 l006 ln(529/5924) 2415778745485395 m001 Paris/exp(Khintchine)*Ei(1)^2 2415778751979416 a007 Real Root Of 555*x^4+990*x^3-924*x^2-299*x-275 2415778752754047 m001 (gamma(2)+ZetaQ(2))/(Catalan-ln(3)) 2415778755817671 r009 Im(z^3+c),c=-29/66+31/57*I,n=3 2415778765561970 a001 4976784/281*2207^(15/16) 2415778778582568 m001 1/Sierpinski/exp(Backhouse)/GAMMA(11/24)^2 2415778783133566 a007 Real Root Of -16*x^4+395*x^3+767*x^2-420*x+623 2415778786222381 a001 7778742049/843*843^(1/7) 2415778787538820 a001 24157808-9*5^(1/2) 2415778793111629 a001 24157817-13*5^(1/2) 2415778796555217 a001 23843736722/987 2415778802326452 r002 49i'th iterates of 2*x/(1-x^2) of 2415778804039549 r009 Re(z^3+c),c=-9/64+32/35*I,n=12 2415778806016780 m005 (1/2*5^(1/2)-3/4)/(3/5*5^(1/2)+2/11) 2415778808694181 r009 Im(z^3+c),c=-37/78+7/59*I,n=8 2415778814966964 m001 (BesselI(0,1)+Ei(1,1))/(-Kac+Trott) 2415778819942209 a007 Real Root Of -756*x^4+932*x^3-885*x^2+429*x+171 2415778821818570 a007 Real Root Of -69*x^4+105*x^3+274*x^2-566*x+864 2415778825232773 a007 Real Root Of 140*x^4+100*x^3-394*x^2+469*x+74 2415778826570341 a007 Real Root Of 393*x^4+987*x^3+73*x^2+161*x+493 2415778826769842 m001 exp(GAMMA(17/24))^2/Conway^2*Pi 2415778853144599 r009 Re(z^3+c),c=-11/29+16/33*I,n=21 2415778854538329 s004 Continued Fraction of A138068 2415778854538329 s004 Continued fraction of A138068 2415778856377589 m001 ZetaQ(3)^ZetaP(4)+Pi*csc(1/24*Pi)/GAMMA(23/24) 2415778859761010 a001 13/10749957122*47^(7/9) 2415778860556750 l006 ln(7213/9184) 2415778863072927 m001 (exp(Pi)*cos(1)-ln(gamma))/cos(1) 2415778863072927 m001 (exp(Pi)*cos(1)-log(gamma))/cos(1) 2415778865534120 q001 839/3473 2415778869048265 r005 Re(z^2+c),c=-11/50+13/31*I,n=36 2415778884166880 r005 Re(z^2+c),c=-11/70+37/44*I,n=52 2415778887705657 m001 (FeigenbaumMu-PlouffeB)/(cos(1/5*Pi)+Bloch) 2415778889243519 a001 10182505537/2889*521^(4/13) 2415778890865540 a001 1836311903/1364*521^(6/13) 2415778897170471 m001 GAMMA(5/6)/Ei(1)^2*ln(arctan(1/2)) 2415778905336897 r005 Im(z^2+c),c=33/118+34/59*I,n=48 2415778915631789 r009 Im(z^3+c),c=-5/9+13/28*I,n=63 2415778929882234 m007 (-1/4*gamma-3)/(-3*gamma-9*ln(2)-3/2*Pi-1/3) 2415778931847303 s002 sum(A259993[n]/((exp(n)-1)/n),n=1..infinity) 2415778944001729 r002 11th iterates of z^2 + 2415778949543781 m001 exp(Pi)*gamma(1)/ArtinRank2 2415778951046845 a001 53316291173/15127*521^(4/13) 2415778960063829 a001 139583862445/39603*521^(4/13) 2415778961379390 a001 182717648081/51841*521^(4/13) 2415778961571327 a001 956722026041/271443*521^(4/13) 2415778961599331 a001 2504730781961/710647*521^(4/13) 2415778961603416 a001 3278735159921/930249*521^(4/13) 2415778961604381 a001 10610209857723/3010349*521^(4/13) 2415778961605941 a001 4052739537881/1149851*521^(4/13) 2415778961616638 a001 387002188980/109801*521^(4/13) 2415778961689951 a001 591286729879/167761*521^(4/13) 2415778962192451 a001 225851433717/64079*521^(4/13) 2415778962692644 m001 (-MasserGramain+ZetaQ(2))/(Chi(1)-Lehmer) 2415778965636632 a001 21566892818/6119*521^(4/13) 2415778973595042 m005 (1/3*exp(1)+1/11)/(-41/56+1/7*5^(1/2)) 2415778974700477 a007 Real Root Of 980*x^4-711*x^3+479*x^2-839*x-244 2415778980477276 a007 Real Root Of 723*x^4+478*x^3+852*x^2-706*x-216 2415778988362611 a001 199*(1/2*5^(1/2)+1/2)^3*3^(23/24) 2415778988979265 r005 Re(z^2+c),c=-7/34+11/24*I,n=23 2415778989243403 a001 32951280099/9349*521^(4/13) 2415778989476445 m001 (2^(1/2)-FeigenbaumMu)/(QuadraticClass+Trott) 2415779004416519 m001 (gamma(3)-BesselI(1,1))/(Kac+Niven) 2415779012161603 r002 36i'th iterates of 2*x/(1-x^2) of 2415779015145878 a007 Real Root Of 698*x^4-21*x^3-406*x^2-799*x-172 2415779015201000 l006 ln(7041/8965) 2415779016845701 a007 Real Root Of 460*x^4+923*x^3-761*x^2-712*x+67 2415779028370718 m008 (5/6*Pi-2/3)/(5/6*Pi^4-2/5) 2415779029037048 a001 1602508992/281*843^(3/14) 2415779030286942 m001 (-Khinchin+Trott2nd)/(sin(1)+sin(1/12*Pi)) 2415779042984342 h003 exp(Pi*(3/(12^(2/3)-14)^(1/2))) 2415779043854411 p001 sum(1/(475*n+417)/(64^n),n=0..infinity) 2415779051656813 a001 41/329*13^(8/31) 2415779052220805 m005 (1/2*Zeta(3)-3)/(29/9+3*5^(1/2)) 2415779056660752 a003 sin(Pi*20/73)-sin(Pi*51/103) 2415779060434106 m001 Magata*DuboisRaymond^2/ln(Niven) 2415779065742259 m001 GAMMA(3/4)^ZetaQ(3)/PrimesInBinary 2415779071619629 m001 GAMMA(17/24)+ln(3)^Mills 2415779080355640 r005 Im(z^2+c),c=-137/122+11/50*I,n=56 2415779086337926 r005 Re(z^2+c),c=1/6+9/25*I,n=42 2415779088410125 m001 1/exp(Paris)^2*KhintchineHarmonic^2*cos(Pi/12) 2415779094878740 m005 (1/2*5^(1/2)-4/7)/(8/11*exp(1)+2/7) 2415779097626631 r005 Re(z^2+c),c=-11/58+28/57*I,n=30 2415779107745543 m001 (-exp(1/exp(1))+Thue)/(exp(Pi)+ln(3)) 2415779108081005 r009 Re(z^3+c),c=-31/90+21/53*I,n=27 2415779120034797 m001 exp(Tribonacci)^2/Champernowne^2/Zeta(5)^2 2415779122083886 m001 Tribonacci^2/FeigenbaumC^2*exp(GAMMA(1/24))^2 2415779123435485 m005 (9/20+1/4*5^(1/2))/(1/8*2^(1/2)+4) 2415779126048386 r005 Im(z^2+c),c=-23/56+19/29*I,n=5 2415779128252024 r005 Im(z^2+c),c=-3/11+7/19*I,n=23 2415779150235840 a001 12586269025/2207*521^(3/13) 2415779150762694 a008 Real Root of x^5-2*x^3-3*x^2-11*x-10 2415779151046633 a001 12586269025/3571*521^(4/13) 2415779152139709 a001 1926/329*89^(6/19) 2415779167662118 l006 ln(398/4457) 2415779170811304 a007 Real Root Of -32*x^4-739*x^3+797*x^2-633*x-377 2415779175112708 r002 60th iterates of z^2 + 2415779177589842 l006 ln(6869/8746) 2415779177766706 a001 5/39603*2^(44/47) 2415779195186864 m004 -16*Csc[Sqrt[5]*Pi]+125*Pi*Sin[Sqrt[5]*Pi] 2415779195322596 a007 Real Root Of -142*x^4-59*x^3+394*x^2-669*x+89 2415779204818527 a007 Real Root Of 96*x^4-262*x^3-843*x^2+526*x-773 2415779209442036 a007 Real Root Of -234*x^4+552*x^3-614*x^2+702*x+214 2415779212581397 r005 Im(z^2+c),c=-39/70+21/46*I,n=11 2415779216538623 m001 (Pi-Psi(1,1/3))/BesselJ(1,1)*GAMMA(7/12) 2415779222827342 a007 Real Root Of -405*x^4-603*x^3+546*x^2-962*x-218 2415779240325224 a001 24157817-11*5^(1/2) 2415779243736483 m005 (1/3*Zeta(3)+2/9)/(7/8*exp(1)+1/5) 2415779254901133 m003 1/2+5*E^(-1/2-Sqrt[5]/2)+Tanh[1/2+Sqrt[5]/2] 2415779255432614 r009 Im(z^3+c),c=-31/70+21/37*I,n=31 2415779256716509 r005 Im(z^2+c),c=-13/70+18/53*I,n=22 2415779257304265 m005 (1/2*gamma-4/11)/(7/8*exp(1)+8/11) 2415779257905947 a007 Real Root Of 484*x^4+726*x^3-657*x^2+882*x-284 2415779261955805 m001 (Shi(1)+GAMMA(13/24))/(-Otter+Tribonacci) 2415779262116721 r005 Re(z^2+c),c=-9/38+22/59*I,n=22 2415779262481512 a007 Real Root Of -601*x^4-549*x^3-471*x^2+688*x+188 2415779263329678 a007 Real Root Of 49*x^4-157*x^3-488*x^2+328*x-242 2415779263584952 m001 (5^(1/2)-BesselI(0,2))/(MadelungNaCl+ZetaQ(2)) 2415779263797520 m001 1/Kolakoski^2/ln(Conway)^2/cos(Pi/12)^2 2415779270313789 m006 (5/6*Pi-2/5)/(4*exp(Pi)-3/4) 2415779271851740 a001 2971215073/843*843^(2/7) 2415779273993789 a007 Real Root Of -932*x^4-811*x^3-236*x^2+714*x+178 2415779284656877 a007 Real Root Of -509*x^4-944*x^3+818*x^2+144*x-399 2415779289962902 r002 16th iterates of z^2 + 2415779295481545 a007 Real Root Of 307*x^4+221*x^3-426*x^2-469*x+134 2415779307782227 h001 (5/12*exp(2)+3/7)/(3/10*exp(1)+7/11) 2415779308777290 m001 cos(1/12*Pi)*(PisotVijayaraghavan+Salem) 2415779312236051 a007 Real Root Of -332*x^4-393*x^3+581*x^2-818*x+400 2415779312978282 p001 sum((-1)^n/(578*n+407)/(24^n),n=0..infinity) 2415779313194645 r005 Im(z^2+c),c=-31/118+37/52*I,n=5 2415779317255351 r005 Im(z^2+c),c=-129/106+1/31*I,n=44 2415779323430219 a007 Real Root Of 288*x^4+927*x^3+225*x^2-751*x+133 2415779324116249 a007 Real Root Of 503*x^4+900*x^3-584*x^2+211*x-525 2415779325181106 s001 sum(exp(-2*Pi)^(n-1)*A007201[n],n=1..infinity) 2415779334436383 a008 Real Root of x^4-2*x^3+22*x^2+98*x-371 2415779337596188 r005 Im(z^2+c),c=-35/27+7/37*I,n=4 2415779348319993 l006 ln(6697/8527) 2415779349236853 r005 Re(z^2+c),c=-2/13+29/46*I,n=59 2415779357920433 r005 Im(z^2+c),c=-7/13+25/56*I,n=59 2415779363855361 r002 39th iterates of z^2 + 2415779369684983 r005 Im(z^2+c),c=-31/94+22/57*I,n=56 2415779376417499 r002 52th iterates of z^2 + 2415779384279063 r005 Re(z^2+c),c=-3/16+14/31*I,n=7 2415779389671908 r005 Re(z^2+c),c=-61/62+3/14*I,n=62 2415779393372703 m001 (FeigenbaumKappa-exp(1/exp(1)))^sin(1/5*Pi) 2415779403830575 m005 (1/2*5^(1/2)-1/10)/(2*3^(1/2)+3/4) 2415779414173884 m001 exp(Khintchine)^2/GolombDickman^2*Robbin^2 2415779419689275 r005 Im(z^2+c),c=7/60+11/52*I,n=16 2415779423343830 a007 Real Root Of 583*x^4-691*x^3+175*x^2-646*x-178 2415779430837345 r005 Re(z^2+c),c=-29/74+2/35*I,n=2 2415779435413589 a007 Real Root Of 420*x^4+720*x^3-504*x^2+333*x-408 2415779436347927 a007 Real Root Of 38*x^4+926*x^3+162*x^2-719*x+929 2415779437142656 m001 KomornikLoreti+Rabbit-StolarskyHarborth 2415779440833388 m001 (exp(1)+ln(3))/(Zeta(1,-1)+KhinchinHarmonic) 2415779441351380 m001 FransenRobinson^Pi-MinimumGamma 2415779442913777 m001 (GAMMA(2/3)-BesselI(1,2))/(Artin-Bloch) 2415779450556630 a005 (1/sin(76/161*Pi))^825 2415779458980576 r002 30th iterates of z^2 + 2415779461039258 a007 Real Root Of -61*x^4-28*x^3-186*x^2-857*x+698 2415779464953627 m005 (2*gamma+1/5)/(3/4*2^(1/2)-1/2) 2415779468759749 p001 sum(1/(436*n+373)/n/(512^n),n=1..infinity) 2415779471865228 m008 (3*Pi^4+3)/(4*Pi^5-2) 2415779477871553 r005 Re(z^2+c),c=15/94+19/32*I,n=8 2415779480009822 m001 (Backhouse-Kolakoski)/(ln(3)+GAMMA(13/24)) 2415779505054791 l006 ln(665/7447) 2415779508749503 a001 4807526976/521*199^(2/11) 2415779514361202 a005 (1/cos(5/184*Pi))^1504 2415779514666456 a001 1836311903/843*843^(5/14) 2415779517496372 a001 199/5702887*20365011074^(21/22) 2415779518335999 m008 (3/4*Pi^5-3/4)/(Pi^2-2/5) 2415779528051087 l006 ln(6525/8308) 2415779530592525 m001 ln(GAMMA(19/24))^3*sin(Pi/5) 2415779532679588 a007 Real Root Of -565*x^4-394*x^3-53*x^2+971*x-224 2415779533356966 r005 Im(z^2+c),c=-133/118+13/54*I,n=37 2415779536213712 r009 Im(z^3+c),c=-7/74+31/36*I,n=42 2415779544179556 m001 (-StolarskyHarborth+ZetaP(4))/(2^(1/2)+Bloch) 2415779556509239 a007 Real Root Of -184*x^4+85*x^3+540*x^2+782*x-221 2415779567656162 r002 31th iterates of z^2 + 2415779567865819 m001 (2^(1/2)*Robbin+LaplaceLimit)/Robbin 2415779569771182 m001 Rabbit^arctan(1/2)-Riemann3rdZero 2415779573249058 m001 KhinchinLevy^Backhouse/(Trott2nd^Backhouse) 2415779573842178 a001 10983760033/1926*521^(3/13) 2415779575464200 a001 2971215073/1364*521^(5/13) 2415779592812366 a007 Real Root Of -239*x^4-405*x^3+129*x^2-287*x+984 2415779595615194 m001 MertensB1*(Ei(1,1)+CareFree) 2415779596555814 a001 48315621/2-13/2*5^(1/2) 2415779598875633 m001 (2^(1/3)-BesselI(1,1))/(BesselI(0,2)+Gompertz) 2415779599046920 a001 377/1364*817138163596^(2/3) 2415779599046920 a001 377/1364*(1/2+1/2*5^(1/2))^38 2415779599046920 a001 377/1364*10749957122^(19/24) 2415779599046920 a001 377/1364*4106118243^(19/23) 2415779599046920 a001 377/1364*1568397607^(19/22) 2415779599046920 a001 377/1364*599074578^(19/21) 2415779599046920 a001 377/1364*228826127^(19/20) 2415779599051006 a001 610/843*141422324^(12/13) 2415779599051006 a001 610/843*2537720636^(4/5) 2415779599051006 a001 610/843*45537549124^(12/17) 2415779599051006 a001 610/843*14662949395604^(4/7) 2415779599051006 a001 610/843*(1/2+1/2*5^(1/2))^36 2415779599051006 a001 610/843*505019158607^(9/14) 2415779599051006 a001 610/843*192900153618^(2/3) 2415779599051006 a001 610/843*73681302247^(9/13) 2415779599051006 a001 610/843*10749957122^(3/4) 2415779599051006 a001 610/843*4106118243^(18/23) 2415779599051006 a001 610/843*1568397607^(9/11) 2415779599051006 a001 610/843*599074578^(6/7) 2415779599051006 a001 610/843*228826127^(9/10) 2415779599051006 a001 610/843*87403803^(18/19) 2415779599999997 a001 7465155+7465176*5^(1/2) 2415779600715816 a007 Real Root Of -388*x^4-946*x^3+110*x^2+133*x-443 2415779622559466 m006 (5/6*Pi^2-3/5)/(3/4*Pi+4/5) 2415779622559466 m008 (5/6*Pi^2-3/5)/(3/4*Pi+4/5) 2415779631799972 r002 32th iterates of z^2 + 2415779635645522 a001 86267571272/15127*521^(3/13) 2415779644662509 a001 75283811239/13201*521^(3/13) 2415779644944311 a007 Real Root Of -405*x^4-367*x^3-535*x^2+971*x+262 2415779645978070 a001 591286729879/103682*521^(3/13) 2415779646170007 a001 516002918640/90481*521^(3/13) 2415779646198011 a001 4052739537881/710647*521^(3/13) 2415779646202096 a001 3536736619241/620166*521^(3/13) 2415779646204621 a001 6557470319842/1149851*521^(3/13) 2415779646215318 a001 2504730781961/439204*521^(3/13) 2415779646288631 a001 956722026041/167761*521^(3/13) 2415779646599257 b008 Pi+Zeta[(2+Pi)^(-1)] 2415779646791131 a001 365435296162/64079*521^(3/13) 2415779646831451 r009 Re(z^3+c),c=-31/110+8/33*I,n=4 2415779650235313 a001 139583862445/24476*521^(3/13) 2415779656629924 a007 Real Root Of -794*x^4+118*x^3-120*x^2+915*x-213 2415779660490662 m001 (-Niven+Totient)/(3^(1/2)-Ei(1,1)) 2415779665406339 m005 (1/3*gamma+3/4)/(5/6*gamma-1/11) 2415779668407888 a007 Real Root Of -220*x^4-235*x^3-576*x^2+956*x+262 2415779669606990 m001 1/3*cos(Pi/5)-Khinchin 2415779673842091 a001 53316291173/9349*521^(3/13) 2415779674855501 g004 Re(GAMMA(-29/20+I*22/15)) 2415779679746876 a007 Real Root Of 46*x^4-166*x^3-366*x^2+664*x-167 2415779679795838 r005 Im(z^2+c),c=-31/118+23/63*I,n=25 2415779680008070 m001 1/FeigenbaumB^2*Champernowne^2/exp(Magata)^2 2415779688833511 a007 Real Root Of 18*x^4-811*x^3+728*x^2-224*x+23 2415779692728612 r005 Im(z^2+c),c=-79/64+1/55*I,n=33 2415779699356744 r009 Im(z^3+c),c=-1/13+51/59*I,n=20 2415779703238430 h001 (2/3*exp(2)+7/12)/(4/7*exp(1)+8/11) 2415779716198152 m005 (1/3*exp(1)+1/11)/(2/5*gamma+2/11) 2415779717514193 l006 ln(6353/8089) 2415779717514193 p004 log(8089/6353) 2415779726740262 r005 Im(z^2+c),c=-45/118+13/23*I,n=36 2415779727039706 a007 Real Root Of 311*x^4+583*x^3-133*x^2+348*x-756 2415779730676891 a007 Real Root Of 297*x^4+216*x^3-918*x^2+466*x-587 2415779731076894 r005 Re(z^2+c),c=-7/38+13/28*I,n=7 2415779734221843 m002 Pi^6/4+Log[Pi]+Sech[Pi]*Tanh[Pi] 2415779735708997 r009 Re(z^3+c),c=-19/56+25/41*I,n=14 2415779740156157 m005 (1/3*5^(1/2)+1/4)/(-1/3+1/3*5^(1/2)) 2415779740429505 h005 exp(cos(Pi*8/39)+cos(Pi*9/19)) 2415779745682353 h002 exp(14^(7/4)+2^(10/3)) 2415779745682353 h007 exp(14^(7/4)+2^(10/3)) 2415779747788884 m005 (1/2*Catalan-7/11)/(5/12*gamma-1/6) 2415779757481196 a001 1134903170/843*843^(3/7) 2415779758350629 a001 39088169/322*322^(11/12) 2415779764673473 r005 Re(z^2+c),c=19/82+5/44*I,n=16 2415779774504172 r009 Re(z^3+c),c=-4/11+18/41*I,n=31 2415779788220622 m001 Chi(1)+Landau+MertensB2 2415779792714339 a001 521/55*225851433717^(10/21) 2415779800189335 r005 Im(z^2+c),c=-31/94+22/57*I,n=58 2415779801020618 a003 cos(Pi*17/67)/cos(Pi*37/91) 2415779802329274 r001 42i'th iterates of 2*x^2-1 of 2415779832249938 r005 Re(z^2+c),c=-59/48+3/40*I,n=12 2415779834834574 a001 20365011074/2207*521^(2/13) 2415779835645367 a001 20365011074/3571*521^(3/13) 2415779841569164 m001 (GAMMA(3/4)*Otter-Robbin)/GAMMA(3/4) 2415779843095618 m001 ln(GAMMA(2/3))/(2^(1/3))*Zeta(9)^2 2415779853948787 r008 a(0)=0,K{-n^6,-15-9*n^3+39*n^2-49*n} 2415779861680319 a003 sin(Pi*1/59)/sin(Pi*7/99) 2415779874137868 q001 2/82789 2415779900521724 m001 GAMMA(3/4)^2/RenyiParking/ln(Zeta(7)) 2415779903085753 m001 (-CareFree+Riemann1stZero)/(Bloch-Psi(2,1/3)) 2415779905573770 a001 7368128712/305 2415779906660192 r002 17th iterates of z^2 + 2415779907285002 r005 Im(z^2+c),c=-31/94+22/57*I,n=61 2415779908686549 r002 19th iterates of z^2 + 2415779910078000 m001 1/GAMMA(19/24)^2/ln(Ei(1))*GAMMA(5/12) 2415779911063776 b008 6*Pi+ArcCosh[101] 2415779911145618 a001 24157817-8*5^(1/2) 2415779913684482 m001 1/Champernowne/ln(ErdosBorwein)*sqrt(2) 2415779917521755 l006 ln(6181/7870) 2415779918150266 a007 Real Root Of 308*x^4+879*x^3+763*x^2+939*x-282 2415779920162612 a001 48315623/2-11/2*5^(1/2) 2415779921967512 h001 (2/5*exp(1)+2/9)/(5/7*exp(2)+1/7) 2415779922806858 a007 Real Root Of 269*x^4+496*x^3-715*x^2-555*x+663 2415779925567567 m005 (1/2*3^(1/2)-3/5)/(3/10*exp(1)+2/7) 2415779932236821 m009 (1/4*Psi(1,3/4)-1/6)/(2*Pi^2-1/3) 2415779934222669 m001 (MertensB1+Niven)/(Zeta(1/2)+MasserGramain) 2415779948592115 m002 -5/Log[Pi]+E^Pi*Pi^4*ProductLog[Pi] 2415779984789584 a007 Real Root Of 654*x^4+350*x^3-655*x^2-720*x+205 2415779992137118 a001 63245986/2207*1364^(14/15) 2415779993609655 r005 Re(z^2+c),c=7/32+26/57*I,n=36 2415779996916505 h001 (-5*exp(2)-6)/(-9*exp(3)+3) 2415780000295961 a001 233802911/281*843^(1/2) 2415780002731268 r005 Re(z^2+c),c=-17/58+8/63*I,n=9 2415780002809277 r005 Im(z^2+c),c=-57/56+17/64*I,n=53 2415780007871407 r005 Re(z^2+c),c=-23/56+39/43*I,n=4 2415780007984482 l006 ln(267/2990) 2415780025384759 m001 exp(Khintchine)*MertensB1/(2^(1/3))^2 2415780041490243 b008 -3/2+Sqrt[46/3] 2415780043566285 m004 Sqrt[5]*Pi*Cot[Sqrt[5]*Pi]+18*Tan[Sqrt[5]*Pi] 2415780044478267 a001 9/4*2^(4/39) 2415780045169834 r005 Re(z^2+c),c=-5/6+26/137*I,n=20 2415780046874965 r005 Re(z^2+c),c=-95/118+1/26*I,n=10 2415780050091155 m001 (3^(1/2))^ErdosBorwein-HeathBrownMoroz 2415780057583797 a005 (1/sin(48/151*Pi))^98 2415780058312600 m008 (2/3*Pi^5-2/3)/(5/6*Pi^4+3) 2415780062826475 a007 Real Root Of -369*x^4-450*x^3+856*x^2-531*x-55 2415780070101397 r008 a(0)=0,K{-n^6,1+7*n+54*n^2-20*n^3} 2415780073795002 r005 Im(z^2+c),c=-31/94+22/57*I,n=63 2415780078701062 a001 102334155/2207*1364^(13/15) 2415780101321700 m005 (1/2*Catalan+2/7)/(7/8*exp(1)+7/10) 2415780104720582 m004 -5+625/Pi+5*Sqrt[5]*Pi*Sec[Sqrt[5]*Pi] 2415780109497024 r005 Im(z^2+c),c=-31/94+22/57*I,n=64 2415780116115179 a005 (1/cos(21/92*Pi))^223 2415780121793128 m001 exp(GAMMA(1/12))*Porter^2/Zeta(1,2)^2 2415780123520536 s001 sum(exp(-3*Pi/4)^n*A058925[n],n=1..infinity) 2415780127400737 a001 64079/89*63245986^(17/24) 2415780128979239 l006 ln(6009/7651) 2415780134752415 a001 24157817-7*5^(1/2) 2415780139534817 a007 Real Root Of 535*x^4+923*x^3-759*x^2+219*x-250 2415780139708838 p004 log(28433/2539) 2415780141843971 q001 545/2256 2415780141843971 r002 2th iterates of z^2 + 2415780144453132 r005 Im(z^2+c),c=-31/94+22/57*I,n=59 2415780153678883 a007 Real Root Of -442*x^4-873*x^3+271*x^2-499*x-41 2415780165265010 a001 165580141/2207*1364^(4/5) 2415780172093292 a007 Real Root Of -317*x^4-460*x^3+674*x^2-221*x-156 2415780176788544 m001 Porter*FransenRobinson/ln(Robbin)^2 2415780180521254 a005 (1/cos(20/179*Pi))^563 2415780185514425 m005 (1/3*Zeta(3)-1/2)/(5^(1/2)+15/8) 2415780186325849 s001 sum(exp(-Pi)^n*A053825[n],n=1..infinity) 2415780186325849 s002 sum(A053825[n]/(exp(pi*n)),n=1..infinity) 2415780188711974 m005 (1/2*gamma-4/9)/(1/8*3^(1/2)+3/7) 2415780191194396 r005 Im(z^2+c),c=-39/98+24/59*I,n=29 2415780213837068 r005 Im(z^2+c),c=-39/110+25/64*I,n=21 2415780220681102 m001 (ln(5)-GolombDickman)/(MadelungNaCl-Totient) 2415780221505519 b008 1/11-14*Sqrt[3] 2415780226487169 r009 Im(z^3+c),c=-35/78+2/21*I,n=43 2415780227159025 r005 Re(z^2+c),c=-19/102+26/57*I,n=7 2415780229541827 a007 Real Root Of -441*x^4-740*x^3+699*x^2-235*x-60 2415780232377337 r009 Re(z^3+c),c=-12/29+20/37*I,n=59 2415780232617805 r009 Re(z^3+c),c=-7/20+20/49*I,n=18 2415780233993918 r009 Re(z^3+c),c=-9/62+31/34*I,n=50 2415780242241317 a001 12586269025/843*322^(1/12) 2415780242629656 r009 Im(z^3+c),c=-13/32+6/43*I,n=27 2415780243110750 a001 433494437/843*843^(4/7) 2415780247629799 m001 GAMMA(3/4)^2/ln(Sierpinski)/cos(Pi/5)^2 2415780251828960 a001 267914296/2207*1364^(11/15) 2415780253307249 m005 (1/2*Pi-1/6)/(1/6*Catalan+3/7) 2415780258441032 a001 53316291173/5778*521^(2/13) 2415780260063054 a001 1201881744/341*521^(4/13) 2415780260320374 m002 1+E^Pi+5/(3*Pi^4) 2415780264077989 a007 Real Root Of 158*x^4+20*x^3-611*x^2+997*x+875 2415780277434784 r005 Re(z^2+c),c=-11/62+27/52*I,n=55 2415780289501174 m002 (-3*Coth[Pi])/Log[Pi]+ProductLog[Pi]/5 2415780295480632 r005 Im(z^2+c),c=-31/94+22/57*I,n=62 2415780296239652 p001 sum((-1)^n/(368*n+41)/(10^n),n=0..infinity) 2415780297960605 a007 Real Root Of 310*x^4+442*x^3+146*x^2-694*x-171 2415780302424603 r005 Re(z^2+c),c=-29/106+13/54*I,n=19 2415780311090220 r005 Re(z^2+c),c=13/66+21/53*I,n=49 2415780311631226 r005 Re(z^2+c),c=1/40+25/41*I,n=52 2415780314754252 p003 LerchPhi(1/512,3,273/170) 2415780317585484 r005 Im(z^2+c),c=-31/94+22/57*I,n=60 2415780320244394 a001 139583862445/15127*521^(2/13) 2415780321254912 h001 (1/2*exp(2)+1/7)/(4/11*exp(1)+3/5) 2415780329180327 a001 7368130004/305 2415780329261383 a001 365435296162/39603*521^(2/13) 2415780330576944 a001 956722026041/103682*521^(2/13) 2415780330726507 r005 Im(z^2+c),c=-11/28+17/42*I,n=34 2415780330768882 a001 2504730781961/271443*521^(2/13) 2415780330796885 a001 6557470319842/710647*521^(2/13) 2415780330803496 a001 10610209857723/1149851*521^(2/13) 2415780330814192 a001 4052739537881/439204*521^(2/13) 2415780330887506 a001 140728068720/15251*521^(2/13) 2415780331390005 a001 591286729879/64079*521^(2/13) 2415780334834189 a001 7787980473/844*521^(2/13) 2415780338392914 a001 433494437/2207*1364^(2/3) 2415780343133033 a007 Real Root Of -243*x^4-428*x^3+123*x^2-768*x-331 2415780351054194 r005 Re(z^2+c),c=-37/30+9/110*I,n=6 2415780352898834 l006 ln(5837/7432) 2415780358440973 a001 86267571272/9349*521^(2/13) 2415780360433489 a007 Real Root Of 230*x^4-496*x^3+924*x^2-291*x-132 2415780375869854 r005 Re(z^2+c),c=9/34+9/61*I,n=39 2415780382179187 a007 Real Root Of 148*x^4+514*x^3+877*x^2+840*x-883 2415780384160525 m001 MertensB2^Porter/(LambertW(1)^Porter) 2415780390983606 a001 2947252077/122 2415780399999997 a001 7465163+7465176*5^(1/2) 2415780401311475 a001 7368130224/305 2415780401475409 a001 14736260449/610 2415780401540983 a001 1/305*(1/2+1/2*5^(1/2))^52 2415780401540983 a001 73681302247/610*8^(1/3) 2415780401639344 a001 1473626045/61 2415780402131147 a001 14736260453/610 2415780405572809 a001 24157813-4*5^(1/2) 2415780405573770 a001 7368130237/305 2415780409256489 r002 5th iterates of z^2 + 2415780415714078 r005 Im(z^2+c),c=-41/74+23/59*I,n=13 2415780415743603 a001 165580141/5778*1364^(14/15) 2415780424956871 a001 701408733/2207*1364^(3/5) 2415780426812659 m001 cosh(1)*Zeta(1,2)^2*exp(gamma) 2415780429156529 a003 2*cos(10/27*Pi)+cos(5/24*Pi)-2*cos(2/15*Pi) 2415780429180327 a001 7368130309/305 2415780444771094 r001 13i'th iterates of 2*x^2-1 of 2415780467193635 m005 (1/2*exp(1)+1/5)/(7/9*2^(1/2)-5/11) 2415780468080303 a003 cos(Pi*13/68)*cos(Pi*15/37) 2415780475321091 m001 GAMMA(13/24)+ArtinRank2^CareFree 2415780477546969 a001 433494437/15127*1364^(14/15) 2415780485925564 a001 267914296/843*843^(9/14) 2415780486563959 a001 1134903170/39603*1364^(14/15) 2415780487879520 a001 2971215073/103682*1364^(14/15) 2415780488071457 a001 7778742049/271443*1364^(14/15) 2415780488099461 a001 20365011074/710647*1364^(14/15) 2415780488103546 a001 53316291173/1860498*1364^(14/15) 2415780488104143 a001 139583862445/4870847*1364^(14/15) 2415780488104230 a001 365435296162/12752043*1364^(14/15) 2415780488104242 a001 956722026041/33385282*1364^(14/15) 2415780488104244 a001 2504730781961/87403803*1364^(14/15) 2415780488104244 a001 6557470319842/228826127*1364^(14/15) 2415780488104244 a001 10610209857723/370248451*1364^(14/15) 2415780488104245 a001 4052739537881/141422324*1364^(14/15) 2415780488104245 a001 1548008755920/54018521*1364^(14/15) 2415780488104250 a001 591286729879/20633239*1364^(14/15) 2415780488104283 a001 225851433717/7881196*1364^(14/15) 2415780488104511 a001 86267571272/3010349*1364^(14/15) 2415780488106072 a001 32951280099/1149851*1364^(14/15) 2415780488116768 a001 12586269025/439204*1364^(14/15) 2415780488190082 a001 4807526976/167761*1364^(14/15) 2415780488692581 a001 28657*1364^(14/15) 2415780492136765 a001 701408733/24476*1364^(14/15) 2415780495807850 h001 (3/8*exp(2)+7/12)/(4/11*exp(1)+2/5) 2415780502307563 a001 133957148/2889*1364^(13/15) 2415780507160717 l006 ln(670/7503) 2415780511520831 a001 1134903170/2207*1364^(8/15) 2415780513419620 g006 Psi(1,1/5)+Psi(1,2/3)-Psi(1,11/12)-Psi(1,7/11) 2415780514202933 h001 (1/12*exp(2)+1/7)/(5/6*exp(1)+7/8) 2415780515743551 a001 267914296/9349*1364^(14/15) 2415780518989411 m005 (1/2*gamma-8/9)/(3/7*Zeta(3)-3) 2415780519433501 a001 32951280099/2207*521^(1/13) 2415780520183688 m005 (1/2*5^(1/2)-6/11)/(4/11*3^(1/2)-3) 2415780520244295 a001 32951280099/3571*521^(2/13) 2415780521306620 r005 Re(z^2+c),c=-1+31/188*I,n=52 2415780528745189 r005 Im(z^2+c),c=-59/98+23/56*I,n=6 2415780528998013 m001 (Si(Pi)*exp(-1/2*Pi)-FeigenbaumB)/Si(Pi) 2415780531577386 p001 sum((-1)^n/(437*n+40)/(2^n),n=0..infinity) 2415780545475221 m001 ln(GAMMA(5/12))*Riemann2ndZero^2/sinh(1)^2 2415780545672452 m001 (Magata+Sierpinski)/(ln(2)+KomornikLoreti) 2415780547202682 r005 Im(z^2+c),c=-31/94+22/57*I,n=54 2415780548781304 r008 a(0)=0,K{-n^6,-5-40*n-54*n^2+58*n^3} 2415780564110931 a001 701408733/15127*1364^(13/15) 2415780565613073 m001 Pi/Psi(2,1/3)+GAMMA(2/3)-GAMMA(11/12) 2415780567376207 a001 48315627/2-7/2*5^(1/2) 2415780568312745 r005 Im(z^2+c),c=-31/94+22/57*I,n=55 2415780571027277 a007 Real Root Of -315*x^4-510*x^3+628*x^2+437*x+929 2415780571762147 m001 1/Trott*ArtinRank2*exp(GAMMA(1/4)) 2415780573127921 a001 1836311903/39603*1364^(13/15) 2415780574128021 r001 47i'th iterates of 2*x^2-1 of 2415780574443482 a001 46368*1364^(13/15) 2415780574635420 a001 12586269025/271443*1364^(13/15) 2415780574663423 a001 32951280099/710647*1364^(13/15) 2415780574667509 a001 43133785636/930249*1364^(13/15) 2415780574668105 a001 225851433717/4870847*1364^(13/15) 2415780574668192 a001 591286729879/12752043*1364^(13/15) 2415780574668205 a001 774004377960/16692641*1364^(13/15) 2415780574668206 a001 4052739537881/87403803*1364^(13/15) 2415780574668207 a001 225749145909/4868641*1364^(13/15) 2415780574668207 a001 3278735159921/70711162*1364^(13/15) 2415780574668207 a001 2504730781961/54018521*1364^(13/15) 2415780574668212 a001 956722026041/20633239*1364^(13/15) 2415780574668246 a001 182717648081/3940598*1364^(13/15) 2415780574668473 a001 139583862445/3010349*1364^(13/15) 2415780574670034 a001 53316291173/1149851*1364^(13/15) 2415780574680730 a001 10182505537/219602*1364^(13/15) 2415780574754044 a001 7778742049/167761*1364^(13/15) 2415780575256543 a001 2971215073/64079*1364^(13/15) 2415780577440004 m005 (1/2*Catalan-9/11)/(1/2*3^(1/2)+5/8) 2415780578700727 a001 567451585/12238*1364^(13/15) 2415780579478677 r009 Im(z^3+c),c=-5/23+11/48*I,n=5 2415780581298678 m001 (Robbin-Sierpinski)/(BesselI(1,2)-Kolakoski) 2415780581966011 a001 24157817-5*5^(1/2) 2415780588871526 a001 433494437/5778*1364^(4/5) 2415780590415659 l006 ln(5665/7213) 2415780590983606 a001 2947252321/122 2415780596480623 a007 Real Root Of 36*x^4-160*x^3-347*x^2+430*x-418 2415780598084794 a001 1836311903/2207*1364^(7/15) 2415780602307514 a001 433494437/9349*1364^(13/15) 2415780620939668 m005 (1/2*gamma+7/11)/(7/11*Catalan-1/5) 2415780622416044 a001 199/987*6557470319842^(17/24) 2415780630982691 m001 (gamma+Gompertz)/(Trott+Weierstrass) 2415780631774461 r005 Im(z^2+c),c=-2/9+19/54*I,n=20 2415780632477896 r005 Re(z^2+c),c=-9/16+64/115*I,n=23 2415780634021425 r005 Im(z^2+c),c=33/106+3/47*I,n=24 2415780650674896 a001 1134903170/15127*1364^(4/5) 2415780657981414 m001 LaplaceLimit+ReciprocalLucas^FeigenbaumB 2415780659691886 a001 2971215073/39603*1364^(4/5) 2415780661007447 a001 7778742049/103682*1364^(4/5) 2415780661199385 a001 20365011074/271443*1364^(4/5) 2415780661227389 a001 53316291173/710647*1364^(4/5) 2415780661231474 a001 139583862445/1860498*1364^(4/5) 2415780661232070 a001 365435296162/4870847*1364^(4/5) 2415780661232157 a001 956722026041/12752043*1364^(4/5) 2415780661232170 a001 2504730781961/33385282*1364^(4/5) 2415780661232172 a001 6557470319842/87403803*1364^(4/5) 2415780661232172 a001 10610209857723/141422324*1364^(4/5) 2415780661232173 a001 4052739537881/54018521*1364^(4/5) 2415780661232178 a001 140728068720/1875749*1364^(4/5) 2415780661232211 a001 591286729879/7881196*1364^(4/5) 2415780661232439 a001 225851433717/3010349*1364^(4/5) 2415780661233999 a001 86267571272/1149851*1364^(4/5) 2415780661244696 a001 32951280099/439204*1364^(4/5) 2415780661318009 a001 75025*1364^(4/5) 2415780661797530 r009 Re(z^3+c),c=-17/126+50/57*I,n=4 2415780661820509 a001 4807526976/64079*1364^(4/5) 2415780663156180 m001 exp(cos(1))/Zeta(1/2)^2/gamma^2 2415780664082665 m001 (Lehmer-Magata)/(Totient-ZetaP(3)) 2415780665264693 a001 1836311903/24476*1364^(4/5) 2415780671156452 m001 (ArtinRank2+Champernowne)/(Magata-ZetaQ(3)) 2415780672454750 g007 Psi(2,1/12)-Psi(2,6/11)-Psi(2,8/9)-Psi(2,1/8) 2415780674962366 a007 Real Root Of -388*x^4-958*x^3+451*x^2+884*x-788 2415780675435491 a001 233802911/1926*1364^(11/15) 2415780675516838 m001 (-Paris+StolarskyHarborth)/(5^(1/2)-Otter) 2415780677546883 a001 102334155/3571*1364^(14/15) 2415780679913691 r009 Re(z^3+c),c=-23/114+32/35*I,n=9 2415780684648760 a001 2971215073/2207*1364^(2/5) 2415780688871481 a001 701408733/9349*1364^(4/5) 2415780691774414 m001 (ln(2)-Backhouse)/(FeigenbaumD+Weierstrass) 2415780692746938 r009 Re(z^3+c),c=-21/50+26/49*I,n=48 2415780695805217 m001 (AlladiGrinstead-LandauRamanujan)^Zeta(3) 2415780695838911 m001 Bloch^sin(1)/(Zeta(1,-1)^sin(1)) 2415780697765325 a001 521/987*28657^(19/51) 2415780702038889 p001 sum(1/(435*n+374)/n/(512^n),n=1..infinity) 2415780702056750 b008 5+(11/2)^Sqrt[3] 2415780708065247 a001 987/2207*(1/2+1/2*5^(1/2))^37 2415780710154268 r005 Im(z^2+c),c=-31/94+22/57*I,n=50 2415780710894764 m005 (1/3*Catalan-1/9)/(-13/198+7/18*5^(1/2)) 2415780721936948 s002 sum(A077095[n]/(n*10^n+1),n=1..infinity) 2415780722151540 a007 Real Root Of -215*x^4-284*x^3+337*x^2-618*x-141 2415780728740402 a001 165580141/843*843^(5/7) 2415780735912335 b008 5*E^(5*(-1+Sqrt[5])) 2415780737238864 a001 1836311903/15127*1364^(11/15) 2415780741112688 m001 1/ln(PisotVijayaraghavan)*Artin/GAMMA(1/24)^2 2415780743298704 m005 (1/3*Pi+2/7)/(-23/88+4/11*5^(1/2)) 2415780746255855 a001 1602508992/13201*1364^(11/15) 2415780747571416 a001 12586269025/103682*1364^(11/15) 2415780747763354 a001 121393*1364^(11/15) 2415780747791357 a001 86267571272/710647*1364^(11/15) 2415780747795443 a001 75283811239/620166*1364^(11/15) 2415780747796039 a001 591286729879/4870847*1364^(11/15) 2415780747796126 a001 516002918640/4250681*1364^(11/15) 2415780747796138 a001 4052739537881/33385282*1364^(11/15) 2415780747796140 a001 3536736619241/29134601*1364^(11/15) 2415780747796141 a001 6557470319842/54018521*1364^(11/15) 2415780747796146 a001 2504730781961/20633239*1364^(11/15) 2415780747796179 a001 956722026041/7881196*1364^(11/15) 2415780747796407 a001 365435296162/3010349*1364^(11/15) 2415780747797968 a001 139583862445/1149851*1364^(11/15) 2415780747808664 a001 53316291173/439204*1364^(11/15) 2415780747881978 a001 20365011074/167761*1364^(11/15) 2415780748384477 a001 7778742049/64079*1364^(11/15) 2415780751828661 a001 2971215073/24476*1364^(11/15) 2415780761662122 m001 sin(Pi/12)^(sqrt(5)/GAMMA(5/12)) 2415780761999460 a001 567451585/2889*1364^(2/3) 2415780764110852 a001 165580141/3571*1364^(13/15) 2415780771212730 a001 4807526976/2207*1364^(1/3) 2415780775216457 a001 199/1597*233^(31/57) 2415780775435450 a001 1134903170/9349*1364^(11/15) 2415780776572516 m001 (GaussAGM-Robbin)/(sin(1/5*Pi)-Conway) 2415780785990594 m001 1/Sierpinski*exp(Artin)^2/Tribonacci^2 2415780790013049 r005 Im(z^2+c),c=-31/94+22/57*I,n=57 2415780805572809 a001 24157817-4*5^(1/2) 2415780816747069 r005 Im(z^2+c),c=-15/17+7/32*I,n=37 2415780817986332 r005 Im(z^2+c),c=-41/40+15/64*I,n=20 2415780823802835 a001 2971215073/15127*1364^(2/3) 2415780826012336 r005 Im(z^2+c),c=-21/58+21/53*I,n=27 2415780828140065 r002 57th iterates of z^2 + 2415780828441976 r005 Im(z^2+c),c=1/17+7/29*I,n=12 2415780828867236 m001 (BesselK(0,1)-gamma(1))/(CareFree+Totient) 2415780832819826 a001 7778742049/39603*1364^(2/3) 2415780834135387 a001 10182505537/51841*1364^(2/3) 2415780834327325 a001 53316291173/271443*1364^(2/3) 2415780834355329 a001 139583862445/710647*1364^(2/3) 2415780834359414 a001 182717648081/930249*1364^(2/3) 2415780834360010 a001 956722026041/4870847*1364^(2/3) 2415780834360097 a001 2504730781961/12752043*1364^(2/3) 2415780834360110 a001 3278735159921/16692641*1364^(2/3) 2415780834360113 a001 10610209857723/54018521*1364^(2/3) 2415780834360118 a001 4052739537881/20633239*1364^(2/3) 2415780834360151 a001 387002188980/1970299*1364^(2/3) 2415780834360379 a001 591286729879/3010349*1364^(2/3) 2415780834361939 a001 225851433717/1149851*1364^(2/3) 2415780834372636 a001 196418*1364^(2/3) 2415780834445949 a001 32951280099/167761*1364^(2/3) 2415780834948449 a001 12586269025/64079*1364^(2/3) 2415780837880318 l006 ln(403/4513) 2415780838392633 a001 1201881744/6119*1364^(2/3) 2415780842807007 l006 ln(5493/6994) 2415780843888566 m001 MertensB3^(Sierpinski/sin(1)) 2415780845794538 r005 Re(z^2+c),c=-121/94+2/31*I,n=37 2415780845991588 m001 BesselK(0,1)/ln(Sierpinski)^2/GAMMA(11/24) 2415780848023830 a001 1364/233*2178309^(13/51) 2415780848563433 a001 1836311903/5778*1364^(3/5) 2415780850674825 a001 267914296/3571*1364^(4/5) 2415780857776702 a001 7778742049/2207*1364^(4/15) 2415780860531300 r009 Im(z^3+c),c=-53/114+4/61*I,n=7 2415780861999423 a001 1836311903/9349*1364^(2/3) 2415780871658041 a007 Real Root Of 66*x^4+126*x^3+95*x^2+589*x+397 2415780877788713 m001 1/sin(1)*ln(GAMMA(3/4)) 2415780879133279 r005 Im(z^2+c),c=-127/98+1/45*I,n=57 2415780880351255 m001 (Artin-Champernowne)/Zeta(5) 2415780890983005 a001 48315629/2-5/2*5^(1/2) 2415780899999997 a001 7465168+7465176*5^(1/2) 2415780905342284 a007 Real Root Of -55*x^4+177*x^3+395*x^2+963*x-258 2415780910366809 a001 686789568/2161*1364^(3/5) 2415780911984213 m001 (Niven+Salem)/(BesselK(0,1)-cos(1)) 2415780919383801 a001 12586269025/39603*1364^(3/5) 2415780920699362 a001 32951280099/103682*1364^(3/5) 2415780920891300 a001 86267571272/271443*1364^(3/5) 2415780920919303 a001 317811*1364^(3/5) 2415780920923389 a001 591286729879/1860498*1364^(3/5) 2415780920923985 a001 1548008755920/4870847*1364^(3/5) 2415780920924072 a001 4052739537881/12752043*1364^(3/5) 2415780920924085 a001 1515744265389/4769326*1364^(3/5) 2415780920924093 a001 6557470319842/20633239*1364^(3/5) 2415780920924126 a001 2504730781961/7881196*1364^(3/5) 2415780920924353 a001 956722026041/3010349*1364^(3/5) 2415780920925914 a001 365435296162/1149851*1364^(3/5) 2415780920936610 a001 139583862445/439204*1364^(3/5) 2415780921009924 a001 53316291173/167761*1364^(3/5) 2415780921512424 a001 20365011074/64079*1364^(3/5) 2415780923628968 r005 Im(z^2+c),c=-39/122+13/34*I,n=21 2415780924956608 a001 7778742049/24476*1364^(3/5) 2415780926598926 r005 Re(z^2+c),c=31/106+10/59*I,n=18 2415780934176785 a007 Real Root Of 619*x^4+223*x^3+23*x^2-909*x+213 2415780934972648 s002 sum(A252475[n]/(n^2*10^n-1),n=1..infinity) 2415780935127408 a001 2971215073/5778*1364^(8/15) 2415780937238800 a001 433494437/3571*1364^(11/15) 2415780937467484 m001 Chi(1)^(2*Pi/GAMMA(5/6)/ln(2)) 2415780941104813 m001 (MasserGramainDelta+MertensB1)/(Ei(1,1)+Cahen) 2415780943040079 a001 43133785636/2889*521^(1/13) 2415780944340678 a001 12586269025/2207*1364^(1/5) 2415780944662102 a001 7778742049/1364*521^(3/13) 2415780948563398 a001 2971215073/9349*1364^(3/5) 2415780951616443 r005 Im(z^2+c),c=25/58+15/52*I,n=5 2415780961265663 a008 Real Root of (4+16*x-4*x^2-7*x^3) 2415780963945622 r008 a(0)=0,K{-n^6,20*n^3+138*n^2+192*n+64} 2415780966770348 a005 (1/cos(19/203*Pi))^545 2415780969281377 m001 HardyLittlewoodC4-ln(3)-ln(gamma) 2415780970818340 r005 Im(z^2+c),c=-103/70+2/63*I,n=8 2415780971555265 a001 34111385/281*843^(11/14) 2415780972249156 a007 Real Root Of 473*x^4+600*x^3-950*x^2+694*x-430 2415780976757246 a007 Real Root Of 189*x^4+391*x^3-378*x^2-405*x+303 2415780977103967 m005 (1/2*Catalan-1/10)/(9/10*Zeta(3)+2/5) 2415780979153707 a007 Real Root Of -148*x^4-401*x^3-157*x^2+59*x+446 2415780993599260 b008 2+SphericalBesselJ[1,5/3] 2415780996930787 a001 7778742049/15127*1364^(8/15) 2415781000707794 h001 (3/8*exp(1)+7/11)/(8/9*exp(2)+2/7) 2415781004098857 m002 -3+2/Pi^2+Log[Pi]/3 2415781004843459 a001 32264490531/2161*521^(1/13) 2415781005947779 a001 20365011074/39603*1364^(8/15) 2415781007263340 a001 53316291173/103682*1364^(8/15) 2415781007455278 a001 139583862445/271443*1364^(8/15) 2415781007483281 a001 365435296162/710647*1364^(8/15) 2415781007487367 a001 956722026041/1860498*1364^(8/15) 2415781007487963 a001 2504730781961/4870847*1364^(8/15) 2415781007488050 a001 6557470319842/12752043*1364^(8/15) 2415781007488070 a001 10610209857723/20633239*1364^(8/15) 2415781007488104 a001 4052739537881/7881196*1364^(8/15) 2415781007488331 a001 1548008755920/3010349*1364^(8/15) 2415781007489892 a001 514229*1364^(8/15) 2415781007500588 a001 225851433717/439204*1364^(8/15) 2415781007573902 a001 86267571272/167761*1364^(8/15) 2415781007577725 r005 Im(z^2+c),c=27/94+4/51*I,n=14 2415781008076402 a001 32951280099/64079*1364^(8/15) 2415781011404722 a007 Real Root Of -215*x^4+28*x^3+971*x^2-853*x-10 2415781011520586 a001 12586269025/24476*1364^(8/15) 2415781013328250 p003 LerchPhi(1/5,5,358/169) 2415781013860450 a001 591286729879/39603*521^(1/13) 2415781014589855 a001 38580022803/1597 2415781015176012 a001 774004377960/51841*521^(1/13) 2415781015367950 a001 4052739537881/271443*521^(1/13) 2415781015395953 a001 1515744265389/101521*521^(1/13) 2415781015413260 a001 3278735159921/219602*521^(1/13) 2415781015486574 a001 2504730781961/167761*521^(1/13) 2415781015989073 a001 956722026041/64079*521^(1/13) 2415781019433258 a001 182717648081/12238*521^(1/13) 2415781021691386 a001 267084832/321*1364^(7/15) 2415781023802778 a001 701408733/3571*1364^(2/3) 2415781023816923 a007 Real Root Of -326*x^4-325*x^3+931*x^2-55*x+955 2415781025733630 a001 24157817/2207*3571^(16/17) 2415781026793938 m001 1/exp(GolombDickman)^2/CopelandErdos/Rabbit^2 2415781029179606 a001 24157817-3*5^(1/2) 2415781029897825 m004 -2+Cos[Sqrt[5]*Pi]+2*Sec[Sqrt[5]*Pi]^2 2415781030904656 a001 20365011074/2207*1364^(2/15) 2415781031546947 a007 Real Root Of -313*x^4-813*x^3+65*x^2+202*x-693 2415781032808169 a007 Real Root Of 355*x^4+479*x^3-534*x^2+792*x-308 2415781035127377 a001 4807526976/9349*1364^(8/15) 2415781036032506 m001 (cos(1/5*Pi)-arctan(1/3)*Paris)/arctan(1/3) 2415781036877316 a001 39088169/2207*3571^(15/17) 2415781043040049 a001 139583862445/9349*521^(1/13) 2415781045993687 m001 1/ln(GAMMA(5/6))/Lehmer*log(2+sqrt(3))^2 2415781047730700 a001 228826127/89*610^(17/24) 2415781048021003 a001 63245986/2207*3571^(14/17) 2415781048608601 a001 521/2*34^(12/19) 2415781052133804 m006 (4/Pi+3)/(3/4*exp(Pi)+1/3) 2415781052786404 a001 24157815-2*5^(1/2) 2415781054487317 m001 (gamma+gamma(3))/(exp(Pi)+Chi(1)) 2415781059164690 a001 102334155/2207*3571^(13/17) 2415781067036302 a007 Real Root Of 457*x^4-227*x^3+75*x^2-194*x-56 2415781068385020 r005 Re(z^2+c),c=17/46+14/37*I,n=13 2415781068744611 a007 Real Root Of -547*x^4-977*x^3+841*x^2+171*x+361 2415781068898949 a007 Real Root Of -242*x^4-549*x^3+301*x^2+891*x+898 2415781070308377 a001 165580141/2207*3571^(12/17) 2415781081452063 a001 267914296/2207*3571^(11/17) 2415781083494767 a001 12586269025/15127*1364^(7/15) 2415781091998730 m009 (6*Psi(1,3/4)-1/5)/(2/3*Psi(1,1/3)-1/2) 2415781092511759 a001 10983760033/13201*1364^(7/15) 2415781092595750 a001 433494437/2207*3571^(10/17) 2415781093450195 m001 FeigenbaumKappa/Rabbit^2/exp(OneNinth) 2415781093827321 a001 43133785636/51841*1364^(7/15) 2415781094019259 a001 75283811239/90481*1364^(7/15) 2415781094047262 a001 591286729879/710647*1364^(7/15) 2415781094051348 a001 832040*1364^(7/15) 2415781094051944 a001 4052739537881/4870847*1364^(7/15) 2415781094052031 a001 3536736619241/4250681*1364^(7/15) 2415781094052084 a001 3278735159921/3940598*1364^(7/15) 2415781094052312 a001 2504730781961/3010349*1364^(7/15) 2415781094053873 a001 956722026041/1149851*1364^(7/15) 2415781094064569 a001 182717648081/219602*1364^(7/15) 2415781094137883 a001 139583862445/167761*1364^(7/15) 2415781094640382 a001 53316291173/64079*1364^(7/15) 2415781098084567 a001 10182505537/12238*1364^(7/15) 2415781103739437 a001 701408733/2207*3571^(9/17) 2415781108255367 a001 7778742049/5778*1364^(2/5) 2415781110366760 a001 1134903170/3571*1364^(3/5) 2415781110484234 s002 sum(A176215[n]/(n^2*exp(n)-1),n=1..infinity) 2415781111515323 l006 ln(5321/6775) 2415781114137107 m001 Landau^FeigenbaumAlpha/(Landau^ZetaP(3)) 2415781114883125 a001 1134903170/2207*3571^(8/17) 2415781116431471 m001 (cos(1/5*Pi)-Gompertz)/(MertensB3-ZetaP(2)) 2415781116611311 h001 (-3*exp(2/3)+3)/(-7*exp(1/3)-2) 2415781117468638 a001 32951280099/2207*1364^(1/15) 2415781117707025 p001 sum(1/(191*n+141)/n/(125^n),n=1..infinity) 2415781117733201 m006 (3/4*Pi+3/5)/(1/2*exp(Pi)+2/3) 2415781121691359 a001 7778742049/9349*1364^(7/15) 2415781126026812 a001 1836311903/2207*3571^(7/17) 2415781131671858 a001 329/1926*2537720636^(13/15) 2415781131671858 a001 329/1926*45537549124^(13/17) 2415781131671858 a001 329/1926*14662949395604^(13/21) 2415781131671858 a001 329/1926*(1/2+1/2*5^(1/2))^39 2415781131671858 a001 329/1926*192900153618^(13/18) 2415781131671858 a001 329/1926*73681302247^(3/4) 2415781131671858 a001 329/1926*10749957122^(13/16) 2415781131671858 a001 329/1926*599074578^(13/14) 2415781131671958 a001 2584/2207*2537720636^(7/9) 2415781131671958 a001 2584/2207*17393796001^(5/7) 2415781131671958 a001 2584/2207*312119004989^(7/11) 2415781131671958 a001 2584/2207*14662949395604^(5/9) 2415781131671958 a001 2584/2207*(1/2+1/2*5^(1/2))^35 2415781131671958 a001 2584/2207*505019158607^(5/8) 2415781131671958 a001 2584/2207*28143753123^(7/10) 2415781131671958 a001 2584/2207*599074578^(5/6) 2415781131671958 a001 2584/2207*228826127^(7/8) 2415781136942361 m001 (Magata+Sarnak)/(ln(Pi)+BesselI(1,1)) 2415781137170499 a001 2971215073/2207*3571^(6/17) 2415781139920725 r005 Im(z^2+c),c=-47/86+17/44*I,n=6 2415781141446876 a001 843/55*17711^(2/43) 2415781143201318 a007 Real Root Of -304*x^4-889*x^3-508*x^2-255*x+169 2415781148314186 a001 4807526976/2207*3571^(5/17) 2415781153764832 m008 (Pi-5)/(4/5*Pi^6+1/6) 2415781158184816 a007 Real Root Of -191*x^4-610*x^3-337*x^2+70*x+41 2415781159457873 a001 7778742049/2207*3571^(4/17) 2415781160067185 a003 -1/2+2*cos(1/7*Pi)+1/2*2^(1/2)+cos(11/30*Pi) 2415781164237558 r009 Re(z^3+c),c=-39/110+18/43*I,n=21 2415781167178302 r005 Im(z^2+c),c=13/114+13/61*I,n=10 2415781170058751 a001 20365011074/15127*1364^(2/5) 2415781170601561 a001 12586269025/2207*3571^(3/17) 2415781176393207 a001 101003810985/4181 2415781177848015 a001 9227465/2207*9349^(18/19) 2415781179075743 a001 53316291173/39603*1364^(2/5) 2415781179302708 a001 14930352/2207*9349^(17/19) 2415781180391305 a001 139583862445/103682*1364^(2/5) 2415781180583243 a001 365435296162/271443*1364^(2/5) 2415781180611246 a001 956722026041/710647*1364^(2/5) 2415781180615332 a001 2504730781961/1860498*1364^(2/5) 2415781180615928 a001 6557470319842/4870847*1364^(2/5) 2415781180616068 a001 10610209857723/7881196*1364^(2/5) 2415781180616296 a001 1346269*1364^(2/5) 2415781180617857 a001 1548008755920/1149851*1364^(2/5) 2415781180628553 a001 591286729879/439204*1364^(2/5) 2415781180701867 a001 225851433717/167761*1364^(2/5) 2415781180757412 a001 24157817/2207*9349^(16/19) 2415781181204367 a001 86267571272/64079*1364^(2/5) 2415781181745248 a001 20365011074/2207*3571^(2/17) 2415781182212111 a001 39088169/2207*9349^(15/19) 2415781182515523 h001 (11/12*exp(1)+11/12)/(2/11*exp(1)+11/12) 2415781183666812 a001 63245986/2207*9349^(14/19) 2415781184648551 a001 32951280099/24476*1364^(2/5) 2415781185121513 a001 102334155/2207*9349^(13/19) 2415781185159501 m001 (Tetranacci-Thue)/(Otter+Porter) 2415781186576214 a001 165580141/2207*9349^(12/19) 2415781188030915 a001 267914296/2207*9349^(11/19) 2415781188457669 m001 ((1+3^(1/2))^(1/2))^GAMMA(23/24)/ln(2) 2415781188457669 m001 sqrt(1+sqrt(3))^GAMMA(23/24)/ln(2) 2415781189485615 a001 433494437/2207*9349^(10/19) 2415781190940316 a001 701408733/2207*9349^(9/19) 2415781192395017 a001 1134903170/2207*9349^(8/19) 2415781192888935 a001 32951280099/2207*3571^(1/17) 2415781193475242 a001 141/2161*(1/2+1/2*5^(1/2))^41 2415781193475344 a001 6765/2207*141422324^(11/13) 2415781193475344 a001 6765/2207*2537720636^(11/15) 2415781193475344 a001 6765/2207*45537549124^(11/17) 2415781193475344 a001 6765/2207*312119004989^(3/5) 2415781193475344 a001 6765/2207*14662949395604^(11/21) 2415781193475344 a001 6765/2207*(1/2+1/2*5^(1/2))^33 2415781193475344 a001 6765/2207*192900153618^(11/18) 2415781193475344 a001 6765/2207*10749957122^(11/16) 2415781193475344 a001 6765/2207*1568397607^(3/4) 2415781193475344 a001 6765/2207*599074578^(11/14) 2415781193475346 a001 6765/2207*33385282^(11/12) 2415781193849718 a001 1836311903/2207*9349^(7/19) 2415781194819352 a001 12586269025/5778*1364^(1/3) 2415781195304418 a001 2971215073/2207*9349^(6/19) 2415781195915364 m005 (2/3*gamma-5/6)/(2/5*Pi+3/5) 2415781196759119 a001 4807526976/2207*9349^(5/19) 2415781196930744 a001 1836311903/3571*1364^(8/15) 2415781198213820 a001 7778742049/2207*9349^(4/19) 2415781199668521 a001 12586269025/2207*9349^(3/19) 2415781199999997 a001 7465171+7465176*5^(1/2) 2415781200192165 a001 3524578/2207*24476^(20/21) 2415781200384136 a001 5702887/2207*24476^(19/21) 2415781200576182 a001 9227465/2207*24476^(6/7) 2415781200768199 a001 14930352/2207*24476^(17/21) 2415781200960226 a001 24157817/2207*24476^(16/21) 2415781201123221 a001 20365011074/2207*9349^(2/19) 2415781201152250 a001 39088169/2207*24476^(5/7) 2415781201344275 a001 63245986/2207*24476^(2/3) 2415781201536300 a001 102334155/2207*24476^(13/21) 2415781201728325 a001 165580141/2207*24476^(4/7) 2415781201920350 a001 267914296/2207*24476^(11/21) 2415781202112375 a001 433494437/2207*24476^(10/21) 2415781202304399 a001 701408733/2207*24476^(3/7) 2415781202492235 a001 329/13201*(1/2+1/2*5^(1/2))^43 2415781202492337 a001 17711/2207*(1/2+1/2*5^(1/2))^31 2415781202492337 a001 17711/2207*9062201101803^(1/2) 2415781202496424 a001 1134903170/2207*24476^(8/21) 2415781202577922 a001 32951280099/2207*9349^(1/19) 2415781202688449 a001 1836311903/2207*24476^(1/3) 2415781202880474 a001 2971215073/2207*24476^(2/7) 2415781203072499 a001 4807526976/2207*24476^(5/21) 2415781203264524 a001 7778742049/2207*24476^(4/21) 2415781203444184 a001 692290419471/28657 2415781203456548 a001 12586269025/2207*24476^(1/7) 2415781203470132 a001 1346269/2207*64079^(22/23) 2415781203495344 a001 987*64079^(21/23) 2415781203521064 a001 3524578/2207*64079^(20/23) 2415781203546591 a001 5702887/2207*64079^(19/23) 2415781203572191 a001 9227465/2207*64079^(18/23) 2415781203597763 a001 14930352/2207*64079^(17/23) 2415781203623346 a001 24157817/2207*64079^(16/23) 2415781203648573 a001 20365011074/2207*24476^(2/21) 2415781203648925 a001 39088169/2207*64079^(15/23) 2415781203674505 a001 63245986/2207*64079^(14/23) 2415781203700085 a001 102334155/2207*64079^(13/23) 2415781203725665 a001 165580141/2207*64079^(12/23) 2415781203751244 a001 267914296/2207*64079^(11/23) 2415781203776824 a001 433494437/2207*64079^(10/23) 2415781203802404 a001 701408733/2207*64079^(9/23) 2415781203807796 a001 21/2206*45537549124^(15/17) 2415781203807796 a001 21/2206*312119004989^(9/11) 2415781203807796 a001 21/2206*14662949395604^(5/7) 2415781203807796 a001 21/2206*(1/2+1/2*5^(1/2))^45 2415781203807796 a001 21/2206*192900153618^(5/6) 2415781203807796 a001 21/2206*28143753123^(9/10) 2415781203807796 a001 21/2206*10749957122^(15/16) 2415781203807898 a001 46368/2207*(1/2+1/2*5^(1/2))^29 2415781203807898 a001 46368/2207*1322157322203^(1/2) 2415781203827984 a001 1134903170/2207*64079^(8/23) 2415781203840598 a001 32951280099/2207*24476^(1/21) 2415781203853564 a001 1836311903/2207*64079^(7/23) 2415781203879144 a001 2971215073/2207*64079^(6/23) 2415781203904724 a001 4807526976/2207*64079^(5/23) 2415781203930303 a001 7778742049/2207*64079^(4/23) 2415781203946684 a001 1812439848261/75025 2415781203955883 a001 12586269025/2207*64079^(3/23) 2415781203963992 a001 3524578/2207*167761^(4/5) 2415781203981120 a001 39088169/2207*167761^(3/5) 2415781203981463 a001 20365011074/2207*64079^(2/23) 2415781203998288 a001 433494437/2207*167761^(2/5) 2415781203999734 a001 329/90481*(1/2+1/2*5^(1/2))^47 2415781203999804 a001 121393/2207*7881196^(9/11) 2415781203999836 a001 121393/2207*141422324^(9/13) 2415781203999836 a001 121393/2207*2537720636^(3/5) 2415781203999836 a001 121393/2207*45537549124^(9/17) 2415781203999836 a001 121393/2207*817138163596^(9/19) 2415781203999836 a001 121393/2207*14662949395604^(3/7) 2415781203999836 a001 121393/2207*(1/2+1/2*5^(1/2))^27 2415781203999836 a001 121393/2207*192900153618^(1/2) 2415781203999836 a001 121393/2207*10749957122^(9/16) 2415781203999836 a001 121393/2207*599074578^(9/14) 2415781203999838 a001 121393/2207*33385282^(3/4) 2415781204000464 a001 121393/2207*1860498^(9/10) 2415781204007043 a001 32951280099/2207*64079^(1/23) 2415781204015456 a001 4807526976/2207*167761^(1/5) 2415781204019998 a001 2372514562656/98209 2415781204022781 a001 987*439204^(7/9) 2415781204023318 a001 514229/2207*439204^(8/9) 2415781204024280 a001 9227465/2207*439204^(2/3) 2415781204025665 a001 39088169/2207*439204^(5/9) 2415781204027057 a001 165580141/2207*439204^(4/9) 2415781204027738 a001 141/101521*14662949395604^(7/9) 2415781204027738 a001 141/101521*(1/2+1/2*5^(1/2))^49 2415781204027738 a001 141/101521*505019158607^(7/8) 2415781204027835 a001 317811/2207*20633239^(5/7) 2415781204027839 a001 317811/2207*2537720636^(5/9) 2415781204027839 a001 317811/2207*312119004989^(5/11) 2415781204027839 a001 317811/2207*(1/2+1/2*5^(1/2))^25 2415781204027839 a001 317811/2207*3461452808002^(5/12) 2415781204027839 a001 317811/2207*28143753123^(1/2) 2415781204027839 a001 317811/2207*228826127^(5/8) 2415781204028421 a001 317811/2207*1860498^(5/6) 2415781204028448 a001 701408733/2207*439204^(1/3) 2415781204029840 a001 2971215073/2207*439204^(2/9) 2415781204030694 a001 12422647527675/514229 2415781204031231 a001 12586269025/2207*439204^(1/9) 2415781204031823 a001 329/620166*817138163596^(17/19) 2415781204031823 a001 329/620166*14662949395604^(17/21) 2415781204031823 a001 329/620166*(1/2+1/2*5^(1/2))^51 2415781204031823 a001 329/620166*192900153618^(17/18) 2415781204031925 a001 832040/2207*(1/2+1/2*5^(1/2))^23 2415781204031925 a001 832040/2207*4106118243^(1/2) 2415781204032255 a001 32522913457713/1346269 2415781204032419 a001 987/4870847*(1/2+1/2*5^(1/2))^53 2415781204032482 a001 42573046422732/1762289 2415781204032496 a001 987*7881196^(7/11) 2415781204032506 a001 329/4250681*(1/2+1/2*5^(1/2))^55 2415781204032506 a001 329/4250681*3461452808002^(11/12) 2415781204032515 a001 17147335775283/709805 2415781204032518 a001 987*20633239^(3/5) 2415781204032519 a001 141/4769326*14662949395604^(19/21) 2415781204032519 a001 141/4769326*(1/2+1/2*5^(1/2))^57 2415781204032520 a001 583600002390573/24157817 2415781204032521 a001 763942321046520/31622993 2415781204032521 a001 987*141422324^(7/13) 2415781204032521 a001 4000053923888547/165580141 2415781204032521 a001 10472277129572601/433494437 2415781204032521 a001 987*2537720636^(7/15) 2415781204032521 a001 987*17393796001^(3/7) 2415781204032521 a001 987*45537549124^(7/17) 2415781204032521 a001 987*14662949395604^(1/3) 2415781204032521 a001 987*192900153618^(7/18) 2415781204032521 a001 987*10749957122^(7/16) 2415781204032521 a001 987*599074578^(1/2) 2415781204032521 a001 591286607499/24476 2415781204032521 a001 117722346752167/4873055 2415781204032521 a001 987/141422324*14662949395604^(20/21) 2415781204032521 a001 944284639702467/39088169 2415781204032522 a001 987*33385282^(7/12) 2415781204032523 a001 60114106218649/2488392 2415781204032527 a001 987/20633239*14662949395604^(8/9) 2415781204032527 a001 987/20633239*(1/2+1/2*5^(1/2))^56 2415781204032536 a001 137769272233215/5702887 2415781204032560 a001 987/7881196*14662949395604^(6/7) 2415781204032560 a001 987/7881196*(1/2+1/2*5^(1/2))^54 2415781204032605 a001 39088169/2207*7881196^(5/11) 2415781204032607 a001 9227465/2207*7881196^(6/11) 2415781204032608 a001 5702887/2207*817138163596^(1/3) 2415781204032608 a001 5702887/2207*(1/2+1/2*5^(1/2))^19 2415781204032608 a001 5702887/2207*87403803^(1/2) 2415781204032609 a001 165580141/2207*7881196^(4/11) 2415781204032610 a001 267914296/2207*7881196^(1/3) 2415781204032612 a001 701408733/2207*7881196^(3/11) 2415781204032616 a001 2971215073/2207*7881196^(2/11) 2415781204032619 a001 12586269025/2207*7881196^(1/11) 2415781204032620 a001 39088169/2207*20633239^(3/7) 2415781204032621 a001 14930352/2207*45537549124^(1/3) 2415781204032621 a001 14930352/2207*(1/2+1/2*5^(1/2))^17 2415781204032621 a001 63245986/2207*20633239^(2/5) 2415781204032621 a001 433494437/2207*20633239^(2/7) 2415781204032622 a001 1836311903/2207*20633239^(1/5) 2415781204032622 a001 4807526976/2207*20633239^(1/7) 2415781204032623 a001 39088169/2207*141422324^(5/13) 2415781204032623 a001 39088169/2207*2537720636^(1/3) 2415781204032623 a001 39088169/2207*45537549124^(5/17) 2415781204032623 a001 39088169/2207*312119004989^(3/11) 2415781204032623 a001 39088169/2207*14662949395604^(5/21) 2415781204032623 a001 39088169/2207*(1/2+1/2*5^(1/2))^15 2415781204032623 a001 39088169/2207*192900153618^(5/18) 2415781204032623 a001 39088169/2207*28143753123^(3/10) 2415781204032623 a001 39088169/2207*10749957122^(5/16) 2415781204032623 a001 39088169/2207*599074578^(5/14) 2415781204032623 a001 39088169/2207*228826127^(3/8) 2415781204032623 a001 102334155/2207*141422324^(1/3) 2415781204032623 a001 102334155/2207*(1/2+1/2*5^(1/2))^13 2415781204032623 a001 102334155/2207*73681302247^(1/4) 2415781204032623 a001 701408733/2207*141422324^(3/13) 2415781204032623 a001 165580141/2207*141422324^(4/13) 2415781204032623 a001 2971215073/2207*141422324^(2/13) 2415781204032623 a001 12586269025/2207*141422324^(1/13) 2415781204032623 a001 267914296/2207*312119004989^(1/5) 2415781204032623 a001 267914296/2207*(1/2+1/2*5^(1/2))^11 2415781204032623 a001 267914296/2207*1568397607^(1/4) 2415781204032623 a001 701408733/2207*2537720636^(1/5) 2415781204032623 a001 701408733/2207*45537549124^(3/17) 2415781204032623 a001 701408733/2207*14662949395604^(1/7) 2415781204032623 a001 701408733/2207*(1/2+1/2*5^(1/2))^9 2415781204032623 a001 701408733/2207*192900153618^(1/6) 2415781204032623 a001 701408733/2207*10749957122^(3/16) 2415781204032623 a001 1836311903/2207*17393796001^(1/7) 2415781204032623 a001 1836311903/2207*14662949395604^(1/9) 2415781204032623 a001 1836311903/2207*(1/2+1/2*5^(1/2))^7 2415781204032623 a001 4807526976/2207*2537720636^(1/9) 2415781204032623 a001 12586269025/2207*2537720636^(1/15) 2415781204032623 a001 4807526976/2207*312119004989^(1/11) 2415781204032623 a001 4807526976/2207*(1/2+1/2*5^(1/2))^5 2415781204032623 a001 4807526976/2207*28143753123^(1/10) 2415781204032623 a001 12586269025/2207*45537549124^(1/17) 2415781204032623 a001 12586269025/2207*14662949395604^(1/21) 2415781204032623 a001 12586269025/2207*(1/2+1/2*5^(1/2))^3 2415781204032623 a001 12586269025/2207*192900153618^(1/18) 2415781204032623 a001 12586269025/2207*10749957122^(1/16) 2415781204032623 a001 32951280099/4414+32951280099/4414*5^(1/2) 2415781204032623 a001 53316291173/2207 2415781204032623 a001 20365011074/2207*(1/2+1/2*5^(1/2))^2 2415781204032623 a001 20365011074/2207*10749957122^(1/24) 2415781204032623 a001 2971215073/2207*2537720636^(2/15) 2415781204032623 a001 20365011074/2207*4106118243^(1/23) 2415781204032623 a001 7778742049/2207*(1/2+1/2*5^(1/2))^4 2415781204032623 a001 7778742049/2207*23725150497407^(1/16) 2415781204032623 a001 7778742049/2207*73681302247^(1/13) 2415781204032623 a001 7778742049/2207*10749957122^(1/12) 2415781204032623 a001 7778742049/2207*4106118243^(2/23) 2415781204032623 a001 20365011074/2207*1568397607^(1/22) 2415781204032623 a001 2971215073/2207*45537549124^(2/17) 2415781204032623 a001 2971215073/2207*14662949395604^(2/21) 2415781204032623 a001 2971215073/2207*(1/2+1/2*5^(1/2))^6 2415781204032623 a001 2971215073/2207*10749957122^(1/8) 2415781204032623 a001 2971215073/2207*4106118243^(3/23) 2415781204032623 a001 7778742049/2207*1568397607^(1/11) 2415781204032623 a001 2971215073/2207*1568397607^(3/22) 2415781204032623 a001 20365011074/2207*599074578^(1/21) 2415781204032623 a001 1134903170/2207*(1/2+1/2*5^(1/2))^8 2415781204032623 a001 1134903170/2207*23725150497407^(1/8) 2415781204032623 a001 1134903170/2207*73681302247^(2/13) 2415781204032623 a001 1134903170/2207*10749957122^(1/6) 2415781204032623 a001 1134903170/2207*4106118243^(4/23) 2415781204032623 a001 701408733/2207*599074578^(3/14) 2415781204032623 a001 12586269025/2207*599074578^(1/14) 2415781204032623 a001 1134903170/2207*1568397607^(2/11) 2415781204032623 a001 7778742049/2207*599074578^(2/21) 2415781204032623 a001 1836311903/2207*599074578^(1/6) 2415781204032623 a001 2971215073/2207*599074578^(1/7) 2415781204032623 a001 1134903170/2207*599074578^(4/21) 2415781204032623 a001 20365011074/2207*228826127^(1/20) 2415781204032623 a001 433494437/2207*2537720636^(2/9) 2415781204032623 a001 433494437/2207*312119004989^(2/11) 2415781204032623 a001 433494437/2207*(1/2+1/2*5^(1/2))^10 2415781204032623 a001 433494437/2207*28143753123^(1/5) 2415781204032623 a001 433494437/2207*10749957122^(5/24) 2415781204032623 a001 433494437/2207*4106118243^(5/23) 2415781204032623 a001 433494437/2207*1568397607^(5/22) 2415781204032623 a001 433494437/2207*599074578^(5/21) 2415781204032623 a001 7778742049/2207*228826127^(1/10) 2415781204032623 a001 4807526976/2207*228826127^(1/8) 2415781204032623 a001 2971215073/2207*228826127^(3/20) 2415781204032623 a001 1134903170/2207*228826127^(1/5) 2415781204032623 a001 433494437/2207*228826127^(1/4) 2415781204032623 a001 20365011074/2207*87403803^(1/19) 2415781204032623 a001 165580141/2207*2537720636^(4/15) 2415781204032623 a001 165580141/2207*45537549124^(4/17) 2415781204032623 a001 165580141/2207*817138163596^(4/19) 2415781204032623 a001 165580141/2207*14662949395604^(4/21) 2415781204032623 a001 165580141/2207*(1/2+1/2*5^(1/2))^12 2415781204032623 a001 165580141/2207*73681302247^(3/13) 2415781204032623 a001 165580141/2207*10749957122^(1/4) 2415781204032623 a001 165580141/2207*4106118243^(6/23) 2415781204032623 a001 165580141/2207*1568397607^(3/11) 2415781204032623 a001 165580141/2207*599074578^(2/7) 2415781204032623 a001 165580141/2207*228826127^(3/10) 2415781204032623 a001 7778742049/2207*87403803^(2/19) 2415781204032623 a001 2971215073/2207*87403803^(3/19) 2415781204032623 a001 1134903170/2207*87403803^(4/19) 2415781204032623 a001 433494437/2207*87403803^(5/19) 2415781204032623 a001 165580141/2207*87403803^(6/19) 2415781204032623 a001 20365011074/2207*33385282^(1/18) 2415781204032623 a001 63245986/2207*17393796001^(2/7) 2415781204032623 a001 63245986/2207*14662949395604^(2/9) 2415781204032623 a001 63245986/2207*(1/2+1/2*5^(1/2))^14 2415781204032623 a001 63245986/2207*10749957122^(7/24) 2415781204032623 a001 63245986/2207*4106118243^(7/23) 2415781204032623 a001 63245986/2207*1568397607^(7/22) 2415781204032623 a001 63245986/2207*599074578^(1/3) 2415781204032623 a001 63245986/2207*228826127^(7/20) 2415781204032623 a001 12586269025/2207*33385282^(1/12) 2415781204032623 a001 63245986/2207*87403803^(7/19) 2415781204032623 a001 7778742049/2207*33385282^(1/9) 2415781204032623 a001 2971215073/2207*33385282^(1/6) 2415781204032623 a001 1134903170/2207*33385282^(2/9) 2415781204032624 a001 701408733/2207*33385282^(1/4) 2415781204032624 a001 39088169/2207*33385282^(5/12) 2415781204032624 a001 433494437/2207*33385282^(5/18) 2415781204032624 a001 165580141/2207*33385282^(1/3) 2415781204032624 a001 24157817/2207*(1/2+1/2*5^(1/2))^16 2415781204032624 a001 24157817/2207*23725150497407^(1/4) 2415781204032624 a001 24157817/2207*73681302247^(4/13) 2415781204032624 a001 24157817/2207*10749957122^(1/3) 2415781204032624 a001 24157817/2207*4106118243^(8/23) 2415781204032624 a001 24157817/2207*1568397607^(4/11) 2415781204032624 a001 24157817/2207*599074578^(8/21) 2415781204032624 a001 24157817/2207*228826127^(2/5) 2415781204032624 a001 20365011074/2207*12752043^(1/17) 2415781204032624 a001 24157817/2207*87403803^(8/19) 2415781204032624 a001 63245986/2207*33385282^(7/18) 2415781204032625 a001 7778742049/2207*12752043^(2/17) 2415781204032625 a001 24157817/2207*33385282^(4/9) 2415781204032626 a001 2971215073/2207*12752043^(3/17) 2415781204032626 a001 1134903170/2207*12752043^(4/17) 2415781204032627 a001 433494437/2207*12752043^(5/17) 2415781204032628 a001 14930352/2207*12752043^(1/2) 2415781204032628 a001 165580141/2207*12752043^(6/17) 2415781204032629 a001 9227465/2207*141422324^(6/13) 2415781204032629 a001 9227465/2207*2537720636^(2/5) 2415781204032629 a001 9227465/2207*45537549124^(6/17) 2415781204032629 a001 9227465/2207*14662949395604^(2/7) 2415781204032629 a001 9227465/2207*(1/2+1/2*5^(1/2))^18 2415781204032629 a001 9227465/2207*192900153618^(1/3) 2415781204032629 a001 9227465/2207*10749957122^(3/8) 2415781204032629 a001 9227465/2207*4106118243^(9/23) 2415781204032629 a001 9227465/2207*1568397607^(9/22) 2415781204032629 a001 9227465/2207*599074578^(3/7) 2415781204032629 a001 9227465/2207*228826127^(9/20) 2415781204032629 a001 9227465/2207*87403803^(9/19) 2415781204032629 a001 63245986/2207*12752043^(7/17) 2415781204032629 a001 20365011074/2207*4870847^(1/16) 2415781204032630 a001 9227465/2207*33385282^(1/2) 2415781204032631 a001 24157817/2207*12752043^(8/17) 2415781204032636 a001 7778742049/2207*4870847^(1/8) 2415781204032637 a001 9227465/2207*12752043^(9/17) 2415781204032642 a001 2971215073/2207*4870847^(3/16) 2415781204032648 a001 1134903170/2207*4870847^(1/4) 2415781204032655 a001 433494437/2207*4870847^(5/16) 2415781204032659 a001 3524578/2207*20633239^(4/7) 2415781204032661 a001 165580141/2207*4870847^(3/8) 2415781204032662 a001 3524578/2207*2537720636^(4/9) 2415781204032662 a001 3524578/2207*(1/2+1/2*5^(1/2))^20 2415781204032662 a001 3524578/2207*23725150497407^(5/16) 2415781204032662 a001 3524578/2207*505019158607^(5/14) 2415781204032662 a001 3524578/2207*73681302247^(5/13) 2415781204032662 a001 3524578/2207*28143753123^(2/5) 2415781204032662 a001 3524578/2207*10749957122^(5/12) 2415781204032662 a001 3524578/2207*4106118243^(10/23) 2415781204032662 a001 3524578/2207*1568397607^(5/11) 2415781204032662 a001 3524578/2207*599074578^(10/21) 2415781204032662 a001 3524578/2207*228826127^(1/2) 2415781204032662 a001 3524578/2207*87403803^(10/19) 2415781204032663 a001 3524578/2207*33385282^(5/9) 2415781204032668 a001 63245986/2207*4870847^(7/16) 2415781204032669 a001 20365011074/2207*1860498^(1/15) 2415781204032671 a001 3524578/2207*12752043^(10/17) 2415781204032675 a001 24157817/2207*4870847^(1/2) 2415781204032686 a001 9227465/2207*4870847^(9/16) 2415781204032693 a001 12586269025/2207*1860498^(1/10) 2415781204032716 a001 7778742049/2207*1860498^(2/15) 2415781204032726 a001 3524578/2207*4870847^(5/8) 2415781204032739 a001 4807526976/2207*1860498^(1/6) 2415781204032763 a001 2971215073/2207*1860498^(1/5) 2415781204032788 a001 987/3010349*(1/2+1/2*5^(1/2))^52 2415781204032788 a001 987/3010349*23725150497407^(13/16) 2415781204032788 a001 987/3010349*505019158607^(13/14) 2415781204032809 a001 1134903170/2207*1860498^(4/15) 2415781204032832 a001 701408733/2207*1860498^(3/10) 2415781204032856 a001 433494437/2207*1860498^(1/3) 2415781204032864 a001 1346269/2207*7881196^(2/3) 2415781204032890 a001 1346269/2207*312119004989^(2/5) 2415781204032890 a001 1346269/2207*(1/2+1/2*5^(1/2))^22 2415781204032890 a001 1346269/2207*10749957122^(11/24) 2415781204032890 a001 1346269/2207*4106118243^(11/23) 2415781204032890 a001 1346269/2207*1568397607^(1/2) 2415781204032890 a001 1346269/2207*599074578^(11/21) 2415781204032890 a001 1346269/2207*228826127^(11/20) 2415781204032890 a001 1346269/2207*87403803^(11/19) 2415781204032891 a001 1346269/2207*33385282^(11/18) 2415781204032899 a001 1346269/2207*12752043^(11/17) 2415781204032902 a001 165580141/2207*1860498^(2/5) 2415781204032949 a001 63245986/2207*1860498^(7/15) 2415781204032960 a001 1346269/2207*4870847^(11/16) 2415781204032965 a001 20365011074/2207*710647^(1/14) 2415781204032972 a001 39088169/2207*1860498^(1/2) 2415781204032996 a001 24157817/2207*1860498^(8/15) 2415781204033010 a001 987*1860498^(7/10) 2415781204033047 a001 9227465/2207*1860498^(3/5) 2415781204033127 a001 3524578/2207*1860498^(2/3) 2415781204033219 a001 10050132965019/416020 2415781204033306 a001 7778742049/2207*710647^(1/7) 2415781204033401 a001 1346269/2207*1860498^(11/15) 2415781204033648 a001 2971215073/2207*710647^(3/14) 2415781204033819 a001 1836311903/2207*710647^(1/4) 2415781204033990 a001 1134903170/2207*710647^(2/7) 2415781204034331 a001 433494437/2207*710647^(5/14) 2415781204034348 a001 987/1149851*312119004989^(10/11) 2415781204034348 a001 987/1149851*(1/2+1/2*5^(1/2))^50 2415781204034348 a001 987/1149851*3461452808002^(5/6) 2415781204034422 a001 514229/2207*7881196^(8/11) 2415781204034450 a001 514229/2207*141422324^(8/13) 2415781204034450 a001 514229/2207*2537720636^(8/15) 2415781204034450 a001 514229/2207*45537549124^(8/17) 2415781204034450 a001 514229/2207*14662949395604^(8/21) 2415781204034450 a001 514229/2207*(1/2+1/2*5^(1/2))^24 2415781204034450 a001 514229/2207*192900153618^(4/9) 2415781204034450 a001 514229/2207*73681302247^(6/13) 2415781204034450 a001 514229/2207*10749957122^(1/2) 2415781204034450 a001 514229/2207*4106118243^(12/23) 2415781204034450 a001 514229/2207*1568397607^(6/11) 2415781204034450 a001 514229/2207*599074578^(4/7) 2415781204034450 a001 514229/2207*228826127^(3/5) 2415781204034450 a001 514229/2207*87403803^(12/19) 2415781204034452 a001 514229/2207*33385282^(2/3) 2415781204034461 a001 514229/2207*12752043^(12/17) 2415781204034526 a001 514229/2207*4870847^(3/4) 2415781204034673 a001 165580141/2207*710647^(3/7) 2415781204035008 a001 514229/2207*1860498^(4/5) 2415781204035015 a001 63245986/2207*710647^(1/2) 2415781204035145 a001 20365011074/2207*271443^(1/13) 2415781204035357 a001 24157817/2207*710647^(4/7) 2415781204035704 a001 9227465/2207*710647^(9/14) 2415781204036079 a001 3524578/2207*710647^(5/7) 2415781204036109 a001 987*710647^(3/4) 2415781204036648 a001 1346269/2207*710647^(11/14) 2415781204037305 a001 196862010317/8149 2415781204037667 a001 7778742049/2207*271443^(2/13) 2415781204038550 a001 514229/2207*710647^(6/7) 2415781204040189 a001 2971215073/2207*271443^(3/13) 2415781204041987 a001 32951280099/2207*103682^(1/24) 2415781204042711 a001 1134903170/2207*271443^(4/13) 2415781204045045 a001 987/439204*45537549124^(16/17) 2415781204045045 a001 987/439204*14662949395604^(16/21) 2415781204045045 a001 987/439204*(1/2+1/2*5^(1/2))^48 2415781204045045 a001 987/439204*192900153618^(8/9) 2415781204045045 a001 987/439204*73681302247^(12/13) 2415781204045146 a001 196418/2207*141422324^(2/3) 2415781204045146 a001 196418/2207*(1/2+1/2*5^(1/2))^26 2415781204045146 a001 196418/2207*73681302247^(1/2) 2415781204045146 a001 196418/2207*10749957122^(13/24) 2415781204045146 a001 196418/2207*4106118243^(13/23) 2415781204045146 a001 196418/2207*1568397607^(13/22) 2415781204045146 a001 196418/2207*599074578^(13/21) 2415781204045146 a001 196418/2207*228826127^(13/20) 2415781204045147 a001 196418/2207*87403803^(13/19) 2415781204045148 a001 196418/2207*33385282^(13/18) 2415781204045158 a001 196418/2207*12752043^(13/17) 2415781204045229 a001 196418/2207*4870847^(13/16) 2415781204045233 a001 433494437/2207*271443^(5/13) 2415781204045751 a001 196418/2207*1860498^(13/15) 2415781204047755 a001 165580141/2207*271443^(6/13) 2415781204049016 a001 102334155/2207*271443^(1/2) 2415781204049588 a001 196418/2207*710647^(13/14) 2415781204050278 a001 63245986/2207*271443^(7/13) 2415781204051350 a001 20365011074/2207*103682^(1/12) 2415781204052800 a001 24157817/2207*271443^(8/13) 2415781204055327 a001 9227465/2207*271443^(9/13) 2415781204057883 a001 3524578/2207*271443^(10/13) 2415781204060632 a001 1346269/2207*271443^(11/13) 2415781204060714 a001 12586269025/2207*103682^(1/8) 2415781204064715 a001 514229/2207*271443^(12/13) 2415781204065308 a001 2932589277051/121393 2415781204070077 a001 7778742049/2207*103682^(1/6) 2415781204079441 a001 4807526976/2207*103682^(5/24) 2415781204088804 a001 2971215073/2207*103682^(1/4) 2415781204098168 a001 1836311903/2207*103682^(7/24) 2415781204102636 a001 32951280099/2207*39603^(1/22) 2415781204107531 a001 1134903170/2207*103682^(1/3) 2415781204116895 a001 701408733/2207*103682^(3/8) 2415781204118358 a001 987/167761*(1/2+1/2*5^(1/2))^46 2415781204118358 a001 987/167761*10749957122^(23/24) 2415781204118456 a001 75025/2207*20633239^(4/5) 2415781204118460 a001 75025/2207*17393796001^(4/7) 2415781204118460 a001 75025/2207*14662949395604^(4/9) 2415781204118460 a001 75025/2207*(1/2+1/2*5^(1/2))^28 2415781204118460 a001 75025/2207*73681302247^(7/13) 2415781204118460 a001 75025/2207*10749957122^(7/12) 2415781204118460 a001 75025/2207*4106118243^(14/23) 2415781204118460 a001 75025/2207*1568397607^(7/11) 2415781204118460 a001 75025/2207*599074578^(2/3) 2415781204118460 a001 75025/2207*228826127^(7/10) 2415781204118460 a001 75025/2207*87403803^(14/19) 2415781204118462 a001 75025/2207*33385282^(7/9) 2415781204118472 a001 75025/2207*12752043^(14/17) 2415781204118549 a001 75025/2207*4870847^(7/8) 2415781204119112 a001 75025/2207*1860498^(14/15) 2415781204126258 a001 433494437/2207*103682^(5/12) 2415781204135622 a001 267914296/2207*103682^(11/24) 2415781204144985 a001 165580141/2207*103682^(1/2) 2415781204154349 a001 102334155/2207*103682^(13/24) 2415781204163713 a001 63245986/2207*103682^(7/12) 2415781204172649 a001 20365011074/2207*39603^(1/11) 2415781204173076 a001 39088169/2207*103682^(5/8) 2415781204182440 a001 24157817/2207*103682^(2/3) 2415781204191801 a001 14930352/2207*103682^(17/24) 2415781204201172 a001 9227465/2207*103682^(3/4) 2415781204210515 a001 5702887/2207*103682^(19/24) 2415781204219932 a001 3524578/2207*103682^(5/6) 2415781204229155 a001 987*103682^(7/8) 2415781204238887 a001 1346269/2207*103682^(11/12) 2415781204242662 a001 12586269025/2207*39603^(3/22) 2415781204247286 a001 832040/2207*103682^(23/24) 2415781204257246 a001 26670224495/1104 2415781204312675 a001 7778742049/2207*39603^(2/11) 2415781204382688 a001 4807526976/2207*39603^(5/22) 2415781204452701 a001 2971215073/2207*39603^(3/11) 2415781204522714 a001 1836311903/2207*39603^(7/22) 2415781204560487 a001 32951280099/2207*15127^(1/20) 2415781204592727 a001 1134903170/2207*39603^(4/11) 2415781204620858 a001 987/64079*312119004989^(4/5) 2415781204620858 a001 987/64079*(1/2+1/2*5^(1/2))^44 2415781204620858 a001 987/64079*23725150497407^(11/16) 2415781204620858 a001 987/64079*73681302247^(11/13) 2415781204620858 a001 987/64079*10749957122^(11/12) 2415781204620858 a001 987/64079*4106118243^(22/23) 2415781204620925 a001 28657/2207*7881196^(10/11) 2415781204620955 a001 28657/2207*20633239^(6/7) 2415781204620960 a001 28657/2207*141422324^(10/13) 2415781204620960 a001 28657/2207*2537720636^(2/3) 2415781204620960 a001 28657/2207*45537549124^(10/17) 2415781204620960 a001 28657/2207*312119004989^(6/11) 2415781204620960 a001 28657/2207*14662949395604^(10/21) 2415781204620960 a001 28657/2207*(1/2+1/2*5^(1/2))^30 2415781204620960 a001 28657/2207*192900153618^(5/9) 2415781204620960 a001 28657/2207*28143753123^(3/5) 2415781204620960 a001 28657/2207*10749957122^(5/8) 2415781204620960 a001 28657/2207*4106118243^(15/23) 2415781204620960 a001 28657/2207*1568397607^(15/22) 2415781204620960 a001 28657/2207*599074578^(5/7) 2415781204620960 a001 28657/2207*228826127^(3/4) 2415781204620960 a001 28657/2207*87403803^(15/19) 2415781204620962 a001 28657/2207*33385282^(5/6) 2415781204620973 a001 28657/2207*12752043^(15/17) 2415781204621055 a001 28657/2207*4870847^(15/16) 2415781204662740 a001 701408733/2207*39603^(9/22) 2415781204732753 a001 433494437/2207*39603^(5/11) 2415781204802766 a001 267914296/2207*39603^(1/2) 2415781204843417 a001 53316291173/3571*521^(1/13) 2415781204872779 a001 165580141/2207*39603^(6/11) 2415781204942792 a001 102334155/2207*39603^(13/22) 2415781205012805 a001 63245986/2207*39603^(7/11) 2415781205082818 a001 39088169/2207*39603^(15/22) 2415781205088351 a001 20365011074/2207*15127^(1/10) 2415781205152832 a001 24157817/2207*39603^(8/11) 2415781205222842 a001 14930352/2207*39603^(17/22) 2415781205292863 a001 9227465/2207*39603^(9/11) 2415781205362855 a001 5702887/2207*39603^(19/22) 2415781205432922 a001 3524578/2207*39603^(10/11) 2415781205502794 a001 987*39603^(21/22) 2415781205572807 a001 427859009319/17711 2415781205616215 a001 12586269025/2207*15127^(3/20) 2415781206144079 a001 7778742049/2207*15127^(1/5) 2415781206671943 a001 4807526976/2207*15127^(1/4) 2415781207199807 a001 2971215073/2207*15127^(3/10) 2415781207727671 a001 1836311903/2207*15127^(7/20) 2415781208052660 a001 32951280099/2207*5778^(1/18) 2415781208065043 a001 987/24476*2537720636^(14/15) 2415781208065043 a001 987/24476*17393796001^(6/7) 2415781208065043 a001 987/24476*45537549124^(14/17) 2415781208065043 a001 987/24476*14662949395604^(2/3) 2415781208065043 a001 987/24476*(1/2+1/2*5^(1/2))^42 2415781208065043 a001 987/24476*505019158607^(3/4) 2415781208065043 a001 987/24476*192900153618^(7/9) 2415781208065043 a001 987/24476*10749957122^(7/8) 2415781208065043 a001 987/24476*4106118243^(21/23) 2415781208065043 a001 987/24476*1568397607^(21/22) 2415781208065145 a001 10946/2207*(1/2+1/2*5^(1/2))^32 2415781208065145 a001 10946/2207*23725150497407^(1/2) 2415781208065145 a001 10946/2207*73681302247^(8/13) 2415781208065145 a001 10946/2207*10749957122^(2/3) 2415781208065145 a001 10946/2207*4106118243^(16/23) 2415781208065145 a001 10946/2207*1568397607^(8/11) 2415781208065145 a001 10946/2207*599074578^(16/21) 2415781208065145 a001 10946/2207*228826127^(4/5) 2415781208065145 a001 10946/2207*87403803^(16/19) 2415781208065147 a001 10946/2207*33385282^(8/9) 2415781208065159 a001 10946/2207*12752043^(16/17) 2415781208255344 a001 12586269025/9349*1364^(2/5) 2415781208255534 a001 1134903170/2207*15127^(2/5) 2415781208783398 a001 701408733/2207*15127^(9/20) 2415781209311262 a001 433494437/2207*15127^(1/2) 2415781209839126 a001 267914296/2207*15127^(11/20) 2415781210366990 a001 165580141/2207*15127^(3/5) 2415781210894854 a001 102334155/2207*15127^(13/20) 2415781211422718 a001 63245986/2207*15127^(7/10) 2415781211950582 a001 39088169/2207*15127^(3/4) 2415781212072697 a001 20365011074/2207*5778^(1/9) 2415781212478447 a001 24157817/2207*15127^(4/5) 2415781213006308 a001 14930352/2207*15127^(17/20) 2415781213534180 a001 9227465/2207*15127^(9/10) 2415781214062023 a001 5702887/2207*15127^(19/20) 2415781214370152 a001 63245986/843*843^(6/7) 2415781214589800 a001 54475866389/2255 2415781214589803 a001 48315631/2-3/2*5^(1/2) 2415781215153536 r005 Im(z^2+c),c=-17/14+33/212*I,n=6 2415781216092734 a001 12586269025/2207*5778^(1/6) 2415781220112771 a001 7778742049/2207*5778^(2/9) 2415781220165116 m005 (1/2*2^(1/2)-7/8)/(2*Pi+2/3) 2415781220693264 a008 Real Root of x^3-x^2-80*x+185 2415781224132807 a001 4807526976/2207*5778^(5/18) 2415781224342566 a007 Real Root Of 767*x^4-564*x^3+824*x^2+160*x-20 2415781228152844 a001 2971215073/2207*5778^(1/3) 2415781228476020 r009 Im(z^3+c),c=-17/40+6/49*I,n=34 2415781231671836 a001 987/9349*2537720636^(8/9) 2415781231671836 a001 987/9349*312119004989^(8/11) 2415781231671836 a001 987/9349*(1/2+1/2*5^(1/2))^40 2415781231671836 a001 987/9349*23725150497407^(5/8) 2415781231671836 a001 987/9349*73681302247^(10/13) 2415781231671836 a001 987/9349*28143753123^(4/5) 2415781231671836 a001 987/9349*10749957122^(5/6) 2415781231671836 a001 987/9349*4106118243^(20/23) 2415781231671836 a001 987/9349*1568397607^(10/11) 2415781231671836 a001 987/9349*599074578^(20/21) 2415781231671938 a001 4181/2207*45537549124^(2/3) 2415781231671938 a001 4181/2207*(1/2+1/2*5^(1/2))^34 2415781231671938 a001 4181/2207*10749957122^(17/24) 2415781231671938 a001 4181/2207*4106118243^(17/23) 2415781231671938 a001 4181/2207*1568397607^(17/22) 2415781231671938 a001 4181/2207*599074578^(17/21) 2415781231671938 a001 4181/2207*228826127^(17/20) 2415781231671938 a001 4181/2207*87403803^(17/19) 2415781231671940 a001 4181/2207*33385282^(17/18) 2415781232172881 a001 1836311903/2207*5778^(7/18) 2415781235030581 a001 32951280099/2207*2207^(1/16) 2415781236192918 a001 1134903170/2207*5778^(4/9) 2415781240212955 a001 701408733/2207*5778^(1/2) 2415781244232992 a001 433494437/2207*5778^(5/9) 2415781246662214 g005 GAMMA(5/11)*GAMMA(7/9)*GAMMA(6/7)/GAMMA(10/11) 2415781248253029 a001 267914296/2207*5778^(11/18) 2415781248978742 l006 ln(539/6036) 2415781249304450 a007 Real Root Of -779*x^4+251*x^3+82*x^2+731*x+178 2415781252273066 a001 165580141/2207*5778^(2/3) 2415781252786404 a001 24157817-2*5^(1/2) 2415781255302043 a003 cos(Pi*5/113)-sin(Pi*47/103) 2415781256293103 a001 102334155/2207*5778^(13/18) 2415781256622738 a001 32951280099/15127*1364^(1/3) 2415781257854496 m001 (ln(3)-BesselI(1,1))/(FeigenbaumD-Weierstrass) 2415781260313140 a001 63245986/2207*5778^(7/9) 2415781264333177 a001 39088169/2207*5778^(5/6) 2415781265639730 a001 86267571272/39603*1364^(1/3) 2415781266028539 a001 20365011074/2207*2207^(1/8) 2415781266955292 a001 225851433717/103682*1364^(1/3) 2415781267147230 a001 591286729879/271443*1364^(1/3) 2415781267175233 a001 1548008755920/710647*1364^(1/3) 2415781267179319 a001 4052739537881/1860498*1364^(1/3) 2415781267179915 a001 2178309*1364^(1/3) 2415781267180283 a001 6557470319842/3010349*1364^(1/3) 2415781267181844 a001 2504730781961/1149851*1364^(1/3) 2415781267192540 a001 956722026041/439204*1364^(1/3) 2415781267265854 a001 365435296162/167761*1364^(1/3) 2415781267768354 a001 139583862445/64079*1364^(1/3) 2415781268353215 a001 24157817/2207*5778^(8/9) 2415781271212538 a001 53316291173/24476*1364^(1/3) 2415781272373249 a001 14930352/2207*5778^(17/18) 2415781276393188 a001 31211894091/1292 2415781276439362 m001 (Niven-ZetaQ(3))/(2*Pi/GAMMA(5/6)+Backhouse) 2415781276446521 m005 (1/2*2^(1/2)+1/11)/(6/7*Zeta(3)-7/10) 2415781277612698 a007 Real Root Of -363*x^4-708*x^3+334*x^2-x+430 2415781281383340 a001 10182505537/2889*1364^(4/15) 2415781282064571 r009 Re(z^3+c),c=-55/114+13/27*I,n=57 2415781283354651 a001 55/7*64079^(13/42) 2415781283494732 a001 2971215073/3571*1364^(7/15) 2415781289862775 m001 Mills/FeigenbaumMu*TwinPrimes 2415781294368350 m001 (-BesselI(1,2)+Lehmer)/(5^(1/2)+Ei(1)) 2415781294819332 a001 20365011074/9349*1364^(1/3) 2415781297026498 a001 12586269025/2207*2207^(3/16) 2415781299900683 m001 KhinchinHarmonic+Riemann3rdZero^cos(1/12*Pi) 2415781306544040 r005 Re(z^2+c),c=-23/54+2/5*I,n=5 2415781311497925 m001 (Ei(1)-Psi(2,1/3))/(-FeigenbaumB+Gompertz) 2415781315980418 m001 (Otter-Stephens)/(ln(5)-GolombDickman) 2415781321444901 r005 Im(z^2+c),c=-5/24+26/45*I,n=3 2415781324630709 m001 Mills^FeigenbaumAlpha+arctan(1/2) 2415781328024457 a001 7778742049/2207*2207^(1/4) 2415781329369795 m001 (Riemann2ndZero+Totient)/(Catalan-gamma(2)) 2415781338169492 a007 Real Root Of -799*x^4-393*x^3-817*x^2+874*x+256 2415781340364207 r005 Re(z^2+c),c=-24/31+7/61*I,n=4 2415781343186727 a001 53316291173/15127*1364^(4/15) 2415781350600217 r005 Im(z^2+c),c=-7/11+6/53*I,n=8 2415781352203721 a001 139583862445/39603*1364^(4/15) 2415781353092293 r005 Re(z^2+c),c=-23/110+17/38*I,n=25 2415781353519282 a001 182717648081/51841*1364^(4/15) 2415781353711220 a001 956722026041/271443*1364^(4/15) 2415781353739223 a001 2504730781961/710647*1364^(4/15) 2415781353743309 a001 3278735159921/930249*1364^(4/15) 2415781353744273 a001 10610209857723/3010349*1364^(4/15) 2415781353745834 a001 4052739537881/1149851*1364^(4/15) 2415781353756530 a001 387002188980/109801*1364^(4/15) 2415781353829844 a001 591286729879/167761*1364^(4/15) 2415781354332344 a001 225851433717/64079*1364^(4/15) 2415781357776529 a001 21566892818/6119*1364^(4/15) 2415781357885925 a007 Real Root Of 850*x^4+497*x^3-557*x^2-428*x+126 2415781359022417 a001 4807526976/2207*2207^(5/16) 2415781359293851 r009 Re(z^3+c),c=-41/110+28/61*I,n=49 2415781367947330 a001 10983760033/1926*1364^(1/5) 2415781367965047 a007 Real Root Of 56*x^4-349*x^3+228*x^2+410*x+692 2415781370058723 a001 4807526976/3571*1364^(2/5) 2415781370651658 a007 Real Root Of 525*x^4+856*x^3-875*x^2+260*x-78 2415781376393202 a001 24157816-5^(1/2) 2415781378668577 r005 Re(z^2+c),c=-11/31+22/31*I,n=6 2415781381383323 a001 32951280099/9349*1364^(4/15) 2415781381459922 r005 Im(z^2+c),c=-121/118+15/61*I,n=62 2415781383020168 a007 Real Root Of 35*x^4-77*x^3-729*x^2-887*x-166 2415781390020377 a001 2971215073/2207*2207^(3/8) 2415781393475216 a001 987/3571*817138163596^(2/3) 2415781393475216 a001 987/3571*(1/2+1/2*5^(1/2))^38 2415781393475216 a001 987/3571*10749957122^(19/24) 2415781393475216 a001 987/3571*4106118243^(19/23) 2415781393475216 a001 987/3571*1568397607^(19/22) 2415781393475216 a001 987/3571*599074578^(19/21) 2415781393475216 a001 987/3571*228826127^(19/20) 2415781393475303 a001 1597/2207*141422324^(12/13) 2415781393475303 a001 1597/2207*2537720636^(4/5) 2415781393475303 a001 1597/2207*45537549124^(12/17) 2415781393475303 a001 1597/2207*14662949395604^(4/7) 2415781393475303 a001 1597/2207*(1/2+1/2*5^(1/2))^36 2415781393475303 a001 1597/2207*192900153618^(2/3) 2415781393475303 a001 1597/2207*73681302247^(9/13) 2415781393475303 a001 1597/2207*10749957122^(3/4) 2415781393475303 a001 1597/2207*4106118243^(18/23) 2415781393475303 a001 1597/2207*1568397607^(9/11) 2415781393475303 a001 1597/2207*599074578^(6/7) 2415781393475303 a001 1597/2207*228826127^(9/10) 2415781393475303 a001 1597/2207*87403803^(18/19) 2415781398175789 l006 ln(5149/6556) 2415781399999997 a001 7465173+7465176*5^(1/2) 2415781404187415 a001 7/377*4181^(43/50) 2415781421018337 a001 1836311903/2207*2207^(7/16) 2415781421636031 r009 Re(z^3+c),c=-13/90+57/59*I,n=32 2415781422027685 m001 exp(GAMMA(1/6))^2*FeigenbaumD*log(2+sqrt(3)) 2415781429750720 a001 86267571272/15127*1364^(1/5) 2415781430704118 m001 2^(1/2)+Sierpinski^ZetaQ(4) 2415781433220439 r005 Re(z^2+c),c=-4/29+27/49*I,n=23 2415781435803417 m001 FeigenbaumDelta/(Lehmer^Pi) 2415781437830728 r005 Re(z^2+c),c=-8/27+5/58*I,n=6 2415781438196618 a001 38580029568/1597 2415781438767714 a001 75283811239/13201*1364^(1/5) 2415781440083275 a001 591286729879/103682*1364^(1/5) 2415781440275213 a001 516002918640/90481*1364^(1/5) 2415781440303217 a001 4052739537881/710647*1364^(1/5) 2415781440307302 a001 3536736619241/620166*1364^(1/5) 2415781440309827 a001 6557470319842/1149851*1364^(1/5) 2415781440320524 a001 2504730781961/439204*1364^(1/5) 2415781440393837 a001 956722026041/167761*1364^(1/5) 2415781440896337 a001 365435296162/64079*1364^(1/5) 2415781443257332 m005 (1/2*Pi+5/9)/(1/24+3/8*5^(1/2)) 2415781444340522 a001 139583862445/24476*1364^(1/5) 2415781446847533 a001 32951280099/2207*843^(1/14) 2415781449340296 a001 31622993/2889*3571^(16/17) 2415781450904419 v002 sum(1/(5^n*(20*n^2-47*n+36)),n=1..infinity) 2415781451408318 m005 (1/3*2^(1/2)-1/10)/(1/5*Pi+10/11) 2415781452016298 a001 1134903170/2207*2207^(1/2) 2415781454511324 a001 53316291173/5778*1364^(2/15) 2415781454649872 m004 -6+15*Log[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi] 2415781456622717 a001 7778742049/3571*1364^(1/3) 2415781457185063 a001 39088169/843*843^(13/14) 2415781459947621 r005 Im(z^2+c),c=-11/30+25/63*I,n=34 2415781460483985 a001 34111385/1926*3571^(15/17) 2415781467947318 a001 53316291173/9349*1364^(1/5) 2415781471627674 a001 165580141/5778*3571^(14/17) 2415781474239811 r005 Im(z^2+c),c=-2/5+13/47*I,n=3 2415781476393202 a001 24157817-5^(1/2) 2415781482771362 a001 133957148/2889*3571^(13/17) 2415781483014259 a001 701408733/2207*2207^(9/16) 2415781487101669 q001 1592/659 2415781493915051 a001 433494437/5778*3571^(12/17) 2415781494419646 l006 ln(675/7559) 2415781499999997 a001 7465174+7465176*5^(1/2) 2415781505058740 a001 233802911/1926*3571^(11/17) 2415781509016906 a001 38580030699/1597 2415781510331872 a001 38580030720/1597 2415781510519724 a001 38580030723/1597 2415781510557294 a001 2/1597*(1/2+1/2*5^(1/2))^54 2415781510557294 a001 192900153618/1597*8^(1/3) 2415781510582341 a001 38580030724/1597 2415781510644959 a001 38580030725/1597 2415781511143688 a001 165580141/15127*3571^(16/17) 2415781511145898 a001 38580030733/1597 2415781514012221 a001 433494437/2207*2207^(5/8) 2415781514527780 m003 9/5+Sqrt[5]/64+Sqrt[5]/(8*Log[1/2+Sqrt[5]/2]) 2415781514589855 a001 38580030788/1597 2415781516202429 a001 567451585/2889*3571^(10/17) 2415781516314716 a001 139583862445/15127*1364^(2/15) 2415781518439703 a007 Real Root Of -755*x^4+94*x^3-265*x^2+987*x+24 2415781520160682 a001 433494437/39603*3571^(16/17) 2415781521476244 a001 567451585/51841*3571^(16/17) 2415781521668182 a001 2971215073/271443*3571^(16/17) 2415781521696185 a001 7778742049/710647*3571^(16/17) 2415781521700271 a001 10182505537/930249*3571^(16/17) 2415781521700867 a001 53316291173/4870847*3571^(16/17) 2415781521700954 a001 139583862445/12752043*3571^(16/17) 2415781521700966 a001 182717648081/16692641*3571^(16/17) 2415781521700968 a001 956722026041/87403803*3571^(16/17) 2415781521700968 a001 2504730781961/228826127*3571^(16/17) 2415781521700969 a001 3278735159921/299537289*3571^(16/17) 2415781521700969 a001 10610209857723/969323029*3571^(16/17) 2415781521700969 a001 4052739537881/370248451*3571^(16/17) 2415781521700969 a001 387002188980/35355581*3571^(16/17) 2415781521700969 a001 591286729879/54018521*3571^(16/17) 2415781521700974 a001 7787980473/711491*3571^(16/17) 2415781521701007 a001 21566892818/1970299*3571^(16/17) 2415781521701235 a001 32951280099/3010349*3571^(16/17) 2415781521702796 a001 12586269025/1149851*3571^(16/17) 2415781521713492 a001 1201881744/109801*3571^(16/17) 2415781521786806 a001 1836311903/167761*3571^(16/17) 2415781522287377 a001 267914296/15127*3571^(15/17) 2415781522289306 a001 701408733/64079*3571^(16/17) 2415781524179521 b008 1+7*(1/6+Pi) 2415781525331710 a001 365435296162/39603*1364^(2/15) 2415781525733491 a001 10946*3571^(16/17) 2415781526647272 a001 956722026041/103682*1364^(2/15) 2415781526839210 a001 2504730781961/271443*1364^(2/15) 2415781526867213 a001 6557470319842/710647*1364^(2/15) 2415781526873824 a001 10610209857723/1149851*1364^(2/15) 2415781526884520 a001 4052739537881/439204*1364^(2/15) 2415781526957834 a001 140728068720/15251*1364^(2/15) 2415781527346118 a001 1836311903/5778*3571^(9/17) 2415781527460334 a001 591286729879/64079*1364^(2/15) 2415781530904519 a001 7787980473/844*1364^(2/15) 2415781531304371 a001 17711*3571^(15/17) 2415781532619933 a001 1836311903/103682*3571^(15/17) 2415781532811871 a001 1602508992/90481*3571^(15/17) 2415781532839874 a001 12586269025/710647*3571^(15/17) 2415781532843960 a001 10983760033/620166*3571^(15/17) 2415781532844556 a001 86267571272/4870847*3571^(15/17) 2415781532844643 a001 75283811239/4250681*3571^(15/17) 2415781532844655 a001 591286729879/33385282*3571^(15/17) 2415781532844657 a001 516002918640/29134601*3571^(15/17) 2415781532844657 a001 4052739537881/228826127*3571^(15/17) 2415781532844658 a001 3536736619241/199691526*3571^(15/17) 2415781532844658 a001 6557470319842/370248451*3571^(15/17) 2415781532844658 a001 2504730781961/141422324*3571^(15/17) 2415781532844658 a001 956722026041/54018521*3571^(15/17) 2415781532844663 a001 365435296162/20633239*3571^(15/17) 2415781532844696 a001 139583862445/7881196*3571^(15/17) 2415781532844924 a001 53316291173/3010349*3571^(15/17) 2415781532846485 a001 20365011074/1149851*3571^(15/17) 2415781532857181 a001 7778742049/439204*3571^(15/17) 2415781532930495 a001 2971215073/167761*3571^(15/17) 2415781533431066 a001 433494437/15127*3571^(14/17) 2415781533432995 a001 1134903170/64079*3571^(15/17) 2415781534680481 r005 Im(z^2+c),c=-11/102+45/53*I,n=57 2415781536877180 a001 433494437/24476*3571^(15/17) 2415781538196601 a001 48315633/2-1/2*5^(1/2) 2415781538196618 a001 38580031165/1597 2415781538489807 a001 2971215073/5778*3571^(8/17) 2415781538720714 m001 ArtinRank2/Zeta(1,-1)/KhinchinHarmonic 2415781539584203 r005 Re(z^2+c),c=-11/90+26/49*I,n=14 2415781541075321 a001 43133785636/2889*1364^(1/15) 2415781541737090 m001 (Zeta(3)-StronglyCareFree)/(ZetaP(3)+ZetaQ(4)) 2415781542448060 a001 1134903170/39603*3571^(14/17) 2415781543186714 a001 12586269025/3571*1364^(4/15) 2415781543763622 a001 2971215073/103682*3571^(14/17) 2415781543955560 a001 7778742049/271443*3571^(14/17) 2415781543983563 a001 20365011074/710647*3571^(14/17) 2415781543987649 a001 53316291173/1860498*3571^(14/17) 2415781543988245 a001 139583862445/4870847*3571^(14/17) 2415781543988332 a001 365435296162/12752043*3571^(14/17) 2415781543988344 a001 956722026041/33385282*3571^(14/17) 2415781543988346 a001 2504730781961/87403803*3571^(14/17) 2415781543988347 a001 6557470319842/228826127*3571^(14/17) 2415781543988347 a001 10610209857723/370248451*3571^(14/17) 2415781543988347 a001 4052739537881/141422324*3571^(14/17) 2415781543988347 a001 1548008755920/54018521*3571^(14/17) 2415781543988352 a001 591286729879/20633239*3571^(14/17) 2415781543988385 a001 225851433717/7881196*3571^(14/17) 2415781543988613 a001 86267571272/3010349*3571^(14/17) 2415781543990174 a001 32951280099/1149851*3571^(14/17) 2415781544000870 a001 12586269025/439204*3571^(14/17) 2415781544074184 a001 4807526976/167761*3571^(14/17) 2415781544574755 a001 701408733/15127*3571^(13/17) 2415781544576684 a001 28657*3571^(14/17) 2415781545010183 a001 267914296/2207*2207^(11/16) 2415781548020869 a001 701408733/24476*3571^(14/17) 2415781549340287 a001 102334155/9349*3571^(16/17) 2415781549633496 a001 267084832/321*3571^(7/17) 2415781553591749 a001 1836311903/39603*3571^(13/17) 2415781554511315 a001 86267571272/9349*1364^(2/15) 2415781554907311 a001 46368*3571^(13/17) 2415781555099249 a001 12586269025/271443*3571^(13/17) 2415781555127252 a001 32951280099/710647*3571^(13/17) 2415781555131338 a001 43133785636/930249*3571^(13/17) 2415781555131934 a001 225851433717/4870847*3571^(13/17) 2415781555132021 a001 591286729879/12752043*3571^(13/17) 2415781555132034 a001 774004377960/16692641*3571^(13/17) 2415781555132035 a001 4052739537881/87403803*3571^(13/17) 2415781555132036 a001 225749145909/4868641*3571^(13/17) 2415781555132036 a001 3278735159921/70711162*3571^(13/17) 2415781555132036 a001 2504730781961/54018521*3571^(13/17) 2415781555132041 a001 956722026041/20633239*3571^(13/17) 2415781555132075 a001 182717648081/3940598*3571^(13/17) 2415781555132302 a001 139583862445/3010349*3571^(13/17) 2415781555133863 a001 53316291173/1149851*3571^(13/17) 2415781555144559 a001 10182505537/219602*3571^(13/17) 2415781555217873 a001 7778742049/167761*3571^(13/17) 2415781555278643 a001 1292/2889*(1/2+1/2*5^(1/2))^37 2415781555718445 a001 1134903170/15127*3571^(12/17) 2415781555720373 a001 2971215073/64079*3571^(13/17) 2415781557943768 r009 Im(z^3+c),c=-7/74+31/36*I,n=44 2415781559164558 a001 567451585/12238*3571^(13/17) 2415781560483976 a001 165580141/9349*3571^(15/17) 2415781560765098 h001 (4/9*exp(2)+1/10)/(1/5*exp(1)+6/7) 2415781560777185 a001 7778742049/5778*3571^(6/17) 2415781564735438 a001 2971215073/39603*3571^(12/17) 2415781566051000 a001 7778742049/103682*3571^(12/17) 2415781566242938 a001 20365011074/271443*3571^(12/17) 2415781566270941 a001 53316291173/710647*3571^(12/17) 2415781566275027 a001 139583862445/1860498*3571^(12/17) 2415781566275623 a001 365435296162/4870847*3571^(12/17) 2415781566275710 a001 956722026041/12752043*3571^(12/17) 2415781566275723 a001 2504730781961/33385282*3571^(12/17) 2415781566275725 a001 6557470319842/87403803*3571^(12/17) 2415781566275725 a001 10610209857723/141422324*3571^(12/17) 2415781566275726 a001 4052739537881/54018521*3571^(12/17) 2415781566275730 a001 140728068720/1875749*3571^(12/17) 2415781566275764 a001 591286729879/7881196*3571^(12/17) 2415781566275991 a001 225851433717/3010349*3571^(12/17) 2415781566277552 a001 86267571272/1149851*3571^(12/17) 2415781566288248 a001 32951280099/439204*3571^(12/17) 2415781566361562 a001 75025*3571^(12/17) 2415781566862134 a001 1836311903/15127*3571^(11/17) 2415781566864062 a001 4807526976/64079*3571^(12/17) 2415781570308247 a001 1836311903/24476*3571^(12/17) 2415781571627665 a001 267914296/9349*3571^(14/17) 2415781571920874 a001 12586269025/5778*3571^(5/17) 2415781574183084 r009 Re(z^3+c),c=-31/86+19/44*I,n=21 2415781574686799 a001 322/317811*233^(32/55) 2415781575879128 a001 1602508992/13201*3571^(11/17) 2415781576008145 a001 165580141/2207*2207^(3/4) 2415781577194689 a001 12586269025/103682*3571^(11/17) 2415781577386627 a001 121393*3571^(11/17) 2415781577414630 a001 86267571272/710647*3571^(11/17) 2415781577418716 a001 75283811239/620166*3571^(11/17) 2415781577419312 a001 591286729879/4870847*3571^(11/17) 2415781577419399 a001 516002918640/4250681*3571^(11/17) 2415781577419412 a001 4052739537881/33385282*3571^(11/17) 2415781577419414 a001 3536736619241/29134601*3571^(11/17) 2415781577419415 a001 6557470319842/54018521*3571^(11/17) 2415781577419420 a001 2504730781961/20633239*3571^(11/17) 2415781577419453 a001 956722026041/7881196*3571^(11/17) 2415781577419681 a001 365435296162/3010349*3571^(11/17) 2415781577421241 a001 139583862445/1149851*3571^(11/17) 2415781577431938 a001 53316291173/439204*3571^(11/17) 2415781577505251 a001 20365011074/167761*3571^(11/17) 2415781578005823 a001 2971215073/15127*3571^(10/17) 2415781578007751 a001 7778742049/64079*3571^(11/17) 2415781581451936 a001 2971215073/24476*3571^(11/17) 2415781582771355 a001 433494437/9349*3571^(13/17) 2415781583064564 a001 10182505537/2889*3571^(4/17) 2415781587022817 a001 7778742049/39603*3571^(10/17) 2415781588338379 a001 10182505537/51841*3571^(10/17) 2415781588530316 a001 53316291173/271443*3571^(10/17) 2415781588558320 a001 139583862445/710647*3571^(10/17) 2415781588562405 a001 182717648081/930249*3571^(10/17) 2415781588563001 a001 956722026041/4870847*3571^(10/17) 2415781588563088 a001 2504730781961/12752043*3571^(10/17) 2415781588563101 a001 3278735159921/16692641*3571^(10/17) 2415781588563104 a001 10610209857723/54018521*3571^(10/17) 2415781588563109 a001 4052739537881/20633239*3571^(10/17) 2415781588563142 a001 387002188980/1970299*3571^(10/17) 2415781588563370 a001 591286729879/3010349*3571^(10/17) 2415781588564930 a001 225851433717/1149851*3571^(10/17) 2415781588575627 a001 196418*3571^(10/17) 2415781588648941 a001 32951280099/167761*3571^(10/17) 2415781589149512 a001 686789568/2161*3571^(9/17) 2415781589151440 a001 12586269025/64079*3571^(10/17) 2415781590530580 r009 Im(z^3+c),c=-43/98+7/61*I,n=14 2415781592110362 m001 (cos(1/5*Pi)+FeigenbaumB)/(ZetaP(4)-ZetaQ(3)) 2415781592595626 a001 1201881744/6119*3571^(10/17) 2415781593915044 a001 701408733/9349*3571^(12/17) 2415781593947498 m001 ArtinRank2*FeigenbaumAlpha^2/exp(Lehmer) 2415781594208253 a001 10983760033/1926*3571^(3/17) 2415781598166506 a001 12586269025/39603*3571^(9/17) 2415781599482068 a001 32951280099/103682*3571^(9/17) 2415781599674006 a001 86267571272/271443*3571^(9/17) 2415781599702009 a001 317811*3571^(9/17) 2415781599706095 a001 591286729879/1860498*3571^(9/17) 2415781599706691 a001 1548008755920/4870847*3571^(9/17) 2415781599706778 a001 4052739537881/12752043*3571^(9/17) 2415781599706790 a001 1515744265389/4769326*3571^(9/17) 2415781599706798 a001 6557470319842/20633239*3571^(9/17) 2415781599706831 a001 2504730781961/7881196*3571^(9/17) 2415781599707059 a001 956722026041/3010349*3571^(9/17) 2415781599708620 a001 365435296162/1149851*3571^(9/17) 2415781599719316 a001 139583862445/439204*3571^(9/17) 2415781599792630 a001 53316291173/167761*3571^(9/17) 2415781599999997 a001 7465175+7465176*5^(1/2) 2415781600293201 a001 7778742049/15127*3571^(8/17) 2415781600295130 a001 20365011074/64079*3571^(9/17) 2415781601454704 a001 24157817/5778*9349^(18/19) 2415781602878716 a001 32264490531/2161*1364^(1/15) 2415781602909403 a001 39088169/5778*9349^(17/19) 2415781603739315 a001 7778742049/24476*3571^(9/17) 2415781604031197 a007 Real Root Of -158*x^4-260*x^3-9*x^2-787*x-133 2415781604364105 a001 31622993/2889*9349^(16/19) 2415781605058733 a001 1134903170/9349*3571^(11/17) 2415781605351942 a001 53316291173/5778*3571^(2/17) 2415781605818806 a001 34111385/1926*9349^(15/19) 2415781606586202 a001 15127*34^(11/14) 2415781607006108 a001 102334155/2207*2207^(13/16) 2415781607273507 a001 165580141/5778*9349^(14/19) 2415781608728208 a001 133957148/2889*9349^(13/19) 2415781609310195 a001 20365011074/39603*3571^(8/17) 2415781610182909 a001 433494437/5778*9349^(12/19) 2415781610625757 a001 53316291173/103682*3571^(8/17) 2415781610817695 a001 139583862445/271443*3571^(8/17) 2415781610845698 a001 365435296162/710647*3571^(8/17) 2415781610849784 a001 956722026041/1860498*3571^(8/17) 2415781610850380 a001 2504730781961/4870847*3571^(8/17) 2415781610850467 a001 6557470319842/12752043*3571^(8/17) 2415781610850488 a001 10610209857723/20633239*3571^(8/17) 2415781610850521 a001 4052739537881/7881196*3571^(8/17) 2415781610850749 a001 1548008755920/3010349*3571^(8/17) 2415781610852309 a001 514229*3571^(8/17) 2415781610863005 a001 225851433717/439204*3571^(8/17) 2415781610936319 a001 86267571272/167761*3571^(8/17) 2415781611436891 a001 12586269025/15127*3571^(7/17) 2415781611438819 a001 32951280099/64079*3571^(8/17) 2415781611637610 a001 233802911/1926*9349^(11/19) 2415781611895710 a001 591286729879/39603*1364^(1/15) 2415781613092311 a001 567451585/2889*9349^(10/19) 2415781613211271 a001 774004377960/51841*1364^(1/15) 2415781613403209 a001 4052739537881/271443*1364^(1/15) 2415781613431213 a001 1515744265389/101521*1364^(1/15) 2415781613448520 a001 3278735159921/219602*1364^(1/15) 2415781613521833 a001 2504730781961/167761*1364^(1/15) 2415781614024333 a001 956722026041/64079*1364^(1/15) 2415781614547012 a001 1836311903/5778*9349^(9/19) 2415781614883004 a001 12586269025/24476*3571^(8/17) 2415781616001713 a001 2971215073/5778*9349^(8/19) 2415781616202423 a001 1836311903/9349*3571^(10/17) 2415781616495632 a001 43133785636/2889*3571^(1/17) 2415781617082038 a001 2584/15127*2537720636^(13/15) 2415781617082038 a001 2584/15127*45537549124^(13/17) 2415781617082038 a001 2584/15127*14662949395604^(13/21) 2415781617082038 a001 2584/15127*(1/2+1/2*5^(1/2))^39 2415781617082038 a001 2584/15127*192900153618^(13/18) 2415781617082038 a001 2584/15127*73681302247^(3/4) 2415781617082038 a001 2584/15127*10749957122^(13/16) 2415781617082038 a001 2584/15127*599074578^(13/14) 2415781617082040 a001 2255/1926*2537720636^(7/9) 2415781617082040 a001 2255/1926*17393796001^(5/7) 2415781617082040 a001 2255/1926*312119004989^(7/11) 2415781617082040 a001 2255/1926*14662949395604^(5/9) 2415781617082040 a001 2255/1926*(1/2+1/2*5^(1/2))^35 2415781617082040 a001 2255/1926*505019158607^(5/8) 2415781617082040 a001 2255/1926*28143753123^(7/10) 2415781617082040 a001 2255/1926*599074578^(5/6) 2415781617082041 a001 2255/1926*228826127^(7/8) 2415781617456414 a001 267084832/321*9349^(7/19) 2415781617468518 a001 182717648081/12238*1364^(1/15) 2415781618911115 a001 7778742049/5778*9349^(6/19) 2415781620365816 a001 12586269025/5778*9349^(5/19) 2415781620453885 a001 10983760033/13201*3571^(7/17) 2415781621769447 a001 43133785636/51841*3571^(7/17) 2415781621820517 a001 10182505537/2889*9349^(4/19) 2415781621961384 a001 75283811239/90481*3571^(7/17) 2415781621989388 a001 591286729879/710647*3571^(7/17) 2415781621993473 a001 832040*3571^(7/17) 2415781621994070 a001 4052739537881/4870847*3571^(7/17) 2415781621994157 a001 3536736619241/4250681*3571^(7/17) 2415781621994210 a001 3278735159921/3940598*3571^(7/17) 2415781621994438 a001 2504730781961/3010349*3571^(7/17) 2415781621995999 a001 956722026041/1149851*3571^(7/17) 2415781622006695 a001 182717648081/219602*3571^(7/17) 2415781622080009 a001 139583862445/167761*3571^(7/17) 2415781622580580 a001 20365011074/15127*3571^(6/17) 2415781622582508 a001 53316291173/64079*3571^(7/17) 2415781623275218 a001 10983760033/1926*9349^(3/19) 2415781623606797 a001 132215728260/5473 2415781623798829 a001 9227465/5778*24476^(20/21) 2415781623990846 a001 2584*24476^(19/21) 2415781624182874 a001 24157817/5778*24476^(6/7) 2415781624374898 a001 39088169/5778*24476^(17/21) 2415781624566923 a001 31622993/2889*24476^(16/21) 2415781624729919 a001 53316291173/5778*9349^(2/19) 2415781624758948 a001 34111385/1926*24476^(5/7) 2415781624950973 a001 165580141/5778*24476^(2/3) 2415781625142998 a001 133957148/2889*24476^(13/21) 2415781625335023 a001 433494437/5778*24476^(4/7) 2415781625527047 a001 233802911/1926*24476^(11/21) 2415781625719072 a001 567451585/2889*24476^(10/21) 2415781625911097 a001 1836311903/5778*24476^(3/7) 2415781626026694 a001 10182505537/12238*3571^(7/17) 2415781626099032 a001 2584/39603*(1/2+1/2*5^(1/2))^41 2415781626099034 a001 17711/5778*141422324^(11/13) 2415781626099035 a001 17711/5778*2537720636^(11/15) 2415781626099035 a001 17711/5778*45537549124^(11/17) 2415781626099035 a001 17711/5778*312119004989^(3/5) 2415781626099035 a001 17711/5778*817138163596^(11/19) 2415781626099035 a001 17711/5778*14662949395604^(11/21) 2415781626099035 a001 17711/5778*(1/2+1/2*5^(1/2))^33 2415781626099035 a001 17711/5778*192900153618^(11/18) 2415781626099035 a001 17711/5778*10749957122^(11/16) 2415781626099035 a001 17711/5778*1568397607^(3/4) 2415781626099035 a001 17711/5778*599074578^(11/14) 2415781626099037 a001 17711/5778*33385282^(11/12) 2415781626103122 a001 2971215073/5778*24476^(8/21) 2415781626184620 a001 43133785636/2889*9349^(1/19) 2415781626295147 a001 267084832/321*24476^(1/3) 2415781626487172 a001 7778742049/5778*24476^(2/7) 2415781626679197 a001 12586269025/5778*24476^(5/21) 2415781626871222 a001 10182505537/2889*24476^(4/21) 2415781627050982 a001 692290540864/28657 2415781627063246 a001 10983760033/1926*24476^(1/7) 2415781627076603 a001 1762289/2889*64079^(22/23) 2415781627102129 a001 5702887/5778*64079^(21/23) 2415781627127729 a001 9227465/5778*64079^(20/23) 2415781627153301 a001 2584*64079^(19/23) 2415781627178884 a001 24157817/5778*64079^(18/23) 2415781627204463 a001 39088169/5778*64079^(17/23) 2415781627230043 a001 31622993/2889*64079^(16/23) 2415781627255271 a001 53316291173/5778*24476^(2/21) 2415781627255623 a001 34111385/1926*64079^(15/23) 2415781627281203 a001 165580141/5778*64079^(14/23) 2415781627306783 a001 133957148/2889*64079^(13/23) 2415781627332363 a001 433494437/5778*64079^(12/23) 2415781627346112 a001 2971215073/9349*3571^(9/17) 2415781627357942 a001 233802911/1926*64079^(11/23) 2415781627383522 a001 567451585/2889*64079^(10/23) 2415781627409102 a001 1836311903/5778*64079^(9/23) 2415781627414594 a001 1292/51841*(1/2+1/2*5^(1/2))^43 2415781627414596 a001 2576/321*(1/2+1/2*5^(1/2))^31 2415781627414596 a001 2576/321*9062201101803^(1/2) 2415781627434682 a001 2971215073/5778*64079^(8/23) 2415781627447296 a001 43133785636/2889*24476^(1/21) 2415781627460262 a001 267084832/321*64079^(7/23) 2415781627485842 a001 7778742049/5778*64079^(6/23) 2415781627511422 a001 12586269025/5778*64079^(5/23) 2415781627537002 a001 10182505537/2889*64079^(4/23) 2415781627553482 a001 1812440166072/75025 2415781627562581 a001 10983760033/1926*64079^(3/23) 2415781627570657 a001 9227465/5778*167761^(4/5) 2415781627587819 a001 34111385/1926*167761^(3/5) 2415781627588161 a001 53316291173/5778*64079^(2/23) 2415781627604986 a001 567451585/2889*167761^(2/5) 2415781627606532 a001 2584/271443*45537549124^(15/17) 2415781627606532 a001 2584/271443*312119004989^(9/11) 2415781627606532 a001 2584/271443*14662949395604^(5/7) 2415781627606532 a001 2584/271443*(1/2+1/2*5^(1/2))^45 2415781627606532 a001 2584/271443*192900153618^(5/6) 2415781627606532 a001 2584/271443*28143753123^(9/10) 2415781627606532 a001 2584/271443*10749957122^(15/16) 2415781627606534 a001 121393/5778*(1/2+1/2*5^(1/2))^29 2415781627606534 a001 121393/5778*1322157322203^(1/2) 2415781627613741 a001 43133785636/2889*64079^(1/23) 2415781627622154 a001 12586269025/5778*167761^(1/5) 2415781627626795 a001 139559704628/5777 2415781627628456 a001 1346269/5778*439204^(8/9) 2415781627629566 a001 5702887/5778*439204^(7/9) 2415781627630973 a001 24157817/5778*439204^(2/3) 2415781627632364 a001 34111385/1926*439204^(5/9) 2415781627633755 a001 433494437/5778*439204^(4/9) 2415781627634506 a001 105937/1926*7881196^(9/11) 2415781627634535 a001 2584/710647*(1/2+1/2*5^(1/2))^47 2415781627634537 a001 105937/1926*141422324^(9/13) 2415781627634538 a001 105937/1926*2537720636^(3/5) 2415781627634538 a001 105937/1926*45537549124^(9/17) 2415781627634538 a001 105937/1926*817138163596^(9/19) 2415781627634538 a001 105937/1926*14662949395604^(3/7) 2415781627634538 a001 105937/1926*(1/2+1/2*5^(1/2))^27 2415781627634538 a001 105937/1926*192900153618^(1/2) 2415781627634538 a001 105937/1926*10749957122^(9/16) 2415781627634538 a001 105937/1926*599074578^(9/14) 2415781627634539 a001 105937/1926*33385282^(3/4) 2415781627635147 a001 1836311903/5778*439204^(1/3) 2415781627635166 a001 105937/1926*1860498^(9/10) 2415781627636538 a001 7778742049/5778*439204^(2/9) 2415781627637492 a001 12422649705984/514229 2415781627637930 a001 10983760033/1926*439204^(1/9) 2415781627638619 a001 416020/2889*20633239^(5/7) 2415781627638621 a001 1292/930249*14662949395604^(7/9) 2415781627638621 a001 1292/930249*(1/2+1/2*5^(1/2))^49 2415781627638621 a001 1292/930249*505019158607^(7/8) 2415781627638623 a001 416020/2889*2537720636^(5/9) 2415781627638623 a001 416020/2889*312119004989^(5/11) 2415781627638623 a001 416020/2889*(1/2+1/2*5^(1/2))^25 2415781627638623 a001 416020/2889*3461452808002^(5/12) 2415781627638623 a001 416020/2889*28143753123^(1/2) 2415781627638623 a001 416020/2889*228826127^(5/8) 2415781627639052 a001 32522919160600/1346269 2415781627639205 a001 416020/2889*1860498^(5/6) 2415781627639217 a001 2584/4870847*817138163596^(17/19) 2415781627639217 a001 2584/4870847*14662949395604^(17/21) 2415781627639217 a001 2584/4870847*(1/2+1/2*5^(1/2))^51 2415781627639217 a001 2584/4870847*192900153618^(17/18) 2415781627639219 a001 726103/1926*(1/2+1/2*5^(1/2))^23 2415781627639219 a001 726103/1926*4106118243^(1/2) 2415781627639280 a001 42573053887908/1762289 2415781627639281 a001 5702887/5778*7881196^(7/11) 2415781627639301 a001 24157817/5778*7881196^(6/11) 2415781627639303 a001 5702887/5778*20633239^(3/5) 2415781627639303 a001 34111385/1926*7881196^(5/11) 2415781627639304 a001 2584/12752043*(1/2+1/2*5^(1/2))^53 2415781627639306 a001 5702887/5778*141422324^(7/13) 2415781627639306 a001 5702887/5778*2537720636^(7/15) 2415781627639306 a001 5702887/5778*17393796001^(3/7) 2415781627639306 a001 5702887/5778*45537549124^(7/17) 2415781627639306 a001 5702887/5778*14662949395604^(1/3) 2415781627639306 a001 5702887/5778*(1/2+1/2*5^(1/2))^21 2415781627639306 a001 5702887/5778*192900153618^(7/18) 2415781627639306 a001 5702887/5778*10749957122^(7/16) 2415781627639306 a001 5702887/5778*599074578^(1/2) 2415781627639307 a001 433494437/5778*7881196^(4/11) 2415781627639307 a001 5702887/5778*33385282^(7/12) 2415781627639308 a001 233802911/1926*7881196^(1/3) 2415781627639310 a001 1836311903/5778*7881196^(3/11) 2415781627639313 a001 222915404166848/9227465 2415781627639314 a001 7778742049/5778*7881196^(2/11) 2415781627639317 a001 1292/16692641*(1/2+1/2*5^(1/2))^55 2415781627639317 a001 1292/16692641*3461452808002^(11/12) 2415781627639318 a001 10983760033/1926*7881196^(1/11) 2415781627639318 a001 583600104724728/24157817 2415781627639319 a001 2584/87403803*14662949395604^(19/21) 2415781627639319 a001 34111385/1926*20633239^(3/7) 2415781627639319 a001 763942455003668/31622993 2415781627639319 a001 165580141/5778*20633239^(2/5) 2415781627639319 a001 4000054625297280/165580141 2415781627639319 a001 10472278965884504/433494437 2415781627639319 a001 806375949186948/33379505 2415781627639319 a001 2584*817138163596^(1/3) 2415781627639319 a001 16944503306471728/701408733 2415781627639319 a001 809028042573403/33489287 2415781627639319 a001 2584/370248451*14662949395604^(20/21) 2415781627639319 a001 2472169715289944/102334155 2415781627639319 a001 2584*87403803^(1/2) 2415781627639319 a001 225851424368/9349 2415781627639319 a001 567451585/2889*20633239^(2/7) 2415781627639320 a001 2584/54018521*14662949395604^(8/9) 2415781627639320 a001 267084832/321*20633239^(1/5) 2415781627639320 a001 12586269025/5778*20633239^(1/7) 2415781627639321 a001 39088169/5778*45537549124^(1/3) 2415781627639321 a001 39088169/5778*(1/2+1/2*5^(1/2))^17 2415781627639321 a001 34111385/1926*141422324^(5/13) 2415781627639321 a001 133957148/2889*141422324^(1/3) 2415781627639321 a001 34111385/1926*2537720636^(1/3) 2415781627639321 a001 34111385/1926*45537549124^(5/17) 2415781627639321 a001 34111385/1926*312119004989^(3/11) 2415781627639321 a001 34111385/1926*14662949395604^(5/21) 2415781627639321 a001 34111385/1926*(1/2+1/2*5^(1/2))^15 2415781627639321 a001 34111385/1926*192900153618^(5/18) 2415781627639321 a001 34111385/1926*28143753123^(3/10) 2415781627639321 a001 34111385/1926*10749957122^(5/16) 2415781627639321 a001 34111385/1926*599074578^(5/14) 2415781627639321 a001 433494437/5778*141422324^(4/13) 2415781627639321 a001 34111385/1926*228826127^(3/8) 2415781627639321 a001 1836311903/5778*141422324^(3/13) 2415781627639321 a001 7778742049/5778*141422324^(2/13) 2415781627639321 a001 10983760033/1926*141422324^(1/13) 2415781627639321 a001 133957148/2889*(1/2+1/2*5^(1/2))^13 2415781627639321 a001 133957148/2889*73681302247^(1/4) 2415781627639321 a001 233802911/1926*312119004989^(1/5) 2415781627639321 a001 233802911/1926*(1/2+1/2*5^(1/2))^11 2415781627639321 a001 233802911/1926*1568397607^(1/4) 2415781627639321 a001 1836311903/5778*2537720636^(1/5) 2415781627639321 a001 1836311903/5778*45537549124^(3/17) 2415781627639321 a001 1836311903/5778*14662949395604^(1/7) 2415781627639321 a001 1836311903/5778*(1/2+1/2*5^(1/2))^9 2415781627639321 a001 1836311903/5778*192900153618^(1/6) 2415781627639321 a001 1836311903/5778*10749957122^(3/16) 2415781627639321 a001 12586269025/5778*2537720636^(1/9) 2415781627639321 a001 7778742049/5778*2537720636^(2/15) 2415781627639321 a001 10983760033/1926*2537720636^(1/15) 2415781627639321 a001 267084832/321*17393796001^(1/7) 2415781627639321 a001 267084832/321*14662949395604^(1/9) 2415781627639321 a001 267084832/321*(1/2+1/2*5^(1/2))^7 2415781627639321 a001 12586269025/5778*312119004989^(1/11) 2415781627639321 a001 12586269025/5778*(1/2+1/2*5^(1/2))^5 2415781627639321 a001 12586269025/5778*28143753123^(1/10) 2415781627639321 a001 10983760033/1926*45537549124^(1/17) 2415781627639321 a001 10983760033/1926*14662949395604^(1/21) 2415781627639321 a001 10983760033/1926*(1/2+1/2*5^(1/2))^3 2415781627639321 a001 21566892818/2889+21566892818/2889*5^(1/2) 2415781627639321 a001 139583862445/5778 2415781627639321 a001 53316291173/5778*(1/2+1/2*5^(1/2))^2 2415781627639321 a001 10983760033/1926*10749957122^(1/16) 2415781627639321 a001 53316291173/5778*10749957122^(1/24) 2415781627639321 a001 10182505537/2889*(1/2+1/2*5^(1/2))^4 2415781627639321 a001 10182505537/2889*23725150497407^(1/16) 2415781627639321 a001 10182505537/2889*73681302247^(1/13) 2415781627639321 a001 10182505537/2889*10749957122^(1/12) 2415781627639321 a001 53316291173/5778*4106118243^(1/23) 2415781627639321 a001 7778742049/5778*45537549124^(2/17) 2415781627639321 a001 7778742049/5778*14662949395604^(2/21) 2415781627639321 a001 7778742049/5778*(1/2+1/2*5^(1/2))^6 2415781627639321 a001 7778742049/5778*10749957122^(1/8) 2415781627639321 a001 10182505537/2889*4106118243^(2/23) 2415781627639321 a001 7778742049/5778*4106118243^(3/23) 2415781627639321 a001 53316291173/5778*1568397607^(1/22) 2415781627639321 a001 2971215073/5778*(1/2+1/2*5^(1/2))^8 2415781627639321 a001 2971215073/5778*23725150497407^(1/8) 2415781627639321 a001 2971215073/5778*505019158607^(1/7) 2415781627639321 a001 2971215073/5778*73681302247^(2/13) 2415781627639321 a001 2971215073/5778*10749957122^(1/6) 2415781627639321 a001 2971215073/5778*4106118243^(4/23) 2415781627639321 a001 10182505537/2889*1568397607^(1/11) 2415781627639321 a001 7778742049/5778*1568397607^(3/22) 2415781627639321 a001 2971215073/5778*1568397607^(2/11) 2415781627639321 a001 567451585/2889*2537720636^(2/9) 2415781627639321 a001 53316291173/5778*599074578^(1/21) 2415781627639321 a001 567451585/2889*312119004989^(2/11) 2415781627639321 a001 567451585/2889*(1/2+1/2*5^(1/2))^10 2415781627639321 a001 567451585/2889*28143753123^(1/5) 2415781627639321 a001 567451585/2889*10749957122^(5/24) 2415781627639321 a001 567451585/2889*4106118243^(5/23) 2415781627639321 a001 10983760033/1926*599074578^(1/14) 2415781627639321 a001 567451585/2889*1568397607^(5/22) 2415781627639321 a001 10182505537/2889*599074578^(2/21) 2415781627639321 a001 7778742049/5778*599074578^(1/7) 2415781627639321 a001 267084832/321*599074578^(1/6) 2415781627639321 a001 1836311903/5778*599074578^(3/14) 2415781627639321 a001 2971215073/5778*599074578^(4/21) 2415781627639321 a001 567451585/2889*599074578^(5/21) 2415781627639321 a001 53316291173/5778*228826127^(1/20) 2415781627639321 a001 433494437/5778*2537720636^(4/15) 2415781627639321 a001 433494437/5778*45537549124^(4/17) 2415781627639321 a001 433494437/5778*817138163596^(4/19) 2415781627639321 a001 433494437/5778*14662949395604^(4/21) 2415781627639321 a001 433494437/5778*(1/2+1/2*5^(1/2))^12 2415781627639321 a001 433494437/5778*192900153618^(2/9) 2415781627639321 a001 433494437/5778*73681302247^(3/13) 2415781627639321 a001 433494437/5778*10749957122^(1/4) 2415781627639321 a001 433494437/5778*4106118243^(6/23) 2415781627639321 a001 433494437/5778*1568397607^(3/11) 2415781627639321 a001 433494437/5778*599074578^(2/7) 2415781627639321 a001 10182505537/2889*228826127^(1/10) 2415781627639321 a001 12586269025/5778*228826127^(1/8) 2415781627639321 a001 7778742049/5778*228826127^(3/20) 2415781627639321 a001 2971215073/5778*228826127^(1/5) 2415781627639321 a001 567451585/2889*228826127^(1/4) 2415781627639321 a001 433494437/5778*228826127^(3/10) 2415781627639321 a001 53316291173/5778*87403803^(1/19) 2415781627639321 a001 165580141/5778*17393796001^(2/7) 2415781627639321 a001 165580141/5778*14662949395604^(2/9) 2415781627639321 a001 165580141/5778*(1/2+1/2*5^(1/2))^14 2415781627639321 a001 165580141/5778*10749957122^(7/24) 2415781627639321 a001 165580141/5778*4106118243^(7/23) 2415781627639321 a001 165580141/5778*1568397607^(7/22) 2415781627639321 a001 165580141/5778*599074578^(1/3) 2415781627639321 a001 10182505537/2889*87403803^(2/19) 2415781627639321 a001 165580141/5778*228826127^(7/20) 2415781627639321 a001 7778742049/5778*87403803^(3/19) 2415781627639321 a001 2971215073/5778*87403803^(4/19) 2415781627639321 a001 567451585/2889*87403803^(5/19) 2415781627639321 a001 433494437/5778*87403803^(6/19) 2415781627639321 a001 53316291173/5778*33385282^(1/18) 2415781627639321 a001 31622993/2889*(1/2+1/2*5^(1/2))^16 2415781627639321 a001 31622993/2889*23725150497407^(1/4) 2415781627639321 a001 31622993/2889*73681302247^(4/13) 2415781627639321 a001 31622993/2889*10749957122^(1/3) 2415781627639321 a001 31622993/2889*4106118243^(8/23) 2415781627639321 a001 31622993/2889*1568397607^(4/11) 2415781627639321 a001 31622993/2889*599074578^(8/21) 2415781627639321 a001 165580141/5778*87403803^(7/19) 2415781627639321 a001 31622993/2889*228826127^(2/5) 2415781627639321 a001 10983760033/1926*33385282^(1/12) 2415781627639321 a001 10182505537/2889*33385282^(1/9) 2415781627639321 a001 31622993/2889*87403803^(8/19) 2415781627639321 a001 7778742049/5778*33385282^(1/6) 2415781627639322 a001 2971215073/5778*33385282^(2/9) 2415781627639322 a001 1836311903/5778*33385282^(1/4) 2415781627639322 a001 567451585/2889*33385282^(5/18) 2415781627639322 a001 433494437/5778*33385282^(1/3) 2415781627639322 a001 24157817/5778*141422324^(6/13) 2415781627639322 a001 24157817/5778*2537720636^(2/5) 2415781627639322 a001 24157817/5778*45537549124^(6/17) 2415781627639322 a001 24157817/5778*14662949395604^(2/7) 2415781627639322 a001 24157817/5778*(1/2+1/2*5^(1/2))^18 2415781627639322 a001 24157817/5778*192900153618^(1/3) 2415781627639322 a001 24157817/5778*10749957122^(3/8) 2415781627639322 a001 24157817/5778*4106118243^(9/23) 2415781627639322 a001 24157817/5778*1568397607^(9/22) 2415781627639322 a001 24157817/5778*599074578^(3/7) 2415781627639322 a001 24157817/5778*228826127^(9/20) 2415781627639322 a001 34111385/1926*33385282^(5/12) 2415781627639322 a001 165580141/5778*33385282^(7/18) 2415781627639322 a001 53316291173/5778*12752043^(1/17) 2415781627639322 a001 24157817/5778*87403803^(9/19) 2415781627639322 a001 31622993/2889*33385282^(4/9) 2415781627639323 a001 10182505537/2889*12752043^(2/17) 2415781627639323 a001 24157817/5778*33385282^(1/2) 2415781627639323 a001 9227465/5778*20633239^(4/7) 2415781627639324 a001 7778742049/5778*12752043^(3/17) 2415781627639325 a001 2971215073/5778*12752043^(4/17) 2415781627639325 a001 2584/20633239*14662949395604^(6/7) 2415781627639325 a001 2584/20633239*(1/2+1/2*5^(1/2))^54 2415781627639325 a001 567451585/2889*12752043^(5/17) 2415781627639326 a001 433494437/5778*12752043^(6/17) 2415781627639327 a001 9227465/5778*2537720636^(4/9) 2415781627639327 a001 9227465/5778*(1/2+1/2*5^(1/2))^20 2415781627639327 a001 9227465/5778*23725150497407^(5/16) 2415781627639327 a001 9227465/5778*505019158607^(5/14) 2415781627639327 a001 9227465/5778*73681302247^(5/13) 2415781627639327 a001 9227465/5778*28143753123^(2/5) 2415781627639327 a001 9227465/5778*10749957122^(5/12) 2415781627639327 a001 9227465/5778*4106118243^(10/23) 2415781627639327 a001 9227465/5778*1568397607^(5/11) 2415781627639327 a001 9227465/5778*599074578^(10/21) 2415781627639327 a001 9227465/5778*228826127^(1/2) 2415781627639327 a001 9227465/5778*87403803^(10/19) 2415781627639327 a001 165580141/5778*12752043^(7/17) 2415781627639327 a001 53316291173/5778*4870847^(1/16) 2415781627639328 a001 9227465/5778*33385282^(5/9) 2415781627639328 a001 39088169/5778*12752043^(1/2) 2415781627639328 a001 31622993/2889*12752043^(8/17) 2415781627639330 a001 24157817/5778*12752043^(9/17) 2415781627639334 a001 137769296391032/5702887 2415781627639334 a001 10182505537/2889*4870847^(1/8) 2415781627639334 a001 1762289/2889*7881196^(2/3) 2415781627639335 a001 9227465/5778*12752043^(10/17) 2415781627639340 a001 7778742049/5778*4870847^(3/16) 2415781627639347 a001 2971215073/5778*4870847^(1/4) 2415781627639353 a001 567451585/2889*4870847^(5/16) 2415781627639358 a001 646/1970299*(1/2+1/2*5^(1/2))^52 2415781627639358 a001 646/1970299*23725150497407^(13/16) 2415781627639358 a001 646/1970299*505019158607^(13/14) 2415781627639359 a001 433494437/5778*4870847^(3/8) 2415781627639360 a001 1762289/2889*312119004989^(2/5) 2415781627639360 a001 1762289/2889*(1/2+1/2*5^(1/2))^22 2415781627639360 a001 1762289/2889*10749957122^(11/24) 2415781627639360 a001 1762289/2889*4106118243^(11/23) 2415781627639360 a001 1762289/2889*1568397607^(1/2) 2415781627639360 a001 1762289/2889*599074578^(11/21) 2415781627639360 a001 1762289/2889*228826127^(11/20) 2415781627639360 a001 1762289/2889*87403803^(11/19) 2415781627639361 a001 1762289/2889*33385282^(11/18) 2415781627639366 a001 165580141/5778*4870847^(7/16) 2415781627639368 a001 53316291173/5778*1860498^(1/15) 2415781627639370 a001 1762289/2889*12752043^(11/17) 2415781627639372 a001 31622993/2889*4870847^(1/2) 2415781627639379 a001 24157817/5778*4870847^(9/16) 2415781627639390 a001 9227465/5778*4870847^(5/8) 2415781627639391 a001 10983760033/1926*1860498^(1/10) 2415781627639414 a001 10182505537/2889*1860498^(2/15) 2415781627639421 a001 52623188615216/2178309 2415781627639430 a001 1762289/2889*4870847^(11/16) 2415781627639437 a001 12586269025/5778*1860498^(1/6) 2415781627639461 a001 7778742049/5778*1860498^(1/5) 2415781627639507 a001 2971215073/5778*1860498^(4/15) 2415781627639530 a001 1836311903/5778*1860498^(3/10) 2415781627639554 a001 567451585/2889*1860498^(1/3) 2415781627639559 a001 1346269/5778*7881196^(8/11) 2415781627639585 a001 2584/3010349*312119004989^(10/11) 2415781627639585 a001 2584/3010349*(1/2+1/2*5^(1/2))^50 2415781627639585 a001 2584/3010349*3461452808002^(5/6) 2415781627639588 a001 1346269/5778*141422324^(8/13) 2415781627639588 a001 1346269/5778*2537720636^(8/15) 2415781627639588 a001 1346269/5778*45537549124^(8/17) 2415781627639588 a001 1346269/5778*14662949395604^(8/21) 2415781627639588 a001 1346269/5778*(1/2+1/2*5^(1/2))^24 2415781627639588 a001 1346269/5778*192900153618^(4/9) 2415781627639588 a001 1346269/5778*73681302247^(6/13) 2415781627639588 a001 1346269/5778*10749957122^(1/2) 2415781627639588 a001 1346269/5778*4106118243^(12/23) 2415781627639588 a001 1346269/5778*1568397607^(6/11) 2415781627639588 a001 1346269/5778*599074578^(4/7) 2415781627639588 a001 1346269/5778*228826127^(3/5) 2415781627639588 a001 1346269/5778*87403803^(12/19) 2415781627639589 a001 1346269/5778*33385282^(2/3) 2415781627639598 a001 1346269/5778*12752043^(12/17) 2415781627639600 a001 433494437/5778*1860498^(2/5) 2415781627639647 a001 165580141/5778*1860498^(7/15) 2415781627639663 a001 53316291173/5778*710647^(1/14) 2415781627639664 a001 1346269/5778*4870847^(3/4) 2415781627639670 a001 34111385/1926*1860498^(1/2) 2415781627639693 a001 31622993/2889*1860498^(8/15) 2415781627639741 a001 24157817/5778*1860498^(3/5) 2415781627639792 a001 9227465/5778*1860498^(2/3) 2415781627639795 a001 5702887/5778*1860498^(7/10) 2415781627639872 a001 1762289/2889*1860498^(11/15) 2415781627640004 a001 10182505537/2889*710647^(1/7) 2415781627640017 a001 2512533681827/104005 2415781627640146 a001 1346269/5778*1860498^(4/5) 2415781627640346 a001 7778742049/5778*710647^(3/14) 2415781627640517 a001 267084832/321*710647^(1/4) 2415781627640688 a001 2971215073/5778*710647^(2/7) 2415781627641029 a001 567451585/2889*710647^(5/14) 2415781627641146 a001 2584/1149851*45537549124^(16/17) 2415781627641146 a001 2584/1149851*14662949395604^(16/21) 2415781627641146 a001 2584/1149851*(1/2+1/2*5^(1/2))^48 2415781627641146 a001 2584/1149851*192900153618^(8/9) 2415781627641146 a001 2584/1149851*73681302247^(12/13) 2415781627641148 a001 514229/5778*141422324^(2/3) 2415781627641148 a001 514229/5778*(1/2+1/2*5^(1/2))^26 2415781627641148 a001 514229/5778*73681302247^(1/2) 2415781627641148 a001 514229/5778*10749957122^(13/24) 2415781627641148 a001 514229/5778*4106118243^(13/23) 2415781627641148 a001 514229/5778*1568397607^(13/22) 2415781627641148 a001 514229/5778*599074578^(13/21) 2415781627641148 a001 514229/5778*228826127^(13/20) 2415781627641148 a001 514229/5778*87403803^(13/19) 2415781627641150 a001 514229/5778*33385282^(13/18) 2415781627641160 a001 514229/5778*12752043^(13/17) 2415781627641231 a001 514229/5778*4870847^(13/16) 2415781627641371 a001 433494437/5778*710647^(3/7) 2415781627641713 a001 165580141/5778*710647^(1/2) 2415781627641753 a001 514229/5778*1860498^(13/15) 2415781627641843 a001 53316291173/5778*271443^(1/13) 2415781627642055 a001 31622993/2889*710647^(4/7) 2415781627642397 a001 24157817/5778*710647^(9/14) 2415781627642744 a001 9227465/5778*710647^(5/7) 2415781627642894 a001 5702887/5778*710647^(3/4) 2415781627643118 a001 1762289/2889*710647^(11/14) 2415781627643688 a001 1346269/5778*710647^(6/7) 2415781627644102 a001 7677619748632/317811 2415781627644365 a001 10182505537/2889*271443^(2/13) 2415781627645590 a001 514229/5778*710647^(13/14) 2415781627646887 a001 7778742049/5778*271443^(3/13) 2415781627648685 a001 43133785636/2889*103682^(1/24) 2415781627649409 a001 2971215073/5778*271443^(4/13) 2415781627651840 a001 98209/2889*20633239^(4/5) 2415781627651842 a001 34/5779*(1/2+1/2*5^(1/2))^46 2415781627651842 a001 34/5779*10749957122^(23/24) 2415781627651845 a001 98209/2889*17393796001^(4/7) 2415781627651845 a001 98209/2889*14662949395604^(4/9) 2415781627651845 a001 98209/2889*(1/2+1/2*5^(1/2))^28 2415781627651845 a001 98209/2889*73681302247^(7/13) 2415781627651845 a001 98209/2889*10749957122^(7/12) 2415781627651845 a001 98209/2889*4106118243^(14/23) 2415781627651845 a001 98209/2889*1568397607^(7/11) 2415781627651845 a001 98209/2889*599074578^(2/3) 2415781627651845 a001 98209/2889*228826127^(7/10) 2415781627651845 a001 98209/2889*87403803^(14/19) 2415781627651846 a001 98209/2889*33385282^(7/9) 2415781627651857 a001 98209/2889*12752043^(14/17) 2415781627651931 a001 567451585/2889*271443^(5/13) 2415781627651934 a001 98209/2889*4870847^(7/8) 2415781627652496 a001 98209/2889*1860498^(14/15) 2415781627654453 a001 433494437/5778*271443^(6/13) 2415781627655715 a001 133957148/2889*271443^(1/2) 2415781627656976 a001 165580141/5778*271443^(7/13) 2415781627658048 a001 53316291173/5778*103682^(1/12) 2415781627659498 a001 31622993/2889*271443^(8/13) 2415781627662021 a001 24157817/5778*271443^(9/13) 2415781627664547 a001 9227465/5778*271443^(10/13) 2415781627667103 a001 1762289/2889*271443^(11/13) 2415781627667412 a001 10983760033/1926*103682^(1/8) 2415781627669852 a001 1346269/5778*271443^(12/13) 2415781627672106 a001 2932589791280/121393 2415781627676775 a001 10182505537/2889*103682^(1/6) 2415781627686139 a001 12586269025/5778*103682^(5/24) 2415781627695502 a001 7778742049/5778*103682^(1/4) 2415781627704866 a001 267084832/321*103682^(7/24) 2415781627709334 a001 43133785636/2889*39603^(1/22) 2415781627714229 a001 2971215073/5778*103682^(1/3) 2415781627723593 a001 1836311903/5778*103682^(3/8) 2415781627725123 a001 75025/5778*7881196^(10/11) 2415781627725153 a001 75025/5778*20633239^(6/7) 2415781627725156 a001 2584/167761*312119004989^(4/5) 2415781627725156 a001 2584/167761*(1/2+1/2*5^(1/2))^44 2415781627725156 a001 2584/167761*23725150497407^(11/16) 2415781627725156 a001 2584/167761*73681302247^(11/13) 2415781627725156 a001 2584/167761*10749957122^(11/12) 2415781627725156 a001 2584/167761*4106118243^(22/23) 2415781627725158 a001 75025/5778*141422324^(10/13) 2415781627725158 a001 75025/5778*2537720636^(2/3) 2415781627725158 a001 75025/5778*45537549124^(10/17) 2415781627725158 a001 75025/5778*312119004989^(6/11) 2415781627725158 a001 75025/5778*14662949395604^(10/21) 2415781627725158 a001 75025/5778*(1/2+1/2*5^(1/2))^30 2415781627725158 a001 75025/5778*192900153618^(5/9) 2415781627725158 a001 75025/5778*28143753123^(3/5) 2415781627725158 a001 75025/5778*10749957122^(5/8) 2415781627725158 a001 75025/5778*4106118243^(15/23) 2415781627725158 a001 75025/5778*1568397607^(15/22) 2415781627725158 a001 75025/5778*599074578^(5/7) 2415781627725158 a001 75025/5778*228826127^(3/4) 2415781627725159 a001 75025/5778*87403803^(15/19) 2415781627725160 a001 75025/5778*33385282^(5/6) 2415781627725171 a001 75025/5778*12752043^(15/17) 2415781627725254 a001 75025/5778*4870847^(15/16) 2415781627732956 a001 567451585/2889*103682^(5/12) 2415781627742320 a001 233802911/1926*103682^(11/24) 2415781627751683 a001 433494437/5778*103682^(1/2) 2415781627761047 a001 133957148/2889*103682^(13/24) 2415781627770411 a001 165580141/5778*103682^(7/12) 2415781627779347 a001 53316291173/5778*39603^(1/11) 2415781627779774 a001 34111385/1926*103682^(5/8) 2415781627789138 a001 31622993/2889*103682^(2/3) 2415781627798501 a001 39088169/5778*103682^(17/24) 2415781627807865 a001 24157817/5778*103682^(3/4) 2415781627817226 a001 2584*103682^(19/24) 2415781627826597 a001 9227465/5778*103682^(5/6) 2415781627835940 a001 5702887/5778*103682^(7/8) 2415781627845358 a001 1762289/2889*103682^(11/12) 2415781627849360 a001 10983760033/1926*39603^(3/22) 2415781627854580 a001 726103/1926*103682^(23/24) 2415781627864044 a001 140018703151/5796 2415781627919373 a001 10182505537/2889*39603^(2/11) 2415781627989386 a001 12586269025/5778*39603^(5/22) 2415781628059399 a001 7778742049/5778*39603^(3/11) 2415781628129412 a001 267084832/321*39603^(7/22) 2415781628167185 a001 43133785636/2889*15127^(1/20) 2415781628199425 a001 2971215073/5778*39603^(4/11) 2415781628227656 a001 2584/64079*2537720636^(14/15) 2415781628227656 a001 2584/64079*17393796001^(6/7) 2415781628227656 a001 2584/64079*45537549124^(14/17) 2415781628227656 a001 2584/64079*817138163596^(14/19) 2415781628227656 a001 2584/64079*14662949395604^(2/3) 2415781628227656 a001 2584/64079*(1/2+1/2*5^(1/2))^42 2415781628227656 a001 2584/64079*192900153618^(7/9) 2415781628227656 a001 2584/64079*10749957122^(7/8) 2415781628227656 a001 2584/64079*4106118243^(21/23) 2415781628227656 a001 2584/64079*1568397607^(21/22) 2415781628227658 a001 28657/5778*(1/2+1/2*5^(1/2))^32 2415781628227658 a001 28657/5778*23725150497407^(1/2) 2415781628227658 a001 28657/5778*73681302247^(8/13) 2415781628227658 a001 28657/5778*10749957122^(2/3) 2415781628227658 a001 28657/5778*4106118243^(16/23) 2415781628227658 a001 28657/5778*1568397607^(8/11) 2415781628227658 a001 28657/5778*599074578^(16/21) 2415781628227658 a001 28657/5778*228826127^(4/5) 2415781628227658 a001 28657/5778*87403803^(16/19) 2415781628227660 a001 28657/5778*33385282^(8/9) 2415781628227672 a001 28657/5778*12752043^(16/17) 2415781628269438 a001 1836311903/5778*39603^(9/22) 2415781628339451 a001 567451585/2889*39603^(5/11) 2415781628409464 a001 233802911/1926*39603^(1/2) 2415781628479477 a001 433494437/5778*39603^(6/11) 2415781628549490 a001 133957148/2889*39603^(13/22) 2415781628619503 a001 165580141/5778*39603^(7/11) 2415781628689516 a001 34111385/1926*39603^(15/22) 2415781628695049 a001 53316291173/5778*15127^(1/10) 2415781628759530 a001 31622993/2889*39603^(8/11) 2415781628829542 a001 39088169/5778*39603^(17/22) 2415781628899556 a001 24157817/5778*39603^(9/11) 2415781628969566 a001 2584*39603^(19/22) 2415781629039587 a001 9227465/5778*39603^(10/11) 2415781629109580 a001 5702887/5778*39603^(21/22) 2415781629179605 a001 427859084344/17711 2415781629222913 a001 10983760033/1926*15127^(3/20) 2415781629261344 a001 1144206275/124*521^(2/13) 2415781629750714 a001 20365011074/3571*1364^(1/5) 2415781629750777 a001 10182505537/2889*15127^(1/5) 2415781630278641 a001 12586269025/5778*15127^(1/4) 2415781630806505 a001 7778742049/5778*15127^(3/10) 2415781631250926 r009 Re(z^3+c),c=-9/20+35/64*I,n=3 2415781631334369 a001 267084832/321*15127^(7/20) 2415781631597574 a001 53316291173/39603*3571^(6/17) 2415781631659359 a001 43133785636/2889*5778^(1/18) 2415781631671841 a001 646/6119*2537720636^(8/9) 2415781631671841 a001 646/6119*312119004989^(8/11) 2415781631671841 a001 646/6119*(1/2+1/2*5^(1/2))^40 2415781631671841 a001 646/6119*23725150497407^(5/8) 2415781631671841 a001 646/6119*73681302247^(10/13) 2415781631671841 a001 646/6119*28143753123^(4/5) 2415781631671841 a001 646/6119*10749957122^(5/6) 2415781631671841 a001 646/6119*4106118243^(20/23) 2415781631671841 a001 646/6119*1568397607^(10/11) 2415781631671841 a001 646/6119*599074578^(20/21) 2415781631671843 a001 5473/2889*45537549124^(2/3) 2415781631671843 a001 5473/2889*(1/2+1/2*5^(1/2))^34 2415781631671843 a001 5473/2889*10749957122^(17/24) 2415781631671843 a001 5473/2889*4106118243^(17/23) 2415781631671843 a001 5473/2889*1568397607^(17/22) 2415781631671843 a001 5473/2889*599074578^(17/21) 2415781631671843 a001 5473/2889*228826127^(17/20) 2415781631671844 a001 5473/2889*87403803^(17/19) 2415781631671845 a001 5473/2889*33385282^(17/18) 2415781631862233 a001 2971215073/5778*15127^(2/5) 2415781632390097 a001 1836311903/5778*15127^(9/20) 2415781632913136 a001 139583862445/103682*3571^(6/17) 2415781632917961 a001 567451585/2889*15127^(1/2) 2415781633105074 a001 365435296162/271443*3571^(6/17) 2415781633133077 a001 956722026041/710647*3571^(6/17) 2415781633137163 a001 2504730781961/1860498*3571^(6/17) 2415781633137759 a001 6557470319842/4870847*3571^(6/17) 2415781633137900 a001 10610209857723/7881196*3571^(6/17) 2415781633138127 a001 1346269*3571^(6/17) 2415781633139688 a001 1548008755920/1149851*3571^(6/17) 2415781633150384 a001 591286729879/439204*3571^(6/17) 2415781633223698 a001 225851433717/167761*3571^(6/17) 2415781633445825 a001 233802911/1926*15127^(11/20) 2415781633486661 m001 (Ei(1)-ln(2)/ln(10))/(-GaussAGM+ZetaP(3)) 2415781633724270 a001 32951280099/15127*3571^(5/17) 2415781633726198 a001 86267571272/64079*3571^(6/17) 2415781633973689 a001 433494437/5778*15127^(3/5) 2415781634501553 a001 133957148/2889*15127^(13/20) 2415781635029417 a001 165580141/5778*15127^(7/10) 2415781635557281 a001 34111385/1926*15127^(3/4) 2415781635679396 a001 53316291173/5778*5778^(1/9) 2415781636085146 a001 31622993/2889*15127^(4/5) 2415781636613009 a001 39088169/5778*15127^(17/20) 2415781637140874 a001 24157817/5778*15127^(9/10) 2415781637170383 a001 32951280099/24476*3571^(6/17) 2415781637668735 a001 2584*15127^(19/20) 2415781638004071 a001 63245986/2207*2207^(7/8) 2415781638196600 a001 163427627824/6765 2415781638478406 h001 (9/10*exp(2)+1/7)/(4/11*exp(2)+1/8) 2415781638489801 a001 4807526976/9349*3571^(8/17) 2415781639699434 a001 10983760033/1926*5778^(1/6) 2415781641075316 a001 139583862445/9349*1364^(1/15) 2415781642741264 a001 86267571272/39603*3571^(5/17) 2415781643719471 a001 10182505537/2889*5778^(2/9) 2415781644056826 a001 225851433717/103682*3571^(5/17) 2415781644248763 a001 591286729879/271443*3571^(5/17) 2415781644276767 a001 1548008755920/710647*3571^(5/17) 2415781644280852 a001 4052739537881/1860498*3571^(5/17) 2415781644281449 a001 2178309*3571^(5/17) 2415781644281817 a001 6557470319842/3010349*3571^(5/17) 2415781644283377 a001 2504730781961/1149851*3571^(5/17) 2415781644294074 a001 956722026041/439204*3571^(5/17) 2415781644367388 a001 365435296162/167761*3571^(5/17) 2415781644867959 a001 53316291173/15127*3571^(4/17) 2415781644869887 a001 139583862445/64079*3571^(5/17) 2415781647739509 a001 12586269025/5778*5778^(5/18) 2415781648314073 a001 53316291173/24476*3571^(5/17) 2415781649495501 m005 (5/6*gamma-4/5)/(1/4*exp(1)-2) 2415781649633491 a001 7778742049/9349*3571^(7/17) 2415781649837657 r009 Re(z^3+c),c=-47/122+27/56*I,n=6 2415781651759547 a001 7778742049/5778*5778^(1/3) 2415781652274687 m001 sinh(1)*Ei(1)^2*ln(sqrt(Pi)) 2415781653884953 a001 139583862445/39603*3571^(4/17) 2415781655200515 a001 182717648081/51841*3571^(4/17) 2415781655278639 a001 2584/9349*817138163596^(2/3) 2415781655278639 a001 2584/9349*(1/2+1/2*5^(1/2))^38 2415781655278639 a001 2584/9349*10749957122^(19/24) 2415781655278639 a001 2584/9349*4106118243^(19/23) 2415781655278639 a001 2584/9349*1568397607^(19/22) 2415781655278639 a001 2584/9349*599074578^(19/21) 2415781655278639 a001 2584/9349*228826127^(19/20) 2415781655278640 a001 4181/5778*141422324^(12/13) 2415781655278640 a001 4181/5778*2537720636^(4/5) 2415781655278640 a001 4181/5778*45537549124^(12/17) 2415781655278640 a001 4181/5778*14662949395604^(4/7) 2415781655278640 a001 4181/5778*(1/2+1/2*5^(1/2))^36 2415781655278640 a001 4181/5778*505019158607^(9/14) 2415781655278640 a001 4181/5778*192900153618^(2/3) 2415781655278640 a001 4181/5778*73681302247^(9/13) 2415781655278640 a001 4181/5778*10749957122^(3/4) 2415781655278640 a001 4181/5778*4106118243^(18/23) 2415781655278640 a001 4181/5778*1568397607^(9/11) 2415781655278640 a001 4181/5778*599074578^(6/7) 2415781655278641 a001 4181/5778*228826127^(9/10) 2415781655278641 a001 4181/5778*87403803^(18/19) 2415781655392453 a001 956722026041/271443*3571^(4/17) 2415781655420456 a001 2504730781961/710647*3571^(4/17) 2415781655424542 a001 3278735159921/930249*3571^(4/17) 2415781655425506 a001 10610209857723/3010349*3571^(4/17) 2415781655427067 a001 4052739537881/1149851*3571^(4/17) 2415781655437763 a001 387002188980/109801*3571^(4/17) 2415781655511077 a001 591286729879/167761*3571^(4/17) 2415781655779584 a001 267084832/321*5778^(7/18) 2415781656011649 a001 86267571272/15127*3571^(3/17) 2415781656013577 a001 225851433717/64079*3571^(4/17) 2415781657542483 l006 ln(811/9082) 2415781658637284 a001 43133785636/2889*2207^(1/16) 2415781658767148 m005 (1/2*exp(1)-1/7)/(3/10*Zeta(3)+1/7) 2415781659457762 a001 21566892818/6119*3571^(4/17) 2415781659799622 a001 2971215073/5778*5778^(4/9) 2415781660777181 a001 12586269025/9349*3571^(6/17) 2415781661606017 m001 (1/2-exp(1)*sqrt(1+sqrt(3)))/sqrt(1+sqrt(3)) 2415781661803396 a001 101003831280/4181 2415781663258099 a001 63245986/15127*9349^(18/19) 2415781663808991 m001 1/Riemann2ndZero^2/Niven/ln(sqrt(3)) 2415781663819660 a001 1836311903/5778*5778^(1/2) 2415781664712800 a001 6765*9349^(17/19) 2415781665028643 a001 75283811239/13201*3571^(3/17) 2415781665526896 a007 Real Root Of -24*x^4-565*x^3+346*x^2-237*x+832 2415781666167501 a001 165580141/15127*9349^(16/19) 2415781666344205 a001 591286729879/103682*3571^(3/17) 2415781666536143 a001 516002918640/90481*3571^(3/17) 2415781666564146 a001 4052739537881/710647*3571^(3/17) 2415781666568232 a001 3536736619241/620166*3571^(3/17) 2415781666570757 a001 6557470319842/1149851*3571^(3/17) 2415781666581453 a001 2504730781961/439204*3571^(3/17) 2415781666654767 a001 956722026041/167761*3571^(3/17) 2415781666830078 r005 Re(z^2+c),c=-4/5+7/108*I,n=44 2415781667155338 a001 139583862445/15127*3571^(2/17) 2415781667157267 a001 365435296162/64079*3571^(3/17) 2415781667622202 a001 267914296/15127*9349^(15/19) 2415781667839697 a001 567451585/2889*5778^(5/9) 2415781669002034 a001 39088169/2207*2207^(15/16) 2415781669076903 a001 433494437/15127*9349^(14/19) 2415781670531604 a001 701408733/15127*9349^(13/19) 2415781670601452 a001 139583862445/24476*3571^(3/17) 2415781670820377 a001 101003831657/4181 2415781671859735 a001 233802911/1926*5778^(11/18) 2415781671920870 a001 20365011074/9349*3571^(5/17) 2415781671986305 a001 1134903170/15127*9349^(12/19) 2415781672036361 a001 199/196418*987^(23/50) 2415781672135852 a001 101003831712/4181 2415781672275093 a001 165580141/39603*9349^(18/19) 2415781672327194 a001 101003831720/4181 2415781672351112 a001 101003831721/4181 2415781672360679 a001 2/4181*(1/2+1/2*5^(1/2))^56 2415781672360679 a001 505019158607/4181*8^(1/3) 2415781672375029 a001 101003831722/4181 2415781672446783 a001 101003831725/4181 2415781672949055 a001 101003831746/4181 2415781673441006 a001 1836311903/15127*9349^(11/19) 2415781673590655 a001 433494437/103682*9349^(18/19) 2415781673729794 a001 267914296/39603*9349^(17/19) 2415781673782593 a001 1134903170/271443*9349^(18/19) 2415781673810596 a001 2971215073/710647*9349^(18/19) 2415781673814682 a001 7778742049/1860498*9349^(18/19) 2415781673815278 a001 20365011074/4870847*9349^(18/19) 2415781673815365 a001 53316291173/12752043*9349^(18/19) 2415781673815377 a001 139583862445/33385282*9349^(18/19) 2415781673815379 a001 365435296162/87403803*9349^(18/19) 2415781673815379 a001 956722026041/228826127*9349^(18/19) 2415781673815379 a001 2504730781961/599074578*9349^(18/19) 2415781673815380 a001 6557470319842/1568397607*9349^(18/19) 2415781673815380 a001 10610209857723/2537720636*9349^(18/19) 2415781673815380 a001 4052739537881/969323029*9349^(18/19) 2415781673815380 a001 1548008755920/370248451*9349^(18/19) 2415781673815380 a001 591286729879/141422324*9349^(18/19) 2415781673815380 a001 225851433717/54018521*9349^(18/19) 2415781673815385 a001 86267571272/20633239*9349^(18/19) 2415781673815418 a001 32951280099/7881196*9349^(18/19) 2415781673815646 a001 12586269025/3010349*9349^(18/19) 2415781673817207 a001 4807526976/1149851*9349^(18/19) 2415781673827903 a001 1836311903/439204*9349^(18/19) 2415781673901217 a001 701408733/167761*9349^(18/19) 2415781674403717 a001 267914296/64079*9349^(18/19) 2415781674895707 a001 2971215073/15127*9349^(10/19) 2415781675045356 a001 701408733/103682*9349^(17/19) 2415781675184495 a001 433494437/39603*9349^(16/19) 2415781675237294 a001 1836311903/271443*9349^(17/19) 2415781675265297 a001 686789568/101521*9349^(17/19) 2415781675269383 a001 12586269025/1860498*9349^(17/19) 2415781675269979 a001 32951280099/4870847*9349^(17/19) 2415781675270066 a001 86267571272/12752043*9349^(17/19) 2415781675270078 a001 32264490531/4769326*9349^(17/19) 2415781675270080 a001 591286729879/87403803*9349^(17/19) 2415781675270081 a001 1548008755920/228826127*9349^(17/19) 2415781675270081 a001 4052739537881/599074578*9349^(17/19) 2415781675270081 a001 1515744265389/224056801*9349^(17/19) 2415781675270081 a001 6557470319842/969323029*9349^(17/19) 2415781675270081 a001 2504730781961/370248451*9349^(17/19) 2415781675270081 a001 956722026041/141422324*9349^(17/19) 2415781675270081 a001 365435296162/54018521*9349^(17/19) 2415781675270086 a001 139583862445/20633239*9349^(17/19) 2415781675270119 a001 53316291173/7881196*9349^(17/19) 2415781675270347 a001 20365011074/3010349*9349^(17/19) 2415781675271908 a001 7778742049/1149851*9349^(17/19) 2415781675282604 a001 2971215073/439204*9349^(17/19) 2415781675355918 a001 1134903170/167761*9349^(17/19) 2415781675858418 a001 433494437/64079*9349^(17/19) 2415781675879773 a001 433494437/5778*5778^(2/3) 2415781676172333 a001 365435296162/39603*3571^(2/17) 2415781676350408 a001 686789568/2161*9349^(9/19) 2415781676393207 a001 101003831890/4181 2415781676500057 a001 567451585/51841*9349^(16/19) 2415781676639196 a001 17711*9349^(15/19) 2415781676691995 a001 2971215073/271443*9349^(16/19) 2415781676719998 a001 7778742049/710647*9349^(16/19) 2415781676724084 a001 10182505537/930249*9349^(16/19) 2415781676724680 a001 53316291173/4870847*9349^(16/19) 2415781676724767 a001 139583862445/12752043*9349^(16/19) 2415781676724779 a001 182717648081/16692641*9349^(16/19) 2415781676724781 a001 956722026041/87403803*9349^(16/19) 2415781676724782 a001 2504730781961/228826127*9349^(16/19) 2415781676724782 a001 3278735159921/299537289*9349^(16/19) 2415781676724782 a001 10610209857723/969323029*9349^(16/19) 2415781676724782 a001 4052739537881/370248451*9349^(16/19) 2415781676724782 a001 387002188980/35355581*9349^(16/19) 2415781676724782 a001 591286729879/54018521*9349^(16/19) 2415781676724787 a001 7787980473/711491*9349^(16/19) 2415781676724821 a001 21566892818/1970299*9349^(16/19) 2415781676725048 a001 32951280099/3010349*9349^(16/19) 2415781676726609 a001 12586269025/1149851*9349^(16/19) 2415781676737305 a001 1201881744/109801*9349^(16/19) 2415781676810619 a001 1836311903/167761*9349^(16/19) 2415781677313119 a001 701408733/64079*9349^(16/19) 2415781677487894 a001 956722026041/103682*3571^(2/17) 2415781677679832 a001 2504730781961/271443*3571^(2/17) 2415781677707836 a001 6557470319842/710647*3571^(2/17) 2415781677714446 a001 10610209857723/1149851*3571^(2/17) 2415781677725143 a001 4052739537881/439204*3571^(2/17) 2415781677798456 a001 140728068720/15251*3571^(2/17) 2415781677805109 a001 7778742049/15127*9349^(8/19) 2415781677847902 a001 102334155/24476*9349^(18/19) 2415781677954758 a001 1836311903/103682*9349^(15/19) 2415781678093897 a001 1134903170/39603*9349^(14/19) 2415781678146696 a001 1602508992/90481*9349^(15/19) 2415781678174699 a001 12586269025/710647*9349^(15/19) 2415781678178785 a001 10983760033/620166*9349^(15/19) 2415781678179381 a001 86267571272/4870847*9349^(15/19) 2415781678179468 a001 75283811239/4250681*9349^(15/19) 2415781678179481 a001 591286729879/33385282*9349^(15/19) 2415781678179482 a001 516002918640/29134601*9349^(15/19) 2415781678179483 a001 4052739537881/228826127*9349^(15/19) 2415781678179483 a001 3536736619241/199691526*9349^(15/19) 2415781678179483 a001 6557470319842/370248451*9349^(15/19) 2415781678179483 a001 2504730781961/141422324*9349^(15/19) 2415781678179484 a001 956722026041/54018521*9349^(15/19) 2415781678179488 a001 365435296162/20633239*9349^(15/19) 2415781678179522 a001 139583862445/7881196*9349^(15/19) 2415781678179749 a001 53316291173/3010349*9349^(15/19) 2415781678181310 a001 20365011074/1149851*9349^(15/19) 2415781678192006 a001 7778742049/439204*9349^(15/19) 2415781678265320 a001 2971215073/167761*9349^(15/19) 2415781678299028 a001 32264490531/2161*3571^(1/17) 2415781678300956 a001 591286729879/64079*3571^(2/17) 2415781678767820 a001 1134903170/64079*9349^(15/19) 2415781678885437 a001 6765/15127*(1/2+1/2*5^(1/2))^37 2415781679259810 a001 12586269025/15127*9349^(7/19) 2415781679302603 a001 165580141/24476*9349^(17/19) 2415781679371152 m001 GolombDickman^Salem*GolombDickman^Tribonacci 2415781679409459 a001 2971215073/103682*9349^(14/19) 2415781679548598 a001 1836311903/39603*9349^(13/19) 2415781679601397 a001 7778742049/271443*9349^(14/19) 2415781679629400 a001 20365011074/710647*9349^(14/19) 2415781679633486 a001 53316291173/1860498*9349^(14/19) 2415781679634082 a001 139583862445/4870847*9349^(14/19) 2415781679634169 a001 365435296162/12752043*9349^(14/19) 2415781679634182 a001 956722026041/33385282*9349^(14/19) 2415781679634183 a001 2504730781961/87403803*9349^(14/19) 2415781679634184 a001 6557470319842/228826127*9349^(14/19) 2415781679634184 a001 10610209857723/370248451*9349^(14/19) 2415781679634184 a001 4052739537881/141422324*9349^(14/19) 2415781679634185 a001 1548008755920/54018521*9349^(14/19) 2415781679634189 a001 591286729879/20633239*9349^(14/19) 2415781679634223 a001 225851433717/7881196*9349^(14/19) 2415781679634450 a001 86267571272/3010349*9349^(14/19) 2415781679636011 a001 32951280099/1149851*9349^(14/19) 2415781679646707 a001 12586269025/439204*9349^(14/19) 2415781679720021 a001 4807526976/167761*9349^(14/19) 2415781679899810 a001 133957148/2889*5778^(13/18) 2415781680222521 a001 28657*9349^(14/19) 2415781680714511 a001 20365011074/15127*9349^(6/19) 2415781680757304 a001 10946*9349^(16/19) 2415781680864160 a001 46368*9349^(13/19) 2415781681003299 a001 2971215073/39603*9349^(12/19) 2415781681056098 a001 12586269025/271443*9349^(13/19) 2415781681084101 a001 32951280099/710647*9349^(13/19) 2415781681088187 a001 43133785636/930249*9349^(13/19) 2415781681088783 a001 225851433717/4870847*9349^(13/19) 2415781681088870 a001 591286729879/12752043*9349^(13/19) 2415781681088883 a001 774004377960/16692641*9349^(13/19) 2415781681088884 a001 4052739537881/87403803*9349^(13/19) 2415781681088885 a001 225749145909/4868641*9349^(13/19) 2415781681088885 a001 3278735159921/70711162*9349^(13/19) 2415781681088886 a001 2504730781961/54018521*9349^(13/19) 2415781681088890 a001 956722026041/20633239*9349^(13/19) 2415781681088924 a001 182717648081/3940598*9349^(13/19) 2415781681089151 a001 139583862445/3010349*9349^(13/19) 2415781681090712 a001 53316291173/1149851*9349^(13/19) 2415781681101408 a001 10182505537/219602*9349^(13/19) 2415781681174722 a001 7778742049/167761*9349^(13/19) 2415781681677222 a001 2971215073/64079*9349^(13/19) 2415781681745142 a001 7787980473/844*3571^(2/17) 2415781682169212 a001 32951280099/15127*9349^(5/19) 2415781682212005 a001 433494437/24476*9349^(15/19) 2415781682318861 a001 7778742049/103682*9349^(12/19) 2415781682458000 a001 1602508992/13201*9349^(11/19) 2415781682510799 a001 20365011074/271443*9349^(12/19) 2415781682538802 a001 53316291173/710647*9349^(12/19) 2415781682542888 a001 139583862445/1860498*9349^(12/19) 2415781682543484 a001 365435296162/4870847*9349^(12/19) 2415781682543571 a001 956722026041/12752043*9349^(12/19) 2415781682543584 a001 2504730781961/33385282*9349^(12/19) 2415781682543586 a001 6557470319842/87403803*9349^(12/19) 2415781682543586 a001 10610209857723/141422324*9349^(12/19) 2415781682543587 a001 4052739537881/54018521*9349^(12/19) 2415781682543592 a001 140728068720/1875749*9349^(12/19) 2415781682543625 a001 591286729879/7881196*9349^(12/19) 2415781682543852 a001 225851433717/3010349*9349^(12/19) 2415781682545413 a001 86267571272/1149851*9349^(12/19) 2415781682556109 a001 32951280099/439204*9349^(12/19) 2415781682629423 a001 75025*9349^(12/19) 2415781683064560 a001 32951280099/9349*3571^(4/17) 2415781683131923 a001 4807526976/64079*9349^(12/19) 2415781683623914 a001 53316291173/15127*9349^(4/19) 2415781683666706 a001 701408733/24476*9349^(14/19) 2415781683773562 a001 12586269025/103682*9349^(11/19) 2415781683912701 a001 7778742049/39603*9349^(10/19) 2415781683919848 a001 165580141/5778*5778^(7/9) 2415781683965500 a001 121393*9349^(11/19) 2415781683993503 a001 86267571272/710647*9349^(11/19) 2415781683997589 a001 75283811239/620166*9349^(11/19) 2415781683998185 a001 591286729879/4870847*9349^(11/19) 2415781683998272 a001 516002918640/4250681*9349^(11/19) 2415781683998285 a001 4052739537881/33385282*9349^(11/19) 2415781683998287 a001 3536736619241/29134601*9349^(11/19) 2415781683998288 a001 6557470319842/54018521*9349^(11/19) 2415781683998293 a001 2504730781961/20633239*9349^(11/19) 2415781683998326 a001 956722026041/7881196*9349^(11/19) 2415781683998554 a001 365435296162/3010349*9349^(11/19) 2415781684000114 a001 139583862445/1149851*9349^(11/19) 2415781684010810 a001 53316291173/439204*9349^(11/19) 2415781684084124 a001 20365011074/167761*9349^(11/19) 2415781684586624 a001 7778742049/64079*9349^(11/19) 2415781684835052 m001 (ArtinRank2+MertensB3)/(3^(1/3)-BesselK(1,1)) 2415781685078615 a001 86267571272/15127*9349^(3/19) 2415781685121407 a001 567451585/12238*9349^(13/19) 2415781685228263 a001 10182505537/51841*9349^(10/19) 2415781685367403 a001 12586269025/39603*9349^(9/19) 2415781685410195 a001 264431463285/10946 2415781685420201 a001 53316291173/271443*9349^(10/19) 2415781685448204 a001 139583862445/710647*9349^(10/19) 2415781685452290 a001 182717648081/930249*9349^(10/19) 2415781685452886 a001 956722026041/4870847*9349^(10/19) 2415781685452973 a001 2504730781961/12752043*9349^(10/19) 2415781685452986 a001 3278735159921/16692641*9349^(10/19) 2415781685452989 a001 10610209857723/54018521*9349^(10/19) 2415781685452994 a001 4052739537881/20633239*9349^(10/19) 2415781685453027 a001 387002188980/1970299*9349^(10/19) 2415781685453255 a001 591286729879/3010349*9349^(10/19) 2415781685454815 a001 225851433717/1149851*9349^(10/19) 2415781685465511 a001 196418*9349^(10/19) 2415781685538825 a001 32951280099/167761*9349^(10/19) 2415781685602221 a001 24157817/15127*24476^(20/21) 2415781685794245 a001 39088169/15127*24476^(19/21) 2415781685986270 a001 63245986/15127*24476^(6/7) 2415781686041325 a001 12586269025/64079*9349^(10/19) 2415781686178295 a001 6765*24476^(17/21) 2415781686370320 a001 165580141/15127*24476^(16/21) 2415781686533316 a001 139583862445/15127*9349^(2/19) 2415781686562345 a001 267914296/15127*24476^(5/7) 2415781686576108 a001 1836311903/24476*9349^(12/19) 2415781686682964 a001 32951280099/103682*9349^(9/19) 2415781686754370 a001 433494437/15127*24476^(2/3) 2415781686822104 a001 20365011074/39603*9349^(8/19) 2415781686874902 a001 86267571272/271443*9349^(9/19) 2415781686902906 a001 317811*9349^(9/19) 2415781686906991 a001 591286729879/1860498*9349^(9/19) 2415781686907587 a001 1548008755920/4870847*9349^(9/19) 2415781686907674 a001 4052739537881/12752043*9349^(9/19) 2415781686907687 a001 1515744265389/4769326*9349^(9/19) 2415781686907695 a001 6557470319842/20633239*9349^(9/19) 2415781686907728 a001 2504730781961/7881196*9349^(9/19) 2415781686907956 a001 956722026041/3010349*9349^(9/19) 2415781686909516 a001 365435296162/1149851*9349^(9/19) 2415781686920213 a001 139583862445/439204*9349^(9/19) 2415781686946394 a001 701408733/15127*24476^(13/21) 2415781686993526 a001 53316291173/167761*9349^(9/19) 2415781687138419 a001 1134903170/15127*24476^(4/7) 2415781687316022 a001 591286729879/39603*3571^(1/17) 2415781687330444 a001 1836311903/15127*24476^(11/21) 2415781687496026 a001 20365011074/64079*9349^(9/19) 2415781687522469 a001 2971215073/15127*24476^(10/21) 2415781687714494 a001 686789568/2161*24476^(3/7) 2415781687902431 a001 2255/13201*2537720636^(13/15) 2415781687902431 a001 2255/13201*45537549124^(13/17) 2415781687902431 a001 2255/13201*14662949395604^(13/21) 2415781687902431 a001 2255/13201*(1/2+1/2*5^(1/2))^39 2415781687902431 a001 2255/13201*192900153618^(13/18) 2415781687902431 a001 2255/13201*73681302247^(3/4) 2415781687902431 a001 2255/13201*10749957122^(13/16) 2415781687902431 a001 2255/13201*599074578^(13/14) 2415781687902431 a001 17711/15127*2537720636^(7/9) 2415781687902431 a001 17711/15127*17393796001^(5/7) 2415781687902431 a001 17711/15127*312119004989^(7/11) 2415781687902431 a001 17711/15127*14662949395604^(5/9) 2415781687902431 a001 17711/15127*(1/2+1/2*5^(1/2))^35 2415781687902431 a001 17711/15127*505019158607^(5/8) 2415781687902431 a001 17711/15127*28143753123^(7/10) 2415781687902431 a001 17711/15127*599074578^(5/6) 2415781687902431 a001 17711/15127*228826127^(7/8) 2415781687906519 a001 7778742049/15127*24476^(8/21) 2415781687939886 a001 34111385/1926*5778^(5/6) 2415781687988017 a001 32264490531/2161*9349^(1/19) 2415781688030809 a001 2971215073/24476*9349^(11/19) 2415781688098544 a001 12586269025/15127*24476^(1/3) 2415781688137665 a001 53316291173/103682*9349^(8/19) 2415781688276805 a001 10983760033/13201*9349^(7/19) 2415781688290569 a001 20365011074/15127*24476^(2/7) 2415781688329603 a001 139583862445/271443*9349^(8/19) 2415781688357607 a001 365435296162/710647*9349^(8/19) 2415781688361692 a001 956722026041/1860498*9349^(8/19) 2415781688362288 a001 2504730781961/4870847*9349^(8/19) 2415781688362375 a001 6557470319842/12752043*9349^(8/19) 2415781688362396 a001 10610209857723/20633239*9349^(8/19) 2415781688362429 a001 4052739537881/7881196*9349^(8/19) 2415781688362657 a001 1548008755920/3010349*9349^(8/19) 2415781688364217 a001 514229*9349^(8/19) 2415781688374914 a001 225851433717/439204*9349^(8/19) 2415781688448227 a001 86267571272/167761*9349^(8/19) 2415781688482593 a001 32951280099/15127*24476^(5/21) 2415781688631584 a001 774004377960/51841*3571^(1/17) 2415781688674618 a001 53316291173/15127*24476^(4/21) 2415781688823522 a001 4052739537881/271443*3571^(1/17) 2415781688851525 a001 1515744265389/101521*3571^(1/17) 2415781688854381 a001 692290558575/28657 2415781688866643 a001 86267571272/15127*24476^(1/7) 2415781688868832 a001 3278735159921/219602*3571^(1/17) 2415781688879966 a001 9227465/15127*64079^(22/23) 2415781688905538 a001 14930352/15127*64079^(21/23) 2415781688931121 a001 24157817/15127*64079^(20/23) 2415781688942146 a001 2504730781961/167761*3571^(1/17) 2415781688950727 a001 32951280099/64079*9349^(8/19) 2415781688956700 a001 39088169/15127*64079^(19/23) 2415781688982280 a001 63245986/15127*64079^(18/23) 2415781689007860 a001 6765*64079^(17/23) 2415781689033440 a001 165580141/15127*64079^(16/23) 2415781689058668 a001 139583862445/15127*24476^(2/21) 2415781689059020 a001 267914296/15127*64079^(15/23) 2415781689084600 a001 433494437/15127*64079^(14/23) 2415781689110179 a001 701408733/15127*64079^(13/23) 2415781689135759 a001 1134903170/15127*64079^(12/23) 2415781689161339 a001 1836311903/15127*64079^(11/23) 2415781689186919 a001 2971215073/15127*64079^(10/23) 2415781689212499 a001 686789568/2161*64079^(9/23) 2415781689217993 a001 6624/2161*141422324^(11/13) 2415781689217993 a001 6765/103682*(1/2+1/2*5^(1/2))^41 2415781689217993 a001 6624/2161*2537720636^(11/15) 2415781689217993 a001 6624/2161*45537549124^(11/17) 2415781689217993 a001 6624/2161*312119004989^(3/5) 2415781689217993 a001 6624/2161*14662949395604^(11/21) 2415781689217993 a001 6624/2161*(1/2+1/2*5^(1/2))^33 2415781689217993 a001 6624/2161*192900153618^(11/18) 2415781689217993 a001 6624/2161*10749957122^(11/16) 2415781689217993 a001 6624/2161*1568397607^(3/4) 2415781689217993 a001 6624/2161*599074578^(11/14) 2415781689217995 a001 6624/2161*33385282^(11/12) 2415781689238079 a001 7778742049/15127*64079^(8/23) 2415781689250693 a001 32264490531/2161*24476^(1/21) 2415781689263659 a001 12586269025/15127*64079^(7/23) 2415781689289239 a001 20365011074/15127*64079^(6/23) 2415781689314818 a001 32951280099/15127*64079^(5/23) 2415781689340398 a001 53316291173/15127*64079^(4/23) 2415781689356881 a001 362488042488/15005 2415781689365978 a001 86267571272/15127*64079^(3/23) 2415781689374049 a001 24157817/15127*167761^(4/5) 2415781689391215 a001 267914296/15127*167761^(3/5) 2415781689391558 a001 139583862445/15127*64079^(2/23) 2415781689408383 a001 2971215073/15127*167761^(2/5) 2415781689409931 a001 2255/90481*(1/2+1/2*5^(1/2))^43 2415781689409931 a001 121393/15127*(1/2+1/2*5^(1/2))^31 2415781689409931 a001 121393/15127*9062201101803^(1/2) 2415781689417138 a001 32264490531/2161*64079^(1/23) 2415781689425550 a001 32951280099/15127*167761^(1/5) 2415781689430194 a001 4745030078745/196418 2415781689431625 a001 3524578/15127*439204^(8/9) 2415781689432975 a001 14930352/15127*439204^(7/9) 2415781689434369 a001 63245986/15127*439204^(2/3) 2415781689435760 a001 267914296/15127*439204^(5/9) 2415781689437152 a001 1134903170/15127*439204^(4/9) 2415781689437934 a001 6765/710647*45537549124^(15/17) 2415781689437934 a001 6765/710647*312119004989^(9/11) 2415781689437934 a001 6765/710647*14662949395604^(5/7) 2415781689437934 a001 6765/710647*(1/2+1/2*5^(1/2))^45 2415781689437934 a001 6765/710647*192900153618^(5/6) 2415781689437934 a001 6765/710647*28143753123^(9/10) 2415781689437934 a001 6765/710647*10749957122^(15/16) 2415781689437934 a001 317811/15127*(1/2+1/2*5^(1/2))^29 2415781689437934 a001 317811/15127*1322157322203^(1/2) 2415781689438543 a001 686789568/2161*439204^(1/3) 2415781689439935 a001 20365011074/15127*439204^(2/9) 2415781689440891 a001 12422650023795/514229 2415781689441326 a001 86267571272/15127*439204^(1/9) 2415781689441988 a001 832040/15127*7881196^(9/11) 2415781689442020 a001 832040/15127*141422324^(9/13) 2415781689442020 a001 55/15126*(1/2+1/2*5^(1/2))^47 2415781689442020 a001 832040/15127*2537720636^(3/5) 2415781689442020 a001 832040/15127*45537549124^(9/17) 2415781689442020 a001 832040/15127*14662949395604^(3/7) 2415781689442020 a001 832040/15127*(1/2+1/2*5^(1/2))^27 2415781689442020 a001 832040/15127*192900153618^(1/2) 2415781689442020 a001 832040/15127*10749957122^(9/16) 2415781689442020 a001 832040/15127*599074578^(9/14) 2415781689442022 a001 832040/15127*33385282^(3/4) 2415781689442451 a001 32522919992640/1346269 2415781689442612 a001 311187/2161*20633239^(5/7) 2415781689442616 a001 6765/4870847*14662949395604^(7/9) 2415781689442616 a001 6765/4870847*(1/2+1/2*5^(1/2))^49 2415781689442616 a001 6765/4870847*505019158607^(7/8) 2415781689442616 a001 311187/2161*2537720636^(5/9) 2415781689442616 a001 311187/2161*312119004989^(5/11) 2415781689442616 a001 311187/2161*(1/2+1/2*5^(1/2))^25 2415781689442616 a001 311187/2161*3461452808002^(5/12) 2415781689442616 a001 311187/2161*28143753123^(1/2) 2415781689442616 a001 311187/2161*228826127^(5/8) 2415781689442648 a001 832040/15127*1860498^(9/10) 2415781689442679 a001 85146109954125/3524578 2415781689442691 a001 14930352/15127*7881196^(7/11) 2415781689442697 a001 63245986/15127*7881196^(6/11) 2415781689442698 a001 9227465/15127*7881196^(2/3) 2415781689442700 a001 267914296/15127*7881196^(5/11) 2415781689442703 a001 2255/4250681*817138163596^(17/19) 2415781689442703 a001 2255/4250681*14662949395604^(17/21) 2415781689442703 a001 2255/4250681*(1/2+1/2*5^(1/2))^51 2415781689442703 a001 2255/4250681*192900153618^(17/18) 2415781689442703 a001 5702887/15127*(1/2+1/2*5^(1/2))^23 2415781689442703 a001 5702887/15127*4106118243^(1/2) 2415781689442704 a001 1134903170/15127*7881196^(4/11) 2415781689442705 a001 1836311903/15127*7881196^(1/3) 2415781689442707 a001 686789568/2161*7881196^(3/11) 2415781689442711 a001 20365011074/15127*7881196^(2/11) 2415781689442712 a001 44583081973947/1845493 2415781689442712 a001 14930352/15127*20633239^(3/5) 2415781689442714 a001 86267571272/15127*7881196^(1/11) 2415781689442715 a001 267914296/15127*20633239^(3/7) 2415781689442715 a001 24157817/15127*20633239^(4/7) 2415781689442716 a001 433494437/15127*20633239^(2/5) 2415781689442716 a001 14930352/15127*141422324^(7/13) 2415781689442716 a001 6765/33385282*(1/2+1/2*5^(1/2))^53 2415781689442716 a001 14930352/15127*2537720636^(7/15) 2415781689442716 a001 14930352/15127*17393796001^(3/7) 2415781689442716 a001 14930352/15127*45537549124^(7/17) 2415781689442716 a001 14930352/15127*14662949395604^(1/3) 2415781689442716 a001 14930352/15127*(1/2+1/2*5^(1/2))^21 2415781689442716 a001 14930352/15127*192900153618^(7/18) 2415781689442716 a001 14930352/15127*10749957122^(7/16) 2415781689442716 a001 14930352/15127*599074578^(1/2) 2415781689442716 a001 2971215073/15127*20633239^(2/7) 2415781689442717 a001 12586269025/15127*20633239^(1/5) 2415781689442717 a001 14930352/15127*33385282^(7/12) 2415781689442717 a001 583600119655080/24157817 2415781689442717 a001 32951280099/15127*20633239^(1/7) 2415781689442717 a001 2255/29134601*3461452808002^(11/12) 2415781689442718 a001 39088169/15127*817138163596^(1/3) 2415781689442718 a001 39088169/15127*(1/2+1/2*5^(1/2))^19 2415781689442718 a001 1527884949095505/63245986 2415781689442718 a001 39088169/15127*87403803^(1/2) 2415781689442718 a001 6765/228826127*14662949395604^(19/21) 2415781689442718 a001 4000054727631435/165580141 2415781689442718 a001 267914296/15127*141422324^(5/13) 2415781689442718 a001 10472279233798800/433494437 2415781689442718 a001 5483356594752993/226980634 2415781689442718 a001 71778069687496095/2971215073 2415781689442718 a001 6765*45537549124^(1/3) 2415781689442718 a001 44361286713731130/1836311903 2415781689442718 a001 5648167913322055/233802911 2415781689442718 a001 6765/969323029*14662949395604^(20/21) 2415781689442718 a001 701408733/15127*141422324^(1/3) 2415781689442718 a001 6472224506167365/267914296 2415781689442718 a001 1134903170/15127*141422324^(4/13) 2415781689442718 a001 686789568/2161*141422324^(3/13) 2415781689442718 a001 20365011074/15127*141422324^(2/13) 2415781689442718 a001 86267571272/15127*141422324^(1/13) 2415781689442718 a001 267914296/15127*2537720636^(1/3) 2415781689442718 a001 267914296/15127*45537549124^(5/17) 2415781689442718 a001 267914296/15127*312119004989^(3/11) 2415781689442718 a001 267914296/15127*14662949395604^(5/21) 2415781689442718 a001 267914296/15127*(1/2+1/2*5^(1/2))^15 2415781689442718 a001 267914296/15127*192900153618^(5/18) 2415781689442718 a001 267914296/15127*28143753123^(3/10) 2415781689442718 a001 267914296/15127*10749957122^(5/16) 2415781689442718 a001 267914296/15127*599074578^(5/14) 2415781689442718 a001 701408733/15127*(1/2+1/2*5^(1/2))^13 2415781689442718 a001 701408733/15127*73681302247^(1/4) 2415781689442718 a001 1836311903/15127*312119004989^(1/5) 2415781689442718 a001 1836311903/15127*(1/2+1/2*5^(1/2))^11 2415781689442718 a001 686789568/2161*2537720636^(1/5) 2415781689442718 a001 20365011074/15127*2537720636^(2/15) 2415781689442718 a001 32951280099/15127*2537720636^(1/9) 2415781689442718 a001 2971215073/15127*2537720636^(2/9) 2415781689442718 a001 86267571272/15127*2537720636^(1/15) 2415781689442718 a001 686789568/2161*45537549124^(3/17) 2415781689442718 a001 686789568/2161*14662949395604^(1/7) 2415781689442718 a001 686789568/2161*(1/2+1/2*5^(1/2))^9 2415781689442718 a001 686789568/2161*192900153618^(1/6) 2415781689442718 a001 686789568/2161*10749957122^(3/16) 2415781689442718 a001 12586269025/15127*17393796001^(1/7) 2415781689442718 a001 12586269025/15127*14662949395604^(1/9) 2415781689442718 a001 12586269025/15127*(1/2+1/2*5^(1/2))^7 2415781689442718 a001 32951280099/15127*312119004989^(1/11) 2415781689442718 a001 32951280099/15127*(1/2+1/2*5^(1/2))^5 2415781689442718 a001 32951280099/15127*28143753123^(1/10) 2415781689442718 a001 86267571272/15127*45537549124^(1/17) 2415781689442718 a001 86267571272/15127*14662949395604^(1/21) 2415781689442718 a001 86267571272/15127*(1/2+1/2*5^(1/2))^3 2415781689442718 a001 32264490531/4322+32264490531/4322*5^(1/2) 2415781689442718 a001 365435296162/15127 2415781689442718 a001 139583862445/15127*(1/2+1/2*5^(1/2))^2 2415781689442718 a001 53316291173/15127*(1/2+1/2*5^(1/2))^4 2415781689442718 a001 53316291173/15127*23725150497407^(1/16) 2415781689442718 a001 53316291173/15127*73681302247^(1/13) 2415781689442718 a001 139583862445/15127*10749957122^(1/24) 2415781689442718 a001 20365011074/15127*45537549124^(2/17) 2415781689442718 a001 20365011074/15127*14662949395604^(2/21) 2415781689442718 a001 20365011074/15127*(1/2+1/2*5^(1/2))^6 2415781689442718 a001 86267571272/15127*10749957122^(1/16) 2415781689442718 a001 53316291173/15127*10749957122^(1/12) 2415781689442718 a001 20365011074/15127*10749957122^(1/8) 2415781689442718 a001 139583862445/15127*4106118243^(1/23) 2415781689442718 a001 7778742049/15127*(1/2+1/2*5^(1/2))^8 2415781689442718 a001 7778742049/15127*23725150497407^(1/8) 2415781689442718 a001 7778742049/15127*73681302247^(2/13) 2415781689442718 a001 7778742049/15127*10749957122^(1/6) 2415781689442718 a001 53316291173/15127*4106118243^(2/23) 2415781689442718 a001 20365011074/15127*4106118243^(3/23) 2415781689442718 a001 7778742049/15127*4106118243^(4/23) 2415781689442718 a001 139583862445/15127*1568397607^(1/22) 2415781689442718 a001 2971215073/15127*312119004989^(2/11) 2415781689442718 a001 2971215073/15127*(1/2+1/2*5^(1/2))^10 2415781689442718 a001 2971215073/15127*28143753123^(1/5) 2415781689442718 a001 2971215073/15127*10749957122^(5/24) 2415781689442718 a001 2971215073/15127*4106118243^(5/23) 2415781689442718 a001 53316291173/15127*1568397607^(1/11) 2415781689442718 a001 1836311903/15127*1568397607^(1/4) 2415781689442718 a001 20365011074/15127*1568397607^(3/22) 2415781689442718 a001 7778742049/15127*1568397607^(2/11) 2415781689442718 a001 1134903170/15127*2537720636^(4/15) 2415781689442718 a001 2971215073/15127*1568397607^(5/22) 2415781689442718 a001 139583862445/15127*599074578^(1/21) 2415781689442718 a001 1134903170/15127*45537549124^(4/17) 2415781689442718 a001 1134903170/15127*817138163596^(4/19) 2415781689442718 a001 1134903170/15127*14662949395604^(4/21) 2415781689442718 a001 1134903170/15127*(1/2+1/2*5^(1/2))^12 2415781689442718 a001 1134903170/15127*192900153618^(2/9) 2415781689442718 a001 1134903170/15127*73681302247^(3/13) 2415781689442718 a001 1134903170/15127*10749957122^(1/4) 2415781689442718 a001 1134903170/15127*4106118243^(6/23) 2415781689442718 a001 86267571272/15127*599074578^(1/14) 2415781689442718 a001 53316291173/15127*599074578^(2/21) 2415781689442718 a001 1134903170/15127*1568397607^(3/11) 2415781689442718 a001 20365011074/15127*599074578^(1/7) 2415781689442718 a001 12586269025/15127*599074578^(1/6) 2415781689442718 a001 7778742049/15127*599074578^(4/21) 2415781689442718 a001 686789568/2161*599074578^(3/14) 2415781689442718 a001 2971215073/15127*599074578^(5/21) 2415781689442718 a001 1134903170/15127*599074578^(2/7) 2415781689442718 a001 139583862445/15127*228826127^(1/20) 2415781689442718 a001 433494437/15127*17393796001^(2/7) 2415781689442718 a001 433494437/15127*14662949395604^(2/9) 2415781689442718 a001 433494437/15127*(1/2+1/2*5^(1/2))^14 2415781689442718 a001 433494437/15127*505019158607^(1/4) 2415781689442718 a001 433494437/15127*10749957122^(7/24) 2415781689442718 a001 433494437/15127*4106118243^(7/23) 2415781689442718 a001 433494437/15127*1568397607^(7/22) 2415781689442718 a001 53316291173/15127*228826127^(1/10) 2415781689442718 a001 433494437/15127*599074578^(1/3) 2415781689442718 a001 32951280099/15127*228826127^(1/8) 2415781689442718 a001 20365011074/15127*228826127^(3/20) 2415781689442718 a001 7778742049/15127*228826127^(1/5) 2415781689442718 a001 267914296/15127*228826127^(3/8) 2415781689442718 a001 2971215073/15127*228826127^(1/4) 2415781689442718 a001 1134903170/15127*228826127^(3/10) 2415781689442718 a001 139583862445/15127*87403803^(1/19) 2415781689442718 a001 165580141/15127*(1/2+1/2*5^(1/2))^16 2415781689442718 a001 165580141/15127*23725150497407^(1/4) 2415781689442718 a001 165580141/15127*73681302247^(4/13) 2415781689442718 a001 165580141/15127*10749957122^(1/3) 2415781689442718 a001 165580141/15127*4106118243^(8/23) 2415781689442718 a001 165580141/15127*1568397607^(4/11) 2415781689442718 a001 433494437/15127*228826127^(7/20) 2415781689442718 a001 165580141/15127*599074578^(8/21) 2415781689442718 a001 53316291173/15127*87403803^(2/19) 2415781689442718 a001 165580141/15127*228826127^(2/5) 2415781689442718 a001 20365011074/15127*87403803^(3/19) 2415781689442718 a001 63245986/15127*141422324^(6/13) 2415781689442718 a001 7778742049/15127*87403803^(4/19) 2415781689442718 a001 6765/141422324*14662949395604^(8/9) 2415781689442718 a001 2971215073/15127*87403803^(5/19) 2415781689442718 a001 1134903170/15127*87403803^(6/19) 2415781689442718 a001 433494437/15127*87403803^(7/19) 2415781689442718 a001 139583862445/15127*33385282^(1/18) 2415781689442718 a001 63245986/15127*2537720636^(2/5) 2415781689442718 a001 63245986/15127*45537549124^(6/17) 2415781689442718 a001 63245986/15127*14662949395604^(2/7) 2415781689442718 a001 63245986/15127*(1/2+1/2*5^(1/2))^18 2415781689442718 a001 63245986/15127*192900153618^(1/3) 2415781689442718 a001 63245986/15127*10749957122^(3/8) 2415781689442718 a001 63245986/15127*4106118243^(9/23) 2415781689442718 a001 63245986/15127*1568397607^(9/22) 2415781689442718 a001 63245986/15127*599074578^(3/7) 2415781689442718 a001 63245986/15127*228826127^(9/20) 2415781689442718 a001 165580141/15127*87403803^(8/19) 2415781689442718 a001 86267571272/15127*33385282^(1/12) 2415781689442718 a001 53316291173/15127*33385282^(1/9) 2415781689442718 a001 944284829440425/39088169 2415781689442718 a001 63245986/15127*87403803^(9/19) 2415781689442718 a001 20365011074/15127*33385282^(1/6) 2415781689442718 a001 7778742049/15127*33385282^(2/9) 2415781689442718 a001 686789568/2161*33385282^(1/4) 2415781689442718 a001 2971215073/15127*33385282^(5/18) 2415781689442719 a001 1134903170/15127*33385282^(1/3) 2415781689442719 a001 6765/54018521*14662949395604^(6/7) 2415781689442719 a001 24157817/15127*2537720636^(4/9) 2415781689442719 a001 24157817/15127*(1/2+1/2*5^(1/2))^20 2415781689442719 a001 24157817/15127*23725150497407^(5/16) 2415781689442719 a001 24157817/15127*505019158607^(5/14) 2415781689442719 a001 24157817/15127*73681302247^(5/13) 2415781689442719 a001 24157817/15127*28143753123^(2/5) 2415781689442719 a001 24157817/15127*10749957122^(5/12) 2415781689442719 a001 24157817/15127*4106118243^(10/23) 2415781689442719 a001 24157817/15127*1568397607^(5/11) 2415781689442719 a001 24157817/15127*599074578^(10/21) 2415781689442719 a001 433494437/15127*33385282^(7/18) 2415781689442719 a001 24157817/15127*228826127^(1/2) 2415781689442719 a001 139583862445/15127*12752043^(1/17) 2415781689442719 a001 267914296/15127*33385282^(5/12) 2415781689442719 a001 165580141/15127*33385282^(4/9) 2415781689442719 a001 24157817/15127*87403803^(10/19) 2415781689442719 a001 63245986/15127*33385282^(1/2) 2415781689442720 a001 53316291173/15127*12752043^(2/17) 2415781689442720 a001 24157817/15127*33385282^(5/9) 2415781689442720 a001 120228236595115/4976784 2415781689442720 a001 20365011074/15127*12752043^(3/17) 2415781689442721 a001 7778742049/15127*12752043^(4/17) 2415781689442722 a001 2971215073/15127*12752043^(5/17) 2415781689442723 a001 1134903170/15127*12752043^(6/17) 2415781689442723 a001 615/1875749*(1/2+1/2*5^(1/2))^52 2415781689442723 a001 615/1875749*23725150497407^(13/16) 2415781689442723 a001 615/1875749*505019158607^(13/14) 2415781689442723 a001 9227465/15127*312119004989^(2/5) 2415781689442723 a001 9227465/15127*(1/2+1/2*5^(1/2))^22 2415781689442723 a001 9227465/15127*10749957122^(11/24) 2415781689442723 a001 9227465/15127*4106118243^(11/23) 2415781689442723 a001 9227465/15127*1568397607^(1/2) 2415781689442723 a001 9227465/15127*599074578^(11/21) 2415781689442724 a001 9227465/15127*228826127^(11/20) 2415781689442724 a001 9227465/15127*87403803^(11/19) 2415781689442724 a001 433494437/15127*12752043^(7/17) 2415781689442724 a001 139583862445/15127*4870847^(1/16) 2415781689442725 a001 9227465/15127*33385282^(11/18) 2415781689442725 a001 165580141/15127*12752043^(8/17) 2415781689442725 a001 6765*12752043^(1/2) 2415781689442726 a001 63245986/15127*12752043^(9/17) 2415781689442727 a001 24157817/15127*12752043^(10/17) 2415781689442728 a001 3524578/15127*7881196^(8/11) 2415781689442731 a001 53316291173/15127*4870847^(1/8) 2415781689442733 a001 86267564130/3571 2415781689442733 a001 9227465/15127*12752043^(11/17) 2415781689442737 a001 20365011074/15127*4870847^(3/16) 2415781689442743 a001 7778742049/15127*4870847^(1/4) 2415781689442750 a001 2971215073/15127*4870847^(5/16) 2415781689442756 a001 1134903170/15127*4870847^(3/8) 2415781689442757 a001 3524578/15127*141422324^(8/13) 2415781689442757 a001 6765/7881196*312119004989^(10/11) 2415781689442757 a001 6765/7881196*(1/2+1/2*5^(1/2))^50 2415781689442757 a001 6765/7881196*3461452808002^(5/6) 2415781689442757 a001 3524578/15127*2537720636^(8/15) 2415781689442757 a001 3524578/15127*45537549124^(8/17) 2415781689442757 a001 3524578/15127*14662949395604^(8/21) 2415781689442757 a001 3524578/15127*(1/2+1/2*5^(1/2))^24 2415781689442757 a001 3524578/15127*192900153618^(4/9) 2415781689442757 a001 3524578/15127*73681302247^(6/13) 2415781689442757 a001 3524578/15127*10749957122^(1/2) 2415781689442757 a001 3524578/15127*4106118243^(12/23) 2415781689442757 a001 3524578/15127*1568397607^(6/11) 2415781689442757 a001 3524578/15127*599074578^(4/7) 2415781689442757 a001 3524578/15127*228826127^(3/5) 2415781689442757 a001 3524578/15127*87403803^(12/19) 2415781689442758 a001 3524578/15127*33385282^(2/3) 2415781689442762 a001 433494437/15127*4870847^(7/16) 2415781689442764 a001 139583862445/15127*1860498^(1/15) 2415781689442767 a001 3524578/15127*12752043^(12/17) 2415781689442769 a001 165580141/15127*4870847^(1/2) 2415781689442775 a001 63245986/15127*4870847^(9/16) 2415781689442782 a001 24157817/15127*4870847^(5/8) 2415781689442788 a001 86267571272/15127*1860498^(1/10) 2415781689442793 a001 9227465/15127*4870847^(11/16) 2415781689442811 a001 53316291173/15127*1860498^(2/15) 2415781689442820 a001 17541063320495/726103 2415781689442833 a001 3524578/15127*4870847^(3/4) 2415781689442834 a001 32951280099/15127*1860498^(1/6) 2415781689442857 a001 20365011074/15127*1860498^(1/5) 2415781689442904 a001 7778742049/15127*1860498^(4/15) 2415781689442927 a001 686789568/2161*1860498^(3/10) 2415781689442950 