2584000000000000 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^87/Lucas(87) 2584000000000000 a004 Fibonacci(18)*Lucas(86)/(1/2+sqrt(5)/2)^86 2584000000000000 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^85/Lucas(85) 2584000000000000 a004 Fibonacci(18)*Lucas(84)/(1/2+sqrt(5)/2)^84 2584000000000000 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^83/Lucas(83) 2584000000000000 a004 Fibonacci(18)*Lucas(82)/(1/2+sqrt(5)/2)^82 2584000000000000 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^81/Lucas(81) 2584000000000000 a004 Fibonacci(18)*Lucas(80)/(1/2+sqrt(5)/2)^80 2584000000000000 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^79/Lucas(79) 2584000000000000 a004 Fibonacci(18)*Lucas(78)/(1/2+sqrt(5)/2)^78 2584000000000000 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^77/Lucas(77) 2584000000000000 a004 Fibonacci(18)*Lucas(76)/(1/2+sqrt(5)/2)^76 2584000000000000 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^75/Lucas(75) 2584000000000000 a004 Fibonacci(18)*Lucas(74)/(1/2+sqrt(5)/2)^74 2584000000000000 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^73/Lucas(73) 2584000000000000 a004 Fibonacci(18)*Lucas(72)/(1/2+sqrt(5)/2)^72 2584000000000000 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^71/Lucas(71) 2584000000000000 a004 Fibonacci(18)*Lucas(70)/(1/2+sqrt(5)/2)^70 2584000000000000 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^69/Lucas(69) 2584000000000000 a004 Fibonacci(18)*Lucas(68)/(1/2+sqrt(5)/2)^68 2584000000000000 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^67/Lucas(67) 2584000000000000 a004 Fibonacci(18)*Lucas(66)/(1/2+sqrt(5)/2)^66 2584000000000000 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^65/Lucas(65) 2584000000000000 a004 Fibonacci(18)*Lucas(64)/(1/2+sqrt(5)/2)^64 2584000000000000 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^63/Lucas(63) 2584000000000000 a004 Fibonacci(18)*Lucas(62)/(1/2+sqrt(5)/2)^62 2584000000000000 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^61/Lucas(61) 2584000000000000 a004 Fibonacci(18)*Lucas(60)/(1/2+sqrt(5)/2)^60 2584000000000000 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^59/Lucas(59) 2584000000000000 a004 Fibonacci(18)*Lucas(58)/(1/2+sqrt(5)/2)^58 2584000000000000 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^57/Lucas(57) 2584000000000000 a004 Fibonacci(18)*Lucas(56)/(1/2+sqrt(5)/2)^56 2584000000000000 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^55/Lucas(55) 2584000000000000 a001 2584/312119004989*3461452808002^(11/12) 2584000000000000 a004 Fibonacci(18)*Lucas(54)/(1/2+sqrt(5)/2)^54 2584000000000000 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^53/Lucas(53) 2584000000000000 a004 Fibonacci(18)*Lucas(52)/(1/2+sqrt(5)/2)^52 2584000000000000 a001 646/11384387281*817138163596^(17/19) 2584000000000000 a001 646/11384387281*14662949395604^(17/21) 2584000000000000 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^51/Lucas(51) 2584000000000000 a001 646/11384387281*192900153618^(17/18) 2584000000000000 a004 Fibonacci(18)*Lucas(50)/(1/2+sqrt(5)/2)^50 2584000000000000 a001 2584/17393796001*14662949395604^(7/9) 2584000000000000 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^49/Lucas(49) 2584000000000000 a001 2584/17393796001*505019158607^(7/8) 2584000000000000 a004 Fibonacci(18)*Lucas(48)/(1/2+sqrt(5)/2)^48 2584000000000000 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^47/Lucas(47) 2584000000000000 a004 Fibonacci(18)*Lucas(46)/(1/2+sqrt(5)/2)^46 2584000000000000 a001 34/33391061*45537549124^(15/17) 2584000000000000 a001 34/33391061*312119004989^(9/11) 2584000000000000 a001 34/33391061*14662949395604^(5/7) 2584000000000000 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^45/Lucas(45) 2584000000000000 a001 34/33391061*192900153618^(5/6) 2584000000000000 a001 34/33391061*28143753123^(9/10) 2584000000000000 a001 34/33391061*10749957122^(15/16) 2584000000000000 a004 Fibonacci(18)*Lucas(44)/(1/2+sqrt(5)/2)^44 2584000000000000 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^43/Lucas(43) 2584000000000000 a004 Fibonacci(18)*Lucas(42)/(1/2+sqrt(5)/2)^42 2584000000000000 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^41/Lucas(41) 2584000000000000 a004 Fibonacci(18)*Lucas(40)/(1/2+sqrt(5)/2)^40 2584000000000000 a001 646/35355581*2537720636^(13/15) 2584000000000000 a001 646/35355581*45537549124^(13/17) 2584000000000000 a001 646/35355581*14662949395604^(13/21) 2584000000000000 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^39/Lucas(39) 2584000000000000 a001 646/35355581*192900153618^(13/18) 2584000000000000 a001 646/35355581*73681302247^(3/4) 2584000000000000 a001 646/35355581*10749957122^(13/16) 2584000000000000 a001 646/35355581*599074578^(13/14) 2584000000000000 a004 Fibonacci(18)*Lucas(38)/(1/2+sqrt(5)/2)^38 2584000000000000 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^37/Lucas(37) 2584000000000001 a004 Fibonacci(38)/Lucas(18)/(1/2+sqrt(5)/2)^2 2584000000000002 a004 Fibonacci(40)/Lucas(18)/(1/2+sqrt(5)/2)^4 2584000000000002 a004 Fibonacci(42)/Lucas(18)/(1/2+sqrt(5)/2)^6 2584000000000002 a004 Fibonacci(44)/Lucas(18)/(1/2+sqrt(5)/2)^8 2584000000000002 a004 Fibonacci(46)/Lucas(18)/(1/2+sqrt(5)/2)^10 2584000000000002 a004 Fibonacci(48)/Lucas(18)/(1/2+sqrt(5)/2)^12 2584000000000002 a004 Fibonacci(50)/Lucas(18)/(1/2+sqrt(5)/2)^14 2584000000000002 a004 Fibonacci(52)/Lucas(18)/(1/2+sqrt(5)/2)^16 2584000000000002 a004 Fibonacci(54)/Lucas(18)/(1/2+sqrt(5)/2)^18 2584000000000002 a004 Fibonacci(56)/Lucas(18)/(1/2+sqrt(5)/2)^20 2584000000000002 a004 Fibonacci(58)/Lucas(18)/(1/2+sqrt(5)/2)^22 2584000000000002 a004 Fibonacci(60)/Lucas(18)/(1/2+sqrt(5)/2)^24 2584000000000002 a004 Fibonacci(62)/Lucas(18)/(1/2+sqrt(5)/2)^26 2584000000000002 a004 Fibonacci(64)/Lucas(18)/(1/2+sqrt(5)/2)^28 2584000000000002 a004 Fibonacci(66)/Lucas(18)/(1/2+sqrt(5)/2)^30 2584000000000002 a004 Fibonacci(68)/Lucas(18)/(1/2+sqrt(5)/2)^32 2584000000000002 a004 Fibonacci(70)/Lucas(18)/(1/2+sqrt(5)/2)^34 2584000000000002 a004 Fibonacci(18)*Lucas(36)/(1/2+sqrt(5)/2)^36 2584000000000002 a004 Fibonacci(74)/Lucas(18)/(1/2+sqrt(5)/2)^38 2584000000000002 a004 Fibonacci(76)/Lucas(18)/(1/2+sqrt(5)/2)^40 2584000000000002 a004 Fibonacci(78)/Lucas(18)/(1/2+sqrt(5)/2)^42 2584000000000002 a004 Fibonacci(80)/Lucas(18)/(1/2+sqrt(5)/2)^44 2584000000000002 a004 Fibonacci(82)/Lucas(18)/(1/2+sqrt(5)/2)^46 2584000000000002 a004 Fibonacci(84)/Lucas(18)/(1/2+sqrt(5)/2)^48 2584000000000002 a004 Fibonacci(86)/Lucas(18)/(1/2+sqrt(5)/2)^50 2584000000000002 a004 Fibonacci(88)/Lucas(18)/(1/2+sqrt(5)/2)^52 2584000000000002 a004 Fibonacci(90)/Lucas(18)/(1/2+sqrt(5)/2)^54 2584000000000002 a004 Fibonacci(92)/Lucas(18)/(1/2+sqrt(5)/2)^56 2584000000000002 a004 Fibonacci(94)/Lucas(18)/(1/2+sqrt(5)/2)^58 2584000000000002 a004 Fibonacci(96)/Lucas(18)/(1/2+sqrt(5)/2)^60 2584000000000002 a004 Fibonacci(98)/Lucas(18)/(1/2+sqrt(5)/2)^62 2584000000000002 a004 Fibonacci(100)/Lucas(18)/(1/2+sqrt(5)/2)^64 2584000000000002 a004 Fibonacci(97)/Lucas(18)/(1/2+sqrt(5)/2)^61 2584000000000002 a004 Fibonacci(99)/Lucas(18)/(1/2+sqrt(5)/2)^63 2584000000000002 a004 Fibonacci(95)/Lucas(18)/(1/2+sqrt(5)/2)^59 2584000000000002 a004 Fibonacci(93)/Lucas(18)/(1/2+sqrt(5)/2)^57 2584000000000002 a004 Fibonacci(91)/Lucas(18)/(1/2+sqrt(5)/2)^55 2584000000000002 a004 Fibonacci(89)/Lucas(18)/(1/2+sqrt(5)/2)^53 2584000000000002 a004 Fibonacci(87)/Lucas(18)/(1/2+sqrt(5)/2)^51 2584000000000002 a004 Fibonacci(85)/Lucas(18)/(1/2+sqrt(5)/2)^49 2584000000000002 a004 Fibonacci(83)/Lucas(18)/(1/2+sqrt(5)/2)^47 2584000000000002 a004 Fibonacci(81)/Lucas(18)/(1/2+sqrt(5)/2)^45 2584000000000002 a004 Fibonacci(79)/Lucas(18)/(1/2+sqrt(5)/2)^43 2584000000000002 a004 Fibonacci(77)/Lucas(18)/(1/2+sqrt(5)/2)^41 2584000000000002 a004 Fibonacci(75)/Lucas(18)/(1/2+sqrt(5)/2)^39 2584000000000002 a004 Fibonacci(73)/Lucas(18)/(1/2+sqrt(5)/2)^37 2584000000000002 a004 Fibonacci(71)/Lucas(18)/(1/2+sqrt(5)/2)^35 2584000000000002 a004 Fibonacci(69)/Lucas(18)/(1/2+sqrt(5)/2)^33 2584000000000002 a004 Fibonacci(67)/Lucas(18)/(1/2+sqrt(5)/2)^31 2584000000000002 a004 Fibonacci(65)/Lucas(18)/(1/2+sqrt(5)/2)^29 2584000000000002 a004 Fibonacci(63)/Lucas(18)/(1/2+sqrt(5)/2)^27 2584000000000002 a004 Fibonacci(61)/Lucas(18)/(1/2+sqrt(5)/2)^25 2584000000000002 a004 Fibonacci(59)/Lucas(18)/(1/2+sqrt(5)/2)^23 2584000000000002 a004 Fibonacci(57)/Lucas(18)/(1/2+sqrt(5)/2)^21 2584000000000002 a004 Fibonacci(55)/Lucas(18)/(1/2+sqrt(5)/2)^19 2584000000000002 a004 Fibonacci(53)/Lucas(18)/(1/2+sqrt(5)/2)^17 2584000000000002 a004 Fibonacci(51)/Lucas(18)/(1/2+sqrt(5)/2)^15 2584000000000002 a004 Fibonacci(49)/Lucas(18)/(1/2+sqrt(5)/2)^13 2584000000000002 a004 Fibonacci(47)/Lucas(18)/(1/2+sqrt(5)/2)^11 2584000000000002 a004 Fibonacci(45)/Lucas(18)/(1/2+sqrt(5)/2)^9 2584000000000002 a004 Fibonacci(43)/Lucas(18)/(1/2+sqrt(5)/2)^7 2584000000000002 a004 Fibonacci(41)/Lucas(18)/(1/2+sqrt(5)/2)^5 2584000000000002 a004 Fibonacci(39)/Lucas(18)/(1/2+sqrt(5)/2)^3 2584000000000003 a004 Fibonacci(37)/Lucas(18)/(1/2+sqrt(5)/2) 2584000000000006 a001 2584/20633239*2537720636^(7/9) 2584000000000006 a001 2584/20633239*17393796001^(5/7) 2584000000000006 a001 2584/20633239*312119004989^(7/11) 2584000000000006 a001 2584/20633239*14662949395604^(5/9) 2584000000000006 a001 2584/20633239*(1/2+1/2*5^(1/2))^35 2584000000000006 a001 2584/20633239*505019158607^(5/8) 2584000000000006 a001 2584/20633239*28143753123^(7/10) 2584000000000006 a001 2584/20633239*599074578^(5/6) 2584000000000006 a001 2584/20633239*228826127^(7/8) 2584000000000008 a001 9227465/11556+9227465/11556*5^(1/2) 2584000000000015 a004 Fibonacci(18)*Lucas(34)/(1/2+sqrt(5)/2)^34 2584000000000036 a001 5702887/5778*1860498^(1/15) 2584000000000040 a001 1762289/2889*7881196^(1/11) 2584000000000041 a001 646/1970299*141422324^(11/13) 2584000000000041 a001 646/1970299*2537720636^(11/15) 2584000000000041 a001 646/1970299*45537549124^(11/17) 2584000000000041 a001 646/1970299*312119004989^(3/5) 2584000000000041 a001 646/1970299*14662949395604^(11/21) 2584000000000041 a001 646/1970299*(1/2+1/2*5^(1/2))^33 2584000000000041 a001 646/1970299*192900153618^(11/18) 2584000000000041 a001 646/1970299*10749957122^(11/16) 2584000000000041 a001 646/1970299*1568397607^(3/4) 2584000000000041 a001 646/1970299*599074578^(11/14) 2584000000000043 a001 646/1970299*33385282^(11/12) 2584000000000043 a001 1762289/2889*141422324^(1/13) 2584000000000043 a001 1762289/2889*2537720636^(1/15) 2584000000000043 a001 1762289/2889*45537549124^(1/17) 2584000000000043 a001 1762289/2889*14662949395604^(1/21) 2584000000000043 a001 1762289/2889*(1/2+1/2*5^(1/2))^3 2584000000000043 a001 1762289/2889*192900153618^(1/18) 2584000000000043 a001 1762289/2889*10749957122^(1/16) 2584000000000043 a001 1762289/2889*599074578^(1/14) 2584000000000044 a001 1762289/2889*33385282^(1/12) 2584000000000108 a004 Fibonacci(18)*Lucas(32)/(1/2+sqrt(5)/2)^32 2584000000000118 a001 1762289/2889*1860498^(1/10) 2584000000000285 a001 2584/3010349*(1/2+1/2*5^(1/2))^31 2584000000000285 a001 2584/3010349*9062201101803^(1/2) 2584000000000286 a001 1346269/5778*20633239^(1/7) 2584000000000287 a001 1346269/5778*2537720636^(1/9) 2584000000000287 a001 1346269/5778*312119004989^(1/11) 2584000000000287 a001 1346269/5778*(1/2+1/2*5^(1/2))^5 2584000000000287 a001 1346269/5778*28143753123^(1/10) 2584000000000287 a001 1346269/5778*228826127^(1/8) 2584000000000351 a001 5702887/5778*710647^(1/14) 2584000000000352 a001 416020/2889*710647^(3/14) 2584000000000411 a001 1346269/5778*1860498^(1/6) 2584000000000624 a001 726103/1926*710647^(1/7) 2584000000000746 a004 Fibonacci(18)*Lucas(30)/(1/2+sqrt(5)/2)^30 2584000000001954 a001 2584/1149851*(1/2+1/2*5^(1/2))^29 2584000000001954 a001 2584/1149851*1322157322203^(1/2) 2584000000001955 a001 514229/5778*20633239^(1/5) 2584000000001956 a001 514229/5778*17393796001^(1/7) 2584000000001956 a001 514229/5778*14662949395604^(1/9) 2584000000001956 a001 514229/5778*(1/2+1/2*5^(1/2))^7 2584000000001956 a001 514229/5778*599074578^(1/6) 2584000000002684 a001 5702887/5778*271443^(1/13) 2584000000003235 a001 514229/5778*710647^(1/4) 2584000000005116 a004 Fibonacci(18)*Lucas(28)/(1/2+sqrt(5)/2)^28 2584000000005288 a001 726103/1926*271443^(2/13) 2584000000005676 a001 105937/1926*271443^(4/13) 2584000000007348 a001 416020/2889*271443^(3/13) 2584000000008932 a001 98209/2889*439204^(1/3) 2584000000010023 a001 9227465/5778*103682^(1/24) 2584000000013361 a001 34/5779*7881196^(9/11) 2584000000013386 a001 98209/2889*7881196^(3/11) 2584000000013395 a001 34/5779*141422324^(9/13) 2584000000013395 a001 34/5779*2537720636^(3/5) 2584000000013395 a001 34/5779*45537549124^(9/17) 2584000000013395 a001 34/5779*14662949395604^(3/7) 2584000000013395 a001 34/5779*(1/2+1/2*5^(1/2))^27 2584000000013395 a001 34/5779*192900153618^(1/2) 2584000000013395 a001 34/5779*10749957122^(9/16) 2584000000013395 a001 34/5779*599074578^(9/14) 2584000000013397 a001 34/5779*33385282^(3/4) 2584000000013397 a001 98209/2889*141422324^(3/13) 2584000000013397 a001 98209/2889*2537720636^(1/5) 2584000000013397 a001 98209/2889*45537549124^(3/17) 2584000000013397 a001 98209/2889*14662949395604^(1/7) 2584000000013397 a001 98209/2889*(1/2+1/2*5^(1/2))^9 2584000000013397 a001 98209/2889*192900153618^(1/6) 2584000000013397 a001 98209/2889*10749957122^(3/16) 2584000000013397 a001 98209/2889*599074578^(3/14) 2584000000013398 a001 98209/2889*33385282^(1/4) 2584000000013621 a001 98209/2889*1860498^(3/10) 2584000000014067 a001 34/5779*1860498^(9/10) 2584000000020017 a001 5702887/5778*103682^(1/12) 2584000000030090 a001 1762289/2889*103682^(1/8) 2584000000035069 a004 Fibonacci(18)*Lucas(26)/(1/2+sqrt(5)/2)^26 2584000000039955 a001 726103/1926*103682^(1/6) 2584000000050365 a001 1346269/5778*103682^(5/24) 2584000000059349 a001 416020/2889*103682^(1/4) 2584000000065087 a001 121393/5778*103682^(5/12) 2584000000072065 a001 514229/5778*103682^(7/24) 2584000000074896 a001 9227465/5778*39603^(1/22) 2584000000075010 a001 105937/1926*103682^(1/3) 2584000000091802 a001 75025/5778*7881196^(1/3) 2584000000091810 a001 2584/167761*20633239^(5/7) 2584000000091814 a001 2584/167761*2537720636^(5/9) 2584000000091814 a001 2584/167761*312119004989^(5/11) 2584000000091814 a001 2584/167761*(1/2+1/2*5^(1/2))^25 2584000000091814 a001 2584/167761*3461452808002^(5/12) 2584000000091814 a001 2584/167761*28143753123^(1/2) 2584000000091814 a001 2584/167761*228826127^(5/8) 2584000000091816 a001 75025/5778*312119004989^(1/5) 2584000000091816 a001 75025/5778*(1/2+1/2*5^(1/2))^11 2584000000091816 a001 75025/5778*1568397607^(1/4) 2584000000092436 a001 2584/167761*1860498^(5/6) 2584000000103537 a001 98209/2889*103682^(3/8) 2584000000149762 a001 5702887/5778*39603^(1/11) 2584000000201987 a001 75025/5778*103682^(11/24) 2584000000224708 a001 1762289/2889*39603^(3/22) 2584000000240373 a004 Fibonacci(18)*Lucas(24)/(1/2+sqrt(5)/2)^24 2584000000273613 a001 28657/5778*64079^(13/23) 2584000000299446 a001 726103/1926*39603^(2/11) 2584000000374728 a001 1346269/5778*39603^(5/22) 2584000000448585 a001 416020/2889*39603^(3/11) 2584000000526174 a001 514229/5778*39603^(7/22) 2584000000564629 a001 9227465/5778*15127^(1/20) 2584000000593991 a001 105937/1926*39603^(4/11) 2584000000629304 a001 2584/64079*(1/2+1/2*5^(1/2))^23 2584000000629304 a001 2584/64079*4106118243^(1/2) 2584000000629307 a001 28657/5778*141422324^(1/3) 2584000000629307 a001 28657/5778*(1/2+1/2*5^(1/2))^13 2584000000629307 a001 28657/5778*73681302247^(1/4) 2584000000646842 a001 28657/5778*271443^(1/2) 2584000000658288 a001 2576/321*39603^(6/11) 2584000000687392 a001 98209/2889*39603^(9/22) 2584000000713814 a001 121393/5778*39603^(5/11) 2584000000759509 a001 28657/5778*103682^(13/24) 2584000000859662 a001 2584/64079*103682^(23/24) 2584000000915587 a001 75025/5778*39603^(1/2) 2584000001129228 a001 5702887/5778*15127^(1/10) 2584000001232379 a001 5473/2889*24476^(5/7) 2584000001602854 a001 28657/5778*39603^(13/22) 2584000001647541 a004 Fibonacci(18)*Lucas(22)/(1/2+sqrt(5)/2)^22 2584000001693906 a001 1762289/2889*15127^(3/20) 2584000001735256 a001 1346269/1364*521^(2/13) 2584000002258308 a001 2178309/3571*1364^(1/5) 2584000002258376 a001 726103/1926*15127^(1/5) 2584000002823391 a001 1346269/5778*15127^(1/4) 2584000003097494 m001 (-MertensB3+Niven)/(HardyLittlewoodC5-Si(Pi)) 2584000003111994 a001 4181/5778*9349^(17/19) 2584000003386980 a001 416020/2889*15127^(3/10) 2584000003738736 a001 646/6119*64079^(21/23) 2584000003902905 a001 5473/2889*64079^(15/23) 2584000003954302 a001 514229/5778*15127^(7/20) 2584000004233865 a001 5702887/39603*3571^(6/17) 2584000004258233 a001 5473/2889*167761^(3/5) 2584000004299973 a001 9227465/5778*5778^(1/18) 2584000004302900 a001 646/6119*439204^(7/9) 2584000004305879 a001 5473/2889*439204^(5/9) 2584000004313292 a001 646/6119*7881196^(7/11) 2584000004313302 a001 5473/2889*7881196^(5/11) 2584000004313315 a001 646/6119*20633239^(3/5) 2584000004313319 a001 5473/2889*20633239^(3/7) 2584000004313319 a001 646/6119*141422324^(7/13) 2584000004313319 a001 646/6119*2537720636^(7/15) 2584000004313319 a001 646/6119*17393796001^(3/7) 2584000004313319 a001 646/6119*45537549124^(7/17) 2584000004313319 a001 646/6119*14662949395604^(1/3) 2584000004313319 a001 646/6119*(1/2+1/2*5^(1/2))^21 2584000004313319 a001 646/6119*192900153618^(7/18) 2584000004313319 a001 646/6119*10749957122^(7/16) 2584000004313319 a001 646/6119*599074578^(1/2) 2584000004313320 a001 646/6119*33385282^(7/12) 2584000004313321 a001 5473/2889*141422324^(5/13) 2584000004313321 a001 5473/2889*2537720636^(1/3) 2584000004313321 a001 5473/2889*45537549124^(5/17) 2584000004313321 a001 5473/2889*312119004989^(3/11) 2584000004313321 a001 5473/2889*14662949395604^(5/21) 2584000004313321 a001 5473/2889*(1/2+1/2*5^(1/2))^15 2584000004313321 a001 5473/2889*192900153618^(5/18) 2584000004313321 a001 5473/2889*28143753123^(3/10) 2584000004313321 a001 5473/2889*10749957122^(5/16) 2584000004313321 a001 5473/2889*599074578^(5/14) 2584000004313321 a001 5473/2889*228826127^(3/8) 2584000004313322 a001 5473/2889*33385282^(5/12) 2584000004313694 a001 5473/2889*1860498^(1/2) 2584000004313841 a001 646/6119*1860498^(7/10) 2584000004317156 a001 646/6119*710647^(3/4) 2584000004463554 a001 5473/2889*103682^(5/8) 2584000004511852 a001 105937/1926*15127^(2/5) 2584000004523645 a001 646/6119*103682^(7/8) 2584000005094985 a001 98209/2889*15127^(9/20) 2584000005436645 a001 5473/2889*39603^(15/22) 2584000005611140 a001 121393/5778*15127^(1/2) 2584000005641047 a001 7465176/51841*3571^(6/17) 2584000005846352 a001 39088169/271443*3571^(6/17) 2584000005876305 a001 14619165/101521*3571^(6/17) 2584000005880675 a001 133957148/930249*3571^(6/17) 2584000005881313 a001 701408733/4870847*3571^(6/17) 2584000005881406 a001 1836311903/12752043*3571^(6/17) 2584000005881420 a001 14930208/103681*3571^(6/17) 2584000005881422 a001 12586269025/87403803*3571^(6/17) 2584000005881422 a001 32951280099/228826127*3571^(6/17) 2584000005881422 a001 43133785636/299537289*3571^(6/17) 2584000005881422 a001 32264490531/224056801*3571^(6/17) 2584000005881422 a001 591286729879/4106118243*3571^(6/17) 2584000005881422 a001 774004377960/5374978561*3571^(6/17) 2584000005881422 a001 4052739537881/28143753123*3571^(6/17) 2584000005881422 a001 1515744265389/10525900321*3571^(6/17) 2584000005881422 a001 3278735159921/22768774562*3571^(6/17) 2584000005881422 a001 2504730781961/17393796001*3571^(6/17) 2584000005881422 a001 956722026041/6643838879*3571^(6/17) 2584000005881422 a001 182717648081/1268860318*3571^(6/17) 2584000005881422 a001 139583862445/969323029*3571^(6/17) 2584000005881422 a001 53316291173/370248451*3571^(6/17) 2584000005881422 a001 10182505537/70711162*3571^(6/17) 2584000005881423 a001 7778742049/54018521*3571^(6/17) 2584000005881428 a001 2971215073/20633239*3571^(6/17) 2584000005881464 a001 567451585/3940598*3571^(6/17) 2584000005881707 a001 433494437/3010349*3571^(6/17) 2584000005883376 a001 165580141/1149851*3571^(6/17) 2584000005885972 a001 646/6119*39603^(21/22) 2584000005894818 a001 31622993/219602*3571^(6/17) 2584000005973237 a001 24157817/167761*3571^(6/17) 2584000006257152 a001 17711/5778*15127^(7/10) 2584000006302645 a001 75025/5778*15127^(11/20) 2584000006508706 a001 3524578/15127*3571^(5/17) 2584000006510733 a001 9227465/64079*3571^(6/17) 2584000006535079 a001 2576/321*15127^(3/5) 2584000007969378 a001 28657/5778*15127^(13/20) 2584000008599916 a001 5702887/5778*5778^(1/9) 2584000010194783 a001 1762289/12238*3571^(6/17) 2584000010872980 r005 Im(z^2+c),c=-63/110+7/16*I,n=12 2584000011292416 a004 Fibonacci(18)*Lucas(20)/(1/2+sqrt(5)/2)^20 2584000011607989 a001 514229/9349*3571^(8/17) 2584000011866427 r009 Im(z^3+c),c=-53/126+9/61*I,n=20 2584000012782634 a001 5473/2889*15127^(3/4) 2584000012899939 a001 1762289/2889*5778^(1/6) 2584000014371584 a001 14930352/9349*1364^(1/15) 2584000016153546 a001 9227465/39603*3571^(5/17) 2584000017199754 a001 726103/1926*5778^(2/9) 2584000017560709 a001 24157817/103682*3571^(5/17) 2584000017766011 a001 63245986/271443*3571^(5/17) 2584000017795965 a001 165580141/710647*3571^(5/17) 2584000017800335 a001 433494437/1860498*3571^(5/17) 2584000017800972 a001 1134903170/4870847*3571^(5/17) 2584000017801065 a001 2971215073/12752043*3571^(5/17) 2584000017801079 a001 7778742049/33385282*3571^(5/17) 2584000017801081 a001 20365011074/87403803*3571^(5/17) 2584000017801081 a001 53316291173/228826127*3571^(5/17) 2584000017801081 a001 139583862445/599074578*3571^(5/17) 2584000017801081 a001 365435296162/1568397607*3571^(5/17) 2584000017801081 a001 956722026041/4106118243*3571^(5/17) 2584000017801081 a001 2504730781961/10749957122*3571^(5/17) 2584000017801081 a001 6557470319842/28143753123*3571^(5/17) 2584000017801081 a001 10610209857723/45537549124*3571^(5/17) 2584000017801081 a001 4052739537881/17393796001*3571^(5/17) 2584000017801081 a001 1548008755920/6643838879*3571^(5/17) 2584000017801081 a001 591286729879/2537720636*3571^(5/17) 2584000017801081 a001 225851433717/969323029*3571^(5/17) 2584000017801081 a001 86267571272/370248451*3571^(5/17) 2584000017801081 a001 63246219/271444*3571^(5/17) 2584000017801082 a001 12586269025/54018521*3571^(5/17) 2584000017801087 a001 4807526976/20633239*3571^(5/17) 2584000017801123 a001 1836311903/7881196*3571^(5/17) 2584000017801366 a001 701408733/3010349*3571^(5/17) 2584000017803036 a001 267914296/1149851*3571^(5/17) 2584000017814477 a001 102334155/439204*3571^(5/17) 2584000017831660 m001 ln(Zeta(3))*FibonacciFactorial^2*cos(Pi/12)^2 2584000017892895 a001 39088169/167761*3571^(5/17) 2584000018428308 a001 5702887/15127*3571^(4/17) 2584000018430384 a001 14930352/64079*3571^(5/17) 2584000019569837 m005 (1/2*exp(1)-4)/(4/5*3^(1/2)-4/11) 2584000020682102 r005 Im(z^2+c),c=-33/58+3/64*I,n=38 2584000021500113 a001 1346269/5778*5778^(5/18) 2584000022114385 a001 5702887/24476*3571^(5/17) 2584000022464071 m001 (Catalan+Cahen)/(Lehmer+Trott) 2584000023318129 a007 Real Root Of 533*x^4-341*x^3+686*x^2-985*x+25 2584000023524948 a001 832040/9349*3571^(7/17) 2584000025661404 a001 2584/9349*24476^(19/21) 2584000025799047 a001 416020/2889*5778^(1/3) 2584000026072198 a001 4181/5778*24476^(17/21) 2584000026806609 a001 6765/15127*9349^(18/19) 2584000028073197 a001 4976784/13201*3571^(4/17) 2584000029044070 a001 2584/9349*64079^(19/23) 2584000029098794 a001 4181/5778*64079^(17/23) 2584000029480367 a001 39088169/103682*3571^(4/17) 2584000029563931 a001 2584/9349*817138163596^(1/3) 2584000029563931 a001 2584/9349*(1/2+1/2*5^(1/2))^19 2584000029563931 a001 2584/9349*87403803^(1/2) 2584000029563933 a001 4181/5778*45537549124^(1/3) 2584000029563933 a001 4181/5778*(1/2+1/2*5^(1/2))^17 2584000029563941 a001 4181/5778*12752043^(1/2) 2584000029685670 a001 34111385/90481*3571^(4/17) 2584000029715624 a001 267914296/710647*3571^(4/17) 2584000029719994 a001 233802911/620166*3571^(4/17) 2584000029720632 a001 1836311903/4870847*3571^(4/17) 2584000029720725 a001 1602508992/4250681*3571^(4/17) 2584000029720738 a001 12586269025/33385282*3571^(4/17) 2584000029720740 a001 10983760033/29134601*3571^(4/17) 2584000029720740 a001 86267571272/228826127*3571^(4/17) 2584000029720740 a001 267913919/710646*3571^(4/17) 2584000029720740 a001 591286729879/1568397607*3571^(4/17) 2584000029720740 a001 516002918640/1368706081*3571^(4/17) 2584000029720740 a001 4052739537881/10749957122*3571^(4/17) 2584000029720740 a001 3536736619241/9381251041*3571^(4/17) 2584000029720740 a001 6557470319842/17393796001*3571^(4/17) 2584000029720740 a001 2504730781961/6643838879*3571^(4/17) 2584000029720740 a001 956722026041/2537720636*3571^(4/17) 2584000029720740 a001 365435296162/969323029*3571^(4/17) 2584000029720740 a001 139583862445/370248451*3571^(4/17) 2584000029720741 a001 53316291173/141422324*3571^(4/17) 2584000029720741 a001 20365011074/54018521*3571^(4/17) 2584000029720746 a001 7778742049/20633239*3571^(4/17) 2584000029720782 a001 2971215073/7881196*3571^(4/17) 2584000029721026 a001 1134903170/3010349*3571^(4/17) 2584000029722695 a001 433494437/1149851*3571^(4/17) 2584000029734136 a001 165580141/439204*3571^(4/17) 2584000029734197 a001 4181/5778*103682^(17/24) 2584000029754226 a001 2584/9349*103682^(19/24) 2584000029812555 a001 63245986/167761*3571^(4/17) 2584000030101713 a001 514229/5778*5778^(7/18) 2584000030347989 a001 9227465/15127*3571^(3/17) 2584000030350046 a001 24157817/64079*3571^(4/17) 2584000030837033 a001 4181/5778*39603^(17/22) 2584000030986808 a001 2584/9349*39603^(19/22) 2584000032924329 r005 Re(z^2+c),c=-7/29+18/41*I,n=40 2584000033156456 a001 9227465/5778*2207^(1/16) 2584000034034066 a001 9227465/24476*3571^(4/17) 2584000034394608 a001 105937/1926*5778^(4/9) 2584000035445638 a001 1346269/9349*3571^(6/17) 2584000036543029 a004 Fibonacci(20)*Lucas(19)/(1/2+sqrt(5)/2)^21 2584000038713085 a001 98209/2889*5778^(1/2) 2584000039162487 a001 4181/5778*15127^(17/20) 2584000039563477 a001 17711/15127*9349^(16/19) 2584000039565174 m001 1/GAMMA(7/12)^2/exp(GAMMA(1/12))^2*sin(Pi/5) 2584000039992859 a001 24157817/39603*3571^(3/17) 2584000040291727 a001 2584/9349*15127^(19/20) 2584000041247748 a003 sin(Pi*11/70)-sin(Pi*17/65) 2584000041400027 a001 31622993/51841*3571^(3/17) 2584000041605330 a001 165580141/271443*3571^(3/17) 2584000041635283 a001 433494437/710647*3571^(3/17) 2584000041639653 a001 567451585/930249*3571^(3/17) 2584000041640291 a001 2971215073/4870847*3571^(3/17) 2584000041640384 a001 7778742049/12752043*3571^(3/17) 2584000041640397 a001 10182505537/16692641*3571^(3/17) 2584000041640399 a001 53316291173/87403803*3571^(3/17) 2584000041640400 a001 139583862445/228826127*3571^(3/17) 2584000041640400 a001 182717648081/299537289*3571^(3/17) 2584000041640400 a001 956722026041/1568397607*3571^(3/17) 2584000041640400 a001 2504730781961/4106118243*3571^(3/17) 2584000041640400 a001 3278735159921/5374978561*3571^(3/17) 2584000041640400 a001 10610209857723/17393796001*3571^(3/17) 2584000041640400 a001 4052739537881/6643838879*3571^(3/17) 2584000041640400 a001 1134903780/1860499*3571^(3/17) 2584000041640400 a001 591286729879/969323029*3571^(3/17) 2584000041640400 a001 225851433717/370248451*3571^(3/17) 2584000041640400 a001 21566892818/35355581*3571^(3/17) 2584000041640401 a001 32951280099/54018521*3571^(3/17) 2584000041640406 a001 1144206275/1875749*3571^(3/17) 2584000041640441 a001 1201881744/1970299*3571^(3/17) 2584000041640685 a001 1836311903/3010349*3571^(3/17) 2584000041642354 a001 701408733/1149851*3571^(3/17) 2584000041653795 a001 66978574/109801*3571^(3/17) 2584000041732214 a001 9303105/15251*3571^(3/17) 2584000042267640 a001 14930352/15127*3571^(2/17) 2584000042269704 a001 39088169/64079*3571^(3/17) 2584000042964585 a001 121393/5778*5778^(5/9) 2584000043396320 a001 28657/15127*9349^(15/19) 2584000043968341 a001 10946/15127*9349^(17/19) 2584000044082638 a001 6624/2161*9349^(14/19) 2584000045953717 a001 3732588/6119*3571^(3/17) 2584000045970822 a001 75025/15127*9349^(13/19) 2584000046096360 a001 17711/39603*9349^(18/19) 2584000046187905 a004 Fibonacci(22)*Lucas(19)/(1/2+sqrt(5)/2)^23 2584000047364904 a001 2178309/9349*3571^(5/17) 2584000047391435 a001 75025/5778*5778^(11/18) 2584000047399934 a001 121393/15127*9349^(12/19) 2584000047595073 a004 Fibonacci(24)*Lucas(19)/(1/2+sqrt(5)/2)^25 2584000047800376 a004 Fibonacci(26)*Lucas(19)/(1/2+sqrt(5)/2)^27 2584000047830329 a004 Fibonacci(28)*Lucas(19)/(1/2+sqrt(5)/2)^29 2584000047834700 a004 Fibonacci(30)*Lucas(19)/(1/2+sqrt(5)/2)^31 2584000047835337 a004 Fibonacci(32)*Lucas(19)/(1/2+sqrt(5)/2)^33 2584000047835430 a004 Fibonacci(34)*Lucas(19)/(1/2+sqrt(5)/2)^35 2584000047835444 a004 Fibonacci(36)*Lucas(19)/(1/2+sqrt(5)/2)^37 2584000047835446 a004 Fibonacci(38)*Lucas(19)/(1/2+sqrt(5)/2)^39 2584000047835446 a004 Fibonacci(40)*Lucas(19)/(1/2+sqrt(5)/2)^41 2584000047835446 a004 Fibonacci(42)*Lucas(19)/(1/2+sqrt(5)/2)^43 2584000047835446 a004 Fibonacci(44)*Lucas(19)/(1/2+sqrt(5)/2)^45 2584000047835446 a004 Fibonacci(46)*Lucas(19)/(1/2+sqrt(5)/2)^47 2584000047835446 a004 Fibonacci(48)*Lucas(19)/(1/2+sqrt(5)/2)^49 2584000047835446 a004 Fibonacci(50)*Lucas(19)/(1/2+sqrt(5)/2)^51 2584000047835446 a004 Fibonacci(52)*Lucas(19)/(1/2+sqrt(5)/2)^53 2584000047835446 a004 Fibonacci(54)*Lucas(19)/(1/2+sqrt(5)/2)^55 2584000047835446 a004 Fibonacci(56)*Lucas(19)/(1/2+sqrt(5)/2)^57 2584000047835446 a004 Fibonacci(58)*Lucas(19)/(1/2+sqrt(5)/2)^59 2584000047835446 a004 Fibonacci(60)*Lucas(19)/(1/2+sqrt(5)/2)^61 2584000047835446 a004 Fibonacci(62)*Lucas(19)/(1/2+sqrt(5)/2)^63 2584000047835446 a004 Fibonacci(64)*Lucas(19)/(1/2+sqrt(5)/2)^65 2584000047835446 a004 Fibonacci(66)*Lucas(19)/(1/2+sqrt(5)/2)^67 2584000047835446 a004 Fibonacci(68)*Lucas(19)/(1/2+sqrt(5)/2)^69 2584000047835446 a004 Fibonacci(70)*Lucas(19)/(1/2+sqrt(5)/2)^71 2584000047835446 a004 Fibonacci(72)*Lucas(19)/(1/2+sqrt(5)/2)^73 2584000047835446 a004 Fibonacci(74)*Lucas(19)/(1/2+sqrt(5)/2)^75 2584000047835446 a004 Fibonacci(76)*Lucas(19)/(1/2+sqrt(5)/2)^77 2584000047835446 a004 Fibonacci(78)*Lucas(19)/(1/2+sqrt(5)/2)^79 2584000047835446 a004 Fibonacci(80)*Lucas(19)/(1/2+sqrt(5)/2)^81 2584000047835446 a004 Fibonacci(82)*Lucas(19)/(1/2+sqrt(5)/2)^83 2584000047835446 a004 Fibonacci(84)*Lucas(19)/(1/2+sqrt(5)/2)^85 2584000047835446 a004 Fibonacci(86)*Lucas(19)/(1/2+sqrt(5)/2)^87 2584000047835446 a004 Fibonacci(88)*Lucas(19)/(1/2+sqrt(5)/2)^89 2584000047835446 a004 Fibonacci(90)*Lucas(19)/(1/2+sqrt(5)/2)^91 2584000047835446 a004 Fibonacci(92)*Lucas(19)/(1/2+sqrt(5)/2)^93 2584000047835446 a004 Fibonacci(94)*Lucas(19)/(1/2+sqrt(5)/2)^95 2584000047835446 a004 Fibonacci(96)*Lucas(19)/(1/2+sqrt(5)/2)^97 2584000047835446 a004 Fibonacci(98)*Lucas(19)/(1/2+sqrt(5)/2)^99 2584000047835446 a004 Fibonacci(99)*Lucas(19)/(1/2+sqrt(5)/2)^100 2584000047835446 a004 Fibonacci(97)*Lucas(19)/(1/2+sqrt(5)/2)^98 2584000047835446 a004 Fibonacci(95)*Lucas(19)/(1/2+sqrt(5)/2)^96 2584000047835446 a004 Fibonacci(93)*Lucas(19)/(1/2+sqrt(5)/2)^94 2584000047835446 a004 Fibonacci(91)*Lucas(19)/(1/2+sqrt(5)/2)^92 2584000047835446 a004 Fibonacci(89)*Lucas(19)/(1/2+sqrt(5)/2)^90 2584000047835446 a004 Fibonacci(87)*Lucas(19)/(1/2+sqrt(5)/2)^88 2584000047835446 a004 Fibonacci(85)*Lucas(19)/(1/2+sqrt(5)/2)^86 2584000047835446 a004 Fibonacci(83)*Lucas(19)/(1/2+sqrt(5)/2)^84 2584000047835446 a004 Fibonacci(81)*Lucas(19)/(1/2+sqrt(5)/2)^82 2584000047835446 a004 Fibonacci(79)*Lucas(19)/(1/2+sqrt(5)/2)^80 2584000047835446 a004 Fibonacci(77)*Lucas(19)/(1/2+sqrt(5)/2)^78 2584000047835446 a004 Fibonacci(75)*Lucas(19)/(1/2+sqrt(5)/2)^76 2584000047835446 a004 Fibonacci(73)*Lucas(19)/(1/2+sqrt(5)/2)^74 2584000047835446 a004 Fibonacci(71)*Lucas(19)/(1/2+sqrt(5)/2)^72 2584000047835446 a004 Fibonacci(69)*Lucas(19)/(1/2+sqrt(5)/2)^70 2584000047835446 a004 Fibonacci(67)*Lucas(19)/(1/2+sqrt(5)/2)^68 2584000047835446 a004 Fibonacci(65)*Lucas(19)/(1/2+sqrt(5)/2)^66 2584000047835446 a004 Fibonacci(63)*Lucas(19)/(1/2+sqrt(5)/2)^64 2584000047835446 a004 Fibonacci(61)*Lucas(19)/(1/2+sqrt(5)/2)^62 2584000047835446 a004 Fibonacci(59)*Lucas(19)/(1/2+sqrt(5)/2)^60 2584000047835446 a004 Fibonacci(57)*Lucas(19)/(1/2+sqrt(5)/2)^58 2584000047835446 a004 Fibonacci(55)*Lucas(19)/(1/2+sqrt(5)/2)^56 2584000047835446 a004 Fibonacci(53)*Lucas(19)/(1/2+sqrt(5)/2)^54 2584000047835446 a004 Fibonacci(51)*Lucas(19)/(1/2+sqrt(5)/2)^52 2584000047835446 a004 Fibonacci(49)*Lucas(19)/(1/2+sqrt(5)/2)^50 2584000047835446 a004 Fibonacci(47)*Lucas(19)/(1/2+sqrt(5)/2)^48 2584000047835446 a004 Fibonacci(45)*Lucas(19)/(1/2+sqrt(5)/2)^46 2584000047835446 a004 Fibonacci(43)*Lucas(19)/(1/2+sqrt(5)/2)^44 2584000047835446 a004 Fibonacci(41)*Lucas(19)/(1/2+sqrt(5)/2)^42 2584000047835446 a004 Fibonacci(39)*Lucas(19)/(1/2+sqrt(5)/2)^40 2584000047835446 a001 2/4181*(1/2+1/2*5^(1/2))^37 2584000047835447 a004 Fibonacci(37)*Lucas(19)/(1/2+sqrt(5)/2)^38 2584000047835452 a004 Fibonacci(35)*Lucas(19)/(1/2+sqrt(5)/2)^36 2584000047835488 a004 Fibonacci(33)*Lucas(19)/(1/2+sqrt(5)/2)^34 2584000047835731 a004 Fibonacci(31)*Lucas(19)/(1/2+sqrt(5)/2)^32 2584000047837400 a004 Fibonacci(29)*Lucas(19)/(1/2+sqrt(5)/2)^30 2584000047848842 a004 Fibonacci(27)*Lucas(19)/(1/2+sqrt(5)/2)^28 2584000047927260 a004 Fibonacci(25)*Lucas(19)/(1/2+sqrt(5)/2)^26 2584000048464751 a004 Fibonacci(23)*Lucas(19)/(1/2+sqrt(5)/2)^24 2584000048910696 a001 23184/51841*9349^(18/19) 2584000049004396 a001 196418/15127*9349^(11/19) 2584000049321303 a001 121393/271443*9349^(18/19) 2584000049381209 a001 317811/710647*9349^(18/19) 2584000049389950 a001 416020/930249*9349^(18/19) 2584000049391225 a001 2178309/4870847*9349^(18/19) 2584000049391411 a001 5702887/12752043*9349^(18/19) 2584000049391438 a001 7465176/16692641*9349^(18/19) 2584000049391442 a001 39088169/87403803*9349^(18/19) 2584000049391442 a001 102334155/228826127*9349^(18/19) 2584000049391443 a001 133957148/299537289*9349^(18/19) 2584000049391443 a001 701408733/1568397607*9349^(18/19) 2584000049391443 a001 1836311903/4106118243*9349^(18/19) 2584000049391443 a001 2403763488/5374978561*9349^(18/19) 2584000049391443 a001 12586269025/28143753123*9349^(18/19) 2584000049391443 a001 32951280099/73681302247*9349^(18/19) 2584000049391443 a001 43133785636/96450076809*9349^(18/19) 2584000049391443 a001 225851433717/505019158607*9349^(18/19) 2584000049391443 a001 591286729879/1322157322203*9349^(18/19) 2584000049391443 a001 10610209857723/23725150497407*9349^(18/19) 2584000049391443 a001 139583862445/312119004989*9349^(18/19) 2584000049391443 a001 53316291173/119218851371*9349^(18/19) 2584000049391443 a001 10182505537/22768774562*9349^(18/19) 2584000049391443 a001 7778742049/17393796001*9349^(18/19) 2584000049391443 a001 2971215073/6643838879*9349^(18/19) 2584000049391443 a001 567451585/1268860318*9349^(18/19) 2584000049391443 a001 433494437/969323029*9349^(18/19) 2584000049391443 a001 165580141/370248451*9349^(18/19) 2584000049391443 a001 31622993/70711162*9349^(18/19) 2584000049391444 a001 24157817/54018521*9349^(18/19) 2584000049391455 a001 9227465/20633239*9349^(18/19) 2584000049391526 a001 1762289/3940598*9349^(18/19) 2584000049392013 a001 1346269/3010349*9349^(18/19) 2584000049395351 a001 514229/1149851*9349^(18/19) 2584000049418234 a001 98209/219602*9349^(18/19) 2584000049575071 a001 75025/167761*9349^(18/19) 2584000049929202 a001 28657/39603*9349^(17/19) 2584000050541880 a001 317811/15127*9349^(10/19) 2584000050615521 a001 15456/13201*9349^(16/19) 2584000050650052 a001 28657/64079*9349^(18/19) 2584000050798880 a001 75025/103682*9349^(17/19) 2584000050925765 a001 196418/271443*9349^(17/19) 2584000050944277 a001 514229/710647*9349^(17/19) 2584000050946978 a001 1346269/1860498*9349^(17/19) 2584000050947372 a001 3524578/4870847*9349^(17/19) 2584000050947429 a001 9227465/12752043*9349^(17/19) 2584000050947437 a001 24157817/33385282*9349^(17/19) 2584000050947439 a001 63245986/87403803*9349^(17/19) 2584000050947439 a001 165580141/228826127*9349^(17/19) 2584000050947439 a001 433494437/599074578*9349^(17/19) 2584000050947439 a001 1134903170/1568397607*9349^(17/19) 2584000050947439 a001 2971215073/4106118243*9349^(17/19) 2584000050947439 a001 7778742049/10749957122*9349^(17/19) 2584000050947439 a001 20365011074/28143753123*9349^(17/19) 2584000050947439 a001 53316291173/73681302247*9349^(17/19) 2584000050947439 a001 139583862445/192900153618*9349^(17/19) 2584000050947439 a001 365435296162/505019158607*9349^(17/19) 2584000050947439 a001 10610209857723/14662949395604*9349^(17/19) 2584000050947439 a001 225851433717/312119004989*9349^(17/19) 2584000050947439 a001 86267571272/119218851371*9349^(17/19) 2584000050947439 a001 32951280099/45537549124*9349^(17/19) 2584000050947439 a001 12586269025/17393796001*9349^(17/19) 2584000050947439 a001 4807526976/6643838879*9349^(17/19) 2584000050947439 a001 1836311903/2537720636*9349^(17/19) 2584000050947439 a001 701408733/969323029*9349^(17/19) 2584000050947439 a001 267914296/370248451*9349^(17/19) 2584000050947439 a001 102334155/141422324*9349^(17/19) 2584000050947439 a001 39088169/54018521*9349^(17/19) 2584000050947443 a001 14930352/20633239*9349^(17/19) 2584000050947465 a001 5702887/7881196*9349^(17/19) 2584000050947615 a001 2178309/3010349*9349^(17/19) 2584000050948647 a001 832040/1149851*9349^(17/19) 2584000050955718 a001 317811/439204*9349^(17/19) 2584000051004183 a001 121393/167761*9349^(17/19) 2584000051117413 a001 6765/15127*24476^(6/7) 2584000051336371 a001 46368/64079*9349^(17/19) 2584000051359213 a001 2576/321*5778^(2/3) 2584000051912517 a001 39088169/39603*3571^(2/17) 2584000052104948 a001 514229/15127*9349^(9/19) 2584000052148766 a004 Fibonacci(21)*Lucas(19)/(1/2+sqrt(5)/2)^22 2584000052227992 a001 121393/103682*9349^(16/19) 2584000052463249 a001 105937/90481*9349^(16/19) 2584000052497572 a001 832040/710647*9349^(16/19) 2584000052502580 a001 726103/620166*9349^(16/19) 2584000052503311 a001 5702887/4870847*9349^(16/19) 2584000052503417 a001 4976784/4250681*9349^(16/19) 2584000052503433 a001 39088169/33385282*9349^(16/19) 2584000052503435 a001 34111385/29134601*9349^(16/19) 2584000052503435 a001 267914296/228826127*9349^(16/19) 2584000052503435 a001 233802911/199691526*9349^(16/19) 2584000052503435 a001 1836311903/1568397607*9349^(16/19) 2584000052503435 a001 1602508992/1368706081*9349^(16/19) 2584000052503435 a001 12586269025/10749957122*9349^(16/19) 2584000052503435 a001 10983760033/9381251041*9349^(16/19) 2584000052503435 a001 86267571272/73681302247*9349^(16/19) 2584000052503435 a001 75283811239/64300051206*9349^(16/19) 2584000052503435 a001 2504730781961/2139295485799*9349^(16/19) 2584000052503435 a001 365435296162/312119004989*9349^(16/19) 2584000052503435 a001 139583862445/119218851371*9349^(16/19) 2584000052503435 a001 53316291173/45537549124*9349^(16/19) 2584000052503435 a001 20365011074/17393796001*9349^(16/19) 2584000052503435 a001 7778742049/6643838879*9349^(16/19) 2584000052503435 a001 2971215073/2537720636*9349^(16/19) 2584000052503435 a001 1134903170/969323029*9349^(16/19) 2584000052503435 a001 433494437/370248451*9349^(16/19) 2584000052503435 a001 165580141/141422324*9349^(16/19) 2584000052503436 a001 63245986/54018521*9349^(16/19) 2584000052503442 a001 24157817/20633239*9349^(16/19) 2584000052503483 a001 9227465/7881196*9349^(16/19) 2584000052503705 a001 75025/39603*9349^(15/19) 2584000052503762 a001 3524578/3010349*9349^(16/19) 2584000052505675 a001 1346269/1149851*9349^(16/19) 2584000052518785 a001 514229/439204*9349^(16/19) 2584000052608645 a001 196418/167761*9349^(16/19) 2584000052886880 h001 (2/7*exp(1)+8/9)/(9/11*exp(2)+2/5) 2584000053224555 a001 75025/64079*9349^(16/19) 2584000053319686 a001 102334155/103682*3571^(2/17) 2584000053524989 a001 267914296/271443*3571^(2/17) 2584000053554942 a001 701408733/710647*3571^(2/17) 2584000053559313 a001 1836311903/1860498*3571^(2/17) 2584000053559950 a001 4807526976/4870847*3571^(2/17) 2584000053560043 a001 12586269025/12752043*3571^(2/17) 2584000053560057 a001 32951280099/33385282*3571^(2/17) 2584000053560059 a001 86267571272/87403803*3571^(2/17) 2584000053560059 a001 225851433717/228826127*3571^(2/17) 2584000053560059 a001 591286729879/599074578*3571^(2/17) 2584000053560059 a001 1548008755920/1568397607*3571^(2/17) 2584000053560059 a001 4052739537881/4106118243*3571^(2/17) 2584000053560059 a001 4807525989/4870846*3571^(2/17) 2584000053560059 a001 6557470319842/6643838879*3571^(2/17) 2584000053560059 a001 2504730781961/2537720636*3571^(2/17) 2584000053560059 a001 956722026041/969323029*3571^(2/17) 2584000053560059 a001 365435296162/370248451*3571^(2/17) 2584000053560059 a001 139583862445/141422324*3571^(2/17) 2584000053560060 a001 53316291173/54018521*3571^(2/17) 2584000053560065 a001 20365011074/20633239*3571^(2/17) 2584000053560101 a001 7778742049/7881196*3571^(2/17) 2584000053560344 a001 2971215073/3010349*3571^(2/17) 2584000053562013 a001 1134903170/1149851*3571^(2/17) 2584000053573455 a001 433494437/439204*3571^(2/17) 2584000053613217 a001 17711/24476*9349^(17/19) 2584000053651873 a001 165580141/167761*3571^(2/17) 2584000053658243 a001 832040/15127*9349^(8/19) 2584000053832454 a001 98209/51841*9349^(15/19) 2584000053932817 a001 121393/39603*9349^(14/19) 2584000054026316 a001 514229/271443*9349^(15/19) 2584000054054600 a001 1346269/710647*9349^(15/19) 2584000054058727 a001 1762289/930249*9349^(15/19) 2584000054059329 a001 9227465/4870847*9349^(15/19) 2584000054059417 a001 24157817/12752043*9349^(15/19) 2584000054059430 a001 31622993/16692641*9349^(15/19) 2584000054059431 a001 165580141/87403803*9349^(15/19) 2584000054059432 a001 433494437/228826127*9349^(15/19) 2584000054059432 a001 567451585/299537289*9349^(15/19) 2584000054059432 a001 2971215073/1568397607*9349^(15/19) 2584000054059432 a001 7778742049/4106118243*9349^(15/19) 2584000054059432 a001 10182505537/5374978561*9349^(15/19) 2584000054059432 a001 53316291173/28143753123*9349^(15/19) 2584000054059432 a001 139583862445/73681302247*9349^(15/19) 2584000054059432 a001 182717648081/96450076809*9349^(15/19) 2584000054059432 a001 956722026041/505019158607*9349^(15/19) 2584000054059432 a001 10610209857723/5600748293801*9349^(15/19) 2584000054059432 a001 591286729879/312119004989*9349^(15/19) 2584000054059432 a001 225851433717/119218851371*9349^(15/19) 2584000054059432 a001 21566892818/11384387281*9349^(15/19) 2584000054059432 a001 32951280099/17393796001*9349^(15/19) 2584000054059432 a001 12586269025/6643838879*9349^(15/19) 2584000054059432 a001 1201881744/634430159*9349^(15/19) 2584000054059432 a001 1836311903/969323029*9349^(15/19) 2584000054059432 a001 701408733/370248451*9349^(15/19) 2584000054059432 a001 66978574/35355581*9349^(15/19) 2584000054059433 a001 102334155/54018521*9349^(15/19) 2584000054059437 a001 39088169/20633239*9349^(15/19) 2584000054059471 a001 3732588/1970299*9349^(15/19) 2584000054059701 a001 5702887/3010349*9349^(15/19) 2584000054061277 a001 2178309/1149851*9349^(15/19) 2584000054072081 a001 208010/109801*9349^(15/19) 2584000054146129 a001 317811/167761*9349^(15/19) 2584000054187302 a001 24157817/15127*3571^(1/17) 2584000054189364 a001 63245986/64079*3571^(2/17) 2584000054322044 a001 6765/15127*64079^(18/23) 2584000054653667 a001 121393/64079*9349^(15/19) 2584000054737030 m006 (3*exp(Pi)+2)/(1/6*Pi-4/5) 2584000054805613 a001 6765/15127*439204^(2/3) 2584000054814521 a001 6765/15127*7881196^(6/11) 2584000054814544 a001 6765/15127*141422324^(6/13) 2584000054814544 a001 6765/15127*2537720636^(2/5) 2584000054814544 a001 6765/15127*45537549124^(6/17) 2584000054814544 a001 6765/15127*14662949395604^(2/7) 2584000054814544 a001 6765/15127*(1/2+1/2*5^(1/2))^18 2584000054814544 a001 6765/15127*192900153618^(1/3) 2584000054814544 a001 6765/15127*10749957122^(3/8) 2584000054814544 a001 6765/15127*4106118243^(9/23) 2584000054814544 a001 6765/15127*1568397607^(9/22) 2584000054814544 a001 6765/15127*599074578^(3/7) 2584000054814544 a001 6765/15127*228826127^(9/20) 2584000054814544 a001 6765/15127*87403803^(9/19) 2584000054814545 a001 6765/15127*33385282^(1/2) 2584000054814552 a001 6765/15127*12752043^(9/17) 2584000054814605 a001 6765/15127*4870847^(9/16) 2584000054814992 a001 6765/15127*1860498^(3/5) 2584000054817833 a001 6765/15127*710647^(9/14) 2584000054838823 a001 6765/15127*271443^(9/13) 2584000054994824 a001 6765/15127*103682^(3/4) 2584000055215271 a001 1346269/15127*9349^(7/19) 2584000055369938 a001 317811/103682*9349^(14/19) 2584000055537279 a001 196418/39603*9349^(13/19) 2584000055579612 a001 832040/271443*9349^(14/19) 2584000055610203 a001 311187/101521*9349^(14/19) 2584000055614666 a001 5702887/1860498*9349^(14/19) 2584000055615317 a001 14930352/4870847*9349^(14/19) 2584000055615412 a001 39088169/12752043*9349^(14/19) 2584000055615426 a001 14619165/4769326*9349^(14/19) 2584000055615428 a001 267914296/87403803*9349^(14/19) 2584000055615428 a001 701408733/228826127*9349^(14/19) 2584000055615428 a001 1836311903/599074578*9349^(14/19) 2584000055615428 a001 686789568/224056801*9349^(14/19) 2584000055615428 a001 12586269025/4106118243*9349^(14/19) 2584000055615428 a001 32951280099/10749957122*9349^(14/19) 2584000055615428 a001 86267571272/28143753123*9349^(14/19) 2584000055615428 a001 32264490531/10525900321*9349^(14/19) 2584000055615428 a001 591286729879/192900153618*9349^(14/19) 2584000055615428 a001 1548008755920/505019158607*9349^(14/19) 2584000055615428 a001 1515744265389/494493258286*9349^(14/19) 2584000055615428 a001 2504730781961/817138163596*9349^(14/19) 2584000055615428 a001 956722026041/312119004989*9349^(14/19) 2584000055615428 a001 365435296162/119218851371*9349^(14/19) 2584000055615428 a001 139583862445/45537549124*9349^(14/19) 2584000055615428 a001 53316291173/17393796001*9349^(14/19) 2584000055615428 a001 20365011074/6643838879*9349^(14/19) 2584000055615428 a001 7778742049/2537720636*9349^(14/19) 2584000055615428 a001 2971215073/969323029*9349^(14/19) 2584000055615428 a001 1134903170/370248451*9349^(14/19) 2584000055615428 a001 433494437/141422324*9349^(14/19) 2584000055615429 a001 165580141/54018521*9349^(14/19) 2584000055615434 a001 63245986/20633239*9349^(14/19) 2584000055615471 a001 24157817/7881196*9349^(14/19) 2584000055615719 a001 9227465/3010349*9349^(14/19) 2584000055617424 a001 3524578/1149851*9349^(14/19) 2584000055629109 a001 1346269/439204*9349^(14/19) 2584000055709197 a001 514229/167761*9349^(14/19) 2584000056162532 a001 6765/15127*39603^(9/11) 2584000056258129 a001 196418/64079*9349^(14/19) 2584000056462085 a001 45765225/17711 2584000056528856 a001 28657/5778*5778^(13/18) 2584000056770874 a001 311187/2161*9349^(6/19) 2584000056933006 a001 514229/103682*9349^(13/19) 2584000057074763 a001 105937/13201*9349^(12/19) 2584000057136640 a001 1346269/271443*9349^(13/19) 2584000057166350 a001 3524578/710647*9349^(13/19) 2584000057170684 a001 9227465/1860498*9349^(13/19) 2584000057171317 a001 24157817/4870847*9349^(13/19) 2584000057171409 a001 63245986/12752043*9349^(13/19) 2584000057171422 a001 165580141/33385282*9349^(13/19) 2584000057171424 a001 433494437/87403803*9349^(13/19) 2584000057171425 a001 1134903170/228826127*9349^(13/19) 2584000057171425 a001 2971215073/599074578*9349^(13/19) 2584000057171425 a001 7778742049/1568397607*9349^(13/19) 2584000057171425 a001 20365011074/4106118243*9349^(13/19) 2584000057171425 a001 53316291173/10749957122*9349^(13/19) 2584000057171425 a001 139583862445/28143753123*9349^(13/19) 2584000057171425 a001 365435296162/73681302247*9349^(13/19) 2584000057171425 a001 956722026041/192900153618*9349^(13/19) 2584000057171425 a001 2504730781961/505019158607*9349^(13/19) 2584000057171425 a001 10610209857723/2139295485799*9349^(13/19) 2584000057171425 a001 4052739537881/817138163596*9349^(13/19) 2584000057171425 a001 140728068720/28374454999*9349^(13/19) 2584000057171425 a001 591286729879/119218851371*9349^(13/19) 2584000057171425 a001 225851433717/45537549124*9349^(13/19) 2584000057171425 a001 86267571272/17393796001*9349^(13/19) 2584000057171425 a001 32951280099/6643838879*9349^(13/19) 2584000057171425 a001 1144206275/230701876*9349^(13/19) 2584000057171425 a001 4807526976/969323029*9349^(13/19) 2584000057171425 a001 1836311903/370248451*9349^(13/19) 2584000057171425 a001 701408733/141422324*9349^(13/19) 2584000057171425 a001 267914296/54018521*9349^(13/19) 2584000057171431 a001 9303105/1875749*9349^(13/19) 2584000057171466 a001 39088169/7881196*9349^(13/19) 2584000057171707 a001 14930352/3010349*9349^(13/19) 2584000057173363 a001 5702887/1149851*9349^(13/19) 2584000057184711 a001 2178309/439204*9349^(13/19) 2584000057262492 a001 75640/15251*9349^(13/19) 2584000057446060 a001 28657/24476*9349^(16/19) 2584000057507030 a001 2255/1926*5778^(8/9) 2584000057795613 a001 317811/64079*9349^(13/19) 2584000057873379 a001 24157817/24476*3571^(2/17) 2584000058018082 a001 5473/12238*9349^(18/19) 2584000058132378 a001 11592/6119*9349^(15/19) 2584000058327020 a001 3524578/15127*9349^(5/19) 2584000058486301 a001 416020/51841*9349^(12/19) 2584000058551975 a001 17711/5778*5778^(7/9) 2584000058637830 a001 514229/39603*9349^(11/19) 2584000058692242 a001 726103/90481*9349^(12/19) 2584000058722288 a001 5702887/710647*9349^(12/19) 2584000058726672 a001 829464/103361*9349^(12/19) 2584000058727312 a001 39088169/4870847*9349^(12/19) 2584000058727405 a001 34111385/4250681*9349^(12/19) 2584000058727419 a001 133957148/16692641*9349^(12/19) 2584000058727421 a001 233802911/29134601*9349^(12/19) 2584000058727421 a001 1836311903/228826127*9349^(12/19) 2584000058727421 a001 267084832/33281921*9349^(12/19) 2584000058727421 a001 12586269025/1568397607*9349^(12/19) 2584000058727421 a001 10983760033/1368706081*9349^(12/19) 2584000058727421 a001 43133785636/5374978561*9349^(12/19) 2584000058727421 a001 75283811239/9381251041*9349^(12/19) 2584000058727421 a001 591286729879/73681302247*9349^(12/19) 2584000058727421 a001 86000486440/10716675201*9349^(12/19) 2584000058727421 a001 4052739537881/505019158607*9349^(12/19) 2584000058727421 a001 3278735159921/408569081798*9349^(12/19) 2584000058727421 a001 2504730781961/312119004989*9349^(12/19) 2584000058727421 a001 956722026041/119218851371*9349^(12/19) 2584000058727421 a001 182717648081/22768774562*9349^(12/19) 2584000058727421 a001 139583862445/17393796001*9349^(12/19) 2584000058727421 a001 53316291173/6643838879*9349^(12/19) 2584000058727421 a001 10182505537/1268860318*9349^(12/19) 2584000058727421 a001 7778742049/969323029*9349^(12/19) 2584000058727421 a001 2971215073/370248451*9349^(12/19) 2584000058727421 a001 567451585/70711162*9349^(12/19) 2584000058727422 a001 433494437/54018521*9349^(12/19) 2584000058727427 a001 165580141/20633239*9349^(12/19) 2584000058727463 a001 31622993/3940598*9349^(12/19) 2584000058727707 a001 24157817/3010349*9349^(12/19) 2584000058729381 a001 9227465/1149851*9349^(12/19) 2584000058740858 a001 1762289/219602*9349^(12/19) 2584000058819520 a001 1346269/167761*9349^(12/19) 2584000059284714 a001 3524578/9349*3571^(4/17) 2584000059358680 a001 514229/64079*9349^(12/19) 2584000059882959 a001 5702887/15127*9349^(4/19) 2584000060020562 a001 75025/24476*9349^(14/19) 2584000060043329 a001 1346269/103682*9349^(11/19) 2584000060191126 a001 832040/39603*9349^(10/19) 2584000060248389 a001 3524578/271443*9349^(11/19) 2584000060278307 a001 9227465/710647*9349^(11/19) 2584000060282672 a001 24157817/1860498*9349^(11/19) 2584000060283309 a001 63245986/4870847*9349^(11/19) 2584000060283402 a001 165580141/12752043*9349^(11/19) 2584000060283415 a001 433494437/33385282*9349^(11/19) 2584000060283417 a001 1134903170/87403803*9349^(11/19) 2584000060283417 a001 2971215073/228826127*9349^(11/19) 2584000060283417 a001 7778742049/599074578*9349^(11/19) 2584000060283417 a001 20365011074/1568397607*9349^(11/19) 2584000060283417 a001 53316291173/4106118243*9349^(11/19) 2584000060283417 a001 139583862445/10749957122*9349^(11/19) 2584000060283417 a001 365435296162/28143753123*9349^(11/19) 2584000060283417 a001 956722026041/73681302247*9349^(11/19) 2584000060283417 a001 2504730781961/192900153618*9349^(11/19) 2584000060283417 a001 10610209857723/817138163596*9349^(11/19) 2584000060283417 a001 4052739537881/312119004989*9349^(11/19) 2584000060283417 a001 1548008755920/119218851371*9349^(11/19) 2584000060283417 a001 591286729879/45537549124*9349^(11/19) 2584000060283417 a001 7787980473/599786069*9349^(11/19) 2584000060283417 a001 86267571272/6643838879*9349^(11/19) 2584000060283417 a001 32951280099/2537720636*9349^(11/19) 2584000060283417 a001 12586269025/969323029*9349^(11/19) 2584000060283417 a001 4807526976/370248451*9349^(11/19) 2584000060283418 a001 1836311903/141422324*9349^(11/19) 2584000060283418 a001 701408733/54018521*9349^(11/19) 2584000060283423 a001 9238424/711491*9349^(11/19) 2584000060283459 a001 102334155/7881196*9349^(11/19) 2584000060283702 a001 39088169/3010349*9349^(11/19) 2584000060285369 a001 14930352/1149851*9349^(11/19) 2584000060296797 a001 5702887/439204*9349^(11/19) 2584000060351496 a001 2255/13201*24476^(20/21) 2584000060375123 a001 2178309/167761*9349^(11/19) 2584000060911976 a001 832040/64079*9349^(11/19) 2584000061173081 a001 17711/15127*24476^(16/21) 2584000061438978 a001 9227465/15127*9349^(3/19) 2584000061449674 a001 121393/24476*9349^(13/19) 2584000061598932 a001 46347/2206*9349^(10/19) 2584000061748154 a001 1346269/39603*9349^(9/19) 2584000061793641 a004 Fibonacci(20)*Lucas(21)/(1/2+sqrt(5)/2)^23 2584000061804328 a001 5702887/271443*9349^(10/19) 2584000061834295 a001 14930352/710647*9349^(10/19) 2584000061838667 a001 39088169/1860498*9349^(10/19) 2584000061839305 a001 102334155/4870847*9349^(10/19) 2584000061839398 a001 267914296/12752043*9349^(10/19) 2584000061839411 a001 701408733/33385282*9349^(10/19) 2584000061839413 a001 1836311903/87403803*9349^(10/19) 2584000061839414 a001 102287808/4868641*9349^(10/19) 2584000061839414 a001 12586269025/599074578*9349^(10/19) 2584000061839414 a001 32951280099/1568397607*9349^(10/19) 2584000061839414 a001 86267571272/4106118243*9349^(10/19) 2584000061839414 a001 225851433717/10749957122*9349^(10/19) 2584000061839414 a001 591286729879/28143753123*9349^(10/19) 2584000061839414 a001 1548008755920/73681302247*9349^(10/19) 2584000061839414 a001 4052739537881/192900153618*9349^(10/19) 2584000061839414 a001 225749145909/10745088481*9349^(10/19) 2584000061839414 a001 6557470319842/312119004989*9349^(10/19) 2584000061839414 a001 2504730781961/119218851371*9349^(10/19) 2584000061839414 a001 956722026041/45537549124*9349^(10/19) 2584000061839414 a001 365435296162/17393796001*9349^(10/19) 2584000061839414 a001 139583862445/6643838879*9349^(10/19) 2584000061839414 a001 53316291173/2537720636*9349^(10/19) 2584000061839414 a001 20365011074/969323029*9349^(10/19) 2584000061839414 a001 7778742049/370248451*9349^(10/19) 2584000061839414 a001 2971215073/141422324*9349^(10/19) 2584000061839415 a001 1134903170/54018521*9349^(10/19) 2584000061839420 a001 433494437/20633239*9349^(10/19) 2584000061839455 a001 165580141/7881196*9349^(10/19) 2584000061839699 a001 63245986/3010349*9349^(10/19) 2584000061841369 a001 24157817/1149851*9349^(10/19) 2584000061852815 a001 9227465/439204*9349^(10/19) 2584000061931270 a001 3524578/167761*9349^(10/19) 2584000062469004 a001 1346269/64079*9349^(10/19) 2584000062991042 a001 6624/2161*24476^(2/3) 2584000062994966 a001 14930352/15127*9349^(2/19) 2584000063054136 a001 98209/12238*9349^(12/19) 2584000063155079 a001 1762289/51841*9349^(9/19) 2584000063303756 a001 726103/13201*9349^(8/19) 2584000063360346 a001 9227465/271443*9349^(9/19) 2584000063390294 a001 24157817/710647*9349^(9/19) 2584000063394664 a001 31622993/930249*9349^(9/19) 2584000063395301 a001 165580141/4870847*9349^(9/19) 2584000063395394 a001 433494437/12752043*9349^(9/19) 2584000063395408 a001 567451585/16692641*9349^(9/19) 2584000063395410 a001 2971215073/87403803*9349^(9/19) 2584000063395410 a001 7778742049/228826127*9349^(9/19) 2584000063395410 a001 10182505537/299537289*9349^(9/19) 2584000063395410 a001 53316291173/1568397607*9349^(9/19) 2584000063395410 a001 139583862445/4106118243*9349^(9/19) 2584000063395410 a001 182717648081/5374978561*9349^(9/19) 2584000063395410 a001 956722026041/28143753123*9349^(9/19) 2584000063395410 a001 2504730781961/73681302247*9349^(9/19) 2584000063395410 a001 3278735159921/96450076809*9349^(9/19) 2584000063395410 a001 10610209857723/312119004989*9349^(9/19) 2584000063395410 a001 4052739537881/119218851371*9349^(9/19) 2584000063395410 a001 387002188980/11384387281*9349^(9/19) 2584000063395410 a001 591286729879/17393796001*9349^(9/19) 2584000063395410 a001 225851433717/6643838879*9349^(9/19) 2584000063395410 a001 1135099622/33391061*9349^(9/19) 2584000063395410 a001 32951280099/969323029*9349^(9/19) 2584000063395410 a001 12586269025/370248451*9349^(9/19) 2584000063395410 a001 1201881744/35355581*9349^(9/19) 2584000063395411 a001 1836311903/54018521*9349^(9/19) 2584000063395416 a001 701408733/20633239*9349^(9/19) 2584000063395452 a001 66978574/1970299*9349^(9/19) 2584000063395695 a001 102334155/3010349*9349^(9/19) 2584000063397364 a001 39088169/1149851*9349^(9/19) 2584000063408803 a001 196452/5779*9349^(9/19) 2584000063487209 a001 5702887/167761*9349^(9/19) 2584000063528625 a001 75025/15127*24476^(13/21) 2584000063607137 a001 121393/15127*24476^(4/7) 2584000063655323 a001 28657/15127*24476^(5/7) 2584000063832177 a001 63245986/39603*3571^(1/17) 2584000063860999 a001 196418/15127*24476^(11/21) 2584000063912198 a001 2255/13201*64079^(20/23) 2584000064021642 a001 17711/15127*64079^(16/23) 2584000064024606 a001 2178309/64079*9349^(9/19) 2584000064047883 a001 317811/15127*24476^(10/21) 2584000064260350 a001 514229/15127*24476^(3/7) 2584000064385968 a001 2255/13201*167761^(4/5) 2584000064459416 a001 2255/13201*20633239^(4/7) 2584000064459419 a001 2255/13201*2537720636^(4/9) 2584000064459419 a001 2255/13201*(1/2+1/2*5^(1/2))^20 2584000064459419 a001 2255/13201*23725150497407^(5/16) 2584000064459419 a001 2255/13201*505019158607^(5/14) 2584000064459419 a001 2255/13201*73681302247^(5/13) 2584000064459419 a001 2255/13201*28143753123^(2/5) 2584000064459419 a001 2255/13201*10749957122^(5/12) 2584000064459419 a001 2255/13201*4106118243^(10/23) 2584000064459419 a001 2255/13201*1568397607^(5/11) 2584000064459419 a001 2255/13201*599074578^(10/21) 2584000064459419 a001 2255/13201*228826127^(1/2) 2584000064459419 a001 17711/15127*(1/2+1/2*5^(1/2))^16 2584000064459419 a001 17711/15127*23725150497407^(1/4) 2584000064459419 a001 17711/15127*73681302247^(4/13) 2584000064459419 a001 17711/15127*10749957122^(1/3) 2584000064459419 a001 17711/15127*4106118243^(8/23) 2584000064459419 a001 17711/15127*1568397607^(4/11) 2584000064459419 a001 17711/15127*599074578^(8/21) 2584000064459419 a001 17711/15127*228826127^(2/5) 2584000064459420 a001 2255/13201*87403803^(10/19) 2584000064459420 a001 17711/15127*87403803^(8/19) 2584000064459420 a001 17711/15127*33385282^(4/9) 2584000064459421 a001 2255/13201*33385282^(5/9) 2584000064459427 a001 17711/15127*12752043^(8/17) 2584000064459429 a001 2255/13201*12752043^(10/17) 2584000064459474 a001 17711/15127*4870847^(1/2) 2584000064459487 a001 2255/13201*4870847^(5/8) 2584000064459818 a001 17711/15127*1860498^(8/15) 2584000064459917 a001 2255/13201*1860498^(2/3) 2584000064462343 a001 17711/15127*710647^(4/7) 2584000064463045 a001 832040/15127*24476^(8/21) 2584000064463074 a001 2255/13201*710647^(5/7) 2584000064481001 a001 17711/15127*271443^(8/13) 2584000064486396 a001 2255/13201*271443^(10/13) 2584000064550965 a001 24157817/15127*9349^(1/19) 2584000064591620 a001 10959/844*9349^(11/19) 2584000064619668 a001 17711/15127*103682^(2/3) 2584000064659730 a001 2255/13201*103682^(5/6) 2584000064669473 a001 1346269/15127*24476^(1/3) 2584000064699792 a001 39938305/15456 2584000064711018 a001 5702887/103682*9349^(8/19) 2584000064859903 a001 3524578/39603*9349^(7/19) 2584000064874475 a001 311187/2161*24476^(2/7) 2584000064916334 a001 4976784/90481*9349^(8/19) 2584000064946290 a001 39088169/710647*9349^(8/19) 2584000064950660 a001 831985/15126*9349^(8/19) 2584000064951298 a001 267914296/4870847*9349^(8/19) 2584000064951391 a001 233802911/4250681*9349^(8/19) 2584000064951404 a001 1836311903/33385282*9349^(8/19) 2584000064951406 a001 1602508992/29134601*9349^(8/19) 2584000064951407 a001 12586269025/228826127*9349^(8/19) 2584000064951407 a001 10983760033/199691526*9349^(8/19) 2584000064951407 a001 86267571272/1568397607*9349^(8/19) 2584000064951407 a001 75283811239/1368706081*9349^(8/19) 2584000064951407 a001 591286729879/10749957122*9349^(8/19) 2584000064951407 a001 12585437040/228811001*9349^(8/19) 2584000064951407 a001 4052739537881/73681302247*9349^(8/19) 2584000064951407 a001 3536736619241/64300051206*9349^(8/19) 2584000064951407 a001 6557470319842/119218851371*9349^(8/19) 2584000064951407 a001 2504730781961/45537549124*9349^(8/19) 2584000064951407 a001 956722026041/17393796001*9349^(8/19) 2584000064951407 a001 365435296162/6643838879*9349^(8/19) 2584000064951407 a001 139583862445/2537720636*9349^(8/19) 2584000064951407 a001 53316291173/969323029*9349^(8/19) 2584000064951407 a001 20365011074/370248451*9349^(8/19) 2584000064951407 a001 7778742049/141422324*9349^(8/19) 2584000064951408 a001 2971215073/54018521*9349^(8/19) 2584000064951413 a001 1134903170/20633239*9349^(8/19) 2584000064951448 a001 433494437/7881196*9349^(8/19) 2584000064951692 a001 165580141/3010349*9349^(8/19) 2584000064953361 a001 63245986/1149851*9349^(8/19) 2584000064964803 a001 24157817/439204*9349^(8/19) 2584000064977719 a001 6765/15127*15127^(9/10) 2584000065043227 a001 9227465/167761*9349^(8/19) 2584000065080022 a001 3524578/15127*24476^(5/21) 2584000065239345 a001 165580141/103682*3571^(1/17) 2584000065264644 a001 6765/103682*64079^(22/23) 2584000065285360 a001 5702887/15127*24476^(4/21) 2584000065444649 a001 433494437/271443*3571^(1/17) 2584000065474602 a001 1134903170/710647*3571^(1/17) 2584000065477656 a004 Fibonacci(20)*Lucas(23)/(1/2+sqrt(5)/2)^25 2584000065478972 a001 2971215073/1860498*3571^(1/17) 2584000065479610 a001 7778742049/4870847*3571^(1/17) 2584000065479703 a001 20365011074/12752043*3571^(1/17) 2584000065479716 a001 53316291173/33385282*3571^(1/17) 2584000065479718 a001 139583862445/87403803*3571^(1/17) 2584000065479718 a001 365435296162/228826127*3571^(1/17) 2584000065479719 a001 956722026041/599074578*3571^(1/17) 2584000065479719 a001 2504730781961/1568397607*3571^(1/17) 2584000065479719 a001 6557470319842/4106118243*3571^(1/17) 2584000065479719 a001 10610209857723/6643838879*3571^(1/17) 2584000065479719 a001 4052739537881/2537720636*3571^(1/17) 2584000065479719 a001 1548008755920/969323029*3571^(1/17) 2584000065479719 a001 591286729879/370248451*3571^(1/17) 2584000065479719 a001 225851433717/141422324*3571^(1/17) 2584000065479719 a001 86267571272/54018521*3571^(1/17) 2584000065479725 a001 32951280099/20633239*3571^(1/17) 2584000065479760 a001 12586269025/7881196*3571^(1/17) 2584000065480004 a001 4807526976/3010349*3571^(1/17) 2584000065481673 a001 1836311903/1149851*3571^(1/17) 2584000065483533 a001 6624/2161*64079^(14/23) 2584000065490778 a001 9227465/15127*24476^(1/7) 2584000065493114 a001 701408733/439204*3571^(1/17) 2584000065571533 a001 267914296/167761*3571^(1/17) 2584000065580753 a001 3524578/64079*9349^(8/19) 2584000065657631 a001 17711/15127*39603^(8/11) 2584000065696166 a001 14930352/15127*24476^(2/21) 2584000065743558 a001 121393/15127*64079^(12/23) 2584000065819385 a001 196418/15127*64079^(11/23) 2584000065828233 a001 317811/15127*64079^(10/23) 2584000065843081 a001 75025/15127*64079^(13/23) 2584000065862666 a001 514229/15127*64079^(9/23) 2584000065866560 a001 6765/103682*7881196^(2/3) 2584000065866585 a001 6624/2161*20633239^(2/5) 2584000065866588 a001 6765/103682*312119004989^(2/5) 2584000065866588 a001 6765/103682*(1/2+1/2*5^(1/2))^22 2584000065866588 a001 6765/103682*10749957122^(11/24) 2584000065866588 a001 6765/103682*4106118243^(11/23) 2584000065866588 a001 6765/103682*1568397607^(1/2) 2584000065866588 a001 6765/103682*599074578^(11/21) 2584000065866588 a001 6765/103682*228826127^(11/20) 2584000065866588 a001 6624/2161*17393796001^(2/7) 2584000065866588 a001 6624/2161*14662949395604^(2/9) 2584000065866588 a001 6624/2161*(1/2+1/2*5^(1/2))^14 2584000065866588 a001 6624/2161*10749957122^(7/24) 2584000065866588 a001 6624/2161*4106118243^(7/23) 2584000065866588 a001 6624/2161*1568397607^(7/22) 2584000065866588 a001 6624/2161*599074578^(1/3) 2584000065866588 a001 6624/2161*228826127^(7/20) 2584000065866588 a001 6624/2161*87403803^(7/19) 2584000065866588 a001 6765/103682*87403803^(11/19) 2584000065866589 a001 6624/2161*33385282^(7/18) 2584000065866589 a001 6765/103682*33385282^(11/18) 2584000065866594 a001 6624/2161*12752043^(7/17) 2584000065866598 a001 6765/103682*12752043^(11/17) 2584000065866635 a001 6624/2161*4870847^(7/16) 2584000065866663 a001 6765/103682*4870847^(11/16) 2584000065866936 a001 6624/2161*1860498^(7/15) 2584000065867135 a001 6765/103682*1860498^(11/15) 2584000065869146 a001 6624/2161*710647^(1/2) 2584000065870608 a001 6765/103682*710647^(11/14) 2584000065885472 a001 6624/2161*271443^(7/13) 2584000065887326 a001 832040/15127*64079^(8/23) 2584000065896262 a001 6765/103682*271443^(11/13) 2584000065901566 a001 24157817/15127*24476^(1/21) 2584000065901658 a001 313679520/121393 2584000065915718 a001 1346269/15127*64079^(7/23) 2584000065942686 a001 311187/2161*64079^(6/23) 2584000065957184 a001 2255/13201*39603^(10/11) 2584000065970197 a001 3524578/15127*64079^(5/23) 2584000065997501 a001 5702887/15127*64079^(4/23) 2584000066006805 a001 6624/2161*103682^(7/12) 2584000066015147 a004 Fibonacci(20)*Lucas(25)/(1/2+sqrt(5)/2)^27 2584000066024884 a001 9227465/15127*64079^(3/23) 2584000066052236 a001 14930352/15127*64079^(2/23) 2584000066059984 a001 2255/90481*439204^(8/9) 2584000066065119 a001 317811/15127*167761^(2/5) 2584000066065937 a001 121393/15127*439204^(4/9) 2584000066071861 a001 2255/90481*7881196^(8/11) 2584000066071876 a001 121393/15127*7881196^(4/11) 2584000066071891 a001 2255/90481*141422324^(8/13) 2584000066071891 a001 2255/90481*2537720636^(8/15) 2584000066071891 a001 2255/90481*45537549124^(8/17) 2584000066071891 a001 2255/90481*14662949395604^(8/21) 2584000066071891 a001 2255/90481*(1/2+1/2*5^(1/2))^24 2584000066071891 a001 2255/90481*192900153618^(4/9) 2584000066071891 a001 2255/90481*73681302247^(6/13) 2584000066071891 a001 2255/90481*10749957122^(1/2) 2584000066071891 a001 2255/90481*4106118243^(12/23) 2584000066071891 a001 2255/90481*1568397607^(6/11) 2584000066071891 a001 2255/90481*599074578^(4/7) 2584000066071891 a001 121393/15127*141422324^(4/13) 2584000066071891 a001 2255/90481*228826127^(3/5) 2584000066071891 a001 121393/15127*2537720636^(4/15) 2584000066071891 a001 121393/15127*45537549124^(4/17) 2584000066071891 a001 121393/15127*817138163596^(4/19) 2584000066071891 a001 121393/15127*14662949395604^(4/21) 2584000066071891 a001 121393/15127*(1/2+1/2*5^(1/2))^12 2584000066071891 a001 121393/15127*192900153618^(2/9) 2584000066071891 a001 121393/15127*73681302247^(3/13) 2584000066071891 a001 121393/15127*10749957122^(1/4) 2584000066071891 a001 121393/15127*4106118243^(6/23) 2584000066071891 a001 121393/15127*1568397607^(3/11) 2584000066071891 a001 121393/15127*599074578^(2/7) 2584000066071891 a001 121393/15127*228826127^(3/10) 2584000066071891 a001 121393/15127*87403803^(6/19) 2584000066071891 a001 2255/90481*87403803^(12/19) 2584000066071892 a001 121393/15127*33385282^(1/3) 2584000066071892 a001 2255/90481*33385282^(2/3) 2584000066071897 a001 121393/15127*12752043^(6/17) 2584000066071902 a001 2255/90481*12752043^(12/17) 2584000066071932 a001 121393/15127*4870847^(3/8) 2584000066071973 a001 2255/90481*4870847^(3/4) 2584000066072190 a001 121393/15127*1860498^(2/5) 2584000066072488 a001 2255/90481*1860498^(4/5) 2584000066074084 a001 121393/15127*710647^(3/7) 2584000066076277 a001 2255/90481*710647^(6/7) 2584000066077008 a001 273741215/105937 2584000066079601 a001 24157817/15127*64079^(1/23) 2584000066086930 a001 6765/103682*103682^(11/12) 2584000066088077 a001 121393/15127*271443^(6/13) 2584000066088640 a001 3524578/15127*167761^(1/5) 2584000066093565 a004 Fibonacci(20)*Lucas(27)/(1/2+sqrt(5)/2)^29 2584000066101843 a001 317811/15127*20633239^(2/7) 2584000066101844 a001 6765/710647*141422324^(2/3) 2584000066101844 a001 6765/710647*(1/2+1/2*5^(1/2))^26 2584000066101844 a001 6765/710647*73681302247^(1/2) 2584000066101844 a001 6765/710647*10749957122^(13/24) 2584000066101844 a001 6765/710647*4106118243^(13/23) 2584000066101844 a001 6765/710647*1568397607^(13/22) 2584000066101844 a001 6765/710647*599074578^(13/21) 2584000066101844 a001 6765/710647*228826127^(13/20) 2584000066101844 a001 317811/15127*2537720636^(2/9) 2584000066101844 a001 317811/15127*312119004989^(2/11) 2584000066101844 a001 317811/15127*(1/2+1/2*5^(1/2))^10 2584000066101844 a001 317811/15127*28143753123^(1/5) 2584000066101844 a001 317811/15127*10749957122^(5/24) 2584000066101844 a001 317811/15127*4106118243^(5/23) 2584000066101844 a001 317811/15127*1568397607^(5/22) 2584000066101844 a001 317811/15127*599074578^(5/21) 2584000066101844 a001 317811/15127*228826127^(1/4) 2584000066101844 a001 317811/15127*87403803^(5/19) 2584000066101844 a001 6765/710647*87403803^(13/19) 2584000066101845 a001 317811/15127*33385282^(5/18) 2584000066101846 a001 6765/710647*33385282^(13/18) 2584000066101849 a001 317811/15127*12752043^(5/17) 2584000066101856 a001 6765/710647*12752043^(13/17) 2584000066101878 a001 317811/15127*4870847^(5/16) 2584000066101933 a001 6765/710647*4870847^(13/16) 2584000066102093 a001 317811/15127*1860498^(1/3) 2584000066102491 a001 6765/710647*1860498^(13/15) 2584000066102591 a001 39090753/15128 2584000066103672 a001 317811/15127*710647^(5/14) 2584000066103875 a001 311187/2161*439204^(2/9) 2584000066104263 a001 2255/90481*271443^(12/13) 2584000066104450 a001 514229/15127*439204^(1/3) 2584000066105006 a004 Fibonacci(20)*Lucas(29)/(1/2+sqrt(5)/2)^31 2584000066105479 a001 9227465/15127*439204^(1/9) 2584000066106209 a001 55/15126*20633239^(4/5) 2584000066106214 a001 55/15126*17393796001^(4/7) 2584000066106214 a001 55/15126*14662949395604^(4/9) 2584000066106214 a001 55/15126*(1/2+1/2*5^(1/2))^28 2584000066106214 a001 55/15126*73681302247^(7/13) 2584000066106214 a001 55/15126*10749957122^(7/12) 2584000066106214 a001 55/15126*4106118243^(14/23) 2584000066106214 a001 55/15126*1568397607^(7/11) 2584000066106214 a001 55/15126*599074578^(2/3) 2584000066106214 a001 55/15126*228826127^(7/10) 2584000066106214 a001 832040/15127*(1/2+1/2*5^(1/2))^8 2584000066106214 a001 832040/15127*23725150497407^(1/8) 2584000066106214 a001 832040/15127*505019158607^(1/7) 2584000066106214 a001 832040/15127*73681302247^(2/13) 2584000066106214 a001 832040/15127*10749957122^(1/6) 2584000066106214 a001 832040/15127*4106118243^(4/23) 2584000066106214 a001 832040/15127*1568397607^(2/11) 2584000066106214 a001 832040/15127*599074578^(4/21) 2584000066106214 a001 832040/15127*228826127^(1/5) 2584000066106214 a001 832040/15127*87403803^(4/19) 2584000066106215 a001 55/15126*87403803^(14/19) 2584000066106215 a001 832040/15127*33385282^(2/9) 2584000066106216 a001 55/15126*33385282^(7/9) 2584000066106218 a001 832040/15127*12752043^(4/17) 2584000066106227 a001 55/15126*12752043^(14/17) 2584000066106242 a001 832040/15127*4870847^(1/4) 2584000066106310 a001 55/15126*4870847^(7/8) 2584000066106323 a001 1876250200/726103 2584000066106413 a001 832040/15127*1860498^(4/15) 2584000066106595 a001 6765/710647*710647^(13/14) 2584000066106676 a004 Fibonacci(20)*Lucas(31)/(1/2+sqrt(5)/2)^33 2584000066106814 a001 6765/4870847*7881196^(10/11) 2584000066106844 a001 311187/2161*7881196^(2/11) 2584000066106847 a001 6765/4870847*20633239^(6/7) 2584000066106852 a001 6765/4870847*141422324^(10/13) 2584000066106852 a001 6765/4870847*2537720636^(2/3) 2584000066106852 a001 6765/4870847*45537549124^(10/17) 2584000066106852 a001 6765/4870847*312119004989^(6/11) 2584000066106852 a001 6765/4870847*14662949395604^(10/21) 2584000066106852 a001 6765/4870847*(1/2+1/2*5^(1/2))^30 2584000066106852 a001 6765/4870847*192900153618^(5/9) 2584000066106852 a001 6765/4870847*28143753123^(3/5) 2584000066106852 a001 6765/4870847*10749957122^(5/8) 2584000066106852 a001 6765/4870847*4106118243^(15/23) 2584000066106852 a001 6765/4870847*1568397607^(15/22) 2584000066106852 a001 6765/4870847*599074578^(5/7) 2584000066106852 a001 311187/2161*141422324^(2/13) 2584000066106852 a001 6765/4870847*228826127^(3/4) 2584000066106852 a001 311187/2161*2537720636^(2/15) 2584000066106852 a001 311187/2161*45537549124^(2/17) 2584000066106852 a001 311187/2161*14662949395604^(2/21) 2584000066106852 a001 311187/2161*(1/2+1/2*5^(1/2))^6 2584000066106852 a001 311187/2161*10749957122^(1/8) 2584000066106852 a001 311187/2161*4106118243^(3/23) 2584000066106852 a001 311187/2161*1568397607^(3/22) 2584000066106852 a001 311187/2161*599074578^(1/7) 2584000066106852 a001 311187/2161*228826127^(3/20) 2584000066106852 a001 311187/2161*87403803^(3/19) 2584000066106852 a001 6765/4870847*87403803^(15/19) 2584000066106852 a001 311187/2161*33385282^(1/6) 2584000066106854 a001 6765/4870847*33385282^(5/6) 2584000066106855 a001 311187/2161*12752043^(3/17) 2584000066106866 a001 6765/4870847*12752043^(15/17) 2584000066106868 a001 14736260385/5702887 2584000066106872 a001 311187/2161*4870847^(3/16) 2584000066106911 a001 55/15126*1860498^(14/15) 2584000066106919 a004 Fibonacci(20)*Lucas(33)/(1/2+sqrt(5)/2)^35 2584000066106945 a001 2255/4250681*(1/2+1/2*5^(1/2))^32 2584000066106945 a001 2255/4250681*23725150497407^(1/2) 2584000066106945 a001 2255/4250681*505019158607^(4/7) 2584000066106945 a001 2255/4250681*73681302247^(8/13) 2584000066106945 a001 2255/4250681*10749957122^(2/3) 2584000066106945 a001 2255/4250681*4106118243^(16/23) 2584000066106945 a001 2255/4250681*1568397607^(8/11) 2584000066106945 a001 2255/4250681*599074578^(16/21) 2584000066106945 a001 2255/4250681*228826127^(4/5) 2584000066106945 a001 5702887/15127*(1/2+1/2*5^(1/2))^4 2584000066106945 a001 5702887/15127*23725150497407^(1/16) 2584000066106945 a001 5702887/15127*73681302247^(1/13) 2584000066106945 a001 5702887/15127*10749957122^(1/12) 2584000066106945 a001 5702887/15127*4106118243^(2/23) 2584000066106945 a001 5702887/15127*1568397607^(1/11) 2584000066106945 a001 5702887/15127*599074578^(2/21) 2584000066106945 a001 5702887/15127*228826127^(1/10) 2584000066106945 a001 5702887/15127*87403803^(2/19) 2584000066106945 a001 2255/4250681*87403803^(16/19) 2584000066106945 a001 5702887/15127*33385282^(1/9) 2584000066106947 a001 5702887/15127*12752043^(2/17) 2584000066106947 a001 2255/4250681*33385282^(8/9) 2584000066106947 a001 12860010185/4976784 2584000066106954 a001 6765/4870847*4870847^(15/16) 2584000066106955 a004 Fibonacci(20)*Lucas(35)/(1/2+sqrt(5)/2)^37 2584000066106959 a001 6765/33385282*45537549124^(2/3) 2584000066106959 a001 6765/33385282*(1/2+1/2*5^(1/2))^34 2584000066106959 a001 6765/33385282*10749957122^(17/24) 2584000066106959 a001 6765/33385282*4106118243^(17/23) 2584000066106959 a001 6765/33385282*1568397607^(17/22) 2584000066106959 a001 6765/33385282*599074578^(17/21) 2584000066106959 a001 6765/33385282*228826127^(17/20) 2584000066106959 a001 14930352/15127*(1/2+1/2*5^(1/2))^2 2584000066106959 a001 14930352/15127*10749957122^(1/24) 2584000066106959 a001 14930352/15127*4106118243^(1/23) 2584000066106959 a001 14930352/15127*1568397607^(1/22) 2584000066106959 a001 14930352/15127*599074578^(1/21) 2584000066106959 a001 14930352/15127*228826127^(1/20) 2584000066106959 a001 14930352/15127*87403803^(1/19) 2584000066106959 a001 5702887/15127*4870847^(1/8) 2584000066106959 a001 14930352/15127*33385282^(1/18) 2584000066106959 a001 6765/33385282*87403803^(17/19) 2584000066106959 a001 101003831280/39088169 2584000066106960 a001 14930352/15127*12752043^(1/17) 2584000066106960 a001 2255/4250681*12752043^(16/17) 2584000066106960 a004 Fibonacci(20)*Lucas(37)/(1/2+sqrt(5)/2)^39 2584000066106960 a001 2255/29134601*141422324^(12/13) 2584000066106961 a001 2255/29134601*2537720636^(4/5) 2584000066106961 a001 2255/29134601*45537549124^(12/17) 2584000066106961 a001 2255/29134601*14662949395604^(4/7) 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^36/Lucas(38) 2584000066106961 a001 2255/29134601*192900153618^(2/3) 2584000066106961 a001 2255/29134601*73681302247^(9/13) 2584000066106961 a001 2255/29134601*10749957122^(3/4) 2584000066106961 a001 2255/29134601*4106118243^(18/23) 2584000066106961 a001 2255/29134601*1568397607^(9/11) 2584000066106961 a001 2255/29134601*599074578^(6/7) 2584000066106961 a001 2255/29134601*228826127^(9/10) 2584000066106961 a001 39088169/15127 2584000066106961 a004 Fibonacci(20)*Lucas(39)/(1/2+sqrt(5)/2)^41 2584000066106961 a001 6765/33385282*33385282^(17/18) 2584000066106961 a001 6765/228826127*817138163596^(2/3) 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^38/Lucas(40) 2584000066106961 a001 6765/228826127*10749957122^(19/24) 2584000066106961 a001 6765/228826127*4106118243^(19/23) 2584000066106961 a001 6765/228826127*1568397607^(19/22) 2584000066106961 a001 6765/228826127*599074578^(19/21) 2584000066106961 a001 692290558575/267914296 2584000066106961 a004 Fibonacci(20)*Lucas(41)/(1/2+sqrt(5)/2)^43 2584000066106961 a001 2255/29134601*87403803^(18/19) 2584000066106961 a001 2255/199691526*2537720636^(8/9) 2584000066106961 a001 2255/199691526*312119004989^(8/11) 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^40/Lucas(42) 2584000066106961 a001 2255/199691526*23725150497407^(5/8) 2584000066106961 a001 2255/199691526*73681302247^(10/13) 2584000066106961 a001 2255/199691526*28143753123^(4/5) 2584000066106961 a001 2255/199691526*10749957122^(5/6) 2584000066106961 a001 2255/199691526*4106118243^(20/23) 2584000066106961 a001 2255/199691526*1568397607^(10/11) 2584000066106961 a001 604146737480/233802911 2584000066106961 a004 Fibonacci(20)*Lucas(43)/(1/2+sqrt(5)/2)^45 2584000066106961 a001 6765/228826127*228826127^(19/20) 2584000066106961 a001 6765/1568397607*2537720636^(14/15) 2584000066106961 a001 6765/1568397607*17393796001^(6/7) 2584000066106961 a001 6765/1568397607*45537549124^(14/17) 2584000066106961 a001 6765/1568397607*817138163596^(14/19) 2584000066106961 a001 6765/1568397607*14662949395604^(2/3) 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^42/Lucas(44) 2584000066106961 a001 6765/1568397607*505019158607^(3/4) 2584000066106961 a001 6765/1568397607*192900153618^(7/9) 2584000066106961 a001 6765/1568397607*10749957122^(7/8) 2584000066106961 a001 6765/1568397607*4106118243^(21/23) 2584000066106961 a001 4745030078745/1836311903 2584000066106961 a004 Fibonacci(20)*Lucas(45)/(1/2+sqrt(5)/2)^47 2584000066106961 a001 2255/199691526*599074578^(20/21) 2584000066106961 a001 2255/1368706081*312119004989^(4/5) 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^44/Lucas(46) 2584000066106961 a001 2255/1368706081*23725150497407^(11/16) 2584000066106961 a001 2255/1368706081*73681302247^(11/13) 2584000066106961 a001 2255/1368706081*10749957122^(11/12) 2584000066106961 a001 4140883341265/1602508992 2584000066106961 a004 Fibonacci(20)*Lucas(47)/(1/2+sqrt(5)/2)^49 2584000066106961 a001 6765/1568397607*1568397607^(21/22) 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^46/Lucas(48) 2584000066106961 a001 591325818048/228841255 2584000066106961 a004 Fibonacci(20)*Lucas(49)/(1/2+sqrt(5)/2)^51 2584000066106961 a001 2255/1368706081*4106118243^(22/23) 2584000066106961 a001 55/228811001*45537549124^(16/17) 2584000066106961 a001 55/228811001*14662949395604^(16/21) 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^48/Lucas(50) 2584000066106961 a001 55/228811001*192900153618^(8/9) 2584000066106961 a001 55/228811001*73681302247^(12/13) 2584000066106961 a001 28382036651375/10983760033 2584000066106961 a004 Fibonacci(20)*Lucas(51)/(1/2+sqrt(5)/2)^53 2584000066106961 a001 6765/10749957122*10749957122^(23/24) 2584000066106961 a001 6765/73681302247*312119004989^(10/11) 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^50/Lucas(52) 2584000066106961 a001 6765/73681302247*3461452808002^(5/6) 2584000066106961 a001 222915409869735/86267571272 2584000066106961 a004 Fibonacci(20)*Lucas(53)/(1/2+sqrt(5)/2)^55 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^52/Lucas(54) 2584000066106961 a001 2255/64300051206*23725150497407^(13/16) 2584000066106961 a001 194533373218360/75283811239 2584000066106961 a004 Fibonacci(20)*Lucas(55)/(1/2+sqrt(5)/2)^57 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^54/Lucas(56) 2584000066106961 a001 1527884949095505/591286729879 2584000066106961 a004 Fibonacci(20)*Lucas(57)/(1/2+sqrt(5)/2)^59 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^56/Lucas(58) 2584000066106961 a004 Fibonacci(20)*Lucas(59)/(1/2+sqrt(5)/2)^61 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^58/Lucas(60) 2584000066106961 a001 10472279233798800/4052739537881 2584000066106961 a004 Fibonacci(20)*Lucas(61)/(1/2+sqrt(5)/2)^63 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^60/Lucas(62) 2584000066106961 a004 Fibonacci(20)*Lucas(63)/(1/2+sqrt(5)/2)^65 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^62/Lucas(64) 2584000066106961 a004 Fibonacci(20)*Lucas(65)/(1/2+sqrt(5)/2)^67 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^64/Lucas(66) 2584000066106961 a004 Fibonacci(20)*Lucas(67)/(1/2+sqrt(5)/2)^69 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^66/Lucas(68) 2584000066106961 a004 Fibonacci(20)*Lucas(69)/(1/2+sqrt(5)/2)^71 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^68/Lucas(70) 2584000066106961 a004 Fibonacci(20)*Lucas(71)/(1/2+sqrt(5)/2)^73 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^70/Lucas(72) 2584000066106961 a004 Fibonacci(20)*Lucas(73)/(1/2+sqrt(5)/2)^75 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^72/Lucas(74) 2584000066106961 a004 Fibonacci(20)*Lucas(75)/(1/2+sqrt(5)/2)^77 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^74/Lucas(76) 2584000066106961 a004 Fibonacci(20)*Lucas(77)/(1/2+sqrt(5)/2)^79 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^76/Lucas(78) 2584000066106961 a004 Fibonacci(20)*Lucas(79)/(1/2+sqrt(5)/2)^81 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^78/Lucas(80) 2584000066106961 a004 Fibonacci(20)*Lucas(81)/(1/2+sqrt(5)/2)^83 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^80/Lucas(82) 2584000066106961 a004 Fibonacci(20)*Lucas(83)/(1/2+sqrt(5)/2)^85 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^82/Lucas(84) 2584000066106961 a004 Fibonacci(20)*Lucas(85)/(1/2+sqrt(5)/2)^87 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^84/Lucas(86) 2584000066106961 a004 Fibonacci(20)*Lucas(87)/(1/2+sqrt(5)/2)^89 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^86/Lucas(88) 2584000066106961 a004 Fibonacci(20)*Lucas(89)/(1/2+sqrt(5)/2)^91 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^88/Lucas(90) 2584000066106961 a004 Fibonacci(20)*Lucas(91)/(1/2+sqrt(5)/2)^93 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^90/Lucas(92) 2584000066106961 a004 Fibonacci(20)*Lucas(93)/(1/2+sqrt(5)/2)^95 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^92/Lucas(94) 2584000066106961 a004 Fibonacci(20)*Lucas(95)/(1/2+sqrt(5)/2)^97 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^94/Lucas(96) 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^96/Lucas(98) 2584000066106961 a004 Fibonacci(20)*Lucas(97)/(1/2+sqrt(5)/2)^99 2584000066106961 a004 Fibonacci(10)*Lucas(10)/(1/2+sqrt(5)/2)^2 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^95/Lucas(97) 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^97/Lucas(99) 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^98/Lucas(100) 2584000066106961 a004 Fibonacci(20)*Lucas(98)/(1/2+sqrt(5)/2)^100 2584000066106961 a004 Fibonacci(20)*Lucas(96)/(1/2+sqrt(5)/2)^98 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^93/Lucas(95) 2584000066106961 a004 Fibonacci(20)*Lucas(94)/(1/2+sqrt(5)/2)^96 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^91/Lucas(93) 2584000066106961 a004 Fibonacci(20)*Lucas(92)/(1/2+sqrt(5)/2)^94 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^89/Lucas(91) 2584000066106961 a004 Fibonacci(20)*Lucas(90)/(1/2+sqrt(5)/2)^92 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^87/Lucas(89) 2584000066106961 a004 Fibonacci(20)*Lucas(88)/(1/2+sqrt(5)/2)^90 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^85/Lucas(87) 2584000066106961 a004 Fibonacci(20)*Lucas(86)/(1/2+sqrt(5)/2)^88 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^83/Lucas(85) 2584000066106961 a004 Fibonacci(20)*Lucas(84)/(1/2+sqrt(5)/2)^86 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^81/Lucas(83) 2584000066106961 a004 Fibonacci(20)*Lucas(82)/(1/2+sqrt(5)/2)^84 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^79/Lucas(81) 2584000066106961 a004 Fibonacci(20)*Lucas(80)/(1/2+sqrt(5)/2)^82 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^77/Lucas(79) 2584000066106961 a004 Fibonacci(20)*Lucas(78)/(1/2+sqrt(5)/2)^80 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^75/Lucas(77) 2584000066106961 a004 Fibonacci(20)*Lucas(76)/(1/2+sqrt(5)/2)^78 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^73/Lucas(75) 2584000066106961 a004 Fibonacci(20)*Lucas(74)/(1/2+sqrt(5)/2)^76 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^71/Lucas(73) 2584000066106961 a004 Fibonacci(20)*Lucas(72)/(1/2+sqrt(5)/2)^74 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^69/Lucas(71) 2584000066106961 a004 Fibonacci(20)*Lucas(70)/(1/2+sqrt(5)/2)^72 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^67/Lucas(69) 2584000066106961 a004 Fibonacci(20)*Lucas(68)/(1/2+sqrt(5)/2)^70 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^65/Lucas(67) 2584000066106961 a004 Fibonacci(20)*Lucas(66)/(1/2+sqrt(5)/2)^68 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^63/Lucas(65) 2584000066106961 a004 Fibonacci(20)*Lucas(64)/(1/2+sqrt(5)/2)^66 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^61/Lucas(63) 2584000066106961 a004 Fibonacci(20)*Lucas(62)/(1/2+sqrt(5)/2)^64 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^59/Lucas(61) 2584000066106961 a004 Fibonacci(20)*Lucas(60)/(1/2+sqrt(5)/2)^62 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^57/Lucas(59) 2584000066106961 a004 Fibonacci(20)*Lucas(58)/(1/2+sqrt(5)/2)^60 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^55/Lucas(57) 2584000066106961 a004 Fibonacci(20)*Lucas(56)/(1/2+sqrt(5)/2)^58 2584000066106961 a001 944284829440425/365435296162 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^53/Lucas(55) 2584000066106961 a004 Fibonacci(20)*Lucas(54)/(1/2+sqrt(5)/2)^56 2584000066106961 a001 72136941957069/27916772489 2584000066106961 a001 6765/119218851371*817138163596^(17/19) 2584000066106961 a001 6765/119218851371*14662949395604^(17/21) 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^51/Lucas(53) 2584000066106961 a001 6765/119218851371*192900153618^(17/18) 2584000066106961 a004 Fibonacci(20)*Lucas(52)/(1/2+sqrt(5)/2)^54 2584000066106961 a001 137769299915610/53316291173 2584000066106961 a001 6765/45537549124*14662949395604^(7/9) 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^49/Lucas(51) 2584000066106961 a001 6765/45537549124*505019158607^(7/8) 2584000066106961 a004 Fibonacci(20)*Lucas(50)/(1/2+sqrt(5)/2)^52 2584000066106961 a001 52623189961485/20365011074 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^47/Lucas(49) 2584000066106961 a004 Fibonacci(20)*Lucas(48)/(1/2+sqrt(5)/2)^50 2584000066106961 a001 20100269968845/7778742049 2584000066106961 a001 6765/6643838879*45537549124^(15/17) 2584000066106961 a001 6765/6643838879*312119004989^(9/11) 2584000066106961 a001 6765/6643838879*14662949395604^(5/7) 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^45/Lucas(47) 2584000066106961 a001 6765/6643838879*192900153618^(5/6) 2584000066106961 a001 6765/6643838879*28143753123^(9/10) 2584000066106961 a001 6765/6643838879*10749957122^(15/16) 2584000066106961 a004 Fibonacci(20)*Lucas(46)/(1/2+sqrt(5)/2)^48 2584000066106961 a001 7677619945050/2971215073 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^43/Lucas(45) 2584000066106961 a004 Fibonacci(20)*Lucas(44)/(1/2+sqrt(5)/2)^46 2584000066106961 a001 586517973261/226980634 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^41/Lucas(43) 2584000066106961 a004 Fibonacci(20)*Lucas(42)/(1/2+sqrt(5)/2)^44 2584000066106961 a001 1120149653865/433494437 2584000066106961 a001 6765/370248451*2537720636^(13/15) 2584000066106961 a001 6765/370248451*45537549124^(13/17) 2584000066106961 a001 6765/370248451*14662949395604^(13/21) 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^39/Lucas(41) 2584000066106961 a001 6765/370248451*192900153618^(13/18) 2584000066106961 a001 6765/370248451*73681302247^(3/4) 2584000066106961 a001 6765/370248451*10749957122^(13/16) 2584000066106961 a001 6765/370248451*599074578^(13/14) 2584000066106961 a004 Fibonacci(42)/Lucas(20)/(1/2+sqrt(5)/2)^4 2584000066106961 a004 Fibonacci(44)/Lucas(20)/(1/2+sqrt(5)/2)^6 2584000066106961 a004 Fibonacci(46)/Lucas(20)/(1/2+sqrt(5)/2)^8 2584000066106961 a004 Fibonacci(48)/Lucas(20)/(1/2+sqrt(5)/2)^10 2584000066106961 a004 Fibonacci(50)/Lucas(20)/(1/2+sqrt(5)/2)^12 2584000066106961 a004 Fibonacci(52)/Lucas(20)/(1/2+sqrt(5)/2)^14 2584000066106961 a004 Fibonacci(54)/Lucas(20)/(1/2+sqrt(5)/2)^16 2584000066106961 a004 Fibonacci(56)/Lucas(20)/(1/2+sqrt(5)/2)^18 2584000066106961 a004 Fibonacci(58)/Lucas(20)/(1/2+sqrt(5)/2)^20 2584000066106961 a004 Fibonacci(60)/Lucas(20)/(1/2+sqrt(5)/2)^22 2584000066106961 a004 Fibonacci(62)/Lucas(20)/(1/2+sqrt(5)/2)^24 2584000066106961 a004 Fibonacci(64)/Lucas(20)/(1/2+sqrt(5)/2)^26 2584000066106961 a004 Fibonacci(66)/Lucas(20)/(1/2+sqrt(5)/2)^28 2584000066106961 a004 Fibonacci(68)/Lucas(20)/(1/2+sqrt(5)/2)^30 2584000066106961 a004 Fibonacci(70)/Lucas(20)/(1/2+sqrt(5)/2)^32 2584000066106961 a004 Fibonacci(72)/Lucas(20)/(1/2+sqrt(5)/2)^34 2584000066106961 a004 Fibonacci(74)/Lucas(20)/(1/2+sqrt(5)/2)^36 2584000066106961 a004 Fibonacci(76)/Lucas(20)/(1/2+sqrt(5)/2)^38 2584000066106961 a004 Fibonacci(78)/Lucas(20)/(1/2+sqrt(5)/2)^40 2584000066106961 a004 Fibonacci(20)*Lucas(40)/(1/2+sqrt(5)/2)^42 2584000066106961 a004 Fibonacci(82)/Lucas(20)/(1/2+sqrt(5)/2)^44 2584000066106961 a004 Fibonacci(84)/Lucas(20)/(1/2+sqrt(5)/2)^46 2584000066106961 a004 Fibonacci(86)/Lucas(20)/(1/2+sqrt(5)/2)^48 2584000066106961 a004 Fibonacci(88)/Lucas(20)/(1/2+sqrt(5)/2)^50 2584000066106961 a004 Fibonacci(90)/Lucas(20)/(1/2+sqrt(5)/2)^52 2584000066106961 a004 Fibonacci(92)/Lucas(20)/(1/2+sqrt(5)/2)^54 2584000066106961 a004 Fibonacci(94)/Lucas(20)/(1/2+sqrt(5)/2)^56 2584000066106961 a004 Fibonacci(96)/Lucas(20)/(1/2+sqrt(5)/2)^58 2584000066106961 a004 Fibonacci(100)/Lucas(20)/(1/2+sqrt(5)/2)^62 2584000066106961 a004 Fibonacci(98)/Lucas(20)/(1/2+sqrt(5)/2)^60 2584000066106961 a004 Fibonacci(99)/Lucas(20)/(1/2+sqrt(5)/2)^61 2584000066106961 a004 Fibonacci(97)/Lucas(20)/(1/2+sqrt(5)/2)^59 2584000066106961 a004 Fibonacci(95)/Lucas(20)/(1/2+sqrt(5)/2)^57 2584000066106961 a004 Fibonacci(93)/Lucas(20)/(1/2+sqrt(5)/2)^55 2584000066106961 a004 Fibonacci(91)/Lucas(20)/(1/2+sqrt(5)/2)^53 2584000066106961 a004 Fibonacci(89)/Lucas(20)/(1/2+sqrt(5)/2)^51 2584000066106961 a004 Fibonacci(87)/Lucas(20)/(1/2+sqrt(5)/2)^49 2584000066106961 a004 Fibonacci(85)/Lucas(20)/(1/2+sqrt(5)/2)^47 2584000066106961 a004 Fibonacci(83)/Lucas(20)/(1/2+sqrt(5)/2)^45 2584000066106961 a004 Fibonacci(81)/Lucas(20)/(1/2+sqrt(5)/2)^43 2584000066106961 a004 Fibonacci(79)/Lucas(20)/(1/2+sqrt(5)/2)^41 2584000066106961 a004 Fibonacci(77)/Lucas(20)/(1/2+sqrt(5)/2)^39 2584000066106961 a004 Fibonacci(75)/Lucas(20)/(1/2+sqrt(5)/2)^37 2584000066106961 a004 Fibonacci(73)/Lucas(20)/(1/2+sqrt(5)/2)^35 2584000066106961 a004 Fibonacci(71)/Lucas(20)/(1/2+sqrt(5)/2)^33 2584000066106961 a004 Fibonacci(69)/Lucas(20)/(1/2+sqrt(5)/2)^31 2584000066106961 a004 Fibonacci(67)/Lucas(20)/(1/2+sqrt(5)/2)^29 2584000066106961 a004 Fibonacci(65)/Lucas(20)/(1/2+sqrt(5)/2)^27 2584000066106961 a004 Fibonacci(63)/Lucas(20)/(1/2+sqrt(5)/2)^25 2584000066106961 a004 Fibonacci(61)/Lucas(20)/(1/2+sqrt(5)/2)^23 2584000066106961 a004 Fibonacci(59)/Lucas(20)/(1/2+sqrt(5)/2)^21 2584000066106961 a004 Fibonacci(57)/Lucas(20)/(1/2+sqrt(5)/2)^19 2584000066106961 a004 Fibonacci(55)/Lucas(20)/(1/2+sqrt(5)/2)^17 2584000066106961 a004 Fibonacci(53)/Lucas(20)/(1/2+sqrt(5)/2)^15 2584000066106961 a004 Fibonacci(51)/Lucas(20)/(1/2+sqrt(5)/2)^13 2584000066106961 a004 Fibonacci(49)/Lucas(20)/(1/2+sqrt(5)/2)^11 2584000066106961 a004 Fibonacci(47)/Lucas(20)/(1/2+sqrt(5)/2)^9 2584000066106961 a004 Fibonacci(45)/Lucas(20)/(1/2+sqrt(5)/2)^7 2584000066106961 a004 Fibonacci(43)/Lucas(20)/(1/2+sqrt(5)/2)^5 2584000066106961 a004 Fibonacci(41)/Lucas(20)/(1/2+sqrt(5)/2)^3 2584000066106961 a001 427859095290/165580141 2584000066106961 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^37/Lucas(39) 2584000066106961 a004 Fibonacci(39)/Lucas(20)/(1/2+sqrt(5)/2) 2584000066106961 a004 Fibonacci(20)*Lucas(38)/(1/2+sqrt(5)/2)^40 2584000066106962 a001 163427632005/63245986 2584000066106962 a001 6765/54018521*2537720636^(7/9) 2584000066106962 a001 6765/54018521*17393796001^(5/7) 2584000066106962 a001 6765/54018521*312119004989^(7/11) 2584000066106962 a001 6765/54018521*14662949395604^(5/9) 2584000066106962 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^35/Lucas(37) 2584000066106962 a001 6765/54018521*505019158607^(5/8) 2584000066106962 a001 6765/54018521*28143753123^(7/10) 2584000066106962 a001 6765/54018521*599074578^(5/6) 2584000066106962 a001 6765/54018521*228826127^(7/8) 2584000066106962 a001 24157817/30254+24157817/30254*5^(1/2) 2584000066106963 a004 Fibonacci(20)*Lucas(36)/(1/2+sqrt(5)/2)^38 2584000066106963 a001 9227465/15127*7881196^(1/11) 2584000066106965 a001 14930352/15127*4870847^(1/16) 2584000066106966 a001 62423800725/24157817 2584000066106967 a001 615/1875749*141422324^(11/13) 2584000066106967 a001 615/1875749*2537720636^(11/15) 2584000066106967 a001 615/1875749*45537549124^(11/17) 2584000066106967 a001 615/1875749*312119004989^(3/5) 2584000066106967 a001 615/1875749*817138163596^(11/19) 2584000066106967 a001 615/1875749*14662949395604^(11/21) 2584000066106967 a001 615/1875749*(1/2+1/2*5^(1/2))^33 2584000066106967 a001 615/1875749*192900153618^(11/18) 2584000066106967 a001 615/1875749*10749957122^(11/16) 2584000066106967 a001 615/1875749*1568397607^(3/4) 2584000066106967 a001 615/1875749*599074578^(11/14) 2584000066106967 a001 9227465/15127*141422324^(1/13) 2584000066106967 a001 9227465/15127*2537720636^(1/15) 2584000066106967 a001 9227465/15127*45537549124^(1/17) 2584000066106967 a001 9227465/15127*14662949395604^(1/21) 2584000066106967 a001 9227465/15127*(1/2+1/2*5^(1/2))^3 2584000066106967 a001 9227465/15127*10749957122^(1/16) 2584000066106967 a001 9227465/15127*599074578^(1/14) 2584000066106967 a001 9227465/15127*33385282^(1/12) 2584000066106969 a001 615/1875749*33385282^(11/12) 2584000066106977 a004 Fibonacci(20)*Lucas(34)/(1/2+sqrt(5)/2)^36 2584000066106996 a001 4768754034/1845493 2584000066107001 a001 311187/2161*1860498^(1/5) 2584000066107002 a001 3524578/15127*20633239^(1/7) 2584000066107002 a001 6765/7881196*(1/2+1/2*5^(1/2))^31 2584000066107002 a001 6765/7881196*9062201101803^(1/2) 2584000066107003 a001 3524578/15127*2537720636^(1/9) 2584000066107003 a001 3524578/15127*312119004989^(1/11) 2584000066107003 a001 3524578/15127*(1/2+1/2*5^(1/2))^5 2584000066107003 a001 3524578/15127*28143753123^(1/10) 2584000066107003 a001 3524578/15127*228826127^(1/8) 2584000066107008 a001 14930352/15127*1860498^(1/15) 2584000066107042 a001 9227465/15127*1860498^(1/10) 2584000066107045 a001 5702887/15127*1860498^(2/15) 2584000066107070 a004 Fibonacci(20)*Lucas(32)/(1/2+sqrt(5)/2)^34 2584000066107127 a001 3524578/15127*1860498^(1/6) 2584000066107204 a001 9107509785/3524578 2584000066107245 a001 1346269/15127*20633239^(1/5) 2584000066107246 a001 6765/3010349*(1/2+1/2*5^(1/2))^29 2584000066107246 a001 6765/3010349*1322157322203^(1/2) 2584000066107246 a001 1346269/15127*17393796001^(1/7) 2584000066107246 a001 1346269/15127*14662949395604^(1/9) 2584000066107246 a001 1346269/15127*(1/2+1/2*5^(1/2))^7 2584000066107246 a001 1346269/15127*599074578^(1/6) 2584000066107324 a001 14930352/15127*710647^(1/14) 2584000066107676 a001 5702887/15127*710647^(1/7) 2584000066107676 a001 832040/15127*710647^(2/7) 2584000066107707 a004 Fibonacci(20)*Lucas(30)/(1/2+sqrt(5)/2)^32 2584000066107948 a001 311187/2161*710647^(3/14) 2584000066108525 a001 1346269/15127*710647^(1/4) 2584000066108630 a001 3478759185/1346269 2584000066108881 a001 6765/1149851*7881196^(9/11) 2584000066108904 a001 514229/15127*7881196^(3/11) 2584000066108915 a001 6765/1149851*141422324^(9/13) 2584000066108915 a001 6765/1149851*2537720636^(3/5) 2584000066108915 a001 6765/1149851*45537549124^(9/17) 2584000066108915 a001 6765/1149851*817138163596^(9/19) 2584000066108915 a001 6765/1149851*14662949395604^(3/7) 2584000066108915 a001 6765/1149851*(1/2+1/2*5^(1/2))^27 2584000066108915 a001 6765/1149851*192900153618^(1/2) 2584000066108915 a001 6765/1149851*10749957122^(9/16) 2584000066108915 a001 6765/1149851*599074578^(9/14) 2584000066108915 a001 514229/15127*141422324^(3/13) 2584000066108915 a001 514229/15127*2537720636^(1/5) 2584000066108915 a001 514229/15127*45537549124^(3/17) 2584000066108915 a001 514229/15127*14662949395604^(1/7) 2584000066108915 a001 514229/15127*(1/2+1/2*5^(1/2))^9 2584000066108915 a001 514229/15127*192900153618^(1/6) 2584000066108915 a001 514229/15127*10749957122^(3/16) 2584000066108915 a001 514229/15127*599074578^(3/14) 2584000066108916 a001 514229/15127*33385282^(1/4) 2584000066108917 a001 6765/1149851*33385282^(3/4) 2584000066109023 a001 102334155/64079*3571^(1/17) 2584000066109139 a001 514229/15127*1860498^(3/10) 2584000066109587 a001 6765/1149851*1860498^(9/10) 2584000066109656 a001 14930352/15127*271443^(1/13) 2584000066112077 a004 Fibonacci(20)*Lucas(28)/(1/2+sqrt(5)/2)^30 2584000066112340 a001 5702887/15127*271443^(2/13) 2584000066114945 a001 311187/2161*271443^(3/13) 2584000066115333 a001 317811/15127*271443^(5/13) 2584000066116977 a001 24157817/15127*103682^(1/24) 2584000066117005 a001 832040/15127*271443^(4/13) 2584000066118402 a001 1328767770/514229 2584000066120343 a001 196418/15127*7881196^(1/3) 2584000066120352 a001 6765/439204*20633239^(5/7) 2584000066120356 a001 6765/439204*2537720636^(5/9) 2584000066120356 a001 6765/439204*312119004989^(5/11) 2584000066120356 a001 6765/439204*(1/2+1/2*5^(1/2))^25 2584000066120356 a001 6765/439204*3461452808002^(5/12) 2584000066120356 a001 6765/439204*28143753123^(1/2) 2584000066120356 a001 6765/439204*228826127^(5/8) 2584000066120356 a001 196418/15127*312119004989^(1/5) 2584000066120356 a001 196418/15127*(1/2+1/2*5^(1/2))^11 2584000066120356 a001 196418/15127*1568397607^(1/4) 2584000066120978 a001 6765/439204*1860498^(5/6) 2584000066126990 a001 14930352/15127*103682^(1/12) 2584000066137014 a001 9227465/15127*103682^(1/8) 2584000066142031 a004 Fibonacci(20)*Lucas(26)/(1/2+sqrt(5)/2)^28 2584000066147007 a001 5702887/15127*103682^(1/6) 2584000066154688 a001 514229/24476*9349^(10/19) 2584000066157080 a001 3524578/15127*103682^(5/24) 2584000066161683 a001 6765/64079*64079^(21/23) 2584000066166945 a001 311187/2161*103682^(1/4) 2584000066177355 a001 1346269/15127*103682^(7/24) 2584000066181850 a001 24157817/15127*39603^(1/22) 2584000066185380 a001 507544125/196418 2584000066186339 a001 832040/15127*103682^(1/3) 2584000066192077 a001 121393/15127*103682^(1/2) 2584000066198775 a001 615/15251*(1/2+1/2*5^(1/2))^23 2584000066198775 a001 615/15251*4106118243^(1/2) 2584000066198775 a001 75025/15127*141422324^(1/3) 2584000066198775 a001 75025/15127*(1/2+1/2*5^(1/2))^13 2584000066198775 a001 75025/15127*73681302247^(1/4) 2584000066199055 a001 514229/15127*103682^(3/8) 2584000066202000 a001 317811/15127*103682^(5/12) 2584000066216310 a001 75025/15127*271443^(1/2) 2584000066230527 a001 196418/15127*103682^(11/24) 2584000066256735 a001 14930352/15127*39603^(1/11) 2584000066267036 a001 9227465/103682*9349^(7/19) 2584000066312882 a001 5702887/5778*2207^(1/8) 2584000066325850 a001 28657/15127*64079^(15/23) 2584000066328977 a001 75025/15127*103682^(13/24) 2584000066331632 a001 9227465/15127*39603^(3/22) 2584000066341904 a001 987*843^(1/7) 2584000066347334 a004 Fibonacci(20)*Lucas(24)/(1/2+sqrt(5)/2)^26 2584000066406498 a001 5702887/15127*39603^(2/11) 2584000066415842 a001 5702887/39603*9349^(6/19) 2584000066429133 a001 615/15251*103682^(23/24) 2584000066472334 a001 24157817/271443*9349^(7/19) 2584000066481444 a001 3524578/15127*39603^(5/22) 2584000066502287 a001 63245986/710647*9349^(7/19) 2584000066506657 a001 165580141/1860498*9349^(7/19) 2584000066507294 a001 433494437/4870847*9349^(7/19) 2584000066507387 a001 1134903170/12752043*9349^(7/19) 2584000066507401 a001 2971215073/33385282*9349^(7/19) 2584000066507403 a001 7778742049/87403803*9349^(7/19) 2584000066507403 a001 20365011074/228826127*9349^(7/19) 2584000066507403 a001 53316291173/599074578*9349^(7/19) 2584000066507403 a001 139583862445/1568397607*9349^(7/19) 2584000066507403 a001 365435296162/4106118243*9349^(7/19) 2584000066507403 a001 956722026041/10749957122*9349^(7/19) 2584000066507403 a001 2504730781961/28143753123*9349^(7/19) 2584000066507403 a001 6557470319842/73681302247*9349^(7/19) 2584000066507403 a001 10610209857723/119218851371*9349^(7/19) 2584000066507403 a001 4052739537881/45537549124*9349^(7/19) 2584000066507403 a001 1548008755920/17393796001*9349^(7/19) 2584000066507403 a001 591286729879/6643838879*9349^(7/19) 2584000066507403 a001 225851433717/2537720636*9349^(7/19) 2584000066507403 a001 86267571272/969323029*9349^(7/19) 2584000066507403 a001 32951280099/370248451*9349^(7/19) 2584000066507403 a001 12586269025/141422324*9349^(7/19) 2584000066507404 a001 4807526976/54018521*9349^(7/19) 2584000066507409 a001 1836311903/20633239*9349^(7/19) 2584000066507445 a001 3524667/39604*9349^(7/19) 2584000066507688 a001 267914296/3010349*9349^(7/19) 2584000066509357 a001 102334155/1149851*9349^(7/19) 2584000066517753 a001 6765/24476*24476^(19/21) 2584000066520798 a001 39088169/439204*9349^(7/19) 2584000066556181 a001 311187/2161*39603^(3/11) 2584000066599215 a001 14930352/167761*9349^(7/19) 2584000066631464 a001 1346269/15127*39603^(7/22) 2584000066644451 a001 38772921/15005 2584000066671583 a001 24157817/15127*15127^(1/20) 2584000066681177 a001 28657/15127*167761^(3/5) 2584000066705320 a001 832040/15127*39603^(4/11) 2584000066725847 a001 6765/64079*439204^(7/9) 2584000066728824 a001 28657/15127*439204^(5/9) 2584000066736239 a001 6765/64079*7881196^(7/11) 2584000066736247 a001 28657/15127*7881196^(5/11) 2584000066736262 a001 6765/64079*20633239^(3/5) 2584000066736263 a001 28657/15127*20633239^(3/7) 2584000066736266 a001 6765/64079*141422324^(7/13) 2584000066736266 a001 28657/15127*141422324^(5/13) 2584000066736266 a001 6765/64079*2537720636^(7/15) 2584000066736266 a001 6765/64079*17393796001^(3/7) 2584000066736266 a001 6765/64079*45537549124^(7/17) 2584000066736266 a001 6765/64079*14662949395604^(1/3) 2584000066736266 a001 6765/64079*(1/2+1/2*5^(1/2))^21 2584000066736266 a001 6765/64079*192900153618^(7/18) 2584000066736266 a001 6765/64079*10749957122^(7/16) 2584000066736266 a001 6765/64079*599074578^(1/2) 2584000066736266 a001 28657/15127*2537720636^(1/3) 2584000066736266 a001 28657/15127*45537549124^(5/17) 2584000066736266 a001 28657/15127*312119004989^(3/11) 2584000066736266 a001 28657/15127*14662949395604^(5/21) 2584000066736266 a001 28657/15127*(1/2+1/2*5^(1/2))^15 2584000066736266 a001 28657/15127*192900153618^(5/18) 2584000066736266 a001 28657/15127*28143753123^(3/10) 2584000066736266 a001 28657/15127*10749957122^(5/16) 2584000066736266 a001 28657/15127*599074578^(5/14) 2584000066736266 a001 28657/15127*228826127^(3/8) 2584000066736267 a001 28657/15127*33385282^(5/12) 2584000066736267 a001 6765/64079*33385282^(7/12) 2584000066736639 a001 28657/15127*1860498^(1/2) 2584000066736788 a001 6765/64079*1860498^(7/10) 2584000066740103 a001 6765/64079*710647^(3/4) 2584000066782910 a001 514229/15127*39603^(9/22) 2584000066850727 a001 317811/15127*39603^(5/11) 2584000066886499 a001 28657/15127*103682^(5/8) 2584000066915023 a001 6624/2161*39603^(7/11) 2584000066928546 a001 10946/15127*24476^(17/21) 2584000066944127 a001 196418/15127*39603^(1/2) 2584000066946592 a001 6765/64079*103682^(7/8) 2584000066970550 a001 121393/15127*39603^(6/11) 2584000067136692 a001 5702887/64079*9349^(7/19) 2584000067172322 a001 75025/15127*39603^(13/22) 2584000067236200 a001 14930352/15127*15127^(1/10) 2584000067707983 a001 208010/6119*9349^(9/19) 2584000067754502 a004 Fibonacci(20)*Lucas(22)/(1/2+sqrt(5)/2)^24 2584000067800830 a001 9227465/15127*15127^(3/20) 2584000067823024 a001 7465176/51841*9349^(6/19) 2584000067859589 a001 28657/15127*39603^(15/22) 2584000067971861 a001 9227465/39603*9349^(5/19) 2584000068028329 a001 39088169/271443*9349^(6/19) 2584000068058283 a001 14619165/101521*9349^(6/19) 2584000068062653 a001 133957148/930249*9349^(6/19) 2584000068063291 a001 701408733/4870847*9349^(6/19) 2584000068063384 a001 1836311903/12752043*9349^(6/19) 2584000068063397 a001 14930208/103681*9349^(6/19) 2584000068063399 a001 12586269025/87403803*9349^(6/19) 2584000068063399 a001 32951280099/228826127*9349^(6/19) 2584000068063399 a001 43133785636/299537289*9349^(6/19) 2584000068063399 a001 32264490531/224056801*9349^(6/19) 2584000068063399 a001 591286729879/4106118243*9349^(6/19) 2584000068063399 a001 774004377960/5374978561*9349^(6/19) 2584000068063399 a001 4052739537881/28143753123*9349^(6/19) 2584000068063399 a001 1515744265389/10525900321*9349^(6/19) 2584000068063399 a001 3278735159921/22768774562*9349^(6/19) 2584000068063399 a001 2504730781961/17393796001*9349^(6/19) 2584000068063399 a001 956722026041/6643838879*9349^(6/19) 2584000068063399 a001 182717648081/1268860318*9349^(6/19) 2584000068063399 a001 139583862445/969323029*9349^(6/19) 2584000068063399 a001 53316291173/370248451*9349^(6/19) 2584000068063400 a001 10182505537/70711162*9349^(6/19) 2584000068063400 a001 7778742049/54018521*9349^(6/19) 2584000068063406 a001 2971215073/20633239*9349^(6/19) 2584000068063441 a001 567451585/3940598*9349^(6/19) 2584000068063685 a001 433494437/3010349*9349^(6/19) 2584000068065354 a001 165580141/1149851*9349^(6/19) 2584000068076795 a001 31622993/219602*9349^(6/19) 2584000068155215 a001 24157817/167761*9349^(6/19) 2584000068308919 a001 6765/64079*39603^(21/22) 2584000068365428 a001 5702887/15127*15127^(1/5) 2584000068692710 a001 9227465/64079*9349^(6/19) 2584000068812801 a001 5473/2889*5778^(5/6) 2584000068930107 a001 3524578/15127*15127^(1/4) 2584000069218954 a001 6765/9349*9349^(17/19) 2584000069265011 a001 1346269/24476*9349^(8/19) 2584000069379024 a001 24157817/103682*9349^(5/19) 2584000069494577 a001 311187/2161*15127^(3/10) 2584000069527849 a001 4976784/13201*9349^(4/19) 2584000069584326 a001 63245986/271443*9349^(5/19) 2584000069614279 a001 165580141/710647*9349^(5/19) 2584000069618649 a001 433494437/1860498*9349^(5/19) 2584000069619287 a001 1134903170/4870847*9349^(5/19) 2584000069619380 a001 2971215073/12752043*9349^(5/19) 2584000069619394 a001 7778742049/33385282*9349^(5/19) 2584000069619396 a001 20365011074/87403803*9349^(5/19) 2584000069619396 a001 53316291173/228826127*9349^(5/19) 2584000069619396 a001 139583862445/599074578*9349^(5/19) 2584000069619396 a001 365435296162/1568397607*9349^(5/19) 2584000069619396 a001 956722026041/4106118243*9349^(5/19) 2584000069619396 a001 2504730781961/10749957122*9349^(5/19) 2584000069619396 a001 6557470319842/28143753123*9349^(5/19) 2584000069619396 a001 10610209857723/45537549124*9349^(5/19) 2584000069619396 a001 4052739537881/17393796001*9349^(5/19) 2584000069619396 a001 1548008755920/6643838879*9349^(5/19) 2584000069619396 a001 591286729879/2537720636*9349^(5/19) 2584000069619396 a001 225851433717/969323029*9349^(5/19) 2584000069619396 a001 86267571272/370248451*9349^(5/19) 2584000069619396 a001 63246219/271444*9349^(5/19) 2584000069619397 a001 12586269025/54018521*9349^(5/19) 2584000069619402 a001 4807526976/20633239*9349^(5/19) 2584000069619437 a001 1836311903/7881196*9349^(5/19) 2584000069619681 a001 701408733/3010349*9349^(5/19) 2584000069621350 a001 267914296/1149851*9349^(5/19) 2584000069632791 a001 102334155/439204*9349^(5/19) 2584000069711210 a001 39088169/167761*9349^(5/19) 2584000069790976 a001 74049690/28657 2584000069793038 a001 39088169/24476*3571^(1/17) 2584000069900420 a001 6765/24476*64079^(19/23) 2584000069955142 a001 10946/15127*64079^(17/23) 2584000070059592 a001 1346269/15127*15127^(7/20) 2584000070248698 a001 14930352/64079*9349^(5/19) 2584000070406927 a001 24157817/15127*5778^(1/18) 2584000070407164 a001 17711/39603*24476^(6/7) 2584000070420280 a001 6765/24476*817138163596^(1/3) 2584000070420280 a001 6765/24476*(1/2+1/2*5^(1/2))^19 2584000070420280 a001 10946/15127*45537549124^(1/3) 2584000070420280 a001 10946/15127*(1/2+1/2*5^(1/2))^17 2584000070420281 a001 6765/24476*87403803^(1/2) 2584000070420288 a001 10946/15127*12752043^(1/2) 2584000070590545 a001 10946/15127*103682^(17/24) 2584000070610576 a001 6765/24476*103682^(19/24) 2584000070623181 a001 832040/15127*15127^(2/5) 2584000070820614 a001 2178309/24476*9349^(7/19) 2584000070935019 a001 39088169/103682*9349^(4/19) 2584000071083848 a001 24157817/39603*9349^(3/19) 2584000071140322 a001 34111385/90481*9349^(4/19) 2584000071170276 a001 267914296/710647*9349^(4/19) 2584000071174646 a001 233802911/620166*9349^(4/19) 2584000071175283 a001 1836311903/4870847*9349^(4/19) 2584000071175376 a001 1602508992/4250681*9349^(4/19) 2584000071175390 a001 12586269025/33385282*9349^(4/19) 2584000071175392 a001 10983760033/29134601*9349^(4/19) 2584000071175392 a001 86267571272/228826127*9349^(4/19) 2584000071175392 a001 267913919/710646*9349^(4/19) 2584000071175392 a001 591286729879/1568397607*9349^(4/19) 2584000071175392 a001 516002918640/1368706081*9349^(4/19) 2584000071175392 a001 4052739537881/10749957122*9349^(4/19) 2584000071175392 a001 3536736619241/9381251041*9349^(4/19) 2584000071175392 a001 6557470319842/17393796001*9349^(4/19) 2584000071175392 a001 2504730781961/6643838879*9349^(4/19) 2584000071175392 a001 956722026041/2537720636*9349^(4/19) 2584000071175392 a001 365435296162/969323029*9349^(4/19) 2584000071175392 a001 139583862445/370248451*9349^(4/19) 2584000071175392 a001 53316291173/141422324*9349^(4/19) 2584000071175393 a001 20365011074/54018521*9349^(4/19) 2584000071175398 a001 7778742049/20633239*9349^(4/19) 2584000071175434 a001 2971215073/7881196*9349^(4/19) 2584000071175677 a001 1134903170/3010349*9349^(4/19) 2584000071177347 a001 433494437/1149851*9349^(4/19) 2584000071188788 a001 165580141/439204*9349^(4/19) 2584000071190503 a001 514229/15127*15127^(9/20) 2584000071204316 a001 5702887/9349*3571^(3/17) 2584000071267207 a001 63245986/167761*9349^(4/19) 2584000071403540 a001 17711/103682*24476^(20/21) 2584000071438517 a004 Fibonacci(22)*Lucas(21)/(1/2+sqrt(5)/2)^25 2584000071693381 a001 10946/15127*39603^(17/22) 2584000071748053 a001 317811/15127*15127^(1/2) 2584000071804698 a001 24157817/64079*9349^(4/19) 2584000071843157 a001 6765/24476*39603^(19/22) 2584000072225125 a001 15456/13201*24476^(16/21) 2584000072331186 a001 196418/15127*15127^(11/20) 2584000072376761 a001 1762289/12238*9349^(6/19) 2584000072478614 a001 17711/64079*24476^(19/21) 2584000072491016 a001 31622993/51841*9349^(3/19) 2584000072639843 a001 39088169/39603*9349^(2/19) 2584000072696319 a001 165580141/271443*9349^(3/19) 2584000072726272 a001 433494437/710647*9349^(3/19) 2584000072730642 a001 567451585/930249*9349^(3/19) 2584000072731280 a001 2971215073/4870847*9349^(3/19) 2584000072731373 a001 7778742049/12752043*9349^(3/19) 2584000072731386 a001 10182505537/16692641*9349^(3/19) 2584000072731388 a001 53316291173/87403803*9349^(3/19) 2584000072731389 a001 139583862445/228826127*9349^(3/19) 2584000072731389 a001 182717648081/299537289*9349^(3/19) 2584000072731389 a001 956722026041/1568397607*9349^(3/19) 2584000072731389 a001 2504730781961/4106118243*9349^(3/19) 2584000072731389 a001 3278735159921/5374978561*9349^(3/19) 2584000072731389 a001 10610209857723/17393796001*9349^(3/19) 2584000072731389 a001 4052739537881/6643838879*9349^(3/19) 2584000072731389 a001 1134903780/1860499*9349^(3/19) 2584000072731389 a001 591286729879/969323029*9349^(3/19) 2584000072731389 a001 225851433717/370248451*9349^(3/19) 2584000072731389 a001 21566892818/35355581*9349^(3/19) 2584000072731390 a001 32951280099/54018521*9349^(3/19) 2584000072731395 a001 1144206275/1875749*9349^(3/19) 2584000072731430 a001 1201881744/1970299*9349^(3/19) 2584000072731674 a001 1836311903/3010349*9349^(3/19) 2584000072733343 a001 701408733/1149851*9349^(3/19) 2584000072744784 a001 66978574/109801*9349^(3/19) 2584000072762708 a001 75025/39603*24476^(5/7) 2584000072823203 a001 9303105/15251*9349^(3/19) 2584000072841220 a001 121393/39603*24476^(2/3) 2584000072845685 a004 Fibonacci(24)*Lucas(21)/(1/2+sqrt(5)/2)^27 2584000072847341 a001 121393/15127*15127^(3/5) 2584000072889407 a001 28657/39603*24476^(17/21) 2584000073016012 a001 15456/90481*24476^(20/21) 2584000073050988 a004 Fibonacci(26)*Lucas(21)/(1/2+sqrt(5)/2)^29 2584000073080942 a004 Fibonacci(28)*Lucas(21)/(1/2+sqrt(5)/2)^31 2584000073085312 a004 Fibonacci(30)*Lucas(21)/(1/2+sqrt(5)/2)^33 2584000073085950 a004 Fibonacci(32)*Lucas(21)/(1/2+sqrt(5)/2)^35 2584000073086043 a004 Fibonacci(34)*Lucas(21)/(1/2+sqrt(5)/2)^37 2584000073086056 a004 Fibonacci(36)*Lucas(21)/(1/2+sqrt(5)/2)^39 2584000073086058 a004 Fibonacci(38)*Lucas(21)/(1/2+sqrt(5)/2)^41 2584000073086058 a004 Fibonacci(40)*Lucas(21)/(1/2+sqrt(5)/2)^43 2584000073086058 a004 Fibonacci(42)*Lucas(21)/(1/2+sqrt(5)/2)^45 2584000073086058 a004 Fibonacci(44)*Lucas(21)/(1/2+sqrt(5)/2)^47 2584000073086058 a004 Fibonacci(46)*Lucas(21)/(1/2+sqrt(5)/2)^49 2584000073086058 a004 Fibonacci(48)*Lucas(21)/(1/2+sqrt(5)/2)^51 2584000073086058 a004 Fibonacci(50)*Lucas(21)/(1/2+sqrt(5)/2)^53 2584000073086058 a004 Fibonacci(52)*Lucas(21)/(1/2+sqrt(5)/2)^55 2584000073086058 a004 Fibonacci(54)*Lucas(21)/(1/2+sqrt(5)/2)^57 2584000073086058 a004 Fibonacci(56)*Lucas(21)/(1/2+sqrt(5)/2)^59 2584000073086058 a004 Fibonacci(58)*Lucas(21)/(1/2+sqrt(5)/2)^61 2584000073086058 a004 Fibonacci(60)*Lucas(21)/(1/2+sqrt(5)/2)^63 2584000073086058 a004 Fibonacci(62)*Lucas(21)/(1/2+sqrt(5)/2)^65 2584000073086058 a004 Fibonacci(64)*Lucas(21)/(1/2+sqrt(5)/2)^67 2584000073086058 a004 Fibonacci(66)*Lucas(21)/(1/2+sqrt(5)/2)^69 2584000073086058 a004 Fibonacci(68)*Lucas(21)/(1/2+sqrt(5)/2)^71 2584000073086058 a004 Fibonacci(70)*Lucas(21)/(1/2+sqrt(5)/2)^73 2584000073086058 a004 Fibonacci(72)*Lucas(21)/(1/2+sqrt(5)/2)^75 2584000073086058 a004 Fibonacci(74)*Lucas(21)/(1/2+sqrt(5)/2)^77 2584000073086058 a004 Fibonacci(76)*Lucas(21)/(1/2+sqrt(5)/2)^79 2584000073086058 a004 Fibonacci(78)*Lucas(21)/(1/2+sqrt(5)/2)^81 2584000073086058 a004 Fibonacci(80)*Lucas(21)/(1/2+sqrt(5)/2)^83 2584000073086058 a004 Fibonacci(82)*Lucas(21)/(1/2+sqrt(5)/2)^85 2584000073086058 a004 Fibonacci(84)*Lucas(21)/(1/2+sqrt(5)/2)^87 2584000073086058 a004 Fibonacci(86)*Lucas(21)/(1/2+sqrt(5)/2)^89 2584000073086058 a004 Fibonacci(88)*Lucas(21)/(1/2+sqrt(5)/2)^91 2584000073086058 a004 Fibonacci(90)*Lucas(21)/(1/2+sqrt(5)/2)^93 2584000073086058 a004 Fibonacci(92)*Lucas(21)/(1/2+sqrt(5)/2)^95 2584000073086058 a004 Fibonacci(94)*Lucas(21)/(1/2+sqrt(5)/2)^97 2584000073086058 a004 Fibonacci(96)*Lucas(21)/(1/2+sqrt(5)/2)^99 2584000073086058 a004 Fibonacci(97)*Lucas(21)/(1/2+sqrt(5)/2)^100 2584000073086058 a004 Fibonacci(95)*Lucas(21)/(1/2+sqrt(5)/2)^98 2584000073086058 a004 Fibonacci(93)*Lucas(21)/(1/2+sqrt(5)/2)^96 2584000073086058 a004 Fibonacci(91)*Lucas(21)/(1/2+sqrt(5)/2)^94 2584000073086058 a004 Fibonacci(89)*Lucas(21)/(1/2+sqrt(5)/2)^92 2584000073086058 a004 Fibonacci(87)*Lucas(21)/(1/2+sqrt(5)/2)^90 2584000073086058 a004 Fibonacci(85)*Lucas(21)/(1/2+sqrt(5)/2)^88 2584000073086058 a004 Fibonacci(83)*Lucas(21)/(1/2+sqrt(5)/2)^86 2584000073086058 a004 Fibonacci(81)*Lucas(21)/(1/2+sqrt(5)/2)^84 2584000073086058 a004 Fibonacci(79)*Lucas(21)/(1/2+sqrt(5)/2)^82 2584000073086058 a004 Fibonacci(77)*Lucas(21)/(1/2+sqrt(5)/2)^80 2584000073086058 a004 Fibonacci(75)*Lucas(21)/(1/2+sqrt(5)/2)^78 2584000073086058 a004 Fibonacci(73)*Lucas(21)/(1/2+sqrt(5)/2)^76 2584000073086058 a004 Fibonacci(71)*Lucas(21)/(1/2+sqrt(5)/2)^74 2584000073086058 a004 Fibonacci(69)*Lucas(21)/(1/2+sqrt(5)/2)^72 2584000073086058 a004 Fibonacci(67)*Lucas(21)/(1/2+sqrt(5)/2)^70 2584000073086058 a004 Fibonacci(65)*Lucas(21)/(1/2+sqrt(5)/2)^68 2584000073086058 a004 Fibonacci(63)*Lucas(21)/(1/2+sqrt(5)/2)^66 2584000073086058 a004 Fibonacci(61)*Lucas(21)/(1/2+sqrt(5)/2)^64 2584000073086058 a004 Fibonacci(59)*Lucas(21)/(1/2+sqrt(5)/2)^62 2584000073086058 a004 Fibonacci(57)*Lucas(21)/(1/2+sqrt(5)/2)^60 2584000073086058 a004 Fibonacci(55)*Lucas(21)/(1/2+sqrt(5)/2)^58 2584000073086058 a004 Fibonacci(53)*Lucas(21)/(1/2+sqrt(5)/2)^56 2584000073086058 a004 Fibonacci(51)*Lucas(21)/(1/2+sqrt(5)/2)^54 2584000073086058 a004 Fibonacci(49)*Lucas(21)/(1/2+sqrt(5)/2)^52 2584000073086058 a004 Fibonacci(47)*Lucas(21)/(1/2+sqrt(5)/2)^50 2584000073086058 a004 Fibonacci(45)*Lucas(21)/(1/2+sqrt(5)/2)^48 2584000073086058 a004 Fibonacci(43)*Lucas(21)/(1/2+sqrt(5)/2)^46 2584000073086058 a001 1/5473*(1/2+1/2*5^(1/2))^39 2584000073086058 a004 Fibonacci(41)*Lucas(21)/(1/2+sqrt(5)/2)^44 2584000073086059 a004 Fibonacci(39)*Lucas(21)/(1/2+sqrt(5)/2)^42 2584000073086059 a004 Fibonacci(37)*Lucas(21)/(1/2+sqrt(5)/2)^40 2584000073086065 a004 Fibonacci(35)*Lucas(21)/(1/2+sqrt(5)/2)^38 2584000073086100 a004 Fibonacci(33)*Lucas(21)/(1/2+sqrt(5)/2)^36 2584000073086344 a004 Fibonacci(31)*Lucas(21)/(1/2+sqrt(5)/2)^34 2584000073088013 a004 Fibonacci(29)*Lucas(21)/(1/2+sqrt(5)/2)^32 2584000073095082 a001 196418/39603*24476^(13/21) 2584000073099454 a004 Fibonacci(27)*Lucas(21)/(1/2+sqrt(5)/2)^30 2584000073177873 a004 Fibonacci(25)*Lucas(21)/(1/2+sqrt(5)/2)^28 2584000073221501 a001 23184/51841*24476^(6/7) 2584000073251268 a001 121393/710647*24476^(20/21) 2584000073281966 a001 105937/13201*24476^(4/7) 2584000073285591 a001 105937/620166*24476^(20/21) 2584000073290599 a001 832040/4870847*24476^(20/21) 2584000073291330 a001 726103/4250681*24476^(20/21) 2584000073291436 a001 5702887/33385282*24476^(20/21) 2584000073291452 a001 4976784/29134601*24476^(20/21) 2584000073291454 a001 39088169/228826127*24476^(20/21) 2584000073291455 a001 34111385/199691526*24476^(20/21) 2584000073291455 a001 267914296/1568397607*24476^(20/21) 2584000073291455 a001 233802911/1368706081*24476^(20/21) 2584000073291455 a001 1836311903/10749957122*24476^(20/21) 2584000073291455 a001 1602508992/9381251041*24476^(20/21) 2584000073291455 a001 12586269025/73681302247*24476^(20/21) 2584000073291455 a001 10983760033/64300051206*24476^(20/21) 2584000073291455 a001 86267571272/505019158607*24476^(20/21) 2584000073291455 a001 75283811239/440719107401*24476^(20/21) 2584000073291455 a001 2504730781961/14662949395604*24476^(20/21) 2584000073291455 a001 139583862445/817138163596*24476^(20/21) 2584000073291455 a001 53316291173/312119004989*24476^(20/21) 2584000073291455 a001 20365011074/119218851371*24476^(20/21) 2584000073291455 a001 7778742049/45537549124*24476^(20/21) 2584000073291455 a001 2971215073/17393796001*24476^(20/21) 2584000073291455 a001 1134903170/6643838879*24476^(20/21) 2584000073291455 a001 433494437/2537720636*24476^(20/21) 2584000073291455 a001 165580141/969323029*24476^(20/21) 2584000073291455 a001 63245986/370248451*24476^(20/21) 2584000073291456 a001 24157817/141422324*24476^(20/21) 2584000073291462 a001 9227465/54018521*24476^(20/21) 2584000073291502 a001 3524578/20633239*24476^(20/21) 2584000073291781 a001 1346269/7881196*24476^(20/21) 2584000073293694 a001 514229/3010349*24476^(20/21) 2584000073306805 a001 196418/1149851*24476^(20/21) 2584000073348292 a001 46368/167761*24476^(19/21) 2584000073360693 a001 39088169/64079*9349^(3/19) 2584000073396664 a001 75025/439204*24476^(20/21) 2584000073475176 a001 121393/439204*24476^(19/21) 2584000073493353 a001 17711/15127*15127^(4/5) 2584000073493689 a001 317811/1149851*24476^(19/21) 2584000073494433 a001 514229/39603*24476^(11/21) 2584000073496389 a001 832040/3010349*24476^(19/21) 2584000073496783 a001 2178309/7881196*24476^(19/21) 2584000073496841 a001 5702887/20633239*24476^(19/21) 2584000073496849 a001 14930352/54018521*24476^(19/21) 2584000073496851 a001 39088169/141422324*24476^(19/21) 2584000073496851 a001 102334155/370248451*24476^(19/21) 2584000073496851 a001 267914296/969323029*24476^(19/21) 2584000073496851 a001 701408733/2537720636*24476^(19/21) 2584000073496851 a001 1836311903/6643838879*24476^(19/21) 2584000073496851 a001 4807526976/17393796001*24476^(19/21) 2584000073496851 a001 12586269025/45537549124*24476^(19/21) 2584000073496851 a001 32951280099/119218851371*24476^(19/21) 2584000073496851 a001 86267571272/312119004989*24476^(19/21) 2584000073496851 a001 225851433717/817138163596*24476^(19/21) 2584000073496851 a001 1548008755920/5600748293801*24476^(19/21) 2584000073496851 a001 139583862445/505019158607*24476^(19/21) 2584000073496851 a001 53316291173/192900153618*24476^(19/21) 2584000073496851 a001 20365011074/73681302247*24476^(19/21) 2584000073496851 a001 7778742049/28143753123*24476^(19/21) 2584000073496851 a001 2971215073/10749957122*24476^(19/21) 2584000073496851 a001 1134903170/4106118243*24476^(19/21) 2584000073496851 a001 433494437/1568397607*24476^(19/21) 2584000073496851 a001 165580141/599074578*24476^(19/21) 2584000073496851 a001 63245986/228826127*24476^(19/21) 2584000073496851 a001 24157817/87403803*24476^(19/21) 2584000073496855 a001 9227465/33385282*24476^(19/21) 2584000073496877 a001 3524578/12752043*24476^(19/21) 2584000073497027 a001 1346269/4870847*24476^(19/21) 2584000073498059 a001 514229/1860498*24476^(19/21) 2584000073505130 a001 196418/710647*24476^(19/21) 2584000073538846 a001 75025/15127*15127^(13/20) 2584000073553595 a001 75025/271443*24476^(19/21) 2584000073611796 a001 17711/39603*64079^(18/23) 2584000073632107 a001 121393/271443*24476^(6/7) 2584000073692014 a001 317811/710647*24476^(6/7) 2584000073697128 a001 832040/39603*24476^(10/21) 2584000073700754 a001 416020/930249*24476^(6/7) 2584000073702029 a001 2178309/4870847*24476^(6/7) 2584000073702215 a001 5702887/12752043*24476^(6/7) 2584000073702242 a001 7465176/16692641*24476^(6/7) 2584000073702246 a001 39088169/87403803*24476^(6/7) 2584000073702247 a001 102334155/228826127*24476^(6/7) 2584000073702247 a001 133957148/299537289*24476^(6/7) 2584000073702247 a001 701408733/1568397607*24476^(6/7) 2584000073702247 a001 1836311903/4106118243*24476^(6/7) 2584000073702247 a001 2403763488/5374978561*24476^(6/7) 2584000073702247 a001 12586269025/28143753123*24476^(6/7) 2584000073702247 a001 32951280099/73681302247*24476^(6/7) 2584000073702247 a001 43133785636/96450076809*24476^(6/7) 2584000073702247 a001 225851433717/505019158607*24476^(6/7) 2584000073702247 a001 591286729879/1322157322203*24476^(6/7) 2584000073702247 a001 10610209857723/23725150497407*24476^(6/7) 2584000073702247 a001 139583862445/312119004989*24476^(6/7) 2584000073702247 a001 53316291173/119218851371*24476^(6/7) 2584000073702247 a001 10182505537/22768774562*24476^(6/7) 2584000073702247 a001 7778742049/17393796001*24476^(6/7) 2584000073702247 a001 2971215073/6643838879*24476^(6/7) 2584000073702247 a001 567451585/1268860318*24476^(6/7) 2584000073702247 a001 433494437/969323029*24476^(6/7) 2584000073702247 a001 165580141/370248451*24476^(6/7) 2584000073702247 a001 31622993/70711162*24476^(6/7) 2584000073702249 a001 24157817/54018521*24476^(6/7) 2584000073702259 a001 9227465/20633239*24476^(6/7) 2584000073702330 a001 1762289/3940598*24476^(6/7) 2584000073702817 a001 1346269/3010349*24476^(6/7) 2584000073706156 a001 514229/1149851*24476^(6/7) 2584000073715363 a004 Fibonacci(23)*Lucas(21)/(1/2+sqrt(5)/2)^26 2584000073729038 a001 98209/219602*24476^(6/7) 2584000073759084 a001 75025/103682*24476^(17/21) 2584000073771280 a001 6624/2161*15127^(7/10) 2584000073806861 a001 4181/2207*2207^(15/16) 2584000073837596 a001 121393/103682*24476^(16/21) 2584000073885783 a001 28657/103682*24476^(19/21) 2584000073885876 a001 75025/167761*24476^(6/7) 2584000073885969 a001 196418/271443*24476^(17/21) 2584000073903556 a001 1346269/39603*24476^(3/7) 2584000073904481 a001 514229/710647*24476^(17/21) 2584000073907182 a001 1346269/1860498*24476^(17/21) 2584000073907576 a001 3524578/4870847*24476^(17/21) 2584000073907633 a001 9227465/12752043*24476^(17/21) 2584000073907642 a001 24157817/33385282*24476^(17/21) 2584000073907643 a001 63245986/87403803*24476^(17/21) 2584000073907643 a001 165580141/228826127*24476^(17/21) 2584000073907643 a001 433494437/599074578*24476^(17/21) 2584000073907643 a001 1134903170/1568397607*24476^(17/21) 2584000073907643 a001 2971215073/4106118243*24476^(17/21) 2584000073907643 a001 7778742049/10749957122*24476^(17/21) 2584000073907643 a001 20365011074/28143753123*24476^(17/21) 2584000073907643 a001 53316291173/73681302247*24476^(17/21) 2584000073907643 a001 139583862445/192900153618*24476^(17/21) 2584000073907643 a001 365435296162/505019158607*24476^(17/21) 2584000073907643 a001 10610209857723/14662949395604*24476^(17/21) 2584000073907643 a001 225851433717/312119004989*24476^(17/21) 2584000073907643 a001 86267571272/119218851371*24476^(17/21) 2584000073907643 a001 32951280099/45537549124*24476^(17/21) 2584000073907643 a001 12586269025/17393796001*24476^(17/21) 2584000073907643 a001 4807526976/6643838879*24476^(17/21) 2584000073907643 a001 1836311903/2537720636*24476^(17/21) 2584000073907643 a001 701408733/969323029*24476^(17/21) 2584000073907643 a001 267914296/370248451*24476^(17/21) 2584000073907643 a001 102334155/141422324*24476^(17/21) 2584000073907644 a001 39088169/54018521*24476^(17/21) 2584000073907647 a001 14930352/20633239*24476^(17/21) 2584000073907669 a001 5702887/7881196*24476^(17/21) 2584000073907819 a001 2178309/3010349*24476^(17/21) 2584000073908851 a001 832040/1149851*24476^(17/21) 2584000073915922 a001 317811/439204*24476^(17/21) 2584000073932700 a001 5702887/24476*9349^(5/19) 2584000073964388 a001 121393/167761*24476^(17/21) 2584000074012574 a001 28657/167761*24476^(20/21) 2584000074047012 a001 102334155/103682*9349^(2/19) 2584000074072853 a001 105937/90481*24476^(16/21) 2584000074091458 a001 98209/51841*24476^(5/7) 2584000074095365 a001 17711/39603*439204^(2/3) 2584000074104272 a001 17711/39603*7881196^(6/11) 2584000074104295 a001 17711/39603*141422324^(6/13) 2584000074104295 a001 17711/39603*2537720636^(2/5) 2584000074104295 a001 17711/39603*45537549124^(6/17) 2584000074104295 a001 17711/39603*14662949395604^(2/7) 2584000074104295 a001 17711/39603*(1/2+1/2*5^(1/2))^18 2584000074104295 a001 17711/39603*192900153618^(1/3) 2584000074104295 a001 17711/39603*10749957122^(3/8) 2584000074104295 a001 17711/39603*4106118243^(9/23) 2584000074104295 a001 17711/39603*1568397607^(9/22) 2584000074104295 a001 17711/39603*599074578^(3/7) 2584000074104295 a001 17711/39603*228826127^(9/20) 2584000074104295 a001 17711/39603*87403803^(9/19) 2584000074104296 a001 17711/39603*33385282^(1/2) 2584000074104303 a001 17711/39603*12752043^(9/17) 2584000074104356 a001 17711/39603*4870847^(9/16) 2584000074104743 a001 17711/39603*1860498^(3/5) 2584000074107176 a001 832040/710647*24476^(16/21) 2584000074107584 a001 17711/39603*710647^(9/14) 2584000074108558 a001 726103/13201*24476^(8/21) 2584000074112184 a001 726103/620166*24476^(16/21) 2584000074112914 a001 5702887/4870847*24476^(16/21) 2584000074113021 a001 4976784/4250681*24476^(16/21) 2584000074113037 a001 39088169/33385282*24476^(16/21) 2584000074113039 a001 34111385/29134601*24476^(16/21) 2584000074113039 a001 267914296/228826127*24476^(16/21) 2584000074113039 a001 233802911/199691526*24476^(16/21) 2584000074113039 a001 1836311903/1568397607*24476^(16/21) 2584000074113039 a001 1602508992/1368706081*24476^(16/21) 2584000074113039 a001 12586269025/10749957122*24476^(16/21) 2584000074113039 a001 10983760033/9381251041*24476^(16/21) 2584000074113039 a001 86267571272/73681302247*24476^(16/21) 2584000074113039 a001 75283811239/64300051206*24476^(16/21) 2584000074113039 a001 2504730781961/2139295485799*24476^(16/21) 2584000074113039 a001 365435296162/312119004989*24476^(16/21) 2584000074113039 a001 139583862445/119218851371*24476^(16/21) 2584000074113039 a001 53316291173/45537549124*24476^(16/21) 2584000074113039 a001 20365011074/17393796001*24476^(16/21) 2584000074113039 a001 7778742049/6643838879*24476^(16/21) 2584000074113039 a001 2971215073/2537720636*24476^(16/21) 2584000074113039 a001 1134903170/969323029*24476^(16/21) 2584000074113039 a001 433494437/370248451*24476^(16/21) 2584000074113039 a001 165580141/141422324*24476^(16/21) 2584000074113040 a001 63245986/54018521*24476^(16/21) 2584000074113046 a001 24157817/20633239*24476^(16/21) 2584000074113087 a001 9227465/7881196*24476^(16/21) 2584000074113366 a001 3524578/3010349*24476^(16/21) 2584000074115279 a001 1346269/1149851*24476^(16/21) 2584000074128389 a001 514229/439204*24476^(16/21) 2584000074128574 a001 17711/39603*271443^(9/13) 2584000074139365 a001 313679521/121393 2584000074195840 a001 63245986/39603*9349^(1/19) 2584000074218249 a001 196418/167761*24476^(16/21) 2584000074252315 a001 267914296/271443*9349^(2/19) 2584000074278342 a001 317811/103682*24476^(2/3) 2584000074282269 a001 701408733/710647*9349^(2/19) 2584000074284575 a001 17711/39603*103682^(3/4) 2584000074285320 a001 514229/271443*24476^(5/7) 2584000074286639 a001 1836311903/1860498*9349^(2/19) 2584000074287276 a001 4807526976/4870847*9349^(2/19) 2584000074287369 a001 12586269025/12752043*9349^(2/19) 2584000074287383 a001 32951280099/33385282*9349^(2/19) 2584000074287385 a001 86267571272/87403803*9349^(2/19) 2584000074287385 a001 225851433717/228826127*9349^(2/19) 2584000074287385 a001 591286729879/599074578*9349^(2/19) 2584000074287385 a001 1548008755920/1568397607*9349^(2/19) 2584000074287385 a001 4052739537881/4106118243*9349^(2/19) 2584000074287385 a001 4807525989/4870846*9349^(2/19) 2584000074287385 a001 6557470319842/6643838879*9349^(2/19) 2584000074287385 a001 2504730781961/2537720636*9349^(2/19) 2584000074287385 a001 956722026041/969323029*9349^(2/19) 2584000074287385 a001 365435296162/370248451*9349^(2/19) 2584000074287385 a001 139583862445/141422324*9349^(2/19) 2584000074287386 a001 53316291173/54018521*9349^(2/19) 2584000074287391 a001 20365011074/20633239*9349^(2/19) 2584000074287427 a001 7778742049/7881196*9349^(2/19) 2584000074287670 a001 2971215073/3010349*9349^(2/19) 2584000074289340 a001 1134903170/1149851*9349^(2/19) 2584000074296575 a001 46368/64079*24476^(17/21) 2584000074300781 a001 433494437/439204*9349^(2/19) 2584000074313604 a001 1346269/710647*24476^(5/7) 2584000074314105 a001 3524578/39603*24476^(1/3) 2584000074317731 a001 1762289/930249*24476^(5/7) 2584000074318333 a001 9227465/4870847*24476^(5/7) 2584000074318420 a001 24157817/12752043*24476^(5/7) 2584000074318433 a001 31622993/16692641*24476^(5/7) 2584000074318435 a001 165580141/87403803*24476^(5/7) 2584000074318435 a001 433494437/228826127*24476^(5/7) 2584000074318435 a001 567451585/299537289*24476^(5/7) 2584000074318435 a001 2971215073/1568397607*24476^(5/7) 2584000074318435 a001 7778742049/4106118243*24476^(5/7) 2584000074318435 a001 10182505537/5374978561*24476^(5/7) 2584000074318435 a001 53316291173/28143753123*24476^(5/7) 2584000074318435 a001 139583862445/73681302247*24476^(5/7) 2584000074318435 a001 182717648081/96450076809*24476^(5/7) 2584000074318435 a001 956722026041/505019158607*24476^(5/7) 2584000074318435 a001 10610209857723/5600748293801*24476^(5/7) 2584000074318435 a001 591286729879/312119004989*24476^(5/7) 2584000074318435 a001 225851433717/119218851371*24476^(5/7) 2584000074318435 a001 21566892818/11384387281*24476^(5/7) 2584000074318435 a001 32951280099/17393796001*24476^(5/7) 2584000074318435 a001 12586269025/6643838879*24476^(5/7) 2584000074318435 a001 1201881744/634430159*24476^(5/7) 2584000074318435 a001 1836311903/969323029*24476^(5/7) 2584000074318435 a001 701408733/370248451*24476^(5/7) 2584000074318436 a001 66978574/35355581*24476^(5/7) 2584000074318436 a001 102334155/54018521*24476^(5/7) 2584000074318441 a001 39088169/20633239*24476^(5/7) 2584000074318475 a001 3732588/1970299*24476^(5/7) 2584000074318705 a001 5702887/3010349*24476^(5/7) 2584000074320281 a001 2178309/1149851*24476^(5/7) 2584000074331084 a001 208010/109801*24476^(5/7) 2584000074379199 a001 165580141/167761*9349^(2/19) 2584000074405133 a001 317811/167761*24476^(5/7) 2584000074488015 a001 832040/271443*24476^(2/3) 2584000074490809 a001 514229/103682*24476^(13/21) 2584000074518606 a001 311187/101521*24476^(2/3) 2584000074519444 a001 5702887/39603*24476^(2/7) 2584000074523069 a001 5702887/1860498*24476^(2/3) 2584000074523720 a001 14930352/4870847*24476^(2/3) 2584000074523815 a001 39088169/12752043*24476^(2/3) 2584000074523829 a001 14619165/4769326*24476^(2/3) 2584000074523831 a001 267914296/87403803*24476^(2/3) 2584000074523832 a001 701408733/228826127*24476^(2/3) 2584000074523832 a001 1836311903/599074578*24476^(2/3) 2584000074523832 a001 686789568/224056801*24476^(2/3) 2584000074523832 a001 12586269025/4106118243*24476^(2/3) 2584000074523832 a001 32951280099/10749957122*24476^(2/3) 2584000074523832 a001 86267571272/28143753123*24476^(2/3) 2584000074523832 a001 32264490531/10525900321*24476^(2/3) 2584000074523832 a001 591286729879/192900153618*24476^(2/3) 2584000074523832 a001 1515744265389/494493258286*24476^(2/3) 2584000074523832 a001 2504730781961/817138163596*24476^(2/3) 2584000074523832 a001 956722026041/312119004989*24476^(2/3) 2584000074523832 a001 365435296162/119218851371*24476^(2/3) 2584000074523832 a001 139583862445/45537549124*24476^(2/3) 2584000074523832 a001 53316291173/17393796001*24476^(2/3) 2584000074523832 a001 20365011074/6643838879*24476^(2/3) 2584000074523832 a001 7778742049/2537720636*24476^(2/3) 2584000074523832 a001 2971215073/969323029*24476^(2/3) 2584000074523832 a001 1134903170/370248451*24476^(2/3) 2584000074523832 a001 433494437/141422324*24476^(2/3) 2584000074523833 a001 165580141/54018521*24476^(2/3) 2584000074523838 a001 63245986/20633239*24476^(2/3) 2584000074523874 a001 24157817/7881196*24476^(2/3) 2584000074524123 a001 9227465/3010349*24476^(2/3) 2584000074525828 a001 3524578/1149851*24476^(2/3) 2584000074537512 a001 1346269/439204*24476^(2/3) 2584000074617600 a001 514229/167761*24476^(2/3) 2584000074693504 a001 416020/51841*24476^(4/7) 2584000074694443 a001 1346269/271443*24476^(13/21) 2584000074706889 a001 14930352/15127*5778^(1/9) 2584000074724153 a001 3524578/710647*24476^(13/21) 2584000074724862 a001 9227465/39603*24476^(5/21) 2584000074728487 a001 9227465/1860498*24476^(13/21) 2584000074729120 a001 24157817/4870847*24476^(13/21) 2584000074729212 a001 63245986/12752043*24476^(13/21) 2584000074729226 a001 165580141/33385282*24476^(13/21) 2584000074729227 a001 433494437/87403803*24476^(13/21) 2584000074729228 a001 1134903170/228826127*24476^(13/21) 2584000074729228 a001 2971215073/599074578*24476^(13/21) 2584000074729228 a001 7778742049/1568397607*24476^(13/21) 2584000074729228 a001 20365011074/4106118243*24476^(13/21) 2584000074729228 a001 53316291173/10749957122*24476^(13/21) 2584000074729228 a001 139583862445/28143753123*24476^(13/21) 2584000074729228 a001 365435296162/73681302247*24476^(13/21) 2584000074729228 a001 956722026041/192900153618*24476^(13/21) 2584000074729228 a001 2504730781961/505019158607*24476^(13/21) 2584000074729228 a001 10610209857723/2139295485799*24476^(13/21) 2584000074729228 a001 4052739537881/817138163596*24476^(13/21) 2584000074729228 a001 140728068720/28374454999*24476^(13/21) 2584000074729228 a001 591286729879/119218851371*24476^(13/21) 2584000074729228 a001 225851433717/45537549124*24476^(13/21) 2584000074729228 a001 86267571272/17393796001*24476^(13/21) 2584000074729228 a001 32951280099/6643838879*24476^(13/21) 2584000074729228 a001 1144206275/230701876*24476^(13/21) 2584000074729228 a001 4807526976/969323029*24476^(13/21) 2584000074729228 a001 1836311903/370248451*24476^(13/21) 2584000074729228 a001 701408733/141422324*24476^(13/21) 2584000074729229 a001 267914296/54018521*24476^(13/21) 2584000074729234 a001 9303105/1875749*24476^(13/21) 2584000074729269 a001 39088169/7881196*24476^(13/21) 2584000074729511 a001 14930352/3010349*24476^(13/21) 2584000074731166 a001 5702887/1149851*24476^(13/21) 2584000074742514 a001 2178309/439204*24476^(13/21) 2584000074820296 a001 75640/15251*24476^(13/21) 2584000074834158 a001 75025/64079*24476^(16/21) 2584000074899445 a001 726103/90481*24476^(4/7) 2584000074899932 a001 1346269/103682*24476^(11/21) 2584000074912670 a001 121393/64079*24476^(5/7) 2584000074916690 a001 63245986/64079*9349^(2/19) 2584000074929491 a001 5702887/710647*24476^(4/7) 2584000074930250 a001 4976784/13201*24476^(4/21) 2584000074933875 a001 829464/103361*24476^(4/7) 2584000074934515 a001 39088169/4870847*24476^(4/7) 2584000074934608 a001 34111385/4250681*24476^(4/7) 2584000074934622 a001 133957148/16692641*24476^(4/7) 2584000074934624 a001 233802911/29134601*24476^(4/7) 2584000074934624 a001 1836311903/228826127*24476^(4/7) 2584000074934624 a001 267084832/33281921*24476^(4/7) 2584000074934624 a001 12586269025/1568397607*24476^(4/7) 2584000074934624 a001 10983760033/1368706081*24476^(4/7) 2584000074934624 a001 43133785636/5374978561*24476^(4/7) 2584000074934624 a001 75283811239/9381251041*24476^(4/7) 2584000074934624 a001 591286729879/73681302247*24476^(4/7) 2584000074934624 a001 86000486440/10716675201*24476^(4/7) 2584000074934624 a001 4052739537881/505019158607*24476^(4/7) 2584000074934624 a001 3536736619241/440719107401*24476^(4/7) 2584000074934624 a001 3278735159921/408569081798*24476^(4/7) 2584000074934624 a001 2504730781961/312119004989*24476^(4/7) 2584000074934624 a001 956722026041/119218851371*24476^(4/7) 2584000074934624 a001 182717648081/22768774562*24476^(4/7) 2584000074934624 a001 139583862445/17393796001*24476^(4/7) 2584000074934624 a001 53316291173/6643838879*24476^(4/7) 2584000074934624 a001 10182505537/1268860318*24476^(4/7) 2584000074934624 a001 7778742049/969323029*24476^(4/7) 2584000074934624 a001 2971215073/370248451*24476^(4/7) 2584000074934624 a001 567451585/70711162*24476^(4/7) 2584000074934625 a001 433494437/54018521*24476^(4/7) 2584000074934630 a001 165580141/20633239*24476^(4/7) 2584000074934666 a001 31622993/3940598*24476^(4/7) 2584000074934910 a001 24157817/3010349*24476^(4/7) 2584000074936584 a001 9227465/1149851*24476^(4/7) 2584000074948061 a001 1762289/219602*24476^(4/7) 2584000074960857 a001 28657/64079*24476^(6/7) 2584000074964242 a001 17711/103682*64079^(20/23) 2584000075026723 a001 1346269/167761*24476^(4/7) 2584000075073686 a001 15456/13201*64079^(16/23) 2584000075104934 a001 46347/2206*24476^(10/21) 2584000075104992 a001 3524578/271443*24476^(11/21) 2584000075114823 a001 17711/271443*64079^(22/23) 2584000075122532 a004 Fibonacci(22)*Lucas(23)/(1/2+sqrt(5)/2)^27 2584000075134910 a001 9227465/710647*24476^(11/21) 2584000075135649 a001 24157817/39603*24476^(1/7) 2584000075139275 a001 24157817/1860498*24476^(11/21) 2584000075139911 a001 63245986/4870847*24476^(11/21) 2584000075140004 a001 165580141/12752043*24476^(11/21) 2584000075140018 a001 433494437/33385282*24476^(11/21) 2584000075140020 a001 1134903170/87403803*24476^(11/21) 2584000075140020 a001 2971215073/228826127*24476^(11/21) 2584000075140020 a001 7778742049/599074578*24476^(11/21) 2584000075140020 a001 20365011074/1568397607*24476^(11/21) 2584000075140020 a001 53316291173/4106118243*24476^(11/21) 2584000075140020 a001 139583862445/10749957122*24476^(11/21) 2584000075140020 a001 365435296162/28143753123*24476^(11/21) 2584000075140020 a001 956722026041/73681302247*24476^(11/21) 2584000075140020 a001 2504730781961/192900153618*24476^(11/21) 2584000075140020 a001 10610209857723/817138163596*24476^(11/21) 2584000075140020 a001 4052739537881/312119004989*24476^(11/21) 2584000075140020 a001 1548008755920/119218851371*24476^(11/21) 2584000075140020 a001 591286729879/45537549124*24476^(11/21) 2584000075140020 a001 7787980473/599786069*24476^(11/21) 2584000075140020 a001 86267571272/6643838879*24476^(11/21) 2584000075140020 a001 32951280099/2537720636*24476^(11/21) 2584000075140020 a001 12586269025/969323029*24476^(11/21) 2584000075140020 a001 4807526976/370248451*24476^(11/21) 2584000075140020 a001 1836311903/141422324*24476^(11/21) 2584000075140021 a001 701408733/54018521*24476^(11/21) 2584000075140026 a001 9238424/711491*24476^(11/21) 2584000075140062 a001 102334155/7881196*24476^(11/21) 2584000075140305 a001 39088169/3010349*24476^(11/21) 2584000075141972 a001 14930352/1149851*24476^(11/21) 2584000075153400 a001 5702887/439204*24476^(11/21) 2584000075166532 a001 196418/64079*24476^(2/3) 2584000075205579 a001 28657/15127*15127^(3/4) 2584000075231726 a001 2178309/167761*24476^(11/21) 2584000075269068 a001 17711/167761*64079^(21/23) 2584000075310330 a001 5702887/271443*24476^(10/21) 2584000075310481 a001 1762289/51841*24476^(3/7) 2584000075333711 a001 121393/39603*64079^(14/23) 2584000075340297 a001 14930352/710647*24476^(10/21) 2584000075341044 a001 39088169/39603*24476^(2/21) 2584000075344669 a001 39088169/1860498*24476^(10/21) 2584000075345307 a001 102334155/4870847*24476^(10/21) 2584000075345400 a001 267914296/12752043*24476^(10/21) 2584000075345414 a001 701408733/33385282*24476^(10/21) 2584000075345416 a001 1836311903/87403803*24476^(10/21) 2584000075345416 a001 102287808/4868641*24476^(10/21) 2584000075345416 a001 12586269025/599074578*24476^(10/21) 2584000075345416 a001 32951280099/1568397607*24476^(10/21) 2584000075345416 a001 86267571272/4106118243*24476^(10/21) 2584000075345416 a001 225851433717/10749957122*24476^(10/21) 2584000075345416 a001 591286729879/28143753123*24476^(10/21) 2584000075345416 a001 1548008755920/73681302247*24476^(10/21) 2584000075345416 a001 4052739537881/192900153618*24476^(10/21) 2584000075345416 a001 225749145909/10745088481*24476^(10/21) 2584000075345416 a001 6557470319842/312119004989*24476^(10/21) 2584000075345416 a001 2504730781961/119218851371*24476^(10/21) 2584000075345416 a001 956722026041/45537549124*24476^(10/21) 2584000075345416 a001 365435296162/17393796001*24476^(10/21) 2584000075345416 a001 139583862445/6643838879*24476^(10/21) 2584000075345416 a001 53316291173/2537720636*24476^(10/21) 2584000075345416 a001 20365011074/969323029*24476^(10/21) 2584000075345416 a001 7778742049/370248451*24476^(10/21) 2584000075345416 a001 2971215073/141422324*24476^(10/21) 2584000075345417 a001 1134903170/54018521*24476^(10/21) 2584000075345422 a001 433494437/20633239*24476^(10/21) 2584000075345458 a001 165580141/7881196*24476^(10/21) 2584000075345702 a001 63245986/3010349*24476^(10/21) 2584000075347372 a001 24157817/1149851*24476^(10/21) 2584000075353416 a001 317811/64079*24476^(13/21) 2584000075358818 a001 9227465/439204*24476^(10/21) 2584000075409538 a001 196418/39603*64079^(13/23) 2584000075418387 a001 105937/13201*64079^(12/23) 2584000075433235 a001 75025/39603*64079^(15/23) 2584000075437272 a001 3524578/167761*24476^(10/21) 2584000075438012 a001 17711/103682*167761^(4/5) 2584000075452284 a001 17711/39603*39603^(9/11) 2584000075452819 a001 514229/39603*64079^(11/23) 2584000075477479 a001 832040/39603*64079^(10/23) 2584000075488718 a001 9227465/24476*9349^(4/19) 2584000075505872 a001 1346269/39603*64079^(9/23) 2584000075511460 a001 17711/103682*20633239^(4/7) 2584000075511463 a001 17711/103682*2537720636^(4/9) 2584000075511463 a001 17711/103682*(1/2+1/2*5^(1/2))^20 2584000075511463 a001 17711/103682*23725150497407^(5/16) 2584000075511463 a001 17711/103682*505019158607^(5/14) 2584000075511463 a001 17711/103682*73681302247^(5/13) 2584000075511463 a001 17711/103682*28143753123^(2/5) 2584000075511463 a001 17711/103682*10749957122^(5/12) 2584000075511463 a001 17711/103682*4106118243^(10/23) 2584000075511463 a001 17711/103682*1568397607^(5/11) 2584000075511463 a001 15456/13201*(1/2+1/2*5^(1/2))^16 2584000075511463 a001 15456/13201*23725150497407^(1/4) 2584000075511463 a001 15456/13201*73681302247^(4/13) 2584000075511463 a001 15456/13201*10749957122^(1/3) 2584000075511463 a001 15456/13201*4106118243^(8/23) 2584000075511463 a001 15456/13201*1568397607^(4/11) 2584000075511463 a001 17711/103682*599074578^(10/21) 2584000075511463 a001 15456/13201*599074578^(8/21) 2584000075511463 a001 15456/13201*228826127^(2/5) 2584000075511463 a001 17711/103682*228826127^(1/2) 2584000075511464 a001 15456/13201*87403803^(8/19) 2584000075511464 a001 17711/103682*87403803^(10/19) 2584000075511465 a001 15456/13201*33385282^(4/9) 2584000075511465 a001 17711/103682*33385282^(5/9) 2584000075511471 a001 15456/13201*12752043^(8/17) 2584000075511473 a001 17711/103682*12752043^(10/17) 2584000075511518 a001 15456/13201*4870847^(1/2) 2584000075511532 a001 17711/103682*4870847^(5/8) 2584000075511862 a001 15456/13201*1860498^(8/15) 2584000075511961 a001 17711/103682*1860498^(2/3) 2584000075514387 a001 15456/13201*710647^(4/7) 2584000075515118 a001 17711/103682*710647^(5/7) 2584000075515749 a001 9227465/271443*24476^(3/7) 2584000075515820 a001 5702887/103682*24476^(8/21) 2584000075516580 a001 273741216/105937 2584000075532839 a001 726103/13201*64079^(8/23) 2584000075533045 a001 15456/13201*271443^(8/13) 2584000075538440 a001 17711/103682*271443^(10/13) 2584000075545697 a001 24157817/710647*24476^(3/7) 2584000075546440 a001 63245986/39603*24476^(1/21) 2584000075550066 a001 31622993/930249*24476^(3/7) 2584000075550704 a001 165580141/4870847*24476^(3/7) 2584000075550797 a001 433494437/12752043*24476^(3/7) 2584000075550810 a001 567451585/16692641*24476^(3/7) 2584000075550812 a001 2971215073/87403803*24476^(3/7) 2584000075550812 a001 7778742049/228826127*24476^(3/7) 2584000075550812 a001 10182505537/299537289*24476^(3/7) 2584000075550812 a001 53316291173/1568397607*24476^(3/7) 2584000075550812 a001 139583862445/4106118243*24476^(3/7) 2584000075550812 a001 182717648081/5374978561*24476^(3/7) 2584000075550812 a001 956722026041/28143753123*24476^(3/7) 2584000075550812 a001 2504730781961/73681302247*24476^(3/7) 2584000075550812 a001 3278735159921/96450076809*24476^(3/7) 2584000075550812 a001 10610209857723/312119004989*24476^(3/7) 2584000075550812 a001 4052739537881/119218851371*24476^(3/7) 2584000075550812 a001 387002188980/11384387281*24476^(3/7) 2584000075550812 a001 591286729879/17393796001*24476^(3/7) 2584000075550812 a001 225851433717/6643838879*24476^(3/7) 2584000075550812 a001 1135099622/33391061*24476^(3/7) 2584000075550812 a001 32951280099/969323029*24476^(3/7) 2584000075550812 a001 12586269025/370248451*24476^(3/7) 2584000075550813 a001 1201881744/35355581*24476^(3/7) 2584000075550813 a001 1836311903/54018521*24476^(3/7) 2584000075550819 a001 701408733/20633239*24476^(3/7) 2584000075550854 a001 66978574/1970299*24476^(3/7) 2584000075551098 a001 102334155/3010349*24476^(3/7) 2584000075552767 a001 39088169/1149851*24476^(3/7) 2584000075560351 a001 3524578/39603*64079^(7/23) 2584000075564206 a001 196452/5779*24476^(3/7) 2584000075565883 a001 514229/64079*24476^(4/7) 2584000075587654 a001 5702887/39603*64079^(6/23) 2584000075603009 a001 165580141/103682*9349^(1/19) 2584000075615037 a001 9227465/39603*64079^(5/23) 2584000075642390 a001 4976784/13201*64079^(4/23) 2584000075642611 a001 5702887/167761*24476^(3/7) 2584000075660022 a004 Fibonacci(22)*Lucas(25)/(1/2+sqrt(5)/2)^29 2584000075669754 a001 24157817/39603*64079^(3/23) 2584000075671712 a001 15456/13201*103682^(2/3) 2584000075697114 a001 39088169/39603*64079^(2/23) 2584000075711774 a001 17711/103682*103682^(5/6) 2584000075714364 a001 832040/39603*167761^(2/5) 2584000075716739 a001 17711/271443*7881196^(2/3) 2584000075716764 a001 121393/39603*20633239^(2/5) 2584000075716767 a001 17711/271443*312119004989^(2/5) 2584000075716767 a001 17711/271443*(1/2+1/2*5^(1/2))^22 2584000075716767 a001 17711/271443*10749957122^(11/24) 2584000075716767 a001 17711/271443*4106118243^(11/23) 2584000075716767 a001 17711/271443*1568397607^(1/2) 2584000075716767 a001 121393/39603*17393796001^(2/7) 2584000075716767 a001 121393/39603*14662949395604^(2/9) 2584000075716767 a001 121393/39603*(1/2+1/2*5^(1/2))^14 2584000075716767 a001 121393/39603*10749957122^(7/24) 2584000075716767 a001 121393/39603*4106118243^(7/23) 2584000075716767 a001 121393/39603*1568397607^(7/22) 2584000075716767 a001 121393/39603*599074578^(1/3) 2584000075716767 a001 17711/271443*599074578^(11/21) 2584000075716767 a001 121393/39603*228826127^(7/20) 2584000075716767 a001 17711/271443*228826127^(11/20) 2584000075716767 a001 121393/39603*87403803^(7/19) 2584000075716767 a001 17711/271443*87403803^(11/19) 2584000075716767 a001 121393/39603*33385282^(7/18) 2584000075716768 a001 17711/271443*33385282^(11/18) 2584000075716773 a001 121393/39603*12752043^(7/17) 2584000075716777 a001 17711/271443*12752043^(11/17) 2584000075716814 a001 121393/39603*4870847^(7/16) 2584000075716841 a001 17711/271443*4870847^(11/16) 2584000075717115 a001 121393/39603*1860498^(7/15) 2584000075717314 a001 17711/271443*1860498^(11/15) 2584000075717513 a001 2149991423/832040 2584000075719325 a001 121393/39603*710647^(1/2) 2584000075720787 a001 17711/271443*710647^(11/14) 2584000075721136 a001 4976784/90481*24476^(8/21) 2584000075721238 a001 9227465/103682*24476^(1/3) 2584000075724476 a001 63245986/39603*64079^(1/23) 2584000075733480 a001 9227465/39603*167761^(1/5) 2584000075734813 a001 17711/710647*439204^(8/9) 2584000075735650 a001 121393/39603*271443^(7/13) 2584000075738441 a004 Fibonacci(22)*Lucas(27)/(1/2+sqrt(5)/2)^31 2584000075740766 a001 105937/13201*439204^(4/9) 2584000075746441 a001 17711/271443*271443^(11/13) 2584000075746690 a001 17711/710647*7881196^(8/11) 2584000075746705 a001 105937/13201*7881196^(4/11) 2584000075746720 a001 17711/710647*141422324^(8/13) 2584000075746720 a001 105937/13201*141422324^(4/13) 2584000075746720 a001 17711/710647*2537720636^(8/15) 2584000075746720 a001 17711/710647*45537549124^(8/17) 2584000075746720 a001 17711/710647*14662949395604^(8/21) 2584000075746720 a001 17711/710647*(1/2+1/2*5^(1/2))^24 2584000075746720 a001 17711/710647*192900153618^(4/9) 2584000075746720 a001 17711/710647*73681302247^(6/13) 2584000075746720 a001 17711/710647*10749957122^(1/2) 2584000075746720 a001 17711/710647*4106118243^(12/23) 2584000075746720 a001 17711/710647*1568397607^(6/11) 2584000075746720 a001 105937/13201*2537720636^(4/15) 2584000075746720 a001 105937/13201*45537549124^(4/17) 2584000075746720 a001 105937/13201*817138163596^(4/19) 2584000075746720 a001 105937/13201*14662949395604^(4/21) 2584000075746720 a001 105937/13201*(1/2+1/2*5^(1/2))^12 2584000075746720 a001 105937/13201*192900153618^(2/9) 2584000075746720 a001 105937/13201*73681302247^(3/13) 2584000075746720 a001 105937/13201*10749957122^(1/4) 2584000075746720 a001 105937/13201*4106118243^(6/23) 2584000075746720 a001 105937/13201*1568397607^(3/11) 2584000075746720 a001 105937/13201*599074578^(2/7) 2584000075746720 a001 17711/710647*599074578^(4/7) 2584000075746720 a001 105937/13201*228826127^(3/10) 2584000075746720 a001 17711/710647*228826127^(3/5) 2584000075746720 a001 105937/13201*87403803^(6/19) 2584000075746720 a001 17711/710647*87403803^(12/19) 2584000075746721 a001 105937/13201*33385282^(1/3) 2584000075746721 a001 17711/710647*33385282^(2/3) 2584000075746726 a001 105937/13201*12752043^(6/17) 2584000075746731 a001 17711/710647*12752043^(12/17) 2584000075746761 a001 105937/13201*4870847^(3/8) 2584000075746802 a001 17711/710647*4870847^(3/4) 2584000075746829 a001 1876250207/726103 2584000075747018 a001 105937/13201*1860498^(2/5) 2584000075747317 a001 17711/710647*1860498^(4/5) 2584000075747656 a001 1346269/39603*439204^(1/3) 2584000075748844 a001 5702887/39603*439204^(2/9) 2584000075748913 a001 105937/13201*710647^(3/7) 2584000075749882 a004 Fibonacci(22)*Lucas(29)/(1/2+sqrt(5)/2)^33 2584000075750349 a001 24157817/39603*439204^(1/9) 2584000075751088 a001 832040/39603*20633239^(2/7) 2584000075751090 a001 17711/1860498*141422324^(2/3) 2584000075751090 a001 17711/1860498*(1/2+1/2*5^(1/2))^26 2584000075751090 a001 17711/1860498*73681302247^(1/2) 2584000075751090 a001 17711/1860498*10749957122^(13/24) 2584000075751090 a001 17711/1860498*4106118243^(13/23) 2584000075751090 a001 17711/1860498*1568397607^(13/22) 2584000075751090 a001 832040/39603*2537720636^(2/9) 2584000075751090 a001 832040/39603*312119004989^(2/11) 2584000075751090 a001 832040/39603*(1/2+1/2*5^(1/2))^10 2584000075751090 a001 832040/39603*28143753123^(1/5) 2584000075751090 a001 832040/39603*10749957122^(5/24) 2584000075751090 a001 832040/39603*4106118243^(5/23) 2584000075751090 a001 832040/39603*1568397607^(5/22) 2584000075751090 a001 832040/39603*599074578^(5/21) 2584000075751090 a001 17711/1860498*599074578^(13/21) 2584000075751090 a001 832040/39603*228826127^(1/4) 2584000075751090 a001 17711/1860498*228826127^(13/20) 2584000075751090 a001 832040/39603*87403803^(5/19) 2584000075751090 a001 17711/1860498*87403803^(13/19) 2584000075751091 a001 832040/39603*33385282^(5/18) 2584000075751092 a001 39088169/710647*24476^(8/21) 2584000075751092 a001 17711/1860498*33385282^(13/18) 2584000075751095 a001 832040/39603*12752043^(5/17) 2584000075751102 a001 17711/1860498*12752043^(13/17) 2584000075751106 a001 17711/710647*710647^(6/7) 2584000075751106 a001 14736260440/5702887 2584000075751124 a001 832040/39603*4870847^(5/16) 2584000075751179 a001 17711/1860498*4870847^(13/16) 2584000075751339 a001 832040/39603*1860498^(1/3) 2584000075751551 a004 Fibonacci(22)*Lucas(31)/(1/2+sqrt(5)/2)^35 2584000075751723 a001 17711/4870847*20633239^(4/5) 2584000075751728 a001 17711/4870847*17393796001^(4/7) 2584000075751728 a001 17711/4870847*14662949395604^(4/9) 2584000075751728 a001 17711/4870847*(1/2+1/2*5^(1/2))^28 2584000075751728 a001 17711/4870847*73681302247^(7/13) 2584000075751728 a001 17711/4870847*10749957122^(7/12) 2584000075751728 a001 17711/4870847*4106118243^(14/23) 2584000075751728 a001 17711/4870847*1568397607^(7/11) 2584000075751728 a001 726103/13201*(1/2+1/2*5^(1/2))^8 2584000075751728 a001 726103/13201*23725150497407^(1/8) 2584000075751728 a001 726103/13201*505019158607^(1/7) 2584000075751728 a001 726103/13201*73681302247^(2/13) 2584000075751728 a001 726103/13201*10749957122^(1/6) 2584000075751728 a001 726103/13201*4106118243^(4/23) 2584000075751728 a001 726103/13201*1568397607^(2/11) 2584000075751728 a001 726103/13201*599074578^(4/21) 2584000075751728 a001 17711/4870847*599074578^(2/3) 2584000075751728 a001 726103/13201*228826127^(1/5) 2584000075751728 a001 17711/4870847*228826127^(7/10) 2584000075751728 a001 726103/13201*87403803^(4/19) 2584000075751728 a001 17711/4870847*87403803^(14/19) 2584000075751728 a001 726103/13201*33385282^(2/9) 2584000075751729 a001 17711/4870847*33385282^(7/9) 2584000075751730 a001 12860010233/4976784 2584000075751731 a001 726103/13201*12752043^(4/17) 2584000075751737 a001 17711/1860498*1860498^(13/15) 2584000075751741 a001 17711/4870847*12752043^(14/17) 2584000075751755 a001 726103/13201*4870847^(1/4) 2584000075751783 a001 17711/12752043*7881196^(10/11) 2584000075751795 a004 Fibonacci(22)*Lucas(33)/(1/2+sqrt(5)/2)^37 2584000075751813 a001 5702887/39603*7881196^(2/11) 2584000075751815 a001 17711/12752043*20633239^(6/7) 2584000075751821 a001 17711/12752043*141422324^(10/13) 2584000075751821 a001 5702887/39603*141422324^(2/13) 2584000075751821 a001 17711/12752043*2537720636^(2/3) 2584000075751821 a001 17711/12752043*45537549124^(10/17) 2584000075751821 a001 17711/12752043*312119004989^(6/11) 2584000075751821 a001 17711/12752043*14662949395604^(10/21) 2584000075751821 a001 17711/12752043*(1/2+1/2*5^(1/2))^30 2584000075751821 a001 17711/12752043*192900153618^(5/9) 2584000075751821 a001 17711/12752043*28143753123^(3/5) 2584000075751821 a001 17711/12752043*10749957122^(5/8) 2584000075751821 a001 17711/12752043*4106118243^(15/23) 2584000075751821 a001 17711/12752043*1568397607^(15/22) 2584000075751821 a001 5702887/39603*2537720636^(2/15) 2584000075751821 a001 5702887/39603*45537549124^(2/17) 2584000075751821 a001 5702887/39603*14662949395604^(2/21) 2584000075751821 a001 5702887/39603*(1/2+1/2*5^(1/2))^6 2584000075751821 a001 5702887/39603*10749957122^(1/8) 2584000075751821 a001 5702887/39603*4106118243^(3/23) 2584000075751821 a001 5702887/39603*1568397607^(3/22) 2584000075751821 a001 5702887/39603*599074578^(1/7) 2584000075751821 a001 17711/12752043*599074578^(5/7) 2584000075751821 a001 5702887/39603*228826127^(3/20) 2584000075751821 a001 17711/12752043*228826127^(3/4) 2584000075751821 a001 5702887/39603*87403803^(3/19) 2584000075751821 a001 17711/12752043*87403803^(15/19) 2584000075751821 a001 101003831657/39088169 2584000075751821 a001 5702887/39603*33385282^(1/6) 2584000075751823 a001 17711/12752043*33385282^(5/6) 2584000075751823 a001 17711/4870847*4870847^(7/8) 2584000075751823 a001 5702887/39603*12752043^(3/17) 2584000075751830 a004 Fibonacci(22)*Lucas(35)/(1/2+sqrt(5)/2)^39 2584000075751834 a001 24157817/39603*7881196^(1/11) 2584000075751834 a001 17711/33385282*(1/2+1/2*5^(1/2))^32 2584000075751834 a001 17711/33385282*23725150497407^(1/2) 2584000075751834 a001 17711/33385282*505019158607^(4/7) 2584000075751834 a001 17711/33385282*73681302247^(8/13) 2584000075751834 a001 17711/33385282*10749957122^(2/3) 2584000075751834 a001 17711/33385282*4106118243^(16/23) 2584000075751834 a001 17711/33385282*1568397607^(8/11) 2584000075751834 a001 4976784/13201*(1/2+1/2*5^(1/2))^4 2584000075751834 a001 4976784/13201*23725150497407^(1/16) 2584000075751834 a001 4976784/13201*73681302247^(1/13) 2584000075751834 a001 4976784/13201*10749957122^(1/12) 2584000075751834 a001 4976784/13201*4106118243^(2/23) 2584000075751834 a001 4976784/13201*1568397607^(1/11) 2584000075751834 a001 4976784/13201*599074578^(2/21) 2584000075751834 a001 17711/33385282*599074578^(16/21) 2584000075751834 a001 4976784/13201*228826127^(1/10) 2584000075751834 a001 4976784/13201*87403803^(2/19) 2584000075751834 a001 17711/33385282*228826127^(4/5) 2584000075751834 a001 88143821424/34111385 2584000075751834 a001 4976784/13201*33385282^(1/9) 2584000075751834 a001 17711/33385282*87403803^(16/19) 2584000075751835 a001 17711/12752043*12752043^(15/17) 2584000075751836 a004 Fibonacci(22)*Lucas(37)/(1/2+sqrt(5)/2)^41 2584000075751836 a001 4976784/13201*12752043^(2/17) 2584000075751836 a001 17711/87403803*45537549124^(2/3) 2584000075751836 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^34/Lucas(38) 2584000075751836 a001 17711/87403803*10749957122^(17/24) 2584000075751836 a001 17711/87403803*4106118243^(17/23) 2584000075751836 a001 17711/87403803*1568397607^(17/22) 2584000075751836 a001 39088169/39603*(1/2+1/2*5^(1/2))^2 2584000075751836 a001 39088169/39603*10749957122^(1/24) 2584000075751836 a001 39088169/39603*4106118243^(1/23) 2584000075751836 a001 39088169/39603*1568397607^(1/22) 2584000075751836 a001 39088169/39603*599074578^(1/21) 2584000075751836 a001 39088169/39603*228826127^(1/20) 2584000075751836 a001 17711/87403803*599074578^(17/21) 2584000075751836 a001 692290561159/267914296 2584000075751836 a001 39088169/39603*87403803^(1/19) 2584000075751836 a001 17711/87403803*228826127^(17/20) 2584000075751836 a001 17711/33385282*33385282^(8/9) 2584000075751836 a001 39088169/39603*33385282^(1/18) 2584000075751836 a001 17711/228826127*141422324^(12/13) 2584000075751836 a004 Fibonacci(22)*Lucas(39)/(1/2+sqrt(5)/2)^43 2584000075751836 a001 17711/228826127*2537720636^(4/5) 2584000075751836 a001 17711/228826127*45537549124^(12/17) 2584000075751836 a001 17711/228826127*14662949395604^(4/7) 2584000075751836 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^36/Lucas(40) 2584000075751836 a001 17711/228826127*505019158607^(9/14) 2584000075751836 a001 17711/228826127*192900153618^(2/3) 2584000075751836 a001 17711/228826127*73681302247^(9/13) 2584000075751836 a001 17711/228826127*10749957122^(3/4) 2584000075751836 a001 17711/228826127*4106118243^(18/23) 2584000075751836 a001 17711/228826127*1568397607^(9/11) 2584000075751836 a001 34111385/13201 2584000075751836 a001 17711/228826127*599074578^(6/7) 2584000075751836 a001 17711/87403803*87403803^(17/19) 2584000075751837 a004 Fibonacci(22)*Lucas(41)/(1/2+sqrt(5)/2)^45 2584000075751837 a001 17711/599074578*817138163596^(2/3) 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^38/Lucas(42) 2584000075751837 a001 17711/599074578*10749957122^(19/24) 2584000075751837 a001 17711/599074578*4106118243^(19/23) 2584000075751837 a001 4745030096456/1836311903 2584000075751837 a001 17711/599074578*1568397607^(19/22) 2584000075751837 a004 Fibonacci(42)/Lucas(22)/(1/2+sqrt(5)/2)^2 2584000075751837 a001 17711/228826127*228826127^(9/10) 2584000075751837 a004 Fibonacci(22)*Lucas(43)/(1/2+sqrt(5)/2)^47 2584000075751837 a001 17711/1568397607*2537720636^(8/9) 2584000075751837 a001 17711/1568397607*312119004989^(8/11) 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^40/Lucas(44) 2584000075751837 a001 17711/1568397607*23725150497407^(5/8) 2584000075751837 a001 17711/1568397607*73681302247^(10/13) 2584000075751837 a001 17711/1568397607*28143753123^(4/5) 2584000075751837 a001 17711/1568397607*10749957122^(5/6) 2584000075751837 a001 4140883356721/1602508992 2584000075751837 a001 17711/1568397607*4106118243^(20/23) 2584000075751837 a001 17711/599074578*599074578^(19/21) 2584000075751837 a001 17711/4106118243*2537720636^(14/15) 2584000075751837 a004 Fibonacci(22)*Lucas(45)/(1/2+sqrt(5)/2)^49 2584000075751837 a001 17711/4106118243*17393796001^(6/7) 2584000075751837 a001 17711/4106118243*45537549124^(14/17) 2584000075751837 a001 17711/4106118243*817138163596^(14/19) 2584000075751837 a001 17711/4106118243*14662949395604^(2/3) 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^42/Lucas(46) 2584000075751837 a001 17711/4106118243*505019158607^(3/4) 2584000075751837 a001 17711/4106118243*192900153618^(7/9) 2584000075751837 a001 32522920114033/12586269025 2584000075751837 a001 17711/4106118243*10749957122^(7/8) 2584000075751837 a001 17711/1568397607*1568397607^(10/11) 2584000075751837 a004 Fibonacci(22)*Lucas(47)/(1/2+sqrt(5)/2)^51 2584000075751837 a001 17711/10749957122*312119004989^(4/5) 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^44/Lucas(48) 2584000075751837 a001 17711/10749957122*23725150497407^(11/16) 2584000075751837 a001 17711/10749957122*73681302247^(11/13) 2584000075751837 a001 28382036757312/10983760033 2584000075751837 a001 17711/4106118243*4106118243^(21/23) 2584000075751837 a004 Fibonacci(22)*Lucas(49)/(1/2+sqrt(5)/2)^53 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^46/Lucas(50) 2584000075751837 a001 222915410701775/86267571272 2584000075751837 a001 17711/10749957122*10749957122^(11/12) 2584000075751837 a001 17711/73681302247*45537549124^(16/17) 2584000075751837 a004 Fibonacci(22)*Lucas(51)/(1/2+sqrt(5)/2)^55 2584000075751837 a001 17711/73681302247*14662949395604^(16/21) 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^48/Lucas(52) 2584000075751837 a001 17711/73681302247*192900153618^(8/9) 2584000075751837 a004 Fibonacci(22)*Lucas(53)/(1/2+sqrt(5)/2)^57 2584000075751837 a001 17711/192900153618*312119004989^(10/11) 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^50/Lucas(54) 2584000075751837 a001 1527884954798392/591286729879 2584000075751837 a001 17711/73681302247*73681302247^(12/13) 2584000075751837 a004 Fibonacci(22)*Lucas(55)/(1/2+sqrt(5)/2)^59 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^52/Lucas(56) 2584000075751837 a001 17711/505019158607*23725150497407^(13/16) 2584000075751837 a001 1333351580853929/516002918640 2584000075751837 a004 Fibonacci(22)*Lucas(57)/(1/2+sqrt(5)/2)^61 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^54/Lucas(58) 2584000075751837 a001 10472279272886969/4052739537881 2584000075751837 a004 Fibonacci(22)*Lucas(59)/(1/2+sqrt(5)/2)^63 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^56/Lucas(60) 2584000075751837 a004 Fibonacci(22)*Lucas(61)/(1/2+sqrt(5)/2)^65 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^58/Lucas(62) 2584000075751837 a004 Fibonacci(22)*Lucas(63)/(1/2+sqrt(5)/2)^67 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^60/Lucas(64) 2584000075751837 a004 Fibonacci(22)*Lucas(65)/(1/2+sqrt(5)/2)^69 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^62/Lucas(66) 2584000075751837 a004 