a001 2971215073/15127*1860498^(1/3) 2415781689442984 a001 1346269/15127*141422324^(2/3) 2415781689442984 a001 6765/3010349*45537549124^(16/17) 2415781689442984 a001 6765/3010349*14662949395604^(16/21) 2415781689442984 a001 6765/3010349*(1/2+1/2*5^(1/2))^48 2415781689442984 a001 6765/3010349*192900153618^(8/9) 2415781689442984 a001 6765/3010349*73681302247^(12/13) 2415781689442984 a001 1346269/15127*(1/2+1/2*5^(1/2))^26 2415781689442984 a001 1346269/15127*73681302247^(1/2) 2415781689442984 a001 1346269/15127*10749957122^(13/24) 2415781689442984 a001 1346269/15127*4106118243^(13/23) 2415781689442984 a001 1346269/15127*1568397607^(13/22) 2415781689442984 a001 1346269/15127*599074578^(13/21) 2415781689442984 a001 1346269/15127*228826127^(13/20) 2415781689442985 a001 1346269/15127*87403803^(13/19) 2415781689442986 a001 1346269/15127*33385282^(13/18) 2415781689442996 a001 1346269/15127*12752043^(13/17) 2415781689442997 a001 1134903170/15127*1860498^(2/5) 2415781689443044 a001 433494437/15127*1860498^(7/15) 2415781689443059 a001 139583862445/15127*710647^(1/14) 2415781689443067 a001 267914296/15127*1860498^(1/2) 2415781689443067 a001 1346269/15127*4870847^(13/16) 2415781689443090 a001 165580141/15127*1860498^(8/15) 2415781689443137 a001 63245986/15127*1860498^(3/5) 2415781689443184 a001 24157817/15127*1860498^(2/3) 2415781689443198 a001 311187/2161*1860498^(5/6) 2415781689443204 a001 14930352/15127*1860498^(7/10) 2415781689443235 a001 9227465/15127*1860498^(11/15) 2415781689443315 a001 3524578/15127*1860498^(4/5) 2415781689443401 a001 53316291173/15127*710647^(1/7) 2415781689443416 a001 365459453979/15128 2415781689443589 a001 1346269/15127*1860498^(13/15) 2415781689443743 a001 20365011074/15127*710647^(3/14) 2415781689443914 a001 12586269025/15127*710647^(1/4) 2415781689444085 a001 7778742049/15127*710647^(2/7) 2415781689444426 a001 2971215073/15127*710647^(5/14) 2415781689444540 a001 514229/15127*20633239^(4/5) 2415781689444545 a001 6765/1149851*(1/2+1/2*5^(1/2))^46 2415781689444545 a001 6765/1149851*10749957122^(23/24) 2415781689444545 a001 514229/15127*17393796001^(4/7) 2415781689444545 a001 514229/15127*14662949395604^(4/9) 2415781689444545 a001 514229/15127*(1/2+1/2*5^(1/2))^28 2415781689444545 a001 514229/15127*73681302247^(7/13) 2415781689444545 a001 514229/15127*10749957122^(7/12) 2415781689444545 a001 514229/15127*4106118243^(14/23) 2415781689444545 a001 514229/15127*1568397607^(7/11) 2415781689444545 a001 514229/15127*599074578^(2/3) 2415781689444545 a001 514229/15127*228826127^(7/10) 2415781689444545 a001 514229/15127*87403803^(14/19) 2415781689444547 a001 514229/15127*33385282^(7/9) 2415781689444557 a001 514229/15127*12752043^(14/17) 2415781689444634 a001 514229/15127*4870847^(7/8) 2415781689444646 a001 956722026041/64079*3571^(1/17) 2415781689444768 a001 1134903170/15127*710647^(3/7) 2415781689445110 a001 433494437/15127*710647^(1/2) 2415781689445196 a001 514229/15127*1860498^(14/15) 2415781689445240 a001 139583862445/15127*271443^(1/13) 2415781689445451 a001 165580141/15127*710647^(4/7) 2415781689445793 a001 63245986/15127*710647^(9/14) 2415781689446135 a001 24157817/15127*710647^(5/7) 2415781689446303 a001 14930352/15127*710647^(3/4) 2415781689446482 a001 9227465/15127*710647^(11/14) 2415781689446857 a001 3524578/15127*710647^(6/7) 2415781689447426 a001 1346269/15127*710647^(13/14) 2415781689447501 a001 2559206648350/105937 2415781689447762 a001 53316291173/15127*271443^(2/13) 2415781689450284 a001 20365011074/15127*271443^(3/13) 2415781689452081 a001 32264490531/2161*103682^(1/24) 2415781689452806 a001 7778742049/15127*271443^(4/13) 2415781689455206 a001 196418/15127*7881196^(10/11) 2415781689455236 a001 196418/15127*20633239^(6/7) 2415781689455241 a001 196418/15127*141422324^(10/13) 2415781689455241 a001 6765/439204*312119004989^(4/5) 2415781689455241 a001 6765/439204*(1/2+1/2*5^(1/2))^44 2415781689455241 a001 6765/439204*23725150497407^(11/16) 2415781689455241 a001 6765/439204*73681302247^(11/13) 2415781689455241 a001 6765/439204*10749957122^(11/12) 2415781689455241 a001 6765/439204*4106118243^(22/23) 2415781689455241 a001 196418/15127*2537720636^(2/3) 2415781689455241 a001 196418/15127*45537549124^(10/17) 2415781689455241 a001 196418/15127*312119004989^(6/11) 2415781689455241 a001 196418/15127*14662949395604^(10/21) 2415781689455241 a001 196418/15127*(1/2+1/2*5^(1/2))^30 2415781689455241 a001 196418/15127*192900153618^(5/9) 2415781689455241 a001 196418/15127*28143753123^(3/5) 2415781689455241 a001 196418/15127*10749957122^(5/8) 2415781689455241 a001 196418/15127*4106118243^(15/23) 2415781689455241 a001 196418/15127*1568397607^(15/22) 2415781689455241 a001 196418/15127*599074578^(5/7) 2415781689455241 a001 196418/15127*228826127^(3/4) 2415781689455242 a001 196418/15127*87403803^(15/19) 2415781689455243 a001 196418/15127*33385282^(5/6) 2415781689455254 a001 196418/15127*12752043^(15/17) 2415781689455328 a001 2971215073/15127*271443^(5/13) 2415781689455337 a001 196418/15127*4870847^(15/16) 2415781689457850 a001 1134903170/15127*271443^(6/13) 2415781689459111 a001 701408733/15127*271443^(1/2) 2415781689460372 a001 433494437/15127*271443^(7/13) 2415781689461445 a001 139583862445/15127*103682^(1/12) 2415781689462894 a001 165580141/15127*271443^(8/13) 2415781689465417 a001 63245986/15127*271443^(9/13) 2415781689467939 a001 24157817/15127*271443^(10/13) 2415781689470466 a001 9227465/15127*271443^(11/13) 2415781689470808 a001 86267571272/15127*103682^(1/8) 2415781689473022 a001 3524578/15127*271443^(12/13) 2415781689475505 a001 2932589866305/121393 2415781689480172 a001 53316291173/15127*103682^(1/6) 2415781689485510 a001 1201881744/6119*9349^(10/19) 2415781689489535 a001 32951280099/15127*103682^(5/24) 2415781689498899 a001 20365011074/15127*103682^(1/4) 2415781689508263 a001 12586269025/15127*103682^(7/24) 2415781689512731 a001 32264490531/2161*39603^(1/22) 2415781689517626 a001 7778742049/15127*103682^(1/3) 2415781689526990 a001 686789568/2161*103682^(3/8) 2415781689528555 a001 615/15251*2537720636^(14/15) 2415781689528555 a001 615/15251*17393796001^(6/7) 2415781689528555 a001 615/15251*45537549124^(14/17) 2415781689528555 a001 615/15251*817138163596^(14/19) 2415781689528555 a001 615/15251*14662949395604^(2/3) 2415781689528555 a001 615/15251*(1/2+1/2*5^(1/2))^42 2415781689528555 a001 615/15251*192900153618^(7/9) 2415781689528555 a001 615/15251*10749957122^(7/8) 2415781689528555 a001 615/15251*4106118243^(21/23) 2415781689528555 a001 615/15251*1568397607^(21/22) 2415781689528555 a001 75025/15127*(1/2+1/2*5^(1/2))^32 2415781689528555 a001 75025/15127*23725150497407^(1/2) 2415781689528555 a001 75025/15127*505019158607^(4/7) 2415781689528555 a001 75025/15127*73681302247^(8/13) 2415781689528555 a001 75025/15127*10749957122^(2/3) 2415781689528555 a001 75025/15127*4106118243^(16/23) 2415781689528555 a001 75025/15127*1568397607^(8/11) 2415781689528555 a001 75025/15127*599074578^(16/21) 2415781689528555 a001 75025/15127*228826127^(4/5) 2415781689528555 a001 75025/15127*87403803^(16/19) 2415781689528557 a001 75025/15127*33385282^(8/9) 2415781689528569 a001 75025/15127*12752043^(16/17) 2415781689536353 a001 2971215073/15127*103682^(5/12) 2415781689545717 a001 1836311903/15127*103682^(11/24) 2415781689555080 a001 1134903170/15127*103682^(1/2) 2415781689564444 a001 701408733/15127*103682^(13/24) 2415781689573807 a001 433494437/15127*103682^(7/12) 2415781689582744 a001 139583862445/15127*39603^(1/11) 2415781689583171 a001 267914296/15127*103682^(5/8) 2415781689592366 a001 43133785636/51841*9349^(7/19) 2415781689592534 a001 165580141/15127*103682^(2/3) 2415781689601898 a001 6765*103682^(17/24) 2415781689611262 a001 63245986/15127*103682^(3/4) 2415781689620625 a001 39088169/15127*103682^(19/24) 2415781689629989 a001 24157817/15127*103682^(5/6) 2415781689635248 a001 53316291173/5778*2207^(1/8) 2415781689639350 a001 14930352/15127*103682^(7/8) 2415781689648721 a001 9227465/15127*103682^(11/12) 2415781689652757 a001 86267571272/15127*39603^(3/22) 2415781689658064 a001 5702887/15127*103682^(23/24) 2415781689662468 a001 20365011074/2207*843^(1/7) 2415781689667443 a001 373383217955/15456 2415781689722770 a001 53316291173/15127*39603^(2/11) 2415781689731506 a001 53316291173/39603*9349^(6/19) 2415781689784304 a001 75283811239/90481*9349^(7/19) 2415781689792783 a001 32951280099/15127*39603^(5/22) 2415781689812308 a001 591286729879/710647*9349^(7/19) 2415781689816393 a001 832040*9349^(7/19) 2415781689816989 a001 4052739537881/4870847*9349^(7/19) 2415781689817076 a001 3536736619241/4250681*9349^(7/19) 2415781689817130 a001 3278735159921/3940598*9349^(7/19) 2415781689817358 a001 2504730781961/3010349*9349^(7/19) 2415781689818918 a001 956722026041/1149851*9349^(7/19) 2415781689829615 a001 182717648081/219602*9349^(7/19) 2415781689862796 a001 20365011074/15127*39603^(3/11) 2415781689902928 a001 139583862445/167761*9349^(7/19) 2415781689932809 a001 12586269025/15127*39603^(7/22) 2415781689970582 a001 32264490531/2161*15127^(1/20) 2415781690002822 a001 7778742049/15127*39603^(4/11) 2415781690031055 a001 6765/64079*2537720636^(8/9) 2415781690031055 a001 6765/64079*312119004989^(8/11) 2415781690031055 a001 6765/64079*(1/2+1/2*5^(1/2))^40 2415781690031055 a001 6765/64079*23725150497407^(5/8) 2415781690031055 a001 6765/64079*73681302247^(10/13) 2415781690031055 a001 6765/64079*28143753123^(4/5) 2415781690031055 a001 6765/64079*10749957122^(5/6) 2415781690031055 a001 6765/64079*4106118243^(20/23) 2415781690031055 a001 6765/64079*1568397607^(10/11) 2415781690031055 a001 6765/64079*599074578^(20/21) 2415781690031055 a001 28657/15127*45537549124^(2/3) 2415781690031055 a001 28657/15127*(1/2+1/2*5^(1/2))^34 2415781690031055 a001 28657/15127*10749957122^(17/24) 2415781690031055 a001 28657/15127*4106118243^(17/23) 2415781690031055 a001 28657/15127*1568397607^(17/22) 2415781690031055 a001 28657/15127*599074578^(17/21) 2415781690031055 a001 28657/15127*228826127^(17/20) 2415781690031055 a001 28657/15127*87403803^(17/19) 2415781690031057 a001 28657/15127*33385282^(17/18) 2415781690072835 a001 686789568/2161*39603^(9/22) 2415781690142848 a001 2971215073/15127*39603^(5/11) 2415781690212861 a001 1836311903/15127*39603^(1/2) 2415781690282874 a001 1134903170/15127*39603^(6/11) 2415781690352887 a001 701408733/15127*39603^(13/22) 2415781690405428 a001 53316291173/64079*9349^(7/19) 2415781690422900 a001 433494437/15127*39603^(7/11) 2415781690492913 a001 267914296/15127*39603^(15/22) 2415781690498446 a001 139583862445/15127*15127^(1/10) 2415781690562926 a001 165580141/15127*39603^(8/11) 2415781690632939 a001 6765*39603^(17/22) 2415781690702952 a001 63245986/15127*39603^(9/11) 2415781690772965 a001 39088169/15127*39603^(19/22) 2415781690842979 a001 24157817/15127*39603^(10/11) 2415781690912989 a001 14930352/15127*39603^(21/22) 2415781690940212 a001 7778742049/24476*9349^(9/19) 2415781690983004 a001 427859095290/17711 2415781691026310 a001 86267571272/15127*15127^(3/20) 2415781691047067 a001 139583862445/103682*9349^(6/19) 2415781691186207 a001 86267571272/39603*9349^(5/19) 2415781691239005 a001 365435296162/271443*9349^(6/19) 2415781691267009 a001 956722026041/710647*9349^(6/19) 2415781691271094 a001 2504730781961/1860498*9349^(6/19) 2415781691271690 a001 6557470319842/4870847*9349^(6/19) 2415781691271831 a001 10610209857723/7881196*9349^(6/19) 2415781691272059 a001 1346269*9349^(6/19) 2415781691273619 a001 1548008755920/1149851*9349^(6/19) 2415781691284316 a001 591286729879/439204*9349^(6/19) 2415781691357629 a001 225851433717/167761*9349^(6/19) 2415781691554174 a001 53316291173/15127*15127^(1/5) 2415781691860129 a001 86267571272/64079*9349^(6/19) 2415781691959923 a001 31622993/2889*5778^(8/9) 2415781692082038 a001 32951280099/15127*15127^(1/4) 2415781692394913 a001 12586269025/24476*9349^(8/19) 2415781692501769 a001 225851433717/103682*9349^(5/19) 2415781692609902 a001 20365011074/15127*15127^(3/10) 2415781692640908 a001 139583862445/39603*9349^(4/19) 2415781692693706 a001 591286729879/271443*9349^(5/19) 2415781692721710 a001 1548008755920/710647*9349^(5/19) 2415781692725795 a001 4052739537881/1860498*9349^(5/19) 2415781692726391 a001 2178309*9349^(5/19) 2415781692726760 a001 6557470319842/3010349*9349^(5/19) 2415781692728320 a001 2504730781961/1149851*9349^(5/19) 2415781692739017 a001 956722026041/439204*9349^(5/19) 2415781692812331 a001 365435296162/167761*9349^(5/19) 2415781692888831 a001 182717648081/12238*3571^(1/17) 2415781693137766 a001 12586269025/15127*15127^(7/20) 2415781693314830 a001 139583862445/64079*9349^(5/19) 2415781693462756 a001 32264490531/2161*5778^(1/18) 2415781693475240 a001 10946/15127*141422324^(12/13) 2415781693475240 a001 6765/24476*817138163596^(2/3) 2415781693475240 a001 6765/24476*(1/2+1/2*5^(1/2))^38 2415781693475240 a001 6765/24476*10749957122^(19/24) 2415781693475240 a001 6765/24476*4106118243^(19/23) 2415781693475240 a001 6765/24476*1568397607^(19/22) 2415781693475240 a001 6765/24476*599074578^(19/21) 2415781693475240 a001 10946/15127*2537720636^(4/5) 2415781693475240 a001 10946/15127*45537549124^(12/17) 2415781693475240 a001 10946/15127*14662949395604^(4/7) 2415781693475240 a001 10946/15127*(1/2+1/2*5^(1/2))^36 2415781693475240 a001 10946/15127*192900153618^(2/3) 2415781693475240 a001 10946/15127*73681302247^(9/13) 2415781693475240 a001 10946/15127*10749957122^(3/4) 2415781693475240 a001 10946/15127*4106118243^(18/23) 2415781693475240 a001 10946/15127*1568397607^(9/11) 2415781693475240 a001 6765/24476*228826127^(19/20) 2415781693475240 a001 10946/15127*599074578^(6/7) 2415781693475240 a001 10946/15127*228826127^(9/10) 2415781693475241 a001 10946/15127*87403803^(18/19) 2415781693665630 a001 7778742049/15127*15127^(2/5) 2415781693849614 a001 10182505537/12238*9349^(7/19) 2415781693956470 a001 182717648081/51841*9349^(4/19) 2415781694095609 a001 75283811239/13201*9349^(3/19) 2415781694148407 a001 956722026041/271443*9349^(4/19) 2415781694176411 a001 2504730781961/710647*9349^(4/19) 2415781694180496 a001 3278735159921/930249*9349^(4/19) 2415781694181461 a001 10610209857723/3010349*9349^(4/19) 2415781694183022 a001 4052739537881/1149851*9349^(4/19) 2415781694193494 a001 686789568/2161*15127^(9/20) 2415781694193718 a001 387002188980/109801*9349^(4/19) 2415781694208250 a001 53316291173/9349*3571^(3/17) 2415781694267032 a001 591286729879/167761*9349^(4/19) 2415781694427188 a001 132215732136/5473 2415781694619215 a001 63245986/39603*24476^(20/21) 2415781694721358 a001 2971215073/15127*15127^(1/2) 2415781694769531 a001 225851433717/64079*9349^(4/19) 2415781694811239 a001 34111385/13201*24476^(19/21) 2415781695003264 a001 165580141/39603*24476^(6/7) 2415781695195289 a001 267914296/39603*24476^(17/21) 2415781695249222 a001 1836311903/15127*15127^(11/20) 2415781695304315 a001 32951280099/24476*9349^(6/19) 2415781695387314 a001 433494437/39603*24476^(16/21) 2415781695411171 a001 591286729879/103682*9349^(3/19) 2415781695550310 a001 365435296162/39603*9349^(2/19) 2415781695579339 a001 17711*24476^(5/7) 2415781695603109 a001 516002918640/90481*9349^(3/19) 2415781695631112 a001 4052739537881/710647*9349^(3/19) 2415781695635198 a001 3536736619241/620166*9349^(3/19) 2415781695637723 a001 6557470319842/1149851*9349^(3/19) 2415781695648419 a001 2504730781961/439204*9349^(3/19) 2415781695721733 a001 956722026041/167761*9349^(3/19) 2415781695742737 a001 132215732208/5473 2415781695771364 a001 1134903170/39603*24476^(2/3) 2415781695777086 a001 1134903170/15127*15127^(3/5) 2415781695934587 a001 264431464437/10946 2415781695934776 a001 165580141/103682*24476^(20/21) 2415781695961995 a001 10170440940/421 2415781695963389 a001 1836311903/39603*24476^(13/21) 2415781695967476 a001 1/5473*(1/2+1/2*5^(1/2))^58 2415781695967476 a001 1322157322203/10946*8^(1/3) 2415781695971131 a001 264431464441/10946 2415781695979961 a001 39088169/5778*5778^(17/18) 2415781695980266 a001 132215732221/5473 2415781696053352 a001 132215732225/5473 2415781696126714 a001 433494437/271443*24476^(20/21) 2415781696126801 a001 133957148/51841*24476^(19/21) 2415781696154718 a001 1134903170/710647*24476^(20/21) 2415781696155414 a001 2971215073/39603*24476^(4/7) 2415781696158803 a001 2971215073/1860498*24476^(20/21) 2415781696159399 a001 7778742049/4870847*24476^(20/21) 2415781696159486 a001 20365011074/12752043*24476^(20/21) 2415781696159499 a001 53316291173/33385282*24476^(20/21) 2415781696159501 a001 139583862445/87403803*24476^(20/21) 2415781696159501 a001 365435296162/228826127*24476^(20/21) 2415781696159501 a001 956722026041/599074578*24476^(20/21) 2415781696159501 a001 2504730781961/1568397607*24476^(20/21) 2415781696159501 a001 6557470319842/4106118243*24476^(20/21) 2415781696159501 a001 10610209857723/6643838879*24476^(20/21) 2415781696159501 a001 4052739537881/2537720636*24476^(20/21) 2415781696159501 a001 1548008755920/969323029*24476^(20/21) 2415781696159501 a001 591286729879/370248451*24476^(20/21) 2415781696159501 a001 225851433717/141422324*24476^(20/21) 2415781696159502 a001 86267571272/54018521*24476^(20/21) 2415781696159507 a001 32951280099/20633239*24476^(20/21) 2415781696159540 a001 12586269025/7881196*24476^(20/21) 2415781696159768 a001 4807526976/3010349*24476^(20/21) 2415781696161328 a001 1836311903/1149851*24476^(20/21) 2415781696172025 a001 701408733/439204*24476^(20/21) 2415781696224233 a001 365435296162/64079*9349^(3/19) 2415781696245338 a001 267914296/167761*24476^(20/21) 2415781696304950 a001 701408733/15127*15127^(13/20) 2415781696318739 a001 233802911/90481*24476^(19/21) 2415781696318826 a001 433494437/103682*24476^(6/7) 2415781696346742 a001 1836311903/710647*24476^(19/21) 2415781696347438 a001 1602508992/13201*24476^(11/21) 2415781696350828 a001 267084832/103361*24476^(19/21) 2415781696351424 a001 12586269025/4870847*24476^(19/21) 2415781696351511 a001 10983760033/4250681*24476^(19/21) 2415781696351524 a001 43133785636/16692641*24476^(19/21) 2415781696351526 a001 75283811239/29134601*24476^(19/21) 2415781696351526 a001 591286729879/228826127*24476^(19/21) 2415781696351526 a001 86000486440/33281921*24476^(19/21) 2415781696351526 a001 4052739537881/1568397607*24476^(19/21) 2415781696351526 a001 3536736619241/1368706081*24476^(19/21) 2415781696351526 a001 3278735159921/1268860318*24476^(19/21) 2415781696351526 a001 2504730781961/969323029*24476^(19/21) 2415781696351526 a001 956722026041/370248451*24476^(19/21) 2415781696351526 a001 182717648081/70711162*24476^(19/21) 2415781696351527 a001 139583862445/54018521*24476^(19/21) 2415781696351532 a001 53316291173/20633239*24476^(19/21) 2415781696351565 a001 10182505537/3940598*24476^(19/21) 2415781696351793 a001 7778742049/3010349*24476^(19/21) 2415781696353353 a001 2971215073/1149851*24476^(19/21) 2415781696364049 a001 567451585/219602*24476^(19/21) 2415781696437363 a001 433494437/167761*24476^(19/21) 2415781696510764 a001 1134903170/271443*24476^(6/7) 2415781696510851 a001 701408733/103682*24476^(17/21) 2415781696538767 a001 2971215073/710647*24476^(6/7) 2415781696539463 a001 7778742049/39603*24476^(10/21) 2415781696542853 a001 7778742049/1860498*24476^(6/7) 2415781696543449 a001 20365011074/4870847*24476^(6/7) 2415781696543536 a001 53316291173/12752043*24476^(6/7) 2415781696543549 a001 139583862445/33385282*24476^(6/7) 2415781696543551 a001 365435296162/87403803*24476^(6/7) 2415781696543551 a001 956722026041/228826127*24476^(6/7) 2415781696543551 a001 2504730781961/599074578*24476^(6/7) 2415781696543551 a001 6557470319842/1568397607*24476^(6/7) 2415781696543551 a001 10610209857723/2537720636*24476^(6/7) 2415781696543551 a001 4052739537881/969323029*24476^(6/7) 2415781696543551 a001 1548008755920/370248451*24476^(6/7) 2415781696543551 a001 591286729879/141422324*24476^(6/7) 2415781696543552 a001 225851433717/54018521*24476^(6/7) 2415781696543557 a001 86267571272/20633239*24476^(6/7) 2415781696543590 a001 32951280099/7881196*24476^(6/7) 2415781696543817 a001 12586269025/3010349*24476^(6/7) 2415781696545378 a001 4807526976/1149851*24476^(6/7) 2415781696555819 a001 20340881885/842 2415781696556074 a001 1836311903/439204*24476^(6/7) 2415781696629388 a001 701408733/167761*24476^(6/7) 2415781696702789 a001 1836311903/271443*24476^(17/21) 2415781696702876 a001 567451585/51841*24476^(16/21) 2415781696730792 a001 686789568/101521*24476^(17/21) 2415781696731488 a001 12586269025/39603*24476^(3/7) 2415781696734878 a001 12586269025/1860498*24476^(17/21) 2415781696735474 a001 32951280099/4870847*24476^(17/21) 2415781696735561 a001 86267571272/12752043*24476^(17/21) 2415781696735574 a001 32264490531/4769326*24476^(17/21) 2415781696735575 a001 591286729879/87403803*24476^(17/21) 2415781696735576 a001 1548008755920/228826127*24476^(17/21) 2415781696735576 a001 4052739537881/599074578*24476^(17/21) 2415781696735576 a001 1515744265389/224056801*24476^(17/21) 2415781696735576 a001 6557470319842/969323029*24476^(17/21) 2415781696735576 a001 2504730781961/370248451*24476^(17/21) 2415781696735576 a001 956722026041/141422324*24476^(17/21) 2415781696735577 a001 365435296162/54018521*24476^(17/21) 2415781696735581 a001 139583862445/20633239*24476^(17/21) 2415781696735615 a001 53316291173/7881196*24476^(17/21) 2415781696735842 a001 20365011074/3010349*24476^(17/21) 2415781696737403 a001 7778742049/1149851*24476^(17/21) 2415781696747838 a001 102334155/64079*24476^(20/21) 2415781696748099 a001 2971215073/439204*24476^(17/21) 2415781696759016 a001 53316291173/24476*9349^(5/19) 2415781696794046 r005 Im(z^2+c),c=-51/58+13/51*I,n=24 2415781696821413 a001 1134903170/167761*24476^(17/21) 2415781696832814 a001 433494437/15127*15127^(7/10) 2415781696865872 a001 956722026041/103682*9349^(2/19) 2415781696894814 a001 2971215073/271443*24476^(16/21) 2415781696894901 a001 1836311903/103682*24476^(5/7) 2415781696919426 a001 17711/39603*(1/2+1/2*5^(1/2))^37 2415781696922817 a001 7778742049/710647*24476^(16/21) 2415781696923513 a001 20365011074/39603*24476^(8/21) 2415781696926903 a001 10182505537/930249*24476^(16/21) 2415781696927499 a001 53316291173/4870847*24476^(16/21) 2415781696927586 a001 139583862445/12752043*24476^(16/21) 2415781696927598 a001 182717648081/16692641*24476^(16/21) 2415781696927600 a001 956722026041/87403803*24476^(16/21) 2415781696927601 a001 2504730781961/228826127*24476^(16/21) 2415781696927601 a001 3278735159921/299537289*24476^(16/21) 2415781696927601 a001 10610209857723/969323029*24476^(16/21) 2415781696927601 a001 4052739537881/370248451*24476^(16/21) 2415781696927601 a001 387002188980/35355581*24476^(16/21) 2415781696927601 a001 591286729879/54018521*24476^(16/21) 2415781696927606 a001 7787980473/711491*24476^(16/21) 2415781696927639 a001 21566892818/1970299*24476^(16/21) 2415781696927867 a001 32951280099/3010349*24476^(16/21) 2415781696929428 a001 12586269025/1149851*24476^(16/21) 2415781696939863 a001 165580141/64079*24476^(19/21) 2415781696940124 a001 1201881744/109801*24476^(16/21) 2415781697005011 a001 591286729879/39603*9349^(1/19) 2415781697013438 a001 1836311903/167761*24476^(16/21) 2415781697057810 a001 2504730781961/271443*9349^(2/19) 2415781697085813 a001 6557470319842/710647*9349^(2/19) 2415781697086839 a001 1602508992/90481*24476^(5/7) 2415781697086926 a001 2971215073/103682*24476^(2/3) 2415781697092424 a001 10610209857723/1149851*9349^(2/19) 2415781697103120 a001 4052739537881/439204*9349^(2/19) 2415781697114842 a001 12586269025/710647*24476^(5/7) 2415781697115538 a001 10983760033/13201*24476^(1/3) 2415781697118928 a001 10983760033/620166*24476^(5/7) 2415781697119524 a001 86267571272/4870847*24476^(5/7) 2415781697119611 a001 75283811239/4250681*24476^(5/7) 2415781697119623 a001 591286729879/33385282*24476^(5/7) 2415781697119625 a001 516002918640/29134601*24476^(5/7) 2415781697119625 a001 4052739537881/228826127*24476^(5/7) 2415781697119625 a001 3536736619241/199691526*24476^(5/7) 2415781697119625 a001 6557470319842/370248451*24476^(5/7) 2415781697119626 a001 2504730781961/141422324*24476^(5/7) 2415781697119626 a001 956722026041/54018521*24476^(5/7) 2415781697119631 a001 365435296162/20633239*24476^(5/7) 2415781697119664 a001 139583862445/7881196*24476^(5/7) 2415781697119892 a001 53316291173/3010349*24476^(5/7) 2415781697121453 a001 20365011074/1149851*24476^(5/7) 2415781697131888 a001 267914296/64079*24476^(6/7) 2415781697132149 a001 7778742049/439204*24476^(5/7) 2415781697176434 a001 140728068720/15251*9349^(2/19) 2415781697205463 a001 2971215073/167761*24476^(5/7) 2415781697278863 a001 7778742049/271443*24476^(2/3) 2415781697278950 a001 46368*24476^(13/21) 2415781697306867 a001 20365011074/710647*24476^(2/3) 2415781697307563 a001 53316291173/39603*24476^(2/7) 2415781697310952 a001 53316291173/1860498*24476^(2/3) 2415781697311549 a001 139583862445/4870847*24476^(2/3) 2415781697311635 a001 365435296162/12752043*24476^(2/3) 2415781697311648 a001 956722026041/33385282*24476^(2/3) 2415781697311650 a001 2504730781961/87403803*24476^(2/3) 2415781697311650 a001 6557470319842/228826127*24476^(2/3) 2415781697311650 a001 10610209857723/370248451*24476^(2/3) 2415781697311650 a001 4052739537881/141422324*24476^(2/3) 2415781697311651 a001 1548008755920/54018521*24476^(2/3) 2415781697311656 a001 591286729879/20633239*24476^(2/3) 2415781697311689 a001 225851433717/7881196*24476^(2/3) 2415781697311917 a001 86267571272/3010349*24476^(2/3) 2415781697313478 a001 32951280099/1149851*24476^(2/3) 2415781697323913 a001 433494437/64079*24476^(17/21) 2415781697324174 a001 12586269025/439204*24476^(2/3) 2415781697360678 a001 267914296/15127*15127^(3/4) 2415781697397488 a001 4807526976/167761*24476^(2/3) 2415781697470888 a001 12586269025/271443*24476^(13/21) 2415781697470975 a001 7778742049/103682*24476^(4/7) 2415781697482793 a001 139583862445/15127*5778^(1/9) 2415781697498892 a001 32951280099/710647*24476^(13/21) 2415781697499588 a001 86267571272/39603*24476^(5/21) 2415781697502977 a001 43133785636/930249*24476^(13/21) 2415781697503573 a001 225851433717/4870847*24476^(13/21) 2415781697503660 a001 591286729879/12752043*24476^(13/21) 2415781697503673 a001 774004377960/16692641*24476^(13/21) 2415781697503675 a001 4052739537881/87403803*24476^(13/21) 2415781697503675 a001 225749145909/4868641*24476^(13/21) 2415781697503675 a001 3278735159921/70711162*24476^(13/21) 2415781697503676 a001 2504730781961/54018521*24476^(13/21) 2415781697503681 a001 956722026041/20633239*24476^(13/21) 2415781697503714 a001 182717648081/3940598*24476^(13/21) 2415781697503942 a001 139583862445/3010349*24476^(13/21) 2415781697505502 a001 53316291173/1149851*24476^(13/21) 2415781697515938 a001 701408733/64079*24476^(16/21) 2415781697516199 a001 10182505537/219602*24476^(13/21) 2415781697589512 a001 7778742049/167761*24476^(13/21) 2415781697662913 a001 20365011074/271443*24476^(4/7) 2415781697663000 a001 12586269025/103682*24476^(11/21) 2415781697678934 a001 591286729879/64079*9349^(2/19) 2415781697690917 a001 53316291173/710647*24476^(4/7) 2415781697691613 a001 139583862445/39603*24476^(4/21) 2415781697695002 a001 139583862445/1860498*24476^(4/7) 2415781697695598 a001 365435296162/4870847*24476^(4/7) 2415781697695685 a001 956722026041/12752043*24476^(4/7) 2415781697695698 a001 2504730781961/33385282*24476^(4/7) 2415781697695700 a001 6557470319842/87403803*24476^(4/7) 2415781697695700 a001 10610209857723/141422324*24476^(4/7) 2415781697695701 a001 4052739537881/54018521*24476^(4/7) 2415781697695706 a001 140728068720/1875749*24476^(4/7) 2415781697695739 a001 591286729879/7881196*24476^(4/7) 2415781697695967 a001 225851433717/3010349*24476^(4/7) 2415781697697527 a001 86267571272/1149851*24476^(4/7) 2415781697707963 a001 1134903170/64079*24476^(5/7) 2415781697708224 a001 32951280099/439204*24476^(4/7) 2415781697781537 a001 75025*24476^(4/7) 2415781697854938 a001 121393*24476^(11/21) 2415781697855025 a001 10182505537/51841*24476^(10/21) 2415781697871375 a001 692290561159/28657 2415781697882941 a001 86267571272/710647*24476^(11/21) 2415781697883638 a001 75283811239/13201*24476^(1/7) 2415781697887027 a001 75283811239/620166*24476^(11/21) 2415781697887623 a001 591286729879/4870847*24476^(11/21) 2415781697887710 a001 516002918640/4250681*24476^(11/21) 2415781697887723 a001 4052739537881/33385282*24476^(11/21) 2415781697887725 a001 3536736619241/29134601*24476^(11/21) 2415781697887726 a001 6557470319842/54018521*24476^(11/21) 2415781697887731 a001 2504730781961/20633239*24476^(11/21) 2415781697887764 a001 956722026041/7881196*24476^(11/21) 2415781697887992 a001 365435296162/3010349*24476^(11/21) 2415781697888543 a001 165580141/15127*15127^(4/5) 2415781697889552 a001 139583862445/1149851*24476^(11/21) 2415781697896956 a001 24157817/39603*64079^(22/23) 2415781697899987 a001 28657*24476^(2/3) 2415781697900248 a001 53316291173/439204*24476^(11/21) 2415781697922534 a001 39088169/39603*64079^(21/23) 2415781697948115 a001 63245986/39603*64079^(20/23) 2415781697973562 a001 20365011074/167761*24476^(11/21) 2415781697973694 a001 34111385/13201*64079^(19/23) 2415781697999274 a001 165580141/39603*64079^(18/23) 2415781698024854 a001 267914296/39603*64079^(17/23) 2415781698046963 a001 53316291173/271443*24476^(10/21) 2415781698047050 a001 32951280099/103682*24476^(3/7) 2415781698050434 a001 433494437/39603*64079^(16/23) 2415781698074966 a001 139583862445/710647*24476^(10/21) 2415781698075662 a001 365435296162/39603*24476^(2/21) 2415781698076014 a001 17711*64079^(15/23) 2415781698079052 a001 182717648081/930249*24476^(10/21) 2415781698079648 a001 956722026041/4870847*24476^(10/21) 2415781698079735 a001 2504730781961/12752043*24476^(10/21) 2415781698079748 a001 3278735159921/16692641*24476^(10/21) 2415781698079751 a001 10610209857723/54018521*24476^(10/21) 2415781698079756 a001 4052739537881/20633239*24476^(10/21) 2415781698079789 a001 387002188980/1970299*24476^(10/21) 2415781698080016 a001 591286729879/3010349*24476^(10/21) 2415781698081577 a001 225851433717/1149851*24476^(10/21) 2415781698092012 a001 2971215073/64079*24476^(13/21) 2415781698092273 a001 196418*24476^(10/21) 2415781698101594 a001 1134903170/39603*64079^(14/23) 2415781698127174 a001 1836311903/39603*64079^(13/23) 2415781698152754 a001 2971215073/39603*64079^(12/23) 2415781698165587 a001 32951280099/167761*24476^(10/21) 2415781698178334 a001 1602508992/13201*64079^(11/23) 2415781698203913 a001 7778742049/39603*64079^(10/23) 2415781698213717 a001 21566892818/6119*9349^(4/19) 2415781698229493 a001 12586269025/39603*64079^(9/23) 2415781698234987 a001 17711/103682*2537720636^(13/15) 2415781698234987 a001 17711/103682*45537549124^(13/17) 2415781698234987 a001 17711/103682*14662949395604^(13/21) 2415781698234987 a001 17711/103682*(1/2+1/2*5^(1/2))^39 2415781698234987 a001 17711/103682*192900153618^(13/18) 2415781698234987 a001 17711/103682*73681302247^(3/4) 2415781698234987 a001 17711/103682*10749957122^(13/16) 2415781698234987 a001 15456/13201*2537720636^(7/9) 2415781698234987 a001 15456/13201*17393796001^(5/7) 2415781698234987 a001 15456/13201*312119004989^(7/11) 2415781698234987 a001 15456/13201*14662949395604^(5/9) 2415781698234987 a001 15456/13201*(1/2+1/2*5^(1/2))^35 2415781698234987 a001 15456/13201*505019158607^(5/8) 2415781698234987 a001 15456/13201*28143753123^(7/10) 2415781698234987 a001 17711/103682*599074578^(13/14) 2415781698234987 a001 15456/13201*599074578^(5/6) 2415781698234987 a001 15456/13201*228826127^(7/8) 2415781698238988 a001 86267571272/271443*24476^(3/7) 2415781698239075 a001 53316291173/103682*24476^(8/21) 2415781698255073 a001 20365011074/39603*64079^(8/23) 2415781698266991 a001 317811*24476^(3/7) 2415781698267687 a001 591286729879/39603*24476^(1/21) 2415781698271077 a001 591286729879/1860498*24476^(3/7) 2415781698271673 a001 1548008755920/4870847*24476^(3/7) 2415781698271760 a001 4052739537881/12752043*24476^(3/7) 2415781698271773 a001 1515744265389/4769326*24476^(3/7) 2415781698271780 a001 6557470319842/20633239*24476^(3/7) 2415781698271814 a001 2504730781961/7881196*24476^(3/7) 2415781698272041 a001 956722026041/3010349*24476^(3/7) 2415781698273602 a001 365435296162/1149851*24476^(3/7) 2415781698280653 a001 10983760033/13201*64079^(7/23) 2415781698284037 a001 4807526976/64079*24476^(4/7) 2415781698284298 a001 139583862445/439204*24476^(3/7) 2415781698306233 a001 53316291173/39603*64079^(6/23) 2415781698320573 a001 774004377960/51841*9349^(1/19) 2415781698331813 a001 86267571272/39603*64079^(5/23) 2415781698357393 a001 139583862445/39603*64079^(4/23) 2415781698357612 a001 53316291173/167761*24476^(3/7) 2415781698373875 a001 362488043841/15005 2415781698382973 a001 75283811239/13201*64079^(3/23) 2415781698391042 a001 63245986/39603*167761^(4/5) 2415781698408210 a001 17711*167761^(3/5) 2415781698408552 a001 365435296162/39603*64079^(2/23) 2415781698416406 a001 6765*15127^(17/20) 2415781698425377 a001 7778742049/39603*167761^(2/5) 2415781698426925 a001 121393/39603*141422324^(11/13) 2415781698426925 a001 17711/271443*(1/2+1/2*5^(1/2))^41 2415781698426925 a001 121393/39603*2537720636^(11/15) 2415781698426925 a001 121393/39603*45537549124^(11/17) 2415781698426925 a001 121393/39603*312119004989^(3/5) 2415781698426925 a001 121393/39603*14662949395604^(11/21) 2415781698426925 a001 121393/39603*(1/2+1/2*5^(1/2))^33 2415781698426925 a001 121393/39603*192900153618^(11/18) 2415781698426925 a001 121393/39603*10749957122^(11/16) 2415781698426925 a001 121393/39603*1568397607^(3/4) 2415781698426925 a001 121393/39603*599074578^(11/14) 2415781698426927 a001 121393/39603*33385282^(11/12) 2415781698431013 a001 139583862445/271443*24476^(8/21) 2415781698431100 a001 43133785636/51841*24476^(1/3) 2415781698434132 a001 591286729879/39603*64079^(1/23) 2415781698442545 a001 86267571272/39603*167761^(1/5) 2415781698447189 a001 2372515048228/98209 2415781698448586 a001 9227465/39603*439204^(8/9) 2415781698449971 a001 39088169/39603*439204^(7/9) 2415781698451363 a001 165580141/39603*439204^(2/3) 2415781698452755 a001 17711*439204^(5/9) 2415781698454146 a001 2971215073/39603*439204^(4/9) 2415781698454929 a001 17711/710647*(1/2+1/2*5^(1/2))^43 2415781698454929 a001 105937/13201*(1/2+1/2*5^(1/2))^31 2415781698454929 a001 105937/13201*9062201101803^(1/2) 2415781698455538 a001 12586269025/39603*439204^(1/3) 2415781698456929 a001 53316291173/39603*439204^(2/9) 2415781698457885 a001 12422650070163/514229 2415781698458321 a001 75283811239/13201*439204^(1/9) 2415781698459014 a001 17711/1860498*45537549124^(15/17) 2415781698459014 a001 17711/1860498*312119004989^(9/11) 2415781698459014 a001 17711/1860498*14662949395604^(5/7) 2415781698459014 a001 17711/1860498*(1/2+1/2*5^(1/2))^45 2415781698459014 a001 17711/1860498*192900153618^(5/6) 2415781698459014 a001 17711/1860498*28143753123^(9/10) 2415781698459014 a001 17711/1860498*10749957122^(15/16) 2415781698459014 a001 832040/39603*(1/2+1/2*5^(1/2))^29 2415781698459014 a001 832040/39603*1322157322203^(1/2) 2415781698459016 a001 365435296162/710647*24476^(8/21) 2415781698459446 a001 32522920114033/1346269 2415781698459579 a001 726103/13201*7881196^(9/11) 2415781698459610 a001 726103/13201*141422324^(9/13) 2415781698459610 a001 17711/4870847*(1/2+1/2*5^(1/2))^47 2415781698459610 a001 726103/13201*2537720636^(3/5) 2415781698459610 a001 726103/13201*45537549124^(9/17) 2415781698459610 a001 726103/13201*817138163596^(9/19) 2415781698459610 a001 726103/13201*14662949395604^(3/7) 2415781698459610 a001 726103/13201*(1/2+1/2*5^(1/2))^27 2415781698459610 a001 726103/13201*192900153618^(1/2) 2415781698459610 a001 726103/13201*10749957122^(9/16) 2415781698459610 a001 726103/13201*599074578^(9/14) 2415781698459612 a001 726103/13201*33385282^(3/4) 2415781698459673 a001 478348934112/19801 2415781698459687 a001 24157817/39603*7881196^(2/3) 2415781698459687 a001 39088169/39603*7881196^(7/11) 2415781698459690 a001 9227465/39603*7881196^(8/11) 2415781698459691 a001 165580141/39603*7881196^(6/11) 2415781698459693 a001 5702887/39603*20633239^(5/7) 2415781698459694 a001 17711*7881196^(5/11) 2415781698459697 a001 17711/12752043*14662949395604^(7/9) 2415781698459697 a001 17711/12752043*(1/2+1/2*5^(1/2))^49 2415781698459697 a001 17711/12752043*505019158607^(7/8) 2415781698459697 a001 5702887/39603*2537720636^(5/9) 2415781698459697 a001 5702887/39603*312119004989^(5/11) 2415781698459697 a001 5702887/39603*(1/2+1/2*5^(1/2))^25 2415781698459697 a001 5702887/39603*3461452808002^(5/12) 2415781698459697 a001 5702887/39603*28143753123^(1/2) 2415781698459697 a001 5702887/39603*228826127^(5/8) 2415781698459698 a001 2971215073/39603*7881196^(4/11) 2415781698459699 a001 1602508992/13201*7881196^(1/3) 2415781698459702 a001 12586269025/39603*7881196^(3/11) 2415781698459705 a001 53316291173/39603*7881196^(2/11) 2415781698459706 a001 44583082140355/1845493 2415781698459708 a001 39088169/39603*20633239^(3/5) 2415781698459709 a001 75283811239/13201*7881196^(1/11) 2415781698459709 a001 63245986/39603*20633239^(4/7) 2415781698459710 a001 17711*20633239^(3/7) 2415781698459710 a001 1134903170/39603*20633239^(2/5) 2415781698459710 a001 17711/33385282*14662949395604^(17/21) 2415781698459710 a001 17711/33385282*(1/2+1/2*5^(1/2))^51 2415781698459710 a001 17711/33385282*192900153618^(17/18) 2415781698459710 a001 4976784/13201*(1/2+1/2*5^(1/2))^23 2415781698459710 a001 4976784/13201*4106118243^(1/2) 2415781698459711 a001 7778742049/39603*20633239^(2/7) 2415781698459711 a001 10983760033/13201*20633239^(1/5) 2415781698459711 a001 583600121833389/24157817 2415781698459711 a001 86267571272/39603*20633239^(1/7) 2415781698459712 a001 39088169/39603*141422324^(7/13) 2415781698459712 a001 39088169/39603*2537720636^(7/15) 2415781698459712 a001 39088169/39603*17393796001^(3/7) 2415781698459712 a001 39088169/39603*45537549124^(7/17) 2415781698459712 a001 39088169/39603*14662949395604^(1/3) 2415781698459712 a001 39088169/39603*(1/2+1/2*5^(1/2))^21 2415781698459712 a001 39088169/39603*192900153618^(7/18) 2415781698459712 a001 39088169/39603*10749957122^(7/16) 2415781698459712 a001 39088169/39603*599074578^(1/2) 2415781698459712 a001 763942477399196/31622993 2415781698459712 a001 17711*141422324^(5/13) 2415781698459712 a001 17711/228826127*3461452808002^(11/12) 2415781698459712 a001 34111385/13201*817138163596^(1/3) 2415781698459712 a001 34111385/13201*(1/2+1/2*5^(1/2))^19 2415781698459712 a001 1836311903/39603*141422324^(1/3) 2415781698459712 a001 165580141/39603*141422324^(6/13) 2415781698459712 a001 2971215073/39603*141422324^(4/13) 2415781698459712 a001 12586269025/39603*141422324^(3/13) 2415781698459712 a001 4000054742561787/165580141 2415781698459712 a001 53316291173/39603*141422324^(2/13) 2415781698459712 a001 75283811239/13201*141422324^(1/13) 2415781698459712 a001 17711/599074578*14662949395604^(19/21) 2415781698459712 a001 267914296/39603*45537549124^(1/3) 2415781698459712 a001 267914296/39603*(1/2+1/2*5^(1/2))^17 2415781698459712 a001 10472279272886969/433494437 2415781698459712 a001 44945546026392/1860497 2415781698459712 a001 17711*2537720636^(1/3) 2415781698459712 a001 71778069955410391/2971215073 2415781698459712 a001 187917426790132053/7778742049 2415781698459712 a001 17711*45537549124^(5/17) 2415781698459712 a001 17711*312119004989^(3/11) 2415781698459712 a001 17711*14662949395604^(5/21) 2415781698459712 a001 17711*192900153618^(5/18) 2415781698459712 a001 17711*28143753123^(3/10) 2415781698459712 a001 17711*10749957122^(5/16) 2415781698459712 a001 58069678417360831/2403763488 2415781698459712 a001 44361286879311271/1836311903 2415781698459712 a001 17711/2537720636*14662949395604^(20/21) 2415781698459712 a001 1836311903/39603*(1/2+1/2*5^(1/2))^13 2415781698459712 a001 1836311903/39603*73681302247^(1/4) 2415781698459712 a001 12586269025/39603*2537720636^(1/5) 2415781698459712 a001 7778742049/39603*2537720636^(2/9) 2415781698459712 a001 53316291173/39603*2537720636^(2/15) 2415781698459712 a001 2971215073/39603*2537720636^(4/15) 2415781698459712 a001 86267571272/39603*2537720636^(1/9) 2415781698459712 a001 75283811239/13201*2537720636^(1/15) 2415781698459712 a001 1602508992/13201*312119004989^(1/5) 2415781698459712 a001 1602508992/13201*(1/2+1/2*5^(1/2))^11 2415781698459712 a001 12586269025/39603*45537549124^(3/17) 2415781698459712 a001 12586269025/39603*14662949395604^(1/7) 2415781698459712 a001 12586269025/39603*(1/2+1/2*5^(1/2))^9 2415781698459712 a001 12586269025/39603*192900153618^(1/6) 2415781698459712 a001 10983760033/13201*17393796001^(1/7) 2415781698459712 a001 10983760033/13201*14662949395604^(1/9) 2415781698459712 a001 10983760033/13201*(1/2+1/2*5^(1/2))^7 2415781698459712 a001 75283811239/13201*45537549124^(1/17) 2415781698459712 a001 86267571272/39603*312119004989^(1/11) 2415781698459712 a001 86267571272/39603*(1/2+1/2*5^(1/2))^5 2415781698459712 a001 75283811239/13201*(1/2+1/2*5^(1/2))^3 2415781698459712 a001 75283811239/13201*192900153618^(1/18) 2415781698459712 a006 5^(1/2)*Fibonacci(59)/Lucas(22)/sqrt(5) 2415781698459712 a001 365435296162/39603*(1/2+1/2*5^(1/2))^2 2415781698459712 a001 139583862445/39603*(1/2+1/2*5^(1/2))^4 2415781698459712 a001 139583862445/39603*23725150497407^(1/16) 2415781698459712 a001 53316291173/39603*45537549124^(2/17) 2415781698459712 a001 139583862445/39603*73681302247^(1/13) 2415781698459712 a001 53316291173/39603*14662949395604^(2/21) 2415781698459712 a001 53316291173/39603*(1/2+1/2*5^(1/2))^6 2415781698459712 a001 86267571272/39603*28143753123^(1/10) 2415781698459712 a001 12586269025/39603*10749957122^(3/16) 2415781698459712 a001 365435296162/39603*10749957122^(1/24) 2415781698459712 a001 20365011074/39603*(1/2+1/2*5^(1/2))^8 2415781698459712 a001 20365011074/39603*23725150497407^(1/8) 2415781698459712 a001 20365011074/39603*73681302247^(2/13) 2415781698459712 a001 75283811239/13201*10749957122^(1/16) 2415781698459712 a001 139583862445/39603*10749957122^(1/12) 2415781698459712 a001 53316291173/39603*10749957122^(1/8) 2415781698459712 a001 20365011074/39603*10749957122^(1/6) 2415781698459712 a001 365435296162/39603*4106118243^(1/23) 2415781698459712 a001 7778742049/39603*312119004989^(2/11) 2415781698459712 a001 7778742049/39603*(1/2+1/2*5^(1/2))^10 2415781698459712 a001 7778742049/39603*28143753123^(1/5) 2415781698459712 a001 7778742049/39603*10749957122^(5/24) 2415781698459712 a001 139583862445/39603*4106118243^(2/23) 2415781698459712 a001 53316291173/39603*4106118243^(3/23) 2415781698459712 a001 20365011074/39603*4106118243^(4/23) 2415781698459712 a001 7778742049/39603*4106118243^(5/23) 2415781698459712 a001 365435296162/39603*1568397607^(1/22) 2415781698459712 a001 2971215073/39603*45537549124^(4/17) 2415781698459712 a001 2971215073/39603*817138163596^(4/19) 2415781698459712 a001 2971215073/39603*14662949395604^(4/21) 2415781698459712 a001 2971215073/39603*(1/2+1/2*5^(1/2))^12 2415781698459712 a001 2971215073/39603*73681302247^(3/13) 2415781698459712 a001 2971215073/39603*10749957122^(1/4) 2415781698459712 a001 139583862445/39603*1568397607^(1/11) 2415781698459712 a001 2971215073/39603*4106118243^(6/23) 2415781698459712 a001 53316291173/39603*1568397607^(3/22) 2415781698459712 a001 20365011074/39603*1568397607^(2/11) 2415781698459712 a001 1602508992/13201*1568397607^(1/4) 2415781698459712 a001 7778742049/39603*1568397607^(5/22) 2415781698459712 a001 365435296162/39603*599074578^(1/21) 2415781698459712 a001 2971215073/39603*1568397607^(3/11) 2415781698459712 a001 1134903170/39603*17393796001^(2/7) 2415781698459712 a001 1134903170/39603*14662949395604^(2/9) 2415781698459712 a001 1134903170/39603*(1/2+1/2*5^(1/2))^14 2415781698459712 a001 1134903170/39603*10749957122^(7/24) 2415781698459712 a001 1134903170/39603*4106118243^(7/23) 2415781698459712 a001 75283811239/13201*599074578^(1/14) 2415781698459712 a001 139583862445/39603*599074578^(2/21) 2415781698459712 a001 1134903170/39603*1568397607^(7/22) 2415781698459712 a001 53316291173/39603*599074578^(1/7) 2415781698459712 a001 10983760033/13201*599074578^(1/6) 2415781698459712 a001 20365011074/39603*599074578^(4/21) 2415781698459712 a001 17711*599074578^(5/14) 2415781698459712 a001 12586269025/39603*599074578^(3/14) 2415781698459712 a001 7778742049/39603*599074578^(5/21) 2415781698459712 a001 2971215073/39603*599074578^(2/7) 2415781698459712 a001 365435296162/39603*228826127^(1/20) 2415781698459712 a001 433494437/39603*(1/2+1/2*5^(1/2))^16 2415781698459712 a001 433494437/39603*23725150497407^(1/4) 2415781698459712 a001 433494437/39603*73681302247^(4/13) 2415781698459712 a001 433494437/39603*10749957122^(1/3) 2415781698459712 a001 1134903170/39603*599074578^(1/3) 2415781698459712 a001 433494437/39603*4106118243^(8/23) 2415781698459712 a001 433494437/39603*1568397607^(4/11) 2415781698459712 a001 139583862445/39603*228826127^(1/10) 2415781698459712 a001 433494437/39603*599074578^(8/21) 2415781698459712 a001 3236112265162591/133957148 2415781698459712 a001 86267571272/39603*228826127^(1/8) 2415781698459712 a001 53316291173/39603*228826127^(3/20) 2415781698459712 a001 20365011074/39603*228826127^(1/5) 2415781698459712 a001 7778742049/39603*228826127^(1/4) 2415781698459712 a001 2971215073/39603*228826127^(3/10) 2415781698459712 a001 17711*228826127^(3/8) 2415781698459712 a001 1134903170/39603*228826127^(7/20) 2415781698459712 a001 17711/370248451*14662949395604^(8/9) 2415781698459712 a001 365435296162/39603*87403803^(1/19) 2415781698459712 a001 165580141/39603*2537720636^(2/5) 2415781698459712 a001 165580141/39603*45537549124^(6/17) 2415781698459712 a001 165580141/39603*14662949395604^(2/7) 2415781698459712 a001 165580141/39603*(1/2+1/2*5^(1/2))^18 2415781698459712 a001 165580141/39603*192900153618^(1/3) 2415781698459712 a001 165580141/39603*10749957122^(3/8) 2415781698459712 a001 165580141/39603*4106118243^(9/23) 2415781698459712 a001 165580141/39603*1568397607^(9/22) 2415781698459712 a001 165580141/39603*599074578^(3/7) 2415781698459712 a001 433494437/39603*228826127^(2/5) 2415781698459712 a001 139583862445/39603*87403803^(2/19) 2415781698459712 a001 165580141/39603*228826127^(9/20) 2415781698459712 a001 494433957552679/20466831 2415781698459712 a001 53316291173/39603*87403803^(3/19) 2415781698459712 a001 20365011074/39603*87403803^(4/19) 2415781698459712 a001 7778742049/39603*87403803^(5/19) 2415781698459712 a001 2971215073/39603*87403803^(6/19) 2415781698459712 a001 34111385/13201*87403803^(1/2) 2415781698459712 a001 1134903170/39603*87403803^(7/19) 2415781698459712 a001 17711/141422324*14662949395604^(6/7) 2415781698459712 a001 365435296162/39603*33385282^(1/18) 2415781698459712 a001 63245986/39603*2537720636^(4/9) 2415781698459712 a001 63245986/39603*(1/2+1/2*5^(1/2))^20 2415781698459712 a001 63245986/39603*23725150497407^(5/16) 2415781698459712 a001 63245986/39603*505019158607^(5/14) 2415781698459712 a001 63245986/39603*73681302247^(5/13) 2415781698459712 a001 63245986/39603*28143753123^(2/5) 2415781698459712 a001 63245986/39603*10749957122^(5/12) 2415781698459712 a001 63245986/39603*4106118243^(10/23) 2415781698459712 a001 63245986/39603*1568397607^(5/11) 2415781698459712 a001 63245986/39603*599074578^(10/21) 2415781698459712 a001 433494437/39603*87403803^(8/19) 2415781698459712 a001 63245986/39603*228826127^(1/2) 2415781698459712 a001 165580141/39603*87403803^(9/19) 2415781698459712 a001 75283811239/13201*33385282^(1/12) 2415781698459712 a001 139583862445/39603*33385282^(1/9) 2415781698459712 a001 63245986/39603*87403803^(10/19) 2415781698459712 a001 944284832965003/39088169 2415781698459713 a001 53316291173/39603*33385282^(1/6) 2415781698459713 a001 20365011074/39603*33385282^(2/9) 2415781698459713 a001 12586269025/39603*33385282^(1/4) 2415781698459713 a001 7778742049/39603*33385282^(5/18) 2415781698459713 a001 2971215073/39603*33385282^(1/3) 2415781698459713 a001 17711/54018521*23725150497407^(13/16) 2415781698459713 a001 17711/54018521*505019158607^(13/14) 2415781698459713 a001 24157817/39603*312119004989^(2/5) 2415781698459713 a001 24157817/39603*(1/2+1/2*5^(1/2))^22 2415781698459713 a001 24157817/39603*10749957122^(11/24) 2415781698459713 a001 24157817/39603*4106118243^(11/23) 2415781698459713 a001 24157817/39603*1568397607^(1/2) 2415781698459713 a001 24157817/39603*599074578^(11/21) 2415781698459713 a001 1134903170/39603*33385282^(7/18) 2415781698459713 a001 24157817/39603*228826127^(11/20) 2415781698459713 a001 365435296162/39603*12752043^(1/17) 2415781698459713 a001 17711*33385282^(5/12) 2415781698459713 a001 39088169/39603*33385282^(7/12) 2415781698459713 a001 433494437/39603*33385282^(4/9) 2415781698459713 a001 24157817/39603*87403803^(11/19) 2415781698459713 a001 165580141/39603*33385282^(1/2) 2415781698459713 a001 63245986/39603*33385282^(5/9) 2415781698459714 a001 139583862445/39603*12752043^(2/17) 2415781698459714 a001 24157817/39603*33385282^(11/18) 2415781698459714 a001 180342355565807/7465176 2415781698459715 a001 53316291173/39603*12752043^(3/17) 2415781698459716 a001 20365011074/39603*12752043^(4/17) 2415781698459717 a001 7778742049/39603*12752043^(5/17) 2415781698459717 a001 2971215073/39603*12752043^(6/17) 2415781698459718 a001 9227465/39603*141422324^(8/13) 2415781698459718 a001 17711/20633239*312119004989^(10/11) 2415781698459718 a001 17711/20633239*(1/2+1/2*5^(1/2))^50 2415781698459718 a001 17711/20633239*3461452808002^(5/6) 2415781698459718 a001 9227465/39603*2537720636^(8/15) 2415781698459718 a001 9227465/39603*45537549124^(8/17) 2415781698459718 a001 9227465/39603*14662949395604^(8/21) 2415781698459718 a001 9227465/39603*(1/2+1/2*5^(1/2))^24 2415781698459718 a001 9227465/39603*192900153618^(4/9) 2415781698459718 a001 9227465/39603*73681302247^(6/13) 2415781698459718 a001 9227465/39603*10749957122^(1/2) 2415781698459718 a001 9227465/39603*4106118243^(12/23) 2415781698459718 a001 9227465/39603*1568397607^(6/11) 2415781698459718 a001 9227465/39603*599074578^(4/7) 2415781698459718 a001 9227465/39603*228826127^(3/5) 2415781698459718 a001 9227465/39603*87403803^(12/19) 2415781698459718 a001 1134903170/39603*12752043^(7/17) 2415781698459719 a001 365435296162/39603*4870847^(1/16) 2415781698459719 a001 433494437/39603*12752043^(8/17) 2415781698459719 a001 9227465/39603*33385282^(2/3) 2415781698459720 a001 267914296/39603*12752043^(1/2) 2415781698459720 a001 165580141/39603*12752043^(9/17) 2415781698459721 a001 63245986/39603*12752043^(10/17) 2415781698459723 a001 24157817/39603*12752043^(11/17) 2415781698459725 a001 139583862445/39603*4870847^(1/8) 2415781698459727 a001 137769300429839/5702887 2415781698459728 a001 9227465/39603*12752043^(12/17) 2415781698459731 a001 53316291173/39603*4870847^(3/16) 2415781698459738 a001 20365011074/39603*4870847^(1/4) 2415781698459744 a001 7778742049/39603*4870847^(5/16) 2415781698459750 a001 2971215073/39603*4870847^(3/8) 2415781698459751 a001 3524578/39603*141422324^(2/3) 2415781698459751 a001 89/39604*45537549124^(16/17) 2415781698459751 a001 89/39604*14662949395604^(16/21) 2415781698459751 a001 89/39604*(1/2+1/2*5^(1/2))^48 2415781698459751 a001 89/39604*192900153618^(8/9) 2415781698459751 a001 89/39604*73681302247^(12/13) 2415781698459751 a001 3524578/39603*(1/2+1/2*5^(1/2))^26 2415781698459751 a001 3524578/39603*73681302247^(1/2) 2415781698459751 a001 3524578/39603*10749957122^(13/24) 2415781698459751 a001 3524578/39603*4106118243^(13/23) 2415781698459751 a001 3524578/39603*1568397607^(13/22) 2415781698459751 a001 3524578/39603*599074578^(13/21) 2415781698459751 a001 3524578/39603*228826127^(13/20) 2415781698459751 a001 3524578/39603*87403803^(13/19) 2415781698459753 a001 3524578/39603*33385282^(13/18) 2415781698459757 a001 1134903170/39603*4870847^(7/16) 2415781698459759 a001 365435296162/39603*1860498^(1/15) 2415781698459762 a001 3524578/39603*12752043^(13/17) 2415781698459763 a001 433494437/39603*4870847^(1/2) 2415781698459769 a001 165580141/39603*4870847^(9/16) 2415781698459776 a001 63245986/39603*4870847^(5/8) 2415781698459782 a001 75283811239/13201*1860498^(1/10) 2415781698459783 a001 24157817/39603*4870847^(11/16) 2415781698459794 a001 9227465/39603*4870847^(3/4) 2415781698459805 a001 139583862445/39603*1860498^(2/15) 2415781698459814 a001 52623190157903/2178309 2415781698459828 a001 86267571272/39603*1860498^(1/6) 2415781698459834 a001 3524578/39603*4870847^(13/16) 2415781698459852 a001 53316291173/39603*1860498^(1/5) 2415781698459898 a001 20365011074/39603*1860498^(4/15) 2415781698459922 a001 12586269025/39603*1860498^(3/10) 2415781698459945 a001 7778742049/39603*1860498^(1/3) 2415781698459974 a001 1346269/39603*20633239^(4/5) 2415781698459979 a001 17711/3010349*(1/2+1/2*5^(1/2))^46 2415781698459979 a001 17711/3010349*10749957122^(23/24) 2415781698459979 a001 1346269/39603*17393796001^(4/7) 2415781698459979 a001 1346269/39603*14662949395604^(4/9) 2415781698459979 a001 1346269/39603*(1/2+1/2*5^(1/2))^28 2415781698459979 a001 1346269/39603*505019158607^(1/2) 2415781698459979 a001 1346269/39603*73681302247^(7/13) 2415781698459979 a001 1346269/39603*10749957122^(7/12) 2415781698459979 a001 1346269/39603*4106118243^(14/23) 2415781698459979 a001 1346269/39603*1568397607^(7/11) 2415781698459979 a001 1346269/39603*599074578^(2/3) 2415781698459979 a001 1346269/39603*228826127^(7/10) 2415781698459979 a001 1346269/39603*87403803^(14/19) 2415781698459980 a001 1346269/39603*33385282^(7/9) 2415781698459991 a001 1346269/39603*12752043^(14/17) 2415781698459991 a001 2971215073/39603*1860498^(2/5) 2415781698460038 a001 1134903170/39603*1860498^(7/15) 2415781698460054 a001 365435296162/39603*710647^(1/14) 2415781698460061 a001 17711*1860498^(1/2) 2415781698460068 a001 1346269/39603*4870847^(7/8) 2415781698460084 a001 433494437/39603*1860498^(8/15) 2415781698460131 a001 165580141/39603*1860498^(3/5) 2415781698460178 a001 63245986/39603*1860498^(2/3) 2415781698460200 a001 39088169/39603*1860498^(7/10) 2415781698460225 a001 24157817/39603*1860498^(11/15) 2415781698460238 a001 726103/13201*1860498^(9/10) 2415781698460276 a001 9227465/39603*1860498^(4/5) 2415781698460279 a001 5702887/39603*1860498^(5/6) 2415781698460356 a001 3524578/39603*1860498^(13/15) 2415781698460396 a001 139583862445/39603*710647^(1/7) 2415781698460410 a001 32951262367/1364 2415781698460630 a001 1346269/39603*1860498^(14/15) 2415781698460737 a001 53316291173/39603*710647^(3/14) 2415781698460908 a001 10983760033/13201*710647^(1/4) 2415781698461079 a001 20365011074/39603*710647^(2/7) 2415781698461421 a001 7778742049/39603*710647^(5/14) 2415781698461504 a001 514229/39603*7881196^(10/11) 2415781698461534 a001 514229/39603*20633239^(6/7) 2415781698461539 a001 514229/39603*141422324^(10/13) 2415781698461539 a001 17711/1149851*312119004989^(4/5) 2415781698461539 a001 17711/1149851*(1/2+1/2*5^(1/2))^44 2415781698461539 a001 17711/1149851*23725150497407^(11/16) 2415781698461539 a001 17711/1149851*73681302247^(11/13) 2415781698461539 a001 17711/1149851*10749957122^(11/12) 2415781698461539 a001 17711/1149851*4106118243^(22/23) 2415781698461539 a001 514229/39603*2537720636^(2/3) 2415781698461539 a001 514229/39603*45537549124^(10/17) 2415781698461539 a001 514229/39603*312119004989^(6/11) 2415781698461539 a001 514229/39603*14662949395604^(10/21) 2415781698461539 a001 514229/39603*(1/2+1/2*5^(1/2))^30 2415781698461539 a001 514229/39603*192900153618^(5/9) 2415781698461539 a001 514229/39603*28143753123^(3/5) 2415781698461539 a001 514229/39603*10749957122^(5/8) 2415781698461539 a001 514229/39603*4106118243^(15/23) 2415781698461539 a001 514229/39603*1568397607^(15/22) 2415781698461539 a001 514229/39603*599074578^(5/7) 2415781698461539 a001 514229/39603*228826127^(3/4) 2415781698461540 a001 514229/39603*87403803^(15/19) 2415781698461541 a001 514229/39603*33385282^(5/6) 2415781698461552 a001 514229/39603*12752043^(15/17) 2415781698461635 a001 514229/39603*4870847^(15/16) 2415781698461762 a001 2971215073/39603*710647^(3/7) 2415781698462104 a001 1134903170/39603*710647^(1/2) 2415781698462234 a001 365435296162/39603*271443^(1/13) 2415781698462446 a001 433494437/39603*710647^(4/7) 2415781698462787 a001 165580141/39603*710647^(9/14) 2415781698463102 a001 956722026041/1860498*24476^(8/21) 2415781698463129 a001 63245986/39603*710647^(5/7) 2415781698463299 a001 39088169/39603*710647^(3/4) 2415781698463471 a001 24157817/39603*710647^(11/14) 2415781698463698 a001 2504730781961/4870847*24476^(8/21) 2415781698463785 a001 6557470319842/12752043*24476^(8/21) 2415781698463805 a001 10610209857723/20633239*24476^(8/21) 2415781698463818 a001 9227465/39603*710647^(6/7) 2415781698463839 a001 4052739537881/7881196*24476^(8/21) 2415781698464066 a001 1548008755920/3010349*24476^(8/21) 2415781698464193 a001 3524578/39603*710647^(13/14) 2415781698464496 a001 7677619973707/317811 2415781698464756 a001 139583862445/39603*271443^(2/13) 2415781698465627 a001 514229*24476^(8/21) 2415781698467278 a001 53316291173/39603*271443^(3/13) 2415781698469076 a001 591286729879/39603*103682^(1/24) 2415781698469800 a001 20365011074/39603*271443^(4/13) 2415781698472236 a001 17711/439204*2537720636^(14/15) 2415781698472236 a001 17711/439204*17393796001^(6/7) 2415781698472236 a001 17711/439204*45537549124^(14/17) 2415781698472236 a001 17711/439204*14662949395604^(2/3) 2415781698472236 a001 17711/439204*(1/2+1/2*5^(1/2))^42 2415781698472236 a001 17711/439204*505019158607^(3/4) 2415781698472236 a001 17711/439204*192900153618^(7/9) 2415781698472236 a001 17711/439204*10749957122^(7/8) 2415781698472236 a001 17711/439204*4106118243^(21/23) 2415781698472236 a001 17711/439204*1568397607^(21/22) 2415781698472236 a001 196418/39603*(1/2+1/2*5^(1/2))^32 2415781698472236 a001 196418/39603*23725150497407^(1/2) 2415781698472236 a001 196418/39603*505019158607^(4/7) 2415781698472236 a001 196418/39603*73681302247^(8/13) 2415781698472236 a001 196418/39603*10749957122^(2/3) 2415781698472236 a001 196418/39603*4106118243^(16/23) 2415781698472236 a001 196418/39603*1568397607^(8/11) 2415781698472236 a001 196418/39603*599074578^(16/21) 2415781698472236 a001 196418/39603*228826127^(4/5) 2415781698472236 a001 196418/39603*87403803^(16/19) 2415781698472238 a001 196418/39603*33385282^(8/9) 2415781698472250 a001 196418/39603*12752043^(16/17) 2415781698472322 a001 7778742049/39603*271443^(5/13) 2415781698474845 a001 2971215073/39603*271443^(6/13) 2415781698476062 a001 7778742049/64079*24476^(11/21) 2415781698476106 a001 1836311903/39603*271443^(1/2) 2415781698476323 a001 225851433717/439204*24476^(8/21) 2415781698477367 a001 1134903170/39603*271443^(7/13) 2415781698478439 a001 365435296162/39603*103682^(1/12) 2415781698479889 a001 433494437/39603*271443^(8/13) 2415781698482411 a001 165580141/39603*271443^(9/13) 2415781698484933 a001 63245986/39603*271443^(10/13) 2415781698487456 a001 24157817/39603*271443^(11/13) 2415781698487803 a001 75283811239/13201*103682^(1/8) 2415781698489983 a001 9227465/39603*271443^(12/13) 2415781698492499 a001 2932589877251/121393 2415781698497166 a001 139583862445/39603*103682^(1/6) 2415781698506530 a001 86267571272/39603*103682^(5/24) 2415781698512511 a001 4052739537881/271443*9349^(1/19) 2415781698515893 a001 53316291173/39603*103682^(1/4) 2415781698525257 a001 10983760033/13201*103682^(7/24) 2415781698529725 a001 591286729879/39603*39603^(1/22) 2415781698534620 a001 20365011074/39603*103682^(1/3) 2415781698540514 a001 1515744265389/101521*9349^(1/19) 2415781698543984 a001 12586269025/39603*103682^(3/8) 2415781698545549 a001 17711/167761*2537720636^(8/9) 2415781698545549 a001 17711/167761*312119004989^(8/11) 2415781698545549 a001 17711/167761*(1/2+1/2*5^(1/2))^40 2415781698545549 a001 17711/167761*23725150497407^(5/8) 2415781698545549 a001 17711/167761*73681302247^(10/13) 2415781698545549 a001 17711/167761*28143753123^(4/5) 2415781698545549 a001 17711/167761*10749957122^(5/6) 2415781698545549 a001 17711/167761*4106118243^(20/23) 2415781698545549 a001 17711/167761*1568397607^(10/11) 2415781698545549 a001 75025/39603*45537549124^(2/3) 2415781698545549 a001 75025/39603*(1/2+1/2*5^(1/2))^34 2415781698545549 a001 75025/39603*10749957122^(17/24) 2415781698545549 a001 75025/39603*4106118243^(17/23) 2415781698545549 a001 75025/39603*1568397607^(17/22) 2415781698545549 a001 17711/167761*599074578^(20/21) 2415781698545549 a001 75025/39603*599074578^(17/21) 2415781698545549 a001 75025/39603*228826127^(17/20) 2415781698545550 a001 75025/39603*87403803^(17/19) 2415781698545551 a001 75025/39603*33385282^(17/18) 2415781698549637 a001 86267571272/167761*24476^(8/21) 2415781698553347 a001 7778742049/39603*103682^(5/12) 2415781698557821 a001 3278735159921/219602*9349^(1/19) 2415781698562711 a001 1602508992/13201*103682^(11/24) 2415781698572075 a001 2971215073/39603*103682^(1/2) 2415781698581438 a001 1836311903/39603*103682^(13/24) 2415781698590802 a001 1134903170/39603*103682^(7/12) 2415781698599738 a001 365435296162/39603*39603^(1/11) 2415781698600165 a001 17711*103682^(5/8) 2415781698609529 a001 433494437/39603*103682^(2/3) 2415781698618892 a001 267914296/39603*103682^(17/24) 2415781698623038 a001 75283811239/90481*24476^(1/3) 2415781698623125 a001 139583862445/103682*24476^(2/7) 2415781698628256 a001 165580141/39603*103682^(3/4) 2415781698631135 a001 2504730781961/167761*9349^(1/19) 2415781698637619 a001 34111385/13201*103682^(19/24) 2415781698646983 a001 63245986/39603*103682^(5/6) 2415781698651041 a001 591286729879/710647*24476^(1/3) 2415781698655127 a001 832040*24476^(1/3) 2415781698655723 a001 4052739537881/4870847*24476^(1/3) 2415781698655810 a001 3536736619241/4250681*24476^(1/3) 2415781698655863 a001 3278735159921/3940598*24476^(1/3) 2415781698656091 a001 2504730781961/3010349*24476^(1/3) 2415781698656346 a001 39088169/39603*103682^(7/8) 2415781698657652 a001 956722026041/1149851*24476^(1/3) 2415781698665711 a001 24157817/39603*103682^(11/12) 2415781698668087 a001 12586269025/64079*24476^(10/21) 2415781698668348 a001 182717648081/219602*24476^(1/3) 2415781698669751 a001 75283811239/13201*39603^(3/22) 2415781698675071 a001 4976784/13201*103682^(23/24) 2415781698684437 a001 560074829023/23184 2415781698739764 a001 139583862445/39603*39603^(2/11) 2415781698741662 a001 139583862445/167761*24476^(1/3) 2415781698809777 a001 86267571272/39603*39603^(5/22) 2415781698815062 a001 365435296162/271443*24476^(2/7) 2415781698815149 a001 225851433717/103682*24476^(5/21) 2415781698843066 a001 956722026041/710647*24476^(2/7) 2415781698847151 a001 2504730781961/1860498*24476^(2/7) 2415781698847748 a001 6557470319842/4870847*24476^(2/7) 2415781698847888 a001 10610209857723/7881196*24476^(2/7) 2415781698848116 a001 1346269*24476^(2/7) 2415781698849677 a001 1548008755920/1149851*24476^(2/7) 2415781698860112 a001 20365011074/64079*24476^(3/7) 2415781698860373 a001 591286729879/439204*24476^(2/7) 2415781698879790 a001 53316291173/39603*39603^(3/11) 2415781698933687 a001 225851433717/167761*24476^(2/7) 2415781698944271 a001 63245986/15127*15127^(9/10) 2415781698949803 a001 10983760033/13201*39603^(7/22) 2415781698987576 a001 591286729879/39603*15127^(1/20) 2415781699007087 a001 591286729879/271443*24476^(5/21) 2415781699007174 a001 182717648081/51841*24476^(4/21) 2415781699019816 a001 20365011074/39603*39603^(4/11) 2415781699035091 a001 1548008755920/710647*24476^(5/21) 2415781699039176 a001 4052739537881/1860498*24476^(5/21) 2415781699039772 a001 2178309*24476^(5/21) 2415781699040141 a001 6557470319842/3010349*24476^(5/21) 2415781699041701 a001 2504730781961/1149851*24476^(5/21) 2415781699048049 a001 28657/39603*141422324^(12/13) 2415781699048049 a001 17711/64079*817138163596^(2/3) 2415781699048049 a001 17711/64079*(1/2+1/2*5^(1/2))^38 2415781699048049 a001 17711/64079*10749957122^(19/24) 2415781699048049 a001 17711/64079*4106118243^(19/23) 2415781699048049 a001 28657/39603*2537720636^(4/5) 2415781699048049 a001 28657/39603*45537549124^(12/17) 2415781699048049 a001 28657/39603*14662949395604^(4/7) 2415781699048049 a001 28657/39603*(1/2+1/2*5^(1/2))^36 2415781699048049 a001 28657/39603*505019158607^(9/14) 2415781699048049 a001 28657/39603*192900153618^(2/3) 2415781699048049 a001 28657/39603*73681302247^(9/13) 2415781699048049 a001 17711/64079*1568397607^(19/22) 2415781699048049 a001 28657/39603*10749957122^(3/4) 2415781699048049 a001 28657/39603*4106118243^(18/23) 2415781699048049 a001 28657/39603*1568397607^(9/11) 2415781699048049 a001 17711/64079*599074578^(19/21) 2415781699048049 a001 28657/39603*599074578^(6/7) 2415781699048049 a001 28657/39603*228826127^(9/10) 2415781699048049 a001 17711/64079*228826127^(19/20) 2415781699048050 a001 28657/39603*87403803^(18/19) 2415781699052137 a001 32951280099/64079*24476^(8/21) 2415781699052398 a001 956722026041/439204*24476^(5/21) 2415781699089829 a001 12586269025/39603*39603^(9/22) 2415781699125711 a001 365435296162/167761*24476^(5/21) 2415781699133635 a001 956722026041/64079*9349^(1/19) 2415781699159842 a001 7778742049/39603*39603^(5/11) 2415781699186935 a001 692290561536/28657 2415781699199112 a001 956722026041/271443*24476^(4/21) 2415781699199199 a001 591286729879/103682*24476^(1/7) 2415781699212517 a001 31622993/51841*64079^(22/23) 2415781699227116 a001 2504730781961/710647*24476^(4/21) 2415781699229855 a001 1602508992/13201*39603^(1/2) 2415781699231201 a001 3278735159921/930249*24476^(4/21) 2415781699232166 a001 10610209857723/3010349*24476^(4/21) 2415781699233726 a001 4052739537881/1149851*24476^(4/21) 2415781699238096 a001 102334155/103682*64079^(21/23) 2415781699244162 a001 53316291173/64079*24476^(1/3) 2415781699244423 a001 387002188980/109801*24476^(4/21) 2415781699263676 a001 165580141/103682*64079^(20/23) 2415781699289256 a001 133957148/51841*64079^(19/23) 2415781699299868 a001 2971215073/39603*39603^(6/11) 2415781699314836 a001 433494437/103682*64079^(18/23) 2415781699317736 a001 591286729879/167761*24476^(4/21) 2415781699340416 a001 701408733/103682*64079^(17/23) 2415781699365996 a001 567451585/51841*64079^(16/23) 2415781699369881 a001 1836311903/39603*39603^(13/22) 2415781699378860 a001 692290561591/28657 2415781699391137 a001 516002918640/90481*24476^(1/7) 2415781699391224 a001 956722026041/103682*24476^(2/21) 2415781699391576 a001 1836311903/103682*64079^(15/23) 2415781699404455 a001 165580141/271443*64079^(22/23) 2415781699406776 a001 692290561599/28657 2415781699410266 a001 692290561600/28657 2415781699411662 a001 2/28657*(1/2+1/2*5^(1/2))^60 2415781699411662 a001 3461452808002/28657*8^(1/3) 2415781699413755 a001 692290561601/28657 2415781699417156 a001 2971215073/103682*64079^(14/23) 2415781699419140 a001 4052739537881/710647*24476^(1/7) 2415781699423226 a001 3536736619241/620166*24476^(1/7) 2415781699424224 a001 692290561604/28657 2415781699425751 a001 6557470319842/1149851*24476^(1/7) 2415781699430034 a001 267914296/271443*64079^(21/23) 2415781699432458 a001 433494437/710647*64079^(22/23) 2415781699436186 a001 86267571272/64079*24476^(2/7) 2415781699436448 a001 2504730781961/439204*24476^(1/7) 2415781699436544 a001 567451585/930249*64079^(22/23) 2415781699437140 a001 2971215073/4870847*64079^(22/23) 2415781699437227 a001 7778742049/12752043*64079^(22/23) 2415781699437239 a001 10182505537/16692641*64079^(22/23) 2415781699437241 a001 53316291173/87403803*64079^(22/23) 2415781699437241 a001 139583862445/228826127*64079^(22/23) 2415781699437241 a001 182717648081/299537289*64079^(22/23) 2415781699437241 a001 956722026041/1568397607*64079^(22/23) 2415781699437241 a001 2504730781961/4106118243*64079^(22/23) 2415781699437241 a001 3278735159921/5374978561*64079^(22/23) 2415781699437241 a001 10610209857723/17393796001*64079^(22/23) 2415781699437241 a001 4052739537881/6643838879*64079^(22/23) 2415781699437241 a001 1134903780/1860499*64079^(22/23) 2415781699437241 a001 591286729879/969323029*64079^(22/23) 2415781699437241 a001 225851433717/370248451*64079^(22/23) 2415781699437242 a001 21566892818/35355581*64079^(22/23) 2415781699437242 a001 32951280099/54018521*64079^(22/23) 2415781699437247 a001 1144206275/1875749*64079^(22/23) 2415781699437280 a001 1201881744/1970299*64079^(22/23) 2415781699437508 a001 1836311903/3010349*64079^(22/23) 2415781699439069 a001 701408733/1149851*64079^(22/23) 2415781699439894 a001 1134903170/39603*39603^(7/11) 2415781699442736 a001 46368*64079^(13/23) 2415781699449765 a001 66978574/109801*64079^(22/23) 2415781699455614 a001 433494437/271443*64079^(20/23) 2415781699458038 a001 701408733/710647*64079^(21/23) 2415781699462123 a001 1836311903/1860498*64079^(21/23) 2415781699462719 a001 4807526976/4870847*64079^(21/23) 2415781699462806 a001 12586269025/12752043*64079^(21/23) 2415781699462819 a001 32951280099/33385282*64079^(21/23) 2415781699462821 a001 86267571272/87403803*64079^(21/23) 2415781699462821 a001 225851433717/228826127*64079^(21/23) 2415781699462821 a001 591286729879/599074578*64079^(21/23) 2415781699462821 a001 1548008755920/1568397607*64079^(21/23) 2415781699462821 a001 4052739537881/4106118243*64079^(21/23) 2415781699462821 a001 4807525989/4870846*64079^(21/23) 2415781699462821 a001 6557470319842/6643838879*64079^(21/23) 2415781699462821 a001 2504730781961/2537720636*64079^(21/23) 2415781699462821 a001 956722026041/969323029*64079^(21/23) 2415781699462821 a001 365435296162/370248451*64079^(21/23) 2415781699462821 a001 139583862445/141422324*64079^(21/23) 2415781699462822 a001 53316291173/54018521*64079^(21/23) 2415781699462827 a001 20365011074/20633239*64079^(21/23) 2415781699462860 a001 7778742049/7881196*64079^(21/23) 2415781699463088 a001 2971215073/3010349*64079^(21/23) 2415781699464648 a001 1134903170/1149851*64079^(21/23) 2415781699468315 a001 7778742049/103682*64079^(12/23) 2415781699472134 a001 39088169/15127*15127^(19/20) 2415781699475345 a001 433494437/439204*64079^(21/23) 2415781699481194 a001 233802911/90481*64079^(19/23) 2415781699483618 a001 1134903170/710647*64079^(20/23) 2415781699487703 a001 2971215073/1860498*64079^(20/23) 2415781699488299 a001 7778742049/4870847*64079^(20/23) 2415781699488386 a001 20365011074/12752043*64079^(20/23) 2415781699488399 a001 53316291173/33385282*64079^(20/23) 2415781699488401 a001 139583862445/87403803*64079^(20/23) 2415781699488401 a001 365435296162/228826127*64079^(20/23) 2415781699488401 a001 956722026041/599074578*64079^(20/23) 2415781699488401 a001 2504730781961/1568397607*64079^(20/23) 2415781699488401 a001 6557470319842/4106118243*64079^(20/23) 2415781699488401 a001 10610209857723/6643838879*64079^(20/23) 2415781699488401 a001 4052739537881/2537720636*64079^(20/23) 2415781699488401 a001 1548008755920/969323029*64079^(20/23) 2415781699488401 a001 591286729879/370248451*64079^(20/23) 2415781699488401 a001 225851433717/141422324*64079^(20/23) 2415781699488402 a001 86267571272/54018521*64079^(20/23) 2415781699488407 a001 32951280099/20633239*64079^(20/23) 2415781699488440 a001 12586269025/7881196*64079^(20/23) 2415781699488668 a001 4807526976/3010349*64079^(20/23) 2415781699490228 a001 1836311903/1149851*64079^(20/23) 2415781699493895 a001 12586269025/103682*64079^(11/23) 2415781699497504 a001 692290561625/28657 2415781699500925 a001 701408733/439204*64079^(20/23) 2415781699506774 a001 1134903170/271443*64079^(18/23) 2415781699509198 a001 1836311903/710647*64079^(19/23) 2415781699509761 a001 956722026041/167761*24476^(1/7) 2415781699509908 a001 17711*39603^(15/22) 2415781699513283 a001 267084832/103361*64079^(19/23) 2415781699513879 a001 12586269025/4870847*64079^(19/23) 2415781699513966 a001 10983760033/4250681*64079^(19/23) 2415781699513979 a001 43133785636/16692641*64079^(19/23) 2415781699513981 a001 75283811239/29134601*64079^(19/23) 2415781699513981 a001 591286729879/228826127*64079^(19/23) 2415781699513981 a001 86000486440/33281921*64079^(19/23) 2415781699513981 a001 4052739537881/1568397607*64079^(19/23) 2415781699513981 a001 3536736619241/1368706081*64079^(19/23) 2415781699513981 a001 3278735159921/1268860318*64079^(19/23) 2415781699513981 a001 2504730781961/969323029*64079^(19/23) 2415781699513981 a001 956722026041/370248451*64079^(19/23) 2415781699513981 a001 182717648081/70711162*64079^(19/23) 2415781699513982 a001 139583862445/54018521*64079^(19/23) 2415781699513987 a001 53316291173/20633239*64079^(19/23) 2415781699514020 a001 10182505537/3940598*64079^(19/23) 2415781699514248 a001 7778742049/3010349*64079^(19/23) 2415781699515440 a001 365435296162/39603*15127^(1/10) 2415781699515808 a001 2971215073/1149851*64079^(19/23) 2415781699519475 a001 10182505537/51841*64079^(10/23) 2415781699523079 a001 9303105/15251*64079^(22/23) 2415781699526505 a001 567451585/219602*64079^(19/23) 2415781699532354 a001 1836311903/271443*64079^(17/23) 2415781699534777 a001 2971215073/710647*64079^(18/23) 2415781699538863 a001 7778742049/1860498*64079^(18/23) 2415781699539459 a001 20365011074/4870847*64079^(18/23) 2415781699539546 a001 53316291173/12752043*64079^(18/23) 2415781699539559 a001 139583862445/33385282*64079^(18/23) 2415781699539561 a001 365435296162/87403803*64079^(18/23) 2415781699539561 a001 956722026041/228826127*64079^(18/23) 2415781699539561 a001 2504730781961/599074578*64079^(18/23) 2415781699539561 a001 6557470319842/1568397607*64079^(18/23) 2415781699539561 a001 10610209857723/2537720636*64079^(18/23) 2415781699539561 a001 4052739537881/969323029*64079^(18/23) 2415781699539561 a001 1548008755920/370248451*64079^(18/23) 2415781699539561 a001 591286729879/141422324*64079^(18/23) 2415781699539562 a001 225851433717/54018521*64079^(18/23) 2415781699539567 a001 86267571272/20633239*64079^(18/23) 2415781699539600 a001 32951280099/7881196*64079^(18/23) 2415781699539828 a001 12586269025/3010349*64079^(18/23) 2415781699541388 a001 4807526976/1149851*64079^(18/23) 2415781699545055 a001 32951280099/103682*64079^(9/23) 2415781699548659 a001 165580141/167761*64079^(21/23) 2415781699550549 a001 23184/51841*(1/2+1/2*5^(1/2))^37 2415781699552084 a001 1836311903/439204*64079^(18/23) 2415781699557934 a001 2971215073/271443*64079^(16/23) 2415781699560357 a001 686789568/101521*64079^(17/23) 2415781699564443 a001 12586269025/1860498*64079^(17/23) 2415781699565039 a001 32951280099/4870847*64079^(17/23) 2415781699565126 a001 86267571272/12752043*64079^(17/23) 2415781699565139 a001 32264490531/4769326*64079^(17/23) 2415781699565140 a001 591286729879/87403803*64079^(17/23) 2415781699565141 a001 1548008755920/228826127*64079^(17/23) 2415781699565141 a001 4052739537881/599074578*64079^(17/23) 2415781699565141 a001 1515744265389/224056801*64079^(17/23) 2415781699565141 a001 6557470319842/969323029*64079^(17/23) 2415781699565141 a001 2504730781961/370248451*64079^(17/23) 2415781699565141 a001 956722026041/141422324*64079^(17/23) 2415781699565142 a001 365435296162/54018521*64079^(17/23) 2415781699565146 a001 139583862445/20633239*64079^(17/23) 2415781699565180 a001 53316291173/7881196*64079^(17/23) 2415781699565407 a001 20365011074/3010349*64079^(17/23) 2415781699566968 a001 7778742049/1149851*64079^(17/23) 2415781699570635 a001 53316291173/103682*64079^(8/23) 2415781699574238 a001 267914296/167761*64079^(20/23) 2415781699577664 a001 2971215073/439204*64079^(17/23) 2415781699579921 a001 433494437/39603*39603^(8/11) 2415781699583162 a001 2504730781961/271443*24476^(2/21) 2415781699583249 a001 774004377960/51841*24476^(1/21) 2415781699583514 a001 1602508992/90481*64079^(15/23) 2415781699585937 a001 7778742049/710647*64079^(16/23) 2415781699590023 a001 10182505537/930249*64079^(16/23) 2415781699590619 a001 53316291173/4870847*64079^(16/23) 2415781699590706 a001 139583862445/12752043*64079^(16/23) 2415781699590719 a001 182717648081/16692641*64079^(16/23) 2415781699590720 a001 956722026041/87403803*64079^(16/23) 2415781699590721 a001 2504730781961/228826127*64079^(16/23) 2415781699590721 a001 3278735159921/299537289*64079^(16/23) 2415781699590721 a001 10610209857723/969323029*64079^(16/23) 2415781699590721 a001 4052739537881/370248451*64079^(16/23) 2415781699590721 a001 387002188980/35355581*64079^(16/23) 2415781699590722 a001 591286729879/54018521*64079^(16/23) 2415781699590726 a001 7787980473/711491*64079^(16/23) 2415781699590760 a001 21566892818/1970299*64079^(16/23) 2415781699590987 a001 32951280099/3010349*64079^(16/23) 2415781699592548 a001 12586269025/1149851*64079^(16/23) 2415781699596215 a001 43133785636/51841*64079^(7/23) 2415781699599818 a001 433494437/167761*64079^(19/23) 2415781699603244 a001 1201881744/109801*64079^(16/23) 2415781699609094 a001 7778742049/271443*64079^(14/23) 2415781699611165 a001 6557470319842/710647*24476^(2/21) 2415781699611517 a001 12586269025/710647*64079^(15/23) 2415781699615603 a001 10983760033/620166*64079^(15/23) 2415781699616199 a001 86267571272/4870847*64079^(15/23) 2415781699616286 a001 75283811239/4250681*64079^(15/23) 2415781699616298 a001 591286729879/33385282*64079^(15/23) 2415781699616300 a001 516002918640/29134601*64079^(15/23) 2415781699616301 a001 4052739537881/228826127*64079^(15/23) 2415781699616301 a001 3536736619241/199691526*64079^(15/23) 2415781699616301 a001 6557470319842/370248451*64079^(15/23) 2415781699616301 a001 2504730781961/141422324*64079^(15/23) 2415781699616301 a001 956722026041/54018521*64079^(15/23) 2415781699616306 a001 365435296162/20633239*64079^(15/23) 2415781699616339 a001 139583862445/7881196*64079^(15/23) 2415781699616567 a001 53316291173/3010349*64079^(15/23) 2415781699617776 a001 10610209857723/1149851*24476^(2/21) 2415781699618128 a001 20365011074/1149851*64079^(15/23) 2415781699621795 a001 139583862445/103682*64079^(6/23) 2415781699625398 a001 701408733/167761*64079^(18/23) 2415781699628211 a001 139583862445/64079*24476^(5/21) 2415781699628472 a001 4052739537881/439204*24476^(2/21) 2415781699628824 a001 7778742049/439204*64079^(15/23) 2415781699634673 a001 12586269025/271443*64079^(13/23) 2415781699637097 a001 20365011074/710647*64079^(14/23) 2415781699641183 a001 53316291173/1860498*64079^(14/23) 2415781699641779 a001 139583862445/4870847*64079^(14/23) 2415781699641866 a001 365435296162/12752043*64079^(14/23) 2415781699641878 a001 956722026041/33385282*64079^(14/23) 2415781699641880 a001 2504730781961/87403803*64079^(14/23) 2415781699641880 a001 6557470319842/228826127*64079^(14/23) 2415781699641880 a001 10610209857723/370248451*64079^(14/23) 2415781699641881 a001 4052739537881/141422324*64079^(14/23) 2415781699641881 a001 1548008755920/54018521*64079^(14/23) 2415781699641886 a001 591286729879/20633239*64079^(14/23) 2415781699641919 a001 225851433717/7881196*64079^(14/23) 2415781699642147 a001 86267571272/3010349*64079^(14/23) 2415781699643708 a001 32951280099/1149851*64079^(14/23) 2415781699647375 a001 225851433717/103682*64079^(5/23) 2415781699649934 a001 267914296/39603*39603^(17/22) 2415781699650978 a001 1134903170/167761*64079^(17/23) 2415781699654404 a001 12586269025/439204*64079^(14/23) 2415781699660253 a001 20365011074/271443*64079^(12/23) 2415781699662677 a001 32951280099/710647*64079^(13/23) 2415781699666762 a001 43133785636/930249*64079^(13/23) 2415781699667358 a001 225851433717/4870847*64079^(13/23) 2415781699667445 a001 591286729879/12752043*64079^(13/23) 2415781699667458 a001 774004377960/16692641*64079^(13/23) 2415781699667460 a001 4052739537881/87403803*64079^(13/23) 2415781699667460 a001 225749145909/4868641*64079^(13/23) 2415781699667460 a001 3278735159921/70711162*64079^(13/23) 2415781699667461 a001 2504730781961/54018521*64079^(13/23) 2415781699667466 a001 956722026041/20633239*64079^(13/23) 2415781699667499 a001 182717648081/3940598*64079^(13/23) 2415781699667727 a001 139583862445/3010349*64079^(13/23) 2415781699668418 a001 139583862445/24476*9349^(3/19) 2415781699669287 a001 53316291173/1149851*64079^(13/23) 2415781699672954 a001 182717648081/51841*64079^(4/23) 2415781699676558 a001 1836311903/167761*64079^(16/23) 2415781699679984 a001 10182505537/219602*64079^(13/23) 2415781699685833 a001 121393*64079^(11/23) 2415781699688257 a001 53316291173/710647*64079^(12/23) 2415781699689436 a001 1812440220192/75025 2415781699692342 a001 139583862445/1860498*64079^(12/23) 2415781699692938 a001 365435296162/4870847*64079^(12/23) 2415781699693025 a001 956722026041/12752043*64079^(12/23) 2415781699693038 a001 2504730781961/33385282*64079^(12/23) 2415781699693040 a001 6557470319842/87403803*64079^(12/23) 2415781699693040 a001 10610209857723/141422324*64079^(12/23) 2415781699693041 a001 4052739537881/54018521*64079^(12/23) 2415781699693046 a001 140728068720/1875749*64079^(12/23) 2415781699693079 a001 591286729879/7881196*64079^(12/23) 2415781699693307 a001 225851433717/3010349*64079^(12/23) 2415781699694867 a001 86267571272/1149851*64079^(12/23) 2415781699698534 a001 591286729879/103682*64079^(3/23) 2415781699701786 a001 140728068720/15251*24476^(2/21) 2415781699702138 a001 2971215073/167761*64079^(15/23) 2415781699705564 a001 32951280099/439204*64079^(12/23) 2415781699706604 a001 165580141/103682*167761^(4/5) 2415781699711413 a001 53316291173/271443*64079^(10/23) 2415781699713837 a001 86267571272/710647*64079^(11/23) 2415781699717922 a001 75283811239/620166*64079^(11/23) 2415781699718518 a001 591286729879/4870847*64079^(11/23) 2415781699718605 a001 516002918640/4250681*64079^(11/23) 2415781699718618 a001 4052739537881/33385282*64079^(11/23) 2415781699718620 a001 3536736619241/29134601*64079^(11/23) 2415781699718621 a001 6557470319842/54018521*64079^(11/23) 2415781699718626 a001 2504730781961/20633239*64079^(11/23) 2415781699718659 a001 956722026041/7881196*64079^(11/23) 2415781699718887 a001 365435296162/3010349*64079^(11/23) 2415781699719947 a001 165580141/39603*39603^(9/11) 2415781699720447 a001 139583862445/1149851*64079^(11/23) 2415781699723772 a001 1836311903/103682*167761^(3/5) 2415781699724114 a001 956722026041/103682*64079^(2/23) 2415781699727718 a001 4807526976/167761*64079^(14/23) 2415781699731144 a001 53316291173/439204*64079^(11/23) 2415781699736993 a001 86267571272/271443*64079^(9/23) 2415781699739416 a001 139583862445/710647*64079^(10/23) 2415781699740939 a001 10182505537/51841*167761^(2/5) 2415781699742487 a001 15456/90481*2537720636^(13/15) 2415781699742487 a001 121393/103682*2537720636^(7/9) 2415781699742487 a001 15456/90481*45537549124^(13/17) 2415781699742487 a001 15456/90481*14662949395604^(13/21) 2415781699742487 a001 15456/90481*(1/2+1/2*5^(1/2))^39 2415781699742487 a001 15456/90481*192900153618^(13/18) 2415781699742487 a001 15456/90481*73681302247^(3/4) 2415781699742487 a001 121393/103682*17393796001^(5/7) 2415781699742487 a001 15456/90481*10749957122^(13/16) 2415781699742487 a001 121393/103682*312119004989^(7/11) 2415781699742487 a001 121393/103682*14662949395604^(5/9) 2415781699742487 a001 121393/103682*(1/2+1/2*5^(1/2))^35 2415781699742487 a001 121393/103682*505019158607^(5/8) 2415781699742487 a001 121393/103682*28143753123^(7/10) 2415781699742487 a001 121393/103682*599074578^(5/6) 2415781699742487 a001 15456/90481*599074578^(13/14) 2415781699742487 a001 121393/103682*228826127^(7/8) 2415781699743502 a001 182717648081/930249*64079^(10/23) 2415781699744098 a001 956722026041/4870847*64079^(10/23) 2415781699744185 a001 2504730781961/12752043*64079^(10/23) 2415781699744198 a001 3278735159921/16692641*64079^(10/23) 2415781699744201 a001 10610209857723/54018521*64079^(10/23) 2415781699744206 a001 4052739537881/20633239*64079^(10/23) 2415781699744239 a001 387002188980/1970299*64079^(10/23) 2415781699744467 a001 591286729879/3010349*64079^(10/23) 2415781699746027 a001 225851433717/1149851*64079^(10/23) 2415781699749694 a001 774004377960/51841*64079^(1/23) 2415781699753298 a001 7778742049/167761*64079^(13/23) 2415781699756723 a001 196418*64079^(10/23) 2415781699758106 a001 225851433717/103682*167761^(1/5) 2415781699762573 a001 139583862445/271443*64079^(8/23) 2415781699762750 a001 2372515049520/98209 2415781699764143 a001 24157817/103682*439204^(8/9) 2415781699764996 a001 317811*64079^(9/23) 2415781699765533 a001 102334155/103682*439204^(7/9) 2415781699766925 a001 433494437/103682*439204^(2/3) 2415781699768316 a001 1836311903/103682*439204^(5/9) 2415781699769082 a001 591286729879/1860498*64079^(9/23) 2415781699769678 a001 1548008755920/4870847*64079^(9/23) 2415781699769708 a001 7778742049/103682*439204^(4/9) 2415781699769765 a001 4052739537881/12752043*64079^(9/23) 2415781699769778 a001 1515744265389/4769326*64079^(9/23) 2415781699769785 a001 6557470319842/20633239*64079^(9/23) 2415781699769819 a001 2504730781961/7881196*64079^(9/23) 2415781699770046 a001 956722026041/3010349*64079^(9/23) 2415781699770490 a001 317811/103682*141422324^(11/13) 2415781699770490 a001 317811/103682*2537720636^(11/15) 2415781699770490 a001 6624/101521*(1/2+1/2*5^(1/2))^41 2415781699770490 a001 317811/103682*45537549124^(11/17) 2415781699770490 a001 317811/103682*312119004989^(3/5) 2415781699770490 a001 317811/103682*817138163596^(11/19) 2415781699770490 a001 317811/103682*14662949395604^(11/21) 2415781699770490 a001 317811/103682*(1/2+1/2*5^(1/2))^33 2415781699770490 a001 317811/103682*192900153618^(11/18) 2415781699770490 a001 317811/103682*10749957122^(11/16) 2415781699770490 a001 317811/103682*1568397607^(3/4) 2415781699770490 a001 317811/103682*599074578^(11/14) 2415781699770492 a001 317811/103682*33385282^(11/12) 2415781699771099 a001 32951280099/103682*439204^(1/3) 2415781699771607 a001 365435296162/1149851*64079^(9/23) 2415781699772491 a001 139583862445/103682*439204^(2/9) 2415781699773447 a001 12422650076928/514229 2415781699773882 a001 591286729879/103682*439204^(1/9) 2415781699774576 a001 2576/103361*(1/2+1/2*5^(1/2))^43 2415781699774576 a001 416020/51841*(1/2+1/2*5^(1/2))^31 2415781699774576 a001 416020/51841*9062201101803^(1/2) 2415781699775007 a001 32522920131744/1346269 2415781699775172 a001 46368/4870847*45537549124^(15/17) 2415781699775172 a001 46368/4870847*312119004989^(9/11) 2415781699775172 a001 46368/4870847*14662949395604^(5/7) 2415781699775172 a001 46368/4870847*(1/2+1/2*5^(1/2))^45 2415781699775172 a001 46368/4870847*192900153618^(5/6) 2415781699775172 a001 46368/4870847*28143753123^(9/10) 2415781699775172 a001 46368/4870847*10749957122^(15/16) 2415781699775172 a001 46347/2206*(1/2+1/2*5^(1/2))^29 2415781699775172 a001 46347/2206*1322157322203^(1/2) 2415781699775187 a001 4052739537881/271443*24476^(1/21) 2415781699775227 a001 5702887/103682*7881196^(9/11) 2415781699775235 a001 42573055159152/1762289 2415781699775246 a001 24157817/103682*7881196^(8/11) 2415781699775248 a001 31622993/51841*7881196^(2/3) 2415781699775249 a001 102334155/103682*7881196^(7/11) 2415781699775253 a001 433494437/103682*7881196^(6/11) 2415781699775256 a001 1836311903/103682*7881196^(5/11) 2415781699775259 a001 5702887/103682*141422324^(9/13) 2415781699775259 a001 5702887/103682*2537720636^(3/5) 2415781699775259 a001 15456/4250681*(1/2+1/2*5^(1/2))^47 2415781699775259 a001 5702887/103682*45537549124^(9/17) 2415781699775259 a001 5702887/103682*817138163596^(9/19) 2415781699775259 a001 5702887/103682*14662949395604^(3/7) 2415781699775259 a001 5702887/103682*(1/2+1/2*5^(1/2))^27 2415781699775259 a001 5702887/103682*192900153618^(1/2) 2415781699775259 a001 5702887/103682*10749957122^(9/16) 2415781699775259 a001 5702887/103682*599074578^(9/14) 2415781699775260 a001 7778742049/103682*7881196^(4/11) 2415781699775261 a001 5702887/103682*33385282^(3/4) 2415781699775261 a001 12586269025/103682*7881196^(1/3) 2415781699775263 a001 32951280099/103682*7881196^(3/11) 2415781699775267 a001 139583862445/103682*7881196^(2/11) 2415781699775268 a001 7465176/51841*20633239^(5/7) 2415781699775268 a001 222915410823168/9227465 2415781699775270 a001 591286729879/103682*7881196^(1/11) 2415781699775270 a001 102334155/103682*20633239^(3/5) 2415781699775271 a001 165580141/103682*20633239^(4/7) 2415781699775271 a001 1836311903/103682*20633239^(3/7) 2415781699775272 a001 2971215073/103682*20633239^(2/5) 2415781699775272 a001 7465176/51841*2537720636^(5/9) 2415781699775272 a001 144/103681*14662949395604^(7/9) 2415781699775272 a001 144/103681*(1/2+1/2*5^(1/2))^49 2415781699775272 a001 144/103681*505019158607^(7/8) 2415781699775272 a001 7465176/51841*312119004989^(5/11) 2415781699775272 a001 7465176/51841*(1/2+1/2*5^(1/2))^25 2415781699775272 a001 7465176/51841*3461452808002^(5/12) 2415781699775272 a001 7465176/51841*28143753123^(1/2) 2415781699775272 a001 7465176/51841*228826127^(5/8) 2415781699775272 a001 10182505537/51841*20633239^(2/7) 2415781699775273 a001 43133785636/51841*20633239^(1/5) 2415781699775273 a001 583600122151200/24157817 2415781699775273 a001 225851433717/103682*20633239^(1/7) 2415781699775274 a001 15456/29134601*14662949395604^(17/21) 2415781699775274 a001 15456/29134601*192900153618^(17/18) 2415781699775274 a001 39088169/103682*(1/2+1/2*5^(1/2))^23 2415781699775274 a001 39088169/103682*4106118243^(1/2) 2415781699775274 a001 3278723080752/135721 2415781699775274 a001 102334155/103682*141422324^(7/13) 2415781699775274 a001 433494437/103682*141422324^(6/13) 2415781699775274 a001 1836311903/103682*141422324^(5/13) 2415781699775274 a001 102334155/103682*2537720636^(7/15) 2415781699775274 a001 102334155/103682*17393796001^(3/7) 2415781699775274 a001 102334155/103682*45537549124^(7/17) 2415781699775274 a001 102334155/103682*14662949395604^(1/3) 2415781699775274 a001 102334155/103682*(1/2+1/2*5^(1/2))^21 2415781699775274 a001 102334155/103682*192900153618^(7/18) 2415781699775274 a001 102334155/103682*10749957122^(7/16) 2415781699775274 a001 102334155/103682*599074578^(1/2) 2415781699775274 a001 46368*141422324^(1/3) 2415781699775274 a001 7778742049/103682*141422324^(4/13) 2415781699775274 a001 32951280099/103682*141422324^(3/13) 2415781699775274 a001 139583862445/103682*141422324^(2/13) 2415781699775274 a001 4000054744740096/165580141 2415781699775274 a001 591286729879/103682*141422324^(1/13) 2415781699775274 a001 2576/33281921*3461452808002^(11/12) 2415781699775274 a001 133957148/51841*817138163596^(1/3) 2415781699775274 a001 133957148/51841*(1/2+1/2*5^(1/2))^19 2415781699775274 a001 10472279278589856/433494437 2415781699775274 a001 6624/224056801*14662949395604^(19/21) 2415781699775274 a001 701408733/103682*45537549124^(1/3) 2415781699775274 a001 701408733/103682*(1/2+1/2*5^(1/2))^17 2415781699775274 a001 13708391545514736/567451585 2415781699775274 a001 1836311903/103682*2537720636^(1/3) 2415781699775274 a001 1836311903/103682*45537549124^(5/17) 2415781699775274 a001 1836311903/103682*312119004989^(3/11) 2415781699775274 a001 1836311903/103682*14662949395604^(5/21) 2415781699775274 a001 1836311903/103682*(1/2+1/2*5^(1/2))^15 2415781699775274 a001 1836311903/103682*192900153618^(5/18) 2415781699775274 a001 1836311903/103682*28143753123^(3/10) 2415781699775274 a001 1836311903/103682*10749957122^(5/16) 2415781699775274 a001 7778742049/103682*2537720636^(4/15) 2415781699775274 a001 10182505537/51841*2537720636^(2/9) 2415781699775274 a001 71778069994498560/2971215073 2415781699775274 a001 32951280099/103682*2537720636^(1/5) 2415781699775274 a001 139583862445/103682*2537720636^(2/15) 2415781699775274 a001 225851433717/103682*2537720636^(1/9) 2415781699775274 a001 187917426892466208/7778742049 2415781699775274 a001 591286729879/103682*2537720636^(1/15) 2415781699775274 a001 245987105341450032/10182505537 2415781699775274 a001 46368*73681302247^(1/4) 2415781699775274 a001 304056783790433856/12586269025 2415781699775274 a001 12586269025/103682*312119004989^(1/5) 2415781699775274 a001 12586269025/103682*(1/2+1/2*5^(1/2))^11 2415781699775274 a001 43133785636/51841*17393796001^(1/7) 2415781699775274 a001 32951280099/103682*45537549124^(3/17) 2415781699775274 a001 32951280099/103682*14662949395604^(1/7) 2415781699775274 a001 32951280099/103682*(1/2+1/2*5^(1/2))^9 2415781699775274 a001 32951280099/103682*192900153618^(1/6) 2415781699775274 a001 139583862445/103682*45537549124^(2/17) 2415781699775274 a001 591286729879/103682*45537549124^(1/17) 2415781699775274 a001 43133785636/51841*14662949395604^(1/9) 2415781699775274 a001 43133785636/51841*(1/2+1/2*5^(1/2))^7 2415781699775274 a001 225851433717/103682*312119004989^(1/11) 2415781699775274 a001 225851433717/103682*(1/2+1/2*5^(1/2))^5 2415781699775274 a001 591286729879/103682*(1/2+1/2*5^(1/2))^3 2415781699775274 a001 387002188980/51841+387002188980/51841*5^(1/2) 2415781699775274 a006 5^(1/2)*Fibonacci(61)/Lucas(24)/sqrt(5) 2415781699775274 a001 182717648081/51841*23725150497407^(1/16) 2415781699775274 a001 139583862445/103682*14662949395604^(2/21) 2415781699775274 a001 139583862445/103682*(1/2+1/2*5^(1/2))^6 2415781699775274 a001 53316291173/103682*(1/2+1/2*5^(1/2))^8 2415781699775274 a001 53316291173/103682*23725150497407^(1/8) 2415781699775274 a001 53316291173/103682*505019158607^(1/7) 2415781699775274 a001 53316291173/103682*73681302247^(2/13) 2415781699775274 a001 225851433717/103682*28143753123^(1/10) 2415781699775274 a001 956722026041/103682*10749957122^(1/24) 2415781699775274 a001 10182505537/51841*312119004989^(2/11) 2415781699775274 a001 10182505537/51841*(1/2+1/2*5^(1/2))^10 2415781699775274 a001 591286729879/103682*10749957122^(1/16) 2415781699775274 a001 182717648081/51841*10749957122^(1/12) 2415781699775274 a001 10182505537/51841*28143753123^(1/5) 2415781699775274 a001 139583862445/103682*10749957122^(1/8) 2415781699775274 a001 32951280099/103682*10749957122^(3/16) 2415781699775274 a001 53316291173/103682*10749957122^(1/6) 2415781699775274 a001 10182505537/51841*10749957122^(5/24) 2415781699775274 a001 956722026041/103682*4106118243^(1/23) 2415781699775274 a001 7778742049/103682*45537549124^(4/17) 2415781699775274 a001 7778742049/103682*817138163596^(4/19) 2415781699775274 a001 7778742049/103682*14662949395604^(4/21) 2415781699775274 a001 7778742049/103682*(1/2+1/2*5^(1/2))^12 2415781699775274 a001 7778742049/103682*73681302247^(3/13) 2415781699775274 a001 182717648081/51841*4106118243^(2/23) 2415781699775274 a001 7778742049/103682*10749957122^(1/4) 2415781699775274 a001 139583862445/103682*4106118243^(3/23) 2415781699775274 a001 53316291173/103682*4106118243^(4/23) 2415781699775274 a001 10182505537/51841*4106118243^(5/23) 2415781699775274 a001 46368/6643838879*14662949395604^(20/21) 2415781699775274 a001 956722026041/103682*1568397607^(1/22) 2415781699775274 a001 7778742049/103682*4106118243^(6/23) 2415781699775274 a001 2971215073/103682*17393796001^(2/7) 2415781699775274 a001 2971215073/103682*14662949395604^(2/9) 2415781699775274 a001 2971215073/103682*(1/2+1/2*5^(1/2))^14 2415781699775274 a001 2971215073/103682*10749957122^(7/24) 2415781699775274 a001 182717648081/51841*1568397607^(1/11) 2415781699775274 a001 2971215073/103682*4106118243^(7/23) 2415781699775274 a001 44361286903469088/1836311903 2415781699775274 a001 139583862445/103682*1568397607^(3/22) 2415781699775274 a001 53316291173/103682*1568397607^(2/11) 2415781699775274 a001 10182505537/51841*1568397607^(5/22) 2415781699775274 a001 12586269025/103682*1568397607^(1/4) 2415781699775274 a001 7778742049/103682*1568397607^(3/11) 2415781699775274 a001 956722026041/103682*599074578^(1/21) 2415781699775274 a001 2971215073/103682*1568397607^(7/22) 2415781699775274 a001 567451585/51841*(1/2+1/2*5^(1/2))^16 2415781699775274 a001 567451585/51841*23725150497407^(1/4) 2415781699775274 a001 567451585/51841*73681302247^(4/13) 2415781699775274 a001 567451585/51841*10749957122^(1/3) 2415781699775274 a001 567451585/51841*4106118243^(8/23) 2415781699775274 a001 591286729879/103682*599074578^(1/14) 2415781699775274 a001 182717648081/51841*599074578^(2/21) 2415781699775274 a001 567451585/51841*1568397607^(4/11) 2415781699775274 a001 5648167937479872/233802911 2415781699775274 a001 139583862445/103682*599074578^(1/7) 2415781699775274 a001 43133785636/51841*599074578^(1/6) 2415781699775274 a001 53316291173/103682*599074578^(4/21) 2415781699775274 a001 32951280099/103682*599074578^(3/14) 2415781699775274 a001 10182505537/51841*599074578^(5/21) 2415781699775274 a001 7778742049/103682*599074578^(2/7) 2415781699775274 a001 1836311903/103682*599074578^(5/14) 2415781699775274 a001 2971215073/103682*599074578^(1/3) 2415781699775274 a001 956722026041/103682*228826127^(1/20) 2415781699775274 a001 433494437/103682*2537720636^(2/5) 2415781699775274 a001 46368/969323029*14662949395604^(8/9) 2415781699775274 a001 433494437/103682*45537549124^(6/17) 2415781699775274 a001 433494437/103682*14662949395604^(2/7) 2415781699775274 a001 433494437/103682*(1/2+1/2*5^(1/2))^18 2415781699775274 a001 433494437/103682*192900153618^(1/3) 2415781699775274 a001 433494437/103682*10749957122^(3/8) 2415781699775274 a001 433494437/103682*4106118243^(9/23) 2415781699775274 a001 567451585/51841*599074578^(8/21) 2415781699775274 a001 433494437/103682*1568397607^(9/22) 2415781699775274 a001 182717648081/51841*228826127^(1/10) 2415781699775274 a001 433494437/103682*599074578^(3/7) 2415781699775274 a001 225851433717/103682*228826127^(1/8) 2415781699775274 a001 809028066731220/33489287 2415781699775274 a001 139583862445/103682*228826127^(3/20) 2415781699775274 a001 53316291173/103682*228826127^(1/5) 2415781699775274 a001 10182505537/51841*228826127^(1/4) 2415781699775274 a001 7778742049/103682*228826127^(3/10) 2415781699775274 a001 2971215073/103682*228826127^(7/20) 2415781699775274 a001 956722026041/103682*87403803^(1/19) 2415781699775274 a001 1836311903/103682*228826127^(3/8) 2415781699775274 a001 165580141/103682*2537720636^(4/9) 2415781699775274 a001 46368/370248451*14662949395604^(6/7) 2415781699775274 a001 165580141/103682*(1/2+1/2*5^(1/2))^20 2415781699775274 a001 165580141/103682*23725150497407^(5/16) 2415781699775274 a001 165580141/103682*505019158607^(5/14) 2415781699775274 a001 165580141/103682*73681302247^(5/13) 2415781699775274 a001 165580141/103682*28143753123^(2/5) 2415781699775274 a001 165580141/103682*10749957122^(5/12) 2415781699775274 a001 165580141/103682*4106118243^(10/23) 2415781699775274 a001 165580141/103682*1568397607^(5/11) 2415781699775274 a001 567451585/51841*228826127^(2/5) 2415781699775274 a001 165580141/103682*599074578^(10/21) 2415781699775274 a001 433494437/103682*228826127^(9/20) 2415781699775274 a001 182717648081/51841*87403803^(2/19) 2415781699775274 a001 165580141/103682*228826127^(1/2) 2415781699775274 a001 117722370909984/4873055 2415781699775274 a001 139583862445/103682*87403803^(3/19) 2415781699775274 a001 53316291173/103682*87403803^(4/19) 2415781699775274 a001 10182505537/51841*87403803^(5/19) 2415781699775274 a001 7778742049/103682*87403803^(6/19) 2415781699775274 a001 2971215073/103682*87403803^(7/19) 2415781699775274 a001 956722026041/103682*33385282^(1/18) 2415781699775274 a001 11592/35355581*23725150497407^(13/16) 2415781699775274 a001 11592/35355581*505019158607^(13/14) 2415781699775274 a001 31622993/51841*312119004989^(2/5) 2415781699775274 a001 31622993/51841*(1/2+1/2*5^(1/2))^22 2415781699775274 a001 31622993/51841*10749957122^(11/24) 2415781699775274 a001 31622993/51841*4106118243^(11/23) 2415781699775274 a001 31622993/51841*1568397607^(1/2) 2415781699775274 a001 31622993/51841*599074578^(11/21) 2415781699775274 a001 567451585/51841*87403803^(8/19) 2415781699775274 a001 31622993/51841*228826127^(11/20) 2415781699775274 a001 133957148/51841*87403803^(1/2) 2415781699775274 a001 433494437/103682*87403803^(9/19) 2415781699775274 a001 591286729879/103682*33385282^(1/12) 2415781699775274 a001 165580141/103682*87403803^(10/19) 2415781699775274 a001 182717648081/51841*33385282^(1/9) 2415781699775274 a001 31622993/51841*87403803^(11/19) 2415781699775274 a001 944284833479232/39088169 2415781699775274 a001 139583862445/103682*33385282^(1/6) 2415781699775274 a001 53316291173/103682*33385282^(2/9) 2415781699775274 a001 32951280099/103682*33385282^(1/4) 2415781699775274 a001 10182505537/51841*33385282^(5/18) 2415781699775275 a001 7778742049/103682*33385282^(1/3) 2415781699775275 a001 24157817/103682*141422324^(8/13) 2415781699775275 a001 24157817/103682*2537720636^(8/15) 2415781699775275 a001 46368/54018521*312119004989^(10/11) 2415781699775275 a001 46368/54018521*3461452808002^(5/6) 2415781699775275 a001 24157817/103682*45537549124^(8/17) 2415781699775275 a001 24157817/103682*14662949395604^(8/21) 2415781699775275 a001 24157817/103682*(1/2+1/2*5^(1/2))^24 2415781699775275 a001 24157817/103682*192900153618^(4/9) 2415781699775275 a001 24157817/103682*73681302247^(6/13) 2415781699775275 a001 24157817/103682*10749957122^(1/2) 2415781699775275 a001 24157817/103682*4106118243^(12/23) 2415781699775275 a001 24157817/103682*1568397607^(6/11) 2415781699775275 a001 24157817/103682*599074578^(4/7) 2415781699775275 a001 2971215073/103682*33385282^(7/18) 2415781699775275 a001 24157817/103682*228826127^(3/5) 2415781699775275 a001 956722026041/103682*12752043^(1/17) 2415781699775275 a001 1836311903/103682*33385282^(5/12) 2415781699775275 a001 567451585/51841*33385282^(4/9) 2415781699775275 a001 24157817/103682*87403803^(12/19) 2415781699775275 a001 433494437/103682*33385282^(1/2) 2415781699775275 a001 102334155/103682*33385282^(7/12) 2415781699775275 a001 165580141/103682*33385282^(5/9) 2415781699775275 a001 31622993/51841*33385282^(11/18) 2415781699775276 a001 182717648081/51841*12752043^(2/17) 2415781699775276 a001 2504754939778/103683 2415781699775276 a001 24157817/103682*33385282^(2/3) 2415781699775277 a001 139583862445/103682*12752043^(3/17) 2415781699775277 a001 53316291173/103682*12752043^(4/17) 2415781699775278 a001 10182505537/51841*12752043^(5/17) 2415781699775279 a001 7778742049/103682*12752043^(6/17) 2415781699775279 a001 9227465/103682*141422324^(2/3) 2415781699775280 a001 46368/20633239*45537549124^(16/17) 2415781699775280 a001 46368/20633239*14662949395604^(16/21) 2415781699775280 a001 46368/20633239*(1/2+1/2*5^(1/2))^48 2415781699775280 a001 46368/20633239*192900153618^(8/9) 2415781699775280 a001 46368/20633239*73681302247^(12/13) 2415781699775280 a001 9227465/103682*(1/2+1/2*5^(1/2))^26 2415781699775280 a001 9227465/103682*73681302247^(1/2) 2415781699775280 a001 9227465/103682*10749957122^(13/24) 2415781699775280 a001 9227465/103682*4106118243^(13/23) 2415781699775280 a001 9227465/103682*1568397607^(13/22) 2415781699775280 a001 9227465/103682*599074578^(13/21) 2415781699775280 a001 9227465/103682*228826127^(13/20) 2415781699775280 a001 9227465/103682*87403803^(13/19) 2415781699775280 a001 2971215073/103682*12752043^(7/17) 2415781699775280 a001 956722026041/103682*4870847^(1/16) 2415781699775281 a001 567451585/51841*12752043^(8/17) 2415781699775281 a001 9227465/103682*33385282^(13/18) 2415781699775281 a001 701408733/103682*12752043^(1/2) 2415781699775282 a001 433494437/103682*12752043^(9/17) 2415781699775283 a001 165580141/103682*12752043^(10/17) 2415781699775284 a001 31622993/51841*12752043^(11/17) 2415781699775285 a001 24157817/103682*12752043^(12/17) 2415781699775287 a001 182717648081/51841*4870847^(1/8) 2415781699775289 a001 137769300504864/5702887 2415781699775291 a001 9227465/103682*12752043^(13/17) 2415781699775293 a001 139583862445/103682*4870847^(3/16) 2415781699775299 a001 53316291173/103682*4870847^(1/4) 2415781699775306 a001 10182505537/51841*4870847^(5/16) 2415781699775308 a001 1762289/51841*20633239^(4/5) 2415781699775312 a001 7778742049/103682*4870847^(3/8) 2415781699775313 a001 11592/1970299*(1/2+1/2*5^(1/2))^46 2415781699775313 a001 1762289/51841*17393796001^(4/7) 2415781699775313 a001 11592/1970299*10749957122^(23/24) 2415781699775313 a001 1762289/51841*14662949395604^(4/9) 2415781699775313 a001 1762289/51841*(1/2+1/2*5^(1/2))^28 2415781699775313 a001 1762289/51841*73681302247^(7/13) 2415781699775313 a001 1762289/51841*10749957122^(7/12) 2415781699775313 a001 1762289/51841*4106118243^(14/23) 2415781699775313 a001 1762289/51841*1568397607^(7/11) 2415781699775313 a001 1762289/51841*599074578^(2/3) 2415781699775313 a001 1762289/51841*228826127^(7/10) 2415781699775313 a001 1762289/51841*87403803^(14/19) 2415781699775314 a001 1762289/51841*33385282^(7/9) 2415781699775318 a001 2971215073/103682*4870847^(7/16) 2415781699775320 a001 956722026041/103682*1860498^(1/15) 2415781699775325 a001 567451585/51841*4870847^(1/2) 2415781699775325 a001 1762289/51841*12752043^(14/17) 2415781699775331 a001 433494437/103682*4870847^(9/16) 2415781699775338 a001 165580141/103682*4870847^(5/8) 2415781699775344 a001 591286729879/103682*1860498^(1/10) 2415781699775344 a001 31622993/51841*4870847^(11/16) 2415781699775351 a001 24157817/103682*4870847^(3/4) 2415781699775362 a001 9227465/103682*4870847^(13/16) 2415781699775367 a001 182717648081/51841*1860498^(2/15) 2415781699775376 a001 2505866199360/103729 2415781699775390 a001 225851433717/103682*1860498^(1/6) 2415781699775402 a001 1762289/51841*4870847^(7/8) 2415781699775413 a001 139583862445/103682*1860498^(1/5) 2415781699775460 a001 53316291173/103682*1860498^(4/15) 2415781699775483 a001 32951280099/103682*1860498^(3/10) 2415781699775505 a001 1346269/103682*7881196^(10/11) 2415781699775507 a001 10182505537/51841*1860498^(1/3) 2415781699775536 a001 1346269/103682*20633239^(6/7) 2415781699775540 a001 1346269/103682*141422324^(10/13) 2415781699775540 a001 1346269/103682*2537720636^(2/3) 2415781699775540 a001 46368/3010349*312119004989^(4/5) 2415781699775540 a001 46368/3010349*(1/2+1/2*5^(1/2))^44 2415781699775540 a001 46368/3010349*23725150497407^(11/16) 2415781699775540 a001 46368/3010349*73681302247^(11/13) 2415781699775540 a001 46368/3010349*10749957122^(11/12) 2415781699775540 a001 1346269/103682*45537549124^(10/17) 2415781699775540 a001 1346269/103682*312119004989^(6/11) 2415781699775540 a001 1346269/103682*14662949395604^(10/21) 2415781699775540 a001 1346269/103682*(1/2+1/2*5^(1/2))^30 2415781699775540 a001 1346269/103682*192900153618^(5/9) 2415781699775540 a001 1346269/103682*28143753123^(3/5) 2415781699775540 a001 1346269/103682*10749957122^(5/8) 2415781699775540 a001 1346269/103682*4106118243^(15/23) 2415781699775540 a001 46368/3010349*4106118243^(22/23) 2415781699775540 a001 1346269/103682*1568397607^(15/22) 2415781699775540 a001 1346269/103682*599074578^(5/7) 2415781699775541 a001 1346269/103682*228826127^(3/4) 2415781699775541 a001 1346269/103682*87403803^(15/19) 2415781699775542 a001 1346269/103682*33385282^(5/6) 2415781699775553 a001 7778742049/103682*1860498^(2/5) 2415781699775554 a001 1346269/103682*12752043^(15/17) 2415781699775600 a001 2971215073/103682*1860498^(7/15) 2415781699775616 a001 956722026041/103682*710647^(1/14) 2415781699775623 a001 1836311903/103682*1860498^(1/2) 2415781699775636 a001 1346269/103682*4870847^(15/16) 2415781699775646 a001 567451585/51841*1860498^(8/15) 2415781699775693 a001 433494437/103682*1860498^(3/5) 2415781699775739 a001 165580141/103682*1860498^(2/3) 2415781699775762 a001 102334155/103682*1860498^(7/10) 2415781699775786 a001 31622993/51841*1860498^(11/15) 2415781699775833 a001 24157817/103682*1860498^(4/5) 2415781699775853 a001 7465176/51841*1860498^(5/6) 2415781699775884 a001 9227465/103682*1860498^(13/15) 2415781699775887 a001 5702887/103682*1860498^(9/10) 2415781699775957 a001 182717648081/51841*710647^(1/7) 2415781699775964 a001 1762289/51841*1860498^(14/15) 2415781699775972 a001 2512533756852/104005 2415781699776299 a001 139583862445/103682*710647^(3/14) 2415781699776470 a001 43133785636/51841*710647^(1/4) 2415781699776641 a001 53316291173/103682*710647^(2/7) 2415781699776982 a001 10182505537/51841*710647^(5/14) 2415781699777101 a001 46368/1149851*2537720636^(14/15) 2415781699777101 a001 46368/1149851*17393796001^(6/7) 2415781699777101 a001 46368/1149851*45537549124^(14/17) 2415781699777101 a001 46368/1149851*14662949395604^(2/3) 2415781699777101 a001 46368/1149851*(1/2+1/2*5^(1/2))^42 2415781699777101 a001 46368/1149851*505019158607^(3/4) 2415781699777101 a001 46368/1149851*192900153618^(7/9) 2415781699777101 a001 46368/1149851*10749957122^(7/8) 2415781699777101 a001 514229/103682*(1/2+1/2*5^(1/2))^32 2415781699777101 a001 514229/103682*23725150497407^(1/2) 2415781699777101 a001 514229/103682*505019158607^(4/7) 2415781699777101 a001 514229/103682*73681302247^(8/13) 2415781699777101 a001 514229/103682*10749957122^(2/3) 2415781699777101 a001 514229/103682*4106118243^(16/23) 2415781699777101 a001 46368/1149851*4106118243^(21/23) 2415781699777101 a001 514229/103682*1568397607^(8/11) 2415781699777101 a001 46368/1149851*1568397607^(21/22) 2415781699777101 a001 514229/103682*599074578^(16/21) 2415781699777101 a001 514229/103682*228826127^(4/5) 2415781699777101 a001 514229/103682*87403803^(16/19) 2415781699777103 a001 514229/103682*33385282^(8/9) 2415781699777115 a001 514229/103682*12752043^(16/17) 2415781699777324 a001 7778742049/103682*710647^(3/7) 2415781699777666 a001 2971215073/103682*710647^(1/2) 2415781699777796 a001 956722026041/103682*271443^(1/13) 2415781699778007 a001 567451585/51841*710647^(4/7) 2415781699778349 a001 433494437/103682*710647^(9/14) 2415781699778691 a001 165580141/103682*710647^(5/7) 2415781699778862 a001 102334155/103682*710647^(3/4) 2415781699778877 a001 75025*64079^(12/23) 2415781699779033 a001 31622993/51841*710647^(11/14) 2415781699779375 a001 24157817/103682*710647^(6/7) 2415781699779721 a001 9227465/103682*710647^(13/14) 2415781699780057 a001 2559206659296/105937 2415781699780318 a001 182717648081/51841*271443^(2/13) 2415781699782303 a001 139583862445/439204*64079^(9/23) 2415781699782840 a001 139583862445/103682*271443^(3/13) 2415781699784637 a001 774004377960/51841*103682^(1/24) 2415781699785362 a001 53316291173/103682*271443^(4/13) 2415781699787797 a001 11592/109801*2537720636^(8/9) 2415781699787797 a001 11592/109801*312119004989^(8/11) 2415781699787797 a001 11592/109801*(1/2+1/2*5^(1/2))^40 2415781699787797 a001 11592/109801*23725150497407^(5/8) 2415781699787797 a001 11592/109801*73681302247^(10/13) 2415781699787797 a001 11592/109801*28143753123^(4/5) 2415781699787797 a001 11592/109801*10749957122^(5/6) 2415781699787797 a001 98209/51841*45537549124^(2/3) 2415781699787797 a001 98209/51841*(1/2+1/2*5^(1/2))^34 2415781699787797 a001 98209/51841*10749957122^(17/24) 2415781699787797 a001 11592/109801*4106118243^(20/23) 2415781699787797 a001 98209/51841*4106118243^(17/23) 2415781699787797 a001 98209/51841*1568397607^(17/22) 2415781699787797 a001 11592/109801*1568397607^(10/11) 2415781699787797 a001 98209/51841*599074578^(17/21) 2415781699787797 a001 11592/109801*599074578^(20/21) 2415781699787797 a001 98209/51841*228826127^(17/20) 2415781699787798 a001 98209/51841*87403803^(17/19) 2415781699787799 a001 98209/51841*33385282^(17/18) 2415781699787884 a001 10182505537/51841*271443^(5/13) 2415781699788153 a001 75283811239/90481*64079^(7/23) 2415781699789960 a001 34111385/13201*39603^(19/22) 2415781699790406 a001 7778742049/103682*271443^(6/13) 2415781699790576 a001 365435296162/710647*64079^(8/23) 2415781699791667 a001 46368*271443^(1/2) 2415781699792928 a001 2971215073/103682*271443^(7/13) 2415781699794001 a001 956722026041/103682*103682^(1/12) 2415781699794662 a001 956722026041/1860498*64079^(8/23) 2415781699795258 a001 2504730781961/4870847*64079^(8/23) 2415781699795345 a001 6557470319842/12752043*64079^(8/23) 2415781699795365 a001 10610209857723/20633239*64079^(8/23) 2415781699795399 a001 4052739537881/7881196*64079^(8/23) 2415781699795450 a001 567451585/51841*271443^(8/13) 2415781699795626 a001 1548008755920/3010349*64079^(8/23) 2415781699797187 a001 514229*64079^(8/23) 2415781699797973 a001 433494437/103682*271443^(9/13) 2415781699800495 a001 165580141/103682*271443^(10/13) 2415781699803017 a001 31622993/51841*271443^(11/13) 2415781699803190 a001 1515744265389/101521*24476^(1/21) 2415781699803364 a001 591286729879/103682*103682^(1/8) 2415781699804457 a001 20365011074/167761*64079^(11/23) 2415781699805540 a001 24157817/103682*271443^(12/13) 2415781699807883 a001 225851433717/439204*64079^(8/23) 2415781699808061 a001 12586222656/521 2415781699812728 a001 182717648081/51841*103682^(1/6) 2415781699813733 a001 365435296162/271443*64079^(6/23) 2415781699816156 a001 591286729879/710647*64079^(7/23) 2415781699820236 a001 225851433717/64079*24476^(4/21) 2415781699820242 a001 832040*64079^(7/23) 2415781699820497 a001 3278735159921/219602*24476^(1/21) 2415781699820838 a001 4052739537881/4870847*64079^(7/23) 2415781699820925 a001 3536736619241/4250681*64079^(7/23) 2415781699820978 a001 3278735159921/3940598*64079^(7/23) 2415781699821206 a001 2504730781961/3010349*64079^(7/23) 2415781699822092 a001 225851433717/103682*103682^(5/24) 2415781699822767 a001 956722026041/1149851*64079^(7/23) 2415781699830037 a001 32951280099/167761*64079^(10/23) 2415781699831455 a001 139583862445/103682*103682^(1/4) 2415781699833463 a001 182717648081/219602*64079^(7/23) 2415781699839312 a001 591286729879/271443*64079^(5/23) 2415781699840819 a001 43133785636/51841*103682^(7/24) 2415781699841736 a001 956722026041/710647*64079^(6/23) 2415781699845287 a001 774004377960/51841*39603^(1/22) 2415781699845822 a001 2504730781961/1860498*64079^(6/23) 2415781699846418 a001 6557470319842/4870847*64079^(6/23) 2415781699846558 a001 10610209857723/7881196*64079^(6/23) 2415781699846786 a001 1346269*64079^(6/23) 2415781699848347 a001 1548008755920/1149851*64079^(6/23) 2415781699850182 a001 53316291173/103682*103682^(1/3) 2415781699855617 a001 53316291173/167761*64079^(9/23) 2415781699859043 a001 591286729879/439204*64079^(6/23) 2415781699859546 a001 32951280099/103682*103682^(3/8) 2415781699859973 a001 63245986/39603*39603^(10/11) 2415781699861111 a001 75025/103682*141422324^(12/13) 2415781699861111 a001 75025/103682*2537720636^(4/5) 2415781699861111 a001 46368/167761*817138163596^(2/3) 2415781699861111 a001 46368/167761*(1/2+1/2*5^(1/2))^38 2415781699861111 a001 46368/167761*10749957122^(19/24) 2415781699861111 a001 75025/103682*45537549124^(12/17) 2415781699861111 a001 75025/103682*14662949395604^(4/7) 2415781699861111 a001 75025/103682*(1/2+1/2*5^(1/2))^36 2415781699861111 a001 75025/103682*505019158607^(9/14) 2415781699861111 a001 75025/103682*192900153618^(2/3) 2415781699861111 a001 75025/103682*73681302247^(9/13) 2415781699861111 a001 75025/103682*10749957122^(3/4) 2415781699861111 a001 46368/167761*4106118243^(19/23) 2415781699861111 a001 75025/103682*4106118243^(18/23) 2415781699861111 a001 75025/103682*1568397607^(9/11) 2415781699861111 a001 46368/167761*1568397607^(19/22) 2415781699861111 a001 75025/103682*599074578^(6/7) 2415781699861111 a001 46368/167761*599074578^(19/21) 2415781699861111 a001 75025/103682*228826127^(9/10) 2415781699861111 a001 46368/167761*228826127^(19/20) 2415781699861111 a001 75025/103682*87403803^(18/19) 2415781699864892 a001 956722026041/271443*64079^(4/23) 2415781699867316 a001 1548008755920/710647*64079^(5/23) 2415781699868909 a001 10182505537/51841*103682^(5/12) 2415781699871401 a001 4052739537881/1860498*64079^(5/23) 2415781699871997 a001 2178309*64079^(5/23) 2415781699872366 a001 6557470319842/3010349*64079^(5/23) 2415781699873926 a001 2504730781961/1149851*64079^(5/23) 2415781699878273 a001 12586269025/103682*103682^(11/24) 2415781699881197 a001 86267571272/167761*64079^(8/23) 2415781699881372 a001 1812440220336/75025 2415781699884623 a001 956722026041/439204*64079^(5/23) 2415781699887636 a001 7778742049/103682*103682^(1/2) 2415781699890472 a001 516002918640/90481*64079^(3/23) 2415781699892896 a001 2504730781961/710647*64079^(4/23) 2415781699893811 a001 2504730781961/167761*24476^(1/21) 2415781699896981 a001 3278735159921/930249*64079^(4/23) 2415781699897000 a001 46368*103682^(13/24) 2415781699897946 a001 10610209857723/3010349*64079^(4/23) 2415781699898542 a001 433494437/271443*167761^(4/5) 2415781699899506 a001 4052739537881/1149851*64079^(4/23) 2415781699906363 a001 2971215073/103682*103682^(7/12) 2415781699906777 a001 139583862445/167761*64079^(7/23) 2415781699909363 a001 1812440220357/75025 2415781699910203 a001 387002188980/109801*64079^(4/23) 2415781699913362 a001 362488044072/15005 2415781699914161 a001 2/75025*(1/2+1/2*5^(1/2))^62 2415781699914161 a001 9062201101803/75025*8^(1/3) 2415781699914695 a001 1812440220361/75025 2415781699915300 a001 956722026041/103682*39603^(1/11) 2415781699915709 a001 1602508992/90481*167761^(3/5) 2415781699915727 a001 1836311903/103682*103682^(5/8) 2415781699916027 a001 1812440220362/75025 2415781699916052 a001 2504730781961/271443*64079^(2/23) 2415781699918476 a001 4052739537881/710647*64079^(3/23) 2415781699922561 a001 3536736619241/620166*64079^(3/23) 2415781699925086 a001 6557470319842/1149851*64079^(3/23) 2415781699925090 a001 567451585/51841*103682^(2/3) 2415781699926545 a001 1134903170/710647*167761^(4/5) 2415781699926691 a001 362488044074/15005 2415781699929985 a001 39088169/39603*39603^(21/22) 2415781699930631 a001 2971215073/1860498*167761^(4/5) 2415781699931227 a001 7778742049/4870847*167761^(4/5) 2415781699931314 a001 20365011074/12752043*167761^(4/5) 2415781699931327 a001 53316291173/33385282*167761^(4/5) 2415781699931329 a001 139583862445/87403803*167761^(4/5) 2415781699931329 a001 365435296162/228826127*167761^(4/5) 2415781699931329 a001 956722026041/599074578*167761^(4/5) 2415781699931329 a001 2504730781961/1568397607*167761^(4/5) 2415781699931329 a001 6557470319842/4106118243*167761^(4/5) 2415781699931329 a001 10610209857723/6643838879*167761^(4/5) 2415781699931329 a001 4052739537881/2537720636*167761^(4/5) 2415781699931329 a001 1548008755920/969323029*167761^(4/5) 2415781699931329 a001 591286729879/370248451*167761^(4/5) 2415781699931329 a001 225851433717/141422324*167761^(4/5) 2415781699931330 a001 86267571272/54018521*167761^(4/5) 2415781699931335 a001 32951280099/20633239*167761^(4/5) 2415781699931368 a001 12586269025/7881196*167761^(4/5) 2415781699931595 a001 4807526976/3010349*167761^(4/5) 2415781699932357 a001 225851433717/167761*64079^(6/23) 2415781699932877 a001 53316291173/271443*167761^(2/5) 2415781699933156 a001 1836311903/1149851*167761^(4/5) 2415781699934425 a001 121393/271443*(1/2+1/2*5^(1/2))^37 2415781699934454 a001 701408733/103682*103682^(17/24) 2415781699935783 a001 2504730781961/439204*64079^(3/23) 2415781699941632 a001 4052739537881/271443*64079^(1/23) 2415781699943713 a001 12586269025/710647*167761^(3/5) 2415781699943817 a001 433494437/103682*103682^(3/4) 2415781699943852 a001 701408733/439204*167761^(4/5) 2415781699944055 a001 6557470319842/710647*64079^(2/23) 2415781699947798 a001 10983760033/620166*167761^(3/5) 2415781699948395 a001 86267571272/4870847*167761^(3/5) 2415781699948481 a001 75283811239/4250681*167761^(3/5) 2415781699948494 a001 591286729879/33385282*167761^(3/5) 2415781699948496 a001 516002918640/29134601*167761^(3/5) 2415781699948496 a001 4052739537881/228826127*167761^(3/5) 2415781699948496 a001 3536736619241/199691526*167761^(3/5) 2415781699948496 a001 6557470319842/370248451*167761^(3/5) 2415781699948496 a001 2504730781961/141422324*167761^(3/5) 2415781699948497 a001 956722026041/54018521*167761^(3/5) 2415781699948502 a001 365435296162/20633239*167761^(3/5) 2415781699948535 a001 139583862445/7881196*167761^(3/5) 2415781699948763 a001 53316291173/3010349*167761^(3/5) 2415781699950044 a001 591286729879/271443*167761^(1/5) 2415781699950323 a001 20365011074/1149851*167761^(3/5) 2415781699950666 a001 10610209857723/1149851*64079^(2/23) 2415781699953181 a001 133957148/51841*103682^(19/24) 2415781699954688 a001 4745030099417/196418 2415781699956080 a001 63245986/271443*439204^(8/9) 2415781699957471 a001 267914296/271443*439204^(7/9) 2415781699957937 a001 365435296162/167761*64079^(5/23) 2415781699958863 a001 1134903170/271443*439204^(2/3) 2415781699960254 a001 1602508992/90481*439204^(5/9) 2415781699960880 a001 139583862445/710647*167761^(2/5) 2415781699961020 a001 7778742049/439204*167761^(3/5) 2415781699961362 a001 4052739537881/439204*64079^(2/23) 2415781699961646 a001 20365011074/271443*439204^(4/9) 2415781699962428 a001 121393/710647*2537720636^(13/15) 2415781699962428 a001 105937/90481*2537720636^(7/9) 2415781699962428 a001 105937/90481*17393796001^(5/7) 2415781699962428 a001 121393/710647*45537549124^(13/17) 2415781699962428 a001 121393/710647*14662949395604^(13/21) 2415781699962428 a001 121393/710647*(1/2+1/2*5^(1/2))^39 2415781699962428 a001 121393/710647*192900153618^(13/18) 2415781699962428 a001 121393/710647*73681302247^(3/4) 2415781699962428 a001 105937/90481*312119004989^(7/11) 2415781699962428 a001 105937/90481*14662949395604^(5/9) 2415781699962428 a001 105937/90481*(1/2+1/2*5^(1/2))^35 2415781699962428 a001 105937/90481*505019158607^(5/8) 2415781699962428 a001 105937/90481*28143753123^(7/10) 2415781699962428 a001 121393/710647*10749957122^(13/16) 2415781699962428 a001 105937/90481*599074578^(5/6) 2415781699962428 a001 121393/710647*599074578^(13/14) 2415781699962428 a001 105937/90481*228826127^(7/8) 2415781699962545 a001 165580141/103682*103682^(5/6) 2415781699963037 a001 86267571272/271443*439204^(1/3) 2415781699964429 a001 365435296162/271443*439204^(2/9) 2415781699964966 a001 182717648081/930249*167761^(2/5) 2415781699965385 a001 12422650077915/514229 2415781699965562 a001 956722026041/4870847*167761^(2/5) 2415781699965649 a001 2504730781961/12752043*167761^(2/5) 2415781699965662 a001 3278735159921/16692641*167761^(2/5) 2415781699965665 a001 10610209857723/54018521*167761^(2/5) 2415781699965669 a001 4052739537881/20633239*167761^(2/5) 2415781699965703 a001 387002188980/1970299*167761^(2/5) 2415781699965820 a001 516002918640/90481*439204^(1/9) 2415781699965930 a001 591286729879/3010349*167761^(2/5) 2415781699966514 a001 832040/271443*141422324^(11/13) 2415781699966514 a001 832040/271443*2537720636^(11/15) 2415781699966514 a001 832040/271443*45537549124^(11/17) 2415781699966514 a001 121393/1860498*(1/2+1/2*5^(1/2))^41 2415781699966514 a001 832040/271443*312119004989^(3/5) 2415781699966514 a001 832040/271443*817138163596^(11/19) 2415781699966514 a001 832040/271443*14662949395604^(11/21) 2415781699966514 a001 832040/271443*(1/2+1/2*5^(1/2))^33 2415781699966514 a001 832040/271443*192900153618^(11/18) 2415781699966514 a001 832040/271443*10749957122^(11/16) 2415781699966514 a001 832040/271443*1568397607^(3/4) 2415781699966514 a001 832040/271443*599074578^(11/14) 2415781699966516 a001 832040/271443*33385282^(11/12) 2415781699966945 a001 32522920134328/1346269 2415781699967110 a001 121393/4870847*(1/2+1/2*5^(1/2))^43 2415781699967110 a001 726103/90481*(1/2+1/2*5^(1/2))^31 2415781699967110 a001 726103/90481*9062201101803^(1/2) 2415781699967173 a001 956697868821/39602 2415781699967178 a001 4976784/90481*7881196^(9/11) 2415781699967184 a001 63245986/271443*7881196^(8/11) 2415781699967186 a001 165580141/271443*7881196^(2/3) 2415781699967187 a001 267914296/271443*7881196^(7/11) 2415781699967191 a001 1134903170/271443*7881196^(6/11) 2415781699967194 a001 1602508992/90481*7881196^(5/11) 2415781699967197 a001 121393/12752043*45537549124^(15/17) 2415781699967197 a001 121393/12752043*312119004989^(9/11) 2415781699967197 a001 121393/12752043*14662949395604^(5/7) 2415781699967197 a001 121393/12752043*(1/2+1/2*5^(1/2))^45 2415781699967197 a001 121393/12752043*192900153618^(5/6) 2415781699967197 a001 5702887/271443*(1/2+1/2*5^(1/2))^29 2415781699967197 a001 5702887/271443*1322157322203^(1/2) 2415781699967197 a001 121393/12752043*28143753123^(9/10) 2415781699967197 a001 121393/12752043*10749957122^(15/16) 2415781699967198 a001 20365011074/271443*7881196^(4/11) 2415781699967199 a001 121393*7881196^(1/3) 2415781699967201 a001 86267571272/271443*7881196^(3/11) 2415781699967205 a001 365435296162/271443*7881196^(2/11) 2415781699967206 a001 222915410840879/9227465 2415781699967207 a001 39088169/271443*20633239^(5/7) 2415781699967208 a001 516002918640/90481*7881196^(1/11) 2415781699967208 a001 267914296/271443*20633239^(3/5) 2415781699967209 a001 433494437/271443*20633239^(4/7) 2415781699967209 a001 1602508992/90481*20633239^(3/7) 2415781699967209 a001 7778742049/271443*20633239^(2/5) 2415781699967210 a001 4976784/90481*141422324^(9/13) 2415781699967210 a001 4976784/90481*2537720636^(3/5) 2415781699967210 a001 4976784/90481*45537549124^(9/17) 2415781699967210 a001 121393/33385282*(1/2+1/2*5^(1/2))^47 2415781699967210 a001 4976784/90481*14662949395604^(3/7) 2415781699967210 a001 4976784/90481*(1/2+1/2*5^(1/2))^27 2415781699967210 a001 4976784/90481*192900153618^(1/2) 2415781699967210 a001 4976784/90481*10749957122^(9/16) 2415781699967210 a001 4976784/90481*599074578^(9/14) 2415781699967210 a001 53316291173/271443*20633239^(2/7) 2415781699967211 a001 75283811239/90481*20633239^(1/5) 2415781699967211 a001 583600122197568/24157817 2415781699967211 a001 591286729879/271443*20633239^(1/7) 2415781699967211 a001 4976784/90481*33385282^(3/4) 2415781699967211 a001 39088169/271443*2537720636^(5/9) 2415781699967211 a001 121393/87403803*14662949395604^(7/9) 2415781699967211 a001 121393/87403803*505019158607^(7/8) 2415781699967211 a001 39088169/271443*312119004989^(5/11) 2415781699967211 a001 39088169/271443*(1/2+1/2*5^(1/2))^25 2415781699967211 a001 39088169/271443*3461452808002^(5/12) 2415781699967211 a001 39088169/271443*28143753123^(1/2) 2415781699967211 a001 39088169/271443*228826127^(5/8) 2415781699967212 a001 6557446162025/271442 2415781699967212 a001 267914296/271443*141422324^(7/13) 2415781699967212 a001 1134903170/271443*141422324^(6/13) 2415781699967212 a001 1602508992/90481*141422324^(5/13) 2415781699967212 a001 121393/228826127*817138163596^(17/19) 2415781699967212 a001 121393/228826127*14662949395604^(17/21) 2415781699967212 a001 121393/228826127*192900153618^(17/18) 2415781699967212 a001 34111385/90481*(1/2+1/2*5^(1/2))^23 2415781699967212 a001 34111385/90481*4106118243^(1/2) 2415781699967212 a001 12586269025/271443*141422324^(1/3) 2415781699967212 a001 20365011074/271443*141422324^(4/13) 2415781699967212 a001 86267571272/271443*141422324^(3/13) 2415781699967212 a001 365435296162/271443*141422324^(2/13) 2415781699967212 a001 4000054745057907/165580141 2415781699967212 a001 516002918640/90481*141422324^(1/13) 2415781699967212 a001 267914296/271443*2537720636^(7/15) 2415781699967212 a001 267914296/271443*17393796001^(3/7) 2415781699967212 a001 267914296/271443*45537549124^(7/17) 2415781699967212 a001 267914296/271443*14662949395604^(1/3) 2415781699967212 a001 267914296/271443*(1/2+1/2*5^(1/2))^21 2415781699967212 a001 267914296/271443*192900153618^(7/18) 2415781699967212 a001 267914296/271443*10749957122^(7/16) 2415781699967212 a001 267914296/271443*599074578^(1/2) 2415781699967212 a001 10472279279421896/433494437 2415781699967212 a001 121393/1568397607*3461452808002^(11/12) 2415781699967212 a001 233802911/90481*817138163596^(1/3) 2415781699967212 a001 233802911/90481*(1/2+1/2*5^(1/2))^19 2415781699967212 a001 27416783093207781/1134903170 2415781699967212 a001 1602508992/90481*2537720636^(1/3) 2415781699967212 a001 121393/4106118243*14662949395604^(19/21) 2415781699967212 a001 1836311903/271443*45537549124^(1/3) 2415781699967212 a001 1836311903/271443*(1/2+1/2*5^(1/2))^17 2415781699967212 a001 20365011074/271443*2537720636^(4/15) 2415781699967212 a001 53316291173/271443*2537720636^(2/9) 2415781699967212 a001 86267571272/271443*2537720636^(1/5) 2415781699967212 a001 71778070000201447/2971215073 2415781699967212 a001 365435296162/271443*2537720636^(2/15) 2415781699967212 a001 591286729879/271443*2537720636^(1/9) 2415781699967212 a001 516002918640/90481*2537720636^(1/15) 2415781699967212 a001 1602508992/90481*45537549124^(5/17) 2415781699967212 a001 1602508992/90481*312119004989^(3/11) 2415781699967212 a001 1602508992/90481*14662949395604^(5/21) 2415781699967212 a001 1602508992/90481*(1/2+1/2*5^(1/2))^15 2415781699967212 a001 1602508992/90481*192900153618^(5/18) 2415781699967212 a001 1602508992/90481*28143753123^(3/10) 2415781699967212 a001 1602508992/90481*10749957122^(5/16) 2415781699967212 a001 187917426907396560/7778742049 2415781699967212 a001 12586269025/271443*(1/2+1/2*5^(1/2))^13 2415781699967212 a001 12586269025/271443*73681302247^(1/4) 2415781699967212 a001 491974210721988233/20365011074 2415781699967212 a001 75283811239/90481*17393796001^(1/7) 2415781699967212 a001 1288005205258568139/53316291173 2415781699967212 a001 121393*312119004989^(1/5) 2415781699967212 a001 86267571272/271443*45537549124^(3/17) 2415781699967212 a001 365435296162/271443*45537549124^(2/17) 2415781699967212 a001 516002918640/90481*45537549124^(1/17) 2415781699967212 a001 86267571272/271443*(1/2+1/2*5^(1/2))^9 2415781699967212 a001 75283811239/90481*(1/2+1/2*5^(1/2))^7 2415781699967212 a001 591286729879/271443*(1/2+1/2*5^(1/2))^5 2415781699967212 a001 516002918640/90481*14662949395604^(1/21) 2415781699967212 a006 5^(1/2)*Fibonacci(63)/Lucas(26)/sqrt(5) 2415781699967212 a001 2504730781961/271443*(1/2+1/2*5^(1/2))^2 2415781699967212 a001 956722026041/271443*(1/2+1/2*5^(1/2))^4 2415781699967212 a001 365435296162/271443*14662949395604^(2/21) 2415781699967212 a001 139583862445/271443*(1/2+1/2*5^(1/2))^8 2415781699967212 a001 139583862445/271443*23725150497407^(1/8) 2415781699967212 a001 139583862445/271443*505019158607^(1/7) 2415781699967212 a001 139583862445/271443*73681302247^(2/13) 2415781699967212 a001 53316291173/271443*312119004989^(2/11) 2415781699967212 a001 53316291173/271443*(1/2+1/2*5^(1/2))^10 2415781699967212 a001 591286729879/271443*28143753123^(1/10) 2415781699967212 a001 53316291173/271443*28143753123^(1/5) 2415781699967212 a001 2504730781961/271443*10749957122^(1/24) 2415781699967212 a001 20365011074/271443*45537549124^(4/17) 2415781699967212 a001 20365011074/271443*817138163596^(4/19) 2415781699967212 a001 20365011074/271443*14662949395604^(4/21) 2415781699967212 a001 20365011074/271443*(1/2+1/2*5^(1/2))^12 2415781699967212 a001 20365011074/271443*192900153618^(2/9) 2415781699967212 a001 20365011074/271443*73681302247^(3/13) 2415781699967212 a001 516002918640/90481*10749957122^(1/16) 2415781699967212 a001 956722026041/271443*10749957122^(1/12) 2415781699967212 a001 304056783814591673/12586269025 2415781699967212 a001 365435296162/271443*10749957122^(1/8) 2415781699967212 a001 139583862445/271443*10749957122^(1/6) 2415781699967212 a001 86267571272/271443*10749957122^(3/16) 2415781699967212 a001 53316291173/271443*10749957122^(5/24) 2415781699967212 a001 7778742049/271443*17393796001^(2/7) 2415781699967212 a001 2504730781961/271443*4106118243^(1/23) 2415781699967212 a001 20365011074/271443*10749957122^(1/4) 2415781699967212 a001 121393/17393796001*14662949395604^(20/21) 2415781699967212 a001 7778742049/271443*14662949395604^(2/9) 2415781699967212 a001 7778742049/271443*(1/2+1/2*5^(1/2))^14 2415781699967212 a001 7778742049/271443*505019158607^(1/4) 2415781699967212 a001 956722026041/271443*4106118243^(2/23) 2415781699967212 a001 7778742049/271443*10749957122^(7/24) 2415781699967212 a001 365435296162/271443*4106118243^(3/23) 2415781699967212 a001 116139356907195113/4807526976 2415781699967212 a001 139583862445/271443*4106118243^(4/23) 2415781699967212 a001 53316291173/271443*4106118243^(5/23) 2415781699967212 a001 20365011074/271443*4106118243^(6/23) 2415781699967212 a001 2504730781961/271443*1568397607^(1/22) 2415781699967212 a001 7778742049/271443*4106118243^(7/23) 2415781699967212 a001 2971215073/271443*(1/2+1/2*5^(1/2))^16 2415781699967212 a001 2971215073/271443*23725150497407^(1/4) 2415781699967212 a001 2971215073/271443*73681302247^(4/13) 2415781699967212 a001 2971215073/271443*10749957122^(1/3) 2415781699967212 a001 956722026041/271443*1568397607^(1/11) 2415781699967212 a001 2971215073/271443*4106118243^(8/23) 2415781699967212 a001 365435296162/271443*1568397607^(3/22) 2415781699967212 a001 44361286906993666/1836311903 2415781699967212 a001 139583862445/271443*1568397607^(2/11) 2415781699967212 a001 53316291173/271443*1568397607^(5/22) 2415781699967212 a001 1134903170/271443*2537720636^(2/5) 2415781699967212 a001 121393*1568397607^(1/4) 2415781699967212 a001 20365011074/271443*1568397607^(3/11) 2415781699967212 a001 7778742049/271443*1568397607^(7/22) 2415781699967212 a001 2504730781961/271443*599074578^(1/21) 2415781699967212 a001 121393/2537720636*14662949395604^(8/9) 2415781699967212 a001 1134903170/271443*45537549124^(6/17) 2415781699967212 a001 1134903170/271443*14662949395604^(2/7) 2415781699967212 a001 1134903170/271443*(1/2+1/2*5^(1/2))^18 2415781699967212 a001 1134903170/271443*192900153618^(1/3) 2415781699967212 a001 1134903170/271443*10749957122^(3/8) 2415781699967212 a001 2971215073/271443*1568397607^(4/11) 2415781699967212 a001 1134903170/271443*4106118243^(9/23) 2415781699967212 a001 516002918640/90481*599074578^(1/14) 2415781699967212 a001 956722026041/271443*599074578^(2/21) 2415781699967212 a001 1134903170/271443*1568397607^(9/22) 2415781699967212 a001 365435296162/271443*599074578^(1/7) 2415781699967212 a001 190387683300965/7880997 2415781699967212 a001 75283811239/90481*599074578^(1/6) 2415781699967212 a001 139583862445/271443*599074578^(4/21) 2415781699967212 a001 86267571272/271443*599074578^(3/14) 2415781699967212 a001 53316291173/271443*599074578^(5/21) 2415781699967212 a001 20365011074/271443*599074578^(2/7) 2415781699967212 a001 7778742049/271443*599074578^(1/3) 2415781699967212 a001 2504730781961/271443*228826127^(1/20) 2415781699967212 a001 1602508992/90481*599074578^(5/14) 2415781699967212 a001 433494437/271443*2537720636^(4/9) 2415781699967212 a001 121393/969323029*14662949395604^(6/7) 2415781699967212 a001 433494437/271443*(1/2+1/2*5^(1/2))^20 2415781699967212 a001 433494437/271443*23725150497407^(5/16) 2415781699967212 a001 433494437/271443*505019158607^(5/14) 2415781699967212 a001 433494437/271443*73681302247^(5/13) 2415781699967212 a001 433494437/271443*28143753123^(2/5) 2415781699967212 a001 433494437/271443*10749957122^(5/12) 2415781699967212 a001 2971215073/271443*599074578^(8/21) 2415781699967212 a001 433494437/271443*4106118243^(10/23) 2415781699967212 a001 433494437/271443*1568397607^(5/11) 2415781699967212 a001 1134903170/271443*599074578^(3/7) 2415781699967212 a001 956722026041/271443*228826127^(1/10) 2415781699967212 a001 591286729879/271443*228826127^(1/8) 2415781699967212 a001 433494437/271443*599074578^(10/21) 2415781699967212 a001 6472224534363989/267914296 2415781699967212 a001 365435296162/271443*228826127^(3/20) 2415781699967212 a001 139583862445/271443*228826127^(1/5) 2415781699967212 a001 53316291173/271443*228826127^(1/4) 2415781699967212 a001 20365011074/271443*228826127^(3/10) 2415781699967212 a001 7778742049/271443*228826127^(7/20) 2415781699967212 a001 2504730781961/271443*87403803^(1/19) 2415781699967212 a001 1602508992/90481*228826127^(3/8) 2415781699967212 a001 121393/370248451*23725150497407^(13/16) 2415781699967212 a001 121393/370248451*505019158607^(13/14) 2415781699967212 a001 165580141/271443*312119004989^(2/5) 2415781699967212 a001 165580141/271443*(1/2+1/2*5^(1/2))^22 2415781699967212 a001 165580141/271443*10749957122^(11/24) 2415781699967212 a001 165580141/271443*4106118243^(11/23) 2415781699967212 a001 165580141/271443*1568397607^(1/2) 2415781699967212 a001 2971215073/271443*228826127^(2/5) 2415781699967212 a001 1134903170/271443*228826127^(9/20) 2415781699967212 a001 165580141/271443*599074578^(11/21) 2415781699967212 a001 433494437/271443*228826127^(1/2) 2415781699967212 a001 956722026041/271443*87403803^(2/19) 2415781699967212 a001 165580141/271443*228826127^(11/20) 2415781699967212 a001 2472169789306082/102334155 2415781699967212 a001 63245986/271443*141422324^(8/13) 2415781699967212 a001 365435296162/271443*87403803^(3/19) 2415781699967212 a001 139583862445/271443*87403803^(4/19) 2415781699967212 a001 53316291173/271443*87403803^(5/19) 2415781699967212 a001 20365011074/271443*87403803^(6/19) 2415781699967212 a001 7778742049/271443*87403803^(7/19) 2415781699967212 a001 2504730781961/271443*33385282^(1/18) 2415781699967212 a001 63245986/271443*2537720636^(8/15) 2415781699967212 a001 63245986/271443*45537549124^(8/17) 2415781699967212 a001 233/271444*312119004989^(10/11) 2415781699967212 a001 233/271444*3461452808002^(5/6) 2415781699967212 a001 63245986/271443*14662949395604^(8/21) 2415781699967212 a001 63245986/271443*(1/2+1/2*5^(1/2))^24 2415781699967212 a001 63245986/271443*192900153618^(4/9) 2415781699967212 a001 63245986/271443*73681302247^(6/13) 2415781699967212 a001 63245986/271443*10749957122^(1/2) 2415781699967212 a001 63245986/271443*4106118243^(12/23) 2415781699967212 a001 63245986/271443*1568397607^(6/11) 2415781699967212 a001 63245986/271443*599074578^(4/7) 2415781699967212 a001 2971215073/271443*87403803^(8/19) 2415781699967212 a001 63245986/271443*228826127^(3/5) 2415781699967212 a001 1134903170/271443*87403803^(9/19) 2415781699967212 a001 233802911/90481*87403803^(1/2) 2415781699967212 a001 433494437/271443*87403803^(10/19) 2415781699967212 a001 516002918640/90481*33385282^(1/12) 2415781699967212 a001 165580141/271443*87403803^(11/19) 2415781699967212 a001 956722026041/271443*33385282^(1/9) 2415781699967212 a001 944284833554257/39088169 2415781699967212 a001 63245986/271443*87403803^(12/19) 2415781699967212 a001 365435296162/271443*33385282^(1/6) 2415781699967212 a001 139583862445/271443*33385282^(2/9) 2415781699967212 a001 86267571272/271443*33385282^(1/4) 2415781699967212 a001 53316291173/271443*33385282^(5/18) 2415781699967212 a001 20365011074/271443*33385282^(1/3) 2415781699967213 a001 24157817/271443*141422324^(2/3) 2415781699967213 a001 121393/54018521*45537549124^(16/17) 2415781699967213 a001 121393/54018521*14662949395604^(16/21) 2415781699967213 a001 121393/54018521*192900153618^(8/9) 2415781699967213 a001 121393/54018521*73681302247^(12/13) 2415781699967213 a001 24157817/271443*(1/2+1/2*5^(1/2))^26 2415781699967213 a001 24157817/271443*73681302247^(1/2) 2415781699967213 a001 24157817/271443*10749957122^(13/24) 2415781699967213 a001 24157817/271443*4106118243^(13/23) 2415781699967213 a001 24157817/271443*1568397607^(13/22) 2415781699967213 a001 24157817/271443*599074578^(13/21) 2415781699967213 a001 7778742049/271443*33385282^(7/18) 2415781699967213 a001 24157817/271443*228826127^(13/20) 2415781699967213 a001 2504730781961/271443*12752043^(1/17) 2415781699967213 a001 1602508992/90481*33385282^(5/12) 2415781699967213 a001 2971215073/271443*33385282^(4/9) 2415781699967213 a001 24157817/271443*87403803^(13/19) 2415781699967213 a001 1134903170/271443*33385282^(1/2) 2415781699967213 a001 9227465/271443*20633239^(4/5) 2415781699967213 a001 433494437/271443*33385282^(5/9) 2415781699967213 a001 267914296/271443*33385282^(7/12) 2415781699967213 a001 165580141/271443*33385282^(11/18) 2415781699967213 a001 63245986/271443*33385282^(2/3) 2415781699967214 a001 956722026041/271443*12752043^(2/17) 2415781699967214 a001 360684711356689/14930352 2415781699967214 a001 24157817/271443*33385282^(13/18) 2415781699967214 a001 365435296162/271443*12752043^(3/17) 2415781699967215 a001 139583862445/271443*12752043^(4/17) 2415781699967215 a001 3524578/271443*7881196^(10/11) 2415781699967216 a001 53316291173/271443*12752043^(5/17) 2415781699967217 a001 20365011074/271443*12752043^(6/17) 2415781699967217 a001 9227465/271443*17393796001^(4/7) 2415781699967217 a001 121393/20633239*(1/2+1/2*5^(1/2))^46 2415781699967217 a001 9227465/271443*14662949395604^(4/9) 2415781699967217 a001 9227465/271443*(1/2+1/2*5^(1/2))^28 2415781699967217 a001 9227465/271443*505019158607^(1/2) 2415781699967217 a001 9227465/271443*73681302247^(7/13) 2415781699967217 a001 9227465/271443*10749957122^(7/12) 2415781699967217 a001 121393/20633239*10749957122^(23/24) 2415781699967217 a001 9227465/271443*4106118243^(14/23) 2415781699967217 a001 9227465/271443*1568397607^(7/11) 2415781699967217 a001 9227465/271443*599074578^(2/3) 2415781699967217 a001 9227465/271443*228826127^(7/10) 2415781699967218 a001 9227465/271443*87403803^(14/19) 2415781699967218 a001 7778742049/271443*12752043^(7/17) 2415781699967218 a001 2504730781961/271443*4870847^(1/16) 2415781699967219 a001 2971215073/271443*12752043^(8/17) 2415781699967219 a001 9227465/271443*33385282^(7/9) 2415781699967219 a001 1836311903/271443*12752043^(1/2) 2415781699967220 a001 1134903170/271443*12752043^(9/17) 2415781699967221 a001 433494437/271443*12752043^(10/17) 2415781699967221 a001 165580141/271443*12752043^(11/17) 2415781699967222 a001 63245986/271443*12752043^(12/17) 2415781699967224 a001 24157817/271443*12752043^(13/17) 2415781699967224 a001 956722026041/271443*4870847^(1/8) 2415781699967227 a001 137769300515810/5702887 2415781699967230 a001 9227465/271443*12752043^(14/17) 2415781699967231 a001 365435296162/271443*4870847^(3/16) 2415781699967237 a001 139583862445/271443*4870847^(1/4) 2415781699967244 a001 53316291173/271443*4870847^(5/16) 2415781699967246 a001 3524578/271443*20633239^(6/7) 2415781699967250 a001 20365011074/271443*4870847^(3/8) 2415781699967251 a001 3524578/271443*141422324^(10/13) 2415781699967251 a001 3524578/271443*2537720636^(2/3) 2415781699967251 a001 3524578/271443*45537549124^(10/17) 2415781699967251 a001 121393/7881196*312119004989^(4/5) 2415781699967251 a001 121393/7881196*(1/2+1/2*5^(1/2))^44 2415781699967251 a001 121393/7881196*23725150497407^(11/16) 2415781699967251 a001 121393/7881196*73681302247^(11/13) 2415781699967251 a001 3524578/271443*312119004989^(6/11) 2415781699967251 a001 3524578/271443*14662949395604^(10/21) 2415781699967251 a001 3524578/271443*(1/2+1/2*5^(1/2))^30 2415781699967251 a001 3524578/271443*192900153618^(5/9) 2415781699967251 a001 3524578/271443*28143753123^(3/5) 2415781699967251 a001 3524578/271443*10749957122^(5/8) 2415781699967251 a001 121393/7881196*10749957122^(11/12) 2415781699967251 a001 3524578/271443*4106118243^(15/23) 2415781699967251 a001 121393/7881196*4106118243^(22/23) 2415781699967251 a001 3524578/271443*1568397607^(15/22) 2415781699967251 a001 3524578/271443*599074578^(5/7) 2415781699967251 a001 3524578/271443*228826127^(3/4) 2415781699967251 a001 3524578/271443*87403803^(15/19) 2415781699967252 a001 3524578/271443*33385282^(5/6) 2415781699967256 a001 7778742049/271443*4870847^(7/16) 2415781699967258 a001 2504730781961/271443*1860498^(1/15) 2415781699967263 a001 2971215073/271443*4870847^(1/2) 2415781699967264 a001 3524578/271443*12752043^(15/17) 2415781699967269 a001 1134903170/271443*4870847^(9/16) 2415781699967275 a001 433494437/271443*4870847^(5/8) 2415781699967282 a001 516002918640/90481*1860498^(1/10) 2415781699967282 a001 165580141/271443*4870847^(11/16) 2415781699967288 a001 63245986/271443*4870847^(3/4) 2415781699967295 a001 24157817/271443*4870847^(13/16) 2415781699967305 a001 956722026041/271443*1860498^(2/15) 2415781699967307 a001 9227465/271443*4870847^(7/8) 2415781699967314 a001 52623190190741/2178309 2415781699967328 a001 591286729879/271443*1860498^(1/6) 2415781699967346 a001 3524578/271443*4870847^(15/16) 2415781699967351 a001 365435296162/271443*1860498^(1/5) 2415781699967398 a001 139583862445/271443*1860498^(4/15) 2415781699967421 a001 86267571272/271443*1860498^(3/10) 2415781699967444 a001 53316291173/271443*1860498^(1/3) 2415781699967478 a001 121393/3010349*2537720636^(14/15) 2415781699967478 a001 121393/3010349*17393796001^(6/7) 2415781699967478 a001 121393/3010349*45537549124^(14/17) 2415781699967478 a001 121393/3010349*14662949395604^(2/3) 2415781699967478 a001 121393/3010349*(1/2+1/2*5^(1/2))^42 2415781699967478 a001 121393/3010349*505019158607^(3/4) 2415781699967478 a001 121393/3010349*192900153618^(7/9) 2415781699967478 a001 1346269/271443*(1/2+1/2*5^(1/2))^32 2415781699967478 a001 1346269/271443*23725150497407^(1/2) 2415781699967478 a001 1346269/271443*73681302247^(8/13) 2415781699967478 a001 1346269/271443*10749957122^(2/3) 2415781699967478 a001 121393/3010349*10749957122^(7/8) 2415781699967478 a001 1346269/271443*4106118243^(16/23) 2415781699967478 a001 121393/3010349*4106118243^(21/23) 2415781699967478 a001 1346269/271443*1568397607^(8/11) 2415781699967478 a001 121393/3010349*1568397607^(21/22) 2415781699967478 a001 1346269/271443*599074578^(16/21) 2415781699967478 a001 1346269/271443*228826127^(4/5) 2415781699967479 a001 1346269/271443*87403803^(16/19) 2415781699967480 a001 1346269/271443*33385282^(8/9) 2415781699967491 a001 225851433717/1149851*167761^(2/5) 2415781699967491 a001 20365011074/271443*1860498^(2/5) 2415781699967492 a001 1346269/271443*12752043^(16/17) 2415781699967537 a001 7778742049/271443*1860498^(7/15) 2415781699967553 a001 2504730781961/271443*710647^(1/14) 2415781699967561 a001 1602508992/90481*1860498^(1/2) 2415781699967584 a001 2971215073/271443*1860498^(8/15) 2415781699967631 a001 1134903170/271443*1860498^(3/5) 2415781699967677 a001 433494437/271443*1860498^(2/3) 2415781699967700 a001 267914296/271443*1860498^(7/10) 2415781699967724 a001 165580141/271443*1860498^(11/15) 2415781699967770 a001 63245986/271443*1860498^(4/5) 2415781699967793 a001 39088169/271443*1860498^(5/6) 2415781699967817 a001 24157817/271443*1860498^(13/15) 2415781699967838 a001 4976784/90481*1860498^(9/10) 2415781699967869 a001 9227465/271443*1860498^(14/15) 2415781699967895 a001 956722026041/271443*710647^(1/7) 2415781699967910 a001 20100270056413/832040 2415781699968237 a001 365435296162/271443*710647^(3/14) 2415781699968408 a001 75283811239/90481*710647^(1/4) 2415781699968578 a001 139583862445/271443*710647^(2/7) 2415781699968920 a001 53316291173/271443*710647^(5/14) 2415781699969039 a001 121393/1149851*2537720636^(8/9) 2415781699969039 a001 514229/271443*45537549124^(2/3) 2415781699969039 a001 121393/1149851*312119004989^(8/11) 2415781699969039 a001 121393/1149851*(1/2+1/2*5^(1/2))^40 2415781699969039 a001 121393/1149851*23725150497407^(5/8) 2415781699969039 a001 121393/1149851*73681302247^(10/13) 2415781699969039 a001 514229/271443*(1/2+1/2*5^(1/2))^34 2415781699969039 a001 121393/1149851*28143753123^(4/5) 2415781699969039 a001 514229/271443*10749957122^(17/24) 2415781699969039 a001 121393/1149851*10749957122^(5/6) 2415781699969039 a001 514229/271443*4106118243^(17/23) 2415781699969039 a001 121393/1149851*4106118243^(20/23) 2415781699969039 a001 514229/271443*1568397607^(17/22) 2415781699969039 a001 121393/1149851*1568397607^(10/11) 2415781699969039 a001 514229/271443*599074578^(17/21) 2415781699969039 a001 121393/1149851*599074578^(20/21) 2415781699969039 a001 514229/271443*228826127^(17/20) 2415781699969039 a001 514229/271443*87403803^(17/19) 2415781699969041 a001 514229/271443*33385282^(17/18) 2415781699969262 a001 20365011074/271443*710647^(3/7) 2415781699969604 a001 7778742049/271443*710647^(1/2) 2415781699969635 a001 1515744265389/101521*64079^(1/23) 2415781699969734 a001 2504730781961/271443*271443^(1/13) 2415781699969945 a001 2971215073/271443*710647^(4/7) 2415781699970287 a001 1134903170/271443*710647^(9/14) 2415781699970629 a001 433494437/271443*710647^(5/7) 2415781699970799 a001 267914296/271443*710647^(3/4) 2415781699970970 a001 165580141/271443*710647^(11/14) 2415781699971312 a001 63245986/271443*710647^(6/7) 2415781699971654 a001 24157817/271443*710647^(13/14) 2415781699971908 a001 102334155/103682*103682^(7/8) 2415781699971995 a001 7677619978498/317811 2415781699972256 a001 956722026041/271443*271443^(2/13) 2415781699974778 a001 365435296162/271443*271443^(3/13) 2415781699976575 a001 4052739537881/271443*103682^(1/24) 2415781699977300 a001 139583862445/271443*271443^(4/13) 2415781699978048 a001 1548008755920/710647*167761^(1/5) 2415781699978187 a001 196418*167761^(2/5) 2415781699979735 a001 196418/271443*141422324^(12/13) 2415781699979735 a001 196418/271443*2537720636^(4/5) 2415781699979735 a001 196418/271443*45537549124^(12/17) 2415781699979735 a001 121393/439204*817138163596^(2/3) 2415781699979735 a001 121393/439204*(1/2+1/2*5^(1/2))^38 2415781699979735 a001 196418/271443*14662949395604^(4/7) 2415781699979735 a001 196418/271443*(1/2+1/2*5^(1/2))^36 2415781699979735 a001 196418/271443*192900153618^(2/3) 2415781699979735 a001 196418/271443*73681302247^(9/13) 2415781699979735 a001 196418/271443*10749957122^(3/4) 2415781699979735 a001 121393/439204*10749957122^(19/24) 2415781699979735 a001 196418/271443*4106118243^(18/23) 2415781699979735 a001 121393/439204*4106118243^(19/23) 2415781699979735 a001 196418/271443*1568397607^(9/11) 2415781699979735 a001 121393/439204*1568397607^(19/22) 2415781699979735 a001 196418/271443*599074578^(6/7) 2415781699979735 a001 121393/439204*599074578^(19/21) 2415781699979735 a001 196418/271443*228826127^(9/10) 2415781699979735 a001 121393/439204*228826127^(19/20) 2415781699979736 a001 196418/271443*87403803^(18/19) 2415781699979822 a001 53316291173/271443*271443^(5/13) 2415781699981272 a001 31622993/51841*103682^(11/12) 2415781699982133 a001 4052739537881/1860498*167761^(1/5) 2415781699982344 a001 20365011074/271443*271443^(6/13) 2415781699982689 a001 139559708808/5777 2415781699982729 a001 2178309*167761^(1/5) 2415781699983098 a001 6557470319842/3010349*167761^(1/5) 2415781699983516 a001 591286729879/167761*64079^(4/23) 2415781699983605 a001 12586269025/271443*271443^(1/2) 2415781699984083 a001 165580141/710647*439204^(8/9) 2415781699984658 a001 2504730781961/1149851*167761^(1/5) 2415781699984866 a001 7778742049/271443*271443^(7/13) 2415781699985313 a001 591286729879/103682*39603^(3/22) 2415781699985475 a001 701408733/710647*439204^(7/9) 2415781699985939 a001 2504730781961/271443*103682^(1/12) 2415781699986762 a001 2372515049740/98209 2415781699986866 a001 2971215073/710647*439204^(2/3) 2415781699986942 a001 3278735159921/219602*64079^(1/23) 2415781699987272 a001 4745030099481/196418 2415781699987388 a001 2971215073/271443*271443^(8/13) 2415781699987475 a001 1/98209*(1/2+1/2*5^(1/2))^64 2415781699987475 a001 23725150497407/196418*8^(1/3) 2415781699987781 a001 2372515049741/98209 2415781699988169 a001 433494437/1860498*439204^(8/9) 2415781699988258 a001 12586269025/710647*439204^(5/9) 2415781699988765 a001 1134903170/4870847*439204^(8/9) 2415781699988852 a001 2971215073/12752043*439204^(8/9) 2415781699988865 a001 7778742049/33385282*439204^(8/9) 2415781699988866 a001 20365011074/87403803*439204^(8/9) 2415781699988867 a001 53316291173/228826127*439204^(8/9) 2415781699988867 a001 139583862445/599074578*439204^(8/9) 2415781699988867 a001 365435296162/1568397607*439204^(8/9) 2415781699988867 a001 956722026041/4106118243*439204^(8/9) 2415781699988867 a001 2504730781961/10749957122*439204^(8/9) 2415781699988867 a001 6557470319842/28143753123*439204^(8/9) 2415781699988867 a001 10610209857723/45537549124*439204^(8/9) 2415781699988867 a001 4052739537881/17393796001*439204^(8/9) 2415781699988867 a001 1548008755920/6643838879*439204^(8/9) 2415781699988867 a001 591286729879/2537720636*439204^(8/9) 2415781699988867 a001 225851433717/969323029*439204^(8/9) 2415781699988867 a001 86267571272/370248451*439204^(8/9) 2415781699988867 a001 63246219/271444*439204^(8/9) 2415781699988868 a001 12586269025/54018521*439204^(8/9) 2415781699988872 a001 4807526976/20633239*439204^(8/9) 2415781699988906 a001 1836311903/7881196*439204^(8/9) 2415781699989133 a001 701408733/3010349*439204^(8/9) 2415781699989308 a001 4745030099485/196418 2415781699989560 a001 1836311903/1860498*439204^(7/9) 2415781699989649 a001 53316291173/710647*439204^(4/9) 2415781699989910 a001 1134903170/271443*271443^(9/13) 2415781699990156 a001 4807526976/4870847*439204^(7/9) 2415781699990243 a001 12586269025/12752043*439204^(7/9) 2415781699990256 a001 32951280099/33385282*439204^(7/9) 2415781699990258 a001 86267571272/87403803*439204^(7/9) 2415781699990258 a001 225851433717/228826127*439204^(7/9) 2415781699990258 a001 591286729879/599074578*439204^(7/9) 2415781699990258 a001 1548008755920/1568397607*439204^(7/9) 2415781699990258 a001 4052739537881/4106118243*439204^(7/9) 2415781699990258 a001 4807525989/4870846*439204^(7/9) 2415781699990258 a001 6557470319842/6643838879*439204^(7/9) 2415781699990258 a001 2504730781961/2537720636*439204^(7/9) 2415781699990258 a001 956722026041/969323029*439204^(7/9) 2415781699990258 a001 365435296162/370248451*439204^(7/9) 2415781699990258 a001 139583862445/141422324*439204^(7/9) 2415781699990259 a001 53316291173/54018521*439204^(7/9) 2415781699990264 a001 20365011074/20633239*439204^(7/9) 2415781699990297 a001 7778742049/7881196*439204^(7/9) 2415781699990432 a001 317811/710647*(1/2+1/2*5^(1/2))^37 2415781699990525 a001 2971215073/3010349*439204^(7/9) 2415781699990635 a001 39088169/103682*103682^(23/24) 2415781699990694 a001 267914296/1149851*439204^(8/9) 2415781699990952 a001 7778742049/1860498*439204^(2/3) 2415781699991041 a001 317811*439204^(1/3) 2415781699991548 a001 20365011074/4870847*439204^(2/3) 2415781699991635 a001 53316291173/12752043*439204^(2/3) 2415781699991648 a001 139583862445/33385282*439204^(2/3) 2415781699991649 a001 365435296162/87403803*439204^(2/3) 2415781699991650 a001 956722026041/228826127*439204^(2/3) 2415781699991650 a001 2504730781961/599074578*439204^(2/3) 2415781699991650 a001 6557470319842/1568397607*439204^(2/3) 2415781699991650 a001 10610209857723/2537720636*439204^(2/3) 2415781699991650 a001 4052739537881/969323029*439204^(2/3) 2415781699991650 a001 1548008755920/370248451*439204^(2/3) 2415781699991650 a001 591286729879/141422324*439204^(2/3) 2415781699991651 a001 225851433717/54018521*439204^(2/3) 2415781699991655 a001 86267571272/20633239*439204^(2/3) 2415781699991689 a001 32951280099/7881196*439204^(2/3) 2415781699991916 a001 12586269025/3010349*439204^(2/3) 2415781699992085 a001 1134903170/1149851*439204^(7/9) 2415781699992343 a001 10983760033/620166*439204^(5/9) 2415781699992432 a001 956722026041/710647*439204^(2/9) 2415781699992432 a001 433494437/271443*271443^(10/13) 2415781699992939 a001 86267571272/4870847*439204^(5/9) 2415781699993026 a001 75283811239/4250681*439204^(5/9) 2415781699993039 a001 591286729879/33385282*439204^(5/9) 2415781699993041 a001 516002918640/29134601*439204^(5/9) 2415781699993041 a001 4052739537881/228826127*439204^(5/9) 2415781699993041 a001 3536736619241/199691526*439204^(5/9) 2415781699993041 a001 6557470319842/370248451*439204^(5/9) 2415781699993041 a001 2504730781961/141422324*439204^(5/9) 2415781699993042 a001 956722026041/54018521*439204^(5/9) 2415781699993047 a001 365435296162/20633239*439204^(5/9) 2415781699993080 a001 139583862445/7881196*439204^(5/9) 2415781699993308 a001 53316291173/3010349*439204^(5/9) 2415781699993388 a001 12422650078059/514229 2415781699993477 a001 4807526976/1149851*439204^(2/3) 2415781699993735 a001 139583862445/1860498*439204^(4/9) 2415781699993824 a001 4052739537881/710647*439204^(1/9) 2415781699994331 a001 365435296162/4870847*439204^(4/9) 2415781699994418 a001 956722026041/12752043*439204^(4/9) 2415781699994431 a001 2504730781961/33385282*439204^(4/9) 2415781699994432 a001 6557470319842/87403803*439204^(4/9) 2415781699994433 a001 10610209857723/141422324*439204^(4/9) 2415781699994434 a001 4052739537881/54018521*439204^(4/9) 2415781699994438 a001 140728068720/1875749*439204^(4/9) 2415781699994472 a001 591286729879/7881196*439204^(4/9) 2415781699994517 a001 105937/620166*2537720636^(13/15) 2415781699994517 a001 832040/710647*2537720636^(7/9) 2415781699994517 a001 832040/710647*17393796001^(5/7) 2415781699994517 a001 105937/620166*45537549124^(13/17) 2415781699994517 a001 832040/710647*312119004989^(7/11) 2415781699994517 a001 105937/620166*14662949395604^(13/21) 2415781699994517 a001 105937/620166*(1/2+1/2*5^(1/2))^39 2415781699994517 a001 832040/710647*14662949395604^(5/9) 2415781699994517 a001 832040/710647*(1/2+1/2*5^(1/2))^35 2415781699994517 a001 832040/710647*505019158607^(5/8) 2415781699994517 a001 105937/620166*192900153618^(13/18) 2415781699994517 a001 105937/620166*73681302247^(3/4) 2415781699994517 a001 832040/710647*28143753123^(7/10) 2415781699994517 a001 105937/620166*10749957122^(13/16) 2415781699994517 a001 832040/710647*599074578^(5/6) 2415781699994517 a001 105937/620166*599074578^(13/14) 2415781699994517 a001 832040/710647*228826127^(7/8) 2415781699994699 a001 225851433717/3010349*439204^(4/9) 2415781699994868 a001 20365011074/1149851*439204^(5/9) 2415781699994949 a001 32522920134705/1346269 2415781699994955 a001 165580141/271443*271443^(11/13) 2415781699995113 a001 311187/101521*141422324^(11/13) 2415781699995113 a001 311187/101521*2537720636^(11/15) 2415781699995113 a001 311187/101521*45537549124^(11/17) 2415781699995113 a001 311187/101521*312119004989^(3/5) 2415781699995113 a001 317811/4870847*(1/2+1/2*5^(1/2))^41 2415781699995113 a001 311187/101521*14662949395604^(11/21) 2415781699995113 a001 311187/101521*(1/2+1/2*5^(1/2))^33 2415781699995113 a001 311187/101521*192900153618^(11/18) 2415781699995113 a001 311187/101521*10749957122^(11/16) 2415781699995113 a001 311187/101521*1568397607^(3/4) 2415781699995113 a001 311187/101521*599074578^(11/14) 2415781699995115 a001 311187/101521*33385282^(11/12) 2415781699995126 a001 591286729879/1860498*439204^(1/3) 2415781699995176 a001 42573055163028/1762289 2415781699995183 a001 39088169/710647*7881196^(9/11) 2415781699995185 a001 9227465/710647*7881196^(10/11) 2415781699995187 a001 165580141/710647*7881196^(8/11) 2415781699995189 a001 433494437/710647*7881196^(2/3) 2415781699995190 a001 701408733/710647*7881196^(7/11) 2415781699995194 a001 2971215073/710647*7881196^(6/11) 2415781699995197 a001 12586269025/710647*7881196^(5/11) 2415781699995200 a001 105937/4250681*(1/2+1/2*5^(1/2))^43 2415781699995200 a001 5702887/710647*(1/2+1/2*5^(1/2))^31 2415781699995200 a001 5702887/710647*9062201101803^(1/2) 2415781699995201 a001 53316291173/710647*7881196^(4/11) 2415781699995202 a001 86267571272/710647*7881196^(1/3) 2415781699995205 a001 317811*7881196^(3/11) 2415781699995208 a001 956722026041/710647*7881196^(2/11) 2415781699995209 a001 17147339295651/709805 2415781699995211 a001 14619165/101521*20633239^(5/7) 2415781699995211 a001 24157817/710647*20633239^(4/5) 2415781699995212 a001 4052739537881/710647*7881196^(1/11) 2415781699995212 a001 701408733/710647*20633239^(3/5) 2415781699995212 a001 1134903170/710647*20633239^(4/7) 2415781699995213 a001 12586269025/710647*20633239^(3/7) 2415781699995213 a001 20365011074/710647*20633239^(2/5) 2415781699995213 a001 317811/33385282*45537549124^(15/17) 2415781699995213 a001 317811/33385282*312119004989^(9/11) 2415781699995213 a001 317811/33385282*14662949395604^(5/7) 2415781699995213 a001 317811/33385282*(1/2+1/2*5^(1/2))^45 2415781699995213 a001 14930352/710647*(1/2+1/2*5^(1/2))^29 2415781699995213 a001 14930352/710647*1322157322203^(1/2) 2415781699995213 a001 317811/33385282*192900153618^(5/6) 2415781699995213 a001 317811/33385282*28143753123^(9/10) 2415781699995213 a001 317811/33385282*10749957122^(15/16) 2415781699995214 a001 139583862445/710647*20633239^(2/7) 2415781699995214 a001 591286729879/710647*20633239^(1/5) 2415781699995214 a001 583600122204333/24157817 2415781699995214 a001 1548008755920/710647*20633239^(1/7) 2415781699995215 a001 39088169/710647*141422324^(9/13) 2415781699995215 a001 39088169/710647*2537720636^(3/5) 2415781699995215 a001 39088169/710647*45537549124^(9/17) 2415781699995215 a001 39088169/710647*14662949395604^(3/7) 2415781699995215 a001 39088169/710647*(1/2+1/2*5^(1/2))^27 2415781699995215 a001 39088169/710647*192900153618^(1/2) 2415781699995215 a001 39088169/710647*10749957122^(9/16) 2415781699995215 a001 39088169/710647*599074578^(9/14) 2415781699995215 a001 763942477884768/31622993 2415781699995215 a001 701408733/710647*141422324^(7/13) 2415781699995215 a001 165580141/710647*141422324^(8/13) 2415781699995215 a001 2971215073/710647*141422324^(6/13) 2415781699995215 a001 12586269025/710647*141422324^(5/13) 2415781699995215 a001 14619165/101521*2537720636^(5/9) 2415781699995215 a001 14619165/101521*312119004989^(5/11) 2415781699995215 a001 317811/228826127*505019158607^(7/8) 2415781699995215 a001 14619165/101521*(1/2+1/2*5^(1/2))^25 2415781699995215 a001 14619165/101521*3461452808002^(5/12) 2415781699995215 a001 14619165/101521*28143753123^(1/2) 2415781699995215 a001 32951280099/710647*141422324^(1/3) 2415781699995215 a001 53316291173/710647*141422324^(4/13) 2415781699995215 a001 317811*141422324^(3/13) 2415781699995215 a001 956722026041/710647*141422324^(2/13) 2415781699995215 a001 4000054745104275/165580141 2415781699995215 a001 14619165/101521*228826127^(5/8) 2415781699995215 a001 4052739537881/710647*141422324^(1/13) 2415781699995215 a001 377/710646*14662949395604^(17/21) 2415781699995215 a001 267914296/710647*(1/2+1/2*5^(1/2))^23 2415781699995215 a001 377/710646*192900153618^(17/18) 2415781699995215 a001 267914296/710647*4106118243^(1/2) 2415781699995215 a001 10472279279543289/433494437 2415781699995215 a001 701408733/710647*2537720636^(7/15) 2415781699995215 a001 701408733/710647*17393796001^(3/7) 2415781699995215 a001 701408733/710647*45537549124^(7/17) 2415781699995215 a001 701408733/710647*14662949395604^(1/3) 2415781699995215 a001 701408733/710647*(1/2+1/2*5^(1/2))^21 2415781699995215 a001 701408733/710647*192900153618^(7/18) 2415781699995215 a001 701408733/710647*10749957122^(7/16) 2415781699995215 a001 806375973338988/33379505 2415781699995215 a001 105937/1368706081*3461452808002^(11/12) 2415781699995215 a001 1836311903/710647*817138163596^(1/3) 2415781699995215 a001 1836311903/710647*(1/2+1/2*5^(1/2))^19 2415781699995215 a001 12586269025/710647*2537720636^(1/3) 2415781699995215 a001 53316291173/710647*2537720636^(4/15) 2415781699995215 a001 2971215073/710647*2537720636^(2/5) 2415781699995215 a001 139583862445/710647*2537720636^(2/9) 2415781699995215 a001 317811*2537720636^(1/5) 2415781699995215 a001 71778070001033487/2971215073 2415781699995215 a001 956722026041/710647*2537720636^(2/15) 2415781699995215 a001 1548008755920/710647*2537720636^(1/9) 2415781699995215 a001 4052739537881/710647*2537720636^(1/15) 2415781699995215 a001 686789568/101521*45537549124^(1/3) 2415781699995215 a001 317811/10749957122*14662949395604^(19/21) 2415781699995215 a001 686789568/101521*(1/2+1/2*5^(1/2))^17 2415781699995215 a001 14455186685351913/598364773 2415781699995215 a001 12586269025/710647*45537549124^(5/17) 2415781699995215 a001 12586269025/710647*312119004989^(3/11) 2415781699995215 a001 12586269025/710647*14662949395604^(5/21) 2415781699995215 a001 12586269025/710647*(1/2+1/2*5^(1/2))^15 2415781699995215 a001 12586269025/710647*192900153618^(5/18) 2415781699995215 a001 12586269025/710647*28143753123^(3/10) 2415781699995215 a001 245987105363845560/10182505537 2415781699995215 a001 591286729879/710647*17393796001^(1/7) 2415781699995215 a001 20365011074/710647*17393796001^(2/7) 2415781699995215 a001 32951280099/710647*(1/2+1/2*5^(1/2))^13 2415781699995215 a001 32951280099/710647*73681302247^(1/4) 2415781699995215 a001 317811*45537549124^(3/17) 2415781699995215 a001 1288005205273498491/53316291173 2415781699995215 a001 956722026041/710647*45537549124^(2/17) 2415781699995215 a001 4052739537881/710647*45537549124^(1/17) 2415781699995215 a001 3372041405092804353/139583862445 2415781699995215 a001 1548008755920/710647*(1/2+1/2*5^(1/2))^5 2415781699995215 a006 5^(1/2)*Fibonacci(65)/Lucas(28)/sqrt(5) 2415781699995215 a001 2504730781961/710647*(1/2+1/2*5^(1/2))^4 2415781699995215 a001 2504730781961/710647*23725150497407^(1/16) 2415781699995215 a001 365435296162/710647*23725150497407^(1/8) 2415781699995215 a001 139583862445/710647*312119004989^(2/11) 2415781699995215 a001 139583862445/710647*(1/2+1/2*5^(1/2))^10 2415781699995215 a001 2504730781961/710647*73681302247^(1/13) 2415781699995215 a001 61295182347626643/2537281508 2415781699995215 a001 365435296162/710647*73681302247^(2/13) 2415781699995215 a001 53316291173/710647*817138163596^(4/19) 2415781699995215 a001 53316291173/710647*14662949395604^(4/21) 2415781699995215 a001 53316291173/710647*73681302247^(3/13) 2415781699995215 a001 1548008755920/710647*28143753123^(1/10) 2415781699995215 a001 265343664848602457/10983760033 2415781699995215 a001 139583862445/710647*28143753123^(1/5) 2415781699995215 a001 6557470319842/710647*10749957122^(1/24) 2415781699995215 a001 317811/45537549124*14662949395604^(20/21) 2415781699995215 a001 20365011074/710647*14662949395604^(2/9) 2415781699995215 a001 20365011074/710647*(1/2+1/2*5^(1/2))^14 2415781699995215 a001 4052739537881/710647*10749957122^(1/16) 2415781699995215 a001 2504730781961/710647*10749957122^(1/12) 2415781699995215 a001 956722026041/710647*10749957122^(1/8) 2415781699995215 a001 304056783818116251/12586269025 2415781699995215 a001 12586269025/710647*10749957122^(5/16) 2415781699995215 a001 317811*10749957122^(3/16) 2415781699995215 a001 139583862445/710647*10749957122^(5/24) 2415781699995215 a001 53316291173/710647*10749957122^(1/4) 2415781699995215 a001 6557470319842/710647*4106118243^(1/23) 2415781699995215 a001 20365011074/710647*10749957122^(7/24) 2415781699995215 a001 7778742049/710647*(1/2+1/2*5^(1/2))^16 2415781699995215 a001 7778742049/710647*23725150497407^(1/4) 2415781699995215 a001 7778742049/710647*73681302247^(4/13) 2415781699995215 a001 2504730781961/710647*4106118243^(2/23) 2415781699995215 a001 7778742049/710647*10749957122^(1/3) 2415781699995215 a001 956722026041/710647*4106118243^(3/23) 2415781699995215 a001 19356559484756897/801254496 2415781699995215 a001 365435296162/710647*4106118243^(4/23) 2415781699995215 a001 139583862445/710647*4106118243^(5/23) 2415781699995215 a001 53316291173/710647*4106118243^(6/23) 2415781699995215 a001 6557470319842/710647*1568397607^(1/22) 2415781699995215 a001 20365011074/710647*4106118243^(7/23) 2415781699995215 a001 2971215073/710647*45537549124^(6/17) 2415781699995215 a001 317811/6643838879*14662949395604^(8/9) 2415781699995215 a001 2971215073/710647*14662949395604^(2/7) 2415781699995215 a001 2971215073/710647*(1/2+1/2*5^(1/2))^18 2415781699995215 a001 2971215073/710647*192900153618^(1/3) 2415781699995215 a001 7778742049/710647*4106118243^(8/23) 2415781699995215 a001 2971215073/710647*10749957122^(3/8) 2415781699995215 a001 2504730781961/710647*1568397607^(1/11) 2415781699995215 a001 2971215073/710647*4106118243^(9/23) 2415781699995215 a001 956722026041/710647*1568397607^(3/22) 2415781699995215 a001 44361286907507895/1836311903 2415781699995215 a001 365435296162/710647*1568397607^(2/11) 2415781699995215 a001 1134903170/710647*2537720636^(4/9) 2415781699995215 a001 139583862445/710647*1568397607^(5/22) 2415781699995215 a001 86267571272/710647*1568397607^(1/4) 2415781699995215 a001 53316291173/710647*1568397607^(3/11) 2415781699995215 a001 20365011074/710647*1568397607^(7/22) 2415781699995215 a001 6557470319842/710647*599074578^(1/21) 2415781699995215 a001 7778742049/710647*1568397607^(4/11) 2415781699995215 a001 1134903170/710647*(1/2+1/2*5^(1/2))^20 2415781699995215 a001 1134903170/710647*23725150497407^(5/16) 2415781699995215 a001 1134903170/710647*505019158607^(5/14) 2415781699995215 a001 1134903170/710647*73681302247^(5/13) 2415781699995215 a001 1134903170/710647*28143753123^(2/5) 2415781699995215 a001 1134903170/710647*10749957122^(5/12) 2415781699995215 a001 1134903170/710647*4106118243^(10/23) 2415781699995215 a001 2971215073/710647*1568397607^(9/22) 2415781699995215 a001 4052739537881/710647*599074578^(1/14) 2415781699995215 a001 2504730781961/710647*599074578^(2/21) 2415781699995215 a001 1134903170/710647*1568397607^(5/11) 2415781699995215 a001 956722026041/710647*599074578^(1/7) 2415781699995215 a001 5648167937994101/233802911 2415781699995215 a001 591286729879/710647*599074578^(1/6) 2415781699995215 a001 365435296162/710647*599074578^(4/21) 2415781699995215 a001 317811*599074578^(3/14) 2415781699995215 a001 139583862445/710647*599074578^(5/21) 2415781699995215 a001 53316291173/710647*599074578^(2/7) 2415781699995215 a001 20365011074/710647*599074578^(1/3) 2415781699995215 a001 6557470319842/710647*228826127^(1/20) 2415781699995215 a001 701408733/710647*599074578^(1/2) 2415781699995215 a001 12586269025/710647*599074578^(5/14) 2415781699995215 a001 317811/969323029*23725150497407^(13/16) 2415781699995215 a001 317811/969323029*505019158607^(13/14) 2415781699995215 a001 433494437/710647*(1/2+1/2*5^(1/2))^22 2415781699995215 a001 7778742049/710647*599074578^(8/21) 2415781699995215 a001 433494437/710647*10749957122^(11/24) 2415781699995215 a001 433494437/710647*4106118243^(11/23) 2415781699995215 a001 2971215073/710647*599074578^(3/7) 2415781699995215 a001 433494437/710647*1568397607^(1/2) 2415781699995215 a001 1134903170/710647*599074578^(10/21) 2415781699995215 a001 2504730781961/710647*228826127^(1/10) 2415781699995215 a001 1548008755920/710647*228826127^(1/8) 2415781699995215 a001 433494437/710647*599074578^(11/21) 2415781699995215 a001 8583852167691/355324 2415781699995215 a001 956722026041/710647*228826127^(3/20) 2415781699995215 a001 365435296162/710647*228826127^(1/5) 2415781699995215 a001 139583862445/710647*228826127^(1/4) 2415781699995215 a001 53316291173/710647*228826127^(3/10) 2415781699995215 a001 20365011074/710647*228826127^(7/20) 2415781699995215 a001 6557470319842/710647*87403803^(1/19) 2415781699995215 a001 12586269025/710647*228826127^(3/8) 2415781699995215 a001 165580141/710647*2537720636^(8/15) 2415781699995215 a001 165580141/710647*45537549124^(8/17) 2415781699995215 a001 317811/370248451*312119004989^(10/11) 2415781699995215 a001 317811/370248451*3461452808002^(5/6) 2415781699995215 a001 165580141/710647*14662949395604^(8/21) 2415781699995215 a001 165580141/710647*(1/2+1/2*5^(1/2))^24 2415781699995215 a001 165580141/710647*192900153618^(4/9) 2415781699995215 a001 165580141/710647*73681302247^(6/13) 2415781699995215 a001 165580141/710647*10749957122^(1/2) 2415781699995215 a001 165580141/710647*4106118243^(12/23) 2415781699995215 a001 165580141/710647*1568397607^(6/11) 2415781699995215 a001 7778742049/710647*228826127^(2/5) 2415781699995215 a001 2971215073/710647*228826127^(9/20) 2415781699995215 a001 165580141/710647*599074578^(4/7) 2415781699995215 a001 1134903170/710647*228826127^(1/2) 2415781699995215 a001 433494437/710647*228826127^(11/20) 2415781699995215 a001 2504730781961/710647*87403803^(2/19) 2415781699995215 a001 63245986/710647*141422324^(2/3) 2415781699995215 a001 165580141/710647*228826127^(3/5) 2415781699995215 a001 824056596444913/34111385 2415781699995215 a001 956722026041/710647*87403803^(3/19) 2415781699995215 a001 365435296162/710647*87403803^(4/19) 2415781699995215 a001 139583862445/710647*87403803^(5/19) 2415781699995215 a001 53316291173/710647*87403803^(6/19) 2415781699995215 a001 20365011074/710647*87403803^(7/19) 2415781699995215 a001 6557470319842/710647*33385282^(1/18) 2415781699995215 a001 317811/141422324*45537549124^(16/17) 2415781699995215 a001 317811/141422324*14662949395604^(16/21) 2415781699995215 a001 63245986/710647*(1/2+1/2*5^(1/2))^26 2415781699995215 a001 317811/141422324*192900153618^(8/9) 2415781699995215 a001 63245986/710647*73681302247^(1/2) 2415781699995215 a001 317811/141422324*73681302247^(12/13) 2415781699995215 a001 63245986/710647*10749957122^(13/24) 2415781699995215 a001 63245986/710647*4106118243^(13/23) 2415781699995215 a001 63245986/710647*1568397607^(13/22) 2415781699995215 a001 63245986/710647*599074578^(13/21) 2415781699995215 a001 7778742049/710647*87403803^(8/19) 2415781699995215 a001 2971215073/710647*87403803^(9/19) 2415781699995215 a001 63245986/710647*228826127^(13/20) 2415781699995215 a001 1836311903/710647*87403803^(1/2) 2415781699995215 a001 1134903170/710647*87403803^(10/19) 2415781699995215 a001 4052739537881/710647*33385282^(1/12) 2415781699995215 a001 433494437/710647*87403803^(11/19) 2415781699995215 a001 165580141/710647*87403803^(12/19) 2415781699995215 a001 2504730781961/710647*33385282^(1/9) 2415781699995215 a001 944284833565203/39088169 2415781699995215 a001 63245986/710647*87403803^(13/19) 2415781699995215 a001 956722026041/710647*33385282^(1/6) 2415781699995216 a001 365435296162/710647*33385282^(2/9) 2415781699995216 a001 317811*33385282^(1/4) 2415781699995216 a001 139583862445/710647*33385282^(5/18) 2415781699995216 a001 53316291173/710647*33385282^(1/3) 2415781699995216 a001 9227465/710647*20633239^(6/7) 2415781699995216 a001 24157817/710647*17393796001^(4/7) 2415781699995216 a001 24157817/710647*14662949395604^(4/9) 2415781699995216 a001 24157817/710647*(1/2+1/2*5^(1/2))^28 2415781699995216 a001 24157817/710647*73681302247^(7/13) 2415781699995216 a001 24157817/710647*10749957122^(7/12) 2415781699995216 a001 317811/54018521*10749957122^(23/24) 2415781699995216 a001 24157817/710647*4106118243^(14/23) 2415781699995216 a001 24157817/710647*1568397607^(7/11) 2415781699995216 a001 24157817/710647*599074578^(2/3) 2415781699995216 a001 20365011074/710647*33385282^(7/18) 2415781699995216 a001 24157817/710647*228826127^(7/10) 2415781699995216 a001 6557470319842/710647*12752043^(1/17) 2415781699995216 a001 12586269025/710647*33385282^(5/12) 2415781699995216 a001 7778742049/710647*33385282^(4/9) 2415781699995216 a001 24157817/710647*87403803^(14/19) 2415781699995216 a001 2971215073/710647*33385282^(1/2) 2415781699995216 a001 1134903170/710647*33385282^(5/9) 2415781699995216 a001 701408733/710647*33385282^(7/12) 2415781699995216 a001 39088169/710647*33385282^(3/4) 2415781699995216 a001 433494437/710647*33385282^(11/18) 2415781699995217 a001 165580141/710647*33385282^(2/3) 2415781699995217 a001 63245986/710647*33385282^(13/18) 2415781699995217 a001 2504730781961/710647*12752043^(2/17) 2415781699995217 a001 3536124621185/146376 2415781699995218 a001 24157817/710647*33385282^(7/9) 2415781699995218 a001 956722026041/710647*12752043^(3/17) 2415781699995219 a001 