Fibonacci(22)*Lucas(67)/(1/2+sqrt(5)/2)^71 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^64/Lucas(68) 2584000075751837 a004 Fibonacci(22)*Lucas(69)/(1/2+sqrt(5)/2)^73 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^66/Lucas(70) 2584000075751837 a004 Fibonacci(22)*Lucas(71)/(1/2+sqrt(5)/2)^75 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^68/Lucas(72) 2584000075751837 a004 Fibonacci(22)*Lucas(73)/(1/2+sqrt(5)/2)^77 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^70/Lucas(74) 2584000075751837 a004 Fibonacci(22)*Lucas(75)/(1/2+sqrt(5)/2)^79 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^72/Lucas(76) 2584000075751837 a004 Fibonacci(22)*Lucas(77)/(1/2+sqrt(5)/2)^81 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^74/Lucas(78) 2584000075751837 a004 Fibonacci(22)*Lucas(79)/(1/2+sqrt(5)/2)^83 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^76/Lucas(80) 2584000075751837 a004 Fibonacci(22)*Lucas(81)/(1/2+sqrt(5)/2)^85 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^78/Lucas(82) 2584000075751837 a004 Fibonacci(22)*Lucas(83)/(1/2+sqrt(5)/2)^87 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^80/Lucas(84) 2584000075751837 a004 Fibonacci(22)*Lucas(85)/(1/2+sqrt(5)/2)^89 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^82/Lucas(86) 2584000075751837 a004 Fibonacci(22)*Lucas(87)/(1/2+sqrt(5)/2)^91 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^84/Lucas(88) 2584000075751837 a004 Fibonacci(22)*Lucas(89)/(1/2+sqrt(5)/2)^93 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^86/Lucas(90) 2584000075751837 a004 Fibonacci(22)*Lucas(91)/(1/2+sqrt(5)/2)^95 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^88/Lucas(92) 2584000075751837 a004 Fibonacci(22)*Lucas(93)/(1/2+sqrt(5)/2)^97 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^90/Lucas(94) 2584000075751837 a004 Fibonacci(22)*Lucas(95)/(1/2+sqrt(5)/2)^99 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^92/Lucas(96) 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^94/Lucas(98) 2584000075751837 a004 Fibonacci(11)*Lucas(11)/(1/2+sqrt(5)/2)^4 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^93/Lucas(97) 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^95/Lucas(99) 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^96/Lucas(100) 2584000075751837 a004 Fibonacci(22)*Lucas(96)/(1/2+sqrt(5)/2)^100 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^91/Lucas(95) 2584000075751837 a004 Fibonacci(22)*Lucas(94)/(1/2+sqrt(5)/2)^98 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^89/Lucas(93) 2584000075751837 a004 Fibonacci(22)*Lucas(92)/(1/2+sqrt(5)/2)^96 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^87/Lucas(91) 2584000075751837 a004 Fibonacci(22)*Lucas(90)/(1/2+sqrt(5)/2)^94 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^85/Lucas(89) 2584000075751837 a004 Fibonacci(22)*Lucas(88)/(1/2+sqrt(5)/2)^92 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^83/Lucas(87) 2584000075751837 a004 Fibonacci(22)*Lucas(86)/(1/2+sqrt(5)/2)^90 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^81/Lucas(85) 2584000075751837 a004 Fibonacci(22)*Lucas(84)/(1/2+sqrt(5)/2)^88 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^79/Lucas(83) 2584000075751837 a004 Fibonacci(22)*Lucas(82)/(1/2+sqrt(5)/2)^86 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^77/Lucas(81) 2584000075751837 a004 Fibonacci(22)*Lucas(80)/(1/2+sqrt(5)/2)^84 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^75/Lucas(79) 2584000075751837 a004 Fibonacci(22)*Lucas(78)/(1/2+sqrt(5)/2)^82 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^73/Lucas(77) 2584000075751837 a004 Fibonacci(22)*Lucas(76)/(1/2+sqrt(5)/2)^80 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^71/Lucas(75) 2584000075751837 a004 Fibonacci(22)*Lucas(74)/(1/2+sqrt(5)/2)^78 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^69/Lucas(73) 2584000075751837 a004 Fibonacci(22)*Lucas(72)/(1/2+sqrt(5)/2)^76 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^67/Lucas(71) 2584000075751837 a004 Fibonacci(22)*Lucas(70)/(1/2+sqrt(5)/2)^74 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^65/Lucas(69) 2584000075751837 a004 Fibonacci(22)*Lucas(68)/(1/2+sqrt(5)/2)^72 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^63/Lucas(67) 2584000075751837 a004 Fibonacci(22)*Lucas(66)/(1/2+sqrt(5)/2)^70 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^61/Lucas(65) 2584000075751837 a004 Fibonacci(22)*Lucas(64)/(1/2+sqrt(5)/2)^68 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^59/Lucas(63) 2584000075751837 a004 Fibonacci(22)*Lucas(62)/(1/2+sqrt(5)/2)^66 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^57/Lucas(61) 2584000075751837 a004 Fibonacci(22)*Lucas(60)/(1/2+sqrt(5)/2)^64 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^55/Lucas(59) 2584000075751837 a004 Fibonacci(22)*Lucas(58)/(1/2+sqrt(5)/2)^62 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^53/Lucas(57) 2584000075751837 a004 Fibonacci(22)*Lucas(56)/(1/2+sqrt(5)/2)^60 2584000075751837 a001 2472169787763395/956722026041 2584000075751837 a001 89/1568437211*14662949395604^(17/21) 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^51/Lucas(55) 2584000075751837 a004 Fibonacci(22)*Lucas(54)/(1/2+sqrt(5)/2)^58 2584000075751837 a001 89/1568437211*192900153618^(17/18) 2584000075751837 a001 17711/119218851371*14662949395604^(7/9) 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^49/Lucas(53) 2584000075751837 a001 17711/119218851371*505019158607^(7/8) 2584000075751837 a004 Fibonacci(22)*Lucas(52)/(1/2+sqrt(5)/2)^56 2584000075751837 a001 4052637203726/1568358005 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^47/Lucas(51) 2584000075751837 a004 Fibonacci(22)*Lucas(50)/(1/2+sqrt(5)/2)^54 2584000075751837 a001 17711/17393796001*45537549124^(15/17) 2584000075751837 a001 137769300429839/53316291173 2584000075751837 a001 17711/17393796001*312119004989^(9/11) 2584000075751837 a001 17711/17393796001*14662949395604^(5/7) 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^45/Lucas(49) 2584000075751837 a001 17711/17393796001*192900153618^(5/6) 2584000075751837 a001 17711/17393796001*28143753123^(9/10) 2584000075751837 a001 17711/28143753123*10749957122^(23/24) 2584000075751837 a004 Fibonacci(22)*Lucas(48)/(1/2+sqrt(5)/2)^52 2584000075751837 a001 17711/17393796001*10749957122^(15/16) 2584000075751837 a001 52623190157903/20365011074 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^43/Lucas(47) 2584000075751837 a001 17711/10749957122*4106118243^(22/23) 2584000075751837 a004 Fibonacci(22)*Lucas(46)/(1/2+sqrt(5)/2)^50 2584000075751837 a001 20100270043870/7778742049 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^41/Lucas(45) 2584000075751837 a001 17711/4106118243*1568397607^(21/22) 2584000075751837 a004 Fibonacci(46)/Lucas(22)/(1/2+sqrt(5)/2)^6 2584000075751837 a004 Fibonacci(48)/Lucas(22)/(1/2+sqrt(5)/2)^8 2584000075751837 a004 Fibonacci(50)/Lucas(22)/(1/2+sqrt(5)/2)^10 2584000075751837 a004 Fibonacci(52)/Lucas(22)/(1/2+sqrt(5)/2)^12 2584000075751837 a004 Fibonacci(54)/Lucas(22)/(1/2+sqrt(5)/2)^14 2584000075751837 a004 Fibonacci(56)/Lucas(22)/(1/2+sqrt(5)/2)^16 2584000075751837 a004 Fibonacci(58)/Lucas(22)/(1/2+sqrt(5)/2)^18 2584000075751837 a004 Fibonacci(60)/Lucas(22)/(1/2+sqrt(5)/2)^20 2584000075751837 a004 Fibonacci(62)/Lucas(22)/(1/2+sqrt(5)/2)^22 2584000075751837 a004 Fibonacci(64)/Lucas(22)/(1/2+sqrt(5)/2)^24 2584000075751837 a004 Fibonacci(66)/Lucas(22)/(1/2+sqrt(5)/2)^26 2584000075751837 a004 Fibonacci(68)/Lucas(22)/(1/2+sqrt(5)/2)^28 2584000075751837 a004 Fibonacci(70)/Lucas(22)/(1/2+sqrt(5)/2)^30 2584000075751837 a004 Fibonacci(72)/Lucas(22)/(1/2+sqrt(5)/2)^32 2584000075751837 a004 Fibonacci(74)/Lucas(22)/(1/2+sqrt(5)/2)^34 2584000075751837 a004 Fibonacci(76)/Lucas(22)/(1/2+sqrt(5)/2)^36 2584000075751837 a004 Fibonacci(78)/Lucas(22)/(1/2+sqrt(5)/2)^38 2584000075751837 a004 Fibonacci(80)/Lucas(22)/(1/2+sqrt(5)/2)^40 2584000075751837 a004 Fibonacci(82)/Lucas(22)/(1/2+sqrt(5)/2)^42 2584000075751837 a004 Fibonacci(84)/Lucas(22)/(1/2+sqrt(5)/2)^44 2584000075751837 a004 Fibonacci(86)/Lucas(22)/(1/2+sqrt(5)/2)^46 2584000075751837 a004 Fibonacci(22)*Lucas(44)/(1/2+sqrt(5)/2)^48 2584000075751837 a004 Fibonacci(90)/Lucas(22)/(1/2+sqrt(5)/2)^50 2584000075751837 a004 Fibonacci(92)/Lucas(22)/(1/2+sqrt(5)/2)^52 2584000075751837 a004 Fibonacci(94)/Lucas(22)/(1/2+sqrt(5)/2)^54 2584000075751837 a004 Fibonacci(96)/Lucas(22)/(1/2+sqrt(5)/2)^56 2584000075751837 a004 Fibonacci(100)/Lucas(22)/(1/2+sqrt(5)/2)^60 2584000075751837 a004 Fibonacci(98)/Lucas(22)/(1/2+sqrt(5)/2)^58 2584000075751837 a004 Fibonacci(99)/Lucas(22)/(1/2+sqrt(5)/2)^59 2584000075751837 a004 Fibonacci(97)/Lucas(22)/(1/2+sqrt(5)/2)^57 2584000075751837 a004 Fibonacci(95)/Lucas(22)/(1/2+sqrt(5)/2)^55 2584000075751837 a004 Fibonacci(93)/Lucas(22)/(1/2+sqrt(5)/2)^53 2584000075751837 a004 Fibonacci(91)/Lucas(22)/(1/2+sqrt(5)/2)^51 2584000075751837 a004 Fibonacci(89)/Lucas(22)/(1/2+sqrt(5)/2)^49 2584000075751837 a004 Fibonacci(87)/Lucas(22)/(1/2+sqrt(5)/2)^47 2584000075751837 a004 Fibonacci(85)/Lucas(22)/(1/2+sqrt(5)/2)^45 2584000075751837 a004 Fibonacci(83)/Lucas(22)/(1/2+sqrt(5)/2)^43 2584000075751837 a004 Fibonacci(81)/Lucas(22)/(1/2+sqrt(5)/2)^41 2584000075751837 a004 Fibonacci(79)/Lucas(22)/(1/2+sqrt(5)/2)^39 2584000075751837 a004 Fibonacci(77)/Lucas(22)/(1/2+sqrt(5)/2)^37 2584000075751837 a004 Fibonacci(75)/Lucas(22)/(1/2+sqrt(5)/2)^35 2584000075751837 a004 Fibonacci(73)/Lucas(22)/(1/2+sqrt(5)/2)^33 2584000075751837 a004 Fibonacci(71)/Lucas(22)/(1/2+sqrt(5)/2)^31 2584000075751837 a004 Fibonacci(69)/Lucas(22)/(1/2+sqrt(5)/2)^29 2584000075751837 a004 Fibonacci(67)/Lucas(22)/(1/2+sqrt(5)/2)^27 2584000075751837 a004 Fibonacci(65)/Lucas(22)/(1/2+sqrt(5)/2)^25 2584000075751837 a004 Fibonacci(63)/Lucas(22)/(1/2+sqrt(5)/2)^23 2584000075751837 a004 Fibonacci(61)/Lucas(22)/(1/2+sqrt(5)/2)^21 2584000075751837 a004 Fibonacci(59)/Lucas(22)/(1/2+sqrt(5)/2)^19 2584000075751837 a004 Fibonacci(57)/Lucas(22)/(1/2+sqrt(5)/2)^17 2584000075751837 a004 Fibonacci(55)/Lucas(22)/(1/2+sqrt(5)/2)^15 2584000075751837 a004 Fibonacci(53)/Lucas(22)/(1/2+sqrt(5)/2)^13 2584000075751837 a004 Fibonacci(51)/Lucas(22)/(1/2+sqrt(5)/2)^11 2584000075751837 a004 Fibonacci(49)/Lucas(22)/(1/2+sqrt(5)/2)^9 2584000075751837 a004 Fibonacci(47)/Lucas(22)/(1/2+sqrt(5)/2)^7 2584000075751837 a004 Fibonacci(45)/Lucas(22)/(1/2+sqrt(5)/2)^5 2584000075751837 a001 17711/969323029*2537720636^(13/15) 2584000075751837 a001 7677619973707/2971215073 2584000075751837 a001 17711/969323029*45537549124^(13/17) 2584000075751837 a001 17711/969323029*14662949395604^(13/21) 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^39/Lucas(43) 2584000075751837 a001 17711/969323029*192900153618^(13/18) 2584000075751837 a001 17711/969323029*73681302247^(3/4) 2584000075751837 a001 17711/969323029*10749957122^(13/16) 2584000075751837 a004 Fibonacci(43)/Lucas(22)/(1/2+sqrt(5)/2)^3 2584000075751837 a001 17711/1568397607*599074578^(20/21) 2584000075751837 a004 Fibonacci(22)*Lucas(42)/(1/2+sqrt(5)/2)^46 2584000075751837 a001 17711/969323029*599074578^(13/14) 2584000075751837 a001 2932589877251/1134903170 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^37/Lucas(41) 2584000075751837 a004 Fibonacci(41)/Lucas(22)/(1/2+sqrt(5)/2) 2584000075751837 a001 17711/599074578*228826127^(19/20) 2584000075751837 a004 Fibonacci(22)*Lucas(40)/(1/2+sqrt(5)/2)^44 2584000075751837 a001 1120149658046/433494437 2584000075751837 a001 17711/141422324*2537720636^(7/9) 2584000075751837 a001 17711/141422324*17393796001^(5/7) 2584000075751837 a001 17711/141422324*312119004989^(7/11) 2584000075751837 a001 17711/141422324*14662949395604^(5/9) 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^35/Lucas(39) 2584000075751837 a001 17711/141422324*505019158607^(5/8) 2584000075751837 a001 17711/141422324*28143753123^(7/10) 2584000075751837 a001 31622993/39603+31622993/39603*5^(1/2) 2584000075751837 a001 17711/141422324*599074578^(5/6) 2584000075751837 a001 17711/141422324*228826127^(7/8) 2584000075751837 a001 17711/228826127*87403803^(18/19) 2584000075751837 a004 Fibonacci(22)*Lucas(38)/(1/2+sqrt(5)/2)^42 2584000075751837 a001 39088169/39603*12752043^(1/17) 2584000075751837 a001 17711/54018521*141422324^(11/13) 2584000075751837 a001 427859096887/165580141 2584000075751837 a001 24157817/39603*141422324^(1/13) 2584000075751837 a001 17711/54018521*2537720636^(11/15) 2584000075751837 a001 17711/54018521*45537549124^(11/17) 2584000075751837 a001 17711/54018521*312119004989^(3/5) 2584000075751837 a001 17711/54018521*14662949395604^(11/21) 2584000075751837 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^33/Lucas(37) 2584000075751837 a001 17711/54018521*192900153618^(11/18) 2584000075751837 a001 17711/54018521*10749957122^(11/16) 2584000075751837 a001 17711/54018521*1568397607^(3/4) 2584000075751837 a001 24157817/39603*2537720636^(1/15) 2584000075751837 a001 24157817/39603*45537549124^(1/17) 2584000075751837 a001 24157817/39603*14662949395604^(1/21) 2584000075751837 a001 24157817/39603*(1/2+1/2*5^(1/2))^3 2584000075751837 a001 24157817/39603*10749957122^(1/16) 2584000075751837 a001 24157817/39603*599074578^(1/14) 2584000075751837 a001 17711/54018521*599074578^(11/14) 2584000075751838 a001 24157817/39603*33385282^(1/12) 2584000075751838 a001 17711/87403803*33385282^(17/18) 2584000075751839 a004 Fibonacci(22)*Lucas(36)/(1/2+sqrt(5)/2)^40 2584000075751840 a001 17711/54018521*33385282^(11/12) 2584000075751841 a001 5702887/39603*4870847^(3/16) 2584000075751842 a001 9227465/39603*20633239^(1/7) 2584000075751842 a001 163427632615/63245986 2584000075751843 a001 17711/20633239*(1/2+1/2*5^(1/2))^31 2584000075751843 a001 17711/20633239*9062201101803^(1/2) 2584000075751843 a001 9227465/39603*2537720636^(1/9) 2584000075751843 a001 9227465/39603*312119004989^(1/11) 2584000075751843 a001 9227465/39603*(1/2+1/2*5^(1/2))^5 2584000075751843 a001 9227465/39603*28143753123^(1/10) 2584000075751843 a001 9227465/39603*228826127^(1/8) 2584000075751843 a001 39088169/39603*4870847^(1/16) 2584000075751848 a001 4976784/13201*4870847^(1/8) 2584000075751849 a001 17711/33385282*12752043^(16/17) 2584000075751852 a004 Fibonacci(22)*Lucas(34)/(1/2+sqrt(5)/2)^38 2584000075751877 a001 3524578/39603*20633239^(1/5) 2584000075751877 a001 62423800958/24157817 2584000075751878 a001 89/39604*(1/2+1/2*5^(1/2))^29 2584000075751878 a001 89/39604*1322157322203^(1/2) 2584000075751878 a001 3524578/39603*17393796001^(1/7) 2584000075751878 a001 3524578/39603*14662949395604^(1/9) 2584000075751878 a001 3524578/39603*(1/2+1/2*5^(1/2))^7 2584000075751878 a001 3524578/39603*599074578^(1/6) 2584000075751886 a001 39088169/39603*1860498^(1/15) 2584000075751912 a001 24157817/39603*1860498^(1/10) 2584000075751923 a001 17711/12752043*4870847^(15/16) 2584000075751927 a001 726103/13201*1860498^(4/15) 2584000075751934 a001 4976784/13201*1860498^(2/15) 2584000075751945 a004 Fibonacci(22)*Lucas(32)/(1/2+sqrt(5)/2)^36 2584000075751967 a001 9227465/39603*1860498^(1/6) 2584000075751970 a001 5702887/39603*1860498^(1/5) 2584000075752088 a001 17711/3010349*7881196^(9/11) 2584000075752110 a001 1346269/39603*7881196^(3/11) 2584000075752116 a001 23843770259/9227465 2584000075752122 a001 17711/3010349*141422324^(9/13) 2584000075752122 a001 1346269/39603*141422324^(3/13) 2584000075752122 a001 17711/3010349*2537720636^(3/5) 2584000075752122 a001 17711/3010349*45537549124^(9/17) 2584000075752122 a001 17711/3010349*817138163596^(9/19) 2584000075752122 a001 17711/3010349*14662949395604^(3/7) 2584000075752122 a001 17711/3010349*(1/2+1/2*5^(1/2))^27 2584000075752122 a001 17711/3010349*192900153618^(1/2) 2584000075752122 a001 17711/3010349*10749957122^(9/16) 2584000075752122 a001 1346269/39603*2537720636^(1/5) 2584000075752122 a001 1346269/39603*45537549124^(3/17) 2584000075752122 a001 1346269/39603*14662949395604^(1/7) 2584000075752122 a001 1346269/39603*(1/2+1/2*5^(1/2))^9 2584000075752122 a001 1346269/39603*192900153618^(1/6) 2584000075752122 a001 1346269/39603*10749957122^(3/16) 2584000075752122 a001 1346269/39603*599074578^(3/14) 2584000075752122 a001 17711/3010349*599074578^(9/14) 2584000075752122 a001 1346269/39603*33385282^(1/4) 2584000075752123 a001 17711/3010349*33385282^(3/4) 2584000075752202 a001 39088169/39603*710647^(1/14) 2584000075752346 a001 1346269/39603*1860498^(3/10) 2584000075752424 a001 17711/4870847*1860498^(14/15) 2584000075752565 a001 4976784/13201*710647^(1/7) 2584000075752583 a004 Fibonacci(22)*Lucas(30)/(1/2+sqrt(5)/2)^34 2584000075752794 a001 17711/3010349*1860498^(9/10) 2584000075752917 a001 5702887/39603*710647^(3/14) 2584000075752917 a001 832040/39603*710647^(5/14) 2584000075753157 a001 3524578/39603*710647^(1/4) 2584000075753190 a001 726103/13201*710647^(2/7) 2584000075753749 a001 102331571/39602 2584000075753777 a001 514229/39603*7881196^(1/3) 2584000075753787 a001 17711/1149851*20633239^(5/7) 2584000075753791 a001 17711/1149851*2537720636^(5/9) 2584000075753791 a001 17711/1149851*312119004989^(5/11) 2584000075753791 a001 17711/1149851*(1/2+1/2*5^(1/2))^25 2584000075753791 a001 17711/1149851*3461452808002^(5/12) 2584000075753791 a001 17711/1149851*28143753123^(1/2) 2584000075753791 a001 514229/39603*312119004989^(1/5) 2584000075753791 a001 514229/39603*(1/2+1/2*5^(1/2))^11 2584000075753791 a001 514229/39603*1568397607^(1/4) 2584000075753791 a001 17711/1149851*228826127^(5/8) 2584000075754413 a001 17711/1149851*1860498^(5/6) 2584000075754534 a001 39088169/39603*271443^(1/13) 2584000075755462 a001 831985/15126*24476^(8/21) 2584000075755841 a001 17711/1860498*710647^(13/14) 2584000075756100 a001 267914296/4870847*24476^(8/21) 2584000075756193 a001 233802911/4250681*24476^(8/21) 2584000075756206 a001 1836311903/33385282*24476^(8/21) 2584000075756208 a001 1602508992/29134601*24476^(8/21) 2584000075756209 a001 12586269025/228826127*24476^(8/21) 2584000075756209 a001 10983760033/199691526*24476^(8/21) 2584000075756209 a001 86267571272/1568397607*24476^(8/21) 2584000075756209 a001 75283811239/1368706081*24476^(8/21) 2584000075756209 a001 591286729879/10749957122*24476^(8/21) 2584000075756209 a001 12585437040/228811001*24476^(8/21) 2584000075756209 a001 4052739537881/73681302247*24476^(8/21) 2584000075756209 a001 3536736619241/64300051206*24476^(8/21) 2584000075756209 a001 6557470319842/119218851371*24476^(8/21) 2584000075756209 a001 2504730781961/45537549124*24476^(8/21) 2584000075756209 a001 956722026041/17393796001*24476^(8/21) 2584000075756209 a001 365435296162/6643838879*24476^(8/21) 2584000075756209 a001 139583862445/2537720636*24476^(8/21) 2584000075756209 a001 53316291173/969323029*24476^(8/21) 2584000075756209 a001 20365011074/370248451*24476^(8/21) 2584000075756209 a001 7778742049/141422324*24476^(8/21) 2584000075756210 a001 2971215073/54018521*24476^(8/21) 2584000075756215 a001 1134903170/20633239*24476^(8/21) 2584000075756250 a001 433494437/7881196*24476^(8/21) 2584000075756494 a001 165580141/3010349*24476^(8/21) 2584000075756953 a004 Fibonacci(22)*Lucas(28)/(1/2+sqrt(5)/2)^32 2584000075757230 a001 4976784/13201*271443^(2/13) 2584000075758163 a001 63245986/1149851*24476^(8/21) 2584000075759914 a001 5702887/39603*271443^(3/13) 2584000075761852 a001 63245986/39603*103682^(1/24) 2584000075762518 a001 726103/13201*271443^(4/13) 2584000075762906 a001 105937/13201*271443^(6/13) 2584000075764578 a001 832040/39603*271443^(5/13) 2584000075764947 a001 3478759198/1346269 2584000075765232 a001 196418/39603*141422324^(1/3) 2584000075765232 a001 17711/439204*(1/2+1/2*5^(1/2))^23 2584000075765232 a001 17711/439204*4106118243^(1/2) 2584000075765232 a001 196418/39603*(1/2+1/2*5^(1/2))^13 2584000075765232 a001 196418/39603*73681302247^(1/4) 2584000075768578 a001 832040/64079*24476^(11/21) 2584000075769605 a001 24157817/439204*24476^(8/21) 2584000075771867 a001 39088169/39603*103682^(1/12) 2584000075779092 a001 17711/710647*271443^(12/13) 2584000075781884 a001 24157817/39603*103682^(1/8) 2584000075782767 a001 196418/39603*271443^(1/2) 2584000075786906 a004 Fibonacci(22)*Lucas(26)/(1/2+sqrt(5)/2)^30 2584000075788562 a001 75025/39603*167761^(3/5) 2584000075791896 a001 4976784/13201*103682^(1/6) 2584000075801920 a001 9227465/39603*103682^(5/24) 2584000075808312 a001 433494437/271443*9349^(1/19) 2584000075811914 a001 5702887/39603*103682^(1/4) 2584000075821987 a001 3524578/39603*103682^(7/24) 2584000075826725 a001 63245986/39603*39603^(1/22) 2584000075831852 a001 726103/13201*103682^(1/3) 2584000075833232 a001 17711/167761*439204^(7/9) 2584000075836209 a001 75025/39603*439204^(5/9) 2584000075838265 a001 1134903170/710647*9349^(1/19) 2584000075841696 a001 1328767775/514229 2584000075842262 a001 1346269/39603*103682^(3/8) 2584000075842635 a001 2971215073/1860498*9349^(1/19) 2584000075843273 a001 7778742049/4870847*9349^(1/19) 2584000075843366 a001 20365011074/12752043*9349^(1/19) 2584000075843379 a001 53316291173/33385282*9349^(1/19) 2584000075843381 a001 139583862445/87403803*9349^(1/19) 2584000075843382 a001 365435296162/228826127*9349^(1/19) 2584000075843382 a001 956722026041/599074578*9349^(1/19) 2584000075843382 a001 2504730781961/1568397607*9349^(1/19) 2584000075843382 a001 6557470319842/4106118243*9349^(1/19) 2584000075843382 a001 10610209857723/6643838879*9349^(1/19) 2584000075843382 a001 4052739537881/2537720636*9349^(1/19) 2584000075843382 a001 1548008755920/969323029*9349^(1/19) 2584000075843382 a001 591286729879/370248451*9349^(1/19) 2584000075843382 a001 225851433717/141422324*9349^(1/19) 2584000075843382 a001 86267571272/54018521*9349^(1/19) 2584000075843388 a001 32951280099/20633239*9349^(1/19) 2584000075843423 a001 12586269025/7881196*9349^(1/19) 2584000075843624 a001 17711/167761*7881196^(7/11) 2584000075843632 a001 75025/39603*7881196^(5/11) 2584000075843647 a001 17711/167761*20633239^(3/5) 2584000075843648 a001 75025/39603*20633239^(3/7) 2584000075843651 a001 17711/167761*141422324^(7/13) 2584000075843651 a001 75025/39603*141422324^(5/13) 2584000075843651 a001 17711/167761*2537720636^(7/15) 2584000075843651 a001 17711/167761*17393796001^(3/7) 2584000075843651 a001 17711/167761*45537549124^(7/17) 2584000075843651 a001 17711/167761*14662949395604^(1/3) 2584000075843651 a001 17711/167761*(1/2+1/2*5^(1/2))^21 2584000075843651 a001 17711/167761*192900153618^(7/18) 2584000075843651 a001 17711/167761*10749957122^(7/16) 2584000075843651 a001 75025/39603*2537720636^(1/3) 2584000075843651 a001 75025/39603*45537549124^(5/17) 2584000075843651 a001 75025/39603*312119004989^(3/11) 2584000075843651 a001 75025/39603*14662949395604^(5/21) 2584000075843651 a001 75025/39603*(1/2+1/2*5^(1/2))^15 2584000075843651 a001 75025/39603*192900153618^(5/18) 2584000075843651 a001 75025/39603*28143753123^(3/10) 2584000075843651 a001 75025/39603*10749957122^(5/16) 2584000075843651 a001 17711/167761*599074578^(1/2) 2584000075843651 a001 75025/39603*599074578^(5/14) 2584000075843651 a001 75025/39603*228826127^(3/8) 2584000075843652 a001 75025/39603*33385282^(5/12) 2584000075843652 a001 17711/167761*33385282^(7/12) 2584000075843667 a001 4807526976/3010349*9349^(1/19) 2584000075844024 a001 75025/39603*1860498^(1/2) 2584000075844173 a001 17711/167761*1860498^(7/10) 2584000075845336 a001 1836311903/1149851*9349^(1/19) 2584000075847488 a001 17711/167761*710647^(3/4) 2584000075848029 a001 9227465/167761*24476^(8/21) 2584000075851245 a001 832040/39603*103682^(5/12) 2584000075856777 a001 701408733/439204*9349^(1/19) 2584000075856984 a001 121393/39603*103682^(7/12) 2584000075861281 a001 17711/64079*64079^(19/23) 2584000075863962 a001 514229/39603*103682^(11/24) 2584000075866906 a001 105937/13201*103682^(1/2) 2584000075895434 a001 196418/39603*103682^(13/24) 2584000075901613 a001 39088169/39603*39603^(1/11) 2584000075916003 a001 28657/39603*64079^(17/23) 2584000075926536 a001 24157817/271443*24476^(1/3) 2584000075926626 a001 7465176/51841*24476^(2/7) 2584000075935196 a001 267914296/167761*9349^(1/19) 2584000075937109 a001 17711/271443*103682^(11/12) 2584000075956488 a001 63245986/710647*24476^(1/3) 2584000075960858 a001 165580141/1860498*24476^(1/3) 2584000075961496 a001 433494437/4870847*24476^(1/3) 2584000075961589 a001 1134903170/12752043*24476^(1/3) 2584000075961602 a001 2971215073/33385282*24476^(1/3) 2584000075961604 a001 7778742049/87403803*24476^(1/3) 2584000075961605 a001 20365011074/228826127*24476^(1/3) 2584000075961605 a001 53316291173/599074578*24476^(1/3) 2584000075961605 a001 139583862445/1568397607*24476^(1/3) 2584000075961605 a001 365435296162/4106118243*24476^(1/3) 2584000075961605 a001 956722026041/10749957122*24476^(1/3) 2584000075961605 a001 2504730781961/28143753123*24476^(1/3) 2584000075961605 a001 6557470319842/73681302247*24476^(1/3) 2584000075961605 a001 10610209857723/119218851371*24476^(1/3) 2584000075961605 a001 4052739537881/45537549124*24476^(1/3) 2584000075961605 a001 1548008755920/17393796001*24476^(1/3) 2584000075961605 a001 591286729879/6643838879*24476^(1/3) 2584000075961605 a001 225851433717/2537720636*24476^(1/3) 2584000075961605 a001 86267571272/969323029*24476^(1/3) 2584000075961605 a001 32951280099/370248451*24476^(1/3) 2584000075961605 a001 12586269025/141422324*24476^(1/3) 2584000075961606 a001 4807526976/54018521*24476^(1/3) 2584000075961611 a001 1836311903/20633239*24476^(1/3) 2584000075961646 a001 3524667/39604*24476^(1/3) 2584000075961890 a001 267914296/3010349*24476^(1/3) 2584000075963559 a001 102334155/1149851*24476^(1/3) 2584000075975000 a001 39088169/439204*24476^(1/3) 2584000075975006 a001 1346269/64079*24476^(10/21) 2584000075976502 a001 24157817/39603*39603^(3/22) 2584000075992210 a004 Fibonacci(22)*Lucas(24)/(1/2+sqrt(5)/2)^28 2584000075993884 a001 75025/39603*103682^(5/8) 2584000075995590 a001 17711/439204*103682^(23/24) 2584000076051387 a001 4976784/13201*39603^(2/11) 2584000076053417 a001 14930352/167761*24476^(1/3) 2584000076053977 a001 17711/167761*103682^(7/8) 2584000076126284 a001 9227465/39603*39603^(5/22) 2584000076131931 a001 39088169/271443*24476^(2/7) 2584000076132025 a001 24157817/103682*24476^(5/21) 2584000076161884 a001 14619165/101521*24476^(2/7) 2584000076162629 a001 10946/39603*24476^(19/21) 2584000076166254 a001 133957148/930249*24476^(2/7) 2584000076166892 a001 701408733/4870847*24476^(2/7) 2584000076166985 a001 1836311903/12752043*24476^(2/7) 2584000076166999 a001 14930208/103681*24476^(2/7) 2584000076167001 a001 12586269025/87403803*24476^(2/7) 2584000076167001 a001 32951280099/228826127*24476^(2/7) 2584000076167001 a001 43133785636/299537289*24476^(2/7) 2584000076167001 a001 32264490531/224056801*24476^(2/7) 2584000076167001 a001 591286729879/4106118243*24476^(2/7) 2584000076167001 a001 774004377960/5374978561*24476^(2/7) 2584000076167001 a001 4052739537881/28143753123*24476^(2/7) 2584000076167001 a001 1515744265389/10525900321*24476^(2/7) 2584000076167001 a001 3278735159921/22768774562*24476^(2/7) 2584000076167001 a001 2504730781961/17393796001*24476^(2/7) 2584000076167001 a001 956722026041/6643838879*24476^(2/7) 2584000076167001 a001 182717648081/1268860318*24476^(2/7) 2584000076167001 a001 139583862445/969323029*24476^(2/7) 2584000076167001 a001 53316291173/370248451*24476^(2/7) 2584000076167001 a001 10182505537/70711162*24476^(2/7) 2584000076167002 a001 7778742049/54018521*24476^(2/7) 2584000076167007 a001 2971215073/20633239*24476^(2/7) 2584000076167043 a001 567451585/3940598*24476^(2/7) 2584000076167286 a001 433494437/3010349*24476^(2/7) 2584000076168955 a001 165580141/1149851*24476^(2/7) 2584000076180008 a001 2178309/64079*24476^(3/7) 2584000076180397 a001 31622993/219602*24476^(2/7) 2584000076201150 a001 5702887/39603*39603^(3/11) 2584000076258816 a001 24157817/167761*24476^(2/7) 2584000076276096 a001 3524578/39603*39603^(7/22) 2584000076316458 a001 63245986/39603*15127^(1/20) 2584000076337327 a001 63245986/271443*24476^(5/21) 2584000076337420 a001 39088169/103682*24476^(4/21) 2584000076350834 a001 726103/13201*39603^(4/11) 2584000076367281 a001 165580141/710647*24476^(5/21) 2584000076367746 a001 507544127/196418 2584000076371651 a001 433494437/1860498*24476^(5/21) 2584000076372288 a001 1134903170/4870847*24476^(5/21) 2584000076372381 a001 2971215073/12752043*24476^(5/21) 2584000076372395 a001 7778742049/33385282*24476^(5/21) 2584000076372397 a001 20365011074/87403803*24476^(5/21) 2584000076372397 a001 53316291173/228826127*24476^(5/21) 2584000076372397 a001 139583862445/599074578*24476^(5/21) 2584000076372397 a001 365435296162/1568397607*24476^(5/21) 2584000076372397 a001 956722026041/4106118243*24476^(5/21) 2584000076372397 a001 2504730781961/10749957122*24476^(5/21) 2584000076372397 a001 6557470319842/28143753123*24476^(5/21) 2584000076372397 a001 10610209857723/45537549124*24476^(5/21) 2584000076372397 a001 4052739537881/17393796001*24476^(5/21) 2584000076372397 a001 1548008755920/6643838879*24476^(5/21) 2584000076372397 a001 591286729879/2537720636*24476^(5/21) 2584000076372397 a001 225851433717/969323029*24476^(5/21) 2584000076372397 a001 86267571272/370248451*24476^(5/21) 2584000076372397 a001 63246219/271444*24476^(5/21) 2584000076372398 a001 12586269025/54018521*24476^(5/21) 2584000076372403 a001 4807526976/20633239*24476^(5/21) 2584000076372439 a001 1836311903/7881196*24476^(5/21) 2584000076372682 a001 701408733/3010349*24476^(5/21) 2584000076374352 a001 267914296/1149851*24476^(5/21) 2584000076381141 a001 17711/64079*817138163596^(1/3) 2584000076381141 a001 17711/64079*(1/2+1/2*5^(1/2))^19 2584000076381141 a001 28657/39603*45537549124^(1/3) 2584000076381141 a001 28657/39603*(1/2+1/2*5^(1/2))^17 2584000076381142 a001 17711/64079*87403803^(1/2) 2584000076381149 a001 28657/39603*12752043^(1/2) 2584000076385555 a001 3524578/64079*24476^(8/21) 2584000076385793 a001 102334155/439204*24476^(5/21) 2584000076426116 a001 1346269/39603*39603^(9/22) 2584000076426132 a001 23184/51841*64079^(18/23) 2584000076464211 a001 39088169/167761*24476^(5/21) 2584000076472686 a001 102334155/64079*9349^(1/19) 2584000076499973 a001 832040/39603*39603^(5/11) 2584000076529700 a004 Fibonacci(24)*Lucas(23)/(1/2+sqrt(5)/2)^29 2584000076542723 a001 34111385/90481*24476^(4/21) 2584000076542817 a001 31622993/51841*24476^(1/7) 2584000076551406 a001 28657/39603*103682^(17/24) 2584000076551945 a001 6624/101521*64079^(22/23) 2584000076571437 a001 17711/64079*103682^(19/24) 2584000076572677 a001 267914296/710647*24476^(4/21) 2584000076573421 a001 17711/24476*24476^(17/21) 2584000076576713 a001 15456/90481*64079^(20/23) 2584000076577047 a001 233802911/620166*24476^(4/21) 2584000076577562 a001 514229/39603*39603^(1/2) 2584000076577684 a001 1836311903/4870847*24476^(4/21) 2584000076577777 a001 1602508992/4250681*24476^(4/21) 2584000076577791 a001 12586269025/33385282*24476^(4/21) 2584000076577793 a001 10983760033/29134601*24476^(4/21) 2584000076577793 a001 86267571272/228826127*24476^(4/21) 2584000076577793 a001 267913919/710646*24476^(4/21) 2584000076577793 a001 591286729879/1568397607*24476^(4/21) 2584000076577793 a001 516002918640/1368706081*24476^(4/21) 2584000076577793 a001 4052739537881/10749957122*24476^(4/21) 2584000076577793 a001 3536736619241/9381251041*24476^(4/21) 2584000076577793 a001 6557470319842/17393796001*24476^(4/21) 2584000076577793 a001 2504730781961/6643838879*24476^(4/21) 2584000076577793 a001 956722026041/2537720636*24476^(4/21) 2584000076577793 a001 365435296162/969323029*24476^(4/21) 2584000076577793 a001 139583862445/370248451*24476^(4/21) 2584000076577793 a001 53316291173/141422324*24476^(4/21) 2584000076577794 a001 20365011074/54018521*24476^(4/21) 2584000076577799 a001 7778742049/20633239*24476^(4/21) 2584000076577835 a001 2971215073/7881196*24476^(4/21) 2584000076578078 a001 1134903170/3010349*24476^(4/21) 2584000076579748 a001 433494437/1149851*24476^(4/21) 2584000076590894 a001 5702887/64079*24476^(1/3) 2584000076591189 a001 165580141/439204*24476^(4/21) 2584000076597818 a001 11592/109801*64079^(21/23) 2584000076645379 a001 105937/13201*39603^(6/11) 2584000076669608 a001 63245986/167761*24476^(4/21) 2584000076686158 a001 121393/103682*64079^(16/23) 2584000076709675 a001 15456/13201*39603^(8/11) 2584000076730959 a001 46368/167761*64079^(19/23) 2584000076735003 a004 Fibonacci(26)*Lucas(23)/(1/2+sqrt(5)/2)^31 2584000076738779 a001 196418/39603*39603^(13/22) 2584000076748120 a001 165580141/271443*24476^(1/7) 2584000076748213 a001 102334155/103682*24476^(2/21) 2584000076761618 a001 121393/1860498*64079^(22/23) 2584000076761984 a001 98209/51841*64079^(15/23) 2584000076764957 a004 Fibonacci(28)*Lucas(23)/(1/2+sqrt(5)/2)^33 2584000076765202 a001 121393/39603*39603^(7/11) 2584000076769327 a004 Fibonacci(30)*Lucas(23)/(1/2+sqrt(5)/2)^35 2584000076769964 a004 Fibonacci(32)*Lucas(23)/(1/2+sqrt(5)/2)^37 2584000076770057 a004 Fibonacci(34)*Lucas(23)/(1/2+sqrt(5)/2)^39 2584000076770071 a004 Fibonacci(36)*Lucas(23)/(1/2+sqrt(5)/2)^41 2584000076770073 a004 Fibonacci(38)*Lucas(23)/(1/2+sqrt(5)/2)^43 2584000076770073 a004 Fibonacci(40)*Lucas(23)/(1/2+sqrt(5)/2)^45 2584000076770073 a004 Fibonacci(42)*Lucas(23)/(1/2+sqrt(5)/2)^47 2584000076770073 a004 Fibonacci(44)*Lucas(23)/(1/2+sqrt(5)/2)^49 2584000076770073 a004 Fibonacci(46)*Lucas(23)/(1/2+sqrt(5)/2)^51 2584000076770073 a004 Fibonacci(48)*Lucas(23)/(1/2+sqrt(5)/2)^53 2584000076770073 a004 Fibonacci(50)*Lucas(23)/(1/2+sqrt(5)/2)^55 2584000076770073 a004 Fibonacci(52)*Lucas(23)/(1/2+sqrt(5)/2)^57 2584000076770073 a004 Fibonacci(54)*Lucas(23)/(1/2+sqrt(5)/2)^59 2584000076770073 a004 Fibonacci(56)*Lucas(23)/(1/2+sqrt(5)/2)^61 2584000076770073 a004 Fibonacci(58)*Lucas(23)/(1/2+sqrt(5)/2)^63 2584000076770073 a004 Fibonacci(60)*Lucas(23)/(1/2+sqrt(5)/2)^65 2584000076770073 a004 Fibonacci(62)*Lucas(23)/(1/2+sqrt(5)/2)^67 2584000076770073 a004 Fibonacci(64)*Lucas(23)/(1/2+sqrt(5)/2)^69 2584000076770073 a004 Fibonacci(66)*Lucas(23)/(1/2+sqrt(5)/2)^71 2584000076770073 a004 Fibonacci(68)*Lucas(23)/(1/2+sqrt(5)/2)^73 2584000076770073 a004 Fibonacci(70)*Lucas(23)/(1/2+sqrt(5)/2)^75 2584000076770073 a004 Fibonacci(72)*Lucas(23)/(1/2+sqrt(5)/2)^77 2584000076770073 a004 Fibonacci(74)*Lucas(23)/(1/2+sqrt(5)/2)^79 2584000076770073 a004 Fibonacci(76)*Lucas(23)/(1/2+sqrt(5)/2)^81 2584000076770073 a004 Fibonacci(78)*Lucas(23)/(1/2+sqrt(5)/2)^83 2584000076770073 a004 Fibonacci(80)*Lucas(23)/(1/2+sqrt(5)/2)^85 2584000076770073 a004 Fibonacci(82)*Lucas(23)/(1/2+sqrt(5)/2)^87 2584000076770073 a004 Fibonacci(84)*Lucas(23)/(1/2+sqrt(5)/2)^89 2584000076770073 a004 Fibonacci(86)*Lucas(23)/(1/2+sqrt(5)/2)^91 2584000076770073 a004 Fibonacci(88)*Lucas(23)/(1/2+sqrt(5)/2)^93 2584000076770073 a004 Fibonacci(90)*Lucas(23)/(1/2+sqrt(5)/2)^95 2584000076770073 a004 Fibonacci(92)*Lucas(23)/(1/2+sqrt(5)/2)^97 2584000076770073 a004 Fibonacci(94)*Lucas(23)/(1/2+sqrt(5)/2)^99 2584000076770073 a004 Fibonacci(95)*Lucas(23)/(1/2+sqrt(5)/2)^100 2584000076770073 a004 Fibonacci(93)*Lucas(23)/(1/2+sqrt(5)/2)^98 2584000076770073 a004 Fibonacci(91)*Lucas(23)/(1/2+sqrt(5)/2)^96 2584000076770073 a004 Fibonacci(89)*Lucas(23)/(1/2+sqrt(5)/2)^94 2584000076770073 a004 Fibonacci(87)*Lucas(23)/(1/2+sqrt(5)/2)^92 2584000076770073 a004 Fibonacci(85)*Lucas(23)/(1/2+sqrt(5)/2)^90 2584000076770073 a004 Fibonacci(83)*Lucas(23)/(1/2+sqrt(5)/2)^88 2584000076770073 a004 Fibonacci(81)*Lucas(23)/(1/2+sqrt(5)/2)^86 2584000076770073 a004 Fibonacci(79)*Lucas(23)/(1/2+sqrt(5)/2)^84 2584000076770073 a004 Fibonacci(77)*Lucas(23)/(1/2+sqrt(5)/2)^82 2584000076770073 a004 Fibonacci(75)*Lucas(23)/(1/2+sqrt(5)/2)^80 2584000076770073 a004 Fibonacci(73)*Lucas(23)/(1/2+sqrt(5)/2)^78 2584000076770073 a004 Fibonacci(71)*Lucas(23)/(1/2+sqrt(5)/2)^76 2584000076770073 a004 Fibonacci(69)*Lucas(23)/(1/2+sqrt(5)/2)^74 2584000076770073 a004 Fibonacci(67)*Lucas(23)/(1/2+sqrt(5)/2)^72 2584000076770073 a004 Fibonacci(65)*Lucas(23)/(1/2+sqrt(5)/2)^70 2584000076770073 a004 Fibonacci(63)*Lucas(23)/(1/2+sqrt(5)/2)^68 2584000076770073 a004 Fibonacci(61)*Lucas(23)/(1/2+sqrt(5)/2)^66 2584000076770073 a004 Fibonacci(59)*Lucas(23)/(1/2+sqrt(5)/2)^64 2584000076770073 a004 Fibonacci(57)*Lucas(23)/(1/2+sqrt(5)/2)^62 2584000076770073 a004 Fibonacci(55)*Lucas(23)/(1/2+sqrt(5)/2)^60 2584000076770073 a004 Fibonacci(53)*Lucas(23)/(1/2+sqrt(5)/2)^58 2584000076770073 a004 Fibonacci(51)*Lucas(23)/(1/2+sqrt(5)/2)^56 2584000076770073 a004 Fibonacci(49)*Lucas(23)/(1/2+sqrt(5)/2)^54 2584000076770073 a004 Fibonacci(47)*Lucas(23)/(1/2+sqrt(5)/2)^52 2584000076770073 a001 2/28657*(1/2+1/2*5^(1/2))^41 2584000076770073 a004 Fibonacci(45)*Lucas(23)/(1/2+sqrt(5)/2)^50 2584000076770073 a004 Fibonacci(43)*Lucas(23)/(1/2+sqrt(5)/2)^48 2584000076770073 a004 Fibonacci(41)*Lucas(23)/(1/2+sqrt(5)/2)^46 2584000076770073 a004 Fibonacci(39)*Lucas(23)/(1/2+sqrt(5)/2)^44 2584000076770074 a004 Fibonacci(37)*Lucas(23)/(1/2+sqrt(5)/2)^42 2584000076770079 a004 Fibonacci(35)*Lucas(23)/(1/2+sqrt(5)/2)^40 2584000076770115 a004 Fibonacci(33)*Lucas(23)/(1/2+sqrt(5)/2)^38 2584000076770358 a004 Fibonacci(31)*Lucas(23)/(1/2+sqrt(5)/2)^36 2584000076770833 a001 317811/103682*64079^(14/23) 2584000076772028 a004 Fibonacci(29)*Lucas(23)/(1/2+sqrt(5)/2)^34 2584000076778073 a001 433494437/710647*24476^(1/7) 2584000076782443 a001 567451585/930249*24476^(1/7) 2584000076783081 a001 2971215073/4870847*24476^(1/7) 2584000076783174 a001 7778742049/12752043*24476^(1/7) 2584000076783187 a001 10182505537/16692641*24476^(1/7) 2584000076783189 a001 53316291173/87403803*24476^(1/7) 2584000076783189 a001 139583862445/228826127*24476^(1/7) 2584000076783189 a001 182717648081/299537289*24476^(1/7) 2584000076783189 a001 956722026041/1568397607*24476^(1/7) 2584000076783189 a001 2504730781961/4106118243*24476^(1/7) 2584000076783189 a001 3278735159921/5374978561*24476^(1/7) 2584000076783189 a001 10610209857723/17393796001*24476^(1/7) 2584000076783189 a001 4052739537881/6643838879*24476^(1/7) 2584000076783189 a001 1134903780/1860499*24476^(1/7) 2584000076783189 a001 591286729879/969323029*24476^(1/7) 2584000076783190 a001 225851433717/370248451*24476^(1/7) 2584000076783190 a001 21566892818/35355581*24476^(1/7) 2584000076783190 a001 32951280099/54018521*24476^(1/7) 2584000076783196 a001 1144206275/1875749*24476^(1/7) 2584000076783231 a001 1201881744/1970299*24476^(1/7) 2584000076783469 a004 Fibonacci(27)*Lucas(23)/(1/2+sqrt(5)/2)^32 2584000076783475 a001 1836311903/3010349*24476^(1/7) 2584000076785144 a001 701408733/1149851*24476^(1/7) 2584000076785681 a001 75025/103682*64079^(17/23) 2584000076791680 a001 121393/1149851*64079^(21/23) 2584000076792209 a001 317811/4870847*64079^(22/23) 2584000076796312 a001 9227465/64079*24476^(2/7) 2584000076796585 a001 66978574/109801*24476^(1/7) 2584000076796672 a001 832040/12752043*64079^(22/23) 2584000076797323 a001 311187/4769326*64079^(22/23) 2584000076797418 a001 5702887/87403803*64079^(22/23) 2584000076797432 a001 14930352/228826127*64079^(22/23) 2584000076797434 a001 39088169/599074578*64079^(22/23) 2584000076797434 a001 14619165/224056801*64079^(22/23) 2584000076797434 a001 267914296/4106118243*64079^(22/23) 2584000076797434 a001 701408733/10749957122*64079^(22/23) 2584000076797434 a001 1836311903/28143753123*64079^(22/23) 2584000076797434 a001 686789568/10525900321*64079^(22/23) 2584000076797434 a001 12586269025/192900153618*64079^(22/23) 2584000076797434 a001 32951280099/505019158607*64079^(22/23) 2584000076797434 a001 86267571272/1322157322203*64079^(22/23) 2584000076797434 a001 32264490531/494493258286*64079^(22/23) 2584000076797434 a001 1548008755920/23725150497407*64079^(22/23) 2584000076797434 a001 365435296162/5600748293801*64079^(22/23) 2584000076797434 a001 139583862445/2139295485799*64079^(22/23) 2584000076797434 a001 53316291173/817138163596*64079^(22/23) 2584000076797434 a001 20365011074/312119004989*64079^(22/23) 2584000076797434 a001 7778742049/119218851371*64079^(22/23) 2584000076797434 a001 2971215073/45537549124*64079^(22/23) 2584000076797434 a001 1134903170/17393796001*64079^(22/23) 2584000076797434 a001 433494437/6643838879*64079^(22/23) 2584000076797434 a001 165580141/2537720636*64079^(22/23) 2584000076797434 a001 63245986/969323029*64079^(22/23) 2584000076797435 a001 24157817/370248451*64079^(22/23) 2584000076797440 a001 9227465/141422324*64079^(22/23) 2584000076797477 a001 3524578/54018521*64079^(22/23) 2584000076797725 a001 1346269/20633239*64079^(22/23) 2584000076799430 a001 514229/7881196*64079^(22/23) 2584000076805265 a001 514229/103682*64079^(13/23) 2584000076811115 a001 196418/3010349*64079^(22/23) 2584000076811970 a001 121393/710647*64079^(20/23) 2584000076819964 a001 317811/3010349*64079^(21/23) 2584000076824090 a001 208010/1970299*64079^(21/23) 2584000076824692 a001 2178309/20633239*64079^(21/23) 2584000076824780 a001 5702887/54018521*64079^(21/23) 2584000076824793 a001 3732588/35355581*64079^(21/23) 2584000076824795 a001 39088169/370248451*64079^(21/23) 2584000076824795 a001 102334155/969323029*64079^(21/23) 2584000076824795 a001 66978574/634430159*64079^(21/23) 2584000076824795 a001 701408733/6643838879*64079^(21/23) 2584000076824795 a001 1836311903/17393796001*64079^(21/23) 2584000076824795 a001 1201881744/11384387281*64079^(21/23) 2584000076824795 a001 12586269025/119218851371*64079^(21/23) 2584000076824795 a001 32951280099/312119004989*64079^(21/23) 2584000076824795 a001 21566892818/204284540899*64079^(21/23) 2584000076824795 a001 225851433717/2139295485799*64079^(21/23) 2584000076824795 a001 182717648081/1730726404001*64079^(21/23) 2584000076824795 a001 139583862445/1322157322203*64079^(21/23) 2584000076824795 a001 53316291173/505019158607*64079^(21/23) 2584000076824795 a001 10182505537/96450076809*64079^(21/23) 2584000076824795 a001 7778742049/73681302247*64079^(21/23) 2584000076824795 a001 2971215073/28143753123*64079^(21/23) 2584000076824795 a001 567451585/5374978561*64079^(21/23) 2584000076824795 a001 433494437/4106118243*64079^(21/23) 2584000076824795 a001 165580141/1568397607*64079^(21/23) 2584000076824795 a001 31622993/299537289*64079^(21/23) 2584000076824796 a001 24157817/228826127*64079^(21/23) 2584000076824801 a001 9227465/87403803*64079^(21/23) 2584000076824835 a001 1762289/16692641*64079^(21/23) 2584000076825065 a001 1346269/12752043*64079^(21/23) 2584000076826641 a001 514229/4870847*64079^(21/23) 2584000076829925 a001 416020/51841*64079^(12/23) 2584000076836739 a001 121393/271443*64079^(18/23) 2584000076837444 a001 98209/930249*64079^(21/23) 2584000076846293 a001 105937/620166*64079^(20/23) 2584000076851301 a001 832040/4870847*64079^(20/23) 2584000076852032 a001 726103/4250681*64079^(20/23) 2584000076852138 a001 5702887/33385282*64079^(20/23) 2584000076852154 a001 4976784/29134601*64079^(20/23) 2584000076852156 a001 39088169/228826127*64079^(20/23) 2584000076852156 a001 34111385/199691526*64079^(20/23) 2584000076852156 a001 267914296/1568397607*64079^(20/23) 2584000076852156 a001 233802911/1368706081*64079^(20/23) 2584000076852156 a001 1836311903/10749957122*64079^(20/23) 2584000076852156 a001 1602508992/9381251041*64079^(20/23) 2584000076852156 a001 12586269025/73681302247*64079^(20/23) 2584000076852156 a001 10983760033/64300051206*64079^(20/23) 2584000076852156 a001 86267571272/505019158607*64079^(20/23) 2584000076852156 a001 75283811239/440719107401*64079^(20/23) 2584000076852156 a001 2504730781961/14662949395604*64079^(20/23) 2584000076852156 a001 139583862445/817138163596*64079^(20/23) 2584000076852156 a001 53316291173/312119004989*64079^(20/23) 2584000076852156 a001 20365011074/119218851371*64079^(20/23) 2584000076852156 a001 7778742049/45537549124*64079^(20/23) 2584000076852156 a001 2971215073/17393796001*64079^(20/23) 2584000076852156 a001 1134903170/6643838879*64079^(20/23) 2584000076852156 a001 433494437/2537720636*64079^(20/23) 2584000076852156 a001 165580141/969323029*64079^(20/23) 2584000076852157 a001 63245986/370248451*64079^(20/23) 2584000076852157 a001 24157817/141422324*64079^(20/23) 2584000076852163 a001 9227465/54018521*64079^(20/23) 2584000076852204 a001 3524578/20633239*64079^(20/23) 2584000076852483 a001 1346269/7881196*64079^(20/23) 2584000076854396 a001 514229/3010349*64079^(20/23) 2584000076857843 a001 121393/439204*64079^(19/23) 2584000076858318 a001 1346269/103682*64079^(11/23) 2584000076861887 a004 Fibonacci(25)*Lucas(23)/(1/2+sqrt(5)/2)^30 2584000076867506 a001 196418/1149851*64079^(20/23) 2584000076875004 a001 9303105/15251*24476^(1/7) 2584000076876355 a001 317811/1149851*64079^(19/23) 2584000076879056 a001 832040/3010349*64079^(19/23) 2584000076879450 a001 2178309/7881196*64079^(19/23) 2584000076879508 a001 5702887/20633239*64079^(19/23) 2584000076879516 a001 14930352/54018521*64079^(19/23) 2584000076879517 a001 39088169/141422324*64079^(19/23) 2584000076879517 a001 102334155/370248451*64079^(19/23) 2584000076879517 a001 267914296/969323029*64079^(19/23) 2584000076879517 a001 701408733/2537720636*64079^(19/23) 2584000076879517 a001 1836311903/6643838879*64079^(19/23) 2584000076879517 a001 4807526976/17393796001*64079^(19/23) 2584000076879517 a001 12586269025/45537549124*64079^(19/23) 2584000076879517 a001 32951280099/119218851371*64079^(19/23) 2584000076879517 a001 86267571272/312119004989*64079^(19/23) 2584000076879517 a001 225851433717/817138163596*64079^(19/23) 2584000076879517 a001 1548008755920/5600748293801*64079^(19/23) 2584000076879517 a001 139583862445/505019158607*64079^(19/23) 2584000076879517 a001 53316291173/192900153618*64079^(19/23) 2584000076879517 a001 20365011074/73681302247*64079^(19/23) 2584000076879517 a001 7778742049/28143753123*64079^(19/23) 2584000076879517 a001 2971215073/10749957122*64079^(19/23) 2584000076879517 a001 1134903170/4106118243*64079^(19/23) 2584000076879517 a001 433494437/1568397607*64079^(19/23) 2584000076879517 a001 165580141/599074578*64079^(19/23) 2584000076879518 a001 63245986/228826127*64079^(19/23) 2584000076879518 a001 24157817/87403803*64079^(19/23) 2584000076879521 a001 9227465/33385282*64079^(19/23) 2584000076879543 a001 3524578/12752043*64079^(19/23) 2584000076879694 a001 1346269/4870847*64079^(19/23) 2584000076880725 a001 514229/1860498*64079^(19/23) 2584000076881078 a001 39088169/39603*15127^(1/10) 2584000076885285 a001 46347/2206*64079^(10/23) 2584000076887796 a001 196418/710647*64079^(19/23) 2584000076891203 a001 75025/1149851*64079^(22/23) 2584000076896645 a001 317811/710647*64079^(18/23) 2584000076905386 a001 416020/930249*64079^(18/23) 2584000076906661 a001 2178309/4870847*64079^(18/23) 2584000076906847 a001 5702887/12752043*64079^(18/23) 2584000076906874 a001 7465176/16692641*64079^(18/23) 2584000076906878 a001 39088169/87403803*64079^(18/23) 2584000076906878 a001 102334155/228826127*64079^(18/23) 2584000076906879 a001 133957148/299537289*64079^(18/23) 2584000076906879 a001 701408733/1568397607*64079^(18/23) 2584000076906879 a001 1836311903/4106118243*64079^(18/23) 2584000076906879 a001 2403763488/5374978561*64079^(18/23) 2584000076906879 a001 12586269025/28143753123*64079^(18/23) 2584000076906879 a001 32951280099/73681302247*64079^(18/23) 2584000076906879 a001 43133785636/96450076809*64079^(18/23) 2584000076906879 a001 225851433717/505019158607*64079^(18/23) 2584000076906879 a001 10610209857723/23725150497407*64079^(18/23) 2584000076906879 a001 182717648081/408569081798*64079^(18/23) 2584000076906879 a001 139583862445/312119004989*64079^(18/23) 2584000076906879 a001 53316291173/119218851371*64079^(18/23) 2584000076906879 a001 10182505537/22768774562*64079^(18/23) 2584000076906879 a001 7778742049/17393796001*64079^(18/23) 2584000076906879 a001 2971215073/6643838879*64079^(18/23) 2584000076906879 a001 567451585/1268860318*64079^(18/23) 2584000076906879 a001 433494437/969323029*64079^(18/23) 2584000076906879 a001 165580141/370248451*64079^(18/23) 2584000076906879 a001 31622993/70711162*64079^(18/23) 2584000076906880 a001 24157817/54018521*64079^(18/23) 2584000076906891 a001 9227465/20633239*64079^(18/23) 2584000076906962 a001 1762289/3940598*64079^(18/23) 2584000076907449 a001 1346269/3010349*64079^(18/23) 2584000076909702 a001 23184/51841*439204^(2/3) 2584000076910787 a001 514229/1149851*64079^(18/23) 2584000076911493 a001 75025/710647*64079^(21/23) 2584000076912565 a001 196418/271443*64079^(17/23) 2584000076912797 a001 1762289/51841*64079^(9/23) 2584000076918609 a001 23184/51841*7881196^(6/11) 2584000076918632 a001 23184/51841*141422324^(6/13) 2584000076918632 a001 23184/51841*2537720636^(2/5) 2584000076918632 a001 23184/51841*45537549124^(6/17) 2584000076918632 a001 23184/51841*14662949395604^(2/7) 2584000076918632 a001 23184/51841*(1/2+1/2*5^(1/2))^18 2584000076918632 a001 23184/51841*192900153618^(1/3) 2584000076918632 a001 23184/51841*10749957122^(3/8) 2584000076918632 a001 23184/51841*4106118243^(9/23) 2584000076918632 a001 23184/51841*1568397607^(9/22) 2584000076918632 a001 23184/51841*599074578^(3/7) 2584000076918632 a001 23184/51841*228826127^(9/20) 2584000076918632 a001 23184/51841*87403803^(9/19) 2584000076918633 a001 23184/51841*33385282^(1/2) 2584000076918640 a001 23184/51841*12752043^(9/17) 2584000076918693 a001 23184/51841*4870847^(9/16) 2584000076919080 a001 23184/51841*1860498^(3/5) 2584000076919378 a001 268748928/104005 2584000076921414 a001 105937/90481*64079^(16/23) 2584000076921921 a001 23184/51841*710647^(9/14) 2584000076931077 a001 514229/710647*64079^(17/23) 2584000076933670 a001 98209/219602*64079^(18/23) 2584000076933778 a001 1346269/1860498*64079^(17/23) 2584000076934172 a001 3524578/4870847*64079^(17/23) 2584000076934230 a001 9227465/12752043*64079^(17/23) 2584000076934238 a001 24157817/33385282*64079^(17/23) 2584000076934239 a001 63245986/87403803*64079^(17/23) 2584000076934240 a001 165580141/228826127*64079^(17/23) 2584000076934240 a001 433494437/599074578*64079^(17/23) 2584000076934240 a001 1134903170/1568397607*64079^(17/23) 2584000076934240 a001 2971215073/4106118243*64079^(17/23) 2584000076934240 a001 7778742049/10749957122*64079^(17/23) 2584000076934240 a001 20365011074/28143753123*64079^(17/23) 2584000076934240 a001 53316291173/73681302247*64079^(17/23) 2584000076934240 a001 139583862445/192900153618*64079^(17/23) 2584000076934240 a001 365435296162/505019158607*64079^(17/23) 2584000076934240 a001 10610209857723/14662949395604*64079^(17/23) 2584000076934240 a001 225851433717/312119004989*64079^(17/23) 2584000076934240 a001 86267571272/119218851371*64079^(17/23) 2584000076934240 a001 32951280099/45537549124*64079^(17/23) 2584000076934240 a001 12586269025/17393796001*64079^(17/23) 2584000076934240 a001 4807526976/6643838879*64079^(17/23) 2584000076934240 a001 1836311903/2537720636*64079^(17/23) 2584000076934240 a001 701408733/969323029*64079^(17/23) 2584000076934240 a001 267914296/370248451*64079^(17/23) 2584000076934240 a001 102334155/141422324*64079^(17/23) 2584000076934240 a001 39088169/54018521*64079^(17/23) 2584000076934243 a001 14930352/20633239*64079^(17/23) 2584000076934265 a001 5702887/7881196*64079^(17/23) 2584000076934416 a001 2178309/3010349*64079^(17/23) 2584000076935448 a001 832040/1149851*64079^(17/23) 2584000076936262 a001 75025/271443*64079^(19/23) 2584000076940100 a001 5702887/103682*64079^(8/23) 2584000076942519 a001 317811/439204*64079^(17/23) 2584000076942911 a001 23184/51841*271443^(9/13) 2584000076953516 a001 267914296/271443*24476^(2/21) 2584000076953609 a001 165580141/103682*24476^(1/21) 2584000076955738 a001 832040/710647*64079^(16/23) 2584000076955846 a001 514229/271443*64079^(15/23) 2584000076957366 a001 75025/439204*64079^(20/23) 2584000076960745 a001 726103/620166*64079^(16/23) 2584000076961476 a001 5702887/4870847*64079^(16/23) 2584000076961582 a001 4976784/4250681*64079^(16/23) 2584000076961598 a001 39088169/33385282*64079^(16/23) 2584000076961600 a001 34111385/29134601*64079^(16/23) 2584000076961601 a001 267914296/228826127*64079^(16/23) 2584000076961601 a001 233802911/199691526*64079^(16/23) 2584000076961601 a001 1836311903/1568397607*64079^(16/23) 2584000076961601 a001 1602508992/1368706081*64079^(16/23) 2584000076961601 a001 12586269025/10749957122*64079^(16/23) 2584000076961601 a001 10983760033/9381251041*64079^(16/23) 2584000076961601 a001 86267571272/73681302247*64079^(16/23) 2584000076961601 a001 75283811239/64300051206*64079^(16/23) 2584000076961601 a001 2504730781961/2139295485799*64079^(16/23) 2584000076961601 a001 365435296162/312119004989*64079^(16/23) 2584000076961601 a001 139583862445/119218851371*64079^(16/23) 2584000076961601 a001 53316291173/45537549124*64079^(16/23) 2584000076961601 a001 20365011074/17393796001*64079^(16/23) 2584000076961601 a001 7778742049/6643838879*64079^(16/23) 2584000076961601 a001 2971215073/2537720636*64079^(16/23) 2584000076961601 a001 1134903170/969323029*64079^(16/23) 2584000076961601 a001 433494437/370248451*64079^(16/23) 2584000076961601 a001 165580141/141422324*64079^(16/23) 2584000076961602 a001 63245986/54018521*64079^(16/23) 2584000076961608 a001 24157817/20633239*64079^(16/23) 2584000076961648 a001 9227465/7881196*64079^(16/23) 2584000076961927 a001 3524578/3010349*64079^(16/23) 2584000076963840 a001 1346269/1149851*64079^(16/23) 2584000076966975 a001 75025/39603*39603^(15/22) 2584000076967483 a001 9227465/103682*64079^(7/23) 2584000076976951 a001 514229/439204*64079^(16/23) 2584000076980506 a001 832040/271443*64079^(14/23) 2584000076983469 a001 701408733/710647*24476^(2/21) 2584000076984130 a001 1346269/710647*64079^(15/23) 2584000076987839 a001 1836311903/1860498*24476^(2/21) 2584000076988257 a001 1762289/930249*64079^(15/23) 2584000076988477 a001 4807526976/4870847*24476^(2/21) 2584000076988570 a001 12586269025/12752043*24476^(2/21) 2584000076988583 a001 32951280099/33385282*24476^(2/21) 2584000076988585 a001 86267571272/87403803*24476^(2/21) 2584000076988586 a001 225851433717/228826127*24476^(2/21) 2584000076988586 a001 591286729879/599074578*24476^(2/21) 2584000076988586 a001 1548008755920/1568397607*24476^(2/21) 2584000076988586 a001 4052739537881/4106118243*24476^(2/21) 2584000076988586 a001 4807525989/4870846*24476^(2/21) 2584000076988586 a001 6557470319842/6643838879*24476^(2/21) 2584000076988586 a001 2504730781961/2537720636*24476^(2/21) 2584000076988586 a001 956722026041/969323029*24476^(2/21) 2584000076988586 a001 365435296162/370248451*24476^(2/21) 2584000076988586 a001 139583862445/141422324*24476^(2/21) 2584000076988587 a001 53316291173/54018521*24476^(2/21) 2584000076988592 a001 20365011074/20633239*24476^(2/21) 2584000076988627 a001 7778742049/7881196*24476^(2/21) 2584000076988859 a001 9227465/4870847*64079^(15/23) 2584000076988871 a001 2971215073/3010349*24476^(2/21) 2584000076988947 a001 24157817/12752043*64079^(15/23) 2584000076988960 a001 31622993/16692641*64079^(15/23) 2584000076988961 a001 165580141/87403803*64079^(15/23) 2584000076988962 a001 433494437/228826127*64079^(15/23) 2584000076988962 a001 567451585/299537289*64079^(15/23) 2584000076988962 a001 2971215073/1568397607*64079^(15/23) 2584000076988962 a001 7778742049/4106118243*64079^(15/23) 2584000076988962 a001 10182505537/5374978561*64079^(15/23) 2584000076988962 a001 53316291173/28143753123*64079^(15/23) 2584000076988962 a001 139583862445/73681302247*64079^(15/23) 2584000076988962 a001 182717648081/96450076809*64079^(15/23) 2584000076988962 a001 956722026041/505019158607*64079^(15/23) 2584000076988962 a001 10610209857723/5600748293801*64079^(15/23) 2584000076988962 a001 591286729879/312119004989*64079^(15/23) 2584000076988962 a001 225851433717/119218851371*64079^(15/23) 2584000076988962 a001 21566892818/11384387281*64079^(15/23) 2584000076988962 a001 32951280099/17393796001*64079^(15/23) 2584000076988962 a001 12586269025/6643838879*64079^(15/23) 2584000076988962 a001 1201881744/634430159*64079^(15/23) 2584000076988962 a001 1836311903/969323029*64079^(15/23) 2584000076988962 a001 701408733/370248451*64079^(15/23) 2584000076988962 a001 66978574/35355581*64079^(15/23) 2584000076988963 a001 102334155/54018521*64079^(15/23) 2584000076988968 a001 39088169/20633239*64079^(15/23) 2584000076989001 a001 3732588/1970299*64079^(15/23) 2584000076989231 a001 5702887/3010349*64079^(15/23) 2584000076990540 a001 1134903170/1149851*24476^(2/21) 2584000076990807 a001 2178309/1149851*64079^(15/23) 2584000076990984 a001 121393/167761*64079^(17/23) 2584000076994836 a001 7465176/51841*64079^(6/23) 2584000077001611 a001 208010/109801*64079^(15/23) 2584000077001700 a001 14930352/64079*24476^(5/21) 2584000077001981 a001 433494437/439204*24476^(2/21) 2584000077008899 a001 1346269/271443*64079^(13/23) 2584000077009228 a001 17711/103682*39603^(10/11) 2584000077011097 a001 311187/101521*64079^(14/23) 2584000077015560 a001 5702887/1860498*64079^(14/23) 2584000077016212 a001 14930352/4870847*64079^(14/23) 2584000077016307 a001 39088169/12752043*64079^(14/23) 2584000077016320 a001 14619165/4769326*64079^(14/23) 2584000077016323 a001 267914296/87403803*64079^(14/23) 2584000077016323 a001 701408733/228826127*64079^(14/23) 2584000077016323 a001 1836311903/599074578*64079^(14/23) 2584000077016323 a001 686789568/224056801*64079^(14/23) 2584000077016323 a001 12586269025/4106118243*64079^(14/23) 2584000077016323 a001 32951280099/10749957122*64079^(14/23) 2584000077016323 a001 86267571272/28143753123*64079^(14/23) 2584000077016323 a001 32264490531/10525900321*64079^(14/23) 2584000077016323 a001 591286729879/192900153618*64079^(14/23) 2584000077016323 a001 1548008755920/505019158607*64079^(14/23) 2584000077016323 a001 1515744265389/494493258286*64079^(14/23) 2584000077016323 a001 2504730781961/817138163596*64079^(14/23) 2584000077016323 a001 956722026041/312119004989*64079^(14/23) 2584000077016323 a001 365435296162/119218851371*64079^(14/23) 2584000077016323 a001 139583862445/45537549124*64079^(14/23) 2584000077016323 a001 53316291173/17393796001*64079^(14/23) 2584000077016323 a001 20365011074/6643838879*64079^(14/23) 2584000077016323 a001 7778742049/2537720636*64079^(14/23) 2584000077016323 a001 2971215073/969323029*64079^(14/23) 2584000077016323 a001 1134903170/370248451*64079^(14/23) 2584000077016323 a001 433494437/141422324*64079^(14/23) 2584000077016324 a001 165580141/54018521*64079^(14/23) 2584000077016329 a001 63245986/20633239*64079^(14/23) 2584000077016365 a001 24157817/7881196*64079^(14/23) 2584000077016614 a001 9227465/3010349*64079^(14/23) 2584000077018319 a001 3524578/1149851*64079^(14/23) 2584000077022200 a001 24157817/103682*64079^(5/23) 2584000077030004 a001 1346269/439204*64079^(14/23) 2584000077035866 a001 726103/90481*64079^(12/23) 2584000077038609 a001 3524578/710647*64079^(13/23) 2584000077042944 a001 9227465/1860498*64079^(13/23) 2584000077043576 a001 24157817/4870847*64079^(13/23) 2584000077043668 a001 63245986/12752043*64079^(13/23) 2584000077043682 a001 165580141/33385282*64079^(13/23) 2584000077043684 a001 433494437/87403803*64079^(13/23) 2584000077043684 a001 1134903170/228826127*64079^(13/23) 2584000077043684 a001 2971215073/599074578*64079^(13/23) 2584000077043684 a001 7778742049/1568397607*64079^(13/23) 2584000077043684 a001 20365011074/4106118243*64079^(13/23) 2584000077043684 a001 53316291173/10749957122*64079^(13/23) 2584000077043684 a001 139583862445/28143753123*64079^(13/23) 2584000077043684 a001 365435296162/73681302247*64079^(13/23) 2584000077043684 a001 956722026041/192900153618*64079^(13/23) 2584000077043684 a001 2504730781961/505019158607*64079^(13/23) 2584000077043684 a001 10610209857723/2139295485799*64079^(13/23) 2584000077043684 a001 140728068720/28374454999*64079^(13/23) 2584000077043684 a001 591286729879/119218851371*64079^(13/23) 2584000077043684 a001 225851433717/45537549124*64079^(13/23) 2584000077043684 a001 86267571272/17393796001*64079^(13/23) 2584000077043684 a001 32951280099/6643838879*64079^(13/23) 2584000077043684 a001 1144206275/230701876*64079^(13/23) 2584000077043684 a001 4807526976/969323029*64079^(13/23) 2584000077043684 a001 1836311903/370248451*64079^(13/23) 2584000077043684 a001 701408733/141422324*64079^(13/23) 2584000077043685 a001 267914296/54018521*64079^(13/23) 2584000077043690 a001 9303105/1875749*64079^(13/23) 2584000077043725 a001 39088169/7881196*64079^(13/23) 2584000077043967 a001 14930352/3010349*64079^(13/23) 2584000077044706 a001 3732588/6119*9349^(3/19) 2584000077045622 a001 5702887/1149851*64079^(13/23) 2584000077049560 a001 39088169/103682*64079^(4/23) 2584000077050484 a001 15456/90481*167761^(4/5) 2584000077056971 a001 2178309/439204*64079^(13/23) 2584000077063378 a001 3524578/271443*64079^(11/23) 2584000077065912 a001 5702887/710647*64079^(12/23) 2584000077066811 a001 196418/167761*64079^(16/23) 2584000077067191 a004 Fibonacci(24)*Lucas(25)/(1/2+sqrt(5)/2)^31 2584000077070296 a001 829464/103361*64079^(12/23) 2584000077070936 a001 39088169/4870847*64079^(12/23) 2584000077071029 a001 34111385/4250681*64079^(12/23) 2584000077071043 a001 133957148/16692641*64079^(12/23) 2584000077071045 a001 233802911/29134601*64079^(12/23) 2584000077071045 a001 1836311903/228826127*64079^(12/23) 2584000077071045 a001 267084832/33281921*64079^(12/23) 2584000077071045 a001 12586269025/1568397607*64079^(12/23) 2584000077071045 a001 10983760033/1368706081*64079^(12/23) 2584000077071045 a001 43133785636/5374978561*64079^(12/23) 2584000077071045 a001 75283811239/9381251041*64079^(12/23) 2584000077071045 a001 591286729879/73681302247*64079^(12/23) 2584000077071045 a001 86000486440/10716675201*64079^(12/23) 2584000077071045 a001 4052739537881/505019158607*64079^(12/23) 2584000077071045 a001 3536736619241/440719107401*64079^(12/23) 2584000077071045 a001 3278735159921/408569081798*64079^(12/23) 2584000077071045 a001 2504730781961/312119004989*64079^(12/23) 2584000077071045 a001 956722026041/119218851371*64079^(12/23) 2584000077071045 a001 182717648081/22768774562*64079^(12/23) 2584000077071045 a001 139583862445/17393796001*64079^(12/23) 2584000077071045 a001 53316291173/6643838879*64079^(12/23) 2584000077071045 a001 10182505537/1268860318*64079^(12/23) 2584000077071045 a001 7778742049/969323029*64079^(12/23) 2584000077071045 a001 2971215073/370248451*64079^(12/23) 2584000077071045 a001 567451585/70711162*64079^(12/23) 2584000077071046 a001 433494437/54018521*64079^(12/23) 2584000077071051 a001 165580141/20633239*64079^(12/23) 2584000077071087 a001 31622993/3940598*64079^(12/23) 2584000077071331 a001 24157817/3010349*64079^(12/23) 2584000077073005 a001 9227465/1149851*64079^(12/23) 2584000077075659 a001 317811/167761*64079^(15/23) 2584000077076922 a001 31622993/51841*64079^(3/23) 2584000077080400 a001 165580141/167761*24476^(2/21) 2584000077084482 a001 1762289/219602*64079^(12/23) 2584000077090507 a001 75025/167761*64079^(18/23) 2584000077090681 a001 5702887/271443*64079^(10/23) 2584000077093296 a001 9227465/710647*64079^(11/23) 2584000077097660 a001 24157817/1860498*64079^(11/23) 2584000077098297 a001 63245986/4870847*64079^(11/23) 2584000077098390 a001 165580141/12752043*64079^(11/23) 2584000077098404 a001 433494437/33385282*64079^(11/23) 2584000077098406 a001 1134903170/87403803*64079^(11/23) 2584000077098406 a001 2971215073/228826127*64079^(11/23) 2584000077098406 a001 7778742049/599074578*64079^(11/23) 2584000077098406 a001 20365011074/1568397607*64079^(11/23) 2584000077098406 a001 53316291173/4106118243*64079^(11/23) 2584000077098406 a001 139583862445/10749957122*64079^(11/23) 2584000077098406 a001 365435296162/28143753123*64079^(11/23) 2584000077098406 a001 956722026041/73681302247*64079^(11/23) 2584000077098406 a001 2504730781961/192900153618*64079^(11/23) 2584000077098406 a001 10610209857723/817138163596*64079^(11/23) 2584000077098406 a001 4052739537881/312119004989*64079^(11/23) 2584000077098406 a001 1548008755920/119218851371*64079^(11/23) 2584000077098406 a001 591286729879/45537549124*64079^(11/23) 2584000077098406 a001 7787980473/599786069*64079^(11/23) 2584000077098406 a001 86267571272/6643838879*64079^(11/23) 2584000077098406 a001 32951280099/2537720636*64079^(11/23) 2584000077098406 a001 12586269025/969323029*64079^(11/23) 2584000077098406 a001 4807526976/370248451*64079^(11/23) 2584000077098406 a001 1836311903/141422324*64079^(11/23) 2584000077098407 a001 701408733/54018521*64079^(11/23) 2584000077098412 a001 9238424/711491*64079^(11/23) 2584000077098448 a001 102334155/7881196*64079^(11/23) 2584000077098691 a001 39088169/3010349*64079^(11/23) 2584000077098912 a001 23184/51841*103682^(3/4) 2584000077100358 a001 14930352/1149851*64079^(11/23) 2584000077104283 a001 102334155/103682*64079^(2/23) 2584000077110092 a001 514229/167761*64079^(14/23) 2584000077111786 a001 5702887/439204*64079^(11/23) 2584000077117312 a001 98209/51841*167761^(3/5) 2584000077118064 a001 9227465/271443*64079^(9/23) 2584000077120648 a001 14930352/710647*64079^(10/23) 2584000077122170 a001 46347/2206*167761^(2/5) 2584000077123932 a001 15456/90481*20633239^(4/7) 2584000077123935 a001 15456/90481*2537720636^(4/9) 2584000077123935 a001 15456/90481*(1/2+1/2*5^(1/2))^20 2584000077123935 a001 15456/90481*23725150497407^(5/16) 2584000077123935 a001 15456/90481*505019158607^(5/14) 2584000077123935 a001 15456/90481*73681302247^(5/13) 2584000077123935 a001 15456/90481*28143753123^(2/5) 2584000077123935 a001 15456/90481*10749957122^(5/12) 2584000077123935 a001 121393/103682*(1/2+1/2*5^(1/2))^16 2584000077123935 a001 121393/103682*23725150497407^(1/4) 2584000077123935 a001 121393/103682*73681302247^(4/13) 2584000077123935 a001 121393/103682*10749957122^(1/3) 2584000077123935 a001 15456/90481*4106118243^(10/23) 2584000077123935 a001 121393/103682*4106118243^(8/23) 2584000077123935 a001 121393/103682*1568397607^(4/11) 2584000077123935 a001 15456/90481*1568397607^(5/11) 2584000077123935 a001 121393/103682*599074578^(8/21) 2584000077123935 a001 15456/90481*599074578^(10/21) 2584000077123935 a001 121393/103682*228826127^(2/5) 2584000077123935 a001 15456/90481*228826127^(1/2) 2584000077123935 a001 121393/103682*87403803^(8/19) 2584000077123935 a001 15456/90481*87403803^(10/19) 2584000077123936 a001 121393/103682*33385282^(4/9) 2584000077123936 a001 15456/90481*33385282^(5/9) 2584000077123942 a001 121393/103682*12752043^(8/17) 2584000077123944 a001 15456/90481*12752043^(10/17) 2584000077123989 a001 121393/103682*4870847^(1/2) 2584000077124003 a001 15456/90481*4870847^(5/8) 2584000077124044 a001 268035744/103729 2584000077124333 a001 121393/103682*1860498^(8/15) 2584000077124433 a001 15456/90481*1860498^(2/3) 2584000077125020 a001 39088169/1860498*64079^(10/23) 2584000077125658 a001 102334155/4870847*64079^(10/23) 2584000077125751 a001 267914296/12752043*64079^(10/23) 2584000077125765 a001 701408733/33385282*64079^(10/23) 2584000077125767 a001 1836311903/87403803*64079^(10/23) 2584000077125767 a001 102287808/4868641*64079^(10/23) 2584000077125767 a001 12586269025/599074578*64079^(10/23) 2584000077125767 a001 32951280099/1568397607*64079^(10/23) 2584000077125767 a001 86267571272/4106118243*64079^(10/23) 2584000077125767 a001 225851433717/10749957122*64079^(10/23) 2584000077125767 a001 591286729879/28143753123*64079^(10/23) 2584000077125767 a001 1548008755920/73681302247*64079^(10/23) 2584000077125767 a001 4052739537881/192900153618*64079^(10/23) 2584000077125767 a001 225749145909/10745088481*64079^(10/23) 2584000077125767 a001 6557470319842/312119004989*64079^(10/23) 2584000077125767 a001 2504730781961/119218851371*64079^(10/23) 2584000077125767 a001 956722026041/45537549124*64079^(10/23) 2584000077125767 a001 365435296162/17393796001*64079^(10/23) 2584000077125767 a001 139583862445/6643838879*64079^(10/23) 2584000077125767 a001 53316291173/2537720636*64079^(10/23) 2584000077125767 a001 20365011074/969323029*64079^(10/23) 2584000077125767 a001 7778742049/370248451*64079^(10/23) 2584000077125767 a001 2971215073/141422324*64079^(10/23) 2584000077125768 a001 1134903170/54018521*64079^(10/23) 2584000077125773 a001 433494437/20633239*64079^(10/23) 2584000077125809 a001 165580141/7881196*64079^(10/23) 2584000077126052 a001 63245986/3010349*64079^(10/23) 2584000077126859 a001 121393/103682*710647^(4/7) 2584000077127590 a001 15456/90481*710647^(5/7) 2584000077127722 a001 24157817/1149851*64079^(10/23) 2584000077131644 a001 165580141/103682*64079^(1/23) 2584000077134752 a001 75640/15251*64079^(13/23) 2584000077139169 a001 9227465/439204*64079^(10/23) 2584000077140643 a001 24157817/103682*167761^(1/5) 2584000077145417 a001 4976784/90481*64079^(8/23) 2584000077145516 a001 121393/103682*271443^(8/13) 2584000077145609 a004 Fibonacci(24)*Lucas(27)/(1/2+sqrt(5)/2)^33 2584000077146351 a001 2576/103361*439204^(8/9) 2584000077148013 a001 24157817/710647*64079^(9/23) 2584000077150912 a001 15456/90481*271443^(10/13) 2584000077152305 a001 416020/51841*439204^(4/9) 2584000077152382 a001 31622993/930249*64079^(9/23) 2584000077153019 a001 165580141/4870847*64079^(9/23) 2584000077153112 a001 433494437/12752043*64079^(9/23) 2584000077153126 a001 567451585/16692641*64079^(9/23) 2584000077153128 a001 2971215073/87403803*64079^(9/23) 2584000077153128 a001 7778742049/228826127*64079^(9/23) 2584000077153128 a001 10182505537/299537289*64079^(9/23) 2584000077153128 a001 53316291173/1568397607*64079^(9/23) 2584000077153128 a001 139583862445/4106118243*64079^(9/23) 2584000077153128 a001 182717648081/5374978561*64079^(9/23) 2584000077153128 a001 956722026041/28143753123*64079^(9/23) 2584000077153128 a001 2504730781961/73681302247*64079^(9/23) 2584000077153128 a001 3278735159921/96450076809*64079^(9/23) 2584000077153128 a001 10610209857723/312119004989*64079^(9/23) 2584000077153128 a001 4052739537881/119218851371*64079^(9/23) 2584000077153128 a001 387002188980/11384387281*64079^(9/23) 2584000077153128 a001 591286729879/17393796001*64079^(9/23) 2584000077153128 a001 225851433717/6643838879*64079^(9/23) 2584000077153128 a001 1135099622/33391061*64079^(9/23) 2584000077153128 a001 32951280099/969323029*64079^(9/23) 2584000077153128 a001 12586269025/370248451*64079^(9/23) 2584000077153128 a001 1201881744/35355581*64079^(9/23) 2584000077153129 a001 1836311903/54018521*64079^(9/23) 2584000077153134 a001 701408733/20633239*64079^(9/23) 2584000077153170 a001 66978574/1970299*64079^(9/23) 2584000077153413 a001 102334155/3010349*64079^(9/23) 2584000077153861 a001 6624/101521*7881196^(2/3) 2584000077153886 a001 317811/103682*20633239^(2/5) 2584000077153888 a001 6624/101521*312119004989^(2/5) 2584000077153888 a001 6624/101521*(1/2+1/2*5^(1/2))^22 2584000077153888 a001 6624/101521*10749957122^(11/24) 2584000077153888 a001 317811/103682*17393796001^(2/7) 2584000077153888 a001 317811/103682*14662949395604^(2/9) 2584000077153888 a001 317811/103682*(1/2+1/2*5^(1/2))^14 2584000077153888 a001 317811/103682*10749957122^(7/24) 2584000077153888 a001 317811/103682*4106118243^(7/23) 2584000077153888 a001 6624/101521*4106118243^(11/23) 2584000077153888 a001 317811/103682*1568397607^(7/22) 2584000077153888 a001 6624/101521*1568397607^(1/2) 2584000077153888 a001 317811/103682*599074578^(1/3) 2584000077153888 a001 6624/101521*599074578^(11/21) 2584000077153888 a001 317811/103682*228826127^(7/20) 2584000077153888 a001 6624/101521*228826127^(11/20) 2584000077153888 a001 317811/103682*87403803^(7/19) 2584000077153888 a001 6624/101521*87403803^(11/19) 2584000077153889 a001 317811/103682*33385282^(7/18) 2584000077153890 a001 6624/101521*33385282^(11/18) 2584000077153895 a001 317811/103682*12752043^(7/17) 2584000077153899 a001 6624/101521*12752043^(11/17) 2584000077153904 a001 14736260448/5702887 2584000077153936 a001 317811/103682*4870847^(7/16) 2584000077153963 a001 6624/101521*4870847^(11/16) 2584000077154237 a001 317811/103682*1860498^(7/15) 2584000077154436 a001 6624/101521*1860498^(11/15) 2584000077154581 a001 1762289/51841*439204^(1/3) 2584000077155082 a001 39088169/1149851*64079^(9/23) 2584000077156026 a001 7465176/51841*439204^(2/9) 2584000077156447 a001 317811/103682*710647^(1/2) 2584000077157051 a004 Fibonacci(24)*Lucas(29)/(1/2+sqrt(5)/2)^35 2584000077157517 a001 31622993/51841*439204^(1/9) 2584000077157909 a001 6624/101521*710647^(11/14) 2584000077158228 a001 2576/103361*7881196^(8/11) 2584000077158243 a001 416020/51841*7881196^(4/11) 2584000077158258 a001 2576/103361*141422324^(8/13) 2584000077158258 a001 416020/51841*141422324^(4/13) 2584000077158258 a001 2576/103361*2537720636^(8/15) 2584000077158258 a001 416020/51841*2537720636^(4/15) 2584000077158258 a001 2576/103361*45537549124^(8/17) 2584000077158258 a001 2576/103361*14662949395604^(8/21) 2584000077158258 a001 2576/103361*(1/2+1/2*5^(1/2))^24 2584000077158258 a001 2576/103361*192900153618^(4/9) 2584000077158258 a001 2576/103361*73681302247^(6/13) 2584000077158258 a001 2576/103361*10749957122^(1/2) 2584000077158258 a001 416020/51841*45537549124^(4/17) 2584000077158258 a001 416020/51841*14662949395604^(4/21) 2584000077158258 a001 416020/51841*(1/2+1/2*5^(1/2))^12 2584000077158258 a001 416020/51841*192900153618^(2/9) 2584000077158258 a001 416020/51841*73681302247^(3/13) 2584000077158258 a001 416020/51841*10749957122^(1/4) 2584000077158258 a001 416020/51841*4106118243^(6/23) 2584000077158258 a001 2576/103361*4106118243^(12/23) 2584000077158258 a001 416020/51841*1568397607^(3/11) 2584000077158258 a001 2576/103361*1568397607^(6/11) 2584000077158258 a001 416020/51841*599074578^(2/7) 2584000077158258 a001 2576/103361*599074578^(4/7) 2584000077158258 a001 416020/51841*228826127^(3/10) 2584000077158258 a001 2576/103361*228826127^(3/5) 2584000077158259 a001 416020/51841*87403803^(6/19) 2584000077158259 a001 2576/103361*87403803^(12/19) 2584000077158259 a001 416020/51841*33385282^(1/3) 2584000077158260 a001 2576/103361*33385282^(2/3) 2584000077158261 a001 267916880/103683 2584000077158264 a001 416020/51841*12752043^(6/17) 2584000077158270 a001 2576/103361*12752043^(12/17) 2584000077158299 a001 416020/51841*4870847^(3/8) 2584000077158340 a001 2576/103361*4870847^(3/4) 2584000077158557 a001 416020/51841*1860498^(2/5) 2584000077158720 a004 Fibonacci(24)*Lucas(31)/(1/2+sqrt(5)/2)^37 2584000077158856 a001 2576/103361*1860498^(4/5) 2584000077158894 a001 46347/2206*20633239^(2/7) 2584000077158896 a001 46368/4870847*141422324^(2/3) 2584000077158896 a001 46347/2206*2537720636^(2/9) 2584000077158896 a001 46368/4870847*(1/2+1/2*5^(1/2))^26 2584000077158896 a001 46368/4870847*73681302247^(1/2) 2584000077158896 a001 46368/4870847*10749957122^(13/24) 2584000077158896 a001 46347/2206*312119004989^(2/11) 2584000077158896 a001 46347/2206*(1/2+1/2*5^(1/2))^10 2584000077158896 a001 46347/2206*28143753123^(1/5) 2584000077158896 a001 46347/2206*10749957122^(5/24) 2584000077158896 a001 46347/2206*4106118243^(5/23) 2584000077158896 a001 46368/4870847*4106118243^(13/23) 2584000077158896 a001 46347/2206*1568397607^(5/22) 2584000077158896 a001 46368/4870847*1568397607^(13/22) 2584000077158896 a001 46347/2206*599074578^(5/21) 2584000077158896 a001 46368/4870847*599074578^(13/21) 2584000077158896 a001 46347/2206*228826127^(1/4) 2584000077158896 a001 46368/4870847*228826127^(13/20) 2584000077158896 a001 46347/2206*87403803^(5/19) 2584000077158896 a001 46368/4870847*87403803^(13/19) 2584000077158896 a001 101003831712/39088169 2584000077158897 a001 46347/2206*33385282^(5/18) 2584000077158898 a001 46368/4870847*33385282^(13/18) 2584000077158901 a001 46347/2206*12752043^(5/17) 2584000077158908 a001 46368/4870847*12752043^(13/17) 2584000077158912 a001 433494437/271443*24476^(1/21) 2584000077158930 a001 46347/2206*4870847^(5/16) 2584000077158963 a004 Fibonacci(24)*Lucas(33)/(1/2+sqrt(5)/2)^39 2584000077158965 a001 144/103681*7881196^(10/11) 2584000077158984 a001 15456/4250681*20633239^(4/5) 2584000077158985 a001 46368/4870847*4870847^(13/16) 2584000077158989 a001 15456/4250681*17393796001^(4/7) 2584000077158989 a001 15456/4250681*14662949395604^(4/9) 2584000077158989 a001 15456/4250681*(1/2+1/2*5^(1/2))^28 2584000077158989 a001 15456/4250681*505019158607^(1/2) 2584000077158989 a001 15456/4250681*73681302247^(7/13) 2584000077158989 a001 15456/4250681*10749957122^(7/12) 2584000077158989 a001 5702887/103682*(1/2+1/2*5^(1/2))^8 2584000077158989 a001 5702887/103682*23725150497407^(1/8) 2584000077158989 a001 5702887/103682*505019158607^(1/7) 2584000077158989 a001 5702887/103682*73681302247^(2/13) 2584000077158989 a001 5702887/103682*10749957122^(1/6) 2584000077158989 a001 5702887/103682*4106118243^(4/23) 2584000077158989 a001 15456/4250681*4106118243^(14/23) 2584000077158989 a001 5702887/103682*1568397607^(2/11) 2584000077158989 a001 15456/4250681*1568397607^(7/11) 2584000077158989 a001 5702887/103682*599074578^(4/21) 2584000077158989 a001 15456/4250681*599074578^(2/3) 2584000077158989 a001 5702887/103682*228826127^(1/5) 2584000077158989 a001 15456/4250681*228826127^(7/10) 2584000077158989 a001 12591974496/4873055 2584000077158989 a001 5702887/103682*87403803^(4/19) 2584000077158989 a001 15456/4250681*87403803^(14/19) 2584000077158990 a001 5702887/103682*33385282^(2/9) 2584000077158991 a001 15456/4250681*33385282^(7/9) 2584000077158993 a001 5702887/103682*12752043^(4/17) 2584000077158995 a001 7465176/51841*7881196^(2/11) 2584000077158997 a001 144/103681*20633239^(6/7) 2584000077158999 a004 Fibonacci(24)*Lucas(35)/(1/2+sqrt(5)/2)^41 2584000077159001 a001 31622993/51841*7881196^(1/11) 2584000077159002 a001 15456/4250681*12752043^(14/17) 2584000077159003 a001 144/103681*141422324^(10/13) 2584000077159003 a001 7465176/51841*141422324^(2/13) 2584000077159003 a001 144/103681*2537720636^(2/3) 2584000077159003 a001 7465176/51841*2537720636^(2/15) 2584000077159003 a001 144/103681*45537549124^(10/17) 2584000077159003 a001 144/103681*312119004989^(6/11) 2584000077159003 a001 144/103681*14662949395604^(10/21) 2584000077159003 a001 144/103681*(1/2+1/2*5^(1/2))^30 2584000077159003 a001 144/103681*192900153618^(5/9) 2584000077159003 a001 144/103681*28143753123^(3/5) 2584000077159003 a001 144/103681*10749957122^(5/8) 2584000077159003 a001 7465176/51841*45537549124^(2/17) 2584000077159003 a001 7465176/51841*14662949395604^(2/21) 2584000077159003 a001 7465176/51841*(1/2+1/2*5^(1/2))^6 2584000077159003 a001 7465176/51841*10749957122^(1/8) 2584000077159003 a001 7465176/51841*4106118243^(3/23) 2584000077159003 a001 144/103681*4106118243^(15/23) 2584000077159003 a001 7465176/51841*1568397607^(3/22) 2584000077159003 a001 144/103681*1568397607^(15/22) 2584000077159003 a001 7465176/51841*599074578^(1/7) 2584000077159003 a001 144/103681*599074578^(5/7) 2584000077159003 a001 86536320192/33489287 2584000077159003 a001 7465176/51841*228826127^(3/20) 2584000077159003 a001 144/103681*228826127^(3/4) 2584000077159003 a001 7465176/51841*87403803^(3/19) 2584000077159003 a001 144/103681*87403803^(15/19) 2584000077159003 a001 7465176/51841*33385282^(1/6) 2584000077159004 a004 Fibonacci(24)*Lucas(37)/(1/2+sqrt(5)/2)^43 2584000077159005 a001 144/103681*33385282^(5/6) 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^32/Lucas(38) 2584000077159005 a001 15456/29134601*23725150497407^(1/2) 2584000077159005 a001 15456/29134601*505019158607^(4/7) 2584000077159005 a001 15456/29134601*73681302247^(8/13) 2584000077159005 a001 15456/29134601*10749957122^(2/3) 2584000077159005 a001 39088169/103682*(1/2+1/2*5^(1/2))^4 2584000077159005 a001 39088169/103682*23725150497407^(1/16) 2584000077159005 a001 39088169/103682*73681302247^(1/13) 2584000077159005 a001 39088169/103682*10749957122^(1/12) 2584000077159005 a001 39088169/103682*4106118243^(2/23) 2584000077159005 a001 15456/29134601*4106118243^(16/23) 2584000077159005 a001 39088169/103682*1568397607^(1/11) 2584000077159005 a001 39088169/103682*599074578^(2/21) 2584000077159005 a001 15456/29134601*1568397607^(8/11) 2584000077159005 a001 604146740064/233802911 2584000077159005 a001 39088169/103682*228826127^(1/10) 2584000077159005 a001 15456/29134601*599074578^(16/21) 2584000077159005 a001 39088169/103682*87403803^(2/19) 2584000077159005 a001 15456/29134601*228826127^(4/5) 2584000077159005 a004 Fibonacci(24)*Lucas(39)/(1/2+sqrt(5)/2)^45 2584000077159005 a001 2576/33281921*141422324^(12/13) 2584000077159005 a001 39088169/103682*33385282^(1/9) 2584000077159005 a001 15456/29134601*87403803^(16/19) 2584000077159005 a001 46368/228826127*45537549124^(2/3) 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^34/Lucas(40) 2584000077159005 a001 46368/228826127*10749957122^(17/24) 2584000077159005 a001 102334155/103682*(1/2+1/2*5^(1/2))^2 2584000077159005 a001 102334155/103682*10749957122^(1/24) 2584000077159005 a001 102334155/103682*4106118243^(1/23) 2584000077159005 a001 102334155/103682*1568397607^(1/22) 2584000077159005 a001 46368/228826127*4106118243^(17/23) 2584000077159005 a001 4745030099040/1836311903 2584000077159005 a001 102334155/103682*599074578^(1/21) 2584000077159005 a001 46368/228826127*1568397607^(17/22) 2584000077159005 a001 102334155/103682*228826127^(1/20) 2584000077159005 a001 46368/228826127*599074578^(17/21) 2584000077159005 a001 102334155/103682*87403803^(1/19) 2584000077159005 a004 Fibonacci(24)*Lucas(41)/(1/2+sqrt(5)/2)^47 2584000077159005 a001 2576/33281921*2537720636^(4/5) 2584000077159005 a001 46368/228826127*228826127^(17/20) 2584000077159005 a001 2576/33281921*45537549124^(12/17) 2584000077159005 a001 2576/33281921*14662949395604^(4/7) 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^36/Lucas(42) 2584000077159005 a001 2576/33281921*505019158607^(9/14) 2584000077159005 a001 2576/33281921*192900153618^(2/3) 2584000077159005 a001 2576/33281921*73681302247^(9/13) 2584000077159005 a001 2576/33281921*10749957122^(3/4) 2584000077159005 a001 133957148/51841 2584000077159005 a001 2576/33281921*4106118243^(18/23) 2584000077159005 a001 2576/33281921*1568397607^(9/11) 2584000077159005 a004 Fibonacci(24)*Lucas(43)/(1/2+sqrt(5)/2)^49 2584000077159005 a001 6624/224056801*817138163596^(2/3) 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^38/Lucas(44) 2584000077159005 a001 32522920131744/12586269025 2584000077159005 a001 6624/224056801*10749957122^(19/24) 2584000077159005 a001 2576/33281921*599074578^(6/7) 2584000077159005 a004 Fibonacci(44)/Lucas(24)/(1/2+sqrt(5)/2)^2 2584000077159005 a001 6624/224056801*4106118243^(19/23) 2584000077159005 a001 15456/1368706081*2537720636^(8/9) 2584000077159005 a004 Fibonacci(24)*Lucas(45)/(1/2+sqrt(5)/2)^51 2584000077159005 a001 23184/5374978561*2537720636^(14/15) 2584000077159005 a001 15456/1368706081*312119004989^(8/11) 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^40/Lucas(46) 2584000077159005 a001 15456/1368706081*23725150497407^(5/8) 2584000077159005 a001 15456/1368706081*73681302247^(10/13) 2584000077159005 a001 28382036772768/10983760033 2584000077159005 a001 15456/1368706081*28143753123^(4/5) 2584000077159005 a001 6624/224056801*1568397607^(19/22) 2584000077159005 a001 15456/1368706081*10749957122^(5/6) 2584000077159005 a004 Fibonacci(46)/Lucas(24)/(1/2+sqrt(5)/2)^4 2584000077159005 a004 Fibonacci(24)*Lucas(47)/(1/2+sqrt(5)/2)^53 2584000077159005 a001 23184/5374978561*17393796001^(6/7) 2584000077159005 a001 23184/5374978561*45537549124^(14/17) 2584000077159005 a001 23184/5374978561*14662949395604^(2/3) 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^42/Lucas(48) 2584000077159005 a001 23184/5374978561*505019158607^(3/4) 2584000077159005 a001 23184/5374978561*192900153618^(7/9) 2584000077159005 a001 27864426352896/10783446409 2584000077159005 a001 15456/1368706081*4106118243^(20/23) 2584000077159005 a004 Fibonacci(24)*Lucas(49)/(1/2+sqrt(5)/2)^55 2584000077159005 a001 15456/9381251041*312119004989^(4/5) 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^44/Lucas(50) 2584000077159005 a001 15456/9381251041*23725150497407^(11/16) 2584000077159005 a001 15456/9381251041*73681302247^(11/13) 2584000077159005 a001 23184/5374978561*10749957122^(7/8) 2584000077159005 a004 Fibonacci(24)*Lucas(51)/(1/2+sqrt(5)/2)^57 2584000077159005 a001 2576/10716675201*45537549124^(16/17) 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^46/Lucas(52) 2584000077159005 a001 1527884955630432/591286729879 2584000077159005 a004 Fibonacci(24)*Lucas(53)/(1/2+sqrt(5)/2)^59 2584000077159005 a001 2576/10716675201*14662949395604^(16/21) 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^48/Lucas(54) 2584000077159005 a001 46368/505019158607*312119004989^(10/11) 2584000077159005 a004 Fibonacci(24)*Lucas(55)/(1/2+sqrt(5)/2)^61 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^50/Lucas(56) 2584000077159005 a001 10472279278589856/4052739537881 2584000077159005 a001 2576/10716675201*192900153618^(8/9) 2584000077159005 a004 Fibonacci(24)*Lucas(57)/(1/2+sqrt(5)/2)^63 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^52/Lucas(58) 2584000077159005 a004 Fibonacci(24)*Lucas(59)/(1/2+sqrt(5)/2)^65 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^54/Lucas(60) 2584000077159005 a004 Fibonacci(24)*Lucas(61)/(1/2+sqrt(5)/2)^67 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^56/Lucas(62) 2584000077159005 a004 Fibonacci(24)*Lucas(63)/(1/2+sqrt(5)/2)^69 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^58/Lucas(64) 2584000077159005 a004 Fibonacci(24)*Lucas(65)/(1/2+sqrt(5)/2)^71 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^60/Lucas(66) 2584000077159005 a004 Fibonacci(24)*Lucas(67)/(1/2+sqrt(5)/2)^73 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^62/Lucas(68) 2584000077159005 a004 Fibonacci(24)*Lucas(69)/(1/2+sqrt(5)/2)^75 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^64/Lucas(70) 2584000077159005 a004 Fibonacci(24)*Lucas(71)/(1/2+sqrt(5)/2)^77 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^66/Lucas(72) 2584000077159005 a004 Fibonacci(24)*Lucas(73)/(1/2+sqrt(5)/2)^79 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^68/Lucas(74) 2584000077159005 a004 Fibonacci(24)*Lucas(75)/(1/2+sqrt(5)/2)^81 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^70/Lucas(76) 2584000077159005 a004 Fibonacci(24)*Lucas(77)/(1/2+sqrt(5)/2)^83 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^72/Lucas(78) 2584000077159005 a004 Fibonacci(24)*Lucas(79)/(1/2+sqrt(5)/2)^85 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^74/Lucas(80) 2584000077159005 a004 Fibonacci(24)*Lucas(81)/(1/2+sqrt(5)/2)^87 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^76/Lucas(82) 2584000077159005 a004 Fibonacci(24)*Lucas(83)/(1/2+sqrt(5)/2)^89 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^78/Lucas(84) 2584000077159005 a004 Fibonacci(24)*Lucas(85)/(1/2+sqrt(5)/2)^91 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^80/Lucas(86) 2584000077159005 a004 Fibonacci(24)*Lucas(87)/(1/2+sqrt(5)/2)^93 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^82/Lucas(88) 2584000077159005 a004 Fibonacci(24)*Lucas(89)/(1/2+sqrt(5)/2)^95 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^84/Lucas(90) 2584000077159005 a004 Fibonacci(24)*Lucas(91)/(1/2+sqrt(5)/2)^97 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^86/Lucas(92) 2584000077159005 a004 Fibonacci(24)*Lucas(93)/(1/2+sqrt(5)/2)^99 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^88/Lucas(94) 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^90/Lucas(96) 2584000077159005 a004 Fibonacci(12)*Lucas(12)/(1/2+sqrt(5)/2)^6 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^92/Lucas(98) 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^93/Lucas(99) 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^94/Lucas(100) 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^91/Lucas(97) 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^89/Lucas(95) 2584000077159005 a004 Fibonacci(24)*Lucas(94)/(1/2+sqrt(5)/2)^100 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^87/Lucas(93) 2584000077159005 a004 Fibonacci(24)*Lucas(92)/(1/2+sqrt(5)/2)^98 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^85/Lucas(91) 2584000077159005 a004 Fibonacci(24)*Lucas(90)/(1/2+sqrt(5)/2)^96 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^83/Lucas(89) 2584000077159005 a004 Fibonacci(24)*Lucas(88)/(1/2+sqrt(5)/2)^94 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^81/Lucas(87) 2584000077159005 a004 Fibonacci(24)*Lucas(86)/(1/2+sqrt(5)/2)^92 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^79/Lucas(85) 2584000077159005 a004 Fibonacci(24)*Lucas(84)/(1/2+sqrt(5)/2)^90 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^77/Lucas(83) 2584000077159005 a004 Fibonacci(24)*Lucas(82)/(1/2+sqrt(5)/2)^88 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^75/Lucas(81) 2584000077159005 a004 Fibonacci(24)*Lucas(80)/(1/2+sqrt(5)/2)^86 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^73/Lucas(79) 2584000077159005 a004 Fibonacci(24)*Lucas(78)/(1/2+sqrt(5)/2)^84 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^71/Lucas(77) 2584000077159005 a004 Fibonacci(24)*Lucas(76)/(1/2+sqrt(5)/2)^82 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^69/Lucas(75) 2584000077159005 a004 Fibonacci(24)*Lucas(74)/(1/2+sqrt(5)/2)^80 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^67/Lucas(73) 2584000077159005 a004 Fibonacci(24)*Lucas(72)/(1/2+sqrt(5)/2)^78 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^65/Lucas(71) 2584000077159005 a004 Fibonacci(24)*Lucas(70)/(1/2+sqrt(5)/2)^76 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^63/Lucas(69) 2584000077159005 a004 Fibonacci(24)*Lucas(68)/(1/2+sqrt(5)/2)^74 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^61/Lucas(67) 2584000077159005 a004 Fibonacci(24)*Lucas(66)/(1/2+sqrt(5)/2)^72 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^59/Lucas(65) 2584000077159005 a004 Fibonacci(24)*Lucas(64)/(1/2+sqrt(5)/2)^70 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^57/Lucas(63) 2584000077159005 a004 Fibonacci(24)*Lucas(62)/(1/2+sqrt(5)/2)^68 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^55/Lucas(61) 2584000077159005 a004 Fibonacci(24)*Lucas(60)/(1/2+sqrt(5)/2)^66 2584000077159005 a001 11592/204284540899*817138163596^(17/19) 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^53/Lucas(59) 2584000077159005 a004 Fibonacci(24)*Lucas(58)/(1/2+sqrt(5)/2)^64 2584000077159005 a001 11592/204284540899*14662949395604^(17/21) 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^51/Lucas(57) 2584000077159005 a004 Fibonacci(24)*Lucas(56)/(1/2+sqrt(5)/2)^62 2584000077159005 a001 6472224533849760/2504730781961 2584000077159005 a001 46368/312119004989*14662949395604^(7/9) 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^49/Lucas(55) 2584000077159005 a001 46368/312119004989*505019158607^(7/8) 2584000077159005 a004 Fibonacci(24)*Lucas(54)/(1/2+sqrt(5)/2)^60 2584000077159005 a001 11592/204284540899*192900153618^(17/18) 2584000077159005 a001 11592/11384387281*45537549124^(15/17) 2584000077159005 a001 2472169789109664/956722026041 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^47/Lucas(53) 2584000077159005 a001 2576/10716675201*73681302247^(12/13) 2584000077159005 a004 Fibonacci(24)*Lucas(52)/(1/2+sqrt(5)/2)^58 2584000077159005 a001 11592/11384387281*312119004989^(9/11) 2584000077159005 a001 11592/11384387281*14662949395604^(5/7) 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^45/Lucas(51) 2584000077159005 a001 11592/11384387281*192900153618^(5/6) 2584000077159005 a004 Fibonacci(24)*Lucas(50)/(1/2+sqrt(5)/2)^56 2584000077159005 a001 11592/11384387281*28143753123^(9/10) 2584000077159005 a001 360684711328032/139583862445 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^43/Lucas(49) 2584000077159005 a001 15456/9381251041*10749957122^(11/12) 2584000077159005 a004 Fibonacci(50)/Lucas(24)/(1/2+sqrt(5)/2)^8 2584000077159005 a001 6624/10525900321*10749957122^(23/24) 2584000077159005 a004 Fibonacci(52)/Lucas(24)/(1/2+sqrt(5)/2)^10 2584000077159005 a001 11592/11384387281*10749957122^(15/16) 2584000077159005 a004 Fibonacci(54)/Lucas(24)/(1/2+sqrt(5)/2)^12 2584000077159005 a004 Fibonacci(56)/Lucas(24)/(1/2+sqrt(5)/2)^14 2584000077159005 a004 Fibonacci(58)/Lucas(24)/(1/2+sqrt(5)/2)^16 2584000077159005 a004 Fibonacci(60)/Lucas(24)/(1/2+sqrt(5)/2)^18 2584000077159005 a004 Fibonacci(62)/Lucas(24)/(1/2+sqrt(5)/2)^20 2584000077159005 a004 Fibonacci(64)/Lucas(24)/(1/2+sqrt(5)/2)^22 2584000077159005 a004 Fibonacci(66)/Lucas(24)/(1/2+sqrt(5)/2)^24 2584000077159005 a004 Fibonacci(68)/Lucas(24)/(1/2+sqrt(5)/2)^26 2584000077159005 a004 Fibonacci(70)/Lucas(24)/(1/2+sqrt(5)/2)^28 2584000077159005 a004 Fibonacci(72)/Lucas(24)/(1/2+sqrt(5)/2)^30 2584000077159005 a004 Fibonacci(74)/Lucas(24)/(1/2+sqrt(5)/2)^32 2584000077159005 a004 Fibonacci(76)/Lucas(24)/(1/2+sqrt(5)/2)^34 2584000077159005 a004 Fibonacci(78)/Lucas(24)/(1/2+sqrt(5)/2)^36 2584000077159005 a004 Fibonacci(80)/Lucas(24)/(1/2+sqrt(5)/2)^38 2584000077159005 a004 Fibonacci(82)/Lucas(24)/(1/2+sqrt(5)/2)^40 2584000077159005 a004 Fibonacci(84)/Lucas(24)/(1/2+sqrt(5)/2)^42 2584000077159005 a004 Fibonacci(86)/Lucas(24)/(1/2+sqrt(5)/2)^44 2584000077159005 a004 Fibonacci(88)/Lucas(24)/(1/2+sqrt(5)/2)^46 2584000077159005 a004 Fibonacci(90)/Lucas(24)/(1/2+sqrt(5)/2)^48 2584000077159005 a004 Fibonacci(92)/Lucas(24)/(1/2+sqrt(5)/2)^50 2584000077159005 a004 Fibonacci(94)/Lucas(24)/(1/2+sqrt(5)/2)^52 2584000077159005 a004 Fibonacci(24)*Lucas(48)/(1/2+sqrt(5)/2)^54 2584000077159005 a004 Fibonacci(100)/Lucas(24)/(1/2+sqrt(5)/2)^58 2584000077159005 a004 Fibonacci(98)/Lucas(24)/(1/2+sqrt(5)/2)^56 2584000077159005 a004 Fibonacci(99)/Lucas(24)/(1/2+sqrt(5)/2)^57 2584000077159005 a004 Fibonacci(97)/Lucas(24)/(1/2+sqrt(5)/2)^55 2584000077159005 a004 Fibonacci(95)/Lucas(24)/(1/2+sqrt(5)/2)^53 2584000077159005 a004 Fibonacci(93)/Lucas(24)/(1/2+sqrt(5)/2)^51 2584000077159005 a004 Fibonacci(91)/Lucas(24)/(1/2+sqrt(5)/2)^49 2584000077159005 a004 Fibonacci(89)/Lucas(24)/(1/2+sqrt(5)/2)^47 2584000077159005 a004 Fibonacci(87)/Lucas(24)/(1/2+sqrt(5)/2)^45 2584000077159005 a004 Fibonacci(85)/Lucas(24)/(1/2+sqrt(5)/2)^43 2584000077159005 a004 Fibonacci(83)/Lucas(24)/(1/2+sqrt(5)/2)^41 2584000077159005 a004 Fibonacci(81)/Lucas(24)/(1/2+sqrt(5)/2)^39 2584000077159005 a004 Fibonacci(79)/Lucas(24)/(1/2+sqrt(5)/2)^37 2584000077159005 a004 Fibonacci(77)/Lucas(24)/(1/2+sqrt(5)/2)^35 2584000077159005 a004 Fibonacci(75)/Lucas(24)/(1/2+sqrt(5)/2)^33 2584000077159005 a004 Fibonacci(73)/Lucas(24)/(1/2+sqrt(5)/2)^31 2584000077159005 a004 Fibonacci(71)/Lucas(24)/(1/2+sqrt(5)/2)^29 2584000077159005 a004 Fibonacci(69)/Lucas(24)/(1/2+sqrt(5)/2)^27 2584000077159005 a004 Fibonacci(67)/Lucas(24)/(1/2+sqrt(5)/2)^25 2584000077159005 a004 Fibonacci(65)/Lucas(24)/(1/2+sqrt(5)/2)^23 2584000077159005 a004 Fibonacci(63)/Lucas(24)/(1/2+sqrt(5)/2)^21 2584000077159005 a004 Fibonacci(61)/Lucas(24)/(1/2+sqrt(5)/2)^19 2584000077159005 a004 Fibonacci(59)/Lucas(24)/(1/2+sqrt(5)/2)^17 2584000077159005 a004 Fibonacci(57)/Lucas(24)/(1/2+sqrt(5)/2)^15 2584000077159005 a004 Fibonacci(55)/Lucas(24)/(1/2+sqrt(5)/2)^13 2584000077159005 a004 Fibonacci(53)/Lucas(24)/(1/2+sqrt(5)/2)^11 2584000077159005 a004 Fibonacci(51)/Lucas(24)/(1/2+sqrt(5)/2)^9 2584000077159005 a004 Fibonacci(49)/Lucas(24)/(1/2+sqrt(5)/2)^7 2584000077159005 a001 11592/634430159*2537720636^(13/15) 2584000077159005 a001 137769300504864/53316291173 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^41/Lucas(47) 2584000077159005 a004 Fibonacci(47)/Lucas(24)/(1/2+sqrt(5)/2)^5 2584000077159005 a001 23184/5374978561*4106118243^(21/23) 2584000077159005 a001 15456/9381251041*4106118243^(22/23) 2584000077159005 a004 Fibonacci(24)*Lucas(46)/(1/2+sqrt(5)/2)^52 2584000077159005 a001 26311595093280/10182505537 2584000077159005 a001 11592/634430159*45537549124^(13/17) 2584000077159005 a001 11592/634430159*14662949395604^(13/21) 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^39/Lucas(45) 2584000077159005 a001 11592/634430159*192900153618^(13/18) 2584000077159005 a001 11592/634430159*73681302247^(3/4) 2584000077159005 a001 11592/634430159*10749957122^(13/16) 2584000077159005 a004 Fibonacci(45)/Lucas(24)/(1/2+sqrt(5)/2)^3 2584000077159005 a001 15456/1368706081*1568397607^(10/11) 2584000077159005 a001 23184/5374978561*1568397607^(21/22) 2584000077159005 a004 Fibonacci(24)*Lucas(44)/(1/2+sqrt(5)/2)^50 2584000077159005 a001 20100270054816/7778742049 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^37/Lucas(43) 2584000077159005 a004 Fibonacci(43)/Lucas(24)/(1/2+sqrt(5)/2) 2584000077159005 a001 6624/224056801*599074578^(19/21) 2584000077159005 a001 15456/1368706081*599074578^(20/21) 2584000077159005 a001 11592/634430159*599074578^(13/14) 2584000077159005 a004 Fibonacci(24)*Lucas(42)/(1/2+sqrt(5)/2)^48 2584000077159005 a001 24157817/103682*20633239^(1/7) 2584000077159005 a001 46368/370248451*2537720636^(7/9) 2584000077159005 a001 7677619977888/2971215073 2584000077159005 a001 46368/370248451*17393796001^(5/7) 2584000077159005 a001 46368/370248451*312119004989^(7/11) 2584000077159005 a001 46368/370248451*14662949395604^(5/9) 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^35/Lucas(41) 2584000077159005 a001 46368/370248451*505019158607^(5/8) 2584000077159005 a001 46368/370248451*28143753123^(7/10) 2584000077159005 a001 165580141/207364+165580141/207364*5^(1/2) 2584000077159005 a001 11592/35355581*141422324^(11/13) 2584000077159005 a001 46368/370248451*599074578^(5/6) 2584000077159005 a001 2576/33281921*228826127^(9/10) 2584000077159005 a001 6624/224056801*228826127^(19/20) 2584000077159005 a004 Fibonacci(24)*Lucas(40)/(1/2+sqrt(5)/2)^46 2584000077159005 a001 46368/370248451*228826127^(7/8) 2584000077159005 a001 102334155/103682*33385282^(1/18) 2584000077159005 a001 31622993/51841*141422324^(1/13) 2584000077159005 a001 1466294939424/567451585 2584000077159005 a001 11592/35355581*2537720636^(11/15) 2584000077159005 a001 31622993/51841*2537720636^(1/15) 2584000077159005 a001 11592/35355581*45537549124^(11/17) 2584000077159005 a001 11592/35355581*312119004989^(3/5) 2584000077159005 a001 11592/35355581*14662949395604^(11/21) 2584000077159005 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^33/Lucas(39) 2584000077159005 a001 11592/35355581*192900153618^(11/18) 2584000077159005 a001 11592/35355581*10749957122^(11/16) 2584000077159005 a001 31622993/51841*45537549124^(1/17) 2584000077159005 a001 31622993/51841*14662949395604^(1/21) 2584000077159005 a001 31622993/51841*(1/2+1/2*5^(1/2))^3 2584000077159005 a001 31622993/51841*192900153618^(1/18) 2584000077159005 a001 31622993/51841*10749957122^(1/16) 2584000077159005 a001 31622993/51841*599074578^(1/14) 2584000077159005 a001 11592/35355581*1568397607^(3/4) 2584000077159005 a001 11592/35355581*599074578^(11/14) 2584000077159005 a001 46368/228826127*87403803^(17/19) 2584000077159005 a001 2576/33281921*87403803^(18/19) 2584000077159005 a001 31622993/51841*33385282^(1/12) 2584000077159005 a004 Fibonacci(24)*Lucas(38)/(1/2+sqrt(5)/2)^44 2584000077159005 a001 7465176/51841*12752043^(3/17) 2584000077159006 a001 1120149658656/433494437 2584000077159006 a001 102334155/103682*12752043^(1/17) 2584000077159006 a001 24157817/103682*2537720636^(1/9) 2584000077159006 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^31/Lucas(37) 2584000077159006 a001 46368/54018521*9062201101803^(1/2) 2584000077159006 a001 24157817/103682*312119004989^(1/11) 2584000077159006 a001 24157817/103682*(1/2+1/2*5^(1/2))^5 2584000077159006 a001 24157817/103682*28143753123^(1/10) 2584000077159006 a001 24157817/103682*228826127^(1/8) 2584000077159006 a001 39088169/103682*12752043^(2/17) 2584000077159007 a001 15456/29134601*33385282^(8/9) 2584000077159007 a001 46368/228826127*33385282^(17/18) 2584000077159007 a001 11592/35355581*33385282^(11/12) 2584000077159007 a004 Fibonacci(24)*Lucas(36)/(1/2+sqrt(5)/2)^42 2584000077159010 a001 9227465/103682*20633239^(1/5) 2584000077159011 a001 427859097120/165580141 2584000077159011 a001 46368/20633239*(1/2+1/2*5^(1/2))^29 2584000077159011 a001 46368/20633239*1322157322203^(1/2) 2584000077159011 a001 9227465/103682*17393796001^(1/7) 2584000077159011 a001 9227465/103682*14662949395604^(1/9) 2584000077159011 a001 9227465/103682*(1/2+1/2*5^(1/2))^7 2584000077159011 a001 9227465/103682*599074578^(1/6) 2584000077159012 a001 102334155/103682*4870847^(1/16) 2584000077159012 a001 11592/1970299*7881196^(9/11) 2584000077159016 a001 5702887/103682*4870847^(1/4) 2584000077159017 a001 144/103681*12752043^(15/17) 2584000077159018 a001 39088169/103682*4870847^(1/8) 2584000077159020 a001 15456/29134601*12752043^(16/17) 2584000077159021 a004 Fibonacci(24)*Lucas(34)/(1/2+sqrt(5)/2)^40 2584000077159023 a001 7465176/51841*4870847^(3/16) 2584000077159035 a001 1762289/51841*7881196^(3/11) 2584000077159046 a001 81713816352/31622993 2584000077159046 a001 11592/1970299*141422324^(9/13) 2584000077159046 a001 1762289/51841*141422324^(3/13) 2584000077159047 a001 11592/1970299*2537720636^(3/5) 2584000077159047 a001 1762289/51841*2537720636^(1/5) 2584000077159047 a001 11592/1970299*45537549124^(9/17) 2584000077159047 a001 11592/1970299*14662949395604^(3/7) 2584000077159047 a001 11592/1970299*(1/2+1/2*5^(1/2))^27 2584000077159047 a001 11592/1970299*192900153618^(1/2) 2584000077159047 a001 11592/1970299*10749957122^(9/16) 2584000077159047 a001 1762289/51841*45537549124^(3/17) 2584000077159047 a001 1762289/51841*14662949395604^(1/7) 2584000077159047 a001 1762289/51841*(1/2+1/2*5^(1/2))^9 2584000077159047 a001 1762289/51841*192900153618^(1/6) 2584000077159047 a001 1762289/51841*10749957122^(3/16) 2584000077159047 a001 1762289/51841*599074578^(3/14) 2584000077159047 a001 11592/1970299*599074578^(9/14) 2584000077159047 a001 1762289/51841*33385282^(1/4) 2584000077159048 a001 11592/1970299*33385282^(3/4) 2584000077159055 a001 102334155/103682*1860498^(1/15) 2584000077159080 a001 31622993/51841*1860498^(1/10) 2584000077159084 a001 15456/4250681*4870847^(7/8) 2584000077159104 a001 39088169/103682*1860498^(2/15) 2584000077159105 a001 144/103681*4870847^(15/16) 2584000077159114 a004 Fibonacci(24)*Lucas(32)/(1/2+sqrt(5)/2)^38 2584000077159130 a001 24157817/103682*1860498^(1/6) 2584000077159145 a001 46347/2206*1860498^(1/3) 2584000077159152 a001 7465176/51841*1860498^(1/5) 2584000077159188 a001 5702887/103682*1860498^(4/15) 2584000077159270 a001 1762289/51841*1860498^(3/10) 2584000077159276 a001 1346269/103682*7881196^(1/3) 2584000077159286 a001 46368/3010349*20633239^(5/7) 2584000077159289 a001 62423800992/24157817 2584000077159290 a001 46368/3010349*2537720636^(5/9) 2584000077159290 a001 46368/3010349*312119004989^(5/11) 2584000077159290 a001 46368/3010349*(1/2+1/2*5^(1/2))^25 2584000077159290 a001 46368/3010349*3461452808002^(5/12) 2584000077159290 a001 46368/3010349*28143753123^(1/2) 2584000077159290 a001 1346269/103682*312119004989^(1/5) 2584000077159290 a001 1346269/103682*(1/2+1/2*5^(1/2))^11 2584000077159290 a001 1346269/103682*1568397607^(1/4) 2584000077159290 a001 46368/3010349*228826127^(5/8) 2584000077159370 a001 102334155/103682*710647^(1/14) 2584000077159543 a001 46368/4870847*1860498^(13/15) 2584000077159686 a001 15456/4250681*1860498^(14/15) 2584000077159718 a001 11592/1970299*1860498^(9/10) 2584000077159736 a001 39088169/103682*710647^(1/7) 2584000077159751 a004 Fibonacci(24)*Lucas(30)/(1/2+sqrt(5)/2)^36 2584000077159912 a001 46368/3010349*1860498^(5/6) 2584000077160099 a001 7465176/51841*710647^(3/14) 2584000077160290 a001 9227465/103682*710647^(1/4) 2584000077160451 a001 5702887/103682*710647^(2/7) 2584000077160451 a001 416020/51841*710647^(3/7) 2584000077160723 a001 46347/2206*710647^(5/14) 2584000077160953 a001 23843770272/9227465 2584000077160959 a001 514229/103682*141422324^(1/3) 2584000077160959 a001 46368/1149851*(1/2+1/2*5^(1/2))^23 2584000077160959 a001 514229/103682*(1/2+1/2*5^(1/2))^13 2584000077160959 a001 514229/103682*73681302247^(1/4) 2584000077160959 a001 46368/1149851*4106118243^(1/2) 2584000077161703 a001 102334155/103682*271443^(1/13) 2584000077161982 a001 11592/109801*439204^(7/9) 2584000077162644 a001 2576/103361*710647^(6/7) 2584000077163145 a001 1346269/167761*64079^(12/23) 2584000077163647 a001 46368/4870847*710647^(13/14) 2584000077164122 a004 Fibonacci(24)*Lucas(28)/(1/2+sqrt(5)/2)^34 2584000077164400 a001 39088169/103682*271443^(2/13) 2584000077164958 a001 98209/51841*439204^(5/9) 2584000077166521 a001 196452/5779*64079^(9/23) 2584000077167096 a001 7465176/51841*271443^(3/13) 2584000077169020 a001 165580141/103682*103682^(1/24) 2584000077169780 a001 5702887/103682*271443^(4/13) 2584000077172359 a001 4553754912/1762289 2584000077172374 a001 11592/109801*7881196^(7/11) 2584000077172382 a001 98209/51841*7881196^(5/11) 2584000077172384 a001 46347/2206*271443^(5/13) 2584000077172397 a001 11592/109801*20633239^(3/5) 2584000077172398 a001 98209/51841*20633239^(3/7) 2584000077172400 a001 11592/109801*141422324^(7/13) 2584000077172400 a001 98209/51841*141422324^(5/13) 2584000077172400 a001 11592/109801*2537720636^(7/15) 2584000077172400 a001 98209/51841*2537720636^(1/3) 2584000077172400 a001 11592/109801*17393796001^(3/7) 2584000077172400 a001 11592/109801*45537549124^(7/17) 2584000077172400 a001 11592/109801*14662949395604^(1/3) 2584000077172400 a001 11592/109801*(1/2+1/2*5^(1/2))^21 2584000077172400 a001 11592/109801*192900153618^(7/18) 2584000077172400 a001 11592/109801*10749957122^(7/16) 2584000077172400 a001 98209/51841*45537549124^(5/17) 2584000077172400 a001 98209/51841*312119004989^(3/11) 2584000077172400 a001 98209/51841*14662949395604^(5/21) 2584000077172400 a001 98209/51841*(1/2+1/2*5^(1/2))^15 2584000077172400 a001 98209/51841*192900153618^(5/18) 2584000077172400 a001 98209/51841*28143753123^(3/10) 2584000077172400 a001 98209/51841*10749957122^(5/16) 2584000077172400 a001 98209/51841*599074578^(5/14) 2584000077172400 a001 11592/109801*599074578^(1/2) 2584000077172400 a001 98209/51841*228826127^(3/8) 2584000077172401 a001 98209/51841*33385282^(5/12) 2584000077172402 a001 11592/109801*33385282^(7/12) 2584000077172772 a001 317811/103682*271443^(7/13) 2584000077172774 a001 98209/51841*1860498^(1/2) 2584000077172781 a001 24157817/271443*64079^(7/23) 2584000077172923 a001 11592/109801*1860498^(7/10) 2584000077174445 a001 416020/51841*271443^(6/13) 2584000077175372 a001 39088169/710647*64079^(8/23) 2584000077176238 a001 11592/109801*710647^(3/4) 2584000077178494 a001 514229/103682*271443^(1/2) 2584000077179036 a001 102334155/103682*103682^(1/12) 2584000077179743 a001 831985/15126*64079^(8/23) 2584000077180380 a001 267914296/4870847*64079^(8/23) 2584000077180473 a001 233802911/4250681*64079^(8/23) 2584000077180487 a001 1836311903/33385282*64079^(8/23) 2584000077180489 a001 1602508992/29134601*64079^(8/23) 2584000077180489 a001 12586269025/228826127*64079^(8/23) 2584000077180489 a001 10983760033/199691526*64079^(8/23) 2584000077180489 a001 86267571272/1568397607*64079^(8/23) 2584000077180489 a001 75283811239/1368706081*64079^(8/23) 2584000077180489 a001 591286729879/10749957122*64079^(8/23) 2584000077180489 a001 12585437040/228811001*64079^(8/23) 2584000077180489 a001 4052739537881/73681302247*64079^(8/23) 2584000077180489 a001 3536736619241/64300051206*64079^(8/23) 2584000077180489 a001 6557470319842/119218851371*64079^(8/23) 2584000077180489 a001 2504730781961/45537549124*64079^(8/23) 2584000077180489 a001 956722026041/17393796001*64079^(8/23) 2584000077180489 a001 365435296162/6643838879*64079^(8/23) 2584000077180489 a001 139583862445/2537720636*64079^(8/23) 2584000077180489 a001 53316291173/969323029*64079^(8/23) 2584000077180489 a001 20365011074/370248451*64079^(8/23) 2584000077180489 a001 7778742049/141422324*64079^(8/23) 2584000077180490 a001 2971215073/54018521*64079^(8/23) 2584000077180495 a001 1134903170/20633239*64079^(8/23) 2584000077180531 a001 433494437/7881196*64079^(8/23) 2584000077180775 a001 165580141/3010349*64079^(8/23) 2584000077182444 a001 63245986/1149851*64079^(8/23) 2584000077183563 a001 6624/101521*271443^(11/13) 2584000077188865 a001 1134903170/710647*24476^(1/21) 2584000077189052 a001 31622993/51841*103682^(1/8) 2584000077190112 a001 2178309/167761*64079^(11/23) 2584000077190631 a001 2576/103361*271443^(12/13) 2584000077193235 a001 2971215073/1860498*24476^(1/21) 2584000077193873 a001 7778742049/4870847*24476^(1/21) 2584000077193886 a001 24157817/439204*64079^(8/23) 2584000077193966 a001 20365011074/12752043*24476^(1/21) 2584000077193979 a001 53316291173/33385282*24476^(1/21) 2584000077193981 a001 139583862445/87403803*24476^(1/21) 2584000077193982 a001 365435296162/228826127*24476^(1/21) 2584000077193982 a001 956722026041/599074578*24476^(1/21) 2584000077193982 a001 2504730781961/1568397607*24476^(1/21) 2584000077193982 a001 6557470319842/4106118243*24476^(1/21) 2584000077193982 a001 10610209857723/6643838879*24476^(1/21) 2584000077193982 a001 4052739537881/2537720636*24476^(1/21) 2584000077193982 a001 1548008755920/969323029*24476^(1/21) 2584000077193982 a001 591286729879/370248451*24476^(1/21) 2584000077193982 a001 225851433717/141422324*24476^(1/21) 2584000077193983 a001 86267571272/54018521*24476^(1/21) 2584000077193988 a001 32951280099/20633239*24476^(1/21) 2584000077194023 a001 12586269025/7881196*24476^(1/21) 2584000077194075 a004 Fibonacci(24)*Lucas(26)/(1/2+sqrt(5)/2)^32 2584000077194267 a001 4807526976/3010349*24476^(1/21) 2584000077195936 a001 1836311903/1149851*24476^(1/21) 2584000077199067 a001 39088169/103682*103682^(1/6) 2584000077200141 a001 39088169/271443*64079^(6/23) 2584000077202734 a001 63245986/710647*64079^(7/23) 2584000077207099 a001 24157817/64079*24476^(4/21) 2584000077207104 a001 165580141/1860498*64079^(7/23) 2584000077207377 a001 701408733/439204*24476^(1/21) 2584000077207742 a001 433494437/4870847*64079^(7/23) 2584000077207835 a001 1134903170/12752043*64079^(7/23) 2584000077207848 a001 2971215073/33385282*64079^(7/23) 2584000077207850 a001 7778742049/87403803*64079^(7/23) 2584000077207850 a001 20365011074/228826127*64079^(7/23) 2584000077207850 a001 53316291173/599074578*64079^(7/23) 2584000077207850 a001 139583862445/1568397607*64079^(7/23) 2584000077207850 a001 365435296162/4106118243*64079^(7/23) 2584000077207850 a001 956722026041/10749957122*64079^(7/23) 2584000077207850 a001 2504730781961/28143753123*64079^(7/23) 2584000077207850 a001 6557470319842/73681302247*64079^(7/23) 2584000077207850 a001 10610209857723/119218851371*64079^(7/23) 2584000077207850 a001 4052739537881/45537549124*64079^(7/23) 2584000077207850 a001 1548008755920/17393796001*64079^(7/23) 2584000077207850 a001 591286729879/6643838879*64079^(7/23) 2584000077207850 a001 225851433717/2537720636*64079^(7/23) 2584000077207850 a001 86267571272/969323029*64079^(7/23) 2584000077207850 a001 32951280099/370248451*64079^(7/23) 2584000077207851 a001 12586269025/141422324*64079^(7/23) 2584000077207851 a001 4807526976/54018521*64079^(7/23) 2584000077207856 a001 1836311903/20633239*64079^(7/23) 2584000077207892 a001 3524667/39604*64079^(7/23) 2584000077208136 a001 267914296/3010349*64079^(7/23) 2584000077209084 a001 24157817/103682*103682^(5/24) 2584000077209805 a001 102334155/1149851*64079^(7/23) 2584000077217623 a001 3524578/167761*64079^(10/23) 2584000077219096 a001 7465176/51841*103682^(1/4) 2584000077221246 a001 39088169/439204*64079^(7/23) 2584000077227503 a001 63245986/271443*64079^(5/23) 2584000077229120 a001 9227465/103682*103682^(7/24) 2584000077230095 a001 14619165/101521*64079^(6/23) 2584000077233893 a001 165580141/103682*39603^(1/22) 2584000077234465 a001 133957148/930249*64079^(6/23) 2584000077235103 a001 701408733/4870847*64079^(6/23) 2584000077235196 a001 1836311903/12752043*64079^(6/23) 2584000077235209 a001 14930208/103681*64079^(6/23) 2584000077235211 a001 12586269025/87403803*64079^(6/23) 2584000077235211 a001 32951280099/228826127*64079^(6/23) 2584000077235211 a001 43133785636/299537289*64079^(6/23) 2584000077235212 a001 32264490531/224056801*64079^(6/23) 2584000077235212 a001 591286729879/4106118243*64079^(6/23) 2584000077235212 a001 774004377960/5374978561*64079^(6/23) 2584000077235212 a001 4052739537881/28143753123*64079^(6/23) 2584000077235212 a001 1515744265389/10525900321*64079^(6/23) 2584000077235212 a001 3278735159921/22768774562*64079^(6/23) 2584000077235212 a001 2504730781961/17393796001*64079^(6/23) 2584000077235212 a001 956722026041/6643838879*64079^(6/23) 2584000077235212 a001 182717648081/1268860318*64079^(6/23) 2584000077235212 a001 139583862445/969323029*64079^(6/23) 2584000077235212 a001 53316291173/370248451*64079^(6/23) 2584000077235212 a001 10182505537/70711162*64079^(6/23) 2584000077235212 a001 7778742049/54018521*64079^(6/23) 2584000077235218 a001 2971215073/20633239*64079^(6/23) 2584000077235253 a001 567451585/3940598*64079^(6/23) 2584000077235497 a001 433494437/3010349*64079^(6/23) 2584000077237166 a001 165580141/1149851*64079^(6/23) 2584000077239113 a001 5702887/103682*103682^(1/3) 2584000077244927 a001 5702887/167761*64079^(9/23) 2584000077248607 a001 31622993/219602*64079^(6/23) 2584000077249186 a001 1762289/51841*103682^(3/8) 2584000077250534 a001 3478759200/1346269 2584000077250819 a001 46368/167761*817138163596^(1/3) 2584000077250819 a001 46368/167761*(1/2+1/2*5^(1/2))^19 2584000077250819 a001 75025/103682*45537549124^(1/3) 2584000077250819 a001 75025/103682*(1/2+1/2*5^(1/2))^17 2584000077250819 a001 46368/167761*87403803^(1/2) 2584000077250827 a001 75025/103682*12752043^(1/2) 2584000077254864 a001 34111385/90481*64079^(4/23) 2584000077257456 a001 165580141/710647*64079^(5/23) 2584000077259051 a001 46347/2206*103682^(5/12) 2584000077261826 a001 433494437/1860498*64079^(5/23) 2584000077262464 a001 1134903170/4870847*64079^(5/23) 2584000077262557 a001 2971215073/12752043*64079^(5/23) 2584000077262570 a001 7778742049/33385282*64079^(5/23) 2584000077262572 a001 20365011074/87403803*64079^(5/23) 2584000077262573 a001 53316291173/228826127*64079^(5/23) 2584000077262573 a001 139583862445/599074578*64079^(5/23) 2584000077262573 a001 365435296162/1568397607*64079^(5/23) 2584000077262573 a001 956722026041/4106118243*64079^(5/23) 2584000077262573 a001 2504730781961/10749957122*64079^(5/23) 2584000077262573 a001 6557470319842/28143753123*64079^(5/23) 2584000077262573 a001 10610209857723/45537549124*64079^(5/23) 2584000077262573 a001 4052739537881/17393796001*64079^(5/23) 2584000077262573 a001 1548008755920/6643838879*64079^(5/23) 2584000077262573 a001 591286729879/2537720636*64079^(5/23) 2584000077262573 a001 225851433717/969323029*64079^(5/23) 2584000077262573 a001 86267571272/370248451*64079^(5/23) 2584000077262573 a001 63246219/271444*64079^(5/23) 2584000077262573 a001 12586269025/54018521*64079^(5/23) 2584000077262579 a001 4807526976/20633239*64079^(5/23) 2584000077262614 a001 1836311903/7881196*64079^(5/23) 2584000077262858 a001 701408733/3010349*64079^(5/23) 2584000077264527 a001 267914296/1149851*64079^(5/23) 2584000077268449 a001 28657/103682*64079^(19/23) 2584000077269461 a001 1346269/103682*103682^(11/24) 2584000077272310 a001 9227465/167761*64079^(8/23) 2584000077272494 a004 Fibonacci(26)*Lucas(25)/(1/2+sqrt(5)/2)^33 2584000077275968 a001 102334155/439204*64079^(5/23) 2584000077278445 a001 416020/51841*103682^(1/2) 2584000077282225 a001 165580141/271443*64079^(3/23) 2584000077284184 a001 121393/103682*103682^(2/3) 2584000077284817 a001 267914296/710647*64079^(4/23) 2584000077285740 a001 121393/710647*167761^(4/5) 2584000077285796 a001 267914296/167761*24476^(1/21) 2584000077289187 a001 233802911/620166*64079^(4/23) 2584000077289825 a001 1836311903/4870847*64079^(4/23) 2584000077289918 a001 1602508992/4250681*64079^(4/23) 2584000077289931 a001 12586269025/33385282*64079^(4/23) 2584000077289933 a001 10983760033/29134601*64079^(4/23) 2584000077289934 a001 86267571272/228826127*64079^(4/23) 2584000077289934 a001 267913919/710646*64079^(4/23) 2584000077289934 a001 591286729879/1568397607*64079^(4/23) 2584000077289934 a001 516002918640/1368706081*64079^(4/23) 2584000077289934 a001 4052739537881/10749957122*64079^(4/23) 2584000077289934 a001 3536736619241/9381251041*64079^(4/23) 2584000077289934 a001 6557470319842/17393796001*64079^(4/23) 2584000077289934 a001 2504730781961/6643838879*64079^(4/23) 2584000077289934 a001 956722026041/2537720636*64079^(4/23) 2584000077289934 a001 365435296162/969323029*64079^(4/23) 2584000077289934 a001 139583862445/370248451*64079^(4/23) 2584000077289934 a001 53316291173/141422324*64079^(4/23) 2584000077289935 a001 20365011074/54018521*64079^(4/23) 2584000077289940 a001 7778742049/20633239*64079^(4/23) 2584000077289975 a001 2971215073/7881196*64079^(4/23) 2584000077290219 a001 1134903170/3010349*64079^(4/23) 2584000077291161 a001 514229/103682*103682^(13/24) 2584000077291888 a001 433494437/1149851*64079^(4/23) 2584000077294106 a001 317811/103682*103682^(7/12) 2584000077299662 a001 14930352/167761*64079^(7/23) 2584000077302447 a004 Fibonacci(28)*Lucas(25)/(1/2+sqrt(5)/2)^35 2584000077303329 a001 165580141/439204*64079^(4/23) 2584000077306817 a004 Fibonacci(30)*Lucas(25)/(1/2+sqrt(5)/2)^37 2584000077307455 a004 Fibonacci(32)*Lucas(25)/(1/2+sqrt(5)/2)^39 2584000077307548 a004 Fibonacci(34)*Lucas(25)/(1/2+sqrt(5)/2)^41 2584000077307561 a004 Fibonacci(36)*Lucas(25)/(1/2+sqrt(5)/2)^43 2584000077307563 a004 Fibonacci(38)*Lucas(25)/(1/2+sqrt(5)/2)^45 2584000077307564 a004 Fibonacci(40)*Lucas(25)/(1/2+sqrt(5)/2)^47 2584000077307564 a004 Fibonacci(42)*Lucas(25)/(1/2+sqrt(5)/2)^49 2584000077307564 a004 Fibonacci(44)*Lucas(25)/(1/2+sqrt(5)/2)^51 2584000077307564 a004 Fibonacci(46)*Lucas(25)/(1/2+sqrt(5)/2)^53 2584000077307564 a004 Fibonacci(48)*Lucas(25)/(1/2+sqrt(5)/2)^55 2584000077307564 a004 Fibonacci(50)*Lucas(25)/(1/2+sqrt(5)/2)^57 2584000077307564 a004 Fibonacci(52)*Lucas(25)/(1/2+sqrt(5)/2)^59 2584000077307564 a004 Fibonacci(54)*Lucas(25)/(1/2+sqrt(5)/2)^61 2584000077307564 a004 Fibonacci(56)*Lucas(25)/(1/2+sqrt(5)/2)^63 2584000077307564 a004 Fibonacci(58)*Lucas(25)/(1/2+sqrt(5)/2)^65 2584000077307564 a004 Fibonacci(60)*Lucas(25)/(1/2+sqrt(5)/2)^67 2584000077307564 a004 Fibonacci(62)*Lucas(25)/(1/2+sqrt(5)/2)^69 2584000077307564 a004 Fibonacci(64)*Lucas(25)/(1/2+sqrt(5)/2)^71 2584000077307564 a004 Fibonacci(66)*Lucas(25)/(1/2+sqrt(5)/2)^73 2584000077307564 a004 Fibonacci(68)*Lucas(25)/(1/2+sqrt(5)/2)^75 2584000077307564 a004 Fibonacci(70)*Lucas(25)/(1/2+sqrt(5)/2)^77 2584000077307564 a004 Fibonacci(72)*Lucas(25)/(1/2+sqrt(5)/2)^79 2584000077307564 a004 Fibonacci(74)*Lucas(25)/(1/2+sqrt(5)/2)^81 2584000077307564 a004 Fibonacci(76)*Lucas(25)/(1/2+sqrt(5)/2)^83 2584000077307564 a004 Fibonacci(78)*Lucas(25)/(1/2+sqrt(5)/2)^85 2584000077307564 a004 Fibonacci(80)*Lucas(25)/(1/2+sqrt(5)/2)^87 2584000077307564 a004 Fibonacci(82)*Lucas(25)/(1/2+sqrt(5)/2)^89 2584000077307564 a004 Fibonacci(84)*Lucas(25)/(1/2+sqrt(5)/2)^91 2584000077307564 a004 Fibonacci(86)*Lucas(25)/(1/2+sqrt(5)/2)^93 2584000077307564 a004 Fibonacci(88)*Lucas(25)/(1/2+sqrt(5)/2)^95 2584000077307564 a004 Fibonacci(90)*Lucas(25)/(1/2+sqrt(5)/2)^97 2584000077307564 a004 Fibonacci(92)*Lucas(25)/(1/2+sqrt(5)/2)^99 2584000077307564 a004 Fibonacci(93)*Lucas(25)/(1/2+sqrt(5)/2)^100 2584000077307564 a004 Fibonacci(91)*Lucas(25)/(1/2+sqrt(5)/2)^98 2584000077307564 a004 Fibonacci(89)*Lucas(25)/(1/2+sqrt(5)/2)^96 2584000077307564 a004 Fibonacci(87)*Lucas(25)/(1/2+sqrt(5)/2)^94 2584000077307564 a004 Fibonacci(85)*Lucas(25)/(1/2+sqrt(5)/2)^92 2584000077307564 a004 Fibonacci(83)*Lucas(25)/(1/2+sqrt(5)/2)^90 2584000077307564 a004 Fibonacci(81)*Lucas(25)/(1/2+sqrt(5)/2)^88 2584000077307564 a004 Fibonacci(79)*Lucas(25)/(1/2+sqrt(5)/2)^86 2584000077307564 a004 Fibonacci(77)*Lucas(25)/(1/2+sqrt(5)/2)^84 2584000077307564 a004 Fibonacci(75)*Lucas(25)/(1/2+sqrt(5)/2)^82 2584000077307564 a004 Fibonacci(73)*Lucas(25)/(1/2+sqrt(5)/2)^80 2584000077307564 a004 Fibonacci(71)*Lucas(25)/(1/2+sqrt(5)/2)^78 2584000077307564 a004 Fibonacci(69)*Lucas(25)/(1/2+sqrt(5)/2)^76 2584000077307564 a004 Fibonacci(67)*Lucas(25)/(1/2+sqrt(5)/2)^74 2584000077307564 a004 Fibonacci(65)*Lucas(25)/(1/2+sqrt(5)/2)^72 2584000077307564 a004 Fibonacci(63)*Lucas(25)/(1/2+sqrt(5)/2)^70 2584000077307564 a004 Fibonacci(61)*Lucas(25)/(1/2+sqrt(5)/2)^68 2584000077307564 a004 Fibonacci(59)*Lucas(25)/(1/2+sqrt(5)/2)^66 2584000077307564 a004 Fibonacci(57)*Lucas(25)/(1/2+sqrt(5)/2)^64 2584000077307564 a004 Fibonacci(55)*Lucas(25)/(1/2+sqrt(5)/2)^62 2584000077307564 a004 Fibonacci(53)*Lucas(25)/(1/2+sqrt(5)/2)^60 2584000077307564 a004 Fibonacci(51)*Lucas(25)/(1/2+sqrt(5)/2)^58 2584000077307564 a001 2/75025*(1/2+1/2*5^(1/2))^43 2584000077307564 a004 Fibonacci(49)*Lucas(25)/(1/2+sqrt(5)/2)^56 2584000077307564 a004 Fibonacci(47)*Lucas(25)/(1/2+sqrt(5)/2)^54 2584000077307564 a004 Fibonacci(45)*Lucas(25)/(1/2+sqrt(5)/2)^52 2584000077307564 a004 Fibonacci(43)*Lucas(25)/(1/2+sqrt(5)/2)^50 2584000077307564 a004 Fibonacci(41)*Lucas(25)/(1/2+sqrt(5)/2)^48 2584000077307564 a004 Fibonacci(39)*Lucas(25)/(1/2+sqrt(5)/2)^46 2584000077307565 a004 Fibonacci(37)*Lucas(25)/(1/2+sqrt(5)/2)^44 2584000077307570 a004 Fibonacci(35)*Lucas(25)/(1/2+sqrt(5)/2)^42 2584000077307605 a004 Fibonacci(33)*Lucas(25)/(1/2+sqrt(5)/2)^40 2584000077307849 a004 Fibonacci(31)*Lucas(25)/(1/2+sqrt(5)/2)^38 2584000077308781 a001 102334155/103682*39603^(1/11) 2584000077309518 a004 Fibonacci(29)*Lucas(25)/(1/2+sqrt(5)/2)^36 2584000077309586 a001 267914296/271443*64079^(2/23) 2584000077311174 a001 514229/271443*167761^(3/5) 2584000077312178 a001 433494437/710647*64079^(3/23) 2584000077316548 a001 567451585/930249*64079^(3/23) 2584000077317186 a001 2971215073/4870847*64079^(3/23) 2584000077317279 a001 7778742049/12752043*64079^(3/23) 2584000077317292 a001 10182505537/16692641*64079^(3/23) 2584000077317294 a001 53316291173/87403803*64079^(3/23) 2584000077317295 a001 139583862445/228826127*64079^(3/23) 2584000077317295 a001 182717648081/299537289*64079^(3/23) 2584000077317295 a001 956722026041/1568397607*64079^(3/23) 2584000077317295 a001 2504730781961/4106118243*64079^(3/23) 2584000077317295 a001 3278735159921/5374978561*64079^(3/23) 2584000077317295 a001 10610209857723/17393796001*64079^(3/23) 2584000077317295 a001 4052739537881/6643838879*64079^(3/23) 2584000077317295 a001 1134903780/1860499*64079^(3/23) 2584000077317295 a001 591286729879/969323029*64079^(3/23) 2584000077317295 a001 225851433717/370248451*64079^(3/23) 2584000077317295 a001 21566892818/35355581*64079^(3/23) 2584000077317296 a001 32951280099/54018521*64079^(3/23) 2584000077317301 a001 1144206275/1875749*64079^(3/23) 2584000077317336 a001 1201881744/1970299*64079^(3/23) 2584000077317580 a001 1836311903/3010349*64079^(3/23) 2584000077319249 a001 701408733/1149851*64079^(3/23) 2584000077320063 a001 105937/620166*167761^(4/5) 2584000077320308 a001 121393/271443*439204^(2/3) 2584000077320959 a004 Fibonacci(27)*Lucas(25)/(1/2+sqrt(5)/2)^34 2584000077322634 a001 98209/51841*103682^(5/8) 2584000077323171 a001 46368/64079*64079^(17/23) 2584000077324246 a001 15456/90481*103682^(5/6) 2584000077325071 a001 832040/4870847*167761^(4/5) 2584000077325802 a001 726103/4250681*167761^(4/5) 2584000077325908 a001 5702887/33385282*167761^(4/5) 2584000077325924 a001 4976784/29134601*167761^(4/5) 2584000077325926 a001 39088169/228826127*167761^(4/5) 2584000077325926 a001 34111385/199691526*167761^(4/5) 2584000077325927 a001 267914296/1568397607*167761^(4/5) 2584000077325927 a001 233802911/1368706081*167761^(4/5) 2584000077325927 a001 1836311903/10749957122*167761^(4/5) 2584000077325927 a001 1602508992/9381251041*167761^(4/5) 2584000077325927 a001 12586269025/73681302247*167761^(4/5) 2584000077325927 a001 10983760033/64300051206*167761^(4/5) 2584000077325927 a001 86267571272/505019158607*167761^(4/5) 2584000077325927 a001 75283811239/440719107401*167761^(4/5) 2584000077325927 a001 2504730781961/14662949395604*167761^(4/5) 2584000077325927 a001 139583862445/817138163596*167761^(4/5) 2584000077325927 a001 53316291173/312119004989*167761^(4/5) 2584000077325927 a001 20365011074/119218851371*167761^(4/5) 2584000077325927 a001 7778742049/45537549124*167761^(4/5) 2584000077325927 a001 2971215073/17393796001*167761^(4/5) 2584000077325927 a001 1134903170/6643838879*167761^(4/5) 2584000077325927 a001 433494437/2537720636*167761^(4/5) 2584000077325927 a001 165580141/969323029*167761^(4/5) 2584000077325927 a001 63245986/370248451*167761^(4/5) 2584000077325928 a001 24157817/141422324*167761^(4/5) 2584000077325933 a001 9227465/54018521*167761^(4/5) 2584000077325974 a001 3524578/20633239*167761^(4/5) 2584000077326253 a001 1346269/7881196*167761^(4/5) 2584000077327027 a001 24157817/167761*64079^(6/23) 2584000077327566 a001 5702887/271443*167761^(2/5) 2584000077328166 a001 514229/3010349*167761^(4/5) 2584000077329215 a001 121393/271443*7881196^(6/11) 2584000077329238 a001 121393/271443*141422324^(6/13) 2584000077329238 a001 121393/271443*2537720636^(2/5) 2584000077329238 a001 121393/271443*45537549124^(6/17) 2584000077329238 a001 121393/271443*14662949395604^(2/7) 2584000077329238 a001 121393/271443*(1/2+1/2*5^(1/2))^18 2584000077329238 a001 121393/271443*192900153618^(1/3) 2584000077329238 a001 121393/271443*10749957122^(3/8) 2584000077329238 a001 121393/271443*4106118243^(9/23) 2584000077329238 a001 121393/271443*1568397607^(9/22) 2584000077329238 a001 121393/271443*599074578^(3/7) 2584000077329238 a001 121393/271443*228826127^(9/20) 2584000077329238 a001 121393/271443*87403803^(9/19) 2584000077329239 a001 121393/271443*33385282^(1/2) 2584000077329246 a001 121393/271443*12752043^(9/17) 2584000077329254 a001 14736260449/5702887 2584000077329299 a001 121393/271443*4870847^(9/16) 2584000077329686 a001 121393/271443*1860498^(3/5) 2584000077330690 a001 66978574/109801*64079^(3/23) 2584000077332527 a001 121393/271443*710647^(9/14) 2584000077336947 a001 433494437/271443*64079^(1/23) 2584000077339458 a001 1346269/710647*167761^(3/5) 2584000077339539 a001 701408733/710647*64079^(2/23) 2584000077341276 a001 196418/1149851*167761^(4/5) 2584000077343584 a001 1762289/930249*167761^(3/5) 2584000077343909 a001 1836311903/1860498*64079^(2/23) 2584000077344187 a001 9227465/4870847*167761^(3/5) 2584000077344274 a001 24157817/12752043*167761^(3/5) 2584000077344287 a001 31622993/16692641*167761^(3/5) 2584000077344289 a001 165580141/87403803*167761^(3/5) 2584000077344289 a001 433494437/228826127*167761^(3/5) 2584000077344289 a001 567451585/299537289*167761^(3/5) 2584000077344289 a001 2971215073/1568397607*167761^(3/5) 2584000077344289 a001 7778742049/4106118243*167761^(3/5) 2584000077344289 a001 10182505537/5374978561*167761^(3/5) 2584000077344289 a001 53316291173/28143753123*167761^(3/5) 2584000077344289 a001 139583862445/73681302247*167761^(3/5) 2584000077344289 a001 182717648081/96450076809*167761^(3/5) 2584000077344289 a001 956722026041/505019158607*167761^(3/5) 2584000077344289 a001 10610209857723/5600748293801*167761^(3/5) 2584000077344289 a001 591286729879/312119004989*167761^(3/5) 2584000077344289 a001 225851433717/119218851371*167761^(3/5) 2584000077344289 a001 21566892818/11384387281*167761^(3/5) 2584000077344289 a001 32951280099/17393796001*167761^(3/5) 2584000077344289 a001 12586269025/6643838879*167761^(3/5) 2584000077344289 a001 1201881744/634430159*167761^(3/5) 2584000077344289 a001 1836311903/969323029*167761^(3/5) 2584000077344289 a001 701408733/370248451*167761^(3/5) 2584000077344290 a001 66978574/35355581*167761^(3/5) 2584000077344290 a001 102334155/54018521*167761^(3/5) 2584000077344295 a001 39088169/20633239*167761^(3/5) 2584000077344329 a001 3732588/1970299*167761^(3/5) 2584000077344547 a001 4807526976/4870847*64079^(2/23) 2584000077344559 a001 5702887/3010349*167761^(3/5) 2584000077344640 a001 12586269025/12752043*64079^(2/23) 2584000077344654 a001 32951280099/33385282*64079^(2/23) 2584000077344655 a001 86267571272/87403803*64079^(2/23) 2584000077344656 a001 225851433717/228826127*64079^(2/23) 2584000077344656 a001 591286729879/599074578*64079^(2/23) 2584000077344656 a001 1548008755920/1568397607*64079^(2/23) 2584000077344656 a001 4052739537881/4106118243*64079^(2/23) 2584000077344656 a001 4807525989/4870846*64079^(2/23) 2584000077344656 a001 6557470319842/6643838879*64079^(2/23) 2584000077344656 a001 2504730781961/2537720636*64079^(2/23) 2584000077344656 a001 956722026041/969323029*64079^(2/23) 2584000077344656 a001 365435296162/370248451*64079^(2/23) 2584000077344656 a001 139583862445/141422324*64079^(2/23) 2584000077344657 a001 53316291173/54018521*64079^(2/23) 2584000077344662 a001 20365011074/20633239*64079^(2/23) 2584000077344697 a001 7778742049/7881196*64079^(2/23) 2584000077344941 a001 2971215073/3010349*64079^(2/23) 2584000077345945 a001 63245986/271443*167761^(1/5) 2584000077346135 a001 2178309/1149851*167761^(3/5) 2584000077346610 a001 1134903170/1149851*64079^(2/23) 2584000077350912 a004 Fibonacci(26)*Lucas(27)/(1/2+sqrt(5)/2)^35 2584000077352292 a001 121393/4870847*439204^(8/9) 2584000077353517 a001 121393/271443*271443^(9/13) 2584000077354387 a001 39088169/167761*64079^(5/23) 2584000077355844 a001 121393/1149851*439204^(7/9) 2584000077356938 a001 208010/109801*167761^(3/5) 2584000077357533 a001 14930352/710647*167761^(2/5) 2584000077358051 a001 433494437/439204*64079^(2/23) 2584000077358246 a001 726103/90481*439204^(4/9) 2584000077358820 a001 514229/271443*439204^(5/9) 2584000077359188 a001 121393/710647*20633239^(4/7) 2584000077359191 a001 121393/710647*2537720636^(4/9) 2584000077359191 a001 121393/710647*(1/2+1/2*5^(1/2))^20 2584000077359191 a001 121393/710647*23725150497407^(5/16) 2584000077359191 a001 121393/710647*505019158607^(5/14) 2584000077359191 a001 121393/710647*73681302247^(5/13) 2584000077359191 a001 105937/90481*(1/2+1/2*5^(1/2))^16 2584000077359191 a001 105937/90481*23725150497407^(1/4) 2584000077359191 a001 105937/90481*73681302247^(4/13) 2584000077359191 a001 121393/710647*28143753123^(2/5) 2584000077359191 a001 105937/90481*10749957122^(1/3) 2584000077359191 a001 121393/710647*10749957122^(5/12) 2584000077359191 a001 105937/90481*4106118243^(8/23) 2584000077359191 a001 121393/710647*4106118243^(10/23) 2584000077359191 a001 105937/90481*1568397607^(4/11) 2584000077359191 a001 121393/710647*1568397607^(5/11) 2584000077359191 a001 105937/90481*599074578^(8/21) 2584000077359191 a001 121393/710647*599074578^(10/21) 2584000077359191 a001 105937/90481*228826127^(2/5) 2584000077359191 a001 121393/710647*228826127^(1/2) 2584000077359192 a001 105937/90481*87403803^(8/19) 2584000077359192 a001 121393/710647*87403803^(10/19) 2584000077359192 a001 105937/90481*33385282^(4/9) 2584000077359193 a001 121393/710647*33385282^(5/9) 2584000077359194 a001 12860010241/4976784 2584000077359199 a001 105937/90481*12752043^(8/17) 2584000077359201 a001 121393/710647*12752043^(10/17) 2584000077359246 a001 105937/90481*4870847^(1/2) 2584000077359259 a001 121393/710647*4870847^(5/8) 2584000077359590 a001 105937/90481*1860498^(8/15) 2584000077359689 a001 121393/710647*1860498^(2/3) 2584000077359849 a001 9227465/271443*439204^(1/3) 2584000077361331 a001 39088169/271443*439204^(2/9) 2584000077361905 a001 39088169/1860498*167761^(2/5) 2584000077362115 a001 105937/90481*710647^(4/7) 2584000077362354 a004 Fibonacci(26)*Lucas(29)/(1/2+sqrt(5)/2)^37 2584000077362543 a001 102334155/4870847*167761^(2/5) 2584000077362636 a001 267914296/12752043*167761^(2/5) 2584000077362650 a001 701408733/33385282*167761^(2/5) 2584000077362652 a001 1836311903/87403803*167761^(2/5) 2584000077362652 a001 102287808/4868641*167761^(2/5) 2584000077362652 a001 12586269025/599074578*167761^(2/5) 2584000077362652 a001 32951280099/1568397607*167761^(2/5) 2584000077362652 a001 86267571272/4106118243*167761^(2/5) 2584000077362652 a001 225851433717/10749957122*167761^(2/5) 2584000077362652 a001 591286729879/28143753123*167761^(2/5) 2584000077362652 a001 1548008755920/73681302247*167761^(2/5) 2584000077362652 a001 4052739537881/192900153618*167761^(2/5) 2584000077362652 a001 225749145909/10745088481*167761^(2/5) 2584000077362652 a001 6557470319842/312119004989*167761^(2/5) 2584000077362652 a001 2504730781961/119218851371*167761^(2/5) 2584000077362652 a001 956722026041/45537549124*167761^(2/5) 2584000077362652 a001 365435296162/17393796001*167761^(2/5) 2584000077362652 a001 139583862445/6643838879*167761^(2/5) 2584000077362652 a001 53316291173/2537720636*167761^(2/5) 2584000077362652 a001 20365011074/969323029*167761^(2/5) 2584000077362652 a001 7778742049/370248451*167761^(2/5) 2584000077362652 a001 2971215073/141422324*167761^(2/5) 2584000077362653 a001 1134903170/54018521*167761^(2/5) 2584000077362658 a001 433494437/20633239*167761^(2/5) 2584000077362694 a001 165580141/7881196*167761^(2/5) 2584000077362820 a001 165580141/271443*439204^(1/9) 2584000077362846 a001 121393/710647*710647^(5/7) 2584000077362938 a001 63245986/3010349*167761^(2/5) 2584000077363534 a001 121393/1860498*7881196^(2/3) 2584000077363559 a001 832040/271443*20633239^(2/5) 2584000077363562 a001 832040/271443*17393796001^(2/7) 2584000077363562 a001 121393/1860498*312119004989^(2/5) 2584000077363562 a001 121393/1860498*(1/2+1/2*5^(1/2))^22 2584000077363562 a001 832040/271443*14662949395604^(2/9) 2584000077363562 a001 832040/271443*(1/2+1/2*5^(1/2))^14 2584000077363562 a001 832040/271443*10749957122^(7/24) 2584000077363562 a001 121393/1860498*10749957122^(11/24) 2584000077363562 a001 832040/271443*4106118243^(7/23) 2584000077363562 a001 121393/1860498*4106118243^(11/23) 2584000077363562 a001 832040/271443*1568397607^(7/22) 2584000077363562 a001 121393/1860498*1568397607^(1/2) 2584000077363562 a001 832040/271443*599074578^(1/3) 2584000077363562 a001 121393/1860498*599074578^(11/21) 2584000077363562 a001 832040/271443*228826127^(7/20) 2584000077363562 a001 121393/1860498*228826127^(11/20) 2584000077363562 a001 832040/271443*87403803^(7/19) 2584000077363562 a001 121393/1860498*87403803^(11/19) 2584000077363562 a001 101003831720/39088169 2584000077363562 a001 832040/271443*33385282^(7/18) 2584000077363563 a001 121393/1860498*33385282^(11/18) 2584000077363568 a001 832040/271443*12752043^(7/17) 2584000077363572 a001 121393/1860498*12752043^(11/17) 2584000077363609 a001 832040/271443*4870847^(7/16) 2584000077363636 a001 121393/1860498*4870847^(11/16) 2584000077363910 a001 832040/271443*1860498^(7/15) 2584000077364023 a004 Fibonacci(26)*Lucas(31)/(1/2+sqrt(5)/2)^39 2584000077364109 a001 121393/1860498*1860498^(11/15) 2584000077364169 a001 121393/4870847*7881196^(8/11) 2584000077364184 a001 726103/90481*7881196^(4/11) 2584000077364199 a001 121393/4870847*141422324^(8/13) 2584000077364199 a001 726103/90481*141422324^(4/13) 2584000077364199 a001 121393/4870847*2537720636^(8/15) 2584000077364199 a001 726103/90481*2537720636^(4/15) 2584000077364199 a001 121393/4870847*45537549124^(8/17) 2584000077364199 a001 121393/4870847*14662949395604^(8/21) 2584000077364199 a001 121393/4870847*(1/2+1/2*5^(1/2))^24 2584000077364199 a001 121393/4870847*192900153618^(4/9) 2584000077364199 a001 726103/90481*45537549124^(4/17) 2584000077364199 a001 121393/4870847*73681302247^(6/13) 2584000077364199 a001 726103/90481*817138163596^(4/19) 2584000077364199 a001 726103/90481*14662949395604^(4/21) 2584000077364199 a001 726103/90481*(1/2+1/2*5^(1/2))^12 2584000077364199 a001 726103/90481*73681302247^(3/13) 2584000077364199 a001 726103/90481*10749957122^(1/4) 2584000077364199 a001 121393/4870847*10749957122^(1/2) 2584000077364199 a001 726103/90481*4106118243^(6/23) 2584000077364199 a001 121393/4870847*4106118243^(12/23) 2584000077364199 a001 726103/90481*1568397607^(3/11) 2584000077364199 a001 121393/4870847*1568397607^(6/11) 2584000077364199 a001 726103/90481*599074578^(2/7) 2584000077364199 a001 121393/4870847*599074578^(4/7) 2584000077364199 a001 726103/90481*228826127^(3/10) 2584000077364199 a001 121393/4870847*228826127^(3/5) 2584000077364199 a001 12591974497/4873055 2584000077364199 a001 726103/90481*87403803^(6/19) 2584000077364199 a001 121393/4870847*87403803^(12/19) 2584000077364200 a001 726103/90481*33385282^(1/3) 2584000077364201 a001 121393/4870847*33385282^(2/3) 2584000077364205 a001 726103/90481*12752043^(6/17) 2584000077364210 a001 121393/4870847*12752043^(12/17) 2584000077364240 a001 726103/90481*4870847^(3/8) 2584000077364266 a004 Fibonacci(26)*Lucas(33)/(1/2+sqrt(5)/2)^41 2584000077364270 a001 121393/87403803*7881196^(10/11) 2584000077364280 a001 121393/20633239*7881196^(9/11) 2584000077364281 a001 121393/4870847*4870847^(3/4) 2584000077364290 a001 5702887/271443*20633239^(2/7) 2584000077364292 a001 121393/12752043*141422324^(2/3) 2584000077364292 a001 5702887/271443*2537720636^(2/9) 2584000077364292 a001 121393/12752043*(1/2+1/2*5^(1/2))^26 2584000077364292 a001 121393/12752043*73681302247^(1/2) 2584000077364292 a001 5702887/271443*312119004989^(2/11) 2584000077364292 a001 5702887/271443*(1/2+1/2*5^(1/2))^10 2584000077364292 a001 5702887/271443*28143753123^(1/5) 2584000077364292 a001 5702887/271443*10749957122^(5/24) 2584000077364292 a001 121393/12752043*10749957122^(13/24) 2584000077364292 a001 5702887/271443*4106118243^(5/23) 2584000077364292 a001 121393/12752043*4106118243^(13/23) 2584000077364292 a001 5702887/271443*1568397607^(5/22) 2584000077364292 a001 121393/12752043*1568397607^(13/22) 2584000077364292 a001 5702887/271443*599074578^(5/21) 2584000077364292 a001 121393/12752043*599074578^(13/21) 2584000077364292 a001 692290561591/267914296 2584000077364292 a001 5702887/271443*228826127^(1/4) 2584000077364292 a001 121393/12752043*228826127^(13/20) 2584000077364292 a001 5702887/271443*87403803^(5/19) 2584000077364292 a001 121393/12752043*87403803^(13/19) 2584000077364293 a001 5702887/271443*33385282^(5/18) 2584000077364294 a001 121393/12752043*33385282^(13/18) 2584000077364297 a001 5702887/271443*12752043^(5/17) 2584000077364300 a001 39088169/271443*7881196^(2/11) 2584000077364301 a001 121393/33385282*20633239^(4/5) 2584000077364302 a004 Fibonacci(26)*Lucas(35)/(1/2+sqrt(5)/2)^43 2584000077364302 a001 121393/87403803*20633239^(6/7) 2584000077364303 a001 9227465/271443*7881196^(3/11) 2584000077364304 a001 165580141/271443*7881196^(1/11) 2584000077364304 a001 121393/12752043*12752043^(13/17) 2584000077364306 a001 121393/33385282*17393796001^(4/7) 2584000077364306 a001 121393/33385282*14662949395604^(4/9) 2584000077364306 a001 121393/33385282*(1/2+1/2*5^(1/2))^28 2584000077364306 a001 121393/33385282*73681302247^(7/13) 2584000077364306 a001 4976784/90481*(1/2+1/2*5^(1/2))^8 2584000077364306 a001 4976784/90481*23725150497407^(1/8) 2584000077364306 a001 4976784/90481*73681302247^(2/13) 2584000077364306 a001 4976784/90481*10749957122^(1/6) 2584000077364306 a001 121393/33385282*10749957122^(7/12) 2584000077364306 a001 4976784/90481*4106118243^(4/23) 2584000077364306 a001 121393/33385282*4106118243^(14/23) 2584000077364306 a001 4976784/90481*1568397607^(2/11) 2584000077364306 a001 121393/33385282*1568397607^(7/11) 2584000077364306 a001 604146740112/233802911 2584000077364306 a001 4976784/90481*599074578^(4/21) 2584000077364306 a001 121393/33385282*599074578^(2/3) 2584000077364306 a001 4976784/90481*228826127^(1/5) 2584000077364306 a001 121393/33385282*228826127^(7/10) 2584000077364306 a001 4976784/90481*87403803^(4/19) 2584000077364306 a001 121393/33385282*87403803^(14/19) 2584000077364306 a001 4976784/90481*33385282^(2/9) 2584000077364307 a004 Fibonacci(26)*Lucas(37)/(1/2+sqrt(5)/2)^45 2584000077364307 a001 63245986/271443*20633239^(1/7) 2584000077364308 a001 121393/33385282*33385282^(7/9) 2584000077364308 a001 121393/87403803*141422324^(10/13) 2584000077364308 a001 39088169/271443*141422324^(2/13) 2584000077364308 a001 121393/87403803*2537720636^(2/3) 2584000077364308 a001 39088169/271443*2537720636^(2/15) 2584000077364308 a001 121393/87403803*45537549124^(10/17) 2584000077364308 a001 121393/87403803*312119004989^(6/11) 2584000077364308 a001 121393/87403803*14662949395604^(10/21) 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^30/Lucas(38) 2584000077364308 a001 121393/87403803*192900153618^(5/9) 2584000077364308 a001 39088169/271443*45537549124^(2/17) 2584000077364308 a001 39088169/271443*14662949395604^(2/21) 2584000077364308 a001 39088169/271443*(1/2+1/2*5^(1/2))^6 2584000077364308 a001 121393/87403803*28143753123^(3/5) 2584000077364308 a001 39088169/271443*10749957122^(1/8) 2584000077364308 a001 121393/87403803*10749957122^(5/8) 2584000077364308 a001 39088169/271443*4106118243^(3/23) 2584000077364308 a001 121393/87403803*4106118243^(15/23) 2584000077364308 a001 39088169/271443*1568397607^(3/22) 2584000077364308 a001 4745030099417/1836311903 2584000077364308 a001 121393/87403803*1568397607^(15/22) 2584000077364308 a001 39088169/271443*599074578^(1/7) 2584000077364308 a001 121393/87403803*599074578^(5/7) 2584000077364308 a001 39088169/271443*228826127^(3/20) 2584000077364308 a001 24157817/271443*20633239^(1/5) 2584000077364308 a001 121393/87403803*228826127^(3/4) 2584000077364308 a001 39088169/271443*87403803^(3/19) 2584000077364308 a004 Fibonacci(26)*Lucas(39)/(1/2+sqrt(5)/2)^47 2584000077364308 a001 121393/1568397607*141422324^(12/13) 2584000077364308 a001 121393/370248451*141422324^(11/13) 2584000077364308 a001 121393/87403803*87403803^(15/19) 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^32/Lucas(40) 2584000077364308 a001 121393/228826127*23725150497407^(1/2) 2584000077364308 a001 121393/228826127*73681302247^(8/13) 2584000077364308 a001 34111385/90481*(1/2+1/2*5^(1/2))^4 2584000077364308 a001 34111385/90481*23725150497407^(1/16) 2584000077364308 a001 34111385/90481*73681302247^(1/13) 2584000077364308 a001 34111385/90481*10749957122^(1/12) 2584000077364308 a001 34111385/90481*4106118243^(2/23) 2584000077364308 a001 121393/228826127*10749957122^(2/3) 2584000077364308 a001 591554765615/228929856 2584000077364308 a001 34111385/90481*1568397607^(1/11) 2584000077364308 a001 121393/228826127*4106118243^(16/23) 2584000077364308 a001 34111385/90481*599074578^(2/21) 2584000077364308 a001 121393/228826127*1568397607^(8/11) 2584000077364308 a001 34111385/90481*228826127^(1/10) 2584000077364308 a001 121393/228826127*599074578^(16/21) 2584000077364308 a004 Fibonacci(26)*Lucas(41)/(1/2+sqrt(5)/2)^49 2584000077364308 a001 34111385/90481*87403803^(2/19) 2584000077364308 a001 121393/228826127*228826127^(4/5) 2584000077364308 a001 121393/599074578*45537549124^(2/3) 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^34/Lucas(42) 2584000077364308 a001 267914296/271443*(1/2+1/2*5^(1/2))^2 2584000077364308 a001 267914296/271443*10749957122^(1/24) 2584000077364308 a001 32522920134328/12586269025 2584000077364308 a001 267914296/271443*4106118243^(1/23) 2584000077364308 a001 121393/599074578*10749957122^(17/24) 2584000077364308 a001 267914296/271443*1568397607^(1/22) 2584000077364308 a001 121393/599074578*4106118243^(17/23) 2584000077364308 a001 267914296/271443*599074578^(1/21) 2584000077364308 a001 121393/599074578*1568397607^(17/22) 2584000077364308 a001 267914296/271443*228826127^(1/20) 2584000077364308 a004 Fibonacci(26)*Lucas(43)/(1/2+sqrt(5)/2)^51 2584000077364308 a001 121393/1568397607*2537720636^(4/5) 2584000077364308 a001 121393/599074578*599074578^(17/21) 2584000077364308 a001 121393/1568397607*45537549124^(12/17) 2584000077364308 a001 121393/1568397607*14662949395604^(4/7) 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^36/Lucas(44) 2584000077364308 a001 121393/1568397607*505019158607^(9/14) 2584000077364308 a001 121393/1568397607*192900153618^(2/3) 2584000077364308 a001 121393/1568397607*73681302247^(9/13) 2584000077364308 a001 233802911/90481 2584000077364308 a001 121393/1568397607*10749957122^(3/4) 2584000077364308 a001 121393/1568397607*4106118243^(18/23) 2584000077364308 a004 Fibonacci(26)*Lucas(45)/(1/2+sqrt(5)/2)^53 2584000077364308 a001 121393/10749957122*2537720636^(8/9) 2584000077364308 a001 121393/28143753123*2537720636^(14/15) 2584000077364308 a001 121393/6643838879*2537720636^(13/15) 2584000077364308 a001 121393/1568397607*1568397607^(9/11) 2584000077364308 a001 121393/4106118243*817138163596^(2/3) 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^38/Lucas(46) 2584000077364308 a001 222915410840879/86267571272 2584000077364308 a004 Fibonacci(46)/Lucas(26)/(1/2+sqrt(5)/2)^2 2584000077364308 a001 121393/4106118243*10749957122^(19/24) 2584000077364308 a004 Fibonacci(26)*Lucas(47)/(1/2+sqrt(5)/2)^55 2584000077364308 a001 121393/4106118243*4106118243^(19/23) 2584000077364308 a001 121393/10749957122*312119004989^(8/11) 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^40/Lucas(48) 2584000077364308 a001 121393/10749957122*23725150497407^(5/8) 2584000077364308 a001 27790482009408/10754830177 2584000077364308 a001 121393/10749957122*73681302247^(10/13) 2584000077364308 a004 Fibonacci(48)/Lucas(26)/(1/2+sqrt(5)/2)^4 2584000077364308 a001 121393/10749957122*28143753123^(4/5) 2584000077364308 a001 121393/28143753123*17393796001^(6/7) 2584000077364308 a004 Fibonacci(26)*Lucas(49)/(1/2+sqrt(5)/2)^57 2584000077364308 a001 121393/28143753123*45537549124^(14/17) 2584000077364308 a001 121393/10749957122*10749957122^(5/6) 2584000077364308 a001 121393/28143753123*817138163596^(14/19) 2584000077364308 a001 121393/28143753123*14662949395604^(2/3) 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^42/Lucas(50) 2584000077364308 a001 121393/28143753123*192900153618^(7/9) 2584000077364308 a004 Fibonacci(50)/Lucas(26)/(1/2+sqrt(5)/2)^6 2584000077364308 a004 Fibonacci(26)*Lucas(51)/(1/2+sqrt(5)/2)^59 2584000077364308 a001 121393/505019158607*45537549124^(16/17) 2584000077364308 a001 121393/119218851371*45537549124^(15/17) 2584000077364308 a001 121393/73681302247*312119004989^(4/5) 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^44/Lucas(52) 2584000077364308 a001 121393/73681302247*23725150497407^(11/16) 2584000077364308 a004 Fibonacci(26)*Lucas(53)/(1/2+sqrt(5)/2)^61 2584000077364308 a001 121393/73681302247*73681302247^(11/13) 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^46/Lucas(54) 2584000077364308 a001 10472279279421896/4052739537881 2584000077364308 a004 Fibonacci(26)*Lucas(55)/(1/2+sqrt(5)/2)^63 2584000077364308 a001 121393/1322157322203*312119004989^(10/11) 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^48/Lucas(56) 2584000077364308 a004 Fibonacci(26)*Lucas(57)/(1/2+sqrt(5)/2)^65 2584000077364308 a001 121393/2139295485799*817138163596^(17/19) 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^50/Lucas(58) 2584000077364308 a001 121393/1322157322203*3461452808002^(5/6) 2584000077364308 a004 Fibonacci(26)*Lucas(59)/(1/2+sqrt(5)/2)^67 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^52/Lucas(60) 2584000077364308 a004 Fibonacci(26)*Lucas(61)/(1/2+sqrt(5)/2)^69 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^54/Lucas(62) 2584000077364308 a004 Fibonacci(26)*Lucas(63)/(1/2+sqrt(5)/2)^71 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^56/Lucas(64) 2584000077364308 a004 Fibonacci(26)*Lucas(65)/(1/2+sqrt(5)/2)^73 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^58/Lucas(66) 2584000077364308 a004 Fibonacci(26)*Lucas(67)/(1/2+sqrt(5)/2)^75 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^60/Lucas(68) 2584000077364308 a004 Fibonacci(26)*Lucas(69)/(1/2+sqrt(5)/2)^77 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^62/Lucas(70) 2584000077364308 a004 Fibonacci(26)*Lucas(71)/(1/2+sqrt(5)/2)^79 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^64/Lucas(72) 2584000077364308 a004 Fibonacci(26)*Lucas(73)/(1/2+sqrt(5)/2)^81 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^66/Lucas(74) 2584000077364308 a004 Fibonacci(26)*Lucas(75)/(1/2+sqrt(5)/2)^83 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^68/Lucas(76) 2584000077364308 a004 Fibonacci(26)*Lucas(77)/(1/2+sqrt(5)/2)^85 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^70/Lucas(78) 2584000077364308 a004 Fibonacci(26)*Lucas(79)/(1/2+sqrt(5)/2)^87 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^72/Lucas(80) 2584000077364308 a004 Fibonacci(26)*Lucas(81)/(1/2+sqrt(5)/2)^89 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^74/Lucas(82) 2584000077364308 a004 Fibonacci(26)*Lucas(83)/(1/2+sqrt(5)/2)^91 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^76/Lucas(84) 2584000077364308 a004 Fibonacci(26)*Lucas(85)/(1/2+sqrt(5)/2)^93 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^78/Lucas(86) 2584000077364308 a004 Fibonacci(26)*Lucas(87)/(1/2+sqrt(5)/2)^95 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^80/Lucas(88) 2584000077364308 a004 Fibonacci(26)*Lucas(89)/(1/2+sqrt(5)/2)^97 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^82/Lucas(90) 2584000077364308 a004 Fibonacci(26)*Lucas(91)/(1/2+sqrt(5)/2)^99 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^84/Lucas(92) 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^86/Lucas(94) 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^88/Lucas(96) 2584000077364308 a004 Fibonacci(13)*Lucas(13)/(1/2+sqrt(5)/2)^8 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^90/Lucas(98) 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^91/Lucas(99) 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^92/Lucas(100) 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^89/Lucas(97) 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^87/Lucas(95) 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^85/Lucas(93) 2584000077364308 a004 Fibonacci(26)*Lucas(92)/(1/2+sqrt(5)/2)^100 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^83/Lucas(91) 2584000077364308 a004 Fibonacci(26)*Lucas(90)/(1/2+sqrt(5)/2)^98 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^81/Lucas(89) 2584000077364308 a004 Fibonacci(26)*Lucas(88)/(1/2+sqrt(5)/2)^96 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^79/Lucas(87) 2584000077364308 a004 Fibonacci(26)*Lucas(86)/(1/2+sqrt(5)/2)^94 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^77/Lucas(85) 2584000077364308 a004 Fibonacci(26)*Lucas(84)/(1/2+sqrt(5)/2)^92 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^75/Lucas(83) 2584000077364308 a004 Fibonacci(26)*Lucas(82)/(1/2+sqrt(5)/2)^90 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^73/Lucas(81) 2584000077364308 a004 Fibonacci(26)*Lucas(80)/(1/2+sqrt(5)/2)^88 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^71/Lucas(79) 2584000077364308 a004 Fibonacci(26)*Lucas(78)/(1/2+sqrt(5)/2)^86 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^69/Lucas(77) 2584000077364308 a004 Fibonacci(26)*Lucas(76)/(1/2+sqrt(5)/2)^84 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^67/Lucas(75) 2584000077364308 a004 Fibonacci(26)*Lucas(74)/(1/2+sqrt(5)/2)^82 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^65/Lucas(73) 2584000077364308 a004 Fibonacci(26)*Lucas(72)/(1/2+sqrt(5)/2)^80 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^63/Lucas(71) 2584000077364308 a004 Fibonacci(26)*Lucas(70)/(1/2+sqrt(5)/2)^78 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^61/Lucas(69) 2584000077364308 a004 Fibonacci(26)*Lucas(68)/(1/2+sqrt(5)/2)^76 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^59/Lucas(67) 2584000077364308 a004 Fibonacci(26)*Lucas(66)/(1/2+sqrt(5)/2)^74 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^57/Lucas(65) 2584000077364308 a004 Fibonacci(26)*Lucas(64)/(1/2+sqrt(5)/2)^72 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^55/Lucas(63) 2584000077364308 a004 Fibonacci(26)*Lucas(62)/(1/2+sqrt(5)/2)^70 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^53/Lucas(61) 2584000077364308 a004 Fibonacci(26)*Lucas(60)/(1/2+sqrt(5)/2)^68 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^51/Lucas(59) 2584000077364308 a004 Fibonacci(26)*Lucas(58)/(1/2+sqrt(5)/2)^66 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^49/Lucas(57) 2584000077364308 a004 Fibonacci(26)*Lucas(56)/(1/2+sqrt(5)/2)^64 2584000077364308 a001 121393/817138163596*505019158607^(7/8) 2584000077364308 a001 16944503813785885/6557470319842 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^47/Lucas(55) 2584000077364308 a001 121393/505019158607*192900153618^(8/9) 2584000077364308 a001 121393/2139295485799*192900153618^(17/18) 2584000077364308 a004 Fibonacci(26)*Lucas(54)/(1/2+sqrt(5)/2)^62 2584000077364308 a001 121393/119218851371*312119004989^(9/11) 2584000077364308 a001 121393/119218851371*14662949395604^(5/7) 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^45/Lucas(53) 2584000077364308 a001 121393/119218851371*192900153618^(5/6) 2584000077364308 a004 Fibonacci(54)/Lucas(26)/(1/2+sqrt(5)/2)^10 2584000077364308 a001 121393/505019158607*73681302247^(12/13) 2584000077364308 a004 Fibonacci(56)/Lucas(26)/(1/2+sqrt(5)/2)^12 2584000077364308 a004 Fibonacci(58)/Lucas(26)/(1/2+sqrt(5)/2)^14 2584000077364308 a004 Fibonacci(60)/Lucas(26)/(1/2+sqrt(5)/2)^16 2584000077364308 a004 Fibonacci(62)/Lucas(26)/(1/2+sqrt(5)/2)^18 2584000077364308 a004 Fibonacci(64)/Lucas(26)/(1/2+sqrt(5)/2)^20 2584000077364308 a004 Fibonacci(66)/Lucas(26)/(1/2+sqrt(5)/2)^22 2584000077364308 a004 Fibonacci(68)/Lucas(26)/(1/2+sqrt(5)/2)^24 2584000077364308 a004 Fibonacci(70)/Lucas(26)/(1/2+sqrt(5)/2)^26 2584000077364308 a004 Fibonacci(72)/Lucas(26)/(1/2+sqrt(5)/2)^28 2584000077364308 a004 Fibonacci(74)/Lucas(26)/(1/2+sqrt(5)/2)^30 2584000077364308 a004 Fibonacci(76)/Lucas(26)/(1/2+sqrt(5)/2)^32 2584000077364308 a004 Fibonacci(78)/Lucas(26)/(1/2+sqrt(5)/2)^34 2584000077364308 a004 Fibonacci(80)/Lucas(26)/(1/2+sqrt(5)/2)^36 2584000077364308 a004 Fibonacci(82)/Lucas(26)/(1/2+sqrt(5)/2)^38 2584000077364308 a004 Fibonacci(84)/Lucas(26)/(1/2+sqrt(5)/2)^40 2584000077364308 a004 Fibonacci(86)/Lucas(26)/(1/2+sqrt(5)/2)^42 2584000077364308 a004 Fibonacci(88)/Lucas(26)/(1/2+sqrt(5)/2)^44 2584000077364308 a004 Fibonacci(90)/Lucas(26)/(1/2+sqrt(5)/2)^46 2584000077364308 a004 Fibonacci(92)/Lucas(26)/(1/2+sqrt(5)/2)^48 2584000077364308 a004 Fibonacci(94)/Lucas(26)/(1/2+sqrt(5)/2)^50 2584000077364308 a004 Fibonacci(96)/Lucas(26)/(1/2+sqrt(5)/2)^52 2584000077364308 a004 Fibonacci(100)/Lucas(26)/(1/2+sqrt(5)/2)^56 2584000077364308 a004 Fibonacci(26)*Lucas(52)/(1/2+sqrt(5)/2)^60 2584000077364308 a004 Fibonacci(98)/Lucas(26)/(1/2+sqrt(5)/2)^54 2584000077364308 a004 Fibonacci(99)/Lucas(26)/(1/2+sqrt(5)/2)^55 2584000077364308 a004 Fibonacci(97)/Lucas(26)/(1/2+sqrt(5)/2)^53 2584000077364308 a004 Fibonacci(95)/Lucas(26)/(1/2+sqrt(5)/2)^51 2584000077364308 a004 Fibonacci(93)/Lucas(26)/(1/2+sqrt(5)/2)^49 2584000077364308 a004 Fibonacci(91)/Lucas(26)/(1/2+sqrt(5)/2)^47 2584000077364308 a004 Fibonacci(89)/Lucas(26)/(1/2+sqrt(5)/2)^45 2584000077364308 a004 Fibonacci(87)/Lucas(26)/(1/2+sqrt(5)/2)^43 2584000077364308 a004 Fibonacci(85)/Lucas(26)/(1/2+sqrt(5)/2)^41 2584000077364308 a004 Fibonacci(83)/Lucas(26)/(1/2+sqrt(5)/2)^39 2584000077364308 a004 Fibonacci(81)/Lucas(26)/(1/2+sqrt(5)/2)^37 2584000077364308 a004 Fibonacci(79)/Lucas(26)/(1/2+sqrt(5)/2)^35 2584000077364308 a004 Fibonacci(77)/Lucas(26)/(1/2+sqrt(5)/2)^33 2584000077364308 a004 Fibonacci(75)/Lucas(26)/(1/2+sqrt(5)/2)^31 2584000077364308 a004 Fibonacci(73)/Lucas(26)/(1/2+sqrt(5)/2)^29 2584000077364308 a004 Fibonacci(71)/Lucas(26)/(1/2+sqrt(5)/2)^27 2584000077364308 a004 Fibonacci(69)/Lucas(26)/(1/2+sqrt(5)/2)^25 2584000077364308 a004 Fibonacci(67)/Lucas(26)/(1/2+sqrt(5)/2)^23 2584000077364308 a004 Fibonacci(65)/Lucas(26)/(1/2+sqrt(5)/2)^21 2584000077364308 a004 Fibonacci(63)/Lucas(26)/(1/2+sqrt(5)/2)^19 2584000077364308 a004 Fibonacci(61)/Lucas(26)/(1/2+sqrt(5)/2)^17 2584000077364308 a004 Fibonacci(59)/Lucas(26)/(1/2+sqrt(5)/2)^15 2584000077364308 a004 Fibonacci(57)/Lucas(26)/(1/2+sqrt(5)/2)^13 2584000077364308 a004 Fibonacci(55)/Lucas(26)/(1/2+sqrt(5)/2)^11 2584000077364308 a004 Fibonacci(53)/Lucas(26)/(1/2+sqrt(5)/2)^9 2584000077364308 a001 2472169789306082/956722026041 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^43/Lucas(51) 2584000077364308 a004 Fibonacci(51)/Lucas(26)/(1/2+sqrt(5)/2)^7 2584000077364308 a001 121393/119218851371*28143753123^(9/10) 2584000077364308 a004 Fibonacci(26)*Lucas(50)/(1/2+sqrt(5)/2)^58 2584000077364308 a001 944284833554257/365435296162 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^41/Lucas(49) 2584000077364308 a004 Fibonacci(49)/Lucas(26)/(1/2+sqrt(5)/2)^5 2584000077364308 a001 121393/28143753123*10749957122^(7/8) 2584000077364308 a001 121393/73681302247*10749957122^(11/12) 2584000077364308 a001 121393/119218851371*10749957122^(15/16) 2584000077364308 a001 121393/192900153618*10749957122^(23/24) 2584000077364308 a004 Fibonacci(26)*Lucas(48)/(1/2+sqrt(5)/2)^56 2584000077364308 a001 121393/6643838879*45537549124^(13/17) 2584000077364308 a001 360684711356689/139583862445 2584000077364308 a001 121393/6643838879*14662949395604^(13/21) 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^39/Lucas(47) 2584000077364308 a001 121393/6643838879*192900153618^(13/18) 2584000077364308 a001 121393/6643838879*73681302247^(3/4) 2584000077364308 a004 Fibonacci(47)/Lucas(26)/(1/2+sqrt(5)/2)^3 2584000077364308 a001 121393/6643838879*10749957122^(13/16) 2584000077364308 a001 121393/10749957122*4106118243^(20/23) 2584000077364308 a001 121393/28143753123*4106118243^(21/23) 2584000077364308 a001 121393/73681302247*4106118243^(22/23) 2584000077364308 a004 Fibonacci(26)*Lucas(46)/(1/2+sqrt(5)/2)^54 2584000077364308 a001 137769300515810/53316291173 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^37/Lucas(45) 2584000077364308 a004 Fibonacci(45)/Lucas(26)/(1/2+sqrt(5)/2) 2584000077364308 a001 121393/4106118243*1568397607^(19/22) 2584000077364308 a001 121393/10749957122*1568397607^(10/11) 2584000077364308 a001 121393/28143753123*1568397607^(21/22) 2584000077364308 a004 Fibonacci(26)*Lucas(44)/(1/2+sqrt(5)/2)^52 2584000077364308 a001 121393/969323029*2537720636^(7/9) 2584000077364308 a001 121393/969323029*17393796001^(5/7) 2584000077364308 a001 52623190190741/20365011074 2584000077364308 a001 121393/969323029*312119004989^(7/11) 2584000077364308 a001 121393/969323029*14662949395604^(5/9) 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^35/Lucas(43) 2584000077364308 a001 121393/969323029*505019158607^(5/8) 2584000077364308 a001 433494437/542886+433494437/542886*5^(1/2) 2584000077364308 a001 121393/969323029*28143753123^(7/10) 2584000077364308 a001 121393/1568397607*599074578^(6/7) 2584000077364308 a001 121393/4106118243*599074578^(19/21) 2584000077364308 a001 121393/6643838879*599074578^(13/14) 2584000077364308 a001 121393/10749957122*599074578^(20/21) 2584000077364308 a004 Fibonacci(26)*Lucas(42)/(1/2+sqrt(5)/2)^50 2584000077364308 a001 121393/969323029*599074578^(5/6) 2584000077364308 a001 165580141/271443*141422324^(1/13) 2584000077364308 a001 267914296/271443*87403803^(1/19) 2584000077364308 a001 121393/370248451*2537720636^(11/15) 2584000077364308 a001 165580141/271443*2537720636^(1/15) 2584000077364308 a001 20100270056413/7778742049 2584000077364308 a001 121393/370248451*45537549124^(11/17) 2584000077364308 a001 121393/370248451*312119004989^(3/5) 2584000077364308 a001 121393/370248451*817138163596^(11/19) 2584000077364308 a001 121393/370248451*14662949395604^(11/21) 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^33/Lucas(41) 2584000077364308 a001 121393/370248451*192900153618^(11/18) 2584000077364308 a001 165580141/271443*45537549124^(1/17) 2584000077364308 a001 165580141/271443*14662949395604^(1/21) 2584000077364308 a001 165580141/271443*(1/2+1/2*5^(1/2))^3 2584000077364308 a001 165580141/271443*192900153618^(1/18) 2584000077364308 a001 165580141/271443*10749957122^(1/16) 2584000077364308 a001 121393/370248451*10749957122^(11/16) 2584000077364308 a001 165580141/271443*599074578^(1/14) 2584000077364308 a001 121393/370248451*1568397607^(3/4) 2584000077364308 a001 121393/370248451*599074578^(11/14) 2584000077364308 a001 121393/599074578*228826127^(17/20) 2584000077364308 a001 121393/1568397607*228826127^(9/10) 2584000077364308 a001 121393/969323029*228826127^(7/8) 2584000077364308 a001 121393/4106118243*228826127^(19/20) 2584000077364308 a001 39088169/271443*33385282^(1/6) 2584000077364308 a004 Fibonacci(26)*Lucas(40)/(1/2+sqrt(5)/2)^48 2584000077364308 a001 267914296/271443*33385282^(1/18) 2584000077364308 a001 7677619978498/2971215073 2584000077364308 a001 63245986/271443*2537720636^(1/9) 2584000077364308 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^31/Lucas(39) 2584000077364308 a001 233/271444*9062201101803^(1/2) 2584000077364308 a001 63245986/271443*312119004989^(1/11) 2584000077364308 a001 63245986/271443*(1/2+1/2*5^(1/2))^5 2584000077364308 a001 63245986/271443*28143753123^(1/10) 2584000077364308 a001 63245986/271443*228826127^(1/8) 2584000077364308 a001 34111385/90481*33385282^(1/9) 2584000077364308 a001 165580141/271443*33385282^(1/12) 2584000077364308 a001 121393/228826127*87403803^(16/19) 2584000077364308 a001 121393/599074578*87403803^(17/19) 2584000077364308 a001 121393/1568397607*87403803^(18/19) 2584000077364308 a004 Fibonacci(26)*Lucas(38)/(1/2+sqrt(5)/2)^46 2584000077364309 a001 2932589879081/1134903170 2584000077364309 a001 24157817/271443*17393796001^(1/7) 2584000077364309 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^29/Lucas(37) 2584000077364309 a001 121393/54018521*1322157322203^(1/2) 2584000077364309 a001 24157817/271443*14662949395604^(1/9) 2584000077364309 a001 24157817/271443*(1/2+1/2*5^(1/2))^7 2584000077364309 a001 24157817/271443*599074578^(1/6) 2584000077364309 a001 267914296/271443*12752043^(1/17) 2584000077364309 a001 4976784/90481*12752043^(4/17) 2584000077364310 a001 121393/87403803*33385282^(5/6) 2584000077364310 a001 34111385/90481*12752043^(2/17) 2584000077364310 a001 121393/228826127*33385282^(8/9) 2584000077364310 a001 121393/370248451*33385282^(11/12) 2584000077364310 a001 121393/599074578*33385282^(17/18) 2584000077364310 a004 Fibonacci(26)*Lucas(36)/(1/2+sqrt(5)/2)^44 2584000077364310 a001 39088169/271443*12752043^(3/17) 2584000077364314 a001 121393/20633239*141422324^(9/13) 2584000077364314 a001 9227465/271443*141422324^(3/13) 2584000077364314 a001 1120149658745/433494437 2584000077364314 a001 121393/20633239*2537720636^(3/5) 2584000077364314 a001 9227465/271443*2537720636^(1/5) 2584000077364314 a001 121393/20633239*45537549124^(9/17) 2584000077364314 a001 121393/20633239*817138163596^(9/19) 2584000077364314 a001 121393/20633239*14662949395604^(3/7) 2584000077364314 a001 121393/20633239*(1/2+1/2*5^(1/2))^27 2584000077364314 a001 121393/20633239*192900153618^(1/2) 2584000077364314 a001 9227465/271443*45537549124^(3/17) 2584000077364314 a001 9227465/271443*14662949395604^(1/7) 2584000077364314 a001 9227465/271443*(1/2+1/2*5^(1/2))^9 2584000077364314 a001 9227465/271443*192900153618^(1/6) 2584000077364314 a001 9227465/271443*10749957122^(3/16) 2584000077364314 a001 121393/20633239*10749957122^(9/16) 2584000077364314 a001 9227465/271443*599074578^(3/14) 2584000077364314 a001 121393/20633239*599074578^(9/14) 2584000077364315 a001 9227465/271443*33385282^(1/4) 2584000077364315 a001 267914296/271443*4870847^(1/16) 2584000077364316 a001 121393/20633239*33385282^(3/4) 2584000077364319 a001 121393/33385282*12752043^(14/17) 2584000077364322 a001 34111385/90481*4870847^(1/8) 2584000077364322 a001 121393/87403803*12752043^(15/17) 2584000077364323 a001 121393/228826127*12752043^(16/17) 2584000077364324 a004 Fibonacci(26)*Lucas(34)/(1/2+sqrt(5)/2)^42 2584000077364326 a001 5702887/271443*4870847^(5/16) 2584000077364328 a001 39088169/271443*4870847^(3/16) 2584000077364333 a001 4976784/90481*4870847^(1/4) 2584000077364336 a001 3524578/271443*7881196^(1/3) 2584000077364345 a001 121393/7881196*20633239^(5/7) 2584000077364350 a001 427859097154/165580141 2584000077364350 a001 121393/7881196*2537720636^(5/9) 2584000077364350 a001 121393/7881196*312119004989^(5/11) 2584000077364350 a001 121393/7881196*(1/2+1/2*5^(1/2))^25 2584000077364350 a001 121393/7881196*3461452808002^(5/12) 2584000077364350 a001 3524578/271443*312119004989^(1/5) 2584000077364350 a001 3524578/271443*(1/2+1/2*5^(1/2))^11 2584000077364350 a001 121393/7881196*28143753123^(1/2) 2584000077364350 a001 3524578/271443*1568397607^(1/4) 2584000077364350 a001 121393/7881196*228826127^(5/8) 2584000077364358 a001 267914296/271443*1860498^(1/15) 2584000077364381 a001 121393/12752043*4870847^(13/16) 2584000077364383 a001 165580141/271443*1860498^(1/10) 2584000077364401 a001 121393/33385282*4870847^(7/8) 2584000077364408 a001 34111385/90481*1860498^(2/15) 2584000077364410 a001 121393/87403803*4870847^(15/16) 2584000077364417 a004 Fibonacci(26)*Lucas(32)/(1/2+sqrt(5)/2)^40 2584000077364433 a001 63245986/271443*1860498^(1/6) 2584000077364457 a001 39088169/271443*1860498^(1/5) 2584000077364498 a001 726103/90481*1860498^(2/5) 2584000077364505 a001 4976784/90481*1860498^(4/15) 2584000077364538 a001 9227465/271443*1860498^(3/10) 2584000077364541 a001 5702887/271443*1860498^(1/3) 2584000077364593 a001 701406149/271442 2584000077364593 a001 1346269/271443*141422324^(1/3) 2584000077364593 a001 121393/3010349*(1/2+1/2*5^(1/2))^23 2584000077364593 a001 1346269/271443*(1/2+1/2*5^(1/2))^13 2584000077364593 a001 1346269/271443*73681302247^(1/4) 2584000077364593 a001 121393/3010349*4106118243^(1/2) 2584000077364608 a001 24157817/1149851*167761^(2/5) 2584000077364673 a001 267914296/271443*710647^(1/14) 2584000077364796 a001 121393/4870847*1860498^(4/5) 2584000077364939 a001 121393/12752043*1860498^(13/15) 2584000077364972 a001 121393/7881196*1860498^(5/6) 2584000077364986 a001 121393/20633239*1860498^(9/10) 2584000077365002 a001 121393/33385282*1860498^(14/15) 2584000077365039 a001 34111385/90481*710647^(1/7) 2584000077365055 a004 Fibonacci(26)*Lucas(30)/(1/2+sqrt(5)/2)^38 2584000077365404 a001 39088169/271443*710647^(3/14) 2584000077365588 a001 24157817/271443*710647^(1/4) 2584000077365768 a001 4976784/90481*710647^(2/7) 2584000077366120 a001 5702887/271443*710647^(5/14) 2584000077366120 a001 832040/271443*710647^(1/2) 2584000077366236 a001 121393/1149851*7881196^(7/11) 2584000077366244 a001 514229/271443*7881196^(5/11) 2584000077366259 a001 121393/1149851*20633239^(3/5) 2584000077366260 a001 514229/271443*20633239^(3/7) 2584000077366262 a001 62423800997/24157817 2584000077366262 a001 121393/1149851*141422324^(7/13) 2584000077366262 a001 514229/271443*141422324^(5/13) 2584000077366262 a001 121393/1149851*2537720636^(7/15) 2584000077366262 a001 514229/271443*2537720636^(1/3) 2584000077366262 a001 121393/1149851*17393796001^(3/7) 2584000077366262 a001 121393/1149851*45537549124^(7/17) 2584000077366262 a001 121393/1149851*14662949395604^(1/3) 2584000077366262 a001 121393/1149851*(1/2+1/2*5^(1/2))^21 2584000077366262 a001 121393/1149851*192900153618^(7/18) 2584000077366262 a001 514229/271443*45537549124^(5/17) 2584000077366262 a001 514229/271443*312119004989^(3/11) 2584000077366262 a001 514229/271443*14662949395604^(5/21) 2584000077366262 a001 514229/271443*(1/2+1/2*5^(1/2))^15 2584000077366262 a001 514229/271443*192900153618^(5/18) 2584000077366262 a001 514229/271443*28143753123^(3/10) 2584000077366262 a001 514229/271443*10749957122^(5/16) 2584000077366262 a001 121393/1149851*10749957122^(7/16) 2584000077366262 a001 514229/271443*599074578^(5/14) 2584000077366262 a001 121393/1149851*599074578^(1/2) 2584000077366262 a001 514229/271443*228826127^(3/8) 2584000077366263 a001 514229/271443*33385282^(5/12) 2584000077366264 a001 121393/1149851*33385282^(7/12) 2584000077366392 a001 726103/90481*710647^(3/7) 2584000077366636 a001 514229/271443*1860498^(1/2) 2584000077366785 a001 121393/1149851*1860498^(7/10) 2584000077366900 a001 1134903170/710647*64079^(1/23) 2584000077367006 a001 267914296/271443*271443^(1/13) 2584000077367582 a001 121393/1860498*710647^(11/14) 2584000077368585 a001 121393/4870847*710647^(6/7) 2584000077369043 a001 121393/12752043*710647^(13/14) 2584000077369425 a004 Fibonacci(26)*Lucas(28)/(1/2+sqrt(5)/2)^36 2584000077369703 a001 34111385/90481*271443^(2/13) 2584000077370100 a001 121393/1149851*710647^(3/4) 2584000077371270 a001 2971215073/1860498*64079^(1/23) 2584000077371908 a001 7778742049/4870847*64079^(1/23) 2584000077372001 a001 20365011074/12752043*64079^(1/23) 2584000077372015 a001 53316291173/33385282*64079^(1/23) 2584000077372017 a001 139583862445/87403803*64079^(1/23) 2584000077372017 a001 365435296162/228826127*64079^(1/23) 2584000077372017 a001 956722026041/599074578*64079^(1/23) 2584000077372017 a001 2504730781961/1568397607*64079^(1/23) 2584000077372017 a001 6557470319842/4106118243*64079^(1/23) 2584000077372017 a001 10610209857723/6643838879*64079^(1/23) 2584000077372017 a001 4052739537881/2537720636*64079^(1/23) 2584000077372017 a001 1548008755920/969323029*64079^(1/23) 2584000077372017 a001 591286729879/370248451*64079^(1/23) 2584000077372017 a001 225851433717/141422324*64079^(1/23) 2584000077372018 a001 86267571272/54018521*64079^(1/23) 2584000077372023 a001 32951280099/20633239*64079^(1/23) 2584000077372059 a001 12586269025/7881196*64079^(1/23) 2584000077372302 a001 4807526976/3010349*64079^(1/23) 2584000077372401 a001 39088169/271443*271443^(3/13) 2584000077373971 a001 1836311903/1149851*64079^(1/23) 2584000077374230 a001 6624/101521*103682^(11/12) 2584000077374324 a001 433494437/271443*103682^(1/24) 2584000077375096 a001 4976784/90481*271443^(4/13) 2584000077375899 a001 165580141/710647*167761^(1/5) 2584000077376054 a001 9227465/439204*167761^(2/5) 2584000077377697 a001 23843770274/9227465 2584000077377704 a001 196418/271443*45537549124^(1/3) 2584000077377704 a001 121393/439204*817138163596^(1/3) 2584000077377704 a001 121393/439204*(1/2+1/2*5^(1/2))^19 2584000077377704 a001 196418/271443*(1/2+1/2*5^(1/2))^17 2584000077377704 a001 121393/439204*87403803^(1/2) 2584000077377712 a001 196418/271443*12752043^(1/2) 2584000077377781 a001 5702887/271443*271443^(5/13) 2584000077380214 a001 317811/710647*439204^(2/3) 2584000077380269 a001 433494437/1860498*167761^(1/5) 2584000077380385 a001 726103/90481*271443^(6/13) 2584000077380773 a001 105937/90481*271443^(8/13) 2584000077380866 a004 Fibonacci(28)*Lucas(27)/(1/2+sqrt(5)/2)^37 2584000077380906 a001 1134903170/4870847*167761^(1/5) 2584000077380999 a001 2971215073/12752043*167761^(1/5) 2584000077381013 a001 7778742049/33385282*167761^(1/5) 2584000077381015 a001 20365011074/87403803*167761^(1/5) 2584000077381015 a001 53316291173/228826127*167761^(1/5) 2584000077381015 a001 139583862445/599074578*167761^(1/5) 2584000077381015 a001 365435296162/1568397607*167761^(1/5) 2584000077381015 a001 956722026041/4106118243*167761^(1/5) 2584000077381015 a001 2504730781961/10749957122*167761^(1/5) 2584000077381015 a001 6557470319842/28143753123*167761^(1/5) 2584000077381015 a001 10610209857723/45537549124*167761^(1/5) 2584000077381015 a001 4052739537881/17393796001*167761^(1/5) 2584000077381015 a001 1548008755920/6643838879*167761^(1/5) 2584000077381015 a001 591286729879/2537720636*167761^(1/5) 2584000077381015 a001 225851433717/969323029*167761^(1/5) 2584000077381015 a001 86267571272/370248451*167761^(1/5) 2584000077381015 a001 63246219/271444*167761^(1/5) 2584000077381016 a001 12586269025/54018521*167761^(1/5) 2584000077381021 a001 4807526976/20633239*167761^(1/5) 2584000077381057 a001 1836311903/7881196*167761^(1/5) 2584000077381300 a001 701408733/3010349*167761^(1/5) 2584000077381748 a001 63245986/167761*64079^(4/23) 2584000077382128 a001 1346269/271443*271443^(1/2) 2584000077382338 a001 105937/4250681*439204^(8/9) 2584000077382445 a001 832040/271443*271443^(7/13) 2584000077382727 a001 11592/109801*103682^(7/8) 2584000077382969 a001 267914296/1149851*167761^(1/5) 2584000077383670 a001 31622993/51841*39603^(3/22) 2584000077384128 a001 317811/3010349*439204^(7/9) 2584000077384339 a001 267914296/271443*103682^(1/12) 2584000077385236 a004 Fibonacci(30)*Lucas(27)/(1/2+sqrt(5)/2)^39 2584000077385412 a001 701408733/439204*64079^(1/23) 2584000077385874 a004 Fibonacci(32)*Lucas(27)/(1/2+sqrt(5)/2)^41 2584000077385967 a004 Fibonacci(34)*Lucas(27)/(1/2+sqrt(5)/2)^43 2584000077385980 a004 Fibonacci(36)*Lucas(27)/(1/2+sqrt(5)/2)^45 2584000077385982 a004 Fibonacci(38)*Lucas(27)/(1/2+sqrt(5)/2)^47 2584000077385982 a004 Fibonacci(40)*Lucas(27)/(1/2+sqrt(5)/2)^49 2584000077385982 a004 Fibonacci(42)*Lucas(27)/(1/2+sqrt(5)/2)^51 2584000077385982 a004 Fibonacci(44)*Lucas(27)/(1/2+sqrt(5)/2)^53 2584000077385982 a004 Fibonacci(46)*Lucas(27)/(1/2+sqrt(5)/2)^55 2584000077385982 a004 Fibonacci(48)*Lucas(27)/(1/2+sqrt(5)/2)^57 2584000077385982 a004 Fibonacci(50)*Lucas(27)/(1/2+sqrt(5)/2)^59 2584000077385982 a004 Fibonacci(52)*Lucas(27)/(1/2+sqrt(5)/2)^61 2584000077385982 a004 Fibonacci(54)*Lucas(27)/(1/2+sqrt(5)/2)^63 2584000077385982 a004 Fibonacci(56)*Lucas(27)/(1/2+sqrt(5)/2)^65 2584000077385982 a004 Fibonacci(58)*Lucas(27)/(1/2+sqrt(5)/2)^67 2584000077385982 a004 Fibonacci(60)*Lucas(27)/(1/2+sqrt(5)/2)^69 2584000077385982 a004 Fibonacci(62)*Lucas(27)/(1/2+sqrt(5)/2)^71 2584000077385982 a004 Fibonacci(64)*Lucas(27)/(1/2+sqrt(5)/2)^73 2584000077385982 a004 Fibonacci(66)*Lucas(27)/(1/2+sqrt(5)/2)^75 2584000077385982 a004 Fibonacci(68)*Lucas(27)/(1/2+sqrt(5)/2)^77 2584000077385982 a004 Fibonacci(70)*Lucas(27)/(1/2+sqrt(5)/2)^79 2584000077385982 a004 Fibonacci(72)*Lucas(27)/(1/2+sqrt(5)/2)^81 2584000077385982 a004 Fibonacci(74)*Lucas(27)/(1/2+sqrt(5)/2)^83 2584000077385982 a004 Fibonacci(76)*Lucas(27)/(1/2+sqrt(5)/2)^85 2584000077385982 a004 Fibonacci(78)*Lucas(27)/(1/2+sqrt(5)/2)^87 2584000077385982 a004 Fibonacci(80)*Lucas(27)/(1/2+sqrt(5)/2)^89 2584000077385982 a004 Fibonacci(82)*Lucas(27)/(1/2+sqrt(5)/2)^91 2584000077385982 a004 Fibonacci(84)*Lucas(27)/(1/2+sqrt(5)/2)^93 2584000077385982 a004 Fibonacci(86)*Lucas(27)/(1/2+sqrt(5)/2)^95 2584000077385982 a004 Fibonacci(88)*Lucas(27)/(1/2+sqrt(5)/2)^97 2584000077385982 a004 Fibonacci(90)*Lucas(27)/(1/2+sqrt(5)/2)^99 2584000077385982 a004 Fibonacci(91)*Lucas(27)/(1/2+sqrt(5)/2)^100 2584000077385982 a004 Fibonacci(89)*Lucas(27)/(1/2+sqrt(5)/2)^98 2584000077385982 a004 Fibonacci(87)*Lucas(27)/(1/2+sqrt(5)/2)^96 2584000077385982 a004 Fibonacci(85)*Lucas(27)/(1/2+sqrt(5)/2)^94 2584000077385982 a004 Fibonacci(83)*Lucas(27)/(1/2+sqrt(5)/2)^92 2584000077385982 a004 Fibonacci(81)*Lucas(27)/(1/2+sqrt(5)/2)^90 2584000077385982 a004 Fibonacci(79)*Lucas(27)/(1/2+sqrt(5)/2)^88 2584000077385982 a004 Fibonacci(77)*Lucas(27)/(1/2+sqrt(5)/2)^86 2584000077385982 a004 Fibonacci(75)*Lucas(27)/(1/2+sqrt(5)/2)^84 2584000077385982 a004 Fibonacci(73)*Lucas(27)/(1/2+sqrt(5)/2)^82 2584000077385982 a004 Fibonacci(71)*Lucas(27)/(1/2+sqrt(5)/2)^80 2584000077385982 a004 Fibonacci(69)*Lucas(27)/(1/2+sqrt(5)/2)^78 2584000077385982 a004 Fibonacci(67)*Lucas(27)/(1/2+sqrt(5)/2)^76 2584000077385982 a004 Fibonacci(65)*Lucas(27)/(1/2+sqrt(5)/2)^74 2584000077385982 a004 Fibonacci(63)*Lucas(27)/(1/2+sqrt(5)/2)^72 2584000077385982 a004 Fibonacci(61)*Lucas(27)/(1/2+sqrt(5)/2)^70 2584000077385982 a004 Fibonacci(59)*Lucas(27)/(1/2+sqrt(5)/2)^68 2584000077385982 a004 Fibonacci(57)*Lucas(27)/(1/2+sqrt(5)/2)^66 2584000077385982 a004 Fibonacci(55)*Lucas(27)/(1/2+sqrt(5)/2)^64 2584000077385982 a001 1/98209*(1/2+1/2*5^(1/2))^45 2584000077385982 a004 Fibonacci(53)*Lucas(27)/(1/2+sqrt(5)/2)^62 2584000077385982 a004 Fibonacci(51)*Lucas(27)/(1/2+sqrt(5)/2)^60 2584000077385982 a004 Fibonacci(49)*Lucas(27)/(1/2+sqrt(5)/2)^58 2584000077385982 a004 Fibonacci(47)*Lucas(27)/(1/2+sqrt(5)/2)^56 2584000077385982 a004 Fibonacci(45)*Lucas(27)/(1/2+sqrt(5)/2)^54 2584000077385982 a004 Fibonacci(43)*Lucas(27)/(1/2+sqrt(5)/2)^52 2584000077385982 a004 Fibonacci(41)*Lucas(27)/(1/2+sqrt(5)/2)^50 2584000077385983 a004 Fibonacci(39)*Lucas(27)/(1/2+sqrt(5)/2)^48 2584000077385983 a004 Fibonacci(37)*Lucas(27)/(1/2+sqrt(5)/2)^46 2584000077385989 a004 Fibonacci(35)*Lucas(27)/(1/2+sqrt(5)/2)^44 2584000077386024 a004 Fibonacci(33)*Lucas(27)/(1/2+sqrt(5)/2)^42 2584000077386168 a001 121393/710647*271443^(10/13) 2584000077386268 a004 Fibonacci(31)*Lucas(27)/(1/2+sqrt(5)/2)^40 2584000077386722 a001 416020/16692641*439204^(8/9) 2584000077387105 a001 1346269/710647*439204^(5/9) 2584000077387362 a001 726103/29134601*439204^(8/9) 2584000077387455 a001 5702887/228826127*439204^(8/9) 2584000077387469 a001 829464/33281921*439204^(8/9) 2584000077387471 a001 39088169/1568397607*439204^(8/9) 2584000077387471 a001 34111385/1368706081*439204^(8/9) 2584000077387471 a001 133957148/5374978561*439204^(8/9) 2584000077387471 a001 233802911/9381251041*439204^(8/9) 2584000077387471 a001 1836311903/73681302247*439204^(8/9) 2584000077387471 a001 267084832/10716675201*439204^(8/9) 2584000077387471 a001 12586269025/505019158607*439204^(8/9) 2584000077387471 a001 10983760033/440719107401*439204^(8/9) 2584000077387471 a001 43133785636/1730726404001*439204^(8/9) 2584000077387471 a001 75283811239/3020733700601*439204^(8/9) 2584000077387471 a001 182717648081/7331474697802*439204^(8/9) 2584000077387471 a001 139583862445/5600748293801*439204^(8/9) 2584000077387471 a001 53316291173/2139295485799*439204^(8/9) 2584000077387471 a001 10182505537/408569081798*439204^(8/9) 2584000077387471 a001 7778742049/312119004989*439204^(8/9) 2584000077387471 a001 2971215073/119218851371*439204^(8/9) 2584000077387471 a001 567451585/22768774562*439204^(8/9) 2584000077387471 a001 433494437/17393796001*439204^(8/9) 2584000077387471 a001 165580141/6643838879*439204^(8/9) 2584000077387471 a001 31622993/1268860318*439204^(8/9) 2584000077387472 a001 24157817/969323029*439204^(8/9) 2584000077387477 a001 9227465/370248451*439204^(8/9) 2584000077387513 a001 1762289/70711162*439204^(8/9) 2584000077387757 a001 1346269/54018521*439204^(8/9) 2584000077387937 a004 Fibonacci(29)*Lucas(27)/(1/2+sqrt(5)/2)^38 2584000077388254 a001 208010/1970299*439204^(7/9) 2584000077388292 a001 5702887/710647*439204^(4/9) 2584000077388856 a001 2178309/20633239*439204^(7/9) 2584000077388944 a001 5702887/54018521*439204^(7/9) 2584000077388955 a001 416020/930249*439204^(2/3) 2584000077388957 a001 3732588/35355581*439204^(7/9) 2584000077388959 a001 39088169/370248451*439204^(7/9) 2584000077388959 a001 102334155/969323029*439204^(7/9) 2584000077388959 a001 66978574/634430159*439204^(7/9) 2584000077388959 a001 701408733/6643838879*439204^(7/9) 2584000077388959 a001 1836311903/17393796001*439204^(7/9) 2584000077388959 a001 1201881744/11384387281*439204^(7/9) 2584000077388959 a001 12586269025/119218851371*439204^(7/9) 2584000077388959 a001 32951280099/312119004989*439204^(7/9) 2584000077388959 a001 21566892818/204284540899*439204^(7/9) 2584000077388959 a001 225851433717/2139295485799*439204^(7/9) 2584000077388959 a001 182717648081/1730726404001*439204^(7/9) 2584000077388959 a001 139583862445/1322157322203*439204^(7/9) 2584000077388959 a001 53316291173/505019158607*439204^(7/9) 2584000077388959 a001 10182505537/96450076809*439204^(7/9) 2584000077388959 a001 7778742049/73681302247*439204^(7/9) 2584000077388959 a001 2971215073/28143753123*439204^(7/9) 2584000077388959 a001 567451585/5374978561*439204^(7/9) 2584000077388959 a001 433494437/4106118243*439204^(7/9) 2584000077388959 a001 165580141/1568397607*439204^(7/9) 2584000077388959 a001 31622993/299537289*439204^(7/9) 2584000077388960 a001 24157817/228826127*439204^(7/9) 2584000077388965 a001 9227465/87403803*439204^(7/9) 2584000077388999 a001 1762289/16692641*439204^(7/9) 2584000077389122 a001 317811/710647*7881196^(6/11) 2584000077389145 a001 317811/710647*141422324^(6/13) 2584000077389145 a001 317811/710647*2537720636^(2/5) 2584000077389145 a001 317811/710647*45537549124^(6/17) 2584000077389145 a001 317811/710647*14662949395604^(2/7) 2584000077389145 a001 317811/710647*(1/2+1/2*5^(1/2))^18 2584000077389145 a001 317811/710647*192900153618^(1/3) 2584000077389145 a001 317811/710647*10749957122^(3/8) 2584000077389145 a001 317811/710647*4106118243^(9/23) 2584000077389145 a001 317811/710647*1568397607^(9/22) 2584000077389145 a001 317811/710647*599074578^(3/7) 2584000077389145 a001 317811/710647*228826127^(9/20) 2584000077389145 a001 317811/710647*87403803^(9/19) 2584000077389145 a001 101003831721/39088169 2584000077389146 a001 317811/710647*33385282^(1/2) 2584000077389153 a001 317811/710647*12752043^(9/17) 2584000077389206 a001 317811/710647*4870847^(9/16) 2584000077389228 a001 1346269/12752043*439204^(7/9) 2584000077389431 a001 514229/20633239*439204^(8/9) 2584000077389593 a001 317811/710647*1860498^(3/5) 2584000077389797 a001 24157817/710647*439204^(1/3) 2584000077390230 a001 2178309/4870847*439204^(2/3) 2584000077390416 a001 5702887/12752043*439204^(2/3) 2584000077390443 a001 7465176/16692641*439204^(2/3) 2584000077390447 a001 39088169/87403803*439204^(2/3) 2584000077390448 a001 102334155/228826127*439204^(2/3) 2584000077390448 a001 133957148/299537289*439204^(2/3) 2584000077390448 a001 701408733/1568397607*439204^(2/3) 2584000077390448 a001 1836311903/4106118243*439204^(2/3) 2584000077390448 a001 2403763488/5374978561*439204^(2/3) 2584000077390448 a001 12586269025/28143753123*439204^(2/3) 2584000077390448 a001 32951280099/73681302247*439204^(2/3) 2584000077390448 a001 43133785636/96450076809*439204^(2/3) 2584000077390448 a001 225851433717/505019158607*439204^(2/3) 2584000077390448 a001 10610209857723/23725150497407*439204^(2/3) 2584000077390448 a001 182717648081/408569081798*439204^(2/3) 2584000077390448 a001 139583862445/312119004989*439204^(2/3) 2584000077390448 a001 53316291173/119218851371*439204^(2/3) 2584000077390448 a001 10182505537/22768774562*439204^(2/3) 2584000077390448 a001 7778742049/17393796001*439204^(2/3) 2584000077390448 a001 2971215073/6643838879*439204^(2/3) 2584000077390448 a001 567451585/1268860318*439204^(2/3) 2584000077390448 a001 433494437/969323029*439204^(2/3) 2584000077390448 a001 165580141/370248451*439204^(2/3) 2584000077390448 a001 31622993/70711162*439204^(2/3) 2584000077390449 a001 24157817/54018521*439204^(2/3) 2584000077390460 a001 9227465/20633239*439204^(2/3) 2584000077390531 a001 1762289/3940598*439204^(2/3) 2584000077390805 a001 514229/4870847*439204^(7/9) 2584000077391018 a001 1346269/3010349*439204^(2/3) 2584000077391231 a001 1762289/930249*439204^(5/9) 2584000077391285 a001 14619165/101521*439204^(2/9) 2584000077391317 a001 46368/1149851*103682^(23/24) 2584000077391833 a001 9227465/4870847*439204^(5/9) 2584000077391921 a001 24157817/12752043*439204^(5/9) 2584000077391934 a001 31622993/16692641*439204^(5/9) 2584000077391936 a001 165580141/87403803*439204^(5/9) 2584000077391936 a001 433494437/228826127*439204^(5/9) 2584000077391936 a001 567451585/299537289*439204^(5/9) 2584000077391936 a001 2971215073/1568397607*439204^(5/9) 2584000077391936 a001 7778742049/4106118243*439204^(5/9) 2584000077391936 a001 10182505537/5374978561*439204^(5/9) 2584000077391936 a001 53316291173/28143753123*439204^(5/9) 2584000077391936 a001 139583862445/73681302247*439204^(5/9) 2584000077391936 a001 182717648081/96450076809*439204^(5/9) 2584000077391936 a001 956722026041/505019158607*439204^(5/9) 2584000077391936 a001 10610209857723/5600748293801*439204^(5/9) 2584000077391936 a001 591286729879/312119004989*439204^(5/9) 2584000077391936 a001 225851433717/119218851371*439204^(5/9) 2584000077391936 a001 21566892818/11384387281*439204^(5/9) 2584000077391936 a001 32951280099/17393796001*439204^(5/9) 2584000077391936 a001 12586269025/6643838879*439204^(5/9) 2584000077391936 a001 1201881744/634430159*439204^(5/9) 2584000077391936 a001 1836311903/969323029*439204^(5/9) 2584000077391936 a001 701408733/370248451*439204^(5/9) 2584000077391936 a001 66978574/35355581*439204^(5/9) 2584000077391937 a001 102334155/54018521*439204^(5/9) 2584000077391942 a001 39088169/20633239*439204^(5/9) 2584000077391975 a001 3732588/1970299*439204^(5/9) 2584000077392205 a001 5702887/3010349*439204^(5/9) 2584000077392307 a004 Fibonacci(28)*Lucas(29)/(1/2+sqrt(5)/2)^39 2584000077392434 a001 317811/710647*710647^(9/14) 2584000077392676 a001 829464/103361*439204^(4/9) 2584000077392773 a001 433494437/710647*439204^(1/9) 2584000077393236 a001 121393/1860498*271443^(11/13) 2584000077393315 a001 39088169/4870847*439204^(4/9) 2584000077393408 a001 34111385/4250681*439204^(4/9) 2584000077393422 a001 133957148/16692641*439204^(4/9) 2584000077393424 a001 233802911/29134601*439204^(4/9) 2584000077393424 a001 1836311903/228826127*439204^(4/9) 2584000077393424 a001 267084832/33281921*439204^(4/9) 2584000077393424 a001 12586269025/1568397607*439204^(4/9) 2584000077393424 a001 10983760033/1368706081*439204^(4/9) 2584000077393424 a001 43133785636/5374978561*439204^(4/9) 2584000077393424 a001 75283811239/9381251041*439204^(4/9) 2584000077393424 a001 591286729879/73681302247*439204^(4/9) 2584000077393424 a001 86000486440/10716675201*439204^(4/9) 2584000077393424 a001 4052739537881/505019158607*439204^(4/9) 2584000077393424 a001 3536736619241/440719107401*439204^(4/9) 2584000077393424 a001 3278735159921/408569081798*439204^(4/9) 2584000077393424 a001 2504730781961/312119004989*439204^(4/9) 2584000077393424 a001 956722026041/119218851371*439204^(4/9) 2584000077393424 a001 182717648081/22768774562*439204^(4/9) 2584000077393424 a001 139583862445/17393796001*439204^(4/9) 2584000077393424 a001 53316291173/6643838879*439204^(4/9) 2584000077393424 a001 10182505537/1268860318*439204^(4/9) 2584000077393424 a001 7778742049/969323029*439204^(4/9) 2584000077393424 a001 2971215073/370248451*439204^(4/9) 2584000077393425 a001 567451585/70711162*439204^(4/9) 2584000077393425 a001 433494437/54018521*439204^(4/9) 2584000077393431 a001 165580141/20633239*439204^(4/9) 2584000077393466 a001 31622993/3940598*439204^(4/9) 2584000077393511 a001 105937/620166*20633239^(4/7) 2584000077393515 a001 105937/620166*2537720636^(4/9) 2584000077393515 a001 105937/620166*(1/2+1/2*5^(1/2))^20 2584000077393515 a001 105937/620166*23725150497407^(5/16) 2584000077393515 a001 105937/620166*505019158607^(5/14) 2584000077393515 a001 832040/710647*(1/2+1/2*5^(1/2))^16 2584000077393515 a001 832040/710647*23725150497407^(1/4) 2584000077393515 a001 832040/710647*73681302247^(4/13) 2584000077393515 a001 105937/620166*73681302247^(5/13) 2584000077393515 a001 105937/620166*28143753123^(2/5) 2584000077393515 a001 832040/710647*10749957122^(1/3) 2584000077393515 a001 105937/620166*10749957122^(5/12) 2584000077393515 a001 832040/710647*4106118243^(8/23) 2584000077393515 a001 105937/620166*4106118243^(10/23) 2584000077393515 a001 832040/710647*1568397607^(4/11) 2584000077393515 a001 105937/620166*1568397607^(5/11) 2584000077393515 a001 832040/710647*599074578^(8/21) 2584000077393515 a001 105937/620166*599074578^(10/21) 2584000077393515 a001 832040/710647*228826127^(2/5) 2584000077393515 a001 105937/620166*228826127^(1/2) 2584000077393515 a001 1602614936/620207 2584000077393515 a001 832040/710647*87403803^(8/19) 2584000077393515 a001 105937/620166*87403803^(10/19) 2584000077393516 a001 832040/710647*33385282^(4/9) 2584000077393516 a001 105937/620166*33385282^(5/9) 2584000077393522 a001 832040/710647*12752043^(8/17) 2584000077393524 a001 105937/620166*12752043^(10/17) 2584000077393569 a001 832040/710647*4870847^(1/2) 2584000077393583 a001 105937/620166*4870847^(5/8) 2584000077393710 a001 24157817/3010349*439204^(4/9) 2584000077393781 a001 2178309/1149851*439204^(5/9) 2584000077393913 a001 832040/710647*1860498^(8/15) 2584000077393976 a004 Fibonacci(28)*Lucas(31)/(1/2+sqrt(5)/2)^41 2584000077394013 a001 105937/620166*1860498^(2/3) 2584000077394125 a001 317811/4870847*7881196^(2/3) 2584000077394150 a001 311187/101521*20633239^(2/5) 2584000077394152 a001 311187/101521*17393796001^(2/7) 2584000077394152 a001 317811/4870847*312119004989^(2/5) 2584000077394152 a001 317811/4870847*(1/2+1/2*5^(1/2))^22 2584000077394152 a001 311187/101521*14662949395604^(2/9) 2584000077394152 a001 311187/101521*(1/2+1/2*5^(1/2))^14 2584000077394152 a001 311187/101521*10749957122^(7/24) 2584000077394152 a001 317811/4870847*10749957122^(11/24) 2584000077394152 a001 311187/101521*4106118243^(7/23) 2584000077394152 a001 317811/4870847*4106118243^(11/23) 2584000077394152 a001 311187/101521*1568397607^(7/22) 2584000077394152 a001 317811/4870847*1568397607^(1/2) 2584000077394152 a001 311187/101521*599074578^(1/3) 2584000077394152 a001 317811/4870847*599074578^(11/21) 2584000077394152 a001 1836314487/710648 2584000077394152 a001 311187/101521*228826127^(7/20) 2584000077394152 a001 317811/4870847*228826127^(11/20) 2584000077394153 a001 311187/101521*87403803^(7/19) 2584000077394153 a001 317811/4870847*87403803^(11/19) 2584000077394153 a001 311187/101521*33385282^(7/18) 2584000077394154 a001 317811/4870847*33385282^(11/18) 2584000077394159 a001 311187/101521*12752043^(7/17) 2584000077394163 a001 317811/4870847*12752043^(11/17) 2584000077394166 a001 31622993/930249*439204^(1/3) 2584000077394200 a001 311187/101521*4870847^(7/16) 2584000077394215 a001 105937/4250681*7881196^(8/11) 2584000077394220 a004 Fibonacci(28)*Lucas(33)/(1/2+sqrt(5)/2)^43 2584000077394223 a001 317811/228826127*7881196^(10/11) 2584000077394227 a001 317811/4870847*4870847^(11/16) 2584000077394228 a001 317811/54018521*7881196^(9/11) 2584000077394230 a001 5702887/710647*7881196^(4/11) 2584000077394245 a001 105937/4250681*141422324^(8/13) 2584000077394245 a001 5702887/710647*141422324^(4/13) 2584000077394245 a001 105937/4250681*2537720636^(8/15) 2584000077394245 a001 5702887/710647*2537720636^(4/15) 2584000077394245 a001 105937/4250681*45537549124^(8/17) 2584000077394245 a001 5702887/710647*45537549124^(4/17) 2584000077394245 a001 105937/4250681*14662949395604^(8/21) 2584000077394245 a001 105937/4250681*(1/2+1/2*5^(1/2))^24 2584000077394245 a001 5702887/710647*817138163596^(4/19) 2584000077394245 a001 5702887/710647*14662949395604^(4/21) 2584000077394245 a001 5702887/710647*(1/2+1/2*5^(1/2))^12 2584000077394245 a001 5702887/710647*192900153618^(2/9) 2584000077394245 a001 105937/4250681*192900153618^(4/9) 2584000077394245 a001 5702887/710647*73681302247^(3/13) 2584000077394245 a001 105937/4250681*73681302247^(6/13) 2584000077394245 a001 5702887/710647*10749957122^(1/4) 2584000077394245 a001 105937/4250681*10749957122^(1/2) 2584000077394245 a001 5702887/710647*4106118243^(6/23) 2584000077394245 a001 105937/4250681*4106118243^(12/23) 2584000077394245 a001 5702887/710647*1568397607^(3/11) 2584000077394245 a001 105937/4250681*1568397607^(6/11) 2584000077394245 a001 604146740119/233802911 2584000077394245 a001 5702887/710647*599074578^(2/7) 2584000077394245 a001 105937/4250681*599074578^(4/7) 2584000077394245 a001 5702887/710647*228826127^(3/10) 2584000077394245 a001 105937/4250681*228826127^(3/5) 2584000077394246 a001 5702887/710647*87403803^(6/19) 2584000077394246 a001 105937/4250681*87403803^(12/19) 2584000077394246 a001 5702887/710647*33385282^(1/3) 2584000077394247 a001 105937/4250681*33385282^(2/3) 2584000077394251 a001 24157817/710647*7881196^(3/11) 2584000077394251 a001 5702887/710647*12752043^(6/17) 2584000077394254 a001 9227465/710647*7881196^(1/3) 2584000077394254 a001 14619165/101521*7881196^(2/11) 2584000077394255 a004 Fibonacci(28)*Lucas(35)/(1/2+sqrt(5)/2)^45 2584000077394256 a001 317811/228826127*20633239^(6/7) 2584000077394256 a001 105937/29134601*20633239^(4/5) 2584000077394257 a001 105937/4250681*12752043^(12/17) 2584000077394257 a001 14930352/710647*20633239^(2/7) 2584000077394258 a001 433494437/710647*7881196^(1/11) 2584000077394259 a001 317811/33385282*141422324^(2/3) 2584000077394259 a001 14930352/710647*2537720636^(2/9) 2584000077394259 a001 317811/33385282*(1/2+1/2*5^(1/2))^26 2584000077394259 a001 14930352/710647*312119004989^(2/11) 2584000077394259 a001 14930352/710647*(1/2+1/2*5^(1/2))^10 2584000077394259 a001 317811/33385282*73681302247^(1/2) 2584000077394259 a001 14930352/710647*28143753123^(1/5) 2584000077394259 a001 14930352/710647*10749957122^(5/24) 2584000077394259 a001 317811/33385282*10749957122^(13/24) 2584000077394259 a001 14930352/710647*4106118243^(5/23) 2584000077394259 a001 317811/33385282*4106118243^(13/23) 2584000077394259 a001 4745030099472/1836311903 2584000077394259 a001 14930352/710647*1568397607^(5/22) 2584000077394259 a001 317811/33385282*1568397607^(13/22) 2584000077394259 a001 14930352/710647*599074578^(5/21) 2584000077394259 a001 317811/33385282*599074578^(13/21) 2584000077394259 a001 14930352/710647*228826127^(1/4) 2584000077394259 a001 317811/33385282*228826127^(13/20) 2584000077394259 a001 14930352/710647*87403803^(5/19) 2584000077394259 a001 317811/33385282*87403803^(13/19) 2584000077394260 a001 14930352/710647*33385282^(5/18) 2584000077394260 a001 63245986/710647*20633239^(1/5) 2584000077394260 a004 Fibonacci(28)*Lucas(37)/(1/2+sqrt(5)/2)^47 2584000077394261 a001 165580141/710647*20633239^(1/7) 2584000077394261 a001 317811/33385282*33385282^(13/18) 2584000077394261 a001 105937/29134601*17393796001^(4/7) 2584000077394261 a001 105937/29134601*14662949395604^(4/9) 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^28/Lucas(38) 2584000077394261 a001 39088169/710647*(1/2+1/2*5^(1/2))^8 2584000077394261 a001 39088169/710647*505019158607^(1/7) 2584000077394261 a001 39088169/710647*73681302247^(2/13) 2584000077394261 a001 105937/29134601*73681302247^(7/13) 2584000077394261 a001 39088169/710647*10749957122^(1/6) 2584000077394261 a001 105937/29134601*10749957122^(7/12) 2584000077394261 a001 4140883359353/1602508992 2584000077394261 a001 39088169/710647*4106118243^(4/23) 2584000077394261 a001 105937/29134601*4106118243^(14/23) 2584000077394261 a001 39088169/710647*1568397607^(2/11) 2584000077394261 a001 105937/29134601*1568397607^(7/11) 2584000077394261 a001 39088169/710647*599074578^(4/21) 2584000077394261 a001 105937/29134601*599074578^(2/3) 2584000077394261 a001 39088169/710647*228826127^(1/5) 2584000077394261 a001 105937/29134601*228826127^(7/10) 2584000077394261 a001 39088169/710647*87403803^(4/19) 2584000077394261 a001 317811/228826127*141422324^(10/13) 2584000077394261 a004 Fibonacci(28)*Lucas(39)/(1/2+sqrt(5)/2)^49 2584000077394261 a001 105937/1368706081*141422324^(12/13) 2584000077394261 a001 317811/969323029*141422324^(11/13) 2584000077394261 a001 105937/29134601*87403803^(14/19) 2584000077394261 a001 14619165/101521*141422324^(2/13) 2584000077394261 a001 317811/228826127*2537720636^(2/3) 2584000077394261 a001 14619165/101521*2537720636^(2/15) 2584000077394261 a001 317811/228826127*45537549124^(10/17) 2584000077394261 a001 14619165/101521*45537549124^(2/17) 2584000077394261 a001 317811/228826127*312119004989^(6/11) 2584000077394261 a001 317811/228826127*14662949395604^(10/21) 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^30/Lucas(40) 2584000077394261 a001 14619165/101521*14662949395604^(2/21) 2584000077394261 a001 14619165/101521*(1/2+1/2*5^(1/2))^6 2584000077394261 a001 317811/228826127*192900153618^(5/9) 2584000077394261 a001 317811/228826127*28143753123^(3/5) 2584000077394261 a001 14619165/101521*10749957122^(1/8) 2584000077394261 a001 591325820631/228841255 2584000077394261 a001 317811/228826127*10749957122^(5/8) 2584000077394261 a001 14619165/101521*4106118243^(3/23) 2584000077394261 a001 317811/228826127*4106118243^(15/23) 2584000077394261 a001 14619165/101521*1568397607^(3/22) 2584000077394261 a001 317811/228826127*1568397607^(15/22) 2584000077394261 a001 14619165/101521*599074578^(1/7) 2584000077394261 a001 317811/228826127*599074578^(5/7) 2584000077394261 a001 14619165/101521*228826127^(3/20) 2584000077394261 a004 Fibonacci(28)*Lucas(41)/(1/2+sqrt(5)/2)^51 2584000077394261 a001 317811/228826127*228826127^(3/4) 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^32/Lucas(42) 2584000077394261 a001 377/710646*23725150497407^(1/2) 2584000077394261 a001 267914296/710647*(1/2+1/2*5^(1/2))^4 2584000077394261 a001 267914296/710647*23725150497407^(1/16) 2584000077394261 a001 267914296/710647*73681302247^(1/13) 2584000077394261 a001 377/710646*73681302247^(8/13) 2584000077394261 a001 28382036775352/10983760033 2584000077394261 a001 267914296/710647*10749957122^(1/12) 2584000077394261 a001 433494437/710647*141422324^(1/13) 2584000077394261 a001 267914296/710647*4106118243^(2/23) 2584000077394261 a001 377/710646*10749957122^(2/3) 2584000077394261 a001 267914296/710647*1568397607^(1/11) 2584000077394261 a001 377/710646*4106118243^(16/23) 2584000077394261 a001 267914296/710647*599074578^(2/21) 2584000077394261 a001 377/710646*1568397607^(8/11) 2584000077394261 a004 Fibonacci(28)*Lucas(43)/(1/2+sqrt(5)/2)^53 2584000077394261 a001 267914296/710647*228826127^(1/10) 2584000077394261 a001 377/710646*599074578^(16/21) 2584000077394261 a001 317811/1568397607*45537549124^(2/3) 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^34/Lucas(44) 2584000077394261 a001 701408733/710647*(1/2+1/2*5^(1/2))^2 2584000077394261 a001 222915410843463/86267571272 2584000077394261 a001 701408733/710647*10749957122^(1/24) 2584000077394261 a001 701408733/710647*4106118243^(1/23) 2584000077394261 a001 317811/1568397607*10749957122^(17/24) 2584000077394261 a001 701408733/710647*1568397607^(1/22) 2584000077394261 a001 317811/1568397607*4106118243^(17/23) 2584000077394261 a001 701408733/710647*599074578^(1/21) 2584000077394261 a001 105937/1368706081*2537720636^(4/5) 2584000077394261 a004 Fibonacci(28)*Lucas(45)/(1/2+sqrt(5)/2)^55 2584000077394261 a001 317811/73681302247*2537720636^(14/15) 2584000077394261 a001 105937/9381251041*2537720636^(8/9) 2584000077394261 a001 10959/599786069*2537720636^(13/15) 2584000077394261 a001 317811/1568397607*1568397607^(17/22) 2584000077394261 a001 105937/1368706081*45537549124^(12/17) 2584000077394261 a001 105937/1368706081*14662949395604^(4/7) 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^36/Lucas(46) 2584000077394261 a001 105937/1368706081*505019158607^(9/14) 2584000077394261 a001 1836311903/710647 2584000077394261 a001 105937/1368706081*192900153618^(2/3) 2584000077394261 a001 105937/1368706081*73681302247^(9/13) 2584000077394261 a001 105937/1368706081*10749957122^(3/4) 2584000077394261 a004 Fibonacci(28)*Lucas(47)/(1/2+sqrt(5)/2)^57 2584000077394261 a001 105937/1368706081*4106118243^(18/23) 2584000077394261 a001 317811/10749957122*817138163596^(2/3) 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^38/Lucas(48) 2584000077394261 a001 1527884955769536/591286729879 2584000077394261 a004 Fibonacci(48)/Lucas(28)/(1/2+sqrt(5)/2)^2 2584000077394261 a004 Fibonacci(28)*Lucas(49)/(1/2+sqrt(5)/2)^59 2584000077394261 a001 317811/73681302247*17393796001^(6/7) 2584000077394261 a001 317811/10749957122*10749957122^(19/24) 2584000077394261 a001 105937/9381251041*312119004989^(8/11) 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^40/Lucas(50) 2584000077394261 a001 105937/9381251041*23725150497407^(5/8) 2584000077394261 a001 24242756030935/9381871248 2584000077394261 a004 Fibonacci(50)/Lucas(28)/(1/2+sqrt(5)/2)^4 2584000077394261 a001 105937/9381251041*73681302247^(10/13) 2584000077394261 a001 317811/73681302247*45537549124^(14/17) 2584000077394261 a004 Fibonacci(28)*Lucas(51)/(1/2+sqrt(5)/2)^61 2584000077394261 a001 105937/440719107401*45537549124^(16/17) 2584000077394261 a001 317811/312119004989*45537549124^(15/17) 2584000077394261 a001 105937/9381251041*28143753123^(4/5) 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^42/Lucas(52) 2584000077394261 a001 10472279279543289/4052739537881 2584000077394261 a001 317811/73681302247*505019158607^(3/4) 2584000077394261 a004 Fibonacci(52)/Lucas(28)/(1/2+sqrt(5)/2)^6 2584000077394261 a001 317811/73681302247*192900153618^(7/9) 2584000077394261 a004 Fibonacci(28)*Lucas(53)/(1/2+sqrt(5)/2)^63 2584000077394261 a001 105937/64300051206*312119004989^(4/5) 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^44/Lucas(54) 2584000077394261 a001 105937/64300051206*23725150497407^(11/16) 2584000077394261 a004 Fibonacci(54)/Lucas(28)/(1/2+sqrt(5)/2)^8 2584000077394261 a004 Fibonacci(28)*Lucas(55)/(1/2+sqrt(5)/2)^65 2584000077394261 a001 317811/3461452808002*312119004989^(10/11) 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^46/Lucas(56) 2584000077394261 a004 Fibonacci(28)*Lucas(57)/(1/2+sqrt(5)/2)^67 2584000077394261 a001 317811/5600748293801*817138163596^(17/19) 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^48/Lucas(58) 2584000077394261 a004 Fibonacci(28)*Lucas(59)/(1/2+sqrt(5)/2)^69 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^50/Lucas(60) 2584000077394261 a004 Fibonacci(28)*Lucas(61)/(1/2+sqrt(5)/2)^71 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^52/Lucas(62) 2584000077394261 a001 105937/3020733700601*23725150497407^(13/16) 2584000077394261 a004 Fibonacci(28)*Lucas(63)/(1/2+sqrt(5)/2)^73 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^54/Lucas(64) 2584000077394261 a004 Fibonacci(28)*Lucas(65)/(1/2+sqrt(5)/2)^75 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^56/Lucas(66) 2584000077394261 a004 Fibonacci(28)*Lucas(67)/(1/2+sqrt(5)/2)^77 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^58/Lucas(68) 2584000077394261 a004 Fibonacci(28)*Lucas(69)/(1/2+sqrt(5)/2)^79 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^60/Lucas(70) 2584000077394261 a004 Fibonacci(28)*Lucas(71)/(1/2+sqrt(5)/2)^81 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^62/Lucas(72) 2584000077394261 a004 Fibonacci(28)*Lucas(73)/(1/2+sqrt(5)/2)^83 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^64/Lucas(74) 2584000077394261 a004 Fibonacci(28)*Lucas(75)/(1/2+sqrt(5)/2)^85 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^66/Lucas(76) 2584000077394261 a004 Fibonacci(28)*Lucas(77)/(1/2+sqrt(5)/2)^87 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^68/Lucas(78) 2584000077394261 a004 Fibonacci(28)*Lucas(79)/(1/2+sqrt(5)/2)^89 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^70/Lucas(80) 2584000077394261 a004 Fibonacci(28)*Lucas(81)/(1/2+sqrt(5)/2)^91 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^72/Lucas(82) 2584000077394261 a004 Fibonacci(28)*Lucas(83)/(1/2+sqrt(5)/2)^93 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^74/Lucas(84) 2584000077394261 a004 Fibonacci(28)*Lucas(85)/(1/2+sqrt(5)/2)^95 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^76/Lucas(86) 2584000077394261 a004 Fibonacci(28)*Lucas(87)/(1/2+sqrt(5)/2)^97 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^78/Lucas(88) 2584000077394261 a004 Fibonacci(28)*Lucas(89)/(1/2+sqrt(5)/2)^99 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^80/Lucas(90) 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^82/Lucas(92) 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^84/Lucas(94) 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^86/Lucas(96) 2584000077394261 a004 Fibonacci(14)*Lucas(14)/(1/2+sqrt(5)/2)^10 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^88/Lucas(98) 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^89/Lucas(99) 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^90/Lucas(100) 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^87/Lucas(97) 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^85/Lucas(95) 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^83/Lucas(93) 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^81/Lucas(91) 2584000077394261 a004 Fibonacci(28)*Lucas(90)/(1/2+sqrt(5)/2)^100 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^79/Lucas(89) 2584000077394261 a004 Fibonacci(28)*Lucas(88)/(1/2+sqrt(5)/2)^98 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^77/Lucas(87) 2584000077394261 a004 Fibonacci(28)*Lucas(86)/(1/2+sqrt(5)/2)^96 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^75/Lucas(85) 2584000077394261 a004 Fibonacci(28)*Lucas(84)/(1/2+sqrt(5)/2)^94 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^73/Lucas(83) 2584000077394261 a004 Fibonacci(28)*Lucas(82)/(1/2+sqrt(5)/2)^92 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^71/Lucas(81) 2584000077394261 a004 Fibonacci(28)*Lucas(80)/(1/2+sqrt(5)/2)^90 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^69/Lucas(79) 2584000077394261 a004 Fibonacci(28)*Lucas(78)/(1/2+sqrt(5)/2)^88 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^67/Lucas(77) 2584000077394261 a004 Fibonacci(28)*Lucas(76)/(1/2+sqrt(5)/2)^86 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^65/Lucas(75) 2584000077394261 a004 Fibonacci(28)*Lucas(74)/(1/2+sqrt(5)/2)^84 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^63/Lucas(73) 2584000077394261 a004 Fibonacci(28)*Lucas(72)/(1/2+sqrt(5)/2)^82 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^61/Lucas(71) 2584000077394261 a004 Fibonacci(28)*Lucas(70)/(1/2+sqrt(5)/2)^80 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^59/Lucas(69) 2584000077394261 a004 Fibonacci(28)*Lucas(68)/(1/2+sqrt(5)/2)^78 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^57/Lucas(67) 2584000077394261 a004 Fibonacci(28)*Lucas(66)/(1/2+sqrt(5)/2)^76 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^55/Lucas(65) 2584000077394261 a004 Fibonacci(28)*Lucas(64)/(1/2+sqrt(5)/2)^74 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^53/Lucas(63) 2584000077394261 a004 Fibonacci(28)*Lucas(62)/(1/2+sqrt(5)/2)^72 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^51/Lucas(61) 2584000077394261 a004 Fibonacci(28)*Lucas(60)/(1/2+sqrt(5)/2)^70 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^49/Lucas(59) 2584000077394261 a004 Fibonacci(28)*Lucas(58)/(1/2+sqrt(5)/2)^68 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^47/Lucas(57) 2584000077394261 a004 Fibonacci(58)/Lucas(28)/(1/2+sqrt(5)/2)^12 2584000077394261 a001 105937/3020733700601*505019158607^(13/14) 2584000077394261 a004 Fibonacci(60)/Lucas(28)/(1/2+sqrt(5)/2)^14 2584000077394261 a004 Fibonacci(62)/Lucas(28)/(1/2+sqrt(5)/2)^16 2584000077394261 a004 Fibonacci(64)/Lucas(28)/(1/2+sqrt(5)/2)^18 2584000077394261 a004 Fibonacci(66)/Lucas(28)/(1/2+sqrt(5)/2)^20 2584000077394261 a004 Fibonacci(68)/Lucas(28)/(1/2+sqrt(5)/2)^22 2584000077394261 a004 Fibonacci(70)/Lucas(28)/(1/2+sqrt(5)/2)^24 2584000077394261 a004 Fibonacci(72)/Lucas(28)/(1/2+sqrt(5)/2)^26 2584000077394261 a004 Fibonacci(74)/Lucas(28)/(1/2+sqrt(5)/2)^28 2584000077394261 a004 Fibonacci(76)/Lucas(28)/(1/2+sqrt(5)/2)^30 2584000077394261 a004 Fibonacci(78)/Lucas(28)/(1/2+sqrt(5)/2)^32 2584000077394261 a004 Fibonacci(80)/Lucas(28)/(1/2+sqrt(5)/2)^34 2584000077394261 a004 Fibonacci(82)/Lucas(28)/(1/2+sqrt(5)/2)^36 2584000077394261 a004 Fibonacci(84)/Lucas(28)/(1/2+sqrt(5)/2)^38 2584000077394261 a004 Fibonacci(86)/Lucas(28)/(1/2+sqrt(5)/2)^40 2584000077394261 a004 Fibonacci(88)/Lucas(28)/(1/2+sqrt(5)/2)^42 2584000077394261 a004 Fibonacci(90)/Lucas(28)/(1/2+sqrt(5)/2)^44 2584000077394261 a004 Fibonacci(92)/Lucas(28)/(1/2+sqrt(5)/2)^46 2584000077394261 a004 Fibonacci(94)/Lucas(28)/(1/2+sqrt(5)/2)^48 2584000077394261 a004 Fibonacci(96)/Lucas(28)/(1/2+sqrt(5)/2)^50 2584000077394261 a004 Fibonacci(100)/Lucas(28)/(1/2+sqrt(5)/2)^54 2584000077394261 a004 Fibonacci(28)*Lucas(56)/(1/2+sqrt(5)/2)^66 2584000077394261 a004 Fibonacci(98)/Lucas(28)/(1/2+sqrt(5)/2)^52 2584000077394261 a004 Fibonacci(99)/Lucas(28)/(1/2+sqrt(5)/2)^53 2584000077394261 a004 Fibonacci(97)/Lucas(28)/(1/2+sqrt(5)/2)^51 2584000077394261 a004 Fibonacci(95)/Lucas(28)/(1/2+sqrt(5)/2)^49 2584000077394261 a004 Fibonacci(93)/Lucas(28)/(1/2+sqrt(5)/2)^47 2584000077394261 a004 Fibonacci(91)/Lucas(28)/(1/2+sqrt(5)/2)^45 2584000077394261 a004 Fibonacci(89)/Lucas(28)/(1/2+sqrt(5)/2)^43 2584000077394261 a004 Fibonacci(87)/Lucas(28)/(1/2+sqrt(5)/2)^41 2584000077394261 a004 Fibonacci(85)/Lucas(28)/(1/2+sqrt(5)/2)^39 2584000077394261 a004 Fibonacci(83)/Lucas(28)/(1/2+sqrt(5)/2)^37 2584000077394261 a004 Fibonacci(81)/Lucas(28)/(1/2+sqrt(5)/2)^35 2584000077394261 a004 Fibonacci(79)/Lucas(28)/(1/2+sqrt(5)/2)^33 2584000077394261 a004 Fibonacci(77)/Lucas(28)/(1/2+sqrt(5)/2)^31 2584000077394261 a004 Fibonacci(75)/Lucas(28)/(1/2+sqrt(5)/2)^29 2584000077394261 a004 Fibonacci(73)/Lucas(28)/(1/2+sqrt(5)/2)^27 2584000077394261 a004 Fibonacci(71)/Lucas(28)/(1/2+sqrt(5)/2)^25 2584000077394261 a004 Fibonacci(69)/Lucas(28)/(1/2+sqrt(5)/2)^23 2584000077394261 a004 Fibonacci(67)/Lucas(28)/(1/2+sqrt(5)/2)^21 2584000077394261 a004 Fibonacci(65)/Lucas(28)/(1/2+sqrt(5)/2)^19 2584000077394261 a004 Fibonacci(63)/Lucas(28)/(1/2+sqrt(5)/2)^17 2584000077394261 a004 Fibonacci(61)/Lucas(28)/(1/2+sqrt(5)/2)^15 2584000077394261 a004 Fibonacci(59)/Lucas(28)/(1/2+sqrt(5)/2)^13 2584000077394261 a004 Fibonacci(57)/Lucas(28)/(1/2+sqrt(5)/2)^11 2584000077394261 a001 317811/312119004989*14662949395604^(5/7) 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^45/Lucas(55) 2584000077394261 a004 Fibonacci(55)/Lucas(28)/(1/2+sqrt(5)/2)^9 2584000077394261 a001 105937/440719107401*192900153618^(8/9) 2584000077394261 a001 317811/5600748293801*192900153618^(17/18) 2584000077394261 a004 Fibonacci(28)*Lucas(54)/(1/2+sqrt(5)/2)^64 2584000077394261 a001 317811/312119004989*192900153618^(5/6) 2584000077394261 a001 1303423370306331/504420793834 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^43/Lucas(53) 2584000077394261 a004 Fibonacci(53)/Lucas(28)/(1/2+sqrt(5)/2)^7 2584000077394261 a001 105937/64300051206*73681302247^(11/13) 2584000077394261 a001 105937/440719107401*73681302247^(12/13) 2584000077394261 a004 Fibonacci(28)*Lucas(52)/(1/2+sqrt(5)/2)^62 2584000077394261 a001 6472224534439014/2504730781961 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^41/Lucas(51) 2584000077394261 a004 Fibonacci(51)/Lucas(28)/(1/2+sqrt(5)/2)^5 2584000077394261 a001 317811/312119004989*28143753123^(9/10) 2584000077394261 a004 Fibonacci(28)*Lucas(50)/(1/2+sqrt(5)/2)^60 2584000077394261 a001 10959/599786069*45537549124^(13/17) 2584000077394261 a001 2472169789334739/956722026041 2584000077394261 a001 10959/599786069*14662949395604^(13/21) 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^39/Lucas(49) 2584000077394261 a004 Fibonacci(49)/Lucas(28)/(1/2+sqrt(5)/2)^3 2584000077394261 a001 10959/599786069*192900153618^(13/18) 2584000077394261 a001 10959/599786069*73681302247^(3/4) 2584000077394261 a001 105937/9381251041*10749957122^(5/6) 2584000077394261 a001 317811/73681302247*10749957122^(7/8) 2584000077394261 a001 105937/64300051206*10749957122^(11/12) 2584000077394261 a001 317811/312119004989*10749957122^(15/16) 2584000077394261 a001 317811/505019158607*10749957122^(23/24) 2584000077394261 a004 Fibonacci(28)*Lucas(48)/(1/2+sqrt(5)/2)^58 2584000077394261 a001 10959/599786069*10749957122^(13/16) 2584000077394261 a001 944284833565203/365435296162 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^37/Lucas(47) 2584000077394261 a004 Fibonacci(47)/Lucas(28)/(1/2+sqrt(5)/2) 2584000077394261 a001 317811/2537720636*2537720636^(7/9) 2584000077394261 a001 317811/10749957122*4106118243^(19/23) 2584000077394261 a001 105937/9381251041*4106118243^(20/23) 2584000077394261 a001 317811/73681302247*4106118243^(21/23) 2584000077394261 a001 105937/64300051206*4106118243^(22/23) 2584000077394261 a004 Fibonacci(28)*Lucas(46)/(1/2+sqrt(5)/2)^56 2584000077394261 a001 317811/2537720636*17393796001^(5/7) 2584000077394261 a001 72136942272174/27916772489 2584000077394261 a001 317811/2537720636*312119004989^(7/11) 2584000077394261 a001 317811/2537720636*14662949395604^(5/9) 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^35/Lucas(45) 2584000077394261 a001 317811/2537720636*505019158607^(5/8) 2584000077394261 a004 Fibonacci(45)*(1/2+sqrt(5)/2)/Lucas(28) 2584000077394261 a001 317811/2537720636*28143753123^(7/10) 2584000077394261 a001 105937/1368706081*1568397607^(9/11) 2584000077394261 a001 317811/10749957122*1568397607^(19/22) 2584000077394261 a001 105937/9381251041*1568397607^(10/11) 2584000077394261 a001 317811/73681302247*1568397607^(21/22) 2584000077394261 a004 Fibonacci(28)*Lucas(44)/(1/2+sqrt(5)/2)^54 2584000077394261 a001 701408733/710647*228826127^(1/20) 2584000077394261 a001 317811/969323029*2537720636^(11/15) 2584000077394261 a001 433494437/710647*2537720636^(1/15) 2584000077394261 a001 317811/969323029*45537549124^(11/17) 2584000077394261 a001 137769300517407/53316291173 2584000077394261 a001 433494437/710647*45537549124^(1/17) 2584000077394261 a001 317811/969323029*312119004989^(3/5) 2584000077394261 a001 317811/969323029*14662949395604^(11/21) 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^33/Lucas(43) 2584000077394261 a001 433494437/710647*14662949395604^(1/21) 2584000077394261 a001 433494437/710647*(1/2+1/2*5^(1/2))^3 2584000077394261 a001 317811/969323029*192900153618^(11/18) 2584000077394261 a001 433494437/710647*10749957122^(1/16) 2584000077394261 a001 317811/969323029*10749957122^(11/16) 2584000077394261 a001 433494437/710647*599074578^(1/14) 2584000077394261 a001 317811/969323029*1568397607^(3/4) 2584000077394261 a001 14619165/101521*87403803^(3/19) 2584000077394261 a001 317811/1568397607*599074578^(17/21) 2584000077394261 a001 105937/1368706081*599074578^(6/7) 2584000077394261 a001 317811/2537720636*599074578^(5/6) 2584000077394261 a001 317811/10749957122*599074578^(19/21) 2584000077394261 a001 10959/599786069*599074578^(13/14) 2584000077394261 a001 105937/9381251041*599074578^(20/21) 2584000077394261 a004 Fibonacci(28)*Lucas(42)/(1/2+sqrt(5)/2)^52 2584000077394261 a001 317811/969323029*599074578^(11/14) 2584000077394261 a001 701408733/710647*87403803^(1/19) 2584000077394261 a001 165580141/710647*2537720636^(1/9) 2584000077394261 a001 52623190191351/20365011074 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^31/Lucas(41) 2584000077394261 a001 317811/370248451*9062201101803^(1/2) 2584000077394261 a001 165580141/710647*312119004989^(1/11) 2584000077394261 a001 165580141/710647*(1/2+1/2*5^(1/2))^5 2584000077394261 a001 165580141/710647*28143753123^(1/10) 2584000077394261 a001 165580141/710647*228826127^(1/8) 2584000077394261 a001 267914296/710647*87403803^(2/19) 2584000077394261 a001 377/710646*228826127^(4/5) 2584000077394261 a001 317811/1568397607*228826127^(17/20) 2584000077394261 a001 317811/2537720636*228826127^(7/8) 2584000077394261 a001 105937/1368706081*228826127^(9/10) 2584000077394261 a001 317811/10749957122*228826127^(19/20) 2584000077394261 a004 Fibonacci(28)*Lucas(40)/(1/2+sqrt(5)/2)^50 2584000077394261 a001 701408733/710647*33385282^(1/18) 2584000077394261 a001 1546174619742/598364773 2584000077394261 a001 63245986/710647*17393796001^(1/7) 2584000077394261 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^29/Lucas(39) 2584000077394261 a001 317811/141422324*1322157322203^(1/2) 2584000077394261 a001 63245986/710647*14662949395604^(1/9) 2584000077394261 a001 63245986/710647*(1/2+1/2*5^(1/2))^7 2584000077394261 a001 63245986/710647*599074578^(1/6) 2584000077394262 a001 39088169/710647*33385282^(2/9) 2584000077394262 a001 433494437/710647*33385282^(1/12) 2584000077394262 a001 317811/228826127*87403803^(15/19) 2584000077394262 a001 267914296/710647*33385282^(1/9) 2584000077394262 a001 377/710646*87403803^(16/19) 2584000077394262 a001 317811/1568397607*87403803^(17/19) 2584000077394262 a001 105937/1368706081*87403803^(18/19) 2584000077394262 a001 14619165/101521*33385282^(1/6) 2584000077394262 a004 Fibonacci(28)*Lucas(38)/(1/2+sqrt(5)/2)^48 2584000077394262 a001 317811/54018521*141422324^(9/13) 2584000077394262 a001 24157817/710647*141422324^(3/13) 2584000077394262 a001 317811/54018521*2537720636^(3/5) 2584000077394262 a001 24157817/710647*2537720636^(1/5) 2584000077394262 a001 7677619978587/2971215073 2584000077394262 a001 317811/54018521*45537549124^(9/17) 2584000077394262 a001 24157817/710647*45537549124^(3/17) 2584000077394262 a001 317811/54018521*817138163596^(9/19) 2584000077394262 a001 317811/54018521*14662949395604^(3/7) 2584000077394262 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^27/Lucas(37) 2584000077394262 a001 24157817/710647*14662949395604^(1/7) 2584000077394262 a001 24157817/710647*(1/2+1/2*5^(1/2))^9 2584000077394262 a001 24157817/710647*192900153618^(1/6) 2584000077394262 a001 317811/54018521*192900153618^(1/2) 2584000077394262 a001 24157817/710647*10749957122^(3/16) 2584000077394262 a001 317811/54018521*10749957122^(9/16) 2584000077394262 a001 24157817/710647*599074578^(3/14) 2584000077394262 a001 317811/54018521*599074578^(9/14) 2584000077394262 a001 701408733/710647*12752043^(1/17) 2584000077394263 a001 105937/29134601*33385282^(7/9) 2584000077394263 a001 24157817/710647*33385282^(1/4) 2584000077394263 a001 10959/711491*20633239^(5/7) 2584000077394263 a001 267914296/710647*12752043^(2/17) 2584000077394263 a001 317811/228826127*33385282^(5/6) 2584000077394263 a001 377/710646*33385282^(8/9) 2584000077394263 a001 317811/969323029*33385282^(11/12) 2584000077394264 a001 317811/1568397607*33385282^(17/18) 2584000077394264 a004 Fibonacci(28)*Lucas(36)/(1/2+sqrt(5)/2)^46 2584000077394264 a001 14930352/710647*12752043^(5/17) 2584000077394264 a001 317811/54018521*33385282^(3/4) 2584000077394264 a001 14619165/101521*12752043^(3/17) 2584000077394265 a001 39088169/710647*12752043^(4/17) 2584000077394267 a001 586517975823/226980634 2584000077394267 a001 10959/711491*2537720636^(5/9) 2584000077394267 a001 10959/711491*312119004989^(5/11) 2584000077394267 a001 10959/711491*(1/2+1/2*5^(1/2))^25 2584000077394267 a001 10959/711491*3461452808002^(5/12) 2584000077394267 a001 9227465/710647*312119004989^(1/5) 2584000077394267 a001 9227465/710647*(1/2+1/2*5^(1/2))^11 2584000077394267 a001 10959/711491*28143753123^(1/2) 2584000077394267 a001 9227465/710647*1568397607^(1/4) 2584000077394267 a001 10959/711491*228826127^(5/8) 2584000077394268 a001 701408733/710647*4870847^(1/16) 2584000077394271 a001 317811/33385282*12752043^(13/17) 2584000077394274 a001 105937/29134601*12752043^(14/17) 2584000077394275 a001 267914296/710647*4870847^(1/8) 2584000077394275 a001 317811/228826127*12752043^(15/17) 2584000077394276 a001 377/710646*12752043^(16/17) 2584000077394277 a004 Fibonacci(28)*Lucas(34)/(1/2+sqrt(5)/2)^44 2584000077394282 a001 14619165/101521*4870847^(3/16) 2584000077394286 a001 5702887/710647*4870847^(3/8) 2584000077394288 a001 39088169/710647*4870847^(1/4) 2584000077394293 a001 14930352/710647*4870847^(5/16) 2584000077394303 a001 3524578/710647*141422324^(1/3) 2584000077394303 a001 1120149658758/433494437 2584000077394303 a001 317811/7881196*(1/2+1/2*5^(1/2))^23 2584000077394303 a001 3524578/710647*(1/2+1/2*5^(1/2))^13 2584000077394303 a001 3524578/710647*73681302247^(1/4) 2584000077394303 a001 317811/7881196*4106118243^(1/2) 2584000077394311 a001 701408733/710647*1860498^(1/15) 2584000077394327 a001 105937/4250681*4870847^(3/4) 2584000077394336 a001 433494437/710647*1860498^(1/10) 2584000077394348 a001 317811/33385282*4870847^(13/16) 2584000077394355 a001 165580141/271443*103682^(1/8) 2584000077394356 a001 105937/29134601*4870847^(7/8) 2584000077394356 a001 514229/1149851*439204^(2/3) 2584000077394361 a001 267914296/710647*1860498^(2/15) 2584000077394363 a001 317811/228826127*4870847^(15/16) 2584000077394370 a004 Fibonacci(28)*Lucas(32)/(1/2+sqrt(5)/2)^42 2584000077394386 a001 165580141/710647*1860498^(1/6) 2584000077394411 a001 102334155/439204*167761^(1/5) 2584000077394411 a001 14619165/101521*1860498^(1/5) 2584000077394460 a001 39088169/710647*1860498^(4/15) 2584000077394486 a001 24157817/710647*1860498^(3/10) 2584000077394501 a001 311187/101521*1860498^(7/15) 2584000077394508 a001 14930352/710647*1860498^(1/3) 2584000077394520 a001 317811/3010349*7881196^(7/11) 2584000077394528 a001 1346269/710647*7881196^(5/11) 2584000077394543 a001 317811/3010349*20633239^(3/5) 2584000077394544 a001 1346269/710647*20633239^(3/7) 2584000077394544 a001 5702887/710647*1860498^(2/5) 2584000077394546 a001 317811/3010349*141422324^(7/13) 2584000077394546 a001 1346269/710647*141422324^(5/13) 2584000077394546 a001 427859097159/165580141 2584000077394546 a001 317811/3010349*2537720636^(7/15) 2584000077394546 a001 1346269/710647*2537720636^(1/3) 2584000077394546 a001 317811/3010349*17393796001^(3/7) 2584000077394546 a001 317811/3010349*45537549124^(7/17) 2584000077394546 a001 1346269/710647*45537549124^(5/17) 2584000077394546 a001 317811/3010349*(1/2+1/2*5^(1/2))^21 2584000077394546 a001 1346269/710647*312119004989^(3/11) 2584000077394546 a001 1346269/710647*14662949395604^(5/21) 2584000077394546 a001 1346269/710647*(1/2+1/2*5^(1/2))^15 2584000077394546 a001 317811/3010349*192900153618^(7/18) 2584000077394546 a001 1346269/710647*192900153618^(5/18) 2584000077394546 a001 1346269/710647*28143753123^(3/10) 2584000077394546 a001 1346269/710647*10749957122^(5/16) 2584000077394546 a001 317811/3010349*10749957122^(7/16) 2584000077394546 a001 1346269/710647*599074578^(5/14) 2584000077394546 a001 317811/3010349*599074578^(1/2) 2584000077394547 a001 1346269/710647*228826127^(3/8) 2584000077394547 a001 1346269/710647*33385282^(5/12) 2584000077394548 a001 317811/3010349*33385282^(7/12) 2584000077394627 a001 701408733/710647*710647^(1/14) 2584000077394700 a001 317811/4870847*1860498^(11/15) 2584000077394804 a001 165580141/4870847*439204^(1/3) 2584000077394843 a001 105937/4250681*1860498^(4/5) 2584000077394890 a001 10959/711491*1860498^(5/6) 2584000077394897 a001 433494437/12752043*439204^(1/3) 2584000077394906 a001 317811/33385282*1860498^(13/15) 2584000077394910 a001 567451585/16692641*439204^(1/3) 2584000077394912 a001 2971215073/87403803*439204^(1/3) 2584000077394913 a001 7778742049/228826127*439204^(1/3) 2584000077394913 a001 10182505537/299537289*439204^(1/3) 2584000077394913 a001 53316291173/1568397607*439204^(1/3) 2584000077394913 a001 139583862445/4106118243*439204^(1/3) 2584000077394913 a001 182717648081/5374978561*439204^(1/3) 2584000077394913 a001 956722026041/28143753123*439204^(1/3) 2584000077394913 a001 2504730781961/73681302247*439204^(1/3) 2584000077394913 a001 3278735159921/96450076809*439204^(1/3) 2584000077394913 a001 10610209857723/312119004989*439204^(1/3) 2584000077394913 a001 4052739537881/119218851371*439204^(1/3) 2584000077394913 a001 387002188980/11384387281*439204^(1/3) 2584000077394913 a001 591286729879/17393796001*439204^(1/3) 2584000077394913 a001 225851433717/6643838879*439204^(1/3) 2584000077394913 a001 1135099622/33391061*439204^(1/3) 2584000077394913 a001 32951280099/969323029*439204^(1/3) 2584000077394913 a001 12586269025/370248451*439204^(1/3) 2584000077394913 a001 1201881744/35355581*439204^(1/3) 2584000077394914 a001 1836311903/54018521*439204^(1/3) 2584000077394919 a001 701408733/20633239*439204^(1/3) 2584000077394920 a001 1346269/710647*1860498^(1/2) 2584000077394934 a001 317811/54018521*1860498^(9/10) 2584000077394954 a001 66978574/1970299*439204^(1/3) 2584000077394958 a001 105937/29134601*1860498^(14/15) 2584000077394992 a001 267914296/710647*710647^(1/7) 2584000077395008 a004 Fibonacci(28)*Lucas(30)/(1/2+sqrt(5)/2)^40 2584000077395069 a001 317811/3010349*1860498^(7/10) 2584000077395198 a001 102334155/3010349*439204^(1/3) 2584000077395358 a001 14619165/101521*710647^(3/14) 2584000077395385 a001 9227465/1149851*439204^(4/9) 2584000077395541 a001 63245986/710647*710647^(1/4) 2584000077395655 a001 133957148/930249*439204^(2/9) 2584000077395723 a001 39088169/710647*710647^(2/7) 2584000077396086 a001 14930352/710647*710647^(5/14) 2584000077396216 a001 163427632719/63245986 2584000077396216 a001 514229/710647*45537549124^(1/3) 2584000077396216 a001 317811/1149851*817138163596^(1/3) 2584000077396216 a001 317811/1149851*(1/2+1/2*5^(1/2))^19 2584000077396216 a001 514229/710647*(1/2+1/2*5^(1/2))^17 2584000077396216 a001 317811/1149851*87403803^(1/2) 2584000077396224 a001 514229/710647*12752043^(1/2) 2584000077396292 a001 701408733/4870847*439204^(2/9) 2584000077396385 a001 1836311903/12752043*439204^(2/9) 2584000077396399 a001 14930208/103681*439204^(2/9) 2584000077396401 a001 12586269025/87403803*439204^(2/9) 2584000077396401 a001 32951280099/228826127*439204^(2/9) 2584000077396401 a001 43133785636/299537289*439204^(2/9) 2584000077396401 a001 32264490531/224056801*439204^(2/9) 2584000077396401 a001 591286729879/4106118243*439204^(2/9) 2584000077396401 a001 774004377960/5374978561*439204^(2/9) 2584000077396401 a001 4052739537881/28143753123*439204^(2/9) 2584000077396401 a001 1515744265389/10525900321*439204^(2/9) 2584000077396401 a001 3278735159921/22768774562*439204^(2/9) 2584000077396401 a001 2504730781961/17393796001*439204^(2/9) 2584000077396401 a001 956722026041/6643838879*439204^(2/9) 2584000077396401 a001 182717648081/1268860318*439204^(2/9) 2584000077396401 a001 139583862445/969323029*439204^(2/9) 2584000077396401 a001 53316291173/370248451*439204^(2/9) 2584000077396401 a001 10182505537/70711162*439204^(2/9) 2584000077396402 a001 7778742049/54018521*439204^(2/9) 2584000077396407 a001 2971215073/20633239*439204^(2/9) 2584000077396438 a001 5702887/710647*710647^(3/7) 2584000077396439 a001 832040/710647*710647^(4/7) 2584000077396443 a001 567451585/3940598*439204^(2/9) 2584000077396571 a001 121393/4870847*271443^(12/13) 2584000077396677 a004 Fibonacci(30)*Lucas(29)/(1/2+sqrt(5)/2)^41 2584000077396686 a001 433494437/3010349*439204^(2/9) 2584000077396711 a001 311187/101521*710647^(1/2) 2584000077396867 a001 39088169/1149851*439204^(1/3) 2584000077396959 a001 701408733/710647*271443^(1/13) 2584000077397143 a001 567451585/930249*439204^(1/9) 2584000077397170 a001 105937/620166*710647^(5/7) 2584000077397315 a004 Fibonacci(32)*Lucas(29)/(1/2+sqrt(5)/2)^43 2584000077397408 a004 Fibonacci(34)*Lucas(29)/(1/2+sqrt(5)/2)^45 2584000077397421 a004 Fibonacci(36)*Lucas(29)/(1/2+sqrt(5)/2)^47 2584000077397423 a004 Fibonacci(38)*Lucas(29)/(1/2+sqrt(5)/2)^49 2584000077397424 a004 Fibonacci(40)*Lucas(29)/(1/2+sqrt(5)/2)^51 2584000077397424 a004 Fibonacci(42)*Lucas(29)/(1/2+sqrt(5)/2)^53 2584000077397424 a004 Fibonacci(44)*Lucas(29)/(1/2+sqrt(5)/2)^55 2584000077397424 a004 Fibonacci(46)*Lucas(29)/(1/2+sqrt(5)/2)^57 2584000077397424 a004 Fibonacci(48)*Lucas(29)/(1/2+sqrt(5)/2)^59 2584000077397424 a004 Fibonacci(50)*Lucas(29)/(1/2+sqrt(5)/2)^61 2584000077397424 a004 Fibonacci(52)*Lucas(29)/(1/2+sqrt(5)/2)^63 2584000077397424 a004 Fibonacci(54)*Lucas(29)/(1/2+sqrt(5)/2)^65 2584000077397424 a004 Fibonacci(56)*Lucas(29)/(1/2+sqrt(5)/2)^67 2584000077397424 a004 Fibonacci(58)*Lucas(29)/(1/2+sqrt(5)/2)^69 2584000077397424 a004 Fibonacci(60)*Lucas(29)/(1/2+sqrt(5)/2)^71 2584000077397424 a004 Fibonacci(62)*Lucas(29)/(1/2+sqrt(5)/2)^73 2584000077397424 a004 Fibonacci(64)*Lucas(29)/(1/2+sqrt(5)/2)^75 2584000077397424 a004 Fibonacci(66)*Lucas(29)/(1/2+sqrt(5)/2)^77 2584000077397424 a004 Fibonacci(68)*Lucas(29)/(1/2+sqrt(5)/2)^79 2584000077397424 a004 Fibonacci(70)*Lucas(29)/(1/2+sqrt(5)/2)^81 2584000077397424 a004 Fibonacci(72)*Lucas(29)/(1/2+sqrt(5)/2)^83 2584000077397424 a004 Fibonacci(74)*Lucas(29)/(1/2+sqrt(5)/2)^85 2584000077397424 a004 Fibonacci(76)*Lucas(29)/(1/2+sqrt(5)/2)^87 2584000077397424 a004 Fibonacci(78)*Lucas(29)/(1/2+sqrt(5)/2)^89 2584000077397424 a004 Fibonacci(80)*Lucas(29)/(1/2+sqrt(5)/2)^91 2584000077397424 a004 Fibonacci(82)*Lucas(29)/(1/2+sqrt(5)/2)^93 2584000077397424 a004 Fibonacci(84)*Lucas(29)/(1/2+sqrt(5)/2)^95 2584000077397424 a004 Fibonacci(86)*Lucas(29)/(1/2+sqrt(5)/2)^97 2584000077397424 a004 Fibonacci(88)*Lucas(29)/(1/2+sqrt(5)/2)^99 2584000077397424 a004 Fibonacci(89)*Lucas(29)/(1/2+sqrt(5)/2)^100 2584000077397424 a004 Fibonacci(87)*Lucas(29)/(1/2+sqrt(5)/2)^98 2584000077397424 a004 Fibonacci(85)*Lucas(29)/(1/2+sqrt(5)/2)^96 2584000077397424 a004 Fibonacci(83)*Lucas(29)/(1/2+sqrt(5)/2)^94 2584000077397424 a004 Fibonacci(81)*Lucas(29)/(1/2+sqrt(5)/2)^92 2584000077397424 a004 Fibonacci(79)*Lucas(29)/(1/2+sqrt(5)/2)^90 2584000077397424 a004 Fibonacci(77)*Lucas(29)/(1/2+sqrt(5)/2)^88 2584000077397424 a004 Fibonacci(75)*Lucas(29)/(1/2+sqrt(5)/2)^86 2584000077397424 a004 Fibonacci(73)*Lucas(29)/(1/2+sqrt(5)/2)^84 2584000077397424 a004 Fibonacci(71)*Lucas(29)/(1/2+sqrt(5)/2)^82 2584000077397424 a004 Fibonacci(69)*Lucas(29)/(1/2+sqrt(5)/2)^80 2584000077397424 a004 Fibonacci(67)*Lucas(29)/(1/2+sqrt(5)/2)^78 2584000077397424 a004 Fibonacci(65)*Lucas(29)/(1/2+sqrt(5)/2)^76 2584000077397424 a004 Fibonacci(63)*Lucas(29)/(1/2+sqrt(5)/2)^74 2584000077397424 a004 Fibonacci(61)*Lucas(29)/(1/2+sqrt(5)/2)^72 2584000077397424 a004 Fibonacci(59)*Lucas(29)/(1/2+sqrt(5)/2)^70 2584000077397424 a001 2/514229*(1/2+1/2*5^(1/2))^47 2584000077397424 a004 Fibonacci(57)*Lucas(29)/(1/2+sqrt(5)/2)^68 2584000077397424 a004 Fibonacci(55)*Lucas(29)/(1/2+sqrt(5)/2)^66 2584000077397424 a004 Fibonacci(53)*Lucas(29)/(1/2+sqrt(5)/2)^64 2584000077397424 a004 Fibonacci(51)*Lucas(29)/(1/2+sqrt(5)/2)^62 2584000077397424 a004 Fibonacci(49)*Lucas(29)/(1/2+sqrt(5)/2)^60 2584000077397424 a004 Fibonacci(47)*Lucas(29)/(1/2+sqrt(5)/2)^58 2584000077397424 a004 Fibonacci(45)*Lucas(29)/(1/2+sqrt(5)/2)^56 2584000077397424 a004 Fibonacci(43)*Lucas(29)/(1/2+sqrt(5)/2)^54 2584000077397424 a004 Fibonacci(41)*Lucas(29)/(1/2+sqrt(5)/2)^52 2584000077397424 a004 Fibonacci(39)*Lucas(29)/(1/2+sqrt(5)/2)^50 2584000077397424 a004 Fibonacci(37)*Lucas(29)/(1/2+sqrt(5)/2)^48 2584000077397430 a004 Fibonacci(35)*Lucas(29)/(1/2+sqrt(5)/2)^46 2584000077397465 a004 Fibonacci(33)*Lucas(29)/(1/2+sqrt(5)/2)^44 2584000077397709 a004 Fibonacci(31)*Lucas(29)/(1/2+sqrt(5)/2)^42 2584000077397781 a001 2971215073/4870847*439204^(1/9) 2584000077397862 a001 416020/930249*7881196^(6/11) 2584000077397874 a001 7778742049/12752043*439204^(1/9) 2584000077397885 a001 416020/930249*141422324^(6/13) 2584000077397885 a001 416020/930249*2537720636^(2/5) 2584000077397885 a001 416020/930249*45537549124^(6/17) 2584000077397885 a001 416020/930249*14662949395604^(2/7) 2584000077397885 a001 416020/930249*(1/2+1/2*5^(1/2))^18 2584000077397885 a001 416020/930249*192900153618^(1/3) 2584000077397885 a001 416020/930249*10749957122^(3/8) 2584000077397885 a001 416020/930249*4106118243^(9/23) 2584000077397885 a001 416020/930249*1568397607^(9/22) 2584000077397885 a001 416020/930249*599074578^(3/7) 2584000077397885 a001 86536320200/33489287 2584000077397885 a001 416020/930249*228826127^(9/20) 2584000077397885 a001 416020/930249*87403803^(9/19) 2584000077397886 a001 416020/930249*33385282^(1/2) 2584000077397887 a001 10182505537/16692641*439204^(1/9) 2584000077397889 a001 53316291173/87403803*439204^(1/9) 2584000077397890 a001 139583862445/228826127*439204^(1/9) 2584000077397890 a001 182717648081/299537289*439204^(1/9) 2584000077397890 a001 956722026041/1568397607*439204^(1/9) 2584000077397890 a001 2504730781961/4106118243*439204^(1/9) 2584000077397890 a001 3278735159921/5374978561*439204^(1/9) 2584000077397890 a001 10610209857723/17393796001*439204^(1/9) 2584000077397890 a001 4052739537881/6643838879*439204^(1/9) 2584000077397890 a001 1134903780/1860499*439204^(1/9) 2584000077397890 a001 591286729879/969323029*439204^(1/9) 2584000077397890 a001 225851433717/370248451*439204^(1/9) 2584000077397890 a001 21566892818/35355581*439204^(1/9) 2584000077397890 a001 32951280099/54018521*439204^(1/9) 2584000077397893 a001 416020/930249*12752043^(9/17) 2584000077397896 a001 1144206275/1875749*439204^(1/9) 2584000077397931 a001 1201881744/1970299*439204^(1/9) 2584000077397946 a001 416020/930249*4870847^(9/16) 2584000077398173 a001 317811/4870847*710647^(11/14) 2584000077398175 a001 1836311903/3010349*439204^(1/9) 2584000077398333 a001 416020/930249*1860498^(3/5) 2584000077398346 a004 Fibonacci(30)*Lucas(31)/(1/2+sqrt(5)/2)^43 2584000077398356 a001 165580141/1149851*439204^(2/9) 2584000077398384 a001 317811/3010349*710647^(3/4) 2584000077398519 a001 832040/4870847*20633239^(4/7) 2584000077398523 a001 832040/4870847*2537720636^(4/9) 2584000077398523 a001 832040/4870847*(1/2+1/2*5^(1/2))^20 2584000077398523 a001 832040/4870847*23725150497407^(5/16) 2584000077398523 a001 726103/620166*(1/2+1/2*5^(1/2))^16 2584000077398523 a001 726103/620166*23725150497407^(1/4) 2584000077398523 a001 726103/620166*73681302247^(4/13) 2584000077398523 a001 832040/4870847*73681302247^(5/13) 2584000077398523 a001 832040/4870847*28143753123^(2/5) 2584000077398523 a001 726103/620166*10749957122^(1/3) 2584000077398523 a001 832040/4870847*10749957122^(5/12) 2584000077398523 a001 726103/620166*4106118243^(8/23) 2584000077398523 a001 832040/4870847*4106118243^(10/23) 2584000077398523 a001 726103/620166*1568397607^(4/11) 2584000077398523 a001 832040/4870847*1568397607^(5/11) 2584000077398523 a001 604146740120/233802911 2584000077398523 a001 726103/620166*599074578^(8/21) 2584000077398523 a001 832040/4870847*599074578^(10/21) 2584000077398523 a001 726103/620166*228826127^(2/5) 2584000077398523 a001 832040/4870847*228826127^(1/2) 2584000077398523 a001 726103/620166*87403803^(8/19) 2584000077398523 a001 832040/4870847*87403803^(10/19) 2584000077398524 a001 726103/620166*33385282^(4/9) 2584000077398524 a001 832040/4870847*33385282^(5/9) 2584000077398530 a001 726103/620166*12752043^(8/17) 2584000077398532 a001 832040/4870847*12752043^(10/17) 2584000077398577 a001 726103/620166*4870847^(1/2) 2584000077398588 a001 832040/12752043*7881196^(2/3) 2584000077398590 a004 Fibonacci(30)*Lucas(33)/(1/2+sqrt(5)/2)^45 2584000077398591 a001 832040/4870847*4870847^(5/8) 2584000077398594 a001 416020/299537289*7881196^(10/11) 2584000077398598 a001 208010/35355581*7881196^(9/11) 2584000077398599 a001 416020/16692641*7881196^(8/11) 2584000077398613 a001 5702887/1860498*20633239^(2/5) 2584000077398614 a001 829464/103361*7881196^(4/11) 2584000077398616 a001 5702887/1860498*17393796001^(2/7) 2584000077398616 a001 832040/12752043*(1/2+1/2*5^(1/2))^22 2584000077398616 a001 5702887/1860498*14662949395604^(2/9) 2584000077398616 a001 5702887/1860498*(1/2+1/2*5^(1/2))^14 2584000077398616 a001 5702887/1860498*505019158607^(1/4) 2584000077398616 a001 5702887/1860498*10749957122^(7/24) 2584000077398616 a001 832040/12752043*10749957122^(11/24) 2584000077398616 a001 5702887/1860498*4106118243^(7/23) 2584000077398616 a001 832040/12752043*4106118243^(11/23) 2584000077398616 a001 4745030099480/1836311903 2584000077398616 a001 5702887/1860498*1568397607^(7/22) 2584000077398616 a001 832040/12752043*1568397607^(1/2) 2584000077398616 a001 5702887/1860498*599074578^(1/3) 2584000077398616 a001 832040/12752043*599074578^(11/21) 2584000077398616 a001 5702887/1860498*228826127^(7/20) 2584000077398616 a001 832040/12752043*228826127^(11/20) 2584000077398616 a001 5702887/1860498*87403803^(7/19) 2584000077398616 a001 832040/12752043*87403803^(11/19) 2584000077398616 a001 5702887/1860498*33385282^(7/18) 2584000077398617 a001 832040/12752043*33385282^(11/18) 2584000077398618 a001 24157817/1860498*7881196^(1/3) 2584000077398620 a001 31622993/930249*7881196^(3/11) 2584000077398622 a001 5702887/1860498*12752043^(7/17) 2584000077398624 a001 133957148/930249*7881196^(2/11) 2584000077398625 a004 Fibonacci(30)*Lucas(35)/(1/2+sqrt(5)/2)^47 2584000077398626 a001 832040/12752043*12752043^(11/17) 2584000077398626 a001 416020/299537289*20633239^(6/7) 2584000077398627 a001 832040/228826127*20633239^(4/5) 2584000077398628 a001 567451585/930249*7881196^(1/11) 2584000077398628 a001 832040/54018521*20633239^(5/7) 2584000077398629 a001 416020/16692641*141422324^(8/13) 2584000077398629 a001 829464/103361*141422324^(4/13) 2584000077398629 a001 416020/16692641*2537720636^(8/15) 2584000077398629 a001 829464/103361*2537720636^(4/15) 2584000077398629 a001 416020/16692641*45537549124^(8/17) 2584000077398629 a001 829464/103361*45537549124^(4/17) 2584000077398629 a001 416020/16692641*14662949395604^(8/21) 2584000077398629 a001 416020/16692641*(1/2+1/2*5^(1/2))^24 2584000077398629 a001 829464/103361*14662949395604^(4/21) 2584000077398629 a001 829464/103361*(1/2+1/2*5^(1/2))^12 2584000077398629 a001 829464/103361*192900153618^(2/9) 2584000077398629 a001 416020/16692641*192900153618^(4/9) 2584000077398629 a001 829464/103361*73681302247^(3/13) 2584000077398629 a001 416020/16692641*73681302247^(6/13) 2584000077398629 a001 829464/103361*10749957122^(1/4) 2584000077398629 a001 416020/16692641*10749957122^(1/2) 2584000077398629 a001 21567100830/8346401 2584000077398629 a001 829464/103361*4106118243^(6/23) 2584000077398629 a001 416020/16692641*4106118243^(12/23) 2584000077398629 a001 829464/103361*1568397607^(3/11) 2584000077398629 a001 416020/16692641*1568397607^(6/11) 2584000077398629 a001 829464/103361*599074578^(2/7) 2584000077398629 a001 416020/16692641*599074578^(4/7) 2584000077398629 a001 829464/103361*228826127^(3/10) 2584000077398629 a001 416020/16692641*228826127^(3/5) 2584000077398629 a001 829464/103361*87403803^(6/19) 2584000077398629 a001 416020/16692641*87403803^(12/19) 2584000077398629 a001 39088169/1860498*20633239^(2/7) 2584000077398630 a001 829464/103361*33385282^(1/3) 2584000077398630 a001 165580141/1860498*20633239^(1/5) 2584000077398631 a004 Fibonacci(30)*Lucas(37)/(1/2+sqrt(5)/2)^49 2584000077398631 a001 433494437/1860498*20633239^(1/7) 2584000077398631 a001 416020/16692641*33385282^(2/3) 2584000077398631 a001 832040/87403803*141422324^(2/3) 2584000077398631 a001 39088169/1860498*2537720636^(2/9) 2584000077398631 a001 39088169/1860498*312119004989^(2/11) 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^26/Lucas(38) 2584000077398631 a001 39088169/1860498*(1/2+1/2*5^(1/2))^10 2584000077398631 a001 832040/87403803*73681302247^(1/2) 2584000077398631 a001 39088169/1860498*28143753123^(1/5) 2584000077398631 a001 591325820632/228841255 2584000077398631 a001 39088169/1860498*10749957122^(5/24) 2584000077398631 a001 832040/87403803*10749957122^(13/24) 2584000077398631 a001 39088169/1860498*4106118243^(5/23) 2584000077398631 a001 832040/87403803*4106118243^(13/23) 2584000077398631 a001 39088169/1860498*1568397607^(5/22) 2584000077398631 a001 832040/87403803*1568397607^(13/22) 2584000077398631 a001 39088169/1860498*599074578^(5/21) 2584000077398631 a001 832040/87403803*599074578^(13/21) 2584000077398631 a001 105937/4250681*710647^(6/7) 2584000077398631 a001 39088169/1860498*228826127^(1/4) 2584000077398631 a001 832040/87403803*228826127^(13/20) 2584000077398631 a001 39088169/1860498*87403803^(5/19) 2584000077398631 a004 Fibonacci(30)*Lucas(39)/(1/2+sqrt(5)/2)^51 2584000077398631 a001 416020/5374978561*141422324^(12/13) 2584000077398631 a001 610/1860499*141422324^(11/13) 2584000077398631 a001 832040/87403803*87403803^(13/19) 2584000077398631 a001 416020/299537289*141422324^(10/13) 2584000077398631 a001 832040/228826127*17393796001^(4/7) 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^28/Lucas(40) 2584000077398631 a001 831985/15126*(1/2+1/2*5^(1/2))^8 2584000077398631 a001 831985/15126*23725150497407^(1/8) 2584000077398631 a001 831985/15126*505019158607^(1/7) 2584000077398631 a001 831985/15126*73681302247^(2/13) 2584000077398631 a001 832040/228826127*73681302247^(7/13) 2584000077398631 a001 28382036775400/10983760033 2584000077398631 a001 831985/15126*10749957122^(1/6) 2584000077398631 a001 832040/228826127*10749957122^(7/12) 2584000077398631 a001 831985/15126*4106118243^(4/23) 2584000077398631 a001 832040/228826127*4106118243^(14/23) 2584000077398631 a001 831985/15126*1568397607^(2/11) 2584000077398631 a001 832040/228826127*1568397607^(7/11) 2584000077398631 a001 831985/15126*599074578^(4/21) 2584000077398631 a001 832040/228826127*599074578^(2/3) 2584000077398631 a001 831985/15126*228826127^(1/5) 2584000077398631 a001 133957148/930249*141422324^(2/13) 2584000077398631 a004 Fibonacci(30)*Lucas(41)/(1/2+sqrt(5)/2)^53 2584000077398631 a001 832040/228826127*228826127^(7/10) 2584000077398631 a001 567451585/930249*141422324^(1/13) 2584000077398631 a001 416020/299537289*2537720636^(2/3) 2584000077398631 a001 133957148/930249*2537720636^(2/15) 2584000077398631 a001 416020/299537289*45537549124^(10/17) 2584000077398631 a001 133957148/930249*45537549124^(2/17) 2584000077398631 a001 416020/299537289*312119004989^(6/11) 2584000077398631 a001 416020/299537289*14662949395604^(10/21) 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^30/Lucas(42) 2584000077398631 a001 133957148/930249*14662949395604^(2/21) 2584000077398631 a001 133957148/930249*(1/2+1/2*5^(1/2))^6 2584000077398631 a001 416020/299537289*192900153618^(5/9) 2584000077398631 a001 27864426355480/10783446409 2584000077398631 a001 416020/299537289*28143753123^(3/5) 2584000077398631 a001 133957148/930249*10749957122^(1/8) 2584000077398631 a001 416020/299537289*10749957122^(5/8) 2584000077398631 a001 133957148/930249*4106118243^(3/23) 2584000077398631 a001 416020/299537289*4106118243^(15/23) 2584000077398631 a001 133957148/930249*1568397607^(3/22) 2584000077398631 a001 416020/299537289*1568397607^(15/22) 2584000077398631 a001 133957148/930249*599074578^(1/7) 2584000077398631 a004 Fibonacci(30)*Lucas(43)/(1/2+sqrt(5)/2)^55 2584000077398631 a001 416020/299537289*599074578^(5/7) 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^32/Lucas(44) 2584000077398631 a001 233802911/620166*(1/2+1/2*5^(1/2))^4 2584000077398631 a001 233802911/620166*23725150497407^(1/16) 2584000077398631 a001 194533374068440/75283811239 2584000077398631 a001 233802911/620166*73681302247^(1/13) 2584000077398631 a001 832040/1568397607*73681302247^(8/13) 2584000077398631 a001 233802911/620166*10749957122^(1/12) 2584000077398631 a001 233802911/620166*4106118243^(2/23) 2584000077398631 a001 832040/1568397607*10749957122^(2/3) 2584000077398631 a001 233802911/620166*1568397607^(1/11) 2584000077398631 a001 832040/1568397607*4106118243^(16/23) 2584000077398631 a004 Fibonacci(30)*Lucas(45)/(1/2+sqrt(5)/2)^57 2584000077398631 a001 416020/96450076809*2537720636^(14/15) 2584000077398631 a001 233802911/620166*599074578^(2/21) 2584000077398631 a001 832040/73681302247*2537720636^(8/9) 2584000077398631 a001 208010/11384387281*2537720636^(13/15) 2584000077398631 a001 416020/5374978561*2537720636^(4/5) 2584000077398631 a001 832040/1568397607*1568397607^(8/11) 2584000077398631 a001 832040/6643838879*2537720636^(7/9) 2584000077398631 a001 832040/4106118243*45537549124^(2/3) 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^34/Lucas(46) 2584000077398631 a001 1836311903/1860498*(1/2+1/2*5^(1/2))^2 2584000077398631 a001 1527884955772120/591286729879 2584000077398631 a001 1836311903/1860498*10749957122^(1/24) 2584000077398631 a001 1836311903/1860498*4106118243^(1/23) 2584000077398631 a001 832040/4106118243*10749957122^(17/24) 2584000077398631 a001 1836311903/1860498*1568397607^(1/22) 2584000077398631 a004 Fibonacci(30)*Lucas(47)/(1/2+sqrt(5)/2)^59 2584000077398631 a001 832040/4106118243*4106118243^(17/23) 2584000077398631 a001 416020/5374978561*45537549124^(12/17) 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^36/Lucas(48) 2584000077398631 a001 267084832/103361 2584000077398631 a001 416020/5374978561*192900153618^(2/3) 2584000077398631 a001 416020/5374978561*73681302247^(9/13) 2584000077398631 a004 Fibonacci(30)*Lucas(49)/(1/2+sqrt(5)/2)^61 2584000077398631 a001 416020/96450076809*17393796001^(6/7) 2584000077398631 a001 416020/5374978561*10749957122^(3/4) 2584000077398631 a001 832040/28143753123*817138163596^(2/3) 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^38/Lucas(50) 2584000077398631 a001 10472279279561000/4052739537881 2584000077398631 a004 Fibonacci(50)/Lucas(30)/(1/2+sqrt(5)/2)^2 2584000077398631 a004 Fibonacci(30)*Lucas(51)/(1/2+sqrt(5)/2)^63 2584000077398631 a001 416020/1730726404001*45537549124^(16/17) 2584000077398631 a001 416020/96450076809*45537549124^(14/17) 2584000077398631 a001 208010/204284540899*45537549124^(15/17) 2584000077398631 a001 832040/73681302247*312119004989^(8/11) 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^40/Lucas(52) 2584000077398631 a001 832040/73681302247*23725150497407^(5/8) 2584000077398631 a004 Fibonacci(52)/Lucas(30)/(1/2+sqrt(5)/2)^4 2584000077398631 a004 Fibonacci(30)*Lucas(53)/(1/2+sqrt(5)/2)^65 2584000077398631 a001 832040/73681302247*73681302247^(10/13) 2584000077398631 a001 416020/96450076809*817138163596^(14/19) 2584000077398631 a001 416020/96450076809*14662949395604^(2/3) 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^42/Lucas(54) 2584000077398631 a004 Fibonacci(54)/Lucas(30)/(1/2+sqrt(5)/2)^6 2584000077398631 a001 416020/96450076809*505019158607^(3/4) 2584000077398631 a001 832040/505019158607*312119004989^(4/5) 2584000077398631 a004 Fibonacci(30)*Lucas(55)/(1/2+sqrt(5)/2)^67 2584000077398631 a001 208010/204284540899*312119004989^(9/11) 2584000077398631 a001 416020/96450076809*192900153618^(7/9) 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^44/Lucas(56) 2584000077398631 a004 Fibonacci(56)/Lucas(30)/(1/2+sqrt(5)/2)^8 2584000077398631 a004 Fibonacci(30)*Lucas(57)/(1/2+sqrt(5)/2)^69 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^46/Lucas(58) 2584000077398631 a004 Fibonacci(58)/Lucas(30)/(1/2+sqrt(5)/2)^10 2584000077398631 a004 Fibonacci(30)*Lucas(59)/(1/2+sqrt(5)/2)^71 2584000077398631 a001 416020/1730726404001*14662949395604^(16/21) 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^48/Lucas(60) 2584000077398631 a004 Fibonacci(30)*Lucas(61)/(1/2+sqrt(5)/2)^73 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^50/Lucas(62) 2584000077398631 a004 Fibonacci(30)*Lucas(63)/(1/2+sqrt(5)/2)^75 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^52/Lucas(64) 2584000077398631 a004 Fibonacci(30)*Lucas(65)/(1/2+sqrt(5)/2)^77 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^54/Lucas(66) 2584000077398631 a004 Fibonacci(30)*Lucas(67)/(1/2+sqrt(5)/2)^79 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^56/Lucas(68) 2584000077398631 a004 Fibonacci(30)*Lucas(69)/(1/2+sqrt(5)/2)^81 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^58/Lucas(70) 2584000077398631 a004 Fibonacci(30)*Lucas(71)/(1/2+sqrt(5)/2)^83 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^60/Lucas(72) 2584000077398631 a004 Fibonacci(30)*Lucas(73)/(1/2+sqrt(5)/2)^85 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^62/Lucas(74) 2584000077398631 a004 Fibonacci(30)*Lucas(75)/(1/2+sqrt(5)/2)^87 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^64/Lucas(76) 2584000077398631 a004 Fibonacci(30)*Lucas(77)/(1/2+sqrt(5)/2)^89 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^66/Lucas(78) 2584000077398631 a004 Fibonacci(30)*Lucas(79)/(1/2+sqrt(5)/2)^91 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^68/Lucas(80) 2584000077398631 a004 Fibonacci(30)*Lucas(81)/(1/2+sqrt(5)/2)^93 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^70/Lucas(82) 2584000077398631 a004 Fibonacci(30)*Lucas(83)/(1/2+sqrt(5)/2)^95 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^72/Lucas(84) 2584000077398631 a004 Fibonacci(30)*Lucas(85)/(1/2+sqrt(5)/2)^97 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^74/Lucas(86) 2584000077398631 a004 Fibonacci(30)*Lucas(87)/(1/2+sqrt(5)/2)^99 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^76/Lucas(88) 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^78/Lucas(90) 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^80/Lucas(92) 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^82/Lucas(94) 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^84/Lucas(96) 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^86/Lucas(98) 2584000077398631 a004 Fibonacci(15)*Lucas(15)/(1/2+sqrt(5)/2)^12 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^85/Lucas(97) 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^87/Lucas(99) 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^88/Lucas(100) 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^83/Lucas(95) 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^81/Lucas(93) 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^79/Lucas(91) 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^77/Lucas(89) 2584000077398631 a004 Fibonacci(30)*Lucas(88)/(1/2+sqrt(5)/2)^100 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^75/Lucas(87) 2584000077398631 a004 Fibonacci(30)*Lucas(86)/(1/2+sqrt(5)/2)^98 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^73/Lucas(85) 2584000077398631 a004 Fibonacci(30)*Lucas(84)/(1/2+sqrt(5)/2)^96 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^71/Lucas(83) 2584000077398631 a004 Fibonacci(30)*Lucas(82)/(1/2+sqrt(5)/2)^94 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^69/Lucas(81) 2584000077398631 a004 Fibonacci(30)*Lucas(80)/(1/2+sqrt(5)/2)^92 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^67/Lucas(79) 2584000077398631 a004 Fibonacci(30)*Lucas(78)/(1/2+sqrt(5)/2)^90 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^65/Lucas(77) 2584000077398631 a004 Fibonacci(30)*Lucas(76)/(1/2+sqrt(5)/2)^88 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^63/Lucas(75) 2584000077398631 a004 Fibonacci(30)*Lucas(74)/(1/2+sqrt(5)/2)^86 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^61/Lucas(73) 2584000077398631 a004 Fibonacci(30)*Lucas(72)/(1/2+sqrt(5)/2)^84 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^59/Lucas(71) 2584000077398631 a004 Fibonacci(30)*Lucas(70)/(1/2+sqrt(5)/2)^82 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^57/Lucas(69) 2584000077398631 a004 Fibonacci(30)*Lucas(68)/(1/2+sqrt(5)/2)^80 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^55/Lucas(67) 2584000077398631 a004 Fibonacci(30)*Lucas(66)/(1/2+sqrt(5)/2)^78 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^53/Lucas(65) 2584000077398631 a001 208010/3665737348901*14662949395604^(17/21) 2584000077398631 a004 Fibonacci(30)*Lucas(64)/(1/2+sqrt(5)/2)^76 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^51/Lucas(63) 2584000077398631 a004 Fibonacci(30)*Lucas(62)/(1/2+sqrt(5)/2)^74 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^49/Lucas(61) 2584000077398631 a004 Fibonacci(62)/Lucas(30)/(1/2+sqrt(5)/2)^14 2584000077398631 a004 Fibonacci(64)/Lucas(30)/(1/2+sqrt(5)/2)^16 2584000077398631 a004 Fibonacci(66)/Lucas(30)/(1/2+sqrt(5)/2)^18 2584000077398631 a004 Fibonacci(68)/Lucas(30)/(1/2+sqrt(5)/2)^20 2584000077398631 a004 Fibonacci(70)/Lucas(30)/(1/2+sqrt(5)/2)^22 2584000077398631 a004 Fibonacci(72)/Lucas(30)/(1/2+sqrt(5)/2)^24 2584000077398631 a004 Fibonacci(74)/Lucas(30)/(1/2+sqrt(5)/2)^26 2584000077398631 a004 Fibonacci(76)/Lucas(30)/(1/2+sqrt(5)/2)^28 2584000077398631 a004 Fibonacci(78)/Lucas(30)/(1/2+sqrt(5)/2)^30 2584000077398631 a004 Fibonacci(80)/Lucas(30)/(1/2+sqrt(5)/2)^32 2584000077398631 a004 Fibonacci(82)/Lucas(30)/(1/2+sqrt(5)/2)^34 2584000077398631 a004 Fibonacci(84)/Lucas(30)/(1/2+sqrt(5)/2)^36 2584000077398631 a004 Fibonacci(86)/Lucas(30)/(1/2+sqrt(5)/2)^38 2584000077398631 a004 Fibonacci(88)/Lucas(30)/(1/2+sqrt(5)/2)^40 2584000077398631 a004 Fibonacci(90)/Lucas(30)/(1/2+sqrt(5)/2)^42 2584000077398631 a004 Fibonacci(92)/Lucas(30)/(1/2+sqrt(5)/2)^44 2584000077398631 a004 Fibonacci(94)/Lucas(30)/(1/2+sqrt(5)/2)^46 2584000077398631 a004 Fibonacci(96)/Lucas(30)/(1/2+sqrt(5)/2)^48 2584000077398631 a004 Fibonacci(100)/Lucas(30)/(1/2+sqrt(5)/2)^52 2584000077398631 a004 Fibonacci(30)*Lucas(60)/(1/2+sqrt(5)/2)^72 2584000077398631 a004 Fibonacci(98)/Lucas(30)/(1/2+sqrt(5)/2)^50 2584000077398631 a004 Fibonacci(97)/Lucas(30)/(1/2+sqrt(5)/2)^49 2584000077398631 a004 Fibonacci(99)/Lucas(30)/(1/2+sqrt(5)/2)^51 2584000077398631 a004 Fibonacci(95)/Lucas(30)/(1/2+sqrt(5)/2)^47 2584000077398631 a004 Fibonacci(93)/Lucas(30)/(1/2+sqrt(5)/2)^45 2584000077398631 a004 Fibonacci(91)/Lucas(30)/(1/2+sqrt(5)/2)^43 2584000077398631 a004 Fibonacci(89)/Lucas(30)/(1/2+sqrt(5)/2)^41 2584000077398631 a004 Fibonacci(87)/Lucas(30)/(1/2+sqrt(5)/2)^39 2584000077398631 a004 Fibonacci(85)/Lucas(30)/(1/2+sqrt(5)/2)^37 2584000077398631 a004 Fibonacci(83)/Lucas(30)/(1/2+sqrt(5)/2)^35 2584000077398631 a004 Fibonacci(81)/Lucas(30)/(1/2+sqrt(5)/2)^33 2584000077398631 a004 Fibonacci(79)/Lucas(30)/(1/2+sqrt(5)/2)^31 2584000077398631 a004 Fibonacci(77)/Lucas(30)/(1/2+sqrt(5)/2)^29 2584000077398631 a004 Fibonacci(75)/Lucas(30)/(1/2+sqrt(5)/2)^27 2584000077398631 a004 Fibonacci(73)/Lucas(30)/(1/2+sqrt(5)/2)^25 2584000077398631 a004 Fibonacci(71)/Lucas(30)/(1/2+sqrt(5)/2)^23 2584000077398631 a004 Fibonacci(69)/Lucas(30)/(1/2+sqrt(5)/2)^21 2584000077398631 a004 Fibonacci(67)/Lucas(30)/(1/2+sqrt(5)/2)^19 2584000077398631 a004 Fibonacci(65)/Lucas(30)/(1/2+sqrt(5)/2)^17 2584000077398631 a004 Fibonacci(63)/Lucas(30)/(1/2+sqrt(5)/2)^15 2584000077398631 a004 Fibonacci(61)/Lucas(30)/(1/2+sqrt(5)/2)^13 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^47/Lucas(59) 2584000077398631 a004 Fibonacci(59)/Lucas(30)/(1/2+sqrt(5)/2)^11 2584000077398631 a004 Fibonacci(30)*Lucas(58)/(1/2+sqrt(5)/2)^70 2584000077398631 a001 208010/204284540899*14662949395604^(5/7) 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^45/Lucas(57) 2584000077398631 a004 Fibonacci(57)/Lucas(30)/(1/2+sqrt(5)/2)^9 2584000077398631 a001 832040/5600748293801*505019158607^(7/8) 2584000077398631 a004 Fibonacci(30)*Lucas(56)/(1/2+sqrt(5)/2)^68 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^43/Lucas(55) 2584000077398631 a004 Fibonacci(55)/Lucas(30)/(1/2+sqrt(5)/2)^7 2584000077398631 a001 208010/204284540899*192900153618^(5/6) 2584000077398631 a001 208010/3665737348901*192900153618^(17/18) 2584000077398631 a004 Fibonacci(30)*Lucas(54)/(1/2+sqrt(5)/2)^66 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^41/Lucas(53) 2584000077398631 a004 Fibonacci(53)/Lucas(30)/(1/2+sqrt(5)/2)^5 2584000077398631 a001 208010/11384387281*45537549124^(13/17) 2584000077398631 a001 832040/505019158607*73681302247^(11/13) 2584000077398631 a001 416020/1730726404001*73681302247^(12/13) 2584000077398631 a004 Fibonacci(30)*Lucas(52)/(1/2+sqrt(5)/2)^64 2584000077398631 a001 208010/11384387281*14662949395604^(13/21) 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^39/Lucas(51) 2584000077398631 a004 Fibonacci(51)/Lucas(30)/(1/2+sqrt(5)/2)^3 2584000077398631 a001 208010/11384387281*192900153618^(13/18) 2584000077398631 a001 208010/11384387281*73681302247^(3/4) 2584000077398631 a001 832040/73681302247*28143753123^(4/5) 2584000077398631 a001 208010/204284540899*28143753123^(9/10) 2584000077398631 a004 Fibonacci(30)*Lucas(50)/(1/2+sqrt(5)/2)^62 2584000077398631 a001 6472224534449960/2504730781961 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^37/Lucas(49) 2584000077398631 a004 Fibonacci(49)/Lucas(30)/(1/2+sqrt(5)/2) 2584000077398631 a001 832040/28143753123*10749957122^(19/24) 2584000077398631 a001 832040/73681302247*10749957122^(5/6) 2584000077398631 a001 208010/11384387281*10749957122^(13/16) 2584000077398631 a001 416020/96450076809*10749957122^(7/8) 2584000077398631 a001 832040/505019158607*10749957122^(11/12) 2584000077398631 a001 208010/204284540899*10749957122^(15/16) 2584000077398631 a001 832040/1322157322203*10749957122^(23/24) 2584000077398631 a004 Fibonacci(30)*Lucas(48)/(1/2+sqrt(5)/2)^60 2584000077398631 a001 832040/6643838879*17393796001^(5/7) 2584000077398631 a001 832040/6643838879*312119004989^(7/11) 2584000077398631 a001 2472169789338920/956722026041 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^35/Lucas(47) 2584000077398631 a001 2971215073/3720996+2971215073/3720996*5^(1/2) 2584000077398631 a001 832040/6643838879*28143753123^(7/10) 2584000077398631 a001 416020/5374978561*4106118243^(18/23) 2584000077398631 a001 610/1860499*2537720636^(11/15) 2584000077398631 a001 832040/28143753123*4106118243^(19/23) 2584000077398631 a001 832040/73681302247*4106118243^(20/23) 2584000077398631 a001 416020/96450076809*4106118243^(21/23) 2584000077398631 a001 832040/505019158607*4106118243^(22/23) 2584000077398631 a004 Fibonacci(30)*Lucas(46)/(1/2+sqrt(5)/2)^58 2584000077398631 a001 1836311903/1860498*599074578^(1/21) 2584000077398631 a001 133957148/930249*228826127^(3/20) 2584000077398631 a001 567451585/930249*2537720636^(1/15) 2584000077398631 a001 610/1860499*45537549124^(11/17) 2584000077398631 a001 567451585/930249*45537549124^(1/17) 2584000077398631 a001 610/1860499*312119004989^(3/5) 2584000077398631 a001 472142416783400/182717648081 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^33/Lucas(45) 2584000077398631 a001 567451585/930249*14662949395604^(1/21) 2584000077398631 a001 567451585/930249*(1/2+1/2*5^(1/2))^3 2584000077398631 a001 610/1860499*192900153618^(11/18) 2584000077398631 a001 567451585/930249*10749957122^(1/16) 2584000077398631 a001 610/1860499*10749957122^(11/16) 2584000077398631 a001 832040/4106118243*1568397607^(17/22) 2584000077398631 a001 416020/5374978561*1568397607^(9/11) 2584000077398631 a001 832040/28143753123*1568397607^(19/22) 2584000077398631 a001 567451585/930249*599074578^(1/14) 2584000077398631 a001 832040/73681302247*1568397607^(10/11) 2584000077398631 a001 416020/96450076809*1568397607^(21/22) 2584000077398631 a004 Fibonacci(30)*Lucas(44)/(1/2+sqrt(5)/2)^56 2584000077398631 a001 610/1860499*1568397607^(3/4) 2584000077398631 a001 1836311903/1860498*228826127^(1/20) 2584000077398631 a001 433494437/1860498*2537720636^(1/9) 2584000077398631 a001 72136942272296/27916772489 2584000077398631 a001 433494437/1860498*312119004989^(1/11) 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^31/Lucas(43) 2584000077398631 a001 832040/969323029*9062201101803^(1/2) 2584000077398631 a001 433494437/1860498*(1/2+1/2*5^(1/2))^5 2584000077398631 a001 433494437/1860498*28143753123^(1/10) 2584000077398631 a001 233802911/620166*228826127^(1/10) 2584000077398631 a001 832040/1568397607*599074578^(16/21) 2584000077398631 a001 832040/4106118243*599074578^(17/21) 2584000077398631 a001 610/1860499*599074578^(11/14) 2584000077398631 a001 832040/6643838879*599074578^(5/6) 2584000077398631 a001 416020/5374978561*599074578^(6/7) 2584000077398631 a001 832040/28143753123*599074578^(19/21) 2584000077398631 a001 208010/11384387281*599074578^(13/14) 2584000077398631 a001 832040/73681302247*599074578^(20/21) 2584000077398631 a004 Fibonacci(30)*Lucas(42)/(1/2+sqrt(5)/2)^54 2584000077398631 a001 433494437/1860498*228826127^(1/8) 2584000077398631 a001 1836311903/1860498*87403803^(1/19) 2584000077398631 a001 165580141/1860498*17393796001^(1/7) 2584000077398631 a001 137769300517640/53316291173 2584000077398631 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^29/Lucas(41) 2584000077398631 a001 165580141/1860498*14662949395604^(1/9) 2584000077398631 a001 165580141/1860498*(1/2+1/2*5^(1/2))^7 2584000077398631 a001 832040/370248451*1322157322203^(1/2) 2584000077398631 a001 165580141/1860498*599074578^(1/6) 2584000077398632 a001 831985/15126*87403803^(4/19) 2584000077398632 a001 416020/299537289*228826127^(3/4) 2584000077398632 a001 233802911/620166*87403803^(2/19) 2584000077398632 a001 832040/1568397607*228826127^(4/5) 2584000077398632 a001 208010/35355581*141422324^(9/13) 2584000077398632 a001 832040/4106118243*228826127^(17/20) 2584000077398632 a001 832040/6643838879*228826127^(7/8) 2584000077398632 a001 416020/5374978561*228826127^(9/10) 2584000077398632 a001 133957148/930249*87403803^(3/19) 2584000077398632 a001 832040/28143753123*228826127^(19/20) 2584000077398632 a004 Fibonacci(30)*Lucas(40)/(1/2+sqrt(5)/2)^52 2584000077398632 a001 31622993/930249*141422324^(3/13) 2584000077398632 a001 1836311903/1860498*33385282^(1/18) 2584000077398632 a001 208010/35355581*2537720636^(3/5) 2584000077398632 a001 31622993/930249*2537720636^(1/5) 2584000077398632 a001 26311595095720/10182505537 2584000077398632 a001 208010/35355581*45537549124^(9/17) 2584000077398632 a001 31622993/930249*45537549124^(3/17) 2584000077398632 a001 208010/35355581*817138163596^(9/19) 2584000077398632 a001 208010/35355581*14662949395604^(3/7) 2584000077398632 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^27/Lucas(39) 2584000077398632 a001 31622993/930249*(1/2+1/2*5^(1/2))^9 2584000077398632 a001 31622993/930249*192900153618^(1/6) 2584000077398632 a001 208010/35355581*192900153618^(1/2) 2584000077398632 a001 31622993/930249*10749957122^(3/16) 2584000077398632 a001 208010/35355581*10749957122^(9/16) 2584000077398632 a001 31622993/930249*599074578^(3/14) 2584000077398632 a001 208010/35355581*599074578^(9/14) 2584000077398632 a001 567451585/930249*33385282^(1/12) 2584000077398632 a001 832040/228826127*87403803^(14/19) 2584000077398632 a001 233802911/620166*33385282^(1/9) 2584000077398632 a001 416020/299537289*87403803^(15/19) 2584000077398632 a001 832040/1568397607*87403803^(16/19) 2584000077398632 a001 832040/4106118243*87403803^(17/19) 2584000077398632 a001 39088169/1860498*33385282^(5/18) 2584000077398632 a001 416020/5374978561*87403803^(18/19) 2584000077398632 a004 Fibonacci(30)*Lucas(38)/(1/2+sqrt(5)/2)^50 2584000077398632 a001 133957148/930249*33385282^(1/6) 2584000077398632 a001 831985/15126*33385282^(2/9) 2584000077398632 a001 31622993/930249*33385282^(1/4) 2584000077398632 a001 832040/54018521*2537720636^(5/9) 2584000077398632 a001 20100270056680/7778742049 2584000077398632 a001 832040/54018521*312119004989^(5/11) 2584000077398632 a001 24157817/1860498*312119004989^(1/5) 2584000077398632 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^25/Lucas(37) 2584000077398632 a001 24157817/1860498*(1/2+1/2*5^(1/2))^11 2584000077398632 a001 832040/54018521*28143753123^(1/2) 2584000077398632 a001 24157817/1860498*1568397607^(1/4) 2584000077398632 a001 832040/54018521*228826127^(5/8) 2584000077398632 a001 1836311903/1860498*12752043^(1/17) 2584000077398633 a001 832040/87403803*33385282^(13/18) 2584000077398633 a001 832040/228826127*33385282^(7/9) 2584000077398633 a001 208010/35355581*33385282^(3/4) 2584000077398633 a001 233802911/620166*12752043^(2/17) 2584000077398633 a001 416020/299537289*33385282^(5/6) 2584000077398634 a001 832040/1568397607*33385282^(8/9) 2584000077398634 a001 610/1860499*33385282^(11/12) 2584000077398634 a001 832040/4106118243*33385282^(17/18) 2584000077398634 a004 Fibonacci(30)*Lucas(36)/(1/2+sqrt(5)/2)^48 2584000077398634 a001 133957148/930249*12752043^(3/17) 2584000077398635 a001 829464/103361*12752043^(6/17) 2584000077398635 a001 831985/15126*12752043^(4/17) 2584000077398636 a001 39088169/1860498*12752043^(5/17) 2584000077398638 a001 9227465/1860498*141422324^(1/3) 2584000077398638 a001 7677619978600/2971215073 2584000077398638 a001 75640/1875749*(1/2+1/2*5^(1/2))^23 2584000077398638 a001 9227465/1860498*(1/2+1/2*5^(1/2))^13 2584000077398638 a001 9227465/1860498*73681302247^(1/4) 2584000077398638 a001 75640/1875749*4106118243^(1/2) 2584000077398638 a001 1836311903/1860498*4870847^(1/16) 2584000077398640 a001 416020/16692641*12752043^(12/17) 2584000077398643 a001 832040/87403803*12752043^(13/17) 2584000077398645 a001 832040/228826127*12752043^(14/17) 2584000077398645 a001 233802911/620166*4870847^(1/8) 2584000077398645 a001 416020/299537289*12752043^(15/17) 2584000077398646 a001 832040/1568397607*12752043^(16/17) 2584000077398647 a001 208010/1970299*7881196^(7/11) 2584000077398647 a004 Fibonacci(30)*Lucas(34)/(1/2+sqrt(5)/2)^46 2584000077398652 a001 133957148/930249*4870847^(3/16) 2584000077398654 a001 1762289/930249*7881196^(5/11) 2584000077398659 a001 831985/15126*4870847^(1/4) 2584000077398663 a001 5702887/1860498*4870847^(7/16) 2584000077398665 a001 39088169/1860498*4870847^(5/16) 2584000077398669 a001 208010/1970299*20633239^(3/5) 2584000077398670 a001 829464/103361*4870847^(3/8) 2584000077398670 a001 1762289/930249*20633239^(3/7) 2584000077398673 a001 208010/1970299*141422324^(7/13) 2584000077398673 a001 1762289/930249*141422324^(5/13) 2584000077398673 a001 4807524392/1860497 2584000077398673 a001 208010/1970299*2537720636^(7/15) 2584000077398673 a001 1762289/930249*2537720636^(1/3) 2584000077398673 a001 208010/1970299*17393796001^(3/7) 2584000077398673 a001 208010/1970299*45537549124^(7/17) 2584000077398673 a001 1762289/930249*45537549124^(5/17) 2584000077398673 a001 1762289/930249*312119004989^(3/11) 2584000077398673 a001 208010/1970299*14662949395604^(1/3) 2584000077398673 a001 208010/1970299*(1/2+1/2*5^(1/2))^21 2584000077398673 a001 1762289/930249*14662949395604^(5/21) 2584000077398673 a001 1762289/930249*(1/2+1/2*5^(1/2))^15 2584000077398673 a001 1762289/930249*192900153618^(5/18) 2584000077398673 a001 208010/1970299*192900153618^(7/18) 2584000077398673 a001 1762289/930249*28143753123^(3/10) 2584000077398673 a001 1762289/930249*10749957122^(5/16) 2584000077398673 a001 208010/1970299*10749957122^(7/16) 2584000077398673 a001 1762289/930249*599074578^(5/14) 2584000077398673 a001 208010/1970299*599074578^(1/2) 2584000077398673 a001 1762289/930249*228826127^(3/8) 2584000077398674 a001 1762289/930249*33385282^(5/12) 2584000077398674 a001 208010/1970299*33385282^(7/12) 2584000077398681 a001 1836311903/1860498*1860498^(1/15) 2584000077398690 a001 832040/12752043*4870847^(11/16) 2584000077398706 a001 567451585/930249*1860498^(1/10) 2584000077398711 a001 416020/16692641*4870847^(3/4) 2584000077398720 a001 832040/87403803*4870847^(13/16) 2584000077398727 a001 832040/228826127*4870847^(7/8) 2584000077398731 a001 233802911/620166*1860498^(2/15) 2584000077398734 a001 416020/299537289*4870847^(15/16) 2584000077398740 a004 Fibonacci(30)*Lucas(32)/(1/2+sqrt(5)/2)^44 2584000077398756 a001 433494437/1860498*1860498^(1/6) 2584000077398781 a001 133957148/930249*1860498^(1/5) 2584000077398830 a001 831985/15126*1860498^(4/15) 2584000077398856 a001 31622993/930249*1860498^(3/10) 2584000077398880 a001 39088169/1860498*1860498^(1/3) 2584000077398917 a001 1120149658760/433494437 2584000077398917 a001 1346269/1860498*45537549124^(1/3) 2584000077398917 a001 832040/3010349*817138163596^(1/3) 2584000077398917 a001 832040/3010349*(1/2+1/2*5^(1/2))^19 2584000077398917 a001 1346269/1860498*(1/2+1/2*5^(1/2))^17 2584000077398917 a001 832040/3010349*87403803^(1/2) 2584000077398921 a001 726103/620166*1860498^(8/15) 2584000077398925 a001 1346269/1860498*12752043^(1/2) 2584000077398928 a001 829464/103361*1860498^(2/5) 2584000077398964 a001 5702887/1860498*1860498^(7/15) 2584000077398984 a004 Fibonacci(32)*Lucas(31)/(1/2+sqrt(5)/2)^45 2584000077398997 a001 1836311903/1860498*710647^(1/14) 2584000077399010 a001 317811/33385282*710647^(13/14) 2584000077399020 a001 832040/4870847*1860498^(2/3) 2584000077399046 a001 1762289/930249*1860498^(1/2) 2584000077399077 a004 Fibonacci(34)*Lucas(31)/(1/2+sqrt(5)/2)^47 2584000077399091 a004 Fibonacci(36)*Lucas(31)/(1/2+sqrt(5)/2)^49 2584000077399093 a004 Fibonacci(38)*Lucas(31)/(1/2+sqrt(5)/2)^51 2584000077399093 a004 Fibonacci(40)*Lucas(31)/(1/2+sqrt(5)/2)^53 2584000077399093 a004 Fibonacci(42)*Lucas(31)/(1/2+sqrt(5)/2)^55 2584000077399093 a004 Fibonacci(44)*Lucas(31)/(1/2+sqrt(5)/2)^57 2584000077399093 a004 Fibonacci(46)*Lucas(31)/(1/2+sqrt(5)/2)^59 2584000077399093 a004 Fibonacci(48)*Lucas(31)/(1/2+sqrt(5)/2)^61 2584000077399093 a004 Fibonacci(50)*Lucas(31)/(1/2+sqrt(5)/2)^63 2584000077399093 a004 Fibonacci(52)*Lucas(31)/(1/2+sqrt(5)/2)^65 2584000077399093 a004 Fibonacci(54)*Lucas(31)/(1/2+sqrt(5)/2)^67 2584000077399093 a004 Fibonacci(56)*Lucas(31)/(1/2+sqrt(5)/2)^69 2584000077399093 a004 Fibonacci(58)*Lucas(31)/(1/2+sqrt(5)/2)^71 2584000077399093 a004 Fibonacci(60)*Lucas(31)/(1/2+sqrt(5)/2)^73 2584000077399093 a004 Fibonacci(62)*Lucas(31)/(1/2+sqrt(5)/2)^75 2584000077399093 a004 Fibonacci(64)*Lucas(31)/(1/2+sqrt(5)/2)^77 2584000077399093 a004 Fibonacci(66)*Lucas(31)/(1/2+sqrt(5)/2)^79 2584000077399093 a004 Fibonacci(68)*Lucas(31)/(1/2+sqrt(5)/2)^81 2584000077399093 a004 Fibonacci(70)*Lucas(31)/(1/2+sqrt(5)/2)^83 2584000077399093 a004 Fibonacci(72)*Lucas(31)/(1/2+sqrt(5)/2)^85 2584000077399093 a004 Fibonacci(74)*Lucas(31)/(1/2+sqrt(5)/2)^87 2584000077399093 a004 Fibonacci(76)*Lucas(31)/(1/2+sqrt(5)/2)^89 2584000077399093 a004 Fibonacci(78)*Lucas(31)/(1/2+sqrt(5)/2)^91 2584000077399093 a004 Fibonacci(80)*Lucas(31)/(1/2+sqrt(5)/2)^93 2584000077399093 a004 Fibonacci(82)*Lucas(31)/(1/2+sqrt(5)/2)^95 2584000077399093 a004 Fibonacci(84)*Lucas(31)/(1/2+sqrt(5)/2)^97 2584000077399093 a004 Fibonacci(86)*Lucas(31)/(1/2+sqrt(5)/2)^99 2584000077399093 a004 Fibonacci(87)*Lucas(31)/(1/2+sqrt(5)/2)^100 2584000077399093 a004 Fibonacci(85)*Lucas(31)/(1/2+sqrt(5)/2)^98 2584000077399093 a004 Fibonacci(83)*Lucas(31)/(1/2+sqrt(5)/2)^96 2584000077399093 a004 Fibonacci(81)*Lucas(31)/(1/2+sqrt(5)/2)^94 2584000077399093 a004 Fibonacci(79)*Lucas(31)/(1/2+sqrt(5)/2)^92 2584000077399093 a004 Fibonacci(77)*Lucas(31)/(1/2+sqrt(5)/2)^90 2584000077399093 a004 Fibonacci(75)*Lucas(31)/(1/2+sqrt(5)/2)^88 2584000077399093 a004 Fibonacci(73)*Lucas(31)/(1/2+sqrt(5)/2)^86 2584000077399093 a004 Fibonacci(71)*Lucas(31)/(1/2+sqrt(5)/2)^84 2584000077399093 a004 Fibonacci(69)*Lucas(31)/(1/2+sqrt(5)/2)^82 2584000077399093 a004 Fibonacci(67)*Lucas(31)/(1/2+sqrt(5)/2)^80 2584000077399093 a004 Fibonacci(65)*Lucas(31)/(1/2+sqrt(5)/2)^78 2584000077399093 a004 Fibonacci(63)*Lucas(31)/(1/2+sqrt(5)/2)^76 2584000077399093 a001 2/1346269*(1/2+1/2*5^(1/2))^49 2584000077399093 a004 Fibonacci(61)*Lucas(31)/(1/2+sqrt(5)/2)^74 2584000077399093 a004 Fibonacci(59)*Lucas(31)/(1/2+sqrt(5)/2)^72 2584000077399093 a004 Fibonacci(57)*Lucas(31)/(1/2+sqrt(5)/2)^70 2584000077399093 a004 Fibonacci(55)*Lucas(31)/(1/2+sqrt(5)/2)^68 2584000077399093 a004 Fibonacci(53)*Lucas(31)/(1/2+sqrt(5)/2)^66 2584000077399093 a004 Fibonacci(51)*Lucas(31)/(1/2+sqrt(5)/2)^64 2584000077399093 a004 Fibonacci(49)*Lucas(31)/(1/2+sqrt(5)/2)^62 2584000077399093 a004 Fibonacci(47)*Lucas(31)/(1/2+sqrt(5)/2)^60 2584000077399093 a004 Fibonacci(45)*Lucas(31)/(1/2+sqrt(5)/2)^58 2584000077399093 a004 Fibonacci(43)*Lucas(31)/(1/2+sqrt(5)/2)^56 2584000077399093 a004 Fibonacci(41)*Lucas(31)/(1/2+sqrt(5)/2)^54 2584000077399093 a004 Fibonacci(39)*Lucas(31)/(1/2+sqrt(5)/2)^52 2584000077399094 a004 Fibonacci(37)*Lucas(31)/(1/2+sqrt(5)/2)^50 2584000077399099 a004 Fibonacci(35)*Lucas(31)/(1/2+sqrt(5)/2)^48 2584000077399134 a004 Fibonacci(33)*Lucas(31)/(1/2+sqrt(5)/2)^46 2584000077399137 a001 2178309/4870847*7881196^(6/11) 2584000077399160 a001 2178309/4870847*141422324^(6/13) 2584000077399160 a001 2178309/4870847*2537720636^(2/5) 2584000077399160 a001 2178309/4870847*45537549124^(6/17) 2584000077399160 a001 2178309/4870847*14662949395604^(2/7) 2584000077399160 a001 2178309/4870847*(1/2+1/2*5^(1/2))^18 2584000077399160 a001 2178309/4870847*192900153618^(1/3) 2584000077399160 a001 2178309/4870847*10749957122^(3/8) 2584000077399160 a001 2178309/4870847*4106118243^(9/23) 2584000077399160 a001 4745030099481/1836311903 2584000077399160 a001 2178309/4870847*1568397607^(9/22) 2584000077399160 a001 2178309/4870847*599074578^(3/7) 2584000077399160 a001 2178309/4870847*228826127^(9/20) 2584000077399160 a001 2178309/4870847*87403803^(9/19) 2584000077399161 a001 2178309/4870847*33385282^(1/2) 2584000077399163 a001 832040/12752043*1860498^(11/15) 2584000077399169 a001 2178309/4870847*12752043^(9/17) 2584000077399196 a001 208010/1970299*1860498^(7/10) 2584000077399221 a001 2178309/4870847*4870847^(9/16) 2584000077399226 a001 416020/16692641*1860498^(4/5) 2584000077399227 a004 Fibonacci(32)*Lucas(33)/(1/2+sqrt(5)/2)^47 2584000077399231 a001 311187/224056801*7881196^(10/11) 2584000077399235 a001 2178309/370248451*7881196^(9/11) 2584000077399238 a001 726103/29134601*7881196^(8/11) 2584000077399239 a001 311187/4769326*7881196^(2/3) 2584000077399249 a001 2178309/20633239*7881196^(7/11) 2584000077399250 a001 726103/4250681*20633239^(4/7) 2584000077399253 a001 726103/4250681*2537720636^(4/9) 2584000077399253 a001 726103/4250681*(1/2+1/2*5^(1/2))^20 2584000077399253 a001 726103/4250681*23725150497407^(5/16) 2584000077399253 a001 5702887/4870847*(1/2+1/2*5^(1/2))^16 2584000077399253 a001 5702887/4870847*23725150497407^(1/4) 2584000077399253 a001 726103/4250681*505019158607^(5/14) 2584000077399253 a001 5702887/4870847*73681302247^(4/13) 2584000077399253 a001 726103/4250681*73681302247^(5/13) 2584000077399253 a001 726103/4250681*28143753123^(2/5) 2584000077399253 a001 5702887/4870847*10749957122^(1/3) 2584000077399253 a001 726103/4250681*10749957122^(5/12) 2584000077399253 a001 12586271609/4870848 2584000077399253 a001 5702887/4870847*4106118243^(8/23) 2584000077399253 a001 726103/4250681*4106118243^(10/23) 2584000077399253 a001 5702887/4870847*1568397607^(4/11) 2584000077399253 a001 726103/4250681*1568397607^(5/11) 2584000077399253 a001 5702887/4870847*599074578^(8/21) 2584000077399253 a001 726103/4250681*599074578^(10/21) 2584000077399253 a001 5702887/4870847*228826127^(2/5) 2584000077399253 a001 726103/4250681*228826127^(1/2) 2584000077399253 a001 5702887/4870847*87403803^(8/19) 2584000077399253 a001 726103/4250681*87403803^(10/19) 2584000077399254 a001 39088169/4870847*7881196^(4/11) 2584000077399254 a001 5702887/4870847*33385282^(4/9) 2584000077399254 a001 832040/54018521*1860498^(5/6) 2584000077399254 a001 726103/4250681*33385282^(5/9) 2584000077399255 a001 63245986/4870847*7881196^(1/3) 2584000077399256 a001 9227465/4870847*7881196^(5/11) 2584000077399258 a001 165580141/4870847*7881196^(3/11) 2584000077399261 a001 5702887/4870847*12752043^(8/17) 2584000077399262 a001 701408733/4870847*7881196^(2/11) 2584000077399263 a001 726103/4250681*12752043^(10/17) 2584000077399263 a004 Fibonacci(32)*Lucas(35)/(1/2+sqrt(5)/2)^49 2584000077399264 a001 311187/224056801*20633239^(6/7) 2584000077399264 a001 726103/199691526*20633239^(4/5) 2584000077399264 a001 14930352/4870847*20633239^(2/5) 2584000077399265 a001 2178309/141422324*20633239^(5/7) 2584000077399265 a001 2971215073/4870847*7881196^(1/11) 2584000077399267 a001 14930352/4870847*17393796001^(2/7) 2584000077399267 a001 311187/4769326*312119004989^(2/5) 2584000077399267 a001 311187/4769326*(1/2+1/2*5^(1/2))^22 2584000077399267 a001 14930352/4870847*14662949395604^(2/9) 2584000077399267 a001 14930352/4870847*(1/2+1/2*5^(1/2))^14 2584000077399267 a001 32522920134768/12586269025 2584000077399267 a001 14930352/4870847*10749957122^(7/24) 2584000077399267 a001 311187/4769326*10749957122^(11/24) 2584000077399267 a001 14930352/4870847*4106118243^(7/23) 2584000077399267 a001 311187/4769326*4106118243^(11/23) 2584000077399267 a001 14930352/4870847*1568397607^(7/22) 2584000077399267 a001 311187/4769326*1568397607^(1/2) 2584000077399267 a001 14930352/4870847*599074578^(1/3) 2584000077399267 a001 311187/4769326*599074578^(11/21) 2584000077399267 a001 14930352/4870847*228826127^(7/20) 2584000077399267 a001 311187/4769326*228826127^(11/20) 2584000077399267 a001 14930352/4870847*87403803^(7/19) 2584000077399267 a001 311187/4769326*87403803^(11/19) 2584000077399267 a001 102334155/4870847*20633239^(2/7) 2584000077399268 a001 14930352/4870847*33385282^(7/18) 2584000077399268 a001 433494437/4870847*20633239^(1/5) 2584000077399268 a001 311187/4769326*33385282^(11/18) 2584000077399268 a004 Fibonacci(32)*Lucas(37)/(1/2+sqrt(5)/2)^51 2584000077399268 a001 1134903170/4870847*20633239^(1/7) 2584000077399269 a001 726103/29134601*141422324^(8/13) 2584000077399269 a001 39088169/4870847*141422324^(4/13) 2584000077399269 a001 726103/29134601*2537720636^(8/15) 2584000077399269 a001 39088169/4870847*2537720636^(4/15) 2584000077399269 a001 726103/29134601*45537549124^(8/17) 2584000077399269 a001 39088169/4870847*45537549124^(4/17) 2584000077399269 a001 39088169/4870847*817138163596^(4/19) 2584000077399269 a001 726103/29134601*14662949395604^(8/21) 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^24/Lucas(38) 2584000077399269 a001 39088169/4870847*14662949395604^(4/21) 2584000077399269 a001 39088169/4870847*(1/2+1/2*5^(1/2))^12 2584000077399269 a001 39088169/4870847*192900153618^(2/9) 2584000077399269 a001 726103/29134601*192900153618^(4/9) 2584000077399269 a001 39088169/4870847*73681302247^(3/13) 2584000077399269 a001 726103/29134601*73681302247^(6/13) 2584000077399269 a001 28382036775407/10983760033 2584000077399269 a001 39088169/4870847*10749957122^(1/4) 2584000077399269 a001 726103/29134601*10749957122^(1/2) 2584000077399269 a001 39088169/4870847*4106118243^(6/23) 2584000077399269 a001 726103/29134601*4106118243^(12/23) 2584000077399269 a001 39088169/4870847*1568397607^(3/11) 2584000077399269 a001 726103/29134601*1568397607^(6/11) 2584000077399269 a001 39088169/4870847*599074578^(2/7) 2584000077399269 a001 726103/29134601*599074578^(4/7) 2584000077399269 a001 39088169/4870847*228826127^(3/10) 2584000077399269 a001 726103/29134601*228826127^(3/5) 2584000077399269 a001 39088169/4870847*87403803^(6/19) 2584000077399269 a001 46347/4868641*141422324^(2/3) 2584000077399269 a004 Fibonacci(32)*Lucas(39)/(1/2+sqrt(5)/2)^53 2584000077399269 a001 726103/29134601*87403803^(12/19) 2584000077399269 a001 726103/9381251041*141422324^(12/13) 2584000077399269 a001 2178309/6643838879*141422324^(11/13) 2584000077399269 a001 311187/224056801*141422324^(10/13) 2584000077399269 a001 2178309/370248451*141422324^(9/13) 2584000077399269 a001 102334155/4870847*2537720636^(2/9) 2584000077399269 a001 102334155/4870847*312119004989^(2/11) 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^26/Lucas(40) 2584000077399269 a001 102334155/4870847*(1/2+1/2*5^(1/2))^10 2584000077399269 a001 222915410843895/86267571272 2584000077399269 a001 46347/4868641*73681302247^(1/2) 2584000077399269 a001 102334155/4870847*28143753123^(1/5) 2584000077399269 a001 102334155/4870847*10749957122^(5/24) 2584000077399269 a001 46347/4868641*10749957122^(13/24) 2584000077399269 a001 102334155/4870847*4106118243^(5/23) 2584000077399269 a001 46347/4868641*4106118243^(13/23) 2584000077399269 a001 102334155/4870847*1568397607^(5/22) 2584000077399269 a001 46347/4868641*1568397607^(13/22) 2584000077399269 a001 102334155/4870847*599074578^(5/21) 2584000077399269 a001 46347/4868641*599074578^(13/21) 2584000077399269 a001 102334155/4870847*228826127^(1/4) 2584000077399269 a001 701408733/4870847*141422324^(2/13) 2584000077399269 a004 Fibonacci(32)*Lucas(41)/(1/2+sqrt(5)/2)^55 2584000077399269 a001 46347/4868641*228826127^(13/20) 2584000077399269 a001 165580141/4870847*141422324^(3/13) 2584000077399269 a001 2971215073/4870847*141422324^(1/13) 2584000077399269 a001 726103/199691526*17393796001^(4/7) 2584000077399269 a001 726103/199691526*14662949395604^(4/9) 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^28/Lucas(42) 2584000077399269 a001 267914296/4870847*(1/2+1/2*5^(1/2))^8 2584000077399269 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^8/Lucas(32) 2584000077399269 a001 267914296/4870847*23725150497407^(1/8) 2584000077399269 a001 73714806392/28527401 2584000077399269 a001 267914296/4870847*73681302247^(2/13) 2584000077399269 a001 726103/199691526*73681302247^(7/13) 2584000077399269 a001 267914296/4870847*10749957122^(1/6) 2584000077399269 a001 726103/199691526*10749957122^(7/12) 2584000077399269 a001 267914296/4870847*4106118243^(4/23) 2584000077399269 a001 726103/199691526*4106118243^(14/23) 2584000077399269 a001 267914296/4870847*1568397607^(2/11) 2584000077399269 a001 726103/199691526*1568397607^(7/11) 2584000077399269 a001 267914296/4870847*599074578^(4/21) 2584000077399269 a004 Fibonacci(32)*Lucas(43)/(1/2+sqrt(5)/2)^57 2584000077399269 a001 726103/199691526*599074578^(2/3) 2584000077399269 a001 311187/224056801*2537720636^(2/3) 2584000077399269 a001 701408733/4870847*2537720636^(2/15) 2584000077399269 a001 311187/224056801*45537549124^(10/17) 2584000077399269 a001 701408733/4870847*45537549124^(2/17) 2584000077399269 a001 311187/224056801*312119004989^(6/11) 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^30/Lucas(44) 2584000077399269 a001 701408733/4870847*(1/2+1/2*5^(1/2))^6 2584000077399269 a001 1527884955772497/591286729879 2584000077399269 a001 311187/224056801*192900153618^(5/9) 2584000077399269 a001 311187/224056801*28143753123^(3/5) 2584000077399269 a001 701408733/4870847*10749957122^(1/8) 2584000077399269 a001 311187/224056801*10749957122^(5/8) 2584000077399269 a001 701408733/4870847*4106118243^(3/23) 2584000077399269 a001 311187/224056801*4106118243^(15/23) 2584000077399269 a001 701408733/4870847*1568397607^(3/22) 2584000077399269 a004 Fibonacci(32)*Lucas(45)/(1/2+sqrt(5)/2)^59 2584000077399269 a001 46347/10745088481*2537720636^(14/15) 2584000077399269 a001 726103/64300051206*2537720636^(8/9) 2584000077399269 a001 2178309/119218851371*2537720636^(13/15) 2584000077399269 a001 311187/224056801*1568397607^(15/22) 2584000077399269 a001 726103/9381251041*2537720636^(4/5) 2584000077399269 a001 2178309/17393796001*2537720636^(7/9) 2584000077399269 a001 2178309/6643838879*2537720636^(11/15) 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^32/Lucas(46) 2584000077399269 a001 1836311903/4870847*(1/2+1/2*5^(1/2))^4 2584000077399269 a001 1836311903/4870847*23725150497407^(1/16) 2584000077399269 a001 1333351581704009/516002918640 2584000077399269 a001 726103/1368706081*505019158607^(4/7) 2584000077399269 a001 1836311903/4870847*73681302247^(1/13) 2584000077399269 a001 726103/1368706081*73681302247^(8/13) 2584000077399269 a001 1836311903/4870847*10749957122^(1/12) 2584000077399269 a001 1836311903/4870847*4106118243^(2/23) 2584000077399269 a001 726103/1368706081*10749957122^(2/3) 2584000077399269 a004 Fibonacci(32)*Lucas(47)/(1/2+sqrt(5)/2)^61 2584000077399269 a001 1836311903/4870847*1568397607^(1/11) 2584000077399269 a001 726103/1368706081*4106118243^(16/23) 2584000077399269 a001 987/4870846*45537549124^(2/3) 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^34/Lucas(48) 2584000077399269 a001 4807526976/4870847*(1/2+1/2*5^(1/2))^2 2584000077399269 a001 10472279279563584/4052739537881 2584000077399269 a001 701408733/4870847*599074578^(1/7) 2584000077399269 a001 4807526976/4870847*10749957122^(1/24) 2584000077399269 a001 4807526976/4870847*4106118243^(1/23) 2584000077399269 a004 Fibonacci(32)*Lucas(49)/(1/2+sqrt(5)/2)^63 2584000077399269 a001 46347/10745088481*17393796001^(6/7) 2584000077399269 a001 987/4870846*10749957122^(17/24) 2584000077399269 a001 726103/9381251041*45537549124^(12/17) 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^36/Lucas(50) 2584000077399269 a001 12586269025/4870847 2584000077399269 a001 726103/9381251041*505019158607^(9/14) 2584000077399269 a001 726103/9381251041*192900153618^(2/3) 2584000077399269 a001 726103/9381251041*73681302247^(9/13) 2584000077399269 a004 Fibonacci(32)*Lucas(51)/(1/2+sqrt(5)/2)^65 2584000077399269 a001 726103/3020733700601*45537549124^(16/17) 2584000077399269 a001 2178309/2139295485799*45537549124^(15/17) 2584000077399269 a001 46347/10745088481*45537549124^(14/17) 2584000077399269 a001 2178309/119218851371*45537549124^(13/17) 2584000077399269 a001 311187/10525900321*817138163596^(2/3) 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^38/Lucas(52) 2584000077399269 a004 Fibonacci(52)/Lucas(32)/(1/2+sqrt(5)/2)^2 2584000077399269 a004 Fibonacci(32)*Lucas(53)/(1/2+sqrt(5)/2)^67 2584000077399269 a001 726103/64300051206*312119004989^(8/11) 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^40/Lucas(54) 2584000077399269 a001 726103/64300051206*23725150497407^(5/8) 2584000077399269 a004 Fibonacci(54)/Lucas(32)/(1/2+sqrt(5)/2)^4 2584000077399269 a004 Fibonacci(32)*Lucas(55)/(1/2+sqrt(5)/2)^69 2584000077399269 a001 2178309/23725150497407*312119004989^(10/11) 2584000077399269 a001 726103/440719107401*312119004989^(4/5) 2584000077399269 a001 2178309/2139295485799*312119004989^(9/11) 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^42/Lucas(56) 2584000077399269 a004 Fibonacci(56)/Lucas(32)/(1/2+sqrt(5)/2)^6 2584000077399269 a004 Fibonacci(32)*Lucas(57)/(1/2+sqrt(5)/2)^71 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^44/Lucas(58) 2584000077399269 a004 Fibonacci(58)/Lucas(32)/(1/2+sqrt(5)/2)^8 2584000077399269 a004 Fibonacci(32)*Lucas(59)/(1/2+sqrt(5)/2)^73 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^46/Lucas(60) 2584000077399269 a004 Fibonacci(60)/Lucas(32)/(1/2+sqrt(5)/2)^10 2584000077399269 a004 Fibonacci(32)*Lucas(61)/(1/2+sqrt(5)/2)^75 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^48/Lucas(62) 2584000077399269 a004 Fibonacci(62)/Lucas(32)/(1/2+sqrt(5)/2)^12 2584000077399269 a004 Fibonacci(32)*Lucas(63)/(1/2+sqrt(5)/2)^77 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^50/Lucas(64) 2584000077399269 a004 Fibonacci(32)*Lucas(65)/(1/2+sqrt(5)/2)^79 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^52/Lucas(66) 2584000077399269 a004 Fibonacci(32)*Lucas(67)/(1/2+sqrt(5)/2)^81 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^54/Lucas(68) 2584000077399269 a004 Fibonacci(32)*Lucas(69)/(1/2+sqrt(5)/2)^83 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^56/Lucas(70) 2584000077399269 a004 Fibonacci(32)*Lucas(71)/(1/2+sqrt(5)/2)^85 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^58/Lucas(72) 2584000077399269 a004 Fibonacci(32)*Lucas(73)/(1/2+sqrt(5)/2)^87 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^60/Lucas(74) 2584000077399269 a004 Fibonacci(32)*Lucas(75)/(1/2+sqrt(5)/2)^89 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^62/Lucas(76) 2584000077399269 a004 Fibonacci(32)*Lucas(77)/(1/2+sqrt(5)/2)^91 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^64/Lucas(78) 2584000077399269 a004 Fibonacci(32)*Lucas(79)/(1/2+sqrt(5)/2)^93 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^66/Lucas(80) 2584000077399269 a004 Fibonacci(32)*Lucas(81)/(1/2+sqrt(5)/2)^95 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^68/Lucas(82) 2584000077399269 a004 Fibonacci(32)*Lucas(83)/(1/2+sqrt(5)/2)^97 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^70/Lucas(84) 2584000077399269 a004 Fibonacci(32)*Lucas(85)/(1/2+sqrt(5)/2)^99 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^72/Lucas(86) 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^74/Lucas(88) 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^76/Lucas(90) 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^78/Lucas(92) 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^80/Lucas(94) 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^82/Lucas(96) 2584000077399269 a004 Fibonacci(16)*Lucas(16)/(1/2+sqrt(5)/2)^14 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^84/Lucas(98) 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^85/Lucas(99) 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^86/Lucas(100) 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^83/Lucas(97) 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^81/Lucas(95) 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^79/Lucas(93) 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^77/Lucas(91) 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^75/Lucas(89) 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^73/Lucas(87) 2584000077399269 a004 Fibonacci(32)*Lucas(86)/(1/2+sqrt(5)/2)^100 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^71/Lucas(85) 2584000077399269 a004 Fibonacci(32)*Lucas(84)/(1/2+sqrt(5)/2)^98 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^69/Lucas(83) 2584000077399269 a004 Fibonacci(32)*Lucas(82)/(1/2+sqrt(5)/2)^96 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^67/Lucas(81) 2584000077399269 a004 Fibonacci(32)*Lucas(80)/(1/2+sqrt(5)/2)^94 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^65/Lucas(79) 2584000077399269 a004 Fibonacci(32)*Lucas(78)/(1/2+sqrt(5)/2)^92 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^63/Lucas(77) 2584000077399269 a004 Fibonacci(32)*Lucas(76)/(1/2+sqrt(5)/2)^90 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^61/Lucas(75) 2584000077399269 a004 Fibonacci(32)*Lucas(74)/(1/2+sqrt(5)/2)^88 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^59/Lucas(73) 2584000077399269 a004 Fibonacci(32)*Lucas(72)/(1/2+sqrt(5)/2)^86 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^57/Lucas(71) 2584000077399269 a004 Fibonacci(32)*Lucas(70)/(1/2+sqrt(5)/2)^84 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^55/Lucas(69) 2584000077399269 a004 Fibonacci(32)*Lucas(68)/(1/2+sqrt(5)/2)^82 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^53/Lucas(67) 2584000077399269 a004 Fibonacci(32)*Lucas(66)/(1/2+sqrt(5)/2)^80 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^51/Lucas(65) 2584000077399269 a001 2178309/14662949395604*14662949395604^(7/9) 2584000077399269 a004 Fibonacci(66)/Lucas(32)/(1/2+sqrt(5)/2)^16 2584000077399269 a004 Fibonacci(68)/Lucas(32)/(1/2+sqrt(5)/2)^18 2584000077399269 a004 Fibonacci(70)/Lucas(32)/(1/2+sqrt(5)/2)^20 2584000077399269 a004 Fibonacci(72)/Lucas(32)/(1/2+sqrt(5)/2)^22 2584000077399269 a004 Fibonacci(74)/Lucas(32)/(1/2+sqrt(5)/2)^24 2584000077399269 a004 Fibonacci(76)/Lucas(32)/(1/2+sqrt(5)/2)^26 2584000077399269 a004 Fibonacci(78)/Lucas(32)/(1/2+sqrt(5)/2)^28 2584000077399269 a004 Fibonacci(80)/Lucas(32)/(1/2+sqrt(5)/2)^30 2584000077399269 a004 Fibonacci(82)/Lucas(32)/(1/2+sqrt(5)/2)^32 2584000077399269 a004 Fibonacci(84)/Lucas(32)/(1/2+sqrt(5)/2)^34 2584000077399269 a004 Fibonacci(86)/Lucas(32)/(1/2+sqrt(5)/2)^36 2584000077399269 a004 Fibonacci(88)/Lucas(32)/(1/2+sqrt(5)/2)^38 2584000077399269 a004 Fibonacci(90)/Lucas(32)/(1/2+sqrt(5)/2)^40 2584000077399269 a004 Fibonacci(92)/Lucas(32)/(1/2+sqrt(5)/2)^42 2584000077399269 a004 Fibonacci(94)/Lucas(32)/(1/2+sqrt(5)/2)^44 2584000077399269 a004 Fibonacci(96)/Lucas(32)/(1/2+sqrt(5)/2)^46 2584000077399269 a004 Fibonacci(100)/Lucas(32)/(1/2+sqrt(5)/2)^50 2584000077399269 a004 Fibonacci(32)*Lucas(64)/(1/2+sqrt(5)/2)^78 2584000077399269 a004 Fibonacci(98)/Lucas(32)/(1/2+sqrt(5)/2)^48 2584000077399269 a004 Fibonacci(97)/Lucas(32)/(1/2+sqrt(5)/2)^47 2584000077399269 a004 Fibonacci(99)/Lucas(32)/(1/2+sqrt(5)/2)^49 2584000077399269 a004 Fibonacci(95)/Lucas(32)/(1/2+sqrt(5)/2)^45 2584000077399269 a004 Fibonacci(93)/Lucas(32)/(1/2+sqrt(5)/2)^43 2584000077399269 a004 Fibonacci(91)/Lucas(32)/(1/2+sqrt(5)/2)^41 2584000077399269 a004 Fibonacci(89)/Lucas(32)/(1/2+sqrt(5)/2)^39 2584000077399269 a004 Fibonacci(87)/Lucas(32)/(1/2+sqrt(5)/2)^37 2584000077399269 a004 Fibonacci(85)/Lucas(32)/(1/2+sqrt(5)/2)^35 2584000077399269 a004 Fibonacci(83)/Lucas(32)/(1/2+sqrt(5)/2)^33 2584000077399269 a004 Fibonacci(81)/Lucas(32)/(1/2+sqrt(5)/2)^31 2584000077399269 a004 Fibonacci(79)/Lucas(32)/(1/2+sqrt(5)/2)^29 2584000077399269 a004 Fibonacci(77)/Lucas(32)/(1/2+sqrt(5)/2)^27 2584000077399269 a004 Fibonacci(75)/Lucas(32)/(1/2+sqrt(5)/2)^25 2584000077399269 a004 Fibonacci(73)/Lucas(32)/(1/2+sqrt(5)/2)^23 2584000077399269 a004 Fibonacci(71)/Lucas(32)/(1/2+sqrt(5)/2)^21 2584000077399269 a004 Fibonacci(69)/Lucas(32)/(1/2+sqrt(5)/2)^19 2584000077399269 a004 Fibonacci(67)/Lucas(32)/(1/2+sqrt(5)/2)^17 2584000077399269 a004 Fibonacci(65)/Lucas(32)/(1/2+sqrt(5)/2)^15 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^49/Lucas(63) 2584000077399269 a004 Fibonacci(63)/Lucas(32)/(1/2+sqrt(5)/2)^13 2584000077399269 a004 Fibonacci(32)*Lucas(62)/(1/2+sqrt(5)/2)^76 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^47/Lucas(61) 2584000077399269 a004 Fibonacci(61)/Lucas(32)/(1/2+sqrt(5)/2)^11 2584000077399269 a004 Fibonacci(32)*Lucas(60)/(1/2+sqrt(5)/2)^74 2584000077399269 a001 2178309/2139295485799*14662949395604^(5/7) 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^45/Lucas(59) 2584000077399269 a004 Fibonacci(59)/Lucas(32)/(1/2+sqrt(5)/2)^9 2584000077399269 a004 Fibonacci(32)*Lucas(58)/(1/2+sqrt(5)/2)^72 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^43/Lucas(57) 2584000077399269 a004 Fibonacci(57)/Lucas(32)/(1/2+sqrt(5)/2)^7 2584000077399269 a001 2178309/14662949395604*505019158607^(7/8) 2584000077399269 a004 Fibonacci(32)*Lucas(56)/(1/2+sqrt(5)/2)^70 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^41/Lucas(55) 2584000077399269 a004 Fibonacci(55)/Lucas(32)/(1/2+sqrt(5)/2)^5 2584000077399269 a001 46347/10745088481*192900153618^(7/9) 2584000077399269 a001 2178309/2139295485799*192900153618^(5/6) 2584000077399269 a001 726103/3020733700601*192900153618^(8/9) 2584000077399269 a004 Fibonacci(32)*Lucas(54)/(1/2+sqrt(5)/2)^68 2584000077399269 a001 2178309/119218851371*14662949395604^(13/21) 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^39/Lucas(53) 2584000077399269 a004 Fibonacci(53)/Lucas(32)/(1/2+sqrt(5)/2)^3 2584000077399269 a001 2178309/119218851371*192900153618^(13/18) 2584000077399269 a001 726103/64300051206*73681302247^(10/13) 2584000077399269 a001 726103/440719107401*73681302247^(11/13) 2584000077399269 a001 726103/3020733700601*73681302247^(12/13) 2584000077399269 a004 Fibonacci(32)*Lucas(52)/(1/2+sqrt(5)/2)^66 2584000077399269 a001 2178309/119218851371*73681302247^(3/4) 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^37/Lucas(51) 2584000077399269 a004 Fibonacci(51)/Lucas(32)/(1/2+sqrt(5)/2) 2584000077399269 a001 2178309/17393796001*17393796001^(5/7) 2584000077399269 a001 726103/64300051206*28143753123^(4/5) 2584000077399269 a001 2178309/2139295485799*28143753123^(9/10) 2584000077399269 a004 Fibonacci(32)*Lucas(50)/(1/2+sqrt(5)/2)^64 2584000077399269 a001 2178309/17393796001*312119004989^(7/11) 2584000077399269 a001 1303423370308857/504420793834 2584000077399269 a001 2178309/17393796001*14662949395604^(5/9) 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^35/Lucas(49) 2584000077399269 a004 Fibonacci(49)*(1/2+sqrt(5)/2)/Lucas(32) 2584000077399269 a001 2178309/17393796001*505019158607^(5/8) 2584000077399269 a001 2178309/17393796001*28143753123^(7/10) 2584000077399269 a001 726103/9381251041*10749957122^(3/4) 2584000077399269 a001 311187/10525900321*10749957122^(19/24) 2584000077399269 a001 2178309/119218851371*10749957122^(13/16) 2584000077399269 a001 726103/64300051206*10749957122^(5/6) 2584000077399269 a001 46347/10745088481*10749957122^(7/8) 2584000077399269 a001 726103/440719107401*10749957122^(11/12) 2584000077399269 a001 2178309/2139295485799*10749957122^(15/16) 2584000077399269 a001 311187/494493258286*10749957122^(23/24) 2584000077399269 a004 Fibonacci(32)*Lucas(48)/(1/2+sqrt(5)/2)^62 2584000077399269 a001 4807526976/4870847*1568397607^(1/22) 2584000077399269 a001 2971215073/4870847*2537720636^(1/15) 2584000077399269 a001 2178309/6643838879*45537549124^(11/17) 2584000077399269 a001 2971215073/4870847*45537549124^(1/17) 2584000077399269 a001 2178309/6643838879*312119004989^(3/5) 2584000077399269 a001 2178309/6643838879*14662949395604^(11/21) 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^33/Lucas(47) 2584000077399269 a001 2971215073/4870847*(1/2+1/2*5^(1/2))^3 2584000077399269 a001 2178309/6643838879*192900153618^(11/18) 2584000077399269 a001 2971215073/4870847*10749957122^(1/16) 2584000077399269 a001 2178309/6643838879*10749957122^(11/16) 2584000077399269 a001 987/4870846*4106118243^(17/23) 2584000077399269 a001 726103/9381251041*4106118243^(18/23) 2584000077399269 a001 311187/10525900321*4106118243^(19/23) 2584000077399269 a001 726103/64300051206*4106118243^(20/23) 2584000077399269 a001 46347/10745088481*4106118243^(21/23) 2584000077399269 a001 726103/440719107401*4106118243^(22/23) 2584000077399269 a004 Fibonacci(32)*Lucas(46)/(1/2+sqrt(5)/2)^60 2584000077399269 a001 4807526976/4870847*599074578^(1/21) 2584000077399269 a001 1134903170/4870847*2537720636^(1/9) 2584000077399269 a001 1134903170/4870847*312119004989^(1/11) 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^31/Lucas(45) 2584000077399269 a001 1134903170/4870847*(1/2+1/2*5^(1/2))^5 2584000077399269 a001 2178309/2537720636*9062201101803^(1/2) 2584000077399269 a001 1134903170/4870847*28143753123^(1/10) 2584000077399269 a001 1836311903/4870847*599074578^(2/21) 2584000077399269 a001 2971215073/4870847*599074578^(1/14) 2584000077399269 a001 726103/1368706081*1568397607^(8/11) 2584000077399269 a001 987/4870846*1568397607^(17/22) 2584000077399269 a001 2178309/6643838879*1568397607^(3/4) 2584000077399269 a001 726103/9381251041*1568397607^(9/11) 2584000077399269 a001 311187/10525900321*1568397607^(19/22) 2584000077399269 a001 726103/64300051206*1568397607^(10/11) 2584000077399269 a001 46347/10745088481*1568397607^(21/22) 2584000077399269 a004 Fibonacci(32)*Lucas(44)/(1/2+sqrt(5)/2)^58 2584000077399269 a001 4807526976/4870847*228826127^(1/20) 2584000077399269 a001 267914296/4870847*228826127^(1/5) 2584000077399269 a001 433494437/4870847*17393796001^(1/7) 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^29/Lucas(43) 2584000077399269 a001 433494437/4870847*14662949395604^(1/9) 2584000077399269 a001 433494437/4870847*(1/2+1/2*5^(1/2))^7 2584000077399269 a001 2178309/969323029*1322157322203^(1/2) 2584000077399269 a001 433494437/4870847*599074578^(1/6) 2584000077399269 a001 311187/224056801*599074578^(5/7) 2584000077399269 a001 1836311903/4870847*228826127^(1/10) 2584000077399269 a001 726103/1368706081*599074578^(16/21) 2584000077399269 a001 2178309/6643838879*599074578^(11/14) 2584000077399269 a001 987/4870846*599074578^(17/21) 2584000077399269 a001 2178309/17393796001*599074578^(5/6) 2584000077399269 a001 726103/9381251041*599074578^(6/7) 2584000077399269 a001 701408733/4870847*228826127^(3/20) 2584000077399269 a001 311187/10525900321*599074578^(19/21) 2584000077399269 a001 1134903170/4870847*228826127^(1/8) 2584000077399269 a001 2178309/119218851371*599074578^(13/14) 2584000077399269 a001 726103/64300051206*599074578^(20/21) 2584000077399269 a004 Fibonacci(32)*Lucas(42)/(1/2+sqrt(5)/2)^56 2584000077399269 a001 4807526976/4870847*87403803^(1/19) 2584000077399269 a001 2178309/370248451*2537720636^(3/5) 2584000077399269 a001 165580141/4870847*2537720636^(1/5) 2584000077399269 a001 2178309/370248451*45537549124^(9/17) 2584000077399269 a001 165580141/4870847*45537549124^(3/17) 2584000077399269 a001 360684711361569/139583862445 2584000077399269 a001 165580141/4870847*817138163596^(3/19) 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^27/Lucas(41) 2584000077399269 a001 165580141/4870847*14662949395604^(1/7) 2584000077399269 a001 165580141/4870847*(1/2+1/2*5^(1/2))^9 2584000077399269 a001 165580141/4870847*192900153618^(1/6) 2584000077399269 a001 2178309/370248451*192900153618^(1/2) 2584000077399269 a001 165580141/4870847*10749957122^(3/16) 2584000077399269 a001 2178309/370248451*10749957122^(9/16) 2584000077399269 a001 165580141/4870847*599074578^(3/14) 2584000077399269 a001 2178309/370248451*599074578^(9/14) 2584000077399269 a001 726103/199691526*228826127^(7/10) 2584000077399269 a001 1836311903/4870847*87403803^(2/19) 2584000077399269 a001 311187/224056801*228826127^(3/4) 2584000077399269 a001 726103/1368706081*228826127^(4/5) 2584000077399269 a001 102334155/4870847*87403803^(5/19) 2584000077399269 a001 987/4870846*228826127^(17/20) 2584000077399269 a001 2178309/17393796001*228826127^(7/8) 2584000077399269 a001 726103/9381251041*228826127^(9/10) 2584000077399269 a001 311187/10525900321*228826127^(19/20) 2584000077399269 a004 Fibonacci(32)*Lucas(40)/(1/2+sqrt(5)/2)^54 2584000077399269 a001 701408733/4870847*87403803^(3/19) 2584000077399269 a001 267914296/4870847*87403803^(4/19) 2584000077399269 a001 4807526976/4870847*33385282^(1/18) 2584000077399269 a001 2178309/141422324*2537720636^(5/9) 2584000077399269 a001 137769300517674/53316291173 2584000077399269 a001 2178309/141422324*312119004989^(5/11) 2584000077399269 a001 63245986/4870847*312119004989^(1/5) 2584000077399269 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^25/Lucas(39) 2584000077399269 a001 63245986/4870847*(1/2+1/2*5^(1/2))^11 2584000077399269 a001 2178309/141422324*3461452808002^(5/12) 2584000077399269 a001 2178309/141422324*28143753123^(1/2) 2584000077399269 a001 63245986/4870847*1568397607^(1/4) 2584000077399269 a001 2178309/141422324*228826127^(5/8) 2584000077399269 a001 46347/4868641*87403803^(13/19) 2584000077399269 a001 2971215073/4870847*33385282^(1/12) 2584000077399269 a001 726103/199691526*87403803^(14/19) 2584000077399269 a001 1836311903/4870847*33385282^(1/9) 2584000077399269 a001 311187/224056801*87403803^(15/19) 2584000077399269 a001 726103/1368706081*87403803^(16/19) 2584000077399269 a001 987/4870846*87403803^(17/19) 2584000077399269 a001 726103/9381251041*87403803^(18/19) 2584000077399269 a004 Fibonacci(32)*Lucas(38)/(1/2+sqrt(5)/2)^52 2584000077399269 a001 701408733/4870847*33385282^(1/6) 2584000077399270 a001 39088169/4870847*33385282^(1/3) 2584000077399270 a001 267914296/4870847*33385282^(2/9) 2584000077399270 a001 102334155/4870847*33385282^(5/18) 2584000077399270 a001 165580141/4870847*33385282^(1/4) 2584000077399270 a001 24157817/4870847*141422324^(1/3) 2584000077399270 a001 52623190191453/20365011074 2584000077399270 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^23/Lucas(37) 2584000077399270 a001 24157817/4870847*(1/2+1/2*5^(1/2))^13 2584000077399270 a001 24157817/4870847*73681302247^(1/4) 2584000077399270 a001 2178309/54018521*4106118243^(1/2) 2584000077399270 a001 4807526976/4870847*12752043^(1/17) 2584000077399270 a001 726103/29134601*33385282^(2/3) 2584000077399271 a001 46347/4868641*33385282^(13/18) 2584000077399271 a001 2178309/370248451*33385282^(3/4) 2584000077399271 a001 726103/199691526*33385282^(7/9) 2584000077399271 a001 1836311903/4870847*12752043^(2/17) 2584000077399271 a001 311187/224056801*33385282^(5/6) 2584000077399271 a001 726103/1368706081*33385282^(8/9) 2584000077399271 a001 2178309/6643838879*33385282^(11/12) 2584000077399271 a001 987/4870846*33385282^(17/18) 2584000077399271 a004 Fibonacci(32)*Lucas(36)/(1/2+sqrt(5)/2)^50 2584000077399272 a001 2178309/20633239*20633239^(3/5) 2584000077399272 a001 701408733/4870847*12752043^(3/17) 2584000077399273 a001 9227465/4870847*20633239^(3/7) 2584000077399273 a001 267914296/4870847*12752043^(4/17) 2584000077399273 a001 14930352/4870847*12752043^(7/17) 2584000077399274 a001 102334155/4870847*12752043^(5/17) 2584000077399274 a001 39088169/4870847*12752043^(6/17) 2584000077399275 a001 2178309/20633239*141422324^(7/13) 2584000077399275 a001 9227465/4870847*141422324^(5/13) 2584000077399275 a001 2178309/20633239*2537720636^(7/15) 2584000077399275 a001 9227465/4870847*2537720636^(1/3) 2584000077399275 a001 1546174619745/598364773 2584000077399275 a001 2178309/20633239*17393796001^(3/7) 2584000077399275 a001 2178309/20633239*45537549124^(7/17) 2584000077399275 a001 9227465/4870847*45537549124^(5/17) 2584000077399275 a001 9227465/4870847*312119004989^(3/11) 2584000077399275 a001 2178309/20633239*14662949395604^(1/3) 2584000077399275 a001 2178309/20633239*(1/2+1/2*5^(1/2))^21 2584000077399275 a001 9227465/4870847*14662949395604^(5/21) 2584000077399275 a001 9227465/4870847*(1/2+1/2*5^(1/2))^15 2584000077399275 a001 2178309/20633239*192900153618^(7/18) 2584000077399275 a001 9227465/4870847*28143753123^(3/10) 2584000077399275 a001 9227465/4870847*10749957122^(5/16) 2584000077399275 a001 2178309/20633239*10749957122^(7/16) 2584000077399275 a001 9227465/4870847*599074578^(5/14) 2584000077399275 a001 2178309/20633239*599074578^(1/2) 2584000077399275 a001 9227465/4870847*228826127^(3/8) 2584000077399276 a001 4807526976/4870847*4870847^(1/16) 2584000077399276 a001 9227465/4870847*33385282^(5/12) 2584000077399276 a001 2178309/20633239*33385282^(7/12) 2584000077399277 a001 311187/4769326*12752043^(11/17) 2584000077399278 a001 832040/87403803*1860498^(13/15) 2584000077399280 a001 726103/29134601*12752043^(12/17) 2584000077399281 a001 46347/4868641*12752043^(13/17) 2584000077399282 a001 726103/199691526*12752043^(14/17) 2584000077399283 a001 1836311903/4870847*4870847^(1/8) 2584000077399283 a001 311187/224056801*12752043^(15/17) 2584000077399284 a001 726103/1368706081*12752043^(16/17) 2584000077399285 a004 Fibonacci(32)*Lucas(34)/(1/2+sqrt(5)/2)^48 2584000077399289 a001 701408733/4870847*4870847^(3/16) 2584000077399296 a001 267914296/4870847*4870847^(1/4) 2584000077399303 a001 102334155/4870847*4870847^(5/16) 2584000077399303 a001 208010/35355581*1860498^(9/10) 2584000077399308 a001 5702887/4870847*4870847^(1/2) 2584000077399310 a001 39088169/4870847*4870847^(3/8) 2584000077399311 a001 7677619978602/2971215073 2584000077399311 a001 3524578/4870847*45537549124^(1/3) 2584000077399311 a001 2178309/7881196*817138163596^(1/3) 2584000077399311 a001 2178309/7881196*(1/2+1/2*5^(1/2))^19 2584000077399311 a001 3524578/4870847*(1/2+1/2*5^(1/2))^17 2584000077399311 a001 2178309/7881196*87403803^(1/2) 2584000077399314 a001 14930352/4870847*4870847^(7/16) 2584000077399319 a001 3524578/4870847*12752043^(1/2) 2584000077399319 a001 4807526976/4870847*1860498^(1/15) 2584000077399320 a004 Fibonacci(34)*Lucas(33)/(1/2+sqrt(5)/2)^49 2584000077399321 a001 726103/4250681*4870847^(5/8) 2584000077399324 a001 5702887/12752043*7881196^(6/11) 2584000077399324 a001 5702887/4106118243*7881196^(10/11) 2584000077399328 a001 5702887/969323029*7881196^(9/11) 2584000077399328 a001 832040/228826127*1860498^(14/15) 2584000077399332 a001 5702887/228826127*7881196^(8/11) 2584000077399334 a001 5702887/87403803*7881196^(2/3) 2584000077399334 a004 Fibonacci(36)*Lucas(33)/(1/2+sqrt(5)/2)^51 2584000077399336 a004 Fibonacci(38)*Lucas(33)/(1/2+sqrt(5)/2)^53 2584000077399336 a004 Fibonacci(40)*Lucas(33)/(1/2+sqrt(5)/2)^55 2584000077399336 a004 Fibonacci(42)*Lucas(33)/(1/2+sqrt(5)/2)^57 2584000077399336 a004 Fibonacci(44)*Lucas(33)/(1/2+sqrt(5)/2)^59 2584000077399336 a004 Fibonacci(46)*Lucas(33)/(1/2+sqrt(5)/2)^61 2584000077399336 a004 Fibonacci(48)*Lucas(33)/(1/2+sqrt(5)/2)^63 2584000077399336 a004 Fibonacci(50)*Lucas(33)/(1/2+sqrt(5)/2)^65 2584000077399336 a004 Fibonacci(52)*Lucas(33)/(1/2+sqrt(5)/2)^67 2584000077399336 a004 Fibonacci(54)*Lucas(33)/(1/2+sqrt(5)/2)^69 2584000077399336 a004 Fibonacci(56)*Lucas(33)/(1/2+sqrt(5)/2)^71 2584000077399336 a004 Fibonacci(58)*Lucas(33)/(1/2+sqrt(5)/2)^73 2584000077399336 a004 Fibonacci(60)*Lucas(33)/(1/2+sqrt(5)/2)^75 2584000077399336 a004 Fibonacci(62)*Lucas(33)/(1/2+sqrt(5)/2)^77 2584000077399336 a004 Fibonacci(64)*Lucas(33)/(1/2+sqrt(5)/2)^79 2584000077399336 a004 Fibonacci(66)*Lucas(33)/(1/2+sqrt(5)/2)^81 2584000077399336 a004 Fibonacci(68)*Lucas(33)/(1/2+sqrt(5)/2)^83 2584000077399336 a004 Fibonacci(70)*Lucas(33)/(1/2+sqrt(5)/2)^85 2584000077399336 a004 Fibonacci(72)*Lucas(33)/(1/2+sqrt(5)/2)^87 2584000077399336 a004 Fibonacci(74)*Lucas(33)/(1/2+sqrt(5)/2)^89 2584000077399336 a004 Fibonacci(76)*Lucas(33)/(1/2+sqrt(5)/2)^91 2584000077399336 a004 Fibonacci(78)*Lucas(33)/(1/2+sqrt(5)/2)^93 2584000077399336 a004 Fibonacci(80)*Lucas(33)/(1/2+sqrt(5)/2)^95 2584000077399336 a004 Fibonacci(82)*Lucas(33)/(1/2+sqrt(5)/2)^97 2584000077399336 a004 Fibonacci(84)*Lucas(33)/(1/2+sqrt(5)/2)^99 2584000077399336 a004 Fibonacci(85)*Lucas(33)/(1/2+sqrt(5)/2)^100 2584000077399336 a004 Fibonacci(83)*Lucas(33)/(1/2+sqrt(5)/2)^98 2584000077399336 a004 Fibonacci(81)*Lucas(33)/(1/2+sqrt(5)/2)^96 2584000077399336 a004 Fibonacci(79)*Lucas(33)/(1/2+sqrt(5)/2)^94 2584000077399336 a004 Fibonacci(77)*Lucas(33)/(1/2+sqrt(5)/2)^92 2584000077399336 a004 Fibonacci(75)*Lucas(33)/(1/2+sqrt(5)/2)^90 2584000077399336 a004 Fibonacci(73)*Lucas(33)/(1/2+sqrt(5)/2)^88 2584000077399336 a004 Fibonacci(71)*Lucas(33)/(1/2+sqrt(5)/2)^86 2584000077399336 a004 Fibonacci(69)*Lucas(33)/(1/2+sqrt(5)/2)^84 2584000077399336 a004 Fibonacci(67)*Lucas(33)/(1/2+sqrt(5)/2)^82 2584000077399336 a001 1/1762289*(1/2+1/2*5^(1/2))^51 2584000077399336 a004 Fibonacci(65)*Lucas(33)/(1/2+sqrt(5)/2)^80 2584000077399336 a004 Fibonacci(63)*Lucas(33)/(1/2+sqrt(5)/2)^78 2584000077399336 a004 Fibonacci(61)*Lucas(33)/(1/2+sqrt(5)/2)^76 2584000077399336 a004 Fibonacci(59)*Lucas(33)/(1/2+sqrt(5)/2)^74 2584000077399336 a004 Fibonacci(57)*Lucas(33)/(1/2+sqrt(5)/2)^72 2584000077399336 a004 Fibonacci(55)*Lucas(33)/(1/2+sqrt(5)/2)^70 2584000077399336 a004 Fibonacci(53)*Lucas(33)/(1/2+sqrt(5)/2)^68 2584000077399336 a004 Fibonacci(51)*Lucas(33)/(1/2+sqrt(5)/2)^66 2584000077399336 a004 Fibonacci(49)*Lucas(33)/(1/2+sqrt(5)/2)^64 2584000077399336 a004 Fibonacci(47)*Lucas(33)/(1/2+sqrt(5)/2)^62 2584000077399336 a004 Fibonacci(45)*Lucas(33)/(1/2+sqrt(5)/2)^60 2584000077399336 a004 Fibonacci(43)*Lucas(33)/(1/2+sqrt(5)/2)^58 2584000077399336 a004 Fibonacci(41)*Lucas(33)/(1/2+sqrt(5)/2)^56 2584000077399337 a001 5702887/54018521*7881196^(7/11) 2584000077399337 a004 Fibonacci(39)*Lucas(33)/(1/2+sqrt(5)/2)^54 2584000077399337 a004 Fibonacci(37)*Lucas(33)/(1/2+sqrt(5)/2)^52 2584000077399338 a001 7465176/5374978561*7881196^(10/11) 2584000077399340 a001 39088169/28143753123*7881196^(10/11) 2584000077399340 a001 14619165/10525900321*7881196^(10/11) 2584000077399340 a001 133957148/96450076809*7881196^(10/11) 2584000077399340 a001 701408733/505019158607*7881196^(10/11) 2584000077399340 a001 1836311903/1322157322203*7881196^(10/11) 2584000077399340 a001 14930208/10749853441*7881196^(10/11) 2584000077399340 a001 12586269025/9062201101803*7881196^(10/11) 2584000077399340 a001 32951280099/23725150497407*7881196^(10/11) 2584000077399340 a001 10182505537/7331474697802*7881196^(10/11) 2584000077399340 a001 7778742049/5600748293801*7881196^(10/11) 2584000077399340 a001 2971215073/2139295485799*7881196^(10/11) 2584000077399340 a001 567451585/408569081798*7881196^(10/11) 2584000077399340 a001 433494437/312119004989*7881196^(10/11) 2584000077399340 a001 165580141/119218851371*7881196^(10/11) 2584000077399340 a001 31622993/22768774562*7881196^(10/11) 2584000077399341 a001 24157817/17393796001*7881196^(10/11) 2584000077399342 a001 196452/33391061*7881196^(9/11) 2584000077399342 a001 311187/4769326*4870847^(11/16) 2584000077399342 a004 Fibonacci(35)*Lucas(33)/(1/2+sqrt(5)/2)^50 2584000077399344 a001 39088169/6643838879*7881196^(9/11) 2584000077399344 a001 2971215073/4870847*1860498^(1/10) 2584000077399344 a001 102334155/17393796001*7881196^(9/11) 2584000077399344 a001 66978574/11384387281*7881196^(9/11) 2584000077399344 a001 701408733/119218851371*7881196^(9/11) 2584000077399344 a001 1836311903/312119004989*7881196^(9/11) 2584000077399344 a001 1201881744/204284540899*7881196^(9/11) 2584000077399344 a001 12586269025/2139295485799*7881196^(9/11) 2584000077399344 a001 32951280099/5600748293801*7881196^(9/11) 2584000077399344 a001 1135099622/192933544679*7881196^(9/11) 2584000077399344 a001 139583862445/23725150497407*7881196^(9/11) 2584000077399344 a001 53316291173/9062201101803*7881196^(9/11) 2584000077399344 a001 10182505537/1730726404001*7881196^(9/11) 2584000077399344 a001 7778742049/1322157322203*7881196^(9/11) 2584000077399344 a001 2971215073/505019158607*7881196^(9/11) 2584000077399344 a001 567451585/96450076809*7881196^(9/11) 2584000077399344 a001 433494437/73681302247*7881196^(9/11) 2584000077399344 a001 165580141/28143753123*7881196^(9/11) 2584000077399344 a001 24157817/12752043*7881196^(5/11) 2584000077399344 a001 31622993/5374978561*7881196^(9/11) 2584000077399345 a001 24157817/4106118243*7881196^(9/11) 2584000077399345 a001 829464/33281921*7881196^(8/11) 2584000077399346 a001 5702887/12752043*141422324^(6/13) 2584000077399346 a001 5702887/12752043*2537720636^(2/5) 2584000077399346 a001 5702887/12752043*45537549124^(6/17) 2584000077399346 a001 5702887/12752043*14662949395604^(2/7) 2584000077399346 a001 5702887/12752043*(1/2+1/2*5^(1/2))^18 2584000077399346 a001 5702887/12752043*192900153618^(1/3) 2584000077399346 a001 32522920134769/12586269025 2584000077399346 a001 5702887/12752043*10749957122^(3/8) 2584000077399346 a001 5702887/12752043*4106118243^(9/23) 2584000077399346 a001 5702887/12752043*1568397607^(9/22) 2584000077399346 a001 5702887/12752043*599074578^(3/7) 2584000077399346 a001 5702887/12752043*228826127^(9/20) 2584000077399346 a001 9227465/6643838879*7881196^(10/11) 2584000077399346 a001 5702887/12752043*87403803^(9/19) 2584000077399347 a001 34111385/4250681*7881196^(4/11) 2584000077399347 a001 5702887/12752043*33385282^(1/2) 2584000077399347 a001 39088169/1568397607*7881196^(8/11) 2584000077399348 a001 34111385/1368706081*7881196^(8/11) 2584000077399348 a001 133957148/5374978561*7881196^(8/11) 2584000077399348 a001 233802911/9381251041*7881196^(8/11) 2584000077399348 a001 1836311903/73681302247*7881196^(8/11) 2584000077399348 a001 267084832/10716675201*7881196^(8/11) 2584000077399348 a001 12586269025/505019158607*7881196^(8/11) 2584000077399348 a001 10983760033/440719107401*7881196^(8/11) 2584000077399348 a001 43133785636/1730726404001*7881196^(8/11) 2584000077399348 a001 75283811239/3020733700601*7881196^(8/11) 2584000077399348 a001 182717648081/7331474697802*7881196^(8/11) 2584000077399348 a001 139583862445/5600748293801*7881196^(8/11) 2584000077399348 a001 53316291173/2139295485799*7881196^(8/11) 2584000077399348 a001 10182505537/408569081798*7881196^(8/11) 2584000077399348 a001 7778742049/312119004989*7881196^(8/11) 2584000077399348 a001 2971215073/119218851371*7881196^(8/11) 2584000077399348 a001 567451585/22768774562*7881196^(8/11) 2584000077399348 a001 433494437/17393796001*7881196^(8/11) 2584000077399348 a001 165580141/6643838879*7881196^(8/11) 2584000077399348 a001 31622993/1268860318*7881196^(8/11) 2584000077399348 a001 14930352/228826127*7881196^(2/3) 2584000077399348 a001 165580141/12752043*7881196^(1/3) 2584000077399349 a001 24157817/969323029*7881196^(8/11) 2584000077399349 a001 3732588/35355581*7881196^(7/11) 2584000077399350 a001 39088169/599074578*7881196^(2/3) 2584000077399350 a001 9227465/1568397607*7881196^(9/11) 2584000077399350 a001 14619165/224056801*7881196^(2/3) 2584000077399350 a001 267914296/4106118243*7881196^(2/3) 2584000077399350 a001 701408733/10749957122*7881196^(2/3) 2584000077399350 a001 1836311903/28143753123*7881196^(2/3) 2584000077399350 a001 686789568/10525900321*7881196^(2/3) 2584000077399350 a001 12586269025/192900153618*7881196^(2/3) 2584000077399350 a001 32951280099/505019158607*7881196^(2/3) 2584000077399350 a001 86267571272/1322157322203*7881196^(2/3) 2584000077399350 a001 32264490531/494493258286*7881196^(2/3) 2584000077399350 a001 1548008755920/23725150497407*7881196^(2/3) 2584000077399350 a001 139583862445/2139295485799*7881196^(2/3) 2584000077399350 a001 53316291173/817138163596*7881196^(2/3) 2584000077399350 a001 20365011074/312119004989*7881196^(2/3) 2584000077399350 a001 7778742049/119218851371*7881196^(2/3) 2584000077399350 a001 2971215073/45537549124*7881196^(2/3) 2584000077399350 a001 1134903170/17393796001*7881196^(2/3) 2584000077399350 a001 433494437/6643838879*7881196^(2/3) 2584000077399350 a001 165580141/2537720636*7881196^(2/3) 2584000077399350 a001 63245986/969323029*7881196^(2/3) 2584000077399350 a001 726103/29134601*4870847^(3/4) 2584000077399351 a001 7465176/16692641*7881196^(6/11) 2584000077399351 a001 433494437/12752043*7881196^(3/11) 2584000077399351 a001 24157817/370248451*7881196^(2/3) 2584000077399351 a001 39088169/370248451*7881196^(7/11) 2584000077399351 a001 102334155/969323029*7881196^(7/11) 2584000077399352 a001 66978574/634430159*7881196^(7/11) 2584000077399352 a001 701408733/6643838879*7881196^(7/11) 2584000077399352 a001 1836311903/17393796001*7881196^(7/11) 2584000077399352 a001 1201881744/11384387281*7881196^(7/11) 2584000077399352 a001 12586269025/119218851371*7881196^(7/11) 2584000077399352 a001 32951280099/312119004989*7881196^(7/11) 2584000077399352 a001 21566892818/204284540899*7881196^(7/11) 2584000077399352 a001 225851433717/2139295485799*7881196^(7/11) 2584000077399352 a001 182717648081/1730726404001*7881196^(7/11) 2584000077399352 a001 139583862445/1322157322203*7881196^(7/11) 2584000077399352 a001 53316291173/505019158607*7881196^(7/11) 2584000077399352 a001 10182505537/96450076809*7881196^(7/11) 2584000077399352 a001 7778742049/73681302247*7881196^(7/11) 2584000077399352 a001 2971215073/28143753123*7881196^(7/11) 2584000077399352 a001 567451585/5374978561*7881196^(7/11) 2584000077399352 a001 433494437/4106118243*7881196^(7/11) 2584000077399352 a001 165580141/1568397607*7881196^(7/11) 2584000077399352 a001 31622993/299537289*7881196^(7/11) 2584000077399352 a001 24157817/228826127*7881196^(7/11) 2584000077399354 a001 9227465/370248451*7881196^(8/11) 2584000077399355 a001 1836311903/12752043*7881196^(2/11) 2584000077399355 a001 39088169/87403803*7881196^(6/11) 2584000077399355 a001 5702887/12752043*12752043^(9/17) 2584000077399355 a001 102334155/228826127*7881196^(6/11) 2584000077399355 a001 133957148/299537289*7881196^(6/11) 2584000077399355 a001 701408733/1568397607*7881196^(6/11) 2584000077399355 a001 1836311903/4106118243*7881196^(6/11) 2584000077399355 a001 2403763488/5374978561*7881196^(6/11) 2584000077399355 a001 12586269025/28143753123*7881196^(6/11) 2584000077399355 a001 32951280099/73681302247*7881196^(6/11) 2584000077399355 a001 43133785636/96450076809*7881196^(6/11) 2584000077399355 a001 225851433717/505019158607*7881196^(6/11) 2584000077399355 a001 591286729879/1322157322203*7881196^(6/11) 2584000077399355 a001 10610209857723/23725150497407*7881196^(6/11) 2584000077399355 a001 139583862445/312119004989*7881196^(6/11) 2584000077399355 a001 53316291173/119218851371*7881196^(6/11) 2584000077399355 a001 10182505537/22768774562*7881196^(6/11) 2584000077399355 a001 7778742049/17393796001*7881196^(6/11) 2584000077399355 a001 2971215073/6643838879*7881196^(6/11) 2584000077399355 a001 567451585/1268860318*7881196^(6/11) 2584000077399355 a001 433494437/969323029*7881196^(6/11) 2584000077399355 a001 165580141/370248451*7881196^(6/11) 2584000077399356 a001 31622993/70711162*7881196^(6/11) 2584000077399356 a004 Fibonacci(34)*Lucas(35)/(1/2+sqrt(5)/2)^51 2584000077399356 a001 5702887/33385282*20633239^(4/7) 2584000077399356 a001 9227465/141422324*7881196^(2/3) 2584000077399357 a001 31622993/16692641*7881196^(5/11) 2584000077399357 a001 5702887/4106118243*20633239^(6/7) 2584000077399357 a001 24157817/54018521*7881196^(6/11) 2584000077399357 a001 5702887/1568397607*20633239^(4/5) 2584000077399357 a001 9227465/87403803*7881196^(7/11) 2584000077399358 a001 46347/4868641*4870847^(13/16) 2584000077399358 a001 5702887/370248451*20633239^(5/7) 2584000077399358 a001 7778742049/12752043*7881196^(1/11) 2584000077399359 a001 165580141/87403803*7881196^(5/11) 2584000077399359 a001 433494437/228826127*7881196^(5/11) 2584000077399359 a001 567451585/299537289*7881196^(5/11) 2584000077399359 a001 2971215073/1568397607*7881196^(5/11) 2584000077399359 a001 7778742049/4106118243*7881196^(5/11) 2584000077399359 a001 10182505537/5374978561*7881196^(5/11) 2584000077399359 a001 53316291173/28143753123*7881196^(5/11) 2584000077399359 a001 139583862445/73681302247*7881196^(5/11) 2584000077399359 a001 182717648081/96450076809*7881196^(5/11) 2584000077399359 a001 956722026041/505019158607*7881196^(5/11) 2584000077399359 a001 10610209857723/5600748293801*7881196^(5/11) 2584000077399359 a001 591286729879/312119004989*7881196^(5/11) 2584000077399359 a001 225851433717/119218851371*7881196^(5/11) 2584000077399359 a001 21566892818/11384387281*7881196^(5/11) 2584000077399359 a001 32951280099/17393796001*7881196^(5/11) 2584000077399359 a001 12586269025/6643838879*7881196^(5/11) 2584000077399359 a001 1201881744/634430159*7881196^(5/11) 2584000077399359 a001 1836311903/969323029*7881196^(5/11) 2584000077399359 a001 701408733/370248451*7881196^(5/11) 2584000077399359 a001 66978574/35355581*7881196^(5/11) 2584000077399359 a001 39088169/12752043*20633239^(2/5) 2584000077399359 a001 5702887/54018521*20633239^(3/5) 2584000077399360 a001 5702887/33385282*2537720636^(4/9) 2584000077399360 a001 5702887/33385282*(1/2+1/2*5^(1/2))^20 2584000077399360 a001 4976784/4250681*(1/2+1/2*5^(1/2))^16 2584000077399360 a001 4976784/4250681*23725150497407^(1/4) 2584000077399360 a001 5702887/33385282*505019158607^(5/14) 2584000077399360 a001 4976784/4250681*73681302247^(4/13) 2584000077399360 a001 5702887/33385282*73681302247^(5/13) 2584000077399360 a001 28382036775408/10983760033 2584000077399360 a001 5702887/33385282*28143753123^(2/5) 2584000077399360 a001 4976784/4250681*10749957122^(1/3) 2584000077399360 a001 5702887/33385282*10749957122^(5/12) 2584000077399360 a001 4976784/4250681*4106118243^(8/23) 2584000077399360 a001 5702887/33385282*4106118243^(10/23) 2584000077399360 a001 4976784/4250681*1568397607^(4/11) 2584000077399360 a001 5702887/33385282*1568397607^(5/11) 2584000077399360 a001 4976784/4250681*599074578^(8/21) 2584000077399360 a001 5702887/33385282*599074578^(10/21) 2584000077399360 a001 4976784/4250681*228826127^(2/5) 2584000077399360 a001 5702887/33385282*228826127^(1/2) 2584000077399360 a001 102334155/54018521*7881196^(5/11) 2584000077399360 a001 4976784/4250681*87403803^(8/19) 2584000077399360 a001 5702887/33385282*87403803^(10/19) 2584000077399360 a001 267914296/12752043*20633239^(2/7) 2584000077399360 a001 24157817/12752043*20633239^(3/7) 2584000077399361 a001 133957148/16692641*7881196^(4/11) 2584000077399361 a001 4976784/4250681*33385282^(4/9) 2584000077399361 a001 1134903170/12752043*20633239^(1/5) 2584000077399361 a001 5702887/33385282*33385282^(5/9) 2584000077399361 a004 Fibonacci(34)*Lucas(37)/(1/2+sqrt(5)/2)^53 2584000077399361 a001 2971215073/12752043*20633239^(1/7) 2584000077399362 a001 39088169/12752043*17393796001^(2/7) 2584000077399362 a001 39088169/12752043*14662949395604^(2/9) 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^22/Lucas(38) 2584000077399362 a001 39088169/12752043*(1/2+1/2*5^(1/2))^14 2584000077399362 a001 39088169/12752043*505019158607^(1/4) 2584000077399362 a001 222915410843903/86267571272 2584000077399362 a001 39088169/12752043*10749957122^(7/24) 2584000077399362 a001 5702887/87403803*10749957122^(11/24) 2584000077399362 a001 39088169/12752043*4106118243^(7/23) 2584000077399362 a001 5702887/87403803*4106118243^(11/23) 2584000077399362 a001 39088169/12752043*1568397607^(7/22) 2584000077399362 a001 5702887/87403803*1568397607^(1/2) 2584000077399362 a001 39088169/12752043*599074578^(1/3) 2584000077399362 a001 5702887/87403803*599074578^(11/21) 2584000077399362 a001 39088169/12752043*228826127^(7/20) 2584000077399362 a001 5702887/87403803*228826127^(11/20) 2584000077399362 a001 433494437/33385282*7881196^(1/3) 2584000077399362 a001 39088169/12752043*87403803^(7/19) 2584000077399362 a001 5702887/87403803*87403803^(11/19) 2584000077399362 a004 Fibonacci(34)*Lucas(39)/(1/2+sqrt(5)/2)^55 2584000077399362 a001 5702887/228826127*141422324^(8/13) 2584000077399362 a001 5702887/73681302247*141422324^(12/13) 2584000077399362 a001 5702887/17393796001*141422324^(11/13) 2584000077399362 a001 5702887/4106118243*141422324^(10/13) 2584000077399362 a001 5702887/599074578*141422324^(2/3) 2584000077399362 a001 34111385/4250681*141422324^(4/13) 2584000077399362 a001 5702887/969323029*141422324^(9/13) 2584000077399362 a001 5702887/228826127*2537720636^(8/15) 2584000077399362 a001 34111385/4250681*2537720636^(4/15) 2584000077399362 a001 5702887/228826127*45537549124^(8/17) 2584000077399362 a001 34111385/4250681*45537549124^(4/17) 2584000077399362 a001 34111385/4250681*817138163596^(4/19) 2584000077399362 a001 34111385/4250681*14662949395604^(4/21) 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^24/Lucas(40) 2584000077399362 a001 34111385/4250681*(1/2+1/2*5^(1/2))^12 2584000077399362 a001 27790482009785/10754830177 2584000077399362 a001 5702887/228826127*192900153618^(4/9) 2584000077399362 a001 34111385/4250681*73681302247^(3/13) 2584000077399362 a001 5702887/228826127*73681302247^(6/13) 2584000077399362 a001 34111385/4250681*10749957122^(1/4) 2584000077399362 a001 5702887/228826127*10749957122^(1/2) 2584000077399362 a001 34111385/4250681*4106118243^(6/23) 2584000077399362 a001 5702887/228826127*4106118243^(12/23) 2584000077399362 a001 34111385/4250681*1568397607^(3/11) 2584000077399362 a001 5702887/228826127*1568397607^(6/11) 2584000077399362 a001 34111385/4250681*599074578^(2/7) 2584000077399362 a001 5702887/228826127*599074578^(4/7) 2584000077399362 a001 34111385/4250681*228826127^(3/10) 2584000077399362 a001 433494437/12752043*141422324^(3/13) 2584000077399362 a001 1836311903/12752043*141422324^(2/13) 2584000077399362 a001 5702887/228826127*228826127^(3/5) 2584000077399362 a004 Fibonacci(34)*Lucas(41)/(1/2+sqrt(5)/2)^57 2584000077399362 a001 7778742049/12752043*141422324^(1/13) 2584000077399362 a001 267914296/12752043*2537720636^(2/9) 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^26/Lucas(42) 2584000077399362 a001 267914296/12752043*(1/2+1/2*5^(1/2))^10 2584000077399362 a001 1527884955772552/591286729879 2584000077399362 a001 5702887/599074578*73681302247^(1/2) 2584000077399362 a001 267914296/12752043*28143753123^(1/5) 2584000077399362 a001 267914296/12752043*10749957122^(5/24) 2584000077399362 a001 5702887/599074578*10749957122^(13/24) 2584000077399362 a001 267914296/12752043*4106118243^(5/23) 2584000077399362 a001 5702887/599074578*4106118243^(13/23) 2584000077399362 a001 267914296/12752043*1568397607^(5/22) 2584000077399362 a001 5702887/599074578*1568397607^(13/22) 2584000077399362 a001 267914296/12752043*599074578^(5/21) 2584000077399362 a004 Fibonacci(34)*Lucas(43)/(1/2+sqrt(5)/2)^59 2584000077399362 a001 5702887/599074578*599074578^(13/21) 2584000077399362 a001 5702887/1568397607*17393796001^(4/7) 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^28/Lucas(44) 2584000077399362 a001 233802911/4250681*(1/2+1/2*5^(1/2))^8 2584000077399362 a001 1333351581704057/516002918640 2584000077399362 a001 233802911/4250681*73681302247^(2/13) 2584000077399362 a001 5702887/1568397607*73681302247^(7/13) 2584000077399362 a001 233802911/4250681*10749957122^(1/6) 2584000077399362 a001 5702887/1568397607*10749957122^(7/12) 2584000077399362 a001 233802911/4250681*4106118243^(4/23) 2584000077399362 a001 5702887/1568397607*4106118243^(14/23) 2584000077399362 a001 233802911/4250681*1568397607^(2/11) 2584000077399362 a001 5702887/4106118243*2537720636^(2/3) 2584000077399362 a004 Fibonacci(34)*Lucas(45)/(1/2+sqrt(5)/2)^61 2584000077399362 a001 5702887/1568397607*1568397607^(7/11) 2584000077399362 a001 5702887/1322157322203*2537720636^(14/15) 2584000077399362 a001 5702887/505019158607*2537720636^(8/9) 2584000077399362 a001 5702887/312119004989*2537720636^(13/15) 2584000077399362 a001 5702887/73681302247*2537720636^(4/5) 2584000077399362 a001 1597/12752044*2537720636^(7/9) 2584000077399362 a001 5702887/17393796001*2537720636^(11/15) 2584000077399362 a001 1836311903/12752043*2537720636^(2/15) 2584000077399362 a001 5702887/4106118243*45537549124^(10/17) 2584000077399362 a001 1836311903/12752043*45537549124^(2/17) 2584000077399362 a001 5702887/4106118243*312119004989^(6/11) 2584000077399362 a001 1836311903/12752043*14662949395604^(2/21) 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^30/Lucas(46) 2584000077399362 a001 1836311903/12752043*(1/2+1/2*5^(1/2))^6 2584000077399362 a001 10472279279563961/4052739537881 2584000077399362 a001 5702887/4106118243*192900153618^(5/9) 2584000077399362 a001 5702887/4106118243*28143753123^(3/5) 2584000077399362 a001 1836311903/12752043*10749957122^(1/8) 2584000077399362 a001 5702887/4106118243*10749957122^(5/8) 2584000077399362 a001 1836311903/12752043*4106118243^(3/23) 2584000077399362 a004 Fibonacci(34)*Lucas(47)/(1/2+sqrt(5)/2)^63 2584000077399362 a001 5702887/4106118243*4106118243^(15/23) 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^32/Lucas(48) 2584000077399362 a001 1602508992/4250681*(1/2+1/2*5^(1/2))^4 2584000077399362 a001 1602508992/4250681*23725150497407^(1/16) 2584000077399362 a001 5702887/10749957122*505019158607^(4/7) 2584000077399362 a001 1602508992/4250681*73681302247^(1/13) 2584000077399362 a001 5702887/10749957122*73681302247^(8/13) 2584000077399362 a001 1602508992/4250681*10749957122^(1/12) 2584000077399362 a001 7778742049/12752043*2537720636^(1/15) 2584000077399362 a001 1836311903/12752043*1568397607^(3/22) 2584000077399362 a001 1602508992/4250681*4106118243^(2/23) 2584000077399362 a004 Fibonacci(34)*Lucas(49)/(1/2+sqrt(5)/2)^65 2584000077399362 a001 5702887/10749957122*10749957122^(2/3) 2584000077399362 a001 5702887/1322157322203*17393796001^(6/7) 2584000077399362 a001 1597/12752044*17393796001^(5/7) 2584000077399362 a001 5702887/28143753123*45537549124^(2/3) 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^34/Lucas(50) 2584000077399362 a001 12586269025/12752043*(1/2+1/2*5^(1/2))^2 2584000077399362 a001 12586269025/12752043*10749957122^(1/24) 2584000077399362 a001 5702887/73681302247*45537549124^(12/17) 2584000077399362 a004 Fibonacci(34)*Lucas(51)/(1/2+sqrt(5)/2)^67 2584000077399362 a001 5702887/23725150497407*45537549124^(16/17) 2584000077399362 a001 5702887/5600748293801*45537549124^(15/17) 2584000077399362 a001 5702887/1322157322203*45537549124^(14/17) 2584000077399362 a001 5702887/312119004989*45537549124^(13/17) 2584000077399362 a001 5702887/73681302247*14662949395604^(4/7) 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^36/Lucas(52) 2584000077399362 a006 5^(1/2)*Fibonacci(52)/Lucas(34)/sqrt(5) 2584000077399362 a001 5702887/73681302247*505019158607^(9/14) 2584000077399362 a001 5702887/73681302247*192900153618^(2/3) 2584000077399362 a004 Fibonacci(34)*Lucas(53)/(1/2+sqrt(5)/2)^69 2584000077399362 a001 5702887/73681302247*73681302247^(9/13) 2584000077399362 a001 5702887/192900153618*817138163596^(2/3) 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^38/Lucas(54) 2584000077399362 a004 Fibonacci(54)/Lucas(34)/(1/2+sqrt(5)/2)^2 2584000077399362 a004 Fibonacci(34)*Lucas(55)/(1/2+sqrt(5)/2)^71 2584000077399362 a001 5702887/3461452808002*312119004989^(4/5) 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^40/Lucas(56) 2584000077399362 a004 Fibonacci(56)/Lucas(34)/(1/2+sqrt(5)/2)^4 2584000077399362 a004 Fibonacci(34)*Lucas(57)/(1/2+sqrt(5)/2)^73 2584000077399362 a001 5702887/1322157322203*14662949395604^(2/3) 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^42/Lucas(58) 2584000077399362 a004 Fibonacci(58)/Lucas(34)/(1/2+sqrt(5)/2)^6 2584000077399362 a004 Fibonacci(34)*Lucas(59)/(1/2+sqrt(5)/2)^75 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^44/Lucas(60) 2584000077399362 a004 Fibonacci(60)/Lucas(34)/(1/2+sqrt(5)/2)^8 2584000077399362 a004 Fibonacci(34)*Lucas(61)/(1/2+sqrt(5)/2)^77 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^46/Lucas(62) 2584000077399362 a004 Fibonacci(62)/Lucas(34)/(1/2+sqrt(5)/2)^10 2584000077399362 a004 Fibonacci(34)*Lucas(63)/(1/2+sqrt(5)/2)^79 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^48/Lucas(64) 2584000077399362 a004 Fibonacci(64)/Lucas(34)/(1/2+sqrt(5)/2)^12 2584000077399362 a004 Fibonacci(34)*Lucas(65)/(1/2+sqrt(5)/2)^81 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^50/Lucas(66) 2584000077399362 a004 Fibonacci(66)/Lucas(34)/(1/2+sqrt(5)/2)^14 2584000077399362 a004 Fibonacci(34)*Lucas(67)/(1/2+sqrt(5)/2)^83 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^52/Lucas(68) 2584000077399362 a004 Fibonacci(34)*Lucas(69)/(1/2+sqrt(5)/2)^85 