365435296162/710647*12752043^(4/17) 2415781699995219 a001 139583862445/710647*12752043^(5/17) 2415781699995220 a001 53316291173/710647*12752043^(6/17) 2415781699995221 a001 9227465/710647*141422324^(10/13) 2415781699995221 a001 9227465/710647*2537720636^(2/3) 2415781699995221 a001 9227465/710647*45537549124^(10/17) 2415781699995221 a001 10959/711491*312119004989^(4/5) 2415781699995221 a001 9227465/710647*312119004989^(6/11) 2415781699995221 a001 10959/711491*(1/2+1/2*5^(1/2))^44 2415781699995221 a001 10959/711491*23725150497407^(11/16) 2415781699995221 a001 9227465/710647*(1/2+1/2*5^(1/2))^30 2415781699995221 a001 9227465/710647*192900153618^(5/9) 2415781699995221 a001 10959/711491*73681302247^(11/13) 2415781699995221 a001 9227465/710647*28143753123^(3/5) 2415781699995221 a001 9227465/710647*10749957122^(5/8) 2415781699995221 a001 10959/711491*10749957122^(11/12) 2415781699995221 a001 9227465/710647*4106118243^(15/23) 2415781699995221 a001 10959/711491*4106118243^(22/23) 2415781699995221 a001 9227465/710647*1568397607^(15/22) 2415781699995221 a001 9227465/710647*599074578^(5/7) 2415781699995221 a001 9227465/710647*228826127^(3/4) 2415781699995221 a001 9227465/710647*87403803^(15/19) 2415781699995221 a001 20365011074/710647*12752043^(7/17) 2415781699995221 a001 6557470319842/710647*4870847^(1/16) 2415781699995222 a001 7778742049/710647*12752043^(8/17) 2415781699995223 a001 686789568/101521*12752043^(1/2) 2415781699995223 a001 9227465/710647*33385282^(5/6) 2415781699995223 a001 2971215073/710647*12752043^(9/17) 2415781699995224 a001 1134903170/710647*12752043^(10/17) 2415781699995225 a001 433494437/710647*12752043^(11/17) 2415781699995226 a001 165580141/710647*12752043^(12/17) 2415781699995227 a001 63245986/710647*12752043^(13/17) 2415781699995228 a001 2504730781961/710647*4870847^(1/8) 2415781699995228 a001 24157817/710647*12752043^(14/17) 2415781699995230 a001 137769300517407/5702887 2415781699995234 a001 9227465/710647*12752043^(15/17) 2415781699995234 a001 956722026041/710647*4870847^(3/16) 2415781699995241 a001 365435296162/710647*4870847^(1/4) 2415781699995247 a001 139583862445/710647*4870847^(5/16) 2415781699995253 a001 53316291173/710647*4870847^(3/8) 2415781699995254 a001 317811/7881196*2537720636^(14/15) 2415781699995254 a001 317811/7881196*17393796001^(6/7) 2415781699995254 a001 317811/7881196*45537549124^(14/17) 2415781699995254 a001 317811/7881196*817138163596^(14/19) 2415781699995254 a001 317811/7881196*14662949395604^(2/3) 2415781699995254 a001 317811/7881196*(1/2+1/2*5^(1/2))^42 2415781699995254 a001 317811/7881196*505019158607^(3/4) 2415781699995254 a001 3524578/710647*(1/2+1/2*5^(1/2))^32 2415781699995254 a001 317811/7881196*192900153618^(7/9) 2415781699995254 a001 3524578/710647*73681302247^(8/13) 2415781699995254 a001 3524578/710647*10749957122^(2/3) 2415781699995254 a001 317811/7881196*10749957122^(7/8) 2415781699995254 a001 3524578/710647*4106118243^(16/23) 2415781699995254 a001 317811/7881196*4106118243^(21/23) 2415781699995254 a001 3524578/710647*1568397607^(8/11) 2415781699995254 a001 317811/7881196*1568397607^(21/22) 2415781699995254 a001 3524578/710647*599074578^(16/21) 2415781699995254 a001 3524578/710647*228826127^(4/5) 2415781699995254 a001 3524578/710647*87403803^(16/19) 2415781699995256 a001 3524578/710647*33385282^(8/9) 2415781699995260 a001 20365011074/710647*4870847^(7/16) 2415781699995262 a001 6557470319842/710647*1860498^(1/15) 2415781699995266 a001 7778742049/710647*4870847^(1/2) 2415781699995268 a001 3524578/710647*12752043^(16/17) 2415781699995272 a001 2971215073/710647*4870847^(9/16) 2415781699995279 a001 1134903170/710647*4870847^(5/8) 2415781699995285 a001 4052739537881/710647*1860498^(1/10) 2415781699995285 a001 433494437/710647*4870847^(11/16) 2415781699995292 a001 165580141/710647*4870847^(3/4) 2415781699995298 a001 63245986/710647*4870847^(13/16) 2415781699995302 a001 516002918640/90481*103682^(1/8) 2415781699995305 a001 24157817/710647*4870847^(7/8) 2415781699995308 a001 2504730781961/710647*1860498^(2/15) 2415781699995316 a001 9227465/710647*4870847^(15/16) 2415781699995317 a001 17541063397117/726103 2415781699995331 a001 1548008755920/710647*1860498^(1/6) 2415781699995355 a001 956722026041/439204*167761^(1/5) 2415781699995355 a001 956722026041/710647*1860498^(1/5) 2415781699995401 a001 365435296162/710647*1860498^(4/15) 2415781699995425 a001 317811*1860498^(3/10) 2415781699995448 a001 139583862445/710647*1860498^(1/3) 2415781699995482 a001 317811/3010349*2537720636^(8/9) 2415781699995482 a001 1346269/710647*45537549124^(2/3) 2415781699995482 a001 317811/3010349*312119004989^(8/11) 2415781699995482 a001 317811/3010349*(1/2+1/2*5^(1/2))^40 2415781699995482 a001 317811/3010349*23725150497407^(5/8) 2415781699995482 a001 1346269/710647*(1/2+1/2*5^(1/2))^34 2415781699995482 a001 317811/3010349*73681302247^(10/13) 2415781699995482 a001 317811/3010349*28143753123^(4/5) 2415781699995482 a001 1346269/710647*10749957122^(17/24) 2415781699995482 a001 317811/3010349*10749957122^(5/6) 2415781699995482 a001 1346269/710647*4106118243^(17/23) 2415781699995482 a001 317811/3010349*4106118243^(20/23) 2415781699995482 a001 1346269/710647*1568397607^(17/22) 2415781699995482 a001 317811/3010349*1568397607^(10/11) 2415781699995482 a001 1346269/710647*599074578^(17/21) 2415781699995482 a001 317811/3010349*599074578^(20/21) 2415781699995482 a001 1346269/710647*228826127^(17/20) 2415781699995482 a001 1346269/710647*87403803^(17/19) 2415781699995484 a001 1346269/710647*33385282^(17/18) 2415781699995494 a001 53316291173/710647*1860498^(2/5) 2415781699995541 a001 20365011074/710647*1860498^(7/15) 2415781699995557 a001 6557470319842/710647*710647^(1/14) 2415781699995564 a001 12586269025/710647*1860498^(1/2) 2415781699995587 a001 7778742049/710647*1860498^(8/15) 2415781699995634 a001 2971215073/710647*1860498^(3/5) 2415781699995680 a001 1134903170/710647*1860498^(2/3) 2415781699995704 a001 701408733/710647*1860498^(7/10) 2415781699995722 a001 1548008755920/4870847*439204^(1/3) 2415781699995727 a001 433494437/710647*1860498^(11/15) 2415781699995773 a001 165580141/710647*1860498^(4/5) 2415781699995797 a001 14619165/101521*1860498^(5/6) 2415781699995809 a001 4052739537881/12752043*439204^(1/3) 2415781699995820 a001 63245986/710647*1860498^(13/15) 2415781699995822 a001 1515744265389/4769326*439204^(1/3) 2415781699995830 a001 6557470319842/20633239*439204^(1/3) 2415781699995843 a001 39088169/710647*1860498^(9/10) 2415781699995863 a001 2504730781961/7881196*439204^(1/3) 2415781699995867 a001 24157817/710647*1860498^(14/15) 2415781699995898 a001 2504730781961/710647*710647^(1/7) 2415781699995913 a001 10050135028323/416020 2415781699996091 a001 956722026041/3010349*439204^(1/3) 2415781699996240 a001 956722026041/710647*710647^(3/14) 2415781699996260 a001 86267571272/1149851*439204^(4/9) 2415781699996411 a001 591286729879/710647*710647^(1/4) 2415781699996518 a001 2504730781961/1860498*439204^(2/9) 2415781699996582 a001 365435296162/710647*710647^(2/7) 2415781699996924 a001 139583862445/710647*710647^(5/14) 2415781699997042 a001 514229/710647*141422324^(12/13) 2415781699997042 a001 514229/710647*2537720636^(4/5) 2415781699997042 a001 514229/710647*45537549124^(12/17) 2415781699997042 a001 317811/1149851*817138163596^(2/3) 2415781699997042 a001 317811/1149851*(1/2+1/2*5^(1/2))^38 2415781699997042 a001 514229/710647*14662949395604^(4/7) 2415781699997042 a001 514229/710647*(1/2+1/2*5^(1/2))^36 2415781699997042 a001 514229/710647*505019158607^(9/14) 2415781699997042 a001 514229/710647*192900153618^(2/3) 2415781699997042 a001 514229/710647*73681302247^(9/13) 2415781699997042 a001 514229/710647*10749957122^(3/4) 2415781699997042 a001 317811/1149851*10749957122^(19/24) 2415781699997042 a001 514229/710647*4106118243^(18/23) 2415781699997042 a001 317811/1149851*4106118243^(19/23) 2415781699997042 a001 514229/710647*1568397607^(9/11) 2415781699997042 a001 317811/1149851*1568397607^(19/22) 2415781699997042 a001 514229/710647*599074578^(6/7) 2415781699997042 a001 317811/1149851*599074578^(19/21) 2415781699997042 a001 514229/710647*228826127^(9/10) 2415781699997042 a001 317811/1149851*228826127^(19/20) 2415781699997043 a001 514229/710647*87403803^(18/19) 2415781699997114 a001 6557470319842/4870847*439204^(2/9) 2415781699997255 a001 10610209857723/7881196*439204^(2/9) 2415781699997265 a001 53316291173/710647*710647^(3/7) 2415781699997471 a001 12422650078080/514229 2415781699997477 a001 63245986/271443*271443^(12/13) 2415781699997482 a001 1346269*439204^(2/9) 2415781699997607 a001 20365011074/710647*710647^(1/2) 2415781699997651 a001 365435296162/1149851*439204^(1/3) 2415781699997737 a001 6557470319842/710647*271443^(1/13) 2415781699997909 a001 3536736619241/620166*439204^(1/9) 2415781699997949 a001 7778742049/710647*710647^(4/7) 2415781699998055 a001 12422650078083/514229 2415781699998249 a001 12422650078084/514229 2415781699998290 a001 2971215073/710647*710647^(9/14) 2415781699998444 a001 12422650078085/514229 2415781699998603 a001 416020/930249*(1/2+1/2*5^(1/2))^37 2415781699998632 a001 1134903170/710647*710647^(5/7) 2415781699998803 a001 701408733/710647*710647^(3/4) 2415781699998974 a001 433494437/710647*710647^(11/14) 2415781699999034 a001 32522920134760/1346269 2415781699999043 a001 1548008755920/1149851*439204^(2/9) 2415781699999199 a001 832040/4870847*2537720636^(13/15) 2415781699999199 a001 726103/620166*2537720636^(7/9) 2415781699999199 a001 726103/620166*17393796001^(5/7) 2415781699999199 a001 832040/4870847*45537549124^(13/17) 2415781699999199 a001 726103/620166*312119004989^(7/11) 2415781699999199 a001 832040/4870847*(1/2+1/2*5^(1/2))^39 2415781699999199 a001 726103/620166*14662949395604^(5/9) 2415781699999199 a001 726103/620166*(1/2+1/2*5^(1/2))^35 2415781699999199 a001 726103/620166*505019158607^(5/8) 2415781699999199 a001 832040/4870847*192900153618^(13/18) 2415781699999199 a001 832040/4870847*73681302247^(3/4) 2415781699999199 a001 726103/620166*28143753123^(7/10) 2415781699999199 a001 832040/4870847*10749957122^(13/16) 2415781699999199 a001 726103/620166*599074578^(5/6) 2415781699999199 a001 832040/4870847*599074578^(13/14) 2415781699999199 a001 726103/620166*228826127^(7/8) 2415781699999262 a001 42573055163100/1762289 2415781699999266 a001 24157817/1860498*7881196^(10/11) 2415781699999269 a001 831985/15126*7881196^(9/11) 2415781699999272 a001 433494437/1860498*7881196^(8/11) 2415781699999275 a001 567451585/930249*7881196^(2/3) 2415781699999276 a001 1836311903/1860498*7881196^(7/11) 2415781699999280 a001 7778742049/1860498*7881196^(6/11) 2415781699999283 a001 10983760033/620166*7881196^(5/11) 2415781699999286 a001 5702887/1860498*141422324^(11/13) 2415781699999286 a001 5702887/1860498*2537720636^(11/15) 2415781699999286 a001 5702887/1860498*45537549124^(11/17) 2415781699999286 a001 5702887/1860498*312119004989^(3/5) 2415781699999286 a001 832040/12752043*(1/2+1/2*5^(1/2))^41 2415781699999286 a001 5702887/1860498*14662949395604^(11/21) 2415781699999286 a001 5702887/1860498*(1/2+1/2*5^(1/2))^33 2415781699999286 a001 5702887/1860498*192900153618^(11/18) 2415781699999286 a001 5702887/1860498*10749957122^(11/16) 2415781699999286 a001 5702887/1860498*1568397607^(3/4) 2415781699999286 a001 5702887/1860498*599074578^(11/14) 2415781699999287 a001 139583862445/1860498*7881196^(4/11) 2415781699999288 a001 75283811239/620166*7881196^(1/3) 2415781699999288 a001 5702887/1860498*33385282^(11/12) 2415781699999290 a001 591286729879/1860498*7881196^(3/11) 2415781699999294 a001 2504730781961/1860498*7881196^(2/11) 2415781699999295 a001 3429467859136/141961 2415781699999296 a001 31622993/930249*20633239^(4/5) 2415781699999297 a001 133957148/930249*20633239^(5/7) 2415781699999297 a001 24157817/1860498*20633239^(6/7) 2415781699999297 a001 3536736619241/620166*7881196^(1/11) 2415781699999297 a001 1836311903/1860498*20633239^(3/5) 2415781699999298 a001 2971215073/1860498*20633239^(4/7) 2415781699999298 a001 10983760033/620166*20633239^(3/7) 2415781699999298 a001 53316291173/1860498*20633239^(2/5) 2415781699999299 a001 416020/16692641*(1/2+1/2*5^(1/2))^43 2415781699999299 a001 829464/103361*(1/2+1/2*5^(1/2))^31 2415781699999299 a001 829464/103361*9062201101803^(1/2) 2415781699999299 a001 182717648081/930249*20633239^(2/7) 2415781699999300 a001 832040*20633239^(1/5) 2415781699999300 a001 583600122205320/24157817 2415781699999300 a001 4052739537881/1860498*20633239^(1/7) 2415781699999300 a001 832040/87403803*45537549124^(15/17) 2415781699999300 a001 832040/87403803*312119004989^(9/11) 2415781699999300 a001 832040/87403803*14662949395604^(5/7) 2415781699999300 a001 39088169/1860498*(1/2+1/2*5^(1/2))^29 2415781699999300 a001 39088169/1860498*1322157322203^(1/2) 2415781699999300 a001 832040/87403803*192900153618^(5/6) 2415781699999300 a001 832040/87403803*28143753123^(9/10) 2415781699999300 a001 832040/87403803*10749957122^(15/16) 2415781699999301 a001 831985/15126*141422324^(9/13) 2415781699999301 a001 763942477886060/31622993 2415781699999301 a001 433494437/1860498*141422324^(8/13) 2415781699999301 a001 1836311903/1860498*141422324^(7/13) 2415781699999301 a001 165580141/1860498*141422324^(2/3) 2415781699999301 a001 7778742049/1860498*141422324^(6/13) 2415781699999301 a001 10983760033/620166*141422324^(5/13) 2415781699999301 a001 831985/15126*2537720636^(3/5) 2415781699999301 a001 831985/15126*45537549124^(9/17) 2415781699999301 a001 831985/15126*817138163596^(9/19) 2415781699999301 a001 831985/15126*14662949395604^(3/7) 2415781699999301 a001 831985/15126*(1/2+1/2*5^(1/2))^27 2415781699999301 a001 831985/15126*192900153618^(1/2) 2415781699999301 a001 831985/15126*10749957122^(9/16) 2415781699999301 a001 831985/15126*599074578^(9/14) 2415781699999301 a001 43133785636/930249*141422324^(1/3) 2415781699999301 a001 139583862445/1860498*141422324^(4/13) 2415781699999301 a001 591286729879/1860498*141422324^(3/13) 2415781699999301 a001 2504730781961/1860498*141422324^(2/13) 2415781699999301 a001 4000054745111040/165580141 2415781699999301 a001 3536736619241/620166*141422324^(1/13) 2415781699999301 a001 133957148/930249*2537720636^(5/9) 2415781699999301 a001 133957148/930249*312119004989^(5/11) 2415781699999301 a001 133957148/930249*(1/2+1/2*5^(1/2))^25 2415781699999301 a001 133957148/930249*3461452808002^(5/12) 2415781699999301 a001 133957148/930249*28143753123^(1/2) 2415781699999301 a001 10472279279561000/433494437 2415781699999301 a001 832040/1568397607*14662949395604^(17/21) 2415781699999301 a001 233802911/620166*(1/2+1/2*5^(1/2))^23 2415781699999301 a001 832040/1568397607*192900153618^(17/18) 2415781699999301 a001 233802911/620166*4106118243^(1/2) 2415781699999301 a001 44945546055036/1860497 2415781699999301 a001 1836311903/1860498*2537720636^(7/15) 2415781699999301 a001 1836311903/1860498*17393796001^(3/7) 2415781699999301 a001 1836311903/1860498*45537549124^(7/17) 2415781699999301 a001 1836311903/1860498*14662949395604^(1/3) 2415781699999301 a001 1836311903/1860498*(1/2+1/2*5^(1/2))^21 2415781699999301 a001 1836311903/1860498*192900153618^(7/18) 2415781699999301 a001 7778742049/1860498*2537720636^(2/5) 2415781699999301 a001 1836311903/1860498*10749957122^(7/16) 2415781699999301 a001 10983760033/620166*2537720636^(1/3) 2415781699999301 a001 2971215073/1860498*2537720636^(4/9) 2415781699999301 a001 139583862445/1860498*2537720636^(4/15) 2415781699999301 a001 182717648081/930249*2537720636^(2/9) 2415781699999301 a001 591286729879/1860498*2537720636^(1/5) 2415781699999301 a001 71778070001154880/2971215073 2415781699999301 a001 2504730781961/1860498*2537720636^(2/15) 2415781699999301 a001 4052739537881/1860498*2537720636^(1/9) 2415781699999301 a001 3536736619241/620166*2537720636^(1/15) 2415781699999301 a001 267084832/103361*817138163596^(1/3) 2415781699999301 a001 267084832/103361*(1/2+1/2*5^(1/2))^19 2415781699999301 a001 14455186685376360/598364773 2415781699999301 a001 12586269025/1860498*45537549124^(1/3) 2415781699999301 a001 832040/28143753123*14662949395604^(19/21) 2415781699999301 a001 12586269025/1860498*(1/2+1/2*5^(1/2))^17 2415781699999301 a001 53316291173/1860498*17393796001^(2/7) 2415781699999301 a001 245987105364261580/10182505537 2415781699999301 a001 832040*17393796001^(1/7) 2415781699999301 a001 10983760033/620166*45537549124^(5/17) 2415781699999301 a001 10983760033/620166*312119004989^(3/11) 2415781699999301 a001 10983760033/620166*14662949395604^(5/21) 2415781699999301 a001 10983760033/620166*(1/2+1/2*5^(1/2))^15 2415781699999301 a001 10983760033/620166*192900153618^(5/18) 2415781699999301 a001 139583862445/1860498*45537549124^(4/17) 2415781699999301 a001 591286729879/1860498*45537549124^(3/17) 2415781699999301 a001 1288005205275676800/53316291173 2415781699999301 a001 2504730781961/1860498*45537549124^(2/17) 2415781699999301 a001 43133785636/930249*(1/2+1/2*5^(1/2))^13 2415781699999301 a001 75283811239/620166*312119004989^(1/5) 2415781699999301 a001 75283811239/620166*(1/2+1/2*5^(1/2))^11 2415781699999301 a001 591286729879/1860498*(1/2+1/2*5^(1/2))^9 2415781699999301 a001 182717648081/930249*312119004989^(2/11) 2415781699999301 a001 4052739537881/1860498*(1/2+1/2*5^(1/2))^5 2415781699999301 a001 3536736619241/620166*(1/2+1/2*5^(1/2))^3 2415781699999301 a006 5^(1/2)*Fibonacci(67)/Lucas(30)/sqrt(5) 2415781699999301 a001 3278735159921/930249*(1/2+1/2*5^(1/2))^4 2415781699999301 a001 3278735159921/930249*23725150497407^(1/16) 2415781699999301 a001 2504730781961/1860498*(1/2+1/2*5^(1/2))^6 2415781699999301 a001 956722026041/1860498*(1/2+1/2*5^(1/2))^8 2415781699999301 a001 419698277301641360/17373187209 2415781699999301 a001 139583862445/1860498*817138163596^(4/19) 2415781699999301 a001 139583862445/1860498*14662949395604^(4/21) 2415781699999301 a001 139583862445/1860498*(1/2+1/2*5^(1/2))^12 2415781699999301 a001 43133785636/930249*73681302247^(1/4) 2415781699999301 a001 260504524977853805/10783446409 2415781699999301 a001 956722026041/1860498*73681302247^(2/13) 2415781699999301 a001 139583862445/1860498*73681302247^(3/13) 2415781699999301 a001 53316291173/1860498*14662949395604^(2/9) 2415781699999301 a001 4052739537881/1860498*28143753123^(1/10) 2415781699999301 a001 796030994547153640/32951280099 2415781699999301 a001 10983760033/620166*28143753123^(3/10) 2415781699999301 a001 182717648081/930249*28143753123^(1/5) 2415781699999301 a001 10182505537/930249*(1/2+1/2*5^(1/2))^16 2415781699999301 a001 10182505537/930249*23725150497407^(1/4) 2415781699999301 a001 10182505537/930249*73681302247^(4/13) 2415781699999301 a001 3278735159921/930249*10749957122^(1/12) 2415781699999301 a001 2504730781961/1860498*10749957122^(1/8) 2415781699999301 a001 5528305160338736/228841255 2415781699999301 a001 956722026041/1860498*10749957122^(1/6) 2415781699999301 a001 591286729879/1860498*10749957122^(3/16) 2415781699999301 a001 182717648081/930249*10749957122^(5/24) 2415781699999301 a001 139583862445/1860498*10749957122^(1/4) 2415781699999301 a001 10983760033/620166*10749957122^(5/16) 2415781699999301 a001 53316291173/1860498*10749957122^(7/24) 2415781699999301 a001 7778742049/1860498*45537549124^(6/17) 2415781699999301 a001 7778742049/1860498*14662949395604^(2/7) 2415781699999301 a001 7778742049/1860498*(1/2+1/2*5^(1/2))^18 2415781699999301 a001 7778742049/1860498*192900153618^(1/3) 2415781699999301 a001 10182505537/930249*10749957122^(1/3) 2415781699999301 a001 3278735159921/930249*4106118243^(2/23) 2415781699999301 a001 7778742049/1860498*10749957122^(3/8) 2415781699999301 a001 2504730781961/1860498*4106118243^(3/23) 2415781699999301 a001 14517419613592225/600940872 2415781699999301 a001 956722026041/1860498*4106118243^(4/23) 2415781699999301 a001 182717648081/930249*4106118243^(5/23) 2415781699999301 a001 139583862445/1860498*4106118243^(6/23) 2415781699999301 a001 53316291173/1860498*4106118243^(7/23) 2415781699999301 a001 10182505537/930249*4106118243^(8/23) 2415781699999301 a001 832040/6643838879*14662949395604^(6/7) 2415781699999301 a001 2971215073/1860498*(1/2+1/2*5^(1/2))^20 2415781699999301 a001 2971215073/1860498*23725150497407^(5/16) 2415781699999301 a001 2971215073/1860498*505019158607^(5/14) 2415781699999301 a001 2971215073/1860498*73681302247^(5/13) 2415781699999301 a001 2971215073/1860498*28143753123^(2/5) 2415781699999301 a001 2971215073/1860498*10749957122^(5/12) 2415781699999301 a001 7778742049/1860498*4106118243^(9/23) 2415781699999301 a001 3278735159921/930249*1568397607^(1/11) 2415781699999301 a001 2971215073/1860498*4106118243^(10/23) 2415781699999301 a001 2504730781961/1860498*1568397607^(3/22) 2415781699999301 a001 44361286907582920/1836311903 2415781699999301 a001 956722026041/1860498*1568397607^(2/11) 2415781699999301 a001 182717648081/930249*1568397607^(5/22) 2415781699999301 a001 75283811239/620166*1568397607^(1/4) 2415781699999301 a001 139583862445/1860498*1568397607^(3/11) 2415781699999301 a001 53316291173/1860498*1568397607^(7/22) 2415781699999301 a001 10182505537/930249*1568397607^(4/11) 2415781699999301 a001 567451585/930249*312119004989^(2/5) 2415781699999301 a001 567451585/930249*(1/2+1/2*5^(1/2))^22 2415781699999301 a001 610/1860499*505019158607^(13/14) 2415781699999301 a001 567451585/930249*10749957122^(11/24) 2415781699999301 a001 7778742049/1860498*1568397607^(9/22) 2415781699999301 a001 567451585/930249*4106118243^(11/23) 2415781699999301 a001 3536736619241/620166*599074578^(1/14) 2415781699999301 a001 2971215073/1860498*1568397607^(5/11) 2415781699999301 a001 3278735159921/930249*599074578^(2/21) 2415781699999301 a001 567451585/930249*1568397607^(1/2) 2415781699999301 a001 2504730781961/1860498*599074578^(1/7) 2415781699999301 a001 16944503814010960/701408733 2415781699999301 a001 832040*599074578^(1/6) 2415781699999301 a001 956722026041/1860498*599074578^(4/21) 2415781699999301 a001 591286729879/1860498*599074578^(3/14) 2415781699999301 a001 182717648081/930249*599074578^(5/21) 2415781699999301 a001 139583862445/1860498*599074578^(2/7) 2415781699999301 a001 53316291173/1860498*599074578^(1/3) 2415781699999301 a001 433494437/1860498*2537720636^(8/15) 2415781699999301 a001 10983760033/620166*599074578^(5/14) 2415781699999301 a001 10182505537/930249*599074578^(8/21) 2415781699999301 a001 433494437/1860498*45537549124^(8/17) 2415781699999301 a001 832040/969323029*312119004989^(10/11) 2415781699999301 a001 832040/969323029*3461452808002^(5/6) 2415781699999301 a001 433494437/1860498*14662949395604^(8/21) 2415781699999301 a001 433494437/1860498*(1/2+1/2*5^(1/2))^24 2415781699999301 a001 433494437/1860498*192900153618^(4/9) 2415781699999301 a001 433494437/1860498*73681302247^(6/13) 2415781699999301 a001 433494437/1860498*10749957122^(1/2) 2415781699999301 a001 433494437/1860498*4106118243^(12/23) 2415781699999301 a001 7778742049/1860498*599074578^(3/7) 2415781699999301 a001 433494437/1860498*1568397607^(6/11) 2415781699999301 a001 1836311903/1860498*599074578^(1/2) 2415781699999301 a001 2971215073/1860498*599074578^(10/21) 2415781699999301 a001 567451585/930249*599074578^(11/21) 2415781699999301 a001 3278735159921/930249*228826127^(1/10) 2415781699999301 a001 4052739537881/1860498*228826127^(1/8) 2415781699999301 a001 433494437/1860498*599074578^(4/7) 2415781699999301 a001 62232928215865/2576099 2415781699999301 a001 2504730781961/1860498*228826127^(3/20) 2415781699999301 a001 956722026041/1860498*228826127^(1/5) 2415781699999301 a001 182717648081/930249*228826127^(1/4) 2415781699999301 a001 139583862445/1860498*228826127^(3/10) 2415781699999301 a001 53316291173/1860498*228826127^(7/20) 2415781699999301 a001 10983760033/620166*228826127^(3/8) 2415781699999301 a001 832040/370248451*45537549124^(16/17) 2415781699999301 a001 832040/370248451*14662949395604^(16/21) 2415781699999301 a001 165580141/1860498*(1/2+1/2*5^(1/2))^26 2415781699999301 a001 832040/370248451*192900153618^(8/9) 2415781699999301 a001 165580141/1860498*73681302247^(1/2) 2415781699999301 a001 832040/370248451*73681302247^(12/13) 2415781699999301 a001 165580141/1860498*10749957122^(13/24) 2415781699999301 a001 165580141/1860498*4106118243^(13/23) 2415781699999301 a001 165580141/1860498*1568397607^(13/22) 2415781699999301 a001 10182505537/930249*228826127^(2/5) 2415781699999301 a001 7778742049/1860498*228826127^(9/20) 2415781699999301 a001 165580141/1860498*599074578^(13/21) 2415781699999301 a001 133957148/930249*228826127^(5/8) 2415781699999301 a001 2971215073/1860498*228826127^(1/2) 2415781699999301 a001 567451585/930249*228826127^(11/20) 2415781699999301 a001 433494437/1860498*228826127^(3/5) 2415781699999301 a001 3278735159921/930249*87403803^(2/19) 2415781699999301 a001 44948541624344/1860621 2415781699999301 a001 165580141/1860498*228826127^(13/20) 2415781699999301 a001 2504730781961/1860498*87403803^(3/19) 2415781699999301 a001 956722026041/1860498*87403803^(4/19) 2415781699999301 a001 182717648081/930249*87403803^(5/19) 2415781699999301 a001 139583862445/1860498*87403803^(6/19) 2415781699999301 a001 53316291173/1860498*87403803^(7/19) 2415781699999301 a001 31622993/930249*17393796001^(4/7) 2415781699999301 a001 31622993/930249*14662949395604^(4/9) 2415781699999301 a001 31622993/930249*(1/2+1/2*5^(1/2))^28 2415781699999301 a001 31622993/930249*505019158607^(1/2) 2415781699999301 a001 31622993/930249*73681302247^(7/13) 2415781699999301 a001 31622993/930249*10749957122^(7/12) 2415781699999301 a001 208010/35355581*10749957122^(23/24) 2415781699999301 a001 31622993/930249*4106118243^(14/23) 2415781699999301 a001 31622993/930249*1568397607^(7/11) 2415781699999301 a001 31622993/930249*599074578^(2/3) 2415781699999301 a001 10182505537/930249*87403803^(8/19) 2415781699999301 a001 7778742049/1860498*87403803^(9/19) 2415781699999301 a001 31622993/930249*228826127^(7/10) 2415781699999301 a001 267084832/103361*87403803^(1/2) 2415781699999301 a001 2971215073/1860498*87403803^(10/19) 2415781699999301 a001 3536736619241/620166*33385282^(1/12) 2415781699999301 a001 567451585/930249*87403803^(11/19) 2415781699999301 a001 433494437/1860498*87403803^(12/19) 2415781699999301 a001 165580141/1860498*87403803^(13/19) 2415781699999301 a001 3278735159921/930249*33385282^(1/9) 2415781699999301 a001 944284833566800/39088169 2415781699999301 a001 31622993/930249*87403803^(14/19) 2415781699999301 a001 2504730781961/1860498*33385282^(1/6) 2415781699999301 a001 956722026041/1860498*33385282^(2/9) 2415781699999301 a001 591286729879/1860498*33385282^(1/4) 2415781699999301 a001 182717648081/930249*33385282^(5/18) 2415781699999301 a001 139583862445/1860498*33385282^(1/3) 2415781699999301 a001 24157817/1860498*141422324^(10/13) 2415781699999302 a001 24157817/1860498*2537720636^(2/3) 2415781699999302 a001 24157817/1860498*45537549124^(10/17) 2415781699999302 a001 832040/54018521*312119004989^(4/5) 2415781699999302 a001 24157817/1860498*312119004989^(6/11) 2415781699999302 a001 832040/54018521*23725150497407^(11/16) 2415781699999302 a001 24157817/1860498*14662949395604^(10/21) 2415781699999302 a001 24157817/1860498*(1/2+1/2*5^(1/2))^30 2415781699999302 a001 24157817/1860498*192900153618^(5/9) 2415781699999302 a001 832040/54018521*73681302247^(11/13) 2415781699999302 a001 24157817/1860498*28143753123^(3/5) 2415781699999302 a001 24157817/1860498*10749957122^(5/8) 2415781699999302 a001 832040/54018521*10749957122^(11/12) 2415781699999302 a001 24157817/1860498*4106118243^(15/23) 2415781699999302 a001 832040/54018521*4106118243^(22/23) 2415781699999302 a001 24157817/1860498*1568397607^(15/22) 2415781699999302 a001 24157817/1860498*599074578^(5/7) 2415781699999302 a001 53316291173/1860498*33385282^(7/18) 2415781699999302 a001 24157817/1860498*228826127^(3/4) 2415781699999302 a001 10983760033/620166*33385282^(5/12) 2415781699999302 a001 10182505537/930249*33385282^(4/9) 2415781699999302 a001 24157817/1860498*87403803^(15/19) 2415781699999302 a001 7778742049/1860498*33385282^(1/2) 2415781699999302 a001 2971215073/1860498*33385282^(5/9) 2415781699999302 a001 1836311903/1860498*33385282^(7/12) 2415781699999302 a001 567451585/930249*33385282^(11/18) 2415781699999302 a001 433494437/1860498*33385282^(2/3) 2415781699999302 a001 831985/15126*33385282^(3/4) 2415781699999302 a001 165580141/1860498*33385282^(13/18) 2415781699999303 a001 3278735159921/930249*12752043^(2/17) 2415781699999303 a001 31622993/930249*33385282^(7/9) 2415781699999303 a001 45085588920185/1866294 2415781699999303 a001 2504730781961/1860498*12752043^(3/17) 2415781699999303 a001 24157817/1860498*33385282^(5/6) 2415781699999304 a001 956722026041/1860498*12752043^(4/17) 2415781699999305 a001 182717648081/930249*12752043^(5/17) 2415781699999306 a001 139583862445/1860498*12752043^(6/17) 2415781699999306 a001 75640/1875749*2537720636^(14/15) 2415781699999306 a001 75640/1875749*17393796001^(6/7) 2415781699999306 a001 75640/1875749*45537549124^(14/17) 2415781699999306 a001 75640/1875749*14662949395604^(2/3) 2415781699999306 a001 75640/1875749*(1/2+1/2*5^(1/2))^42 2415781699999306 a001 9227465/1860498*(1/2+1/2*5^(1/2))^32 2415781699999306 a001 75640/1875749*505019158607^(3/4) 2415781699999306 a001 75640/1875749*192900153618^(7/9) 2415781699999306 a001 9227465/1860498*73681302247^(8/13) 2415781699999306 a001 9227465/1860498*10749957122^(2/3) 2415781699999306 a001 75640/1875749*10749957122^(7/8) 2415781699999306 a001 9227465/1860498*4106118243^(16/23) 2415781699999306 a001 75640/1875749*4106118243^(21/23) 2415781699999306 a001 9227465/1860498*1568397607^(8/11) 2415781699999306 a001 75640/1875749*1568397607^(21/22) 2415781699999306 a001 9227465/1860498*599074578^(16/21) 2415781699999306 a001 9227465/1860498*228826127^(4/5) 2415781699999307 a001 9227465/1860498*87403803^(16/19) 2415781699999307 a001 53316291173/1860498*12752043^(7/17) 2415781699999308 a001 10182505537/930249*12752043^(8/17) 2415781699999308 a001 12586269025/1860498*12752043^(1/2) 2415781699999308 a001 9227465/1860498*33385282^(8/9) 2415781699999309 a001 7778742049/1860498*12752043^(9/17) 2415781699999310 a001 2971215073/1860498*12752043^(10/17) 2415781699999310 a001 567451585/930249*12752043^(11/17) 2415781699999311 a001 433494437/1860498*12752043^(12/17) 2415781699999312 a001 165580141/1860498*12752043^(13/17) 2415781699999313 a001 31622993/930249*12752043^(14/17) 2415781699999313 a001 3278735159921/930249*4870847^(1/8) 2415781699999315 a001 24157817/1860498*12752043^(15/17) 2415781699999315 a001 165580141/710647*710647^(6/7) 2415781699999316 a001 137769300517640/5702887 2415781699999320 a001 2504730781961/1860498*4870847^(3/16) 2415781699999320 a001 9227465/1860498*12752043^(16/17) 2415781699999326 a001 956722026041/1860498*4870847^(1/4) 2415781699999333 a001 182717648081/930249*4870847^(5/16) 2415781699999339 a001 139583862445/1860498*4870847^(3/8) 2415781699999340 a001 208010/1970299*2537720636^(8/9) 2415781699999340 a001 1762289/930249*45537549124^(2/3) 2415781699999340 a001 208010/1970299*312119004989^(8/11) 2415781699999340 a001 208010/1970299*(1/2+1/2*5^(1/2))^40 2415781699999340 a001 208010/1970299*23725150497407^(5/8) 2415781699999340 a001 1762289/930249*(1/2+1/2*5^(1/2))^34 2415781699999340 a001 208010/1970299*73681302247^(10/13) 2415781699999340 a001 208010/1970299*28143753123^(4/5) 2415781699999340 a001 1762289/930249*10749957122^(17/24) 2415781699999340 a001 208010/1970299*10749957122^(5/6) 2415781699999340 a001 1762289/930249*4106118243^(17/23) 2415781699999340 a001 208010/1970299*4106118243^(20/23) 2415781699999340 a001 1762289/930249*1568397607^(17/22) 2415781699999340 a001 208010/1970299*1568397607^(10/11) 2415781699999340 a001 1762289/930249*599074578^(17/21) 2415781699999340 a001 208010/1970299*599074578^(20/21) 2415781699999340 a001 1762289/930249*228826127^(17/20) 2415781699999340 a001 1762289/930249*87403803^(17/19) 2415781699999342 a001 1762289/930249*33385282^(17/18) 2415781699999345 a001 53316291173/1860498*4870847^(7/16) 2415781699999352 a001 10182505537/930249*4870847^(1/2) 2415781699999358 a001 7778742049/1860498*4870847^(9/16) 2415781699999364 a001 2971215073/1860498*4870847^(5/8) 2415781699999371 a001 3536736619241/620166*1860498^(1/10) 2415781699999371 a001 567451585/930249*4870847^(11/16) 2415781699999377 a001 433494437/1860498*4870847^(3/4) 2415781699999384 a001 165580141/1860498*4870847^(13/16) 2415781699999390 a001 31622993/930249*4870847^(7/8) 2415781699999394 a001 3278735159921/930249*1860498^(2/15) 2415781699999397 a001 24157817/1860498*4870847^(15/16) 2415781699999403 a001 52623190191440/2178309 2415781699999417 a001 4052739537881/1860498*1860498^(1/6) 2415781699999440 a001 2504730781961/1860498*1860498^(1/5) 2415781699999487 a001 956722026041/1860498*1860498^(4/15) 2415781699999510 a001 591286729879/1860498*1860498^(3/10) 2415781699999533 a001 182717648081/930249*1860498^(1/3) 2415781699999567 a001 1346269/1860498*141422324^(12/13) 2415781699999567 a001 1346269/1860498*2537720636^(4/5) 2415781699999567 a001 1346269/1860498*45537549124^(12/17) 2415781699999567 a001 832040/3010349*(1/2+1/2*5^(1/2))^38 2415781699999567 a001 1346269/1860498*14662949395604^(4/7) 2415781699999567 a001 1346269/1860498*(1/2+1/2*5^(1/2))^36 2415781699999567 a001 1346269/1860498*505019158607^(9/14) 2415781699999567 a001 1346269/1860498*192900153618^(2/3) 2415781699999567 a001 1346269/1860498*73681302247^(9/13) 2415781699999567 a001 1346269/1860498*10749957122^(3/4) 2415781699999567 a001 832040/3010349*10749957122^(19/24) 2415781699999567 a001 1346269/1860498*4106118243^(18/23) 2415781699999567 a001 832040/3010349*4106118243^(19/23) 2415781699999567 a001 1346269/1860498*1568397607^(9/11) 2415781699999567 a001 832040/3010349*1568397607^(19/22) 2415781699999567 a001 1346269/1860498*599074578^(6/7) 2415781699999567 a001 832040/3010349*599074578^(19/21) 2415781699999567 a001 1346269/1860498*228826127^(9/10) 2415781699999567 a001 832040/3010349*228826127^(19/20) 2415781699999568 a001 1346269/1860498*87403803^(18/19) 2415781699999580 a001 139583862445/1860498*1860498^(2/5) 2415781699999626 a001 53316291173/1860498*1860498^(7/15) 2415781699999628 a001 32522920134768/1346269 2415781699999650 a001 10983760033/620166*1860498^(1/2) 2415781699999657 a001 63245986/710647*710647^(13/14) 2415781699999673 a001 10182505537/930249*1860498^(8/15) 2415781699999702 a001 32522920134769/1346269 2415781699999720 a001 7778742049/1860498*1860498^(3/5) 2415781699999766 a001 2971215073/1860498*1860498^(2/3) 2415781699999777 a001 32522920134770/1346269 2415781699999789 a001 1836311903/1860498*1860498^(7/10) 2415781699999795 a001 2178309/4870847*(1/2+1/2*5^(1/2))^37 2415781699999813 a001 567451585/930249*1860498^(11/15) 2415781699999858 a001 85146110326221/3524578 2415781699999859 a001 433494437/1860498*1860498^(4/5) 2415781699999862 a001 63245986/4870847*7881196^(10/11) 2415781699999865 a001 267914296/4870847*7881196^(9/11) 2415781699999869 a001 1134903170/4870847*7881196^(8/11) 2415781699999871 a001 2971215073/4870847*7881196^(2/3) 2415781699999872 a001 4807526976/4870847*7881196^(7/11) 2415781699999876 a001 20365011074/4870847*7881196^(6/11) 2415781699999879 a001 86267571272/4870847*7881196^(5/11) 2415781699999882 a001 726103/4250681*2537720636^(13/15) 2415781699999882 a001 5702887/4870847*2537720636^(7/9) 2415781699999882 a001 5702887/4870847*17393796001^(5/7) 2415781699999882 a001 726103/4250681*45537549124^(13/17) 2415781699999882 a001 5702887/4870847*312119004989^(7/11) 2415781699999882 a001 5702887/4870847*14662949395604^(5/9) 2415781699999882 a001 726103/4250681*(1/2+1/2*5^(1/2))^39 2415781699999882 a001 5702887/4870847*(1/2+1/2*5^(1/2))^35 2415781699999882 a001 5702887/4870847*505019158607^(5/8) 2415781699999882 a001 726103/4250681*192900153618^(13/18) 2415781699999882 a001 726103/4250681*73681302247^(3/4) 2415781699999882 a001 5702887/4870847*28143753123^(7/10) 2415781699999882 a001 726103/4250681*10749957122^(13/16) 2415781699999882 a001 5702887/4870847*599074578^(5/6) 2415781699999882 a001 726103/4250681*599074578^(13/14) 2415781699999882 a001 5702887/4870847*228826127^(7/8) 2415781699999882 a001 133957148/930249*1860498^(5/6) 2415781699999883 a001 365435296162/4870847*7881196^(4/11) 2415781699999884 a001 591286729879/4870847*7881196^(1/3) 2415781699999886 a001 1548008755920/4870847*7881196^(3/11) 2415781699999890 a001 6557470319842/4870847*7881196^(2/11) 2415781699999891 a001 44583082168779/1845493 2415781699999892 a001 63245986/4870847*20633239^(6/7) 2415781699999892 a001 165580141/4870847*20633239^(4/5) 2415781699999893 a001 701408733/4870847*20633239^(5/7) 2415781699999893 a001 4807526976/4870847*20633239^(3/5) 2415781699999894 a001 7778742049/4870847*20633239^(4/7) 2415781699999894 a001 86267571272/4870847*20633239^(3/7) 2415781699999895 a001 139583862445/4870847*20633239^(2/5) 2415781699999895 a001 14930352/4870847*141422324^(11/13) 2415781699999895 a001 14930352/4870847*2537720636^(11/15) 2415781699999895 a001 14930352/4870847*45537549124^(11/17) 2415781699999895 a001 14930352/4870847*312119004989^(3/5) 2415781699999895 a001 14930352/4870847*14662949395604^(11/21) 2415781699999895 a001 311187/4769326*(1/2+1/2*5^(1/2))^41 2415781699999895 a001 14930352/4870847*(1/2+1/2*5^(1/2))^33 2415781699999895 a001 14930352/4870847*192900153618^(11/18) 2415781699999895 a001 14930352/4870847*10749957122^(11/16) 2415781699999895 a001 14930352/4870847*1568397607^(3/4) 2415781699999895 a001 14930352/4870847*599074578^(11/14) 2415781699999895 a001 956722026041/4870847*20633239^(2/7) 2415781699999896 a001 4052739537881/4870847*20633239^(1/5) 2415781699999896 a001 583600122205464/24157817 2415781699999896 a001 2178309*20633239^(1/7) 2415781699999897 a001 39088169/4870847*(1/2+1/2*5^(1/2))^31 2415781699999897 a001 39088169/4870847*9062201101803^(1/2) 2415781699999897 a001 14930352/4870847*33385282^(11/12) 2415781699999897 a001 1527884955772497/63245986 2415781699999897 a001 267914296/4870847*141422324^(9/13) 2415781699999897 a001 433494437/4870847*141422324^(2/3) 2415781699999897 a001 1134903170/4870847*141422324^(8/13) 2415781699999897 a001 4807526976/4870847*141422324^(7/13) 2415781699999897 a001 20365011074/4870847*141422324^(6/13) 2415781699999897 a001 86267571272/4870847*141422324^(5/13) 2415781699999897 a001 46347/4868641*45537549124^(15/17) 2415781699999897 a001 46347/4868641*312119004989^(9/11) 2415781699999897 a001 46347/4868641*14662949395604^(5/7) 2415781699999897 a001 102334155/4870847*(1/2+1/2*5^(1/2))^29 2415781699999897 a001 102334155/4870847*1322157322203^(1/2) 2415781699999897 a001 46347/4868641*192900153618^(5/6) 2415781699999897 a001 46347/4868641*28143753123^(9/10) 2415781699999897 a001 46347/4868641*10749957122^(15/16) 2415781699999897 a001 225851433717/4870847*141422324^(1/3) 2415781699999897 a001 365435296162/4870847*141422324^(4/13) 2415781699999897 a001 1548008755920/4870847*141422324^(3/13) 2415781699999897 a001 6557470319842/4870847*141422324^(2/13) 2415781699999897 a001 4000054745112027/165580141 2415781699999897 a001 267914296/4870847*2537720636^(3/5) 2415781699999897 a001 267914296/4870847*45537549124^(9/17) 2415781699999897 a001 267914296/4870847*14662949395604^(3/7) 2415781699999897 a001 267914296/4870847*(1/2+1/2*5^(1/2))^27 2415781699999897 a001 267914296/4870847*192900153618^(1/2) 2415781699999897 a001 267914296/4870847*10749957122^(9/16) 2415781699999897 a001 10472279279563584/433494437 2415781699999897 a001 267914296/4870847*599074578^(9/14) 2415781699999897 a001 701408733/4870847*2537720636^(5/9) 2415781699999897 a001 701408733/4870847*312119004989^(5/11) 2415781699999897 a001 311187/224056801*14662949395604^(7/9) 2415781699999897 a001 701408733/4870847*(1/2+1/2*5^(1/2))^25 2415781699999897 a001 701408733/4870847*3461452808002^(5/12) 2415781699999897 a001 311187/224056801*505019158607^(7/8) 2415781699999897 a001 701408733/4870847*28143753123^(1/2) 2415781699999897 a001 5483356618715745/226980634 2415781699999897 a001 4807526976/4870847*2537720636^(7/15) 2415781699999897 a001 7778742049/4870847*2537720636^(4/9) 2415781699999897 a001 20365011074/4870847*2537720636^(2/5) 2415781699999897 a001 726103/1368706081*14662949395604^(17/21) 2415781699999897 a001 1836311903/4870847*(1/2+1/2*5^(1/2))^23 2415781699999897 a001 726103/1368706081*192900153618^(17/18) 2415781699999897 a001 86267571272/4870847*2537720636^(1/3) 2415781699999897 a001 365435296162/4870847*2537720636^(4/15) 2415781699999897 a001 956722026041/4870847*2537720636^(2/9) 2415781699999897 a001 1548008755920/4870847*2537720636^(1/5) 2415781699999897 a001 1836311903/4870847*4106118243^(1/2) 2415781699999897 a001 71778070001172591/2971215073 2415781699999897 a001 6557470319842/4870847*2537720636^(2/15) 2415781699999897 a001 2178309*2537720636^(1/9) 2415781699999897 a001 4807526976/4870847*17393796001^(3/7) 2415781699999897 a001 4807526976/4870847*45537549124^(7/17) 2415781699999897 a001 4807526976/4870847*14662949395604^(1/3) 2415781699999897 a001 4807526976/4870847*(1/2+1/2*5^(1/2))^21 2415781699999897 a001 4807526976/4870847*192900153618^(7/18) 2415781699999897 a001 4807526976/4870847*10749957122^(7/16) 2415781699999897 a001 187917426909939048/7778742049 2415781699999897 a001 12586269025/4870847*817138163596^(1/3) 2415781699999897 a001 12586269025/4870847*(1/2+1/2*5^(1/2))^19 2415781699999897 a001 139583862445/4870847*17393796001^(2/7) 2415781699999897 a001 491974210728644553/20365011074 2415781699999897 a001 4052739537881/4870847*17393796001^(1/7) 2415781699999897 a001 32951280099/4870847*45537549124^(1/3) 2415781699999897 a001 311187/10525900321*14662949395604^(19/21) 2415781699999897 a001 32951280099/4870847*(1/2+1/2*5^(1/2))^17 2415781699999897 a001 86267571272/4870847*45537549124^(5/17) 2415781699999897 a001 365435296162/4870847*45537549124^(4/17) 2415781699999897 a001 1548008755920/4870847*45537549124^(3/17) 2415781699999897 a001 1288005205275994611/53316291173 2415781699999897 a001 86267571272/4870847*312119004989^(3/11) 2415781699999897 a001 86267571272/4870847*(1/2+1/2*5^(1/2))^15 2415781699999897 a001 674408281019867856/27916772489 2415781699999897 a001 225851433717/4870847*(1/2+1/2*5^(1/2))^13 2415781699999897 a001 591286729879/4870847*312119004989^(1/5) 2415781699999897 a001 1548008755920/4870847*(1/2+1/2*5^(1/2))^9 2415781699999897 a001 4052739537881/4870847*(1/2+1/2*5^(1/2))^7 2415781699999897 a006 5^(1/2)*Fibonacci(69)/Lucas(32)/sqrt(5) 2415781699999897 a001 956722026041/4870847*(1/2+1/2*5^(1/2))^10 2415781699999897 a001 14284196614944707178/591286729879 2415781699999897 a001 1548008755920/4870847*192900153618^(1/6) 2415781699999897 a001 139583862445/4870847*14662949395604^(2/9) 2415781699999897 a001 139583862445/4870847*(1/2+1/2*5^(1/2))^14 2415781699999897 a001 139583862445/4870847*505019158607^(1/4) 2415781699999897 a001 2084036199823344669/86267571272 2415781699999897 a001 225851433717/4870847*73681302247^(1/4) 2415781699999897 a001 365435296162/4870847*73681302247^(3/13) 2415781699999897 a001 53316291173/4870847*23725150497407^(1/4) 2415781699999897 a001 2178309*28143753123^(1/10) 2415781699999897 a001 53316291173/4870847*73681302247^(4/13) 2415781699999897 a001 265343664849116686/10983760033 2415781699999897 a001 956722026041/4870847*28143753123^(1/5) 2415781699999897 a001 20365011074/4870847*45537549124^(6/17) 2415781699999897 a001 86267571272/4870847*28143753123^(3/10) 2415781699999897 a001 20365011074/4870847*14662949395604^(2/7) 2415781699999897 a001 20365011074/4870847*(1/2+1/2*5^(1/2))^18 2415781699999897 a001 20365011074/4870847*192900153618^(1/3) 2415781699999897 a001 6557470319842/4870847*10749957122^(1/8) 2415781699999897 a001 60811356763741101/2517253805 2415781699999897 a001 2504730781961/4870847*10749957122^(1/6) 2415781699999897 a001 1548008755920/4870847*10749957122^(3/16) 2415781699999897 a001 956722026041/4870847*10749957122^(5/24) 2415781699999897 a001 365435296162/4870847*10749957122^(1/4) 2415781699999897 a001 139583862445/4870847*10749957122^(7/24) 2415781699999897 a001 86267571272/4870847*10749957122^(5/16) 2415781699999897 a001 53316291173/4870847*10749957122^(1/3) 2415781699999897 a001 2178309/17393796001*14662949395604^(6/7) 2415781699999897 a001 7778742049/4870847*(1/2+1/2*5^(1/2))^20 2415781699999897 a001 7778742049/4870847*23725150497407^(5/16) 2415781699999897 a001 7778742049/4870847*505019158607^(5/14) 2415781699999897 a001 7778742049/4870847*73681302247^(5/13) 2415781699999897 a001 20365011074/4870847*10749957122^(3/8) 2415781699999897 a001 7778742049/4870847*28143753123^(2/5) 2415781699999897 a001 7778742049/4870847*10749957122^(5/12) 2415781699999897 a001 6557470319842/4870847*4106118243^(3/23) 2415781699999897 a001 117669054618811/4870848 2415781699999897 a001 2504730781961/4870847*4106118243^(4/23) 2415781699999897 a001 956722026041/4870847*4106118243^(5/23) 2415781699999897 a001 365435296162/4870847*4106118243^(6/23) 2415781699999897 a001 139583862445/4870847*4106118243^(7/23) 2415781699999897 a001 53316291173/4870847*4106118243^(8/23) 2415781699999897 a001 2971215073/4870847*312119004989^(2/5) 2415781699999897 a001 2178309/6643838879*23725150497407^(13/16) 2415781699999897 a001 2971215073/4870847*(1/2+1/2*5^(1/2))^22 2415781699999897 a001 2178309/6643838879*505019158607^(13/14) 2415781699999897 a001 20365011074/4870847*4106118243^(9/23) 2415781699999897 a001 2971215073/4870847*10749957122^(11/24) 2415781699999897 a001 7778742049/4870847*4106118243^(10/23) 2415781699999897 a001 2971215073/4870847*4106118243^(11/23) 2415781699999897 a001 6557470319842/4870847*1568397607^(3/22) 2415781699999897 a001 44361286907593866/1836311903 2415781699999897 a001 1134903170/4870847*2537720636^(8/15) 2415781699999897 a001 2504730781961/4870847*1568397607^(2/11) 2415781699999897 a001 956722026041/4870847*1568397607^(5/22) 2415781699999897 a001 591286729879/4870847*1568397607^(1/4) 2415781699999897 a001 365435296162/4870847*1568397607^(3/11) 2415781699999897 a001 139583862445/4870847*1568397607^(7/22) 2415781699999897 a001 53316291173/4870847*1568397607^(4/11) 2415781699999897 a001 1134903170/4870847*45537549124^(8/17) 2415781699999897 a001 2178309/2537720636*312119004989^(10/11) 2415781699999897 a001 1134903170/4870847*14662949395604^(8/21) 2415781699999897 a001 1134903170/4870847*(1/2+1/2*5^(1/2))^24 2415781699999897 a001 2178309/2537720636*3461452808002^(5/6) 2415781699999897 a001 1134903170/4870847*192900153618^(4/9) 2415781699999897 a001 1134903170/4870847*73681302247^(6/13) 2415781699999897 a001 1134903170/4870847*10749957122^(1/2) 2415781699999897 a001 20365011074/4870847*1568397607^(9/22) 2415781699999897 a001 1134903170/4870847*4106118243^(12/23) 2415781699999897 a001 7778742049/4870847*1568397607^(5/11) 2415781699999897 a001 2971215073/4870847*1568397607^(1/2) 2415781699999897 a001 1134903170/4870847*1568397607^(6/11) 2415781699999897 a001 6557470319842/4870847*599074578^(1/7) 2415781699999897 a001 5648167938005047/233802911 2415781699999897 a001 4052739537881/4870847*599074578^(1/6) 2415781699999897 a001 2504730781961/4870847*599074578^(4/21) 2415781699999897 a001 1548008755920/4870847*599074578^(3/14) 2415781699999897 a001 956722026041/4870847*599074578^(5/21) 2415781699999897 a001 365435296162/4870847*599074578^(2/7) 2415781699999897 a001 139583862445/4870847*599074578^(1/3) 2415781699999897 a001 86267571272/4870847*599074578^(5/14) 2415781699999897 a001 53316291173/4870847*599074578^(8/21) 2415781699999897 a001 2178309/969323029*45537549124^(16/17) 2415781699999897 a001 2178309/969323029*14662949395604^(16/21) 2415781699999897 a001 433494437/4870847*(1/2+1/2*5^(1/2))^26 2415781699999897 a001 2178309/969323029*192900153618^(8/9) 2415781699999897 a001 433494437/4870847*73681302247^(1/2) 2415781699999897 a001 2178309/969323029*73681302247^(12/13) 2415781699999897 a001 433494437/4870847*10749957122^(13/24) 2415781699999897 a001 433494437/4870847*4106118243^(13/23) 2415781699999897 a001 20365011074/4870847*599074578^(3/7) 2415781699999897 a001 433494437/4870847*1568397607^(13/22) 2415781699999897 a001 7778742049/4870847*599074578^(10/21) 2415781699999897 a001 4807526976/4870847*599074578^(1/2) 2415781699999897 a001 2971215073/4870847*599074578^(11/21) 2415781699999897 a001 1134903170/4870847*599074578^(4/7) 2415781699999897 a001 2178309*228826127^(1/8) 2415781699999897 a001 433494437/4870847*599074578^(13/21) 2415781699999897 a001 6472224534451557/267914296 2415781699999897 a001 6557470319842/4870847*228826127^(3/20) 2415781699999897 a001 2504730781961/4870847*228826127^(1/5) 2415781699999897 a001 956722026041/4870847*228826127^(1/4) 2415781699999897 a001 365435296162/4870847*228826127^(3/10) 2415781699999897 a001 139583862445/4870847*228826127^(7/20) 2415781699999897 a001 86267571272/4870847*228826127^(3/8) 2415781699999897 a001 165580141/4870847*17393796001^(4/7) 2415781699999897 a001 165580141/4870847*14662949395604^(4/9) 2415781699999897 a001 165580141/4870847*(1/2+1/2*5^(1/2))^28 2415781699999897 a001 165580141/4870847*73681302247^(7/13) 2415781699999897 a001 165580141/4870847*10749957122^(7/12) 2415781699999897 a001 2178309/370248451*10749957122^(23/24) 2415781699999897 a001 165580141/4870847*4106118243^(14/23) 2415781699999897 a001 165580141/4870847*1568397607^(7/11) 2415781699999897 a001 53316291173/4870847*228826127^(2/5) 2415781699999897 a001 20365011074/4870847*228826127^(9/20) 2415781699999897 a001 165580141/4870847*599074578^(2/3) 2415781699999897 a001 7778742049/4870847*228826127^(1/2) 2415781699999897 a001 2971215073/4870847*228826127^(11/20) 2415781699999897 a001 701408733/4870847*228826127^(5/8) 2415781699999897 a001 63245986/4870847*141422324^(10/13) 2415781699999897 a001 1134903170/4870847*228826127^(3/5) 2415781699999897 a001 433494437/4870847*228826127^(13/20) 2415781699999897 a001 23544474184186/974611 2415781699999897 a001 165580141/4870847*228826127^(7/10) 2415781699999897 a001 6557470319842/4870847*87403803^(3/19) 2415781699999897 a001 2504730781961/4870847*87403803^(4/19) 2415781699999897 a001 956722026041/4870847*87403803^(5/19) 2415781699999897 a001 365435296162/4870847*87403803^(6/19) 2415781699999897 a001 139583862445/4870847*87403803^(7/19) 2415781699999897 a001 63245986/4870847*2537720636^(2/3) 2415781699999897 a001 63245986/4870847*45537549124^(10/17) 2415781699999897 a001 2178309/141422324*312119004989^(4/5) 2415781699999897 a001 63245986/4870847*312119004989^(6/11) 2415781699999897 a001 63245986/4870847*14662949395604^(10/21) 2415781699999897 a001 2178309/141422324*23725150497407^(11/16) 2415781699999897 a001 63245986/4870847*(1/2+1/2*5^(1/2))^30 2415781699999897 a001 63245986/4870847*192900153618^(5/9) 2415781699999897 a001 2178309/141422324*73681302247^(11/13) 2415781699999897 a001 63245986/4870847*28143753123^(3/5) 2415781699999897 a001 63245986/4870847*10749957122^(5/8) 2415781699999897 a001 2178309/141422324*10749957122^(11/12) 2415781699999897 a001 63245986/4870847*4106118243^(15/23) 2415781699999897 a001 2178309/141422324*4106118243^(22/23) 2415781699999897 a001 63245986/4870847*1568397607^(15/22) 2415781699999897 a001 63245986/4870847*599074578^(5/7) 2415781699999897 a001 53316291173/4870847*87403803^(8/19) 2415781699999897 a001 20365011074/4870847*87403803^(9/19) 2415781699999897 a001 63245986/4870847*228826127^(3/4) 2415781699999897 a001 12586269025/4870847*87403803^(1/2) 2415781699999897 a001 7778742049/4870847*87403803^(10/19) 2415781699999897 a001 2971215073/4870847*87403803^(11/19) 2415781699999897 a001 1134903170/4870847*87403803^(12/19) 2415781699999897 a001 433494437/4870847*87403803^(13/19) 2415781699999897 a001 165580141/4870847*87403803^(14/19) 2415781699999897 a001 944284833567033/39088169 2415781699999897 a001 6557470319842/4870847*33385282^(1/6) 2415781699999897 a001 63245986/4870847*87403803^(15/19) 2415781699999897 a001 2504730781961/4870847*33385282^(2/9) 2415781699999897 a001 1548008755920/4870847*33385282^(1/4) 2415781699999897 a001 956722026041/4870847*33385282^(5/18) 2415781699999898 a001 365435296162/4870847*33385282^(1/3) 2415781699999898 a001 2178309/54018521*2537720636^(14/15) 2415781699999898 a001 2178309/54018521*17393796001^(6/7) 2415781699999898 a001 2178309/54018521*45537549124^(14/17) 2415781699999898 a001 2178309/54018521*817138163596^(14/19) 2415781699999898 a001 2178309/54018521*14662949395604^(2/3) 2415781699999898 a001 24157817/4870847*(1/2+1/2*5^(1/2))^32 2415781699999898 a001 2178309/54018521*192900153618^(7/9) 2415781699999898 a001 24157817/4870847*73681302247^(8/13) 2415781699999898 a001 24157817/4870847*10749957122^(2/3) 2415781699999898 a001 2178309/54018521*10749957122^(7/8) 2415781699999898 a001 24157817/4870847*4106118243^(16/23) 2415781699999898 a001 2178309/54018521*4106118243^(21/23) 2415781699999898 a001 24157817/4870847*1568397607^(8/11) 2415781699999898 a001 2178309/54018521*1568397607^(21/22) 2415781699999898 a001 24157817/4870847*599074578^(16/21) 2415781699999898 a001 139583862445/4870847*33385282^(7/18) 2415781699999898 a001 24157817/4870847*228826127^(4/5) 2415781699999898 a001 86267571272/4870847*33385282^(5/12) 2415781699999898 a001 53316291173/4870847*33385282^(4/9) 2415781699999898 a001 20365011074/4870847*33385282^(1/2) 2415781699999898 a001 24157817/4870847*87403803^(16/19) 2415781699999898 a001 7778742049/4870847*33385282^(5/9) 2415781699999898 a001 4807526976/4870847*33385282^(7/12) 2415781699999898 a001 2971215073/4870847*33385282^(11/18) 2415781699999898 a001 1134903170/4870847*33385282^(2/3) 2415781699999898 a001 433494437/4870847*33385282^(13/18) 2415781699999898 a001 267914296/4870847*33385282^(3/4) 2415781699999899 a001 165580141/4870847*33385282^(7/9) 2415781699999899 a001 63245986/4870847*33385282^(5/6) 2415781699999899 a001 120228237120523/4976784 2415781699999899 a001 6557470319842/4870847*12752043^(3/17) 2415781699999900 a001 24157817/4870847*33385282^(8/9) 2415781699999900 a001 2504730781961/4870847*12752043^(4/17) 2415781699999901 a001 956722026041/4870847*12752043^(5/17) 2415781699999902 a001 365435296162/4870847*12752043^(6/17) 2415781699999903 a001 2178309/20633239*2537720636^(8/9) 2415781699999903 a001 9227465/4870847*45537549124^(2/3) 2415781699999903 a001 2178309/20633239*312119004989^(8/11) 2415781699999903 a001 2178309/20633239*(1/2+1/2*5^(1/2))^40 2415781699999903 a001 2178309/20633239*23725150497407^(5/8) 2415781699999903 a001 9227465/4870847*(1/2+1/2*5^(1/2))^34 2415781699999903 a001 2178309/20633239*73681302247^(10/13) 2415781699999903 a001 2178309/20633239*28143753123^(4/5) 2415781699999903 a001 9227465/4870847*10749957122^(17/24) 2415781699999903 a001 2178309/20633239*10749957122^(5/6) 2415781699999903 a001 9227465/4870847*4106118243^(17/23) 2415781699999903 a001 2178309/20633239*4106118243^(20/23) 2415781699999903 a001 9227465/4870847*1568397607^(17/22) 2415781699999903 a001 2178309/20633239*1568397607^(10/11) 2415781699999903 a001 9227465/4870847*599074578^(17/21) 2415781699999903 a001 2178309/20633239*599074578^(20/21) 2415781699999903 a001 9227465/4870847*228826127^(17/20) 2415781699999903 a001 9227465/4870847*87403803^(17/19) 2415781699999903 a001 139583862445/4870847*12752043^(7/17) 2415781699999904 a001 53316291173/4870847*12752043^(8/17) 2415781699999904 a001 32951280099/4870847*12752043^(1/2) 2415781699999905 a001 9227465/4870847*33385282^(17/18) 2415781699999905 a001 20365011074/4870847*12752043^(9/17) 2415781699999906 a001 7778742049/4870847*12752043^(10/17) 2415781699999906 a001 165580141/1860498*1860498^(13/15) 2415781699999906 a001 2971215073/4870847*12752043^(11/17) 2415781699999907 a001 1134903170/4870847*12752043^(12/17) 2415781699999908 a001 433494437/4870847*12752043^(13/17) 2415781699999909 a001 165580141/4870847*12752043^(14/17) 2415781699999910 a001 63245986/4870847*12752043^(15/17) 2415781699999912 a001 24157817/4870847*12752043^(16/17) 2415781699999912 a001 137769300517674/5702887 2415781699999916 a001 6557470319842/4870847*4870847^(3/16) 2415781699999922 a001 2504730781961/4870847*4870847^(1/4) 2415781699999929 a001 956722026041/4870847*4870847^(5/16) 2415781699999929 a001 831985/15126*1860498^(9/10) 2415781699999935 a001 365435296162/4870847*4870847^(3/8) 2415781699999936 a001 3524578/4870847*141422324^(12/13) 2415781699999936 a001 3524578/4870847*2537720636^(4/5) 2415781699999936 a001 3524578/4870847*45537549124^(12/17) 2415781699999936 a001 2178309/7881196*817138163596^(2/3) 2415781699999936 a001 2178309/7881196*(1/2+1/2*5^(1/2))^38 2415781699999936 a001 3524578/4870847*(1/2+1/2*5^(1/2))^36 2415781699999936 a001 3524578/4870847*505019158607^(9/14) 2415781699999936 a001 3524578/4870847*192900153618^(2/3) 2415781699999936 a001 3524578/4870847*73681302247^(9/13) 2415781699999936 a001 3524578/4870847*10749957122^(3/4) 2415781699999936 a001 2178309/7881196*10749957122^(19/24) 2415781699999936 a001 3524578/4870847*4106118243^(18/23) 2415781699999936 a001 2178309/7881196*4106118243^(19/23) 2415781699999936 a001 3524578/4870847*1568397607^(9/11) 2415781699999936 a001 2178309/7881196*1568397607^(19/22) 2415781699999936 a001 3524578/4870847*599074578^(6/7) 2415781699999936 a001 2178309/7881196*599074578^(19/21) 2415781699999936 a001 3524578/4870847*228826127^(9/10) 2415781699999936 a001 2178309/7881196*228826127^(19/20) 2415781699999936 a001 3524578/4870847*87403803^(18/19) 2415781699999941 a001 139583862445/4870847*4870847^(7/16) 2415781699999943 a001 42573055163112/1762289 2415781699999948 a001 53316291173/4870847*4870847^(1/2) 2415781699999948 a001 165580141/12752043*7881196^(10/11) 2415781699999952 a001 233802911/4250681*7881196^(9/11) 2415781699999952 a001 31622993/930249*1860498^(14/15) 2415781699999954 a001 20365011074/4870847*4870847^(9/16) 2415781699999956 a001 2971215073/12752043*7881196^(8/11) 2415781699999958 a001 7778742049/12752043*7881196^(2/3) 2415781699999959 a001 12586269025/12752043*7881196^(7/11) 2415781699999960 a001 7778742049/4870847*4870847^(5/8) 2415781699999961 a001 433494437/33385282*7881196^(10/11) 2415781699999963 a001 53316291173/12752043*7881196^(6/11) 2415781699999963 a001 1134903170/87403803*7881196^(10/11) 2415781699999963 a001 2971215073/228826127*7881196^(10/11) 2415781699999963 a001 7778742049/599074578*7881196^(10/11) 2415781699999963 a001 20365011074/1568397607*7881196^(10/11) 2415781699999963 a001 53316291173/4106118243*7881196^(10/11) 2415781699999963 a001 139583862445/10749957122*7881196^(10/11) 2415781699999963 a001 365435296162/28143753123*7881196^(10/11) 2415781699999963 a001 956722026041/73681302247*7881196^(10/11) 2415781699999963 a001 2504730781961/192900153618*7881196^(10/11) 2415781699999963 a001 10610209857723/817138163596*7881196^(10/11) 2415781699999963 a001 4052739537881/312119004989*7881196^(10/11) 2415781699999963 a001 1548008755920/119218851371*7881196^(10/11) 2415781699999963 a001 591286729879/45537549124*7881196^(10/11) 2415781699999963 a001 7787980473/599786069*7881196^(10/11) 2415781699999963 a001 86267571272/6643838879*7881196^(10/11) 2415781699999963 a001 32951280099/2537720636*7881196^(10/11) 2415781699999963 a001 12586269025/969323029*7881196^(10/11) 2415781699999963 a001 4807526976/370248451*7881196^(10/11) 2415781699999963 a001 1836311903/141422324*7881196^(10/11) 2415781699999964 a001 701408733/54018521*7881196^(10/11) 2415781699999965 a001 1836311903/33385282*7881196^(9/11) 2415781699999966 a001 75283811239/4250681*7881196^(5/11) 2415781699999967 a001 1602508992/29134601*7881196^(9/11) 2415781699999967 a001 12586269025/228826127*7881196^(9/11) 2415781699999967 a001 10983760033/199691526*7881196^(9/11) 2415781699999967 a001 86267571272/1568397607*7881196^(9/11) 2415781699999967 a001 75283811239/1368706081*7881196^(9/11) 2415781699999967 a001 591286729879/10749957122*7881196^(9/11) 2415781699999967 a001 12585437040/228811001*7881196^(9/11) 2415781699999967 a001 4052739537881/73681302247*7881196^(9/11) 2415781699999967 a001 3536736619241/64300051206*7881196^(9/11) 2415781699999967 a001 6557470319842/119218851371*7881196^(9/11) 2415781699999967 a001 2504730781961/45537549124*7881196^(9/11) 2415781699999967 a001 956722026041/17393796001*7881196^(9/11) 2415781699999967 a001 365435296162/6643838879*7881196^(9/11) 2415781699999967 a001 139583862445/2537720636*7881196^(9/11) 2415781699999967 a001 2971215073/4870847*4870847^(11/16) 2415781699999967 a001 53316291173/969323029*7881196^(9/11) 2415781699999967 a001 20365011074/370248451*7881196^(9/11) 2415781699999967 a001 7778742049/141422324*7881196^(9/11) 2415781699999968 a001 2971215073/54018521*7881196^(9/11) 2415781699999968 a001 7778742049/33385282*7881196^(8/11) 2415781699999969 a001 5702887/12752043*(1/2+1/2*5^(1/2))^37 2415781699999969 a001 9238424/711491*7881196^(10/11) 2415781699999970 a001 956722026041/12752043*7881196^(4/11) 2415781699999970 a001 20365011074/87403803*7881196^(8/11) 2415781699999970 a001 53316291173/228826127*7881196^(8/11) 2415781699999970 a001 139583862445/599074578*7881196^(8/11) 2415781699999970 a001 365435296162/1568397607*7881196^(8/11) 2415781699999970 a001 956722026041/4106118243*7881196^(8/11) 2415781699999970 a001 2504730781961/10749957122*7881196^(8/11) 2415781699999970 a001 6557470319842/28143753123*7881196^(8/11) 2415781699999970 a001 10610209857723/45537549124*7881196^(8/11) 2415781699999970 a001 4052739537881/17393796001*7881196^(8/11) 2415781699999970 a001 1548008755920/6643838879*7881196^(8/11) 2415781699999970 a001 591286729879/2537720636*7881196^(8/11) 2415781699999970 a001 225851433717/969323029*7881196^(8/11) 2415781699999970 a001 86267571272/370248451*7881196^(8/11) 2415781699999971 a001 63246219/271444*7881196^(8/11) 2415781699999971 a001 10182505537/16692641*7881196^(2/3) 2415781699999971 a001 516002918640/4250681*7881196^(1/3) 2415781699999971 a001 85146110326225/3524578 2415781699999971 a001 12586269025/54018521*7881196^(8/11) 2415781699999972 a001 32951280099/33385282*7881196^(7/11) 2415781699999972 a001 53316291173/87403803*7881196^(2/3) 2415781699999973 a001 1134903170/20633239*7881196^(9/11) 2415781699999973 a001 139583862445/228826127*7881196^(2/3) 2415781699999973 a001 182717648081/299537289*7881196^(2/3) 2415781699999973 a001 956722026041/1568397607*7881196^(2/3) 2415781699999973 a001 2504730781961/4106118243*7881196^(2/3) 2415781699999973 a001 3278735159921/5374978561*7881196^(2/3) 2415781699999973 a001 10610209857723/17393796001*7881196^(2/3) 2415781699999973 a001 4052739537881/6643838879*7881196^(2/3) 2415781699999973 a001 1134903780/1860499*7881196^(2/3) 2415781699999973 a001 591286729879/969323029*7881196^(2/3) 2415781699999973 a001 225851433717/370248451*7881196^(2/3) 2415781699999973 a001 21566892818/35355581*7881196^(2/3) 2415781699999973 a001 4052739537881/12752043*7881196^(3/11) 2415781699999973 a001 1134903170/4870847*4870847^(3/4) 2415781699999974 a001 32951280099/54018521*7881196^(2/3) 2415781699999974 a001 86267571272/87403803*7881196^(7/11) 2415781699999974 a001 225851433717/228826127*7881196^(7/11) 2415781699999974 a001 591286729879/599074578*7881196^(7/11) 2415781699999974 a001 1548008755920/1568397607*7881196^(7/11) 2415781699999974 a001 4052739537881/4106118243*7881196^(7/11) 2415781699999974 a001 4807525989/4870846*7881196^(7/11) 2415781699999974 a001 6557470319842/6643838879*7881196^(7/11) 2415781699999974 a001 2504730781961/2537720636*7881196^(7/11) 2415781699999974 a001 956722026041/969323029*7881196^(7/11) 2415781699999974 a001 365435296162/370248451*7881196^(7/11) 2415781699999974 a001 139583862445/141422324*7881196^(7/11) 2415781699999975 a001 53316291173/54018521*7881196^(7/11) 2415781699999975 a001 139583862445/33385282*7881196^(6/11) 2415781699999976 a001 4807526976/20633239*7881196^(8/11) 2415781699999977 a001 365435296162/87403803*7881196^(6/11) 2415781699999977 a001 956722026041/228826127*7881196^(6/11) 2415781699999977 a001 2504730781961/599074578*7881196^(6/11) 2415781699999977 a001 6557470319842/1568397607*7881196^(6/11) 2415781699999977 a001 10610209857723/2537720636*7881196^(6/11) 2415781699999977 a001 4052739537881/969323029*7881196^(6/11) 2415781699999977 a001 1548008755920/370248451*7881196^(6/11) 2415781699999978 a001 591286729879/141422324*7881196^(6/11) 2415781699999978 a001 222915410843903/9227465 2415781699999978 a001 225851433717/54018521*7881196^(6/11) 2415781699999978 a001 1144206275/1875749*7881196^(2/3) 2415781699999979 a001 591286729879/33385282*7881196^(5/11) 2415781699999979 a001 165580141/12752043*20633239^(6/7) 2415781699999979 a001 433494437/12752043*20633239^(4/5) 2415781699999980 a001 433494437/4870847*4870847^(13/16) 2415781699999980 a001 20365011074/20633239*7881196^(7/11) 2415781699999980 a001 1836311903/12752043*20633239^(5/7) 2415781699999980 a001 12586269025/12752043*20633239^(3/5) 2415781699999981 a001 20365011074/12752043*20633239^(4/7) 2415781699999981 a001 516002918640/29134601*7881196^(5/11) 2415781699999981 a001 4052739537881/228826127*7881196^(5/11) 2415781699999981 a001 3536736619241/199691526*7881196^(5/11) 2415781699999981 a001 6557470319842/370248451*7881196^(5/11) 2415781699999981 a001 2504730781961/141422324*7881196^(5/11) 2415781699999981 a001 75283811239/4250681*20633239^(3/7) 2415781699999982 a001 365435296162/12752043*20633239^(2/5) 2415781699999982 a001 5702887/33385282*2537720636^(13/15) 2415781699999982 a001 4976784/4250681*2537720636^(7/9) 2415781699999982 a001 4976784/4250681*17393796001^(5/7) 2415781699999982 a001 5702887/33385282*45537549124^(13/17) 2415781699999982 a001 4976784/4250681*312119004989^(7/11) 2415781699999982 a001 5702887/33385282*14662949395604^(13/21) 2415781699999982 a001 4976784/4250681*14662949395604^(5/9) 2415781699999982 a001 5702887/33385282*(1/2+1/2*5^(1/2))^39 2415781699999982 a001 4976784/4250681*(1/2+1/2*5^(1/2))^35 2415781699999982 a001 4976784/4250681*505019158607^(5/8) 2415781699999982 a001 5702887/33385282*192900153618^(13/18) 2415781699999982 a001 5702887/33385282*73681302247^(3/4) 2415781699999982 a001 4976784/4250681*28143753123^(7/10) 2415781699999982 a001 5702887/33385282*10749957122^(13/16) 2415781699999982 a001 4976784/4250681*599074578^(5/6) 2415781699999982 a001 5702887/33385282*599074578^(13/14) 2415781699999982 a001 4976784/4250681*228826127^(7/8) 2415781699999982 a001 956722026041/54018521*7881196^(5/11) 2415781699999982 a001 2504730781961/12752043*20633239^(2/7) 2415781699999982 a001 2504730781961/33385282*7881196^(4/11) 2415781699999983 a001 3536736619241/4250681*20633239^(1/5) 2415781699999983 a001 583600122205485/24157817 2415781699999983 a001 86267571272/20633239*7881196^(6/11) 2415781699999983 a001 39088169/12752043*141422324^(11/13) 2415781699999983 a001 39088169/12752043*2537720636^(11/15) 2415781699999984 a001 39088169/12752043*45537549124^(11/17) 2415781699999984 a001 39088169/12752043*312119004989^(3/5) 2415781699999984 a001 39088169/12752043*14662949395604^(11/21) 2415781699999984 a001 39088169/12752043*(1/2+1/2*5^(1/2))^33 2415781699999984 a001 39088169/12752043*192900153618^(11/18) 2415781699999984 a001 39088169/12752043*10749957122^(11/16) 2415781699999984 a001 39088169/12752043*1568397607^(3/4) 2415781699999984 a001 39088169/12752043*599074578^(11/14) 2415781699999984 a001 4052739537881/33385282*7881196^(1/3) 2415781699999984 a001 763942477886276/31622993 2415781699999984 a001 233802911/4250681*141422324^(9/13) 2415781699999984 a001 1134903170/12752043*141422324^(2/3) 2415781699999984 a001 165580141/12752043*141422324^(10/13) 2415781699999984 a001 2971215073/12752043*141422324^(8/13) 2415781699999984 a001 12586269025/12752043*141422324^(7/13) 2415781699999984 a001 53316291173/12752043*141422324^(6/13) 2415781699999984 a001 75283811239/4250681*141422324^(5/13) 2415781699999984 a001 34111385/4250681*(1/2+1/2*5^(1/2))^31 2415781699999984 a001 34111385/4250681*9062201101803^(1/2) 2415781699999984 a001 591286729879/12752043*141422324^(1/3) 2415781699999984 a001 956722026041/12752043*141422324^(4/13) 2415781699999984 a001 4052739537881/12752043*141422324^(3/13) 2415781699999984 a001 4000054745112171/165580141 2415781699999984 a001 5702887/599074578*45537549124^(15/17) 2415781699999984 a001 5702887/599074578*312119004989^(9/11) 2415781699999984 a001 5702887/599074578*14662949395604^(5/7) 2415781699999984 a001 267914296/12752043*(1/2+1/2*5^(1/2))^29 2415781699999984 a001 267914296/12752043*1322157322203^(1/2) 2415781699999984 a001 5702887/599074578*192900153618^(5/6) 2415781699999984 a001 5702887/599074578*28143753123^(9/10) 2415781699999984 a001 5702887/599074578*10749957122^(15/16) 2415781699999984 a001 10472279279563961/433494437 2415781699999984 a001 233802911/4250681*2537720636^(3/5) 2415781699999984 a001 233802911/4250681*45537549124^(9/17) 2415781699999984 a001 233802911/4250681*817138163596^(9/19) 2415781699999984 a001 233802911/4250681*14662949395604^(3/7) 2415781699999984 a001 233802911/4250681*(1/2+1/2*5^(1/2))^27 2415781699999984 a001 233802911/4250681*192900153618^(1/2) 2415781699999984 a001 233802911/4250681*10749957122^(9/16) 2415781699999984 a001 13708391546789856/567451585 2415781699999984 a001 1836311903/12752043*2537720636^(5/9) 2415781699999984 a001 12586269025/12752043*2537720636^(7/15) 2415781699999984 a001 20365011074/12752043*2537720636^(4/9) 2415781699999984 a001 53316291173/12752043*2537720636^(2/5) 2415781699999984 a001 2971215073/12752043*2537720636^(8/15) 2415781699999984 a001 1836311903/12752043*312119004989^(5/11) 2415781699999984 a001 1836311903/12752043*(1/2+1/2*5^(1/2))^25 2415781699999984 a001 1836311903/12752043*3461452808002^(5/12) 2415781699999984 a001 5702887/4106118243*505019158607^(7/8) 2415781699999984 a001 1836311903/12752043*28143753123^(1/2) 2415781699999984 a001 75283811239/4250681*2537720636^(1/3) 2415781699999984 a001 956722026041/12752043*2537720636^(4/15) 2415781699999984 a001 2504730781961/12752043*2537720636^(2/9) 2415781699999984 a001 4052739537881/12752043*2537720636^(1/5) 2415781699999984 a001 71778070001175175/2971215073 2415781699999984 a001 5702887/10749957122*817138163596^(17/19) 2415781699999984 a001 5702887/10749957122*14662949395604^(17/21) 2415781699999984 a001 1602508992/4250681*(1/2+1/2*5^(1/2))^23 2415781699999984 a001 5702887/10749957122*192900153618^(17/18) 2415781699999984 a001 187917426909945813/7778742049 2415781699999984 a001 12586269025/12752043*17393796001^(3/7) 2415781699999984 a001 12586269025/12752043*45537549124^(7/17) 2415781699999984 a001 12586269025/12752043*14662949395604^(1/3) 2415781699999984 a001 12586269025/12752043*(1/2+1/2*5^(1/2))^21 2415781699999984 a001 12586269025/12752043*192900153618^(7/18) 2415781699999984 a001 365435296162/12752043*17393796001^(2/7) 2415781699999984 a001 154030748506156/6376021 2415781699999984 a001 3536736619241/4250681*17393796001^(1/7) 2415781699999984 a001 10983760033/4250681*817138163596^(1/3) 2415781699999984 a001 10983760033/4250681*(1/2+1/2*5^(1/2))^19 2415781699999984 a001 5702887/73681302247*3461452808002^(11/12) 2415781699999984 a001 75283811239/4250681*45537549124^(5/17) 2415781699999984 a001 956722026041/12752043*45537549124^(4/17) 2415781699999984 a001 53316291173/12752043*45537549124^(6/17) 2415781699999984 a001 4052739537881/12752043*45537549124^(3/17) 2415781699999984 a001 1288005205276040979/53316291173 2415781699999984 a001 5702887/192900153618*14662949395604^(19/21) 2415781699999984 a001 86267571272/12752043*(1/2+1/2*5^(1/2))^17 2415781699999984 a001 3372041405099460673/139583862445 2415781699999984 a001 75283811239/4250681*(1/2+1/2*5^(1/2))^15 2415781699999984 a001 516002918640/4250681*312119004989^(1/5) 2415781699999984 a001 516002918640/4250681*(1/2+1/2*5^(1/2))^11 2415781699999984 a001 4052739537881/12752043*(1/2+1/2*5^(1/2))^9 2415781699999984 a001 3536736619241/4250681*(1/2+1/2*5^(1/2))^7 2415781699999984 a006 5^(1/2)*Fibonacci(71)/Lucas(34)/sqrt(5) 2415781699999984 a001 6557470319842/12752043*(1/2+1/2*5^(1/2))^8 2415781699999984 a001 2504730781961/12752043*(1/2+1/2*5^(1/2))^10 2415781699999984 a001 956722026041/12752043*(1/2+1/2*5^(1/2))^12 2415781699999984 a001 14284196614945221407/591286729879 2415781699999984 a001 365435296162/12752043*14662949395604^(2/9) 2415781699999984 a001 365435296162/12752043*(1/2+1/2*5^(1/2))^14 2415781699999984 a001 956722026041/12752043*192900153618^(2/9) 2415781699999984 a001 139583862445/12752043*(1/2+1/2*5^(1/2))^16 2415781699999984 a001 139583862445/12752043*23725150497407^(1/4) 2415781699999984 a001 1042018099911709847/43133785636 2415781699999984 a001 591286729879/12752043*73681302247^(1/4) 2415781699999984 a001 139583862445/12752043*73681302247^(4/13) 2415781699999984 a001 53316291173/12752043*192900153618^(1/3) 2415781699999984 a001 796030994547378715/32951280099 2415781699999984 a001 2504730781961/12752043*28143753123^(1/5) 2415781699999984 a001 75283811239/4250681*28143753123^(3/10) 2415781699999984 a001 1597/12752044*14662949395604^(6/7) 2415781699999984 a001 20365011074/12752043*(1/2+1/2*5^(1/2))^20 2415781699999984 a001 20365011074/12752043*505019158607^(5/14) 2415781699999984 a001 20365011074/12752043*73681302247^(5/13) 2415781699999984 a001 20365011074/12752043*28143753123^(2/5) 2415781699999984 a001 304056783818716451/12586269025 2415781699999984 a001 6557470319842/12752043*10749957122^(1/6) 2415781699999984 a001 4052739537881/12752043*10749957122^(3/16) 2415781699999984 a001 2504730781961/12752043*10749957122^(5/24) 2415781699999984 a001 956722026041/12752043*10749957122^(1/4) 2415781699999984 a001 12586269025/12752043*10749957122^(7/16) 2415781699999984 a001 365435296162/12752043*10749957122^(7/24) 2415781699999984 a001 75283811239/4250681*10749957122^(5/16) 2415781699999984 a001 139583862445/12752043*10749957122^(1/3) 2415781699999984 a001 7778742049/12752043*312119004989^(2/5) 2415781699999984 a001 7778742049/12752043*(1/2+1/2*5^(1/2))^22 2415781699999984 a001 5702887/17393796001*23725150497407^(13/16) 2415781699999984 a001 5702887/17393796001*505019158607^(13/14) 2415781699999984 a001 53316291173/12752043*10749957122^(3/8) 2415781699999984 a001 20365011074/12752043*10749957122^(5/12) 2415781699999984 a001 7778742049/12752043*10749957122^(11/24) 2415781699999984 a001 58069678454385319/2403763488 2415781699999984 a001 6557470319842/12752043*4106118243^(4/23) 2415781699999984 a001 2504730781961/12752043*4106118243^(5/23) 2415781699999984 a001 956722026041/12752043*4106118243^(6/23) 2415781699999984 a001 365435296162/12752043*4106118243^(7/23) 2415781699999984 a001 139583862445/12752043*4106118243^(8/23) 2415781699999984 a001 1602508992/4250681*4106118243^(1/2) 2415781699999984 a001 2971215073/12752043*45537549124^(8/17) 2415781699999984 a001 5702887/6643838879*312119004989^(10/11) 2415781699999984 a001 2971215073/12752043*14662949395604^(8/21) 2415781699999984 a001 2971215073/12752043*(1/2+1/2*5^(1/2))^24 2415781699999984 a001 2971215073/12752043*192900153618^(4/9) 2415781699999984 a001 2971215073/12752043*73681302247^(6/13) 2415781699999984 a001 53316291173/12752043*4106118243^(9/23) 2415781699999984 a001 20365011074/12752043*4106118243^(10/23) 2415781699999984 a001 2971215073/12752043*10749957122^(1/2) 2415781699999984 a001 7778742049/12752043*4106118243^(11/23) 2415781699999984 a001 2971215073/12752043*4106118243^(12/23) 2415781699999984 a001 44361286907595463/1836311903 2415781699999984 a001 6557470319842/12752043*1568397607^(2/11) 2415781699999984 a001 2504730781961/12752043*1568397607^(5/22) 2415781699999984 a001 516002918640/4250681*1568397607^(1/4) 2415781699999984 a001 956722026041/12752043*1568397607^(3/11) 2415781699999984 a001 365435296162/12752043*1568397607^(7/22) 2415781699999984 a001 139583862445/12752043*1568397607^(4/11) 2415781699999984 a001 5702887/2537720636*45537549124^(16/17) 2415781699999984 a001 5702887/2537720636*14662949395604^(16/21) 2415781699999984 a001 1134903170/12752043*(1/2+1/2*5^(1/2))^26 2415781699999984 a001 5702887/2537720636*192900153618^(8/9) 2415781699999984 a001 1134903170/12752043*73681302247^(1/2) 2415781699999984 a001 5702887/2537720636*73681302247^(12/13) 2415781699999984 a001 1134903170/12752043*10749957122^(13/24) 2415781699999984 a001 53316291173/12752043*1568397607^(9/22) 2415781699999984 a001 20365011074/12752043*1568397607^(5/11) 2415781699999984 a001 1134903170/12752043*4106118243^(13/23) 2415781699999984 a001 7778742049/12752043*1568397607^(1/2) 2415781699999984 a001 2971215073/12752043*1568397607^(6/11) 2415781699999984 a001 1134903170/12752043*1568397607^(13/22) 2415781699999984 a001 16944503814015751/701408733 2415781699999984 a001 3536736619241/4250681*599074578^(1/6) 2415781699999984 a001 6557470319842/12752043*599074578^(4/21) 2415781699999984 a001 4052739537881/12752043*599074578^(3/14) 2415781699999984 a001 2504730781961/12752043*599074578^(5/21) 2415781699999984 a001 956722026041/12752043*599074578^(2/7) 2415781699999984 a001 365435296162/12752043*599074578^(1/3) 2415781699999984 a001 75283811239/4250681*599074578^(5/14) 2415781699999984 a001 139583862445/12752043*599074578^(8/21) 2415781699999984 a001 433494437/12752043*17393796001^(4/7) 2415781699999984 a001 433494437/12752043*14662949395604^(4/9) 2415781699999984 a001 433494437/12752043*(1/2+1/2*5^(1/2))^28 2415781699999984 a001 433494437/12752043*73681302247^(7/13) 2415781699999984 a001 433494437/12752043*10749957122^(7/12) 2415781699999984 a001 5702887/969323029*10749957122^(23/24) 2415781699999984 a001 433494437/12752043*4106118243^(14/23) 2415781699999984 a001 53316291173/12752043*599074578^(3/7) 2415781699999984 a001 433494437/12752043*1568397607^(7/11) 2415781699999984 a001 20365011074/12752043*599074578^(10/21) 2415781699999984 a001 233802911/4250681*599074578^(9/14) 2415781699999984 a001 12586269025/12752043*599074578^(1/2) 2415781699999984 a001 7778742049/12752043*599074578^(11/21) 2415781699999984 a001 2971215073/12752043*599074578^(4/7) 2415781699999984 a001 1134903170/12752043*599074578^(13/21) 2415781699999984 a001 433494437/12752043*599074578^(2/3) 2415781699999984 a001 3236112267225895/133957148 2415781699999984 a001 6557470319842/12752043*228826127^(1/5) 2415781699999984 a001 2504730781961/12752043*228826127^(1/4) 2415781699999984 a001 956722026041/12752043*228826127^(3/10) 2415781699999984 a001 365435296162/12752043*228826127^(7/20) 2415781699999984 a001 75283811239/4250681*228826127^(3/8) 2415781699999984 a001 165580141/12752043*2537720636^(2/3) 2415781699999984 a001 165580141/12752043*45537549124^(10/17) 2415781699999984 a001 5702887/370248451*312119004989^(4/5) 2415781699999984 a001 165580141/12752043*312119004989^(6/11) 2415781699999984 a001 165580141/12752043*14662949395604^(10/21) 2415781699999984 a001 165580141/12752043*(1/2+1/2*5^(1/2))^30 2415781699999984 a001 165580141/12752043*192900153618^(5/9) 2415781699999984 a001 5702887/370248451*73681302247^(11/13) 2415781699999984 a001 165580141/12752043*28143753123^(3/5) 2415781699999984 a001 165580141/12752043*10749957122^(5/8) 2415781699999984 a001 5702887/370248451*10749957122^(11/12) 2415781699999984 a001 165580141/12752043*4106118243^(15/23) 2415781699999984 a001 5702887/370248451*4106118243^(22/23) 2415781699999984 a001 165580141/12752043*1568397607^(15/22) 2415781699999984 a001 139583862445/12752043*228826127^(2/5) 2415781699999984 a001 53316291173/12752043*228826127^(9/20) 2415781699999984 a001 165580141/12752043*599074578^(5/7) 2415781699999984 a001 20365011074/12752043*228826127^(1/2) 2415781699999984 a001 7778742049/12752043*228826127^(11/20) 2415781699999984 a001 2971215073/12752043*228826127^(3/5) 2415781699999984 a001 1836311903/12752043*228826127^(5/8) 2415781699999984 a001 1134903170/12752043*228826127^(13/20) 2415781699999984 a001 433494437/12752043*228826127^(7/10) 2415781699999984 a001 2472169789339619/102334155 2415781699999984 a001 165580141/12752043*228826127^(3/4) 2415781699999984 a001 6557470319842/12752043*87403803^(4/19) 2415781699999984 a001 2504730781961/12752043*87403803^(5/19) 2415781699999984 a001 956722026041/12752043*87403803^(6/19) 2415781699999984 a001 365435296162/12752043*87403803^(7/19) 2415781699999984 a001 5702887/141422324*2537720636^(14/15) 2415781699999984 a001 5702887/141422324*17393796001^(6/7) 2415781699999984 a001 5702887/141422324*45537549124^(14/17) 2415781699999984 a001 5702887/141422324*817138163596^(14/19) 2415781699999984 a001 5702887/141422324*14662949395604^(2/3) 2415781699999984 a001 63245986/12752043*(1/2+1/2*5^(1/2))^32 2415781699999984 a001 5702887/141422324*192900153618^(7/9) 2415781699999984 a001 63245986/12752043*73681302247^(8/13) 2415781699999984 a001 63245986/12752043*10749957122^(2/3) 2415781699999984 a001 5702887/141422324*10749957122^(7/8) 2415781699999984 a001 63245986/12752043*4106118243^(16/23) 2415781699999984 a001 5702887/141422324*4106118243^(21/23) 2415781699999984 a001 63245986/12752043*1568397607^(8/11) 2415781699999984 a001 5702887/141422324*1568397607^(21/22) 2415781699999984 a001 63245986/12752043*599074578^(16/21) 2415781699999984 a001 139583862445/12752043*87403803^(8/19) 2415781699999984 a001 53316291173/12752043*87403803^(9/19) 2415781699999984 a001 63245986/12752043*228826127^(4/5) 2415781699999984 a001 10983760033/4250681*87403803^(1/2) 2415781699999984 a001 20365011074/12752043*87403803^(10/19) 2415781699999984 a001 7778742049/12752043*87403803^(11/19) 2415781699999984 a001 2971215073/12752043*87403803^(12/19) 2415781699999984 a001 1134903170/12752043*87403803^(13/19) 2415781699999984 a001 433494437/12752043*87403803^(14/19) 2415781699999984 a001 165580141/12752043*87403803^(15/19) 2415781699999984 a001 3278735159921/930249*710647^(1/7) 2415781699999984 a001 944284833567067/39088169 2415781699999984 a001 63245986/12752043*87403803^(16/19) 2415781699999984 a001 6557470319842/87403803*7881196^(4/11) 2415781699999984 a001 6557470319842/12752043*33385282^(2/9) 2415781699999984 a001 4052739537881/12752043*33385282^(1/4) 2415781699999984 a001 2504730781961/12752043*33385282^(5/18) 2415781699999985 a001 956722026041/12752043*33385282^(1/3) 2415781699999985 a001 5702887/54018521*2537720636^(8/9) 2415781699999985 a001 24157817/12752043*45537549124^(2/3) 2415781699999985 a001 5702887/54018521*312119004989^(8/11) 2415781699999985 a001 24157817/12752043*(1/2+1/2*5^(1/2))^34 2415781699999985 a001 5702887/54018521*23725150497407^(5/8) 2415781699999985 a001 5702887/54018521*73681302247^(10/13) 2415781699999985 a001 5702887/54018521*28143753123^(4/5) 2415781699999985 a001 24157817/12752043*10749957122^(17/24) 2415781699999985 a001 5702887/54018521*10749957122^(5/6) 2415781699999985 a001 24157817/12752043*4106118243^(17/23) 2415781699999985 a001 5702887/54018521*4106118243^(20/23) 2415781699999985 a001 24157817/12752043*1568397607^(17/22) 2415781699999985 a001 5702887/54018521*1568397607^(10/11) 2415781699999985 a001 24157817/12752043*599074578^(17/21) 2415781699999985 a001 10610209857723/141422324*7881196^(4/11) 2415781699999985 a001 5702887/54018521*599074578^(20/21) 2415781699999985 a001 365435296162/12752043*33385282^(7/18) 2415781699999985 a001 24157817/12752043*228826127^(17/20) 2415781699999985 a001 75283811239/4250681*33385282^(5/12) 2415781699999985 a001 139583862445/12752043*33385282^(4/9) 2415781699999985 a001 53316291173/12752043*33385282^(1/2) 2415781699999985 a001 24157817/12752043*87403803^(17/19) 2415781699999985 a001 20365011074/12752043*33385282^(5/9) 2415781699999985 a001 12586269025/12752043*33385282^(7/12) 2415781699999985 a001 7778742049/12752043*33385282^(11/18) 2415781699999985 a001 2971215073/12752043*33385282^(2/3) 2415781699999985 a001 4052739537881/54018521*7881196^(4/11) 2415781699999985 a001 1134903170/12752043*33385282^(13/18) 2415781699999985 a001 3536736619241/29134601*7881196^(1/3) 2415781699999985 a001 233802911/4250681*33385282^(3/4) 2415781699999985 a001 39088169/12752043*33385282^(11/12) 2415781699999986 a001 433494437/12752043*33385282^(7/9) 2415781699999986 a001 165580141/12752043*33385282^(5/6) 2415781699999986 a001 63245986/12752043*33385282^(8/9) 2415781699999986 a001 1515744265389/4769326*7881196^(3/11) 2415781699999986 a001 165580141/4870847*4870847^(7/8) 2415781699999986 a001 180342355680791/7465176 2415781699999987 a001 6557470319842/54018521*7881196^(1/3) 2415781699999987 a001 365435296162/20633239*7881196^(5/11) 2415781699999987 a001 24157817/12752043*33385282^(17/18) 2415781699999987 a001 6557470319842/12752043*12752043^(4/17) 2415781699999988 a001 2504730781961/12752043*12752043^(5/17) 2415781699999989 a001 2178309/2+20633239/2*5^(1/2) 2415781699999989 a001 222915410843904/9227465 2415781699999989 a001 956722026041/12752043*12752043^(6/17) 2415781699999989 a001 9227465/12752043*141422324^(12/13) 2415781699999989 a001 9227465/12752043*2537720636^(4/5) 2415781699999989 a001 9227465/12752043*45537549124^(12/17) 2415781699999989 a001 5702887/20633239*817138163596^(2/3) 2415781699999989 a001 5702887/20633239*(1/2+1/2*5^(1/2))^38 2415781699999989 a001 9227465/12752043*(1/2+1/2*5^(1/2))^36 2415781699999989 a001 9227465/12752043*192900153618^(2/3) 2415781699999989 a001 9227465/12752043*73681302247^(9/13) 2415781699999989 a001 9227465/12752043*10749957122^(3/4) 2415781699999989 a001 5702887/20633239*10749957122^(19/24) 2415781699999989 a001 9227465/12752043*4106118243^(18/23) 2415781699999989 a001 5702887/20633239*4106118243^(19/23) 2415781699999989 a001 9227465/12752043*1568397607^(9/11) 2415781699999989 a001 5702887/20633239*1568397607^(19/22) 2415781699999989 a001 9227465/12752043*599074578^(6/7) 2415781699999989 a001 5702887/20633239*599074578^(19/21) 2415781699999990 a001 9227465/12752043*228826127^(9/10) 2415781699999990 a001 5702887/20633239*228826127^(19/20) 2415781699999990 a001 9227465/12752043*87403803^(18/19) 2415781699999990 a001 365435296162/12752043*12752043^(7/17) 2415781699999990 a001 140728068720/1875749*7881196^(4/11) 2415781699999991 a001 139583862445/12752043*12752043^(8/17) 2415781699999991 a001 86267571272/12752043*12752043^(1/2) 2415781699999991 a001 2504730781961/20633239*7881196^(1/3) 2415781699999992 a001 433494437/33385282*20633239^(6/7) 2415781699999992 a001 35563591/2+5702887/2*5^(1/2) 2415781699999992 a001 53316291173/12752043*12752043^(9/17) 2415781699999992 a001 567451585/16692641*20633239^(4/5) 2415781699999992 a001 63245986/4870847*4870847^(15/16) 2415781699999992 a001 14930208/103681*20633239^(5/7) 2415781699999993 a001 20365011074/12752043*12752043^(10/17) 2415781699999993 a001 32951280099/33385282*20633239^(3/5) 2415781699999993 a001 53316291173/33385282*20633239^(4/7) 2415781699999993 a001 7778742049/12752043*12752043^(11/17) 2415781699999993 a001 1134903170/87403803*20633239^(6/7) 2415781699999994 a001 -9227465+14930352*5^(1/2) 2415781699999994 a001 6557470319842/20633239*7881196^(3/11) 2415781699999994 a001 2971215073/228826127*20633239^(6/7) 2415781699999994 a001 7778742049/599074578*20633239^(6/7) 2415781699999994 a001 20365011074/1568397607*20633239^(6/7) 2415781699999994 a001 53316291173/4106118243*20633239^(6/7) 2415781699999994 a001 139583862445/10749957122*20633239^(6/7) 2415781699999994 a001 365435296162/28143753123*20633239^(6/7) 2415781699999994 a001 956722026041/73681302247*20633239^(6/7) 2415781699999994 a001 2504730781961/192900153618*20633239^(6/7) 2415781699999994 a001 10610209857723/817138163596*20633239^(6/7) 2415781699999994 a001 4052739537881/312119004989*20633239^(6/7) 2415781699999994 a001 1548008755920/119218851371*20633239^(6/7) 2415781699999994 a001 591286729879/45537549124*20633239^(6/7) 2415781699999994 a001 7787980473/599786069*20633239^(6/7) 2415781699999994 a001 86267571272/6643838879*20633239^(6/7) 2415781699999994 a001 32951280099/2537720636*20633239^(6/7) 2415781699999994 a001 12586269025/969323029*20633239^(6/7) 2415781699999994 a001 2971215073/87403803*20633239^(4/5) 2415781699999994 a001 4807526976/370248451*20633239^(6/7) 2415781699999994 a001 1836311903/141422324*20633239^(6/7) 2415781699999994 a001 591286729879/33385282*20633239^(3/7) 2415781699999994 a001 7778742049/228826127*20633239^(4/5) 2415781699999994 a001 10182505537/299537289*20633239^(4/5) 2415781699999994 a001 53316291173/1568397607*20633239^(4/5) 2415781699999994 a001 139583862445/4106118243*20633239^(4/5) 2415781699999994 a001 182717648081/5374978561*20633239^(4/5) 2415781699999994 a001 956722026041/28143753123*20633239^(4/5) 2415781699999994 a001 2504730781961/73681302247*20633239^(4/5) 2415781699999994 a001 3278735159921/96450076809*20633239^(4/5) 2415781699999994 a001 10610209857723/312119004989*20633239^(4/5) 2415781699999994 a001 4052739537881/119218851371*20633239^(4/5) 2415781699999994 a001 387002188980/11384387281*20633239^(4/5) 2415781699999994 a001 591286729879/17393796001*20633239^(4/5) 2415781699999994 a001 225851433717/6643838879*20633239^(4/5) 2415781699999994 a001 1135099622/33391061*20633239^(4/5) 2415781699999994 a001 32951280099/969323029*20633239^(4/5) 2415781699999994 a001 12586269025/370248451*20633239^(4/5) 2415781699999994 a001 956722026041/33385282*20633239^(2/5) 2415781699999994 a001 1201881744/35355581*20633239^(4/5) 2415781699999994 a001 12586269025/87403803*20633239^(5/7) 2415781699999994 a001 2971215073/12752043*12752043^(12/17) 2415781699999994 a001 7465176/16692641*(1/2+1/2*5^(1/2))^37 2415781699999995 a001 32951280099/228826127*20633239^(5/7) 2415781699999995 a001 43133785636/299537289*20633239^(5/7) 2415781699999995 a001 32264490531/224056801*20633239^(5/7) 2415781699999995 a001 591286729879/4106118243*20633239^(5/7) 2415781699999995 a001 774004377960/5374978561*20633239^(5/7) 2415781699999995 a001 4052739537881/28143753123*20633239^(5/7) 2415781699999995 a001 1515744265389/10525900321*20633239^(5/7) 2415781699999995 a001 3278735159921/22768774562*20633239^(5/7) 2415781699999995 a001 2504730781961/17393796001*20633239^(5/7) 2415781699999995 a001 956722026041/6643838879*20633239^(5/7) 2415781699999995 a001 182717648081/1268860318*20633239^(5/7) 2415781699999995 a001 139583862445/969323029*20633239^(5/7) 2415781699999995 a001 701408733/54018521*20633239^(6/7) 2415781699999995 a001 53316291173/370248451*20633239^(5/7) 2415781699999995 a001 68948873/2-9227465/2*5^(1/2) 2415781699999995 a001 10182505537/70711162*20633239^(5/7) 2415781699999995 a001 3278735159921/16692641*20633239^(2/7) 2415781699999995 a001 86267571272/87403803*20633239^(3/5) 2415781699999995 a001 1836311903/54018521*20633239^(4/5) 2415781699999995 a001 139583862445/87403803*20633239^(4/7) 2415781699999995 a001 1134903170/12752043*12752043^(13/17) 2415781699999995 a001 225851433717/228826127*20633239^(3/5) 2415781699999995 a001 591286729879/599074578*20633239^(3/5) 2415781699999995 a001 1548008755920/1568397607*20633239^(3/5) 2415781699999995 a001 4052739537881/4106118243*20633239^(3/5) 2415781699999995 a001 4807525989/4870846*20633239^(3/5) 2415781699999995 a001 6557470319842/6643838879*20633239^(3/5) 2415781699999995 a001 2504730781961/2537720636*20633239^(3/5) 2415781699999995 a001 956722026041/969323029*20633239^(3/5) 2415781699999995 a001 365435296162/370248451*20633239^(3/5) 2415781699999995 a001 -72473451/2+54018521/2*5^(1/2) 2415781699999995 a001 583600122205488/24157817 2415781699999995 a001 365435296162/228826127*20633239^(4/7) 2415781699999995 a001 139583862445/141422324*20633239^(3/5) 2415781699999995 a001 956722026041/599074578*20633239^(4/7) 2415781699999995 a001 2504730781961/1568397607*20633239^(4/7) 2415781699999995 a001 6557470319842/4106118243*20633239^(4/7) 2415781699999995 a001 10610209857723/6643838879*20633239^(4/7) 2415781699999995 a001 4052739537881/2537720636*20633239^(4/7) 2415781699999995 a001 1548008755920/969323029*20633239^(4/7) 2415781699999995 a001 7778742049/54018521*20633239^(5/7) 2415781699999995 a001 591286729879/370248451*20633239^(4/7) 2415781699999996 a001 225851433717/141422324*20633239^(4/7) 2415781699999996 a001 516002918640/29134601*20633239^(3/7) 2415781699999996 a001 433494437/12752043*12752043^(14/17) 2415781699999996 a001 2504730781961/87403803*20633239^(2/5) 2415781699999996 a001 53316291173/54018521*20633239^(3/5) 2415781699999996 a001 4976784/29134601*2537720636^(13/15) 2415781699999996 a001 39088169/33385282*2537720636^(7/9) 2415781699999996 a001 39088169/33385282*17393796001^(5/7) 2415781699999996 a001 4976784/29134601*45537549124^(13/17) 2415781699999996 a001 39088169/33385282*312119004989^(7/11) 2415781699999996 a001 39088169/33385282*14662949395604^(5/9) 2415781699999996 a001 39088169/33385282*(1/2+1/2*5^(1/2))^35 2415781699999996 a001 39088169/33385282*505019158607^(5/8) 2415781699999996 a001 4976784/29134601*192900153618^(13/18) 2415781699999996 a001 4976784/29134601*73681302247^(3/4) 2415781699999996 a001 39088169/33385282*28143753123^(7/10) 2415781699999996 a001 4976784/29134601*10749957122^(13/16) 2415781699999996 a001 39088169/33385282*599074578^(5/6) 2415781699999996 a001 4052739537881/228826127*20633239^(3/7) 2415781699999996 a001 4976784/29134601*599074578^(13/14) 2415781699999996 a001 39088169/33385282*228826127^(7/8) 2415781699999996 a001 3536736619241/199691526*20633239^(3/7) 2415781699999996 a001 86267571272/54018521*20633239^(4/7) 2415781699999996 a001 6557470319842/370248451*20633239^(3/7) 2415781699999996 a001 763942477886280/31622993 2415781699999996 a001 6557470319842/228826127*20633239^(2/5) 2415781699999996 a001 14619165/4769326*141422324^(11/13) 2415781699999996 a001 2504730781961/141422324*20633239^(3/7) 2415781699999996 a001 433494437/33385282*141422324^(10/13) 2415781699999996 a001 10610209857723/370248451*20633239^(2/5) 2415781699999996 a001 1836311903/33385282*141422324^(9/13) 2415781699999996 a001 2971215073/33385282*141422324^(2/3) 2415781699999996 a001 7778742049/33385282*141422324^(8/13) 2415781699999996 a001 32951280099/33385282*141422324^(7/13) 2415781699999996 a001 139583862445/33385282*141422324^(6/13) 2415781699999996 a001 591286729879/33385282*141422324^(5/13) 2415781699999996 a001 14619165/4769326*2537720636^(11/15) 2415781699999996 a001 14619165/4769326*45537549124^(11/17) 2415781699999996 a001 14619165/4769326*312119004989^(3/5) 2415781699999996 a001 14619165/4769326*817138163596^(11/19) 2415781699999996 a001 14619165/4769326*14662949395604^(11/21) 2415781699999996 a001 14619165/4769326*(1/2+1/2*5^(1/2))^33 2415781699999996 a001 14619165/4769326*192900153618^(11/18) 2415781699999996 a001 14619165/4769326*10749957122^(11/16) 2415781699999996 a001 14619165/4769326*1568397607^(3/4) 2415781699999996 a001 14619165/4769326*599074578^(11/14) 2415781699999996 a001 774004377960/16692641*141422324^(1/3) 2415781699999996 a001 2504730781961/33385282*141422324^(4/13) 2415781699999996 a001 1515744265389/4769326*141422324^(3/13) 2415781699999996 a001 4000054745112192/165580141 2415781699999996 a001 133957148/16692641*(1/2+1/2*5^(1/2))^31 2415781699999996 a001 133957148/16692641*9062201101803^(1/2) 2415781699999997 a001 10472279279564016/433494437 2415781699999997 a001 14930352/1568397607*45537549124^(15/17) 2415781699999997 a001 14930352/1568397607*312119004989^(9/11) 2415781699999997 a001 14930352/1568397607*14662949395604^(5/7) 2415781699999997 a001 701408733/33385282*(1/2+1/2*5^(1/2))^29 2415781699999997 a001 701408733/33385282*1322157322203^(1/2) 2415781699999997 a001 14930352/1568397607*192900153618^(5/6) 2415781699999997 a001 14930352/1568397607*28143753123^(9/10) 2415781699999997 a001 14930352/1568397607*10749957122^(15/16) 2415781699999997 a001 806375973340584/33379505 2415781699999997 a001 1836311903/33385282*2537720636^(3/5) 2415781699999997 a001 14930208/103681*2537720636^(5/9) 2415781699999997 a001 7778742049/33385282*2537720636^(8/15) 2415781699999997 a001 32951280099/33385282*2537720636^(7/15) 2415781699999997 a001 53316291173/33385282*2537720636^(4/9) 2415781699999997 a001 139583862445/33385282*2537720636^(2/5) 2415781699999997 a001 1836311903/33385282*45537549124^(9/17) 2415781699999997 a001 1836311903/33385282*817138163596^(9/19) 2415781699999997 a001 1836311903/33385282*14662949395604^(3/7) 2415781699999997 a001 1836311903/33385282*(1/2+1/2*5^(1/2))^27 2415781699999997 a001 1836311903/33385282*192900153618^(1/2) 2415781699999997 a001 1836311903/33385282*10749957122^(9/16) 2415781699999997 a001 591286729879/33385282*2537720636^(1/3) 2415781699999997 a001 2504730781961/33385282*2537720636^(4/15) 2415781699999997 a001 3278735159921/16692641*2537720636^(2/9) 2415781699999997 a001 71778070001175552/2971215073 2415781699999997 a001 1515744265389/4769326*2537720636^(1/5) 2415781699999997 a001 14930208/103681*312119004989^(5/11) 2415781699999997 a001 14930208/103681*(1/2+1/2*5^(1/2))^25 2415781699999997 a001 14930208/103681*3461452808002^(5/12) 2415781699999997 a001 7465176/5374978561*505019158607^(7/8) 2415781699999997 a001 14930208/103681*28143753123^(1/2) 2415781699999997 a001 187917426909946800/7778742049 2415781699999997 a001 32951280099/33385282*17393796001^(3/7) 2415781699999997 a001 4976784/9381251041*817138163596^(17/19) 2415781699999997 a001 4976784/9381251041*14662949395604^(17/21) 2415781699999997 a001 12586269025/33385282*(1/2+1/2*5^(1/2))^23 2415781699999997 a001 4976784/9381251041*192900153618^(17/18) 2415781699999997 a001 956722026041/33385282*17393796001^(2/7) 2415781699999997 a001 245987105364332424/10182505537 2415781699999997 a001 32951280099/33385282*45537549124^(7/17) 2415781699999997 a001 32951280099/33385282*14662949395604^(1/3) 2415781699999997 a001 32951280099/33385282*(1/2+1/2*5^(1/2))^21 2415781699999997 a001 32951280099/33385282*192900153618^(7/18) 2415781699999997 a001 32264490531/4769326*45537549124^(1/3) 2415781699999997 a001 139583862445/33385282*45537549124^(6/17) 2415781699999997 a001 591286729879/33385282*45537549124^(5/17) 2415781699999997 a001 2504730781961/33385282*45537549124^(4/17) 2415781699999997 a001 1288005205276047744/53316291173 2415781699999997 a001 1515744265389/4769326*45537549124^(3/17) 2415781699999997 a001 43133785636/16692641*(1/2+1/2*5^(1/2))^19 2415781699999997 a001 2584/33385281*3461452808002^(11/12) 2415781699999997 a001 3372041405099478384/139583862445 2415781699999997 a001 14930352/505019158607*14662949395604^(19/21) 2415781699999997 a001 32264490531/4769326*(1/2+1/2*5^(1/2))^17 2415781699999997 a001 23112315624967683840/956722026041 2415781699999997 a001 774004377960/16692641*(1/2+1/2*5^(1/2))^13 2415781699999997 a001 4052739537881/33385282*(1/2+1/2*5^(1/2))^11 2415781699999997 a001 1515744265389/4769326*(1/2+1/2*5^(1/2))^9 2415781699999997 a006 5^(1/2)*Fibonacci(73)/Lucas(36)/sqrt(5) 2415781699999997 a001 3278735159921/16692641*(1/2+1/2*5^(1/2))^10 2415781699999997 a001 2504730781961/33385282*(1/2+1/2*5^(1/2))^12 2415781699999997 a001 956722026041/33385282*(1/2+1/2*5^(1/2))^14 2415781699999997 a001 14284196614945296432/591286729879 2415781699999997 a001 1515744265389/4769326*192900153618^(1/6) 2415781699999997 a001 139583862445/33385282*14662949395604^(2/7) 2415781699999997 a001 139583862445/33385282*(1/2+1/2*5^(1/2))^18 2415781699999997 a001 139583862445/33385282*192900153618^(1/3) 2415781699999997 a001 806515557207210/33385283 2415781699999997 a001 2504730781961/33385282*73681302247^(3/13) 2415781699999997 a001 774004377960/16692641*73681302247^(1/4) 2415781699999997 a001 182717648081/16692641*73681302247^(4/13) 2415781699999997 a001 14930352/119218851371*14662949395604^(6/7) 2415781699999997 a001 53316291173/33385282*(1/2+1/2*5^(1/2))^20 2415781699999997 a001 53316291173/33385282*23725150497407^(5/16) 2415781699999997 a001 53316291173/33385282*505019158607^(5/14) 2415781699999997 a001 53316291173/33385282*73681302247^(5/13) 2415781699999997 a001 3278735159921/16692641*28143753123^(1/5) 2415781699999997 a001 265343664849127632/10983760033 2415781699999997 a001 591286729879/33385282*28143753123^(3/10) 2415781699999997 a001 10182505537/16692641*312119004989^(2/5) 2415781699999997 a001 10182505537/16692641*(1/2+1/2*5^(1/2))^22 2415781699999997 a001 3732588/11384387281*23725150497407^(13/16) 2415781699999997 a001 3732588/11384387281*505019158607^(13/14) 2415781699999997 a001 53316291173/33385282*28143753123^(2/5) 2415781699999997 a001 1515744265389/4769326*10749957122^(3/16) 2415781699999997 a001 304056783818718048/12586269025 2415781699999997 a001 3278735159921/16692641*10749957122^(5/24) 2415781699999997 a001 2504730781961/33385282*10749957122^(1/4) 2415781699999997 a001 956722026041/33385282*10749957122^(7/24) 2415781699999997 a001 591286729879/33385282*10749957122^(5/16) 2415781699999997 a001 182717648081/16692641*10749957122^(1/3) 2415781699999997 a001 7778742049/33385282*45537549124^(8/17) 2415781699999997 a001 139583862445/33385282*10749957122^(3/8) 2415781699999997 a001 14930352/17393796001*312119004989^(10/11) 2415781699999997 a001 7778742049/33385282*(1/2+1/2*5^(1/2))^24 2415781699999997 a001 14930352/17393796001*3461452808002^(5/6) 2415781699999997 a001 7778742049/33385282*192900153618^(4/9) 2415781699999997 a001 7778742049/33385282*73681302247^(6/13) 2415781699999997 a001 32951280099/33385282*10749957122^(7/16) 2415781699999997 a001 53316291173/33385282*10749957122^(5/12) 2415781699999997 a001 10182505537/16692641*10749957122^(11/24) 2415781699999997 a001 7778742049/33385282*10749957122^(1/2) 2415781699999997 a001 806523311866467/33385604 2415781699999997 a001 3278735159921/16692641*4106118243^(5/23) 2415781699999997 a001 2504730781961/33385282*4106118243^(6/23) 2415781699999997 a001 956722026041/33385282*4106118243^(7/23) 2415781699999997 a001 182717648081/16692641*4106118243^(8/23) 2415781699999997 a001 14930352/6643838879*45537549124^(16/17) 2415781699999997 a001 14930352/6643838879*14662949395604^(16/21) 2415781699999997 a001 2971215073/33385282*(1/2+1/2*5^(1/2))^26 2415781699999997 a001 14930352/6643838879*192900153618^(8/9) 2415781699999997 a001 2971215073/33385282*73681302247^(1/2) 2415781699999997 a001 14930352/6643838879*73681302247^(12/13) 2415781699999997 a001 139583862445/33385282*4106118243^(9/23) 2415781699999997 a001 53316291173/33385282*4106118243^(10/23) 2415781699999997 a001 2971215073/33385282*10749957122^(13/24) 2415781699999997 a001 12586269025/33385282*4106118243^(1/2) 2415781699999997 a001 10182505537/16692641*4106118243^(11/23) 2415781699999997 a001 7778742049/33385282*4106118243^(12/23) 2415781699999997 a001 2971215073/33385282*4106118243^(13/23) 2415781699999997 a001 44361286907595696/1836311903 2415781699999997 a001 3278735159921/16692641*1568397607^(5/22) 2415781699999997 a001 4052739537881/33385282*1568397607^(1/4) 2415781699999997 a001 2504730781961/33385282*1568397607^(3/11) 2415781699999997 a001 956722026041/33385282*1568397607^(7/22) 2415781699999997 a001 182717648081/16692641*1568397607^(4/11) 2415781699999997 a001 567451585/16692641*17393796001^(4/7) 2415781699999997 a001 567451585/16692641*14662949395604^(4/9) 2415781699999997 a001 567451585/16692641*(1/2+1/2*5^(1/2))^28 2415781699999997 a001 567451585/16692641*505019158607^(1/2) 2415781699999997 a001 567451585/16692641*73681302247^(7/13) 2415781699999997 a001 567451585/16692641*10749957122^(7/12) 2415781699999997 a001 196452/33391061*10749957122^(23/24) 2415781699999997 a001 139583862445/33385282*1568397607^(9/22) 2415781699999997 a001 53316291173/33385282*1568397607^(5/11) 2415781699999997 a001 567451585/16692641*4106118243^(14/23) 2415781699999997 a001 10182505537/16692641*1568397607^(1/2) 2415781699999997 a001 7778742049/33385282*1568397607^(6/11) 2415781699999997 a001 2971215073/33385282*1568397607^(13/22) 2415781699999997 a001 567451585/16692641*1568397607^(7/11) 2415781699999997 a001 5648167938005280/233802911 2415781699999997 a001 1515744265389/4769326*599074578^(3/14) 2415781699999997 a001 3278735159921/16692641*599074578^(5/21) 2415781699999997 a001 2504730781961/33385282*599074578^(2/7) 2415781699999997 a001 956722026041/33385282*599074578^(1/3) 2415781699999997 a001 433494437/33385282*2537720636^(2/3) 2415781699999997 a001 591286729879/33385282*599074578^(5/14) 2415781699999997 a001 182717648081/16692641*599074578^(8/21) 2415781699999997 a001 433494437/33385282*45537549124^(10/17) 2415781699999997 a001 14930352/969323029*312119004989^(4/5) 2415781699999997 a001 433494437/33385282*14662949395604^(10/21) 2415781699999997 a001 433494437/33385282*(1/2+1/2*5^(1/2))^30 2415781699999997 a001 14930352/969323029*23725150497407^(11/16) 2415781699999997 a001 433494437/33385282*192900153618^(5/9) 2415781699999997 a001 14930352/969323029*73681302247^(11/13) 2415781699999997 a001 433494437/33385282*28143753123^(3/5) 2415781699999997 a001 433494437/33385282*10749957122^(5/8) 2415781699999997 a001 14930352/969323029*10749957122^(11/12) 2415781699999997 a001 433494437/33385282*4106118243^(15/23) 2415781699999997 a001 14930352/969323029*4106118243^(22/23) 2415781699999997 a001 139583862445/33385282*599074578^(3/7) 2415781699999997 a001 53316291173/33385282*599074578^(10/21) 2415781699999997 a001 433494437/33385282*1568397607^(15/22) 2415781699999997 a001 32951280099/33385282*599074578^(1/2) 2415781699999997 a001 10182505537/16692641*599074578^(11/21) 2415781699999997 a001 7778742049/33385282*599074578^(4/7) 2415781699999997 a001 1836311903/33385282*599074578^(9/14) 2415781699999997 a001 2971215073/33385282*599074578^(13/21) 2415781699999997 a001 567451585/16692641*599074578^(2/3) 2415781699999997 a001 433494437/33385282*599074578^(5/7) 2415781699999997 a001 809028066806478/33489287 2415781699999997 a001 3278735159921/16692641*228826127^(1/4) 2415781699999997 a001 2504730781961/33385282*228826127^(3/10) 2415781699999997 a001 956722026041/33385282*228826127^(7/20) 2415781699999997 a001 14930352/370248451*2537720636^(14/15) 2415781699999997 a001 591286729879/33385282*228826127^(3/8) 2415781699999997 a001 14930352/370248451*17393796001^(6/7) 2415781699999997 a001 14930352/370248451*45537549124^(14/17) 2415781699999997 a001 14930352/370248451*817138163596^(14/19) 2415781699999997 a001 14930352/370248451*14662949395604^(2/3) 2415781699999997 a001 165580141/33385282*(1/2+1/2*5^(1/2))^32 2415781699999997 a001 14930352/370248451*192900153618^(7/9) 2415781699999997 a001 165580141/33385282*73681302247^(8/13) 2415781699999997 a001 165580141/33385282*10749957122^(2/3) 2415781699999997 a001 14930352/370248451*10749957122^(7/8) 2415781699999997 a001 165580141/33385282*4106118243^(16/23) 2415781699999997 a001 14930352/370248451*4106118243^(21/23) 2415781699999997 a001 165580141/33385282*1568397607^(8/11) 2415781699999997 a001 182717648081/16692641*228826127^(2/5) 2415781699999997 a001 14930352/370248451*1568397607^(21/22) 2415781699999997 a001 139583862445/33385282*228826127^(9/20) 2415781699999997 a001 165580141/33385282*599074578^(16/21) 2415781699999997 a001 53316291173/33385282*228826127^(1/2) 2415781699999997 a001 10182505537/16692641*228826127^(11/20) 2415781699999997 a001 7778742049/33385282*228826127^(3/5) 2415781699999997 a001 14930208/103681*228826127^(5/8) 2415781699999997 a001 2971215073/33385282*228826127^(13/20) 2415781699999997 a001 567451585/16692641*228826127^(7/10) 2415781699999997 a001 433494437/33385282*228826127^(3/4) 2415781699999997 a001 165580141/33385282*228826127^(4/5) 2415781699999997 a001 824056596446544/34111385 2415781699999997 a001 3278735159921/16692641*87403803^(5/19) 2415781699999997 a001 2504730781961/33385282*87403803^(6/19) 2415781699999997 a001 956722026041/33385282*87403803^(7/19) 2415781699999997 a001 3732588/35355581*2537720636^(8/9) 2415781699999997 a001 31622993/16692641*45537549124^(2/3) 2415781699999997 a001 3732588/35355581*312119004989^(8/11) 2415781699999997 a001 31622993/16692641*(1/2+1/2*5^(1/2))^34 2415781699999997 a001 3732588/35355581*23725150497407^(5/8) 2415781699999997 a001 3732588/35355581*73681302247^(10/13) 2415781699999997 a001 3732588/35355581*28143753123^(4/5) 2415781699999997 a001 31622993/16692641*10749957122^(17/24) 2415781699999997 a001 3732588/35355581*10749957122^(5/6) 2415781699999997 a001 31622993/16692641*4106118243^(17/23) 2415781699999997 a001 3732588/35355581*4106118243^(20/23) 2415781699999997 a001 31622993/16692641*1568397607^(17/22) 2415781699999997 a001 3732588/35355581*1568397607^(10/11) 2415781699999997 a001 31622993/16692641*599074578^(17/21) 2415781699999997 a001 3732588/35355581*599074578^(20/21) 2415781699999997 a001 182717648081/16692641*87403803^(8/19) 2415781699999997 a001 139583862445/33385282*87403803^(9/19) 2415781699999997 a001 43133785636/16692641*87403803^(1/2) 2415781699999997 a001 31622993/16692641*228826127^(17/20) 2415781699999997 a001 53316291173/33385282*87403803^(10/19) 2415781699999997 a001 10182505537/16692641*87403803^(11/19) 2415781699999997 a001 7778742049/33385282*87403803^(12/19) 2415781699999997 a001 2971215073/33385282*87403803^(13/19) 2415781699999997 a001 567451585/16692641*87403803^(14/19) 2415781699999997 a001 433494437/33385282*87403803^(15/19) 2415781699999997 a001 165580141/33385282*87403803^(16/19) 2415781699999997 a001 31622993/16692641*87403803^(17/19) 2415781699999997 a001 944284833567072/39088169 2415781699999997 a001 243756479/2-87403803/2*5^(1/2) 2415781699999997 a001 165580141/12752043*12752043^(15/17) 2415781699999997 a001 1515744265389/4769326*33385282^(1/4) 2415781699999997 a001 956722026041/54018521*20633239^(3/7) 2415781699999997 a001 3278735159921/16692641*33385282^(5/18) 2415781699999997 a001 -63245986+39088169*5^(1/2) 2415781699999997 a001 24157817/33385282*141422324^(12/13) 2415781699999997 a001 2504730781961/33385282*33385282^(1/3) 2415781699999997 a001 1548008755920/54018521*20633239^(2/5) 2415781699999997 a001 24157817/33385282*2537720636^(4/5) 2415781699999997 a001 24157817/33385282*45537549124^(12/17) 2415781699999997 a001 14930352/54018521*817138163596^(2/3) 2415781699999997 a001 24157817/33385282*(1/2+1/2*5^(1/2))^36 2415781699999997 a001 24157817/33385282*192900153618^(2/3) 2415781699999997 a001 24157817/33385282*73681302247^(9/13) 2415781699999997 a001 24157817/33385282*10749957122^(3/4) 2415781699999997 a001 14930352/54018521*10749957122^(19/24) 2415781699999997 a001 24157817/33385282*4106118243^(18/23) 2415781699999997 a001 14930352/54018521*4106118243^(19/23) 2415781699999997 a001 24157817/33385282*1568397607^(9/11) 2415781699999997 a001 14930352/54018521*1568397607^(19/22) 2415781699999997 a001 24157817/33385282*599074578^(6/7) 2415781699999997 a001 14930352/54018521*599074578^(19/21) 2415781699999997 a001 956722026041/33385282*33385282^(7/18) 2415781699999997 a001 24157817/33385282*228826127^(9/10) 2415781699999997 a001 14930352/54018521*228826127^(19/20) 2415781699999997 a001 591286729879/33385282*33385282^(5/12) 2415781699999997 a001 182717648081/16692641*33385282^(4/9) 2415781699999998 a001 139583862445/33385282*33385282^(1/2) 2415781699999998 a001 24157817/33385282*87403803^(18/19) 2415781699999998 a001 102334155/2-24157817/2*5^(1/2) 2415781699999998 a001 53316291173/33385282*33385282^(5/9) 2415781699999998 a001 32951280099/33385282*33385282^(7/12) 2415781699999998 a001 10182505537/16692641*33385282^(11/18) 2415781699999998 a001 10610209857723/54018521*20633239^(2/7) 2415781699999998 a001 1527884955772561/63245986 2415781699999998 a001 63245986/12752043*12752043^(16/17) 2415781699999998 a001 7778742049/33385282*33385282^(2/3) 2415781699999998 a001 2971215073/33385282*33385282^(13/18) 2415781699999998 a001 165580141-63245986*5^(1/2) 2415781699999998 a001 1836311903/33385282*33385282^(3/4) 2415781699999998 a001 567451585/16692641*33385282^(7/9) 2415781699999998 a001 267914296/87403803*141422324^(11/13) 2415781699999998 a001 1134903170/87403803*141422324^(10/13) 2415781699999998 a001 1602508992/29134601*141422324^(9/13) 2415781699999998 a001 7778742049/87403803*141422324^(2/3) 2415781699999998 a001 20365011074/87403803*141422324^(8/13) 2415781699999998 a001 86267571272/87403803*141422324^(7/13) 2415781699999998 a001 4000054745112195/165580141 2415781699999998 a001 365435296162/87403803*141422324^(6/13) 2415781699999998 a001 39088169/228826127*2537720636^(13/15) 2415781699999998 a001 516002918640/29134601*141422324^(5/13) 2415781699999998 a001 34111385/29134601*2537720636^(7/9) 2415781699999998 a001 34111385/29134601*17393796001^(5/7) 2415781699999998 a001 39088169/228826127*45537549124^(13/17) 2415781699999998 a001 34111385/29134601*312119004989^(7/11) 2415781699999998 a001 34111385/29134601*14662949395604^(5/9) 2415781699999998 a001 34111385/29134601*505019158607^(5/8) 2415781699999998 a001 39088169/228826127*192900153618^(13/18) 2415781699999998 a001 39088169/228826127*73681302247^(3/4) 2415781699999998 a001 34111385/29134601*28143753123^(7/10) 2415781699999998 a001 39088169/228826127*10749957122^(13/16) 2415781699999998 a001 433494437/33385282*33385282^(5/6) 2415781699999998 a001 34111385/29134601*599074578^(5/6) 2415781699999998 a001 4052739537881/87403803*141422324^(1/3) 2415781699999998 a001 39088169/228826127*599074578^(13/14) 2415781699999998 a001 6557470319842/87403803*141422324^(4/13) 2415781699999998 a001 10472279279564024/433494437 2415781699999998 a001 267914296/87403803*2537720636^(11/15) 2415781699999998 a001 267914296/87403803*45537549124^(11/17) 2415781699999998 a001 267914296/87403803*312119004989^(3/5) 2415781699999998 a001 267914296/87403803*14662949395604^(11/21) 2415781699999998 a001 267914296/87403803*192900153618^(11/18) 2415781699999998 a001 267914296/87403803*10749957122^(11/16) 2415781699999998 a001 267914296/87403803*1568397607^(3/4) 2415781699999998 a001 34111385/29134601*228826127^(7/8) 2415781699999998 a001 267914296/87403803*599074578^(11/14) 2415781699999998 a001 27416783093579877/1134903170 2415781699999998 a001 233802911/29134601*9062201101803^(1/2) 2415781699999998 a001 1602508992/29134601*2537720636^(3/5) 2415781699999998 a001 12586269025/87403803*2537720636^(5/9) 2415781699999998 a001 20365011074/87403803*2537720636^(8/15) 2415781699999998 a001 71778070001175607/2971215073 2415781699999998 a001 86267571272/87403803*2537720636^(7/15) 2415781699999998 a001 139583862445/87403803*2537720636^(4/9) 2415781699999998 a001 365435296162/87403803*2537720636^(2/5) 2415781699999998 a001 39088169/4106118243*45537549124^(15/17) 2415781699999998 a001 39088169/4106118243*312119004989^(9/11) 2415781699999998 a001 1836311903/87403803*1322157322203^(1/2) 2415781699999998 a001 39088169/4106118243*192900153618^(5/6) 2415781699999998 a001 39088169/4106118243*28143753123^(9/10) 2415781699999998 a001 516002918640/29134601*2537720636^(1/3) 2415781699999998 a001 39088169/4106118243*10749957122^(15/16) 2415781699999998 a001 6557470319842/87403803*2537720636^(4/15) 2415781699999998 a001 187917426909946944/7778742049 2415781699999998 a001 1602508992/29134601*45537549124^(9/17) 2415781699999998 a001 1602508992/29134601*14662949395604^(3/7) 2415781699999998 a001 1602508992/29134601*192900153618^(1/2) 2415781699999998 a001 1602508992/29134601*10749957122^(9/16) 2415781699999998 a001 491974210728665225/20365011074 2415781699999998 a001 86267571272/87403803*17393796001^(3/7) 2415781699999998 a001 12586269025/87403803*312119004989^(5/11) 2415781699999998 a001 39088169/28143753123*14662949395604^(7/9) 2415781699999998 a001 12586269025/87403803*3461452808002^(5/12) 2415781699999998 a001 39088169/28143753123*505019158607^(7/8) 2415781699999998 a001 2504730781961/87403803*17393796001^(2/7) 2415781699999998 a001 12586269025/87403803*28143753123^(1/2) 2415781699999998 a001 1288005205276048731/53316291173 2415781699999998 a001 86267571272/87403803*45537549124^(7/17) 2415781699999998 a001 39088169/73681302247*14662949395604^(17/21) 2415781699999998 a001 365435296162/87403803*45537549124^(6/17) 2415781699999998 a001 591286729879/87403803*45537549124^(1/3) 2415781699999998 a001 39088169/73681302247*192900153618^(17/18) 2415781699999998 a001 516002918640/29134601*45537549124^(5/17) 2415781699999998 a001 6557470319842/87403803*45537549124^(4/17) 2415781699999998 a001 3372041405099480968/139583862445 2415781699999998 a001 86267571272/87403803*14662949395604^(1/3) 2415781699999998 a001 86267571272/87403803*192900153618^(7/18) 2415781699999998 a001 2111485053820233/87403802 2415781699999998 a001 158414167969674429889/6557470319842 2415781699999998 a001 -39088169/2+39088169/2*5^(1/2) 2415781699999998 a006 5^(1/2)*Fibonacci(75)/Lucas(38)/sqrt(5) 2415781699999998 a001 14284196614945307378/591286729879 2415781699999998 a001 139583862445/87403803*23725150497407^(5/16) 2415781699999998 a001 365435296162/87403803*192900153618^(1/3) 2415781699999998 a001 139583862445/87403803*505019158607^(5/14) 2415781699999998 a001 5456077604922913205/225851433717 2415781699999998 a001 6557470319842/87403803*73681302247^(3/13) 2415781699999998 a001 4052739537881/87403803*73681302247^(1/4) 2415781699999998 a001 956722026041/87403803*73681302247^(4/13) 2415781699999998 a001 53316291173/87403803*312119004989^(2/5) 2415781699999998 a001 39088169/119218851371*23725150497407^(13/16) 2415781699999998 a001 39088169/119218851371*505019158607^(13/14) 2415781699999998 a001 139583862445/87403803*73681302247^(5/13) 2415781699999998 a001 2084036199823432237/86267571272 2415781699999998 a001 20365011074/87403803*45537549124^(8/17) 2415781699999998 a001 516002918640/29134601*28143753123^(3/10) 2415781699999998 a001 39088169/45537549124*312119004989^(10/11) 2415781699999998 a001 20365011074/87403803*14662949395604^(8/21) 2415781699999998 a001 39088169/45537549124*3461452808002^(5/6) 2415781699999998 a001 20365011074/87403803*192900153618^(4/9) 2415781699999998 a001 139583862445/87403803*28143753123^(2/5) 2415781699999998 a001 20365011074/87403803*73681302247^(6/13) 2415781699999998 a001 796030994547383506/32951280099 2415781699999998 a001 6557470319842/87403803*10749957122^(1/4) 2415781699999998 a001 2504730781961/87403803*10749957122^(7/24) 2415781699999998 a001 516002918640/29134601*10749957122^(5/16) 2415781699999998 a001 39088169/17393796001*45537549124^(16/17) 2415781699999998 a001 956722026041/87403803*10749957122^(1/3) 2415781699999998 a001 365435296162/87403803*10749957122^(3/8) 2415781699999998 a001 39088169/17393796001*14662949395604^(16/21) 2415781699999998 a001 39088169/17393796001*192900153618^(8/9) 2415781699999998 a001 7778742049/87403803*73681302247^(1/2) 2415781699999998 a001 39088169/17393796001*73681302247^(12/13) 2415781699999998 a001 139583862445/87403803*10749957122^(5/12) 2415781699999998 a001 86267571272/87403803*10749957122^(7/16) 2415781699999998 a001 53316291173/87403803*10749957122^(11/24) 2415781699999998 a001 304056783818718281/12586269025 2415781699999998 a001 20365011074/87403803*10749957122^(1/2) 2415781699999998 a001 7778742049/87403803*10749957122^(13/24) 2415781699999998 a001 6557470319842/87403803*4106118243^(6/23) 2415781699999998 a001 2504730781961/87403803*4106118243^(7/23) 2415781699999998 a001 956722026041/87403803*4106118243^(8/23) 2415781699999998 a001 2971215073/87403803*17393796001^(4/7) 2415781699999998 a001 2971215073/87403803*14662949395604^(4/9) 2415781699999998 a001 2971215073/87403803*505019158607^(1/2) 2415781699999998 a001 2971215073/87403803*73681302247^(7/13) 2415781699999998 a001 365435296162/87403803*4106118243^(9/23) 2415781699999998 a001 139583862445/87403803*4106118243^(10/23) 2415781699999998 a001 2971215073/87403803*10749957122^(7/12) 2415781699999998 a001 53316291173/87403803*4106118243^(11/23) 2415781699999998 a001 10983760033/29134601*4106118243^(1/2) 2415781699999998 a001 39088169/6643838879*10749957122^(23/24) 2415781699999998 a001 116139356908771337/4807526976 2415781699999998 a001 20365011074/87403803*4106118243^(12/23) 2415781699999998 a001 7778742049/87403803*4106118243^(13/23) 2415781699999998 a001 1134903170/87403803*2537720636^(2/3) 2415781699999998 a001 2971215073/87403803*4106118243^(14/23) 2415781699999998 a001 3536736619241/29134601*1568397607^(1/4) 2415781699999998 a001 6557470319842/87403803*1568397607^(3/11) 2415781699999998 a001 2504730781961/87403803*1568397607^(7/22) 2415781699999998 a001 956722026041/87403803*1568397607^(4/11) 2415781699999998 a001 1134903170/87403803*45537549124^(10/17) 2415781699999998 a001 39088169/2537720636*312119004989^(4/5) 2415781699999998 a001 1134903170/87403803*312119004989^(6/11) 2415781699999998 a001 1134903170/87403803*14662949395604^(10/21) 2415781699999998 a001 39088169/2537720636*23725150497407^(11/16) 2415781699999998 a001 1134903170/87403803*192900153618^(5/9) 2415781699999998 a001 39088169/2537720636*73681302247^(11/13) 2415781699999998 a001 1134903170/87403803*28143753123^(3/5) 2415781699999998 a001 1134903170/87403803*10749957122^(5/8) 2415781699999998 a001 39088169/2537720636*10749957122^(11/12) 2415781699999998 a001 365435296162/87403803*1568397607^(9/22) 2415781699999998 a001 139583862445/87403803*1568397607^(5/11) 2415781699999998 a001 1134903170/87403803*4106118243^(15/23) 2415781699999998 a001 53316291173/87403803*1568397607^(1/2) 2415781699999998 a001 39088169/2537720636*4106118243^(22/23) 2415781699999998 a001 44361286907595730/1836311903 2415781699999998 a001 20365011074/87403803*1568397607^(6/11) 2415781699999998 a001 7778742049/87403803*1568397607^(13/22) 2415781699999998 a001 2971215073/87403803*1568397607^(7/11) 2415781699999998 a001 1134903170/87403803*1568397607^(15/22) 2415781699999998 a001 6557470319842/87403803*599074578^(2/7) 2415781699999998 a001 39088169/969323029*2537720636^(14/15) 2415781699999998 a001 2504730781961/87403803*599074578^(1/3) 2415781699999998 a001 516002918640/29134601*599074578^(5/14) 2415781699999998 a001 39088169/969323029*17393796001^(6/7) 2415781699999998 a001 956722026041/87403803*599074578^(8/21) 2415781699999998 a001 39088169/969323029*45537549124^(14/17) 2415781699999998 a001 39088169/969323029*817138163596^(14/19) 2415781699999998 a001 39088169/969323029*14662949395604^(2/3) 2415781699999998 a001 39088169/969323029*192900153618^(7/9) 2415781699999998 a001 433494437/87403803*73681302247^(8/13) 2415781699999998 a001 433494437/87403803*10749957122^(2/3) 2415781699999998 a001 39088169/969323029*10749957122^(7/8) 2415781699999998 a001 433494437/87403803*4106118243^(16/23) 2415781699999998 a001 39088169/969323029*4106118243^(21/23) 2415781699999998 a001 365435296162/87403803*599074578^(3/7) 2415781699999998 a001 139583862445/87403803*599074578^(10/21) 2415781699999998 a001 433494437/87403803*1568397607^(8/11) 2415781699999998 a001 86267571272/87403803*599074578^(1/2) 2415781699999998 a001 39088169/969323029*1568397607^(21/22) 2415781699999998 a001 53316291173/87403803*599074578^(11/21) 2415781699999998 a001 16944503814015853/701408733 2415781699999998 a001 20365011074/87403803*599074578^(4/7) 2415781699999998 a001 7778742049/87403803*599074578^(13/21) 2415781699999998 a001 1602508992/29134601*599074578^(9/14) 2415781699999998 a001 2971215073/87403803*599074578^(2/3) 2415781699999998 a001 1134903170/87403803*599074578^(5/7) 2415781699999998 a001 433494437/87403803*599074578^(16/21) 2415781699999998 a001 63245986/87403803*141422324^(12/13) 2415781699999998 a001 6557470319842/87403803*228826127^(3/10) 2415781699999998 a001 2504730781961/87403803*228826127^(7/20) 2415781699999998 a001 39088169/370248451*2537720636^(8/9) 2415781699999998 a001 516002918640/29134601*228826127^(3/8) 2415781699999998 a001 165580141/87403803*45537549124^(2/3) 2415781699999998 a001 39088169/370248451*312119004989^(8/11) 2415781699999998 a001 39088169/370248451*23725150497407^(5/8) 2415781699999998 a001 39088169/370248451*73681302247^(10/13) 2415781699999998 a001 39088169/370248451*28143753123^(4/5) 2415781699999998 a001 165580141/87403803*10749957122^(17/24) 2415781699999998 a001 39088169/370248451*10749957122^(5/6) 2415781699999998 a001 165580141/87403803*4106118243^(17/23) 2415781699999998 a001 39088169/370248451*4106118243^(20/23) 2415781699999998 a001 165580141/87403803*1568397607^(17/22) 2415781699999998 a001 956722026041/87403803*228826127^(2/5) 2415781699999998 a001 39088169/370248451*1568397607^(10/11) 2415781699999998 a001 365435296162/87403803*228826127^(9/20) 2415781699999998 a001 139583862445/87403803*228826127^(1/2) 2415781699999998 a001 165580141/87403803*599074578^(17/21) 2415781699999998 a001 39088169/370248451*599074578^(20/21) 2415781699999998 a001 6472224534451829/267914296 2415781699999998 a001 53316291173/87403803*228826127^(11/20) 2415781699999998 a001 20365011074/87403803*228826127^(3/5) 2415781699999998 a001 12586269025/87403803*228826127^(5/8) 2415781699999998 a001 7778742049/87403803*228826127^(13/20) 2415781699999998 a001 2971215073/87403803*228826127^(7/10) 2415781699999998 a001 1134903170/87403803*228826127^(3/4) 2415781699999998 a001 433494437/87403803*228826127^(4/5) 2415781699999998 a001 165580141/87403803*228826127^(17/20) 2415781699999998 a001 14619165/4769326*33385282^(11/12) 2415781699999998 a001 165580141/33385282*33385282^(8/9) 2415781699999998 a001 6557470319842/87403803*87403803^(6/19) 2415781699999998 a001 2504730781961/87403803*87403803^(7/19) 2415781699999998 a001 63245986/87403803*2537720636^(4/5) 2415781699999998 a001 63245986/87403803*45537549124^(12/17) 2415781699999998 a001 39088169/141422324*817138163596^(2/3) 2415781699999998 a001 63245986/87403803*505019158607^(9/14) 2415781699999998 a001 63245986/87403803*192900153618^(2/3) 2415781699999998 a001 63245986/87403803*73681302247^(9/13) 2415781699999998 a001 63245986/87403803*10749957122^(3/4) 2415781699999998 a001 39088169/141422324*10749957122^(19/24) 2415781699999998 a001 63245986/87403803*4106118243^(18/23) 2415781699999998 a001 39088169/141422324*4106118243^(19/23) 2415781699999998 a001 63245986/87403803*1568397607^(9/11) 2415781699999998 a001 39088169/141422324*1568397607^(19/22) 2415781699999998 a001 63245986/87403803*599074578^(6/7) 2415781699999998 a001 39088169/141422324*599074578^(19/21) 2415781699999998 a001 956722026041/87403803*87403803^(8/19) 2415781699999999 a001 365435296162/87403803*87403803^(9/19) 2415781699999999 a001 75283811239/29134601*87403803^(1/2) 2415781699999999 a001 63245986/87403803*228826127^(9/10) 2415781699999999 a001 39088169/141422324*228826127^(19/20) 2415781699999999 a001 139583862445/87403803*87403803^(10/19) 2415781699999999 a001 701408733/228826127*141422324^(11/13) 2415781699999999 a001 2472169789339634/102334155 2415781699999999 a001 165580141/228826127*141422324^(12/13) 2415781699999999 a001 2971215073/228826127*141422324^(10/13) 2415781699999999 a001 53316291173/87403803*87403803^(11/19) 2415781699999999 a001 12586269025/228826127*141422324^(9/13) 2415781699999999 a001 20365011074/228826127*141422324^(2/3) 2415781699999999 a001 53316291173/228826127*141422324^(8/13) 2415781699999999 a001 20365011074/87403803*87403803^(12/19) 2415781699999999 a001 433494437/599074578*141422324^(12/13) 2415781699999999 a001 1134903170/1568397607*141422324^(12/13) 2415781699999999 a001 2971215073/4106118243*141422324^(12/13) 2415781699999999 a001 7778742049/10749957122*141422324^(12/13) 2415781699999999 a001 20365011074/28143753123*141422324^(12/13) 2415781699999999 a001 53316291173/73681302247*141422324^(12/13) 2415781699999999 a001 139583862445/192900153618*141422324^(12/13) 2415781699999999 a001 365435296162/505019158607*141422324^(12/13) 2415781699999999 a001 225851433717/312119004989*141422324^(12/13) 2415781699999999 a001 86267571272/119218851371*141422324^(12/13) 2415781699999999 a001 32951280099/45537549124*141422324^(12/13) 2415781699999999 a001 12586269025/17393796001*141422324^(12/13) 2415781699999999 a001 4807526976/6643838879*141422324^(12/13) 2415781699999999 a001 1836311903/2537720636*141422324^(12/13) 2415781699999999 a001 225851433717/228826127*141422324^(7/13) 2415781699999999 a001 701408733/969323029*141422324^(12/13) 2415781699999999 a001 1836311903/599074578*141422324^(11/13) 2415781699999999 a001 686789568/224056801*141422324^(11/13) 2415781699999999 a001 12586269025/4106118243*141422324^(11/13) 2415781699999999 a001 32951280099/10749957122*141422324^(11/13) 2415781699999999 a001 86267571272/28143753123*141422324^(11/13) 2415781699999999 a001 32264490531/10525900321*141422324^(11/13) 2415781699999999 a001 591286729879/192900153618*141422324^(11/13) 2415781699999999 a001 1515744265389/494493258286*141422324^(11/13) 2415781699999999 a001 2504730781961/817138163596*141422324^(11/13) 2415781699999999 a001 956722026041/312119004989*141422324^(11/13) 2415781699999999 a001 365435296162/119218851371*141422324^(11/13) 2415781699999999 a001 139583862445/45537549124*141422324^(11/13) 2415781699999999 a001 53316291173/17393796001*141422324^(11/13) 2415781699999999 a001 20365011074/6643838879*141422324^(11/13) 2415781699999999 a001 956722026041/228826127*141422324^(6/13) 2415781699999999 a001 7778742049/2537720636*141422324^(11/13) 2415781699999999 a001 267914296/370248451*141422324^(12/13) 2415781699999999 a001 7778742049/87403803*87403803^(13/19) 2415781699999999 a001 7778742049/599074578*141422324^(10/13) 2415781699999999 a001 2971215073/969323029*141422324^(11/13) 2415781699999999 a001 10472279279564025/433494437 2415781699999999 a001 20365011074/1568397607*141422324^(10/13) 2415781699999999 a001 53316291173/4106118243*141422324^(10/13) 2415781699999999 a001 139583862445/10749957122*141422324^(10/13) 2415781699999999 a001 365435296162/28143753123*141422324^(10/13) 2415781699999999 a001 956722026041/73681302247*141422324^(10/13) 2415781699999999 a001 2504730781961/192900153618*141422324^(10/13) 2415781699999999 a001 10610209857723/817138163596*141422324^(10/13) 2415781699999999 a001 4052739537881/312119004989*141422324^(10/13) 2415781699999999 a001 1548008755920/119218851371*141422324^(10/13) 2415781699999999 a001 591286729879/45537549124*141422324^(10/13) 2415781699999999 a001 7787980473/599786069*141422324^(10/13) 2415781699999999 a001 86267571272/6643838879*141422324^(10/13) 2415781699999999 a001 4052739537881/228826127*141422324^(5/13) 2415781699999999 a001 32951280099/2537720636*141422324^(10/13) 2415781699999999 a001 10983760033/199691526*141422324^(9/13) 2415781699999999 a001 12586269025/969323029*141422324^(10/13) 2415781699999999 a001 53316291173/599074578*141422324^(2/3) 2415781699999999 a001 225749145909/4868641*141422324^(1/3) 2415781699999999 a001 86267571272/1568397607*141422324^(9/13) 2415781699999999 a001 1134903170/370248451*141422324^(11/13) 2415781699999999 a001 75283811239/1368706081*141422324^(9/13) 2415781699999999 a001 591286729879/10749957122*141422324^(9/13) 2415781699999999 a001 12585437040/228811001*141422324^(9/13) 2415781699999999 a001 4052739537881/73681302247*141422324^(9/13) 2415781699999999 a001 3536736619241/64300051206*141422324^(9/13) 2415781699999999 a001 6557470319842/119218851371*141422324^(9/13) 2415781699999999 a001 2504730781961/45537549124*141422324^(9/13) 2415781699999999 a001 956722026041/17393796001*141422324^(9/13) 2415781699999999 a001 365435296162/6643838879*141422324^(9/13) 2415781699999999 a001 139583862445/2537720636*141422324^(9/13) 2415781699999999 a001 2971215073/87403803*87403803^(14/19) 2415781699999999 a001 139583862445/1568397607*141422324^(2/3) 2415781699999999 a001 139583862445/599074578*141422324^(8/13) 2415781699999999 a001 53316291173/969323029*141422324^(9/13) 2415781699999999 a001 365435296162/4106118243*141422324^(2/3) 2415781699999999 a001 956722026041/10749957122*141422324^(2/3) 2415781699999999 a001 2504730781961/28143753123*141422324^(2/3) 2415781699999999 a001 6557470319842/73681302247*141422324^(2/3) 2415781699999999 a001 10610209857723/119218851371*141422324^(2/3) 2415781699999999 a001 4052739537881/45537549124*141422324^(2/3) 2415781699999999 a001 1548008755920/17393796001*141422324^(2/3) 2415781699999999 a001 591286729879/6643838879*141422324^(2/3) 2415781699999999 a001 225851433717/2537720636*141422324^(2/3) 2415781699999999 a001 86267571272/969323029*141422324^(2/3) 2415781699999999 a001 365435296162/1568397607*141422324^(8/13) 2415781699999999 a001 4807526976/370248451*141422324^(10/13) 2415781699999999 a001 956722026041/4106118243*141422324^(8/13) 2415781699999999 a001 2504730781961/10749957122*141422324^(8/13) 2415781699999999 a001 6557470319842/28143753123*141422324^(8/13) 2415781699999999 a001 10610209857723/45537549124*141422324^(8/13) 2415781699999999 a001 4052739537881/17393796001*141422324^(8/13) 2415781699999999 a001 1548008755920/6643838879*141422324^(8/13) 2415781699999999 a001 591286729879/2537720636*141422324^(8/13) 2415781699999999 a001 591286729879/599074578*141422324^(7/13) 2415781699999999 a001 225851433717/969323029*141422324^(8/13) 2415781699999999 a001 1134903170/87403803*87403803^(15/19) 2415781699999999 a001 1548008755920/1568397607*141422324^(7/13) 2415781699999999 a001 20365011074/370248451*141422324^(9/13) 2415781699999999 a001 4052739537881/4106118243*141422324^(7/13) 2415781699999999 a001 4807525989/4870846*141422324^(7/13) 2415781699999999 a001 6557470319842/6643838879*141422324^(7/13) 2415781699999999 a001 2504730781961/2537720636*141422324^(7/13) 2415781699999999 a001 32951280099/370248451*141422324^(2/3) 2415781699999999 a001 2504730781961/599074578*141422324^(6/13) 2415781699999999 a001 956722026041/969323029*141422324^(7/13) 2415781699999999 a001 6557470319842/1568397607*141422324^(6/13) 2415781699999999 a001 86267571272/370248451*141422324^(8/13) 2415781699999999 a001 10610209857723/2537720636*141422324^(6/13) 2415781699999999 a001 2741678309357988/113490317 2415781699999999 a001 34111385/199691526*2537720636^(13/15) 2415781699999999 a001 3536736619241/199691526*141422324^(5/13) 2415781699999999 a001 4052739537881/969323029*141422324^(6/13) 2415781699999999 a001 267914296/228826127*2537720636^(7/9) 2415781699999999 a001 267914296/228826127*17393796001^(5/7) 2415781699999999 a001 34111385/199691526*45537549124^(13/17) 2415781699999999 a001 267914296/228826127*312119004989^(7/11) 2415781699999999 a001 267914296/228826127*14662949395604^(5/9) 2415781699999999 a001 267914296/228826127*505019158607^(5/8) 2415781699999999 a001 34111385/199691526*192900153618^(13/18) 2415781699999999 a001 34111385/199691526*73681302247^(3/4) 2415781699999999 a001 267914296/228826127*28143753123^(7/10) 2415781699999999 a001 34111385/199691526*10749957122^(13/16) 2415781699999999 a001 365435296162/370248451*141422324^(7/13) 2415781699999999 a001 701408733/228826127*2537720636^(11/15) 2415781699999999 a001 433494437/87403803*87403803^(16/19) 2415781699999999 a001 267914296/228826127*599074578^(5/6) 2415781699999999 a001 71778070001175615/2971215073 2415781699999999 a001 701408733/228826127*45537549124^(11/17) 2415781699999999 a001 701408733/228826127*312119004989^(3/5) 2415781699999999 a001 701408733/228826127*817138163596^(11/19) 2415781699999999 a001 701408733/228826127*14662949395604^(11/21) 2415781699999999 a001 701408733/228826127*192900153618^(11/18) 2415781699999999 a001 701408733/228826127*10749957122^(11/16) 2415781699999999 a001 34111385/199691526*599074578^(13/14) 2415781699999999 a001 701408733/228826127*1568397607^(3/4) 2415781699999999 a001 12586269025/228826127*2537720636^(3/5) 2415781699999999 a001 32951280099/228826127*2537720636^(5/9) 2415781699999999 a001 53316291173/228826127*2537720636^(8/15) 2415781699999999 a001 2971215073/228826127*2537720636^(2/3) 2415781699999999 a001 225851433717/228826127*2537720636^(7/15) 2415781699999999 a001 365435296162/228826127*2537720636^(4/9) 2415781699999999 a001 187917426909946965/7778742049 2415781699999999 a001 956722026041/228826127*2537720636^(2/5) 2415781699999999 a001 1836311903/228826127*9062201101803^(1/2) 2415781699999999 a001 4052739537881/228826127*2537720636^(1/3) 2415781699999999 a001 245987105364332640/10182505537 2415781699999999 a001 102334155/10749957122*45537549124^(15/17) 2415781699999999 a001 102334155/10749957122*312119004989^(9/11) 2415781699999999 a001 102334155/10749957122*14662949395604^(5/7) 2415781699999999 a001 102287808/4868641*1322157322203^(1/2) 2415781699999999 a001 102334155/10749957122*192900153618^(5/6) 2415781699999999 a001 102334155/10749957122*28143753123^(9/10) 2415781699999999 a001 12586269025/228826127*45537549124^(9/17) 2415781699999999 a001 225851433717/228826127*17393796001^(3/7) 2415781699999999 a001 1288005205276048875/53316291173 2415781699999999 a001 12586269025/228826127*14662949395604^(3/7) 2415781699999999 a001 12586269025/228826127*192900153618^(1/2) 2415781699999999 a001 6557470319842/228826127*17393796001^(2/7) 2415781699999999 a001 102334155/10749957122*10749957122^(15/16) 2415781699999999 a001 225851433717/228826127*45537549124^(7/17) 2415781699999999 a001 674408281019896269/27916772489 2415781699999999 a001 32951280099/228826127*312119004989^(5/11) 2415781699999999 a001 14619165/10525900321*14662949395604^(7/9) 2415781699999999 a001 14619165/10525900321*505019158607^(7/8) 2415781699999999 a001 956722026041/228826127*45537549124^(6/17) 2415781699999999 a001 1548008755920/228826127*45537549124^(1/3) 2415781699999999 a001 53316291173/228826127*45537549124^(8/17) 2415781699999999 a001 4052739537881/228826127*45537549124^(5/17) 2415781699999999 a001 34111385/64300051206*817138163596^(17/19) 2415781699999999 a001 34111385/64300051206*14662949395604^(17/21) 2415781699999999 a001 225851433717/228826127*14662949395604^(1/3) 2415781699999999 a006 5^(1/2)*Fibonacci(77)/Lucas(40)/sqrt(5) 2415781699999999 a001 102334155/817138163596*14662949395604^(6/7) 2415781699999999 a001 139583862445/228826127*312119004989^(2/5) 2415781699999999 a001 14284196614945308975/591286729879 2415781699999999 a001 9303105/28374454999*505019158607^(13/14) 2415781699999999 a001 102334155/45537549124*45537549124^(16/17) 2415781699999999 a001 225749145909/4868641*73681302247^(1/4) 2415781699999999 a001 102334155/119218851371*312119004989^(10/11) 2415781699999999 a001 102334155/119218851371*3461452808002^(5/6) 2415781699999999 a001 259813219282043515/10754830177 2415781699999999 a001 53316291173/228826127*192900153618^(4/9) 2415781699999999 a001 53316291173/228826127*73681302247^(6/13) 2415781699999999 a001 4052739537881/228826127*28143753123^(3/10) 2415781699999999 a001 32951280099/228826127*28143753123^(1/2) 2415781699999999 a001 102334155/45537549124*14662949395604^(16/21) 2415781699999999 a001 102334155/45537549124*192900153618^(8/9) 2415781699999999 a001 1042018099911716235/43133785636 2415781699999999 a001 20365011074/228826127*73681302247^(1/2) 2415781699999999 a001 102334155/45537549124*73681302247^(12/13) 2415781699999999 a001 7778742049/228826127*17393796001^(4/7) 2415781699999999 a001 6557470319842/228826127*10749957122^(7/24) 2415781699999999 a001 4052739537881/228826127*10749957122^(5/16) 2415781699999999 a001 2504730781961/228826127*10749957122^(1/3) 2415781699999999 a001 956722026041/228826127*10749957122^(3/8) 2415781699999999 a001 7778742049/228826127*14662949395604^(4/9) 2415781699999999 a001 7778742049/228826127*73681302247^(7/13) 2415781699999999 a001 265343664849127865/10983760033 2415781699999999 a001 12586269025/228826127*10749957122^(9/16) 2415781699999999 a001 365435296162/228826127*10749957122^(5/12) 2415781699999999 a001 225851433717/228826127*10749957122^(7/16) 2415781699999999 a001 139583862445/228826127*10749957122^(11/24) 2415781699999999 a001 53316291173/228826127*10749957122^(1/2) 2415781699999999 a001 20365011074/228826127*10749957122^(13/24) 2415781699999999 a001 7778742049/228826127*10749957122^(7/12) 2415781699999999 a001 9303105/230701876*2537720636^(14/15) 2415781699999999 a001 102334155/17393796001*10749957122^(23/24) 2415781699999999 a001 6557470319842/228826127*4106118243^(7/23) 2415781699999999 a001 2504730781961/228826127*4106118243^(8/23) 2415781699999999 a001 2971215073/228826127*45537549124^(10/17) 2415781699999999 a001 102334155/6643838879*312119004989^(4/5) 2415781699999999 a001 2971215073/228826127*14662949395604^(10/21) 2415781699999999 a001 102334155/6643838879*23725150497407^(11/16) 2415781699999999 a001 2971215073/228826127*192900153618^(5/9) 2415781699999999 a001 102334155/6643838879*73681302247^(11/13) 2415781699999999 a001 956722026041/228826127*4106118243^(9/23) 2415781699999999 a001 2971215073/228826127*28143753123^(3/5) 2415781699999999 a001 5528305160340333/228841255 2415781699999999 a001 365435296162/228826127*4106118243^(10/23) 2415781699999999 a001 2971215073/228826127*10749957122^(5/8) 2415781699999999 a001 139583862445/228826127*4106118243^(11/23) 2415781699999999 a001 86267571272/228826127*4106118243^(1/2) 2415781699999999 a001 102334155/6643838879*10749957122^(11/12) 2415781699999999 a001 53316291173/228826127*4106118243^(12/23) 2415781699999999 a001 20365011074/228826127*4106118243^(13/23) 2415781699999999 a001 7778742049/228826127*4106118243^(14/23) 2415781699999999 a001 2971215073/228826127*4106118243^(15/23) 2415781699999999 a001 102334155/6643838879*4106118243^(22/23) 2415781699999999 a001 6557470319842/228826127*1568397607^(7/22) 2415781699999999 a001 2504730781961/228826127*1568397607^(4/11) 2415781699999999 a001 9303105/230701876*17393796001^(6/7) 2415781699999999 a001 9303105/230701876*45537549124^(14/17) 2415781699999999 a001 1134903170/228826127*23725150497407^(1/2) 2415781699999999 a001 1134903170/228826127*505019158607^(4/7) 2415781699999999 a001 9303105/230701876*192900153618^(7/9) 2415781699999999 a001 1134903170/228826127*73681302247^(8/13) 2415781699999999 a001 1134903170/228826127*10749957122^(2/3) 2415781699999999 a001 9303105/230701876*10749957122^(7/8) 2415781699999999 a001 2765222783542175/114464928 2415781699999999 a001 956722026041/228826127*1568397607^(9/22) 2415781699999999 a001 365435296162/228826127*1568397607^(5/11) 2415781699999999 a001 1134903170/228826127*4106118243^(16/23) 2415781699999999 a001 139583862445/228826127*1568397607^(1/2) 2415781699999999 a001 9303105/230701876*4106118243^(21/23) 2415781699999999 a001 53316291173/228826127*1568397607^(6/11) 2415781699999999 a001 20365011074/228826127*1568397607^(13/22) 2415781699999999 a001 7778742049/228826127*1568397607^(7/11) 2415781699999999 a001 2971215073/228826127*1568397607^(15/22) 2415781699999999 a001 1134903170/228826127*1568397607^(8/11) 2415781699999999 a001 9303105/230701876*1568397607^(21/22) 2415781699999999 a001 102334155/969323029*2537720636^(8/9) 2415781699999999 a001 6557470319842/228826127*599074578^(1/3) 2415781699999999 a001 4052739537881/228826127*599074578^(5/14) 2415781699999999 a001 2504730781961/228826127*599074578^(8/21) 2415781699999999 a001 433494437/228826127*45537549124^(2/3) 2415781699999999 a001 102334155/969323029*312119004989^(8/11) 2415781699999999 a001 102334155/969323029*23725150497407^(5/8) 2415781699999999 a001 102334155/969323029*73681302247^(10/13) 2415781699999999 a001 102334155/969323029*28143753123^(4/5) 2415781699999999 a001 433494437/228826127*10749957122^(17/24) 2415781699999999 a001 102334155/969323029*10749957122^(5/6) 2415781699999999 a001 433494437/228826127*4106118243^(17/23) 2415781699999999 a001 102334155/969323029*4106118243^(20/23) 2415781699999999 a001 44361286907595735/1836311903 2415781699999999 a001 956722026041/228826127*599074578^(3/7) 2415781699999999 a001 365435296162/228826127*599074578^(10/21) 2415781699999999 a001 433494437/228826127*1568397607^(17/22) 2415781699999999 a001 225851433717/228826127*599074578^(1/2) 2415781699999999 a001 102334155/969323029*1568397607^(10/11) 2415781699999999 a001 139583862445/228826127*599074578^(11/21) 2415781699999999 a001 53316291173/228826127*599074578^(4/7) 2415781699999999 a001 20365011074/228826127*599074578^(13/21) 2415781699999999 a001 701408733/228826127*599074578^(11/14) 2415781699999999 a001 12586269025/228826127*599074578^(9/14) 2415781699999999 a001 7778742049/228826127*599074578^(2/3) 2415781699999999 a001 2971215073/228826127*599074578^(5/7) 2415781699999999 a001 1134903170/228826127*599074578^(16/21) 2415781699999999 a001 1548008755920/370248451*141422324^(6/13) 2415781699999999 a001 433494437/228826127*599074578^(17/21) 2415781699999999 a001 102334155/969323029*599074578^(20/21) 2415781699999999 a001 102334155/141422324*141422324^(12/13) 2415781699999999 a001 6557470319842/228826127*228826127^(7/20) 2415781699999999 a001 4052739537881/228826127*228826127^(3/8) 2415781699999999 a001 6557470319842/370248451*141422324^(5/13) 2415781699999999 a001 165580141/228826127*2537720636^(4/5) 2415781699999999 a001 165580141/228826127*45537549124^(12/17) 2415781699999999 a001 102334155/370248451*817138163596^(2/3) 2415781699999999 a001 165580141/228826127*505019158607^(9/14) 2415781699999999 a001 165580141/228826127*192900153618^(2/3) 2415781699999999 a001 165580141/228826127*73681302247^(9/13) 2415781699999999 a001 165580141/228826127*10749957122^(3/4) 2415781699999999 a001 102334155/370248451*10749957122^(19/24) 2415781699999999 a001 165580141/228826127*4106118243^(18/23) 2415781699999999 a001 102334155/370248451*4106118243^(19/23) 2415781699999999 a001 165580141/228826127*1568397607^(9/11) 2415781699999999 a001 2504730781961/228826127*228826127^(2/5) 2415781699999999 a001 102334155/370248451*1568397607^(19/22) 2415781699999999 a001 5648167938005285/233802911 2415781699999999 a001 956722026041/228826127*228826127^(9/20) 2415781699999999 a001 365435296162/228826127*228826127^(1/2) 2415781699999999 a001 165580141/228826127*599074578^(6/7) 2415781699999999 a001 102334155/370248451*599074578^(19/21) 2415781699999999 a001 139583862445/228826127*228826127^(11/20) 2415781699999999 a001 53316291173/228826127*228826127^(3/5) 2415781699999999 a001 32951280099/228826127*228826127^(5/8) 2415781699999999 a001 20365011074/228826127*228826127^(13/20) 2415781699999999 a001 165580141/87403803*87403803^(17/19) 2415781699999999 a001 7778742049/228826127*228826127^(7/10) 2415781699999999 a001 71778070001175616/2971215073 2415781699999999 a001 267914296/228826127*228826127^(7/8) 2415781699999999 a001 2971215073/228826127*228826127^(3/4) 2415781699999999 a001 1134903170/228826127*228826127^(4/5) 2415781699999999 a001 267914296/1568397607*2537720636^(13/15) 2415781699999999 a001 233802911/199691526*2537720636^(7/9) 2415781699999999 a001 14455186685380536/598364773 2415781699999999 a001 233802911/199691526*17393796001^(5/7) 2415781699999999 a001 267914296/1568397607*45537549124^(13/17) 2415781699999999 a001 233802911/199691526*312119004989^(7/11) 2415781699999999 a001 233802911/199691526*14662949395604^(5/9) 2415781699999999 a001 233802911/199691526*505019158607^(5/8) 2415781699999999 a001 267914296/1568397607*192900153618^(13/18) 2415781699999999 a001 267914296/1568397607*73681302247^(3/4) 2415781699999999 a001 233802911/199691526*28143753123^(7/10) 2415781699999999 a001 267914296/1568397607*10749957122^(13/16) 2415781699999999 a001 1836311903/599074578*2537720636^(11/15) 2415781699999999 a001 267914296/6643838879*2537720636^(14/15) 2415781699999999 a001 7778742049/599074578*2537720636^(2/3) 2415781699999999 a001 10983760033/199691526*2537720636^(3/5) 2415781699999999 a001 43133785636/299537289*2537720636^(5/9) 2415781699999999 a001 139583862445/599074578*2537720636^(8/15) 2415781699999999 a001 591286729879/599074578*2537720636^(7/15) 2415781699999999 a001 956722026041/599074578*2537720636^(4/9) 2415781699999999 a001 2504730781961/599074578*2537720636^(2/5) 2415781699999999 a001 245987105364332644/10182505537 2415781699999999 a001 1836311903/599074578*45537549124^(11/17) 2415781699999999 a001 1836311903/599074578*312119004989^(3/5) 2415781699999999 a001 1836311903/599074578*14662949395604^(11/21) 2415781699999999 a001 1836311903/599074578*192900153618^(11/18) 2415781699999999 a001 1836311903/599074578*10749957122^(11/16) 2415781699999999 a001 3536736619241/199691526*2537720636^(1/3) 2415781699999999 a001 1288005205276048896/53316291173 2415781699999999 a001 267084832/33281921*9062201101803^(1/2) 2415781699999999 a001 267914296/28143753123*45537549124^(15/17) 2415781699999999 a001 591286729879/599074578*17393796001^(3/7) 2415781699999999 a001 10182505537/299537289*17393796001^(4/7) 2415781699999999 a001 267914296/28143753123*312119004989^(9/11) 2415781699999999 a001 267914296/28143753123*14662949395604^(5/7) 2415781699999999 a001 12586269025/599074578*1322157322203^(1/2) 2415781699999999 a001 267914296/28143753123*192900153618^(5/6) 2415781699999999 a001 10983760033/199691526*45537549124^(9/17) 2415781699999999 a001 267914296/119218851371*45537549124^(16/17) 2415781699999999 a001 139583862445/599074578*45537549124^(8/17) 2415781699999999 a001 591286729879/599074578*45537549124^(7/17) 2415781699999999 a001 10983760033/199691526*817138163596^(9/19) 2415781699999999 a001 10983760033/199691526*14662949395604^(3/7) 2415781699999999 a001 10983760033/199691526*192900153618^(1/2) 2415781699999999 a001 4052739537881/599074578*45537549124^(1/3) 2415781699999999 a001 3536736619241/199691526*45537549124^(5/17) 2415781699999999 a001 267914296/28143753123*28143753123^(9/10) 2415781699999999 a001 43133785636/299537289*312119004989^(5/11) 2415781699999999 a001 133957148/96450076809*14662949395604^(7/9) 2415781699999999 a001 133957148/96450076809*505019158607^(7/8) 2415781699999999 a001 267914296/505019158607*817138163596^(17/19) 2415781699999999 a001 133957148/1730726404001*3461452808002^(11/12) 2415781699999999 a006 5^(1/2)*Fibonacci(79)/Lucas(42)/sqrt(5) 2415781699999999 a001 267914296/2139295485799*14662949395604^(6/7) 2415781699999999 a001 139583862445/599074578*14662949395604^(8/21) 2415781699999999 a001 267914296/312119004989*3461452808002^(5/6) 2415781699999999 a001 139583862445/599074578*192900153618^(4/9) 2415781699999999 a001 3278735159921/299537289*73681302247^(4/13) 2415781699999999 a001 14284196614945309208/591286729879 2415781699999999 a001 267914296/119218851371*192900153618^(8/9) 2415781699999999 a001 139583862445/599074578*73681302247^(6/13) 2415781699999999 a001 53316291173/599074578*73681302247^(1/2) 2415781699999999 a001 267914296/119218851371*73681302247^(12/13) 2415781699999999 a001 3536736619241/199691526*28143753123^(3/10) 2415781699999999 a001 10182505537/299537289*14662949395604^(4/9) 2415781699999999 a001 10182505537/299537289*505019158607^(1/2) 2415781699999999 a001 14472354389715952/599075421 2415781699999999 a001 956722026041/599074578*28143753123^(2/5) 2415781699999999 a001 10182505537/299537289*73681302247^(7/13) 2415781699999999 a001 43133785636/299537289*28143753123^(1/2) 2415781699999999 a001 3536736619241/199691526*10749957122^(5/16) 2415781699999999 a001 3278735159921/299537289*10749957122^(1/3) 2415781699999999 a001 7778742049/599074578*45537549124^(10/17) 2415781699999999 a001 2504730781961/599074578*10749957122^(3/8) 2415781699999999 a001 9238424/599786069*312119004989^(4/5) 2415781699999999 a001 7778742049/599074578*312119004989^(6/11) 2415781699999999 a001 7778742049/599074578*14662949395604^(10/21) 2415781699999999 a001 7778742049/599074578*192900153618^(5/9) 2415781699999999 a001 260504524977929063/10783446409 2415781699999999 a001 9238424/599786069*73681302247^(11/13) 2415781699999999 a001 956722026041/599074578*10749957122^(5/12) 2415781699999999 a001 591286729879/599074578*10749957122^(7/16) 2415781699999999 a001 182717648081/299537289*10749957122^(11/24) 2415781699999999 a001 7778742049/599074578*28143753123^(3/5) 2415781699999999 a001 139583862445/599074578*10749957122^(1/2) 2415781699999999 a001 10983760033/199691526*10749957122^(9/16) 2415781699999999 a001 53316291173/599074578*10749957122^(13/24) 2415781699999999 a001 10182505537/299537289*10749957122^(7/12) 2415781699999999 a001 267914296/28143753123*10749957122^(15/16) 2415781699999999 a001 7778742049/599074578*10749957122^(5/8) 2415781699999999 a001 66978574/11384387281*10749957122^(23/24) 2415781699999999 a001 9238424/599786069*10749957122^(11/12) 2415781699999999 a001 66978574/634430159*2537720636^(8/9) 2415781699999999 a001 267914296/6643838879*17393796001^(6/7) 2415781699999999 a001 3278735159921/299537289*4106118243^(8/23) 2415781699999999 a001 267914296/6643838879*45537549124^(14/17) 2415781699999999 a001 267914296/6643838879*14662949395604^(2/3) 2415781699999999 a001 267914296/6643838879*505019158607^(3/4) 2415781699999999 a001 267914296/6643838879*192900153618^(7/9) 2415781699999999 a001 2971215073/599074578*73681302247^(8/13) 2415781699999999 a001 796030994547383608/32951280099 2415781699999999 a001 2504730781961/599074578*4106118243^(9/23) 2415781699999999 a001 956722026041/599074578*4106118243^(10/23) 2415781699999999 a001 182717648081/299537289*4106118243^(11/23) 2415781699999999 a001 2971215073/599074578*10749957122^(2/3) 2415781699999999 a001 267913919/710646*4106118243^(1/2) 2415781699999999 a001 267914296/6643838879*10749957122^(7/8) 2415781699999999 a001 139583862445/599074578*4106118243^(12/23) 2415781699999999 a001 53316291173/599074578*4106118243^(13/23) 2415781699999999 a001 10182505537/299537289*4106118243^(14/23) 2415781699999999 a001 7778742049/599074578*4106118243^(15/23) 2415781699999999 a001 9238424/599786069*4106118243^(22/23) 2415781699999999 a001 2971215073/599074578*4106118243^(16/23) 2415781699999999 a001 267914296/6643838879*4106118243^(21/23) 2415781699999999 a001 3278735159921/299537289*1568397607^(4/11) 2415781699999999 a001 567451585/299537289*45537549124^(2/3) 2415781699999999 a001 66978574/634430159*312119004989^(8/11) 2415781699999999 a001 66978574/634430159*23725150497407^(5/8) 2415781699999999 a001 66978574/634430159*73681302247^(10/13) 2415781699999999 a001 66978574/634430159*28143753123^(4/5) 2415781699999999 a001 60811356763743664/2517253805 2415781699999999 a001 567451585/299537289*10749957122^(17/24) 2415781699999999 a001 66978574/634430159*10749957122^(5/6) 2415781699999999 a001 2504730781961/599074578*1568397607^(9/22) 2415781699999999 a001 956722026041/599074578*1568397607^(5/11) 2415781699999999 a001 567451585/299537289*4106118243^(17/23) 2415781699999999 a001 182717648081/299537289*1568397607^(1/2) 2415781699999999 a001 66978574/634430159*4106118243^(20/23) 2415781699999999 a001 139583862445/599074578*1568397607^(6/11) 2415781699999999 a001 53316291173/599074578*1568397607^(13/22) 2415781699999999 a001 1836311903/599074578*1568397607^(3/4) 2415781699999999 a001 10182505537/299537289*1568397607^(7/11) 2415781699999999 a001 7778742049/599074578*1568397607^(15/22) 2415781699999999 a001 2971215073/599074578*1568397607^(8/11) 2415781699999999 a001 267914296/6643838879*1568397607^(21/22) 2415781699999999 a001 567451585/299537289*1568397607^(17/22) 2415781699999999 a001 66978574/634430159*1568397607^(10/11) 2415781699999999 a001 433494437/599074578*2537720636^(4/5) 2415781699999999 a001 433494437/228826127*228826127^(17/20) 2415781699999999 a001 3536736619241/199691526*599074578^(5/14) 2415781699999999 a001 3278735159921/299537289*599074578^(8/21) 2415781699999999 a001 433494437/599074578*45537549124^(12/17) 2415781699999999 a001 267914296/969323029*817138163596^(2/3) 2415781699999999 a001 433494437/599074578*192900153618^(2/3) 2415781699999999 a001 433494437/599074578*73681302247^(9/13) 2415781699999999 a001 433494437/599074578*10749957122^(3/4) 2415781699999999 a001 267914296/969323029*10749957122^(19/24) 2415781699999999 a001 14517419613596419/600940872 2415781699999999 a001 433494437/599074578*4106118243^(18/23) 2415781699999999 a001 267914296/969323029*4106118243^(19/23) 2415781699999999 a001 2504730781961/599074578*599074578^(3/7) 2415781699999999 a001 956722026041/599074578*599074578^(10/21) 2415781699999999 a001 591286729879/599074578*599074578^(1/2) 2415781699999999 a001 433494437/599074578*1568397607^(9/11) 2415781699999999 a001 267914296/969323029*1568397607^(19/22) 2415781699999999 a001 182717648081/299537289*599074578^(11/21) 2415781699999999 a001 139583862445/599074578*599074578^(4/7) 2415781699999999 a001 53316291173/599074578*599074578^(13/21) 2415781699999999 a001 10983760033/199691526*599074578^(9/14) 2415781699999999 a001 10182505537/299537289*599074578^(2/3) 2415781699999999 a001 233802911/199691526*599074578^(5/6) 2415781699999999 a001 491974210728665289/20365011074 2415781699999999 a001 7778742049/599074578*599074578^(5/7) 2415781699999999 a001 1836311903/599074578*599074578^(11/14) 2415781699999999 a001 2971215073/599074578*599074578^(16/21) 2415781699999999 a001 267914296/1568397607*599074578^(13/14) 2415781699999999 a001 233802911/1368706081*2537720636^(13/15) 2415781699999999 a001 1836311903/1568397607*2537720636^(7/9) 2415781699999999 a001 701408733/17393796001*2537720636^(14/15) 2415781699999999 a001 686789568/224056801*2537720636^(11/15) 2415781699999999 a001 701408733/6643838879*2537720636^(8/9) 2415781699999999 a001 20365011074/1568397607*2537720636^(2/3) 2415781699999999 a001 86267571272/1568397607*2537720636^(3/5) 2415781699999999 a001 32264490531/224056801*2537720636^(5/9) 2415781699999999 a001 365435296162/1568397607*2537720636^(8/15) 2415781699999999 a001 1548008755920/1568397607*2537720636^(7/15) 2415781699999999 a001 2504730781961/1568397607*2537720636^(4/9) 2415781699999999 a001 6557470319842/1568397607*2537720636^(2/5) 2415781699999999 a001 1836311903/1568397607*17393796001^(5/7) 2415781699999999 a001 233802911/1368706081*45537549124^(13/17) 2415781699999999 a001 1288005205276048899/53316291173 2415781699999999 a001 1836311903/1568397607*312119004989^(7/11) 2415781699999999 a001 1836311903/1568397607*14662949395604^(5/9) 2415781699999999 a001 1836311903/1568397607*505019158607^(5/8) 2415781699999999 a001 233802911/1368706081*192900153618^(13/18) 2415781699999999 a001 233802911/1368706081*73681302247^(3/4) 2415781699999999 a001 1836311903/1568397607*28143753123^(7/10) 2415781699999999 a001 233802911/1368706081*10749957122^(13/16) 2415781699999999 a001 686789568/224056801*45537549124^(11/17) 2415781699999999 a001 37888105675275072/1568358005 2415781699999999 a001 686789568/224056801*312119004989^(3/5) 2415781699999999 a001 686789568/224056801*14662949395604^(11/21) 2415781699999999 a001 686789568/224056801*192900153618^(11/18) 2415781699999999 a001 686789568/224056801*10749957122^(11/16) 2415781699999999 a001 53316291173/1568397607*17393796001^(4/7) 2415781699999999 a001 1548008755920/1568397607*17393796001^(3/7) 2415781699999999 a001 12586269025/1568397607*9062201101803^(1/2) 2415781699999999 a001 701408733/73681302247*45537549124^(15/17) 2415781699999999 a001 3524667/1568437211*45537549124^(16/17) 2415781699999999 a001 86267571272/1568397607*45537549124^(9/17) 2415781699999999 a001 365435296162/1568397607*45537549124^(8/17) 2415781699999999 a001 1548008755920/1568397607*45537549124^(7/17) 2415781699999999 a001 701408733/73681302247*312119004989^(9/11) 2415781699999999 a001 23112315624967704567/956722026041 2415781699999999 a001 32951280099/1568397607*1322157322203^(1/2) 2415781699999999 a001 6557470319842/1568397607*45537549124^(6/17) 2415781699999999 a001 1515744265389/224056801*45537549124^(1/3) 2415781699999999 a001 60508827864880718376/2504730781961 2415781699999999 a001 86267571272/1568397607*14662949395604^(3/7) 2415781699999999 a001 86267571272/1568397607*192900153618^(1/2) 2415781699999999 a001 32264490531/224056801*312119004989^(5/11) 2415781699999999 a001 12185705228436496197/504420793834 2415781699999999 a001 1548008755920/1568397607*14662949395604^(1/3) 2415781699999999 a006 5^(1/2)*Fibonacci(81)/Lucas(44)/sqrt(5) 2415781699999999 a001 701408733/2139295485799*505019158607^(13/14) 2415781699999999 a001 6557470319842/1568397607*192900153618^(1/3) 2415781699999999 a001 1548008755920/1568397607*192900153618^(7/18) 2415781699999999 a001 365435296162/1568397607*192900153618^(4/9) 2415781699999999 a001 233802911/440719107401*192900153618^(17/18) 2415781699999999 a001 3524667/1568437211*192900153618^(8/9) 2415781699999999 a001 12465504079971004603/516002918640 2415781699999999 a001 2504730781961/1568397607*73681302247^(5/13) 2415781699999999 a001 365435296162/1568397607*73681302247^(6/13) 2415781699999999 a001 139583862445/1568397607*73681302247^(1/2) 2415781699999999 a001 53316291173/1568397607*73681302247^(7/13) 2415781699999999 a001 3524667/1568437211*73681302247^(12/13) 2415781699999999 a001 20365011074/1568397607*45537549124^(10/17) 2415781699999999 a001 701408733/17393796001*17393796001^(6/7) 2415781699999999 a001 701408733/45537549124*312119004989^(4/5) 2415781699999999 a001 20365011074/1568397607*312119004989^(6/11) 2415781699999999 a001 20365011074/1568397607*14662949395604^(10/21) 2415781699999999 a001 14284196614945309242/591286729879 2415781699999999 a001 20365011074/1568397607*192900153618^(5/9) 2415781699999999 a001 2504730781961/1568397607*28143753123^(2/5) 2415781699999999 a001 32264490531/224056801*28143753123^(1/2) 2415781699999999 a001 701408733/45537549124*73681302247^(11/13) 2415781699999999 a001 701408733/73681302247*28143753123^(9/10) 2415781699999999 a001 20365011074/1568397607*28143753123^(3/5) 2415781699999999 a001 701408733/17393796001*45537549124^(14/17) 2415781699999999 a001 6557470319842/1568397607*10749957122^(3/8) 2415781699999999 a001 701408733/17393796001*14662949395604^(2/3) 2415781699999999 a001 139899425767254203/5791062403 2415781699999999 a001 701408733/17393796001*192900153618^(7/9) 2415781699999999 a001 7778742049/1568397607*73681302247^(8/13) 2415781699999999 a001 2504730781961/1568397607*10749957122^(5/12) 2415781699999999 a001 1548008755920/1568397607*10749957122^(7/16) 2415781699999999 a001 956722026041/1568397607*10749957122^(11/24) 2415781699999999 a001 365435296162/1568397607*10749957122^(1/2) 2415781699999999 a001 139583862445/1568397607*10749957122^(13/24) 2415781699999999 a001 86267571272/1568397607*10749957122^(9/16) 2415781699999999 a001 53316291173/1568397607*10749957122^(7/12) 2415781699999999 a001 20365011074/1568397607*10749957122^(5/8) 2415781699999999 a001 701408733/73681302247*10749957122^(15/16) 2415781699999999 a001 701408733/119218851371*10749957122^(23/24) 2415781699999999 a001 701408733/45537549124*10749957122^(11/12) 2415781699999999 a001 7778742049/1568397607*10749957122^(2/3) 2415781699999999 a001 701408733/17393796001*10749957122^(7/8) 2415781699999999 a001 2971215073/1568397607*45537549124^(2/3) 2415781699999999 a001 701408733/6643838879*312119004989^(8/11) 2415781699999999 a001 701408733/6643838879*23725150497407^(5/8) 2415781699999999 a001 2084036199823432509/86267571272 2415781699999999 a001 701408733/6643838879*73681302247^(10/13) 2415781699999999 a001 6557470319842/1568397607*4106118243^(9/23) 2415781699999999 a001 701408733/6643838879*28143753123^(4/5) 2415781699999999 a001 2504730781961/1568397607*4106118243^(10/23) 2415781699999999 a001 956722026041/1568397607*4106118243^(11/23) 2415781699999999 a001 2971215073/1568397607*10749957122^(17/24) 2415781699999999 a001 591286729879/1568397607*4106118243^(1/2) 2415781699999999 a001 701408733/6643838879*10749957122^(5/6) 2415781699999999 a001 365435296162/1568397607*4106118243^(12/23) 2415781699999999 a001 1134903170/1568397607*2537720636^(4/5) 2415781699999999 a001 567451585/299537289*599074578^(17/21) 2415781699999999 a001 139583862445/1568397607*4106118243^(13/23) 2415781699999999 a001 53316291173/1568397607*4106118243^(14/23) 2415781699999999 a001 20365011074/1568397607*4106118243^(15/23) 2415781699999999 a001 7778742049/1568397607*4106118243^(16/23) 2415781699999999 a001 701408733/45537549124*4106118243^(22/23) 2415781699999999 a001 701408733/17393796001*4106118243^(21/23) 2415781699999999 a001 2971215073/1568397607*4106118243^(17/23) 2415781699999999 a001 701408733/6643838879*4106118243^(20/23) 2415781699999999 a001 1134903170/1568397607*45537549124^(12/17) 2415781699999999 a001 1134903170/1568397607*14662949395604^(4/7) 2415781699999999 a001 1134903170/1568397607*192900153618^(2/3) 2415781699999999 a001 1134903170/1568397607*73681302247^(9/13) 2415781699999999 a001 265343664849127870/10983760033 2415781699999999 a001 1134903170/1568397607*10749957122^(3/4) 2415781699999999 a001 701408733/2537720636*10749957122^(19/24) 2415781699999999 a001 6557470319842/1568397607*1568397607^(9/22) 2415781699999999 a001 2504730781961/1568397607*1568397607^(5/11) 2415781699999999 a001 1134903170/1568397607*4106118243^(18/23) 2415781699999999 a001 1836311903/45537549124*2537720636^(14/15) 2415781699999999 a001 956722026041/1568397607*1568397607^(1/2) 2415781699999999 a001 1836311903/10749957122*2537720636^(13/15) 2415781699999999 a001 701408733/2537720636*4106118243^(19/23) 2415781699999999 a001 1836311903/17393796001*2537720636^(8/9) 2415781699999999 a001 1602508992/1368706081*2537720636^(7/9) 2415781699999999 a001 365435296162/1568397607*1568397607^(6/11) 2415781699999999 a001 12586269025/4106118243*2537720636^(11/15) 2415781699999999 a001 139583862445/1568397607*1568397607^(13/22) 2415781699999999 a001 53316291173/4106118243*2537720636^(2/3) 2415781699999999 a001 2971215073/4106118243*2537720636^(4/5) 2415781699999999 a001 4807526976/119218851371*2537720636^(14/15) 2415781699999999 a001 75283811239/1368706081*2537720636^(3/5) 2415781699999999 a001 53316291173/1568397607*1568397607^(7/11) 2415781699999999 a001 1201881744/11384387281*2537720636^(8/9) 2415781699999999 a001 1144206275/28374454999*2537720636^(14/15) 2415781699999999 a001 591286729879/4106118243*2537720636^(5/9) 2415781699999999 a001 32951280099/817138163596*2537720636^(14/15) 2415781699999999 a001 86267571272/2139295485799*2537720636^(14/15) 2415781699999999 a001 225851433717/5600748293801*2537720636^(14/15) 2415781699999999 a001 365435296162/9062201101803*2537720636^(14/15) 2415781699999999 a001 139583862445/3461452808002*2537720636^(14/15) 2415781699999999 a001 53316291173/1322157322203*2537720636^(14/15) 2415781699999999 a001 1602508992/9381251041*2537720636^(13/15) 2415781699999999 a001 20365011074/505019158607*2537720636^(14/15) 2415781699999999 a001 956722026041/4106118243*2537720636^(8/15) 2415781699999999 a001 7778742049/192900153618*2537720636^(14/15) 2415781699999999 a001 12586269025/119218851371*2537720636^(8/9) 2415781699999999 a001 32951280099/312119004989*2537720636^(8/9) 2415781699999999 a001 21566892818/204284540899*2537720636^(8/9) 2415781699999999 a001 225851433717/2139295485799*2537720636^(8/9) 2415781699999999 a001 182717648081/1730726404001*2537720636^(8/9) 2415781699999999 a001 139583862445/1322157322203*2537720636^(8/9) 2415781699999999 a001 53316291173/505019158607*2537720636^(8/9) 2415781699999999 a001 10182505537/96450076809*2537720636^(8/9) 2415781699999999 a001 12586269025/73681302247*2537720636^(13/15) 2415781699999999 a001 7778742049/73681302247*2537720636^(8/9) 2415781699999999 a001 10983760033/64300051206*2537720636^(13/15) 2415781699999999 a001 86267571272/505019158607*2537720636^(13/15) 2415781699999999 a001 75283811239/440719107401*2537720636^(13/15) 2415781699999999 a001 139583862445/817138163596*2537720636^(13/15) 2415781699999999 a001 53316291173/312119004989*2537720636^(13/15) 2415781699999999 a001 20365011074/119218851371*2537720636^(13/15) 2415781699999999 a001 4052739537881/4106118243*2537720636^(7/15) 2415781699999999 a001 7778742049/45537549124*2537720636^(13/15) 2415781699999999 a001 12586269025/10749957122*2537720636^(7/9) 2415781699999999 a001 7778742049/10749957122*2537720636^(4/5) 2415781699999999 a001 20365011074/1568397607*1568397607^(15/22) 2415781699999999 a001 6557470319842/4106118243*2537720636^(4/9) 2415781699999999 a001 20365011074/28143753123*2537720636^(4/5) 2415781699999999 a001 53316291173/73681302247*2537720636^(4/5) 2415781699999999 a001 139583862445/192900153618*2537720636^(4/5) 2415781699999999 a001 365435296162/505019158607*2537720636^(4/5) 2415781699999999 a001 10610209857723/14662949395604*2537720636^(4/5) 2415781699999999 a001 225851433717/312119004989*2537720636^(4/5) 2415781699999999 a001 86267571272/119218851371*2537720636^(4/5) 2415781699999999 a001 32951280099/45537549124*2537720636^(4/5) 2415781699999999 a001 32951280099/10749957122*2537720636^(11/15) 2415781699999999 a001 2971215073/73681302247*2537720636^(14/15) 2415781699999999 a001 10983760033/9381251041*2537720636^(7/9) 2415781699999999 a001 12586269025/17393796001*2537720636^(4/5) 2415781699999999 a001 86267571272/73681302247*2537720636^(7/9) 2415781699999999 a001 75283811239/64300051206*2537720636^(7/9) 2415781699999999 a001 2504730781961/2139295485799*2537720636^(7/9) 2415781699999999 a001 365435296162/312119004989*2537720636^(7/9) 2415781699999999 a001 139583862445/119218851371*2537720636^(7/9) 2415781699999999 a001 53316291173/45537549124*2537720636^(7/9) 2415781699999999 a001 3372041405099481409/139583862445 2415781699999999 a001 20365011074/17393796001*2537720636^(7/9) 2415781699999999 a001 2971215073/28143753123*2537720636^(8/9) 2415781699999999 a001 86267571272/28143753123*2537720636^(11/15) 2415781699999999 a001 32264490531/10525900321*2537720636^(11/15) 2415781699999999 a001 591286729879/192900153618*2537720636^(11/15) 2415781699999999 a001 1515744265389/494493258286*2537720636^(11/15) 2415781699999999 a001 2504730781961/817138163596*2537720636^(11/15) 2415781699999999 a001 956722026041/312119004989*2537720636^(11/15) 2415781699999999 a001 365435296162/119218851371*2537720636^(11/15) 2415781699999999 a001 139583862445/45537549124*2537720636^(11/15) 2415781699999999 a001 139583862445/10749957122*2537720636^(2/3) 2415781699999999 a001 53316291173/17393796001*2537720636^(11/15) 2415781699999999 a001 686789568/224056801*1568397607^(3/4) 2415781699999999 a001 4807526976/6643838879*2537720636^(4/5) 2415781699999999 a001 2971215073/17393796001*2537720636^(13/15) 2415781699999999 a001 7778742049/1568397607*1568397607^(8/11) 2415781699999999 a001 365435296162/28143753123*2537720636^(2/3) 2415781699999999 a001 956722026041/73681302247*2537720636^(2/3) 2415781699999999 a001 2504730781961/192900153618*2537720636^(2/3) 2415781699999999 a001 10610209857723/817138163596*2537720636^(2/3) 2415781699999999 a001 4052739537881/312119004989*2537720636^(2/3) 2415781699999999 a001 1548008755920/119218851371*2537720636^(2/3) 2415781699999999 a001 591286729879/45537549124*2537720636^(2/3) 2415781699999999 a001 591286729879/10749957122*2537720636^(3/5) 2415781699999999 a001 7787980473/599786069*2537720636^(2/3) 2415781699999999 a001 774004377960/5374978561*2537720636^(5/9) 2415781699999999 a001 7778742049/6643838879*2537720636^(7/9) 2415781699999999 a001 12585437040/228811001*2537720636^(3/5) 2415781699999999 a001 4052739537881/73681302247*2537720636^(3/5) 2415781699999999 a001 3536736619241/64300051206*2537720636^(3/5) 2415781699999999 a001 6557470319842/119218851371*2537720636^(3/5) 2415781699999999 a001 2504730781961/45537549124*2537720636^(3/5) 2415781699999999 a001 2504730781961/10749957122*2537720636^(8/15) 2415781699999999 a001 20365011074/6643838879*2537720636^(11/15) 2415781699999999 a001 956722026041/17393796001*2537720636^(3/5) 2415781699999999 a001 4052739537881/28143753123*2537720636^(5/9) 2415781699999999 a001 1515744265389/10525900321*2537720636^(5/9) 2415781699999999 a001 3278735159921/22768774562*2537720636^(5/9) 2415781699999999 a001 6557470319842/28143753123*2537720636^(8/15) 2415781699999999 a001 2504730781961/17393796001*2537720636^(5/9) 2415781699999999 a001 10610209857723/45537549124*2537720636^(8/15) 2415781699999999 a001 4807525989/4870846*2537720636^(7/15) 2415781699999999 a001 86267571272/6643838879*2537720636^(2/3) 2415781699999999 a001 4052739537881/17393796001*2537720636^(8/15) 2415781699999999 a001 365435296162/6643838879*2537720636^(3/5) 2415781699999999 a001 1602508992/1368706081*17393796001^(5/7) 2415781699999999 a001 2971215073/1568397607*1568397607^(17/22) 2415781699999999 a001 1836311903/10749957122*45537549124^(13/17) 2415781699999999 a001 1602508992/1368706081*312119004989^(7/11) 2415781699999999 a001 1602508992/1368706081*14662949395604^(5/9) 2415781699999999 a001 1602508992/1368706081*505019158607^(5/8) 2415781699999999 a001 1836311903/10749957122*192900153618^(13/18) 2415781699999999 a001 1836311903/10749957122*73681302247^(3/4) 2415781699999999 a001 1602508992/1368706081*28143753123^(7/10) 2415781699999999 a001 956722026041/6643838879*2537720636^(5/9) 2415781699999999 a001 1836311903/45537549124*17393796001^(6/7) 2415781699999999 a001 139583862445/4106118243*17393796001^(4/7) 2415781699999999 a001 1836311903/10749957122*10749957122^(13/16) 2415781699999999 a001 12586269025/4106118243*45537549124^(11/17) 2415781699999999 a001 4052739537881/4106118243*17393796001^(3/7) 2415781699999999 a001 12586269025/4106118243*312119004989^(3/5) 2415781699999999 a001 12586269025/4106118243*817138163596^(11/19) 2415781699999999 a001 12586269025/4106118243*14662949395604^(11/21) 2415781699999999 a001 12586269025/4106118243*192900153618^(11/18) 2415781699999999 a001 1548008755920/6643838879*2537720636^(8/15) 2415781699999999 a001 1836311903/192900153618*45537549124^(15/17) 2415781699999999 a001 1836311903/817138163596*45537549124^(16/17) 2415781699999999 a001 75283811239/1368706081*45537549124^(9/17) 2415781699999999 a001 956722026041/4106118243*45537549124^(8/17) 2415781699999999 a001 53316291173/4106118243*45537549124^(10/17) 2415781699999999 a001 4052739537881/4106118243*45537549124^(7/17) 2415781699999999 a001 10983760033/1368706081*9062201101803^(1/2) 2415781699999999 a001 1836311903/192900153618*312119004989^(9/11) 2415781699999999 a001 4659240234402189724/192866774113 2415781699999999 a001 1836311903/192900153618*14662949395604^(5/7) 2415781699999999 a001 86267571272/4106118243*1322157322203^(1/2) 2415781699999999 a001 1836311903/2139295485799*312119004989^(10/11) 