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^54/Lucas(70) 2584000077399362 a004 Fibonacci(34)*Lucas(71)/(1/2+sqrt(5)/2)^87 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^56/Lucas(72) 2584000077399362 a004 Fibonacci(34)*Lucas(73)/(1/2+sqrt(5)/2)^89 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^58/Lucas(74) 2584000077399362 a004 Fibonacci(34)*Lucas(75)/(1/2+sqrt(5)/2)^91 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^60/Lucas(76) 2584000077399362 a004 Fibonacci(34)*Lucas(77)/(1/2+sqrt(5)/2)^93 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^62/Lucas(78) 2584000077399362 a004 Fibonacci(34)*Lucas(79)/(1/2+sqrt(5)/2)^95 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^64/Lucas(80) 2584000077399362 a004 Fibonacci(34)*Lucas(81)/(1/2+sqrt(5)/2)^97 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^66/Lucas(82) 2584000077399362 a004 Fibonacci(34)*Lucas(83)/(1/2+sqrt(5)/2)^99 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^68/Lucas(84) 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^70/Lucas(86) 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^72/Lucas(88) 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^74/Lucas(90) 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^76/Lucas(92) 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^78/Lucas(94) 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^80/Lucas(96) 2584000077399362 a004 Fibonacci(17)*Lucas(17)/(1/2+sqrt(5)/2)^16 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^82/Lucas(98) 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^83/Lucas(99) 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^84/Lucas(100) 2584000077399362 a004 Fibonacci(68)/Lucas(34)/(1/2+sqrt(5)/2)^16 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^81/Lucas(97) 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^79/Lucas(95) 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^77/Lucas(93) 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^75/Lucas(91) 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^73/Lucas(89) 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^71/Lucas(87) 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^69/Lucas(85) 2584000077399362 a004 Fibonacci(34)*Lucas(84)/(1/2+sqrt(5)/2)^100 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^67/Lucas(83) 2584000077399362 a004 Fibonacci(34)*Lucas(82)/(1/2+sqrt(5)/2)^98 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^65/Lucas(81) 2584000077399362 a004 Fibonacci(34)*Lucas(80)/(1/2+sqrt(5)/2)^96 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^63/Lucas(79) 2584000077399362 a004 Fibonacci(34)*Lucas(78)/(1/2+sqrt(5)/2)^94 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^61/Lucas(77) 2584000077399362 a004 Fibonacci(34)*Lucas(76)/(1/2+sqrt(5)/2)^92 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^59/Lucas(75) 2584000077399362 a004 Fibonacci(34)*Lucas(74)/(1/2+sqrt(5)/2)^90 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^57/Lucas(73) 2584000077399362 a004 Fibonacci(34)*Lucas(72)/(1/2+sqrt(5)/2)^88 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^55/Lucas(71) 2584000077399362 a004 Fibonacci(34)*Lucas(70)/(1/2+sqrt(5)/2)^86 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^53/Lucas(69) 2584000077399362 a004 Fibonacci(70)/Lucas(34)/(1/2+sqrt(5)/2)^18 2584000077399362 a004 Fibonacci(72)/Lucas(34)/(1/2+sqrt(5)/2)^20 2584000077399362 a004 Fibonacci(74)/Lucas(34)/(1/2+sqrt(5)/2)^22 2584000077399362 a004 Fibonacci(76)/Lucas(34)/(1/2+sqrt(5)/2)^24 2584000077399362 a004 Fibonacci(78)/Lucas(34)/(1/2+sqrt(5)/2)^26 2584000077399362 a004 Fibonacci(80)/Lucas(34)/(1/2+sqrt(5)/2)^28 2584000077399362 a004 Fibonacci(82)/Lucas(34)/(1/2+sqrt(5)/2)^30 2584000077399362 a004 Fibonacci(84)/Lucas(34)/(1/2+sqrt(5)/2)^32 2584000077399362 a004 Fibonacci(86)/Lucas(34)/(1/2+sqrt(5)/2)^34 2584000077399362 a004 Fibonacci(88)/Lucas(34)/(1/2+sqrt(5)/2)^36 2584000077399362 a004 Fibonacci(90)/Lucas(34)/(1/2+sqrt(5)/2)^38 2584000077399362 a004 Fibonacci(92)/Lucas(34)/(1/2+sqrt(5)/2)^40 2584000077399362 a004 Fibonacci(94)/Lucas(34)/(1/2+sqrt(5)/2)^42 2584000077399362 a004 Fibonacci(96)/Lucas(34)/(1/2+sqrt(5)/2)^44 2584000077399362 a004 Fibonacci(98)/Lucas(34)/(1/2+sqrt(5)/2)^46 2584000077399362 a004 Fibonacci(100)/Lucas(34)/(1/2+sqrt(5)/2)^48 2584000077399362 a004 Fibonacci(34)*Lucas(68)/(1/2+sqrt(5)/2)^84 2584000077399362 a004 Fibonacci(97)/Lucas(34)/(1/2+sqrt(5)/2)^45 2584000077399362 a004 Fibonacci(99)/Lucas(34)/(1/2+sqrt(5)/2)^47 2584000077399362 a004 Fibonacci(95)/Lucas(34)/(1/2+sqrt(5)/2)^43 2584000077399362 a004 Fibonacci(93)/Lucas(34)/(1/2+sqrt(5)/2)^41 2584000077399362 a004 Fibonacci(91)/Lucas(34)/(1/2+sqrt(5)/2)^39 2584000077399362 a004 Fibonacci(89)/Lucas(34)/(1/2+sqrt(5)/2)^37 2584000077399362 a004 Fibonacci(87)/Lucas(34)/(1/2+sqrt(5)/2)^35 2584000077399362 a004 Fibonacci(85)/Lucas(34)/(1/2+sqrt(5)/2)^33 2584000077399362 a004 Fibonacci(83)/Lucas(34)/(1/2+sqrt(5)/2)^31 2584000077399362 a004 Fibonacci(81)/Lucas(34)/(1/2+sqrt(5)/2)^29 2584000077399362 a004 Fibonacci(79)/Lucas(34)/(1/2+sqrt(5)/2)^27 2584000077399362 a004 Fibonacci(77)/Lucas(34)/(1/2+sqrt(5)/2)^25 2584000077399362 a004 Fibonacci(75)/Lucas(34)/(1/2+sqrt(5)/2)^23 2584000077399362 a004 Fibonacci(73)/Lucas(34)/(1/2+sqrt(5)/2)^21 2584000077399362 a004 Fibonacci(71)/Lucas(34)/(1/2+sqrt(5)/2)^19 2584000077399362 a004 Fibonacci(69)/Lucas(34)/(1/2+sqrt(5)/2)^17 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^51/Lucas(67) 2584000077399362 a004 Fibonacci(67)/Lucas(34)/(1/2+sqrt(5)/2)^15 2584000077399362 a004 Fibonacci(34)*Lucas(66)/(1/2+sqrt(5)/2)^82 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^49/Lucas(65) 2584000077399362 a004 Fibonacci(65)/Lucas(34)/(1/2+sqrt(5)/2)^13 2584000077399362 a004 Fibonacci(34)*Lucas(64)/(1/2+sqrt(5)/2)^80 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^47/Lucas(63) 2584000077399362 a004 Fibonacci(63)/Lucas(34)/(1/2+sqrt(5)/2)^11 2584000077399362 a004 Fibonacci(34)*Lucas(62)/(1/2+sqrt(5)/2)^78 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^45/Lucas(61) 2584000077399362 a004 Fibonacci(61)/Lucas(34)/(1/2+sqrt(5)/2)^9 2584000077399362 a004 Fibonacci(34)*Lucas(60)/(1/2+sqrt(5)/2)^76 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^43/Lucas(59) 2584000077399362 a004 Fibonacci(59)/Lucas(34)/(1/2+sqrt(5)/2)^7 2584000077399362 a004 Fibonacci(34)*Lucas(58)/(1/2+sqrt(5)/2)^74 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^41/Lucas(57) 2584000077399362 a004 Fibonacci(57)/Lucas(34)/(1/2+sqrt(5)/2)^5 2584000077399362 a001 5702887/1322157322203*505019158607^(3/4) 2584000077399362 a004 Fibonacci(34)*Lucas(56)/(1/2+sqrt(5)/2)^72 2584000077399362 a001 5702887/312119004989*14662949395604^(13/21) 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^39/Lucas(55) 2584000077399362 a004 Fibonacci(55)/Lucas(34)/(1/2+sqrt(5)/2)^3 2584000077399362 a001 5702887/1322157322203*192900153618^(7/9) 2584000077399362 a001 5702887/5600748293801*192900153618^(5/6) 2584000077399362 a004 Fibonacci(34)*Lucas(54)/(1/2+sqrt(5)/2)^70 2584000077399362 a001 5702887/312119004989*192900153618^(13/18) 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^37/Lucas(53) 2584000077399362 a004 Fibonacci(53)/Lucas(34)/(1/2+sqrt(5)/2) 2584000077399362 a001 5702887/505019158607*73681302247^(10/13) 2584000077399362 a001 5702887/312119004989*73681302247^(3/4) 2584000077399362 a001 5702887/3461452808002*73681302247^(11/13) 2584000077399362 a001 5702887/23725150497407*73681302247^(12/13) 2584000077399362 a004 Fibonacci(34)*Lucas(52)/(1/2+sqrt(5)/2)^68 2584000077399362 a001 1597/12752044*14662949395604^(5/9) 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^35/Lucas(51) 2584000077399362 a001 1597/12752044*505019158607^(5/8) 2584000077399362 a001 5702887/505019158607*28143753123^(4/5) 2584000077399362 a001 5702887/5600748293801*28143753123^(9/10) 2584000077399362 a004 Fibonacci(34)*Lucas(50)/(1/2+sqrt(5)/2)^66 2584000077399362 a001 12586269025/12752043*4106118243^(1/23) 2584000077399362 a001 1597/12752044*28143753123^(7/10) 2584000077399362 a001 5702887/17393796001*45537549124^(11/17) 2584000077399362 a001 7778742049/12752043*45537549124^(1/17) 2584000077399362 a001 5702887/17393796001*312119004989^(3/5) 2584000077399362 a001 5702887/17393796001*14662949395604^(11/21) 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^33/Lucas(49) 2584000077399362 a001 7778742049/12752043*(1/2+1/2*5^(1/2))^3 2584000077399362 a001 7778742049/12752043*192900153618^(1/18) 2584000077399362 a001 5702887/17393796001*192900153618^(11/18) 2584000077399362 a001 7778742049/12752043*10749957122^(1/16) 2584000077399362 a001 5702887/28143753123*10749957122^(17/24) 2584000077399362 a001 2971215073/12752043*2537720636^(1/9) 2584000077399362 a001 5702887/73681302247*10749957122^(3/4) 2584000077399362 a001 5702887/192900153618*10749957122^(19/24) 2584000077399362 a001 5702887/312119004989*10749957122^(13/16) 2584000077399362 a001 5702887/505019158607*10749957122^(5/6) 2584000077399362 a001 5702887/1322157322203*10749957122^(7/8) 2584000077399362 a001 5702887/3461452808002*10749957122^(11/12) 2584000077399362 a001 5702887/5600748293801*10749957122^(15/16) 2584000077399362 a001 5702887/9062201101803*10749957122^(23/24) 2584000077399362 a004 Fibonacci(34)*Lucas(48)/(1/2+sqrt(5)/2)^64 2584000077399362 a001 5702887/17393796001*10749957122^(11/16) 2584000077399362 a001 12586269025/12752043*1568397607^(1/22) 2584000077399362 a001 2971215073/12752043*312119004989^(1/11) 2584000077399362 a001 16944503814015751/6557470319842 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^31/Lucas(47) 2584000077399362 a001 2971215073/12752043*(1/2+1/2*5^(1/2))^5 2584000077399362 a001 2971215073/12752043*28143753123^(1/10) 2584000077399362 a001 1602508992/4250681*1568397607^(1/11) 2584000077399362 a001 5702887/10749957122*4106118243^(16/23) 2584000077399362 a001 5702887/28143753123*4106118243^(17/23) 2584000077399362 a001 5702887/73681302247*4106118243^(18/23) 2584000077399362 a001 5702887/192900153618*4106118243^(19/23) 2584000077399362 a001 5702887/505019158607*4106118243^(20/23) 2584000077399362 a001 5702887/1322157322203*4106118243^(21/23) 2584000077399362 a001 5702887/3461452808002*4106118243^(22/23) 2584000077399362 a004 Fibonacci(34)*Lucas(46)/(1/2+sqrt(5)/2)^62 2584000077399362 a001 233802911/4250681*599074578^(4/21) 2584000077399362 a001 12586269025/12752043*599074578^(1/21) 2584000077399362 a001 1134903170/12752043*17393796001^(1/7) 2584000077399362 a001 1134903170/12752043*14662949395604^(1/9) 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^29/Lucas(45) 2584000077399362 a001 1134903170/12752043*(1/2+1/2*5^(1/2))^7 2584000077399362 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^7/Lucas(34) 2584000077399362 a001 5702887/2537720636*1322157322203^(1/2) 2584000077399362 a001 7778742049/12752043*599074578^(1/14) 2584000077399362 a001 5702887/4106118243*1568397607^(15/22) 2584000077399362 a001 1602508992/4250681*599074578^(2/21) 2584000077399362 a001 5702887/10749957122*1568397607^(8/11) 2584000077399362 a001 5702887/17393796001*1568397607^(3/4) 2584000077399362 a001 5702887/28143753123*1568397607^(17/22) 2584000077399362 a001 5702887/73681302247*1568397607^(9/11) 2584000077399362 a001 1836311903/12752043*599074578^(1/7) 2584000077399362 a001 5702887/192900153618*1568397607^(19/22) 2584000077399362 a001 5702887/505019158607*1568397607^(10/11) 2584000077399362 a001 5702887/1322157322203*1568397607^(21/22) 2584000077399362 a004 Fibonacci(34)*Lucas(44)/(1/2+sqrt(5)/2)^60 2584000077399362 a001 1134903170/12752043*599074578^(1/6) 2584000077399362 a001 12586269025/12752043*228826127^(1/20) 2584000077399362 a001 5702887/969323029*2537720636^(3/5) 2584000077399362 a001 433494437/12752043*2537720636^(1/5) 2584000077399362 a001 5702887/969323029*45537549124^(9/17) 2584000077399362 a001 433494437/12752043*45537549124^(3/17) 2584000077399362 a001 2472169789339619/956722026041 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^27/Lucas(43) 2584000077399362 a001 433494437/12752043*(1/2+1/2*5^(1/2))^9 2584000077399362 a001 433494437/12752043*192900153618^(1/6) 2584000077399362 a001 5702887/969323029*192900153618^(1/2) 2584000077399362 a001 433494437/12752043*10749957122^(3/16) 2584000077399362 a001 5702887/969323029*10749957122^(9/16) 2584000077399362 a001 5702887/1568397607*599074578^(2/3) 2584000077399362 a001 433494437/12752043*599074578^(3/14) 2584000077399362 a001 1602508992/4250681*228826127^(1/10) 2584000077399362 a001 5702887/4106118243*599074578^(5/7) 2584000077399362 a001 267914296/12752043*228826127^(1/4) 2584000077399362 a001 5702887/10749957122*599074578^(16/21) 2584000077399362 a001 5702887/17393796001*599074578^(11/14) 2584000077399362 a001 5702887/28143753123*599074578^(17/21) 2584000077399362 a001 1597/12752044*599074578^(5/6) 2584000077399362 a001 5702887/73681302247*599074578^(6/7) 2584000077399362 a001 2971215073/12752043*228826127^(1/8) 2584000077399362 a001 5702887/192900153618*599074578^(19/21) 2584000077399362 a001 5702887/312119004989*599074578^(13/14) 2584000077399362 a001 5702887/505019158607*599074578^(20/21) 2584000077399362 a004 Fibonacci(34)*Lucas(42)/(1/2+sqrt(5)/2)^58 2584000077399362 a001 1836311903/12752043*228826127^(3/20) 2584000077399362 a001 5702887/969323029*599074578^(9/14) 2584000077399362 a001 233802911/4250681*228826127^(1/5) 2584000077399362 a001 12586269025/12752043*87403803^(1/19) 2584000077399362 a001 5702887/370248451*2537720636^(5/9) 2584000077399362 a001 5702887/370248451*312119004989^(5/11) 2584000077399362 a001 165580141/12752043*312119004989^(1/5) 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^25/Lucas(41) 2584000077399362 a001 165580141/12752043*(1/2+1/2*5^(1/2))^11 2584000077399362 a001 5702887/370248451*3461452808002^(5/12) 2584000077399362 a001 5702887/370248451*28143753123^(1/2) 2584000077399362 a001 165580141/12752043*1568397607^(1/4) 2584000077399362 a001 5702887/599074578*228826127^(13/20) 2584000077399362 a001 5702887/1568397607*228826127^(7/10) 2584000077399362 a001 1602508992/4250681*87403803^(2/19) 2584000077399362 a001 5702887/4106118243*228826127^(3/4) 2584000077399362 a001 5702887/10749957122*228826127^(4/5) 2584000077399362 a001 5702887/28143753123*228826127^(17/20) 2584000077399362 a001 1597/12752044*228826127^(7/8) 2584000077399362 a001 5702887/73681302247*228826127^(9/10) 2584000077399362 a001 5702887/192900153618*228826127^(19/20) 2584000077399362 a004 Fibonacci(34)*Lucas(40)/(1/2+sqrt(5)/2)^56 2584000077399362 a001 5702887/370248451*228826127^(5/8) 2584000077399362 a001 1836311903/12752043*87403803^(3/19) 2584000077399362 a001 34111385/4250681*87403803^(6/19) 2584000077399362 a001 233802911/4250681*87403803^(4/19) 2584000077399362 a001 267914296/12752043*87403803^(5/19) 2584000077399362 a001 63245986/12752043*141422324^(1/3) 2584000077399362 a001 12586269025/12752043*33385282^(1/18) 2584000077399362 a001 360684711361582/139583862445 2584000077399362 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^23/Lucas(39) 2584000077399362 a001 63245986/12752043*(1/2+1/2*5^(1/2))^13 2584000077399362 a001 63245986/12752043*73681302247^(1/4) 2584000077399362 a001 5702887/141422324*4106118243^(1/2) 2584000077399362 a001 5702887/228826127*87403803^(12/19) 2584000077399362 a001 7778742049/12752043*33385282^(1/12) 2584000077399362 a001 5702887/599074578*87403803^(13/19) 2584000077399362 a001 5702887/1568397607*87403803^(14/19) 2584000077399362 a001 1602508992/4250681*33385282^(1/9) 2584000077399362 a001 5702887/4106118243*87403803^(15/19) 2584000077399362 a001 5702887/10749957122*87403803^(16/19) 2584000077399362 a001 5702887/28143753123*87403803^(17/19) 2584000077399362 a001 5702887/73681302247*87403803^(18/19) 2584000077399362 a001 233802911/620166*710647^(1/7) 2584000077399362 a004 Fibonacci(34)*Lucas(38)/(1/2+sqrt(5)/2)^54 2584000077399362 a001 1836311903/12752043*33385282^(1/6) 2584000077399363 a001 233802911/29134601*7881196^(4/11) 2584000077399363 a001 233802911/4250681*33385282^(2/9) 2584000077399363 a001 39088169/12752043*33385282^(7/18) 2584000077399363 a001 433494437/12752043*33385282^(1/4) 2584000077399363 a001 267914296/12752043*33385282^(5/18) 2584000077399363 a001 1836311903/228826127*7881196^(4/11) 2584000077399363 a001 34111385/4250681*33385282^(1/3) 2584000077399363 a001 267084832/33281921*7881196^(4/11) 2584000077399363 a001 12586269025/1568397607*7881196^(4/11) 2584000077399363 a001 10983760033/1368706081*7881196^(4/11) 2584000077399363 a001 43133785636/5374978561*7881196^(4/11) 2584000077399363 a001 75283811239/9381251041*7881196^(4/11) 2584000077399363 a001 591286729879/73681302247*7881196^(4/11) 2584000077399363 a001 86000486440/10716675201*7881196^(4/11) 2584000077399363 a001 4052739537881/505019158607*7881196^(4/11) 2584000077399363 a001 3536736619241/440719107401*7881196^(4/11) 2584000077399363 a001 3278735159921/408569081798*7881196^(4/11) 2584000077399363 a001 2504730781961/312119004989*7881196^(4/11) 2584000077399363 a001 956722026041/119218851371*7881196^(4/11) 2584000077399363 a001 182717648081/22768774562*7881196^(4/11) 2584000077399363 a001 139583862445/17393796001*7881196^(4/11) 2584000077399363 a001 53316291173/6643838879*7881196^(4/11) 2584000077399363 a001 10182505537/1268860318*7881196^(4/11) 2584000077399363 a001 7778742049/969323029*7881196^(4/11) 2584000077399363 a001 2971215073/370248451*7881196^(4/11) 2584000077399363 a001 5702887/54018521*141422324^(7/13) 2584000077399363 a001 24157817/12752043*141422324^(5/13) 2584000077399363 a001 5702887/54018521*2537720636^(7/15) 2584000077399363 a001 24157817/12752043*2537720636^(1/3) 2584000077399363 a001 5702887/54018521*17393796001^(3/7) 2584000077399363 a001 5702887/54018521*45537549124^(7/17) 2584000077399363 a001 24157817/12752043*45537549124^(5/17) 2584000077399363 a001 137769300517679/53316291173 2584000077399363 a001 24157817/12752043*312119004989^(3/11) 2584000077399363 a001 24157817/12752043*14662949395604^(5/21) 2584000077399363 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^21/Lucas(37) 2584000077399363 a001 24157817/12752043*(1/2+1/2*5^(1/2))^15 2584000077399363 a001 24157817/12752043*192900153618^(5/18) 2584000077399363 a001 5702887/54018521*192900153618^(7/18) 2584000077399363 a001 24157817/12752043*28143753123^(3/10) 2584000077399363 a001 24157817/12752043*10749957122^(5/16) 2584000077399363 a001 5702887/54018521*10749957122^(7/16) 2584000077399363 a001 24157817/12752043*599074578^(5/14) 2584000077399363 a001 5702887/54018521*599074578^(1/2) 2584000077399363 a001 567451585/70711162*7881196^(4/11) 2584000077399363 a001 24157817/12752043*228826127^(3/8) 2584000077399363 a001 12586269025/12752043*12752043^(1/17) 2584000077399363 a001 5702887/87403803*33385282^(11/18) 2584000077399364 a001 5702887/228826127*33385282^(2/3) 2584000077399364 a001 433494437/54018521*7881196^(4/11) 2584000077399364 a001 5702887/599074578*33385282^(13/18) 2584000077399364 a001 1134903170/87403803*7881196^(1/3) 2584000077399364 a001 5702887/969323029*33385282^(3/4) 2584000077399364 a001 5702887/1568397607*33385282^(7/9) 2584000077399364 a001 24157817/12752043*33385282^(5/12) 2584000077399364 a001 1602508992/4250681*12752043^(2/17) 2584000077399364 a001 5702887/4106118243*33385282^(5/6) 2584000077399364 a001 2971215073/228826127*7881196^(1/3) 2584000077399364 a001 7778742049/599074578*7881196^(1/3) 2584000077399364 a001 20365011074/1568397607*7881196^(1/3) 2584000077399364 a001 53316291173/4106118243*7881196^(1/3) 2584000077399364 a001 139583862445/10749957122*7881196^(1/3) 2584000077399364 a001 365435296162/28143753123*7881196^(1/3) 2584000077399364 a001 956722026041/73681302247*7881196^(1/3) 2584000077399364 a001 2504730781961/192900153618*7881196^(1/3) 2584000077399364 a001 10610209857723/817138163596*7881196^(1/3) 2584000077399364 a001 4052739537881/312119004989*7881196^(1/3) 2584000077399364 a001 1548008755920/119218851371*7881196^(1/3) 2584000077399364 a001 591286729879/45537549124*7881196^(1/3) 2584000077399364 a001 7787980473/599786069*7881196^(1/3) 2584000077399364 a001 86267571272/6643838879*7881196^(1/3) 2584000077399364 a001 32951280099/2537720636*7881196^(1/3) 2584000077399364 a001 12586269025/969323029*7881196^(1/3) 2584000077399364 a001 4807526976/370248451*7881196^(1/3) 2584000077399364 a001 5702887/10749957122*33385282^(8/9) 2584000077399364 a001 5702887/17393796001*33385282^(11/12) 2584000077399364 a001 1836311903/141422324*7881196^(1/3) 2584000077399364 a001 5702887/28143753123*33385282^(17/18) 2584000077399364 a001 567451585/16692641*7881196^(3/11) 2584000077399364 a001 5702887/54018521*33385282^(7/12) 2584000077399364 a001 726103/199691526*4870847^(7/8) 2584000077399364 a004 Fibonacci(34)*Lucas(36)/(1/2+sqrt(5)/2)^52 2584000077399365 a001 39088169/20633239*7881196^(5/11) 2584000077399365 a001 1836311903/12752043*12752043^(3/17) 2584000077399365 a001 701408733/54018521*7881196^(1/3) 2584000077399366 a001 233802911/4250681*12752043^(4/17) 2584000077399366 a001 2971215073/87403803*7881196^(3/11) 2584000077399367 a001 7778742049/228826127*7881196^(3/11) 2584000077399367 a001 10182505537/299537289*7881196^(3/11) 2584000077399367 a001 53316291173/1568397607*7881196^(3/11) 2584000077399367 a001 139583862445/4106118243*7881196^(3/11) 2584000077399367 a001 182717648081/5374978561*7881196^(3/11) 2584000077399367 a001 956722026041/28143753123*7881196^(3/11) 2584000077399367 a001 2504730781961/73681302247*7881196^(3/11) 2584000077399367 a001 3278735159921/96450076809*7881196^(3/11) 2584000077399367 a001 10610209857723/312119004989*7881196^(3/11) 2584000077399367 a001 4052739537881/119218851371*7881196^(3/11) 2584000077399367 a001 387002188980/11384387281*7881196^(3/11) 2584000077399367 a001 591286729879/17393796001*7881196^(3/11) 2584000077399367 a001 225851433717/6643838879*7881196^(3/11) 2584000077399367 a001 1135099622/33391061*7881196^(3/11) 2584000077399367 a001 32951280099/969323029*7881196^(3/11) 2584000077399367 a001 12586269025/370248451*7881196^(3/11) 2584000077399367 a001 267914296/12752043*12752043^(5/17) 2584000077399367 a001 1201881744/35355581*7881196^(3/11) 2584000077399367 a001 4976784/4250681*12752043^(8/17) 2584000077399367 a001 9227465/20633239*7881196^(6/11) 2584000077399368 a001 1836311903/54018521*7881196^(3/11) 2584000077399368 a001 34111385/4250681*12752043^(6/17) 2584000077399368 a001 14930208/103681*7881196^(2/11) 2584000077399368 a001 32951277515/12752042 2584000077399368 a001 9227465/12752043*45537549124^(1/3) 2584000077399368 a001 5702887/20633239*817138163596^(1/3) 2584000077399368 a001 5702887/20633239*(1/2+1/2*5^(1/2))^19 2584000077399368 a001 9227465/12752043*(1/2+1/2*5^(1/2))^17 2584000077399368 a001 39088169/12752043*12752043^(7/17) 2584000077399368 a001 5702887/20633239*87403803^(1/2) 2584000077399369 a001 1836311903/4870847*1860498^(2/15) 2584000077399369 a001 12586269025/12752043*4870847^(1/16) 2584000077399369 a001 165580141/20633239*7881196^(4/11) 2584000077399369 a001 5702887/33385282*12752043^(10/17) 2584000077399370 a004 Fibonacci(36)*Lucas(35)/(1/2+sqrt(5)/2)^53 2584000077399370 a001 12586269025/87403803*7881196^(2/11) 2584000077399370 a001 9238424/711491*7881196^(1/3) 2584000077399370 a001 32951280099/228826127*7881196^(2/11) 2584000077399370 a001 43133785636/299537289*7881196^(2/11) 2584000077399370 a001 32264490531/224056801*7881196^(2/11) 2584000077399370 a001 591286729879/4106118243*7881196^(2/11) 2584000077399370 a001 774004377960/5374978561*7881196^(2/11) 2584000077399370 a001 4052739537881/28143753123*7881196^(2/11) 2584000077399370 a001 1515744265389/10525900321*7881196^(2/11) 2584000077399370 a001 3278735159921/22768774562*7881196^(2/11) 2584000077399370 a001 2504730781961/17393796001*7881196^(2/11) 2584000077399370 a001 956722026041/6643838879*7881196^(2/11) 2584000077399370 a001 182717648081/1268860318*7881196^(2/11) 2584000077399370 a001 139583862445/969323029*7881196^(2/11) 2584000077399370 a001 53316291173/370248451*7881196^(2/11) 2584000077399370 a001 7465176/5374978561*20633239^(6/7) 2584000077399371 a001 10182505537/70711162*7881196^(2/11) 2584000077399371 a001 4976784/1368706081*20633239^(4/5) 2584000077399371 a001 311187/224056801*4870847^(15/16) 2584000077399371 a001 7778742049/54018521*7881196^(2/11) 2584000077399371 a001 14930352/969323029*20633239^(5/7) 2584000077399372 a004 Fibonacci(38)*Lucas(35)/(1/2+sqrt(5)/2)^55 2584000077399372 a001 4976784/29134601*20633239^(4/7) 2584000077399372 a004 Fibonacci(40)*Lucas(35)/(1/2+sqrt(5)/2)^57 2584000077399372 a001 10182505537/16692641*7881196^(1/11) 2584000077399372 a004 Fibonacci(42)*Lucas(35)/(1/2+sqrt(5)/2)^59 2584000077399372 a004 Fibonacci(44)*Lucas(35)/(1/2+sqrt(5)/2)^61 2584000077399372 a004 Fibonacci(46)*Lucas(35)/(1/2+sqrt(5)/2)^63 2584000077399372 a004 Fibonacci(48)*Lucas(35)/(1/2+sqrt(5)/2)^65 2584000077399372 a004 Fibonacci(50)*Lucas(35)/(1/2+sqrt(5)/2)^67 2584000077399372 a004 Fibonacci(52)*Lucas(35)/(1/2+sqrt(5)/2)^69 2584000077399372 a004 Fibonacci(54)*Lucas(35)/(1/2+sqrt(5)/2)^71 2584000077399372 a004 Fibonacci(56)*Lucas(35)/(1/2+sqrt(5)/2)^73 2584000077399372 a004 Fibonacci(58)*Lucas(35)/(1/2+sqrt(5)/2)^75 2584000077399372 a004 Fibonacci(60)*Lucas(35)/(1/2+sqrt(5)/2)^77 2584000077399372 a004 Fibonacci(62)*Lucas(35)/(1/2+sqrt(5)/2)^79 2584000077399372 a004 Fibonacci(64)*Lucas(35)/(1/2+sqrt(5)/2)^81 2584000077399372 a004 Fibonacci(66)*Lucas(35)/(1/2+sqrt(5)/2)^83 2584000077399372 a004 Fibonacci(68)*Lucas(35)/(1/2+sqrt(5)/2)^85 2584000077399372 a004 Fibonacci(70)*Lucas(35)/(1/2+sqrt(5)/2)^87 2584000077399372 a004 Fibonacci(72)*Lucas(35)/(1/2+sqrt(5)/2)^89 2584000077399372 a004 Fibonacci(74)*Lucas(35)/(1/2+sqrt(5)/2)^91 2584000077399372 a004 Fibonacci(76)*Lucas(35)/(1/2+sqrt(5)/2)^93 2584000077399372 a004 Fibonacci(78)*Lucas(35)/(1/2+sqrt(5)/2)^95 2584000077399372 a004 Fibonacci(80)*Lucas(35)/(1/2+sqrt(5)/2)^97 2584000077399372 a004 Fibonacci(82)*Lucas(35)/(1/2+sqrt(5)/2)^99 2584000077399372 a004 Fibonacci(83)*Lucas(35)/(1/2+sqrt(5)/2)^100 2584000077399372 a004 Fibonacci(81)*Lucas(35)/(1/2+sqrt(5)/2)^98 2584000077399372 a004 Fibonacci(79)*Lucas(35)/(1/2+sqrt(5)/2)^96 2584000077399372 a004 Fibonacci(77)*Lucas(35)/(1/2+sqrt(5)/2)^94 2584000077399372 a004 Fibonacci(75)*Lucas(35)/(1/2+sqrt(5)/2)^92 2584000077399372 a004 Fibonacci(73)*Lucas(35)/(1/2+sqrt(5)/2)^90 2584000077399372 a004 Fibonacci(71)*Lucas(35)/(1/2+sqrt(5)/2)^88 2584000077399372 a001 2/9227465*(1/2+1/2*5^(1/2))^53 2584000077399372 a004 Fibonacci(69)*Lucas(35)/(1/2+sqrt(5)/2)^86 2584000077399372 a004 Fibonacci(67)*Lucas(35)/(1/2+sqrt(5)/2)^84 2584000077399372 a004 Fibonacci(65)*Lucas(35)/(1/2+sqrt(5)/2)^82 2584000077399372 a004 Fibonacci(63)*Lucas(35)/(1/2+sqrt(5)/2)^80 2584000077399372 a004 Fibonacci(61)*Lucas(35)/(1/2+sqrt(5)/2)^78 2584000077399372 a004 Fibonacci(59)*Lucas(35)/(1/2+sqrt(5)/2)^76 2584000077399372 a004 Fibonacci(57)*Lucas(35)/(1/2+sqrt(5)/2)^74 2584000077399372 a004 Fibonacci(55)*Lucas(35)/(1/2+sqrt(5)/2)^72 2584000077399372 a004 Fibonacci(53)*Lucas(35)/(1/2+sqrt(5)/2)^70 2584000077399372 a004 Fibonacci(51)*Lucas(35)/(1/2+sqrt(5)/2)^68 2584000077399372 a004 Fibonacci(49)*Lucas(35)/(1/2+sqrt(5)/2)^66 2584000077399372 a004 Fibonacci(47)*Lucas(35)/(1/2+sqrt(5)/2)^64 2584000077399372 a004 Fibonacci(45)*Lucas(35)/(1/2+sqrt(5)/2)^62 2584000077399372 a004 Fibonacci(43)*Lucas(35)/(1/2+sqrt(5)/2)^60 2584000077399372 a004 Fibonacci(41)*Lucas(35)/(1/2+sqrt(5)/2)^58 2584000077399372 a001 5702887/87403803*12752043^(11/17) 2584000077399372 a004 Fibonacci(39)*Lucas(35)/(1/2+sqrt(5)/2)^56 2584000077399372 a001 3732588/35355581*20633239^(3/5) 2584000077399372 a001 39088169/28143753123*20633239^(6/7) 2584000077399373 a001 701408733/20633239*7881196^(3/11) 2584000077399373 a001 14619165/10525900321*20633239^(6/7) 2584000077399373 a001 133957148/96450076809*20633239^(6/7) 2584000077399373 a001 701408733/505019158607*20633239^(6/7) 2584000077399373 a001 1836311903/1322157322203*20633239^(6/7) 2584000077399373 a001 14930208/10749853441*20633239^(6/7) 2584000077399373 a001 12586269025/9062201101803*20633239^(6/7) 2584000077399373 a001 32951280099/23725150497407*20633239^(6/7) 2584000077399373 a001 10182505537/7331474697802*20633239^(6/7) 2584000077399373 a001 7778742049/5600748293801*20633239^(6/7) 2584000077399373 a001 2971215073/2139295485799*20633239^(6/7) 2584000077399373 a001 567451585/408569081798*20633239^(6/7) 2584000077399373 a001 433494437/312119004989*20633239^(6/7) 2584000077399373 a001 39088169/10749957122*20633239^(4/5) 2584000077399373 a004 Fibonacci(37)*Lucas(35)/(1/2+sqrt(5)/2)^54 2584000077399373 a001 165580141/119218851371*20633239^(6/7) 2584000077399373 a001 31622993/22768774562*20633239^(6/7) 2584000077399373 a001 831985/228811001*20633239^(4/5) 2584000077399373 a001 267914296/73681302247*20633239^(4/5) 2584000077399373 a001 233802911/64300051206*20633239^(4/5) 2584000077399373 a001 1836311903/505019158607*20633239^(4/5) 2584000077399373 a001 1602508992/440719107401*20633239^(4/5) 2584000077399373 a001 12586269025/3461452808002*20633239^(4/5) 2584000077399373 a001 10983760033/3020733700601*20633239^(4/5) 2584000077399373 a001 86267571272/23725150497407*20633239^(4/5) 2584000077399373 a001 53316291173/14662949395604*20633239^(4/5) 2584000077399373 a001 20365011074/5600748293801*20633239^(4/5) 2584000077399373 a001 7778742049/2139295485799*20633239^(4/5) 2584000077399373 a001 2971215073/817138163596*20633239^(4/5) 2584000077399373 a001 1134903170/312119004989*20633239^(4/5) 2584000077399373 a001 433494437/119218851371*20633239^(4/5) 2584000077399373 a001 165580141/45537549124*20633239^(4/5) 2584000077399373 a001 14619165/4769326*20633239^(2/5) 2584000077399373 a001 31622993/16692641*20633239^(3/7) 2584000077399373 a001 63245986/17393796001*20633239^(4/5) 2584000077399373 a001 5702887/228826127*12752043^(12/17) 2584000077399373 a001 7465176/16692641*141422324^(6/13) 2584000077399373 a001 39088169/2537720636*20633239^(5/7) 2584000077399373 a001 7465176/16692641*2537720636^(2/5) 2584000077399373 a001 7465176/16692641*45537549124^(6/17) 2584000077399373 a001 7465176/16692641*14662949395604^(2/7) 2584000077399373 a001 7465176/16692641*(1/2+1/2*5^(1/2))^18 2584000077399373 a001 7465176/16692641*192900153618^(1/3) 2584000077399373 a001 86267573856/33385283 2584000077399373 a001 7465176/16692641*10749957122^(3/8) 2584000077399373 a001 7465176/16692641*4106118243^(9/23) 2584000077399373 a001 7465176/16692641*1568397607^(9/22) 2584000077399373 a001 7465176/16692641*599074578^(3/7) 2584000077399373 a001 7465176/16692641*228826127^(9/20) 2584000077399374 a001 7465176/16692641*87403803^(9/19) 2584000077399374 a001 102334155/6643838879*20633239^(5/7) 2584000077399374 a001 9238424/599786069*20633239^(5/7) 2584000077399374 a001 701408733/45537549124*20633239^(5/7) 2584000077399374 a001 1836311903/119218851371*20633239^(5/7) 2584000077399374 a001 4807526976/312119004989*20633239^(5/7) 2584000077399374 a001 12586269025/817138163596*20633239^(5/7) 2584000077399374 a001 32951280099/2139295485799*20633239^(5/7) 2584000077399374 a001 86267571272/5600748293801*20633239^(5/7) 2584000077399374 a001 7787980473/505618944676*20633239^(5/7) 2584000077399374 a001 365435296162/23725150497407*20633239^(5/7) 2584000077399374 a001 139583862445/9062201101803*20633239^(5/7) 2584000077399374 a001 53316291173/3461452808002*20633239^(5/7) 2584000077399374 a001 20365011074/1322157322203*20633239^(5/7) 2584000077399374 a001 7778742049/505019158607*20633239^(5/7) 2584000077399374 a001 2971215073/192900153618*20633239^(5/7) 2584000077399374 a001 1134903170/73681302247*20633239^(5/7) 2584000077399374 a001 433494437/28143753123*20633239^(5/7) 2584000077399374 a001 24157817/17393796001*20633239^(6/7) 2584000077399374 a001 165580141/10749957122*20633239^(5/7) 2584000077399374 a001 63245986/4106118243*20633239^(5/7) 2584000077399374 a001 53316291173/87403803*7881196^(1/11) 2584000077399374 a001 701408733/33385282*20633239^(2/7) 2584000077399374 a001 24157817/6643838879*20633239^(4/5) 2584000077399374 a001 39088169/370248451*20633239^(3/5) 2584000077399374 a001 39088169/228826127*20633239^(4/7) 2584000077399374 a001 139583862445/228826127*7881196^(1/11) 2584000077399374 a001 182717648081/299537289*7881196^(1/11) 2584000077399374 a001 956722026041/1568397607*7881196^(1/11) 2584000077399374 a001 2504730781961/4106118243*7881196^(1/11) 2584000077399374 a001 3278735159921/5374978561*7881196^(1/11) 2584000077399374 a001 10610209857723/17393796001*7881196^(1/11) 2584000077399374 a001 4052739537881/6643838879*7881196^(1/11) 2584000077399374 a001 1134903780/1860499*7881196^(1/11) 2584000077399374 a001 591286729879/969323029*7881196^(1/11) 2584000077399374 a001 225851433717/370248451*7881196^(1/11) 2584000077399374 a001 5702887/599074578*12752043^(13/17) 2584000077399374 a001 102334155/969323029*20633239^(3/5) 2584000077399374 a001 21566892818/35355581*7881196^(1/11) 2584000077399374 a001 66978574/634430159*20633239^(3/5) 2584000077399374 a001 701408733/6643838879*20633239^(3/5) 2584000077399374 a001 1836311903/17393796001*20633239^(3/5) 2584000077399374 a001 1201881744/11384387281*20633239^(3/5) 2584000077399374 a001 12586269025/119218851371*20633239^(3/5) 2584000077399374 a001 32951280099/312119004989*20633239^(3/5) 2584000077399374 a001 21566892818/204284540899*20633239^(3/5) 2584000077399374 a001 225851433717/2139295485799*20633239^(3/5) 2584000077399374 a001 182717648081/1730726404001*20633239^(3/5) 2584000077399374 a001 139583862445/1322157322203*20633239^(3/5) 2584000077399374 a001 53316291173/505019158607*20633239^(3/5) 2584000077399374 a001 10182505537/96450076809*20633239^(3/5) 2584000077399374 a001 7778742049/73681302247*20633239^(3/5) 2584000077399374 a001 2971215073/28143753123*20633239^(3/5) 2584000077399374 a001 567451585/5374978561*20633239^(3/5) 2584000077399374 a001 433494437/4106118243*20633239^(3/5) 2584000077399374 a001 165580141/1568397607*20633239^(3/5) 2584000077399374 a001 2971215073/33385282*20633239^(1/5) 2584000077399374 a001 34111385/199691526*20633239^(4/7) 2584000077399374 a001 31622993/299537289*20633239^(3/5) 2584000077399375 a001 7465176/16692641*33385282^(1/2) 2584000077399375 a001 267914296/1568397607*20633239^(4/7) 2584000077399375 a001 233802911/1368706081*20633239^(4/7) 2584000077399375 a001 1836311903/10749957122*20633239^(4/7) 2584000077399375 a001 1602508992/9381251041*20633239^(4/7) 2584000077399375 a001 12586269025/73681302247*20633239^(4/7) 2584000077399375 a001 10983760033/64300051206*20633239^(4/7) 2584000077399375 a001 86267571272/505019158607*20633239^(4/7) 2584000077399375 a001 75283811239/440719107401*20633239^(4/7) 2584000077399375 a001 2504730781961/14662949395604*20633239^(4/7) 2584000077399375 a001 139583862445/817138163596*20633239^(4/7) 2584000077399375 a001 53316291173/312119004989*20633239^(4/7) 2584000077399375 a001 20365011074/119218851371*20633239^(4/7) 2584000077399375 a001 7778742049/45537549124*20633239^(4/7) 2584000077399375 a001 2971215073/17393796001*20633239^(4/7) 2584000077399375 a001 1134903170/6643838879*20633239^(4/7) 2584000077399375 a001 433494437/2537720636*20633239^(4/7) 2584000077399375 a001 24157817/1568397607*20633239^(5/7) 2584000077399375 a001 165580141/969323029*20633239^(4/7) 2584000077399375 a001 63245986/370248451*20633239^(4/7) 2584000077399375 a004 Fibonacci(36)*Lucas(37)/(1/2+sqrt(5)/2)^55 2584000077399375 a001 7778742049/33385282*20633239^(1/7) 2584000077399375 a001 165580141/87403803*20633239^(3/7) 2584000077399375 a001 32951280099/54018521*7881196^(1/11) 2584000077399375 a001 24157817/228826127*20633239^(3/5) 2584000077399375 a001 5702887/1568397607*12752043^(14/17) 2584000077399375 a001 267914296/87403803*20633239^(2/5) 2584000077399375 a001 4976784/29134601*2537720636^(4/9) 2584000077399375 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^20/Lucas(38) 2584000077399375 a001 39088169/33385282*(1/2+1/2*5^(1/2))^16 2584000077399375 a001 39088169/33385282*23725150497407^(1/4) 2584000077399375 a001 194533374068496/75283811239 2584000077399375 a001 39088169/33385282*73681302247^(4/13) 2584000077399375 a001 4976784/29134601*73681302247^(5/13) 2584000077399375 a001 4976784/29134601*28143753123^(2/5) 2584000077399375 a001 39088169/33385282*10749957122^(1/3) 2584000077399375 a001 4976784/29134601*10749957122^(5/12) 2584000077399375 a001 39088169/33385282*4106118243^(8/23) 2584000077399375 a001 4976784/29134601*4106118243^(10/23) 2584000077399375 a001 39088169/33385282*1568397607^(4/11) 2584000077399375 a001 4976784/29134601*1568397607^(5/11) 2584000077399375 a001 39088169/33385282*599074578^(8/21) 2584000077399375 a001 4976784/29134601*599074578^(10/21) 2584000077399375 a001 433494437/228826127*20633239^(3/7) 2584000077399375 a001 39088169/33385282*228826127^(2/5) 2584000077399375 a001 4976784/29134601*228826127^(1/2) 2584000077399375 a001 567451585/299537289*20633239^(3/7) 2584000077399375 a001 2971215073/1568397607*20633239^(3/7) 2584000077399375 a001 7778742049/4106118243*20633239^(3/7) 2584000077399375 a001 10182505537/5374978561*20633239^(3/7) 2584000077399375 a001 53316291173/28143753123*20633239^(3/7) 2584000077399375 a001 139583862445/73681302247*20633239^(3/7) 2584000077399375 a001 182717648081/96450076809*20633239^(3/7) 2584000077399375 a001 956722026041/505019158607*20633239^(3/7) 2584000077399375 a001 10610209857723/5600748293801*20633239^(3/7) 2584000077399375 a001 591286729879/312119004989*20633239^(3/7) 2584000077399375 a001 225851433717/119218851371*20633239^(3/7) 2584000077399375 a001 21566892818/11384387281*20633239^(3/7) 2584000077399375 a001 32951280099/17393796001*20633239^(3/7) 2584000077399375 a001 12586269025/6643838879*20633239^(3/7) 2584000077399375 a001 1201881744/634430159*20633239^(3/7) 2584000077399375 a001 1836311903/969323029*20633239^(3/7) 2584000077399375 a001 701408733/370248451*20633239^(3/7) 2584000077399375 a001 39088169/33385282*87403803^(8/19) 2584000077399376 a001 66978574/35355581*20633239^(3/7) 2584000077399376 a001 4976784/29134601*87403803^(10/19) 2584000077399376 a001 701408733/228826127*20633239^(2/5) 2584000077399376 a001 24157817/141422324*20633239^(4/7) 2584000077399376 a004 Fibonacci(36)*Lucas(39)/(1/2+sqrt(5)/2)^57 2584000077399376 a001 2584/33385281*141422324^(12/13) 2584000077399376 a001 1836311903/599074578*20633239^(2/5) 2584000077399376 a001 686789568/224056801*20633239^(2/5) 2584000077399376 a001 12586269025/4106118243*20633239^(2/5) 2584000077399376 a001 32951280099/10749957122*20633239^(2/5) 2584000077399376 a001 86267571272/28143753123*20633239^(2/5) 2584000077399376 a001 32264490531/10525900321*20633239^(2/5) 2584000077399376 a001 591286729879/192900153618*20633239^(2/5) 2584000077399376 a001 1548008755920/505019158607*20633239^(2/5) 2584000077399376 a001 1515744265389/494493258286*20633239^(2/5) 2584000077399376 a001 2504730781961/817138163596*20633239^(2/5) 2584000077399376 a001 956722026041/312119004989*20633239^(2/5) 2584000077399376 a001 365435296162/119218851371*20633239^(2/5) 2584000077399376 a001 139583862445/45537549124*20633239^(2/5) 2584000077399376 a001 53316291173/17393796001*20633239^(2/5) 2584000077399376 a001 20365011074/6643838879*20633239^(2/5) 2584000077399376 a001 3732588/11384387281*141422324^(11/13) 2584000077399376 a001 7778742049/2537720636*20633239^(2/5) 2584000077399376 a001 2971215073/969323029*20633239^(2/5) 2584000077399376 a001 7465176/5374978561*141422324^(10/13) 2584000077399376 a001 1134903170/370248451*20633239^(2/5) 2584000077399376 a001 196452/33391061*141422324^(9/13) 2584000077399376 a001 14930352/1568397607*141422324^(2/3) 2584000077399376 a001 829464/33281921*141422324^(8/13) 2584000077399376 a001 14619165/4769326*17393796001^(2/7) 2584000077399376 a001 14930352/228826127*312119004989^(2/5) 2584000077399376 a001 14619165/4769326*14662949395604^(2/9) 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^22/Lucas(40) 2584000077399376 a001 14619165/4769326*(1/2+1/2*5^(1/2))^14 2584000077399376 a001 14619165/4769326*10749957122^(7/24) 2584000077399376 a001 14930352/228826127*10749957122^(11/24) 2584000077399376 a001 14619165/4769326*4106118243^(7/23) 2584000077399376 a001 14930352/228826127*4106118243^(11/23) 2584000077399376 a001 14619165/4769326*1568397607^(7/22) 2584000077399376 a001 14930352/228826127*1568397607^(1/2) 2584000077399376 a001 133957148/16692641*141422324^(4/13) 2584000077399376 a001 14619165/4769326*599074578^(1/3) 2584000077399376 a001 14930352/228826127*599074578^(11/21) 2584000077399376 a001 14619165/4769326*228826127^(7/20) 2584000077399376 a001 567451585/16692641*141422324^(3/13) 2584000077399376 a001 165580141/33385282*141422324^(1/3) 2584000077399376 a001 14930352/228826127*228826127^(11/20) 2584000077399376 a001 14930208/103681*141422324^(2/13) 2584000077399376 a004 Fibonacci(36)*Lucas(41)/(1/2+sqrt(5)/2)^59 2584000077399376 a001 10182505537/16692641*141422324^(1/13) 2584000077399376 a001 829464/33281921*2537720636^(8/15) 2584000077399376 a001 133957148/16692641*2537720636^(4/15) 2584000077399376 a001 829464/33281921*45537549124^(8/17) 2584000077399376 a001 133957148/16692641*45537549124^(4/17) 2584000077399376 a001 829464/33281921*14662949395604^(8/21) 2584000077399376 a001 133957148/16692641*14662949395604^(4/21) 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^24/Lucas(42) 2584000077399376 a001 133957148/16692641*(1/2+1/2*5^(1/2))^12 2584000077399376 a001 133957148/16692641*192900153618^(2/9) 2584000077399376 a001 829464/33281921*192900153618^(4/9) 2584000077399376 a001 133957148/16692641*73681302247^(3/13) 2584000077399376 a001 829464/33281921*73681302247^(6/13) 2584000077399376 a001 133957148/16692641*10749957122^(1/4) 2584000077399376 a001 829464/33281921*10749957122^(1/2) 2584000077399376 a001 133957148/16692641*4106118243^(6/23) 2584000077399376 a001 829464/33281921*4106118243^(12/23) 2584000077399376 a001 133957148/16692641*1568397607^(3/11) 2584000077399376 a001 829464/33281921*1568397607^(6/11) 2584000077399376 a001 133957148/16692641*599074578^(2/7) 2584000077399376 a001 829464/33281921*599074578^(4/7) 2584000077399376 a004 Fibonacci(36)*Lucas(43)/(1/2+sqrt(5)/2)^61 2584000077399376 a001 701408733/33385282*2537720636^(2/9) 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^26/Lucas(44) 2584000077399376 a001 701408733/33385282*(1/2+1/2*5^(1/2))^10 2584000077399376 a001 10472279279564016/4052739537881 2584000077399376 a001 14930352/1568397607*73681302247^(1/2) 2584000077399376 a001 701408733/33385282*28143753123^(1/5) 2584000077399376 a001 701408733/33385282*10749957122^(5/24) 2584000077399376 a001 14930352/1568397607*10749957122^(13/24) 2584000077399376 a001 701408733/33385282*4106118243^(5/23) 2584000077399376 a001 14930352/1568397607*4106118243^(13/23) 2584000077399376 a001 701408733/33385282*1568397607^(5/22) 2584000077399376 a001 14930352/1568397607*1568397607^(13/22) 2584000077399376 a004 Fibonacci(36)*Lucas(45)/(1/2+sqrt(5)/2)^63 2584000077399376 a001 7465176/1730726404001*2537720636^(14/15) 2584000077399376 a001 4976784/440719107401*2537720636^(8/9) 2584000077399376 a001 3732588/204284540899*2537720636^(13/15) 2584000077399376 a001 2584/33385281*2537720636^(4/5) 2584000077399376 a001 14930352/119218851371*2537720636^(7/9) 2584000077399376 a001 3732588/11384387281*2537720636^(11/15) 2584000077399376 a001 7465176/5374978561*2537720636^(2/3) 2584000077399376 a001 4976784/1368706081*17393796001^(4/7) 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^28/Lucas(46) 2584000077399376 a001 1836311903/33385282*(1/2+1/2*5^(1/2))^8 2584000077399376 a001 1836311903/33385282*23725150497407^(1/8) 2584000077399376 a001 1836311903/33385282*505019158607^(1/7) 2584000077399376 a001 1836311903/33385282*73681302247^(2/13) 2584000077399376 a001 4976784/1368706081*73681302247^(7/13) 2584000077399376 a001 1836311903/33385282*10749957122^(1/6) 2584000077399376 a001 4976784/1368706081*10749957122^(7/12) 2584000077399376 a001 1836311903/33385282*4106118243^(4/23) 2584000077399376 a001 14930208/103681*2537720636^(2/15) 2584000077399376 a001 4976784/1368706081*4106118243^(14/23) 2584000077399376 a004 Fibonacci(36)*Lucas(47)/(1/2+sqrt(5)/2)^65 2584000077399376 a001 7778742049/33385282*2537720636^(1/9) 2584000077399376 a001 10182505537/16692641*2537720636^(1/15) 2584000077399376 a001 7465176/5374978561*45537549124^(10/17) 2584000077399376 a001 14930208/103681*45537549124^(2/17) 2584000077399376 a001 7465176/5374978561*312119004989^(6/11) 2584000077399376 a001 7465176/5374978561*14662949395604^(10/21) 2584000077399376 a001 14930208/103681*14662949395604^(2/21) 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^30/Lucas(48) 2584000077399376 a001 14930208/103681*(1/2+1/2*5^(1/2))^6 2584000077399376 a001 7465176/5374978561*192900153618^(5/9) 2584000077399376 a001 7465176/5374978561*28143753123^(3/5) 2584000077399376 a001 14930208/103681*10749957122^(1/8) 2584000077399376 a004 Fibonacci(36)*Lucas(49)/(1/2+sqrt(5)/2)^67 2584000077399376 a001 7465176/5374978561*10749957122^(5/8) 2584000077399376 a001 7465176/1730726404001*17393796001^(6/7) 2584000077399376 a001 14930352/119218851371*17393796001^(5/7) 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^32/Lucas(50) 2584000077399376 a001 12586269025/33385282*(1/2+1/2*5^(1/2))^4 2584000077399376 a001 12586269025/33385282*23725150497407^(1/16) 2584000077399376 a001 4976784/9381251041*505019158607^(4/7) 2584000077399376 a001 12586269025/33385282*73681302247^(1/13) 2584000077399376 a001 4976784/9381251041*73681302247^(8/13) 2584000077399376 a001 14930208/103681*4106118243^(3/23) 2584000077399376 a001 12586269025/33385282*10749957122^(1/12) 2584000077399376 a001 14930352/73681302247*45537549124^(2/3) 2584000077399376 a004 Fibonacci(36)*Lucas(51)/(1/2+sqrt(5)/2)^69 2584000077399376 a001 196452/192933544679*45537549124^(15/17) 2584000077399376 a001 7465176/1730726404001*45537549124^(14/17) 2584000077399376 a001 2584/33385281*45537549124^(12/17) 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^34/Lucas(52) 2584000077399376 a001 32951280099/33385282*(1/2+1/2*5^(1/2))^2 2584000077399376 a004 Fibonacci(36)*Lucas(53)/(1/2+sqrt(5)/2)^71 2584000077399376 a001 2584/33385281*14662949395604^(4/7) 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^36/Lucas(54) 2584000077399376 a006 5^(1/2)*Fibonacci(54)/Lucas(36)/sqrt(5) 2584000077399376 a004 Fibonacci(36)*Lucas(55)/(1/2+sqrt(5)/2)^73 2584000077399376 a001 196452/192933544679*312119004989^(9/11) 2584000077399376 a001 4976784/3020733700601*312119004989^(4/5) 2584000077399376 a001 14930352/505019158607*817138163596^(2/3) 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^38/Lucas(56) 2584000077399376 a004 Fibonacci(56)/Lucas(36)/(1/2+sqrt(5)/2)^2 2584000077399376 a004 Fibonacci(36)*Lucas(57)/(1/2+sqrt(5)/2)^75 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^40/Lucas(58) 2584000077399376 a004 Fibonacci(58)/Lucas(36)/(1/2+sqrt(5)/2)^4 2584000077399376 a004 Fibonacci(36)*Lucas(59)/(1/2+sqrt(5)/2)^77 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^42/Lucas(60) 2584000077399376 a004 Fibonacci(60)/Lucas(36)/(1/2+sqrt(5)/2)^6 2584000077399376 a004 Fibonacci(36)*Lucas(61)/(1/2+sqrt(5)/2)^79 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^44/Lucas(62) 2584000077399376 a004 Fibonacci(62)/Lucas(36)/(1/2+sqrt(5)/2)^8 2584000077399376 a001 4976784/3020733700601*23725150497407^(11/16) 2584000077399376 a004 Fibonacci(36)*Lucas(63)/(1/2+sqrt(5)/2)^81 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^46/Lucas(64) 2584000077399376 a004 Fibonacci(64)/Lucas(36)/(1/2+sqrt(5)/2)^10 2584000077399376 a004 Fibonacci(36)*Lucas(65)/(1/2+sqrt(5)/2)^83 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^48/Lucas(66) 2584000077399376 a004 Fibonacci(66)/Lucas(36)/(1/2+sqrt(5)/2)^12 2584000077399376 a004 Fibonacci(36)*Lucas(67)/(1/2+sqrt(5)/2)^85 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^50/Lucas(68) 2584000077399376 a004 Fibonacci(68)/Lucas(36)/(1/2+sqrt(5)/2)^14 2584000077399376 a004 Fibonacci(36)*Lucas(69)/(1/2+sqrt(5)/2)^87 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^52/Lucas(70) 2584000077399376 a004 Fibonacci(70)/Lucas(36)/(1/2+sqrt(5)/2)^16 2584000077399376 a004 Fibonacci(36)*Lucas(71)/(1/2+sqrt(5)/2)^89 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^54/Lucas(72) 2584000077399376 a004 Fibonacci(36)*Lucas(73)/(1/2+sqrt(5)/2)^91 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^56/Lucas(74) 2584000077399376 a004 Fibonacci(36)*Lucas(75)/(1/2+sqrt(5)/2)^93 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^58/Lucas(76) 2584000077399376 a004 Fibonacci(36)*Lucas(77)/(1/2+sqrt(5)/2)^95 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^60/Lucas(78) 2584000077399376 a004 Fibonacci(36)*Lucas(79)/(1/2+sqrt(5)/2)^97 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^62/Lucas(80) 2584000077399376 a004 Fibonacci(36)*Lucas(81)/(1/2+sqrt(5)/2)^99 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^64/Lucas(82) 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^66/Lucas(84) 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^68/Lucas(86) 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^70/Lucas(88) 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^72/Lucas(90) 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^74/Lucas(92) 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^76/Lucas(94) 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^78/Lucas(96) 2584000077399376 a004 Fibonacci(18)*Lucas(18)/(1/2+sqrt(5)/2)^18 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^80/Lucas(98) 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^82/Lucas(100) 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^79/Lucas(97) 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^81/Lucas(99) 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^77/Lucas(95) 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^75/Lucas(93) 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^73/Lucas(91) 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^71/Lucas(89) 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^69/Lucas(87) 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^67/Lucas(85) 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^65/Lucas(83) 2584000077399376 a004 Fibonacci(36)*Lucas(82)/(1/2+sqrt(5)/2)^100 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^63/Lucas(81) 2584000077399376 a004 Fibonacci(36)*Lucas(80)/(1/2+sqrt(5)/2)^98 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^61/Lucas(79) 2584000077399376 a004 Fibonacci(36)*Lucas(78)/(1/2+sqrt(5)/2)^96 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^59/Lucas(77) 2584000077399376 a004 Fibonacci(36)*Lucas(76)/(1/2+sqrt(5)/2)^94 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^57/Lucas(75) 2584000077399376 a004 Fibonacci(36)*Lucas(74)/(1/2+sqrt(5)/2)^92 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^55/Lucas(73) 2584000077399376 a004 Fibonacci(74)/Lucas(36)/(1/2+sqrt(5)/2)^20 2584000077399376 a004 Fibonacci(76)/Lucas(36)/(1/2+sqrt(5)/2)^22 2584000077399376 a004 Fibonacci(78)/Lucas(36)/(1/2+sqrt(5)/2)^24 2584000077399376 a004 Fibonacci(80)/Lucas(36)/(1/2+sqrt(5)/2)^26 2584000077399376 a004 Fibonacci(82)/Lucas(36)/(1/2+sqrt(5)/2)^28 2584000077399376 a004 Fibonacci(84)/Lucas(36)/(1/2+sqrt(5)/2)^30 2584000077399376 a004 Fibonacci(86)/Lucas(36)/(1/2+sqrt(5)/2)^32 2584000077399376 a004 Fibonacci(88)/Lucas(36)/(1/2+sqrt(5)/2)^34 2584000077399376 a004 Fibonacci(90)/Lucas(36)/(1/2+sqrt(5)/2)^36 2584000077399376 a004 Fibonacci(92)/Lucas(36)/(1/2+sqrt(5)/2)^38 2584000077399376 a004 Fibonacci(94)/Lucas(36)/(1/2+sqrt(5)/2)^40 2584000077399376 a004 Fibonacci(96)/Lucas(36)/(1/2+sqrt(5)/2)^42 2584000077399376 a004 Fibonacci(98)/Lucas(36)/(1/2+sqrt(5)/2)^44 2584000077399376 a004 Fibonacci(100)/Lucas(36)/(1/2+sqrt(5)/2)^46 2584000077399376 a004 Fibonacci(36)*Lucas(72)/(1/2+sqrt(5)/2)^90 2584000077399376 a004 Fibonacci(97)/Lucas(36)/(1/2+sqrt(5)/2)^43 2584000077399376 a004 Fibonacci(99)/Lucas(36)/(1/2+sqrt(5)/2)^45 2584000077399376 a004 Fibonacci(95)/Lucas(36)/(1/2+sqrt(5)/2)^41 2584000077399376 a004 Fibonacci(93)/Lucas(36)/(1/2+sqrt(5)/2)^39 2584000077399376 a004 Fibonacci(91)/Lucas(36)/(1/2+sqrt(5)/2)^37 2584000077399376 a004 Fibonacci(89)/Lucas(36)/(1/2+sqrt(5)/2)^35 2584000077399376 a004 Fibonacci(87)/Lucas(36)/(1/2+sqrt(5)/2)^33 2584000077399376 a004 Fibonacci(85)/Lucas(36)/(1/2+sqrt(5)/2)^31 2584000077399376 a004 Fibonacci(83)/Lucas(36)/(1/2+sqrt(5)/2)^29 2584000077399376 a004 Fibonacci(81)/Lucas(36)/(1/2+sqrt(5)/2)^27 2584000077399376 a004 Fibonacci(79)/Lucas(36)/(1/2+sqrt(5)/2)^25 2584000077399376 a004 Fibonacci(77)/Lucas(36)/(1/2+sqrt(5)/2)^23 2584000077399376 a004 Fibonacci(75)/Lucas(36)/(1/2+sqrt(5)/2)^21 2584000077399376 a004 Fibonacci(73)/Lucas(36)/(1/2+sqrt(5)/2)^19 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^53/Lucas(71) 2584000077399376 a004 Fibonacci(71)/Lucas(36)/(1/2+sqrt(5)/2)^17 2584000077399376 a004 Fibonacci(36)*Lucas(70)/(1/2+sqrt(5)/2)^88 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^51/Lucas(69) 2584000077399376 a004 Fibonacci(69)/Lucas(36)/(1/2+sqrt(5)/2)^15 2584000077399376 a004 Fibonacci(36)*Lucas(68)/(1/2+sqrt(5)/2)^86 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^49/Lucas(67) 2584000077399376 a004 Fibonacci(67)/Lucas(36)/(1/2+sqrt(5)/2)^13 2584000077399376 a004 Fibonacci(36)*Lucas(66)/(1/2+sqrt(5)/2)^84 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^47/Lucas(65) 2584000077399376 a004 Fibonacci(65)/Lucas(36)/(1/2+sqrt(5)/2)^11 2584000077399376 a004 Fibonacci(36)*Lucas(64)/(1/2+sqrt(5)/2)^82 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^45/Lucas(63) 2584000077399376 a004 Fibonacci(63)/Lucas(36)/(1/2+sqrt(5)/2)^9 2584000077399376 a004 Fibonacci(36)*Lucas(62)/(1/2+sqrt(5)/2)^80 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^43/Lucas(61) 2584000077399376 a004 Fibonacci(61)/Lucas(36)/(1/2+sqrt(5)/2)^7 2584000077399376 a004 Fibonacci(36)*Lucas(60)/(1/2+sqrt(5)/2)^78 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^41/Lucas(59) 2584000077399376 a004 Fibonacci(59)/Lucas(36)/(1/2+sqrt(5)/2)^5 2584000077399376 a004 Fibonacci(36)*Lucas(58)/(1/2+sqrt(5)/2)^76 2584000077399376 a001 3732588/204284540899*14662949395604^(13/21) 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^39/Lucas(57) 2584000077399376 a004 Fibonacci(57)/Lucas(36)/(1/2+sqrt(5)/2)^3 2584000077399376 a004 Fibonacci(36)*Lucas(56)/(1/2+sqrt(5)/2)^74 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^37/Lucas(55) 2584000077399376 a004 Fibonacci(55)/Lucas(36)/(1/2+sqrt(5)/2) 2584000077399376 a001 196452/192933544679*192900153618^(5/6) 2584000077399376 a004 Fibonacci(36)*Lucas(54)/(1/2+sqrt(5)/2)^72 2584000077399376 a001 14930352/119218851371*312119004989^(7/11) 2584000077399376 a001 14930352/119218851371*14662949395604^(5/9) 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^35/Lucas(53) 2584000077399376 a004 Fibonacci(53)*(1/2+sqrt(5)/2)/Lucas(36) 2584000077399376 a001 14930352/119218851371*505019158607^(5/8) 2584000077399376 a001 2584/33385281*73681302247^(9/13) 2584000077399376 a001 3732588/204284540899*73681302247^(3/4) 2584000077399376 a001 4976784/440719107401*73681302247^(10/13) 2584000077399376 a001 4976784/3020733700601*73681302247^(11/13) 2584000077399376 a001 3732588/11384387281*45537549124^(11/17) 2584000077399376 a001 32951280099/33385282*10749957122^(1/24) 2584000077399376 a004 Fibonacci(36)*Lucas(52)/(1/2+sqrt(5)/2)^70 2584000077399376 a001 10182505537/16692641*45537549124^(1/17) 2584000077399376 a001 3732588/11384387281*312119004989^(3/5) 2584000077399376 a001 3732588/11384387281*817138163596^(11/19) 2584000077399376 a001 10182505537/16692641*14662949395604^(1/21) 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^33/Lucas(51) 2584000077399376 a001 10182505537/16692641*(1/2+1/2*5^(1/2))^3 2584000077399376 a001 3732588/11384387281*192900153618^(11/18) 2584000077399376 a001 14930352/119218851371*28143753123^(7/10) 2584000077399376 a001 4976784/440719107401*28143753123^(4/5) 2584000077399376 a001 10182505537/16692641*10749957122^(1/16) 2584000077399376 a001 196452/192933544679*28143753123^(9/10) 2584000077399376 a004 Fibonacci(36)*Lucas(50)/(1/2+sqrt(5)/2)^68 2584000077399376 a001 32951280099/33385282*4106118243^(1/23) 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^31/Lucas(49) 2584000077399376 a001 7778742049/33385282*(1/2+1/2*5^(1/2))^5 2584000077399376 a001 14930352/17393796001*9062201101803^(1/2) 2584000077399376 a001 7778742049/33385282*28143753123^(1/10) 2584000077399376 a001 12586269025/33385282*4106118243^(2/23) 2584000077399376 a001 4976784/9381251041*10749957122^(2/3) 2584000077399376 a001 14930352/73681302247*10749957122^(17/24) 2584000077399376 a001 3732588/11384387281*10749957122^(11/16) 2584000077399376 a001 2584/33385281*10749957122^(3/4) 2584000077399376 a001 14930352/505019158607*10749957122^(19/24) 2584000077399376 a001 3732588/204284540899*10749957122^(13/16) 2584000077399376 a001 4976784/440719107401*10749957122^(5/6) 2584000077399376 a001 7465176/1730726404001*10749957122^(7/8) 2584000077399376 a001 4976784/3020733700601*10749957122^(11/12) 2584000077399376 a001 196452/192933544679*10749957122^(15/16) 2584000077399376 a001 14930352/23725150497407*10749957122^(23/24) 2584000077399376 a004 Fibonacci(36)*Lucas(48)/(1/2+sqrt(5)/2)^66 2584000077399376 a001 1836311903/33385282*1568397607^(2/11) 2584000077399376 a001 32951280099/33385282*1568397607^(1/22) 2584000077399376 a001 2971215073/33385282*17393796001^(1/7) 2584000077399376 a001 2971215073/33385282*14662949395604^(1/9) 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^29/Lucas(47) 2584000077399376 a001 2971215073/33385282*(1/2+1/2*5^(1/2))^7 2584000077399376 a001 14930352/6643838879*1322157322203^(1/2) 2584000077399376 a001 7465176/5374978561*4106118243^(15/23) 2584000077399376 a001 12586269025/33385282*1568397607^(1/11) 2584000077399376 a001 4976784/9381251041*4106118243^(16/23) 2584000077399376 a001 14930352/73681302247*4106118243^(17/23) 2584000077399376 a001 2584/33385281*4106118243^(18/23) 2584000077399376 a001 14930208/103681*1568397607^(3/22) 2584000077399376 a001 14930352/505019158607*4106118243^(19/23) 2584000077399376 a001 4976784/440719107401*4106118243^(20/23) 2584000077399376 a001 7465176/1730726404001*4106118243^(21/23) 2584000077399376 a001 4976784/3020733700601*4106118243^(22/23) 2584000077399376 a004 Fibonacci(36)*Lucas(46)/(1/2+sqrt(5)/2)^64 2584000077399376 a001 196452/33391061*2537720636^(3/5) 2584000077399376 a001 567451585/16692641*2537720636^(1/5) 2584000077399376 a001 32951280099/33385282*599074578^(1/21) 2584000077399376 a001 196452/33391061*45537549124^(9/17) 2584000077399376 a001 567451585/16692641*45537549124^(3/17) 2584000077399376 a001 196452/33391061*14662949395604^(3/7) 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^27/Lucas(45) 2584000077399376 a001 567451585/16692641*(1/2+1/2*5^(1/2))^9 2584000077399376 a001 567451585/16692641*192900153618^(1/6) 2584000077399376 a001 196452/33391061*192900153618^(1/2) 2584000077399376 a001 567451585/16692641*10749957122^(3/16) 2584000077399376 a001 196452/33391061*10749957122^(9/16) 2584000077399376 a001 4976784/1368706081*1568397607^(7/11) 2584000077399376 a001 10182505537/16692641*599074578^(1/14) 2584000077399376 a001 701408733/33385282*599074578^(5/21) 2584000077399376 a001 12586269025/33385282*599074578^(2/21) 2584000077399376 a001 7465176/5374978561*1568397607^(15/22) 2584000077399376 a001 4976784/9381251041*1568397607^(8/11) 2584000077399376 a001 3732588/11384387281*1568397607^(3/4) 2584000077399376 a001 14930352/73681302247*1568397607^(17/22) 2584000077399376 a001 2584/33385281*1568397607^(9/11) 2584000077399376 a001 14930352/505019158607*1568397607^(19/22) 2584000077399376 a001 4976784/440719107401*1568397607^(10/11) 2584000077399376 a001 7465176/1730726404001*1568397607^(21/22) 2584000077399376 a001 14930208/103681*599074578^(1/7) 2584000077399376 a004 Fibonacci(36)*Lucas(44)/(1/2+sqrt(5)/2)^62 2584000077399376 a001 1836311903/33385282*599074578^(4/21) 2584000077399376 a001 2971215073/33385282*599074578^(1/6) 2584000077399376 a001 567451585/16692641*599074578^(3/14) 2584000077399376 a001 32951280099/33385282*228826127^(1/20) 2584000077399376 a001 14930352/969323029*2537720636^(5/9) 2584000077399376 a001 14930352/969323029*312119004989^(5/11) 2584000077399376 a001 433494437/33385282*312119004989^(1/5) 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^25/Lucas(43) 2584000077399376 a001 433494437/33385282*(1/2+1/2*5^(1/2))^11 2584000077399376 a001 14930352/969323029*3461452808002^(5/12) 2584000077399376 a001 14930352/969323029*28143753123^(1/2) 2584000077399376 a001 433494437/33385282*1568397607^(1/4) 2584000077399376 a001 14930352/1568397607*599074578^(13/21) 2584000077399376 a001 4976784/1368706081*599074578^(2/3) 2584000077399376 a001 12586269025/33385282*228826127^(1/10) 2584000077399376 a001 196452/33391061*599074578^(9/14) 2584000077399376 a001 7465176/5374978561*599074578^(5/7) 2584000077399376 a001 4976784/9381251041*599074578^(16/21) 2584000077399376 a001 3732588/11384387281*599074578^(11/14) 2584000077399376 a001 14930352/73681302247*599074578^(17/21) 2584000077399376 a001 14930352/119218851371*599074578^(5/6) 2584000077399376 a001 2584/33385281*599074578^(6/7) 2584000077399376 a001 7778742049/33385282*228826127^(1/8) 2584000077399376 a001 14930352/505019158607*599074578^(19/21) 2584000077399376 a001 3732588/204284540899*599074578^(13/14) 2584000077399376 a001 4976784/440719107401*599074578^(20/21) 2584000077399376 a004 Fibonacci(36)*Lucas(42)/(1/2+sqrt(5)/2)^60 2584000077399376 a001 14930208/103681*228826127^(3/20) 2584000077399376 a001 133957148/16692641*228826127^(3/10) 2584000077399376 a001 1836311903/33385282*228826127^(1/5) 2584000077399376 a001 701408733/33385282*228826127^(1/4) 2584000077399376 a001 32951280099/33385282*87403803^(1/19) 2584000077399376 a001 2472169789339632/956722026041 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^23/Lucas(41) 2584000077399376 a001 165580141/33385282*(1/2+1/2*5^(1/2))^13 2584000077399376 a001 165580141/33385282*73681302247^(1/4) 2584000077399376 a001 14930352/370248451*4106118243^(1/2) 2584000077399376 a001 829464/33281921*228826127^(3/5) 2584000077399376 a001 433494437/141422324*20633239^(2/5) 2584000077399376 a001 14930352/1568397607*228826127^(13/20) 2584000077399376 a001 14930352/969323029*228826127^(5/8) 2584000077399376 a001 4976784/1368706081*228826127^(7/10) 2584000077399376 a001 12586269025/33385282*87403803^(2/19) 2584000077399376 a001 7465176/5374978561*228826127^(3/4) 2584000077399376 a001 4976784/9381251041*228826127^(4/5) 2584000077399376 a001 14930352/73681302247*228826127^(17/20) 2584000077399376 a001 1602508992/4250681*4870847^(1/8) 2584000077399376 a001 14930352/119218851371*228826127^(7/8) 2584000077399376 a001 2584/33385281*228826127^(9/10) 2584000077399376 a001 14930352/505019158607*228826127^(19/20) 2584000077399376 a004 Fibonacci(36)*Lucas(40)/(1/2+sqrt(5)/2)^58 2584000077399376 a001 14930208/103681*87403803^(3/19) 2584000077399376 a001 3732588/35355581*141422324^(7/13) 2584000077399376 a001 1836311903/33385282*87403803^(4/19) 2584000077399376 a001 14619165/4769326*87403803^(7/19) 2584000077399376 a001 31622993/16692641*141422324^(5/13) 2584000077399376 a001 701408733/33385282*87403803^(5/19) 2584000077399376 a001 133957148/16692641*87403803^(6/19) 2584000077399376 a001 32951280099/33385282*33385282^(1/18) 2584000077399376 a001 3732588/35355581*2537720636^(7/15) 2584000077399376 a001 31622993/16692641*2537720636^(1/3) 2584000077399376 a001 3732588/35355581*17393796001^(3/7) 2584000077399376 a001 3732588/35355581*45537549124^(7/17) 2584000077399376 a001 31622993/16692641*45537549124^(5/17) 2584000077399376 a001 31622993/16692641*312119004989^(3/11) 2584000077399376 a001 31622993/16692641*14662949395604^(5/21) 2584000077399376 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^21/Lucas(39) 2584000077399376 a001 31622993/16692641*(1/2+1/2*5^(1/2))^15 2584000077399376 a001 31622993/16692641*192900153618^(5/18) 2584000077399376 a001 3732588/35355581*192900153618^(7/18) 2584000077399376 a001 31622993/16692641*28143753123^(3/10) 2584000077399376 a001 31622993/16692641*10749957122^(5/16) 2584000077399376 a001 3732588/35355581*10749957122^(7/16) 2584000077399376 a001 31622993/16692641*599074578^(5/14) 2584000077399376 a001 3732588/35355581*599074578^(1/2) 2584000077399376 a001 14930352/228826127*87403803^(11/19) 2584000077399376 a001 31622993/16692641*228826127^(3/8) 2584000077399376 a001 10182505537/16692641*33385282^(1/12) 2584000077399376 a001 829464/33281921*87403803^(12/19) 2584000077399376 a001 14930352/1568397607*87403803^(13/19) 2584000077399376 a001 1836311903/87403803*20633239^(2/7) 2584000077399376 a001 4976784/1368706081*87403803^(14/19) 2584000077399376 a001 12586269025/33385282*33385282^(1/9) 2584000077399376 a001 7465176/5374978561*87403803^(15/19) 2584000077399376 a001 4976784/9381251041*87403803^(16/19) 2584000077399376 a001 14930352/73681302247*87403803^(17/19) 2584000077399376 a001 2584/33385281*87403803^(18/19) 2584000077399376 a004 Fibonacci(36)*Lucas(38)/(1/2+sqrt(5)/2)^56 2584000077399376 a001 14930208/103681*33385282^(1/6) 2584000077399376 a001 9227465/12752043*12752043^(1/2) 2584000077399376 a001 5702887/4106118243*12752043^(15/17) 2584000077399376 a001 1836311903/33385282*33385282^(2/9) 2584000077399376 a001 102287808/4868641*20633239^(2/7) 2584000077399376 a001 102334155/54018521*20633239^(3/7) 2584000077399376 a001 12586269025/599074578*20633239^(2/7) 2584000077399376 a001 567451585/16692641*33385282^(1/4) 2584000077399376 a001 32951280099/1568397607*20633239^(2/7) 2584000077399376 a001 86267571272/4106118243*20633239^(2/7) 2584000077399376 a001 225851433717/10749957122*20633239^(2/7) 2584000077399376 a001 591286729879/28143753123*20633239^(2/7) 2584000077399376 a001 1548008755920/73681302247*20633239^(2/7) 2584000077399376 a001 4052739537881/192900153618*20633239^(2/7) 2584000077399376 a001 225749145909/10745088481*20633239^(2/7) 2584000077399376 a001 6557470319842/312119004989*20633239^(2/7) 2584000077399376 a001 2504730781961/119218851371*20633239^(2/7) 2584000077399376 a001 956722026041/45537549124*20633239^(2/7) 2584000077399376 a001 365435296162/17393796001*20633239^(2/7) 2584000077399376 a001 139583862445/6643838879*20633239^(2/7) 2584000077399376 a001 53316291173/2537720636*20633239^(2/7) 2584000077399376 a001 20365011074/969323029*20633239^(2/7) 2584000077399376 a001 7778742049/370248451*20633239^(2/7) 2584000077399376 a001 701408733/33385282*33385282^(5/18) 2584000077399376 a001 39088169/33385282*33385282^(4/9) 2584000077399376 a001 2971215073/141422324*20633239^(2/7) 2584000077399376 a001 133957148/16692641*33385282^(1/3) 2584000077399376 a001 7778742049/87403803*20633239^(1/5) 2584000077399376 a001 165580141/54018521*20633239^(2/5) 2584000077399376 a001 2971215073/20633239*7881196^(2/11) 2584000077399377 a001 14619165/4769326*33385282^(7/18) 2584000077399377 a001 24157817/33385282*45537549124^(1/3) 2584000077399377 a001 360684711361584/139583862445 2584000077399377 a001 14930352/54018521*817138163596^(1/3) 2584000077399377 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^19/Lucas(37) 2584000077399377 a001 24157817/33385282*(1/2+1/2*5^(1/2))^17 2584000077399377 a001 32951280099/33385282*12752043^(1/17) 2584000077399377 a001 4976784/29134601*33385282^(5/9) 2584000077399377 a001 14930352/54018521*87403803^(1/2) 2584000077399377 a001 20365011074/228826127*20633239^(1/5) 2584000077399377 a004 Fibonacci(38)*Lucas(37)/(1/2+sqrt(5)/2)^57 2584000077399377 a001 31622993/16692641*33385282^(5/12) 2584000077399377 a001 53316291173/599074578*20633239^(1/5) 2584000077399377 a001 139583862445/1568397607*20633239^(1/5) 2584000077399377 a001 365435296162/4106118243*20633239^(1/5) 2584000077399377 a001 956722026041/10749957122*20633239^(1/5) 2584000077399377 a001 2504730781961/28143753123*20633239^(1/5) 2584000077399377 a001 6557470319842/73681302247*20633239^(1/5) 2584000077399377 a001 10610209857723/119218851371*20633239^(1/5) 2584000077399377 a001 4052739537881/45537549124*20633239^(1/5) 2584000077399377 a001 1548008755920/17393796001*20633239^(1/5) 2584000077399377 a001 591286729879/6643838879*20633239^(1/5) 2584000077399377 a001 225851433717/2537720636*20633239^(1/5) 2584000077399377 a001 86267571272/969323029*20633239^(1/5) 2584000077399377 a001 20365011074/87403803*20633239^(1/7) 2584000077399377 a001 32951280099/370248451*20633239^(1/5) 2584000077399377 a001 12586269025/141422324*20633239^(1/5) 2584000077399377 a001 14930352/228826127*33385282^(11/18) 2584000077399377 a004 Fibonacci(40)*Lucas(37)/(1/2+sqrt(5)/2)^59 2584000077399377 a001 5702887/10749957122*12752043^(16/17) 2584000077399377 a001 53316291173/228826127*20633239^(1/7) 2584000077399377 a004 Fibonacci(42)*Lucas(37)/(1/2+sqrt(5)/2)^61 2584000077399377 a004 Fibonacci(44)*Lucas(37)/(1/2+sqrt(5)/2)^63 2584000077399377 a004 Fibonacci(46)*Lucas(37)/(1/2+sqrt(5)/2)^65 2584000077399377 a004 Fibonacci(48)*Lucas(37)/(1/2+sqrt(5)/2)^67 2584000077399377 a004 Fibonacci(50)*Lucas(37)/(1/2+sqrt(5)/2)^69 2584000077399377 a004 Fibonacci(52)*Lucas(37)/(1/2+sqrt(5)/2)^71 2584000077399377 a004 Fibonacci(54)*Lucas(37)/(1/2+sqrt(5)/2)^73 2584000077399377 a004 Fibonacci(56)*Lucas(37)/(1/2+sqrt(5)/2)^75 2584000077399377 a004 Fibonacci(58)*Lucas(37)/(1/2+sqrt(5)/2)^77 2584000077399377 a004 Fibonacci(60)*Lucas(37)/(1/2+sqrt(5)/2)^79 2584000077399377 a004 Fibonacci(62)*Lucas(37)/(1/2+sqrt(5)/2)^81 2584000077399377 a004 Fibonacci(64)*Lucas(37)/(1/2+sqrt(5)/2)^83 2584000077399377 a004 Fibonacci(66)*Lucas(37)/(1/2+sqrt(5)/2)^85 2584000077399377 a004 Fibonacci(68)*Lucas(37)/(1/2+sqrt(5)/2)^87 2584000077399377 a004 Fibonacci(70)*Lucas(37)/(1/2+sqrt(5)/2)^89 2584000077399377 a004 Fibonacci(72)*Lucas(37)/(1/2+sqrt(5)/2)^91 2584000077399377 a004 Fibonacci(74)*Lucas(37)/(1/2+sqrt(5)/2)^93 2584000077399377 a004 Fibonacci(76)*Lucas(37)/(1/2+sqrt(5)/2)^95 2584000077399377 a004 Fibonacci(78)*Lucas(37)/(1/2+sqrt(5)/2)^97 2584000077399377 a004 Fibonacci(80)*Lucas(37)/(1/2+sqrt(5)/2)^99 2584000077399377 a004 Fibonacci(81)*Lucas(37)/(1/2+sqrt(5)/2)^100 2584000077399377 a004 Fibonacci(79)*Lucas(37)/(1/2+sqrt(5)/2)^98 2584000077399377 a004 Fibonacci(77)*Lucas(37)/(1/2+sqrt(5)/2)^96 2584000077399377 a004 Fibonacci(75)*Lucas(37)/(1/2+sqrt(5)/2)^94 2584000077399377 a001 2/24157817*(1/2+1/2*5^(1/2))^55 2584000077399377 a004 Fibonacci(73)*Lucas(37)/(1/2+sqrt(5)/2)^92 2584000077399377 a004 Fibonacci(71)*Lucas(37)/(1/2+sqrt(5)/2)^90 2584000077399377 a004 Fibonacci(69)*Lucas(37)/(1/2+sqrt(5)/2)^88 2584000077399377 a004 Fibonacci(67)*Lucas(37)/(1/2+sqrt(5)/2)^86 2584000077399377 a004 Fibonacci(65)*Lucas(37)/(1/2+sqrt(5)/2)^84 2584000077399377 a004 Fibonacci(63)*Lucas(37)/(1/2+sqrt(5)/2)^82 2584000077399377 a004 Fibonacci(61)*Lucas(37)/(1/2+sqrt(5)/2)^80 2584000077399377 a004 Fibonacci(59)*Lucas(37)/(1/2+sqrt(5)/2)^78 2584000077399377 a004 Fibonacci(57)*Lucas(37)/(1/2+sqrt(5)/2)^76 2584000077399377 a004 Fibonacci(55)*Lucas(37)/(1/2+sqrt(5)/2)^74 2584000077399377 a004 Fibonacci(53)*Lucas(37)/(1/2+sqrt(5)/2)^72 2584000077399377 a004 Fibonacci(51)*Lucas(37)/(1/2+sqrt(5)/2)^70 2584000077399377 a004 Fibonacci(49)*Lucas(37)/(1/2+sqrt(5)/2)^68 2584000077399377 a004 Fibonacci(47)*Lucas(37)/(1/2+sqrt(5)/2)^66 2584000077399377 a004 Fibonacci(45)*Lucas(37)/(1/2+sqrt(5)/2)^64 2584000077399377 a004 Fibonacci(43)*Lucas(37)/(1/2+sqrt(5)/2)^62 2584000077399377 a001 139583862445/599074578*20633239^(1/7) 2584000077399377 a001 365435296162/1568397607*20633239^(1/7) 2584000077399377 a001 956722026041/4106118243*20633239^(1/7) 2584000077399377 a001 2504730781961/10749957122*20633239^(1/7) 2584000077399377 a001 6557470319842/28143753123*20633239^(1/7) 2584000077399377 a001 10610209857723/45537549124*20633239^(1/7) 2584000077399377 a001 4052739537881/17393796001*20633239^(1/7) 2584000077399377 a001 1548008755920/6643838879*20633239^(1/7) 2584000077399377 a004 Fibonacci(41)*Lucas(37)/(1/2+sqrt(5)/2)^60 2584000077399377 a001 591286729879/2537720636*20633239^(1/7) 2584000077399377 a001 225851433717/969323029*20633239^(1/7) 2584000077399377 a001 86267571272/370248451*20633239^(1/7) 2584000077399377 a001 1134903170/54018521*20633239^(2/7) 2584000077399377 a001 3732588/35355581*33385282^(7/12) 2584000077399377 a001 829464/33281921*33385282^(2/3) 2584000077399377 a004 Fibonacci(39)*Lucas(37)/(1/2+sqrt(5)/2)^58 2584000077399377 a001 63246219/271444*20633239^(1/7) 2584000077399377 a001 39088169/87403803*141422324^(6/13) 2584000077399377 a001 39088169/87403803*2537720636^(2/5) 2584000077399377 a001 39088169/87403803*45537549124^(6/17) 2584000077399377 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^18/Lucas(38) 2584000077399377 a001 1527884955772561/591286729879 2584000077399377 a001 39088169/87403803*192900153618^(1/3) 2584000077399377 a001 39088169/87403803*10749957122^(3/8) 2584000077399377 a001 39088169/87403803*4106118243^(9/23) 2584000077399377 a001 39088169/87403803*1568397607^(9/22) 2584000077399377 a001 39088169/87403803*599074578^(3/7) 2584000077399377 a001 39088169/87403803*228826127^(9/20) 2584000077399377 a001 14930352/1568397607*33385282^(13/18) 2584000077399377 a001 196452/33391061*33385282^(3/4) 2584000077399377 a001 39088169/87403803*87403803^(9/19) 2584000077399377 a001 4976784/1368706081*33385282^(7/9) 2584000077399378 a004 Fibonacci(38)*Lucas(39)/(1/2+sqrt(5)/2)^59 2584000077399378 a001 39088169/505019158607*141422324^(12/13) 2584000077399378 a001 12586269025/33385282*12752043^(2/17) 2584000077399378 a001 39088169/119218851371*141422324^(11/13) 2584000077399378 a001 39088169/28143753123*141422324^(10/13) 2584000077399378 a001 39088169/6643838879*141422324^(9/13) 2584000077399378 a001 39088169/4106118243*141422324^(2/3) 2584000077399378 a001 39088169/1568397607*141422324^(8/13) 2584000077399378 a001 39088169/370248451*141422324^(7/13) 2584000077399378 a001 39088169/228826127*2537720636^(4/9) 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^20/Lucas(40) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^16/Lucas(38) 2584000077399378 a001 34111385/29134601*23725150497407^(1/4) 2584000077399378 a001 39088169/228826127*23725150497407^(5/16) 2584000077399378 a001 39088169/228826127*505019158607^(5/14) 2584000077399378 a001 34111385/29134601*73681302247^(4/13) 2584000077399378 a001 39088169/228826127*73681302247^(5/13) 2584000077399378 a001 39088169/228826127*28143753123^(2/5) 2584000077399378 a001 34111385/29134601*10749957122^(1/3) 2584000077399378 a001 39088169/228826127*10749957122^(5/12) 2584000077399378 a001 34111385/29134601*4106118243^(8/23) 2584000077399378 a001 39088169/228826127*4106118243^(10/23) 2584000077399378 a001 34111385/29134601*1568397607^(4/11) 2584000077399378 a001 39088169/228826127*1568397607^(5/11) 2584000077399378 a001 7465176/5374978561*33385282^(5/6) 2584000077399378 a001 34111385/29134601*599074578^(8/21) 2584000077399378 a001 39088169/228826127*599074578^(10/21) 2584000077399378 a001 233802911/29134601*141422324^(4/13) 2584000077399378 a001 433494437/87403803*141422324^(1/3) 2584000077399378 a001 165580141/87403803*141422324^(5/13) 2584000077399378 a001 2971215073/87403803*141422324^(3/13) 2584000077399378 a001 34111385/29134601*228826127^(2/5) 2584000077399378 a001 39088169/228826127*228826127^(1/2) 2584000077399378 a001 12586269025/87403803*141422324^(2/13) 2584000077399378 a004 Fibonacci(38)*Lucas(41)/(1/2+sqrt(5)/2)^61 2584000077399378 a001 53316291173/87403803*141422324^(1/13) 2584000077399378 a001 267914296/87403803*17393796001^(2/7) 2584000077399378 a001 267914296/87403803*14662949395604^(2/9) 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^22/Lucas(42) 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^14/Lucas(38) 2584000077399378 a001 10472279279564024/4052739537881 2584000077399378 a001 267914296/87403803*10749957122^(7/24) 2584000077399378 a001 39088169/599074578*10749957122^(11/24) 2584000077399378 a001 267914296/87403803*4106118243^(7/23) 2584000077399378 a001 39088169/599074578*4106118243^(11/23) 2584000077399378 a001 267914296/87403803*1568397607^(7/22) 2584000077399378 a001 39088169/599074578*1568397607^(1/2) 2584000077399378 a001 267914296/87403803*599074578^(1/3) 2584000077399378 a001 39088169/599074578*599074578^(11/21) 2584000077399378 a004 Fibonacci(38)*Lucas(43)/(1/2+sqrt(5)/2)^63 2584000077399378 a001 39088169/1568397607*2537720636^(8/15) 2584000077399378 a001 233802911/29134601*2537720636^(4/15) 2584000077399378 a001 39088169/1568397607*45537549124^(8/17) 2584000077399378 a001 233802911/29134601*45537549124^(4/17) 2584000077399378 a001 233802911/29134601*817138163596^(4/19) 2584000077399378 a001 233802911/29134601*14662949395604^(4/21) 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^24/Lucas(44) 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^12/Lucas(38) 2584000077399378 a001 233802911/29134601*192900153618^(2/9) 2584000077399378 a001 39088169/1568397607*192900153618^(4/9) 2584000077399378 a001 233802911/29134601*73681302247^(3/13) 2584000077399378 a001 39088169/1568397607*73681302247^(6/13) 2584000077399378 a001 233802911/29134601*10749957122^(1/4) 2584000077399378 a001 39088169/1568397607*10749957122^(1/2) 2584000077399378 a001 233802911/29134601*4106118243^(6/23) 2584000077399378 a001 39088169/1568397607*4106118243^(12/23) 2584000077399378 a001 233802911/29134601*1568397607^(3/11) 2584000077399378 a001 39088169/1568397607*1568397607^(6/11) 2584000077399378 a004 Fibonacci(38)*Lucas(45)/(1/2+sqrt(5)/2)^65 2584000077399378 a001 39088169/9062201101803*2537720636^(14/15) 2584000077399378 a001 39088169/3461452808002*2537720636^(8/9) 2584000077399378 a001 39088169/2139295485799*2537720636^(13/15) 2584000077399378 a001 39088169/505019158607*2537720636^(4/5) 2584000077399378 a001 39088169/312119004989*2537720636^(7/9) 2584000077399378 a001 39088169/119218851371*2537720636^(11/15) 2584000077399378 a001 39088169/28143753123*2537720636^(2/3) 2584000077399378 a001 1836311903/87403803*2537720636^(2/9) 2584000077399378 a001 39088169/6643838879*2537720636^(3/5) 2584000077399378 a001 1836311903/87403803*312119004989^(2/11) 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^26/Lucas(46) 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^10/Lucas(38) 2584000077399378 a001 39088169/4106118243*73681302247^(1/2) 2584000077399378 a001 1836311903/87403803*28143753123^(1/5) 2584000077399378 a001 1836311903/87403803*10749957122^(5/24) 2584000077399378 a001 39088169/4106118243*10749957122^(13/24) 2584000077399378 a001 1836311903/87403803*4106118243^(5/23) 2584000077399378 a001 39088169/4106118243*4106118243^(13/23) 2584000077399378 a004 Fibonacci(38)*Lucas(47)/(1/2+sqrt(5)/2)^67 2584000077399378 a001 12586269025/87403803*2537720636^(2/15) 2584000077399378 a001 20365011074/87403803*2537720636^(1/9) 2584000077399378 a001 39088169/10749957122*17393796001^(4/7) 2584000077399378 a001 53316291173/87403803*2537720636^(1/15) 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^28/Lucas(48) 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^8/Lucas(38) 2584000077399378 a001 1602508992/29134601*23725150497407^(1/8) 2584000077399378 a001 1602508992/29134601*73681302247^(2/13) 2584000077399378 a001 39088169/10749957122*73681302247^(7/13) 2584000077399378 a001 2971215073/87403803*2537720636^(1/5) 2584000077399378 a001 1602508992/29134601*10749957122^(1/6) 2584000077399378 a001 39088169/10749957122*10749957122^(7/12) 2584000077399378 a004 Fibonacci(38)*Lucas(49)/(1/2+sqrt(5)/2)^69 2584000077399378 a001 39088169/9062201101803*17393796001^(6/7) 2584000077399378 a001 39088169/312119004989*17393796001^(5/7) 2584000077399378 a001 39088169/28143753123*45537549124^(10/17) 2584000077399378 a001 12586269025/87403803*45537549124^(2/17) 2584000077399378 a001 39088169/28143753123*312119004989^(6/11) 2584000077399378 a001 12586269025/87403803*14662949395604^(2/21) 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^30/Lucas(50) 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^6/Lucas(38) 2584000077399378 a001 39088169/28143753123*192900153618^(5/9) 2584000077399378 a001 39088169/28143753123*28143753123^(3/5) 2584000077399378 a004 Fibonacci(38)*Lucas(51)/(1/2+sqrt(5)/2)^71 2584000077399378 a001 39088169/9062201101803*45537549124^(14/17) 2584000077399378 a001 39088169/2139295485799*45537549124^(13/17) 2584000077399378 a001 39088169/192900153618*45537549124^(2/3) 2584000077399378 a001 39088169/505019158607*45537549124^(12/17) 2584000077399378 a001 39088169/119218851371*45537549124^(11/17) 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^32/Lucas(52) 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^4/Lucas(38) 2584000077399378 a001 10983760033/29134601*23725150497407^(1/16) 2584000077399378 a001 12586269025/87403803*10749957122^(1/8) 2584000077399378 a001 10983760033/29134601*73681302247^(1/13) 2584000077399378 a001 39088169/73681302247*73681302247^(8/13) 2584000077399378 a004 Fibonacci(38)*Lucas(53)/(1/2+sqrt(5)/2)^73 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^34/Lucas(54) 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^2/Lucas(38) 2584000077399378 a004 Fibonacci(38)*Lucas(55)/(1/2+sqrt(5)/2)^75 2584000077399378 a001 39088169/23725150497407*312119004989^(4/5) 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^36/Lucas(56) 2584000077399378 a001 39088169/1322157322203*817138163596^(2/3) 2584000077399378 a004 Fibonacci(38)*Lucas(57)/(1/2+sqrt(5)/2)^77 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^38/Lucas(58) 2584000077399378 a004 Fibonacci(58)/Lucas(38)/(1/2+sqrt(5)/2)^2 2584000077399378 a004 Fibonacci(38)*Lucas(59)/(1/2+sqrt(5)/2)^79 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^40/Lucas(60) 2584000077399378 a004 Fibonacci(60)/Lucas(38)/(1/2+sqrt(5)/2)^4 2584000077399378 a004 Fibonacci(38)*Lucas(61)/(1/2+sqrt(5)/2)^81 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^42/Lucas(62) 2584000077399378 a004 Fibonacci(62)/Lucas(38)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(38)*Lucas(63)/(1/2+sqrt(5)/2)^83 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^44/Lucas(64) 2584000077399378 a004 Fibonacci(64)/Lucas(38)/(1/2+sqrt(5)/2)^8 2584000077399378 a004 Fibonacci(38)*Lucas(65)/(1/2+sqrt(5)/2)^85 2584000077399378 a001 39088169/23725150497407*23725150497407^(11/16) 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^46/Lucas(66) 2584000077399378 a004 Fibonacci(66)/Lucas(38)/(1/2+sqrt(5)/2)^10 2584000077399378 a004 Fibonacci(38)*Lucas(67)/(1/2+sqrt(5)/2)^87 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^48/Lucas(68) 2584000077399378 a004 Fibonacci(68)/Lucas(38)/(1/2+sqrt(5)/2)^12 2584000077399378 a004 Fibonacci(38)*Lucas(69)/(1/2+sqrt(5)/2)^89 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^50/Lucas(70) 2584000077399378 a004 Fibonacci(70)/Lucas(38)/(1/2+sqrt(5)/2)^14 2584000077399378 a004 Fibonacci(38)*Lucas(71)/(1/2+sqrt(5)/2)^91 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^52/Lucas(72) 2584000077399378 a004 Fibonacci(72)/Lucas(38)/(1/2+sqrt(5)/2)^16 2584000077399378 a004 Fibonacci(38)*Lucas(73)/(1/2+sqrt(5)/2)^93 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^54/Lucas(74) 2584000077399378 a004 Fibonacci(74)/Lucas(38)/(1/2+sqrt(5)/2)^18 2584000077399378 a004 Fibonacci(38)*Lucas(75)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^56/Lucas(76) 2584000077399378 a004 Fibonacci(38)*Lucas(77)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^58/Lucas(78) 2584000077399378 a004 Fibonacci(38)*Lucas(79)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^60/Lucas(80) 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^62/Lucas(82) 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^64/Lucas(84) 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^66/Lucas(86) 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^68/Lucas(88) 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^70/Lucas(90) 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^72/Lucas(92) 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^74/Lucas(94) 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^76/Lucas(96) 2584000077399378 a004 Fibonacci(19)*Lucas(19)/(1/2+sqrt(5)/2)^20 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^78/Lucas(98) 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^79/Lucas(99) 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^80/Lucas(100) 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^77/Lucas(97) 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^75/Lucas(95) 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^73/Lucas(93) 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^71/Lucas(91) 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^69/Lucas(89) 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^67/Lucas(87) 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^65/Lucas(85) 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^63/Lucas(83) 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^61/Lucas(81) 2584000077399378 a004 Fibonacci(38)*Lucas(80)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^59/Lucas(79) 2584000077399378 a004 Fibonacci(38)*Lucas(78)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^57/Lucas(77) 2584000077399378 a004 Fibonacci(78)/Lucas(38)/(1/2+sqrt(5)/2)^22 2584000077399378 a004 Fibonacci(80)/Lucas(38)/(1/2+sqrt(5)/2)^24 2584000077399378 a004 Fibonacci(82)/Lucas(38)/(1/2+sqrt(5)/2)^26 2584000077399378 a004 Fibonacci(84)/Lucas(38)/(1/2+sqrt(5)/2)^28 2584000077399378 a004 Fibonacci(86)/Lucas(38)/(1/2+sqrt(5)/2)^30 2584000077399378 a004 Fibonacci(88)/Lucas(38)/(1/2+sqrt(5)/2)^32 2584000077399378 a004 Fibonacci(90)/Lucas(38)/(1/2+sqrt(5)/2)^34 2584000077399378 a004 Fibonacci(92)/Lucas(38)/(1/2+sqrt(5)/2)^36 2584000077399378 a004 Fibonacci(94)/Lucas(38)/(1/2+sqrt(5)/2)^38 2584000077399378 a004 Fibonacci(96)/Lucas(38)/(1/2+sqrt(5)/2)^40 2584000077399378 a004 Fibonacci(98)/Lucas(38)/(1/2+sqrt(5)/2)^42 2584000077399378 a004 Fibonacci(100)/Lucas(38)/(1/2+sqrt(5)/2)^44 2584000077399378 a004 Fibonacci(97)/Lucas(38)/(1/2+sqrt(5)/2)^41 2584000077399378 a004 Fibonacci(99)/Lucas(38)/(1/2+sqrt(5)/2)^43 2584000077399378 a004 Fibonacci(95)/Lucas(38)/(1/2+sqrt(5)/2)^39 2584000077399378 a004 Fibonacci(93)/Lucas(38)/(1/2+sqrt(5)/2)^37 2584000077399378 a004 Fibonacci(91)/Lucas(38)/(1/2+sqrt(5)/2)^35 2584000077399378 a004 Fibonacci(89)/Lucas(38)/(1/2+sqrt(5)/2)^33 2584000077399378 a004 Fibonacci(87)/Lucas(38)/(1/2+sqrt(5)/2)^31 2584000077399378 a004 Fibonacci(85)/Lucas(38)/(1/2+sqrt(5)/2)^29 2584000077399378 a004 Fibonacci(83)/Lucas(38)/(1/2+sqrt(5)/2)^27 2584000077399378 a004 Fibonacci(81)/Lucas(38)/(1/2+sqrt(5)/2)^25 2584000077399378 a004 Fibonacci(79)/Lucas(38)/(1/2+sqrt(5)/2)^23 2584000077399378 a004 Fibonacci(77)/Lucas(38)/(1/2+sqrt(5)/2)^21 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^55/Lucas(75) 2584000077399378 a004 Fibonacci(75)/Lucas(38)/(1/2+sqrt(5)/2)^19 2584000077399378 a004 Fibonacci(38)*Lucas(74)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^53/Lucas(73) 2584000077399378 a004 Fibonacci(73)/Lucas(38)/(1/2+sqrt(5)/2)^17 2584000077399378 a004 Fibonacci(38)*Lucas(72)/(1/2+sqrt(5)/2)^92 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^51/Lucas(71) 2584000077399378 a004 Fibonacci(71)/Lucas(38)/(1/2+sqrt(5)/2)^15 2584000077399378 a004 Fibonacci(38)*Lucas(70)/(1/2+sqrt(5)/2)^90 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^49/Lucas(69) 2584000077399378 a004 Fibonacci(69)/Lucas(38)/(1/2+sqrt(5)/2)^13 2584000077399378 a004 Fibonacci(38)*Lucas(68)/(1/2+sqrt(5)/2)^88 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^47/Lucas(67) 2584000077399378 a004 Fibonacci(67)/Lucas(38)/(1/2+sqrt(5)/2)^11 2584000077399378 a004 Fibonacci(38)*Lucas(66)/(1/2+sqrt(5)/2)^86 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^45/Lucas(65) 2584000077399378 a004 Fibonacci(65)/Lucas(38)/(1/2+sqrt(5)/2)^9 2584000077399378 a004 Fibonacci(38)*Lucas(64)/(1/2+sqrt(5)/2)^84 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^43/Lucas(63) 2584000077399378 a004 Fibonacci(63)/Lucas(38)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(38)*Lucas(62)/(1/2+sqrt(5)/2)^82 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^41/Lucas(61) 2584000077399378 a004 Fibonacci(61)/Lucas(38)/(1/2+sqrt(5)/2)^5 2584000077399378 a004 Fibonacci(38)*Lucas(60)/(1/2+sqrt(5)/2)^80 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^39/Lucas(59) 2584000077399378 a004 Fibonacci(59)/Lucas(38)/(1/2+sqrt(5)/2)^3 2584000077399378 a004 Fibonacci(38)*Lucas(58)/(1/2+sqrt(5)/2)^78 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^37/Lucas(57) 2584000077399378 a004 Fibonacci(57)/Lucas(38)/(1/2+sqrt(5)/2) 2584000077399378 a001 39088169/312119004989*312119004989^(7/11) 2584000077399378 a004 Fibonacci(38)*Lucas(56)/(1/2+sqrt(5)/2)^76 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^35/Lucas(55) 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)/Lucas(38) 2584000077399378 a001 39088169/312119004989*505019158607^(5/8) 2584000077399378 a001 39088169/2139295485799*192900153618^(13/18) 2584000077399378 a001 39088169/9062201101803*192900153618^(7/9) 2584000077399378 a004 Fibonacci(38)*Lucas(54)/(1/2+sqrt(5)/2)^74 2584000077399378 a001 53316291173/87403803*45537549124^(1/17) 2584000077399378 a001 39088169/119218851371*312119004989^(3/5) 2584000077399378 a001 39088169/119218851371*817138163596^(11/19) 2584000077399378 a001 39088169/119218851371*14662949395604^(11/21) 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^33/Lucas(53) 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^3/Lucas(38) 2584000077399378 a001 39088169/119218851371*192900153618^(11/18) 2584000077399378 a001 39088169/505019158607*73681302247^(9/13) 2584000077399378 a001 39088169/2139295485799*73681302247^(3/4) 2584000077399378 a001 39088169/3461452808002*73681302247^(10/13) 2584000077399378 a001 39088169/23725150497407*73681302247^(11/13) 2584000077399378 a004 Fibonacci(38)*Lucas(52)/(1/2+sqrt(5)/2)^72 2584000077399378 a001 86267571272/87403803*10749957122^(1/24) 2584000077399378 a001 20365011074/87403803*312119004989^(1/11) 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^31/Lucas(51) 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^5/Lucas(38) 2584000077399378 a001 10983760033/29134601*10749957122^(1/12) 2584000077399378 a001 20365011074/87403803*28143753123^(1/10) 2584000077399378 a001 53316291173/87403803*10749957122^(1/16) 2584000077399378 a001 39088169/312119004989*28143753123^(7/10) 2584000077399378 a001 39088169/3461452808002*28143753123^(4/5) 2584000077399378 a004 Fibonacci(38)*Lucas(50)/(1/2+sqrt(5)/2)^70 2584000077399378 a001 1602508992/29134601*4106118243^(4/23) 2584000077399378 a001 86267571272/87403803*4106118243^(1/23) 2584000077399378 a001 7778742049/87403803*17393796001^(1/7) 2584000077399378 a001 7778742049/87403803*14662949395604^(1/9) 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^29/Lucas(49) 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^7/Lucas(38) 2584000077399378 a001 39088169/17393796001*1322157322203^(1/2) 2584000077399378 a001 39088169/28143753123*10749957122^(5/8) 2584000077399378 a001 10983760033/29134601*4106118243^(2/23) 2584000077399378 a001 39088169/73681302247*10749957122^(2/3) 2584000077399378 a001 39088169/119218851371*10749957122^(11/16) 2584000077399378 a001 39088169/192900153618*10749957122^(17/24) 2584000077399378 a001 12586269025/87403803*4106118243^(3/23) 2584000077399378 a001 39088169/505019158607*10749957122^(3/4) 2584000077399378 a001 39088169/1322157322203*10749957122^(19/24) 2584000077399378 a001 39088169/2139295485799*10749957122^(13/16) 2584000077399378 a001 39088169/3461452808002*10749957122^(5/6) 2584000077399378 a001 39088169/9062201101803*10749957122^(7/8) 2584000077399378 a001 39088169/23725150497407*10749957122^(11/12) 2584000077399378 a004 Fibonacci(38)*Lucas(48)/(1/2+sqrt(5)/2)^68 2584000077399378 a001 86267571272/87403803*1568397607^(1/22) 2584000077399378 a001 39088169/6643838879*45537549124^(9/17) 2584000077399378 a001 2971215073/87403803*45537549124^(3/17) 2584000077399378 a001 39088169/6643838879*817138163596^(9/19) 2584000077399378 a001 2971215073/87403803*14662949395604^(1/7) 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^27/Lucas(47) 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^9/Lucas(38) 2584000077399378 a001 2971215073/87403803*192900153618^(1/6) 2584000077399378 a001 39088169/6643838879*192900153618^(1/2) 2584000077399378 a001 2971215073/87403803*10749957122^(3/16) 2584000077399378 a001 39088169/10749957122*4106118243^(14/23) 2584000077399378 a001 39088169/6643838879*10749957122^(9/16) 2584000077399378 a001 1836311903/87403803*1568397607^(5/22) 2584000077399378 a001 10983760033/29134601*1568397607^(1/11) 2584000077399378 a001 39088169/28143753123*4106118243^(15/23) 2584000077399378 a001 39088169/73681302247*4106118243^(16/23) 2584000077399378 a001 39088169/192900153618*4106118243^(17/23) 2584000077399378 a001 39088169/505019158607*4106118243^(18/23) 2584000077399378 a001 39088169/1322157322203*4106118243^(19/23) 2584000077399378 a001 39088169/3461452808002*4106118243^(20/23) 2584000077399378 a001 39088169/9062201101803*4106118243^(21/23) 2584000077399378 a001 12586269025/87403803*1568397607^(3/22) 2584000077399378 a001 39088169/23725150497407*4106118243^(22/23) 2584000077399378 a004 Fibonacci(38)*Lucas(46)/(1/2+sqrt(5)/2)^66 2584000077399378 a001 1602508992/29134601*1568397607^(2/11) 2584000077399378 a001 39088169/2537720636*2537720636^(5/9) 2584000077399378 a001 86267571272/87403803*599074578^(1/21) 2584000077399378 a001 39088169/2537720636*312119004989^(5/11) 2584000077399378 a001 1134903170/87403803*312119004989^(1/5) 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^25/Lucas(45) 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^11/Lucas(38) 2584000077399378 a001 39088169/2537720636*28143753123^(1/2) 2584000077399378 a001 39088169/4106118243*1568397607^(13/22) 2584000077399378 a001 53316291173/87403803*599074578^(1/14) 2584000077399378 a001 39088169/10749957122*1568397607^(7/11) 2584000077399378 a001 1134903170/87403803*1568397607^(1/4) 2584000077399378 a001 10983760033/29134601*599074578^(2/21) 2584000077399378 a001 39088169/28143753123*1568397607^(15/22) 2584000077399378 a001 39088169/73681302247*1568397607^(8/11) 2584000077399378 a001 39088169/119218851371*1568397607^(3/4) 2584000077399378 a001 39088169/192900153618*1568397607^(17/22) 2584000077399378 a001 39088169/505019158607*1568397607^(9/11) 2584000077399378 a001 39088169/1322157322203*1568397607^(19/22) 2584000077399378 a001 39088169/3461452808002*1568397607^(10/11) 2584000077399378 a001 39088169/9062201101803*1568397607^(21/22) 2584000077399378 a001 233802911/29134601*599074578^(2/7) 2584000077399378 a001 12586269025/87403803*599074578^(1/7) 2584000077399378 a004 Fibonacci(38)*Lucas(44)/(1/2+sqrt(5)/2)^64 2584000077399378 a001 7778742049/87403803*599074578^(1/6) 2584000077399378 a001 1602508992/29134601*599074578^(4/21) 2584000077399378 a001 1836311903/87403803*599074578^(5/21) 2584000077399378 a001 2971215073/87403803*599074578^(3/14) 2584000077399378 a001 86267571272/87403803*228826127^(1/20) 2584000077399378 a001 16944503814015853/6557470319842 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^23/Lucas(43) 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^13/Lucas(38) 2584000077399378 a001 433494437/87403803*73681302247^(1/4) 2584000077399378 a001 39088169/969323029*4106118243^(1/2) 2584000077399378 a001 39088169/1568397607*599074578^(4/7) 2584000077399378 a001 39088169/4106118243*599074578^(13/21) 2584000077399378 a001 39088169/6643838879*599074578^(9/14) 2584000077399378 a001 39088169/10749957122*599074578^(2/3) 2584000077399378 a001 10983760033/29134601*228826127^(1/10) 2584000077399378 a001 39088169/28143753123*599074578^(5/7) 2584000077399378 a001 39088169/73681302247*599074578^(16/21) 2584000077399378 a001 39088169/119218851371*599074578^(11/14) 2584000077399378 a001 39088169/192900153618*599074578^(17/21) 2584000077399378 a001 39088169/312119004989*599074578^(5/6) 2584000077399378 a001 20365011074/87403803*228826127^(1/8) 2584000077399378 a001 39088169/505019158607*599074578^(6/7) 2584000077399378 a001 39088169/1322157322203*599074578^(19/21) 2584000077399378 a001 39088169/2139295485799*599074578^(13/14) 2584000077399378 a001 39088169/3461452808002*599074578^(20/21) 2584000077399378 a004 Fibonacci(38)*Lucas(42)/(1/2+sqrt(5)/2)^62 2584000077399378 a001 12586269025/87403803*228826127^(3/20) 2584000077399378 a001 1602508992/29134601*228826127^(1/5) 2584000077399378 a001 267914296/87403803*228826127^(7/20) 2584000077399378 a001 1836311903/87403803*228826127^(1/4) 2584000077399378 a001 233802911/29134601*228826127^(3/10) 2584000077399378 a001 86267571272/87403803*87403803^(1/19) 2584000077399378 a001 39088169/370248451*2537720636^(7/15) 2584000077399378 a001 165580141/87403803*2537720636^(1/3) 2584000077399378 a001 39088169/370248451*17393796001^(3/7) 2584000077399378 a001 39088169/370248451*45537549124^(7/17) 2584000077399378 a001 165580141/87403803*45537549124^(5/17) 2584000077399378 a001 165580141/87403803*312119004989^(3/11) 2584000077399378 a001 6472224534451829/2504730781961 2584000077399378 a001 165580141/87403803*14662949395604^(5/21) 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^21/Lucas(41) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^15/Lucas(38) 2584000077399378 a001 165580141/87403803*192900153618^(5/18) 2584000077399378 a001 39088169/370248451*192900153618^(7/18) 2584000077399378 a001 165580141/87403803*28143753123^(3/10) 2584000077399378 a001 165580141/87403803*10749957122^(5/16) 2584000077399378 a001 39088169/370248451*10749957122^(7/16) 2584000077399378 a001 39088169/599074578*228826127^(11/20) 2584000077399378 a001 165580141/87403803*599074578^(5/14) 2584000077399378 a001 39088169/370248451*599074578^(1/2) 2584000077399378 a001 39088169/1568397607*228826127^(3/5) 2584000077399378 a001 39088169/2537720636*228826127^(5/8) 2584000077399378 a001 39088169/4106118243*228826127^(13/20) 2584000077399378 a001 39088169/10749957122*228826127^(7/10) 2584000077399378 a001 10983760033/29134601*87403803^(2/19) 2584000077399378 a001 39088169/28143753123*228826127^(3/4) 2584000077399378 a001 165580141/87403803*228826127^(3/8) 2584000077399378 a001 39088169/73681302247*228826127^(4/5) 2584000077399378 a001 39088169/192900153618*228826127^(17/20) 2584000077399378 a001 39088169/312119004989*228826127^(7/8) 2584000077399378 a001 39088169/505019158607*228826127^(9/10) 2584000077399378 a001 39088169/1322157322203*228826127^(19/20) 2584000077399378 a004 Fibonacci(38)*Lucas(40)/(1/2+sqrt(5)/2)^60 2584000077399378 a001 12586269025/87403803*87403803^(3/19) 2584000077399378 a001 1602508992/29134601*87403803^(4/19) 2584000077399378 a001 4976784/9381251041*33385282^(8/9) 2584000077399378 a001 1836311903/87403803*87403803^(5/19) 2584000077399378 a001 34111385/29134601*87403803^(8/19) 2584000077399378 a001 233802911/29134601*87403803^(6/19) 2584000077399378 a001 267914296/87403803*87403803^(7/19) 2584000077399378 a001 39088169/228826127*87403803^(10/19) 2584000077399378 a001 86267571272/87403803*33385282^(1/18) 2584000077399378 a001 63245986/87403803*45537549124^(1/3) 2584000077399378 a001 2472169789339634/956722026041 2584000077399378 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^19/Lucas(39) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^17/Lucas(38) 2584000077399378 a001 3732588/11384387281*33385282^(11/12) 2584000077399378 a004 Fibonacci(40)*Lucas(39)/(1/2+sqrt(5)/2)^61 2584000077399378 a001 34111385/440719107401*141422324^(12/13) 2584000077399378 a001 9303105/28374454999*141422324^(11/13) 2584000077399378 a001 102334155/228826127*141422324^(6/13) 2584000077399378 a001 39088169/599074578*87403803^(11/19) 2584000077399378 a001 14619165/10525900321*141422324^(10/13) 2584000077399378 a001 53316291173/87403803*33385282^(1/12) 2584000077399378 a001 102334155/17393796001*141422324^(9/13) 2584000077399378 a004 Fibonacci(42)*Lucas(39)/(1/2+sqrt(5)/2)^63 2584000077399378 a001 102334155/10749957122*141422324^(2/3) 2584000077399378 a004 Fibonacci(44)*Lucas(39)/(1/2+sqrt(5)/2)^65 2584000077399378 a004 Fibonacci(46)*Lucas(39)/(1/2+sqrt(5)/2)^67 2584000077399378 a004 Fibonacci(48)*Lucas(39)/(1/2+sqrt(5)/2)^69 2584000077399378 a004 Fibonacci(50)*Lucas(39)/(1/2+sqrt(5)/2)^71 2584000077399378 a004 Fibonacci(52)*Lucas(39)/(1/2+sqrt(5)/2)^73 2584000077399378 a004 Fibonacci(54)*Lucas(39)/(1/2+sqrt(5)/2)^75 2584000077399378 a004 Fibonacci(56)*Lucas(39)/(1/2+sqrt(5)/2)^77 2584000077399378 a004 Fibonacci(58)*Lucas(39)/(1/2+sqrt(5)/2)^79 2584000077399378 a004 Fibonacci(60)*Lucas(39)/(1/2+sqrt(5)/2)^81 2584000077399378 a004 Fibonacci(62)*Lucas(39)/(1/2+sqrt(5)/2)^83 2584000077399378 a004 Fibonacci(64)*Lucas(39)/(1/2+sqrt(5)/2)^85 2584000077399378 a004 Fibonacci(66)*Lucas(39)/(1/2+sqrt(5)/2)^87 2584000077399378 a004 Fibonacci(68)*Lucas(39)/(1/2+sqrt(5)/2)^89 2584000077399378 a004 Fibonacci(70)*Lucas(39)/(1/2+sqrt(5)/2)^91 2584000077399378 a004 Fibonacci(72)*Lucas(39)/(1/2+sqrt(5)/2)^93 2584000077399378 a004 Fibonacci(74)*Lucas(39)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(76)*Lucas(39)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(78)*Lucas(39)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(79)*Lucas(39)/(1/2+sqrt(5)/2)^100 2584000077399378 a001 1/31622993*(1/2+1/2*5^(1/2))^57 2584000077399378 a004 Fibonacci(77)*Lucas(39)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(75)*Lucas(39)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(73)*Lucas(39)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(71)*Lucas(39)/(1/2+sqrt(5)/2)^92 2584000077399378 a004 Fibonacci(69)*Lucas(39)/(1/2+sqrt(5)/2)^90 2584000077399378 a004 Fibonacci(67)*Lucas(39)/(1/2+sqrt(5)/2)^88 2584000077399378 a004 Fibonacci(65)*Lucas(39)/(1/2+sqrt(5)/2)^86 2584000077399378 a004 Fibonacci(63)*Lucas(39)/(1/2+sqrt(5)/2)^84 2584000077399378 a004 Fibonacci(61)*Lucas(39)/(1/2+sqrt(5)/2)^82 2584000077399378 a004 Fibonacci(59)*Lucas(39)/(1/2+sqrt(5)/2)^80 2584000077399378 a004 Fibonacci(57)*Lucas(39)/(1/2+sqrt(5)/2)^78 2584000077399378 a004 Fibonacci(55)*Lucas(39)/(1/2+sqrt(5)/2)^76 2584000077399378 a004 Fibonacci(53)*Lucas(39)/(1/2+sqrt(5)/2)^74 2584000077399378 a004 Fibonacci(51)*Lucas(39)/(1/2+sqrt(5)/2)^72 2584000077399378 a004 Fibonacci(49)*Lucas(39)/(1/2+sqrt(5)/2)^70 2584000077399378 a004 Fibonacci(47)*Lucas(39)/(1/2+sqrt(5)/2)^68 2584000077399378 a001 34111385/1368706081*141422324^(8/13) 2584000077399378 a001 14930352/73681302247*33385282^(17/18) 2584000077399378 a004 Fibonacci(45)*Lucas(39)/(1/2+sqrt(5)/2)^66 2584000077399378 a001 133957148/1730726404001*141422324^(12/13) 2584000077399378 a004 Fibonacci(43)*Lucas(39)/(1/2+sqrt(5)/2)^64 2584000077399378 a001 39088169/1568397607*87403803^(12/19) 2584000077399378 a001 233802911/3020733700601*141422324^(12/13) 2584000077399378 a001 1836311903/23725150497407*141422324^(12/13) 2584000077399378 a001 567451585/7331474697802*141422324^(12/13) 2584000077399378 a001 66978574/204284540899*141422324^(11/13) 2584000077399378 a001 433494437/5600748293801*141422324^(12/13) 2584000077399378 a001 102334155/969323029*141422324^(7/13) 2584000077399378 a001 701408733/2139295485799*141422324^(11/13) 2584000077399378 a004 Fibonacci(41)*Lucas(39)/(1/2+sqrt(5)/2)^62 2584000077399378 a001 1836311903/5600748293801*141422324^(11/13) 2584000077399378 a001 1201881744/3665737348901*141422324^(11/13) 2584000077399378 a001 7778742049/23725150497407*141422324^(11/13) 2584000077399378 a001 2971215073/9062201101803*141422324^(11/13) 2584000077399378 a001 567451585/1730726404001*141422324^(11/13) 2584000077399378 a001 39088169/4106118243*87403803^(13/19) 2584000077399378 a001 133957148/96450076809*141422324^(10/13) 2584000077399378 a001 433494437/1322157322203*141422324^(11/13) 2584000077399378 a001 701408733/505019158607*141422324^(10/13) 2584000077399378 a001 165580141/2139295485799*141422324^(12/13) 2584000077399378 a001 1836311903/1322157322203*141422324^(10/13) 2584000077399378 a001 14930208/10749853441*141422324^(10/13) 2584000077399378 a001 12586269025/9062201101803*141422324^(10/13) 2584000077399378 a001 32951280099/23725150497407*141422324^(10/13) 2584000077399378 a001 10182505537/7331474697802*141422324^(10/13) 2584000077399378 a001 7778742049/5600748293801*141422324^(10/13) 2584000077399378 a001 2971215073/2139295485799*141422324^(10/13) 2584000077399378 a001 567451585/408569081798*141422324^(10/13) 2584000077399378 a001 102334155/228826127*2537720636^(2/5) 2584000077399378 a001 102334155/228826127*45537549124^(6/17) 2584000077399378 a001 102334155/228826127*14662949395604^(2/7) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^18/Lucas(40) 2584000077399378 a001 102334155/228826127*192900153618^(1/3) 2584000077399378 a001 102334155/228826127*10749957122^(3/8) 2584000077399378 a001 102334155/228826127*4106118243^(9/23) 2584000077399378 a001 102334155/228826127*1568397607^(9/22) 2584000077399378 a001 66978574/11384387281*141422324^(9/13) 2584000077399378 a001 433494437/312119004989*141422324^(10/13) 2584000077399378 a001 433494437/228826127*141422324^(5/13) 2584000077399378 a001 102334155/228826127*599074578^(3/7) 2584000077399378 a001 267914296/28143753123*141422324^(2/3) 2584000077399378 a001 1134903170/228826127*141422324^(1/3) 2584000077399378 a001 701408733/119218851371*141422324^(9/13) 2584000077399378 a001 165580141/505019158607*141422324^(11/13) 2584000077399378 a001 1836311903/312119004989*141422324^(9/13) 2584000077399378 a001 1201881744/204284540899*141422324^(9/13) 2584000077399378 a001 12586269025/2139295485799*141422324^(9/13) 2584000077399378 a001 32951280099/5600748293801*141422324^(9/13) 2584000077399378 a001 1135099622/192933544679*141422324^(9/13) 2584000077399378 a001 139583862445/23725150497407*141422324^(9/13) 2584000077399378 a001 53316291173/9062201101803*141422324^(9/13) 2584000077399378 a001 10182505537/1730726404001*141422324^(9/13) 2584000077399378 a001 7778742049/1322157322203*141422324^(9/13) 2584000077399378 a001 2971215073/505019158607*141422324^(9/13) 2584000077399378 a001 1836311903/228826127*141422324^(4/13) 2584000077399378 a001 567451585/96450076809*141422324^(9/13) 2584000077399378 a001 39088169/10749957122*87403803^(14/19) 2584000077399378 a001 701408733/73681302247*141422324^(2/3) 2584000077399378 a001 133957148/5374978561*141422324^(8/13) 2584000077399378 a001 433494437/73681302247*141422324^(9/13) 2584000077399378 a001 1836311903/192900153618*141422324^(2/3) 2584000077399378 a001 102287808/10745088481*141422324^(2/3) 2584000077399378 a001 12586269025/1322157322203*141422324^(2/3) 2584000077399378 a001 32951280099/3461452808002*141422324^(2/3) 2584000077399378 a001 86267571272/9062201101803*141422324^(2/3) 2584000077399378 a001 225851433717/23725150497407*141422324^(2/3) 2584000077399378 a001 139583862445/14662949395604*141422324^(2/3) 2584000077399378 a001 53316291173/5600748293801*141422324^(2/3) 2584000077399378 a001 20365011074/2139295485799*141422324^(2/3) 2584000077399378 a001 7778742049/817138163596*141422324^(2/3) 2584000077399378 a001 2971215073/312119004989*141422324^(2/3) 2584000077399378 a001 1134903170/119218851371*141422324^(2/3) 2584000077399378 a001 433494437/45537549124*141422324^(2/3) 2584000077399378 a001 10983760033/29134601*33385282^(1/9) 2584000077399378 a001 233802911/9381251041*141422324^(8/13) 2584000077399378 a001 165580141/119218851371*141422324^(10/13) 2584000077399378 a001 1836311903/73681302247*141422324^(8/13) 2584000077399378 a001 267084832/10716675201*141422324^(8/13) 2584000077399378 a001 12586269025/505019158607*141422324^(8/13) 2584000077399378 a001 10983760033/440719107401*141422324^(8/13) 2584000077399378 a001 43133785636/1730726404001*141422324^(8/13) 2584000077399378 a001 75283811239/3020733700601*141422324^(8/13) 2584000077399378 a001 182717648081/7331474697802*141422324^(8/13) 2584000077399378 a001 139583862445/5600748293801*141422324^(8/13) 2584000077399378 a001 53316291173/2139295485799*141422324^(8/13) 2584000077399378 a001 10182505537/408569081798*141422324^(8/13) 2584000077399378 a001 7778742049/312119004989*141422324^(8/13) 2584000077399378 a001 2971215073/119218851371*141422324^(8/13) 2584000077399378 a001 7778742049/228826127*141422324^(3/13) 2584000077399378 a001 567451585/22768774562*141422324^(8/13) 2584000077399378 a001 433494437/17393796001*141422324^(8/13) 2584000077399378 a001 102334155/228826127*228826127^(9/20) 2584000077399378 a001 66978574/634430159*141422324^(7/13) 2584000077399378 a001 133957148/299537289*141422324^(6/13) 2584000077399378 a001 39088169/28143753123*87403803^(15/19) 2584000077399378 a001 165580141/28143753123*141422324^(9/13) 2584000077399378 a001 701408733/6643838879*141422324^(7/13) 2584000077399378 a001 1836311903/17393796001*141422324^(7/13) 2584000077399378 a001 1201881744/11384387281*141422324^(7/13) 2584000077399378 a001 12586269025/119218851371*141422324^(7/13) 2584000077399378 a001 32951280099/312119004989*141422324^(7/13) 2584000077399378 a001 21566892818/204284540899*141422324^(7/13) 2584000077399378 a001 225851433717/2139295485799*141422324^(7/13) 2584000077399378 a001 182717648081/1730726404001*141422324^(7/13) 2584000077399378 a001 139583862445/1322157322203*141422324^(7/13) 2584000077399378 a001 53316291173/505019158607*141422324^(7/13) 2584000077399378 a001 10182505537/96450076809*141422324^(7/13) 2584000077399378 a001 7778742049/73681302247*141422324^(7/13) 2584000077399378 a001 2971215073/28143753123*141422324^(7/13) 2584000077399378 a001 32951280099/228826127*141422324^(2/13) 2584000077399378 a001 567451585/5374978561*141422324^(7/13) 2584000077399378 a004 Fibonacci(40)*Lucas(41)/(1/2+sqrt(5)/2)^63 2584000077399378 a001 165580141/17393796001*141422324^(2/3) 2584000077399378 a001 433494437/4106118243*141422324^(7/13) 2584000077399378 a001 701408733/1568397607*141422324^(6/13) 2584000077399378 a001 165580141/6643838879*141422324^(8/13) 2584000077399378 a001 1836311903/4106118243*141422324^(6/13) 2584000077399378 a001 2403763488/5374978561*141422324^(6/13) 2584000077399378 a001 12586269025/28143753123*141422324^(6/13) 2584000077399378 a001 32951280099/73681302247*141422324^(6/13) 2584000077399378 a001 43133785636/96450076809*141422324^(6/13) 2584000077399378 a001 225851433717/505019158607*141422324^(6/13) 2584000077399378 a001 591286729879/1322157322203*141422324^(6/13) 2584000077399378 a001 10610209857723/23725150497407*141422324^(6/13) 2584000077399378 a001 139583862445/312119004989*141422324^(6/13) 2584000077399378 a001 53316291173/119218851371*141422324^(6/13) 2584000077399378 a001 10182505537/22768774562*141422324^(6/13) 2584000077399378 a001 7778742049/17393796001*141422324^(6/13) 2584000077399378 a001 2971215073/6643838879*141422324^(6/13) 2584000077399378 a001 139583862445/228826127*141422324^(1/13) 2584000077399378 a001 567451585/1268860318*141422324^(6/13) 2584000077399378 a001 34111385/199691526*2537720636^(4/9) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^20/Lucas(42) 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^16/Lucas(40) 2584000077399378 a001 34111385/199691526*23725150497407^(5/16) 2584000077399378 a001 1305561099694280/505248088463 2584000077399378 a001 34111385/199691526*505019158607^(5/14) 2584000077399378 a001 267914296/228826127*73681302247^(4/13) 2584000077399378 a001 34111385/199691526*73681302247^(5/13) 2584000077399378 a001 34111385/199691526*28143753123^(2/5) 2584000077399378 a001 267914296/228826127*10749957122^(1/3) 2584000077399378 a001 34111385/199691526*10749957122^(5/12) 2584000077399378 a001 267914296/228826127*4106118243^(8/23) 2584000077399378 a001 567451585/299537289*141422324^(5/13) 2584000077399378 a001 34111385/199691526*4106118243^(10/23) 2584000077399378 a001 267914296/228826127*1568397607^(4/11) 2584000077399378 a001 34111385/199691526*1568397607^(5/11) 2584000077399378 a001 433494437/969323029*141422324^(6/13) 2584000077399378 a001 267914296/228826127*599074578^(8/21) 2584000077399378 a001 39088169/73681302247*87403803^(16/19) 2584000077399378 a001 34111385/199691526*599074578^(10/21) 2584000077399378 a004 Fibonacci(40)*Lucas(43)/(1/2+sqrt(5)/2)^65 2584000077399378 a001 165580141/1568397607*141422324^(7/13) 2584000077399378 a001 2971215073/1568397607*141422324^(5/13) 2584000077399378 a001 701408733/228826127*17393796001^(2/7) 2584000077399378 a001 14619165/224056801*312119004989^(2/5) 2584000077399378 a001 701408733/228826127*14662949395604^(2/9) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^22/Lucas(44) 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^14/Lucas(40) 2584000077399378 a001 701408733/228826127*10749957122^(7/24) 2584000077399378 a001 14619165/224056801*10749957122^(11/24) 2584000077399378 a001 701408733/228826127*4106118243^(7/23) 2584000077399378 a001 14619165/224056801*4106118243^(11/23) 2584000077399378 a001 2971215073/599074578*141422324^(1/3) 2584000077399378 a001 701408733/228826127*1568397607^(7/22) 2584000077399378 a001 14619165/224056801*1568397607^(1/2) 2584000077399378 a001 7778742049/4106118243*141422324^(5/13) 2584000077399378 a004 Fibonacci(40)*Lucas(45)/(1/2+sqrt(5)/2)^67 2584000077399378 a001 102334155/23725150497407*2537720636^(14/15) 2584000077399378 a001 34111385/1368706081*2537720636^(8/15) 2584000077399378 a001 10182505537/5374978561*141422324^(5/13) 2584000077399378 a001 34111385/3020733700601*2537720636^(8/9) 2584000077399378 a001 102334155/5600748293801*2537720636^(13/15) 2584000077399378 a001 53316291173/28143753123*141422324^(5/13) 2584000077399378 a001 139583862445/73681302247*141422324^(5/13) 2584000077399378 a001 182717648081/96450076809*141422324^(5/13) 2584000077399378 a001 956722026041/505019158607*141422324^(5/13) 2584000077399378 a001 10610209857723/5600748293801*141422324^(5/13) 2584000077399378 a001 591286729879/312119004989*141422324^(5/13) 2584000077399378 a001 225851433717/119218851371*141422324^(5/13) 2584000077399378 a001 21566892818/11384387281*141422324^(5/13) 2584000077399378 a001 32951280099/17393796001*141422324^(5/13) 2584000077399378 a001 34111385/440719107401*2537720636^(4/5) 2584000077399378 a001 102334155/817138163596*2537720636^(7/9) 2584000077399378 a001 9303105/28374454999*2537720636^(11/15) 2584000077399378 a001 12586269025/6643838879*141422324^(5/13) 2584000077399378 a001 14619165/10525900321*2537720636^(2/3) 2584000077399378 a001 1836311903/228826127*2537720636^(4/15) 2584000077399378 a001 102334155/17393796001*2537720636^(3/5) 2584000077399378 a001 102334155/6643838879*2537720636^(5/9) 2584000077399378 a001 34111385/1368706081*45537549124^(8/17) 2584000077399378 a001 1836311903/228826127*45537549124^(4/17) 2584000077399378 a001 1836311903/228826127*817138163596^(4/19) 2584000077399378 a001 1836311903/228826127*14662949395604^(4/21) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^24/Lucas(46) 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^12/Lucas(40) 2584000077399378 a001 1836311903/228826127*192900153618^(2/9) 2584000077399378 a001 34111385/1368706081*192900153618^(4/9) 2584000077399378 a001 1836311903/228826127*73681302247^(3/13) 2584000077399378 a001 34111385/1368706081*73681302247^(6/13) 2584000077399378 a001 1836311903/228826127*10749957122^(1/4) 2584000077399378 a001 34111385/1368706081*10749957122^(1/2) 2584000077399378 a001 1836311903/228826127*4106118243^(6/23) 2584000077399378 a001 102287808/4868641*2537720636^(2/9) 2584000077399378 a001 34111385/1368706081*4106118243^(12/23) 2584000077399378 a001 7778742049/228826127*2537720636^(1/5) 2584000077399378 a004 Fibonacci(40)*Lucas(47)/(1/2+sqrt(5)/2)^69 2584000077399378 a001 32951280099/228826127*2537720636^(2/15) 2584000077399378 a001 53316291173/228826127*2537720636^(1/9) 2584000077399378 a001 139583862445/228826127*2537720636^(1/15) 2584000077399378 a001 102287808/4868641*312119004989^(2/11) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^26/Lucas(48) 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^10/Lucas(40) 2584000077399378 a001 102334155/10749957122*73681302247^(1/2) 2584000077399378 a001 102287808/4868641*28143753123^(1/5) 2584000077399378 a001 102287808/4868641*10749957122^(5/24) 2584000077399378 a001 102334155/10749957122*10749957122^(13/24) 2584000077399378 a004 Fibonacci(40)*Lucas(49)/(1/2+sqrt(5)/2)^71 2584000077399378 a001 831985/228811001*17393796001^(4/7) 2584000077399378 a001 102334155/23725150497407*17393796001^(6/7) 2584000077399378 a001 102334155/817138163596*17393796001^(5/7) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^28/Lucas(50) 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^8/Lucas(40) 2584000077399378 a001 12586269025/228826127*23725150497407^(1/8) 2584000077399378 a001 12586269025/228826127*505019158607^(1/7) 2584000077399378 a001 12586269025/228826127*73681302247^(2/13) 2584000077399378 a001 831985/228811001*73681302247^(7/13) 2584000077399378 a004 Fibonacci(40)*Lucas(51)/(1/2+sqrt(5)/2)^73 2584000077399378 a001 14619165/10525900321*45537549124^(10/17) 2584000077399378 a001 102334155/23725150497407*45537549124^(14/17) 2584000077399378 a001 102334155/5600748293801*45537549124^(13/17) 2584000077399378 a001 34111385/440719107401*45537549124^(12/17) 2584000077399378 a001 102334155/505019158607*45537549124^(2/3) 2584000077399378 a001 9303105/28374454999*45537549124^(11/17) 2584000077399378 a001 32951280099/228826127*45537549124^(2/17) 2584000077399378 a001 14619165/10525900321*312119004989^(6/11) 2584000077399378 a001 14619165/10525900321*14662949395604^(10/21) 2584000077399378 a001 32951280099/228826127*14662949395604^(2/21) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^30/Lucas(52) 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^6/Lucas(40) 2584000077399378 a001 14619165/10525900321*192900153618^(5/9) 2584000077399378 a004 Fibonacci(40)*Lucas(53)/(1/2+sqrt(5)/2)^75 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^32/Lucas(54) 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^4/Lucas(40) 2584000077399378 a001 86267571272/228826127*23725150497407^(1/16) 2584000077399378 a001 34111385/64300051206*23725150497407^(1/2) 2584000077399378 a001 139583862445/228826127*45537549124^(1/17) 2584000077399378 a001 86267571272/228826127*73681302247^(1/13) 2584000077399378 a004 Fibonacci(40)*Lucas(55)/(1/2+sqrt(5)/2)^77 2584000077399378 a001 34111385/3020733700601*312119004989^(8/11) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^34/Lucas(56) 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^2/Lucas(40) 2584000077399378 a004 Fibonacci(40)*Lucas(57)/(1/2+sqrt(5)/2)^79 2584000077399378 a001 102334155/23725150497407*817138163596^(14/19) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^36/Lucas(58) 2584000077399378 a006 5^(1/2)*Fibonacci(58)/Lucas(40)/sqrt(5) 2584000077399378 a004 Fibonacci(40)*Lucas(59)/(1/2+sqrt(5)/2)^81 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^38/Lucas(60) 2584000077399378 a004 Fibonacci(60)/Lucas(40)/(1/2+sqrt(5)/2)^2 2584000077399378 a004 Fibonacci(40)*Lucas(61)/(1/2+sqrt(5)/2)^83 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^40/Lucas(62) 2584000077399378 a004 Fibonacci(62)/Lucas(40)/(1/2+sqrt(5)/2)^4 2584000077399378 a001 102334155/23725150497407*14662949395604^(2/3) 2584000077399378 a004 Fibonacci(40)*Lucas(63)/(1/2+sqrt(5)/2)^85 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^42/Lucas(64) 2584000077399378 a004 Fibonacci(64)/Lucas(40)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(40)*Lucas(65)/(1/2+sqrt(5)/2)^87 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^44/Lucas(66) 2584000077399378 a004 Fibonacci(66)/Lucas(40)/(1/2+sqrt(5)/2)^8 2584000077399378 a004 Fibonacci(40)*Lucas(67)/(1/2+sqrt(5)/2)^89 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^46/Lucas(68) 2584000077399378 a004 Fibonacci(68)/Lucas(40)/(1/2+sqrt(5)/2)^10 2584000077399378 a004 Fibonacci(40)*Lucas(69)/(1/2+sqrt(5)/2)^91 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^48/Lucas(70) 2584000077399378 a004 Fibonacci(70)/Lucas(40)/(1/2+sqrt(5)/2)^12 2584000077399378 a004 Fibonacci(40)*Lucas(71)/(1/2+sqrt(5)/2)^93 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^50/Lucas(72) 2584000077399378 a004 Fibonacci(72)/Lucas(40)/(1/2+sqrt(5)/2)^14 2584000077399378 a004 Fibonacci(40)*Lucas(73)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^52/Lucas(74) 2584000077399378 a004 Fibonacci(74)/Lucas(40)/(1/2+sqrt(5)/2)^16 2584000077399378 a004 Fibonacci(40)*Lucas(75)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^54/Lucas(76) 2584000077399378 a004 Fibonacci(76)/Lucas(40)/(1/2+sqrt(5)/2)^18 2584000077399378 a004 Fibonacci(40)*Lucas(77)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^56/Lucas(78) 2584000077399378 a004 Fibonacci(78)/Lucas(40)/(1/2+sqrt(5)/2)^20 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^58/Lucas(80) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^60/Lucas(82) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^62/Lucas(84) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^64/Lucas(86) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^66/Lucas(88) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^68/Lucas(90) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^70/Lucas(92) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^72/Lucas(94) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^74/Lucas(96) 2584000077399378 a004 Fibonacci(20)*Lucas(20)/(1/2+sqrt(5)/2)^22 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^76/Lucas(98) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^77/Lucas(99) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^78/Lucas(100) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^75/Lucas(97) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^73/Lucas(95) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^71/Lucas(93) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^69/Lucas(91) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^67/Lucas(89) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^65/Lucas(87) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^63/Lucas(85) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^61/Lucas(83) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^59/Lucas(81) 2584000077399378 a004 Fibonacci(82)/Lucas(40)/(1/2+sqrt(5)/2)^24 2584000077399378 a004 Fibonacci(84)/Lucas(40)/(1/2+sqrt(5)/2)^26 2584000077399378 a004 Fibonacci(86)/Lucas(40)/(1/2+sqrt(5)/2)^28 2584000077399378 a004 Fibonacci(88)/Lucas(40)/(1/2+sqrt(5)/2)^30 2584000077399378 a004 Fibonacci(90)/Lucas(40)/(1/2+sqrt(5)/2)^32 2584000077399378 a004 Fibonacci(92)/Lucas(40)/(1/2+sqrt(5)/2)^34 2584000077399378 a004 Fibonacci(94)/Lucas(40)/(1/2+sqrt(5)/2)^36 2584000077399378 a004 Fibonacci(96)/Lucas(40)/(1/2+sqrt(5)/2)^38 2584000077399378 a004 Fibonacci(100)/Lucas(40)/(1/2+sqrt(5)/2)^42 2584000077399378 a004 Fibonacci(98)/Lucas(40)/(1/2+sqrt(5)/2)^40 2584000077399378 a004 Fibonacci(97)/Lucas(40)/(1/2+sqrt(5)/2)^39 2584000077399378 a004 Fibonacci(99)/Lucas(40)/(1/2+sqrt(5)/2)^41 2584000077399378 a004 Fibonacci(95)/Lucas(40)/(1/2+sqrt(5)/2)^37 2584000077399378 a004 Fibonacci(93)/Lucas(40)/(1/2+sqrt(5)/2)^35 2584000077399378 a004 Fibonacci(91)/Lucas(40)/(1/2+sqrt(5)/2)^33 2584000077399378 a004 Fibonacci(89)/Lucas(40)/(1/2+sqrt(5)/2)^31 2584000077399378 a004 Fibonacci(87)/Lucas(40)/(1/2+sqrt(5)/2)^29 2584000077399378 a004 Fibonacci(85)/Lucas(40)/(1/2+sqrt(5)/2)^27 2584000077399378 a004 Fibonacci(83)/Lucas(40)/(1/2+sqrt(5)/2)^25 2584000077399378 a004 Fibonacci(81)/Lucas(40)/(1/2+sqrt(5)/2)^23 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^57/Lucas(79) 2584000077399378 a004 Fibonacci(79)/Lucas(40)/(1/2+sqrt(5)/2)^21 2584000077399378 a004 Fibonacci(40)*Lucas(78)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^55/Lucas(77) 2584000077399378 a004 Fibonacci(77)/Lucas(40)/(1/2+sqrt(5)/2)^19 2584000077399378 a004 Fibonacci(40)*Lucas(76)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^53/Lucas(75) 2584000077399378 a004 Fibonacci(75)/Lucas(40)/(1/2+sqrt(5)/2)^17 2584000077399378 a004 Fibonacci(40)*Lucas(74)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^51/Lucas(73) 2584000077399378 a004 Fibonacci(73)/Lucas(40)/(1/2+sqrt(5)/2)^15 2584000077399378 a004 Fibonacci(40)*Lucas(72)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^49/Lucas(71) 2584000077399378 a004 Fibonacci(71)/Lucas(40)/(1/2+sqrt(5)/2)^13 2584000077399378 a004 Fibonacci(40)*Lucas(70)/(1/2+sqrt(5)/2)^92 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^47/Lucas(69) 2584000077399378 a004 Fibonacci(69)/Lucas(40)/(1/2+sqrt(5)/2)^11 2584000077399378 a004 Fibonacci(40)*Lucas(68)/(1/2+sqrt(5)/2)^90 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^45/Lucas(67) 2584000077399378 a004 Fibonacci(67)/Lucas(40)/(1/2+sqrt(5)/2)^9 2584000077399378 a004 Fibonacci(40)*Lucas(66)/(1/2+sqrt(5)/2)^88 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^43/Lucas(65) 2584000077399378 a004 Fibonacci(65)/Lucas(40)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(40)*Lucas(64)/(1/2+sqrt(5)/2)^86 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^41/Lucas(63) 2584000077399378 a004 Fibonacci(63)/Lucas(40)/(1/2+sqrt(5)/2)^5 2584000077399378 a004 Fibonacci(40)*Lucas(62)/(1/2+sqrt(5)/2)^84 2584000077399378 a001 102334155/5600748293801*14662949395604^(13/21) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^39/Lucas(61) 2584000077399378 a004 Fibonacci(61)/Lucas(40)/(1/2+sqrt(5)/2)^3 2584000077399378 a004 Fibonacci(40)*Lucas(60)/(1/2+sqrt(5)/2)^82 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^37/Lucas(59) 2584000077399378 a004 Fibonacci(59)/Lucas(40)/(1/2+sqrt(5)/2) 2584000077399378 a004 Fibonacci(40)*Lucas(58)/(1/2+sqrt(5)/2)^80 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^35/Lucas(57) 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)/Lucas(40) 2584000077399378 a004 Fibonacci(40)*Lucas(56)/(1/2+sqrt(5)/2)^78 2584000077399378 a001 102334155/817138163596*505019158607^(5/8) 2584000077399378 a001 139583862445/228826127*14662949395604^(1/21) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^33/Lucas(55) 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^3/Lucas(40) 2584000077399378 a001 139583862445/228826127*192900153618^(1/18) 2584000077399378 a001 102334155/5600748293801*192900153618^(13/18) 2584000077399378 a001 102334155/23725150497407*192900153618^(7/9) 2584000077399378 a001 9303105/28374454999*192900153618^(11/18) 2584000077399378 a004 Fibonacci(40)*Lucas(54)/(1/2+sqrt(5)/2)^76 2584000077399378 a001 53316291173/228826127*312119004989^(1/11) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^31/Lucas(53) 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^5/Lucas(40) 2584000077399378 a001 102334155/119218851371*9062201101803^(1/2) 2584000077399378 a001 34111385/64300051206*73681302247^(8/13) 2584000077399378 a001 34111385/440719107401*73681302247^(9/13) 2584000077399378 a001 102334155/5600748293801*73681302247^(3/4) 2584000077399378 a001 12586269025/228826127*10749957122^(1/6) 2584000077399378 a004 Fibonacci(40)*Lucas(52)/(1/2+sqrt(5)/2)^74 2584000077399378 a001 53316291173/228826127*28143753123^(1/10) 2584000077399378 a001 225851433717/228826127*10749957122^(1/24) 2584000077399378 a001 20365011074/228826127*14662949395604^(1/9) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^29/Lucas(51) 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^7/Lucas(40) 2584000077399378 a001 102334155/45537549124*1322157322203^(1/2) 2584000077399378 a001 139583862445/228826127*10749957122^(1/16) 2584000077399378 a001 14619165/10525900321*28143753123^(3/5) 2584000077399378 a001 86267571272/228826127*10749957122^(1/12) 2584000077399378 a001 102334155/817138163596*28143753123^(7/10) 2584000077399378 a001 32951280099/228826127*10749957122^(1/8) 2584000077399378 a001 34111385/3020733700601*28143753123^(4/5) 2584000077399378 a004 Fibonacci(40)*Lucas(50)/(1/2+sqrt(5)/2)^72 2584000077399378 a001 225851433717/228826127*4106118243^(1/23) 2584000077399378 a001 102334155/17393796001*45537549124^(9/17) 2584000077399378 a001 7778742049/228826127*45537549124^(3/17) 2584000077399378 a001 102334155/17393796001*817138163596^(9/19) 2584000077399378 a001 102334155/17393796001*14662949395604^(3/7) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^27/Lucas(49) 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^9/Lucas(40) 2584000077399378 a001 7778742049/228826127*192900153618^(1/6) 2584000077399378 a001 102334155/17393796001*192900153618^(1/2) 2584000077399378 a001 831985/228811001*10749957122^(7/12) 2584000077399378 a001 102287808/4868641*4106118243^(5/23) 2584000077399378 a001 7778742049/228826127*10749957122^(3/16) 2584000077399378 a001 86267571272/228826127*4106118243^(2/23) 2584000077399378 a001 14619165/10525900321*10749957122^(5/8) 2584000077399378 a001 34111385/64300051206*10749957122^(2/3) 2584000077399378 a001 9303105/28374454999*10749957122^(11/16) 2584000077399378 a001 102334155/505019158607*10749957122^(17/24) 2584000077399378 a001 34111385/440719107401*10749957122^(3/4) 2584000077399378 a001 6765/228826126*10749957122^(19/24) 2584000077399378 a001 102334155/5600748293801*10749957122^(13/16) 2584000077399378 a001 34111385/3020733700601*10749957122^(5/6) 2584000077399378 a001 32951280099/228826127*4106118243^(3/23) 2584000077399378 a001 102334155/23725150497407*10749957122^(7/8) 2584000077399378 a001 102334155/17393796001*10749957122^(9/16) 2584000077399378 a004 Fibonacci(40)*Lucas(48)/(1/2+sqrt(5)/2)^70 2584000077399378 a001 12586269025/228826127*4106118243^(4/23) 2584000077399378 a001 1201881744/634430159*141422324^(5/13) 2584000077399378 a001 225851433717/228826127*1568397607^(1/22) 2584000077399378 a001 102334155/6643838879*312119004989^(5/11) 2584000077399378 a001 2971215073/228826127*312119004989^(1/5) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^25/Lucas(47) 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^11/Lucas(40) 2584000077399378 a001 102334155/6643838879*3461452808002^(5/12) 2584000077399378 a001 102334155/6643838879*28143753123^(1/2) 2584000077399378 a001 102334155/10749957122*4106118243^(13/23) 2584000077399378 a001 831985/228811001*4106118243^(14/23) 2584000077399378 a001 86267571272/228826127*1568397607^(1/11) 2584000077399378 a001 14619165/10525900321*4106118243^(15/23) 2584000077399378 a001 34111385/64300051206*4106118243^(16/23) 2584000077399378 a001 102334155/505019158607*4106118243^(17/23) 2584000077399378 a001 34111385/440719107401*4106118243^(18/23) 2584000077399378 a001 6765/228826126*4106118243^(19/23) 2584000077399378 a001 1836311903/228826127*1568397607^(3/11) 2584000077399378 a001 34111385/3020733700601*4106118243^(20/23) 2584000077399378 a001 102334155/23725150497407*4106118243^(21/23) 2584000077399378 a001 32951280099/228826127*1568397607^(3/22) 2584000077399378 a004 Fibonacci(40)*Lucas(46)/(1/2+sqrt(5)/2)^68 2584000077399378 a001 12586269025/228826127*1568397607^(2/11) 2584000077399378 a001 102287808/4868641*1568397607^(5/22) 2584000077399378 a001 2971215073/228826127*1568397607^(1/4) 2584000077399378 a001 225851433717/228826127*599074578^(1/21) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^23/Lucas(45) 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^13/Lucas(40) 2584000077399378 a001 1134903170/228826127*73681302247^(1/4) 2584000077399378 a001 34111385/1368706081*1568397607^(6/11) 2584000077399378 a001 9303105/230701876*4106118243^(1/2) 2584000077399378 a001 139583862445/228826127*599074578^(1/14) 2584000077399378 a001 102334155/10749957122*1568397607^(13/22) 2584000077399378 a001 831985/228811001*1568397607^(7/11) 2584000077399378 a001 86267571272/228826127*599074578^(2/21) 2584000077399378 a001 14619165/10525900321*1568397607^(15/22) 2584000077399378 a001 34111385/64300051206*1568397607^(8/11) 2584000077399378 a001 9303105/28374454999*1568397607^(3/4) 2584000077399378 a001 102334155/505019158607*1568397607^(17/22) 2584000077399378 a001 34111385/440719107401*1568397607^(9/11) 2584000077399378 a001 6765/228826126*1568397607^(19/22) 2584000077399378 a001 34111385/3020733700601*1568397607^(10/11) 2584000077399378 a001 102334155/23725150497407*1568397607^(21/22) 2584000077399378 a001 32951280099/228826127*599074578^(1/7) 2584000077399378 a004 Fibonacci(40)*Lucas(44)/(1/2+sqrt(5)/2)^66 2584000077399378 a001 20365011074/228826127*599074578^(1/6) 2584000077399378 a001 701408733/228826127*599074578^(1/3) 2584000077399378 a001 12586269025/228826127*599074578^(4/21) 2584000077399378 a001 7778742049/228826127*599074578^(3/14) 2584000077399378 a001 102287808/4868641*599074578^(5/21) 2584000077399378 a001 1836311903/228826127*599074578^(2/7) 2584000077399378 a001 1836311903/969323029*141422324^(5/13) 2584000077399378 a001 267084832/33281921*141422324^(4/13) 2584000077399378 a001 225851433717/228826127*228826127^(1/20) 2584000077399378 a001 102334155/969323029*2537720636^(7/15) 2584000077399378 a001 433494437/228826127*2537720636^(1/3) 2584000077399378 a001 14619165/224056801*599074578^(11/21) 2584000077399378 a001 102334155/969323029*17393796001^(3/7) 2584000077399378 a001 102334155/969323029*45537549124^(7/17) 2584000077399378 a001 433494437/228826127*45537549124^(5/17) 2584000077399378 a001 433494437/228826127*312119004989^(3/11) 2584000077399378 a001 102334155/969323029*14662949395604^(1/3) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^21/Lucas(43) 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^15/Lucas(40) 2584000077399378 a001 433494437/228826127*192900153618^(5/18) 2584000077399378 a001 102334155/969323029*192900153618^(7/18) 2584000077399378 a001 433494437/228826127*28143753123^(3/10) 2584000077399378 a001 433494437/228826127*10749957122^(5/16) 2584000077399378 a001 102334155/969323029*10749957122^(7/16) 2584000077399378 a001 34111385/1368706081*599074578^(4/7) 2584000077399378 a001 102334155/10749957122*599074578^(13/21) 2584000077399378 a001 102334155/17393796001*599074578^(9/14) 2584000077399378 a001 831985/228811001*599074578^(2/3) 2584000077399378 a001 86267571272/228826127*228826127^(1/10) 2584000077399378 a001 14619165/10525900321*599074578^(5/7) 2584000077399378 a001 7778742049/1568397607*141422324^(1/3) 2584000077399378 a001 433494437/228826127*599074578^(5/14) 2584000077399378 a001 34111385/64300051206*599074578^(16/21) 2584000077399378 a001 9303105/28374454999*599074578^(11/14) 2584000077399378 a001 102334155/505019158607*599074578^(17/21) 2584000077399378 a001 102334155/817138163596*599074578^(5/6) 2584000077399378 a001 20365011074/4106118243*141422324^(1/3) 2584000077399378 a001 53316291173/228826127*228826127^(1/8) 2584000077399378 a001 34111385/440719107401*599074578^(6/7) 2584000077399378 a001 53316291173/10749957122*141422324^(1/3) 2584000077399378 a001 139583862445/28143753123*141422324^(1/3) 2584000077399378 a001 365435296162/73681302247*141422324^(1/3) 2584000077399378 a001 956722026041/192900153618*141422324^(1/3) 2584000077399378 a001 2504730781961/505019158607*141422324^(1/3) 2584000077399378 a001 10610209857723/2139295485799*141422324^(1/3) 2584000077399378 a001 4052739537881/817138163596*141422324^(1/3) 2584000077399378 a001 140728068720/28374454999*141422324^(1/3) 2584000077399378 a001 591286729879/119218851371*141422324^(1/3) 2584000077399378 a001 225851433717/45537549124*141422324^(1/3) 2584000077399378 a001 86267571272/17393796001*141422324^(1/3) 2584000077399378 a001 32951280099/6643838879*141422324^(1/3) 2584000077399378 a001 102334155/969323029*599074578^(1/2) 2584000077399378 a001 6765/228826126*599074578^(19/21) 2584000077399378 a001 1144206275/230701876*141422324^(1/3) 2584000077399378 a001 102334155/5600748293801*599074578^(13/14) 2584000077399378 a001 34111385/3020733700601*599074578^(20/21) 2584000077399378 a004 Fibonacci(40)*Lucas(42)/(1/2+sqrt(5)/2)^64 2584000077399378 a001 32951280099/228826127*228826127^(3/20) 2584000077399378 a001 12586269025/1568397607*141422324^(4/13) 2584000077399378 a001 4807526976/969323029*141422324^(1/3) 2584000077399378 a001 39088169/141422324*87403803^(1/2) 2584000077399378 a001 10983760033/1368706081*141422324^(4/13) 2584000077399378 a001 43133785636/5374978561*141422324^(4/13) 2584000077399378 a001 75283811239/9381251041*141422324^(4/13) 2584000077399378 a001 591286729879/73681302247*141422324^(4/13) 2584000077399378 a001 86000486440/10716675201*141422324^(4/13) 2584000077399378 a001 4052739537881/505019158607*141422324^(4/13) 2584000077399378 a001 3278735159921/408569081798*141422324^(4/13) 2584000077399378 a001 2504730781961/312119004989*141422324^(4/13) 2584000077399378 a001 956722026041/119218851371*141422324^(4/13) 2584000077399378 a001 182717648081/22768774562*141422324^(4/13) 2584000077399378 a001 139583862445/17393796001*141422324^(4/13) 2584000077399378 a001 53316291173/6643838879*141422324^(4/13) 2584000077399378 a001 12586269025/228826127*228826127^(1/5) 2584000077399378 a001 10182505537/1268860318*141422324^(4/13) 2584000077399378 a001 102287808/4868641*228826127^(1/4) 2584000077399378 a001 10182505537/299537289*141422324^(3/13) 2584000077399378 a001 7778742049/969323029*141422324^(4/13) 2584000077399378 a001 267914296/228826127*228826127^(2/5) 2584000077399378 a001 39088169/192900153618*87403803^(17/19) 2584000077399378 a001 1836311903/228826127*228826127^(3/10) 2584000077399378 a001 701408733/228826127*228826127^(7/20) 2584000077399378 a001 701408733/370248451*141422324^(5/13) 2584000077399378 a001 34111385/199691526*228826127^(1/2) 2584000077399378 a001 225851433717/228826127*87403803^(1/19) 2584000077399378 a001 53316291173/1568397607*141422324^(3/13) 2584000077399378 a001 165580141/228826127*45537549124^(1/3) 2584000077399378 a001 102334155/370248451*817138163596^(1/3) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^19/Lucas(41) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^17/Lucas(40) 2584000077399378 a001 139583862445/4106118243*141422324^(3/13) 2584000077399378 a001 182717648081/5374978561*141422324^(3/13) 2584000077399378 a001 956722026041/28143753123*141422324^(3/13) 2584000077399378 a001 2504730781961/73681302247*141422324^(3/13) 2584000077399378 a001 3278735159921/96450076809*141422324^(3/13) 2584000077399378 a001 10610209857723/312119004989*141422324^(3/13) 2584000077399378 a001 4052739537881/119218851371*141422324^(3/13) 2584000077399378 a001 387002188980/11384387281*141422324^(3/13) 2584000077399378 a001 591286729879/17393796001*141422324^(3/13) 2584000077399378 a001 225851433717/6643838879*141422324^(3/13) 2584000077399378 a001 1135099622/33391061*141422324^(3/13) 2584000077399378 a001 433494437/228826127*228826127^(3/8) 2584000077399378 a001 43133785636/299537289*141422324^(2/13) 2584000077399378 a001 32951280099/969323029*141422324^(3/13) 2584000077399378 a004 Fibonacci(42)*Lucas(41)/(1/2+sqrt(5)/2)^65 2584000077399378 a001 1836311903/370248451*141422324^(1/3) 2584000077399378 a001 14619165/224056801*228826127^(11/20) 2584000077399378 a001 165580141/370248451*141422324^(6/13) 2584000077399378 a001 32264490531/224056801*141422324^(2/13) 2584000077399378 a001 2971215073/370248451*141422324^(4/13) 2584000077399378 a001 591286729879/4106118243*141422324^(2/13) 2584000077399378 a004 Fibonacci(44)*Lucas(41)/(1/2+sqrt(5)/2)^67 2584000077399378 a001 774004377960/5374978561*141422324^(2/13) 2584000077399378 a001 34111385/1368706081*228826127^(3/5) 2584000077399378 a001 4052739537881/28143753123*141422324^(2/13) 2584000077399378 a001 1515744265389/10525900321*141422324^(2/13) 2584000077399378 a001 3278735159921/22768774562*141422324^(2/13) 2584000077399378 a001 2504730781961/17393796001*141422324^(2/13) 2584000077399378 a001 956722026041/6643838879*141422324^(2/13) 2584000077399378 a001 182717648081/1268860318*141422324^(2/13) 2584000077399378 a004 Fibonacci(46)*Lucas(41)/(1/2+sqrt(5)/2)^69 2584000077399378 a004 Fibonacci(48)*Lucas(41)/(1/2+sqrt(5)/2)^71 2584000077399378 a004 Fibonacci(50)*Lucas(41)/(1/2+sqrt(5)/2)^73 2584000077399378 a004 Fibonacci(52)*Lucas(41)/(1/2+sqrt(5)/2)^75 2584000077399378 a004 Fibonacci(54)*Lucas(41)/(1/2+sqrt(5)/2)^77 2584000077399378 a004 Fibonacci(56)*Lucas(41)/(1/2+sqrt(5)/2)^79 2584000077399378 a004 Fibonacci(58)*Lucas(41)/(1/2+sqrt(5)/2)^81 2584000077399378 a004 Fibonacci(60)*Lucas(41)/(1/2+sqrt(5)/2)^83 2584000077399378 a004 Fibonacci(62)*Lucas(41)/(1/2+sqrt(5)/2)^85 2584000077399378 a004 Fibonacci(64)*Lucas(41)/(1/2+sqrt(5)/2)^87 2584000077399378 a004 Fibonacci(66)*Lucas(41)/(1/2+sqrt(5)/2)^89 2584000077399378 a004 Fibonacci(68)*Lucas(41)/(1/2+sqrt(5)/2)^91 2584000077399378 a004 Fibonacci(70)*Lucas(41)/(1/2+sqrt(5)/2)^93 2584000077399378 a004 Fibonacci(72)*Lucas(41)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(74)*Lucas(41)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(76)*Lucas(41)/(1/2+sqrt(5)/2)^99 2584000077399378 a001 2/165580141*(1/2+1/2*5^(1/2))^59 2584000077399378 a004 Fibonacci(77)*Lucas(41)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(75)*Lucas(41)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(73)*Lucas(41)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(71)*Lucas(41)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(69)*Lucas(41)/(1/2+sqrt(5)/2)^92 2584000077399378 a004 Fibonacci(67)*Lucas(41)/(1/2+sqrt(5)/2)^90 2584000077399378 a004 Fibonacci(65)*Lucas(41)/(1/2+sqrt(5)/2)^88 2584000077399378 a004 Fibonacci(63)*Lucas(41)/(1/2+sqrt(5)/2)^86 2584000077399378 a004 Fibonacci(61)*Lucas(41)/(1/2+sqrt(5)/2)^84 2584000077399378 a004 Fibonacci(59)*Lucas(41)/(1/2+sqrt(5)/2)^82 2584000077399378 a004 Fibonacci(57)*Lucas(41)/(1/2+sqrt(5)/2)^80 2584000077399378 a004 Fibonacci(55)*Lucas(41)/(1/2+sqrt(5)/2)^78 2584000077399378 a004 Fibonacci(53)*Lucas(41)/(1/2+sqrt(5)/2)^76 2584000077399378 a004 Fibonacci(51)*Lucas(41)/(1/2+sqrt(5)/2)^74 2584000077399378 a004 Fibonacci(49)*Lucas(41)/(1/2+sqrt(5)/2)^72 2584000077399378 a004 Fibonacci(47)*Lucas(41)/(1/2+sqrt(5)/2)^70 2584000077399378 a004 Fibonacci(45)*Lucas(41)/(1/2+sqrt(5)/2)^68 2584000077399378 a001 102334155/6643838879*228826127^(5/8) 2584000077399378 a001 39088169/505019158607*87403803^(18/19) 2584000077399378 a001 102334155/10749957122*228826127^(13/20) 2584000077399378 a001 182717648081/299537289*141422324^(1/13) 2584000077399378 a001 139583862445/969323029*141422324^(2/13) 2584000077399378 a004 Fibonacci(43)*Lucas(41)/(1/2+sqrt(5)/2)^66 2584000077399378 a001 831985/228811001*228826127^(7/10) 2584000077399378 a001 133957148/299537289*2537720636^(2/5) 2584000077399378 a001 133957148/299537289*45537549124^(6/17) 2584000077399378 a001 133957148/299537289*14662949395604^(2/7) 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^18/Lucas(42) 2584000077399378 a001 133957148/299537289*192900153618^(1/3) 2584000077399378 a001 133957148/299537289*10749957122^(3/8) 2584000077399378 a001 133957148/299537289*4106118243^(9/23) 2584000077399378 a001 133957148/299537289*1568397607^(9/22) 2584000077399378 a001 86267571272/228826127*87403803^(2/19) 2584000077399378 a001 14619165/10525900321*228826127^(3/4) 2584000077399378 a001 133957148/299537289*599074578^(3/7) 2584000077399378 a001 956722026041/1568397607*141422324^(1/13) 2584000077399378 a001 12586269025/370248451*141422324^(3/13) 2584000077399378 a001 2504730781961/4106118243*141422324^(1/13) 2584000077399378 a001 3278735159921/5374978561*141422324^(1/13) 2584000077399378 a004 Fibonacci(42)*Lucas(43)/(1/2+sqrt(5)/2)^67 2584000077399378 a001 10610209857723/17393796001*141422324^(1/13) 2584000077399378 a001 4052739537881/6643838879*141422324^(1/13) 2584000077399378 a001 34111385/64300051206*228826127^(4/5) 2584000077399378 a001 1134903780/1860499*141422324^(1/13) 2584000077399378 a001 267914296/1568397607*2537720636^(4/9) 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^20/Lucas(44) 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^16/Lucas(42) 2584000077399378 a001 233802911/199691526*23725150497407^(1/4) 2584000077399378 a001 267914296/1568397607*23725150497407^(5/16) 2584000077399378 a001 267914296/1568397607*505019158607^(5/14) 2584000077399378 a001 233802911/199691526*73681302247^(4/13) 2584000077399378 a001 267914296/1568397607*73681302247^(5/13) 2584000077399378 a001 267914296/1568397607*28143753123^(2/5) 2584000077399378 a001 233802911/199691526*10749957122^(1/3) 2584000077399378 a001 267914296/1568397607*10749957122^(5/12) 2584000077399378 a001 233802911/199691526*4106118243^(8/23) 2584000077399378 a001 267914296/1568397607*4106118243^(10/23) 2584000077399378 a001 233802911/199691526*1568397607^(4/11) 2584000077399378 a001 267914296/1568397607*1568397607^(5/11) 2584000077399378 a004 Fibonacci(42)*Lucas(45)/(1/2+sqrt(5)/2)^69 2584000077399378 a001 267914296/23725150497407*2537720636^(8/9) 2584000077399378 a001 10946/599074579*2537720636^(13/15) 2584000077399378 a001 133957148/1730726404001*2537720636^(4/5) 2584000077399378 a001 267914296/2139295485799*2537720636^(7/9) 2584000077399378 a001 66978574/204284540899*2537720636^(11/15) 2584000077399378 a001 133957148/96450076809*2537720636^(2/3) 2584000077399378 a001 66978574/11384387281*2537720636^(3/5) 2584000077399378 a001 133957148/5374978561*2537720636^(8/15) 2584000077399378 a001 9238424/599786069*2537720636^(5/9) 2584000077399378 a001 102334155/505019158607*228826127^(17/20) 2584000077399378 a001 1836311903/599074578*17393796001^(2/7) 2584000077399378 a001 267914296/4106118243*312119004989^(2/5) 2584000077399378 a001 1836311903/599074578*14662949395604^(2/9) 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^22/Lucas(46) 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^14/Lucas(42) 2584000077399378 a001 1836311903/599074578*505019158607^(1/4) 2584000077399378 a001 1836311903/599074578*10749957122^(7/24) 2584000077399378 a001 267914296/4106118243*10749957122^(11/24) 2584000077399378 a001 267084832/33281921*2537720636^(4/15) 2584000077399378 a001 1836311903/599074578*4106118243^(7/23) 2584000077399378 a001 12586269025/599074578*2537720636^(2/9) 2584000077399378 a001 267914296/4106118243*4106118243^(11/23) 2584000077399378 a001 10182505537/299537289*2537720636^(1/5) 2584000077399378 a004 Fibonacci(42)*Lucas(47)/(1/2+sqrt(5)/2)^71 2584000077399378 a001 43133785636/299537289*2537720636^(2/15) 2584000077399378 a001 139583862445/599074578*2537720636^(1/9) 2584000077399378 a001 182717648081/299537289*2537720636^(1/15) 2584000077399378 a001 133957148/5374978561*45537549124^(8/17) 2584000077399378 a001 267084832/33281921*45537549124^(4/17) 2584000077399378 a001 133957148/5374978561*14662949395604^(8/21) 2584000077399378 a001 267084832/33281921*14662949395604^(4/21) 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^24/Lucas(48) 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^12/Lucas(42) 2584000077399378 a001 267084832/33281921*192900153618^(2/9) 2584000077399378 a001 133957148/5374978561*192900153618^(4/9) 2584000077399378 a001 267084832/33281921*73681302247^(3/13) 2584000077399378 a001 133957148/5374978561*73681302247^(6/13) 2584000077399378 a001 267084832/33281921*10749957122^(1/4) 2584000077399378 a001 133957148/5374978561*10749957122^(1/2) 2584000077399378 a004 Fibonacci(42)*Lucas(49)/(1/2+sqrt(5)/2)^73 2584000077399378 a001 267914296/2139295485799*17393796001^(5/7) 2584000077399378 a001 267914296/73681302247*17393796001^(4/7) 2584000077399378 a001 12586269025/599074578*312119004989^(2/11) 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^26/Lucas(50) 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^10/Lucas(42) 2584000077399378 a001 267914296/28143753123*73681302247^(1/2) 2584000077399378 a001 12586269025/599074578*28143753123^(1/5) 2584000077399378 a004 Fibonacci(42)*Lucas(51)/(1/2+sqrt(5)/2)^75 2584000077399378 a001 53316291173/599074578*17393796001^(1/7) 2584000077399378 a001 10946/599074579*45537549124^(13/17) 2584000077399378 a001 133957148/1730726404001*45537549124^(12/17) 2584000077399378 a001 267914296/1322157322203*45537549124^(2/3) 2584000077399378 a001 133957148/96450076809*45537549124^(10/17) 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^28/Lucas(52) 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^8/Lucas(42) 2584000077399378 a001 10983760033/199691526*23725150497407^(1/8) 2584000077399378 a001 10983760033/199691526*505019158607^(1/7) 2584000077399378 a001 10983760033/199691526*73681302247^(2/13) 2584000077399378 a001 267914296/73681302247*73681302247^(7/13) 2584000077399378 a001 43133785636/299537289*45537549124^(2/17) 2584000077399378 a004 Fibonacci(42)*Lucas(53)/(1/2+sqrt(5)/2)^77 2584000077399378 a001 133957148/96450076809*312119004989^(6/11) 2584000077399378 a001 133957148/96450076809*14662949395604^(10/21) 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^30/Lucas(54) 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^6/Lucas(42) 2584000077399378 a001 182717648081/299537289*45537549124^(1/17) 2584000077399378 a001 133957148/96450076809*192900153618^(5/9) 2584000077399378 a004 Fibonacci(42)*Lucas(55)/(1/2+sqrt(5)/2)^79 2584000077399378 a001 267914296/2139295485799*312119004989^(7/11) 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^32/Lucas(56) 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^4/Lucas(42) 2584000077399378 a004 Fibonacci(42)*Lucas(57)/(1/2+sqrt(5)/2)^81 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^34/Lucas(58) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^2/Lucas(42) 2584000077399378 a004 Fibonacci(42)*Lucas(59)/(1/2+sqrt(5)/2)^83 2584000077399378 a001 133957148/1730726404001*14662949395604^(4/7) 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^36/Lucas(60) 2584000077399378 a006 5^(1/2)*Fibonacci(60)/Lucas(42)/sqrt(5) 2584000077399378 a004 Fibonacci(42)*Lucas(61)/(1/2+sqrt(5)/2)^85 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^38/Lucas(62) 2584000077399378 a004 Fibonacci(62)/Lucas(42)/(1/2+sqrt(5)/2)^2 2584000077399378 a004 Fibonacci(42)*Lucas(63)/(1/2+sqrt(5)/2)^87 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^40/Lucas(64) 2584000077399378 a004 Fibonacci(64)/Lucas(42)/(1/2+sqrt(5)/2)^4 2584000077399378 a004 Fibonacci(42)*Lucas(65)/(1/2+sqrt(5)/2)^89 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^42/Lucas(66) 2584000077399378 a004 Fibonacci(66)/Lucas(42)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(42)*Lucas(67)/(1/2+sqrt(5)/2)^91 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^44/Lucas(68) 2584000077399378 a004 Fibonacci(68)/Lucas(42)/(1/2+sqrt(5)/2)^8 2584000077399378 a004 Fibonacci(42)*Lucas(69)/(1/2+sqrt(5)/2)^93 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^46/Lucas(70) 2584000077399378 a004 Fibonacci(70)/Lucas(42)/(1/2+sqrt(5)/2)^10 2584000077399378 a004 Fibonacci(42)*Lucas(71)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^48/Lucas(72) 2584000077399378 a004 Fibonacci(72)/Lucas(42)/(1/2+sqrt(5)/2)^12 2584000077399378 a004 Fibonacci(42)*Lucas(73)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^50/Lucas(74) 2584000077399378 a004 Fibonacci(74)/Lucas(42)/(1/2+sqrt(5)/2)^14 2584000077399378 a004 Fibonacci(42)*Lucas(75)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^52/Lucas(76) 2584000077399378 a004 Fibonacci(76)/Lucas(42)/(1/2+sqrt(5)/2)^16 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^54/Lucas(78) 2584000077399378 a004 Fibonacci(78)/Lucas(42)/(1/2+sqrt(5)/2)^18 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^56/Lucas(80) 2584000077399378 a004 Fibonacci(80)/Lucas(42)/(1/2+sqrt(5)/2)^20 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^58/Lucas(82) 2584000077399378 a004 Fibonacci(82)/Lucas(42)/(1/2+sqrt(5)/2)^22 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^60/Lucas(84) 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^62/Lucas(86) 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^64/Lucas(88) 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^66/Lucas(90) 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^68/Lucas(92) 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^70/Lucas(94) 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^72/Lucas(96) 2584000077399378 a004 Fibonacci(21)*Lucas(21)/(1/2+sqrt(5)/2)^24 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^74/Lucas(98) 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^76/Lucas(100) 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^73/Lucas(97) 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^75/Lucas(99) 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^71/Lucas(95) 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^69/Lucas(93) 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^67/Lucas(91) 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^65/Lucas(89) 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^63/Lucas(87) 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^61/Lucas(85) 2584000077399378 a004 Fibonacci(86)/Lucas(42)/(1/2+sqrt(5)/2)^26 2584000077399378 a004 Fibonacci(88)/Lucas(42)/(1/2+sqrt(5)/2)^28 2584000077399378 a004 Fibonacci(90)/Lucas(42)/(1/2+sqrt(5)/2)^30 2584000077399378 a004 Fibonacci(92)/Lucas(42)/(1/2+sqrt(5)/2)^32 2584000077399378 a004 Fibonacci(94)/Lucas(42)/(1/2+sqrt(5)/2)^34 2584000077399378 a004 Fibonacci(96)/Lucas(42)/(1/2+sqrt(5)/2)^36 2584000077399378 a004 Fibonacci(100)/Lucas(42)/(1/2+sqrt(5)/2)^40 2584000077399378 a004 Fibonacci(98)/Lucas(42)/(1/2+sqrt(5)/2)^38 2584000077399378 a004 Fibonacci(99)/Lucas(42)/(1/2+sqrt(5)/2)^39 2584000077399378 a004 Fibonacci(97)/Lucas(42)/(1/2+sqrt(5)/2)^37 2584000077399378 a004 Fibonacci(95)/Lucas(42)/(1/2+sqrt(5)/2)^35 2584000077399378 a004 Fibonacci(93)/Lucas(42)/(1/2+sqrt(5)/2)^33 2584000077399378 a004 Fibonacci(91)/Lucas(42)/(1/2+sqrt(5)/2)^31 2584000077399378 a004 Fibonacci(89)/Lucas(42)/(1/2+sqrt(5)/2)^29 2584000077399378 a004 Fibonacci(87)/Lucas(42)/(1/2+sqrt(5)/2)^27 2584000077399378 a004 Fibonacci(85)/Lucas(42)/(1/2+sqrt(5)/2)^25 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^59/Lucas(83) 2584000077399378 a004 Fibonacci(83)/Lucas(42)/(1/2+sqrt(5)/2)^23 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^57/Lucas(81) 2584000077399378 a004 Fibonacci(81)/Lucas(42)/(1/2+sqrt(5)/2)^21 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^55/Lucas(79) 2584000077399378 a004 Fibonacci(79)/Lucas(42)/(1/2+sqrt(5)/2)^19 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^53/Lucas(77) 2584000077399378 a004 Fibonacci(77)/Lucas(42)/(1/2+sqrt(5)/2)^17 2584000077399378 a004 Fibonacci(42)*Lucas(76)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^51/Lucas(75) 2584000077399378 a004 Fibonacci(75)/Lucas(42)/(1/2+sqrt(5)/2)^15 2584000077399378 a004 Fibonacci(42)*Lucas(74)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^49/Lucas(73) 2584000077399378 a004 Fibonacci(73)/Lucas(42)/(1/2+sqrt(5)/2)^13 2584000077399378 a004 Fibonacci(42)*Lucas(72)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^47/Lucas(71) 2584000077399378 a004 Fibonacci(71)/Lucas(42)/(1/2+sqrt(5)/2)^11 2584000077399378 a004 Fibonacci(42)*Lucas(70)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^45/Lucas(69) 2584000077399378 a004 Fibonacci(69)/Lucas(42)/(1/2+sqrt(5)/2)^9 2584000077399378 a004 Fibonacci(42)*Lucas(68)/(1/2+sqrt(5)/2)^92 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^43/Lucas(67) 2584000077399378 a004 Fibonacci(67)/Lucas(42)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(42)*Lucas(66)/(1/2+sqrt(5)/2)^90 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^41/Lucas(65) 2584000077399378 a004 Fibonacci(65)/Lucas(42)/(1/2+sqrt(5)/2)^5 2584000077399378 a001 10946/599074579*14662949395604^(13/21) 2584000077399378 a004 Fibonacci(42)*Lucas(64)/(1/2+sqrt(5)/2)^88 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^39/Lucas(63) 2584000077399378 a004 Fibonacci(63)/Lucas(42)/(1/2+sqrt(5)/2)^3 2584000077399378 a004 Fibonacci(42)*Lucas(62)/(1/2+sqrt(5)/2)^86 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^37/Lucas(61) 2584000077399378 a004 Fibonacci(61)/Lucas(42)/(1/2+sqrt(5)/2) 2584000077399378 a004 Fibonacci(42)*Lucas(60)/(1/2+sqrt(5)/2)^84 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^35/Lucas(59) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)/Lucas(42) 2584000077399378 a004 Fibonacci(42)*Lucas(58)/(1/2+sqrt(5)/2)^82 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^33/Lucas(57) 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^3/Lucas(42) 2584000077399378 a004 Fibonacci(42)*Lucas(56)/(1/2+sqrt(5)/2)^80 2584000077399378 a001 139583862445/599074578*312119004989^(1/11) 2584000077399378 a001 267913919/710646*73681302247^(1/13) 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^31/Lucas(55) 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^5/Lucas(42) 2584000077399378 a001 267914296/312119004989*9062201101803^(1/2) 2584000077399378 a001 133957148/1730726404001*192900153618^(2/3) 2584000077399378 a001 10946/599074579*192900153618^(13/18) 2584000077399378 a004 Fibonacci(42)*Lucas(54)/(1/2+sqrt(5)/2)^78 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^29/Lucas(53) 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^7/Lucas(42) 2584000077399378 a001 267914296/119218851371*1322157322203^(1/2) 2584000077399378 a001 267914296/505019158607*73681302247^(8/13) 2584000077399378 a001 133957148/1730726404001*73681302247^(9/13) 2584000077399378 a001 139583862445/599074578*28143753123^(1/10) 2584000077399378 a001 10946/599074579*73681302247^(3/4) 2584000077399378 a001 267914296/23725150497407*73681302247^(10/13) 2584000077399378 a004 Fibonacci(42)*Lucas(52)/(1/2+sqrt(5)/2)^76 2584000077399378 a001 66978574/11384387281*45537549124^(9/17) 2584000077399378 a001 591286729879/599074578*10749957122^(1/24) 2584000077399378 a001 10182505537/299537289*45537549124^(3/17) 2584000077399378 a001 10182505537/299537289*14662949395604^(1/7) 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^27/Lucas(51) 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^9/Lucas(42) 2584000077399378 a001 10182505537/299537289*192900153618^(1/6) 2584000077399378 a001 66978574/11384387281*192900153618^(1/2) 2584000077399378 a001 12586269025/599074578*10749957122^(5/24) 2584000077399378 a001 267913919/710646*10749957122^(1/12) 2584000077399378 a001 133957148/96450076809*28143753123^(3/5) 2584000077399378 a001 267914296/2139295485799*28143753123^(7/10) 2584000077399378 a001 267914296/23725150497407*28143753123^(4/5) 2584000077399378 a001 43133785636/299537289*10749957122^(1/8) 2584000077399378 a001 10983760033/199691526*10749957122^(1/6) 2584000077399378 a004 Fibonacci(42)*Lucas(50)/(1/2+sqrt(5)/2)^74 2584000077399378 a001 10182505537/299537289*10749957122^(3/16) 2584000077399378 a001 591286729879/599074578*4106118243^(1/23) 2584000077399378 a001 9238424/599786069*312119004989^(5/11) 2584000077399378 a001 7778742049/599074578*312119004989^(1/5) 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^25/Lucas(49) 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^11/Lucas(42) 2584000077399378 a001 9238424/599786069*3461452808002^(5/12) 2584000077399378 a001 267914296/28143753123*10749957122^(13/24) 2584000077399378 a001 9238424/599786069*28143753123^(1/2) 2584000077399378 a001 591286729879/969323029*141422324^(1/13) 2584000077399378 a001 267914296/73681302247*10749957122^(7/12) 2584000077399378 a001 267913919/710646*4106118243^(2/23) 2584000077399378 a001 66978574/11384387281*10749957122^(9/16) 2584000077399378 a001 133957148/96450076809*10749957122^(5/8) 2584000077399378 a001 267914296/505019158607*10749957122^(2/3) 2584000077399378 a001 66978574/204284540899*10749957122^(11/16) 2584000077399378 a001 267914296/1322157322203*10749957122^(17/24) 2584000077399378 a001 133957148/1730726404001*10749957122^(3/4) 2584000077399378 a001 267084832/33281921*4106118243^(6/23) 2584000077399378 a001 267914296/9062201101803*10749957122^(19/24) 2584000077399378 a001 10946/599074579*10749957122^(13/16) 2584000077399378 a001 267914296/23725150497407*10749957122^(5/6) 2584000077399378 a001 43133785636/299537289*4106118243^(3/23) 2584000077399378 a004 Fibonacci(42)*Lucas(48)/(1/2+sqrt(5)/2)^72 2584000077399378 a001 10983760033/199691526*4106118243^(4/23) 2584000077399378 a001 12586269025/599074578*4106118243^(5/23) 2584000077399378 a001 591286729879/599074578*1568397607^(1/22) 2584000077399378 a001 133957148/5374978561*4106118243^(12/23) 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^23/Lucas(47) 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^13/Lucas(42) 2584000077399378 a001 2971215073/599074578*73681302247^(1/4) 2584000077399378 a001 267914296/28143753123*4106118243^(13/23) 2584000077399378 a001 267914296/73681302247*4106118243^(14/23) 2584000077399378 a001 267913919/710646*1568397607^(1/11) 2584000077399378 a001 133957148/96450076809*4106118243^(15/23) 2584000077399378 a001 267914296/505019158607*4106118243^(16/23) 2584000077399378 a001 267914296/1322157322203*4106118243^(17/23) 2584000077399378 a001 133957148/1730726404001*4106118243^(18/23) 2584000077399378 a001 267914296/9062201101803*4106118243^(19/23) 2584000077399378 a001 267914296/23725150497407*4106118243^(20/23) 2584000077399378 a001 267914296/6643838879*4106118243^(1/2) 2584000077399378 a001 43133785636/299537289*1568397607^(3/22) 2584000077399378 a004 Fibonacci(42)*Lucas(46)/(1/2+sqrt(5)/2)^70 2584000077399378 a001 1836311903/599074578*1568397607^(7/22) 2584000077399378 a001 10983760033/199691526*1568397607^(2/11) 2584000077399378 a001 66978574/634430159*2537720636^(7/15) 2584000077399378 a001 12586269025/599074578*1568397607^(5/22) 2584000077399378 a001 267084832/33281921*1568397607^(3/11) 2584000077399378 a001 567451585/299537289*2537720636^(1/3) 2584000077399378 a001 7778742049/599074578*1568397607^(1/4) 2584000077399378 a001 591286729879/599074578*599074578^(1/21) 2584000077399378 a001 267914296/4106118243*1568397607^(1/2) 2584000077399378 a001 66978574/634430159*17393796001^(3/7) 2584000077399378 a001 66978574/634430159*45537549124^(7/17) 2584000077399378 a001 567451585/299537289*45537549124^(5/17) 2584000077399378 a001 567451585/299537289*312119004989^(3/11) 2584000077399378 a001 567451585/299537289*14662949395604^(5/21) 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^21/Lucas(45) 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^15/Lucas(42) 2584000077399378 a001 567451585/299537289*192900153618^(5/18) 2584000077399378 a001 567451585/299537289*28143753123^(3/10) 2584000077399378 a001 567451585/299537289*10749957122^(5/16) 2584000077399378 a001 66978574/634430159*10749957122^(7/16) 2584000077399378 a001 182717648081/299537289*599074578^(1/14) 2584000077399378 a001 133957148/5374978561*1568397607^(6/11) 2584000077399378 a001 267914296/28143753123*1568397607^(13/22) 2584000077399378 a001 267914296/73681302247*1568397607^(7/11) 2584000077399378 a001 267913919/710646*599074578^(2/21) 2584000077399378 a001 133957148/96450076809*1568397607^(15/22) 2584000077399378 a001 267914296/505019158607*1568397607^(8/11) 2584000077399378 a001 66978574/204284540899*1568397607^(3/4) 2584000077399378 a001 267914296/1322157322203*1568397607^(17/22) 2584000077399378 a001 133957148/1730726404001*1568397607^(9/11) 2584000077399378 a001 267914296/9062201101803*1568397607^(19/22) 2584000077399378 a001 267914296/23725150497407*1568397607^(10/11) 2584000077399378 a001 43133785636/299537289*599074578^(1/7) 2584000077399378 a001 102334155/817138163596*228826127^(7/8) 2584000077399378 a004 Fibonacci(42)*Lucas(44)/(1/2+sqrt(5)/2)^68 2584000077399378 a001 53316291173/599074578*599074578^(1/6) 2584000077399378 a001 10983760033/199691526*599074578^(4/21) 2584000077399378 a001 10182505537/299537289*599074578^(3/14) 2584000077399378 a001 233802911/199691526*599074578^(8/21) 2584000077399378 a001 12586269025/599074578*599074578^(5/21) 2584000077399378 a001 267084832/33281921*599074578^(2/7) 2584000077399378 a001 1836311903/599074578*599074578^(1/3) 2584000077399378 a001 34111385/440719107401*228826127^(9/10) 2584000077399378 a001 267914296/1568397607*599074578^(10/21) 2584000077399378 a001 591286729879/599074578*228826127^(1/20) 2584000077399378 a001 433494437/599074578*45537549124^(1/3) 2584000077399378 a001 267914296/969323029*817138163596^(1/3) 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^19/Lucas(43) 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^17/Lucas(42) 2584000077399378 a001 567451585/299537289*599074578^(5/14) 2584000077399378 a004 Fibonacci(44)*Lucas(43)/(1/2+sqrt(5)/2)^69 2584000077399378 a001 267914296/4106118243*599074578^(11/21) 2584000077399378 a001 66978574/634430159*599074578^(1/2) 2584000077399378 a001 133957148/5374978561*599074578^(4/7) 2584000077399378 a004 Fibonacci(46)*Lucas(43)/(1/2+sqrt(5)/2)^71 2584000077399378 a004 Fibonacci(48)*Lucas(43)/(1/2+sqrt(5)/2)^73 2584000077399378 a004 Fibonacci(50)*Lucas(43)/(1/2+sqrt(5)/2)^75 2584000077399378 a004 Fibonacci(52)*Lucas(43)/(1/2+sqrt(5)/2)^77 2584000077399378 a004 Fibonacci(54)*Lucas(43)/(1/2+sqrt(5)/2)^79 2584000077399378 a004 Fibonacci(56)*Lucas(43)/(1/2+sqrt(5)/2)^81 2584000077399378 a004 Fibonacci(58)*Lucas(43)/(1/2+sqrt(5)/2)^83 2584000077399378 a004 Fibonacci(60)*Lucas(43)/(1/2+sqrt(5)/2)^85 2584000077399378 a004 Fibonacci(62)*Lucas(43)/(1/2+sqrt(5)/2)^87 2584000077399378 a004 Fibonacci(64)*Lucas(43)/(1/2+sqrt(5)/2)^89 2584000077399378 a004 Fibonacci(66)*Lucas(43)/(1/2+sqrt(5)/2)^91 2584000077399378 a004 Fibonacci(68)*Lucas(43)/(1/2+sqrt(5)/2)^93 2584000077399378 a004 Fibonacci(70)*Lucas(43)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(72)*Lucas(43)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(74)*Lucas(43)/(1/2+sqrt(5)/2)^99 2584000077399378 a001 2/433494437*(1/2+1/2*5^(1/2))^61 2584000077399378 a004 Fibonacci(75)*Lucas(43)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(73)*Lucas(43)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(71)*Lucas(43)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(69)*Lucas(43)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(67)*Lucas(43)/(1/2+sqrt(5)/2)^92 2584000077399378 a004 Fibonacci(65)*Lucas(43)/(1/2+sqrt(5)/2)^90 2584000077399378 a004 Fibonacci(63)*Lucas(43)/(1/2+sqrt(5)/2)^88 2584000077399378 a004 Fibonacci(61)*Lucas(43)/(1/2+sqrt(5)/2)^86 2584000077399378 a004 Fibonacci(59)*Lucas(43)/(1/2+sqrt(5)/2)^84 2584000077399378 a004 Fibonacci(57)*Lucas(43)/(1/2+sqrt(5)/2)^82 2584000077399378 a004 Fibonacci(55)*Lucas(43)/(1/2+sqrt(5)/2)^80 2584000077399378 a004 Fibonacci(53)*Lucas(43)/(1/2+sqrt(5)/2)^78 2584000077399378 a004 Fibonacci(51)*Lucas(43)/(1/2+sqrt(5)/2)^76 2584000077399378 a001 267914296/28143753123*599074578^(13/21) 2584000077399378 a004 Fibonacci(49)*Lucas(43)/(1/2+sqrt(5)/2)^74 2584000077399378 a004 Fibonacci(47)*Lucas(43)/(1/2+sqrt(5)/2)^72 2584000077399378 a001 66978574/11384387281*599074578^(9/14) 2584000077399378 a001 6765/228826126*228826127^(19/20) 2584000077399378 a001 267914296/73681302247*599074578^(2/3) 2584000077399378 a004 Fibonacci(45)*Lucas(43)/(1/2+sqrt(5)/2)^70 2584000077399378 a001 267913919/710646*228826127^(1/10) 2584000077399378 a001 701408733/1568397607*2537720636^(2/5) 2584000077399378 a001 701408733/1568397607*45537549124^(6/17) 2584000077399378 a001 701408733/1568397607*14662949395604^(2/7) 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^18/Lucas(44) 2584000077399378 a001 701408733/1568397607*192900153618^(1/3) 2584000077399378 a001 701408733/1568397607*10749957122^(3/8) 2584000077399378 a001 133957148/96450076809*599074578^(5/7) 2584000077399378 a001 701408733/1568397607*4106118243^(9/23) 2584000077399378 a001 267914296/505019158607*599074578^(16/21) 2584000077399378 a001 701408733/1568397607*1568397607^(9/22) 2584000077399378 a001 66978574/204284540899*599074578^(11/14) 2584000077399378 a004 Fibonacci(44)*Lucas(45)/(1/2+sqrt(5)/2)^71 2584000077399378 a001 233802911/1368706081*2537720636^(4/9) 2584000077399378 a001 233802911/3020733700601*2537720636^(4/5) 2584000077399378 a001 267914296/1322157322203*599074578^(17/21) 2584000077399378 a001 701408733/5600748293801*2537720636^(7/9) 2584000077399378 a001 701408733/2139295485799*2537720636^(11/15) 2584000077399378 a001 701408733/505019158607*2537720636^(2/3) 2584000077399378 a001 701408733/119218851371*2537720636^(3/5) 2584000077399378 a001 701408733/45537549124*2537720636^(5/9) 2584000077399378 a001 233802911/9381251041*2537720636^(8/15) 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^20/Lucas(46) 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^16/Lucas(44) 2584000077399378 a001 1836311903/1568397607*23725150497407^(1/4) 2584000077399378 a001 233802911/1368706081*505019158607^(5/14) 2584000077399378 a001 1836311903/1568397607*73681302247^(4/13) 2584000077399378 a001 233802911/1368706081*73681302247^(5/13) 2584000077399378 a001 233802911/1368706081*28143753123^(2/5) 2584000077399378 a001 267914296/2139295485799*599074578^(5/6) 2584000077399378 a001 1836311903/1568397607*10749957122^(1/3) 2584000077399378 a001 233802911/1368706081*10749957122^(5/12) 2584000077399378 a001 701408733/6643838879*2537720636^(7/15) 2584000077399378 a001 12586269025/1568397607*2537720636^(4/15) 2584000077399378 a001 1836311903/1568397607*4106118243^(8/23) 2584000077399378 a001 32951280099/1568397607*2537720636^(2/9) 2584000077399378 a001 233802911/1368706081*4106118243^(10/23) 2584000077399378 a001 53316291173/1568397607*2537720636^(1/5) 2584000077399378 a001 2971215073/1568397607*2537720636^(1/3) 2584000077399378 a004 Fibonacci(44)*Lucas(47)/(1/2+sqrt(5)/2)^73 2584000077399378 a001 32264490531/224056801*2537720636^(2/15) 2584000077399378 a001 365435296162/1568397607*2537720636^(1/9) 2584000077399378 a001 956722026041/1568397607*2537720636^(1/15) 2584000077399378 a001 686789568/224056801*17393796001^(2/7) 2584000077399378 a001 701408733/10749957122*312119004989^(2/5) 2584000077399378 a001 686789568/224056801*14662949395604^(2/9) 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^22/Lucas(48) 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^14/Lucas(44) 2584000077399378 a001 686789568/224056801*10749957122^(7/24) 2584000077399378 a001 701408733/10749957122*10749957122^(11/24) 2584000077399378 a004 Fibonacci(44)*Lucas(49)/(1/2+sqrt(5)/2)^75 2584000077399378 a001 701408733/5600748293801*17393796001^(5/7) 2584000077399378 a001 233802911/64300051206*17393796001^(4/7) 2584000077399378 a001 233802911/9381251041*45537549124^(8/17) 2584000077399378 a001 12586269025/1568397607*45537549124^(4/17) 2584000077399378 a001 12586269025/1568397607*817138163596^(4/19) 2584000077399378 a001 12586269025/1568397607*14662949395604^(4/21) 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^24/Lucas(50) 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^12/Lucas(44) 2584000077399378 a001 12586269025/1568397607*192900153618^(2/9) 2584000077399378 a001 233802911/9381251041*192900153618^(4/9) 2584000077399378 a001 12586269025/1568397607*73681302247^(3/13) 2584000077399378 a001 233802911/9381251041*73681302247^(6/13) 2584000077399378 a004 Fibonacci(44)*Lucas(51)/(1/2+sqrt(5)/2)^77 2584000077399378 a001 139583862445/1568397607*17393796001^(1/7) 2584000077399378 a001 233802911/3020733700601*45537549124^(12/17) 2584000077399378 a001 701408733/3461452808002*45537549124^(2/3) 2584000077399378 a001 701408733/2139295485799*45537549124^(11/17) 2584000077399378 a001 701408733/505019158607*45537549124^(10/17) 2584000077399378 a001 32951280099/1568397607*312119004989^(2/11) 2584000077399378 a001 701408733/119218851371*45537549124^(9/17) 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^26/Lucas(52) 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^10/Lucas(44) 2584000077399378 a001 701408733/73681302247*73681302247^(1/2) 2584000077399378 a004 Fibonacci(44)*Lucas(53)/(1/2+sqrt(5)/2)^79 2584000077399378 a001 32264490531/224056801*45537549124^(2/17) 2584000077399378 a001 956722026041/1568397607*45537549124^(1/17) 2584000077399378 a001 233802911/64300051206*14662949395604^(4/9) 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^28/Lucas(54) 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^8/Lucas(44) 2584000077399378 a001 53316291173/1568397607*45537549124^(3/17) 2584000077399378 a004 Fibonacci(44)*Lucas(55)/(1/2+sqrt(5)/2)^81 2584000077399378 a001 701408733/2139295485799*312119004989^(3/5) 2584000077399378 a001 701408733/505019158607*14662949395604^(10/21) 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^30/Lucas(56) 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^6/Lucas(44) 2584000077399378 a004 Fibonacci(44)*Lucas(57)/(1/2+sqrt(5)/2)^83 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^32/Lucas(58) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^4/Lucas(44) 2584000077399378 a004 Fibonacci(44)*Lucas(59)/(1/2+sqrt(5)/2)^85 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^34/Lucas(60) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^2/Lucas(44) 2584000077399378 a004 Fibonacci(44)*Lucas(61)/(1/2+sqrt(5)/2)^87 2584000077399378 a001 233802911/3020733700601*14662949395604^(4/7) 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^36/Lucas(62) 2584000077399378 a004 Fibonacci(44)*Lucas(63)/(1/2+sqrt(5)/2)^89 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^38/Lucas(64) 2584000077399378 a004 Fibonacci(64)/Lucas(44)/(1/2+sqrt(5)/2)^2 2584000077399378 a004 Fibonacci(44)*Lucas(65)/(1/2+sqrt(5)/2)^91 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^40/Lucas(66) 2584000077399378 a004 Fibonacci(66)/Lucas(44)/(1/2+sqrt(5)/2)^4 2584000077399378 a004 Fibonacci(44)*Lucas(67)/(1/2+sqrt(5)/2)^93 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^42/Lucas(68) 2584000077399378 a004 Fibonacci(68)/Lucas(44)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(44)*Lucas(69)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^44/Lucas(70) 2584000077399378 a004 Fibonacci(70)/Lucas(44)/(1/2+sqrt(5)/2)^8 2584000077399378 a004 Fibonacci(44)*Lucas(71)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^46/Lucas(72) 2584000077399378 a004 Fibonacci(72)/Lucas(44)/(1/2+sqrt(5)/2)^10 2584000077399378 a004 Fibonacci(44)*Lucas(73)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^48/Lucas(74) 2584000077399378 a004 Fibonacci(74)/Lucas(44)/(1/2+sqrt(5)/2)^12 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^50/Lucas(76) 2584000077399378 a004 Fibonacci(76)/Lucas(44)/(1/2+sqrt(5)/2)^14 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^52/Lucas(78) 2584000077399378 a004 Fibonacci(78)/Lucas(44)/(1/2+sqrt(5)/2)^16 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^54/Lucas(80) 2584000077399378 a004 Fibonacci(80)/Lucas(44)/(1/2+sqrt(5)/2)^18 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^56/Lucas(82) 2584000077399378 a004 Fibonacci(82)/Lucas(44)/(1/2+sqrt(5)/2)^20 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^58/Lucas(84) 2584000077399378 a004 Fibonacci(84)/Lucas(44)/(1/2+sqrt(5)/2)^22 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^60/Lucas(86) 2584000077399378 a004 Fibonacci(86)/Lucas(44)/(1/2+sqrt(5)/2)^24 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^62/Lucas(88) 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^64/Lucas(90) 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^66/Lucas(92) 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^68/Lucas(94) 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^70/Lucas(96) 2584000077399378 a004 Fibonacci(22)*Lucas(22)/(1/2+sqrt(5)/2)^26 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^72/Lucas(98) 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^73/Lucas(99) 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^74/Lucas(100) 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^71/Lucas(97) 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^69/Lucas(95) 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^67/Lucas(93) 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^65/Lucas(91) 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^63/Lucas(89) 2584000077399378 a004 Fibonacci(90)/Lucas(44)/(1/2+sqrt(5)/2)^28 2584000077399378 a004 Fibonacci(92)/Lucas(44)/(1/2+sqrt(5)/2)^30 2584000077399378 a004 Fibonacci(94)/Lucas(44)/(1/2+sqrt(5)/2)^32 2584000077399378 a004 Fibonacci(96)/Lucas(44)/(1/2+sqrt(5)/2)^34 2584000077399378 a004 Fibonacci(100)/Lucas(44)/(1/2+sqrt(5)/2)^38 2584000077399378 a004 Fibonacci(98)/Lucas(44)/(1/2+sqrt(5)/2)^36 2584000077399378 a004 Fibonacci(97)/Lucas(44)/(1/2+sqrt(5)/2)^35 2584000077399378 a004 Fibonacci(99)/Lucas(44)/(1/2+sqrt(5)/2)^37 2584000077399378 a004 Fibonacci(95)/Lucas(44)/(1/2+sqrt(5)/2)^33 2584000077399378 a004 Fibonacci(93)/Lucas(44)/(1/2+sqrt(5)/2)^31 2584000077399378 a004 Fibonacci(91)/Lucas(44)/(1/2+sqrt(5)/2)^29 2584000077399378 a004 Fibonacci(89)/Lucas(44)/(1/2+sqrt(5)/2)^27 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^61/Lucas(87) 2584000077399378 a004 Fibonacci(87)/Lucas(44)/(1/2+sqrt(5)/2)^25 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^59/Lucas(85) 2584000077399378 a004 Fibonacci(85)/Lucas(44)/(1/2+sqrt(5)/2)^23 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^57/Lucas(83) 2584000077399378 a004 Fibonacci(83)/Lucas(44)/(1/2+sqrt(5)/2)^21 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^55/Lucas(81) 2584000077399378 a004 Fibonacci(81)/Lucas(44)/(1/2+sqrt(5)/2)^19 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^53/Lucas(79) 2584000077399378 a004 Fibonacci(79)/Lucas(44)/(1/2+sqrt(5)/2)^17 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^51/Lucas(77) 2584000077399378 a004 Fibonacci(77)/Lucas(44)/(1/2+sqrt(5)/2)^15 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^49/Lucas(75) 2584000077399378 a004 Fibonacci(75)/Lucas(44)/(1/2+sqrt(5)/2)^13 2584000077399378 a004 Fibonacci(44)*Lucas(74)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^47/Lucas(73) 2584000077399378 a004 Fibonacci(73)/Lucas(44)/(1/2+sqrt(5)/2)^11 2584000077399378 a004 Fibonacci(44)*Lucas(72)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^45/Lucas(71) 2584000077399378 a004 Fibonacci(71)/Lucas(44)/(1/2+sqrt(5)/2)^9 2584000077399378 a004 Fibonacci(44)*Lucas(70)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^43/Lucas(69) 2584000077399378 a004 Fibonacci(69)/Lucas(44)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(44)*Lucas(68)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^41/Lucas(67) 2584000077399378 a004 Fibonacci(67)/Lucas(44)/(1/2+sqrt(5)/2)^5 2584000077399378 a004 Fibonacci(44)*Lucas(66)/(1/2+sqrt(5)/2)^92 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^39/Lucas(65) 2584000077399378 a004 Fibonacci(65)/Lucas(44)/(1/2+sqrt(5)/2)^3 2584000077399378 a004 Fibonacci(44)*Lucas(64)/(1/2+sqrt(5)/2)^90 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^37/Lucas(63) 2584000077399378 a004 Fibonacci(63)/Lucas(44)/(1/2+sqrt(5)/2) 2584000077399378 a004 Fibonacci(44)*Lucas(62)/(1/2+sqrt(5)/2)^88 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^35/Lucas(61) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)/Lucas(44) 2584000077399378 a004 Fibonacci(44)*Lucas(60)/(1/2+sqrt(5)/2)^86 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^33/Lucas(59) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^3/Lucas(44) 2584000077399378 a004 Fibonacci(44)*Lucas(58)/(1/2+sqrt(5)/2)^84 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^31/Lucas(57) 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^5/Lucas(44) 2584000077399378 a001 233802911/440719107401*505019158607^(4/7) 2584000077399378 a001 233802911/3020733700601*505019158607^(9/14) 2584000077399378 a004 Fibonacci(44)*Lucas(56)/(1/2+sqrt(5)/2)^82 2584000077399378 a001 139583862445/1568397607*14662949395604^(1/9) 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^29/Lucas(55) 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^7/Lucas(44) 2584000077399378 a001 3524667/1568437211*1322157322203^(1/2) 2584000077399378 a001 233802911/3020733700601*192900153618^(2/3) 2584000077399378 a004 Fibonacci(44)*Lucas(54)/(1/2+sqrt(5)/2)^80 2584000077399378 a001 32951280099/1568397607*28143753123^(1/5) 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^27/Lucas(53) 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^9/Lucas(44) 2584000077399378 a001 233802911/64300051206*73681302247^(7/13) 2584000077399378 a001 53316291173/1568397607*192900153618^(1/6) 2584000077399378 a001 701408733/119218851371*192900153618^(1/2) 2584000077399378 a001 233802911/440719107401*73681302247^(8/13) 2584000077399378 a001 233802911/3020733700601*73681302247^(9/13) 2584000077399378 a001 365435296162/1568397607*28143753123^(1/10) 2584000077399378 a004 Fibonacci(44)*Lucas(52)/(1/2+sqrt(5)/2)^78 2584000077399378 a001 1548008755920/1568397607*10749957122^(1/24) 2584000077399378 a001 701408733/45537549124*312119004989^(5/11) 2584000077399378 a001 20365011074/1568397607*312119004989^(1/5) 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^25/Lucas(51) 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^11/Lucas(44) 2584000077399378 a001 956722026041/1568397607*10749957122^(1/16) 2584000077399378 a001 591286729879/1568397607*10749957122^(1/12) 2584000077399378 a001 701408733/505019158607*28143753123^(3/5) 2584000077399378 a001 701408733/5600748293801*28143753123^(7/10) 2584000077399378 a001 12586269025/1568397607*10749957122^(1/4) 2584000077399378 a001 32264490531/224056801*10749957122^(1/8) 2584000077399378 a001 701408733/45537549124*28143753123^(1/2) 2584000077399378 a004 Fibonacci(44)*Lucas(50)/(1/2+sqrt(5)/2)^76 2584000077399378 a001 86267571272/1568397607*10749957122^(1/6) 2584000077399378 a001 32951280099/1568397607*10749957122^(5/24) 2584000077399378 a001 53316291173/1568397607*10749957122^(3/16) 2584000077399378 a001 1548008755920/1568397607*4106118243^(1/23) 2584000077399378 a001 233802911/9381251041*10749957122^(1/2) 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^23/Lucas(49) 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^13/Lucas(44) 2584000077399378 a001 7778742049/1568397607*73681302247^(1/4) 2584000077399378 a001 701408733/73681302247*10749957122^(13/24) 2584000077399378 a001 701408733/119218851371*10749957122^(9/16) 2584000077399378 a001 233802911/64300051206*10749957122^(7/12) 2584000077399378 a001 591286729879/1568397607*4106118243^(2/23) 2584000077399378 a001 701408733/505019158607*10749957122^(5/8) 2584000077399378 a001 233802911/440719107401*10749957122^(2/3) 2584000077399378 a001 701408733/2139295485799*10749957122^(11/16) 2584000077399378 a001 701408733/3461452808002*10749957122^(17/24) 2584000077399378 a001 233802911/3020733700601*10749957122^(3/4) 2584000077399378 a001 701408733/23725150497407*10749957122^(19/24) 2584000077399378 a001 139583862445/599074578*228826127^(1/8) 2584000077399378 a001 32264490531/224056801*4106118243^(3/23) 2584000077399378 a001 133957148/1730726404001*599074578^(6/7) 2584000077399378 a004 Fibonacci(44)*Lucas(48)/(1/2+sqrt(5)/2)^74 2584000077399378 a001 53316291173/370248451*141422324^(2/13) 2584000077399378 a001 686789568/224056801*4106118243^(7/23) 2584000077399378 a001 86267571272/1568397607*4106118243^(4/23) 2584000077399378 a001 32951280099/1568397607*4106118243^(5/23) 2584000077399378 a001 12586269025/1568397607*4106118243^(6/23) 2584000077399378 a001 1548008755920/1568397607*1568397607^(1/22) 2584000077399378 a001 701408733/10749957122*4106118243^(11/23) 2584000077399378 a001 701408733/6643838879*17393796001^(3/7) 2584000077399378 a001 701408733/6643838879*45537549124^(7/17) 2584000077399378 a001 2971215073/1568397607*45537549124^(5/17) 2584000077399378 a001 2971215073/1568397607*312119004989^(3/11) 2584000077399378 a001 701408733/6643838879*14662949395604^(1/3) 2584000077399378 a001 2971215073/1568397607*14662949395604^(5/21) 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^21/Lucas(47) 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^15/Lucas(44) 2584000077399378 a001 2971215073/1568397607*192900153618^(5/18) 2584000077399378 a001 2971215073/1568397607*28143753123^(3/10) 2584000077399378 a001 2971215073/1568397607*10749957122^(5/16) 2584000077399378 a001 701408733/6643838879*10749957122^(7/16) 2584000077399378 a001 233802911/9381251041*4106118243^(12/23) 2584000077399378 a001 701408733/17393796001*4106118243^(1/2) 2584000077399378 a001 701408733/73681302247*4106118243^(13/23) 2584000077399378 a001 233802911/64300051206*4106118243^(14/23) 2584000077399378 a001 591286729879/1568397607*1568397607^(1/11) 2584000077399378 a001 701408733/505019158607*4106118243^(15/23) 2584000077399378 a001 233802911/440719107401*4106118243^(16/23) 2584000077399378 a001 701408733/3461452808002*4106118243^(17/23) 2584000077399378 a001 233802911/3020733700601*4106118243^(18/23) 2584000077399378 a001 701408733/23725150497407*4106118243^(19/23) 2584000077399378 a001 32264490531/224056801*1568397607^(3/22) 2584000077399378 a004 Fibonacci(44)*Lucas(46)/(1/2+sqrt(5)/2)^72 2584000077399378 a001 86267571272/1568397607*1568397607^(2/11) 2584000077399378 a001 1836311903/1568397607*1568397607^(4/11) 2584000077399378 a001 32951280099/1568397607*1568397607^(5/22) 2584000077399378 a001 20365011074/1568397607*1568397607^(1/4) 2584000077399378 a001 12586269025/1568397607*1568397607^(3/11) 2584000077399378 a001 686789568/224056801*1568397607^(7/22) 2584000077399378 a001 233802911/1368706081*1568397607^(5/11) 2584000077399378 a001 1548008755920/1568397607*599074578^(1/21) 2584000077399378 a001 267914296/9062201101803*599074578^(19/21) 2584000077399378 a001 1134903170/1568397607*45537549124^(1/3) 2584000077399378 a001 701408733/2537720636*817138163596^(1/3) 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^19/Lucas(45) 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^17/Lucas(44) 2584000077399378 a004 Fibonacci(46)*Lucas(45)/(1/2+sqrt(5)/2)^73 2584000077399378 a001 701408733/10749957122*1568397607^(1/2) 2584000077399378 a001 956722026041/1568397607*599074578^(1/14) 2584000077399378 a001 10946/599074579*599074578^(13/14) 2584000077399378 a001 233802911/9381251041*1568397607^(6/11) 2584000077399378 a001 1836311903/23725150497407*2537720636^(4/5) 2584000077399378 a001 1836311903/4106118243*2537720636^(2/5) 2584000077399378 a001 1836311903/14662949395604*2537720636^(7/9) 2584000077399378 a001 1836311903/5600748293801*2537720636^(11/15) 2584000077399378 a001 701408733/73681302247*1568397607^(13/22) 2584000077399378 a004 Fibonacci(48)*Lucas(45)/(1/2+sqrt(5)/2)^75 2584000077399378 a001 1836311903/1322157322203*2537720636^(2/3) 2584000077399378 a004 Fibonacci(50)*Lucas(45)/(1/2+sqrt(5)/2)^77 2584000077399378 a004 Fibonacci(52)*Lucas(45)/(1/2+sqrt(5)/2)^79 2584000077399378 a004 Fibonacci(54)*Lucas(45)/(1/2+sqrt(5)/2)^81 2584000077399378 a004 Fibonacci(56)*Lucas(45)/(1/2+sqrt(5)/2)^83 2584000077399378 a004 Fibonacci(58)*Lucas(45)/(1/2+sqrt(5)/2)^85 2584000077399378 a004 Fibonacci(60)*Lucas(45)/(1/2+sqrt(5)/2)^87 2584000077399378 a004 Fibonacci(62)*Lucas(45)/(1/2+sqrt(5)/2)^89 2584000077399378 a004 Fibonacci(64)*Lucas(45)/(1/2+sqrt(5)/2)^91 2584000077399378 a004 Fibonacci(66)*Lucas(45)/(1/2+sqrt(5)/2)^93 2584000077399378 a004 Fibonacci(68)*Lucas(45)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(70)*Lucas(45)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(72)*Lucas(45)/(1/2+sqrt(5)/2)^99 2584000077399378 a001 1/567451585*(1/2+1/2*5^(1/2))^63 2584000077399378 a004 Fibonacci(73)*Lucas(45)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(71)*Lucas(45)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(69)*Lucas(45)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(67)*Lucas(45)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(65)*Lucas(45)/(1/2+sqrt(5)/2)^92 2584000077399378 a004 Fibonacci(63)*Lucas(45)/(1/2+sqrt(5)/2)^90 2584000077399378 a004 Fibonacci(61)*Lucas(45)/(1/2+sqrt(5)/2)^88 2584000077399378 a004 Fibonacci(59)*Lucas(45)/(1/2+sqrt(5)/2)^86 2584000077399378 a004 Fibonacci(57)*Lucas(45)/(1/2+sqrt(5)/2)^84 2584000077399378 a004 Fibonacci(55)*Lucas(45)/(1/2+sqrt(5)/2)^82 2584000077399378 a004 Fibonacci(53)*Lucas(45)/(1/2+sqrt(5)/2)^80 2584000077399378 a004 Fibonacci(51)*Lucas(45)/(1/2+sqrt(5)/2)^78 2584000077399378 a001 1836311903/312119004989*2537720636^(3/5) 2584000077399378 a004 Fibonacci(49)*Lucas(45)/(1/2+sqrt(5)/2)^76 2584000077399378 a001 233802911/64300051206*1568397607^(7/11) 2584000077399378 a001 1836311903/119218851371*2537720636^(5/9) 2584000077399378 a001 1836311903/73681302247*2537720636^(8/15) 2584000077399378 a001 591286729879/1568397607*599074578^(2/21) 2584000077399378 a001 1836311903/10749957122*2537720636^(4/9) 2584000077399378 a001 267914296/23725150497407*599074578^(20/21) 2584000077399378 a004 Fibonacci(47)*Lucas(45)/(1/2+sqrt(5)/2)^74 2584000077399378 a001 701408733/505019158607*1568397607^(15/22) 2584000077399378 a001 1836311903/17393796001*2537720636^(7/15) 2584000077399378 a001 1201881744/3665737348901*2537720636^(11/15) 2584000077399378 a001 1836311903/4106118243*45537549124^(6/17) 2584000077399378 a001 1836311903/4106118243*14662949395604^(2/7) 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^18/Lucas(46) 2584000077399378 a001 1836311903/4106118243*192900153618^(1/3) 2584000077399378 a001 1836311903/4106118243*10749957122^(3/8) 2584000077399378 a001 14930208/10749853441*2537720636^(2/3) 2584000077399378 a001 233802911/440719107401*1568397607^(8/11) 2584000077399378 a001 7778742049/23725150497407*2537720636^(11/15) 2584000077399378 a001 7778742049/4106118243*2537720636^(1/3) 2584000077399378 a001 12586269025/9062201101803*2537720636^(2/3) 2584000077399378 a001 32951280099/23725150497407*2537720636^(2/3) 2584000077399378 a001 10182505537/7331474697802*2537720636^(2/3) 2584000077399378 a001 1201881744/204284540899*2537720636^(3/5) 2584000077399378 a001 701408733/2139295485799*1568397607^(3/4) 2584000077399378 a001 10983760033/1368706081*2537720636^(4/15) 2584000077399378 a001 7778742049/5600748293801*2537720636^(2/3) 2584000077399378 a001 2971215073/23725150497407*2537720636^(7/9) 2584000077399378 a001 1836311903/4106118243*4106118243^(9/23) 2584000077399378 a001 4807526976/312119004989*2537720636^(5/9) 2584000077399378 a001 12586269025/2139295485799*2537720636^(3/5) 2584000077399378 a001 86267571272/4106118243*2537720636^(2/9) 2584000077399378 a001 32951280099/5600748293801*2537720636^(3/5) 2584000077399378 a001 1135099622/192933544679*2537720636^(3/5) 2584000077399378 a001 139583862445/23725150497407*2537720636^(3/5) 2584000077399378 a001 53316291173/9062201101803*2537720636^(3/5) 2584000077399378 a001 10182505537/1730726404001*2537720636^(3/5) 2584000077399378 a001 701408733/3461452808002*1568397607^(17/22) 2584000077399378 a001 267084832/10716675201*2537720636^(8/15) 2584000077399378 a001 2971215073/9062201101803*2537720636^(11/15) 2584000077399378 a001 139583862445/4106118243*2537720636^(1/5) 2584000077399378 a001 7778742049/1322157322203*2537720636^(3/5) 2584000077399378 a001 12586269025/817138163596*2537720636^(5/9) 2584000077399378 a001 32951280099/2139295485799*2537720636^(5/9) 2584000077399378 a001 86267571272/5600748293801*2537720636^(5/9) 2584000077399378 a001 7787980473/505618944676*2537720636^(5/9) 2584000077399378 a001 365435296162/23725150497407*2537720636^(5/9) 2584000077399378 a001 139583862445/9062201101803*2537720636^(5/9) 2584000077399378 a001 53316291173/3461452808002*2537720636^(5/9) 2584000077399378 a001 20365011074/1322157322203*2537720636^(5/9) 2584000077399378 a001 12586269025/505019158607*2537720636^(8/15) 2584000077399378 a001 10983760033/440719107401*2537720636^(8/15) 2584000077399378 a001 7778742049/505019158607*2537720636^(5/9) 2584000077399378 a001 43133785636/1730726404001*2537720636^(8/15) 2584000077399378 a001 75283811239/3020733700601*2537720636^(8/15) 2584000077399378 a001 182717648081/7331474697802*2537720636^(8/15) 2584000077399378 a001 139583862445/5600748293801*2537720636^(8/15) 2584000077399378 a001 53316291173/2139295485799*2537720636^(8/15) 2584000077399378 a001 10182505537/408569081798*2537720636^(8/15) 2584000077399378 a004 Fibonacci(46)*Lucas(47)/(1/2+sqrt(5)/2)^75 2584000077399378 a001 2971215073/2139295485799*2537720636^(2/3) 2584000077399378 a001 1201881744/11384387281*2537720636^(7/15) 2584000077399378 a001 591286729879/4106118243*2537720636^(2/15) 2584000077399378 a001 7778742049/312119004989*2537720636^(8/15) 2584000077399378 a001 2403763488/5374978561*2537720636^(2/5) 2584000077399378 a001 1602508992/9381251041*2537720636^(4/9) 2584000077399378 a001 956722026041/4106118243*2537720636^(1/9) 2584000077399378 a001 233802911/3020733700601*1568397607^(9/11) 2584000077399378 a001 12586269025/119218851371*2537720636^(7/15) 2584000077399378 a001 32951280099/312119004989*2537720636^(7/15) 2584000077399378 a001 21566892818/204284540899*2537720636^(7/15) 2584000077399378 a001 225851433717/2139295485799*2537720636^(7/15) 2584000077399378 a001 182717648081/1730726404001*2537720636^(7/15) 2584000077399378 a001 139583862445/1322157322203*2537720636^(7/15) 2584000077399378 a001 53316291173/505019158607*2537720636^(7/15) 2584000077399378 a001 10182505537/96450076809*2537720636^(7/15) 2584000077399378 a001 2971215073/505019158607*2537720636^(3/5) 2584000077399378 a001 12586269025/73681302247*2537720636^(4/9) 2584000077399378 a001 2504730781961/4106118243*2537720636^(1/15) 2584000077399378 a001 7778742049/73681302247*2537720636^(7/15) 2584000077399378 a001 10983760033/64300051206*2537720636^(4/9) 2584000077399378 a001 86267571272/505019158607*2537720636^(4/9) 2584000077399378 a001 75283811239/440719107401*2537720636^(4/9) 2584000077399378 a001 2504730781961/14662949395604*2537720636^(4/9) 2584000077399378 a001 139583862445/817138163596*2537720636^(4/9) 2584000077399378 a001 53316291173/312119004989*2537720636^(4/9) 2584000077399378 a001 20365011074/119218851371*2537720636^(4/9) 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^20/Lucas(48) 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^16/Lucas(46) 2584000077399378 a001 1602508992/1368706081*23725150497407^(1/4) 2584000077399378 a001 1836311903/10749957122*23725150497407^(5/16) 2584000077399378 a001 1602508992/1368706081*73681302247^(4/13) 2584000077399378 a001 1836311903/10749957122*73681302247^(5/13) 2584000077399378 a001 1836311903/10749957122*28143753123^(2/5) 2584000077399378 a001 7778742049/45537549124*2537720636^(4/9) 2584000077399378 a001 1602508992/1368706081*10749957122^(1/3) 2584000077399378 a001 12586269025/28143753123*2537720636^(2/5) 2584000077399378 a001 1836311903/10749957122*10749957122^(5/12) 2584000077399378 a001 2971215073/192900153618*2537720636^(5/9) 2584000077399378 a004 Fibonacci(46)*Lucas(49)/(1/2+sqrt(5)/2)^77 2584000077399378 a001 32951280099/73681302247*2537720636^(2/5) 2584000077399378 a001 43133785636/96450076809*2537720636^(2/5) 2584000077399378 a001 225851433717/505019158607*2537720636^(2/5) 2584000077399378 a001 591286729879/1322157322203*2537720636^(2/5) 2584000077399378 a001 10610209857723/23725150497407*2537720636^(2/5) 2584000077399378 a001 139583862445/312119004989*2537720636^(2/5) 2584000077399378 a001 53316291173/119218851371*2537720636^(2/5) 2584000077399378 a001 1836311903/14662949395604*17393796001^(5/7) 2584000077399378 a001 12586269025/4106118243*17393796001^(2/7) 2584000077399378 a001 1836311903/505019158607*17393796001^(4/7) 2584000077399378 a001 10182505537/22768774562*2537720636^(2/5) 2584000077399378 a001 1836311903/28143753123*312119004989^(2/5) 2584000077399378 a001 12586269025/4106118243*14662949395604^(2/9) 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^22/Lucas(50) 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^14/Lucas(46) 2584000077399378 a001 2971215073/119218851371*2537720636^(8/15) 2584000077399378 a001 10182505537/5374978561*2537720636^(1/3) 2584000077399378 a004 Fibonacci(46)*Lucas(51)/(1/2+sqrt(5)/2)^79 2584000077399378 a001 365435296162/4106118243*17393796001^(1/7) 2584000077399378 a001 1836311903/73681302247*45537549124^(8/17) 2584000077399378 a001 1836311903/23725150497407*45537549124^(12/17) 2584000077399378 a001 1836311903/9062201101803*45537549124^(2/3) 2584000077399378 a001 1836311903/5600748293801*45537549124^(11/17) 2584000077399378 a001 10983760033/1368706081*45537549124^(4/17) 2584000077399378 a001 1836311903/1322157322203*45537549124^(10/17) 2584000077399378 a001 1836311903/312119004989*45537549124^(9/17) 2584000077399378 a001 10983760033/1368706081*817138163596^(4/19) 2584000077399378 a001 1836311903/73681302247*14662949395604^(8/21) 2584000077399378 a001 10983760033/1368706081*14662949395604^(4/21) 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^24/Lucas(52) 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^12/Lucas(46) 2584000077399378 a001 10983760033/1368706081*192900153618^(2/9) 2584000077399378 a001 1836311903/73681302247*192900153618^(4/9) 2584000077399378 a001 10983760033/1368706081*73681302247^(3/13) 2584000077399378 a001 1836311903/73681302247*73681302247^(6/13) 2584000077399378 a001 139583862445/4106118243*45537549124^(3/17) 2584000077399378 a004 Fibonacci(46)*Lucas(53)/(1/2+sqrt(5)/2)^81 2584000077399378 a001 591286729879/4106118243*45537549124^(2/17) 2584000077399378 a001 86267571272/4106118243*312119004989^(2/11) 2584000077399378 a001 2504730781961/4106118243*45537549124^(1/17) 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^26/Lucas(54) 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^10/Lucas(46) 2584000077399378 a004 Fibonacci(46)*Lucas(55)/(1/2+sqrt(5)/2)^83 2584000077399378 a001 1836311903/14662949395604*312119004989^(7/11) 2584000077399378 a001 1836311903/1322157322203*312119004989^(6/11) 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^28/Lucas(56) 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^8/Lucas(46) 2584000077399378 a004 Fibonacci(46)*Lucas(57)/(1/2+sqrt(5)/2)^85 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^30/Lucas(58) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^6/Lucas(46) 2584000077399378 a004 Fibonacci(46)*Lucas(59)/(1/2+sqrt(5)/2)^87 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^32/Lucas(60) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^4/Lucas(46) 2584000077399378 a004 Fibonacci(46)*Lucas(61)/(1/2+sqrt(5)/2)^89 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^34/Lucas(62) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^2/Lucas(46) 2584000077399378 a004 Fibonacci(46)*Lucas(63)/(1/2+sqrt(5)/2)^91 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^36/Lucas(64) 2584000077399378 a006 5^(1/2)*Fibonacci(64)/Lucas(46)/sqrt(5) 2584000077399378 a004 Fibonacci(46)*Lucas(65)/(1/2+sqrt(5)/2)^93 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^38/Lucas(66) 2584000077399378 a004 Fibonacci(66)/Lucas(46)/(1/2+sqrt(5)/2)^2 2584000077399378 a004 Fibonacci(46)*Lucas(67)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^40/Lucas(68) 2584000077399378 a004 Fibonacci(68)/Lucas(46)/(1/2+sqrt(5)/2)^4 2584000077399378 a004 Fibonacci(46)*Lucas(69)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^42/Lucas(70) 2584000077399378 a004 Fibonacci(70)/Lucas(46)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(46)*Lucas(71)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^44/Lucas(72) 2584000077399378 a004 Fibonacci(72)/Lucas(46)/(1/2+sqrt(5)/2)^8 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^46/Lucas(74) 2584000077399378 a004 Fibonacci(74)/Lucas(46)/(1/2+sqrt(5)/2)^10 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^48/Lucas(76) 2584000077399378 a004 Fibonacci(76)/Lucas(46)/(1/2+sqrt(5)/2)^12 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^50/Lucas(78) 2584000077399378 a004 Fibonacci(78)/Lucas(46)/(1/2+sqrt(5)/2)^14 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^52/Lucas(80) 2584000077399378 a004 Fibonacci(80)/Lucas(46)/(1/2+sqrt(5)/2)^16 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^54/Lucas(82) 2584000077399378 a004 Fibonacci(82)/Lucas(46)/(1/2+sqrt(5)/2)^18 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^56/Lucas(84) 2584000077399378 a004 Fibonacci(84)/Lucas(46)/(1/2+sqrt(5)/2)^20 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^58/Lucas(86) 2584000077399378 a004 Fibonacci(86)/Lucas(46)/(1/2+sqrt(5)/2)^22 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^60/Lucas(88) 2584000077399378 a004 Fibonacci(88)/Lucas(46)/(1/2+sqrt(5)/2)^24 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^62/Lucas(90) 2584000077399378 a004 Fibonacci(90)/Lucas(46)/(1/2+sqrt(5)/2)^26 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^64/Lucas(92) 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^66/Lucas(94) 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^68/Lucas(96) 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^70/Lucas(98) 2584000077399378 a004 Fibonacci(23)*Lucas(23)/(1/2+sqrt(5)/2)^28 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^69/Lucas(97) 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^71/Lucas(99) 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^72/Lucas(100) 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^67/Lucas(95) 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^65/Lucas(93) 2584000077399378 a004 Fibonacci(94)/Lucas(46)/(1/2+sqrt(5)/2)^30 2584000077399378 a004 Fibonacci(96)/Lucas(46)/(1/2+sqrt(5)/2)^32 2584000077399378 a004 Fibonacci(98)/Lucas(46)/(1/2+sqrt(5)/2)^34 2584000077399378 a004 Fibonacci(100)/Lucas(46)/(1/2+sqrt(5)/2)^36 2584000077399378 a004 Fibonacci(97)/Lucas(46)/(1/2+sqrt(5)/2)^33 2584000077399378 a004 Fibonacci(99)/Lucas(46)/(1/2+sqrt(5)/2)^35 2584000077399378 a004 Fibonacci(95)/Lucas(46)/(1/2+sqrt(5)/2)^31 2584000077399378 a004 Fibonacci(93)/Lucas(46)/(1/2+sqrt(5)/2)^29 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^63/Lucas(91) 2584000077399378 a004 Fibonacci(91)/Lucas(46)/(1/2+sqrt(5)/2)^27 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^61/Lucas(89) 2584000077399378 a004 Fibonacci(89)/Lucas(46)/(1/2+sqrt(5)/2)^25 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^59/Lucas(87) 2584000077399378 a004 Fibonacci(87)/Lucas(46)/(1/2+sqrt(5)/2)^23 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^57/Lucas(85) 2584000077399378 a004 Fibonacci(85)/Lucas(46)/(1/2+sqrt(5)/2)^21 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^55/Lucas(83) 2584000077399378 a004 Fibonacci(83)/Lucas(46)/(1/2+sqrt(5)/2)^19 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^53/Lucas(81) 2584000077399378 a004 Fibonacci(81)/Lucas(46)/(1/2+sqrt(5)/2)^17 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^51/Lucas(79) 2584000077399378 a004 Fibonacci(79)/Lucas(46)/(1/2+sqrt(5)/2)^15 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^49/Lucas(77) 2584000077399378 a004 Fibonacci(77)/Lucas(46)/(1/2+sqrt(5)/2)^13 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^47/Lucas(75) 2584000077399378 a004 Fibonacci(75)/Lucas(46)/(1/2+sqrt(5)/2)^11 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^45/Lucas(73) 2584000077399378 a004 Fibonacci(73)/Lucas(46)/(1/2+sqrt(5)/2)^9 2584000077399378 a004 Fibonacci(46)*Lucas(72)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^43/Lucas(71) 2584000077399378 a004 Fibonacci(71)/Lucas(46)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(46)*Lucas(70)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^41/Lucas(69) 2584000077399378 a004 Fibonacci(69)/Lucas(46)/(1/2+sqrt(5)/2)^5 2584000077399378 a004 Fibonacci(46)*Lucas(68)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^39/Lucas(67) 2584000077399378 a004 Fibonacci(67)/Lucas(46)/(1/2+sqrt(5)/2)^3 2584000077399378 a004 Fibonacci(46)*Lucas(66)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^37/Lucas(65) 2584000077399378 a004 Fibonacci(65)/Lucas(46)/(1/2+sqrt(5)/2) 2584000077399378 a004 Fibonacci(46)*Lucas(64)/(1/2+sqrt(5)/2)^92 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^35/Lucas(63) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)/Lucas(46) 2584000077399378 a004 Fibonacci(46)*Lucas(62)/(1/2+sqrt(5)/2)^90 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^33/Lucas(61) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^3/Lucas(46) 2584000077399378 a004 Fibonacci(46)*Lucas(60)/(1/2+sqrt(5)/2)^88 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^31/Lucas(59) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^5/Lucas(46) 2584000077399378 a004 Fibonacci(46)*Lucas(58)/(1/2+sqrt(5)/2)^86 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^29/Lucas(57) 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^7/Lucas(46) 2584000077399378 a001 1836311903/3461452808002*505019158607^(4/7) 2584000077399378 a004 Fibonacci(46)*Lucas(56)/(1/2+sqrt(5)/2)^84 2584000077399378 a001 139583862445/4106118243*817138163596^(3/19) 2584000077399378 a001 139583862445/4106118243*14662949395604^(1/7) 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^27/Lucas(55) 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^9/Lucas(46) 2584000077399378 a001 139583862445/4106118243*192900153618^(1/6) 2584000077399378 a001 1836311903/5600748293801*192900153618^(11/18) 2584000077399378 a001 1836311903/312119004989*192900153618^(1/2) 2584000077399378 a001 75283811239/1368706081*73681302247^(2/13) 2584000077399378 a004 Fibonacci(46)*Lucas(54)/(1/2+sqrt(5)/2)^82 2584000077399378 a001 1836311903/192900153618*73681302247^(1/2) 2584000077399378 a001 1836311903/119218851371*312119004989^(5/11) 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^25/Lucas(53) 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^11/Lucas(46) 2584000077399378 a001 1836311903/119218851371*3461452808002^(5/12) 2584000077399378 a001 1836311903/505019158607*73681302247^(7/13) 2584000077399378 a001 1836311903/3461452808002*73681302247^(8/13) 2584000077399378 a001 956722026041/4106118243*28143753123^(1/10) 2584000077399378 a001 1836311903/23725150497407*73681302247^(9/13) 2584000077399378 a004 Fibonacci(46)*Lucas(52)/(1/2+sqrt(5)/2)^80 2584000077399378 a001 86267571272/4106118243*28143753123^(1/5) 2584000077399378 a001 4052739537881/4106118243*10749957122^(1/24) 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^23/Lucas(51) 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^13/Lucas(46) 2584000077399378 a001 20365011074/4106118243*73681302247^(1/4) 2584000077399378 a001 2504730781961/4106118243*10749957122^(1/16) 2584000077399378 a001 1836311903/119218851371*28143753123^(1/2) 2584000077399378 a001 516002918640/1368706081*10749957122^(1/12) 2584000077399378 a001 1836311903/1322157322203*28143753123^(3/5) 2584000077399378 a001 1836311903/14662949395604*28143753123^(7/10) 2584000077399378 a001 591286729879/4106118243*10749957122^(1/8) 2584000077399378 a001 12586269025/4106118243*10749957122^(7/24) 2584000077399378 a004 Fibonacci(46)*Lucas(50)/(1/2+sqrt(5)/2)^78 2584000077399378 a001 75283811239/1368706081*10749957122^(1/6) 2584000077399378 a001 139583862445/4106118243*10749957122^(3/16) 2584000077399378 a001 86267571272/4106118243*10749957122^(5/24) 2584000077399378 a001 1836311903/17393796001*17393796001^(3/7) 2584000077399378 a001 10983760033/1368706081*10749957122^(1/4) 2584000077399378 a001 4052739537881/4106118243*4106118243^(1/23) 2584000077399378 a001 1836311903/28143753123*10749957122^(11/24) 2584000077399378 a001 1836311903/17393796001*45537549124^(7/17) 2584000077399378 a001 7778742049/4106118243*45537549124^(5/17) 2584000077399378 a001 7778742049/4106118243*312119004989^(3/11) 2584000077399378 a001 1836311903/17393796001*14662949395604^(1/3) 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^21/Lucas(49) 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^15/Lucas(46) 2584000077399378 a001 7778742049/4106118243*192900153618^(5/18) 2584000077399378 a001 1836311903/17393796001*192900153618^(7/18) 2584000077399378 a001 7778742049/4106118243*28143753123^(3/10) 2584000077399378 a001 7778742049/17393796001*2537720636^(2/5) 2584000077399378 a001 701408733/23725150497407*1568397607^(19/22) 2584000077399378 a001 1836311903/73681302247*10749957122^(1/2) 2584000077399378 a001 1836311903/192900153618*10749957122^(13/24) 2584000077399378 a001 1836311903/312119004989*10749957122^(9/16) 2584000077399378 a001 1836311903/505019158607*10749957122^(7/12) 2584000077399378 a001 516002918640/1368706081*4106118243^(2/23) 2584000077399378 a001 1836311903/1322157322203*10749957122^(5/8) 2584000077399378 a001 1836311903/3461452808002*10749957122^(2/3) 2584000077399378 a001 1836311903/5600748293801*10749957122^(11/16) 2584000077399378 a001 7778742049/4106118243*10749957122^(5/16) 2584000077399378 a001 1836311903/9062201101803*10749957122^(17/24) 2584000077399378 a001 53316291173/28143753123*2537720636^(1/3) 2584000077399378 a001 1836311903/23725150497407*10749957122^(3/4) 2584000077399378 a001 1836311903/17393796001*10749957122^(7/16) 2584000077399378 a001 139583862445/73681302247*2537720636^(1/3) 2584000077399378 a001 182717648081/96450076809*2537720636^(1/3) 2584000077399378 a001 956722026041/505019158607*2537720636^(1/3) 2584000077399378 a001 10610209857723/5600748293801*2537720636^(1/3) 2584000077399378 a001 591286729879/312119004989*2537720636^(1/3) 2584000077399378 a001 225851433717/119218851371*2537720636^(1/3) 2584000077399378 a001 591286729879/4106118243*4106118243^(3/23) 2584000077399378 a001 21566892818/11384387281*2537720636^(1/3) 2584000077399378 a001 2971215073/28143753123*2537720636^(7/15) 2584000077399378 a004 Fibonacci(46)*Lucas(48)/(1/2+sqrt(5)/2)^76 2584000077399378 a001 43133785636/5374978561*2537720636^(4/15) 2584000077399378 a001 75283811239/1368706081*4106118243^(4/23) 2584000077399378 a001 32951280099/17393796001*2537720636^(1/3) 2584000077399378 a001 1602508992/1368706081*4106118243^(8/23) 2584000077399378 a001 86267571272/4106118243*4106118243^(5/23) 2584000077399378 a001 10983760033/1368706081*4106118243^(6/23) 2584000077399378 a001 225851433717/10749957122*2537720636^(2/9) 2584000077399378 a001 2971215073/17393796001*2537720636^(4/9) 2584000077399378 a001 75283811239/9381251041*2537720636^(4/15) 2584000077399378 a001 12586269025/4106118243*4106118243^(7/23) 2584000077399378 a001 1836311903/10749957122*4106118243^(10/23) 2584000077399378 a001 591286729879/73681302247*2537720636^(4/15) 2584000077399378 a001 86000486440/10716675201*2537720636^(4/15) 2584000077399378 a001 4052739537881/505019158607*2537720636^(4/15) 2584000077399378 a001 3278735159921/408569081798*2537720636^(4/15) 2584000077399378 a001 2504730781961/312119004989*2537720636^(4/15) 2584000077399378 a001 956722026041/119218851371*2537720636^(4/15) 2584000077399378 a001 182717648081/22768774562*2537720636^(4/15) 2584000077399378 a001 4052739537881/4106118243*1568397607^(1/22) 2584000077399378 a001 182717648081/5374978561*2537720636^(1/5) 2584000077399378 a001 139583862445/17393796001*2537720636^(4/15) 2584000077399378 a001 2971215073/4106118243*45537549124^(1/3) 2584000077399378 a001 1836311903/6643838879*817138163596^(1/3) 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^19/Lucas(47) 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^17/Lucas(46) 2584000077399378 a001 591286729879/28143753123*2537720636^(2/9) 2584000077399378 a001 1548008755920/73681302247*2537720636^(2/9) 2584000077399378 a001 4052739537881/192900153618*2537720636^(2/9) 2584000077399378 a001 225749145909/10745088481*2537720636^(2/9) 2584000077399378 a001 6557470319842/312119004989*2537720636^(2/9) 2584000077399378 a001 2504730781961/119218851371*2537720636^(2/9) 2584000077399378 a001 956722026041/45537549124*2537720636^(2/9) 2584000077399378 a001 956722026041/28143753123*2537720636^(1/5) 2584000077399378 a001 1836311903/28143753123*4106118243^(11/23) 2584000077399378 a004 Fibonacci(48)*Lucas(47)/(1/2+sqrt(5)/2)^77 2584000077399378 a001 2504730781961/73681302247*2537720636^(1/5) 2584000077399378 a001 365435296162/17393796001*2537720636^(2/9) 2584000077399378 a001 3278735159921/96450076809*2537720636^(1/5) 2584000077399378 a001 10610209857723/312119004989*2537720636^(1/5) 2584000077399378 a001 4052739537881/119218851371*2537720636^(1/5) 2584000077399378 a001 387002188980/11384387281*2537720636^(1/5) 2584000077399378 a001 12586269025/6643838879*2537720636^(1/3) 2584000077399378 a001 774004377960/5374978561*2537720636^(2/15) 2584000077399378 a001 1836311903/45537549124*4106118243^(1/2) 2584000077399378 a001 1836311903/73681302247*4106118243^(12/23) 2584000077399378 a001 591286729879/17393796001*2537720636^(1/5) 2584000077399378 a001 2504730781961/10749957122*2537720636^(1/9) 2584000077399378 a001 1836311903/192900153618*4106118243^(13/23) 2584000077399378 a004 Fibonacci(50)*Lucas(47)/(1/2+sqrt(5)/2)^79 2584000077399378 a001 1836311903/505019158607*4106118243^(14/23) 2584000077399378 a004 Fibonacci(52)*Lucas(47)/(1/2+sqrt(5)/2)^81 2584000077399378 a004 Fibonacci(54)*Lucas(47)/(1/2+sqrt(5)/2)^83 2584000077399378 a004 Fibonacci(56)*Lucas(47)/(1/2+sqrt(5)/2)^85 2584000077399378 a004 Fibonacci(58)*Lucas(47)/(1/2+sqrt(5)/2)^87 2584000077399378 a004 Fibonacci(60)*Lucas(47)/(1/2+sqrt(5)/2)^89 2584000077399378 a004 Fibonacci(62)*Lucas(47)/(1/2+sqrt(5)/2)^91 2584000077399378 a004 Fibonacci(64)*Lucas(47)/(1/2+sqrt(5)/2)^93 2584000077399378 a004 Fibonacci(66)*Lucas(47)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(68)*Lucas(47)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(70)*Lucas(47)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(71)*Lucas(47)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(69)*Lucas(47)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(67)*Lucas(47)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(65)*Lucas(47)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(63)*Lucas(47)/(1/2+sqrt(5)/2)^92 2584000077399378 a004 Fibonacci(61)*Lucas(47)/(1/2+sqrt(5)/2)^90 2584000077399378 a004 Fibonacci(59)*Lucas(47)/(1/2+sqrt(5)/2)^88 2584000077399378 a004 Fibonacci(57)*Lucas(47)/(1/2+sqrt(5)/2)^86 2584000077399378 a004 Fibonacci(55)*Lucas(47)/(1/2+sqrt(5)/2)^84 2584000077399378 a004 Fibonacci(53)*Lucas(47)/(1/2+sqrt(5)/2)^82 2584000077399378 a001 516002918640/1368706081*1568397607^(1/11) 2584000077399378 a004 Fibonacci(51)*Lucas(47)/(1/2+sqrt(5)/2)^80 2584000077399378 a001 4052739537881/28143753123*2537720636^(2/15) 2584000077399378 a001 1515744265389/10525900321*2537720636^(2/15) 2584000077399378 a001 1836311903/1322157322203*4106118243^(15/23) 2584000077399378 a001 3278735159921/22768774562*2537720636^(2/15) 2584000077399378 a004 Fibonacci(49)*Lucas(47)/(1/2+sqrt(5)/2)^78 2584000077399378 a001 3278735159921/5374978561*2537720636^(1/15) 2584000077399378 a001 53316291173/6643838879*2537720636^(4/15) 2584000077399378 a001 6557470319842/28143753123*2537720636^(1/9) 2584000077399378 a001 1836311903/3461452808002*4106118243^(16/23) 2584000077399378 a001 2403763488/5374978561*45537549124^(6/17) 2584000077399378 a001 2504730781961/17393796001*2537720636^(2/15) 2584000077399378 a001 2403763488/5374978561*14662949395604^(2/7) 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^18/Lucas(48) 2584000077399378 a001 2403763488/5374978561*192900153618^(1/3) 2584000077399378 a001 2971215073/6643838879*2537720636^(2/5) 2584000077399378 a001 10610209857723/45537549124*2537720636^(1/9) 2584000077399378 a001 1836311903/9062201101803*4106118243^(17/23) 2584000077399378 a001 2403763488/5374978561*10749957122^(3/8) 2584000077399378 a001 4052739537881/17393796001*2537720636^(1/9) 2584000077399378 a001 1836311903/23725150497407*4106118243^(18/23) 2584000077399378 a004 Fibonacci(48)*Lucas(49)/(1/2+sqrt(5)/2)^79 2584000077399378 a001 139583862445/6643838879*2537720636^(2/9) 2584000077399378 a001 1602508992/440719107401*17393796001^(4/7) 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^20/Lucas(50) 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^16/Lucas(48) 2584000077399378 a001 12586269025/10749957122*23725150497407^(1/4) 2584000077399378 a001 1602508992/9381251041*23725150497407^(5/16) 2584000077399378 a001 1602508992/9381251041*505019158607^(5/14) 2584000077399378 a001 12586269025/10749957122*73681302247^(4/13) 2584000077399378 a001 1602508992/9381251041*73681302247^(5/13) 2584000077399378 a001 32951280099/10749957122*17393796001^(2/7) 2584000077399378 a001 1201881744/11384387281*17393796001^(3/7) 2584000077399378 a001 1602508992/9381251041*28143753123^(2/5) 2584000077399378 a004 Fibonacci(48)*Lucas(51)/(1/2+sqrt(5)/2)^81 2584000077399378 a001 956722026041/10749957122*17393796001^(1/7) 2584000077399378 a001 4807526976/23725150497407*45537549124^(2/3) 2584000077399378 a001 1201881744/3665737348901*45537549124^(11/17) 2584000077399378 a001 14930208/10749853441*45537549124^(10/17) 2584000077399378 a001 267084832/10716675201*45537549124^(8/17) 2584000077399378 a001 1201881744/204284540899*45537549124^(9/17) 2584000077399378 a001 686789568/10525900321*312119004989^(2/5) 2584000077399378 a001 32951280099/10749957122*14662949395604^(2/9) 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^22/Lucas(52) 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^14/Lucas(48) 2584000077399378 a001 43133785636/5374978561*45537549124^(4/17) 2584000077399378 a001 182717648081/5374978561*45537549124^(3/17) 2584000077399378 a004 Fibonacci(48)*Lucas(53)/(1/2+sqrt(5)/2)^83 2584000077399378 a001 774004377960/5374978561*45537549124^(2/17) 2584000077399378 a001 267084832/10716675201*14662949395604^(8/21) 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^24/Lucas(54) 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^12/Lucas(48) 2584000077399378 a001 43133785636/5374978561*192900153618^(2/9) 2584000077399378 a004 Fibonacci(48)*Lucas(55)/(1/2+sqrt(5)/2)^85 2584000077399378 a001 1201881744/3665737348901*312119004989^(3/5) 2584000077399378 a001 225851433717/10749957122*312119004989^(2/11) 2584000077399378 a001 14930208/10749853441*312119004989^(6/11) 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^26/Lucas(56) 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^10/Lucas(48) 2584000077399378 a004 Fibonacci(48)*Lucas(57)/(1/2+sqrt(5)/2)^87 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^28/Lucas(58) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^8/Lucas(48) 2584000077399378 a004 Fibonacci(48)*Lucas(59)/(1/2+sqrt(5)/2)^89 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^30/Lucas(60) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^6/Lucas(48) 2584000077399378 a004 Fibonacci(48)*Lucas(61)/(1/2+sqrt(5)/2)^91 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^32/Lucas(62) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^4/Lucas(48) 2584000077399378 a004 Fibonacci(48)*Lucas(63)/(1/2+sqrt(5)/2)^93 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^34/Lucas(64) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^2/Lucas(48) 2584000077399378 a004 Fibonacci(48)*Lucas(65)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^36/Lucas(66) 2584000077399378 a006 5^(1/2)*Fibonacci(66)/Lucas(48)/sqrt(5) 2584000077399378 a004 Fibonacci(48)*Lucas(67)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^38/Lucas(68) 2584000077399378 a004 Fibonacci(68)/Lucas(48)/(1/2+sqrt(5)/2)^2 2584000077399378 a004 Fibonacci(48)*Lucas(69)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^40/Lucas(70) 2584000077399378 a004 Fibonacci(70)/Lucas(48)/(1/2+sqrt(5)/2)^4 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^42/Lucas(72) 2584000077399378 a004 Fibonacci(72)/Lucas(48)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^44/Lucas(74) 2584000077399378 a004 Fibonacci(74)/Lucas(48)/(1/2+sqrt(5)/2)^8 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^46/Lucas(76) 2584000077399378 a004 Fibonacci(76)/Lucas(48)/(1/2+sqrt(5)/2)^10 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^48/Lucas(78) 2584000077399378 a004 Fibonacci(78)/Lucas(48)/(1/2+sqrt(5)/2)^12 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^50/Lucas(80) 2584000077399378 a004 Fibonacci(80)/Lucas(48)/(1/2+sqrt(5)/2)^14 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^52/Lucas(82) 2584000077399378 a004 Fibonacci(82)/Lucas(48)/(1/2+sqrt(5)/2)^16 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^54/Lucas(84) 2584000077399378 a004 Fibonacci(84)/Lucas(48)/(1/2+sqrt(5)/2)^18 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^56/Lucas(86) 2584000077399378 a004 Fibonacci(86)/Lucas(48)/(1/2+sqrt(5)/2)^20 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^58/Lucas(88) 2584000077399378 a004 Fibonacci(88)/Lucas(48)/(1/2+sqrt(5)/2)^22 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^60/Lucas(90) 2584000077399378 a004 Fibonacci(90)/Lucas(48)/(1/2+sqrt(5)/2)^24 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^62/Lucas(92) 2584000077399378 a004 Fibonacci(92)/Lucas(48)/(1/2+sqrt(5)/2)^26 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^64/Lucas(94) 2584000077399378 a004 Fibonacci(94)/Lucas(48)/(1/2+sqrt(5)/2)^28 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^66/Lucas(96) 2584000077399378 a004 Fibonacci(24)*Lucas(24)/(1/2+sqrt(5)/2)^30 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^68/Lucas(98) 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^69/Lucas(99) 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^70/Lucas(100) 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^67/Lucas(97) 2584000077399378 a004 Fibonacci(100)/Lucas(48)/(1/2+sqrt(5)/2)^34 2584000077399378 a004 Fibonacci(98)/Lucas(48)/(1/2+sqrt(5)/2)^32 2584000077399378 a004 Fibonacci(99)/Lucas(48)/(1/2+sqrt(5)/2)^33 2584000077399378 a004 Fibonacci(97)/Lucas(48)/(1/2+sqrt(5)/2)^31 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^65/Lucas(95) 2584000077399378 a004 Fibonacci(95)/Lucas(48)/(1/2+sqrt(5)/2)^29 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^63/Lucas(93) 2584000077399378 a004 Fibonacci(93)/Lucas(48)/(1/2+sqrt(5)/2)^27 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^61/Lucas(91) 2584000077399378 a004 Fibonacci(91)/Lucas(48)/(1/2+sqrt(5)/2)^25 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^59/Lucas(89) 2584000077399378 a004 Fibonacci(89)/Lucas(48)/(1/2+sqrt(5)/2)^23 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^57/Lucas(87) 2584000077399378 a004 Fibonacci(87)/Lucas(48)/(1/2+sqrt(5)/2)^21 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^55/Lucas(85) 2584000077399378 a004 Fibonacci(85)/Lucas(48)/(1/2+sqrt(5)/2)^19 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^53/Lucas(83) 2584000077399378 a004 Fibonacci(83)/Lucas(48)/(1/2+sqrt(5)/2)^17 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^51/Lucas(81) 2584000077399378 a004 Fibonacci(81)/Lucas(48)/(1/2+sqrt(5)/2)^15 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^49/Lucas(79) 2584000077399378 a004 Fibonacci(79)/Lucas(48)/(1/2+sqrt(5)/2)^13 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^47/Lucas(77) 2584000077399378 a004 Fibonacci(77)/Lucas(48)/(1/2+sqrt(5)/2)^11 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^45/Lucas(75) 2584000077399378 a004 Fibonacci(75)/Lucas(48)/(1/2+sqrt(5)/2)^9 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^43/Lucas(73) 2584000077399378 a004 Fibonacci(73)/Lucas(48)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^41/Lucas(71) 2584000077399378 a004 Fibonacci(71)/Lucas(48)/(1/2+sqrt(5)/2)^5 2584000077399378 a004 Fibonacci(48)*Lucas(70)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^39/Lucas(69) 2584000077399378 a004 Fibonacci(69)/Lucas(48)/(1/2+sqrt(5)/2)^3 2584000077399378 a004 Fibonacci(48)*Lucas(68)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^37/Lucas(67) 2584000077399378 a004 Fibonacci(67)/Lucas(48)/(1/2+sqrt(5)/2) 2584000077399378 a004 Fibonacci(48)*Lucas(66)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^35/Lucas(65) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)/Lucas(48) 2584000077399378 a004 Fibonacci(48)*Lucas(64)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^33/Lucas(63) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^3/Lucas(48) 2584000077399378 a004 Fibonacci(48)*Lucas(62)/(1/2+sqrt(5)/2)^92 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^31/Lucas(61) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^5/Lucas(48) 2584000077399378 a004 Fibonacci(48)*Lucas(60)/(1/2+sqrt(5)/2)^90 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^29/Lucas(59) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^7/Lucas(48) 2584000077399378 a004 Fibonacci(48)*Lucas(58)/(1/2+sqrt(5)/2)^88 2584000077399378 a001 1201881744/204284540899*817138163596^(9/19) 2584000077399378 a001 1201881744/204284540899*14662949395604^(3/7) 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^27/Lucas(57) 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^9/Lucas(48) 2584000077399378 a004 Fibonacci(48)*Lucas(56)/(1/2+sqrt(5)/2)^86 2584000077399378 a001 182717648081/5374978561*192900153618^(1/6) 2584000077399378 a001 139583862445/10749957122*312119004989^(1/5) 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^25/Lucas(55) 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^11/Lucas(48) 2584000077399378 a001 1201881744/204284540899*192900153618^(1/2) 2584000077399378 a001 1201881744/3665737348901*192900153618^(11/18) 2584000077399378 a004 Fibonacci(48)*Lucas(54)/(1/2+sqrt(5)/2)^84 2584000077399378 a001 591286729879/10749957122*73681302247^(2/13) 2584000077399378 a001 267084832/10716675201*73681302247^(6/13) 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^23/Lucas(53) 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^13/Lucas(48) 2584000077399378 a001 102287808/10745088481*73681302247^(1/2) 2584000077399378 a001 1602508992/440719107401*73681302247^(7/13) 2584000077399378 a001 1602508992/3020733700601*73681302247^(8/13) 2584000077399378 a001 53316291173/10749957122*73681302247^(1/4) 2584000077399378 a001 2504730781961/10749957122*28143753123^(1/10) 2584000077399378 a001 32264490531/224056801*599074578^(1/7) 2584000077399378 a004 Fibonacci(48)*Lucas(52)/(1/2+sqrt(5)/2)^82 2584000077399378 a001 225851433717/6643838879*2537720636^(1/5) 2584000077399378 a001 225851433717/10749957122*28143753123^(1/5) 2584000077399378 a001 1201881744/11384387281*45537549124^(7/17) 2584000077399378 a001 10182505537/5374978561*45537549124^(5/17) 2584000077399378 a001 4807525989/4870846*10749957122^(1/24) 2584000077399378 a001 10182505537/5374978561*312119004989^(3/11) 2584000077399378 a001 10182505537/5374978561*14662949395604^(5/21) 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^21/Lucas(51) 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^15/Lucas(48) 2584000077399378 a001 10182505537/5374978561*192900153618^(5/18) 2584000077399378 a001 1201881744/11384387281*192900153618^(7/18) 2584000077399378 a001 3278735159921/5374978561*10749957122^(1/16) 2584000077399378 a001 4807526976/312119004989*28143753123^(1/2) 2584000077399378 a001 4052739537881/10749957122*10749957122^(1/12) 2584000077399378 a001 14930208/10749853441*28143753123^(3/5) 2584000077399378 a001 10182505537/5374978561*28143753123^(3/10) 2584000077399378 a001 774004377960/5374978561*10749957122^(1/8) 2584000077399378 a004 Fibonacci(48)*Lucas(50)/(1/2+sqrt(5)/2)^80 2584000077399378 a001 591286729879/10749957122*10749957122^(1/6) 2584000077399378 a001 10610209857723/17393796001*2537720636^(1/15) 2584000077399378 a001 12586269025/10749957122*10749957122^(1/3) 2584000077399378 a001 182717648081/5374978561*10749957122^(3/16) 2584000077399378 a001 225851433717/10749957122*10749957122^(5/24) 2584000077399378 a001 43133785636/5374978561*10749957122^(1/4) 2584000077399378 a001 32951280099/10749957122*10749957122^(7/24) 2584000077399378 a001 1602508992/9381251041*10749957122^(5/12) 2584000077399378 a001 4807525989/4870846*4106118243^(1/23) 2584000077399378 a001 7778742049/10749957122*45537549124^(1/3) 2584000077399378 a001 10182505537/5374978561*10749957122^(5/16) 2584000077399378 a001 4807526976/17393796001*817138163596^(1/3) 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^19/Lucas(49) 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^17/Lucas(48) 2584000077399378 a001 686789568/10525900321*10749957122^(11/24) 2584000077399378 a004 Fibonacci(50)*Lucas(49)/(1/2+sqrt(5)/2)^81 2584000077399378 a001 1201881744/11384387281*10749957122^(7/16) 2584000077399378 a001 267084832/10716675201*10749957122^(1/2) 2584000077399378 a001 102287808/10745088481*10749957122^(13/24) 2584000077399378 a001 591286729879/4106118243*1568397607^(3/22) 2584000077399378 a001 1201881744/204284540899*10749957122^(9/16) 2584000077399378 a001 1602508992/440719107401*10749957122^(7/12) 2584000077399378 a001 4052739537881/10749957122*4106118243^(2/23) 2584000077399378 a004 Fibonacci(52)*Lucas(49)/(1/2+sqrt(5)/2)^83 2584000077399378 a004 Fibonacci(54)*Lucas(49)/(1/2+sqrt(5)/2)^85 2584000077399378 a004 Fibonacci(56)*Lucas(49)/(1/2+sqrt(5)/2)^87 2584000077399378 a004 Fibonacci(58)*Lucas(49)/(1/2+sqrt(5)/2)^89 2584000077399378 a004 Fibonacci(60)*Lucas(49)/(1/2+sqrt(5)/2)^91 2584000077399378 a004 Fibonacci(62)*Lucas(49)/(1/2+sqrt(5)/2)^93 2584000077399378 a004 Fibonacci(64)*Lucas(49)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(66)*Lucas(49)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(68)*Lucas(49)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(69)*Lucas(49)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(67)*Lucas(49)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(65)*Lucas(49)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(63)*Lucas(49)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(61)*Lucas(49)/(1/2+sqrt(5)/2)^92 2584000077399378 a004 Fibonacci(59)*Lucas(49)/(1/2+sqrt(5)/2)^90 2584000077399378 a004 Fibonacci(57)*Lucas(49)/(1/2+sqrt(5)/2)^88 2584000077399378 a004 Fibonacci(55)*Lucas(49)/(1/2+sqrt(5)/2)^86 2584000077399378 a001 14930208/10749853441*10749957122^(5/8) 2584000077399378 a004 Fibonacci(53)*Lucas(49)/(1/2+sqrt(5)/2)^84 2584000077399378 a001 12586269025/3461452808002*17393796001^(4/7) 2584000077399378 a001 1602508992/3020733700601*10749957122^(2/3) 2584000077399378 a004 Fibonacci(51)*Lucas(49)/(1/2+sqrt(5)/2)^82 2584000077399378 a001 1201881744/3665737348901*10749957122^(11/16) 2584000077399378 a001 12586269025/28143753123*45537549124^(6/17) 2584000077399378 a001 12586269025/119218851371*17393796001^(3/7) 2584000077399378 a001 12586269025/28143753123*14662949395604^(2/7) 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^18/Lucas(50) 2584000077399378 a001 4807526976/23725150497407*10749957122^(17/24) 2584000077399378 a001 12586269025/28143753123*192900153618^(1/3) 2584000077399378 a001 86267571272/28143753123*17393796001^(2/7) 2584000077399378 a001 10983760033/3020733700601*17393796001^(4/7) 2584000077399378 a001 86267571272/23725150497407*17393796001^(4/7) 2584000077399378 a001 53316291173/14662949395604*17393796001^(4/7) 2584000077399378 a004 Fibonacci(50)*Lucas(51)/(1/2+sqrt(5)/2)^83 2584000077399378 a001 2504730781961/28143753123*17393796001^(1/7) 2584000077399378 a001 32951280099/312119004989*17393796001^(3/7) 2584000077399378 a001 12586269025/9062201101803*45537549124^(10/17) 2584000077399378 a001 12586269025/2139295485799*45537549124^(9/17) 2584000077399378 a001 12586269025/505019158607*45537549124^(8/17) 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^20/Lucas(52) 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^16/Lucas(50) 2584000077399378 a001 10983760033/9381251041*23725150497407^(1/4) 2584000077399378 a001 12586269025/73681302247*23725150497407^(5/16) 2584000077399378 a001 225851433717/2139295485799*17393796001^(3/7) 2584000077399378 a001 182717648081/1730726404001*17393796001^(3/7) 2584000077399378 a001 139583862445/1322157322203*17393796001^(3/7) 2584000077399378 a001 10983760033/9381251041*73681302247^(4/13) 2584000077399378 a001 75283811239/9381251041*45537549124^(4/17) 2584000077399378 a001 12586269025/73681302247*73681302247^(5/13) 2584000077399378 a001 53316291173/505019158607*17393796001^(3/7) 2584000077399378 a001 53316291173/28143753123*45537549124^(5/17) 2584000077399378 a004 Fibonacci(50)*Lucas(53)/(1/2+sqrt(5)/2)^85 2584000077399378 a001 4052739537881/28143753123*45537549124^(2/17) 2584000077399378 a001 12586269025/192900153618*312119004989^(2/5) 2584000077399378 a001 86267571272/28143753123*14662949395604^(2/9) 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^22/Lucas(54) 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^14/Lucas(50) 2584000077399378 a004 Fibonacci(50)*Lucas(55)/(1/2+sqrt(5)/2)^87 2584000077399378 a001 12586269025/505019158607*14662949395604^(8/21) 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^24/Lucas(56) 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^12/Lucas(50) 2584000077399378 a004 Fibonacci(50)*Lucas(57)/(1/2+sqrt(5)/2)^89 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^26/Lucas(58) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^10/Lucas(50) 2584000077399378 a004 Fibonacci(50)*Lucas(59)/(1/2+sqrt(5)/2)^91 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^28/Lucas(60) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^8/Lucas(50) 2584000077399378 a001 12585437040/228811001*23725150497407^(1/8) 2584000077399378 a004 Fibonacci(50)*Lucas(61)/(1/2+sqrt(5)/2)^93 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^30/Lucas(62) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^6/Lucas(50) 2584000077399378 a004 Fibonacci(50)*Lucas(63)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^32/Lucas(64) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^4/Lucas(50) 2584000077399378 a004 Fibonacci(50)*Lucas(65)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^34/Lucas(66) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^2/Lucas(50) 2584000077399378 a004 Fibonacci(50)*Lucas(67)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^36/Lucas(68) 2584000077399378 a006 5^(1/2)*Fibonacci(68)/Lucas(50)/sqrt(5) 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^38/Lucas(70) 2584000077399378 a004 Fibonacci(70)/Lucas(50)/(1/2+sqrt(5)/2)^2 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^40/Lucas(72) 2584000077399378 a004 Fibonacci(72)/Lucas(50)/(1/2+sqrt(5)/2)^4 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^42/Lucas(74) 2584000077399378 a004 Fibonacci(74)/Lucas(50)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^44/Lucas(76) 2584000077399378 a004 Fibonacci(76)/Lucas(50)/(1/2+sqrt(5)/2)^8 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^46/Lucas(78) 2584000077399378 a004 Fibonacci(78)/Lucas(50)/(1/2+sqrt(5)/2)^10 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^48/Lucas(80) 2584000077399378 a004 Fibonacci(80)/Lucas(50)/(1/2+sqrt(5)/2)^12 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^50/Lucas(82) 2584000077399378 a004 Fibonacci(82)/Lucas(50)/(1/2+sqrt(5)/2)^14 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^52/Lucas(84) 2584000077399378 a004 Fibonacci(84)/Lucas(50)/(1/2+sqrt(5)/2)^16 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^54/Lucas(86) 2584000077399378 a004 Fibonacci(86)/Lucas(50)/(1/2+sqrt(5)/2)^18 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^56/Lucas(88) 2584000077399378 a004 Fibonacci(88)/Lucas(50)/(1/2+sqrt(5)/2)^20 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^58/Lucas(90) 2584000077399378 a004 Fibonacci(90)/Lucas(50)/(1/2+sqrt(5)/2)^22 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^60/Lucas(92) 2584000077399378 a004 Fibonacci(92)/Lucas(50)/(1/2+sqrt(5)/2)^24 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^62/Lucas(94) 2584000077399378 a004 Fibonacci(94)/Lucas(50)/(1/2+sqrt(5)/2)^26 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^64/Lucas(96) 2584000077399378 a004 Fibonacci(96)/Lucas(50)/(1/2+sqrt(5)/2)^28 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^66/Lucas(98) 2584000077399378 a004 Fibonacci(98)/Lucas(50)/(1/2+sqrt(5)/2)^30 2584000077399378 a004 Fibonacci(25)*Lucas(25)/(1/2+sqrt(5)/2)^32 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^65/Lucas(97) 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^67/Lucas(99) 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^68/Lucas(100) 2584000077399378 a004 Fibonacci(97)/Lucas(50)/(1/2+sqrt(5)/2)^29 2584000077399378 a004 Fibonacci(99)/Lucas(50)/(1/2+sqrt(5)/2)^31 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^63/Lucas(95) 2584000077399378 a004 Fibonacci(95)/Lucas(50)/(1/2+sqrt(5)/2)^27 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^61/Lucas(93) 2584000077399378 a004 Fibonacci(93)/Lucas(50)/(1/2+sqrt(5)/2)^25 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^59/Lucas(91) 2584000077399378 a004 Fibonacci(91)/Lucas(50)/(1/2+sqrt(5)/2)^23 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^57/Lucas(89) 2584000077399378 a004 Fibonacci(89)/Lucas(50)/(1/2+sqrt(5)/2)^21 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^55/Lucas(87) 2584000077399378 a004 Fibonacci(87)/Lucas(50)/(1/2+sqrt(5)/2)^19 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^53/Lucas(85) 2584000077399378 a004 Fibonacci(85)/Lucas(50)/(1/2+sqrt(5)/2)^17 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^51/Lucas(83) 2584000077399378 a004 Fibonacci(83)/Lucas(50)/(1/2+sqrt(5)/2)^15 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^49/Lucas(81) 2584000077399378 a004 Fibonacci(81)/Lucas(50)/(1/2+sqrt(5)/2)^13 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^47/Lucas(79) 2584000077399378 a004 Fibonacci(79)/Lucas(50)/(1/2+sqrt(5)/2)^11 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^45/Lucas(77) 2584000077399378 a004 Fibonacci(77)/Lucas(50)/(1/2+sqrt(5)/2)^9 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^43/Lucas(75) 2584000077399378 a004 Fibonacci(75)/Lucas(50)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^41/Lucas(73) 2584000077399378 a004 Fibonacci(73)/Lucas(50)/(1/2+sqrt(5)/2)^5 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^39/Lucas(71) 2584000077399378 a004 Fibonacci(71)/Lucas(50)/(1/2+sqrt(5)/2)^3 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^37/Lucas(69) 2584000077399378 a004 Fibonacci(69)/Lucas(50)/(1/2+sqrt(5)/2) 2584000077399378 a004 Fibonacci(50)*Lucas(68)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^35/Lucas(67) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)/Lucas(50) 2584000077399378 a004 Fibonacci(50)*Lucas(66)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^33/Lucas(65) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^3/Lucas(50) 2584000077399378 a004 Fibonacci(50)*Lucas(64)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^31/Lucas(63) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^5/Lucas(50) 2584000077399378 a004 Fibonacci(50)*Lucas(62)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^29/Lucas(61) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^7/Lucas(50) 2584000077399378 a004 Fibonacci(50)*Lucas(60)/(1/2+sqrt(5)/2)^92 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^27/Lucas(59) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^9/Lucas(50) 2584000077399378 a001 12586269025/5600748293801*1322157322203^(1/2) 2584000077399378 a004 Fibonacci(50)*Lucas(58)/(1/2+sqrt(5)/2)^90 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^25/Lucas(57) 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^11/Lucas(50) 2584000077399378 a001 12586269025/817138163596*3461452808002^(5/12) 2584000077399378 a004 Fibonacci(50)*Lucas(56)/(1/2+sqrt(5)/2)^88 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^23/Lucas(55) 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^13/Lucas(50) 2584000077399378 a001 12586269025/2139295485799*192900153618^(1/2) 2584000077399378 a004 Fibonacci(50)*Lucas(54)/(1/2+sqrt(5)/2)^86 2584000077399378 a001 12585437040/228811001*73681302247^(2/13) 2584000077399378 a001 75283811239/9381251041*73681302247^(3/13) 2584000077399378 a001 139583862445/28143753123*73681302247^(1/4) 2584000077399378 a001 53316291173/28143753123*312119004989^(3/11) 2584000077399378 a001 12586269025/119218851371*14662949395604^(1/3) 2584000077399378 a001 53316291173/28143753123*14662949395604^(5/21) 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^21/Lucas(53) 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^15/Lucas(50) 2584000077399378 a001 12586269025/119218851371*192900153618^(7/18) 2584000077399378 a001 12586269025/505019158607*73681302247^(6/13) 2584000077399378 a001 12586269025/1322157322203*73681302247^(1/2) 2584000077399378 a001 12586269025/3461452808002*73681302247^(7/13) 2584000077399378 a001 12586269025/23725150497407*73681302247^(8/13) 2584000077399378 a001 6557470319842/28143753123*28143753123^(1/10) 2584000077399378 a001 32264490531/10525900321*17393796001^(2/7) 2584000077399378 a004 Fibonacci(50)*Lucas(52)/(1/2+sqrt(5)/2)^84 2584000077399378 a001 591286729879/28143753123*28143753123^(1/5) 2584000077399378 a001 591286729879/192900153618*17393796001^(2/7) 2584000077399378 a001 10182505537/96450076809*17393796001^(3/7) 2584000077399378 a001 1548008755920/505019158607*17393796001^(2/7) 2584000077399378 a001 1515744265389/494493258286*17393796001^(2/7) 2584000077399378 a001 12586269025/73681302247*28143753123^(2/5) 2584000077399378 a001 956722026041/312119004989*17393796001^(2/7) 2584000077399378 a001 774004377960/5374978561*4106118243^(3/23) 2584000077399378 a001 365435296162/119218851371*17393796001^(2/7) 2584000077399378 a001 53316291173/28143753123*28143753123^(3/10) 2584000077399378 a001 12586269025/45537549124*817138163596^(1/3) 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^19/Lucas(51) 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^17/Lucas(50) 2584000077399378 a004 Fibonacci(52)*Lucas(51)/(1/2+sqrt(5)/2)^85 2584000077399378 a001 6557470319842/73681302247*17393796001^(1/7) 2584000077399378 a001 12586269025/817138163596*28143753123^(1/2) 2584000077399378 a001 3536736619241/9381251041*10749957122^(1/12) 2584000077399378 a001 32951280099/73681302247*45537549124^(6/17) 2584000077399378 a004 Fibonacci(54)*Lucas(51)/(1/2+sqrt(5)/2)^87 2584000077399378 a001 12586269025/9062201101803*28143753123^(3/5) 2584000077399378 a004 Fibonacci(56)*Lucas(51)/(1/2+sqrt(5)/2)^89 2584000077399378 a004 Fibonacci(58)*Lucas(51)/(1/2+sqrt(5)/2)^91 2584000077399378 a004 Fibonacci(60)*Lucas(51)/(1/2+sqrt(5)/2)^93 2584000077399378 a004 Fibonacci(62)*Lucas(51)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(64)*Lucas(51)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(66)*Lucas(51)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(67)*Lucas(51)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(65)*Lucas(51)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(63)*Lucas(51)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(61)*Lucas(51)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(59)*Lucas(51)/(1/2+sqrt(5)/2)^92 2584000077399378 a004 Fibonacci(57)*Lucas(51)/(1/2+sqrt(5)/2)^90 2584000077399378 a004 Fibonacci(55)*Lucas(51)/(1/2+sqrt(5)/2)^88 2584000077399378 a001 32951280099/23725150497407*45537549124^(10/17) 2584000077399378 a001 139583862445/45537549124*17393796001^(2/7) 2584000077399378 a001 32951280099/5600748293801*45537549124^(9/17) 2584000077399378 a004 Fibonacci(53)*Lucas(51)/(1/2+sqrt(5)/2)^86 2584000077399378 a001 10983760033/440719107401*45537549124^(8/17) 2584000077399378 a001 10610209857723/119218851371*17393796001^(1/7) 2584000077399378 a001 32951280099/312119004989*45537549124^(7/17) 2584000077399378 a001 32951280099/73681302247*14662949395604^(2/7) 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^18/Lucas(52) 2584000077399378 a001 32951280099/73681302247*192900153618^(1/3) 2584000077399378 a001 139583862445/73681302247*45537549124^(5/17) 2584000077399378 a001 591286729879/73681302247*45537549124^(4/17) 2584000077399378 a001 1135099622/192933544679*45537549124^(9/17) 2584000077399378 a001 53316291173/73681302247*45537549124^(1/3) 2584000077399378 a001 2504730781961/73681302247*45537549124^(3/17) 2584000077399378 a004 Fibonacci(52)*Lucas(53)/(1/2+sqrt(5)/2)^87 2584000077399378 a001 43133785636/1730726404001*45537549124^(8/17) 2584000077399378 a001 139583862445/23725150497407*45537549124^(9/17) 2584000077399378 a001 1515744265389/10525900321*45537549124^(2/17) 2584000077399378 a001 75283811239/3020733700601*45537549124^(8/17) 2584000077399378 a001 182717648081/7331474697802*45537549124^(8/17) 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^20/Lucas(54) 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^16/Lucas(52) 2584000077399378 a001 10983760033/64300051206*23725150497407^(5/16) 2584000077399378 a001 10983760033/64300051206*505019158607^(5/14) 2584000077399378 a001 182717648081/1730726404001*45537549124^(7/17) 2584000077399378 a004 Fibonacci(52)*Lucas(55)/(1/2+sqrt(5)/2)^89 2584000077399378 a001 32951280099/2139295485799*312119004989^(5/11) 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^22/Lucas(56) 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^14/Lucas(52) 2584000077399378 a001 1548008755920/73681302247*312119004989^(2/11) 2584000077399378 a004 Fibonacci(52)*Lucas(57)/(1/2+sqrt(5)/2)^91 2584000077399378 a001 10983760033/440719107401*14662949395604^(8/21) 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^24/Lucas(58) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^12/Lucas(52) 2584000077399378 a004 Fibonacci(52)*Lucas(59)/(1/2+sqrt(5)/2)^93 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^26/Lucas(60) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^10/Lucas(52) 2584000077399378 a004 Fibonacci(52)*Lucas(61)/(1/2+sqrt(5)/2)^95 2584000077399378 a001 10983760033/3020733700601*14662949395604^(4/9) 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^28/Lucas(62) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^8/Lucas(52) 2584000077399378 a004 Fibonacci(52)*Lucas(63)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^30/Lucas(64) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^6/Lucas(52) 2584000077399378 a004 Fibonacci(52)*Lucas(65)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^32/Lucas(66) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^4/Lucas(52) 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^34/Lucas(68) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^2/Lucas(52) 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^36/Lucas(70) 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^38/Lucas(72) 2584000077399378 a004 Fibonacci(72)/Lucas(52)/(1/2+sqrt(5)/2)^2 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^40/Lucas(74) 2584000077399378 a004 Fibonacci(74)/Lucas(52)/(1/2+sqrt(5)/2)^4 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^42/Lucas(76) 2584000077399378 a004 Fibonacci(76)/Lucas(52)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^44/Lucas(78) 2584000077399378 a004 Fibonacci(78)/Lucas(52)/(1/2+sqrt(5)/2)^8 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^46/Lucas(80) 2584000077399378 a004 Fibonacci(80)/Lucas(52)/(1/2+sqrt(5)/2)^10 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^48/Lucas(82) 2584000077399378 a004 Fibonacci(82)/Lucas(52)/(1/2+sqrt(5)/2)^12 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^50/Lucas(84) 2584000077399378 a004 Fibonacci(84)/Lucas(52)/(1/2+sqrt(5)/2)^14 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^52/Lucas(86) 2584000077399378 a004 Fibonacci(86)/Lucas(52)/(1/2+sqrt(5)/2)^16 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^54/Lucas(88) 2584000077399378 a004 Fibonacci(88)/Lucas(52)/(1/2+sqrt(5)/2)^18 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^56/Lucas(90) 2584000077399378 a004 Fibonacci(90)/Lucas(52)/(1/2+sqrt(5)/2)^20 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^58/Lucas(92) 2584000077399378 a004 Fibonacci(92)/Lucas(52)/(1/2+sqrt(5)/2)^22 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^60/Lucas(94) 2584000077399378 a004 Fibonacci(94)/Lucas(52)/(1/2+sqrt(5)/2)^24 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^62/Lucas(96) 2584000077399378 a004 Fibonacci(96)/Lucas(52)/(1/2+sqrt(5)/2)^26 2584000077399378 a004 Fibonacci(100)/Lucas(52)/(1/2+sqrt(5)/2)^30 2584000077399378 a004 Fibonacci(26)*Lucas(26)/(1/2+sqrt(5)/2)^34 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^64/Lucas(98) 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^65/Lucas(99) 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^66/Lucas(100) 2584000077399378 a004 Fibonacci(98)/Lucas(52)/(1/2+sqrt(5)/2)^28 2584000077399378 a004 Fibonacci(99)/Lucas(52)/(1/2+sqrt(5)/2)^29 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^63/Lucas(97) 2584000077399378 a004 Fibonacci(97)/Lucas(52)/(1/2+sqrt(5)/2)^27 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^61/Lucas(95) 2584000077399378 a004 Fibonacci(95)/Lucas(52)/(1/2+sqrt(5)/2)^25 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^59/Lucas(93) 2584000077399378 a004 Fibonacci(93)/Lucas(52)/(1/2+sqrt(5)/2)^23 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^57/Lucas(91) 2584000077399378 a004 Fibonacci(91)/Lucas(52)/(1/2+sqrt(5)/2)^21 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^55/Lucas(89) 2584000077399378 a004 Fibonacci(89)/Lucas(52)/(1/2+sqrt(5)/2)^19 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^53/Lucas(87) 2584000077399378 a004 Fibonacci(87)/Lucas(52)/(1/2+sqrt(5)/2)^17 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^51/Lucas(85) 2584000077399378 a004 Fibonacci(85)/Lucas(52)/(1/2+sqrt(5)/2)^15 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^49/Lucas(83) 2584000077399378 a004 Fibonacci(83)/Lucas(52)/(1/2+sqrt(5)/2)^13 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^47/Lucas(81) 2584000077399378 a004 Fibonacci(81)/Lucas(52)/(1/2+sqrt(5)/2)^11 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^45/Lucas(79) 2584000077399378 a004 Fibonacci(79)/Lucas(52)/(1/2+sqrt(5)/2)^9 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^43/Lucas(77) 2584000077399378 a004 Fibonacci(77)/Lucas(52)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^41/Lucas(75) 2584000077399378 a004 Fibonacci(75)/Lucas(52)/(1/2+sqrt(5)/2)^5 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^39/Lucas(73) 2584000077399378 a004 Fibonacci(73)/Lucas(52)/(1/2+sqrt(5)/2)^3 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^37/Lucas(71) 2584000077399378 a004 Fibonacci(71)/Lucas(52)/(1/2+sqrt(5)/2) 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^35/Lucas(69) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)/Lucas(52) 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^33/Lucas(67) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^3/Lucas(52) 2584000077399378 a004 Fibonacci(52)*Lucas(66)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^31/Lucas(65) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^5/Lucas(52) 2584000077399378 a004 Fibonacci(52)*Lucas(64)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^29/Lucas(63) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^7/Lucas(52) 2584000077399378 a004 Fibonacci(52)*Lucas(62)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^27/Lucas(61) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^9/Lucas(52) 2584000077399378 a004 Fibonacci(52)*Lucas(60)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^25/Lucas(59) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^11/Lucas(52) 2584000077399378 a004 Fibonacci(52)*Lucas(58)/(1/2+sqrt(5)/2)^92 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^23/Lucas(57) 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^13/Lucas(52) 2584000077399378 a004 Fibonacci(52)*Lucas(56)/(1/2+sqrt(5)/2)^90 2584000077399378 a001 139583862445/192900153618*45537549124^(1/3) 2584000077399378 a001 139583862445/73681302247*14662949395604^(5/21) 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^21/Lucas(55) 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^15/Lucas(52) 2584000077399378 a001 10983760033/440719107401*192900153618^(4/9) 2584000077399378 a001 591286729879/817138163596*45537549124^(1/3) 2584000077399378 a004 Fibonacci(52)*Lucas(54)/(1/2+sqrt(5)/2)^88 2584000077399378 a001 225851433717/312119004989*45537549124^(1/3) 2584000077399378 a001 139583862445/312119004989*45537549124^(6/17) 2584000077399378 a001 10983760033/64300051206*73681302247^(5/13) 2584000077399378 a001 365435296162/73681302247*73681302247^(1/4) 2584000077399378 a001 53316291173/505019158607*45537549124^(7/17) 2584000077399378 a001 32951280099/119218851371*817138163596^(1/3) 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^19/Lucas(53) 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^17/Lucas(52) 2584000077399378 a001 3278735159921/408569081798*45537549124^(4/17) 2584000077399378 a001 10983760033/440719107401*73681302247^(6/13) 2584000077399378 a004 Fibonacci(54)*Lucas(53)/(1/2+sqrt(5)/2)^89 2584000077399378 a001 32951280099/3461452808002*73681302247^(1/2) 2584000077399378 a001 10983760033/3020733700601*73681302247^(7/13) 2584000077399378 a001 225851433717/119218851371*45537549124^(5/17) 2584000077399378 a001 10610209857723/312119004989*45537549124^(3/17) 2584000077399378 a004 Fibonacci(56)*Lucas(53)/(1/2+sqrt(5)/2)^91 2584000077399378 a004 Fibonacci(58)*Lucas(53)/(1/2+sqrt(5)/2)^93 2584000077399378 a004 Fibonacci(60)*Lucas(53)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(62)*Lucas(53)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(64)*Lucas(53)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(65)*Lucas(53)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(63)*Lucas(53)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(61)*Lucas(53)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(59)*Lucas(53)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(57)*Lucas(53)/(1/2+sqrt(5)/2)^92 2584000077399378 a004 Fibonacci(55)*Lucas(53)/(1/2+sqrt(5)/2)^90 2584000077399378 a001 43133785636/96450076809*14662949395604^(2/7) 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^18/Lucas(54) 2584000077399378 a001 43133785636/96450076809*192900153618^(1/3) 2584000077399378 a001 956722026041/119218851371*45537549124^(4/17) 2584000077399378 a004 Fibonacci(54)*Lucas(55)/(1/2+sqrt(5)/2)^91 2584000077399378 a001 86267571272/5600748293801*312119004989^(5/11) 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^20/Lucas(56) 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^16/Lucas(54) 2584000077399378 a004 Fibonacci(54)*Lucas(57)/(1/2+sqrt(5)/2)^93 2584000077399378 a001 182717648081/96450076809*312119004989^(3/11) 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^22/Lucas(58) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^14/Lucas(54) 2584000077399378 a004 Fibonacci(54)*Lucas(59)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^24/Lucas(60) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^12/Lucas(54) 2584000077399378 a004 Fibonacci(54)*Lucas(61)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^26/Lucas(62) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^10/Lucas(54) 2584000077399378 a004 Fibonacci(54)*Lucas(63)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^28/Lucas(64) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^8/Lucas(54) 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^30/Lucas(66) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^6/Lucas(54) 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^32/Lucas(68) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^4/Lucas(54) 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^34/Lucas(70) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^2/Lucas(54) 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^36/Lucas(72) 2584000077399378 a006 5^(1/2)*Fibonacci(72)/Lucas(54)/sqrt(5) 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^38/Lucas(74) 2584000077399378 a004 Fibonacci(74)/Lucas(54)/(1/2+sqrt(5)/2)^2 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^40/Lucas(76) 2584000077399378 a004 Fibonacci(76)/Lucas(54)/(1/2+sqrt(5)/2)^4 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^42/Lucas(78) 2584000077399378 a004 Fibonacci(78)/Lucas(54)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^44/Lucas(80) 2584000077399378 a004 Fibonacci(80)/Lucas(54)/(1/2+sqrt(5)/2)^8 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^46/Lucas(82) 2584000077399378 a004 Fibonacci(82)/Lucas(54)/(1/2+sqrt(5)/2)^10 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^48/Lucas(84) 2584000077399378 a004 Fibonacci(84)/Lucas(54)/(1/2+sqrt(5)/2)^12 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^50/Lucas(86) 2584000077399378 a004 Fibonacci(86)/Lucas(54)/(1/2+sqrt(5)/2)^14 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^52/Lucas(88) 2584000077399378 a004 Fibonacci(88)/Lucas(54)/(1/2+sqrt(5)/2)^16 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^54/Lucas(90) 2584000077399378 a004 Fibonacci(90)/Lucas(54)/(1/2+sqrt(5)/2)^18 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^56/Lucas(92) 2584000077399378 a004 Fibonacci(92)/Lucas(54)/(1/2+sqrt(5)/2)^20 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^58/Lucas(94) 2584000077399378 a004 Fibonacci(94)/Lucas(54)/(1/2+sqrt(5)/2)^22 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^60/Lucas(96) 2584000077399378 a004 Fibonacci(96)/Lucas(54)/(1/2+sqrt(5)/2)^24 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^62/Lucas(98) 2584000077399378 a004 Fibonacci(98)/Lucas(54)/(1/2+sqrt(5)/2)^26 2584000077399378 a004 Fibonacci(100)/Lucas(54)/(1/2+sqrt(5)/2)^28 2584000077399378 a004 Fibonacci(27)*Lucas(27)/(1/2+sqrt(5)/2)^36 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^61/Lucas(97) 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^63/Lucas(99) 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^64/Lucas(100) 2584000077399378 a004 Fibonacci(97)/Lucas(54)/(1/2+sqrt(5)/2)^25 2584000077399378 a004 Fibonacci(99)/Lucas(54)/(1/2+sqrt(5)/2)^27 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^59/Lucas(95) 2584000077399378 a004 Fibonacci(95)/Lucas(54)/(1/2+sqrt(5)/2)^23 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^57/Lucas(93) 2584000077399378 a004 Fibonacci(93)/Lucas(54)/(1/2+sqrt(5)/2)^21 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^55/Lucas(91) 2584000077399378 a004 Fibonacci(91)/Lucas(54)/(1/2+sqrt(5)/2)^19 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^53/Lucas(89) 2584000077399378 a004 Fibonacci(89)/Lucas(54)/(1/2+sqrt(5)/2)^17 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^51/Lucas(87) 2584000077399378 a004 Fibonacci(87)/Lucas(54)/(1/2+sqrt(5)/2)^15 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^49/Lucas(85) 2584000077399378 a004 Fibonacci(85)/Lucas(54)/(1/2+sqrt(5)/2)^13 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^47/Lucas(83) 2584000077399378 a004 Fibonacci(83)/Lucas(54)/(1/2+sqrt(5)/2)^11 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^45/Lucas(81) 2584000077399378 a004 Fibonacci(81)/Lucas(54)/(1/2+sqrt(5)/2)^9 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^43/Lucas(79) 2584000077399378 a004 Fibonacci(79)/Lucas(54)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^41/Lucas(77) 2584000077399378 a004 Fibonacci(77)/Lucas(54)/(1/2+sqrt(5)/2)^5 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^39/Lucas(75) 2584000077399378 a004 Fibonacci(75)/Lucas(54)/(1/2+sqrt(5)/2)^3 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^37/Lucas(73) 2584000077399378 a004 Fibonacci(73)/Lucas(54)/(1/2+sqrt(5)/2) 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^35/Lucas(71) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)/Lucas(54) 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^33/Lucas(69) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^3/Lucas(54) 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^31/Lucas(67) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^5/Lucas(54) 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^29/Lucas(65) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^7/Lucas(54) 2584000077399378 a004 Fibonacci(54)*Lucas(64)/(1/2+sqrt(5)/2)^100 2584000077399378 a001 1135099622/192933544679*14662949395604^(3/7) 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^27/Lucas(63) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^9/Lucas(54) 2584000077399378 a004 Fibonacci(54)*Lucas(62)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^25/Lucas(61) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^11/Lucas(54) 2584000077399378 a004 Fibonacci(54)*Lucas(60)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^23/Lucas(59) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^13/Lucas(54) 2584000077399378 a004 Fibonacci(54)*Lucas(58)/(1/2+sqrt(5)/2)^94 2584000077399378 a001 182717648081/96450076809*14662949395604^(5/21) 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^21/Lucas(57) 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^15/Lucas(54) 2584000077399378 a004 Fibonacci(54)*Lucas(56)/(1/2+sqrt(5)/2)^92 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^19/Lucas(55) 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^17/Lucas(54) 2584000077399378 a001 21566892818/204284540899*192900153618^(7/18) 2584000077399378 a004 Fibonacci(56)*Lucas(55)/(1/2+sqrt(5)/2)^93 2584000077399378 a001 1135099622/192933544679*192900153618^(1/2) 2584000077399378 a004 Fibonacci(58)*Lucas(55)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(60)*Lucas(55)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(62)*Lucas(55)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(63)*Lucas(55)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(61)*Lucas(55)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(59)*Lucas(55)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(57)*Lucas(55)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^18/Lucas(56) 2584000077399378 a001 225749145909/10745088481*312119004989^(2/11) 2584000077399378 a004 Fibonacci(56)*Lucas(57)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^20/Lucas(58) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^16/Lucas(56) 2584000077399378 a004 Fibonacci(56)*Lucas(59)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^22/Lucas(60) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^14/Lucas(56) 2584000077399378 a004 Fibonacci(56)*Lucas(61)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^24/Lucas(62) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^12/Lucas(56) 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^26/Lucas(64) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^10/Lucas(56) 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^28/Lucas(66) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^8/Lucas(56) 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^30/Lucas(68) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^6/Lucas(56) 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^32/Lucas(70) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^4/Lucas(56) 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^34/Lucas(72) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^2/Lucas(56) 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^36/Lucas(74) 2584000077399378 a006 5^(1/2)*Fibonacci(74)/Lucas(56)/sqrt(5) 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^38/Lucas(76) 2584000077399378 a004 Fibonacci(76)/Lucas(56)/(1/2+sqrt(5)/2)^2 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^40/Lucas(78) 2584000077399378 a004 Fibonacci(78)/Lucas(56)/(1/2+sqrt(5)/2)^4 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^42/Lucas(80) 2584000077399378 a004 Fibonacci(80)/Lucas(56)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^44/Lucas(82) 2584000077399378 a004 Fibonacci(82)/Lucas(56)/(1/2+sqrt(5)/2)^8 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^46/Lucas(84) 2584000077399378 a004 Fibonacci(84)/Lucas(56)/(1/2+sqrt(5)/2)^10 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^48/Lucas(86) 2584000077399378 a004 Fibonacci(86)/Lucas(56)/(1/2+sqrt(5)/2)^12 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^50/Lucas(88) 2584000077399378 a004 Fibonacci(88)/Lucas(56)/(1/2+sqrt(5)/2)^14 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^52/Lucas(90) 2584000077399378 a004 Fibonacci(90)/Lucas(56)/(1/2+sqrt(5)/2)^16 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^54/Lucas(92) 2584000077399378 a004 Fibonacci(92)/Lucas(56)/(1/2+sqrt(5)/2)^18 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^56/Lucas(94) 2584000077399378 a004 Fibonacci(94)/Lucas(56)/(1/2+sqrt(5)/2)^20 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^58/Lucas(96) 2584000077399378 a004 Fibonacci(96)/Lucas(56)/(1/2+sqrt(5)/2)^22 2584000077399378 a004 Fibonacci(100)/Lucas(56)/(1/2+sqrt(5)/2)^26 2584000077399378 a004 Fibonacci(28)*Lucas(28)/(1/2+sqrt(5)/2)^38 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^60/Lucas(98) 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^61/Lucas(99) 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^62/Lucas(100) 2584000077399378 a004 Fibonacci(98)/Lucas(56)/(1/2+sqrt(5)/2)^24 2584000077399378 a004 Fibonacci(99)/Lucas(56)/(1/2+sqrt(5)/2)^25 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^59/Lucas(97) 2584000077399378 a004 Fibonacci(97)/Lucas(56)/(1/2+sqrt(5)/2)^23 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^57/Lucas(95) 2584000077399378 a004 Fibonacci(95)/Lucas(56)/(1/2+sqrt(5)/2)^21 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^55/Lucas(93) 2584000077399378 a004 Fibonacci(93)/Lucas(56)/(1/2+sqrt(5)/2)^19 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^53/Lucas(91) 2584000077399378 a004 Fibonacci(91)/Lucas(56)/(1/2+sqrt(5)/2)^17 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^51/Lucas(89) 2584000077399378 a004 Fibonacci(89)/Lucas(56)/(1/2+sqrt(5)/2)^15 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^49/Lucas(87) 2584000077399378 a004 Fibonacci(87)/Lucas(56)/(1/2+sqrt(5)/2)^13 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^47/Lucas(85) 2584000077399378 a004 Fibonacci(85)/Lucas(56)/(1/2+sqrt(5)/2)^11 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^45/Lucas(83) 2584000077399378 a004 Fibonacci(83)/Lucas(56)/(1/2+sqrt(5)/2)^9 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^43/Lucas(81) 2584000077399378 a004 Fibonacci(81)/Lucas(56)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^41/Lucas(79) 2584000077399378 a004 Fibonacci(79)/Lucas(56)/(1/2+sqrt(5)/2)^5 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^39/Lucas(77) 2584000077399378 a004 Fibonacci(77)/Lucas(56)/(1/2+sqrt(5)/2)^3 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^37/Lucas(75) 2584000077399378 a004 Fibonacci(75)/Lucas(56)/(1/2+sqrt(5)/2) 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^35/Lucas(73) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)/Lucas(56) 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^33/Lucas(71) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^3/Lucas(56) 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^31/Lucas(69) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^5/Lucas(56) 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^29/Lucas(67) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^7/Lucas(56) 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^27/Lucas(65) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^9/Lucas(56) 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^25/Lucas(63) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^11/Lucas(56) 2584000077399378 a004 Fibonacci(56)*Lucas(62)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^23/Lucas(61) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^13/Lucas(56) 2584000077399378 a004 Fibonacci(56)*Lucas(60)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^21/Lucas(59) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^15/Lucas(56) 2584000077399378 a004 Fibonacci(56)*Lucas(58)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^19/Lucas(57) 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^17/Lucas(56) 2584000077399378 a004 Fibonacci(58)*Lucas(57)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(60)*Lucas(57)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(61)*Lucas(57)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(59)*Lucas(57)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^18/Lucas(58) 2584000077399378 a004 Fibonacci(58)*Lucas(59)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^20/Lucas(60) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^16/Lucas(58) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^22/Lucas(62) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^14/Lucas(58) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^24/Lucas(64) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^12/Lucas(58) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^26/Lucas(66) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^10/Lucas(58) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^28/Lucas(68) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^8/Lucas(58) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^30/Lucas(70) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^6/Lucas(58) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^32/Lucas(72) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^4/Lucas(58) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^34/Lucas(74) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^2/Lucas(58) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^36/Lucas(76) 2584000077399378 a006 5^(1/2)*Fibonacci(76)/Lucas(58)/sqrt(5) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^38/Lucas(78) 2584000077399378 a004 Fibonacci(78)/Lucas(58)/(1/2+sqrt(5)/2)^2 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^40/Lucas(80) 2584000077399378 a004 Fibonacci(80)/Lucas(58)/(1/2+sqrt(5)/2)^4 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^42/Lucas(82) 2584000077399378 a004 Fibonacci(82)/Lucas(58)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^44/Lucas(84) 2584000077399378 a004 Fibonacci(84)/Lucas(58)/(1/2+sqrt(5)/2)^8 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^46/Lucas(86) 2584000077399378 a004 Fibonacci(86)/Lucas(58)/(1/2+sqrt(5)/2)^10 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^48/Lucas(88) 2584000077399378 a004 Fibonacci(88)/Lucas(58)/(1/2+sqrt(5)/2)^12 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^50/Lucas(90) 2584000077399378 a004 Fibonacci(90)/Lucas(58)/(1/2+sqrt(5)/2)^14 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^52/Lucas(92) 2584000077399378 a004 Fibonacci(92)/Lucas(58)/(1/2+sqrt(5)/2)^16 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^54/Lucas(94) 2584000077399378 a004 Fibonacci(94)/Lucas(58)/(1/2+sqrt(5)/2)^18 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^56/Lucas(96) 2584000077399378 a004 Fibonacci(96)/Lucas(58)/(1/2+sqrt(5)/2)^20 2584000077399378 a004 Fibonacci(100)/Lucas(58)/(1/2+sqrt(5)/2)^24 2584000077399378 a004 Fibonacci(29)*Lucas(29)/(1/2+sqrt(5)/2)^40 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^58/Lucas(98) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^59/Lucas(99) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^60/Lucas(100) 2584000077399378 a004 Fibonacci(98)/Lucas(58)/(1/2+sqrt(5)/2)^22 2584000077399378 a004 Fibonacci(99)/Lucas(58)/(1/2+sqrt(5)/2)^23 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^57/Lucas(97) 2584000077399378 a004 Fibonacci(97)/Lucas(58)/(1/2+sqrt(5)/2)^21 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^55/Lucas(95) 2584000077399378 a004 Fibonacci(95)/Lucas(58)/(1/2+sqrt(5)/2)^19 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^53/Lucas(93) 2584000077399378 a004 Fibonacci(93)/Lucas(58)/(1/2+sqrt(5)/2)^17 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^51/Lucas(91) 2584000077399378 a004 Fibonacci(91)/Lucas(58)/(1/2+sqrt(5)/2)^15 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^49/Lucas(89) 2584000077399378 a004 Fibonacci(89)/Lucas(58)/(1/2+sqrt(5)/2)^13 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^47/Lucas(87) 2584000077399378 a004 Fibonacci(87)/Lucas(58)/(1/2+sqrt(5)/2)^11 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^45/Lucas(85) 2584000077399378 a004 Fibonacci(85)/Lucas(58)/(1/2+sqrt(5)/2)^9 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^43/Lucas(83) 2584000077399378 a004 Fibonacci(83)/Lucas(58)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^41/Lucas(81) 2584000077399378 a004 Fibonacci(81)/Lucas(58)/(1/2+sqrt(5)/2)^5 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^39/Lucas(79) 2584000077399378 a004 Fibonacci(79)/Lucas(58)/(1/2+sqrt(5)/2)^3 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^37/Lucas(77) 2584000077399378 a004 Fibonacci(77)/Lucas(58)/(1/2+sqrt(5)/2) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^35/Lucas(75) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)/Lucas(58) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^33/Lucas(73) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^3/Lucas(58) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^31/Lucas(71) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^5/Lucas(58) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^29/Lucas(69) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^7/Lucas(58) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^27/Lucas(67) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^9/Lucas(58) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^25/Lucas(65) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^11/Lucas(58) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^23/Lucas(63) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^13/Lucas(58) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^21/Lucas(61) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^15/Lucas(58) 2584000077399378 a004 Fibonacci(58)*Lucas(60)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^19/Lucas(59) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^17/Lucas(58) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^18/Lucas(60) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^20/Lucas(62) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^16/Lucas(60) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^22/Lucas(64) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^14/Lucas(60) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^24/Lucas(66) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^12/Lucas(60) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^26/Lucas(68) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^10/Lucas(60) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^28/Lucas(70) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^8/Lucas(60) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^30/Lucas(72) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^6/Lucas(60) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^32/Lucas(74) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^4/Lucas(60) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^34/Lucas(76) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^2/Lucas(60) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^36/Lucas(78) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^38/Lucas(80) 2584000077399378 a004 Fibonacci(80)/Lucas(60)/(1/2+sqrt(5)/2)^2 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^40/Lucas(82) 2584000077399378 a004 Fibonacci(82)/Lucas(60)/(1/2+sqrt(5)/2)^4 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^42/Lucas(84) 2584000077399378 a004 Fibonacci(84)/Lucas(60)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^44/Lucas(86) 2584000077399378 a004 Fibonacci(86)/Lucas(60)/(1/2+sqrt(5)/2)^8 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^46/Lucas(88) 2584000077399378 a004 Fibonacci(88)/Lucas(60)/(1/2+sqrt(5)/2)^10 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^48/Lucas(90) 2584000077399378 a004 Fibonacci(90)/Lucas(60)/(1/2+sqrt(5)/2)^12 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^50/Lucas(92) 2584000077399378 a004 Fibonacci(92)/Lucas(60)/(1/2+sqrt(5)/2)^14 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^52/Lucas(94) 2584000077399378 a004 Fibonacci(94)/Lucas(60)/(1/2+sqrt(5)/2)^16 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^54/Lucas(96) 2584000077399378 a004 Fibonacci(96)/Lucas(60)/(1/2+sqrt(5)/2)^18 2584000077399378 a004 Fibonacci(100)/Lucas(60)/(1/2+sqrt(5)/2)^22 2584000077399378 a004 Fibonacci(30)*Lucas(30)/(1/2+sqrt(5)/2)^42 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^56/Lucas(98) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^58/Lucas(100) 2584000077399378 a004 Fibonacci(98)/Lucas(60)/(1/2+sqrt(5)/2)^20 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^55/Lucas(97) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^57/Lucas(99) 2584000077399378 a004 Fibonacci(97)/Lucas(60)/(1/2+sqrt(5)/2)^19 2584000077399378 a004 Fibonacci(99)/Lucas(60)/(1/2+sqrt(5)/2)^21 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^53/Lucas(95) 2584000077399378 a004 Fibonacci(95)/Lucas(60)/(1/2+sqrt(5)/2)^17 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^51/Lucas(93) 2584000077399378 a004 Fibonacci(93)/Lucas(60)/(1/2+sqrt(5)/2)^15 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^49/Lucas(91) 2584000077399378 a004 Fibonacci(91)/Lucas(60)/(1/2+sqrt(5)/2)^13 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^47/Lucas(89) 2584000077399378 a004 Fibonacci(89)/Lucas(60)/(1/2+sqrt(5)/2)^11 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^45/Lucas(87) 2584000077399378 a004 Fibonacci(87)/Lucas(60)/(1/2+sqrt(5)/2)^9 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^43/Lucas(85) 2584000077399378 a004 Fibonacci(85)/Lucas(60)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^41/Lucas(83) 2584000077399378 a004 Fibonacci(83)/Lucas(60)/(1/2+sqrt(5)/2)^5 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^39/Lucas(81) 2584000077399378 a004 Fibonacci(81)/Lucas(60)/(1/2+sqrt(5)/2)^3 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^37/Lucas(79) 2584000077399378 a004 Fibonacci(79)/Lucas(60)/(1/2+sqrt(5)/2) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^35/Lucas(77) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)/Lucas(60) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^33/Lucas(75) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^3/Lucas(60) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^31/Lucas(73) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^5/Lucas(60) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^29/Lucas(71) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^7/Lucas(60) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^27/Lucas(69) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^9/Lucas(60) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^25/Lucas(67) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^11/Lucas(60) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^23/Lucas(65) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^13/Lucas(60) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^21/Lucas(63) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^15/Lucas(60) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^19/Lucas(61) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^17/Lucas(60) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^18/Lucas(62) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^20/Lucas(64) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^16/Lucas(62) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^22/Lucas(66) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^14/Lucas(62) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^24/Lucas(68) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^12/Lucas(62) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^26/Lucas(70) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^10/Lucas(62) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^28/Lucas(72) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^8/Lucas(62) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^30/Lucas(74) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^6/Lucas(62) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^32/Lucas(76) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^4/Lucas(62) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^34/Lucas(78) 2584000077399378 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^2/Lucas(62) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^36/Lucas(80) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^38/Lucas(82) 2584000077399378 a004 Fibonacci(82)/Lucas(62)/(1/2+sqrt(5)/2)^2 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^40/Lucas(84) 2584000077399378 a004 Fibonacci(84)/Lucas(62)/(1/2+sqrt(5)/2)^4 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^42/Lucas(86) 2584000077399378 a004 Fibonacci(86)/Lucas(62)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^44/Lucas(88) 2584000077399378 a004 Fibonacci(88)/Lucas(62)/(1/2+sqrt(5)/2)^8 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^46/Lucas(90) 2584000077399378 a004 Fibonacci(90)/Lucas(62)/(1/2+sqrt(5)/2)^10 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^48/Lucas(92) 2584000077399378 a004 Fibonacci(92)/Lucas(62)/(1/2+sqrt(5)/2)^12 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^50/Lucas(94) 2584000077399378 a004 Fibonacci(94)/Lucas(62)/(1/2+sqrt(5)/2)^14 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^52/Lucas(96) 2584000077399378 a004 Fibonacci(96)/Lucas(62)/(1/2+sqrt(5)/2)^16 2584000077399378 a004 Fibonacci(100)/Lucas(62)/(1/2+sqrt(5)/2)^20 2584000077399378 a004 Fibonacci(31)*Lucas(31)/(1/2+sqrt(5)/2)^44 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^54/Lucas(98) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^55/Lucas(99) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^56/Lucas(100) 2584000077399378 a004 Fibonacci(98)/Lucas(62)/(1/2+sqrt(5)/2)^18 2584000077399378 a004 Fibonacci(99)/Lucas(62)/(1/2+sqrt(5)/2)^19 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^53/Lucas(97) 2584000077399378 a004 Fibonacci(97)/Lucas(62)/(1/2+sqrt(5)/2)^17 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^51/Lucas(95) 2584000077399378 a004 Fibonacci(95)/Lucas(62)/(1/2+sqrt(5)/2)^15 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^49/Lucas(93) 2584000077399378 a004 Fibonacci(93)/Lucas(62)/(1/2+sqrt(5)/2)^13 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^47/Lucas(91) 2584000077399378 a004 Fibonacci(91)/Lucas(62)/(1/2+sqrt(5)/2)^11 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^45/Lucas(89) 2584000077399378 a004 Fibonacci(89)/Lucas(62)/(1/2+sqrt(5)/2)^9 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^43/Lucas(87) 2584000077399378 a004 Fibonacci(87)/Lucas(62)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^41/Lucas(85) 2584000077399378 a004 Fibonacci(85)/Lucas(62)/(1/2+sqrt(5)/2)^5 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^39/Lucas(83) 2584000077399378 a004 Fibonacci(83)/Lucas(62)/(1/2+sqrt(5)/2)^3 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^37/Lucas(81) 2584000077399378 a004 Fibonacci(81)/Lucas(62)/(1/2+sqrt(5)/2) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^35/Lucas(79) 2584000077399378 a004 Fibonacci(79)*(1/2+sqrt(5)/2)/Lucas(62) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^33/Lucas(77) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^3/Lucas(62) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^31/Lucas(75) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^5/Lucas(62) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^29/Lucas(73) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^7/Lucas(62) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^27/Lucas(71) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^9/Lucas(62) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^25/Lucas(69) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^11/Lucas(62) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^23/Lucas(67) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^13/Lucas(62) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^21/Lucas(65) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^15/Lucas(62) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^19/Lucas(63) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^17/Lucas(62) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^18/Lucas(64) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^20/Lucas(66) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^16/Lucas(64) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^22/Lucas(68) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^14/Lucas(64) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^24/Lucas(70) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^12/Lucas(64) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^26/Lucas(72) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^10/Lucas(64) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^28/Lucas(74) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^8/Lucas(64) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^30/Lucas(76) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^6/Lucas(64) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^32/Lucas(78) 2584000077399378 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^4/Lucas(64) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^34/Lucas(80) 2584000077399378 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^2/Lucas(64) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^36/Lucas(82) 2584000077399378 a006 5^(1/2)*Fibonacci(82)/Lucas(64)/sqrt(5) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^38/Lucas(84) 2584000077399378 a004 Fibonacci(84)/Lucas(64)/(1/2+sqrt(5)/2)^2 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^40/Lucas(86) 2584000077399378 a004 Fibonacci(86)/Lucas(64)/(1/2+sqrt(5)/2)^4 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^42/Lucas(88) 2584000077399378 a004 Fibonacci(88)/Lucas(64)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^44/Lucas(90) 2584000077399378 a004 Fibonacci(90)/Lucas(64)/(1/2+sqrt(5)/2)^8 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^46/Lucas(92) 2584000077399378 a004 Fibonacci(92)/Lucas(64)/(1/2+sqrt(5)/2)^10 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^48/Lucas(94) 2584000077399378 a004 Fibonacci(94)/Lucas(64)/(1/2+sqrt(5)/2)^12 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^50/Lucas(96) 2584000077399378 a004 Fibonacci(96)/Lucas(64)/(1/2+sqrt(5)/2)^14 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^52/Lucas(98) 2584000077399378 a004 Fibonacci(98)/Lucas(64)/(1/2+sqrt(5)/2)^16 2584000077399378 a004 Fibonacci(100)/Lucas(64)/(1/2+sqrt(5)/2)^18 2584000077399378 a004 Fibonacci(32)*Lucas(32)/(1/2+sqrt(5)/2)^46 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^53/Lucas(99) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^54/Lucas(100) 2584000077399378 a004 Fibonacci(99)/Lucas(64)/(1/2+sqrt(5)/2)^17 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^51/Lucas(97) 2584000077399378 a004 Fibonacci(97)/Lucas(64)/(1/2+sqrt(5)/2)^15 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^49/Lucas(95) 2584000077399378 a004 Fibonacci(95)/Lucas(64)/(1/2+sqrt(5)/2)^13 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^47/Lucas(93) 2584000077399378 a004 Fibonacci(93)/Lucas(64)/(1/2+sqrt(5)/2)^11 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^45/Lucas(91) 2584000077399378 a004 Fibonacci(91)/Lucas(64)/(1/2+sqrt(5)/2)^9 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^43/Lucas(89) 2584000077399378 a004 Fibonacci(89)/Lucas(64)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^41/Lucas(87) 2584000077399378 a004 Fibonacci(87)/Lucas(64)/(1/2+sqrt(5)/2)^5 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^39/Lucas(85) 2584000077399378 a004 Fibonacci(85)/Lucas(64)/(1/2+sqrt(5)/2)^3 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^37/Lucas(83) 2584000077399378 a004 Fibonacci(83)/Lucas(64)/(1/2+sqrt(5)/2) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^35/Lucas(81) 2584000077399378 a004 Fibonacci(81)*(1/2+sqrt(5)/2)/Lucas(64) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^33/Lucas(79) 2584000077399378 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^3/Lucas(64) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^31/Lucas(77) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^5/Lucas(64) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^29/Lucas(75) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^7/Lucas(64) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^27/Lucas(73) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^9/Lucas(64) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^25/Lucas(71) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^11/Lucas(64) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^23/Lucas(69) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^13/Lucas(64) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^21/Lucas(67) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^15/Lucas(64) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^19/Lucas(65) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^17/Lucas(64) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^18/Lucas(66) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^20/Lucas(68) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^16/Lucas(66) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^22/Lucas(70) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^14/Lucas(66) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^24/Lucas(72) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^12/Lucas(66) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^26/Lucas(74) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^10/Lucas(66) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^28/Lucas(76) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^8/Lucas(66) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^30/Lucas(78) 2584000077399378 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^6/Lucas(66) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^32/Lucas(80) 2584000077399378 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^4/Lucas(66) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^34/Lucas(82) 2584000077399378 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^2/Lucas(66) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^36/Lucas(84) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^38/Lucas(86) 2584000077399378 a004 Fibonacci(86)/Lucas(66)/(1/2+sqrt(5)/2)^2 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^40/Lucas(88) 2584000077399378 a004 Fibonacci(88)/Lucas(66)/(1/2+sqrt(5)/2)^4 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^42/Lucas(90) 2584000077399378 a004 Fibonacci(90)/Lucas(66)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^44/Lucas(92) 2584000077399378 a004 Fibonacci(92)/Lucas(66)/(1/2+sqrt(5)/2)^8 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^46/Lucas(94) 2584000077399378 a004 Fibonacci(94)/Lucas(66)/(1/2+sqrt(5)/2)^10 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^48/Lucas(96) 2584000077399378 a004 Fibonacci(96)/Lucas(66)/(1/2+sqrt(5)/2)^12 2584000077399378 a004 Fibonacci(100)/Lucas(66)/(1/2+sqrt(5)/2)^16 2584000077399378 a004 Fibonacci(33)*Lucas(33)/(1/2+sqrt(5)/2)^48 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^50/Lucas(98) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^51/Lucas(99) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^52/Lucas(100) 2584000077399378 a004 Fibonacci(98)/Lucas(66)/(1/2+sqrt(5)/2)^14 2584000077399378 a004 Fibonacci(99)/Lucas(66)/(1/2+sqrt(5)/2)^15 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^49/Lucas(97) 2584000077399378 a004 Fibonacci(97)/Lucas(66)/(1/2+sqrt(5)/2)^13 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^47/Lucas(95) 2584000077399378 a004 Fibonacci(95)/Lucas(66)/(1/2+sqrt(5)/2)^11 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^45/Lucas(93) 2584000077399378 a004 Fibonacci(93)/Lucas(66)/(1/2+sqrt(5)/2)^9 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^43/Lucas(91) 2584000077399378 a004 Fibonacci(91)/Lucas(66)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^41/Lucas(89) 2584000077399378 a004 Fibonacci(89)/Lucas(66)/(1/2+sqrt(5)/2)^5 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^39/Lucas(87) 2584000077399378 a004 Fibonacci(87)/Lucas(66)/(1/2+sqrt(5)/2)^3 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^37/Lucas(85) 2584000077399378 a004 Fibonacci(85)/Lucas(66)/(1/2+sqrt(5)/2) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^35/Lucas(83) 2584000077399378 a004 Fibonacci(83)*(1/2+sqrt(5)/2)/Lucas(66) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^33/Lucas(81) 2584000077399378 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^3/Lucas(66) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^31/Lucas(79) 2584000077399378 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^5/Lucas(66) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^29/Lucas(77) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^7/Lucas(66) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^27/Lucas(75) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^9/Lucas(66) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^25/Lucas(73) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^11/Lucas(66) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^23/Lucas(71) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^13/Lucas(66) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^21/Lucas(69) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^15/Lucas(66) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^19/Lucas(67) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^17/Lucas(66) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^18/Lucas(68) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^20/Lucas(70) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^16/Lucas(68) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^22/Lucas(72) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^14/Lucas(68) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^24/Lucas(74) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^12/Lucas(68) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^26/Lucas(76) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^10/Lucas(68) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^28/Lucas(78) 2584000077399378 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^8/Lucas(68) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^30/Lucas(80) 2584000077399378 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^6/Lucas(68) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^32/Lucas(82) 2584000077399378 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^4/Lucas(68) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^34/Lucas(84) 2584000077399378 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^2/Lucas(68) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^36/Lucas(86) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^38/Lucas(88) 2584000077399378 a004 Fibonacci(88)/Lucas(68)/(1/2+sqrt(5)/2)^2 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^40/Lucas(90) 2584000077399378 a004 Fibonacci(90)/Lucas(68)/(1/2+sqrt(5)/2)^4 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^42/Lucas(92) 2584000077399378 a004 Fibonacci(92)/Lucas(68)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^44/Lucas(94) 2584000077399378 a004 Fibonacci(94)/Lucas(68)/(1/2+sqrt(5)/2)^8 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^46/Lucas(96) 2584000077399378 a004 Fibonacci(96)/Lucas(68)/(1/2+sqrt(5)/2)^10 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^48/Lucas(98) 2584000077399378 a004 Fibonacci(98)/Lucas(68)/(1/2+sqrt(5)/2)^12 2584000077399378 a004 Fibonacci(100)/Lucas(68)/(1/2+sqrt(5)/2)^14 2584000077399378 a004 Fibonacci(34)*Lucas(34)/(1/2+sqrt(5)/2)^50 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^47/Lucas(97) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^49/Lucas(99) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^50/Lucas(100) 2584000077399378 a004 Fibonacci(97)/Lucas(68)/(1/2+sqrt(5)/2)^11 2584000077399378 a004 Fibonacci(99)/Lucas(68)/(1/2+sqrt(5)/2)^13 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^45/Lucas(95) 2584000077399378 a004 Fibonacci(95)/Lucas(68)/(1/2+sqrt(5)/2)^9 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^43/Lucas(93) 2584000077399378 a004 Fibonacci(93)/Lucas(68)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^41/Lucas(91) 2584000077399378 a004 Fibonacci(91)/Lucas(68)/(1/2+sqrt(5)/2)^5 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^39/Lucas(89) 2584000077399378 a004 Fibonacci(89)/Lucas(68)/(1/2+sqrt(5)/2)^3 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^37/Lucas(87) 2584000077399378 a004 Fibonacci(87)/Lucas(68)/(1/2+sqrt(5)/2) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^35/Lucas(85) 2584000077399378 a004 Fibonacci(85)*(1/2+sqrt(5)/2)/Lucas(68) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^33/Lucas(83) 2584000077399378 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^3/Lucas(68) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^31/Lucas(81) 2584000077399378 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^5/Lucas(68) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^29/Lucas(79) 2584000077399378 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^7/Lucas(68) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^27/Lucas(77) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^9/Lucas(68) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^25/Lucas(75) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^11/Lucas(68) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^23/Lucas(73) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^13/Lucas(68) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^21/Lucas(71) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^15/Lucas(68) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^19/Lucas(69) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^17/Lucas(68) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^18/Lucas(70) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^20/Lucas(72) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^16/Lucas(70) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^22/Lucas(74) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^14/Lucas(70) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^24/Lucas(76) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^12/Lucas(70) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^26/Lucas(78) 2584000077399378 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^10/Lucas(70) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^28/Lucas(80) 2584000077399378 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^8/Lucas(70) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^30/Lucas(82) 2584000077399378 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^6/Lucas(70) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^32/Lucas(84) 2584000077399378 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^4/Lucas(70) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^34/Lucas(86) 2584000077399378 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^2/Lucas(70) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^36/Lucas(88) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^38/Lucas(90) 2584000077399378 a004 Fibonacci(90)/Lucas(70)/(1/2+sqrt(5)/2)^2 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^40/Lucas(92) 2584000077399378 a004 Fibonacci(92)/Lucas(70)/(1/2+sqrt(5)/2)^4 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^42/Lucas(94) 2584000077399378 a004 Fibonacci(94)/Lucas(70)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^44/Lucas(96) 2584000077399378 a004 Fibonacci(96)/Lucas(70)/(1/2+sqrt(5)/2)^8 2584000077399378 a004 Fibonacci(100)/Lucas(70)/(1/2+sqrt(5)/2)^12 2584000077399378 a004 Fibonacci(35)*Lucas(35)/(1/2+sqrt(5)/2)^52 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^46/Lucas(98) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^47/Lucas(99) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^48/Lucas(100) 2584000077399378 a004 Fibonacci(98)/Lucas(70)/(1/2+sqrt(5)/2)^10 2584000077399378 a004 Fibonacci(99)/Lucas(70)/(1/2+sqrt(5)/2)^11 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^45/Lucas(97) 2584000077399378 a004 Fibonacci(97)/Lucas(70)/(1/2+sqrt(5)/2)^9 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^43/Lucas(95) 2584000077399378 a004 Fibonacci(95)/Lucas(70)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^41/Lucas(93) 2584000077399378 a004 Fibonacci(93)/Lucas(70)/(1/2+sqrt(5)/2)^5 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^39/Lucas(91) 2584000077399378 a004 Fibonacci(91)/Lucas(70)/(1/2+sqrt(5)/2)^3 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^37/Lucas(89) 2584000077399378 a004 Fibonacci(89)/Lucas(70)/(1/2+sqrt(5)/2) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^35/Lucas(87) 2584000077399378 a004 Fibonacci(87)*(1/2+sqrt(5)/2)/Lucas(70) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^33/Lucas(85) 2584000077399378 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^3/Lucas(70) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^31/Lucas(83) 2584000077399378 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^5/Lucas(70) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^29/Lucas(81) 2584000077399378 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^7/Lucas(70) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^27/Lucas(79) 2584000077399378 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^9/Lucas(70) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^25/Lucas(77) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^11/Lucas(70) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^23/Lucas(75) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^13/Lucas(70) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^21/Lucas(73) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^15/Lucas(70) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^19/Lucas(71) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^17/Lucas(70) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^18/Lucas(72) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^20/Lucas(74) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^16/Lucas(72) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^22/Lucas(76) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^14/Lucas(72) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^24/Lucas(78) 2584000077399378 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^12/Lucas(72) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^26/Lucas(80) 2584000077399378 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^10/Lucas(72) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^28/Lucas(82) 2584000077399378 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^8/Lucas(72) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^30/Lucas(84) 2584000077399378 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^6/Lucas(72) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^32/Lucas(86) 2584000077399378 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^4/Lucas(72) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^34/Lucas(88) 2584000077399378 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^2/Lucas(72) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^36/Lucas(90) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^38/Lucas(92) 2584000077399378 a004 Fibonacci(92)/Lucas(72)/(1/2+sqrt(5)/2)^2 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^40/Lucas(94) 2584000077399378 a004 Fibonacci(94)/Lucas(72)/(1/2+sqrt(5)/2)^4 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^42/Lucas(96) 2584000077399378 a004 Fibonacci(96)/Lucas(72)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(100)/Lucas(72)/(1/2+sqrt(5)/2)^10 2584000077399378 a004 Fibonacci(36)*Lucas(36)/(1/2+sqrt(5)/2)^54 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^44/Lucas(98) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^45/Lucas(99) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^46/Lucas(100) 2584000077399378 a004 Fibonacci(98)/Lucas(72)/(1/2+sqrt(5)/2)^8 2584000077399378 a004 Fibonacci(99)/Lucas(72)/(1/2+sqrt(5)/2)^9 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^43/Lucas(97) 2584000077399378 a004 Fibonacci(97)/Lucas(72)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^41/Lucas(95) 2584000077399378 a004 Fibonacci(95)/Lucas(72)/(1/2+sqrt(5)/2)^5 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^39/Lucas(93) 2584000077399378 a004 Fibonacci(93)/Lucas(72)/(1/2+sqrt(5)/2)^3 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^37/Lucas(91) 2584000077399378 a004 Fibonacci(91)/Lucas(72)/(1/2+sqrt(5)/2) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^35/Lucas(89) 2584000077399378 a004 Fibonacci(89)*(1/2+sqrt(5)/2)/Lucas(72) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^33/Lucas(87) 2584000077399378 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^3/Lucas(72) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^31/Lucas(85) 2584000077399378 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^5/Lucas(72) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^29/Lucas(83) 2584000077399378 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^7/Lucas(72) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^27/Lucas(81) 2584000077399378 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^9/Lucas(72) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^25/Lucas(79) 2584000077399378 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^11/Lucas(72) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^23/Lucas(77) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^13/Lucas(72) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^21/Lucas(75) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^15/Lucas(72) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^19/Lucas(73) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^17/Lucas(72) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^18/Lucas(74) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^20/Lucas(76) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^22/Lucas(78) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^24/Lucas(80) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^26/Lucas(82) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^28/Lucas(84) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^30/Lucas(86) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^32/Lucas(88) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^34/Lucas(90) 2584000077399378 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^2/Lucas(74) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^36/Lucas(92) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^38/Lucas(94) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^40/Lucas(96) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^42/Lucas(98) 2584000077399378 a004 Fibonacci(98)/Lucas(74)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(37)*Lucas(37)/(1/2+sqrt(5)/2)^56 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^41/Lucas(97) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^43/Lucas(99) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^44/Lucas(100) 2584000077399378 a004 Fibonacci(97)/Lucas(74)/(1/2+sqrt(5)/2)^5 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^39/Lucas(95) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^37/Lucas(93) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^35/Lucas(91) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^33/Lucas(89) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^31/Lucas(87) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^29/Lucas(85) 2584000077399378 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^7/Lucas(74) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^27/Lucas(83) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^25/Lucas(81) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^23/Lucas(79) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^21/Lucas(77) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^15/Lucas(74) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^19/Lucas(75) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^18/Lucas(76) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^20/Lucas(78) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^22/Lucas(80) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^24/Lucas(82) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^26/Lucas(84) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^28/Lucas(86) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^30/Lucas(88) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^32/Lucas(90) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^34/Lucas(92) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^36/Lucas(94) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^38/Lucas(96) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^40/Lucas(98) 2584000077399378 a004 Fibonacci(38)*Lucas(38)/(1/2+sqrt(5)/2)^58 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^39/Lucas(97) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^41/Lucas(99) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^42/Lucas(100) 2584000077399378 a004 Fibonacci(76)*Lucas(1)/(1/2+sqrt(5)/2)^58 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^37/Lucas(95) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^35/Lucas(93) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^33/Lucas(91) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^31/Lucas(89) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^29/Lucas(87) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^27/Lucas(85) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^25/Lucas(83) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^23/Lucas(81) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^21/Lucas(79) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^19/Lucas(77) 2584000077399378 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^18/Lucas(78) 2584000077399378 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^20/Lucas(80) 2584000077399378 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^22/Lucas(82) 2584000077399378 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^24/Lucas(84) 2584000077399378 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^26/Lucas(86) 2584000077399378 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^28/Lucas(88) 2584000077399378 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^30/Lucas(90) 2584000077399378 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^32/Lucas(92) 2584000077399378 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^34/Lucas(94) 2584000077399378 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^36/Lucas(96) 2584000077399378 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^38/Lucas(98) 2584000077399378 a004 Fibonacci(39)*Lucas(39)/(1/2+sqrt(5)/2)^60 2584000077399378 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^37/Lucas(97) 2584000077399378 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^39/Lucas(99) 2584000077399378 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^40/Lucas(100) 2584000077399378 a004 Fibonacci(78)*Lucas(1)/(1/2+sqrt(5)/2)^60 2584000077399378 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^35/Lucas(95) 2584000077399378 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^33/Lucas(93) 2584000077399378 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^31/Lucas(91) 2584000077399378 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^29/Lucas(89) 2584000077399378 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^27/Lucas(87) 2584000077399378 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^25/Lucas(85) 2584000077399378 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^23/Lucas(83) 2584000077399378 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^21/Lucas(81) 2584000077399378 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^19/Lucas(79) 2584000077399378 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^18/Lucas(80) 2584000077399378 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^16/Lucas(80) 2584000077399378 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^22/Lucas(84) 2584000077399378 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^24/Lucas(86) 2584000077399378 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^26/Lucas(88) 2584000077399378 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^28/Lucas(90) 2584000077399378 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^30/Lucas(92) 2584000077399378 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^32/Lucas(94) 2584000077399378 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^34/Lucas(96) 2584000077399378 a004 Fibonacci(40)*Lucas(40)/(1/2+sqrt(5)/2)^62 2584000077399378 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^36/Lucas(98) 2584000077399378 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^37/Lucas(99) 2584000077399378 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^38/Lucas(100) 2584000077399378 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^35/Lucas(97) 2584000077399378 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^33/Lucas(95) 2584000077399378 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^31/Lucas(93) 2584000077399378 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^29/Lucas(91) 2584000077399378 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^27/Lucas(89) 2584000077399378 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^25/Lucas(87) 2584000077399378 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^23/Lucas(85) 2584000077399378 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^21/Lucas(83) 2584000077399378 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^17/Lucas(80) 2584000077399378 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^18/Lucas(82) 2584000077399378 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^20/Lucas(84) 2584000077399378 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^22/Lucas(86) 2584000077399378 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^24/Lucas(88) 2584000077399378 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^26/Lucas(90) 2584000077399378 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^28/Lucas(92) 2584000077399378 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^30/Lucas(94) 2584000077399378 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^32/Lucas(96) 2584000077399378 a004 Fibonacci(41)*Lucas(41)/(1/2+sqrt(5)/2)^64 2584000077399378 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^34/Lucas(98) 2584000077399378 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^35/Lucas(99) 2584000077399378 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^36/Lucas(100) 2584000077399378 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^33/Lucas(97) 2584000077399378 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^31/Lucas(95) 2584000077399378 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^29/Lucas(93) 2584000077399378 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^27/Lucas(91) 2584000077399378 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^25/Lucas(89) 2584000077399378 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^23/Lucas(87) 2584000077399378 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^21/Lucas(85) 2584000077399378 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^19/Lucas(83) 2584000077399378 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^18/Lucas(84) 2584000077399378 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^20/Lucas(86) 2584000077399378 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^22/Lucas(88) 2584000077399378 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^24/Lucas(90) 2584000077399378 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^26/Lucas(92) 2584000077399378 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^28/Lucas(94) 2584000077399378 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^30/Lucas(96) 2584000077399378 a004 Fibonacci(42)*Lucas(42)/(1/2+sqrt(5)/2)^66 2584000077399378 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^32/Lucas(98) 2584000077399378 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^33/Lucas(99) 2584000077399378 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^34/Lucas(100) 2584000077399378 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^31/Lucas(97) 2584000077399378 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^29/Lucas(95) 2584000077399378 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^27/Lucas(93) 2584000077399378 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^25/Lucas(91) 2584000077399378 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^23/Lucas(89) 2584000077399378 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^21/Lucas(87) 2584000077399378 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^19/Lucas(85) 2584000077399378 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^18/Lucas(86) 2584000077399378 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^20/Lucas(88) 2584000077399378 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^22/Lucas(90) 2584000077399378 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^24/Lucas(92) 2584000077399378 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^26/Lucas(94) 2584000077399378 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^28/Lucas(96) 2584000077399378 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^30/Lucas(98) 2584000077399378 a004 Fibonacci(43)*Lucas(43)/(1/2+sqrt(5)/2)^68 2584000077399378 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^29/Lucas(97) 2584000077399378 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^31/Lucas(99) 2584000077399378 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^32/Lucas(100) 2584000077399378 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^27/Lucas(95) 2584000077399378 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^25/Lucas(93) 2584000077399378 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^23/Lucas(91) 2584000077399378 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^21/Lucas(89) 2584000077399378 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^19/Lucas(87) 2584000077399378 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^18/Lucas(88) 2584000077399378 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^20/Lucas(90) 2584000077399378 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^22/Lucas(92) 2584000077399378 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^24/Lucas(94) 2584000077399378 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^26/Lucas(96) 2584000077399378 a004 Fibonacci(44)*Lucas(44)/(1/2+sqrt(5)/2)^70 2584000077399378 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^28/Lucas(98) 2584000077399378 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^29/Lucas(99) 2584000077399378 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^30/Lucas(100) 2584000077399378 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^27/Lucas(97) 2584000077399378 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^25/Lucas(95) 2584000077399378 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^23/Lucas(93) 2584000077399378 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^21/Lucas(91) 2584000077399378 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^19/Lucas(89) 2584000077399378 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^18/Lucas(90) 2584000077399378 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^20/Lucas(92) 2584000077399378 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^22/Lucas(94) 2584000077399378 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^24/Lucas(96) 2584000077399378 a004 Fibonacci(45)*Lucas(45)/(1/2+sqrt(5)/2)^72 2584000077399378 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^26/Lucas(98) 2584000077399378 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^27/Lucas(99) 2584000077399378 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^28/Lucas(100) 2584000077399378 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^25/Lucas(97) 2584000077399378 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^23/Lucas(95) 2584000077399378 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^21/Lucas(93) 2584000077399378 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^19/Lucas(91) 2584000077399378 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^18/Lucas(92) 2584000077399378 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^20/Lucas(94) 2584000077399378 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^22/Lucas(96) 2584000077399378 a004 Fibonacci(46)*Lucas(46)/(1/2+sqrt(5)/2)^74 2584000077399378 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^24/Lucas(98) 2584000077399378 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^26/Lucas(100) 2584000077399378 a004 Fibonacci(92)*Lucas(1)/(1/2+sqrt(5)/2)^74 2584000077399378 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^23/Lucas(97) 2584000077399378 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^25/Lucas(99) 2584000077399378 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^21/Lucas(95) 2584000077399378 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^17/Lucas(92) 2584000077399378 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^18/Lucas(94) 2584000077399378 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^20/Lucas(96) 2584000077399378 a004 Fibonacci(47)*Lucas(47)/(1/2+sqrt(5)/2)^76 2584000077399378 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^22/Lucas(98) 2584000077399378 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^23/Lucas(99) 2584000077399378 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^24/Lucas(100) 2584000077399378 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^21/Lucas(97) 2584000077399378 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^19/Lucas(95) 2584000077399378 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^18/Lucas(96) 2584000077399378 a004 Fibonacci(100)*(1/2+sqrt(5)/2)^14/Lucas(96) 2584000077399378 a004 Fibonacci(48)*Lucas(48)/(1/2+sqrt(5)/2)^78 2584000077399378 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^20/Lucas(98) 2584000077399378 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^21/Lucas(99) 2584000077399378 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^17/Lucas(96) 2584000077399378 a004 Fibonacci(100)*(1/2+sqrt(5)/2)^17/Lucas(99) 2584000077399378 a004 Fibonacci(100)*(1/2+sqrt(5)/2)^18/Lucas(100) 2584000077399378 a004 Fibonacci(49)*Lucas(49)/(1/2+sqrt(5)/2)^80 2584000077399378 a004 Fibonacci(50)*Lucas(50)/(1/2+sqrt(5)/2)^82 2584000077399378 a004 Fibonacci(51)*Lucas(51)/(1/2+sqrt(5)/2)^84 2584000077399378 a004 Fibonacci(52)*Lucas(52)/(1/2+sqrt(5)/2)^86 2584000077399378 a004 Fibonacci(53)*Lucas(53)/(1/2+sqrt(5)/2)^88 2584000077399378 a004 Fibonacci(54)*Lucas(54)/(1/2+sqrt(5)/2)^90 2584000077399378 a004 Fibonacci(55)*Lucas(55)/(1/2+sqrt(5)/2)^92 2584000077399378 a004 Fibonacci(56)*Lucas(56)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(57)*Lucas(57)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(58)*Lucas(58)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(59)*Lucas(59)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(98)*(1/2+sqrt(5)/2)^18/Lucas(98) 2584000077399378 a004 Fibonacci(98)*(1/2+sqrt(5)/2)^19/Lucas(99) 2584000077399378 a004 Fibonacci(98)*(1/2+sqrt(5)/2)^20/Lucas(100) 2584000077399378 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^19/Lucas(98) 2584000077399378 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^20/Lucas(99) 2584000077399378 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^21/Lucas(100) 2584000077399378 a004 Fibonacci(97)*Lucas(1)/(1/2+sqrt(5)/2)^79 2584000077399378 a004 Fibonacci(99)*(1/2+sqrt(5)/2)^18/Lucas(99) 2584000077399378 a004 Fibonacci(99)*Lucas(1)/(1/2+sqrt(5)/2)^81 2584000077399378 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^18/Lucas(97) 2584000077399378 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^19/Lucas(96) 2584000077399378 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^21/Lucas(98) 2584000077399378 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^23/Lucas(100) 2584000077399378 a004 Fibonacci(95)*Lucas(1)/(1/2+sqrt(5)/2)^77 2584000077399378 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^20/Lucas(97) 2584000077399378 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^22/Lucas(99) 2584000077399378 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^18/Lucas(95) 2584000077399378 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^19/Lucas(94) 2584000077399378 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^21/Lucas(96) 2584000077399378 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^23/Lucas(98) 2584000077399378 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^24/Lucas(99) 2584000077399378 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^25/Lucas(100) 2584000077399378 a004 Fibonacci(93)*Lucas(1)/(1/2+sqrt(5)/2)^75 2584000077399378 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^22/Lucas(97) 2584000077399378 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^20/Lucas(95) 2584000077399378 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^18/Lucas(93) 2584000077399378 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^19/Lucas(92) 2584000077399378 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^21/Lucas(94) 2584000077399378 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^23/Lucas(96) 2584000077399378 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^25/Lucas(98) 2584000077399378 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^26/Lucas(99) 2584000077399378 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^27/Lucas(100) 2584000077399378 a004 Fibonacci(91)*Lucas(1)/(1/2+sqrt(5)/2)^73 2584000077399378 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^24/Lucas(97) 2584000077399378 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^22/Lucas(95) 2584000077399378 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^20/Lucas(93) 2584000077399378 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^18/Lucas(91) 2584000077399378 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^19/Lucas(90) 2584000077399378 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^21/Lucas(92) 2584000077399378 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^23/Lucas(94) 2584000077399378 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^25/Lucas(96) 2584000077399378 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^27/Lucas(98) 2584000077399378 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^29/Lucas(100) 2584000077399378 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^26/Lucas(97) 2584000077399378 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^28/Lucas(99) 2584000077399378 a004 Fibonacci(89)*Lucas(1)/(1/2+sqrt(5)/2)^71 2584000077399378 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^24/Lucas(95) 2584000077399378 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^22/Lucas(93) 2584000077399378 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^20/Lucas(91) 2584000077399378 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^18/Lucas(89) 2584000077399378 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^19/Lucas(88) 2584000077399378 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^21/Lucas(90) 2584000077399378 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^23/Lucas(92) 2584000077399378 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^25/Lucas(94) 2584000077399378 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^27/Lucas(96) 2584000077399378 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^29/Lucas(98) 2584000077399378 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^31/Lucas(100) 2584000077399378 a004 Fibonacci(87)*Lucas(1)/(1/2+sqrt(5)/2)^69 2584000077399378 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^28/Lucas(97) 2584000077399378 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^30/Lucas(99) 2584000077399378 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^26/Lucas(95) 2584000077399378 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^24/Lucas(93) 2584000077399378 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^22/Lucas(91) 2584000077399378 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^20/Lucas(89) 2584000077399378 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^18/Lucas(87) 2584000077399378 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^19/Lucas(86) 2584000077399378 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^21/Lucas(88) 2584000077399378 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^23/Lucas(90) 2584000077399378 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^25/Lucas(92) 2584000077399378 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^27/Lucas(94) 2584000077399378 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^29/Lucas(96) 