2415781699999999 a001 1836311903/192900153618*192900153618^(5/6) 2415781699999999 a001 1836311903/1322157322203*14662949395604^(7/9) 2415781699999999 a006 5^(1/2)*Fibonacci(83)/Lucas(46)/sqrt(5) 2415781699999999 a001 1836311903/14662949395604*14662949395604^(6/7) 2415781699999999 a001 1836311903/1322157322203*505019158607^(7/8) 2415781699999999 a001 139583862445/4106118243*14662949395604^(4/9) 2415781699999999 a001 956722026041/4106118243*192900153618^(4/9) 2415781699999999 a001 1836311903/3461452808002*192900153618^(17/18) 2415781699999999 a001 1836311903/119218851371*312119004989^(4/5) 2415781699999999 a001 53316291173/4106118243*312119004989^(6/11) 2415781699999999 a001 53316291173/4106118243*14662949395604^(10/21) 2415781699999999 a001 1836311903/119218851371*23725150497407^(11/16) 2415781699999999 a001 1836311903/45537549124*45537549124^(14/17) 2415781699999999 a001 365435296162/4106118243*73681302247^(1/2) 2415781699999999 a001 139583862445/4106118243*73681302247^(7/13) 2415781699999999 a001 1836311903/817138163596*73681302247^(12/13) 2415781699999999 a001 1836311903/119218851371*73681302247^(11/13) 2415781699999999 a001 1836311903/45537549124*14662949395604^(2/3) 2415781699999999 a001 1836311903/45537549124*505019158607^(3/4) 2415781699999999 a001 1836311903/45537549124*192900153618^(7/9) 2415781699999999 a001 6557470319842/4106118243*28143753123^(2/5) 2415781699999999 a001 20365011074/4106118243*73681302247^(8/13) 2415781699999999 a001 591286729879/4106118243*28143753123^(1/2) 2415781699999999 a001 53316291173/4106118243*28143753123^(3/5) 2415781699999999 a001 1836311903/192900153618*28143753123^(9/10) 2415781699999999 a001 7778742049/4106118243*45537549124^(2/3) 2415781699999999 a001 1836311903/17393796001*312119004989^(8/11) 2415781699999999 a001 1836311903/17393796001*23725150497407^(5/8) 2415781699999999 a001 14284196614945309247/591286729879 2415781699999999 a001 1836311903/17393796001*73681302247^(10/13) 2415781699999999 a001 6557470319842/4106118243*10749957122^(5/12) 2415781699999999 a001 4052739537881/4106118243*10749957122^(7/16) 2415781699999999 a001 2504730781961/4106118243*10749957122^(11/24) 2415781699999999 a001 1836311903/17393796001*28143753123^(4/5) 2415781699999999 a001 956722026041/4106118243*10749957122^(1/2) 2415781699999999 a001 12586269025/4106118243*10749957122^(11/16) 2415781699999999 a001 75283811239/1368706081*10749957122^(9/16) 2415781699999999 a001 139583862445/4106118243*10749957122^(7/12) 2415781699999999 a001 53316291173/4106118243*10749957122^(5/8) 2415781699999999 a001 20365011074/4106118243*10749957122^(2/3) 2415781699999999 a001 1836311903/119218851371*10749957122^(11/12) 2415781699999999 a001 1836311903/45537549124*10749957122^(7/8) 2415781699999999 a001 1836311903/192900153618*10749957122^(15/16) 2415781699999999 a001 1836311903/312119004989*10749957122^(23/24) 2415781699999999 a001 7778742049/4106118243*10749957122^(17/24) 2415781699999999 a001 6557470319842/6643838879*2537720636^(7/15) 2415781699999999 a001 1836311903/17393796001*10749957122^(5/6) 2415781699999999 a001 10610209857723/6643838879*2537720636^(4/9) 2415781699999999 a001 2971215073/4106118243*45537549124^(12/17) 2415781699999999 a001 1836311903/6643838879*817138163596^(2/3) 2415781699999999 a001 2971215073/4106118243*505019158607^(9/14) 2415781699999999 a001 2971215073/4106118243*192900153618^(2/3) 2415781699999999 a001 2971215073/4106118243*73681302247^(9/13) 2415781699999999 a001 6557470319842/4106118243*4106118243^(10/23) 2415781699999999 a001 2504730781961/4106118243*4106118243^(11/23) 2415781699999999 a001 2971215073/4106118243*10749957122^(3/4) 2415781699999999 a001 1836311903/6643838879*10749957122^(19/24) 2415781699999999 a001 516002918640/1368706081*4106118243^(1/2) 2415781699999999 a001 956722026041/4106118243*4106118243^(12/23) 2415781699999999 a001 1836311903/2537720636*2537720636^(4/5) 2415781699999999 a001 365435296162/4106118243*4106118243^(13/23) 2415781699999999 a001 139583862445/4106118243*4106118243^(14/23) 2415781699999999 a001 53316291173/4106118243*4106118243^(15/23) 2415781699999999 a001 20365011074/4106118243*4106118243^(16/23) 2415781699999999 a001 23112315624967704576/956722026041 2415781699999999 a001 701408733/17393796001*1568397607^(21/22) 2415781699999999 a001 701408733/6643838879*1568397607^(10/11) 2415781699999999 a001 12586269025/10749957122*17393796001^(5/7) 2415781699999999 a001 7778742049/4106118243*4106118243^(17/23) 2415781699999999 a001 4807526976/119218851371*17393796001^(6/7) 2415781699999999 a001 182717648081/5374978561*17393796001^(4/7) 2415781699999999 a001 1602508992/9381251041*45537549124^(13/17) 2415781699999999 a001 4807525989/4870846*17393796001^(3/7) 2415781699999999 a001 12586269025/10749957122*312119004989^(7/11) 2415781699999999 a001 12586269025/10749957122*14662949395604^(5/9) 2415781699999999 a001 12586269025/10749957122*505019158607^(5/8) 2415781699999999 a001 1602508992/9381251041*192900153618^(13/18) 2415781699999999 a001 1602508992/9381251041*73681302247^(3/4) 2415781699999999 a001 32951280099/10749957122*45537549124^(11/17) 2415781699999999 a001 4807526976/2139295485799*45537549124^(16/17) 2415781699999999 a001 102287808/10745088481*45537549124^(15/17) 2415781699999999 a001 12586269025/10749957122*28143753123^(7/10) 2415781699999999 a001 4807526976/119218851371*45537549124^(14/17) 2415781699999999 a001 139583862445/10749957122*45537549124^(10/17) 2415781699999999 a001 591286729879/10749957122*45537549124^(9/17) 2415781699999999 a001 2504730781961/10749957122*45537549124^(8/17) 2415781699999999 a001 4807525989/4870846*45537549124^(7/17) 2415781699999999 a001 32951280099/10749957122*312119004989^(3/5) 2415781699999999 a001 32951280099/10749957122*817138163596^(11/19) 2415781699999999 a001 32951280099/10749957122*14662949395604^(11/21) 2415781699999999 a001 32951280099/10749957122*192900153618^(11/18) 2415781699999999 a001 43133785636/5374978561*9062201101803^(1/2) 2415781699999999 a001 102287808/10745088481*312119004989^(9/11) 2415781699999999 a001 4807526976/5600748293801*312119004989^(10/11) 2415781699999999 a001 102287808/10745088481*14662949395604^(5/7) 2415781699999999 a006 5^(1/2)*Fibonacci(85)/Lucas(48)/sqrt(5) 2415781699999999 a001 1201881744/3665737348901*505019158607^(13/14) 2415781699999999 a001 4807525989/4870846*192900153618^(7/18) 2415781699999999 a001 102287808/10745088481*192900153618^(5/6) 2415781699999999 a001 139583862445/10749957122*192900153618^(5/9) 2415781699999999 a001 259695550227424704/10749959329 2415781699999999 a001 4807526976/119218851371*505019158607^(3/4) 2415781699999999 a001 2504730781961/10749957122*73681302247^(6/13) 2415781699999999 a001 4807526976/119218851371*192900153618^(7/9) 2415781699999999 a001 182717648081/5374978561*73681302247^(7/13) 2415781699999999 a001 10182505537/5374978561*45537549124^(2/3) 2415781699999999 a001 4807526976/312119004989*73681302247^(11/13) 2415781699999999 a001 4807526976/2139295485799*73681302247^(12/13) 2415781699999999 a001 53316291173/10749957122*73681302247^(8/13) 2415781699999999 a001 1201881744/11384387281*312119004989^(8/11) 2415781699999999 a001 1201881744/11384387281*23725150497407^(5/8) 2415781699999999 a001 1201881744/11384387281*73681302247^(10/13) 2415781699999999 a001 774004377960/5374978561*28143753123^(1/2) 2415781699999999 a001 139583862445/10749957122*28143753123^(3/5) 2415781699999999 a001 102287808/10745088481*28143753123^(9/10) 2415781699999999 a001 1201881744/11384387281*28143753123^(4/5) 2415781699999999 a001 7778742049/10749957122*45537549124^(12/17) 2415781699999999 a001 4807526976/17393796001*817138163596^(2/3) 2415781699999999 a001 259698001666062596/10750060805 2415781699999999 a001 7778742049/10749957122*192900153618^(2/3) 2415781699999999 a001 7778742049/10749957122*73681302247^(9/13) 2415781699999999 a001 4807525989/4870846*10749957122^(7/16) 2415781699999999 a001 3278735159921/5374978561*10749957122^(11/24) 2415781699999999 a001 1836311903/45537549124*4106118243^(21/23) 2415781699999999 a001 1836311903/17393796001*4106118243^(20/23) 2415781699999999 a001 2504730781961/10749957122*10749957122^(1/2) 2415781699999999 a001 1144206275/28374454999*17393796001^(6/7) 2415781699999999 a001 956722026041/10749957122*10749957122^(13/24) 2415781699999999 a001 10983760033/9381251041*17393796001^(5/7) 2415781699999999 a001 591286729879/10749957122*10749957122^(9/16) 2415781699999999 a001 182717648081/5374978561*10749957122^(7/12) 2415781699999999 a001 139583862445/10749957122*10749957122^(5/8) 2415781699999999 a001 956722026041/28143753123*17393796001^(4/7) 2415781699999999 a001 32951280099/817138163596*17393796001^(6/7) 2415781699999999 a001 32951280099/10749957122*10749957122^(11/16) 2415781699999999 a001 1602508992/9381251041*10749957122^(13/16) 2415781699999999 a001 86267571272/2139295485799*17393796001^(6/7) 2415781699999999 a001 225851433717/5600748293801*17393796001^(6/7) 2415781699999999 a001 591286729879/14662949395604*17393796001^(6/7) 2415781699999999 a001 365435296162/9062201101803*17393796001^(6/7) 2415781699999999 a001 139583862445/3461452808002*17393796001^(6/7) 2415781699999999 a001 53316291173/10749957122*10749957122^(2/3) 2415781699999999 a001 53316291173/1322157322203*17393796001^(6/7) 2415781699999999 a001 86267571272/73681302247*17393796001^(5/7) 2415781699999999 a001 158414167969674450625/6557470319842 2415781699999999 a001 1836311903/119218851371*4106118243^(22/23) 2415781699999999 a001 75283811239/64300051206*17393796001^(5/7) 2415781699999999 a001 2504730781961/2139295485799*17393796001^(5/7) 2415781699999999 a001 20365011074/505019158607*17393796001^(6/7) 2415781699999999 a001 365435296162/312119004989*17393796001^(5/7) 2415781699999999 a001 139583862445/119218851371*17393796001^(5/7) 2415781699999999 a001 2504730781961/73681302247*17393796001^(4/7) 2415781699999999 a001 10182505537/5374978561*10749957122^(17/24) 2415781699999999 a001 3278735159921/96450076809*17393796001^(4/7) 2415781699999999 a001 10610209857723/312119004989*17393796001^(4/7) 2415781699999999 a001 4052739537881/119218851371*17393796001^(4/7) 2415781699999999 a001 12586269025/73681302247*45537549124^(13/17) 2415781699999999 a001 53316291173/45537549124*17393796001^(5/7) 2415781699999999 a001 12586269025/5600748293801*45537549124^(16/17) 2415781699999999 a001 12586269025/1322157322203*45537549124^(15/17) 2415781699999999 a001 1144206275/28374454999*45537549124^(14/17) 2415781699999999 a001 86267571272/28143753123*45537549124^(11/17) 2415781699999999 a001 365435296162/28143753123*45537549124^(10/17) 2415781699999999 a001 12585437040/228811001*45537549124^(9/17) 2415781699999999 a001 53316291173/28143753123*45537549124^(2/3) 2415781699999999 a001 6557470319842/28143753123*45537549124^(8/17) 2415781699999999 a001 10983760033/9381251041*312119004989^(7/11) 2415781699999999 a001 10983760033/9381251041*14662949395604^(5/9) 2415781699999999 a001 10983760033/9381251041*505019158607^(5/8) 2415781699999999 a001 12586269025/73681302247*192900153618^(13/18) 2415781699999999 a001 387002188980/11384387281*17393796001^(4/7) 2415781699999999 a001 12586269025/73681302247*73681302247^(3/4) 2415781699999999 a001 86267571272/28143753123*312119004989^(3/5) 2415781699999999 a001 86267571272/28143753123*14662949395604^(11/21) 2415781699999999 a001 12586269025/1322157322203*312119004989^(9/11) 2415781699999999 a001 365435296162/28143753123*312119004989^(6/11) 2415781699999999 a001 12585437040/228811001*817138163596^(9/19) 2415781699999999 a001 12585437040/228811001*14662949395604^(3/7) 2415781699999999 a006 5^(1/2)*Fibonacci(87)/Lucas(50)/sqrt(5) 2415781699999999 a001 1144206275/28374454999*14662949395604^(2/3) 2415781699999999 a001 6557470319842/28143753123*192900153618^(4/9) 2415781699999999 a001 1144206275/28374454999*505019158607^(3/4) 2415781699999999 a001 12586269025/1322157322203*192900153618^(5/6) 2415781699999999 a001 1144206275/28374454999*192900153618^(7/9) 2415781699999999 a001 12586269025/119218851371*312119004989^(8/11) 2415781699999999 a001 12586269025/119218851371*23725150497407^(5/8) 2415781699999999 a001 6557470319842/28143753123*73681302247^(6/13) 2415781699999999 a001 2504730781961/28143753123*73681302247^(1/2) 2415781699999999 a001 956722026041/28143753123*73681302247^(7/13) 2415781699999999 a001 139583862445/28143753123*73681302247^(8/13) 2415781699999999 a001 20365011074/28143753123*45537549124^(12/17) 2415781699999999 a001 12586269025/817138163596*73681302247^(11/13) 2415781699999999 a001 12586269025/5600748293801*73681302247^(12/13) 2415781699999999 a001 12586269025/119218851371*73681302247^(10/13) 2415781699999999 a001 4807526976/119218851371*10749957122^(7/8) 2415781699999999 a001 1201881744/11384387281*10749957122^(5/6) 2415781699999999 a001 12586269025/45537549124*817138163596^(2/3) 2415781699999999 a001 20365011074/28143753123*505019158607^(9/14) 2415781699999999 a001 20365011074/28143753123*192900153618^(2/3) 2415781699999999 a001 4807526976/312119004989*10749957122^(11/12) 2415781699999999 a001 20365011074/28143753123*73681302247^(9/13) 2415781699999999 a001 32951280099/14662949395604*45537549124^(16/17) 2415781699999999 a001 4052739537881/28143753123*28143753123^(1/2) 2415781699999999 a001 32951280099/3461452808002*45537549124^(15/17) 2415781699999999 a001 10983760033/64300051206*45537549124^(13/17) 2415781699999999 a001 32951280099/817138163596*45537549124^(14/17) 2415781699999999 a001 10983760033/9381251041*28143753123^(7/10) 2415781699999999 a001 102287808/10745088481*10749957122^(15/16) 2415781699999999 a001 365435296162/28143753123*28143753123^(3/5) 2415781699999999 a001 32264490531/10525900321*45537549124^(11/17) 2415781699999999 a001 139583862445/73681302247*45537549124^(2/3) 2415781699999999 a001 956722026041/73681302247*45537549124^(10/17) 2415781699999999 a001 53316291173/73681302247*45537549124^(12/17) 2415781699999999 a001 4052739537881/73681302247*45537549124^(9/17) 2415781699999999 a001 86267571272/2139295485799*45537549124^(14/17) 2415781699999999 a001 225851433717/5600748293801*45537549124^(14/17) 2415781699999999 a001 365435296162/9062201101803*45537549124^(14/17) 2415781699999999 a001 139583862445/3461452808002*45537549124^(14/17) 2415781699999999 a001 53316291173/23725150497407*45537549124^(16/17) 2415781699999999 a001 75283811239/440719107401*45537549124^(13/17) 2415781699999999 a001 1201881744/204284540899*10749957122^(23/24) 2415781699999999 a001 182717648081/96450076809*45537549124^(2/3) 2415781699999999 a001 591286729879/192900153618*45537549124^(11/17) 2415781699999999 a001 225851433717/312119004989*45537549124^(12/17) 2415781699999999 a001 53316291173/1322157322203*45537549124^(14/17) 2415781699999999 a001 956722026041/505019158607*45537549124^(2/3) 2415781699999999 a001 10610209857723/5600748293801*45537549124^(2/3) 2415781699999999 a001 1548008755920/505019158607*45537549124^(11/17) 2415781699999999 a001 1515744265389/494493258286*45537549124^(11/17) 2415781699999999 a001 2504730781961/192900153618*45537549124^(10/17) 2415781699999999 a001 2504730781961/817138163596*45537549124^(11/17) 2415781699999999 a001 956722026041/312119004989*45537549124^(11/17) 2415781699999999 a001 86267571272/119218851371*45537549124^(12/17) 2415781699999999 a001 53316291173/312119004989*45537549124^(13/17) 2415781699999999 a001 4052739537881/312119004989*45537549124^(10/17) 2415781699999999 a001 225851433717/119218851371*45537549124^(2/3) 2415781699999999 a001 365435296162/119218851371*45537549124^(11/17) 2415781699999999 a001 86267571272/73681302247*312119004989^(7/11) 2415781699999999 a001 10983760033/64300051206*14662949395604^(13/21) 2415781699999999 a001 86267571272/73681302247*14662949395604^(5/9) 2415781699999999 a001 32264490531/10525900321*312119004989^(3/5) 2415781699999999 a001 10983760033/64300051206*192900153618^(13/18) 2415781699999999 a001 1515744265389/10525900321*312119004989^(5/11) 2415781699999999 a006 5^(1/2)*Fibonacci(89)/Lucas(52)/sqrt(5) 2415781699999999 a001 1515744265389/10525900321*3461452808002^(5/12) 2415781699999999 a001 2504730781961/73681302247*505019158607^(1/2) 2415781699999999 a001 12586269025/119218851371*28143753123^(4/5) 2415781699999999 a001 32264490531/10525900321*192900153618^(11/18) 2415781699999999 a001 32951280099/14662949395604*192900153618^(8/9) 2415781699999999 a001 12586269025/1322157322203*28143753123^(9/10) 2415781699999999 a001 32951280099/119218851371*817138163596^(2/3) 2415781699999999 a001 53316291173/73681302247*192900153618^(2/3) 2415781699999999 a001 6557470319842/73681302247*73681302247^(1/2) 2415781699999999 a001 2504730781961/73681302247*73681302247^(7/13) 2415781699999999 a001 10983760033/64300051206*73681302247^(3/4) 2415781699999999 a001 365435296162/73681302247*73681302247^(8/13) 2415781699999999 a001 32951280099/45537549124*45537549124^(12/17) 2415781699999999 a001 86267571272/5600748293801*312119004989^(4/5) 2415781699999999 a001 21566892818/204284540899*312119004989^(8/11) 2415781699999999 a001 32951280099/312119004989*73681302247^(10/13) 2415781699999999 a006 5^(1/2)*Fibonacci(91)/Lucas(54)/sqrt(5) 2415781699999999 a001 21566892818/204284540899*23725150497407^(5/8) 2415781699999999 a001 139583862445/192900153618*14662949395604^(4/7) 2415781699999999 a001 139583862445/192900153618*505019158607^(9/14) 2415781699999999 a001 1548008755920/505019158607*312119004989^(3/5) 2415781699999999 a006 5^(1/2)*Fibonacci(93)/Lucas(56)/sqrt(5) 2415781699999999 a006 5^(1/2)*Fibonacci(95)/Lucas(58)/sqrt(5) 2415781699999999 a006 5^(1/2)*Fibonacci(97)/Lucas(60)/sqrt(5) 2415781699999999 a006 5^(1/2)*Fibonacci(99)/Lucas(62)/sqrt(5) 2415781699999999 a006 5^(1/2)*Fibonacci(101)/Lucas(64)/sqrt(5) 2415781699999999 a006 5^(1/2)*Fibonacci(100)/Lucas(63)/sqrt(5) 2415781699999999 a006 5^(1/2)*Fibonacci(98)/Lucas(61)/sqrt(5) 2415781699999999 a006 5^(1/2)*Fibonacci(96)/Lucas(59)/sqrt(5) 2415781699999999 a006 5^(1/2)*Fibonacci(94)/Lucas(57)/sqrt(5) 2415781699999999 a001 139583862445/1322157322203*312119004989^(8/11) 2415781699999999 a006 5^(1/2)*Fibonacci(92)/Lucas(55)/sqrt(5) 2415781699999999 a001 225851433717/312119004989*192900153618^(2/3) 2415781699999999 a001 956722026041/312119004989*192900153618^(11/18) 2415781699999999 a001 139583862445/14662949395604*192900153618^(5/6) 2415781699999999 a001 53316291173/192900153618*817138163596^(2/3) 2415781699999999 a001 20365011074/2139295485799*45537549124^(15/17) 2415781699999999 a001 1548008755920/119218851371*312119004989^(6/11) 2415781699999999 a001 365435296162/119218851371*312119004989^(3/5) 2415781699999999 a006 5^(1/2)*Fibonacci(90)/Lucas(53)/sqrt(5) 2415781699999999 a001 2504730781961/119218851371*1322157322203^(1/2) 2415781699999999 a001 139583862445/119218851371*312119004989^(7/11) 2415781699999999 a001 139583862445/119218851371*14662949395604^(5/9) 2415781699999999 a001 139583862445/119218851371*505019158607^(5/8) 2415781699999999 a001 365435296162/119218851371*192900153618^(11/18) 2415781699999999 a001 53316291173/1322157322203*192900153618^(7/9) 2415781699999999 a001 53316291173/312119004989*192900153618^(13/18) 2415781699999999 a001 10610209857723/312119004989*73681302247^(7/13) 2415781699999999 a001 21566892818/204284540899*73681302247^(10/13) 2415781699999999 a001 140728068720/28374454999*73681302247^(8/13) 2415781699999999 a001 21566892818/11384387281*45537549124^(2/3) 2415781699999999 a001 225851433717/2139295485799*73681302247^(10/13) 2415781699999999 a001 2504730781961/14662949395604*73681302247^(3/4) 2415781699999999 a001 182717648081/1730726404001*73681302247^(10/13) 2415781699999999 a001 139583862445/817138163596*73681302247^(3/4) 2415781699999999 a001 139583862445/1322157322203*73681302247^(10/13) 2415781699999999 a001 10610209857723/119218851371*73681302247^(1/2) 2415781699999999 a001 139583862445/9062201101803*73681302247^(11/13) 2415781699999999 a001 4052739537881/119218851371*73681302247^(7/13) 2415781699999999 a001 86267571272/119218851371*73681302247^(9/13) 2415781699999999 a001 139583862445/45537549124*45537549124^(11/17) 2415781699999999 a001 591286729879/119218851371*73681302247^(8/13) 2415781699999999 a001 591286729879/45537549124*45537549124^(10/17) 2415781699999999 a001 53316291173/505019158607*73681302247^(10/13) 2415781699999999 a001 53316291173/312119004989*73681302247^(3/4) 2415781699999999 a001 2504730781961/45537549124*45537549124^(9/17) 2415781699999999 a001 53316291173/23725150497407*73681302247^(12/13) 2415781699999999 a001 10610209857723/45537549124*45537549124^(8/17) 2415781699999999 a001 20365011074/73681302247*817138163596^(2/3) 2415781699999999 a001 32951280099/45537549124*505019158607^(9/14) 2415781699999999 a001 32951280099/45537549124*192900153618^(2/3) 2415781699999999 a001 32951280099/45537549124*73681302247^(9/13) 2415781699999999 a001 1515744265389/10525900321*28143753123^(1/2) 2415781699999999 a001 10182505537/96450076809*312119004989^(8/11) 2415781699999999 a001 10182505537/96450076809*23725150497407^(5/8) 2415781699999999 a001 20365011074/1322157322203*312119004989^(4/5) 2415781699999999 a006 5^(1/2)*Fibonacci(88)/Lucas(51)/sqrt(5) 2415781699999999 a001 10182505537/7331474697802*14662949395604^(7/9) 2415781699999999 a001 10182505537/7331474697802*505019158607^(7/8) 2415781699999999 a001 139583862445/45537549124*817138163596^(11/19) 2415781699999999 a001 10610209857723/45537549124*192900153618^(4/9) 2415781699999999 a001 20365011074/2139295485799*192900153618^(5/6) 2415781699999999 a001 139583862445/45537549124*192900153618^(11/18) 2415781699999999 a001 53316291173/45537549124*14662949395604^(5/9) 2415781699999999 a001 53316291173/45537549124*505019158607^(5/8) 2415781699999999 a001 10610209857723/45537549124*73681302247^(6/13) 2415781699999999 a001 20365011074/119218851371*192900153618^(13/18) 2415781699999999 a001 4052739537881/45537549124*73681302247^(1/2) 2415781699999999 a001 387002188980/11384387281*73681302247^(7/13) 2415781699999999 a001 225851433717/45537549124*73681302247^(8/13) 2415781699999999 a001 10182505537/96450076809*73681302247^(10/13) 2415781699999999 a001 20365011074/1322157322203*73681302247^(11/13) 2415781699999999 a001 20365011074/9062201101803*73681302247^(12/13) 2415781699999999 a001 86267571272/73681302247*28143753123^(7/10) 2415781699999999 a001 20365011074/119218851371*73681302247^(3/4) 2415781699999999 a001 2504730781961/192900153618*28143753123^(3/5) 2415781699999999 a001 10610209857723/817138163596*28143753123^(3/5) 2415781699999999 a001 4052739537881/312119004989*28143753123^(3/5) 2415781699999999 a001 1548008755920/119218851371*28143753123^(3/5) 2415781699999999 a001 32951280099/312119004989*28143753123^(4/5) 2415781699999999 a001 75283811239/64300051206*28143753123^(7/10) 2415781699999999 a001 2504730781961/2139295485799*28143753123^(7/10) 2415781699999999 a001 365435296162/312119004989*28143753123^(7/10) 2415781699999999 a001 32951280099/3461452808002*28143753123^(9/10) 2415781699999999 a001 139583862445/119218851371*28143753123^(7/10) 2415781699999999 a001 21566892818/204284540899*28143753123^(4/5) 2415781699999999 a001 225851433717/2139295485799*28143753123^(4/5) 2415781699999999 a001 182717648081/1730726404001*28143753123^(4/5) 2415781699999999 a001 139583862445/1322157322203*28143753123^(4/5) 2415781699999999 a001 53316291173/505019158607*28143753123^(4/5) 2415781699999999 a001 86267571272/9062201101803*28143753123^(9/10) 2415781699999999 a001 3278735159921/22768774562*28143753123^(1/2) 2415781699999999 a001 225851433717/23725150497407*28143753123^(9/10) 2415781699999999 a001 7778742049/10749957122*10749957122^(3/4) 2415781699999999 a001 139583862445/14662949395604*28143753123^(9/10) 2415781699999999 a001 53316291173/5600748293801*28143753123^(9/10) 2415781699999999 a001 591286729879/45537549124*28143753123^(3/5) 2415781699999999 a001 591286729879/17393796001*17393796001^(4/7) 2415781699999999 a001 20365011074/17393796001*17393796001^(5/7) 2415781699999999 a001 53316291173/45537549124*28143753123^(7/10) 2415781699999999 a001 10182505537/96450076809*28143753123^(4/5) 2415781699999999 a001 4807526976/17393796001*10749957122^(19/24) 2415781699999999 a001 20365011074/2139295485799*28143753123^(9/10) 2415781699999999 a001 12586269025/17393796001*45537549124^(12/17) 2415781699999999 a001 7778742049/28143753123*817138163596^(2/3) 2415781699999999 a001 12586269025/17393796001*14662949395604^(4/7) 2415781699999999 a001 12586269025/17393796001*505019158607^(9/14) 2415781699999999 a001 12586269025/17393796001*192900153618^(2/3) 2415781699999999 a001 12586269025/17393796001*73681302247^(9/13) 2415781699999999 a001 32951280099/17393796001*45537549124^(2/3) 2415781699999999 a001 7778742049/3461452808002*45537549124^(16/17) 2415781699999999 a001 7778742049/192900153618*45537549124^(14/17) 2415781699999999 a001 7778742049/817138163596*45537549124^(15/17) 2415781699999999 a001 7787980473/599786069*45537549124^(10/17) 2415781699999999 a001 956722026041/17393796001*45537549124^(9/17) 2415781699999999 a001 53316291173/17393796001*45537549124^(11/17) 2415781699999999 a001 4052739537881/17393796001*45537549124^(8/17) 2415781699999999 a001 7778742049/73681302247*312119004989^(8/11) 2415781699999999 a001 7778742049/73681302247*23725150497407^(5/8) 2415781699999999 a001 7778742049/73681302247*73681302247^(10/13) 2415781699999999 a001 7778742049/192900153618*817138163596^(14/19) 2415781699999999 a001 7778742049/192900153618*14662949395604^(2/3) 2415781699999999 a001 7778742049/192900153618*505019158607^(3/4) 2415781699999999 a001 7778742049/505019158607*312119004989^(4/5) 2415781699999999 a001 2504730781961/17393796001*312119004989^(5/11) 2415781699999999 a001 10610209857723/17393796001*312119004989^(2/5) 2415781699999999 a001 591286729879/17393796001*14662949395604^(4/9) 2415781699999999 a006 5^(1/2)*Fibonacci(86)/Lucas(49)/sqrt(5) 2415781699999999 a001 365435296162/17393796001*1322157322203^(1/2) 2415781699999999 a001 139583862445/17393796001*9062201101803^(1/2) 2415781699999999 a001 7787980473/599786069*192900153618^(5/9) 2415781699999999 a001 4052739537881/17393796001*192900153618^(4/9) 2415781699999999 a001 7778742049/3461452808002*192900153618^(8/9) 2415781699999999 a001 7778742049/14662949395604*192900153618^(17/18) 2415781699999999 a001 53316291173/17393796001*312119004989^(3/5) 2415781699999999 a001 53316291173/17393796001*14662949395604^(11/21) 2415781699999999 a001 4052739537881/17393796001*73681302247^(6/13) 2415781699999999 a001 53316291173/17393796001*192900153618^(11/18) 2415781699999999 a001 1548008755920/17393796001*73681302247^(1/2) 2415781699999999 a001 591286729879/17393796001*73681302247^(7/13) 2415781699999999 a001 7778742049/45537549124*45537549124^(13/17) 2415781699999999 a001 2504730781961/28143753123*10749957122^(13/24) 2415781699999999 a001 7778742049/505019158607*73681302247^(11/13) 2415781699999999 a001 7778742049/3461452808002*73681302247^(12/13) 2415781699999999 a001 12585437040/228811001*10749957122^(9/16) 2415781699999999 a001 20365011074/17393796001*312119004989^(7/11) 2415781699999999 a001 20365011074/17393796001*14662949395604^(5/9) 2415781699999999 a001 20365011074/17393796001*505019158607^(5/8) 2415781699999999 a001 7778742049/45537549124*192900153618^(13/18) 2415781699999999 a001 7778742049/45537549124*73681302247^(3/4) 2415781699999999 a001 2504730781961/17393796001*28143753123^(1/2) 2415781699999999 a001 7787980473/599786069*28143753123^(3/5) 2415781699999999 a001 7778742049/73681302247*28143753123^(4/5) 2415781699999999 a001 365435296162/28143753123*10749957122^(5/8) 2415781699999999 a001 7778742049/817138163596*28143753123^(9/10) 2415781699999999 a001 6557470319842/73681302247*10749957122^(13/24) 2415781699999999 a001 139583862445/28143753123*10749957122^(2/3) 2415781699999999 a001 86267571272/28143753123*10749957122^(11/16) 2415781699999999 a001 20365011074/17393796001*28143753123^(7/10) 2415781699999999 a001 4052739537881/73681302247*10749957122^(9/16) 2415781699999999 a001 10610209857723/45537549124*10749957122^(1/2) 2415781699999999 a001 3536736619241/64300051206*10749957122^(9/16) 2415781699999999 a001 2504730781961/73681302247*10749957122^(7/12) 2415781699999999 a001 53316291173/28143753123*10749957122^(17/24) 2415781699999999 a001 6557470319842/119218851371*10749957122^(9/16) 2415781699999999 a001 3278735159921/96450076809*10749957122^(7/12) 2415781699999999 a001 10610209857723/312119004989*10749957122^(7/12) 2415781699999999 a001 4052739537881/119218851371*10749957122^(7/12) 2415781699999999 a001 4052739537881/45537549124*10749957122^(13/24) 2415781699999999 a001 956722026041/73681302247*10749957122^(5/8) 2415781699999999 a001 2504730781961/45537549124*10749957122^(9/16) 2415781699999999 a001 2504730781961/192900153618*10749957122^(5/8) 2415781699999999 a001 10610209857723/817138163596*10749957122^(5/8) 2415781699999999 a001 4052739537881/312119004989*10749957122^(5/8) 2415781699999999 a001 1548008755920/119218851371*10749957122^(5/8) 2415781699999999 a001 387002188980/11384387281*10749957122^(7/12) 2415781699999999 a001 12586269025/73681302247*10749957122^(13/16) 2415781699999999 a001 20365011074/28143753123*10749957122^(3/4) 2415781699999999 a001 956722026041/192900153618*10749957122^(2/3) 2415781699999999 a001 32264490531/10525900321*10749957122^(11/16) 2415781699999999 a001 2504730781961/505019158607*10749957122^(2/3) 2415781699999999 a001 10610209857723/2139295485799*10749957122^(2/3) 2415781699999999 a001 140728068720/28374454999*10749957122^(2/3) 2415781699999999 a001 591286729879/119218851371*10749957122^(2/3) 2415781699999999 a001 591286729879/45537549124*10749957122^(5/8) 2415781699999999 a001 591286729879/192900153618*10749957122^(11/16) 2415781699999999 a001 1548008755920/505019158607*10749957122^(11/16) 2415781699999999 a001 1515744265389/494493258286*10749957122^(11/16) 2415781699999999 a001 139583862445/73681302247*10749957122^(17/24) 2415781699999999 a001 12586269025/119218851371*10749957122^(5/6) 2415781699999999 a001 365435296162/119218851371*10749957122^(11/16) 2415781699999999 a001 12586269025/45537549124*10749957122^(19/24) 2415781699999999 a001 182717648081/96450076809*10749957122^(17/24) 2415781699999999 a001 956722026041/505019158607*10749957122^(17/24) 2415781699999999 a001 591286729879/312119004989*10749957122^(17/24) 2415781699999999 a001 225851433717/119218851371*10749957122^(17/24) 2415781699999999 a001 225851433717/45537549124*10749957122^(2/3) 2415781699999999 a001 1144206275/28374454999*10749957122^(7/8) 2415781699999999 a001 53316291173/73681302247*10749957122^(3/4) 2415781699999999 a001 139583862445/45537549124*10749957122^(11/16) 2415781699999999 a001 139583862445/192900153618*10749957122^(3/4) 2415781699999999 a001 225851433717/312119004989*10749957122^(3/4) 2415781699999999 a001 86267571272/119218851371*10749957122^(3/4) 2415781699999999 a001 21566892818/11384387281*10749957122^(17/24) 2415781699999999 a001 60508827864880718401/2504730781961 2415781699999999 a001 12586269025/817138163596*10749957122^(11/12) 2415781699999999 a001 32951280099/119218851371*10749957122^(19/24) 2415781699999999 a001 32951280099/45537549124*10749957122^(3/4) 2415781699999999 a001 10983760033/64300051206*10749957122^(13/16) 2415781699999999 a001 86267571272/312119004989*10749957122^(19/24) 2415781699999999 a001 12586269025/1322157322203*10749957122^(15/16) 2415781699999999 a001 139583862445/505019158607*10749957122^(19/24) 2415781699999999 a001 53316291173/192900153618*10749957122^(19/24) 2415781699999999 a001 86267571272/505019158607*10749957122^(13/16) 2415781699999999 a001 75283811239/440719107401*10749957122^(13/16) 2415781699999999 a001 12586269025/2139295485799*10749957122^(23/24) 2415781699999999 a001 32951280099/312119004989*10749957122^(5/6) 2415781699999999 a001 139583862445/817138163596*10749957122^(13/16) 2415781699999999 a001 53316291173/312119004989*10749957122^(13/16) 2415781699999999 a001 20365011074/73681302247*10749957122^(19/24) 2415781699999999 a001 21566892818/204284540899*10749957122^(5/6) 2415781699999999 a001 225851433717/2139295485799*10749957122^(5/6) 2415781699999999 a001 182717648081/1730726404001*10749957122^(5/6) 2415781699999999 a001 139583862445/1322157322203*10749957122^(5/6) 2415781699999999 a001 10610209857723/17393796001*10749957122^(11/24) 2415781699999999 a001 53316291173/505019158607*10749957122^(5/6) 2415781699999999 a001 32951280099/817138163596*10749957122^(7/8) 2415781699999999 a001 86267571272/2139295485799*10749957122^(7/8) 2415781699999999 a001 225851433717/5600748293801*10749957122^(7/8) 2415781699999999 a001 365435296162/9062201101803*10749957122^(7/8) 2415781699999999 a001 139583862445/3461452808002*10749957122^(7/8) 2415781699999999 a001 4052739537881/17393796001*10749957122^(1/2) 2415781699999999 a001 53316291173/1322157322203*10749957122^(7/8) 2415781699999999 a001 10182505537/96450076809*10749957122^(5/6) 2415781699999999 a001 32951280099/2139295485799*10749957122^(11/12) 2415781699999999 a001 86267571272/5600748293801*10749957122^(11/12) 2415781699999999 a001 32951280099/3461452808002*10749957122^(15/16) 2415781699999999 a001 139583862445/9062201101803*10749957122^(11/12) 2415781699999999 a001 1548008755920/17393796001*10749957122^(13/24) 2415781699999999 a001 53316291173/3461452808002*10749957122^(11/12) 2415781699999999 a001 20365011074/505019158607*10749957122^(7/8) 2415781699999999 a001 86267571272/9062201101803*10749957122^(15/16) 2415781699999999 a001 956722026041/17393796001*10749957122^(9/16) 2415781699999999 a001 53316291173/5600748293801*10749957122^(15/16) 2415781699999999 a001 1135099622/192933544679*10749957122^(23/24) 2415781699999999 a001 591286729879/17393796001*10749957122^(7/12) 2415781699999999 a001 53316291173/9062201101803*10749957122^(23/24) 2415781699999999 a001 20365011074/1322157322203*10749957122^(11/12) 2415781699999999 a001 12586269025/17393796001*10749957122^(3/4) 2415781699999999 a001 20365011074/2139295485799*10749957122^(15/16) 2415781699999999 a001 567451585/5374978561*2537720636^(8/9) 2415781699999999 a001 7787980473/599786069*10749957122^(5/8) 2415781699999999 a001 10182505537/1730726404001*10749957122^(23/24) 2415781699999999 a001 7778742049/28143753123*10749957122^(19/24) 2415781699999999 a001 86267571272/17393796001*10749957122^(2/3) 2415781699999999 a001 1134903170/28143753123*2537720636^(14/15) 2415781699999999 a001 32951280099/17393796001*10749957122^(17/24) 2415781699999999 a001 53316291173/17393796001*10749957122^(11/16) 2415781699999999 a001 2971215073/4106118243*4106118243^(18/23) 2415781699999999 a001 7778742049/73681302247*10749957122^(5/6) 2415781699999999 a001 7778742049/45537549124*10749957122^(13/16) 2415781699999999 a001 7778742049/192900153618*10749957122^(7/8) 2415781699999999 a001 7778742049/505019158607*10749957122^(11/12) 2415781699999999 a001 7778742049/817138163596*10749957122^(15/16) 2415781699999999 a001 7778742049/1322157322203*10749957122^(23/24) 2415781699999999 a001 1836311903/6643838879*4106118243^(19/23) 2415781699999999 a001 4807526976/6643838879*45537549124^(12/17) 2415781699999999 a001 14284196614945309248/591286729879 2415781699999999 a001 4807526976/6643838879*192900153618^(2/3) 2415781699999999 a001 4807526976/6643838879*73681302247^(9/13) 2415781699999999 a001 2971215073/73681302247*17393796001^(6/7) 2415781699999999 a001 3278735159921/5374978561*4106118243^(11/23) 2415781699999999 a001 4807526976/6643838879*10749957122^(3/4) 2415781699999999 a001 225851433717/6643838879*17393796001^(4/7) 2415781699999999 a001 2971215073/10749957122*10749957122^(19/24) 2415781699999999 a001 4052739537881/10749957122*4106118243^(1/2) 2415781699999999 a001 12586269025/6643838879*45537549124^(2/3) 2415781699999999 a001 6557470319842/6643838879*17393796001^(3/7) 2415781699999999 a001 2971215073/28143753123*312119004989^(8/11) 2415781699999999 a001 2971215073/28143753123*23725150497407^(5/8) 2415781699999999 a001 2971215073/28143753123*73681302247^(10/13) 2415781699999999 a001 2971215073/73681302247*45537549124^(14/17) 2415781699999999 a001 2971215073/1322157322203*45537549124^(16/17) 2415781699999999 a001 2971215073/312119004989*45537549124^(15/17) 2415781699999999 a001 2504730781961/10749957122*4106118243^(12/23) 2415781699999999 a001 86267571272/6643838879*45537549124^(10/17) 2415781699999999 a001 365435296162/6643838879*45537549124^(9/17) 2415781699999999 a001 2971215073/28143753123*28143753123^(4/5) 2415781699999999 a001 1548008755920/6643838879*45537549124^(8/17) 2415781699999999 a001 6557470319842/6643838879*45537549124^(7/17) 2415781699999999 a001 2971215073/73681302247*14662949395604^(2/3) 2415781699999999 a001 2971215073/73681302247*505019158607^(3/4) 2415781699999999 a001 2971215073/73681302247*192900153618^(7/9) 2415781699999999 a001 32951280099/6643838879*73681302247^(8/13) 2415781699999999 a001 66978574/634430159*599074578^(20/21) 2415781699999999 a001 2971215073/192900153618*312119004989^(4/5) 2415781699999999 a001 86267571272/6643838879*14662949395604^(10/21) 2415781699999999 a001 2971215073/192900153618*23725150497407^(11/16) 2415781699999999 a001 256319508074468182856/10610209857723 2415781699999999 a001 86267571272/6643838879*192900153618^(5/9) 2415781699999999 a001 2971215073/3461452808002*312119004989^(10/11) 2415781699999999 a001 225851433717/6643838879*505019158607^(1/2) 2415781699999999 a001 1548008755920/6643838879*14662949395604^(8/21) 2415781699999999 a006 5^(1/2)*Fibonacci(84)/Lucas(47)/sqrt(5) 2415781699999999 a001 10610209857723/6643838879*505019158607^(5/14) 2415781699999999 a001 6557470319842/6643838879*192900153618^(7/18) 2415781699999999 a001 139583862445/6643838879*1322157322203^(1/2) 2415781699999999 a001 2971215073/1322157322203*192900153618^(8/9) 2415781699999999 a001 2971215073/5600748293801*192900153618^(17/18) 2415781699999999 a001 2971215073/312119004989*192900153618^(5/6) 2415781699999999 a001 158414167969674450629/6557470319842 2415781699999999 a001 10610209857723/6643838879*73681302247^(5/13) 2415781699999999 a001 1548008755920/6643838879*73681302247^(6/13) 2415781699999999 a001 591286729879/6643838879*73681302247^(1/2) 2415781699999999 a001 225851433717/6643838879*73681302247^(7/13) 2415781699999999 a001 2971215073/192900153618*73681302247^(11/13) 2415781699999999 a001 2971215073/1322157322203*73681302247^(12/13) 2415781699999999 a001 20365011074/6643838879*45537549124^(11/17) 2415781699999999 a001 20365011074/6643838879*312119004989^(3/5) 2415781699999999 a001 20365011074/6643838879*14662949395604^(11/21) 2415781699999999 a001 20365011074/6643838879*192900153618^(11/18) 2415781699999999 a001 10610209857723/6643838879*28143753123^(2/5) 2415781699999999 a001 956722026041/6643838879*28143753123^(1/2) 2415781699999999 a001 86267571272/6643838879*28143753123^(3/5) 2415781699999999 a001 7778742049/6643838879*17393796001^(5/7) 2415781699999999 a001 2971215073/312119004989*28143753123^(9/10) 2415781699999999 a001 956722026041/10749957122*4106118243^(13/23) 2415781699999999 a001 2971215073/17393796001*45537549124^(13/17) 2415781699999999 a001 7778742049/6643838879*312119004989^(7/11) 2415781699999999 a001 23112315624967704577/956722026041 2415781699999999 a001 7778742049/6643838879*505019158607^(5/8) 2415781699999999 a001 2971215073/17393796001*192900153618^(13/18) 2415781699999999 a001 2971215073/17393796001*73681302247^(3/4) 2415781699999999 a001 10610209857723/6643838879*10749957122^(5/12) 2415781699999999 a001 6557470319842/6643838879*10749957122^(7/16) 2415781699999999 a001 4052739537881/6643838879*10749957122^(11/24) 2415781699999999 a001 7778742049/6643838879*28143753123^(7/10) 2415781699999999 a001 1548008755920/6643838879*10749957122^(1/2) 2415781699999999 a001 591286729879/6643838879*10749957122^(13/24) 2415781699999999 a001 182717648081/5374978561*4106118243^(14/23) 2415781699999999 a001 12586269025/6643838879*10749957122^(17/24) 2415781699999999 a001 365435296162/6643838879*10749957122^(9/16) 2415781699999999 a001 225851433717/6643838879*10749957122^(7/12) 2415781699999999 a001 86267571272/6643838879*10749957122^(5/8) 2415781699999999 a001 32951280099/6643838879*10749957122^(2/3) 2415781699999999 a001 3536736619241/9381251041*4106118243^(1/2) 2415781699999999 a001 2971215073/28143753123*10749957122^(5/6) 2415781699999999 a001 20365011074/6643838879*10749957122^(11/16) 2415781699999999 a001 6557470319842/28143753123*4106118243^(12/23) 2415781699999999 a001 139583862445/10749957122*4106118243^(15/23) 2415781699999999 a001 2971215073/73681302247*10749957122^(7/8) 2415781699999999 a001 2971215073/192900153618*10749957122^(11/12) 2415781699999999 a001 2971215073/312119004989*10749957122^(15/16) 2415781699999999 a001 2971215073/505019158607*10749957122^(23/24) 2415781699999999 a001 10610209857723/45537549124*4106118243^(12/23) 2415781699999999 a001 10610209857723/17393796001*4106118243^(11/23) 2415781699999999 a001 2504730781961/28143753123*4106118243^(13/23) 2415781699999999 a001 53316291173/10749957122*4106118243^(16/23) 2415781699999999 a001 6557470319842/17393796001*4106118243^(1/2) 2415781699999999 a001 2971215073/17393796001*10749957122^(13/16) 2415781699999999 a001 6557470319842/73681302247*4106118243^(13/23) 2415781699999999 a001 10610209857723/119218851371*4106118243^(13/23) 2415781699999999 a001 4052739537881/45537549124*4106118243^(13/23) 2415781699999999 a001 4052739537881/17393796001*4106118243^(12/23) 2415781699999999 a001 956722026041/28143753123*4106118243^(14/23) 2415781699999999 a001 10182505537/5374978561*4106118243^(17/23) 2415781699999999 a001 2504730781961/73681302247*4106118243^(14/23) 2415781699999999 a001 3278735159921/96450076809*4106118243^(14/23) 2415781699999999 a001 10610209857723/312119004989*4106118243^(14/23) 2415781699999999 a001 4052739537881/119218851371*4106118243^(14/23) 2415781699999999 a001 387002188980/11384387281*4106118243^(14/23) 2415781699999999 a001 1548008755920/17393796001*4106118243^(13/23) 2415781699999999 a001 365435296162/28143753123*4106118243^(15/23) 2415781699999999 a001 956722026041/73681302247*4106118243^(15/23) 2415781699999999 a001 2504730781961/192900153618*4106118243^(15/23) 2415781699999999 a001 10610209857723/817138163596*4106118243^(15/23) 2415781699999999 a001 4052739537881/312119004989*4106118243^(15/23) 2415781699999999 a001 1548008755920/119218851371*4106118243^(15/23) 2415781699999999 a001 591286729879/45537549124*4106118243^(15/23) 2415781699999999 a001 591286729879/17393796001*4106118243^(14/23) 2415781699999999 a001 139583862445/28143753123*4106118243^(16/23) 2415781699999999 a001 7778742049/10749957122*4106118243^(18/23) 2415781699999999 a001 365435296162/73681302247*4106118243^(16/23) 2415781699999999 a001 956722026041/192900153618*4106118243^(16/23) 2415781699999999 a001 2504730781961/505019158607*4106118243^(16/23) 2415781699999999 a001 4052739537881/817138163596*4106118243^(16/23) 2415781699999999 a001 140728068720/28374454999*4106118243^(16/23) 2415781699999999 a001 591286729879/119218851371*4106118243^(16/23) 2415781699999999 a001 225851433717/45537549124*4106118243^(16/23) 2415781699999999 a001 7787980473/599786069*4106118243^(15/23) 2415781699999999 a001 53316291173/28143753123*4106118243^(17/23) 2415781699999999 a001 1134903170/6643838879*2537720636^(13/15) 2415781699999999 a001 1201881744/11384387281*4106118243^(20/23) 2415781699999999 a001 4807526976/17393796001*4106118243^(19/23) 2415781699999999 a001 139583862445/73681302247*4106118243^(17/23) 2415781699999999 a001 182717648081/96450076809*4106118243^(17/23) 2415781699999999 a001 956722026041/505019158607*4106118243^(17/23) 2415781699999999 a001 591286729879/312119004989*4106118243^(17/23) 2415781699999999 a001 225851433717/119218851371*4106118243^(17/23) 2415781699999999 a001 21566892818/11384387281*4106118243^(17/23) 2415781699999999 a001 86267571272/17393796001*4106118243^(16/23) 2415781699999999 a001 7778742049/2537720636*2537720636^(11/15) 2415781699999999 a001 8828119010022395329/365435296162 2415781699999999 a001 4807526976/119218851371*4106118243^(21/23) 2415781699999999 a001 20365011074/28143753123*4106118243^(18/23) 2415781699999999 a001 53316291173/73681302247*4106118243^(18/23) 2415781699999999 a001 139583862445/192900153618*4106118243^(18/23) 2415781699999999 a001 365435296162/505019158607*4106118243^(18/23) 2415781699999999 a001 225851433717/312119004989*4106118243^(18/23) 2415781699999999 a001 86267571272/119218851371*4106118243^(18/23) 2415781699999999 a001 32951280099/45537549124*4106118243^(18/23) 2415781699999999 a001 32951280099/17393796001*4106118243^(17/23) 2415781699999999 a001 4807526976/312119004989*4106118243^(22/23) 2415781699999999 a001 12586269025/45537549124*4106118243^(19/23) 2415781699999999 a001 10610209857723/6643838879*4106118243^(10/23) 2415781699999999 a001 12586269025/17393796001*4106118243^(18/23) 2415781699999999 a001 32951280099/119218851371*4106118243^(19/23) 2415781699999999 a001 86267571272/312119004989*4106118243^(19/23) 2415781699999999 a001 225851433717/817138163596*4106118243^(19/23) 2415781699999999 a001 1548008755920/5600748293801*4106118243^(19/23) 2415781699999999 a001 139583862445/505019158607*4106118243^(19/23) 2415781699999999 a001 53316291173/192900153618*4106118243^(19/23) 2415781699999999 a001 20365011074/73681302247*4106118243^(19/23) 2415781699999999 a001 12586269025/119218851371*4106118243^(20/23) 2415781699999999 a001 4052739537881/6643838879*4106118243^(11/23) 2415781699999999 a001 7778742049/28143753123*4106118243^(19/23) 2415781699999999 a001 32951280099/312119004989*4106118243^(20/23) 2415781699999999 a001 21566892818/204284540899*4106118243^(20/23) 2415781699999999 a001 225851433717/2139295485799*4106118243^(20/23) 2415781699999999 a001 32951280099/2537720636*2537720636^(2/3) 2415781699999999 a001 182717648081/1730726404001*4106118243^(20/23) 2415781699999999 a001 139583862445/1322157322203*4106118243^(20/23) 2415781699999999 a001 53316291173/505019158607*4106118243^(20/23) 2415781699999999 a001 10182505537/96450076809*4106118243^(20/23) 2415781699999999 a001 2504730781961/6643838879*4106118243^(1/2) 2415781699999999 a001 1144206275/28374454999*4106118243^(21/23) 2415781699999999 a001 1548008755920/6643838879*4106118243^(12/23) 2415781699999999 a001 32951280099/817138163596*4106118243^(21/23) 2415781699999999 a001 86267571272/2139295485799*4106118243^(21/23) 2415781699999999 a001 225851433717/5600748293801*4106118243^(21/23) 2415781699999999 a001 365435296162/9062201101803*4106118243^(21/23) 2415781699999999 a001 139583862445/3461452808002*4106118243^(21/23) 2415781699999999 a001 53316291173/1322157322203*4106118243^(21/23) 2415781699999999 a001 20365011074/505019158607*4106118243^(21/23) 2415781699999999 a001 7778742049/73681302247*4106118243^(20/23) 2415781699999999 a001 12586269025/817138163596*4106118243^(22/23) 2415781699999999 a001 591286729879/6643838879*4106118243^(13/23) 2415781699999999 a001 32951280099/2139295485799*4106118243^(22/23) 2415781699999999 a001 86267571272/5600748293801*4106118243^(22/23) 2415781699999999 a001 7787980473/505618944676*4106118243^(22/23) 2415781699999999 a001 365435296162/23725150497407*4106118243^(22/23) 2415781699999999 a001 139583862445/9062201101803*4106118243^(22/23) 2415781699999999 a001 53316291173/3461452808002*4106118243^(22/23) 2415781699999999 a001 2971215073/2537720636*2537720636^(7/9) 2415781699999999 a001 20365011074/1322157322203*4106118243^(22/23) 2415781699999999 a001 7778742049/192900153618*4106118243^(21/23) 2415781699999999 a001 225851433717/6643838879*4106118243^(14/23) 2415781699999999 a001 7778742049/505019158607*4106118243^(22/23) 2415781699999999 a001 4807526976/6643838879*4106118243^(18/23) 2415781699999999 a001 86267571272/6643838879*4106118243^(15/23) 2415781699999999 a001 139583862445/2537720636*2537720636^(3/5) 2415781699999999 a001 2971215073/10749957122*4106118243^(19/23) 2415781699999999 a001 32951280099/6643838879*4106118243^(16/23) 2415781699999999 a001 12586269025/6643838879*4106118243^(17/23) 2415781699999999 a001 182717648081/1268860318*2537720636^(5/9) 2415781699999999 a001 591286729879/2537720636*2537720636^(8/15) 2415781699999999 a001 2971215073/28143753123*4106118243^(20/23) 2415781699999999 a001 2971215073/73681302247*4106118243^(21/23) 2415781699999999 a001 2971215073/192900153618*4106118243^(22/23) 2415781699999999 a001 1134903170/1568397607*1568397607^(9/11) 2415781699999999 a001 2504730781961/2537720636*2537720636^(7/15) 2415781699999999 a001 4052739537881/2537720636*2537720636^(4/9) 2415781699999999 a001 10610209857723/2537720636*2537720636^(2/5) 2415781699999999 a001 1836311903/2537720636*45537549124^(12/17) 2415781699999999 a001 1134903170/4106118243*817138163596^(2/3) 2415781699999999 a001 1836311903/2537720636*14662949395604^(4/7) 2415781699999999 a001 1836311903/2537720636*505019158607^(9/14) 2415781699999999 a001 1836311903/2537720636*192900153618^(2/3) 2415781699999999 a001 61295182347748015/2537281508 2415781699999999 a001 1836311903/2537720636*73681302247^(9/13) 2415781699999999 a001 701408733/2537720636*1568397607^(19/22) 2415781699999999 a001 1836311903/2537720636*10749957122^(3/4) 2415781699999999 a001 1134903170/4106118243*10749957122^(19/24) 2415781699999999 a001 6557470319842/4106118243*1568397607^(5/11) 2415781699999999 a001 1836311903/2537720636*4106118243^(18/23) 2415781699999999 a001 2504730781961/4106118243*1568397607^(1/2) 2415781699999999 a001 1134903170/4106118243*4106118243^(19/23) 2415781699999999 a001 1201881744/634430159*45537549124^(2/3) 2415781699999999 a001 567451585/5374978561*312119004989^(8/11) 2415781699999999 a001 567451585/5374978561*23725150497407^(5/8) 2415781699999999 a001 259813219282043520/10754830177 2415781699999999 a001 567451585/5374978561*73681302247^(10/13) 2415781699999999 a001 567451585/5374978561*28143753123^(4/5) 2415781699999999 a001 1134903170/28143753123*17393796001^(6/7) 2415781699999999 a001 1201881744/634430159*10749957122^(17/24) 2415781699999999 a001 1135099622/33391061*17393796001^(4/7) 2415781699999999 a001 1134903170/28143753123*45537549124^(14/17) 2415781699999999 a001 567451585/5374978561*10749957122^(5/6) 2415781699999999 a001 2504730781961/2537720636*17393796001^(3/7) 2415781699999999 a001 1134903170/28143753123*817138163596^(14/19) 2415781699999999 a001 1134903170/28143753123*14662949395604^(2/3) 2415781699999999 a001 1134903170/28143753123*192900153618^(7/9) 2415781699999999 a001 1144206275/230701876*73681302247^(8/13) 2415781699999999 a001 31622993/16692641*33385282^(17/18) 2415781699999999 a001 32951280099/2537720636*45537549124^(10/17) 2415781699999999 a001 1134903170/505019158607*45537549124^(16/17) 2415781699999999 a001 1134903170/119218851371*45537549124^(15/17) 2415781699999999 a001 139583862445/2537720636*45537549124^(9/17) 2415781699999999 a001 591286729879/2537720636*45537549124^(8/17) 2415781699999999 a001 2504730781961/2537720636*45537549124^(7/17) 2415781699999999 a001 1134903170/73681302247*312119004989^(4/5) 2415781699999999 a001 32951280099/2537720636*312119004989^(6/11) 2415781699999999 a001 32951280099/2537720636*14662949395604^(10/21) 2415781699999999 a001 1134903170/73681302247*23725150497407^(11/16) 2415781699999999 a001 20435252590116401/845906424 2415781699999999 a001 10610209857723/2537720636*45537549124^(6/17) 2415781699999999 a001 32951280099/2537720636*192900153618^(5/9) 2415781699999999 a001 1134903170/73681302247*73681302247^(11/13) 2415781699999999 a001 1135099622/33391061*505019158607^(1/2) 2415781699999999 a001 1134903170/1322157322203*312119004989^(10/11) 2415781699999999 a001 182717648081/1268860318*312119004989^(5/11) 2415781699999999 a001 1134903170/2139295485799*817138163596^(17/19) 2415781699999999 a001 10610209857723/2537720636*14662949395604^(2/7) 2415781699999999 a006 5^(1/2)*Fibonacci(82)/Lucas(45)/sqrt(5) 2415781699999999 a001 4052739537881/2537720636*505019158607^(5/14) 2415781699999999 a001 10610209857723/2537720636*192900153618^(1/3) 2415781699999999 a001 591286729879/2537720636*192900153618^(4/9) 2415781699999999 a001 1134903170/505019158607*192900153618^(8/9) 2415781699999999 a001 139583862445/2537720636*192900153618^(1/2) 2415781699999999 a001 1134903170/2139295485799*192900153618^(17/18) 2415781699999999 a001 1134903170/119218851371*312119004989^(9/11) 2415781699999999 a001 1134903170/119218851371*14662949395604^(5/7) 2415781699999999 a001 1135099622/33391061*73681302247^(7/13) 2415781699999999 a001 591286729879/2537720636*73681302247^(6/13) 2415781699999999 a001 225851433717/2537720636*73681302247^(1/2) 2415781699999999 a001 1134903170/119218851371*192900153618^(5/6) 2415781699999999 a001 1134903170/505019158607*73681302247^(12/13) 2415781699999999 a001 10182505537/1268860318*9062201101803^(1/2) 2415781699999999 a001 4052739537881/2537720636*28143753123^(2/5) 2415781699999999 a001 32951280099/2537720636*28143753123^(3/5) 2415781699999999 a001 182717648081/1268860318*28143753123^(1/2) 2415781699999999 a001 1134903170/119218851371*28143753123^(9/10) 2415781699999999 a001 7778742049/2537720636*45537549124^(11/17) 2415781699999999 a001 10610209857723/2537720636*10749957122^(3/8) 2415781699999999 a001 7778742049/2537720636*312119004989^(3/5) 2415781699999999 a001 4414059505011197665/182717648081 2415781699999999 a001 7778742049/2537720636*192900153618^(11/18) 2415781699999999 a001 4052739537881/2537720636*10749957122^(5/12) 2415781699999999 a001 2504730781961/2537720636*10749957122^(7/16) 2415781699999999 a001 1134903780/1860499*10749957122^(11/24) 2415781699999999 a001 591286729879/2537720636*10749957122^(1/2) 2415781699999999 a001 1144206275/230701876*10749957122^(2/3) 2415781699999999 a001 225851433717/2537720636*10749957122^(13/24) 2415781699999999 a001 139583862445/2537720636*10749957122^(9/16) 2415781699999999 a001 1135099622/33391061*10749957122^(7/12) 2415781699999999 a001 32951280099/2537720636*10749957122^(5/8) 2415781699999999 a001 1134903170/28143753123*10749957122^(7/8) 2415781699999999 a001 956722026041/4106118243*1568397607^(6/11) 2415781699999999 a001 1134903170/73681302247*10749957122^(11/12) 2415781699999999 a001 1134903170/119218851371*10749957122^(15/16) 2415781699999999 a001 567451585/96450076809*10749957122^(23/24) 2415781699999999 a001 7778742049/2537720636*10749957122^(11/16) 2415781699999999 a001 2971215073/2537720636*17393796001^(5/7) 2415781699999999 a001 1134903170/6643838879*45537549124^(13/17) 2415781699999999 a001 674408281019896282/27916772489 2415781699999999 a001 2971215073/2537720636*312119004989^(7/11) 2415781699999999 a001 1134903170/6643838879*14662949395604^(13/21) 2415781699999999 a001 2971215073/2537720636*505019158607^(5/8) 2415781699999999 a001 1134903170/6643838879*192900153618^(13/18) 2415781699999999 a001 1134903170/6643838879*73681302247^(3/4) 2415781699999999 a001 10610209857723/2537720636*4106118243^(9/23) 2415781699999999 a001 2971215073/2537720636*28143753123^(7/10) 2415781699999999 a001 365435296162/4106118243*1568397607^(13/22) 2415781699999999 a001 4052739537881/2537720636*4106118243^(10/23) 2415781699999999 a001 1134903780/1860499*4106118243^(11/23) 2415781699999999 a001 956722026041/2537720636*4106118243^(1/2) 2415781699999999 a001 1134903170/6643838879*10749957122^(13/16) 2415781699999999 a001 591286729879/2537720636*4106118243^(12/23) 2415781699999999 a001 225851433717/2537720636*4106118243^(13/23) 2415781699999999 a001 1201881744/634430159*4106118243^(17/23) 2415781699999999 a001 1135099622/33391061*4106118243^(14/23) 2415781699999999 a001 32951280099/2537720636*4106118243^(15/23) 2415781699999999 a001 3278735159921/5374978561*1568397607^(1/2) 2415781699999999 a001 1144206275/230701876*4106118243^(16/23) 2415781699999999 a001 567451585/5374978561*4106118243^(20/23) 2415781699999999 a001 139583862445/4106118243*1568397607^(7/11) 2415781699999999 a001 10610209857723/17393796001*1568397607^(1/2) 2415781699999999 a001 10610209857723/6643838879*1568397607^(5/11) 2415781699999999 a001 1134903170/28143753123*4106118243^(21/23) 2415781699999999 a001 1134903170/73681302247*4106118243^(22/23) 2415781699999999 a001 2504730781961/10749957122*1568397607^(6/11) 2415781699999999 a001 53316291173/4106118243*1568397607^(15/22) 2415781699999999 a001 6557470319842/28143753123*1568397607^(6/11) 2415781699999999 a001 10610209857723/45537549124*1568397607^(6/11) 2415781699999999 a001 4052739537881/17393796001*1568397607^(6/11) 2415781699999999 a001 4052739537881/6643838879*1568397607^(1/2) 2415781699999999 a001 956722026041/10749957122*1568397607^(13/22) 2415781699999999 a001 20365011074/4106118243*1568397607^(8/11) 2415781699999999 a001 2504730781961/28143753123*1568397607^(13/22) 2415781699999999 a001 6557470319842/73681302247*1568397607^(13/22) 2415781699999999 a001 10610209857723/119218851371*1568397607^(13/22) 2415781699999999 a001 4052739537881/45537549124*1568397607^(13/22) 2415781699999999 a001 1548008755920/17393796001*1568397607^(13/22) 2415781699999999 a001 12586269025/4106118243*1568397607^(3/4) 2415781699999999 a001 1548008755920/6643838879*1568397607^(6/11) 2415781699999999 a001 182717648081/5374978561*1568397607^(7/11) 2415781699999999 a001 956722026041/28143753123*1568397607^(7/11) 2415781699999999 a001 7778742049/4106118243*1568397607^(17/22) 2415781699999999 a001 2504730781961/73681302247*1568397607^(7/11) 2415781699999999 a001 3278735159921/96450076809*1568397607^(7/11) 2415781699999999 a001 10610209857723/312119004989*1568397607^(7/11) 2415781699999999 a001 4052739537881/119218851371*1568397607^(7/11) 2415781699999999 a001 387002188980/11384387281*1568397607^(7/11) 2415781699999999 a001 591286729879/17393796001*1568397607^(7/11) 2415781699999999 a001 591286729879/6643838879*1568397607^(13/22) 2415781699999999 a001 139583862445/10749957122*1568397607^(15/22) 2415781699999999 a001 365435296162/28143753123*1568397607^(15/22) 2415781699999999 a001 956722026041/73681302247*1568397607^(15/22) 2415781699999999 a001 2504730781961/192900153618*1568397607^(15/22) 2415781699999999 a001 10610209857723/817138163596*1568397607^(15/22) 2415781699999999 a001 4052739537881/312119004989*1568397607^(15/22) 2415781699999999 a001 1548008755920/119218851371*1568397607^(15/22) 2415781699999999 a001 591286729879/45537549124*1568397607^(15/22) 2415781699999999 a001 7787980473/599786069*1568397607^(15/22) 2415781699999999 a001 225851433717/6643838879*1568397607^(7/11) 2415781699999999 a001 53316291173/10749957122*1568397607^(8/11) 2415781699999999 a001 139583862445/28143753123*1568397607^(8/11) 2415781699999999 a001 365435296162/73681302247*1568397607^(8/11) 2415781699999999 a001 956722026041/192900153618*1568397607^(8/11) 2415781699999999 a001 2504730781961/505019158607*1568397607^(8/11) 2415781699999999 a001 10610209857723/2139295485799*1568397607^(8/11) 2415781699999999 a001 4052739537881/817138163596*1568397607^(8/11) 2415781699999999 a001 140728068720/28374454999*1568397607^(8/11) 2415781699999999 a001 591286729879/119218851371*1568397607^(8/11) 2415781699999999 a001 2971215073/4106118243*1568397607^(9/11) 2415781699999999 a001 32951280099/10749957122*1568397607^(3/4) 2415781699999999 a001 225851433717/45537549124*1568397607^(8/11) 2415781699999999 a001 86267571272/17393796001*1568397607^(8/11) 2415781699999999 a001 86267571272/6643838879*1568397607^(15/22) 2415781699999999 a001 86267571272/28143753123*1568397607^(3/4) 2415781699999999 a001 32264490531/10525900321*1568397607^(3/4) 2415781699999999 a001 591286729879/192900153618*1568397607^(3/4) 2415781699999999 a001 1515744265389/494493258286*1568397607^(3/4) 2415781699999999 a001 2504730781961/817138163596*1568397607^(3/4) 2415781699999999 a001 956722026041/312119004989*1568397607^(3/4) 2415781699999999 a001 365435296162/119218851371*1568397607^(3/4) 2415781699999999 a001 139583862445/45537549124*1568397607^(3/4) 2415781699999999 a001 10182505537/5374978561*1568397607^(17/22) 2415781699999999 a001 53316291173/17393796001*1568397607^(3/4) 2415781699999999 a001 1288005205276048900/53316291173 2415781699999999 a001 53316291173/28143753123*1568397607^(17/22) 2415781699999999 a001 1836311903/17393796001*1568397607^(10/11) 2415781699999999 a001 139583862445/73681302247*1568397607^(17/22) 2415781699999999 a001 182717648081/96450076809*1568397607^(17/22) 2415781699999999 a001 956722026041/505019158607*1568397607^(17/22) 2415781699999999 a001 591286729879/312119004989*1568397607^(17/22) 2415781699999999 a001 225851433717/119218851371*1568397607^(17/22) 2415781699999999 a001 1836311903/6643838879*1568397607^(19/22) 2415781699999999 a001 21566892818/11384387281*1568397607^(17/22) 2415781699999999 a001 32951280099/17393796001*1568397607^(17/22) 2415781699999999 a001 32951280099/6643838879*1568397607^(8/11) 2415781699999999 a001 10610209857723/2537720636*1568397607^(9/22) 2415781699999999 a001 7778742049/10749957122*1568397607^(9/11) 2415781699999999 a001 20365011074/6643838879*1568397607^(3/4) 2415781699999999 a001 1836311903/45537549124*1568397607^(21/22) 2415781699999999 a001 20365011074/28143753123*1568397607^(9/11) 2415781699999999 a001 53316291173/73681302247*1568397607^(9/11) 2415781699999999 a001 139583862445/192900153618*1568397607^(9/11) 2415781699999999 a001 591286729879/817138163596*1568397607^(9/11) 2415781699999999 a001 225851433717/312119004989*1568397607^(9/11) 2415781699999999 a001 86267571272/119218851371*1568397607^(9/11) 2415781699999999 a001 32951280099/45537549124*1568397607^(9/11) 2415781699999999 a001 12586269025/17393796001*1568397607^(9/11) 2415781699999999 a001 12586269025/6643838879*1568397607^(17/22) 2415781699999999 a001 4052739537881/2537720636*1568397607^(5/11) 2415781699999999 a001 4807526976/17393796001*1568397607^(19/22) 2415781699999999 a001 4807526976/6643838879*1568397607^(9/11) 2415781699999999 a001 12586269025/45537549124*1568397607^(19/22) 2415781699999999 a001 32951280099/119218851371*1568397607^(19/22) 2415781699999999 a001 86267571272/312119004989*1568397607^(19/22) 2415781699999999 a001 1548008755920/5600748293801*1568397607^(19/22) 2415781699999999 a001 139583862445/505019158607*1568397607^(19/22) 2415781699999999 a001 53316291173/192900153618*1568397607^(19/22) 2415781699999999 a001 20365011074/73681302247*1568397607^(19/22) 2415781699999999 a001 7778742049/28143753123*1568397607^(19/22) 2415781699999999 a001 1134903780/1860499*1568397607^(1/2) 2415781699999999 a001 1201881744/11384387281*1568397607^(10/11) 2415781699999999 a001 2971215073/10749957122*1568397607^(19/22) 2415781699999999 a001 12586269025/119218851371*1568397607^(10/11) 2415781699999999 a001 32951280099/312119004989*1568397607^(10/11) 2415781699999999 a001 21566892818/204284540899*1568397607^(10/11) 2415781699999999 a001 225851433717/2139295485799*1568397607^(10/11) 2415781699999999 a001 182717648081/1730726404001*1568397607^(10/11) 2415781699999999 a001 139583862445/1322157322203*1568397607^(10/11) 2415781699999999 a001 53316291173/505019158607*1568397607^(10/11) 2415781699999999 a001 10182505537/96450076809*1568397607^(10/11) 2415781699999999 a001 7778742049/73681302247*1568397607^(10/11) 2415781699999999 a001 591286729879/2537720636*1568397607^(6/11) 2415781699999999 a001 4807526976/119218851371*1568397607^(21/22) 2415781699999999 a001 1144206275/28374454999*1568397607^(21/22) 2415781699999999 a001 32951280099/817138163596*1568397607^(21/22) 2415781699999999 a001 86267571272/2139295485799*1568397607^(21/22) 2415781699999999 a001 225851433717/5600748293801*1568397607^(21/22) 2415781699999999 a001 591286729879/14662949395604*1568397607^(21/22) 2415781699999999 a001 365435296162/9062201101803*1568397607^(21/22) 2415781699999999 a001 139583862445/3461452808002*1568397607^(21/22) 2415781699999999 a001 53316291173/1322157322203*1568397607^(21/22) 2415781699999999 a001 20365011074/505019158607*1568397607^(21/22) 2415781699999999 a001 2971215073/28143753123*1568397607^(10/11) 2415781699999999 a001 7778742049/192900153618*1568397607^(21/22) 2415781699999999 a001 225851433717/2537720636*1568397607^(13/22) 2415781699999999 a001 2971215073/73681302247*1568397607^(21/22) 2415781699999999 a001 1135099622/33391061*1568397607^(7/11) 2415781699999999 a001 1836311903/2537720636*1568397607^(9/11) 2415781699999999 a001 32951280099/2537720636*1568397607^(15/22) 2415781699999999 a001 1134903170/4106118243*1568397607^(19/22) 2415781699999999 a001 1144206275/230701876*1568397607^(8/11) 2415781699999999 a001 1201881744/634430159*1568397607^(17/22) 2415781699999999 a001 7778742049/2537720636*1568397607^(3/4) 2415781699999999 a001 567451585/5374978561*1568397607^(10/11) 2415781699999999 a001 701408733/969323029*2537720636^(4/5) 2415781699999999 a001 1134903170/28143753123*1568397607^(21/22) 2415781699999999 a001 701408733/969323029*45537549124^(12/17) 2415781699999999 a001 433494437/1568397607*817138163596^(2/3) 2415781699999999 a001 701408733/969323029*14662949395604^(4/7) 2415781699999999 a001 701408733/969323029*192900153618^(2/3) 2415781699999999 a001 701408733/969323029*73681302247^(9/13) 2415781699999999 a001 304056783818718321/12586269025 2415781699999999 a001 701408733/969323029*10749957122^(3/4) 2415781699999999 a001 433494437/1568397607*10749957122^(19/24) 2415781699999999 a001 433494437/599074578*599074578^(6/7) 2415781699999999 a001 701408733/969323029*4106118243^(18/23) 2415781699999999 a001 433494437/1568397607*4106118243^(19/23) 2415781699999999 a001 6557470319842/1568397607*599074578^(3/7) 2415781699999999 a001 267914296/969323029*599074578^(19/21) 2415781699999999 a001 433494437/4106118243*2537720636^(8/9) 2415781699999999 a001 433494437/10749957122*2537720636^(14/15) 2415781699999999 a001 2504730781961/1568397607*599074578^(10/21) 2415781699999999 a001 12586269025/969323029*2537720636^(2/3) 2415781699999999 a001 53316291173/969323029*2537720636^(3/5) 2415781699999999 a001 2971215073/969323029*2537720636^(11/15) 2415781699999999 a001 139583862445/969323029*2537720636^(5/9) 2415781699999999 a001 225851433717/969323029*2537720636^(8/15) 2415781699999999 a001 1548008755920/1568397607*599074578^(1/2) 2415781699999999 a001 701408733/969323029*1568397607^(9/11) 2415781699999999 a001 956722026041/969323029*2537720636^(7/15) 2415781699999999 a001 1548008755920/969323029*2537720636^(4/9) 2415781699999999 a001 4052739537881/969323029*2537720636^(2/5) 2415781699999999 a001 1836311903/969323029*45537549124^(2/3) 2415781699999999 a001 433494437/4106118243*312119004989^(8/11) 2415781699999999 a001 433494437/4106118243*23725150497407^(5/8) 2415781699999999 a001 433494437/4106118243*73681302247^(10/13) 2415781699999999 a001 796030994547383611/32951280099 2415781699999999 a001 433494437/4106118243*28143753123^(4/5) 2415781699999999 a001 433494437/1568397607*1568397607^(19/22) 2415781699999999 a001 1836311903/969323029*10749957122^(17/24) 2415781699999999 a001 433494437/4106118243*10749957122^(5/6) 2415781699999999 a001 1836311903/969323029*4106118243^(17/23) 2415781699999999 a001 433494437/10749957122*17393796001^(6/7) 2415781699999999 a001 956722026041/1568397607*599074578^(11/21) 2415781699999999 a001 433494437/10749957122*45537549124^(14/17) 2415781699999999 a001 433494437/10749957122*14662949395604^(2/3) 2415781699999999 a001 433494437/10749957122*505019158607^(3/4) 2415781699999999 a001 433494437/10749957122*192900153618^(7/9) 2415781699999999 a001 260504524977929064/10783446409 2415781699999999 a001 4807526976/969323029*73681302247^(8/13) 2415781699999999 a001 433494437/4106118243*4106118243^(20/23) 2415781699999999 a001 4807526976/969323029*10749957122^(2/3) 2415781699999999 a001 32951280099/969323029*17393796001^(4/7) 2415781699999999 a001 12586269025/969323029*45537549124^(10/17) 2415781699999999 a001 956722026041/969323029*17393796001^(3/7) 2415781699999999 a001 433494437/28143753123*312119004989^(4/5) 2415781699999999 a001 12586269025/969323029*312119004989^(6/11) 2415781699999999 a001 12586269025/969323029*14662949395604^(10/21) 2415781699999999 a001 5456077604922913925/225851433717 2415781699999999 a001 12586269025/969323029*192900153618^(5/9) 2415781699999999 a001 433494437/28143753123*73681302247^(11/13) 2415781699999999 a001 433494437/10749957122*10749957122^(7/8) 2415781699999999 a001 12586269025/969323029*28143753123^(3/5) 2415781699999999 a001 433494437/192900153618*45537549124^(16/17) 2415781699999999 a001 225851433717/969323029*45537549124^(8/17) 2415781699999999 a001 956722026041/969323029*45537549124^(7/17) 2415781699999999 a001 14284196614945309263/591286729879 2415781699999999 a001 4052739537881/969323029*45537549124^(6/17) 2415781699999999 a001 6557470319842/969323029*45537549124^(1/3) 2415781699999999 a001 32951280099/969323029*73681302247^(7/13) 2415781699999999 a001 433494437/192900153618*14662949395604^(16/21) 2415781699999999 a001 433494437/505019158607*312119004989^(10/11) 2415781699999999 a001 225851433717/969323029*14662949395604^(8/21) 2415781699999999 a001 1548008755920/969323029*23725150497407^(5/16) 2415781699999999 a001 10610209857723/969323029*23725150497407^(1/4) 2415781699999999 a006 5^(1/2)*Fibonacci(80)/Lucas(43)/sqrt(5) 2415781699999999 a001 1548008755920/969323029*505019158607^(5/14) 2415781699999999 a001 139583862445/969323029*3461452808002^(5/12) 2415781699999999 a001 433494437/312119004989*505019158607^(7/8) 2415781699999999 a001 433494437/817138163596*192900153618^(17/18) 2415781699999999 a001 10610209857723/969323029*73681302247^(4/13) 2415781699999999 a001 86267571272/969323029*73681302247^(1/2) 2415781699999999 a001 23112315624967704601/956722026041 2415781699999999 a001 1548008755920/969323029*73681302247^(5/13) 2415781699999999 a001 225851433717/969323029*73681302247^(6/13) 2415781699999999 a001 433494437/192900153618*73681302247^(12/13) 2415781699999999 a001 433494437/45537549124*312119004989^(9/11) 2415781699999999 a001 433494437/45537549124*14662949395604^(5/7) 2415781699999999 a001 20365011074/969323029*1322157322203^(1/2) 2415781699999999 a001 433494437/45537549124*192900153618^(5/6) 2415781699999999 a001 1548008755920/969323029*28143753123^(2/5) 2415781699999999 a001 139583862445/969323029*28143753123^(1/2) 2415781699999999 a001 433494437/45537549124*28143753123^(9/10) 2415781699999999 a001 10610209857723/969323029*10749957122^(1/3) 2415781699999999 a001 4052739537881/969323029*10749957122^(3/8) 2415781699999999 a001 3372041405099481413/139583862445 2415781699999999 a001 7778742049/969323029*9062201101803^(1/2) 2415781699999999 a001 1548008755920/969323029*10749957122^(5/12) 2415781699999999 a001 956722026041/969323029*10749957122^(7/16) 2415781699999999 a001 591286729879/969323029*10749957122^(11/24) 2415781699999999 a001 12586269025/969323029*10749957122^(5/8) 2415781699999999 a001 225851433717/969323029*10749957122^(1/2) 2415781699999999 a001 86267571272/969323029*10749957122^(13/24) 2415781699999999 a001 32951280099/969323029*10749957122^(7/12) 2415781699999999 a001 53316291173/969323029*10749957122^(9/16) 2415781699999999 a001 433494437/28143753123*10749957122^(11/12) 2415781699999999 a001 433494437/73681302247*10749957122^(23/24) 2415781699999999 a001 433494437/45537549124*10749957122^(15/16) 2415781699999999 a001 10610209857723/969323029*4106118243^(8/23) 2415781699999999 a001 433494437/2537720636*2537720636^(13/15) 2415781699999999 a001 2971215073/969323029*45537549124^(11/17) 2415781699999999 a001 1288005205276048901/53316291173 2415781699999999 a001 2971215073/969323029*312119004989^(3/5) 2415781699999999 a001 2971215073/969323029*817138163596^(11/19) 2415781699999999 a001 2971215073/969323029*14662949395604^(11/21) 2415781699999999 a001 2971215073/969323029*192900153618^(11/18) 2415781699999999 a001 4052739537881/969323029*4106118243^(9/23) 2415781699999999 a001 1548008755920/969323029*4106118243^(10/23) 2415781699999999 a001 591286729879/969323029*4106118243^(11/23) 2415781699999999 a001 2971215073/969323029*10749957122^(11/16) 2415781699999999 a001 365435296162/969323029*4106118243^(1/2) 2415781699999999 a001 225851433717/969323029*4106118243^(12/23) 2415781699999999 a001 4807526976/969323029*4106118243^(16/23) 2415781699999999 a001 86267571272/969323029*4106118243^(13/23) 2415781699999999 a001 1134903170/969323029*2537720636^(7/9) 2415781699999999 a001 32951280099/969323029*4106118243^(14/23) 2415781699999999 a001 12586269025/969323029*4106118243^(15/23) 2415781699999999 a001 433494437/10749957122*4106118243^(21/23) 2415781699999999 a001 433494437/28143753123*4106118243^(22/23) 2415781699999999 a001 365435296162/1568397607*599074578^(4/7) 2415781699999999 a001 10610209857723/969323029*1568397607^(4/11) 2415781699999999 a001 1134903170/969323029*17393796001^(5/7) 2415781699999999 a001 245987105364332645/10182505537 2415781699999999 a001 433494437/2537720636*45537549124^(13/17) 2415781699999999 a001 1134903170/969323029*312119004989^(7/11) 2415781699999999 a001 1134903170/969323029*14662949395604^(5/9) 2415781699999999 a001 1134903170/969323029*505019158607^(5/8) 2415781699999999 a001 433494437/2537720636*192900153618^(13/18) 2415781699999999 a001 433494437/2537720636*73681302247^(3/4) 2415781699999999 a001 1134903170/969323029*28143753123^(7/10) 2415781699999999 a001 433494437/2537720636*10749957122^(13/16) 2415781699999999 a001 4052739537881/969323029*1568397607^(9/22) 2415781699999999 a001 1548008755920/969323029*1568397607^(5/11) 2415781699999999 a001 6557470319842/4106118243*599074578^(10/21) 2415781699999999 a001 591286729879/969323029*1568397607^(1/2) 2415781699999999 a001 225851433717/969323029*1568397607^(6/11) 2415781699999999 a001 86267571272/969323029*1568397607^(13/22) 2415781699999999 a001 139583862445/1568397607*599074578^(13/21) 2415781699999999 a001 1836311903/969323029*1568397607^(17/22) 2415781699999999 a001 32951280099/969323029*1568397607^(7/11) 2415781699999999 a001 4052739537881/4106118243*599074578^(1/2) 2415781699999999 a001 12586269025/969323029*1568397607^(15/22) 2415781699999999 a001 10610209857723/2537720636*599074578^(3/7) 2415781699999999 a001 10610209857723/6643838879*599074578^(10/21) 2415781699999999 a001 4807526976/969323029*1568397607^(8/11) 2415781699999999 a001 433494437/4106118243*1568397607^(10/11) 2415781699999999 a001 4807525989/4870846*599074578^(1/2) 2415781699999999 a001 86267571272/1568397607*599074578^(9/14) 2415781699999999 a001 2971215073/969323029*1568397607^(3/4) 2415781699999999 a001 2504730781961/4106118243*599074578^(11/21) 2415781699999999 a001 6557470319842/6643838879*599074578^(1/2) 2415781699999999 a001 433494437/10749957122*1568397607^(21/22) 2415781699999999 a001 3278735159921/5374978561*599074578^(11/21) 2415781699999999 a001 53316291173/1568397607*599074578^(2/3) 2415781699999999 a001 10610209857723/17393796001*599074578^(11/21) 2415781699999999 a001 4052739537881/2537720636*599074578^(10/21) 2415781699999999 a001 4052739537881/6643838879*599074578^(11/21) 2415781699999999 a001 956722026041/4106118243*599074578^(4/7) 2415781699999999 a001 2504730781961/2537720636*599074578^(1/2) 2415781699999999 a001 2504730781961/10749957122*599074578^(4/7) 2415781699999999 a001 20365011074/1568397607*599074578^(5/7) 2415781699999999 a001 6557470319842/28143753123*599074578^(4/7) 2415781699999999 a001 10610209857723/45537549124*599074578^(4/7) 2415781699999999 a001 4052739537881/17393796001*599074578^(4/7) 2415781699999999 a001 1134903780/1860499*599074578^(11/21) 2415781699999999 a001 1548008755920/6643838879*599074578^(4/7) 2415781699999999 a001 365435296162/4106118243*599074578^(13/21) 2415781699999999 a001 956722026041/10749957122*599074578^(13/21) 2415781699999999 a001 7778742049/1568397607*599074578^(16/21) 2415781699999999 a001 2504730781961/28143753123*599074578^(13/21) 2415781699999999 a001 6557470319842/73681302247*599074578^(13/21) 2415781699999999 a001 10610209857723/119218851371*599074578^(13/21) 2415781699999999 a001 4052739537881/45537549124*599074578^(13/21) 2415781699999999 a001 1548008755920/17393796001*599074578^(13/21) 2415781699999999 a001 75283811239/1368706081*599074578^(9/14) 2415781699999999 a001 591286729879/2537720636*599074578^(4/7) 2415781699999999 a001 591286729879/6643838879*599074578^(13/21) 2415781699999999 a001 686789568/224056801*599074578^(11/14) 2415781699999999 a001 591286729879/10749957122*599074578^(9/14) 2415781699999999 a001 12585437040/228811001*599074578^(9/14) 2415781699999999 a001 4052739537881/73681302247*599074578^(9/14) 2415781699999999 a001 3536736619241/64300051206*599074578^(9/14) 2415781699999999 a001 6557470319842/119218851371*599074578^(9/14) 2415781699999999 a001 2504730781961/45537549124*599074578^(9/14) 2415781699999999 a001 956722026041/17393796001*599074578^(9/14) 2415781699999999 a001 139583862445/4106118243*599074578^(2/3) 2415781699999999 a001 365435296162/6643838879*599074578^(9/14) 2415781699999999 a001 182717648081/5374978561*599074578^(2/3) 2415781699999999 a001 1836311903/1568397607*599074578^(5/6) 2415781699999999 a001 956722026041/28143753123*599074578^(2/3) 2415781699999999 a001 2504730781961/73681302247*599074578^(2/3) 2415781699999999 a001 3278735159921/96450076809*599074578^(2/3) 2415781699999999 a001 10610209857723/312119004989*599074578^(2/3) 2415781699999999 a001 4052739537881/119218851371*599074578^(2/3) 2415781699999999 a001 387002188980/11384387281*599074578^(2/3) 2415781699999999 a001 591286729879/17393796001*599074578^(2/3) 2415781699999999 a001 2971215073/1568397607*599074578^(17/21) 2415781699999999 a001 225851433717/2537720636*599074578^(13/21) 2415781699999999 a001 225851433717/6643838879*599074578^(2/3) 2415781699999999 a001 53316291173/4106118243*599074578^(5/7) 2415781699999999 a001 139583862445/2537720636*599074578^(9/14) 2415781699999999 a001 139583862445/10749957122*599074578^(5/7) 2415781699999999 a001 365435296162/28143753123*599074578^(5/7) 2415781699999999 a001 956722026041/73681302247*599074578^(5/7) 2415781699999999 a001 2504730781961/192900153618*599074578^(5/7) 2415781699999999 a001 10610209857723/817138163596*599074578^(5/7) 2415781699999999 a001 4052739537881/312119004989*599074578^(5/7) 2415781699999999 a001 1548008755920/119218851371*599074578^(5/7) 2415781699999999 a001 591286729879/45537549124*599074578^(5/7) 2415781699999999 a001 7787980473/599786069*599074578^(5/7) 2415781699999999 a001 1135099622/33391061*599074578^(2/3) 2415781699999999 a001 86267571272/6643838879*599074578^(5/7) 2415781699999999 a001 20365011074/4106118243*599074578^(16/21) 2415781699999999 a001 53316291173/10749957122*599074578^(16/21) 2415781699999999 a001 233802911/1368706081*599074578^(13/14) 2415781699999999 a001 139583862445/28143753123*599074578^(16/21) 2415781699999999 a001 365435296162/73681302247*599074578^(16/21) 2415781699999999 a001 956722026041/192900153618*599074578^(16/21) 2415781699999999 a001 2504730781961/505019158607*599074578^(16/21) 2415781699999999 a001 10610209857723/2139295485799*599074578^(16/21) 2415781699999999 a001 140728068720/28374454999*599074578^(16/21) 2415781699999999 a001 591286729879/119218851371*599074578^(16/21) 2415781699999999 a001 225851433717/45537549124*599074578^(16/21) 2415781699999999 a001 187917426909946969/7778742049 2415781699999999 a001 10610209857723/969323029*599074578^(8/21) 2415781699999999 a001 86267571272/17393796001*599074578^(16/21) 2415781699999999 a001 12586269025/4106118243*599074578^(11/14) 2415781699999999 a001 1134903170/1568397607*599074578^(6/7) 2415781699999999 a001 32951280099/2537720636*599074578^(5/7) 2415781699999999 a001 32951280099/6643838879*599074578^(16/21) 2415781699999999 a001 32951280099/10749957122*599074578^(11/14) 2415781699999999 a001 86267571272/28143753123*599074578^(11/14) 2415781699999999 a001 32264490531/10525900321*599074578^(11/14) 2415781699999999 a001 591286729879/192900153618*599074578^(11/14) 2415781699999999 a001 1548008755920/505019158607*599074578^(11/14) 2415781699999999 a001 1515744265389/494493258286*599074578^(11/14) 2415781699999999 a001 956722026041/312119004989*599074578^(11/14) 2415781699999999 a001 365435296162/119218851371*599074578^(11/14) 2415781699999999 a001 139583862445/45537549124*599074578^(11/14) 2415781699999999 a001 53316291173/17393796001*599074578^(11/14) 2415781699999999 a001 7778742049/4106118243*599074578^(17/21) 2415781699999999 a001 20365011074/6643838879*599074578^(11/14) 2415781699999999 a001 10182505537/5374978561*599074578^(17/21) 2415781699999999 a001 1602508992/1368706081*599074578^(5/6) 2415781699999999 a001 53316291173/28143753123*599074578^(17/21) 2415781699999999 a001 139583862445/73681302247*599074578^(17/21) 2415781699999999 a001 182717648081/96450076809*599074578^(17/21) 2415781699999999 a001 956722026041/505019158607*599074578^(17/21) 2415781699999999 a001 10610209857723/5600748293801*599074578^(17/21) 2415781699999999 a001 591286729879/312119004989*599074578^(17/21) 2415781699999999 a001 225851433717/119218851371*599074578^(17/21) 2415781699999999 a001 21566892818/11384387281*599074578^(17/21) 2415781699999999 a001 4052739537881/969323029*599074578^(3/7) 2415781699999999 a001 32951280099/17393796001*599074578^(17/21) 2415781699999999 a001 701408733/2537720636*599074578^(19/21) 2415781699999999 a001 701408733/6643838879*599074578^(20/21) 2415781699999999 a001 1144206275/230701876*599074578^(16/21) 2415781699999999 a001 12586269025/6643838879*599074578^(17/21) 2415781699999999 a001 12586269025/10749957122*599074578^(5/6) 2415781699999999 a001 10983760033/9381251041*599074578^(5/6) 2415781699999999 a001 86267571272/73681302247*599074578^(5/6) 2415781699999999 a001 75283811239/64300051206*599074578^(5/6) 2415781699999999 a001 2504730781961/2139295485799*599074578^(5/6) 2415781699999999 a001 365435296162/312119004989*599074578^(5/6) 2415781699999999 a001 139583862445/119218851371*599074578^(5/6) 2415781699999999 a001 53316291173/45537549124*599074578^(5/6) 2415781699999999 a001 20365011074/17393796001*599074578^(5/6) 2415781699999999 a001 7778742049/2537720636*599074578^(11/14) 2415781699999999 a001 7778742049/6643838879*599074578^(5/6) 2415781699999999 a001 2971215073/4106118243*599074578^(6/7) 2415781699999999 a001 7778742049/10749957122*599074578^(6/7) 2415781699999999 a001 20365011074/28143753123*599074578^(6/7) 2415781699999999 a001 53316291173/73681302247*599074578^(6/7) 2415781699999999 a001 139583862445/192900153618*599074578^(6/7) 2415781699999999 a001 10610209857723/14662949395604*599074578^(6/7) 2415781699999999 a001 225851433717/312119004989*599074578^(6/7) 2415781699999999 a001 86267571272/119218851371*599074578^(6/7) 2415781699999999 a001 32951280099/45537549124*599074578^(6/7) 2415781699999999 a001 12586269025/17393796001*599074578^(6/7) 2415781699999999 a001 1548008755920/969323029*599074578^(10/21) 2415781699999999 a001 1201881744/634430159*599074578^(17/21) 2415781699999999 a001 4807526976/6643838879*599074578^(6/7) 2415781699999999 a001 956722026041/969323029*599074578^(1/2) 2415781699999999 a001 1836311903/2537720636*599074578^(6/7) 2415781699999999 a001 1836311903/6643838879*599074578^(19/21) 2415781699999999 a001 2971215073/2537720636*599074578^(5/6) 2415781699999999 a001 4807526976/17393796001*599074578^(19/21) 2415781699999999 a001 1836311903/10749957122*599074578^(13/14) 2415781699999999 a001 12586269025/45537549124*599074578^(19/21) 2415781699999999 a001 32951280099/119218851371*599074578^(19/21) 2415781699999999 a001 86267571272/312119004989*599074578^(19/21) 2415781699999999 a001 225851433717/817138163596*599074578^(19/21) 2415781699999999 a001 1548008755920/5600748293801*599074578^(19/21) 2415781699999999 a001 139583862445/505019158607*599074578^(19/21) 2415781699999999 a001 53316291173/192900153618*599074578^(19/21) 2415781699999999 a001 20365011074/73681302247*599074578^(19/21) 2415781699999999 a001 7778742049/28143753123*599074578^(19/21) 2415781699999999 a001 591286729879/969323029*599074578^(11/21) 2415781699999999 a001 2971215073/10749957122*599074578^(19/21) 2415781699999999 a001 1602508992/9381251041*599074578^(13/14) 2415781699999999 a001 12586269025/73681302247*599074578^(13/14) 2415781699999999 a001 10983760033/64300051206*599074578^(13/14) 2415781699999999 a001 86267571272/505019158607*599074578^(13/14) 2415781699999999 a001 75283811239/440719107401*599074578^(13/14) 2415781699999999 a001 2504730781961/14662949395604*599074578^(13/14) 2415781699999999 a001 139583862445/817138163596*599074578^(13/14) 2415781699999999 a001 53316291173/312119004989*599074578^(13/14) 2415781699999999 a001 20365011074/119218851371*599074578^(13/14) 2415781699999999 a001 7778742049/45537549124*599074578^(13/14) 2415781699999999 a001 1836311903/17393796001*599074578^(20/21) 2415781699999999 a001 2971215073/17393796001*599074578^(13/14) 2415781699999999 a001 1134903170/4106118243*599074578^(19/21) 2415781699999999 a001 1201881744/11384387281*599074578^(20/21) 2415781699999999 a001 12586269025/119218851371*599074578^(20/21) 2415781699999999 a001 32951280099/312119004989*599074578^(20/21) 2415781699999999 a001 21566892818/204284540899*599074578^(20/21) 2415781699999999 a001 225851433717/2139295485799*599074578^(20/21) 2415781699999999 a001 182717648081/1730726404001*599074578^(20/21) 2415781699999999 a001 139583862445/1322157322203*599074578^(20/21) 2415781699999999 a001 53316291173/505019158607*599074578^(20/21) 2415781699999999 a001 10182505537/96450076809*599074578^(20/21) 2415781699999999 a001 225851433717/969323029*599074578^(4/7) 2415781699999999 a001 7778742049/73681302247*599074578^(20/21) 2415781699999999 a001 2971215073/28143753123*599074578^(20/21) 2415781699999999 a001 1134903170/6643838879*599074578^(13/14) 2415781699999999 a001 86267571272/969323029*599074578^(13/21) 2415781699999999 a001 567451585/5374978561*599074578^(20/21) 2415781699999999 a001 53316291173/969323029*599074578^(9/14) 2415781699999999 a001 32951280099/969323029*599074578^(2/3) 2415781699999999 a001 701408733/969323029*599074578^(6/7) 2415781699999999 a001 12586269025/969323029*599074578^(5/7) 2415781699999999 a001 4807526976/969323029*599074578^(16/21) 2415781699999999 a001 433494437/1568397607*599074578^(19/21) 2415781699999999 a001 1836311903/969323029*599074578^(17/21) 2415781699999999 a001 2971215073/969323029*599074578^(11/14) 2415781699999999 a001 1134903170/969323029*599074578^(5/6) 2415781699999999 a001 433494437/4106118243*599074578^(20/21) 2415781699999999 a001 433494437/2537720636*599074578^(13/14) 2415781699999999 a001 3536736619241/199691526*228826127^(3/8) 2415781699999999 a001 267914296/370248451*2537720636^(4/5) 2415781699999999 a001 267914296/370248451*45537549124^(12/17) 2415781699999999 a001 165580141/599074578*817138163596^(2/3) 2415781699999999 a001 267914296/370248451*505019158607^(9/14) 2415781699999999 a001 267914296/370248451*192900153618^(2/3) 2415781699999999 a001 267914296/370248451*73681302247^(9/13) 2415781699999999 a001 267914296/370248451*10749957122^(3/4) 2415781699999999 a001 165580141/599074578*10749957122^(19/24) 2415781699999999 a001 267914296/370248451*4106118243^(18/23) 2415781699999999 a001 165580141/599074578*4106118243^(19/23) 2415781699999999 a001 44361286907595736/1836311903 2415781699999999 a001 267914296/370248451*1568397607^(9/11) 2415781699999999 a001 3278735159921/299537289*228826127^(2/5) 2415781699999999 a001 165580141/599074578*1568397607^(19/22) 2415781699999999 a001 165580141/228826127*228826127^(9/10) 2415781699999999 a001 2504730781961/599074578*228826127^(9/20) 2415781699999999 a001 102334155/370248451*228826127^(19/20) 2415781699999999 a001 165580141/1568397607*2537720636^(8/9) 2415781699999999 a001 956722026041/599074578*228826127^(1/2) 2415781699999999 a001 701408733/370248451*45537549124^(2/3) 2415781699999999 a001 165580141/1568397607*312119004989^(8/11) 2415781699999999 a001 165580141/1568397607*23725150497407^(5/8) 2415781699999999 a001 165580141/1568397607*73681302247^(10/13) 2415781699999999 a001 165580141/1568397607*28143753123^(4/5) 2415781699999999 a001 701408733/370248451*10749957122^(17/24) 2415781699999999 a001 165580141/1568397607*10749957122^(5/6) 2415781699999999 a001 267914296/370248451*599074578^(6/7) 2415781699999999 a001 38713118969590451/1602508992 2415781699999999 a001 701408733/370248451*4106118243^(17/23) 2415781699999999 a001 165580141/1568397607*4106118243^(20/23) 2415781699999999 a001 165580141/599074578*599074578^(19/21) 2415781699999999 a001 165580141/4106118243*2537720636^(14/15) 2415781699999999 a001 4807526976/370248451*2537720636^(2/3) 2415781699999999 a001 20365011074/370248451*2537720636^(3/5) 2415781699999999 a001 701408733/370248451*1568397607^(17/22) 2415781699999999 a001 53316291173/370248451*2537720636^(5/9) 2415781699999999 a001 86267571272/370248451*2537720636^(8/15) 2415781699999999 a001 365435296162/370248451*2537720636^(7/15) 2415781699999999 a001 591286729879/370248451*2537720636^(4/9) 2415781699999999 a001 165580141/4106118243*17393796001^(6/7) 2415781699999999 a001 1548008755920/370248451*2537720636^(2/5) 2415781699999999 a001 165580141/4106118243*45537549124^(14/17) 2415781699999999 a001 165580141/4106118243*14662949395604^(2/3) 2415781699999999 a001 165580141/4106118243*505019158607^(3/4) 2415781699999999 a001 165580141/4106118243*192900153618^(7/9) 2415781699999999 a001 1836311903/370248451*73681302247^(8/13) 2415781699999999 a001 304056783818718323/12586269025 2415781699999999 a001 1836311903/370248451*10749957122^(2/3) 2415781699999999 a001 6557470319842/370248451*2537720636^(1/3) 2415781699999999 a001 165580141/4106118243*10749957122^(7/8) 2415781699999999 a001 165580141/1568397607*1568397607^(10/11) 2415781699999999 a001 1836311903/370248451*4106118243^(16/23) 2415781699999999 a001 4807526976/370248451*45537549124^(10/17) 2415781699999999 a001 165580141/10749957122*312119004989^(4/5) 2415781699999999 a001 4807526976/370248451*312119004989^(6/11) 2415781699999999 a001 4807526976/370248451*14662949395604^(10/21) 2415781699999999 a001 165580141/10749957122*23725150497407^(11/16) 2415781699999999 a001 4807526976/370248451*192900153618^(5/9) 2415781699999999 a001 165580141/10749957122*73681302247^(11/13) 2415781699999999 a001 265343664849127872/10983760033 2415781699999999 a001 4807526976/370248451*28143753123^(3/5) 2415781699999999 a001 165580141/4106118243*4106118243^(21/23) 2415781699999999 a001 4807526976/370248451*10749957122^(5/8) 2415781699999999 a001 12586269025/370248451*17393796001^(4/7) 2415781699999999 a001 365435296162/370248451*17393796001^(3/7) 2415781699999999 a001 12586269025/370248451*14662949395604^(4/9) 2415781699999999 a001 2084036199823432525/86267571272 2415781699999999 a001 12586269025/370248451*73681302247^(7/13) 2415781699999999 a001 10610209857723/370248451*17393796001^(2/7) 2415781699999999 a001 165580141/10749957122*10749957122^(11/12) 2415781699999999 a001 165580141/73681302247*45537549124^(16/17) 2415781699999999 a001 86267571272/370248451*45537549124^(8/17) 2415781699999999 a001 365435296162/370248451*45537549124^(7/17) 2415781699999999 a001 165580141/73681302247*14662949395604^(16/21) 2415781699999999 a001 1548008755920/370248451*45537549124^(6/17) 2415781699999999 a001 165580141/73681302247*192900153618^(8/9) 2415781699999999 a001 6557470319842/370248451*45537549124^(5/17) 2415781699999999 a001 32951280099/370248451*73681302247^(1/2) 2415781699999999 a001 165580141/192900153618*312119004989^(10/11) 2415781699999999 a001 86267571272/370248451*14662949395604^(8/21) 2415781699999999 a001 14284196614945309352/591286729879 2415781699999999 a001 86267571272/370248451*192900153618^(4/9) 2415781699999999 a001 165580141/73681302247*73681302247^(12/13) 2415781699999999 a001 165580141/505019158607*23725150497407^(13/16) 2415781699999999 a001 12465504079971004699/516002918640 2415781699999999 a001 10610209857723/370248451*14662949395604^(2/9) 2415781699999999 a006 5^(1/2)*Fibonacci(78)/Lucas(41)/sqrt(5) 2415781699999999 a001 1548008755920/370248451*192900153618^(1/3) 2415781699999999 a001 165580141/312119004989*14662949395604^(17/21) 2415781699999999 a001 365435296162/370248451*192900153618^(7/18) 2415781699999999 a001 165580141/312119004989*192900153618^(17/18) 2415781699999999 a001 4052739537881/370248451*73681302247^(4/13) 2415781699999999 a001 53316291173/370248451*312119004989^(5/11) 2415781699999999 a001 165580141/119218851371*14662949395604^(7/9) 2415781699999999 a001 165580141/119218851371*505019158607^(7/8) 2415781699999999 a001 20365011074/370248451*45537549124^(9/17) 2415781699999999 a001 6557470319842/370248451*28143753123^(3/10) 2415781699999999 a001 3372041405099481434/139583862445 2415781699999999 a001 20365011074/370248451*14662949395604^(3/7) 2415781699999999 a001 20365011074/370248451*192900153618^(1/2) 2415781699999999 a001 591286729879/370248451*28143753123^(2/5) 2415781699999999 a001 53316291173/370248451*28143753123^(1/2) 2415781699999999 a001 10610209857723/370248451*10749957122^(7/24) 2415781699999999 a001 6557470319842/370248451*10749957122^(5/16) 2415781699999999 a001 165580141/17393796001*45537549124^(15/17) 2415781699999999 a001 4052739537881/370248451*10749957122^(1/3) 2415781699999999 a001 1288005205276048909/53316291173 2415781699999999 a001 1548008755920/370248451*10749957122^(3/8) 2415781699999999 a001 165580141/17393796001*312119004989^(9/11) 2415781699999999 a001 165580141/17393796001*14662949395604^(5/7) 2415781699999999 a001 7778742049/370248451*1322157322203^(1/2) 2415781699999999 a001 165580141/17393796001*192900153618^(5/6) 2415781699999999 a001 591286729879/370248451*10749957122^(5/12) 2415781699999999 a001 12586269025/370248451*10749957122^(7/12) 2415781699999999 a001 365435296162/370248451*10749957122^(7/16) 2415781699999999 a001 225851433717/370248451*10749957122^(11/24) 2415781699999999 a001 86267571272/370248451*10749957122^(1/2) 2415781699999999 a001 165580141/17393796001*28143753123^(9/10) 2415781699999999 a001 32951280099/370248451*10749957122^(13/24) 2415781699999999 a001 20365011074/370248451*10749957122^(9/16) 2415781699999999 a001 165580141/28143753123*10749957122^(23/24) 2415781699999999 a001 165580141/17393796001*10749957122^(15/16) 2415781699999999 a001 10610209857723/370248451*4106118243^(7/23) 2415781699999999 a001 4052739537881/370248451*4106118243^(8/23) 2415781699999999 a001 491974210728665293/20365011074 2415781699999999 a001 2971215073/370248451*9062201101803^(1/2) 2415781699999999 a001 1548008755920/370248451*4106118243^(9/23) 2415781699999999 a001 591286729879/370248451*4106118243^(10/23) 2415781699999999 a001 225851433717/370248451*4106118243^(11/23) 2415781699999999 a001 139583862445/370248451*4106118243^(1/2) 2415781699999999 a001 4807526976/370248451*4106118243^(15/23) 2415781699999999 a001 86267571272/370248451*4106118243^(12/23) 2415781699999999 a001 32951280099/370248451*4106118243^(13/23) 2415781699999999 a001 12586269025/370248451*4106118243^(14/23) 2415781699999999 a001 1134903170/370248451*2537720636^(11/15) 2415781699999999 a001 165580141/10749957122*4106118243^(22/23) 2415781699999999 a001 10610209857723/370248451*1568397607^(7/22) 2415781699999999 a001 4052739537881/370248451*1568397607^(4/11) 2415781699999999 a001 187917426909946970/7778742049 2415781699999999 a001 1134903170/370248451*45537549124^(11/17) 2415781699999999 a001 1134903170/370248451*312119004989^(3/5) 2415781699999999 a001 1134903170/370248451*14662949395604^(11/21) 2415781699999999 a001 1134903170/370248451*192900153618^(11/18) 2415781699999999 a001 1134903170/370248451*10749957122^(11/16) 2415781699999999 a001 1548008755920/370248451*1568397607^(9/22) 2415781699999999 a001 591286729879/370248451*1568397607^(5/11) 2415781699999999 a001 225851433717/370248451*1568397607^(1/2) 2415781699999999 a001 86267571272/370248451*1568397607^(6/11) 2415781699999999 a001 1836311903/370248451*1568397607^(8/11) 2415781699999999 a001 32951280099/370248451*1568397607^(13/22) 2415781699999999 a001 12586269025/370248451*1568397607^(7/11) 2415781699999999 a001 4807526976/370248451*1568397607^(15/22) 2415781699999999 a001 165580141/4106118243*1568397607^(21/22) 2415781699999999 a001 182717648081/299537289*228826127^(11/20) 2415781699999999 a001 1134903170/370248451*1568397607^(3/4) 2415781699999999 a001 6557470319842/1568397607*228826127^(9/20) 2415781699999999 a001 10610209857723/370248451*599074578^(1/3) 2415781699999999 a001 165580141/969323029*2537720636^(13/15) 2415781699999999 a001 433494437/370248451*2537720636^(7/9) 2415781699999999 a001 6557470319842/370248451*599074578^(5/14) 2415781699999999 a001 71778070001175617/2971215073 2415781699999999 a001 4052739537881/370248451*599074578^(8/21) 2415781699999999 a001 433494437/370248451*17393796001^(5/7) 2415781699999999 a001 165580141/969323029*45537549124^(13/17) 2415781699999999 a001 165580141/969323029*14662949395604^(13/21) 2415781699999999 a001 433494437/370248451*14662949395604^(5/9) 2415781699999999 a001 433494437/370248451*505019158607^(5/8) 2415781699999999 a001 165580141/969323029*192900153618^(13/18) 2415781699999999 a001 165580141/969323029*73681302247^(3/4) 2415781699999999 a001 433494437/370248451*28143753123^(7/10) 2415781699999999 a001 165580141/969323029*10749957122^(13/16) 2415781699999999 a001 1548008755920/370248451*599074578^(3/7) 2415781699999999 a001 591286729879/370248451*599074578^(10/21) 2415781699999999 a001 139583862445/599074578*228826127^(3/5) 2415781699999999 a001 365435296162/370248451*599074578^(1/2) 2415781699999999 a001 10610209857723/969323029*228826127^(2/5) 2415781699999999 a001 10610209857723/2537720636*228826127^(9/20) 2415781699999999 a001 225851433717/370248451*599074578^(11/21) 2415781699999999 a001 433494437/141422324*141422324^(11/13) 2415781699999999 a001 86267571272/370248451*599074578^(4/7) 2415781699999999 a001 32951280099/370248451*599074578^(13/21) 2415781699999999 a001 20365011074/370248451*599074578^(9/14) 2415781699999999 a001 2504730781961/1568397607*228826127^(1/2) 2415781699999999 a001 701408733/370248451*599074578^(17/21) 2415781699999999 a001 43133785636/299537289*228826127^(5/8) 2415781699999999 a001 12586269025/370248451*599074578^(2/3) 2415781699999999 a001 4807526976/370248451*599074578^(5/7) 2415781699999999 a001 1836311903/370248451*599074578^(16/21) 2415781699999999 a001 6557470319842/4106118243*228826127^(1/2) 2415781699999999 a001 165580141/1568397607*599074578^(20/21) 2415781699999999 a001 10610209857723/6643838879*228826127^(1/2) 2415781699999999 a001 53316291173/599074578*228826127^(13/20) 2415781699999999 a001 1134903170/370248451*599074578^(11/14) 2415781699999999 a001 4052739537881/969323029*228826127^(9/20) 2415781699999999 a001 4052739537881/2537720636*228826127^(1/2) 2415781699999999 a001 956722026041/1568397607*228826127^(11/20) 2415781699999999 a001 2504730781961/4106118243*228826127^(11/20) 2415781699999999 a001 3278735159921/5374978561*228826127^(11/20) 2415781699999999 a001 10610209857723/17393796001*228826127^(11/20) 2415781699999999 a001 4052739537881/6643838879*228826127^(11/20) 2415781699999999 a001 10182505537/299537289*228826127^(7/10) 2415781699999999 a001 1548008755920/969323029*228826127^(1/2) 2415781699999999 a001 1134903780/1860499*228826127^(11/20) 2415781699999999 a001 433494437/370248451*599074578^(5/6) 2415781699999999 a001 165580141/969323029*599074578^(13/14) 2415781699999999 a001 365435296162/1568397607*228826127^(3/5) 2415781699999999 a001 956722026041/4106118243*228826127^(3/5) 2415781699999999 a001 2504730781961/10749957122*228826127^(3/5) 2415781699999999 a001 6557470319842/28143753123*228826127^(3/5) 2415781699999999 a001 10610209857723/45537549124*228826127^(3/5) 2415781699999999 a001 4052739537881/17393796001*228826127^(3/5) 2415781699999999 a001 1836311903/141422324*141422324^(10/13) 2415781699999999 a001 1548008755920/6643838879*228826127^(3/5) 2415781699999999 a001 32264490531/224056801*228826127^(5/8) 2415781699999999 a001 7778742049/599074578*228826127^(3/4) 2415781699999999 a001 591286729879/969323029*228826127^(11/20) 2415781699999999 a001 591286729879/2537720636*228826127^(3/5) 2415781699999999 a001 591286729879/4106118243*228826127^(5/8) 2415781699999999 a001 774004377960/5374978561*228826127^(5/8) 2415781699999999 a001 4052739537881/28143753123*228826127^(5/8) 2415781699999999 a001 1515744265389/10525900321*228826127^(5/8) 2415781699999999 a001 3278735159921/22768774562*228826127^(5/8) 2415781699999999 a001 2504730781961/17393796001*228826127^(5/8) 2415781699999999 a001 956722026041/6643838879*228826127^(5/8) 2415781699999999 a001 139583862445/1568397607*228826127^(13/20) 2415781699999999 a001 182717648081/1268860318*228826127^(5/8) 2415781699999999 a001 365435296162/4106118243*228826127^(13/20) 2415781699999999 a001 956722026041/10749957122*228826127^(13/20) 2415781699999999 a001 2504730781961/28143753123*228826127^(13/20) 2415781699999999 a001 6557470319842/73681302247*228826127^(13/20) 2415781699999999 a001 10610209857723/119218851371*228826127^(13/20) 2415781699999999 a001 4052739537881/45537549124*228826127^(13/20) 2415781699999999 a001 1548008755920/17393796001*228826127^(13/20) 2415781699999999 a001 591286729879/6643838879*228826127^(13/20) 2415781699999999 a001 2971215073/599074578*228826127^(4/5) 2415781699999999 a001 225851433717/969323029*228826127^(3/5) 2415781699999999 a001 225851433717/2537720636*228826127^(13/20) 2415781699999999 a001 53316291173/1568397607*228826127^(7/10) 2415781699999999 a001 139583862445/969323029*228826127^(5/8) 2415781699999999 a001 139583862445/4106118243*228826127^(7/10) 2415781699999999 a001 182717648081/5374978561*228826127^(7/10) 2415781699999999 a001 956722026041/28143753123*228826127^(7/10) 2415781699999999 a001 2504730781961/73681302247*228826127^(7/10) 2415781699999999 a001 3278735159921/96450076809*228826127^(7/10) 2415781699999999 a001 10610209857723/312119004989*228826127^(7/10) 2415781699999999 a001 4052739537881/119218851371*228826127^(7/10) 2415781699999999 a001 387002188980/11384387281*228826127^(7/10) 2415781699999999 a001 591286729879/17393796001*228826127^(7/10) 2415781699999999 a001 225851433717/6643838879*228826127^(7/10) 2415781699999999 a001 86267571272/969323029*228826127^(13/20) 2415781699999999 a001 233802911/199691526*228826127^(7/8) 2415781699999999 a001 1135099622/33391061*228826127^(7/10) 2415781699999999 a001 567451585/299537289*228826127^(17/20) 2415781699999999 a001 20365011074/1568397607*228826127^(3/4) 2415781699999999 a001 10610209857723/370248451*228826127^(7/20) 2415781699999999 a001 53316291173/4106118243*228826127^(3/4) 2415781699999999 a001 139583862445/10749957122*228826127^(3/4) 2415781699999999 a001 365435296162/28143753123*228826127^(3/4) 2415781699999999 a001 956722026041/73681302247*228826127^(3/4) 2415781699999999 a001 2504730781961/192900153618*228826127^(3/4) 2415781699999999 a001 10610209857723/817138163596*228826127^(3/4) 2415781699999999 a001 4052739537881/312119004989*228826127^(3/4) 2415781699999999 a001 1548008755920/119218851371*228826127^(3/4) 2415781699999999 a001 591286729879/45537549124*228826127^(3/4) 2415781699999999 a001 7787980473/599786069*228826127^(3/4) 2415781699999999 a001 86267571272/6643838879*228826127^(3/4) 2415781699999999 a001 32951280099/969323029*228826127^(7/10) 2415781699999999 a001 27416783093579881/1134903170 2415781699999999 a001 6557470319842/370248451*228826127^(3/8) 2415781699999999 a001 32951280099/2537720636*228826127^(3/4) 2415781699999999 a001 7778742049/1568397607*228826127^(4/5) 2415781699999999 a001 4052739537881/370248451*228826127^(2/5) 2415781699999999 a001 20365011074/4106118243*228826127^(4/5) 2415781699999999 a001 53316291173/10749957122*228826127^(4/5) 2415781699999999 a001 139583862445/28143753123*228826127^(4/5) 2415781699999999 a001 365435296162/73681302247*228826127^(4/5) 2415781699999999 a001 956722026041/192900153618*228826127^(4/5) 2415781699999999 a001 2504730781961/505019158607*228826127^(4/5) 2415781699999999 a001 10610209857723/2139295485799*228826127^(4/5) 2415781699999999 a001 4052739537881/817138163596*228826127^(4/5) 2415781699999999 a001 140728068720/28374454999*228826127^(4/5) 2415781699999999 a001 591286729879/119218851371*228826127^(4/5) 2415781699999999 a001 225851433717/45537549124*228826127^(4/5) 2415781699999999 a001 86267571272/17393796001*228826127^(4/5) 2415781699999999 a001 32951280099/6643838879*228826127^(4/5) 2415781699999999 a001 12586269025/969323029*228826127^(3/4) 2415781699999999 a001 7778742049/141422324*141422324^(9/13) 2415781699999999 a001 1144206275/230701876*228826127^(4/5) 2415781699999999 a001 433494437/599074578*228826127^(9/10) 2415781699999999 a001 2971215073/1568397607*228826127^(17/20) 2415781699999999 a001 1548008755920/370248451*228826127^(9/20) 2415781699999999 a001 7778742049/4106118243*228826127^(17/20) 2415781699999999 a001 10182505537/5374978561*228826127^(17/20) 2415781699999999 a001 53316291173/28143753123*228826127^(17/20) 2415781699999999 a001 139583862445/73681302247*228826127^(17/20) 2415781699999999 a001 182717648081/96450076809*228826127^(17/20) 2415781699999999 a001 956722026041/505019158607*228826127^(17/20) 2415781699999999 a001 10610209857723/5600748293801*228826127^(17/20) 2415781699999999 a001 591286729879/312119004989*228826127^(17/20) 2415781699999999 a001 225851433717/119218851371*228826127^(17/20) 2415781699999999 a001 21566892818/11384387281*228826127^(17/20) 2415781699999999 a001 32951280099/17393796001*228826127^(17/20) 2415781699999999 a001 1836311903/1568397607*228826127^(7/8) 2415781699999999 a001 12586269025/6643838879*228826127^(17/20) 2415781699999999 a001 4807526976/969323029*228826127^(4/5) 2415781699999999 a001 1201881744/634430159*228826127^(17/20) 2415781699999999 a001 267914296/969323029*228826127^(19/20) 2415781699999999 a001 1602508992/1368706081*228826127^(7/8) 2415781699999999 a001 12586269025/141422324*141422324^(2/3) 2415781699999999 a001 12586269025/10749957122*228826127^(7/8) 2415781699999999 a001 10983760033/9381251041*228826127^(7/8) 2415781699999999 a001 86267571272/73681302247*228826127^(7/8) 2415781699999999 a001 75283811239/64300051206*228826127^(7/8) 2415781699999999 a001 2504730781961/2139295485799*228826127^(7/8) 2415781699999999 a001 365435296162/312119004989*228826127^(7/8) 2415781699999999 a001 139583862445/119218851371*228826127^(7/8) 2415781699999999 a001 53316291173/45537549124*228826127^(7/8) 2415781699999999 a001 20365011074/17393796001*228826127^(7/8) 2415781699999999 a001 7778742049/6643838879*228826127^(7/8) 2415781699999999 a001 591286729879/370248451*228826127^(1/2) 2415781699999999 a001 2971215073/2537720636*228826127^(7/8) 2415781699999999 a001 1134903170/1568397607*228826127^(9/10) 2415781699999999 a001 2971215073/4106118243*228826127^(9/10) 2415781699999999 a001 7778742049/10749957122*228826127^(9/10) 2415781699999999 a001 20365011074/28143753123*228826127^(9/10) 2415781699999999 a001 53316291173/73681302247*228826127^(9/10) 2415781699999999 a001 139583862445/192900153618*228826127^(9/10) 2415781699999999 a001 365435296162/505019158607*228826127^(9/10) 2415781699999999 a001 10610209857723/14662949395604*228826127^(9/10) 2415781699999999 a001 225851433717/312119004989*228826127^(9/10) 2415781699999999 a001 86267571272/119218851371*228826127^(9/10) 2415781699999999 a001 32951280099/45537549124*228826127^(9/10) 2415781699999999 a001 12586269025/17393796001*228826127^(9/10) 2415781699999999 a001 4807526976/6643838879*228826127^(9/10) 2415781699999999 a001 1836311903/969323029*228826127^(17/20) 2415781699999999 a001 1836311903/2537720636*228826127^(9/10) 2415781699999999 a001 225851433717/370248451*228826127^(11/20) 2415781699999999 a001 701408733/969323029*228826127^(9/10) 2415781699999999 a001 701408733/2537720636*228826127^(19/20) 2415781699999999 a001 1134903170/969323029*228826127^(7/8) 2415781699999999 a001 1836311903/6643838879*228826127^(19/20) 2415781699999999 a001 4807526976/17393796001*228826127^(19/20) 2415781699999999 a001 12586269025/45537549124*228826127^(19/20) 2415781699999999 a001 32951280099/119218851371*228826127^(19/20) 2415781699999999 a001 86267571272/312119004989*228826127^(19/20) 2415781699999999 a001 225851433717/817138163596*228826127^(19/20) 2415781699999999 a001 1548008755920/5600748293801*228826127^(19/20) 2415781699999999 a001 139583862445/505019158607*228826127^(19/20) 2415781699999999 a001 53316291173/192900153618*228826127^(19/20) 2415781699999999 a001 20365011074/73681302247*228826127^(19/20) 2415781699999999 a001 7778742049/28143753123*228826127^(19/20) 2415781699999999 a001 2971215073/10749957122*228826127^(19/20) 2415781699999999 a001 1134903170/4106118243*228826127^(19/20) 2415781699999999 a001 86267571272/370248451*228826127^(3/5) 2415781699999999 a001 433494437/1568397607*228826127^(19/20) 2415781699999999 a001 63246219/271444*141422324^(8/13) 2415781699999999 a001 53316291173/370248451*228826127^(5/8) 2415781699999999 a001 32951280099/370248451*228826127^(13/20) 2415781699999999 a001 12586269025/370248451*228826127^(7/10) 2415781699999999 a001 4807526976/370248451*228826127^(3/4) 2415781699999999 a001 267914296/370248451*228826127^(9/10) 2415781699999999 a001 1836311903/370248451*228826127^(4/5) 2415781699999999 a001 165580141/599074578*228826127^(19/20) 2415781699999999 a001 139583862445/141422324*141422324^(7/13) 2415781699999999 a001 701408733/370248451*228826127^(17/20) 2415781699999999 a001 433494437/370248451*228826127^(7/8) 2415781699999999 a001 591286729879/141422324*141422324^(6/13) 2415781699999999 a001 6557470319842/228826127*87403803^(7/19) 2415781699999999 a001 2504730781961/141422324*141422324^(5/13) 2415781699999999 a001 102334155/141422324*2537720636^(4/5) 2415781699999999 a001 102334155/141422324*45537549124^(12/17) 2415781699999999 a001 102334155/141422324*14662949395604^(4/7) 2415781699999999 a001 102334155/141422324*505019158607^(9/14) 2415781699999999 a001 102334155/141422324*192900153618^(2/3) 2415781699999999 a001 102334155/141422324*73681302247^(9/13) 2415781699999999 a001 102334155/141422324*10749957122^(3/4) 2415781699999999 a001 63245986/228826127*10749957122^(19/24) 2415781699999999 a001 102334155/141422324*4106118243^(18/23) 2415781699999999 a001 63245986/228826127*4106118243^(19/23) 2415781699999999 a001 102334155/141422324*1568397607^(9/11) 2415781699999999 a001 63245986/228826127*1568397607^(19/22) 2415781699999999 a001 102334155/141422324*599074578^(6/7) 2415781699999999 a001 3278735159921/70711162*141422324^(1/3) 2415781699999999 a001 63245986/228826127*599074578^(19/21) 2415781699999999 a001 3236112267225915/133957148 2415781699999999 a001 10610209857723/141422324*141422324^(4/13) 2415781699999999 a001 2504730781961/228826127*87403803^(8/19) 2415781699999999 a001 956722026041/228826127*87403803^(9/19) 2415781699999999 a001 63245986/87403803*87403803^(18/19) 2415781699999999 a001 591286729879/228826127*87403803^(1/2) 2415781699999999 a001 31622993/299537289*2537720636^(8/9) 2415781699999999 a001 66978574/35355581*45537549124^(2/3) 2415781699999999 a001 31622993/299537289*312119004989^(8/11) 2415781699999999 a001 31622993/299537289*23725150497407^(5/8) 2415781699999999 a001 31622993/299537289*73681302247^(10/13) 2415781699999999 a001 31622993/299537289*28143753123^(4/5) 2415781699999999 a001 66978574/35355581*10749957122^(17/24) 2415781699999999 a001 31622993/299537289*10749957122^(5/6) 2415781699999999 a001 66978574/35355581*4106118243^(17/23) 2415781699999999 a001 31622993/299537289*4106118243^(20/23) 2415781699999999 a001 66978574/35355581*1568397607^(17/22) 2415781699999999 a001 31622993/299537289*1568397607^(10/11) 2415781699999999 a001 16944503814015856/701408733 2415781699999999 a001 102334155/141422324*228826127^(9/10) 2415781699999999 a001 63245986/228826127*228826127^(19/20) 2415781699999999 a001 63245986/1568397607*2537720636^(14/15) 2415781699999999 a001 66978574/35355581*599074578^(17/21) 2415781699999999 a001 63245986/1568397607*17393796001^(6/7) 2415781699999999 a001 63245986/1568397607*45537549124^(14/17) 2415781699999999 a001 63245986/1568397607*14662949395604^(2/3) 2415781699999999 a001 63245986/1568397607*505019158607^(3/4) 2415781699999999 a001 63245986/1568397607*192900153618^(7/9) 2415781699999999 a001 701408733/141422324*73681302247^(8/13) 2415781699999999 a001 701408733/141422324*10749957122^(2/3) 2415781699999999 a001 63245986/1568397607*10749957122^(7/8) 2415781699999999 a001 701408733/141422324*4106118243^(16/23) 2415781699999999 a001 63245986/1568397607*4106118243^(21/23) 2415781699999999 a001 44361286907595738/1836311903 2415781699999999 a001 365435296162/228826127*87403803^(10/19) 2415781699999999 a001 1836311903/141422324*2537720636^(2/3) 2415781699999999 a001 31622993/299537289*599074578^(20/21) 2415781699999999 a001 701408733/141422324*1568397607^(8/11) 2415781699999999 a001 7778742049/141422324*2537720636^(3/5) 2415781699999999 a001 10182505537/70711162*2537720636^(5/9) 2415781699999999 a001 63246219/271444*2537720636^(8/15) 2415781699999999 a001 139583862445/141422324*2537720636^(7/15) 2415781699999999 a001 225851433717/141422324*2537720636^(4/9) 2415781699999999 a001 591286729879/141422324*2537720636^(2/5) 2415781699999999 a001 1836311903/141422324*45537549124^(10/17) 2415781699999999 a001 1836311903/141422324*312119004989^(6/11) 2415781699999999 a001 1836311903/141422324*14662949395604^(10/21) 2415781699999999 a001 63245986/4106118243*23725150497407^(11/16) 2415781699999999 a001 1836311903/141422324*192900153618^(5/9) 2415781699999999 a001 63245986/4106118243*73681302247^(11/13) 2415781699999999 a001 1836311903/141422324*28143753123^(3/5) 2415781699999999 a001 1836311903/141422324*10749957122^(5/8) 2415781699999999 a001 2504730781961/141422324*2537720636^(1/3) 2415781699999999 a001 63245986/4106118243*10749957122^(11/12) 2415781699999999 a001 58069678454385679/2403763488 2415781699999999 a001 10610209857723/141422324*2537720636^(4/15) 2415781699999999 a001 1836311903/141422324*4106118243^(15/23) 2415781699999999 a001 63245986/1568397607*1568397607^(21/22) 2415781699999999 a001 1201881744/35355581*17393796001^(4/7) 2415781699999999 a001 1201881744/35355581*14662949395604^(4/9) 2415781699999999 a001 1201881744/35355581*73681302247^(7/13) 2415781699999999 a001 304056783818718336/12586269025 2415781699999999 a001 1201881744/35355581*10749957122^(7/12) 2415781699999999 a001 63245986/4106118243*4106118243^(22/23) 2415781699999999 a001 63245986/28143753123*45537549124^(16/17) 2415781699999999 a001 139583862445/141422324*17393796001^(3/7) 2415781699999999 a001 63245986/28143753123*14662949395604^(16/21) 2415781699999999 a001 63245986/28143753123*192900153618^(8/9) 2415781699999999 a001 12586269025/141422324*73681302247^(1/2) 2415781699999999 a001 63245986/28143753123*73681302247^(12/13) 2415781699999999 a001 3416442036684050/141421803 2415781699999999 a001 4052739537881/141422324*17393796001^(2/7) 2415781699999999 a001 63246219/271444*45537549124^(8/17) 2415781699999999 a001 31622993/5374978561*10749957122^(23/24) 2415781699999999 a001 63245986/73681302247*312119004989^(10/11) 2415781699999999 a001 139583862445/141422324*45537549124^(7/17) 2415781699999999 a001 63246219/271444*14662949395604^(8/21) 2415781699999999 a001 63245986/73681302247*3461452808002^(5/6) 2415781699999999 a001 63246219/271444*192900153618^(4/9) 2415781699999999 a001 591286729879/141422324*45537549124^(6/17) 2415781699999999 a001 956722026041/141422324*45537549124^(1/3) 2415781699999999 a001 1042018099911716307/43133785636 2415781699999999 a001 2504730781961/141422324*45537549124^(5/17) 2415781699999999 a001 10610209857723/141422324*45537549124^(4/17) 2415781699999999 a001 63246219/271444*73681302247^(6/13) 2415781699999999 a001 21566892818/35355581*312119004989^(2/5) 2415781699999999 a001 31622993/96450076809*23725150497407^(13/16) 2415781699999999 a001 31622993/96450076809*505019158607^(13/14) 2415781699999999 a001 225851433717/141422324*23725150497407^(5/16) 2415781699999999 a001 10610209857723/141422324*817138163596^(4/19) 2415781699999999 a001 10610209857723/141422324*14662949395604^(4/21) 2415781699999999 a006 5^(1/2)*Fibonacci(76)/Lucas(39)/sqrt(5) 2415781699999999 a001 10610209857723/141422324*192900153618^(2/9) 2415781699999999 a001 139583862445/141422324*14662949395604^(1/3) 2415781699999999 a001 139583862445/141422324*192900153618^(7/18) 2415781699999999 a001 10610209857723/141422324*73681302247^(3/13) 2415781699999999 a001 3278735159921/70711162*73681302247^(1/4) 2415781699999999 a001 387002188980/35355581*73681302247^(4/13) 2415781699999999 a001 3372041405099481578/139583862445 2415781699999999 a001 225851433717/141422324*73681302247^(5/13) 2415781699999999 a001 63245986/119218851371*14662949395604^(17/21) 2415781699999999 a001 63245986/119218851371*192900153618^(17/18) 2415781699999999 a001 2504730781961/141422324*28143753123^(3/10) 2415781699999999 a001 1288005205276048964/53316291173 2415781699999999 a001 10182505537/70711162*312119004989^(5/11) 2415781699999999 a001 10182505537/70711162*3461452808002^(5/12) 2415781699999999 a001 31622993/22768774562*505019158607^(7/8) 2415781699999999 a001 225851433717/141422324*28143753123^(2/5) 2415781699999999 a001 10182505537/70711162*28143753123^(1/2) 2415781699999999 a001 10610209857723/141422324*10749957122^(1/4) 2415781699999999 a001 4052739537881/141422324*10749957122^(7/24) 2415781699999999 a001 2504730781961/141422324*10749957122^(5/16) 2415781699999999 a001 245987105364332657/10182505537 2415781699999999 a001 387002188980/35355581*10749957122^(1/3) 2415781699999999 a001 7778742049/141422324*45537549124^(9/17) 2415781699999999 a001 591286729879/141422324*10749957122^(3/8) 2415781699999999 a001 7778742049/141422324*14662949395604^(3/7) 2415781699999999 a001 7778742049/141422324*192900153618^(1/2) 2415781699999999 a001 12586269025/141422324*10749957122^(13/24) 2415781699999999 a001 225851433717/141422324*10749957122^(5/12) 2415781699999999 a001 139583862445/141422324*10749957122^(7/16) 2415781699999999 a001 21566892818/35355581*10749957122^(11/24) 2415781699999999 a001 63246219/271444*10749957122^(1/2) 2415781699999999 a001 7778742049/141422324*10749957122^(9/16) 2415781699999999 a001 10610209857723/141422324*4106118243^(6/23) 2415781699999999 a001 4052739537881/141422324*4106118243^(7/23) 2415781699999999 a001 187917426909946978/7778742049 2415781699999999 a001 387002188980/35355581*4106118243^(8/23) 2415781699999999 a001 63245986/6643838879*45537549124^(15/17) 2415781699999999 a001 63245986/6643838879*312119004989^(9/11) 2415781699999999 a001 63245986/6643838879*14662949395604^(5/7) 2415781699999999 a001 2971215073/141422324*1322157322203^(1/2) 2415781699999999 a001 63245986/6643838879*192900153618^(5/6) 2415781699999999 a001 591286729879/141422324*4106118243^(9/23) 2415781699999999 a001 63245986/6643838879*28143753123^(9/10) 2415781699999999 a001 225851433717/141422324*4106118243^(10/23) 2415781699999999 a001 1201881744/35355581*4106118243^(14/23) 2415781699999999 a001 21566892818/35355581*4106118243^(11/23) 2415781699999999 a001 53316291173/141422324*4106118243^(1/2) 2415781699999999 a001 63245986/6643838879*10749957122^(15/16) 2415781699999999 a001 12586269025/141422324*4106118243^(13/23) 2415781699999999 a001 10610209857723/141422324*1568397607^(3/11) 2415781699999999 a001 4052739537881/141422324*1568397607^(7/22) 2415781699999999 a001 71778070001175620/2971215073 2415781699999999 a001 387002188980/35355581*1568397607^(4/11) 2415781699999999 a001 567451585/70711162*9062201101803^(1/2) 2415781699999999 a001 591286729879/141422324*1568397607^(9/22) 2415781699999999 a001 225851433717/141422324*1568397607^(5/11) 2415781699999999 a001 21566892818/35355581*1568397607^(1/2) 2415781699999999 a001 1836311903/141422324*1568397607^(15/22) 2415781699999999 a001 63246219/271444*1568397607^(6/11) 2415781699999999 a001 12586269025/141422324*1568397607^(13/22) 2415781699999999 a001 1201881744/35355581*1568397607^(7/11) 2415781699999999 a001 10610209857723/141422324*599074578^(2/7) 2415781699999999 a001 13708391546789941/567451585 2415781699999999 a001 4052739537881/141422324*599074578^(1/3) 2415781699999999 a001 433494437/141422324*2537720636^(11/15) 2415781699999999 a001 2504730781961/141422324*599074578^(5/14) 2415781699999999 a001 387002188980/35355581*599074578^(8/21) 2415781699999999 a001 433494437/141422324*45537549124^(11/17) 2415781699999999 a001 433494437/141422324*312119004989^(3/5) 2415781699999999 a001 433494437/141422324*14662949395604^(11/21) 2415781699999999 a001 433494437/141422324*192900153618^(11/18) 2415781699999999 a001 433494437/141422324*10749957122^(11/16) 2415781699999999 a001 591286729879/141422324*599074578^(3/7) 2415781699999999 a001 225851433717/141422324*599074578^(10/21) 2415781699999999 a001 433494437/141422324*1568397607^(3/4) 2415781699999999 a001 139583862445/141422324*599074578^(1/2) 2415781699999999 a001 21566892818/35355581*599074578^(11/21) 2415781699999999 a001 63246219/271444*599074578^(4/7) 2415781699999999 a001 701408733/141422324*599074578^(16/21) 2415781699999999 a001 12586269025/141422324*599074578^(13/21) 2415781699999999 a001 7778742049/141422324*599074578^(9/14) 2415781699999999 a001 1201881744/35355581*599074578^(2/3) 2415781699999999 a001 1836311903/141422324*599074578^(5/7) 2415781699999999 a001 3278735159921/299537289*87403803^(8/19) 2415781699999999 a001 433494437/141422324*599074578^(11/14) 2415781699999999 a001 10610209857723/370248451*87403803^(7/19) 2415781699999999 a001 10610209857723/141422324*228826127^(3/10) 2415781699999999 a001 10610209857723/969323029*87403803^(8/19) 2415781699999999 a001 10472279279564026/433494437 2415781699999999 a001 4052739537881/141422324*228826127^(7/20) 2415781699999999 a001 139583862445/228826127*87403803^(11/19) 2415781699999999 a001 63245986/370248451*2537720636^(13/15) 2415781699999999 a001 2504730781961/141422324*228826127^(3/8) 2415781699999999 a001 165580141/141422324*2537720636^(7/9) 2415781699999999 a001 165580141/141422324*17393796001^(5/7) 2415781699999999 a001 63245986/370248451*45537549124^(13/17) 2415781699999999 a001 165580141/141422324*312119004989^(7/11) 2415781699999999 a001 165580141/141422324*14662949395604^(5/9) 2415781699999999 a001 165580141/141422324*505019158607^(5/8) 2415781699999999 a001 63245986/370248451*192900153618^(13/18) 2415781699999999 a001 63245986/370248451*73681302247^(3/4) 2415781699999999 a001 165580141/141422324*28143753123^(7/10) 2415781699999999 a001 63245986/370248451*10749957122^(13/16) 2415781699999999 a001 387002188980/35355581*228826127^(2/5) 2415781699999999 a001 591286729879/141422324*228826127^(9/20) 2415781699999999 a001 2504730781961/599074578*87403803^(9/19) 2415781699999999 a001 225851433717/141422324*228826127^(1/2) 2415781699999999 a001 165580141/141422324*599074578^(5/6) 2415781699999999 a001 63245986/370248451*599074578^(13/14) 2415781699999999 a001 21566892818/35355581*228826127^(11/20) 2415781699999999 a001 63246219/271444*228826127^(3/5) 2415781699999999 a001 6557470319842/1568397607*87403803^(9/19) 2415781699999999 a001 10182505537/70711162*228826127^(5/8) 2415781699999999 a001 10610209857723/2537720636*87403803^(9/19) 2415781699999999 a001 4052739537881/370248451*87403803^(8/19) 2415781699999999 a001 12586269025/141422324*228826127^(13/20) 2415781699999999 a001 86000486440/33281921*87403803^(1/2) 2415781699999999 a001 4052739537881/969323029*87403803^(9/19) 2415781699999999 a001 1201881744/35355581*228826127^(7/10) 2415781699999999 a001 66978574/35355581*228826127^(17/20) 2415781699999999 a001 53316291173/228826127*87403803^(12/19) 2415781699999999 a001 1836311903/141422324*228826127^(3/4) 2415781699999999 a001 701408733/141422324*228826127^(4/5) 2415781699999999 a001 4052739537881/1568397607*87403803^(1/2) 2415781699999999 a001 3536736619241/1368706081*87403803^(1/2) 2415781699999999 a001 3278735159921/1268860318*87403803^(1/2) 2415781699999999 a001 956722026041/599074578*87403803^(10/19) 2415781699999999 a001 2504730781961/969323029*87403803^(1/2) 2415781699999999 a001 2504730781961/1568397607*87403803^(10/19) 2415781699999999 a001 6557470319842/4106118243*87403803^(10/19) 2415781699999999 a001 10610209857723/6643838879*87403803^(10/19) 2415781699999999 a001 4052739537881/2537720636*87403803^(10/19) 2415781699999999 a001 1548008755920/370248451*87403803^(9/19) 2415781699999999 a001 1548008755920/969323029*87403803^(10/19) 2415781699999999 a001 20365011074/228826127*87403803^(13/19) 2415781699999999 a001 956722026041/370248451*87403803^(1/2) 2415781699999999 a001 182717648081/299537289*87403803^(11/19) 2415781699999999 a001 165580141/141422324*228826127^(7/8) 2415781699999999 a001 956722026041/1568397607*87403803^(11/19) 2415781699999999 a001 2504730781961/4106118243*87403803^(11/19) 2415781699999999 a001 3278735159921/5374978561*87403803^(11/19) 2415781699999999 a001 10610209857723/17393796001*87403803^(11/19) 2415781699999999 a001 4052739537881/6643838879*87403803^(11/19) 2415781699999999 a001 1134903780/1860499*87403803^(11/19) 2415781699999999 a001 591286729879/370248451*87403803^(10/19) 2415781699999999 a001 591286729879/969323029*87403803^(11/19) 2415781699999999 a001 7778742049/228826127*87403803^(14/19) 2415781699999999 a001 139583862445/599074578*87403803^(12/19) 2415781699999999 a001 365435296162/1568397607*87403803^(12/19) 2415781699999999 a001 956722026041/4106118243*87403803^(12/19) 2415781699999999 a001 2504730781961/10749957122*87403803^(12/19) 2415781699999999 a001 6557470319842/28143753123*87403803^(12/19) 2415781699999999 a001 10610209857723/45537549124*87403803^(12/19) 2415781699999999 a001 4052739537881/17393796001*87403803^(12/19) 2415781699999999 a001 1548008755920/6643838879*87403803^(12/19) 2415781699999999 a001 591286729879/2537720636*87403803^(12/19) 2415781699999999 a001 225851433717/370248451*87403803^(11/19) 2415781699999999 a001 225851433717/969323029*87403803^(12/19) 2415781699999999 a001 2971215073/228826127*87403803^(15/19) 2415781699999999 a001 53316291173/599074578*87403803^(13/19) 2415781699999999 a001 139583862445/1568397607*87403803^(13/19) 2415781699999999 a001 365435296162/4106118243*87403803^(13/19) 2415781699999999 a001 956722026041/10749957122*87403803^(13/19) 2415781699999999 a001 2504730781961/28143753123*87403803^(13/19) 2415781699999999 a001 6557470319842/73681302247*87403803^(13/19) 2415781699999999 a001 10610209857723/119218851371*87403803^(13/19) 2415781699999999 a001 4052739537881/45537549124*87403803^(13/19) 2415781699999999 a001 1548008755920/17393796001*87403803^(13/19) 2415781699999999 a001 591286729879/6643838879*87403803^(13/19) 2415781699999999 a001 225851433717/2537720636*87403803^(13/19) 2415781699999999 a001 86267571272/370248451*87403803^(12/19) 2415781699999999 a001 86267571272/969323029*87403803^(13/19) 2415781699999999 a001 1134903170/228826127*87403803^(16/19) 2415781699999999 a001 10610209857723/141422324*87403803^(6/19) 2415781699999999 a001 4000054745112196/165580141 2415781699999999 a001 10182505537/299537289*87403803^(14/19) 2415781699999999 a001 53316291173/1568397607*87403803^(14/19) 2415781699999999 a001 139583862445/4106118243*87403803^(14/19) 2415781699999999 a001 182717648081/5374978561*87403803^(14/19) 2415781699999999 a001 956722026041/28143753123*87403803^(14/19) 2415781699999999 a001 2504730781961/73681302247*87403803^(14/19) 2415781699999999 a001 3278735159921/96450076809*87403803^(14/19) 2415781699999999 a001 10610209857723/312119004989*87403803^(14/19) 2415781699999999 a001 4052739537881/119218851371*87403803^(14/19) 2415781699999999 a001 387002188980/11384387281*87403803^(14/19) 2415781699999999 a001 591286729879/17393796001*87403803^(14/19) 2415781699999999 a001 225851433717/6643838879*87403803^(14/19) 2415781699999999 a001 1135099622/33391061*87403803^(14/19) 2415781699999999 a001 32951280099/370248451*87403803^(13/19) 2415781699999999 a001 32951280099/969323029*87403803^(14/19) 2415781699999999 a001 4052739537881/141422324*87403803^(7/19) 2415781699999999 a001 433494437/228826127*87403803^(17/19) 2415781699999999 a001 7778742049/599074578*87403803^(15/19) 2415781699999999 a001 20365011074/1568397607*87403803^(15/19) 2415781699999999 a001 53316291173/4106118243*87403803^(15/19) 2415781699999999 a001 139583862445/10749957122*87403803^(15/19) 2415781699999999 a001 365435296162/28143753123*87403803^(15/19) 2415781699999999 a001 956722026041/73681302247*87403803^(15/19) 2415781699999999 a001 2504730781961/192900153618*87403803^(15/19) 2415781699999999 a001 10610209857723/817138163596*87403803^(15/19) 2415781699999999 a001 4052739537881/312119004989*87403803^(15/19) 2415781699999999 a001 1548008755920/119218851371*87403803^(15/19) 2415781699999999 a001 591286729879/45537549124*87403803^(15/19) 2415781699999999 a001 7787980473/599786069*87403803^(15/19) 2415781699999999 a001 86267571272/6643838879*87403803^(15/19) 2415781699999999 a001 32951280099/2537720636*87403803^(15/19) 2415781699999999 a001 12586269025/370248451*87403803^(14/19) 2415781699999999 a001 12586269025/969323029*87403803^(15/19) 2415781699999999 a001 387002188980/35355581*87403803^(8/19) 2415781699999999 a001 2971215073/599074578*87403803^(16/19) 2415781699999999 a001 7778742049/1568397607*87403803^(16/19) 2415781699999999 a001 20365011074/4106118243*87403803^(16/19) 2415781699999999 a001 53316291173/10749957122*87403803^(16/19) 2415781699999999 a001 139583862445/28143753123*87403803^(16/19) 2415781699999999 a001 365435296162/73681302247*87403803^(16/19) 2415781699999999 a001 956722026041/192900153618*87403803^(16/19) 2415781699999999 a001 2504730781961/505019158607*87403803^(16/19) 2415781699999999 a001 10610209857723/2139295485799*87403803^(16/19) 2415781699999999 a001 140728068720/28374454999*87403803^(16/19) 2415781699999999 a001 591286729879/119218851371*87403803^(16/19) 2415781699999999 a001 225851433717/45537549124*87403803^(16/19) 2415781699999999 a001 86267571272/17393796001*87403803^(16/19) 2415781699999999 a001 32951280099/6643838879*87403803^(16/19) 2415781699999999 a001 1144206275/230701876*87403803^(16/19) 2415781699999999 a001 4807526976/370248451*87403803^(15/19) 2415781699999999 a001 4807526976/969323029*87403803^(16/19) 2415781699999999 a001 591286729879/141422324*87403803^(9/19) 2415781699999999 a001 165580141/228826127*87403803^(18/19) 2415781699999999 a001 567451585/299537289*87403803^(17/19) 2415781699999999 a001 182717648081/70711162*87403803^(1/2) 2415781699999999 a001 2971215073/1568397607*87403803^(17/19) 2415781699999999 a001 7778742049/4106118243*87403803^(17/19) 2415781699999999 a001 10182505537/5374978561*87403803^(17/19) 2415781699999999 a001 53316291173/28143753123*87403803^(17/19) 2415781699999999 a001 139583862445/73681302247*87403803^(17/19) 2415781699999999 a001 182717648081/96450076809*87403803^(17/19) 2415781699999999 a001 956722026041/505019158607*87403803^(17/19) 2415781699999999 a001 10610209857723/5600748293801*87403803^(17/19) 2415781699999999 a001 591286729879/312119004989*87403803^(17/19) 2415781699999999 a001 225851433717/119218851371*87403803^(17/19) 2415781699999999 a001 21566892818/11384387281*87403803^(17/19) 2415781699999999 a001 32951280099/17393796001*87403803^(17/19) 2415781699999999 a001 12586269025/6643838879*87403803^(17/19) 2415781699999999 a001 1201881744/634430159*87403803^(17/19) 2415781699999999 a001 1836311903/370248451*87403803^(16/19) 2415781699999999 a001 1836311903/969323029*87403803^(17/19) 2415781699999999 a001 225851433717/141422324*87403803^(10/19) 2415781699999999 a001 433494437/599074578*87403803^(18/19) 2415781699999999 a001 1134903170/1568397607*87403803^(18/19) 2415781699999999 a001 2971215073/4106118243*87403803^(18/19) 2415781699999999 a001 7778742049/10749957122*87403803^(18/19) 2415781699999999 a001 701408733/370248451*87403803^(17/19) 2415781699999999 a001 20365011074/28143753123*87403803^(18/19) 2415781699999999 a001 53316291173/73681302247*87403803^(18/19) 2415781699999999 a001 139583862445/192900153618*87403803^(18/19) 2415781699999999 a001 10610209857723/14662949395604*87403803^(18/19) 2415781699999999 a001 591286729879/817138163596*87403803^(18/19) 2415781699999999 a001 225851433717/312119004989*87403803^(18/19) 2415781699999999 a001 86267571272/119218851371*87403803^(18/19) 2415781699999999 a001 32951280099/45537549124*87403803^(18/19) 2415781699999999 a001 12586269025/17393796001*87403803^(18/19) 2415781699999999 a001 4807526976/6643838879*87403803^(18/19) 2415781699999999 a001 1836311903/2537720636*87403803^(18/19) 2415781699999999 a001 701408733/969323029*87403803^(18/19) 2415781699999999 a001 21566892818/35355581*87403803^(11/19) 2415781699999999 a001 267914296/370248451*87403803^(18/19) 2415781699999999 a001 63246219/271444*87403803^(12/19) 2415781699999999 a001 12586269025/141422324*87403803^(13/19) 2415781699999999 a001 1201881744/35355581*87403803^(14/19) 2415781699999999 a001 1836311903/141422324*87403803^(15/19) 2415781699999999 a001 102334155/141422324*87403803^(18/19) 2415781699999999 a001 701408733/141422324*87403803^(16/19) 2415781699999999 a001 66978574/35355581*87403803^(17/19) 2415781699999999 a001 39088169/54018521*141422324^(12/13) 2415781699999999 a001 6557470319842/87403803*33385282^(1/3) 2415781699999999 a001 39088169/54018521*2537720636^(4/5) 2415781699999999 a001 39088169/54018521*45537549124^(12/17) 2415781699999999 a001 24157817/87403803*817138163596^(2/3) 2415781699999999 a001 39088169/54018521*505019158607^(9/14) 2415781699999999 a001 39088169/54018521*192900153618^(2/3) 2415781699999999 a001 39088169/54018521*73681302247^(9/13) 2415781699999999 a001 39088169/54018521*10749957122^(3/4) 2415781699999999 a001 24157817/87403803*10749957122^(19/24) 2415781699999999 a001 39088169/54018521*4106118243^(18/23) 2415781699999999 a001 24157817/87403803*4106118243^(19/23) 2415781699999999 a001 39088169/54018521*1568397607^(9/11) 2415781699999999 a001 24157817/87403803*1568397607^(19/22) 2415781699999999 a001 39088169/54018521*599074578^(6/7) 2415781699999999 a001 24157817/87403803*599074578^(19/21) 2415781699999999 a001 2504730781961/87403803*33385282^(7/18) 2415781699999999 a001 39088169/54018521*228826127^(9/10) 2415781699999999 a001 24157817/87403803*228826127^(19/20) 2415781699999999 a001 516002918640/29134601*33385282^(5/12) 2415781699999999 a001 956722026041/87403803*33385282^(4/9) 2415781699999999 a001 701408733/54018521*141422324^(10/13) 2415781699999999 a001 165580141/54018521*141422324^(11/13) 2415781699999999 a001 2971215073/54018521*141422324^(9/13) 2415781699999999 a001 4807526976/54018521*141422324^(2/3) 2415781699999999 a001 12586269025/54018521*141422324^(8/13) 2415781699999999 a001 53316291173/54018521*141422324^(7/13) 2415781699999999 a001 365435296162/87403803*33385282^(1/2) 2415781699999999 a001 225851433717/54018521*141422324^(6/13) 2415781699999999 a001 24157817/228826127*2537720636^(8/9) 2415781699999999 a001 956722026041/54018521*141422324^(5/13) 2415781699999999 a001 102334155/54018521*45537549124^(2/3) 2415781699999999 a001 24157817/228826127*312119004989^(8/11) 2415781699999999 a001 24157817/228826127*23725150497407^(5/8) 2415781699999999 a001 24157817/228826127*73681302247^(10/13) 2415781699999999 a001 24157817/228826127*28143753123^(4/5) 2415781699999999 a001 102334155/54018521*10749957122^(17/24) 2415781699999999 a001 24157817/228826127*10749957122^(5/6) 2415781699999999 a001 102334155/54018521*4106118243^(17/23) 2415781699999999 a001 24157817/228826127*4106118243^(20/23) 2415781699999999 a001 102334155/54018521*1568397607^(17/22) 2415781699999999 a001 24157817/228826127*1568397607^(10/11) 2415781699999999 a001 102334155/54018521*599074578^(17/21) 2415781699999999 a001 2504730781961/54018521*141422324^(1/3) 2415781699999999 a001 24157817/228826127*599074578^(20/21) 2415781699999999 a001 4052739537881/54018521*141422324^(4/13) 2415781699999999 a001 6557470319842/228826127*33385282^(7/18) 2415781699999999 a001 9238424/711491*20633239^(6/7) 2415781699999999 a001 39088169/54018521*87403803^(18/19) 2415781699999999 a001 24157817/599074578*2537720636^(14/15) 2415781699999999 a001 102334155/54018521*228826127^(17/20) 2415781699999999 a001 24157817/599074578*17393796001^(6/7) 2415781699999999 a001 24157817/599074578*45537549124^(14/17) 2415781699999999 a001 24157817/599074578*817138163596^(14/19) 2415781699999999 a001 24157817/599074578*14662949395604^(2/3) 2415781699999999 a001 24157817/599074578*505019158607^(3/4) 2415781699999999 a001 24157817/599074578*192900153618^(7/9) 2415781699999999 a001 267914296/54018521*73681302247^(8/13) 2415781699999999 a001 267914296/54018521*10749957122^(2/3) 2415781699999999 a001 24157817/599074578*10749957122^(7/8) 2415781699999999 a001 267914296/54018521*4106118243^(16/23) 2415781699999999 a001 24157817/599074578*4106118243^(21/23) 2415781699999999 a001 267914296/54018521*1568397607^(8/11) 2415781699999999 a001 24157817/599074578*1568397607^(21/22) 2415781699999999 a001 267914296/54018521*599074578^(16/21) 2415781699999999 a001 701408733/54018521*2537720636^(2/3) 2415781699999999 a001 701408733/54018521*45537549124^(10/17) 2415781699999999 a001 24157817/1568397607*312119004989^(4/5) 2415781699999999 a001 701408733/54018521*312119004989^(6/11) 2415781699999999 a001 701408733/54018521*14662949395604^(10/21) 2415781699999999 a001 24157817/1568397607*23725150497407^(11/16) 2415781699999999 a001 701408733/54018521*192900153618^(5/9) 2415781699999999 a001 24157817/1568397607*73681302247^(11/13) 2415781699999999 a001 701408733/54018521*28143753123^(3/5) 2415781699999999 a001 701408733/54018521*10749957122^(5/8) 2415781699999999 a001 24157817/1568397607*10749957122^(11/12) 2415781699999999 a001 701408733/54018521*4106118243^(15/23) 2415781699999999 a001 24157817/1568397607*4106118243^(22/23) 2415781699999999 a001 701408733/54018521*1568397607^(15/22) 2415781699999999 a001 12586269025/54018521*2537720636^(8/15) 2415781699999999 a001 7778742049/54018521*2537720636^(5/9) 2415781699999999 a001 53316291173/54018521*2537720636^(7/15) 2415781699999999 a001 2971215073/54018521*2537720636^(3/5) 2415781699999999 a001 86267571272/54018521*2537720636^(4/9) 2415781699999999 a001 225851433717/54018521*2537720636^(2/5) 2415781699999999 a001 1836311903/54018521*17393796001^(4/7) 2415781699999999 a001 1836311903/54018521*14662949395604^(4/9) 2415781699999999 a001 1836311903/54018521*73681302247^(7/13) 2415781699999999 a001 1836311903/54018521*10749957122^(7/12) 2415781699999999 a001 956722026041/54018521*2537720636^(1/3) 2415781699999999 a001 24157817/4106118243*10749957122^(23/24) 2415781699999999 a001 4052739537881/54018521*2537720636^(4/15) 2415781699999999 a001 10610209857723/54018521*2537720636^(2/9) 2415781699999999 a001 1836311903/54018521*4106118243^(14/23) 2415781699999999 a001 24157817/10749957122*45537549124^(16/17) 2415781699999999 a001 24157817/10749957122*14662949395604^(16/21) 2415781699999999 a001 24157817/10749957122*192900153618^(8/9) 2415781699999999 a001 4807526976/54018521*73681302247^(1/2) 2415781699999999 a001 24157817/10749957122*73681302247^(12/13) 2415781699999999 a001 4807526976/54018521*10749957122^(13/24) 2415781699999999 a001 12586269025/54018521*45537549124^(8/17) 2415781699999999 a001 53316291173/54018521*17393796001^(3/7) 2415781699999999 a001 24157817/28143753123*312119004989^(10/11) 2415781699999999 a001 12586269025/54018521*14662949395604^(8/21) 2415781699999999 a001 12586269025/54018521*192900153618^(4/9) 2415781699999999 a001 12586269025/54018521*73681302247^(6/13) 2415781699999999 a001 1548008755920/54018521*17393796001^(2/7) 2415781699999999 a001 32951280099/54018521*312119004989^(2/5) 2415781699999999 a001 24157817/73681302247*23725150497407^(13/16) 2415781699999999 a001 24157817/73681302247*505019158607^(13/14) 2415781699999999 a001 225851433717/54018521*45537549124^(6/17) 2415781699999999 a001 365435296162/54018521*45537549124^(1/3) 2415781699999999 a001 956722026041/54018521*45537549124^(5/17) 2415781699999999 a001 53316291173/54018521*45537549124^(7/17) 2415781699999999 a001 4052739537881/54018521*45537549124^(4/17) 2415781699999999 a001 24157817/192900153618*14662949395604^(6/7) 2415781699999999 a001 86267571272/54018521*505019158607^(5/14) 2415781699999999 a001 10610209857723/54018521*312119004989^(2/11) 2415781699999999 a001 1548008755920/54018521*14662949395604^(2/9) 2415781700000000 a001 225851433717/54018521*192900153618^(1/3) 2415781700000000 a001 139583862445/54018521*817138163596^(1/3) 2415781700000000 a001 4052739537881/54018521*73681302247^(3/13) 2415781700000000 a001 2504730781961/54018521*73681302247^(1/4) 2415781700000000 a001 591286729879/54018521*73681302247^(4/13) 2415781700000000 a001 53316291173/54018521*14662949395604^(1/3) 2415781700000000 a001 53316291173/54018521*192900153618^(7/18) 2415781700000000 a001 10610209857723/54018521*28143753123^(1/5) 2415781700000000 a001 956722026041/54018521*28143753123^(3/10) 2415781700000000 a001 24157817/45537549124*817138163596^(17/19) 2415781700000000 a001 24157817/45537549124*14662949395604^(17/21) 2415781700000000 a001 24157817/45537549124*192900153618^(17/18) 2415781700000000 s004 Continued Fraction of A135954 2415781700000000 a001 10610209857723/54018521*10749957122^(5/24) 2415781700000000 a001 4052739537881/54018521*10749957122^(1/4) 2415781700000000 a001 1548008755920/54018521*10749957122^(7/24) 2415781700000000 a001 956722026041/54018521*10749957122^(5/16) 2415781700000000 a001 591286729879/54018521*10749957122^(1/3) 2415781700000000 a001 12586269025/54018521*10749957122^(1/2) 2415781700000000 a001 225851433717/54018521*10749957122^(3/8) 2415781700000000 a001 7778742049/54018521*312119004989^(5/11) 2415781700000000 a001 24157817/17393796001*14662949395604^(7/9) 2415781700000000 a001 24157817/17393796001*505019158607^(7/8) 2415781700000000 a001 86267571272/54018521*10749957122^(5/12) 2415781700000000 a001 32951280099/54018521*10749957122^(11/24) 2415781700000000 a001 53316291173/54018521*10749957122^(7/16) 2415781700000000 a001 7778742049/54018521*28143753123^(1/2) 2415781700000000 a001 10610209857723/54018521*4106118243^(5/23) 2415781700000000 a001 4052739537881/54018521*4106118243^(6/23) 2415781700000000 a001 1548008755920/54018521*4106118243^(7/23) 2415781700000000 a001 591286729879/54018521*4106118243^(8/23) 2415781700000000 a001 2971215073/54018521*45537549124^(9/17) 2415781700000000 a001 2971215073/54018521*14662949395604^(3/7) 2415781700000000 a001 2971215073/54018521*192900153618^(1/2) 2415781700000000 a001 225851433717/54018521*4106118243^(9/23) 2415781700000000 a001 4807526976/54018521*4106118243^(13/23) 2415781700000000 a001 86267571272/54018521*4106118243^(10/23) 2415781700000000 a001 2971215073/54018521*10749957122^(9/16) 2415781700000000 a001 32951280099/54018521*4106118243^(11/23) 2415781700000000 a001 12586269025/54018521*4106118243^(12/23) 2415781700000000 a001 20365011074/54018521*4106118243^(1/2) 2415781700000000 a001 10610209857723/54018521*1568397607^(5/22) 2415781700000000 a001 6557470319842/54018521*1568397607^(1/4) 2415781700000000 a001 4052739537881/54018521*1568397607^(3/11) 2415781700000000 a001 1548008755920/54018521*1568397607^(7/22) 2415781700000000 a001 591286729879/54018521*1568397607^(4/11) 2415781700000000 a001 24157817/2537720636*45537549124^(15/17) 2415781700000000 a001 24157817/2537720636*312119004989^(9/11) 2415781700000000 a001 24157817/2537720636*14662949395604^(5/7) 2415781700000000 a001 1134903170/54018521*1322157322203^(1/2) 2415781700000000 a001 24157817/2537720636*192900153618^(5/6) 2415781700000000 a001 24157817/2537720636*28143753123^(9/10) 2415781700000000 a001 24157817/2537720636*10749957122^(15/16) 2415781700000000 a001 225851433717/54018521*1568397607^(9/22) 2415781700000000 a001 86267571272/54018521*1568397607^(5/11) 2415781700000000 a001 1836311903/54018521*1568397607^(7/11) 2415781700000000 a001 32951280099/54018521*1568397607^(1/2) 2415781700000000 a001 12586269025/54018521*1568397607^(6/11) 2415781700000000 a001 4807526976/54018521*1568397607^(13/22) 2415781700000000 a001 10610209857723/54018521*599074578^(5/21) 2415781700000000 a001 4052739537881/54018521*599074578^(2/7) 2415781700000000 a001 1548008755920/54018521*599074578^(1/3) 2415781700000000 a001 956722026041/54018521*599074578^(5/14) 2415781700000000 a001 591286729879/54018521*599074578^(8/21) 2415781700000000 a001 433494437/54018521*9062201101803^(1/2) 2415781700000000 a001 225851433717/54018521*599074578^(3/7) 2415781700000000 a001 86267571272/54018521*599074578^(10/21) 2415781700000000 a001 53316291173/54018521*599074578^(1/2) 2415781700000000 a001 32951280099/54018521*599074578^(11/21) 2415781700000000 a001 701408733/54018521*599074578^(5/7) 2415781700000000 a001 12586269025/54018521*599074578^(4/7) 2415781700000000 a001 4807526976/54018521*599074578^(13/21) 2415781700000000 a001 1836311903/54018521*599074578^(2/3) 2415781700000000 a001 2971215073/54018521*599074578^(9/14) 2415781700000000 a001 10610209857723/54018521*228826127^(1/4) 2415781700000000 a001 4052739537881/54018521*228826127^(3/10) 2415781700000000 a001 10610209857723/141422324*33385282^(1/3) 2415781700000000 a001 1548008755920/54018521*228826127^(7/20) 2415781700000000 a001 956722026041/54018521*228826127^(3/8) 2415781700000000 a001 165580141/54018521*2537720636^(11/15) 2415781700000000 a001 165580141/54018521*45537549124^(11/17) 2415781700000000 a001 165580141/54018521*312119004989^(3/5) 2415781700000000 a001 165580141/54018521*817138163596^(11/19) 2415781700000000 a001 165580141/54018521*14662949395604^(11/21) 2415781700000000 a001 165580141/54018521*192900153618^(11/18) 2415781700000000 a001 165580141/54018521*10749957122^(11/16) 2415781700000000 a001 165580141/54018521*1568397607^(3/4) 2415781700000000 a001 591286729879/54018521*228826127^(2/5) 2415781700000000 a001 225851433717/54018521*228826127^(9/20) 2415781700000000 a001 165580141/54018521*599074578^(11/14) 2415781700000000 a001 86267571272/54018521*228826127^(1/2) 2415781700000000 a001 32951280099/54018521*228826127^(11/20) 2415781700000000 a001 12586269025/54018521*228826127^(3/5) 2415781700000000 a001 7778742049/54018521*228826127^(5/8) 2415781700000000 a001 4052739537881/228826127*33385282^(5/12) 2415781700000000 a001 4807526976/54018521*228826127^(13/20) 2415781700000000 a001 267914296/54018521*228826127^(4/5) 2415781700000000 a001 1836311903/54018521*228826127^(7/10) 2415781700000000 a001 10610209857723/370248451*33385282^(7/18) 2415781700000000 a001 701408733/54018521*228826127^(3/4) 2415781700000000 a001 139583862445/87403803*33385282^(5/9) 2415781700000000 a001 3536736619241/199691526*33385282^(5/12) 2415781700000000 a001 10610209857723/54018521*87403803^(5/19) 2415781700000000 a001 2504730781961/228826127*33385282^(4/9) 2415781700000000 a001 6557470319842/370248451*33385282^(5/12) 2415781700000000 a001 4052739537881/54018521*87403803^(6/19) 2415781700000000 a001 1548008755920/54018521*87403803^(7/19) 2415781700000000 a001 86267571272/87403803*33385282^(7/12) 2415781700000000 a001 24157817/141422324*2537720636^(13/15) 2415781700000000 a001 63245986/54018521*2537720636^(7/9) 2415781700000000 a001 63245986/54018521*17393796001^(5/7) 2415781700000000 a001 24157817/141422324*45537549124^(13/17) 2415781700000000 a001 24157817/141422324*14662949395604^(13/21) 2415781700000000 a001 63245986/54018521*14662949395604^(5/9) 2415781700000000 a001 63245986/54018521*505019158607^(5/8) 2415781700000000 a001 24157817/141422324*192900153618^(13/18) 2415781700000000 a001 24157817/141422324*73681302247^(3/4) 2415781700000000 a001 63245986/54018521*28143753123^(7/10) 2415781700000000 a001 24157817/141422324*10749957122^(13/16) 2415781700000000 a001 63245986/54018521*599074578^(5/6) 2415781700000000 a001 24157817/141422324*599074578^(13/14) 2415781700000000 a001 3278735159921/299537289*33385282^(4/9) 2415781700000000 a001 591286729879/54018521*87403803^(8/19) 2415781700000000 a001 4052739537881/141422324*33385282^(7/18) 2415781700000000 a001 10610209857723/969323029*33385282^(4/9) 2415781700000000 a001 225851433717/54018521*87403803^(9/19) 2415781700000000 a001 4052739537881/370248451*33385282^(4/9) 2415781700000000 a001 139583862445/54018521*87403803^(1/2) 2415781700000000 a001 63245986/54018521*228826127^(7/8) 2415781700000000 a001 86267571272/54018521*87403803^(10/19) 2415781700000000 a001 53316291173/87403803*33385282^(11/18) 2415781700000000 a001 32951280099/54018521*87403803^(11/19) 2415781700000000 a001 2504730781961/141422324*33385282^(5/12) 2415781700000000 a001 12586269025/54018521*87403803^(12/19) 2415781700000000 a001 956722026041/228826127*33385282^(1/2) 2415781700000000 a001 4807526976/54018521*87403803^(13/19) 2415781700000000 a001 1836311903/54018521*87403803^(14/19) 2415781700000000 a001 102334155/54018521*87403803^(17/19) 2415781700000000 a001 701408733/54018521*87403803^(15/19) 2415781700000000 a001 2504730781961/599074578*33385282^(1/2) 2415781700000000 a001 6557470319842/1568397607*33385282^(1/2) 2415781700000000 a001 387002188980/35355581*33385282^(4/9) 2415781700000000 a001 10610209857723/2537720636*33385282^(1/2) 2415781700000000 a001 4052739537881/969323029*33385282^(1/2) 2415781700000000 a001 267914296/54018521*87403803^(16/19) 2415781700000000 a001 1548008755920/370248451*33385282^(1/2) 2415781700000000 a001 20365011074/87403803*33385282^(2/3) 2415781700000000 a001 701408733/20633239*20633239^(4/5) 2415781700000000 a001 365435296162/228826127*33385282^(5/9) 2415781700000000 a001 956722026041/599074578*33385282^(5/9) 2415781700000000 a001 2504730781961/1568397607*33385282^(5/9) 2415781700000000 a001 6557470319842/4106118243*33385282^(5/9) 2415781700000000 a001 10610209857723/6643838879*33385282^(5/9) 2415781700000000 a001 591286729879/141422324*33385282^(1/2) 2415781700000000 a001 4052739537881/2537720636*33385282^(5/9) 2415781700000000 a001 1548008755920/969323029*33385282^(5/9) 2415781700000000 a001 225851433717/228826127*33385282^(7/12) 2415781700000000 a001 591286729879/370248451*33385282^(5/9) 2415781700000000 a001 7778742049/87403803*33385282^(13/18) 2415781700000000 a001 591286729879/599074578*33385282^(7/12) 2415781700000000 a001 1548008755920/1568397607*33385282^(7/12) 2415781700000000 a001 4052739537881/4106118243*33385282^(7/12) 2415781700000000 a001 4807525989/4870846*33385282^(7/12) 2415781700000000 a001 6557470319842/6643838879*33385282^(7/12) 2415781700000000 a001 2504730781961/2537720636*33385282^(7/12) 2415781700000000 a001 956722026041/969323029*33385282^(7/12) 2415781700000000 a001 139583862445/228826127*33385282^(11/18) 2415781700000000 a001 365435296162/370248451*33385282^(7/12) 2415781700000000 a001 1602508992/29134601*33385282^(3/4) 2415781700000000 a001 182717648081/299537289*33385282^(11/18) 2415781700000000 a001 956722026041/1568397607*33385282^(11/18) 2415781700000000 a001 2504730781961/4106118243*33385282^(11/18) 2415781700000000 a001 3278735159921/5374978561*33385282^(11/18) 2415781700000000 a001 10610209857723/17393796001*33385282^(11/18) 2415781700000000 a001 4052739537881/6643838879*33385282^(11/18) 2415781700000000 a001 225851433717/141422324*33385282^(5/9) 2415781700000000 a001 1134903780/1860499*33385282^(11/18) 2415781700000000 a001 591286729879/969323029*33385282^(11/18) 2415781700000000 a001 225851433717/370248451*33385282^(11/18) 2415781700000000 a001 2971215073/87403803*33385282^(7/9) 2415781700000000 a001 139583862445/141422324*33385282^(7/12) 2415781700000000 a001 53316291173/228826127*33385282^(2/3) 2415781700000000 a001 10610209857723/54018521*33385282^(5/18) 2415781700000000 a001 139583862445/599074578*33385282^(2/3) 2415781700000000 a001 365435296162/1568397607*33385282^(2/3) 2415781700000000 a001 956722026041/4106118243*33385282^(2/3) 2415781700000000 a001 2504730781961/10749957122*33385282^(2/3) 2415781700000000 a001 6557470319842/28143753123*33385282^(2/3) 2415781700000000 a001 10610209857723/45537549124*33385282^(2/3) 2415781700000000 a001 4052739537881/17393796001*33385282^(2/3) 2415781700000000 a001 1548008755920/6643838879*33385282^(2/3) 2415781700000000 a001 21566892818/35355581*33385282^(11/18) 2415781700000000 a001 591286729879/2537720636*33385282^(2/3) 2415781700000000 a001 225851433717/969323029*33385282^(2/3) 2415781700000000 a001 86267571272/370248451*33385282^(2/3) 2415781700000000 a001 1134903170/87403803*33385282^(5/6) 2415781700000000 a001 20365011074/228826127*33385282^(13/18) 2415781700000000 a001 4052739537881/54018521*33385282^(1/3) 2415781700000000 a001 53316291173/599074578*33385282^(13/18) 2415781700000000 a001 139583862445/1568397607*33385282^(13/18) 2415781700000000 a001 365435296162/4106118243*33385282^(13/18) 2415781700000000 a001 956722026041/10749957122*33385282^(13/18) 2415781700000000 a001 2504730781961/28143753123*33385282^(13/18) 2415781700000000 a001 6557470319842/73681302247*33385282^(13/18) 2415781700000000 a001 10610209857723/119218851371*33385282^(13/18) 2415781700000000 a001 4052739537881/45537549124*33385282^(13/18) 2415781700000000 a001 1548008755920/17393796001*33385282^(13/18) 2415781700000000 a001 591286729879/6643838879*33385282^(13/18) 2415781700000000 a001 63246219/271444*33385282^(2/3) 2415781700000000 a001 225851433717/2537720636*33385282^(13/18) 2415781700000000 a001 86267571272/969323029*33385282^(13/18) 2415781700000000 a001 12586269025/228826127*33385282^(3/4) 2415781700000000 a001 32951280099/370248451*33385282^(13/18) 2415781700000000 a001 433494437/87403803*33385282^(8/9) 2415781700000000 a001 10983760033/199691526*33385282^(3/4) 2415781700000000 a001 2971215073/20633239*20633239^(5/7) 2415781700000000 a001 86267571272/1568397607*33385282^(3/4) 2415781700000000 a001 75283811239/1368706081*33385282^(3/4) 2415781700000000 a001 591286729879/10749957122*33385282^(3/4) 2415781700000000 a001 12585437040/228811001*33385282^(3/4) 2415781700000000 a001 4052739537881/73681302247*33385282^(3/4) 2415781700000000 a001 3536736619241/64300051206*33385282^(3/4) 2415781700000000 a001 6557470319842/119218851371*33385282^(3/4) 2415781700000000 a001 2504730781961/45537549124*33385282^(3/4) 2415781700000000 a001 956722026041/17393796001*33385282^(3/4) 2415781700000000 a001 365435296162/6643838879*33385282^(3/4) 2415781700000000 a001 139583862445/2537720636*33385282^(3/4) 2415781700000000 a001 53316291173/969323029*33385282^(3/4) 2415781700000000 a001 7778742049/228826127*33385282^(7/9) 2415781700000000 a001 20365011074/370248451*33385282^(3/4) 2415781700000000 a001 267914296/87403803*33385282^(11/12) 2415781700000000 a001 1548008755920/54018521*33385282^(7/18) 2415781700000000 a001 10182505537/299537289*33385282^(7/9) 2415781700000000 a001 53316291173/1568397607*33385282^(7/9) 2415781700000000 a001 139583862445/4106118243*33385282^(7/9) 2415781700000000 a001 182717648081/5374978561*33385282^(7/9) 2415781700000000 a001 956722026041/28143753123*33385282^(7/9) 2415781700000000 a001 2504730781961/73681302247*33385282^(7/9) 2415781700000000 a001 3278735159921/96450076809*33385282^(7/9) 2415781700000000 a001 10610209857723/312119004989*33385282^(7/9) 2415781700000000 a001 4052739537881/119218851371*33385282^(7/9) 2415781700000000 a001 387002188980/11384387281*33385282^(7/9) 2415781700000000 a001 591286729879/17393796001*33385282^(7/9) 2415781700000000 a001 225851433717/6643838879*33385282^(7/9) 2415781700000000 a001 12586269025/141422324*33385282^(13/18) 2415781700000000 a001 1135099622/33391061*33385282^(7/9) 2415781700000000 a001 32951280099/969323029*33385282^(7/9) 2415781700000000 a001 12586269025/370248451*33385282^(7/9) 2415781700000000 a001 956722026041/54018521*33385282^(5/12) 2415781700000000 a001 7778742049/141422324*33385282^(3/4) 2415781700000000 a001 165580141/87403803*33385282^(17/18) 2415781700000000 a001 2971215073/228826127*33385282^(5/6) 2415781700000000 a001 591286729879/54018521*33385282^(4/9) 2415781700000000 a001 7778742049/599074578*33385282^(5/6) 2415781700000000 a001 20365011074/1568397607*33385282^(5/6) 2415781700000000 a001 53316291173/4106118243*33385282^(5/6) 2415781700000000 a001 139583862445/10749957122*33385282^(5/6) 2415781700000000 a001 365435296162/28143753123*33385282^(5/6) 2415781700000000 a001 956722026041/73681302247*33385282^(5/6) 2415781700000000 a001 2504730781961/192900153618*33385282^(5/6) 2415781700000000 a001 10610209857723/817138163596*33385282^(5/6) 2415781700000000 a001 4052739537881/312119004989*33385282^(5/6) 2415781700000000 a001 1548008755920/119218851371*33385282^(5/6) 2415781700000000 a001 591286729879/45537549124*33385282^(5/6) 2415781700000000 a001 7787980473/599786069*33385282^(5/6) 2415781700000000 a001 86267571272/6643838879*33385282^(5/6) 2415781700000000 a001 1201881744/35355581*33385282^(7/9) 2415781700000000 a001 32951280099/2537720636*33385282^(5/6) 2415781700000000 a001 12586269025/969323029*33385282^(5/6) 2415781700000000 a001 4807526976/370248451*33385282^(5/6) 2415781700000001 a001 1134903170/228826127*33385282^(8/9) 2415781700000001 a001 225851433717/54018521*33385282^(1/2) 2415781700000001 a001 2971215073/599074578*33385282^(8/9) 2415781700000001 a001 7778742049/1568397607*33385282^(8/9) 2415781700000001 a001 20365011074/4106118243*33385282^(8/9) 2415781700000001 a001 53316291173/10749957122*33385282^(8/9) 2415781700000001 a001 139583862445/28143753123*33385282^(8/9) 2415781700000001 a001 365435296162/73681302247*33385282^(8/9) 2415781700000001 a001 956722026041/192900153618*33385282^(8/9) 2415781700000001 a001 2504730781961/505019158607*33385282^(8/9) 2415781700000001 a001 10610209857723/2139295485799*33385282^(8/9) 2415781700000001 a001 4052739537881/817138163596*33385282^(8/9) 2415781700000001 a001 140728068720/28374454999*33385282^(8/9) 2415781700000001 a001 591286729879/119218851371*33385282^(8/9) 2415781700000001 a001 225851433717/45537549124*33385282^(8/9) 2415781700000001 a001 86267571272/17393796001*33385282^(8/9) 2415781700000001 a001 32951280099/6643838879*33385282^(8/9) 2415781700000001 a001 1836311903/141422324*33385282^(5/6) 2415781700000001 a001 1144206275/230701876*33385282^(8/9) 2415781700000001 a001 4807526976/969323029*33385282^(8/9) 2415781700000001 a001 701408733/228826127*33385282^(11/12) 2415781700000001 a001 1836311903/370248451*33385282^(8/9) 2415781700000001 a001 1836311903/599074578*33385282^(11/12) 2415781700000001 a001 686789568/224056801*33385282^(11/12) 2415781700000001 a001 12586269025/4106118243*33385282^(11/12) 2415781700000001 a001 32951280099/10749957122*33385282^(11/12) 2415781700000001 a001 86267571272/28143753123*33385282^(11/12) 2415781700000001 a001 32264490531/10525900321*33385282^(11/12) 2415781700000001 a001 591286729879/192900153618*33385282^(11/12) 2415781700000001 a001 1515744265389/494493258286*33385282^(11/12) 2415781700000001 a001 2504730781961/817138163596*33385282^(11/12) 2415781700000001 a001 956722026041/312119004989*33385282^(11/12) 2415781700000001 a001 365435296162/119218851371*33385282^(11/12) 2415781700000001 a001 139583862445/45537549124*33385282^(11/12) 2415781700000001 a001 53316291173/17393796001*33385282^(11/12) 2415781700000001 a001 20365011074/6643838879*33385282^(11/12) 2415781700000001 a001 7778742049/2537720636*33385282^(11/12) 2415781700000001 a001 2971215073/969323029*33385282^(11/12) 2415781700000001 a001 433494437/228826127*33385282^(17/18) 2415781700000001 a001 1134903170/370248451*33385282^(11/12) 2415781700000001 a001 86267571272/54018521*33385282^(5/9) 2415781700000001 a001 567451585/299537289*33385282^(17/18) 2415781700000001 a001 2971215073/1568397607*33385282^(17/18) 2415781700000001 a001 701408733/141422324*33385282^(8/9) 2415781700000001 a001 7778742049/4106118243*33385282^(17/18) 2415781700000001 a001 10182505537/5374978561*33385282^(17/18) 2415781700000001 a001 53316291173/28143753123*33385282^(17/18) 2415781700000001 a001 139583862445/73681302247*33385282^(17/18) 2415781700000001 a001 182717648081/96450076809*33385282^(17/18) 2415781700000001 a001 956722026041/505019158607*33385282^(17/18) 2415781700000001 a001 10610209857723/5600748293801*33385282^(17/18) 2415781700000001 a001 591286729879/312119004989*33385282^(17/18) 2415781700000001 a001 225851433717/119218851371*33385282^(17/18) 2415781700000001 a001 21566892818/11384387281*33385282^(17/18) 2415781700000001 a001 32951280099/17393796001*33385282^(17/18) 2415781700000001 a001 12586269025/6643838879*33385282^(17/18) 2415781700000001 a001 1201881744/634430159*33385282^(17/18) 2415781700000001 a001 1836311903/969323029*33385282^(17/18) 2415781700000001 a001 701408733/370248451*33385282^(17/18) 2415781700000001 a001 53316291173/54018521*33385282^(7/12) 2415781700000001 a001 433494437/141422324*33385282^(11/12) 2415781700000001 a001 32951280099/54018521*33385282^(11/18) 2415781700000001 a001 66978574/35355581*33385282^(17/18) 2415781700000001 a001 3278735159921/16692641*12752043^(5/17) 2415781700000001 a001 20365011074/20633239*20633239^(3/5) 2415781700000001 a001 12586269025/54018521*33385282^(2/3) 2415781700000001 a001 4807526976/54018521*33385282^(13/18) 2415781700000001 a001 32951280099/20633239*20633239^(4/7) 2415781700000001 a001 2971215073/54018521*33385282^(3/4) 2415781700000001 a001 1836311903/54018521*33385282^(7/9) 2415781700000001 a001 701408733/54018521*33385282^(5/6) 2415781700000001 a001 -5702887/2+24157817/2*5^(1/2) 2415781700000001 a001 267914296/54018521*33385282^(8/9) 2415781700000002 a001 102334155/54018521*33385282^(17/18) 2415781700000002 a001 165580141/54018521*33385282^(11/12) 2415781700000002 a001 2504730781961/33385282*12752043^(6/17) 2415781700000002 a001 365435296162/20633239*20633239^(3/7) 2415781700000002 a001 14930352/20633239*141422324^(12/13) 2415781700000002 a001 591286729879/20633239*20633239^(2/5) 2415781700000002 a001 102334155/7881196*7881196^(10/11) 2415781700000002 a001 14930352/20633239*2537720636^(4/5) 2415781700000002 a001 14930352/20633239*45537549124^(12/17) 2415781700000002 a001 14930352/20633239*14662949395604^(4/7) 2415781700000002 a001 9227465/33385282*(1/2+1/2*5^(1/2))^38 2415781700000002 a001 14930352/20633239*(1/2+1/2*5^(1/2))^36 2415781700000002 a001 14930352/20633239*505019158607^(9/14) 2415781700000002 a001 14930352/20633239*192900153618^(2/3) 2415781700000002 a001 14930352/20633239*73681302247^(9/13) 2415781700000002 a001 14930352/20633239*10749957122^(3/4) 2415781700000002 a001 9227465/33385282*10749957122^(19/24) 2415781700000002 a001 14930352/20633239*4106118243^(18/23) 2415781700000002 a001 9227465/33385282*4106118243^(19/23) 2415781700000002 a001 14930352/20633239*1568397607^(9/11) 2415781700000002 a001 9227465/33385282*1568397607^(19/22) 2415781700000002 a001 14930352/20633239*599074578^(6/7) 2415781700000002 a001 9227465/33385282*599074578^(19/21) 2415781700000002 a001 14930352/20633239*228826127^(9/10) 2415781700000002 a001 9227465/33385282*228826127^(19/20) 2415781700000002 a001 14930352/20633239*87403803^(18/19) 2415781700000003 a001 956722026041/33385282*12752043^(7/17) 2415781700000003 a001 4052739537881/20633239*20633239^(2/7) 2415781700000003 a001 182717648081/16692641*12752043^(8/17) 2415781700000004 a001 6557470319842/87403803*12752043^(6/17) 2415781700000004 a001 583600122205490/24157817 2415781700000004 a001 10610209857723/54018521*12752043^(5/17) 2415781700000004 a001 32264490531/4769326*12752043^(1/2) 2415781700000004 a001 9227465/87403803*2537720636^(8/9) 2415781700000004 a001 39088169/20633239*45537549124^(2/3) 2415781700000004 a001 9227465/87403803*312119004989^(8/11) 2415781700000004 a001 39088169/20633239*(1/2+1/2*5^(1/2))^34 2415781700000004 a001 9227465/87403803*23725150497407^(5/8) 2415781700000004 a001 9227465/87403803*73681302247^(10/13) 2415781700000004 a001 9227465/87403803*28143753123^(4/5) 2415781700000004 a001 39088169/20633239*10749957122^(17/24) 2415781700000004 a001 9227465/87403803*10749957122^(5/6) 2415781700000004 a001 39088169/20633239*4106118243^(17/23) 2415781700000004 a001 9227465/87403803*4106118243^(20/23) 2415781700000004 a001 39088169/20633239*1568397607^(17/22) 2415781700000004 a001 9227465/87403803*1568397607^(10/11) 2415781700000004 a001 39088169/20633239*599074578^(17/21) 2415781700000004 a001 10610209857723/141422324*12752043^(6/17) 2415781700000004 a001 9227465/87403803*599074578^(20/21) 2415781700000004 a001 39088169/20633239*228826127^(17/20) 2415781700000004 a001 1527884955772565/63245986 2415781700000004 a001 9238424/711491*141422324^(10/13) 2415781700000004 a001 1134903170/20633239*141422324^(9/13) 2415781700000004 a001 1836311903/20633239*141422324^(2/3) 2415781700000004 a001 4807526976/20633239*141422324^(8/13) 2415781700000004 a001 20365011074/20633239*141422324^(7/13) 2415781700000004 a001 86267571272/20633239*141422324^(6/13) 2415781700000004 a001 9227465/228826127*2537720636^(14/15) 2415781700000004 a001 365435296162/20633239*141422324^(5/13) 2415781700000004 a001 9227465/228826127*17393796001^(6/7) 2415781700000004 a001 9227465/228826127*45537549124^(14/17) 2415781700000004 a001 9227465/228826127*14662949395604^(2/3) 2415781700000004 a001 9303105/1875749*(1/2+1/2*5^(1/2))^32 2415781700000004 a001 9227465/228826127*505019158607^(3/4) 2415781700000004 a001 9227465/228826127*192900153618^(7/9) 2415781700000004 a001 9303105/1875749*73681302247^(8/13) 2415781700000004 a001 9303105/1875749*10749957122^(2/3) 2415781700000004 a001 9227465/228826127*10749957122^(7/8) 2415781700000004 a001 9303105/1875749*4106118243^(16/23) 2415781700000004 a001 9227465/228826127*4106118243^(21/23) 2415781700000004 a001 9303105/1875749*1568397607^(8/11) 2415781700000004 a001 9227465/228826127*1568397607^(21/22) 2415781700000004 a001 9303105/1875749*599074578^(16/21) 2415781700000004 a001 956722026041/20633239*141422324^(1/3) 2415781700000004 a001 140728068720/1875749*141422324^(4/13) 2415781700000004 a001 39088169/20633239*87403803^(17/19) 2415781700000004 a001 6557470319842/20633239*141422324^(3/13) 2415781700000004 a001 4000054745112205/165580141 2415781700000004 a001 9303105/1875749*228826127^(4/5) 2415781700000004 a001 9238424/711491*2537720636^(2/3) 2415781700000004 a001 9238424/711491*45537549124^(10/17) 2415781700000004 a001 9227465/599074578*312119004989^(4/5) 2415781700000004 a001 9238424/711491*312119004989^(6/11) 2415781700000004 a001 9238424/711491*14662949395604^(10/21) 2415781700000004 a001 9238424/711491*(1/2+1/2*5^(1/2))^30 2415781700000004 a001 9227465/599074578*23725150497407^(11/16) 2415781700000004 a001 9238424/711491*192900153618^(5/9) 2415781700000004 a001 9227465/599074578*73681302247^(11/13) 2415781700000004 a001 9238424/711491*28143753123^(3/5) 2415781700000004 a001 9238424/711491*10749957122^(5/8) 2415781700000004 a001 9227465/599074578*10749957122^(11/12) 2415781700000004 a001 9238424/711491*4106118243^(15/23) 2415781700000004 a001 9227465/599074578*4106118243^(22/23) 2415781700000004 a001 9238424/711491*1568397607^(15/22) 2415781700000004 a001 10472279279564050/433494437 2415781700000004 a001 9238424/711491*599074578^(5/7) 2415781700000004 a001 701408733/20633239*17393796001^(4/7) 2415781700000004 a001 701408733/20633239*14662949395604^(4/9) 2415781700000004 a001 701408733/20633239*(1/2+1/2*5^(1/2))^28 2415781700000004 a001 701408733/20633239*73681302247^(7/13) 2415781700000004 a001 701408733/20633239*10749957122^(7/12) 2415781700000004 a001 9227465/1568397607*10749957122^(23/24) 2415781700000004 a001 701408733/20633239*4106118243^(14/23) 2415781700000004 a001 701408733/20633239*1568397607^(7/11) 2415781700000004 a001 5483356618715989/226980634 2415781700000004 a001 4807526976/20633239*2537720636^(8/15) 2415781700000004 a001 20365011074/20633239*2537720636^(7/15) 2415781700000004 a001 32951280099/20633239*2537720636^(4/9) 2415781700000004 a001 2971215073/20633239*2537720636^(5/9) 2415781700000004 a001 86267571272/20633239*2537720636^(2/5) 2415781700000004 a001 9227465/4106118243*45537549124^(16/17) 2415781700000004 a001 9227465/4106118243*14662949395604^(16/21) 2415781700000004 a001 1836311903/20633239*(1/2+1/2*5^(1/2))^26 2415781700000004 a001 9227465/4106118243*192900153618^(8/9) 2415781700000004 a001 1836311903/20633239*73681302247^(1/2) 2415781700000004 a001 9227465/4106118243*73681302247^(12/13) 2415781700000004 a001 1836311903/20633239*10749957122^(13/24) 2415781700000004 a001 365435296162/20633239*2537720636^(1/3) 2415781700000004 a001 140728068720/1875749*2537720636^(4/15) 2415781700000004 a001 4052739537881/20633239*2537720636^(2/9) 2415781700000004 a001 6557470319842/20633239*2537720636^(1/5) 2415781700000004 a001 1836311903/20633239*4106118243^(13/23) 2415781700000004 a001 71778070001175785/2971215073 2415781700000004 a001 4807526976/20633239*45537549124^(8/17) 2415781700000004 a001 9227465/10749957122*312119004989^(10/11) 2415781700000004 a001 4807526976/20633239*14662949395604^(8/21) 2415781700000004 a001 4807526976/20633239*(1/2+1/2*5^(1/2))^24 2415781700000004 a001 9227465/10749957122*3461452808002^(5/6) 2415781700000004 a001 4807526976/20633239*192900153618^(4/9) 2415781700000004 a001 4807526976/20633239*73681302247^(6/13) 2415781700000004 a001 4807526976/20633239*10749957122^(1/2) 2415781700000004 a001 14455186685380570/598364773 2415781700000004 a001 1144206275/1875749*312119004989^(2/5) 2415781700000004 a001 1144206275/1875749*(1/2+1/2*5^(1/2))^22 2415781700000004 a001 9227465/28143753123*505019158607^(13/14) 2415781700000004 a001 591286729879/20633239*17393796001^(2/7) 2415781700000004 a001 20365011074/20633239*17393796001^(3/7) 2415781700000004 a001 491974210728666445/20365011074 2415781700000004 a001 86267571272/20633239*45537549124^(6/17) 2415781700000004 a001 9227465/73681302247*14662949395604^(6/7) 2415781700000004 a001 32951280099/20633239*(1/2+1/2*5^(1/2))^20 2415781700000004 a001 32951280099/20633239*23725150497407^(5/16) 2415781700000004 a001 32951280099/20633239*505019158607^(5/14) 2415781700000004 a001 139583862445/20633239*45537549124^(1/3) 2415781700000004 a001 365435296162/20633239*45537549124^(5/17) 2415781700000004 a001 140728068720/1875749*45537549124^(4/17) 2415781700000004 a001 6557470319842/20633239*45537549124^(3/17) 2415781700000004 a001 1288005205276051925/53316291173 2415781700000004 a001 86267571272/20633239*14662949395604^(2/7) 2415781700000004 a001 86267571272/20633239*(1/2+1/2*5^(1/2))^18 2415781700000004 a001 86267571272/20633239*192900153618^(1/3) 2415781700000004 a001 7787980473/711491*(1/2+1/2*5^(1/2))^16 2415781700000004 a001 365435296162/20633239*312119004989^(3/11) 2415781700000004 a001 140728068720/1875749*(1/2+1/2*5^(1/2))^12 2415781700000004 a001 4052739537881/20633239*(1/2+1/2*5^(1/2))^10 2415781700000004 a001 10610209857723/20633239*(1/2+1/2*5^(1/2))^8 2415781700000004 a001 10610209857723/20633239*23725150497407^(1/8) 2415781700000004 a006 5^(1/2)*Fibonacci(72)/Lucas(35)/sqrt(5) 2415781700000004 a001 6557470319842/20633239*(1/2+1/2*5^(1/2))^9 2415781700000004 a001 2504730781961/20633239*(1/2+1/2*5^(1/2))^11 2415781700000004 a001 956722026041/20633239*(1/2+1/2*5^(1/2))^13 2415781700000004 a001 10610209857723/20633239*505019158607^(1/7) 2415781700000004 a001 365435296162/20633239*192900153618^(5/18) 2415781700000004 a001 139583862445/20633239*(1/2+1/2*5^(1/2))^17 2415781700000004 a001 2084036199823437405/86267571272 2415781700000004 a001 10610209857723/20633239*73681302247^(2/13) 2415781700000004 a001 140728068720/1875749*73681302247^(3/13) 2415781700000004 a001 956722026041/20633239*73681302247^(1/4) 2415781700000004 a001 7787980473/711491*73681302247^(4/13) 2415781700000004 a001 53316291173/20633239*817138163596^(1/3) 2415781700000004 a001 53316291173/20633239*(1/2+1/2*5^(1/2))^19 2415781700000004 a001 796030994547385480/32951280099 2415781700000004 a001 4052739537881/20633239*28143753123^(1/5) 2415781700000004 a001 20365011074/20633239*45537549124^(7/17) 2415781700000004 a001 32951280099/20633239*28143753123^(2/5) 2415781700000004 a001 365435296162/20633239*28143753123^(3/10) 2415781700000004 a001 20365011074/20633239*14662949395604^(1/3) 2415781700000004 a001 20365011074/20633239*(1/2+1/2*5^(1/2))^21 2415781700000004 a001 20365011074/20633239*192900153618^(7/18) 2415781700000004 a001 60811356763743807/2517253805 2415781700000004 a001 10610209857723/20633239*10749957122^(1/6) 2415781700000004 a001 6557470319842/20633239*10749957122^(3/16) 2415781700000004 a001 4052739537881/20633239*10749957122^(5/24) 2415781700000004 a001 140728068720/1875749*10749957122^(1/4) 2415781700000004 a001 591286729879/20633239*10749957122^(7/24) 2415781700000004 a001 1144206275/1875749*10749957122^(11/24) 2415781700000004 a001 365435296162/20633239*10749957122^(5/16) 2415781700000004 a001 7787980473/711491*10749957122^(1/3) 2415781700000004 a001 86267571272/20633239*10749957122^(3/8) 2415781700000004 a001 9227465/17393796001*14662949395604^(17/21) 2415781700000004 a001 7778742049/20633239*(1/2+1/2*5^(1/2))^23 2415781700000004 a001 9227465/17393796001*192900153618^(17/18) 2415781700000004 a001 32951280099/20633239*10749957122^(5/12) 2415781700000004 a001 20365011074/20633239*10749957122^(7/16) 2415781700000004 a001 