2584000077399378 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^31/Lucas(98) 2584000077399378 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^33/Lucas(100) 2584000077399378 a004 Fibonacci(85)*Lucas(1)/(1/2+sqrt(5)/2)^67 2584000077399378 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^30/Lucas(97) 2584000077399378 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^32/Lucas(99) 2584000077399378 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^6/Lucas(85) 2584000077399378 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^28/Lucas(95) 2584000077399378 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^26/Lucas(93) 2584000077399378 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^24/Lucas(91) 2584000077399378 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^22/Lucas(89) 2584000077399378 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^20/Lucas(87) 2584000077399378 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^18/Lucas(85) 2584000077399378 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^19/Lucas(84) 2584000077399378 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^21/Lucas(86) 2584000077399378 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^23/Lucas(88) 2584000077399378 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^25/Lucas(90) 2584000077399378 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^27/Lucas(92) 2584000077399378 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^29/Lucas(94) 2584000077399378 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^31/Lucas(96) 2584000077399378 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^33/Lucas(98) 2584000077399378 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^34/Lucas(99) 2584000077399378 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^35/Lucas(100) 2584000077399378 a004 Fibonacci(83)*Lucas(1)/(1/2+sqrt(5)/2)^65 2584000077399378 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^32/Lucas(97) 2584000077399378 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^30/Lucas(95) 2584000077399378 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^28/Lucas(93) 2584000077399378 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^26/Lucas(91) 2584000077399378 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^24/Lucas(89) 2584000077399378 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^22/Lucas(87) 2584000077399378 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^20/Lucas(85) 2584000077399378 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^18/Lucas(83) 2584000077399378 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^19/Lucas(82) 2584000077399378 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^21/Lucas(84) 2584000077399378 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^23/Lucas(86) 2584000077399378 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^25/Lucas(88) 2584000077399378 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^27/Lucas(90) 2584000077399378 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^29/Lucas(92) 2584000077399378 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^31/Lucas(94) 2584000077399378 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^33/Lucas(96) 2584000077399378 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^35/Lucas(98) 2584000077399378 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^34/Lucas(97) 2584000077399378 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^36/Lucas(99) 2584000077399378 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^37/Lucas(100) 2584000077399378 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^32/Lucas(95) 2584000077399378 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^30/Lucas(93) 2584000077399378 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^28/Lucas(91) 2584000077399378 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^26/Lucas(89) 2584000077399378 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^24/Lucas(87) 2584000077399378 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^22/Lucas(85) 2584000077399378 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^20/Lucas(83) 2584000077399378 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^18/Lucas(81) 2584000077399378 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^19/Lucas(80) 2584000077399378 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^21/Lucas(82) 2584000077399378 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^23/Lucas(84) 2584000077399378 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^25/Lucas(86) 2584000077399378 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^27/Lucas(88) 2584000077399378 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^29/Lucas(90) 2584000077399378 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^31/Lucas(92) 2584000077399378 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^33/Lucas(94) 2584000077399378 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^35/Lucas(96) 2584000077399378 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^37/Lucas(98) 2584000077399378 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^38/Lucas(99) 2584000077399378 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^39/Lucas(100) 2584000077399378 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^36/Lucas(97) 2584000077399378 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^34/Lucas(95) 2584000077399378 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^32/Lucas(93) 2584000077399378 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^30/Lucas(91) 2584000077399378 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^28/Lucas(89) 2584000077399378 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^26/Lucas(87) 2584000077399378 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^24/Lucas(85) 2584000077399378 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^22/Lucas(83) 2584000077399378 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^20/Lucas(81) 2584000077399378 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^18/Lucas(79) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^19/Lucas(78) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^21/Lucas(80) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^23/Lucas(82) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^25/Lucas(84) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^27/Lucas(86) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^29/Lucas(88) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^31/Lucas(90) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^33/Lucas(92) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^35/Lucas(94) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^37/Lucas(96) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^39/Lucas(98) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^40/Lucas(99) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^41/Lucas(100) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^38/Lucas(97) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^36/Lucas(95) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^34/Lucas(93) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^32/Lucas(91) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^30/Lucas(89) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^28/Lucas(87) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^26/Lucas(85) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^24/Lucas(83) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^22/Lucas(81) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^20/Lucas(79) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^18/Lucas(77) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^19/Lucas(76) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^21/Lucas(78) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^23/Lucas(80) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^25/Lucas(82) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^27/Lucas(84) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^29/Lucas(86) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^31/Lucas(88) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^33/Lucas(90) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^35/Lucas(92) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^37/Lucas(94) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^39/Lucas(96) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^41/Lucas(98) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^42/Lucas(99) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^43/Lucas(100) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^40/Lucas(97) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^38/Lucas(95) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^36/Lucas(93) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^34/Lucas(91) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^32/Lucas(89) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^30/Lucas(87) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^28/Lucas(85) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^26/Lucas(83) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^24/Lucas(81) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^22/Lucas(79) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^20/Lucas(77) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^18/Lucas(75) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^19/Lucas(74) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^17/Lucas(73) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^21/Lucas(76) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^23/Lucas(78) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^25/Lucas(80) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^27/Lucas(82) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^29/Lucas(84) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^31/Lucas(86) 2584000077399378 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^5/Lucas(73) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^33/Lucas(88) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^35/Lucas(90) 2584000077399378 a004 Fibonacci(90)*(1/2+sqrt(5)/2)/Lucas(73) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^37/Lucas(92) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^39/Lucas(94) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^41/Lucas(96) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^43/Lucas(98) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^44/Lucas(99) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^45/Lucas(100) 2584000077399378 a004 Fibonacci(98)/Lucas(73)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^42/Lucas(97) 2584000077399378 a004 Fibonacci(97)/Lucas(73)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^40/Lucas(95) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^38/Lucas(93) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^36/Lucas(91) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^34/Lucas(89) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^32/Lucas(87) 2584000077399378 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^4/Lucas(73) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^30/Lucas(85) 2584000077399378 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^6/Lucas(73) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^28/Lucas(83) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^26/Lucas(81) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^24/Lucas(79) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^22/Lucas(77) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^20/Lucas(75) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^16/Lucas(73) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^18/Lucas(73) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^19/Lucas(72) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^17/Lucas(71) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^21/Lucas(74) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^15/Lucas(71) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^23/Lucas(76) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^13/Lucas(71) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^25/Lucas(78) 2584000077399378 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^11/Lucas(71) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^27/Lucas(80) 2584000077399378 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^9/Lucas(71) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^29/Lucas(82) 2584000077399378 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^7/Lucas(71) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^31/Lucas(84) 2584000077399378 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^5/Lucas(71) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^33/Lucas(86) 2584000077399378 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^3/Lucas(71) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^35/Lucas(88) 2584000077399378 a004 Fibonacci(88)*(1/2+sqrt(5)/2)/Lucas(71) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^37/Lucas(90) 2584000077399378 a004 Fibonacci(90)/Lucas(71)/(1/2+sqrt(5)/2) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^39/Lucas(92) 2584000077399378 a004 Fibonacci(92)/Lucas(71)/(1/2+sqrt(5)/2)^3 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^41/Lucas(94) 2584000077399378 a004 Fibonacci(94)/Lucas(71)/(1/2+sqrt(5)/2)^5 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^43/Lucas(96) 2584000077399378 a004 Fibonacci(96)/Lucas(71)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(100)/Lucas(71)/(1/2+sqrt(5)/2)^11 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^45/Lucas(98) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^46/Lucas(99) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^47/Lucas(100) 2584000077399378 a004 Fibonacci(98)/Lucas(71)/(1/2+sqrt(5)/2)^9 2584000077399378 a004 Fibonacci(99)/Lucas(71)/(1/2+sqrt(5)/2)^10 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^44/Lucas(97) 2584000077399378 a004 Fibonacci(97)/Lucas(71)/(1/2+sqrt(5)/2)^8 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^42/Lucas(95) 2584000077399378 a004 Fibonacci(95)/Lucas(71)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^40/Lucas(93) 2584000077399378 a004 Fibonacci(93)/Lucas(71)/(1/2+sqrt(5)/2)^4 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^38/Lucas(91) 2584000077399378 a004 Fibonacci(91)/Lucas(71)/(1/2+sqrt(5)/2)^2 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^36/Lucas(89) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^34/Lucas(87) 2584000077399378 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^2/Lucas(71) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^32/Lucas(85) 2584000077399378 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^4/Lucas(71) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^30/Lucas(83) 2584000077399378 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^6/Lucas(71) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^28/Lucas(81) 2584000077399378 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^8/Lucas(71) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^26/Lucas(79) 2584000077399378 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^10/Lucas(71) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^24/Lucas(77) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^12/Lucas(71) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^22/Lucas(75) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^14/Lucas(71) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^20/Lucas(73) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^16/Lucas(71) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^18/Lucas(71) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^19/Lucas(70) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^17/Lucas(69) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^21/Lucas(72) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^15/Lucas(69) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^23/Lucas(74) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^13/Lucas(69) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^25/Lucas(76) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^11/Lucas(69) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^27/Lucas(78) 2584000077399378 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^9/Lucas(69) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^29/Lucas(80) 2584000077399378 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^7/Lucas(69) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^31/Lucas(82) 2584000077399378 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^5/Lucas(69) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^33/Lucas(84) 2584000077399378 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^3/Lucas(69) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^35/Lucas(86) 2584000077399378 a004 Fibonacci(86)*(1/2+sqrt(5)/2)/Lucas(69) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^37/Lucas(88) 2584000077399378 a004 Fibonacci(88)/Lucas(69)/(1/2+sqrt(5)/2) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^39/Lucas(90) 2584000077399378 a004 Fibonacci(90)/Lucas(69)/(1/2+sqrt(5)/2)^3 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^41/Lucas(92) 2584000077399378 a004 Fibonacci(92)/Lucas(69)/(1/2+sqrt(5)/2)^5 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^43/Lucas(94) 2584000077399378 a004 Fibonacci(94)/Lucas(69)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^45/Lucas(96) 2584000077399378 a004 Fibonacci(96)/Lucas(69)/(1/2+sqrt(5)/2)^9 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^47/Lucas(98) 2584000077399378 a004 Fibonacci(98)/Lucas(69)/(1/2+sqrt(5)/2)^11 2584000077399378 a004 Fibonacci(100)/Lucas(69)/(1/2+sqrt(5)/2)^13 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^46/Lucas(97) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^48/Lucas(99) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^49/Lucas(100) 2584000077399378 a004 Fibonacci(69)*Lucas(1)/(1/2+sqrt(5)/2)^51 2584000077399378 a004 Fibonacci(97)/Lucas(69)/(1/2+sqrt(5)/2)^10 2584000077399378 a004 Fibonacci(99)/Lucas(69)/(1/2+sqrt(5)/2)^12 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^44/Lucas(95) 2584000077399378 a004 Fibonacci(95)/Lucas(69)/(1/2+sqrt(5)/2)^8 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^42/Lucas(93) 2584000077399378 a004 Fibonacci(93)/Lucas(69)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^40/Lucas(91) 2584000077399378 a004 Fibonacci(91)/Lucas(69)/(1/2+sqrt(5)/2)^4 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^38/Lucas(89) 2584000077399378 a004 Fibonacci(89)/Lucas(69)/(1/2+sqrt(5)/2)^2 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^36/Lucas(87) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^34/Lucas(85) 2584000077399378 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^2/Lucas(69) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^32/Lucas(83) 2584000077399378 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^4/Lucas(69) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^30/Lucas(81) 2584000077399378 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^6/Lucas(69) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^28/Lucas(79) 2584000077399378 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^8/Lucas(69) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^26/Lucas(77) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^10/Lucas(69) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^24/Lucas(75) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^12/Lucas(69) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^22/Lucas(73) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^14/Lucas(69) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^20/Lucas(71) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^16/Lucas(69) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^18/Lucas(69) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^19/Lucas(68) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^17/Lucas(67) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^21/Lucas(70) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^15/Lucas(67) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^23/Lucas(72) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^13/Lucas(67) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^25/Lucas(74) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^11/Lucas(67) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^27/Lucas(76) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^9/Lucas(67) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^29/Lucas(78) 2584000077399378 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^7/Lucas(67) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^31/Lucas(80) 2584000077399378 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^5/Lucas(67) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^33/Lucas(82) 2584000077399378 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^3/Lucas(67) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^35/Lucas(84) 2584000077399378 a004 Fibonacci(84)*(1/2+sqrt(5)/2)/Lucas(67) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^37/Lucas(86) 2584000077399378 a004 Fibonacci(86)/Lucas(67)/(1/2+sqrt(5)/2) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^39/Lucas(88) 2584000077399378 a004 Fibonacci(88)/Lucas(67)/(1/2+sqrt(5)/2)^3 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^41/Lucas(90) 2584000077399378 a004 Fibonacci(90)/Lucas(67)/(1/2+sqrt(5)/2)^5 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^43/Lucas(92) 2584000077399378 a004 Fibonacci(92)/Lucas(67)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^45/Lucas(94) 2584000077399378 a004 Fibonacci(94)/Lucas(67)/(1/2+sqrt(5)/2)^9 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^47/Lucas(96) 2584000077399378 a004 Fibonacci(96)/Lucas(67)/(1/2+sqrt(5)/2)^11 2584000077399378 a004 Fibonacci(100)/Lucas(67)/(1/2+sqrt(5)/2)^15 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^49/Lucas(98) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^50/Lucas(99) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^51/Lucas(100) 2584000077399378 a004 Fibonacci(67)*Lucas(1)/(1/2+sqrt(5)/2)^49 2584000077399378 a004 Fibonacci(98)/Lucas(67)/(1/2+sqrt(5)/2)^13 2584000077399378 a004 Fibonacci(99)/Lucas(67)/(1/2+sqrt(5)/2)^14 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^48/Lucas(97) 2584000077399378 a004 Fibonacci(97)/Lucas(67)/(1/2+sqrt(5)/2)^12 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^46/Lucas(95) 2584000077399378 a004 Fibonacci(95)/Lucas(67)/(1/2+sqrt(5)/2)^10 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^44/Lucas(93) 2584000077399378 a004 Fibonacci(93)/Lucas(67)/(1/2+sqrt(5)/2)^8 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^42/Lucas(91) 2584000077399378 a004 Fibonacci(91)/Lucas(67)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^40/Lucas(89) 2584000077399378 a004 Fibonacci(89)/Lucas(67)/(1/2+sqrt(5)/2)^4 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^38/Lucas(87) 2584000077399378 a004 Fibonacci(87)/Lucas(67)/(1/2+sqrt(5)/2)^2 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^36/Lucas(85) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^34/Lucas(83) 2584000077399378 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^2/Lucas(67) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^32/Lucas(81) 2584000077399378 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^4/Lucas(67) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^30/Lucas(79) 2584000077399378 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^6/Lucas(67) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^28/Lucas(77) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^8/Lucas(67) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^26/Lucas(75) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^10/Lucas(67) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^24/Lucas(73) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^12/Lucas(67) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^22/Lucas(71) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^14/Lucas(67) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^20/Lucas(69) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^16/Lucas(67) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^18/Lucas(67) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^19/Lucas(66) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^17/Lucas(65) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^21/Lucas(68) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^15/Lucas(65) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^23/Lucas(70) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^13/Lucas(65) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^25/Lucas(72) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^11/Lucas(65) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^27/Lucas(74) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^9/Lucas(65) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^29/Lucas(76) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^7/Lucas(65) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^31/Lucas(78) 2584000077399378 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^5/Lucas(65) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^33/Lucas(80) 2584000077399378 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^3/Lucas(65) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^35/Lucas(82) 2584000077399378 a004 Fibonacci(82)*(1/2+sqrt(5)/2)/Lucas(65) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^37/Lucas(84) 2584000077399378 a004 Fibonacci(84)/Lucas(65)/(1/2+sqrt(5)/2) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^39/Lucas(86) 2584000077399378 a004 Fibonacci(86)/Lucas(65)/(1/2+sqrt(5)/2)^3 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^41/Lucas(88) 2584000077399378 a004 Fibonacci(88)/Lucas(65)/(1/2+sqrt(5)/2)^5 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^43/Lucas(90) 2584000077399378 a004 Fibonacci(90)/Lucas(65)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^45/Lucas(92) 2584000077399378 a004 Fibonacci(92)/Lucas(65)/(1/2+sqrt(5)/2)^9 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^47/Lucas(94) 2584000077399378 a004 Fibonacci(94)/Lucas(65)/(1/2+sqrt(5)/2)^11 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^49/Lucas(96) 2584000077399378 a004 Fibonacci(96)/Lucas(65)/(1/2+sqrt(5)/2)^13 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^51/Lucas(98) 2584000077399378 a004 Fibonacci(98)/Lucas(65)/(1/2+sqrt(5)/2)^15 2584000077399378 a004 Fibonacci(100)/Lucas(65)/(1/2+sqrt(5)/2)^17 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^50/Lucas(97) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^52/Lucas(99) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^53/Lucas(100) 2584000077399378 a004 Fibonacci(97)/Lucas(65)/(1/2+sqrt(5)/2)^14 2584000077399378 a004 Fibonacci(99)/Lucas(65)/(1/2+sqrt(5)/2)^16 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^48/Lucas(95) 2584000077399378 a004 Fibonacci(95)/Lucas(65)/(1/2+sqrt(5)/2)^12 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^46/Lucas(93) 2584000077399378 a004 Fibonacci(93)/Lucas(65)/(1/2+sqrt(5)/2)^10 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^44/Lucas(91) 2584000077399378 a004 Fibonacci(91)/Lucas(65)/(1/2+sqrt(5)/2)^8 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^42/Lucas(89) 2584000077399378 a004 Fibonacci(89)/Lucas(65)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^40/Lucas(87) 2584000077399378 a004 Fibonacci(87)/Lucas(65)/(1/2+sqrt(5)/2)^4 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^38/Lucas(85) 2584000077399378 a004 Fibonacci(85)/Lucas(65)/(1/2+sqrt(5)/2)^2 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^36/Lucas(83) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^34/Lucas(81) 2584000077399378 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^2/Lucas(65) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^32/Lucas(79) 2584000077399378 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^4/Lucas(65) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^30/Lucas(77) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^6/Lucas(65) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^28/Lucas(75) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^8/Lucas(65) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^26/Lucas(73) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^10/Lucas(65) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^24/Lucas(71) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^12/Lucas(65) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^22/Lucas(69) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^14/Lucas(65) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^20/Lucas(67) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^16/Lucas(65) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^18/Lucas(65) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^19/Lucas(64) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^17/Lucas(63) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^21/Lucas(66) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^15/Lucas(63) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^23/Lucas(68) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^13/Lucas(63) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^25/Lucas(70) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^11/Lucas(63) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^27/Lucas(72) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^9/Lucas(63) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^29/Lucas(74) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^7/Lucas(63) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^31/Lucas(76) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^5/Lucas(63) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^33/Lucas(78) 2584000077399378 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^3/Lucas(63) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^35/Lucas(80) 2584000077399378 a004 Fibonacci(80)*(1/2+sqrt(5)/2)/Lucas(63) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^37/Lucas(82) 2584000077399378 a004 Fibonacci(82)/Lucas(63)/(1/2+sqrt(5)/2) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^39/Lucas(84) 2584000077399378 a004 Fibonacci(84)/Lucas(63)/(1/2+sqrt(5)/2)^3 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^41/Lucas(86) 2584000077399378 a004 Fibonacci(86)/Lucas(63)/(1/2+sqrt(5)/2)^5 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^43/Lucas(88) 2584000077399378 a004 Fibonacci(88)/Lucas(63)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^45/Lucas(90) 2584000077399378 a004 Fibonacci(90)/Lucas(63)/(1/2+sqrt(5)/2)^9 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^47/Lucas(92) 2584000077399378 a004 Fibonacci(92)/Lucas(63)/(1/2+sqrt(5)/2)^11 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^49/Lucas(94) 2584000077399378 a004 Fibonacci(94)/Lucas(63)/(1/2+sqrt(5)/2)^13 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^51/Lucas(96) 2584000077399378 a004 Fibonacci(96)/Lucas(63)/(1/2+sqrt(5)/2)^15 2584000077399378 a004 Fibonacci(100)/Lucas(63)/(1/2+sqrt(5)/2)^19 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^53/Lucas(98) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^54/Lucas(99) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^55/Lucas(100) 2584000077399378 a004 Fibonacci(63)*Lucas(1)/(1/2+sqrt(5)/2)^45 2584000077399378 a004 Fibonacci(98)/Lucas(63)/(1/2+sqrt(5)/2)^17 2584000077399378 a004 Fibonacci(99)/Lucas(63)/(1/2+sqrt(5)/2)^18 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^52/Lucas(97) 2584000077399378 a004 Fibonacci(97)/Lucas(63)/(1/2+sqrt(5)/2)^16 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^50/Lucas(95) 2584000077399378 a004 Fibonacci(95)/Lucas(63)/(1/2+sqrt(5)/2)^14 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^48/Lucas(93) 2584000077399378 a004 Fibonacci(93)/Lucas(63)/(1/2+sqrt(5)/2)^12 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^46/Lucas(91) 2584000077399378 a004 Fibonacci(91)/Lucas(63)/(1/2+sqrt(5)/2)^10 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^44/Lucas(89) 2584000077399378 a004 Fibonacci(89)/Lucas(63)/(1/2+sqrt(5)/2)^8 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^42/Lucas(87) 2584000077399378 a004 Fibonacci(87)/Lucas(63)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^40/Lucas(85) 2584000077399378 a004 Fibonacci(85)/Lucas(63)/(1/2+sqrt(5)/2)^4 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^38/Lucas(83) 2584000077399378 a004 Fibonacci(83)/Lucas(63)/(1/2+sqrt(5)/2)^2 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^36/Lucas(81) 2584000077399378 a006 5^(1/2)*Fibonacci(81)/Lucas(63)/sqrt(5) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^34/Lucas(79) 2584000077399378 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^2/Lucas(63) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^32/Lucas(77) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^4/Lucas(63) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^30/Lucas(75) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^6/Lucas(63) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^28/Lucas(73) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^8/Lucas(63) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^26/Lucas(71) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^10/Lucas(63) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^24/Lucas(69) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^12/Lucas(63) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^22/Lucas(67) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^14/Lucas(63) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^20/Lucas(65) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^16/Lucas(63) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^18/Lucas(63) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^19/Lucas(62) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^17/Lucas(61) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^21/Lucas(64) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^15/Lucas(61) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^23/Lucas(66) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^13/Lucas(61) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^25/Lucas(68) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^11/Lucas(61) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^27/Lucas(70) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^9/Lucas(61) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^29/Lucas(72) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^7/Lucas(61) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^31/Lucas(74) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^5/Lucas(61) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^33/Lucas(76) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^3/Lucas(61) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^35/Lucas(78) 2584000077399378 a004 Fibonacci(78)*(1/2+sqrt(5)/2)/Lucas(61) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^37/Lucas(80) 2584000077399378 a004 Fibonacci(80)/Lucas(61)/(1/2+sqrt(5)/2) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^39/Lucas(82) 2584000077399378 a004 Fibonacci(82)/Lucas(61)/(1/2+sqrt(5)/2)^3 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^41/Lucas(84) 2584000077399378 a004 Fibonacci(84)/Lucas(61)/(1/2+sqrt(5)/2)^5 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^43/Lucas(86) 2584000077399378 a004 Fibonacci(86)/Lucas(61)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^45/Lucas(88) 2584000077399378 a004 Fibonacci(88)/Lucas(61)/(1/2+sqrt(5)/2)^9 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^47/Lucas(90) 2584000077399378 a004 Fibonacci(90)/Lucas(61)/(1/2+sqrt(5)/2)^11 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^49/Lucas(92) 2584000077399378 a004 Fibonacci(92)/Lucas(61)/(1/2+sqrt(5)/2)^13 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^51/Lucas(94) 2584000077399378 a004 Fibonacci(94)/Lucas(61)/(1/2+sqrt(5)/2)^15 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^53/Lucas(96) 2584000077399378 a004 Fibonacci(96)/Lucas(61)/(1/2+sqrt(5)/2)^17 2584000077399378 a004 Fibonacci(100)/Lucas(61)/(1/2+sqrt(5)/2)^21 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^55/Lucas(98) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^56/Lucas(99) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^57/Lucas(100) 2584000077399378 a004 Fibonacci(98)/Lucas(61)/(1/2+sqrt(5)/2)^19 2584000077399378 a004 Fibonacci(99)/Lucas(61)/(1/2+sqrt(5)/2)^20 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^54/Lucas(97) 2584000077399378 a004 Fibonacci(97)/Lucas(61)/(1/2+sqrt(5)/2)^18 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^52/Lucas(95) 2584000077399378 a004 Fibonacci(95)/Lucas(61)/(1/2+sqrt(5)/2)^16 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^50/Lucas(93) 2584000077399378 a004 Fibonacci(93)/Lucas(61)/(1/2+sqrt(5)/2)^14 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^48/Lucas(91) 2584000077399378 a004 Fibonacci(91)/Lucas(61)/(1/2+sqrt(5)/2)^12 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^46/Lucas(89) 2584000077399378 a004 Fibonacci(89)/Lucas(61)/(1/2+sqrt(5)/2)^10 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^44/Lucas(87) 2584000077399378 a004 Fibonacci(87)/Lucas(61)/(1/2+sqrt(5)/2)^8 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^42/Lucas(85) 2584000077399378 a004 Fibonacci(85)/Lucas(61)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^40/Lucas(83) 2584000077399378 a004 Fibonacci(83)/Lucas(61)/(1/2+sqrt(5)/2)^4 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^38/Lucas(81) 2584000077399378 a004 Fibonacci(81)/Lucas(61)/(1/2+sqrt(5)/2)^2 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^36/Lucas(79) 2584000077399378 a006 5^(1/2)*Fibonacci(79)/Lucas(61)/sqrt(5) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^34/Lucas(77) 2584000077399378 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^2/Lucas(61) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^32/Lucas(75) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^4/Lucas(61) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^30/Lucas(73) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^6/Lucas(61) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^28/Lucas(71) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^8/Lucas(61) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^26/Lucas(69) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^10/Lucas(61) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^24/Lucas(67) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^12/Lucas(61) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^22/Lucas(65) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^14/Lucas(61) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^20/Lucas(63) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^16/Lucas(61) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^18/Lucas(61) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^19/Lucas(60) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^17/Lucas(59) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^21/Lucas(62) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^15/Lucas(59) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^23/Lucas(64) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^13/Lucas(59) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^25/Lucas(66) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^11/Lucas(59) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^27/Lucas(68) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^9/Lucas(59) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^29/Lucas(70) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^7/Lucas(59) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^31/Lucas(72) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^5/Lucas(59) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^33/Lucas(74) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^3/Lucas(59) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^35/Lucas(76) 2584000077399378 a004 Fibonacci(76)*(1/2+sqrt(5)/2)/Lucas(59) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^37/Lucas(78) 2584000077399378 a004 Fibonacci(78)/Lucas(59)/(1/2+sqrt(5)/2) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^39/Lucas(80) 2584000077399378 a004 Fibonacci(80)/Lucas(59)/(1/2+sqrt(5)/2)^3 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^41/Lucas(82) 2584000077399378 a004 Fibonacci(82)/Lucas(59)/(1/2+sqrt(5)/2)^5 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^43/Lucas(84) 2584000077399378 a004 Fibonacci(84)/Lucas(59)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^45/Lucas(86) 2584000077399378 a004 Fibonacci(86)/Lucas(59)/(1/2+sqrt(5)/2)^9 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^47/Lucas(88) 2584000077399378 a004 Fibonacci(88)/Lucas(59)/(1/2+sqrt(5)/2)^11 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^49/Lucas(90) 2584000077399378 a004 Fibonacci(90)/Lucas(59)/(1/2+sqrt(5)/2)^13 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^51/Lucas(92) 2584000077399378 a004 Fibonacci(92)/Lucas(59)/(1/2+sqrt(5)/2)^15 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^53/Lucas(94) 2584000077399378 a004 Fibonacci(94)/Lucas(59)/(1/2+sqrt(5)/2)^17 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^55/Lucas(96) 2584000077399378 a004 Fibonacci(96)/Lucas(59)/(1/2+sqrt(5)/2)^19 2584000077399378 a004 Fibonacci(100)/Lucas(59)/(1/2+sqrt(5)/2)^23 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^57/Lucas(98) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^59/Lucas(100) 2584000077399378 a004 Fibonacci(59)*Lucas(1)/(1/2+sqrt(5)/2)^41 2584000077399378 a004 Fibonacci(98)/Lucas(59)/(1/2+sqrt(5)/2)^21 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^56/Lucas(97) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^58/Lucas(99) 2584000077399378 a004 Fibonacci(97)/Lucas(59)/(1/2+sqrt(5)/2)^20 2584000077399378 a004 Fibonacci(99)/Lucas(59)/(1/2+sqrt(5)/2)^22 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^54/Lucas(95) 2584000077399378 a004 Fibonacci(95)/Lucas(59)/(1/2+sqrt(5)/2)^18 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^52/Lucas(93) 2584000077399378 a004 Fibonacci(93)/Lucas(59)/(1/2+sqrt(5)/2)^16 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^50/Lucas(91) 2584000077399378 a004 Fibonacci(91)/Lucas(59)/(1/2+sqrt(5)/2)^14 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^48/Lucas(89) 2584000077399378 a004 Fibonacci(89)/Lucas(59)/(1/2+sqrt(5)/2)^12 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^46/Lucas(87) 2584000077399378 a004 Fibonacci(87)/Lucas(59)/(1/2+sqrt(5)/2)^10 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^44/Lucas(85) 2584000077399378 a004 Fibonacci(85)/Lucas(59)/(1/2+sqrt(5)/2)^8 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^42/Lucas(83) 2584000077399378 a004 Fibonacci(83)/Lucas(59)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^40/Lucas(81) 2584000077399378 a004 Fibonacci(81)/Lucas(59)/(1/2+sqrt(5)/2)^4 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^38/Lucas(79) 2584000077399378 a004 Fibonacci(79)/Lucas(59)/(1/2+sqrt(5)/2)^2 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^36/Lucas(77) 2584000077399378 a006 5^(1/2)*Fibonacci(77)/Lucas(59)/sqrt(5) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^34/Lucas(75) 2584000077399378 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^2/Lucas(59) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^32/Lucas(73) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^4/Lucas(59) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^30/Lucas(71) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^6/Lucas(59) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^28/Lucas(69) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^8/Lucas(59) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^26/Lucas(67) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^10/Lucas(59) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^24/Lucas(65) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^12/Lucas(59) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^22/Lucas(63) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^14/Lucas(59) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^20/Lucas(61) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^16/Lucas(59) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^18/Lucas(59) 2584000077399378 a004 Fibonacci(60)*Lucas(58)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(59)*Lucas(58)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^19/Lucas(58) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^17/Lucas(57) 2584000077399378 a004 Fibonacci(57)*Lucas(59)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^21/Lucas(60) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^15/Lucas(57) 2584000077399378 a004 Fibonacci(57)*Lucas(61)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^23/Lucas(62) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^13/Lucas(57) 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^25/Lucas(64) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^11/Lucas(57) 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^27/Lucas(66) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^9/Lucas(57) 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^29/Lucas(68) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^7/Lucas(57) 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^31/Lucas(70) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^5/Lucas(57) 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^33/Lucas(72) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^3/Lucas(57) 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^35/Lucas(74) 2584000077399378 a004 Fibonacci(74)*(1/2+sqrt(5)/2)/Lucas(57) 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^37/Lucas(76) 2584000077399378 a004 Fibonacci(76)/Lucas(57)/(1/2+sqrt(5)/2) 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^39/Lucas(78) 2584000077399378 a004 Fibonacci(78)/Lucas(57)/(1/2+sqrt(5)/2)^3 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^41/Lucas(80) 2584000077399378 a004 Fibonacci(80)/Lucas(57)/(1/2+sqrt(5)/2)^5 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^43/Lucas(82) 2584000077399378 a004 Fibonacci(82)/Lucas(57)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^45/Lucas(84) 2584000077399378 a004 Fibonacci(84)/Lucas(57)/(1/2+sqrt(5)/2)^9 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^47/Lucas(86) 2584000077399378 a004 Fibonacci(86)/Lucas(57)/(1/2+sqrt(5)/2)^11 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^49/Lucas(88) 2584000077399378 a004 Fibonacci(88)/Lucas(57)/(1/2+sqrt(5)/2)^13 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^51/Lucas(90) 2584000077399378 a004 Fibonacci(90)/Lucas(57)/(1/2+sqrt(5)/2)^15 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^53/Lucas(92) 2584000077399378 a004 Fibonacci(92)/Lucas(57)/(1/2+sqrt(5)/2)^17 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^55/Lucas(94) 2584000077399378 a004 Fibonacci(94)/Lucas(57)/(1/2+sqrt(5)/2)^19 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^57/Lucas(96) 2584000077399378 a004 Fibonacci(96)/Lucas(57)/(1/2+sqrt(5)/2)^21 2584000077399378 a004 Fibonacci(100)/Lucas(57)/(1/2+sqrt(5)/2)^25 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^59/Lucas(98) 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^60/Lucas(99) 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^61/Lucas(100) 2584000077399378 a004 Fibonacci(57)*Lucas(1)/(1/2+sqrt(5)/2)^39 2584000077399378 a004 Fibonacci(98)/Lucas(57)/(1/2+sqrt(5)/2)^23 2584000077399378 a004 Fibonacci(99)/Lucas(57)/(1/2+sqrt(5)/2)^24 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^58/Lucas(97) 2584000077399378 a004 Fibonacci(97)/Lucas(57)/(1/2+sqrt(5)/2)^22 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^56/Lucas(95) 2584000077399378 a004 Fibonacci(95)/Lucas(57)/(1/2+sqrt(5)/2)^20 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^54/Lucas(93) 2584000077399378 a004 Fibonacci(93)/Lucas(57)/(1/2+sqrt(5)/2)^18 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^52/Lucas(91) 2584000077399378 a004 Fibonacci(91)/Lucas(57)/(1/2+sqrt(5)/2)^16 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^50/Lucas(89) 2584000077399378 a004 Fibonacci(89)/Lucas(57)/(1/2+sqrt(5)/2)^14 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^48/Lucas(87) 2584000077399378 a004 Fibonacci(87)/Lucas(57)/(1/2+sqrt(5)/2)^12 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^46/Lucas(85) 2584000077399378 a004 Fibonacci(85)/Lucas(57)/(1/2+sqrt(5)/2)^10 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^44/Lucas(83) 2584000077399378 a004 Fibonacci(83)/Lucas(57)/(1/2+sqrt(5)/2)^8 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^42/Lucas(81) 2584000077399378 a004 Fibonacci(81)/Lucas(57)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^40/Lucas(79) 2584000077399378 a004 Fibonacci(79)/Lucas(57)/(1/2+sqrt(5)/2)^4 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^38/Lucas(77) 2584000077399378 a004 Fibonacci(77)/Lucas(57)/(1/2+sqrt(5)/2)^2 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^36/Lucas(75) 2584000077399378 a006 5^(1/2)*Fibonacci(75)/Lucas(57)/sqrt(5) 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^34/Lucas(73) 2584000077399378 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^2/Lucas(57) 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^32/Lucas(71) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^4/Lucas(57) 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^30/Lucas(69) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^6/Lucas(57) 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^28/Lucas(67) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^8/Lucas(57) 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^26/Lucas(65) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^10/Lucas(57) 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^24/Lucas(63) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^12/Lucas(57) 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^22/Lucas(61) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^14/Lucas(57) 2584000077399378 a004 Fibonacci(57)*Lucas(60)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^20/Lucas(59) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^16/Lucas(57) 2584000077399378 a004 Fibonacci(57)*Lucas(58)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^18/Lucas(57) 2584000077399378 a004 Fibonacci(58)*Lucas(56)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(60)*Lucas(56)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(62)*Lucas(56)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(61)*Lucas(56)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(59)*Lucas(56)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(57)*Lucas(56)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^19/Lucas(56) 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^17/Lucas(55) 2584000077399378 a004 Fibonacci(55)*Lucas(57)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^21/Lucas(58) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^15/Lucas(55) 2584000077399378 a004 Fibonacci(55)*Lucas(59)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^23/Lucas(60) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^13/Lucas(55) 2584000077399378 a004 Fibonacci(55)*Lucas(61)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^25/Lucas(62) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^11/Lucas(55) 2584000077399378 a004 Fibonacci(55)*Lucas(63)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^27/Lucas(64) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^9/Lucas(55) 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^29/Lucas(66) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^7/Lucas(55) 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^31/Lucas(68) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^5/Lucas(55) 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^33/Lucas(70) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^3/Lucas(55) 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^35/Lucas(72) 2584000077399378 a004 Fibonacci(72)*(1/2+sqrt(5)/2)/Lucas(55) 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^37/Lucas(74) 2584000077399378 a004 Fibonacci(74)/Lucas(55)/(1/2+sqrt(5)/2) 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^39/Lucas(76) 2584000077399378 a004 Fibonacci(76)/Lucas(55)/(1/2+sqrt(5)/2)^3 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^41/Lucas(78) 2584000077399378 a004 Fibonacci(78)/Lucas(55)/(1/2+sqrt(5)/2)^5 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^43/Lucas(80) 2584000077399378 a004 Fibonacci(80)/Lucas(55)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^45/Lucas(82) 2584000077399378 a004 Fibonacci(82)/Lucas(55)/(1/2+sqrt(5)/2)^9 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^47/Lucas(84) 2584000077399378 a004 Fibonacci(84)/Lucas(55)/(1/2+sqrt(5)/2)^11 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^49/Lucas(86) 2584000077399378 a004 Fibonacci(86)/Lucas(55)/(1/2+sqrt(5)/2)^13 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^51/Lucas(88) 2584000077399378 a004 Fibonacci(88)/Lucas(55)/(1/2+sqrt(5)/2)^15 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^53/Lucas(90) 2584000077399378 a004 Fibonacci(90)/Lucas(55)/(1/2+sqrt(5)/2)^17 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^55/Lucas(92) 2584000077399378 a004 Fibonacci(92)/Lucas(55)/(1/2+sqrt(5)/2)^19 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^57/Lucas(94) 2584000077399378 a004 Fibonacci(94)/Lucas(55)/(1/2+sqrt(5)/2)^21 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^59/Lucas(96) 2584000077399378 a004 Fibonacci(96)/Lucas(55)/(1/2+sqrt(5)/2)^23 2584000077399378 a004 Fibonacci(100)/Lucas(55)/(1/2+sqrt(5)/2)^27 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^61/Lucas(98) 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^62/Lucas(99) 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^63/Lucas(100) 2584000077399378 a004 Fibonacci(98)/Lucas(55)/(1/2+sqrt(5)/2)^25 2584000077399378 a004 Fibonacci(99)/Lucas(55)/(1/2+sqrt(5)/2)^26 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^60/Lucas(97) 2584000077399378 a004 Fibonacci(97)/Lucas(55)/(1/2+sqrt(5)/2)^24 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^58/Lucas(95) 2584000077399378 a004 Fibonacci(95)/Lucas(55)/(1/2+sqrt(5)/2)^22 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^56/Lucas(93) 2584000077399378 a004 Fibonacci(93)/Lucas(55)/(1/2+sqrt(5)/2)^20 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^54/Lucas(91) 2584000077399378 a004 Fibonacci(91)/Lucas(55)/(1/2+sqrt(5)/2)^18 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^52/Lucas(89) 2584000077399378 a004 Fibonacci(89)/Lucas(55)/(1/2+sqrt(5)/2)^16 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^50/Lucas(87) 2584000077399378 a004 Fibonacci(87)/Lucas(55)/(1/2+sqrt(5)/2)^14 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^48/Lucas(85) 2584000077399378 a004 Fibonacci(85)/Lucas(55)/(1/2+sqrt(5)/2)^12 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^46/Lucas(83) 2584000077399378 a004 Fibonacci(83)/Lucas(55)/(1/2+sqrt(5)/2)^10 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^44/Lucas(81) 2584000077399378 a004 Fibonacci(81)/Lucas(55)/(1/2+sqrt(5)/2)^8 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^42/Lucas(79) 2584000077399378 a004 Fibonacci(79)/Lucas(55)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^40/Lucas(77) 2584000077399378 a004 Fibonacci(77)/Lucas(55)/(1/2+sqrt(5)/2)^4 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^38/Lucas(75) 2584000077399378 a004 Fibonacci(75)/Lucas(55)/(1/2+sqrt(5)/2)^2 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^36/Lucas(73) 2584000077399378 a006 5^(1/2)*Fibonacci(73)/Lucas(55)/sqrt(5) 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^34/Lucas(71) 2584000077399378 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^2/Lucas(55) 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^32/Lucas(69) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^4/Lucas(55) 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^30/Lucas(67) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^6/Lucas(55) 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^28/Lucas(65) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^8/Lucas(55) 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^26/Lucas(63) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^10/Lucas(55) 2584000077399378 a004 Fibonacci(55)*Lucas(62)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^24/Lucas(61) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^12/Lucas(55) 2584000077399378 a004 Fibonacci(55)*Lucas(60)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^22/Lucas(59) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^14/Lucas(55) 2584000077399378 a004 Fibonacci(55)*Lucas(58)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^20/Lucas(57) 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^16/Lucas(55) 2584000077399378 a004 Fibonacci(55)*Lucas(56)/(1/2+sqrt(5)/2)^93 2584000077399378 a001 10610209857723/312119004989*192900153618^(1/6) 2584000077399378 a001 139583862445/1322157322203*192900153618^(7/18) 2584000077399378 a001 139583862445/312119004989*14662949395604^(2/7) 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^18/Lucas(55) 2584000077399378 a004 Fibonacci(56)*Lucas(54)/(1/2+sqrt(5)/2)^92 2584000077399378 a001 139583862445/23725150497407*192900153618^(1/2) 2584000077399378 a004 Fibonacci(58)*Lucas(54)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(60)*Lucas(54)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(62)*Lucas(54)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(64)*Lucas(54)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(63)*Lucas(54)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(61)*Lucas(54)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(59)*Lucas(54)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(57)*Lucas(54)/(1/2+sqrt(5)/2)^93 2584000077399378 a001 139583862445/312119004989*192900153618^(1/3) 2584000077399378 a004 Fibonacci(55)*Lucas(54)/(1/2+sqrt(5)/2)^91 2584000077399378 a001 4052739537881/505019158607*73681302247^(3/13) 2584000077399378 a001 2504730781961/505019158607*73681302247^(1/4) 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^19/Lucas(54) 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^17/Lucas(53) 2584000077399378 a001 10610209857723/2139295485799*73681302247^(1/4) 2584000077399378 a001 4052739537881/817138163596*73681302247^(1/4) 2584000077399378 a001 140728068720/28374454999*73681302247^(1/4) 2584000077399378 a001 2504730781961/2139295485799*73681302247^(4/13) 2584000077399378 a004 Fibonacci(53)*Lucas(55)/(1/2+sqrt(5)/2)^90 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^21/Lucas(56) 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^15/Lucas(53) 2584000077399378 a001 1548008755920/73681302247*28143753123^(1/5) 2584000077399378 a004 Fibonacci(53)*Lucas(57)/(1/2+sqrt(5)/2)^92 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^23/Lucas(58) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^13/Lucas(53) 2584000077399378 a004 Fibonacci(53)*Lucas(59)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^25/Lucas(60) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^11/Lucas(53) 2584000077399378 a001 53316291173/3461452808002*3461452808002^(5/12) 2584000077399378 a004 Fibonacci(53)*Lucas(61)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^27/Lucas(62) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^9/Lucas(53) 2584000077399378 a004 Fibonacci(53)*Lucas(63)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^29/Lucas(64) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^7/Lucas(53) 2584000077399378 a004 Fibonacci(53)*Lucas(65)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^31/Lucas(66) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^5/Lucas(53) 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^33/Lucas(68) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^3/Lucas(53) 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^35/Lucas(70) 2584000077399378 a004 Fibonacci(70)*(1/2+sqrt(5)/2)/Lucas(53) 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^37/Lucas(72) 2584000077399378 a004 Fibonacci(72)/Lucas(53)/(1/2+sqrt(5)/2) 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^39/Lucas(74) 2584000077399378 a004 Fibonacci(74)/Lucas(53)/(1/2+sqrt(5)/2)^3 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^41/Lucas(76) 2584000077399378 a004 Fibonacci(76)/Lucas(53)/(1/2+sqrt(5)/2)^5 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^43/Lucas(78) 2584000077399378 a004 Fibonacci(78)/Lucas(53)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^45/Lucas(80) 2584000077399378 a004 Fibonacci(80)/Lucas(53)/(1/2+sqrt(5)/2)^9 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^47/Lucas(82) 2584000077399378 a004 Fibonacci(82)/Lucas(53)/(1/2+sqrt(5)/2)^11 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^49/Lucas(84) 2584000077399378 a004 Fibonacci(84)/Lucas(53)/(1/2+sqrt(5)/2)^13 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^51/Lucas(86) 2584000077399378 a004 Fibonacci(86)/Lucas(53)/(1/2+sqrt(5)/2)^15 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^53/Lucas(88) 2584000077399378 a004 Fibonacci(88)/Lucas(53)/(1/2+sqrt(5)/2)^17 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^55/Lucas(90) 2584000077399378 a004 Fibonacci(90)/Lucas(53)/(1/2+sqrt(5)/2)^19 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^57/Lucas(92) 2584000077399378 a004 Fibonacci(92)/Lucas(53)/(1/2+sqrt(5)/2)^21 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^59/Lucas(94) 2584000077399378 a004 Fibonacci(94)/Lucas(53)/(1/2+sqrt(5)/2)^23 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^61/Lucas(96) 2584000077399378 a004 Fibonacci(96)/Lucas(53)/(1/2+sqrt(5)/2)^25 2584000077399378 a004 Fibonacci(100)/Lucas(53)/(1/2+sqrt(5)/2)^29 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^63/Lucas(98) 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^65/Lucas(100) 2584000077399378 a004 Fibonacci(98)/Lucas(53)/(1/2+sqrt(5)/2)^27 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^62/Lucas(97) 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^64/Lucas(99) 2584000077399378 a004 Fibonacci(97)/Lucas(53)/(1/2+sqrt(5)/2)^26 2584000077399378 a004 Fibonacci(99)/Lucas(53)/(1/2+sqrt(5)/2)^28 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^60/Lucas(95) 2584000077399378 a004 Fibonacci(95)/Lucas(53)/(1/2+sqrt(5)/2)^24 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^58/Lucas(93) 2584000077399378 a004 Fibonacci(93)/Lucas(53)/(1/2+sqrt(5)/2)^22 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^56/Lucas(91) 2584000077399378 a004 Fibonacci(91)/Lucas(53)/(1/2+sqrt(5)/2)^20 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^54/Lucas(89) 2584000077399378 a004 Fibonacci(89)/Lucas(53)/(1/2+sqrt(5)/2)^18 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^52/Lucas(87) 2584000077399378 a004 Fibonacci(87)/Lucas(53)/(1/2+sqrt(5)/2)^16 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^50/Lucas(85) 2584000077399378 a004 Fibonacci(85)/Lucas(53)/(1/2+sqrt(5)/2)^14 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^48/Lucas(83) 2584000077399378 a004 Fibonacci(83)/Lucas(53)/(1/2+sqrt(5)/2)^12 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^46/Lucas(81) 2584000077399378 a004 Fibonacci(81)/Lucas(53)/(1/2+sqrt(5)/2)^10 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^44/Lucas(79) 2584000077399378 a004 Fibonacci(79)/Lucas(53)/(1/2+sqrt(5)/2)^8 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^42/Lucas(77) 2584000077399378 a004 Fibonacci(77)/Lucas(53)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^40/Lucas(75) 2584000077399378 a004 Fibonacci(75)/Lucas(53)/(1/2+sqrt(5)/2)^4 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^38/Lucas(73) 2584000077399378 a004 Fibonacci(73)/Lucas(53)/(1/2+sqrt(5)/2)^2 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^36/Lucas(71) 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^34/Lucas(69) 2584000077399378 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^2/Lucas(53) 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^32/Lucas(67) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^4/Lucas(53) 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^30/Lucas(65) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^6/Lucas(53) 2584000077399378 a004 Fibonacci(53)*Lucas(64)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^28/Lucas(63) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^8/Lucas(53) 2584000077399378 a004 Fibonacci(53)*Lucas(62)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^26/Lucas(61) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^10/Lucas(53) 2584000077399378 a004 Fibonacci(53)*Lucas(60)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^24/Lucas(59) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^12/Lucas(53) 2584000077399378 a004 Fibonacci(53)*Lucas(58)/(1/2+sqrt(5)/2)^93 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^22/Lucas(57) 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^14/Lucas(53) 2584000077399378 a001 365435296162/119218851371*505019158607^(1/4) 2584000077399378 a001 225851433717/119218851371*192900153618^(5/18) 2584000077399378 a004 Fibonacci(53)*Lucas(56)/(1/2+sqrt(5)/2)^91 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^20/Lucas(55) 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^16/Lucas(53) 2584000077399378 a001 139583862445/119218851371*23725150497407^(1/4) 2584000077399378 a001 139583862445/817138163596*73681302247^(5/13) 2584000077399378 a001 225851433717/23725150497407*73681302247^(1/2) 2584000077399378 a001 139583862445/5600748293801*73681302247^(6/13) 2584000077399378 a004 Fibonacci(53)*Lucas(54)/(1/2+sqrt(5)/2)^89 2584000077399378 a001 139583862445/14662949395604*73681302247^(1/2) 2584000077399378 a001 956722026041/119218851371*73681302247^(3/13) 2584000077399378 a001 591286729879/119218851371*73681302247^(1/4) 2584000077399378 a001 32951280099/45537549124*45537549124^(1/3) 2584000077399378 a001 139583862445/119218851371*73681302247^(4/13) 2584000077399378 a001 53316291173/119218851371*14662949395604^(2/7) 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^18/Lucas(53) 2584000077399378 a001 53316291173/119218851371*192900153618^(1/3) 2584000077399378 a001 53316291173/2139295485799*73681302247^(6/13) 2584000077399378 a004 Fibonacci(54)*Lucas(52)/(1/2+sqrt(5)/2)^88 2584000077399378 a001 53316291173/5600748293801*73681302247^(1/2) 2584000077399378 a001 53316291173/14662949395604*73681302247^(7/13) 2584000077399378 a001 12585437040/228811001*10749957122^(1/6) 2584000077399378 a004 Fibonacci(56)*Lucas(52)/(1/2+sqrt(5)/2)^90 2584000077399378 a004 Fibonacci(58)*Lucas(52)/(1/2+sqrt(5)/2)^92 2584000077399378 a004 Fibonacci(60)*Lucas(52)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(62)*Lucas(52)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(64)*Lucas(52)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(66)*Lucas(52)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(65)*Lucas(52)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(63)*Lucas(52)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(61)*Lucas(52)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(59)*Lucas(52)/(1/2+sqrt(5)/2)^93 2584000077399378 a004 Fibonacci(57)*Lucas(52)/(1/2+sqrt(5)/2)^91 2584000077399378 a004 Fibonacci(55)*Lucas(52)/(1/2+sqrt(5)/2)^89 2584000077399378 a001 10182505537/7331474697802*45537549124^(10/17) 2584000077399378 a001 139583862445/73681302247*28143753123^(3/10) 2584000077399378 a001 10182505537/1730726404001*45537549124^(9/17) 2584000077399378 a001 225749145909/10745088481*28143753123^(1/5) 2584000077399378 a004 Fibonacci(53)*Lucas(52)/(1/2+sqrt(5)/2)^87 2584000077399378 a001 10182505537/408569081798*45537549124^(8/17) 2584000077399378 a001 10983760033/64300051206*28143753123^(2/5) 2584000077399378 a001 20365011074/73681302247*817138163596^(1/3) 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^19/Lucas(52) 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^17/Lucas(51) 2584000077399378 a001 21566892818/11384387281*45537549124^(5/17) 2584000077399378 a001 2504730781961/119218851371*28143753123^(1/5) 2584000077399378 a001 182717648081/96450076809*28143753123^(3/10) 2584000077399378 a001 956722026041/28143753123*10749957122^(3/16) 2584000077399378 a001 182717648081/22768774562*45537549124^(4/17) 2584000077399378 a001 591286729879/312119004989*28143753123^(3/10) 2584000077399378 a001 387002188980/11384387281*45537549124^(3/17) 2584000077399378 a004 Fibonacci(51)*Lucas(53)/(1/2+sqrt(5)/2)^86 2584000077399378 a001 3278735159921/22768774562*45537549124^(2/17) 2584000077399378 a001 225851433717/119218851371*28143753123^(3/10) 2584000077399378 a001 21566892818/11384387281*312119004989^(3/11) 2584000077399378 a001 10182505537/96450076809*14662949395604^(1/3) 2584000077399378 a001 21566892818/11384387281*14662949395604^(5/21) 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^21/Lucas(54) 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^15/Lucas(51) 2584000077399378 a001 21566892818/11384387281*192900153618^(5/18) 2584000077399378 a004 Fibonacci(51)*Lucas(55)/(1/2+sqrt(5)/2)^88 2584000077399378 a001 10182505537/7331474697802*312119004989^(6/11) 2584000077399378 a001 20365011074/1322157322203*312119004989^(5/11) 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^23/Lucas(56) 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^13/Lucas(51) 2584000077399378 a004 Fibonacci(51)*Lucas(57)/(1/2+sqrt(5)/2)^90 2584000077399378 a001 10182505537/1730726404001*817138163596^(9/19) 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^25/Lucas(58) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^11/Lucas(51) 2584000077399378 a004 Fibonacci(51)*Lucas(59)/(1/2+sqrt(5)/2)^92 2584000077399378 a001 10182505537/1730726404001*14662949395604^(3/7) 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^27/Lucas(60) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^9/Lucas(51) 2584000077399378 a004 Fibonacci(51)*Lucas(61)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^29/Lucas(62) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^7/Lucas(51) 2584000077399378 a004 Fibonacci(51)*Lucas(63)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^31/Lucas(64) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^5/Lucas(51) 2584000077399378 a004 Fibonacci(51)*Lucas(65)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^33/Lucas(66) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^3/Lucas(51) 2584000077399378 a004 Fibonacci(51)*Lucas(67)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^35/Lucas(68) 2584000077399378 a004 Fibonacci(68)*(1/2+sqrt(5)/2)/Lucas(51) 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^37/Lucas(70) 2584000077399378 a004 Fibonacci(70)/Lucas(51)/(1/2+sqrt(5)/2) 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^39/Lucas(72) 2584000077399378 a004 Fibonacci(72)/Lucas(51)/(1/2+sqrt(5)/2)^3 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^41/Lucas(74) 2584000077399378 a004 Fibonacci(74)/Lucas(51)/(1/2+sqrt(5)/2)^5 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^43/Lucas(76) 2584000077399378 a004 Fibonacci(76)/Lucas(51)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^45/Lucas(78) 2584000077399378 a004 Fibonacci(78)/Lucas(51)/(1/2+sqrt(5)/2)^9 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^47/Lucas(80) 2584000077399378 a004 Fibonacci(80)/Lucas(51)/(1/2+sqrt(5)/2)^11 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^49/Lucas(82) 2584000077399378 a004 Fibonacci(82)/Lucas(51)/(1/2+sqrt(5)/2)^13 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^51/Lucas(84) 2584000077399378 a004 Fibonacci(84)/Lucas(51)/(1/2+sqrt(5)/2)^15 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^53/Lucas(86) 2584000077399378 a004 Fibonacci(86)/Lucas(51)/(1/2+sqrt(5)/2)^17 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^55/Lucas(88) 2584000077399378 a004 Fibonacci(88)/Lucas(51)/(1/2+sqrt(5)/2)^19 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^57/Lucas(90) 2584000077399378 a004 Fibonacci(90)/Lucas(51)/(1/2+sqrt(5)/2)^21 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^59/Lucas(92) 2584000077399378 a004 Fibonacci(92)/Lucas(51)/(1/2+sqrt(5)/2)^23 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^61/Lucas(94) 2584000077399378 a004 Fibonacci(94)/Lucas(51)/(1/2+sqrt(5)/2)^25 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^63/Lucas(96) 2584000077399378 a004 Fibonacci(96)/Lucas(51)/(1/2+sqrt(5)/2)^27 2584000077399378 a004 Fibonacci(100)/Lucas(51)/(1/2+sqrt(5)/2)^31 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^65/Lucas(98) 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^67/Lucas(100) 2584000077399378 a004 Fibonacci(51)*Lucas(1)/(1/2+sqrt(5)/2)^33 2584000077399378 a004 Fibonacci(98)/Lucas(51)/(1/2+sqrt(5)/2)^29 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^64/Lucas(97) 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^66/Lucas(99) 2584000077399378 a004 Fibonacci(97)/Lucas(51)/(1/2+sqrt(5)/2)^28 2584000077399378 a004 Fibonacci(99)/Lucas(51)/(1/2+sqrt(5)/2)^30 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^62/Lucas(95) 2584000077399378 a004 Fibonacci(95)/Lucas(51)/(1/2+sqrt(5)/2)^26 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^60/Lucas(93) 2584000077399378 a004 Fibonacci(93)/Lucas(51)/(1/2+sqrt(5)/2)^24 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^58/Lucas(91) 2584000077399378 a004 Fibonacci(91)/Lucas(51)/(1/2+sqrt(5)/2)^22 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^56/Lucas(89) 2584000077399378 a004 Fibonacci(89)/Lucas(51)/(1/2+sqrt(5)/2)^20 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^54/Lucas(87) 2584000077399378 a004 Fibonacci(87)/Lucas(51)/(1/2+sqrt(5)/2)^18 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^52/Lucas(85) 2584000077399378 a004 Fibonacci(85)/Lucas(51)/(1/2+sqrt(5)/2)^16 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^50/Lucas(83) 2584000077399378 a004 Fibonacci(83)/Lucas(51)/(1/2+sqrt(5)/2)^14 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^48/Lucas(81) 2584000077399378 a004 Fibonacci(81)/Lucas(51)/(1/2+sqrt(5)/2)^12 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^46/Lucas(79) 2584000077399378 a004 Fibonacci(79)/Lucas(51)/(1/2+sqrt(5)/2)^10 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^44/Lucas(77) 2584000077399378 a004 Fibonacci(77)/Lucas(51)/(1/2+sqrt(5)/2)^8 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^42/Lucas(75) 2584000077399378 a004 Fibonacci(75)/Lucas(51)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^40/Lucas(73) 2584000077399378 a004 Fibonacci(73)/Lucas(51)/(1/2+sqrt(5)/2)^4 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^38/Lucas(71) 2584000077399378 a004 Fibonacci(71)/Lucas(51)/(1/2+sqrt(5)/2)^2 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^36/Lucas(69) 2584000077399378 a006 5^(1/2)*Fibonacci(69)/Lucas(51)/sqrt(5) 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^34/Lucas(67) 2584000077399378 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^2/Lucas(51) 2584000077399378 a004 Fibonacci(51)*Lucas(66)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^32/Lucas(65) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^4/Lucas(51) 2584000077399378 a004 Fibonacci(51)*Lucas(64)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^30/Lucas(63) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^6/Lucas(51) 2584000077399378 a004 Fibonacci(51)*Lucas(62)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^28/Lucas(61) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^8/Lucas(51) 2584000077399378 a004 Fibonacci(51)*Lucas(60)/(1/2+sqrt(5)/2)^93 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^26/Lucas(59) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^10/Lucas(51) 2584000077399378 a004 Fibonacci(51)*Lucas(58)/(1/2+sqrt(5)/2)^91 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^24/Lucas(57) 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^12/Lucas(51) 2584000077399378 a004 Fibonacci(51)*Lucas(56)/(1/2+sqrt(5)/2)^89 2584000077399378 a001 182717648081/22768774562*192900153618^(2/9) 2584000077399378 a001 139583862445/45537549124*14662949395604^(2/9) 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^22/Lucas(55) 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^14/Lucas(51) 2584000077399378 a001 10182505537/1730726404001*192900153618^(1/2) 2584000077399378 a001 10182505537/408569081798*192900153618^(4/9) 2584000077399378 a001 75283811239/440719107401*28143753123^(2/5) 2584000077399378 a001 2504730781961/14662949395604*28143753123^(2/5) 2584000077399378 a004 Fibonacci(51)*Lucas(54)/(1/2+sqrt(5)/2)^87 2584000077399378 a001 2504730781961/45537549124*73681302247^(2/13) 2584000077399378 a001 139583862445/817138163596*28143753123^(2/5) 2584000077399378 a001 182717648081/22768774562*73681302247^(3/13) 2584000077399378 a001 591286729879/28143753123*10749957122^(5/24) 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^20/Lucas(53) 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^16/Lucas(51) 2584000077399378 a001 20365011074/119218851371*23725150497407^(5/16) 2584000077399378 a001 20365011074/119218851371*505019158607^(5/14) 2584000077399378 a001 10182505537/408569081798*73681302247^(6/13) 2584000077399378 a001 20365011074/2139295485799*73681302247^(1/2) 2584000077399378 a001 20365011074/5600748293801*73681302247^(7/13) 2584000077399378 a001 53316291173/312119004989*28143753123^(2/5) 2584000077399378 a001 86267571272/5600748293801*28143753123^(1/2) 2584000077399378 a001 10610209857723/45537549124*28143753123^(1/10) 2584000077399378 a001 53316291173/45537549124*73681302247^(4/13) 2584000077399378 a001 20365011074/119218851371*73681302247^(5/13) 2584000077399378 a001 7787980473/505618944676*28143753123^(1/2) 2584000077399378 a001 365435296162/23725150497407*28143753123^(1/2) 2584000077399378 a001 139583862445/9062201101803*28143753123^(1/2) 2584000077399378 a004 Fibonacci(51)*Lucas(52)/(1/2+sqrt(5)/2)^85 2584000077399378 a001 53316291173/3461452808002*28143753123^(1/2) 2584000077399378 a001 12586269025/28143753123*10749957122^(3/8) 2584000077399378 a001 956722026041/45537549124*28143753123^(1/5) 2584000077399378 a001 10182505537/22768774562*45537549124^(6/17) 2584000077399378 a001 21566892818/11384387281*28143753123^(3/10) 2584000077399378 a001 1515744265389/10525900321*10749957122^(1/8) 2584000077399378 a001 10182505537/22768774562*14662949395604^(2/7) 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^18/Lucas(51) 2584000077399378 a001 10182505537/22768774562*192900153618^(1/3) 2584000077399378 a001 20365011074/119218851371*28143753123^(2/5) 2584000077399378 a004 Fibonacci(52)*Lucas(50)/(1/2+sqrt(5)/2)^84 2584000077399378 a001 20365011074/1322157322203*28143753123^(1/2) 2584000077399378 a004 Fibonacci(54)*Lucas(50)/(1/2+sqrt(5)/2)^86 2584000077399378 a001 10182505537/7331474697802*28143753123^(3/5) 2584000077399378 a001 4052739537881/73681302247*10749957122^(1/6) 2584000077399378 a004 Fibonacci(56)*Lucas(50)/(1/2+sqrt(5)/2)^88 2584000077399378 a004 Fibonacci(58)*Lucas(50)/(1/2+sqrt(5)/2)^90 2584000077399378 a004 Fibonacci(60)*Lucas(50)/(1/2+sqrt(5)/2)^92 2584000077399378 a004 Fibonacci(62)*Lucas(50)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(64)*Lucas(50)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(66)*Lucas(50)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(68)*Lucas(50)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(67)*Lucas(50)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(65)*Lucas(50)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(63)*Lucas(50)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(61)*Lucas(50)/(1/2+sqrt(5)/2)^93 2584000077399378 a004 Fibonacci(59)*Lucas(50)/(1/2+sqrt(5)/2)^91 2584000077399378 a004 Fibonacci(57)*Lucas(50)/(1/2+sqrt(5)/2)^89 2584000077399378 a004 Fibonacci(55)*Lucas(50)/(1/2+sqrt(5)/2)^87 2584000077399378 a004 Fibonacci(53)*Lucas(50)/(1/2+sqrt(5)/2)^85 2584000077399378 a001 3536736619241/64300051206*10749957122^(1/6) 2584000077399378 a001 10983760033/9381251041*10749957122^(1/3) 2584000077399378 a001 53316291173/28143753123*10749957122^(5/16) 2584000077399378 a001 3278735159921/22768774562*10749957122^(1/8) 2584000077399378 a001 3278735159921/96450076809*10749957122^(3/16) 2584000077399378 a001 1548008755920/73681302247*10749957122^(5/24) 2584000077399378 a001 10610209857723/312119004989*10749957122^(3/16) 2584000077399378 a001 591286729879/10749957122*4106118243^(4/23) 2584000077399378 a001 4052739537881/119218851371*10749957122^(3/16) 2584000077399378 a001 7778742049/73681302247*17393796001^(3/7) 2584000077399378 a004 Fibonacci(51)*Lucas(50)/(1/2+sqrt(5)/2)^83 2584000077399378 a001 4052739537881/192900153618*10749957122^(5/24) 2584000077399378 a001 225749145909/10745088481*10749957122^(5/24) 2584000077399378 a001 6557470319842/312119004989*10749957122^(5/24) 2584000077399378 a001 2504730781961/119218851371*10749957122^(5/24) 2584000077399378 a001 12586269025/17393796001*45537549124^(1/3) 2584000077399378 a001 2504730781961/45537549124*10749957122^(1/6) 2584000077399378 a001 956722026041/6643838879*2537720636^(2/15) 2584000077399378 a001 591286729879/73681302247*10749957122^(1/4) 2584000077399378 a001 7778742049/28143753123*817138163596^(1/3) 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^19/Lucas(50) 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^17/Lucas(49) 2584000077399378 a001 387002188980/11384387281*10749957122^(3/16) 2584000077399378 a001 86000486440/10716675201*10749957122^(1/4) 2584000077399378 a001 12586269025/73681302247*10749957122^(5/12) 2584000077399378 a001 3278735159921/408569081798*10749957122^(1/4) 2584000077399378 a001 2504730781961/312119004989*10749957122^(1/4) 2584000077399378 a001 956722026041/119218851371*10749957122^(1/4) 2584000077399378 a001 956722026041/45537549124*10749957122^(5/24) 2584000077399378 a001 32264490531/10525900321*10749957122^(7/24) 2584000077399378 a001 53316291173/17393796001*17393796001^(2/7) 2584000077399378 a001 591286729879/192900153618*10749957122^(7/24) 2584000077399378 a001 1548008755920/505019158607*10749957122^(7/24) 2584000077399378 a001 1515744265389/494493258286*10749957122^(7/24) 2584000077399378 a001 2504730781961/817138163596*10749957122^(7/24) 2584000077399378 a001 139583862445/73681302247*10749957122^(5/16) 2584000077399378 a001 12586269025/119218851371*10749957122^(7/16) 2584000077399378 a001 182717648081/22768774562*10749957122^(1/4) 2584000077399378 a001 86267571272/73681302247*10749957122^(1/3) 2584000077399378 a001 12586269025/192900153618*10749957122^(11/24) 2584000077399378 a001 182717648081/96450076809*10749957122^(5/16) 2584000077399378 a001 956722026041/505019158607*10749957122^(5/16) 2584000077399378 a001 591286729879/312119004989*10749957122^(5/16) 2584000077399378 a001 225851433717/119218851371*10749957122^(5/16) 2584000077399378 a004 Fibonacci(49)*Lucas(51)/(1/2+sqrt(5)/2)^82 2584000077399378 a001 1548008755920/17393796001*17393796001^(1/7) 2584000077399378 a001 75283811239/64300051206*10749957122^(1/3) 2584000077399378 a001 32951280099/73681302247*10749957122^(3/8) 2584000077399378 a001 2504730781961/2139295485799*10749957122^(1/3) 2584000077399378 a001 365435296162/312119004989*10749957122^(1/3) 2584000077399378 a001 7778742049/73681302247*45537549124^(7/17) 2584000077399378 a001 139583862445/119218851371*10749957122^(1/3) 2584000077399378 a001 32951280099/17393796001*45537549124^(5/17) 2584000077399378 a001 7778742049/23725150497407*45537549124^(11/17) 2584000077399378 a001 139583862445/45537549124*10749957122^(7/24) 2584000077399378 a001 7778742049/5600748293801*45537549124^(10/17) 2584000077399378 a001 7778742049/1322157322203*45537549124^(9/17) 2584000077399378 a001 12586269025/505019158607*10749957122^(1/2) 2584000077399378 a001 7778742049/312119004989*45537549124^(8/17) 2584000077399378 a001 32951280099/17393796001*312119004989^(3/11) 2584000077399378 a001 7778742049/73681302247*14662949395604^(1/3) 2584000077399378 a001 32951280099/17393796001*14662949395604^(5/21) 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^21/Lucas(52) 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^15/Lucas(49) 2584000077399378 a001 32951280099/17393796001*192900153618^(5/18) 2584000077399378 a001 7778742049/73681302247*192900153618^(7/18) 2584000077399378 a001 21566892818/11384387281*10749957122^(5/16) 2584000077399378 a001 43133785636/96450076809*10749957122^(3/8) 2584000077399378 a001 139583862445/17393796001*45537549124^(4/17) 2584000077399378 a001 591286729879/17393796001*45537549124^(3/17) 2584000077399378 a004 Fibonacci(49)*Lucas(53)/(1/2+sqrt(5)/2)^84 2584000077399378 a001 225851433717/505019158607*10749957122^(3/8) 2584000077399378 a001 591286729879/1322157322203*10749957122^(3/8) 2584000077399378 a001 139583862445/312119004989*10749957122^(3/8) 2584000077399378 a001 10610209857723/17393796001*45537549124^(1/17) 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^23/Lucas(54) 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^13/Lucas(49) 2584000077399378 a004 Fibonacci(49)*Lucas(55)/(1/2+sqrt(5)/2)^86 2584000077399378 a001 7778742049/505019158607*312119004989^(5/11) 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^25/Lucas(56) 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^11/Lucas(49) 2584000077399378 a004 Fibonacci(49)*Lucas(57)/(1/2+sqrt(5)/2)^88 2584000077399378 a001 4052739537881/17393796001*312119004989^(1/11) 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^27/Lucas(58) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^9/Lucas(49) 2584000077399378 a004 Fibonacci(49)*Lucas(59)/(1/2+sqrt(5)/2)^90 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^29/Lucas(60) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^7/Lucas(49) 2584000077399378 a004 Fibonacci(49)*Lucas(61)/(1/2+sqrt(5)/2)^92 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^31/Lucas(62) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^5/Lucas(49) 2584000077399378 a004 Fibonacci(49)*Lucas(63)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^33/Lucas(64) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^3/Lucas(49) 2584000077399378 a004 Fibonacci(49)*Lucas(65)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^35/Lucas(66) 2584000077399378 a004 Fibonacci(66)*(1/2+sqrt(5)/2)/Lucas(49) 2584000077399378 a004 Fibonacci(49)*Lucas(67)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^37/Lucas(68) 2584000077399378 a004 Fibonacci(68)/Lucas(49)/(1/2+sqrt(5)/2) 2584000077399378 a004 Fibonacci(49)*Lucas(69)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^39/Lucas(70) 2584000077399378 a004 Fibonacci(70)/Lucas(49)/(1/2+sqrt(5)/2)^3 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^41/Lucas(72) 2584000077399378 a004 Fibonacci(72)/Lucas(49)/(1/2+sqrt(5)/2)^5 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^43/Lucas(74) 2584000077399378 a004 Fibonacci(74)/Lucas(49)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^45/Lucas(76) 2584000077399378 a004 Fibonacci(76)/Lucas(49)/(1/2+sqrt(5)/2)^9 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^47/Lucas(78) 2584000077399378 a004 Fibonacci(78)/Lucas(49)/(1/2+sqrt(5)/2)^11 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^49/Lucas(80) 2584000077399378 a004 Fibonacci(80)/Lucas(49)/(1/2+sqrt(5)/2)^13 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^51/Lucas(82) 2584000077399378 a004 Fibonacci(82)/Lucas(49)/(1/2+sqrt(5)/2)^15 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^53/Lucas(84) 2584000077399378 a004 Fibonacci(84)/Lucas(49)/(1/2+sqrt(5)/2)^17 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^55/Lucas(86) 2584000077399378 a004 Fibonacci(86)/Lucas(49)/(1/2+sqrt(5)/2)^19 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^57/Lucas(88) 2584000077399378 a004 Fibonacci(88)/Lucas(49)/(1/2+sqrt(5)/2)^21 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^59/Lucas(90) 2584000077399378 a004 Fibonacci(90)/Lucas(49)/(1/2+sqrt(5)/2)^23 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^61/Lucas(92) 2584000077399378 a004 Fibonacci(92)/Lucas(49)/(1/2+sqrt(5)/2)^25 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^63/Lucas(94) 2584000077399378 a004 Fibonacci(94)/Lucas(49)/(1/2+sqrt(5)/2)^27 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^65/Lucas(96) 2584000077399378 a004 Fibonacci(96)/Lucas(49)/(1/2+sqrt(5)/2)^29 2584000077399378 a004 Fibonacci(100)/Lucas(49)/(1/2+sqrt(5)/2)^33 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^67/Lucas(98) 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^68/Lucas(99) 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^69/Lucas(100) 2584000077399378 a004 Fibonacci(49)*Lucas(1)/(1/2+sqrt(5)/2)^31 2584000077399378 a004 Fibonacci(99)/Lucas(49)/(1/2+sqrt(5)/2)^32 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^66/Lucas(97) 2584000077399378 a004 Fibonacci(97)/Lucas(49)/(1/2+sqrt(5)/2)^30 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^64/Lucas(95) 2584000077399378 a004 Fibonacci(95)/Lucas(49)/(1/2+sqrt(5)/2)^28 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^62/Lucas(93) 2584000077399378 a004 Fibonacci(93)/Lucas(49)/(1/2+sqrt(5)/2)^26 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^60/Lucas(91) 2584000077399378 a004 Fibonacci(91)/Lucas(49)/(1/2+sqrt(5)/2)^24 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^58/Lucas(89) 2584000077399378 a004 Fibonacci(89)/Lucas(49)/(1/2+sqrt(5)/2)^22 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^56/Lucas(87) 2584000077399378 a004 Fibonacci(87)/Lucas(49)/(1/2+sqrt(5)/2)^20 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^54/Lucas(85) 2584000077399378 a004 Fibonacci(85)/Lucas(49)/(1/2+sqrt(5)/2)^18 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^52/Lucas(83) 2584000077399378 a004 Fibonacci(83)/Lucas(49)/(1/2+sqrt(5)/2)^16 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^50/Lucas(81) 2584000077399378 a004 Fibonacci(81)/Lucas(49)/(1/2+sqrt(5)/2)^14 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^48/Lucas(79) 2584000077399378 a004 Fibonacci(79)/Lucas(49)/(1/2+sqrt(5)/2)^12 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^46/Lucas(77) 2584000077399378 a004 Fibonacci(77)/Lucas(49)/(1/2+sqrt(5)/2)^10 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^44/Lucas(75) 2584000077399378 a004 Fibonacci(75)/Lucas(49)/(1/2+sqrt(5)/2)^8 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^42/Lucas(73) 2584000077399378 a004 Fibonacci(73)/Lucas(49)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^40/Lucas(71) 2584000077399378 a004 Fibonacci(71)/Lucas(49)/(1/2+sqrt(5)/2)^4 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^38/Lucas(69) 2584000077399378 a004 Fibonacci(69)/Lucas(49)/(1/2+sqrt(5)/2)^2 2584000077399378 a004 Fibonacci(49)*Lucas(68)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^36/Lucas(67) 2584000077399378 a004 Fibonacci(49)*Lucas(66)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^34/Lucas(65) 2584000077399378 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^2/Lucas(49) 2584000077399378 a004 Fibonacci(49)*Lucas(64)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^32/Lucas(63) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^4/Lucas(49) 2584000077399378 a004 Fibonacci(49)*Lucas(62)/(1/2+sqrt(5)/2)^93 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^30/Lucas(61) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^6/Lucas(49) 2584000077399378 a004 Fibonacci(49)*Lucas(60)/(1/2+sqrt(5)/2)^91 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^28/Lucas(59) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^8/Lucas(49) 2584000077399378 a004 Fibonacci(49)*Lucas(58)/(1/2+sqrt(5)/2)^89 2584000077399378 a001 10610209857723/17393796001*192900153618^(1/18) 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^26/Lucas(57) 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^10/Lucas(49) 2584000077399378 a004 Fibonacci(49)*Lucas(56)/(1/2+sqrt(5)/2)^87 2584000077399378 a001 139583862445/17393796001*817138163596^(4/19) 2584000077399378 a001 139583862445/17393796001*14662949395604^(4/21) 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^24/Lucas(55) 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^12/Lucas(49) 2584000077399378 a001 139583862445/17393796001*192900153618^(2/9) 2584000077399378 a001 7778742049/23725150497407*192900153618^(11/18) 2584000077399378 a001 7778742049/312119004989*192900153618^(4/9) 2584000077399378 a004 Fibonacci(49)*Lucas(54)/(1/2+sqrt(5)/2)^85 2584000077399378 a001 956722026041/17393796001*73681302247^(2/13) 2584000077399378 a001 139583862445/17393796001*73681302247^(3/13) 2584000077399378 a001 7778742049/119218851371*312119004989^(2/5) 2584000077399378 a001 53316291173/17393796001*14662949395604^(2/9) 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^22/Lucas(53) 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^14/Lucas(49) 2584000077399378 a001 53316291173/17393796001*505019158607^(1/4) 2584000077399378 a001 53316291173/119218851371*10749957122^(3/8) 2584000077399378 a001 10983760033/64300051206*10749957122^(5/12) 2584000077399378 a001 7778742049/2139295485799*73681302247^(7/13) 2584000077399378 a001 7778742049/14662949395604*73681302247^(8/13) 2584000077399378 a001 12586269025/1322157322203*10749957122^(13/24) 2584000077399378 a001 4052739537881/17393796001*28143753123^(1/10) 2584000077399378 a001 53316291173/45537549124*10749957122^(1/3) 2584000077399378 a004 Fibonacci(49)*Lucas(52)/(1/2+sqrt(5)/2)^83 2584000077399378 a001 32951280099/17393796001*28143753123^(3/10) 2584000077399378 a001 365435296162/17393796001*28143753123^(1/5) 2584000077399378 a001 86267571272/505019158607*10749957122^(5/12) 2584000077399378 a001 12586269025/2139295485799*10749957122^(9/16) 2584000077399378 a001 32951280099/312119004989*10749957122^(7/16) 2584000077399378 a001 139583862445/817138163596*10749957122^(5/12) 2584000077399378 a001 53316291173/312119004989*10749957122^(5/12) 2584000077399378 a001 21566892818/204284540899*10749957122^(7/16) 2584000077399378 a001 32951280099/505019158607*10749957122^(11/24) 2584000077399378 a001 225851433717/2139295485799*10749957122^(7/16) 2584000077399378 a001 12586269025/3461452808002*10749957122^(7/12) 2584000077399378 a001 182717648081/1730726404001*10749957122^(7/16) 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^20/Lucas(51) 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^16/Lucas(49) 2584000077399378 a001 139583862445/1322157322203*10749957122^(7/16) 2584000077399378 a001 10610209857723/17393796001*10749957122^(1/16) 2584000077399378 a001 53316291173/505019158607*10749957122^(7/16) 2584000077399378 a001 3536736619241/9381251041*4106118243^(2/23) 2584000077399378 a001 7778742049/505019158607*28143753123^(1/2) 2584000077399378 a001 86267571272/1322157322203*10749957122^(11/24) 2584000077399378 a001 32264490531/494493258286*10749957122^(11/24) 2584000077399378 a001 139583862445/2139295485799*10749957122^(11/24) 2584000077399378 a001 6557470319842/17393796001*10749957122^(1/12) 2584000077399378 a001 53316291173/817138163596*10749957122^(11/24) 2584000077399378 a001 7778742049/5600748293801*28143753123^(3/5) 2584000077399378 a001 10983760033/440719107401*10749957122^(1/2) 2584000077399378 a001 12586269025/9062201101803*10749957122^(5/8) 2584000077399378 a001 20365011074/119218851371*10749957122^(5/12) 2584000077399378 a001 10182505537/22768774562*10749957122^(3/8) 2584000077399378 a001 225851433717/10749957122*4106118243^(5/23) 2584000077399378 a001 10182505537/96450076809*10749957122^(7/16) 2584000077399378 a001 7778742049/45537549124*28143753123^(2/5) 2584000077399378 a001 43133785636/1730726404001*10749957122^(1/2) 2584000077399378 a001 75283811239/3020733700601*10749957122^(1/2) 2584000077399378 a001 182717648081/7331474697802*10749957122^(1/2) 2584000077399378 a001 139583862445/5600748293801*10749957122^(1/2) 2584000077399378 a001 2504730781961/17393796001*10749957122^(1/8) 2584000077399378 a001 53316291173/2139295485799*10749957122^(1/2) 2584000077399378 a001 20365011074/312119004989*10749957122^(11/24) 2584000077399378 a001 12586269025/23725150497407*10749957122^(2/3) 2584000077399378 a004 Fibonacci(49)*Lucas(50)/(1/2+sqrt(5)/2)^81 2584000077399378 a001 86267571272/9062201101803*10749957122^(13/24) 2584000077399378 a001 32951280099/5600748293801*10749957122^(9/16) 2584000077399378 a001 956722026041/17393796001*10749957122^(1/6) 2584000077399378 a001 53316291173/5600748293801*10749957122^(13/24) 2584000077399378 a001 10182505537/408569081798*10749957122^(1/2) 2584000077399378 a001 1135099622/192933544679*10749957122^(9/16) 2584000077399378 a001 10983760033/3020733700601*10749957122^(7/12) 2584000077399378 a001 139583862445/23725150497407*10749957122^(9/16) 2584000077399378 a001 591286729879/17393796001*10749957122^(3/16) 2584000077399378 a001 53316291173/9062201101803*10749957122^(9/16) 2584000077399378 a001 86267571272/23725150497407*10749957122^(7/12) 2584000077399378 a001 365435296162/17393796001*10749957122^(5/24) 2584000077399378 a001 53316291173/14662949395604*10749957122^(7/12) 2584000077399378 a001 20365011074/2139295485799*10749957122^(13/24) 2584000077399378 a001 32951280099/23725150497407*10749957122^(5/8) 2584000077399378 a001 10182505537/1730726404001*10749957122^(9/16) 2584000077399378 a001 1548008755920/6643838879*2537720636^(1/9) 2584000077399378 a001 139583862445/17393796001*10749957122^(1/4) 2584000077399378 a001 20365011074/5600748293801*10749957122^(7/12) 2584000077399378 a001 32951280099/17393796001*10749957122^(5/16) 2584000077399378 a001 10182505537/7331474697802*10749957122^(5/8) 2584000077399378 a001 2403763488/5374978561*4106118243^(9/23) 2584000077399378 a001 7778742049/17393796001*45537549124^(6/17) 2584000077399378 a001 4052739537881/28143753123*4106118243^(3/23) 2584000077399378 a001 7778742049/17393796001*14662949395604^(2/7) 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^18/Lucas(49) 2584000077399378 a001 7778742049/17393796001*192900153618^(1/3) 2584000077399378 a001 20365011074/17393796001*10749957122^(1/3) 2584000077399378 a001 43133785636/5374978561*4106118243^(6/23) 2584000077399378 a001 7778742049/73681302247*10749957122^(7/16) 2584000077399378 a001 7778742049/119218851371*10749957122^(11/24) 2584000077399378 a004 Fibonacci(50)*Lucas(48)/(1/2+sqrt(5)/2)^80 2584000077399378 a001 7778742049/45537549124*10749957122^(5/12) 2584000077399378 a001 1515744265389/10525900321*4106118243^(3/23) 2584000077399378 a001 7778742049/312119004989*10749957122^(1/2) 2584000077399378 a001 7778742049/817138163596*10749957122^(13/24) 2584000077399378 a001 7778742049/1322157322203*10749957122^(9/16) 2584000077399378 a001 3278735159921/22768774562*4106118243^(3/23) 2584000077399378 a001 7778742049/2139295485799*10749957122^(7/12) 2584000077399378 a001 6557470319842/17393796001*4106118243^(2/23) 2584000077399378 a004 Fibonacci(52)*Lucas(48)/(1/2+sqrt(5)/2)^82 2584000077399378 a004 Fibonacci(54)*Lucas(48)/(1/2+sqrt(5)/2)^84 2584000077399378 a004 Fibonacci(56)*Lucas(48)/(1/2+sqrt(5)/2)^86 2584000077399378 a004 Fibonacci(58)*Lucas(48)/(1/2+sqrt(5)/2)^88 2584000077399378 a004 Fibonacci(60)*Lucas(48)/(1/2+sqrt(5)/2)^90 2584000077399378 a004 Fibonacci(62)*Lucas(48)/(1/2+sqrt(5)/2)^92 2584000077399378 a004 Fibonacci(64)*Lucas(48)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(66)*Lucas(48)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(68)*Lucas(48)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(70)*Lucas(48)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(69)*Lucas(48)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(67)*Lucas(48)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(65)*Lucas(48)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(63)*Lucas(48)/(1/2+sqrt(5)/2)^93 2584000077399378 a004 Fibonacci(61)*Lucas(48)/(1/2+sqrt(5)/2)^91 2584000077399378 a004 Fibonacci(59)*Lucas(48)/(1/2+sqrt(5)/2)^89 2584000077399378 a004 Fibonacci(57)*Lucas(48)/(1/2+sqrt(5)/2)^87 2584000077399378 a004 Fibonacci(55)*Lucas(48)/(1/2+sqrt(5)/2)^85 2584000077399378 a001 7778742049/5600748293801*10749957122^(5/8) 2584000077399378 a004 Fibonacci(53)*Lucas(48)/(1/2+sqrt(5)/2)^83 2584000077399378 a001 12585437040/228811001*4106118243^(4/23) 2584000077399378 a001 7778742049/14662949395604*10749957122^(2/3) 2584000077399378 a004 Fibonacci(51)*Lucas(48)/(1/2+sqrt(5)/2)^81 2584000077399378 a001 32951280099/10749957122*4106118243^(7/23) 2584000077399378 a001 7778742049/23725150497407*10749957122^(11/16) 2584000077399378 a001 4807525989/4870846*1568397607^(1/22) 2584000077399378 a001 7778742049/17393796001*10749957122^(3/8) 2584000077399378 a001 4052739537881/73681302247*4106118243^(4/23) 2584000077399378 a001 3536736619241/64300051206*4106118243^(4/23) 2584000077399378 a001 6557470319842/119218851371*4106118243^(4/23) 2584000077399378 a001 12586269025/10749957122*4106118243^(8/23) 2584000077399378 a001 2504730781961/45537549124*4106118243^(4/23) 2584000077399378 a001 2504730781961/17393796001*4106118243^(3/23) 2584000077399378 a001 591286729879/28143753123*4106118243^(5/23) 2584000077399378 a004 Fibonacci(49)*Lucas(48)/(1/2+sqrt(5)/2)^79 2584000077399378 a001 4052739537881/6643838879*2537720636^(1/15) 2584000077399378 a001 1548008755920/73681302247*4106118243^(5/23) 2584000077399378 a001 4052739537881/192900153618*4106118243^(5/23) 2584000077399378 a001 225749145909/10745088481*4106118243^(5/23) 2584000077399378 a001 6557470319842/312119004989*4106118243^(5/23) 2584000077399378 a001 2504730781961/119218851371*4106118243^(5/23) 2584000077399378 a001 956722026041/45537549124*4106118243^(5/23) 2584000077399378 a001 956722026041/17393796001*4106118243^(4/23) 2584000077399378 a001 4807526976/6643838879*45537549124^(1/3) 2584000077399378 a001 2971215073/10749957122*817138163596^(1/3) 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^19/Lucas(48) 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^17/Lucas(47) 2584000077399378 a001 75283811239/9381251041*4106118243^(6/23) 2584000077399378 a001 75283811239/1368706081*1568397607^(2/11) 2584000077399378 a001 591286729879/73681302247*4106118243^(6/23) 2584000077399378 a001 86000486440/10716675201*4106118243^(6/23) 2584000077399378 a001 4052739537881/505019158607*4106118243^(6/23) 2584000077399378 a001 3536736619241/440719107401*4106118243^(6/23) 2584000077399378 a001 3278735159921/408569081798*4106118243^(6/23) 2584000077399378 a001 2504730781961/312119004989*4106118243^(6/23) 2584000077399378 a001 956722026041/119218851371*4106118243^(6/23) 2584000077399378 a001 1602508992/9381251041*4106118243^(10/23) 2584000077399378 a001 182717648081/22768774562*4106118243^(6/23) 2584000077399378 a001 365435296162/17393796001*4106118243^(5/23) 2584000077399378 a001 86267571272/28143753123*4106118243^(7/23) 2584000077399378 a001 32264490531/10525900321*4106118243^(7/23) 2584000077399378 a001 591286729879/192900153618*4106118243^(7/23) 2584000077399378 a001 1548008755920/505019158607*4106118243^(7/23) 2584000077399378 a001 1515744265389/494493258286*4106118243^(7/23) 2584000077399378 a001 2504730781961/817138163596*4106118243^(7/23) 2584000077399378 a001 956722026041/312119004989*4106118243^(7/23) 2584000077399378 a001 365435296162/119218851371*4106118243^(7/23) 2584000077399378 a001 139583862445/45537549124*4106118243^(7/23) 2584000077399378 a001 139583862445/17393796001*4106118243^(6/23) 2584000077399378 a001 10983760033/9381251041*4106118243^(8/23) 2584000077399378 a004 Fibonacci(47)*Lucas(49)/(1/2+sqrt(5)/2)^78 2584000077399378 a001 686789568/10525900321*4106118243^(11/23) 2584000077399378 a001 2971215073/28143753123*17393796001^(3/7) 2584000077399378 a001 2971215073/23725150497407*17393796001^(5/7) 2584000077399378 a001 86267571272/73681302247*4106118243^(8/23) 2584000077399378 a001 75283811239/64300051206*4106118243^(8/23) 2584000077399378 a001 2504730781961/2139295485799*4106118243^(8/23) 2584000077399378 a001 365435296162/312119004989*4106118243^(8/23) 2584000077399378 a001 12586269025/28143753123*4106118243^(9/23) 2584000077399378 a001 139583862445/119218851371*4106118243^(8/23) 2584000077399378 a001 2971215073/817138163596*17393796001^(4/7) 2584000077399378 a001 4807526976/119218851371*4106118243^(1/2) 2584000077399378 a001 53316291173/45537549124*4106118243^(8/23) 2584000077399378 a001 2971215073/28143753123*45537549124^(7/17) 2584000077399378 a001 12586269025/6643838879*45537549124^(5/17) 2584000077399378 a001 12586269025/6643838879*312119004989^(3/11) 2584000077399378 a001 2971215073/28143753123*14662949395604^(1/3) 2584000077399378 a001 12586269025/6643838879*14662949395604^(5/21) 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^21/Lucas(50) 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^15/Lucas(47) 2584000077399378 a001 12586269025/6643838879*192900153618^(5/18) 2584000077399378 a001 53316291173/17393796001*4106118243^(7/23) 2584000077399378 a001 12586269025/6643838879*28143753123^(3/10) 2584000077399378 a004 Fibonacci(47)*Lucas(51)/(1/2+sqrt(5)/2)^80 2584000077399378 a001 591286729879/6643838879*17393796001^(1/7) 2584000077399378 a001 20365011074/6643838879*17393796001^(2/7) 2584000077399378 a001 267084832/10716675201*4106118243^(12/23) 2584000077399378 a001 2971215073/14662949395604*45537549124^(2/3) 2584000077399378 a001 2971215073/9062201101803*45537549124^(11/17) 2584000077399378 a001 2971215073/2139295485799*45537549124^(10/17) 2584000077399378 a001 2971215073/505019158607*45537549124^(9/17) 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^23/Lucas(52) 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^13/Lucas(47) 2584000077399378 a001 2971215073/119218851371*45537549124^(8/17) 2584000077399378 a001 32951280099/6643838879*73681302247^(1/4) 2584000077399378 a001 225851433717/6643838879*45537549124^(3/17) 2584000077399378 a004 Fibonacci(47)*Lucas(53)/(1/2+sqrt(5)/2)^82 2584000077399378 a001 956722026041/6643838879*45537549124^(2/17) 2584000077399378 a001 53316291173/6643838879*45537549124^(4/17) 2584000077399378 a001 2971215073/192900153618*312119004989^(5/11) 2584000077399378 a001 86267571272/6643838879*312119004989^(1/5) 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^25/Lucas(54) 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^11/Lucas(47) 2584000077399378 a001 2971215073/192900153618*3461452808002^(5/12) 2584000077399378 a004 Fibonacci(47)*Lucas(55)/(1/2+sqrt(5)/2)^84 2584000077399378 a001 2971215073/2139295485799*312119004989^(6/11) 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^27/Lucas(56) 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^9/Lucas(47) 2584000077399378 a004 Fibonacci(47)*Lucas(57)/(1/2+sqrt(5)/2)^86 2584000077399378 a001 1548008755920/6643838879*312119004989^(1/11) 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^29/Lucas(58) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^7/Lucas(47) 2584000077399378 a004 Fibonacci(47)*Lucas(59)/(1/2+sqrt(5)/2)^88 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^31/Lucas(60) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^5/Lucas(47) 2584000077399378 a004 Fibonacci(47)*Lucas(61)/(1/2+sqrt(5)/2)^90 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^33/Lucas(62) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^3/Lucas(47) 2584000077399378 a004 Fibonacci(47)*Lucas(63)/(1/2+sqrt(5)/2)^92 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^35/Lucas(64) 2584000077399378 a004 Fibonacci(64)*(1/2+sqrt(5)/2)/Lucas(47) 2584000077399378 a004 Fibonacci(47)*Lucas(65)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^37/Lucas(66) 2584000077399378 a004 Fibonacci(66)/Lucas(47)/(1/2+sqrt(5)/2) 2584000077399378 a004 Fibonacci(47)*Lucas(67)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^39/Lucas(68) 2584000077399378 a004 Fibonacci(68)/Lucas(47)/(1/2+sqrt(5)/2)^3 2584000077399378 a004 Fibonacci(47)*Lucas(69)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^41/Lucas(70) 2584000077399378 a004 Fibonacci(70)/Lucas(47)/(1/2+sqrt(5)/2)^5 2584000077399378 a004 Fibonacci(47)*Lucas(71)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^43/Lucas(72) 2584000077399378 a004 Fibonacci(72)/Lucas(47)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^45/Lucas(74) 2584000077399378 a004 Fibonacci(74)/Lucas(47)/(1/2+sqrt(5)/2)^9 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^47/Lucas(76) 2584000077399378 a004 Fibonacci(76)/Lucas(47)/(1/2+sqrt(5)/2)^11 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^49/Lucas(78) 2584000077399378 a004 Fibonacci(78)/Lucas(47)/(1/2+sqrt(5)/2)^13 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^51/Lucas(80) 2584000077399378 a004 Fibonacci(80)/Lucas(47)/(1/2+sqrt(5)/2)^15 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^53/Lucas(82) 2584000077399378 a004 Fibonacci(82)/Lucas(47)/(1/2+sqrt(5)/2)^17 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^55/Lucas(84) 2584000077399378 a004 Fibonacci(84)/Lucas(47)/(1/2+sqrt(5)/2)^19 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^57/Lucas(86) 2584000077399378 a004 Fibonacci(86)/Lucas(47)/(1/2+sqrt(5)/2)^21 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^59/Lucas(88) 2584000077399378 a004 Fibonacci(88)/Lucas(47)/(1/2+sqrt(5)/2)^23 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^61/Lucas(90) 2584000077399378 a004 Fibonacci(90)/Lucas(47)/(1/2+sqrt(5)/2)^25 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^63/Lucas(92) 2584000077399378 a004 Fibonacci(92)/Lucas(47)/(1/2+sqrt(5)/2)^27 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^65/Lucas(94) 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^67/Lucas(96) 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^69/Lucas(98) 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^70/Lucas(99) 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^71/Lucas(100) 2584000077399378 a004 Fibonacci(47)*Lucas(1)/(1/2+sqrt(5)/2)^29 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^68/Lucas(97) 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^66/Lucas(95) 2584000077399378 a004 Fibonacci(96)/Lucas(47)/(1/2+sqrt(5)/2)^31 2584000077399378 a004 Fibonacci(100)/Lucas(47)/(1/2+sqrt(5)/2)^35 2584000077399378 a004 Fibonacci(98)/Lucas(47)/(1/2+sqrt(5)/2)^33 2584000077399378 a004 Fibonacci(99)/Lucas(47)/(1/2+sqrt(5)/2)^34 2584000077399378 a004 Fibonacci(97)/Lucas(47)/(1/2+sqrt(5)/2)^32 2584000077399378 a004 Fibonacci(95)/Lucas(47)/(1/2+sqrt(5)/2)^30 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^64/Lucas(93) 2584000077399378 a004 Fibonacci(93)/Lucas(47)/(1/2+sqrt(5)/2)^28 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^62/Lucas(91) 2584000077399378 a004 Fibonacci(91)/Lucas(47)/(1/2+sqrt(5)/2)^26 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^60/Lucas(89) 2584000077399378 a004 Fibonacci(89)/Lucas(47)/(1/2+sqrt(5)/2)^24 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^58/Lucas(87) 2584000077399378 a004 Fibonacci(87)/Lucas(47)/(1/2+sqrt(5)/2)^22 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^56/Lucas(85) 2584000077399378 a004 Fibonacci(85)/Lucas(47)/(1/2+sqrt(5)/2)^20 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^54/Lucas(83) 2584000077399378 a004 Fibonacci(83)/Lucas(47)/(1/2+sqrt(5)/2)^18 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^52/Lucas(81) 2584000077399378 a004 Fibonacci(81)/Lucas(47)/(1/2+sqrt(5)/2)^16 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^50/Lucas(79) 2584000077399378 a004 Fibonacci(79)/Lucas(47)/(1/2+sqrt(5)/2)^14 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^48/Lucas(77) 2584000077399378 a004 Fibonacci(77)/Lucas(47)/(1/2+sqrt(5)/2)^12 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^46/Lucas(75) 2584000077399378 a004 Fibonacci(75)/Lucas(47)/(1/2+sqrt(5)/2)^10 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^44/Lucas(73) 2584000077399378 a004 Fibonacci(73)/Lucas(47)/(1/2+sqrt(5)/2)^8 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^42/Lucas(71) 2584000077399378 a004 Fibonacci(71)/Lucas(47)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(47)*Lucas(70)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^40/Lucas(69) 2584000077399378 a004 Fibonacci(69)/Lucas(47)/(1/2+sqrt(5)/2)^4 2584000077399378 a004 Fibonacci(47)*Lucas(68)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^38/Lucas(67) 2584000077399378 a004 Fibonacci(67)/Lucas(47)/(1/2+sqrt(5)/2)^2 2584000077399378 a004 Fibonacci(47)*Lucas(66)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^36/Lucas(65) 2584000077399378 a004 Fibonacci(47)*Lucas(64)/(1/2+sqrt(5)/2)^93 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^34/Lucas(63) 2584000077399378 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^2/Lucas(47) 2584000077399378 a004 Fibonacci(47)*Lucas(62)/(1/2+sqrt(5)/2)^91 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^32/Lucas(61) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^4/Lucas(47) 2584000077399378 a001 2971215073/5600748293801*23725150497407^(1/2) 2584000077399378 a004 Fibonacci(47)*Lucas(60)/(1/2+sqrt(5)/2)^89 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^30/Lucas(59) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^6/Lucas(47) 2584000077399378 a001 225851433717/6643838879*192900153618^(1/6) 2584000077399378 a004 Fibonacci(47)*Lucas(58)/(1/2+sqrt(5)/2)^87 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^28/Lucas(57) 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^8/Lucas(47) 2584000077399378 a004 Fibonacci(47)*Lucas(56)/(1/2+sqrt(5)/2)^85 2584000077399378 a001 139583862445/6643838879*312119004989^(2/11) 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^26/Lucas(55) 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^10/Lucas(47) 2584000077399378 a001 2504730781961/6643838879*73681302247^(1/13) 2584000077399378 a001 2971215073/9062201101803*192900153618^(11/18) 2584000077399378 a004 Fibonacci(47)*Lucas(54)/(1/2+sqrt(5)/2)^83 2584000077399378 a001 365435296162/6643838879*73681302247^(2/13) 2584000077399378 a001 2971215073/119218851371*14662949395604^(8/21) 2584000077399378 a001 53316291173/6643838879*14662949395604^(4/21) 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^24/Lucas(53) 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^12/Lucas(47) 2584000077399378 a001 2971215073/119218851371*192900153618^(4/9) 2584000077399378 a001 2971215073/312119004989*73681302247^(1/2) 2584000077399378 a001 53316291173/6643838879*73681302247^(3/13) 2584000077399378 a001 2971215073/5600748293801*73681302247^(8/13) 2584000077399378 a001 1548008755920/6643838879*28143753123^(1/10) 2584000077399378 a001 2971215073/119218851371*73681302247^(6/13) 2584000077399378 a004 Fibonacci(47)*Lucas(52)/(1/2+sqrt(5)/2)^81 2584000077399378 a001 32951280099/73681302247*4106118243^(9/23) 2584000077399378 a001 139583862445/6643838879*28143753123^(1/5) 2584000077399378 a001 6557470319842/6643838879*10749957122^(1/24) 2584000077399378 a001 20365011074/6643838879*14662949395604^(2/9) 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^22/Lucas(51) 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^14/Lucas(47) 2584000077399378 a001 20365011074/6643838879*505019158607^(1/4) 2584000077399378 a001 43133785636/96450076809*4106118243^(9/23) 2584000077399378 a001 4052739537881/6643838879*10749957122^(1/16) 2584000077399378 a001 225851433717/505019158607*4106118243^(9/23) 2584000077399378 a001 182717648081/408569081798*4106118243^(9/23) 2584000077399378 a001 139583862445/312119004989*4106118243^(9/23) 2584000077399378 a001 2971215073/192900153618*28143753123^(1/2) 2584000077399378 a001 53316291173/119218851371*4106118243^(9/23) 2584000077399378 a001 2504730781961/6643838879*10749957122^(1/12) 2584000077399378 a001 2971215073/2139295485799*28143753123^(3/5) 2584000077399378 a001 2971215073/23725150497407*28143753123^(7/10) 2584000077399378 a001 956722026041/6643838879*10749957122^(1/8) 2584000077399378 a004 Fibonacci(47)*Lucas(50)/(1/2+sqrt(5)/2)^79 2584000077399378 a001 12586269025/6643838879*10749957122^(5/16) 2584000077399378 a001 365435296162/6643838879*10749957122^(1/6) 2584000077399378 a001 10182505537/22768774562*4106118243^(9/23) 2584000077399378 a001 225851433717/6643838879*10749957122^(3/16) 2584000077399378 a001 12586269025/73681302247*4106118243^(10/23) 2584000077399378 a001 20365011074/17393796001*4106118243^(8/23) 2584000077399378 a001 139583862445/6643838879*10749957122^(5/24) 2584000077399378 a001 102287808/10745088481*4106118243^(13/23) 2584000077399378 a001 53316291173/6643838879*10749957122^(1/4) 2584000077399378 a001 2971215073/28143753123*10749957122^(7/16) 2584000077399378 a001 6557470319842/6643838879*4106118243^(1/23) 2584000077399378 a001 10983760033/64300051206*4106118243^(10/23) 2584000077399378 a001 20365011074/6643838879*10749957122^(7/24) 2584000077399378 a001 86267571272/505019158607*4106118243^(10/23) 2584000077399378 a001 75283811239/440719107401*4106118243^(10/23) 2584000077399378 a001 139583862445/817138163596*4106118243^(10/23) 2584000077399378 a001 53316291173/312119004989*4106118243^(10/23) 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^20/Lucas(49) 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^16/Lucas(47) 2584000077399378 a001 7778742049/6643838879*23725150497407^(1/4) 2584000077399378 a001 2971215073/17393796001*23725150497407^(5/16) 2584000077399378 a001 2971215073/17393796001*505019158607^(5/14) 2584000077399378 a001 7778742049/6643838879*73681302247^(4/13) 2584000077399378 a001 2971215073/17393796001*73681302247^(5/13) 2584000077399378 a001 20365011074/119218851371*4106118243^(10/23) 2584000077399378 a001 2971215073/17393796001*28143753123^(2/5) 2584000077399378 a001 2971215073/119218851371*10749957122^(1/2) 2584000077399378 a001 12586269025/192900153618*4106118243^(11/23) 2584000077399378 a001 2971215073/45537549124*10749957122^(11/24) 2584000077399378 a001 2971215073/312119004989*10749957122^(13/24) 2584000077399378 a001 1602508992/440719107401*4106118243^(14/23) 2584000077399378 a001 2971215073/505019158607*10749957122^(9/16) 2584000077399378 a001 2971215073/817138163596*10749957122^(7/12) 2584000077399378 a001 2504730781961/6643838879*4106118243^(2/23) 2584000077399378 a001 2971215073/2139295485799*10749957122^(5/8) 2584000077399378 a001 32951280099/505019158607*4106118243^(11/23) 2584000077399378 a001 4052739537881/10749957122*1568397607^(1/11) 2584000077399378 a001 86267571272/1322157322203*4106118243^(11/23) 2584000077399378 a001 32264490531/494493258286*4106118243^(11/23) 2584000077399378 a001 139583862445/2139295485799*4106118243^(11/23) 2584000077399378 a001 1144206275/28374454999*4106118243^(1/2) 2584000077399378 a001 2971215073/5600748293801*10749957122^(2/3) 2584000077399378 a001 53316291173/817138163596*4106118243^(11/23) 2584000077399378 a001 2971215073/9062201101803*10749957122^(11/16) 2584000077399378 a001 2971215073/14662949395604*10749957122^(17/24) 2584000077399378 a001 7778742049/6643838879*10749957122^(1/3) 2584000077399378 a001 20365011074/312119004989*4106118243^(11/23) 2584000077399378 a001 32951280099/817138163596*4106118243^(1/2) 2584000077399378 a001 2971215073/17393796001*10749957122^(5/12) 2584000077399378 a001 7778742049/45537549124*4106118243^(10/23) 2584000077399378 a001 86267571272/2139295485799*4106118243^(1/2) 2584000077399378 a001 225851433717/5600748293801*4106118243^(1/2) 2584000077399378 a001 365435296162/9062201101803*4106118243^(1/2) 2584000077399378 a001 139583862445/3461452808002*4106118243^(1/2) 2584000077399378 a001 12586269025/505019158607*4106118243^(12/23) 2584000077399378 a001 53316291173/1322157322203*4106118243^(1/2) 2584000077399378 a001 7778742049/17393796001*4106118243^(9/23) 2584000077399378 a001 14930208/10749853441*4106118243^(15/23) 2584000077399378 a001 20365011074/505019158607*4106118243^(1/2) 2584000077399378 a001 956722026041/6643838879*4106118243^(3/23) 2584000077399378 a001 10983760033/440719107401*4106118243^(12/23) 2584000077399378 a001 43133785636/1730726404001*4106118243^(12/23) 2584000077399378 a001 75283811239/3020733700601*4106118243^(12/23) 2584000077399378 a001 182717648081/7331474697802*4106118243^(12/23) 2584000077399378 a001 139583862445/5600748293801*4106118243^(12/23) 2584000077399378 a001 53316291173/2139295485799*4106118243^(12/23) 2584000077399378 a001 567451585/7331474697802*2537720636^(4/5) 2584000077399378 a004 Fibonacci(47)*Lucas(48)/(1/2+sqrt(5)/2)^77 2584000077399378 a001 10182505537/408569081798*4106118243^(12/23) 2584000077399378 a001 7778742049/119218851371*4106118243^(11/23) 2584000077399378 a001 12586269025/1322157322203*4106118243^(13/23) 2584000077399378 a001 1602508992/3020733700601*4106118243^(16/23) 2584000077399378 a001 7778742049/192900153618*4106118243^(1/2) 2584000077399378 a001 365435296162/6643838879*4106118243^(4/23) 2584000077399378 a001 86267571272/4106118243*1568397607^(5/22) 2584000077399378 a001 32951280099/3461452808002*4106118243^(13/23) 2584000077399378 a001 86267571272/9062201101803*4106118243^(13/23) 2584000077399378 a001 225851433717/23725150497407*4106118243^(13/23) 2584000077399378 a001 139583862445/14662949395604*4106118243^(13/23) 2584000077399378 a001 53316291173/5600748293801*4106118243^(13/23) 2584000077399378 a001 20365011074/2139295485799*4106118243^(13/23) 2584000077399378 a001 7778742049/312119004989*4106118243^(12/23) 2584000077399378 a001 1134903170/9062201101803*2537720636^(7/9) 2584000077399378 a001 12586269025/3461452808002*4106118243^(14/23) 2584000077399378 a001 4807526976/23725150497407*4106118243^(17/23) 2584000077399378 a001 139583862445/6643838879*4106118243^(5/23) 2584000077399378 a001 3536736619241/9381251041*1568397607^(1/11) 2584000077399378 a001 10983760033/3020733700601*4106118243^(14/23) 2584000077399378 a001 86267571272/23725150497407*4106118243^(14/23) 2584000077399378 a001 53316291173/14662949395604*4106118243^(14/23) 2584000077399378 a001 20365011074/5600748293801*4106118243^(14/23) 2584000077399378 a001 7778742049/817138163596*4106118243^(13/23) 2584000077399378 a001 12586269025/9062201101803*4106118243^(15/23) 2584000077399378 a001 53316291173/6643838879*4106118243^(6/23) 2584000077399378 a001 32951280099/23725150497407*4106118243^(15/23) 2584000077399378 a001 10182505537/7331474697802*4106118243^(15/23) 2584000077399378 a001 7778742049/2139295485799*4106118243^(14/23) 2584000077399378 a001 12586269025/23725150497407*4106118243^(16/23) 2584000077399378 a001 6557470319842/17393796001*1568397607^(1/11) 2584000077399378 a001 6557470319842/6643838879*1568397607^(1/22) 2584000077399378 a001 20365011074/6643838879*4106118243^(7/23) 2584000077399378 a001 567451585/1730726404001*2537720636^(11/15) 2584000077399378 a001 7778742049/5600748293801*4106118243^(15/23) 2584000077399378 a001 53316291173/4106118243*1568397607^(1/4) 2584000077399378 a001 7778742049/14662949395604*4106118243^(16/23) 2584000077399378 a001 2971215073/6643838879*45537549124^(6/17) 2584000077399378 a001 2971215073/6643838879*14662949395604^(2/7) 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^18/Lucas(47) 2584000077399378 a001 2971215073/6643838879*192900153618^(1/3) 2584000077399378 a001 7778742049/6643838879*4106118243^(8/23) 2584000077399378 a001 774004377960/5374978561*1568397607^(3/22) 2584000077399378 a001 1836311903/4106118243*1568397607^(9/22) 2584000077399378 a001 2971215073/6643838879*10749957122^(3/8) 2584000077399378 a004 Fibonacci(48)*Lucas(46)/(1/2+sqrt(5)/2)^76 2584000077399378 a001 10983760033/1368706081*1568397607^(3/11) 2584000077399378 a001 2971215073/45537549124*4106118243^(11/23) 2584000077399378 a001 2971215073/17393796001*4106118243^(10/23) 2584000077399378 a001 567451585/408569081798*2537720636^(2/3) 2584000077399378 a001 2971215073/73681302247*4106118243^(1/2) 2584000077399378 a001 2971215073/119218851371*4106118243^(12/23) 2584000077399378 a001 4052739537881/28143753123*1568397607^(3/22) 2584000077399378 a001 1515744265389/10525900321*1568397607^(3/22) 2584000077399378 a001 3278735159921/22768774562*1568397607^(3/22) 2584000077399378 a001 2971215073/312119004989*4106118243^(13/23) 2584000077399378 a001 139583862445/1568397607*599074578^(1/6) 2584000077399378 a004 Fibonacci(50)*Lucas(46)/(1/2+sqrt(5)/2)^78 2584000077399378 a001 2504730781961/17393796001*1568397607^(3/22) 2584000077399378 a001 2971215073/817138163596*4106118243^(14/23) 2584000077399378 a004 Fibonacci(52)*Lucas(46)/(1/2+sqrt(5)/2)^80 2584000077399378 a004 Fibonacci(54)*Lucas(46)/(1/2+sqrt(5)/2)^82 2584000077399378 a004 Fibonacci(56)*Lucas(46)/(1/2+sqrt(5)/2)^84 2584000077399378 a004 Fibonacci(58)*Lucas(46)/(1/2+sqrt(5)/2)^86 2584000077399378 a004 Fibonacci(60)*Lucas(46)/(1/2+sqrt(5)/2)^88 2584000077399378 a004 Fibonacci(62)*Lucas(46)/(1/2+sqrt(5)/2)^90 2584000077399378 a004 Fibonacci(64)*Lucas(46)/(1/2+sqrt(5)/2)^92 2584000077399378 a004 Fibonacci(66)*Lucas(46)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(68)*Lucas(46)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(70)*Lucas(46)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(72)*Lucas(46)/(1/2+sqrt(5)/2)^100 2584000077399378 a001 2/1836311903*(1/2+1/2*5^(1/2))^64 2584000077399378 a004 Fibonacci(71)*Lucas(46)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(69)*Lucas(46)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(67)*Lucas(46)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(65)*Lucas(46)/(1/2+sqrt(5)/2)^93 2584000077399378 a004 Fibonacci(63)*Lucas(46)/(1/2+sqrt(5)/2)^91 2584000077399378 a004 Fibonacci(61)*Lucas(46)/(1/2+sqrt(5)/2)^89 2584000077399378 a004 Fibonacci(59)*Lucas(46)/(1/2+sqrt(5)/2)^87 2584000077399378 a004 Fibonacci(57)*Lucas(46)/(1/2+sqrt(5)/2)^85 2584000077399378 a004 Fibonacci(55)*Lucas(46)/(1/2+sqrt(5)/2)^83 2584000077399378 a004 Fibonacci(53)*Lucas(46)/(1/2+sqrt(5)/2)^81 2584000077399378 a001 2504730781961/6643838879*1568397607^(1/11) 2584000077399378 a004 Fibonacci(51)*Lucas(46)/(1/2+sqrt(5)/2)^79 2584000077399378 a001 2971215073/2139295485799*4106118243^(15/23) 2584000077399378 a001 567451585/96450076809*2537720636^(3/5) 2584000077399378 a004 Fibonacci(49)*Lucas(46)/(1/2+sqrt(5)/2)^77 2584000077399378 a001 2971215073/5600748293801*4106118243^(16/23) 2584000077399378 a001 591286729879/10749957122*1568397607^(2/11) 2584000077399378 a001 2971215073/14662949395604*4106118243^(17/23) 2584000077399378 a001 2971215073/6643838879*4106118243^(9/23) 2584000077399378 a001 12586269025/4106118243*1568397607^(7/22) 2584000077399378 a001 1134903170/73681302247*2537720636^(5/9) 2584000077399378 a001 12585437040/228811001*1568397607^(2/11) 2584000077399378 a001 567451585/22768774562*2537720636^(8/15) 2584000077399378 a001 4052739537881/4106118243*599074578^(1/21) 2584000077399378 a001 4052739537881/73681302247*1568397607^(2/11) 2584000077399378 a001 3536736619241/64300051206*1568397607^(2/11) 2584000077399378 a001 6557470319842/119218851371*1568397607^(2/11) 2584000077399378 a001 567451585/5374978561*2537720636^(7/15) 2584000077399378 a001 2504730781961/45537549124*1568397607^(2/11) 2584000077399378 a001 956722026041/17393796001*1568397607^(2/11) 2584000077399378 a001 956722026041/6643838879*1568397607^(3/22) 2584000077399378 a001 43133785636/299537289*228826127^(3/20) 2584000077399378 a001 1602508992/1368706081*1568397607^(4/11) 2584000077399378 a004 Fibonacci(47)*Lucas(46)/(1/2+sqrt(5)/2)^75 2584000077399378 a001 225851433717/10749957122*1568397607^(5/22) 2584000077399378 a001 591286729879/28143753123*1568397607^(5/22) 2584000077399378 a001 1548008755920/73681302247*1568397607^(5/22) 2584000077399378 a001 4052739537881/192900153618*1568397607^(5/22) 2584000077399378 a001 225749145909/10745088481*1568397607^(5/22) 2584000077399378 a001 6557470319842/312119004989*1568397607^(5/22) 2584000077399378 a001 2504730781961/119218851371*1568397607^(5/22) 2584000077399378 a001 956722026041/45537549124*1568397607^(5/22) 2584000077399378 a001 139583862445/10749957122*1568397607^(1/4) 2584000077399378 a001 1201881744/634430159*2537720636^(1/3) 2584000077399378 a001 365435296162/17393796001*1568397607^(5/22) 2584000077399378 a001 1836311903/2537720636*45537549124^(1/3) 2584000077399378 a001 1134903170/4106118243*817138163596^(1/3) 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^19/Lucas(46) 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^17/Lucas(45) 2584000077399378 a001 365435296162/6643838879*1568397607^(2/11) 2584000077399378 a001 365435296162/28143753123*1568397607^(1/4) 2584000077399378 a001 956722026041/73681302247*1568397607^(1/4) 2584000077399378 a001 2504730781961/192900153618*1568397607^(1/4) 2584000077399378 a001 10610209857723/817138163596*1568397607^(1/4) 2584000077399378 a001 4052739537881/312119004989*1568397607^(1/4) 2584000077399378 a001 1548008755920/119218851371*1568397607^(1/4) 2584000077399378 a001 591286729879/45537549124*1568397607^(1/4) 2584000077399378 a001 43133785636/5374978561*1568397607^(3/11) 2584000077399378 a001 7787980473/599786069*1568397607^(1/4) 2584000077399378 a001 1134903170/6643838879*2537720636^(4/9) 2584000077399378 a001 75283811239/9381251041*1568397607^(3/11) 2584000077399378 a001 591286729879/73681302247*1568397607^(3/11) 2584000077399378 a001 86000486440/10716675201*1568397607^(3/11) 2584000077399378 a001 4052739537881/505019158607*1568397607^(3/11) 2584000077399378 a001 3278735159921/408569081798*1568397607^(3/11) 2584000077399378 a001 2504730781961/312119004989*1568397607^(3/11) 2584000077399378 a001 956722026041/119218851371*1568397607^(3/11) 2584000077399378 a001 182717648081/22768774562*1568397607^(3/11) 2584000077399378 a001 139583862445/17393796001*1568397607^(3/11) 2584000077399378 a001 10182505537/1268860318*2537720636^(4/15) 2584000077399378 a001 139583862445/6643838879*1568397607^(5/22) 2584000077399378 a001 1836311903/10749957122*1568397607^(5/11) 2584000077399378 a001 32951280099/10749957122*1568397607^(7/22) 2584000077399378 a001 53316291173/2537720636*2537720636^(2/9) 2584000077399378 a001 4807525989/4870846*599074578^(1/21) 2584000077399378 a001 86267571272/1568397607*599074578^(4/21) 2584000077399378 a001 1135099622/33391061*2537720636^(1/5) 2584000077399378 a001 86267571272/6643838879*1568397607^(1/4) 2584000077399378 a001 86267571272/28143753123*1568397607^(7/22) 2584000077399378 a001 32264490531/10525900321*1568397607^(7/22) 2584000077399378 a001 591286729879/192900153618*1568397607^(7/22) 2584000077399378 a001 1548008755920/505019158607*1568397607^(7/22) 2584000077399378 a001 1515744265389/494493258286*1568397607^(7/22) 2584000077399378 a001 956722026041/312119004989*1568397607^(7/22) 2584000077399378 a001 365435296162/119218851371*1568397607^(7/22) 2584000077399378 a001 139583862445/45537549124*1568397607^(7/22) 2584000077399378 a004 Fibonacci(45)*Lucas(47)/(1/2+sqrt(5)/2)^74 2584000077399378 a001 53316291173/17393796001*1568397607^(7/22) 2584000077399378 a001 53316291173/6643838879*1568397607^(3/11) 2584000077399378 a001 182717648081/1268860318*2537720636^(2/15) 2584000077399378 a001 12586269025/10749957122*1568397607^(4/11) 2584000077399378 a001 591286729879/2537720636*2537720636^(1/9) 2584000077399378 a001 2504730781961/4106118243*599074578^(1/14) 2584000077399378 a001 1836311903/28143753123*1568397607^(1/2) 2584000077399378 a001 1134903780/1860499*2537720636^(1/15) 2584000077399378 a001 567451585/5374978561*17393796001^(3/7) 2584000077399378 a001 10983760033/9381251041*1568397607^(4/11) 2584000077399378 a001 567451585/5374978561*45537549124^(7/17) 2584000077399378 a001 1201881744/634430159*45537549124^(5/17) 2584000077399378 a001 1201881744/634430159*312119004989^(3/11) 2584000077399378 a001 1201881744/634430159*14662949395604^(5/21) 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^21/Lucas(48) 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^15/Lucas(45) 2584000077399378 a001 1201881744/634430159*192900153618^(5/18) 2584000077399378 a001 567451585/5374978561*192900153618^(7/18) 2584000077399378 a001 1201881744/634430159*28143753123^(3/10) 2584000077399378 a001 86267571272/73681302247*1568397607^(4/11) 2584000077399378 a001 75283811239/64300051206*1568397607^(4/11) 2584000077399378 a001 2504730781961/2139295485799*1568397607^(4/11) 2584000077399378 a001 365435296162/312119004989*1568397607^(4/11) 2584000077399378 a001 139583862445/119218851371*1568397607^(4/11) 2584000077399378 a001 53316291173/45537549124*1568397607^(4/11) 2584000077399378 a001 2403763488/5374978561*1568397607^(9/22) 2584000077399378 a001 1201881744/634430159*10749957122^(5/16) 2584000077399378 a001 567451585/5374978561*10749957122^(7/16) 2584000077399378 a001 20365011074/17393796001*1568397607^(4/11) 2584000077399378 a004 Fibonacci(45)*Lucas(49)/(1/2+sqrt(5)/2)^76 2584000077399378 a001 20365011074/6643838879*1568397607^(7/22) 2584000077399378 a001 1134903170/9062201101803*17393796001^(5/7) 2584000077399378 a001 1134903170/312119004989*17393796001^(4/7) 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^23/Lucas(50) 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^13/Lucas(45) 2584000077399378 a001 1144206275/230701876*73681302247^(1/4) 2584000077399378 a004 Fibonacci(45)*Lucas(51)/(1/2+sqrt(5)/2)^78 2584000077399378 a001 225851433717/2537720636*17393796001^(1/7) 2584000077399378 a001 567451585/7331474697802*45537549124^(12/17) 2584000077399378 a001 1134903170/5600748293801*45537549124^(2/3) 2584000077399378 a001 567451585/1730726404001*45537549124^(11/17) 2584000077399378 a001 567451585/96450076809*45537549124^(9/17) 2584000077399378 a001 567451585/408569081798*45537549124^(10/17) 2584000077399378 a001 1134903170/73681302247*312119004989^(5/11) 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^25/Lucas(52) 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^11/Lucas(45) 2584000077399378 a001 1134903170/73681302247*3461452808002^(5/12) 2584000077399378 a001 1135099622/33391061*45537549124^(3/17) 2584000077399378 a004 Fibonacci(45)*Lucas(53)/(1/2+sqrt(5)/2)^80 2584000077399378 a001 182717648081/1268860318*45537549124^(2/17) 2584000077399378 a001 1134903780/1860499*45537549124^(1/17) 2584000077399378 a001 1135099622/33391061*817138163596^(3/19) 2584000077399378 a001 1135099622/33391061*14662949395604^(1/7) 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^27/Lucas(54) 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^9/Lucas(45) 2584000077399378 a001 1135099622/33391061*192900153618^(1/6) 2584000077399378 a001 567451585/96450076809*192900153618^(1/2) 2584000077399378 a004 Fibonacci(45)*Lucas(55)/(1/2+sqrt(5)/2)^82 2584000077399378 a001 1134903170/9062201101803*312119004989^(7/11) 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^29/Lucas(56) 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^7/Lucas(45) 2584000077399378 a001 1134903170/505019158607*1322157322203^(1/2) 2584000077399378 a004 Fibonacci(45)*Lucas(57)/(1/2+sqrt(5)/2)^84 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^31/Lucas(58) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^5/Lucas(45) 2584000077399378 a001 1134903170/1322157322203*9062201101803^(1/2) 2584000077399378 a004 Fibonacci(45)*Lucas(59)/(1/2+sqrt(5)/2)^86 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^33/Lucas(60) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^3/Lucas(45) 2584000077399378 a004 Fibonacci(45)*Lucas(61)/(1/2+sqrt(5)/2)^88 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^35/Lucas(62) 2584000077399378 a004 Fibonacci(62)*(1/2+sqrt(5)/2)/Lucas(45) 2584000077399378 a004 Fibonacci(45)*Lucas(63)/(1/2+sqrt(5)/2)^90 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^37/Lucas(64) 2584000077399378 a004 Fibonacci(64)/Lucas(45)/(1/2+sqrt(5)/2) 2584000077399378 a004 Fibonacci(45)*Lucas(65)/(1/2+sqrt(5)/2)^92 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^39/Lucas(66) 2584000077399378 a004 Fibonacci(66)/Lucas(45)/(1/2+sqrt(5)/2)^3 2584000077399378 a004 Fibonacci(45)*Lucas(67)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^41/Lucas(68) 2584000077399378 a004 Fibonacci(68)/Lucas(45)/(1/2+sqrt(5)/2)^5 2584000077399378 a004 Fibonacci(45)*Lucas(69)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^43/Lucas(70) 2584000077399378 a004 Fibonacci(70)/Lucas(45)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(45)*Lucas(71)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^45/Lucas(72) 2584000077399378 a004 Fibonacci(72)/Lucas(45)/(1/2+sqrt(5)/2)^9 2584000077399378 a004 Fibonacci(45)*Lucas(73)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^47/Lucas(74) 2584000077399378 a004 Fibonacci(74)/Lucas(45)/(1/2+sqrt(5)/2)^11 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^49/Lucas(76) 2584000077399378 a004 Fibonacci(76)/Lucas(45)/(1/2+sqrt(5)/2)^13 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^51/Lucas(78) 2584000077399378 a004 Fibonacci(78)/Lucas(45)/(1/2+sqrt(5)/2)^15 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^53/Lucas(80) 2584000077399378 a004 Fibonacci(80)/Lucas(45)/(1/2+sqrt(5)/2)^17 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^55/Lucas(82) 2584000077399378 a004 Fibonacci(82)/Lucas(45)/(1/2+sqrt(5)/2)^19 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^57/Lucas(84) 2584000077399378 a004 Fibonacci(84)/Lucas(45)/(1/2+sqrt(5)/2)^21 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^59/Lucas(86) 2584000077399378 a004 Fibonacci(86)/Lucas(45)/(1/2+sqrt(5)/2)^23 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^61/Lucas(88) 2584000077399378 a004 Fibonacci(88)/Lucas(45)/(1/2+sqrt(5)/2)^25 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^63/Lucas(90) 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^65/Lucas(92) 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^67/Lucas(94) 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^69/Lucas(96) 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^71/Lucas(98) 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^70/Lucas(97) 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^72/Lucas(99) 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^73/Lucas(100) 2584000077399378 a004 Fibonacci(45)*Lucas(1)/(1/2+sqrt(5)/2)^27 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^68/Lucas(95) 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^66/Lucas(93) 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^64/Lucas(91) 2584000077399378 a004 Fibonacci(92)/Lucas(45)/(1/2+sqrt(5)/2)^29 2584000077399378 a004 Fibonacci(94)/Lucas(45)/(1/2+sqrt(5)/2)^31 2584000077399378 a004 Fibonacci(96)/Lucas(45)/(1/2+sqrt(5)/2)^33 2584000077399378 a004 Fibonacci(100)/Lucas(45)/(1/2+sqrt(5)/2)^37 2584000077399378 a004 Fibonacci(98)/Lucas(45)/(1/2+sqrt(5)/2)^35 2584000077399378 a004 Fibonacci(99)/Lucas(45)/(1/2+sqrt(5)/2)^36 2584000077399378 a004 Fibonacci(97)/Lucas(45)/(1/2+sqrt(5)/2)^34 2584000077399378 a004 Fibonacci(95)/Lucas(45)/(1/2+sqrt(5)/2)^32 2584000077399378 a004 Fibonacci(93)/Lucas(45)/(1/2+sqrt(5)/2)^30 2584000077399378 a004 Fibonacci(91)/Lucas(45)/(1/2+sqrt(5)/2)^28 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^62/Lucas(89) 2584000077399378 a004 Fibonacci(89)/Lucas(45)/(1/2+sqrt(5)/2)^26 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^60/Lucas(87) 2584000077399378 a004 Fibonacci(87)/Lucas(45)/(1/2+sqrt(5)/2)^24 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^58/Lucas(85) 2584000077399378 a004 Fibonacci(85)/Lucas(45)/(1/2+sqrt(5)/2)^22 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^56/Lucas(83) 2584000077399378 a004 Fibonacci(83)/Lucas(45)/(1/2+sqrt(5)/2)^20 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^54/Lucas(81) 2584000077399378 a004 Fibonacci(81)/Lucas(45)/(1/2+sqrt(5)/2)^18 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^52/Lucas(79) 2584000077399378 a004 Fibonacci(79)/Lucas(45)/(1/2+sqrt(5)/2)^16 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^50/Lucas(77) 2584000077399378 a004 Fibonacci(77)/Lucas(45)/(1/2+sqrt(5)/2)^14 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^48/Lucas(75) 2584000077399378 a004 Fibonacci(75)/Lucas(45)/(1/2+sqrt(5)/2)^12 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^46/Lucas(73) 2584000077399378 a004 Fibonacci(73)/Lucas(45)/(1/2+sqrt(5)/2)^10 2584000077399378 a004 Fibonacci(45)*Lucas(72)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^44/Lucas(71) 2584000077399378 a004 Fibonacci(71)/Lucas(45)/(1/2+sqrt(5)/2)^8 2584000077399378 a004 Fibonacci(45)*Lucas(70)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^42/Lucas(69) 2584000077399378 a004 Fibonacci(69)/Lucas(45)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(45)*Lucas(68)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^40/Lucas(67) 2584000077399378 a004 Fibonacci(67)/Lucas(45)/(1/2+sqrt(5)/2)^4 2584000077399378 a004 Fibonacci(45)*Lucas(66)/(1/2+sqrt(5)/2)^93 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^38/Lucas(65) 2584000077399378 a004 Fibonacci(65)/Lucas(45)/(1/2+sqrt(5)/2)^2 2584000077399378 a004 Fibonacci(45)*Lucas(64)/(1/2+sqrt(5)/2)^91 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^36/Lucas(63) 2584000077399378 a004 Fibonacci(45)*Lucas(62)/(1/2+sqrt(5)/2)^89 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^34/Lucas(61) 2584000077399378 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^2/Lucas(45) 2584000077399378 a004 Fibonacci(45)*Lucas(60)/(1/2+sqrt(5)/2)^87 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^32/Lucas(59) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^4/Lucas(45) 2584000077399378 a004 Fibonacci(45)*Lucas(58)/(1/2+sqrt(5)/2)^85 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^30/Lucas(57) 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^6/Lucas(45) 2584000077399378 a001 1134903170/2139295485799*505019158607^(4/7) 2584000077399378 a004 Fibonacci(45)*Lucas(56)/(1/2+sqrt(5)/2)^83 2584000077399378 a001 1134903170/312119004989*14662949395604^(4/9) 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^28/Lucas(55) 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^8/Lucas(45) 2584000077399378 a001 567451585/1730726404001*192900153618^(11/18) 2584000077399378 a004 Fibonacci(45)*Lucas(54)/(1/2+sqrt(5)/2)^81 2584000077399378 a001 139583862445/2537720636*73681302247^(2/13) 2584000077399378 a001 6557470319842/6643838879*599074578^(1/21) 2584000077399378 a001 53316291173/2537720636*312119004989^(2/11) 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^26/Lucas(53) 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^10/Lucas(45) 2584000077399378 a001 1134903170/312119004989*73681302247^(7/13) 2584000077399378 a001 1134903170/2139295485799*73681302247^(8/13) 2584000077399378 a001 591286729879/2537720636*28143753123^(1/10) 2584000077399378 a001 567451585/7331474697802*73681302247^(9/13) 2584000077399378 a001 1134903170/119218851371*73681302247^(1/2) 2584000077399378 a004 Fibonacci(45)*Lucas(52)/(1/2+sqrt(5)/2)^79 2584000077399378 a001 567451585/22768774562*45537549124^(8/17) 2584000077399378 a001 53316291173/2537720636*28143753123^(1/5) 2584000077399378 a001 2504730781961/2537720636*10749957122^(1/24) 2584000077399378 a001 10182505537/1268860318*45537549124^(4/17) 2584000077399378 a001 1134903170/73681302247*28143753123^(1/2) 2584000077399378 a001 10182505537/1268860318*817138163596^(4/19) 2584000077399378 a001 10182505537/1268860318*14662949395604^(4/21) 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^24/Lucas(51) 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^12/Lucas(45) 2584000077399378 a001 10182505537/1268860318*192900153618^(2/9) 2584000077399378 a001 567451585/22768774562*192900153618^(4/9) 2584000077399378 a001 10182505537/1268860318*73681302247^(3/13) 2584000077399378 a001 1134903780/1860499*10749957122^(1/16) 2584000077399378 a001 567451585/22768774562*73681302247^(6/13) 2584000077399378 a001 956722026041/2537720636*10749957122^(1/12) 2584000077399378 a001 567451585/408569081798*28143753123^(3/5) 2584000077399378 a001 1134903170/9062201101803*28143753123^(7/10) 2584000077399378 a001 182717648081/1268860318*10749957122^(1/8) 2584000077399378 a004 Fibonacci(45)*Lucas(50)/(1/2+sqrt(5)/2)^77 2584000077399378 a001 139583862445/2537720636*10749957122^(1/6) 2584000077399378 a001 1135099622/33391061*10749957122^(3/16) 2584000077399378 a001 53316291173/2537720636*10749957122^(5/24) 2584000077399378 a001 7778742049/2537720636*17393796001^(2/7) 2584000077399378 a001 2504730781961/2537720636*4106118243^(1/23) 2584000077399378 a001 10182505537/1268860318*10749957122^(1/4) 2584000077399378 a001 1134903170/17393796001*312119004989^(2/5) 2584000077399378 a001 7778742049/2537720636*14662949395604^(2/9) 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^22/Lucas(49) 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^14/Lucas(45) 2584000077399378 a001 1134903170/119218851371*10749957122^(13/24) 2584000077399378 a001 567451585/22768774562*10749957122^(1/2) 2584000077399378 a001 567451585/96450076809*10749957122^(9/16) 2584000077399378 a001 1134903170/312119004989*10749957122^(7/12) 2584000077399378 a001 956722026041/2537720636*4106118243^(2/23) 2584000077399378 a001 567451585/408569081798*10749957122^(5/8) 2584000077399378 a001 1134903170/2139295485799*10749957122^(2/3) 2584000077399378 a001 7778742049/2537720636*10749957122^(7/24) 2584000077399378 a001 567451585/1730726404001*10749957122^(11/16) 2584000077399378 a001 1134903170/5600748293801*10749957122^(17/24) 2584000077399378 a001 567451585/7331474697802*10749957122^(3/4) 2584000077399378 a001 1836311903/73681302247*1568397607^(6/11) 2584000077399378 a001 1134903170/17393796001*10749957122^(11/24) 2584000077399378 a001 182717648081/1268860318*4106118243^(3/23) 2584000077399378 a001 12586269025/28143753123*1568397607^(9/22) 2584000077399378 a004 Fibonacci(45)*Lucas(48)/(1/2+sqrt(5)/2)^75 2584000077399378 a001 139583862445/2537720636*4106118243^(4/23) 2584000077399378 a001 32951280099/73681302247*1568397607^(9/22) 2584000077399378 a001 43133785636/96450076809*1568397607^(9/22) 2584000077399378 a001 225851433717/505019158607*1568397607^(9/22) 2584000077399378 a001 591286729879/1322157322203*1568397607^(9/22) 2584000077399378 a001 139583862445/312119004989*1568397607^(9/22) 2584000077399378 a001 53316291173/119218851371*1568397607^(9/22) 2584000077399378 a001 10182505537/22768774562*1568397607^(9/22) 2584000077399378 a001 53316291173/2537720636*4106118243^(5/23) 2584000077399378 a001 10182505537/1268860318*4106118243^(6/23) 2584000077399378 a001 7778742049/17393796001*1568397607^(9/22) 2584000077399378 a001 2504730781961/2537720636*1568397607^(1/22) 2584000077399378 a001 7778742049/6643838879*1568397607^(4/11) 2584000077399378 a001 1602508992/9381251041*1568397607^(5/11) 2584000077399378 a001 7778742049/2537720636*4106118243^(7/23) 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^20/Lucas(47) 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^16/Lucas(45) 2584000077399378 a001 1134903170/6643838879*23725150497407^(5/16) 2584000077399378 a001 1134903170/6643838879*505019158607^(5/14) 2584000077399378 a001 2971215073/2537720636*73681302247^(4/13) 2584000077399378 a001 1134903170/6643838879*73681302247^(5/13) 2584000077399378 a001 1134903170/6643838879*28143753123^(2/5) 2584000077399378 a001 2971215073/2537720636*10749957122^(1/3) 2584000077399378 a001 1836311903/192900153618*1568397607^(13/22) 2584000077399378 a001 1134903170/6643838879*10749957122^(5/12) 2584000077399378 a001 12586269025/73681302247*1568397607^(5/11) 2584000077399378 a001 1134903170/28143753123*4106118243^(1/2) 2584000077399378 a001 10983760033/64300051206*1568397607^(5/11) 2584000077399378 a001 86267571272/505019158607*1568397607^(5/11) 2584000077399378 a001 75283811239/440719107401*1568397607^(5/11) 2584000077399378 a001 2504730781961/14662949395604*1568397607^(5/11) 2584000077399378 a001 139583862445/817138163596*1568397607^(5/11) 2584000077399378 a001 53316291173/312119004989*1568397607^(5/11) 2584000077399378 a001 20365011074/119218851371*1568397607^(5/11) 2584000077399378 a001 567451585/22768774562*4106118243^(12/23) 2584000077399378 a001 1134903170/17393796001*4106118243^(11/23) 2584000077399378 a001 7778742049/45537549124*1568397607^(5/11) 2584000077399378 a001 1134903170/119218851371*4106118243^(13/23) 2584000077399378 a001 3278735159921/5374978561*599074578^(1/14) 2584000077399378 a001 53316291173/1568397607*599074578^(3/14) 2584000077399378 a001 1134903170/312119004989*4106118243^(14/23) 2584000077399378 a001 956722026041/2537720636*1568397607^(1/11) 2584000077399378 a001 567451585/408569081798*4106118243^(15/23) 2584000077399378 a001 686789568/10525900321*1568397607^(1/2) 2584000077399378 a001 1134903170/2139295485799*4106118243^(16/23) 2584000077399378 a001 2971215073/2537720636*4106118243^(8/23) 2584000077399378 a001 1134903170/5600748293801*4106118243^(17/23) 2584000077399378 a001 1836311903/505019158607*1568397607^(7/11) 2584000077399378 a001 567451585/7331474697802*4106118243^(18/23) 2584000077399378 a001 12586269025/192900153618*1568397607^(1/2) 2584000077399378 a001 10610209857723/17393796001*599074578^(1/14) 2584000077399378 a001 32951280099/505019158607*1568397607^(1/2) 2584000077399378 a001 86267571272/1322157322203*1568397607^(1/2) 2584000077399378 a001 32264490531/494493258286*1568397607^(1/2) 2584000077399378 a001 1548008755920/23725150497407*1568397607^(1/2) 2584000077399378 a001 139583862445/2139295485799*1568397607^(1/2) 2584000077399378 a001 53316291173/817138163596*1568397607^(1/2) 2584000077399378 a001 1134903170/6643838879*4106118243^(10/23) 2584000077399378 a001 20365011074/312119004989*1568397607^(1/2) 2584000077399378 a001 516002918640/1368706081*599074578^(2/21) 2584000077399378 a001 7778742049/119218851371*1568397607^(1/2) 2584000077399378 a001 182717648081/1268860318*1568397607^(3/22) 2584000077399378 a001 2971215073/17393796001*1568397607^(5/11) 2584000077399378 a001 2971215073/6643838879*1568397607^(9/22) 2584000077399378 a001 267084832/10716675201*1568397607^(6/11) 2584000077399378 a004 Fibonacci(45)*Lucas(46)/(1/2+sqrt(5)/2)^73 2584000077399378 a001 1836311903/1322157322203*1568397607^(15/22) 2584000077399378 a001 12586269025/505019158607*1568397607^(6/11) 2584000077399378 a001 10983760033/440719107401*1568397607^(6/11) 2584000077399378 a001 4052739537881/6643838879*599074578^(1/14) 2584000077399378 a001 43133785636/1730726404001*1568397607^(6/11) 2584000077399378 a001 75283811239/3020733700601*1568397607^(6/11) 2584000077399378 a001 182717648081/7331474697802*1568397607^(6/11) 2584000077399378 a001 139583862445/5600748293801*1568397607^(6/11) 2584000077399378 a001 53316291173/2139295485799*1568397607^(6/11) 2584000077399378 a001 10182505537/408569081798*1568397607^(6/11) 2584000077399378 a001 7778742049/312119004989*1568397607^(6/11) 2584000077399378 a001 2971215073/45537549124*1568397607^(1/2) 2584000077399378 a001 139583862445/2537720636*1568397607^(2/11) 2584000077399378 a001 102287808/10745088481*1568397607^(13/22) 2584000077399378 a001 1836311903/3461452808002*1568397607^(8/11) 2584000077399378 a001 12586269025/1322157322203*1568397607^(13/22) 2584000077399378 a001 32951280099/3461452808002*1568397607^(13/22) 2584000077399378 a001 86267571272/9062201101803*1568397607^(13/22) 2584000077399378 a001 225851433717/23725150497407*1568397607^(13/22) 2584000077399378 a001 139583862445/14662949395604*1568397607^(13/22) 2584000077399378 a001 53316291173/5600748293801*1568397607^(13/22) 2584000077399378 a001 20365011074/2139295485799*1568397607^(13/22) 2584000077399378 a001 7778742049/817138163596*1568397607^(13/22) 2584000077399378 a001 2971215073/119218851371*1568397607^(6/11) 2584000077399378 a001 1836311903/5600748293801*1568397607^(3/4) 2584000077399378 a001 53316291173/2537720636*1568397607^(5/22) 2584000077399378 a001 567451585/1268860318*2537720636^(2/5) 2584000077399378 a001 1602508992/440719107401*1568397607^(7/11) 2584000077399378 a001 1836311903/9062201101803*1568397607^(17/22) 2584000077399378 a001 32951280099/1568397607*599074578^(5/21) 2584000077399378 a001 4052739537881/10749957122*599074578^(2/21) 2584000077399378 a001 32951280099/2537720636*1568397607^(1/4) 2584000077399378 a001 12586269025/3461452808002*1568397607^(7/11) 2584000077399378 a001 10983760033/3020733700601*1568397607^(7/11) 2584000077399378 a001 86267571272/23725150497407*1568397607^(7/11) 2584000077399378 a001 53316291173/14662949395604*1568397607^(7/11) 2584000077399378 a001 20365011074/5600748293801*1568397607^(7/11) 2584000077399378 a001 7778742049/2139295485799*1568397607^(7/11) 2584000077399378 a001 2971215073/312119004989*1568397607^(13/22) 2584000077399378 a001 3536736619241/9381251041*599074578^(2/21) 2584000077399378 a001 10182505537/1268860318*1568397607^(3/11) 2584000077399378 a001 14930208/10749853441*1568397607^(15/22) 2584000077399378 a001 6557470319842/17393796001*599074578^(2/21) 2584000077399378 a001 1836311903/23725150497407*1568397607^(9/11) 2584000077399378 a001 12586269025/9062201101803*1568397607^(15/22) 2584000077399378 a001 32951280099/23725150497407*1568397607^(15/22) 2584000077399378 a001 10182505537/7331474697802*1568397607^(15/22) 2584000077399378 a001 7778742049/5600748293801*1568397607^(15/22) 2584000077399378 a001 2971215073/817138163596*1568397607^(7/11) 2584000077399378 a001 1602508992/3020733700601*1568397607^(8/11) 2584000077399378 a001 7778742049/2537720636*1568397607^(7/22) 2584000077399378 a001 2504730781961/2537720636*599074578^(1/21) 2584000077399378 a001 2504730781961/6643838879*599074578^(2/21) 2584000077399378 a001 12586269025/23725150497407*1568397607^(8/11) 2584000077399378 a001 1201881744/3665737348901*1568397607^(3/4) 2584000077399378 a001 7778742049/14662949395604*1568397607^(8/11) 2584000077399378 a001 2971215073/2139295485799*1568397607^(15/22) 2584000077399378 a001 4807526976/23725150497407*1568397607^(17/22) 2584000077399378 a001 7778742049/23725150497407*1568397607^(3/4) 2584000077399378 a001 567451585/1268860318*45537549124^(6/17) 2584000077399378 a001 567451585/1268860318*14662949395604^(2/7) 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^18/Lucas(45) 2584000077399378 a001 567451585/1268860318*192900153618^(1/3) 2584000077399378 a001 567451585/1268860318*10749957122^(3/8) 2584000077399378 a001 2971215073/5600748293801*1568397607^(8/11) 2584000077399378 a001 2971215073/2537720636*1568397607^(4/11) 2584000077399378 a001 2971215073/9062201101803*1568397607^(3/4) 2584000077399378 a001 567451585/1268860318*4106118243^(9/23) 2584000077399378 a001 2971215073/14662949395604*1568397607^(17/22) 2584000077399378 a001 591286729879/4106118243*599074578^(1/7) 2584000077399378 a004 Fibonacci(46)*Lucas(44)/(1/2+sqrt(5)/2)^72 2584000077399378 a001 1134903780/1860499*599074578^(1/14) 2584000077399378 a001 1134903170/17393796001*1568397607^(1/2) 2584000077399378 a001 1134903170/6643838879*1568397607^(5/11) 2584000077399378 a001 567451585/22768774562*1568397607^(6/11) 2584000077399378 a001 701408733/1568397607*599074578^(3/7) 2584000077399378 a001 12586269025/1568397607*599074578^(2/7) 2584000077399378 a001 774004377960/5374978561*599074578^(1/7) 2584000077399378 a001 1134903170/119218851371*1568397607^(13/22) 2584000077399378 a001 4052739537881/28143753123*599074578^(1/7) 2584000077399378 a001 1515744265389/10525900321*599074578^(1/7) 2584000077399378 a004 Fibonacci(48)*Lucas(44)/(1/2+sqrt(5)/2)^74 2584000077399378 a001 3278735159921/22768774562*599074578^(1/7) 2584000077399378 a001 2504730781961/17393796001*599074578^(1/7) 2584000077399378 a001 365435296162/4106118243*599074578^(1/6) 2584000077399378 a004 Fibonacci(50)*Lucas(44)/(1/2+sqrt(5)/2)^76 2584000077399378 a004 Fibonacci(52)*Lucas(44)/(1/2+sqrt(5)/2)^78 2584000077399378 a004 Fibonacci(54)*Lucas(44)/(1/2+sqrt(5)/2)^80 2584000077399378 a004 Fibonacci(56)*Lucas(44)/(1/2+sqrt(5)/2)^82 2584000077399378 a004 Fibonacci(58)*Lucas(44)/(1/2+sqrt(5)/2)^84 2584000077399378 a004 Fibonacci(60)*Lucas(44)/(1/2+sqrt(5)/2)^86 2584000077399378 a004 Fibonacci(62)*Lucas(44)/(1/2+sqrt(5)/2)^88 2584000077399378 a004 Fibonacci(64)*Lucas(44)/(1/2+sqrt(5)/2)^90 2584000077399378 a004 Fibonacci(66)*Lucas(44)/(1/2+sqrt(5)/2)^92 2584000077399378 a004 Fibonacci(68)*Lucas(44)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(70)*Lucas(44)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(72)*Lucas(44)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(74)*Lucas(44)/(1/2+sqrt(5)/2)^100 2584000077399378 a001 2/701408733*(1/2+1/2*5^(1/2))^62 2584000077399378 a004 Fibonacci(73)*Lucas(44)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(71)*Lucas(44)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(69)*Lucas(44)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(67)*Lucas(44)/(1/2+sqrt(5)/2)^93 2584000077399378 a004 Fibonacci(65)*Lucas(44)/(1/2+sqrt(5)/2)^91 2584000077399378 a004 Fibonacci(63)*Lucas(44)/(1/2+sqrt(5)/2)^89 2584000077399378 a004 Fibonacci(61)*Lucas(44)/(1/2+sqrt(5)/2)^87 2584000077399378 a004 Fibonacci(59)*Lucas(44)/(1/2+sqrt(5)/2)^85 2584000077399378 a004 Fibonacci(57)*Lucas(44)/(1/2+sqrt(5)/2)^83 2584000077399378 a004 Fibonacci(55)*Lucas(44)/(1/2+sqrt(5)/2)^81 2584000077399378 a004 Fibonacci(53)*Lucas(44)/(1/2+sqrt(5)/2)^79 2584000077399378 a004 Fibonacci(51)*Lucas(44)/(1/2+sqrt(5)/2)^77 2584000077399378 a004 Fibonacci(49)*Lucas(44)/(1/2+sqrt(5)/2)^75 2584000077399378 a001 1134903170/312119004989*1568397607^(7/11) 2584000077399378 a001 956722026041/2537720636*599074578^(2/21) 2584000077399378 a001 956722026041/6643838879*599074578^(1/7) 2584000077399378 a004 Fibonacci(47)*Lucas(44)/(1/2+sqrt(5)/2)^73 2584000077399378 a001 567451585/408569081798*1568397607^(15/22) 2584000077399378 a001 1134903170/2139295485799*1568397607^(8/11) 2584000077399378 a001 956722026041/10749957122*599074578^(1/6) 2584000077399378 a001 567451585/1730726404001*1568397607^(3/4) 2584000077399378 a001 2504730781961/28143753123*599074578^(1/6) 2584000077399378 a001 6557470319842/73681302247*599074578^(1/6) 2584000077399378 a001 10610209857723/119218851371*599074578^(1/6) 2584000077399378 a001 4052739537881/45537549124*599074578^(1/6) 2584000077399378 a001 1548008755920/17393796001*599074578^(1/6) 2584000077399378 a001 1134903170/5600748293801*1568397607^(17/22) 2584000077399378 a001 75283811239/1368706081*599074578^(4/21) 2584000077399378 a001 567451585/1268860318*1568397607^(9/22) 2584000077399378 a001 591286729879/6643838879*599074578^(1/6) 2584000077399378 a001 567451585/7331474697802*1568397607^(9/11) 2584000077399378 a001 686789568/224056801*599074578^(1/3) 2584000077399378 a001 591286729879/10749957122*599074578^(4/21) 2584000077399378 a001 12585437040/228811001*599074578^(4/21) 2584000077399378 a001 4052739537881/73681302247*599074578^(4/21) 2584000077399378 a001 3536736619241/64300051206*599074578^(4/21) 2584000077399378 a001 6557470319842/119218851371*599074578^(4/21) 2584000077399378 a001 2504730781961/45537549124*599074578^(4/21) 2584000077399378 a001 956722026041/17393796001*599074578^(4/21) 2584000077399378 a001 139583862445/4106118243*599074578^(3/14) 2584000077399378 a001 1548008755920/1568397607*228826127^(1/20) 2584000077399378 a001 182717648081/1268860318*599074578^(1/7) 2584000077399378 a001 365435296162/6643838879*599074578^(4/21) 2584000077399378 a004 Fibonacci(45)*Lucas(44)/(1/2+sqrt(5)/2)^71 2584000077399378 a001 182717648081/5374978561*599074578^(3/14) 2584000077399378 a001 1836311903/1568397607*599074578^(8/21) 2584000077399378 a001 956722026041/28143753123*599074578^(3/14) 2584000077399378 a001 2504730781961/73681302247*599074578^(3/14) 2584000077399378 a001 3278735159921/96450076809*599074578^(3/14) 2584000077399378 a001 10610209857723/312119004989*599074578^(3/14) 2584000077399378 a001 4052739537881/119218851371*599074578^(3/14) 2584000077399378 a001 387002188980/11384387281*599074578^(3/14) 2584000077399378 a001 591286729879/17393796001*599074578^(3/14) 2584000077399378 a001 86267571272/4106118243*599074578^(5/21) 2584000077399378 a001 2971215073/1568397607*599074578^(5/14) 2584000077399378 a001 225851433717/2537720636*599074578^(1/6) 2584000077399378 a001 225851433717/6643838879*599074578^(3/14) 2584000077399378 a001 225851433717/10749957122*599074578^(5/21) 2584000077399378 a001 701408733/969323029*45537549124^(1/3) 2584000077399378 a001 433494437/1568397607*817138163596^(1/3) 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^19/Lucas(44) 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^17/Lucas(43) 2584000077399378 a001 591286729879/28143753123*599074578^(5/21) 2584000077399378 a001 1548008755920/73681302247*599074578^(5/21) 2584000077399378 a001 4052739537881/192900153618*599074578^(5/21) 2584000077399378 a001 225749145909/10745088481*599074578^(5/21) 2584000077399378 a001 6557470319842/312119004989*599074578^(5/21) 2584000077399378 a001 2504730781961/119218851371*599074578^(5/21) 2584000077399378 a001 956722026041/45537549124*599074578^(5/21) 2584000077399378 a001 365435296162/17393796001*599074578^(5/21) 2584000077399378 a001 139583862445/2537720636*599074578^(4/21) 2584000077399378 a001 139583862445/6643838879*599074578^(5/21) 2584000077399378 a001 10983760033/1368706081*599074578^(2/7) 2584000077399378 a001 1135099622/33391061*599074578^(3/14) 2584000077399378 a001 43133785636/5374978561*599074578^(2/7) 2584000077399378 a001 75283811239/9381251041*599074578^(2/7) 2584000077399378 a001 591286729879/73681302247*599074578^(2/7) 2584000077399378 a001 86000486440/10716675201*599074578^(2/7) 2584000077399378 a001 4052739537881/505019158607*599074578^(2/7) 2584000077399378 a001 3278735159921/408569081798*599074578^(2/7) 2584000077399378 a001 2504730781961/312119004989*599074578^(2/7) 2584000077399378 a001 956722026041/119218851371*599074578^(2/7) 2584000077399378 a001 182717648081/22768774562*599074578^(2/7) 2584000077399378 a001 139583862445/17393796001*599074578^(2/7) 2584000077399378 a001 53316291173/2537720636*599074578^(5/21) 2584000077399378 a001 53316291173/6643838879*599074578^(2/7) 2584000077399378 a001 233802911/1368706081*599074578^(10/21) 2584000077399378 a001 12586269025/4106118243*599074578^(1/3) 2584000077399378 a001 4052739537881/4106118243*228826127^(1/20) 2584000077399378 a004 Fibonacci(43)*Lucas(45)/(1/2+sqrt(5)/2)^70 2584000077399378 a001 32951280099/10749957122*599074578^(1/3) 2584000077399378 a001 86267571272/28143753123*599074578^(1/3) 2584000077399378 a001 32264490531/10525900321*599074578^(1/3) 2584000077399378 a001 591286729879/192900153618*599074578^(1/3) 2584000077399378 a001 1548008755920/505019158607*599074578^(1/3) 2584000077399378 a001 1515744265389/494493258286*599074578^(1/3) 2584000077399378 a001 2504730781961/817138163596*599074578^(1/3) 2584000077399378 a001 956722026041/312119004989*599074578^(1/3) 2584000077399378 a001 365435296162/119218851371*599074578^(1/3) 2584000077399378 a001 139583862445/45537549124*599074578^(1/3) 2584000077399378 a001 433494437/23725150497407*2537720636^(13/15) 2584000077399378 a001 53316291173/17393796001*599074578^(1/3) 2584000077399378 a001 433494437/4106118243*2537720636^(7/15) 2584000077399378 a001 7778742049/4106118243*599074578^(5/14) 2584000077399378 a001 433494437/5600748293801*2537720636^(4/5) 2584000077399378 a001 433494437/3461452808002*2537720636^(7/9) 2584000077399378 a001 4807525989/4870846*228826127^(1/20) 2584000077399378 a001 433494437/1322157322203*2537720636^(11/15) 2584000077399378 a001 10182505537/1268860318*599074578^(2/7) 2584000077399378 a001 20365011074/6643838879*599074578^(1/3) 2584000077399378 a001 1836311903/969323029*2537720636^(1/3) 2584000077399378 a001 433494437/312119004989*2537720636^(2/3) 2584000077399378 a001 433494437/73681302247*2537720636^(3/5) 2584000077399378 a001 433494437/28143753123*2537720636^(5/9) 2584000077399378 a001 