116139356908771625/4807526976 2415781700000004 a001 10610209857723/20633239*4106118243^(4/23) 2415781700000004 a001 4052739537881/20633239*4106118243^(5/23) 2415781700000004 a001 140728068720/1875749*4106118243^(6/23) 2415781700000004 a001 591286729879/20633239*4106118243^(7/23) 2415781700000004 a001 7787980473/711491*4106118243^(8/23) 2415781700000004 a001 4807526976/20633239*4106118243^(12/23) 2415781700000004 a001 2971215073/20633239*312119004989^(5/11) 2415781700000004 a001 2971215073/20633239*(1/2+1/2*5^(1/2))^25 2415781700000004 a001 2971215073/20633239*3461452808002^(5/12) 2415781700000004 a001 9227465/6643838879*505019158607^(7/8) 2415781700000004 a001 86267571272/20633239*4106118243^(9/23) 2415781700000004 a001 2971215073/20633239*28143753123^(1/2) 2415781700000004 a001 32951280099/20633239*4106118243^(10/23) 2415781700000004 a001 1144206275/1875749*4106118243^(11/23) 2415781700000004 a001 7778742049/20633239*4106118243^(1/2) 2415781700000004 a001 44361286907595840/1836311903 2415781700000004 a001 1134903170/20633239*2537720636^(3/5) 2415781700000004 a001 10610209857723/20633239*1568397607^(2/11) 2415781700000004 a001 4052739537881/20633239*1568397607^(5/22) 2415781700000004 a001 2504730781961/20633239*1568397607^(1/4) 2415781700000004 a001 140728068720/1875749*1568397607^(3/11) 2415781700000004 a001 591286729879/20633239*1568397607^(7/22) 2415781700000004 a001 7787980473/711491*1568397607^(4/11) 2415781700000004 a001 1134903170/20633239*45537549124^(9/17) 2415781700000004 a001 1134903170/20633239*817138163596^(9/19) 2415781700000004 a001 1134903170/20633239*14662949395604^(3/7) 2415781700000004 a001 1134903170/20633239*(1/2+1/2*5^(1/2))^27 2415781700000004 a001 1134903170/20633239*192900153618^(1/2) 2415781700000004 a001 1134903170/20633239*10749957122^(9/16) 2415781700000004 a001 86267571272/20633239*1568397607^(9/22) 2415781700000004 a001 1836311903/20633239*1568397607^(13/22) 2415781700000004 a001 32951280099/20633239*1568397607^(5/11) 2415781700000004 a001 1144206275/1875749*1568397607^(1/2) 2415781700000004 a001 4807526976/20633239*1568397607^(6/11) 2415781700000004 a001 16944503814015895/701408733 2415781700000004 a001 10610209857723/20633239*599074578^(4/21) 2415781700000004 a001 6557470319842/20633239*599074578^(3/14) 2415781700000004 a001 4052739537881/20633239*599074578^(5/21) 2415781700000004 a001 140728068720/1875749*599074578^(2/7) 2415781700000004 a001 591286729879/20633239*599074578^(1/3) 2415781700000004 a001 365435296162/20633239*599074578^(5/14) 2415781700000004 a001 7787980473/711491*599074578^(8/21) 2415781700000004 a001 9227465/969323029*45537549124^(15/17) 2415781700000004 a001 9227465/969323029*312119004989^(9/11) 2415781700000004 a001 9227465/969323029*14662949395604^(5/7) 2415781700000004 a001 433494437/20633239*(1/2+1/2*5^(1/2))^29 2415781700000004 a001 433494437/20633239*1322157322203^(1/2) 2415781700000004 a001 9227465/969323029*192900153618^(5/6) 2415781700000004 a001 9227465/969323029*28143753123^(9/10) 2415781700000004 a001 9227465/969323029*10749957122^(15/16) 2415781700000004 a001 86267571272/20633239*599074578^(3/7) 2415781700000004 a001 32951280099/20633239*599074578^(10/21) 2415781700000004 a001 20365011074/20633239*599074578^(1/2) 2415781700000004 a001 701408733/20633239*599074578^(2/3) 2415781700000004 a001 1144206275/1875749*599074578^(11/21) 2415781700000004 a001 4807526976/20633239*599074578^(4/7) 2415781700000004 a001 1836311903/20633239*599074578^(13/21) 2415781700000004 a001 1134903170/20633239*599074578^(9/14) 2415781700000004 a001 497863425727065/20608792 2415781700000004 a001 10610209857723/20633239*228826127^(1/5) 2415781700000004 a001 4052739537881/20633239*228826127^(1/4) 2415781700000004 a001 140728068720/1875749*228826127^(3/10) 2415781700000004 a001 591286729879/20633239*228826127^(7/20) 2415781700000004 a001 365435296162/20633239*228826127^(3/8) 2415781700000004 a001 165580141/20633239*(1/2+1/2*5^(1/2))^31 2415781700000004 a001 165580141/20633239*9062201101803^(1/2) 2415781700000004 a001 7787980473/711491*228826127^(2/5) 2415781700000004 a001 63245986/20633239*141422324^(11/13) 2415781700000004 a001 86267571272/20633239*228826127^(9/20) 2415781700000004 a001 139583862445/33385282*12752043^(9/17) 2415781700000004 a001 32951280099/20633239*228826127^(1/2) 2415781700000004 a001 1144206275/1875749*228826127^(11/20) 2415781700000004 a001 4807526976/20633239*228826127^(3/5) 2415781700000004 a001 9238424/711491*228826127^(3/4) 2415781700000004 a001 2971215073/20633239*228826127^(5/8) 2415781700000004 a001 1836311903/20633239*228826127^(13/20) 2415781700000004 a001 701408733/20633239*228826127^(7/10) 2415781700000004 a001 494433957867928/20466831 2415781700000004 a001 10610209857723/20633239*87403803^(4/19) 2415781700000004 a001 4052739537881/20633239*87403803^(5/19) 2415781700000004 a001 140728068720/1875749*87403803^(6/19) 2415781700000004 a001 591286729879/20633239*87403803^(7/19) 2415781700000004 a001 63245986/20633239*2537720636^(11/15) 2415781700000004 a001 63245986/20633239*45537549124^(11/17) 2415781700000004 a001 63245986/20633239*312119004989^(3/5) 2415781700000004 a001 63245986/20633239*14662949395604^(11/21) 2415781700000004 a001 63245986/20633239*(1/2+1/2*5^(1/2))^33 2415781700000004 a001 63245986/20633239*192900153618^(11/18) 2415781700000004 a001 63245986/20633239*10749957122^(11/16) 2415781700000004 a001 63245986/20633239*1568397607^(3/4) 2415781700000004 a001 63245986/20633239*599074578^(11/14) 2415781700000004 a001 2504730781961/87403803*12752043^(7/17) 2415781700000004 a001 7787980473/711491*87403803^(8/19) 2415781700000004 a001 86267571272/20633239*87403803^(9/19) 2415781700000005 a001 53316291173/20633239*87403803^(1/2) 2415781700000005 a001 32951280099/20633239*87403803^(10/19) 2415781700000005 a001 1144206275/1875749*87403803^(11/19) 2415781700000005 a001 4807526976/20633239*87403803^(12/19) 2415781700000005 a001 1836311903/20633239*87403803^(13/19) 2415781700000005 a001 9303105/1875749*87403803^(16/19) 2415781700000005 a001 701408733/20633239*87403803^(14/19) 2415781700000005 a001 9238424/711491*87403803^(15/19) 2415781700000005 a001 944284833567075/39088169 2415781700000005 a001 6557470319842/228826127*12752043^(7/17) 2415781700000005 a001 4052739537881/54018521*12752043^(6/17) 2415781700000005 a001 10610209857723/370248451*12752043^(7/17) 2415781700000005 a001 10610209857723/20633239*33385282^(2/9) 2415781700000005 a001 6557470319842/20633239*33385282^(1/4) 2415781700000005 a001 4052739537881/141422324*12752043^(7/17) 2415781700000005 a001 4052739537881/20633239*33385282^(5/18) 2415781700000005 a001 140728068720/1875749*33385282^(1/3) 2415781700000005 a001 9227465/54018521*2537720636^(13/15) 2415781700000005 a001 24157817/20633239*2537720636^(7/9) 2415781700000005 a001 24157817/20633239*17393796001^(5/7) 2415781700000005 a001 9227465/54018521*45537549124^(13/17) 2415781700000005 a001 24157817/20633239*312119004989^(7/11) 2415781700000005 a001 24157817/20633239*14662949395604^(5/9) 2415781700000005 a001 24157817/20633239*(1/2+1/2*5^(1/2))^35 2415781700000005 a001 24157817/20633239*505019158607^(5/8) 2415781700000005 a001 9227465/54018521*192900153618^(13/18) 2415781700000005 a001 9227465/54018521*73681302247^(3/4) 2415781700000005 a001 24157817/20633239*28143753123^(7/10) 2415781700000005 a001 9227465/54018521*10749957122^(13/16) 2415781700000005 a001 24157817/20633239*599074578^(5/6) 2415781700000005 a001 9227465/54018521*599074578^(13/14) 2415781700000005 a001 591286729879/20633239*33385282^(7/18) 2415781700000005 a001 24157817/20633239*228826127^(7/8) 2415781700000005 a001 53316291173/33385282*12752043^(10/17) 2415781700000005 a001 365435296162/20633239*33385282^(5/12) 2415781700000005 a001 7787980473/711491*33385282^(4/9) 2415781700000005 a001 956722026041/87403803*12752043^(8/17) 2415781700000005 a001 86267571272/20633239*33385282^(1/2) 2415781700000006 a001 32951280099/20633239*33385282^(5/9) 2415781700000006 a001 20365011074/20633239*33385282^(7/12) 2415781700000006 a001 2504730781961/228826127*12752043^(8/17) 2415781700000006 a001 1548008755920/54018521*12752043^(7/17) 2415781700000006 a001 3278735159921/299537289*12752043^(8/17) 2415781700000006 a001 10610209857723/969323029*12752043^(8/17) 2415781700000006 a001 1144206275/1875749*33385282^(11/18) 2415781700000006 a001 4052739537881/370248451*12752043^(8/17) 2415781700000006 a001 433494437/7881196*7881196^(9/11) 2415781700000006 a001 591286729879/87403803*12752043^(1/2) 2415781700000006 a001 387002188980/35355581*12752043^(8/17) 2415781700000006 a001 4807526976/20633239*33385282^(2/3) 2415781700000006 a001 1836311903/20633239*33385282^(13/18) 2415781700000006 a001 1134903170/20633239*33385282^(3/4) 2415781700000006 a001 701408733/20633239*33385282^(7/9) 2415781700000006 a001 1548008755920/228826127*12752043^(1/2) 2415781700000006 a001 39088169/20633239*33385282^(17/18) 2415781700000006 a001 4052739537881/599074578*12752043^(1/2) 2415781700000006 a001 1515744265389/224056801*12752043^(1/2) 2415781700000006 a001 6557470319842/969323029*12752043^(1/2) 2415781700000006 a001 10182505537/16692641*12752043^(11/17) 2415781700000006 a001 2504730781961/370248451*12752043^(1/2) 2415781700000006 a001 9238424/711491*33385282^(5/6) 2415781700000006 a001 360684711361585/14930352 2415781700000006 a001 365435296162/87403803*12752043^(9/17) 2415781700000006 a001 956722026041/141422324*12752043^(1/2) 2415781700000006 a001 9303105/1875749*33385282^(8/9) 2415781700000006 a001 63245986/20633239*33385282^(11/12) 2415781700000006 a001 956722026041/228826127*12752043^(9/17) 2415781700000006 a001 591286729879/54018521*12752043^(8/17) 2415781700000007 a001 2504730781961/599074578*12752043^(9/17) 2415781700000007 a001 6557470319842/1568397607*12752043^(9/17) 2415781700000007 a001 10610209857723/2537720636*12752043^(9/17) 2415781700000007 a001 4052739537881/969323029*12752043^(9/17) 2415781700000007 a001 1548008755920/370248451*12752043^(9/17) 2415781700000007 a001 591286729879/141422324*12752043^(9/17) 2415781700000007 a001 365435296162/54018521*12752043^(1/2) 2415781700000007 a001 7778742049/33385282*12752043^(12/17) 2415781700000007 a001 139583862445/87403803*12752043^(10/17) 2415781700000007 a001 365435296162/228826127*12752043^(10/17) 2415781700000007 a001 225851433717/54018521*12752043^(9/17) 2415781700000007 a001 956722026041/599074578*12752043^(10/17) 2415781700000007 a001 2504730781961/1568397607*12752043^(10/17) 2415781700000007 a001 6557470319842/4106118243*12752043^(10/17) 2415781700000007 a001 10610209857723/6643838879*12752043^(10/17) 2415781700000007 a001 4052739537881/2537720636*12752043^(10/17) 2415781700000007 a001 1548008755920/969323029*12752043^(10/17) 2415781700000007 a001 591286729879/370248451*12752043^(10/17) 2415781700000008 a001 225851433717/141422324*12752043^(10/17) 2415781700000008 a001 10610209857723/20633239*12752043^(4/17) 2415781700000008 a001 2971215073/33385282*12752043^(13/17) 2415781700000008 a001 53316291173/87403803*12752043^(11/17) 2415781700000008 a001 139583862445/228826127*12752043^(11/17) 2415781700000008 a001 86267571272/54018521*12752043^(10/17) 2415781700000008 a001 182717648081/299537289*12752043^(11/17) 2415781700000008 a001 956722026041/1568397607*12752043^(11/17) 2415781700000008 a001 2504730781961/4106118243*12752043^(11/17) 2415781700000008 a001 3278735159921/5374978561*12752043^(11/17) 2415781700000008 a001 10610209857723/17393796001*12752043^(11/17) 2415781700000008 a001 4052739537881/6643838879*12752043^(11/17) 2415781700000008 a001 1134903780/1860499*12752043^(11/17) 2415781700000008 a001 591286729879/969323029*12752043^(11/17) 2415781700000008 a001 225851433717/370248451*12752043^(11/17) 2415781700000008 a001 21566892818/35355581*12752043^(11/17) 2415781700000009 a001 4052739537881/20633239*12752043^(5/17) 2415781700000009 a001 567451585/16692641*12752043^(14/17) 2415781700000009 a001 20365011074/87403803*12752043^(12/17) 2415781700000009 a001 53316291173/228826127*12752043^(12/17) 2415781700000009 a001 32951280099/54018521*12752043^(11/17) 2415781700000009 a001 139583862445/599074578*12752043^(12/17) 2415781700000009 a001 365435296162/1568397607*12752043^(12/17) 2415781700000009 a001 956722026041/4106118243*12752043^(12/17) 2415781700000009 a001 2504730781961/10749957122*12752043^(12/17) 2415781700000009 a001 6557470319842/28143753123*12752043^(12/17) 2415781700000009 a001 10610209857723/45537549124*12752043^(12/17) 2415781700000009 a001 4052739537881/17393796001*12752043^(12/17) 2415781700000009 a001 1548008755920/6643838879*12752043^(12/17) 2415781700000009 a001 591286729879/2537720636*12752043^(12/17) 2415781700000009 a001 225851433717/969323029*12752043^(12/17) 2415781700000009 a001 86267571272/370248451*12752043^(12/17) 2415781700000009 a001 3524578+9227465*5^(1/2) 2415781700000009 a001 6557470319842/12752043*4870847^(1/4) 2415781700000009 a001 1836311903/7881196*7881196^(8/11) 2415781700000009 a001 63246219/271444*12752043^(12/17) 2415781700000010 a001 140728068720/1875749*12752043^(6/17) 2415781700000010 a001 433494437/33385282*12752043^(15/17) 2415781700000010 a001 7778742049/87403803*12752043^(13/17) 2415781700000010 a001 20365011074/228826127*12752043^(13/17) 2415781700000010 a001 12586269025/54018521*12752043^(12/17) 2415781700000010 a001 9227465/20633239*(1/2+1/2*5^(1/2))^37 2415781700000010 a001 53316291173/599074578*12752043^(13/17) 2415781700000010 a001 139583862445/1568397607*12752043^(13/17) 2415781700000010 a001 365435296162/4106118243*12752043^(13/17) 2415781700000010 a001 956722026041/10749957122*12752043^(13/17) 2415781700000010 a001 2504730781961/28143753123*12752043^(13/17) 2415781700000010 a001 6557470319842/73681302247*12752043^(13/17) 2415781700000010 a001 10610209857723/119218851371*12752043^(13/17) 2415781700000010 a001 4052739537881/45537549124*12752043^(13/17) 2415781700000010 a001 1548008755920/17393796001*12752043^(13/17) 2415781700000010 a001 591286729879/6643838879*12752043^(13/17) 2415781700000010 a001 225851433717/2537720636*12752043^(13/17) 2415781700000010 a001 86267571272/969323029*12752043^(13/17) 2415781700000010 a001 32951280099/370248451*12752043^(13/17) 2415781700000010 a001 12586269025/141422324*12752043^(13/17) 2415781700000010 a001 591286729879/20633239*12752043^(7/17) 2415781700000011 a001 165580141/33385282*12752043^(16/17) 2415781700000011 a001 2971215073/87403803*12752043^(14/17) 2415781700000011 a001 7778742049/228826127*12752043^(14/17) 2415781700000011 a001 4807526976/54018521*12752043^(13/17) 2415781700000011 a001 10182505537/299537289*12752043^(14/17) 2415781700000011 a001 53316291173/1568397607*12752043^(14/17) 2415781700000011 a001 139583862445/4106118243*12752043^(14/17) 2415781700000011 a001 182717648081/5374978561*12752043^(14/17) 2415781700000011 a001 956722026041/28143753123*12752043^(14/17) 2415781700000011 a001 2504730781961/73681302247*12752043^(14/17) 2415781700000011 a001 3278735159921/96450076809*12752043^(14/17) 2415781700000011 a001 10610209857723/312119004989*12752043^(14/17) 2415781700000011 a001 4052739537881/119218851371*12752043^(14/17) 2415781700000011 a001 387002188980/11384387281*12752043^(14/17) 2415781700000011 a001 591286729879/17393796001*12752043^(14/17) 2415781700000011 a001 225851433717/6643838879*12752043^(14/17) 2415781700000011 a001 1135099622/33391061*12752043^(14/17) 2415781700000011 a001 32951280099/969323029*12752043^(14/17) 2415781700000011 a001 12586269025/370248451*12752043^(14/17) 2415781700000011 a001 1201881744/35355581*12752043^(14/17) 2415781700000011 a001 7787980473/711491*12752043^(8/17) 2415781700000011 a001 1134903170/87403803*12752043^(15/17) 2415781700000012 a001 1201881744/1970299*7881196^(2/3) 2415781700000012 a001 1836311903/54018521*12752043^(14/17) 2415781700000012 a001 2971215073/228826127*12752043^(15/17) 2415781700000012 a001 7778742049/599074578*12752043^(15/17) 2415781700000012 a001 139583862445/20633239*12752043^(1/2) 2415781700000012 a001 20365011074/1568397607*12752043^(15/17) 2415781700000012 a001 53316291173/4106118243*12752043^(15/17) 2415781700000012 a001 139583862445/10749957122*12752043^(15/17) 2415781700000012 a001 365435296162/28143753123*12752043^(15/17) 2415781700000012 a001 956722026041/73681302247*12752043^(15/17) 2415781700000012 a001 2504730781961/192900153618*12752043^(15/17) 2415781700000012 a001 10610209857723/817138163596*12752043^(15/17) 2415781700000012 a001 4052739537881/312119004989*12752043^(15/17) 2415781700000012 a001 1548008755920/119218851371*12752043^(15/17) 2415781700000012 a001 591286729879/45537549124*12752043^(15/17) 2415781700000012 a001 7787980473/599786069*12752043^(15/17) 2415781700000012 a001 86267571272/6643838879*12752043^(15/17) 2415781700000012 a001 32951280099/2537720636*12752043^(15/17) 2415781700000012 a001 12586269025/969323029*12752043^(15/17) 2415781700000012 a001 4807526976/370248451*12752043^(15/17) 2415781700000012 a001 1836311903/141422324*12752043^(15/17) 2415781700000012 a001 86267571272/20633239*12752043^(9/17) 2415781700000012 a001 433494437/87403803*12752043^(16/17) 2415781700000013 a001 701408733/54018521*12752043^(15/17) 2415781700000013 a001 1134903170/228826127*12752043^(16/17) 2415781700000013 a001 2971215073/599074578*12752043^(16/17) 2415781700000013 a001 7778742049/1568397607*12752043^(16/17) 2415781700000013 a001 20365011074/4106118243*12752043^(16/17) 2415781700000013 a001 53316291173/10749957122*12752043^(16/17) 2415781700000013 a001 139583862445/28143753123*12752043^(16/17) 2415781700000013 a001 365435296162/73681302247*12752043^(16/17) 2415781700000013 a001 956722026041/192900153618*12752043^(16/17) 2415781700000013 a001 2504730781961/505019158607*12752043^(16/17) 2415781700000013 a001 10610209857723/2139295485799*12752043^(16/17) 2415781700000013 a001 4052739537881/817138163596*12752043^(16/17) 2415781700000013 a001 140728068720/28374454999*12752043^(16/17) 2415781700000013 a001 591286729879/119218851371*12752043^(16/17) 2415781700000013 a001 225851433717/45537549124*12752043^(16/17) 2415781700000013 a001 86267571272/17393796001*12752043^(16/17) 2415781700000013 a001 32951280099/6643838879*12752043^(16/17) 2415781700000013 a001 1144206275/230701876*12752043^(16/17) 2415781700000013 a001 4807526976/969323029*12752043^(16/17) 2415781700000013 a001 1836311903/370248451*12752043^(16/17) 2415781700000013 a001 701408733/141422324*12752043^(16/17) 2415781700000013 a001 7778742049/7881196*7881196^(7/11) 2415781700000013 a001 32951280099/20633239*12752043^(10/17) 2415781700000013 a001 2178309*1860498^(1/6) 2415781700000013 a001 267914296/54018521*12752043^(16/17) 2415781700000014 a001 1144206275/1875749*12752043^(11/17) 2415781700000015 a001 4807526976/20633239*12752043^(12/17) 2415781700000016 a001 2504730781961/12752043*4870847^(5/16) 2415781700000016 a001 1836311903/20633239*12752043^(13/17) 2415781700000016 a001 32951280099/7881196*7881196^(6/11) 2415781700000017 a001 701408733/20633239*12752043^(14/17) 2415781700000017 a001 19801199/2+12752043/2*5^(1/2) 2415781700000017 a001 137769300517680/5702887 2415781700000017 a001 9238424/711491*12752043^(15/17) 2415781700000018 a001 9303105/1875749*12752043^(16/17) 2415781700000020 a001 139583862445/7881196*7881196^(5/11) 2415781700000022 a001 956722026041/12752043*4870847^(3/8) 2415781700000023 a001 5702887/7881196*141422324^(12/13) 2415781700000023 a001 5702887/7881196*2537720636^(4/5) 2415781700000023 a001 5702887/7881196*45537549124^(12/17) 2415781700000023 a001 3524578/12752043*817138163596^(2/3) 2415781700000023 a001 3524578/12752043*(1/2+1/2*5^(1/2))^38 2415781700000023 a001 5702887/7881196*(1/2+1/2*5^(1/2))^36 2415781700000023 a001 5702887/7881196*505019158607^(9/14) 2415781700000023 a001 5702887/7881196*192900153618^(2/3) 2415781700000023 a001 5702887/7881196*73681302247^(9/13) 2415781700000023 a001 5702887/7881196*10749957122^(3/4) 2415781700000023 a001 3524578/12752043*10749957122^(19/24) 2415781700000023 a001 5702887/7881196*4106118243^(18/23) 2415781700000023 a001 3524578/12752043*4106118243^(19/23) 2415781700000023 a001 5702887/7881196*1568397607^(9/11) 2415781700000023 a001 3524578/12752043*1568397607^(19/22) 2415781700000023 a001 5702887/7881196*599074578^(6/7) 2415781700000023 a001 3524578/12752043*599074578^(19/21) 2415781700000023 a001 5702887/7881196*228826127^(9/10) 2415781700000023 a001 3524578/12752043*228826127^(19/20) 2415781700000023 a001 5702887/7881196*87403803^(18/19) 2415781700000023 a001 591286729879/7881196*7881196^(4/11) 2415781700000025 a001 956722026041/7881196*7881196^(1/3) 2415781700000027 a001 2504730781961/7881196*7881196^(3/11) 2415781700000028 a001 3278735159921/16692641*4870847^(5/16) 2415781700000028 a001 365435296162/12752043*4870847^(7/16) 2415781700000030 a001 10610209857723/20633239*4870847^(1/4) 2415781700000030 a001 10610209857723/7881196*7881196^(2/11) 2415781700000031 a001 10610209857723/54018521*4870847^(5/16) 2415781700000032 a001 222915410843908/9227465 2415781700000033 a001 102334155/7881196*20633239^(6/7) 2415781700000033 a001 66978574/1970299*20633239^(4/5) 2415781700000034 a001 567451585/3940598*20633239^(5/7) 2415781700000034 a001 7778742049/7881196*20633239^(3/5) 2415781700000034 a001 12586269025/7881196*20633239^(4/7) 2415781700000035 a001 2504730781961/33385282*4870847^(3/8) 2415781700000035 a001 139583862445/12752043*4870847^(1/2) 2415781700000035 a001 139583862445/7881196*20633239^(3/7) 2415781700000035 a001 225851433717/7881196*20633239^(2/5) 2415781700000035 a001 1762289/16692641*2537720636^(8/9) 2415781700000035 a001 3732588/1970299*45537549124^(2/3) 2415781700000035 a001 1762289/16692641*312119004989^(8/11) 2415781700000035 a001 1762289/16692641*(1/2+1/2*5^(1/2))^40 2415781700000035 a001 3732588/1970299*(1/2+1/2*5^(1/2))^34 2415781700000035 a001 1762289/16692641*23725150497407^(5/8) 2415781700000035 a001 1762289/16692641*73681302247^(10/13) 2415781700000035 a001 1762289/16692641*28143753123^(4/5) 2415781700000035 a001 3732588/1970299*10749957122^(17/24) 2415781700000035 a001 1762289/16692641*10749957122^(5/6) 2415781700000035 a001 3732588/1970299*4106118243^(17/23) 2415781700000035 a001 1762289/16692641*4106118243^(20/23) 2415781700000035 a001 3732588/1970299*1568397607^(17/22) 2415781700000035 a001 1762289/16692641*1568397607^(10/11) 2415781700000035 a001 3732588/1970299*599074578^(17/21) 2415781700000035 a001 1762289/16692641*599074578^(20/21) 2415781700000035 a001 3732588/1970299*228826127^(17/20) 2415781700000036 a001 3732588/1970299*87403803^(17/19) 2415781700000036 a001 387002188980/1970299*20633239^(2/7) 2415781700000036 a001 4052739537881/20633239*4870847^(5/16) 2415781700000036 a001 6557470319842/4870847*1860498^(1/5) 2415781700000036 a001 3278735159921/3940598*20633239^(1/5) 2415781700000037 a001 6557470319842/87403803*4870847^(3/8) 2415781700000037 a001 583600122205498/24157817 2415781700000037 a001 10610209857723/141422324*4870847^(3/8) 2415781700000037 a001 3524578/87403803*2537720636^(14/15) 2415781700000037 a001 3524578/87403803*17393796001^(6/7) 2415781700000037 a001 3524578/87403803*45537549124^(14/17) 2415781700000037 a001 3524578/87403803*817138163596^(14/19) 2415781700000037 a001 3524578/87403803*14662949395604^(2/3) 2415781700000037 a001 39088169/7881196*(1/2+1/2*5^(1/2))^32 2415781700000037 a001 3524578/87403803*505019158607^(3/4) 2415781700000037 a001 3524578/87403803*192900153618^(7/9) 2415781700000037 a001 39088169/7881196*73681302247^(8/13) 2415781700000037 a001 39088169/7881196*10749957122^(2/3) 2415781700000037 a001 3524578/87403803*10749957122^(7/8) 2415781700000037 a001 39088169/7881196*4106118243^(16/23) 2415781700000037 a001 3524578/87403803*4106118243^(21/23) 2415781700000037 a001 39088169/7881196*1568397607^(8/11) 2415781700000037 a001 3524578/87403803*1568397607^(21/22) 2415781700000037 a001 39088169/7881196*599074578^(16/21) 2415781700000037 a001 39088169/7881196*228826127^(4/5) 2415781700000037 a001 102334155/7881196*141422324^(10/13) 2415781700000037 a001 3732588/1970299*33385282^(17/18) 2415781700000037 a001 763942477886293/31622993 2415781700000037 a001 3524667/39604*141422324^(2/3) 2415781700000037 a001 433494437/7881196*141422324^(9/13) 2415781700000037 a001 1836311903/7881196*141422324^(8/13) 2415781700000038 a001 7778742049/7881196*141422324^(7/13) 2415781700000038 a001 32951280099/7881196*141422324^(6/13) 2415781700000038 a001 39088169/7881196*87403803^(16/19) 2415781700000038 a001 139583862445/7881196*141422324^(5/13) 2415781700000038 a001 102334155/7881196*2537720636^(2/3) 2415781700000038 a001 102334155/7881196*45537549124^(10/17) 2415781700000038 a001 3524578/228826127*312119004989^(4/5) 2415781700000038 a001 102334155/7881196*312119004989^(6/11) 2415781700000038 a001 102334155/7881196*14662949395604^(10/21) 2415781700000038 a001 102334155/7881196*(1/2+1/2*5^(1/2))^30 2415781700000038 a001 3524578/228826127*23725150497407^(11/16) 2415781700000038 a001 102334155/7881196*192900153618^(5/9) 2415781700000038 a001 3524578/228826127*73681302247^(11/13) 2415781700000038 a001 102334155/7881196*28143753123^(3/5) 2415781700000038 a001 102334155/7881196*10749957122^(5/8) 2415781700000038 a001 3524578/228826127*10749957122^(11/12) 2415781700000038 a001 102334155/7881196*4106118243^(15/23) 2415781700000038 a001 3524578/228826127*4106118243^(22/23) 2415781700000038 a001 102334155/7881196*1568397607^(15/22) 2415781700000038 a001 102334155/7881196*599074578^(5/7) 2415781700000038 a001 182717648081/3940598*141422324^(1/3) 2415781700000038 a001 591286729879/7881196*141422324^(4/13) 2415781700000038 a001 2504730781961/7881196*141422324^(3/13) 2415781700000038 a001 10610209857723/7881196*141422324^(2/13) 2415781700000038 a001 4000054745112260/165580141 2415781700000038 a001 102334155/7881196*228826127^(3/4) 2415781700000038 a001 66978574/1970299*17393796001^(4/7) 2415781700000038 a001 66978574/1970299*14662949395604^(4/9) 2415781700000038 a001 66978574/1970299*(1/2+1/2*5^(1/2))^28 2415781700000038 a001 66978574/1970299*505019158607^(1/2) 2415781700000038 a001 66978574/1970299*73681302247^(7/13) 2415781700000038 a001 66978574/1970299*10749957122^(7/12) 2415781700000038 a001 1762289/299537289*10749957122^(23/24) 2415781700000038 a001 66978574/1970299*4106118243^(14/23) 2415781700000038 a001 66978574/1970299*1568397607^(7/11) 2415781700000038 a001 10472279279564194/433494437 2415781700000038 a001 66978574/1970299*599074578^(2/3) 2415781700000038 a001 3524578/1568397607*45537549124^(16/17) 2415781700000038 a001 3524578/1568397607*14662949395604^(16/21) 2415781700000038 a001 3524667/39604*(1/2+1/2*5^(1/2))^26 2415781700000038 a001 3524578/1568397607*192900153618^(8/9) 2415781700000038 a001 3524667/39604*73681302247^(1/2) 2415781700000038 a001 3524578/1568397607*73681302247^(12/13) 2415781700000038 a001 3524667/39604*10749957122^(13/24) 2415781700000038 a001 3524667/39604*4106118243^(13/23) 2415781700000038 a001 3524667/39604*1568397607^(13/22) 2415781700000038 a001 13708391546790161/567451585 2415781700000038 a001 1836311903/7881196*2537720636^(8/15) 2415781700000038 a001 12586269025/7881196*2537720636^(4/9) 2415781700000038 a001 7778742049/7881196*2537720636^(7/15) 2415781700000038 a001 32951280099/7881196*2537720636^(2/5) 2415781700000038 a001 1836311903/7881196*45537549124^(8/17) 2415781700000038 a001 3524578/4106118243*312119004989^(10/11) 2415781700000038 a001 1836311903/7881196*14662949395604^(8/21) 2415781700000038 a001 1836311903/7881196*(1/2+1/2*5^(1/2))^24 2415781700000038 a001 3524578/4106118243*3461452808002^(5/6) 2415781700000038 a001 1836311903/7881196*192900153618^(4/9) 2415781700000038 a001 1836311903/7881196*73681302247^(6/13) 2415781700000038 a001 1836311903/7881196*10749957122^(1/2) 2415781700000038 a001 139583862445/7881196*2537720636^(1/3) 2415781700000038 a001 591286729879/7881196*2537720636^(4/15) 2415781700000038 a001 387002188980/1970299*2537720636^(2/9) 2415781700000038 a001 2504730781961/7881196*2537720636^(1/5) 2415781700000038 a001 1836311903/7881196*4106118243^(12/23) 2415781700000038 a001 71778070001176772/2971215073 2415781700000038 a001 10610209857723/7881196*2537720636^(2/15) 2415781700000038 a001 1201881744/1970299*312119004989^(2/5) 2415781700000038 a001 1201881744/1970299*(1/2+1/2*5^(1/2))^22 2415781700000038 a001 1762289/5374978561*505019158607^(13/14) 2415781700000038 a001 1201881744/1970299*10749957122^(11/24) 2415781700000038 a001 187917426909949994/7778742049 2415781700000038 a001 12586269025/7881196*(1/2+1/2*5^(1/2))^20 2415781700000038 a001 12586269025/7881196*23725150497407^(5/16) 2415781700000038 a001 12586269025/7881196*505019158607^(5/14) 2415781700000038 a001 12586269025/7881196*73681302247^(5/13) 2415781700000038 a001 225851433717/7881196*17393796001^(2/7) 2415781700000038 a001 12586269025/7881196*28143753123^(2/5) 2415781700000038 a001 245987105364336605/10182505537 2415781700000038 a001 32951280099/7881196*45537549124^(6/17) 2415781700000038 a001 32951280099/7881196*14662949395604^(2/7) 2415781700000038 a001 32951280099/7881196*(1/2+1/2*5^(1/2))^18 2415781700000038 a001 32951280099/7881196*192900153618^(1/3) 2415781700000038 a001 139583862445/7881196*45537549124^(5/17) 2415781700000038 a001 591286729879/7881196*45537549124^(4/17) 2415781700000038 a001 53316291173/7881196*45537549124^(1/3) 2415781700000038 a001 2504730781961/7881196*45537549124^(3/17) 2415781700000038 a001 1288005205276069636/53316291173 2415781700000038 a001 10610209857723/7881196*45537549124^(2/17) 2415781700000038 a001 21566892818/1970299*(1/2+1/2*5^(1/2))^16 2415781700000038 a001 37888105675275682/1568358005 2415781700000038 a001 225851433717/7881196*14662949395604^(2/9) 2415781700000038 a001 225851433717/7881196*(1/2+1/2*5^(1/2))^14 2415781700000038 a001 387002188980/1970299*(1/2+1/2*5^(1/2))^10 2415781700000038 a001 10610209857723/7881196*14662949395604^(2/21) 2415781700000038 a001 10610209857723/7881196*(1/2+1/2*5^(1/2))^6 2415781700000038 a006 5^(1/2)*Fibonacci(70)/Lucas(33)/sqrt(5) 2415781700000038 a001 2504730781961/7881196*(1/2+1/2*5^(1/2))^9 2415781700000038 a001 956722026041/7881196*(1/2+1/2*5^(1/2))^11 2415781700000038 a001 14284196614945539218/591286729879 2415781700000038 a001 139583862445/7881196*312119004989^(3/11) 2415781700000038 a001 139583862445/7881196*14662949395604^(5/21) 2415781700000038 a001 139583862445/7881196*(1/2+1/2*5^(1/2))^15 2415781700000038 a001 139583862445/7881196*192900153618^(5/18) 2415781700000038 a001 1042018099911733031/43133785636 2415781700000038 a001 4052739537881/7881196*73681302247^(2/13) 2415781700000038 a001 591286729879/7881196*73681302247^(3/13) 2415781700000038 a001 182717648081/3940598*73681302247^(1/4) 2415781700000038 a001 3524578/119218851371*14662949395604^(19/21) 2415781700000038 a001 265343664849132142/10983760033 2415781700000038 a001 387002188980/1970299*28143753123^(1/5) 2415781700000038 a001 139583862445/7881196*28143753123^(3/10) 2415781700000038 a001 10182505537/3940598*817138163596^(1/3) 2415781700000038 a001 10182505537/3940598*(1/2+1/2*5^(1/2))^19 2415781700000038 a001 10610209857723/7881196*10749957122^(1/8) 2415781700000038 a001 304056783818723216/12586269025 2415781700000038 a001 4052739537881/7881196*10749957122^(1/6) 2415781700000038 a001 2504730781961/7881196*10749957122^(3/16) 2415781700000038 a001 387002188980/1970299*10749957122^(5/24) 2415781700000038 a001 7778742049/7881196*17393796001^(3/7) 2415781700000038 a001 591286729879/7881196*10749957122^(1/4) 2415781700000038 a001 12586269025/7881196*10749957122^(5/12) 2415781700000038 a001 225851433717/7881196*10749957122^(7/24) 2415781700000038 a001 139583862445/7881196*10749957122^(5/16) 2415781700000038 a001 21566892818/1970299*10749957122^(1/3) 2415781700000038 a001 32951280099/7881196*10749957122^(3/8) 2415781700000038 a001 7778742049/7881196*45537549124^(7/17) 2415781700000038 a001 7778742049/7881196*14662949395604^(1/3) 2415781700000038 a001 7778742049/7881196*(1/2+1/2*5^(1/2))^21 2415781700000038 a001 7778742049/7881196*192900153618^(7/18) 2415781700000038 a001 7778742049/7881196*10749957122^(7/16) 2415781700000038 a001 10610209857723/7881196*4106118243^(3/23) 2415781700000038 a001 19356559484795537/801254496 2415781700000038 a001 4052739537881/7881196*4106118243^(4/23) 2415781700000038 a001 387002188980/1970299*4106118243^(5/23) 2415781700000038 a001 591286729879/7881196*4106118243^(6/23) 2415781700000038 a001 225851433717/7881196*4106118243^(7/23) 2415781700000038 a001 1201881744/1970299*4106118243^(11/23) 2415781700000038 a001 21566892818/1970299*4106118243^(8/23) 2415781700000038 a001 3524578/6643838879*817138163596^(17/19) 2415781700000038 a001 3524578/6643838879*14662949395604^(17/21) 2415781700000038 a001 2971215073/7881196*(1/2+1/2*5^(1/2))^23 2415781700000038 a001 3524578/6643838879*192900153618^(17/18) 2415781700000038 a001 32951280099/7881196*4106118243^(9/23) 2415781700000038 a001 12586269025/7881196*4106118243^(10/23) 2415781700000038 a001 2971215073/7881196*4106118243^(1/2) 2415781700000038 a001 10610209857723/7881196*1568397607^(3/22) 2415781700000038 a001 44361286907596450/1836311903 2415781700000038 a001 567451585/3940598*2537720636^(5/9) 2415781700000038 a001 4052739537881/7881196*1568397607^(2/11) 2415781700000038 a001 387002188980/1970299*1568397607^(5/22) 2415781700000038 a001 956722026041/7881196*1568397607^(1/4) 2415781700000038 a001 591286729879/7881196*1568397607^(3/11) 2415781700000038 a001 225851433717/7881196*1568397607^(7/22) 2415781700000038 a001 21566892818/1970299*1568397607^(4/11) 2415781700000038 a001 567451585/3940598*312119004989^(5/11) 2415781700000038 a001 1762289/1268860318*14662949395604^(7/9) 2415781700000038 a001 567451585/3940598*(1/2+1/2*5^(1/2))^25 2415781700000038 a001 567451585/3940598*3461452808002^(5/12) 2415781700000038 a001 1762289/1268860318*505019158607^(7/8) 2415781700000038 a001 567451585/3940598*28143753123^(1/2) 2415781700000038 a001 1836311903/7881196*1568397607^(6/11) 2415781700000038 a001 32951280099/7881196*1568397607^(9/22) 2415781700000038 a001 12586269025/7881196*1568397607^(5/11) 2415781700000038 a001 1201881744/1970299*1568397607^(1/2) 2415781700000038 a001 63462561101184/2626999 2415781700000038 a001 10610209857723/7881196*599074578^(1/7) 2415781700000038 a001 3278735159921/3940598*599074578^(1/6) 2415781700000038 a001 4052739537881/7881196*599074578^(4/21) 2415781700000038 a001 2504730781961/7881196*599074578^(3/14) 2415781700000038 a001 387002188980/1970299*599074578^(5/21) 2415781700000038 a001 591286729879/7881196*599074578^(2/7) 2415781700000038 a001 225851433717/7881196*599074578^(1/3) 2415781700000038 a001 433494437/7881196*2537720636^(3/5) 2415781700000038 a001 139583862445/7881196*599074578^(5/14) 2415781700000038 a001 21566892818/1970299*599074578^(8/21) 2415781700000038 a001 433494437/7881196*45537549124^(9/17) 2415781700000038 a001 433494437/7881196*817138163596^(9/19) 2415781700000038 a001 433494437/7881196*14662949395604^(3/7) 2415781700000038 a001 433494437/7881196*(1/2+1/2*5^(1/2))^27 2415781700000038 a001 433494437/7881196*192900153618^(1/2) 2415781700000038 a001 433494437/7881196*10749957122^(9/16) 2415781700000038 a001 32951280099/7881196*599074578^(3/7) 2415781700000038 a001 3524667/39604*599074578^(13/21) 2415781700000038 a001 12586269025/7881196*599074578^(10/21) 2415781700000038 a001 7778742049/7881196*599074578^(1/2) 2415781700000038 a001 1201881744/1970299*599074578^(11/21) 2415781700000038 a001 1836311903/7881196*599074578^(4/7) 2415781700000038 a001 3236112267225967/133957148 2415781700000038 a001 433494437/7881196*599074578^(9/14) 2415781700000038 a001 10610209857723/7881196*228826127^(3/20) 2415781700000038 a001 4052739537881/7881196*228826127^(1/5) 2415781700000038 a001 387002188980/1970299*228826127^(1/4) 2415781700000038 a001 591286729879/7881196*228826127^(3/10) 2415781700000038 a001 225851433717/7881196*228826127^(7/20) 2415781700000038 a001 139583862445/7881196*228826127^(3/8) 2415781700000038 a001 3524578/370248451*45537549124^(15/17) 2415781700000038 a001 3524578/370248451*312119004989^(9/11) 2415781700000038 a001 3524578/370248451*14662949395604^(5/7) 2415781700000038 a001 165580141/7881196*(1/2+1/2*5^(1/2))^29 2415781700000038 a001 165580141/7881196*1322157322203^(1/2) 2415781700000038 a001 3524578/370248451*192900153618^(5/6) 2415781700000038 a001 3524578/370248451*28143753123^(9/10) 2415781700000038 a001 3524578/370248451*10749957122^(15/16) 2415781700000038 a001 21566892818/1970299*228826127^(2/5) 2415781700000038 a001 32951280099/7881196*228826127^(9/20) 2415781700000038 a001 12586269025/7881196*228826127^(1/2) 2415781700000038 a001 1201881744/1970299*228826127^(11/20) 2415781700000038 a001 66978574/1970299*228826127^(7/10) 2415781700000038 a001 1836311903/7881196*228826127^(3/5) 2415781700000038 a001 3524667/39604*228826127^(13/20) 2415781700000038 a001 567451585/3940598*228826127^(5/8) 2415781700000038 a001 824056596446558/34111385 2415781700000038 a001 10610209857723/7881196*87403803^(3/19) 2415781700000038 a001 4052739537881/7881196*87403803^(4/19) 2415781700000038 a001 387002188980/1970299*87403803^(5/19) 2415781700000038 a001 591286729879/7881196*87403803^(6/19) 2415781700000038 a001 225851433717/7881196*87403803^(7/19) 2415781700000038 a001 4052739537881/54018521*4870847^(3/8) 2415781700000038 a001 31622993/3940598*(1/2+1/2*5^(1/2))^31 2415781700000038 a001 31622993/3940598*9062201101803^(1/2) 2415781700000038 a001 21566892818/1970299*87403803^(8/19) 2415781700000038 a001 32951280099/7881196*87403803^(9/19) 2415781700000038 a001 10182505537/3940598*87403803^(1/2) 2415781700000038 a001 12586269025/7881196*87403803^(10/19) 2415781700000038 a001 1201881744/1970299*87403803^(11/19) 2415781700000038 a001 1836311903/7881196*87403803^(12/19) 2415781700000038 a001 102334155/7881196*87403803^(15/19) 2415781700000038 a001 3524667/39604*87403803^(13/19) 2415781700000038 a001 66978574/1970299*87403803^(14/19) 2415781700000038 a001 944284833567088/39088169 2415781700000038 a001 10610209857723/7881196*33385282^(1/6) 2415781700000038 a001 4052739537881/7881196*33385282^(2/9) 2415781700000038 a001 2504730781961/7881196*33385282^(1/4) 2415781700000038 a001 387002188980/1970299*33385282^(5/18) 2415781700000038 a001 591286729879/7881196*33385282^(1/3) 2415781700000038 a001 24157817/7881196*141422324^(11/13) 2415781700000038 a001 24157817/7881196*2537720636^(11/15) 2415781700000038 a001 24157817/7881196*45537549124^(11/17) 2415781700000038 a001 24157817/7881196*312119004989^(3/5) 2415781700000038 a001 24157817/7881196*14662949395604^(11/21) 2415781700000038 a001 24157817/7881196*(1/2+1/2*5^(1/2))^33 2415781700000038 a001 24157817/7881196*192900153618^(11/18) 2415781700000038 a001 24157817/7881196*10749957122^(11/16) 2415781700000038 a001 24157817/7881196*1568397607^(3/4) 2415781700000038 a001 24157817/7881196*599074578^(11/14) 2415781700000038 a001 225851433717/7881196*33385282^(7/18) 2415781700000038 a001 139583862445/7881196*33385282^(5/12) 2415781700000039 a001 21566892818/1970299*33385282^(4/9) 2415781700000039 a001 32951280099/7881196*33385282^(1/2) 2415781700000039 a001 12586269025/7881196*33385282^(5/9) 2415781700000039 a001 7778742049/7881196*33385282^(7/12) 2415781700000039 a001 1201881744/1970299*33385282^(11/18) 2415781700000039 a001 1836311903/7881196*33385282^(2/3) 2415781700000039 a001 3524667/39604*33385282^(13/18) 2415781700000039 a001 39088169/7881196*33385282^(8/9) 2415781700000039 a001 433494437/7881196*33385282^(3/4) 2415781700000039 a001 66978574/1970299*33385282^(7/9) 2415781700000039 a001 102334155/7881196*33385282^(5/6) 2415781700000040 a001 60114118560265/2488392 2415781700000040 a001 10610209857723/7881196*12752043^(3/17) 2415781700000040 a001 24157817/7881196*33385282^(11/12) 2415781700000041 a001 956722026041/33385282*4870847^(7/16) 2415781700000041 a001 4052739537881/7881196*12752043^(4/17) 2415781700000041 a001 53316291173/12752043*4870847^(9/16) 2415781700000042 a001 387002188980/1970299*12752043^(5/17) 2415781700000043 a001 140728068720/1875749*4870847^(3/8) 2415781700000043 a001 591286729879/7881196*12752043^(6/17) 2415781700000043 a001 2504730781961/87403803*4870847^(7/16) 2415781700000043 a001 6557470319842/228826127*4870847^(7/16) 2415781700000043 a001 10610209857723/370248451*4870847^(7/16) 2415781700000043 a001 3524578/20633239*2537720636^(13/15) 2415781700000043 a001 9227465/7881196*2537720636^(7/9) 2415781700000043 a001 9227465/7881196*17393796001^(5/7) 2415781700000043 a001 3524578/20633239*45537549124^(13/17) 2415781700000043 a001 9227465/7881196*312119004989^(7/11) 2415781700000043 a001 3524578/20633239*14662949395604^(13/21) 2415781700000043 a001 9227465/7881196*14662949395604^(5/9) 2415781700000043 a001 3524578/20633239*(1/2+1/2*5^(1/2))^39 2415781700000043 a001 9227465/7881196*(1/2+1/2*5^(1/2))^35 2415781700000043 a001 3524578/20633239*192900153618^(13/18) 2415781700000043 a001 3524578/20633239*73681302247^(3/4) 2415781700000043 a001 9227465/7881196*28143753123^(7/10) 2415781700000043 a001 3524578/20633239*10749957122^(13/16) 2415781700000043 a001 9227465/7881196*599074578^(5/6) 2415781700000043 a001 3524578/20633239*599074578^(13/14) 2415781700000043 a001 9227465/7881196*228826127^(7/8) 2415781700000043 a001 4052739537881/141422324*4870847^(7/16) 2415781700000044 a001 225851433717/7881196*12752043^(7/17) 2415781700000044 a001 1548008755920/54018521*4870847^(7/16) 2415781700000045 a001 21566892818/1970299*12752043^(8/17) 2415781700000045 a001 53316291173/7881196*12752043^(1/2) 2415781700000045 a001 32951280099/7881196*12752043^(9/17) 2415781700000046 a001 12586269025/7881196*12752043^(10/17) 2415781700000047 a001 1201881744/1970299*12752043^(11/17) 2415781700000047 a001 182717648081/16692641*4870847^(1/2) 2415781700000047 a001 20365011074/12752043*4870847^(5/8) 2415781700000048 a001 1836311903/7881196*12752043^(12/17) 2415781700000049 a001 591286729879/20633239*4870847^(7/16) 2415781700000049 a001 3524667/39604*12752043^(13/17) 2415781700000049 a001 956722026041/87403803*4870847^(1/2) 2415781700000050 a001 2504730781961/228826127*4870847^(1/2) 2415781700000050 a001 3278735159921/299537289*4870847^(1/2) 2415781700000050 a001 10610209857723/969323029*4870847^(1/2) 2415781700000050 a001 4052739537881/370248451*4870847^(1/2) 2415781700000050 a001 387002188980/35355581*4870847^(1/2) 2415781700000050 a001 66978574/1970299*12752043^(14/17) 2415781700000050 a001 591286729879/54018521*4870847^(1/2) 2415781700000051 a001 102334155/7881196*12752043^(15/17) 2415781700000051 a001 39088169/7881196*12752043^(16/17) 2415781700000052 a001 137769300517682/5702887 2415781700000054 a001 139583862445/33385282*4870847^(9/16) 2415781700000054 a001 7778742049/12752043*4870847^(11/16) 2415781700000055 a001 7787980473/711491*4870847^(1/2) 2415781700000056 a001 365435296162/87403803*4870847^(9/16) 2415781700000056 a001 956722026041/228826127*4870847^(9/16) 2415781700000056 a001 2504730781961/599074578*4870847^(9/16) 2415781700000056 a001 6557470319842/1568397607*4870847^(9/16) 2415781700000056 a001 10610209857723/2537720636*4870847^(9/16) 2415781700000056 a001 4052739537881/969323029*4870847^(9/16) 2415781700000056 a001 1548008755920/370248451*4870847^(9/16) 2415781700000056 a001 591286729879/141422324*4870847^(9/16) 2415781700000057 a001 10610209857723/7881196*4870847^(3/16) 2415781700000057 a001 225851433717/54018521*4870847^(9/16) 2415781700000060 a001 53316291173/33385282*4870847^(5/8) 2415781700000060 a001 2971215073/12752043*4870847^(3/4) 2415781700000062 a001 86267571272/20633239*4870847^(9/16) 2415781700000062 a001 139583862445/87403803*4870847^(5/8) 2415781700000062 a001 365435296162/228826127*4870847^(5/8) 2415781700000062 a001 956722026041/599074578*4870847^(5/8) 2415781700000062 a001 2504730781961/1568397607*4870847^(5/8) 2415781700000062 a001 6557470319842/4106118243*4870847^(5/8) 2415781700000062 a001 10610209857723/6643838879*4870847^(5/8) 2415781700000062 a001 4052739537881/2537720636*4870847^(5/8) 2415781700000062 a001 1548008755920/969323029*4870847^(5/8) 2415781700000062 a001 591286729879/370248451*4870847^(5/8) 2415781700000062 a001 225851433717/141422324*4870847^(5/8) 2415781700000063 a001 4052739537881/7881196*4870847^(1/4) 2415781700000063 a001 86267571272/54018521*4870847^(5/8) 2415781700000067 a001 10182505537/16692641*4870847^(11/16) 2415781700000067 a001 1134903170/12752043*4870847^(13/16) 2415781700000068 a001 32951280099/20633239*4870847^(5/8) 2415781700000068 a001 53316291173/87403803*4870847^(11/16) 2415781700000069 a001 139583862445/228826127*4870847^(11/16) 2415781700000069 a001 182717648081/299537289*4870847^(11/16) 2415781700000069 a001 956722026041/1568397607*4870847^(11/16) 2415781700000069 a001 2504730781961/4106118243*4870847^(11/16) 2415781700000069 a001 3278735159921/5374978561*4870847^(11/16) 2415781700000069 a001 10610209857723/17393796001*4870847^(11/16) 2415781700000069 a001 4052739537881/6643838879*4870847^(11/16) 2415781700000069 a001 1134903780/1860499*4870847^(11/16) 2415781700000069 a001 591286729879/969323029*4870847^(11/16) 2415781700000069 a001 225851433717/370248451*4870847^(11/16) 2415781700000069 a001 21566892818/35355581*4870847^(11/16) 2415781700000069 a001 387002188980/1970299*4870847^(5/16) 2415781700000070 a001 32951280099/54018521*4870847^(11/16) 2415781700000073 a001 7778742049/33385282*4870847^(3/4) 2415781700000073 a001 433494437/12752043*4870847^(7/8) 2415781700000074 a001 1144206275/1875749*4870847^(11/16) 2415781700000075 a001 20365011074/87403803*4870847^(3/4) 2415781700000075 a001 53316291173/228826127*4870847^(3/4) 2415781700000075 a001 139583862445/599074578*4870847^(3/4) 2415781700000075 a001 365435296162/1568397607*4870847^(3/4) 2415781700000075 a001 956722026041/4106118243*4870847^(3/4) 2415781700000075 a001 2504730781961/10749957122*4870847^(3/4) 2415781700000075 a001 6557470319842/28143753123*4870847^(3/4) 2415781700000075 a001 10610209857723/45537549124*4870847^(3/4) 2415781700000075 a001 4052739537881/17393796001*4870847^(3/4) 2415781700000075 a001 1548008755920/6643838879*4870847^(3/4) 2415781700000075 a001 591286729879/2537720636*4870847^(3/4) 2415781700000075 a001 225851433717/969323029*4870847^(3/4) 2415781700000075 a001 86267571272/370248451*4870847^(3/4) 2415781700000075 a001 63246219/271444*4870847^(3/4) 2415781700000076 a001 591286729879/7881196*4870847^(3/8) 2415781700000076 a001 12586269025/54018521*4870847^(3/4) 2415781700000076 a001 1762289/3940598*(1/2+1/2*5^(1/2))^37 2415781700000079 a001 2971215073/33385282*4870847^(13/16) 2415781700000079 a001 165580141/12752043*4870847^(15/16) 2415781700000081 a001 4807526976/20633239*4870847^(3/4) 2415781700000081 a001 7778742049/87403803*4870847^(13/16) 2415781700000081 a001 20365011074/228826127*4870847^(13/16) 2415781700000081 a001 53316291173/599074578*4870847^(13/16) 2415781700000081 a001 139583862445/1568397607*4870847^(13/16) 2415781700000081 a001 365435296162/4106118243*4870847^(13/16) 2415781700000081 a001 956722026041/10749957122*4870847^(13/16) 2415781700000081 a001 2504730781961/28143753123*4870847^(13/16) 2415781700000081 a001 6557470319842/73681302247*4870847^(13/16) 2415781700000081 a001 10610209857723/119218851371*4870847^(13/16) 2415781700000081 a001 4052739537881/45537549124*4870847^(13/16) 2415781700000081 a001 1548008755920/17393796001*4870847^(13/16) 2415781700000081 a001 591286729879/6643838879*4870847^(13/16) 2415781700000081 a001 225851433717/2537720636*4870847^(13/16) 2415781700000081 a001 86267571272/969323029*4870847^(13/16) 2415781700000081 a001 32951280099/370248451*4870847^(13/16) 2415781700000082 a001 12586269025/141422324*4870847^(13/16) 2415781700000082 a001 225851433717/7881196*4870847^(7/16) 2415781700000082 a001 4807526976/54018521*4870847^(13/16) 2415781700000083 a001 2504730781961/4870847*1860498^(4/15) 2415781700000086 a001 567451585/16692641*4870847^(7/8) 2415781700000087 a001 1836311903/20633239*4870847^(13/16) 2415781700000087 a001 2971215073/87403803*4870847^(7/8) 2415781700000088 a001 7778742049/228826127*4870847^(7/8) 2415781700000088 a001 10182505537/299537289*4870847^(7/8) 2415781700000088 a001 53316291173/1568397607*4870847^(7/8) 2415781700000088 a001 139583862445/4106118243*4870847^(7/8) 2415781700000088 a001 182717648081/5374978561*4870847^(7/8) 2415781700000088 a001 956722026041/28143753123*4870847^(7/8) 2415781700000088 a001 2504730781961/73681302247*4870847^(7/8) 2415781700000088 a001 3278735159921/96450076809*4870847^(7/8) 2415781700000088 a001 10610209857723/312119004989*4870847^(7/8) 2415781700000088 a001 4052739537881/119218851371*4870847^(7/8) 2415781700000088 a001 387002188980/11384387281*4870847^(7/8) 2415781700000088 a001 591286729879/17393796001*4870847^(7/8) 2415781700000088 a001 225851433717/6643838879*4870847^(7/8) 2415781700000088 a001 1135099622/33391061*4870847^(7/8) 2415781700000088 a001 32951280099/969323029*4870847^(7/8) 2415781700000088 a001 12586269025/370248451*4870847^(7/8) 2415781700000088 a001 1201881744/35355581*4870847^(7/8) 2415781700000088 a001 21566892818/1970299*4870847^(1/2) 2415781700000089 a001 1836311903/54018521*4870847^(7/8) 2415781700000091 a001 52623190191455/2178309 2415781700000092 a001 433494437/33385282*4870847^(15/16) 2415781700000093 a001 701408733/20633239*4870847^(7/8) 2415781700000094 a001 1134903170/87403803*4870847^(15/16) 2415781700000094 a001 2971215073/228826127*4870847^(15/16) 2415781700000094 a001 7778742049/599074578*4870847^(15/16) 2415781700000094 a001 20365011074/1568397607*4870847^(15/16) 2415781700000094 a001 53316291173/4106118243*4870847^(15/16) 2415781700000094 a001 139583862445/10749957122*4870847^(15/16) 2415781700000094 a001 365435296162/28143753123*4870847^(15/16) 2415781700000094 a001 956722026041/73681302247*4870847^(15/16) 2415781700000094 a001 2504730781961/192900153618*4870847^(15/16) 2415781700000094 a001 10610209857723/817138163596*4870847^(15/16) 2415781700000094 a001 4052739537881/312119004989*4870847^(15/16) 2415781700000094 a001 1548008755920/119218851371*4870847^(15/16) 2415781700000094 a001 591286729879/45537549124*4870847^(15/16) 2415781700000094 a001 7787980473/599786069*4870847^(15/16) 2415781700000094 a001 86267571272/6643838879*4870847^(15/16) 2415781700000094 a001 32951280099/2537720636*4870847^(15/16) 2415781700000094 a001 12586269025/969323029*4870847^(15/16) 2415781700000094 a001 4807526976/370248451*4870847^(15/16) 2415781700000094 a001 1836311903/141422324*4870847^(15/16) 2415781700000095 a001 32951280099/7881196*4870847^(9/16) 2415781700000095 a001 701408733/54018521*4870847^(15/16) 2415781700000100 a001 9238424/711491*4870847^(15/16) 2415781700000101 a001 12586269025/7881196*4870847^(5/8) 2415781700000106 a001 1548008755920/4870847*1860498^(3/10) 2415781700000108 a001 1201881744/1970299*4870847^(11/16) 2415781700000114 a001 1836311903/7881196*4870847^(3/4) 2415781700000120 a001 3524667/39604*4870847^(13/16) 2415781700000127 a001 66978574/1970299*4870847^(7/8) 2415781700000129 a001 956722026041/4870847*1860498^(1/3) 2415781700000133 a001 102334155/7881196*4870847^(15/16) 2415781700000137 a001 17541063397152/726103 2415781700000163 a001 2178309/3010349*141422324^(12/13) 2415781700000163 a001 2178309/3010349*2537720636^(4/5) 2415781700000163 a001 2178309/3010349*45537549124^(12/17) 2415781700000163 a001 1346269/4870847*817138163596^(2/3) 2415781700000163 a001 1346269/4870847*(1/2+1/2*5^(1/2))^38 2415781700000163 a001 2178309/3010349*14662949395604^(4/7) 2415781700000163 a001 2178309/3010349*(1/2+1/2*5^(1/2))^36 2415781700000163 a001 2178309/3010349*192900153618^(2/3) 2415781700000163 a001 2178309/3010349*73681302247^(9/13) 2415781700000163 a001 2178309/3010349*10749957122^(3/4) 2415781700000163 a001 1346269/4870847*10749957122^(19/24) 2415781700000163 a001 2178309/3010349*4106118243^(18/23) 2415781700000163 a001 1346269/4870847*4106118243^(19/23) 2415781700000163 a001 2178309/3010349*1568397607^(9/11) 2415781700000163 a001 1346269/4870847*1568397607^(19/22) 2415781700000163 a001 2178309/3010349*599074578^(6/7) 2415781700000163 a001 1346269/4870847*599074578^(19/21) 2415781700000163 a001 2178309/3010349*228826127^(9/10) 2415781700000163 a001 1346269/4870847*228826127^(19/20) 2415781700000164 a001 2178309/3010349*87403803^(18/19) 2415781700000170 a001 6557470319842/12752043*1860498^(4/15) 2415781700000176 a001 365435296162/4870847*1860498^(2/5) 2415781700000177 a001 10610209857723/7881196*1860498^(1/5) 2415781700000190 a001 10610209857723/20633239*1860498^(4/15) 2415781700000193 a001 4052739537881/12752043*1860498^(3/10) 2415781700000206 a001 1515744265389/4769326*1860498^(3/10) 2415781700000214 a001 6557470319842/20633239*1860498^(3/10) 2415781700000216 a001 2504730781961/12752043*1860498^(1/3) 2415781700000223 a001 139583862445/4870847*1860498^(7/15) 2415781700000224 a001 4052739537881/7881196*1860498^(4/15) 2415781700000226 a001 42573055163117/1762289 2415781700000229 a001 3278735159921/16692641*1860498^(1/3) 2415781700000230 a001 39088169/3010349*7881196^(10/11) 2415781700000232 a001 10610209857723/54018521*1860498^(1/3) 2415781700000233 a001 165580141/3010349*7881196^(9/11) 2415781700000237 a001 701408733/3010349*7881196^(8/11) 2415781700000237 a001 4052739537881/20633239*1860498^(1/3) 2415781700000239 a001 1836311903/3010349*7881196^(2/3) 2415781700000240 a001 2971215073/3010349*7881196^(7/11) 2415781700000244 a001 12586269025/3010349*7881196^(6/11) 2415781700000246 a001 86267571272/4870847*1860498^(1/2) 2415781700000247 a001 2504730781961/7881196*1860498^(3/10) 2415781700000248 a001 53316291173/3010349*7881196^(5/11) 2415781700000250 a001 1346269/12752043*2537720636^(8/9) 2415781700000250 a001 5702887/3010349*45537549124^(2/3) 2415781700000250 a001 1346269/12752043*312119004989^(8/11) 2415781700000250 a001 1346269/12752043*(1/2+1/2*5^(1/2))^40 2415781700000250 a001 1346269/12752043*23725150497407^(5/8) 2415781700000250 a001 5702887/3010349*(1/2+1/2*5^(1/2))^34 2415781700000250 a001 1346269/12752043*73681302247^(10/13) 2415781700000250 a001 1346269/12752043*28143753123^(4/5) 2415781700000250 a001 5702887/3010349*10749957122^(17/24) 2415781700000250 a001 1346269/12752043*10749957122^(5/6) 2415781700000250 a001 5702887/3010349*4106118243^(17/23) 2415781700000250 a001 1346269/12752043*4106118243^(20/23) 2415781700000250 a001 5702887/3010349*1568397607^(17/22) 2415781700000250 a001 1346269/12752043*1568397607^(10/11) 2415781700000250 a001 5702887/3010349*599074578^(17/21) 2415781700000250 a001 1346269/12752043*599074578^(20/21) 2415781700000250 a001 5702887/3010349*228826127^(17/20) 2415781700000251 a001 5702887/3010349*87403803^(17/19) 2415781700000251 a001 225851433717/3010349*7881196^(4/11) 2415781700000252 a001 365435296162/3010349*7881196^(1/3) 2415781700000252 a001 5702887/3010349*33385282^(17/18) 2415781700000255 a001 956722026041/3010349*7881196^(3/11) 2415781700000258 a001 1346269*7881196^(2/11) 2415781700000259 a001 2504730781961/710647*271443^(2/13) 2415781700000260 a001 222915410843929/9227465 2415781700000260 a001 39088169/3010349*20633239^(6/7) 2415781700000261 a001 102334155/3010349*20633239^(4/5) 2415781700000261 a001 433494437/3010349*20633239^(5/7) 2415781700000262 a001 2971215073/3010349*20633239^(3/5) 2415781700000262 a001 4807526976/3010349*20633239^(4/7) 2415781700000263 a001 53316291173/3010349*20633239^(3/7) 2415781700000263 a001 86267571272/3010349*20633239^(2/5) 2415781700000263 a001 956722026041/12752043*1860498^(2/5) 2415781700000263 a001 1346269/33385282*2537720636^(14/15) 2415781700000263 a001 1346269/33385282*17393796001^(6/7) 2415781700000263 a001 1346269/33385282*45537549124^(14/17) 2415781700000263 a001 1346269/33385282*14662949395604^(2/3) 2415781700000263 a001 1346269/33385282*(1/2+1/2*5^(1/2))^42 2415781700000263 a001 14930352/3010349*(1/2+1/2*5^(1/2))^32 2415781700000263 a001 1346269/33385282*505019158607^(3/4) 2415781700000263 a001 1346269/33385282*192900153618^(7/9) 2415781700000263 a001 14930352/3010349*73681302247^(8/13) 2415781700000263 a001 14930352/3010349*10749957122^(2/3) 2415781700000263 a001 1346269/33385282*10749957122^(7/8) 2415781700000263 a001 14930352/3010349*4106118243^(16/23) 2415781700000263 a001 1346269/33385282*4106118243^(21/23) 2415781700000263 a001 14930352/3010349*1568397607^(8/11) 2415781700000263 a001 1346269/33385282*1568397607^(21/22) 2415781700000263 a001 14930352/3010349*599074578^(16/21) 2415781700000263 a001 14930352/3010349*228826127^(4/5) 2415781700000263 a001 14930352/3010349*87403803^(16/19) 2415781700000264 a001 591286729879/3010349*20633239^(2/7) 2415781700000264 a001 2504730781961/3010349*20633239^(1/5) 2415781700000264 a001 583600122205553/24157817 2415781700000264 a001 6557470319842/3010349*20633239^(1/7) 2415781700000265 a001 39088169/3010349*141422324^(10/13) 2415781700000265 a001 39088169/3010349*2537720636^(2/3) 2415781700000265 a001 39088169/3010349*45537549124^(10/17) 2415781700000265 a001 1346269/87403803*312119004989^(4/5) 2415781700000265 a001 39088169/3010349*312119004989^(6/11) 2415781700000265 a001 1346269/87403803*23725150497407^(11/16) 2415781700000265 a001 39088169/3010349*(1/2+1/2*5^(1/2))^30 2415781700000265 a001 39088169/3010349*192900153618^(5/9) 2415781700000265 a001 1346269/87403803*73681302247^(11/13) 2415781700000265 a001 39088169/3010349*28143753123^(3/5) 2415781700000265 a001 39088169/3010349*10749957122^(5/8) 2415781700000265 a001 1346269/87403803*10749957122^(11/12) 2415781700000265 a001 39088169/3010349*4106118243^(15/23) 2415781700000265 a001 1346269/87403803*4106118243^(22/23) 2415781700000265 a001 39088169/3010349*1568397607^(15/22) 2415781700000265 a001 39088169/3010349*599074578^(5/7) 2415781700000265 a001 39088169/3010349*228826127^(3/4) 2415781700000265 a001 14930352/3010349*33385282^(8/9) 2415781700000265 a001 763942477886365/31622993 2415781700000265 a001 267914296/3010349*141422324^(2/3) 2415781700000265 a001 701408733/3010349*141422324^(8/13) 2415781700000265 a001 39088169/3010349*87403803^(15/19) 2415781700000265 a001 165580141/3010349*141422324^(9/13) 2415781700000265 a001 2971215073/3010349*141422324^(7/13) 2415781700000265 a001 12586269025/3010349*141422324^(6/13) 2415781700000265 a001 53316291173/3010349*141422324^(5/13) 2415781700000265 a001 102334155/3010349*17393796001^(4/7) 2415781700000265 a001 102334155/3010349*14662949395604^(4/9) 2415781700000265 a001 102334155/3010349*(1/2+1/2*5^(1/2))^28 2415781700000265 a001 102334155/3010349*505019158607^(1/2) 2415781700000265 a001 102334155/3010349*73681302247^(7/13) 2415781700000265 a001 102334155/3010349*10749957122^(7/12) 2415781700000265 a001 1346269/228826127*10749957122^(23/24) 2415781700000265 a001 102334155/3010349*4106118243^(14/23) 2415781700000265 a001 102334155/3010349*1568397607^(7/11) 2415781700000265 a001 102334155/3010349*599074578^(2/3) 2415781700000265 a001 139583862445/3010349*141422324^(1/3) 2415781700000265 a001 225851433717/3010349*141422324^(4/13) 2415781700000265 a001 956722026041/3010349*141422324^(3/13) 2415781700000265 a001 1346269*141422324^(2/13) 2415781700000265 a001 4000054745112637/165580141 2415781700000265 a001 102334155/3010349*228826127^(7/10) 2415781700000265 a001 1346269/599074578*45537549124^(16/17) 2415781700000265 a001 1346269/599074578*14662949395604^(16/21) 2415781700000265 a001 267914296/3010349*(1/2+1/2*5^(1/2))^26 2415781700000265 a001 1346269/599074578*192900153618^(8/9) 2415781700000265 a001 267914296/3010349*73681302247^(1/2) 2415781700000265 a001 1346269/599074578*73681302247^(12/13) 2415781700000265 a001 267914296/3010349*10749957122^(13/24) 2415781700000265 a001 267914296/3010349*4106118243^(13/23) 2415781700000265 a001 267914296/3010349*1568397607^(13/22) 2415781700000265 a001 267914296/3010349*599074578^(13/21) 2415781700000265 a001 10472279279565181/433494437 2415781700000265 a001 701408733/3010349*2537720636^(8/15) 2415781700000265 a001 701408733/3010349*45537549124^(8/17) 2415781700000265 a001 1346269/1568397607*312119004989^(10/11) 2415781700000265 a001 701408733/3010349*14662949395604^(8/21) 2415781700000265 a001 701408733/3010349*(1/2+1/2*5^(1/2))^24 2415781700000265 a001 1346269/1568397607*3461452808002^(5/6) 2415781700000265 a001 701408733/3010349*192900153618^(4/9) 2415781700000265 a001 701408733/3010349*73681302247^(6/13) 2415781700000265 a001 701408733/3010349*10749957122^(1/2) 2415781700000265 a001 701408733/3010349*4106118243^(12/23) 2415781700000265 a001 701408733/3010349*1568397607^(6/11) 2415781700000265 a001 13708391546791453/567451585 2415781700000265 a001 4807526976/3010349*2537720636^(4/9) 2415781700000265 a001 12586269025/3010349*2537720636^(2/5) 2415781700000265 a001 1836311903/3010349*312119004989^(2/5) 2415781700000265 a001 1346269/4106118243*23725150497407^(13/16) 2415781700000265 a001 1836311903/3010349*(1/2+1/2*5^(1/2))^22 2415781700000265 a001 1346269/4106118243*505019158607^(13/14) 2415781700000265 a001 1836311903/3010349*10749957122^(11/24) 2415781700000265 a001 53316291173/3010349*2537720636^(1/3) 2415781700000265 a001 2971215073/3010349*2537720636^(7/15) 2415781700000265 a001 225851433717/3010349*2537720636^(4/15) 2415781700000265 a001 591286729879/3010349*2537720636^(2/9) 2415781700000265 a001 956722026041/3010349*2537720636^(1/5) 2415781700000265 a001 1836311903/3010349*4106118243^(11/23) 2415781700000265 a001 71778070001183537/2971215073 2415781700000265 a001 1346269*2537720636^(2/15) 2415781700000265 a001 6557470319842/3010349*2537720636^(1/9) 2415781700000265 a001 1346269/10749957122*14662949395604^(6/7) 2415781700000265 a001 4807526976/3010349*(1/2+1/2*5^(1/2))^20 2415781700000265 a001 4807526976/3010349*23725150497407^(5/16) 2415781700000265 a001 4807526976/3010349*73681302247^(5/13) 2415781700000265 a001 4807526976/3010349*28143753123^(2/5) 2415781700000265 a001 4807526976/3010349*10749957122^(5/12) 2415781700000265 a001 187917426909967705/7778742049 2415781700000265 a001 12586269025/3010349*45537549124^(6/17) 2415781700000265 a001 12586269025/3010349*14662949395604^(2/7) 2415781700000265 a001 12586269025/3010349*(1/2+1/2*5^(1/2))^18 2415781700000265 a001 12586269025/3010349*192900153618^(1/3) 2415781700000265 a001 86267571272/3010349*17393796001^(2/7) 2415781700000265 a001 245987105364359789/10182505537 2415781700000265 a001 2504730781961/3010349*17393796001^(1/7) 2415781700000265 a001 32951280099/3010349*(1/2+1/2*5^(1/2))^16 2415781700000265 a001 32951280099/3010349*23725150497407^(1/4) 2415781700000265 a001 32951280099/3010349*73681302247^(4/13) 2415781700000265 a001 225851433717/3010349*45537549124^(4/17) 2415781700000265 a001 956722026041/3010349*45537549124^(3/17) 2415781700000265 a001 53316291173/3010349*45537549124^(5/17) 2415781700000265 a001 1288005205276191029/53316291173 2415781700000265 a001 1346269*45537549124^(2/17) 2415781700000265 a001 86267571272/3010349*(1/2+1/2*5^(1/2))^14 2415781700000265 a001 3372041405099853509/139583862445 2415781700000265 a001 225851433717/3010349*817138163596^(4/19) 2415781700000265 a001 591286729879/3010349*(1/2+1/2*5^(1/2))^10 2415781700000265 a001 1548008755920/3010349*(1/2+1/2*5^(1/2))^8 2415781700000265 a001 10610209857723/3010349*(1/2+1/2*5^(1/2))^4 2415781700000265 a001 10610209857723/3010349*23725150497407^(1/16) 2415781700000265 a006 5^(1/2)*Fibonacci(68)/Lucas(31)/sqrt(5) 2415781700000265 a001 6557470319842/3010349*(1/2+1/2*5^(1/2))^5 2415781700000265 a001 2504730781961/3010349*(1/2+1/2*5^(1/2))^7 2415781700000265 a001 956722026041/3010349*(1/2+1/2*5^(1/2))^9 2415781700000265 a001 1548008755920/3010349*505019158607^(1/7) 2415781700000265 a001 139583862445/3010349*(1/2+1/2*5^(1/2))^13 2415781700000265 a001 10610209857723/3010349*73681302247^(1/13) 2415781700000265 a001 1548008755920/3010349*73681302247^(2/13) 2415781700000265 a001 225851433717/3010349*73681302247^(3/13) 2415781700000265 a001 139583862445/3010349*73681302247^(1/4) 2415781700000265 a001 53316291173/3010349*312119004989^(3/11) 2415781700000265 a001 53316291173/3010349*14662949395604^(5/21) 2415781700000265 a001 53316291173/3010349*(1/2+1/2*5^(1/2))^15 2415781700000265 a001 53316291173/3010349*192900153618^(5/18) 2415781700000265 a001 6557470319842/3010349*28143753123^(1/10) 2415781700000265 a001 796030994547471451/32951280099 2415781700000265 a001 591286729879/3010349*28143753123^(1/5) 2415781700000265 a001 20365011074/3010349*45537549124^(1/3) 2415781700000265 a001 53316291173/3010349*28143753123^(3/10) 2415781700000265 a001 1346269/45537549124*14662949395604^(19/21) 2415781700000265 a001 20365011074/3010349*(1/2+1/2*5^(1/2))^17 2415781700000265 a001 10610209857723/3010349*10749957122^(1/12) 2415781700000265 a001 1346269*10749957122^(1/8) 2415781700000265 a001 304056783818751873/12586269025 2415781700000265 a001 1548008755920/3010349*10749957122^(1/6) 2415781700000265 a001 956722026041/3010349*10749957122^(3/16) 2415781700000265 a001 591286729879/3010349*10749957122^(5/24) 2415781700000265 a001 12586269025/3010349*10749957122^(3/8) 2415781700000265 a001 225851433717/3010349*10749957122^(1/4) 2415781700000265 a001 86267571272/3010349*10749957122^(7/24) 2415781700000265 a001 32951280099/3010349*10749957122^(1/3) 2415781700000265 a001 53316291173/3010349*10749957122^(5/16) 2415781700000265 a001 7778742049/3010349*(1/2+1/2*5^(1/2))^19 2415781700000265 a001 1346269/17393796001*3461452808002^(11/12) 2415781700000265 a001 10610209857723/3010349*4106118243^(2/23) 2415781700000265 a001 1346269*4106118243^(3/23) 2415781700000265 a001 14517419613598021/600940872 2415781700000265 a001 1548008755920/3010349*4106118243^(4/23) 2415781700000265 a001 591286729879/3010349*4106118243^(5/23) 2415781700000265 a001 225851433717/3010349*4106118243^(6/23) 2415781700000265 a001 4807526976/3010349*4106118243^(10/23) 2415781700000265 a001 86267571272/3010349*4106118243^(7/23) 2415781700000265 a001 32951280099/3010349*4106118243^(8/23) 2415781700000265 a001 2971215073/3010349*17393796001^(3/7) 2415781700000265 a001 12586269025/3010349*4106118243^(9/23) 2415781700000265 a001 2971215073/3010349*45537549124^(7/17) 2415781700000265 a001 2971215073/3010349*14662949395604^(1/3) 2415781700000265 a001 2971215073/3010349*(1/2+1/2*5^(1/2))^21 2415781700000265 a001 2971215073/3010349*192900153618^(7/18) 2415781700000265 a001 2971215073/3010349*10749957122^(7/16) 2415781700000265 a001 10610209857723/3010349*1568397607^(1/11) 2415781700000265 a001 1346269*1568397607^(3/22) 2415781700000265 a001 44361286907600631/1836311903 2415781700000265 a001 1548008755920/3010349*1568397607^(2/11) 2415781700000265 a001 591286729879/3010349*1568397607^(5/22) 2415781700000265 a001 365435296162/3010349*1568397607^(1/4) 2415781700000265 a001 225851433717/3010349*1568397607^(3/11) 2415781700000265 a001 86267571272/3010349*1568397607^(7/22) 2415781700000265 a001 1836311903/3010349*1568397607^(1/2) 2415781700000265 a001 32951280099/3010349*1568397607^(4/11) 2415781700000265 a001 1346269/2537720636*817138163596^(17/19) 2415781700000265 a001 1346269/2537720636*14662949395604^(17/21) 2415781700000265 a001 1134903170/3010349*(1/2+1/2*5^(1/2))^23 2415781700000265 a001 1346269/2537720636*192900153618^(17/18) 2415781700000265 a001 12586269025/3010349*1568397607^(9/22) 2415781700000265 a001 4807526976/3010349*1568397607^(5/11) 2415781700000265 a001 1134903170/3010349*4106118243^(1/2) 2415781700000265 a001 10610209857723/3010349*599074578^(2/21) 2415781700000265 a001 1346269*599074578^(1/7) 2415781700000265 a001 16944503814017725/701408733 2415781700000265 a001 2504730781961/3010349*599074578^(1/6) 2415781700000265 a001 1548008755920/3010349*599074578^(4/21) 2415781700000265 a001 956722026041/3010349*599074578^(3/14) 2415781700000265 a001 591286729879/3010349*599074578^(5/21) 2415781700000265 a001 225851433717/3010349*599074578^(2/7) 2415781700000265 a001 86267571272/3010349*599074578^(1/3) 2415781700000265 a001 433494437/3010349*2537720636^(5/9) 2415781700000265 a001 53316291173/3010349*599074578^(5/14) 2415781700000265 a001 32951280099/3010349*599074578^(8/21) 2415781700000265 a001 433494437/3010349*312119004989^(5/11) 2415781700000265 a001 1346269/969323029*14662949395604^(7/9) 2415781700000265 a001 433494437/3010349*(1/2+1/2*5^(1/2))^25 2415781700000265 a001 433494437/3010349*3461452808002^(5/12) 2415781700000265 a001 1346269/969323029*505019158607^(7/8) 2415781700000265 a001 433494437/3010349*28143753123^(1/2) 2415781700000265 a001 701408733/3010349*599074578^(4/7) 2415781700000265 a001 12586269025/3010349*599074578^(3/7) 2415781700000265 a001 4807526976/3010349*599074578^(10/21) 2415781700000265 a001 1836311903/3010349*599074578^(11/21) 2415781700000265 a001 2971215073/3010349*599074578^(1/2) 2415781700000265 a001 10610209857723/3010349*228826127^(1/10) 2415781700000265 a001 6557470319842/3010349*228826127^(1/8) 2415781700000265 a001 809028066806568/33489287 2415781700000265 a001 1346269*228826127^(3/20) 2415781700000265 a001 1548008755920/3010349*228826127^(1/5) 2415781700000265 a001 591286729879/3010349*228826127^(1/4) 2415781700000265 a001 225851433717/3010349*228826127^(3/10) 2415781700000265 a001 86267571272/3010349*228826127^(7/20) 2415781700000265 a001 53316291173/3010349*228826127^(3/8) 2415781700000265 a001 165580141/3010349*2537720636^(3/5) 2415781700000265 a001 165580141/3010349*45537549124^(9/17) 2415781700000265 a001 165580141/3010349*817138163596^(9/19) 2415781700000265 a001 165580141/3010349*14662949395604^(3/7) 2415781700000265 a001 165580141/3010349*(1/2+1/2*5^(1/2))^27 2415781700000265 a001 165580141/3010349*192900153618^(1/2) 2415781700000265 a001 165580141/3010349*10749957122^(9/16) 2415781700000265 a001 32951280099/3010349*228826127^(2/5) 2415781700000265 a001 12586269025/3010349*228826127^(9/20) 2415781700000265 a001 165580141/3010349*599074578^(9/14) 2415781700000265 a001 4807526976/3010349*228826127^(1/2) 2415781700000265 a001 267914296/3010349*228826127^(13/20) 2415781700000265 a001 1836311903/3010349*228826127^(11/20) 2415781700000265 a001 701408733/3010349*228826127^(3/5) 2415781700000265 a001 433494437/3010349*228826127^(5/8) 2415781700000265 a001 10610209857723/3010349*87403803^(2/19) 2415781700000265 a001 2472169789339907/102334155 2415781700000265 a001 1346269*87403803^(3/19) 2415781700000265 a001 1548008755920/3010349*87403803^(4/19) 2415781700000265 a001 591286729879/3010349*87403803^(5/19) 2415781700000265 a001 225851433717/3010349*87403803^(6/19) 2415781700000265 a001 86267571272/3010349*87403803^(7/19) 2415781700000265 a001 1346269/141422324*45537549124^(15/17) 2415781700000265 a001 1346269/141422324*312119004989^(9/11) 2415781700000265 a001 1346269/141422324*14662949395604^(5/7) 2415781700000265 a001 63245986/3010349*(1/2+1/2*5^(1/2))^29 2415781700000265 a001 63245986/3010349*1322157322203^(1/2) 2415781700000265 a001 1346269/141422324*192900153618^(5/6) 2415781700000265 a001 1346269/141422324*28143753123^(9/10) 2415781700000265 a001 1346269/141422324*10749957122^(15/16) 2415781700000265 a001 32951280099/3010349*87403803^(8/19) 2415781700000265 a001 12586269025/3010349*87403803^(9/19) 2415781700000265 a001 7778742049/3010349*87403803^(1/2) 2415781700000265 a001 4807526976/3010349*87403803^(10/19) 2415781700000265 a001 1836311903/3010349*87403803^(11/19) 2415781700000265 a001 102334155/3010349*87403803^(14/19) 2415781700000265 a001 701408733/3010349*87403803^(12/19) 2415781700000265 a001 267914296/3010349*87403803^(13/19) 2415781700000265 a001 10610209857723/3010349*33385282^(1/9) 2415781700000266 a001 944284833567177/39088169 2415781700000266 a001 1346269*33385282^(1/6) 2415781700000266 a001 1548008755920/3010349*33385282^(2/9) 2415781700000266 a001 956722026041/3010349*33385282^(1/4) 2415781700000266 a001 591286729879/3010349*33385282^(5/18) 2415781700000266 a001 225851433717/3010349*33385282^(1/3) 2415781700000266 a001 24157817/3010349*(1/2+1/2*5^(1/2))^31 2415781700000266 a001 24157817/3010349*9062201101803^(1/2) 2415781700000266 a001 86267571272/3010349*33385282^(7/18) 2415781700000266 a001 53316291173/3010349*33385282^(5/12) 2415781700000266 a001 32951280099/3010349*33385282^(4/9) 2415781700000266 a001 12586269025/3010349*33385282^(1/2) 2415781700000266 a001 4807526976/3010349*33385282^(5/9) 2415781700000267 a001 2971215073/3010349*33385282^(7/12) 2415781700000267 a001 1836311903/3010349*33385282^(11/18) 2415781700000267 a001 701408733/3010349*33385282^(2/3) 2415781700000267 a001 39088169/3010349*33385282^(5/6) 2415781700000267 a001 267914296/3010349*33385282^(13/18) 2415781700000267 a001 102334155/3010349*33385282^(7/9) 2415781700000267 a001 165580141/3010349*33385282^(3/4) 2415781700000267 a001 10610209857723/3010349*12752043^(2/17) 2415781700000267 a001 45085588920203/1866294 2415781700000268 a001 1346269*12752043^(3/17) 2415781700000269 a001 1548008755920/3010349*12752043^(4/17) 2415781700000269 a001 53316291173/4870847*1860498^(8/15) 2415781700000270 a001 591286729879/3010349*12752043^(5/17) 2415781700000270 a001 387002188980/1970299*1860498^(1/3) 2415781700000270 a001 225851433717/3010349*12752043^(6/17) 2415781700000271 a001 9227465/3010349*141422324^(11/13) 2415781700000271 a001 9227465/3010349*2537720636^(11/15) 2415781700000271 a001 9227465/3010349*45537549124^(11/17) 2415781700000271 a001 9227465/3010349*312119004989^(3/5) 2415781700000271 a001 1346269/20633239*(1/2+1/2*5^(1/2))^41 2415781700000271 a001 9227465/3010349*14662949395604^(11/21) 2415781700000271 a001 9227465/3010349*(1/2+1/2*5^(1/2))^33 2415781700000271 a001 9227465/3010349*192900153618^(11/18) 2415781700000271 a001 9227465/3010349*10749957122^(11/16) 2415781700000271 a001 9227465/3010349*1568397607^(3/4) 2415781700000271 a001 9227465/3010349*599074578^(11/14) 2415781700000271 a001 86267571272/3010349*12752043^(7/17) 2415781700000272 a001 32951280099/3010349*12752043^(8/17) 2415781700000273 a001 20365011074/3010349*12752043^(1/2) 2415781700000273 a001 9227465/3010349*33385282^(11/12) 2415781700000273 a001 12586269025/3010349*12752043^(9/17) 2415781700000274 a001 4807526976/3010349*12752043^(10/17) 2415781700000275 a001 1836311903/3010349*12752043^(11/17) 2415781700000276 a001 2504730781961/33385282*1860498^(2/5) 2415781700000276 a001 701408733/3010349*12752043^(12/17) 2415781700000277 a001 267914296/3010349*12752043^(13/17) 2415781700000277 a001 14930352/3010349*12752043^(16/17) 2415781700000277 a001 102334155/3010349*12752043^(14/17) 2415781700000278 a001 6557470319842/87403803*1860498^(2/5) 2415781700000278 a001 10610209857723/141422324*1860498^(2/5) 2415781700000278 a001 10610209857723/3010349*4870847^(1/8) 2415781700000278 a001 39088169/3010349*12752043^(15/17) 2415781700000279 a001 4052739537881/54018521*1860498^(2/5) 2415781700000280 a001 137769300517695/5702887 2415781700000284 a001 140728068720/1875749*1860498^(2/5) 2415781700000284 a001 1346269*4870847^(3/16) 2415781700000291 a001 1548008755920/3010349*4870847^(1/4) 2415781700000297 a001 591286729879/3010349*4870847^(5/16) 2415781700000303 a001 225851433717/3010349*4870847^(3/8) 2415781700000304 a001 1346269/7881196*2537720636^(13/15) 2415781700000304 a001 3524578/3010349*2537720636^(7/9) 2415781700000304 a001 3524578/3010349*17393796001^(5/7) 2415781700000304 a001 1346269/7881196*45537549124^(13/17) 2415781700000304 a001 3524578/3010349*312119004989^(7/11) 2415781700000304 a001 1346269/7881196*14662949395604^(13/21) 2415781700000304 a001 1346269/7881196*(1/2+1/2*5^(1/2))^39 2415781700000304 a001 3524578/3010349*(1/2+1/2*5^(1/2))^35 2415781700000304 a001 3524578/3010349*505019158607^(5/8) 2415781700000304 a001 1346269/7881196*192900153618^(13/18) 2415781700000304 a001 1346269/7881196*73681302247^(3/4) 2415781700000304 a001 3524578/3010349*28143753123^(7/10) 2415781700000304 a001 1346269/7881196*10749957122^(13/16) 2415781700000304 a001 3524578/3010349*599074578^(5/6) 2415781700000304 a001 1346269/7881196*599074578^(13/14) 2415781700000304 a001 3524578/3010349*228826127^(7/8) 2415781700000310 a001 365435296162/12752043*1860498^(7/15) 2415781700000310 a001 86267571272/3010349*4870847^(7/16) 2415781700000316 a001 20365011074/4870847*1860498^(3/5) 2415781700000316 a001 32951280099/3010349*4870847^(1/2) 2415781700000317 a001 591286729879/7881196*1860498^(2/5) 2415781700000322 a001 956722026041/33385282*1860498^(7/15) 2415781700000323 a001 12586269025/3010349*4870847^(9/16) 2415781700000324 a001 2504730781961/87403803*1860498^(7/15) 2415781700000324 a001 6557470319842/228826127*1860498^(7/15) 2415781700000324 a001 10610209857723/370248451*1860498^(7/15) 2415781700000324 a001 4052739537881/141422324*1860498^(7/15) 2415781700000325 a001 1548008755920/54018521*1860498^(7/15) 2415781700000326 a001 2504730781961/1860498*710647^(3/14) 2415781700000329 a001 4807526976/3010349*4870847^(5/8) 2415781700000330 a001 591286729879/20633239*1860498^(7/15) 2415781700000333 a001 75283811239/4250681*1860498^(1/2) 2415781700000335 a001 1836311903/3010349*4870847^(11/16) 2415781700000342 a001 701408733/3010349*4870847^(3/4) 2415781700000345 a001 591286729879/33385282*1860498^(1/2) 2415781700000347 a001 516002918640/29134601*1860498^(1/2) 2415781700000348 a001 4052739537881/228826127*1860498^(1/2) 2415781700000348 a001 3536736619241/199691526*1860498^(1/2) 2415781700000348 a001 6557470319842/370248451*1860498^(1/2) 2415781700000348 a001 2504730781961/141422324*1860498^(1/2) 2415781700000348 a001 267914296/3010349*4870847^(13/16) 2415781700000348 a001 956722026041/54018521*1860498^(1/2) 2415781700000353 a001 365435296162/20633239*1860498^(1/2) 2415781700000354 a001 102334155/3010349*4870847^(7/8) 2415781700000356 a001 139583862445/12752043*1860498^(8/15) 2415781700000358 a001 10610209857723/3010349*1860498^(2/15) 2415781700000360 a001 39088169/3010349*4870847^(15/16) 2415781700000362 a001 7778742049/4870847*1860498^(2/3) 2415781700000363 a001 225851433717/7881196*1860498^(7/15) 2415781700000367 a001 52623190191461/2178309 2415781700000369 a001 182717648081/16692641*1860498^(8/15) 2415781700000371 a001 956722026041/87403803*1860498^(8/15) 2415781700000371 a001 2504730781961/228826127*1860498^(8/15) 2415781700000371 a001 3278735159921/299537289*1860498^(8/15) 2415781700000371 a001 10610209857723/969323029*1860498^(8/15) 2415781700000371 a001 4052739537881/370248451*1860498^(8/15) 2415781700000371 a001 387002188980/35355581*1860498^(8/15) 2415781700000372 a001 591286729879/54018521*1860498^(8/15) 2415781700000377 a001 7787980473/711491*1860498^(8/15) 2415781700000382 a001 6557470319842/3010349*1860498^(1/6) 2415781700000385 a001 4807526976/4870847*1860498^(7/10) 2415781700000387 a001 139583862445/7881196*1860498^(1/2) 2415781700000403 a001 53316291173/12752043*1860498^(3/5) 2415781700000405 a001 1346269*1860498^(1/5) 2415781700000409 a001 2971215073/4870847*1860498^(11/15) 2415781700000410 a001 21566892818/1970299*1860498^(8/15) 2415781700000415 a001 139583862445/33385282*1860498^(3/5) 2415781700000417 a001 365435296162/87403803*1860498^(3/5) 2415781700000417 a001 956722026041/228826127*1860498^(3/5) 2415781700000417 a001 2504730781961/599074578*1860498^(3/5) 2415781700000417 a001 6557470319842/1568397607*1860498^(3/5) 2415781700000417 a001 10610209857723/2537720636*1860498^(3/5) 2415781700000417 a001 4052739537881/969323029*1860498^(3/5) 2415781700000417 a001 1548008755920/370248451*1860498^(3/5) 2415781700000418 a001 591286729879/141422324*1860498^(3/5) 2415781700000418 a001 225851433717/54018521*1860498^(3/5) 2415781700000423 a001 86267571272/20633239*1860498^(3/5) 2415781700000434 a001 6557470319842/1149851*439204^(1/9) 2415781700000449 a001 20365011074/12752043*1860498^(2/3) 2415781700000451 a001 1548008755920/3010349*1860498^(4/15) 2415781700000455 a001 1134903170/4870847*1860498^(4/5) 2415781700000456 a001 32951280099/7881196*1860498^(3/5) 2415781700000462 a001 53316291173/33385282*1860498^(2/3) 2415781700000464 a001 139583862445/87403803*1860498^(2/3) 2415781700000464 a001 365435296162/228826127*1860498^(2/3) 2415781700000464 a001 956722026041/599074578*1860498^(2/3) 2415781700000464 a001 2504730781961/1568397607*1860498^(2/3) 2415781700000464 a001 6557470319842/4106118243*1860498^(2/3) 2415781700000464 a001 10610209857723/6643838879*1860498^(2/3) 2415781700000464 a001 4052739537881/2537720636*1860498^(2/3) 2415781700000464 a001 1548008755920/969323029*1860498^(2/3) 2415781700000464 a001 591286729879/370248451*1860498^(2/3) 2415781700000464 a001 225851433717/141422324*1860498^(2/3) 2415781700000465 a001 86267571272/54018521*1860498^(2/3) 2415781700000470 a001 32951280099/20633239*1860498^(2/3) 2415781700000472 a001 12586269025/12752043*1860498^(7/10) 2415781700000475 a001 956722026041/3010349*1860498^(3/10) 2415781700000478 a001 701408733/4870847*1860498^(5/6) 2415781700000485 a001 32951280099/33385282*1860498^(7/10) 2415781700000487 a001 86267571272/87403803*1860498^(7/10) 2415781700000487 a001 225851433717/228826127*1860498^(7/10) 2415781700000487 a001 591286729879/599074578*1860498^(7/10) 2415781700000487 a001 1548008755920/1568397607*1860498^(7/10) 2415781700000487 a001 4052739537881/4106118243*1860498^(7/10) 2415781700000487 a001 4807525989/4870846*1860498^(7/10) 2415781700000487 a001 6557470319842/6643838879*1860498^(7/10) 2415781700000487 a001 2504730781961/2537720636*1860498^(7/10) 2415781700000487 a001 956722026041/969323029*1860498^(7/10) 2415781700000487 a001 365435296162/370248451*1860498^(7/10) 2415781700000487 a001 139583862445/141422324*1860498^(7/10) 2415781700000488 a001 53316291173/54018521*1860498^(7/10) 2415781700000493 a001 20365011074/20633239*1860498^(7/10) 2415781700000496 a001 7778742049/12752043*1860498^(11/15) 2415781700000497 a001 832040*710647^(1/4) 2415781700000498 a001 591286729879/3010349*1860498^(1/3) 2415781700000502 a001 433494437/4870847*1860498^(13/15) 2415781700000503 a001 12586269025/7881196*1860498^(2/3) 2415781700000508 a001 10182505537/16692641*1860498^(11/15) 2415781700000510 a001 53316291173/87403803*1860498^(11/15) 2415781700000510 a001 139583862445/228826127*1860498^(11/15) 2415781700000510 a001 182717648081/299537289*1860498^(11/15) 2415781700000510 a001 956722026041/1568397607*1860498^(11/15) 2415781700000510 a001 2504730781961/4106118243*1860498^(11/15) 2415781700000510 a001 3278735159921/5374978561*1860498^(11/15) 2415781700000510 a001 10610209857723/17393796001*1860498^(11/15) 2415781700000510 a001 4052739537881/6643838879*1860498^(11/15) 2415781700000510 a001 1134903780/1860499*1860498^(11/15) 2415781700000510 a001 591286729879/969323029*1860498^(11/15) 2415781700000510 a001 225851433717/370248451*1860498^(11/15) 2415781700000511 a001 21566892818/35355581*1860498^(11/15) 2415781700000511 a001 32951280099/54018521*1860498^(11/15) 2415781700000516 a001 1144206275/1875749*1860498^(11/15) 2415781700000525 a001 267914296/4870847*1860498^(9/10) 2415781700000526 a001 7778742049/7881196*1860498^(7/10) 2415781700000532 a001 1346269/3010349*(1/2+1/2*5^(1/2))^37 2415781700000542 a001 2971215073/12752043*1860498^(4/5) 2415781700000544 a001 225851433717/3010349*1860498^(2/5) 2415781700000548 a001 165580141/4870847*1860498^(14/15) 2415781700000549 a001 1201881744/1970299*1860498^(11/15) 2415781700000555 a001 7778742049/33385282*1860498^(4/5) 2415781700000557 a001 20365011074/87403803*1860498^(4/5) 2415781700000557 a001 53316291173/228826127*1860498^(4/5) 2415781700000557 a001 139583862445/599074578*1860498^(4/5) 2415781700000557 a001 365435296162/1568397607*1860498^(4/5) 2415781700000557 a001 956722026041/4106118243*1860498^(4/5) 2415781700000557 a001 2504730781961/10749957122*1860498^(4/5) 2415781700000557 a001 6557470319842/28143753123*1860498^(4/5) 2415781700000557 a001 10610209857723/45537549124*1860498^(4/5) 2415781700000557 a001 4052739537881/17393796001*1860498^(4/5) 2415781700000557 a001 1548008755920/6643838879*1860498^(4/5) 2415781700000557 a001 591286729879/2537720636*1860498^(4/5) 2415781700000557 a001 225851433717/969323029*1860498^(4/5) 2415781700000557 a001 86267571272/370248451*1860498^(4/5) 2415781700000557 a001 63246219/271444*1860498^(4/5) 2415781700000558 a001 12586269025/54018521*1860498^(4/5) 2415781700000563 a001 4807526976/20633239*1860498^(4/5) 2415781700000565 a001 1836311903/12752043*1860498^(5/6) 2415781700000578 a001 14930208/103681*1860498^(5/6) 2415781700000580 a001 12586269025/87403803*1860498^(5/6) 2415781700000580 a001 32951280099/228826127*1860498^(5/6) 2415781700000580 a001 43133785636/299537289*1860498^(5/6) 2415781700000580 a001 32264490531/224056801*1860498^(5/6) 2415781700000580 a001 591286729879/4106118243*1860498^(5/6) 2415781700000580 a001 774004377960/5374978561*1860498^(5/6) 2415781700000580 a001 4052739537881/28143753123*1860498^(5/6) 2415781700000580 a001 1515744265389/10525900321*1860498^(5/6) 2415781700000580 a001 3278735159921/22768774562*1860498^(5/6) 2415781700000580 a001 2504730781961/17393796001*1860498^(5/6) 2415781700000580 a001 956722026041/6643838879*1860498^(5/6) 2415781700000580 a001 182717648081/1268860318*1860498^(5/6) 2415781700000580 a001 139583862445/969323029*1860498^(5/6) 2415781700000580 a001 53316291173/370248451*1860498^(5/6) 2415781700000580 a001 10182505537/70711162*1860498^(5/6) 2415781700000581 a001 7778742049/54018521*1860498^(5/6) 2415781700000586 a001 2971215073/20633239*1860498^(5/6) 2415781700000589 a001 1134903170/12752043*1860498^(13/15) 2415781700000591 a001 86267571272/3010349*1860498^(7/15) 2415781700000596 a001 1836311903/7881196*1860498^(4/5) 2415781700000600 a001 4020054011337/166408 2415781700000601 a001 2971215073/33385282*1860498^(13/15) 2415781700000603 a001 7778742049/87403803*1860498^(13/15) 2415781700000603 a001 20365011074/228826127*1860498^(13/15) 2415781700000604 a001 53316291173/599074578*1860498^(13/15) 2415781700000604 a001 139583862445/1568397607*1860498^(13/15) 2415781700000604 a001 365435296162/4106118243*1860498^(13/15) 2415781700000604 a001 956722026041/10749957122*1860498^(13/15) 2415781700000604 a001 2504730781961/28143753123*1860498^(13/15) 2415781700000604 a001 6557470319842/73681302247*1860498^(13/15) 2415781700000604 a001 10610209857723/119218851371*1860498^(13/15) 2415781700000604 a001 4052739537881/45537549124*1860498^(13/15) 2415781700000604 a001 1548008755920/17393796001*1860498^(13/15) 2415781700000604 a001 591286729879/6643838879*1860498^(13/15) 2415781700000604 a001 225851433717/2537720636*1860498^(13/15) 2415781700000604 a001 86267571272/969323029*1860498^(13/15) 2415781700000604 a001 32951280099/370248451*1860498^(13/15) 2415781700000604 a001 12586269025/141422324*1860498^(13/15) 2415781700000604 a001 4807526976/54018521*1860498^(13/15) 2415781700000609 a001 1836311903/20633239*1860498^(13/15) 2415781700000612 a001 233802911/4250681*1860498^(9/10) 2415781700000614 a001 53316291173/3010349*1860498^(1/2) 2415781700000619 a001 567451585/3940598*1860498^(5/6) 2415781700000625 a001 1836311903/33385282*1860498^(9/10) 2415781700000626 a001 1602508992/29134601*1860498^(9/10) 2415781700000627 a001 12586269025/228826127*1860498^(9/10) 2415781700000627 a001 10983760033/199691526*1860498^(9/10) 2415781700000627 a001 86267571272/1568397607*1860498^(9/10) 2415781700000627 a001 75283811239/1368706081*1860498^(9/10) 2415781700000627 a001 591286729879/10749957122*1860498^(9/10) 2415781700000627 a001 12585437040/228811001*1860498^(9/10) 2415781700000627 a001 4052739537881/73681302247*1860498^(9/10) 2415781700000627 a001 3536736619241/64300051206*1860498^(9/10) 2415781700000627 a001 6557470319842/119218851371*1860498^(9/10) 2415781700000627 a001 2504730781961/45537549124*1860498^(9/10) 2415781700000627 a001 956722026041/17393796001*1860498^(9/10) 2415781700000627 a001 365435296162/6643838879*1860498^(9/10) 2415781700000627 a001 139583862445/2537720636*1860498^(9/10) 2415781700000627 a001 53316291173/969323029*1860498^(9/10) 2415781700000627 a001 20365011074/370248451*1860498^(9/10) 2415781700000627 a001 7778742049/141422324*1860498^(9/10) 2415781700000628 a001 2971215073/54018521*1860498^(9/10) 2415781700000632 a001 1134903170/20633239*1860498^(9/10) 2415781700000635 a001 433494437/12752043*1860498^(14/15) 2415781700000637 a001 32951280099/3010349*1860498^(8/15) 2415781700000642 a001 3524667/39604*1860498^(13/15) 2415781700000648 a001 567451585/16692641*1860498^(14/15) 2415781700000650 a001 2971215073/87403803*1860498^(14/15) 2415781700000650 a001 7778742049/228826127*1860498^(14/15) 2415781700000650 a001 10182505537/299537289*1860498^(14/15) 2415781700000650 a001 53316291173/1568397607*1860498^(14/15) 2415781700000650 a001 139583862445/4106118243*1860498^(14/15) 2415781700000650 a001 182717648081/5374978561*1860498^(14/15) 2415781700000650 a001 956722026041/28143753123*1860498^(14/15) 2415781700000650 a001 2504730781961/73681302247*1860498^(14/15) 2415781700000650 a001 3278735159921/96450076809*1860498^(14/15) 2415781700000650 a001 10610209857723/312119004989*1860498^(14/15) 2415781700000650 a001 4052739537881/119218851371*1860498^(14/15) 2415781700000650 a001 387002188980/11384387281*1860498^(14/15) 2415781700000650 a001 591286729879/17393796001*1860498^(14/15) 2415781700000650 a001 225851433717/6643838879*1860498^(14/15) 2415781700000650 a001 1135099622/33391061*1860498^(14/15) 2415781700000650 a001 32951280099/969323029*1860498^(14/15) 2415781700000650 a001 12586269025/370248451*1860498^(14/15) 2415781700000650 a001 1201881744/35355581*1860498^(14/15) 2415781700000651 a001 1836311903/54018521*1860498^(14/15) 2415781700000656 a001 701408733/20633239*1860498^(14/15) 2415781700000666 a001 433494437/7881196*1860498^(9/10) 2415781700000667 a001 956722026041/1860498*710647^(2/7) 2415781700000684 a001 12586269025/3010349*1860498^(3/5) 2415781700000689 a001 66978574/1970299*1860498^(14/15) 2415781700000721 a001 10050135028343/416020 2415781700000731 a001 4807526976/3010349*1860498^(2/3) 2415781700000754 a001 2971215073/3010349*1860498^(7/10) 2415781700000777 a001 1836311903/3010349*1860498^(11/15) 2415781700000824 a001 701408733/3010349*1860498^(4/5) 2415781700000847 a001 433494437/3010349*1860498^(5/6) 2415781700000870 a001 267914296/3010349*1860498^(13/15) 2415781700000893 a001 165580141/3010349*1860498^(9/10) 2415781700000917 a001 102334155/3010349*1860498^(14/15) 2415781700000922 a001 6557470319842/4870847*710647^(3/14) 2415781700000949 a001 10610209857723/3010349*710647^(1/7) 2415781700000961 a001 2512533757086/104005 2415781700001009 a001 182717648081/930249*710647^(5/14) 2415781700001063 a001 10610209857723/7881196*710647^(3/14) 2415781700001093 a001 4052739537881/4870847*710647^(1/4) 2415781700001128 a001 832040/1149851*141422324^(12/13) 2415781700001128 a001 832040/1149851*2537720636^(4/5) 2415781700001128 a001 832040/1149851*45537549124^(12/17) 2415781700001128 a001 514229/1860498*817138163596^(2/3) 2415781700001128 a001 514229/1860498*(1/2+1/2*5^(1/2))^38 2415781700001128 a001 832040/1149851*(1/2+1/2*5^(1/2))^36 2415781700001128 a001 832040/1149851*505019158607^(9/14) 2415781700001128 a001 832040/1149851*192900153618^(2/3) 2415781700001128 a001 832040/1149851*73681302247^(9/13) 2415781700001128 a001 832040/1149851*10749957122^(3/4) 2415781700001128 a001 514229/1860498*10749957122^(19/24) 2415781700001128 a001 832040/1149851*4106118243^(18/23) 2415781700001128 a001 514229/1860498*4106118243^(19/23) 2415781700001128 a001 832040/1149851*1568397607^(9/11) 2415781700001128 a001 514229/1860498*1568397607^(19/22) 2415781700001128 a001 832040/1149851*599074578^(6/7) 2415781700001128 a001 514229/1860498*599074578^(19/21) 2415781700001128 a001 832040/1149851*228826127^(9/10) 2415781700001128 a001 514229/1860498*228826127^(19/20) 2415781700001128 a001 832040/1149851*87403803^(18/19) 2415781700001180 a001 3536736619241/4250681*710647^(1/4) 2415781700001233 a001 3278735159921/3940598*710647^(1/4) 2415781700001264 a001 2504730781961/4870847*710647^(2/7) 2415781700001290 a001 1346269*710647^(3/14) 2415781700001351 a001 6557470319842/12752043*710647^(2/7) 2415781700001351 a001 139583862445/1860498*710647^(3/7) 2415781700001371 a001 10610209857723/20633239*710647^(2/7) 2415781700001390 a001 102334155/439204*439204^(8/9) 2415781700001404 a001 4052739537881/7881196*710647^(2/7) 2415781700001461 a001 2504730781961/3010349*710647^(1/4) 2415781700001559 a001 32522920134794/1346269 2415781700001605 a001 956722026041/4870847*710647^(5/14) 2415781700001632 a001 1548008755920/3010349*710647^(2/7) 2415781700001692 a001 2504730781961/12752043*710647^(5/14) 2415781700001693 a001 53316291173/1860498*710647^(1/2) 2415781700001705 a001 3278735159921/16692641*710647^(5/14) 2415781700001708 a001 10610209857723/54018521*710647^(5/14) 2415781700001713 a001 4052739537881/20633239*710647^(5/14) 2415781700001724 a001 514229/4870847*2537720636^(8/9) 2415781700001724 a001 2178309/1149851*45537549124^(2/3) 2415781700001724 a001 514229/4870847*312119004989^(8/11) 2415781700001724 a001 514229/4870847*(1/2+1/2*5^(1/2))^40 2415781700001724 a001 514229/4870847*23725150497407^(5/8) 2415781700001724 a001 2178309/1149851*(1/2+1/2*5^(1/2))^34 2415781700001724 a001 514229/4870847*73681302247^(10/13) 2415781700001724 a001 514229/4870847*28143753123^(4/5) 2415781700001724 a001 2178309/1149851*10749957122^(17/24) 2415781700001724 a001 514229/4870847*10749957122^(5/6) 2415781700001724 a001 2178309/1149851*4106118243^(17/23) 2415781700001724 a001 514229/4870847*4106118243^(20/23) 2415781700001724 a001 2178309/1149851*1568397607^(17/22) 2415781700001724 a001 514229/4870847*1568397607^(10/11) 2415781700001724 a001 2178309/1149851*599074578^(17/21) 2415781700001724 a001 514229/4870847*599074578^(20/21) 2415781700001724 a001 2178309/1149851*228826127^(17/20) 2415781700001724 a001 2178309/1149851*87403803^(17/19) 2415781700001726 a001 2178309/1149851*33385282^(17/18) 2415781700001746 a001 387002188980/1970299*710647^(5/14) 2415781700001787 a001 85146110326289/3524578 2415781700001788 a001 14930352/1149851*7881196^(10/11) 2415781700001794 a001 63245986/1149851*7881196^(9/11) 2415781700001798 a001 267914296/1149851*7881196^(8/11) 2415781700001800 a001 701408733/1149851*7881196^(2/3) 2415781700001801 a001 1134903170/1149851*7881196^(7/11) 2415781700001805 a001 4807526976/1149851*7881196^(6/11) 2415781700001808 a001 20365011074/1149851*7881196^(5/11) 2415781700001811 a001 514229/12752043*2537720636^(14/15) 2415781700001811 a001 514229/12752043*17393796001^(6/7) 2415781700001811 a001 514229/12752043*45537549124^(14/17) 2415781700001811 a001 514229/12752043*817138163596^(14/19) 2415781700001811 a001 514229/12752043*14662949395604^(2/3) 2415781700001811 a001 514229/12752043*(1/2+1/2*5^(1/2))^42 2415781700001811 a001 5702887/1149851*(1/2+1/2*5^(1/2))^32 2415781700001811 a001 514229/12752043*505019158607^(3/4) 2415781700001811 a001 514229/12752043*192900153618^(7/9) 2415781700001811 a001 5702887/1149851*73681302247^(8/13) 2415781700001811 a001 5702887/1149851*10749957122^(2/3) 2415781700001811 a001 514229/12752043*10749957122^(7/8) 2415781700001811 a001 5702887/1149851*4106118243^(16/23) 2415781700001811 a001 514229/12752043*4106118243^(21/23) 2415781700001811 a001 5702887/1149851*1568397607^(8/11) 2415781700001811 a001 514229/12752043*1568397607^(21/22) 2415781700001811 a001 5702887/1149851*599074578^(16/21) 2415781700001811 a001 5702887/1149851*228826127^(4/5) 2415781700001811 a001 5702887/1149851*87403803^(16/19) 2415781700001812 a001 86267571272/1149851*7881196^(4/11) 2415781700001813 a001 139583862445/1149851*7881196^(1/3) 2415781700001813 a001 5702887/1149851*33385282^(8/9) 2415781700001815 a001 365435296162/1149851*7881196^(3/11) 2415781700001819 a001 1548008755920/1149851*7881196^(2/11) 2415781700001819 a001 14930352/1149851*20633239^(6/7) 2415781700001820 a001 222915410844073/9227465 2415781700001821 a001 39088169/1149851*20633239^(4/5) 2415781700001822 a001 165580141/1149851*20633239^(5/7) 2415781700001822 a001 6557470319842/1149851*7881196^(1/11) 2415781700001822 a001 1134903170/1149851*20633239^(3/5) 2415781700001823 a001 1836311903/1149851*20633239^(4/7) 2415781700001823 a001 20365011074/1149851*20633239^(3/7) 2415781700001824 a001 32951280099/1149851*20633239^(2/5) 2415781700001824 a001 14930352/1149851*141422324^(10/13) 2415781700001824 a001 14930352/1149851*2537720636^(2/3) 2415781700001824 a001 14930352/1149851*45537549124^(10/17) 2415781700001824 a001 514229/33385282*312119004989^(4/5) 2415781700001824 a001 14930352/1149851*312119004989^(6/11) 2415781700001824 a001 514229/33385282*(1/2+1/2*5^(1/2))^44 2415781700001824 a001 514229/33385282*23725150497407^(11/16) 2415781700001824 a001 14930352/1149851*14662949395604^(10/21) 2415781700001824 a001 14930352/1149851*(1/2+1/2*5^(1/2))^30 2415781700001824 a001 14930352/1149851*192900153618^(5/9) 2415781700001824 a001 514229/33385282*73681302247^(11/13) 2415781700001824 a001 14930352/1149851*28143753123^(3/5) 2415781700001824 a001 14930352/1149851*10749957122^(5/8) 2415781700001824 a001 514229/33385282*10749957122^(11/12) 2415781700001824 a001 14930352/1149851*4106118243^(15/23) 2415781700001824 a001 514229/33385282*4106118243^(22/23) 2415781700001824 a001 14930352/1149851*1568397607^(15/22) 2415781700001824 a001 14930352/1149851*599074578^(5/7) 2415781700001824 a001 14930352/1149851*228826127^(3/4) 2415781700001824 a001 14930352/1149851*87403803^(15/19) 2415781700001824 a001 225851433717/1149851*20633239^(2/7) 2415781700001825 a001 956722026041/1149851*20633239^(1/5) 2415781700001825 a001 5702887/1149851*12752043^(16/17) 2415781700001825 a001 583600122205930/24157817 2415781700001825 a001 2504730781961/1149851*20633239^(1/7) 2415781700001825 a001 14930352/1149851*33385282^(5/6) 2415781700001826 a001 39088169/1149851*17393796001^(4/7) 2415781700001826 a001 39088169/1149851*14662949395604^(4/9) 2415781700001826 a001 39088169/1149851*(1/2+1/2*5^(1/2))^28 2415781700001826 a001 39088169/1149851*73681302247^(7/13) 2415781700001826 a001 39088169/1149851*10749957122^(7/12) 2415781700001826 a001 514229/87403803*10749957122^(23/24) 2415781700001826 a001 39088169/1149851*4106118243^(14/23) 2415781700001826 a001 39088169/1149851*1568397607^(7/11) 2415781700001826 a001 39088169/1149851*599074578^(2/3) 2415781700001826 a001 39088169/1149851*228826127^(7/10) 2415781700001826 a001 102334155/1149851*141422324^(2/3) 2415781700001826 a001 1527884955773717/63245986 2415781700001826 a001 39088169/1149851*87403803^(14/19) 2415781700001826 a001 267914296/1149851*141422324^(8/13) 2415781700001826 a001 1134903170/1149851*141422324^(7/13) 2415781700001826 a001 4807526976/1149851*141422324^(6/13) 2415781700001826 a001 20365011074/1149851*141422324^(5/13) 2415781700001826 a001 514229/228826127*45537549124^(16/17) 2415781700001826 a001 514229/228826127*14662949395604^(16/21) 2415781700001826 a001 102334155/1149851*(1/2+1/2*5^(1/2))^26 2415781700001826 a001 514229/228826127*192900153618^(8/9) 2415781700001826 a001 102334155/1149851*73681302247^(1/2) 2415781700001826 a001 514229/228826127*73681302247^(12/13) 2415781700001826 a001 102334155/1149851*10749957122^(13/24) 2415781700001826 a001 102334155/1149851*4106118243^(13/23) 2415781700001826 a001 102334155/1149851*1568397607^(13/22) 2415781700001826 a001 102334155/1149851*599074578^(13/21) 2415781700001826 a001 53316291173/1149851*141422324^(1/3) 2415781700001826 a001 86267571272/1149851*141422324^(4/13) 2415781700001826 a001 365435296162/1149851*141422324^(3/13) 2415781700001826 a001 1548008755920/1149851*141422324^(2/13) 2415781700001826 a001 4000054745115221/165580141 2415781700001826 a001 102334155/1149851*228826127^(13/20) 2415781700001826 a001 6557470319842/1149851*141422324^(1/13) 2415781700001826 a001 267914296/1149851*2537720636^(8/15) 2415781700001826 a001 267914296/1149851*45537549124^(8/17) 2415781700001826 a001 514229/599074578*312119004989^(10/11) 2415781700001826 a001 514229/599074578*3461452808002^(5/6) 2415781700001826 a001 267914296/1149851*14662949395604^(8/21) 2415781700001826 a001 267914296/1149851*(1/2+1/2*5^(1/2))^24 2415781700001826 a001 267914296/1149851*192900153618^(4/9) 2415781700001826 a001 267914296/1149851*73681302247^(6/13) 2415781700001826 a001 267914296/1149851*10749957122^(1/2) 2415781700001826 a001 267914296/1149851*4106118243^(12/23) 2415781700001826 a001 267914296/1149851*1568397607^(6/11) 2415781700001826 a001 267914296/1149851*599074578^(4/7) 2415781700001826 a001 10472279279571946/433494437 2415781700001826 a001 701408733/1149851*312119004989^(2/5) 2415781700001826 a001 514229/1568397607*23725150497407^(13/16) 2415781700001826 a001 701408733/1149851*(1/2+1/2*5^(1/2))^22 2415781700001826 a001 514229/1568397607*505019158607^(13/14) 2415781700001826 a001 701408733/1149851*10749957122^(11/24) 2415781700001826 a001 701408733/1149851*4106118243^(11/23) 2415781700001826 a001 701408733/1149851*1568397607^(1/2) 2415781700001826 a001 27416783093600617/1134903170 2415781700001826 a001 1836311903/1149851*2537720636^(4/9) 2415781700001826 a001 4807526976/1149851*2537720636^(2/5) 2415781700001826 a001 514229/4106118243*14662949395604^(6/7) 2415781700001826 a001 1836311903/1149851*(1/2+1/2*5^(1/2))^20 2415781700001826 a001 1836311903/1149851*23725150497407^(5/16) 2415781700001826 a001 1836311903/1149851*505019158607^(5/14) 2415781700001826 a001 1836311903/1149851*73681302247^(5/13) 2415781700001826 a001 1836311903/1149851*28143753123^(2/5) 2415781700001826 a001 1836311903/1149851*10749957122^(5/12) 2415781700001826 a001 20365011074/1149851*2537720636^(1/3) 2415781700001826 a001 86267571272/1149851*2537720636^(4/15) 2415781700001826 a001 225851433717/1149851*2537720636^(2/9) 2415781700001826 a001 1836311903/1149851*4106118243^(10/23) 2415781700001826 a001 365435296162/1149851*2537720636^(1/5) 2415781700001826 a001 71778070001229905/2971215073 2415781700001826 a001 1548008755920/1149851*2537720636^(2/15) 2415781700001826 a001 2504730781961/1149851*2537720636^(1/9) 2415781700001826 a001 6557470319842/1149851*2537720636^(1/15) 2415781700001826 a001 4807526976/1149851*45537549124^(6/17) 2415781700001826 a001 4807526976/1149851*14662949395604^(2/7) 2415781700001826 a001 4807526976/1149851*(1/2+1/2*5^(1/2))^18 2415781700001826 a001 4807526976/1149851*192900153618^(1/3) 2415781700001826 a001 4807526976/1149851*10749957122^(3/8) 2415781700001826 a001 187917426910089098/7778742049 2415781700001826 a001 12586269025/1149851*(1/2+1/2*5^(1/2))^16 2415781700001826 a001 12586269025/1149851*23725150497407^(1/4) 2415781700001826 a001 12586269025/1149851*73681302247^(4/13) 2415781700001826 a001 32951280099/1149851*17393796001^(2/7) 2415781700001826 a001 491974210729037389/20365011074 2415781700001826 a001 956722026041/1149851*17393796001^(1/7) 2415781700001826 a001 32951280099/1149851*14662949395604^(2/9) 2415781700001826 a001 32951280099/1149851*(1/2+1/2*5^(1/2))^14 2415781700001826 a001 86267571272/1149851*45537549124^(4/17) 2415781700001826 a001 365435296162/1149851*45537549124^(3/17) 2415781700001826 a001 1288005205277023069/53316291173 2415781700001826 a001 1548008755920/1149851*45537549124^(2/17) 2415781700001826 a001 6557470319842/1149851*45537549124^(1/17) 2415781700001826 a001 86267571272/1149851*(1/2+1/2*5^(1/2))^12 2415781700001826 a001 225851433717/1149851*312119004989^(2/11) 2415781700001826 a001 225851433717/1149851*(1/2+1/2*5^(1/2))^10 2415781700001826 a001 1548008755920/1149851*14662949395604^(2/21) 2415781700001826 a001 1548008755920/1149851*(1/2+1/2*5^(1/2))^6 2415781700001826 a001 4052739537881/1149851*(1/2+1/2*5^(1/2))^4 2415781700001826 a001 10610209857723/1149851*(1/2+1/2*5^(1/2))^2 2415781700001826 a006 5^(1/2)*Fibonacci(66)/Lucas(29)/sqrt(5) 2415781700001826 a001 6557470319842/1149851*(1/2+1/2*5^(1/2))^3 2415781700001826 a001 2504730781961/1149851*(1/2+1/2*5^(1/2))^5 2415781700001826 a001 365435296162/1149851*817138163596^(3/19) 2415781700001826 a001 139583862445/1149851*312119004989^(1/5) 2415781700001826 a001 139583862445/1149851*(1/2+1/2*5^(1/2))^11 2415781700001826 a001 4052739537881/1149851*73681302247^(1/13) 2415781700001826 a001 2084036199825008749/86267571272 2415781700001826 a001 53316291173/1149851*73681302247^(1/4) 2415781700001826 a001 2504730781961/1149851*28143753123^(1/10) 2415781700001826 a001 265343664849328560/10983760033 2415781700001826 a001 225851433717/1149851*28143753123^(1/5) 2415781700001826 a001 20365011074/1149851*45537549124^(5/17) 2415781700001826 a001 10610209857723/1149851*10749957122^(1/24) 2415781700001826 a001 20365011074/1149851*312119004989^(3/11) 2415781700001826 a001 20365011074/1149851*14662949395604^(5/21) 2415781700001826 a001 20365011074/1149851*(1/2+1/2*5^(1/2))^15 2415781700001826 a001 20365011074/1149851*192900153618^(5/18) 2415781700001826 a001 6557470319842/1149851*10749957122^(1/16) 2415781700001826 a001 4052739537881/1149851*10749957122^(1/12) 2415781700001826 a001 20365011074/1149851*28143753123^(3/10) 2415781700001826 a001 1548008755920/1149851*10749957122^(1/8) 2415781700001826 a001 304056783818948291/12586269025 2415781700001826 a001 514229*10749957122^(1/6) 2415781700001826 a001 12586269025/1149851*10749957122^(1/3) 2415781700001826 a001 365435296162/1149851*10749957122^(3/16) 2415781700001826 a001 225851433717/1149851*10749957122^(5/24) 2415781700001826 a001 86267571272/1149851*10749957122^(1/4) 2415781700001826 a001 32951280099/1149851*10749957122^(7/24) 2415781700001826 a001 10610209857723/1149851*4106118243^(1/23) 2415781700001826 a001 7778742049/1149851*45537549124^(1/3) 2415781700001826 a001 20365011074/1149851*10749957122^(5/16) 2415781700001826 a001 514229/17393796001*14662949395604^(19/21) 2415781700001826 a001 7778742049/1149851*(1/2+1/2*5^(1/2))^17 2415781700001826 a001 4052739537881/1149851*4106118243^(2/23) 2415781700001826 a001 1548008755920/1149851*4106118243^(3/23) 2415781700001826 a001 5530445567088533/228929856 2415781700001826 a001 514229*4106118243^(4/23) 2415781700001826 a001 225851433717/1149851*4106118243^(5/23) 2415781700001826 a001 4807526976/1149851*4106118243^(9/23) 2415781700001826 a001 86267571272/1149851*4106118243^(6/23) 2415781700001826 a001 32951280099/1149851*4106118243^(7/23) 2415781700001826 a001 10610209857723/1149851*1568397607^(1/22) 2415781700001826 a001 12586269025/1149851*4106118243^(8/23) 2415781700001826 a001 2971215073/1149851*817138163596^(1/3) 2415781700001826 a001 2971215073/1149851*(1/2+1/2*5^(1/2))^19 2415781700001826 a001 4052739537881/1149851*1568397607^(1/11) 2415781700001826 a001 1548008755920/1149851*1568397607^(3/22) 2415781700001826 a001 44361286907629288/1836311903 2415781700001826 a001 514229*1568397607^(2/11) 2415781700001826 a001 1134903170/1149851*2537720636^(7/15) 2415781700001826 a001 225851433717/1149851*1568397607^(5/22) 2415781700001826 a001 139583862445/1149851*1568397607^(1/4) 2415781700001826 a001 86267571272/1149851*1568397607^(3/11) 2415781700001826 a001 1836311903/1149851*1568397607^(5/11) 2415781700001826 a001 32951280099/1149851*1568397607^(7/22) 2415781700001826 a001 10610209857723/1149851*599074578^(1/21) 2415781700001826 a001 12586269025/1149851*1568397607^(4/11) 2415781700001826 a001 1134903170/1149851*17393796001^(3/7) 2415781700001826 a001 1134903170/1149851*45537549124^(7/17) 2415781700001826 a001 1134903170/1149851*14662949395604^(1/3) 2415781700001826 a001 1134903170/1149851*(1/2+1/2*5^(1/2))^21 2415781700001826 a001 1134903170/1149851*192900153618^(7/18) 2415781700001826 a001 4807526976/1149851*1568397607^(9/22) 2415781700001826 a001 1134903170/1149851*10749957122^(7/16) 2415781700001826 a001 6557470319842/1149851*599074578^(1/14) 2415781700001826 a001 4052739537881/1149851*599074578^(2/21) 2415781700001826 a001 1548008755920/1149851*599074578^(1/7) 2415781700001826 a001 5648167938009557/233802911 2415781700001826 a001 956722026041/1149851*599074578^(1/6) 2415781700001826 a001 514229*599074578^(4/21) 2415781700001826 a001 365435296162/1149851*599074578^(3/14) 2415781700001826 a001 225851433717/1149851*599074578^(5/21) 2415781700001826 a001 86267571272/1149851*599074578^(2/7) 2415781700001826 a001 32951280099/1149851*599074578^(1/3) 2415781700001826 a001 10610209857723/1149851*228826127^(1/20) 2415781700001826 a001 20365011074/1149851*599074578^(5/14) 2415781700001826 a001 701408733/1149851*599074578^(11/21) 2415781700001826 a001 12586269025/1149851*599074578^(8/21) 2415781700001826 a001 514229/969323029*14662949395604^(17/21) 2415781700001826 a001 433494437/1149851*(1/2+1/2*5^(1/2))^23 2415781700001826 a001 514229/969323029*192900153618^(17/18) 2415781700001826 a001 433494437/1149851*4106118243^(1/2) 2415781700001826 a001 4807526976/1149851*599074578^(3/7) 2415781700001826 a001 1836311903/1149851*599074578^(10/21) 2415781700001826 a001 1134903170/1149851*599074578^(1/2) 2415781700001826 a001 4052739537881/1149851*228826127^(1/10) 2415781700001826 a001 2504730781961/1149851*228826127^(1/8) 2415781700001826 a001 6472224534456725/267914296 2415781700001826 a001 1548008755920/1149851*228826127^(3/20) 2415781700001826 a001 514229*228826127^(1/5) 2415781700001826 a001 225851433717/1149851*228826127^(1/4) 2415781700001826 a001 86267571272/1149851*228826127^(3/10) 2415781700001826 a001 32951280099/1149851*228826127^(7/20) 2415781700001826 a001 10610209857723/1149851*87403803^(1/19) 2415781700001826 a001 20365011074/1149851*228826127^(3/8) 2415781700001826 a001 165580141/1149851*2537720636^(5/9) 2415781700001826 a001 165580141/1149851*312119004989^(5/11) 2415781700001826 a001 514229/370248451*14662949395604^(7/9) 2415781700001826 a001 165580141/1149851*(1/2+1/2*5^(1/2))^25 2415781700001826 a001 165580141/1149851*3461452808002^(5/12) 2415781700001826 a001 514229/370248451*505019158607^(7/8) 2415781700001826 a001 165580141/1149851*28143753123^(1/2) 2415781700001826 a001 12586269025/1149851*228826127^(2/5) 2415781700001826 a001 4807526976/1149851*228826127^(9/20) 2415781700001826 a001 267914296/1149851*228826127^(3/5) 2415781700001826 a001 1836311903/1149851*228826127^(1/2) 2415781700001826 a001 701408733/1149851*228826127^(11/20) 2415781700001826 a001 4052739537881/1149851*87403803^(2/19) 2415781700001826 a001 63245986/1149851*141422324^(9/13) 2415781700001826 a001 117722370921024/4873055 2415781700001826 a001 165580141/1149851*228826127^(5/8) 2415781700001826 a001 1548008755920/1149851*87403803^(3/19) 2415781700001826 a001 514229*87403803^(4/19) 2415781700001826 a001 225851433717/1149851*87403803^(5/19) 2415781700001826 a001 86267571272/1149851*87403803^(6/19) 2415781700001826 a001 32951280099/1149851*87403803^(7/19) 2415781700001826 a001 10610209857723/1149851*33385282^(1/18) 2415781700001826 a001 63245986/1149851*2537720636^(3/5) 2415781700001826 a001 63245986/1149851*45537549124^(9/17) 2415781700001826 a001 63245986/1149851*817138163596^(9/19) 2415781700001826 a001 63245986/1149851*14662949395604^(3/7) 2415781700001826 a001 63245986/1149851*(1/2+1/2*5^(1/2))^27 2415781700001826 a001 63245986/1149851*192900153618^(1/2) 2415781700001826 a001 63245986/1149851*10749957122^(9/16) 2415781700001826 a001 63245986/1149851*599074578^(9/14) 2415781700001826 a001 12586269025/1149851*87403803^(8/19) 2415781700001826 a001 4807526976/1149851*87403803^(9/19) 2415781700001826 a001 2971215073/1149851*87403803^(1/2) 2415781700001826 a001 1836311903/1149851*87403803^(10/19) 2415781700001826 a001 102334155/1149851*87403803^(13/19) 2415781700001826 a001 6557470319842/1149851*33385282^(1/12) 2415781700001826 a001 701408733/1149851*87403803^(11/19) 2415781700001826 a001 267914296/1149851*87403803^(12/19) 2415781700001826 a001 4052739537881/1149851*33385282^(1/9) 2415781700001826 a001 944284833567787/39088169 2415781700001826 a001 1548008755920/1149851*33385282^(1/6) 2415781700001826 a001 514229*33385282^(2/9) 2415781700001826 a001 365435296162/1149851*33385282^(1/4) 2415781700001826 a001 225851433717/1149851*33385282^(5/18) 2415781700001827 a001 86267571272/1149851*33385282^(1/3) 2415781700001827 a001 514229/54018521*45537549124^(15/17) 2415781700001827 a001 514229/54018521*312119004989^(9/11) 2415781700001827 a001 514229/54018521*14662949395604^(5/7) 2415781700001827 a001 24157817/1149851*(1/2+1/2*5^(1/2))^29 2415781700001827 a001 24157817/1149851*1322157322203^(1/2) 2415781700001827 a001 514229/54018521*192900153618^(5/6) 2415781700001827 a001 514229/54018521*28143753123^(9/10) 2415781700001827 a001 514229/54018521*10749957122^(15/16) 2415781700001827 a001 32951280099/1149851*33385282^(7/18) 2415781700001827 a001 10610209857723/1149851*12752043^(1/17) 2415781700001827 a001 20365011074/1149851*33385282^(5/12) 2415781700001827 a001 12586269025/1149851*33385282^(4/9) 2415781700001827 a001 4807526976/1149851*33385282^(1/2) 2415781700001827 a001 1836311903/1149851*33385282^(5/9) 2415781700001827 a001 1134903170/1149851*33385282^(7/12) 2415781700001827 a001 701408733/1149851*33385282^(11/18) 2415781700001827 a001 39088169/1149851*33385282^(7/9) 2415781700001827 a001 267914296/1149851*33385282^(2/3) 2415781700001827 a001 102334155/1149851*33385282^(13/18) 2415781700001828 a001 63245986/1149851*33385282^(3/4) 2415781700001828 a001 4052739537881/1149851*12752043^(2/17) 2415781700001828 a001 120228237120619/4976784 2415781700001828 a001 1548008755920/1149851*12752043^(3/17) 2415781700001829 a001 514229*12752043^(4/17) 2415781700001830 a001 225851433717/1149851*12752043^(5/17) 2415781700001831 a001 86267571272/1149851*12752043^(6/17) 2415781700001831 a001 514229/20633239*(1/2+1/2*5^(1/2))^43 2415781700001831 a001 9227465/1149851*(1/2+1/2*5^(1/2))^31 2415781700001831 a001 9227465/1149851*9062201101803^(1/2) 2415781700001832 a001 32951280099/1149851*12752043^(7/17) 2415781700001832 a001 10610209857723/1149851*4870847^(1/16) 2415781700001833 a001 12586269025/1149851*12752043^(8/17) 2415781700001833 a001 7778742049/1149851*12752043^(1/2) 2415781700001834 a001 4807526976/1149851*12752043^(9/17) 2415781700001835 a001 1836311903/1149851*12752043^(10/17) 2415781700001835 a001 701408733/1149851*12752043^(11/17) 2415781700001836 a001 267914296/1149851*12752043^(12/17) 2415781700001837 a001 14930352/1149851*12752043^(15/17) 2415781700001837 a001 102334155/1149851*12752043^(13/17) 2415781700001838 a001 39088169/1149851*12752043^(14/17) 2415781700001839 a001 4052739537881/1149851*4870847^(1/8) 2415781700001841 a001 137769300517784/5702887 2415781700001845 a001 1548008755920/1149851*4870847^(3/16) 2415781700001851 a001 514229*4870847^(1/4) 2415781700001858 a001 225851433717/1149851*4870847^(5/16) 2415781700001864 a001 86267571272/1149851*4870847^(3/8) 2415781700001865 a001 3524578/1149851*141422324^(11/13) 2415781700001865 a001 3524578/1149851*2537720636^(11/15) 2415781700001865 a001 3524578/1149851*45537549124^(11/17) 2415781700001865 a001 3524578/1149851*312119004989^(3/5) 2415781700001865 a001 3524578/1149851*817138163596^(11/19) 2415781700001865 a001 514229/7881196*(1/2+1/2*5^(1/2))^41 2415781700001865 a001 3524578/1149851*14662949395604^(11/21) 2415781700001865 a001 3524578/1149851*(1/2+1/2*5^(1/2))^33 2415781700001865 a001 3524578/1149851*192900153618^(11/18) 2415781700001865 a001 3524578/1149851*10749957122^(11/16) 2415781700001865 a001 3524578/1149851*1568397607^(3/4) 2415781700001865 a001 3524578/1149851*599074578^(11/14) 2415781700001867 a001 3524578/1149851*33385282^(11/12) 2415781700001870 a001 32951280099/1149851*4870847^(7/16) 2415781700001872 a001 10610209857723/1149851*1860498^(1/15) 2415781700001877 a001 12586269025/1149851*4870847^(1/2) 2415781700001883 a001 4807526976/1149851*4870847^(9/16) 2415781700001889 a001 1836311903/1149851*4870847^(5/8) 2415781700001896 a001 6557470319842/1149851*1860498^(1/10) 2415781700001896 a001 701408733/1149851*4870847^(11/16) 2415781700001902 a001 267914296/1149851*4870847^(3/4) 2415781700001909 a001 102334155/1149851*4870847^(13/16) 2415781700001915 a001 39088169/1149851*4870847^(7/8) 2415781700001919 a001 4052739537881/1149851*1860498^(2/15) 2415781700001919 a001 14930352/1149851*4870847^(15/16) 2415781700001928 a001 2505866199595/103729 2415781700001942 a001 2504730781961/1149851*1860498^(1/6) 2415781700001947 a001 365435296162/4870847*710647^(3/7) 2415781700001965 a001 1548008755920/1149851*1860498^(1/5) 2415781700001974 a001 591286729879/3010349*710647^(5/14) 2415781700002012 a001 514229*1860498^(4/15) 2415781700002034 a001 956722026041/12752043*710647^(3/7) 2415781700002034 a001 10182505537/930249*710647^(4/7) 2415781700002035 a001 365435296162/1149851*1860498^(3/10) 2415781700002047 a001 2504730781961/33385282*710647^(3/7) 2415781700002048 a001 6557470319842/87403803*710647^(3/7) 2415781700002049 a001 10610209857723/141422324*710647^(3/7) 2415781700002050 a001 4052739537881/54018521*710647^(3/7) 2415781700002054 a001 140728068720/1875749*710647^(3/7) 2415781700002058 a001 225851433717/1149851*1860498^(1/3) 2415781700002088 a001 591286729879/7881196*710647^(3/7) 2415781700002092 a001 514229/3010349*2537720636^(13/15) 2415781700002092 a001 1346269/1149851*2537720636^(7/9) 2415781700002092 a001 1346269/1149851*17393796001^(5/7) 2415781700002092 a001 514229/3010349*45537549124^(13/17) 2415781700002092 a001 1346269/1149851*312119004989^(7/11) 2415781700002092 a001 514229/3010349*(1/2+1/2*5^(1/2))^39 2415781700002092 a001 1346269/1149851*14662949395604^(5/9) 2415781700002092 a001 1346269/1149851*(1/2+1/2*5^(1/2))^35 2415781700002092 a001 1346269/1149851*505019158607^(5/8) 2415781700002092 a001 514229/3010349*192900153618^(13/18) 2415781700002092 a001 514229/3010349*73681302247^(3/4) 2415781700002092 a001 1346269/1149851*28143753123^(7/10) 2415781700002092 a001 514229/3010349*10749957122^(13/16) 2415781700002092 a001 1346269/1149851*599074578^(5/6) 2415781700002092 a001 514229/3010349*599074578^(13/14) 2415781700002092 a001 1346269/1149851*228826127^(7/8) 2415781700002105 a001 86267571272/1149851*1860498^(2/5) 2415781700002152 a001 32951280099/1149851*1860498^(7/15) 2415781700002168 a001 10610209857723/1149851*710647^(1/14) 2415781700002175 a001 20365011074/1149851*1860498^(1/2) 2415781700002198 a001 12586269025/1149851*1860498^(8/15) 2415781700002245 a001 4807526976/1149851*1860498^(3/5) 2415781700002289 a001 139583862445/4870847*710647^(1/2) 2415781700002291 a001 1836311903/1149851*1860498^(2/3) 2415781700002314 a001 1134903170/1149851*1860498^(7/10) 2415781700002315 a001 225851433717/3010349*710647^(3/7) 2415781700002338 a001 701408733/1149851*1860498^(11/15) 2415781700002376 a001 365435296162/12752043*710647^(1/2) 2415781700002376 a001 7778742049/1860498*710647^(9/14) 2415781700002384 a001 267914296/1149851*1860498^(4/5) 2415781700002388 a001 956722026041/33385282*710647^(1/2) 2415781700002390 a001 2504730781961/87403803*710647^(1/2) 2415781700002390 a001 6557470319842/228826127*710647^(1/2) 2415781700002390 a001 10610209857723/370248451*710647^(1/2) 2415781700002391 a001 4052739537881/141422324*710647^(1/2) 2415781700002391 a001 1548008755920/54018521*710647^(1/2) 2415781700002396 a001 591286729879/20633239*710647^(1/2) 2415781700002407 a001 165580141/1149851*1860498^(5/6) 2415781700002429 a001 225851433717/7881196*710647^(1/2) 2415781700002431 a001 102334155/1149851*1860498^(13/15) 2415781700002454 a001 63245986/1149851*1860498^(9/10) 2415781700002477 a001 39088169/1149851*1860498^(14/15) 2415781700002509 a001 4052739537881/1149851*710647^(1/7) 2415781700002523 a001 20100270056701/832040 2415781700002630 a001 53316291173/4870847*710647^(4/7) 2415781700002657 a001 86267571272/3010349*710647^(1/2) 2415781700002717 a001 139583862445/12752043*710647^(4/7) 2415781700002718 a001 2971215073/1860498*710647^(5/7) 2415781700002730 a001 182717648081/16692641*710647^(4/7) 2415781700002732 a001 956722026041/87403803*710647^(4/7) 2415781700002732 a001 2504730781961/228826127*710647^(4/7) 2415781700002732 a001 3278735159921/299537289*710647^(4/7) 2415781700002732 a001 10610209857723/969323029*710647^(4/7) 2415781700002732 a001 4052739537881/370248451*710647^(4/7) 2415781700002732 a001 387002188980/35355581*710647^(4/7) 2415781700002733 a001 591286729879/54018521*710647^(4/7) 2415781700002738 a001 7787980473/711491*710647^(4/7) 2415781700002771 a001 21566892818/1970299*710647^(4/7) 2415781700002781 a001 956722026041/710647*271443^(3/13) 2415781700002782 a001 433494437/439204*439204^(7/9) 2415781700002851 a001 1548008755920/1149851*710647^(3/14) 2415781700002888 a001 1836311903/1860498*710647^(3/4) 2415781700002972 a001 20365011074/4870847*710647^(9/14) 2415781700002999 a001 32951280099/3010349*710647^(4/7) 2415781700003022 a001 956722026041/1149851*710647^(1/4) 2415781700003059 a001 53316291173/12752043*710647^(9/14) 2415781700003059 a001 567451585/930249*710647^(11/14) 2415781700003072 a001 139583862445/33385282*710647^(9/14) 2415781700003073 a001 365435296162/87403803*710647^(9/14) 2415781700003074 a001 956722026041/228826127*710647^(9/14) 2415781700003074 a001 2504730781961/599074578*710647^(9/14) 2415781700003074 a001 6557470319842/1568397607*710647^(9/14) 2415781700003074 a001 10610209857723/2537720636*710647^(9/14) 2415781700003074 a001 4052739537881/969323029*710647^(9/14) 2415781700003074 a001 1548008755920/370248451*710647^(9/14) 2415781700003074 a001 591286729879/141422324*710647^(9/14) 2415781700003075 a001 225851433717/54018521*710647^(9/14) 2415781700003079 a001 86267571272/20633239*710647^(9/14) 2415781700003113 a001 32951280099/7881196*710647^(9/14) 2415781700003193 a001 514229*710647^(2/7) 2415781700003314 a001 7778742049/4870847*710647^(5/7) 2415781700003340 a001 12586269025/3010349*710647^(9/14) 2415781700003401 a001 20365011074/12752043*710647^(5/7) 2415781700003401 a001 433494437/1860498*710647^(6/7) 2415781700003413 a001 53316291173/33385282*710647^(5/7) 2415781700003415 a001 139583862445/87403803*710647^(5/7) 2415781700003415 a001 365435296162/228826127*710647^(5/7) 2415781700003415 a001 956722026041/599074578*710647^(5/7) 2415781700003415 a001 2504730781961/1568397607*710647^(5/7) 2415781700003415 a001 6557470319842/4106118243*710647^(5/7) 2415781700003415 a001 10610209857723/6643838879*710647^(5/7) 2415781700003415 a001 4052739537881/2537720636*710647^(5/7) 2415781700003415 a001 1548008755920/969323029*710647^(5/7) 2415781700003416 a001 591286729879/370248451*710647^(5/7) 2415781700003416 a001 225851433717/141422324*710647^(5/7) 2415781700003416 a001 86267571272/54018521*710647^(5/7) 2415781700003421 a001 32951280099/20633239*710647^(5/7) 2415781700003454 a001 12586269025/7881196*710647^(5/7) 2415781700003485 a001 4807526976/4870847*710647^(3/4) 2415781700003534 a001 225851433717/1149851*710647^(5/14) 2415781700003571 a001 12586269025/12752043*710647^(3/4) 2415781700003584 a001 32951280099/33385282*710647^(3/4) 2415781700003586 a001 86267571272/87403803*710647^(3/4) 2415781700003586 a001 225851433717/228826127*710647^(3/4) 2415781700003586 a001 591286729879/599074578*710647^(3/4) 2415781700003586 a001 1548008755920/1568397607*710647^(3/4) 2415781700003586 a001 4052739537881/4106118243*710647^(3/4) 2415781700003586 a001 4807525989/4870846*710647^(3/4) 2415781700003586 a001 6557470319842/6643838879*710647^(3/4) 2415781700003586 a001 2504730781961/2537720636*710647^(3/4) 2415781700003586 a001 956722026041/969323029*710647^(3/4) 2415781700003586 a001 365435296162/370248451*710647^(3/4) 2415781700003586 a001 139583862445/141422324*710647^(3/4) 2415781700003587 a001 53316291173/54018521*710647^(3/4) 2415781700003592 a001 20365011074/20633239*710647^(3/4) 2415781700003625 a001 7778742049/7881196*710647^(3/4) 2415781700003653 a001 514229/1149851*(1/2+1/2*5^(1/2))^37 2415781700003655 a001 2971215073/4870847*710647^(11/14) 2415781700003682 a001 4807526976/3010349*710647^(5/7) 2415781700003742 a001 7778742049/12752043*710647^(11/14) 2415781700003743 a001 165580141/1860498*710647^(13/14) 2415781700003755 a001 10182505537/16692641*710647^(11/14) 2415781700003757 a001 53316291173/87403803*710647^(11/14) 2415781700003757 a001 139583862445/228826127*710647^(11/14) 2415781700003757 a001 182717648081/299537289*710647^(11/14) 2415781700003757 a001 956722026041/1568397607*710647^(11/14) 2415781700003757 a001 2504730781961/4106118243*710647^(11/14) 2415781700003757 a001 3278735159921/5374978561*710647^(11/14) 2415781700003757 a001 10610209857723/17393796001*710647^(11/14) 2415781700003757 a001 4052739537881/6643838879*710647^(11/14) 2415781700003757 a001 1134903780/1860499*710647^(11/14) 2415781700003757 a001 591286729879/969323029*710647^(11/14) 2415781700003757 a001 225851433717/370248451*710647^(11/14) 2415781700003757 a001 21566892818/35355581*710647^(11/14) 2415781700003758 a001 32951280099/54018521*710647^(11/14) 2415781700003763 a001 1144206275/1875749*710647^(11/14) 2415781700003796 a001 1201881744/1970299*710647^(11/14) 2415781700003853 a001 2971215073/3010349*710647^(3/4) 2415781700003876 a001 86267571272/1149851*710647^(3/7) 2415781700003997 a001 1134903170/4870847*710647^(6/7) 2415781700004024 a001 1836311903/3010349*710647^(11/14) 2415781700004084 a001 2971215073/12752043*710647^(6/7) 2415781700004090 a001 590586152200/24447 2415781700004097 a001 7778742049/33385282*710647^(6/7) 2415781700004099 a001 20365011074/87403803*710647^(6/7) 2415781700004099 a001 53316291173/228826127*710647^(6/7) 2415781700004099 a001 139583862445/599074578*710647^(6/7) 2415781700004099 a001 365435296162/1568397607*710647^(6/7) 2415781700004099 a001 956722026041/4106118243*710647^(6/7) 2415781700004099 a001 2504730781961/10749957122*710647^(6/7) 2415781700004099 a001 6557470319842/28143753123*710647^(6/7) 2415781700004099 a001 10610209857723/45537549124*710647^(6/7) 2415781700004099 a001 4052739537881/17393796001*710647^(6/7) 2415781700004099 a001 1548008755920/6643838879*710647^(6/7) 2415781700004099 a001 591286729879/2537720636*710647^(6/7) 2415781700004099 a001 225851433717/969323029*710647^(6/7) 2415781700004099 a001 86267571272/370248451*710647^(6/7) 2415781700004099 a001 63246219/271444*710647^(6/7) 2415781700004100 a001 12586269025/54018521*710647^(6/7) 2415781700004105 a001 4807526976/20633239*710647^(6/7) 2415781700004138 a001 1836311903/7881196*710647^(6/7) 2415781700004173 a001 1836311903/439204*439204^(2/3) 2415781700004218 a001 32951280099/1149851*710647^(1/2) 2415781700004339 a001 433494437/4870847*710647^(13/14) 2415781700004345 a001 3278735159921/930249*271443^(2/13) 2415781700004348 a001 10610209857723/1149851*271443^(1/13) 2415781700004365 a001 701408733/3010349*710647^(6/7) 2415781700004426 a001 1134903170/12752043*710647^(13/14) 2415781700004438 a001 2971215073/33385282*710647^(13/14) 2415781700004440 a001 7778742049/87403803*710647^(13/14) 2415781700004440 a001 20365011074/228826127*710647^(13/14) 2415781700004441 a001 53316291173/599074578*710647^(13/14) 2415781700004441 a001 139583862445/1568397607*710647^(13/14) 2415781700004441 a001 365435296162/4106118243*710647^(13/14) 2415781700004441 a001 956722026041/10749957122*710647^(13/14) 2415781700004441 a001 2504730781961/28143753123*710647^(13/14) 2415781700004441 a001 6557470319842/73681302247*710647^(13/14) 2415781700004441 a001 10610209857723/119218851371*710647^(13/14) 2415781700004441 a001 4052739537881/45537549124*710647^(13/14) 2415781700004441 a001 1548008755920/17393796001*710647^(13/14) 2415781700004441 a001 591286729879/6643838879*710647^(13/14) 2415781700004441 a001 225851433717/2537720636*710647^(13/14) 2415781700004441 a001 86267571272/969323029*710647^(13/14) 2415781700004441 a001 32951280099/370248451*710647^(13/14) 2415781700004441 a001 12586269025/141422324*710647^(13/14) 2415781700004441 a001 4807526976/54018521*710647^(13/14) 2415781700004446 a001 1836311903/20633239*710647^(13/14) 2415781700004479 a001 3524667/39604*710647^(13/14) 2415781700004559 a001 12586269025/1149851*710647^(4/7) 2415781700004579 a001 1515744265389/101521*103682^(1/24) 2415781700004666 a001 956722026041/271443*103682^(1/6) 2415781700004707 a001 267914296/3010349*710647^(13/14) 2415781700004719 a001 2559206659534/105937 2415781700004901 a001 4807526976/1149851*710647^(9/14) 2415781700005034 a001 7677619978603/317811 2415781700005243 a001 1836311903/1149851*710647^(5/7) 2415781700005303 a001 365435296162/710647*271443^(4/13) 2415781700005309 a001 10610209857723/3010349*271443^(2/13) 2415781700005413 a001 1134903170/1149851*710647^(3/4) 2415781700005565 a001 7778742049/439204*439204^(5/9) 2415781700005584 a001 701408733/1149851*710647^(11/14) 2415781700005926 a001 267914296/1149851*710647^(6/7) 2415781700006268 a001 102334155/1149851*710647^(13/14) 2415781700006607 a001 2559206659536/105937 2415781700006867 a001 2504730781961/1860498*271443^(3/13) 2415781700006870 a001 4052739537881/1149851*271443^(2/13) 2415781700006956 a001 32951280099/439204*439204^(4/9) 2415781700007463 a001 6557470319842/4870847*271443^(3/13) 2415781700007604 a001 10610209857723/7881196*271443^(3/13) 2415781700007738 a001 317811/439204*141422324^(12/13) 2415781700007739 a001 317811/439204*2537720636^(4/5) 2415781700007739 a001 317811/439204*45537549124^(12/17) 2415781700007739 a001 196418/710647*817138163596^(2/3) 2415781700007739 a001 196418/710647*(1/2+1/2*5^(1/2))^38 2415781700007739 a001 317811/439204*14662949395604^(4/7) 2415781700007739 a001 317811/439204*(1/2+1/2*5^(1/2))^36 2415781700007739 a001 317811/439204*505019158607^(9/14) 2415781700007739 a001 317811/439204*192900153618^(2/3) 2415781700007739 a001 317811/439204*73681302247^(9/13) 2415781700007739 a001 317811/439204*10749957122^(3/4) 2415781700007739 a001 196418/710647*10749957122^(19/24) 2415781700007739 a001 317811/439204*4106118243^(18/23) 2415781700007739 a001 196418/710647*4106118243^(19/23) 2415781700007739 a001 317811/439204*1568397607^(9/11) 2415781700007739 a001 196418/710647*1568397607^(19/22) 2415781700007739 a001 317811/439204*599074578^(6/7) 2415781700007739 a001 196418/710647*599074578^(19/21) 2415781700007739 a001 317811/439204*228826127^(9/10) 2415781700007739 a001 196418/710647*228826127^(19/20) 2415781700007739 a001 317811/439204*87403803^(18/19) 2415781700007825 a001 139583862445/710647*271443^(5/13) 2415781700007831 a001 1346269*271443^(3/13) 2415781700008348 a001 139583862445/439204*439204^(1/3) 2415781700009096 a001 956722026041/167761*64079^(3/23) 2415781700009389 a001 956722026041/1860498*271443^(4/13) 2415781700009392 a001 1548008755920/1149851*271443^(3/13) 2415781700009739 a001 591286729879/439204*439204^(2/9) 2415781700009985 a001 2504730781961/4870847*271443^(4/13) 2415781700010072 a001 6557470319842/12752043*271443^(4/13) 2415781700010093 a001 10610209857723/20633239*271443^(4/13) 2415781700010126 a001 4052739537881/7881196*271443^(4/13) 2415781700010348 a001 53316291173/710647*271443^(6/13) 2415781700010354 a001 1548008755920/3010349*271443^(4/13) 2415781700010695 a001 12422650078148/514229 2415781700011131 a001 2504730781961/439204*439204^(1/9) 2415781700011609 a001 32951280099/710647*271443^(1/2) 2415781700011824 a001 98209/930249*2537720636^(8/9) 2415781700011824 a001 208010/109801*45537549124^(2/3) 2415781700011824 a001 98209/930249*312119004989^(8/11) 2415781700011824 a001 98209/930249*(1/2+1/2*5^(1/2))^40 2415781700011824 a001 98209/930249*23725150497407^(5/8) 2415781700011824 a001 208010/109801*(1/2+1/2*5^(1/2))^34 2415781700011824 a001 98209/930249*73681302247^(10/13) 2415781700011824 a001 98209/930249*28143753123^(4/5) 2415781700011824 a001 208010/109801*10749957122^(17/24) 2415781700011824 a001 98209/930249*10749957122^(5/6) 2415781700011824 a001 208010/109801*4106118243^(17/23) 2415781700011824 a001 98209/930249*4106118243^(20/23) 2415781700011824 a001 208010/109801*1568397607^(17/22) 2415781700011824 a001 98209/930249*1568397607^(10/11) 2415781700011824 a001 208010/109801*599074578^(17/21) 2415781700011824 a001 98209/930249*599074578^(20/21) 2415781700011824 a001 208010/109801*228826127^(17/20) 2415781700011825 a001 208010/109801*87403803^(17/19) 2415781700011826 a001 208010/109801*33385282^(17/18) 2415781700011911 a001 182717648081/930249*271443^(5/13) 2415781700011914 a001 514229*271443^(4/13) 2415781700012256 a001 32522920134938/1346269 2415781700012261 a001 365435296162/64079*24476^(1/7) 2415781700012420 a001 196418/4870847*2537720636^(14/15) 2415781700012420 a001 196418/4870847*17393796001^(6/7) 2415781700012420 a001 196418/4870847*45537549124^(14/17) 2415781700012420 a001 196418/4870847*14662949395604^(2/3) 2415781700012420 a001 196418/4870847*(1/2+1/2*5^(1/2))^42 2415781700012420 a001 196418/4870847*505019158607^(3/4) 2415781700012420 a001 196418/4870847*192900153618^(7/9) 2415781700012420 a001 2178309/439204*(1/2+1/2*5^(1/2))^32 2415781700012420 a001 2178309/439204*23725150497407^(1/2) 2415781700012420 a001 2178309/439204*505019158607^(4/7) 2415781700012420 a001 2178309/439204*73681302247^(8/13) 2415781700012420 a001 2178309/439204*10749957122^(2/3) 2415781700012420 a001 196418/4870847*10749957122^(7/8) 2415781700012420 a001 2178309/439204*4106118243^(16/23) 2415781700012420 a001 196418/4870847*4106118243^(21/23) 2415781700012420 a001 2178309/439204*1568397607^(8/11) 2415781700012420 a001 196418/4870847*1568397607^(21/22) 2415781700012420 a001 2178309/439204*599074578^(16/21) 2415781700012420 a001 2178309/439204*228826127^(4/5) 2415781700012421 a001 2178309/439204*87403803^(16/19) 2415781700012422 a001 2178309/439204*33385282^(8/9) 2415781700012434 a001 2178309/439204*12752043^(16/17) 2415781700012472 a001 5702887/439204*7881196^(10/11) 2415781700012483 a001 42573055163333/1762289 2415781700012491 a001 24157817/439204*7881196^(9/11) 2415781700012494 a001 102334155/439204*7881196^(8/11) 2415781700012496 a001 66978574/109801*7881196^(2/3) 2415781700012497 a001 433494437/439204*7881196^(7/11) 2415781700012501 a001 1836311903/439204*7881196^(6/11) 2415781700012502 a001 5702887/439204*20633239^(6/7) 2415781700012504 a001 7778742049/439204*7881196^(5/11) 2415781700012507 a001 956722026041/4870847*271443^(5/13) 2415781700012507 a001 5702887/439204*141422324^(10/13) 2415781700012507 a001 5702887/439204*2537720636^(2/3) 2415781700012507 a001 5702887/439204*45537549124^(10/17) 2415781700012507 a001 196418/12752043*312119004989^(4/5) 2415781700012507 a001 196418/12752043*(1/2+1/2*5^(1/2))^44 2415781700012507 a001 196418/12752043*23725150497407^(11/16) 2415781700012507 a001 5702887/439204*312119004989^(6/11) 2415781700012507 a001 5702887/439204*14662949395604^(10/21) 2415781700012507 a001 5702887/439204*(1/2+1/2*5^(1/2))^30 2415781700012507 a001 5702887/439204*192900153618^(5/9) 2415781700012507 a001 196418/12752043*73681302247^(11/13) 2415781700012507 a001 5702887/439204*28143753123^(3/5) 2415781700012507 a001 5702887/439204*10749957122^(5/8) 2415781700012507 a001 196418/12752043*10749957122^(11/12) 2415781700012507 a001 5702887/439204*4106118243^(15/23) 2415781700012507 a001 196418/12752043*4106118243^(22/23) 2415781700012507 a001 5702887/439204*1568397607^(15/22) 2415781700012507 a001 5702887/439204*599074578^(5/7) 2415781700012507 a001 5702887/439204*228826127^(3/4) 2415781700012508 a001 5702887/439204*87403803^(15/19) 2415781700012508 a001 32951280099/439204*7881196^(4/11) 2415781700012509 a001 5702887/439204*33385282^(5/6) 2415781700012509 a001 53316291173/439204*7881196^(1/3) 2415781700012512 a001 139583862445/439204*7881196^(3/11) 2415781700012515 a001 591286729879/439204*7881196^(2/11) 2415781700012515 a001 196452/5779*20633239^(4/5) 2415781700012516 a001 44583082169012/1845493 2415781700012518 a001 31622993/219602*20633239^(5/7) 2415781700012519 a001 2504730781961/439204*7881196^(1/11) 2415781700012519 a001 433494437/439204*20633239^(3/5) 2415781700012519 a001 701408733/439204*20633239^(4/7) 2415781700012520 a001 7778742049/439204*20633239^(3/7) 2415781700012520 a001 12586269025/439204*20633239^(2/5) 2415781700012520 a001 196452/5779*17393796001^(4/7) 2415781700012520 a001 98209/16692641*(1/2+1/2*5^(1/2))^46 2415781700012520 a001 196452/5779*14662949395604^(4/9) 2415781700012520 a001 196452/5779*(1/2+1/2*5^(1/2))^28 2415781700012520 a001 196452/5779*73681302247^(7/13) 2415781700012520 a001 196452/5779*10749957122^(7/12) 2415781700012520 a001 98209/16692641*10749957122^(23/24) 2415781700012520 a001 196452/5779*4106118243^(14/23) 2415781700012520 a001 196452/5779*1568397607^(7/11) 2415781700012520 a001 196452/5779*599074578^(2/3) 2415781700012520 a001 196452/5779*228826127^(7/10) 2415781700012520 a001 196452/5779*87403803^(14/19) 2415781700012520 a001 5702887/439204*12752043^(15/17) 2415781700012521 a001 196418*20633239^(2/7) 2415781700012521 a001 182717648081/219602*20633239^(1/5) 2415781700012521 a001 583600122208514/24157817 2415781700012521 a001 956722026041/439204*20633239^(1/7) 2415781700012522 a001 196452/5779*33385282^(7/9) 2415781700012522 a001 39088169/439204*141422324^(2/3) 2415781700012522 a001 196418/87403803*45537549124^(16/17) 2415781700012522 a001 196418/87403803*14662949395604^(16/21) 2415781700012522 a001 196418/87403803*192900153618^(8/9) 2415781700012522 a001 39088169/439204*(1/2+1/2*5^(1/2))^26 2415781700012522 a001 39088169/439204*73681302247^(1/2) 2415781700012522 a001 196418/87403803*73681302247^(12/13) 2415781700012522 a001 39088169/439204*10749957122^(13/24) 2415781700012522 a001 39088169/439204*4106118243^(13/23) 2415781700012522 a001 39088169/439204*1568397607^(13/22) 2415781700012522 a001 39088169/439204*599074578^(13/21) 2415781700012522 a001 39088169/439204*228826127^(13/20) 2415781700012522 a001 763942477890241/31622993 2415781700012522 a001 102334155/439204*141422324^(8/13) 2415781700012522 a001 39088169/439204*87403803^(13/19) 2415781700012522 a001 433494437/439204*141422324^(7/13) 2415781700012522 a001 1836311903/439204*141422324^(6/13) 2415781700012522 a001 7778742049/439204*141422324^(5/13) 2415781700012522 a001 102334155/439204*2537720636^(8/15) 2415781700012522 a001 102334155/439204*45537549124^(8/17) 2415781700012522 a001 196418/228826127*312119004989^(10/11) 2415781700012522 a001 196418/228826127*3461452808002^(5/6) 2415781700012522 a001 102334155/439204*14662949395604^(8/21) 2415781700012522 a001 102334155/439204*(1/2+1/2*5^(1/2))^24 2415781700012522 a001 102334155/439204*192900153618^(4/9) 2415781700012522 a001 102334155/439204*73681302247^(6/13) 2415781700012522 a001 102334155/439204*10749957122^(1/2) 2415781700012522 a001 102334155/439204*4106118243^(12/23) 2415781700012522 a001 102334155/439204*1568397607^(6/11) 2415781700012522 a001 102334155/439204*599074578^(4/7) 2415781700012522 a001 10182505537/219602*141422324^(1/3) 2415781700012522 a001 32951280099/439204*141422324^(4/13) 2415781700012522 a001 139583862445/439204*141422324^(3/13) 2415781700012522 a001 591286729879/439204*141422324^(2/13) 2415781700012522 a001 102334155/439204*228826127^(3/5) 2415781700012522 a001 4000054745132932/165580141 2415781700012522 a001 2504730781961/439204*141422324^(1/13) 2415781700012522 a001 98209/299537289*23725150497407^(13/16) 2415781700012522 a001 98209/299537289*505019158607^(13/14) 2415781700012522 a001 66978574/109801*312119004989^(2/5) 2415781700012522 a001 66978574/109801*(1/2+1/2*5^(1/2))^22 2415781700012522 a001 66978574/109801*10749957122^(11/24) 2415781700012522 a001 66978574/109801*4106118243^(11/23) 2415781700012522 a001 66978574/109801*1568397607^(1/2) 2415781700012522 a001 66978574/109801*599074578^(11/21) 2415781700012522 a001 10472279279618314/433494437 2415781700012522 a001 701408733/439204*2537720636^(4/9) 2415781700012522 a001 196418/1568397607*14662949395604^(6/7) 2415781700012522 a001 701408733/439204*(1/2+1/2*5^(1/2))^20 2415781700012522 a001 701408733/439204*23725150497407^(5/16) 2415781700012522 a001 701408733/439204*505019158607^(5/14) 2415781700012522 a001 701408733/439204*73681302247^(5/13) 2415781700012522 a001 701408733/439204*28143753123^(2/5) 2415781700012522 a001 701408733/439204*10749957122^(5/12) 2415781700012522 a001 701408733/439204*4106118243^(10/23) 2415781700012522 a001 701408733/439204*1568397607^(5/11) 2415781700012522 a001 161275194668953/6675901 2415781700012522 a001 1836311903/439204*2537720636^(2/5) 2415781700012522 a001 1836311903/439204*45537549124^(6/17) 2415781700012522 a001 196418/4106118243*14662949395604^(8/9) 2415781700012522 a001 1836311903/439204*14662949395604^(2/7) 2415781700012522 a001 1836311903/439204*(1/2+1/2*5^(1/2))^18 2415781700012522 a001 1836311903/439204*192900153618^(1/3) 2415781700012522 a001 1836311903/439204*10749957122^(3/8) 2415781700012522 a001 7778742049/439204*2537720636^(1/3) 2415781700012522 a001 32951280099/439204*2537720636^(4/15) 2415781700012522 a001 1836311903/439204*4106118243^(9/23) 2415781700012522 a001 196418*2537720636^(2/9) 2415781700012522 a001 139583862445/439204*2537720636^(1/5) 2415781700012522 a001 71778070001547716/2971215073 2415781700012522 a001 591286729879/439204*2537720636^(2/15) 2415781700012522 a001 956722026041/439204*2537720636^(1/9) 2415781700012522 a001 2504730781961/439204*2537720636^(1/15) 2415781700012522 a001 1201881744/109801*(1/2+1/2*5^(1/2))^16 2415781700012522 a001 1201881744/109801*23725150497407^(1/4) 2415781700012522 a001 1201881744/109801*73681302247^(4/13) 2415781700012522 a001 1201881744/109801*10749957122^(1/3) 2415781700012522 a001 187917426910921138/7778742049 2415781700012522 a001 12586269025/439204*17393796001^(2/7) 2415781700012522 a001 196418/28143753123*14662949395604^(20/21) 2415781700012522 a001 12586269025/439204*14662949395604^(2/9) 2415781700012522 a001 12586269025/439204*(1/2+1/2*5^(1/2))^14 2415781700012522 a001 12586269025/439204*505019158607^(1/4) 2415781700012522 a001 245987105365607849/10182505537 2415781700012522 a001 182717648081/219602*17393796001^(1/7) 2415781700012522 a001 32951280099/439204*45537549124^(4/17) 2415781700012522 a001 32951280099/439204*817138163596^(4/19) 2415781700012522 a001 32951280099/439204*14662949395604^(4/21) 2415781700012522 a001 32951280099/439204*(1/2+1/2*5^(1/2))^12 2415781700012522 a001 32951280099/439204*192900153618^(2/9) 2415781700012522 a001 32951280099/439204*73681302247^(3/13) 2415781700012522 a001 1288005205282725956/53316291173 2415781700012522 a001 139583862445/439204*45537549124^(3/17) 2415781700012522 a001 591286729879/439204*45537549124^(2/17) 2415781700012522 a001 196418*(1/2+1/2*5^(1/2))^10 2415781700012522 a001 225851433717/439204*(1/2+1/2*5^(1/2))^8 2415781700012522 a001 225851433717/439204*23725150497407^(1/8) 2415781700012522 a001 387002188980/109801*(1/2+1/2*5^(1/2))^4 2415781700012522 a001 10610209857723/439204 2415781700012522 a001 2504730781961/439204*(1/2+1/2*5^(1/2))^3 2415781700012522 a001 139583862445/439204*817138163596^(3/19) 2415781700012522 a001 139583862445/439204*14662949395604^(1/7) 2415781700012522 a001 139583862445/439204*(1/2+1/2*5^(1/2))^9 2415781700012522 a001 139583862445/439204*192900153618^(1/6) 2415781700012522 a001 225851433717/439204*73681302247^(2/13) 2415781700012522 a001 53316291173/439204*312119004989^(1/5) 2415781700012522 a001 53316291173/439204*(1/2+1/2*5^(1/2))^11 2415781700012522 a001 956722026041/439204*28143753123^(1/10) 2415781700012522 a001 796030994551510258/32951280099 2415781700012522 a001 196418*28143753123^(1/5) 2415781700012522 a001 4052739537881/439204*10749957122^(1/24) 2415781700012522 a001 10182505537/219602*(1/2+1/2*5^(1/2))^13 2415781700012522 a001 10182505537/219602*73681302247^(1/4) 2415781700012522 a001 2504730781961/439204*10749957122^(1/16) 2415781700012522 a001 387002188980/109801*10749957122^(1/12) 2415781700012522 a001 591286729879/439204*10749957122^(1/8) 2415781700012522 a001 5528305160368992/228841255 2415781700012522 a001 12586269025/439204*10749957122^(7/24) 2415781700012522 a001 225851433717/439204*10749957122^(1/6) 2415781700012522 a001 139583862445/439204*10749957122^(3/16) 2415781700012522 a001 196418*10749957122^(5/24) 2415781700012522 a001 32951280099/439204*10749957122^(1/4) 2415781700012522 a001 4052739537881/439204*4106118243^(1/23) 2415781700012522 a001 7778742049/439204*45537549124^(5/17) 2415781700012522 a001 7778742049/439204*312119004989^(3/11) 2415781700012522 a001 7778742049/439204*14662949395604^(5/21) 2415781700012522 a001 7778742049/439204*(1/2+1/2*5^(1/2))^15 2415781700012522 a001 7778742049/439204*192900153618^(5/18) 2415781700012522 a001 7778742049/439204*28143753123^(3/10) 2415781700012522 a001 387002188980/109801*4106118243^(2/23) 2415781700012522 a001 7778742049/439204*10749957122^(5/16) 2415781700012522 a001 591286729879/439204*4106118243^(3/23) 2415781700012522 a001 58069678454686711/2403763488 2415781700012522 a001 225851433717/439204*4106118243^(4/23) 2415781700012522 a001 1201881744/109801*4106118243^(8/23) 2415781700012522 a001 196418*4106118243^(5/23) 2415781700012522 a001 32951280099/439204*4106118243^(6/23) 2415781700012522 a001 12586269025/439204*4106118243^(7/23) 2415781700012522 a001 4052739537881/439204*1568397607^(1/22) 2415781700012522 a001 2971215073/439204*45537549124^(1/3) 2415781700012522 a001 196418/6643838879*14662949395604^(19/21) 2415781700012522 a001 2971215073/439204*(1/2+1/2*5^(1/2))^17 2415781700012522 a001 387002188980/109801*1568397607^(1/11) 2415781700012522 a001 591286729879/439204*1568397607^(3/22) 2415781700012522 a001 44361286907825706/1836311903 2415781700012522 a001 225851433717/439204*1568397607^(2/11) 2415781700012522 a001 196418*1568397607^(5/22) 2415781700012522 a001 53316291173/439204*1568397607^(1/4) 2415781700012522 a001 1836311903/439204*1568397607^(9/22) 2415781700012522 a001 32951280099/439204*1568397607^(3/11) 2415781700012522 a001 12586269025/439204*1568397607^(7/22) 2415781700012522 a001 4052739537881/439204*599074578^(1/21) 2415781700012522 a001 1201881744/109801*1568397607^(4/11) 2415781700012522 a001 98209/1268860318*3461452808002^(11/12) 2415781700012522 a001 567451585/219602*817138163596^(1/3) 2415781700012522 a001 567451585/219602*(1/2+1/2*5^(1/2))^19 2415781700012522 a001 2504730781961/439204*599074578^(1/14) 2415781700012522 a001 387002188980/109801*599074578^(2/21) 2415781700012522 a001 591286729879/439204*599074578^(1/7) 2415781700012522 a001 16944503814103696/701408733 2415781700012522 a001 182717648081/219602*599074578^(1/6) 2415781700012522 a001 225851433717/439204*599074578^(4/21) 2415781700012522 a001 139583862445/439204*599074578^(3/14) 2415781700012522 a001 196418*599074578^(5/21) 2415781700012522 a001 32951280099/439204*599074578^(2/7) 2415781700012522 a001 701408733/439204*599074578^(10/21) 2415781700012522 a001 12586269025/439204*599074578^(1/3) 2415781700012522 a001 4052739537881/439204*228826127^(1/20) 2415781700012522 a001 433494437/439204*2537720636^(7/15) 2415781700012522 a001 7778742049/439204*599074578^(5/14) 2415781700012522 a001 1201881744/109801*599074578^(8/21) 2415781700012522 a001 433494437/439204*17393796001^(3/7) 2415781700012522 a001 433494437/439204*45537549124^(7/17) 2415781700012522 a001 433494437/439204*14662949395604^(1/3) 2415781700012522 a001 433494437/439204*(1/2+1/2*5^(1/2))^21 2415781700012522 a001 433494437/439204*192900153618^(7/18) 2415781700012522 a001 433494437/439204*10749957122^(7/16) 2415781700012522 a001 1836311903/439204*599074578^(3/7) 2415781700012522 a001 387002188980/109801*228826127^(1/10) 2415781700012522 a001 956722026041/439204*228826127^(1/8) 2415781700012522 a001 433494437/439204*599074578^(1/2) 2415781700012522 a001 3236112267242691/133957148 2415781700012522 a001 591286729879/439204*228826127^(3/20) 2415781700012522 a001 225851433717/439204*228826127^(1/5) 2415781700012522 a001 196418*228826127^(1/4) 2415781700012522 a001 32951280099/439204*228826127^(3/10) 2415781700012522 a001 12586269025/439204*228826127^(7/20) 2415781700012522 a001 4052739537881/439204*87403803^(1/19) 2415781700012522 a001 7778742049/439204*228826127^(3/8) 2415781700012522 a001 196418/370248451*817138163596^(17/19) 2415781700012522 a001 196418/370248451*14662949395604^(17/21) 2415781700012522 a001 196418/370248451*192900153618^(17/18) 2415781700012522 a001 165580141/439204*(1/2+1/2*5^(1/2))^23 2415781700012522 a001 165580141/439204*4106118243^(1/2) 2415781700012522 a001 1201881744/109801*228826127^(2/5) 2415781700012522 a001 66978574/109801*228826127^(11/20) 2415781700012522 a001 1836311903/439204*228826127^(9/20) 2415781700012522 a001 701408733/439204*228826127^(1/2) 2415781700012522 a001 387002188980/109801*87403803^(2/19) 2415781700012522 a001 44948541624590/1860621 2415781700012522 a001 591286729879/439204*87403803^(3/19) 2415781700012522 a001 225851433717/439204*87403803^(4/19) 2415781700012522 a001 196418*87403803^(5/19) 2415781700012522 a001 32951280099/439204*87403803^(6/19) 2415781700012522 a001 12586269025/439204*87403803^(7/19) 2415781700012522 a001 4052739537881/439204*33385282^(1/18) 2415781700012522 a001 31622993/219602*2537720636^(5/9) 2415781700012522 a001 98209/70711162*14662949395604^(7/9) 2415781700012522 a001 98209/70711162*505019158607^(7/8) 2415781700012522 a001 31622993/219602*312119004989^(5/11) 2415781700012522 a001 31622993/219602*(1/2+1/2*5^(1/2))^25 2415781700012522 a001 31622993/219602*3461452808002^(5/12) 2415781700012522 a001 31622993/219602*28143753123^(1/2) 2415781700012522 a001 1201881744/109801*87403803^(8/19) 2415781700012522 a001 31622993/219602*228826127^(5/8) 2415781700012522 a001 1836311903/439204*87403803^(9/19) 2415781700012522 a001 102334155/439204*87403803^(12/19) 2415781700012522 a001 567451585/219602*87403803^(1/2) 2415781700012522 a001 701408733/439204*87403803^(10/19) 2415781700012522 a001 66978574/109801*87403803^(11/19) 2415781700012522 a001 2504730781961/439204*33385282^(1/12) 2415781700012522 a001 387002188980/109801*33385282^(1/9) 2415781700012522 a001 944284833571968/39088169 2415781700012523 a001 591286729879/439204*33385282^(1/6) 2415781700012523 a001 225851433717/439204*33385282^(2/9) 2415781700012523 a001 139583862445/439204*33385282^(1/4) 2415781700012523 a001 196418*33385282^(5/18) 2415781700012523 a001 32951280099/439204*33385282^(1/3) 2415781700012523 a001 24157817/439204*141422324^(9/13) 2415781700012523 a001 24157817/439204*2537720636^(3/5) 2415781700012523 a001 24157817/439204*45537549124^(9/17) 2415781700012523 a001 24157817/439204*817138163596^(9/19) 2415781700012523 a001 24157817/439204*14662949395604^(3/7) 2415781700012523 a001 24157817/439204*(1/2+1/2*5^(1/2))^27 2415781700012523 a001 24157817/439204*192900153618^(1/2) 2415781700012523 a001 24157817/439204*10749957122^(9/16) 2415781700012523 a001 24157817/439204*599074578^(9/14) 2415781700012523 a001 12586269025/439204*33385282^(7/18) 2415781700012523 a001 4052739537881/439204*12752043^(1/17) 2415781700012523 a001 7778742049/439204*33385282^(5/12) 2415781700012523 a001 1201881744/109801*33385282^(4/9) 2415781700012523 a001 1836311903/439204*33385282^(1/2) 2415781700012523 a001 701408733/439204*33385282^(5/9) 2415781700012523 a001 39088169/439204*33385282^(13/18) 2415781700012523 a001 433494437/439204*33385282^(7/12) 2415781700012523 a001 66978574/109801*33385282^(11/18) 2415781700012524 a001 102334155/439204*33385282^(2/3) 2415781700012524 a001 387002188980/109801*12752043^(2/17) 2415781700012524 a001 10608373863631/439128 2415781700012525 a001 24157817/439204*33385282^(3/4) 2415781700012525 a001 591286729879/439204*12752043^(3/17) 2415781700012526 a001 225851433717/439204*12752043^(4/17) 2415781700012527 a001 196418*12752043^(5/17) 2415781700012527 a001 32951280099/439204*12752043^(6/17) 2415781700012528 a001 196418/20633239*45537549124^(15/17) 2415781700012528 a001 196418/20633239*312119004989^(9/11) 2415781700012528 a001 196418/20633239*14662949395604^(5/7) 2415781700012528 a001 196418/20633239*(1/2+1/2*5^(1/2))^45 2415781700012528 a001 196418/20633239*192900153618^(5/6) 2415781700012528 a001 9227465/439204*(1/2+1/2*5^(1/2))^29 2415781700012528 a001 9227465/439204*1322157322203^(1/2) 2415781700012528 a001 196418/20633239*28143753123^(9/10) 2415781700012528 a001 196418/20633239*10749957122^(15/16) 2415781700012528 a001 12586269025/439204*12752043^(7/17) 2415781700012529 a001 4052739537881/439204*4870847^(1/16) 2415781700012529 a001 1201881744/109801*12752043^(8/17) 2415781700012530 a001 2971215073/439204*12752043^(1/2) 2415781700012530 a001 1836311903/439204*12752043^(9/17) 2415781700012531 a001 701408733/439204*12752043^(10/17) 2415781700012532 a001 66978574/109801*12752043^(11/17) 2415781700012532 a001 196452/5779*12752043^(14/17) 2415781700012533 a001 102334155/439204*12752043^(12/17) 2415781700012533 a001 39088169/439204*12752043^(13/17) 2415781700012535 a001 387002188980/109801*4870847^(1/8) 2415781700012537 a001 137769300518394/5702887 2415781700012541 a001 591286729879/439204*4870847^(3/16) 2415781700012548 a001 225851433717/439204*4870847^(1/4) 2415781700012554 a001 196418*4870847^(5/16) 2415781700012560 a001 32951280099/439204*4870847^(3/8) 2415781700012561 a001 98209/3940598*(1/2+1/2*5^(1/2))^43 2415781700012561 a001 1762289/219602*(1/2+1/2*5^(1/2))^31 2415781700012561 a001 1762289/219602*9062201101803^(1/2) 2415781700012567 a001 12586269025/439204*4870847^(7/16) 2415781700012569 a001 4052739537881/439204*1860498^(1/15) 2415781700012573 a001 1201881744/109801*4870847^(1/2) 2415781700012579 a001 1836311903/439204*4870847^(9/16) 2415781700012586 a001 701408733/439204*4870847^(5/8) 2415781700012592 a001 2504730781961/439204*1860498^(1/10) 2415781700012592 a001 66978574/109801*4870847^(11/16) 2415781700012594 a001 2504730781961/12752043*271443^(5/13) 2415781700012598 a001 102334155/439204*4870847^(3/4) 2415781700012603 a001 5702887/439204*4870847^(15/16) 2415781700012605 a001 39088169/439204*4870847^(13/16) 2415781700012607 a001 3278735159921/16692641*271443^(5/13) 2415781700012609 a001 196452/5779*4870847^(7/8) 2415781700012610 a001 10610209857723/54018521*271443^(5/13) 2415781700012615 a001 4052739537881/20633239*271443^(5/13) 2415781700012615 a001 387002188980/109801*1860498^(2/15) 2415781700012624 a001 52623190191728/2178309 2415781700012638 a001 956722026041/439204*1860498^(1/6) 2415781700012648 a001 387002188980/1970299*271443^(5/13) 2415781700012662 a001 591286729879/439204*1860498^(1/5) 2415781700012708 a001 225851433717/439204*1860498^(4/15) 2415781700012732 a001 139583862445/439204*1860498^(3/10) 2415781700012755 a001 196418*1860498^(1/3) 2415781700012789 a001 1346269/439204*141422324^(11/13) 2415781700012789 a001 1346269/439204*2537720636^(11/15) 2415781700012789 a001 1346269/439204*45537549124^(11/17) 2415781700012789 a001 196418/3010349*(1/2+1/2*5^(1/2))^41 2415781700012789 a001 1346269/439204*312119004989^(3/5) 2415781700012789 a001 1346269/439204*14662949395604^(11/21) 2415781700012789 a001 1346269/439204*(1/2+1/2*5^(1/2))^33 2415781700012789 a001 1346269/439204*192900153618^(11/18) 2415781700012789 a001 1346269/439204*10749957122^(11/16) 2415781700012789 a001 1346269/439204*1568397607^(3/4) 2415781700012789 a001 1346269/439204*599074578^(11/14) 2415781700012791 a001 1346269/439204*33385282^(11/12) 2415781700012801 a001 32951280099/439204*1860498^(2/5) 2415781700012848 a001 12586269025/439204*1860498^(7/15) 2415781700012864 a001 4052739537881/439204*710647^(1/14) 2415781700012870 a001 20365011074/710647*271443^(7/13) 2415781700012871 a001 7778742049/439204*1860498^(1/2) 2415781700012876 a001 591286729879/3010349*271443^(5/13) 2415781700012894 a001 1201881744/109801*1860498^(8/15) 2415781700012941 a001 1836311903/439204*1860498^(3/5) 2415781700012987 a001 701408733/439204*1860498^(2/3) 2415781700013011 a001 433494437/439204*1860498^(7/10) 2415781700013034 a001 66978574/109801*1860498^(11/15) 2415781700013080 a001 102334155/439204*1860498^(4/5) 2415781700013104 a001 31622993/219602*1860498^(5/6) 2415781700013127 a001 39088169/439204*1860498^(13/15) 2415781700013151 a001 24157817/439204*1860498^(9/10) 2415781700013171 a001 196452/5779*1860498^(14/15) 2415781700013206 a001 387002188980/109801*710647^(1/7) 2415781700013220 a001 182729727789/7564 2415781700013547 a001 591286729879/439204*710647^(3/14) 2415781700013718 a001 182717648081/219602*710647^(1/4) 2415781700013889 a001 225851433717/439204*710647^(2/7) 2415781700013942 a001 6557470319842/710647*103682^(1/12) 2415781700014029 a001 591286729879/271443*103682^(5/24) 2415781700014231 a001 196418*710647^(5/14) 2415781700014349 a001 196418/1149851*2537720636^(13/15) 2415781700014349 a001 514229/439204*2537720636^(7/9) 2415781700014349 a001 514229/439204*17393796001^(5/7) 2415781700014349 a001 196418/1149851*45537549124^(13/17) 2415781700014349 a001 196418/1149851*14662949395604^(13/21) 2415781700014349 a001 196418/1149851*(1/2+1/2*5^(1/2))^39 2415781700014349 a001 196418/1149851*192900153618^(13/18) 2415781700014349 a001 514229/439204*312119004989^(7/11) 2415781700014349 a001 514229/439204*14662949395604^(5/9) 2415781700014349 a001 514229/439204*(1/2+1/2*5^(1/2))^35 2415781700014349 a001 514229/439204*505019158607^(5/8) 2415781700014349 a001 196418/1149851*73681302247^(3/4) 2415781700014349 a001 514229/439204*28143753123^(7/10) 2415781700014349 a001 196418/1149851*10749957122^(13/16) 2415781700014349 a001 514229/439204*599074578^(5/6) 2415781700014349 a001 196418/1149851*599074578^(13/14) 2415781700014349 a001 514229/439204*228826127^(7/8) 2415781700014433 a001 139583862445/1860498*271443^(6/13) 2415781700014436 a001 225851433717/1149851*271443^(5/13) 2415781700014572 a001 32951280099/439204*710647^(3/7) 2415781700014914 a001 12586269025/439204*710647^(1/2) 2415781700015029 a001 365435296162/4870847*271443^(6/13) 2415781700015044 a001 4052739537881/439204*271443^(1/13) 2415781700015116 a001 956722026041/12752043*271443^(6/13) 2415781700015129 a001 2504730781961/33385282*271443^(6/13) 2415781700015131 a001 6557470319842/87403803*271443^(6/13) 2415781700015131 a001 10610209857723/141422324*271443^(6/13) 2415781700015132 a001 4052739537881/54018521*271443^(6/13) 2415781700015137 a001 140728068720/1875749*271443^(6/13) 2415781700015170 a001 591286729879/7881196*271443^(6/13) 2415781700015256 a001 1201881744/109801*710647^(4/7) 2415781700015392 a001 7778742049/710647*271443^(8/13) 2415781700015398 a001 225851433717/3010349*271443^(6/13) 2415781700015597 a001 1836311903/439204*710647^(9/14) 2415781700015694 a001 43133785636/930249*271443^(1/2) 2415781700015939 a001 701408733/439204*710647^(5/7) 2415781700016110 a001 433494437/439204*710647^(3/4) 2415781700016281 a001 66978574/109801*710647^(11/14) 2415781700016290 a001 225851433717/4870847*271443^(1/2) 2415781700016377 a001 591286729879/12752043*271443^(1/2) 2415781700016390 a001 774004377960/16692641*271443^(1/2) 2415781700016392 a001 4052739537881/87403803*271443^(1/2) 2415781700016392 a001 225749145909/4868641*271443^(1/2) 2415781700016392 a001 3278735159921/70711162*271443^(1/2) 2415781700016393 a001 2504730781961/54018521*271443^(1/2) 2415781700016398 a001 956722026041/20633239*271443^(1/2) 2415781700016431 a001 182717648081/3940598*271443^(1/2) 2415781700016622 a001 102334155/439204*710647^(6/7) 2415781700016659 a001 139583862445/3010349*271443^(1/2) 2415781700016955 a001 53316291173/1860498*271443^(7/13) 2415781700016958 a001 86267571272/1149851*271443^(6/13) 2415781700016964 a001 39088169/439204*710647^(13/14) 2415781700017166 a001 267914296/167761*167761^(4/5) 2415781700017305 a001 7677619978642/317811 2415781700017551 a001 139583862445/4870847*271443^(7/13) 2415781700017566 a001 387002188980/109801*271443^(2/13) 2415781700017638 a001 365435296162/12752043*271443^(7/13) 2415781700017651 a001 956722026041/33385282*271443^(7/13) 2415781700017653 a001 2504730781961/87403803*271443^(7/13) 2415781700017653 a001 6557470319842/228826127*271443^(7/13) 2415781700017653 a001 10610209857723/370248451*271443^(7/13) 2415781700017653 a001 4052739537881/141422324*271443^(7/13) 2415781700017654 a001 1548008755920/54018521*271443^(7/13) 2415781700017659 a001 591286729879/20633239*271443^(7/13) 2415781700017692 a001 225851433717/7881196*271443^(7/13) 2415781700017914 a001 2971215073/710647*271443^(9/13) 2415781700017920 a001 86267571272/3010349*271443^(7/13) 2415781700018219 a001 53316291173/1149851*271443^(1/2) 2415781700019477 a001 10182505537/930249*271443^(8/13) 2415781700019480 a001 32951280099/1149851*271443^(7/13) 2415781700020073 a001 53316291173/4870847*271443^(8/13) 2415781700020088 a001 591286729879/439204*271443^(3/13) 2415781700020160 a001 139583862445/12752043*271443^(8/13) 2415781700020173 a001 182717648081/16692641*271443^(8/13) 2415781700020175 a001 956722026041/87403803*271443^(8/13) 2415781700020175 a001 2504730781961/228826127*271443^(8/13) 2415781700020175 a001 3278735159921/299537289*271443^(8/13) 2415781700020175 a001 10610209857723/969323029*271443^(8/13) 2415781700020175 a001 4052739537881/370248451*271443^(8/13) 2415781700020175 a001 387002188980/35355581*271443^(8/13) 2415781700020176 a001 591286729879/54018521*271443^(8/13) 2415781700020181 a001 7787980473/711491*271443^(8/13) 2415781700020214 a001 21566892818/1970299*271443^(8/13) 2415781700020436 a001 1134903170/710647*271443^(10/13) 2415781700020442 a001 32951280099/3010349*271443^(8/13) 2415781700020553 a001 10610209857723/1149851*103682^(1/12) 2415781700021886 a001 3278735159921/219602*103682^(1/24) 2415781700021999 a001 7778742049/1860498*271443^(9/13) 2415781700022002 a001 12586269025/1149851*271443^(8/13) 2415781700022595 a001 20365011074/4870847*271443^(9/13) 2415781700022610 a001 225851433717/439204*271443^(4/13) 2415781700022682 a001 53316291173/12752043*271443^(9/13) 2415781700022695 a001 139583862445/33385282*271443^(9/13) 2415781700022697 a001 365435296162/87403803*271443^(9/13) 2415781700022697 a001 956722026041/228826127*271443^(9/13) 2415781700022697 a001 2504730781961/599074578*271443^(9/13) 2415781700022697 a001 6557470319842/1568397607*271443^(9/13) 2415781700022697 a001 10610209857723/2537720636*271443^(9/13) 2415781700022697 a001 4052739537881/969323029*271443^(9/13) 2415781700022697 a001 1548008755920/370248451*271443^(9/13) 2415781700022697 a001 591286729879/141422324*271443^(9/13) 2415781700022698 a001 225851433717/54018521*271443^(9/13) 2415781700022703 a001 86267571272/20633239*271443^(9/13) 2415781700022736 a001 32951280099/7881196*271443^(9/13) 2415781700022958 a001 433494437/710647*271443^(11/13) 2415781700022964 a001 12586269025/3010349*271443^(9/13) 2415781700023306 a001 4052739537881/710647*103682^(1/8) 2415781700023393 a001 365435296162/271443*103682^(1/4) 2415781700024521 a001 2971215073/1860498*271443^(10/13) 2415781700024524 a001 4807526976/1149851*271443^(9/13) 2415781700025046 a001 98209/219602*(1/2+1/2*5^(1/2))^37 2415781700025118 a001 7778742049/4870847*271443^(10/13) 2415781700025133 a001 196418*271443^(5/13) 2415781700025205 a001 20365011074/12752043*271443^(10/13) 2415781700025217 a001 53316291173/33385282*271443^(10/13) 2415781700025219 a001 139583862445/87403803*271443^(10/13) 2415781700025219 a001 365435296162/228826127*271443^(10/13) 2415781700025219 a001 956722026041/599074578*271443^(10/13) 2415781700025219 a001 2504730781961/1568397607*271443^(10/13) 2415781700025219 a001 6557470319842/4106118243*271443^(10/13) 2415781700025219 a001 10610209857723/6643838879*271443^(10/13) 2415781700025219 a001 4052739537881/2537720636*271443^(10/13) 2415781700025219 a001 1548008755920/969323029*271443^(10/13) 2415781700025219 a001 591286729879/370248451*271443^(10/13) 2415781700025219 a001 225851433717/141422324*271443^(10/13) 2415781700025220 a001 86267571272/54018521*271443^(10/13) 2415781700025225 a001 32951280099/20633239*271443^(10/13) 2415781700025258 a001 12586269025/7881196*271443^(10/13) 2415781700025480 a001 165580141/710647*271443^(12/13) 2415781700025486 a001 4807526976/3010349*271443^(10/13) 2415781700025578 a001 39088169/64079*64079^(22/23) 2415781700027044 a001 567451585/930249*271443^(11/13) 2415781700027047 a001 1836311903/1149851*271443^(10/13) 2415781700027391 a001 3536736619241/620166*103682^(1/8) 2415781700027640 a001 2971215073/4870847*271443^(11/13) 2415781700027655 a001 32951280099/439204*271443^(6/13) 2415781700027727 a001 7778742049/12752043*271443^(11/13) 2415781700027739 a001 10182505537/16692641*271443^(11/13) 2415781700027741 a001 53316291173/87403803*271443^(11/13) 2415781700027741 a001 139583862445/228826127*271443^(11/13) 2415781700027741 a001 182717648081/299537289*271443^(11/13) 2415781700027741 a001 956722026041/1568397607*271443^(11/13) 2415781700027741 a001 2504730781961/4106118243*271443^(11/13) 2415781700027741 a001 3278735159921/5374978561*271443^(11/13) 2415781700027741 a001 10610209857723/17393796001*271443^(11/13) 2415781700027741 a001 4052739537881/6643838879*271443^(11/13) 2415781700027741 a001 1134903780/1860499*271443^(11/13) 2415781700027741 a001 591286729879/969323029*271443^(11/13) 2415781700027741 a001 225851433717/370248451*271443^(11/13) 2415781700027742 a001 21566892818/35355581*271443^(11/13) 2415781700027742 a001 32951280099/54018521*271443^(11/13) 2415781700027747 a001 1144206275/1875749*271443^(11/13) 2415781700027780 a001 1201881744/1970299*271443^(11/13) 2415781700028008 a001 2932589879115/121393 2415781700028008 a001 1836311903/3010349*271443^(11/13) 2415781700028916 a001 10182505537/219602*271443^(1/2) 2415781700029566 a001 433494437/1860498*271443^(12/13) 2415781700029569 a001 701408733/1149851*271443^(11/13) 2415781700029916 a001 6557470319842/1149851*103682^(1/8) 2415781700030162 a001 1134903170/4870847*271443^(12/13) 2415781700030177 a001 12586269025/439204*271443^(7/13) 2415781700030249 a001 2971215073/12752043*271443^(12/13) 2415781700030261 a001 7778742049/33385282*271443^(12/13) 2415781700030263 a001 20365011074/87403803*271443^(12/13) 2415781700030263 a001 53316291173/228826127*271443^(12/13) 2415781700030263 a001 139583862445/599074578*271443^(12/13) 2415781700030264 a001 365435296162/1568397607*271443^(12/13) 2415781700030264 a001 956722026041/4106118243*271443^(12/13) 2415781700030264 a001 2504730781961/10749957122*271443^(12/13) 2415781700030264 a001 6557470319842/28143753123*271443^(12/13) 2415781700030264 a001 10610209857723/45537549124*271443^(12/13) 2415781700030264 a001 4052739537881/17393796001*271443^(12/13) 2415781700030264 a001 1548008755920/6643838879*271443^(12/13) 2415781700030264 a001 591286729879/2537720636*271443^(12/13) 2415781700030264 a001 225851433717/969323029*271443^(12/13) 2415781700030264 a001 86267571272/370248451*271443^(12/13) 2415781700030264 a001 63246219/271444*271443^(12/13) 2415781700030264 a001 12586269025/54018521*271443^(12/13) 2415781700030269 a001 4807526976/20633239*271443^(12/13) 2415781700030302 a001 1836311903/7881196*271443^(12/13) 2415781700030530 a001 701408733/3010349*271443^(12/13) 2415781700031249 a001 4052739537881/439204*103682^(1/12) 2415781700032091 a001 267914296/1149851*271443^(12/13) 2415781700032127 a001 2932589879120/121393 2415781700032669 a001 2504730781961/710647*103682^(1/6) 2415781700032699 a001 1201881744/109801*271443^(8/13) 2415781700032756 a001 75283811239/90481*103682^(7/24) 2415781700032786 a001 14662949395604/121393*8^(1/3) 2415781700032786 a001 2/121393*(1/2+1/2*5^(1/2))^63 2415781700032950 a001 2932589879121/121393 2415781700034334 a001 2971215073/167761*167761^(3/5) 2415781700034598 a001 2932589879123/121393 2415781700034676 a001 140728068720/15251*64079^(2/23) 2415781700035221 a001 1836311903/439204*271443^(9/13) 2415781700036755 a001 3278735159921/930249*103682^(1/6) 2415781700037225 a001 4052739537881/271443*39603^(1/22) 2415781700037719 a001 10610209857723/3010349*103682^(1/6) 2415781700037743 a001 701408733/439204*271443^(10/13) 2415781700039280 a001 4052739537881/1149851*103682^(1/6) 2415781700040265 a001 66978574/109801*271443^(11/13) 2415781700040613 a001 2504730781961/439204*103682^(1/8) 2415781700042033 a001 1548008755920/710647*103682^(5/24) 2415781700042120 a001 139583862445/271443*103682^(1/3) 2415781700042787 a001 102334155/439204*271443^(12/13) 2415781700043304 a001 75283811239/13201*15127^(3/20) 2415781700045307 a001 2932589879136/121393 2415781700046118 a001 4052739537881/1860498*103682^(5/24) 2415781700046715 a001 2178309*103682^(5/24) 2415781700047083 a001 6557470319842/3010349*103682^(5/24) 2415781700048643 a001 2504730781961/1149851*103682^(5/24) 2415781700049976 a001 387002188980/109801*103682^(1/6) 2415781700051159 a001 63245986/64079*64079^(21/23) 2415781700051396 a001 956722026041/710647*103682^(1/4) 2415781700051484 a001 86267571272/271443*103682^(3/8) 2415781700051501 a001 32951280099/167761*167761^(2/5) 2415781700053049 a001 121393/167761*141422324^(12/13) 2415781700053049 a001 121393/167761*2537720636^(4/5) 2415781700053049 a001 75025/271443*817138163596^(2/3) 2415781700053049 a001 75025/271443*(1/2+1/2*5^(1/2))^38 2415781700053049 a001 121393/167761*45537549124^(12/17) 2415781700053049 a001 121393/167761*14662949395604^(4/7) 2415781700053049 a001 121393/167761*(1/2+1/2*5^(1/2))^36 2415781700053049 a001 121393/167761*192900153618^(2/3) 2415781700053049 a001 121393/167761*73681302247^(9/13) 2415781700053049 a001 75025/271443*10749957122^(19/24) 2415781700053049 a001 121393/167761*10749957122^(3/4) 2415781700053049 a001 121393/167761*4106118243^(18/23) 2415781700053049 a001 75025/271443*4106118243^(19/23) 2415781700053049 a001 121393/167761*1568397607^(9/11) 2415781700053049 a001 75025/271443*1568397607^(19/22) 2415781700053049 a001 121393/167761*599074578^(6/7) 2415781700053049 a001 75025/271443*599074578^(19/21) 2415781700053049 a001 121393/167761*228826127^(9/10) 2415781700053049 a001 75025/271443*228826127^(19/20) 2415781700053049 a001 121393/167761*87403803^(18/19) 2415781700055326 a001 182717648081/51841*39603^(2/11) 2415781700055482 a001 2504730781961/1860498*103682^(1/4) 2415781700056078 a001 6557470319842/4870847*103682^(1/4) 2415781700056219 a001 10610209857723/7881196*103682^(1/4) 2415781700056446 a001 1346269*103682^(1/4) 2415781700058007 a001 1548008755920/1149851*103682^(1/4) 2415781700059340 a001 956722026041/439204*103682^(5/24) 2415781700060256 a001 2504730781961/167761*64079^(1/23) 2415781700060760 a001 591286729879/710647*103682^(7/24) 2415781700060847 a001 53316291173/271443*103682^(5/12) 2415781700064845 a001 832040*103682^(7/24) 2415781700065228 a001 1515744265389/101521*39603^(1/22) 2415781700065442 a001 4052739537881/4870847*103682^(7/24) 2415781700065529 a001 3536736619241/4250681*103682^(7/24) 2415781700065582 a001 3278735159921/3940598*103682^(7/24) 2415781700065810 a001 2504730781961/3010349*103682^(7/24) 2415781700067371 a001 956722026041/1149851*103682^(7/24) 2415781700068668 a001 365435296162/167761*167761^(1/5) 2415781700068703 a001 591286729879/439204*103682^(1/4) 2415781700070123 a001 365435296162/710647*103682^(1/3) 2415781700070211 a001 121393*103682^(11/24) 2415781700073313 a001 2372515049825/98209 2415781700074209 a001 956722026041/1860498*103682^(1/3) 2415781700074704 a001 39088169/167761*439204^(8/9) 2415781700074805 a001 2504730781961/4870847*103682^(1/3) 2415781700074892 a001 6557470319842/12752043*103682^(1/3) 2415781700074913 a001 10610209857723/20633239*103682^(1/3) 2415781700074946 a001 4052739537881/7881196*103682^(1/3) 2415781700075174 a001 1548008755920/3010349*103682^(1/3) 2415781700076095 a001 165580141/167761*439204^(7/9) 2415781700076734 a001 514229*103682^(1/3) 2415781700076738 a001 102334155/64079*64079^(20/23) 2415781700077487 a001 701408733/167761*439204^(2/3) 2415781700078067 a001 182717648081/219602*103682^(7/24) 2415781700078878 a001 2971215073/167761*439204^(5/9) 2415781700079487 a001 317811*103682^(3/8) 2415781700079574 a001 20365011074/271443*103682^(1/2) 2415781700080270 a001 75025*439204^(4/9) 2415781700081052 a001 75025/710647*2537720636^(8/9) 2415781700081052 a001 75025/710647*312119004989^(8/11) 2415781700081052 a001 75025/710647*(1/2+1/2*5^(1/2))^40 2415781700081052 a001 75025/710647*23725150497407^(5/8) 2415781700081052 a001 75025/710647*73681302247^(10/13) 2415781700081052 a001 317811/167761*45537549124^(2/3) 2415781700081052 a001 75025/710647*28143753123^(4/5) 2415781700081052 a001 317811/167761*(1/2+1/2*5^(1/2))^34 2415781700081052 a001 75025/710647*10749957122^(5/6) 2415781700081052 a001 317811/167761*10749957122^(17/24) 2415781700081052 a001 317811/167761*4106118243^(17/23) 2415781700081052 a001 75025/710647*4106118243^(20/23) 2415781700081052 a001 317811/167761*1568397607^(17/22) 2415781700081052 a001 75025/710647*1568397607^(10/11) 2415781700081052 a001 317811/167761*599074578^(17/21) 2415781700081052 a001 75025/710647*599074578^(20/21) 2415781700081052 a001 317811/167761*228826127^(17/20) 2415781700081053 a001 317811/167761*87403803^(17/19) 2415781700081054 a001 317811/167761*33385282^(17/18) 2415781700081661 a001 53316291173/167761*439204^(1/3) 2415781700082535 a001 3278735159921/219602*39603^(1/22) 2415781700083053 a001 225851433717/167761*439204^(2/9) 2415781700083573 a001 591286729879/1860498*103682^(3/8) 2415781700084009 a001 12422650078525/514229 2415781700084169 a001 1548008755920/4870847*103682^(3/8) 2415781700084256 a001 4052739537881/12752043*103682^(3/8) 2415781700084268 a001 1515744265389/4769326*103682^(3/8) 2415781700084276 a001 6557470319842/20633239*103682^(3/8) 2415781700084309 a001 2504730781961/7881196*103682^(3/8) 2415781700084444 a001 956722026041/167761*439204^(1/9) 2415781700084537 a001 956722026041/3010349*103682^(3/8) 2415781700085138 a001 75025/1860498*2537720636^(14/15) 2415781700085138 a001 75025/1860498*17393796001^(6/7) 2415781700085138 a001 75025/1860498*45537549124^(14/17) 2415781700085138 a001 75025/1860498*817138163596^(14/19) 2415781700085138 a001 75025/1860498*14662949395604^(2/3) 2415781700085138 a001 75025/1860498*(1/2+1/2*5^(1/2))^42 2415781700085138 a001 75025/1860498*505019158607^(3/4) 2415781700085138 a001 75025/1860498*192900153618^(7/9) 2415781700085138 a001 75640/15251*(1/2+1/2*5^(1/2))^32 2415781700085138 a001 75640/15251*23725150497407^(1/2) 2415781700085138 a001 75640/15251*73681302247^(8/13) 2415781700085138 a001 75640/15251*10749957122^(2/3) 2415781700085138 a001 75025/1860498*10749957122^(7/8) 2415781700085138 a001 75640/15251*4106118243^(16/23) 2415781700085138 a001 75025/1860498*4106118243^(21/23) 2415781700085138 a001 75640/15251*1568397607^(8/11) 2415781700085138 a001 75025/1860498*1568397607^(21/22) 2415781700085138 a001 75640/15251*599074578^(16/21) 2415781700085138 a001 75640/15251*228826127^(4/5) 2415781700085138 a001 75640/15251*87403803^(16/19) 2415781700085140 a001 75640/15251*33385282^(8/9) 2415781700085152 a001 75640/15251*12752043^(16/17) 2415781700085569 a001 32522920135925/1346269 2415781700085699 a001 2178309/167761*7881196^(10/11) 2415781700085729 a001 2178309/167761*20633239^(6/7) 2415781700085734 a001 2178309/167761*141422324^(10/13) 2415781700085734 a001 2178309/167761*2537720636^(2/3) 2415781700085734 a001 75025/4870847*312119004989^(4/5) 2415781700085734 a001 75025/4870847*(1/2+1/2*5^(1/2))^44 2415781700085734 a001 75025/4870847*23725150497407^(11/16) 2415781700085734 a001 75025/4870847*73681302247^(11/13) 2415781700085734 a001 2178309/167761*45537549124^(10/17) 2415781700085734 a001 2178309/167761*312119004989^(6/11) 2415781700085734 a001 2178309/167761*14662949395604^(10/21) 2415781700085734 a001 2178309/167761*(1/2+1/2*5^(1/2))^30 2415781700085734 a001 2178309/167761*192900153618^(5/9) 2415781700085734 a001 2178309/167761*28143753123^(3/5) 2415781700085734 a001 2178309/167761*10749957122^(5/8) 2415781700085734 a001 75025/4870847*10749957122^(11/12) 2415781700085734 a001 2178309/167761*4106118243^(15/23) 2415781700085734 a001 75025/4870847*4106118243^(22/23) 2415781700085734 a001 2178309/167761*1568397607^(15/22) 2415781700085734 a001 2178309/167761*599074578^(5/7) 2415781700085734 a001 2178309/167761*228826127^(3/4) 2415781700085734 a001 2178309/167761*87403803^(15/19) 2415781700085736 a001 2178309/167761*33385282^(5/6) 2415781700085747 a001 2178309/167761*12752043^(15/17) 2415781700085797 a001 42573055164625/1762289 2415781700085807 a001 39088169/167761*7881196^(8/11) 2415781700085810 a001 9227465/167761*7881196^(9/11) 2415781700085810 a001 9303105/15251*7881196^(2/3) 2415781700085811 a001 165580141/167761*7881196^(7/11) 2415781700085815 a001 701408733/167761*7881196^(6/11) 2415781700085817 a001 5702887/167761*20633239^(4/5) 2415781700085818 a001 2971215073/167761*7881196^(5/11) 2415781700085821 a001 5702887/167761*17393796001^(4/7) 2415781700085821 a001 75025/12752043*(1/2+1/2*5^(1/2))^46 2415781700085821 a001 5702887/167761*14662949395604^(4/9) 2415781700085821 a001 5702887/167761*(1/2+1/2*5^(1/2))^28 2415781700085821 a001 5702887/167761*505019158607^(1/2) 2415781700085821 a001 5702887/167761*73681302247^(7/13) 2415781700085821 a001 5702887/167761*10749957122^(7/12) 2415781700085821 a001 75025/12752043*10749957122^(23/24) 2415781700085821 a001 5702887/167761*4106118243^(14/23) 2415781700085821 a001 5702887/167761*1568397607^(7/11) 2415781700085821 a001 5702887/167761*599074578^(2/3) 2415781700085821 a001 5702887/167761*228826127^(7/10) 2415781700085821 a001 5702887/167761*87403803^(14/19) 2415781700085822 a001 75025*7881196^(4/11) 2415781700085823 a001 5702887/167761*33385282^(7/9) 2415781700085823 a001 20365011074/167761*7881196^(1/3) 2415781700085825 a001 53316291173/167761*7881196^(3/11) 2415781700085829 a001 225851433717/167761*7881196^(2/11) 2415781700085830 a001 2178309/167761*4870847^(15/16) 2415781700085830 a001 44583082170365/1845493 2415781700085832 a001 956722026041/167761*7881196^(1/11) 2415781700085833 a001 165580141/167761*20633239^(3/5) 2415781700085833 a001 267914296/167761*20633239^(4/7) 2415781700085833 a001 24157817/167761*20633239^(5/7) 2415781700085833 a001 5702887/167761*12752043^(14/17) 2415781700085833 a001 2971215073/167761*20633239^(3/7) 2415781700085834 a001 4807526976/167761*20633239^(2/5) 2415781700085834 a001 14930352/167761*141422324^(2/3) 2415781700085834 a001 75025/33385282*45537549124^(16/17) 2415781700085834 a001 75025/33385282*14662949395604^(16/21) 2415781700085834 a001 75025/33385282*(1/2+1/2*5^(1/2))^48 2415781700085834 a001 75025/33385282*192900153618^(8/9) 2415781700085834 a001 75025/33385282*73681302247^(12/13) 2415781700085834 a001 14930352/167761*(1/2+1/2*5^(1/2))^26 2415781700085834 a001 14930352/167761*73681302247^(1/2) 2415781700085834 a001 14930352/167761*10749957122^(13/24) 2415781700085834 a001 14930352/167761*4106118243^(13/23) 2415781700085834 a001 14930352/167761*1568397607^(13/22) 2415781700085834 a001 14930352/167761*599074578^(13/21) 2415781700085834 a001 14930352/167761*228826127^(13/20) 2415781700085834 a001 14930352/167761*87403803^(13/19) 2415781700085834 a001 32951280099/167761*20633239^(2/7) 2415781700085835 a001 139583862445/167761*20633239^(1/5) 2415781700085835 a001 583600122226225/24157817 2415781700085835 a001 365435296162/167761*20633239^(1/7) 2415781700085835 a001 14930352/167761*33385282^(13/18) 2415781700085836 a001 39088169/167761*141422324^(8/13) 2415781700085836 a001 39088169/167761*2537720636^(8/15) 2415781700085836 a001 75025/87403803*312119004989^(10/11) 2415781700085836 a001 75025/87403803*3461452808002^(5/6) 2415781700085836 a001 39088169/167761*45537549124^(8/17) 2415781700085836 a001 39088169/167761*14662949395604^(8/21) 2415781700085836 a001 39088169/167761*(1/2+1/2*5^(1/2))^24 2415781700085836 a001 39088169/167761*192900153618^(4/9) 2415781700085836 a001 39088169/167761*73681302247^(6/13) 2415781700085836 a001 39088169/167761*10749957122^(1/2) 2415781700085836 a001 39088169/167761*4106118243^(12/23) 2415781700085836 a001 39088169/167761*1568397607^(6/11) 2415781700085836 a001 39088169/167761*599074578^(4/7) 2415781700085836 a001 39088169/167761*228826127^(3/5) 2415781700085836 a001 763942477913425/31622993 2415781700085836 a001 39088169/167761*87403803^(12/19) 2415781700085836 a001 701408733/167761*141422324^(6/13) 2415781700085836 a001 165580141/167761*141422324^(7/13) 2415781700085836 a001 2971215073/167761*141422324^(5/13) 2415781700085836 a001 75025/228826127*23725150497407^(13/16) 2415781700085836 a001 75025/228826127*505019158607^(13/14) 2415781700085836 a001 9303105/15251*312119004989^(2/5) 2415781700085836 a001 9303105/15251*(1/2+1/2*5^(1/2))^22 2415781700085836 a001 9303105/15251*10749957122^(11/24) 2415781700085836 a001 9303105/15251*4106118243^(11/23) 2415781700085836 a001 9303105/15251*1568397607^(1/2) 2415781700085836 a001 9303105/15251*599074578^(11/21) 2415781700085836 a001 7778742049/167761*141422324^(1/3) 2415781700085836 a001 75025*141422324^(4/13) 2415781700085836 a001 53316291173/167761*141422324^(3/13) 2415781700085836 a001 9303105/15251*228826127^(11/20) 2415781700085836 a001 225851433717/167761*141422324^(2/13) 2415781700085836 a001 4000054745254325/165580141 2415781700085836 a001 956722026041/167761*141422324^(1/13) 2415781700085836 a001 267914296/167761*2537720636^(4/9) 2415781700085836 a001 75025/599074578*14662949395604^(6/7) 2415781700085836 a001 267914296/167761*(1/2+1/2*5^(1/2))^20 2415781700085836 a001 267914296/167761*23725150497407^(5/16) 2415781700085836 a001 267914296/167761*505019158607^(5/14) 2415781700085836 a001 267914296/167761*73681302247^(5/13) 2415781700085836 a001 267914296/167761*28143753123^(2/5) 2415781700085836 a001 267914296/167761*10749957122^(5/12) 2415781700085836 a001 267914296/167761*4106118243^(10/23) 2415781700085836 a001 267914296/167761*1568397607^(5/11) 2415781700085836 a001 267914296/167761*599074578^(10/21) 2415781700085836 a001 10472279279936125/433494437 2415781700085836 a001 701408733/167761*2537720636^(2/5) 2415781700085836 a001 75025/1568397607*14662949395604^(8/9) 2415781700085836 a001 701408733/167761*45537549124^(6/17) 2415781700085836 a001 701408733/167761*14662949395604^(2/7) 2415781700085836 a001 701408733/167761*(1/2+1/2*5^(1/2))^18 2415781700085836 a001 701408733/167761*192900153618^(1/3) 2415781700085836 a001 701408733/167761*10749957122^(3/8) 2415781700085836 a001 701408733/167761*4106118243^(9/23) 2415781700085836 a001 701408733/167761*1568397607^(9/22) 2415781700085836 a001 2741678309455405/113490317 2415781700085836 a001 1836311903/167761*(1/2+1/2*5^(1/2))^16 2415781700085836 a001 1836311903/167761*23725150497407^(1/4) 2415781700085836 a001 1836311903/167761*73681302247^(4/13) 2415781700085836 a001 1836311903/167761*10749957122^(1/3) 2415781700085836 a001 75025*2537720636^(4/15) 2415781700085836 a001 1836311903/167761*4106118243^(8/23) 2415781700085836 a001 32951280099/167761*2537720636^(2/9) 2415781700085836 a001 53316291173/167761*2537720636^(1/5) 2415781700085836 a001 2971215073/167761*2537720636^(1/3) 2415781700085836 a001 71778070003726025/2971215073 2415781700085836 a001 225851433717/167761*2537720636^(2/15) 2415781700085836 a001 365435296162/167761*2537720636^(1/9) 2415781700085836 a001 956722026041/167761*2537720636^(1/15) 2415781700085836 a001 75025/10749957122*14662949395604^(20/21) 2415781700085836 a001 4807526976/167761*17393796001^(2/7) 2415781700085836 a001 4807526976/167761*14662949395604^(2/9) 2415781700085836 a001 4807526976/167761*(1/2+1/2*5^(1/2))^14 2415781700085836 a001 4807526976/167761*505019158607^(1/4) 2415781700085836 a001 4807526976/167761*10749957122^(7/24) 2415781700085836 a001 187917426916624025/7778742049 2415781700085836 a001 245987105373073025/10182505537 2415781700085836 a001 75025*45537549124^(4/17) 2415781700085836 a001 75025*817138163596^(4/19) 2415781700085836 a001 75025*14662949395604^(4/21) 2415781700085836 a001 75025*192900153618^(2/9) 2415781700085836 a001 75025*73681302247^(3/13) 2415781700085836 a001 265343664858556025/10983760033 2415781700085836 a001 139583862445/167761*17393796001^(1/7) 2415781700085836 a001 32951280099/167761*312119004989^(2/11) 2415781700085836 a001 32951280099/167761*(1/2+1/2*5^(1/2))^10 2415781700085836 a001 225851433717/167761*45537549124^(2/17) 2415781700085836 a001 86267571272/167761*(1/2+1/2*5^(1/2))^8 2415781700085836 a001 86267571272/167761*23725150497407^(1/8) 2415781700085836 a001 86267571272/167761*505019158607^(1/7) 2415781700085836 a001 225851433717/167761*14662949395604^(2/21) 2415781700085836 a001 225851433717/167761*(1/2+1/2*5^(1/2))^6 2415781700085836 a001 140728068720/15251*(1/2+1/2*5^(1/2))^2 2415781700085836 a001 4052739537881/167761 2415781700085836 a001 365435296162/167761*(1/2+1/2*5^(1/2))^5 2415781700085836 a001 139583862445/167761*14662949395604^(1/9) 2415781700085836 a001 139583862445/167761*(1/2+1/2*5^(1/2))^7 2415781700085836 a001 591286729879/167761*73681302247^(1/13) 2415781700085836 a001 32951280099/167761*28143753123^(1/5) 2415781700085836 a001 53316291173/167761*14662949395604^(1/7) 2415781700085836 a001 53316291173/167761*(1/2+1/2*5^(1/2))^9 2415781700085836 a001 53316291173/167761*192900153618^(1/6) 2415781700085836 a001 365435296162/167761*28143753123^(1/10) 2415781700085836 a001 140728068720/15251*10749957122^(1/24) 2415781700085836 a001 20365011074/167761*312119004989^(1/5) 2415781700085836 a001 20365011074/167761*(1/2+1/2*5^(1/2))^11 2415781700085836 a001 956722026041/167761*10749957122^(1/16) 2415781700085836 a001 591286729879/167761*10749957122^(1/12) 2415781700085836 a001 75025*10749957122^(1/4) 2415781700085836 a001 225851433717/167761*10749957122^(1/8) 2415781700085836 a001 86267571272/167761*10749957122^(1/6) 2415781700085836 a001 32951280099/167761*10749957122^(5/24) 2415781700085836 a001 53316291173/167761*10749957122^(3/16) 2415781700085836 a001 140728068720/15251*4106118243^(1/23) 2415781700085836 a001 7778742049/167761*(1/2+1/2*5^(1/2))^13 2415781700085836 a001 7778742049/167761*73681302247^(1/4) 2415781700085836 a001 591286729879/167761*4106118243^(2/23) 2415781700085836 a001 806523311895125/33385604 2415781700085836 a001 225851433717/167761*4106118243^(3/23) 2415781700085836 a001 4807526976/167761*4106118243^(7/23) 2415781700085836 a001 86267571272/167761*4106118243^(4/23) 2415781700085836 a001 32951280099/167761*4106118243^(5/23) 2415781700085836 a001 75025*4106118243^(6/23) 2415781700085836 a001 140728068720/15251*1568397607^(1/22) 2415781700085836 a001 2971215073/167761*45537549124^(5/17) 2415781700085836 a001 2971215073/167761*312119004989^(3/11) 2415781700085836 a001 2971215073/167761*14662949395604^(5/21) 2415781700085836 a001 2971215073/167761*(1/2+1/2*5^(1/2))^15 2415781700085836 a001 2971215073/167761*192900153618^(5/18) 2415781700085836 a001 2971215073/167761*28143753123^(3/10) 2415781700085836 a001 2971215073/167761*10749957122^(5/16) 2415781700085836 a001 591286729879/167761*1568397607^(1/11) 2415781700085836 a001 225851433717/167761*1568397607^(3/22) 2415781700085836 a001 44361286909171975/1836311903 2415781700085836 a001 86267571272/167761*1568397607^(2/11) 2415781700085836 a001 1836311903/167761*1568397607^(4/11) 2415781700085836 a001 32951280099/167761*1568397607^(5/22) 2415781700085836 a001 20365011074/167761*1568397607^(1/4) 2415781700085836 a001 75025*1568397607^(3/11) 2415781700085836 a001 4807526976/167761*1568397607^(7/22) 2415781700085836 a001 140728068720/15251*599074578^(1/21) 2415781700085836 a001 75025/2537720636*14662949395604^(19/21) 2415781700085836 a001 1134903170/167761*45537549124^(1/3) 2415781700085836 a001 1134903170/167761*(1/2+1/2*5^(1/2))^17 2415781700085836 a001 956722026041/167761*599074578^(1/14) 2415781700085836 a001 591286729879/167761*599074578^(2/21) 2415781700085836 a001 225851433717/167761*599074578^(1/7) 2415781700085836 a001 5648167938205975/233802911 2415781700085836 a001 139583862445/167761*599074578^(1/6) 2415781700085836 a001 86267571272/167761*599074578^(4/21) 2415781700085836 a001 53316291173/167761*599074578^(3/14) 2415781700085836 a001 32951280099/167761*599074578^(5/21) 2415781700085836 a001 701408733/167761*599074578^(3/7) 2415781700085836 a001 75025*599074578^(2/7) 2415781700085836 a001 4807526976/167761*599074578^(1/3) 2415781700085836 a001 140728068720/15251*228826127^(1/20) 2415781700085836 a001 1836311903/167761*599074578^(8/21) 2415781700085836 a001 2971215073/167761*599074578^(5/14) 2415781700085836 a001 75025/969323029*3461452808002^(11/12) 2415781700085836 a001 433494437/167761*817138163596^(1/3) 2415781700085836 a001 433494437/167761*(1/2+1/2*5^(1/2))^19 2415781700085836 a001 591286729879/167761*228826127^(1/10) 2415781700085836 a001 365435296162/167761*228826127^(1/8) 2415781700085836 a001 809028066835225/33489287 2415781700085836 a001 225851433717/167761*228826127^(3/20) 2415781700085836 a001 86267571272/167761*228826127^(1/5) 2415781700085836 a001 32951280099/167761*228826127^(1/4) 2415781700085836 a001 75025*228826127^(3/10) 2415781700085836 a001 4807526976/167761*228826127^(7/20) 2415781700085836 a001 267914296/167761*228826127^(1/2) 2415781700085836 a001 140728068720/15251*87403803^(1/19) 2415781700085836 a001 2971215073/167761*228826127^(3/8) 2415781700085836 a001 165580141/167761*2537720636^(7/15) 2415781700085836 a001 165580141/167761*17393796001^(3/7) 2415781700085836 a001 165580141/167761*45537549124^(7/17) 2415781700085836 a001 165580141/167761*14662949395604^(1/3) 2415781700085836 a001 165580141/167761*(1/2+1/2*5^(1/2))^21 2415781700085836 a001 165580141/167761*192900153618^(7/18) 2415781700085836 a001 165580141/167761*10749957122^(7/16) 2415781700085836 a001 1836311903/167761*228826127^(2/5) 2415781700085836 a001 701408733/167761*228826127^(9/20) 2415781700085836 a001 165580141/167761*599074578^(1/2) 2415781700085836 a001 591286729879/167761*87403803^(2/19) 2415781700085836 a001 164811319295165/6822277 2415781700085836 a001 225851433717/167761*87403803^(3/19) 2415781700085836 a001 86267571272/167761*87403803^(4/19) 2415781700085836 a001 32951280099/167761*87403803^(5/19) 2415781700085836 a001 75025*87403803^(6/19) 2415781700085836 a001 4807526976/167761*87403803^(7/19) 2415781700085836 a001 140728068720/15251*33385282^(1/18) 2415781700085836 a001 75025/141422324*14662949395604^(17/21) 2415781700085836 a001 75025/141422324*192900153618^(17/18) 2415781700085836 a001 63245986/167761*(1/2+1/2*5^(1/2))^23 2415781700085836 a001 63245986/167761*4106118243^(1/2) 2415781700085836 a001 1836311903/167761*87403803^(8/19) 2415781700085836 a001 9303105/15251*87403803^(11/19) 2415781700085836 a001 701408733/167761*87403803^(9/19) 2415781700085836 a001 267914296/167761*87403803^(10/19) 2415781700085836 a001 433494437/167761*87403803^(1/2) 2415781700085836 a001 956722026041/167761*33385282^(1/12) 2415781700085836 a001 591286729879/167761*33385282^(1/9) 2415781700085836 a001 944284833600625/39088169 2415781700085836 a001 225851433717/167761*33385282^(1/6) 2415781700085836 a001 86267571272/167761*33385282^(2/9) 2415781700085836 a001 53316291173/167761*33385282^(1/4) 2415781700085837 a001 32951280099/167761*33385282^(5/18) 2415781700085837 a001 75025*33385282^(1/3) 2415781700085837 a001 24157817/167761*2537720636^(5/9) 2415781700085837 a001 75025/54018521*14662949395604^(7/9) 2415781700085837 a001 75025/54018521*505019158607^(7/8) 2415781700085837 a001 24157817/167761*312119004989^(5/11) 2415781700085837 a001 24157817/167761*(1/2+1/2*5^(1/2))^25 2415781700085837 a001 24157817/167761*3461452808002^(5/12) 2415781700085837 a001 24157817/167761*28143753123^(1/2) 2415781700085837 a001 4807526976/167761*33385282^(7/18) 2415781700085837 a001 24157817/167761*228826127^(5/8) 2415781700085837 a001 140728068720/15251*12752043^(1/17) 2415781700085837 a001 2971215073/167761*33385282^(5/12) 2415781700085837 a001 1836311903/167761*33385282^(4/9) 2415781700085837 a001 701408733/167761*33385282^(1/2) 2415781700085837 a001 39088169/167761*33385282^(2/3) 2415781700085837 a001 267914296/167761*33385282^(5/9) 2415781700085837 a001 9303105/15251*33385282^(11/18) 2415781700085837 a001 165580141/167761*33385282^(7/12) 2415781700085838 a001 591286729879/167761*12752043^(2/17) 2415781700085838 a001 2504754940100/103683 2415781700085839 a001 225851433717/167761*12752043^(3/17) 2415781700085839 a001 86267571272/167761*12752043^(4/17) 2415781700085840 a001 32951280099/167761*12752043^(5/17) 2415781700085841 a001 75025*12752043^(6/17) 2415781700085841 a001 9227465/167761*141422324^(9/13) 2415781700085842 a001 9227465/167761*2537720636^(3/5) 2415781700085842 a001 75025/20633239*(1/2+1/2*5^(1/2))^47 2415781700085842 a001 9227465/167761*45537549124^(9/17) 2415781700085842 a001 9227465/167761*817138163596^(9/19) 2415781700085842 a001 9227465/167761*14662949395604^(3/7) 2415781700085842 a001 9227465/167761*(1/2+1/2*5^(1/2))^27 2415781700085842 a001 9227465/167761*192900153618^(1/2) 2415781700085842 a001 9227465/167761*10749957122^(9/16) 2415781700085842 a001 9227465/167761*599074578^(9/14) 2415781700085842 a001 4807526976/167761*12752043^(7/17) 2415781700085842 a001 140728068720/15251*4870847^(1/16) 2415781700085843 a001 1836311903/167761*12752043^(8/17) 2415781700085843 a001 9227465/167761*33385282^(3/4) 2415781700085843 a001 1134903170/167761*12752043^(1/2) 2415781700085844 a001 701408733/167761*12752043^(9/17) 2415781700085845 a001 267914296/167761*12752043^(10/17) 2415781700085845 a001 14930352/167761*12752043^(13/17) 2415781700085845 a001 9303105/15251*12752043^(11/17) 2415781700085846 a001 39088169/167761*12752043^(12/17) 2415781700085849 a001 591286729879/167761*4870847^(1/8) 2415781700085851 a001 137769300522575/5702887 2415781700085855 a001 225851433717/167761*4870847^(3/16) 2415781700085861 a001 86267571272/167761*4870847^(1/4) 2415781700085868 a001 32951280099/167761*4870847^(5/16) 2415781700085874 a001 75025*4870847^(3/8) 2415781700085875 a001 75025/7881196*45537549124^(15/17) 2415781700085875 a001 75025/7881196*312119004989^(9/11) 2415781700085875 a001 75025/7881196*14662949395604^(5/7) 2415781700085875 a001 75025/7881196*(1/2+1/2*5^(1/2))^45 2415781700085875 a001 75025/7881196*192900153618^(5/6) 2415781700085875 a001 75025/7881196*28143753123^(9/10) 2415781700085875 a001 3524578/167761*(1/2+1/2*5^(1/2))^29 2415781700085875 a001 3524578/167761*1322157322203^(1/2) 2415781700085875 a001 75025/7881196*10749957122^(15/16) 2415781700085880 a001 4807526976/167761*4870847^(7/16) 2415781700085882 a001 140728068720/15251*1860498^(1/15) 2415781700085887 a001 1836311903/167761*4870847^(1/2) 2415781700085893 a001 701408733/167761*4870847^(9/16) 2415781700085900 a001 267914296/167761*4870847^(5/8) 2415781700085906 a001 956722026041/167761*1860498^(1/10) 2415781700085906 a001 9303105/15251*4870847^(11/16) 2415781700085910 a001 5702887/167761*4870847^(7/8) 2415781700085912 a001 39088169/167761*4870847^(3/4) 2415781700085916 a001 14930352/167761*4870847^(13/16) 2415781700085929 a001 591286729879/167761*1860498^(2/15) 2415781700085938 a001 17541063397775/726103 2415781700085952 a001 365435296162/167761*1860498^(1/6) 2415781700085975 a001 225851433717/167761*1860498^(1/5) 2415781700086022 a001 86267571272/167761*1860498^(4/15) 2415781700086045 a001 53316291173/167761*1860498^(3/10) 2415781700086069 a001 32951280099/167761*1860498^(1/3) 2415781700086098 a001 365435296162/1149851*103682^(3/8) 2415781700086102 a001 75025/3010349*(1/2+1/2*5^(1/2))^43 2415781700086102 a001 1346269/167761*(1/2+1/2*5^(1/2))^31 2415781700086102 a001 1346269/167761*9062201101803^(1/2) 2415781700086115 a001 75025*1860498^(2/5) 2415781700086162 a001 4807526976/167761*1860498^(7/15) 2415781700086178 a001 140728068720/15251*710647^(1/14) 2415781700086185 a001 2971215073/167761*1860498^(1/2) 2415781700086208 a001 1836311903/167761*1860498^(8/15) 2415781700086255 a001 701408733/167761*1860498^(3/5) 2415781700086301 a001 267914296/167761*1860498^(2/3) 2415781700086324 a001 165580141/167761*1860498^(7/10) 2415781700086348 a001 9303105/15251*1860498^(11/15) 2415781700086394 a001 39088169/167761*1860498^(4/5) 2415781700086418 a001 24157817/167761*1860498^(5/6) 2415781700086439 a001 14930352/167761*1860498^(13/15) 2415781700086470 a001 9227465/167761*1860498^(9/10) 2415781700086472 a001 5702887/167761*1860498^(14/15) 2415781700086519 a001 591286729879/167761*710647^(1/7) 2415781700086534 a001 502506751435/20801 2415781700086861 a001 225851433717/167761*710647^(3/14) 2415781700087032 a001 139583862445/167761*710647^(1/4) 2415781700087203 a001 86267571272/167761*710647^(2/7) 2415781700087430 a001 225851433717/439204*103682^(1/3) 2415781700087544 a001 32951280099/167761*710647^(5/14) 2415781700087663 a001 514229/167761*141422324^(11/13) 2415781700087663 a001 514229/167761*2537720636^(11/15) 2415781700087663 a001 75025/1149851*(1/2+1/2*5^(1/2))^41 2415781700087663 a001 514229/167761*45537549124^(11/17) 2415781700087663 a001 514229/167761*312119004989^(3/5) 2415781700087663 a001 514229/167761*14662949395604^(11/21) 2415781700087663 a001 514229/167761*(1/2+1/2*5^(1/2))^33 2415781700087663 a001 514229/167761*192900153618^(11/18) 2415781700087663 a001 514229/167761*10749957122^(11/16) 2415781700087663 a001 514229/167761*1568397607^(3/4) 2415781700087663 a001 514229/167761*599074578^(11/14) 2415781700087665 a001 514229/167761*33385282^(11/12) 2415781700087886 a001 75025*710647^(3/7) 2415781700088228 a001 4807526976/167761*710647^(1/2) 2415781700088358 a001 140728068720/15251*271443^(1/13) 2415781700088569 a001 1836311903/167761*710647^(4/7) 2415781700088850 a001 139583862445/710647*103682^(5/12) 2415781700088911 a001 701408733/167761*710647^(9/14) 2415781700088938 a001 12586269025/271443*103682^(13/24) 2415781700089253 a001 267914296/167761*710647^(5/7) 2415781700089424 a001 165580141/167761*710647^(3/4) 2415781700089594 a001 9303105/15251*710647^(11/14) 2415781700089936 a001 39088169/167761*710647^(6/7) 2415781700090276 a001 14930352/167761*710647^(13/14) 2415781700090619 a001 2559206659625/105937 2415781700090880 a001 591286729879/167761*271443^(2/13) 2415781700092936 a001 182717648081/930249*103682^(5/12) 2415781700093402 a001 225851433717/167761*271443^(3/13) 2415781700093532 a001 956722026041/4870847*103682^(5/12) 2415781700093619 a001 2504730781961/12752043*103682^(5/12) 2415781700093632 a001 3278735159921/16692641*103682^(5/12) 2415781700093635 a001 10610209857723/54018521*103682^(5/12) 2415781700093640 a001 4052739537881/20633239*103682^(5/12) 2415781700093673 a001 387002188980/1970299*103682^(5/12) 2415781700093901 a001 591286729879/3010349*103682^(5/12) 2415781700095199 a001 2504730781961/167761*103682^(1/24) 2415781700095461 a001 225851433717/1149851*103682^(5/12) 2415781700095924 a001 86267571272/167761*271443^(4/13) 2415781700096794 a001 139583862445/439204*103682^(3/8) 2415781700098214 a001 86267571272/710647*103682^(11/24) 2415781700098301 a001 7778742049/271443*103682^(7/12) 2415781700098359 a001 75025/439204*2537720636^(13/15) 2415781700098359 a001 196418/167761*2537720636^(7/9) 2415781700098359 a001 196418/167761*17393796001^(5/7) 2415781700098359 a001 75025/439204*45537549124^(13/17) 2415781700098359 a001 75025/439204*14662949395604^(13/21) 2415781700098359 a001 75025/439204*(1/2+1/2*5^(1/2))^39 2415781700098359 a001 75025/439204*192900153618^(13/18) 2415781700098359 a001 75025/439204*73681302247^(3/4) 2415781700098359 a001 196418/167761*312119004989^(7/11) 2415781700098359 a001 196418/167761*14662949395604^(5/9) 2415781700098359 a001 196418/167761*(1/2+1/2*5^(1/2))^35 2415781700098359 a001 196418/167761*505019158607^(5/8) 2415781700098359 a001 196418/167761*28143753123^(7/10) 2415781700098359 a001 75025/439204*10749957122^(13/16) 2415781700098359 a001 196418/167761*599074578^(5/6) 2415781700098359 a001 75025/439204*599074578^(13/14) 2415781700098359 a001 196418/167761*228826127^(7/8) 2415781700098446 a001 32951280099/167761*271443^(5/13) 2415781700100968 a001 75025*271443^(6/13) 2415781700102229 a001 7778742049/167761*271443^(1/2) 2415781700102300 a001 75283811239/620166*103682^(11/24) 2415781700102318 a001 165580141/64079*64079^(19/23) 2415781700102896 a001 591286729879/4870847*103682^(11/24) 2415781700102983 a001 516002918640/4250681*103682^(11/24) 2415781700102995 a001 4052739537881/33385282*103682^(11/24) 2415781700102997 a001 3536736619241/29134601*103682^(11/24) 2415781700102998 a001 6557470319842/54018521*103682^(11/24) 2415781700103003 a001 2504730781961/20633239*103682^(11/24) 2415781700103036 a001 956722026041/7881196*103682^(11/24) 2415781700103264 a001 365435296162/3010349*103682^(11/24) 2415781700103490 a001 4807526976/167761*271443^(7/13) 2415781700104563 a001 140728068720/15251*103682^(1/12) 2415781700104825 a001 139583862445/1149851*103682^(11/24) 2415781700106012 a001 1836311903/167761*271443^(8/13) 2415781700106157 a001 196418*103682^(5/12) 2415781700107238 a001 2504730781961/271443*39603^(1/11) 2415781700107578 a001 53316291173/710647*103682^(1/2) 2415781700107665 a001 1602508992/90481*103682^(5/8) 2415781700108535 a001 701408733/167761*271443^(9/13) 2415781700111057 a001 267914296/167761*271443^(10/13) 2415781700111663 a001 139583862445/1860498*103682^(1/2) 2415781700112259 a001 365435296162/4870847*103682^(1/2) 2415781700112346 a001 956722026041/12752043*103682^(1/2) 2415781700112359 a001 2504730781961/33385282*103682^(1/2) 2415781700112361 a001 6557470319842/87403803*103682^(1/2) 2415781700112361 a001 10610209857723/141422324*103682^(1/2) 2415781700112362 a001 4052739537881/54018521*103682^(1/2) 2415781700112367 a001 140728068720/1875749*103682^(1/2) 2415781700112400 a001 591286729879/7881196*103682^(1/2) 2415781700112628 a001 225851433717/3010349*103682^(1/2) 2415781700113579 a001 9303105/15251*271443^(11/13) 2415781700113926 a001 956722026041/167761*103682^(1/8) 2415781700114188 a001 86267571272/1149851*103682^(1/2) 2415781700115521 a001 53316291173/439204*103682^(11/24) 2415781700116100 a001 39088169/167761*271443^(12/13) 2415781700116941 a001 32951280099/710647*103682^(13/24) 2415781700117028 a001 2971215073/271443*103682^(2/3) 2415781700118622 a001 2932589879225/121393 2415781700121027 a001 43133785636/930249*103682^(13/24) 2415781700121623 a001 225851433717/4870847*103682^(13/24) 2415781700121710 a001 591286729879/12752043*103682^(13/24) 2415781700121722 a001 774004377960/16692641*103682^(13/24) 2415781700121724 a001 4052739537881/87403803*103682^(13/24) 2415781700121725 a001 225749145909/4868641*103682^(13/24) 2415781700121725 a001 3278735159921/70711162*103682^(13/24) 2415781700121725 a001 2504730781961/54018521*103682^(13/24) 2415781700121730 a001 956722026041/20633239*103682^(13/24) 2415781700121763 a001 182717648081/3940598*103682^(13/24) 2415781700121991 a001 139583862445/3010349*103682^(13/24) 2415781700123290 a001 591286729879/167761*103682^(1/6) 2415781700123552 a001 53316291173/1149851*103682^(13/24) 2415781700124885 a001 32951280099/439204*103682^(1/2) 2415781700125339 a001 225851433717/103682*39603^(5/22) 2415781700126305 a001 20365011074/710647*103682^(7/12) 2415781700126392 a001 1836311903/271443*103682^(17/24) 2415781700127898 a001 267914296/64079*64079^(18/23) 2415781700130390 a001 53316291173/1860498*103682^(7/12) 2415781700130986 a001 139583862445/4870847*103682^(7/12) 2415781700131073 a001 365435296162/12752043*103682^(7/12) 2415781700131086 a001 956722026041/33385282*103682^(7/12) 2415781700131088 a001 2504730781961/87403803*103682^(7/12) 2415781700131088 a001 6557470319842/228826127*103682^(7/12) 2415781700131088 a001 10610209857723/370248451*103682^(7/12) 2415781700131088 a001 4052739537881/141422324*103682^(7/12) 2415781700131089 a001 1548008755920/54018521*103682^(7/12) 2415781700131094 a001 591286729879/20633239*103682^(7/12) 2415781700131127 a001 225851433717/7881196*103682^(7/12) 2415781700131355 a001 86267571272/3010349*103682^(7/12) 2415781700132654 a001 365435296162/167761*103682^(5/24) 2415781700132915 a001 32951280099/1149851*103682^(7/12) 2415781700134248 a001 10182505537/219602*103682^(13/24) 2415781700135241 a001 6557470319842/710647*39603^(1/11) 2415781700135668 a001 12586269025/710647*103682^(5/8) 2415781700135755 a001 1134903170/271443*103682^(3/4) 2415781700139754 a001 10983760033/620166*103682^(5/8) 2415781700140350 a001 86267571272/4870847*103682^(5/8) 2415781700140437 a001 75283811239/4250681*103682^(5/8) 2415781700140449 a001 591286729879/33385282*103682^(5/8) 2415781700140451 a001 516002918640/29134601*103682^(5/8) 2415781700140452 a001 4052739537881/228826127*103682^(5/8) 2415781700140452 a001 3536736619241/199691526*103682^(5/8) 2415781700140452 a001 6557470319842/370248451*103682^(5/8) 2415781700140452 a001 2504730781961/141422324*103682^(5/8) 2415781700140452 a001 956722026041/54018521*103682^(5/8) 2415781700140457 a001 365435296162/20633239*103682^(5/8) 2415781700140491 a001 139583862445/7881196*103682^(5/8) 2415781700140718 a001 53316291173/3010349*103682^(5/8) 2415781700141852 a001 10610209857723/1149851*39603^(1/11) 2415781700142017 a001 225851433717/167761*103682^(1/4) 2415781700142279 a001 20365011074/1149851*103682^(5/8) 2415781700143612 a001 12586269025/439204*103682^(7/12) 2415781700145032 a001 7778742049/710647*103682^(2/3) 2415781700145119 a001 233802911/90481*103682^(19/24) 2415781700149117 a001 10182505537/930249*103682^(2/3) 2415781700149713 a001 53316291173/4870847*103682^(2/3) 2415781700149800 a001 139583862445/12752043*103682^(2/3) 2415781700149813 a001 182717648081/16692641*103682^(2/3) 2415781700149815 a001 956722026041/87403803*103682^(2/3) 2415781700149815 a001 2504730781961/228826127*103682^(2/3) 2415781700149815 a001 3278735159921/299537289*103682^(2/3) 2415781700149815 a001 10610209857723/969323029*103682^(2/3) 2415781700149815 a001 4052739537881/370248451*103682^(2/3) 2415781700149815 a001 387002188980/35355581*103682^(2/3) 2415781700149816 a001 591286729879/54018521*103682^(2/3) 2415781700149821 a001 7787980473/711491*103682^(2/3) 2415781700149854 a001 21566892818/1970299*103682^(2/3) 2415781700150082 a001 32951280099/3010349*103682^(2/3) 2415781700151381 a001 139583862445/167761*103682^(7/24) 2415781700151642 a001 12586269025/1149851*103682^(2/3) 2415781700152548 a001 4052739537881/439204*39603^(1/11) 2415781700152975 a001 7778742049/439204*103682^(5/8) 2415781700153478 a001 433494437/64079*64079^(17/23) 2415781700154395 a001 686789568/101521*103682^(17/24) 2415781700154482 a001 433494437/271443*103682^(5/6) 2415781700155849 a001 2504730781961/167761*39603^(1/22) 2415781700158481 a001 12586269025/1860498*103682^(17/24) 2415781700159077 a001 32951280099/4870847*103682^(17/24) 2415781700159164 a001 86267571272/12752043*103682^(17/24) 2415781700159177 a001 32264490531/4769326*103682^(17/24) 2415781700159178 a001 591286729879/87403803*103682^(17/24) 2415781700159179 a001 1548008755920/228826127*103682^(17/24) 2415781700159179 a001 4052739537881/599074578*103682^(17/24) 2415781700159179 a001 1515744265389/224056801*103682^(17/24) 2415781700159179 a001 6557470319842/969323029*103682^(17/24) 2415781700159179 a001 2504730781961/370248451*103682^(17/24) 2415781700159179 a001 956722026041/141422324*103682^(17/24) 2415781700159180 a001 365435296162/54018521*103682^(17/24) 2415781700159184 a001 139583862445/20633239*103682^(17/24) 2415781700159218 a001 53316291173/7881196*103682^(17/24) 2415781700159445 a001 20365011074/3010349*103682^(17/24) 2415781700160744 a001 86267571272/167761*103682^(1/3) 2415781700161006 a001 7778742049/1149851*103682^(17/24) 2415781700162339 a001 1201881744/109801*103682^(2/3) 2415781700163759 a001 2971215073/710647*103682^(3/4) 2415781700163846 a001 267914296/271443*103682^(7/8) 2415781700167844 a001 7778742049/1860498*103682^(3/4) 2415781700168440 a001 20365011074/4870847*103682^(3/4) 2415781700168527 a001 53316291173/12752043*103682^(3/4) 2415781700168540 a001 139583862445/33385282*103682^(3/4) 2415781700168542 a001 365435296162/87403803*103682^(3/4) 2415781700168542 a001 956722026041/228826127*103682^(3/4) 2415781700168542 a001 2504730781961/599074578*103682^(3/4) 2415781700168542 a001 6557470319842/1568397607*103682^(3/4) 2415781700168542 a001 10610209857723/2537720636*103682^(3/4) 2415781700168542 a001 4052739537881/969323029*103682^(3/4) 2415781700168542 a001 1548008755920/370248451*103682^(3/4) 2415781700168542 a001 591286729879/141422324*103682^(3/4) 2415781700168543 a001 225851433717/54018521*103682^(3/4) 2415781700168548 a001 86267571272/20633239*103682^(3/4) 2415781700168581 a001 32951280099/7881196*103682^(3/4) 2415781700168809 a001 12586269025/3010349*103682^(3/4) 2415781700170108 a001 53316291173/167761*103682^(3/8) 2415781700170369 a001 4807526976/1149851*103682^(3/4) 2415781700171673 a001 75025/167761*(1/2+1/2*5^(1/2))^37 2415781700171702 a001 2971215073/439204*103682^(17/24) 2415781700173122 a001 1836311903/710647*103682^(19/24) 2415781700173209 a001 165580141/271443*103682^(11/12) 2415781700177208 a001 267084832/103361*103682^(19/24) 2415781700177251 a001 516002918640/90481*39603^(3/22) 2415781700177804 a001 12586269025/4870847*103682^(19/24) 2415781700177891 a001 10983760033/4250681*103682^(19/24) 2415781700177904 a001 43133785636/16692641*103682^(19/24) 2415781700177905 a001 75283811239/29134601*103682^(19/24) 2415781700177906 a001 591286729879/228826127*103682^(19/24) 2415781700177906 a001 86000486440/33281921*103682^(19/24) 2415781700177906 a001 4052739537881/1568397607*103682^(19/24) 2415781700177906 a001 3536736619241/1368706081*103682^(19/24) 2415781700177906 a001 3278735159921/1268860318*103682^(19/24) 2415781700177906 a001 2504730781961/969323029*103682^(19/24) 2415781700177906 a001 956722026041/370248451*103682^(19/24) 2415781700177906 a001 182717648081/70711162*103682^(19/24) 2415781700177907 a001 139583862445/54018521*103682^(19/24) 2415781700177911 a001 53316291173/20633239*103682^(19/24) 2415781700177945 a001 10182505537/3940598*103682^(19/24) 2415781700178172 a001 7778742049/3010349*103682^(19/24) 2415781700179058 a001 701408733/64079*64079^(16/23) 2415781700179471 a001 32951280099/167761*103682^(5/12) 2415781700179733 a001 2971215073/1149851*103682^(19/24) 2415781700181066 a001 1836311903/439204*103682^(3/4) 2415781700182486 a001 1134903170/710647*103682^(5/6) 2415781700182573 a001 34111385/90481*103682^(23/24) 2415781700186571 a001 2971215073/1860498*103682^(5/6) 2415781700187167 a001 7778742049/4870847*103682^(5/6) 2415781700187254 a001 20365011074/12752043*103682^(5/6) 2415781700187267 a001 53316291173/33385282*103682^(5/6) 2415781700187269 a001 139583862445/87403803*103682^(5/6) 2415781700187269 a001 365435296162/228826127*103682^(5/6) 2415781700187269 a001 956722026041/599074578*103682^(5/6) 2415781700187269 a001 2504730781961/1568397607*103682^(5/6) 2415781700187269 a001 6557470319842/4106118243*103682^(5/6) 2415781700187269 a001 10610209857723/6643838879*103682^(5/6) 2415781700187269 a001 4052739537881/2537720636*103682^(5/6) 2415781700187269 a001 1548008755920/969323029*103682^(5/6) 2415781700187269 a001 591286729879/370248451*103682^(5/6) 2415781700187269 a001 225851433717/141422324*103682^(5/6) 2415781700187270 a001 86267571272/54018521*103682^(5/6) 2415781700187275 a001 32951280099/20633239*103682^(5/6) 2415781700187308 a001 12586269025/7881196*103682^(5/6) 2415781700187536 a001 4807526976/3010349*103682^(5/6) 2415781700188835 a001 20365011074/167761*103682^(11/24) 2415781700189096 a001 1836311903/1149851*103682^(5/6) 2415781700190429 a001 567451585/219602*103682^(19/24) 2415781700191849 a001 701408733/710647*103682^(7/8) 2415781700191942 a001 1120149658745/46368 2415781700192023 a001 39088169/24476*24476^(20/21) 2415781700195352 a001 139583862445/103682*39603^(3/11) 2415781700195935 a001 1836311903/1860498*103682^(7/8) 2415781700196531 a001 4807526976/4870847*103682^(7/8) 2415781700196618 a001 12586269025/12752043*103682^(7/8) 2415781700196631 a001 32951280099/33385282*103682^(7/8) 2415781700196633 a001 86267571272/87403803*103682^(7/8) 2415781700196633 a001 225851433717/228826127*103682^(7/8) 2415781700196633 a001 591286729879/599074578*103682^(7/8) 2415781700196633 a001 1548008755920/1568397607*103682^(7/8) 2415781700196633 a001 4052739537881/4106118243*103682^(7/8) 2415781700196633 a001 4807525989/4870846*103682^(7/8) 2415781700196633 a001 6557470319842/6643838879*103682^(7/8) 2415781700196633 a001 2504730781961/2537720636*103682^(7/8) 2415781700196633 a001 956722026041/969323029*103682^(7/8) 2415781700196633 a001 365435296162/370248451*103682^(7/8) 2415781700196633 a001 139583862445/141422324*103682^(7/8) 2415781700196634 a001 53316291173/54018521*103682^(7/8) 2415781700196639 a001 20365011074/20633239*103682^(7/8) 2415781700196672 a001 7778742049/7881196*103682^(7/8) 2415781700196899 a001 2971215073/3010349*103682^(7/8) 2415781700198198 a001 75025*103682^(1/2) 2415781700198460 a001 1134903170/1149851*103682^(7/8) 2415781700199793 a001 701408733/439204*103682^(5/6) 2415781700201213 a001 433494437/710647*103682^(11/12) 2415781700204286 a001 591286729879/64079*24476^(2/21) 2415781700204638 a001 1134903170/64079*64079^(15/23) 2415781700205254 a001 4052739537881/710647*39603^(3/22) 2415781700205298 a001 567451585/930249*103682^(11/12) 2415781700205895 a001 2971215073/4870847*103682^(11/12) 2415781700205982 a001 7778742049/12752043*103682^(11/12) 2415781700205994 a001 10182505537/16692641*103682^(11/12) 2415781700205996 a001 53316291173/87403803*103682^(11/12) 2415781700205996 a001 139583862445/228826127*103682^(11/12) 2415781700205996 a001 182717648081/299537289*103682^(11/12) 2415781700205996 a001 956722026041/1568397607*103682^(11/12) 2415781700205996 a001 2504730781961/4106118243*103682^(11/12) 2415781700205996 a001 3278735159921/5374978561*103682^(11/12) 2415781700205996 a001 10610209857723/17393796001*103682^(11/12) 2415781700205996 a001 4052739537881/6643838879*103682^(11/12) 2415781700205996 a001 1134903780/1860499*103682^(11/12) 2415781700205996 a001 591286729879/969323029*103682^(11/12) 2415781700205996 a001 225851433717/370248451*103682^(11/12) 2415781700205997 a001 21566892818/35355581*103682^(11/12) 2415781700205997 a001 32951280099/54018521*103682^(11/12) 2415781700206002 a001 1144206275/1875749*103682^(11/12) 2415781700206035 a001 1201881744/1970299*103682^(11/12) 2415781700206263 a001 1836311903/3010349*103682^(11/12) 2415781700207562 a001 7778742049/167761*103682^(13/24) 2415781700207824 a001 701408733/1149851*103682^(11/12) 2415781700209156 a001 433494437/439204*103682^(7/8) 2415781700209340 a001 3536736619241/620166*39603^(3/22) 2415781700210576 a001 267914296/710647*103682^(23/24) 2415781700211865 a001 6557470319842/1149851*39603^(3/22) 2415781700214662 a001 233802911/620166*103682^(23/24) 2415781700215258 a001 1836311903/4870847*103682^(23/24) 2415781700215345 a001 1602508992/4250681*103682^(23/24) 2415781700215358 a001 12586269025/33385282*103682^(23/24) 2415781700215360 a001 10983760033/29134601*103682^(23/24) 2415781700215360 a001 86267571272/228826127*103682^(23/24) 2415781700215360 a001 267913919/710646*103682^(23/24) 2415781700215360 a001 591286729879/1568397607*103682^(23/24) 2415781700215360 a001 516002918640/1368706081*103682^(23/24) 2415781700215360 a001 4052739537881/10749957122*103682^(23/24) 2415781700215360 a001 3536736619241/9381251041*103682^(23/24) 2415781700215360 a001 6557470319842/17393796001*103682^(23/24) 2415781700215360 a001 2504730781961/6643838879*103682^(23/24) 2415781700215360 a001 956722026041/2537720636*103682^(23/24) 2415781700215360 a001 365435296162/969323029*103682^(23/24) 2415781700215360 a001 139583862445/370248451*103682^(23/24) 2415781700215360 a001 53316291173/141422324*103682^(23/24) 2415781700215361 a001 20365011074/54018521*103682^(23/24) 2415781700215366 a001 7778742049/20633239*103682^(23/24) 2415781700215399 a001 2971215073/7881196*103682^(23/24) 2415781700215626 a001 1134903170/3010349*103682^(23/24) 2415781700216925 a001 4807526976/167761*103682^(7/12) 2415781700217187 a001 433494437/1149851*103682^(23/24) 2415781700218520 a001 66978574/109801*103682^(11/12) 2415781700219979 a001 186691609793/7728 2415781700222561 a001 2504730781961/439204*39603^(3/22) 2415781700224292 a001 140018707345/5796 2415781700224723 a001 5600748293801/46368*8^(1/3) 2415781700224723 a001 1/23184*(1/2+1/2*5^(1/2))^61 2415781700225862 a001 140728068720/15251*39603^(1/11) 2415781700226289 a001 2971215073/167761*103682^(5/8) 2415781700226449 a001 53340459941/2208 2415781700227883 a001 165580141/439204*103682^(23/24) 2415781700230218 a001 28657*64079^(14/23) 2415781700235652 a001 1836311903/167761*103682^(2/3) 2415781700237232 a001 560074829383/23184 2415781700245016 a001 1134903170/167761*103682^(17/24) 2415781700247264 a001 956722026041/271443*39603^(2/11) 2415781700254379 a001 701408733/167761*103682^(3/4) 2415781700255797 a001 2971215073/64079*64079^(13/23) 2415781700263743 a001 433494437/167761*103682^(19/24) 2415781700265365 a001 43133785636/51841*39603^(7/22) 2415781700273107 a001 267914296/167761*103682^(5/6) 2415781700275267 a001 2504730781961/710647*39603^(2/11) 2415781700279353 a001 3278735159921/930249*39603^(2/11) 2415781700280317 a001 10610209857723/3010349*39603^(2/11) 2415781700281377 a001 4807526976/64079*64079^(12/23) 2415781700281878 a001 4052739537881/1149851*39603^(2/11) 2415781700282470 a001 165580141/167761*103682^(7/8) 2415781700291834 a001 9303105/15251*103682^(11/12) 2415781700292574 a001 387002188980/109801*39603^(2/11) 2415781700295875 a001 956722026041/167761*39603^(3/22) 2415781700301197 a001 63245986/167761*103682^(23/24) 2415781700303138 a001 774004377960/51841*15127^(1/20) 2415781700306957 a001 7778742049/64079*64079^(11/23) 2415781700310559 a001 7778817075/322 2415781700317277 a001 591286729879/271443*39603^(5/22) 2415781700332537 a001 12586269025/64079*64079^(10/23) 2415781700335378 a001 53316291173/103682*39603^(4/11) 2415781700345280 a001 1548008755920/710647*39603^(5/22) 2415781700349366 a001 4052739537881/1860498*39603^(5/22) 2415781700349962 a001 2178309*39603^(5/22) 2415781700350330 a001 6557470319842/3010349*39603^(5/22) 2415781700351891 a001 2504730781961/1149851*39603^(5/22) 2415781700358117 a001 20365011074/64079*64079^(9/23) 2415781700362587 a001 956722026041/439204*39603^(5/22) 2415781700363611 a001 46368/64079*141422324^(12/13) 2415781700363611 a001 46368/64079*2537720636^(4/5) 2415781700363611 a001 28657/103682*817138163596^(2/3) 2415781700363611 a001 28657/103682*(1/2+1/2*5^(1/2))^38 2415781700363611 a001 28657/103682*10749957122^(19/24) 2415781700363611 a001 28657/103682*4106118243^(19/23) 2415781700363611 a001 46368/64079*45537549124^(12/17) 2415781700363611 a001 46368/64079*14662949395604^(4/7) 2415781700363611 a001 46368/64079*(1/2+1/2*5^(1/2))^36 2415781700363611 a001 46368/64079*505019158607^(9/14) 2415781700363611 a001 46368/64079*192900153618^(2/3) 2415781700363611 a001 46368/64079*73681302247^(9/13) 2415781700363611 a001 46368/64079*10749957122^(3/4) 2415781700363611 a001 46368/64079*4106118243^(18/23) 2415781700363611 a001 28657/103682*1568397607^(19/22) 2415781700363611 a001 46368/64079*1568397607^(9/11) 2415781700363611 a001 46368/64079*599074578^(6/7) 2415781700363611 a001 28657/103682*599074578^(19/21) 2415781700363611 a001 46368/64079*228826127^(9/10) 2415781700363611 a001 28657/103682*228826127^(19/20) 2415781700363611 a001 46368/64079*87403803^(18/19) 2415781700365888 a001 591286729879/167761*39603^(2/11) 2415781700383697 a001 32951280099/64079*64079^(8/23) 2415781700384049 a001 31622993/12238*24476^(19/21) 2415781700387290 a001 365435296162/271443*39603^(3/11) 2415781700396311 a001 956722026041/64079*24476^(1/21) 2415781700405391 a001 32951280099/103682*39603^(9/22) 2415781700409277 a001 53316291173/64079*64079^(7/23) 2415781700415293 a001 956722026041/710647*39603^(3/11) 2415781700419379 a001 2504730781961/1860498*39603^(3/11) 2415781700419975 a001 6557470319842/4870847*39603^(3/11) 2415781700420116 a001 10610209857723/7881196*39603^(3/11) 2415781700420343 a001 1346269*39603^(3/11) 2415781700421904 a001 1548008755920/1149851*39603^(3/11) 2415781700432600 a001 591286729879/439204*39603^(3/11) 2415781700434857 a001 86267571272/64079*64079^(6/23) 2415781700435901 a001 365435296162/167761*39603^(5/22) 2415781700457303 a001 75283811239/90481*39603^(7/22) 2415781700460436 a001 139583862445/64079*64079^(5/23) 2415781700475404 a001 10182505537/51841*39603^(5/11) 2415781700485306 a001 591286729879/710647*39603^(7/22) 2415781700486016 a001 225851433717/64079*64079^(4/23) 2415781700489392 a001 832040*39603^(7/22) 2415781700489988 a001 4052739537881/4870847*39603^(7/22) 2415781700490075 a001 3536736619241/4250681*39603^(7/22) 2415781700490129 a001 3278735159921/3940598*39603^(7/22) 2415781700490356 a001 2504730781961/3010349*39603^(7/22) 2415781700491917 a001 956722026041/1149851*39603^(7/22) 2415781700495076 a001 4052739537881/271443*15127^(1/20) 2415781700502499 a001 1812440220802/75025 2415781700502613 a001 182717648081/219602*39603^(7/22) 2415781700505914 a001 225851433717/167761*39603^(3/11) 2415781700511596 a001 365435296162/64079*64079^(3/23) 2415781700519666 a001 102334155/64079*167761^(4/5) 2415781700523079 a001 1515744265389/101521*15127^(1/20) 2415781700527316 a001 139583862445/271443*39603^(4/11) 2415781700536833 a001 1134903170/64079*167761^(3/5) 2415781700537176 a001 591286729879/64079*64079^(2/23) 2415781700540386 a001 3278735159921/219602*15127^(1/20) 2415781700545417 a001 12586269025/103682*39603^(1/2) 2415781700554001 a001 12586269025/64079*167761^(2/5) 2415781700555319 a001 365435296162/710647*39603^(4/11) 2415781700555549 a001 28657/271443*2537720636^(8/9) 2415781700555549 a001 28657/271443*312119004989^(8/11) 2415781700555549 a001 28657/271443*(1/2+1/2*5^(1/2))^40 2415781700555549 a001 28657/271443*23725150497407^(5/8) 2415781700555549 a001 28657/271443*73681302247^(10/13) 2415781700555549 a001 28657/271443*28143753123^(4/5) 2415781700555549 a001 28657/271443*10749957122^(5/6) 2415781700555549 a001 28657/271443*4106118243^(20/23) 2415781700555549 a001 121393/64079*45537549124^(2/3) 2415781700555549 a001 121393/64079*(1/2+1/2*5^(1/2))^34 2415781700555549 a001 121393/64079*10749957122^(17/24) 2415781700555549 a001 121393/64079*4106118243^(17/23) 2415781700555549 a001 28657/271443*1568397607^(10/11) 2415781700555549 a001 121393/64079*1568397607^(17/22) 2415781700555549 a001 121393/64079*599074578^(17/21) 2415781700555549 a001 28657/271443*599074578^(20/21) 2415781700555549 a001 121393/64079*228826127^(17/20) 2415781700555549 a001 121393/64079*87403803^(17/19) 2415781700555551 a001 121393/64079*33385282^(17/18) 2415781700559405 a001 956722026041/1860498*39603^(4/11) 2415781700560001 a001 2504730781961/4870847*39603^(4/11) 2415781700560088 a001 6557470319842/12752043*39603^(4/11) 2415781700560109 a001 10610209857723/20633239*39603^(4/11) 2415781700560142 a001 4052739537881/7881196*39603^(4/11) 2415781700560369 a001 1548008755920/3010349*39603^(4/11) 2415781700561930 a001 514229*39603^(4/11) 2415781700562756 a001 956722026041/64079*64079^(1/23) 2415781700571168 a001 139583862445/39603*15127^(1/5) 2415781700571168 a001 139583862445/64079*167761^(1/5) 2415781700572626 a001 225851433717/439204*39603^(4/11) 2415781700575812 a001 4745030100637/196418 2415781700575927 a001 139583862445/167761*39603^(7/22) 2415781700576073 a001 102334155/24476*24476^(6/7) 2415781700577202 a001 14930352/64079*439204^(8/9) 2415781700578595 a001 63245986/64079*439204^(7/9) 2415781700579987 a001 267914296/64079*439204^(2/3) 2415781700581378 a001 1134903170/64079*439204^(5/9) 2415781700582770 a001 4807526976/64079*439204^(4/9) 2415781700583552 a001 28657/710647*2537720636^(14/15) 2415781700583552 a001 28657/710647*17393796001^(6/7) 2415781700583552 a001 28657/710647*45537549124^(14/17) 2415781700583552 a001 28657/710647*817138163596^(14/19) 2415781700583552 a001 28657/710647*14662949395604^(2/3) 2415781700583552 a001 28657/710647*(1/2+1/2*5^(1/2))^42 2415781700583552 a001 28657/710647*192900153618^(7/9) 2415781700583552 a001 28657/710647*10749957122^(7/8) 2415781700583552 a001 28657/710647*4106118243^(21/23) 2415781700583552 a001 317811/64079*(1/2+1/2*5^(1/2))^32 2415781700583552 a001 317811/64079*23725150497407^(1/2) 2415781700583552 a001 317811/64079*505019158607^(4/7) 2415781700583552 a001 317811/64079*73681302247^(8/13) 2415781700583552 a001 317811/64079*10749957122^(2/3) 2415781700583552 a001 317811/64079*4106118243^(16/23) 2415781700583552 a001 317811/64079*1568397607^(8/11) 2415781700583552 a001 28657/710647*1568397607^(21/22) 2415781700583552 a001 317811/64079*599074578^(16/21) 2415781700583552 a001 317811/64079*228826127^(4/5) 2415781700583552 a001 317811/64079*87403803^(16/19) 2415781700583554 a001 317811/64079*33385282^(8/9) 2415781700583566 a001 317811/64079*12752043^(16/17) 2415781700584161 a001 20365011074/64079*439204^(1/3) 2415781700585553 a001 86267571272/64079*439204^(2/9) 2415781700586509 a001 12422650081109/514229 2415781700586944 a001 365435296162/64079*439204^(1/9) 2415781700587603 a001 832040/64079*7881196^(10/11) 2415781700587633 a001 832040/64079*20633239^(6/7) 2415781700587638 a001 832040/64079*141422324^(10/13) 2415781700587638 a001 832040/64079*2537720636^(2/3) 2415781700587638 a001 28657/1860498*312119004989^(4/5) 2415781700587638 a001 28657/1860498*(1/2+1/2*5^(1/2))^44 2415781700587638 a001 28657/1860498*23725150497407^(11/16) 2415781700587638 a001 28657/1860498*73681302247^(11/13) 2415781700587638 a001 28657/1860498*10749957122^(11/12) 2415781700587638 a001 28657/1860498*4106118243^(22/23) 2415781700587638 a001 832040/64079*45537549124^(10/17) 2415781700587638 a001 832040/64079*312119004989^(6/11) 2415781700587638 a001 832040/64079*14662949395604^(10/21) 2415781700587638 a001 832040/64079*(1/2+1/2*5^(1/2))^30 2415781700587638 a001 832040/64079*192900153618^(5/9) 2415781700587638 a001 832040/64079*28143753123^(3/5) 2415781700587638 a001 832040/64079*10749957122^(5/8) 2415781700587638 a001 832040/64079*4106118243^(15/23) 2415781700587638 a001 832040/64079*1568397607^(15/22) 2415781700587638 a001 832040/64079*599074578^(5/7) 2415781700587638 a001 832040/64079*228826127^(3/4) 2415781700587638 a001 832040/64079*87403803^(15/19) 2415781700587640 a001 832040/64079*33385282^(5/6) 2415781700587651 a001 832040/64079*12752043^(15/17) 2415781700587733 a001 832040/64079*4870847^(15/16) 2415781700588069 a001 32522920142690/1346269 2415781700588229 a001 2178309/64079*20633239^(4/5) 2415781700588234 a001 28657/4870847*(1/2+1/2*5^(1/2))^46 2415781700588234 a001 28657/4870847*10749957122^(23/24) 2415781700588234 a001 2178309/64079*17393796001^(4/7) 2415781700588234 a001 2178309/64079*14662949395604^(4/9) 2415781700588234 a001 2178309/64079*(1/2+1/2*5^(1/2))^28 2415781700588234 a001 2178309/64079*505019158607^(1/2) 2415781700588234 a001 2178309/64079*73681302247^(7/13) 2415781700588234 a001 2178309/64079*10749957122^(7/12) 2415781700588234 a001 2178309/64079*4106118243^(14/23) 2415781700588234 a001 2178309/64079*1568397607^(7/11) 2415781700588234 a001 2178309/64079*599074578^(2/3) 2415781700588234 a001 2178309/64079*228826127^(7/10) 2415781700588234 a001 2178309/64079*87403803^(14/19) 2415781700588236 a001 2178309/64079*33385282^(7/9) 2415781700588246 a001 2178309/64079*12752043^(14/17) 2415781700588297 a001 85146110346961/3524578 2415781700588305 a001 14930352/64079*7881196^(8/11) 2415781700588310 a001 39088169/64079*7881196^(2/3) 2415781700588311 a001 63245986/64079*7881196^(7/11) 2415781700588315 a001 267914296/64079*7881196^(6/11) 2415781700588318 a001 1134903170/64079*7881196^(5/11) 2415781700588321 a001 5702887/64079*141422324^(2/3) 2415781700588321 a001 28657/12752043*45537549124^(16/17) 2415781700588321 a001 28657/12752043*14662949395604^(16/21) 2415781700588321 a001 28657/12752043*(1/2+1/2*5^(1/2))^48 2415781700588321 a001 28657/12752043*192900153618^(8/9) 2415781700588321 a001 28657/12752043*73681302247^(12/13) 2415781700588321 a001 5702887/64079*(1/2+1/2*5^(1/2))^26 2415781700588321 a001 5702887/64079*73681302247^(1/2) 2415781700588321 a001 5702887/64079*10749957122^(13/24) 2415781700588321 a001 5702887/64079*4106118243^(13/23) 2415781700588321 a001 5702887/64079*1568397607^(13/22) 2415781700588321 a001 5702887/64079*599074578^(13/21) 2415781700588321 a001 5702887/64079*228826127^(13/20) 2415781700588321 a001 5702887/64079*87403803^(13/19) 2415781700588322 a001 4807526976/64079*7881196^(4/11) 2415781700588322 a001 5702887/64079*33385282^(13/18) 2415781700588323 a001 7778742049/64079*7881196^(1/3) 2415781700588323 a001 2178309/64079*4870847^(7/8) 2415781700588325 a001 20365011074/64079*7881196^(3/11) 2415781700588329 a001 86267571272/64079*7881196^(2/11) 2415781700588330 a001 17147339299861/709805 2415781700588332 a001 365435296162/64079*7881196^(1/11) 2415781700588332 a001 5702887/64079*12752043^(13/17) 2415781700588332 a001 102334155/64079*20633239^(4/7) 2415781700588332 a001 63245986/64079*20633239^(3/5) 2415781700588333 a001 1134903170/64079*20633239^(3/7) 2415781700588334 a001 28657*20633239^(2/5) 2415781700588334 a001 14930352/64079*141422324^(8/13) 2415781700588334 a001 14930352/64079*2537720636^(8/15) 2415781700588334 a001 28657/33385282*312119004989^(10/11) 2415781700588334 a001 28657/33385282*(1/2+1/2*5^(1/2))^50 2415781700588334 a001 28657/33385282*3461452808002^(5/6) 2415781700588334 a001 14930352/64079*45537549124^(8/17) 2415781700588334 a001 14930352/64079*14662949395604^(8/21) 2415781700588334 a001 14930352/64079*(1/2+1/2*5^(1/2))^24 2415781700588334 a001 14930352/64079*192900153618^(4/9) 2415781700588334 a001 14930352/64079*73681302247^(6/13) 2415781700588334 a001 14930352/64079*10749957122^(1/2) 2415781700588334 a001 14930352/64079*4106118243^(12/23) 2415781700588334 a001 14930352/64079*1568397607^(6/11) 2415781700588334 a001 14930352/64079*599074578^(4/7) 2415781700588334 a001 14930352/64079*228826127^(3/5) 2415781700588334 a001 14930352/64079*87403803^(12/19) 2415781700588334 a001 12586269025/64079*20633239^(2/7) 2415781700588335 a001 53316291173/64079*20633239^(1/5) 2415781700588335 a001 583600122347618/24157817 2415781700588335 a001 139583862445/64079*20633239^(1/7) 2415781700588335 a001 14930352/64079*33385282^(2/3) 2415781700588335 a001 28657/87403803*23725150497407^(13/16) 2415781700588335 a001 28657/87403803*505019158607^(13/14) 2415781700588335 a001 39088169/64079*312119004989^(2/5) 2415781700588335 a001 39088169/64079*(1/2+1/2*5^(1/2))^22 2415781700588335 a001 39088169/64079*10749957122^(11/24) 2415781700588335 a001 39088169/64079*4106118243^(11/23) 2415781700588335 a001 39088169/64079*1568397607^(1/2) 2415781700588335 a001 39088169/64079*599074578^(11/21) 2415781700588335 a001 39088169/64079*228826127^(11/20) 2415781700588336 a001 39088169/64079*87403803^(11/19) 2415781700588336 a001 1527884956144661/63245986 2415781700588336 a001 267914296/64079*141422324^(6/13) 2415781700588336 a001 102334155/64079*2537720636^(4/9) 2415781700588336 a001 28657/228826127*14662949395604^(6/7) 2415781700588336 a001 102334155/64079*(1/2+1/2*5^(1/2))^20 2415781700588336 a001 102334155/64079*23725150497407^(5/16) 2415781700588336 a001 102334155/64079*505019158607^(5/14) 2415781700588336 a001 102334155/64079*73681302247^(5/13) 2415781700588336 a001 102334155/64079*28143753123^(2/5) 2415781700588336 a001 102334155/64079*10749957122^(5/12) 2415781700588336 a001 1134903170/64079*141422324^(5/13) 2415781700588336 a001 102334155/64079*4106118243^(10/23) 2415781700588336 a001 102334155/64079*1568397607^(5/11) 2415781700588336 a001 102334155/64079*599074578^(10/21) 2415781700588336 a001 2971215073/64079*141422324^(1/3) 2415781700588336 a001 4807526976/64079*141422324^(4/13) 2415781700588336 a001 20365011074/64079*141422324^(3/13) 2415781700588336 a001 102334155/64079*228826127^(1/2) 2415781700588336 a001 86267571272/64079*141422324^(2/13) 2415781700588336 a001 4000054746086365/165580141 2415781700588336 a001 365435296162/64079*141422324^(1/13) 2415781700588336 a001 267914296/64079*2537720636^(2/5) 2415781700588336 a001 28657/599074578*14662949395604^(8/9) 2415781700588336 a001 267914296/64079*45537549124^(6/17) 2415781700588336 a001 267914296/64079*14662949395604^(2/7) 2415781700588336 a001 267914296/64079*(1/2+1/2*5^(1/2))^18 2415781700588336 a001 267914296/64079*192900153618^(1/3) 2415781700588336 a001 267914296/64079*10749957122^(3/8) 2415781700588336 a001 267914296/64079*4106118243^(9/23) 2415781700588336 a001 267914296/64079*1568397607^(9/22) 2415781700588336 a001 267914296/64079*599074578^(3/7) 2415781700588336 a001 10472279282114434/433494437 2415781700588336 a001 701408733/64079*(1/2+1/2*5^(1/2))^16 2415781700588336 a001 701408733/64079*23725150497407^(1/4) 2415781700588336 a001 701408733/64079*73681302247^(4/13) 2415781700588336 a001 701408733/64079*10749957122^(1/3) 2415781700588336 a001 701408733/64079*4106118243^(8/23) 2415781700588336 a001 701408733/64079*1568397607^(4/11) 2415781700588336 a001 27416783100256937/1134903170 2415781700588336 a001 28657/4106118243*14662949395604^(20/21) 2415781700588336 a001 71778070018656377/2971215073 2415781700588336 a001 14455186688900938/598364773 2415781700588336 a001 28657*17393796001^(2/7) 2415781700588336 a001 28657*14662949395604^(2/9) 2415781700588336 a001 304056783892768011/12586269025 2415781700588336 a001 28657*10749957122^(7/24) 2415781700588336 a001 116139356937055817/4807526976 2415781700588336 a001 4807526976/64079*2537720636^(4/15) 2415781700588336 a001 28657*4106118243^(7/23) 2415781700588336 a001 12586269025/64079*2537720636^(2/9) 2415781700588336 a001 20365011074/64079*2537720636^(1/5) 2415781700588336 a001 86267571272/64079*2537720636^(2/15) 2415781700588336 a001 139583862445/64079*2537720636^(1/9) 2415781700588336 a001 365435296162/64079*2537720636^(1/15) 2415781700588336 a001 4807526976/64079*45537549124^(4/17) 2415781700588336 a001 4807526976/64079*817138163596^(4/19) 2415781700588336 a001 4807526976/64079*14662949395604^(4/21) 2415781700588336 a001 4807526976/64079*(1/2+1/2*5^(1/2))^12 2415781700588336 a001 4807526976/64079*73681302247^(3/13) 2415781700588336 a001 4807526976/64079*10749957122^(1/4) 2415781700588336 a001 12586269025/64079*312119004989^(2/11) 2415781700588336 a001 12586269025/64079*(1/2+1/2*5^(1/2))^10 2415781700588336 a001 12586269025/64079*28143753123^(1/5) 2415781700588336 a001 53316291173/64079*17393796001^(1/7) 2415781700588336 a001 32951280099/64079*(1/2+1/2*5^(1/2))^8 2415781700588336 a001 32951280099/64079*23725150497407^(1/8) 2415781700588336 a001 32951280099/64079*73681302247^(2/13) 2415781700588336 a001 86267571272/64079*45537549124^(2/17) 2415781700588336 a001 86267571272/64079*14662949395604^(2/21) 2415781700588336 a001 86267571272/64079*(1/2+1/2*5^(1/2))^6 2415781700588336 a001 365435296162/64079*45537549124^(1/17) 2415781700588336 a001 225851433717/64079*(1/2+1/2*5^(1/2))^4 2415781700588336 a001 225851433717/64079*23725150497407^(1/16) 2415781700588336 a001 1548008755920/64079 2415781700588336 a001 365435296162/64079*192900153618^(1/18) 2415781700588336 a001 139583862445/64079*312119004989^(1/11) 2415781700588336 a001 225851433717/64079*73681302247^(1/13) 2415781700588336 a001 139583862445/64079*(1/2+1/2*5^(1/2))^5 2415781700588336 a001 53316291173/64079*14662949395604^(1/9) 2415781700588336 a001 53316291173/64079*(1/2+1/2*5^(1/2))^7 2415781700588336 a001 139583862445/64079*28143753123^(1/10) 2415781700588336 a001 591286729879/64079*10749957122^(1/24) 2415781700588336 a001 20365011074/64079*45537549124^(3/17) 2415781700588336 a001 20365011074/64079*14662949395604^(1/7) 2415781700588336 a001 20365011074/64079*(1/2+1/2*5^(1/2))^9 2415781700588336 a001 20365011074/64079*192900153618^(1/6) 2415781700588336 a001 12586269025/64079*10749957122^(5/24) 2415781700588336 a001 365435296162/64079*10749957122^(1/16) 2415781700588336 a001 225851433717/64079*10749957122^(1/12) 2415781700588336 a001 86267571272/64079*10749957122^(1/8) 2415781700588336 a001 32951280099/64079*10749957122^(1/6) 2415781700588336 a001 20365011074/64079*10749957122^(3/16) 2415781700588336 a001 591286729879/64079*4106118243^(1/23) 2415781700588336 a001 7778742049/64079*312119004989^(1/5) 2415781700588336 a001 7778742049/64079*(1/2+1/2*5^(1/2))^11 2415781700588336 a001 225851433717/64079*4106118243^(2/23) 2415781700588336 a001 4807526976/64079*4106118243^(6/23) 2415781700588336 a001 86267571272/64079*4106118243^(3/23) 2415781700588336 a001 32951280099/64079*4106118243^(4/23) 2415781700588336 a001 12586269025/64079*4106118243^(5/23) 2415781700588336 a001 591286729879/64079*1568397607^(1/22) 2415781700588336 a001 2971215073/64079*(1/2+1/2*5^(1/2))^13 2415781700588336 a001 2971215073/64079*73681302247^(1/4) 2415781700588336 a001 225851433717/64079*1568397607^(1/11) 2415781700588336 a001 86267571272/64079*1568397607^(3/22) 2415781700588336 a001 28657*1568397607^(7/22) 2415781700588336 a001 32951280099/64079*1568397607^(2/11) 2415781700588336 a001 12586269025/64079*1568397607^(5/22) 2415781700588336 a001 4807526976/64079*1568397607^(3/11) 2415781700588336 a001 1134903170/64079*2537720636^(1/3) 2415781700588336 a001 7778742049/64079*1568397607^(1/4) 2415781700588336 a001 591286729879/64079*599074578^(1/21) 2415781700588336 a001 1134903170/64079*45537549124^(5/17) 2415781700588336 a001 1134903170/64079*312119004989^(3/11) 2415781700588336 a001 1134903170/64079*14662949395604^(5/21) 2415781700588336 a001 1134903170/64079*(1/2+1/2*5^(1/2))^15 2415781700588336 a001 1134903170/64079*192900153618^(5/18) 2415781700588336 a001 1134903170/64079*28143753123^(3/10) 2415781700588336 a001 1134903170/64079*10749957122^(5/16) 2415781700588336 a001 365435296162/64079*599074578^(1/14) 2415781700588336 a001 225851433717/64079*599074578^(2/21) 2415781700588336 a001 16944503818142503/701408733 2415781700588336 a001 86267571272/64079*599074578^(1/7) 2415781700588336 a001 53316291173/64079*599074578^(1/6) 2415781700588336 a001 32951280099/64079*599074578^(4/21) 2415781700588336 a001 20365011074/64079*599074578^(3/14) 2415781700588336 a001 701408733/64079*599074578^(8/21) 2415781700588336 a001 12586269025/64079*599074578^(5/21) 2415781700588336 a001 4807526976/64079*599074578^(2/7) 2415781700588336 a001 28657*599074578^(1/3) 2415781700588336 a001 591286729879/64079*228826127^(1/20) 2415781700588336 a001 28657/969323029*14662949395604^(19/21) 2415781700588336 a001 433494437/64079*45537549124^(1/3) 2415781700588336 a001 433494437/64079*(1/2+1/2*5^(1/2))^17 2415781700588336 a001 1134903170/64079*599074578^(5/14) 2415781700588336 a001 225851433717/64079*228826127^(1/10) 2415781700588336 a001 139583862445/64079*228826127^(1/8) 2415781700588336 a001 17167704339597/710648 2415781700588336 a001 86267571272/64079*228826127^(3/20) 2415781700588336 a001 32951280099/64079*228826127^(1/5) 2415781700588336 a001 12586269025/64079*228826127^(1/4) 2415781700588336 a001 4807526976/64079*228826127^(3/10) 2415781700588336 a001 267914296/64079*228826127^(9/20) 2415781700588336 a001 28657*228826127^(7/20) 2415781700588336 a001 591286729879/64079*87403803^(1/19) 2415781700588336 a001 701408733/64079*228826127^(2/5) 2415781700588336 a001 28657/370248451*3461452808002^(11/12) 2415781700588336 a001 165580141/64079*817138163596^(1/3) 2415781700588336 a001 165580141/64079*(1/2+1/2*5^(1/2))^19 2415781700588336 a001 1134903170/64079*228826127^(3/8) 2415781700588336 a001 225851433717/64079*87403803^(2/19) 2415781700588336 a001 2472169789941704/102334155 2415781700588336 a001 86267571272/64079*87403803^(3/19) 2415781700588336 a001 63245986/64079*141422324^(7/13) 2415781700588336 a001 32951280099/64079*87403803^(4/19) 2415781700588336 a001 12586269025/64079*87403803^(5/19) 2415781700588336 a001 4807526976/64079*87403803^(6/19) 2415781700588336 a001 28657*87403803^(7/19) 2415781700588336 a001 102334155/64079*87403803^(10/19) 2415781700588336 a001 591286729879/64079*33385282^(1/18) 2415781700588336 a001 63245986/64079*2537720636^(7/15) 2415781700588336 a001 63245986/64079*17393796001^(3/7) 2415781700588336 a001 63245986/64079*45537549124^(7/17) 2415781700588336 a001 63245986/64079*14662949395604^(1/3) 2415781700588336 a001 63245986/64079*(1/2+1/2*5^(1/2))^21 2415781700588336 a001 63245986/64079*192900153618^(7/18) 2415781700588336 a001 63245986/64079*10749957122^(7/16) 2415781700588336 a001 63245986/64079*599074578^(1/2) 2415781700588336 a001 701408733/64079*87403803^(8/19) 2415781700588336 a001 267914296/64079*87403803^(9/19) 2415781700588336 a001 165580141/64079*87403803^(1/2) 2415781700588336 a001 365435296162/64079*33385282^(1/12) 2415781700588336 a001 225851433717/64079*33385282^(1/9) 2415781700588336 a001 944284833797043/39088169 2415781700588336 a001 86267571272/64079*33385282^(1/6) 2415781700588336 a001 32951280099/64079*33385282^(2/9) 2415781700588336 a001 20365011074/64079*33385282^(1/4) 2415781700588336 a001 12586269025/64079*33385282^(5/18) 2415781700588336 a001 4807526976/64079*33385282^(1/3) 2415781700588337 a001 28657/54018521*14662949395604^(17/21) 2415781700588337 a001 28657/54018521*192900153618^(17/18) 2415781700588337 a001 24157817/64079*(1/2+1/2*5^(1/2))^23 2415781700588337 a001 24157817/64079*4106118243^(1/2) 2415781700588337 a001 28657*33385282^(7/18) 2415781700588337 a001 591286729879/64079*12752043^(1/17) 2415781700588337 a001 1134903170/64079*33385282^(5/12) 2415781700588337 a001 701408733/64079*33385282^(4/9) 2415781700588337 a001 39088169/64079*33385282^(11/18) 2415781700588337 a001 267914296/64079*33385282^(1/2) 2415781700588337 a001 102334155/64079*33385282^(5/9) 2415781700588337 a001 63245986/64079*33385282^(7/12) 2415781700588337 a001 9227465/64079*20633239^(5/7) 2415781700588338 a001 225851433717/64079*12752043^(2/17) 2415781700588338 a001 360684711449425/14930352 2415781700588338 a001 86267571272/64079*12752043^(3/17) 2415781700588339 a001 32951280099/64079*12752043^(4/17) 2415781700588340 a001 12586269025/64079*12752043^(5/17) 2415781700588341 a001 4807526976/64079*12752043^(6/17) 2415781700588341 a001 9227465/64079*2537720636^(5/9) 2415781700588341 a001 28657/20633239*14662949395604^(7/9) 2415781700588341 a001 28657/20633239*(1/2+1/2*5^(1/2))^49 2415781700588341 a001 28657/20633239*505019158607^(7/8) 2415781700588341 a001 9227465/64079*312119004989^(5/11) 2415781700588341 a001 9227465/64079*(1/2+1/2*5^(1/2))^25 2415781700588341 a001 9227465/64079*3461452808002^(5/12) 2415781700588341 a001 9227465/64079*28143753123^(1/2) 2415781700588341 a001 9227465/64079*228826127^(5/8) 2415781700588342 a001 28657*12752043^(7/17) 2415781700588342 a001 591286729879/64079*4870847^(1/16) 2415781700588343 a001 701408733/64079*12752043^(8/17) 2415781700588343 a001 3524578/64079*7881196^(9/11) 2415781700588343 a001 433494437/64079*12752043^(1/2) 2415781700588344 a001 267914296/64079*12752043^(9/17) 2415781700588344 a001 14930352/64079*12752043^(12/17) 2415781700588344 a001 102334155/64079*12752043^(10/17) 2415781700588345 a001 39088169/64079*12752043^(11/17) 2415781700588349 a001 225851433717/64079*4870847^(1/8) 2415781700588351 a001 137769300551232/5702887 2415781700588355 a001 86267571272/64079*4870847^(3/16) 2415781700588361 a001 32951280099/64079*4870847^(1/4) 2415781700588368 a001 12586269025/64079*4870847^(5/16) 2415781700588374 a001 4807526976/64079*4870847^(3/8) 2415781700588375 a001 3524578/64079*141422324^(9/13) 2415781700588375 a001 3524578/64079*2537720636^(3/5) 2415781700588375 a001 28657/7881196*(1/2+1/2*5^(1/2))^47 2415781700588375 a001 3524578/64079*45537549124^(9/17) 2415781700588375 a001 3524578/64079*14662949395604^(3/7) 2415781700588375 a001 3524578/64079*(1/2+1/2*5^(1/2))^27 2415781700588375 a001 3524578/64079*192900153618^(1/2) 2415781700588375 a001 3524578/64079*10749957122^(9/16) 2415781700588375 a001 3524578/64079*599074578^(9/14) 2415781700588376 a001 3524578/64079*33385282^(3/4) 2415781700588380 a001 28657*4870847^(7/16) 2415781700588382 a001 591286729879/64079*1860498^(1/15) 2415781700588387 a001 701408733/64079*4870847^(1/2) 2415781700588393 a001 267914296/64079*4870847^(9/16) 2415781700588399 a001 102334155/64079*4870847^(5/8) 2415781700588404 a001 5702887/64079*4870847^(13/16) 2415781700588405 a001 39088169/64079*4870847^(11/16) 2415781700588406 a001 365435296162/64079*1860498^(1/10) 2415781700588410 a001 14930352/64079*4870847^(3/4) 2415781700588429 a001 225851433717/64079*1860498^(2/15) 2415781700588438 a001 52623190204271/2178309 2415781700588452 a001 139583862445/64079*1860498^(1/6) 2415781700588475 a001 86267571272/64079*1860498^(1/5) 2415781700588522 a001 32951280099/64079*1860498^(4/15) 2415781700588545 a001 20365011074/64079*1860498^(3/10) 2415781700588568 a001 12586269025/64079*1860498^(1/3) 2415781700588602 a001 28657/3010349*45537549124^(15/17) 2415781700588602 a001 28657/3010349*312119004989^(9/11) 2415781700588602 a001 28657/3010349*14662949395604^(5/7) 2415781700588602 a001 28657/3010349*(1/2+1/2*5^(1/2))^45 2415781700588602 a001 28657/3010349*192900153618^(5/6) 2415781700588602 a001 28657/3010349*28143753123^(9/10) 2415781700588602 a001 28657/3010349*10749957122^(15/16) 2415781700588602 a001 1346269/64079*(1/2+1/2*5^(1/2))^29 2415781700588602 a001 1346269/64079*1322157322203^(1/2) 2415781700588615 a001 4807526976/64079*1860498^(2/5) 2415781700588661 a001 28657*1860498^(7/15) 2415781700588677 a001 591286729879/64079*710647^(1/14) 2415781700588685 a001 1134903170/64079*1860498^(1/2) 2415781700588708 a001 701408733/64079*1860498^(8/15) 2415781700588755 a001 267914296/64079*1860498^(3/5) 2415781700588801 a001 102334155/64079*1860498^(2/3) 2415781700588824 a001 63245986/64079*1860498^(7/10) 2415781700588847 a001 39088169/64079*1860498^(11/15) 2415781700588885 a001 2178309/64079*1860498^(14/15) 2415781700588892 a001 14930352/64079*1860498^(4/5) 2415781700588923 a001 9227465/64079*1860498^(5/6) 2415781700588926 a001 5702887/64079*1860498^(13/15) 2415781700589003 a001 3524578/64079*1860498^(9/10) 2415781700589019 a001 225851433717/64079*710647^(1/7) 2415781700589034 a001 20100270061581/832040 2415781700589361 a001 86267571272/64079*710647^(3/14) 2415781700589532 a001 53316291173/64079*710647^(1/4) 2415781700589702 a001 32951280099/64079*710647^(2/7) 2415781700590044 a001 12586269025/64079*710647^(5/14) 2415781700590163 a001 28657/1149851*(1/2+1/2*5^(1/2))^43 2415781700590163 a001 514229/64079*(1/2+1/2*5^(1/2))^31 2415781700590163 a001 514229/64079*9062201101803^(1/2) 2415781700590386 a001 4807526976/64079*710647^(3/7) 2415781700590728 a001 28657*710647^(1/2) 2415781700590858 a001 591286729879/64079*271443^(1/13) 2415781700591069 a001 701408733/64079*710647^(4/7) 2415781700591411 a001 267914296/64079*710647^(9/14) 2415781700591753 a001 102334155/64079*710647^(5/7) 2415781700591924 a001 63245986/64079*710647^(3/4) 2415781700592094 a001 39088169/64079*710647^(11/14) 2415781700592434 a001 14930352/64079*710647^(6/7) 2415781700592763 a001 5702887/64079*710647^(13/14) 2415781700593119 a001 20365039736/843 2415781700593380 a001 225851433717/64079*271443^(2/13) 2415781700595902 a001 86267571272/64079*271443^(3/13) 2415781700597329 a001 86267571272/271443*39603^(9/22) 2415781700597699 a001 956722026041/64079*103682^(1/24) 2415781700598424 a001 32951280099/64079*271443^(4/13) 2415781700600859 a001 196418/64079*141422324^(11/13) 2415781700600859 a001 196418/64079*2537720636^(11/15) 2415781700600859 a001 28657/439204*(1/2+1/2*5^(1/2))^41 2415781700600859 a001 196418/64079*45537549124^(11/17) 2415781700600859 a001 196418/64079*312119004989^(3/5) 2415781700600859 a001 196418/64079*14662949395604^(11/21) 2415781700600859 a001 196418/64079*(1/2+1/2*5^(1/2))^33 2415781700600859 a001 196418/64079*192900153618^(11/18) 2415781700600859 a001 196418/64079*10749957122^(11/16) 2415781700600859 a001 196418/64079*1568397607^(3/4) 2415781700600859 a001 196418/64079*599074578^(11/14) 2415781700600861 a001 196418/64079*33385282^(11/12) 2415781700600946 a001 12586269025/64079*271443^(5/13) 2415781700603468 a001 4807526976/64079*271443^(6/13) 2415781700604729 a001 2971215073/64079*271443^(1/2) 2415781700605990 a001 28657*271443^(7/13) 2415781700607063 a001 591286729879/64079*103682^(1/12) 2415781700608512 a001 701408733/64079*271443^(8/13) 2415781700611034 a001 267914296/64079*271443^(9/13) 2415781700613556 a001 102334155/64079*271443^(10/13) 2415781700613700 a001 2504730781961/167761*15127^(1/20) 2415781700615430 a001 7778742049/103682*39603^(6/11) 2415781700616078 a001 39088169/64079*271443^(11/13) 2415781700616426 a001 365435296162/64079*103682^(1/8) 2415781700618598 a001 14930352/64079*271443^(12/13) 2415781700621123 a001 2932589879835/121393 2415781700625332 a001 317811*39603^(9/22) 2415781700625790 a001 225851433717/64079*103682^(1/6) 2415781700629418 a001 591286729879/1860498*39603^(9/22) 2415781700630014 a001 1548008755920/4870847*39603^(9/22) 2415781700630101 a001 4052739537881/12752043*39603^(9/22) 2415781700630114 a001 1515744265389/4769326*39603^(9/22) 2415781700630122 a001 6557470319842/20633239*39603^(9/22) 2415781700630155 a001 2504730781961/7881196*39603^(9/22) 2415781700630382 a001 956722026041/3010349*39603^(9/22) 2415781700631943 a001 365435296162/1149851*39603^(9/22) 2415781700635153 a001 139583862445/64079*103682^(5/24) 2415781700642639 a001 139583862445/439204*39603^(9/22) 2415781700644517 a001 86267571272/64079*103682^(1/4) 2415781700645940 a001 86267571272/167761*39603^(4/11) 2415781700653880 a001 53316291173/64079*103682^(7/24) 2415781700658349 a001 956722026041/64079*39603^(1/22) 2415781700663244 a001 32951280099/64079*103682^(1/3) 2415781700667342 a001 53316291173/271443*39603^(5/11) 2415781700672608 a001 20365011074/64079*103682^(3/8) 2415781700674173 a001 28657/167761*2537720636^(13/15) 2415781700674173 a001 75025/64079*2537720636^(7/9) 2415781700674173 a001 28657/167761*45537549124^(13/17) 2415781700674173 a001 28657/167761*14662949395604^(13/21) 2415781700674173 a001 28657/167761*(1/2+1/2*5^(1/2))^39 2415781700674173 a001 28657/167761*192900153618^(13/18) 2415781700674173 a001 28657/167761*73681302247^(3/4) 2415781700674173 a001 28657/167761*10749957122^(13/16) 2415781700674173 a001 75025/64079*17393796001^(5/7) 2415781700674173 a001 75025/64079*312119004989^(7/11) 2415781700674173 a001 75025/64079*14662949395604^(5/9) 2415781700674173 a001 75025/64079*(1/2+1/2*5^(1/2))^35 2415781700674173 a001 75025/64079*505019158607^(5/8) 2415781700674173 a001 75025/64079*28143753123^(7/10) 2415781700674173 a001 75025/64079*599074578^(5/6) 2415781700674173 a001 28657/167761*599074578^(13/14) 2415781700674173 a001 75025/64079*228826127^(7/8) 2415781700681971 a001 12586269025/64079*103682^(5/12) 2415781700685443 a001 46368*39603^(13/22) 2415781700691335 a001 7778742049/64079*103682^(11/24) 2415781700695345 a001 139583862445/710647*39603^(5/11) 2415781700699431 a001 182717648081/930249*39603^(5/11) 2415781700700027 a001 956722026041/4870847*39603^(5/11) 2415781700700114 a001 2504730781961/12752043*39603^(5/11) 2415781700700127 a001 3278735159921/16692641*39603^(5/11) 2415781700700130 a001 10610209857723/54018521*39603^(5/11) 2415781700700135 a001 4052739537881/20633239*39603^(5/11) 2415781700700168 a001 387002188980/1970299*39603^(5/11) 2415781700700395 a001 591286729879/3010349*39603^(5/11) 2415781700700698 a001 4807526976/64079*103682^(1/2) 2415781700701956 a001 225851433717/1149851*39603^(5/11) 2415781700710062 a001 2971215073/64079*103682^(13/24) 2415781700712652 a001 196418*39603^(5/11) 2415781700715953 a001 53316291173/167761*39603^(9/22) 2415781700719425 a001 28657*103682^(7/12) 2415781700728362 a001 591286729879/64079*39603^(1/11) 2415781700728789 a001 1134903170/64079*103682^(5/8) 2415781700737355 a001 121393*39603^(1/2) 2415781700738152 a001 701408733/64079*103682^(2/3) 2415781700747516 a001 433494437/64079*103682^(17/24) 2415781700755456 a001 2971215073/103682*39603^(7/11) 2415781700756879 a001 267914296/64079*103682^(3/4) 2415781700765358 a001 86267571272/710647*39603^(1/2) 2415781700766243 a001 165580141/64079*103682^(19/24) 2415781700768098 a001 165580141/24476*24476^(17/21) 2415781700769444 a001 75283811239/620166*39603^(1/2) 2415781700770040 a001 591286729879/4870847*39603^(1/2) 2415781700770127 a001 516002918640/4250681*39603^(1/2) 2415781700770140 a001 4052739537881/33385282*39603^(1/2) 2415781700770142 a001 3536736619241/29134601*39603^(1/2) 2415781700770143 a001 6557470319842/54018521*39603^(1/2) 2415781700770148 a001 2504730781961/20633239*39603^(1/2) 2415781700770181 a001 956722026041/7881196*39603^(1/2) 2415781700770409 a001 365435296162/3010349*39603^(1/2) 2415781700771969 a001 139583862445/1149851*39603^(1/2) 2415781700775606 a001 102334155/64079*103682^(5/6) 2415781700782665 a001 53316291173/439204*39603^(1/2) 2415781700784970 a001 63245986/64079*103682^(7/8) 2415781700785966 a001 32951280099/167761*39603^(5/11) 2415781700794333 a001 39088169/64079*103682^(11/12) 2415781700798375 a001 365435296162/64079*39603^(3/22) 2415781700803698 a001 24157817/64079*103682^(23/24) 2415781700807368 a001 20365011074/271443*39603^(6/11) 2415781700813060 a001 1120149659033/46368 2415781700825469 a001 1836311903/103682*39603^(15/22) 2415781700831002 a001 956722026041/103682*15127^(1/10) 2415781700835371 a001 53316291173/710647*39603^(6/11) 2415781700839457 a001 139583862445/1860498*39603^(6/11) 2415781700840053 a001 365435296162/4870847*39603^(6/11) 2415781700840140 a001 956722026041/12752043*39603^(6/11) 2415781700840153 a001 2504730781961/33385282*39603^(6/11) 2415781700840155 a001 6557470319842/87403803*39603^(6/11) 2415781700840155 a001 10610209857723/141422324*39603^(6/11) 2415781700840156 a001 4052739537881/54018521*39603^(6/11) 2415781700840161 a001 140728068720/1875749*39603^(6/11) 2415781700840194 a001 591286729879/7881196*39603^(6/11) 2415781700840422 a001 225851433717/3010349*39603^(6/11) 2415781700841982 a001 86267571272/1149851*39603^(6/11) 2415781700852678 a001 32951280099/439204*39603^(6/11) 2415781700855979 a001 20365011074/167761*39603^(1/2) 2415781700868388 a001 225851433717/64079*39603^(2/11) 2415781700877381 a001 12586269025/271443*39603^(13/22) 2415781700895482 a001 567451585/51841*39603^(8/11) 2415781700905384 a001 32951280099/710647*39603^(13/22) 2415781700909470 a001 43133785636/930249*39603^(13/22) 2415781700910066 a001 225851433717/4870847*39603^(13/22) 2415781700910153 a001 591286729879/12752043*39603^(13/22) 2415781700910166 a001 774004377960/16692641*39603^(13/22) 2415781700910168 a001 4052739537881/87403803*39603^(13/22) 2415781700910168 a001 225749145909/4868641*39603^(13/22) 2415781700910168 a001 3278735159921/70711162*39603^(13/22) 2415781700910169 a001 2504730781961/54018521*39603^(13/22) 2415781700910174 a001 956722026041/20633239*39603^(13/22) 2415781700910207 a001 182717648081/3940598*39603^(13/22) 2415781700910435 a001 139583862445/3010349*39603^(13/22) 2415781700911995 a001 53316291173/1149851*39603^(13/22) 2415781700922691 a001 10182505537/219602*39603^(13/22) 2415781700925992 a001 75025*39603^(6/11) 2415781700938401 a001 139583862445/64079*39603^(5/22) 2415781700947394 a001 7778742049/271443*39603^(7/11) 2415781700960123 a001 10946*24476^(16/21) 2415781700965495 a001 701408733/103682*39603^(17/22) 2415781700975397 a001 20365011074/710647*39603^(7/11) 2415781700979483 a001 53316291173/1860498*39603^(7/11) 2415781700980079 a001 139583862445/4870847*39603^(7/11) 2415781700980166 a001 365435296162/12752043*39603^(7/11) 2415781700980179 a001 956722026041/33385282*39603^(7/11) 2415781700980181 a001 2504730781961/87403803*39603^(7/11) 2415781700980181 a001 6557470319842/228826127*39603^(7/11) 2415781700980181 a001 10610209857723/370248451*39603^(7/11) 2415781700980181 a001 4052739537881/141422324*39603^(7/11) 2415781700980182 a001 1548008755920/54018521*39603^(7/11) 2415781700980187 a001 591286729879/20633239*39603^(7/11) 2415781700980220 a001 225851433717/7881196*39603^(7/11) 2415781700980448 a001 86267571272/3010349*39603^(7/11) 2415781700982008 a001 32951280099/1149851*39603^(7/11) 2415781700992704 a001 12586269025/439204*39603^(7/11) 2415781700996005 a001 7778742049/167761*39603^(13/22) 2415781701008414 a001 86267571272/64079*39603^(3/11) 2415781701017407 a001 1602508992/90481*39603^(15/22) 2415781701022940 a001 2504730781961/271443*15127^(1/10) 2415781701035508 a001 433494437/103682*39603^(9/11) 2415781701045410 a001 12586269025/710647*39603^(15/22) 2415781701049496 a001 10983760033/620166*39603^(15/22) 2415781701050092 a001 86267571272/4870847*39603^(15/22) 2415781701050179 a001 75283811239/4250681*39603^(15/22) 2415781701050192 a001 591286729879/33385282*39603^(15/22) 2415781701050194 a001 516002918640/29134601*39603^(15/22) 2415781701050194 a001 4052739537881/228826127*39603^(15/22) 2415781701050194 a001 3536736619241/199691526*39603^(15/22) 2415781701050194 a001 6557470319842/370248451*39603^(15/22) 2415781701050194 a001 2504730781961/141422324*39603^(15/22) 2415781701050195 a001 956722026041/54018521*39603^(15/22) 2415781701050200 a001 365435296162/20633239*39603^(15/22) 2415781701050233 a001 139583862445/7881196*39603^(15/22) 2415781701050461 a001 53316291173/3010349*39603^(15/22) 2415781701050943 a001 6557470319842/710647*15127^(1/10) 2415781701052021 a001 20365011074/1149851*39603^(15/22) 2415781701057554 a001 10610209857723/1149851*15127^(1/10) 2415781701062718 a001 7778742049/439204*39603^(15/22) 2415781701066018 a001 4807526976/167761*39603^(7/11) 2415781701068250 a001 4052739537881/439204*15127^(1/10) 2415781701078427 a001 53316291173/64079*39603^(7/22) 2415781701087420 a001 2971215073/271443*39603^(8/11) 2415781701099032 a001 86267571272/39603*15127^(1/4) 2415781701105521 a001 133957148/51841*39603^(19/22) 2415781701115424 a001 7778742049/710647*39603^(8/11) 2415781701116200 a001 956722026041/64079*15127^(1/20) 2415781701119509 a001 10182505537/930249*39603^(8/11) 2415781701120105 a001 53316291173/4870847*39603^(8/11) 2415781701120192 a001 139583862445/12752043*39603^(8/11) 2415781701120205 a001 182717648081/16692641*39603^(8/11) 2415781701120207 a001 956722026041/87403803*39603^(8/11) 2415781701120207 a001 2504730781961/228826127*39603^(8/11) 2415781701120207 a001 3278735159921/299537289*39603^(8/11) 2415781701120207 a001 10610209857723/969323029*39603^(8/11) 2415781701120207 a001 4052739537881/370248451*39603^(8/11) 2415781701120207 a001 387002188980/35355581*39603^(8/11) 2415781701120208 a001 591286729879/54018521*39603^(8/11) 2415781701120213 a001 7787980473/711491*39603^(8/11) 2415781701120246 a001 21566892818/1970299*39603^(8/11) 2415781701120474 a001 32951280099/3010349*39603^(8/11) 2415781701122034 a001 12586269025/1149851*39603^(8/11) 2415781701123119 a001 7787980473/844*9349^(2/19) 2415781701132731 a001 1201881744/109801*39603^(8/11) 2415781701136031 a001 2971215073/167761*39603^(15/22) 2415781701141564 a001 140728068720/15251*15127^(1/10) 2415781701148440 a001 32951280099/64079*39603^(4/11) 2415781701152148 a001 433494437/24476*24476^(5/7) 2415781701157433 a001 1836311903/271443*39603^(17/22) 2415781701175534 a001 165580141/103682*39603^(10/11) 2415781701176673 a001 28657/64079*(1/2+1/2*5^(1/2))^37 2415781701185437 a001 686789568/101521*39603^(17/22) 2415781701189522 a001 12586269025/1860498*39603^(17/22) 2415781701190118 a001 32951280099/4870847*39603^(17/22) 2415781701190205 a001 86267571272/12752043*39603^(17/22) 2415781701190218 a001 32264490531/4769326*39603^(17/22) 2415781701190220 a001 591286729879/87403803*39603^(17/22) 2415781701190220 a001 1548008755920/228826127*39603^(17/22) 2415781701190220 a001 4052739537881/599074578*39603^(17/22) 2415781701190220 a001 1515744265389/224056801*39603^(17/22) 2415781701190220 a001 6557470319842/969323029*39603^(17/22) 2415781701190220 a001 2504730781961/370248451*39603^(17/22) 2415781701190220 a001 956722026041/141422324*39603^(17/22) 2415781701190221 a001 365435296162/54018521*39603^(17/22) 2415781701190226 a001 139583862445/20633239*39603^(17/22) 2415781701190259 a001 53316291173/7881196*39603^(17/22) 2415781701190487 a001 20365011074/3010349*39603^(17/22) 2415781701192047 a001 7778742049/1149851*39603^(17/22) 2415781701202744 a001 2971215073/439204*39603^(17/22) 2415781701206044 a001 1836311903/167761*39603^(8/11) 2415781701218453 a001 20365011074/64079*39603^(9/22) 2415781701227446 a001 1134903170/271443*39603^(9/11) 2415781701245547 a001 102334155/103682*39603^(21/22) 2415781701255450 a001 2971215073/710647*39603^(9/11) 2415781701259535 a001 7778742049/1860498*39603^(9/11) 2415781701260131 a001 20365011074/4870847*39603^(9/11) 2415781701260218 a001 53316291173/12752043*39603^(9/11) 2415781701260231 a001 139583862445/33385282*39603^(9/11) 2415781701260233 a001 365435296162/87403803*39603^(9/11) 2415781701260233 a001 956722026041/228826127*39603^(9/11) 2415781701260233 a001 2504730781961/599074578*39603^(9/11) 2415781701260233 a001 6557470319842/1568397607*39603^(9/11) 2415781701260233 a001 10610209857723/2537720636*39603^(9/11) 2415781701260233 a001 4052739537881/969323029*39603^(9/11) 2415781701260233 a001 1548008755920/370248451*39603^(9/11) 2415781701260233 a001 591286729879/141422324*39603^(9/11) 2415781701260234 a001 225851433717/54018521*39603^(9/11) 2415781701260239 a001 86267571272/20633239*39603^(9/11) 2415781701260272 a001 32951280099/7881196*39603^(9/11) 2415781701260500 a001 12586269025/3010349*39603^(9/11) 2415781701262060 a001 4807526976/1149851*39603^(9/11) 2415781701272757 a001 1836311903/439204*39603^(9/11) 2415781701276057 a001 1134903170/167761*39603^(17/22) 2415781701288466 a001 12586269025/64079*39603^(5/11) 2415781701297459 a001 233802911/90481*39603^(19/22) 2415781701315566 a001 427859097120/17711 2415781701325463 a001 1836311903/710647*39603^(19/22) 2415781701329548 a001 267084832/103361*39603^(19/22) 2415781701330144 a001 12586269025/4870847*39603^(19/22) 2415781701330231 a001 10983760033/4250681*39603^(19/22) 2415781701330244 a001 43133785636/16692641*39603^(19/22) 2415781701330246 a001 75283811239/29134601*39603^(19/22) 2415781701330246 a001 591286729879/228826127*39603^(19/22) 2415781701330246 a001 86000486440/33281921*39603^(19/22) 2415781701330246 a001 4052739537881/1568397607*39603^(19/22) 2415781701330246 a001 3536736619241/1368706081*39603^(19/22) 2415781701330246 a001 3278735159921/1268860318*39603^(19/22) 2415781701330246 a001 2504730781961/969323029*39603^(19/22) 2415781701330246 a001 956722026041/370248451*39603^(19/22) 2415781701330246 a001 182717648081/70711162*39603^(19/22) 2415781701330247 a001 139583862445/54018521*39603^(19/22) 2415781701330252 a001 53316291173/20633239*39603^(19/22) 2415781701330285 a001 10182505537/3940598*39603^(19/22) 2415781701330513 a001 7778742049/3010349*39603^(19/22) 2415781701332073 a001 2971215073/1149851*39603^(19/22) 2415781701342770 a001 567451585/219602*39603^(19/22) 2415781701344173 a001 701408733/24476*24476^(2/3) 2415781701346070 a001 701408733/167761*39603^(9/11) 2415781701358479 a001 7778742049/64079*39603^(1/2) 2415781701358866 a001 591286729879/103682*15127^(3/20) 2415781701367472 a001 433494437/271443*39603^(10/11) 2415781701395476 a001 1134903170/710647*39603^(10/11) 2415781701399561 a001 2971215073/1860498*39603^(10/11) 2415781701400157 a001 7778742049/4870847*39603^(10/11) 2415781701400244 a001 20365011074/12752043*39603^(10/11) 2415781701400257 a001 53316291173/33385282*39603^(10/11) 2415781701400259 a001 139583862445/87403803*39603^(10/11) 2415781701400259 a001 365435296162/228826127*39603^(10/11) 2415781701400259 a001 956722026041/599074578*39603^(10/11) 2415781701400259 a001 2504730781961/1568397607*39603^(10/11) 2415781701400259 a001 6557470319842/4106118243*39603^(10/11) 2415781701400259 a001 10610209857723/6643838879*39603^(10/11) 2415781701400259 a001 4052739537881/2537720636*39603^(10/11) 2415781701400259 a001 1548008755920/969323029*39603^(10/11) 2415781701400259 a001 591286729879/370248451*39603^(10/11) 2415781701400259 a001 225851433717/141422324*39603^(10/11) 2415781701400260 a001 86267571272/54018521*39603^(10/11) 2415781701400265 a001 32951280099/20633239*39603^(10/11) 2415781701400298 a001 12586269025/7881196*39603^(10/11) 2415781701400526 a001 4807526976/3010349*39603^(10/11) 2415781701402086 a001 1836311903/1149851*39603^(10/11) 2415781701412783 a001 701408733/439204*39603^(10/11) 2415781701416083 a001 433494437/167761*39603^(19/22) 2415781701428492 a001 4807526976/64079*39603^(6/11) 2415781701437485 a001 267914296/271443*39603^(21/22) 2415781701454699 a001 4181*9349^(18/19) 2415781701465489 a001 701408733/710647*39603^(21/22) 2415781701469344 r005 Im(z^2+c),c=-109/94+14/57*I,n=13 2415781701469574 a001 1836311903/1860498*39603^(21/22) 2415781701470170 a001 4807526976/4870847*39603^(21/22) 2415781701470257 a001 12586269025/12752043*39603^(21/22) 2415781701470270 a001 32951280099/33385282*39603^(21/22) 2415781701470272 a001 86267571272/87403803*39603^(21/22) 2415781701470272 a001 225851433717/228826127*39603^(21/22) 2415781701470272 a001 591286729879/599074578*39603^(21/22) 2415781701470272 a001 1548008755920/1568397607*39603^(21/22) 2415781701470272 a001 4052739537881/4106118243*39603^(21/22) 2415781701470272 a001 4807525989/4870846*39603^(21/22) 2415781701470272 a001 6557470319842/6643838879*39603^(21/22) 2415781701470272 a001 2504730781961/2537720636*39603^(21/22) 2415781701470272 a001 956722026041/969323029*39603^(21/22) 2415781701470272 a001 365435296162/370248451*39603^(21/22) 2415781701470272 a001 139583862445/141422324*39603^(21/22) 2415781701470273 a001 53316291173/54018521*39603^(21/22) 2415781701470278 a001 20365011074/20633239*39603^(21/22) 2415781701470311 a001 7778742049/7881196*39603^(21/22) 2415781701470539 a001 2971215073/3010349*39603^(21/22) 2415781701472099 a001 1134903170/1149851*39603^(21/22) 2415781701482796 a001 433494437/439204*39603^(21/22) 2415781701486096 a001 267914296/167761*39603^(10/11) 2415781701498505 a001 2971215073/64079*39603^(13/22) 2415781701502831 a001 86267571272/15127*5778^(1/6) 2415781701507537 a001 4807405586/199 2415781701535768 a001 427859097159/17711 2415781701536198 a001 567451585/12238*24476^(13/21) 2415781701540285 a001 2139295485799/17711*8^(1/3) 2415781701540285 a001 2/17711*(1/2+1/2*5^(1/2))^59 2415781701541414 a001 427859097160/17711 2415781701550804 a001 516002918640/90481*15127^(3/20) 2415781701552707 a001 427859097162/17711 2415781701556109 a001 165580141/167761*39603^(21/22) 2415781701568518 a001 28657*39603^(7/11) 2415781701578807 a001 4052739537881/710647*15127^(3/20) 2415781701582893 a001 3536736619241/620166*15127^(3/20) 2415781701585418 a001 6557470319842/1149851*15127^(3/20) 2415781701596114 a001 2504730781961/439204*15127^(3/20) 2415781701626108 a001 427859097175/17711 2415781701626896 a001 53316291173/39603*15127^(3/10) 2415781701638531 a001 1134903170/64079*39603^(15/22) 2415781701644064 a001 591286729879/64079*15127^(1/10) 2415781701669428 a001 956722026041/167761*15127^(3/20) 2415781701708544 a001 701408733/64079*39603^(8/11) 2415781701728223 a001 1836311903/24476*24476^(4/7) 2415781701778557 a001 433494437/64079*39603^(17/22) 2415781701848570 a001 267914296/64079*39603^(9/11) 2415781701886730 a001 182717648081/51841*15127^(1/5) 2415781701918583 a001 165580141/64079*39603^(19/22) 2415781701920247 a001 2971215073/24476*24476^(11/21) 2415781701988596 a001 102334155/64079*39603^(10/11) 2415781702058609 a001 63245986/64079*39603^(21/22) 2415781702078668 a001 956722026041/271443*15127^(1/5) 2415781702106671 a001 2504730781961/710647*15127^(1/5) 2415781702110757 a001 3278735159921/930249*15127^(1/5) 2415781702111721 a001 10610209857723/3010349*15127^(1/5) 2415781702112272 a001 1201881744/6119*24476^(10/21) 2415781702113282 a001 4052739537881/1149851*15127^(1/5) 2415781702123978 a001 387002188980/109801*15127^(1/5) 2415781702128620 a001 427859097264/17711 2415781702154760 a001 10983760033/13201*15127^(7/20) 2415781702171928 a001 365435296162/64079*15127^(3/20) 2415781702197292 a001 591286729879/167761*15127^(1/5) 2415781702304297 a001 7778742049/24476*24476^(3/7) 2415781702414594 a001 225851433717/103682*15127^(1/4) 2415781702479750 a001 591286729879/39603*5778^(1/18) 2415781702492235 a001 17711/24476*141422324^(12/13) 2415781702492235 a001 10946/39603*817138163596^(2/3) 2415781702492235 a001 10946/39603*(1/2+1/2*5^(1/2))^38 2415781702492235 a001 10946/39603*10749957122^(19/24) 2415781702492235 a001 10946/39603*4106118243^(19/23) 2415781702492235 a001 10946/39603*1568397607^(19/22) 2415781702492235 a001 17711/24476*2537720636^(4/5) 2415781702492235 a001 17711/24476*45537549124^(12/17) 2415781702492235 a001 17711/24476*14662949395604^(4/7) 2415781702492235 a001 17711/24476*(1/2+1/2*5^(1/2))^36 2415781702492235 a001 17711/24476*505019158607^(9/14) 2415781702492235 a001 17711/24476*192900153618^(2/3) 2415781702492235 a001 17711/24476*73681302247^(9/13) 2415781702492235 a001 17711/24476*10749957122^(3/4) 2415781702492235 a001 17711/24476*4106118243^(18/23) 2415781702492235 a001 10946/39603*599074578^(19/21) 2415781702492235 a001 17711/24476*1568397607^(9/11) 2415781702492235 a001 17711/24476*599074578^(6/7) 2415781702492235 a001 10946/39603*228826127^(19/20) 2415781702492235 a001 17711/24476*228826127^(9/10) 2415781702492235 a001 17711/24476*87403803^(18/19) 2415781702496322 a001 12586269025/24476*24476^(8/21) 2415781702577820 a001 182717648081/12238*9349^(1/19) 2415781702606532 a001 591286729879/271443*15127^(1/4) 2415781702634535 a001 1548008755920/710647*15127^(1/4) 2415781702638621 a001 4052739537881/1860498*15127^(1/4) 2415781702639217 a001 2178309*15127^(1/4) 2415781702639585 a001 6557470319842/3010349*15127^(1/4) 2415781702641146 a001 2504730781961/1149851*15127^(1/4) 2415781702651842 a001 956722026041/439204*15127^(1/4) 2415781702682624 a001 20365011074/39603*15127^(2/5) 2415781702688347 a001 10182505537/12238*24476^(1/3) 2415781702699792 a001 225851433717/64079*15127^(1/5) 2415781702725156 a001 365435296162/167761*15127^(1/4) 2415781702880372 a001 32951280099/24476*24476^(2/7) 2415781702909401 a001 63245986/9349*9349^(17/19) 2415781702942458 a001 139583862445/103682*15127^(3/10) 2415781703072397 a001 53316291173/24476*24476^(5/21) 2415781703134396 a001 365435296162/271443*15127^(3/10) 2415781703162399 a001 956722026041/710647*15127^(3/10) 2415781703166485 a001 2504730781961/1860498*15127^(3/10) 2415781703167081 a001 6557470319842/4870847*15127^(3/10) 2415781703167222 a001 10610209857723/7881196*15127^(3/10) 2415781703167450 a001 1346269*15127^(3/10) 2415781703169010 a001 1548008755920/1149851*15127^(3/10) 2415781703179706 a001 591286729879/439204*15127^(3/10) 2415781703210489 a001 12586269025/39603*15127^(9/20) 2415781703227656 a001 139583862445/64079*15127^(1/4) 2415781703253020 a001 225851433717/167761*15127^(3/10) 2415781703264422 a001 21566892818/6119*24476^(4/21) 2415781703444184 a001 692290562756/28657 2415781703456447 a001 139583862445/24476*24476^(1/7) 2415781703469762 a001 3732588/6119*64079^(22/23) 2415781703470322 a001 43133785636/51841*15127^(7/20) 2415781703495345 a001 24157817/24476*64079^(21/23) 2415781703520923 a001 39088169/24476*64079^(20/23) 2415781703546504 a001 31622993/12238*64079^(19/23) 2415781703572083 a001 102334155/24476*64079^(18/23) 2415781703597663 a001 165580141/24476*64079^(17/23) 2415781703623243 a001 10946*64079^(16/23) 2415781703648471 a001 7787980473/844*24476^(2/21) 2415781703648823 a001 433494437/24476*64079^(15/23) 2415781703662260 a001 75283811239/90481*15127^(7/20) 2415781703674403 a001 701408733/24476*64079^(14/23) 2415781703690263 a001 591286729879/710647*15127^(7/20) 2415781703694349 a001 832040*15127^(7/20) 2415781703694945 a001 4052739537881/4870847*15127^(7/20) 2415781703695032 a001 3536736619241/4250681*15127^(7/20) 2415781703695086 a001 3278735159921/3940598*15127^(7/20) 2415781703695314 a001 2504730781961/3010349*15127^(7/20) 2415781703696874 a001 956722026041/1149851*15127^(7/20) 2415781703699983 a001 567451585/12238*64079^(13/23) 2415781703707570 a001 182717648081/219602*15127^(7/20) 2415781703725563 a001 1836311903/24476*64079^(12/23) 2415781703738353 a001 7778742049/39603*15127^(1/2) 2415781703751143 a001 2971215073/24476*64079^(11/23) 2415781703755520 a001 86267571272/64079*15127^(3/10) 2415781703776722 a001 1201881744/6119*64079^(10/23) 2415781703780884 a001 139583862445/167761*15127^(7/20) 2415781703795312 a001 774004377960/51841*5778^(1/18) 2415781703802302 a001 7778742049/24476*64079^(9/23) 2415781703807796 a001 5473/51841*2537720636^(8/9) 2415781703807796 a001 5473/51841*312119004989^(8/11) 2415781703807796 a001 5473/51841*(1/2+1/2*5^(1/2))^40 2415781703807796 a001 5473/51841*23725150497407^(5/8) 2415781703807796 a001 5473/51841*73681302247^(10/13) 2415781703807796 a001 5473/51841*28143753123^(4/5) 2415781703807796 a001 5473/51841*10749957122^(5/6) 2415781703807796 a001 5473/51841*4106118243^(20/23) 2415781703807796 a001 5473/51841*1568397607^(10/11) 2415781703807796 a001 5473/51841*599074578^(20/21) 2415781703807796 a001 11592/6119*45537549124^(2/3) 2415781703807796 a001 11592/6119*(1/2+1/2*5^(1/2))^34 2415781703807796 a001 11592/6119*10749957122^(17/24) 2415781703807796 a001 11592/6119*4106118243^(17/23) 2415781703807796 a001 11592/6119*1568397607^(17/22) 2415781703807796 a001 11592/6119*599074578^(17/21) 2415781703807796 a001 11592/6119*228826127^(17/20) 2415781703807797 a001 11592/6119*87403803^(17/19) 2415781703807798 a001 11592/6119*33385282^(17/18) 2415781703827882 a001 12586269025/24476*64079^(8/23) 2415781703840496 a001 182717648081/12238*24476^(1/21) 2415781703853462 a001 10182505537/12238*64079^(7/23) 2415781703879042 a001 32951280099/24476*64079^(6/23) 2415781703904622 a001 53316291173/24476*64079^(5/23) 2415781703930202 a001 21566892818/6119*64079^(4/23) 2415781703946684 a001 1812440223386/75025 2415781703955782 a001 139583862445/24476*64079^(3/23) 2415781703963851 a001 39088169/24476*167761^(4/5) 2415781703981019 a001 433494437/24476*167761^(3/5) 2415781703981361 a001 7787980473/844*64079^(2/23) 2415781703987249 a001 4052739537881/271443*5778^(1/18) 2415781703998186 a001 53316291173/103682*15127^(2/5) 2415781703998186 a001 1201881744/6119*167761^(2/5) 2415781703999734 a001 10946/271443*2537720636^(14/15) 2415781703999734 a001 10946/271443*17393796001^(6/7) 2415781703999734 a001 10946/271443*45537549124^(14/17) 2415781703999734 a001 10946/271443*817138163596^(14/19) 2415781703999734 a001 10946/271443*14662949395604^(2/3) 2415781703999734 a001 10946/271443*(1/2+1/2*5^(1/2))^42 2415781703999734 a001 10946/271443*192900153618^(7/9) 2415781703999734 a001 10946/271443*10749957122^(7/8) 2415781703999734 a001 10946/271443*4106118243^(21/23) 2415781703999734 a001 10946/271443*1568397607^(21/22) 2415781703999734 a001 121393/24476*(1/2+1/2*5^(1/2))^32 2415781703999734 a001 121393/24476*23725150497407^(1/2) 2415781703999734 a001 121393/24476*505019158607^(4/7) 2415781703999734 a001 121393/24476*73681302247^(8/13) 2415781703999734 a001 121393/24476*10749957122^(2/3) 2415781703999734 a001 121393/24476*4106118243^(16/23) 2415781703999734 a001 121393/24476*1568397607^(8/11) 2415781703999734 a001 121393/24476*599074578^(16/21) 2415781703999734 a001 121393/24476*228826127^(4/5) 2415781703999735 a001 121393/24476*87403803^(16/19) 2415781703999736 a001 121393/24476*33385282^(8/9) 2415781703999748 a001 121393/24476*12752043^(16/17) 2415781704006941 a001 182717648081/12238*64079^(1/23) 2415781704015253 a001 1515744265389/101521*5778^(1/18) 2415781704015354 a001 53316291173/24476*167761^(1/5) 2415781704019998 a001 2372515053701/98209 2415781704021374 a001 5702887/24476*439204^(8/9) 2415781704022781 a001 24157817/24476*439204^(7/9) 2415781704024172 a001 102334155/24476*439204^(2/3) 2415781704025564 a001 433494437/24476*439204^(5/9) 2415781704026955 a001 1836311903/24476*439204^(4/9) 2415781704027702 a001 10959/844*7881196^(10/11) 2415781704027733 a001 10959/844*20633239^(6/7) 2415781704027738 a001 10959/844*141422324^(10/13) 2415781704027738 a001 10946/710647*312119004989^(4/5) 2415781704027738 a001 10946/710647*(1/2+1/2*5^(1/2))^44 2415781704027738 a001 10946/710647*23725150497407^(11/16) 2415781704027738 a001 10946/710647*73681302247^(11/13) 2415781704027738 a001 10946/710647*10749957122^(11/12) 2415781704027738 a001 10946/710647*4106118243^(22/23) 2415781704027738 a001 10959/844*2537720636^(2/3) 2415781704027738 a001 10959/844*45537549124^(10/17) 2415781704027738 a001 10959/844*312119004989^(6/11) 2415781704027738 a001 10959/844*14662949395604^(10/21) 2415781704027738 a001 10959/844*(1/2+1/2*5^(1/2))^30 2415781704027738 a001 10959/844*192900153618^(5/9) 2415781704027738 a001 10959/844*28143753123^(3/5) 2415781704027738 a001 10959/844*10749957122^(5/8) 2415781704027738 a001 10959/844*4106118243^(15/23) 2415781704027738 a001 10959/844*1568397607^(15/22) 2415781704027738 a001 10959/844*599074578^(5/7) 2415781704027738 a001 10959/844*228826127^(3/4) 2415781704027738 a001 10959/844*87403803^(15/19) 2415781704027739 a001 10959/844*33385282^(5/6) 2415781704027751 a001 10959/844*12752043^(15/17) 2415781704027833 a001 10959/844*4870847^(15/16) 2415781704028347 a001 7778742049/24476*439204^(1/3) 2415781704029738 a001 32951280099/24476*439204^(2/9) 2415781704030694 a001 12422650098820/514229 2415781704031130 a001 139583862445/24476*439204^(1/9) 2415781704031819 a001 208010/6119*20633239^(4/5) 2415781704031823 a001 5473/930249*(1/2+1/2*5^(1/2))^46 2415781704031823 a001 5473/930249*10749957122^(23/24) 2415781704031823 a001 208010/6119*17393796001^(4/7) 2415781704031823 a001 208010/6119*14662949395604^(4/9) 2415781704031823 a001 208010/6119*(1/2+1/2*5^(1/2))^28 2415781704031823 a001 208010/6119*73681302247^(7/13) 2415781704031823 a001 208010/6119*10749957122^(7/12) 2415781704031823 a001 208010/6119*4106118243^(14/23) 2415781704031823 a001 208010/6119*1568397607^(7/11) 2415781704031823 a001 208010/6119*599074578^(2/3) 2415781704031823 a001 208010/6119*228826127^(7/10) 2415781704031823 a001 208010/6119*87403803^(14/19) 2415781704031825 a001 208010/6119*33385282^(7/9) 2415781704031835 a001 208010/6119*12752043^(14/17) 2415781704031912 a001 208010/6119*4870847^(7/8) 2415781704032255 a001 32522920189058/1346269 2415781704032419 a001 2178309/24476*141422324^(2/3) 2415781704032419 a001 10946/4870847*45537549124^(16/17) 2415781704032419 a001 10946/4870847*14662949395604^(16/21) 2415781704032419 a001 10946/4870847*(1/2+1/2*5^(1/2))^48 2415781704032419 a001 10946/4870847*192900153618^(8/9) 2415781704032419 a001 10946/4870847*73681302247^(12/13) 2415781704032419 a001 2178309/24476*(1/2+1/2*5^(1/2))^26 2415781704032419 a001 2178309/24476*73681302247^(1/2) 2415781704032419 a001 2178309/24476*10749957122^(13/24) 2415781704032419 a001 2178309/24476*4106118243^(13/23) 2415781704032419 a001 2178309/24476*1568397607^(13/22) 2415781704032419 a001 2178309/24476*599074578^(13/21) 2415781704032419 a001 2178309/24476*228826127^(13/20) 2415781704032420 a001 2178309/24476*87403803^(13/19) 2415781704032421 a001 2178309/24476*33385282^(13/18) 2415781704032431 a001 2178309/24476*12752043^(13/17) 2415781704032475 a001 208010/6119*1860498^(14/15) 2415781704032478 a001 5702887/24476*7881196^(8/11) 2415781704032482 a001 42573055234177/1762289 2415781704032493 a001 3732588/6119*7881196^(2/3) 2415781704032497 a001 24157817/24476*7881196^(7/11) 2415781704032500 a001 102334155/24476*7881196^(6/11) 2415781704032502 a001 2178309/24476*4870847^(13/16) 2415781704032503 a001 433494437/24476*7881196^(5/11) 2415781704032506 a001 5702887/24476*141422324^(8/13) 2415781704032506 a001 10946/12752043*312119004989^(10/11) 2415781704032506 a001 10946/12752043*(1/2+1/2*5^(1/2))^50 2415781704032506 a001 10946/12752043*3461452808002^(5/6) 2415781704032506 a001 5702887/24476*2537720636^(8/15) 2415781704032506 a001 5702887/24476*45537549124^(8/17) 2415781704032506 a001 5702887/24476*14662949395604^(8/21) 2415781704032506 a001 5702887/24476*(1/2+1/2*5^(1/2))^24 2415781704032506 a001 5702887/24476*192900153618^(4/9) 2415781704032506 a001 5702887/24476*73681302247^(6/13) 2415781704032506 a001 5702887/24476*10749957122^(1/2) 2415781704032506 a001 5702887/24476*4106118243^(12/23) 2415781704032506 a001 5702887/24476*1568397607^(6/11) 2415781704032506 a001 5702887/24476*599074578^(4/7) 2415781704032506 a001 5702887/24476*228826127^(3/5) 2415781704032506 a001 5702887/24476*87403803^(12/19) 2415781704032507 a001 1836311903/24476*7881196^(4/11) 2415781704032508 a001 5702887/24476*33385282^(2/3) 2415781704032508 a001 2971215073/24476*7881196^(1/3) 2415781704032511 a001 7778742049/24476*7881196^(3/11) 2415781704032514 a001 32951280099/24476*7881196^(2/11) 2415781704032515 a001 17147339324308/709805 2415781704032517 a001 5702887/24476*12752043^(12/17) 2415781704032518 a001 39088169/24476*20633239^(4/7) 2415781704032518 a001 139583862445/24476*7881196^(1/11) 2415781704032519 a001 24157817/24476*20633239^(3/5) 2415781704032519 a001 433494437/24476*20633239^(3/7) 2415781704032519 a001 701408733/24476*20633239^(2/5) 2415781704032519 a001 5473/16692641*(1/2+1/2*5^(1/2))^52 2415781704032519 a001 5473/16692641*23725150497407^(13/16) 2415781704032519 a001 5473/16692641*505019158607^(13/14) 2415781704032519 a001 3732588/6119*312119004989^(2/5) 2415781704032519 a001 3732588/6119*(1/2+1/2*5^(1/2))^22 2415781704032519 a001 3732588/6119*10749957122^(11/24) 2415781704032519 a001 3732588/6119*4106118243^(11/23) 2415781704032519 a001 3732588/6119*1568397607^(1/2) 2415781704032519 a001 3732588/6119*599074578^(11/21) 2415781704032519 a001 3732588/6119*228826127^(11/20) 2415781704032519 a001 3732588/6119*87403803^(11/19) 2415781704032520 a001 1201881744/6119*20633239^(2/7) 2415781704032520 a001 10182505537/12238*20633239^(1/5) 2415781704032520 a001 3732588/6119*33385282^(11/18) 2415781704032520 a001 583600123179658/24157817 2415781704032520 a001 53316291173/24476*20633239^(1/7) 2415781704032521 a001 10946/87403803*14662949395604^(6/7) 2415781704032521 a001 39088169/24476*2537720636^(4/9) 2415781704032521 a001 39088169/24476*(1/2+1/2*5^(1/2))^20 2415781704032521 a001 39088169/24476*23725150497407^(5/16) 2415781704032521 a001 39088169/24476*505019158607^(5/14) 2415781704032521 a001 39088169/24476*73681302247^(5/13) 2415781704032521 a001 39088169/24476*28143753123^(2/5) 2415781704032521 a001 39088169/24476*10749957122^(5/12) 2415781704032521 a001 39088169/24476*4106118243^(10/23) 2415781704032521 a001 39088169/24476*1568397607^(5/11) 2415781704032521 a001 39088169/24476*599074578^(10/21) 2415781704032521 a001 39088169/24476*228826127^(1/2) 2415781704032521 a001 39088169/24476*87403803^(10/19) 2415781704032521 a001 763942479161485/31622993 2415781704032521 a001 102334155/24476*141422324^(6/13) 2415781704032521 a001 10946/228826127*14662949395604^(8/9) 2415781704032521 a001 102334155/24476*2537720636^(2/5) 2415781704032521 a001 102334155/24476*45537549124^(6/17) 2415781704032521 a001 102334155/24476*14662949395604^(2/7) 2415781704032521 a001 102334155/24476*(1/2+1/2*5^(1/2))^18 2415781704032521 a001 102334155/24476*192900153618^(1/3) 2415781704032521 a001 102334155/24476*10749957122^(3/8) 2415781704032521 a001 102334155/24476*4106118243^(9/23) 2415781704032521 a001 102334155/24476*1568397607^(9/22) 2415781704032521 a001 433494437/24476*141422324^(5/13) 2415781704032521 a001 102334155/24476*599074578^(3/7) 2415781704032521 a001 567451585/12238*141422324^(1/3) 2415781704032521 a001 1836311903/24476*141422324^(4/13) 2415781704032521 a001 7778742049/24476*141422324^(3/13) 2415781704032521 a001 102334155/24476*228826127^(9/20) 2415781704032521 a001 4000054751789252/165580141 2415781704032521 a001 32951280099/24476*141422324^(2/13) 2415781704032521 a001 10472279297044786/433494437 2415781704032521 a001 139583862445/24476*141422324^(1/13) 2415781704032521 a001 10946/1568397607*14662949395604^(20/21) 2415781704032521 a001 13708391569672553/567451585 2415781704032521 a001 71778070120990532/2971215073 2415781704032521 a001 10946*23725150497407^(1/4) 2415781704032521 a001 10946*73681302247^(4/13) 2415781704032521 a001 10946*10749957122^(1/3) 2415781704032521 a001 58834527407617/2435424 2415781704032521 a001 10946*4106118243^(8/23) 2415781704032521 a001 44361286981645426/1836311903 2415781704032521 a001 10946*1568397607^(4/11) 2415781704032521 a001 5648167947433440/233802911 2415781704032521 a001 10946*599074578^(8/21) 2415781704032521 a001 701408733/24476*17393796001^(2/7) 2415781704032521 a001 701408733/24476*14662949395604^(2/9) 2415781704032521 a001 701408733/24476*(1/2+1/2*5^(1/2))^14 2415781704032521 a001 701408733/24476*505019158607^(1/4) 2415781704032521 a001 701408733/24476*10749957122^(7/24) 2415781704032521 a001 701408733/24476*4106118243^(7/23) 2415781704032521 a001 701408733/24476*1568397607^(7/22) 2415781704032521 a001 1836311903/24476*2537720636^(4/15) 2415781704032521 a001 1836311903/24476*45537549124^(4/17) 2415781704032521 a001 1836311903/24476*817138163596^(4/19) 2415781704032521 a001 1836311903/24476*14662949395604^(4/21) 2415781704032521 a001 1836311903/24476*(1/2+1/2*5^(1/2))^12 2415781704032521 a001 1836311903/24476*192900153618^(2/9) 2415781704032521 a001 1836311903/24476*73681302247^(3/13) 2415781704032521 a001 1836311903/24476*10749957122^(1/4) 2415781704032521 a001 1836311903/24476*4106118243^(6/23) 2415781704032521 a001 1201881744/6119*2537720636^(2/9) 2415781704032521 a001 7778742049/24476*2537720636^(1/5) 2415781704032521 a001 32951280099/24476*2537720636^(2/15) 2415781704032521 a001 53316291173/24476*2537720636^(1/9) 2415781704032521 a001 139583862445/24476*2537720636^(1/15) 2415781704032521 a001 1201881744/6119*312119004989^(2/11) 2415781704032521 a001 1201881744/6119*(1/2+1/2*5^(1/2))^10 2415781704032521 a001 1201881744/6119*28143753123^(1/5) 2415781704032521 a001 1201881744/6119*10749957122^(5/24) 2415781704032521 a001 12586269025/24476*(1/2+1/2*5^(1/2))^8 2415781704032521 a001 12586269025/24476*23725150497407^(1/8) 2415781704032521 a001 12586269025/24476*505019158607^(1/7) 2415781704032521 a001 12586269025/24476*73681302247^(2/13) 2415781704032521 a001 32951280099/24476*45537549124^(2/17) 2415781704032521 a001 32951280099/24476*14662949395604^(2/21) 2415781704032521 a001 32951280099/24476*(1/2+1/2*5^(1/2))^6 2415781704032521 a001 21566892818/6119*(1/2+1/2*5^(1/2))^4 2415781704032521 a001 21566892818/6119*23725150497407^(1/16) 2415781704032521 a001 139583862445/24476*45537549124^(1/17) 2415781704032521 a001 21566892818/6119*73681302247^(1/13) 2415781704032521 a006 5^(1/2)*Fibonacci(58)/Lucas(21)/sqrt(5) 2415781704032521 a001 10182505537/12238*17393796001^(1/7) 2415781704032521 a001 139583862445/24476*14662949395604^(1/21) 2415781704032521 a001 139583862445/24476*(1/2+1/2*5^(1/2))^3 2415781704032521 a001 53316291173/24476*312119004989^(1/11) 2415781704032521 a001 53316291173/24476*(1/2+1/2*5^(1/2))^5 2415781704032521 a001 12586269025/24476*10749957122^(1/6) 2415781704032521 a001 53316291173/24476*28143753123^(1/10) 2415781704032521 a001 7787980473/844*10749957122^(1/24) 2415781704032521 a001 10182505537/12238*14662949395604^(1/9) 2415781704032521 a001 10182505537/12238*(1/2+1/2*5^(1/2))^7 2415781704032521 a001 139583862445/24476*10749957122^(1/16) 2415781704032521 a001 21566892818/6119*10749957122^(1/12) 2415781704032521 a001 32951280099/24476*10749957122^(1/8) 2415781704032521 a001 7787980473/844*4106118243^(1/23) 2415781704032521 a001 7778742049/24476*45537549124^(3/17) 2415781704032521 a001 7778742049/24476*14662949395604^(1/7) 2415781704032521 a001 7778742049/24476*(1/2+1/2*5^(1/2))^9 2415781704032521 a001 7778742049/24476*192900153618^(1/6) 2415781704032521 a001 1201881744/6119*4106118243^(5/23) 2415781704032521 a001 7778742049/24476*10749957122^(3/16) 2415781704032521 a001 21566892818/6119*4106118243^(2/23) 2415781704032521 a001 32951280099/24476*4106118243^(3/23) 2415781704032521 a001 12586269025/24476*4106118243^(4/23) 2415781704032521 a001 7787980473/844*1568397607^(1/22) 2415781704032521 a001 2971215073/24476*312119004989^(1/5) 2415781704032521 a001 2971215073/24476*(1/2+1/2*5^(1/2))^11 2415781704032521 a001 21566892818/6119*1568397607^(1/11) 2415781704032521 a001 1836311903/24476*1568397607^(3/11) 2415781704032521 a001 32951280099/24476*1568397607^(3/22) 2415781704032521 a001 12586269025/24476*1568397607^(2/11) 2415781704032521 a001 1201881744/6119*1568397607^(5/22) 2415781704032521 a001 2971215073/24476*1568397607^(1/4) 2415781704032521 a001 7787980473/844*599074578^(1/21) 2415781704032521 a001 567451585/12238*(1/2+1/2*5^(1/2))^13 2415781704032521 a001 567451585/12238*73681302247^(1/4) 2415781704032521 a001 139583862445/24476*599074578^(1/14) 2415781704032521 a001 21566892818/6119*599074578^(2/21) 2415781704032521 a001 32951280099/24476*599074578^(1/7) 2415781704032521 a001 10182505537/12238*599074578^(1/6) 2415781704032521 a001 701408733/24476*599074578^(1/3) 2415781704032521 a001 12586269025/24476*599074578^(4/21) 2415781704032521 a001 7778742049/24476*599074578^(3/14) 2415781704032521 a001 1201881744/6119*599074578^(5/21) 2415781704032521 a001 1836311903/24476*599074578^(2/7) 2415781704032521 a001 7787980473/844*228826127^(1/20) 2415781704032521 a001 433494437/24476*2537720636^(1/3) 2415781704032521 a001 433494437/24476*45537549124^(5/17) 2415781704032521 a001 433494437/24476*312119004989^(3/11) 2415781704032521 a001 433494437/24476*14662949395604^(5/21) 2415781704032521 a001 433494437/24476*(1/2+1/2*5^(1/2))^15 2415781704032521 a001 433494437/24476*192900153618^(5/18) 2415781704032521 a001 433494437/24476*28143753123^(3/10) 2415781704032521 a001 433494437/24476*10749957122^(5/16) 2415781704032521 a001 21566892818/6119*228826127^(1/10) 2415781704032521 a001 433494437/24476*599074578^(5/14) 2415781704032521 a001 53316291173/24476*228826127^(1/8) 2415781704032521 a001 32951280099/24476*228826127^(3/20) 2415781704032521 a001 12586269025/24476*228826127^(1/5) 2415781704032521 a001 10946/370248451*14662949395604^(19/21) 2415781704032521 a001 1201881744/6119*228826127^(1/4) 2415781704032521 a001 10946*228826127^(2/5) 2415781704032521 a001 1836311903/24476*228826127^(3/10) 2415781704032521 a001 701408733/24476*228826127^(7/20) 2415781704032521 a001 7787980473/844*87403803^(1/19) 2415781704032521 a001 165580141/24476*45537549124^(1/3) 2415781704032521 a001 165580141/24476*(1/2+1/2*5^(1/2))^17 2415781704032521 a001 433494437/24476*228826127^(3/8) 2415781704032521 a001 21566892818/6119*87403803^(2/19) 2415781704032521 a001 117722371117442/4873055 2415781704032521 a001 32951280099/24476*87403803^(3/19) 2415781704032521 a001 12586269025/24476*87403803^(4/19) 2415781704032521 a001 1201881744/6119*87403803^(5/19) 2415781704032521 a001 1836311903/24476*87403803^(6/19) 2415781704032521 a001 102334155/24476*87403803^(9/19) 2415781704032521 a001 5473/70711162*3461452808002^(11/12) 2415781704032521 a001 701408733/24476*87403803^(7/19) 2415781704032521 a001 7787980473/844*33385282^(1/18) 2415781704032521 a001 31622993/12238*817138163596^(1/3) 2415781704032521 a001 31622993/12238*(1/2+1/2*5^(1/2))^19 2415781704032521 a001 10946*87403803^(8/19) 2415781704032521 a001 139583862445/24476*33385282^(1/12) 2415781704032521 a001 21566892818/6119*33385282^(1/9) 2415781704032521 a001 31622993/12238*87403803^(1/2) 2415781704032521 a001 944284835143312/39088169 2415781704032522 a001 32951280099/24476*33385282^(1/6) 2415781704032522 a001 12586269025/24476*33385282^(2/9) 2415781704032522 a001 7778742049/24476*33385282^(1/4) 2415781704032522 a001 1201881744/6119*33385282^(5/18) 2415781704032522 a001 1836311903/24476*33385282^(1/3) 2415781704032522 a001 24157817/24476*141422324^(7/13) 2415781704032522 a001 24157817/24476*2537720636^(7/15) 2415781704032522 a001 24157817/24476*17393796001^(3/7) 2415781704032522 a001 24157817/24476*45537549124^(7/17) 2415781704032522 a001 24157817/24476*14662949395604^(1/3) 2415781704032522 a001 24157817/24476*(1/2+1/2*5^(1/2))^21 2415781704032522 a001 24157817/24476*192900153618^(7/18) 2415781704032522 a001 24157817/24476*10749957122^(7/16) 2415781704032522 a001 24157817/24476*599074578^(1/2) 2415781704032522 a001 701408733/24476*33385282^(7/18) 2415781704032522 a001 7787980473/844*12752043^(1/17) 2415781704032522 a001 39088169/24476*33385282^(5/9) 2415781704032522 a001 433494437/24476*33385282^(5/12) 2415781704032522 a001 10946*33385282^(4/9) 2415781704032522 a001 102334155/24476*33385282^(1/2) 2415781704032523 a001 21566892818/6119*12752043^(2/17) 2415781704032523 a001 24157817/24476*33385282^(7/12) 2415781704032523 a001 60114118660609/2488392 2415781704032524 a001 32951280099/24476*12752043^(3/17) 2415781704032525 a001 12586269025/24476*12752043^(4/17) 2415781704032526 a001 1201881744/6119*12752043^(5/17) 2415781704032526 a001 1836311903/24476*12752043^(6/17) 2415781704032527 a001 10946/20633239*817138163596^(17/19) 2415781704032527 a001 10946/20633239*14662949395604^(17/21) 2415781704032527 a001 10946/20633239*(1/2+1/2*5^(1/2))^51 2415781704032527 a001 10946/20633239*192900153618^(17/18) 2415781704032527 a001 9227465/24476*(1/2+1/2*5^(1/2))^23 2415781704032527 a001 9227465/24476*4106118243^(1/2) 2415781704032527 a001 701408733/24476*12752043^(7/17) 2415781704032528 a001 7787980473/844*4870847^(1/16) 2415781704032528 a001 10946*12752043^(8/17) 2415781704032529 a001 3732588/6119*12752043^(11/17) 2415781704032529 a001 165580141/24476*12752043^(1/2) 2415781704032529 a001 102334155/24476*12752043^(9/17) 2415781704032530 a001 39088169/24476*12752043^(10/17) 2415781704032534 a001 21566892818/6119*4870847^(1/8) 2415781704032536 a001 137769300747650/5702887 2415781704032540 a001 32951280099/24476*4870847^(3/16) 2415781704032547 a001 12586269025/24476*4870847^(1/4) 2415781704032553 a001 1201881744/6119*4870847^(5/16) 2415781704032556 a001 1762289/12238*20633239^(5/7) 2415781704032559 a001 1836311903/24476*4870847^(3/8) 2415781704032560 a001 3278735159921/219602*5778^(1/18) 2415781704032560 a001 5473/3940598*14662949395604^(7/9) 2415781704032560 a001 5473/3940598*(1/2+1/2*5^(1/2))^49 2415781704032560 a001 5473/3940598*505019158607^(7/8) 2415781704032560 a001 1762289/12238*2537720636^(5/9) 2415781704032560 a001 1762289/12238*312119004989^(5/11) 2415781704032560 a001 1762289/12238*(1/2+1/2*5^(1/2))^25 2415781704032560 a001 1762289/12238*3461452808002^(5/12) 2415781704032560 a001 1762289/12238*28143753123^(1/2) 2415781704032560 a001 1762289/12238*228826127^(5/8) 2415781704032566 a001 701408733/24476*4870847^(7/16) 2415781704032568 a001 7787980473/844*1860498^(1/15) 2415781704032572 a001 10946*4870847^(1/2) 2415781704032578 a001 102334155/24476*4870847^(9/16) 2415781704032583 a001 5702887/24476*4870847^(3/4) 2415781704032584 a001 39088169/24476*4870847^(5/8) 2415781704032589 a001 3732588/6119*4870847^(11/16) 2415781704032591 a001 139583862445/24476*1860498^(1/10) 2415781704032614 a001 21566892818/6119*1860498^(2/15) 2415781704032623 a001 53316302208/2207 2415781704032637 a001 53316291173/24476*1860498^(1/6) 2415781704032661 a001 32951280099/24476*1860498^(1/5) 2415781704032707 a001 12586269025/24476*1860498^(4/15) 2415781704032731 a001 7778742049/24476*1860498^(3/10) 2415781704032754 a001 1201881744/6119*1860498^(1/3) 2415781704032756 a001 1346269/24476*7881196^(9/11) 2415781704032788 a001 1346269/24476*141422324^(9/13) 2415781704032788 a001 10946/3010349*(1/2+1/2*5^(1/2))^47 2415781704032788 a001 1346269/24476*2537720636^(3/5) 2415781704032788 a001 1346269/24476*45537549124^(9/17) 2415781704032788 a001 1346269/24476*817138163596^(9/19) 2415781704032788 a001 1346269/24476*14662949395604^(3/7) 2415781704032788 a001 1346269/24476*(1/2+1/2*5^(1/2))^27 2415781704032788 a001 1346269/24476*192900153618^(1/2) 2415781704032788 a001 1346269/24476*10749957122^(9/16) 2415781704032788 a001 1346269/24476*599074578^(9/14) 2415781704032789 a001 1346269/24476*33385282^(3/4) 2415781704032800 a001 1836311903/24476*1860498^(2/5) 2415781704032847 a001 701408733/24476*1860498^(7/15) 2415781704032863 a001 7787980473/844*710647^(1/14) 2415781704032870 a001 433494437/24476*1860498^(1/2) 2415781704032893 a001 10946*1860498^(8/15) 2415781704032940 a001 102334155/24476*1860498^(3/5) 2415781704032986 a001 39088169/24476*1860498^(2/3) 2415781704033011 a001 24157817/24476*1860498^(7/10) 2415781704033024 a001 2178309/24476*1860498^(13/15) 2415781704033031 a001 3732588/6119*1860498^(11/15) 2415781704033065 a001 5702887/24476*1860498^(4/5) 2415781704033142 a001 1762289/12238*1860498^(5/6) 2415781704033205 a001 21566892818/6119*710647^(1/7) 2415781704033219 a001 10050135045119/416020 2415781704033416 a001 1346269/24476*1860498^(9/10) 2415781704033546 a001 32951280099/24476*710647^(3/14) 2415781704033717 a001 10182505537/12238*710647^(1/4) 2415781704033888 a001 12586269025/24476*710647^(2/7) 2415781704034230 a001 1201881744/6119*710647^(5/14) 2415781704034348 a001 10946/1149851*45537549124^(15/17) 2415781704034348 a001 10946/1149851*312119004989^(9/11) 2415781704034348 a001 10946/1149851*14662949395604^(5/7) 2415781704034348 a001 10946/1149851*(1/2+1/2*5^(1/2))^45 2415781704034348 a001 10946/1149851*192900153618^(5/6) 2415781704034348 a001 10946/1149851*28143753123^(9/10) 2415781704034348 a001 10946/1149851*10749957122^(15/16) 2415781704034348 a001 514229/24476*(1/2+1/2*5^(1/2))^29 2415781704034348 a001 514229/24476*1322157322203^(1/2) 2415781704034571 a001 1836311903/24476*710647^(3/7) 2415781704034913 a001 701408733/24476*710647^(1/2) 2415781704035043 a001 7787980473/844*271443^(1/13) 2415781704035255 a001 10946*710647^(4/7) 2415781704035596 a001 102334155/24476*710647^(9/14) 2415781704035938 a001 39088169/24476*710647^(5/7) 2415781704036110 a001 24157817/24476*710647^(3/4) 2415781704036277 a001 3732588/6119*710647^(11/14) 2415781704036606 a001 5702887/24476*710647^(6/7) 2415781704036861 a001 2178309/24476*710647^(13/14) 2415781704037305 a001 196862051062/8149 2415781704037565 a001 21566892818/6119*271443^(2/13) 2415781704040087 a001 32951280099/24476*271443^(3/13) 2415781704041885 a001 182717648081/12238*103682^(1/24) 2415781704042609 a001 12586269025/24476*271443^(4/13) 2415781704045045 a001 5473/219602*(1/2+1/2*5^(1/2))^43 2415781704045045 a001 98209/12238*(1/2+1/2*5^(1/2))^31 2415781704045045 a001 98209/12238*9062201101803^(1/2) 2415781704045132 a001 1201881744/6119*271443^(5/13) 2415781704047654 a001 1836311903/24476*271443^(6/13) 2415781704048915 a001 567451585/12238*271443^(1/2) 2415781704050176 a001 701408733/24476*271443^(7/13) 2415781704051248 a001 7787980473/844*103682^(1/12) 2415781704052698 a001 10946*271443^(8/13) 2415781704055220 a001 102334155/24476*271443^(9/13) 2415781704057742 a001 39088169/24476*271443^(10/13) 2415781704060262 a001 3732588/6119*271443^(11/13) 2415781704060612 a001 139583862445/24476*103682^(1/8) 2415781704062771 a001 5702887/24476*271443^(12/13) 2415781704065308 a001 2932589884016/121393 2415781704069975 a001 21566892818/6119*103682^(1/6) 2415781704079339 a001 53316291173/24476*103682^(5/24) 2415781704088702 a001 32951280099/24476*103682^(1/4) 2415781704098066 a001 10182505537/12238*103682^(7/24) 2415781704102534 a001 182717648081/12238*39603^(1/22) 2415781704105874 a001 2504730781961/167761*5778^(1/18) 2415781704107429 a001 12586269025/24476*103682^(1/3) 2415781704116793 a001 7778742049/24476*103682^(3/8) 2415781704118358 a001 75025/24476*141422324^(11/13) 2415781704118358 a001 10946/167761*(1/2+1/2*5^(1/2))^41 2415781704118358 a001 75025/24476*2537720636^(11/15) 2415781704118358 a001 75025/24476*45537549124^(11/17) 2415781704118358 a001 75025/24476*312119004989^(3/5) 2415781704118358 a001 75025/24476*14662949395604^(11/21) 2415781704118358 a001 75025/24476*(1/2+1/2*5^(1/2))^33 2415781704118358 a001 75025/24476*192900153618^(11/18) 2415781704118358 a001 75025/24476*10749957122^(11/16) 2415781704118358 a001 75025/24476*1568397607^(3/4) 2415781704118358 a001 75025/24476*599074578^(11/14) 2415781704118360 a001 75025/24476*33385282^(11/12) 2415781704126156 a001 1201881744/6119*103682^(5/12) 2415781704135520 a001 2971215073/24476*103682^(11/24) 2415781704144884 a001 1836311903/24476*103682^(1/2) 2415781704154247 a001 567451585/12238*103682^(13/24) 2415781704163611 a001 701408733/24476*103682^(7/12) 2415781704172547 a001 7787980473/844*39603^(1/11) 2415781704172974 a001 433494437/24476*103682^(5/8) 2415781704182338 a001 10946*103682^(2/3) 2415781704190124 a001 139583862445/271443*15127^(2/5) 2415781704191701 a001 165580141/24476*103682^(17/24) 2415781704201065 a001 102334155/24476*103682^(3/4) 2415781704210428 a001 31622993/12238*103682^(19/24) 2415781704218127 a001 365435296162/710647*15127^(2/5) 2415781704219791 a001 39088169/24476*103682^(5/6) 2415781704222213 a001 956722026041/1860498*15127^(2/5) 2415781704222809 a001 2504730781961/4870847*15127^(2/5) 2415781704222896 a001 6557470319842/12752043*15127^(2/5) 2415781704222917 a001 10610209857723/20633239*15127^(2/5) 2415781704222950 a001 4052739537881/7881196*15127^(2/5) 2415781704223178 a001 1548008755920/3010349*15127^(2/5) 2415781704224738 a001 514229*15127^(2/5) 2415781704229156 a001 24157817/24476*103682^(7/8) 2415781704235435 a001 225851433717/439204*15127^(2/5) 2415781704238517 a001 3732588/6119*103682^(11/12) 2415781704242560 a001 139583862445/24476*39603^(3/22) 2415781704247888 a001 9227465/24476*103682^(23/24) 2415781704257246 a001 26670230015/1104 2415781704266217 a001 1602508992/13201*15127^(11/20) 2415781704283384 a001 53316291173/64079*15127^(7/20) 2415781704308748 a001 86267571272/167761*15127^(2/5) 2415781704312573 a001 21566892818/6119*39603^(2/11) 2415781704364102 a001 102334155/9349*9349^(16/19) 2415781704382586 a001 53316291173/24476*39603^(5/22) 2415781704452599 a001 32951280099/24476*39603^(3/11) 2415781704522612 a001 10182505537/12238*39603^(7/22) 2415781704526050 a001 32951280099/103682*15127^(9/20) 2415781704560385 a001 182717648081/12238*15127^(1/20) 2415781704592625 a001 12586269025/24476*39603^(4/11) 2415781704608373 a001 956722026041/64079*5778^(1/18) 2415781704620858 a001 10946/64079*2537720636^(13/15) 2415781704620858 a001 10946/64079*45537549124^(13/17) 2415781704620858 a001 10946/64079*14662949395604^(13/21) 2415781704620858 a001 10946/64079*(1/2+1/2*5^(1/2))^39 2415781704620858 a001 10946/64079*192900153618^(13/18) 2415781704620858 a001 10946/64079*73681302247^(3/4) 2415781704620858 a001 10946/64079*10749957122^(13/16) 2415781704620858 a001 10946/64079*599074578^(13/14) 2415781704620858 a001 28657/24476*2537720636^(7/9) 2415781704620858 a001 28657/24476*17393796001^(5/7) 2415781704620858 a001 28657/24476*312119004989^(7/11) 2415781704620858 a001 28657/24476*14662949395604^(5/9) 2415781704620858 a001 28657/24476*(1/2+1/2*5^(1/2))^35 2415781704620858 a001 28657/24476*505019158607^(5/8) 2415781704620858 a001 28657/24476*28143753123^(7/10) 2415781704620858 a001 28657/24476*599074578^(5/6) 2415781704620858 a001 28657/24476*228826127^(7/8) 2415781704649627 l006 ln(4977/6337) 2415781704662638 a001 7778742049/24476*39603^(9/22) 2415781704717988 a001 86267571272/271443*15127^(9/20) 2415781704732651 a001 1201881744/6119*39603^(5/11) 2415781704745992 a001 317811*15127^(9/20) 2415781704750077 a001 591286729879/1860498*15127^(9/20) 2415781704750673 a001 1548008755920/4870847*15127^(9/20) 2415781704750760 a001 4052739537881/12752043*15127^(9/20) 2415781704750773 a001 1515744265389/4769326*15127^(9/20) 2415781704750781 a001 6557470319842/20633239*15127^(9/20) 2415781704750814 a001 2504730781961/7881196*15127^(9/20) 2415781704751042 a001 956722026041/3010349*15127^(9/20) 2415781704752602 a001 365435296162/1149851*15127^(9/20) 2415781704763299 a001 139583862445/439204*15127^(9/20) 2415781704794081 a001 2971215073/39603*15127^(3/5) 2415781704802664 a001 2971215073/24476*39603^(1/2) 2415781704811248 a001 32951280099/64079*15127^(2/5) 2415781704836612 a001 53316291173/167761*15127^(9/20) 2415781704872677 a001 1836311903/24476*39603^(6/11) 2415781704942690 a001 567451585/12238*39603^(13/22) 2415781705012703 a001 701408733/24476*39603^(7/11) 2415781705053914 a001 10182505537/51841*15127^(1/2) 2415781705082717 a001 433494437/24476*39603^(15/22) 2415781705088249 a001 7787980473/844*15127^(1/10) 2415781705152730 a001 10946*39603^(8/11) 2415781705222743 a001 165580141/24476*39603^(17/22) 2415781705245852 a001 53316291173/271443*15127^(1/2) 2415781705273856 a001 139583862445/710647*15127^(1/2) 2415781705277941 a001 182717648081/930249*15127^(1/2) 2415781705278537 a001 956722026041/4870847*15127^(1/2) 2415781705278624 a001 2504730781961/12752043*15127^(1/2) 2415781705278637 a001 3278735159921/16692641*15127^(1/2) 2415781705278640 a001 10610209857723/54018521*15127^(1/2) 2415781705278645 a001 4052739537881/20633239*15127^(1/2) 2415781705278678 a001 387002188980/1970299*15127^(1/2) 2415781705278906 a001 591286729879/3010349*15127^(1/2) 2415781705280466 a001 225851433717/1149851*15127^(1/2) 2415781705291163 a001 196418*15127^(1/2) 2415781705292756 a001 102334155/24476*39603^(9/11) 2415781705321945 a001 1836311903/39603*15127^(13/20) 2415781705339112 a001 20365011074/64079*15127^(9/20) 2415781705351939 a001 86267571272/9349*3571^(2/17) 2415781705362769 a001 31622993/12238*39603^(19/22) 2415781705364476 a001 32951280099/167761*15127^(1/2) 2415781705432781 a001 39088169/24476*39603^(10/11) 2415781705502795 a001 24157817/24476*39603^(21/22) 2415781705522869 a001 53316291173/15127*5778^(2/9) 2415781705572807 a001 427859097874/17711 2415781705581778 a001 12586269025/103682*15127^(11/20) 2415781705616113 a001 139583862445/24476*15127^(3/20) 2415781705773716 a001 121393*15127^(11/20) 2415781705801720 a001 86267571272/710647*15127^(11/20) 2415781705805805 a001 75283811239/620166*15127^(11/20) 2415781705806401 a001 591286729879/4870847*15127^(11/20) 2415781705806488 a001 516002918640/4250681*15127^(11/20) 2415781705806501 a001 4052739537881/33385282*15127^(11/20) 2415781705806503 a001 3536736619241/29134601*15127^(11/20) 2415781705806504 a001 6557470319842/54018521*15127^(11/20) 2415781705806509 a001 2504730781961/20633239*15127^(11/20) 2415781705806542 a001 956722026041/7881196*15127^(11/20) 2415781705806770 a001 365435296162/3010349*15127^(11/20) 2415781705808330 a001 139583862445/1149851*15127^(11/20) 2415781705818803 a001 165580141/9349*9349^(15/19) 2415781705819027 a001 53316291173/439204*15127^(11/20) 2415781705849809 a001 1134903170/39603*15127^(7/10) 2415781705866976 a001 12586269025/64079*15127^(1/2) 2415781705892340 a001 20365011074/167761*15127^(11/20) 2415781706109642 a001 7778742049/103682*15127^(3/5) 2415781706143977 a001 21566892818/6119*15127^(1/5) 2415781706301580 a001 20365011074/271443*15127^(3/5) 2415781706329584 a001 53316291173/710647*15127^(3/5) 2415781706333669 a001 139583862445/1860498*15127^(3/5) 2415781706334265 a001 365435296162/4870847*15127^(3/5) 2415781706334352 a001 956722026041/12752043*15127^(3/5) 2415781706334365 a001 2504730781961/33385282*15127^(3/5) 2415781706334367 a001 6557470319842/87403803*15127^(3/5) 2415781706334367 a001 10610209857723/141422324*15127^(3/5) 2415781706334368 a001 4052739537881/54018521*15127^(3/5) 2415781706334373 a001 140728068720/1875749*15127^(3/5) 2415781706334406 a001 591286729879/7881196*15127^(3/5) 2415781706334634 a001 225851433717/3010349*15127^(3/5) 2415781706336194 a001 86267571272/1149851*15127^(3/5) 2415781706346891 a001 32951280099/439204*15127^(3/5) 2415781706377673 a001 17711*15127^(3/4) 2415781706394840 a001 7778742049/64079*15127^(11/20) 2415781706420204 a001 75025*15127^(3/5) 2415781706499788 a001 365435296162/39603*5778^(1/9) 2415781706637506 a001 46368*15127^(13/20) 2415781706671841 a001 53316291173/24476*15127^(1/4) 2415781706829444 a001 12586269025/271443*15127^(13/20) 2415781706857448 a001 32951280099/710647*15127^(13/20) 2415781706861533 a001 43133785636/930249*15127^(13/20) 2415781706862129 a001 225851433717/4870847*15127^(13/20) 2415781706862216 a001 591286729879/12752043*15127^(13/20) 2415781706862229 a001 774004377960/16692641*15127^(13/20) 2415781706862231 a001 4052739537881/87403803*15127^(13/20) 2415781706862231 a001 225749145909/4868641*15127^(13/20) 2415781706862231 a001 3278735159921/70711162*15127^(13/20) 2415781706862232 a001 2504730781961/54018521*15127^(13/20) 2415781706862237 a001 956722026041/20633239*15127^(13/20) 2415781706862270 a001 182717648081/3940598*15127^(13/20) 2415781706862498 a001 139583862445/3010349*15127^(13/20) 2415781706864058 a001 53316291173/1149851*15127^(13/20) 2415781706874755 a001 10182505537/219602*15127^(13/20) 2415781706905537 a001 433494437/39603*15127^(4/5) 2415781706922704 a001 4807526976/64079*15127^(3/5) 2415781706948068 a001 7778742049/167761*15127^(13/20) 2415781707165371 a001 2971215073/103682*15127^(7/10) 2415781707199705 a001 32951280099/24476*15127^(3/10) 2415781707273504 a001 267914296/9349*9349^(14/19) 2415781707357308 a001 7778742049/271443*15127^(7/10) 2415781707385312 a001 20365011074/710647*15127^(7/10) 2415781707389397 a001 53316291173/1860498*15127^(7/10) 2415781707389993 a001 139583862445/4870847*15127^(7/10) 2415781707390080 a001 365435296162/12752043*15127^(7/10) 2415781707390093 a001 956722026041/33385282*15127^(7/10) 2415781707390095 a001 2504730781961/87403803*15127^(7/10) 2415781707390095 a001 6557470319842/228826127*15127^(7/10) 2415781707390095 a001 10610209857723/370248451*15127^(7/10) 2415781707390095 a001 4052739537881/141422324*15127^(7/10) 2415781707390096 a001 1548008755920/54018521*15127^(7/10) 2415781707390101 a001 591286729879/20633239*15127^(7/10) 2415781707390134 a001 225851433717/7881196*15127^(7/10) 2415781707390362 a001 86267571272/3010349*15127^(7/10) 2415781707391922 a001 32951280099/1149851*15127^(7/10) 2415781707402619 a001 12586269025/439204*15127^(7/10) 2415781707433401 a001 267914296/39603*15127^(17/20) 2415781707450568 a001 2971215073/64079*15127^(13/20) 2415781707475933 a001 4807526976/167761*15127^(7/10) 2415781707693235 a001 1836311903/103682*15127^(3/4) 2415781707727569 a001 10182505537/12238*15127^(7/20) 2415781707815349 a001 956722026041/103682*5778^(1/9) 2415781707885172 a001 1602508992/90481*15127^(3/4) 2415781707913176 a001 12586269025/710647*15127^(3/4) 2415781707917261 a001 10983760033/620166*15127^(3/4) 2415781707917858 a001 86267571272/4870847*15127^(3/4) 2415781707917944 a001 75283811239/4250681*15127^(3/4) 2415781707917957 a001 591286729879/33385282*15127^(3/4) 2415781707917959 a001 516002918640/29134601*15127^(3/4) 2415781707917959 a001 4052739537881/228826127*15127^(3/4) 2415781707917959 a001 3536736619241/199691526*15127^(3/4) 2415781707917959 a001 6557470319842/370248451*15127^(3/4) 2415781707917959 a001 2504730781961/141422324*15127^(3/4) 2415781707917960 a001 956722026041/54018521*15127^(3/4) 2415781707917965 a001 365435296162/20633239*15127^(3/4) 2415781707917998 a001 139583862445/7881196*15127^(3/4) 2415781707918226 a001 53316291173/3010349*15127^(3/4) 2415781707919786 a001 20365011074/1149851*15127^(3/4) 2415781707930483 a001 7778742049/439204*15127^(3/4) 2415781707961265 a001 165580141/39603*15127^(9/10) 2415781707978432 a001 28657*15127^(7/10) 2415781708003797 a001 2971215073/167761*15127^(3/4) 2415781708007287 a001 2504730781961/271443*5778^(1/9) 2415781708035291 a001 6557470319842/710647*5778^(1/9) 2415781708041901 a001 10610209857723/1149851*5778^(1/9) 2415781708052559 a001 182717648081/12238*5778^(1/18) 2415781708052598 a001 4052739537881/439204*5778^(1/9) 2415781708065044 a001 5473/12238*(1/2+1/2*5^(1/2))^37 2415781708125911 a001 140728068720/15251*5778^(1/9) 2415781708221099 a001 567451585/51841*15127^(4/5) 2415781708255434 a001 12586269025/24476*15127^(2/5) 2415781708413036 a001 2971215073/271443*15127^(4/5) 2415781708441040 a001 7778742049/710647*15127^(4/5) 2415781708445125 a001 10182505537/930249*15127^(4/5) 2415781708445722 a001 53316291173/4870847*15127^(4/5) 2415781708445809 a001 139583862445/12752043*15127^(4/5) 2415781708445821 a001 182717648081/16692641*15127^(4/5) 2415781708445823 a001 956722026041/87403803*15127^(4/5) 2415781708445823 a001 2504730781961/228826127*15127^(4/5) 2415781708445823 a001 3278735159921/299537289*15127^(4/5) 2415781708445823 a001 10610209857723/969323029*15127^(4/5) 2415781708445823 a001 4052739537881/370248451*15127^(4/5) 2415781708445824 a001 387002188980/35355581*15127^(4/5) 2415781708445824 a001 591286729879/54018521*15127^(4/5) 2415781708445829 a001 7787980473/711491*15127^(4/5) 2415781708445862 a001 21566892818/1970299*15127^(4/5) 2415781708446090 a001 32951280099/3010349*15127^(4/5) 2415781708447651 a001 12586269025/1149851*15127^(4/5) 2415781708458347 a001 1201881744/109801*15127^(4/5) 2415781708489129 a001 34111385/13201*15127^(19/20) 2415781708506296 a001 1134903170/64079*15127^(3/4) 2415781708531661 a001 1836311903/167761*15127^(4/5) 2415781708628411 a001 591286729879/64079*5778^(1/9) 2415781708728205 a001 433494437/9349*9349^(13/19) 2415781708748963 a001 701408733/103682*15127^(17/20) 2415781708783298 a001 7778742049/24476*15127^(9/20) 2415781708940901 a001 1836311903/271443*15127^(17/20) 2415781708968904 a001 686789568/101521*15127^(17/20) 2415781708972990 a001 12586269025/1860498*15127^(17/20) 2415781708973586 a001 32951280099/4870847*15127^(17/20) 2415781708973673 a001 86267571272/12752043*15127^(17/20) 2415781708973685 a001 32264490531/4769326*15127^(17/20) 2415781708973687 a001 591286729879/87403803*15127^(17/20) 2415781708973687 a001 1548008755920/228826127*15127^(17/20) 2415781708973687 a001 4052739537881/599074578*15127^(17/20) 2415781708973687 a001 1515744265389/224056801*15127^(17/20) 2415781708973687 a001 6557470319842/969323029*15127^(17/20) 2415781708973687 a001 2504730781961/370248451*15127^(17/20) 2415781708973688 a001 956722026041/141422324*15127^(17/20) 2415781708973688 a001 365435296162/54018521*15127^(17/20) 2415781708973693 a001 139583862445/20633239*15127^(17/20) 2415781708973726 a001 53316291173/7881196*15127^(17/20) 2415781708973954 a001 20365011074/3010349*15127^(17/20) 2415781708975515 a001 7778742049/1149851*15127^(17/20) 2415781708986211 a001 2971215073/439204*15127^(17/20) 2415781709016999 a001 32685526523/1353 2415781709034160 a001 701408733/64079*15127^(4/5) 2415781709059525 a001 1134903170/167761*15127^(17/20) 2415781709276827 a001 433494437/103682*15127^(9/10) 2415781709311162 a001 1201881744/6119*15127^(1/2) 2415781709468765 a001 1134903170/271443*15127^(9/10) 2415781709496768 a001 2971215073/710647*15127^(9/10) 2415781709500854 a001 7778742049/1860498*15127^(9/10) 2415781709501450 a001 20365011074/4870847*15127^(9/10) 2415781709501537 a001 53316291173/12752043*15127^(9/10) 2415781709501549 a001 139583862445/33385282*15127^(9/10) 2415781709501551 a001 365435296162/87403803*15127^(9/10) 2415781709501551 a001 956722026041/228826127*15127^(9/10) 2415781709501551 a001 2504730781961/599074578*15127^(9/10) 2415781709501551 a001 6557470319842/1568397607*15127^(9/10) 2415781709501551 a001 10610209857723/2537720636*15127^(9/10) 2415781709501551 a001 4052739537881/969323029*15127^(9/10) 2415781709501551 a001 1548008755920/370248451*15127^(9/10) 2415781709501552 a001 591286729879/141422324*15127^(9/10) 2415781709501552 a001 225851433717/54018521*15127^(9/10) 2415781709501557 a001 86267571272/20633239*15127^(9/10) 2415781709501590 a001 32951280099/7881196*15127^(9/10) 2415781709501818 a001 12586269025/3010349*15127^(9/10) 2415781709503379 a001 4807526976/1149851*15127^(9/10) 2415781709514075 a001 1836311903/439204*15127^(9/10) 2415781709542906 a001 32951280099/15127*5778^(5/18) 2415781709562025 a001 433494437/64079*15127^(17/20) 2415781709587389 a001 701408733/167761*15127^(9/10) 2415781709804691 a001 133957148/51841*15127^(19/20) 2415781709839026 a001 2971215073/24476*15127^(11/20) 2415781709996629 a001 233802911/90481*15127^(19/20) 2415781710024632 a001 1836311903/710647*15127^(19/20) 2415781710028718 a001 267084832/103361*15127^(19/20) 2415781710029314 a001 12586269025/4870847*15127^(19/20) 2415781710029401 a001 10983760033/4250681*15127^(19/20) 2415781710029413 a001 43133785636/16692641*15127^(19/20) 2415781710029415 a001 75283811239/29134601*15127^(19/20) 2415781710029415 a001 591286729879/228826127*15127^(19/20) 2415781710029416 a001 86000486440/33281921*15127^(19/20) 2415781710029416 a001 4052739537881/1568397607*15127^(19/20) 2415781710029416 a001 3536736619241/1368706081*15127^(19/20) 2415781710029416 a001 3278735159921/1268860318*15127^(19/20) 2415781710029416 a001 2504730781961/969323029*15127^(19/20) 2415781710029416 a001 956722026041/370248451*15127^(19/20) 2415781710029416 a001 182717648081/70711162*15127^(19/20) 2415781710029416 a001 139583862445/54018521*15127^(19/20) 2415781710029421 a001 53316291173/20633239*15127^(19/20) 2415781710029454 a001 10182505537/3940598*15127^(19/20) 2415781710029682 a001 7778742049/3010349*15127^(19/20) 2415781710031243 a001 2971215073/1149851*15127^(19/20) 2415781710041939 a001 567451585/219602*15127^(19/20) 2415781710089889 a001 267914296/64079*15127^(9/10) 2415781710115253 a001 433494437/167761*15127^(19/20) 2415781710182906 a001 701408733/9349*9349^(12/19) 2415781710332594 a001 54475877568/2255 2415781710366890 a001 1836311903/24476*15127^(3/5) 2415781710519825 a001 75283811239/13201*5778^(1/6) 2415781710524759 a001 163427632717/6765 2415781710554323 a001 54475877573/2255 2415781710557280 a001 817138163596/6765*8^(1/3) 2415781710557280 a001 2/6765*(1/2+1/2*5^(1/2))^57 2415781710569105 a001 2971411504/123 2415781710617753 a001 165580141/64079*15127^(19/20) 2415781710643015 a001 10895175515/451 2415781710894754 a001 567451585/12238*15127^(13/20) 2415781711143688 a001 39088169/3571*3571^(16/17) 2415781711145602 a001 163427632759/6765 2415781711422618 a001 701408733/24476*15127^(7/10) 2415781711637607 a001 1134903170/9349*9349^(11/19) 2415781711835387 a001 591286729879/103682*5778^(1/6) 2415781711950482 a001 433494437/24476*15127^(3/4) 2415781712027325 a001 516002918640/90481*5778^(1/6) 2415781712055328 a001 4052739537881/710647*5778^(1/6) 2415781712059414 a001 3536736619241/620166*5778^(1/6) 2415781712061939 a001 6557470319842/1149851*5778^(1/6) 2415781712072597 a001 7787980473/844*5778^(1/9) 2415781712072635 a001 2504730781961/439204*5778^(1/6) 2415781712145949 a001 956722026041/167761*5778^(1/6) 2415781712478346 a001 10946*15127^(4/5) 2415781712648449 a001 365435296162/64079*5778^(1/6) 2415781713006210 a001 165580141/24476*15127^(17/20) 2415781713092308 a001 1836311903/9349*9349^(10/19) 2415781713534074 a001 102334155/24476*15127^(9/10) 2415781713562944 a001 20365011074/15127*5778^(1/3) 2415781714061938 a001 31622993/12238*15127^(19/20) 2415781714539863 a001 139583862445/39603*5778^(2/9) 2415781714547009 a001 2971215073/9349*9349^(9/19) 2415781714589800 a001 54475877664/2255 2415781714789675 r002 9th iterates of z^2 + 2415781715316095 m001 GAMMA(7/12)^2/GAMMA(1/3)^2*exp(Zeta(9))^2 2415781715855425 a001 182717648081/51841*5778^(2/9) 2415781716001711 a001 4807526976/9349*9349^(8/19) 2415781716047363 a001 956722026041/271443*5778^(2/9) 2415781716075366 a001 2504730781961/710647*5778^(2/9) 2415781716079452 a001 3278735159921/930249*5778^(2/9) 2415781716080416 a001 10610209857723/3010349*5778^(2/9) 2415781716081977 a001 4052739537881/1149851*5778^(2/9) 2415781716092634 a001 139583862445/24476*5778^(1/6) 2415781716092673 a001 387002188980/109801*5778^(2/9) 2415781716165987 a001 591286729879/167761*5778^(2/9) 2415781716314717 a001 32951280099/3571*1364^(2/15) 2415781716495629 a001 139583862445/9349*3571^(1/17) 2415781716668487 a001 225851433717/64079*5778^(2/9) 2415781717082038 a001 4181/15127*817138163596^(2/3) 2415781717082038 a001 4181/15127*(1/2+1/2*5^(1/2))^38 2415781717082038 a001 4181/15127*10749957122^(19/24) 2415781717082038 a001 4181/15127*4106118243^(19/23) 2415781717082038 a001 4181/15127*1568397607^(19/22) 2415781717082038 a001 4181/15127*599074578^(19/21) 2415781717082038 a001 4181/15127*228826127^(19/20) 2415781717082038 a001 6765/9349*141422324^(12/13) 2415781717082038 a001 6765/9349*2537720636^(4/5) 2415781717082038 a001 6765/9349*45537549124^(12/17) 2415781717082038 a001 6765/9349*14662949395604^(4/7) 2415781717082038 a001 6765/9349*(1/2+1/2*5^(1/2))^36 2415781717082038 a001 6765/9349*192900153618^(2/3) 2415781717082038 a001 6765/9349*73681302247^(9/13) 2415781717082038 a001 6765/9349*10749957122^(3/4) 2415781717082038 a001 6765/9349*4106118243^(18/23) 2415781717082038 a001 6765/9349*1568397607^(9/11) 2415781717082038 a001 6765/9349*599074578^(6/7) 2415781717082038 a001 6765/9349*228826127^(9/10) 2415781717082038 a001 6765/9349*87403803^(18/19) 2415781717456412 a001 7778742049/9349*9349^(7/19) 2415781717582982 a001 12586269025/15127*5778^(7/18) 2415781718559901 a001 86267571272/39603*5778^(5/18) 2415781718911113 a001 12586269025/9349*9349^(6/19) 2415781719875463 a001 225851433717/103682*5778^(5/18) 2415781720067400 a001 591286729879/271443*5778^(5/18) 2415781720095404 a001 1548008755920/710647*5778^(5/18) 2415781720099489 a001 4052739537881/1860498*5778^(5/18) 2415781720100085 a001 2178309*5778^(5/18) 2415781720100454 a001 6557470319842/3010349*5778^(5/18) 2415781720102014 a001 2504730781961/1149851*5778^(5/18) 2415781720112672 a001 21566892818/6119*5778^(2/9) 2415781720112711 a001 956722026041/439204*5778^(5/18) 2415781720186025 a001 365435296162/167761*5778^(5/18) 2415781720365814 a001 20365011074/9349*9349^(5/19) 2415781720440682 a001 32264490531/2161*2207^(1/16) 2415781720633213 a001 10983760033/1926*2207^(3/16) 2415781720688524 a001 139583862445/64079*5778^(5/18) 2415781721603020 a001 7778742049/15127*5778^(4/9) 2415781721820515 a001 32951280099/9349*9349^(4/19) 2415781722287378 a001 63245986/3571*3571^(15/17) 2415781722579938 a001 53316291173/39603*5778^(1/3) 2415781723143476 m001 Shi(1)+BesselI(1,2)^TwinPrimes 2415781723275216 a001 53316291173/9349*9349^(3/19) 2415781723606797 a001 132215733733/5473 2415781723798819 a001 14930352/9349*24476^(20/21) 2415781723895500 a001 139583862445/103682*5778^(1/3) 2415781723990847 a001 24157817/9349*24476^(19/21) 2415781724087438 a001 365435296162/271443*5778^(1/3) 2415781724115441 a001 956722026041/710647*5778^(1/3) 2415781724119527 a001 2504730781961/1860498*5778^(1/3) 2415781724120123 a001 6557470319842/4870847*5778^(1/3) 2415781724120264 a001 10610209857723/7881196*5778^(1/3) 2415781724120492 a001 1346269*5778^(1/3) 2415781724122052 a001 1548008755920/1149851*5778^(1/3) 2415781724132710 a001 53316291173/24476*5778^(5/18) 2415781724132749 a001 591286729879/439204*5778^(1/3) 2415781724182871 a001 4181*24476^(6/7) 2415781724206062 a001 225851433717/167761*5778^(1/3) 2415781724374896 a001 63245986/9349*24476^(17/21) 2415781724566921 a001 102334155/9349*24476^(16/21) 2415781724708562 a001 86267571272/64079*5778^(1/3) 2415781724729917 a001 86267571272/9349*9349^(2/19) 2415781724758946 a001 165580141/9349*24476^(5/7) 2415781724950971 a001 267914296/9349*24476^(2/3) 2415781725142996 a001 433494437/9349*24476^(13/21) 2415781725335021 a001 701408733/9349*24476^(4/7) 2415781725527046 a001 1134903170/9349*24476^(11/21) 2415781725623057 a001 686789568/2161*5778^(1/2) 2415781725719070 a001 1836311903/9349*24476^(10/21) 2415781725911095 a001 2971215073/9349*24476^(3/7) 2415781726099032 a001 4181/39603*2537720636^(8/9) 2415781726099032 a001 4181/39603*312119004989^(8/11) 2415781726099032 a001 4181/39603*(1/2+1/2*5^(1/2))^40 2415781726099032 a001 4181/39603*23725150497407^(5/8) 2415781726099032 a001 4181/39603*73681302247^(10/13) 2415781726099032 a001 4181/39603*28143753123^(4/5) 2415781726099032 a001 4181/39603*10749957122^(5/6) 2415781726099032 a001 4181/39603*4106118243^(20/23) 2415781726099032 a001 4181/39603*1568397607^(10/11) 2415781726099032 a001 4181/39603*599074578^(20/21) 2415781726099033 a001 17711/9349*45537549124^(2/3) 2415781726099033 a001 17711/9349*(1/2+1/2*5^(1/2))^34 2415781726099033 a001 17711/9349*10749957122^(17/24) 2415781726099033 a001 17711/9349*4106118243^(17/23) 2415781726099033 a001 17711/9349*1568397607^(17/22) 2415781726099033 a001 17711/9349*599074578^(17/21) 2415781726099033 a001 17711/9349*228826127^(17/20) 2415781726099033 a001 17711/9349*87403803^(17/19) 2415781726099035 a001 17711/9349*33385282^(17/18) 2415781726103120 a001 4807526976/9349*24476^(8/21) 2415781726184618 a001 139583862445/9349*9349^(1/19) 2415781726295145 a001 7778742049/9349*24476^(1/3) 2415781726487170 a001 12586269025/9349*24476^(2/7) 2415781726599976 a001 10983760033/13201*5778^(7/18) 2415781726679195 a001 20365011074/9349*24476^(5/21) 2415781726871220 a001 32951280099/9349*24476^(4/21) 2415781727050982 a001 692290569521/28657 2415781727063245 a001 53316291173/9349*24476^(1/7) 2415781727076547 a001 5702887/9349*64079^(22/23) 2415781727102148 a001 9227465/9349*64079^(21/23) 2415781727127720 a001 14930352/9349*64079^(20/23) 2415781727153302 a001 24157817/9349*64079^(19/23) 2415781727178881 a001 4181*64079^(18/23) 2415781727204461 a001 63245986/9349*64079^(17/23) 2415781727230041 a001 102334155/9349*64079^(16/23) 2415781727255269 a001 86267571272/9349*24476^(2/21) 2415781727255621 a001 165580141/9349*64079^(15/23) 2415781727281201 a001 267914296/9349*64079^(14/23) 2415781727306781 a001 433494437/9349*64079^(13/23) 2415781727332361 a001 701408733/9349*64079^(12/23) 2415781727357941 a001 1134903170/9349*64079^(11/23) 2415781727383520 a001 1836311903/9349*64079^(10/23) 2415781727409100 a001 2971215073/9349*64079^(9/23) 2415781727414594 a001 4181/103682*2537720636^(14/15) 2415781727414594 a001 4181/103682*17393796001^(6/7) 2415781727414594 a001 4181/103682*45537549124^(14/17) 2415781727414594 a001 4181/103682*817138163596^(14/19) 2415781727414594 a001 4181/103682*14662949395604^(2/3) 2415781727414594 a001 4181/103682*(1/2+1/2*5^(1/2))^42 2415781727414594 a001 4181/103682*505019158607^(3/4) 2415781727414594 a001 4181/103682*192900153618^(7/9) 2415781727414594 a001 4181/103682*10749957122^(7/8) 2415781727414594 a001 4181/103682*4106118243^(21/23) 2415781727414594 a001 4181/103682*1568397607^(21/22) 2415781727414594 a001 46368/9349*(1/2+1/2*5^(1/2))^32 2415781727414594 a001 46368/9349*23725150497407^(1/2) 2415781727414594 a001 46368/9349*505019158607^(4/7) 2415781727414594 a001 46368/9349*73681302247^(8/13) 2415781727414594 a001 46368/9349*10749957122^(2/3) 2415781727414594 a001 46368/9349*4106118243^(16/23) 2415781727414594 a001 46368/9349*1568397607^(8/11) 2415781727414594 a001 46368/9349*599074578^(16/21) 2415781727414594 a001 46368/9349*228826127^(4/5) 2415781727414595 a001 46368/9349*87403803^(16/19) 2415781727414596 a001 46368/9349*33385282^(8/9) 2415781727414608 a001 46368/9349*12752043^(16/17) 2415781727434680 a001 4807526976/9349*64079^(8/23) 2415781727447294 a001 139583862445/9349*24476^(1/21) 2415781727460260 a001 7778742049/9349*64079^(7/23) 2415781727485840 a001 12586269025/9349*64079^(6/23) 2415781727511420 a001 20365011074/9349*64079^(5/23) 2415781727537000 a001 32951280099/9349*64079^(4/23) 2415781727553482 a001 1812440241097/75025 2415781727562580 a001 53316291173/9349*64079^(3/23) 2415781727570647 a001 14930352/9349*167761^(4/5) 2415781727587817 a001 165580141/9349*167761^(3/5) 2415781727588159 a001 86267571272/9349*64079^(2/23) 2415781727604984 a001 1836311903/9349*167761^(2/5) 2415781727606497 a001 121393/9349*7881196^(10/11) 2415781727606527 a001 121393/9349*20633239^(6/7) 2415781727606532 a001 4181/271443*312119004989^(4/5) 2415781727606532 a001 4181/271443*(1/2+1/2*5^(1/2))^44 2415781727606532 a001 4181/271443*23725150497407^(11/16) 2415781727606532 a001 4181/271443*73681302247^(11/13) 2415781727606532 a001 4181/271443*10749957122^(11/12) 2415781727606532 a001 4181/271443*4106118243^(22/23) 2415781727606532 a001 121393/9349*141422324^(10/13) 2415781727606532 a001 121393/9349*2537720636^(2/3) 2415781727606532 a001 121393/9349*45537549124^(10/17) 2415781727606532 a001 121393/9349*312119004989^(6/11) 2415781727606532 a001 121393/9349*14662949395604^(10/21) 2415781727606532 a001 121393/9349*(1/2+1/2*5^(1/2))^30 2415781727606532 a001 121393/9349*192900153618^(5/9) 2415781727606532 a001 121393/9349*28143753123^(3/5) 2415781727606532 a001 121393/9349*10749957122^(5/8) 2415781727606532 a001 121393/9349*4106118243^(15/23) 2415781727606532 a001 121393/9349*1568397607^(15/22) 2415781727606532 a001 121393/9349*599074578^(5/7) 2415781727606532 a001 121393/9349*228826127^(3/4) 2415781727606533 a001 121393/9349*87403803^(15/19) 2415781727606534 a001 121393/9349*33385282^(5/6) 2415781727606545 a001 121393/9349*12752043^(15/17) 2415781727606628 a001 121393/9349*4870847^(15/16) 2415781727613739 a001 139583862445/9349*64079^(1/23) 2415781727622152 a001 20365011074/9349*167761^(1/5) 2415781727626795 a001 139559710405/5777 2415781727628085 a001 2178309/9349*439204^(8/9) 2415781727629584 a001 9227465/9349*439204^(7/9) 2415781727630970 a001 4181*439204^(2/3) 2415781727632362 a001 165580141/9349*439204^(5/9) 2415781727633753 a001 701408733/9349*439204^(4/9) 2415781727634531 a001 317811/9349*20633239^(4/5) 2415781727634535 a001 4181/710647*(1/2+1/2*5^(1/2))^46 2415781727634535 a001 4181/710647*10749957122^(23/24) 2415781727634536 a001 317811/9349*17393796001^(4/7) 2415781727634536 a001 317811/9349*14662949395604^(4/9) 2415781727634536 a001 317811/9349*(1/2+1/2*5^(1/2))^28 2415781727634536 a001 317811/9349*73681302247^(7/13) 2415781727634536 a001 317811/9349*10749957122^(7/12) 2415781727634536 a001 317811/9349*4106118243^(14/23) 2415781727634536 a001 317811/9349*1568397607^(7/11) 2415781727634536 a001 317811/9349*599074578^(2/3) 2415781727634536 a001 317811/9349*228826127^(7/10) 2415781727634536 a001 317811/9349*87403803^(14/19) 2415781727634537 a001 317811/9349*33385282^(7/9) 2415781727634548 a001 317811/9349*12752043^(14/17) 2415781727634625 a001 317811/9349*4870847^(7/8) 2415781727635145 a001 2971215073/9349*439204^(1/3) 2415781727635187 a001 317811/9349*1860498^(14/15) 2415781727636536 a001 12586269025/9349*439204^(2/9) 2415781727637492 a001 12422650220213/514229 2415781727637928 a001 53316291173/9349*439204^(1/9) 2415781727638621 a001 4181/1860498*45537549124^(16/17) 2415781727638621 a001 4181/1860498*14662949395604^(16/21) 2415781727638621 a001 4181/1860498*(1/2+1/2*5^(1/2))^48 2415781727638621 a001 4181/1860498*192900153618^(8/9) 2415781727638621 a001 4181/1860498*73681302247^(12/13) 2415781727638621 a001 832040/9349*141422324^(2/3) 2415781727638621 a001 832040/9349*(1/2+1/2*5^(1/2))^26 2415781727638621 a001 832040/9349*73681302247^(1/2) 2415781727638621 a001 832040/9349*10749957122^(13/24) 2415781727638621 a001 832040/9349*4106118243^(13/23) 2415781727638621 a001 832040/9349*1568397607^(13/22) 2415781727638621 a001 832040/9349*599074578^(13/21) 2415781727638621 a001 832040/9349*228826127^(13/20) 2415781727638622 a001 832040/9349*87403803^(13/19) 2415781727638623 a001 832040/9349*33385282^(13/18) 2415781727638633 a001 832040/9349*12752043^(13/17) 2415781727638704 a001 832040/9349*4870847^(13/16) 2415781727639052 a001 32522920506869/1346269 2415781727639189 a001 2178309/9349*7881196^(8/11) 2415781727639217 a001 4181/4870847*312119004989^(10/11) 2415781727639217 a001 4181/4870847*(1/2+1/2*5^(1/2))^50 2415781727639217 a001 4181/4870847*3461452808002^(5/6) 2415781727639217 a001 2178309/9349*141422324^(8/13) 2415781727639217 a001 2178309/9349*2537720636^(8/15) 2415781727639217 a001 2178309/9349*45537549124^(8/17) 2415781727639217 a001 2178309/9349*14662949395604^(8/21) 2415781727639217 a001 2178309/9349*(1/2+1/2*5^(1/2))^24 2415781727639217 a001 2178309/9349*192900153618^(4/9) 2415781727639217 a001 2178309/9349*73681302247^(6/13) 2415781727639217 a001 2178309/9349*10749957122^(1/2) 2415781727639217 a001 2178309/9349*4106118243^(12/23) 2415781727639217 a001 2178309/9349*1568397607^(6/11) 2415781727639217 a001 2178309/9349*599074578^(4/7) 2415781727639217 a001 2178309/9349*228826127^(3/5) 2415781727639218 a001 2178309/9349*87403803^(12/19) 2415781727639219 a001 2178309/9349*33385282^(2/3) 2415781727639226 a001 832040/9349*1860498^(13/15) 2415781727639228 a001 2178309/9349*12752043^(12/17) 2415781727639278 a001 5702887/9349*7881196^(2/3) 2415781727639280 a001 42573055650197/1762289 2415781727639294 a001 2178309/9349*4870847^(3/4) 2415781727639298 a001 4181*7881196^(6/11) 2415781727639300 a001 9227465/9349*7881196^(7/11) 2415781727639302 a001 165580141/9349*7881196^(5/11) 2415781727639304 a001 4181/12752043*(1/2+1/2*5^(1/2))^52 2415781727639304 a001 4181/12752043*23725150497407^(13/16) 2415781727639304 a001 4181/12752043*505019158607^(13/14) 2415781727639304 a001 5702887/9349*312119004989^(2/5) 2415781727639304 a001 5702887/9349*(1/2+1/2*5^(1/2))^22 2415781727639304 a001 5702887/9349*10749957122^(11/24) 2415781727639304 a001 5702887/9349*4106118243^(11/23) 2415781727639304 a001 5702887/9349*1568397607^(1/2) 2415781727639304 a001 5702887/9349*599074578^(11/21) 2415781727639304 a001 5702887/9349*228826127^(11/20) 2415781727639305 a001 5702887/9349*87403803^(11/19) 2415781727639305 a001 701408733/9349*7881196^(4/11) 2415781727639306 a001 5702887/9349*33385282^(11/18) 2415781727639306 a001 1134903170/9349*7881196^(1/3) 2415781727639309 a001 2971215073/9349*7881196^(3/11) 2415781727639312 a001 12586269025/9349*7881196^(2/11) 2415781727639313 a001 222915413394313/9227465 2415781727639314 a001 14930352/9349*20633239^(4/7) 2415781727639314 a001 5702887/9349*12752043^(11/17) 2415781727639316 a001 53316291173/9349*7881196^(1/11) 2415781727639317 a001 4181/33385282*14662949395604^(6/7) 2415781727639317 a001 4181/33385282*(1/2+1/2*5^(1/2))^54 2415781727639317 a001 165580141/9349*20633239^(3/7) 2415781727639317 a001 267914296/9349*20633239^(2/5) 2415781727639317 a001 14930352/9349*2537720636^(4/9) 2415781727639317 a001 14930352/9349*(1/2+1/2*5^(1/2))^20 2415781727639317 a001 14930352/9349*23725150497407^(5/16) 2415781727639317 a001 14930352/9349*505019158607^(5/14) 2415781727639317 a001 14930352/9349*73681302247^(5/13) 2415781727639317 a001 14930352/9349*28143753123^(2/5) 2415781727639317 a001 14930352/9349*10749957122^(5/12) 2415781727639317 a001 14930352/9349*4106118243^(10/23) 2415781727639317 a001 14930352/9349*1568397607^(5/11) 2415781727639317 a001 14930352/9349*599074578^(10/21) 2415781727639317 a001 14930352/9349*228826127^(1/2) 2415781727639317 a001 14930352/9349*87403803^(10/19) 2415781727639318 a001 1836311903/9349*20633239^(2/7) 2415781727639318 a001 583600128882545/24157817 2415781727639318 a001 7778742049/9349*20633239^(1/5) 2415781727639318 a001 14930352/9349*33385282^(5/9) 2415781727639318 a001 20365011074/9349*20633239^(1/7) 2415781727639319 a001 4181/87403803*14662949395604^(8/9) 2415781727639319 a001 763942486626661/31622993 2415781727639319 a001 4181*141422324^(6/13) 2415781727639319 a001 4000054790877421/165580141 2415781727639319 a001 4181/599074578*14662949395604^(20/21) 2415781727639319 a001 10472279399378941/433494437 2415781727639319 a001 806375982566453/33379505 2415781727639319 a001 4181*2537720636^(2/5) 2415781727639319 a001 4181*45537549124^(6/17) 2415781727639319 a001 4181*14662949395604^(2/7) 2415781727639319 a001 4181*192900153618^(1/3) 2415781727639319 a001 4181*10749957122^(3/8) 2415781727639319 a001 4181*4106118243^(9/23) 2415781727639319 a001 44361287415139863/1836311903 2415781727639319 a001 4181*1568397607^(9/22) 2415781727639319 a001 16944504007880461/701408733 2415781727639319 a001 4181*599074578^(3/7) 2415781727639319 a001 809028076062690/33489287 2415781727639319 a001 4181*228826127^(9/20) 2415781727639319 a001 2472169817624099/102334155 2415781727639319 a001 4181/141422324*14662949395604^(19/21) 2415781727639319 a001 4181*87403803^(9/19) 2415781727639319 a001 102334155/9349*(1/2+1/2*5^(1/2))^16 2415781727639319 a001 102334155/9349*23725150497407^(1/4) 2415781727639319 a001 102334155/9349*73681302247^(4/13) 2415781727639319 a001 102334155/9349*10749957122^(1/3) 2415781727639319 a001 102334155/9349*4106118243^(8/23) 2415781727639319 a001 102334155/9349*1568397607^(4/11) 2415781727639319 a001 102334155/9349*599074578^(8/21) 2415781727639319 a001 701408733/9349*141422324^(4/13) 2415781727639319 a001 433494437/9349*141422324^(1/3) 2415781727639319 a001 165580141/9349*141422324^(5/13) 2415781727639319 a001 2971215073/9349*141422324^(3/13) 2415781727639319 a001 102334155/9349*228826127^(2/5) 2415781727639319 a001 12586269025/9349*141422324^(2/13) 2415781727639319 a001 53316291173/9349*141422324^(1/13) 2415781727639319 a001 267914296/9349*17393796001^(2/7) 2415781727639319 a001 267914296/9349*14662949395604^(2/9) 2415781727639319 a001 267914296/9349*(1/2+1/2*5^(1/2))^14 2415781727639319 a001 267914296/9349*10749957122^(7/24) 2415781727639319 a001 267914296/9349*4106118243^(7/23) 2415781727639319 a001 267914296/9349*1568397607^(7/22) 2415781727639319 a001 267914296/9349*599074578^(1/3) 2415781727639319 a001 701408733/9349*2537720636^(4/15) 2415781727639319 a001 701408733/9349*45537549124^(4/17) 2415781727639319 a001 701408733/9349*14662949395604^(4/21) 2415781727639319 a001 701408733/9349*(1/2+1/2*5^(1/2))^12 2415781727639319 a001 701408733/9349*192900153618^(2/9) 2415781727639319 a001 701408733/9349*73681302247^(3/13) 2415781727639319 a001 701408733/9349*10749957122^(1/4) 2415781727639319 a001 701408733/9349*4106118243^(6/23) 2415781727639319 a001 701408733/9349*1568397607^(3/11) 2415781727639319 a001 1836311903/9349*2537720636^(2/9) 2415781727639319 a001 1836311903/9349*312119004989^(2/11) 2415781727639319 a001 1836311903/9349*(1/2+1/2*5^(1/2))^10 2415781727639319 a001 1836311903/9349*28143753123^(1/5) 2415781727639319 a001 1836311903/9349*10749957122^(5/24) 2415781727639319 a001 1836311903/9349*4106118243^(5/23) 2415781727639319 a001 12586269025/9349*2537720636^(2/15) 2415781727639319 a001 20365011074/9349*2537720636^(1/9) 2415781727639319 a001 53316291173/9349*2537720636^(1/15) 2415781727639319 a001 4807526976/9349*(1/2+1/2*5^(1/2))^8 2415781727639319 a001 4807526976/9349*23725150497407^(1/8) 2415781727639319 a001 4807526976/9349*73681302247^(2/13) 2415781727639319 a001 2971215073/9349*2537720636^(1/5) 2415781727639319 a001 4807526976/9349*10749957122^(1/6) 2415781727639319 a001 12586269025/9349*45537549124^(2/17) 2415781727639319 a001 12586269025/9349*14662949395604^(2/21) 2415781727639319 a001 12586269025/9349*(1/2+1/2*5^(1/2))^6 2415781727639319 a001 32951280099/9349*(1/2+1/2*5^(1/2))^4 2415781727639319 a001 32951280099/9349*23725150497407^(1/16) 2415781727639319 a001 12586269025/9349*10749957122^(1/8) 2415781727639319 a001 32951280099/9349*73681302247^(1/13) 2415781727639319 a001 86267571272/9349*(1/2+1/2*5^(1/2))^2 2415781727639319 a001 225851433717/9349 2415781727639319 a001 139583862445/18698+139583862445/18698*5^(1/2) 2415781727639319 a001 53316291173/9349*45537549124^(1/17) 2415781727639319 a001 53316291173/9349*14662949395604^(1/21) 2415781727639319 a001 53316291173/9349*(1/2+1/2*5^(1/2))^3 2415781727639319 a001 53316291173/9349*192900153618^(1/18) 2415781727639319 a001 86267571272/9349*10749957122^(1/24) 2415781727639319 a001 20365011074/9349*312119004989^(1/11) 2415781727639319 a001 20365011074/9349*(1/2+1/2*5^(1/2))^5 2415781727639319 a001 32951280099/9349*10749957122^(1/12) 2415781727639319 a001 20365011074/9349*28143753123^(1/10) 2415781727639319 a001 53316291173/9349*10749957122^(1/16) 2415781727639319 a001 4807526976/9349*4106118243^(4/23) 2415781727639319 a001 86267571272/9349*4106118243^(1/23) 2415781727639319 a001 7778742049/9349*17393796001^(1/7) 2415781727639319 a001 7778742049/9349*14662949395604^(1/9) 2415781727639319 a001 7778742049/9349*(1/2+1/2*5^(1/2))^7 2415781727639319 a001 32951280099/9349*4106118243^(2/23) 2415781727639319 a001 12586269025/9349*4106118243^(3/23) 2415781727639319 a001 86267571272/9349*1568397607^(1/22) 2415781727639319 a001 2971215073/9349*45537549124^(3/17) 2415781727639319 a001 2971215073/9349*817138163596^(3/19) 2415781727639319 a001 2971215073/9349*14662949395604^(1/7) 2415781727639319 a001 2971215073/9349*(1/2+1/2*5^(1/2))^9 2415781727639319 a001 2971215073/9349*192900153618^(1/6) 2415781727639319 a001 2971215073/9349*10749957122^(3/16) 2415781727639319 a001 1836311903/9349*1568397607^(5/22) 2415781727639319 a001 32951280099/9349*1568397607^(1/11) 2415781727639319 a001 12586269025/9349*1568397607^(3/22) 2415781727639319 a001 4807526976/9349*1568397607^(2/11) 2415781727639319 a001 86267571272/9349*599074578^(1/21) 2415781727639319 a001 1134903170/9349*312119004989^(1/5) 2415781727639319 a001 1134903170/9349*(1/2+1/2*5^(1/2))^11 2415781727639319 a001 53316291173/9349*599074578^(1/14) 2415781727639319 a001 1134903170/9349*1568397607^(1/4) 2415781727639319 a001 32951280099/9349*599074578^(2/21) 2415781727639319 a001 701408733/9349*599074578^(2/7) 2415781727639319 a001 12586269025/9349*599074578^(1/7) 2415781727639319 a001 7778742049/9349*599074578^(1/6) 2415781727639319 a001 4807526976/9349*599074578^(4/21) 2415781727639319 a001 1836311903/9349*599074578^(5/21) 2415781727639319 a001 2971215073/9349*599074578^(3/14) 2415781727639319 a001 86267571272/9349*228826127^(1/20) 2415781727639319 a001 433494437/9349*(1/2+1/2*5^(1/2))^13 2415781727639319 a001 433494437/9349*73681302247^(1/4) 2415781727639319 a001 32951280099/9349*228826127^(1/10) 2415781727639319 a001 20365011074/9349*228826127^(1/8) 2415781727639319 a001 12586269025/9349*228826127^(3/20) 2415781727639319 a001 4807526976/9349*228826127^(1/5) 2415781727639319 a001 267914296/9349*228826127^(7/20) 2415781727639319 a001 1836311903/9349*228826127^(1/4) 2415781727639319 a001 701408733/9349*228826127^(3/10) 2415781727639319 a001 86267571272/9349*87403803^(1/19) 2415781727639319 a001 165580141/9349*2537720636^(1/3) 2415781727639319 a001 165580141/9349*45537549124^(5/17) 2415781727639319 a001 165580141/9349*312119004989^(3/11) 2415781727639319 a001 165580141/9349*14662949395604^(5/21) 2415781727639319 a001 165580141/9349*(1/2+1/2*5^(1/2))^15 2415781727639319 a001 165580141/9349*192900153618^(5/18) 2415781727639319 a001 165580141/9349*28143753123^(3/10) 2415781727639319 a001 165580141/9349*10749957122^(5/16) 2415781727639319 a001 165580141/9349*599074578^(5/14) 2415781727639319 a001 32951280099/9349*87403803^(2/19) 2415781727639319 a001 165580141/9349*228826127^(3/8) 2415781727639319 a001 12586269025/9349*87403803^(3/19) 2415781727639319 a001 4807526976/9349*87403803^(4/19) 2415781727639319 a001 1836311903/9349*87403803^(5/19) 2415781727639319 a001 102334155/9349*87403803^(8/19) 2415781727639319 a001 701408733/9349*87403803^(6/19) 2415781727639319 a001 267914296/9349*87403803^(7/19) 2415781727639319 a001 86267571272/9349*33385282^(1/18) 2415781727639319 a001 63245986/9349*45537549124^(1/3) 2415781727639319 a001 63245986/9349*(1/2+1/2*5^(1/2))^17 2415781727639319 a001 53316291173/9349*33385282^(1/12) 2415781727639319 a001 32951280099/9349*33385282^(1/9) 2415781727639320 a001 12586269025/9349*33385282^(1/6) 2415781727639320 a001 4807526976/9349*33385282^(2/9) 2415781727639320 a001 4181/54018521*3461452808002^(11/12) 2415781727639320 a001 2971215073/9349*33385282^(1/4) 2415781727639320 a001 1836311903/9349*33385282^(5/18) 2415781727639320 a001 701408733/9349*33385282^(1/3) 2415781727639320 a001 4181*33385282^(1/2) 2415781727639320 a001 24157817/9349*817138163596^(1/3) 2415781727639320 a001 24157817/9349*(1/2+1/2*5^(1/2))^19 2415781727639320 a001 267914296/9349*33385282^(7/18) 2415781727639320 a001 86267571272/9349*12752043^(1/17) 2415781727639320 a001 102334155/9349*33385282^(4/9) 2415781727639320 a001 165580141/9349*33385282^(5/12) 2415781727639320 a001 24157817/9349*87403803^(1/2) 2415781727639321 a001 32951280099/9349*12752043^(2/17) 2415781727639321 a001 139583868223/5778 2415781727639321 a001 9227465/9349*20633239^(3/5) 2415781727639322 a001 12586269025/9349*12752043^(3/17) 2415781727639323 a001 4807526976/9349*12752043^(4/17) 2415781727639324 a001 1836311903/9349*12752043^(5/17) 2415781727639324 a001 701408733/9349*12752043^(6/17) 2415781727639325 a001 4181/20633239*(1/2+1/2*5^(1/2))^53 2415781727639325 a001 9227465/9349*141422324^(7/13) 2415781727639325 a001 9227465/9349*2537720636^(7/15) 2415781727639325 a001 9227465/9349*17393796001^(3/7) 2415781727639325 a001 9227465/9349*45537549124^(7/17) 2415781727639325 a001 9227465/9349*14662949395604^(1/3) 2415781727639325 a001 9227465/9349*(1/2+1/2*5^(1/2))^21 2415781727639325 a001 9227465/9349*192900153618^(7/18) 2415781727639325 a001 9227465/9349*10749957122^(7/16) 2415781727639325 a001 9227465/9349*599074578^(1/2) 2415781727639325 a001 267914296/9349*12752043^(7/17) 2415781727639326 a001 86267571272/9349*4870847^(1/16) 2415781727639326 a001 14930352/9349*12752043^(10/17) 2415781727639326 a001 9227465/9349*33385282^(7/12) 2415781727639326 a001 102334155/9349*12752043^(8/17) 2415781727639327 a001 4181*12752043^(9/17) 2415781727639327 a001 63245986/9349*12752043^(1/2) 2415781727639332 a001 32951280099/9349*4870847^(1/8) 2415781727639334 a001 137769302093919/5702887 2415781727639338 a001 12586269025/9349*4870847^(3/16) 2415781727639345 a001 4807526976/9349*4870847^(1/4) 2415781727639351 a001 1836311903/9349*4870847^(5/16) 2415781727639357 a001 701408733/9349*4870847^(3/8) 2415781727639358 a001 4181/7881196*817138163596^(17/19) 2415781727639358 a001 4181/7881196*14662949395604^(17/21) 2415781727639358 a001 4181/7881196*(1/2+1/2*5^(1/2))^51 2415781727639358 a001 4181/7881196*192900153618^(17/18) 2415781727639358 a001 3524578/9349*(1/2+1/2*5^(1/2))^23 2415781727639358 a001 3524578/9349*4106118243^(1/2) 2415781727639364 a001 267914296/9349*4870847^(7/16) 2415781727639366 a001 86267571272/9349*1860498^(1/15) 2415781727639370 a001 102334155/9349*4870847^(1/2) 2415781727639374 a001 5702887/9349*4870847^(11/16) 2415781727639376 a001 4181*4870847^(9/16) 2415781727639381 a001 14930352/9349*4870847^(5/8) 2415781727639389 a001 53316291173/9349*1860498^(1/10) 2415781727639412 a001 32951280099/9349*1860498^(2/15) 2415781727639421 a001 52623190793525/2178309 2415781727639436 a001 20365011074/9349*1860498^(1/6) 2415781727639459 a001 12586269025/9349*1860498^(1/5) 2415781727639505 a001 4807526976/9349*1860498^(4/15) 2415781727639529 a001 2971215073/9349*1860498^(3/10) 2415781727639552 a001 1836311903/9349*1860498^(1/3) 2415781727639582 a001 1346269/9349*20633239^(5/7) 2415781727639585 a001 4181/3010349*14662949395604^(7/9) 2415781727639585 a001 4181/3010349*(1/2+1/2*5^(1/2))^49 2415781727639585 a001 4181/3010349*505019158607^(7/8) 2415781727639586 a001 1346269/9349*2537720636^(5/9) 2415781727639586 a001 1346269/9349*312119004989^(5/11) 2415781727639586 a001 1346269/9349*(1/2+1/2*5^(1/2))^25 2415781727639586 a001 1346269/9349*3461452808002^(5/12) 2415781727639586 a001 1346269/9349*28143753123^(1/2) 2415781727639586 a001 1346269/9349*228826127^(5/8) 2415781727639598 a001 701408733/9349*1860498^(2/5) 2415781727639645 a001 267914296/9349*1860498^(7/15) 2415781727639661 a001 86267571272/9349*710647^(1/14) 2415781727639668 a001 165580141/9349*1860498^(1/2) 2415781727639691 a001 102334155/9349*1860498^(8/15) 2415781727639738 a001 4181*1860498^(3/5) 2415781727639776 a001 2178309/9349*1860498^(4/5) 2415781727639782 a001 14930352/9349*1860498^(2/3) 2415781727639813 a001 9227465/9349*1860498^(7/10) 2415781727639816 a001 5702887/9349*1860498^(11/15) 