6557470319842/6643838879*228826127^(1/20) 2584000077399378 a001 433494437/17393796001*2537720636^(8/15) 2584000077399378 a001 10182505537/5374978561*599074578^(5/14) 2584000077399378 a001 1602508992/1368706081*599074578^(8/21) 2584000077399378 a001 53316291173/28143753123*599074578^(5/14) 2584000077399378 a001 139583862445/73681302247*599074578^(5/14) 2584000077399378 a001 182717648081/96450076809*599074578^(5/14) 2584000077399378 a001 956722026041/505019158607*599074578^(5/14) 2584000077399378 a001 10610209857723/5600748293801*599074578^(5/14) 2584000077399378 a001 591286729879/312119004989*599074578^(5/14) 2584000077399378 a001 225851433717/119218851371*599074578^(5/14) 2584000077399378 a001 21566892818/11384387281*599074578^(5/14) 2584000077399378 a001 32951280099/17393796001*599074578^(5/14) 2584000077399378 a001 433494437/4106118243*17393796001^(3/7) 2584000077399378 a001 433494437/4106118243*45537549124^(7/17) 2584000077399378 a001 1836311903/969323029*45537549124^(5/17) 2584000077399378 a001 1836311903/969323029*312119004989^(3/11) 2584000077399378 a001 1836311903/969323029*14662949395604^(5/21) 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^21/Lucas(46) 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^15/Lucas(43) 2584000077399378 a001 1836311903/969323029*192900153618^(5/18) 2584000077399378 a001 433494437/4106118243*192900153618^(7/18) 2584000077399378 a001 1836311903/969323029*28143753123^(3/10) 2584000077399378 a001 1836311903/969323029*10749957122^(5/16) 2584000077399378 a001 433494437/4106118243*10749957122^(7/16) 2584000077399378 a001 701408733/6643838879*599074578^(1/2) 2584000077399378 a001 12586269025/6643838879*599074578^(5/14) 2584000077399378 a001 7778742049/969323029*2537720636^(4/15) 2584000077399378 a001 20365011074/969323029*2537720636^(2/9) 2584000077399378 a001 10983760033/199691526*228826127^(1/5) 2584000077399378 a004 Fibonacci(43)*Lucas(47)/(1/2+sqrt(5)/2)^72 2584000077399378 a001 139583862445/969323029*2537720636^(2/15) 2584000077399378 a001 701408733/10749957122*599074578^(11/21) 2584000077399378 a001 225851433717/969323029*2537720636^(1/9) 2584000077399378 a001 12586269025/10749957122*599074578^(8/21) 2584000077399378 a001 591286729879/969323029*2537720636^(1/15) 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^23/Lucas(48) 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^13/Lucas(43) 2584000077399378 a001 4807526976/969323029*73681302247^(1/4) 2584000077399378 a001 10983760033/9381251041*599074578^(8/21) 2584000077399378 a004 Fibonacci(43)*Lucas(49)/(1/2+sqrt(5)/2)^74 2584000077399378 a001 86267571272/73681302247*599074578^(8/21) 2584000077399378 a001 75283811239/64300051206*599074578^(8/21) 2584000077399378 a001 2504730781961/2139295485799*599074578^(8/21) 2584000077399378 a001 365435296162/312119004989*599074578^(8/21) 2584000077399378 a001 139583862445/119218851371*599074578^(8/21) 2584000077399378 a001 433494437/3461452808002*17393796001^(5/7) 2584000077399378 a001 53316291173/45537549124*599074578^(8/21) 2584000077399378 a001 433494437/119218851371*17393796001^(4/7) 2584000077399378 a001 433494437/28143753123*312119004989^(5/11) 2584000077399378 a001 12586269025/969323029*312119004989^(1/5) 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^25/Lucas(50) 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^11/Lucas(43) 2584000077399378 a001 433494437/28143753123*3461452808002^(5/12) 2584000077399378 a001 433494437/28143753123*28143753123^(1/2) 2584000077399378 a001 86267571272/969323029*17393796001^(1/7) 2584000077399378 a004 Fibonacci(43)*Lucas(51)/(1/2+sqrt(5)/2)^76 2584000077399378 a001 433494437/73681302247*45537549124^(9/17) 2584000077399378 a001 433494437/23725150497407*45537549124^(13/17) 2584000077399378 a001 433494437/5600748293801*45537549124^(12/17) 2584000077399378 a001 433494437/2139295485799*45537549124^(2/3) 2584000077399378 a001 433494437/1322157322203*45537549124^(11/17) 2584000077399378 a001 433494437/312119004989*45537549124^(10/17) 2584000077399378 a001 32951280099/969323029*45537549124^(3/17) 2584000077399378 a001 32951280099/969323029*14662949395604^(1/7) 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^27/Lucas(52) 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^9/Lucas(43) 2584000077399378 a001 32951280099/969323029*192900153618^(1/6) 2584000077399378 a001 433494437/73681302247*192900153618^(1/2) 2584000077399378 a004 Fibonacci(43)*Lucas(53)/(1/2+sqrt(5)/2)^78 2584000077399378 a001 139583862445/969323029*45537549124^(2/17) 2584000077399378 a001 591286729879/969323029*45537549124^(1/17) 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^29/Lucas(54) 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^7/Lucas(43) 2584000077399378 a001 433494437/192900153618*1322157322203^(1/2) 2584000077399378 a004 Fibonacci(43)*Lucas(55)/(1/2+sqrt(5)/2)^80 2584000077399378 a001 433494437/1322157322203*312119004989^(3/5) 2584000077399378 a001 225851433717/969323029*312119004989^(1/11) 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^31/Lucas(56) 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^5/Lucas(43) 2584000077399378 a004 Fibonacci(43)*Lucas(57)/(1/2+sqrt(5)/2)^82 2584000077399378 a001 433494437/1322157322203*14662949395604^(11/21) 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^33/Lucas(58) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^3/Lucas(43) 2584000077399378 a004 Fibonacci(43)*Lucas(59)/(1/2+sqrt(5)/2)^84 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^35/Lucas(60) 2584000077399378 a004 Fibonacci(60)*(1/2+sqrt(5)/2)/Lucas(43) 2584000077399378 a004 Fibonacci(43)*Lucas(61)/(1/2+sqrt(5)/2)^86 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^37/Lucas(62) 2584000077399378 a004 Fibonacci(62)/Lucas(43)/(1/2+sqrt(5)/2) 2584000077399378 a004 Fibonacci(43)*Lucas(63)/(1/2+sqrt(5)/2)^88 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^39/Lucas(64) 2584000077399378 a004 Fibonacci(64)/Lucas(43)/(1/2+sqrt(5)/2)^3 2584000077399378 a004 Fibonacci(43)*Lucas(65)/(1/2+sqrt(5)/2)^90 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^41/Lucas(66) 2584000077399378 a004 Fibonacci(66)/Lucas(43)/(1/2+sqrt(5)/2)^5 2584000077399378 a004 Fibonacci(43)*Lucas(67)/(1/2+sqrt(5)/2)^92 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^43/Lucas(68) 2584000077399378 a004 Fibonacci(68)/Lucas(43)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(43)*Lucas(69)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^45/Lucas(70) 2584000077399378 a004 Fibonacci(70)/Lucas(43)/(1/2+sqrt(5)/2)^9 2584000077399378 a004 Fibonacci(43)*Lucas(71)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^47/Lucas(72) 2584000077399378 a004 Fibonacci(72)/Lucas(43)/(1/2+sqrt(5)/2)^11 2584000077399378 a004 Fibonacci(43)*Lucas(73)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^49/Lucas(74) 2584000077399378 a004 Fibonacci(74)/Lucas(43)/(1/2+sqrt(5)/2)^13 2584000077399378 a004 Fibonacci(43)*Lucas(75)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^51/Lucas(76) 2584000077399378 a004 Fibonacci(76)/Lucas(43)/(1/2+sqrt(5)/2)^15 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^53/Lucas(78) 2584000077399378 a004 Fibonacci(78)/Lucas(43)/(1/2+sqrt(5)/2)^17 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^55/Lucas(80) 2584000077399378 a004 Fibonacci(80)/Lucas(43)/(1/2+sqrt(5)/2)^19 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^57/Lucas(82) 2584000077399378 a004 Fibonacci(82)/Lucas(43)/(1/2+sqrt(5)/2)^21 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^59/Lucas(84) 2584000077399378 a004 Fibonacci(84)/Lucas(43)/(1/2+sqrt(5)/2)^23 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^61/Lucas(86) 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^63/Lucas(88) 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^65/Lucas(90) 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^67/Lucas(92) 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^69/Lucas(94) 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^71/Lucas(96) 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^73/Lucas(98) 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^74/Lucas(99) 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^75/Lucas(100) 2584000077399378 a004 Fibonacci(43)*Lucas(1)/(1/2+sqrt(5)/2)^25 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^72/Lucas(97) 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^70/Lucas(95) 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^68/Lucas(93) 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^66/Lucas(91) 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^64/Lucas(89) 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^62/Lucas(87) 2584000077399378 a004 Fibonacci(88)/Lucas(43)/(1/2+sqrt(5)/2)^27 2584000077399378 a004 Fibonacci(90)/Lucas(43)/(1/2+sqrt(5)/2)^29 2584000077399378 a004 Fibonacci(92)/Lucas(43)/(1/2+sqrt(5)/2)^31 2584000077399378 a004 Fibonacci(94)/Lucas(43)/(1/2+sqrt(5)/2)^33 2584000077399378 a004 Fibonacci(96)/Lucas(43)/(1/2+sqrt(5)/2)^35 2584000077399378 a004 Fibonacci(100)/Lucas(43)/(1/2+sqrt(5)/2)^39 2584000077399378 a004 Fibonacci(98)/Lucas(43)/(1/2+sqrt(5)/2)^37 2584000077399378 a004 Fibonacci(99)/Lucas(43)/(1/2+sqrt(5)/2)^38 2584000077399378 a004 Fibonacci(97)/Lucas(43)/(1/2+sqrt(5)/2)^36 2584000077399378 a004 Fibonacci(95)/Lucas(43)/(1/2+sqrt(5)/2)^34 2584000077399378 a004 Fibonacci(93)/Lucas(43)/(1/2+sqrt(5)/2)^32 2584000077399378 a004 Fibonacci(91)/Lucas(43)/(1/2+sqrt(5)/2)^30 2584000077399378 a004 Fibonacci(89)/Lucas(43)/(1/2+sqrt(5)/2)^28 2584000077399378 a004 Fibonacci(87)/Lucas(43)/(1/2+sqrt(5)/2)^26 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^60/Lucas(85) 2584000077399378 a004 Fibonacci(85)/Lucas(43)/(1/2+sqrt(5)/2)^24 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^58/Lucas(83) 2584000077399378 a004 Fibonacci(83)/Lucas(43)/(1/2+sqrt(5)/2)^22 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^56/Lucas(81) 2584000077399378 a004 Fibonacci(81)/Lucas(43)/(1/2+sqrt(5)/2)^20 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^54/Lucas(79) 2584000077399378 a004 Fibonacci(79)/Lucas(43)/(1/2+sqrt(5)/2)^18 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^52/Lucas(77) 2584000077399378 a004 Fibonacci(77)/Lucas(43)/(1/2+sqrt(5)/2)^16 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^50/Lucas(75) 2584000077399378 a004 Fibonacci(75)/Lucas(43)/(1/2+sqrt(5)/2)^14 2584000077399378 a004 Fibonacci(43)*Lucas(74)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^48/Lucas(73) 2584000077399378 a004 Fibonacci(73)/Lucas(43)/(1/2+sqrt(5)/2)^12 2584000077399378 a004 Fibonacci(43)*Lucas(72)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^46/Lucas(71) 2584000077399378 a004 Fibonacci(71)/Lucas(43)/(1/2+sqrt(5)/2)^10 2584000077399378 a004 Fibonacci(43)*Lucas(70)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^44/Lucas(69) 2584000077399378 a004 Fibonacci(69)/Lucas(43)/(1/2+sqrt(5)/2)^8 2584000077399378 a004 Fibonacci(43)*Lucas(68)/(1/2+sqrt(5)/2)^93 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^42/Lucas(67) 2584000077399378 a004 Fibonacci(67)/Lucas(43)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(43)*Lucas(66)/(1/2+sqrt(5)/2)^91 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^40/Lucas(65) 2584000077399378 a004 Fibonacci(65)/Lucas(43)/(1/2+sqrt(5)/2)^4 2584000077399378 a004 Fibonacci(43)*Lucas(64)/(1/2+sqrt(5)/2)^89 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^38/Lucas(63) 2584000077399378 a004 Fibonacci(63)/Lucas(43)/(1/2+sqrt(5)/2)^2 2584000077399378 a004 Fibonacci(43)*Lucas(62)/(1/2+sqrt(5)/2)^87 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^36/Lucas(61) 2584000077399378 a006 5^(1/2)*Fibonacci(61)/Lucas(43)/sqrt(5) 2584000077399378 a004 Fibonacci(43)*Lucas(60)/(1/2+sqrt(5)/2)^85 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^34/Lucas(59) 2584000077399378 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^2/Lucas(43) 2584000077399378 a004 Fibonacci(43)*Lucas(58)/(1/2+sqrt(5)/2)^83 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^32/Lucas(57) 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^4/Lucas(43) 2584000077399378 a001 365435296162/969323029*23725150497407^(1/16) 2584000077399378 a004 Fibonacci(43)*Lucas(56)/(1/2+sqrt(5)/2)^81 2584000077399378 a001 433494437/312119004989*14662949395604^(10/21) 2584000077399378 a001 139583862445/969323029*14662949395604^(2/21) 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^30/Lucas(55) 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^6/Lucas(43) 2584000077399378 a001 365435296162/969323029*73681302247^(1/13) 2584000077399378 a001 433494437/23725150497407*192900153618^(13/18) 2584000077399378 a004 Fibonacci(43)*Lucas(54)/(1/2+sqrt(5)/2)^79 2584000077399378 a001 433494437/119218851371*14662949395604^(4/9) 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^28/Lucas(53) 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^8/Lucas(43) 2584000077399378 a001 53316291173/969323029*23725150497407^(1/8) 2584000077399378 a001 53316291173/969323029*73681302247^(2/13) 2584000077399378 a001 433494437/817138163596*73681302247^(8/13) 2584000077399378 a001 225851433717/969323029*28143753123^(1/10) 2584000077399378 a001 433494437/5600748293801*73681302247^(9/13) 2584000077399378 a001 433494437/23725150497407*73681302247^(3/4) 2584000077399378 a001 433494437/119218851371*73681302247^(7/13) 2584000077399378 a004 Fibonacci(43)*Lucas(52)/(1/2+sqrt(5)/2)^77 2584000077399378 a001 956722026041/969323029*10749957122^(1/24) 2584000077399378 a001 20365011074/969323029*312119004989^(2/11) 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^26/Lucas(51) 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^10/Lucas(43) 2584000077399378 a001 591286729879/969323029*10749957122^(1/16) 2584000077399378 a001 433494437/45537549124*73681302247^(1/2) 2584000077399378 a001 365435296162/969323029*10749957122^(1/12) 2584000077399378 a001 20365011074/969323029*28143753123^(1/5) 2584000077399378 a001 433494437/312119004989*28143753123^(3/5) 2584000077399378 a001 433494437/3461452808002*28143753123^(7/10) 2584000077399378 a001 20365011074/17393796001*599074578^(8/21) 2584000077399378 a001 139583862445/969323029*10749957122^(1/8) 2584000077399378 a004 Fibonacci(43)*Lucas(50)/(1/2+sqrt(5)/2)^75 2584000077399378 a001 32951280099/969323029*10749957122^(3/16) 2584000077399378 a001 53316291173/969323029*10749957122^(1/6) 2584000077399378 a001 20365011074/969323029*10749957122^(5/24) 2584000077399378 a001 956722026041/969323029*4106118243^(1/23) 2584000077399378 a001 433494437/17393796001*45537549124^(8/17) 2584000077399378 a001 7778742049/969323029*45537549124^(4/17) 2584000077399378 a001 433494437/17393796001*14662949395604^(8/21) 2584000077399378 a001 7778742049/969323029*14662949395604^(4/21) 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^24/Lucas(49) 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^12/Lucas(43) 2584000077399378 a001 7778742049/969323029*192900153618^(2/9) 2584000077399378 a001 433494437/17393796001*192900153618^(4/9) 2584000077399378 a001 7778742049/969323029*73681302247^(3/13) 2584000077399378 a001 433494437/17393796001*73681302247^(6/13) 2584000077399378 a001 433494437/73681302247*10749957122^(9/16) 2584000077399378 a001 433494437/119218851371*10749957122^(7/12) 2584000077399378 a001 365435296162/969323029*4106118243^(2/23) 2584000077399378 a001 433494437/45537549124*10749957122^(13/24) 2584000077399378 a001 433494437/312119004989*10749957122^(5/8) 2584000077399378 a001 7778742049/969323029*10749957122^(1/4) 2584000077399378 a001 433494437/817138163596*10749957122^(2/3) 2584000077399378 a001 433494437/1322157322203*10749957122^(11/16) 2584000077399378 a001 433494437/2139295485799*10749957122^(17/24) 2584000077399378 a001 433494437/5600748293801*10749957122^(3/4) 2584000077399378 a001 433494437/14662949395604*10749957122^(19/24) 2584000077399378 a001 433494437/23725150497407*10749957122^(13/16) 2584000077399378 a001 433494437/17393796001*10749957122^(1/2) 2584000077399378 a001 139583862445/969323029*4106118243^(3/23) 2584000077399378 a004 Fibonacci(43)*Lucas(48)/(1/2+sqrt(5)/2)^73 2584000077399378 a001 53316291173/969323029*4106118243^(4/23) 2584000077399378 a001 1836311903/4106118243*599074578^(3/7) 2584000077399378 a001 20365011074/969323029*4106118243^(5/23) 2584000077399378 a001 956722026041/969323029*1568397607^(1/22) 2584000077399378 a001 7778742049/969323029*4106118243^(6/23) 2584000077399378 a001 433494437/10749957122*4106118243^(1/2) 2584000077399378 a001 2971215073/969323029*17393796001^(2/7) 2584000077399378 a001 433494437/6643838879*312119004989^(2/5) 2584000077399378 a001 2971215073/969323029*14662949395604^(2/9) 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^22/Lucas(47) 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^14/Lucas(43) 2584000077399378 a001 7778742049/2537720636*599074578^(1/3) 2584000077399378 a001 7778742049/6643838879*599074578^(8/21) 2584000077399378 a001 2971215073/969323029*10749957122^(7/24) 2584000077399378 a001 433494437/6643838879*10749957122^(11/24) 2584000077399378 a001 433494437/45537549124*4106118243^(13/23) 2584000077399378 a001 433494437/17393796001*4106118243^(12/23) 2584000077399378 a001 433494437/119218851371*4106118243^(14/23) 2584000077399378 a001 365435296162/969323029*1568397607^(1/11) 2584000077399378 a001 433494437/312119004989*4106118243^(15/23) 2584000077399378 a001 2971215073/969323029*4106118243^(7/23) 2584000077399378 a001 433494437/817138163596*4106118243^(16/23) 2584000077399378 a001 433494437/2139295485799*4106118243^(17/23) 2584000077399378 a001 2504730781961/2537720636*228826127^(1/20) 2584000077399378 a001 433494437/5600748293801*4106118243^(18/23) 2584000077399378 a001 433494437/14662949395604*4106118243^(19/23) 2584000077399378 a001 433494437/6643838879*4106118243^(11/23) 2584000077399378 a001 139583862445/969323029*1568397607^(3/22) 2584000077399378 a004 Fibonacci(43)*Lucas(46)/(1/2+sqrt(5)/2)^71 2584000077399378 a001 53316291173/969323029*1568397607^(2/11) 2584000077399378 a001 1201881744/634430159*599074578^(5/14) 2584000077399378 a001 433494437/2537720636*2537720636^(4/9) 2584000077399378 a001 20365011074/969323029*1568397607^(5/22) 2584000077399378 a001 12586269025/969323029*1568397607^(1/4) 2584000077399378 a001 2403763488/5374978561*599074578^(3/7) 2584000077399378 a001 7778742049/969323029*1568397607^(3/11) 2584000077399378 a001 233802911/9381251041*599074578^(4/7) 2584000077399378 a001 12586269025/28143753123*599074578^(3/7) 2584000077399378 a001 32951280099/73681302247*599074578^(3/7) 2584000077399378 a001 43133785636/96450076809*599074578^(3/7) 2584000077399378 a001 225851433717/505019158607*599074578^(3/7) 2584000077399378 a001 10610209857723/23725150497407*599074578^(3/7) 2584000077399378 a001 182717648081/408569081798*599074578^(3/7) 2584000077399378 a001 139583862445/312119004989*599074578^(3/7) 2584000077399378 a001 53316291173/119218851371*599074578^(3/7) 2584000077399378 a001 10182505537/22768774562*599074578^(3/7) 2584000077399378 a001 956722026041/969323029*599074578^(1/21) 2584000077399378 a001 7778742049/17393796001*599074578^(3/7) 2584000077399378 a001 2971215073/969323029*1568397607^(7/22) 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^20/Lucas(45) 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^16/Lucas(43) 2584000077399378 a001 1134903170/969323029*23725150497407^(1/4) 2584000077399378 a001 433494437/2537720636*23725150497407^(5/16) 2584000077399378 a001 1134903170/969323029*73681302247^(4/13) 2584000077399378 a001 433494437/2537720636*73681302247^(5/13) 2584000077399378 a001 433494437/2537720636*28143753123^(2/5) 2584000077399378 a001 1134903170/969323029*10749957122^(1/3) 2584000077399378 a001 433494437/2537720636*10749957122^(5/12) 2584000077399378 a001 2971215073/2537720636*599074578^(8/21) 2584000077399378 a001 2971215073/6643838879*599074578^(3/7) 2584000077399378 a001 1134903170/969323029*4106118243^(8/23) 2584000077399378 a001 433494437/2537720636*4106118243^(10/23) 2584000077399378 a001 1836311903/10749957122*599074578^(10/21) 2584000077399378 a001 591286729879/969323029*599074578^(1/14) 2584000077399378 a001 433494437/17393796001*1568397607^(6/11) 2584000077399378 a001 433494437/6643838879*1568397607^(1/2) 2584000077399378 a001 433494437/45537549124*1568397607^(13/22) 2584000077399378 a001 1602508992/9381251041*599074578^(10/21) 2584000077399378 a001 701408733/73681302247*599074578^(13/21) 2584000077399378 a001 433494437/119218851371*1568397607^(7/11) 2584000077399378 a001 12586269025/73681302247*599074578^(10/21) 2584000077399378 a001 10983760033/64300051206*599074578^(10/21) 2584000077399378 a001 86267571272/505019158607*599074578^(10/21) 2584000077399378 a001 75283811239/440719107401*599074578^(10/21) 2584000077399378 a001 2504730781961/14662949395604*599074578^(10/21) 2584000077399378 a001 139583862445/817138163596*599074578^(10/21) 2584000077399378 a001 53316291173/312119004989*599074578^(10/21) 2584000077399378 a001 20365011074/119218851371*599074578^(10/21) 2584000077399378 a001 365435296162/969323029*599074578^(2/21) 2584000077399378 a001 7778742049/45537549124*599074578^(10/21) 2584000077399378 a001 1836311903/17393796001*599074578^(1/2) 2584000077399378 a001 433494437/312119004989*1568397607^(15/22) 2584000077399378 a001 2971215073/17393796001*599074578^(10/21) 2584000077399378 a001 433494437/817138163596*1568397607^(8/11) 2584000077399378 a001 1134903170/969323029*1568397607^(4/11) 2584000077399378 a001 433494437/1322157322203*1568397607^(3/4) 2584000077399378 a001 433494437/2139295485799*1568397607^(17/22) 2584000077399378 a001 701408733/119218851371*599074578^(9/14) 2584000077399378 a001 1201881744/11384387281*599074578^(1/2) 2584000077399378 a001 12586269025/119218851371*599074578^(1/2) 2584000077399378 a001 32951280099/312119004989*599074578^(1/2) 2584000077399378 a001 21566892818/204284540899*599074578^(1/2) 2584000077399378 a001 225851433717/2139295485799*599074578^(1/2) 2584000077399378 a001 182717648081/1730726404001*599074578^(1/2) 2584000077399378 a001 139583862445/1322157322203*599074578^(1/2) 2584000077399378 a001 53316291173/505019158607*599074578^(1/2) 2584000077399378 a001 10182505537/96450076809*599074578^(1/2) 2584000077399378 a001 7778742049/73681302247*599074578^(1/2) 2584000077399378 a001 433494437/5600748293801*1568397607^(9/11) 2584000077399378 a001 1836311903/28143753123*599074578^(11/21) 2584000077399378 a001 433494437/2537720636*1568397607^(5/11) 2584000077399378 a001 2971215073/28143753123*599074578^(1/2) 2584000077399378 a001 433494437/14662949395604*1568397607^(19/22) 2584000077399378 a001 686789568/10525900321*599074578^(11/21) 2584000077399378 a001 233802911/64300051206*599074578^(2/3) 2584000077399378 a001 12586269025/192900153618*599074578^(11/21) 2584000077399378 a001 32951280099/505019158607*599074578^(11/21) 2584000077399378 a001 86267571272/1322157322203*599074578^(11/21) 2584000077399378 a001 32264490531/494493258286*599074578^(11/21) 2584000077399378 a001 1548008755920/23725150497407*599074578^(11/21) 2584000077399378 a001 365435296162/5600748293801*599074578^(11/21) 2584000077399378 a001 139583862445/2139295485799*599074578^(11/21) 2584000077399378 a001 53316291173/817138163596*599074578^(11/21) 2584000077399378 a001 20365011074/312119004989*599074578^(11/21) 2584000077399378 a001 139583862445/969323029*599074578^(1/7) 2584000077399378 a001 7778742049/119218851371*599074578^(11/21) 2584000077399378 a004 Fibonacci(43)*Lucas(44)/(1/2+sqrt(5)/2)^69 2584000077399378 a001 2971215073/45537549124*599074578^(11/21) 2584000077399378 a001 591286729879/1568397607*228826127^(1/10) 2584000077399378 a001 567451585/1268860318*599074578^(3/7) 2584000077399378 a001 1134903170/6643838879*599074578^(10/21) 2584000077399378 a001 86267571272/969323029*599074578^(1/6) 2584000077399378 a001 1836311903/73681302247*599074578^(4/7) 2584000077399378 a001 567451585/5374978561*599074578^(1/2) 2584000077399378 a001 32951280099/228826127*87403803^(3/19) 2584000077399378 a001 267084832/10716675201*599074578^(4/7) 2584000077399378 a001 701408733/505019158607*599074578^(5/7) 2584000077399378 a001 12586269025/505019158607*599074578^(4/7) 2584000077399378 a001 10983760033/440719107401*599074578^(4/7) 2584000077399378 a001 43133785636/1730726404001*599074578^(4/7) 2584000077399378 a001 75283811239/3020733700601*599074578^(4/7) 2584000077399378 a001 182717648081/7331474697802*599074578^(4/7) 2584000077399378 a001 139583862445/5600748293801*599074578^(4/7) 2584000077399378 a001 53316291173/2139295485799*599074578^(4/7) 2584000077399378 a001 10182505537/408569081798*599074578^(4/7) 2584000077399378 a001 53316291173/969323029*599074578^(4/21) 2584000077399378 a001 7778742049/312119004989*599074578^(4/7) 2584000077399378 a001 2971215073/119218851371*599074578^(4/7) 2584000077399378 a001 1134903170/17393796001*599074578^(11/21) 2584000077399378 a001 32951280099/969323029*599074578^(3/14) 2584000077399378 a001 1836311903/192900153618*599074578^(13/21) 2584000077399378 a001 102287808/10745088481*599074578^(13/21) 2584000077399378 a001 233802911/440719107401*599074578^(16/21) 2584000077399378 a001 12586269025/1322157322203*599074578^(13/21) 2584000077399378 a001 32951280099/3461452808002*599074578^(13/21) 2584000077399378 a001 86267571272/9062201101803*599074578^(13/21) 2584000077399378 a001 225851433717/23725150497407*599074578^(13/21) 2584000077399378 a001 139583862445/14662949395604*599074578^(13/21) 2584000077399378 a001 53316291173/5600748293801*599074578^(13/21) 2584000077399378 a001 20365011074/2139295485799*599074578^(13/21) 2584000077399378 a001 20365011074/969323029*599074578^(5/21) 2584000077399378 a001 7778742049/817138163596*599074578^(13/21) 2584000077399378 a001 1836311903/312119004989*599074578^(9/14) 2584000077399378 a001 2971215073/312119004989*599074578^(13/21) 2584000077399378 a001 567451585/22768774562*599074578^(4/7) 2584000077399378 a001 1201881744/204284540899*599074578^(9/14) 2584000077399378 a001 701408733/2139295485799*599074578^(11/14) 2584000077399378 a001 12586269025/2139295485799*599074578^(9/14) 2584000077399378 a001 32951280099/5600748293801*599074578^(9/14) 2584000077399378 a001 1135099622/192933544679*599074578^(9/14) 2584000077399378 a001 139583862445/23725150497407*599074578^(9/14) 2584000077399378 a001 53316291173/9062201101803*599074578^(9/14) 2584000077399378 a001 10182505537/1730726404001*599074578^(9/14) 2584000077399378 a001 7778742049/1322157322203*599074578^(9/14) 2584000077399378 a001 1836311903/505019158607*599074578^(2/3) 2584000077399378 a001 2971215073/505019158607*599074578^(9/14) 2584000077399378 a001 1602508992/440719107401*599074578^(2/3) 2584000077399378 a001 701408733/3461452808002*599074578^(17/21) 2584000077399378 a001 516002918640/1368706081*228826127^(1/10) 2584000077399378 a001 12586269025/3461452808002*599074578^(2/3) 2584000077399378 a001 10983760033/3020733700601*599074578^(2/3) 2584000077399378 a001 86267571272/23725150497407*599074578^(2/3) 2584000077399378 a001 53316291173/14662949395604*599074578^(2/3) 2584000077399378 a001 20365011074/5600748293801*599074578^(2/3) 2584000077399378 a001 7778742049/2139295485799*599074578^(2/3) 2584000077399378 a001 7778742049/969323029*599074578^(2/7) 2584000077399378 a001 2971215073/817138163596*599074578^(2/3) 2584000077399378 a001 1134903170/119218851371*599074578^(13/21) 2584000077399378 a001 4052739537881/10749957122*228826127^(1/10) 2584000077399378 a001 3536736619241/9381251041*228826127^(1/10) 2584000077399378 a001 6557470319842/17393796001*228826127^(1/10) 2584000077399378 a001 701408733/5600748293801*599074578^(5/6) 2584000077399378 a001 1836311903/1322157322203*599074578^(5/7) 2584000077399378 a001 2504730781961/6643838879*228826127^(1/10) 2584000077399378 a001 567451585/96450076809*599074578^(9/14) 2584000077399378 a001 365435296162/1568397607*228826127^(1/8) 2584000077399378 a001 14930208/10749853441*599074578^(5/7) 2584000077399378 a001 233802911/3020733700601*599074578^(6/7) 2584000077399378 a001 12586269025/599074578*228826127^(1/4) 2584000077399378 a001 12586269025/9062201101803*599074578^(5/7) 2584000077399378 a001 32951280099/23725150497407*599074578^(5/7) 2584000077399378 a001 10182505537/7331474697802*599074578^(5/7) 2584000077399378 a001 7778742049/5600748293801*599074578^(5/7) 2584000077399378 a001 1836311903/969323029*599074578^(5/14) 2584000077399378 a001 1134903170/312119004989*599074578^(2/3) 2584000077399378 a001 2971215073/2139295485799*599074578^(5/7) 2584000077399378 a001 2971215073/969323029*599074578^(1/3) 2584000077399378 a001 956722026041/969323029*228826127^(1/20) 2584000077399378 a001 1836311903/3461452808002*599074578^(16/21) 2584000077399378 a001 956722026041/2537720636*228826127^(1/10) 2584000077399378 a001 433494437/969323029*2537720636^(2/5) 2584000077399378 a001 1602508992/3020733700601*599074578^(16/21) 2584000077399378 a001 701408733/23725150497407*599074578^(19/21) 2584000077399378 a001 12586269025/23725150497407*599074578^(16/21) 2584000077399378 a001 7778742049/14662949395604*599074578^(16/21) 2584000077399378 a001 433494437/969323029*45537549124^(6/17) 2584000077399378 a001 433494437/969323029*14662949395604^(2/7) 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^18/Lucas(43) 2584000077399378 a001 433494437/969323029*192900153618^(1/3) 2584000077399378 a001 1836311903/5600748293801*599074578^(11/14) 2584000077399378 a001 433494437/969323029*10749957122^(3/8) 2584000077399378 a001 567451585/408569081798*599074578^(5/7) 2584000077399378 a001 2971215073/5600748293801*599074578^(16/21) 2584000077399378 a001 433494437/969323029*4106118243^(9/23) 2584000077399378 a001 1201881744/3665737348901*599074578^(11/14) 2584000077399378 a001 7778742049/23725150497407*599074578^(11/14) 2584000077399378 a001 1836311903/9062201101803*599074578^(17/21) 2584000077399378 a001 2971215073/9062201101803*599074578^(11/14) 2584000077399378 a001 4807526976/23725150497407*599074578^(17/21) 2584000077399378 a001 1836311903/14662949395604*599074578^(5/6) 2584000077399378 a001 1134903170/2139295485799*599074578^(16/21) 2584000077399378 a001 2971215073/14662949395604*599074578^(17/21) 2584000077399378 a001 1134903170/969323029*599074578^(8/21) 2584000077399378 a001 433494437/969323029*1568397607^(9/22) 2584000077399378 a001 956722026041/4106118243*228826127^(1/8) 2584000077399378 a001 1836311903/23725150497407*599074578^(6/7) 2584000077399378 a001 567451585/1730726404001*599074578^(11/14) 2584000077399378 a001 2971215073/23725150497407*599074578^(5/6) 2584000077399378 a001 2504730781961/10749957122*228826127^(1/8) 2584000077399378 a004 Fibonacci(44)*Lucas(42)/(1/2+sqrt(5)/2)^68 2584000077399378 a001 6557470319842/28143753123*228826127^(1/8) 2584000077399378 a001 10610209857723/45537549124*228826127^(1/8) 2584000077399378 a001 4052739537881/17393796001*228826127^(1/8) 2584000077399378 a001 433494437/4106118243*599074578^(1/2) 2584000077399378 a001 1548008755920/6643838879*228826127^(1/8) 2584000077399378 a001 1134903170/5600748293801*599074578^(17/21) 2584000077399378 a001 32264490531/224056801*228826127^(3/20) 2584000077399378 a001 1134903170/9062201101803*599074578^(5/6) 2584000077399378 a001 591286729879/2537720636*228826127^(1/8) 2584000077399378 a001 567451585/7331474697802*599074578^(6/7) 2584000077399378 a001 433494437/2537720636*599074578^(10/21) 2584000077399378 a001 433494437/6643838879*599074578^(11/21) 2584000077399378 a001 433494437/17393796001*599074578^(4/7) 2584000077399378 a004 Fibonacci(46)*Lucas(42)/(1/2+sqrt(5)/2)^70 2584000077399378 a004 Fibonacci(48)*Lucas(42)/(1/2+sqrt(5)/2)^72 2584000077399378 a004 Fibonacci(50)*Lucas(42)/(1/2+sqrt(5)/2)^74 2584000077399378 a004 Fibonacci(52)*Lucas(42)/(1/2+sqrt(5)/2)^76 2584000077399378 a004 Fibonacci(54)*Lucas(42)/(1/2+sqrt(5)/2)^78 2584000077399378 a004 Fibonacci(56)*Lucas(42)/(1/2+sqrt(5)/2)^80 2584000077399378 a004 Fibonacci(58)*Lucas(42)/(1/2+sqrt(5)/2)^82 2584000077399378 a004 Fibonacci(60)*Lucas(42)/(1/2+sqrt(5)/2)^84 2584000077399378 a004 Fibonacci(62)*Lucas(42)/(1/2+sqrt(5)/2)^86 2584000077399378 a004 Fibonacci(64)*Lucas(42)/(1/2+sqrt(5)/2)^88 2584000077399378 a004 Fibonacci(66)*Lucas(42)/(1/2+sqrt(5)/2)^90 2584000077399378 a004 Fibonacci(68)*Lucas(42)/(1/2+sqrt(5)/2)^92 2584000077399378 a004 Fibonacci(70)*Lucas(42)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(72)*Lucas(42)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(74)*Lucas(42)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(76)*Lucas(42)/(1/2+sqrt(5)/2)^100 2584000077399378 a001 1/133957148*(1/2+1/2*5^(1/2))^60 2584000077399378 a004 Fibonacci(75)*Lucas(42)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(73)*Lucas(42)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(71)*Lucas(42)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(69)*Lucas(42)/(1/2+sqrt(5)/2)^93 2584000077399378 a004 Fibonacci(67)*Lucas(42)/(1/2+sqrt(5)/2)^91 2584000077399378 a004 Fibonacci(65)*Lucas(42)/(1/2+sqrt(5)/2)^89 2584000077399378 a004 Fibonacci(63)*Lucas(42)/(1/2+sqrt(5)/2)^87 2584000077399378 a004 Fibonacci(61)*Lucas(42)/(1/2+sqrt(5)/2)^85 2584000077399378 a004 Fibonacci(59)*Lucas(42)/(1/2+sqrt(5)/2)^83 2584000077399378 a004 Fibonacci(57)*Lucas(42)/(1/2+sqrt(5)/2)^81 2584000077399378 a004 Fibonacci(55)*Lucas(42)/(1/2+sqrt(5)/2)^79 2584000077399378 a004 Fibonacci(53)*Lucas(42)/(1/2+sqrt(5)/2)^77 2584000077399378 a004 Fibonacci(51)*Lucas(42)/(1/2+sqrt(5)/2)^75 2584000077399378 a004 Fibonacci(49)*Lucas(42)/(1/2+sqrt(5)/2)^73 2584000077399378 a001 433494437/45537549124*599074578^(13/21) 2584000077399378 a001 591286729879/4106118243*228826127^(3/20) 2584000077399378 a004 Fibonacci(47)*Lucas(42)/(1/2+sqrt(5)/2)^71 2584000077399378 a001 433494437/73681302247*599074578^(9/14) 2584000077399378 a001 774004377960/5374978561*228826127^(3/20) 2584000077399378 a001 4052739537881/28143753123*228826127^(3/20) 2584000077399378 a001 1515744265389/10525900321*228826127^(3/20) 2584000077399378 a001 3278735159921/22768774562*228826127^(3/20) 2584000077399378 a001 2504730781961/17393796001*228826127^(3/20) 2584000077399378 a001 956722026041/6643838879*228826127^(3/20) 2584000077399378 a001 433494437/119218851371*599074578^(2/3) 2584000077399378 a001 267084832/33281921*228826127^(3/10) 2584000077399378 a004 Fibonacci(45)*Lucas(42)/(1/2+sqrt(5)/2)^69 2584000077399378 a001 365435296162/969323029*228826127^(1/10) 2584000077399378 a001 182717648081/1268860318*228826127^(3/20) 2584000077399378 a001 133957148/299537289*228826127^(9/20) 2584000077399378 a001 433494437/312119004989*599074578^(5/7) 2584000077399378 a001 433494437/817138163596*599074578^(16/21) 2584000077399378 a001 433494437/1322157322203*599074578^(11/14) 2584000077399378 a001 433494437/2139295485799*599074578^(17/21) 2584000077399378 a001 433494437/969323029*599074578^(3/7) 2584000077399378 a001 433494437/3461452808002*599074578^(5/6) 2584000077399378 a001 86267571272/1568397607*228826127^(1/5) 2584000077399378 a001 225851433717/370248451*141422324^(1/13) 2584000077399378 a001 225851433717/969323029*228826127^(1/8) 2584000077399378 a001 433494437/5600748293801*599074578^(6/7) 2584000077399378 a001 433494437/14662949395604*599074578^(19/21) 2584000077399378 a001 433494437/23725150497407*599074578^(13/14) 2584000077399378 a001 75283811239/1368706081*228826127^(1/5) 2584000077399378 a001 591286729879/10749957122*228826127^(1/5) 2584000077399378 a001 12585437040/228811001*228826127^(1/5) 2584000077399378 a001 4052739537881/73681302247*228826127^(1/5) 2584000077399378 a001 3536736619241/64300051206*228826127^(1/5) 2584000077399378 a001 6557470319842/119218851371*228826127^(1/5) 2584000077399378 a001 2504730781961/45537549124*228826127^(1/5) 2584000077399378 a001 956722026041/17393796001*228826127^(1/5) 2584000077399378 a001 1836311903/599074578*228826127^(7/20) 2584000077399378 a001 365435296162/6643838879*228826127^(1/5) 2584000077399378 a001 31622993/408569081798*141422324^(12/13) 2584000077399378 a004 Fibonacci(43)*Lucas(42)/(1/2+sqrt(5)/2)^67 2584000077399378 a001 139583862445/969323029*228826127^(3/20) 2584000077399378 a001 139583862445/2537720636*228826127^(1/5) 2584000077399378 a001 591286729879/599074578*87403803^(1/19) 2584000077399378 a001 32951280099/1568397607*228826127^(1/4) 2584000077399378 a001 233802911/199691526*228826127^(2/5) 2584000077399378 a001 267914296/370248451*45537549124^(1/3) 2584000077399378 a001 165580141/599074578*817138163596^(1/3) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^19/Lucas(42) 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^17/Lucas(41) 2584000077399378 a001 567451585/299537289*228826127^(3/8) 2584000077399378 a001 86267571272/4106118243*228826127^(1/4) 2584000077399378 a001 225851433717/10749957122*228826127^(1/4) 2584000077399378 a001 591286729879/28143753123*228826127^(1/4) 2584000077399378 a001 1548008755920/73681302247*228826127^(1/4) 2584000077399378 a001 4052739537881/192900153618*228826127^(1/4) 2584000077399378 a001 225749145909/10745088481*228826127^(1/4) 2584000077399378 a001 6557470319842/312119004989*228826127^(1/4) 2584000077399378 a001 2504730781961/119218851371*228826127^(1/4) 2584000077399378 a001 956722026041/45537549124*228826127^(1/4) 2584000077399378 a001 365435296162/17393796001*228826127^(1/4) 2584000077399378 a001 139583862445/6643838879*228826127^(1/4) 2584000077399378 a001 53316291173/969323029*228826127^(1/5) 2584000077399378 a001 53316291173/2537720636*228826127^(1/4) 2584000077399378 a001 12586269025/1568397607*228826127^(3/10) 2584000077399378 a001 10983760033/1368706081*228826127^(3/10) 2584000077399378 a001 43133785636/5374978561*228826127^(3/10) 2584000077399378 a001 75283811239/9381251041*228826127^(3/10) 2584000077399378 a001 591286729879/73681302247*228826127^(3/10) 2584000077399378 a001 86000486440/10716675201*228826127^(3/10) 2584000077399378 a001 4052739537881/505019158607*228826127^(3/10) 2584000077399378 a001 3278735159921/408569081798*228826127^(3/10) 2584000077399378 a001 2504730781961/312119004989*228826127^(3/10) 2584000077399378 a001 956722026041/119218851371*228826127^(3/10) 2584000077399378 a001 182717648081/22768774562*228826127^(3/10) 2584000077399378 a001 139583862445/17393796001*228826127^(3/10) 2584000077399378 a001 53316291173/6643838879*228826127^(3/10) 2584000077399378 a001 20365011074/969323029*228826127^(1/4) 2584000077399378 a001 10182505537/1268860318*228826127^(3/10) 2584000077399378 a004 Fibonacci(41)*Lucas(43)/(1/2+sqrt(5)/2)^66 2584000077399378 a001 686789568/224056801*228826127^(7/20) 2584000077399378 a001 267914296/1568397607*228826127^(1/2) 2584000077399378 a001 1548008755920/1568397607*87403803^(1/19) 2584000077399378 a001 12586269025/4106118243*228826127^(7/20) 2584000077399378 a001 32951280099/10749957122*228826127^(7/20) 2584000077399378 a001 86267571272/28143753123*228826127^(7/20) 2584000077399378 a001 32264490531/10525900321*228826127^(7/20) 2584000077399378 a001 591286729879/192900153618*228826127^(7/20) 2584000077399378 a001 1548008755920/505019158607*228826127^(7/20) 2584000077399378 a001 1515744265389/494493258286*228826127^(7/20) 2584000077399378 a001 2504730781961/817138163596*228826127^(7/20) 2584000077399378 a001 956722026041/312119004989*228826127^(7/20) 2584000077399378 a001 365435296162/119218851371*228826127^(7/20) 2584000077399378 a001 139583862445/45537549124*228826127^(7/20) 2584000077399378 a001 53316291173/17393796001*228826127^(7/20) 2584000077399378 a001 20365011074/6643838879*228826127^(7/20) 2584000077399378 a001 2971215073/1568397607*228826127^(3/8) 2584000077399378 a001 7778742049/969323029*228826127^(3/10) 2584000077399378 a001 165580141/1568397607*2537720636^(7/15) 2584000077399378 a001 4052739537881/4106118243*87403803^(1/19) 2584000077399378 a001 701408733/370248451*2537720636^(1/3) 2584000077399378 a001 7778742049/2537720636*228826127^(7/20) 2584000077399378 a001 4807525989/4870846*87403803^(1/19) 2584000077399378 a001 165580141/1568397607*17393796001^(3/7) 2584000077399378 a001 165580141/1568397607*45537549124^(7/17) 2584000077399378 a001 701408733/370248451*45537549124^(5/17) 2584000077399378 a001 165580141/1568397607*14662949395604^(1/3) 2584000077399378 a001 701408733/370248451*14662949395604^(5/21) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^21/Lucas(44) 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^15/Lucas(41) 2584000077399378 a001 165580141/1568397607*192900153618^(7/18) 2584000077399378 a001 701408733/370248451*28143753123^(3/10) 2584000077399378 a001 701408733/370248451*10749957122^(5/16) 2584000077399378 a001 165580141/1568397607*10749957122^(7/16) 2584000077399378 a001 6557470319842/6643838879*87403803^(1/19) 2584000077399378 a001 2504730781961/2537720636*87403803^(1/19) 2584000077399378 a001 7778742049/4106118243*228826127^(3/8) 2584000077399378 a004 Fibonacci(41)*Lucas(45)/(1/2+sqrt(5)/2)^68 2584000077399378 a001 12586269025/54018521*20633239^(1/7) 2584000077399378 a001 10182505537/5374978561*228826127^(3/8) 2584000077399378 a001 165580141/14662949395604*2537720636^(8/9) 2584000077399378 a001 165580141/9062201101803*2537720636^(13/15) 2584000077399378 a001 53316291173/28143753123*228826127^(3/8) 2584000077399378 a001 139583862445/73681302247*228826127^(3/8) 2584000077399378 a001 182717648081/96450076809*228826127^(3/8) 2584000077399378 a001 956722026041/505019158607*228826127^(3/8) 2584000077399378 a001 10610209857723/5600748293801*228826127^(3/8) 2584000077399378 a001 591286729879/312119004989*228826127^(3/8) 2584000077399378 a001 225851433717/119218851371*228826127^(3/8) 2584000077399378 a001 21566892818/11384387281*228826127^(3/8) 2584000077399378 a001 32951280099/17393796001*228826127^(3/8) 2584000077399378 a001 165580141/2139295485799*2537720636^(4/5) 2584000077399378 a001 1836311903/1568397607*228826127^(2/5) 2584000077399378 a001 165580141/1322157322203*2537720636^(7/9) 2584000077399378 a001 165580141/505019158607*2537720636^(11/15) 2584000077399378 a001 12586269025/6643838879*228826127^(3/8) 2584000077399378 a001 165580141/119218851371*2537720636^(2/3) 2584000077399378 a001 165580141/10749957122*2537720636^(5/9) 2584000077399378 a001 165580141/28143753123*2537720636^(3/5) 2584000077399378 a001 165580141/6643838879*2537720636^(8/15) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^23/Lucas(46) 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^13/Lucas(41) 2584000077399378 a001 1836311903/370248451*73681302247^(1/4) 2584000077399378 a001 12586269025/370248451*2537720636^(1/5) 2584000077399378 a001 7778742049/370248451*2537720636^(2/9) 2584000077399378 a001 165580141/4106118243*4106118243^(1/2) 2584000077399378 a004 Fibonacci(41)*Lucas(47)/(1/2+sqrt(5)/2)^70 2584000077399378 a001 53316291173/370248451*2537720636^(2/15) 2584000077399378 a001 2971215073/370248451*2537720636^(4/15) 2584000077399378 a001 86267571272/370248451*2537720636^(1/9) 2584000077399378 a001 225851433717/370248451*2537720636^(1/15) 2584000077399378 a001 165580141/10749957122*312119004989^(5/11) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^25/Lucas(48) 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^11/Lucas(41) 2584000077399378 a001 165580141/10749957122*3461452808002^(5/12) 2584000077399378 a001 165580141/10749957122*28143753123^(1/2) 2584000077399378 a004 Fibonacci(41)*Lucas(49)/(1/2+sqrt(5)/2)^72 2584000077399378 a001 165580141/1322157322203*17393796001^(5/7) 2584000077399378 a001 165580141/28143753123*45537549124^(9/17) 2584000077399378 a001 165580141/45537549124*17393796001^(4/7) 2584000077399378 a001 12586269025/370248451*45537549124^(3/17) 2584000077399378 a001 165580141/28143753123*14662949395604^(3/7) 2584000077399378 a001 12586269025/370248451*14662949395604^(1/7) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^27/Lucas(50) 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^9/Lucas(41) 2584000077399378 a001 12586269025/370248451*192900153618^(1/6) 2584000077399378 a001 165580141/28143753123*192900153618^(1/2) 2584000077399378 a001 32951280099/370248451*17393796001^(1/7) 2584000077399378 a004 Fibonacci(41)*Lucas(51)/(1/2+sqrt(5)/2)^74 2584000077399378 a001 165580141/9062201101803*45537549124^(13/17) 2584000077399378 a001 165580141/2139295485799*45537549124^(12/17) 2584000077399378 a001 165580141/817138163596*45537549124^(2/3) 2584000077399378 a001 165580141/505019158607*45537549124^(11/17) 2584000077399378 a001 165580141/119218851371*45537549124^(10/17) 2584000077399378 a001 32951280099/370248451*14662949395604^(1/9) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^29/Lucas(52) 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^7/Lucas(41) 2584000077399378 a001 165580141/73681302247*1322157322203^(1/2) 2584000077399378 a004 Fibonacci(41)*Lucas(53)/(1/2+sqrt(5)/2)^76 2584000077399378 a001 225851433717/370248451*45537549124^(1/17) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^31/Lucas(54) 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^5/Lucas(41) 2584000077399378 a001 165580141/192900153618*9062201101803^(1/2) 2584000077399378 a004 Fibonacci(41)*Lucas(55)/(1/2+sqrt(5)/2)^78 2584000077399378 a001 165580141/505019158607*312119004989^(3/5) 2584000077399378 a001 165580141/1322157322203*312119004989^(7/11) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^33/Lucas(56) 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^3/Lucas(41) 2584000077399378 a004 Fibonacci(41)*Lucas(57)/(1/2+sqrt(5)/2)^80 2584000077399378 a001 165580141/1322157322203*14662949395604^(5/9) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^35/Lucas(58) 2584000077399378 a004 Fibonacci(58)*(1/2+sqrt(5)/2)/Lucas(41) 2584000077399378 a004 Fibonacci(41)*Lucas(59)/(1/2+sqrt(5)/2)^82 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^37/Lucas(60) 2584000077399378 a004 Fibonacci(60)/Lucas(41)/(1/2+sqrt(5)/2) 2584000077399378 a004 Fibonacci(41)*Lucas(61)/(1/2+sqrt(5)/2)^84 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^39/Lucas(62) 2584000077399378 a004 Fibonacci(62)/Lucas(41)/(1/2+sqrt(5)/2)^3 2584000077399378 a004 Fibonacci(41)*Lucas(63)/(1/2+sqrt(5)/2)^86 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^41/Lucas(64) 2584000077399378 a004 Fibonacci(64)/Lucas(41)/(1/2+sqrt(5)/2)^5 2584000077399378 a004 Fibonacci(41)*Lucas(65)/(1/2+sqrt(5)/2)^88 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^43/Lucas(66) 2584000077399378 a004 Fibonacci(66)/Lucas(41)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(41)*Lucas(67)/(1/2+sqrt(5)/2)^90 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^45/Lucas(68) 2584000077399378 a004 Fibonacci(68)/Lucas(41)/(1/2+sqrt(5)/2)^9 2584000077399378 a004 Fibonacci(41)*Lucas(69)/(1/2+sqrt(5)/2)^92 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^47/Lucas(70) 2584000077399378 a004 Fibonacci(70)/Lucas(41)/(1/2+sqrt(5)/2)^11 2584000077399378 a004 Fibonacci(41)*Lucas(71)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^49/Lucas(72) 2584000077399378 a004 Fibonacci(72)/Lucas(41)/(1/2+sqrt(5)/2)^13 2584000077399378 a004 Fibonacci(41)*Lucas(73)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^51/Lucas(74) 2584000077399378 a004 Fibonacci(74)/Lucas(41)/(1/2+sqrt(5)/2)^15 2584000077399378 a004 Fibonacci(41)*Lucas(75)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^53/Lucas(76) 2584000077399378 a004 Fibonacci(76)/Lucas(41)/(1/2+sqrt(5)/2)^17 2584000077399378 a004 Fibonacci(41)*Lucas(77)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^55/Lucas(78) 2584000077399378 a004 Fibonacci(78)/Lucas(41)/(1/2+sqrt(5)/2)^19 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^57/Lucas(80) 2584000077399378 a004 Fibonacci(80)/Lucas(41)/(1/2+sqrt(5)/2)^21 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^59/Lucas(82) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^61/Lucas(84) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^63/Lucas(86) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^65/Lucas(88) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^67/Lucas(90) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^69/Lucas(92) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^71/Lucas(94) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^73/Lucas(96) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^75/Lucas(98) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^77/Lucas(100) 2584000077399378 a004 Fibonacci(41)*Lucas(1)/(1/2+sqrt(5)/2)^23 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^74/Lucas(97) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^76/Lucas(99) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^72/Lucas(95) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^70/Lucas(93) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^68/Lucas(91) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^66/Lucas(89) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^64/Lucas(87) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^62/Lucas(85) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^60/Lucas(83) 2584000077399378 a004 Fibonacci(84)/Lucas(41)/(1/2+sqrt(5)/2)^25 2584000077399378 a004 Fibonacci(86)/Lucas(41)/(1/2+sqrt(5)/2)^27 2584000077399378 a004 Fibonacci(88)/Lucas(41)/(1/2+sqrt(5)/2)^29 2584000077399378 a004 Fibonacci(90)/Lucas(41)/(1/2+sqrt(5)/2)^31 2584000077399378 a004 Fibonacci(92)/Lucas(41)/(1/2+sqrt(5)/2)^33 2584000077399378 a004 Fibonacci(94)/Lucas(41)/(1/2+sqrt(5)/2)^35 2584000077399378 a004 Fibonacci(96)/Lucas(41)/(1/2+sqrt(5)/2)^37 2584000077399378 a004 Fibonacci(98)/Lucas(41)/(1/2+sqrt(5)/2)^39 2584000077399378 a004 Fibonacci(100)/Lucas(41)/(1/2+sqrt(5)/2)^41 2584000077399378 a004 Fibonacci(97)/Lucas(41)/(1/2+sqrt(5)/2)^38 2584000077399378 a004 Fibonacci(99)/Lucas(41)/(1/2+sqrt(5)/2)^40 2584000077399378 a004 Fibonacci(95)/Lucas(41)/(1/2+sqrt(5)/2)^36 2584000077399378 a004 Fibonacci(93)/Lucas(41)/(1/2+sqrt(5)/2)^34 2584000077399378 a004 Fibonacci(91)/Lucas(41)/(1/2+sqrt(5)/2)^32 2584000077399378 a004 Fibonacci(89)/Lucas(41)/(1/2+sqrt(5)/2)^30 2584000077399378 a004 Fibonacci(87)/Lucas(41)/(1/2+sqrt(5)/2)^28 2584000077399378 a004 Fibonacci(85)/Lucas(41)/(1/2+sqrt(5)/2)^26 2584000077399378 a004 Fibonacci(83)/Lucas(41)/(1/2+sqrt(5)/2)^24 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^58/Lucas(81) 2584000077399378 a004 Fibonacci(81)/Lucas(41)/(1/2+sqrt(5)/2)^22 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^56/Lucas(79) 2584000077399378 a004 Fibonacci(79)/Lucas(41)/(1/2+sqrt(5)/2)^20 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^54/Lucas(77) 2584000077399378 a004 Fibonacci(77)/Lucas(41)/(1/2+sqrt(5)/2)^18 2584000077399378 a004 Fibonacci(41)*Lucas(76)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^52/Lucas(75) 2584000077399378 a004 Fibonacci(75)/Lucas(41)/(1/2+sqrt(5)/2)^16 2584000077399378 a004 Fibonacci(41)*Lucas(74)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^50/Lucas(73) 2584000077399378 a004 Fibonacci(73)/Lucas(41)/(1/2+sqrt(5)/2)^14 2584000077399378 a004 Fibonacci(41)*Lucas(72)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^48/Lucas(71) 2584000077399378 a004 Fibonacci(71)/Lucas(41)/(1/2+sqrt(5)/2)^12 2584000077399378 a004 Fibonacci(41)*Lucas(70)/(1/2+sqrt(5)/2)^93 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^46/Lucas(69) 2584000077399378 a004 Fibonacci(69)/Lucas(41)/(1/2+sqrt(5)/2)^10 2584000077399378 a004 Fibonacci(41)*Lucas(68)/(1/2+sqrt(5)/2)^91 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^44/Lucas(67) 2584000077399378 a004 Fibonacci(67)/Lucas(41)/(1/2+sqrt(5)/2)^8 2584000077399378 a004 Fibonacci(41)*Lucas(66)/(1/2+sqrt(5)/2)^89 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^42/Lucas(65) 2584000077399378 a004 Fibonacci(65)/Lucas(41)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(41)*Lucas(64)/(1/2+sqrt(5)/2)^87 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^40/Lucas(63) 2584000077399378 a004 Fibonacci(63)/Lucas(41)/(1/2+sqrt(5)/2)^4 2584000077399378 a004 Fibonacci(41)*Lucas(62)/(1/2+sqrt(5)/2)^85 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^38/Lucas(61) 2584000077399378 a004 Fibonacci(61)/Lucas(41)/(1/2+sqrt(5)/2)^2 2584000077399378 a004 Fibonacci(41)*Lucas(60)/(1/2+sqrt(5)/2)^83 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^36/Lucas(59) 2584000077399378 a006 5^(1/2)*Fibonacci(59)/Lucas(41)/sqrt(5) 2584000077399378 a004 Fibonacci(41)*Lucas(58)/(1/2+sqrt(5)/2)^81 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^34/Lucas(57) 2584000077399378 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^2/Lucas(41) 2584000077399378 a001 165580141/1322157322203*505019158607^(5/8) 2584000077399378 a004 Fibonacci(41)*Lucas(56)/(1/2+sqrt(5)/2)^79 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^32/Lucas(55) 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^4/Lucas(41) 2584000077399378 a001 139583862445/370248451*23725150497407^(1/16) 2584000077399378 a001 165580141/312119004989*23725150497407^(1/2) 2584000077399378 a001 165580141/2139295485799*192900153618^(2/3) 2584000077399378 a001 165580141/9062201101803*192900153618^(13/18) 2584000077399378 a001 139583862445/370248451*73681302247^(1/13) 2584000077399378 a004 Fibonacci(41)*Lucas(54)/(1/2+sqrt(5)/2)^77 2584000077399378 a001 165580141/119218851371*312119004989^(6/11) 2584000077399378 a001 165580141/119218851371*14662949395604^(10/21) 2584000077399378 a001 53316291173/370248451*14662949395604^(2/21) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^30/Lucas(53) 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^6/Lucas(41) 2584000077399378 a001 165580141/119218851371*192900153618^(5/9) 2584000077399378 a001 86267571272/370248451*28143753123^(1/10) 2584000077399378 a001 165580141/312119004989*73681302247^(8/13) 2584000077399378 a001 165580141/2139295485799*73681302247^(9/13) 2584000077399378 a001 165580141/14662949395604*73681302247^(10/13) 2584000077399378 a004 Fibonacci(41)*Lucas(52)/(1/2+sqrt(5)/2)^75 2584000077399378 a001 12586269025/370248451*10749957122^(3/16) 2584000077399378 a001 165580141/45537549124*14662949395604^(4/9) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^28/Lucas(51) 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^8/Lucas(41) 2584000077399378 a001 20365011074/370248451*23725150497407^(1/8) 2584000077399378 a001 20365011074/370248451*73681302247^(2/13) 2584000077399378 a001 225851433717/370248451*10749957122^(1/16) 2584000077399378 a001 165580141/45537549124*73681302247^(7/13) 2584000077399378 a001 139583862445/370248451*10749957122^(1/12) 2584000077399378 a001 165580141/119218851371*28143753123^(3/5) 2584000077399378 a001 165580141/1322157322203*28143753123^(7/10) 2584000077399378 a001 165580141/14662949395604*28143753123^(4/5) 2584000077399378 a001 53316291173/370248451*10749957122^(1/8) 2584000077399378 a004 Fibonacci(41)*Lucas(50)/(1/2+sqrt(5)/2)^73 2584000077399378 a001 20365011074/370248451*10749957122^(1/6) 2584000077399378 a001 365435296162/370248451*4106118243^(1/23) 2584000077399378 a001 7778742049/370248451*312119004989^(2/11) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^26/Lucas(49) 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^10/Lucas(41) 2584000077399378 a001 165580141/17393796001*73681302247^(1/2) 2584000077399378 a001 7778742049/370248451*28143753123^(1/5) 2584000077399378 a001 165580141/28143753123*10749957122^(9/16) 2584000077399378 a001 7778742049/370248451*10749957122^(5/24) 2584000077399378 a001 139583862445/370248451*4106118243^(2/23) 2584000077399378 a001 165580141/119218851371*10749957122^(5/8) 2584000077399378 a001 165580141/45537549124*10749957122^(7/12) 2584000077399378 a001 165580141/312119004989*10749957122^(2/3) 2584000077399378 a001 165580141/505019158607*10749957122^(11/16) 2584000077399378 a001 165580141/817138163596*10749957122^(17/24) 2584000077399378 a001 165580141/2139295485799*10749957122^(3/4) 2584000077399378 a001 165580141/5600748293801*10749957122^(19/24) 2584000077399378 a001 165580141/9062201101803*10749957122^(13/16) 2584000077399378 a001 165580141/14662949395604*10749957122^(5/6) 2584000077399378 a001 53316291173/370248451*4106118243^(3/23) 2584000077399378 a001 165580141/17393796001*10749957122^(13/24) 2584000077399378 a004 Fibonacci(41)*Lucas(48)/(1/2+sqrt(5)/2)^71 2584000077399378 a001 20365011074/370248451*4106118243^(4/23) 2584000077399378 a001 1201881744/634430159*228826127^(3/8) 2584000077399378 a001 7778742049/370248451*4106118243^(5/23) 2584000077399378 a001 365435296162/370248451*1568397607^(1/22) 2584000077399378 a001 165580141/6643838879*45537549124^(8/17) 2584000077399378 a001 2971215073/370248451*45537549124^(4/17) 2584000077399378 a001 165580141/6643838879*14662949395604^(8/21) 2584000077399378 a001 2971215073/370248451*14662949395604^(4/21) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^24/Lucas(47) 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^12/Lucas(41) 2584000077399378 a001 2971215073/370248451*192900153618^(2/9) 2584000077399378 a001 165580141/6643838879*192900153618^(4/9) 2584000077399378 a001 2971215073/370248451*73681302247^(3/13) 2584000077399378 a001 165580141/6643838879*73681302247^(6/13) 2584000077399378 a001 2971215073/370248451*10749957122^(1/4) 2584000077399378 a001 165580141/6643838879*10749957122^(1/2) 2584000077399378 a001 165580141/45537549124*4106118243^(14/23) 2584000077399378 a001 165580141/17393796001*4106118243^(13/23) 2584000077399378 a001 139583862445/370248451*1568397607^(1/11) 2584000077399378 a001 2971215073/370248451*4106118243^(6/23) 2584000077399378 a001 165580141/119218851371*4106118243^(15/23) 2584000077399378 a001 165580141/312119004989*4106118243^(16/23) 2584000077399378 a001 165580141/817138163596*4106118243^(17/23) 2584000077399378 a001 165580141/2139295485799*4106118243^(18/23) 2584000077399378 a001 165580141/5600748293801*4106118243^(19/23) 2584000077399378 a001 165580141/14662949395604*4106118243^(20/23) 2584000077399378 a001 165580141/6643838879*4106118243^(12/23) 2584000077399378 a001 53316291173/370248451*1568397607^(3/22) 2584000077399378 a004 Fibonacci(41)*Lucas(46)/(1/2+sqrt(5)/2)^69 2584000077399378 a001 20365011074/370248451*1568397607^(2/11) 2584000077399378 a001 4807526976/370248451*1568397607^(1/4) 2584000077399378 a001 7778742049/370248451*1568397607^(5/22) 2584000077399378 a001 365435296162/370248451*599074578^(1/21) 2584000077399378 a001 2971215073/370248451*1568397607^(3/11) 2584000077399378 a001 1134903170/370248451*17393796001^(2/7) 2584000077399378 a001 165580141/2537720636*312119004989^(2/5) 2584000077399378 a001 1134903170/370248451*14662949395604^(2/9) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^22/Lucas(45) 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^14/Lucas(41) 2584000077399378 a001 1134903170/370248451*10749957122^(7/24) 2584000077399378 a001 165580141/2537720636*10749957122^(11/24) 2584000077399378 a001 1134903170/370248451*4106118243^(7/23) 2584000077399378 a001 165580141/2537720636*4106118243^(11/23) 2584000077399378 a001 225851433717/370248451*599074578^(1/14) 2584000077399378 a001 165580141/17393796001*1568397607^(13/22) 2584000077399378 a001 165580141/6643838879*1568397607^(6/11) 2584000077399378 a001 165580141/45537549124*1568397607^(7/11) 2584000077399378 a001 139583862445/370248451*599074578^(2/21) 2584000077399378 a001 1602508992/1368706081*228826127^(2/5) 2584000077399378 a001 165580141/119218851371*1568397607^(15/22) 2584000077399378 a001 1134903170/370248451*1568397607^(7/22) 2584000077399378 a001 165580141/312119004989*1568397607^(8/11) 2584000077399378 a001 165580141/505019158607*1568397607^(3/4) 2584000077399378 a001 165580141/817138163596*1568397607^(17/22) 2584000077399378 a001 165580141/2139295485799*1568397607^(9/11) 2584000077399378 a001 12586269025/10749957122*228826127^(2/5) 2584000077399378 a001 10983760033/9381251041*228826127^(2/5) 2584000077399378 a001 86267571272/73681302247*228826127^(2/5) 2584000077399378 a001 75283811239/64300051206*228826127^(2/5) 2584000077399378 a001 2504730781961/2139295485799*228826127^(2/5) 2584000077399378 a001 365435296162/312119004989*228826127^(2/5) 2584000077399378 a001 139583862445/119218851371*228826127^(2/5) 2584000077399378 a001 53316291173/45537549124*228826127^(2/5) 2584000077399378 a001 20365011074/17393796001*228826127^(2/5) 2584000077399378 a001 165580141/5600748293801*1568397607^(19/22) 2584000077399378 a001 165580141/2537720636*1568397607^(1/2) 2584000077399378 a001 267914296/4106118243*228826127^(11/20) 2584000077399378 a001 165580141/14662949395604*1568397607^(10/11) 2584000077399378 a001 7778742049/6643838879*228826127^(2/5) 2584000077399378 a001 31622993/96450076809*141422324^(11/13) 2584000077399378 a001 53316291173/370248451*599074578^(1/7) 2584000077399378 a004 Fibonacci(41)*Lucas(44)/(1/2+sqrt(5)/2)^67 2584000077399378 a001 32951280099/370248451*599074578^(1/6) 2584000077399378 a001 2971215073/969323029*228826127^(7/20) 2584000077399378 a001 701408733/1568397607*228826127^(9/20) 2584000077399378 a001 2971215073/2537720636*228826127^(2/5) 2584000077399378 a001 20365011074/370248451*599074578^(4/21) 2584000077399378 a001 701408733/370248451*599074578^(5/14) 2584000077399378 a001 12586269025/370248451*599074578^(3/14) 2584000077399378 a001 956722026041/969323029*87403803^(1/19) 2584000077399378 a001 7778742049/370248451*599074578^(5/21) 2584000077399378 a001 2971215073/370248451*599074578^(2/7) 2584000077399378 a001 1836311903/969323029*228826127^(3/8) 2584000077399378 a001 365435296162/370248451*228826127^(1/20) 2584000077399378 a001 165580141/1568397607*599074578^(1/2) 2584000077399378 a001 165580141/969323029*2537720636^(4/9) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^20/Lucas(43) 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^16/Lucas(41) 2584000077399378 a001 165580141/969323029*23725150497407^(5/16) 2584000077399378 a001 165580141/969323029*505019158607^(5/14) 2584000077399378 a001 433494437/370248451*73681302247^(4/13) 2584000077399378 a001 165580141/969323029*73681302247^(5/13) 2584000077399378 a001 165580141/969323029*28143753123^(2/5) 2584000077399378 a001 433494437/370248451*10749957122^(1/3) 2584000077399378 a001 165580141/969323029*10749957122^(5/12) 2584000077399378 a001 1134903170/370248451*599074578^(1/3) 2584000077399378 a001 433494437/370248451*4106118243^(8/23) 2584000077399378 a001 165580141/969323029*4106118243^(10/23) 2584000077399378 a001 12586269025/228826127*87403803^(4/19) 2584000077399378 a001 1836311903/4106118243*228826127^(9/20) 2584000077399378 a001 433494437/370248451*1568397607^(4/11) 2584000077399378 a001 165580141/969323029*1568397607^(5/11) 2584000077399378 a001 2403763488/5374978561*228826127^(9/20) 2584000077399378 a001 12586269025/28143753123*228826127^(9/20) 2584000077399378 a001 32951280099/73681302247*228826127^(9/20) 2584000077399378 a001 43133785636/96450076809*228826127^(9/20) 2584000077399378 a001 225851433717/505019158607*228826127^(9/20) 2584000077399378 a001 10610209857723/23725150497407*228826127^(9/20) 2584000077399378 a001 182717648081/408569081798*228826127^(9/20) 2584000077399378 a001 139583862445/312119004989*228826127^(9/20) 2584000077399378 a001 53316291173/119218851371*228826127^(9/20) 2584000077399378 a001 10182505537/22768774562*228826127^(9/20) 2584000077399378 a001 7778742049/17393796001*228826127^(9/20) 2584000077399378 a001 2971215073/6643838879*228826127^(9/20) 2584000077399378 a001 133957148/5374978561*228826127^(3/5) 2584000077399378 a001 1134903170/969323029*228826127^(2/5) 2584000077399378 a001 567451585/1268860318*228826127^(9/20) 2584000077399378 a001 165580141/2537720636*599074578^(11/21) 2584000077399378 a001 165580141/6643838879*599074578^(4/7) 2584000077399378 a001 165580141/17393796001*599074578^(13/21) 2584000077399378 a001 233802911/1368706081*228826127^(1/2) 2584000077399378 a001 165580141/28143753123*599074578^(9/14) 2584000077399378 a001 165580141/45537549124*599074578^(2/3) 2584000077399378 a001 9238424/599786069*228826127^(5/8) 2584000077399378 a001 139583862445/370248451*228826127^(1/10) 2584000077399378 a001 165580141/119218851371*599074578^(5/7) 2584000077399378 a001 165580141/312119004989*599074578^(16/21) 2584000077399378 a001 433494437/370248451*599074578^(8/21) 2584000077399378 a001 1836311903/10749957122*228826127^(1/2) 2584000077399378 a001 165580141/505019158607*599074578^(11/14) 2584000077399378 a001 1602508992/9381251041*228826127^(1/2) 2584000077399378 a001 12586269025/73681302247*228826127^(1/2) 2584000077399378 a001 10983760033/64300051206*228826127^(1/2) 2584000077399378 a001 86267571272/505019158607*228826127^(1/2) 2584000077399378 a001 75283811239/440719107401*228826127^(1/2) 2584000077399378 a001 2504730781961/14662949395604*228826127^(1/2) 2584000077399378 a001 139583862445/817138163596*228826127^(1/2) 2584000077399378 a001 53316291173/312119004989*228826127^(1/2) 2584000077399378 a001 20365011074/119218851371*228826127^(1/2) 2584000077399378 a001 165580141/817138163596*599074578^(17/21) 2584000077399378 a001 7778742049/45537549124*228826127^(1/2) 2584000077399378 a001 2971215073/17393796001*228826127^(1/2) 2584000077399378 a001 165580141/1322157322203*599074578^(5/6) 2584000077399378 a001 267914296/28143753123*228826127^(13/20) 2584000077399378 a001 86267571272/370248451*228826127^(1/8) 2584000077399378 a001 165580141/2139295485799*599074578^(6/7) 2584000077399378 a001 165580141/969323029*599074578^(10/21) 2584000077399378 a001 1134903170/6643838879*228826127^(1/2) 2584000077399378 a001 165580141/5600748293801*599074578^(19/21) 2584000077399378 a001 165580141/9062201101803*599074578^(13/14) 2584000077399378 a001 165580141/14662949395604*599074578^(20/21) 2584000077399378 a004 Fibonacci(41)*Lucas(42)/(1/2+sqrt(5)/2)^65 2584000077399378 a001 701408733/10749957122*228826127^(11/20) 2584000077399378 a001 53316291173/370248451*228826127^(3/20) 2584000077399378 a001 1836311903/28143753123*228826127^(11/20) 2584000077399378 a001 686789568/10525900321*228826127^(11/20) 2584000077399378 a001 12586269025/192900153618*228826127^(11/20) 2584000077399378 a001 32951280099/505019158607*228826127^(11/20) 2584000077399378 a001 86267571272/1322157322203*228826127^(11/20) 2584000077399378 a001 32264490531/494493258286*228826127^(11/20) 2584000077399378 a001 1548008755920/23725150497407*228826127^(11/20) 2584000077399378 a001 365435296162/5600748293801*228826127^(11/20) 2584000077399378 a001 139583862445/2139295485799*228826127^(11/20) 2584000077399378 a001 53316291173/817138163596*228826127^(11/20) 2584000077399378 a001 20365011074/312119004989*228826127^(11/20) 2584000077399378 a001 7778742049/119218851371*228826127^(11/20) 2584000077399378 a001 2971215073/45537549124*228826127^(11/20) 2584000077399378 a001 267914296/73681302247*228826127^(7/10) 2584000077399378 a001 1134903170/17393796001*228826127^(11/20) 2584000077399378 a001 433494437/969323029*228826127^(9/20) 2584000077399378 a001 433494437/2537720636*228826127^(1/2) 2584000077399378 a001 267913919/710646*87403803^(2/19) 2584000077399378 a001 233802911/9381251041*228826127^(3/5) 2584000077399378 a001 20365011074/370248451*228826127^(1/5) 2584000077399378 a001 1836311903/73681302247*228826127^(3/5) 2584000077399378 a001 267084832/10716675201*228826127^(3/5) 2584000077399378 a001 12586269025/505019158607*228826127^(3/5) 2584000077399378 a001 10983760033/440719107401*228826127^(3/5) 2584000077399378 a001 43133785636/1730726404001*228826127^(3/5) 2584000077399378 a001 75283811239/3020733700601*228826127^(3/5) 2584000077399378 a001 182717648081/7331474697802*228826127^(3/5) 2584000077399378 a001 139583862445/5600748293801*228826127^(3/5) 2584000077399378 a001 53316291173/2139295485799*228826127^(3/5) 2584000077399378 a001 10182505537/408569081798*228826127^(3/5) 2584000077399378 a001 7778742049/312119004989*228826127^(3/5) 2584000077399378 a001 2971215073/119218851371*228826127^(3/5) 2584000077399378 a001 701408733/45537549124*228826127^(5/8) 2584000077399378 a001 133957148/96450076809*228826127^(3/4) 2584000077399378 a001 31622993/22768774562*141422324^(10/13) 2584000077399378 a001 433494437/6643838879*228826127^(11/20) 2584000077399378 a001 567451585/22768774562*228826127^(3/5) 2584000077399378 a001 1836311903/119218851371*228826127^(5/8) 2584000077399378 a001 4807526976/312119004989*228826127^(5/8) 2584000077399378 a001 12586269025/817138163596*228826127^(5/8) 2584000077399378 a001 32951280099/2139295485799*228826127^(5/8) 2584000077399378 a001 86267571272/5600748293801*228826127^(5/8) 2584000077399378 a001 7787980473/505618944676*228826127^(5/8) 2584000077399378 a001 365435296162/23725150497407*228826127^(5/8) 2584000077399378 a001 139583862445/9062201101803*228826127^(5/8) 2584000077399378 a001 53316291173/3461452808002*228826127^(5/8) 2584000077399378 a001 20365011074/1322157322203*228826127^(5/8) 2584000077399378 a001 7778742049/505019158607*228826127^(5/8) 2584000077399378 a001 2971215073/192900153618*228826127^(5/8) 2584000077399378 a001 701408733/73681302247*228826127^(13/20) 2584000077399378 a001 7778742049/370248451*228826127^(1/4) 2584000077399378 a001 1134903170/73681302247*228826127^(5/8) 2584000077399378 a001 1836311903/192900153618*228826127^(13/20) 2584000077399378 a001 102287808/10745088481*228826127^(13/20) 2584000077399378 a001 12586269025/1322157322203*228826127^(13/20) 2584000077399378 a001 32951280099/3461452808002*228826127^(13/20) 2584000077399378 a001 86267571272/9062201101803*228826127^(13/20) 2584000077399378 a001 225851433717/23725150497407*228826127^(13/20) 2584000077399378 a001 139583862445/14662949395604*228826127^(13/20) 2584000077399378 a001 53316291173/5600748293801*228826127^(13/20) 2584000077399378 a001 20365011074/2139295485799*228826127^(13/20) 2584000077399378 a001 7778742049/817138163596*228826127^(13/20) 2584000077399378 a001 2971215073/312119004989*228826127^(13/20) 2584000077399378 a001 267914296/505019158607*228826127^(4/5) 2584000077399378 a001 433494437/17393796001*228826127^(3/5) 2584000077399378 a001 1134903170/119218851371*228826127^(13/20) 2584000077399378 a001 233802911/64300051206*228826127^(7/10) 2584000077399378 a001 433494437/28143753123*228826127^(5/8) 2584000077399378 a001 2971215073/370248451*228826127^(3/10) 2584000077399378 a001 1836311903/505019158607*228826127^(7/10) 2584000077399378 a001 1602508992/440719107401*228826127^(7/10) 2584000077399378 a001 12586269025/3461452808002*228826127^(7/10) 2584000077399378 a001 10983760033/3020733700601*228826127^(7/10) 2584000077399378 a001 86267571272/23725150497407*228826127^(7/10) 2584000077399378 a001 53316291173/14662949395604*228826127^(7/10) 2584000077399378 a001 20365011074/5600748293801*228826127^(7/10) 2584000077399378 a001 7778742049/2139295485799*228826127^(7/10) 2584000077399378 a001 591286729879/1568397607*87403803^(2/19) 2584000077399378 a001 2971215073/817138163596*228826127^(7/10) 2584000077399378 a001 267914296/1322157322203*228826127^(17/20) 2584000077399378 a001 433494437/45537549124*228826127^(13/20) 2584000077399378 a001 1134903170/312119004989*228826127^(7/10) 2584000077399378 a001 516002918640/1368706081*87403803^(2/19) 2584000077399378 a001 4052739537881/10749957122*87403803^(2/19) 2584000077399378 a001 3536736619241/9381251041*87403803^(2/19) 2584000077399378 a001 6557470319842/17393796001*87403803^(2/19) 2584000077399378 a001 2504730781961/6643838879*87403803^(2/19) 2584000077399378 a001 701408733/505019158607*228826127^(3/4) 2584000077399378 a001 267914296/2139295485799*228826127^(7/8) 2584000077399378 a001 956722026041/2537720636*87403803^(2/19) 2584000077399378 a001 701408733/370248451*228826127^(3/8) 2584000077399378 a001 1134903170/370248451*228826127^(7/20) 2584000077399378 a001 365435296162/370248451*87403803^(1/19) 2584000077399378 a001 1836311903/1322157322203*228826127^(3/4) 2584000077399378 a001 14930208/10749853441*228826127^(3/4) 2584000077399378 a001 12586269025/9062201101803*228826127^(3/4) 2584000077399378 a001 32951280099/23725150497407*228826127^(3/4) 2584000077399378 a001 10182505537/7331474697802*228826127^(3/4) 2584000077399378 a001 7778742049/5600748293801*228826127^(3/4) 2584000077399378 a001 2971215073/2139295485799*228826127^(3/4) 2584000077399378 a001 133957148/1730726404001*228826127^(9/10) 2584000077399378 a001 433494437/119218851371*228826127^(7/10) 2584000077399378 a001 567451585/408569081798*228826127^(3/4) 2584000077399378 a001 165580141/370248451*2537720636^(2/5) 2584000077399378 a001 165580141/370248451*45537549124^(6/17) 2584000077399378 a001 165580141/370248451*14662949395604^(2/7) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^18/Lucas(41) 2584000077399378 a001 165580141/370248451*192900153618^(1/3) 2584000077399378 a001 165580141/370248451*10749957122^(3/8) 2584000077399378 a001 165580141/370248451*4106118243^(9/23) 2584000077399378 a001 165580141/370248451*1568397607^(9/22) 2584000077399378 a001 365435296162/969323029*87403803^(2/19) 2584000077399378 a001 233802911/440719107401*228826127^(4/5) 2584000077399378 a001 1836311903/3461452808002*228826127^(4/5) 2584000077399378 a001 1602508992/3020733700601*228826127^(4/5) 2584000077399378 a001 12586269025/23725150497407*228826127^(4/5) 2584000077399378 a001 7778742049/14662949395604*228826127^(4/5) 2584000077399378 a001 2971215073/5600748293801*228826127^(4/5) 2584000077399378 a001 102287808/4868641*87403803^(5/19) 2584000077399378 a001 267914296/9062201101803*228826127^(19/20) 2584000077399378 a001 31622993/5374978561*141422324^(9/13) 2584000077399378 a001 433494437/312119004989*228826127^(3/4) 2584000077399378 a001 1134903170/2139295485799*228826127^(4/5) 2584000077399378 a001 165580141/370248451*599074578^(3/7) 2584000077399378 a001 701408733/3461452808002*228826127^(17/20) 2584000077399378 a001 433494437/370248451*228826127^(2/5) 2584000077399378 a001 1836311903/9062201101803*228826127^(17/20) 2584000077399378 a001 4807526976/23725150497407*228826127^(17/20) 2584000077399378 a001 2971215073/14662949395604*228826127^(17/20) 2584000077399378 a001 701408733/5600748293801*228826127^(7/8) 2584000077399378 a004 Fibonacci(42)*Lucas(40)/(1/2+sqrt(5)/2)^64 2584000077399378 a001 433494437/817138163596*228826127^(4/5) 2584000077399378 a001 1134903170/5600748293801*228826127^(17/20) 2584000077399378 a001 1836311903/14662949395604*228826127^(7/8) 2584000077399378 a001 63245986/6643838879*141422324^(2/3) 2584000077399378 a001 2971215073/23725150497407*228826127^(7/8) 2584000077399378 a001 233802911/3020733700601*228826127^(9/10) 2584000077399378 a001 1134903170/9062201101803*228826127^(7/8) 2584000077399378 a001 1836311903/23725150497407*228826127^(9/10) 2584000077399378 a001 433494437/2139295485799*228826127^(17/20) 2584000077399378 a001 567451585/7331474697802*228826127^(9/10) 2584000077399378 a001 701408733/23725150497407*228826127^(19/20) 2584000077399378 a001 433494437/3461452808002*228826127^(7/8) 2584000077399378 a001 43133785636/299537289*87403803^(3/19) 2584000077399378 a001 165580141/969323029*228826127^(1/2) 2584000077399378 a001 165580141/2537720636*228826127^(11/20) 2584000077399378 a001 433494437/5600748293801*228826127^(9/10) 2584000077399378 a001 12586269025/87403803*33385282^(1/6) 2584000077399378 a004 Fibonacci(44)*Lucas(40)/(1/2+sqrt(5)/2)^66 2584000077399378 a001 165580141/6643838879*228826127^(3/5) 2584000077399378 a004 Fibonacci(46)*Lucas(40)/(1/2+sqrt(5)/2)^68 2584000077399378 a004 Fibonacci(48)*Lucas(40)/(1/2+sqrt(5)/2)^70 2584000077399378 a004 Fibonacci(50)*Lucas(40)/(1/2+sqrt(5)/2)^72 2584000077399378 a004 Fibonacci(52)*Lucas(40)/(1/2+sqrt(5)/2)^74 2584000077399378 a004 Fibonacci(54)*Lucas(40)/(1/2+sqrt(5)/2)^76 2584000077399378 a004 Fibonacci(56)*Lucas(40)/(1/2+sqrt(5)/2)^78 2584000077399378 a004 Fibonacci(58)*Lucas(40)/(1/2+sqrt(5)/2)^80 2584000077399378 a004 Fibonacci(60)*Lucas(40)/(1/2+sqrt(5)/2)^82 2584000077399378 a004 Fibonacci(62)*Lucas(40)/(1/2+sqrt(5)/2)^84 2584000077399378 a004 Fibonacci(64)*Lucas(40)/(1/2+sqrt(5)/2)^86 2584000077399378 a004 Fibonacci(66)*Lucas(40)/(1/2+sqrt(5)/2)^88 2584000077399378 a004 Fibonacci(68)*Lucas(40)/(1/2+sqrt(5)/2)^90 2584000077399378 a004 Fibonacci(70)*Lucas(40)/(1/2+sqrt(5)/2)^92 2584000077399378 a004 Fibonacci(72)*Lucas(40)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(74)*Lucas(40)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(76)*Lucas(40)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(78)*Lucas(40)/(1/2+sqrt(5)/2)^100 2584000077399378 a001 2/102334155*(1/2+1/2*5^(1/2))^58 2584000077399378 a004 Fibonacci(77)*Lucas(40)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(75)*Lucas(40)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(73)*Lucas(40)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(71)*Lucas(40)/(1/2+sqrt(5)/2)^93 2584000077399378 a004 Fibonacci(69)*Lucas(40)/(1/2+sqrt(5)/2)^91 2584000077399378 a004 Fibonacci(67)*Lucas(40)/(1/2+sqrt(5)/2)^89 2584000077399378 a004 Fibonacci(65)*Lucas(40)/(1/2+sqrt(5)/2)^87 2584000077399378 a004 Fibonacci(63)*Lucas(40)/(1/2+sqrt(5)/2)^85 2584000077399378 a004 Fibonacci(61)*Lucas(40)/(1/2+sqrt(5)/2)^83 2584000077399378 a004 Fibonacci(59)*Lucas(40)/(1/2+sqrt(5)/2)^81 2584000077399378 a004 Fibonacci(57)*Lucas(40)/(1/2+sqrt(5)/2)^79 2584000077399378 a004 Fibonacci(55)*Lucas(40)/(1/2+sqrt(5)/2)^77 2584000077399378 a004 Fibonacci(53)*Lucas(40)/(1/2+sqrt(5)/2)^75 2584000077399378 a004 Fibonacci(51)*Lucas(40)/(1/2+sqrt(5)/2)^73 2584000077399378 a004 Fibonacci(49)*Lucas(40)/(1/2+sqrt(5)/2)^71 2584000077399378 a004 Fibonacci(47)*Lucas(40)/(1/2+sqrt(5)/2)^69 2584000077399378 a001 433494437/14662949395604*228826127^(19/20) 2584000077399378 a001 165580141/10749957122*228826127^(5/8) 2584000077399378 a004 Fibonacci(45)*Lucas(40)/(1/2+sqrt(5)/2)^67 2584000077399378 a001 31622993/1268860318*141422324^(8/13) 2584000077399378 a001 165580141/17393796001*228826127^(13/20) 2584000077399378 a004 Fibonacci(43)*Lucas(40)/(1/2+sqrt(5)/2)^65 2584000077399378 a001 32264490531/224056801*87403803^(3/19) 2584000077399378 a001 31622993/299537289*141422324^(7/13) 2584000077399378 a001 591286729879/4106118243*87403803^(3/19) 2584000077399378 a001 774004377960/5374978561*87403803^(3/19) 2584000077399378 a001 165580141/45537549124*228826127^(7/10) 2584000077399378 a001 4052739537881/28143753123*87403803^(3/19) 2584000077399378 a001 1515744265389/10525900321*87403803^(3/19) 2584000077399378 a001 3278735159921/22768774562*87403803^(3/19) 2584000077399378 a001 2504730781961/17393796001*87403803^(3/19) 2584000077399378 a001 956722026041/6643838879*87403803^(3/19) 2584000077399378 a001 182717648081/1268860318*87403803^(3/19) 2584000077399378 a001 139583862445/370248451*87403803^(2/19) 2584000077399378 a001 165580141/119218851371*228826127^(3/4) 2584000077399378 a001 139583862445/969323029*87403803^(3/19) 2584000077399378 a001 1836311903/228826127*87403803^(6/19) 2584000077399378 a001 165580141/312119004989*228826127^(4/5) 2584000077399378 a001 165580141/370248451*228826127^(9/20) 2584000077399378 a001 165580141/817138163596*228826127^(17/20) 2584000077399378 a001 102334155/228826127*87403803^(9/19) 2584000077399378 a001 165580141/1322157322203*228826127^(7/8) 2584000077399378 a001 165580141/2139295485799*228826127^(9/10) 2584000077399378 a001 10983760033/199691526*87403803^(4/19) 2584000077399378 a001 165580141/5600748293801*228826127^(19/20) 2584000077399378 a004 Fibonacci(41)*Lucas(40)/(1/2+sqrt(5)/2)^63 2584000077399378 a001 86267571272/1568397607*87403803^(4/19) 2584000077399378 a001 75283811239/1368706081*87403803^(4/19) 2584000077399378 a001 591286729879/10749957122*87403803^(4/19) 2584000077399378 a001 12585437040/228811001*87403803^(4/19) 2584000077399378 a001 4052739537881/73681302247*87403803^(4/19) 2584000077399378 a001 3536736619241/64300051206*87403803^(4/19) 2584000077399378 a001 6557470319842/119218851371*87403803^(4/19) 2584000077399378 a001 2504730781961/45537549124*87403803^(4/19) 2584000077399378 a001 956722026041/17393796001*87403803^(4/19) 2584000077399378 a001 365435296162/6643838879*87403803^(4/19) 2584000077399378 a001 139583862445/2537720636*87403803^(4/19) 2584000077399378 a001 53316291173/370248451*87403803^(3/19) 2584000077399378 a001 66978574/35355581*141422324^(5/13) 2584000077399378 a001 53316291173/969323029*87403803^(4/19) 2584000077399378 a001 701408733/228826127*87403803^(7/19) 2584000077399378 a001 225851433717/228826127*33385282^(1/18) 2584000077399378 a001 102334155/141422324*45537549124^(1/3) 2584000077399378 a001 63245986/228826127*817138163596^(1/3) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^19/Lucas(40) 2584000077399378 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^17/Lucas(39) 2584000077399378 a001 12586269025/599074578*87403803^(5/19) 2584000077399378 a001 701408733/141422324*141422324^(1/3) 2584000077399378 a001 267914296/228826127*87403803^(8/19) 2584000077399378 a001 32951280099/1568397607*87403803^(5/19) 2584000077399378 a001 86267571272/4106118243*87403803^(5/19) 2584000077399378 a001 225851433717/10749957122*87403803^(5/19) 2584000077399378 a001 591286729879/28143753123*87403803^(5/19) 2584000077399378 a001 1548008755920/73681302247*87403803^(5/19) 2584000077399378 a001 4052739537881/192900153618*87403803^(5/19) 2584000077399378 a001 225749145909/10745088481*87403803^(5/19) 2584000077399378 a001 6557470319842/312119004989*87403803^(5/19) 2584000077399378 a001 2504730781961/119218851371*87403803^(5/19) 2584000077399378 a001 956722026041/45537549124*87403803^(5/19) 2584000077399378 a001 365435296162/17393796001*87403803^(5/19) 2584000077399378 a001 139583862445/6643838879*87403803^(5/19) 2584000077399378 a001 53316291173/2537720636*87403803^(5/19) 2584000077399378 a001 567451585/70711162*141422324^(4/13) 2584000077399378 a001 20365011074/370248451*87403803^(4/19) 2584000077399378 a001 20365011074/969323029*87403803^(5/19) 2584000077399378 a001 1201881744/35355581*141422324^(3/13) 2584000077399378 a001 267084832/33281921*87403803^(6/19) 2584000077399378 a001 12586269025/1568397607*87403803^(6/19) 2584000077399378 a001 10983760033/1368706081*87403803^(6/19) 2584000077399378 a001 43133785636/5374978561*87403803^(6/19) 2584000077399378 a001 75283811239/9381251041*87403803^(6/19) 2584000077399378 a001 591286729879/73681302247*87403803^(6/19) 2584000077399378 a001 86000486440/10716675201*87403803^(6/19) 2584000077399378 a001 4052739537881/505019158607*87403803^(6/19) 2584000077399378 a001 3278735159921/408569081798*87403803^(6/19) 2584000077399378 a001 2504730781961/312119004989*87403803^(6/19) 2584000077399378 a001 956722026041/119218851371*87403803^(6/19) 2584000077399378 a001 182717648081/22768774562*87403803^(6/19) 2584000077399378 a001 139583862445/17393796001*87403803^(6/19) 2584000077399378 a001 53316291173/6643838879*87403803^(6/19) 2584000077399378 a001 10182505537/1268860318*87403803^(6/19) 2584000077399378 a001 7778742049/370248451*87403803^(5/19) 2584000077399378 a001 10182505537/70711162*141422324^(2/13) 2584000077399378 a001 7778742049/969323029*87403803^(6/19) 2584000077399378 a004 Fibonacci(39)*Lucas(41)/(1/2+sqrt(5)/2)^62 2584000077399378 a001 1836311903/599074578*87403803^(7/19) 2584000077399378 a001 21566892818/35355581*141422324^(1/13) 2584000077399378 a001 34111385/199691526*87403803^(10/19) 2584000077399378 a001 591286729879/599074578*33385282^(1/18) 2584000077399378 a001 31622993/299537289*2537720636^(7/15) 2584000077399378 a001 66978574/35355581*2537720636^(1/3) 2584000077399378 a001 31622993/299537289*17393796001^(3/7) 2584000077399378 a001 31622993/299537289*45537549124^(7/17) 2584000077399378 a001 66978574/35355581*45537549124^(5/17) 2584000077399378 a001 66978574/35355581*312119004989^(3/11) 2584000077399378 a001 1548008753336/599074577 2584000077399378 a001 31622993/299537289*14662949395604^(1/3) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^21/Lucas(42) 2584000077399378 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^15/Lucas(39) 2584000077399378 a001 66978574/35355581*192900153618^(5/18) 2584000077399378 a001 31622993/299537289*192900153618^(7/18) 2584000077399378 a001 66978574/35355581*28143753123^(3/10) 2584000077399378 a001 66978574/35355581*10749957122^(5/16) 2584000077399378 a001 31622993/299537289*10749957122^(7/16) 2584000077399378 a001 686789568/224056801*87403803^(7/19) 2584000077399378 a001 12586269025/4106118243*87403803^(7/19) 2584000077399378 a001 66978574/35355581*599074578^(5/14) 2584000077399378 a001 32951280099/10749957122*87403803^(7/19) 2584000077399378 a001 86267571272/28143753123*87403803^(7/19) 2584000077399378 a001 32264490531/10525900321*87403803^(7/19) 2584000077399378 a001 591286729879/192900153618*87403803^(7/19) 2584000077399378 a001 1548008755920/505019158607*87403803^(7/19) 2584000077399378 a001 1515744265389/494493258286*87403803^(7/19) 2584000077399378 a001 956722026041/312119004989*87403803^(7/19) 2584000077399378 a001 365435296162/119218851371*87403803^(7/19) 2584000077399378 a001 139583862445/45537549124*87403803^(7/19) 2584000077399378 a001 53316291173/17393796001*87403803^(7/19) 2584000077399378 a001 20365011074/6643838879*87403803^(7/19) 2584000077399378 a001 7778742049/2537720636*87403803^(7/19) 2584000077399378 a001 31622993/299537289*599074578^(1/2) 2584000077399378 a001 2971215073/370248451*87403803^(6/19) 2584000077399378 a004 Fibonacci(39)*Lucas(43)/(1/2+sqrt(5)/2)^64 2584000077399378 a001 2971215073/969323029*87403803^(7/19) 2584000077399378 a001 1548008755920/1568397607*33385282^(1/18) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^23/Lucas(44) 2584000077399378 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^13/Lucas(39) 2584000077399378 a001 701408733/141422324*73681302247^(1/4) 2584000077399378 a001 63245986/1568397607*4106118243^(1/2) 2584000077399378 a001 4052739537881/4106118243*33385282^(1/18) 2584000077399378 a001 4807525989/4870846*33385282^(1/18) 2584000077399378 a004 Fibonacci(39)*Lucas(45)/(1/2+sqrt(5)/2)^66 2584000077399378 a001 63245986/4106118243*2537720636^(5/9) 2584000077399378 a001 31622993/7331474697802*2537720636^(14/15) 2584000077399378 a001 63245986/5600748293801*2537720636^(8/9) 2584000077399378 a001 31622993/1730726404001*2537720636^(13/15) 2584000077399378 a001 6557470319842/6643838879*33385282^(1/18) 2584000077399378 a001 31622993/408569081798*2537720636^(4/5) 2584000077399378 a001 63245986/505019158607*2537720636^(7/9) 2584000077399378 a001 31622993/96450076809*2537720636^(11/15) 2584000077399378 a001 31622993/22768774562*2537720636^(2/3) 2584000077399378 a001 31622993/5374978561*2537720636^(3/5) 2584000077399378 a001 1836311903/141422324*312119004989^(1/5) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^25/Lucas(46) 2584000077399378 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^11/Lucas(39) 2584000077399378 a001 63245986/4106118243*3461452808002^(5/12) 2584000077399378 a001 63245986/4106118243*28143753123^(1/2) 2584000077399378 a001 1201881744/35355581*2537720636^(1/5) 2584000077399378 a004 Fibonacci(39)*Lucas(47)/(1/2+sqrt(5)/2)^68 2584000077399378 a001 10182505537/70711162*2537720636^(2/15) 2584000077399378 a001 63246219/271444*2537720636^(1/9) 2584000077399378 a001 2971215073/141422324*2537720636^(2/9) 2584000077399378 a001 21566892818/35355581*2537720636^(1/15) 2584000077399378 a001 31622993/5374978561*45537549124^(9/17) 2584000077399378 a001 1201881744/35355581*45537549124^(3/17) 2584000077399378 a001 1201881744/35355581*817138163596^(3/19) 2584000077399378 a001 1201881744/35355581*14662949395604^(1/7) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^27/Lucas(48) 2584000077399378 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^9/Lucas(39) 2584000077399378 a001 1201881744/35355581*192900153618^(1/6) 2584000077399378 a001 31622993/5374978561*192900153618^(1/2) 2584000077399378 a001 1201881744/35355581*10749957122^(3/16) 2584000077399378 a001 31622993/5374978561*10749957122^(9/16) 2584000077399378 a004 Fibonacci(39)*Lucas(49)/(1/2+sqrt(5)/2)^70 2584000077399378 a001 31622993/7331474697802*17393796001^(6/7) 2584000077399378 a001 63245986/505019158607*17393796001^(5/7) 2584000077399378 a001 12586269025/141422324*17393796001^(1/7) 2584000077399378 a001 12586269025/141422324*14662949395604^(1/9) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^29/Lucas(50) 2584000077399378 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^7/Lucas(39) 2584000077399378 a001 63245986/28143753123*1322157322203^(1/2) 2584000077399378 a004 Fibonacci(39)*Lucas(51)/(1/2+sqrt(5)/2)^72 2584000077399378 a001 31622993/7331474697802*45537549124^(14/17) 2584000077399378 a001 31622993/1730726404001*45537549124^(13/17) 2584000077399378 a001 31622993/408569081798*45537549124^(12/17) 2584000077399378 a001 63245986/312119004989*45537549124^(2/3) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^31/Lucas(52) 2584000077399378 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^5/Lucas(39) 2584000077399378 a001 63245986/73681302247*9062201101803^(1/2) 2584000077399378 a004 Fibonacci(39)*Lucas(53)/(1/2+sqrt(5)/2)^74 2584000077399378 a001 63246219/271444*28143753123^(1/10) 2584000077399378 a001 21566892818/35355581*45537549124^(1/17) 2584000077399378 a001 31622993/96450076809*312119004989^(3/5) 2584000077399378 a001 21566892818/35355581*14662949395604^(1/21) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^33/Lucas(54) 2584000077399378 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^3/Lucas(39) 2584000077399378 a001 21566892818/35355581*192900153618^(1/18) 2584000077399378 a001 31622993/96450076809*192900153618^(11/18) 2584000077399378 a004 Fibonacci(39)*Lucas(55)/(1/2+sqrt(5)/2)^76 2584000077399378 a001 63245986/505019158607*14662949395604^(5/9) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^35/Lucas(56) 2584000077399378 a004 Fibonacci(56)*(1/2+sqrt(5)/2)/Lucas(39) 2584000077399378 a004 Fibonacci(39)*Lucas(57)/(1/2+sqrt(5)/2)^78 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^37/Lucas(58) 2584000077399378 a004 Fibonacci(58)/Lucas(39)/(1/2+sqrt(5)/2) 2584000077399378 a004 Fibonacci(39)*Lucas(59)/(1/2+sqrt(5)/2)^80 2584000077399378 a001 31622993/1730726404001*14662949395604^(13/21) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^39/Lucas(60) 2584000077399378 a004 Fibonacci(60)/Lucas(39)/(1/2+sqrt(5)/2)^3 2584000077399378 a004 Fibonacci(39)*Lucas(61)/(1/2+sqrt(5)/2)^82 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^41/Lucas(62) 2584000077399378 a004 Fibonacci(62)/Lucas(39)/(1/2+sqrt(5)/2)^5 2584000077399378 a004 Fibonacci(39)*Lucas(63)/(1/2+sqrt(5)/2)^84 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^43/Lucas(64) 2584000077399378 a004 Fibonacci(64)/Lucas(39)/(1/2+sqrt(5)/2)^7 2584000077399378 a004 Fibonacci(39)*Lucas(65)/(1/2+sqrt(5)/2)^86 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^45/Lucas(66) 2584000077399378 a004 Fibonacci(66)/Lucas(39)/(1/2+sqrt(5)/2)^9 2584000077399378 a004 Fibonacci(39)*Lucas(67)/(1/2+sqrt(5)/2)^88 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^47/Lucas(68) 2584000077399378 a004 Fibonacci(68)/Lucas(39)/(1/2+sqrt(5)/2)^11 2584000077399378 a004 Fibonacci(39)*Lucas(69)/(1/2+sqrt(5)/2)^90 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^49/Lucas(70) 2584000077399378 a004 Fibonacci(70)/Lucas(39)/(1/2+sqrt(5)/2)^13 2584000077399378 a004 Fibonacci(39)*Lucas(71)/(1/2+sqrt(5)/2)^92 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^51/Lucas(72) 2584000077399378 a004 Fibonacci(72)/Lucas(39)/(1/2+sqrt(5)/2)^15 2584000077399378 a004 Fibonacci(39)*Lucas(73)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^53/Lucas(74) 2584000077399378 a004 Fibonacci(74)/Lucas(39)/(1/2+sqrt(5)/2)^17 2584000077399378 a004 Fibonacci(39)*Lucas(75)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^55/Lucas(76) 2584000077399378 a004 Fibonacci(76)/Lucas(39)/(1/2+sqrt(5)/2)^19 2584000077399378 a004 Fibonacci(39)*Lucas(77)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^57/Lucas(78) 2584000077399378 a004 Fibonacci(39)*Lucas(79)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^59/Lucas(80) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^61/Lucas(82) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^63/Lucas(84) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^65/Lucas(86) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^67/Lucas(88) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^69/Lucas(90) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^71/Lucas(92) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^73/Lucas(94) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^75/Lucas(96) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^77/Lucas(98) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^78/Lucas(99) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^79/Lucas(100) 2584000077399378 a004 Fibonacci(39)*Lucas(1)/(1/2+sqrt(5)/2)^21 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^76/Lucas(97) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^74/Lucas(95) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^72/Lucas(93) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^70/Lucas(91) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^68/Lucas(89) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^66/Lucas(87) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^64/Lucas(85) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^62/Lucas(83) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^60/Lucas(81) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^58/Lucas(79) 2584000077399378 a004 Fibonacci(80)/Lucas(39)/(1/2+sqrt(5)/2)^23 2584000077399378 a004 Fibonacci(82)/Lucas(39)/(1/2+sqrt(5)/2)^25 2584000077399378 a004 Fibonacci(84)/Lucas(39)/(1/2+sqrt(5)/2)^27 2584000077399378 a004 Fibonacci(86)/Lucas(39)/(1/2+sqrt(5)/2)^29 2584000077399378 a004 Fibonacci(88)/Lucas(39)/(1/2+sqrt(5)/2)^31 2584000077399378 a004 Fibonacci(90)/Lucas(39)/(1/2+sqrt(5)/2)^33 2584000077399378 a004 Fibonacci(92)/Lucas(39)/(1/2+sqrt(5)/2)^35 2584000077399378 a004 Fibonacci(94)/Lucas(39)/(1/2+sqrt(5)/2)^37 2584000077399378 a004 Fibonacci(96)/Lucas(39)/(1/2+sqrt(5)/2)^39 2584000077399378 a004 Fibonacci(98)/Lucas(39)/(1/2+sqrt(5)/2)^41 2584000077399378 a004 Fibonacci(100)/Lucas(39)/(1/2+sqrt(5)/2)^43 2584000077399378 a004 Fibonacci(97)/Lucas(39)/(1/2+sqrt(5)/2)^40 2584000077399378 a004 Fibonacci(99)/Lucas(39)/(1/2+sqrt(5)/2)^42 2584000077399378 a004 Fibonacci(95)/Lucas(39)/(1/2+sqrt(5)/2)^38 2584000077399378 a004 Fibonacci(93)/Lucas(39)/(1/2+sqrt(5)/2)^36 2584000077399378 a004 Fibonacci(91)/Lucas(39)/(1/2+sqrt(5)/2)^34 2584000077399378 a004 Fibonacci(89)/Lucas(39)/(1/2+sqrt(5)/2)^32 2584000077399378 a004 Fibonacci(87)/Lucas(39)/(1/2+sqrt(5)/2)^30 2584000077399378 a004 Fibonacci(85)/Lucas(39)/(1/2+sqrt(5)/2)^28 2584000077399378 a004 Fibonacci(83)/Lucas(39)/(1/2+sqrt(5)/2)^26 2584000077399378 a004 Fibonacci(81)/Lucas(39)/(1/2+sqrt(5)/2)^24 2584000077399378 a004 Fibonacci(79)/Lucas(39)/(1/2+sqrt(5)/2)^22 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^56/Lucas(77) 2584000077399378 a004 Fibonacci(77)/Lucas(39)/(1/2+sqrt(5)/2)^20 2584000077399378 a004 Fibonacci(39)*Lucas(76)/(1/2+sqrt(5)/2)^97 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^54/Lucas(75) 2584000077399378 a004 Fibonacci(75)/Lucas(39)/(1/2+sqrt(5)/2)^18 2584000077399378 a004 Fibonacci(39)*Lucas(74)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^52/Lucas(73) 2584000077399378 a004 Fibonacci(73)/Lucas(39)/(1/2+sqrt(5)/2)^16 2584000077399378 a004 Fibonacci(39)*Lucas(72)/(1/2+sqrt(5)/2)^93 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^50/Lucas(71) 2584000077399378 a004 Fibonacci(71)/Lucas(39)/(1/2+sqrt(5)/2)^14 2584000077399378 a004 Fibonacci(39)*Lucas(70)/(1/2+sqrt(5)/2)^91 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^48/Lucas(69) 2584000077399378 a004 Fibonacci(69)/Lucas(39)/(1/2+sqrt(5)/2)^12 2584000077399378 a004 Fibonacci(39)*Lucas(68)/(1/2+sqrt(5)/2)^89 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^46/Lucas(67) 2584000077399378 a004 Fibonacci(67)/Lucas(39)/(1/2+sqrt(5)/2)^10 2584000077399378 a004 Fibonacci(39)*Lucas(66)/(1/2+sqrt(5)/2)^87 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^44/Lucas(65) 2584000077399378 a004 Fibonacci(65)/Lucas(39)/(1/2+sqrt(5)/2)^8 2584000077399378 a004 Fibonacci(39)*Lucas(64)/(1/2+sqrt(5)/2)^85 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^42/Lucas(63) 2584000077399378 a004 Fibonacci(63)/Lucas(39)/(1/2+sqrt(5)/2)^6 2584000077399378 a004 Fibonacci(39)*Lucas(62)/(1/2+sqrt(5)/2)^83 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^40/Lucas(61) 2584000077399378 a004 Fibonacci(61)/Lucas(39)/(1/2+sqrt(5)/2)^4 2584000077399378 a004 Fibonacci(39)*Lucas(60)/(1/2+sqrt(5)/2)^81 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^38/Lucas(59) 2584000077399378 a004 Fibonacci(59)/Lucas(39)/(1/2+sqrt(5)/2)^2 2584000077399378 a004 Fibonacci(39)*Lucas(58)/(1/2+sqrt(5)/2)^79 2584000077399378 a001 31622993/408569081798*14662949395604^(4/7) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^36/Lucas(57) 2584000077399378 a004 Fibonacci(39)*Lucas(56)/(1/2+sqrt(5)/2)^77 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^34/Lucas(55) 2584000077399378 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^2/Lucas(39) 2584000077399378 a001 31622993/1730726404001*192900153618^(13/18) 2584000077399378 a001 31622993/408569081798*192900153618^(2/3) 2584000077399378 a004 Fibonacci(39)*Lucas(54)/(1/2+sqrt(5)/2)^75 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^32/Lucas(53) 2584000077399378 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^4/Lucas(39) 2584000077399378 a001 53316291173/141422324*23725150497407^(1/16) 2584000077399378 a001 63245986/119218851371*23725150497407^(1/2) 2584000077399378 a001 63245986/119218851371*505019158607^(4/7) 2584000077399378 a001 53316291173/141422324*73681302247^(1/13) 2584000077399378 a001 31622993/408569081798*73681302247^(9/13) 2584000077399378 a001 31622993/1730726404001*73681302247^(3/4) 2584000077399378 a001 63245986/119218851371*73681302247^(8/13) 2584000077399378 a004 Fibonacci(39)*Lucas(52)/(1/2+sqrt(5)/2)^73 2584000077399378 a001 31622993/22768774562*45537549124^(10/17) 2584000077399378 a001 139583862445/141422324*10749957122^(1/24) 2584000077399378 a001 10182505537/70711162*45537549124^(2/17) 2584000077399378 a001 31622993/22768774562*312119004989^(6/11) 2584000077399378 a001 2504730781961/2537720636*33385282^(1/18) 2584000077399378 a001 10182505537/70711162*14662949395604^(2/21) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^30/Lucas(51) 2584000077399378 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^6/Lucas(39) 2584000077399378 a001 31622993/22768774562*192900153618^(5/9) 2584000077399378 a001 21566892818/35355581*10749957122^(1/16) 2584000077399378 a001 53316291173/141422324*10749957122^(1/12) 2584000077399378 a001 63245986/505019158607*28143753123^(7/10) 2584000077399378 a001 63245986/5600748293801*28143753123^(4/5) 2584000077399378 a001 31622993/22768774562*28143753123^(3/5) 2584000077399378 a004 Fibonacci(39)*Lucas(50)/(1/2+sqrt(5)/2)^71 2584000077399378 a001 63245986/17393796001*17393796001^(4/7) 2584000077399378 a001 10182505537/70711162*10749957122^(1/8) 2584000077399378 a001 139583862445/141422324*4106118243^(1/23) 2584000077399378 a001 63245986/17393796001*14662949395604^(4/9) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^28/Lucas(49) 2584000077399378 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^8/Lucas(39) 2584000077399378 a001 7778742049/141422324*73681302247^(2/13) 2584000077399378 a001 63245986/17393796001*73681302247^(7/13) 2584000077399378 a001 7778742049/141422324*10749957122^(1/6) 2584000077399378 a001 53316291173/141422324*4106118243^(2/23) 2584000077399378 a001 63245986/119218851371*10749957122^(2/3) 2584000077399378 a001 31622993/22768774562*10749957122^(5/8) 2584000077399378 a001 31622993/96450076809*10749957122^(11/16) 2584000077399378 a001 63245986/312119004989*10749957122^(17/24) 2584000077399378 a001 31622993/408569081798*10749957122^(3/4) 2584000077399378 a001 63245986/2139295485799*10749957122^(19/24) 2584000077399378 a001 31622993/1730726404001*10749957122^(13/16) 2584000077399378 a001 63245986/5600748293801*10749957122^(5/6) 2584000077399378 a001 31622993/7331474697802*10749957122^(7/8) 2584000077399378 a001 10182505537/70711162*4106118243^(3/23) 2584000077399378 a001 63245986/17393796001*10749957122^(7/12) 2584000077399378 a004 Fibonacci(39)*Lucas(48)/(1/2+sqrt(5)/2)^69 2584000077399378 a001 7778742049/141422324*4106118243^(4/23) 2584000077399378 a001 139583862445/141422324*1568397607^(1/22) 2584000077399378 a001 2971215073/141422324*312119004989^(2/11) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^26/Lucas(47) 2584000077399378 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^10/Lucas(39) 2584000077399378 a001 63245986/6643838879*73681302247^(1/2) 2584000077399378 a001 2971215073/141422324*28143753123^(1/5) 2584000077399378 a001 2971215073/141422324*10749957122^(5/24) 2584000077399378 a001 63245986/6643838879*10749957122^(13/24) 2584000077399378 a001 2971215073/141422324*4106118243^(5/23) 2584000077399378 a001 53316291173/141422324*1568397607^(1/11) 2584000077399378 a001 31622993/22768774562*4106118243^(15/23) 2584000077399378 a001 63245986/17393796001*4106118243^(14/23) 2584000077399378 a001 63245986/119218851371*4106118243^(16/23) 2584000077399378 a001 1836311903/141422324*1568397607^(1/4) 2584000077399378 a001 63245986/312119004989*4106118243^(17/23) 2584000077399378 a001 31622993/408569081798*4106118243^(18/23) 2584000077399378 a001 63245986/2139295485799*4106118243^(19/23) 2584000077399378 a001 63245986/5600748293801*4106118243^(20/23) 2584000077399378 a001 31622993/7331474697802*4106118243^(21/23) 2584000077399378 a001 10182505537/70711162*1568397607^(3/22) 2584000077399378 a001 63245986/6643838879*4106118243^(13/23) 2584000077399378 a004 Fibonacci(39)*Lucas(46)/(1/2+sqrt(5)/2)^67 2584000077399378 a001 31622993/1268860318*2537720636^(8/15) 2584000077399378 a001 7778742049/141422324*1568397607^(2/11) 2584000077399378 a001 567451585/70711162*2537720636^(4/15) 2584000077399378 a001 2971215073/141422324*1568397607^(5/22) 2584000077399378 a001 139583862445/141422324*599074578^(1/21) 2584000077399378 a001 31622993/1268860318*45537549124^(8/17) 2584000077399378 a001 567451585/70711162*45537549124^(4/17) 2584000077399378 a001 31622993/1268860318*14662949395604^(8/21) 2584000077399378 a001 567451585/70711162*14662949395604^(4/21) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^24/Lucas(45) 2584000077399378 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^12/Lucas(39) 2584000077399378 a001 567451585/70711162*192900153618^(2/9) 2584000077399378 a001 31622993/1268860318*192900153618^(4/9) 2584000077399378 a001 567451585/70711162*73681302247^(3/13) 2584000077399378 a001 31622993/1268860318*73681302247^(6/13) 2584000077399378 a001 567451585/70711162*10749957122^(1/4) 2584000077399378 a001 31622993/1268860318*10749957122^(1/2) 2584000077399378 a001 567451585/70711162*4106118243^(6/23) 2584000077399378 a001 31622993/1268860318*4106118243^(12/23) 2584000077399378 a001 21566892818/35355581*599074578^(1/14) 2584000077399378 a001 63245986/17393796001*1568397607^(7/11) 2584000077399378 a001 63245986/6643838879*1568397607^(13/22) 2584000077399378 a001 53316291173/141422324*599074578^(2/21) 2584000077399378 a001 567451585/70711162*1568397607^(3/11) 2584000077399378 a001 31622993/22768774562*1568397607^(15/22) 2584000077399378 a001 63245986/119218851371*1568397607^(8/11) 2584000077399378 a001 31622993/96450076809*1568397607^(3/4) 2584000077399378 a001 63245986/312119004989*1568397607^(17/22) 2584000077399378 a001 31622993/408569081798*1568397607^(9/11) 2584000077399378 a001 63245986/2139295485799*1568397607^(19/22) 2584000077399378 a001 63245986/5600748293801*1568397607^(10/11) 2584000077399378 a001 31622993/1268860318*1568397607^(6/11) 2584000077399378 a001 31622993/7331474697802*1568397607^(21/22) 2584000077399378 a001 10182505537/70711162*599074578^(1/7) 2584000077399378 a004 Fibonacci(39)*Lucas(44)/(1/2+sqrt(5)/2)^65 2584000077399378 a001 12586269025/141422324*599074578^(1/6) 2584000077399378 a001 7778742049/141422324*599074578^(4/21) 2584000077399378 a001 1201881744/35355581*599074578^(3/14) 2584000077399378 a001 2971215073/141422324*599074578^(5/21) 2584000077399378 a001 956722026041/969323029*33385282^(1/18) 2584000077399378 a001 567451585/70711162*599074578^(2/7) 2584000077399378 a001 139583862445/141422324*228826127^(1/20) 2584000077399378 a001 433494437/141422324*17393796001^(2/7) 2584000077399378 a001 63245986/969323029*312119004989^(2/5) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^22/Lucas(43) 2584000077399378 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^14/Lucas(39) 2584000077399378 a001 27416783093579882/10610209857723 2584000077399378 a001 433494437/141422324*10749957122^(7/24) 2584000077399378 a001 63245986/969323029*10749957122^(11/24) 2584000077399378 a001 433494437/141422324*4106118243^(7/23) 2584000077399378 a001 63245986/969323029*4106118243^(11/23) 2584000077399378 a001 433494437/141422324*1568397607^(7/22) 2584000077399378 a001 63245986/969323029*1568397607^(1/2) 2584000077399378 a001 31622993/1268860318*599074578^(4/7) 2584000077399378 a001 63245986/6643838879*599074578^(13/21) 2584000077399378 a001 31622993/5374978561*599074578^(9/14) 2584000077399378 a001 63245986/17393796001*599074578^(2/3) 2584000077399378 a001 53316291173/141422324*228826127^(1/10) 2584000077399378 a001 233802911/199691526*87403803^(8/19) 2584000077399378 a001 31622993/22768774562*599074578^(5/7) 2584000077399378 a001 433494437/141422324*599074578^(1/3) 2584000077399378 a001 63245986/119218851371*599074578^(16/21) 2584000077399378 a001 31622993/96450076809*599074578^(11/14) 2584000077399378 a001 63245986/312119004989*599074578^(17/21) 2584000077399378 a001 63245986/505019158607*599074578^(5/6) 2584000077399378 a001 63246219/271444*228826127^(1/8) 2584000077399378 a001 31622993/408569081798*599074578^(6/7) 2584000077399378 a001 63245986/2139295485799*599074578^(19/21) 2584000077399378 a001 63245986/969323029*599074578^(11/21) 2584000077399378 a001 31622993/1730726404001*599074578^(13/14) 2584000077399378 a001 63245986/5600748293801*599074578^(20/21) 2584000077399378 a004 Fibonacci(39)*Lucas(42)/(1/2+sqrt(5)/2)^63 2584000077399378 a001 10182505537/70711162*228826127^(3/20) 2584000077399378 a001 102334155/370248451*87403803^(1/2) 2584000077399378 a001 7778742049/141422324*228826127^(1/5) 2584000077399378 a001 66978574/35355581*228826127^(3/8) 2584000077399378 a001 1836311903/1568397607*87403803^(8/19) 2584000077399378 a001 2971215073/141422324*228826127^(1/4) 2584000077399378 a001 1602508992/1368706081*87403803^(8/19) 2584000077399378 a001 12586269025/10749957122*87403803^(8/19) 2584000077399378 a001 10983760033/9381251041*87403803^(8/19) 2584000077399378 a001 86267571272/73681302247*87403803^(8/19) 2584000077399378 a001 75283811239/64300051206*87403803^(8/19) 2584000077399378 a001 2504730781961/2139295485799*87403803^(8/19) 2584000077399378 a001 365435296162/312119004989*87403803^(8/19) 2584000077399378 a001 139583862445/119218851371*87403803^(8/19) 2584000077399378 a001 53316291173/45537549124*87403803^(8/19) 2584000077399378 a001 20365011074/17393796001*87403803^(8/19) 2584000077399378 a001 7778742049/6643838879*87403803^(8/19) 2584000077399378 a001 2971215073/2537720636*87403803^(8/19) 2584000077399378 a001 139583862445/228826127*33385282^(1/12) 2584000077399378 a001 1134903170/370248451*87403803^(7/19) 2584000077399378 a001 567451585/70711162*228826127^(3/10) 2584000077399378 a001 14619165/224056801*87403803^(11/19) 2584000077399378 a001 1134903170/969323029*87403803^(8/19) 2584000077399378 a001 133957148/299537289*87403803^(9/19) 2584000077399378 a001 139583862445/141422324*87403803^(1/19) 2584000077399378 a001 365435296162/370248451*33385282^(1/18) 2584000077399378 a001 63245986/370248451*2537720636^(4/9) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^20/Lucas(41) 2584000077399378 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^16/Lucas(39) 2584000077399378 a001 10472279279564026/4052739537881 2584000077399378 a001 63245986/370248451*505019158607^(5/14) 2584000077399378 a001 165580141/141422324*73681302247^(4/13) 2584000077399378 a001 63245986/370248451*73681302247^(5/13) 2584000077399378 a001 63245986/370248451*28143753123^(2/5) 2584000077399378 a001 165580141/141422324*10749957122^(1/3) 2584000077399378 a001 63245986/370248451*10749957122^(5/12) 2584000077399378 a001 165580141/141422324*4106118243^(8/23) 2584000077399378 a001 63245986/370248451*4106118243^(10/23) 2584000077399378 a001 165580141/141422324*1568397607^(4/11) 2584000077399378 a001 63245986/370248451*1568397607^(5/11) 2584000077399378 a001 433494437/141422324*228826127^(7/20) 2584000077399378 a001 165580141/141422324*599074578^(8/21) 2584000077399378 a001 63245986/370248451*599074578^(10/21) 2584000077399378 a001 701408733/1568397607*87403803^(9/19) 2584000077399378 a001 63245986/969323029*228826127^(11/20) 2584000077399378 a001 31622993/1268860318*228826127^(3/5) 2584000077399378 a001 63245986/4106118243*228826127^(5/8) 2584000077399378 a001 1836311903/4106118243*87403803^(9/19) 2584000077399378 a001 2403763488/5374978561*87403803^(9/19) 2584000077399378 a001 12586269025/28143753123*87403803^(9/19) 2584000077399378 a001 32951280099/73681302247*87403803^(9/19) 2584000077399378 a001 43133785636/96450076809*87403803^(9/19) 2584000077399378 a001 225851433717/505019158607*87403803^(9/19) 2584000077399378 a001 10610209857723/23725150497407*87403803^(9/19) 2584000077399378 a001 182717648081/408569081798*87403803^(9/19) 2584000077399378 a001 139583862445/312119004989*87403803^(9/19) 2584000077399378 a001 53316291173/119218851371*87403803^(9/19) 2584000077399378 a001 10182505537/22768774562*87403803^(9/19) 2584000077399378 a001 7778742049/17393796001*87403803^(9/19) 2584000077399378 a001 2971215073/6643838879*87403803^(9/19) 2584000077399378 a001 567451585/1268860318*87403803^(9/19) 2584000077399378 a001 63245986/6643838879*228826127^(13/20) 2584000077399378 a001 63245986/17393796001*228826127^(7/10) 2584000077399378 a001 433494437/370248451*87403803^(8/19) 2584000077399378 a001 34111385/1368706081*87403803^(12/19) 2584000077399378 a001 267914296/969323029*87403803^(1/2) 2584000077399378 a001 53316291173/141422324*87403803^(2/19) 2584000077399378 a001 433494437/969323029*87403803^(9/19) 2584000077399378 a001 31622993/22768774562*228826127^(3/4) 2584000077399378 a001 165580141/141422324*228826127^(2/5) 2584000077399378 a001 701408733/2537720636*87403803^(1/2) 2584000077399378 a001 63245986/119218851371*228826127^(4/5) 2584000077399378 a001 1836311903/6643838879*87403803^(1/2) 2584000077399378 a001 4807526976/17393796001*87403803^(1/2) 2584000077399378 a001 12586269025/45537549124*87403803^(1/2) 2584000077399378 a001 32951280099/119218851371*87403803^(1/2) 2584000077399378 a001 86267571272/312119004989*87403803^(1/2) 2584000077399378 a001 225851433717/817138163596*87403803^(1/2) 2584000077399378 a001 1548008755920/5600748293801*87403803^(1/2) 2584000077399378 a001 139583862445/505019158607*87403803^(1/2) 2584000077399378 a001 53316291173/192900153618*87403803^(1/2) 2584000077399378 a001 20365011074/73681302247*87403803^(1/2) 2584000077399378 a001 7778742049/28143753123*87403803^(1/2) 2584000077399378 a001 2971215073/10749957122*87403803^(1/2) 2584000077399378 a001 1134903170/4106118243*87403803^(1/2) 2584000077399378 a001 267914296/1568397607*87403803^(10/19) 2584000077399378 a001 433494437/1568397607*87403803^(1/2) 2584000077399378 a001 63245986/312119004989*228826127^(17/20) 2584000077399378 a001 63245986/505019158607*228826127^(7/8) 2584000077399378 a001 63245986/370248451*228826127^(1/2) 2584000077399378 a001 31622993/408569081798*228826127^(9/10) 2584000077399378 a001 63245986/2139295485799*228826127^(19/20) 2584000077399378 a001 233802911/1368706081*87403803^(10/19) 2584000077399378 a001 1602508992/29134601*33385282^(2/9) 2584000077399378 a001 1836311903/10749957122*87403803^(10/19) 2584000077399378 a001 1602508992/9381251041*87403803^(10/19) 2584000077399378 a001 12586269025/73681302247*87403803^(10/19) 2584000077399378 a001 10983760033/64300051206*87403803^(10/19) 2584000077399378 a001 86267571272/505019158607*87403803^(10/19) 2584000077399378 a001 75283811239/440719107401*87403803^(10/19) 2584000077399378 a001 2504730781961/14662949395604*87403803^(10/19) 2584000077399378 a001 139583862445/817138163596*87403803^(10/19) 2584000077399378 a001 53316291173/312119004989*87403803^(10/19) 2584000077399378 a001 20365011074/119218851371*87403803^(10/19) 2584000077399378 a001 7778742049/45537549124*87403803^(10/19) 2584000077399378 a001 2971215073/17393796001*87403803^(10/19) 2584000077399378 a001 1134903170/6643838879*87403803^(10/19) 2584000077399378 a004 Fibonacci(39)*Lucas(40)/(1/2+sqrt(5)/2)^61 2584000077399378 a001 165580141/599074578*87403803^(1/2) 2584000077399378 a001 433494437/2537720636*87403803^(10/19) 2584000077399378 a001 102334155/10749957122*87403803^(13/19) 2584000077399378 a001 10182505537/70711162*87403803^(3/19) 2584000077399378 a001 182717648081/299537289*33385282^(1/12) 2584000077399378 a001 267914296/4106118243*87403803^(11/19) 2584000077399378 a001 956722026041/1568397607*33385282^(1/12) 2584000077399378 a001 2504730781961/4106118243*33385282^(1/12) 2584000077399378 a001 3278735159921/5374978561*33385282^(1/12) 2584000077399378 a001 10610209857723/17393796001*33385282^(1/12) 2584000077399378 a001 4052739537881/6643838879*33385282^(1/12) 2584000077399378 a001 1134903780/1860499*33385282^(1/12) 2584000077399378 a001 701408733/10749957122*87403803^(11/19) 2584000077399378 a001 1836311903/28143753123*87403803^(11/19) 2584000077399378 a001 686789568/10525900321*87403803^(11/19) 2584000077399378 a001 12586269025/192900153618*87403803^(11/19) 2584000077399378 a001 32951280099/505019158607*87403803^(11/19) 2584000077399378 a001 86267571272/1322157322203*87403803^(11/19) 2584000077399378 a001 32264490531/494493258286*87403803^(11/19) 2584000077399378 a001 1548008755920/23725150497407*87403803^(11/19) 2584000077399378 a001 139583862445/2139295485799*87403803^(11/19) 2584000077399378 a001 53316291173/817138163596*87403803^(11/19) 2584000077399378 a001 20365011074/312119004989*87403803^(11/19) 2584000077399378 a001 7778742049/119218851371*87403803^(11/19) 2584000077399378 a001 2971215073/45537549124*87403803^(11/19) 2584000077399378 a001 591286729879/969323029*33385282^(1/12) 2584000077399378 a001 1134903170/17393796001*87403803^(11/19) 2584000077399378 a001 165580141/370248451*87403803^(9/19) 2584000077399378 a001 433494437/6643838879*87403803^(11/19) 2584000077399378 a001 31622993/70711162*141422324^(6/13) 2584000077399378 a001 165580141/969323029*87403803^(10/19) 2584000077399378 a001 831985/228811001*87403803^(14/19) 2584000077399378 a001 7778742049/141422324*87403803^(4/19) 2584000077399378 a001 133957148/5374978561*87403803^(12/19) 2584000077399378 a001 86267571272/228826127*33385282^(1/9) 2584000077399378 a001 225851433717/370248451*33385282^(1/12) 2584000077399378 a001 233802911/9381251041*87403803^(12/19) 2584000077399378 a001 1836311903/73681302247*87403803^(12/19) 2584000077399378 a001 267084832/10716675201*87403803^(12/19) 2584000077399378 a001 12586269025/505019158607*87403803^(12/19) 2584000077399378 a001 10983760033/440719107401*87403803^(12/19) 2584000077399378 a001 43133785636/1730726404001*87403803^(12/19) 2584000077399378 a001 75283811239/3020733700601*87403803^(12/19) 2584000077399378 a001 182717648081/7331474697802*87403803^(12/19) 2584000077399378 a001 139583862445/5600748293801*87403803^(12/19) 2584000077399378 a001 53316291173/2139295485799*87403803^(12/19) 2584000077399378 a001 10182505537/408569081798*87403803^(12/19) 2584000077399378 a001 7778742049/312119004989*87403803^(12/19) 2584000077399378 a001 2971215073/119218851371*87403803^(12/19) 2584000077399378 a001 567451585/22768774562*87403803^(12/19) 2584000077399378 a001 165580141/2537720636*87403803^(11/19) 2584000077399378 a001 433494437/17393796001*87403803^(12/19) 2584000077399378 a001 14619165/10525900321*87403803^(15/19) 2584000077399378 a001 2971215073/141422324*87403803^(5/19) 2584000077399378 a001 267914296/28143753123*87403803^(13/19) 2584000077399378 a001 701408733/73681302247*87403803^(13/19) 2584000077399378 a001 1836311903/192900153618*87403803^(13/19) 2584000077399378 a001 102287808/10745088481*87403803^(13/19) 2584000077399378 a001 12586269025/1322157322203*87403803^(13/19) 2584000077399378 a001 32951280099/3461452808002*87403803^(13/19) 2584000077399378 a001 86267571272/9062201101803*87403803^(13/19) 2584000077399378 a001 225851433717/23725150497407*87403803^(13/19) 2584000077399378 a001 139583862445/14662949395604*87403803^(13/19) 2584000077399378 a001 53316291173/5600748293801*87403803^(13/19) 2584000077399378 a001 20365011074/2139295485799*87403803^(13/19) 2584000077399378 a001 7778742049/817138163596*87403803^(13/19) 2584000077399378 a001 2971215073/312119004989*87403803^(13/19) 2584000077399378 a001 1134903170/119218851371*87403803^(13/19) 2584000077399378 a001 165580141/6643838879*87403803^(12/19) 2584000077399378 a001 433494437/45537549124*87403803^(13/19) 2584000077399378 a001 34111385/64300051206*87403803^(16/19) 2584000077399378 a001 567451585/70711162*87403803^(6/19) 2584000077399378 a001 2971215073/87403803*33385282^(1/4) 2584000077399378 a001 267914296/73681302247*87403803^(14/19) 2584000077399378 a001 233802911/64300051206*87403803^(14/19) 2584000077399378 a001 63245986/228826127*87403803^(1/2) 2584000077399378 a001 1836311903/505019158607*87403803^(14/19) 2584000077399378 a001 1602508992/440719107401*87403803^(14/19) 2584000077399378 a001 12586269025/3461452808002*87403803^(14/19) 2584000077399378 a001 10983760033/3020733700601*87403803^(14/19) 2584000077399378 a001 86267571272/23725150497407*87403803^(14/19) 2584000077399378 a001 53316291173/14662949395604*87403803^(14/19) 2584000077399378 a001 20365011074/5600748293801*87403803^(14/19) 2584000077399378 a001 7778742049/2139295485799*87403803^(14/19) 2584000077399378 a001 2971215073/817138163596*87403803^(14/19) 2584000077399378 a001 1134903170/312119004989*87403803^(14/19) 2584000077399378 a001 165580141/17393796001*87403803^(13/19) 2584000077399378 a001 267913919/710646*33385282^(1/9) 2584000077399378 a001 433494437/119218851371*87403803^(14/19) 2584000077399378 a001 102334155/505019158607*87403803^(17/19) 2584000077399378 a001 591286729879/1568397607*33385282^(1/9) 2584000077399378 a001 433494437/141422324*87403803^(7/19) 2584000077399378 a001 516002918640/1368706081*33385282^(1/9) 2584000077399378 a001 4052739537881/10749957122*33385282^(1/9) 2584000077399378 a001 3536736619241/9381251041*33385282^(1/9) 2584000077399378 a001 6557470319842/17393796001*33385282^(1/9) 2584000077399378 a001 2504730781961/6643838879*33385282^(1/9) 2584000077399378 a001 139583862445/141422324*33385282^(1/18) 2584000077399378 a001 956722026041/2537720636*33385282^(1/9) 2584000077399378 a001 31622993/70711162*2537720636^(2/5) 2584000077399378 a001 31622993/70711162*45537549124^(6/17) 2584000077399378 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^18/Lucas(39) 2584000077399378 a001 1000013686278049/387002188980 2584000077399378 a001 31622993/70711162*192900153618^(1/3) 2584000077399378 a001 31622993/70711162*10749957122^(3/8) 2584000077399378 a001 31622993/70711162*4106118243^(9/23) 2584000077399378 a001 31622993/70711162*1568397607^(9/22) 2584000077399378 a001 133957148/96450076809*87403803^(15/19) 2584000077399378 a001 365435296162/969323029*33385282^(1/9) 2584000077399378 a001 31622993/70711162*599074578^(3/7) 2584000077399378 a001 701408733/505019158607*87403803^(15/19) 2584000077399378 a001 1836311903/1322157322203*87403803^(15/19) 2584000077399378 a001 14930208/10749853441*87403803^(15/19) 2584000077399378 a001 12586269025/9062201101803*87403803^(15/19) 2584000077399378 a001 32951280099/23725150497407*87403803^(15/19) 2584000077399378 a001 10182505537/7331474697802*87403803^(15/19) 2584000077399378 a001 7778742049/5600748293801*87403803^(15/19) 2584000077399378 a001 2971215073/2139295485799*87403803^(15/19) 2584000077399378 a001 567451585/408569081798*87403803^(15/19) 2584000077399378 a001 165580141/45537549124*87403803^(14/19) 2584000077399378 a001 433494437/312119004989*87403803^(15/19) 2584000077399378 a001 34111385/440719107401*87403803^(18/19) 2584000077399378 a001 139583862445/370248451*33385282^(1/9) 2584000077399378 a001 267914296/505019158607*87403803^(16/19) 2584000077399378 a001 31622993/70711162*228826127^(9/20) 2584000077399378 a001 233802911/440719107401*87403803^(16/19) 2584000077399378 a001 1836311903/3461452808002*87403803^(16/19) 2584000077399378 a001 1602508992/3020733700601*87403803^(16/19) 2584000077399378 a001 12586269025/23725150497407*87403803^(16/19) 2584000077399378 a001 7778742049/14662949395604*87403803^(16/19) 2584000077399378 a001 2971215073/5600748293801*87403803^(16/19) 2584000077399378 a001 1134903170/2139295485799*87403803^(16/19) 2584000077399378 a001 165580141/119218851371*87403803^(15/19) 2584000077399378 a001 433494437/817138163596*87403803^(16/19) 2584000077399378 a004 Fibonacci(40)*Lucas(38)/(1/2+sqrt(5)/2)^60 2584000077399378 a001 165580141/141422324*87403803^(8/19) 2584000077399378 a001 267914296/1322157322203*87403803^(17/19) 2584000077399378 a001 701408733/3461452808002*87403803^(17/19) 2584000077399378 a001 1836311903/9062201101803*87403803^(17/19) 2584000077399378 a001 4807526976/23725150497407*87403803^(17/19) 2584000077399378 a001 2971215073/14662949395604*87403803^(17/19) 2584000077399378 a001 1134903170/5600748293801*87403803^(17/19) 2584000077399378 a001 165580141/312119004989*87403803^(16/19) 2584000077399378 a001 433494437/2139295485799*87403803^(17/19) 2584000077399378 a001 1836311903/87403803*33385282^(5/18) 2584000077399378 a001 133957148/1730726404001*87403803^(18/19) 2584000077399378 a001 233802911/3020733700601*87403803^(18/19) 2584000077399378 a001 1836311903/23725150497407*87403803^(18/19) 2584000077399378 a001 567451585/7331474697802*87403803^(18/19) 2584000077399378 a001 165580141/817138163596*87403803^(17/19) 2584000077399378 a001 21566892818/35355581*33385282^(1/12) 2584000077399378 a001 433494437/5600748293801*87403803^(18/19) 2584000077399378 a001 63245986/370248451*87403803^(10/19) 2584000077399378 a001 63245986/969323029*87403803^(11/19) 2584000077399378 a004 Fibonacci(42)*Lucas(38)/(1/2+sqrt(5)/2)^62 2584000077399378 a001 32951280099/228826127*33385282^(1/6) 2584000077399378 a004 Fibonacci(44)*Lucas(38)/(1/2+sqrt(5)/2)^64 2584000077399378 a004 Fibonacci(46)*Lucas(38)/(1/2+sqrt(5)/2)^66 2584000077399378 a004 Fibonacci(48)*Lucas(38)/(1/2+sqrt(5)/2)^68 2584000077399378 a004 Fibonacci(50)*Lucas(38)/(1/2+sqrt(5)/2)^70 2584000077399378 a004 Fibonacci(52)*Lucas(38)/(1/2+sqrt(5)/2)^72 2584000077399378 a004 Fibonacci(54)*Lucas(38)/(1/2+sqrt(5)/2)^74 2584000077399378 a004 Fibonacci(56)*Lucas(38)/(1/2+sqrt(5)/2)^76 2584000077399378 a004 Fibonacci(58)*Lucas(38)/(1/2+sqrt(5)/2)^78 2584000077399378 a004 Fibonacci(60)*Lucas(38)/(1/2+sqrt(5)/2)^80 2584000077399378 a004 Fibonacci(62)*Lucas(38)/(1/2+sqrt(5)/2)^82 2584000077399378 a004 Fibonacci(64)*Lucas(38)/(1/2+sqrt(5)/2)^84 2584000077399378 a004 Fibonacci(66)*Lucas(38)/(1/2+sqrt(5)/2)^86 2584000077399378 a004 Fibonacci(68)*Lucas(38)/(1/2+sqrt(5)/2)^88 2584000077399378 a004 Fibonacci(70)*Lucas(38)/(1/2+sqrt(5)/2)^90 2584000077399378 a004 Fibonacci(72)*Lucas(38)/(1/2+sqrt(5)/2)^92 2584000077399378 a004 Fibonacci(74)*Lucas(38)/(1/2+sqrt(5)/2)^94 2584000077399378 a004 Fibonacci(76)*Lucas(38)/(1/2+sqrt(5)/2)^96 2584000077399378 a004 Fibonacci(78)*Lucas(38)/(1/2+sqrt(5)/2)^98 2584000077399378 a004 Fibonacci(80)*Lucas(38)/(1/2+sqrt(5)/2)^100 2584000077399378 a004 Fibonacci(79)*Lucas(38)/(1/2+sqrt(5)/2)^99 2584000077399378 a004 Fibonacci(77)*Lucas(38)/(1/2+sqrt(5)/2)^97 2584000077399378 a001 2/39088169*(1/2+1/2*5^(1/2))^56 2584000077399378 a004 Fibonacci(75)*Lucas(38)/(1/2+sqrt(5)/2)^95 2584000077399378 a004 Fibonacci(73)*Lucas(38)/(1/2+sqrt(5)/2)^93 2584000077399378 a004 Fibonacci(71)*Lucas(38)/(1/2+sqrt(5)/2)^91 2584000077399378 a004 Fibonacci(69)*Lucas(38)/(1/2+sqrt(5)/2)^89 2584000077399378 a004 Fibonacci(67)*Lucas(38)/(1/2+sqrt(5)/2)^87 2584000077399378 a004 Fibonacci(65)*Lucas(38)/(1/2+sqrt(5)/2)^85 2584000077399378 a004 Fibonacci(63)*Lucas(38)/(1/2+sqrt(5)/2)^83 2584000077399378 a004 Fibonacci(61)*Lucas(38)/(1/2+sqrt(5)/2)^81 2584000077399378 a004 Fibonacci(59)*Lucas(38)/(1/2+sqrt(5)/2)^79 2584000077399378 a004 Fibonacci(57)*Lucas(38)/(1/2+sqrt(5)/2)^77 2584000077399378 a004 Fibonacci(55)*Lucas(38)/(1/2+sqrt(5)/2)^75 2584000077399378 a004 Fibonacci(53)*Lucas(38)/(1/2+sqrt(5)/2)^73 2584000077399378 a004 Fibonacci(51)*Lucas(38)/(1/2+sqrt(5)/2)^71 2584000077399378 a004 Fibonacci(49)*Lucas(38)/(1/2+sqrt(5)/2)^69 2584000077399378 a004 Fibonacci(47)*Lucas(38)/(1/2+sqrt(5)/2)^67 2584000077399378 a004 Fibonacci(45)*Lucas(38)/(1/2+sqrt(5)/2)^65 2584000077399378 a001 165580141/2139295485799*87403803^(18/19) 2584000077399378 a004 Fibonacci(43)*Lucas(38)/(1/2+sqrt(5)/2)^63 2584000077399378 a001 31622993/1268860318*87403803^(12/19) 2584000077399378 a004 Fibonacci(41)*Lucas(38)/(1/2+sqrt(5)/2)^61 2584000077399378 a001 63245986/6643838879*87403803^(13/19) 2584000077399378 a001 63245986/17393796001*87403803^(14/19) 2584000077399378 a001 43133785636/299537289*33385282^(1/6) 2584000077399378 a001 32264490531/224056801*33385282^(1/6) 2584000077399378 a001 591286729879/4106118243*33385282^(1/6) 2584000077399378 a001 774004377960/5374978561*33385282^(1/6) 2584000077399378 a001 4052739537881/28143753123*33385282^(1/6) 2584000077399378 a001 1515744265389/10525900321*33385282^(1/6) 2584000077399378 a001 3278735159921/22768774562*33385282^(1/6) 2584000077399378 a001 2504730781961/17393796001*33385282^(1/6) 2584000077399378 a001 956722026041/6643838879*33385282^(1/6) 2584000077399378 a001 53316291173/141422324*33385282^(1/9) 2584000077399378 a001 182717648081/1268860318*33385282^(1/6) 2584000077399378 a001 139583862445/969323029*33385282^(1/6) 2584000077399378 a001 31622993/22768774562*87403803^(15/19) 2584000077399378 a001 53316291173/370248451*33385282^(1/6) 2584000077399378 a001 63245986/119218851371*87403803^(16/19) 2584000077399378 a001 31622993/70711162*87403803^(9/19) 2584000077399378 a001 63245986/312119004989*87403803^(17/19) 2584000077399378 a001 233802911/29134601*33385282^(1/3) 2584000077399378 a001 31622993/408569081798*87403803^(18/19) 2584000077399378 a001 12586269025/228826127*33385282^(2/9) 2584000077399378 a004 Fibonacci(39)*Lucas(38)/(1/2+sqrt(5)/2)^59 2584000077399378 a001 39088169/87403803*33385282^(1/2) 2584000077399378 a001 14930208/103681*12752043^(3/17) 2584000077399378 a001 10983760033/199691526*33385282^(2/9) 2584000077399379 a001 86267571272/1568397607*33385282^(2/9) 2584000077399379 a001 75283811239/1368706081*33385282^(2/9) 2584000077399379 a001 591286729879/10749957122*33385282^(2/9) 2584000077399379 a001 12585437040/228811001*33385282^(2/9) 2584000077399379 a001 4052739537881/73681302247*33385282^(2/9) 2584000077399379 a001 3536736619241/64300051206*33385282^(2/9) 2584000077399379 a001 6557470319842/119218851371*33385282^(2/9) 2584000077399379 a001 2504730781961/45537549124*33385282^(2/9) 2584000077399379 a001 956722026041/17393796001*33385282^(2/9) 2584000077399379 a001 365435296162/6643838879*33385282^(2/9) 2584000077399379 a001 10182505537/70711162*33385282^(1/6) 2584000077399379 a001 139583862445/2537720636*33385282^(2/9) 2584000077399379 a001 53316291173/969323029*33385282^(2/9) 2584000077399379 a001 7778742049/228826127*33385282^(1/4) 2584000077399379 a001 20365011074/370248451*33385282^(2/9) 2584000077399379 a001 39088169/54018521*45537549124^(1/3) 2584000077399379 a001 225851431133/87403802 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^19/Lucas(38) 2584000077399379 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^17/Lucas(37) 2584000077399379 a001 267914296/87403803*33385282^(7/18) 2584000077399379 a001 10182505537/299537289*33385282^(1/4) 2584000077399379 a001 53316291173/1568397607*33385282^(1/4) 2584000077399379 a001 139583862445/4106118243*33385282^(1/4) 2584000077399379 a001 182717648081/5374978561*33385282^(1/4) 2584000077399379 a001 956722026041/28143753123*33385282^(1/4) 2584000077399379 a001 2504730781961/73681302247*33385282^(1/4) 2584000077399379 a001 3278735159921/96450076809*33385282^(1/4) 2584000077399379 a001 10610209857723/312119004989*33385282^(1/4) 2584000077399379 a001 4052739537881/119218851371*33385282^(1/4) 2584000077399379 a001 387002188980/11384387281*33385282^(1/4) 2584000077399379 a001 591286729879/17393796001*33385282^(1/4) 2584000077399379 a001 225851433717/6643838879*33385282^(1/4) 2584000077399379 a001 1135099622/33391061*33385282^(1/4) 2584000077399379 a001 32951280099/969323029*33385282^(1/4) 2584000077399379 a001 102287808/4868641*33385282^(5/18) 2584000077399379 a001 86267571272/87403803*12752043^(1/17) 2584000077399379 a001 12586269025/370248451*33385282^(1/4) 2584000077399379 a001 12586269025/599074578*33385282^(5/18) 2584000077399379 a001 34111385/29134601*33385282^(4/9) 2584000077399379 a001 32951280099/1568397607*33385282^(5/18) 2584000077399379 a001 86267571272/4106118243*33385282^(5/18) 2584000077399379 a001 225851433717/10749957122*33385282^(5/18) 2584000077399379 a001 591286729879/28143753123*33385282^(5/18) 2584000077399379 a001 1548008755920/73681302247*33385282^(5/18) 2584000077399379 a001 4052739537881/192900153618*33385282^(5/18) 2584000077399379 a001 225749145909/10745088481*33385282^(5/18) 2584000077399379 a001 6557470319842/312119004989*33385282^(5/18) 2584000077399379 a001 2504730781961/119218851371*33385282^(5/18) 2584000077399379 a001 956722026041/45537549124*33385282^(5/18) 2584000077399379 a001 365435296162/17393796001*33385282^(5/18) 2584000077399379 a001 139583862445/6643838879*33385282^(5/18) 2584000077399379 a001 53316291173/2537720636*33385282^(5/18) 2584000077399379 a001 7778742049/141422324*33385282^(2/9) 2584000077399379 a001 165580141/87403803*33385282^(5/12) 2584000077399379 a001 20365011074/969323029*33385282^(5/18) 2584000077399379 a001 7778742049/370248451*33385282^(5/18) 2584000077399379 a001 1201881744/35355581*33385282^(1/4) 2584000077399379 a001 24157817/87403803*87403803^(1/2) 2584000077399379 a001 1836311903/228826127*33385282^(1/3) 2584000077399379 a004 Fibonacci(37)*Lucas(39)/(1/2+sqrt(5)/2)^58 2584000077399379 a001 267084832/33281921*33385282^(1/3) 2584000077399379 a001 24157817/312119004989*141422324^(12/13) 2584000077399379 a001 24157817/228826127*141422324^(7/13) 2584000077399379 a001 12586269025/1568397607*33385282^(1/3) 2584000077399379 a001 10983760033/1368706081*33385282^(1/3) 2584000077399379 a001 43133785636/5374978561*33385282^(1/3) 2584000077399379 a001 75283811239/9381251041*33385282^(1/3) 2584000077399379 a001 591286729879/73681302247*33385282^(1/3) 2584000077399379 a001 86000486440/10716675201*33385282^(1/3) 2584000077399379 a001 4052739537881/505019158607*33385282^(1/3) 2584000077399379 a001 3278735159921/408569081798*33385282^(1/3) 2584000077399379 a001 2504730781961/312119004989*33385282^(1/3) 2584000077399379 a001 956722026041/119218851371*33385282^(1/3) 2584000077399379 a001 182717648081/22768774562*33385282^(1/3) 2584000077399379 a001 139583862445/17393796001*33385282^(1/3) 2584000077399379 a001 53316291173/6643838879*33385282^(1/3) 2584000077399379 a001 10182505537/1268860318*33385282^(1/3) 2584000077399379 a001 2971215073/141422324*33385282^(5/18) 2584000077399379 a001 7778742049/969323029*33385282^(1/3) 2584000077399379 a001 24157817/73681302247*141422324^(11/13) 2584000077399379 a001 24157817/17393796001*141422324^(10/13) 2584000077399379 a001 102334155/54018521*141422324^(5/13) 2584000077399379 a001 2971215073/370248451*33385282^(1/3) 2584000077399379 a001 24157817/4106118243*141422324^(9/13) 2584000077399379 a001 24157817/2537720636*141422324^(2/3) 2584000077399379 a001 24157817/969323029*141422324^(8/13) 2584000077399379 a001 267914296/54018521*141422324^(1/3) 2584000077399379 a001 24157817/228826127*2537720636^(7/15) 2584000077399379 a001 102334155/54018521*2537720636^(1/3) 2584000077399379 a001 24157817/228826127*17393796001^(3/7) 2584000077399379 a001 24157817/228826127*45537549124^(7/17) 2584000077399379 a001 102334155/54018521*45537549124^(5/17) 2584000077399379 a001 102334155/54018521*312119004989^(3/11) 2584000077399379 a001 2472169789339635/956722026041 2584000077399379 a001 102334155/54018521*14662949395604^(5/21) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^21/Lucas(40) 2584000077399379 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^15/Lucas(37) 2584000077399379 a001 102334155/54018521*192900153618^(5/18) 2584000077399379 a001 24157817/228826127*192900153618^(7/18) 2584000077399379 a001 102334155/54018521*28143753123^(3/10) 2584000077399379 a001 102334155/54018521*10749957122^(5/16) 2584000077399379 a001 24157817/228826127*10749957122^(7/16) 2584000077399379 a001 102334155/54018521*599074578^(5/14) 2584000077399379 a001 24157817/228826127*599074578^(1/2) 2584000077399379 a001 433494437/54018521*141422324^(4/13) 2584000077399379 a001 701408733/228826127*33385282^(7/18) 2584000077399379 a001 102334155/54018521*228826127^(3/8) 2584000077399379 a001 1836311903/54018521*141422324^(3/13) 2584000077399379 a001 7778742049/54018521*141422324^(2/13) 2584000077399379 a004 Fibonacci(37)*Lucas(41)/(1/2+sqrt(5)/2)^60 2584000077399379 a001 9227465/6643838879*20633239^(6/7) 2584000077399379 a001 32951280099/54018521*141422324^(1/13) 2584000077399379 a001 6472224534451832/2504730781961 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^23/Lucas(42) 2584000077399379 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^13/Lucas(37) 2584000077399379 a001 267914296/54018521*73681302247^(1/4) 2584000077399379 a001 24157817/599074578*4106118243^(1/2) 2584000077399379 a004 Fibonacci(37)*Lucas(43)/(1/2+sqrt(5)/2)^62 2584000077399379 a001 24157817/1568397607*2537720636^(5/9) 2584000077399379 a001 24157817/1568397607*312119004989^(5/11) 2584000077399379 a001 16944503814015861/6557470319842 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^25/Lucas(44) 2584000077399379 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^11/Lucas(37) 2584000077399379 a001 24157817/1568397607*28143753123^(1/2) 2584000077399379 a001 701408733/54018521*1568397607^(1/4) 2584000077399379 a004 Fibonacci(37)*Lucas(45)/(1/2+sqrt(5)/2)^64 2584000077399379 a001 24157817/4106118243*2537720636^(3/5) 2584000077399379 a001 24157817/5600748293801*2537720636^(14/15) 2584000077399379 a001 24157817/2139295485799*2537720636^(8/9) 2584000077399379 a001 24157817/1322157322203*2537720636^(13/15) 2584000077399379 a001 24157817/312119004989*2537720636^(4/5) 2584000077399379 a001 24157817/192900153618*2537720636^(7/9) 2584000077399379 a001 24157817/73681302247*2537720636^(11/15) 2584000077399379 a001 24157817/17393796001*2537720636^(2/3) 2584000077399379 a001 1836311903/54018521*2537720636^(1/5) 2584000077399379 a001 225851433717/228826127*12752043^(1/17) 2584000077399379 a001 24157817/4106118243*45537549124^(9/17) 2584000077399379 a001 1836311903/54018521*45537549124^(3/17) 2584000077399379 a001 1836311903/54018521*14662949395604^(1/7) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^27/Lucas(46) 2584000077399379 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^9/Lucas(37) 2584000077399379 a001 1836311903/54018521*192900153618^(1/6) 2584000077399379 a001 24157817/4106118243*192900153618^(1/2) 2584000077399379 a001 1836311903/54018521*10749957122^(3/16) 2584000077399379 a001 24157817/4106118243*10749957122^(9/16) 2584000077399379 a004 Fibonacci(37)*Lucas(47)/(1/2+sqrt(5)/2)^66 2584000077399379 a001 12586269025/54018521*2537720636^(1/9) 2584000077399379 a001 7778742049/54018521*2537720636^(2/15) 2584000077399379 a001 32951280099/54018521*2537720636^(1/15) 2584000077399379 a001 4807526976/54018521*17393796001^(1/7) 2584000077399379 a001 4807526976/54018521*14662949395604^(1/9) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^29/Lucas(48) 2584000077399379 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^7/Lucas(37) 2584000077399379 a001 24157817/10749957122*1322157322203^(1/2) 2584000077399379 a004 Fibonacci(37)*Lucas(49)/(1/2+sqrt(5)/2)^68 2584000077399379 a001 24157817/5600748293801*17393796001^(6/7) 2584000077399379 a001 24157817/192900153618*17393796001^(5/7) 2584000077399379 a001 12586269025/54018521*312119004989^(1/11) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^31/Lucas(50) 2584000077399379 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^5/Lucas(37) 2584000077399379 a001 24157817/28143753123*9062201101803^(1/2) 2584000077399379 a001 12586269025/54018521*28143753123^(1/10) 2584000077399379 a001 24157817/73681302247*45537549124^(11/17) 2584000077399379 a004 Fibonacci(37)*Lucas(51)/(1/2+sqrt(5)/2)^70 2584000077399379 a001 24157817/23725150497407*45537549124^(15/17) 2584000077399379 a001 24157817/5600748293801*45537549124^(14/17) 2584000077399379 a001 24157817/1322157322203*45537549124^(13/17) 2584000077399379 a001 24157817/312119004989*45537549124^(12/17) 2584000077399379 a001 24157817/119218851371*45537549124^(2/3) 2584000077399379 a001 32951280099/54018521*45537549124^(1/17) 2584000077399379 a001 24157817/73681302247*312119004989^(3/5) 2584000077399379 a001 24157817/73681302247*14662949395604^(11/21) 2584000077399379 a001 32951280099/54018521*14662949395604^(1/21) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^33/Lucas(52) 2584000077399379 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^3/Lucas(37) 2584000077399379 a001 24157817/73681302247*192900153618^(11/18) 2584000077399379 a004 Fibonacci(37)*Lucas(53)/(1/2+sqrt(5)/2)^72 2584000077399379 a001 24157817/192900153618*312119004989^(7/11) 2584000077399379 a001 24157817/192900153618*14662949395604^(5/9) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^35/Lucas(54) 2584000077399379 a004 Fibonacci(54)*(1/2+sqrt(5)/2)/Lucas(37) 2584000077399379 a001 24157817/192900153618*505019158607^(5/8) 2584000077399379 a004 Fibonacci(37)*Lucas(55)/(1/2+sqrt(5)/2)^74 2584000077399379 a001 24157817/14662949395604*312119004989^(4/5) 2584000077399379 a001 24157817/2139295485799*312119004989^(8/11) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^37/Lucas(56) 2584000077399379 a004 Fibonacci(56)/Lucas(37)/(1/2+sqrt(5)/2) 2584000077399379 a004 Fibonacci(37)*Lucas(57)/(1/2+sqrt(5)/2)^76 2584000077399379 a001 24157817/1322157322203*14662949395604^(13/21) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^39/Lucas(58) 2584000077399379 a004 Fibonacci(58)/Lucas(37)/(1/2+sqrt(5)/2)^3 2584000077399379 a004 Fibonacci(37)*Lucas(59)/(1/2+sqrt(5)/2)^78 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^41/Lucas(60) 2584000077399379 a004 Fibonacci(60)/Lucas(37)/(1/2+sqrt(5)/2)^5 2584000077399379 a004 Fibonacci(37)*Lucas(61)/(1/2+sqrt(5)/2)^80 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^43/Lucas(62) 2584000077399379 a004 Fibonacci(62)/Lucas(37)/(1/2+sqrt(5)/2)^7 2584000077399379 a004 Fibonacci(37)*Lucas(63)/(1/2+sqrt(5)/2)^82 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^45/Lucas(64) 2584000077399379 a004 Fibonacci(64)/Lucas(37)/(1/2+sqrt(5)/2)^9 2584000077399379 a004 Fibonacci(37)*Lucas(65)/(1/2+sqrt(5)/2)^84 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^47/Lucas(66) 2584000077399379 a004 Fibonacci(66)/Lucas(37)/(1/2+sqrt(5)/2)^11 2584000077399379 a004 Fibonacci(37)*Lucas(67)/(1/2+sqrt(5)/2)^86 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^49/Lucas(68) 2584000077399379 a004 Fibonacci(68)/Lucas(37)/(1/2+sqrt(5)/2)^13 2584000077399379 a004 Fibonacci(37)*Lucas(69)/(1/2+sqrt(5)/2)^88 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^51/Lucas(70) 2584000077399379 a004 Fibonacci(70)/Lucas(37)/(1/2+sqrt(5)/2)^15 2584000077399379 a004 Fibonacci(37)*Lucas(71)/(1/2+sqrt(5)/2)^90 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^53/Lucas(72) 2584000077399379 a004 Fibonacci(72)/Lucas(37)/(1/2+sqrt(5)/2)^17 2584000077399379 a004 Fibonacci(37)*Lucas(73)/(1/2+sqrt(5)/2)^92 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^55/Lucas(74) 2584000077399379 a004 Fibonacci(37)*Lucas(75)/(1/2+sqrt(5)/2)^94 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^57/Lucas(76) 2584000077399379 a004 Fibonacci(37)*Lucas(77)/(1/2+sqrt(5)/2)^96 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^59/Lucas(78) 2584000077399379 a004 Fibonacci(37)*Lucas(79)/(1/2+sqrt(5)/2)^98 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^61/Lucas(80) 2584000077399379 a004 Fibonacci(37)*Lucas(81)/(1/2+sqrt(5)/2)^100 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^63/Lucas(82) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^65/Lucas(84) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^67/Lucas(86) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^69/Lucas(88) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^71/Lucas(90) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^73/Lucas(92) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^75/Lucas(94) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^77/Lucas(96) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^79/Lucas(98) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^80/Lucas(99) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^81/Lucas(100) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^78/Lucas(97) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^76/Lucas(95) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^74/Lucas(93) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^72/Lucas(91) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^70/Lucas(89) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^68/Lucas(87) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^66/Lucas(85) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^64/Lucas(83) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^62/Lucas(81) 2584000077399379 a004 Fibonacci(37)*Lucas(80)/(1/2+sqrt(5)/2)^99 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^60/Lucas(79) 2584000077399379 a004 Fibonacci(37)*Lucas(78)/(1/2+sqrt(5)/2)^97 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^58/Lucas(77) 2584000077399379 a004 Fibonacci(37)*Lucas(76)/(1/2+sqrt(5)/2)^95 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^56/Lucas(75) 2584000077399379 a004 Fibonacci(76)/Lucas(37)/(1/2+sqrt(5)/2)^21 2584000077399379 a004 Fibonacci(78)/Lucas(37)/(1/2+sqrt(5)/2)^23 2584000077399379 a004 Fibonacci(80)/Lucas(37)/(1/2+sqrt(5)/2)^25 2584000077399379 a004 Fibonacci(82)/Lucas(37)/(1/2+sqrt(5)/2)^27 2584000077399379 a004 Fibonacci(84)/Lucas(37)/(1/2+sqrt(5)/2)^29 2584000077399379 a004 Fibonacci(86)/Lucas(37)/(1/2+sqrt(5)/2)^31 2584000077399379 a004 Fibonacci(88)/Lucas(37)/(1/2+sqrt(5)/2)^33 2584000077399379 a004 Fibonacci(90)/Lucas(37)/(1/2+sqrt(5)/2)^35 2584000077399379 a004 Fibonacci(92)/Lucas(37)/(1/2+sqrt(5)/2)^37 2584000077399379 a004 Fibonacci(94)/Lucas(37)/(1/2+sqrt(5)/2)^39 2584000077399379 a004 Fibonacci(96)/Lucas(37)/(1/2+sqrt(5)/2)^41 2584000077399379 a004 Fibonacci(100)/Lucas(37)/(1/2+sqrt(5)/2)^45 2584000077399379 a004 Fibonacci(37)*Lucas(74)/(1/2+sqrt(5)/2)^93 2584000077399379 a004 Fibonacci(98)/Lucas(37)/(1/2+sqrt(5)/2)^43 2584000077399379 a004 Fibonacci(99)/Lucas(37)/(1/2+sqrt(5)/2)^44 2584000077399379 a004 Fibonacci(97)/Lucas(37)/(1/2+sqrt(5)/2)^42 2584000077399379 a004 Fibonacci(95)/Lucas(37)/(1/2+sqrt(5)/2)^40 2584000077399379 a004 Fibonacci(93)/Lucas(37)/(1/2+sqrt(5)/2)^38 2584000077399379 a004 Fibonacci(91)/Lucas(37)/(1/2+sqrt(5)/2)^36 2584000077399379 a004 Fibonacci(89)/Lucas(37)/(1/2+sqrt(5)/2)^34 2584000077399379 a004 Fibonacci(87)/Lucas(37)/(1/2+sqrt(5)/2)^32 2584000077399379 a004 Fibonacci(85)/Lucas(37)/(1/2+sqrt(5)/2)^30 2584000077399379 a004 Fibonacci(83)/Lucas(37)/(1/2+sqrt(5)/2)^28 2584000077399379 a004 Fibonacci(81)/Lucas(37)/(1/2+sqrt(5)/2)^26 2584000077399379 a004 Fibonacci(79)/Lucas(37)/(1/2+sqrt(5)/2)^24 2584000077399379 a004 Fibonacci(77)/Lucas(37)/(1/2+sqrt(5)/2)^22 2584000077399379 a004 Fibonacci(75)/Lucas(37)/(1/2+sqrt(5)/2)^20 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^54/Lucas(73) 2584000077399379 a004 Fibonacci(73)/Lucas(37)/(1/2+sqrt(5)/2)^18 2584000077399379 a004 Fibonacci(37)*Lucas(72)/(1/2+sqrt(5)/2)^91 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^52/Lucas(71) 2584000077399379 a004 Fibonacci(71)/Lucas(37)/(1/2+sqrt(5)/2)^16 2584000077399379 a004 Fibonacci(37)*Lucas(70)/(1/2+sqrt(5)/2)^89 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^50/Lucas(69) 2584000077399379 a004 Fibonacci(69)/Lucas(37)/(1/2+sqrt(5)/2)^14 2584000077399379 a004 Fibonacci(37)*Lucas(68)/(1/2+sqrt(5)/2)^87 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^48/Lucas(67) 2584000077399379 a004 Fibonacci(67)/Lucas(37)/(1/2+sqrt(5)/2)^12 2584000077399379 a004 Fibonacci(37)*Lucas(66)/(1/2+sqrt(5)/2)^85 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^46/Lucas(65) 2584000077399379 a004 Fibonacci(65)/Lucas(37)/(1/2+sqrt(5)/2)^10 2584000077399379 a004 Fibonacci(37)*Lucas(64)/(1/2+sqrt(5)/2)^83 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^44/Lucas(63) 2584000077399379 a004 Fibonacci(63)/Lucas(37)/(1/2+sqrt(5)/2)^8 2584000077399379 a001 24157817/14662949395604*23725150497407^(11/16) 2584000077399379 a004 Fibonacci(37)*Lucas(62)/(1/2+sqrt(5)/2)^81 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^42/Lucas(61) 2584000077399379 a004 Fibonacci(61)/Lucas(37)/(1/2+sqrt(5)/2)^6 2584000077399379 a004 Fibonacci(37)*Lucas(60)/(1/2+sqrt(5)/2)^79 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^40/Lucas(59) 2584000077399379 a004 Fibonacci(59)/Lucas(37)/(1/2+sqrt(5)/2)^4 2584000077399379 a004 Fibonacci(37)*Lucas(58)/(1/2+sqrt(5)/2)^77 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^38/Lucas(57) 2584000077399379 a004 Fibonacci(57)/Lucas(37)/(1/2+sqrt(5)/2)^2 2584000077399379 a004 Fibonacci(37)*Lucas(56)/(1/2+sqrt(5)/2)^75 2584000077399379 a001 24157817/312119004989*14662949395604^(4/7) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^36/Lucas(55) 2584000077399379 a001 24157817/312119004989*505019158607^(9/14) 2584000077399379 a001 24157817/1322157322203*192900153618^(13/18) 2584000077399379 a001 24157817/23725150497407*192900153618^(5/6) 2584000077399379 a004 Fibonacci(37)*Lucas(54)/(1/2+sqrt(5)/2)^73 2584000077399379 a001 24157817/312119004989*192900153618^(2/3) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^34/Lucas(53) 2584000077399379 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^2/Lucas(37) 2584000077399379 a001 24157817/1322157322203*73681302247^(3/4) 2584000077399379 a001 24157817/14662949395604*73681302247^(11/13) 2584000077399379 a004 Fibonacci(37)*Lucas(52)/(1/2+sqrt(5)/2)^71 2584000077399379 a001 32951280099/54018521*10749957122^(1/16) 2584000077399379 a001 53316291173/54018521*10749957122^(1/24) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^32/Lucas(51) 2584000077399379 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^4/Lucas(37) 2584000077399379 a001 20365011074/54018521*23725150497407^(1/16) 2584000077399379 a001 24157817/45537549124*505019158607^(4/7) 2584000077399379 a001 20365011074/54018521*73681302247^(1/13) 2584000077399379 a001 24157817/45537549124*73681302247^(8/13) 2584000077399379 a001 24157817/192900153618*28143753123^(7/10) 2584000077399379 a001 24157817/2139295485799*28143753123^(4/5) 2584000077399379 a001 24157817/23725150497407*28143753123^(9/10) 2584000077399379 a001 20365011074/54018521*10749957122^(1/12) 2584000077399379 a004 Fibonacci(37)*Lucas(50)/(1/2+sqrt(5)/2)^69 2584000077399379 a001 53316291173/54018521*4106118243^(1/23) 2584000077399379 a001 24157817/17393796001*45537549124^(10/17) 2584000077399379 a001 7778742049/54018521*45537549124^(2/17) 2584000077399379 a001 24157817/17393796001*312119004989^(6/11) 2584000077399379 a001 24157817/17393796001*14662949395604^(10/21) 2584000077399379 a001 7778742049/54018521*14662949395604^(2/21) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^30/Lucas(49) 2584000077399379 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^6/Lucas(37) 2584000077399379 a001 24157817/17393796001*192900153618^(5/9) 2584000077399379 a001 24157817/17393796001*28143753123^(3/5) 2584000077399379 a001 7778742049/54018521*10749957122^(1/8) 2584000077399379 a001 20365011074/54018521*4106118243^(2/23) 2584000077399379 a001 24157817/73681302247*10749957122^(11/16) 2584000077399379 a001 24157817/119218851371*10749957122^(17/24) 2584000077399379 a001 24157817/45537549124*10749957122^(2/3) 2584000077399379 a001 24157817/312119004989*10749957122^(3/4) 2584000077399379 a001 24157817/817138163596*10749957122^(19/24) 2584000077399379 a001 24157817/1322157322203*10749957122^(13/16) 2584000077399379 a001 24157817/2139295485799*10749957122^(5/6) 2584000077399379 a001 24157817/5600748293801*10749957122^(7/8) 2584000077399379 a001 24157817/14662949395604*10749957122^(11/12) 2584000077399379 a001 24157817/23725150497407*10749957122^(15/16) 2584000077399379 a004 Fibonacci(37)*Lucas(48)/(1/2+sqrt(5)/2)^67 2584000077399379 a001 24157817/17393796001*10749957122^(5/8) 2584000077399379 a001 7778742049/54018521*4106118243^(3/23) 2584000077399379 a001 53316291173/54018521*1568397607^(1/22) 2584000077399379 a001 24157817/6643838879*17393796001^(4/7) 2584000077399379 a001 24157817/6643838879*14662949395604^(4/9) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^28/Lucas(47) 2584000077399379 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^8/Lucas(37) 2584000077399379 a001 2971215073/54018521*505019158607^(1/7) 2584000077399379 a001 2971215073/54018521*73681302247^(2/13) 2584000077399379 a001 24157817/6643838879*73681302247^(7/13) 2584000077399379 a001 2971215073/54018521*10749957122^(1/6) 2584000077399379 a001 24157817/6643838879*10749957122^(7/12) 2584000077399379 a001 2971215073/54018521*4106118243^(4/23) 2584000077399379 a001 20365011074/54018521*1568397607^(1/11) 2584000077399379 a001 24157817/45537549124*4106118243^(16/23) 2584000077399379 a001 24157817/17393796001*4106118243^(15/23) 2584000077399379 a001 24157817/119218851371*4106118243^(17/23) 2584000077399379 a001 24157817/312119004989*4106118243^(18/23) 2584000077399379 a001 24157817/817138163596*4106118243^(19/23) 2584000077399379 a001 24157817/2139295485799*4106118243^(20/23) 2584000077399379 a001 24157817/5600748293801*4106118243^(21/23) 2584000077399379 a001 24157817/14662949395604*4106118243^(22/23) 2584000077399379 a001 7778742049/54018521*1568397607^(3/22) 2584000077399379 a001 24157817/6643838879*4106118243^(14/23) 2584000077399379 a004 Fibonacci(37)*Lucas(46)/(1/2+sqrt(5)/2)^65 2584000077399379 a001 2971215073/54018521*1568397607^(2/11) 2584000077399379 a001 1134903170/54018521*2537720636^(2/9) 2584000077399379 a001 53316291173/54018521*599074578^(1/21) 2584000077399379 a001 1134903170/54018521*312119004989^(2/11) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^26/Lucas(45) 2584000077399379 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^10/Lucas(37) 2584000077399379 a001 24157817/2537720636*73681302247^(1/2) 2584000077399379 a001 1134903170/54018521*28143753123^(1/5) 2584000077399379 a001 1134903170/54018521*10749957122^(5/24) 2584000077399379 a001 24157817/2537720636*10749957122^(13/24) 2584000077399379 a001 1134903170/54018521*4106118243^(5/23) 2584000077399379 a001 24157817/2537720636*4106118243^(13/23) 2584000077399379 a001 32951280099/54018521*599074578^(1/14) 2584000077399379 a001 1134903170/54018521*1568397607^(5/22) 2584000077399379 a001 20365011074/54018521*599074578^(2/21) 2584000077399379 a001 24157817/17393796001*1568397607^(15/22) 2584000077399379 a001 24157817/6643838879*1568397607^(7/11) 2584000077399379 a001 24157817/45537549124*1568397607^(8/11) 2584000077399379 a001 24157817/73681302247*1568397607^(3/4) 2584000077399379 a001 24157817/119218851371*1568397607^(17/22) 2584000077399379 a001 24157817/312119004989*1568397607^(9/11) 2584000077399379 a001 24157817/817138163596*1568397607^(19/22) 2584000077399379 a001 24157817/2139295485799*1568397607^(10/11) 2584000077399379 a001 24157817/5600748293801*1568397607^(21/22) 2584000077399379 a001 24157817/2537720636*1568397607^(13/22) 2584000077399379 a001 7778742049/54018521*599074578^(1/7) 2584000077399379 a004 Fibonacci(37)*Lucas(44)/(1/2+sqrt(5)/2)^63 2584000077399379 a001 4807526976/54018521*599074578^(1/6) 2584000077399379 a001 1836311903/54018521*599074578^(3/14) 2584000077399379 a001 2971215073/54018521*599074578^(4/21) 2584000077399379 a001 1134903170/54018521*599074578^(5/21) 2584000077399379 a001 53316291173/54018521*228826127^(1/20) 2584000077399379 a001 24157817/969323029*2537720636^(8/15) 2584000077399379 a001 433494437/54018521*2537720636^(4/15) 2584000077399379 a001 24157817/969323029*45537549124^(8/17) 2584000077399379 a001 433494437/54018521*45537549124^(4/17) 2584000077399379 a001 24157817/969323029*14662949395604^(8/21) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^24/Lucas(43) 2584000077399379 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^12/Lucas(37) 2584000077399379 a001 10472279279564029/4052739537881 2584000077399379 a001 433494437/54018521*192900153618^(2/9) 2584000077399379 a001 24157817/969323029*192900153618^(4/9) 2584000077399379 a001 433494437/54018521*73681302247^(3/13) 2584000077399379 a001 24157817/969323029*73681302247^(6/13) 2584000077399379 a001 433494437/54018521*10749957122^(1/4) 2584000077399379 a001 24157817/969323029*10749957122^(1/2) 2584000077399379 a001 433494437/54018521*4106118243^(6/23) 2584000077399379 a001 24157817/969323029*4106118243^(12/23) 2584000077399379 a001 433494437/54018521*1568397607^(3/11) 2584000077399379 a001 24157817/969323029*1568397607^(6/11) 2584000077399379 a001 24157817/4106118243*599074578^(9/14) 2584000077399379 a001 433494437/54018521*599074578^(2/7) 2584000077399379 a001 24157817/2537720636*599074578^(13/21) 2584000077399379 a001 24157817/6643838879*599074578^(2/3) 2584000077399379 a001 20365011074/54018521*228826127^(1/10) 2584000077399379 a001 24157817/17393796001*599074578^(5/7) 2584000077399379 a001 24157817/45537549124*599074578^(16/21) 2584000077399379 a001 24157817/73681302247*599074578^(11/14) 2584000077399379 a001 24157817/119218851371*599074578^(17/21) 2584000077399379 a001 24157817/192900153618*599074578^(5/6) 2584000077399379 a001 12586269025/54018521*228826127^(1/8) 2584000077399379 a001 24157817/312119004989*599074578^(6/7) 2584000077399379 a001 24157817/817138163596*599074578^(19/21) 2584000077399379 a001 24157817/1322157322203*599074578^(13/14) 2584000077399379 a001 24157817/2139295485799*599074578^(20/21) 2584000077399379 a001 24157817/969323029*599074578^(4/7) 2584000077399379 a004 Fibonacci(37)*Lucas(42)/(1/2+sqrt(5)/2)^61 2584000077399379 a001 7778742049/54018521*228826127^(3/20) 2584000077399379 a001 1836311903/599074578*33385282^(7/18) 2584000077399379 a001 2971215073/54018521*228826127^(1/5) 2584000077399379 a001 1134903170/54018521*228826127^(1/4) 2584000077399379 a001 39088169/228826127*33385282^(5/9) 2584000077399379 a001 686789568/224056801*33385282^(7/18) 2584000077399379 a001 12586269025/4106118243*33385282^(7/18) 2584000077399379 a001 32951280099/10749957122*33385282^(7/18) 2584000077399379 a001 86267571272/28143753123*33385282^(7/18) 2584000077399379 a001 32264490531/10525900321*33385282^(7/18) 2584000077399379 a001 591286729879/192900153618*33385282^(7/18) 2584000077399379 a001 1548008755920/505019158607*33385282^(7/18) 2584000077399379 a001 1515744265389/494493258286*33385282^(7/18) 2584000077399379 a001 2504730781961/817138163596*33385282^(7/18) 2584000077399379 a001 956722026041/312119004989*33385282^(7/18) 2584000077399379 a001 365435296162/119218851371*33385282^(7/18) 2584000077399379 a001 139583862445/45537549124*33385282^(7/18) 2584000077399379 a001 53316291173/17393796001*33385282^(7/18) 2584000077399379 a001 20365011074/6643838879*33385282^(7/18) 2584000077399379 a001 7778742049/2537720636*33385282^(7/18) 2584000077399379 a001 567451585/70711162*33385282^(1/3) 2584000077399379 a001 433494437/54018521*228826127^(3/10) 2584000077399379 a001 53316291173/54018521*87403803^(1/19) 2584000077399379 a001 165580141/54018521*17393796001^(2/7) 2584000077399379 a001 24157817/370248451*312119004989^(2/5) 2584000077399379 a001 165580141/54018521*14662949395604^(2/9) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^22/Lucas(41) 2584000077399379 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^14/Lucas(37) 2584000077399379 a001 165580141/54018521*10749957122^(7/24) 2584000077399379 a001 2971215073/969323029*33385282^(7/18) 2584000077399379 a001 24157817/370248451*10749957122^(11/24) 2584000077399379 a001 165580141/54018521*4106118243^(7/23) 2584000077399379 a001 24157817/370248451*4106118243^(11/23) 2584000077399379 a001 165580141/54018521*1568397607^(7/22) 2584000077399379 a001 24157817/370248451*1568397607^(1/2) 2584000077399379 a001 165580141/54018521*599074578^(1/3) 2584000077399379 a001 24157817/370248451*599074578^(11/21) 2584000077399379 a001 24157817/1568397607*228826127^(5/8) 2584000077399379 a001 24157817/969323029*228826127^(3/5) 2584000077399379 a001 24157817/2537720636*228826127^(13/20) 2584000077399379 a001 433494437/228826127*33385282^(5/12) 2584000077399379 a001 24157817/6643838879*228826127^(7/10) 2584000077399379 a001 1134903170/370248451*33385282^(7/18) 2584000077399379 a001 20365011074/54018521*87403803^(2/19) 2584000077399379 a001 165580141/54018521*228826127^(7/20) 2584000077399379 a001 24157817/17393796001*228826127^(3/4) 2584000077399379 a001 24157817/45537549124*228826127^(4/5) 2584000077399379 a001 24157817/119218851371*228826127^(17/20) 2584000077399379 a001 591286729879/599074578*12752043^(1/17) 2584000077399379 a001 24157817/192900153618*228826127^(7/8) 2584000077399379 a001 24157817/312119004989*228826127^(9/10) 2584000077399379 a001 24157817/370248451*228826127^(11/20) 2584000077399379 a001 24157817/817138163596*228826127^(19/20) 2584000077399379 a001 1548008755920/1568397607*12752043^(1/17) 2584000077399379 a001 4052739537881/4106118243*12752043^(1/17) 2584000077399379 a001 4807525989/4870846*12752043^(1/17) 2584000077399379 a001 6557470319842/6643838879*12752043^(1/17) 2584000077399379 a004 Fibonacci(37)*Lucas(40)/(1/2+sqrt(5)/2)^59 2584000077399379 a001 2504730781961/2537720636*12752043^(1/17) 2584000077399379 a001 956722026041/969323029*12752043^(1/17) 2584000077399379 a001 7778742049/54018521*87403803^(3/19) 2584000077399379 a001 365435296162/370248451*12752043^(1/17) 2584000077399379 a001 2971215073/54018521*87403803^(4/19) 2584000077399379 a001 567451585/299537289*33385282^(5/12) 2584000077399379 a001 2971215073/1568397607*33385282^(5/12) 2584000077399379 a001 7778742049/4106118243*33385282^(5/12) 2584000077399379 a001 10182505537/5374978561*33385282^(5/12) 2584000077399379 a001 53316291173/28143753123*33385282^(5/12) 2584000077399379 a001 139583862445/73681302247*33385282^(5/12) 2584000077399379 a001 182717648081/96450076809*33385282^(5/12) 2584000077399379 a001 956722026041/505019158607*33385282^(5/12) 2584000077399379 a001 10610209857723/5600748293801*33385282^(5/12) 2584000077399379 a001 591286729879/312119004989*33385282^(5/12) 2584000077399379 a001 225851433717/119218851371*33385282^(5/12) 2584000077399379 a001 21566892818/11384387281*33385282^(5/12) 2584000077399379 a001 32951280099/17393796001*33385282^(5/12) 2584000077399379 a001 12586269025/6643838879*33385282^(5/12) 2584000077399379 a001 1201881744/634430159*33385282^(5/12) 2584000077399379 a001 1836311903/969323029*33385282^(5/12) 2584000077399379 a001 267914296/228826127*33385282^(4/9) 2584000077399379 a001 1134903170/54018521*87403803^(5/19) 2584000077399379 a001 701408733/370248451*33385282^(5/12) 2584000077399379 a001 433494437/54018521*87403803^(6/19) 2584000077399379 a001 53316291173/54018521*33385282^(1/18) 2584000077399379 a001 24157817/141422324*2537720636^(4/9) 2584000077399379 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^20/Lucas(39) 2584000077399379 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^16/Lucas(37) 2584000077399379 a001 63245986/54018521*23725150497407^(1/4) 2584000077399379 a001 24157817/141422324*23725150497407^(5/16) 2584000077399379 a001 1527884955772562/591286729879 2584000077399379 a001 63245986/54018521*73681302247^(4/13) 2584000077399379 a001 24157817/141422324*73681302247^(5/13) 2584000077399379 a001 24157817/141422324*28143753123^(2/5) 2584000077399379 a001 63245986/54018521*10749957122^(1/3) 2584000077399379 a001 24157817/141422324*10749957122^(5/12) 2584000077399379 a001 63245986/54018521*4106118243^(8/23) 2584000077399379 a001 24157817/141422324*4106118243^(10/23) 2584000077399379 a001 63245986/54018521*1568397607^(4/11) 2584000077399379 a001 24157817/141422324*1568397607^(5/11) 2584000077399379 a001 63245986/54018521*599074578^(8/21) 2584000077399379 a001 24157817/141422324*599074578^(10/21) 2584000077399379 a001 233802911/199691526*33385282^(4/9) 2584000077399379 a001 165580141/54018521*87403803^(7/19) 2584000077399379 a001 1836311903/1568397607*33385282^(4/9) 2584000077399379 a001 1602508992/1368706081*33385282^(4/9) 2584000077399379 a001 12586269025/10749957122*33385282^(4/9) 2584000077399379 a001 10983760033/9381251041*33385282^(4/9) 2584000077399379 a001 86267571272/73681302247*33385282^(4/9) 2584000077399379 a001 75283811239/64300051206*33385282^(4/9) 2584000077399379 a001 2504730781961/2139295485799*33385282^(4/9) 2584000077399379 a001 365435296162/312119004989*33385282^(4/9) 2584000077399379 a001 139583862445/119218851371*33385282^(4/9) 2584000077399379 a001 53316291173/45537549124*33385282^(4/9) 2584000077399379 a001 20365011074/17393796001*33385282^(4/9) 2584000077399379 a001 7778742049/6643838879*33385282^(4/9) 2584000077399379 a001 2971215073/2537720636*33385282^(4/9) 2584000077399379 a001 39088169/370248451*33385282^(7/12) 2584000077399379 a001 433494437/141422324*33385282^(7/18) 2584000077399379 a001 1134903170/969323029*33385282^(4/9) 2584000077399379 a001 63245986/54018521*228826127^(2/5) 2584000077399379 a001 24157817/141422324*228826127^(1/2) 2584000077399379 a001 433494437/370248451*33385282^(4/9) 2584000077399379 a001 102334155/228826127*33385282^(1/2) 2584000077399379 a001 139583862445/141422324*12752043^(1/17) 2584000077399379 a001 39088169/599074578*33385282^(11/18) 2584000077399379 a001 32951280099/54018521*33385282^(1/12) 2584000077399379 a001 66978574/35355581*33385282^(5/12) 2584000077399379 a001 24157817/370248451*87403803^(11/19) 2584000077399379 a001 24157817/969323029*87403803^(12/19) 2584000077399379 a001 24157817/2537720636*87403803^(13/19) 2584000077399379 a001 24157817/6643838879*87403803^(14/19) 2584000077399379 a001 20365011074/54018521*33385282^(1/9) 2584000077399379 a001 133957148/299537289*33385282^(1/2) 2584000077399379 a001 24157817/17393796001*87403803^(15/19) 2584000077399379 a001 701408733/1568397607*33385282^(1/2) 2584000077399379 a001 63245986/54018521*87403803^(8/19) 2584000077399379 a001 1836311903/4106118243*33385282^(1/2) 2584000077399379 a001 2403763488/5374978561*33385282^(1/2) 2584000077399379 a001 12586269025/28143753123*33385282^(1/2) 2584000077399379 a001 32951280099/73681302247*33385282^(1/2) 2584000077399379 a001 43133785636/96450076809*33385282^(1/2) 2584000077399379 a001 225851433717/505019158607*33385282^(1/2) 2584000077399379 a001 591286729879/1322157322203*33385282^(1/2) 2584000077399379 a001 10610209857723/23725150497407*33385282^(1/2) 2584000077399379 a001 139583862445/312119004989*33385282^(1/2) 2584000077399379 a001 53316291173/119218851371*33385282^(1/2) 2584000077399379 a001 10182505537/22768774562*33385282^(1/2) 2584000077399379 a001 7778742049/17393796001*33385282^(1/2) 2584000077399379 a001 2971215073/6643838879*33385282^(1/2) 2584000077399379 a001 567451585/1268860318*33385282^(1/2) 2584000077399379 a001 433494437/969323029*33385282^(1/2) 2584000077399379 a001 24157817/45537549124*87403803^(16/19) 2584000077399379 a001 165580141/141422324*33385282^(4/9) 2584000077399379 a001 24157817/119218851371*87403803^(17/19) 2584000077399379 a001 24157817/141422324*87403803^(10/19) 2584000077399379 a001 165580141/370248451*33385282^(1/2) 2584000077399379 