2415781727640003 a001 32951280099/9349*710647^(1/7) 2415781727640017 a001 2512533785832/104005 2415781727640167 a001 1346269/9349*1860498^(5/6) 2415781727640344 a001 12586269025/9349*710647^(3/14) 2415781727640515 a001 7778742049/9349*710647^(1/4) 2415781727640686 a001 4807526976/9349*710647^(2/7) 2415781727641028 a001 1836311903/9349*710647^(5/14) 2415781727641115 a001 514229/9349*7881196^(9/11) 2415781727641146 a001 4181/1149851*(1/2+1/2*5^(1/2))^47 2415781727641146 a001 514229/9349*141422324^(9/13) 2415781727641146 a001 514229/9349*2537720636^(3/5) 2415781727641146 a001 514229/9349*45537549124^(9/17) 2415781727641146 a001 514229/9349*817138163596^(9/19) 2415781727641146 a001 514229/9349*14662949395604^(3/7) 2415781727641146 a001 514229/9349*(1/2+1/2*5^(1/2))^27 2415781727641146 a001 514229/9349*192900153618^(1/2) 2415781727641146 a001 514229/9349*10749957122^(9/16) 2415781727641146 a001 514229/9349*599074578^(9/14) 2415781727641148 a001 514229/9349*33385282^(3/4) 2415781727641369 a001 701408733/9349*710647^(3/7) 2415781727641711 a001 267914296/9349*710647^(1/2) 2415781727641774 a001 514229/9349*1860498^(9/10) 2415781727641841 a001 86267571272/9349*271443^(1/13) 2415781727642053 a001 102334155/9349*710647^(4/7) 2415781727642394 a001 4181*710647^(9/14) 2415781727642734 a001 14930352/9349*710647^(5/7) 2415781727642913 a001 9227465/9349*710647^(3/4) 2415781727643063 a001 5702887/9349*710647^(11/14) 2415781727643063 a001 832040/9349*710647^(13/14) 2415781727643318 a001 2178309/9349*710647^(6/7) 2415781727644102 a001 7677620066443/317811 2415781727644363 a001 32951280099/9349*271443^(2/13) 2415781727646885 a001 12586269025/9349*271443^(3/13) 2415781727648683 a001 139583862445/9349*103682^(1/24) 2415781727649407 a001 4807526976/9349*271443^(4/13) 2415781727651842 a001 4181/439204*45537549124^(15/17) 2415781727651842 a001 4181/439204*312119004989^(9/11) 2415781727651842 a001 4181/439204*14662949395604^(5/7) 2415781727651842 a001 4181/439204*(1/2+1/2*5^(1/2))^45 2415781727651842 a001 4181/439204*192900153618^(5/6) 2415781727651842 a001 4181/439204*28143753123^(9/10) 2415781727651842 a001 4181/439204*10749957122^(15/16) 2415781727651843 a001 196418/9349*(1/2+1/2*5^(1/2))^29 2415781727651843 a001 196418/9349*1322157322203^(1/2) 2415781727651930 a001 1836311903/9349*271443^(5/13) 2415781727654452 a001 701408733/9349*271443^(6/13) 2415781727655713 a001 433494437/9349*271443^(1/2) 2415781727656974 a001 267914296/9349*271443^(7/13) 2415781727658046 a001 86267571272/9349*103682^(1/12) 2415781727659496 a001 102334155/9349*271443^(8/13) 2415781727662018 a001 4181*271443^(9/13) 2415781727664538 a001 14930352/9349*271443^(10/13) 2415781727667047 a001 5702887/9349*271443^(11/13) 2415781727667410 a001 53316291173/9349*103682^(1/8) 2415781727669482 a001 2178309/9349*271443^(12/13) 2415781727672106 a001 2932589912673/121393 2415781727676773 a001 32951280099/9349*103682^(1/6) 2415781727686137 a001 20365011074/9349*103682^(5/24) 2415781727695500 a001 12586269025/9349*103682^(1/4) 2415781727704864 a001 7778742049/9349*103682^(7/24) 2415781727709332 a001 139583862445/9349*39603^(1/22) 2415781727714227 a001 4807526976/9349*103682^(1/3) 2415781727723591 a001 2971215073/9349*103682^(3/8) 2415781727725156 a001 4181/167761*(1/2+1/2*5^(1/2))^43 2415781727725156 a001 75025/9349*(1/2+1/2*5^(1/2))^31 2415781727725156 a001 75025/9349*9062201101803^(1/2) 2415781727732955 a001 1836311903/9349*103682^(5/12) 2415781727742318 a001 1134903170/9349*103682^(11/24) 2415781727751682 a001 701408733/9349*103682^(1/2) 2415781727761045 a001 433494437/9349*103682^(13/24) 2415781727770409 a001 267914296/9349*103682^(7/12) 2415781727779345 a001 86267571272/9349*39603^(1/11) 2415781727779772 a001 165580141/9349*103682^(5/8) 2415781727789136 a001 102334155/9349*103682^(2/3) 2415781727798499 a001 63245986/9349*103682^(17/24) 2415781727807862 a001 4181*103682^(3/4) 2415781727817227 a001 24157817/9349*103682^(19/24) 2415781727826588 a001 14930352/9349*103682^(5/6) 2415781727835959 a001 9227465/9349*103682^(7/8) 2415781727845302 a001 5702887/9349*103682^(11/12) 2415781727849358 a001 53316291173/9349*39603^(3/22) 2415781727854719 a001 3524578/9349*103682^(23/24) 2415781727864044 a001 140018708947/5796 2415781727915538 a001 43133785636/51841*5778^(7/18) 2415781727919371 a001 32951280099/9349*39603^(2/11) 2415781727989384 a001 20365011074/9349*39603^(5/22) 2415781728059397 a001 12586269025/9349*39603^(3/11) 2415781728107476 a001 75283811239/90481*5778^(7/18) 2415781728129410 a001 7778742049/9349*39603^(7/22) 2415781728135479 a001 591286729879/710647*5778^(7/18) 2415781728139565 a001 832040*5778^(7/18) 2415781728140161 a001 4052739537881/4870847*5778^(7/18) 2415781728140248 a001 3536736619241/4250681*5778^(7/18) 2415781728140302 a001 3278735159921/3940598*5778^(7/18) 2415781728140529 a001 2504730781961/3010349*5778^(7/18) 2415781728142090 a001 956722026041/1149851*5778^(7/18) 2415781728152748 a001 32951280099/24476*5778^(1/3) 2415781728152786 a001 182717648081/219602*5778^(7/18) 2415781728167183 a001 139583862445/9349*15127^(1/20) 2415781728199423 a001 4807526976/9349*39603^(4/11) 2415781728226100 a001 139583862445/167761*5778^(7/18) 2415781728227656 a001 4181/64079*(1/2+1/2*5^(1/2))^41 2415781728227656 a001 28657/9349*141422324^(11/13) 2415781728227656 a001 28657/9349*2537720636^(11/15) 2415781728227656 a001 28657/9349*45537549124^(11/17) 2415781728227656 a001 28657/9349*312119004989^(3/5) 2415781728227656 a001 28657/9349*14662949395604^(11/21) 2415781728227656 a001 28657/9349*(1/2+1/2*5^(1/2))^33 2415781728227656 a001 28657/9349*192900153618^(11/18) 2415781728227656 a001 28657/9349*10749957122^(11/16) 2415781728227656 a001 28657/9349*1568397607^(3/4) 2415781728227656 a001 28657/9349*599074578^(11/14) 2415781728227658 a001 28657/9349*33385282^(11/12) 2415781728269436 a001 2971215073/9349*39603^(9/22) 2415781728339449 a001 1836311903/9349*39603^(5/11) 2415781728409462 a001 1134903170/9349*39603^(1/2) 2415781728479476 a001 701408733/9349*39603^(6/11) 2415781728549489 a001 433494437/9349*39603^(13/22) 2415781728619502 a001 267914296/9349*39603^(7/11) 2415781728689515 a001 165580141/9349*39603^(15/22) 2415781728695047 a001 86267571272/9349*15127^(1/10) 2415781728728600 a001 53316291173/64079*5778^(7/18) 2415781728759528 a001 102334155/9349*39603^(8/11) 2415781728829541 a001 63245986/9349*39603^(17/22) 2415781728899553 a001 4181*39603^(9/11) 2415781728969568 a001 24157817/9349*39603^(19/22) 2415781729039578 a001 14930352/9349*39603^(10/11) 2415781729109598 a001 9227465/9349*39603^(21/22) 2415781729179605 a001 427859102055/17711 2415781729222911 a001 53316291173/9349*15127^(3/20) 2415781729457676 a001 591286729879/39603*2207^(1/16) 2415781729643095 a001 2971215073/15127*5778^(5/9) 2415781729750775 a001 32951280099/9349*15127^(1/5) 2415781730278639 a001 20365011074/9349*15127^(1/4) 2415781730620014 a001 20365011074/39603*5778^(4/9) 2415781730773238 a001 774004377960/51841*2207^(1/16) 2415781730806504 a001 12586269025/9349*15127^(3/10) 2415781730965176 a001 4052739537881/271443*2207^(1/16) 2415781730993179 a001 1515744265389/101521*2207^(1/16) 2415781731010487 a001 3278735159921/219602*2207^(1/16) 2415781731083800 a001 2504730781961/167761*2207^(1/16) 2415781731334368 a001 7778742049/9349*15127^(7/20) 2415781731586300 a001 956722026041/64079*2207^(1/16) 2415781731659357 a001 139583862445/9349*5778^(1/18) 2415781731671841 a001 4181/24476*2537720636^(13/15) 2415781731671841 a001 4181/24476*45537549124^(13/17) 2415781731671841 a001 4181/24476*14662949395604^(13/21) 2415781731671841 a001 4181/24476*(1/2+1/2*5^(1/2))^39 2415781731671841 a001 4181/24476*192900153618^(13/18) 2415781731671841 a001 4181/24476*73681302247^(3/4) 2415781731671841 a001 4181/24476*10749957122^(13/16) 2415781731671841 a001 4181/24476*599074578^(13/14) 2415781731671842 a001 10946/9349*2537720636^(7/9) 2415781731671842 a001 10946/9349*17393796001^(5/7) 2415781731671842 a001 10946/9349*312119004989^(7/11) 2415781731671842 a001 10946/9349*14662949395604^(5/9) 2415781731671842 a001 10946/9349*(1/2+1/2*5^(1/2))^35 2415781731671842 a001 10946/9349*505019158607^(5/8) 2415781731671842 a001 10946/9349*28143753123^(7/10) 2415781731671842 a001 10946/9349*599074578^(5/6) 2415781731671842 a001 10946/9349*228826127^(7/8) 2415781731862232 a001 4807526976/9349*15127^(2/5) 2415781731935576 a001 53316291173/103682*5778^(4/9) 2415781732127514 a001 139583862445/271443*5778^(4/9) 2415781732155517 a001 365435296162/710647*5778^(4/9) 2415781732159603 a001 956722026041/1860498*5778^(4/9) 2415781732160199 a001 2504730781961/4870847*5778^(4/9) 2415781732160286 a001 6557470319842/12752043*5778^(4/9) 2415781732160306 a001 10610209857723/20633239*5778^(4/9) 2415781732160339 a001 4052739537881/7881196*5778^(4/9) 2415781732160567 a001 1548008755920/3010349*5778^(4/9) 2415781732162128 a001 514229*5778^(4/9) 2415781732172785 a001 10182505537/12238*5778^(7/18) 2415781732172824 a001 225851433717/439204*5778^(4/9) 2415781732246138 a001 86267571272/167761*5778^(4/9) 2415781732390096 a001 2971215073/9349*15127^(9/20) 2415781732748638 a001 32951280099/64079*5778^(4/9) 2415781732917960 a001 1836311903/9349*15127^(1/2) 2415781733431068 a001 102334155/3571*3571^(14/17) 2415781733445824 a001 1134903170/9349*15127^(11/20) 2415781733663133 a001 1836311903/15127*5778^(11/18) 2415781733973688 a001 701408733/9349*15127^(3/5) 2415781734501552 a001 433494437/9349*15127^(13/20) 2415781734640052 a001 12586269025/39603*5778^(1/2) 2415781735029416 a001 267914296/9349*15127^(7/10) 2415781735030486 a001 182717648081/12238*2207^(1/16) 2415781735557280 a001 165580141/9349*15127^(3/4) 2415781735679395 a001 86267571272/9349*5778^(1/9) 2415781735955614 a001 32951280099/103682*5778^(1/2) 2415781736085144 a001 102334155/9349*15127^(4/5) 2415781736147551 a001 86267571272/271443*5778^(1/2) 2415781736175555 a001 317811*5778^(1/2) 2415781736179640 a001 591286729879/1860498*5778^(1/2) 2415781736180236 a001 1548008755920/4870847*5778^(1/2) 2415781736180323 a001 4052739537881/12752043*5778^(1/2) 2415781736180336 a001 1515744265389/4769326*5778^(1/2) 2415781736180344 a001 6557470319842/20633239*5778^(1/2) 2415781736180377 a001 2504730781961/7881196*5778^(1/2) 2415781736180605 a001 956722026041/3010349*5778^(1/2) 2415781736182165 a001 365435296162/1149851*5778^(1/2) 2415781736192823 a001 12586269025/24476*5778^(4/9) 2415781736192862 a001 139583862445/439204*5778^(1/2) 2415781736266176 a001 53316291173/167761*5778^(1/2) 2415781736613008 a001 63245986/9349*15127^(17/20) 2415781736768675 a001 20365011074/64079*5778^(1/2) 2415781737140872 a001 4181*15127^(9/10) 2415781737668737 a001 24157817/9349*15127^(19/20) 2415781737683171 a001 1134903170/15127*5778^(2/3) 2415781738196600 a001 163427634589/6765 2415781738660090 a001 7778742049/39603*5778^(5/9) 2415781739699432 a001 53316291173/9349*5778^(1/6) 2415781739975651 a001 10182505537/51841*5778^(5/9) 2415781740167589 a001 53316291173/271443*5778^(5/9) 2415781740195593 a001 139583862445/710647*5778^(5/9) 2415781740199678 a001 182717648081/930249*5778^(5/9) 2415781740200274 a001 956722026041/4870847*5778^(5/9) 2415781740200361 a001 2504730781961/12752043*5778^(5/9) 2415781740200374 a001 3278735159921/16692641*5778^(5/9) 2415781740200377 a001 10610209857723/54018521*5778^(5/9) 2415781740200382 a001 4052739537881/20633239*5778^(5/9) 2415781740200415 a001 387002188980/1970299*5778^(5/9) 2415781740200643 a001 591286729879/3010349*5778^(5/9) 2415781740202203 a001 225851433717/1149851*5778^(5/9) 2415781740212861 a001 7778742049/24476*5778^(1/2) 2415781740212900 a001 196418*5778^(5/9) 2415781740286213 a001 32951280099/167761*5778^(5/9) 2415781740788713 a001 12586269025/64079*5778^(5/9) 2415781741703208 a001 701408733/15127*5778^(13/18) 2415781742680127 a001 1602508992/13201*5778^(11/18) 2415781743719470 a001 32951280099/9349*5778^(2/9) 2415781743995689 a001 12586269025/103682*5778^(11/18) 2415781744187627 a001 121393*5778^(11/18) 2415781744215630 a001 86267571272/710647*5778^(11/18) 2415781744219716 a001 75283811239/620166*5778^(11/18) 2415781744220312 a001 591286729879/4870847*5778^(11/18) 2415781744220399 a001 516002918640/4250681*5778^(11/18) 2415781744220412 a001 4052739537881/33385282*5778^(11/18) 2415781744220414 a001 3536736619241/29134601*5778^(11/18) 2415781744220415 a001 6557470319842/54018521*5778^(11/18) 2415781744220420 a001 2504730781961/20633239*5778^(11/18) 2415781744220453 a001 956722026041/7881196*5778^(11/18) 2415781744220680 a001 365435296162/3010349*5778^(11/18) 2415781744222241 a001 139583862445/1149851*5778^(11/18) 2415781744232899 a001 1201881744/6119*5778^(5/9) 2415781744232937 a001 53316291173/439204*5778^(11/18) 2415781744306251 a001 20365011074/167761*5778^(11/18) 2415781744451838 r002 10th iterates of z^2 + 2415781744451838 r002 10th iterates of z^2 + 2415781744574758 a001 165580141/3571*3571^(13/17) 2415781744808751 a001 7778742049/64079*5778^(11/18) 2415781744945570 s003 concatenated sequence A135954 2415781745028764 a001 3/4*11^(20/41) 2415781745723246 a001 433494437/15127*5778^(7/9) 2415781746700165 a001 2971215073/39603*5778^(2/3) 2415781747739508 a001 20365011074/9349*5778^(5/18) 2415781748015727 a001 7778742049/103682*5778^(2/3) 2415781748207665 a001 20365011074/271443*5778^(2/3) 2415781748235668 a001 53316291173/710647*5778^(2/3) 2415781748239754 a001 139583862445/1860498*5778^(2/3) 2415781748240350 a001 365435296162/4870847*5778^(2/3) 2415781748240437 a001 956722026041/12752043*5778^(2/3) 2415781748240449 a001 2504730781961/33385282*5778^(2/3) 2415781748240451 a001 6557470319842/87403803*5778^(2/3) 2415781748240452 a001 10610209857723/141422324*5778^(2/3) 2415781748240452 a001 4052739537881/54018521*5778^(2/3) 2415781748240457 a001 140728068720/1875749*5778^(2/3) 2415781748240491 a001 591286729879/7881196*5778^(2/3) 2415781748240718 a001 225851433717/3010349*5778^(2/3) 2415781748242279 a001 86267571272/1149851*5778^(2/3) 2415781748252936 a001 2971215073/24476*5778^(11/18) 2415781748252975 a001 32951280099/439204*5778^(2/3) 2415781748326289 a001 75025*5778^(2/3) 2415781748828789 a001 4807526976/64079*5778^(2/3) 2415781749743284 a001 267914296/15127*5778^(5/6) 2415781750720203 a001 1836311903/39603*5778^(13/18) 2415781751438647 a001 139583862445/15127*2207^(1/8) 2415781751631177 a001 10182505537/2889*2207^(1/4) 2415781751759546 a001 12586269025/9349*5778^(1/3) 2415781752035765 a001 46368*5778^(13/18) 2415781752227702 a001 12586269025/271443*5778^(13/18) 2415781752255706 a001 32951280099/710647*5778^(13/18) 2415781752259791 a001 43133785636/930249*5778^(13/18) 2415781752260388 a001 225851433717/4870847*5778^(13/18) 2415781752260475 a001 591286729879/12752043*5778^(13/18) 2415781752260487 a001 774004377960/16692641*5778^(13/18) 2415781752260489 a001 4052739537881/87403803*5778^(13/18) 2415781752260489 a001 225749145909/4868641*5778^(13/18) 2415781752260490 a001 3278735159921/70711162*5778^(13/18) 2415781752260490 a001 2504730781961/54018521*5778^(13/18) 2415781752260495 a001 956722026041/20633239*5778^(13/18) 2415781752260528 a001 182717648081/3940598*5778^(13/18) 2415781752260756 a001 139583862445/3010349*5778^(13/18) 2415781752262317 a001 53316291173/1149851*5778^(13/18) 2415781752272974 a001 1836311903/24476*5778^(2/3) 2415781752273013 a001 10182505537/219602*5778^(13/18) 2415781752346327 a001 7778742049/167761*5778^(13/18) 2415781752848827 a001 2971215073/64079*5778^(13/18) 2415781753763322 a001 165580141/15127*5778^(8/9) 2415781754740241 a001 1134903170/39603*5778^(7/9) 2415781755278640 a001 4181/9349*(1/2+1/2*5^(1/2))^37 2415781755718448 a001 267914296/3571*3571^(12/17) 2415781755779584 a001 7778742049/9349*5778^(7/18) 2415781756055802 a001 2971215073/103682*5778^(7/9) 2415781756247740 a001 7778742049/271443*5778^(7/9) 2415781756275744 a001 20365011074/710647*5778^(7/9) 2415781756279829 a001 53316291173/1860498*5778^(7/9) 2415781756280425 a001 139583862445/4870847*5778^(7/9) 2415781756280512 a001 365435296162/12752043*5778^(7/9) 2415781756280525 a001 956722026041/33385282*5778^(7/9) 2415781756280527 a001 2504730781961/87403803*5778^(7/9) 2415781756280527 a001 6557470319842/228826127*5778^(7/9) 2415781756280527 a001 10610209857723/370248451*5778^(7/9) 2415781756280527 a001 4052739537881/141422324*5778^(7/9) 2415781756280528 a001 1548008755920/54018521*5778^(7/9) 2415781756280533 a001 591286729879/20633239*5778^(7/9) 2415781756280566 a001 225851433717/7881196*5778^(7/9) 2415781756280794 a001 86267571272/3010349*5778^(7/9) 2415781756282354 a001 32951280099/1149851*5778^(7/9) 2415781756293012 a001 567451585/12238*5778^(13/18) 2415781756293051 a001 12586269025/439204*5778^(7/9) 2415781756366364 a001 4807526976/167761*5778^(7/9) 2415781756868864 a001 28657*5778^(7/9) 2415781757783359 a001 6765*5778^(17/18) 2415781758637284 a001 139583862445/9349*2207^(1/16) 2415781758760278 a001 17711*5778^(5/6) 2415781759799621 a001 4807526976/9349*5778^(4/9) 2415781760075840 a001 1836311903/103682*5778^(5/6) 2415781760267778 a001 1602508992/90481*5778^(5/6) 2415781760295781 a001 12586269025/710647*5778^(5/6) 2415781760299867 a001 10983760033/620166*5778^(5/6) 2415781760300463 a001 86267571272/4870847*5778^(5/6) 2415781760300550 a001 75283811239/4250681*5778^(5/6) 2415781760300563 a001 591286729879/33385282*5778^(5/6) 2415781760300565 a001 516002918640/29134601*5778^(5/6) 2415781760300565 a001 4052739537881/228826127*5778^(5/6) 2415781760300565 a001 3536736619241/199691526*5778^(5/6) 2415781760300565 a001 6557470319842/370248451*5778^(5/6) 2415781760300565 a001 2504730781961/141422324*5778^(5/6) 2415781760300566 a001 956722026041/54018521*5778^(5/6) 2415781760300571 a001 365435296162/20633239*5778^(5/6) 2415781760300604 a001 139583862445/7881196*5778^(5/6) 2415781760300832 a001 53316291173/3010349*5778^(5/6) 2415781760302392 a001 20365011074/1149851*5778^(5/6) 2415781760313050 a001 701408733/24476*5778^(7/9) 2415781760313088 a001 7778742049/439204*5778^(5/6) 2415781760386402 a001 2971215073/167761*5778^(5/6) 2415781760455641 a001 365435296162/39603*2207^(1/8) 2415781760888902 a001 1134903170/64079*5778^(5/6) 2415781761771203 a001 956722026041/103682*2207^(1/8) 2415781761803405 a001 62423800725/2584 2415781761963141 a001 2504730781961/271443*2207^(1/8) 2415781761991144 a001 6557470319842/710647*2207^(1/8) 2415781761997755 a001 10610209857723/1149851*2207^(1/8) 2415781762008451 a001 4052739537881/439204*2207^(1/8) 2415781762081765 a001 140728068720/15251*2207^(1/8) 2415781762584265 a001 591286729879/64079*2207^(1/8) 2415781762780316 a001 433494437/39603*5778^(8/9) 2415781763819659 a001 2971215073/9349*5778^(1/2) 2415781764095878 a001 567451585/51841*5778^(8/9) 2415781764287816 a001 2971215073/271443*5778^(8/9) 2415781764315819 a001 7778742049/710647*5778^(8/9) 2415781764319905 a001 10182505537/930249*5778^(8/9) 2415781764320501 a001 53316291173/4870847*5778^(8/9) 2415781764320588 a001 139583862445/12752043*5778^(8/9) 2415781764320601 a001 182717648081/16692641*5778^(8/9) 2415781764320602 a001 956722026041/87403803*5778^(8/9) 2415781764320603 a001 2504730781961/228826127*5778^(8/9) 2415781764320603 a001 3278735159921/299537289*5778^(8/9) 2415781764320603 a001 10610209857723/969323029*5778^(8/9) 2415781764320603 a001 4052739537881/370248451*5778^(8/9) 2415781764320603 a001 387002188980/35355581*5778^(8/9) 2415781764320604 a001 591286729879/54018521*5778^(8/9) 2415781764320608 a001 7787980473/711491*5778^(8/9) 2415781764320642 a001 21566892818/1970299*5778^(8/9) 2415781764320869 a001 32951280099/3010349*5778^(8/9) 2415781764322430 a001 12586269025/1149851*5778^(8/9) 2415781764333088 a001 433494437/24476*5778^(5/6) 2415781764333126 a001 1201881744/109801*5778^(8/9) 2415781764406440 a001 1836311903/167761*5778^(8/9) 2415781764908940 a001 701408733/64079*5778^(8/9) 2415781766028450 a001 7787980473/844*2207^(1/8) 2415781766800354 a001 267914296/39603*5778^(17/18) 2415781766862138 a001 433494437/3571*3571^(11/17) 2415781767839697 a001 1836311903/9349*5778^(5/9) 2415781768115916 a001 701408733/103682*5778^(17/18) 2415781768307854 a001 1836311903/271443*5778^(17/18) 2415781768335857 a001 686789568/101521*5778^(17/18) 2415781768339943 a001 12586269025/1860498*5778^(17/18) 2415781768340539 a001 32951280099/4870847*5778^(17/18) 2415781768340626 a001 86267571272/12752043*5778^(17/18) 2415781768340638 a001 32264490531/4769326*5778^(17/18) 2415781768340640 a001 591286729879/87403803*5778^(17/18) 2415781768340641 a001 1548008755920/228826127*5778^(17/18) 2415781768340641 a001 4052739537881/599074578*5778^(17/18) 2415781768340641 a001 1515744265389/224056801*5778^(17/18) 2415781768340641 a001 6557470319842/969323029*5778^(17/18) 2415781768340641 a001 2504730781961/370248451*5778^(17/18) 2415781768340641 a001 956722026041/141422324*5778^(17/18) 2415781768340641 a001 365435296162/54018521*5778^(17/18) 2415781768340646 a001 139583862445/20633239*5778^(17/18) 2415781768340680 a001 53316291173/7881196*5778^(17/18) 2415781768340907 a001 20365011074/3010349*5778^(17/18) 2415781768342468 a001 7778742049/1149851*5778^(17/18) 2415781768353125 a001 10946*5778^(8/9) 2415781768353164 a001 2971215073/439204*5778^(17/18) 2415781768426478 a001 1134903170/167761*5778^(17/18) 2415781768928978 a001 433494437/64079*5778^(17/18) 2415781770820433 a001 31211900479/1292 2415781771256620 m001 (HeathBrownMoroz+Magata)/(Zeta(5)+Artin) 2415781771859735 a001 1134903170/9349*5778^(11/18) 2415781772136222 a001 7802975124/323 2415781772329721 a001 62423800997/2584 2415781772360681 a001 312119004989/2584*8^(1/3) 2415781772360681 a001 1/1292*(1/2+1/2*5^(1/2))^55 2415781772373163 a001 165580141/24476*5778^(17/18) 2415781772445820 a001 7802975125/323 2415781772948916 a001 62423801013/2584 2415781775879773 a001 701408733/9349*5778^(2/3) 2415781776393188 a001 31211900551/1292 2415781778005829 a001 701408733/3571*3571^(10/17) 2415781779899811 a001 433494437/9349*5778^(13/18) 2415781782436612 a001 86267571272/15127*2207^(3/16) 2415781782629142 a001 12586269025/5778*2207^(5/16) 2415781783919848 a001 267914296/9349*5778^(7/9) 2415781786564004 a001 39088169/1364*1364^(14/15) 2415781787939886 a001 165580141/9349*5778^(5/6) 2415781789149519 a001 1134903170/3571*3571^(9/17) 2415781789635249 a001 86267571272/9349*2207^(1/8) 2415781791453606 a001 75283811239/13201*2207^(3/16) 2415781791959924 a001 102334155/9349*5778^(8/9) 2415781792769168 a001 591286729879/103682*2207^(3/16) 2415781792961106 a001 516002918640/90481*2207^(3/16) 2415781792989109 a001 4052739537881/710647*2207^(3/16) 2415781792993195 a001 3536736619241/620166*2207^(3/16) 2415781792995720 a001 6557470319842/1149851*2207^(3/16) 2415781793006416 a001 2504730781961/439204*2207^(3/16) 2415781793079730 a001 956722026041/167761*2207^(3/16) 2415781793582230 a001 365435296162/64079*2207^(3/16) 2415781795979962 a001 63245986/9349*5778^(17/18) 2415781797026416 a001 139583862445/24476*2207^(3/16) 2415781798908154 a007 Real Root Of -508*x^4+203*x^3-36*x^2+676*x+170 2415781799999997 a001 7465177+7465176*5^(1/2) 2415781800021162 m005 (35/44+1/4*5^(1/2))/(83/16+3/16*5^(1/2)) 2415781800287907 r005 Im(z^2+c),c=-113/98+7/29*I,n=43 2415781800293209 a001 1836311903/3571*3571^(8/17) 2415781802878723 a001 53316291173/3571*1364^(1/15) 2415781803342500 m002 E^Pi/Pi^4+(Log[Pi]*ProductLog[Pi])/Pi^5 2415781811436899 a001 2971215073/3571*3571^(7/17) 2415781813434577 a001 53316291173/15127*2207^(1/4) 2415781813627108 a001 7778742049/5778*2207^(3/8) 2415781814910140 r005 Im(z^2+c),c=-4/19+12/35*I,n=9 2415781817082034 a001 1597/5778*817138163596^(2/3) 2415781817082034 a001 1597/5778*(1/2+1/2*5^(1/2))^38 2415781817082034 a001 1597/5778*10749957122^(19/24) 2415781817082034 a001 1597/5778*4106118243^(19/23) 2415781817082034 a001 1597/5778*1568397607^(19/22) 2415781817082034 a001 1597/5778*599074578^(19/21) 2415781817082035 a001 1597/5778*228826127^(19/20) 2415781817082047 a001 2584/3571*141422324^(12/13) 2415781817082047 a001 2584/3571*2537720636^(4/5) 2415781817082047 a001 2584/3571*45537549124^(12/17) 2415781817082047 a001 2584/3571*14662949395604^(4/7) 2415781817082047 a001 2584/3571*(1/2+1/2*5^(1/2))^36 2415781817082047 a001 2584/3571*505019158607^(9/14) 2415781817082047 a001 2584/3571*192900153618^(2/3) 2415781817082047 a001 2584/3571*73681302247^(9/13) 2415781817082047 a001 2584/3571*10749957122^(3/4) 2415781817082047 a001 2584/3571*4106118243^(18/23) 2415781817082047 a001 2584/3571*1568397607^(9/11) 2415781817082047 a001 2584/3571*599074578^(6/7) 2415781817082047 a001 2584/3571*228826127^(9/10) 2415781817082047 a001 2584/3571*87403803^(18/19) 2415781820633215 a001 53316291173/9349*2207^(3/16) 2415781822451572 a001 139583862445/39603*2207^(1/4) 2415781822580590 a001 4807526976/3571*3571^(6/17) 2415781823767134 a001 182717648081/51841*2207^(1/4) 2415781823959072 a001 956722026041/271443*2207^(1/4) 2415781823987075 a001 2504730781961/710647*2207^(1/4) 2415781823991161 a001 3278735159921/930249*2207^(1/4) 2415781823992125 a001 10610209857723/3010349*2207^(1/4) 2415781823993686 a001 4052739537881/1149851*2207^(1/4) 2415781824004382 a001 387002188980/109801*2207^(1/4) 2415781824077696 a001 591286729879/167761*2207^(1/4) 2415781824580196 a001 225851433717/64079*2207^(1/4) 2415781825137508 m001 sqrt(2)+Zeta(5)^exp(-Pi) 2415781828024381 a001 21566892818/6119*2207^(1/4) 2415781829677429 a003 cos(Pi*27/89)-sin(Pi*19/62) 2415781830234315 a001 312119004989*144^(7/17) 2415781833724280 a001 7778742049/3571*3571^(5/17) 2415781838816598 r005 Re(z^2+c),c=-5/19+7/11*I,n=37 2415781840217817 m005 (1/2*3^(1/2)+2/5)/(4/11*Catalan-6/7) 2415781844432543 a001 32951280099/15127*2207^(5/16) 2415781844625073 a001 267084832/321*2207^(7/16) 2415781844867970 a001 12586269025/3571*3571^(4/17) 2415781851536628 a005 (1/cos(3/133*Pi))^351 2415781851631180 a001 32951280099/9349*2207^(1/4) 2415781853449538 a001 86267571272/39603*2207^(5/16) 2415781853968453 m001 (PolyaRandomWalk3D+ZetaQ(2))/(gamma(1)+Niven) 2415781854765100 a001 225851433717/103682*2207^(5/16) 2415781854957038 a001 591286729879/271443*2207^(5/16) 2415781854985041 a001 1548008755920/710647*2207^(5/16) 2415781854989127 a001 4052739537881/1860498*2207^(5/16) 2415781854989723 a001 2178309*2207^(5/16) 2415781854990091 a001 6557470319842/3010349*2207^(5/16) 2415781854991652 a001 2504730781961/1149851*2207^(5/16) 2415781855002348 a001 956722026041/439204*2207^(5/16) 2415781855075662 a001 365435296162/167761*2207^(5/16) 2415781855578162 a001 139583862445/64079*2207^(5/16) 2415781856011661 a001 20365011074/3571*3571^(3/17) 2415781859022347 a001 53316291173/24476*2207^(5/16) 2415781861803396 a001 101003839642/4181 2415781861803398 a001 48315635/2+1/2*5^(1/2) 2415781862263769 r005 Re(z^2+c),c=-149/122+4/25*I,n=34 2415781863258109 a001 14930352/3571*9349^(18/19) 2415781864712813 a001 24157817/3571*9349^(17/19) 2415781865175119 m001 (GaussAGM+Landau)/(2^(1/3)-ln(2+3^(1/2))) 2415781866167513 a001 39088169/3571*9349^(16/19) 2415781867155351 a001 32951280099/3571*3571^(2/17) 2415781867622215 a001 63245986/3571*9349^(15/19) 2415781868335542 r002 8th iterates of z^2 + 2415781869076916 a001 102334155/3571*9349^(14/19) 2415781870454274 a001 43133785636/2889*843^(1/14) 2415781870531617 a001 165580141/3571*9349^(13/19) 2415781871986318 a001 267914296/3571*9349^(12/19) 2415781873128013 a001 31622993/682*1364^(13/15) 2415781873441020 a001 433494437/3571*9349^(11/19) 2415781874607210 m001 (FeigenbaumDelta-Tribonacci)/(ln(3)-gamma(1)) 2415781874895721 a001 701408733/3571*9349^(10/19) 2415781875430509 a001 20365011074/15127*2207^(3/8) 2415781875623040 a001 2971215073/5778*2207^(1/2) 2415781876285055 m001 (exp(1)+cos(1))/(GAMMA(3/4)+Champernowne) 2415781876350422 a001 1134903170/3571*9349^(9/19) 2415781877805123 a001 1836311903/3571*9349^(8/19) 2415781878299042 a001 53316291173/3571*3571^(1/17) 2415781878885436 a001 1597/15127*2537720636^(8/9) 2415781878885436 a001 1597/15127*312119004989^(8/11) 2415781878885436 a001 1597/15127*(1/2+1/2*5^(1/2))^40 2415781878885436 a001 1597/15127*23725150497407^(5/8) 2415781878885436 a001 1597/15127*73681302247^(10/13) 2415781878885436 a001 1597/15127*28143753123^(4/5) 2415781878885436 a001 1597/15127*10749957122^(5/6) 2415781878885436 a001 1597/15127*4106118243^(20/23) 2415781878885436 a001 1597/15127*1568397607^(10/11) 2415781878885436 a001 1597/15127*599074578^(20/21) 2415781878885451 a001 6765/3571*45537549124^(2/3) 2415781878885451 a001 6765/3571*(1/2+1/2*5^(1/2))^34 2415781878885451 a001 6765/3571*10749957122^(17/24) 2415781878885451 a001 6765/3571*4106118243^(17/23) 2415781878885451 a001 6765/3571*1568397607^(17/22) 2415781878885451 a001 6765/3571*599074578^(17/21) 2415781878885451 a001 6765/3571*228826127^(17/20) 2415781878885451 a001 6765/3571*87403803^(17/19) 2415781878885453 a001 6765/3571*33385282^(17/18) 2415781879259824 a001 2971215073/3571*9349^(7/19) 2415781880714526 a001 4807526976/3571*9349^(6/19) 2415781882169227 a001 7778742049/3571*9349^(5/19) 2415781882629147 a001 20365011074/9349*2207^(5/16) 2415781883623928 a001 12586269025/3571*9349^(4/19) 2415781883795434 m001 KhinchinHarmonic+RenyiParking^exp(1/Pi) 2415781884447504 a001 53316291173/39603*2207^(3/8) 2415781885078629 a001 20365011074/3571*9349^(3/19) 2415781885410195 a001 264431485177/10946 2415781885602220 a001 1597*24476^(20/21) 2415781885763066 a001 139583862445/103682*2207^(3/8) 2415781885794265 a001 9227465/3571*24476^(19/21) 2415781885955004 a001 365435296162/271443*2207^(3/8) 2415781885983007 a001 956722026041/710647*2207^(3/8) 2415781885986282 a001 14930352/3571*24476^(6/7) 2415781885987093 a001 2504730781961/1860498*2207^(3/8) 2415781885987689 a001 6557470319842/4870847*2207^(3/8) 2415781885987830 a001 10610209857723/7881196*2207^(3/8) 2415781885988057 a001 1346269*2207^(3/8) 2415781885989618 a001 1548008755920/1149851*2207^(3/8) 2415781886000314 a001 591286729879/439204*2207^(3/8) 2415781886073628 a001 225851433717/167761*2207^(3/8) 2415781886178310 a001 24157817/3571*24476^(17/21) 2415781886370334 a001 39088169/3571*24476^(16/21) 2415781886533330 a001 32951280099/3571*9349^(2/19) 2415781886562359 a001 63245986/3571*24476^(5/7) 2415781886576128 a001 86267571272/64079*2207^(3/8) 2415781886754384 a001 102334155/3571*24476^(2/3) 2415781886946409 a001 165580141/3571*24476^(13/21) 2415781887138434 a001 267914296/3571*24476^(4/7) 2415781887330459 a001 433494437/3571*24476^(11/21) 2415781887522484 a001 701408733/3571*24476^(10/21) 2415781887714509 a001 1134903170/3571*24476^(3/7) 2415781887902431 a001 1597/39603*2537720636^(14/15) 2415781887902431 a001 1597/39603*17393796001^(6/7) 2415781887902431 a001 1597/39603*45537549124^(14/17) 2415781887902431 a001 1597/39603*14662949395604^(2/3) 2415781887902431 a001 1597/39603*(1/2+1/2*5^(1/2))^42 2415781887902431 a001 1597/39603*505019158607^(3/4) 2415781887902431 a001 1597/39603*192900153618^(7/9) 2415781887902431 a001 1597/39603*10749957122^(7/8) 2415781887902431 a001 1597/39603*4106118243^(21/23) 2415781887902431 a001 1597/39603*1568397607^(21/22) 2415781887902446 a001 17711/3571*(1/2+1/2*5^(1/2))^32 2415781887902446 a001 17711/3571*23725150497407^(1/2) 2415781887902446 a001 17711/3571*505019158607^(4/7) 2415781887902446 a001 17711/3571*73681302247^(8/13) 2415781887902446 a001 17711/3571*10749957122^(2/3) 2415781887902446 a001 17711/3571*4106118243^(16/23) 2415781887902446 a001 17711/3571*1568397607^(8/11) 2415781887902446 a001 17711/3571*599074578^(16/21) 2415781887902446 a001 17711/3571*228826127^(4/5) 2415781887902446 a001 17711/3571*87403803^(16/19) 2415781887902448 a001 17711/3571*33385282^(8/9) 2415781887902460 a001 17711/3571*12752043^(16/17) 2415781887906533 a001 1836311903/3571*24476^(8/21) 2415781887988031 a001 53316291173/3571*9349^(1/19) 2415781888098558 a001 2971215073/3571*24476^(1/3) 2415781888290583 a001 4807526976/3571*24476^(2/7) 2415781888482608 a001 7778742049/3571*24476^(5/21) 2415781888674633 a001 12586269025/3571*24476^(4/21) 2415781888854381 a001 692290615889/28657 2415781888866658 a001 20365011074/3571*24476^(1/7) 2415781888879874 a001 2178309/3571*64079^(22/23) 2415781888905594 a001 3524578/3571*64079^(21/23) 2415781888931120 a001 1597*64079^(20/23) 2415781888956721 a001 9227465/3571*64079^(19/23) 2415781888982293 a001 14930352/3571*64079^(18/23) 2415781889007876 a001 24157817/3571*64079^(17/23) 2415781889033454 a001 39088169/3571*64079^(16/23) 2415781889058683 a001 32951280099/3571*24476^(2/21) 2415781889059035 a001 63245986/3571*64079^(15/23) 2415781889084614 a001 102334155/3571*64079^(14/23) 2415781889110194 a001 165580141/3571*64079^(13/23) 2415781889135774 a001 267914296/3571*64079^(12/23) 2415781889161354 a001 433494437/3571*64079^(11/23) 2415781889186934 a001 701408733/3571*64079^(10/23) 2415781889212514 a001 1134903170/3571*64079^(9/23) 2415781889217972 a001 46368/3571*7881196^(10/11) 2415781889217993 a001 1597/103682*312119004989^(4/5) 2415781889217993 a001 1597/103682*(1/2+1/2*5^(1/2))^44 2415781889217993 a001 1597/103682*23725150497407^(11/16) 2415781889217993 a001 1597/103682*73681302247^(11/13) 2415781889217993 a001 1597/103682*10749957122^(11/12) 2415781889217993 a001 1597/103682*4106118243^(22/23) 2415781889218003 a001 46368/3571*20633239^(6/7) 2415781889218008 a001 46368/3571*141422324^(10/13) 2415781889218008 a001 46368/3571*2537720636^(2/3) 2415781889218008 a001 46368/3571*45537549124^(10/17) 2415781889218008 a001 46368/3571*312119004989^(6/11) 2415781889218008 a001 46368/3571*14662949395604^(10/21) 2415781889218008 a001 46368/3571*(1/2+1/2*5^(1/2))^30 2415781889218008 a001 46368/3571*192900153618^(5/9) 2415781889218008 a001 46368/3571*28143753123^(3/5) 2415781889218008 a001 46368/3571*10749957122^(5/8) 2415781889218008 a001 46368/3571*4106118243^(15/23) 2415781889218008 a001 46368/3571*1568397607^(15/22) 2415781889218008 a001 46368/3571*599074578^(5/7) 2415781889218008 a001 46368/3571*228826127^(3/4) 2415781889218008 a001 46368/3571*87403803^(15/19) 2415781889218010 a001 46368/3571*33385282^(5/6) 2415781889218021 a001 46368/3571*12752043^(15/17) 2415781889218103 a001 46368/3571*4870847^(15/16) 2415781889238094 a001 1836311903/3571*64079^(8/23) 2415781889250708 a001 53316291173/3571*24476^(1/21) 2415781889263673 a001 2971215073/3571*64079^(7/23) 2415781889289253 a001 4807526976/3571*64079^(6/23) 2415781889314833 a001 7778742049/3571*64079^(5/23) 2415781889340413 a001 12586269025/3571*64079^(4/23) 2415781889356881 a001 362488072498/15005 2415781889365993 a001 20365011074/3571*64079^(3/23) 2415781889374048 a001 1597*167761^(4/5) 2415781889391230 a001 63245986/3571*167761^(3/5) 2415781889391573 a001 32951280099/3571*64079^(2/23) 2415781889408398 a001 701408733/3571*167761^(2/5) 2415781889409931 a001 1597/271443*(1/2+1/2*5^(1/2))^46 2415781889409931 a001 1597/271443*10749957122^(23/24) 2415781889409941 a001 121393/3571*20633239^(4/5) 2415781889409946 a001 121393/3571*17393796001^(4/7) 2415781889409946 a001 121393/3571*14662949395604^(4/9) 2415781889409946 a001 121393/3571*(1/2+1/2*5^(1/2))^28 2415781889409946 a001 121393/3571*505019158607^(1/2) 2415781889409946 a001 121393/3571*73681302247^(7/13) 2415781889409946 a001 121393/3571*10749957122^(7/12) 2415781889409946 a001 121393/3571*4106118243^(14/23) 2415781889409946 a001 121393/3571*1568397607^(7/11) 2415781889409946 a001 121393/3571*599074578^(2/3) 2415781889409946 a001 121393/3571*228826127^(7/10) 2415781889409946 a001 121393/3571*87403803^(14/19) 2415781889409947 a001 121393/3571*33385282^(7/9) 2415781889409958 a001 121393/3571*12752043^(14/17) 2415781889410035 a001 121393/3571*4870847^(7/8) 2415781889410597 a001 121393/3571*1860498^(14/15) 2415781889417153 a001 53316291173/3571*64079^(1/23) 2415781889425565 a001 7778742049/3571*167761^(1/5) 2415781889430194 a001 4745030471581/196418 2415781889430903 a001 832040/3571*439204^(8/9) 2415781889433031 a001 3524578/3571*439204^(7/9) 2415781889434381 a001 14930352/3571*439204^(2/3) 2415781889435775 a001 63245986/3571*439204^(5/9) 2415781889437167 a001 267914296/3571*439204^(4/9) 2415781889437934 a001 1597/710647*45537549124^(16/17) 2415781889437934 a001 1597/710647*14662949395604^(16/21) 2415781889437934 a001 1597/710647*(1/2+1/2*5^(1/2))^48 2415781889437934 a001 1597/710647*192900153618^(8/9) 2415781889437934 a001 1597/710647*73681302247^(12/13) 2415781889437949 a001 317811/3571*141422324^(2/3) 2415781889437949 a001 317811/3571*(1/2+1/2*5^(1/2))^26 2415781889437949 a001 317811/3571*73681302247^(1/2) 2415781889437949 a001 317811/3571*10749957122^(13/24) 2415781889437949 a001 317811/3571*4106118243^(13/23) 2415781889437949 a001 317811/3571*1568397607^(13/22) 2415781889437949 a001 317811/3571*599074578^(13/21) 2415781889437949 a001 317811/3571*228826127^(13/20) 2415781889437949 a001 317811/3571*87403803^(13/19) 2415781889437951 a001 317811/3571*33385282^(13/18) 2415781889437960 a001 317811/3571*12752043^(13/17) 2415781889438032 a001 317811/3571*4870847^(13/16) 2415781889438554 a001 317811/3571*1860498^(13/15) 2415781889438558 a001 1134903170/3571*439204^(1/3) 2415781889439950 a001 4807526976/3571*439204^(2/9) 2415781889440891 a001 12422651052253/514229 2415781889441341 a001 20365011074/3571*439204^(1/9) 2415781889442006 a001 832040/3571*7881196^(8/11) 2415781889442020 a001 1597/1860498*312119004989^(10/11) 2415781889442020 a001 1597/1860498*(1/2+1/2*5^(1/2))^50 2415781889442020 a001 1597/1860498*3461452808002^(5/6) 2415781889442035 a001 832040/3571*141422324^(8/13) 2415781889442035 a001 832040/3571*2537720636^(8/15) 2415781889442035 a001 832040/3571*45537549124^(8/17) 2415781889442035 a001 832040/3571*14662949395604^(8/21) 2415781889442035 a001 832040/3571*(1/2+1/2*5^(1/2))^24 2415781889442035 a001 832040/3571*192900153618^(4/9) 2415781889442035 a001 832040/3571*73681302247^(6/13) 2415781889442035 a001 832040/3571*10749957122^(1/2) 2415781889442035 a001 832040/3571*4106118243^(12/23) 2415781889442035 a001 832040/3571*1568397607^(6/11) 2415781889442035 a001 832040/3571*599074578^(4/7) 2415781889442035 a001 832040/3571*228826127^(3/5) 2415781889442035 a001 832040/3571*87403803^(12/19) 2415781889442036 a001 832040/3571*33385282^(2/3) 2415781889442045 a001 832040/3571*12752043^(12/17) 2415781889442111 a001 832040/3571*4870847^(3/4) 2415781889442391 a001 317811/3571*710647^(13/14) 2415781889442451 a001 32522922685178/1346269 2415781889442593 a001 832040/3571*1860498^(4/5) 2415781889442605 a001 2178309/3571*7881196^(2/3) 2415781889442616 a001 1597/4870847*(1/2+1/2*5^(1/2))^52 2415781889442616 a001 1597/4870847*23725150497407^(13/16) 2415781889442616 a001 1597/4870847*505019158607^(13/14) 2415781889442631 a001 2178309/3571*312119004989^(2/5) 2415781889442631 a001 2178309/3571*(1/2+1/2*5^(1/2))^22 2415781889442631 a001 2178309/3571*10749957122^(11/24) 2415781889442631 a001 2178309/3571*4106118243^(11/23) 2415781889442631 a001 2178309/3571*1568397607^(1/2) 2415781889442631 a001 2178309/3571*599074578^(11/21) 2415781889442631 a001 2178309/3571*228826127^(11/20) 2415781889442631 a001 2178309/3571*87403803^(11/19) 2415781889442632 a001 2178309/3571*33385282^(11/18) 2415781889442640 a001 2178309/3571*12752043^(11/17) 2415781889442679 a001 85146117003281/3524578 2415781889442701 a001 2178309/3571*4870847^(11/16) 2415781889442703 a001 1597/12752043*14662949395604^(6/7) 2415781889442703 a001 1597/12752043*(1/2+1/2*5^(1/2))^54 2415781889442709 a001 14930352/3571*7881196^(6/11) 2415781889442712 a001 44583085664933/1845493 2415781889442715 a001 1597*20633239^(4/7) 2415781889442715 a001 63245986/3571*7881196^(5/11) 2415781889442716 a001 1597/33385282*14662949395604^(8/9) 2415781889442716 a001 1597/33385282*(1/2+1/2*5^(1/2))^56 2415781889442717 a001 583600167970714/24157817 2415781889442718 a001 1527885075587477/63245986 2415781889442718 a001 1597/228826127*14662949395604^(20/21) 2415781889442718 a001 4000055058791717/165580141 2415781889442718 a001 10472280100787674/433494437 2415781889442718 a001 1597*2537720636^(4/9) 2415781889442718 a001 1597*23725150497407^(5/16) 2415781889442718 a001 1597*505019158607^(5/14) 2415781889442718 a001 1597*73681302247^(5/13) 2415781889442718 a001 1597*28143753123^(2/5) 2415781889442718 a001 1597*10749957122^(5/12) 2415781889442718 a001 1597*4106118243^(10/23) 2415781889442718 a001 1597*1568397607^(5/11) 2415781889442718 a001 5648168380927877/233802911 2415781889442718 a001 1597*599074578^(10/21) 2415781889442718 a001 6472225041995957/267914296 2415781889442718 a001 1597*228826127^(1/2) 2415781889442718 a001 365435326416/15127 2415781889442718 a001 1597*87403803^(10/19) 2415781889442718 a001 944284907616763/39088169 2415781889442718 a001 267914296/3571*7881196^(4/11) 2415781889442719 a001 1597/54018521*14662949395604^(19/21) 2415781889442719 a001 1597*33385282^(5/9) 2415781889442720 a001 433494437/3571*7881196^(1/3) 2415781889442720 a001 120228246548683/4976784 2415781889442722 a001 1134903170/3571*7881196^(3/11) 2415781889442723 a001 1597/20633239*(1/2+1/2*5^(1/2))^55 2415781889442723 a001 1597/20633239*3461452808002^(11/12) 2415781889442726 a001 4807526976/3571*7881196^(2/11) 2415781889442727 a001 1597*12752043^(10/17) 2415781889442729 a001 20365011074/3571*7881196^(1/11) 2415781889442730 a001 102334155/3571*20633239^(2/5) 2415781889442730 a001 63245986/3571*20633239^(3/7) 2415781889442730 a001 14930352/3571*141422324^(6/13) 2415781889442730 a001 14930352/3571*2537720636^(2/5) 2415781889442730 a001 14930352/3571*45537549124^(6/17) 2415781889442730 a001 14930352/3571*14662949395604^(2/7) 2415781889442730 a001 14930352/3571*(1/2+1/2*5^(1/2))^18 2415781889442730 a001 14930352/3571*192900153618^(1/3) 2415781889442730 a001 14930352/3571*10749957122^(3/8) 2415781889442730 a001 14930352/3571*4106118243^(9/23) 2415781889442730 a001 14930352/3571*1568397607^(9/22) 2415781889442730 a001 14930352/3571*599074578^(3/7) 2415781889442730 a001 14930352/3571*228826127^(9/20) 2415781889442731 a001 14930352/3571*87403803^(9/19) 2415781889442731 a001 701408733/3571*20633239^(2/7) 2415781889442731 a001 2971215073/3571*20633239^(1/5) 2415781889442732 a001 14930352/3571*33385282^(1/2) 2415781889442732 a001 7778742049/3571*20633239^(1/7) 2415781889442732 a001 39088169/3571*(1/2+1/2*5^(1/2))^16 2415781889442732 a001 39088169/3571*23725150497407^(1/4) 2415781889442732 a001 39088169/3571*73681302247^(4/13) 2415781889442732 a001 39088169/3571*10749957122^(1/3) 2415781889442732 a001 39088169/3571*4106118243^(8/23) 2415781889442732 a001 39088169/3571*1568397607^(4/11) 2415781889442732 a001 39088169/3571*599074578^(8/21) 2415781889442732 a001 39088169/3571*228826127^(2/5) 2415781889442732 a001 39088169/3571*87403803^(8/19) 2415781889442733 a001 102334155/3571*17393796001^(2/7) 2415781889442733 a001 102334155/3571*14662949395604^(2/9) 2415781889442733 a001 102334155/3571*(1/2+1/2*5^(1/2))^14 2415781889442733 a001 102334155/3571*10749957122^(7/24) 2415781889442733 a001 102334155/3571*4106118243^(7/23) 2415781889442733 a001 102334155/3571*1568397607^(7/22) 2415781889442733 a001 267914296/3571*141422324^(4/13) 2415781889442733 a001 102334155/3571*599074578^(1/3) 2415781889442733 a001 102334155/3571*228826127^(7/20) 2415781889442733 a001 1134903170/3571*141422324^(3/13) 2415781889442733 a001 165580141/3571*141422324^(1/3) 2415781889442733 a001 4807526976/3571*141422324^(2/13) 2415781889442733 a001 20365011074/3571*141422324^(1/13) 2415781889442733 a001 267914296/3571*2537720636^(4/15) 2415781889442733 a001 267914296/3571*45537549124^(4/17) 2415781889442733 a001 267914296/3571*14662949395604^(4/21) 2415781889442733 a001 267914296/3571*(1/2+1/2*5^(1/2))^12 2415781889442733 a001 267914296/3571*192900153618^(2/9) 2415781889442733 a001 267914296/3571*73681302247^(3/13) 2415781889442733 a001 267914296/3571*10749957122^(1/4) 2415781889442733 a001 267914296/3571*4106118243^(6/23) 2415781889442733 a001 267914296/3571*1568397607^(3/11) 2415781889442733 a001 267914296/3571*599074578^(2/7) 2415781889442733 a001 701408733/3571*2537720636^(2/9) 2415781889442733 a001 701408733/3571*312119004989^(2/11) 2415781889442733 a001 701408733/3571*(1/2+1/2*5^(1/2))^10 2415781889442733 a001 701408733/3571*28143753123^(1/5) 2415781889442733 a001 701408733/3571*10749957122^(5/24) 2415781889442733 a001 701408733/3571*4106118243^(5/23) 2415781889442733 a001 701408733/3571*1568397607^(5/22) 2415781889442733 a001 1836311903/3571*(1/2+1/2*5^(1/2))^8 2415781889442733 a001 1836311903/3571*23725150497407^(1/8) 2415781889442733 a001 1836311903/3571*73681302247^(2/13) 2415781889442733 a001 1836311903/3571*10749957122^(1/6) 2415781889442733 a001 1836311903/3571*4106118243^(4/23) 2415781889442733 a001 4807526976/3571*2537720636^(2/15) 2415781889442733 a001 7778742049/3571*2537720636^(1/9) 2415781889442733 a001 20365011074/3571*2537720636^(1/15) 2415781889442733 a001 4807526976/3571*45537549124^(2/17) 2415781889442733 a001 4807526976/3571*14662949395604^(2/21) 2415781889442733 a001 4807526976/3571*(1/2+1/2*5^(1/2))^6 2415781889442733 a001 4807526976/3571*10749957122^(1/8) 2415781889442733 a001 12586269025/3571*(1/2+1/2*5^(1/2))^4 2415781889442733 a001 12586269025/3571*23725150497407^(1/16) 2415781889442733 a001 12586269025/3571*73681302247^(1/13) 2415781889442733 a001 4807526976/3571*4106118243^(3/23) 2415781889442733 a001 12586269025/3571*10749957122^(1/12) 2415781889442733 a001 32951280099/3571*(1/2+1/2*5^(1/2))^2 2415781889442733 a001 86267571272/3571 2415781889442733 a001 53316291173/7142+53316291173/7142*5^(1/2) 2415781889442733 a001 32951280099/3571*10749957122^(1/24) 2415781889442733 a001 20365011074/3571*45537549124^(1/17) 2415781889442733 a001 20365011074/3571*14662949395604^(1/21) 2415781889442733 a001 20365011074/3571*(1/2+1/2*5^(1/2))^3 2415781889442733 a001 20365011074/3571*10749957122^(1/16) 2415781889442733 a001 32951280099/3571*4106118243^(1/23) 2415781889442733 a001 7778742049/3571*312119004989^(1/11) 2415781889442733 a001 7778742049/3571*(1/2+1/2*5^(1/2))^5 2415781889442733 a001 7778742049/3571*28143753123^(1/10) 2415781889442733 a001 12586269025/3571*4106118243^(2/23) 2415781889442733 a001 1836311903/3571*1568397607^(2/11) 2415781889442733 a001 32951280099/3571*1568397607^(1/22) 2415781889442733 a001 2971215073/3571*17393796001^(1/7) 2415781889442733 a001 2971215073/3571*14662949395604^(1/9) 2415781889442733 a001 2971215073/3571*(1/2+1/2*5^(1/2))^7 2415781889442733 a001 12586269025/3571*1568397607^(1/11) 2415781889442733 a001 4807526976/3571*1568397607^(3/22) 2415781889442733 a001 1134903170/3571*2537720636^(1/5) 2415781889442733 a001 32951280099/3571*599074578^(1/21) 2415781889442733 a001 1134903170/3571*45537549124^(3/17) 2415781889442733 a001 1134903170/3571*14662949395604^(1/7) 2415781889442733 a001 1134903170/3571*(1/2+1/2*5^(1/2))^9 2415781889442733 a001 1134903170/3571*192900153618^(1/6) 2415781889442733 a001 1134903170/3571*10749957122^(3/16) 2415781889442733 a001 20365011074/3571*599074578^(1/14) 2415781889442733 a001 701408733/3571*599074578^(5/21) 2415781889442733 a001 12586269025/3571*599074578^(2/21) 2415781889442733 a001 4807526976/3571*599074578^(1/7) 2415781889442733 a001 1836311903/3571*599074578^(4/21) 2415781889442733 a001 2971215073/3571*599074578^(1/6) 2415781889442733 a001 1134903170/3571*599074578^(3/14) 2415781889442733 a001 32951280099/3571*228826127^(1/20) 2415781889442733 a001 433494437/3571*312119004989^(1/5) 2415781889442733 a001 433494437/3571*(1/2+1/2*5^(1/2))^11 2415781889442733 a001 433494437/3571*1568397607^(1/4) 2415781889442733 a001 12586269025/3571*228826127^(1/10) 2415781889442733 a001 7778742049/3571*228826127^(1/8) 2415781889442733 a001 4807526976/3571*228826127^(3/20) 2415781889442733 a001 267914296/3571*228826127^(3/10) 2415781889442733 a001 1836311903/3571*228826127^(1/5) 2415781889442733 a001 701408733/3571*228826127^(1/4) 2415781889442733 a001 32951280099/3571*87403803^(1/19) 2415781889442733 a001 165580141/3571*(1/2+1/2*5^(1/2))^13 2415781889442733 a001 165580141/3571*73681302247^(1/4) 2415781889442733 a001 12586269025/3571*87403803^(2/19) 2415781889442733 a001 4807526976/3571*87403803^(3/19) 2415781889442733 a001 1836311903/3571*87403803^(4/19) 2415781889442733 a001 102334155/3571*87403803^(7/19) 2415781889442733 a001 63245986/3571*141422324^(5/13) 2415781889442733 a001 701408733/3571*87403803^(5/19) 2415781889442733 a001 267914296/3571*87403803^(6/19) 2415781889442733 a001 32951280099/3571*33385282^(1/18) 2415781889442733 a001 63245986/3571*2537720636^(1/3) 2415781889442733 a001 63245986/3571*45537549124^(5/17) 2415781889442733 a001 63245986/3571*312119004989^(3/11) 2415781889442733 a001 63245986/3571*14662949395604^(5/21) 2415781889442733 a001 63245986/3571*(1/2+1/2*5^(1/2))^15 2415781889442733 a001 63245986/3571*192900153618^(5/18) 2415781889442733 a001 63245986/3571*28143753123^(3/10) 2415781889442733 a001 63245986/3571*10749957122^(5/16) 2415781889442733 a001 63245986/3571*599074578^(5/14) 2415781889442733 a001 63245986/3571*228826127^(3/8) 2415781889442733 a001 20365011074/3571*33385282^(1/12) 2415781889442733 a001 12586269025/3571*33385282^(1/9) 2415781889442733 a001 4807526976/3571*33385282^(1/6) 2415781889442733 a001 1836311903/3571*33385282^(2/9) 2415781889442733 a001 1134903170/3571*33385282^(1/4) 2415781889442733 a001 701408733/3571*33385282^(5/18) 2415781889442733 a001 39088169/3571*33385282^(4/9) 2415781889442733 a001 267914296/3571*33385282^(1/3) 2415781889442733 a001 102334155/3571*33385282^(7/18) 2415781889442733 a001 24157817/3571*45537549124^(1/3) 2415781889442733 a001 24157817/3571*(1/2+1/2*5^(1/2))^17 2415781889442734 a001 32951280099/3571*12752043^(1/17) 2415781889442734 a001 63245986/3571*33385282^(5/12) 2415781889442734 a001 12586269025/3571*12752043^(2/17) 2415781889442735 a001 4807526976/3571*12752043^(3/17) 2415781889442736 a001 1836311903/3571*12752043^(4/17) 2415781889442737 a001 701408733/3571*12752043^(5/17) 2415781889442738 a001 267914296/3571*12752043^(6/17) 2415781889442738 a001 9227465/3571*817138163596^(1/3) 2415781889442738 a001 9227465/3571*(1/2+1/2*5^(1/2))^19 2415781889442738 a001 14930352/3571*12752043^(9/17) 2415781889442738 a001 9227465/3571*87403803^(1/2) 2415781889442739 a001 102334155/3571*12752043^(7/17) 2415781889442739 a001 32951280099/3571*4870847^(1/16) 2415781889442739 a001 39088169/3571*12752043^(8/17) 2415781889442741 a001 24157817/3571*12752043^(1/2) 2415781889442745 a001 12586269025/3571*4870847^(1/8) 2415781889442747 a001 3524578/3571*7881196^(7/11) 2415781889442752 a001 4807526976/3571*4870847^(3/16) 2415781889442757 a001 1597/7881196*(1/2+1/2*5^(1/2))^53 2415781889442758 a001 1836311903/3571*4870847^(1/4) 2415781889442764 a001 701408733/3571*4870847^(5/16) 2415781889442768 a001 3524578/3571*20633239^(3/5) 2415781889442771 a001 267914296/3571*4870847^(3/8) 2415781889442771 a001 3524578/3571*141422324^(7/13) 2415781889442772 a001 3524578/3571*2537720636^(7/15) 2415781889442772 a001 3524578/3571*17393796001^(3/7) 2415781889442772 a001 3524578/3571*45537549124^(7/17) 2415781889442772 a001 3524578/3571*14662949395604^(1/3) 2415781889442772 a001 3524578/3571*(1/2+1/2*5^(1/2))^21 2415781889442772 a001 3524578/3571*192900153618^(7/18) 2415781889442772 a001 3524578/3571*10749957122^(7/16) 2415781889442772 a001 3524578/3571*599074578^(1/2) 2415781889442773 a001 3524578/3571*33385282^(7/12) 2415781889442777 a001 102334155/3571*4870847^(7/16) 2415781889442779 a001 32951280099/3571*1860498^(1/15) 2415781889442781 a001 1597*4870847^(5/8) 2415781889442783 a001 39088169/3571*4870847^(1/2) 2415781889442788 a001 14930352/3571*4870847^(9/16) 2415781889442802 a001 20365011074/3571*1860498^(1/10) 2415781889442820 a001 17541064772701/726103 2415781889442826 a001 12586269025/3571*1860498^(2/15) 2415781889442849 a001 7778742049/3571*1860498^(1/6) 2415781889442872 a001 4807526976/3571*1860498^(1/5) 2415781889442919 a001 1836311903/3571*1860498^(4/15) 2415781889442942 a001 1134903170/3571*1860498^(3/10) 2415781889442965 a001 701408733/3571*1860498^(1/3) 2415781889442984 a001 1597/3010349*817138163596^(17/19) 2415781889442984 a001 1597/3010349*14662949395604^(17/21) 2415781889442984 a001 1597/3010349*(1/2+1/2*5^(1/2))^51 2415781889442984 a001 1597/3010349*192900153618^(17/18) 2415781889442999 a001 1346269/3571*(1/2+1/2*5^(1/2))^23 2415781889442999 a001 1346269/3571*4106118243^(1/2) 2415781889443012 a001 267914296/3571*1860498^(2/5) 2415781889443058 a001 102334155/3571*1860498^(7/15) 2415781889443074 a001 32951280099/3571*710647^(1/14) 2415781889443082 a001 63245986/3571*1860498^(1/2) 2415781889443105 a001 39088169/3571*1860498^(8/15) 2415781889443143 a001 2178309/3571*1860498^(11/15) 2415781889443149 a001 14930352/3571*1860498^(3/5) 2415781889443183 a001 1597*1860498^(2/3) 2415781889443260 a001 3524578/3571*1860498^(7/10) 2415781889443416 a001 365459484235/15128 2415781889443416 a001 12586269025/3571*710647^(1/7) 2415781889443758 a001 4807526976/3571*710647^(3/14) 2415781889443929 a001 2971215073/3571*710647^(1/4) 2415781889444099 a001 1836311903/3571*710647^(2/7) 2415781889444441 a001 701408733/3571*710647^(5/14) 2415781889444545 a001 1597/1149851*14662949395604^(7/9) 2415781889444545 a001 1597/1149851*(1/2+1/2*5^(1/2))^49 2415781889444545 a001 1597/1149851*505019158607^(7/8) 2415781889444556 a001 514229/3571*20633239^(5/7) 2415781889444560 a001 514229/3571*2537720636^(5/9) 2415781889444560 a001 514229/3571*312119004989^(5/11) 2415781889444560 a001 514229/3571*(1/2+1/2*5^(1/2))^25 2415781889444560 a001 514229/3571*3461452808002^(5/12) 2415781889444560 a001 514229/3571*28143753123^(1/2) 2415781889444560 a001 514229/3571*228826127^(5/8) 2415781889444783 a001 267914296/3571*710647^(3/7) 2415781889445124 a001 102334155/3571*710647^(1/2) 2415781889445141 a001 514229/3571*1860498^(5/6) 2415781889445255 a001 32951280099/3571*271443^(1/13) 2415781889445466 a001 39088169/3571*710647^(4/7) 2415781889445806 a001 14930352/3571*710647^(9/14) 2415781889446135 a001 1597*710647^(5/7) 2415781889446135 a001 832040/3571*710647^(6/7) 2415781889446359 a001 3524578/3571*710647^(3/4) 2415781889446389 a001 2178309/3571*710647^(11/14) 2415781889447501 a001 2559206860224/105937 2415781889447777 a001 12586269025/3571*271443^(2/13) 2415781889450299 a001 4807526976/3571*271443^(3/13) 2415781889452096 a001 53316291173/3571*103682^(1/24) 2415781889452821 a001 1836311903/3571*271443^(4/13) 2415781889455224 a001 196418/3571*7881196^(9/11) 2415781889455241 a001 1597/439204*(1/2+1/2*5^(1/2))^47 2415781889455256 a001 196418/3571*141422324^(9/13) 2415781889455256 a001 196418/3571*2537720636^(3/5) 2415781889455256 a001 196418/3571*45537549124^(9/17) 2415781889455256 a001 196418/3571*14662949395604^(3/7) 2415781889455256 a001 196418/3571*(1/2+1/2*5^(1/2))^27 2415781889455256 a001 196418/3571*192900153618^(1/2) 2415781889455256 a001 196418/3571*10749957122^(9/16) 2415781889455256 a001 196418/3571*599074578^(9/14) 2415781889455258 a001 196418/3571*33385282^(3/4) 2415781889455343 a001 701408733/3571*271443^(5/13) 2415781889455884 a001 196418/3571*1860498^(9/10) 2415781889457865 a001 267914296/3571*271443^(6/13) 2415781889459126 a001 165580141/3571*271443^(1/2) 2415781889460387 a001 102334155/3571*271443^(7/13) 2415781889461460 a001 32951280099/3571*103682^(1/12) 2415781889462909 a001 39088169/3571*271443^(8/13) 2415781889465429 a001 14930352/3571*271443^(9/13) 2415781889467938 a001 1597*271443^(10/13) 2415781889470374 a001 2178309/3571*271443^(11/13) 2415781889470823 a001 20365011074/3571*103682^(1/8) 2415781889472300 a001 832040/3571*271443^(12/13) 2415781889475505 a001 2932590109091/121393 2415781889480187 a001 12586269025/3571*103682^(1/6) 2415781889489550 a001 7778742049/3571*103682^(5/24) 2415781889498914 a001 4807526976/3571*103682^(1/4) 2415781889508277 a001 2971215073/3571*103682^(7/24) 2415781889512746 a001 53316291173/3571*39603^(1/22) 2415781889517641 a001 1836311903/3571*103682^(1/3) 2415781889527004 a001 1134903170/3571*103682^(3/8) 2415781889528555 a001 1597/167761*45537549124^(15/17) 2415781889528555 a001 1597/167761*312119004989^(9/11) 2415781889528555 a001 1597/167761*14662949395604^(5/7) 2415781889528555 a001 1597/167761*(1/2+1/2*5^(1/2))^45 2415781889528555 a001 1597/167761*192900153618^(5/6) 2415781889528555 a001 1597/167761*28143753123^(9/10) 2415781889528555 a001 1597/167761*10749957122^(15/16) 2415781889528570 a001 75025/3571*(1/2+1/2*5^(1/2))^29 2415781889528570 a001 75025/3571*1322157322203^(1/2) 2415781889536368 a001 701408733/3571*103682^(5/12) 2415781889545731 a001 433494437/3571*103682^(11/24) 2415781889555095 a001 267914296/3571*103682^(1/2) 2415781889564459 a001 165580141/3571*103682^(13/24) 2415781889573822 a001 102334155/3571*103682^(7/12) 2415781889582759 a001 32951280099/3571*39603^(1/11) 2415781889583186 a001 63245986/3571*103682^(5/8) 2415781889592549 a001 39088169/3571*103682^(2/3) 2415781889601914 a001 24157817/3571*103682^(17/24) 2415781889611274 a001 14930352/3571*103682^(3/4) 2415781889620645 a001 9227465/3571*103682^(19/24) 2415781889629988 a001 1597*103682^(5/6) 2415781889639406 a001 3524578/3571*103682^(7/8) 2415781889648629 a001 2178309/3571*103682^(11/12) 2415781889652772 a001 20365011074/3571*39603^(3/22) 2415781889658360 a001 1346269/3571*103682^(23/24) 2415781889667443 a001 373383248867/15456 2415781889722785 a001 12586269025/3571*39603^(2/11) 2415781889792798 a001 7778742049/3571*39603^(5/22) 2415781889862811 a001 4807526976/3571*39603^(3/11) 2415781889932824 a001 2971215073/3571*39603^(7/22) 2415781889970597 a001 53316291173/3571*15127^(1/20) 2415781890002837 a001 1836311903/3571*39603^(4/11) 2415781890020314 a001 32951280099/24476*2207^(3/8) 2415781890031055 a001 1597/64079*(1/2+1/2*5^(1/2))^43 2415781890031070 a001 28657/3571*(1/2+1/2*5^(1/2))^31 2415781890031070 a001 28657/3571*9062201101803^(1/2) 2415781890072850 a001 1134903170/3571*39603^(9/22) 2415781890142863 a001 701408733/3571*39603^(5/11) 2415781890212876 a001 433494437/3571*39603^(1/2) 2415781890282889 a001 267914296/3571*39603^(6/11) 2415781890352902 a001 165580141/3571*39603^(13/22) 2415781890422915 a001 102334155/3571*39603^(7/11) 2415781890492928 a001 63245986/3571*39603^(15/22) 2415781890498461 a001 32951280099/3571*15127^(1/10) 2415781890562941 a001 39088169/3571*39603^(8/11) 2415781890632955 a001 24157817/3571*39603^(17/22) 2415781890702965 a001 14930352/3571*39603^(9/11) 2415781890772986 a001 9227465/3571*39603^(19/22) 2415781890842978 a001 1597*39603^(10/11) 2415781890913045 a001 3524578/3571*39603^(21/22) 2415781890983004 a001 427859130712/17711 2415781891026325 a001 20365011074/3571*15127^(3/20) 2415781891554189 a001 12586269025/3571*15127^(1/5) 2415781892082053 a001 7778742049/3571*15127^(1/4) 2415781892609917 a001 4807526976/3571*15127^(3/10) 2415781893137781 a001 2971215073/3571*15127^(7/20) 2415781893462771 a001 53316291173/3571*5778^(1/18) 2415781893475241 a001 1597/24476*(1/2+1/2*5^(1/2))^41 2415781893475255 a001 10946/3571*141422324^(11/13) 2415781893475255 a001 10946/3571*2537720636^(11/15) 2415781893475255 a001 10946/3571*45537549124^(11/17) 2415781893475255 a001 10946/3571*312119004989^(3/5) 2415781893475255 a001 10946/3571*14662949395604^(11/21) 2415781893475255 a001 10946/3571*(1/2+1/2*5^(1/2))^33 2415781893475255 a001 10946/3571*192900153618^(11/18) 2415781893475255 a001 10946/3571*10749957122^(11/16) 2415781893475255 a001 10946/3571*1568397607^(3/4) 2415781893475255 a001 10946/3571*599074578^(11/14) 2415781893475257 a001 10946/3571*33385282^(11/12) 2415781893665645 a001 1836311903/3571*15127^(2/5) 2415781894193509 a001 1134903170/3571*15127^(9/20) 2415781894721373 a001 701408733/3571*15127^(1/2) 2415781895249238 a001 433494437/3571*15127^(11/20) 2415781895777102 a001 267914296/3571*15127^(3/5) 2415781896304966 a001 165580141/3571*15127^(13/20) 2415781896832830 a001 102334155/3571*15127^(7/10) 2415781897205596 a001 1/322*(1/2*5^(1/2)+1/2)^23*3^(3/17) 2415781897360694 a001 63245986/3571*15127^(3/4) 2415781897482809 a001 32951280099/3571*5778^(1/9) 2415781897888558 a001 39088169/3571*15127^(4/5) 2415781898416423 a001 24157817/3571*15127^(17/20) 2415781898944284 a001 14930352/3571*15127^(9/10) 2415781899472156 a001 9227465/3571*15127^(19/20) 2415781899999997 a001 7465178+7465176*5^(1/2) 2415781901502847 a001 20365011074/3571*5778^(1/6) 2415781905522885 a001 12586269025/3571*5778^(2/9) 2415781906428476 a001 12586269025/15127*2207^(7/16) 2415781906621006 a001 1836311903/5778*2207^(9/16) 2415781906750268 h001 (1/12*exp(2)+5/9)/(6/11*exp(2)+9/11) 2415781909542923 a001 7778742049/3571*5778^(5/18) 2415781913562961 a001 4807526976/3571*5778^(1/3) 2415781913627113 a001 12586269025/9349*2207^(3/8) 2415781915445471 a001 10983760033/13201*2207^(7/16) 2415781916761033 a001 43133785636/51841*2207^(7/16) 2415781916952971 a001 75283811239/90481*2207^(7/16) 2415781916980974 a001 591286729879/710647*2207^(7/16) 2415781916985060 a001 832040*2207^(7/16) 2415781916985656 a001 4052739537881/4870847*2207^(7/16) 2415781916985743 a001 3536736619241/4250681*2207^(7/16) 2415781916985796 a001 3278735159921/3940598*2207^(7/16) 2415781916986024 a001 2504730781961/3010349*2207^(7/16) 2415781916987585 a001 956722026041/1149851*2207^(7/16) 2415781916998281 a001 182717648081/219602*2207^(7/16) 2415781917071595 a001 139583862445/167761*2207^(7/16) 2415781917082040 a001 1597/9349*2537720636^(13/15) 2415781917082040 a001 1597/9349*45537549124^(13/17) 2415781917082040 a001 1597/9349*14662949395604^(13/21) 2415781917082040 a001 1597/9349*(1/2+1/2*5^(1/2))^39 2415781917082040 a001 1597/9349*192900153618^(13/18) 2415781917082040 a001 1597/9349*73681302247^(3/4) 2415781917082040 a001 1597/9349*10749957122^(13/16) 2415781917082040 a001 1597/9349*599074578^(13/14) 2415781917082055 a001 4181/3571*2537720636^(7/9) 2415781917082055 a001 4181/3571*17393796001^(5/7) 2415781917082055 a001 4181/3571*312119004989^(7/11) 2415781917082055 a001 4181/3571*14662949395604^(5/9) 2415781917082055 a001 4181/3571*(1/2+1/2*5^(1/2))^35 2415781917082055 a001 4181/3571*505019158607^(5/8) 2415781917082055 a001 4181/3571*28143753123^(7/10) 2415781917082055 a001 4181/3571*599074578^(5/6) 2415781917082055 a001 4181/3571*228826127^(7/8) 2415781917574095 a001 53316291173/64079*2207^(7/16) 2415781917582999 a001 2971215073/3571*5778^(7/18) 2415781919768585 a007 Real Root Of -340*x^4-538*x^3+582*x^2-208*x+96 2415781920440699 a001 53316291173/3571*2207^(1/16) 2415781921018280 a001 10182505537/12238*2207^(7/16) 2415781921603037 a001 1836311903/3571*5778^(4/9) 2415781923606797 a001 24157817+5^(1/2) 2415781925623075 a001 1134903170/3571*5778^(1/2) 2415781927868588 r009 Im(z^3+c),c=-15/64+41/43*I,n=62 2415781929643113 a001 701408733/3571*5778^(5/9) 2415781932257677 a001 32264490531/2161*843^(1/14) 2415781932477427 a001 12586269025/2207*843^(3/14) 2415781933663151 a001 433494437/3571*5778^(11/18) 2415781937303757 p001 sum(1/(434*n+375)/n/(512^n),n=1..infinity) 2415781937426443 a001 7778742049/15127*2207^(1/2) 2415781937618973 a001 567451585/2889*2207^(5/8) 2415781937683189 a001 267914296/3571*5778^(2/3) 2415781939394747 m001 (Ei(1,1)-sin(1/12*Pi))/(gamma(1)+Niven) 2415781941274672 a001 591286729879/39603*843^(1/14) 2415781941703227 a001 165580141/3571*5778^(13/18) 2415781942590234 a001 774004377960/51841*843^(1/14) 2415781942782172 a001 4052739537881/271443*843^(1/14) 2415781942810175 a001 1515744265389/101521*843^(1/14) 2415781942827482 a001 3278735159921/219602*843^(1/14) 2415781942900796 a001 2504730781961/167761*843^(1/14) 2415781943403296 a001 956722026041/64079*843^(1/14) 2415781944625081 a001 7778742049/9349*2207^(7/16) 2415781945723266 a001 102334155/3571*5778^(7/9) 2415781946443438 a001 20365011074/39603*2207^(1/2) 2415781946847482 a001 182717648081/12238*843^(1/14) 2415781947759000 a001 53316291173/103682*2207^(1/2) 2415781947950938 a001 139583862445/271443*2207^(1/2) 2415781947978941 a001 365435296162/710647*2207^(1/2) 2415781947983027 a001 956722026041/1860498*2207^(1/2) 2415781947983623 a001 2504730781961/4870847*2207^(1/2) 2415781947983710 a001 6557470319842/12752043*2207^(1/2) 2415781947983730 a001 10610209857723/20633239*2207^(1/2) 2415781947983764 a001 4052739537881/7881196*2207^(1/2) 2415781947983991 a001 1548008755920/3010349*2207^(1/2) 2415781947985552 a001 514229*2207^(1/2) 2415781947996248 a001 225851433717/439204*2207^(1/2) 2415781948069562 a001 86267571272/167761*2207^(1/2) 2415781948572062 a001 32951280099/64079*2207^(1/2) 2415781949743304 a001 63245986/3571*5778^(5/6) 2415781951438667 a001 32951280099/3571*2207^(1/8) 2415781952016248 a001 12586269025/24476*2207^(1/2) 2415781953763341 a001 39088169/3571*5778^(8/9) 2415781957783381 a001 24157817/3571*5778^(17/18) 2415781959692025 a001 9303105/124*1364^(4/5) 2415781961803405 a001 62423805893/2584 2415781965513991 p004 log(30809/24197) 2415781968424410 a001 686789568/2161*2207^(9/16) 2415781968616941 a001 233802911/1926*2207^(11/16) 2415781970454282 a001 139583862445/9349*843^(1/14) 2415781973007713 p003 LerchPhi(1/8,4,197/77) 2415781975623048 a001 4807526976/9349*2207^(1/2) 2415781977441406 a001 12586269025/39603*2207^(9/16) 2415781978756967 a001 32951280099/103682*2207^(9/16) 2415781978948905 a001 86267571272/271443*2207^(9/16) 2415781978976909 a001 317811*2207^(9/16) 2415781978980994 a001 591286729879/1860498*2207^(9/16) 2415781978981590 a001 1548008755920/4870847*2207^(9/16) 2415781978981677 a001 4052739537881/12752043*2207^(9/16) 2415781978981690 a001 1515744265389/4769326*2207^(9/16) 2415781978981698 a001 6557470319842/20633239*2207^(9/16) 2415781978981731 a001 2504730781961/7881196*2207^(9/16) 2415781978981959 a001 956722026041/3010349*2207^(9/16) 2415781978983519 a001 365435296162/1149851*2207^(9/16) 2415781978994216 a001 139583862445/439204*2207^(9/16) 2415781979067529 a001 53316291173/167761*2207^(9/16) 2415781979570029 a001 20365011074/64079*2207^(9/16) 2415781982436634 a001 20365011074/3571*2207^(3/16) 2415781983014215 a001 7778742049/24476*2207^(9/16) 2415781983142690 m005 (5/18+1/6*5^(1/2))/(8/9*Pi-1/10) 2415781994757593 r009 Re(z^3+c),c=-47/118+12/23*I,n=38 2415781999422378 a001 2971215073/15127*2207^(5/8) 2415781999614909 a001 433494437/5778*2207^(3/4) 2415781999999997 a001 7465179+7465176*5^(1/2) 2415782001055521 r009 Im(z^3+c),c=-7/78+25/29*I,n=22 2415782002917227 m001 1/ln(BesselK(0,1))^2*Robbin*sqrt(1+sqrt(3))^2 2415782003966543 m001 (Niven-ZetaP(4))/(ln(2)-Kac) 2415782004231158 m001 (FeigenbaumC-Totient)/(cos(1/5*Pi)+GAMMA(3/4)) 2415782006621016 a001 2971215073/9349*2207^(9/16) 2415782008439373 a001 7778742049/39603*2207^(5/8) 2415782009070911 r005 Re(z^2+c),c=-11/50+13/31*I,n=34 2415782009754935 a001 10182505537/51841*2207^(5/8) 2415782009946873 a001 53316291173/271443*2207^(5/8) 2415782009974877 a001 139583862445/710647*2207^(5/8) 2415782009978962 a001 182717648081/930249*2207^(5/8) 2415782009979558 a001 956722026041/4870847*2207^(5/8) 2415782009979645 a001 2504730781961/12752043*2207^(5/8) 2415782009979658 a001 3278735159921/16692641*2207^(5/8) 2415782009979661 a001 10610209857723/54018521*2207^(5/8) 2415782009979666 a001 4052739537881/20633239*2207^(5/8) 2415782009979699 a001 387002188980/1970299*2207^(5/8) 2415782009979927 a001 591286729879/3010349*2207^(5/8) 2415782009981487 a001 225851433717/1149851*2207^(5/8) 2415782009992184 a001 196418*2207^(5/8) 2415782010065497 a001 32951280099/167761*2207^(5/8) 2415782010567997 a001 12586269025/64079*2207^(5/8) 2415782013434602 a001 12586269025/3571*2207^(1/4) 2415782013719007 m001 (2*Pi/GAMMA(5/6))^Otter/Robbin 2415782014012183 a001 1201881744/6119*2207^(5/8) 2415782023606797 a001 24157818+5^(1/2) 2415782024596394 h001 (5/8*exp(2)+4/11)/(2/3*exp(1)+1/4) 2415782025722542 a007 Real Root Of 501*x^4+995*x^3-593*x^2-383*x-500 2415782029600010 m001 GAMMA(1/4)/Ei(1)*ln(log(1+sqrt(2))) 2415782030420346 a001 1836311903/15127*2207^(11/16) 2415782030612877 a001 133957148/2889*2207^(13/16) 2415782032560941 m002 1+E^Pi+6/(Pi^5*Log[Pi]) 2415782033064558 l006 ln(4805/6118) 2415782037618984 a001 1836311903/9349*2207^(5/8) 2415782039437342 a001 1602508992/13201*2207^(11/16) 2415782040752904 a001 12586269025/103682*2207^(11/16) 2415782040944842 a001 121393*2207^(11/16) 2415782040972845 a001 86267571272/710647*2207^(11/16) 2415782040976931 a001 75283811239/620166*2207^(11/16) 2415782040977527 a001 591286729879/4870847*2207^(11/16) 2415782040977614 a001 516002918640/4250681*2207^(11/16) 2415782040977626 a001 4052739537881/33385282*2207^(11/16) 2415782040977628 a001 3536736619241/29134601*2207^(11/16) 2415782040977629 a001 6557470319842/54018521*2207^(11/16) 2415782040977634 a001 2504730781961/20633239*2207^(11/16) 2415782040977667 a001 956722026041/7881196*2207^(11/16) 2415782040977895 a001 365435296162/3010349*2207^(11/16) 2415782040979456 a001 139583862445/1149851*2207^(11/16) 2415782040990152 a001 53316291173/439204*2207^(11/16) 2415782041063466 a001 20365011074/167761*2207^(11/16) 2415782041565966 a001 7778742049/64079*2207^(11/16) 2415782044432571 a001 7778742049/3571*2207^(5/16) 2415782045010152 a001 2971215073/24476*2207^(11/16) 2415782046256040 a001 165580141/1364*1364^(11/15) 2415782053989975 r005 Im(z^2+c),c=-61/86+3/47*I,n=46 2415782057645984 m001 1/ln(Niven)*MadelungNaCl/FeigenbaumKappa 2415782060763791 r001 12i'th iterates of 2*x^2-1 of 2415782061418315 a001 1134903170/15127*2207^(3/4) 2415782061610845 a001 165580141/5778*2207^(7/8) 2415782062050488 m001 1/BesselJ(0,1)^2*ln(Robbin)/cos(1)^2 2415782068616953 a001 1134903170/9349*2207^(11/16) 2415782070435311 a001 2971215073/39603*2207^(3/4) 2415782071750872 a001 7778742049/103682*2207^(3/4) 2415782071819190 m001 1/MinimumGamma*exp(Si(Pi))^2/GAMMA(1/12) 2415782071942810 a001 20365011074/271443*2207^(3/4) 2415782071970814 a001 53316291173/710647*2207^(3/4) 2415782071974899 a001 139583862445/1860498*2207^(3/4) 2415782071975495 a001 365435296162/4870847*2207^(3/4) 2415782071975582 a001 956722026041/12752043*2207^(3/4) 2415782071975595 a001 2504730781961/33385282*2207^(3/4) 2415782071975597 a001 6557470319842/87403803*2207^(3/4) 2415782071975597 a001 10610209857723/141422324*2207^(3/4) 2415782071975598 a001 4052739537881/54018521*2207^(3/4) 2415782071975603 a001 140728068720/1875749*2207^(3/4) 2415782071975636 a001 591286729879/7881196*2207^(3/4) 2415782071975864 a001 225851433717/3010349*2207^(3/4) 2415782071977424 a001 86267571272/1149851*2207^(3/4) 2415782071988121 a001 32951280099/439204*2207^(3/4) 2415782072061435 a001 75025*2207^(3/4) 2415782072563934 a001 4807526976/64079*2207^(3/4) 2415782074741731 r005 Im(z^2+c),c=-29/90+21/55*I,n=19 2415782075430539 a001 4807526976/3571*2207^(3/8) 2415782076008120 a001 1836311903/24476*2207^(3/4) 2415782078885467 a001 1597/3571*(1/2+1/2*5^(1/2))^37 2415782091238855 m005 (-21/44+1/4*5^(1/2))/(-3/44+2/11*5^(1/2)) 2415782092416284 a001 701408733/15127*2207^(13/16) 2415782092608814 a001 34111385/1926*2207^(15/16) 2415782099168215 m001 ln(LandauRamanujan)^2*Bloch*sin(1)^2 2415782099614922 a001 701408733/9349*2207^(3/4) 2415782101433280 a001 1836311903/39603*2207^(13/16) 2415782101697516 m005 (19/20+1/4*5^(1/2))/(1/2*Catalan+1/6) 2415782102748842 a001 46368*2207^(13/16) 2415782102940779 a001 12586269025/271443*2207^(13/16) 2415782102968783 a001 32951280099/710647*2207^(13/16) 2415782102972868 a001 43133785636/930249*2207^(13/16) 2415782102973465 a001 225851433717/4870847*2207^(13/16) 2415782102973552 a001 591286729879/12752043*2207^(13/16) 2415782102973564 a001 774004377960/16692641*2207^(13/16) 2415782102973566 a001 4052739537881/87403803*2207^(13/16) 2415782102973566 a001 225749145909/4868641*2207^(13/16) 2415782102973567 a001 3278735159921/70711162*2207^(13/16) 2415782102973567 a001 2504730781961/54018521*2207^(13/16) 2415782102973572 a001 956722026041/20633239*2207^(13/16) 2415782102973605 a001 182717648081/3940598*2207^(13/16) 2415782102973833 a001 139583862445/3010349*2207^(13/16) 2415782102975394 a001 53316291173/1149851*2207^(13/16) 2415782102986090 a001 10182505537/219602*2207^(13/16) 2415782103059404 a001 7778742049/167761*2207^(13/16) 2415782103561904 a001 2971215073/64079*2207^(13/16) 2415782104117511 a007 Real Root Of 80*x^4-672*x^3+963*x^2+191*x+668 2415782106428509 a001 2971215073/3571*2207^(7/16) 2415782107006090 a001 567451585/12238*2207^(13/16) 2415782112062698 r005 Im(z^2+c),c=-37/30+1/34*I,n=59 2415782112133535 k006 concat of cont frac of 2415782112302026 m001 (Champernowne+DuboisRaymond)/(Lehmer+Sarnak) 2415782113269251 a001 53316291173/5778*843^(1/7) 2415782115501049 m001 Artin*(HardyLittlewoodC3+Trott) 2415782121232746 m001 ln(2+3^(1/2))^Ei(1)/ArtinRank2 2415782122327699 s002 sum(A143067[n]/((2^n+1)/n),n=1..infinity) 2415782123414253 a001 433494437/15127*2207^(7/8) 2415782123606889 a001 23843769560/987 2415782125441730 r009 Re(z^3+c),c=-17/74+1/50*I,n=2 2415782128234957 b008 23+Tan[4] 2415782130612892 a001 433494437/9349*2207^(13/16) 2415782132257712 a001 53316291173/3571*843^(1/14) 2415782132310620 a007 Real Root Of -107*x^4-96*x^3+414*x^2+181*x+312 2415782132431249 a001 1134903170/39603*2207^(7/8) 2415782132820058 a001 66978574/341*1364^(2/3) 2415782133746811 a001 2971215073/103682*2207^(7/8) 2415782133938749 a001 7778742049/271443*2207^(7/8) 2415782133966752 a001 20365011074/710647*2207^(7/8) 2415782133970838 a001 53316291173/1860498*2207^(7/8) 2415782133971434 a001 139583862445/4870847*2207^(7/8) 2415782133971521 a001 365435296162/12752043*2207^(7/8) 2415782133971534 a001 956722026041/33385282*2207^(7/8) 2415782133971536 a001 2504730781961/87403803*2207^(7/8) 2415782133971536 a001 6557470319842/228826127*2207^(7/8) 2415782133971536 a001 10610209857723/370248451*2207^(7/8) 2415782133971536 a001 4052739537881/141422324*2207^(7/8) 2415782133971537 a001 1548008755920/54018521*2207^(7/8) 2415782133971542 a001 591286729879/20633239*2207^(7/8) 2415782133971575 a001 225851433717/7881196*2207^(7/8) 2415782133971803 a001 86267571272/3010349*2207^(7/8) 2415782133973363 a001 32951280099/1149851*2207^(7/8) 2415782133984059 a001 12586269025/439204*2207^(7/8) 2415782134057373 a001 4807526976/167761*2207^(7/8) 2415782134559873 a001 28657*2207^(7/8) 2415782137426478 a001 1836311903/3571*2207^(1/2) 2415782138004059 a001 701408733/24476*2207^(7/8) 2415782144968096 m001 LandauRamanujan^2*exp(Backhouse)/Zeta(5) 2415782145846652 r005 Im(z^2+c),c=-127/98+1/45*I,n=61 2415782147213595 a001 24157817+2*5^(1/2) 2415782154412223 a001 267914296/15127*2207^(15/16) 2415782155283185 g004 Im(GAMMA(-13/5+I*29/20)) 2415782157372038 m002 5/3+(E^Pi*Coth[Pi])/Pi^3 2415782158894152 a001 105937*521^(46/53) 2415782161610861 a001 267914296/9349*2207^(7/8) 2415782163429219 a001 17711*2207^(15/16) 2415782164744781 a001 1836311903/103682*2207^(15/16) 2415782164859272 r005 Im(z^2+c),c=-7/54+41/62*I,n=60 2415782164936719 a001 1602508992/90481*2207^(15/16) 2415782164964722 a001 12586269025/710647*2207^(15/16) 2415782164968808 a001 10983760033/620166*2207^(15/16) 2415782164969404 a001 86267571272/4870847*2207^(15/16) 2415782164969491 a001 75283811239/4250681*2207^(15/16) 2415782164969504 a001 591286729879/33385282*2207^(15/16) 2415782164969506 a001 516002918640/29134601*2207^(15/16) 2415782164969506 a001 4052739537881/228826127*2207^(15/16) 2415782164969506 a001 3536736619241/199691526*2207^(15/16) 2415782164969506 a001 6557470319842/370248451*2207^(15/16) 2415782164969506 a001 2504730781961/141422324*2207^(15/16) 2415782164969507 a001 956722026041/54018521*2207^(15/16) 2415782164969512 a001 365435296162/20633239*2207^(15/16) 2415782164969545 a001 139583862445/7881196*2207^(15/16) 2415782164969772 a001 53316291173/3010349*2207^(15/16) 2415782164971333 a001 20365011074/1149851*2207^(15/16) 2415782164982029 a001 7778742049/439204*2207^(15/16) 2415782165055343 a001 2971215073/167761*2207^(15/16) 2415782165557843 a001 1134903170/64079*2207^(15/16) 2415782168424448 a001 1134903170/3571*2207^(9/16) 2415782169002029 a001 433494437/24476*2207^(15/16) 2415782175072660 a001 139583862445/15127*843^(1/7) 2415782175292411 a001 7778742049/2207*843^(2/7) 2415782176780404 m001 CareFree/Artin*GlaisherKinkelin 2415782179788491 a007 Real Root Of -503*x^4+299*x^3-136*x^2+990*x+24 2415782183891076 a001 7778742049/843*322^(1/6) 2415782184089657 a001 365435296162/39603*843^(1/7) 2415782185405219 a001 956722026041/103682*843^(1/7) 2415782185410196 a001 48315637/2+3/2*5^(1/2) 2415782185410334 a001 7947923390/329 2415782185597156 a001 2504730781961/271443*843^(1/7) 2415782185625160 a001 6557470319842/710647*843^(1/7) 2415782185631771 a001 10610209857723/1149851*843^(1/7) 2415782185642467 a001 4052739537881/439204*843^(1/7) 2415782185715781 a001 140728068720/15251*843^(1/7) 2415782186218281 a001 591286729879/64079*843^(1/7) 2415782189662467 a001 7787980473/844*843^(1/7) 2415782192277994 m001 Gompertz^HardyLittlewoodC4-Riemann3rdZero 2415782192608832 a001 165580141/9349*2207^(15/16) 2415782192767065 s002 sum(A027394[n]/((2*n+1)!),n=1..infinity) 2415782193063754 b008 3*(8+ArcCsch[19]) 2415782193525806 a007 Real Root Of 534*x^4+997*x^3-562*x^2+749*x+958 2415782194427558 a001 23843770259/987 2415782195947315 a001 23843770274/987 2415782195967578 a001 119218851371/987*8^(1/3) 2415782195967578 a001 2/987*(1/2+1/2*5^(1/2))^53 2415782196048632 a001 7947923425/329 2415782196555217 a001 23843770280/987 2415782196986622 s002 sum(A282095[n]/(n!^2),n=1..infinity) 2415782199422418 a001 701408733/3571*2207^(5/8) 2415782199999997 a001 7465181+7465176*5^(1/2) 2415782206918033 r009 Re(z^3+c),c=-23/58+30/59*I,n=37 2415782213008698 m005 (1/2*Pi+4/11)/(4/11*Zeta(3)+4/11) 2415782213269269 a001 86267571272/9349*843^(1/7) 2415782213934501 r005 Re(z^2+c),c=-1/52+23/38*I,n=34 2415782219384079 a001 433494437/1364*1364^(3/5) 2415782223606889 a001 23843770547/987 2415782228939438 a007 Real Root Of -398*x^4+286*x^3+9*x^2+518*x+130 2415782230420389 a001 433494437/3571*2207^(11/16) 2415782232063355 r005 Re(z^2+c),c=3/118+25/41*I,n=5 2415782244346859 r009 Im(z^3+c),c=-27/58+3/25*I,n=8 2415782246156885 a003 sin(Pi*13/88)/cos(Pi*26/59) 2415782261418360 a001 267914296/3571*2207^(3/4) 2415782265326586 a007 Real Root Of 120*x^4+116*x^3-215*x^2+108*x-936 2415782266396731 m001 ln(FeigenbaumB)^2/Champernowne/GAMMA(5/6) 2415782274056150 g005 GAMMA(3/11)*GAMMA(8/9)/GAMMA(7/8)/GAMMA(2/3) 2415782285218020 r002 6th iterates of z^2 + 2415782285726287 r005 Re(z^2+c),c=13/66+2/33*I,n=16 2415782292416332 a001 165580141/3571*2207^(13/16) 2415782293785675 p003 LerchPhi(1/16,5,289/137) 2415782298653597 m001 (GAMMA(13/24)+GAMMA(7/12))/(Si(Pi)-cos(1)) 2415782305948104 a001 701408733/1364*1364^(8/15) 2415782313860780 a001 10182505537/682*521^(1/13) 2415782314183792 a007 Real Root Of -267*x^4-577*x^3+235*x^2+302*x+317 2415782320062774 r005 Re(z^2+c),c=-6/13+20/39*I,n=13 2415782322156289 r005 Re(z^2+c),c=5/98+32/49*I,n=10 2415782323414304 a001 102334155/3571*2207^(7/8) 2415782333794205 a007 Real Root Of 431*x^4+753*x^3-922*x^2-860*x-760 2415782335580377 m005 (1/2*Catalan+1/7)/(5/8*Zeta(3)-1) 2415782339945883 m001 GAMMA(1/6)/(BesselK(0,1)-GAMMA(1/24)) 2415782346650878 m001 (ln(gamma)+sin(1/12*Pi))/(Landau+TwinPrimes) 2415782347213595 a001 24157819+2*5^(1/2) 2415782353929523 a007 Real Root Of 680*x^4-845*x^3+234*x^2-325*x-8 2415782354412276 a001 63245986/3571*2207^(15/16) 2415782356084253 a001 10983760033/1926*843^(3/14) 2415782359448944 r005 Im(z^2+c),c=-20/23+7/44*I,n=8 2415782370820393 a001 24157817+3*5^(1/2) 2415782375072715 a001 32951280099/3571*843^(1/7) 2415782380563155 m001 (-GAMMA(3/4)+2/3)/(-GAMMA(1/24)+1/3) 2415782384599454 a001 39088169/521*521^(12/13) 2415782385410334 a001 7947924048/329 2415782385864269 l006 ln(4633/5899) 2415782390233895 r004 Im(z^2+c),c=11/34+8/19*I,z(0)=I,n=3 2415782392512131 a001 567451585/682*1364^(7/15) 2415782417887668 a001 86267571272/15127*843^(3/14) 2415782418107418 a001 4807526976/2207*843^(5/14) 2415782419298061 r009 Re(z^3+c),c=-2/5+27/52*I,n=60 2415782422424947 a007 Real Root Of -457*x^4-834*x^3+365*x^2-978*x-686 2415782424071357 m001 (Kac+Thue)/(gamma(2)+GolombDickman) 2415782426904665 a001 75283811239/13201*843^(3/14) 2415782428220227 a001 591286729879/103682*843^(3/14) 2415782428412165 a001 516002918640/90481*843^(3/14) 2415782428440169 a001 4052739537881/710647*843^(3/14) 2415782428444254 a001 3536736619241/620166*843^(3/14) 2415782428446779 a001 6557470319842/1149851*843^(3/14) 2415782428457476 a001 2504730781961/439204*843^(3/14) 2415782428530790 a001 956722026041/167761*843^(3/14) 2415782429033290 a001 365435296162/64079*843^(3/14) 2415782432477476 a001 139583862445/24476*843^(3/14) 2415782435000137 m001 ln(Pi)^2*Conway*sqrt(2) 2415782435817488 m001 GAMMA(19/24)^2*exp(DuboisRaymond)^2/sin(1) 2415782435977655 r009 Re(z^3+c),c=-39/94+29/55*I,n=45 2415782442542278 r005 Re(z^2+c),c=-33/86+7/18*I,n=3 2415782450206904 m001 (ln(2)-Cahen)/(FeigenbaumD-GolombDickman) 2415782456084281 a001 53316291173/9349*843^(3/14) 2415782463911368 a003 cos(Pi*4/77)/sin(Pi*15/112) 2415782467159109 l006 ln(136/1523) 2415782473010426 r005 Re(z^2+c),c=-4/19+34/55*I,n=58 2415782474327441 r005 Im(z^2+c),c=-27/52+13/31*I,n=46 2415782479076162 a001 1836311903/1364*1364^(2/5) 2415782479191766 a001 2207/377*89^(6/19) 2415782481571878 m001 PisotVijayaraghavan/(Conway-Si(Pi)) 2415782489518513 a003 sin(Pi*5/69)-sin(Pi*13/84) 2415782492285338 m005 (1/2*Pi-6/11)/(8/11*Zeta(3)-11/12) 2415782499999997 a001 7465184+7465176*5^(1/2) 2415782502492070 a001 610/2207*817138163596^(2/3) 2415782502492070 a001 610/2207*(1/2+1/2*5^(1/2))^38 2415782502492070 a001 610/2207*10749957122^(19/24) 2415782502492070 a001 610/2207*4106118243^(19/23) 2415782502492070 a001 610/2207*1568397607^(19/22) 2415782502492070 a001 610/2207*599074578^(19/21) 2415782502492070 a001 610/2207*228826127^(19/20) 2415782502492666 a001 987/1364*141422324^(12/13) 2415782502492666 a001 987/1364*2537720636^(4/5) 2415782502492666 a001 987/1364*45537549124^(12/17) 2415782502492666 a001 987/1364*14662949395604^(4/7) 2415782502492666 a001 987/1364*(1/2+1/2*5^(1/2))^36 2415782502492666 a001 987/1364*192900153618^(2/3) 2415782502492666 a001 987/1364*73681302247^(9/13) 2415782502492666 a001 987/1364*10749957122^(3/4) 2415782502492666 a001 987/1364*4106118243^(18/23) 2415782502492666 a001 987/1364*1568397607^(9/11) 2415782502492666 a001 987/1364*599074578^(6/7) 2415782502492666 a001 987/1364*228826127^(9/10) 2415782502492666 a001 987/1364*87403803^(18/19) 2415782503468284 m002 -6-Cosh[Pi]/Pi^6+Pi*Log[Pi] 2415782508667420 a007 Real Root Of -9*x^4+232*x^3+389*x^2-455*x+208 2415782509016994 a001 48315639/2+5/2*5^(1/2) 2415782515939847 m005 (1/2*3^(1/2)+5/9)/(1/5*gamma-6) 2415782519150015 m001 1/exp(GAMMA(5/6))^2/BesselJ(1,1)^2/sqrt(5) 2415782531063705 r005 Re(z^2+c),c=17/48+5/59*I,n=8 2415782534147193 r005 Im(z^2+c),c=3/20+5/26*I,n=10 2415782548852310 a007 Real Root Of -426*x^4-789*x^3+184*x^2-593*x+879 2415782555189105 r005 Re(z^2+c),c=-77/62+1/41*I,n=56 2415782555455120 m001 (HeathBrownMoroz+MertensB2)/(MertensB3+Otter) 2415782565640195 a001 2971215073/1364*1364^(1/3) 2415782593755070 r005 Re(z^2+c),c=-9/38+19/51*I,n=34 2415782594427190 a001 24157817+4*5^(1/2) 2415782598551434 m001 ln(GAMMA(3/4))*GAMMA(11/12)^2/Zeta(1,2) 2415782598899279 a001 10182505537/2889*843^(2/7) 2415782604338542 r009 Im(z^3+c),c=-19/106+5/21*I,n=10 2415782606633972 m005 (1/2*gamma-4/9)/(3/8*Zeta(3)+6) 2415782614493426 r005 Re(z^2+c),c=37/114+23/53*I,n=2 2415782616718647 r005 Im(z^2+c),c=-31/94+22/57*I,n=52 2415782616796353 r005 Re(z^2+c),c=1/48+9/17*I,n=6 2415782617887743 a001 20365011074/3571*843^(3/14) 2415782621090006 m001 Trott2nd^ln(5)/BesselI(0,1) 2415782622248081 a001 322/17711*7778742049^(6/19) 2415782628207263 a007 Real Root Of 753*x^4-731*x^3-584*x^2-717*x-152 2415782629620072 a007 Real Root Of 11*x^4+250*x^3-344*x^2+887*x+331 2415782632303926 m001 Paris*Robbin^Magata 2415782637183397 m001 (ln(3)+Zeta(1,2))/(Champernowne+Landau) 2415782648497886 r009 Re(z^3+c),c=-19/78+13/18*I,n=64 2415782652204232 a001 1201881744/341*1364^(4/15) 2415782654352310 m001 (PlouffeB-ThueMorse)/MertensB1 2415782657644960 p001 sum(1/(169*n+48)/(2^n),n=0..infinity) 2415782660702701 a001 53316291173/15127*843^(2/7) 2415782660922451 a001 2971215073/2207*843^(3/7) 2415782661921597 m004 25*Sqrt[5]*Pi+72*Tan[Sqrt[5]*Pi] 2415782669719699 a001 139583862445/39603*843^(2/7) 2415782671035261 a001 182717648081/51841*843^(2/7) 2415782671227199 a001 956722026041/271443*843^(2/7) 2415782671255202 a001 2504730781961/710647*843^(2/7) 2415782671259288 a001 3278735159921/930249*843^(2/7) 2415782671260252 a001 10610209857723/3010349*843^(2/7) 2415782671261813 a001 4052739537881/1149851*843^(2/7) 2415782671272509 a001 387002188980/109801*843^(2/7) 2415782671345823 a001 591286729879/167761*843^(2/7) 2415782671848323 a001 225851433717/64079*843^(2/7) 2415782675030891 m001 1/exp(GAMMA(5/12))/GAMMA(1/6)*GAMMA(5/6) 2415782675292510 a001 21566892818/6119*843^(2/7) 2415782675718433 m001 ZetaQ(3)^(QuadraticClass/ln(2)) 2415782677343015 r005 Im(z^2+c),c=-67/64+13/57*I,n=24 2415782681006015 s002 sum(A179484[n]/(pi^n),n=1..infinity) 2415782695482426 m001 (Ei(1,1)-TreeGrowth2nd)/(Thue+ZetaQ(2)) 2415782698899317 a001 32951280099/9349*843^(2/7) 2415782715176952 r005 Re(z^2+c),c=25/56+21/58*I,n=3 2415782720089919 a007 Real Root Of -921*x^4-623*x^3-583*x^2+483*x+12 2415782735699759 m001 GAMMA(3/4)^2/ln(MertensB1)^2/sin(Pi/5)^2 2415782738768272 a001 7778742049/1364*1364^(1/5) 2415782742507795 r009 Im(z^3+c),c=-45/118+38/59*I,n=27 2415782743126091 m002 -1+Pi^2/5+2*Cosh[Pi] 2415782753803254 r002 5th iterates of z^2 + 2415782761058960 a007 Real Root Of 201*x^4+211*x^3-921*x^2-399*x+540 2415782762382263 m005 (1/2*3^(1/2)+7/12)/(7/11*2^(1/2)-3/10) 2415782763415037 r009 Re(z^3+c),c=-1/22+17/24*I,n=62 2415782765869322 l006 ln(4461/5680) 2415782768648823 m001 Tribonacci/KhintchineHarmonic^2/exp(Catalan) 2415782777869852 r005 Im(z^2+c),c=-19/52+26/61*I,n=12 2415782781581198 m001 (Pi*Psi(1,1/3)-Zeta(1/2))*gamma(1) 2415782796884676 r002 18th iterates of z^2 + 2415782799508824 r005 Im(z^2+c),c=-5/4+23/134*I,n=19 2415782799651502 r005 Im(z^2+c),c=-21/82+17/47*I,n=11 2415782806936328 r005 Re(z^2+c),c=-22/27+1/53*I,n=22 2415782809016906 a001 38580051460/1597 2415782816037435 m001 GAMMA(13/24)*BesselI(1,2)^GaussAGM 2415782818033988 a001 24157817+5*5^(1/2) 2415782820161282 a001 3732588/341*3571^(16/17) 2415782825332315 a001 1144206275/124*1364^(2/15) 2415782827801180 a007 Real Root Of -597*x^4-958*x^3+794*x^2-813*x+229 2415782831304980 a001 24157817/1364*3571^(15/17) 2415782832623792 a001 48315641/2+7/2*5^(1/2) 2415782837459327 r004 Im(z^2+c),c=9/34+1/9*I,z(0)=exp(3/8*I*Pi),n=13 2415782839767496 r005 Re(z^2+c),c=9/46+31/64*I,n=53 2415782841714329 a001 12586269025/5778*843^(5/14) 2415782842448674 a001 39088169/1364*3571^(14/17) 2415782843851801 m001 (Pi^(1/2)+MertensB3)/(cos(1/5*Pi)+Zeta(1,2)) 2415782845414046 p004 log(28181/22133) 2415782853592369 a001 31622993/682*3571^(13/17) 2415782857401158 s002 sum(A196242[n]/(n^3*10^n-1),n=1..infinity) 2415782860702796 a001 12586269025/3571*843^(2/7) 2415782863357408 r005 Im(z^2+c),c=-139/118+4/19*I,n=12 2415782864736064 a001 9303105/124*3571^(12/17) 2415782866435509 m005 (1/2*Catalan+5/6)/(7/12*Zeta(3)-1/6) 2415782870461697 a007 Real Root Of -478*x^4-931*x^3+554*x^2-20*x-127 2415782875879760 a001 165580141/1364*3571^(11/17) 2415782880463599 a007 Real Root Of -380*x^4+37*x^3-994*x^2+9*x+62 2415782887023455 a001 66978574/341*3571^(10/17) 2415782891615741 a001 377/103682*18^(19/29) 2415782898167150 a001 433494437/1364*3571^(9/17) 2415782903517757 a001 32951280099/15127*843^(5/14) 2415782903737508 a001 1836311903/2207*843^(1/2) 2415782908858575 r005 Im(z^2+c),c=-27/34+1/68*I,n=16 2415782909310845 a001 701408733/1364*3571^(8/17) 2415782910018685 a007 Real Root Of -457*x^4-809*x^3+977*x^2+528*x-267 2415782911896361 a001 10182505537/682*1364^(1/15) 2415782912534756 a001 86267571272/39603*843^(5/14) 2415782913405636 m001 Zeta(1,2)^2*GAMMA(1/4)*ln(log(2+sqrt(3)))^2 2415782913850319 a001 225851433717/103682*843^(5/14) 2415782914042257 a001 591286729879/271443*843^(5/14) 2415782914070260 a001 1548008755920/710647*843^(5/14) 2415782914074346 a001 4052739537881/1860498*843^(5/14) 2415782914074942 a001 2178309*843^(5/14) 2415782914075310 a001 6557470319842/3010349*843^(5/14) 2415782914076871 a001 2504730781961/1149851*843^(5/14) 2415782914087567 a001 956722026041/439204*843^(5/14) 2415782914160881 a001 365435296162/167761*843^(5/14) 2415782914663381 a001 139583862445/64079*843^(5/14) 2415782918107568 a001 53316291173/24476*843^(5/14) 2415782920454541 a001 567451585/682*3571^(7/17) 2415782926098996 a001 305/2889*2537720636^(8/9) 2415782926098996 a001 305/2889*312119004989^(8/11) 2415782926098996 a001 305/2889*(1/2+1/2*5^(1/2))^40 2415782926098996 a001 305/2889*23725150497407^(5/8) 2415782926098996 a001 305/2889*73681302247^(10/13) 2415782926098996 a001 305/2889*28143753123^(4/5) 2415782926098996 a001 305/2889*10749957122^(5/6) 2415782926098996 a001 305/2889*4106118243^(20/23) 2415782926098996 a001 305/2889*1568397607^(10/11) 2415782926098996 a001 305/2889*599074578^(20/21) 2415782926099691 a001 646/341*45537549124^(2/3) 2415782926099691 a001 646/341*(1/2+1/2*5^(1/2))^34 2415782926099691 a001 646/341*10749957122^(17/24) 2415782926099691 a001 646/341*4106118243^(17/23) 2415782926099691 a001 646/341*1568397607^(17/22) 2415782926099691 a001 646/341*599074578^(17/21) 2415782926099691 a001 646/341*228826127^(17/20) 2415782926099692 a001 646/341*87403803^(17/19) 2415782926099693 a001 646/341*33385282^(17/18) 2415782931598236 a001 1836311903/1364*3571^(6/17) 2415782935669725 m001 exp(Pi)+Zeta(1,-1)^gamma(2) 2415782939838236 r009 Re(z^3+c),c=-19/50+19/40*I,n=47 2415782941714378 a001 20365011074/9349*843^(5/14) 2415782942741932 a001 2971215073/1364*3571^(5/17) 2415782950180095 m002 Pi^6/4+Log[Pi]+Sech[Pi] 2415782953885627 a001 1201881744/341*3571^(4/17) 2415782965029323 a001 7778742049/1364*3571^(3/17) 2415782965998772 r005 Im(z^2+c),c=-31/94+22/57*I,n=49 2415782970816412 m001 exp(Lehmer)*Backhouse^2/(2^(1/3))^2 2415782970820377 a001 101003886010/4181 2415782972275762 a001 5702887/1364*9349^(18/19) 2415782973730484 a001 9227465/1364*9349^(17/19) 2415782975185178 a001 3732588/341*9349^(16/19) 2415782976173019 a001 1144206275/124*3571^(2/17) 2415782976639883 a001 24157817/1364*9349^(15/19) 2415782978094584 a001 39088169/1364*9349^(14/19) 2415782979549286 a001 31622993/682*9349^(13/19) 2415782981003988 a001 9303105/124*9349^(12/19) 2415782982458690 a001 165580141/1364*9349^(11/19) 2415782983913392 a001 66978574/341*9349^(10/19) 2415782985368093 a001 433494437/1364*9349^(9/19) 2415782986822795 a001 701408733/1364*9349^(8/19) 2415782987316714 a001 10182505537/682*3571^(1/17) 2415782987902426 a001 610/15127*2537720636^(14/15) 2415782987902426 a001 610/15127*17393796001^(6/7) 2415782987902426 a001 610/15127*45537549124^(14/17) 2415782987902426 a001 610/15127*14662949395604^(2/3) 2415782987902426 a001 610/15127*(1/2+1/2*5^(1/2))^42 2415782987902426 a001 610/15127*505019158607^(3/4) 2415782987902426 a001 610/15127*192900153618^(7/9) 2415782987902426 a001 610/15127*10749957122^(7/8) 2415782987902426 a001 610/15127*4106118243^(21/23) 2415782987902426 a001 610/15127*1568397607^(21/22) 2415782987903123 a001 615/124*(1/2+1/2*5^(1/2))^32 2415782987903123 a001 615/124*23725150497407^(1/2) 2415782987903123 a001 615/124*73681302247^(8/13) 2415782987903123 a001 615/124*10749957122^(2/3) 2415782987903123 a001 615/124*4106118243^(16/23) 2415782987903123 a001 615/124*1568397607^(8/11) 2415782987903123 a001 615/124*599074578^(16/21) 2415782987903124 a001 615/124*228826127^(4/5) 2415782987903124 a001 615/124*87403803^(16/19) 2415782987903125 a001 615/124*33385282^(8/9) 2415782987903137 a001 615/124*12752043^(16/17) 2415782988277497 a001 567451585/682*9349^(7/19) 2415782989732199 a001 1836311903/1364*9349^(6/19) 2415782991186901 a001 2971215073/1364*9349^(5/19) 2415782992641603 a001 1201881744/341*9349^(4/19) 2415782994096304 a001 7778742049/1364*9349^(3/19) 2415782994427188 a001 132215803285/5473 2415782994427190 a001 24157821+4*5^(1/2) 2415782994619809 a001 2178309/1364*24476^(20/21) 2415782994811974 a001 1762289/682*24476^(19/21) 2415782995003946 a001 5702887/1364*24476^(6/7) 2415782995195991 a001 9227465/1364*24476^(17/21) 2415782995388008 a001 3732588/341*24476^(16/21) 2415782995551006 a001 1144206275/124*9349^(2/19) 2415782995580036 a001 24157817/1364*24476^(5/7) 2415782995772060 a001 39088169/1364*24476^(2/3) 2415782995964085 a001 31622993/682*24476^(13/21) 2415782996156110 a001 9303105/124*24476^(4/7) 2415782996348135 a001 165580141/1364*24476^(11/21) 2415782996540160 a001 66978574/341*24476^(10/21) 2415782996732185 a001 433494437/1364*24476^(3/7) 2415782996919425 a001 610/39603*312119004989^(4/5) 2415782996919425 a001 610/39603*(1/2+1/2*5^(1/2))^44 2415782996919425 a001 610/39603*23725150497407^(11/16) 2415782996919425 a001 610/39603*73681302247^(11/13) 2415782996919425 a001 610/39603*10749957122^(11/12) 2415782996919425 a001 610/39603*4106118243^(22/23) 2415782996920087 a001 17711/1364*7881196^(10/11) 2415782996920118 a001 17711/1364*20633239^(6/7) 2415782996920123 a001 17711/1364*141422324^(10/13) 2415782996920123 a001 17711/1364*2537720636^(2/3) 2415782996920123 a001 17711/1364*45537549124^(10/17) 2415782996920123 a001 17711/1364*312119004989^(6/11) 2415782996920123 a001 17711/1364*14662949395604^(10/21) 2415782996920123 a001 17711/1364*(1/2+1/2*5^(1/2))^30 2415782996920123 a001 17711/1364*192900153618^(5/9) 2415782996920123 a001 17711/1364*28143753123^(3/5) 2415782996920123 a001 17711/1364*10749957122^(5/8) 2415782996920123 a001 17711/1364*4106118243^(15/23) 2415782996920123 a001 17711/1364*1568397607^(15/22) 2415782996920123 a001 17711/1364*599074578^(5/7) 2415782996920123 a001 17711/1364*228826127^(3/4) 2415782996920123 a001 17711/1364*87403803^(15/19) 2415782996920125 a001 17711/1364*33385282^(5/6) 2415782996920136 a001 17711/1364*12752043^(15/17) 2415782996920218 a001 17711/1364*4870847^(15/16) 2415782996924210 a001 701408733/1364*24476^(8/21) 2415782997005708 a001 10182505537/682*9349^(1/19) 2415782997116235 a001 567451585/682*24476^(1/3) 2415782997308260 a001 1836311903/1364*24476^(2/7) 2415782997500285 a001 2971215073/1364*24476^(5/21) 2415782997692310 a001 1201881744/341*24476^(4/21) 2415782997871375 a001 692290933700/28657 2415782997884335 a001 7778742049/1364*24476^(1/7) 2415782997896955 a001 610*64079^(22/23) 2415782997923499 a001 1346269/1364*64079^(21/23) 2415782997948710 a001 2178309/1364*64079^(20/23) 2415782997974431 a001 1762289/682*64079^(19/23) 2415782997999957 a001 5702887/1364*64079^(18/23) 2415782998025558 a001 9227465/1364*64079^(17/23) 2415782998051130 a001 3732588/341*64079^(16/23) 2415782998076360 a001 1144206275/124*24476^(2/21) 2415782998076713 a001 24157817/1364*64079^(15/23) 2415782998102291 a001 39088169/1364*64079^(14/23) 2415782998127872 a001 31622993/682*64079^(13/23) 2415782998153451 a001 9303105/124*64079^(12/23) 2415782998179031 a001 165580141/1364*64079^(11/23) 2415782998204611 a001 66978574/341*64079^(10/23) 2415782998230191 a001 433494437/1364*64079^(9/23) 2415782998234987 a001 305/51841*(1/2+1/2*5^(1/2))^46 2415782998234987 a001 305/51841*10749957122^(23/24) 2415782998235681 a001 11592/341*20633239^(4/5) 2415782998235685 a001 11592/341*17393796001^(4/7) 2415782998235685 a001 11592/341*14662949395604^(4/9) 2415782998235685 a001 11592/341*(1/2+1/2*5^(1/2))^28 2415782998235685 a001 11592/341*505019158607^(1/2) 2415782998235685 a001 11592/341*73681302247^(7/13) 2415782998235685 a001 11592/341*10749957122^(7/12) 2415782998235685 a001 11592/341*4106118243^(14/23) 2415782998235685 a001 11592/341*1568397607^(7/11) 2415782998235685 a001 11592/341*599074578^(2/3) 2415782998235685 a001 11592/341*228826127^(7/10) 2415782998235685 a001 11592/341*87403803^(14/19) 2415782998235687 a001 11592/341*33385282^(7/9) 2415782998235697 a001 11592/341*12752043^(14/17) 2415782998235774 a001 11592/341*4870847^(7/8) 2415782998236337 a001 11592/341*1860498^(14/15) 2415782998255771 a001 701408733/1364*64079^(8/23) 2415782998268385 a001 10182505537/682*24476^(1/21) 2415782998281351 a001 567451585/682*64079^(7/23) 2415782998306931 a001 1836311903/1364*64079^(6/23) 2415782998332511 a001 2971215073/1364*64079^(5/23) 2415782998358091 a001 1201881744/341*64079^(4/23) 2415782998373875 a001 362488238906/15005 2415782998383670 a001 7778742049/1364*64079^(3/23) 2415782998391638 a001 2178309/1364*167761^(4/5) 2415782998408909 a001 24157817/1364*167761^(3/5) 2415782998409250 a001 1144206275/124*64079^(2/23) 2415782998426075 a001 66978574/341*167761^(2/5) 2415782998426925 a001 610/271443*45537549124^(16/17) 2415782998426925 a001 610/271443*14662949395604^(16/21) 2415782998426925 a001 610/271443*(1/2+1/2*5^(1/2))^48 2415782998426925 a001 610/271443*192900153618^(8/9) 2415782998426925 a001 610/271443*73681302247^(12/13) 2415782998427623 a001 121393/1364*141422324^(2/3) 2415782998427623 a001 121393/1364*(1/2+1/2*5^(1/2))^26 2415782998427623 a001 121393/1364*73681302247^(1/2) 2415782998427623 a001 121393/1364*10749957122^(13/24) 2415782998427623 a001 121393/1364*4106118243^(13/23) 2415782998427623 a001 121393/1364*1568397607^(13/22) 2415782998427623 a001 121393/1364*599074578^(13/21) 2415782998427623 a001 121393/1364*228826127^(13/20) 2415782998427623 a001 121393/1364*87403803^(13/19) 2415782998427625 a001 121393/1364*33385282^(13/18) 2415782998427634 a001 121393/1364*12752043^(13/17) 2415782998427706 a001 121393/1364*4870847^(13/16) 2415782998428228 a001 121393/1364*1860498^(13/15) 2415782998432065 a001 121393/1364*710647^(13/14) 2415782998434830 a001 10182505537/682*64079^(1/23) 2415782998443243 a001 2971215073/1364*167761^(1/5) 2415782998444495 a001 317811/1364*439204^(8/9) 2415782998447189 a001 2372516324945/98209 2415782998450936 a001 1346269/1364*439204^(7/9) 2415782998452046 a001 5702887/1364*439204^(2/3) 2415782998453453 a001 24157817/1364*439204^(5/9) 2415782998454844 a001 9303105/124*439204^(4/9) 2415782998454929 a001 610/710647*312119004989^(10/11) 2415782998454929 a001 610/710647*(1/2+1/2*5^(1/2))^50 2415782998454929 a001 610/710647*3461452808002^(5/6) 2415782998455598 a001 317811/1364*7881196^(8/11) 2415782998455626 a001 317811/1364*141422324^(8/13) 2415782998455627 a001 317811/1364*2537720636^(8/15) 2415782998455627 a001 317811/1364*45537549124^(8/17) 2415782998455627 a001 317811/1364*14662949395604^(8/21) 2415782998455627 a001 317811/1364*(1/2+1/2*5^(1/2))^24 2415782998455627 a001 317811/1364*192900153618^(4/9) 2415782998455627 a001 317811/1364*73681302247^(6/13) 2415782998455627 a001 317811/1364*10749957122^(1/2) 2415782998455627 a001 317811/1364*4106118243^(12/23) 2415782998455627 a001 317811/1364*1568397607^(6/11) 2415782998455627 a001 317811/1364*599074578^(4/7) 2415782998455627 a001 317811/1364*228826127^(3/5) 2415782998455627 a001 317811/1364*87403803^(12/19) 2415782998455628 a001 317811/1364*33385282^(2/3) 2415782998455637 a001 317811/1364*12752043^(12/17) 2415782998455703 a001 317811/1364*4870847^(3/4) 2415782998456185 a001 317811/1364*1860498^(4/5) 2415782998456236 a001 433494437/1364*439204^(1/3) 2415782998457627 a001 1836311903/1364*439204^(2/9) 2415782998457885 a001 12422656755140/514229 2415782998459014 a001 305/930249*(1/2+1/2*5^(1/2))^52 2415782998459014 a001 305/930249*23725150497407^(13/16) 2415782998459014 a001 305/930249*505019158607^(13/14) 2415782998459019 a001 7778742049/1364*439204^(1/9) 2415782998459446 a001 32522937615530/1346269 2415782998459610 a001 610/4870847*14662949395604^(6/7) 2415782998459610 a001 610/4870847*(1/2+1/2*5^(1/2))^54 2415782998459673 a001 478349191525/19801 2415782998459686 a001 610*7881196^(2/3) 2415782998459697 a001 610/12752043*14662949395604^(8/9) 2415782998459697 a001 610/12752043*(1/2+1/2*5^(1/2))^56 2415782998459706 a001 44583106131764/1845493 2415782998459710 a001 305/16692641*(1/2+1/2*5^(1/2))^58 2415782998459711 a001 583600435885010/24157817 2415782998459712 a001 610/87403803*14662949395604^(20/21) 2415782998459712 a001 763942888498105/31622993 2415782998459712 a001 4000056895103620/165580141 2415782998459712 a001 610*312119004989^(2/5) 2415782998459712 a001 610*10749957122^(11/24) 2415782998459712 a001 610*4106118243^(11/23) 2415782998459712 a001 610*1568397607^(1/2) 2415782998459712 a001 610*599074578^(11/21) 2415782998459712 a001 3236114006605515/133957148 2415782998459712 a001 610*228826127^(11/20) 2415782998459712 a001 494434223621482/20466831 2415782998459712 a001 610*87403803^(11/19) 2415782998459712 a001 944285341111200/39088169 2415782998459713 a001 610*33385282^(11/18) 2415782998459714 a001 180342452613095/7465176 2415782998459718 a001 610/20633239*14662949395604^(19/21) 2415782998459718 a001 610/20633239*(1/2+1/2*5^(1/2))^57 2415782998459722 a001 610*12752043^(11/17) 2415782998459727 a001 317811/1364*710647^(6/7) 2415782998459727 a001 137769374567370/5702887 2415782998459751 a001 305/3940598*(1/2+1/2*5^(1/2))^55 2415782998459751 a001 305/3940598*3461452808002^(11/12) 2415782998459782 a001 610*4870847^(11/16) 2415782998459814 a001 52623218475920/2178309 2415782998459979 a001 610/3010349*(1/2+1/2*5^(1/2))^53 2415782998460224 a001 610*1860498^(11/15) 2415782998460305 a001 2178309/1364*20633239^(4/7) 2415782998460308 a001 2178309/1364*2537720636^(4/9) 2415782998460308 a001 2178309/1364*(1/2+1/2*5^(1/2))^20 2415782998460308 a001 2178309/1364*23725150497407^(5/16) 2415782998460308 a001 2178309/1364*505019158607^(5/14) 2415782998460308 a001 2178309/1364*73681302247^(5/13) 2415782998460308 a001 2178309/1364*28143753123^(2/5) 2415782998460308 a001 2178309/1364*10749957122^(5/12) 2415782998460308 a001 2178309/1364*4106118243^(10/23) 2415782998460308 a001 2178309/1364*1568397607^(5/11) 2415782998460308 a001 2178309/1364*599074578^(10/21) 2415782998460308 a001 2178309/1364*228826127^(1/2) 2415782998460308 a001 2178309/1364*87403803^(10/19) 2415782998460309 a001 2178309/1364*33385282^(5/9) 2415782998460317 a001 2178309/1364*12752043^(10/17) 2415782998460372 a001 2178309/1364*4870847^(5/8) 2415782998460374 a001 5702887/1364*7881196^(6/11) 2415782998460393 a001 24157817/1364*7881196^(5/11) 2415782998460395 a001 5702887/1364*141422324^(6/13) 2415782998460395 a001 5702887/1364*2537720636^(2/5) 2415782998460395 a001 5702887/1364*45537549124^(6/17) 2415782998460395 a001 5702887/1364*14662949395604^(2/7) 2415782998460395 a001 5702887/1364*(1/2+1/2*5^(1/2))^18 2415782998460395 a001 5702887/1364*192900153618^(1/3) 2415782998460395 a001 5702887/1364*10749957122^(3/8) 2415782998460395 a001 5702887/1364*4106118243^(9/23) 2415782998460395 a001 5702887/1364*1568397607^(9/22) 2415782998460395 a001 5702887/1364*599074578^(3/7) 2415782998460395 a001 5702887/1364*228826127^(9/20) 2415782998460395 a001 5702887/1364*87403803^(9/19) 2415782998460396 a001 9303105/124*7881196^(4/11) 2415782998460396 a001 5702887/1364*33385282^(1/2) 2415782998460397 a001 165580141/1364*7881196^(1/3) 2415782998460399 a001 433494437/1364*7881196^(3/11) 2415782998460403 a001 1836311903/1364*7881196^(2/11) 2415782998460403 a001 5702887/1364*12752043^(9/17) 2415782998460407 a001 7778742049/1364*7881196^(1/11) 2415782998460407 a001 39088169/1364*20633239^(2/5) 2415782998460408 a001 3732588/341*(1/2+1/2*5^(1/2))^16 2415782998460408 a001 3732588/341*23725150497407^(1/4) 2415782998460408 a001 3732588/341*73681302247^(4/13) 2415782998460408 a001 3732588/341*10749957122^(1/3) 2415782998460408 a001 3732588/341*4106118243^(8/23) 2415782998460408 a001 3732588/341*1568397607^(4/11) 2415782998460408 a001 3732588/341*599074578^(8/21) 2415782998460408 a001 3732588/341*228826127^(2/5) 2415782998460408 a001 3732588/341*87403803^(8/19) 2415782998460408 a001 66978574/341*20633239^(2/7) 2415782998460408 a001 24157817/1364*20633239^(3/7) 2415782998460409 a001 3732588/341*33385282^(4/9) 2415782998460409 a001 567451585/682*20633239^(1/5) 2415782998460409 a001 2971215073/1364*20633239^(1/7) 2415782998460410 a001 39088169/1364*17393796001^(2/7) 2415782998460410 a001 39088169/1364*14662949395604^(2/9) 2415782998460410 a001 39088169/1364*(1/2+1/2*5^(1/2))^14 2415782998460410 a001 39088169/1364*10749957122^(7/24) 2415782998460410 a001 39088169/1364*4106118243^(7/23) 2415782998460410 a001 39088169/1364*1568397607^(7/22) 2415782998460410 a001 39088169/1364*599074578^(1/3) 2415782998460410 a001 39088169/1364*228826127^(7/20) 2415782998460410 a001 39088169/1364*87403803^(7/19) 2415782998460410 a001 9303105/124*141422324^(4/13) 2415782998460410 a001 9303105/124*2537720636^(4/15) 2415782998460410 a001 9303105/124*45537549124^(4/17) 2415782998460410 a001 9303105/124*817138163596^(4/19) 2415782998460410 a001 9303105/124*14662949395604^(4/21) 2415782998460410 a001 9303105/124*(1/2+1/2*5^(1/2))^12 2415782998460410 a001 9303105/124*192900153618^(2/9) 2415782998460410 a001 9303105/124*73681302247^(3/13) 2415782998460410 a001 9303105/124*10749957122^(1/4) 2415782998460410 a001 9303105/124*4106118243^(6/23) 2415782998460410 a001 9303105/124*1568397607^(3/11) 2415782998460410 a001 9303105/124*599074578^(2/7) 2415782998460410 a001 9303105/124*228826127^(3/10) 2415782998460410 a001 433494437/1364*141422324^(3/13) 2415782998460410 a001 1836311903/1364*141422324^(2/13) 2415782998460410 a001 7778742049/1364*141422324^(1/13) 2415782998460410 a001 66978574/341*2537720636^(2/9) 2415782998460410 a001 66978574/341*312119004989^(2/11) 2415782998460410 a001 66978574/341*(1/2+1/2*5^(1/2))^10 2415782998460410 a001 66978574/341*28143753123^(1/5) 2415782998460410 a001 66978574/341*10749957122^(5/24) 2415782998460410 a001 66978574/341*4106118243^(5/23) 2415782998460410 a001 66978574/341*1568397607^(5/22) 2415782998460410 a001 66978574/341*599074578^(5/21) 2415782998460410 a001 701408733/1364*(1/2+1/2*5^(1/2))^8 2415782998460410 a001 701408733/1364*23725150497407^(1/8) 2415782998460410 a001 701408733/1364*73681302247^(2/13) 2415782998460410 a001 701408733/1364*10749957122^(1/6) 2415782998460410 a001 701408733/1364*4106118243^(4/23) 2415782998460410 a001 701408733/1364*1568397607^(2/11) 2415782998460410 a001 1836311903/1364*2537720636^(2/15) 2415782998460410 a001 1836311903/1364*45537549124^(2/17) 2415782998460410 a001 1836311903/1364*14662949395604^(2/21) 2415782998460410 a001 1836311903/1364*(1/2+1/2*5^(1/2))^6 2415782998460410 a001 1836311903/1364*10749957122^(1/8) 2415782998460410 a001 1836311903/1364*4106118243^(3/23) 2415782998460410 a001 1201881744/341*(1/2+1/2*5^(1/2))^4 2415782998460410 a001 1201881744/341*23725150497407^(1/16) 2415782998460410 a001 1201881744/341*73681302247^(1/13) 2415782998460410 a001 1201881744/341*10749957122^(1/12) 2415782998460410 a001 7778742049/1364*2537720636^(1/15) 2415782998460410 a001 1836311903/1364*1568397607^(3/22) 2415782998460410 a001 1201881744/341*4106118243^(2/23) 2415782998460410 a001 1144206275/124*(1/2+1/2*5^(1/2))^2 2415782998460410 a001 1144206275/124*10749957122^(1/24) 2415782998460410 a001 32951280099/1364 2415782998460410 a001 10182505537/1364+10182505537/1364*5^(1/2) 2415782998460410 a001 1144206275/124*4106118243^(1/23) 2415782998460410 a001 7778742049/1364*45537549124^(1/17) 2415782998460410 a001 7778742049/1364*14662949395604^(1/21) 2415782998460410 a001 7778742049/1364*(1/2+1/2*5^(1/2))^3 2415782998460410 a001 7778742049/1364*192900153618^(1/18) 2415782998460410 a001 7778742049/1364*10749957122^(1/16) 2415782998460410 a001 2971215073/1364*2537720636^(1/9) 2415782998460410 a001 1144206275/124*1568397607^(1/22) 2415782998460410 a001 2971215073/1364*312119004989^(1/11) 2415782998460410 a001 2971215073/1364*(1/2+1/2*5^(1/2))^5 2415782998460410 a001 2971215073/1364*28143753123^(1/10) 2415782998460410 a001 1201881744/341*1568397607^(1/11) 2415782998460410 a001 701408733/1364*599074578^(4/21) 2415782998460410 a001 1144206275/124*599074578^(1/21) 2415782998460410 a001 567451585/682*17393796001^(1/7) 2415782998460410 a001 567451585/682*14662949395604^(1/9) 2415782998460410 a001 567451585/682*(1/2+1/2*5^(1/2))^7 2415782998460410 a001 7778742049/1364*599074578^(1/14) 2415782998460410 a001 1201881744/341*599074578^(2/21) 2415782998460410 a001 1836311903/1364*599074578^(1/7) 2415782998460410 a001 567451585/682*599074578^(1/6) 2415782998460410 a001 1144206275/124*228826127^(1/20) 2415782998460410 a001 433494437/1364*2537720636^(1/5) 2415782998460410 a001 433494437/1364*45537549124^(3/17) 2415782998460410 a001 433494437/1364*817138163596^(3/19) 2415782998460410 a001 433494437/1364*14662949395604^(1/7) 2415782998460410 a001 433494437/1364*(1/2+1/2*5^(1/2))^9 2415782998460410 a001 433494437/1364*192900153618^(1/6) 2415782998460410 a001 433494437/1364*10749957122^(3/16) 2415782998460410 a001 433494437/1364*599074578^(3/14) 2415782998460410 a001 1201881744/341*228826127^(1/10) 2415782998460410 a001 66978574/341*228826127^(1/4) 2415782998460410 a001 2971215073/1364*228826127^(1/8) 2415782998460410 a001 1836311903/1364*228826127^(3/20) 2415782998460410 a001 701408733/1364*228826127^(1/5) 2415782998460410 a001 1144206275/124*87403803^(1/19) 2415782998460410 a001 165580141/1364*312119004989^(1/5) 2415782998460410 a001 165580141/1364*(1/2+1/2*5^(1/2))^11 2415782998460410 a001 165580141/1364*1568397607^(1/4) 2415782998460410 a001 1201881744/341*87403803^(2/19) 2415782998460410 a001 1836311903/1364*87403803^(3/19) 2415782998460410 a001 9303105/124*87403803^(6/19) 2415782998460410 a001 701408733/1364*87403803^(4/19) 2415782998460410 a001 66978574/341*87403803^(5/19) 2415782998460410 a001 31622993/682*141422324^(1/3) 2415782998460410 a001 1144206275/124*33385282^(1/18) 2415782998460410 a001 31622993/682*(1/2+1/2*5^(1/2))^13 2415782998460410 a001 31622993/682*73681302247^(1/4) 2415782998460410 a001 7778742049/1364*33385282^(1/12) 2415782998460410 a001 1201881744/341*33385282^(1/9) 2415782998460410 a001 1836311903/1364*33385282^(1/6) 2415782998460411 a001 701408733/1364*33385282^(2/9) 2415782998460411 a001 39088169/1364*33385282^(7/18) 2415782998460411 a001 433494437/1364*33385282^(1/4) 2415782998460411 a001 66978574/341*33385282^(5/18) 2415782998460411 a001 9303105/124*33385282^(1/3) 2415782998460411 a001 24157817/1364*141422324^(5/13) 2415782998460411 a001 24157817/1364*2537720636^(1/3) 2415782998460411 a001 24157817/1364*45537549124^(5/17) 2415782998460411 a001 24157817/1364*312119004989^(3/11) 2415782998460411 a001 24157817/1364*14662949395604^(5/21) 2415782998460411 a001 24157817/1364*(1/2+1/2*5^(1/2))^15 2415782998460411 a001 24157817/1364*192900153618^(5/18) 2415782998460411 a001 24157817/1364*28143753123^(3/10) 2415782998460411 a001 24157817/1364*10749957122^(5/16) 2415782998460411 a001 24157817/1364*599074578^(5/14) 2415782998460411 a001 24157817/1364*228826127^(3/8) 2415782998460411 a001 1144206275/124*12752043^(1/17) 2415782998460412 a001 24157817/1364*33385282^(5/12) 2415782998460412 a001 1201881744/341*12752043^(2/17) 2415782998460413 a001 1836311903/1364*12752043^(3/17) 2415782998460414 a001 701408733/1364*12752043^(4/17) 2415782998460414 a001 66978574/341*12752043^(5/17) 2415782998460415 a001 3732588/341*12752043^(8/17) 2415782998460415 a001 9303105/124*12752043^(6/17) 2415782998460416 a001 9227465/1364*45537549124^(1/3) 2415782998460416 a001 9227465/1364*(1/2+1/2*5^(1/2))^17 2415782998460416 a001 39088169/1364*12752043^(7/17) 2415782998460416 a001 1144206275/124*4870847^(1/16) 2415782998460423 a001 1201881744/341*4870847^(1/8) 2415782998460423 a001 9227465/1364*12752043^(1/2) 2415782998460429 a001 1836311903/1364*4870847^(3/16) 2415782998460436 a001 701408733/1364*4870847^(1/4) 2415782998460442 a001 66978574/341*4870847^(5/16) 2415782998460448 a001 9303105/124*4870847^(3/8) 2415782998460449 a001 1762289/682*817138163596^(1/3) 2415782998460449 a001 1762289/682*(1/2+1/2*5^(1/2))^19 2415782998460449 a001 1762289/682*87403803^(1/2) 2415782998460452 a001 5702887/1364*4870847^(9/16) 2415782998460454 a001 39088169/1364*4870847^(7/16) 2415782998460457 a001 1144206275/124*1860498^(1/15) 2415782998460459 a001 3732588/341*4870847^(1/2) 2415782998460480 a001 7778742049/1364*1860498^(1/10) 2415782998460503 a001 1201881744/341*1860498^(2/15) 2415782998460526 a001 2971215073/1364*1860498^(1/6) 2415782998460550 a001 1836311903/1364*1860498^(1/5) 2415782998460596 a001 701408733/1364*1860498^(4/15) 2415782998460619 a001 433494437/1364*1860498^(3/10) 2415782998460643 a001 66978574/341*1860498^(1/3) 2415782998460652 a001 1346269/1364*7881196^(7/11) 2415782998460673 a001 1346269/1364*20633239^(3/5) 2415782998460677 a001 1346269/1364*141422324^(7/13) 2415782998460677 a001 1346269/1364*2537720636^(7/15) 2415782998460677 a001 1346269/1364*17393796001^(3/7) 2415782998460677 a001 1346269/1364*45537549124^(7/17) 2415782998460677 a001 1346269/1364*14662949395604^(1/3) 2415782998460677 a001 1346269/1364*(1/2+1/2*5^(1/2))^21 2415782998460677 a001 1346269/1364*192900153618^(7/18) 2415782998460677 a001 1346269/1364*10749957122^(7/16) 2415782998460677 a001 1346269/1364*599074578^(1/2) 2415782998460678 a001 1346269/1364*33385282^(7/12) 2415782998460689 a001 9303105/124*1860498^(2/5) 2415782998460735 a001 39088169/1364*1860498^(7/15) 2415782998460752 a001 1144206275/124*710647^(1/14) 2415782998460760 a001 24157817/1364*1860498^(1/2) 2415782998460774 a001 2178309/1364*1860498^(2/3) 2415782998460780 a001 3732588/341*1860498^(8/15) 2415782998460814 a001 5702887/1364*1860498^(3/5) 2415782998461093 a001 1201881744/341*710647^(1/7) 2415782998461165 a001 1346269/1364*1860498^(7/10) 2415782998461435 a001 1836311903/1364*710647^(3/14) 2415782998461539 a001 610/1149851*14662949395604^(17/21) 2415782998461539 a001 610/1149851*(1/2+1/2*5^(1/2))^51 2415782998461539 a001 610/1149851*192900153618^(17/18) 2415782998461606 a001 567451585/682*710647^(1/4) 2415782998461777 a001 701408733/1364*710647^(2/7) 2415782998462118 a001 66978574/341*710647^(5/14) 2415782998462237 a001 514229/1364*(1/2+1/2*5^(1/2))^23 2415782998462237 a001 514229/1364*4106118243^(1/2) 2415782998462460 a001 9303105/124*710647^(3/7) 2415782998462802 a001 39088169/1364*710647^(1/2) 2415782998462932 a001 1144206275/124*271443^(1/13) 2415782998463141 a001 3732588/341*710647^(4/7) 2415782998463470 a001 5702887/1364*710647^(9/14) 2415782998463471 a001 610*710647^(11/14) 2415782998463725 a001 2178309/1364*710647^(5/7) 2415782998464264 a001 1346269/1364*710647^(3/4) 2415782998464496 a001 7677624105250/317811 2415782998465454 a001 1201881744/341*271443^(2/13) 2415782998467976 a001 1836311903/1364*271443^(3/13) 2415782998469774 a001 10182505537/682*103682^(1/24) 2415782998470498 a001 701408733/1364*271443^(4/13) 2415782998472236 a001 305/219602*14662949395604^(7/9) 2415782998472236 a001 305/219602*(1/2+1/2*5^(1/2))^49 2415782998472236 a001 305/219602*505019158607^(7/8) 2415782998472929 a001 98209/682*20633239^(5/7) 2415782998472934 a001 98209/682*2537720636^(5/9) 2415782998472934 a001 98209/682*312119004989^(5/11) 2415782998472934 a001 98209/682*(1/2+1/2*5^(1/2))^25 2415782998472934 a001 98209/682*3461452808002^(5/12) 2415782998472934 a001 98209/682*28143753123^(1/2) 2415782998472934 a001 98209/682*228826127^(5/8) 2415782998473020 a001 66978574/341*271443^(5/13) 2415782998473515 a001 98209/682*1860498^(5/6) 2415782998475542 a001 9303105/124*271443^(6/13) 2415782998476804 a001 31622993/682*271443^(1/2) 2415782998478064 a001 39088169/1364*271443^(7/13) 2415782998479137 a001 1144206275/124*103682^(1/12) 2415782998480584 a001 3732588/341*271443^(8/13) 2415782998483094 a001 5702887/1364*271443^(9/13) 2415782998485529 a001 2178309/1364*271443^(10/13) 2415782998485891 a001 317811/1364*271443^(12/13) 2415782998487455 a001 610*271443^(11/13) 2415782998488501 a001 7778742049/1364*103682^(1/8) 2415782998492499 a001 2932591455360/121393 2415782998497864 a001 1201881744/341*103682^(1/6) 2415782998507228 a001 2971215073/1364*103682^(5/24) 2415782998516591 a001 1836311903/1364*103682^(1/4) 2415782998525955 a001 567451585/682*103682^(7/24) 2415782998530423 a001 10182505537/682*39603^(1/22) 2415782998535318 a001 701408733/1364*103682^(1/3) 2415782998544682 a001 433494437/1364*103682^(3/8) 2415782998545549 a001 610/167761*(1/2+1/2*5^(1/2))^47 2415782998546216 a001 75025/1364*7881196^(9/11) 2415782998546247 a001 75025/1364*141422324^(9/13) 2415782998546247 a001 75025/1364*2537720636^(3/5) 2415782998546247 a001 75025/1364*45537549124^(9/17) 2415782998546247 a001 75025/1364*817138163596^(9/19) 2415782998546247 a001 75025/1364*14662949395604^(3/7) 2415782998546247 a001 75025/1364*(1/2+1/2*5^(1/2))^27 2415782998546247 a001 75025/1364*192900153618^(1/2) 2415782998546247 a001 75025/1364*10749957122^(9/16) 2415782998546247 a001 75025/1364*599074578^(9/14) 2415782998546249 a001 75025/1364*33385282^(3/4) 2415782998546875 a001 75025/1364*1860498^(9/10) 2415782998554045 a001 66978574/341*103682^(5/12) 2415782998563409 a001 165580141/1364*103682^(11/24) 2415782998572772 a001 9303105/124*103682^(1/2) 2415782998582136 a001 31622993/682*103682^(13/24) 2415782998591499 a001 39088169/1364*103682^(7/12) 2415782998600436 a001 1144206275/124*39603^(1/11) 2415782998600864 a001 24157817/1364*103682^(5/8) 2415782998610224 a001 3732588/341*103682^(2/3) 2415782998619596 a001 9227465/1364*103682^(17/24) 2415782998628939 a001 5702887/1364*103682^(3/4) 2415782998638356 a001 1762289/682*103682^(19/24) 2415782998647579 a001 2178309/1364*103682^(5/6) 2415782998657311 a001 1346269/1364*103682^(7/8) 2415782998665710 a001 610*103682^(11/12) 2415782998670449 a001 7778742049/1364*39603^(3/22) 2415782998677599 a001 514229/1364*103682^(23/24) 2415782998684437 a001 560075130415/23184 2415782998740462 a001 1201881744/341*39603^(2/11) 2415782998810475 a001 2971215073/1364*39603^(5/22) 2415782998880488 a001 1836311903/1364*39603^(3/11) 2415782998950501 a001 567451585/682*39603^(7/22) 2415782998988274 a001 10182505537/682*15127^(1/20) 2415782999020515 a001 701408733/1364*39603^(4/11) 2415782999048050 a001 610/64079*45537549124^(15/17) 2415782999048050 a001 610/64079*312119004989^(9/11) 2415782999048050 a001 610/64079*14662949395604^(5/7) 2415782999048050 a001 610/64079*(1/2+1/2*5^(1/2))^45 2415782999048050 a001 610/64079*192900153618^(5/6) 2415782999048050 a001 610/64079*28143753123^(9/10) 2415782999048050 a001 610/64079*10749957122^(15/16) 2415782999048747 a001 28657/1364*(1/2+1/2*5^(1/2))^29 2415782999048747 a001 28657/1364*1322157322203^(1/2) 2415782999090528 a001 433494437/1364*39603^(9/22) 2415782999160541 a001 66978574/341*39603^(5/11) 2415782999230554 a001 165580141/1364*39603^(1/2) 2415782999300567 a001 9303105/124*39603^(6/11) 2415782999370580 a001 31622993/682*39603^(13/22) 2415782999440593 a001 39088169/1364*39603^(7/11) 2415782999510607 a001 24157817/1364*39603^(15/22) 2415782999516139 a001 1144206275/124*15127^(1/10) 2415782999580617 a001 3732588/341*39603^(8/11) 2415782999650638 a001 9227465/1364*39603^(17/22) 2415782999720630 a001 5702887/1364*39603^(9/11) 2415782999790697 a001 1762289/682*39603^(19/22) 2415782999860569 a001 2178309/1364*39603^(10/11) 2415782999930951 a001 1346269/1364*39603^(21/22) 2415782999999997 a001 7465189+7465176*5^(1/2) 2415783000044003 a001 7778742049/1364*15127^(3/20) 2415783000571867 a001 1201881744/341*15127^(1/5) 2415783001099732 a001 2971215073/1364*15127^(1/4) 2415783001413497 p004 log(13763/1229) 2415783001627596 a001 1836311903/1364*15127^(3/10) 2415783002155460 a001 567451585/682*15127^(7/20) 2415783002480450 a001 10182505537/682*5778^(1/18) 2415783002492237 a001 305/12238*(1/2+1/2*5^(1/2))^43 2415783002492935 a001 5473/682*(1/2+1/2*5^(1/2))^31 2415783002492935 a001 5473/682*9062201101803^(1/2) 2415783002683325 a001 701408733/1364*15127^(2/5) 2415783003211189 a001 433494437/1364*15127^(9/20) 2415783003739053 a001 66978574/341*15127^(1/2) 2415783004266918 a001 165580141/1364*15127^(11/20) 2415783004794782 a001 9303105/124*15127^(3/5) 2415783005322646 a001 31622993/682*15127^(13/20) 2415783005850510 a001 39088169/1364*15127^(7/10) 2415783006378376 a001 24157817/1364*15127^(3/4) 2415783006500490 a001 1144206275/124*5778^(1/9) 2415783006906237 a001 3732588/341*15127^(4/5) 2415783007434109 a001 9227465/1364*15127^(17/20) 2415783007961953 a001 5702887/1364*15127^(9/10) 2415783008489871 a001 1762289/682*15127^(19/20) 2415783009016999 a001 32685544112/1353 2415783009913796 m001 exp(-1/2*Pi)^Sierpinski-sin(1/12*Pi) 2415783010520530 a001 7778742049/1364*5778^(1/6) 2415783014358694 m001 ArtinRank2/ln(CopelandErdos)/Riemann1stZero^2 2415783014540570 a001 1201881744/341*5778^(2/9) 2415783018560609 a001 2971215073/1364*5778^(5/18) 2415783018854147 m001 (Pi+ln(2)/ln(10))/(2^(1/2)+Trott) 2415783019245295 m005 (1/2*2^(1/2)+3/8)/(8/11*gamma-3/8) 2415783022580649 a001 1836311903/1364*5778^(1/3) 2415783026099048 a001 610/9349*(1/2+1/2*5^(1/2))^41 2415783026099745 a001 4181/1364*141422324^(11/13) 2415783026099745 a001 4181/1364*2537720636^(11/15) 2415783026099745 a001 4181/1364*45537549124^(11/17) 2415783026099745 a001 4181/1364*312119004989^(3/5) 2415783026099745 a001 4181/1364*14662949395604^(11/21) 2415783026099745 a001 4181/1364*(1/2+1/2*5^(1/2))^33 2415783026099745 a001 4181/1364*192900153618^(11/18) 2415783026099745 a001 4181/1364*10749957122^(11/16) 2415783026099745 a001 4181/1364*1568397607^(3/4) 2415783026099745 a001 4181/1364*599074578^(11/14) 2415783026099747 a001 4181/1364*33385282^(11/12) 2415783026600689 a001 567451585/682*5778^(7/18) 2415783029458391 a001 10182505537/682*2207^(1/16) 2415783030620729 a001 701408733/1364*5778^(4/9) 2415783034640769 a001 433494437/1364*5778^(1/2) 2415783037859304 a007 Real Root Of -291*x^4+710*x^3-419*x^2+275*x-51 2415783038660809 a001 66978574/341*5778^(5/9) 2415783042680849 a001 165580141/1364*5778^(11/18) 2415783043339473 r005 Im(z^2+c),c=-7/66+51/56*I,n=15 2415783046700889 a001 9303105/124*5778^(2/3) 2415783049115666 m005 (1/2*3^(1/2)+8/11)/(2/11*2^(1/2)-11/12) 2415783050720929 a001 31622993/682*5778^(13/18) 2415783051836895 a007 Real Root Of -986*x^4+108*x^3+255*x^2+627*x+15 2415783054740969 a001 39088169/1364*5778^(7/9) 2415783055154691 m005 (-1/12+1/12*5^(1/2))/(4*Catalan+3/5) 2415783058761010 a001 24157817/1364*5778^(5/6) 2415783060456373 a001 1144206275/124*2207^(1/8) 2415783060733172 r009 Re(z^3+c),c=-37/98+22/47*I,n=26 2415783062781047 a001 3732588/341*5778^(8/9) 2415783063414024 m001 (3^(1/2)+Cahen)/(CopelandErdos+RenyiParking) 2415783066571870 a007 Real Root Of -246*x^4-300*x^3+342*x^2-712*x+433 2415783066781925 m001 gamma*Tribonacci+GAMMA(2/3) 2415783066801094 a001 9227465/1364*5778^(17/18) 2415783069199105 a001 63245986/521*521^(11/13) 2415783070143929 m005 (1/3*3^(1/2)+1/7)/(1/4*5^(1/2)-6/7) 2415783070820433 a001 31211917275/1292 2415783080585503 a007 Real Root Of 738*x^4+118*x^3-703*x^2-754*x+219 2415783083060870 a007 Real Root Of -187*x^4-300*x^3+603*x^2+218*x-853 2415783083257845 r009 Re(z^3+c),c=-37/94+14/25*I,n=39 2415783083340701 a007 Real Root Of -10*x^4-208*x^3+795*x^2-419*x-680 2415783084529404 a001 7778742049/5778*843^(3/7) 2415783091454354 a001 7778742049/1364*2207^(3/16) 2415783093764422 a003 cos(Pi*19/63)/cos(Pi*32/65) 2415783103517873 a001 7778742049/3571*843^(5/14) 2415783105604863 m001 (sin(1/5*Pi)-Ei(1,1))/(Backhouse-Conway) 2415783113121111 k006 concat of cont frac of 2415783116188086 r005 Re(z^2+c),c=-29/98+7/57*I,n=5 2415783116360220 q001 9/37255 2415783116675341 a001 46/141*832040^(6/19) 2415783120214630 a007 Real Root Of -279*x^4-761*x^3-83*x^2+414*x+258 2415783122452337 a001 1201881744/341*2207^(1/4) 2415783128131065 m005 (1/3*exp(1)+1)/(23/10+5/2*5^(1/2)) 2415783131055743 m006 (2/5*exp(2*Pi)+2)/(1/6*Pi^2-3/4) 2415783132360401 m001 (Kac+RenyiParking)/(Artin+DuboisRaymond) 2415783135529562 r005 Im(z^2+c),c=-17/90+18/53*I,n=12 2415783136283556 k008 concat of cont frac of 2415783136633665 r005 Re(z^2+c),c=-13/56+22/57*I,n=23 2415783144509110 a007 Real Root Of 279*x^4+426*x^3-766*x^2-399*x+10 2415783145683155 a001 32951280099/2207*322^(1/12) 2415783146332838 a001 20365011074/15127*843^(3/7) 2415783146552589 a001 1134903170/2207*843^(4/7) 2415783153450319 a001 2971215073/1364*2207^(5/16) 2415783155349838 a001 53316291173/39603*843^(3/7) 2415783156665401 a001 139583862445/103682*843^(3/7) 2415783156857339 a001 365435296162/271443*843^(3/7) 2415783156885342 a001 956722026041/710647*843^(3/7) 2415783156889428 a001 2504730781961/1860498*843^(3/7) 2415783156890024 a001 6557470319842/4870847*843^(3/7) 2415783156890164 a001 10610209857723/7881196*843^(3/7) 2415783156890392 a001 1346269*843^(3/7) 2415783156891953 a001 1548008755920/1149851*843^(3/7) 2415783156902649 a001 591286729879/439204*843^(3/7) 2415783156975963 a001 225851433717/167761*843^(3/7) 2415783157478463 a001 86267571272/64079*843^(3/7) 2415783160922651 a001 32951280099/24476*843^(3/7) 2415783161250698 m001 (sin(1)+GAMMA(13/24))/((1+3^(1/2))^(1/2)-Kac) 2415783169786641 p002 log(6^(7/12)+7^(12/11)) 2415783171203997 r005 Im(z^2+c),c=-2/3+47/232*I,n=17 2415783173553592 m001 (Gompertz+Tetranacci)/(sin(1/12*Pi)-Conway) 2415783174559154 p001 sum(1/(433*n+376)/n/(512^n),n=1..infinity) 2415783176352732 l006 ln(4289/5461) 2415783180430115 a003 cos(Pi*32/65)*sin(Pi*35/71) 2415783183618210 r009 Im(z^3+c),c=-19/106+5/21*I,n=9 2415783184448302 a001 1836311903/1364*2207^(3/8) 2415783184529463 a001 12586269025/9349*843^(3/7) 2415783186520146 m005 (1/3*gamma+3/4)/(4/11*gamma-3/5) 2415783186927939 h001 (3/8*exp(1)+5/11)/(8/11*exp(2)+8/11) 2415783186955411 m001 1-exp(1)-ArtinRank2 2415783187902548 a001 610/3571*2537720636^(13/15) 2415783187902548 a001 610/3571*45537549124^(13/17) 2415783187902548 a001 610/3571*14662949395604^(13/21) 2415783187902548 a001 610/3571*(1/2+1/2*5^(1/2))^39 2415783187902548 a001 610/3571*192900153618^(13/18) 2415783187902548 a001 610/3571*73681302247^(3/4) 2415783187902548 a001 610/3571*10749957122^(13/16) 2415783187902548 a001 610/3571*599074578^(13/14) 2415783187903231 a001 1597/1364*2537720636^(7/9) 2415783187903231 a001 1597/1364*17393796001^(5/7) 2415783187903231 a001 1597/1364*312119004989^(7/11) 2415783187903231 a001 1597/1364*14662949395604^(5/9) 2415783187903231 a001 1597/1364*(1/2+1/2*5^(1/2))^35 2415783187903231 a001 1597/1364*505019158607^(5/8) 2415783187903231 a001 1597/1364*28143753123^(7/10) 2415783187903231 a001 1597/1364*599074578^(5/6) 2415783187903231 a001 1597/1364*228826127^(7/8) 2415783188601515 a001 3/13*3^(1/24) 2415783197243928 m001 1/exp(GAMMA(1/4))/Khintchine^2/GAMMA(7/12) 2415783204132740 r005 Re(z^2+c),c=-23/118+29/62*I,n=11 2415783215446286 a001 567451585/682*2207^(7/16) 2415783231025182 m001 exp(Pi)+gamma+TreeGrowth2nd 2415783231728413 m001 (-GAMMA(1/12)+2)/(GAMMA(11/24)+2) 2415783235956190 m001 ((1+3^(1/2))^(1/2)-MertensB1)/Stephens 2415783238205636 a001 2/4181*21^(25/47) 2415783241275501 a001 10182505537/682*843^(1/14) 2415783241488986 m007 (-2/3*gamma-4/3*ln(2)+4)/(-5*gamma+4) 2415783243222903 h001 (5/6*exp(2)+1/7)/(5/8*exp(1)+10/11) 2415783246444269 a001 701408733/1364*2207^(1/2) 2415783248924545 m008 (3/4*Pi-1/2)/(4/5*Pi^6-3/4) 2415783256188868 p001 sum((-1)^n/(169*n+85)/n/(16^n),n=0..infinity) 2415783258911485 m005 (1/2*2^(1/2)+11/12)/(1/8*gamma+3/5) 2415783265247584 a001 24157817+7*5^(1/2) 2415783266913745 l006 ln(821/9194) 2415783268406238 r005 Im(z^2+c),c=7/60+11/52*I,n=17 2415783274440518 q001 2051/849 2415783277442254 a001 433494437/1364*2207^(9/16) 2415783278212082 a007 Real Root Of -524*x^4+487*x^3+11*x^2+476*x+123 2415783302767415 r005 Re(z^2+c),c=29/110+20/63*I,n=4 2415783308440238 a001 66978574/341*2207^(5/8) 2415783314127633 m001 (Ei(1,1)-GAMMA(5/6))/(Bloch-PlouffeB) 2415783317064609 m001 (RenyiParking+Riemann1stZero)/(gamma(2)+Kac) 2415783319769777 r002 23th iterates of z^2 + 2415783327344504 a001 267084832/321*843^(1/2) 2415783327829739 r002 6th iterates of z^2 + 2415783329269167 h001 (3/7*exp(1)+3/5)/(1/9*exp(1)+3/7) 2415783335965960 r005 Re(z^2+c),c=-29/110+13/46*I,n=21 2415783339438223 a001 165580141/1364*2207^(11/16) 2415783346332974 a001 4807526976/3571*843^(3/7) 2415783368723124 r009 Im(z^3+c),c=-19/106+5/21*I,n=13 2415783370004950 m001 (2^(1/3)-Zeta(3))/(-FeigenbaumAlpha+OneNinth) 2415783370436209 a001 9303105/124*2207^(3/4) 2415783376135314 r005 Im(z^2+c),c=-1/19+9/31*I,n=12 2415783377358622 m001 Zeta(5)^2/GAMMA(3/4)*ln(log(2+sqrt(3))) 2415783379151963 h001 (3/11*exp(1)+2/3)/(8/11*exp(2)+5/11) 2415783379190077 a007 Real Root Of 282*x^4-623*x^3-663*x^2-956*x-202 2415783381645608 r009 Im(z^3+c),c=-19/106+5/21*I,n=16 2415783381844985 r009 Im(z^3+c),c=-19/106+5/21*I,n=19 2415783381847800 r009 Im(z^3+c),c=-19/106+5/21*I,n=22 2415783381847833 r009 Im(z^3+c),c=-19/106+5/21*I,n=23 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=25 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=26 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=28 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=29 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=32 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=35 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=38 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=41 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=44 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=42 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=45 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=47 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=48 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=50 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=51 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=54 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=57 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=60 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=63 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=64 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=61 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=62 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=59 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=58 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=56 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=55 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=53 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=52 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=49 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=46 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=43 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=40 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=39 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=37 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=36 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=34 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=31 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=33 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=30 2415783381847836 r009 Im(z^3+c),c=-19/106+5/21*I,n=27 2415783381847839 r009 Im(z^3+c),c=-19/106+5/21*I,n=24 2415783381847854 r009 Im(z^3+c),c=-19/106+5/21*I,n=20 2415783381848007 r009 Im(z^3+c),c=-19/106+5/21*I,n=21 2415783381857033 r009 Im(z^3+c),c=-19/106+5/21*I,n=18 2415783381863607 r009 Im(z^3+c),c=-19/106+5/21*I,n=17 2415783382264646 r009 Im(z^3+c),c=-19/106+5/21*I,n=15 2415783383751468 r009 Im(z^3+c),c=-19/106+5/21*I,n=14 2415783385744982 m005 (13/20+1/4*5^(1/2))/(9/11*3^(1/2)-11/12) 2415783389147944 a001 12586269025/15127*843^(1/2) 2415783389367694 a001 701408733/2207*843^(9/14) 2415783394572734 r009 Im(z^3+c),c=-19/106+5/21*I,n=12 2415783396103877 m001 (FeigenbaumD-Grothendieck)/(Pi+sin(1/5*Pi)) 2415783398164945 a001 10983760033/13201*843^(1/2) 2415783399480507 a001 43133785636/51841*843^(1/2) 2415783399672445 a001 75283811239/90481*843^(1/2) 2415783399700449 a001 591286729879/710647*843^(1/2) 2415783399704534 a001 832040*843^(1/2) 2415783399705130 a001 4052739537881/4870847*843^(1/2) 2415783399705217 a001 3536736619241/4250681*843^(1/2) 2415783399705271 a001 3278735159921/3940598*843^(1/2) 2415783399705499 a001 2504730781961/3010349*843^(1/2) 2415783399707059 a001 956722026041/1149851*843^(1/2) 2415783399717756 a001 182717648081/219602*843^(1/2) 2415783399791069 a001 139583862445/167761*843^(1/2) 2415783400293570 a001 53316291173/64079*843^(1/2) 2415783401434195 a001 31622993/682*2207^(13/16) 2415783403737757 a001 10182505537/12238*843^(1/2) 2415783404435023 m005 (1/3*3^(1/2)-1/11)/(6/11*Pi+3/10) 2415783406507139 a007 Real Root Of 496*x^4+957*x^3-303*x^2+764*x+213 2415783407760015 r005 Im(z^2+c),c=-3/7+27/56*I,n=22 2415783411405690 m001 Rabbit*exp(Porter)/GAMMA(5/6)^2 2415783424329112 a007 Real Root Of 552*x^4+996*x^3-864*x^2-512*x-953 2415783425697071 l006 ln(685/7671) 2415783426915924 m009 (5/2*Pi^2+3)/(4*Psi(1,2/3)-4/5) 2415783427190251 m001 KhintchineLevy^2*ln(Si(Pi))/Ei(1)^2 2415783427344572 a001 7778742049/9349*843^(1/2) 2415783427713560 m001 sin(1)^2/ln(LaplaceLimit)^2/sqrt(3) 2415783432432180 a001 39088169/1364*2207^(7/8) 2415783435379658 b008 11*AiryAiPrime[-3/7] 2415783451617246 r005 Im(z^2+c),c=-23/60+21/52*I,n=27 2415783463430168 a001 24157817/1364*2207^(15/16) 2415783479837387 a001 48315645/2+11/2*5^(1/2) 2415783482852338 a003 cos(Pi*4/61)-cos(Pi*17/72) 2415783484090616 a001 1144206275/124*843^(1/7) 2415783488854381 a001 24157817+8*5^(1/2) 2415783494427558 a001 23843783090/987 2415783508296593 a007 Real Root Of -41*x^4-962*x^3+717*x^2+685*x-491 2415783510644321 a007 Real Root Of 562*x^4+505*x^3+504*x^2-816*x-20 2415783514264517 r009 Re(z^3+c),c=-31/86+23/56*I,n=9 2415783532502487 r005 Re(z^2+c),c=-15/52+7/44*I,n=14 2415783546494933 r005 Im(z^2+c),c=-25/18+2/179*I,n=31 2415783549866999 m002 -Pi-Pi^2+(Pi^4*Log[Pi])/3 2415783553107636 r009 Im(z^3+c),c=-19/106+5/21*I,n=11 2415783555467914 m008 (4/5*Pi^5+1/6)/(Pi^4+4) 2415783560822526 m008 (2*Pi^2+5)/(1/3*Pi^5+2/5) 2415783569290193 a001 43133785636/2889*322^(1/12) 2415783570159627 a001 2971215073/5778*843^(4/7) 2415783581070922 r005 Im(z^2+c),c=-10/19+2/5*I,n=34 2415783584003133 r009 Re(z^3+c),c=-43/114+15/32*I,n=40 2415783584843661 m001 (gamma(1)-GAMMA(5/6))/(FellerTornier+ZetaP(3)) 2415783589148099 a001 2971215073/3571*843^(1/2) 2415783598342501 r005 Re(z^2+c),c=9/70+28/45*I,n=23 2415783621134469 l006 ln(4117/5242) 2415783631093640 a001 32264490531/2161*322^(1/12) 2415783631963074 a001 7778742049/15127*843^(4/7) 2415783632182824 a001 433494437/2207*843^(5/7) 2415783637870529 a001 7/89*75025^(25/49) 2415783640110641 a001 591286729879/39603*322^(1/12) 2415783640980075 a001 20365011074/39603*843^(4/7) 2415783641426204 a001 774004377960/51841*322^(1/12) 2415783641572050 r005 Re(z^2+c),c=6/19+10/43*I,n=14 2415783641618142 a001 4052739537881/271443*322^(1/12) 2415783641646146 a001 1515744265389/101521*322^(1/12) 2415783641663453 a001 3278735159921/219602*322^(1/12) 2415783641736766 a001 2504730781961/167761*322^(1/12) 2415783642239267 a001 956722026041/64079*322^(1/12) 2415783642295638 a001 53316291173/103682*843^(4/7) 2415783642487576 a001 139583862445/271443*843^(4/7) 2415783642515580 a001 365435296162/710647*843^(4/7) 2415783642519665 a001 956722026041/1860498*843^(4/7) 2415783642520261 a001 2504730781961/4870847*843^(4/7) 2415783642520348 a001 6557470319842/12752043*843^(4/7) 2415783642520369 a001 10610209857723/20633239*843^(4/7) 2415783642520402 a001 4052739537881/7881196*843^(4/7) 2415783642520630 a001 1548008755920/3010349*843^(4/7) 2415783642522190 a001 514229*843^(4/7) 2415783642532887 a001 225851433717/439204*843^(4/7) 2415783642606200 a001 86267571272/167761*843^(4/7) 2415783643108701 a001 32951280099/64079*843^(4/7) 2415783645683455 a001 182717648081/12238*322^(1/12) 2415783646552889 a001 12586269025/24476*843^(4/7) 2415783648071035 r009 Re(z^3+c),c=-19/48+32/63*I,n=45 2415783650572706 a007 Real Root Of -425*x^4+925*x^3+494*x^2+644*x-196 2415783653369902 p001 sum(1/(601*n+42)/(5^n),n=0..infinity) 2415783657896502 a007 Real Root Of -287*x^4-238*x^3+719*x^2-874*x+112 2415783658078043 r005 Im(z^2+c),c=-25/18+1/125*I,n=4 2415783663148955 l006 ln(549/6148) 2415783666270229 a007 Real Root Of 965*x^4-272*x^3-387*x^2-598*x-129 2415783669290272 a001 139583862445/9349*322^(1/12) 2415783670159706 a001 4807526976/9349*843^(4/7) 2415783672951897 h001 (4/9*exp(1)+5/9)/(10/11*exp(2)+7/12) 2415783688324827 r005 Re(z^2+c),c=6/25+17/33*I,n=48 2415783691507168 m001 TwinPrimes/LandauRamanujan^2/exp(cosh(1)) 2415783700206351 m005 (1/2*exp(1)+6/11)/(2/9*gamma-11/12) 2415783703187751 m001 1/exp(GAMMA(5/24))*GolombDickman*Pi 2415783705133012 m001 Conway+Khinchin^OneNinth 2415783711478226 a007 Real Root Of -388*x^4-439*x^3+922*x^2-370*x+751 2415783726905755 a001 7778742049/1364*843^(3/14) 2415783727517877 m001 (-gamma(3)+Lehmer)/(1+exp(1/exp(1))) 2415783735174990 a007 Real Root Of -159*x^4-296*x^3-106*x^2-471*x+723 2415783738586663 r005 Re(z^2+c),c=7/24+8/47*I,n=50 2415783742268186 r005 Im(z^2+c),c=15/94+11/59*I,n=12 2415783744661641 r002 33th iterates of z^2 + 2415783753798949 a001 102334155/521*521^(10/13) 2415783770795887 p004 log(16921/1511) 2415783775366150 r005 Re(z^2+c),c=-7/34+30/37*I,n=39 2415783775880654 m001 1/exp(Si(Pi))/Champernowne^2*GAMMA(1/24) 2415783792692245 m009 (1/4*Psi(1,2/3)+6)/(1/4*Pi^2+1/3) 2415783799999997 a001 7465197+7465176*5^(1/2) 2415783803444185 a001 48315647/2+13/2*5^(1/2) 2415783812974775 a001 1836311903/5778*843^(9/14) 2415783817611080 a007 Real Root Of -309*x^4-937*x^3-308*x^2+545*x+428 2415783822569083 m001 (GAMMA(13/24)+Tribonacci)/(3^(1/3)-gamma(3)) 2415783827997813 a007 Real Root Of -522*x^4-812*x^3+941*x^2+31*x+914 2415783828085984 r005 Re(z^2+c),c=-1/122+33/53*I,n=4 2415783831093815 a001 53316291173/3571*322^(1/12) 2415783831963249 a001 1836311903/3571*843^(4/7) 2415783834152834 a007 Real Root Of -545*x^4-942*x^3-747*x^2+703*x+202 2415783835102043 r005 Re(z^2+c),c=41/126+4/23*I,n=20 2415783837015259 r005 Re(z^2+c),c=-3/22+25/42*I,n=49 2415783843214367 r005 Im(z^2+c),c=-5/8+142/221*I,n=5 2415783846356833 m001 exp(Zeta(1/2))^2/LandauRamanujan/cos(1)^2 2415783850182928 r002 3th iterates of z^2 + 2415783851576100 r005 Re(z^2+c),c=-2/11+16/25*I,n=29 2415783859088039 r009 Im(z^3+c),c=-17/29+32/55*I,n=12 2415783874778228 a001 686789568/2161*843^(9/14) 2415783874997978 a001 267914296/2207*843^(11/14) 2415783876082269 r005 Im(z^2+c),c=-27/62+5/12*I,n=47 2415783883529934 m001 1/GAMMA(19/24)/OneNinth/ln(sqrt(Pi))^2 2415783883795231 a001 12586269025/39603*843^(9/14) 2415783885110794 a001 32951280099/103682*843^(9/14) 2415783885302732 a001 86267571272/271443*843^(9/14) 2415783885330735 a001 317811*843^(9/14) 2415783885334821 a001 591286729879/1860498*843^(9/14) 2415783885335417 a001 1548008755920/4870847*843^(9/14) 2415783885335504 a001 4052739537881/12752043*843^(9/14) 2415783885335516 a001 1515744265389/4769326*843^(9/14) 2415783885335524 a001 6557470319842/20633239*843^(9/14) 2415783885335557 a001 2504730781961/7881196*843^(9/14) 2415783885335785 a001 956722026041/3010349*843^(9/14) 2415783885337346 a001 365435296162/1149851*843^(9/14) 2415783885348042 a001 139583862445/439204*843^(9/14) 2415783885421356 a001 53316291173/167761*843^(9/14) 2415783885923856 a001 20365011074/64079*843^(9/14) 2415783888198797 m001 (Pi^(1/2)-TreeGrowth2nd)/(ln(gamma)-gamma(3)) 2415783889368045 a001 7778742049/24476*843^(9/14) 2415783894190689 r005 Re(z^2+c),c=-13/86+11/16*I,n=15 2415783896419967 a007 Real Root Of 534*x^4+960*x^3-271*x^2+910*x-873 2415783908679520 m002 3/2+(4*Log[Pi])/5 2415783908951072 r005 Im(z^2+c),c=-7/9+17/101*I,n=5 2415783909813985 m002 -(Pi^5*Csch[Pi])+(2*Sinh[Pi])/Pi^2 2415783912974864 a001 2971215073/9349*843^(9/14) 2415783929687280 m005 (1/3*Zeta(3)-1/9)/(1/3*2^(1/2)+8/11) 2415783936761208 m001 FeigenbaumMu/Ei(1)*GlaisherKinkelin 2415783937536054 m005 (1/2*Catalan-8/9)/(2/7*Catalan-1/12) 2415783942115675 m005 (3/4*2^(1/2)-2/5)/(5/6*exp(1)-5) 2415783948404777 r005 Re(z^2+c),c=19/118+14/31*I,n=53 2415783949873931 a003 sin(Pi*13/119)*sin(Pi*13/51) 2415783950656309 h003 exp(Pi*(1/7*(6^(1/2)+2^(1/3))*7^(1/3))) 2415783957303503 a007 Real Root Of -503*x^4-732*x^3+946*x^2-158*x+909 2415783957648121 r005 Re(z^2+c),c=-5/34+33/56*I,n=60 2415783959165150 r009 Re(z^3+c),c=-25/102+7/53*I,n=5 2415783959351128 m001 (-gamma(3)+Otter)/(Shi(1)-Zeta(1,-1)) 2415783960014301 m001 GAMMA(1/3)/ArtinRank2/exp(arctan(1/2)) 2415783962132338 r005 Im(z^2+c),c=-6/5+2/113*I,n=14 2415783969720919 a001 1201881744/341*843^(2/7) 2415783980108862 r005 Re(z^2+c),c=7/32+13/30*I,n=34 2415783983812789 a008 Real Root of x^4-x^3-32*x^2+13*x+170 2415783998856073 m001 (GAMMA(7/12)-KhinchinLevy)/(MertensB2-Salem) 2415783999405722 m001 (-GolombDickman+TwinPrimes)/(ln(2)-sin(1)) 2415784006163783 a003 cos(Pi*1/102)-cos(Pi*8/113) 2415784017025851 a007 Real Root Of -97*x^4+741*x^3-767*x^2-955*x-360 2415784021059435 r005 Re(z^2+c),c=-1/56+35/57*I,n=37 2415784031164874 m005 (1/2*gamma-8/9)/(7/10*Pi+2/7) 2415784031232418 r005 Im(z^2+c),c=-59/64+13/58*I,n=47 2415784034048954 m001 (gamma(1)+CareFree)/(FeigenbaumB+Grothendieck) 2415784034430931 r005 Im(z^2+c),c=1/122+9/34*I,n=16 2415784036842465 r005 Im(z^2+c),c=-77/82+13/60*I,n=34 2415784052012288 a007 Real Root Of 432*x^4-264*x^3-757*x^2-615*x+195 2415784055040720 a007 Real Root Of 438*x^4+645*x^3-785*x^2+534*x+47 2415784055789948 a001 567451585/2889*843^(5/7) 2415784056370542 m005 (1/2*3^(1/2)-1/11)/(9/11*Catalan-3/7) 2415784056985492 l006 ln(413/4625) 2415784058078957 a003 cos(Pi*11/115)-cos(Pi*21/85) 2415784060062702 r005 Im(z^2+c),c=35/122+2/29*I,n=30 2415784063806302 a001 317811/4*76^(41/52) 2415784067934015 a007 Real Root Of -438*x^4-843*x^3+909*x^2+681*x-627 2415784068387987 m001 Magata/exp(CopelandErdos)/GAMMA(11/12)^2 2415784074041343 m001 (CopelandErdos-GaussAGM)/(Zeta(5)+3^(1/3)) 2415784074778424 a001 1134903170/3571*843^(9/14) 2415784099542505 m001 1/CareFree/GaussKuzminWirsing/exp(TwinPrimes) 2415784104358323 m001 Zeta(1/2)^2/ln(BesselK(1,1))^2*cos(1)^2 2415784104700700 l006 ln(3945/5023) 2415784111154269 m001 (MertensB3-Zeta(3))/cos(1) 2415784111459151 m001 RenyiParking^(3^(1/2))/Riemann3rdZero 2415784117593407 a001 2971215073/15127*843^(5/7) 2415784117813157 a001 165580141/2207*843^(6/7) 2415784119118007 a003 -3/2+1/2*2^(1/2)+cos(4/15*Pi)+cos(8/21*Pi) 2415784123369455 r005 Re(z^2+c),c=-37/122+24/47*I,n=11 2415784123965947 m005 (4*Pi+3/4)/(1/5*gamma-2/3) 2415784125542395 a001 1602508992/281*322^(1/4) 2415784126109335 a007 Real Root Of -545*x^4-922*x^3+851*x^2-144*x+249 2415784126610410 a001 7778742049/39603*843^(5/7) 2415784127925973 a001 10182505537/51841*843^(5/7) 2415784128117911 a001 53316291173/271443*843^(5/7) 2415784128145915 a001 139583862445/710647*843^(5/7) 2415784128150000 a001 182717648081/930249*843^(5/7) 2415784128150597 a001 956722026041/4870847*843^(5/7) 2415784128150683 a001 2504730781961/12752043*843^(5/7) 2415784128150696 a001 3278735159921/16692641*843^(5/7) 2415784128150699 a001 10610209857723/54018521*843^(5/7) 2415784128150704 a001 4052739537881/20633239*843^(5/7) 2415784128150737 a001 387002188980/1970299*843^(5/7) 2415784128150965 a001 591286729879/3010349*843^(5/7) 2415784128152525 a001 225851433717/1149851*843^(5/7) 2415784128163222 a001 196418*843^(5/7) 2415784128236536 a001 32951280099/167761*843^(5/7) 2415784128739036 a001 12586269025/64079*843^(5/7) 2415784132183225 a001 1201881744/6119*843^(5/7) 2415784138592497 a001 14662949395604/55*55^(11/20) 2415784140842847 a001 2207*514229^(15/17) 2415784145481583 m001 (gamma(2)-Magata)/(Riemann1stZero+ZetaQ(3)) 2415784147157826 m001 (Shi(1)+3^(1/3))/MertensB2 2415784147526747 r005 Im(z^2+c),c=-17/40+12/29*I,n=61 2415784150308518 m001 (Zeta(3)-ln(2+3^(1/2)))/PlouffeB 2415784155790047 a001 1836311903/9349*843^(5/7) 2415784159674775 a001 24157817+11*5^(1/2) 2415784164361062 k007 concat of cont frac of 2415784170709762 r009 Re(z^3+c),c=-3/23+37/41*I,n=6 2415784173556311 a001 76/21*121393^(6/37) 2415784177456695 r005 Re(z^2+c),c=-5/46+29/63*I,n=5 2415784177633832 m001 Bloch+KomornikLoreti^ln(Pi) 2415784178680323 r005 Re(z^2+c),c=-83/102+1/35*I,n=62 2415784182001667 m001 exp(TreeGrowth2nd)^2*Salem/GAMMA(19/24) 2415784198667111 h001 (5/8*exp(2)+5/9)/(5/7*exp(1)+1/5) 2415784201102066 a007 Real Root Of -836*x^4-145*x^3+87*x^2+858*x+203 2415784211981788 r005 Re(z^2+c),c=-11/24+16/29*I,n=15 2415784212536107 a001 2971215073/1364*843^(5/14) 2415784219696312 a007 Real Root Of -208*x^4-177*x^3+687*x^2-285*x-109 2415784230490774 r005 Im(z^2+c),c=-17/52+16/35*I,n=10 2415784231619837 r002 8th iterates of z^2 + 2415784233077211 b008 -1+ArcCosh[15/8] 2415784241831022 a007 Real Root Of 250*x^4+769*x^3+605*x^2+264*x-566 2415784247844328 a007 Real Root Of -309*x^4+164*x^3+717*x^2+517*x-168 2415784260484615 m001 (GAMMA(11/12)-Niven)/(ln(3)+BesselI(1,2)) 2415784266541126 p002 log(7^(3/2)-6^(10/9)) 2415784266745319 a005 (1/cos(16/189*Pi))^1633 2415784268741437 m001 FellerTornier-exp(Pi)-Totient 2415784283580396 a001 317811/322*7^(23/50) 2415784291123926 m001 1/GAMMA(2/3)^2/GAMMA(13/24)^2/exp(GAMMA(5/12)) 2415784291238727 l006 ln(3721/3730) 2415784296920821 a001 305/682*(1/2+1/2*5^(1/2))^37 2415784298605145 a001 233802911/1926*843^(11/14) 2415784303907180 m004 -149/6+Sin[Sqrt[5]*Pi] 2415784310143361 p004 log(24677/19381) 2415784314930970 h001 (7/12*exp(2)+7/11)/(3/5*exp(1)+5/12) 2415784315329241 m002 -Cosh[Pi]/6+Pi^3/Log[Pi]-Tanh[Pi] 2415784317593623 a001 701408733/3571*843^(5/7) 2415784325118472 m001 (Zeta(5)-Zeta(1,-1))/(Gompertz-Paris) 2415784330282750 m004 -25+Sin[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi]/6 2415784333658313 r009 Im(z^3+c),c=-23/50+4/51*I,n=45 2415784353122091 r005 Im(z^2+c),c=-11/74+23/54*I,n=3 2415784360408610 a001 1836311903/15127*843^(11/14) 2415784360628360 a001 102334155/2207*843^(13/14) 2415784361857060 r005 Im(z^2+c),c=5/64+13/56*I,n=8 2415784362648627 l006 ln(7718/9827) 2415784363361178 m001 GAMMA(23/24)^(2/3)+exp(Pi) 2415784369425614 a001 1602508992/13201*843^(11/14) 2415784369776028 a007 Real Root Of -546*x^4+490*x^3-247*x^2+467*x+136 2415784370342278 l006 ln(690/7727) 2415784370741178 a001 12586269025/103682*843^(11/14) 2415784370933116 a001 121393*843^(11/14) 2415784370961119 a001 86267571272/710647*843^(11/14) 2415784370965205 a001 75283811239/620166*843^(11/14) 2415784370965801 a001 591286729879/4870847*843^(11/14) 2415784370965888 a001 516002918640/4250681*843^(11/14) 2415784370965900 a001 4052739537881/33385282*843^(11/14) 2415784370965902 a001 3536736619241/29134601*843^(11/14) 2415784370965903 a001 6557470319842/54018521*843^(11/14) 2415784370965908 a001 2504730781961/20633239*843^(11/14) 2415784370965941 a001 956722026041/7881196*843^(11/14) 2415784370966169 a001 365435296162/3010349*843^(11/14) 2415784370967730 a001 139583862445/1149851*843^(11/14) 2415784370978426 a001 53316291173/439204*843^(11/14) 2415784371051740 a001 20365011074/167761*843^(11/14) 2415784371554240 a001 7778742049/64079*843^(11/14) 2415784374998429 a001 2971215073/24476*843^(11/14) 2415784395166142 a007 Real Root Of -402*x^4-510*x^3+831*x^2-846*x-392 2415784395722783 m005 (1/2*Catalan-1/11)/(3/5*2^(1/2)-5/6) 2415784398605254 a001 1134903170/9349*843^(11/14) 2415784399062872 r009 Im(z^3+c),c=-8/17+4/51*I,n=43 2415784400612639 b008 E-7/E^Pi 2415784407145382 m005 (1/2*2^(1/2)-1/3)/(11/10+1/5*5^(1/2)) 2415784408084696 q001 251/1039 2415784410923256 a007 Real Root Of -468*x^4-818*x^3+523*x^2-899*x-817 2415784413809897 p001 sum(1/(432*n+377)/n/(512^n),n=1..infinity) 2415784416515849 r005 Im(z^2+c),c=-49/118+23/56*I,n=40 2415784431009306 a005 (1/sin(66/233*Pi))^40 2415784438398987 a001 165580141/521*521^(9/13) 2415784449466464 a001 1149851*34^(4/19) 2415784450374418 a007 Real Root Of 905*x^4-769*x^3-552*x^2-767*x-167 2415784454966446 m001 (ln(gamma)+ln(2^(1/2)+1))/(Artin-MadelungNaCl) 2415784455351320 a001 1836311903/1364*843^(3/7) 2415784459858437 r005 Re(z^2+c),c=-13/58+13/32*I,n=16 2415784469748301 a001 3*4181^(10/19) 2415784478548348 m001 1/Riemann1stZero^2*ln(CareFree)*GAMMA(19/24)^2 2415784480061239 a007 Real Root Of 271*x^4+761*x^3+649*x^2+569*x-914 2415784503139795 m009 (1/6*Pi^2+2/5)/(16/3*Catalan+2/3*Pi^2-3) 2415784519048301 a007 Real Root Of 81*x^4-458*x^3+359*x^2-200*x-76 2415784522847203 r009 Re(z^3+c),c=-15/106+52/55*I,n=10 2415784523010746 p004 log(24239/19037) 2415784541420366 a001 433494437/5778*843^(6/7) 2415784560408846 a001 433494437/3571*843^(11/14) 2415784560517763 a007 Real Root Of -525*x^4-956*x^3+345*x^2-999*x-24 2415784561162030 m002 2/E^Pi+Pi^6/4+Log[Pi] 2415784562399338 r005 Re(z^2+c),c=-131/94+11/51*I,n=4 2415784566580765 r009 Re(z^3+c),c=-41/110+28/61*I,n=44 2415784572514247 a007 Real Root Of -470*x^4-914*x^3+804*x^2+410*x-580 2415784573376301 r005 Re(z^2+c),c=-15/26+19/39*I,n=43 2415784587723160 m001 GAMMA(7/24)/ln(Sierpinski)^2/sqrt(2) 2415784596901691 m009 (1/6*Psi(1,1/3)+3/4)/(Pi^2+1/5) 2415784599181534 a007 Real Root Of -133*x^4+89*x^3+790*x^2-556*x-169 2415784603223838 a001 1134903170/15127*843^(6/7) 2415784606888370 a001 24157817+13*5^(1/2) 2415784612240843 a001 2971215073/39603*843^(6/7) 2415784612461179 a001 24157826+9*5^(1/2) 2415784613556406 a001 7778742049/103682*843^(6/7) 2415784613748344 a001 20365011074/271443*843^(6/7) 2415784613776348 a001 53316291173/710647*843^(6/7) 2415784613780433 a001 139583862445/1860498*843^(6/7) 2415784613781029 a001 365435296162/4870847*843^(6/7) 2415784613781116 a001 956722026041/12752043*843^(6/7) 2415784613781129 a001 2504730781961/33385282*843^(6/7) 2415784613781131 a001 6557470319842/87403803*843^(6/7) 2415784613781131 a001 10610209857723/141422324*843^(6/7) 2415784613781132 a001 4052739537881/54018521*843^(6/7) 2415784613781137 a001 140728068720/1875749*843^(6/7) 2415784613781170 a001 591286729879/7881196*843^(6/7) 2415784613781398 a001 225851433717/3010349*843^(6/7) 2415784613782958 a001 86267571272/1149851*843^(6/7) 2415784613793655 a001 32951280099/439204*843^(6/7) 2415784613866968 a001 75025*843^(6/7) 2415784614369469 a001 4807526976/64079*843^(6/7) 2415784617813658 a001 1836311903/24476*843^(6/7) 2415784630247719 a001 29/4052739537881*987^(3/17) 2415784631899416 m001 3^(1/2)*MertensB1+ReciprocalLucas 2415784632355637 l006 ln(3773/4804) 2415784641420485 a001 701408733/9349*843^(6/7) 2415784647367209 a007 Real Root Of 182*x^4+449*x^3+238*x^2+410*x-267 2415784652961530 r009 Im(z^3+c),c=-8/17+5/34*I,n=2 2415784657607750 a007 Real Root Of -320*x^4-494*x^3+432*x^2-878*x-708 2415784666820368 s002 sum(A242458[n]/(n*2^n+1),n=1..infinity) 2415784673348425 g005 GAMMA(5/9)/GAMMA(2/11)/GAMMA(4/9)/GAMMA(1/7) 2415784674066810 r009 Im(z^3+c),c=-43/82+31/63*I,n=18 2415784682904983 r005 Re(z^2+c),c=-11/14+5/56*I,n=56 2415784683249213 m001 (Si(Pi)+LaplaceLimit)/(Trott2nd+ZetaP(4)) 2415784688799250 m009 (1/10*Pi^2+5)/(1/6*Pi^2+5/6) 2415784692597745 m001 ZetaQ(2)^(Gompertz/FibonacciFactorial) 2415784694559620 a007 Real Root Of 522*x^4+946*x^3-444*x^2+571*x-471 2415784694968229 a003 cos(Pi*19/96)-cos(Pi*19/62) 2415784698166557 a001 567451585/682*843^(1/2) 2415784701574696 r005 Re(z^2+c),c=19/56+7/32*I,n=31 2415784709138605 r008 a(0)=3,K{-n^6,2+n^2-8*n} 2415784713375534 m001 Conway*ln(Champernowne)/GAMMA(5/6) 2415784714856928 m008 (3*Pi^3+5/6)/(3/5*Pi+2) 2415784714931414 m005 (1/2*exp(1)-1/5)/(3*2^(1/2)+5/9) 2415784718148513 m001 (GAMMA(5/6)-Kac)/(Magata-PisotVijayaraghavan) 2415784719294804 m001 (Sarnak+Trott)/(ln(2)-LaplaceLimit) 2415784724004213 a007 Real Root Of -409*x^4-748*x^3+480*x^2-580*x-818 2415784739641294 m001 exp(Ei(1))^2/GlaisherKinkelin^2/GAMMA(11/12)^2 2415784743176830 r005 Im(z^2+c),c=-19/34+46/111*I,n=32 2415784749855317 m005 (1/2*Pi+2/11)/(3*exp(1)-9/10) 2415784756821085 a007 Real Root Of -407*x^4-786*x^3+708*x^2+299*x-629 2415784759066605 m001 (CareFree+Mills)/FeigenbaumB 2415784759106967 a005 (1/sin(72/179*Pi))^691 2415784761373667 m003 4-Cos[1/2+Sqrt[5]/2]+(4*Tan[1/2+Sqrt[5]/2])/3 2415784762567440 a007 Real Root Of -302*x^4-202*x^3+853*x^2-685*x+805 2415784762590517 r005 Re(z^2+c),c=-3/13+16/41*I,n=20 2415784764210773 r009 Im(z^3+c),c=-11/24+3/37*I,n=59 2415784770520224 a001 6119/2*1346269^(26/55) 2415784771462435 m003 Sqrt[5]/32+(39*Log[1/2+Sqrt[5]/2])/8 2415784772760331 r005 Im(z^2+c),c=29/102+4/53*I,n=15 2415784782953150 a001 7/4*(1/2*5^(1/2)+1/2)^27*4^(19/23) 2415784783298489 m001 1/GAMMA(3/4)^2*exp(BesselK(0,1))*cosh(1)^2 2415784784235612 a001 133957148/2889*843^(13/14) 2415784784449925 r005 Im(z^2+c),c=-9/13+10/41*I,n=11 2415784787143412 r005 Im(z^2+c),c=-14/23+17/41*I,n=13 2415784795546237 m001 Ei(1,1)^GlaisherKinkelin+Paris 2415784803224094 a001 267914296/3571*843^(6/7) 2415784804704588 a007 Real Root Of 528*x^4+698*x^3-994*x^2+583*x-933 2415784808843395 b008 20+ExpIntegralEi[Sqrt[Pi]] 2415784830334955 a001 47/28657*514229^(9/44) 2415784831281941 a001 7/89*13^(7/16) 2415784837549145 l006 ln(277/3102) 2415784842438205 r005 Im(z^2+c),c=-13/19+1/35*I,n=43 2415784846039090 a001 701408733/15127*843^(13/14) 2415784853919679 m001 (ErdosBorwein+Gompertz)/(ln(5)-ArtinRank2) 2415784855056096 a001 1836311903/39603*843^(13/14) 2415784856371659 a001 46368*843^(13/14) 2415784856563597 a001 12586269025/271443*843^(13/14) 2415784856591601 a001 32951280099/710647*843^(13/14) 2415784856595686 a001 43133785636/930249*843^(13/14) 2415784856596282 a001 225851433717/4870847*843^(13/14) 2415784856596369 a001 591286729879/12752043*843^(13/14) 2415784856596382 a001 774004377960/16692641*843^(13/14) 2415784856596384 a001 4052739537881/87403803*843^(13/14) 2415784856596384 a001 225749145909/4868641*843^(13/14) 2415784856596384 a001 3278735159921/70711162*843^(13/14) 2415784856596385 a001 2504730781961/54018521*843^(13/14) 2415784856596390 a001 956722026041/20633239*843^(13/14) 2415784856596423 a001 182717648081/3940598*843^(13/14) 2415784856596651 a001 139583862445/3010349*843^(13/14) 2415784856598211 a001 53316291173/1149851*843^(13/14) 2415784856608908 a001 10182505537/219602*843^(13/14) 2415784856682221 a001 7778742049/167761*843^(13/14) 2415784857184722 a001 2971215073/64079*843^(13/14) 2415784857643135 a007 Real Root Of 365*x^4+470*x^3-670*x^2+628*x-378 2415784858913867 a007 Real Root Of -233*x^4-321*x^3+976*x^2+863*x-201 2415784860628912 a001 567451585/12238*843^(13/14) 2415784862867346 a007 Real Root Of 434*x^4+988*x^3-155*x^2-20*x+4 2415784875338817 m001 (Ei(1,1)+BesselI(1,2))/(RenyiParking+ZetaQ(4)) 2415784877485539 r009 Re(z^3+c),c=-43/118+26/59*I,n=38 2415784878709462 m005 (1/3*Pi-1/9)/(1/8*exp(1)-8/11) 2415784884235741 a001 433494437/9349*843^(13/14) 2415784906861291 m001 1/Salem*ln(KhintchineHarmonic)^2*Catalan 2415784914644576 l006 ln(7374/9389) 2415784917979360 r009 Re(z^3+c),c=-1/9+23/37*I,n=4 2415784938804416 h001 (2/5*exp(2)+3/4)/(4/11*exp(1)+6/11) 2415784940112384 a001 10182505537/682*322^(1/12) 2415784940981819 a001 701408733/1364*843^(4/7) 2415784947343934 a007 Real Root Of -277*x^4-384*x^3-956*x^2+934*x-22 2415784954334429 m001 1/ln(GAMMA(2/3))/FransenRobinson^2/sqrt(3) 2415784954930998 r005 Re(z^2+c),c=-5/28+31/60*I,n=60 2415784961380965 m001 (RenyiParking-Salem)/(gamma(3)+Pi^(1/2)) 2415784965020104 a007 Real Root Of -36*x^4+662*x^3-307*x^2+727*x+203 2415784969211282 m001 (MadelungNaCl+Niven)/(sin(1)+sin(1/5*Pi)) 2415784969397873 m001 (gamma(2)-Khinchin)/(Sarnak-Tribonacci) 2415784982625936 a007 Real Root Of 301*x^4+361*x^3-942*x^2+81*x+531 2415784989616021 a007 Real Root Of -478*x^4-903*x^3+338*x^2-372*x+678 2415784990258049 m005 (1/3*gamma+1/8)/(13/15+1/5*5^(1/2)) 2415784999494672 m001 1/Pi/exp(GAMMA(17/24))^2/Zeta(7) 2415784999980171 m005 (1/3*exp(1)+1/4)/(5/8*Zeta(3)-3/11) 2415785013263052 a007 Real Root Of 331*x^4+18*x^3-877*x^2-481*x+166 2415785016860440 a007 Real Root Of -410*x^4-137*x^3-451*x^2+212*x+77 2415785026378594 s002 sum(A004887[n]/(n^2*exp(n)+1),n=1..infinity) 2415785027055702 a001 9107509552/377 2415785039987607 m001 (exp(1/Pi)-PlouffeB)/(Porter-Tribonacci) 2415785046039366 a001 165580141/3571*843^(13/14) 2415785048016375 m001 1/exp(GAMMA(5/24))/GAMMA(13/24)*LambertW(1)^2 2415785050148130 m001 (CareFree+Conway)/(GAMMA(7/12)-ArtinRank2) 2415785054272417 a001 7778742049/521*199^(1/11) 2415785061484637 a007 Real Root Of -276*x^4-518*x^3+466*x^2+667*x+989 2415785064804269 m001 (Shi(1)+Magata)/(-MertensB1+ZetaP(4)) 2415785087335247 a001 20365011074/2207*322^(1/6) 2415785088859416 a001 9107509785/377 2415785095122681 m001 1/Robbin*Backhouse^2/exp(Sierpinski) 2415785097871376 a001 48315655/2+21/2*5^(1/2) 2415785097877984 a001 9107509819/377 2415785099204244 a001 9107509824/377 2415785099416445 a001 45537549124/377*8^(1/3) 2415785099416445 a001 2/377*(1/2+1/2*5^(1/2))^51 2415785099469496 a001 9107509825/377 2415785099999997 a001 7465210+7465176*5^(1/2) 2415785111318078 m001 GAMMA(17/24)^2*Sierpinski^2*exp(cosh(1))^2 2415785112485558 r009 Re(z^3+c),c=-53/90+38/55*I,n=6 2415785121945009 a007 Real Root Of 209*x^4+523*x^3+487*x^2+820*x-606 2415785122199225 m001 RenyiParking*exp(ErdosBorwein)/cosh(1) 2415785122999219 a001 267914296/521*521^(8/13) 2415785127055702 a001 9107509929/377 2415785133019286 r005 Re(z^2+c),c=-125/102+10/61*I,n=42 2415785139390459 p001 sum((-1)^n/(515*n+129)/n/(64^n),n=1..infinity) 2415785143654903 a007 Real Root Of 246*x^4+342*x^3-188*x^2+954*x-155 2415785149392095 r005 Re(z^2+c),c=-23/18+23/195*I,n=10 2415785152336333 r009 Re(z^3+c),c=-41/110+28/61*I,n=52 2415785153768370 r005 Re(z^2+c),c=-5/8+47/108*I,n=63 2415785163554758 m001 exp(1/Pi)^Zeta(1,-1)+Porter 2415785174866512 a007 Real Root Of 173*x^4+51*x^3-901*x^2+250*x+689 2415785178671091 a008 Real Root of (-3-6*x-4*x^2+6*x^3-2*x^4-2*x^5) 2415785183797105 a001 433494437/1364*843^(9/14) 2415785188482780 r008 a(0)=0,K{-n^6,10*n^3+157*n^2+190*n+57} 2415785190151965 r008 a(0)=0,K{-n^6,(2*n+1)*(51+2*n^2+85*n)} 2415785198907390 m001 (Psi(2,1/3)+Pi^(1/2))/(GAMMA(19/24)+MertensB2) 2415785201372278 r009 Re(z^3+c),c=-19/56+5/13*I,n=23 2415785202789900 m001 (Magata+Trott2nd)/(cos(1)+ln(2^(1/2)+1)) 2415785210416899 l006 ln(3601/4585) 2415785251271736 m001 Ei(1)*exp(Cahen)*sin(Pi/12)^2 2415785263587547 m001 1/ln(cos(Pi/5))/Tribonacci^2*sqrt(3) 2415785264734528 a003 sin(Pi*6/109)/sin(Pi*27/107) 2415785265593885 r005 Re(z^2+c),c=-3/22+36/41*I,n=45 2415785285778263 a008 Real Root of x^4+20*x^2-128*x-460 2415785288859416 a001 9107510539/377 2415785294779159 a001 2207/21*610^(39/46) 2415785301394596 l006 ln(695/7783) 2415785311177486 r005 Re(z^2+c),c=7/22+10/51*I,n=28 2415785312911705 p003 LerchPhi(1/10,5,321/152) 2415785323131112 k007 concat of cont frac of 2415785329193918 m001 1/Catalan^2*MadelungNaCl*exp(GAMMA(3/4))^2 2415785333010089 m001 Chi(1)*Porter+KhinchinLevy 2415785342679999 p003 LerchPhi(1/1024,1,53/128) 2415785343781358 a007 Real Root Of -440*x^4-782*x^3+662*x^2+362*x+972 2415785347946340 a001 199/233*3^(53/56) 2415785354809592 a007 Real Root Of -439*x^4-83*x^3+270*x^2+958*x+216 2415785359487236 a008 Real Root of (-4+2*x-6*x^2-2*x^3-3*x^4+2*x^5) 2415785372054232 m001 (Pi+exp(1/exp(1)))/(Bloch-Robbin) 2415785372466092 m005 (1/3*Zeta(3)+1/7)/(6/7*5^(1/2)+1/3) 2415785378117913 m008 (5*Pi-2/3)/(2*Pi^3+1/4) 2415785380032194 m001 (-Landau+Trott)/(3^(1/2)+Bloch) 2415785395292964 r005 Re(z^2+c),c=-49/62+1/14*I,n=34 2415785404798022 m001 Robbin^2*Si(Pi)*ln(sin(1))^2 2415785408149867 r009 Re(z^3+c),c=-5/34+48/59*I,n=27 2415785411840695 m005 (1/2*Catalan-11/12)/(5/6*gamma-1/2) 2415785418967225 a007 Real Root Of 546*x^4+677*x^3+943*x^2-987*x+172 2415785426612415 a001 66978574/341*843^(5/7) 2415785430824764 g002 2*Psi(1/12)+Psi(7/9)-Psi(6/11) 2415785434869940 a007 Real Root Of -534*x^4-999*x^3+953*x^2+990*x+933 2415785435642217 m005 (1/3*Catalan+1/11)/(5/8*Zeta(3)+8/9) 2415785447489934 m001 (exp(1)+Pi^(1/2))/(Grothendieck+ZetaP(4)) 2415785456404875 m001 (Tetranacci+ZetaP(2))/(ln(5)-GolombDickman) 2415785457680071 a001 29*1597^(31/34) 2415785474795999 a007 Real Root Of 482*x^4+801*x^3-748*x^2+152*x-391 2415785475826477 a007 Real Root Of 396*x^4+725*x^3-393*x^2+405*x+6 2415785476558680 m006 (4*Pi-1/2)/(5*Pi^2+3/5) 2415785476558680 m008 (4*Pi-1/2)/(5*Pi^2+3/5) 2415785479168140 r009 Re(z^3+c),c=-33/86+29/60*I,n=32 2415785480381607 m001 (ArtinRank2+LaplaceLimit)/(Paris-Robbin) 2415785481627269 a007 Real Root Of 217*x^4+316*x^3+25*x^2-771*x-184 2415785488878432 r009 Re(z^3+c),c=-39/110+23/55*I,n=17 2415785500947997 m001 1/GAMMA(5/24)*ln(Bloch)*sqrt(2) 2415785502764877 r005 Im(z^2+c),c=5/28+25/44*I,n=48 2415785508147330 r009 Re(z^3+c),c=-29/86+29/52*I,n=9 2415785508266646 m001 (Zeta(5)-GAMMA(2/3))/(cos(1/12*Pi)-GaussAGM) 2415785510566627 r005 Im(z^2+c),c=-28/25+1/34*I,n=27 2415785510942626 a001 53316291173/5778*322^(1/6) 2415785513714638 m005 (1/2*Pi-3/7)/(1/10*exp(1)-5) 2415785516127628 m001 (FeigenbaumC+Magata)/(Riemann2ndZero+Robbin) 2415785517189138 m006 (3*Pi^2+1/4)/(1/6*Pi-2/5) 2415785517189138 m008 (3*Pi^2+1/4)/(1/6*Pi-2/5) 2415785517643390 a007 Real Root Of -245*x^4-271*x^3+794*x^2-125*x-412 2415785520662283 l006 ln(7030/8951) 2415785521784093 r002 4th iterates of z^2 + 2415785526971416 a007 Real Root Of -164*x^4-162*x^3+606*x^2+19*x-189 2415785542078600 p004 log(35869/3203) 2415785567006806 m001 ln(HardHexagonsEntropy)/Artin^2/Paris 2415785572459976 r005 Im(z^2+c),c=-47/106+18/43*I,n=52 2415785572746122 a001 139583862445/15127*322^(1/6) 2415785574471962 m005 (1/2*Zeta(3)+2/11)/(4/5*Pi+8/11) 2415785581763131 a001 365435296162/39603*322^(1/6) 2415785583078695 a001 956722026041/103682*322^(1/6) 2415785583270633 a001 2504730781961/271443*322^(1/6) 2415785583298636 a001 6557470319842/710647*322^(1/6) 2415785583305247 a001 10610209857723/1149851*322^(1/6) 2415785583315944 a001 4052739537881/439204*322^(1/6) 2415785583389257 a001 140728068720/15251*322^(1/6) 2415785583891758 a001 591286729879/64079*322^(1/6) 2415785587335949 a001 7787980473/844*322^(1/6) 2415785589974405 a001 103682*514229^(13/17) 2415785604005747 r005 Im(z^2+c),c=-101/90+1/4*I,n=16 2415785607771830 m005 (1/3*Zeta(3)-3/7)/(7/11*Catalan+4/7) 2415785608775314 l006 ln(418/4681) 2415785610942785 a001 86267571272/9349*322^(1/6) 2415785632529581 m001 KomornikLoreti^Psi(1,1/3)/(Trott^Psi(1,1/3)) 2415785639319141 a007 Real Root Of 332*x^4+307*x^3-834*x^2+705*x-409 2415785648901422 m005 (1/3*Catalan-1/5)/(5/12*3^(1/2)-2/7) 2415785655018126 a007 Real Root Of -157*x^4-48*x^3+722*x^2-440*x-606 2415785655060819 p001 sum(1/(431*n+378)/n/(512^n),n=1..infinity) 2415785664023754 p001 sum(1/(494*n+393)/n/(5^n),n=1..infinity) 2415785668381368 m001 (Pi-GAMMA(3/4))/(HeathBrownMoroz-Kolakoski) 2415785669427750 a001 165580141/1364*843^(11/14) 2415785691684566 a001 161/305*4181^(36/49) 2415785694003340 r005 Re(z^2+c),c=19/56+10/29*I,n=40 2415785720192160 b008 -3*ArcCsch[2]+Zeta[3] 2415785720192160 b008 ArcSinh[2]-Zeta[3] 2415785724922359 a001 24157817+18*5^(1/2) 2415785736086774 h001 (5/6*exp(1)+3/7)/(1/5*exp(1)+4/7) 2415785741666640 r005 Im(z^2+c),c=-79/106+2/21*I,n=19 2415785742095814 a007 Real Root Of 91*x^4-24*x^3-273*x^2+552*x-511 2415785743321030 a007 Real Root Of 353*x^4+479*x^3-969*x^2-345*x-448 2415785745474725 r005 Re(z^2+c),c=-7/31+21/52*I,n=33 2415785752501569 b008 Sech[4-Cos[2]] 2415785753210810 m005 (1/2*3^(1/2)-2/7)/(4/5*Pi-1/9) 2415785754266628 m001 exp(GAMMA(11/12))*GolombDickman^2/arctan(1/2) 2415785759733689 a007 Real Root Of 49*x^4-160*x^3-723*x^2-163*x-99 2415785767727523 b008 JacobiSC[Pi/13,2] 2415785772746458 a001 32951280099/3571*322^(1/6) 2415785782225943 m001 1/GAMMA(1/4)/PrimesInBinary/ln(log(2+sqrt(3))) 2415785785920258 a007 Real Root Of 344*x^4+697*x^3+15*x^2+556*x-634 2415785794792716 r005 Im(z^2+c),c=-13/62+8/23*I,n=19 2415785795257382 a001 329/90481*18^(19/29) 2415785796270773 m001 GAMMA(7/12)+KhinchinLevy*RenyiParking 2415785807599646 a001 433494437/521*521^(7/13) 2415785812779702 r005 Re(z^2+c),c=-9/8+51/230*I,n=40 2415785814175786 m005 (1/2*gamma+4/9)/(4/7*2^(1/2)-7/9) 2415785818120547 r009 Re(z^3+c),c=-39/94+23/47*I,n=20 2415785821170122 a005 (1/cos(8/207*Pi))^431 2415785822061545 m006 (3/5*exp(2*Pi)+2/5)/(4*Pi+3/4) 2415785824237219 m001 (GolombDickman+4)/(2^(1/2)+1/2) 2415785842084275 m005 (3/20+1/4*5^(1/2))/(7/9*Zeta(3)+2) 2415785846469688 l006 ln(3429/4366) 2415785873654024 a007 Real Root Of -24*x^4-605*x^3-633*x^2-579*x-12 2415785875930079 r002 3th iterates of z^2 + 2415785879607311 a007 Real Root Of 144*x^4+349*x^3+36*x^2+140*x+144 2415785888134670 a007 Real Root Of -572*x^4-97*x^3+550*x^2+746*x-209 2415785900477743 a001 16692641/305*34^(8/19) 2415785910631816 a008 Real Root of x^4-2*x^3-34*x^2+2*x+141 2415785912243109 a001 9303105/124*843^(6/7) 2415785913437857 m001 (1+ln(3))/(-exp(1/exp(1))+Stephens) 2415785919460302 b008 ArcSinh[4+ArcSec[Pi]^2] 2415785921042035 m005 (1/2*Catalan+6/7)/(7/9*2^(1/2)-5/9) 2415785952095795 r002 6th iterates of z^2 + 2415785953712099 a007 Real Root Of 307*x^4+996*x^3+447*x^2-578*x-419 2415785957249482 a007 Real Root Of 32*x^4+782*x^3+178*x^2-943*x-501 2415785959857898 r009 Re(z^3+c),c=-3/31+51/64*I,n=46 2415785973949684 m006 (1/3*exp(2*Pi)+1/6)/(4/5*Pi^2-1/2) 2415785974350559 a001 5/64079*39603^(42/43) 2415785974853445 r005 Re(z^2+c),c=-19/94+22/53*I,n=4 2415785977744347 a008 Real Root of x^5-12*x^2-3*x-5 2415785982360747 r005 Re(z^2+c),c=-5/4+19/131*I,n=10 2415785986518044 r005 Re(z^2+c),c=-25/118+27/61*I,n=15 2415785988679327 a007 Real Root Of 358*x^4+582*x^3-896*x^2-258*x+618 2415785990939045 l006 ln(559/6260) 2415785990955567 m001 (Chi(1)+Bloch)/(-LandauRamanujan+Mills) 2415785997083000 m001 -GAMMA(7/24)/(-GAMMA(5/12)+2) 2415786000401534 a007 Real Root Of 593*x^4+838*x^3-999*x^2+816*x-581 2415786002555615 m005 (7/20+1/4*5^(1/2))/(5/7*3^(1/2)-5) 2415786005296757 p001 sum(1/(402*n+13)/n/(100^n),n=1..infinity) 2415786015879224 a007 Real Root Of -412*x^4-643*x^3+492*x^2-574*x+709 2415786018590517 a007 Real Root Of -427*x^4-759*x^3+605*x^2+162*x+703 2415786027742845 m001 (Bloch-MertensB1)/(Pi+2*Pi/GAMMA(5/6)) 2415786035111849 m001 (KomornikLoreti-Salem)/(GAMMA(3/4)+Conway) 2415786037317041 r005 Im(z^2+c),c=-35/54+1/28*I,n=33 2415786037904989 r009 Re(z^3+c),c=-8/23+21/52*I,n=25 2415786040626285 h001 (-8*exp(8)+7)/(-9*exp(7)+1) 2415786045921420 m008 (3/5*Pi^4+3)/(5/6*Pi^5-2/3) 2415786056469025 m001 (BesselI(1,1)+GAMMA(23/24))/(Trott-ZetaP(4)) 2415786067195275 a001 2971215073/843*322^(1/3) 2415786068626869 m001 1/exp(cosh(1))^2*Zeta(3)^2/sqrt(1+sqrt(3))^2 2415786069326940 a001 7/75025*514229^(17/22) 2415786069411365 a001 7/267914296*20365011074^(17/22) 2415786085551640 b008 4+11*Csc[EulerGamma] 2415786086342271 m001 (2^(1/3)+CareFree)^Mills 2415786088844812 a007 Real Root Of -172*x^4+3*x^3+661*x^2-916*x-170 2415786097121631 r005 Re(z^2+c),c=-7/19+19/33*I,n=27 2415786115040667 a007 Real Root Of -287*x^4-442*x^3+326*x^2-346*x+805 2415786115677668 a001 11/32951280099*75025^(19/24) 2415786117412826 r005 Re(z^2+c),c=-36/29+5/64*I,n=54 2415786119312988 m008 (5/6*Pi^2+4)/(1/6*Pi^5-2/5) 2415786123655411 m005 (1/2*exp(1)-2)/(7/10*exp(1)+3/4) 2415786133780860 s002 sum(A006779[n]/(2^n-1),n=1..infinity) 2415786134673753 m001 (-Rabbit+Weierstrass)/(Artin-Psi(1,1/3)) 2415786149652663 r002 42th iterates of z^2 + 2415786155058492 a001 31622993/682*843^(13/14) 2415786157884550 a007 Real Root Of 116*x^4+312*x^3+232*x^2+308*x-162 2415786162763706 m001 Psi(1,1/3)^HardyLittlewoodC4*KhinchinLevy 2415786175207076 a008 Real Root of x^4-x^3-16*x^2+x+71 2415786176317696 a003 -3/2+1/2*3^(1/2)-cos(2/21*Pi)-cos(4/21*Pi) 2415786178172055 m002 Pi^6/4+Csch[Pi]+Log[Pi] 2415786183628576 m005 (1/2*Catalan-5/12)/(2/3*3^(1/2)+5/9) 2415786189040131 l006 ln(6686/8513) 2415786193538758 a007 Real Root Of 597*x^4+990*x^3-747*x^2+609*x-545 2415786195086929 m001 (exp(Pi)*MertensB3+FeigenbaumKappa)/MertensB3 2415786201976890 b008 -45/62+Pi 2415786202431930 a007 Real Root Of 167*x^4+226*x^3+711*x^2-965*x-272 2415786205100363 m001 Conway+GaussAGM*MertensB3 2415786209906250 r005 Re(z^2+c),c=2/9+5/49*I,n=16 2415786214308540 m008 (2*Pi^3-4/5)/(5/6*Pi^3-1/2) 2415786217881980 a001 2/47*2139295485799^(7/15) 2415786218892989 a001 2584/710647*18^(19/29) 2415786219145317 l006 ln(700/7839) 2415786222727742 a007 Real Root Of 370*x^4+555*x^3-352*x^2+969*x-382 2415786223964776 a001 5/3571*5778^(37/43) 2415786228529404 m001 ZetaP(4)^StolarskyHarborth/ReciprocalFibonacci 2415786229949074 m001 (ArtinRank2-Conway*Trott2nd)/Trott2nd 2415786247852543 m005 (1/2*gamma-2/7)/(1/6*3^(1/2)+10/11) 2415786256838183 r005 Im(z^2+c),c=-79/64+3/52*I,n=29 2415786260540882 a007 Real Root Of 304*x^4-923*x^3-772*x^2-360*x+144 2415786267236818 m001 1/GAMMA(1/4)^2/exp(Trott)^2/GAMMA(7/24) 2415786268780860 h001 (-4*exp(2)+5)/(-8*exp(1/3)+1) 2415786279313551 r005 Im(z^2+c),c=-13/28+23/54*I,n=53 2415786280700591 a001 55/15126*18^(19/29) 2415786287942117 r009 Re(z^3+c),c=-7/48+44/47*I,n=22 2415786289718198 a001 17711/4870847*18^(19/29) 2415786295291386 a001 10946/3010349*18^(19/29) 2415786301448458 a001 6765/4*18^(23/25) 2415786316533196 a001 123/832040*1346269^(13/36) 2415786318899789 a001 4181/1149851*18^(19/29) 2415786321845746 s002 sum(A218846[n]/(n^2*10^n+1),n=1..infinity) 2415786327888723 h001 (9/10*exp(1)+9/11)/(2/11*exp(1)+6/7) 2415786336301411 m002 -Pi^2-Log[Pi]+Pi^2*Log[Pi]*Tanh[Pi] 2415786352771304 m005 (1/3*Zeta(3)+3/4)/(31/22+3/2*5^(1/2)) 2415786354013933 h001 (-4*exp(2)-6)/(-exp(1)-12) 2415786363348893 a007 Real Root Of -200*x^4-248*x^3+448*x^2-269*x+51 2415786367316323 m001 (Backhouse-Conway)/(gamma(1)-gamma(2)) 2415786370830551 l006 ln(841/9418) 2415786374312382 r009 Re(z^3+c),c=-19/74+4/23*I,n=9 2415786381752498 a001 4/4181*3^(43/51) 2415786392298567 a001 48315663/2+29/2*5^(1/2) 2415786394151937 a007 Real Root Of -508*x^4-397*x^3-782*x^2+804*x+236 2415786395742752 a001 24157817+21*5^(1/2) 2415786397877984 a001 9107514720/377 2415786433213818 r002 33th iterates of z^2 + 2415786435493180 m001 (OneNinth+ZetaP(4))/(Landau-Mills) 2415786436747416 m001 (BesselI(0,2)+3)/(-Khinchin+1/2) 2415786438505208 m001 Porter^2*exp(LaplaceLimit)^2/FeigenbaumC^2 2415786456725906 a007 Real Root Of -313*x^4+541*x^3+x^2+966*x+242 2415786478657671 m001 Zeta(1,2)*Bloch/FeigenbaumC 2415786480714192 a001 1597/439204*18^(19/29) 2415786483948204 m001 GAMMA(19/24)^2/ln(DuboisRaymond)^2/GAMMA(5/12) 2415786484585910 b008 3-11*FresnelC[1/2] 2415786492200266 a001 701408733/521*521^(6/13) 2415786497619638 m001 (2^(1/3)+gamma(1))/(-Landau+MertensB2) 2415786499079500 r005 Im(z^2+c),c=2/11+11/64*I,n=19 2415786516211699 a007 Real Root Of 176*x^4+537*x^3+375*x^2+493*x+579 2415786516291280 a001 5600748293801*144^(5/17) 2415786539410666 a001 29/233*17711^(4/59) 2415786545220089 a007 Real Root Of -275*x^4-383*x^3+424*x^2-332*x+690 2415786549701478 l006 ln(3257/4147) 2415786561924455 a007 Real Root Of 464*x^4-884*x^3-562*x^2-734*x+221 2415786574550787 a007 Real Root Of 303*x^4+235*x^3+844*x^2-472*x-161 2415786588585711 m005 (1/2*Catalan-3/10)/(8/9*3^(1/2)+5) 2415786589409323 r005 Im(z^2+c),c=-47/106+25/46*I,n=50 2415786596689819 r005 Im(z^2+c),c=-57/118+21/46*I,n=46 2415786608637792 b008 69*Gamma[Catalan,1] 2415786609705266 r005 Im(z^2+c),c=-61/56+1/32*I,n=3 2415786620403695 m005 (39/44+1/4*5^(1/2))/(1/3*3^(1/2)-7/12) 2415786628490699 r005 Im(z^2+c),c=-11/94+37/60*I,n=9 2415786631240366 r002 13th iterates of z^2 + 2415786638722347 a007 Real Root Of 198*x^4+232*x^3-238*x^2+524*x-818 2415786651311490 m005 (1/2*gamma+3/8)/(1/11*gamma+2/9) 2415786657062123 r002 34th iterates of z^2 + 2415786662634078 a001 1/7787980473*46368^(1/17) 2415786662647298 a001 29/591286729879*591286729879^(1/17) 2415786662647298 a001 29/365435296162*165580141^(1/17) 2415786673026248 m005 (1/2*Catalan-7/12)/(7/11*3^(1/2)-7/12) 2415786678184754 m001 1/exp(Zeta(7))^2*Salem*cosh(1) 2415786687070977 l006 ln(9079/9301) 2415786691319728 m001 (PisotVijayaraghavan+Porter)^Thue 2415786717439634 m001 (QuadraticClass+ZetaQ(2))/(Catalan+Otter) 2415786726366028 m001 (2^(1/3))/exp(FeigenbaumB)^2/Pi^2 2415786731369952 a003 cos(Pi*8/117)/sin(Pi*11/83) 2415786735703790 m001 LandauRamanujan*(BesselI(0,2)+QuadraticClass) 2415786740995709 m005 (-13/5+2/5*5^(1/2))/(1/3+1/6*5^(1/2)) 2415786756657713 m001 1/exp(GAMMA(23/24))/ArtinRank2/GAMMA(5/12) 2415786763749502 m001 (-GaussAGM+Trott2nd)/(3^(1/2)+ln(5)) 2415786771948202 g007 Psi(2,7/12)+Psi(2,5/8)-Psi(2,1/10)-Psi(2,1/6) 2415786783287331 m001 (HardyLittlewoodC3-Otter*Salem)/Salem 2415786786818592 a003 cos(Pi*25/113)*cos(Pi*43/108) 2415786790090857 m005 (1/3*gamma+1/9)/(11/12*gamma+8/11) 2415786793532325 r005 Re(z^2+c),c=-11/58+8/17*I,n=16 2415786810881918 r005 Im(z^2+c),c=2/11+11/64*I,n=18 2415786811410503 m001 ln(Khintchine)/FibonacciFactorial*sqrt(3)^2 2415786816422923 a007 Real Root Of 926*x^4-683*x^3-946*x^2-200*x+110 2415786821584094 r005 Re(z^2+c),c=-9/11+10/49*I,n=55 2415786823801549 m005 (-5/3+1/3*5^(1/2))/(4/5*2^(1/2)-3/4) 2415786827315965 m001 OneNinth*LandauRamanujan/exp(GAMMA(3/4)) 2415786827551533 q001 961/3978 2415786827551533 r002 2th iterates of z^2 + 2415786827551533 r002 2th iterates of z^2 + 2415786844030681 a007 Real Root Of -484*x^4-884*x^3+600*x^2+147*x+875 2415786846028709 r005 Im(z^2+c),c=-29/54+17/41*I,n=53 2415786856073279 r005 Im(z^2+c),c=-141/110+21/61*I,n=7 2415786881765919 a001 1144206275/124*322^(1/6) 2415786887563693 m001 1/exp((2^(1/3)))/HardHexagonsEntropy/sin(1) 2415786888934494 b008 ArcCot[2^(-1/8)+Pi] 2415786889140239 a007 Real Root Of -38*x^4-919*x^3-47*x^2-525*x+634 2415786891045696 a001 281*514229^(31/45) 2415786892291107 r009 Im(z^3+c),c=-13/90+11/45*I,n=6 2415786894390892 m001 Pi*2^(1/2)/GAMMA(3/4)-ln(2)*KhinchinHarmonic 2415786898316768 p001 sum(1/(430*n+379)/n/(512^n),n=1..infinity) 2415786905277971 m001 ((1+3^(1/2))^(1/2)-Tribonacci)/(Chi(1)-ln(5)) 2415786911210604 a007 Real Root Of -288*x^4-893*x^3-229*x^2+706*x+261 2415786913882569 r009 Im(z^3+c),c=-3/82+20/23*I,n=6 2415786929925646 l006 ln(6342/8075) 2415786945185412 r005 Re(z^2+c),c=-5/28+33/64*I,n=37 2415786947301829 h001 (6/7*exp(2)+3/8)/(8/11*exp(1)+4/5) 2415786950108200 m001 GAMMA(3/4)*Landau-Pi*csc(7/24*Pi)/GAMMA(17/24) 2415786954719011 a007 Real Root Of -259*x^4-229*x^3+886*x^2-243*x-165 2415786972490479 s002 sum(A201300[n]/(2^n+1),n=1..infinity) 2415786978892452 m001 gamma^(ln(2+3^(1/2))*ReciprocalLucas) 2415786980382951 a007 Real Root Of -161*x^4+441*x^3-139*x^2+838*x-200 2415786986633793 m001 (BesselI(1,1)+5)/(GaussKuzminWirsing+2) 2415786990048134 r005 Im(z^2+c),c=-13/34+24/53*I,n=12 2415786991660130 g005 GAMMA(2/11)*GAMMA(4/5)/GAMMA(7/12)/GAMMA(5/9) 2415786994506548 m005 (1/3+1/4*5^(1/2))/(1/7*Pi-9/11) 2415786994849222 m001 (-LandauRamanujan+3)/(sin(Pi/12)+2/3) 2415786996475968 m001 2^(1/3)*GlaisherKinkelin-GAMMA(13/24) 2415787007119300 a001 5/521*521^(38/43) 2415787009496577 a001 87403803/1597*34^(8/19) 2415787011816781 a007 Real Root Of -398*x^4-832*x^3-443*x^2+710*x+187 2415787011983775 m001 (-GolombDickman+ZetaP(4))/(Bloch-exp(Pi)) 2415787013421114 a007 Real Root Of 486*x^4-592*x^3+327*x^2-782*x-218 2415787013998583 s001 sum(exp(-2*Pi/5)^n*A101991[n],n=1..infinity) 2415787013998583 s002 sum(A101991[n]/(exp(2/5*pi*n)),n=1..infinity) 2415787017887440 m005 1/6*5^(1/2)/(3/4*Zeta(3)-9/10) 2415787020962554 a001 18/1597*5^(9/19) 2415787028988900 a001 12586269025/2207*322^(1/4) 2415787036594335 a007 Real Root Of -156*x^4-427*x^3-401*x^2-797*x-292 2415787037861027 m006 (1/4*ln(Pi)-5)/(4/5*exp(Pi)+1) 2415787038419650 a007 Real Root Of -477*x^4-961*x^3+477*x^2+234*x+479 2415787046858079 r005 Re(z^2+c),c=7/25+13/56*I,n=3 2415787051689295 r002 10th iterates of z^2 + 2415787051689295 r002 10th iterates of z^2 + 2415787052420652 r009 Im(z^3+c),c=-61/114+7/36*I,n=6 2415787054477852 a007 Real Root Of 144*x^4+368*x^3-78*x^2-226*x+193 2415787058992016 a007 Real Root Of 110*x^4-679*x^3+219*x^2-324*x-101 2415787073742596 a001 7881196/55*377^(10/21) 2415787080735228 r009 Re(z^3+c),c=-41/110+28/61*I,n=55 2415787090962765 r009 Re(z^3+c),c=-13/34+22/37*I,n=43 2415787104058196 m005 (1/2*Pi+3/7)/(-41/99+2/9*5^(1/2)) 2415787104647541 r009 Re(z^3+c),c=-11/36+19/55*I,n=4 2415787109352663 m001 1/GAMMA(1/3)*Backhouse^2/ln(sqrt(Pi))^2 2415787112366764 m001 (gamma(2)+FeigenbaumB)/(Magata-ZetaQ(4)) 2415787123877473 l006 ln(141/1579) 2415787127928181 a001 4/233*1597^(19/53) 2415787129948309 m001 LambertW(1)^2/Champernowne^2*ln(Pi) 2415787145545425 r005 Im(z^2+c),c=-39/82+26/61*I,n=49 2415787155235126 m005 (1/2*2^(1/2)-1/10)/(8/9*gamma+2) 2415787158768566 m001 Ei(1)/exp(LandauRamanujan)^2*sin(Pi/5) 2415787171300330 a001 228826127/4181*34^(8/19) 2415787176801080 a001 1134903170/521*521^(5/13) 2415787177635503 m001 cos(1)^2/FeigenbaumC*exp(exp(1)) 2415787194907181 a001 299537289/5473*34^(8/19) 2415787195672125 s002 sum(A233532[n]/(n*2^n+1),n=1..infinity) 2415787197528946 m005 (1/2*3^(1/2)-11/12)/(4/9*Pi+7/10) 2415787198351374 a001 1568397607/28657*34^(8/19) 2415787198853875 a001 4106118243/75025*34^(8/19) 2415787198927189 a001 5374978561/98209*34^(8/19) 2415787198937885 a001 28143753123/514229*34^(8/19) 2415787198939446 a001 73681302247/1346269*34^(8/19) 2415787198939674 a001 96450076809/1762289*34^(8/19) 2415787198939707 a001 505019158607/9227465*34^(8/19) 2415787198939712 a001 1322157322203/24157817*34^(8/19) 2415787198939712 a001 1730726404001/31622993*34^(8/19) 2415787198939712 a001 9062201101803/165580141*34^(8/19) 2415787198939712 a001 23725150497407/433494437*34^(8/19) 2415787198939712 a001 599074579/10946*34^(8/19) 2415787198939713 a001 5600748293801/102334155*34^(8/19) 2415787198939713 a001 2139295485799/39088169*34^(8/19) 2415787198939715 a001 204284540899/3732588*34^(8/19) 2415787198939727 a001 312119004989/5702887*34^(8/19) 2415787198939814 a001 119218851371/2178309*34^(8/19) 2415787198940410 a001 11384387281/208010*34^(8/19) 2415787198944496 a001 599786069/10959*34^(8/19) 2415787198972499 a001 6643838879/121393*34^(8/19) 2415787199164438 a001 634430159/11592*34^(8/19) 2415787199999997 a001 7465231+7465176*5^(1/2) 2415787200355871 a001 233/843*817138163596^(2/3) 2415787200355871 a001 233/843*(1/2+1/2*5^(1/2))^38 2415787200355871 a001 233/843*10749957122^(19/24) 2415787200355871 a001 233/843*4106118243^(19/23) 2415787200355871 a001 233/843*1568397607^(19/22) 2415787200355871 a001 233/843*599074578^(19/21) 2415787200355871 a001 233/843*228826127^(19/20) 2415787200383874 a001 377/521*141422324^(12/13) 2415787200383874 a001 377/521*2537720636^(4/5) 2415787200383874 a001 377/521*45537549124^(12/17) 2415787200383874 a001 377/521*14662949395604^(4/7) 2415787200383874 a001 377/521*(1/2+1/2*5^(1/2))^36 2415787200383874 a001 377/521*505019158607^(9/14) 2415787200383874 a001 377/521*192900153618^(2/3) 2415787200383874 a001 377/521*73681302247^(9/13) 2415787200383874 a001 377/521*10749957122^(3/4) 2415787200383874 a001 377/521*4106118243^(18/23) 2415787200383874 a001 377/521*1568397607^(9/11) 2415787200383874 a001 377/521*599074578^(6/7) 2415787200383875 a001 377/521*228826127^(9/10) 2415787200383875 a001 377/521*87403803^(18/19) 2415787200480002 a001 969323029/17711*34^(8/19) 2415787201315561 a001 24157834+17*5^(1/2) 2415787207413225 a003 sin(Pi*5/106)/cos(Pi*25/86) 2415787209497017 a001 370248451/6765*34^(8/19) 2415787216327610 m001 (Zeta(3)-ln(2))/(Zeta(1/2)-MasserGramain) 2415787216494985 r009 Re(z^3+c),c=-11/29+26/55*I,n=25 2415787241090545 m001 Pi*2^(1/2)/GAMMA(3/4)*Sarnak-exp(-1/2*Pi) 2415787244179562 a001 29/2178309*2^(49/57) 2415787245527942 a001 39088169/199*199^(10/11) 2415787248062888 r005 Im(z^2+c),c=-1+57/229*I,n=49 2415787250669920 s002 sum(A233532[n]/(n*2^n-1),n=1..infinity) 2415787252215504 m001 ReciprocalLucas*Totient^Rabbit 2415787254548367 a007 Real Root Of -89*x^4+707*x^3-860*x^2-523*x-654 2415787265887671 m008 (2/5*Pi^2-1/4)/(5*Pi^5+3/5) 2415787271300559 a001 35355581/646*34^(8/19) 2415787272770609 m001 (Zeta(1,-1)+FeigenbaumMu)/(MertensB3+ZetaP(4)) 2415787274846718 a007 Real Root Of -315*x^4-745*x^3-477*x^2-873*x+900 2415787277840503 a001 5/1364*15127^(29/43) 2415787280906802 a007 Real Root Of 441*x^4+728*x^3-842*x^2+114*x+433 2415787284777617 r005 Re(z^2+c),c=-9/46+30/61*I,n=20 2415787289434063 m001 (ln(2)/ln(10)-ln(Pi))/(KomornikLoreti+Niven) 2415787299675429 m001 ((1+3^(1/2))^(1/2)-cos(1)*Cahen)/cos(1) 2415787299675429 m001 (cos(1)*Cahen-sqrt(1+sqrt(3)))/cos(1) 2415787312832283 h001 (-3*exp(3)+5)/(-4*exp(1)-12) 2415787331030446 a007 Real Root Of 557*x^4+818*x^3-923*x^2+461*x-938 2415787331348683 l006 ln(3085/3928) 2415787338759438 m001 (sin(1)+GAMMA(13/24))/(-Porter+TreeGrowth2nd) 2415787340327529 r002 23th iterates of z^2 + 2415787343655985 a007 Real Root Of 107*x^4+333*x^3+268*x^2-66*x-673 2415787352175422 m005 (1/2*gamma-5/8)/(5*exp(1)+1/3) 2415787353759129 m001 (-GAMMA(7/12)+KhinchinLevy)/(2^(1/2)+gamma(3)) 2415787359830589 a007 Real Root Of 289*x^4+374*x^3-455*x^2+459*x-806 2415787367295436 a007 Real Root Of -342*x^4-477*x^3+645*x^2-113*x+886 2415787367539184 r005 Re(z^2+c),c=-7/25+50/63*I,n=4 2415787381998081 m002 (Pi^6*Coth[Pi])/4+Tanh[Pi]/3 2415787397630780 r005 Im(z^2+c),c=-15/29+21/46*I,n=5 2415787405281174 m001 (Psi(1,1/3)+Conway)/Bloch 2415787411427475 a001 7/1597*55^(23/54) 2415787423018444 m001 (2^(1/3)+ReciprocalLucas)/(Thue+Weierstrass) 2415787431863150 m001 sin(1/12*Pi)+FeigenbaumAlpha^Chi(1) 2415787435309970 a003 sin(Pi*4/91)/cos(Pi*35/114) 2415787437181263 m001 1/GAMMA(13/24)/exp(Khintchine)^2/GAMMA(19/24) 2415787443332365 m005 (11/12+1/4*5^(1/2))/(18/11+2*5^(1/2)) 2415787449029382 r009 Re(z^3+c),c=-13/32+17/32*I,n=62 2415787450071904 a007 Real Root Of 312*x^4+670*x^3-422*x^2-316*x+519 2415787452596619 a001 10983760033/1926*322^(1/4) 2415787457993333 a001 11/121393*34^(27/29) 2415787462003062 a001 1364/233*13^(21/38) 2415787463578923 m009 (3/4*Psi(1,1/3)-2/5)/(3*Psi(1,1/3)-3/5) 2415787469414022 a007 Real Root Of 285*x^4+730*x^3+227*x^2+271*x-85 2415787471356239 m001 Tribonacci^2/ln(Rabbit)^2*Catalan^2 2415787480334374 m001 Pi*csc(1/24*Pi)/GAMMA(23/24)+CareFree^Zeta(5) 2415787480883871 m008 (3*Pi^3-1/6)/(2/5*Pi^6-1/5) 2415787492445828 s001 sum(exp(-Pi)^(n-1)*A242837[n],n=1..infinity) 2415787494644641 m008 (1/4*Pi^3+4/5)/(1/3*Pi^2+1/4) 2415787505375638 b008 -3+Sqrt[2/(E+Pi)] 2415787511071525 r005 Im(z^2+c),c=3/20+5/26*I,n=12 2415787513642691 a007 Real Root Of 321*x^4+524*x^3-208*x^2+624*x-824 2415787514084118 r002 7th iterates of z^2 + 2415787514400165 a001 86267571272/15127*322^(1/4) 2415787514785058 b008 24+Cot[Sqrt[2]] 2415787523417181 a001 75283811239/13201*322^(1/4) 2415787524732746 a001 591286729879/103682*322^(1/4) 2415787524924685 a001 516002918640/90481*322^(1/4) 2415787524952688 a001 4052739537881/710647*322^(1/4) 2415787524956774 a001 3536736619241/620166*322^(1/4) 2415787524959299 a001 6557470319842/1149851*322^(1/4) 2415787524969995 a001 2504730781961/439204*322^(1/4) 2415787525043309 a001 956722026041/167761*322^(1/4) 2415787525545810 a001 365435296162/64079*322^(1/4) 2415787525581270 m005 (4/5*Catalan-1/5)/(3/4*exp(1)+1/6) 2415787527587864 r005 Im(z^2+c),c=-9/19+17/39*I,n=46 2415787528990004 a001 139583862445/24476*322^(1/4) 2415787530592242 a001 24476*1836311903^(11/17) 2415787534626058 a001 4870847*514229^(11/17) 2415787540726334 a007 Real Root Of 463*x^4+814*x^3-545*x^2+350*x-267 2415787543451923 m001 (Artin+FeigenbaumMu)/(Ei(1,1)-Si(Pi)) 2415787552596859 a001 53316291173/9349*322^(1/4) 2415787576326645 a007 Real Root Of -224*x^4-564*x^3-100*x^2+199*x+742 2415787579137591 a007 Real Root Of -14*x^4-355*x^3-429*x^2-600*x-841 2415787581430846 a005 (1/cos(5/209*Pi))^312 2415787587951471 a007 Real Root Of -372*x^4+728*x^3-48*x^2-109*x-12 2415787589806608 a001 610/167761*18^(19/29) 2415787594916576 p004 log(30113/2689) 2415787596473530 a007 Real Root Of -129*x^4-33*x^3+746*x^2-235*x-993 2415787606883487 r005 Im(z^2+c),c=-30/31+13/58*I,n=13 2415787614396606 m005 (1/3*Pi-1/9)/(-17/60+3/10*5^(1/2)) 2415787621589625 r005 Im(z^2+c),c=-41/98+23/56*I,n=31 2415787631925980 a007 Real Root Of 949*x^4+757*x^3+68*x^2-983*x-234 2415787636671160 m001 exp(Porter)/MadelungNaCl^2/sin(Pi/5) 2415787642463112 r009 Re(z^3+c),c=-29/82+5/12*I,n=20 2415787648953275 m002 -Pi^3+(2*Pi)/ProductLog[Pi]+Tanh[Pi] 2415787650660892 p003 LerchPhi(1/2,2,98/145) 2415787660590572 a007 Real Root Of -282*x^4-736*x^3-236*x^2+458*x+115 2415787674767841 a007 Real Root Of 62*x^4-159*x^3-414*x^2+585*x-524 2415787675920131 a007 Real Root Of 327*x^4-533*x^3+690*x^2-344*x-132 2415787677481197 m001 1/CareFree^2/ln(CopelandErdos)/gamma 2415787682885335 q001 71/2939 2415787684625582 r005 Re(z^2+c),c=-9/38+19/51*I,n=28 2415787687132149 r005 Re(z^2+c),c=-7/30+9/31*I,n=4 2415787689931760 m001 (Chi(1)+Champernowne)/(-ThueMorse+ZetaP(2)) 2415787694572131 r005 Im(z^2+c),c=-37/82+21/50*I,n=42 2415787694908420 a001 54018521/987*34^(8/19) 2415787697515437 r008 a(0)=0,K{-n^6,2+64*n-18*n^2-10*n^3} 2415787708516896 m001 (exp(1/exp(1))+Rabbit)/(Shi(1)+Zeta(1,-1)) 2415787714400662 a001 20365011074/3571*322^(1/4) 2415787725319862 r005 Im(z^2+c),c=-5/21+5/14*I,n=25 2415787729965566 m001 BesselK(1,1)^2/exp(TreeGrowth2nd)/cos(Pi/12) 2415787731834757 g007 Psi(2,1/12)-Psi(2,7/10)-Psi(2,1/8)-Psi(2,3/5) 2415787739518830 h001 (9/11*exp(2)+2/3)/(7/8*exp(1)+2/5) 2415787743214068 a007 Real Root Of -220*x^4+139*x^3+850*x^2+695*x+121 2415787746440008 m005 (1/3*Pi-1/7)/(4/9*gamma-4) 2415787749889610 a007 Real Root Of 53*x^4-357*x^3-952*x^2-702*x+230 2415787752493712 m005 (1/2*Zeta(3)+6/11)/(6*Catalan-3/4) 2415787752780110 m005 (1/2*Pi+3/11)/(23/36+1/18*5^(1/2)) 2415787754146198 r002 25th iterates of z^2 + 2415787755794297 l006 ln(5998/7637) 2415787756954207 a007 Real Root Of 79*x^4+269*x^3+191*x^2+281*x+666 2415787759447906 m001 (2^(1/2)-exp(1/Pi))/(-exp(-1/2*Pi)+Tribonacci) 2415787761722978 r005 Im(z^2+c),c=-31/50+2/43*I,n=38 2415787807692705 m001 sin(Pi/12)*CopelandErdos/ln(sqrt(1+sqrt(3)))^2 2415787812841230 a007 Real Root Of 2*x^4+485*x^3+445*x^2-20*x+642 2415787814132381 r005 Re(z^2+c),c=5/58+5/21*I,n=12 2415787820493215 r009 Re(z^3+c),c=-17/50+17/44*I,n=17 2415787833670040 m001 GolombDickman/sin(Pi/5)/GAMMA(5/24) 2415787850410942 h002 exp(2^(10/9)-19^(1/12)) 2415787850410942 h007 exp(2^(10/9)-19^(1/12)) 2415787853546564 m001 (2^(1/3))*exp(Rabbit)^2*arctan(1/2) 2415787861158483 a007 Real Root Of 949*x^4-340*x^3-393*x^2-931*x-210 2415787861402088 a001 1836311903/521*521^(4/13) 2415787868074873 l006 ln(851/9530) 2415787875497769 a001 341/646*28657^(19/51) 2415787878021151 r009 Re(z^3+c),c=-9/23+20/39*I,n=29 2415787884230495 p001 sum(1/(427*n+416)/(100^n),n=0..infinity) 2415787888829654 r009 Im(z^3+c),c=-51/94+3/10*I,n=43 2415787896017251 r009 Re(z^3+c),c=-5/118+26/41*I,n=25 2415787903003660 a003 sin(Pi*18/79)-sin(Pi*11/31) 2415787905833077 a007 Real Root Of -247*x^4-307*x^3+845*x^2+474*x+298 2415787909890953 m006 (3/4/Pi+2/3)/(2/5*Pi^2-1/5) 2415787913396539 a001 2584/123*76^(1/31) 2415787917467492 a007 Real Root Of 260*x^4+526*x^3-371*x^2-610*x-748 2415787928439589 r002 42th iterates of z^2 + 2415787939145404 r005 Re(z^2+c),c=-1/26+17/32*I,n=5 2415787939202346 m005 (1/2*2^(1/2)+3)/(7/12*Zeta(3)+5/6) 2415787941965201 m001 Sierpinski/(HardyLittlewoodC5+TwinPrimes) 2415787949382908 h005 exp(cos(Pi*2/25)*cos(Pi*8/59)) 2415787955467765 m001 (KhinchinLevy-Porter)/(arctan(1/2)+ArtinRank2) 2415787955802618 r005 Im(z^2+c),c=-105/106+15/52*I,n=25 2415787968318108 m001 (exp(1)+Zeta(1,2))/(MertensB1+PlouffeB) 2415787969110106 h001 (1/10*exp(2)+8/9)/(7/8*exp(2)+3/11) 2415787971400638 a007 Real Root Of 557*x^4+466*x^3+905*x^2-492*x-167 2415787981215161 r008 a(0)=0,K{-n^6,-1+69*n^3-85*n^2-24*n} 2415787984346905 m001 (Pi-PrimesInBinary)/GAMMA(5/6) 2415787987454815 a008 Real Root of x^4-x^3+10*x-24 2415788008849716 a001 1836311903/843*322^(5/12) 2415788015866122 l006 ln(710/7951) 2415788023638838 h001 (1/5*exp(2)+1/12)/(9/11*exp(2)+5/12) 2415788028123451 r009 Re(z^3+c),c=-41/110+28/61*I,n=58 2415788028496644 m001 Psi(2,1/3)*BesselJ(1,1)+Paris 2415788030093534 m001 Catalan^2/ln(Rabbit)*Pi^2 2415788049231375 l006 ln(7893/8086) 2415788054718465 a007 Real Root Of -220*x^4-340*x^3+365*x^2+28*x+637 2415788061633810 r009 Im(z^3+c),c=-5/34+49/55*I,n=2 2415788067152079 m001 (ln(3)+ln(Pi)*Backhouse)/ln(Pi) 2415788093774760 r005 Im(z^2+c),c=-49/114+22/53*I,n=62 2415788112345750 m004 -6+25/Pi+Tan[Sqrt[5]*Pi]/2 2415788112988630 r005 Re(z^2+c),c=-25/18+10/47*I,n=4 2415788114201022 p004 log(14323/1279) 2415788121825859 r005 Im(z^2+c),c=-3/20+17/52*I,n=13 2415788138254299 s001 sum(1/10^(n-1)*A166956[n]/n!^2,n=1..infinity) 2415788143582607 p001 sum(1/(429*n+380)/n/(512^n),n=1..infinity) 2415788166128104 m002 1+E^Pi+(Sech[Pi]*Tanh[Pi])/5 2415788168317165 r005 Re(z^2+c),c=-17/86+28/59*I,n=34 2415788170442501 m001 (Gompertz+Paris)/(Artin+FeigenbaumAlpha) 2415788171973280 p004 log(27067/2417) 2415788181392320 r005 Re(z^2+c),c=-9/14+23/53*I,n=14 2415788181601798 a007 Real Root Of 28*x^4-166*x^3-639*x^2-253*x-176 2415788184597134 a001 24157817+29*5^(1/2) 2415788197879109 a003 sin(Pi*7/116)/cos(Pi*17/79) 2415788198494600 a007 Real Root Of 834*x^4-171*x^3-307*x^2-396*x-83 2415788205301562 l006 ln(2913/3709) 2415788211317763 a007 Real Root Of -271*x^4-692*x^3-83*x^2+50*x+79 2415788216742843 m001 Niven^2/Bloch/ln(GAMMA(23/24)) 2415788236903608 l006 ln(569/6372) 2415788237483806 g004 Im(Psi(-19/4+I*14/3)) 2415788252311863 r009 Re(z^3+c),c=-23/78+17/61*I,n=7 2415788252713643 m001 (FransenRobinson+Riemann2ndZero)/Paris 2415788272043800 b008 -4+Pi*Cot[1/9] 2415788278727250 s002 sum(A174092[n]/(n^2*exp(n)+1),n=1..infinity) 2415788278839495 a007 Real Root Of 4*x^4-360*x^3-828*x^2+184*x+65 2415788286618439 m001 1/exp(BesselK(1,1))*GAMMA(13/24)^3 2415788294486791 r009 Im(z^3+c),c=-17/40+6/49*I,n=35 2415788296343431 a007 Real Root Of -411*x^4-749*x^3+320*x^2-606*x+107 2415788297651550 a007 Real Root Of -167*x^4+775*x^3+351*x^2+100*x-55 2415788306283852 r005 Im(z^2+c),c=-75/94+3/20*I,n=7 2415788333086092 r005 Re(z^2+c),c=17/48+20/59*I,n=45 2415788334282928 a007 Real Root Of -313*x^4-557*x^3+543*x^2+85*x-156 2415788342141427 a007 Real Root Of -346*x^4-331*x^3+727*x^2-866*x+783 2415788355464405 m006 (exp(2*Pi)+2/5)/(3/5*Pi+1/3) 2415788362940825 m001 (-CopelandErdos+Kolakoski)/(exp(Pi)+gamma(2)) 2415788370335108 a007 Real Root Of 589*x^4+981*x^3-893*x^2+747*x+786 2415788375460732 a007 Real Root Of -295*x^4-737*x^3-131*x^2-578*x-975 2415788383828957 r005 Re(z^2+c),c=-47/56+9/38*I,n=4 2415788400092329 g007 Psi(2,5/7)-Psi(2,7/11)-Psi(13/10)-Psi(2,1/5) 2415788421273939 r008 a(0)=0,K{-n^6,50-8*n^3+62*n^2-62*n} 2415788428676054 r005 Re(z^2+c),c=-15/26+55/117*I,n=60 2415788444609752 m001 (3^(1/2)-Gompertz)/(KhinchinHarmonic+Otter) 2415788453942298 m001 (3^(1/2)*Cahen+TreeGrowth2nd)/Cahen 2415788455025008 m005 (1/2*Catalan-1/3)/(1/12*Pi-7/9) 2415788459290520 m001 LandauRamanujan-Niven^Trott 2415788461778363 a001 817138163596/89*46368^(7/23) 2415788461846758 a001 28143753123/89*2971215073^(7/23) 2415788462762176 a003 -2*cos(1/15*Pi)-2*cos(5/12*Pi)+cos(13/27*Pi) 2415788467108315 h001 (7/9*exp(2)+5/7)/(4/5*exp(1)+1/2) 2415788468113495 m001 (BesselI(0,2)+Porter)/(Si(Pi)-ln(2)/ln(10)) 2415788468619108 a001 1/72*(1/2*5^(1/2)+1/2)^10*4^(1/4) 2415788474936045 m001 Riemann1stZero*exp(Artin)^2*cos(Pi/5) 2415788479342154 r009 Re(z^3+c),c=-41/110+28/61*I,n=61 2415788484586562 a007 Real Root Of -105*x^4-264*x^3-437*x^2-908*x+211 2415788485348018 m005 (1/3*3^(1/2)+1/10)/(3/10*3^(1/2)-4/5) 2415788488043127 a007 Real Root Of 192*x^4+582*x^3+823*x^2+902*x-958 2415788492531179 m001 (Backhouse*Niven+MertensB2)/Backhouse 2415788500871143 a007 Real Root Of -278*x^4-369*x^3+244*x^2-931*x+593 2415788501925936 m001 (Conway-KhinchinHarmonic)/(Paris-Tetranacci) 2415788517560061 m005 (1/2*3^(1/2)-4)/(2*gamma+1/7) 2415788523274817 a007 Real Root Of 155*x^4+741*x^3+604*x^2-953*x+184 2415788529222318 a007 Real Root Of 489*x^4+959*x^3-451*x^2+61*x-355 2415788539832603 m001 (BesselI(0,2)+GolombDickman)/Zeta(3) 2415788539832603 m001 (GolombDickman+BesselI(0,2))/Zeta(3) 2415788546003290 a001 2971215073/521*521^(3/13) 2415788550961291 m001 1/cos(Pi/5)*ln(GAMMA(7/24))^2*cosh(1) 2415788553941684 r005 Im(z^2+c),c=-28/25+1/34*I,n=32 2415788555366292 h001 (6/11*exp(1)+1/5)/(7/8*exp(2)+1/2) 2415788588309280 r009 Im(z^3+c),c=-23/56+7/47*I,n=6 2415788603577834 l006 ln(428/4793) 2415788606689449 a007 Real Root Of 568*x^4+418*x^3-243*x^2-992*x+246 2415788608152693 m001 (Riemann3rdZero+Robbin)/(GAMMA(13/24)-gamma) 2415788618884055 m001 MadelungNaCl-PisotVijayaraghavan^Backhouse 2415788633609181 m005 (1/2*3^(1/2)-3/10)/(7/10*5^(1/2)+7/9) 2415788648703507 m006 (2/3/Pi+1/4)/(4/5*Pi-3/5) 2415788651499736 a001 3/322*199^(9/50) 2415788663612050 p001 sum(1/(38*n+27)/n/(64^n),n=0..infinity) 2415788668610022 a007 Real Root Of -816*x^4+49*x^3-104*x^2+925*x+233 2415788671419632 m005 (1/2*2^(1/2)-7/10)/(11/12*Catalan-6/11) 2415788671530408 a007 Real Root Of 943*x^4+199*x^3+739*x^2-903*x+169 2415788672087571 a005 (1/cos(10/23*Pi))^2 2415788682157672 l006 ln(5654/7199) 2415788687912585 r009 Re(z^3+c),c=-41/110+28/61*I,n=64 2415788691927039 a001 64079/55*9227465^(10/21) 2415788697602937 a007 Real Root Of 162*x^4+444*x^3+465*x^2+771*x-109 2415788698038268 a007 Real Root Of -81*x^4+687*x^3-768*x^2-613*x-964 2415788699717058 m001 (gamma+3^(1/3))/(GaussAGM+HeathBrownMoroz) 2415788717478294 m005 (1/2*Pi-4/9)/(6*Catalan-5/6) 2415788717905407 r002 43th iterates of z^2 + 2415788719152835 r005 Re(z^2+c),c=-8/25+24/43*I,n=19 2415788721751435 m001 GAMMA(11/12)^cos(1)*GAMMA(1/24) 2415788738234286 a007 Real Root Of -359*x^4-899*x^3-566*x^2-774*x+986 2415788743524206 g007 Psi(2,4/9)-Psi(2,4/11)-Psi(2,2/9)-Psi(2,3/8) 2415788749401152 m001 (1-Shi(1))/(cos(1/12*Pi)+OrthogonalArrays) 2415788751714677 r009 Re(z^3+c),c=-23/90+1/5*I,n=2 2415788794224521 m001 1/Kolakoski/Khintchine/exp(LaplaceLimit) 2415788798258568 r005 Im(z^2+c),c=-7/106+13/44*I,n=11 2415788823421014 a001 7778742049/1364*322^(1/4) 2415788839715064 r005 Re(z^2+c),c=6/23+23/45*I,n=37 2415788841704564 m005 (1/2*Zeta(3)+1/9)/(3/11*2^(1/2)-1/11) 2415788843512343 m001 (DuboisRaymond+Porter)/(gamma(2)+ArtinRank2) 2415788845429661 a001 1346269/7*3^(11/53) 2415788850517699 a001 3/233*610^(16/35) 2415788851037164 r009 Im(z^3+c),c=-9/110+19/22*I,n=20 2415788851547779 r009 Re(z^3+c),c=-29/102+33/50*I,n=15 2415788866209845 r005 Im(z^2+c),c=-17/114+11/24*I,n=3 2415788871259946 r005 Im(z^2+c),c=-33/82+7/13*I,n=33 2415788872482398 r009 Re(z^3+c),c=-17/118+53/59*I,n=44 2415788873324897 r009 Re(z^3+c),c=-41/110+28/61*I,n=63 2415788873503576 r005 Im(z^2+c),c=-47/118+13/32*I,n=47 2415788877843611 r005 Im(z^2+c),c=-7/11+1/22*I,n=64 2415788881676400 b008 14*Sqrt[2]+Sqrt[19] 2415788884521733 r005 Im(z^2+c),c=-23/106+7/20*I,n=17 2415788884618366 a001 2/98209*2584^(1/46) 2415788891463701 a007 Real Root Of 153*x^4+22*x^3-783*x^2+335*x+478 2415788895378626 l006 ln(715/8007) 2415788912390577 m001 1/GAMMA(2/3)*GlaisherKinkelin*ln(GAMMA(23/24)) 2415788914119836 r005 Im(z^2+c),c=-31/94+22/57*I,n=47 2415788915152089 m001 Trott2nd^GAMMA(13/24)*ln(2^(1/2)+1) 2415788918070336 m001 GAMMA(23/24)+Porter^Thue 2415788922714609 a001 3571/6765*28657^(19/51) 2415788929270532 m001 (StronglyCareFree-Trott)/(MinimumGamma+Niven) 2415788956293336 a007 Real Root Of 777*x^4+592*x^3+269*x^2-178*x-53 2415788958950966 a007 Real Root Of -172*x^4-404*x^3-455*x^2-947*x+530 2415788960090890 r005 Im(z^2+c),c=-35/32+15/61*I,n=9 2415788970644113 a001 7778742049/2207*322^(1/3) 2415788972279279 r009 Re(z^3+c),c=-39/70+18/41*I,n=10 2415788982456396 p004 log(17669/13877) 2415788985450399 r009 Re(z^3+c),c=-41/110+28/61*I,n=60 2415788987243808 p004 log(30449/2719) 2415788987586530 a007 Real Root Of -74*x^4+159*x^3-963*x^2+320*x+136 2415789000054244 m001 GAMMA(19/24)/FeigenbaumC^2*exp(cos(Pi/12))^2 2415789007752642 m005 (1/2*Catalan-3)/(2/5*Zeta(3)+4/7) 2415789015757755 r005 Re(z^2+c),c=19/64+11/62*I,n=17 2415789027174472 a007 Real Root Of 275*x^4+540*x^3-661*x^2-492*x+916 2415789031280098 a007 Real Root Of 222*x^4+390*x^3+17*x^2+666*x-553 2415789031561861 r005 Im(z^2+c),c=-51/50+9/28*I,n=8 2415789038320103 m001 (ln(gamma)+Ei(1))/(Psi(2,1/3)-gamma) 2415789050811463 h001 (9/10*exp(1)+1/7)/(1/10*exp(1)+4/5) 2415789053775359 h001 (1/9*exp(1)+5/8)/(1/2*exp(2)+1/7) 2415789053986193 a007 Real Root Of 526*x^4+799*x^3-775*x^2+701*x-434 2415789061753858 m005 (1/2*2^(1/2)+5/11)/(8/9*Catalan-1/3) 2415789064982588 r005 Re(z^2+c),c=-29/114+6/19*I,n=15 2415789069671154 r005 Re(z^2+c),c=-43/60+9/46*I,n=64 2415789075501483 a001 9349/17711*28657^(19/51) 2415789081747258 r009 Re(z^3+c),c=-41/110+28/61*I,n=62 2415789097792787 a001 6119/11592*28657^(19/51) 2415789097841421 r005 Re(z^2+c),c=39/122+35/61*I,n=45 2415789101374244 a001 144*199^(30/31) 2415789101469141 a001 7/89*75025^(18/59) 2415789103055050 a001 39603/75025*28657^(19/51) 2415789104781174 r005 Im(z^2+c),c=-12/23+8/29*I,n=5 2415789111569571 a001 15127/28657*28657^(19/51) 2415789115360191 r002 49th iterates of z^2 + 2415789123777239 a007 Real Root Of 250*x^4+6*x^3-917*x^2+937*x-815 2415789126919831 m001 (3^(1/3)+BesselK(1,1))/(Khinchin-Tribonacci) 2415789151993420 r009 Re(z^3+c),c=-41/110+28/61*I,n=47 2415789156566271 m005 (1/2*Pi-4/11)/(23/14+3/2*5^(1/2)) 2415789158759344 m001 Psi(2,1/3)^Gompertz/ZetaP(2) 2415789160067764 r005 Re(z^2+c),c=19/102+1/35*I,n=22 2415789161245065 m001 (5^(1/2)-exp(Pi))/(-cos(1/12*Pi)+FeigenbaumC) 2415789165183806 a001 121393/3*18^(34/55) 2415789165817386 m001 (Pi+ln(5))/(FeigenbaumKappa-Riemann2ndZero) 2415789167921870 m002 -Pi-E^Pi/ProductLog[Pi]+ProductLog[Pi]/2 2415789169928963 a001 2889/5473*28657^(19/51) 2415789173485150 r005 Re(z^2+c),c=19/102+1/35*I,n=21 2415789176545280 r002 22i'th iterates of 2*x/(1-x^2) of 2415789176798529 r005 Re(z^2+c),c=19/102+1/35*I,n=23 2415789181625091 r005 Im(z^2+c),c=-3/8+15/38*I,n=21 2415789183385636 m001 (Kac+ZetaQ(3))/(BesselI(0,1)-GAMMA(7/12)) 2415789188936870 l006 ln(2741/3490) 2415789190647312 r005 Im(z^2+c),c=-71/94+4/21*I,n=8 2415789194870435 r005 Re(z^2+c),c=21/122+29/51*I,n=63 2415789195827806 r005 Im(z^2+c),c=5/54+13/57*I,n=5 2415789196261914 r005 Re(z^2+c),c=19/102+1/35*I,n=24 2415789210959517 r005 Re(z^2+c),c=19/102+1/35*I,n=25 2415789213569366 r005 Re(z^2+c),c=-111/110+8/61*I,n=40 2415789213940935 s002 sum(A199081[n]/(n^2*exp(n)-1),n=1..infinity) 2415789220380562 r005 Re(z^2+c),c=19/102+1/35*I,n=26 2415789222574999 m001 (Cahen+FeigenbaumAlpha)/(Si(Pi)+ln(gamma)) 2415789225873574 r005 Re(z^2+c),c=19/102+1/35*I,n=27 2415789228867133 r005 Re(z^2+c),c=19/102+1/35*I,n=28 2415789230410414 r005 Re(z^2+c),c=19/102+1/35*I,n=29 2415789230604687 a001 4807526976/521*521^(2/13) 2415789231166296 r005 Re(z^2+c),c=19/102+1/35*I,n=30 2415789231517587 r005 Re(z^2+c),c=19/102+1/35*I,n=31 2415789231609315 r005 Re(z^2+c),c=23/86+3/20*I,n=33 2415789231671350 r005 Re(z^2+c),c=19/102+1/35*I,n=32 2415789231733634 r005 Re(z^2+c),c=19/102+1/35*I,n=33 2415789231756046 r005 Re(z^2+c),c=19/102+1/35*I,n=34 2415789231759088 r005 Re(z^2+c),c=19/102+1/35*I,n=50 2415789231759088 r005 Re(z^2+c),c=19/102+1/35*I,n=49 2415789231759088 r005 Re(z^2+c),c=19/102+1/35*I,n=51 2415789231759088 r005 Re(z^2+c),c=19/102+1/35*I,n=52 2415789231759089 r005 Re(z^2+c),c=19/102+1/35*I,n=53 2415789231759089 r005 Re(z^2+c),c=19/102+1/35*I,n=54 2415789231759089 r005 Re(z^2+c),c=19/102+1/35*I,n=55 2415789231759089 r005 Re(z^2+c),c=19/102+1/35*I,n=56 2415789231759089 r005 Re(z^2+c),c=19/102+1/35*I,n=57 2415789231759089 r005 Re(z^2+c),c=19/102+1/35*I,n=58 2415789231759089 r005 Re(z^2+c),c=19/102+1/35*I,n=59 2415789231759089 r005 Re(z^2+c),c=19/102+1/35*I,n=60 2415789231759089 r005 Re(z^2+c),c=19/102+1/35*I,n=61 2415789231759089 r005 Re(z^2+c),c=19/102+1/35*I,n=62 2415789231759089 r005 Re(z^2+c),c=19/102+1/35*I,n=63 2415789231759089 r005 Re(z^2+c),c=19/102+1/35*I,n=64 2415789231759089 r005 Re(z^2+c),c=19/102+1/35*I,n=48 2415789231759090 r005 Re(z^2+c),c=19/102+1/35*I,n=47 2415789231759093 r005 Re(z^2+c),c=19/102+1/35*I,n=46 2415789231759102 r005 Re(z^2+c),c=19/102+1/35*I,n=45 2415789231759120 r005 Re(z^2+c),c=19/102+1/35*I,n=44 2415789231759161 r005 Re(z^2+c),c=19/102+1/35*I,n=43 2415789231759245 r005 Re(z^2+c),c=19/102+1/35*I,n=42 2415789231759407 r005 Re(z^2+c),c=19/102+1/35*I,n=41 2415789231759705 r005 Re(z^2+c),c=19/102+1/35*I,n=40 2415789231760217 r005 Re(z^2+c),c=19/102+1/35*I,n=39 2415789231761019 r005 Re(z^2+c),c=19/102+1/35*I,n=38 2415789231762091 r005 Re(z^2+c),c=19/102+1/35*I,n=37 2415789231762402 r005 Re(z^2+c),c=19/102+1/35*I,n=35 2415789231763038 r005 Re(z^2+c),c=19/102+1/35*I,n=36 2415789234673335 r005 Re(z^2+c),c=-21/118+29/56*I,n=54 2415789246983251 r005 Im(z^2+c),c=19/60+17/54*I,n=5 2415789246994736 a005 (1/sin(81/184*Pi))^1088 2415789252882767 a007 Real Root Of -344*x^4-829*x^3-261*x^2-459*x+443 2415789261899686 a007 Real Root Of -180*x^4+534*x^3+786*x^2+895*x-269 2415789263748021 a007 Real Root Of -52*x^4+397*x^3+926*x^2-486*x+790 2415789269250821 r009 Re(z^3+c),c=-41/110+28/61*I,n=59 2415789282772768 m003 -1/2+(33*Sqrt[5])/64-Tan[1/2+Sqrt[5]/2]/12 2415789283572575 r005 Re(z^2+c),c=-105/106+13/45*I,n=14 2415789286975140 r002 41th iterates of z^2 + 2415789291822114 a005 (1/cos(46/231*Pi))^70 2415789294365873 r005 Re(z^2+c),c=19/102+1/35*I,n=20 2415789295983987 m001 (Psi(1,1/3)+Si(Pi))/(-cos(1/5*Pi)+Conway) 2415789301311475 a001 7368157369/305 2415789302631123 a001 24157817+34*5^(1/2) 2415789304759747 a001 48315681/2+47/2*5^(1/2) 2415789306349434 m001 FransenRobinson*(CopelandErdos-arctan(1/3)) 2415789311946743 r009 Re(z^3+c),c=-1/3+18/31*I,n=11 2415789312456785 r009 Re(z^3+c),c=-41/110+28/61*I,n=57 2415789319410407 m005 (1/2*exp(1)+9/10)/(2/3*5^(1/2)-5/9) 2415789321618594 r001 5i'th iterates of 2*x^2-1 of 2415789330537836 l006 ln(287/3214) 2415789334291817 a001 29/514229*28657^(22/27) 2415789337626280 m005 (1/2*3^(1/2)+7/11)/(2/9*5^(1/2)+1/8) 2415789353164739 a007 Real Root Of 311*x^4-266*x^3-424*x^2-408*x+126 2415789365527634 m001 1/OneNinth/exp(FeigenbaumC)^2/Pi^2 2415789366845584 r002 9th iterates of z^2 + 2415789369260725 r005 Im(z^2+c),c=-9/17+11/26*I,n=53 2415789370818467 a007 Real Root Of -872*x^4+843*x^3-41*x^2+831*x+218 2415789371904405 a007 Real Root Of 442*x^4+749*x^3-915*x^2-331*x+46 2415789373862441 g006 Psi(1,7/8)+Psi(1,1/5)-Psi(1,10/11)-Psi(1,9/11) 2415789387907840 a001 14930352/521*1364^(14/15) 2415789390863216 p001 sum(1/(428*n+381)/n/(512^n),n=1..infinity) 2415789394252173 a001 10182505537/2889*322^(1/3) 2415789394579633 r009 Re(z^3+c),c=-23/78+17/59*I,n=5 2415789396688076 r005 Re(z^2+c),c=-11/52+25/57*I,n=21 2415789402278694 m005 (1/2*2^(1/2)+5/7)/(2/11*5^(1/2)+2/11) 2415789406589817 r005 Re(z^2+c),c=19/64+5/29*I,n=26 2415789423910105 r005 Re(z^2+c),c=1/17+11/18*I,n=49 2415789427533422 r002 23th iterates of z^2 + 2415789429446768 r002 32th iterates of z^2 + 2415789446940451 m001 exp(Zeta(9))^2/TwinPrimes*arctan(1/2)^2 2415789451287947 m005 (1/2*Catalan-1/2)/(1/3*5^(1/2)-4/7) 2415789456055769 a001 53316291173/15127*322^(1/3) 2415789459894739 a003 cos(Pi*16/57)-sin(Pi*31/91) 2415789462841033 r005 Im(z^2+c),c=-9/86+43/47*I,n=26 2415789465072792 a001 139583862445/39603*322^(1/3) 2415789466388358 a001 182717648081/51841*322^(1/3) 2415789466580297 a001 956722026041/271443*322^(1/3) 2415789466608300 a001 2504730781961/710647*322^(1/3) 2415789466612386 a001 3278735159921/930249*322^(1/3) 2415789466613350 a001 10610209857723/3010349*322^(1/3) 2415789466614911 a001 4052739537881/1149851*322^(1/3) 2415789466625607 a001 387002188980/109801*322^(1/3) 2415789466698921 a001 591286729879/167761*322^(1/3) 2415789467201423 a001 225851433717/64079*322^(1/3) 2415789470645619 a001 21566892818/6119*322^(1/3) 2415789474363503 m001 FransenRobinson^(GAMMA(11/12)*AlladiGrinstead) 2415789474472124 a001 24157817/521*1364^(13/15) 2415789475773856 a001 51841/72*102334155^(4/21) 2415789479502564 a001 3010349*1836311903^(9/17) 2415789479503798 a001 228826127*514229^(9/17) 2415789480818563 a001 710647/144*4181^(4/21) 2415789481043122 a001 39603*6557470319842^(9/17) 2415789483713727 r009 Re(z^3+c),c=-11/98+42/53*I,n=9 2415789484776417 m001 (ln(2^(1/2)+1)-Magata)/(MertensB2+Trott) 2415789486106445 a001 15127/144*2504730781961^(4/21) 2415789489888959 r009 Re(z^3+c),c=-21/62+23/60*I,n=19 2415789490210441 r002 9th iterates of z^2 + 2415789494252493 a001 32951280099/9349*322^(1/3) 2415789513514782 s001 sum(exp(-3*Pi/4)^n*A054460[n],n=1..infinity) 2415789520116322 m001 HardHexagonsEntropy/Champernowne/exp(cosh(1)) 2415789529482846 m001 (Robbin+Sierpinski)/(Gompertz+RenyiParking) 2415789548478153 m001 1/FransenRobinson^2*FeigenbaumDelta^2/ln(Pi) 2415789555482941 r009 Re(z^3+c),c=-41/110+28/61*I,n=56 2415789558353314 a001 3571/610*2178309^(13/51) 2415789561036407 a001 39088169/521*1364^(4/5) 2415789569930183 a001 2207/4181*28657^(19/51) 2415789570510798 r005 Re(z^2+c),c=-17/74+19/48*I,n=17 2415789575632003 m001 1/FeigenbaumB/Artin^2*ln(PisotVijayaraghavan) 2415789592569309 m006 (4*ln(Pi)-1/2)/(3/5*exp(Pi)+3) 2415789605846754 m001 (ln(gamma)-ln(Pi))/(Salem-Weierstrass) 2415789611717546 m002 1+Pi^4/5+Sinh[Pi]/Pi 2415789617871974 r009 Re(z^3+c),c=-1/24+25/41*I,n=40 2415789620462830 m005 (1/2*Pi+1/11)/(4/11*Pi-5/11) 2415789623607509 r005 Re(z^2+c),c=-33/106+7/12*I,n=17 2415789630916940 r009 Im(z^3+c),c=-7/36+10/11*I,n=24 2415789632675629 m001 OneNinth^(Kolakoski/PlouffeB) 2415789647600695 a001 63245986/521*1364^(11/15) 2415789649329369 p004 log(23773/18671) 2415789656056427 a001 12586269025/3571*322^(1/3) 2415789661311053 m001 exp(Tribonacci)^2/Conway^2*Zeta(5) 2415789672680473 m002 -3*E^Pi+Pi^5+5*Tanh[Pi] 2415789676797357 m001 1/Magata^2*GolombDickman*ln(cos(Pi/5))^2 2415789683480412 s002 sum(A285876[n]/(64^n-1),n=1..infinity) 2415789689680065 a007 Real Root Of -730*x^4+613*x^3+575*x^2+246*x+37 2415789710271316 m001 gamma(2)^Mills/gamma(2) 2415789715229297 r005 Re(z^2+c),c=19/102+1/35*I,n=19 2415789721222143 r009 Re(z^3+c),c=-7/48+40/43*I,n=40 2415789728546933 l006 ln(5310/6761) 2415789734164985 a001 102334155/521*1364^(2/3) 2415789743784965 r005 Re(z^2+c),c=-15/106+33/61*I,n=20 2415789748972605 m004 Cos[Sqrt[5]*Pi]+Sinh[Sqrt[5]*Pi]/24 2415789750746462 r002 8th iterates of z^2 + 2415789762674921 l006 ln(720/8063) 2415789762702527 r005 Re(z^2+c),c=-8/31+17/56*I,n=21 2415789763525620 r005 Re(z^2+c),c=5/19+24/49*I,n=37 2415789765263897 r002 34th iterates of z^2 + 2415789774745818 m001 (1-BesselI(0,1))/(Kac+PlouffeB) 2415789775847952 r005 Re(z^2+c),c=9/62+19/44*I,n=38 2415789802283323 r009 Re(z^3+c),c=-3/23+35/37*I,n=4 2415789817578419 r005 Re(z^2+c),c=27/118+1/9*I,n=11 2415789818042076 r002 61th iterates of z^2 + 2415789820729279 a001 165580141/521*1364^(3/5) 2415789824819968 a001 15127/8*6765^(1/36) 2415789825317878 a007 Real Root Of -75*x^4+69*x^3+832*x^2+198*x-850 2415789846608973 a007 Real Root Of -438*x^4-801*x^3+456*x^2-187*x+512 2415789850083147 r005 Im(z^2+c),c=2/7+4/55*I,n=36 2415789860696357 a001 10946/3*9349^(51/53) 2415789864322407 m005 (1/3*3^(1/2)+3/7)/(5/11*5^(1/2)-3/5) 2415789870593936 m001 (-GAMMA(3/4)+Kac)/(Shi(1)-cos(1/5*Pi)) 2415789879701467 h001 (7/11*exp(2)+5/8)/(7/9*exp(1)+1/11) 2415789880914109 a001 196418/3*24476^(31/53) 2415789884157439 a001 121393/3*39603^(32/53) 2415789893133873 l006 ln(6707/6871) 2415789895543956 m001 HardHexagonsEntropy-BesselJ(1,1)-Zeta(1/2) 2415789896367980 a007 Real Root Of -547*x^4-913*x^3+808*x^2-601*x-409 2415789898134469 a001 7/47*(1/2*5^(1/2)+1/2)^24*47^(5/7) 2415789904312037 r009 Re(z^3+c),c=-41/110+28/61*I,n=53 2415789907293576 a001 267914296/521*1364^(8/15) 2415789908012788 a007 Real Root Of 706*x^4-358*x^3+266*x^2-294*x-94 2415789910429849 m001 gamma^2*FibonacciFactorial/exp(sqrt(2))^2 2415789915206277 a001 7778742049/521*521^(1/13) 2415789916270138 l006 ln(7879/10032) 2415789923105721 m001 Ei(1,1)^Magata/CopelandErdos 2415789929270827 s001 sum(exp(-Pi/3)^(n-1)*A131111[n],n=1..infinity) 2415789934267301 m005 (1/2*exp(1)+1/4)/(9/11*Catalan-1/12) 2415789936069248 r002 6th iterates of z^2 + 2415789944075004 r009 Im(z^3+c),c=-3/22+53/62*I,n=12 2415789944474034 a001 15456*5778^(45/53) 2415789950505717 a001 1134903170/843*322^(1/2) 2415789960813412 r002 35th iterates of z^2 + 2415789966388274 m008 (3/5*Pi^5+3)/(5/6*Pi^2-1/2) 2415789970169131 h001 (3/4*exp(1)+4/7)/(1/11*exp(1)+5/6) 2415789993857875 a001 433494437/521*1364^(7/15) 2415790010036279 r005 Re(z^2+c),c=-11/18+9/23*I,n=44 2415790010183934 a007 Real Root Of -564*x^4-992*x^3+504*x^2-840*x+253 2415790019336832 r005 Im(z^2+c),c=-5/6+13/88*I,n=11 2415790023069258 m001 (-ln(gamma)+1)/(2^(1/2)+5) 2415790027648607 r005 Im(z^2+c),c=-2/5+15/37*I,n=31 2415790030856740 b008 7*(3*(-1+Pi))^Pi 2415790049102862 l006 ln(433/4849) 2415790049160551 m001 ln(GAMMA(1/4))/GAMMA(1/12)/arctan(1/2) 2415790064710143 r005 Im(z^2+c),c=37/106+5/51*I,n=11 2415790065629106 m001 exp(1/Pi)^GAMMA(5/12)*exp(1/Pi)^Cahen 2415790065735817 r009 Re(z^3+c),c=-41/110+28/61*I,n=50 2415790072836127 m001 1/exp(GAMMA(1/24))^2/Artin^2*cos(Pi/5) 2415790073005428 a007 Real Root Of 157*x^4-33*x^3-560*x^2+785*x-648 2415790080422178 a001 701408733/521*1364^(2/5) 2415790084500236 a007 Real Root Of 89*x^4-237*x^3-385*x^2-674*x-144 2415790087065921 r005 Re(z^2+c),c=7/66+23/61*I,n=15 2415790087691110 m003 -Tan[1/2+Sqrt[5]/2]+(13*Tanh[1/2+Sqrt[5]/2])/4 2415790090485380 a007 Real Root Of 181*x^4-526*x^3+691*x^2-963*x-281 2415790093741077 m001 BesselI(1,2)-FeigenbaumKappa*Otter 2415790102662427 a007 Real Root Of 116*x^4+214*x^3+181*x^2+931*x+259 2415790103806071 a001 233/2207*2537720636^(8/9) 2415790103806071 a001 233/2207*312119004989^(8/11) 2415790103806071 a001 233/2207*(1/2+1/2*5^(1/2))^40 2415790103806071 a001 233/2207*23725150497407^(5/8) 2415790103806071 a001 233/2207*73681302247^(10/13) 2415790103806071 a001 233/2207*28143753123^(4/5) 2415790103806071 a001 233/2207*10749957122^(5/6) 2415790103806071 a001 233/2207*4106118243^(20/23) 2415790103806071 a001 233/2207*1568397607^(10/11) 2415790103806071 a001 233/2207*599074578^(20/21) 2415790103838756 a001 987/521*45537549124^(2/3) 2415790103838756 a001 987/521*(1/2+1/2*5^(1/2))^34 2415790103838756 a001 987/521*10749957122^(17/24) 2415790103838756 a001 987/521*4106118243^(17/23) 2415790103838756 a001 987/521*1568397607^(17/22) 2415790103838756 a001 987/521*599074578^(17/21) 2415790103838756 a001 987/521*228826127^(17/20) 2415790103838757 a001 987/521*87403803^(17/19) 2415790103838758 a001 987/521*33385282^(17/18) 2415790105201848 r009 Im(z^3+c),c=-41/122+5/27*I,n=2 2415790120890302 a007 Real Root Of 167*x^4+320*x^3-360*x^2-331*x+125 2415790123439035 a007 Real Root Of 419*x^4+122*x^3+143*x^2-600*x-153 2415790128191087 r005 Im(z^2+c),c=-31/70+13/31*I,n=51 2415790128867093 m001 (1-Si(Pi)*Otter)/Si(Pi) 2415790152511052 r005 Im(z^2+c),c=9/74+5/8*I,n=31 2415790160257596 a008 Real Root of x^2-x-58602 2415790166986484 a001 1134903170/521*1364^(1/3) 2415790177341598 r009 Re(z^3+c),c=-41/110+28/61*I,n=54 2415790177622093 m009 (1/5*Psi(1,3/4)+2)/(3/5*Psi(1,2/3)-4/5) 2415790186511483 a003 cos(Pi*1/59)*sin(Pi*7/90) 2415790196670121 m001 1/sin(Pi/5)/arctan(1/2)^2/ln(sqrt(Pi))^2 2415790198125641 r009 Re(z^3+c),c=-17/114+41/45*I,n=16 2415790205695603 r005 Im(z^2+c),c=-7/19+24/61*I,n=21 2415790205851933 r005 Im(z^2+c),c=41/106+14/51*I,n=62 2415790207473209 a001 567451585/38*29^(1/7) 2415790211352088 a001 29/121393*17711^(29/41) 2415790218176120 m005 (1/3*5^(1/2)-2/11)/(5/6*gamma-5/7) 2415790241532817 a003 cos(Pi*12/67)/cos(Pi*39/101) 2415790247274644 r005 Re(z^2+c),c=-5/4+19/256*I,n=12 2415790251863263 m001 (Pi^(1/2)+HardHexagonsEntropy)/(Thue+ZetaP(2)) 2415790252255173 r005 Re(z^2+c),c=-7/29+21/59*I,n=15 2415790253550793 a001 1836311903/521*1364^(4/15) 2415790257274183 m001 (exp(1)-ln(5))/(FransenRobinson+Grothendieck) 2415790284516966 a001 1/36*10946^(10/43) 2415790286840071 m001 Zeta(1,2)^PlouffeB*ZetaQ(2)^PlouffeB 2415790288771550 m001 (ErdosBorwein+ThueMorse)/(Chi(1)-gamma(3)) 2415790294975424 a001 121393/3*2207^(44/53) 2415790299934111 m001 Khinchin-CareFree-Pi*csc(5/24*Pi)/GAMMA(19/24) 2415790304109627 a001 10749957122/233*1836311903^(16/17) 2415790304109728 a001 4870847/233*6557470319842^(16/17) 2415790304111346 a001 23725150497407/233*514229^(16/17) 2415790304285003 l006 ln(2569/3271) 2415790313198264 r005 Re(z^2+c),c=-3/16+23/45*I,n=21 2415790315051921 a001 29/10946*987^(36/55) 2415790322233859 s002 sum(A202186[n]/(n*2^n+1),n=1..infinity) 2415790339155459 a001 2971215073/322*123^(1/5) 2415790340115106 a001 2971215073/521*1364^(1/5) 2415790350909395 m001 1/RenyiParking/ln(TreeGrowth2nd)^3 2415790350930545 a007 Real Root Of 817*x^4-960*x^3-563*x^2-975*x-219 2415790368938313 a007 Real Root Of 203*x^4+287*x^3-111*x^2+731*x-454 2415790377718298 r009 Im(z^3+c),c=-19/31+10/21*I,n=9 2415790380571424 r009 Re(z^3+c),c=-13/36+13/30*I,n=29 2415790381586660 a007 Real Root Of -379*x^4-856*x^3-51*x^2-437*x+82 2415790381636534 r005 Im(z^2+c),c=-23/102+1/30*I,n=11 2415790389728429 r009 Re(z^3+c),c=-33/74+19/40*I,n=15 2415790395177795 m001 (Ei(1,1)-ErdosBorwein)/(Paris+PlouffeB) 2415790405282571 l006 ln(579/6484) 2415790410331872 a001 38580172853/1597 2415790420569510 r009 Re(z^3+c),c=-11/31+37/63*I,n=19 2415790421508359 a001 5702887/521*3571^(16/17) 2415790426679421 a001 4807526976/521*1364^(2/15) 2415790427798325 r005 Im(z^2+c),c=17/62+5/56*I,n=37 2415790432652110 a001 9227465/521*3571^(15/17) 2415790435917342 m005 (1/3*gamma+1/11)/(9/10*Zeta(3)+1/11) 2415790440163031 a007 Real Root Of 513*x^4+898*x^3-824*x^2+214*x+514 2415790443118019 a007 Real Root Of 447*x^4+923*x^3-103*x^2+518*x-359 2415790443795832 a001 14930352/521*3571^(14/17) 2415790445139066 a007 Real Root Of 443*x^4+998*x^3+147*x^2+757*x-47 2415790446698604 p001 sum(1/(577*n+456)/(5^n),n=0..infinity) 2415790454939565 a001 24157817/521*3571^(13/17) 2415790456545888 m001 (ln(2+3^(1/2))+gamma(2))/(Ei(1,1)+arctan(1/3)) 2415790465073933 m001 (Grothendieck+ZetaQ(4))/(BesselI(1,1)-Conway) 2415790466039845 a007 Real Root Of -513*x^4-784*x^3+759*x^2-872*x-117 2415790466083294 a001 39088169/521*3571^(12/17) 2415790467155159 m001 1/Si(Pi)/exp(DuboisRaymond)^2*TwinPrimes 2415790476306830 a007 Real Root Of 153*x^4+75*x^3-396*x^2+533*x-555 2415790477227025 a001 63245986/521*3571^(11/17) 2415790479346689 r005 Im(z^2+c),c=-11/82+9/28*I,n=17 2415790488370755 a001 102334155/521*3571^(10/17) 2415790494183035 r009 Im(z^3+c),c=-63/110+7/29*I,n=4 2415790499514485 a001 165580141/521*3571^(9/17) 2415790505535523 r002 13th iterates of z^2 + 2415790510658216 a001 267914296/521*3571^(8/17) 2415790513243739 a001 7778742049/521*1364^(1/15) 2415790519408409 m005 (1/2*Pi-2)/(6/11*Zeta(3)-5/6) 2415790521801946 a001 433494437/521*3571^(7/17) 2415790524935795 b008 23+3*ArcCoth[E] 2415790526221149 a007 Real Root Of 69*x^4+215*x^3+241*x^2+239*x-148 2415790527414330 a001 233/5778*2537720636^(14/15) 2415790527414330 a001 233/5778*17393796001^(6/7) 2415790527414330 a001 233/5778*45537549124^(14/17) 2415790527414330 a001 233/5778*14662949395604^(2/3) 2415790527414330 a001 233/5778*(1/2+1/2*5^(1/2))^42 2415790527414330 a001 233/5778*505019158607^(3/4) 2415790527414330 a001 233/5778*192900153618^(7/9) 2415790527414330 a001 233/5778*10749957122^(7/8) 2415790527414330 a001 233/5778*4106118243^(21/23) 2415790527414330 a001 233/5778*1568397607^(21/22) 2415790527447115 a001 2584/521*(1/2+1/2*5^(1/2))^32 2415790527447115 a001 2584/521*23725150497407^(1/2) 2415790527447115 a001 2584/521*73681302247^(8/13) 2415790527447115 a001 2584/521*10749957122^(2/3) 2415790527447115 a001 2584/521*4106118243^(16/23) 2415790527447115 a001 2584/521*1568397607^(8/11) 2415790527447115 a001 2584/521*599074578^(16/21) 2415790527447115 a001 2584/521*228826127^(4/5) 2415790527447115 a001 2584/521*87403803^(16/19) 2415790527447116 a001 2584/521*33385282^(8/9) 2415790527447129 a001 2584/521*12752043^(16/17) 2415790532945677 a001 701408733/521*3571^(6/17) 2415790534468715 a007 Real Root Of 40*x^4-175*x^3-495*x^2+38*x-849 2415790535839984 a008 Real Root of (-1+3*x+4*x^2+2*x^3+4*x^4) 2415790537404580 m001 Paris^2*Lehmer^2/exp(PisotVijayaraghavan)^2 2415790544089407 a001 1134903170/521*3571^(5/17) 2415790549409654 m001 (BesselI(0,2)+Grothendieck)/(Zeta(5)-exp(1)) 2415790552633217 r009 Im(z^3+c),c=-35/78+2/21*I,n=57 2415790555233138 a001 1836311903/521*3571^(4/17) 2415790566376869 a001 2971215073/521*3571^(3/17) 2415790569880759 m001 (GAMMA(2/3)+Pi^(1/2))/(KhinchinLevy+OneNinth) 2415790572135852 a001 101004203821/4181 2415790573623243 a001 2178309/521*9349^(18/19) 2415790575078091 a001 3524578/521*9349^(17/19) 2415790576532743 a001 5702887/521*9349^(16/19) 2415790577520599 a001 4807526976/521*3571^(2/17) 2415790577987470 a001 9227465/521*9349^(15/19) 2415790579442169 a001 14930352/521*9349^(14/19) 2415790580896878 a001 24157817/521*9349^(13/19) 2415790582351583 a001 39088169/521*9349^(12/19) 2415790583806290 a001 63245986/521*9349^(11/19) 2415790585260997 a001 102334155/521*9349^(10/19) 2415790585917513 r005 Re(z^2+c),c=31/106+7/41*I,n=39 2415790586715703 a001 165580141/521*9349^(9/19) 2415790588170409 a001 267914296/521*9349^(8/19) 2415790588664330 a001 7778742049/521*3571^(1/17) 2415790589217954 a001 233/15127*312119004989^(4/5) 2415790589217954 a001 233/15127*(1/2+1/2*5^(1/2))^44 2415790589217954 a001 233/15127*23725150497407^(11/16) 2415790589217954 a001 233/15127*73681302247^(11/13) 2415790589217954 a001 233/15127*10749957122^(11/12) 2415790589217954 a001 233/15127*4106118243^(22/23) 2415790589250706 a001 6765/521*7881196^(10/11) 2415790589250736 a001 6765/521*20633239^(6/7) 2415790589250741 a001 6765/521*141422324^(10/13) 2415790589250741 a001 6765/521*2537720636^(2/3) 2415790589250741 a001 6765/521*45537549124^(10/17) 2415790589250741 a001 6765/521*312119004989^(6/11) 2415790589250741 a001 6765/521*14662949395604^(10/21) 2415790589250741 a001 6765/521*(1/2+1/2*5^(1/2))^30 2415790589250741 a001 6765/521*192900153618^(5/9) 2415790589250741 a001 6765/521*28143753123^(3/5) 2415790589250741 a001 6765/521*10749957122^(5/8) 2415790589250741 a001 6765/521*4106118243^(15/23) 2415790589250741 a001 6765/521*1568397607^(15/22) 2415790589250741 a001 6765/521*599074578^(5/7) 2415790589250741 a001 6765/521*228826127^(3/4) 2415790589250741 a001 6765/521*87403803^(15/19) 2415790589250743 a001 6765/521*33385282^(5/6) 2415790589250754 a001 6765/521*12752043^(15/17) 2415790589250837 a001 6765/521*4870847^(15/16) 2415790589625116 a001 433494437/521*9349^(7/19) 2415790591079822 a001 701408733/521*9349^(6/19) 2415790592534529 a001 1134903170/521*9349^(5/19) 2415790593989235 a001 1836311903/521*9349^(4/19) 2415790595443942 a001 2971215073/521*9349^(3/19) 2415790595742737 a001 132216219305/5473 2415790595966851 a001 832040/521*24476^(20/21) 2415790596159841 a001 1346269/521*24476^(19/21) 2415790596351499 a001 2178309/521*24476^(6/7) 2415790596543665 a001 3524578/521*24476^(17/21) 2415790596735637 a001 5702887/521*24476^(16/21) 2415790596898648 a001 4807526976/521*9349^(2/19) 2415790596927683 a001 9227465/521*24476^(5/7) 2415790597119701 a001 14930352/521*24476^(2/3) 2415790597311729 a001 24157817/521*24476^(13/21) 2415790597503754 a001 39088169/521*24476^(4/7) 2415790597695780 a001 63245986/521*24476^(11/21) 2415790597887805 a001 102334155/521*24476^(10/21) 2415790598079831 a001 165580141/521*24476^(3/7) 2415790598234982 a001 233/39603*(1/2+1/2*5^(1/2))^46 2415790598234982 a001 233/39603*10749957122^(23/24) 2415790598267764 a001 17711/521*20633239^(4/5) 2415790598267769 a001 17711/521*17393796001^(4/7) 2415790598267769 a001 17711/521*14662949395604^(4/9) 2415790598267769 a001 17711/521*(1/2+1/2*5^(1/2))^28 2415790598267769 a001 17711/521*73681302247^(7/13) 2415790598267769 a001 17711/521*10749957122^(7/12) 2415790598267769 a001 17711/521*4106118243^(14/23) 2415790598267769 a001 17711/521*1568397607^(7/11) 2415790598267769 a001 17711/521*599074578^(2/3) 2415790598267769 a001 17711/521*228826127^(7/10) 2415790598267769 a001 17711/521*87403803^(14/19) 2415790598267770 a001 17711/521*33385282^(7/9) 2415790598267781 a001 17711/521*12752043^(14/17) 2415790598267858 a001 17711/521*4870847^(7/8) 2415790598268420 a001 17711/521*1860498^(14/15) 2415790598271856 a001 267914296/521*24476^(8/21) 2415790598353354 a001 7778742049/521*9349^(1/19) 2415790598363891 a001 711491/13*34^(8/19) 2415790598463882 a001 433494437/521*24476^(1/3) 2415790598655907 a001 701408733/521*24476^(2/7) 2415790598847933 a001 1134903170/521*24476^(5/21) 2415790599039959 a001 1836311903/521*24476^(4/21) 2415790599186935 a001 692293112009/28657 2415790599186938 a001 48315689/2+55/2*5^(1/2) 2415790599231984 a001 2971215073/521*24476^(1/7) 2415790599240518 a001 317811/521*64079^(22/23) 2415790599272709 a001 514229/521*64079^(21/23) 2415790599295764 a001 832040/521*64079^(20/23) 2415790599322308 a001 1346269/521*64079^(19/23) 2415790599347520 a001 2178309/521*64079^(18/23) 2415790599373240 a001 3524578/521*64079^(17/23) 2415790599398767 a001 5702887/521*64079^(16/23) 2415790599424010 a001 4807526976/521*24476^(2/21) 2415790599424367 a001 9227465/521*64079^(15/23) 2415790599449939 a001 14930352/521*64079^(14/23) 2415790599475522 a001 24157817/521*64079^(13/23) 2415790599501101 a001 39088169/521*64079^(12/23) 2415790599526681 a001 63245986/521*64079^(11/23) 2415790599550548 a001 233/103682*45537549124^(16/17) 2415790599550548 a001 233/103682*14662949395604^(16/21) 2415790599550548 a001 233/103682*(1/2+1/2*5^(1/2))^48 2415790599550548 a001 233/103682*192900153618^(8/9) 2415790599550548 a001 233/103682*73681302247^(12/13) 2415790599552261 a001 102334155/521*64079^(10/23) 2415790599577841 a001 165580141/521*64079^(9/23) 2415790599583335 a001 46368/521*141422324^(2/3) 2415790599583335 a001 46368/521*(1/2+1/2*5^(1/2))^26 2415790599583335 a001 46368/521*73681302247^(1/2) 2415790599583335 a001 46368/521*10749957122^(13/24) 2415790599583335 a001 46368/521*4106118243^(13/23) 2415790599583335 a001 46368/521*1568397607^(13/22) 2415790599583335 a001 46368/521*599074578^(13/21) 2415790599583335 a001 46368/521*228826127^(13/20) 2415790599583336 a001 46368/521*87403803^(13/19) 2415790599583337 a001 46368/521*33385282^(13/18) 2415790599583347 a001 46368/521*12752043^(13/17) 2415790599583418 a001 46368/521*4870847^(13/16) 2415790599583940 a001 46368/521*1860498^(13/15) 2415790599587777 a001 46368/521*710647^(13/14) 2415790599603421 a001 267914296/521*64079^(8/23) 2415790599616035 a001 7778742049/521*24476^(1/21) 2415790599629001 a001 433494437/521*64079^(7/23) 2415790599654581 a001 701408733/521*64079^(6/23) 2415790599680161 a001 1134903170/521*64079^(5/23) 2415790599689436 a001 1812446897417/75025 2415790599705741 a001 1836311903/521*64079^(4/23) 2415790599731321 a001 2971215073/521*64079^(3/23) 2415790599738693 a001 832040/521*167761^(4/5) 2415790599742487 a001 233/271443*312119004989^(10/11) 2415790599742487 a001 233/271443*(1/2+1/2*5^(1/2))^50 2415790599742487 a001 233/271443*3461452808002^(5/6) 2415790599756564 a001 9227465/521*167761^(3/5) 2415790599756901 a001 4807526976/521*64079^(2/23) 2415790599762750 a001 2372523790121/98209 2415790599764142 a001 233*439204^(8/9) 2415790599770490 a001 233/710647*(1/2+1/2*5^(1/2))^52 2415790599770490 a001 233/710647*23725150497407^(13/16) 2415790599770490 a001 233/710647*505019158607^(13/14) 2415790599773447 a001 12422695843309/514229 2415790599773726 a001 102334155/521*167761^(2/5) 2415790599774576 a001 233/1860498*14662949395604^(6/7) 2415790599774576 a001 233/1860498*(1/2+1/2*5^(1/2))^54 2415790599775007 a001 32523039949685/1346269 2415790599775172 a001 233/4870847*14662949395604^(8/9) 2415790599775172 a001 233/4870847*(1/2+1/2*5^(1/2))^56 2415790599775235 a001 42573212002873/1762289 2415790599775246 a001 233*7881196^(8/11) 2415790599775259 a001 233/12752043*(1/2+1/2*5^(1/2))^58 2415790599775268 a001 222916232067553/9227465 2415790599775272 a001 233/33385282*14662949395604^(20/21) 2415790599775272 a001 233/33385282*(1/2+1/2*5^(1/2))^60 2415790599775273 a001 583602272196913/24157817 2415790599775274 a001 3278735159921/135721 2415790599775274 a001 233*141422324^(8/13) 2415790599775274 a001 233*2537720636^(8/15) 2415790599775274 a001 233*45537549124^(8/17) 2415790599775274 a001 233*14662949395604^(8/21) 2415790599775274 a001 233*(1/2+1/2*5^(1/2))^24 2415790599775274 a001 233*192900153618^(4/9) 2415790599775274 a001 233*73681302247^(6/13) 2415790599775274 a001 233*10749957122^(1/2) 2415790599775274 a001 233*4106118243^(12/23) 2415790599775274 a001 233*1568397607^(6/11) 2415790599775274 a001 233*599074578^(4/7) 2415790599775274 a001 233*228826127^(3/5) 2415790599775274 a001 117722804611879/4873055 2415790599775274 a001 233*87403803^(12/19) 2415790599775274 a001 944288312326273/39088169 2415790599775275 a001 233*33385282^(2/3) 2415790599775276 a001 2504764167565/103683 2415790599775280 a001 233/20633239*(1/2+1/2*5^(1/2))^59 2415790599775284 a001 233*12752043^(12/17) 2415790599775289 a001 137769808061807/5702887 2415790599775313 a001 233/7881196*14662949395604^(19/21) 2415790599775313 a001 233/7881196*(1/2+1/2*5^(1/2))^57 2415790599775350 a001 233*4870847^(3/4) 2415790599775376 a001 2505875431241/103729 2415790599775540 a001 233/3010349*(1/2+1/2*5^(1/2))^55 2415790599775540 a001 233/3010349*3461452808002^(11/12) 2415790599775832 a001 233*1860498^(4/5) 2415790599775972 a001 2512543013297/104005 2415790599777101 a001 233/1149851*(1/2+1/2*5^(1/2))^53 2415790599779374 a001 233*710647^(6/7) 2415790599780057 a001 2559216087689/105937 2415790599782481 a001 7778742049/521*64079^(1/23) 2415790599787797 a001 233/439204*14662949395604^(17/21) 2415790599787797 a001 233/439204*(1/2+1/2*5^(1/2))^51 2415790599787797 a001 233/439204*192900153618^(17/18) 2415790599790893 a001 1134903170/521*167761^(1/5) 2415790599799610 a001 2178309/521*439204^(2/3) 2415790599800148 a001 514229/521*439204^(7/9) 2415790599801109 a001 9227465/521*439204^(5/9) 2415790599802495 a001 39088169/521*439204^(4/9) 2415790599803251 a001 317811/521*7881196^(2/3) 2415790599803277 a001 317811/521*312119004989^(2/5) 2415790599803277 a001 317811/521*(1/2+1/2*5^(1/2))^22 2415790599803277 a001 317811/521*10749957122^(11/24) 2415790599803277 a001 317811/521*4106118243^(11/23) 2415790599803277 a001 317811/521*1568397607^(1/2) 2415790599803277 a001 317811/521*599074578^(11/21) 2415790599803277 a001 317811/521*228826127^(11/20) 2415790599803278 a001 317811/521*87403803^(11/19) 2415790599803279 a001 317811/521*33385282^(11/18) 2415790599803287 a001 317811/521*12752043^(11/17) 2415790599803347 a001 317811/521*4870847^(11/16) 2415790599803789 a001 317811/521*1860498^(11/15) 2415790599803886 a001 165580141/521*439204^(1/3) 2415790599805278 a001 701408733/521*439204^(2/9) 2415790599805539 a001 233*271443^(12/13) 2415790599806669 a001 2971215073/521*439204^(1/9) 2415790599807036 a001 317811/521*710647^(11/14) 2415790599807360 a001 832040/521*20633239^(4/7) 2415790599807363 a001 832040/521*2537720636^(4/9) 2415790599807363 a001 832040/521*(1/2+1/2*5^(1/2))^20 2415790599807363 a001 832040/521*23725150497407^(5/16) 2415790599807363 a001 832040/521*505019158607^(5/14) 2415790599807363 a001 832040/521*73681302247^(5/13) 2415790599807363 a001 832040/521*28143753123^(2/5) 2415790599807363 a001 832040/521*10749957122^(5/12) 2415790599807363 a001 832040/521*4106118243^(10/23) 2415790599807363 a001 832040/521*1568397607^(5/11) 2415790599807363 a001 832040/521*599074578^(10/21) 2415790599807363 a001 832040/521*228826127^(1/2) 2415790599807363 a001 832040/521*87403803^(10/19) 2415790599807364 a001 832040/521*33385282^(5/9) 2415790599807372 a001 832040/521*12752043^(10/17) 2415790599807427 a001 832040/521*4870847^(5/8) 2415790599807828 a001 832040/521*1860498^(2/3) 2415790599807938 a001 2178309/521*7881196^(6/11) 2415790599807959 a001 2178309/521*141422324^(6/13) 2415790599807959 a001 2178309/521*2537720636^(2/5) 2415790599807959 a001 2178309/521*45537549124^(6/17) 2415790599807959 a001 2178309/521*14662949395604^(2/7) 2415790599807959 a001 2178309/521*(1/2+1/2*5^(1/2))^18 2415790599807959 a001 2178309/521*192900153618^(1/3) 2415790599807959 a001 2178309/521*10749957122^(3/8) 2415790599807959 a001 2178309/521*4106118243^(9/23) 2415790599807959 a001 2178309/521*1568397607^(9/22) 2415790599807959 a001 2178309/521*599074578^(3/7) 2415790599807959 a001 2178309/521*228826127^(9/20) 2415790599807959 a001 2178309/521*87403803^(9/19) 2415790599807960 a001 2178309/521*33385282^(1/2) 2415790599807967 a001 2178309/521*12752043^(9/17) 2415790599808016 a001 2178309/521*4870847^(9/16) 2415790599808046 a001 5702887/521*(1/2+1/2*5^(1/2))^16 2415790599808046 a001 5702887/521*23725150497407^(1/4) 2415790599808046 a001 5702887/521*73681302247^(4/13) 2415790599808046 a001 5702887/521*10749957122^(1/3) 2415790599808046 a001 5702887/521*4106118243^(8/23) 2415790599808046 a001 5702887/521*1568397607^(4/11) 2415790599808046 a001 5702887/521*599074578^(8/21) 2415790599808046 a001 5702887/521*228826127^(2/5) 2415790599808046 a001 5702887/521*87403803^(8/19) 2415790599808046 a001 39088169/521*7881196^(4/11) 2415790599808047 a001 5702887/521*33385282^(4/9) 2415790599808048 a001 63245986/521*7881196^(1/3) 2415790599808049 a001 9227465/521*7881196^(5/11) 2415790599808050 a001 165580141/521*7881196^(3/11) 2415790599808053 a001 5702887/521*12752043^(8/17) 2415790599808054 a001 701408733/521*7881196^(2/11) 2415790599808056 a001 14930352/521*20633239^(2/5) 2415790599808057 a001 2971215073/521*7881196^(1/11) 2415790599808059 a001 14930352/521*17393796001^(2/7) 2415790599808059 a001 14930352/521*14662949395604^(2/9) 2415790599808059 a001 14930352/521*(1/2+1/2*5^(1/2))^14 2415790599808059 a001 14930352/521*10749957122^(7/24) 2415790599808059 a001 14930352/521*4106118243^(7/23) 2415790599808059 a001 14930352/521*1568397607^(7/22) 2415790599808059 a001 14930352/521*599074578^(1/3) 2415790599808059 a001 14930352/521*228826127^(7/20) 2415790599808059 a001 14930352/521*87403803^(7/19) 2415790599808059 a001 102334155/521*20633239^(2/7) 2415790599808060 a001 14930352/521*33385282^(7/18) 2415790599808060 a001 433494437/521*20633239^(1/5) 2415790599808060 a001 1134903170/521*20633239^(1/7) 2415790599808061 a001 39088169/521*141422324^(4/13) 2415790599808061 a001 39088169/521*2537720636^(4/15) 2415790599808061 a001 39088169/521*45537549124^(4/17) 2415790599808061 a001 39088169/521*14662949395604^(4/21) 2415790599808061 a001 39088169/521*(1/2+1/2*5^(1/2))^12 2415790599808061 a001 39088169/521*192900153618^(2/9) 2415790599808061 a001 39088169/521*73681302247^(3/13) 2415790599808061 a001 39088169/521*10749957122^(1/4) 2415790599808061 a001 39088169/521*4106118243^(6/23) 2415790599808061 a001 39088169/521*1568397607^(3/11) 2415790599808061 a001 39088169/521*599074578^(2/7) 2415790599808061 a001 39088169/521*228826127^(3/10) 2415790599808061 a001 39088169/521*87403803^(6/19) 2415790599808061 a001 102334155/521*2537720636^(2/9) 2415790599808061 a001 102334155/521*312119004989^(2/11) 2415790599808061 a001 102334155/521*(1/2+1/2*5^(1/2))^10 2415790599808061 a001 102334155/521*28143753123^(1/5) 2415790599808061 a001 102334155/521*10749957122^(5/24) 2415790599808061 a001 102334155/521*4106118243^(5/23) 2415790599808061 a001 102334155/521*1568397607^(5/22) 2415790599808061 a001 102334155/521*599074578^(5/21) 2415790599808061 a001 102334155/521*228826127^(1/4) 2415790599808061 a001 701408733/521*141422324^(2/13) 2415790599808061 a001 165580141/521*141422324^(3/13) 2415790599808061 a001 2971215073/521*141422324^(1/13) 2415790599808061 a001 267914296/521*(1/2+1/2*5^(1/2))^8 2415790599808061 a001 267914296/521*23725150497407^(1/8) 2415790599808061 a001 267914296/521*505019158607^(1/7) 2415790599808061 a001 267914296/521*73681302247^(2/13) 2415790599808061 a001 267914296/521*10749957122^(1/6) 2415790599808061 a001 267914296/521*4106118243^(4/23) 2415790599808061 a001 267914296/521*1568397607^(2/11) 2415790599808061 a001 267914296/521*599074578^(4/21) 2415790599808061 a001 701408733/521*2537720636^(2/15) 2415790599808061 a001 701408733/521*45537549124^(2/17) 2415790599808061 a001 701408733/521*14662949395604^(2/21) 2415790599808061 a001 701408733/521*(1/2+1/2*5^(1/2))^6 2415790599808061 a001 701408733/521*10749957122^(1/8) 2415790599808061 a001 701408733/521*4106118243^(3/23) 2415790599808061 a001 701408733/521*1568397607^(3/22) 2415790599808061 a001 1836311903/521*(1/2+1/2*5^(1/2))^4 2415790599808061 a001 1836311903/521*23725150497407^(1/16) 2415790599808061 a001 1836311903/521*73681302247^(1/13) 2415790599808061 a001 1836311903/521*10749957122^(1/12) 2415790599808061 a001 1836311903/521*4106118243^(2/23) 2415790599808061 a001 1836311903/521*1568397607^(1/11) 2415790599808061 a001 4807526976/521*(1/2+1/2*5^(1/2))^2 2415790599808061 a001 701408733/521*599074578^(1/7) 2415790599808061 a001 4807526976/521*10749957122^(1/24) 2415790599808061 a001 4807526976/521*4106118243^(1/23) 2415790599808061 a006 5^(1/2)*Fibonacci(50)/Lucas(13)/sqrt(5) 2415790599808061 a001 7778742049/1042+7778742049/1042*5^(1/2) 2415790599808061 a001 4807526976/521*1568397607^(1/22) 2415790599808061 a001 2971215073/521*2537720636^(1/15) 2415790599808061 a001 2971215073/521*45537549124^(1/17) 2415790599808061 a001 2971215073/521*14662949395604^(1/21) 2415790599808061 a001 2971215073/521*(1/2+1/2*5^(1/2))^3 2415790599808061 a001 2971215073/521*10749957122^(1/16) 2415790599808061 a001 4807526976/521*599074578^(1/21) 2415790599808061 a001 1134903170/521*2537720636^(1/9) 2415790599808061 a001 1134903170/521*312119004989^(1/11) 2415790599808061 a001 1134903170/521*(1/2+1/2*5^(1/2))^5 2415790599808061 a001 1134903170/521*28143753123^(1/10) 2415790599808061 a001 1836311903/521*599074578^(2/21) 2415790599808061 a001 2971215073/521*599074578^(1/14) 2415790599808061 a001 4807526976/521*228826127^(1/20) 2415790599808061 a001 267914296/521*228826127^(1/5) 2415790599808061 a001 433494437/521*17393796001^(1/7) 2415790599808061 a001 433494437/521*14662949395604^(1/9) 2415790599808061 a001 433494437/521*(1/2+1/2*5^(1/2))^7 2415790599808061 a001 433494437/521*599074578^(1/6) 2415790599808061 a001 1836311903/521*228826127^(1/10) 2415790599808061 a001 701408733/521*228826127^(3/20) 2415790599808061 a001 1134903170/521*228826127^(1/8) 2415790599808061 a001 4807526976/521*87403803^(1/19) 2415790599808061 a001 165580141/521*2537720636^(1/5) 2415790599808061 a001 165580141/521*45537549124^(3/17) 2415790599808061 a001 165580141/521*14662949395604^(1/7) 2415790599808061 a001 165580141/521*(1/2+1/2*5^(1/2))^9 2415790599808061 a001 165580141/521*192900153618^(1/6) 2415790599808061 a001 165580141/521*10749957122^(3/16) 2415790599808061 a001 165580141/521*599074578^(3/14) 2415790599808061 a001 1836311903/521*87403803^(2/19) 2415790599808061 a001 102334155/521*87403803^(5/19) 2415790599808061 a001 701408733/521*87403803^(3/19) 2415790599808061 a001 267914296/521*87403803^(4/19) 2415790599808061 a001 4807526976/521*33385282^(1/18) 2415790599808061 a001 63245986/521*312119004989^(1/5) 2415790599808061 a001 63245986/521*(1/2+1/2*5^(1/2))^11 2415790599808061 a001 63245986/521*1568397607^(1/4) 2415790599808061 a001 2971215073/521*33385282^(1/12) 2415790599808061 a001 1836311903/521*33385282^(1/9) 2415790599808061 a001 701408733/521*33385282^(1/6) 2415790599808061 a001 39088169/521*33385282^(1/3) 2415790599808061 a001 267914296/521*33385282^(2/9) 2415790599808061 a001 102334155/521*33385282^(5/18) 2415790599808061 a001 165580141/521*33385282^(1/4) 2415790599808062 a001 24157817/521*141422324^(1/3) 2415790599808062 a001 24157817/521*(1/2+1/2*5^(1/2))^13 2415790599808062 a001 24157817/521*73681302247^(1/4) 2415790599808062 a001 4807526976/521*12752043^(1/17) 2415790599808063 a001 1836311903/521*12752043^(2/17) 2415790599808064 a001 701408733/521*12752043^(3/17) 2415790599808064 a001 9227465/521*20633239^(3/7) 2415790599808064 a001 267914296/521*12752043^(4/17) 2415790599808065 a001 14930352/521*12752043^(7/17) 2415790599808065 a001 102334155/521*12752043^(5/17) 2415790599808066 a001 39088169/521*12752043^(6/17) 2415790599808067 a001 9227465/521*141422324^(5/13) 2415790599808067 a001 9227465/521*2537720636^(1/3) 2415790599808067 a001 9227465/521*45537549124^(5/17) 2415790599808067 a001 9227465/521*312119004989^(3/11) 2415790599808067 a001 9227465/521*14662949395604^(5/21) 2415790599808067 a001 9227465/521*(1/2+1/2*5^(1/2))^15 2415790599808067 a001 9227465/521*192900153618^(5/18) 2415790599808067 a001 9227465/521*28143753123^(3/10) 2415790599808067 a001 9227465/521*10749957122^(5/16) 2415790599808067 a001 9227465/521*599074578^(5/14) 2415790599808067 a001 9227465/521*228826127^(3/8) 2415790599808067 a001 4807526976/521*4870847^(1/16) 2415790599808067 a001 9227465/521*33385282^(5/12) 2415790599808074 a001 1836311903/521*4870847^(1/8) 2415790599808080 a001 701408733/521*4870847^(3/16) 2415790599808086 a001 267914296/521*4870847^(1/4) 2415790599808093 a001 102334155/521*4870847^(5/16) 2415790599808097 a001 5702887/521*4870847^(1/2) 2415790599808099 a001 39088169/521*4870847^(3/8) 2415790599808100 a001 3524578/521*45537549124^(1/3) 2415790599808100 a001 3524578/521*(1/2+1/2*5^(1/2))^17 2415790599808103 a001 14930352/521*4870847^(7/16) 2415790599808107 a001 3524578/521*12752043^(1/2) 2415790599808107 a001 4807526976/521*1860498^(1/15) 2415790599808131 a001 2971215073/521*1860498^(1/10) 2415790599808154 a001 1836311903/521*1860498^(2/15) 2415790599808177 a001 1134903170/521*1860498^(1/6) 2415790599808201 a001 701408733/521*1860498^(1/5) 2415790599808247 a001 267914296/521*1860498^(4/15) 2415790599808270 a001 165580141/521*1860498^(3/10) 2415790599808294 a001 102334155/521*1860498^(1/3) 2415790599808327 a001 1346269/521*817138163596^(1/3) 2415790599808327 a001 1346269/521*(1/2+1/2*5^(1/2))^19 2415790599808328 a001 1346269/521*87403803^(1/2) 2415790599808340 a001 39088169/521*1860498^(2/5) 2415790599808378 a001 2178309/521*1860498^(3/5) 2415790599808384 a001 14930352/521*1860498^(7/15) 2415790599808403 a001 4807526976/521*710647^(1/14) 2415790599808416 a001 9227465/521*1860498^(1/2) 2415790599808418 a001 5702887/521*1860498^(8/15) 2415790599808744 a001 1836311903/521*710647^(1/7) 2415790599809086 a001 701408733/521*710647^(3/14) 2415790599809257 a001 433494437/521*710647^(1/4) 2415790599809428 a001 267914296/521*710647^(2/7) 2415790599809769 a001 102334155/521*710647^(5/14) 2415790599809863 a001 514229/521*7881196^(7/11) 2415790599809885 a001 514229/521*20633239^(3/5) 2415790599809888 a001 514229/521*141422324^(7/13) 2415790599809888 a001 514229/521*2537720636^(7/15) 2415790599809888 a001 514229/521*17393796001^(3/7) 2415790599809888 a001 514229/521*45537549124^(7/17) 2415790599809888 a001 514229/521*14662949395604^(1/3) 2415790599809888 a001 514229/521*(1/2+1/2*5^(1/2))^21 2415790599809888 a001 514229/521*192900153618^(7/18) 2415790599809888 a001 514229/521*10749957122^(7/16) 2415790599809888 a001 514229/521*599074578^(1/2) 2415790599809889 a001 514229/521*33385282^(7/12) 2415790599810111 a001 39088169/521*710647^(3/7) 2415790599810377 a001 514229/521*1860498^(7/10) 2415790599810451 a001 14930352/521*710647^(1/2) 2415790599810583 a001 4807526976/521*271443^(1/13) 2415790599810780 a001 5702887/521*710647^(4/7) 2415790599810780 a001 832040/521*710647^(5/7) 2415790599811034 a001 2178309/521*710647^(9/14) 2415790599813105 a001 1836311903/521*271443^(2/13) 2415790599813476 a001 514229/521*710647^(3/4) 2415790599815627 a001 701408733/521*271443^(3/13) 2415790599817424 a001 7778742049/521*103682^(1/24) 2415790599818149 a001 267914296/521*271443^(4/13) 2415790599820584 a001 196418/521*(1/2+1/2*5^(1/2))^23 2415790599820584 a001 196418/521*4106118243^(1/2) 2415790599820671 a001 102334155/521*271443^(5/13) 2415790599823193 a001 39088169/521*271443^(6/13) 2415790599824455 a001 24157817/521*271443^(1/2) 2415790599825713 a001 14930352/521*271443^(7/13) 2415790599826788 a001 4807526976/521*103682^(1/12) 2415790599828223 a001 5702887/521*271443^(8/13) 2415790599830658 a001 2178309/521*271443^(9/13) 2415790599831020 a001 317811/521*271443^(11/13) 2415790599832584 a001 832040/521*271443^(10/13) 2415790599836152 a001 2971215073/521*103682^(1/8) 2415790599845515 a001 1836311903/521*103682^(1/6) 2415790599854879 a001 1134903170/521*103682^(5/24) 2415790599861111 a001 233/167761*14662949395604^(7/9) 2415790599861111 a001 233/167761*(1/2+1/2*5^(1/2))^49 2415790599861111 a001 233/167761*505019158607^(7/8) 2415790599864242 a001 701408733/521*103682^(1/4) 2415790599873606 a001 433494437/521*103682^(7/24) 2415790599878074 a001 7778742049/521*39603^(1/22) 2415790599882969 a001 267914296/521*103682^(1/3) 2415790599892333 a001 165580141/521*103682^(3/8) 2415790599893894 a001 75025/521*20633239^(5/7) 2415790599893898 a001 75025/521*2537720636^(5/9) 2415790599893898 a001 75025/521*312119004989^(5/11) 2415790599893898 a001 75025/521*(1/2+1/2*5^(1/2))^25 2415790599893898 a001 75025/521*3461452808002^(5/12) 2415790599893898 a001 75025/521*28143753123^(1/2) 2415790599893898 a001 75025/521*228826127^(5/8) 2415790599894480 a001 75025/521*1860498^(5/6) 2415790599901697 a001 102334155/521*103682^(5/12) 2415790599911060 a001 63245986/521*103682^(11/24) 2415790599920423 a001 39088169/521*103682^(1/2) 2415790599929788 a001 24157817/521*103682^(13/24) 2415790599939149 a001 14930352/521*103682^(7/12) 2415790599948087 a001 4807526976/521*39603^(1/11) 2415790599948520 a001 9227465/521*103682^(5/8) 2415790599957863 a001 5702887/521*103682^(2/3) 2415790599967280 a001 3524578/521*103682^(17/24) 2415790599976503 a001 2178309/521*103682^(3/4) 2415790599986235 a001 1346269/521*103682^(19/24) 2415790599994634 a001 832040/521*103682^(5/6) 2415790599999997 a001 7465265+7465176*5^(1/2) 2415790600006523 a001 514229/521*103682^(7/8) 2415790600009276 a001 317811/521*103682^(11/12) 2415790600018101 a001 2971215073/521*39603^(3/22) 2415790600035946 a001 196418/521*103682^(23/24) 2415790600088114 a001 1836311903/521*39603^(2/11) 2415790600158127 a001 1134903170/521*39603^(5/22) 2415790600228141 a001 701408733/521*39603^(3/11) 2415790600298154 a001 433494437/521*39603^(7/22) 2415790600335927 a001 7778742049/521*15127^(1/20) 2415790600363613 a001 233/64079*(1/2+1/2*5^(1/2))^47 2415790600368167 a001 267914296/521*39603^(4/11) 2415790600396368 a001 28657/521*7881196^(9/11) 2415790600396400 a001 28657/521*141422324^(9/13) 2415790600396400 a001 28657/521*2537720636^(3/5) 2415790600396400 a001 28657/521*45537549124^(9/17) 2415790600396400 a001 28657/521*817138163596^(9/19) 2415790600396400 a001 28657/521*14662949395604^(3/7) 2415790600396400 a001 28657/521*(1/2+1/2*5^(1/2))^27 2415790600396400 a001 28657/521*192900153618^(1/2) 2415790600396400 a001 28657/521*10749957122^(9/16) 2415790600396400 a001 28657/521*599074578^(9/14) 2415790600396402 a001 28657/521*33385282^(3/4) 2415790600397028 a001 28657/521*1860498^(9/10) 2415790600438180 a001 165580141/521*39603^(9/22) 2415790600508194 a001 102334155/521*39603^(5/11) 2415790600578207 a001 63245986/521*39603^(1/2) 2415790600648220 a001 39088169/521*39603^(6/11) 2415790600718234 a001 24157817/521*39603^(13/22) 2415790600788245 a001 14930352/521*39603^(7/11) 2415790600858266 a001 9227465/521*39603^(15/22) 2415790600863793 a001 4807526976/521*15127^(1/10) 2415790600928259 a001 5702887/521*39603^(8/11) 2415790600998326 a001 3524578/521*39603^(17/22) 2415790601068198 a001 2178309/521*39603^(9/11) 2415790601138580 a001 1346269/521*39603^(19/22) 2415790601207629 a001 832040/521*39603^(10/11) 2415790601280167 a001 514229/521*39603^(21/22) 2415790601315566 a001 427860673399/17711 2415790601391659 a001 2971215073/521*15127^(3/20) 2415790601919525 a001 1836311903/521*15127^(1/5) 2415790602447391 a001 1134903170/521*15127^(1/4) 2415790602975257 a001 701408733/521*15127^(3/10) 2415790603503123 a001 433494437/521*15127^(7/20) 2415790603807811 a001 233/24476*45537549124^(15/17) 2415790603807811 a001 233/24476*312119004989^(9/11) 2415790603807811 a001 233/24476*14662949395604^(5/7) 2415790603807811 a001 233/24476*(1/2+1/2*5^(1/2))^45 2415790603807811 a001 233/24476*192900153618^(5/6) 2415790603807811 a001 233/24476*28143753123^(9/10) 2415790603807811 a001 233/24476*10749957122^(15/16) 2415790603828113 a001 7778742049/521*5778^(1/18) 2415790603840598 a001 10946/521*(1/2+1/2*5^(1/2))^29 2415790603840598 a001 10946/521*1322157322203^(1/2) 2415790604030989 a001 267914296/521*15127^(2/5) 2415790604558855 a001 165580141/521*15127^(9/20) 2415790605086721 a001 102334155/521*15127^(1/2) 2415790605614587 a001 63245986/521*15127^(11/20) 2415790605748024 m001 FeigenbaumB^2/Champernowne^2/ln(cosh(1))^2 2415790606142452 a001 39088169/521*15127^(3/5) 2415790606670320 a001 24157817/521*15127^(13/20) 2415790607198183 a001 14930352/521*15127^(7/10) 2415790607726056 a001 9227465/521*15127^(3/4) 2415790607848166 a001 4807526976/521*5778^(1/9) 2415790608253902 a001 5702887/521*15127^(4/5) 2415790608781822 a001 3524578/521*15127^(17/20) 2415790609309547 a001 2178309/521*15127^(9/10) 2415790609837781 a001 1346269/521*15127^(19/20) 2415790610332594 a001 54476078263/2255 2415790611868218 a001 2971215073/521*5778^(1/6) 2415790615888271 a001 1836311903/521*5778^(2/9) 2415790618007771 l006 ln(725/8119) 2415790619908324 a001 1134903170/521*5778^(5/18) 2415790622173620 m005 (1/2*5^(1/2)+5/8)/(13/8+5/2*5^(1/2)) 2415790622232754 a007 Real Root Of -324*x^4-743*x^3+115*x^2+342*x+715 2415790623928376 a001 701408733/521*5778^(1/3) 2415790626913271 r005 Im(z^2+c),c=-41/98+26/61*I,n=9 2415790627414696 a001 233/9349*(1/2+1/2*5^(1/2))^43 2415790627447483 a001 4181/521*(1/2+1/2*5^(1/2))^31 2415790627447483 a001 4181/521*9062201101803^(1/2) 2415790627879073 m005 (1/2*gamma+1/3)/(2/11*Catalan+1/11) 2415790627948429 a001 433494437/521*5778^(7/18) 2415790629098607 m001 1/GAMMA(1/3)*ln(FeigenbaumDelta)/cosh(1)^2 2415790630806139 a001 7778742049/521*2207^(1/16) 2415790631071997 m001 (Rabbit-Trott)/(Backhouse-KhinchinHarmonic) 2415790631968481 a001 267914296/521*5778^(4/9) 2415790635988534 a001 165580141/521*5778^(1/2) 2415790638385872 a007 Real Root Of 449*x^4+104*x^3+572*x^2-706*x-204 2415790639327597 a007 Real Root Of 320*x^4+726*x^3+145*x^2+254*x-896 2415790640008586 a001 102334155/521*5778^(5/9) 2415790640163490 p001 sum(1/(427*n+382)/n/(512^n),n=1..infinity) 2415790643996510 r009 Re(z^3+c),c=-7/48+50/53*I,n=26 2415790644028639 a001 63245986/521*5778^(11/18) 2415790644183255 m001 FeigenbaumAlpha^Zeta(1/2)/Trott 2415790645591419 r005 Re(z^2+c),c=-2/11+26/51*I,n=55 2415790648048691 a001 39088169/521*5778^(2/3) 2415790652068745 a001 24157817/521*5778^(13/18) 2415790652170052 r005 Im(z^2+c),c=-55/64+4/17*I,n=41 2415790656088795 a001 14930352/521*5778^(7/9) 2415790656583701 m008 (2/5*Pi^4-2/5)/(1/6*Pi^6-3/5) 2415790660108855 a001 9227465/521*5778^(5/6) 2415790661804218 a001 4807526976/521*2207^(1/8) 2415790664128887 a001 5702887/521*5778^(8/9) 2415790664470753 m005 (2*exp(1)-1/6)/(2/3*gamma-1/6) 2415790668148994 a001 3524578/521*5778^(17/18) 2415790672136222 a001 7803003871/323 2415790673785480 b008 1/(125*E^(7/2)) 2415790674771672 g007 Psi(2,4/11)+Psi(2,4/9)+Psi(2,2/9)-Psi(2,7/11) 2415790692802298 a001 2971215073/521*2207^(3/16) 2415790698220848 a007 Real Root Of -52*x^4+570*x^3-542*x^2-938*x-836 2415790703210645 s002 sum(A204845[n]/(n*exp(n)-1),n=1..infinity) 2415790708824997 m001 (Stephens+ZetaQ(4))/(Cahen+MadelungNaCl) 2415790710014133 l006 ln(7535/9594) 2415790719178010 m001 (sin(1)+ln(3))/(CareFree+Paris) 2415790723800378 a001 1836311903/521*2207^(1/4) 2415790730566784 a007 Real Root Of -178*x^4-513*x^3-244*x^2+726*x+183 2415790734515249 r002 3th iterates of z^2 + 2415790735774272 r009 Re(z^3+c),c=-17/44+22/45*I,n=62 2415790739570128 m008 (2*Pi^2-1/4)/(5/6*Pi^4-1/2) 2415790741310760 r005 Re(z^2+c),c=-3/31+30/53*I,n=17 2415790745782885 m001 ln(Sierpinski)^2*LaplaceLimit^2/GAMMA(13/24) 2415790747162853 a007 Real Root Of 303*x^4+754*x^3+463*x^2+817*x-418 2415790747474295 m002 -5/Pi^5-Cosh[Pi]+Pi^2/ProductLog[Pi] 2415790750467953 m001 ln(Cahen)/ErdosBorwein^2*sqrt(2) 2415790754798458 a001 1134903170/521*2207^(5/16) 2415790759417495 l006 ln(871/9754) 2415790765077670 a001 1201881744/341*322^(1/3) 2415790775260357 m005 (1/2*exp(1)+7/11)/(5*3^(1/2)-2/5) 2415790775950749 m001 1/3*(exp(Pi)*3^(1/3)+Porter)*3^(2/3) 2415790785796538 a001 701408733/521*2207^(3/8) 2415790789218706 a001 233/3571*(1/2+1/2*5^(1/2))^41 2415790789251478 a001 1597/521*141422324^(11/13) 2415790789251478 a001 1597/521*2537720636^(11/15) 2415790789251478 a001 1597/521*45537549124^(11/17) 2415790789251478 a001 1597/521*312119004989^(3/5) 2415790789251478 a001 1597/521*817138163596^(11/19) 2415790789251478 a001 1597/521*14662949395604^(11/21) 2415790789251478 a001 1597/521*(1/2+1/2*5^(1/2))^33 2415790789251478 a001 1597/521*192900153618^(11/18) 2415790789251478 a001 1597/521*10749957122^(11/16) 2415790789251478 a001 1597/521*1568397607^(3/4) 2415790789251478 a001 1597/521*599074578^(11/14) 2415790789251480 a001 1597/521*33385282^(11/12) 2415790791001267 a001 4/28657*34^(7/45) 2415790795377019 a007 Real Root Of 845*x^4+709*x^3+921*x^2-461*x-158 2415790816794619 a001 433494437/521*2207^(7/16) 2415790829177841 a001 9349/1597*2178309^(13/51) 2415790842623916 a001 7778742049/521*843^(1/14) 2415790844601615 m001 (Khinchin-Salem)/(cos(1/12*Pi)-BesselI(1,2)) 2415790845722691 a008 Real Root of x^4-2*x^3+12*x^2+70*x-245 2415790846929260 r005 Re(z^2+c),c=-10/17+11/23*I,n=33 2415790847792701 a001 267914296/521*2207^(1/2) 2415790848035059 m005 (1/2*exp(1)-2/7)/(5/6*3^(1/2)+3) 2415790849580178 r005 Re(z^2+c),c=13/106+30/61*I,n=3 2415790864493786 r005 Im(z^2+c),c=8/27+1/19*I,n=63 2415790866686087 m001 (Ei(1,1)-Psi(2,1/3))/(Landau+MadelungNaCl) 2415790870093012 m004 (4*Sqrt[5])/Pi+(750*Tanh[Sqrt[5]*Pi])/Pi 2415790878625412 r005 Re(z^2+c),c=19/102+1/35*I,n=18 2415790878790782 a001 165580141/521*2207^(9/16) 2415790889150252 r002 57th iterates of z^2 + 2415790891146029 m002 -3+6/Log[Pi]-Pi^5*Sech[Pi] 2415790896574149 m001 (-Backhouse+TravellingSalesman)/(1-ln(2)) 2415790902315351 a001 987/76*47^(41/54) 2415790909788864 a001 102334155/521*2207^(5/8) 2415790912300887 a001 4807526976/2207*322^(5/12) 2415790919905012 l006 ln(4966/6323) 2415790921319048 h001 (5/12*exp(2)+7/8)/(4/7*exp(1)+1/12) 2415790930512595 a001 29/196418*2178309^(50/51) 2415790937202292 m008 (4*Pi^3+1)/(1/6*Pi^5+3/4) 2415790940786947 a001 63245986/521*2207^(11/16) 2415790950935849 a007 Real Root Of 439*x^4+933*x^3+121*x^2+823*x-516 2415790951919365 a007 Real Root Of -36*x^4-831*x^3+952*x^2+407*x-356 2415790960534673 a007 Real Root Of 397*x^4+251*x^3+925*x^2-154*x-89 2415790965263620 m001 (3^(1/3)-GAMMA(13/24))/(Cahen-MinimumGamma) 2415790971785030 a001 39088169/521*2207^(3/4) 2415790980975806 s001 sum(exp(-Pi/3)^(n-1)*A121875[n],n=1..infinity) 2415790981732919 a001 29/5*46368^(32/57) 2415790987054574 a003 cos(Pi*5/53)/cos(Pi*58/119) 2415790987655019 r008 a(0)=0,K{-n^6,(2*n+1)*(81+15*n^2+42*n)} 2415790994939104 a001 1364/21*24157817^(13/21) 2415790995261761 m005 (1/2*Pi-2/11)/(7/12*2^(1/2)-1/4) 2415791002783114 a001 24157817/521*2207^(13/16) 2415791006832485 m001 (Lehmer-Thue)/(ln(2)+HardyLittlewoodC5) 2415791010241772 a001 29/2584*34^(47/54) 2415791014588738 a001 24476/4181*2178309^(13/51) 2415791018047987 a007 Real Root Of -204*x^4-482*x^3-426*x^2-983*x+264 2415791020669351 m001 (cos(1)+FeigenbaumC)/(-FeigenbaumD+Sierpinski) 2415791029081522 s002 sum(A265921[n]/(n!^2),n=1..infinity) 2415791033781195 a001 14930352/521*2207^(7/8) 2415791058358318 a001 13201/2255*2178309^(13/51) 2415791060187020 r005 Im(z^2+c),c=-95/66+10/51*I,n=3 2415791064779287 a001 9227465/521*2207^(15/16) 2415791066061684 a007 Real Root Of -418*x^4-855*x^3+681*x^2+726*x-38 2415791075552392 a003 -1+cos(8/21*Pi)+cos(13/30*Pi)-2*cos(1/30*Pi) 2415791079598712 p004 log(17929/1601) 2415791081597629 a001 2207/8*514229^(45/52) 2415791084533644 b008 Cosh[5*(-1+Sqrt[5])] 2415791085439795 a001 4807526976/521*843^(1/7) 2415791099993555 a007 Real Root Of 494*x^4-959*x^3+654*x^2-905*x-272 2415791107894813 r005 Im(z^2+c),c=-3/56+2/7*I,n=4 2415791109031941 m001 LambertW(1)/GAMMA(17/24)/ln(sin(Pi/12))^2 2415791119650585 m001 (Bloch-Gompertz)/(PolyaRandomWalk3D+ZetaP(3)) 2415791129178987 a001 15127/2584*2178309^(13/51) 2415791131267321 r005 Re(z^2+c),c=-11/36+6/35*I,n=2 2415791134698947 l006 ln(7363/9375) 2415791137676768 a007 Real Root Of -271*x^4-508*x^3+226*x^2-623*x-756 2415791162872263 a007 Real Root Of -175*x^4-297*x^3+439*x^2+464*x+332 2415791177039794 r005 Im(z^2+c),c=-23/52+24/43*I,n=10 2415791186932837 m001 (MertensB3-Mills)/(ArtinRank2-Grothendieck) 2415791191870254 m001 (Cahen-DuboisRaymond)/(Kac-TreeGrowth2nd) 2415791192478301 a007 Real Root Of -393*x^4-861*x^3+40*x^2-707*x-695 2415791196703302 a007 Real Root Of -421*x^4-894*x^3+320*x^2-347*x-971 2415791214703004 p004 log(27739/2477) 2415791224747192 m008 (3/4*Pi^5+5)/(Pi^4-1/3) 2415791235861283 m001 (3^(1/2)*GAMMA(3/4)+Chi(1))/GAMMA(3/4) 2415791241873361 r009 Im(z^3+c),c=-3/118+13/51*I,n=3 2415791242035961 r005 Im(z^2+c),c=-15/32+23/56*I,n=30 2415791269821716 a001 1/843*(1/2*5^(1/2)+1/2)^2*76^(9/19) 2415791285930737 r002 8th iterates of z^2 + 2415791300203530 r005 Re(z^2+c),c=-9/31+8/55*I,n=18 2415791302906059 a001 64079*5^(47/57) 2415791314661807 m005 (-17/44+1/4*5^(1/2))/(5/9*2^(1/2)-6/7) 2415791322852045 b008 1/4+Pi*Cosh[E] 2415791325289730 m001 GAMMA(11/12)+GAMMA(17/24)^FibonacciFactorial 2415791327747505 m001 (GAMMA(11/12)-cos(1))/(-Kac+ThueMorse) 2415791327987550 r005 Re(z^2+c),c=-17/94+31/59*I,n=24 2415791328255698 a001 2971215073/521*843^(3/14) 2415791328371278 r009 Im(z^3+c),c=-4/27+34/41*I,n=22 2415791335310183 r009 Im(z^3+c),c=-10/19+7/47*I,n=32 2415791335909288 a001 12586269025/5778*322^(5/12) 2415791342659013 m001 GAMMA(11/12)+ArtinRank2+LaplaceLimit 2415791345121555 r009 Im(z^3+c),c=-13/29+2/19*I,n=15 2415791353106628 r005 Im(z^2+c),c=-73/114+11/56*I,n=5 2415791354587524 r005 Im(z^2+c),c=-39/122+11/29*I,n=8 2415791363436839 m001 (Grothendieck+Sierpinski)/(1-FransenRobinson) 2415791376098755 r005 Im(z^2+c),c=-101/94+13/53*I,n=61 2415791379934806 q001 667/2761 2415791385714731 r009 Im(z^3+c),c=-6/25+24/25*I,n=62 2415791389742354 r005 Re(z^2+c),c=17/82+31/59*I,n=30 2415791395146143 s002 sum(A044436[n]/(n*pi^n-1),n=1..infinity) 2415791397712933 a001 32951280099/15127*322^(5/12) 2415791399070440 r005 Re(z^2+c),c=-23/102+15/37*I,n=22 2415791401997524 r005 Re(z^2+c),c=-9/56+6/11*I,n=26 2415791405141592 m001 gamma(3)/KomornikLoreti*Riemann2ndZero 2415791406729964 a001 86267571272/39603*322^(5/12) 2415791408045531 a001 225851433717/103682*322^(5/12) 2415791408237469 a001 591286729879/271443*322^(5/12) 2415791408265473 a001 1548008755920/710647*322^(5/12) 2415791408269558 a001 4052739537881/1860498*322^(5/12) 2415791408270155 a001 2178309*322^(5/12) 2415791408270523 a001 6557470319842/3010349*322^(5/12) 2415791408272083 a001 2504730781961/1149851*322^(5/12) 2415791408282780 a001 956722026041/439204*322^(5/12) 2415791408356094 a001 365435296162/167761*322^(5/12) 2415791408858596 a001 139583862445/64079*322^(5/12) 2415791412302795 a001 53316291173/24476*322^(5/12) 2415791414434310 m001 Zeta(5)+Mills^Zeta(3) 2415791423977965 h001 (1/8*exp(1)+2/11)/(1/2*exp(1)+4/5) 2415791424382453 a001 370248451*1836311903^(7/17) 2415791424382467 a001 12752043*6557470319842^(7/17) 2415791424383205 a001 10749957122*514229^(7/17) 2415791428161147 r005 Im(z^2+c),c=-5/8+52/147*I,n=23 2415791429316871 m001 (cos(1)+2/3*Pi*3^(1/2)/GAMMA(2/3))/MertensB3 2415791435909688 a001 20365011074/9349*322^(5/12) 2415791447552297 r004 Im(z^2+c),c=-53/46+6/23*I,z(0)=-1,n=6 2415791450484339 r005 Re(z^2+c),c=-21/110+24/49*I,n=41 2415791456218121 m005 (1/2*Catalan+10/11)/(75/176+1/16*5^(1/2)) 2415791456238311 p004 log(33791/26539) 2415791461623017 l006 ln(146/1635) 2415791462858211 r005 Im(z^2+c),c=-25/34+16/79*I,n=53 2415791466811550 m001 1/exp(Zeta(3))^2*Catalan*cos(1)^2 2415791468487591 r009 Re(z^3+c),c=-31/114+9/41*I,n=9 2415791475642863 a001 89/47*2^(13/37) 2415791484616362 r005 Im(z^2+c),c=-49/34+21/109*I,n=3 2415791488883851 r005 Re(z^2+c),c=-23/122+27/46*I,n=32 2415791490295071 r009 Im(z^3+c),c=-59/110+30/49*I,n=39 2415791507622632 m001 1/GAMMA(23/24)/Cahen*ln(log(1+sqrt(2)))^2 2415791523360153 a007 Real Root Of -765*x^4+632*x^3+873*x^2+802*x-251 2415791527099157 r009 Re(z^3+c),c=-25/64+10/17*I,n=46 2415791535155344 a007 Real Root Of -582*x^4-831*x^3+284*x^2+965*x-236 2415791539598095 r009 Re(z^3+c),c=-43/122+12/29*I,n=17 2415791543585714 a001 377/123*18^(5/7) 2415791550731619 a007 Real Root Of 148*x^4-26*x^3-950*x^2-423*x-885 2415791553511382 r005 Im(z^2+c),c=-16/31+13/46*I,n=5 2415791564573516 b008 9*(1/26+Sqrt[7]) 2415791564897687 r005 Im(z^2+c),c=-49/94+19/34*I,n=22 2415791571071626 a001 1836311903/521*843^(2/7) 2415791571126568 m001 HardyLittlewoodC4-exp(Pi)-PisotVijayaraghavan 2415791579699632 l006 ln(2397/3052) 2415791583750067 m005 (-7/12+1/4*5^(1/2))/(2/11*5^(1/2)+3/5) 2415791585963204 m005 (1/3*Catalan-3)/(1/5*gamma+1) 2415791594647605 m001 1/exp(Sierpinski)*Magata^2/BesselK(1,1)^2 2415791595219062 r002 4th iterates of z^2 + 2415791597581794 r002 13th iterates of z^2 + 2415791597713752 a001 7778742049/3571*322^(5/12) 2415791598763757 h001 (6/11*exp(2)+5/11)/(1/6*exp(2)+5/8) 2415791602913660 r005 Im(z^2+c),c=-12/25+13/21*I,n=14 2415791604536195 m002 Pi^4+Cosh[Pi]/ProductLog[Pi]+Sinh[Pi]^2 2415791614591176 a001 1926/329*2178309^(13/51) 2415791632259711 h005 exp(cos(Pi*7/46)*sin(Pi*19/41)) 2415791637539402 p001 sum((-1)^n/(547*n+388)/(6^n),n=0..infinity) 2415791637864340 m001 (FransenRobinson+Rabbit)/Backhouse 2415791641579285 r005 Im(z^2+c),c=-7/25+10/27*I,n=22 2415791665512443 m001 GolombDickman^2*ArtinRank2/ln(GAMMA(7/24)) 2415791670306151 a007 Real Root Of 366*x^4+881*x^3+210*x^2+304*x-536 2415791673967549 r005 Im(z^2+c),c=-59/90+8/25*I,n=60 2415791676092488 a007 Real Root Of -440*x^4-806*x^3+774*x^2+701*x+799 2415791686685468 r005 Im(z^2+c),c=-33/52+2/43*I,n=44 2415791694788416 a007 Real Root Of 411*x^4+612*x^3-601*x^2+759*x-29 2415791710668277 m005 (1/2*Pi+5/11)/(19/44+2/11*5^(1/2)) 2415791713191688 a007 Real Root Of 316*x^4+791*x^3-5*x^2-66*x+259 2415791720145858 m001 (Zeta(5)-Artin)/(LaplaceLimit-Magata) 2415791724543920 m001 1/OneNinth*LandauRamanujan^2/exp(cos(Pi/5)) 2415791729148230 r005 Re(z^2+c),c=-4/5+4/63*I,n=34 2415791729604894 a007 Real Root Of -124*x^4-37*x^3+390*x^2-574*x+39 2415791737706075 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)-MertensB1-ZetaQ(4) 2415791741384235 r005 Im(z^2+c),c=-9/98+22/51*I,n=3 2415791744116094 a007 Real Root Of -84*x^4+119*x^3+144*x^2+304*x+67 2415791745545633 m001 GAMMA(11/12)*TwinPrimes*ln(cos(Pi/12)) 2415791746371171 a003 cos(Pi*18/107)-sin(Pi*25/117) 2415791768567737 a007 Real Root Of -308*x^4-457*x^3+880*x^2+855*x+977 2415791780832535 b008 15*ArcCsc[4+Sqrt[5]] 2415791794777940 r005 Im(z^2+c),c=21/110+1/6*I,n=8 2415791802747778 g007 -14*Zeta(3)-Psi(2,7/9)-Psi(2,5/6)-Psi(2,2/5) 2415791811834841 r005 Im(z^2+c),c=-31/90+25/64*I,n=30 2415791813887578 a001 1134903170/521*843^(5/14) 2415791818041143 a007 Real Root Of -566*x^4-976*x^3+713*x^2-573*x-28 2415791818336481 m001 LandauRamanujan2nd-Riemann3rdZero^Niven 2415791820630248 m001 (Mills+Riemann3rdZero)/(arctan(1/2)+Kac) 2415791821464010 s002 sum(A089860[n]/(pi^n+1),n=1..infinity) 2415791823316622 a001 15127/3*1346269^(42/55) 2415791826141312 a007 Real Root Of 292*x^4+405*x^3-769*x^2+309*x+999 2415791826611350 a007 Real Root Of 390*x^4+418*x^3-825*x^2+811*x-616 2415791835217081 r004 Im(z^2+c),c=-11/34-8/21*I,z(0)=-1,n=21 2415791841025658 r005 Re(z^2+c),c=17/110+19/55*I,n=4 2415791846361680 m001 MertensB3*(Niven+OneNinth) 2415791860644575 m005 (1/2*5^(1/2)-3/7)/(1/4*Pi-1/2) 2415791863055478 a007 Real Root Of -423*x^4-529*x^3+793*x^2-796*x+398 2415791867820353 a001 322/377*8^(1/2) 2415791883488972 r009 Re(z^3+c),c=-6/17+17/41*I,n=18 2415791886929993 m001 (5^(1/2)-Lehmer)/(-OrthogonalArrays+Sarnak) 2415791891488341 p001 sum(1/(426*n+383)/n/(512^n),n=1..infinity) 2415791892163278 a001 233802911/281*322^(7/12) 2415791896565762 a007 Real Root Of -329*x^4+105*x^3-321*x^2+396*x+117 2415791898240469 a001 233/1364*2537720636^(13/15) 2415791898240469 a001 233/1364*45537549124^(13/17) 2415791898240469 a001 233/1364*14662949395604^(13/21) 2415791898240469 a001 233/1364*(1/2+1/2*5^(1/2))^39 2415791898240469 a001 233/1364*192900153618^(13/18) 2415791898240469 a001 233/1364*73681302247^(3/4) 2415791898240469 a001 233/1364*10749957122^(13/16) 2415791898240469 a001 233/1364*599074578^(13/14) 2415791898272558 a001 610/521*2537720636^(7/9) 2415791898272558 a001 610/521*17393796001^(5/7) 2415791898272558 a001 610/521*312119004989^(7/11) 2415791898272558 a001 610/521*14662949395604^(5/9) 2415791898272558 a001 610/521*(1/2+1/2*5^(1/2))^35 2415791898272558 a001 610/521*505019158607^(5/8) 2415791898272558 a001 610/521*28143753123^(7/10) 2415791898272558 a001 610/521*599074578^(5/6) 2415791898272558 a001 610/521*228826127^(7/8) 2415791899570119 a007 Real Root Of 528*x^4-382*x^3+418*x^2-900*x-249 2415791904001819 m001 1/Zeta(1,2)^2*ln(CopelandErdos)^2*Zeta(7)^2 2415791915462502 m001 1/Riemann3rdZero*Kolakoski/ln(Zeta(5))^2 2415791916980767 a007 Real Root Of -177*x^4-381*x^3-567*x^2+497*x-81 2415791922094938 r005 Re(z^2+c),c=-7/60+32/55*I,n=32 2415791925323285 p004 log(14771/1319) 2415791928095166 m005 (-9/28+1/4*5^(1/2))/(2/7*exp(1)-7/8) 2415791935230536 m001 (ln(3)-Artin)/(PrimesInBinary+Sierpinski) 2415791940840474 m001 Khinchin-sin(1/12*Pi)-Trott 2415791949947413 m005 (19/44+1/4*5^(1/2))/(3/4*3^(1/2)-8/9) 2415791951067231 a007 Real Root Of -462*x^4-771*x^3+879*x^2+487*x+912 2415791952864608 m001 (Mills+RenyiParking)^GAMMA(3/4) 2415791954860447 p001 sum((-1)^n/(326*n+77)/n/(10^n),n=1..infinity) 2415791968288821 a007 Real Root Of -347*x^4-647*x^3+784*x^2+663*x-277 2415791979807275 m001 (Zeta(1,2)*Lehmer+ThueMorse)/Lehmer 2415791982654992 s003 concatenated sequence A240268 2415791985663818 m006 (3/4*exp(2*Pi)+4/5)/(4/5*ln(Pi)+3/4) 2415791986380450 a001 101521/3*987^(13/21) 2415791989238051 m001 Gompertz/(ln(5)+Thue) 2415791995140904 m005 (1/3*5^(1/2)+1/4)/(1/10*Zeta(3)+4) 2415791999186858 a001 7/3*2971215073^(9/17) 2415792007454061 m001 (LandauRamanujan2nd-ZetaP(3))/(Pi-Backhouse) 2415792009453086 m001 (Zeta(1,-1)-gamma)/(BesselI(0,2)+Kolakoski) 2415792014131175 r002 10th iterates of z^2 + 2415792014131175 r002 10th iterates of z^2 + 2415792020758937 r009 Re(z^3+c),c=-11/40+13/57*I,n=9 2415792036983187 r005 Im(z^2+c),c=-49/122+20/49*I,n=29 2415792046509704 l006 ln(7019/8937) 2415792054640257 r005 Re(z^2+c),c=-19/30+100/117*I,n=3 2415792055781287 m005 (1/2*2^(1/2)-8/9)/(1/11*gamma+7/10) 2415792056703555 a001 701408733/521*843^(3/7) 2415792059132659 a007 Real Root Of -174*x^4+917*x^3+439*x^2+737*x-216 2415792063076686 r005 Im(z^2+c),c=-29/70+25/48*I,n=28 2415792067858906 a001 47/1346269*832040^(24/37) 2415792083814487 h001 (-8*exp(1/3)+5)/(-9*exp(-3)+3) 2415792085831944 m001 GAMMA(11/12)*(KhinchinHarmonic+Landau) 2415792094007504 r002 22th iterates of z^2 + 2415792095279655 a007 Real Root Of -300*x^4-970*x^3-595*x^2+179*x+447 2415792098321763 m001 (3^(1/2)+gamma)/(Artin+LandauRamanujan2nd) 2415792103577636 a007 Real Root Of -189*x^4-541*x^3-480*x^2-770*x-249 2415792104138642 m001 (ln(gamma)-ZetaP(2))/PrimesInBinary 2415792109190017 r005 Re(z^2+c),c=-7/40+11/21*I,n=43 2415792109613651 a007 Real Root Of -361*x^4-451*x^3+851*x^2-487*x-206 2415792124228969 m001 GlaisherKinkelin^2/Artin*ln(sqrt(3)) 2415792125768376 r009 Re(z^3+c),c=-43/78+3/8*I,n=31 2415792129270480 a005 (1/cos(15/133*Pi))^301 2415792143514698 a007 Real Root Of 558*x^4+852*x^3-905*x^2+867*x+383 2415792145734801 m005 (1/2*gamma+3/11)/(21/10+1/10*5^(1/2)) 2415792149636363 a007 Real Root Of 202*x^4+198*x^3-449*x^2+753*x+351 2415792154026319 m005 (1/3*Pi-1/12)/(5/7*2^(1/2)-5) 2415792155857504 l006 ln(881/9866) 2415792156731917 m001 BesselJ(1,1)/exp(FeigenbaumD)^2*sinh(1) 2415792161002721 r005 Im(z^2+c),c=-25/122+9/26*I,n=27 2415792161015900 a005 (1/sin(50/133*Pi))^159 2415792170269617 a007 Real Root Of 877*x^4-703*x^3+228*x^2-529*x-154 2415792172463259 a007 Real Root Of 329*x^4+279*x^3-756*x^2+873*x-751 2415792175154543 m001 1/GAMMA(3/4)^2*exp((2^(1/3)))^2*cos(1)^2 2415792182660051 m001 FeigenbaumC*exp(FibonacciFactorial)/Sierpinski 2415792183939683 m001 Sierpinski^FellerTornier+Shi(1) 2415792191202695 a007 Real Root Of -324*x^4-526*x^3+612*x^2+234*x+613 2415792191264565 r005 Re(z^2+c),c=-19/122+35/61*I,n=45 2415792198217316 m001 ln(5)^(Gompertz/arctan(1/3)) 2415792201588324 r005 Im(z^2+c),c=19/82+5/36*I,n=8 2415792204036735 r005 Im(z^2+c),c=-31/82+15/34*I,n=15 2415792208043357 m001 (Pi+ErdosBorwein)/(Kac+Totient) 2415792209519494 a001 24157817+47*5^(1/2) 2415792210673938 a007 Real Root Of 277*x^4+319*x^3-501*x^2+604*x-554 2415792211859854 m001 Porter/(FeigenbaumB^exp(1)) 2415792224895291 a007 Real Root Of -292*x^4-777*x^3-166*x^2+261*x+590 2415792243306003 m001 FeigenbaumC*MadelungNaCl/PisotVijayaraghavan 2415792244114395 a007 Real Root Of -619*x^4+401*x^3+453*x^2+87*x-51 2415792248989913 a001 1322157322203/233*1836311903^(14/17) 2415792248989913 a001 1568397607/233*6557470319842^(14/17) 2415792252141624 m001 (Pi-Zeta(1/2))/(BesselI(1,1)+Totient) 2415792263052958 a001 103361/8*75025^(6/23) 2415792263254593 a001 51841/72*4807526976^(6/23) 2415792267654858 r009 Im(z^3+c),c=-6/25+13/58*I,n=4 2415792283132349 m001 1/TreeGrowth2nd^2*ln(ArtinRank2)^3 2415792288600510 l006 ln(4622/5885) 2415792293759807 l006 ln(735/8231) 2415792296696654 r009 Re(z^3+c),c=-13/32+27/49*I,n=62 2415792299519556 a001 433494437/521*843^(1/2) 2415792311579123 a001 843/1597*28657^(19/51) 2415792320124266 a007 Real Root Of -552*x^4-785*x^3+925*x^2-635*x+801 2415792325731130 r009 Re(z^3+c),c=-41/110+28/61*I,n=51 2415792343388863 m001 (Conway+Khinchin)/(Salem+Weierstrass) 2415792346898774 m009 (5/6*Psi(1,3/4)+4)/(1/4*Pi^2-5) 2415792347804967 a007 Real Root Of -24*x^4+242*x^3+255*x^2-818*x+765 2415792365958594 r005 Re(z^2+c),c=-7/27+19/63*I,n=13 2415792366705001 r005 Im(z^2+c),c=-43/90+13/30*I,n=48 2415792379900607 q001 7/28976 2415792379900607 q001 875/3622 2415792388328355 m001 (-CopelandErdos+Weierstrass)/(1+gamma(2)) 2415792390448629 r005 Im(z^2+c),c=-3/5+5/101*I,n=26 2415792395390883 m005 (1/2*3^(1/2)-2/11)/(7/8*Pi+1/12) 2415792396618363 r009 Im(z^3+c),c=-55/114+1/14*I,n=37 2415792413159212 r005 Re(z^2+c),c=-11/50+16/43*I,n=5 2415792416094122 r005 Im(z^2+c),c=-99/118+1/49*I,n=3 2415792419825072 r009 Im(z^3+c),c=-11/50+33/35*I,n=2 2415792426264143 m001 ln(Trott)^2*TreeGrowth2nd^2/GAMMA(13/24) 2415792429454169 r002 22th iterates of z^2 + 2415792431623177 r005 Im(z^2+c),c=-9/8+25/104*I,n=49 2415792433951140 r005 Re(z^2+c),c=-4/27+17/28*I,n=63 2415792442180701 m005 (-3/8+1/8*5^(1/2))/(1/3*Pi-5) 2415792449102149 h001 (-8*exp(7)-8)/(-9*exp(6)-4) 2415792455009087 m001 1/ln(Catalan)*Paris*arctan(1/2)^2 2415792468809454 m005 (1/3*3^(1/2)-1/4)/(1/8*Catalan-1/4) 2415792477135411 k006 concat of cont frac of 2415792484734800 a001 521/987*832040^(37/47) 2415792487431915 m001 1/GAMMA(19/24)*ln(PisotVijayaraghavan)*Zeta(7) 2415792493221912 r005 Im(z^2+c),c=-13/46+13/35*I,n=34 2415792498857221 s002 sum(A127025[n]/(n^3*exp(n)-1),n=1..infinity) 2415792500027902 l006 ln(589/6596) 2415792507426673 a001 1/322*(1/2*5^(1/2)+1/2)^6*47^(8/21) 2415792508319420 m001 1/OneNinth/FeigenbaumKappa*exp((2^(1/3))) 2415792512743846 r005 Im(z^2+c),c=-7/8+44/235*I,n=32 2415792515681634 r002 46th iterates of z^2 + 2415792520522132 m004 -1/4+(2*Cos[Sqrt[5]*Pi])/3 2415792529236407 l006 ln(5521/5656) 2415792533064998 m001 (Bloch+FeigenbaumC)^Shi(1) 2415792536772749 l006 ln(6847/8718) 2415792537335498 r002 48th iterates of z^2 + 2415792537713494 r009 Re(z^3+c),c=-25/102+23/33*I,n=24 2415792539812047 m008 (2/3*Pi^2+1/2)/(3*Pi^4+5/6) 2415792541466144 a001 7778742049/521*322^(1/12) 2415792542335582 a001 267914296/521*843^(4/7) 2415792543517656 a003 cos(Pi*14/53)-sin(Pi*31/84) 2415792551411236 r005 Im(z^2+c),c=-71/102+7/59*I,n=41 2415792558840426 a007 Real Root Of 279*x^4+455*x^3-209*x^2+707*x-160 2415792559107412 m005 (1/2*3^(1/2)+3/7)/(3/10*Pi-8/9) 2415792563458499 m001 (exp(Pi)+sin(1))/(-Kolakoski+KomornikLoreti) 2415792572022002 a007 Real Root Of -511*x^4-129*x^3-711*x^2+851*x+247 2415792575226320 r005 Re(z^2+c),c=-19/66+7/43*I,n=15 2415792582262653 a001 2/233*75025^(11/37) 2415792584868842 a007 Real Root Of -433*x^4-884*x^3+630*x^2+835*x+625 2415792595484173 m005 (1/3*exp(1)-2/9)/(5/11*gamma-6/11) 2415792596623962 a007 Real Root Of 243*x^4+611*x^3+116*x^2+503*x+876 2415792597338915 m005 (1/4*5^(1/2)+3/4)/(2/5*exp(1)-6/11) 2415792605011747 m001 (2^(1/2)-MinimumGamma)/ReciprocalLucas 2415792608828285 p004 log(20269/15919) 2415792609849738 m001 KomornikLoreti*(Backhouse-FransenRobinson) 2415792616698270 a007 Real Root Of 321*x^4+569*x^3-503*x^2-379*x-891 2415792626048645 a005 (1/cos(23/206*Pi))^124 2415792628800758 m001 Si(Pi)*Conway+ZetaQ(4) 2415792637114951 r005 Im(z^2+c),c=-1/11+13/30*I,n=3 2415792657768985 a005 (1/cos(3/52*Pi))^1587 2415792662587518 a007 Real Root Of 247*x^4+245*x^3-945*x^2-326*x-231 2415792662813531 m001 3^(1/2)+Riemann3rdZero-Sierpinski 2415792686470227 m001 sin(Pi/5)+OneNinth+GAMMA(1/24) 2415792687218364 a005 (1/sin(87/221*Pi))^56 2415792688044584 g006 Psi(1,7/11)+Psi(1,1/5)-Psi(1,8/11)-Psi(1,5/7) 2415792689944933 m006 (2*exp(2*Pi)-1/5)/(5/6*exp(2*Pi)-3) 2415792691908468 m005 (1/2*gamma+2/9)/(11/12*2^(1/2)+9/11) 2415792706735886 a001 2971215073/1364*322^(5/12) 2415792714033552 b008 7/3+EulerGamma/7 2415792735823598 m001 Magata^2*ln(Khintchine)^2*Zeta(1/2)^2 2415792742420399 m001 Chi(1)+Pi^(1/2)-DuboisRaymond 2415792765151796 r002 3th iterates of z^2 + 2415792774765757 m005 (1/3*exp(1)+3/5)/(4/11*gamma-5/6) 2415792780208363 r005 Im(z^2+c),c=1/8+6/29*I,n=15 2415792780483851 r002 14th iterates of z^2 + 2415792780508510 m005 (1/2*2^(1/2)-6/11)/(1/7*Catalan-4/5) 2415792780611432 r005 Im(z^2+c),c=-123/118+16/59*I,n=13 2415792783857376 a001 1/7*(1/2*5^(1/2)+1/2)^23*4^(7/10) 2415792785151632 a001 165580141/521*843^(9/14) 2415792791068617 a001 63245986/199*199^(9/11) 2415792792285557 a007 Real Root Of -277*x^4-673*x^3+239*x^2+858*x+624 2415792798743947 p001 sum(1/(452*n+437)/n/(5^n),n=1..infinity) 2415792812731648 r005 Im(z^2+c),c=-97/78+9/61*I,n=3 2415792814575806 m001 1/Cahen/Backhouse^2*exp(MadelungNaCl)^2 2415792818435924 r005 Im(z^2+c),c=-1/8+7/22*I,n=12 2415792828641818 b008 ArcSec[-5]^2/13 2415792835660874 m005 (1/2*Pi-5)/(9/10*gamma+9/10) 2415792836020804 m001 (Zeta(3)+ln(2))/(exp(1/exp(1))-TwinPrimes) 2415792842255913 l006 ln(443/4961) 2415792852106614 a007 Real Root Of -443*x^4-985*x^3+151*x^2-387*x-615 2415792852232725 a007 Real Root Of 13*x^4-670*x^3-477*x^2-609*x+15 2415792853959222 a001 2971215073/2207*322^(1/2) 2415792859278567 s002 sum(A193547[n]/(n^2*pi^n-1),n=1..infinity) 2415792863322334 a008 Real Root of x^4+2*x^2-21*x+5 2415792872618717 m001 1/Zeta(5)^2*FibonacciFactorial^2*ln(sin(1)) 2415792877571486 m001 (Psi(2,1/3)+LambertW(1))/(-ArtinRank2+Otter) 2415792889843884 a007 Real Root Of -214*x^4-633*x^3-541*x^2-492*x+333 2415792890195576 m005 (1/3*exp(1)-2/7)/(9/10*5^(1/2)+5/9) 2415792911829246 r005 Im(z^2+c),c=-11/86+15/47*I,n=17 2415792912038135 a007 Real Root Of 202*x^4+133*x^3-697*x^2+378*x-24 2415792914626626 m001 Shi(1)^ln(3)/BesselJ(1,1) 2415792917055231 r009 Re(z^3+c),c=-33/82+20/33*I,n=2 2415792918008720 m001 FeigenbaumD*RenyiParking+HardyLittlewoodC5 2415792925399038 r005 Im(z^2+c),c=-65/106+4/55*I,n=18 2415792926303807 r009 Re(z^3+c),c=-5/126+32/57*I,n=24 2415792928978207 r005 Im(z^2+c),c=-1+57/206*I,n=45 2415792931572343 m001 1/exp(Lehmer)/HardHexagonsEntropy^2/sinh(1) 2415792944605794 r002 59th iterates of z^2 + 2415792950598605 m001 RenyiParking^2/exp(Rabbit)*Zeta(1,2)^2 2415792957300316 a007 Real Root Of 119*x^4+99*x^3-278*x^2+411*x-42 2415792965725314 a007 Real Root Of 834*x^4-361*x^3+637*x^2-840*x+168 2415792973024854 m005 (1/2*3^(1/2)+7/10)/(6/11*5^(1/2)-4/7) 2415792973875247 m009 (1/10*Pi^2-3/4)/(1/5*Psi(1,1/3)-3) 2415792979112161 m001 BesselJ(1,1)^2/FeigenbaumDelta/ln(GAMMA(1/6)) 2415792982863301 r005 Im(z^2+c),c=-9/17+8/13*I,n=49 2415792988984914 a001 29/610*2584^(6/29) 2415792993021186 a007 Real Root Of -126*x^4+93*x^3+701*x^2-545*x+195 2415792999898041 m007 (-3*gamma-5/6)/(-5*gamma-10*ln(2)-4/5) 2415793002673356 a001 29/1597*1597^(20/57) 2415793007165379 a007 Real Root Of 310*x^4+779*x^3-68*x^2-727*x-935 2415793022203017 m006 (1/3*exp(Pi)+3)/(5*Pi^2-5) 2415793027967706 a001 102334155/521*843^(5/7) 2415793031944585 m001 (arctan(1/3)*Zeta(1,2)-PlouffeB)/arctan(1/3) 2415793032972402 a007 Real Root Of -225*x^4-98*x^3+721*x^2-844*x+35 2415793049298154 a007 Real Root Of 451*x^4+720*x^3-763*x^2+233*x-194 2415793052301759 l006 ln(2225/2833) 2415793078411974 a003 cos(Pi*5/113)/sin(Pi*16/119) 2415793083139227 m001 (Thue+ZetaP(2))/(ln(Pi)-BesselK(1,1)) 2415793088154629 m005 (1/2*3^(1/2)+2/9)/(20/99+1/9*5^(1/2)) 2415793088663111 a007 Real Root Of -219*x^4-350*x^3+681*x^2+257*x-829 2415793104984862 r009 Im(z^3+c),c=-3/11+17/23*I,n=60 2415793107276529 r005 Im(z^2+c),c=-11/26+11/32*I,n=8 2415793114588607 a007 Real Root Of 426*x^4+969*x^3-508*x^2-582*x+711 2415793114650827 l006 ln(740/8287) 2415793116059317 m001 GAMMA(3/4)^arctan(1/2)+ln(2+3^(1/2)) 2415793116059317 m001 GAMMA(3/4)^arctan(1/2)+ln(2+sqrt(3)) 2415793117332160 r005 Im(z^2+c),c=-9/110+19/63*I,n=10 2415793118639723 m005 (1/2*gamma-5/11)/(1/4*2^(1/2)+1/3) 2415793126310060 r005 Im(z^2+c),c=-115/86+1/60*I,n=40 2415793126995680 a007 Real Root Of 953*x^4-853*x^3-520*x^2-223*x+93 2415793133159907 a007 Real Root Of 27*x^4+679*x^3+662*x^2+418*x+692 2415793134453181 m001 CareFree/exp(GaussKuzminWirsing)/Porter^2 2415793144842695 p001 sum(1/(425*n+384)/n/(512^n),n=1..infinity) 2415793151597388 m001 Khintchine*ln(MertensB1)^2*sqrt(5)^2 2415793154961285 a007 Real Root Of 895*x^4+619*x^3-235*x^2-933*x-206 2415793158410823 r005 Re(z^2+c),c=27/98+8/51*I,n=15 2415793161986989 m009 (2/3*Psi(1,3/4)+4)/(1/4*Psi(1,1/3)-1/6) 2415793169826159 r009 Re(z^3+c),c=-21/58+27/62*I,n=32 2415793173079982 m001 (Si(Pi)-ln(Pi))/(-Zeta(1/2)+Porter) 2415793174839551 a001 34/3010349*11^(13/41) 2415793190553597 r005 Im(z^2+c),c=-1/14+26/57*I,n=3 2415793194121321 k006 concat of cont frac of 2415793195638545 r005 Im(z^2+c),c=25/94+6/55*I,n=9 2415793202289715 m005 (1/2*gamma-4/11)/(3/7*2^(1/2)-11/12) 2415793230621754 m001 (Khinchin+Sierpinski)/(Zeta(5)+ln(Pi)) 2415793252552426 a007 Real Root Of 680*x^4-200*x^3-22*x^2-717*x+175 2415793270783805 a001 63245986/521*843^(11/14) 2415793276679287 r009 Re(z^3+c),c=-41/106+26/53*I,n=38 2415793277567963 a001 7778742049/5778*322^(1/2) 2415793307682037 a007 Real Root Of -256*x^4-466*x^3+225*x^2-224*x+295 2415793310878107 r005 Im(z^2+c),c=-103/102+10/43*I,n=11 2415793321620849 m005 (1/2*5^(1/2)-5/9)/(5/9*exp(1)+9/11) 2415793323272619 r009 Re(z^3+c),c=-47/118+18/35*I,n=56 2415793324832008 a007 Real Root Of 212*x^4-278*x^3-876*x^2-830*x-2 2415793325975011 a005 (1/cos(23/239*Pi))^1160 2415793329402951 r005 Im(z^2+c),c=-13/46+13/35*I,n=36 2415793333184324 m001 BesselI(0,1)+Rabbit+TreeGrowth2nd 2415793339371658 a001 20365011074/15127*322^(1/2) 2415793340960420 s001 sum(exp(-2*Pi/3)^n*A077822[n],n=1..infinity) 2415793348388696 a001 53316291173/39603*322^(1/2) 2415793349704264 a001 139583862445/103682*322^(1/2) 2415793349896203 a001 365435296162/271443*322^(1/2) 2415793349924206 a001 956722026041/710647*322^(1/2) 2415793349928292 a001 2504730781961/1860498*322^(1/2) 2415793349928888 a001 6557470319842/4870847*322^(1/2) 2415793349929028 a001 10610209857723/7881196*322^(1/2) 2415793349929256 a001 1346269*322^(1/2) 2415793349930817 a001 1548008755920/1149851*322^(1/2) 2415793349941513 a001 591286729879/439204*322^(1/2) 2415793350014827 a001 225851433717/167761*322^(1/2) 2415793350517330 a001 86267571272/64079*322^(1/2) 2415793352447652 m001 (FeigenbaumC-Totient)/(Zeta(3)+FeigenbaumB) 2415793353961532 a001 32951280099/24476*322^(1/2) 2415793354362370 a001 11/3*514229^(27/32) 2415793358129796 m001 1/Riemann3rdZero^2/ln(Khintchine)/sin(Pi/12)^2 2415793361224809 g005 GAMMA(7/9)*GAMMA(2/9)/GAMMA(7/10)/GAMMA(4/7) 2415793363080404 m004 18+500*Pi*ProductLog[Sqrt[5]*Pi] 2415793366275484 m001 (Landau-MertensB3)/(Tetranacci+Totient) 2415793369263641 a001 45537549124*1836311903^(5/17) 2415793369263641 a001 4106118243*6557470319842^(5/17) 2415793369264178 a001 505019158607*514229^(5/17) 2415793372409713 r002 25th iterates of z^2 + 2415793377568443 a001 12586269025/9349*322^(1/2) 2415793380976611 r005 Re(z^2+c),c=-33/122+14/55*I,n=20 2415793399679513 r005 Im(z^2+c),c=-43/102+19/46*I,n=49 2415793401713124 r002 21th iterates of z^2 + 2415793406723305 r005 Re(z^2+c),c=7/74+25/38*I,n=4 2415793411606732 m005 (9/20+1/4*5^(1/2))/(37/11+4/11*5^(1/2)) 2415793415648100 a007 Real Root Of 296*x^4-325*x^3-950*x^2-952*x+289 2415793418053214 m005 (1/2*Catalan-4/9)/(9/4+3/2*5^(1/2)) 2415793421178923 m008 (4/5*Pi^3+3/5)/(3/5*Pi-5/6) 2415793424851835 a007 Real Root Of 294*x^4+483*x^3-536*x^2-145*x-426 2415793427497628 a008 Real Root of x^4+22*x^2-54*x-32 2415793431176967 a001 2/167761*3^(9/14) 2415793436537339 m008 (5*Pi^6+4/5)/(2/3*Pi^5-5) 2415793437854019 a008 Real Root of x^2-x-58119 2415793438611635 r009 Im(z^3+c),c=-21/64+7/37*I,n=13 2415793442133393 a007 Real Root Of 177*x^4-894*x^3+751*x^2+584*x+782 2415793453803153 r005 Im(z^2+c),c=-63/82+5/47*I,n=15 2415793454022941 m001 1/ln((2^(1/3)))^2/Khintchine^2/Zeta(5)^2 2415793455357217 m004 Cos[Sqrt[5]*Pi]+Cosh[Sqrt[5]*Pi]/24 2415793465965352 r005 Re(z^2+c),c=-9/52+28/53*I,n=52 2415793473009305 h001 (4/11*exp(1)+1/3)/(2/3*exp(2)+6/11) 2415793499761741 a007 Real Root Of 255*x^4+333*x^3-473*x^2+536*x+65 2415793503417574 m005 (2*gamma+1/6)/(-7/24+3/8*5^(1/2)) 2415793508312981 r005 Im(z^2+c),c=-15/22+26/75*I,n=26 2415793513599928 a001 39088169/521*843^(6/7) 2415793518163950 m006 (1/Pi-4/5)/(2*Pi^2+1/5) 2415793520950173 l006 ln(297/3326) 2415793522677877 r005 Im(z^2+c),c=-5/6+3/203*I,n=15 2415793524240913 r005 Im(z^2+c),c=41/126+33/59*I,n=44 2415793531587935 m001 (MadelungNaCl+Paris)/LandauRamanujan 2415793533489207 m008 (3/4*Pi^5+3)/(3*Pi+1/5) 2415793539372637 a001 4807526976/3571*322^(1/2) 2415793550462761 p001 sum(1/(401*n+14)/n/(100^n),n=1..infinity) 2415793553074960 m005 (1/2*exp(1)-5/7)/(2/3*exp(1)+6/7) 2415793560322794 m001 (1+exp(1/Pi))/(-HardHexagonsEntropy+ThueMorse) 2415793569114091 r005 Re(z^2+c),c=-1/7+37/64*I,n=31 2415793574809980 m001 (Pi+2^(1/3))/ln(3)-BesselI(1,2) 2415793586388891 h001 (2/9*exp(2)+1/11)/(11/12*exp(2)+2/5) 2415793591204119 r002 27th iterates of z^2 + 2415793591730573 h001 (4/5*exp(1)+5/11)/(1/7*exp(1)+7/10) 2415793594489175 r005 Re(z^2+c),c=-25/44+34/61*I,n=25 2415793595101535 l006 ln(6503/8280) 2415793612886062 a007 Real Root Of 512*x^4-153*x^3-158*x^2-873*x-21 2415793615383776 r009 Re(z^3+c),c=-13/102+25/31*I,n=34 2415793622454919 a007 Real Root Of -51*x^4-58*x^3-896*x^2+730*x+228 2415793629975053 a001 1/3*(1/2*5^(1/2)+1/2)^25*76^(20/23) 2415793631163942 r002 14th iterates of z^2 + 2415793639699606 h001 (5/12*exp(1)+7/11)/(7/8*exp(2)+6/7) 2415793650232234 a007 Real Root Of -433*x^4-600*x^3-365*x^2+483*x+131 2415793657398445 m001 1/Pi*FibonacciFactorial^2*exp(cos(Pi/5))^2 2415793657897309 m001 Zeta(1,2)^exp(gamma)+GAMMA(1/24) 2415793676491524 p004 log(21647/1933) 2415793678630573 m001 (Sierpinski+Thue)/(Chi(1)+sin(1/5*Pi)) 2415793681147924 r009 Re(z^3+c),c=-5/17+17/61*I,n=8 2415793687950706 a007 Real Root Of 461*x^4-420*x^3-95*x^2-522*x+136 2415793704760846 m001 Bloch^2/Cahen^2*ln(cos(Pi/5))^2 2415793712310167 m005 (1/2*exp(1)-5)/(1/2*2^(1/2)+4/5) 2415793715761666 r005 Re(z^2+c),c=-31/50+19/41*I,n=37 2415793738140524 m001 1/Zeta(1,2)*ln(GAMMA(5/12))*sqrt(3)^2 2415793738379511 r005 Re(z^2+c),c=-19/90+34/55*I,n=41 2415793741640803 r005 Re(z^2+c),c=19/102+1/35*I,n=17 2415793742375971 a007 Real Root Of 225*x^4+57*x^3-995*x^2+399*x-89 2415793753107001 r005 Im(z^2+c),c=17/62+4/57*I,n=6 2415793756416076 a001 24157817/521*843^(13/14) 2415793777854872 h005 exp(cos(Pi*3/40)*sin(Pi*17/47)) 2415793782655487 m001 (-Artin+Trott)/(ln(2)/ln(10)+Zeta(3)) 2415793794773655 a001 17/12238*11^(3/13) 2415793795627671 m001 gamma*exp(GAMMA(7/24))^2*log(1+sqrt(2)) 2415793801885621 m001 ln(CareFree)/Backhouse*Zeta(9)^2 2415793816995345 m001 Zeta(5)^2*Riemann2ndZero/exp(sqrt(5)) 2415793826777253 m001 1/GAMMA(1/24)/ln(Rabbit)^2/GAMMA(3/4)^2 2415793828489834 m001 (FeigenbaumB-Landau)^ln(Pi) 2415793829284552 r005 Re(z^2+c),c=-11/54+23/50*I,n=36 2415793833822401 a001 433494437/843*322^(2/3) 2415793854821428 r009 Im(z^3+c),c=-35/58+19/42*I,n=23 2415793856652494 m001 Stephens^gamma(1)+exp(1/Pi) 2415793861306747 m001 FeigenbaumB-Grothendieck^Champernowne 2415793873248005 r005 Im(z^2+c),c=11/29+14/51*I,n=56 2415793874997572 m001 BesselI(1,1)-Si(Pi)^(Pi^(1/2)) 2415793874997572 m001 BesselI(1,1)-Si(Pi)^sqrt(Pi) 2415793877413235 l006 ln(4278/5447) 2415793878537986 a007 Real Root Of -227*x^4-121*x^3+725*x^2-737*x+14 2415793880864170 m005 (1/2*2^(1/2)-1)/(2/5*2^(1/2)-4/9) 2415793888170729 m001 (GAMMA(2/3)+ln(5))/FibonacciFactorial 2415793891379792 a007 Real Root Of 147*x^4-630*x^3+339*x^2+469*x+764 2415793900446707 m001 GAMMA(1/4)*LaplaceLimit^2/exp(GAMMA(5/24))^2 2415793905275870 m005 (1/3*3^(1/2)-2/3)/(3*2^(1/2)-6/11) 2415793914114858 a007 Real Root Of 852*x^4-882*x^3+20*x^2-756*x+191 2415793914768081 m001 FibonacciFactorial^Conway/cos(1) 2415793923194434 m005 (-4/15+2/5*5^(1/2))/(5/6*exp(1)+1/3) 2415793923668657 h001 (-exp(-1)+3)/(-2*exp(2/3)-7) 2415793924522515 l006 ln(745/8343) 2415793931292112 k008 concat of cont frac of 2415793931630226 a007 Real Root Of 320*x^4+666*x^3-475*x^2-798*x-665 2415793949703612 r009 Im(z^3+c),c=-73/126+29/62*I,n=36 2415793953935366 m001 Robbin/(FellerTornier^ln(Pi)) 2415793962572877 r005 Re(z^2+c),c=-37/106+47/62*I,n=3 2415793974535966 r005 Re(z^2+c),c=23/114+2/5*I,n=32 2415793977185086 b008 EulerGamma+CoshIntegral[Sqrt[E]] 2415793981228589 a007 Real Root Of -33*x^4-829*x^3-796*x^2-687*x-216 2415793983874862 r009 Re(z^3+c),c=-23/70+9/25*I,n=15 2415793986442130 a007 Real Root Of 335*x^4-811*x^3+350*x^2-683*x-198 2415793995247555 r009 Re(z^3+c),c=-7/27+2/11*I,n=5 2415793997058314 a001 24157855+38*5^(1/2) 2415793998373876 a001 24157817+55*5^(1/2) 2415793999204244 a001 9107543377/377 2415794001183268 m006 (1/4*Pi-2/3)/(5*Pi^2-1/5) 2415794001183268 m008 (1/4*Pi-2/3)/(5*Pi^2-1/5) 2415794001853903 m005 (1/2*Catalan-4/7)/(3/7*gamma+2/9) 2415794016612672 m001 (Robbin+Stephens)/(2^(1/3)-RenyiParking) 2415794021484126 a007 Real Root Of -838*x^4+211*x^3-766*x^2+954*x+281 2415794038559785 a007 Real Root Of -518*x^4+84*x^3+228*x^2+378*x+9 2415794041303052 m001 (Ei(1,1)-Gompertz)^Backhouse 2415794042805072 m001 (-cos(1/5*Pi)+gamma(1))/(2^(1/2)+5^(1/2)) 2415794056354689 m007 (-3/5*gamma+1/5)/(-3*gamma-6*ln(2)-1/6) 2415794058699499 a007 Real Root Of -85*x^4+50*x^3+96*x^2-870*x+938 2415794059310883 r005 Re(z^2+c),c=-11/42+14/47*I,n=6 2415794084547716 m005 (1/2*gamma-1)/(6/11*3^(1/2)+2) 2415794092953377 r002 22th iterates of z^2 + 2415794094389195 a007 Real Root Of 925*x^4+908*x^3-893*x^2-732*x+213 2415794106511213 a007 Real Root Of 36*x^4+904*x^3+803*x^2-643*x-384 2415794115824238 a007 Real Root Of 495*x^4+911*x^3-928*x^2-905*x-786 2415794119778741 a007 Real Root Of 231*x^4+446*x^3-94*x^2+592*x+399 2415794132162437 m001 Salem^(GAMMA(11/12)/ZetaQ(2)) 2415794135468217 r009 Re(z^3+c),c=-3/16+44/51*I,n=3 2415794146446370 r005 Im(z^2+c),c=-101/82+1/32*I,n=51 2415794165254002 m001 (MertensB1-Otter)/(Bloch+Cahen) 2415794167394743 l006 ln(6331/8061) 2415794167833491 m001 (gamma(1)+MertensB1)/(BesselK(0,1)-Zeta(3)) 2415794173276807 a001 1/2207*(1/2*5^(1/2)+1/2)^4*76^(9/19) 2415794181584194 r009 Im(z^3+c),c=-17/70+2/9*I,n=5 2415794185410593 m001 MadelungNaCl-OneNinth+StronglyCareFree 2415794189218059 v003 sum((3/2*n^3-11/2*n^2+19*n)/n^n,n=1..infinity) 2415794192069267 l006 ln(448/5017) 2415794192792853 m005 (1/2*2^(1/2)+6/11)/(6/11*gamma-5/6) 2415794193871765 a001 505019158607/233*6557470319842^(12/17) 2415794194544501 m001 GAMMA(7/12)^sqrt(3)*exp(sqrt(2))^sqrt(3) 2415794196184076 h001 (-5*exp(2/3)-6)/(-7*exp(-3)+1) 2415794207347614 a007 Real Root Of 348*x^4+386*x^3+677*x^2-802*x-229 2415794215410378 m001 Riemann3rdZero-ln(2^(1/2)+1)^(2^(1/3)) 2415794220933337 s002 sum(A130960[n]/(pi^n+1),n=1..infinity) 2415794220966587 s002 sum(A000759[n]/((10^n+1)/n),n=1..infinity) 2415794221090851 s002 sum(A130927[n]/(pi^n+1),n=1..infinity) 2415794225219910 m009 (5*Psi(1,1/3)-1/6)/(1/6*Psi(1,1/3)+2/5) 2415794235559629 m001 (MertensB3+Sarnak)/(gamma(2)-sin(1)) 2415794249488380 a003 sin(Pi*7/82)*sin(Pi*42/115) 2415794258385315 r005 Re(z^2+c),c=-5/22+13/42*I,n=4 2415794270094337 a001 12586269025/843*123^(1/10) 2415794274805529 p004 log(29411/23099) 2415794276782214 a003 cos(Pi*13/44)-cos(Pi*28/73) 2415794281529016 h001 (4/5*exp(2)+9/10)/(7/10*exp(1)+11/12) 2415794294953128 m001 Rabbit/HardHexagonsEntropy*Weierstrass 2415794306141650 r005 Im(z^2+c),c=-25/82+14/37*I,n=33 2415794308896073 a007 Real Root Of 484*x^4+860*x^3-625*x^2+672*x+911 2415794315426794 a007 Real Root Of -804*x^4+585*x^3+972*x^2+889*x-277 2415794319535261 m001 1/exp(FeigenbaumC)^2/Cahen/GAMMA(17/24)^2 2415794323102002 l006 ln(9856/10097) 2415794324562153 m001 KhinchinHarmonic*Tribonacci-Kolakoski 2415794330805844 m001 1/GAMMA(7/12)^2/GAMMA(5/12)*ln(sqrt(2))^2 2415794332440228 m001 (gamma(3)-Lehmer)/(ln(gamma)-Ei(1)) 2415794338054510 a007 Real Root Of 8*x^4-283*x^3-852*x^2-678*x-928 2415794338704799 a007 Real Root Of 376*x^4+813*x^3-648*x^2-824*x+447 2415794347602146 h001 (9/10*exp(1)+1/4)/(1/11*exp(2)+4/9) 2415794348504202 r005 Im(z^2+c),c=23/82+5/62*I,n=46 2415794351867105 m009 (3/4*Psi(1,3/4)+6)/(8/5*Catalan+1/5*Pi^2-1/6) 2415794356728127 r002 7th iterates of z^2 + 2415794359869224 a007 Real Root Of 460*x^4+657*x^3-752*x^2+560*x-663 2415794360919415 m005 (1/3*Pi+1/2)/(49/8+1/8*5^(1/2)) 2415794373275577 r005 Re(z^2+c),c=-33/122+13/51*I,n=15 2415794379727127 a007 Real Root Of 279*x^4+565*x^3-200*x^2+28*x-302 2415794400231496 p001 sum(1/(424*n+385)/n/(512^n),n=1..infinity) 2415794420768074 a007 Real Root Of 215*x^4+99*x^3-935*x^2+198*x+8 2415794430163846 m001 GAMMA(23/24)*ln(Robbin)^2*sinh(1)^2 2415794437116505 a001 3010349/5*75025^(17/23) 2415794447045633 a001 11/75025*3^(5/11) 2415794456101076 m001 (FeigenbaumB+Porter)/(Psi(1,1/3)-gamma) 2415794462728964 m001 (3^(1/2))^FransenRobinson/((3^(1/2))^Zeta(3)) 2415794481446241 q001 2539/1051 2415794483125788 a001 4807526976/521*322^(1/6) 2415794507166717 m001 3^(1/3)*(3^(1/2)-Magata) 2415794508601057 p004 log(18517/14543) 2415794509424816 r005 Re(z^2+c),c=7/38+1/64*I,n=8 2415794513073126 r005 Re(z^2+c),c=-13/44+1/19*I,n=5 2415794513916309 m001 (3^(1/2)-exp(Pi))/(-BesselI(1,2)+CareFree) 2415794524827650 l006 ln(599/6708) 2415794536687268 m001 Kolakoski/sin(1/5*Pi)*KomornikLoreti 2415794553160874 m001 (Conway+FeigenbaumMu)/(Si(Pi)-Zeta(1,-1)) 2415794555050711 a007 Real Root Of -331*x^4-816*x^3-358*x^2-398*x+897 2415794559092443 r002 2th iterates of z^2 + 2415794559435883 m008 (1/4*Pi^4-4)/(5/6*Pi^2+1/5) 2415794569640368 a007 Real Root Of -328*x^4-697*x^3+687*x^2+711*x-947 2415794587454526 r005 Im(z^2+c),c=-5/11+14/33*I,n=44 2415794593627880 r005 Im(z^2+c),c=-1/16+22/61*I,n=3 2415794596885779 a001 1/5778*(1/2*5^(1/2)+1/2)^6*76^(9/19) 2415794598044607 m002 1+E^Pi+Sech[Pi]/5 2415794600023633 r002 35th iterates of z^2 + 2415794602038790 r005 Im(z^2+c),c=-55/98+24/61*I,n=19 2415794603059574 m004 750/Pi+(4*Sqrt[5]*Tanh[Sqrt[5]*Pi])/Pi 2415794607956270 r008 a(0)=3,K{-n^6,-43-3*n+28*n^2+20*n^3} 2415794639808640 m001 (MertensB3-ZetaQ(3))/(GAMMA(19/24)-Kac) 2415794642315953 m001 (1-exp(Pi))/(PolyaRandomWalk3D+Stephens) 2415794647494280 m001 (HardHexagonsEntropy+Paris)/(Chi(1)-Ei(1,1)) 2415794648395663 a001 1836311903/1364*322^(1/2) 2415794658689508 a001 1/15127*(1/2*5^(1/2)+1/2)^8*76^(9/19) 2415794662946588 r009 Re(z^3+c),c=-3/82+43/57*I,n=56 2415794664163585 r005 Re(z^2+c),c=-17/14+6/37*I,n=32 2415794667706550 a001 1/39603*(1/2*5^(1/2)+1/2)^10*76^(9/19) 2415794669835185 a001 1/64079*(1/2*5^(1/2)+1/2)^11*76^(9/19) 2415794673279389 a001 1/24476*(1/2*5^(1/2)+1/2)^9*76^(9/19) 2415794674659498 a007 Real Root Of -397*x^4-357*x^3-694*x^2+721*x+211 2415794679245340 a001 47*1346269^(23/52) 2415794680665653 m001 (ZetaP(2)+ZetaQ(3))/(BesselK(1,1)+Mills) 2415794683964223 a007 Real Root Of -899*x^4+995*x^3+276*x^2+948*x+230 2415794687773309 a003 cos(Pi*7/80)/cos(Pi*17/46) 2415794693170731 m004 750/Pi+(4*Sqrt[5]*Coth[Sqrt[5]*Pi])/Pi 2415794693755887 m005 (1/2*gamma-5/11)/(-19/70+3/7*5^(1/2)) 2415794696886314 a001 1/9349*(1/2*5^(1/2)+1/2)^7*76^(9/19) 2415794709389128 m001 (-Psi(2,1/3)+ZetaQ(2))/(exp(Pi)-ln(2)/ln(10)) 2415794715217471 a007 Real Root Of 371*x^4+696*x^3-708*x^2-451*x+219 2415794717463072 m001 (BesselK(0,1)-GAMMA(3/4))/(Artin+Otter) 2415794723595270 l006 ln(750/8399) 2415794727408766 r005 Re(z^2+c),c=-9/38+19/51*I,n=31 2415794735382812 m001 (3^(1/3))/exp(Champernowne)*Ei(1) 2415794738435135 a001 123/233*121393^(11/12) 2415794761014740 m001 (Zeta(1/2)*TreeGrowth2nd+Niven)/TreeGrowth2nd 2415794765847706 h001 (1/6*exp(1)+1/9)/(5/8*exp(1)+7/11) 2415794771652336 l006 ln(2053/2614) 2415794774516995 m001 (CopelandErdos+Kac)/(1-Cahen) 2415794775932053 m004 -4+Sin[Sqrt[5]*Pi]+30*Tan[Sqrt[5]*Pi] 2415794786727490 a007 Real Root Of -138*x^4-415*x^3-475*x^2-607*x+155 2415794793603953 a005 (1/cos(13/174*Pi))^363 2415794795619117 a001 1836311903/2207*322^(7/12) 2415794804320388 m009 (5/6*Psi(1,2/3)+2/5)/(1/12*Pi^2+2/5) 2415794805232271 r005 Im(z^2+c),c=-17/42+20/49*I,n=44 2415794805992926 a001 4/2178309*144^(54/55) 2415794810725467 r005 Im(z^2+c),c=-31/94+22/57*I,n=44 2415794826332459 r005 Im(z^2+c),c=-11/27+14/33*I,n=22 2415794843116197 m005 (1/2*Zeta(3)+5)/(10/11*5^(1/2)+2/7) 2415794844519891 r005 Re(z^2+c),c=-11/18+29/74*I,n=51 2415794850123814 r009 Re(z^3+c),c=-35/94+8/19*I,n=5 2415794855369315 a001 5/521*9349^(26/43) 2415794855739316 l006 ln(901/10090) 2415794858690596 a001 1/3571*(1/2*5^(1/2)+1/2)^5*76^(9/19) 2415794870644904 a007 Real Root Of 386*x^4+200*x^3-140*x^2-509*x+127 2415794874586377 m001 Magata*FransenRobinson*ln(sqrt(1+sqrt(3)))^2 2415794874622467 m005 (1/2*2^(1/2)+5/7)/(1/4*Zeta(3)-8/9) 2415794885404948 r005 Re(z^2+c),c=15/52+15/26*I,n=53 2415794922327293 a007 Real Root Of 91*x^4-889*x^3-794*x^2-809*x+254 2415794941660396 a001 2207/377*2178309^(13/51) 2415794943841603 a007 Real Root Of -354*x^4-867*x^3-398*x^2-840*x+127 2415794948564536 a007 Real Root Of -38*x^4-907*x^3+272*x^2+187*x+892 2415794954543540 r005 Im(z^2+c),c=-11/14+59/223*I,n=4 2415794964459957 m001 1/exp(cosh(1))^2*(2^(1/3))^2*gamma^2 2415794985044642 a001 76/89*1346269^(9/38) 2415795001050199 r005 Re(z^2+c),c=-2/3+16/115*I,n=2 2415795021852119 m001 (Psi(2,1/3)+ln(3))/(GAMMA(13/24)+Gompertz) 2415795035661274 a007 Real Root Of -380*x^4-886*x^3-14*x^2+70*x+702 2415795040109781 r002 44th iterates of z^2 + 2415795046209965 a007 Real Root Of 39*x^4+961*x^3+482*x^2+678*x+700 2415795062314212 m009 (1/2*Psi(1,1/3)-2/5)/(2*Pi^2-1/2) 2415795063032477 m001 exp(Pi)+Zeta(5)^Bloch 2415795076325484 m001 1/TreeGrowth2nd^2/DuboisRaymond^2/exp(sqrt(3)) 2415795085713438 r005 Im(z^2+c),c=-13/106+31/49*I,n=12 2415795093304860 r005 Re(z^2+c),c=-19/14+173/203*I,n=2 2415795094314827 r009 Re(z^3+c),c=-4/11+18/41*I,n=27 2415795095056086 r005 Re(z^2+c),c=-25/18+53/97*I,n=2 2415795114200440 r005 Im(z^2+c),c=7/27+3/28*I,n=21 2415795114436953 m001 (DuboisRaymond+FeigenbaumMu)/(GaussAGM+Sarnak) 2415795119268481 r009 Re(z^3+c),c=-53/82+20/63*I,n=19 2415795120285129 m005 (1/3*2^(1/2)-1/2)/(10/11*Zeta(3)+1/11) 2415795120439482 a007 Real Root Of -432*x^4-967*x^3+178*x^2-220*x-490 2415795130481961 m001 1/OneNinth*PrimesInBinary/ln(log(1+sqrt(2)))^2 2415795131094931 m005 (1/2*5^(1/2)+7/10)/(5*2^(1/2)+5/11) 2415795133276097 r009 Im(z^3+c),c=-25/122+35/39*I,n=4 2415795138394520 h001 (-2*exp(2)-9)/(-5*exp(3)+2) 2415795139542844 m001 (Pi-Psi(2,1/3))/exp(gamma)/GAMMA(2/3) 2415795142429384 p001 sum(1/(509*n+26)/n/(8^n),n=1..infinity) 2415795150684912 h001 (9/10*exp(2)+1/9)/(5/7*exp(1)+6/7) 2415795153969046 m005 (1/2*5^(1/2)+1/9)/(-19/110+1/10*5^(1/2)) 2415795160465468 m001 (exp(1)+LambertW(1))/(MertensB3+Trott2nd) 2415795163682825 r005 Re(z^2+c),c=-4/19+15/34*I,n=18 2415795176900801 a007 Real Root Of 289*x^4+590*x^3-79*x^2+262*x-431 2415795178108064 m001 FeigenbaumC/Si(Pi)^2*ln(Trott) 2415795191639119 a001 233/64079*18^(19/29) 2415795192311409 a007 Real Root Of -384*x^4-832*x^3-249*x^2-832*x+792 2415795196865514 a001 47/377*591286729879^(13/21) 2415795197793646 r002 8th iterates of z^2 + 2415795200421471 m001 (Cahen+GaussKuzminWirsing)/(exp(1)+Zeta(3)) 2415795200832650 m001 1/ln(Porter)/FibonacciFactorial^2/GAMMA(1/3)^2 2415795204277498 r009 Re(z^3+c),c=-3/70+30/47*I,n=41 2415795205187923 r005 Re(z^2+c),c=-7/31+21/52*I,n=31 2415795219228199 a001 267084832/321*322^(7/12) 2415795230650709 r009 Re(z^3+c),c=-11/36+15/49*I,n=14 2415795246238862 a007 Real Root Of 251*x^4+194*x^3-894*x^2-52*x-722 2415795262195879 m001 (Zeta(5)-HeathBrownMoroz)/(RenyiParking-Salem) 2415795264123857 m001 (cos(1)+BesselK(0,1))/(-ThueMorse+ZetaP(2)) 2415795270174421 r009 Re(z^3+c),c=-1/8+30/37*I,n=51 2415795276283421 m001 (exp(1/exp(1))+gamma(3))/(ArtinRank2-Paris) 2415795281031943 a001 12586269025/15127*322^(7/12) 2415795290048988 a001 10983760033/13201*322^(7/12) 2415795291364557 a001 43133785636/51841*322^(7/12) 2415795291556496 a001 75283811239/90481*322^(7/12) 2415795291584500 a001 591286729879/710647*322^(7/12) 2415795291588586 a001 832040*322^(7/12) 2415795291589182 a001 4052739537881/4870847*322^(7/12) 2415795291589269 a001 3536736619241/4250681*322^(7/12) 2415795291589322 a001 3278735159921/3940598*322^(7/12) 2415795291589550 a001 2504730781961/3010349*322^(7/12) 2415795291591111 a001 956722026041/1149851*322^(7/12) 2415795291601807 a001 182717648081/219602*322^(7/12) 2415795291675121 a001 139583862445/167761*322^(7/12) 2415795291734985 p004 log(28097/22067) 2415795292177624 a001 53316291173/64079*322^(7/12) 2415795292293583 a007 Real Root Of -462*x^4-997*x^3+590*x^2+491*x-578 2415795295510127 r005 Re(z^2+c),c=-11/14+23/165*I,n=46 2415795295621829 a001 10182505537/12238*322^(7/12) 2415795296892999 m001 (-ln(5)+StronglyCareFree)/(2^(1/3)-GAMMA(3/4)) 2415795302478265 m001 (FransenRobinson+Thue)/(Catalan+BesselK(1,1)) 2415795312412339 a007 Real Root Of 588*x^4+991*x^3-735*x^2+983*x+609 2415795314146395 a001 5600748293801*1836311903^(3/17) 2415795314146395 a001 1322157322203*6557470319842^(3/17) 2415795314146717 a001 23725150497407*514229^(3/17) 2415795319228759 a001 7778742049/9349*322^(7/12) 2415795349235644 r005 Re(z^2+c),c=-29/122+31/50*I,n=32 2415795351406776 m005 (1/2*Catalan-8/9)/(6/7*Pi-10/11) 2415795358905882 m001 (BesselI(0,2)-Chi(1))/(-CareFree+OneNinth) 2415795364844049 p001 sum((-1)^n/(444*n+385)/(6^n),n=0..infinity) 2415795370234441 m001 (Pi-Psi(1,1/3))/ln(2)*ln(10)-Shi(1) 2415795371183396 s002 sum(A068782[n]/(n*exp(n)+1),n=1..infinity) 2415795380552153 m001 (ZetaP(3)+ZetaQ(3))^Chi(1) 2415795383735283 r005 Re(z^2+c),c=-2/11+16/31*I,n=29 2415795410629217 l006 ln(5987/7623) 2415795425715155 m001 1/BesselK(0,1)/Lehmer/ln(GAMMA(1/4))^2 2415795427650084 a007 Real Root Of 20*x^4-519*x^3+694*x^2-920*x+189 2415795427651492 r005 Re(z^2+c),c=-29/110+13/46*I,n=23 2415795428838527 r002 2th iterates of z^2 + 2415795429498146 m001 1/GAMMA(5/12)/Rabbit/exp(Zeta(7)) 2415795441968639 m001 GAMMA(11/12)^2/exp(FeigenbaumC)/exp(1)^2 2415795458526788 m001 (-Magata+Salem)/(BesselI(0,1)-GAMMA(19/24)) 2415795464793378 r005 Re(z^2+c),c=1/27+5/27*I,n=13 2415795465702144 m001 (cos(1/5*Pi)-BesselI(1,2))/(Artin-ArtinRank2) 2415795467621087 r005 Im(z^2+c),c=-13/10+25/142*I,n=4 2415795475093331 m001 (2^(1/2)-ln(3))/(MasserGramain+TwinPrimes) 2415795481033083 a001 2971215073/3571*322^(7/12) 2415795482597519 r009 Im(z^3+c),c=-23/52+3/29*I,n=41 2415795499230548 m001 (-Zeta(1/2)+Sierpinski)/(BesselI(0,1)-ln(3)) 2415795507722971 r005 Re(z^2+c),c=19/56+15/46*I,n=26 2415795510757791 m001 Pi^2/GlaisherKinkelin^2*ln(Zeta(9))^2 2415795512083655 l006 ln(151/1691) 2415795518827867 m001 (-ln(Pi)+FeigenbaumAlpha)/(Psi(2,1/3)-ln(3)) 2415795522449886 m001 (1+MadelungNaCl)/(PlouffeB+Robbin) 2415795524752712 a007 Real Root Of -245*x^4-440*x^3+344*x^2+78*x+322 2415795537614859 a005 (1/cos(11/207*Pi))^63 2415795563008044 a007 Real Root Of 378*x^4+927*x^3+221*x^2+139*x-759 2415795574653145 a003 sin(Pi*9/104)*sin(Pi*26/73) 2415795575570289 m001 (Gompertz+Stephens)/(ln(2)-exp(-1/2*Pi)) 2415795578695381 g006 Psi(1,1/7)-Psi(1,2/11)-2*Psi(1,2/9) 2415795583377639 m009 (1/3*Psi(1,2/3)+6)/(3/4*Psi(1,3/4)+1) 2415795586527293 q001 208/861 2415795586527293 r002 2th iterates of z^2 + 2415795586527293 r005 Im(z^2+c),c=-15/14+26/123*I,n=2 2415795589836622 a007 Real Root Of -140*x^4+8*x^3+898*x^2+28*x-292 2415795592985415 m001 (ln(2)/ln(10)+3^(1/3))/(-Khinchin+Magata) 2415795605647909 r005 Im(z^2+c),c=-11/14+24/253*I,n=22 2415795613768655 a007 Real Root Of 201*x^4+588*x^3-161*x^2-663*x+782 2415795618730128 a007 Real Root Of -427*x^4-881*x^3-150*x^2+717*x+171 2415795621006940 m001 LaplaceLimit^Robbin/(ZetaP(3)^Robbin) 2415795622082549 a007 Real Root Of 16*x^4-357*x^3-466*x^2+937*x-595 2415795627901785 a007 Real Root Of -355*x^4+468*x^3+181*x^2+410*x-115 2415795631420127 q001 1/4139423 2415795644175236 m001 (-GAMMA(3/4)+Tribonacci)/(3^(1/2)+cos(1/5*Pi)) 2415795644448687 a007 Real Root Of -180*x^4-385*x^3+104*x^2-353*x-757 2415795645064133 a007 Real Root Of 87*x^4-605*x^3+406*x^2+931*x+948 2415795648174379 m005 (1/2*2^(1/2)+5/12)/(1/9*3^(1/2)+3/11) 2415795654542613 m001 (-Niven+ThueMorse)/(Psi(2,1/3)+ln(5)) 2415795657659703 p001 sum(1/(423*n+386)/n/(512^n),n=1..infinity) 2415795660055553 s002 sum(A245794[n]/(n^2*pi^n+1),n=1..infinity) 2415795663725092 m001 1/ln(log(2+sqrt(3)))^2*FeigenbaumC 2415795665428423 a007 Real Root Of -548*x^4-820*x^3+939*x^2-473*x+481 2415795671548496 r005 Re(z^2+c),c=-13/32+30/53*I,n=57 2415795678732397 a007 Real Root Of 204*x^4+738*x^3+969*x^2+725*x-447 2415795680833754 r005 Im(z^2+c),c=5/24+33/62*I,n=61 2415795684200319 a007 Real Root Of 315*x^4+880*x^3+59*x^2-555*x-7 2415795686221342 m001 (cos(1)-sin(1/5*Pi))/(Kac+Totient) 2415795692364248 m001 (GAMMA(17/24)-sin(1))^MadelungNaCl 2415795692364248 m001 (sin(1)-GAMMA(17/24))^MadelungNaCl 2415795692816202 m001 (Chi(1)-FeigenbaumB)/(-OrthogonalArrays+Salem) 2415795700057208 m001 exp(Sierpinski)/MadelungNaCl/Pi 2415795703380280 m001 1/MadelungNaCl^2/exp(ErdosBorwein)/exp(1) 2415795710165623 a007 Real Root Of -299*x^4-500*x^3+434*x^2-52*x+476 2415795715090099 m001 MasserGramainDelta^FellerTornier+Zeta(3) 2415795726291408 r002 4th iterates of z^2 + 2415795727659569 r009 Im(z^3+c),c=-39/64+4/9*I,n=16 2415795731460819 a007 Real Root Of -213*x^4-350*x^3+571*x^2+775*x+860 2415795738217035 m001 (GAMMA(3/4)-cos(1))/(-BesselJ(1,1)+Sarnak) 2415795744086124 l006 ln(3934/5009) 2415795775483083 a001 267914296/843*322^(3/4) 2415795786618020 a007 Real Root Of -566*x^4-996*x^3+986*x^2+274*x+143 2415795788809279 r009 Re(z^3+c),c=-31/90+21/53*I,n=30 2415795805203220 a008 Real Root of x^4-11*x^2-34*x-52 2415795810420709 m005 (1/2*Zeta(3)+1/4)/(1/11*5^(1/2)-5/9) 2415795820557551 m005 (1/2*gamma+1/10)/(5/7*Zeta(3)+3/4) 2415795834718108 m005 (1/2*gamma-2/3)/(7/11*Zeta(3)+4/5) 2415795838293477 r005 Re(z^2+c),c=-17/52+3/10*I,n=3 2415795846642707 r002 45th iterates of z^2 + 2415795850419682 p001 sum((-1)^n/(587*n+389)/(6^n),n=0..infinity) 2415795850811713 m001 (gamma-sin(1))/(FeigenbaumB+MertensB1) 2415795851343125 m001 1/Cahen/ln(Backhouse)*LandauRamanujan^2 2415795855413511 m005 (25/42+1/6*5^(1/2))/(1/6*2^(1/2)-7/11) 2415795858816308 r005 Re(z^2+c),c=35/122+7/44*I,n=12 2415795864281381 r005 Im(z^2+c),c=-2/3+83/192*I,n=18 2415795865990139 a007 Real Root Of -28*x^4-642*x^3+826*x^2-138*x-74 2415795874589342 m001 (-MertensB2+Thue)/(BesselJ(0,1)-Chi(1)) 2415795874642137 a001 8/2207*18^(21/32) 2415795875469017 m001 (-Grothendieck+PlouffeB)/(Psi(2,1/3)+Zeta(5)) 2415795886291258 m001 exp(Pi)+Shi(1)^HardyLittlewoodC4 2415795888342573 m001 exp(Pi)+gamma+BesselJ(1,1) 2415795889930528 a007 Real Root Of -273*x^4+229*x^3-654*x^2+781*x+231 2415795890478675 p003 LerchPhi(1/10,6,531/194) 2415795890854126 r002 48th iterates of z^2 + 2415795891691291 a001 9/182717648081*8^(13/17) 2415795910668452 m001 GAMMA(1/24)+3/2*arctan(1/2) 2415795912529759 r005 Im(z^2+c),c=3/82+9/35*I,n=3 2415795915158844 a007 Real Root Of -2*x^4-485*x^3-442*x^2+651*x-528 2415795948866763 p004 log(12413/9749) 2415795967714227 a001 1/1364*(1/2*5^(1/2)+1/2)^3*76^(9/19) 2415795971985620 a007 Real Root Of 25*x^4-629*x^3-108*x^2-604*x+161 2415795972278042 r005 Im(z^2+c),c=-13/10+13/180*I,n=12 2415795972377685 h005 exp(cos(Pi*9/59)*sin(Pi*20/43)) 2415795973153577 m001 1/exp(BesselK(0,1))*ArtinRank2/Ei(1) 2415795984744493 a008 Real Root of x^4-25*x^2-10*x+136 2415795990848369 m001 (Si(Pi)+exp(1/exp(1)))/(CareFree+TwinPrimes) 2415796001266391 a007 Real Root Of -568*x^4-339*x^3+675*x^2+912*x-253 2415796001473775 m001 (Sierpinski+ZetaP(3))/(gamma+BesselI(1,1)) 2415796004664140 a007 Real Root Of 364*x^4+606*x^3-763*x^2-635*x-935 2415796007526452 m001 DuboisRaymond^CareFree/Mills 2415796019216267 r008 a(0)=2,K{-n^6,25-43*n-23*n^2+39*n^3} 2415796022143678 a007 Real Root Of 173*x^4+265*x^3-158*x^2+599*x+213 2415796023429118 h001 (-11*exp(2)+2)/(-exp(1)+6) 2415796035845360 r005 Re(z^2+c),c=-9/31+8/55*I,n=21 2415796062411391 r009 Re(z^3+c),c=-25/62+28/53*I,n=54 2415796063663916 h001 (-7*exp(2/3)-7)/(-4*exp(-2)-8) 2415796064143302 a001 341/2*55^(2/23) 2415796066677641 a007 Real Root Of 496*x^4+577*x^3-538*x^2-751*x+203 2415796068010538 r009 Im(z^3+c),c=-31/122+35/36*I,n=2 2415796070318672 r001 27i'th iterates of 2*x^2-1 of 2415796073955685 m001 TravellingSalesman-3^(1/2)-exp(Pi) 2415796083164809 s002 sum(A099491[n]/(n^3*pi^n+1),n=1..infinity) 2415796083659552 m001 (GAMMA(3/4)+FeigenbaumC)/(Niven-TreeGrowth2nd) 2415796086482803 a003 cos(Pi*15/61)*cos(Pi*41/105) 2415796087406233 l006 ln(5815/7404) 2415796088022187 m008 (1/4*Pi^3-4/5)/(3*Pi^2-5/6) 2415796089179844 a007 Real Root Of -248*x^4-500*x^3+318*x^2+167*x-55 2415796097964416 a007 Real Root Of -506*x^4-871*x^3+582*x^2-545*x+241 2415796099999997 a001 7465320+7465176*5^(1/2) 2415796100502499 a001 48315723/2+89/2*5^(1/2) 2415796109546872 r005 Im(z^2+c),c=-33/74+19/34*I,n=22 2415796116833068 m005 (1/2*2^(1/2)-5/12)/(17/16+1/16*5^(1/2)) 2415796117738960 m001 (ln(3)-GAMMA(5/6))/(Trott+ZetaQ(4)) 2415796124171283 m005 (1/2*exp(1)+3)/(1/5*Catalan-4/11) 2415796164770249 a008 Real Root of x^4-18*x^2-12*x+42 2415796164904224 m001 (Si(Pi)+GAMMA(17/24))/(-GAMMA(19/24)+Conway) 2415796167734087 m005 (17/20+1/4*5^(1/2))/(3*3^(1/2)+7/11) 2415796172356393 a001 3571/610*13^(21/38) 2415796173800527 m005 (1/2*Catalan+1/8)/(5/8*exp(1)+5/7) 2415796186337239 a007 Real Root Of 240*x^4+358*x^3-332*x^2+494*x+4 2415796194702219 p001 sum(1/(600*n+569)/(2^n),n=0..infinity) 2415796199754631 a007 Real Root Of 309*x^4+392*x^3-485*x^2+864*x-80 2415796201038596 m001 1/FeigenbaumB*exp(MertensB1)^2/Catalan^2 2415796205003465 m001 (exp(1/Pi)-StronglyCareFree)/(Zeta(5)+3^(1/3)) 2415796207826549 r005 Re(z^2+c),c=-4/25+29/54*I,n=13 2415796212587533 m001 1/exp(Porter)^2*Khintchine^2/(2^(1/3))^2 2415796218928384 s002 sum(A207043[n]/(n^2*2^n-1),n=1..infinity) 2415796232482246 a007 Real Root Of 154*x^4-961*x^3+164*x^2-225*x-78 2415796239137606 r002 10th iterates of z^2 + 2415796241205606 a001 2971215073/199*76^(1/9) 2415796246380955 s002 sum(A201568[n]/(n^2*2^n-1),n=1..infinity) 2415796257819048 r005 Re(z^2+c),c=-23/118+32/55*I,n=29 2415796262902760 l006 ln(7696/9799) 2415796263335580 r005 Im(z^2+c),c=-7/46+20/61*I,n=16 2415796272750071 m005 (1/3*Pi-3/5)/(5/9*3^(1/2)+8/9) 2415796273084099 r005 Im(z^2+c),c=-31/70+18/43*I,n=60 2415796274574139 a007 Real Root Of -525*x^4+795*x^3-631*x^2+543*x+181 2415796280941407 h001 (-3*exp(4)+6)/(-12*exp(4)+2) 2415796285196393 a001 505019158607/21*317811^(10/11) 2415796285200742 a001 1368706081/7*63245986^(10/11) 2415796285200744 a001 4769326/3*12586269025^(10/11) 2415796285233529 a001 90481/7*2504730781961^(10/11) 2415796285780555 m001 LaplaceLimit^ZetaQ(3)/ThueMorse 2415796290196584 l006 ln(760/8511) 2415796312707265 r005 Re(z^2+c),c=-7/31+17/42*I,n=12 2415796317775685 r005 Im(z^2+c),c=-13/106+17/53*I,n=5 2415796327231623 a007 Real Root Of 610*x^4-9*x^3-111*x^2-122*x+34 2415796332841079 a007 Real Root Of 319*x^4-790*x^3-287*x^2-383*x-88 2415796336305490 m001 (GAMMA(23/24)-Kolakoski)/(Ei(1)+Zeta(1,2)) 2415796376071908 a001 98209/9*3^(34/47) 2415796378385793 m001 1/ln(GAMMA(11/12))*LandauRamanujan^2*sqrt(5) 2415796381100750 m001 (Paris+Totient)/(GAMMA(17/24)+FeigenbaumDelta) 2415796382174011 b008 (Pi*EllipticE[-5/2])/3 2415796382469954 m001 Ei(1,1)+ThueMorse*ZetaQ(2) 2415796384643274 a007 Real Root Of -502*x^4-953*x^3+797*x^2+309*x-243 2415796396340221 m001 (gamma(2)+2*Pi/GAMMA(5/6))/(Pi-sin(1)) 2415796405981519 a007 Real Root Of 204*x^4-439*x^3+735*x^2-241*x-108 2415796407705827 m001 (HardyLittlewoodC4-Thue)/(GAMMA(13/24)+Cahen) 2415796411969637 m001 (1-ln(2)/ln(10))/(exp(-1/2*Pi)+Khinchin) 2415796412474438 m001 (Ei(1,1)-ln(2)/ln(10))/(-Magata+Trott2nd) 2415796424786993 a001 2971215073/521*322^(1/4) 2415796434008894 m005 (1/2*Pi-10/11)/(-25/72+5/18*5^(1/2)) 2415796437066077 a007 Real Root Of -437*x^4-720*x^3+392*x^2-662*x+846 2415796443526422 r005 Im(z^2+c),c=-83/58+24/53*I,n=3 2415796447991730 m009 (2*Psi(1,2/3)+3/5)/(5/6*Psi(1,3/4)+2/3) 2415796449013702 a001 2/89*75025^(43/52) 2415796458851348 r005 Re(z^2+c),c=-13/60+37/62*I,n=17 2415796472659805 r005 Re(z^2+c),c=-83/114+15/64*I,n=26 2415796473086750 p003 LerchPhi(1/25,4,323/127) 2415796475459637 m001 ZetaQ(3)^(3^(1/3)*exp(-1/2*Pi)) 2415796476857628 m004 (-2*Cos[Sqrt[5]*Pi])/3+Tanh[Sqrt[5]*Pi]/4 2415796483127610 l006 ln(609/6820) 2415796497842174 a007 Real Root Of 344*x^4+574*x^3-804*x^2-566*x-299 2415796499034451 a007 Real Root Of 254*x^4+594*x^3+352*x^2+988*x+56 2415796515279108 m005 (1/2*2^(1/2)-5/7)/(3/11*Zeta(3)-5/8) 2415796524674640 a007 Real Root Of 275*x^4+575*x^3+141*x^2+831*x-75 2415796527862216 a007 Real Root Of -205*x^4-276*x^3+870*x^2+696*x-305 2415796544353503 m001 ln(3)^Otter*FibonacciFactorial^Otter 2415796546461443 m005 (1/2*5^(1/2)-8/9)/(3/5*2^(1/2)+1/10) 2415796548158499 m001 (cos(1/12*Pi)+Artin)/(ZetaQ(2)+ZetaQ(4)) 2415796554165581 m006 (5*exp(Pi)-1/5)/(2/5*Pi^2+5/6) 2415796555964076 m005 (2*Catalan-2/3)/(4*2^(1/2)-5/6) 2415796564308928 r005 Re(z^2+c),c=-9/31+8/55*I,n=23 2415796567879067 m001 (3^(1/2)-exp(-1/2*Pi)*TwinPrimes)/TwinPrimes 2415796567879067 m001 (sqrt(3)-TwinPrimes*exp(-1/2*Pi))/TwinPrimes 2415796587215009 m002 -(E^Pi/Pi)+Pi^3+6*Sech[Pi] 2415796590057000 a001 567451585/682*322^(7/12) 2415796591153743 m009 (1/6*Psi(1,1/3)+3)/(6*Psi(1,2/3)+1) 2415796602697986 m001 (gamma(1)-Khinchin)/(Robbin-StronglyCareFree) 2415796603436306 h001 (6/11*exp(1)+1/3)/(10/11*exp(2)+4/5) 2415796605522474 m005 (1/2*Pi+3/11)/(8/11*Zeta(3)-1/9) 2415796607746004 l006 ln(4335/4441) 2415796611223313 m001 (HardyLittlewoodC5+Kac)/(RenyiParking-Salem) 2415796615147916 m001 1/Pi^2/FeigenbaumD^2*exp(cos(1)) 2415796615479470 r005 Im(z^2+c),c=-9/14+43/220*I,n=5 2415796618931862 m005 (1/2*Zeta(3)+7/9)/(1/7*3^(1/2)-9/11) 2415796622967067 m001 exp(Pi)+exp(-1/2*Pi)+AlladiGrinstead 2415796628484027 a007 Real Root Of 97*x^4+247*x^3+13*x^2+169*x+511 2415796635334817 a007 Real Root Of -231*x^4-579*x^3-287*x^2-973*x-971 2415796642198724 a001 29/144*55^(31/50) 2415796645114322 a007 Real Root Of -76*x^4+152*x^3+515*x^2-315*x+965 2415796660267590 m001 (GAMMA(2/3)-sin(1))/(-Zeta(1/2)+Robbin) 2415796662643390 r005 Re(z^2+c),c=-57/122+9/17*I,n=53 2415796671114803 a007 Real Root Of 13*x^4-89*x^3+48*x^2+538*x-678 2415796674162471 r009 Re(z^3+c),c=-53/114+5/16*I,n=3 2415796676673061 m005 (1/2*3^(1/2)+3/8)/(2/3*Zeta(3)-3/4) 2415796698039911 r009 Im(z^3+c),c=-19/106+5/21*I,n=8 2415796700874229 a007 Real Root Of -791*x^4+533*x^3-950*x^2+879*x+278 2415796719266848 r002 15th iterates of z^2 + 2415796729488312 m001 1/OneNinth^2/ln(GlaisherKinkelin)^2/gamma 2415796731135415 a007 Real Root Of 379*x^4+767*x^3-382*x^2-398*x-827 2415796732919945 m005 (-11/4+1/4*5^(1/2))/(41/60+1/10*5^(1/2)) 2415796732933440 r005 Im(z^2+c),c=-41/46+11/46*I,n=32 2415796736990415 m001 ln(BesselJ(0,1))^2/FeigenbaumB^2*GAMMA(7/12)^2 2415796737280573 a001 1134903170/2207*322^(2/3) 2415796742452362 m001 (Mills+ZetaQ(3))/(Catalan+Zeta(1/2)) 2415796745550672 r005 Re(z^2+c),c=-11/14+11/79*I,n=4 2415796750772905 a001 521/2584*2178309^(17/35) 2415796756732506 m001 (Pi-BesselK(0,1))/(Champernowne-Trott) 2415796763458136 a003 sin(Pi*13/116)*sin(Pi*21/85) 2415796771336635 m001 log(2+sqrt(3))*exp(MertensB1)/sin(1)^2 2415796771813841 a007 Real Root Of 858*x^4-456*x^3-327*x^2-323*x+8 2415796772035112 r005 Im(z^2+c),c=-1/21+13/38*I,n=3 2415796782104903 a007 Real Root Of -409*x^4-522*x^3+863*x^2-744*x-263 2415796784572480 r005 Re(z^2+c),c=-97/122+5/64*I,n=44 2415796790289818 r005 Im(z^2+c),c=-37/44+8/51*I,n=11 2415796792215791 m001 exp(1)+Zeta(1,2)*FellerTornier 2415796803275083 l006 ln(458/5129) 2415796805439852 l006 ln(1881/2395) 2415796806519563 a007 Real Root Of -339*x^4-538*x^3+473*x^2-776*x-674 2415796815588016 a005 (1/cos(5/76*Pi))^41 2415796821608180 a007 Real Root Of 379*x^4+833*x^3+31*x^2+525*x-77 2415796833095516 m005 (1/4*Catalan+1)/(2/5*exp(1)+4) 2415796833598120 r009 Im(z^3+c),c=-49/114+3/43*I,n=5 2415796840612032 a001 9349/8*3^(39/59) 2415796846143307 m001 (BesselJ(0,1)+BesselI(0,2))/(Paris+Trott2nd) 2415796846684587 s002 sum(A188540[n]/(pi^n+1),n=1..infinity) 2415796848239963 m001 (sin(1)+Zeta(3))/(-3^(1/3)+Gompertz) 2415796850584590 r009 Re(z^3+c),c=-1/54+47/54*I,n=7 2415796852125788 r009 Re(z^3+c),c=-23/90+43/64*I,n=8 2415796855402967 m001 Pi*(Psi(2,1/3)*2^(1/2)+Shi(1)) 2415796864036030 r005 Re(z^2+c),c=-13/86+4/7*I,n=44 2415796865435390 r005 Im(z^2+c),c=-53/98+29/54*I,n=15 2415796876250458 s002 sum(A205762[n]/(exp(2*pi*n)+1),n=1..infinity) 2415796877918339 h001 (9/11*exp(1)+1/3)/(2/9*exp(1)+5/11) 2415796880221046 a007 Real Root Of 134*x^4+227*x^3-359*x^2-694*x-945 2415796883263841 r005 Im(z^2+c),c=-10/23+1/25*I,n=30 2415796886304621 r009 Re(z^3+c),c=-29/114+10/61*I,n=4 2415796887952944 r004 Im(z^2+c),c=-41/42+6/23*I,z(0)=-1,n=38 2415796890443534 r005 Re(z^2+c),c=-9/14+15/137*I,n=2 2415796890724863 m001 cos(1/12*Pi)/BesselI(1,1)*Riemann1stZero 2415796901267028 r005 Re(z^2+c),c=-9/31+8/55*I,n=25 2415796903527709 m001 Porter/(FeigenbaumAlpha+FeigenbaumMu) 2415796912296346 m005 (-5/44+1/4*5^(1/2))/(1/2*Zeta(3)-5/12) 2415796917132291 p001 sum(1/(422*n+387)/n/(512^n),n=1..infinity) 2415796950211300 m001 (Kac+StolarskyHarborth)/(Cahen-FeigenbaumMu) 2415796952886333 m005 (1/3*exp(1)+3/7)/(10/11*gamma+5) 2415796957347789 r005 Re(z^2+c),c=35/102+4/21*I,n=17 2415796963609865 m001 exp(Pi)+exp(1/Pi)^ZetaQ(2) 2415796978355365 r005 Re(z^2+c),c=-1+31/188*I,n=44 2415796981775754 b008 -8/3+SinhIntegral[1/4] 2415796982178219 m005 (1/2*Zeta(3)-6/11)/(10/11*Pi-5/9) 2415796984253149 r002 9th iterates of z^2 + 2415796993588202 r005 Re(z^2+c),c=-9/31+8/55*I,n=27 2415796996012773 r005 Re(z^2+c),c=-9/31+8/55*I,n=30 2415796996542066 r005 Re(z^2+c),c=-9/31+8/55*I,n=28 2415796998575414 r005 Re(z^2+c),c=-9/31+8/55*I,n=32 2415796999613832 r005 Re(z^2+c),c=-9/31+8/55*I,n=34 2415796999792350 r005 Re(z^2+c),c=-9/31+8/55*I,n=37 2415796999803880 r005 Re(z^2+c),c=-9/31+8/55*I,n=39 2415796999813412 r005 Re(z^2+c),c=-9/31+8/55*I,n=41 2415796999816276 r005 Re(z^2+c),c=-9/31+8/55*I,n=43 2415796999816465 r005 Re(z^2+c),c=-9/31+8/55*I,n=46 2415796999816528 r005 Re(z^2+c),c=-9/31+8/55*I,n=44 2415796999816532 r005 Re(z^2+c),c=-9/31+8/55*I,n=48 2415796999816562 r005 Re(z^2+c),c=-9/31+8/55*I,n=50 2415796999816569 r005 Re(z^2+c),c=-9/31+8/55*I,n=53 2415796999816569 r005 Re(z^2+c),c=-9/31+8/55*I,n=55 2415796999816569 r005 Re(z^2+c),c=-9/31+8/55*I,n=57 2415796999816569 r005 Re(z^2+c),c=-9/31+8/55*I,n=59 2415796999816569 r005 Re(z^2+c),c=-9/31+8/55*I,n=62 2415796999816569 r005 Re(z^2+c),c=-9/31+8/55*I,n=64 2415796999816569 r005 Re(z^2+c),c=-9/31+8/55*I,n=60 2415796999816569 r005 Re(z^2+c),c=-9/31+8/55*I,n=63 2415796999816569 r005 Re(z^2+c),c=-9/31+8/55*I,n=61 2415796999816569 r005 Re(z^2+c),c=-9/31+8/55*I,n=58 2415796999816569 r005 Re(z^2+c),c=-9/31+8/55*I,n=52 2415796999816569 r005 Re(z^2+c),c=-9/31+8/55*I,n=56 2415796999816570 r005 Re(z^2+c),c=-9/31+8/55*I,n=54 2415796999816571 r005 Re(z^2+c),c=-9/31+8/55*I,n=51 2415796999816587 r005 Re(z^2+c),c=-9/31+8/55*I,n=49 2415796999816637 r005 Re(z^2+c),c=-9/31+8/55*I,n=47 2415796999816688 r005 Re(z^2+c),c=-9/31+8/55*I,n=45 2415796999817761 r005 Re(z^2+c),c=-9/31+8/55*I,n=42 2415796999823407 r005 Re(z^2+c),c=-9/31+8/55*I,n=40 2415796999829281 r005 Re(z^2+c),c=-9/31+8/55*I,n=36 2415796999836516 r005 Re(z^2+c),c=-9/31+8/55*I,n=38 2415796999860462 r005 Re(z^2+c),c=-9/31+8/55*I,n=35 2415797000375624 r005 Re(z^2+c),c=-9/31+8/55*I,n=33 2415797002171343 r005 Re(z^2+c),c=-9/31+8/55*I,n=31 2415797004674366 r005 Re(z^2+c),c=-9/31+8/55*I,n=29 2415797005302559 r008 a(0)=0,K{-n^6,(2*n+1)*(75+10*n^2+53*n)} 2415797008994936 r009 Im(z^3+c),c=-43/94+2/27*I,n=14 2415797018514357 r009 Re(z^3+c),c=-4/27+55/58*I,n=12 2415797021072114 m001 Kolakoski^(2/3*Pi*3^(1/2)/GAMMA(2/3))-Otter 2415797021971270 m001 (BesselJ(0,1)-Chi(1))/(FellerTornier+Khinchin) 2415797024668820 a007 Real Root Of -177*x^4-360*x^3+99*x^2-383*x-550 2415797028253071 m001 TreeGrowth2nd^2/exp(Champernowne)/sin(1)^2 2415797033993091 r005 Re(z^2+c),c=-9/31+8/55*I,n=26 2415797037685509 m005 (1/2*5^(1/2)+6)/(9/10*exp(1)+1/2) 2415797039359455 m001 MertensB3^KhinchinHarmonic+BesselJ(0,1) 2415797040963432 a007 Real Root Of 456*x^4+758*x^3-737*x^2-38*x-635 2415797053408661 m001 (ArtinRank2+MasserGramainDelta*Salem)/Salem 2415797058137508 l006 ln(765/8567) 2415797065518882 r002 21th iterates of z^2 + 2415797092329618 m001 (ln(2)+arctan(1/3)*MertensB1)/arctan(1/3) 2415797104515785 a007 Real Root Of 40*x^4+939*x^3-697*x^2-888*x+160 2415797108893469 m006 (2/5*exp(2*Pi)+3/5)/(5/6*Pi^2+2/3) 2415797109324527 a007 Real Root Of -208*x^4+2*x^3+870*x^2-484*x+866 2415797112243116 r009 Re(z^3+c),c=-7/48+46/49*I,n=34 2415797115108041 r005 Re(z^2+c),c=-7/40+11/21*I,n=48 2415797119140625 r005 Im(z^2+c),c=-3/32+17/40*I,n=3 2415797128832982 a007 Real Root Of 8*x^4-464*x^3+760*x^2+553*x+498 2415797139842064 a005 (1/cos(3/85*Pi))^517 2415797148286956 a007 Real Root Of 16*x^4-337*x^3+581*x^2+302*x+86 2415797149453080 a007 Real Root Of -292*x^4-666*x^3-312*x^2-831*x+369 2415797151813843 p004 log(30697/24109) 2415797152337885 m003 1/60+(17*Sqrt[5])/32+Sinh[1/2+Sqrt[5]/2]/2 2415797160889995 a001 2971215073/5778*322^(2/3) 2415797168585669 r005 Im(z^2+c),c=-7/10+15/61*I,n=51 2415797171308327 m001 BesselI(0,2)/Sierpinski*Trott2nd 2415797171660778 a007 Real Root Of 136*x^4-13*x^3-877*x^2-394*x-649 2415797173553034 a001 32951280099/2207*123^(1/10) 2415797191362862 a007 Real Root Of 336*x^4+777*x^3-416*x^2-802*x+1 2415797193189103 m001 (Pi*csc(7/24*Pi)/GAMMA(17/24))^Khinchin*Salem 2415797213836486 m001 (Champernowne-Kac)/(TwinPrimes-ZetaP(2)) 2415797216589130 m005 (1/2*Zeta(3)+8/11)/(1/8*3^(1/2)+1/3) 2415797222693789 a001 7778742049/15127*322^(2/3) 2415797224349473 r005 Re(z^2+c),c=-9/31+8/55*I,n=24 2415797226000081 r005 Re(z^2+c),c=-13/90+34/59*I,n=46 2415797226080085 a001 39603/5*102334155^(17/21) 2415797231710841 a001 20365011074/39603*322^(2/3) 2415797233026412 a001 53316291173/103682*322^(2/3) 2415797233218351 a001 139583862445/271443*322^(2/3) 2415797233246354 a001 365435296162/710647*322^(2/3) 2415797233250440 a001 956722026041/1860498*322^(2/3) 2415797233251036 a001 2504730781961/4870847*322^(2/3) 2415797233251123 a001 6557470319842/12752043*322^(2/3) 2415797233251144 a001 10610209857723/20633239*322^(2/3) 2415797233251177 a001 4052739537881/7881196*322^(2/3) 2415797233251404 a001 1548008755920/3010349*322^(2/3) 2415797233252965 a001 514229*322^(2/3) 2415797233263661 a001 225851433717/439204*322^(2/3) 2415797233336976 a001 86267571272/167761*322^(2/3) 2415797233839479 a001 32951280099/64079*322^(2/3) 2415797237283686 a001 12586269025/24476*322^(2/3) 2415797243626412 b008 2/7-5*Cos[1] 2415797244973751 r005 Re(z^2+c),c=-19/122+30/53*I,n=47 2415797246914620 a001 141422324/5*4181^(17/21) 2415797254099617 a003 cos(Pi*29/110)-sin(Pi*37/100) 2415797255256913 s001 sum(exp(-Pi/2)^n*A208678[n],n=1..infinity) 2415797259633285 a007 Real Root Of 611*x^4-102*x^3+905*x^2-218*x-109 2415797260890636 a001 4807526976/9349*322^(2/3) 2415797261753742 a001 322/1346269*377^(23/59) 2415797279220566 m005 (1/2*exp(1)-6)/(11/12*3^(1/2)+1/3) 2415797283851681 m006 (4*exp(2*Pi)+3/4)/(Pi^2-1) 2415797284274151 r005 Im(z^2+c),c=-7/62+16/51*I,n=11 2415797286588118 h001 (1/12*exp(1)+1/3)/(4/5*exp(1)+1/7) 2415797291784713 a001 5/4*9349^(24/29) 2415797299451175 m001 Si(Pi)^Porter-ZetaQ(2) 2415797306686130 a001 1364/21*6765^(7/47) 2415797317436661 q001 1621/671 2415797317537236 m001 (Bloch-FeigenbaumMu)/GlaisherKinkelin 2415797318605434 r005 Re(z^2+c),c=-1/6+31/59*I,n=25 2415797320703942 r005 Im(z^2+c),c=-35/86+25/61*I,n=25 2415797323286114 m005 (1/2*3^(1/2)+3/5)/(8/9*Zeta(3)+5) 2415797324244389 g006 Psi(1,11/12)+Psi(1,2/9)+Psi(1,3/5)-Psi(1,7/10) 2415797328052301 a001 2/28657*610^(21/38) 2415797330555961 r002 26th iterates of z^2 + 2415797332995955 a007 Real Root Of -192*x^4-109*x^3+738*x^2+121*x+988 2415797338654387 a007 Real Root Of 463*x^4-855*x^3-333*x^2-613*x+178 2415797340210228 a001 2/98209*610^(35/47) 2415797343185926 m004 3+750/Pi-Tan[Sqrt[5]*Pi]/6 2415797345276993 a007 Real Root Of -245*x^4-469*x^3+530*x^2+519*x-107 2415797349780838 r009 Re(z^3+c),c=-3/28+41/57*I,n=19 2415797350952943 m001 PrimesInBinary^Psi(1,1/3)*ZetaP(3) 2415797356870366 r005 Im(z^2+c),c=-13/86+19/41*I,n=3 2415797369390916 h001 (2/5*exp(1)+3/7)/(4/5*exp(2)+4/11) 2415797370188566 r005 Re(z^2+c),c=1/6+19/54*I,n=11 2415797372344811 m001 exp(gamma)^2*GAMMA(5/24)*sqrt(3) 2415797373362217 l006 ln(7352/9361) 2415797391058668 m001 1/BesselK(1,1)^2/ln((3^(1/3)))^2*GAMMA(19/24) 2415797416187406 a001 11/21*377^(31/48) 2415797422100533 r009 Re(z^3+c),c=-41/110+28/61*I,n=48 2415797422695090 a001 1836311903/3571*322^(2/3) 2415797430391082 a007 Real Root Of 484*x^4-295*x^3+357*x^2-585*x+123 2415797438355597 l006 ln(307/3438) 2415797442016970 a007 Real Root Of 37*x^4+883*x^3-290*x^2-666*x+255 2415797443184400 a001 9349/1597*13^(21/38) 2415797444269767 m001 (Weierstrass-ZetaP(4))/(Zeta(5)-Khinchin) 2415797444610478 r009 Re(z^3+c),c=-19/50+24/53*I,n=9 2415797448995752 r005 Im(z^2+c),c=-1/3+25/63*I,n=15 2415797456036318 a007 Real Root Of -820*x^4-502*x^3+436*x^2+573*x-154 2415797456641662 m001 GAMMA(5/6)^(Pi^(1/2))+Salem 2415797457056431 m005 (-1/28+1/4*5^(1/2))/(8/9*2^(1/2)+10/11) 2415797461229831 a007 Real Root Of -368*x^4-580*x^3+437*x^2-655*x+224 2415797474830890 m001 (FeigenbaumD+Trott)/(cos(1/5*Pi)-ArtinRank2) 2415797478617697 h001 (10/11*exp(1)+1/3)/(2/11*exp(1)+2/3) 2415797480242199 m005 (1/3*3^(1/2)-1/4)/(6/7*2^(1/2)+1/7) 2415797495133392 m001 (2^(1/3)+Zeta(5))/(-Artin+PisotVijayaraghavan) 2415797501614240 r005 Im(z^2+c),c=-9/106+13/43*I,n=8 2415797532470172 m001 (BesselI(1,1)+Bloch)/(QuadraticClass-ZetaP(2)) 2415797534376808 r005 Im(z^2+c),c=-3/94+11/39*I,n=10 2415797540008983 m005 (1/3*Zeta(3)+1/4)/(7/9*Pi+1/4) 2415797550641941 m001 (-Cahen+ZetaP(3))/(3^(1/2)+exp(-1/2*Pi)) 2415797557129256 a007 Real Root Of 281*x^4-395*x^3-925*x^2-813*x+255 2415797561760478 m001 Sierpinski^HardyLittlewoodC3+sin(1/5*Pi) 2415797567899004 r009 Re(z^3+c),c=-19/48+30/59*I,n=48 2415797568299783 m001 FeigenbaumKappa^2/ln(Riemann1stZero)^2/Trott 2415797568621205 l006 ln(5471/6966) 2415797572608726 m001 1/GAMMA(1/4)^2/ln(BesselJ(0,1))^2/GAMMA(5/24) 2415797573051339 m001 HardyLittlewoodC3^MertensB2/sin(1/12*Pi) 2415797574375758 m005 (1/3*Catalan-1/5)/(1/8*Zeta(3)+2/7) 2415797575750111 m001 FeigenbaumB^ZetaQ(2)/HardyLittlewoodC5 2415797579096449 r009 Re(z^3+c),c=-23/78+7/25*I,n=9 2415797581044607 m001 (Landau+Porter)/(StronglyCareFree-Thue) 2415797597162533 a001 43133785636/2889*123^(1/10) 2415797620127121 a007 Real Root Of -670*x^4-621*x^3-541*x^2+190*x+71 2415797627670984 r005 Re(z^2+c),c=-9/44+41/59*I,n=7 2415797628009253 a007 Real Root Of 331*x^4+564*x^3-514*x^2+186*x+127 2415797628595805 a001 24476/4181*13^(21/38) 2415797634384685 r009 Re(z^3+c),c=-13/66+13/14*I,n=58 2415797637738914 m001 (Paris+ZetaQ(4))/(HardyLittlewoodC4+OneNinth) 2415797643476941 m001 1/Lehmer/ln(GlaisherKinkelin)^2/GAMMA(5/6) 2415797646944968 m001 (Ei(1)-gamma(3))/(Champernowne+TwinPrimes) 2415797655646966 a001 64079/10946*13^(21/38) 2415797658966338 a001 32264490531/2161*123^(1/10) 2415797664319227 r005 Re(z^2+c),c=-3/13+17/46*I,n=10 2415797667983392 a001 591286729879/39603*123^(1/10) 2415797669298962 a001 774004377960/51841*123^(1/10) 2415797669490901 a001 4052739537881/271443*123^(1/10) 2415797669518905 a001 1515744265389/101521*123^(1/10) 2415797669536212 a001 3278735159921/219602*123^(1/10) 2415797669609526 a001 2504730781961/167761*123^(1/10) 2415797670112030 a001 956722026041/64079*123^(1/10) 2415797672365504 a001 13201/2255*13^(21/38) 2415797673556238 a001 182717648081/12238*123^(1/10) 2415797676814764 a005 (1/sin(50/159*Pi))^158 2415797683593760 m001 (gamma(2)+AlladiGrinstead)/(Kac-Lehmer) 2415797690037614 m001 Otter^(Conway*GolombDickman) 2415797692765782 m002 -1+(12*E^Pi)/Log[Pi] 2415797693632856 r005 Im(z^2+c),c=7/114+6/25*I,n=10 2415797697163192 a001 139583862445/9349*123^(1/10) 2415797699362119 m001 (FeigenbaumB+FeigenbaumMu)/(Ei(1)+gamma(1)) 2415797704132680 m001 ln(gamma)^(PrimesInBinary/ZetaP(3)) 2415797705572041 m001 ln(PrimesInBinary)/MertensB1*GAMMA(1/3)^2 2415797705868139 m001 (3^(1/2)-GAMMA(19/24))/(Bloch+Tribonacci) 2415797707347937 m001 1/BesselK(0,1)/ln(Salem)*GAMMA(17/24)^2 2415797712179290 m005 (4/5*Pi-1/3)/(1/6*2^(1/2)+2/3) 2415797713313220 m005 (1/2*Pi+7/8)/(7/9*Catalan+3/10) 2415797716451816 a001 1/1353*(1/2*5^(1/2)+1/2)^28*11^(7/11) 2415797717145327 a001 165580141/843*322^(5/6) 2415797720880151 m001 BesselI(1,2)/(ThueMorse^Bloch) 2415797720914989 m005 (1/2*exp(1)+5/12)/(2/7*gamma-9/10) 2415797721757852 r005 Re(z^2+c),c=-9/31+8/55*I,n=22 2415797726508114 m001 1/Khintchine^2/FibonacciFactorial/exp(cosh(1)) 2415797728763519 m001 (Landau+Otter)/(ln(Pi)+GaussKuzminWirsing) 2415797729203832 a001 31622993/38*11^(4/9) 2415797729350549 m005 (1/2*Pi+6/7)/(4/7*5^(1/2)-3/11) 2415797743186367 a001 15127/2584*13^(21/38) 2415797747959288 r005 Im(z^2+c),c=-12/19+1/5*I,n=5 2415797755872864 m005 (1/2*exp(1)+3/5)/(1/4*gamma+2/3) 2415797770510326 r005 Re(z^2+c),c=-9/31+8/55*I,n=20 2415797774761555 a001 3/6557470319842*365435296162^(1/16) 2415797774761555 a001 3/4052739537881*165580141^(1/16) 2415797774766920 a001 3/2504730781961*75025^(1/16) 2415797776407150 m008 (Pi-5)/(4/5*Pi^4-1) 2415797790759198 a007 Real Root Of -218*x^4-355*x^3+280*x^2-55*x+653 2415797800408046 m001 arctan(1/3)/Artin*FransenRobinson 2415797802078245 a001 5/4*2207^(57/58) 2415797803831542 m001 (ThueMorse+ZetaQ(2))/(GAMMA(2/3)+Stephens) 2415797806090873 r005 Re(z^2+c),c=-9/31+8/55*I,n=19 2415797806134970 r001 38i'th iterates of 2*x^2-1 of 2415797813750594 a007 Real Root Of -467*x^4-894*x^3+766*x^2+115*x-891 2415797813908672 m006 (1/5*exp(2*Pi)-3/4)/(3/4*Pi^2-3) 2415797816104594 l006 ln(770/8623) 2415797818135565 r005 Im(z^2+c),c=-39/110+24/61*I,n=33 2415797820008477 m002 1+2/(5*E^Pi)+E^Pi 2415797823047927 s002 sum(A289947[n]/(n*exp(pi*n)+1),n=1..infinity) 2415797825875773 r005 Re(z^2+c),c=17/54+33/61*I,n=44 2415797827717504 a007 Real Root Of 256*x^4+326*x^3-570*x^2+237*x-224 2415797830328507 a007 Real Root Of 20*x^4-419*x^3+907*x^2-236*x+503 2415797836482913 a001 843/5*4807526976^(17/23) 2415797839688884 m001 1/ln((3^(1/3)))^2/KhintchineHarmonic^2*Pi^2 2415797850522263 a005 (1/sin(83/212*Pi))^1142 2415797854690128 r009 Re(z^3+c),c=-21/52+18/35*I,n=34 2415797856785381 a001 199/18*(1/2*5^(1/2)+1/2)^22*18^(13/22) 2415797858967675 a001 53316291173/3571*123^(1/10) 2415797867644605 r005 Re(z^2+c),c=-11/18+59/95*I,n=3 2415797874604504 b008 CosIntegral[ArcCoth[10]/2] 2415797881599383 m001 1/Tribonacci*Robbin^2/ln(GAMMA(1/3)) 2415797891263474 m005 (1/2*Pi+1/12)/(19/8+2*5^(1/2)) 2415797893660558 a007 Real Root Of -45*x^4+333*x^3+16*x^2-961*x-934 2415797905448176 a001 28143753123/610*1836311903^(16/17) 2415797905448191 a001 12752043/610*6557470319842^(16/17) 2415797918899498 a007 Real Root Of 190*x^4+616*x^3+527*x^2+46*x-751 2415797927760190 r005 Re(z^2+c),c=3/13+5/44*I,n=12 2415797930301075 r005 Re(z^2+c),c=7/24+8/47*I,n=49 2415797942379889 r005 Re(z^2+c),c=-23/78+13/59*I,n=5 2415797945304588 m001 (-TwinPrimes+ZetaP(4))/(Chi(1)-Gompertz) 2415797952884382 m004 -3-5*Csch[Sqrt[5]*Pi]+4*Sec[Sqrt[5]*Pi] 2415797957629347 r005 Im(z^2+c),c=-91/82+5/22*I,n=44 2415797957974824 r005 Im(z^2+c),c=5/56+14/61*I,n=5 2415797958803238 s002 sum(A121013[n]/(exp(2*pi*n)-1),n=1..infinity) 2415797965849796 q001 1/4139419 2415797966961546 m004 -3+4*Sec[Sqrt[5]*Pi]-5*Sech[Sqrt[5]*Pi] 2415797968494198 l006 ln(3590/4571) 2415797976123737 m001 (GAMMA(19/24)+Thue)/sin(1) 2415797985891673 r002 26th iterates of z^2 + 2415797996234449 a007 Real Root Of -279*x^4+986*x^3-302*x^2+781*x-184 2415797998005435 r002 7th iterates of z^2 + 2415798003729777 m001 exp(sqrt(2))*(ln(Pi)-sqrt(3)) 2415798007428675 r005 Re(z^2+c),c=-29/98+6/49*I,n=5 2415798016446642 m006 (5/6*Pi+3/5)/(1/4*exp(2*Pi)-2/3) 2415798018441053 r005 Im(z^2+c),c=-31/23+1/35*I,n=61 2415798019019659 m005 (1/2*Pi-1/3)/(1/12*exp(1)+2/7) 2415798026670313 m005 (1/2*3^(1/2)-6/11)/(5^(1/2)-10/11) 2415798029697631 a007 Real Root Of 292*x^4-512*x^3-873*x^2-169*x+98 2415798038517785 m001 (3^(1/2)*Bloch+FellerTornier)/Bloch 2415798055407493 b008 Pi+Csc[Pi/66] 2415798060756408 r005 Im(z^2+c),c=-11/18+1/125*I,n=10 2415798063413017 r005 Im(z^2+c),c=-31/86+25/64*I,n=14 2415798063691836 r005 Re(z^2+c),c=13/126+31/52*I,n=2 2415798066577393 l006 ln(463/5185) 2415798068413353 a001 377/123*9349^(7/31) 2415798088444402 a001 12238*2^(52/53) 2415798096939703 m001 (Zeta(3)-Zeta(1,2))/(MinimumGamma-Stephens) 2415798098609807 a007 Real Root Of 552*x^4+612*x^3+17*x^2-504*x-116 2415798101768873 m001 (-Backhouse+ReciprocalLucas)/(2^(1/3)+Chi(1)) 2415798110516699 r005 Re(z^2+c),c=-29/98+2/11*I,n=5 2415798112420548 r005 Im(z^2+c),c=7/25+1/20*I,n=11 2415798143207769 m005 (1/2*Zeta(3)+1/11)/(7/9*exp(1)+3/4) 2415798143805126 p004 log(15889/12479) 2415798155376417 m001 (Grothendieck+Stephens)/(2^(1/3)-5^(1/2)) 2415798155670138 p003 LerchPhi(1/64,1,7/169) 2415798158519567 a007 Real Root Of -469*x^4-172*x^3-52*x^2+973*x-228 2415798162634718 p003 LerchPhi(1/64,5,64/121) 2415798168212633 r005 Re(z^2+c),c=2/9+5/49*I,n=18 2415798172267951 m001 CareFree-Riemann3rdZero+ZetaR(2) 2415798174916697 r005 Re(z^2+c),c=31/118+19/47*I,n=25 2415798178654252 p001 sum(1/(421*n+388)/n/(512^n),n=1..infinity) 2415798184526587 a007 Real Root Of 307*x^4+634*x^3+966*x^2-184*x-5 2415798188703208 r005 Im(z^2+c),c=-6/19+22/57*I,n=12 2415798198557632 m001 1/exp(cos(Pi/12))/Robbin/cosh(1)^2 2415798198587407 r005 Im(z^2+c),c=-19/82+6/17*I,n=12 2415798200601430 m001 (GaussAGM-Niven)/(Pi^(1/2)+FeigenbaumC) 2415798203396925 r005 Re(z^2+c),c=3/44+19/29*I,n=19 2415798204503869 p001 sum((-1)^n/(328*n+171)/n/(8^n),n=1..infinity) 2415798211595117 m003 -1/2+(21*Sqrt[5])/64-Cos[1/2+Sqrt[5]/2]/6 2415798228599885 a001 1926/329*13^(21/38) 2415798238944614 r005 Im(z^2+c),c=-13/28+7/15*I,n=34 2415798242205553 m001 Khinchin-ln(5)+Totient 2415798245597343 a007 Real Root Of -162*x^4-151*x^3-373*x^2+765*x+205 2415798245811523 r002 51th iterates of z^2 + 2415798253210919 m005 (1/2*Zeta(3)+9/11)/(-65/84+1/12*5^(1/2)) 2415798262649351 h001 (5/7*exp(2)+3/11)/(3/5*exp(1)+2/3) 2415798264022999 r009 Re(z^3+c),c=-11/38+16/25*I,n=7 2415798266627542 m001 (GAMMA(23/24)+Otter)/(ln(gamma)-ln(3)) 2415798272486182 r005 Im(z^2+c),c=11/122+7/31*I,n=8 2415798284753939 a001 1/2204*(1/2*5^(1/2)+1/2)^15*76^(11/13) 2415798291264675 s002 sum(A281986[n]/(n^3*pi^n+1),n=1..infinity) 2415798292069508 a003 cos(Pi*18/73)-cos(Pi*35/102) 2415798300475852 a007 Real Root Of 562*x^4-262*x^3+182*x^2-918*x-238 2415798302753727 r005 Re(z^2+c),c=-1+31/188*I,n=62 2415798303216448 a001 144/64079*76^(17/31) 2415798305419882 m002 Pi^3*Csch[Pi]+20*ProductLog[Pi] 2415798307538229 m001 (ln(3)+RenyiParking)/LandauRamanujan 2415798308943398 a003 sin(Pi*4/65)/cos(Pi*17/82) 2415798314878779 m001 GAMMA(13/24)+StronglyCareFree 2415798331898005 r005 Re(z^2+c),c=-3/4+7/174*I,n=4 2415798332751487 a007 Real Root Of 35*x^4+883*x^3+899*x^2-186*x-867 2415798336622021 a001 102334155/199*199^(8/11) 2415798338248144 r005 Re(z^2+c),c=-5/46+43/45*I,n=7 2415798340632455 m001 Cahen*MertensB2-Pi*csc(7/24*Pi)/GAMMA(17/24) 2415798352417325 h001 (11/12*exp(2)+5/11)/(9/10*exp(1)+6/11) 2415798366449758 a001 1836311903/521*322^(1/3) 2415798378150900 l006 ln(619/6932) 2415798379422316 r005 Re(z^2+c),c=-5/32+21/38*I,n=37 2415798381346632 l006 ln(5299/6747) 2415798383769237 r009 Re(z^3+c),c=-43/118+26/59*I,n=41 2415798384362867 r005 Im(z^2+c),c=-7/48+17/38*I,n=3 2415798385394929 m005 (1/3*5^(1/2)-1/7)/(5/7*Pi+1/4) 2415798404019434 m001 (ln(2)/ln(10)+ln(2))/(-GAMMA(11/12)+Porter) 2415798410922872 m001 Otter^ZetaQ(4)/PrimesInBinary 2415798413193688 a001 682*28657^(43/54) 2415798423519608 m006 (3/5*ln(Pi)-5)/(1/4*Pi+1) 2415798424102355 m001 (ln(Pi)+Lehmer)/(PolyaRandomWalk3D-ThueMorse) 2415798425067980 b008 -26+(5/2)^(2/3) 2415798425695242 r005 Im(z^2+c),c=-7/11+4/49*I,n=20 2415798426143200 m004 (4*Sqrt[5])/Pi+(750*Coth[Sqrt[5]*Pi])/Pi 2415798430832100 m005 (1/2*Pi-9/11)/(1/3*3^(1/2)-8/9) 2415798445479482 m003 3+24*Log[1/2+Sqrt[5]/2]*Sec[1/2+Sqrt[5]/2] 2415798456681377 a001 76/7778742049*13^(6/17) 2415798469035501 a007 Real Root Of 220*x^4+177*x^3-675*x^2+489*x+123 2415798469364841 m006 (1/4/Pi+5/6)/(4*ln(Pi)-4/5) 2415798469973808 b008 ArcSinh[2+9^EulerGamma] 2415798476707078 a007 Real Root Of 282*x^4+713*x^3-367*x^2-684*x+937 2415798477955118 m008 (2/5*Pi^5+5/6)/(1/2*Pi^2+1/6) 2415798481281821 a007 Real Root Of 22*x^4-34*x^3-256*x^2-352*x-585 2415798481353213 r005 Im(z^2+c),c=-11/56+18/53*I,n=9 2415798493211847 a007 Real Root Of 902*x^4+953*x^3+197*x^2-916*x+22 2415798503132580 a007 Real Root Of -410*x^4-995*x^3-314*x^2-365*x+887 2415798508086053 r002 62th iterates of z^2 + 2415798509221611 a007 Real Root Of 244*x^4+118*x^3-971*x^2+640*x+566 2415798517077323 a007 Real Root Of 366*x^4+572*x^3-468*x^2+931*x+579 2415798524890230 r005 Im(z^2+c),c=-17/40+12/29*I,n=52 2415798526360708 m001 (exp(1)+Si(Pi))/(-Catalan+FransenRobinson) 2415798531719898 a001 701408733/1364*322^(2/3) 2415798535327246 a007 Real Root Of 772*x^4-934*x^3+608*x^2-927*x+199 2415798548493101 r008 a(0)=0,K{-n^6,(2*n+1)*(60+2*n^2+76*n)} 2415798550928041 a007 Real Root Of 738*x^4-994*x^3-232*x^2-919*x-225 2415798564290897 l006 ln(775/8679) 2415798564610607 a007 Real Root Of -394*x^4-799*x^3+352*x^2-85*x-105 2415798570261133 r005 Im(z^2+c),c=-23/34+11/70*I,n=27 2415798582484495 m005 (1/2*Catalan+4/11)/(1/4*Catalan+1/9) 2415798587515530 m001 (1-Ei(1,1))/(-sin(1/12*Pi)+LandauRamanujan2nd) 2415798589880165 r005 Im(z^2+c),c=4/13+20/47*I,n=53 2415798592839240 l006 ln(7008/8923) 2415798594247766 r005 Re(z^2+c),c=-7/27+8/37*I,n=4 2415798596893946 m001 (Ei(1,1)-polylog(4,1/2))/(MertensB3-Paris) 2415798602583401 s002 sum(A281986[n]/(n^3*pi^n-1),n=1..infinity) 2415798604989879 a003 cos(Pi*19/91)-cos(Pi*11/35) 2415798606375276 a005 (1/cos(6/203*Pi))^1271 2415798611791967 m006 (3/Pi-1/6)/(3/5*exp(2*Pi)+5) 2415798622108987 a001 47/591286729879*139583862445^(5/16) 2415798622108987 a001 47/53316291173*63245986^(5/16) 2415798622292843 a001 1/102287808*28657^(5/16) 2415798624392069 a007 Real Root Of 309*x^4+619*x^3-447*x^2+64*x+966 2415798628476779 r005 Re(z^2+c),c=-11/60+17/33*I,n=26 2415798675759950 r005 Re(z^2+c),c=37/102+6/11*I,n=4 2415798678943590 a001 701408733/2207*322^(3/4) 2415798694116628 a001 24157817+76*5^(1/2) 2415798696560185 r005 Re(z^2+c),c=-5/21+19/50*I,n=9 2415798701718481 r005 Im(z^2+c),c=-61/114+21/55*I,n=6 2415798730801636 r005 Im(z^2+c),c=13/30+1/6*I,n=7 2415798749841920 r009 Re(z^3+c),c=-15/82+57/64*I,n=54 2415798764259385 m001 BesselI(0,2)^exp(1/Pi)/GAMMA(17/24) 2415798769932858 m001 (Zeta(3)-exp(-1/2*Pi))/(GAMMA(11/12)-Porter) 2415798771850668 m001 1/GAMMA(2/3)^2*exp(Catalan)*sqrt(Pi) 2415798774359374 a007 Real Root Of 391*x^4+841*x^3+58*x^2+988*x+588 2415798796624383 m001 (-OneNinth+Salem)/(exp(1)+Niven) 2415798799923951 a003 cos(Pi*30/97)/cos(Pi*17/40) 2415798801366377 a007 Real Root Of 229*x^4+755*x^3+562*x^2+392*x+512 2415798835067824 r005 Re(z^2+c),c=17/82+6/11*I,n=17 2415798839545148 b008 (-3*Pi)/7+Cosh[2] 2415798846031858 m001 (gamma(2)+gamma(3))/(Khinchin+PlouffeB) 2415798855616340 a007 Real Root Of 93*x^4+46*x^3-867*x^2-928*x+299 2415798856339843 a007 Real Root Of -530*x^4-836*x^3+652*x^2-760*x+624 2415798869439621 b008 1/5+KelvinBer[2,Sqrt[2]] 2415798870003985 r005 Re(z^2+c),c=27/110+26/45*I,n=61 2415798874990035 r009 Re(z^3+c),c=-17/118+53/59*I,n=46 2415798893728005 p004 log(15667/1399) 2415798895751885 p001 sum(1/(406*n+131)/n/(8^n),n=1..infinity) 2415798914327916 a005 (1/sin(53/123*Pi))^231 2415798916118096 a007 Real Root Of -453*x^4-938*x^3+607*x^2+510*x-106 2415798919240262 m001 (-MertensB1+Weierstrass)/(2^(1/3)-Psi(1,1/3)) 2415798928546257 m001 ln(KhintchineHarmonic)/CareFree^2*Porter^2 2415798948186278 m001 (1+ln(Pi))/(BesselI(1,1)+FellerTornier) 2415798950478120 r005 Re(z^2+c),c=-6/17+27/49*I,n=6 2415798961447537 a007 Real Root Of 470*x^4+890*x^3-604*x^2+140*x+403 2415798967992683 a001 10182505537/682*123^(1/10) 2415798979462275 a001 15127/2*987^(46/55) 2415798981437815 r009 Re(z^3+c),c=-9/32+12/49*I,n=14 2415798995891545 m005 (-9/44+1/4*5^(1/2))/(3/4*Pi-8/9) 2415799003807130 m001 (-CopelandErdos+Totient)/(exp(1)+Si(Pi)) 2415799004941780 m005 (1/2*exp(1)-8/9)/(7/8*Zeta(3)-6/7) 2415799008420984 a001 2889*1597^(52/57) 2415799014472523 a001 73681302247/1597*1836311903^(16/17) 2415799014472525 a001 33385282/1597*6557470319842^(16/17) 2415799017390188 b008 1/25+ArcCsch[3/16] 2415799020038858 m001 cos(1)^(ReciprocalFibonacci/Backhouse) 2415799021921806 m001 -Zeta(5)/(GAMMA(1/4)+2/3) 2415799021921806 m001 Zeta(5)/(GAMMA(1/4)+2/3) 2415799028076528 a007 Real Root Of -173*x^4-355*x^3-27*x^2-548*x-279 2415799029805894 r005 Im(z^2+c),c=5/17+1/16*I,n=35 2415799035573526 m001 CopelandErdos*ln(3)^MertensB1 2415799037203995 r009 Re(z^3+c),c=-43/110+19/45*I,n=2 2415799045598573 m001 BesselI(1,2)/(HardyLittlewoodC4-cos(1/12*Pi)) 2415799050185191 m001 (ln(gamma)+MinimumGamma)/(exp(1)+Shi(1)) 2415799074694212 m001 (Otter+ThueMorse)/(gamma(2)+OrthogonalArrays) 2415799085356046 r009 Re(z^3+c),c=-63/122+26/43*I,n=18 2415799095439888 m001 exp(Pi)+HardyLittlewoodC4+Rabbit 2415799102553352 a001 1836311903/5778*322^(3/4) 2415799133066323 q001 1/4139417 2415799139153627 a001 317811/11*1364^(55/59) 2415799142682180 q001 789/3266 2415799147018403 r002 17th iterates of z^2 + 2415799155280617 m001 1/exp(PisotVijayaraghavan)^2*Niven^2*Trott^2 2415799155318356 m002 E^Pi+E^Pi/(Pi^6*Log[Pi])+Tanh[Pi] 2415799155926176 a003 cos(Pi*4/113)-sin(Pi*29/107) 2415799164357196 a001 686789568/2161*322^(3/4) 2415799167886180 r002 39th iterates of z^2 + 2415799173374255 a001 12586269025/39603*322^(3/4) 2415799174258223 r005 Re(z^2+c),c=-15/58+9/31*I,n=9 2415799174689826 a001 32951280099/103682*322^(3/4) 2415799174881766 a001 86267571272/271443*322^(3/4) 2415799174909769 a001 317811*322^(3/4) 2415799174913855 a001 591286729879/1860498*322^(3/4) 2415799174914451 a001 1548008755920/4870847*322^(3/4) 2415799174914538 a001 4052739537881/12752043*322^(3/4) 2415799174914551 a001 1515744265389/4769326*322^(3/4) 2415799174914559 a001 6557470319842/20633239*322^(3/4) 2415799174914592 a001 2504730781961/7881196*322^(3/4) 2415799174914819 a001 956722026041/3010349*322^(3/4) 2415799174916380 a001 365435296162/1149851*322^(3/4) 2415799174927076 a001 139583862445/439204*322^(3/4) 2415799175000391 a001 53316291173/167761*322^(3/4) 2415799175502894 a001 20365011074/64079*322^(3/4) 2415799176277079 a001 192900153618/4181*1836311903^(16/17) 2415799176277080 a001 87403803/4181*6557470319842^(16/17) 2415799178835292 a007 Real Root Of 718*x^4-53*x^3+106*x^2-996*x+24 2415799178947105 a001 7778742049/24476*322^(3/4) 2415799182387001 m001 1/Pi*ln(Champernowne)^2*log(2+sqrt(3))^2 2415799187543537 r005 Im(z^2+c),c=3/11+6/61*I,n=12 2415799199884048 a001 505019158607/10946*1836311903^(16/17) 2415799199884048 a001 228826127/10946*6557470319842^(16/17) 2415799202260546 m005 (1/2*2^(1/2)+5/11)/(3/4*3^(1/2)-9/11) 2415799202554073 a001 2971215073/9349*322^(3/4) 2415799203328258 a001 1322157322203/28657*1836311903^(16/17) 2415799203328258 a001 599074578/28657*6557470319842^(16/17) 2415799203830762 a001 3461452808002/75025*1836311903^(16/17) 2415799203830762 a001 1568397607/75025*6557470319842^(16/17) 2415799203904076 a001 9062201101803/196418*1836311903^(16/17) 2415799203904076 a001 4106118243/196418*6557470319842^(16/17) 2415799203914772 a001 23725150497407/514229*1836311903^(16/17) 2415799203914772 a001 10749957122/514229*6557470319842^(16/17) 2415799203916333 a001 28143753123/1346269*6557470319842^(16/17) 2415799203916561 a001 73681302247/3524578*6557470319842^(16/17) 2415799203916594 a001 192900153618/9227465*6557470319842^(16/17) 2415799203916599 a001 505019158607/24157817*6557470319842^(16/17) 2415799203916599 a001 1322157322203/63245986*6557470319842^(16/17) 2415799203916599 a001 3461452808002/165580141*6557470319842^(16/17) 2415799203916600 a001 9062201101803/433494437*6557470319842^(16/17) 2415799203916600 a001 14662949395604/701408733*6557470319842^(16/17) 2415799203916600 a001 5600748293801/267914296*6557470319842^(16/17) 2415799203916600 a001 2139295485799/102334155*6557470319842^(16/17) 2415799203916600 a001 87403804/4181*6557470319842^(16/17) 2415799203916602 a001 312119004989/14930352*6557470319842^(16/17) 2415799203916614 a001 119218851371/5702887*6557470319842^(16/17) 2415799203916701 a001 45537549124/2178309*6557470319842^(16/17) 2415799203917297 a001 17393796001/832040*6557470319842^(16/17) 2415799203921383 a001 505618944676/10959*1836311903^(16/17) 2415799203921383 a001 6643838879/317811*6557470319842^(16/17) 2415799203949387 a001 2537720636/121393*6557470319842^(16/17) 2415799203949387 a001 5600748293801/121393*1836311903^(16/17) 2415799204141326 a001 969323029/46368*6557470319842^(16/17) 2415799204141326 a001 2139295485799/46368*1836311903^(16/17) 2415799205456897 a001 370248451/17711*6557470319842^(16/17) 2415799205456897 a001 817138163596/17711*1836311903^(16/17) 2415799214473957 a001 141422324/6765*6557470319842^(16/17) 2415799214473957 a001 28374454999/615*1836311903^(16/17) 2415799226512890 r009 Im(z^3+c),c=-11/56+15/64*I,n=10 2415799240331705 m001 (Chi(1)-exp(1/Pi))/(-Zeta(1,2)+GAMMA(17/24)) 2415799248602423 l006 ln(1709/2176) 2415799251712713 r005 Re(z^2+c),c=-5/18+13/25*I,n=11 2415799251771398 m001 GAMMA(7/12)*(Champernowne-OneNinth) 2415799262228749 m001 (FellerTornier-Paris)/(Weierstrass+ZetaP(2)) 2415799266548261 m001 Conway*HardyLittlewoodC5-StronglyCareFree 2415799273857388 r009 Re(z^3+c),c=-13/122+31/54*I,n=2 2415799275471723 m005 (1/2*gamma-7/9)/(7/9*5^(1/2)+2/7) 2415799276277805 a001 54018521/2584*6557470319842^(16/17) 2415799276277806 a001 119218851371/2584*1836311903^(16/17) 2415799277978335 r005 Re(z^2+c),c=-9/106+15/17*I,n=27 2415799278044643 m001 GAMMA(1/3)/(Pi^exp(sqrt(2))) 2415799280555127 m001 (-Porter+Riemann1stZero)/(Psi(2,1/3)+Khinchin) 2415799283258510 m005 (1/2*2^(1/2)-1/7)/(7/12*exp(1)+3/4) 2415799284376558 r005 Im(z^2+c),c=13/48+5/54*I,n=14 2415799294345204 r005 Im(z^2+c),c=-33/98+25/64*I,n=20 2415799294654072 m006 (2*ln(Pi)+3)/(3/4*Pi-1/6) 2415799302098637 m005 (1/2*Catalan+3/10)/(7/33+1/22*5^(1/2)) 2415799302884519 l006 ln(156/1747) 2415799306025237 r009 Re(z^3+c),c=-29/70+19/35*I,n=55 2415799318610027 r005 Im(z^2+c),c=43/118+10/61*I,n=15 2415799321990470 m001 (Pi^(1/2)+GolombDickman)/(Porter-Weierstrass) 2415799340640026 m001 (-GAMMA(11/12)+Cahen)/(gamma+GAMMA(5/6)) 2415799344330585 m001 TreeGrowth2nd-sin(1)*CopelandErdos 2415799349538595 m001 (Conway+FransenRobinson)/(Magata-Niven) 2415799351636348 m001 1/Porter*Kolakoski^2/exp(gamma) 2415799364358657 a001 1134903170/3571*322^(3/4) 2415799368088566 r005 Im(z^2+c),c=-37/94+17/42*I,n=48 2415799373816152 a007 Real Root Of 201*x^4+163*x^3-726*x^2-118*x-596 2415799378241865 a007 Real Root Of -452*x^4-962*x^3+450*x^2-62*x-944 2415799384433330 r002 10th iterates of z^2 + 2415799407792898 r005 Re(z^2+c),c=-6/23+11/39*I,n=9 2415799417829302 s002 sum(A235666[n]/((2*n+1)!),n=1..infinity) 2415799428863015 a007 Real Root Of -128*x^4-431*x^3-53*x^2+836*x+612 2415799432659943 m001 1/Magata^2*GlaisherKinkelin^2*ln(Robbin)^2 2415799442230593 p001 sum(1/(420*n+389)/n/(512^n),n=1..infinity) 2415799449119155 a007 Real Root Of -392*x^4-989*x^3-96*x^2+24*x+26 2415799454686995 s002 sum(A023928[n]/(n*pi^n+1),n=1..infinity) 2415799465114974 a007 Real Root Of -285*x^4-400*x^3+532*x^2-288*x+267 2415799468555680 m005 (1/2*2^(1/2)-4/9)/(5/11*2^(1/2)+4/9) 2415799473173119 m001 1/sin(Pi/5)^2/exp(LaplaceLimit)^2*sqrt(Pi)^2 2415799482686784 m001 ln(Trott)^2*Backhouse^2*GAMMA(1/6) 2415799493689138 a007 Real Root Of 81*x^4-345*x^3+387*x^2-680*x-192 2415799493883872 m001 1/BesselK(0,1)^2*exp(TreeGrowth2nd)/GAMMA(1/4) 2415799499616123 a001 233/521*(1/2+1/2*5^(1/2))^37 2415799500739331 r005 Im(z^2+c),c=-5/6+41/223*I,n=49 2415799509779521 r005 Re(z^2+c),c=-11/50+13/31*I,n=39 2415799509812390 a003 cos(Pi*23/100)-cos(Pi*35/106) 2415799510833225 m001 Riemann2ndZero/exp(Rabbit)*GAMMA(7/12)^2 2415799513162138 m009 (3*Pi^2-3/4)/(2/3*Psi(1,3/4)-1/2) 2415799515651234 m001 (sin(1/5*Pi)+Artin)/(DuboisRaymond-Lehmer) 2415799516970293 m001 (Zeta(3)+cos(1/12*Pi))/(CopelandErdos+Robbin) 2415799519723271 m006 (1/6*ln(Pi)+4)/(5/6/Pi-2) 2415799522856083 m001 ln(GAMMA(11/24))*(3^(1/3))^2/LambertW(1) 2415799523498187 m001 BesselI(1,1)-gamma(2)^ZetaQ(2) 2415799529780597 h001 (10/11*exp(1)+2/5)/(1/10*exp(1)+11/12) 2415799532690479 a007 Real Root Of -215*x^4-265*x^3+956*x^2+937*x+271 2415799558357902 r005 Im(z^2+c),c=-9/98+11/36*I,n=11 2415799565432439 r005 Re(z^2+c),c=-55/74+58/61*I,n=3 2415799573243953 m001 cosh(1)^2*OneNinth^2*exp(sqrt(5))^2 2415799578034467 m001 (BesselJ(1,1)-exp(1))/(-HardyLittlewoodC3+Kac) 2415799578100627 m001 gamma(3)^(2/3*Pi*3^(1/2)/GAMMA(2/3))/MertensB1 2415799582470094 g004 Re(GAMMA(17/12+I*53/30)) 2415799582625223 r005 Re(z^2+c),c=-6/29+30/49*I,n=41 2415799584505866 a007 Real Root Of 222*x^4+252*x^3-716*x^2-205*x-325 2415799593283933 r005 Im(z^2+c),c=-45/62+5/13*I,n=6 2415799595171348 m001 cos(Pi/12)-exp(sqrt(2))^BesselI(0,2) 2415799604205970 m001 1/cos(1)/GAMMA(1/12)^2*ln(sin(1)) 2415799610944653 a007 Real Root Of -323*x^4-570*x^3+23*x^2-810*x+874 2415799611593294 m001 1/GAMMA(3/4)*ArtinRank2*ln(GAMMA(7/12)) 2415799612827234 m001 (Kac-Paris)/(Porter+TravellingSalesman) 2415799614109475 a005 (1/cos(13/144*Pi))^1603 2415799614370184 r005 Re(z^2+c),c=11/70+34/61*I,n=17 2415799616491419 l006 ln(7484/7667) 2415799617360473 m001 1/(3^(1/3))*KhintchineLevy/exp(GAMMA(3/4)) 2415799618002638 m001 (GAMMA(13/24)+Thue)/(Zeta(3)-ln(3)) 2415799633206838 r009 Re(z^3+c),c=-39/98+16/31*I,n=49 2415799635487512 p004 log(19273/1721) 2415799636382422 r005 Re(z^2+c),c=19/82+17/32*I,n=17 2415799640507531 m005 (1/3*Catalan-3/4)/(4/9*Pi+4/9) 2415799654934946 m001 (ln(Pi)+exp(-1/2*Pi))/(OneNinth+ZetaP(2)) 2415799658017819 r005 Im(z^2+c),c=-57/98+22/57*I,n=47 2415799658809131 a001 34111385/281*322^(11/12) 2415799662502266 a001 341/646*832040^(37/47) 2415799664468082 a001 2/3*29^(13/34) 2415799675868990 a007 Real Root Of 54*x^4-68*x^3-609*x^2-609*x-715 2415799676620787 h001 (2/9*exp(1)+5/7)/(8/11*exp(2)+1/12) 2415799680825388 r005 Re(z^2+c),c=-29/28+10/41*I,n=30 2415799686250875 a007 Real Root Of 449*x^4+941*x^3+30*x^2+962*x+123 2415799690386515 r005 Im(z^2+c),c=-13/46+13/35*I,n=33 2415799695318682 r005 Re(z^2+c),c=-5/18+7/31*I,n=7 2415799699887767 a001 20633239/987*6557470319842^(16/17) 2415799699887772 a001 45537549124/987*1836311903^(16/17) 2415799707151300 m001 FeigenbaumAlpha-sin(1/5*Pi)*FeigenbaumDelta 2415799707151300 m001 FeigenbaumAlpha-sin(Pi/5)*FeigenbaumDelta 2415799709351721 a007 Real Root Of 188*x^4+637*x^3+877*x^2+884*x-405 2415799712857103 a001 1597/47*199^(29/36) 2415799723990798 a007 Real Root Of -269*x^4+975*x^3+387*x^2-10*x-33 2415799731736432 r009 Re(z^3+c),c=-41/106+24/49*I,n=57 2415799736583106 m001 GAMMA(2/3)^2*Khintchine^2*ln(sin(Pi/12))^2 2415799768544166 m005 (1/2*gamma+7/9)/(2^(1/2)+3) 2415799770625806 r005 Im(z^2+c),c=-27/94+22/59*I,n=33 2415799773138888 m001 1/GAMMA(11/12)^2/Robbin*exp(gamma) 2415799783886493 a007 Real Root Of 81*x^4+231*x^3+228*x^2+206*x-335 2415799793906574 a003 sin(Pi*36/107)/cos(Pi*44/115) 2415799798342452 m001 exp(Zeta(3))^2/Sierpinski/sqrt(Pi) 2415799799991620 m001 (Kac-Mills)/(gamma(2)-FransenRobinson) 2415799804804872 m004 -3+5*Cos[Sqrt[5]*Pi]-(5*Log[Sqrt[5]*Pi])/Pi 2415799805454702 m003 3/8+(5*Sqrt[5])/64-Tanh[1/2+Sqrt[5]/2]/3 2415799806110977 m001 (sin(1/12*Pi)-Artin)/(Weierstrass+ZetaQ(4)) 2415799808410678 m002 1/3+(Pi^6*Coth[Pi])/4 2415799815513839 r005 Im(z^2+c),c=9/32+5/63*I,n=25 2415799834106397 r009 Re(z^3+c),c=-15/86+31/42*I,n=14 2415799834364749 m005 (1/2*Zeta(3)-11/12)/(2/11*5^(1/2)+9/10) 2415799850334582 a001 1730726404001/305*1836311903^(14/17) 2415799850334582 a001 4106118243/610*6557470319842^(14/17) 2415799862889784 p001 sum(1/(341*n+85)/n/(10^n),n=1..infinity) 2415799866859720 m001 1/Zeta(5)^2*GAMMA(7/12)/exp(sqrt(Pi)) 2415799868735097 a007 Real Root Of -604*x^4+163*x^3-398*x^2+188*x+73 2415799879330194 a007 Real Root Of 27*x^4+686*x^3+779*x^2-847*x+517 2415799883907905 p004 log(27631/21701) 2415799891295011 m001 (-LambertW(1)+GAMMA(23/24))/(Shi(1)+sin(1)) 2415799903829686 a005 (1/sin(86/191*Pi))^1199 2415799904757296 a007 Real Root Of 407*x^4+877*x^3-573*x^2-554*x+508 2415799905178768 m005 (1/2*Pi+1/8)/(10/11*gamma-5/11) 2415799907918137 r009 Im(z^3+c),c=-33/86+5/32*I,n=10 2415799908835252 r009 Im(z^3+c),c=-9/46+4/17*I,n=3 2415799916007921 m001 (Pi-1)/(Trott2nd+Thue) 2415799916192462 a007 Real Root Of 530*x^4+939*x^3-826*x^2+352*x+858 2415799918652031 m001 (3^(1/2)+Catalan)/(GaussAGM+MertensB1) 2415799918771543 r005 Im(z^2+c),c=-65/94+13/28*I,n=7 2415799938216480 l006 ln(6664/8485) 2415799942481565 a003 sin(Pi*3/52)-sin(Pi*14/101) 2415799943977605 a007 Real Root Of 398*x^4+644*x^3-983*x^2-485*x+89 2415799974392075 r002 63th iterates of z^2 + 2415799988412745 m001 1/TwinPrimes*exp(CopelandErdos)*(2^(1/3))