a001 24157817/312119004989*87403803^(18/19) 2584000077399379 a001 39088169/1568397607*33385282^(2/3) 2584000077399379 a001 9227465/2537720636*20633239^(4/5) 2584000077399379 a004 Fibonacci(37)*Lucas(38)/(1/2+sqrt(5)/2)^57 2584000077399379 a001 34111385/199691526*33385282^(5/9) 2584000077399379 a001 7778742049/54018521*33385282^(1/6) 2584000077399379 a001 267914296/1568397607*33385282^(5/9) 2584000077399379 a001 233802911/1368706081*33385282^(5/9) 2584000077399379 a001 1836311903/10749957122*33385282^(5/9) 2584000077399379 a001 1602508992/9381251041*33385282^(5/9) 2584000077399379 a001 12586269025/73681302247*33385282^(5/9) 2584000077399379 a001 10983760033/64300051206*33385282^(5/9) 2584000077399379 a001 86267571272/505019158607*33385282^(5/9) 2584000077399379 a001 75283811239/440719107401*33385282^(5/9) 2584000077399379 a001 2504730781961/14662949395604*33385282^(5/9) 2584000077399379 a001 139583862445/817138163596*33385282^(5/9) 2584000077399379 a001 53316291173/312119004989*33385282^(5/9) 2584000077399379 a001 20365011074/119218851371*33385282^(5/9) 2584000077399379 a001 7778742049/45537549124*33385282^(5/9) 2584000077399379 a001 2971215073/17393796001*33385282^(5/9) 2584000077399379 a001 1134903170/6643838879*33385282^(5/9) 2584000077399379 a001 433494437/2537720636*33385282^(5/9) 2584000077399379 a001 102334155/969323029*33385282^(7/12) 2584000077399379 a001 165580141/969323029*33385282^(5/9) 2584000077399379 a001 39088169/4106118243*33385282^(13/18) 2584000077399379 a001 66978574/634430159*33385282^(7/12) 2584000077399379 a001 701408733/6643838879*33385282^(7/12) 2584000077399379 a001 1836311903/17393796001*33385282^(7/12) 2584000077399379 a001 1201881744/11384387281*33385282^(7/12) 2584000077399379 a001 12586269025/119218851371*33385282^(7/12) 2584000077399379 a001 32951280099/312119004989*33385282^(7/12) 2584000077399379 a001 21566892818/204284540899*33385282^(7/12) 2584000077399379 a001 225851433717/2139295485799*33385282^(7/12) 2584000077399379 a001 182717648081/1730726404001*33385282^(7/12) 2584000077399379 a001 139583862445/1322157322203*33385282^(7/12) 2584000077399379 a001 53316291173/505019158607*33385282^(7/12) 2584000077399379 a001 10182505537/96450076809*33385282^(7/12) 2584000077399379 a001 7778742049/73681302247*33385282^(7/12) 2584000077399379 a001 2971215073/28143753123*33385282^(7/12) 2584000077399379 a001 567451585/5374978561*33385282^(7/12) 2584000077399379 a001 433494437/4106118243*33385282^(7/12) 2584000077399379 a001 14619165/224056801*33385282^(11/18) 2584000077399379 a001 165580141/1568397607*33385282^(7/12) 2584000077399379 a001 39088169/6643838879*33385282^(3/4) 2584000077399379 a001 2971215073/54018521*33385282^(2/9) 2584000077399379 a001 267914296/4106118243*33385282^(11/18) 2584000077399379 a001 701408733/10749957122*33385282^(11/18) 2584000077399379 a001 1836311903/28143753123*33385282^(11/18) 2584000077399379 a001 686789568/10525900321*33385282^(11/18) 2584000077399379 a001 12586269025/192900153618*33385282^(11/18) 2584000077399379 a001 32951280099/505019158607*33385282^(11/18) 2584000077399379 a001 86267571272/1322157322203*33385282^(11/18) 2584000077399379 a001 32264490531/494493258286*33385282^(11/18) 2584000077399379 a001 1548008755920/23725150497407*33385282^(11/18) 2584000077399379 a001 139583862445/2139295485799*33385282^(11/18) 2584000077399379 a001 53316291173/817138163596*33385282^(11/18) 2584000077399379 a001 20365011074/312119004989*33385282^(11/18) 2584000077399379 a001 7778742049/119218851371*33385282^(11/18) 2584000077399379 a001 2971215073/45537549124*33385282^(11/18) 2584000077399379 a001 1134903170/17393796001*33385282^(11/18) 2584000077399379 a001 31622993/70711162*33385282^(1/2) 2584000077399379 a001 433494437/6643838879*33385282^(11/18) 2584000077399379 a001 1836311903/33385282*12752043^(4/17) 2584000077399379 a001 63245986/370248451*33385282^(5/9) 2584000077399379 a001 165580141/2537720636*33385282^(11/18) 2584000077399379 a001 39088169/10749957122*33385282^(7/9) 2584000077399379 a001 1836311903/54018521*33385282^(1/4) 2584000077399379 a001 31622993/299537289*33385282^(7/12) 2584000077399379 a001 34111385/1368706081*33385282^(2/3) 2584000077399380 a001 1134903170/54018521*33385282^(5/18) 2584000077399380 a001 10983760033/29134601*12752043^(2/17) 2584000077399380 a001 133957148/5374978561*33385282^(2/3) 2584000077399380 a001 233802911/9381251041*33385282^(2/3) 2584000077399380 a001 1836311903/73681302247*33385282^(2/3) 2584000077399380 a001 267084832/10716675201*33385282^(2/3) 2584000077399380 a001 12586269025/505019158607*33385282^(2/3) 2584000077399380 a001 10983760033/440719107401*33385282^(2/3) 2584000077399380 a001 43133785636/1730726404001*33385282^(2/3) 2584000077399380 a001 75283811239/3020733700601*33385282^(2/3) 2584000077399380 a001 182717648081/7331474697802*33385282^(2/3) 2584000077399380 a001 139583862445/5600748293801*33385282^(2/3) 2584000077399380 a001 53316291173/2139295485799*33385282^(2/3) 2584000077399380 a001 10182505537/408569081798*33385282^(2/3) 2584000077399380 a001 7778742049/312119004989*33385282^(2/3) 2584000077399380 a001 2971215073/119218851371*33385282^(2/3) 2584000077399380 a001 567451585/22768774562*33385282^(2/3) 2584000077399380 a001 433494437/17393796001*33385282^(2/3) 2584000077399380 a001 63245986/969323029*33385282^(11/18) 2584000077399380 a001 165580141/6643838879*33385282^(2/3) 2584000077399380 a001 39088169/28143753123*33385282^(5/6) 2584000077399380 a001 102334155/10749957122*33385282^(13/18) 2584000077399380 a001 433494437/54018521*33385282^(1/3) 2584000077399380 a001 267914296/28143753123*33385282^(13/18) 2584000077399380 a001 701408733/73681302247*33385282^(13/18) 2584000077399380 a001 1836311903/192900153618*33385282^(13/18) 2584000077399380 a001 102287808/10745088481*33385282^(13/18) 2584000077399380 a001 12586269025/1322157322203*33385282^(13/18) 2584000077399380 a001 32951280099/3461452808002*33385282^(13/18) 2584000077399380 a001 86267571272/9062201101803*33385282^(13/18) 2584000077399380 a001 225851433717/23725150497407*33385282^(13/18) 2584000077399380 a001 139583862445/14662949395604*33385282^(13/18) 2584000077399380 a001 53316291173/5600748293801*33385282^(13/18) 2584000077399380 a001 20365011074/2139295485799*33385282^(13/18) 2584000077399380 a001 7778742049/817138163596*33385282^(13/18) 2584000077399380 a001 2971215073/312119004989*33385282^(13/18) 2584000077399380 a001 1134903170/119218851371*33385282^(13/18) 2584000077399380 a001 31622993/1268860318*33385282^(2/3) 2584000077399380 a001 433494437/45537549124*33385282^(13/18) 2584000077399380 a001 102334155/17393796001*33385282^(3/4) 2584000077399380 a001 165580141/17393796001*33385282^(13/18) 2584000077399380 a001 24157817/54018521*141422324^(6/13) 2584000077399380 a001 39088169/73681302247*33385282^(8/9) 2584000077399380 a001 9227465/599074578*20633239^(5/7) 2584000077399380 a001 66978574/11384387281*33385282^(3/4) 2584000077399380 a001 701408733/119218851371*33385282^(3/4) 2584000077399380 a001 1836311903/312119004989*33385282^(3/4) 2584000077399380 a001 1201881744/204284540899*33385282^(3/4) 2584000077399380 a001 12586269025/2139295485799*33385282^(3/4) 2584000077399380 a001 32951280099/5600748293801*33385282^(3/4) 2584000077399380 a001 1135099622/192933544679*33385282^(3/4) 2584000077399380 a001 139583862445/23725150497407*33385282^(3/4) 2584000077399380 a001 53316291173/9062201101803*33385282^(3/4) 2584000077399380 a001 10182505537/1730726404001*33385282^(3/4) 2584000077399380 a001 7778742049/1322157322203*33385282^(3/4) 2584000077399380 a001 2971215073/505019158607*33385282^(3/4) 2584000077399380 a001 567451585/96450076809*33385282^(3/4) 2584000077399380 a001 433494437/73681302247*33385282^(3/4) 2584000077399380 a001 831985/228811001*33385282^(7/9) 2584000077399380 a001 165580141/28143753123*33385282^(3/4) 2584000077399380 a001 24157817/54018521*2537720636^(2/5) 2584000077399380 a001 24157817/54018521*45537549124^(6/17) 2584000077399380 a001 24157817/54018521*14662949395604^(2/7) 2584000077399380 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^18/Lucas(37) 2584000077399380 a001 583600122205489/225851433717 2584000077399380 a001 24157817/54018521*192900153618^(1/3) 2584000077399380 a001 24157817/54018521*10749957122^(3/8) 2584000077399380 a001 24157817/54018521*4106118243^(9/23) 2584000077399380 a001 24157817/54018521*1568397607^(9/22) 2584000077399380 a001 24157817/54018521*599074578^(3/7) 2584000077399380 a001 39088169/119218851371*33385282^(11/12) 2584000077399380 a001 24157817/54018521*228826127^(9/20) 2584000077399380 a001 267914296/73681302247*33385282^(7/9) 2584000077399380 a001 233802911/64300051206*33385282^(7/9) 2584000077399380 a001 102334155/54018521*33385282^(5/12) 2584000077399380 a001 1836311903/505019158607*33385282^(7/9) 2584000077399380 a001 1602508992/440719107401*33385282^(7/9) 2584000077399380 a001 12586269025/3461452808002*33385282^(7/9) 2584000077399380 a001 10983760033/3020733700601*33385282^(7/9) 2584000077399380 a001 86267571272/23725150497407*33385282^(7/9) 2584000077399380 a001 53316291173/14662949395604*33385282^(7/9) 2584000077399380 a001 20365011074/5600748293801*33385282^(7/9) 2584000077399380 a001 7778742049/2139295485799*33385282^(7/9) 2584000077399380 a001 2971215073/817138163596*33385282^(7/9) 2584000077399380 a001 1134903170/312119004989*33385282^(7/9) 2584000077399380 a001 63245986/6643838879*33385282^(13/18) 2584000077399380 a001 433494437/119218851371*33385282^(7/9) 2584000077399380 a001 165580141/54018521*33385282^(7/18) 2584000077399380 a001 86267571272/228826127*12752043^(2/17) 2584000077399380 a001 53316291173/54018521*12752043^(1/17) 2584000077399380 a001 165580141/45537549124*33385282^(7/9) 2584000077399380 a001 39088169/192900153618*33385282^(17/18) 2584000077399380 a001 267913919/710646*12752043^(2/17) 2584000077399380 a001 31622993/5374978561*33385282^(3/4) 2584000077399380 a001 591286729879/1568397607*12752043^(2/17) 2584000077399380 a001 516002918640/1368706081*12752043^(2/17) 2584000077399380 a001 4052739537881/10749957122*12752043^(2/17) 2584000077399380 a001 3536736619241/9381251041*12752043^(2/17) 2584000077399380 a001 6557470319842/17393796001*12752043^(2/17) 2584000077399380 a001 2504730781961/6643838879*12752043^(2/17) 2584000077399380 a001 956722026041/2537720636*12752043^(2/17) 2584000077399380 a001 365435296162/969323029*12752043^(2/17) 2584000077399380 a001 14619165/10525900321*33385282^(5/6) 2584000077399380 a001 139583862445/370248451*12752043^(2/17) 2584000077399380 a001 133957148/96450076809*33385282^(5/6) 2584000077399380 a001 701408733/505019158607*33385282^(5/6) 2584000077399380 a001 24157817/54018521*87403803^(9/19) 2584000077399380 a001 1836311903/1322157322203*33385282^(5/6) 2584000077399380 a001 14930208/10749853441*33385282^(5/6) 2584000077399380 a001 12586269025/9062201101803*33385282^(5/6) 2584000077399380 a001 32951280099/23725150497407*33385282^(5/6) 2584000077399380 a001 10182505537/7331474697802*33385282^(5/6) 2584000077399380 a001 7778742049/5600748293801*33385282^(5/6) 2584000077399380 a001 2971215073/2139295485799*33385282^(5/6) 2584000077399380 a001 567451585/408569081798*33385282^(5/6) 2584000077399380 a001 63245986/17393796001*33385282^(7/9) 2584000077399380 a001 433494437/312119004989*33385282^(5/6) 2584000077399380 a001 165580141/119218851371*33385282^(5/6) 2584000077399380 a004 Fibonacci(38)*Lucas(36)/(1/2+sqrt(5)/2)^56 2584000077399380 a001 53316291173/141422324*12752043^(2/17) 2584000077399380 a001 34111385/64300051206*33385282^(8/9) 2584000077399380 a001 63245986/54018521*33385282^(4/9) 2584000077399380 a001 267914296/505019158607*33385282^(8/9) 2584000077399380 a001 233802911/440719107401*33385282^(8/9) 2584000077399380 a001 1836311903/3461452808002*33385282^(8/9) 2584000077399380 a001 1602508992/3020733700601*33385282^(8/9) 2584000077399380 a001 12586269025/23725150497407*33385282^(8/9) 2584000077399380 a001 7778742049/14662949395604*33385282^(8/9) 2584000077399380 a001 2971215073/5600748293801*33385282^(8/9) 2584000077399380 a001 1134903170/2139295485799*33385282^(8/9) 2584000077399380 a001 433494437/817138163596*33385282^(8/9) 2584000077399380 a001 9303105/28374454999*33385282^(11/12) 2584000077399380 a001 165580141/312119004989*33385282^(8/9) 2584000077399380 a001 9227465/87403803*20633239^(3/5) 2584000077399380 a001 66978574/204284540899*33385282^(11/12) 2584000077399380 a001 701408733/2139295485799*33385282^(11/12) 2584000077399380 a001 1836311903/5600748293801*33385282^(11/12) 2584000077399380 a001 1201881744/3665737348901*33385282^(11/12) 2584000077399380 a001 7778742049/23725150497407*33385282^(11/12) 2584000077399380 a001 2971215073/9062201101803*33385282^(11/12) 2584000077399380 a001 567451585/1730726404001*33385282^(11/12) 2584000077399380 a001 433494437/1322157322203*33385282^(11/12) 2584000077399380 a001 102334155/505019158607*33385282^(17/18) 2584000077399380 a001 165580141/505019158607*33385282^(11/12) 2584000077399380 a001 267914296/1322157322203*33385282^(17/18) 2584000077399380 a001 701408733/3461452808002*33385282^(17/18) 2584000077399380 a001 24157817/228826127*33385282^(7/12) 2584000077399380 a001 1836311903/9062201101803*33385282^(17/18) 2584000077399380 a001 4807526976/23725150497407*33385282^(17/18) 2584000077399380 a001 2971215073/14662949395604*33385282^(17/18) 2584000077399380 a001 63245986/119218851371*33385282^(8/9) 2584000077399380 a001 1134903170/5600748293801*33385282^(17/18) 2584000077399380 a001 433494437/2139295485799*33385282^(17/18) 2584000077399380 a001 165580141/817138163596*33385282^(17/18) 2584000077399380 a001 31622993/96450076809*33385282^(11/12) 2584000077399380 a004 Fibonacci(40)*Lucas(36)/(1/2+sqrt(5)/2)^58 2584000077399380 a001 1144206275/1875749*7881196^(1/11) 2584000077399380 a001 24157817/141422324*33385282^(5/9) 2584000077399380 a004 Fibonacci(42)*Lucas(36)/(1/2+sqrt(5)/2)^60 2584000077399380 a004 Fibonacci(44)*Lucas(36)/(1/2+sqrt(5)/2)^62 2584000077399380 a004 Fibonacci(46)*Lucas(36)/(1/2+sqrt(5)/2)^64 2584000077399380 a004 Fibonacci(48)*Lucas(36)/(1/2+sqrt(5)/2)^66 2584000077399380 a004 Fibonacci(50)*Lucas(36)/(1/2+sqrt(5)/2)^68 2584000077399380 a004 Fibonacci(52)*Lucas(36)/(1/2+sqrt(5)/2)^70 2584000077399380 a004 Fibonacci(54)*Lucas(36)/(1/2+sqrt(5)/2)^72 2584000077399380 a004 Fibonacci(56)*Lucas(36)/(1/2+sqrt(5)/2)^74 2584000077399380 a004 Fibonacci(58)*Lucas(36)/(1/2+sqrt(5)/2)^76 2584000077399380 a004 Fibonacci(60)*Lucas(36)/(1/2+sqrt(5)/2)^78 2584000077399380 a004 Fibonacci(62)*Lucas(36)/(1/2+sqrt(5)/2)^80 2584000077399380 a004 Fibonacci(64)*Lucas(36)/(1/2+sqrt(5)/2)^82 2584000077399380 a004 Fibonacci(66)*Lucas(36)/(1/2+sqrt(5)/2)^84 2584000077399380 a004 Fibonacci(68)*Lucas(36)/(1/2+sqrt(5)/2)^86 2584000077399380 a004 Fibonacci(70)*Lucas(36)/(1/2+sqrt(5)/2)^88 2584000077399380 a004 Fibonacci(72)*Lucas(36)/(1/2+sqrt(5)/2)^90 2584000077399380 a004 Fibonacci(74)*Lucas(36)/(1/2+sqrt(5)/2)^92 2584000077399380 a004 Fibonacci(76)*Lucas(36)/(1/2+sqrt(5)/2)^94 2584000077399380 a004 Fibonacci(78)*Lucas(36)/(1/2+sqrt(5)/2)^96 2584000077399380 a004 Fibonacci(80)*Lucas(36)/(1/2+sqrt(5)/2)^98 2584000077399380 a004 Fibonacci(82)*Lucas(36)/(1/2+sqrt(5)/2)^100 2584000077399380 a004 Fibonacci(81)*Lucas(36)/(1/2+sqrt(5)/2)^99 2584000077399380 a004 Fibonacci(79)*Lucas(36)/(1/2+sqrt(5)/2)^97 2584000077399380 a004 Fibonacci(77)*Lucas(36)/(1/2+sqrt(5)/2)^95 2584000077399380 a004 Fibonacci(75)*Lucas(36)/(1/2+sqrt(5)/2)^93 2584000077399380 a004 Fibonacci(73)*Lucas(36)/(1/2+sqrt(5)/2)^91 2584000077399380 a001 1/7465176*(1/2+1/2*5^(1/2))^54 2584000077399380 a004 Fibonacci(71)*Lucas(36)/(1/2+sqrt(5)/2)^89 2584000077399380 a004 Fibonacci(69)*Lucas(36)/(1/2+sqrt(5)/2)^87 2584000077399380 a004 Fibonacci(67)*Lucas(36)/(1/2+sqrt(5)/2)^85 2584000077399380 a004 Fibonacci(65)*Lucas(36)/(1/2+sqrt(5)/2)^83 2584000077399380 a004 Fibonacci(63)*Lucas(36)/(1/2+sqrt(5)/2)^81 2584000077399380 a004 Fibonacci(61)*Lucas(36)/(1/2+sqrt(5)/2)^79 2584000077399380 a004 Fibonacci(59)*Lucas(36)/(1/2+sqrt(5)/2)^77 2584000077399380 a004 Fibonacci(57)*Lucas(36)/(1/2+sqrt(5)/2)^75 2584000077399380 a004 Fibonacci(55)*Lucas(36)/(1/2+sqrt(5)/2)^73 2584000077399380 a004 Fibonacci(53)*Lucas(36)/(1/2+sqrt(5)/2)^71 2584000077399380 a004 Fibonacci(51)*Lucas(36)/(1/2+sqrt(5)/2)^69 2584000077399380 a004 Fibonacci(49)*Lucas(36)/(1/2+sqrt(5)/2)^67 2584000077399380 a004 Fibonacci(47)*Lucas(36)/(1/2+sqrt(5)/2)^65 2584000077399380 a001 63245986/312119004989*33385282^(17/18) 2584000077399380 a004 Fibonacci(45)*Lucas(36)/(1/2+sqrt(5)/2)^63 2584000077399380 a004 Fibonacci(43)*Lucas(36)/(1/2+sqrt(5)/2)^61 2584000077399380 a001 24157817/370248451*33385282^(11/18) 2584000077399380 a004 Fibonacci(41)*Lucas(36)/(1/2+sqrt(5)/2)^59 2584000077399380 a001 701408733/33385282*12752043^(5/17) 2584000077399380 a001 24157817/969323029*33385282^(2/3) 2584000077399380 a004 Fibonacci(39)*Lucas(36)/(1/2+sqrt(5)/2)^57 2584000077399380 a001 12586269025/87403803*12752043^(3/17) 2584000077399381 a001 24157817/2537720636*33385282^(13/18) 2584000077399381 a001 24157817/4106118243*33385282^(3/4) 2584000077399381 a001 24157817/6643838879*33385282^(7/9) 2584000077399381 a001 32951280099/228826127*12752043^(3/17) 2584000077399381 a001 20365011074/54018521*12752043^(2/17) 2584000077399381 a001 43133785636/299537289*12752043^(3/17) 2584000077399381 a001 32264490531/224056801*12752043^(3/17) 2584000077399381 a001 591286729879/4106118243*12752043^(3/17) 2584000077399381 a001 774004377960/5374978561*12752043^(3/17) 2584000077399381 a001 4052739537881/28143753123*12752043^(3/17) 2584000077399381 a001 1515744265389/10525900321*12752043^(3/17) 2584000077399381 a001 3278735159921/22768774562*12752043^(3/17) 2584000077399381 a001 2504730781961/17393796001*12752043^(3/17) 2584000077399381 a001 956722026041/6643838879*12752043^(3/17) 2584000077399381 a001 182717648081/1268860318*12752043^(3/17) 2584000077399381 a001 139583862445/969323029*12752043^(3/17) 2584000077399381 a001 24157817/17393796001*33385282^(5/6) 2584000077399381 a001 53316291173/370248451*12752043^(3/17) 2584000077399381 a001 24157817/54018521*33385282^(1/2) 2584000077399381 a001 10182505537/70711162*12752043^(3/17) 2584000077399381 a001 24157817/45537549124*33385282^(8/9) 2584000077399381 a001 24157817/73681302247*33385282^(11/12) 2584000077399381 a001 24157817/119218851371*33385282^(17/18) 2584000077399381 a001 39088169/20633239*20633239^(3/7) 2584000077399381 a004 Fibonacci(37)*Lucas(36)/(1/2+sqrt(5)/2)^55 2584000077399381 a001 133957148/16692641*12752043^(6/17) 2584000077399381 a001 1602508992/29134601*12752043^(4/17) 2584000077399381 a001 9227465/54018521*20633239^(4/7) 2584000077399382 a001 12586269025/228826127*12752043^(4/17) 2584000077399382 a001 7778742049/54018521*12752043^(3/17) 2584000077399382 a001 10983760033/199691526*12752043^(4/17) 2584000077399382 a001 86267571272/1568397607*12752043^(4/17) 2584000077399382 a001 75283811239/1368706081*12752043^(4/17) 2584000077399382 a001 591286729879/10749957122*12752043^(4/17) 2584000077399382 a001 12585437040/228811001*12752043^(4/17) 2584000077399382 a001 4052739537881/73681302247*12752043^(4/17) 2584000077399382 a001 3536736619241/64300051206*12752043^(4/17) 2584000077399382 a001 6557470319842/119218851371*12752043^(4/17) 2584000077399382 a001 2504730781961/45537549124*12752043^(4/17) 2584000077399382 a001 956722026041/17393796001*12752043^(4/17) 2584000077399382 a001 365435296162/6643838879*12752043^(4/17) 2584000077399382 a001 139583862445/2537720636*12752043^(4/17) 2584000077399382 a001 53316291173/969323029*12752043^(4/17) 2584000077399382 a001 14930352/20633239*45537549124^(1/3) 2584000077399382 a001 137769300517680/53316291173 2584000077399382 a001 9227465/33385282*817138163596^(1/3) 2584000077399382 a001 9227465/33385282*(1/2+1/2*5^(1/2))^19 2584000077399382 a001 14930352/20633239*(1/2+1/2*5^(1/2))^17 2584000077399382 a001 20365011074/370248451*12752043^(4/17) 2584000077399382 a001 63245986/20633239*20633239^(2/5) 2584000077399382 a001 7465176/16692641*12752043^(9/17) 2584000077399382 a001 1762289/1268860318*7881196^(10/11) 2584000077399382 a001 7778742049/141422324*12752043^(4/17) 2584000077399382 a001 9227465/33385282*87403803^(1/2) 2584000077399382 a001 14619165/4769326*12752043^(7/17) 2584000077399382 a001 1836311903/87403803*12752043^(5/17) 2584000077399382 a001 433494437/20633239*20633239^(2/7) 2584000077399382 a001 32951280099/33385282*4870847^(1/16) 2584000077399383 a001 1836311903/12752043*4870847^(3/16) 2584000077399383 a001 102287808/4868641*12752043^(5/17) 2584000077399383 a001 2971215073/54018521*12752043^(4/17) 2584000077399383 a001 12586269025/599074578*12752043^(5/17) 2584000077399383 a001 32951280099/1568397607*12752043^(5/17) 2584000077399383 a001 86267571272/4106118243*12752043^(5/17) 2584000077399383 a001 225851433717/10749957122*12752043^(5/17) 2584000077399383 a001 591286729879/28143753123*12752043^(5/17) 2584000077399383 a001 1548008755920/73681302247*12752043^(5/17) 2584000077399383 a001 4052739537881/192900153618*12752043^(5/17) 2584000077399383 a001 225749145909/10745088481*12752043^(5/17) 2584000077399383 a001 6557470319842/312119004989*12752043^(5/17) 2584000077399383 a001 2504730781961/119218851371*12752043^(5/17) 2584000077399383 a001 956722026041/45537549124*12752043^(5/17) 2584000077399383 a001 365435296162/17393796001*12752043^(5/17) 2584000077399383 a001 139583862445/6643838879*12752043^(5/17) 2584000077399383 a001 53316291173/2537720636*12752043^(5/17) 2584000077399383 a001 20365011074/969323029*12752043^(5/17) 2584000077399383 a001 7778742049/370248451*12752043^(5/17) 2584000077399383 a001 2971215073/141422324*12752043^(5/17) 2584000077399383 a001 39088169/33385282*12752043^(8/17) 2584000077399383 a001 1836311903/20633239*20633239^(1/5) 2584000077399383 a004 Fibonacci(35)*Lucas(37)/(1/2+sqrt(5)/2)^54 2584000077399383 a001 4807526976/20633239*20633239^(1/7) 2584000077399383 a001 233802911/29134601*12752043^(6/17) 2584000077399384 a001 1836311903/228826127*12752043^(6/17) 2584000077399384 a001 1134903170/54018521*12752043^(5/17) 2584000077399384 a001 267084832/33281921*12752043^(6/17) 2584000077399384 a001 12586269025/1568397607*12752043^(6/17) 2584000077399384 a001 10983760033/1368706081*12752043^(6/17) 2584000077399384 a001 43133785636/5374978561*12752043^(6/17) 2584000077399384 a001 75283811239/9381251041*12752043^(6/17) 2584000077399384 a001 591286729879/73681302247*12752043^(6/17) 2584000077399384 a001 86000486440/10716675201*12752043^(6/17) 2584000077399384 a001 4052739537881/505019158607*12752043^(6/17) 2584000077399384 a001 3278735159921/408569081798*12752043^(6/17) 2584000077399384 a001 2504730781961/312119004989*12752043^(6/17) 2584000077399384 a001 956722026041/119218851371*12752043^(6/17) 2584000077399384 a001 182717648081/22768774562*12752043^(6/17) 2584000077399384 a001 139583862445/17393796001*12752043^(6/17) 2584000077399384 a001 53316291173/6643838879*12752043^(6/17) 2584000077399384 a001 10182505537/1268860318*12752043^(6/17) 2584000077399384 a001 7778742049/969323029*12752043^(6/17) 2584000077399384 a001 2971215073/370248451*12752043^(6/17) 2584000077399384 a001 9227465/87403803*141422324^(7/13) 2584000077399384 a001 39088169/20633239*141422324^(5/13) 2584000077399384 a001 9227465/87403803*2537720636^(7/15) 2584000077399384 a001 39088169/20633239*2537720636^(1/3) 2584000077399384 a001 9227465/87403803*17393796001^(3/7) 2584000077399384 a001 9227465/87403803*45537549124^(7/17) 2584000077399384 a001 39088169/20633239*45537549124^(5/17) 2584000077399384 a001 72136942272317/27916772489 2584000077399384 a001 39088169/20633239*312119004989^(3/11) 2584000077399384 a001 9227465/87403803*14662949395604^(1/3) 2584000077399384 a001 39088169/20633239*14662949395604^(5/21) 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^21/Lucas(38) 2584000077399384 a001 39088169/20633239*(1/2+1/2*5^(1/2))^15 2584000077399384 a001 39088169/20633239*192900153618^(5/18) 2584000077399384 a001 39088169/20633239*28143753123^(3/10) 2584000077399384 a001 39088169/20633239*10749957122^(5/16) 2584000077399384 a001 9227465/87403803*10749957122^(7/16) 2584000077399384 a001 39088169/20633239*599074578^(5/14) 2584000077399384 a001 9227465/87403803*599074578^(1/2) 2584000077399384 a001 567451585/70711162*12752043^(6/17) 2584000077399384 a001 39088169/20633239*228826127^(3/8) 2584000077399384 a004 Fibonacci(35)*Lucas(39)/(1/2+sqrt(5)/2)^56 2584000077399384 a001 9227465/119218851371*141422324^(12/13) 2584000077399384 a001 9227465/28143753123*141422324^(11/13) 2584000077399384 a001 9227465/6643838879*141422324^(10/13) 2584000077399384 a001 9303105/1875749*141422324^(1/3) 2584000077399384 a001 9227465/1568397607*141422324^(9/13) 2584000077399384 a001 9227465/969323029*141422324^(2/3) 2584000077399384 a001 9227465/370248451*141422324^(8/13) 2584000077399384 a001 944284833567075/365435296162 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^23/Lucas(40) 2584000077399384 a001 9303105/1875749*(1/2+1/2*5^(1/2))^13 2584000077399384 a001 9303105/1875749*73681302247^(1/4) 2584000077399384 a001 9227465/228826127*4106118243^(1/2) 2584000077399384 a001 701408733/20633239*141422324^(3/13) 2584000077399384 a001 165580141/20633239*141422324^(4/13) 2584000077399384 a001 2971215073/20633239*141422324^(2/13) 2584000077399384 a004 Fibonacci(35)*Lucas(41)/(1/2+sqrt(5)/2)^58 2584000077399384 a001 1144206275/1875749*141422324^(1/13) 2584000077399384 a001 9227465/599074578*2537720636^(5/9) 2584000077399384 a001 9227465/599074578*312119004989^(5/11) 2584000077399384 a001 2472169789339640/956722026041 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^25/Lucas(42) 2584000077399384 a001 9238424/711491*(1/2+1/2*5^(1/2))^11 2584000077399384 a001 9227465/599074578*3461452808002^(5/12) 2584000077399384 a001 9227465/599074578*28143753123^(1/2) 2584000077399384 a001 9238424/711491*1568397607^(1/4) 2584000077399384 a004 Fibonacci(35)*Lucas(43)/(1/2+sqrt(5)/2)^60 2584000077399384 a001 9227465/1568397607*2537720636^(3/5) 2584000077399384 a001 701408733/20633239*2537720636^(1/5) 2584000077399384 a001 9227465/1568397607*45537549124^(9/17) 2584000077399384 a001 701408733/20633239*45537549124^(3/17) 2584000077399384 a001 9227465/1568397607*817138163596^(9/19) 2584000077399384 a001 6472224534451845/2504730781961 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^27/Lucas(44) 2584000077399384 a001 701408733/20633239*(1/2+1/2*5^(1/2))^9 2584000077399384 a001 701408733/20633239*192900153618^(1/6) 2584000077399384 a001 9227465/1568397607*192900153618^(1/2) 2584000077399384 a001 701408733/20633239*10749957122^(3/16) 2584000077399384 a001 9227465/1568397607*10749957122^(9/16) 2584000077399384 a004 Fibonacci(35)*Lucas(45)/(1/2+sqrt(5)/2)^62 2584000077399384 a001 9227465/2139295485799*2537720636^(14/15) 2584000077399384 a001 9227465/817138163596*2537720636^(8/9) 2584000077399384 a001 9227465/505019158607*2537720636^(13/15) 2584000077399384 a001 9227465/119218851371*2537720636^(4/5) 2584000077399384 a001 9227465/73681302247*2537720636^(7/9) 2584000077399384 a001 9227465/28143753123*2537720636^(11/15) 2584000077399384 a001 9227465/6643838879*2537720636^(2/3) 2584000077399384 a001 1836311903/20633239*17393796001^(1/7) 2584000077399384 a001 1303423370308915/504420793834 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^29/Lucas(46) 2584000077399384 a001 1836311903/20633239*(1/2+1/2*5^(1/2))^7 2584000077399384 a001 9227465/4106118243*1322157322203^(1/2) 2584000077399384 a001 4807526976/20633239*2537720636^(1/9) 2584000077399384 a004 Fibonacci(35)*Lucas(47)/(1/2+sqrt(5)/2)^64 2584000077399384 a001 1144206275/1875749*2537720636^(1/15) 2584000077399384 a001 4807526976/20633239*312119004989^(1/11) 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^31/Lucas(48) 2584000077399384 a001 4807526976/20633239*(1/2+1/2*5^(1/2))^5 2584000077399384 a001 9227465/10749957122*9062201101803^(1/2) 2584000077399384 a001 4807526976/20633239*28143753123^(1/10) 2584000077399384 a004 Fibonacci(35)*Lucas(49)/(1/2+sqrt(5)/2)^66 2584000077399384 a001 9227465/2139295485799*17393796001^(6/7) 2584000077399384 a001 9227465/73681302247*17393796001^(5/7) 2584000077399384 a001 9227465/28143753123*45537549124^(11/17) 2584000077399384 a001 1144206275/1875749*45537549124^(1/17) 2584000077399384 a001 9227465/28143753123*312119004989^(3/5) 2584000077399384 a001 9227465/28143753123*817138163596^(11/19) 2584000077399384 a001 1144206275/1875749*14662949395604^(1/21) 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^33/Lucas(50) 2584000077399384 a001 1144206275/1875749*(1/2+1/2*5^(1/2))^3 2584000077399384 a001 9227465/28143753123*192900153618^(11/18) 2584000077399384 a001 1144206275/1875749*10749957122^(1/16) 2584000077399384 a004 Fibonacci(35)*Lucas(51)/(1/2+sqrt(5)/2)^68 2584000077399384 a001 9227465/9062201101803*45537549124^(15/17) 2584000077399384 a001 9227465/2139295485799*45537549124^(14/17) 2584000077399384 a001 9227465/505019158607*45537549124^(13/17) 2584000077399384 a001 9227465/119218851371*45537549124^(12/17) 2584000077399384 a001 9227465/73681302247*14662949395604^(5/9) 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^35/Lucas(52) 2584000077399384 a001 9227465/73681302247*505019158607^(5/8) 2584000077399384 a004 Fibonacci(35)*Lucas(53)/(1/2+sqrt(5)/2)^70 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^37/Lucas(54) 2584000077399384 a004 Fibonacci(54)/Lucas(35)/(1/2+sqrt(5)/2) 2584000077399384 a004 Fibonacci(35)*Lucas(55)/(1/2+sqrt(5)/2)^72 2584000077399384 a001 9227465/5600748293801*312119004989^(4/5) 2584000077399384 a001 9227465/817138163596*312119004989^(8/11) 2584000077399384 a001 9227465/505019158607*14662949395604^(13/21) 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^39/Lucas(56) 2584000077399384 a004 Fibonacci(56)/Lucas(35)/(1/2+sqrt(5)/2)^3 2584000077399384 a004 Fibonacci(35)*Lucas(57)/(1/2+sqrt(5)/2)^74 2584000077399384 a001 9227465/2139295485799*817138163596^(14/19) 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^41/Lucas(58) 2584000077399384 a004 Fibonacci(58)/Lucas(35)/(1/2+sqrt(5)/2)^5 2584000077399384 a004 Fibonacci(35)*Lucas(59)/(1/2+sqrt(5)/2)^76 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^43/Lucas(60) 2584000077399384 a004 Fibonacci(60)/Lucas(35)/(1/2+sqrt(5)/2)^7 2584000077399384 a004 Fibonacci(35)*Lucas(61)/(1/2+sqrt(5)/2)^78 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^45/Lucas(62) 2584000077399384 a004 Fibonacci(62)/Lucas(35)/(1/2+sqrt(5)/2)^9 2584000077399384 a004 Fibonacci(35)*Lucas(63)/(1/2+sqrt(5)/2)^80 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^47/Lucas(64) 2584000077399384 a004 Fibonacci(64)/Lucas(35)/(1/2+sqrt(5)/2)^11 2584000077399384 a004 Fibonacci(35)*Lucas(65)/(1/2+sqrt(5)/2)^82 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^49/Lucas(66) 2584000077399384 a004 Fibonacci(66)/Lucas(35)/(1/2+sqrt(5)/2)^13 2584000077399384 a004 Fibonacci(35)*Lucas(67)/(1/2+sqrt(5)/2)^84 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^51/Lucas(68) 2584000077399384 a004 Fibonacci(68)/Lucas(35)/(1/2+sqrt(5)/2)^15 2584000077399384 a004 Fibonacci(35)*Lucas(69)/(1/2+sqrt(5)/2)^86 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^53/Lucas(70) 2584000077399384 a004 Fibonacci(35)*Lucas(71)/(1/2+sqrt(5)/2)^88 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^55/Lucas(72) 2584000077399384 a004 Fibonacci(35)*Lucas(73)/(1/2+sqrt(5)/2)^90 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^57/Lucas(74) 2584000077399384 a004 Fibonacci(35)*Lucas(75)/(1/2+sqrt(5)/2)^92 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^59/Lucas(76) 2584000077399384 a004 Fibonacci(35)*Lucas(77)/(1/2+sqrt(5)/2)^94 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^61/Lucas(78) 2584000077399384 a004 Fibonacci(35)*Lucas(79)/(1/2+sqrt(5)/2)^96 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^63/Lucas(80) 2584000077399384 a004 Fibonacci(35)*Lucas(81)/(1/2+sqrt(5)/2)^98 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^65/Lucas(82) 2584000077399384 a004 Fibonacci(35)*Lucas(83)/(1/2+sqrt(5)/2)^100 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^67/Lucas(84) 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^69/Lucas(86) 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^71/Lucas(88) 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^73/Lucas(90) 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^75/Lucas(92) 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^77/Lucas(94) 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^79/Lucas(96) 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^81/Lucas(98) 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^83/Lucas(100) 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^80/Lucas(97) 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^82/Lucas(99) 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^78/Lucas(95) 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^76/Lucas(93) 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^74/Lucas(91) 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^72/Lucas(89) 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^70/Lucas(87) 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^68/Lucas(85) 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^66/Lucas(83) 2584000077399384 a004 Fibonacci(35)*Lucas(82)/(1/2+sqrt(5)/2)^99 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^64/Lucas(81) 2584000077399384 a004 Fibonacci(35)*Lucas(80)/(1/2+sqrt(5)/2)^97 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^62/Lucas(79) 2584000077399384 a004 Fibonacci(35)*Lucas(78)/(1/2+sqrt(5)/2)^95 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^60/Lucas(77) 2584000077399384 a004 Fibonacci(35)*Lucas(76)/(1/2+sqrt(5)/2)^93 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^58/Lucas(75) 2584000077399384 a004 Fibonacci(35)*Lucas(74)/(1/2+sqrt(5)/2)^91 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^56/Lucas(73) 2584000077399384 a004 Fibonacci(35)*Lucas(72)/(1/2+sqrt(5)/2)^89 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^54/Lucas(71) 2584000077399384 a004 Fibonacci(72)/Lucas(35)/(1/2+sqrt(5)/2)^19 2584000077399384 a004 Fibonacci(74)/Lucas(35)/(1/2+sqrt(5)/2)^21 2584000077399384 a004 Fibonacci(76)/Lucas(35)/(1/2+sqrt(5)/2)^23 2584000077399384 a004 Fibonacci(78)/Lucas(35)/(1/2+sqrt(5)/2)^25 2584000077399384 a004 Fibonacci(80)/Lucas(35)/(1/2+sqrt(5)/2)^27 2584000077399384 a004 Fibonacci(82)/Lucas(35)/(1/2+sqrt(5)/2)^29 2584000077399384 a004 Fibonacci(84)/Lucas(35)/(1/2+sqrt(5)/2)^31 2584000077399384 a004 Fibonacci(86)/Lucas(35)/(1/2+sqrt(5)/2)^33 2584000077399384 a004 Fibonacci(88)/Lucas(35)/(1/2+sqrt(5)/2)^35 2584000077399384 a004 Fibonacci(90)/Lucas(35)/(1/2+sqrt(5)/2)^37 2584000077399384 a004 Fibonacci(92)/Lucas(35)/(1/2+sqrt(5)/2)^39 2584000077399384 a004 Fibonacci(94)/Lucas(35)/(1/2+sqrt(5)/2)^41 2584000077399384 a004 Fibonacci(96)/Lucas(35)/(1/2+sqrt(5)/2)^43 2584000077399384 a004 Fibonacci(98)/Lucas(35)/(1/2+sqrt(5)/2)^45 2584000077399384 a004 Fibonacci(100)/Lucas(35)/(1/2+sqrt(5)/2)^47 2584000077399384 a004 Fibonacci(35)*Lucas(70)/(1/2+sqrt(5)/2)^87 2584000077399384 a004 Fibonacci(99)/Lucas(35)/(1/2+sqrt(5)/2)^46 2584000077399384 a004 Fibonacci(97)/Lucas(35)/(1/2+sqrt(5)/2)^44 2584000077399384 a004 Fibonacci(95)/Lucas(35)/(1/2+sqrt(5)/2)^42 2584000077399384 a004 Fibonacci(93)/Lucas(35)/(1/2+sqrt(5)/2)^40 2584000077399384 a004 Fibonacci(91)/Lucas(35)/(1/2+sqrt(5)/2)^38 2584000077399384 a004 Fibonacci(89)/Lucas(35)/(1/2+sqrt(5)/2)^36 2584000077399384 a004 Fibonacci(87)/Lucas(35)/(1/2+sqrt(5)/2)^34 2584000077399384 a004 Fibonacci(85)/Lucas(35)/(1/2+sqrt(5)/2)^32 2584000077399384 a004 Fibonacci(83)/Lucas(35)/(1/2+sqrt(5)/2)^30 2584000077399384 a004 Fibonacci(81)/Lucas(35)/(1/2+sqrt(5)/2)^28 2584000077399384 a004 Fibonacci(79)/Lucas(35)/(1/2+sqrt(5)/2)^26 2584000077399384 a004 Fibonacci(77)/Lucas(35)/(1/2+sqrt(5)/2)^24 2584000077399384 a004 Fibonacci(75)/Lucas(35)/(1/2+sqrt(5)/2)^22 2584000077399384 a004 Fibonacci(73)/Lucas(35)/(1/2+sqrt(5)/2)^20 2584000077399384 a004 Fibonacci(71)/Lucas(35)/(1/2+sqrt(5)/2)^18 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^52/Lucas(69) 2584000077399384 a004 Fibonacci(69)/Lucas(35)/(1/2+sqrt(5)/2)^16 2584000077399384 a004 Fibonacci(35)*Lucas(68)/(1/2+sqrt(5)/2)^85 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^50/Lucas(67) 2584000077399384 a004 Fibonacci(67)/Lucas(35)/(1/2+sqrt(5)/2)^14 2584000077399384 a004 Fibonacci(35)*Lucas(66)/(1/2+sqrt(5)/2)^83 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^48/Lucas(65) 2584000077399384 a004 Fibonacci(65)/Lucas(35)/(1/2+sqrt(5)/2)^12 2584000077399384 a004 Fibonacci(35)*Lucas(64)/(1/2+sqrt(5)/2)^81 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^46/Lucas(63) 2584000077399384 a004 Fibonacci(63)/Lucas(35)/(1/2+sqrt(5)/2)^10 2584000077399384 a004 Fibonacci(35)*Lucas(62)/(1/2+sqrt(5)/2)^79 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^44/Lucas(61) 2584000077399384 a004 Fibonacci(61)/Lucas(35)/(1/2+sqrt(5)/2)^8 2584000077399384 a004 Fibonacci(35)*Lucas(60)/(1/2+sqrt(5)/2)^77 2584000077399384 a001 9227465/2139295485799*14662949395604^(2/3) 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^42/Lucas(59) 2584000077399384 a004 Fibonacci(59)/Lucas(35)/(1/2+sqrt(5)/2)^6 2584000077399384 a004 Fibonacci(35)*Lucas(58)/(1/2+sqrt(5)/2)^75 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^40/Lucas(57) 2584000077399384 a004 Fibonacci(57)/Lucas(35)/(1/2+sqrt(5)/2)^4 2584000077399384 a004 Fibonacci(35)*Lucas(56)/(1/2+sqrt(5)/2)^73 2584000077399384 a001 9227465/312119004989*817138163596^(2/3) 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^38/Lucas(55) 2584000077399384 a004 Fibonacci(55)/Lucas(35)/(1/2+sqrt(5)/2)^2 2584000077399384 a001 9227465/505019158607*192900153618^(13/18) 2584000077399384 a001 9227465/2139295485799*192900153618^(7/9) 2584000077399384 a001 9227465/9062201101803*192900153618^(5/6) 2584000077399384 a004 Fibonacci(35)*Lucas(54)/(1/2+sqrt(5)/2)^71 2584000077399384 a001 9227465/119218851371*14662949395604^(4/7) 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^36/Lucas(53) 2584000077399384 a006 5^(1/2)*Fibonacci(53)/Lucas(35)/sqrt(5) 2584000077399384 a001 9227465/119218851371*505019158607^(9/14) 2584000077399384 a001 9227465/119218851371*192900153618^(2/3) 2584000077399384 a001 9227465/505019158607*73681302247^(3/4) 2584000077399384 a001 9227465/817138163596*73681302247^(10/13) 2584000077399384 a001 9227465/5600748293801*73681302247^(11/13) 2584000077399384 a001 9227465/45537549124*45537549124^(2/3) 2584000077399384 a004 Fibonacci(35)*Lucas(52)/(1/2+sqrt(5)/2)^69 2584000077399384 a001 9227465/119218851371*73681302247^(9/13) 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^34/Lucas(51) 2584000077399384 a001 20365011074/20633239*(1/2+1/2*5^(1/2))^2 2584000077399384 a001 9227465/73681302247*28143753123^(7/10) 2584000077399384 a001 20365011074/20633239*10749957122^(1/24) 2584000077399384 a001 9227465/817138163596*28143753123^(4/5) 2584000077399384 a001 9227465/9062201101803*28143753123^(9/10) 2584000077399384 a004 Fibonacci(35)*Lucas(50)/(1/2+sqrt(5)/2)^67 2584000077399384 a001 2971215073/20633239*2537720636^(2/15) 2584000077399384 a001 20365011074/20633239*4106118243^(1/23) 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^32/Lucas(49) 2584000077399384 a001 7778742049/20633239*(1/2+1/2*5^(1/2))^4 2584000077399384 a001 7778742049/20633239*23725150497407^(1/16) 2584000077399384 a001 9227465/17393796001*505019158607^(4/7) 2584000077399384 a001 7778742049/20633239*73681302247^(1/13) 2584000077399384 a001 9227465/17393796001*73681302247^(8/13) 2584000077399384 a001 7778742049/20633239*10749957122^(1/12) 2584000077399384 a001 9227465/28143753123*10749957122^(11/16) 2584000077399384 a001 9227465/119218851371*10749957122^(3/4) 2584000077399384 a001 9227465/45537549124*10749957122^(17/24) 2584000077399384 a001 9227465/312119004989*10749957122^(19/24) 2584000077399384 a001 9227465/505019158607*10749957122^(13/16) 2584000077399384 a001 9227465/817138163596*10749957122^(5/6) 2584000077399384 a001 9227465/2139295485799*10749957122^(7/8) 2584000077399384 a001 9227465/5600748293801*10749957122^(11/12) 2584000077399384 a001 9227465/9062201101803*10749957122^(15/16) 2584000077399384 a001 9227465/14662949395604*10749957122^(23/24) 2584000077399384 a001 7778742049/20633239*4106118243^(2/23) 2584000077399384 a004 Fibonacci(35)*Lucas(48)/(1/2+sqrt(5)/2)^65 2584000077399384 a001 9227465/17393796001*10749957122^(2/3) 2584000077399384 a001 20365011074/20633239*1568397607^(1/22) 2584000077399384 a001 9227465/6643838879*45537549124^(10/17) 2584000077399384 a001 2971215073/20633239*45537549124^(2/17) 2584000077399384 a001 9227465/6643838879*312119004989^(6/11) 2584000077399384 a001 9227465/6643838879*14662949395604^(10/21) 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^30/Lucas(47) 2584000077399384 a001 2971215073/20633239*(1/2+1/2*5^(1/2))^6 2584000077399384 a001 27416783093579945/10610209857723 2584000077399384 a001 9227465/6643838879*192900153618^(5/9) 2584000077399384 a001 9227465/6643838879*28143753123^(3/5) 2584000077399384 a001 2971215073/20633239*10749957122^(1/8) 2584000077399384 a001 9227465/6643838879*10749957122^(5/8) 2584000077399384 a001 2971215073/20633239*4106118243^(3/23) 2584000077399384 a001 7778742049/20633239*1568397607^(1/11) 2584000077399384 a001 9227465/45537549124*4106118243^(17/23) 2584000077399384 a001 9227465/17393796001*4106118243^(16/23) 2584000077399384 a001 9227465/119218851371*4106118243^(18/23) 2584000077399384 a001 9227465/312119004989*4106118243^(19/23) 2584000077399384 a001 9227465/817138163596*4106118243^(20/23) 2584000077399384 a001 9227465/2139295485799*4106118243^(21/23) 2584000077399384 a001 9227465/5600748293801*4106118243^(22/23) 2584000077399384 a004 Fibonacci(35)*Lucas(46)/(1/2+sqrt(5)/2)^63 2584000077399384 a001 9227465/6643838879*4106118243^(15/23) 2584000077399384 a001 2971215073/20633239*1568397607^(3/22) 2584000077399384 a001 20365011074/20633239*599074578^(1/21) 2584000077399384 a001 9227465/2537720636*17393796001^(4/7) 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^28/Lucas(45) 2584000077399384 a001 1134903170/20633239*(1/2+1/2*5^(1/2))^8 2584000077399384 a001 10472279279564050/4052739537881 2584000077399384 a001 1134903170/20633239*505019158607^(1/7) 2584000077399384 a001 1134903170/20633239*73681302247^(2/13) 2584000077399384 a001 9227465/2537720636*73681302247^(7/13) 2584000077399384 a001 1134903170/20633239*10749957122^(1/6) 2584000077399384 a001 9227465/2537720636*10749957122^(7/12) 2584000077399384 a001 1134903170/20633239*4106118243^(4/23) 2584000077399384 a001 701408733/20633239*599074578^(3/14) 2584000077399384 a001 9227465/2537720636*4106118243^(14/23) 2584000077399384 a001 1144206275/1875749*599074578^(1/14) 2584000077399384 a001 1134903170/20633239*1568397607^(2/11) 2584000077399384 a001 7778742049/20633239*599074578^(2/21) 2584000077399384 a001 9227465/17393796001*1568397607^(8/11) 2584000077399384 a001 9227465/6643838879*1568397607^(15/22) 2584000077399384 a001 9227465/28143753123*1568397607^(3/4) 2584000077399384 a001 9227465/45537549124*1568397607^(17/22) 2584000077399384 a001 9227465/119218851371*1568397607^(9/11) 2584000077399384 a001 9227465/312119004989*1568397607^(19/22) 2584000077399384 a001 9227465/817138163596*1568397607^(10/11) 2584000077399384 a001 9227465/2139295485799*1568397607^(21/22) 2584000077399384 a001 1836311903/20633239*599074578^(1/6) 2584000077399384 a004 Fibonacci(35)*Lucas(44)/(1/2+sqrt(5)/2)^61 2584000077399384 a001 9227465/2537720636*1568397607^(7/11) 2584000077399384 a001 2971215073/20633239*599074578^(1/7) 2584000077399384 a001 1134903170/20633239*599074578^(4/21) 2584000077399384 a001 20365011074/20633239*228826127^(1/20) 2584000077399384 a001 433494437/20633239*2537720636^(2/9) 2584000077399384 a001 433494437/20633239*312119004989^(2/11) 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^26/Lucas(43) 2584000077399384 a001 433494437/20633239*(1/2+1/2*5^(1/2))^10 2584000077399384 a001 800010949022441/309601751184 2584000077399384 a001 9227465/969323029*73681302247^(1/2) 2584000077399384 a001 433494437/20633239*28143753123^(1/5) 2584000077399384 a001 433494437/20633239*10749957122^(5/24) 2584000077399384 a001 9227465/969323029*10749957122^(13/24) 2584000077399384 a001 433494437/20633239*4106118243^(5/23) 2584000077399384 a001 9227465/969323029*4106118243^(13/23) 2584000077399384 a001 433494437/20633239*1568397607^(5/22) 2584000077399384 a001 9227465/969323029*1568397607^(13/22) 2584000077399384 a001 9227465/1568397607*599074578^(9/14) 2584000077399384 a001 433494437/20633239*599074578^(5/21) 2584000077399384 a001 7778742049/20633239*228826127^(1/10) 2584000077399384 a001 9227465/2537720636*599074578^(2/3) 2584000077399384 a001 9227465/6643838879*599074578^(5/7) 2584000077399384 a001 9227465/17393796001*599074578^(16/21) 2584000077399384 a001 9227465/28143753123*599074578^(11/14) 2584000077399384 a001 9227465/45537549124*599074578^(17/21) 2584000077399384 a001 9227465/73681302247*599074578^(5/6) 2584000077399384 a001 4807526976/20633239*228826127^(1/8) 2584000077399384 a001 9227465/119218851371*599074578^(6/7) 2584000077399384 a001 9227465/312119004989*599074578^(19/21) 2584000077399384 a001 9227465/505019158607*599074578^(13/14) 2584000077399384 a001 9227465/817138163596*599074578^(20/21) 2584000077399384 a004 Fibonacci(35)*Lucas(42)/(1/2+sqrt(5)/2)^59 2584000077399384 a001 9227465/969323029*599074578^(13/21) 2584000077399384 a001 2971215073/20633239*228826127^(3/20) 2584000077399384 a001 1134903170/20633239*228826127^(1/5) 2584000077399384 a001 433494437/20633239*228826127^(1/4) 2584000077399384 a001 20365011074/20633239*87403803^(1/19) 2584000077399384 a001 9227465/370248451*2537720636^(8/15) 2584000077399384 a001 165580141/20633239*2537720636^(4/15) 2584000077399384 a001 9227465/370248451*45537549124^(8/17) 2584000077399384 a001 165580141/20633239*45537549124^(4/17) 2584000077399384 a001 165580141/20633239*817138163596^(4/19) 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^24/Lucas(41) 2584000077399384 a001 165580141/20633239*(1/2+1/2*5^(1/2))^12 2584000077399384 a001 1527884955772565/591286729879 2584000077399384 a001 165580141/20633239*192900153618^(2/9) 2584000077399384 a001 9227465/370248451*192900153618^(4/9) 2584000077399384 a001 165580141/20633239*73681302247^(3/13) 2584000077399384 a001 9227465/370248451*73681302247^(6/13) 2584000077399384 a001 165580141/20633239*10749957122^(1/4) 2584000077399384 a001 9227465/370248451*10749957122^(1/2) 2584000077399384 a001 165580141/20633239*4106118243^(6/23) 2584000077399384 a001 9227465/370248451*4106118243^(12/23) 2584000077399384 a001 165580141/20633239*1568397607^(3/11) 2584000077399384 a001 9227465/370248451*1568397607^(6/11) 2584000077399384 a001 165580141/20633239*599074578^(2/7) 2584000077399384 a001 9227465/370248451*599074578^(4/7) 2584000077399384 a001 9227465/599074578*228826127^(5/8) 2584000077399384 a001 165580141/20633239*228826127^(3/10) 2584000077399384 a001 9227465/969323029*228826127^(13/20) 2584000077399384 a001 9227465/2537720636*228826127^(7/10) 2584000077399384 a001 7778742049/20633239*87403803^(2/19) 2584000077399384 a001 9227465/6643838879*228826127^(3/4) 2584000077399384 a001 9227465/17393796001*228826127^(4/5) 2584000077399384 a001 9227465/45537549124*228826127^(17/20) 2584000077399384 a001 9227465/73681302247*228826127^(7/8) 2584000077399384 a001 9227465/119218851371*228826127^(9/10) 2584000077399384 a001 9227465/312119004989*228826127^(19/20) 2584000077399384 a001 9227465/370248451*228826127^(3/5) 2584000077399384 a004 Fibonacci(35)*Lucas(40)/(1/2+sqrt(5)/2)^57 2584000077399384 a001 2971215073/20633239*87403803^(3/19) 2584000077399384 a001 1134903170/20633239*87403803^(4/19) 2584000077399384 a001 433494437/20633239*87403803^(5/19) 2584000077399384 a001 165580141/20633239*87403803^(6/19) 2584000077399384 a001 267914296/87403803*12752043^(7/17) 2584000077399384 a001 20365011074/20633239*33385282^(1/18) 2584000077399384 a001 63245986/20633239*17393796001^(2/7) 2584000077399384 a001 9227465/141422324*312119004989^(2/5) 2584000077399384 a001 63245986/20633239*14662949395604^(2/9) 2584000077399384 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^22/Lucas(39) 2584000077399384 a001 63245986/20633239*(1/2+1/2*5^(1/2))^14 2584000077399384 a001 44892317092730/17373187209 2584000077399384 a001 63245986/20633239*10749957122^(7/24) 2584000077399384 a001 9227465/141422324*10749957122^(11/24) 2584000077399384 a001 63245986/20633239*4106118243^(7/23) 2584000077399384 a001 9227465/141422324*4106118243^(11/23) 2584000077399384 a001 63245986/20633239*1568397607^(7/22) 2584000077399384 a001 9227465/141422324*1568397607^(1/2) 2584000077399384 a001 63245986/20633239*599074578^(1/3) 2584000077399384 a001 9227465/141422324*599074578^(11/21) 2584000077399384 a001 63245986/20633239*228826127^(7/20) 2584000077399384 a001 9227465/141422324*228826127^(11/20) 2584000077399384 a001 1144206275/1875749*33385282^(1/12) 2584000077399384 a001 9227465/370248451*87403803^(12/19) 2584000077399384 a001 9227465/969323029*87403803^(13/19) 2584000077399384 a001 9227465/2537720636*87403803^(14/19) 2584000077399384 a001 63245986/20633239*87403803^(7/19) 2584000077399384 a001 7778742049/20633239*33385282^(1/9) 2584000077399384 a001 9227465/6643838879*87403803^(15/19) 2584000077399384 a001 9227465/17393796001*87403803^(16/19) 2584000077399384 a001 9227465/45537549124*87403803^(17/19) 2584000077399384 a001 9227465/119218851371*87403803^(18/19) 2584000077399384 a001 9227465/141422324*87403803^(11/19) 2584000077399384 a004 Fibonacci(35)*Lucas(38)/(1/2+sqrt(5)/2)^55 2584000077399384 a001 2971215073/20633239*33385282^(1/6) 2584000077399384 a001 86267571272/87403803*4870847^(1/16) 2584000077399384 a001 701408733/228826127*12752043^(7/17) 2584000077399384 a001 433494437/54018521*12752043^(6/17) 2584000077399384 a001 24157817/33385282*12752043^(1/2) 2584000077399385 a001 1836311903/599074578*12752043^(7/17) 2584000077399385 a001 686789568/224056801*12752043^(7/17) 2584000077399385 a001 12586269025/4106118243*12752043^(7/17) 2584000077399385 a001 32951280099/10749957122*12752043^(7/17) 2584000077399385 a001 86267571272/28143753123*12752043^(7/17) 2584000077399385 a001 32264490531/10525900321*12752043^(7/17) 2584000077399385 a001 591286729879/192900153618*12752043^(7/17) 2584000077399385 a001 1548008755920/505019158607*12752043^(7/17) 2584000077399385 a001 1515744265389/494493258286*12752043^(7/17) 2584000077399385 a001 956722026041/312119004989*12752043^(7/17) 2584000077399385 a001 365435296162/119218851371*12752043^(7/17) 2584000077399385 a001 139583862445/45537549124*12752043^(7/17) 2584000077399385 a001 53316291173/17393796001*12752043^(7/17) 2584000077399385 a001 20365011074/6643838879*12752043^(7/17) 2584000077399385 a001 7778742049/2537720636*12752043^(7/17) 2584000077399385 a001 2971215073/969323029*12752043^(7/17) 2584000077399385 a001 1134903170/370248451*12752043^(7/17) 2584000077399385 a001 1134903170/20633239*33385282^(2/9) 2584000077399385 a001 701408733/20633239*33385282^(1/4) 2584000077399385 a001 433494437/141422324*12752043^(7/17) 2584000077399385 a001 4976784/29134601*12752043^(10/17) 2584000077399385 a001 39088169/20633239*33385282^(5/12) 2584000077399385 a001 433494437/20633239*33385282^(5/18) 2584000077399385 a001 225851433717/228826127*4870847^(1/16) 2584000077399385 a001 591286729879/599074578*4870847^(1/16) 2584000077399385 a001 1548008755920/1568397607*4870847^(1/16) 2584000077399385 a001 4052739537881/4106118243*4870847^(1/16) 2584000077399385 a001 4807525989/4870846*4870847^(1/16) 2584000077399385 a001 6557470319842/6643838879*4870847^(1/16) 2584000077399385 a001 2504730781961/2537720636*4870847^(1/16) 2584000077399385 a001 956722026041/969323029*4870847^(1/16) 2584000077399385 a001 365435296162/370248451*4870847^(1/16) 2584000077399385 a001 165580141/20633239*33385282^(1/3) 2584000077399385 a001 139583862445/141422324*4870847^(1/16) 2584000077399385 a001 9227465/54018521*2537720636^(4/9) 2584000077399385 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^20/Lucas(37) 2584000077399385 a001 24157817/20633239*(1/2+1/2*5^(1/2))^16 2584000077399385 a001 24157817/20633239*23725150497407^(1/4) 2584000077399385 a001 9227465/54018521*23725150497407^(5/16) 2584000077399385 a001 222915410843905/86267571272 2584000077399385 a001 24157817/20633239*73681302247^(4/13) 2584000077399385 a001 9227465/54018521*73681302247^(5/13) 2584000077399385 a001 9227465/54018521*28143753123^(2/5) 2584000077399385 a001 24157817/20633239*10749957122^(1/3) 2584000077399385 a001 9227465/54018521*10749957122^(5/12) 2584000077399385 a001 24157817/20633239*4106118243^(8/23) 2584000077399385 a001 9227465/54018521*4106118243^(10/23) 2584000077399385 a001 24157817/20633239*1568397607^(4/11) 2584000077399385 a001 9227465/54018521*1568397607^(5/11) 2584000077399385 a001 24157817/20633239*599074578^(8/21) 2584000077399385 a001 9227465/54018521*599074578^(10/21) 2584000077399385 a001 24157817/20633239*228826127^(2/5) 2584000077399385 a001 9227465/54018521*228826127^(1/2) 2584000077399385 a001 20365011074/20633239*12752043^(1/17) 2584000077399385 a001 9227465/87403803*33385282^(7/12) 2584000077399385 a001 34111385/29134601*12752043^(8/17) 2584000077399385 a001 24157817/20633239*87403803^(8/19) 2584000077399385 a001 63245986/20633239*33385282^(7/18) 2584000077399385 a001 9227465/54018521*87403803^(10/19) 2584000077399385 a001 267914296/228826127*12752043^(8/17) 2584000077399385 a001 165580141/54018521*12752043^(7/17) 2584000077399385 a001 233802911/199691526*12752043^(8/17) 2584000077399385 a001 1836311903/1568397607*12752043^(8/17) 2584000077399385 a001 1602508992/1368706081*12752043^(8/17) 2584000077399385 a001 12586269025/10749957122*12752043^(8/17) 2584000077399385 a001 10983760033/9381251041*12752043^(8/17) 2584000077399385 a001 86267571272/73681302247*12752043^(8/17) 2584000077399385 a001 75283811239/64300051206*12752043^(8/17) 2584000077399385 a001 2504730781961/2139295485799*12752043^(8/17) 2584000077399385 a001 365435296162/312119004989*12752043^(8/17) 2584000077399385 a001 139583862445/119218851371*12752043^(8/17) 2584000077399385 a001 53316291173/45537549124*12752043^(8/17) 2584000077399385 a001 20365011074/17393796001*12752043^(8/17) 2584000077399385 a001 7778742049/6643838879*12752043^(8/17) 2584000077399385 a001 2971215073/2537720636*12752043^(8/17) 2584000077399385 a001 1134903170/969323029*12752043^(8/17) 2584000077399385 a001 433494437/370248451*12752043^(8/17) 2584000077399386 a001 1762289/299537289*7881196^(9/11) 2584000077399386 a001 9227465/141422324*33385282^(11/18) 2584000077399386 a001 165580141/141422324*12752043^(8/17) 2584000077399386 a001 9227465/370248451*33385282^(2/3) 2584000077399386 a001 53316291173/54018521*4870847^(1/16) 2584000077399386 a001 39088169/87403803*12752043^(9/17) 2584000077399386 a001 63245986/87403803*12752043^(1/2) 2584000077399386 a001 9227465/969323029*33385282^(13/18) 2584000077399386 a001 9227465/1568397607*33385282^(3/4) 2584000077399386 a001 9227465/2537720636*33385282^(7/9) 2584000077399386 a001 14930352/228826127*12752043^(11/17) 2584000077399386 a001 165580141/228826127*12752043^(1/2) 2584000077399386 a001 7778742049/20633239*12752043^(2/17) 2584000077399386 a001 433494437/599074578*12752043^(1/2) 2584000077399386 a001 1134903170/1568397607*12752043^(1/2) 2584000077399386 a001 2971215073/4106118243*12752043^(1/2) 2584000077399386 a001 7778742049/10749957122*12752043^(1/2) 2584000077399386 a001 20365011074/28143753123*12752043^(1/2) 2584000077399386 a001 53316291173/73681302247*12752043^(1/2) 2584000077399386 a001 139583862445/192900153618*12752043^(1/2) 2584000077399386 a001 10610209857723/14662949395604*12752043^(1/2) 2584000077399386 a001 225851433717/312119004989*12752043^(1/2) 2584000077399386 a001 86267571272/119218851371*12752043^(1/2) 2584000077399386 a001 32951280099/45537549124*12752043^(1/2) 2584000077399386 a001 12586269025/17393796001*12752043^(1/2) 2584000077399386 a001 4807526976/6643838879*12752043^(1/2) 2584000077399386 a001 1836311903/2537720636*12752043^(1/2) 2584000077399386 a001 701408733/969323029*12752043^(1/2) 2584000077399386 a001 267914296/370248451*12752043^(1/2) 2584000077399386 a001 24157817/20633239*33385282^(4/9) 2584000077399386 a001 9227465/6643838879*33385282^(5/6) 2584000077399386 a001 102334155/141422324*12752043^(1/2) 2584000077399386 a001 9227465/17393796001*33385282^(8/9) 2584000077399386 a001 9227465/28143753123*33385282^(11/12) 2584000077399386 a001 9227465/54018521*33385282^(5/9) 2584000077399386 a001 9227465/45537549124*33385282^(17/18) 2584000077399386 a001 102334155/228826127*12752043^(9/17) 2584000077399386 a004 Fibonacci(35)*Lucas(36)/(1/2+sqrt(5)/2)^53 2584000077399386 a001 133957148/299537289*12752043^(9/17) 2584000077399386 a001 701408733/1568397607*12752043^(9/17) 2584000077399386 a001 1836311903/4106118243*12752043^(9/17) 2584000077399386 a001 2403763488/5374978561*12752043^(9/17) 2584000077399386 a001 12586269025/28143753123*12752043^(9/17) 2584000077399386 a001 32951280099/73681302247*12752043^(9/17) 2584000077399386 a001 43133785636/96450076809*12752043^(9/17) 2584000077399386 a001 225851433717/505019158607*12752043^(9/17) 2584000077399386 a001 10610209857723/23725150497407*12752043^(9/17) 2584000077399386 a001 182717648081/408569081798*12752043^(9/17) 2584000077399386 a001 139583862445/312119004989*12752043^(9/17) 2584000077399386 a001 53316291173/119218851371*12752043^(9/17) 2584000077399386 a001 10182505537/22768774562*12752043^(9/17) 2584000077399386 a001 7778742049/17393796001*12752043^(9/17) 2584000077399386 a001 2971215073/6643838879*12752043^(9/17) 2584000077399386 a001 567451585/1268860318*12752043^(9/17) 2584000077399386 a001 433494437/969323029*12752043^(9/17) 2584000077399386 a001 165580141/370248451*12752043^(9/17) 2584000077399386 a001 39088169/54018521*12752043^(1/2) 2584000077399386 a001 63245986/54018521*12752043^(8/17) 2584000077399387 a001 31622993/70711162*12752043^(9/17) 2584000077399387 a001 2971215073/20633239*12752043^(3/17) 2584000077399387 a001 829464/33281921*12752043^(12/17) 2584000077399387 a001 39088169/228826127*12752043^(10/17) 2584000077399387 a001 34111385/199691526*12752043^(10/17) 2584000077399387 a001 267914296/1568397607*12752043^(10/17) 2584000077399387 a001 233802911/1368706081*12752043^(10/17) 2584000077399387 a001 1836311903/10749957122*12752043^(10/17) 2584000077399387 a001 1602508992/9381251041*12752043^(10/17) 2584000077399387 a001 12586269025/73681302247*12752043^(10/17) 2584000077399387 a001 10983760033/64300051206*12752043^(10/17) 2584000077399387 a001 86267571272/505019158607*12752043^(10/17) 2584000077399387 a001 75283811239/440719107401*12752043^(10/17) 2584000077399387 a001 2504730781961/14662949395604*12752043^(10/17) 2584000077399387 a001 139583862445/817138163596*12752043^(10/17) 2584000077399387 a001 53316291173/312119004989*12752043^(10/17) 2584000077399387 a001 20365011074/119218851371*12752043^(10/17) 2584000077399387 a001 7778742049/45537549124*12752043^(10/17) 2584000077399387 a001 2971215073/17393796001*12752043^(10/17) 2584000077399387 a001 1134903170/6643838879*12752043^(10/17) 2584000077399387 a001 433494437/2537720636*12752043^(10/17) 2584000077399387 a001 165580141/969323029*12752043^(10/17) 2584000077399387 a001 63245986/370248451*12752043^(10/17) 2584000077399388 a001 1134903170/20633239*12752043^(4/17) 2584000077399388 a001 14930352/1568397607*12752043^(13/17) 2584000077399388 a001 39088169/599074578*12752043^(11/17) 2584000077399388 a001 24157817/54018521*12752043^(9/17) 2584000077399388 a001 14619165/224056801*12752043^(11/17) 2584000077399388 a001 267914296/4106118243*12752043^(11/17) 2584000077399388 a001 701408733/10749957122*12752043^(11/17) 2584000077399388 a001 1836311903/28143753123*12752043^(11/17) 2584000077399388 a001 686789568/10525900321*12752043^(11/17) 2584000077399388 a001 12586269025/192900153618*12752043^(11/17) 2584000077399388 a001 32951280099/505019158607*12752043^(11/17) 2584000077399388 a001 86267571272/1322157322203*12752043^(11/17) 2584000077399388 a001 32264490531/494493258286*12752043^(11/17) 2584000077399388 a001 1548008755920/23725150497407*12752043^(11/17) 2584000077399388 a001 139583862445/2139295485799*12752043^(11/17) 2584000077399388 a001 53316291173/817138163596*12752043^(11/17) 2584000077399388 a001 20365011074/312119004989*12752043^(11/17) 2584000077399388 a001 7778742049/119218851371*12752043^(11/17) 2584000077399388 a001 2971215073/45537549124*12752043^(11/17) 2584000077399388 a001 1134903170/17393796001*12752043^(11/17) 2584000077399388 a001 433494437/6643838879*12752043^(11/17) 2584000077399388 a001 165580141/2537720636*12752043^(11/17) 2584000077399388 a001 24157817/141422324*12752043^(10/17) 2584000077399388 a001 63245986/969323029*12752043^(11/17) 2584000077399389 a001 433494437/20633239*12752043^(5/17) 2584000077399389 a001 4976784/1368706081*12752043^(14/17) 2584000077399389 a001 39088169/1568397607*12752043^(12/17) 2584000077399389 a001 34111385/1368706081*12752043^(12/17) 2584000077399389 a001 24157817/370248451*12752043^(11/17) 2584000077399389 a001 133957148/5374978561*12752043^(12/17) 2584000077399389 a001 233802911/9381251041*12752043^(12/17) 2584000077399389 a001 1836311903/73681302247*12752043^(12/17) 2584000077399389 a001 267084832/10716675201*12752043^(12/17) 2584000077399389 a001 12586269025/505019158607*12752043^(12/17) 2584000077399389 a001 10983760033/440719107401*12752043^(12/17) 2584000077399389 a001 43133785636/1730726404001*12752043^(12/17) 2584000077399389 a001 75283811239/3020733700601*12752043^(12/17) 2584000077399389 a001 182717648081/7331474697802*12752043^(12/17) 2584000077399389 a001 139583862445/5600748293801*12752043^(12/17) 2584000077399389 a001 53316291173/2139295485799*12752043^(12/17) 2584000077399389 a001 10182505537/408569081798*12752043^(12/17) 2584000077399389 a001 7778742049/312119004989*12752043^(12/17) 2584000077399389 a001 2971215073/119218851371*12752043^(12/17) 2584000077399389 a001 567451585/22768774562*12752043^(12/17) 2584000077399389 a001 433494437/17393796001*12752043^(12/17) 2584000077399389 a001 165580141/6643838879*12752043^(12/17) 2584000077399389 a001 12586269025/33385282*4870847^(1/8) 2584000077399389 a001 233802911/4250681*4870847^(1/4) 2584000077399389 a001 31622993/1268860318*12752043^(12/17) 2584000077399389 a001 1762289/70711162*7881196^(8/11) 2584000077399390 a001 14930352/20633239*12752043^(1/2) 2584000077399390 a001 165580141/20633239*12752043^(6/17) 2584000077399390 a001 7465176/5374978561*12752043^(15/17) 2584000077399390 a001 39088169/4106118243*12752043^(13/17) 2584000077399390 a001 9227465/20633239*141422324^(6/13) 2584000077399390 a001 102334155/10749957122*12752043^(13/17) 2584000077399390 a001 24157817/969323029*12752043^(12/17) 2584000077399390 a001 9227465/20633239*2537720636^(2/5) 2584000077399390 a001 9227465/20633239*45537549124^(6/17) 2584000077399390 a001 9227465/20633239*14662949395604^(2/7) 2584000077399390 a001 9227465/20633239*(1/2+1/2*5^(1/2))^18 2584000077399390 a001 9227465/20633239*192900153618^(1/3) 2584000077399390 a001 85146110326225/32951280099 2584000077399390 a001 9227465/20633239*10749957122^(3/8) 2584000077399390 a001 9227465/20633239*4106118243^(9/23) 2584000077399390 a001 9227465/20633239*1568397607^(9/22) 2584000077399390 a001 9227465/20633239*599074578^(3/7) 2584000077399390 a001 267914296/28143753123*12752043^(13/17) 2584000077399390 a001 701408733/73681302247*12752043^(13/17) 2584000077399390 a001 1836311903/192900153618*12752043^(13/17) 2584000077399390 a001 102287808/10745088481*12752043^(13/17) 2584000077399390 a001 12586269025/1322157322203*12752043^(13/17) 2584000077399390 a001 32951280099/3461452808002*12752043^(13/17) 2584000077399390 a001 86267571272/9062201101803*12752043^(13/17) 2584000077399390 a001 225851433717/23725150497407*12752043^(13/17) 2584000077399390 a001 139583862445/14662949395604*12752043^(13/17) 2584000077399390 a001 53316291173/5600748293801*12752043^(13/17) 2584000077399390 a001 20365011074/2139295485799*12752043^(13/17) 2584000077399390 a001 7778742049/817138163596*12752043^(13/17) 2584000077399390 a001 2971215073/312119004989*12752043^(13/17) 2584000077399390 a001 1134903170/119218851371*12752043^(13/17) 2584000077399390 a001 433494437/45537549124*12752043^(13/17) 2584000077399390 a001 9227465/20633239*228826127^(9/20) 2584000077399390 a001 165580141/17393796001*12752043^(13/17) 2584000077399390 a001 63245986/6643838879*12752043^(13/17) 2584000077399390 a001 9227465/20633239*87403803^(9/19) 2584000077399391 a001 4976784/9381251041*12752043^(16/17) 2584000077399391 a001 63245986/20633239*12752043^(7/17) 2584000077399391 a001 39088169/10749957122*12752043^(14/17) 2584000077399391 a001 1762289/16692641*7881196^(7/11) 2584000077399391 a001 20365011074/20633239*4870847^(1/16) 2584000077399391 a001 831985/228811001*12752043^(14/17) 2584000077399391 a001 24157817/2537720636*12752043^(13/17) 2584000077399391 a001 267914296/73681302247*12752043^(14/17) 2584000077399391 a001 233802911/64300051206*12752043^(14/17) 2584000077399391 a001 1836311903/505019158607*12752043^(14/17) 2584000077399391 a001 1602508992/440719107401*12752043^(14/17) 2584000077399391 a001 12586269025/3461452808002*12752043^(14/17) 2584000077399391 a001 10983760033/3020733700601*12752043^(14/17) 2584000077399391 a001 86267571272/23725150497407*12752043^(14/17) 2584000077399391 a001 53316291173/14662949395604*12752043^(14/17) 2584000077399391 a001 20365011074/5600748293801*12752043^(14/17) 2584000077399391 a001 7778742049/2139295485799*12752043^(14/17) 2584000077399391 a001 2971215073/817138163596*12752043^(14/17) 2584000077399391 a001 1134903170/312119004989*12752043^(14/17) 2584000077399391 a001 433494437/119218851371*12752043^(14/17) 2584000077399391 a001 165580141/45537549124*12752043^(14/17) 2584000077399391 a001 63245986/17393796001*12752043^(14/17) 2584000077399391 a001 10983760033/29134601*4870847^(1/8) 2584000077399391 a001 9227465/20633239*33385282^(1/2) 2584000077399392 a001 86267571272/228826127*4870847^(1/8) 2584000077399392 a004 Fibonacci(36)*Lucas(34)/(1/2+sqrt(5)/2)^52 2584000077399392 a001 267913919/710646*4870847^(1/8) 2584000077399392 a001 591286729879/1568397607*4870847^(1/8) 2584000077399392 a001 516002918640/1368706081*4870847^(1/8) 2584000077399392 a001 4052739537881/10749957122*4870847^(1/8) 2584000077399392 a001 3536736619241/9381251041*4870847^(1/8) 2584000077399392 a001 6557470319842/17393796001*4870847^(1/8) 2584000077399392 a001 2504730781961/6643838879*4870847^(1/8) 2584000077399392 a001 956722026041/2537720636*4870847^(1/8) 2584000077399392 a001 365435296162/969323029*4870847^(1/8) 2584000077399392 a001 139583862445/370248451*4870847^(1/8) 2584000077399392 a001 39088169/28143753123*12752043^(15/17) 2584000077399392 a001 53316291173/141422324*4870847^(1/8) 2584000077399392 a001 14619165/10525900321*12752043^(15/17) 2584000077399392 a001 24157817/6643838879*12752043^(14/17) 2584000077399392 a001 133957148/96450076809*12752043^(15/17) 2584000077399392 a001 701408733/505019158607*12752043^(15/17) 2584000077399392 a001 1836311903/1322157322203*12752043^(15/17) 2584000077399392 a001 14930208/10749853441*12752043^(15/17) 2584000077399392 a001 12586269025/9062201101803*12752043^(15/17) 2584000077399392 a001 32951280099/23725150497407*12752043^(15/17) 2584000077399392 a001 10182505537/7331474697802*12752043^(15/17) 2584000077399392 a001 7778742049/5600748293801*12752043^(15/17) 2584000077399392 a001 2971215073/2139295485799*12752043^(15/17) 2584000077399392 a001 567451585/408569081798*12752043^(15/17) 2584000077399392 a001 433494437/312119004989*12752043^(15/17) 2584000077399392 a001 165580141/119218851371*12752043^(15/17) 2584000077399392 a001 31622993/22768774562*12752043^(15/17) 2584000077399392 a001 24157817/20633239*12752043^(8/17) 2584000077399392 a001 20365011074/54018521*4870847^(1/8) 2584000077399393 a001 39088169/73681302247*12752043^(16/17) 2584000077399393 a001 3524578/54018521*7881196^(2/3) 2584000077399393 a001 34111385/64300051206*12752043^(16/17) 2584000077399393 a001 24157817/17393796001*12752043^(15/17) 2584000077399393 a001 267914296/505019158607*12752043^(16/17) 2584000077399393 a001 233802911/440719107401*12752043^(16/17) 2584000077399393 a001 1836311903/3461452808002*12752043^(16/17) 2584000077399393 a001 1602508992/3020733700601*12752043^(16/17) 2584000077399393 a001 12586269025/23725150497407*12752043^(16/17) 2584000077399393 a001 7778742049/14662949395604*12752043^(16/17) 2584000077399393 a001 2971215073/5600748293801*12752043^(16/17) 2584000077399393 a001 1134903170/2139295485799*12752043^(16/17) 2584000077399393 a001 433494437/817138163596*12752043^(16/17) 2584000077399393 a001 165580141/312119004989*12752043^(16/17) 2584000077399393 a001 63245986/119218851371*12752043^(16/17) 2584000077399393 a001 1134903170/4870847*1860498^(1/6) 2584000077399394 a004 Fibonacci(38)*Lucas(34)/(1/2+sqrt(5)/2)^54 2584000077399394 a004 Fibonacci(40)*Lucas(34)/(1/2+sqrt(5)/2)^56 2584000077399394 a001 24157817/45537549124*12752043^(16/17) 2584000077399394 a004 Fibonacci(42)*Lucas(34)/(1/2+sqrt(5)/2)^58 2584000077399394 a004 Fibonacci(44)*Lucas(34)/(1/2+sqrt(5)/2)^60 2584000077399394 a004 Fibonacci(46)*Lucas(34)/(1/2+sqrt(5)/2)^62 2584000077399394 a004 Fibonacci(48)*Lucas(34)/(1/2+sqrt(5)/2)^64 2584000077399394 a004 Fibonacci(50)*Lucas(34)/(1/2+sqrt(5)/2)^66 2584000077399394 a004 Fibonacci(52)*Lucas(34)/(1/2+sqrt(5)/2)^68 2584000077399394 a004 Fibonacci(54)*Lucas(34)/(1/2+sqrt(5)/2)^70 2584000077399394 a004 Fibonacci(56)*Lucas(34)/(1/2+sqrt(5)/2)^72 2584000077399394 a004 Fibonacci(58)*Lucas(34)/(1/2+sqrt(5)/2)^74 2584000077399394 a004 Fibonacci(60)*Lucas(34)/(1/2+sqrt(5)/2)^76 2584000077399394 a004 Fibonacci(62)*Lucas(34)/(1/2+sqrt(5)/2)^78 2584000077399394 a004 Fibonacci(64)*Lucas(34)/(1/2+sqrt(5)/2)^80 2584000077399394 a004 Fibonacci(66)*Lucas(34)/(1/2+sqrt(5)/2)^82 2584000077399394 a004 Fibonacci(68)*Lucas(34)/(1/2+sqrt(5)/2)^84 2584000077399394 a004 Fibonacci(70)*Lucas(34)/(1/2+sqrt(5)/2)^86 2584000077399394 a004 Fibonacci(72)*Lucas(34)/(1/2+sqrt(5)/2)^88 2584000077399394 a004 Fibonacci(74)*Lucas(34)/(1/2+sqrt(5)/2)^90 2584000077399394 a004 Fibonacci(76)*Lucas(34)/(1/2+sqrt(5)/2)^92 2584000077399394 a004 Fibonacci(78)*Lucas(34)/(1/2+sqrt(5)/2)^94 2584000077399394 a004 Fibonacci(80)*Lucas(34)/(1/2+sqrt(5)/2)^96 2584000077399394 a004 Fibonacci(82)*Lucas(34)/(1/2+sqrt(5)/2)^98 2584000077399394 a004 Fibonacci(84)*Lucas(34)/(1/2+sqrt(5)/2)^100 2584000077399394 a004 Fibonacci(83)*Lucas(34)/(1/2+sqrt(5)/2)^99 2584000077399394 a004 Fibonacci(81)*Lucas(34)/(1/2+sqrt(5)/2)^97 2584000077399394 a004 Fibonacci(79)*Lucas(34)/(1/2+sqrt(5)/2)^95 2584000077399394 a004 Fibonacci(77)*Lucas(34)/(1/2+sqrt(5)/2)^93 2584000077399394 a004 Fibonacci(75)*Lucas(34)/(1/2+sqrt(5)/2)^91 2584000077399394 a004 Fibonacci(73)*Lucas(34)/(1/2+sqrt(5)/2)^89 2584000077399394 a004 Fibonacci(71)*Lucas(34)/(1/2+sqrt(5)/2)^87 2584000077399394 a004 Fibonacci(69)*Lucas(34)/(1/2+sqrt(5)/2)^85 2584000077399394 a001 2/5702887*(1/2+1/2*5^(1/2))^52 2584000077399394 a004 Fibonacci(67)*Lucas(34)/(1/2+sqrt(5)/2)^83 2584000077399394 a004 Fibonacci(65)*Lucas(34)/(1/2+sqrt(5)/2)^81 2584000077399394 a004 Fibonacci(63)*Lucas(34)/(1/2+sqrt(5)/2)^79 2584000077399394 a004 Fibonacci(61)*Lucas(34)/(1/2+sqrt(5)/2)^77 2584000077399394 a004 Fibonacci(59)*Lucas(34)/(1/2+sqrt(5)/2)^75 2584000077399394 a004 Fibonacci(57)*Lucas(34)/(1/2+sqrt(5)/2)^73 2584000077399394 a004 Fibonacci(55)*Lucas(34)/(1/2+sqrt(5)/2)^71 2584000077399394 a004 Fibonacci(53)*Lucas(34)/(1/2+sqrt(5)/2)^69 2584000077399394 a004 Fibonacci(51)*Lucas(34)/(1/2+sqrt(5)/2)^67 2584000077399394 a004 Fibonacci(49)*Lucas(34)/(1/2+sqrt(5)/2)^65 2584000077399394 a004 Fibonacci(47)*Lucas(34)/(1/2+sqrt(5)/2)^63 2584000077399394 a004 Fibonacci(45)*Lucas(34)/(1/2+sqrt(5)/2)^61 2584000077399394 a004 Fibonacci(43)*Lucas(34)/(1/2+sqrt(5)/2)^59 2584000077399394 a004 Fibonacci(41)*Lucas(34)/(1/2+sqrt(5)/2)^57 2584000077399394 a004 Fibonacci(39)*Lucas(34)/(1/2+sqrt(5)/2)^55 2584000077399394 a001 9227465/54018521*12752043^(10/17) 2584000077399394 a001 9227465/141422324*12752043^(11/17) 2584000077399395 a004 Fibonacci(37)*Lucas(34)/(1/2+sqrt(5)/2)^53 2584000077399395 a001 9227465/370248451*12752043^(12/17) 2584000077399396 a001 14930208/103681*4870847^(3/16) 2584000077399396 a001 267914296/12752043*4870847^(5/16) 2584000077399396 a001 9227465/969323029*12752043^(13/17) 2584000077399397 a001 9227465/2537720636*12752043^(14/17) 2584000077399398 a001 7778742049/20633239*4870847^(1/8) 2584000077399398 a001 12586269025/87403803*4870847^(3/16) 2584000077399398 a001 9227465/6643838879*12752043^(15/17) 2584000077399398 a001 32951280099/228826127*4870847^(3/16) 2584000077399398 a001 3732588/1970299*7881196^(5/11) 2584000077399398 a001 43133785636/299537289*4870847^(3/16) 2584000077399398 a001 32264490531/224056801*4870847^(3/16) 2584000077399398 a001 591286729879/4106118243*4870847^(3/16) 2584000077399398 a001 774004377960/5374978561*4870847^(3/16) 2584000077399398 a001 4052739537881/28143753123*4870847^(3/16) 2584000077399398 a001 1515744265389/10525900321*4870847^(3/16) 2584000077399398 a001 3278735159921/22768774562*4870847^(3/16) 2584000077399398 a001 2504730781961/17393796001*4870847^(3/16) 2584000077399398 a001 956722026041/6643838879*4870847^(3/16) 2584000077399398 a001 182717648081/1268860318*4870847^(3/16) 2584000077399398 a001 139583862445/969323029*4870847^(3/16) 2584000077399398 a001 53316291173/370248451*4870847^(3/16) 2584000077399399 a001 10182505537/70711162*4870847^(3/16) 2584000077399399 a001 9227465/20633239*12752043^(9/17) 2584000077399399 a001 9227465/17393796001*12752043^(16/17) 2584000077399399 a001 7778742049/54018521*4870847^(3/16) 2584000077399400 a004 Fibonacci(35)*Lucas(34)/(1/2+sqrt(5)/2)^51 2584000077399403 a001 34111385/4250681*4870847^(3/8) 2584000077399403 a001 1836311903/33385282*4870847^(1/4) 2584000077399404 a001 20100270056686/7778742049 2584000077399404 a001 5702887/7881196*45537549124^(1/3) 2584000077399404 a001 3524578/12752043*817138163596^(1/3) 2584000077399404 a001 3524578/12752043*(1/2+1/2*5^(1/2))^19 2584000077399404 a001 5702887/7881196*(1/2+1/2*5^(1/2))^17 2584000077399404 a001 3524578/12752043*87403803^(1/2) 2584000077399404 a001 2971215073/20633239*4870847^(3/16) 2584000077399405 a001 31622993/3940598*7881196^(4/11) 2584000077399405 a001 1602508992/29134601*4870847^(1/4) 2584000077399405 a001 12586269025/228826127*4870847^(1/4) 2584000077399405 a001 10983760033/199691526*4870847^(1/4) 2584000077399405 a001 86267571272/1568397607*4870847^(1/4) 2584000077399405 a001 75283811239/1368706081*4870847^(1/4) 2584000077399405 a001 591286729879/10749957122*4870847^(1/4) 2584000077399405 a001 12585437040/228811001*4870847^(1/4) 2584000077399405 a001 4052739537881/73681302247*4870847^(1/4) 2584000077399405 a001 3536736619241/64300051206*4870847^(1/4) 2584000077399405 a001 6557470319842/119218851371*4870847^(1/4) 2584000077399405 a001 2504730781961/45537549124*4870847^(1/4) 2584000077399405 a001 956722026041/17393796001*4870847^(1/4) 2584000077399405 a001 365435296162/6643838879*4870847^(1/4) 2584000077399405 a001 139583862445/2537720636*4870847^(1/4) 2584000077399405 a001 53316291173/969323029*4870847^(1/4) 2584000077399405 a001 20365011074/370248451*4870847^(1/4) 2584000077399405 a001 7778742049/141422324*4870847^(1/4) 2584000077399406 a001 102334155/7881196*7881196^(1/3) 2584000077399406 a001 2971215073/54018521*4870847^(1/4) 2584000077399407 a001 5702887/12752043*4870847^(9/16) 2584000077399408 a001 66978574/1970299*7881196^(3/11) 2584000077399409 a001 39088169/12752043*4870847^(7/16) 2584000077399410 a001 701408733/33385282*4870847^(5/16) 2584000077399411 a001 1134903170/20633239*4870847^(1/4) 2584000077399412 a001 5702887/7881196*12752043^(1/2) 2584000077399412 a001 1836311903/87403803*4870847^(5/16) 2584000077399412 a001 12586269025/12752043*1860498^(1/15) 2584000077399412 a001 102287808/4868641*4870847^(5/16) 2584000077399412 a001 12586269025/599074578*4870847^(5/16) 2584000077399412 a001 32951280099/1568397607*4870847^(5/16) 2584000077399412 a001 86267571272/4106118243*4870847^(5/16) 2584000077399412 a001 225851433717/10749957122*4870847^(5/16) 2584000077399412 a001 591286729879/28143753123*4870847^(5/16) 2584000077399412 a001 1548008755920/73681302247*4870847^(5/16) 2584000077399412 a001 4052739537881/192900153618*4870847^(5/16) 2584000077399412 a001 225749145909/10745088481*4870847^(5/16) 2584000077399412 a001 6557470319842/312119004989*4870847^(5/16) 2584000077399412 a001 2504730781961/119218851371*4870847^(5/16) 2584000077399412 a001 956722026041/45537549124*4870847^(5/16) 2584000077399412 a001 365435296162/17393796001*4870847^(5/16) 2584000077399412 a001 139583862445/6643838879*4870847^(5/16) 2584000077399412 a001 53316291173/2537720636*4870847^(5/16) 2584000077399412 a001 567451585/3940598*7881196^(2/11) 2584000077399412 a001 20365011074/969323029*4870847^(5/16) 2584000077399412 a001 7778742049/370248451*4870847^(5/16) 2584000077399412 a001 2971215073/141422324*4870847^(5/16) 2584000077399413 a001 1134903170/54018521*4870847^(5/16) 2584000077399414 a004 Fibonacci(33)*Lucas(35)/(1/2+sqrt(5)/2)^50 2584000077399414 a001 1762289/16692641*20633239^(3/5) 2584000077399414 a001 4976784/4250681*4870847^(1/2) 2584000077399414 a001 1762289/1268860318*20633239^(6/7) 2584000077399415 a001 3732588/1970299*20633239^(3/7) 2584000077399415 a001 3524578/969323029*20633239^(4/5) 2584000077399415 a001 3524578/228826127*20633239^(5/7) 2584000077399416 a001 1201881744/1970299*7881196^(1/11) 2584000077399417 a001 133957148/16692641*4870847^(3/8) 2584000077399417 a001 1762289/16692641*141422324^(7/13) 2584000077399417 a001 3732588/1970299*141422324^(5/13) 2584000077399417 a001 1762289/16692641*2537720636^(7/15) 2584000077399417 a001 3732588/1970299*2537720636^(1/3) 2584000077399417 a001 1762289/16692641*17393796001^(3/7) 2584000077399417 a001 26311595095728/10182505537 2584000077399417 a001 1762289/16692641*45537549124^(7/17) 2584000077399417 a001 3732588/1970299*45537549124^(5/17) 2584000077399417 a001 3732588/1970299*312119004989^(3/11) 2584000077399417 a001 1762289/16692641*14662949395604^(1/3) 2584000077399417 a001 3732588/1970299*14662949395604^(5/21) 2584000077399417 a001 1762289/16692641*(1/2+1/2*5^(1/2))^21 2584000077399417 a001 3732588/1970299*(1/2+1/2*5^(1/2))^15 2584000077399417 a001 1762289/16692641*192900153618^(7/18) 2584000077399417 a001 3732588/1970299*28143753123^(3/10) 2584000077399417 a001 3732588/1970299*10749957122^(5/16) 2584000077399417 a001 1762289/16692641*10749957122^(7/16) 2584000077399417 a001 3732588/1970299*599074578^(5/14) 2584000077399417 a001 1762289/16692641*599074578^(1/2) 2584000077399417 a001 3732588/1970299*228826127^(3/8) 2584000077399418 a001 165580141/7881196*20633239^(2/7) 2584000077399418 a001 24157817/7881196*20633239^(2/5) 2584000077399418 a001 433494437/20633239*4870847^(5/16) 2584000077399418 a001 3732588/1970299*33385282^(5/12) 2584000077399418 a001 701408733/4870847*1860498^(1/5) 2584000077399418 a001 3524667/39604*20633239^(1/5) 2584000077399418 a001 233802911/29134601*4870847^(3/8) 2584000077399419 a001 1762289/16692641*33385282^(7/12) 2584000077399419 a004 Fibonacci(33)*Lucas(37)/(1/2+sqrt(5)/2)^52 2584000077399419 a001 1836311903/7881196*20633239^(1/7) 2584000077399419 a001 1836311903/228826127*4870847^(3/8) 2584000077399419 a001 267084832/33281921*4870847^(3/8) 2584000077399419 a001 12586269025/1568397607*4870847^(3/8) 2584000077399419 a001 10983760033/1368706081*4870847^(3/8) 2584000077399419 a001 43133785636/5374978561*4870847^(3/8) 2584000077399419 a001 75283811239/9381251041*4870847^(3/8) 2584000077399419 a001 591286729879/73681302247*4870847^(3/8) 2584000077399419 a001 86000486440/10716675201*4870847^(3/8) 2584000077399419 a001 4052739537881/505019158607*4870847^(3/8) 2584000077399419 a001 3536736619241/440719107401*4870847^(3/8) 2584000077399419 a001 3278735159921/408569081798*4870847^(3/8) 2584000077399419 a001 2504730781961/312119004989*4870847^(3/8) 2584000077399419 a001 956722026041/119218851371*4870847^(3/8) 2584000077399419 a001 182717648081/22768774562*4870847^(3/8) 2584000077399419 a001 139583862445/17393796001*4870847^(3/8) 2584000077399419 a001 53316291173/6643838879*4870847^(3/8) 2584000077399419 a001 10182505537/1268860318*4870847^(3/8) 2584000077399419 a001 7778742049/969323029*4870847^(3/8) 2584000077399419 a001 2971215073/370248451*4870847^(3/8) 2584000077399419 a001 567451585/70711162*4870847^(3/8) 2584000077399419 a001 39088169/7881196*141422324^(1/3) 2584000077399419 a001 137769300517682/53316291173 2584000077399419 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^23/Lucas(38) 2584000077399419 a001 39088169/7881196*(1/2+1/2*5^(1/2))^13 2584000077399419 a001 39088169/7881196*73681302247^(1/4) 2584000077399419 a001 3524578/87403803*4106118243^(1/2) 2584000077399419 a004 Fibonacci(33)*Lucas(39)/(1/2+sqrt(5)/2)^54 2584000077399419 a001 1762289/22768774562*141422324^(12/13) 2584000077399419 a001 1762289/5374978561*141422324^(11/13) 2584000077399419 a001 1762289/1268860318*141422324^(10/13) 2584000077399419 a001 1762289/299537289*141422324^(9/13) 2584000077399420 a001 3524578/370248451*141422324^(2/3) 2584000077399420 a001 3524578/228826127*2537720636^(5/9) 2584000077399420 a001 810527441262/313671601 2584000077399420 a001 3524578/228826127*312119004989^(5/11) 2584000077399420 a001 102334155/7881196*312119004989^(1/5) 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^25/Lucas(40) 2584000077399420 a001 102334155/7881196*(1/2+1/2*5^(1/2))^11 2584000077399420 a001 3524578/228826127*28143753123^(1/2) 2584000077399420 a001 102334155/7881196*1568397607^(1/4) 2584000077399420 a001 66978574/1970299*141422324^(3/13) 2584000077399420 a001 567451585/3940598*141422324^(2/13) 2584000077399420 a004 Fibonacci(33)*Lucas(41)/(1/2+sqrt(5)/2)^56 2584000077399420 a001 3524578/228826127*228826127^(5/8) 2584000077399420 a001 1201881744/1970299*141422324^(1/13) 2584000077399420 a001 1762289/299537289*2537720636^(3/5) 2584000077399420 a001 66978574/1970299*2537720636^(1/5) 2584000077399420 a001 1762289/299537289*45537549124^(9/17) 2584000077399420 a001 66978574/1970299*45537549124^(3/17) 2584000077399420 a001 1762289/299537289*817138163596^(9/19) 2584000077399420 a001 1762289/299537289*14662949395604^(3/7) 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^27/Lucas(42) 2584000077399420 a001 66978574/1970299*(1/2+1/2*5^(1/2))^9 2584000077399420 a001 1762289/299537289*192900153618^(1/2) 2584000077399420 a001 66978574/1970299*10749957122^(3/16) 2584000077399420 a001 1762289/299537289*10749957122^(9/16) 2584000077399420 a001 66978574/1970299*599074578^(3/14) 2584000077399420 a004 Fibonacci(33)*Lucas(43)/(1/2+sqrt(5)/2)^58 2584000077399420 a001 1762289/299537289*599074578^(9/14) 2584000077399420 a001 3524667/39604*17393796001^(1/7) 2584000077399420 a001 2472169789339674/956722026041 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^29/Lucas(44) 2584000077399420 a001 3524667/39604*(1/2+1/2*5^(1/2))^7 2584000077399420 a001 3524578/1568397607*1322157322203^(1/2) 2584000077399420 a004 Fibonacci(33)*Lucas(45)/(1/2+sqrt(5)/2)^60 2584000077399420 a001 1762289/408569081798*2537720636^(14/15) 2584000077399420 a001 3524578/312119004989*2537720636^(8/9) 2584000077399420 a001 1762289/96450076809*2537720636^(13/15) 2584000077399420 a001 1762289/22768774562*2537720636^(4/5) 2584000077399420 a001 1762289/5374978561*2537720636^(11/15) 2584000077399420 a001 3524578/28143753123*2537720636^(7/9) 2584000077399420 a001 1836311903/7881196*2537720636^(1/9) 2584000077399420 a001 1836311903/7881196*312119004989^(1/11) 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^31/Lucas(46) 2584000077399420 a001 1836311903/7881196*(1/2+1/2*5^(1/2))^5 2584000077399420 a001 3524578/4106118243*9062201101803^(1/2) 2584000077399420 a001 1836311903/7881196*28143753123^(1/10) 2584000077399420 a004 Fibonacci(33)*Lucas(47)/(1/2+sqrt(5)/2)^62 2584000077399420 a001 1201881744/1970299*2537720636^(1/15) 2584000077399420 a001 1762289/5374978561*45537549124^(11/17) 2584000077399420 a001 1201881744/1970299*45537549124^(1/17) 2584000077399420 a001 1762289/5374978561*312119004989^(3/5) 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^33/Lucas(48) 2584000077399420 a001 1201881744/1970299*14662949395604^(1/21) 2584000077399420 a001 1201881744/1970299*(1/2+1/2*5^(1/2))^3 2584000077399420 a001 1201881744/1970299*192900153618^(1/18) 2584000077399420 a001 1762289/5374978561*192900153618^(11/18) 2584000077399420 a001 1201881744/1970299*10749957122^(1/16) 2584000077399420 a001 3524578/28143753123*17393796001^(5/7) 2584000077399420 a004 Fibonacci(33)*Lucas(49)/(1/2+sqrt(5)/2)^64 2584000077399420 a001 1762289/408569081798*17393796001^(6/7) 2584000077399420 a001 1762289/5374978561*10749957122^(11/16) 2584000077399420 a001 3524578/28143753123*14662949395604^(5/9) 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^35/Lucas(50) 2584000077399420 a001 3524578/28143753123*505019158607^(5/8) 2584000077399420 a004 Fibonacci(33)*Lucas(51)/(1/2+sqrt(5)/2)^66 2584000077399420 a001 1762289/7331474697802*45537549124^(16/17) 2584000077399420 a001 1762289/1730726404001*45537549124^(15/17) 2584000077399420 a001 1762289/96450076809*45537549124^(13/17) 2584000077399420 a001 1762289/408569081798*45537549124^(14/17) 2584000077399420 a001 3524578/28143753123*28143753123^(7/10) 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^37/Lucas(52) 2584000077399420 a004 Fibonacci(52)/Lucas(33)/(1/2+sqrt(5)/2) 2584000077399420 a004 Fibonacci(33)*Lucas(53)/(1/2+sqrt(5)/2)^68 2584000077399420 a001 1762289/96450076809*14662949395604^(13/21) 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^39/Lucas(54) 2584000077399420 a004 Fibonacci(54)/Lucas(33)/(1/2+sqrt(5)/2)^3 2584000077399420 a004 Fibonacci(33)*Lucas(55)/(1/2+sqrt(5)/2)^70 2584000077399420 a001 1762289/1730726404001*312119004989^(9/11) 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^41/Lucas(56) 2584000077399420 a004 Fibonacci(56)/Lucas(33)/(1/2+sqrt(5)/2)^5 2584000077399420 a004 Fibonacci(33)*Lucas(57)/(1/2+sqrt(5)/2)^72 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^43/Lucas(58) 2584000077399420 a004 Fibonacci(58)/Lucas(33)/(1/2+sqrt(5)/2)^7 2584000077399420 a004 Fibonacci(33)*Lucas(59)/(1/2+sqrt(5)/2)^74 2584000077399420 a001 1762289/1730726404001*14662949395604^(5/7) 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^45/Lucas(60) 2584000077399420 a004 Fibonacci(60)/Lucas(33)/(1/2+sqrt(5)/2)^9 2584000077399420 a004 Fibonacci(33)*Lucas(61)/(1/2+sqrt(5)/2)^76 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^47/Lucas(62) 2584000077399420 a004 Fibonacci(62)/Lucas(33)/(1/2+sqrt(5)/2)^11 2584000077399420 a004 Fibonacci(33)*Lucas(63)/(1/2+sqrt(5)/2)^78 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^49/Lucas(64) 2584000077399420 a004 Fibonacci(64)/Lucas(33)/(1/2+sqrt(5)/2)^13 2584000077399420 a004 Fibonacci(33)*Lucas(65)/(1/2+sqrt(5)/2)^80 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^51/Lucas(66) 2584000077399420 a004 Fibonacci(33)*Lucas(67)/(1/2+sqrt(5)/2)^82 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^53/Lucas(68) 2584000077399420 a004 Fibonacci(33)*Lucas(69)/(1/2+sqrt(5)/2)^84 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^55/Lucas(70) 2584000077399420 a004 Fibonacci(33)*Lucas(71)/(1/2+sqrt(5)/2)^86 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^57/Lucas(72) 2584000077399420 a004 Fibonacci(33)*Lucas(73)/(1/2+sqrt(5)/2)^88 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^59/Lucas(74) 2584000077399420 a004 Fibonacci(33)*Lucas(75)/(1/2+sqrt(5)/2)^90 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^61/Lucas(76) 2584000077399420 a004 Fibonacci(33)*Lucas(77)/(1/2+sqrt(5)/2)^92 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^63/Lucas(78) 2584000077399420 a004 Fibonacci(33)*Lucas(79)/(1/2+sqrt(5)/2)^94 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^65/Lucas(80) 2584000077399420 a004 Fibonacci(33)*Lucas(81)/(1/2+sqrt(5)/2)^96 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^67/Lucas(82) 2584000077399420 a004 Fibonacci(33)*Lucas(83)/(1/2+sqrt(5)/2)^98 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^69/Lucas(84) 2584000077399420 a004 Fibonacci(33)*Lucas(85)/(1/2+sqrt(5)/2)^100 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^71/Lucas(86) 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^73/Lucas(88) 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^75/Lucas(90) 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^77/Lucas(92) 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^79/Lucas(94) 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^81/Lucas(96) 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^83/Lucas(98) 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^84/Lucas(99) 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^85/Lucas(100) 2584000077399420 a004 Fibonacci(33)*Lucas(1)/(1/2+sqrt(5)/2)^15 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^82/Lucas(97) 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^80/Lucas(95) 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^78/Lucas(93) 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^76/Lucas(91) 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^74/Lucas(89) 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^72/Lucas(87) 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^70/Lucas(85) 2584000077399420 a004 Fibonacci(33)*Lucas(84)/(1/2+sqrt(5)/2)^99 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^68/Lucas(83) 2584000077399420 a004 Fibonacci(33)*Lucas(82)/(1/2+sqrt(5)/2)^97 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^66/Lucas(81) 2584000077399420 a004 Fibonacci(33)*Lucas(80)/(1/2+sqrt(5)/2)^95 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^64/Lucas(79) 2584000077399420 a004 Fibonacci(33)*Lucas(78)/(1/2+sqrt(5)/2)^93 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^62/Lucas(77) 2584000077399420 a004 Fibonacci(33)*Lucas(76)/(1/2+sqrt(5)/2)^91 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^60/Lucas(75) 2584000077399420 a004 Fibonacci(33)*Lucas(74)/(1/2+sqrt(5)/2)^89 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^58/Lucas(73) 2584000077399420 a004 Fibonacci(33)*Lucas(72)/(1/2+sqrt(5)/2)^87 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^56/Lucas(71) 2584000077399420 a004 Fibonacci(33)*Lucas(70)/(1/2+sqrt(5)/2)^85 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^54/Lucas(69) 2584000077399420 a004 Fibonacci(33)*Lucas(68)/(1/2+sqrt(5)/2)^83 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^52/Lucas(67) 2584000077399420 a004 Fibonacci(68)/Lucas(33)/(1/2+sqrt(5)/2)^17 2584000077399420 a004 Fibonacci(70)/Lucas(33)/(1/2+sqrt(5)/2)^19 2584000077399420 a004 Fibonacci(72)/Lucas(33)/(1/2+sqrt(5)/2)^21 2584000077399420 a004 Fibonacci(74)/Lucas(33)/(1/2+sqrt(5)/2)^23 2584000077399420 a004 Fibonacci(76)/Lucas(33)/(1/2+sqrt(5)/2)^25 2584000077399420 a004 Fibonacci(78)/Lucas(33)/(1/2+sqrt(5)/2)^27 2584000077399420 a004 Fibonacci(80)/Lucas(33)/(1/2+sqrt(5)/2)^29 2584000077399420 a004 Fibonacci(82)/Lucas(33)/(1/2+sqrt(5)/2)^31 2584000077399420 a004 Fibonacci(84)/Lucas(33)/(1/2+sqrt(5)/2)^33 2584000077399420 a004 Fibonacci(86)/Lucas(33)/(1/2+sqrt(5)/2)^35 2584000077399420 a004 Fibonacci(88)/Lucas(33)/(1/2+sqrt(5)/2)^37 2584000077399420 a004 Fibonacci(90)/Lucas(33)/(1/2+sqrt(5)/2)^39 2584000077399420 a004 Fibonacci(92)/Lucas(33)/(1/2+sqrt(5)/2)^41 2584000077399420 a004 Fibonacci(94)/Lucas(33)/(1/2+sqrt(5)/2)^43 2584000077399420 a004 Fibonacci(96)/Lucas(33)/(1/2+sqrt(5)/2)^45 2584000077399420 a004 Fibonacci(100)/Lucas(33)/(1/2+sqrt(5)/2)^49 2584000077399420 a004 Fibonacci(33)*Lucas(66)/(1/2+sqrt(5)/2)^81 2584000077399420 a004 Fibonacci(98)/Lucas(33)/(1/2+sqrt(5)/2)^47 2584000077399420 a004 Fibonacci(99)/Lucas(33)/(1/2+sqrt(5)/2)^48 2584000077399420 a004 Fibonacci(97)/Lucas(33)/(1/2+sqrt(5)/2)^46 2584000077399420 a004 Fibonacci(95)/Lucas(33)/(1/2+sqrt(5)/2)^44 2584000077399420 a004 Fibonacci(93)/Lucas(33)/(1/2+sqrt(5)/2)^42 2584000077399420 a004 Fibonacci(91)/Lucas(33)/(1/2+sqrt(5)/2)^40 2584000077399420 a004 Fibonacci(89)/Lucas(33)/(1/2+sqrt(5)/2)^38 2584000077399420 a004 Fibonacci(87)/Lucas(33)/(1/2+sqrt(5)/2)^36 2584000077399420 a004 Fibonacci(85)/Lucas(33)/(1/2+sqrt(5)/2)^34 2584000077399420 a004 Fibonacci(83)/Lucas(33)/(1/2+sqrt(5)/2)^32 2584000077399420 a004 Fibonacci(81)/Lucas(33)/(1/2+sqrt(5)/2)^30 2584000077399420 a004 Fibonacci(79)/Lucas(33)/(1/2+sqrt(5)/2)^28 2584000077399420 a004 Fibonacci(77)/Lucas(33)/(1/2+sqrt(5)/2)^26 2584000077399420 a004 Fibonacci(75)/Lucas(33)/(1/2+sqrt(5)/2)^24 2584000077399420 a004 Fibonacci(73)/Lucas(33)/(1/2+sqrt(5)/2)^22 2584000077399420 a004 Fibonacci(71)/Lucas(33)/(1/2+sqrt(5)/2)^20 2584000077399420 a004 Fibonacci(69)/Lucas(33)/(1/2+sqrt(5)/2)^18 2584000077399420 a004 Fibonacci(67)/Lucas(33)/(1/2+sqrt(5)/2)^16 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^50/Lucas(65) 2584000077399420 a004 Fibonacci(65)/Lucas(33)/(1/2+sqrt(5)/2)^14 2584000077399420 a004 Fibonacci(33)*Lucas(64)/(1/2+sqrt(5)/2)^79 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^48/Lucas(63) 2584000077399420 a004 Fibonacci(63)/Lucas(33)/(1/2+sqrt(5)/2)^12 2584000077399420 a004 Fibonacci(33)*Lucas(62)/(1/2+sqrt(5)/2)^77 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^46/Lucas(61) 2584000077399420 a004 Fibonacci(61)/Lucas(33)/(1/2+sqrt(5)/2)^10 2584000077399420 a004 Fibonacci(33)*Lucas(60)/(1/2+sqrt(5)/2)^75 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^44/Lucas(59) 2584000077399420 a004 Fibonacci(59)/Lucas(33)/(1/2+sqrt(5)/2)^8 2584000077399420 a004 Fibonacci(33)*Lucas(58)/(1/2+sqrt(5)/2)^73 2584000077399420 a001 1762289/408569081798*14662949395604^(2/3) 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^42/Lucas(57) 2584000077399420 a004 Fibonacci(57)/Lucas(33)/(1/2+sqrt(5)/2)^6 2584000077399420 a004 Fibonacci(33)*Lucas(56)/(1/2+sqrt(5)/2)^71 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^40/Lucas(55) 2584000077399420 a004 Fibonacci(55)/Lucas(33)/(1/2+sqrt(5)/2)^4 2584000077399420 a001 3524578/312119004989*23725150497407^(5/8) 2584000077399420 a001 1762289/1730726404001*192900153618^(5/6) 2584000077399420 a001 1762289/408569081798*192900153618^(7/9) 2584000077399420 a004 Fibonacci(33)*Lucas(54)/(1/2+sqrt(5)/2)^69 2584000077399420 a001 3524578/119218851371*817138163596^(2/3) 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^38/Lucas(53) 2584000077399420 a004 Fibonacci(53)/Lucas(33)/(1/2+sqrt(5)/2)^2 2584000077399420 a001 1762289/96450076809*73681302247^(3/4) 2584000077399420 a001 1762289/22768774562*45537549124^(12/17) 2584000077399420 a001 3524578/312119004989*73681302247^(10/13) 2584000077399420 a001 3524578/2139295485799*73681302247^(11/13) 2584000077399420 a001 1762289/7331474697802*73681302247^(12/13) 2584000077399420 a004 Fibonacci(33)*Lucas(52)/(1/2+sqrt(5)/2)^67 2584000077399420 a001 1762289/22768774562*14662949395604^(4/7) 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^36/Lucas(51) 2584000077399420 a006 5^(1/2)*Fibonacci(51)/Lucas(33)/sqrt(5) 2584000077399420 a001 1762289/22768774562*192900153618^(2/3) 2584000077399420 a001 1762289/22768774562*73681302247^(9/13) 2584000077399420 a001 3524578/312119004989*28143753123^(4/5) 2584000077399420 a001 1762289/1730726404001*28143753123^(9/10) 2584000077399420 a004 Fibonacci(33)*Lucas(50)/(1/2+sqrt(5)/2)^65 2584000077399420 a001 3524578/17393796001*45537549124^(2/3) 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^34/Lucas(49) 2584000077399420 a001 7778742049/7881196*(1/2+1/2*5^(1/2))^2 2584000077399420 a001 27416783093580322/10610209857723 2584000077399420 a001 7778742049/7881196*10749957122^(1/24) 2584000077399420 a001 7778742049/7881196*4106118243^(1/23) 2584000077399420 a001 3524578/119218851371*10749957122^(19/24) 2584000077399420 a001 1762289/22768774562*10749957122^(3/4) 2584000077399420 a001 1762289/96450076809*10749957122^(13/16) 2584000077399420 a001 3524578/312119004989*10749957122^(5/6) 2584000077399420 a001 1762289/408569081798*10749957122^(7/8) 2584000077399420 a001 3524578/2139295485799*10749957122^(11/12) 2584000077399420 a001 1762289/1730726404001*10749957122^(15/16) 2584000077399420 a001 3524578/5600748293801*10749957122^(23/24) 2584000077399420 a004 Fibonacci(33)*Lucas(48)/(1/2+sqrt(5)/2)^63 2584000077399420 a001 3524578/17393796001*10749957122^(17/24) 2584000077399420 a001 7778742049/7881196*1568397607^(1/22) 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^32/Lucas(47) 2584000077399420 a001 2971215073/7881196*(1/2+1/2*5^(1/2))^4 2584000077399420 a001 3524578/6643838879*23725150497407^(1/2) 2584000077399420 a001 10472279279564194/4052739537881 2584000077399420 a001 2971215073/7881196*73681302247^(1/13) 2584000077399420 a001 3524578/6643838879*73681302247^(8/13) 2584000077399420 a001 2971215073/7881196*10749957122^(1/12) 2584000077399420 a001 2971215073/7881196*4106118243^(2/23) 2584000077399420 a001 3524578/6643838879*10749957122^(2/3) 2584000077399420 a001 1762289/22768774562*4106118243^(18/23) 2584000077399420 a001 3524578/17393796001*4106118243^(17/23) 2584000077399420 a001 3524578/119218851371*4106118243^(19/23) 2584000077399420 a001 3524578/312119004989*4106118243^(20/23) 2584000077399420 a001 1762289/1268860318*2537720636^(2/3) 2584000077399420 a001 1762289/408569081798*4106118243^(21/23) 2584000077399420 a001 3524578/2139295485799*4106118243^(22/23) 2584000077399420 a001 3524667/39604*599074578^(1/6) 2584000077399420 a004 Fibonacci(33)*Lucas(46)/(1/2+sqrt(5)/2)^61 2584000077399420 a001 2971215073/7881196*1568397607^(1/11) 2584000077399420 a001 3524578/6643838879*4106118243^(16/23) 2584000077399420 a001 567451585/3940598*2537720636^(2/15) 2584000077399420 a001 7778742049/7881196*599074578^(1/21) 2584000077399420 a001 1762289/1268860318*45537549124^(10/17) 2584000077399420 a001 567451585/3940598*45537549124^(2/17) 2584000077399420 a001 1762289/1268860318*312119004989^(6/11) 2584000077399420 a001 1762289/1268860318*14662949395604^(10/21) 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^30/Lucas(45) 2584000077399420 a001 567451585/3940598*(1/2+1/2*5^(1/2))^6 2584000077399420 a001 3278733397633/1268859636 2584000077399420 a001 1762289/1268860318*192900153618^(5/9) 2584000077399420 a001 1762289/1268860318*28143753123^(3/5) 2584000077399420 a001 567451585/3940598*10749957122^(1/8) 2584000077399420 a001 1762289/1268860318*10749957122^(5/8) 2584000077399420 a001 567451585/3940598*4106118243^(3/23) 2584000077399420 a001 1201881744/1970299*599074578^(1/14) 2584000077399420 a001 1762289/1268860318*4106118243^(15/23) 2584000077399420 a001 567451585/3940598*1568397607^(3/22) 2584000077399420 a001 2971215073/7881196*599074578^(2/21) 2584000077399420 a001 1762289/5374978561*1568397607^(3/4) 2584000077399420 a001 3524578/17393796001*1568397607^(17/22) 2584000077399420 a001 3524578/6643838879*1568397607^(8/11) 2584000077399420 a001 1762289/22768774562*1568397607^(9/11) 2584000077399420 a001 3524578/119218851371*1568397607^(19/22) 2584000077399420 a001 3524578/312119004989*1568397607^(10/11) 2584000077399420 a001 1762289/408569081798*1568397607^(21/22) 2584000077399420 a004 Fibonacci(33)*Lucas(44)/(1/2+sqrt(5)/2)^59 2584000077399420 a001 1762289/1268860318*1568397607^(15/22) 2584000077399420 a001 567451585/3940598*599074578^(1/7) 2584000077399420 a001 7778742049/7881196*228826127^(1/20) 2584000077399420 a001 3524578/969323029*17393796001^(4/7) 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^28/Lucas(43) 2584000077399420 a001 433494437/7881196*(1/2+1/2*5^(1/2))^8 2584000077399420 a001 433494437/7881196*23725150497407^(1/8) 2584000077399420 a001 1527884955772586/591286729879 2584000077399420 a001 433494437/7881196*73681302247^(2/13) 2584000077399420 a001 3524578/969323029*73681302247^(7/13) 2584000077399420 a001 433494437/7881196*10749957122^(1/6) 2584000077399420 a001 3524578/969323029*10749957122^(7/12) 2584000077399420 a001 433494437/7881196*4106118243^(4/23) 2584000077399420 a001 3524578/969323029*4106118243^(14/23) 2584000077399420 a001 433494437/7881196*1568397607^(2/11) 2584000077399420 a001 3524578/969323029*1568397607^(7/11) 2584000077399420 a001 433494437/7881196*599074578^(4/21) 2584000077399420 a001 2971215073/7881196*228826127^(1/10) 2584000077399420 a001 1762289/1268860318*599074578^(5/7) 2584000077399420 a001 3524578/6643838879*599074578^(16/21) 2584000077399420 a001 1762289/5374978561*599074578^(11/14) 2584000077399420 a001 3524578/17393796001*599074578^(17/21) 2584000077399420 a001 3524578/28143753123*599074578^(5/6) 2584000077399420 a001 1836311903/7881196*228826127^(1/8) 2584000077399420 a001 1762289/22768774562*599074578^(6/7) 2584000077399420 a001 3524578/119218851371*599074578^(19/21) 2584000077399420 a001 1762289/96450076809*599074578^(13/14) 2584000077399420 a001 3524578/312119004989*599074578^(20/21) 2584000077399420 a004 Fibonacci(33)*Lucas(42)/(1/2+sqrt(5)/2)^57 2584000077399420 a001 3524578/969323029*599074578^(2/3) 2584000077399420 a001 567451585/3940598*228826127^(3/20) 2584000077399420 a001 433494437/7881196*228826127^(1/5) 2584000077399420 a001 7778742049/7881196*87403803^(1/19) 2584000077399420 a001 165580141/7881196*2537720636^(2/9) 2584000077399420 a001 165580141/7881196*312119004989^(2/11) 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^26/Lucas(41) 2584000077399420 a001 165580141/7881196*(1/2+1/2*5^(1/2))^10 2584000077399420 a001 583600122205498/225851433717 2584000077399420 a001 3524578/370248451*73681302247^(1/2) 2584000077399420 a001 165580141/7881196*28143753123^(1/5) 2584000077399420 a001 165580141/7881196*10749957122^(5/24) 2584000077399420 a001 3524578/370248451*10749957122^(13/24) 2584000077399420 a001 165580141/7881196*4106118243^(5/23) 2584000077399420 a001 3524578/370248451*4106118243^(13/23) 2584000077399420 a001 165580141/7881196*1568397607^(5/22) 2584000077399420 a001 3524578/370248451*1568397607^(13/22) 2584000077399420 a001 165580141/7881196*599074578^(5/21) 2584000077399420 a001 3524578/370248451*599074578^(13/21) 2584000077399420 a001 165580141/7881196*228826127^(1/4) 2584000077399420 a001 2971215073/7881196*87403803^(2/19) 2584000077399420 a001 3524578/969323029*228826127^(7/10) 2584000077399420 a001 1762289/1268860318*228826127^(3/4) 2584000077399420 a001 3524578/6643838879*228826127^(4/5) 2584000077399420 a001 3524578/17393796001*228826127^(17/20) 2584000077399420 a001 3524578/28143753123*228826127^(7/8) 2584000077399420 a001 1762289/22768774562*228826127^(9/10) 2584000077399420 a001 3524578/119218851371*228826127^(19/20) 2584000077399420 a004 Fibonacci(33)*Lucas(40)/(1/2+sqrt(5)/2)^55 2584000077399420 a001 1762289/70711162*141422324^(8/13) 2584000077399420 a001 3524578/370248451*228826127^(13/20) 2584000077399420 a001 567451585/3940598*87403803^(3/19) 2584000077399420 a001 433494437/7881196*87403803^(4/19) 2584000077399420 a001 31622993/3940598*141422324^(4/13) 2584000077399420 a001 165580141/7881196*87403803^(5/19) 2584000077399420 a001 7778742049/7881196*33385282^(1/18) 2584000077399420 a001 1762289/70711162*2537720636^(8/15) 2584000077399420 a001 31622993/3940598*2537720636^(4/15) 2584000077399420 a001 1762289/70711162*45537549124^(8/17) 2584000077399420 a001 31622993/3940598*45537549124^(4/17) 2584000077399420 a001 1762289/70711162*14662949395604^(8/21) 2584000077399420 a001 31622993/3940598*14662949395604^(4/21) 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^24/Lucas(39) 2584000077399420 a001 31622993/3940598*(1/2+1/2*5^(1/2))^12 2584000077399420 a001 31622993/3940598*192900153618^(2/9) 2584000077399420 a001 1762289/70711162*192900153618^(4/9) 2584000077399420 a001 55728852710977/21566892818 2584000077399420 a001 31622993/3940598*73681302247^(3/13) 2584000077399420 a001 1762289/70711162*73681302247^(6/13) 2584000077399420 a001 31622993/3940598*10749957122^(1/4) 2584000077399420 a001 1762289/70711162*10749957122^(1/2) 2584000077399420 a001 31622993/3940598*4106118243^(6/23) 2584000077399420 a001 1762289/70711162*4106118243^(12/23) 2584000077399420 a001 31622993/3940598*1568397607^(3/11) 2584000077399420 a001 433494437/54018521*4870847^(3/8) 2584000077399420 a001 1762289/70711162*1568397607^(6/11) 2584000077399420 a001 31622993/3940598*599074578^(2/7) 2584000077399420 a001 1762289/70711162*599074578^(4/7) 2584000077399420 a001 31622993/3940598*228826127^(3/10) 2584000077399420 a001 1762289/70711162*228826127^(3/5) 2584000077399420 a001 1201881744/1970299*33385282^(1/12) 2584000077399420 a001 31622993/3940598*87403803^(6/19) 2584000077399420 a001 3524578/370248451*87403803^(13/19) 2584000077399420 a001 3524578/969323029*87403803^(14/19) 2584000077399420 a001 2971215073/7881196*33385282^(1/9) 2584000077399420 a001 1762289/1268860318*87403803^(15/19) 2584000077399420 a001 3524578/6643838879*87403803^(16/19) 2584000077399420 a001 3524578/17393796001*87403803^(17/19) 2584000077399420 a001 1762289/22768774562*87403803^(18/19) 2584000077399420 a004 Fibonacci(33)*Lucas(38)/(1/2+sqrt(5)/2)^53 2584000077399420 a001 1762289/70711162*87403803^(12/19) 2584000077399420 a001 567451585/3940598*33385282^(1/6) 2584000077399420 a001 433494437/7881196*33385282^(2/9) 2584000077399420 a001 66978574/1970299*33385282^(1/4) 2584000077399420 a001 165580141/7881196*33385282^(5/18) 2584000077399420 a001 24157817/7881196*17393796001^(2/7) 2584000077399420 a001 3524578/54018521*312119004989^(2/5) 2584000077399420 a001 24157817/7881196*14662949395604^(2/9) 2584000077399420 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^22/Lucas(37) 2584000077399420 a001 24157817/7881196*(1/2+1/2*5^(1/2))^14 2584000077399420 a001 85146110326226/32951280099 2584000077399420 a001 24157817/7881196*10749957122^(7/24) 2584000077399420 a001 3524578/54018521*10749957122^(11/24) 2584000077399420 a001 24157817/7881196*4106118243^(7/23) 2584000077399420 a001 3524578/54018521*4106118243^(11/23) 2584000077399420 a001 24157817/7881196*1568397607^(7/22) 2584000077399420 a001 3524578/54018521*1568397607^(1/2) 2584000077399420 a001 24157817/7881196*599074578^(1/3) 2584000077399420 a001 3524578/54018521*599074578^(11/21) 2584000077399420 a001 31622993/3940598*33385282^(1/3) 2584000077399420 a001 24157817/7881196*228826127^(7/20) 2584000077399421 a001 3524578/54018521*228826127^(11/20) 2584000077399421 a001 7778742049/7881196*12752043^(1/17) 2584000077399421 a001 24157817/7881196*87403803^(7/19) 2584000077399421 a001 3524578/54018521*87403803^(11/19) 2584000077399421 a001 1762289/70711162*33385282^(2/3) 2584000077399421 a001 3524578/370248451*33385282^(13/18) 2584000077399421 a001 1762289/299537289*33385282^(3/4) 2584000077399421 a001 24157817/7881196*33385282^(7/18) 2584000077399421 a001 3524578/969323029*33385282^(7/9) 2584000077399421 a001 2971215073/7881196*12752043^(2/17) 2584000077399422 a001 1762289/1268860318*33385282^(5/6) 2584000077399422 a001 3524578/6643838879*33385282^(8/9) 2584000077399422 a001 1762289/5374978561*33385282^(11/12) 2584000077399422 a001 3524578/17393796001*33385282^(17/18) 2584000077399422 a001 3524578/54018521*33385282^(11/18) 2584000077399422 a004 Fibonacci(33)*Lucas(36)/(1/2+sqrt(5)/2)^51 2584000077399422 a001 3524578/20633239*20633239^(4/7) 2584000077399422 a001 567451585/3940598*12752043^(3/17) 2584000077399423 a001 14619165/4769326*4870847^(7/16) 2584000077399423 a001 433494437/7881196*12752043^(4/17) 2584000077399424 a001 165580141/7881196*12752043^(5/17) 2584000077399425 a001 165580141/20633239*4870847^(3/8) 2584000077399425 a001 267914296/87403803*4870847^(7/16) 2584000077399425 a001 31622993/3940598*12752043^(6/17) 2584000077399425 a001 32951280099/33385282*1860498^(1/15) 2584000077399426 a001 701408733/228826127*4870847^(7/16) 2584000077399426 a001 1836311903/599074578*4870847^(7/16) 2584000077399426 a001 686789568/224056801*4870847^(7/16) 2584000077399426 a001 12586269025/4106118243*4870847^(7/16) 2584000077399426 a001 32951280099/10749957122*4870847^(7/16) 2584000077399426 a001 86267571272/28143753123*4870847^(7/16) 2584000077399426 a001 32264490531/10525900321*4870847^(7/16) 2584000077399426 a001 591286729879/192900153618*4870847^(7/16) 2584000077399426 a001 1515744265389/494493258286*4870847^(7/16) 2584000077399426 a001 2504730781961/817138163596*4870847^(7/16) 2584000077399426 a001 956722026041/312119004989*4870847^(7/16) 2584000077399426 a001 365435296162/119218851371*4870847^(7/16) 2584000077399426 a001 139583862445/45537549124*4870847^(7/16) 2584000077399426 a001 53316291173/17393796001*4870847^(7/16) 2584000077399426 a001 20365011074/6643838879*4870847^(7/16) 2584000077399426 a001 7778742049/2537720636*4870847^(7/16) 2584000077399426 a001 2971215073/969323029*4870847^(7/16) 2584000077399426 a001 1134903170/370248451*4870847^(7/16) 2584000077399426 a001 3524578/20633239*2537720636^(4/9) 2584000077399426 a001 3524578/20633239*(1/2+1/2*5^(1/2))^20 2584000077399426 a001 9227465/7881196*(1/2+1/2*5^(1/2))^16 2584000077399426 a001 3524578/20633239*23725150497407^(5/16) 2584000077399426 a001 3524578/20633239*505019158607^(5/14) 2584000077399426 a001 9227465/7881196*73681302247^(4/13) 2584000077399426 a001 3524578/20633239*73681302247^(5/13) 2584000077399426 a001 3524578/20633239*28143753123^(2/5) 2584000077399426 a001 6504584026954/2517253805 2584000077399426 a001 9227465/7881196*10749957122^(1/3) 2584000077399426 a001 3524578/20633239*10749957122^(5/12) 2584000077399426 a001 9227465/7881196*4106118243^(8/23) 2584000077399426 a001 3524578/20633239*4106118243^(10/23) 2584000077399426 a001 9227465/7881196*1568397607^(4/11) 2584000077399426 a001 3524578/20633239*1568397607^(5/11) 2584000077399426 a001 9227465/7881196*599074578^(8/21) 2584000077399426 a001 3524578/20633239*599074578^(10/21) 2584000077399426 a001 9227465/7881196*228826127^(2/5) 2584000077399426 a001 3524578/20633239*228826127^(1/2) 2584000077399426 a001 433494437/141422324*4870847^(7/16) 2584000077399426 a001 9227465/7881196*87403803^(8/19) 2584000077399426 a001 3524578/20633239*87403803^(10/19) 2584000077399426 a001 7778742049/7881196*4870847^(1/16) 2584000077399427 a001 165580141/54018521*4870847^(7/16) 2584000077399427 a001 9227465/7881196*33385282^(4/9) 2584000077399427 a001 3524578/20633239*33385282^(5/9) 2584000077399427 a001 24157817/7881196*12752043^(7/17) 2584000077399427 a001 86267571272/87403803*1860498^(1/15) 2584000077399428 a001 225851433717/228826127*1860498^(1/15) 2584000077399428 a001 591286729879/599074578*1860498^(1/15) 2584000077399428 a001 1548008755920/1568397607*1860498^(1/15) 2584000077399428 a001 4052739537881/4106118243*1860498^(1/15) 2584000077399428 a001 4807525989/4870846*1860498^(1/15) 2584000077399428 a001 6557470319842/6643838879*1860498^(1/15) 2584000077399428 a001 2504730781961/2537720636*1860498^(1/15) 2584000077399428 a001 956722026041/969323029*1860498^(1/15) 2584000077399428 a001 365435296162/370248451*1860498^(1/15) 2584000077399428 a001 5702887/33385282*4870847^(5/8) 2584000077399428 a001 139583862445/141422324*1860498^(1/15) 2584000077399429 a001 53316291173/54018521*1860498^(1/15) 2584000077399430 a001 39088169/33385282*4870847^(1/2) 2584000077399431 a001 3524578/54018521*12752043^(11/17) 2584000077399431 a001 1762289/70711162*12752043^(12/17) 2584000077399432 a001 3524578/370248451*12752043^(13/17) 2584000077399432 a001 63245986/20633239*4870847^(7/16) 2584000077399432 a001 34111385/29134601*4870847^(1/2) 2584000077399432 a001 267914296/228826127*4870847^(1/2) 2584000077399432 a001 233802911/199691526*4870847^(1/2) 2584000077399432 a001 1836311903/1568397607*4870847^(1/2) 2584000077399432 a001 1602508992/1368706081*4870847^(1/2) 2584000077399432 a001 12586269025/10749957122*4870847^(1/2) 2584000077399432 a001 10983760033/9381251041*4870847^(1/2) 2584000077399432 a001 86267571272/73681302247*4870847^(1/2) 2584000077399432 a001 75283811239/64300051206*4870847^(1/2) 2584000077399432 a001 2504730781961/2139295485799*4870847^(1/2) 2584000077399432 a001 365435296162/312119004989*4870847^(1/2) 2584000077399432 a001 139583862445/119218851371*4870847^(1/2) 2584000077399432 a001 53316291173/45537549124*4870847^(1/2) 2584000077399432 a001 20365011074/17393796001*4870847^(1/2) 2584000077399432 a001 7778742049/6643838879*4870847^(1/2) 2584000077399432 a001 2971215073/2537720636*4870847^(1/2) 2584000077399432 a001 1134903170/969323029*4870847^(1/2) 2584000077399432 a001 433494437/370248451*4870847^(1/2) 2584000077399433 a001 165580141/141422324*4870847^(1/2) 2584000077399433 a001 3524578/969323029*12752043^(14/17) 2584000077399433 a001 9227465/7881196*12752043^(8/17) 2584000077399433 a001 2971215073/7881196*4870847^(1/8) 2584000077399433 a001 63245986/54018521*4870847^(1/2) 2584000077399434 a001 1762289/1268860318*12752043^(15/17) 2584000077399434 a001 20365011074/20633239*1860498^(1/15) 2584000077399435 a001 3524578/6643838879*12752043^(16/17) 2584000077399435 a001 7465176/16692641*4870847^(9/16) 2584000077399435 a001 3524578/20633239*12752043^(10/17) 2584000077399435 a004 Fibonacci(33)*Lucas(34)/(1/2+sqrt(5)/2)^49 2584000077399437 a001 5702887/87403803*4870847^(11/16) 2584000077399437 a001 7778742049/12752043*1860498^(1/10) 2584000077399438 a001 1762289/3940598*7881196^(6/11) 2584000077399439 a001 39088169/87403803*4870847^(9/16) 2584000077399439 a001 102334155/228826127*4870847^(9/16) 2584000077399439 a001 133957148/299537289*4870847^(9/16) 2584000077399439 a001 701408733/1568397607*4870847^(9/16) 2584000077399439 a001 1836311903/4106118243*4870847^(9/16) 2584000077399439 a001 2403763488/5374978561*4870847^(9/16) 2584000077399439 a001 12586269025/28143753123*4870847^(9/16) 2584000077399439 a001 32951280099/73681302247*4870847^(9/16) 2584000077399439 a001 43133785636/96450076809*4870847^(9/16) 2584000077399439 a001 225851433717/505019158607*4870847^(9/16) 2584000077399439 a001 591286729879/1322157322203*4870847^(9/16) 2584000077399439 a001 10610209857723/23725150497407*4870847^(9/16) 2584000077399439 a001 139583862445/312119004989*4870847^(9/16) 2584000077399439 a001 53316291173/119218851371*4870847^(9/16) 2584000077399439 a001 10182505537/22768774562*4870847^(9/16) 2584000077399439 a001 7778742049/17393796001*4870847^(9/16) 2584000077399439 a001 2971215073/6643838879*4870847^(9/16) 2584000077399439 a001 567451585/1268860318*4870847^(9/16) 2584000077399439 a001 433494437/969323029*4870847^(9/16) 2584000077399439 a001 165580141/370248451*4870847^(9/16) 2584000077399439 a001 24157817/20633239*4870847^(1/2) 2584000077399440 a001 31622993/70711162*4870847^(9/16) 2584000077399440 a001 567451585/3940598*4870847^(3/16) 2584000077399441 a001 24157817/54018521*4870847^(9/16) 2584000077399443 a001 4976784/29134601*4870847^(5/8) 2584000077399444 a001 5702887/228826127*4870847^(3/4) 2584000077399446 a001 39088169/228826127*4870847^(5/8) 2584000077399446 a001 34111385/199691526*4870847^(5/8) 2584000077399446 a001 267914296/1568397607*4870847^(5/8) 2584000077399446 a001 233802911/1368706081*4870847^(5/8) 2584000077399446 a001 1836311903/10749957122*4870847^(5/8) 2584000077399446 a001 1602508992/9381251041*4870847^(5/8) 2584000077399446 a001 12586269025/73681302247*4870847^(5/8) 2584000077399446 a001 10983760033/64300051206*4870847^(5/8) 2584000077399446 a001 86267571272/505019158607*4870847^(5/8) 2584000077399446 a001 75283811239/440719107401*4870847^(5/8) 2584000077399446 a001 2504730781961/14662949395604*4870847^(5/8) 2584000077399446 a001 139583862445/817138163596*4870847^(5/8) 2584000077399446 a001 53316291173/312119004989*4870847^(5/8) 2584000077399446 a001 20365011074/119218851371*4870847^(5/8) 2584000077399446 a001 7778742049/45537549124*4870847^(5/8) 2584000077399446 a001 2971215073/17393796001*4870847^(5/8) 2584000077399446 a001 1134903170/6643838879*4870847^(5/8) 2584000077399446 a001 433494437/2537720636*4870847^(5/8) 2584000077399446 a001 165580141/969323029*4870847^(5/8) 2584000077399446 a001 63245986/370248451*4870847^(5/8) 2584000077399447 a001 433494437/7881196*4870847^(1/4) 2584000077399447 a001 24157817/141422324*4870847^(5/8) 2584000077399450 a001 10182505537/16692641*1860498^(1/10) 2584000077399450 a001 14930352/228826127*4870847^(11/16) 2584000077399451 a001 5702887/599074578*4870847^(13/16) 2584000077399451 a001 9227465/20633239*4870847^(9/16) 2584000077399452 a001 53316291173/87403803*1860498^(1/10) 2584000077399453 a001 39088169/599074578*4870847^(11/16) 2584000077399453 a001 139583862445/228826127*1860498^(1/10) 2584000077399453 a001 182717648081/299537289*1860498^(1/10) 2584000077399453 a001 956722026041/1568397607*1860498^(1/10) 2584000077399453 a001 2504730781961/4106118243*1860498^(1/10) 2584000077399453 a001 3278735159921/5374978561*1860498^(1/10) 2584000077399453 a001 10610209857723/17393796001*1860498^(1/10) 2584000077399453 a001 4052739537881/6643838879*1860498^(1/10) 2584000077399453 a001 1134903780/1860499*1860498^(1/10) 2584000077399453 a001 591286729879/969323029*1860498^(1/10) 2584000077399453 a001 225851433717/370248451*1860498^(1/10) 2584000077399453 a001 21566892818/35355581*1860498^(1/10) 2584000077399453 a001 14619165/224056801*4870847^(11/16) 2584000077399453 a001 267914296/4106118243*4870847^(11/16) 2584000077399453 a001 701408733/10749957122*4870847^(11/16) 2584000077399453 a001 1836311903/28143753123*4870847^(11/16) 2584000077399453 a001 686789568/10525900321*4870847^(11/16) 2584000077399453 a001 12586269025/192900153618*4870847^(11/16) 2584000077399453 a001 32951280099/505019158607*4870847^(11/16) 2584000077399453 a001 86267571272/1322157322203*4870847^(11/16) 2584000077399453 a001 32264490531/494493258286*4870847^(11/16) 2584000077399453 a001 1548008755920/23725150497407*4870847^(11/16) 2584000077399453 a001 365435296162/5600748293801*4870847^(11/16) 2584000077399453 a001 139583862445/2139295485799*4870847^(11/16) 2584000077399453 a001 53316291173/817138163596*4870847^(11/16) 2584000077399453 a001 20365011074/312119004989*4870847^(11/16) 2584000077399453 a001 7778742049/119218851371*4870847^(11/16) 2584000077399453 a001 2971215073/45537549124*4870847^(11/16) 2584000077399453 a001 1134903170/17393796001*4870847^(11/16) 2584000077399453 a001 433494437/6643838879*4870847^(11/16) 2584000077399453 a001 165580141/2537720636*4870847^(11/16) 2584000077399453 a001 63245986/969323029*4870847^(11/16) 2584000077399453 a001 9227465/54018521*4870847^(5/8) 2584000077399454 a001 32951280099/54018521*1860498^(1/10) 2584000077399454 a001 165580141/7881196*4870847^(5/16) 2584000077399454 a001 24157817/370248451*4870847^(11/16) 2584000077399457 a001 829464/33281921*4870847^(3/4) 2584000077399457 a001 5702887/1568397607*4870847^(7/8) 2584000077399459 a001 1144206275/1875749*1860498^(1/10) 2584000077399459 a001 9227465/141422324*4870847^(11/16) 2584000077399459 a001 39088169/1568397607*4870847^(3/4) 2584000077399460 a001 34111385/1368706081*4870847^(3/4) 2584000077399460 a001 133957148/5374978561*4870847^(3/4) 2584000077399460 a001 233802911/9381251041*4870847^(3/4) 2584000077399460 a001 1836311903/73681302247*4870847^(3/4) 2584000077399460 a001 267084832/10716675201*4870847^(3/4) 2584000077399460 a001 12586269025/505019158607*4870847^(3/4) 2584000077399460 a001 10983760033/440719107401*4870847^(3/4) 2584000077399460 a001 43133785636/1730726404001*4870847^(3/4) 2584000077399460 a001 75283811239/3020733700601*4870847^(3/4) 2584000077399460 a001 182717648081/7331474697802*4870847^(3/4) 2584000077399460 a001 139583862445/5600748293801*4870847^(3/4) 2584000077399460 a001 53316291173/2139295485799*4870847^(3/4) 2584000077399460 a001 10182505537/408569081798*4870847^(3/4) 2584000077399460 a001 7778742049/312119004989*4870847^(3/4) 2584000077399460 a001 2971215073/119218851371*4870847^(3/4) 2584000077399460 a001 567451585/22768774562*4870847^(3/4) 2584000077399460 a001 433494437/17393796001*4870847^(3/4) 2584000077399460 a001 165580141/6643838879*4870847^(3/4) 2584000077399460 a001 31622993/1268860318*4870847^(3/4) 2584000077399461 a001 31622993/3940598*4870847^(3/8) 2584000077399461 a001 24157817/969323029*4870847^(3/4) 2584000077399461 a001 1762289/3940598*141422324^(6/13) 2584000077399461 a001 1762289/3940598*2537720636^(2/5) 2584000077399461 a001 1762289/3940598*45537549124^(6/17) 2584000077399461 a001 1762289/3940598*14662949395604^(2/7) 2584000077399461 a001 1762289/3940598*(1/2+1/2*5^(1/2))^18 2584000077399461 a001 1762289/3940598*192900153618^(1/3) 2584000077399461 a001 1762289/3940598*10749957122^(3/8) 2584000077399461 a001 3105662519521/1201881744 2584000077399461 a001 1762289/3940598*4106118243^(9/23) 2584000077399461 a001 1762289/3940598*1568397607^(9/22) 2584000077399461 a001 1762289/3940598*599074578^(3/7) 2584000077399461 a001 1762289/3940598*228826127^(9/20) 2584000077399461 a001 1762289/3940598*87403803^(9/19) 2584000077399462 a001 1602508992/4250681*1860498^(2/15) 2584000077399462 a001 1762289/3940598*33385282^(1/2) 2584000077399464 a001 14930352/1568397607*4870847^(13/16) 2584000077399464 a001 5702887/4106118243*4870847^(15/16) 2584000077399466 a001 9227465/370248451*4870847^(3/4) 2584000077399466 a001 39088169/4106118243*4870847^(13/16) 2584000077399466 a001 102334155/10749957122*4870847^(13/16) 2584000077399466 a001 267914296/28143753123*4870847^(13/16) 2584000077399466 a001 701408733/73681302247*4870847^(13/16) 2584000077399466 a001 1836311903/192900153618*4870847^(13/16) 2584000077399466 a001 102287808/10745088481*4870847^(13/16) 2584000077399466 a001 12586269025/1322157322203*4870847^(13/16) 2584000077399466 a001 32951280099/3461452808002*4870847^(13/16) 2584000077399466 a001 86267571272/9062201101803*4870847^(13/16) 2584000077399466 a001 225851433717/23725150497407*4870847^(13/16) 2584000077399466 a001 139583862445/14662949395604*4870847^(13/16) 2584000077399466 a001 53316291173/5600748293801*4870847^(13/16) 2584000077399466 a001 20365011074/2139295485799*4870847^(13/16) 2584000077399466 a001 7778742049/817138163596*4870847^(13/16) 2584000077399466 a001 2971215073/312119004989*4870847^(13/16) 2584000077399466 a001 1134903170/119218851371*4870847^(13/16) 2584000077399466 a001 433494437/45537549124*4870847^(13/16) 2584000077399466 a001 165580141/17393796001*4870847^(13/16) 2584000077399467 a001 63245986/6643838879*4870847^(13/16) 2584000077399467 a001 24157817/2537720636*4870847^(13/16) 2584000077399468 a001 24157817/7881196*4870847^(7/16) 2584000077399468 a001 267914296/4870847*1860498^(4/15) 2584000077399469 a001 7778742049/7881196*1860498^(1/15) 2584000077399470 a001 1762289/3940598*12752043^(9/17) 2584000077399471 a001 4976784/1368706081*4870847^(7/8) 2584000077399471 a004 Fibonacci(34)*Lucas(32)/(1/2+sqrt(5)/2)^48 2584000077399473 a001 9227465/969323029*4870847^(13/16) 2584000077399473 a001 39088169/10749957122*4870847^(7/8) 2584000077399473 a001 831985/228811001*4870847^(7/8) 2584000077399473 a001 267914296/73681302247*4870847^(7/8) 2584000077399473 a001 233802911/64300051206*4870847^(7/8) 2584000077399473 a001 1836311903/505019158607*4870847^(7/8) 2584000077399473 a001 1602508992/440719107401*4870847^(7/8) 2584000077399473 a001 12586269025/3461452808002*4870847^(7/8) 2584000077399473 a001 10983760033/3020733700601*4870847^(7/8) 2584000077399473 a001 86267571272/23725150497407*4870847^(7/8) 2584000077399473 a001 53316291173/14662949395604*4870847^(7/8) 2584000077399473 a001 20365011074/5600748293801*4870847^(7/8) 2584000077399473 a001 7778742049/2139295485799*4870847^(7/8) 2584000077399473 a001 2971215073/817138163596*4870847^(7/8) 2584000077399473 a001 1134903170/312119004989*4870847^(7/8) 2584000077399473 a001 433494437/119218851371*4870847^(7/8) 2584000077399473 a001 165580141/45537549124*4870847^(7/8) 2584000077399473 a001 63245986/17393796001*4870847^(7/8) 2584000077399474 a001 24157817/6643838879*4870847^(7/8) 2584000077399475 a001 12586269025/33385282*1860498^(2/15) 2584000077399477 a001 10983760033/29134601*1860498^(2/15) 2584000077399477 a001 86267571272/228826127*1860498^(2/15) 2584000077399478 a001 267913919/710646*1860498^(2/15) 2584000077399478 a001 591286729879/1568397607*1860498^(2/15) 2584000077399478 a001 516002918640/1368706081*1860498^(2/15) 2584000077399478 a001 4052739537881/10749957122*1860498^(2/15) 2584000077399478 a001 3536736619241/9381251041*1860498^(2/15) 2584000077399478 a001 6557470319842/17393796001*1860498^(2/15) 2584000077399478 a001 2504730781961/6643838879*1860498^(2/15) 2584000077399478 a001 956722026041/2537720636*1860498^(2/15) 2584000077399478 a001 365435296162/969323029*1860498^(2/15) 2584000077399478 a001 139583862445/370248451*1860498^(2/15) 2584000077399478 a001 53316291173/141422324*1860498^(2/15) 2584000077399478 a001 7465176/5374978561*4870847^(15/16) 2584000077399478 a001 20365011074/54018521*1860498^(2/15) 2584000077399479 a001 9227465/2537720636*4870847^(7/8) 2584000077399480 a001 39088169/28143753123*4870847^(15/16) 2584000077399480 a001 14619165/10525900321*4870847^(15/16) 2584000077399480 a001 133957148/96450076809*4870847^(15/16) 2584000077399480 a001 701408733/505019158607*4870847^(15/16) 2584000077399480 a001 1836311903/1322157322203*4870847^(15/16) 2584000077399480 a001 14930208/10749853441*4870847^(15/16) 2584000077399480 a001 12586269025/9062201101803*4870847^(15/16) 2584000077399480 a001 32951280099/23725150497407*4870847^(15/16) 2584000077399480 a001 10182505537/7331474697802*4870847^(15/16) 2584000077399480 a001 7778742049/5600748293801*4870847^(15/16) 2584000077399480 a001 2971215073/2139295485799*4870847^(15/16) 2584000077399480 a001 567451585/408569081798*4870847^(15/16) 2584000077399480 a001 433494437/312119004989*4870847^(15/16) 2584000077399480 a001 165580141/119218851371*4870847^(15/16) 2584000077399480 a001 9227465/7881196*4870847^(1/2) 2584000077399480 a001 31622993/22768774562*4870847^(15/16) 2584000077399481 a001 24157817/17393796001*4870847^(15/16) 2584000077399484 a001 7778742049/20633239*1860498^(2/15) 2584000077399485 a004 Fibonacci(36)*Lucas(32)/(1/2+sqrt(5)/2)^50 2584000077399486 a001 9227465/6643838879*4870847^(15/16) 2584000077399487 a001 2971215073/12752043*1860498^(1/6) 2584000077399487 a004 Fibonacci(38)*Lucas(32)/(1/2+sqrt(5)/2)^52 2584000077399487 a004 Fibonacci(40)*Lucas(32)/(1/2+sqrt(5)/2)^54 2584000077399487 a004 Fibonacci(42)*Lucas(32)/(1/2+sqrt(5)/2)^56 2584000077399487 a004 Fibonacci(44)*Lucas(32)/(1/2+sqrt(5)/2)^58 2584000077399487 a004 Fibonacci(46)*Lucas(32)/(1/2+sqrt(5)/2)^60 2584000077399487 a004 Fibonacci(48)*Lucas(32)/(1/2+sqrt(5)/2)^62 2584000077399487 a004 Fibonacci(50)*Lucas(32)/(1/2+sqrt(5)/2)^64 2584000077399487 a004 Fibonacci(52)*Lucas(32)/(1/2+sqrt(5)/2)^66 2584000077399487 a004 Fibonacci(54)*Lucas(32)/(1/2+sqrt(5)/2)^68 2584000077399487 a004 Fibonacci(56)*Lucas(32)/(1/2+sqrt(5)/2)^70 2584000077399487 a004 Fibonacci(58)*Lucas(32)/(1/2+sqrt(5)/2)^72 2584000077399487 a004 Fibonacci(60)*Lucas(32)/(1/2+sqrt(5)/2)^74 2584000077399487 a004 Fibonacci(62)*Lucas(32)/(1/2+sqrt(5)/2)^76 2584000077399487 a004 Fibonacci(64)*Lucas(32)/(1/2+sqrt(5)/2)^78 2584000077399487 a004 Fibonacci(66)*Lucas(32)/(1/2+sqrt(5)/2)^80 2584000077399487 a004 Fibonacci(68)*Lucas(32)/(1/2+sqrt(5)/2)^82 2584000077399487 a004 Fibonacci(70)*Lucas(32)/(1/2+sqrt(5)/2)^84 2584000077399487 a004 Fibonacci(72)*Lucas(32)/(1/2+sqrt(5)/2)^86 2584000077399487 a004 Fibonacci(74)*Lucas(32)/(1/2+sqrt(5)/2)^88 2584000077399487 a004 Fibonacci(76)*Lucas(32)/(1/2+sqrt(5)/2)^90 2584000077399487 a004 Fibonacci(78)*Lucas(32)/(1/2+sqrt(5)/2)^92 2584000077399487 a004 Fibonacci(80)*Lucas(32)/(1/2+sqrt(5)/2)^94 2584000077399487 a004 Fibonacci(82)*Lucas(32)/(1/2+sqrt(5)/2)^96 2584000077399487 a004 Fibonacci(84)*Lucas(32)/(1/2+sqrt(5)/2)^98 2584000077399487 a004 Fibonacci(86)*Lucas(32)/(1/2+sqrt(5)/2)^100 2584000077399487 a004 Fibonacci(85)*Lucas(32)/(1/2+sqrt(5)/2)^99 2584000077399487 a004 Fibonacci(83)*Lucas(32)/(1/2+sqrt(5)/2)^97 2584000077399487 a004 Fibonacci(81)*Lucas(32)/(1/2+sqrt(5)/2)^95 2584000077399487 a004 Fibonacci(79)*Lucas(32)/(1/2+sqrt(5)/2)^93 2584000077399487 a004 Fibonacci(77)*Lucas(32)/(1/2+sqrt(5)/2)^91 2584000077399487 a004 Fibonacci(75)*Lucas(32)/(1/2+sqrt(5)/2)^89 2584000077399487 a004 Fibonacci(73)*Lucas(32)/(1/2+sqrt(5)/2)^87 2584000077399487 a004 Fibonacci(71)*Lucas(32)/(1/2+sqrt(5)/2)^85 2584000077399487 a004 Fibonacci(69)*Lucas(32)/(1/2+sqrt(5)/2)^83 2584000077399487 a004 Fibonacci(67)*Lucas(32)/(1/2+sqrt(5)/2)^81 2584000077399487 a004 Fibonacci(65)*Lucas(32)/(1/2+sqrt(5)/2)^79 2584000077399487 a001 2/2178309*(1/2+1/2*5^(1/2))^50 2584000077399487 a004 Fibonacci(63)*Lucas(32)/(1/2+sqrt(5)/2)^77 2584000077399487 a004 Fibonacci(61)*Lucas(32)/(1/2+sqrt(5)/2)^75 2584000077399487 a004 Fibonacci(59)*Lucas(32)/(1/2+sqrt(5)/2)^73 2584000077399487 a004 Fibonacci(57)*Lucas(32)/(1/2+sqrt(5)/2)^71 2584000077399487 a004 Fibonacci(55)*Lucas(32)/(1/2+sqrt(5)/2)^69 2584000077399487 a004 Fibonacci(53)*Lucas(32)/(1/2+sqrt(5)/2)^67 2584000077399487 a004 Fibonacci(51)*Lucas(32)/(1/2+sqrt(5)/2)^65 2584000077399487 a004 Fibonacci(49)*Lucas(32)/(1/2+sqrt(5)/2)^63 2584000077399487 a004 Fibonacci(47)*Lucas(32)/(1/2+sqrt(5)/2)^61 2584000077399487 a004 Fibonacci(45)*Lucas(32)/(1/2+sqrt(5)/2)^59 2584000077399487 a004 Fibonacci(43)*Lucas(32)/(1/2+sqrt(5)/2)^57 2584000077399487 a004 Fibonacci(41)*Lucas(32)/(1/2+sqrt(5)/2)^55 2584000077399487 a004 Fibonacci(39)*Lucas(32)/(1/2+sqrt(5)/2)^53 2584000077399488 a004 Fibonacci(37)*Lucas(32)/(1/2+sqrt(5)/2)^51 2584000077399493 a004 Fibonacci(35)*Lucas(32)/(1/2+sqrt(5)/2)^49 2584000077399493 a001 165580141/4870847*1860498^(3/10) 2584000077399494 a001 3524578/20633239*4870847^(5/8) 2584000077399494 a001 1201881744/1970299*1860498^(1/10) 2584000077399495 a001 3524578/54018521*4870847^(11/16) 2584000077399500 a001 7778742049/33385282*1860498^(1/6) 2584000077399501 a001 1762289/70711162*4870847^(3/4) 2584000077399502 a001 20365011074/87403803*1860498^(1/6) 2584000077399502 a001 53316291173/228826127*1860498^(1/6) 2584000077399502 a001 139583862445/599074578*1860498^(1/6) 2584000077399502 a001 365435296162/1568397607*1860498^(1/6) 2584000077399502 a001 956722026041/4106118243*1860498^(1/6) 2584000077399502 a001 2504730781961/10749957122*1860498^(1/6) 2584000077399502 a001 6557470319842/28143753123*1860498^(1/6) 2584000077399502 a001 10610209857723/45537549124*1860498^(1/6) 2584000077399502 a001 4052739537881/17393796001*1860498^(1/6) 2584000077399502 a001 1548008755920/6643838879*1860498^(1/6) 2584000077399502 a001 591286729879/2537720636*1860498^(1/6) 2584000077399502 a001 225851433717/969323029*1860498^(1/6) 2584000077399502 a001 86267571272/370248451*1860498^(1/6) 2584000077399503 a001 63246219/271444*1860498^(1/6) 2584000077399503 a001 12586269025/54018521*1860498^(1/6) 2584000077399508 a001 3524578/370248451*4870847^(13/16) 2584000077399508 a001 4807526976/20633239*1860498^(1/6) 2584000077399511 a001 1836311903/12752043*1860498^(1/5) 2584000077399515 a001 3524578/969323029*4870847^(7/8) 2584000077399518 a001 102334155/4870847*1860498^(1/3) 2584000077399519 a001 2971215073/7881196*1860498^(2/15) 2584000077399522 a001 1762289/1268860318*4870847^(15/16) 2584000077399522 a001 1762289/3940598*4870847^(9/16) 2584000077399525 a001 14930208/103681*1860498^(1/5) 2584000077399527 a001 12586269025/87403803*1860498^(1/5) 2584000077399527 a001 32951280099/228826127*1860498^(1/5) 2584000077399527 a001 43133785636/299537289*1860498^(1/5) 2584000077399527 a001 32264490531/224056801*1860498^(1/5) 2584000077399527 a001 591286729879/4106118243*1860498^(1/5) 2584000077399527 a001 774004377960/5374978561*1860498^(1/5) 2584000077399527 a001 4052739537881/28143753123*1860498^(1/5) 2584000077399527 a001 1515744265389/10525900321*1860498^(1/5) 2584000077399527 a001 3278735159921/22768774562*1860498^(1/5) 2584000077399527 a001 2504730781961/17393796001*1860498^(1/5) 2584000077399527 a001 956722026041/6643838879*1860498^(1/5) 2584000077399527 a001 182717648081/1268860318*1860498^(1/5) 2584000077399527 a001 139583862445/969323029*1860498^(1/5) 2584000077399527 a001 53316291173/370248451*1860498^(1/5) 2584000077399527 a001 10182505537/70711162*1860498^(1/5) 2584000077399528 a001 7778742049/54018521*1860498^(1/5) 2584000077399529 a004 Fibonacci(33)*Lucas(32)/(1/2+sqrt(5)/2)^47 2584000077399533 a001 2971215073/20633239*1860498^(1/5) 2584000077399544 a001 1836311903/7881196*1860498^(1/6) 2584000077399554 a001 2932589879121/1134903170 2584000077399554 a001 2178309/3010349*45537549124^(1/3) 2584000077399554 a001 1346269/4870847*817138163596^(1/3) 2584000077399554 a001 1346269/4870847*(1/2+1/2*5^(1/2))^19 2584000077399554 a001 2178309/3010349*(1/2+1/2*5^(1/2))^17 2584000077399554 a001 1346269/4870847*87403803^(1/2) 2584000077399561 a001 233802911/4250681*1860498^(4/15) 2584000077399562 a001 2178309/3010349*12752043^(1/2) 2584000077399567 a001 39088169/4870847*1860498^(2/5) 2584000077399569 a001 567451585/3940598*1860498^(1/5) 2584000077399575 a001 1836311903/33385282*1860498^(4/15) 2584000077399577 a001 1602508992/29134601*1860498^(4/15) 2584000077399577 a001 12586269025/228826127*1860498^(4/15) 2584000077399577 a001 10983760033/199691526*1860498^(4/15) 2584000077399577 a001 86267571272/1568397607*1860498^(4/15) 2584000077399577 a001 75283811239/1368706081*1860498^(4/15) 2584000077399577 a001 591286729879/10749957122*1860498^(4/15) 2584000077399577 a001 12585437040/228811001*1860498^(4/15) 2584000077399577 a001 4052739537881/73681302247*1860498^(4/15) 2584000077399577 a001 3536736619241/64300051206*1860498^(4/15) 2584000077399577 a001 6557470319842/119218851371*1860498^(4/15) 2584000077399577 a001 2504730781961/45537549124*1860498^(4/15) 2584000077399577 a001 956722026041/17393796001*1860498^(4/15) 2584000077399577 a001 365435296162/6643838879*1860498^(4/15) 2584000077399577 a001 139583862445/2537720636*1860498^(4/15) 2584000077399577 a001 53316291173/969323029*1860498^(4/15) 2584000077399577 a001 20365011074/370248451*1860498^(4/15) 2584000077399577 a001 7778742049/141422324*1860498^(4/15) 2584000077399578 a001 2971215073/54018521*1860498^(4/15) 2584000077399583 a001 1134903170/20633239*1860498^(4/15) 2584000077399586 a001 433494437/12752043*1860498^(3/10) 2584000077399600 a001 567451585/16692641*1860498^(3/10) 2584000077399602 a001 2971215073/87403803*1860498^(3/10) 2584000077399602 a001 7778742049/228826127*1860498^(3/10) 2584000077399602 a001 10182505537/299537289*1860498^(3/10) 2584000077399602 a001 53316291173/1568397607*1860498^(3/10) 2584000077399602 a001 139583862445/4106118243*1860498^(3/10) 2584000077399602 a001 182717648081/5374978561*1860498^(3/10) 2584000077399602 a001 956722026041/28143753123*1860498^(3/10) 2584000077399602 a001 2504730781961/73681302247*1860498^(3/10) 2584000077399602 a001 3278735159921/96450076809*1860498^(3/10) 2584000077399602 a001 10610209857723/312119004989*1860498^(3/10) 2584000077399602 a001 4052739537881/119218851371*1860498^(3/10) 2584000077399602 a001 387002188980/11384387281*1860498^(3/10) 2584000077399602 a001 591286729879/17393796001*1860498^(3/10) 2584000077399602 a001 225851433717/6643838879*1860498^(3/10) 2584000077399602 a001 1135099622/33391061*1860498^(3/10) 2584000077399602 a001 32951280099/969323029*1860498^(3/10) 2584000077399602 a001 12586269025/370248451*1860498^(3/10) 2584000077399602 a001 1201881744/35355581*1860498^(3/10) 2584000077399603 a001 1836311903/54018521*1860498^(3/10) 2584000077399608 a001 701408733/20633239*1860498^(3/10) 2584000077399608 a001 2178309/4870847*1860498^(3/5) 2584000077399611 a001 267914296/12752043*1860498^(1/3) 2584000077399615 a001 14930352/4870847*1860498^(7/15) 2584000077399619 a001 433494437/7881196*1860498^(4/15) 2584000077399621 a001 1346269/12752043*7881196^(7/11) 2584000077399622 a004 Fibonacci(31)*Lucas(33)/(1/2+sqrt(5)/2)^46 2584000077399625 a001 701408733/33385282*1860498^(1/3) 2584000077399625 a001 1346269/969323029*7881196^(10/11) 2584000077399626 a001 1836311903/87403803*1860498^(1/3) 2584000077399627 a001 102287808/4868641*1860498^(1/3) 2584000077399627 a001 12586269025/599074578*1860498^(1/3) 2584000077399627 a001 32951280099/1568397607*1860498^(1/3) 2584000077399627 a001 86267571272/4106118243*1860498^(1/3) 2584000077399627 a001 225851433717/10749957122*1860498^(1/3) 2584000077399627 a001 591286729879/28143753123*1860498^(1/3) 2584000077399627 a001 1548008755920/73681302247*1860498^(1/3) 2584000077399627 a001 4052739537881/192900153618*1860498^(1/3) 2584000077399627 a001 225749145909/10745088481*1860498^(1/3) 2584000077399627 a001 6557470319842/312119004989*1860498^(1/3) 2584000077399627 a001 2504730781961/119218851371*1860498^(1/3) 2584000077399627 a001 956722026041/45537549124*1860498^(1/3) 2584000077399627 a001 365435296162/17393796001*1860498^(1/3) 2584000077399627 a001 139583862445/6643838879*1860498^(1/3) 2584000077399627 a001 53316291173/2537720636*1860498^(1/3) 2584000077399627 a001 20365011074/969323029*1860498^(1/3) 2584000077399627 a001 7778742049/370248451*1860498^(1/3) 2584000077399627 a001 2971215073/141422324*1860498^(1/3) 2584000077399628 a001 1134903170/54018521*1860498^(1/3) 2584000077399628 a001 5702887/3010349*7881196^(5/11) 2584000077399629 a001 1346269/228826127*7881196^(9/11) 2584000077399633 a001 433494437/20633239*1860498^(1/3) 2584000077399634 a001 1346269/54018521*7881196^(8/11) 2584000077399635 a001 4807526976/4870847*710647^(1/14) 2584000077399641 a001 1346269/20633239*7881196^(2/3) 2584000077399644 a001 66978574/1970299*1860498^(3/10) 2584000077399644 a001 1346269/12752043*20633239^(3/5) 2584000077399645 a001 5702887/3010349*20633239^(3/7) 2584000077399647 a001 1346269/12752043*141422324^(7/13) 2584000077399647 a001 5702887/3010349*141422324^(5/13) 2584000077399647 a001 1346269/12752043*2537720636^(7/15) 2584000077399647 a001 5702887/3010349*2537720636^(1/3) 2584000077399647 a001 7677619978603/2971215073 2584000077399647 a001 1346269/12752043*17393796001^(3/7) 2584000077399647 a001 1346269/12752043*45537549124^(7/17) 2584000077399647 a001 5702887/3010349*45537549124^(5/17) 2584000077399647 a001 5702887/3010349*312119004989^(3/11) 2584000077399647 a001 1346269/12752043*14662949395604^(1/3) 2584000077399647 a001 1346269/12752043*(1/2+1/2*5^(1/2))^21 2584000077399647 a001 5702887/3010349*14662949395604^(5/21) 2584000077399647 a001 5702887/3010349*(1/2+1/2*5^(1/2))^15 2584000077399647 a001 1346269/12752043*192900153618^(7/18) 2584000077399647 a001 5702887/3010349*28143753123^(3/10) 2584000077399647 a001 5702887/3010349*10749957122^(5/16) 2584000077399647 a001 1346269/12752043*10749957122^(7/16) 2584000077399647 a001 5702887/3010349*599074578^(5/14) 2584000077399647 a001 1346269/12752043*599074578^(1/2) 2584000077399647 a001 5702887/3010349*228826127^(3/8) 2584000077399648 a001 5702887/3010349*33385282^(5/12) 2584000077399648 a001 9227465/4870847*1860498^(1/2) 2584000077399649 a001 1346269/12752043*33385282^(7/12) 2584000077399649 a001 24157817/3010349*7881196^(4/11) 2584000077399649 a001 39088169/3010349*7881196^(1/3) 2584000077399651 a001 5702887/4870847*1860498^(8/15) 2584000077399652 a001 102334155/3010349*7881196^(3/11) 2584000077399656 a001 433494437/3010349*7881196^(2/11) 2584000077399657 a001 267914296/710647*271443^(2/13) 2584000077399657 a004 Fibonacci(31)*Lucas(35)/(1/2+sqrt(5)/2)^48 2584000077399658 a001 1346269/969323029*20633239^(6/7) 2584000077399658 a001 1346269/370248451*20633239^(4/5) 2584000077399658 a001 1346269/87403803*20633239^(5/7) 2584000077399659 a001 1836311903/3010349*7881196^(1/11) 2584000077399661 a001 34111385/4250681*1860498^(2/5) 2584000077399661 a001 14930352/3010349*141422324^(1/3) 2584000077399661 a001 20100270056688/7778742049 2584000077399661 a001 1346269/33385282*(1/2+1/2*5^(1/2))^23 2584000077399661 a001 14930352/3010349*(1/2+1/2*5^(1/2))^13 2584000077399661 a001 14930352/3010349*73681302247^(1/4) 2584000077399661 a001 1346269/33385282*4106118243^(1/2) 2584000077399662 a001 63245986/3010349*20633239^(2/7) 2584000077399662 a001 267914296/3010349*20633239^(1/5) 2584000077399662 a004 Fibonacci(31)*Lucas(37)/(1/2+sqrt(5)/2)^50 2584000077399662 a001 701408733/3010349*20633239^(1/7) 2584000077399663 a001 1346269/87403803*2537720636^(5/9) 2584000077399663 a001 52623190191461/20365011074 2584000077399663 a001 1346269/87403803*312119004989^(5/11) 2584000077399663 a001 39088169/3010349*312119004989^(1/5) 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^25/Lucas(38) 2584000077399663 a001 39088169/3010349*(1/2+1/2*5^(1/2))^11 2584000077399663 a001 1346269/87403803*3461452808002^(5/12) 2584000077399663 a001 1346269/87403803*28143753123^(1/2) 2584000077399663 a001 39088169/3010349*1568397607^(1/4) 2584000077399663 a001 1346269/87403803*228826127^(5/8) 2584000077399663 a001 1346269/228826127*141422324^(9/13) 2584000077399663 a004 Fibonacci(31)*Lucas(39)/(1/2+sqrt(5)/2)^52 2584000077399663 a001 1346269/17393796001*141422324^(12/13) 2584000077399663 a001 1346269/4106118243*141422324^(11/13) 2584000077399663 a001 1346269/969323029*141422324^(10/13) 2584000077399663 a001 102334155/3010349*141422324^(3/13) 2584000077399663 a001 1346269/228826127*2537720636^(3/5) 2584000077399663 a001 102334155/3010349*2537720636^(1/5) 2584000077399663 a001 1346269/228826127*45537549124^(9/17) 2584000077399663 a001 102334155/3010349*45537549124^(3/17) 2584000077399663 a001 137769300517695/53316291173 2584000077399663 a001 1346269/228826127*817138163596^(9/19) 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^27/Lucas(40) 2584000077399663 a001 102334155/3010349*14662949395604^(1/7) 2584000077399663 a001 102334155/3010349*(1/2+1/2*5^(1/2))^9 2584000077399663 a001 102334155/3010349*192900153618^(1/6) 2584000077399663 a001 1346269/228826127*192900153618^(1/2) 2584000077399663 a001 102334155/3010349*10749957122^(3/16) 2584000077399663 a001 1346269/228826127*10749957122^(9/16) 2584000077399663 a001 102334155/3010349*599074578^(3/14) 2584000077399663 a001 1346269/228826127*599074578^(9/14) 2584000077399663 a004 Fibonacci(31)*Lucas(41)/(1/2+sqrt(5)/2)^54 2584000077399663 a001 433494437/3010349*141422324^(2/13) 2584000077399663 a001 1836311903/3010349*141422324^(1/13) 2584000077399663 a001 267914296/3010349*17393796001^(1/7) 2584000077399663 a001 360684711361624/139583862445 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^29/Lucas(42) 2584000077399663 a001 267914296/3010349*14662949395604^(1/9) 2584000077399663 a001 267914296/3010349*(1/2+1/2*5^(1/2))^7 2584000077399663 a001 1346269/599074578*1322157322203^(1/2) 2584000077399663 a001 267914296/3010349*599074578^(1/6) 2584000077399663 a004 Fibonacci(31)*Lucas(43)/(1/2+sqrt(5)/2)^56 2584000077399663 a001 701408733/3010349*2537720636^(1/9) 2584000077399663 a001 701408733/3010349*312119004989^(1/11) 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^31/Lucas(44) 2584000077399663 a001 1346269/1568397607*9062201101803^(1/2) 2584000077399663 a001 701408733/3010349*(1/2+1/2*5^(1/2))^5 2584000077399663 a001 701408733/3010349*28143753123^(1/10) 2584000077399663 a001 1346269/4106118243*2537720636^(11/15) 2584000077399663 a004 Fibonacci(31)*Lucas(45)/(1/2+sqrt(5)/2)^58 2584000077399663 a001 1346269/312119004989*2537720636^(14/15) 2584000077399663 a001 1346269/119218851371*2537720636^(8/9) 2584000077399663 a001 1346269/73681302247*2537720636^(13/15) 2584000077399663 a001 1346269/10749957122*2537720636^(7/9) 2584000077399663 a001 1346269/17393796001*2537720636^(4/5) 2584000077399663 a001 1836311903/3010349*2537720636^(1/15) 2584000077399663 a001 1346269/4106118243*45537549124^(11/17) 2584000077399663 a001 1836311903/3010349*45537549124^(1/17) 2584000077399663 a001 1346269/4106118243*312119004989^(3/5) 2584000077399663 a001 1346269/4106118243*14662949395604^(11/21) 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^33/Lucas(46) 2584000077399663 a001 1836311903/3010349*(1/2+1/2*5^(1/2))^3 2584000077399663 a001 1346269/4106118243*192900153618^(11/18) 2584000077399663 a001 1836311903/3010349*10749957122^(1/16) 2584000077399663 a001 1346269/4106118243*10749957122^(11/16) 2584000077399663 a004 Fibonacci(31)*Lucas(47)/(1/2+sqrt(5)/2)^60 2584000077399663 a001 1346269/10749957122*17393796001^(5/7) 2584000077399663 a001 1346269/10749957122*312119004989^(7/11) 2584000077399663 a001 1346269/10749957122*14662949395604^(5/9) 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^35/Lucas(48) 2584000077399663 a004 Fibonacci(48)*(1/2+sqrt(5)/2)/Lucas(31) 2584000077399663 a001 1346269/10749957122*505019158607^(5/8) 2584000077399663 a001 1346269/10749957122*28143753123^(7/10) 2584000077399663 a004 Fibonacci(31)*Lucas(49)/(1/2+sqrt(5)/2)^62 2584000077399663 a001 1346269/312119004989*17393796001^(6/7) 2584000077399663 a001 16944503814017725/6557470319842 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^37/Lucas(50) 2584000077399663 a004 Fibonacci(50)/Lucas(31)/(1/2+sqrt(5)/2) 2584000077399663 a001 1346269/73681302247*45537549124^(13/17) 2584000077399663 a004 Fibonacci(31)*Lucas(51)/(1/2+sqrt(5)/2)^64 2584000077399663 a001 1346269/5600748293801*45537549124^(16/17) 2584000077399663 a001 1346269/1322157322203*45537549124^(15/17) 2584000077399663 a001 1346269/312119004989*45537549124^(14/17) 2584000077399663 a001 1346269/73681302247*14662949395604^(13/21) 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^39/Lucas(52) 2584000077399663 a004 Fibonacci(52)/Lucas(31)/(1/2+sqrt(5)/2)^3 2584000077399663 a001 1346269/73681302247*192900153618^(13/18) 2584000077399663 a004 Fibonacci(31)*Lucas(53)/(1/2+sqrt(5)/2)^66 2584000077399663 a001 1346269/73681302247*73681302247^(3/4) 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^41/Lucas(54) 2584000077399663 a004 Fibonacci(54)/Lucas(31)/(1/2+sqrt(5)/2)^5 2584000077399663 a004 Fibonacci(31)*Lucas(55)/(1/2+sqrt(5)/2)^68 2584000077399663 a001 1346269/14662949395604*312119004989^(10/11) 2584000077399663 a001 1346269/1322157322203*312119004989^(9/11) 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^43/Lucas(56) 2584000077399663 a004 Fibonacci(56)/Lucas(31)/(1/2+sqrt(5)/2)^7 2584000077399663 a004 Fibonacci(31)*Lucas(57)/(1/2+sqrt(5)/2)^70 2584000077399663 a001 1346269/1322157322203*14662949395604^(5/7) 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^45/Lucas(58) 2584000077399663 a004 Fibonacci(58)/Lucas(31)/(1/2+sqrt(5)/2)^9 2584000077399663 a004 Fibonacci(31)*Lucas(59)/(1/2+sqrt(5)/2)^72 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^47/Lucas(60) 2584000077399663 a004 Fibonacci(60)/Lucas(31)/(1/2+sqrt(5)/2)^11 2584000077399663 a004 Fibonacci(31)*Lucas(61)/(1/2+sqrt(5)/2)^74 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^49/Lucas(62) 2584000077399663 a004 Fibonacci(31)*Lucas(63)/(1/2+sqrt(5)/2)^76 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^51/Lucas(64) 2584000077399663 a004 Fibonacci(31)*Lucas(65)/(1/2+sqrt(5)/2)^78 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^53/Lucas(66) 2584000077399663 a004 Fibonacci(31)*Lucas(67)/(1/2+sqrt(5)/2)^80 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^55/Lucas(68) 2584000077399663 a004 Fibonacci(31)*Lucas(69)/(1/2+sqrt(5)/2)^82 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^57/Lucas(70) 2584000077399663 a004 Fibonacci(31)*Lucas(71)/(1/2+sqrt(5)/2)^84 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^59/Lucas(72) 2584000077399663 a004 Fibonacci(31)*Lucas(73)/(1/2+sqrt(5)/2)^86 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^61/Lucas(74) 2584000077399663 a004 Fibonacci(31)*Lucas(75)/(1/2+sqrt(5)/2)^88 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^63/Lucas(76) 2584000077399663 a004 Fibonacci(31)*Lucas(77)/(1/2+sqrt(5)/2)^90 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^65/Lucas(78) 2584000077399663 a004 Fibonacci(31)*Lucas(79)/(1/2+sqrt(5)/2)^92 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^67/Lucas(80) 2584000077399663 a004 Fibonacci(31)*Lucas(81)/(1/2+sqrt(5)/2)^94 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^69/Lucas(82) 2584000077399663 a004 Fibonacci(31)*Lucas(83)/(1/2+sqrt(5)/2)^96 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^71/Lucas(84) 2584000077399663 a004 Fibonacci(31)*Lucas(85)/(1/2+sqrt(5)/2)^98 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^73/Lucas(86) 2584000077399663 a004 Fibonacci(31)*Lucas(87)/(1/2+sqrt(5)/2)^100 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^75/Lucas(88) 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^77/Lucas(90) 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^79/Lucas(92) 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^81/Lucas(94) 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^83/Lucas(96) 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^85/Lucas(98) 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^86/Lucas(99) 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^87/Lucas(100) 2584000077399663 a004 Fibonacci(31)*Lucas(1)/(1/2+sqrt(5)/2)^13 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^84/Lucas(97) 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^82/Lucas(95) 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^80/Lucas(93) 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^78/Lucas(91) 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^76/Lucas(89) 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^74/Lucas(87) 2584000077399663 a004 Fibonacci(31)*Lucas(86)/(1/2+sqrt(5)/2)^99 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^72/Lucas(85) 2584000077399663 a004 Fibonacci(31)*Lucas(84)/(1/2+sqrt(5)/2)^97 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^70/Lucas(83) 2584000077399663 a004 Fibonacci(31)*Lucas(82)/(1/2+sqrt(5)/2)^95 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^68/Lucas(81) 2584000077399663 a004 Fibonacci(31)*Lucas(80)/(1/2+sqrt(5)/2)^93 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^66/Lucas(79) 2584000077399663 a004 Fibonacci(31)*Lucas(78)/(1/2+sqrt(5)/2)^91 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^64/Lucas(77) 2584000077399663 a004 Fibonacci(31)*Lucas(76)/(1/2+sqrt(5)/2)^89 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^62/Lucas(75) 2584000077399663 a004 Fibonacci(31)*Lucas(74)/(1/2+sqrt(5)/2)^87 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^60/Lucas(73) 2584000077399663 a004 Fibonacci(31)*Lucas(72)/(1/2+sqrt(5)/2)^85 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^58/Lucas(71) 2584000077399663 a004 Fibonacci(31)*Lucas(70)/(1/2+sqrt(5)/2)^83 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^56/Lucas(69) 2584000077399663 a004 Fibonacci(31)*Lucas(68)/(1/2+sqrt(5)/2)^81 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^54/Lucas(67) 2584000077399663 a004 Fibonacci(31)*Lucas(66)/(1/2+sqrt(5)/2)^79 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^52/Lucas(65) 2584000077399663 a004 Fibonacci(31)*Lucas(64)/(1/2+sqrt(5)/2)^77 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^50/Lucas(63) 2584000077399663 a004 Fibonacci(64)/Lucas(31)/(1/2+sqrt(5)/2)^15 2584000077399663 a004 Fibonacci(66)/Lucas(31)/(1/2+sqrt(5)/2)^17 2584000077399663 a004 Fibonacci(68)/Lucas(31)/(1/2+sqrt(5)/2)^19 2584000077399663 a004 Fibonacci(70)/Lucas(31)/(1/2+sqrt(5)/2)^21 2584000077399663 a004 Fibonacci(72)/Lucas(31)/(1/2+sqrt(5)/2)^23 2584000077399663 a004 Fibonacci(74)/Lucas(31)/(1/2+sqrt(5)/2)^25 2584000077399663 a004 Fibonacci(76)/Lucas(31)/(1/2+sqrt(5)/2)^27 2584000077399663 a004 Fibonacci(78)/Lucas(31)/(1/2+sqrt(5)/2)^29 2584000077399663 a004 Fibonacci(80)/Lucas(31)/(1/2+sqrt(5)/2)^31 2584000077399663 a004 Fibonacci(82)/Lucas(31)/(1/2+sqrt(5)/2)^33 2584000077399663 a004 Fibonacci(84)/Lucas(31)/(1/2+sqrt(5)/2)^35 2584000077399663 a004 Fibonacci(86)/Lucas(31)/(1/2+sqrt(5)/2)^37 2584000077399663 a004 Fibonacci(88)/Lucas(31)/(1/2+sqrt(5)/2)^39 2584000077399663 a004 Fibonacci(90)/Lucas(31)/(1/2+sqrt(5)/2)^41 2584000077399663 a004 Fibonacci(92)/Lucas(31)/(1/2+sqrt(5)/2)^43 2584000077399663 a004 Fibonacci(94)/Lucas(31)/(1/2+sqrt(5)/2)^45 2584000077399663 a004 Fibonacci(96)/Lucas(31)/(1/2+sqrt(5)/2)^47 2584000077399663 a004 Fibonacci(100)/Lucas(31)/(1/2+sqrt(5)/2)^51 2584000077399663 a004 Fibonacci(31)*Lucas(62)/(1/2+sqrt(5)/2)^75 2584000077399663 a004 Fibonacci(98)/Lucas(31)/(1/2+sqrt(5)/2)^49 2584000077399663 a004 Fibonacci(99)/Lucas(31)/(1/2+sqrt(5)/2)^50 2584000077399663 a004 Fibonacci(97)/Lucas(31)/(1/2+sqrt(5)/2)^48 2584000077399663 a004 Fibonacci(95)/Lucas(31)/(1/2+sqrt(5)/2)^46 2584000077399663 a004 Fibonacci(93)/Lucas(31)/(1/2+sqrt(5)/2)^44 2584000077399663 a004 Fibonacci(91)/Lucas(31)/(1/2+sqrt(5)/2)^42 2584000077399663 a004 Fibonacci(89)/Lucas(31)/(1/2+sqrt(5)/2)^40 2584000077399663 a004 Fibonacci(87)/Lucas(31)/(1/2+sqrt(5)/2)^38 2584000077399663 a004 Fibonacci(85)/Lucas(31)/(1/2+sqrt(5)/2)^36 2584000077399663 a004 Fibonacci(83)/Lucas(31)/(1/2+sqrt(5)/2)^34 2584000077399663 a004 Fibonacci(81)/Lucas(31)/(1/2+sqrt(5)/2)^32 2584000077399663 a004 Fibonacci(79)/Lucas(31)/(1/2+sqrt(5)/2)^30 2584000077399663 a004 Fibonacci(77)/Lucas(31)/(1/2+sqrt(5)/2)^28 2584000077399663 a004 Fibonacci(75)/Lucas(31)/(1/2+sqrt(5)/2)^26 2584000077399663 a004 Fibonacci(73)/Lucas(31)/(1/2+sqrt(5)/2)^24 2584000077399663 a004 Fibonacci(71)/Lucas(31)/(1/2+sqrt(5)/2)^22 2584000077399663 a004 Fibonacci(69)/Lucas(31)/(1/2+sqrt(5)/2)^20 2584000077399663 a004 Fibonacci(67)/Lucas(31)/(1/2+sqrt(5)/2)^18 2584000077399663 a004 Fibonacci(65)/Lucas(31)/(1/2+sqrt(5)/2)^16 2584000077399663 a004 Fibonacci(63)/Lucas(31)/(1/2+sqrt(5)/2)^14 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^48/Lucas(61) 2584000077399663 a004 Fibonacci(61)/Lucas(31)/(1/2+sqrt(5)/2)^12 2584000077399663 a001 1346269/14662949395604*3461452808002^(5/6) 2584000077399663 a004 Fibonacci(31)*Lucas(60)/(1/2+sqrt(5)/2)^73 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^46/Lucas(59) 2584000077399663 a004 Fibonacci(59)/Lucas(31)/(1/2+sqrt(5)/2)^10 2584000077399663 a004 Fibonacci(31)*Lucas(58)/(1/2+sqrt(5)/2)^71 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^44/Lucas(57) 2584000077399663 a001 1346269/817138163596*23725150497407^(11/16) 2584000077399663 a004 Fibonacci(57)/Lucas(31)/(1/2+sqrt(5)/2)^8 2584000077399663 a004 Fibonacci(31)*Lucas(56)/(1/2+sqrt(5)/2)^69 2584000077399663 a001 1346269/312119004989*817138163596^(14/19) 2584000077399663 a001 1346269/312119004989*14662949395604^(2/3) 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^42/Lucas(55) 2584000077399663 a004 Fibonacci(55)/Lucas(31)/(1/2+sqrt(5)/2)^6 2584000077399663 a001 1346269/312119004989*505019158607^(3/4) 2584000077399663 a001 1346269/1322157322203*192900153618^(5/6) 2584000077399663 a001 1346269/23725150497407*192900153618^(17/18) 2584000077399663 a004 Fibonacci(31)*Lucas(54)/(1/2+sqrt(5)/2)^67 2584000077399663 a001 1346269/312119004989*192900153618^(7/9) 2584000077399663 a001 1346269/119218851371*312119004989^(8/11) 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^40/Lucas(53) 2584000077399663 a001 1346269/119218851371*23725150497407^(5/8) 2584000077399663 a004 Fibonacci(53)/Lucas(31)/(1/2+sqrt(5)/2)^4 2584000077399663 a001 1346269/817138163596*73681302247^(11/13) 2584000077399663 a001 1346269/5600748293801*73681302247^(12/13) 2584000077399663 a004 Fibonacci(31)*Lucas(52)/(1/2+sqrt(5)/2)^65 2584000077399663 a001 1346269/119218851371*73681302247^(10/13) 2584000077399663 a001 1346269/45537549124*817138163596^(2/3) 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^38/Lucas(51) 2584000077399663 a001 27416783093582906/10610209857723 2584000077399663 a004 Fibonacci(51)/Lucas(31)/(1/2+sqrt(5)/2)^2 2584000077399663 a001 1346269/119218851371*28143753123^(4/5) 2584000077399663 a001 1346269/1322157322203*28143753123^(9/10) 2584000077399663 a004 Fibonacci(31)*Lucas(50)/(1/2+sqrt(5)/2)^63 2584000077399663 a001 1346269/17393796001*45537549124^(12/17) 2584000077399663 a001 1346269/17393796001*14662949395604^(4/7) 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^36/Lucas(49) 2584000077399663 a001 1346269/17393796001*192900153618^(2/3) 2584000077399663 a001 1346269/17393796001*73681302247^(9/13) 2584000077399663 a001 1346269/73681302247*10749957122^(13/16) 2584000077399663 a001 1346269/119218851371*10749957122^(5/6) 2584000077399663 a001 1346269/45537549124*10749957122^(19/24) 2584000077399663 a001 1346269/312119004989*10749957122^(7/8) 2584000077399663 a001 1346269/817138163596*10749957122^(11/12) 2584000077399663 a001 1346269/1322157322203*10749957122^(15/16) 2584000077399663 a001 1346269/2139295485799*10749957122^(23/24) 2584000077399663 a004 Fibonacci(31)*Lucas(48)/(1/2+sqrt(5)/2)^61 2584000077399663 a001 1346269/17393796001*10749957122^(3/4) 2584000077399663 a001 1346269/6643838879*45537549124^(2/3) 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^34/Lucas(47) 2584000077399663 a001 2971215073/3010349*(1/2+1/2*5^(1/2))^2 2584000077399663 a001 4000054745112637/1548008755920 2584000077399663 a001 2971215073/3010349*10749957122^(1/24) 2584000077399663 a001 2971215073/3010349*4106118243^(1/23) 2584000077399663 a001 1346269/6643838879*10749957122^(17/24) 2584000077399663 a001 2971215073/3010349*1568397607^(1/22) 2584000077399663 a001 1346269/45537549124*4106118243^(19/23) 2584000077399663 a001 1346269/17393796001*4106118243^(18/23) 2584000077399663 a001 1346269/119218851371*4106118243^(20/23) 2584000077399663 a001 1346269/312119004989*4106118243^(21/23) 2584000077399663 a001 1346269/817138163596*4106118243^(22/23) 2584000077399663 a004 Fibonacci(31)*Lucas(46)/(1/2+sqrt(5)/2)^59 2584000077399663 a001 1346269/6643838879*4106118243^(17/23) 2584000077399663 a001 1836311903/3010349*599074578^(1/14) 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^32/Lucas(45) 2584000077399663 a001 1134903170/3010349*(1/2+1/2*5^(1/2))^4 2584000077399663 a001 1134903170/3010349*23725150497407^(1/16) 2584000077399663 a001 1346269/2537720636*505019158607^(4/7) 2584000077399663 a001 1134903170/3010349*73681302247^(1/13) 2584000077399663 a001 2971215073/3010349*599074578^(1/21) 2584000077399663 a001 1346269/2537720636*73681302247^(8/13) 2584000077399663 a001 1134903170/3010349*10749957122^(1/12) 2584000077399663 a001 1134903170/3010349*4106118243^(2/23) 2584000077399663 a001 1346269/2537720636*10749957122^(2/3) 2584000077399663 a001 1134903170/3010349*1568397607^(1/11) 2584000077399663 a001 1346269/2537720636*4106118243^(16/23) 2584000077399663 a001 1346269/4106118243*1568397607^(3/4) 2584000077399663 a001 1346269/17393796001*1568397607^(9/11) 2584000077399663 a001 1346269/6643838879*1568397607^(17/22) 2584000077399663 a001 1346269/45537549124*1568397607^(19/22) 2584000077399663 a001 1346269/119218851371*1568397607^(10/11) 2584000077399663 a001 1346269/312119004989*1568397607^(21/22) 2584000077399663 a004 Fibonacci(31)*Lucas(44)/(1/2+sqrt(5)/2)^57 2584000077399663 a001 1134903170/3010349*599074578^(2/21) 2584000077399663 a001 1346269/2537720636*1568397607^(8/11) 2584000077399663 a001 1346269/969323029*2537720636^(2/3) 2584000077399663 a001 2971215073/3010349*228826127^(1/20) 2584000077399663 a001 433494437/3010349*2537720636^(2/15) 2584000077399663 a001 1346269/969323029*45537549124^(10/17) 2584000077399663 a001 433494437/3010349*45537549124^(2/17) 2584000077399663 a001 1346269/969323029*312119004989^(6/11) 2584000077399663 a001 1346269/969323029*14662949395604^(10/21) 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^30/Lucas(43) 2584000077399663 a001 433494437/3010349*(1/2+1/2*5^(1/2))^6 2584000077399663 a001 583600122205553/225851433717 2584000077399663 a001 1346269/969323029*192900153618^(5/9) 2584000077399663 a001 1346269/969323029*28143753123^(3/5) 2584000077399663 a001 433494437/3010349*10749957122^(1/8) 2584000077399663 a001 1346269/969323029*10749957122^(5/8) 2584000077399663 a001 433494437/3010349*4106118243^(3/23) 2584000077399663 a001 1346269/969323029*4106118243^(15/23) 2584000077399663 a001 433494437/3010349*1568397607^(3/22) 2584000077399663 a001 1346269/969323029*1568397607^(15/22) 2584000077399663 a001 433494437/3010349*599074578^(1/7) 2584000077399663 a001 701408733/3010349*228826127^(1/8) 2584000077399663 a001 1134903170/3010349*228826127^(1/10) 2584000077399663 a001 1346269/4106118243*599074578^(11/14) 2584000077399663 a001 1346269/2537720636*599074578^(16/21) 2584000077399663 a001 1346269/6643838879*599074578^(17/21) 2584000077399663 a001 1346269/10749957122*599074578^(5/6) 2584000077399663 a001 1346269/17393796001*599074578^(6/7) 2584000077399663 a001 1346269/45537549124*599074578^(19/21) 2584000077399663 a001 1346269/73681302247*599074578^(13/14) 2584000077399663 a001 1346269/119218851371*599074578^(20/21) 2584000077399663 a004 Fibonacci(31)*Lucas(42)/(1/2+sqrt(5)/2)^55 2584000077399663 a001 1346269/969323029*599074578^(5/7) 2584000077399663 a001 433494437/3010349*228826127^(3/20) 2584000077399663 a001 2971215073/3010349*87403803^(1/19) 2584000077399663 a001 1346269/370248451*17393796001^(4/7) 2584000077399663 a001 1346269/370248451*14662949395604^(4/9) 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^28/Lucas(41) 2584000077399663 a001 165580141/3010349*(1/2+1/2*5^(1/2))^8 2584000077399663 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^8/Lucas(31) 2584000077399663 a001 222915410843929/86267571272 2584000077399663 a001 165580141/3010349*73681302247^(2/13) 2584000077399663 a001 1346269/370248451*73681302247^(7/13) 2584000077399663 a001 165580141/3010349*10749957122^(1/6) 2584000077399663 a001 1346269/370248451*10749957122^(7/12) 2584000077399663 a001 165580141/3010349*4106118243^(4/23) 2584000077399663 a001 1346269/370248451*4106118243^(14/23) 2584000077399663 a001 165580141/3010349*1568397607^(2/11) 2584000077399663 a001 1346269/370248451*1568397607^(7/11) 2584000077399663 a001 165580141/3010349*599074578^(4/21) 2584000077399663 a001 1346269/370248451*599074578^(2/3) 2584000077399663 a001 165580141/3010349*228826127^(1/5) 2584000077399663 a001 1134903170/3010349*87403803^(2/19) 2584000077399663 a001 1346269/969323029*228826127^(3/4) 2584000077399663 a001 1346269/2537720636*228826127^(4/5) 2584000077399663 a001 1346269/6643838879*228826127^(17/20) 2584000077399663 a001 1346269/141422324*141422324^(2/3) 2584000077399663 a001 1346269/10749957122*228826127^(7/8) 2584000077399663 a001 1346269/17393796001*228826127^(9/10) 2584000077399663 a001 1346269/45537549124*228826127^(19/20) 2584000077399663 a004 Fibonacci(31)*Lucas(40)/(1/2+sqrt(5)/2)^53 2584000077399663 a001 1346269/370248451*228826127^(7/10) 2584000077399663 a001 433494437/3010349*87403803^(3/19) 2584000077399663 a001 165580141/3010349*87403803^(4/19) 2584000077399663 a001 2971215073/3010349*33385282^(1/18) 2584000077399663 a001 63245986/3010349*2537720636^(2/9) 2584000077399663 a001 63245986/3010349*312119004989^(2/11) 2584000077399663 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^26/Lucas(39) 2584000077399663 a001 63245986/3010349*(1/2+1/2*5^(1/2))^10 2584000077399663 a001 1346269/141422324*73681302247^(1/2) 2584000077399663 a001 365433949898/141421803 2584000077399663 a001 63245986/3010349*28143753123^(1/5) 2584000077399663 a001 63245986/3010349*10749957122^(5/24) 2584000077399663 a001 1346269/141422324*10749957122^(13/24) 2584000077399663 a001 63245986/3010349*4106118243^(5/23) 2584000077399663 a001 1346269/141422324*4106118243^(13/23) 2584000077399663 a001 63245986/3010349*1568397607^(5/22) 2584000077399663 a001 1346269/141422324*1568397607^(13/22) 2584000077399663 a001 63245986/3010349*599074578^(5/21) 2584000077399663 a001 1346269/141422324*599074578^(13/21) 2584000077399663 a001 63245986/3010349*228826127^(1/4) 2584000077399663 a001 1346269/141422324*228826127^(13/20) 2584000077399663 a001 1836311903/3010349*33385282^(1/12) 2584000077399663 a001 63245986/3010349*87403803^(5/19) 2584000077399663 a001 1134903170/3010349*33385282^(1/9) 2584000077399663 a001 1346269/370248451*87403803^(14/19) 2584000077399663 a001 1346269/969323029*87403803^(15/19) 2584000077399663 a001 1346269/2537720636*87403803^(16/19) 2584000077399663 a001 1346269/6643838879*87403803^(17/19) 2584000077399663 a001 1346269/17393796001*87403803^(18/19) 2584000077399663 a004 Fibonacci(31)*Lucas(38)/(1/2+sqrt(5)/2)^51 2584000077399663 a001 1346269/141422324*87403803^(13/19) 2584000077399664 a001 433494437/3010349*33385282^(1/6) 2584000077399664 a001 102334155/3010349*33385282^(1/4) 2584000077399664 a001 165580141/3010349*33385282^(2/9) 2584000077399664 a001 63245986/3010349*33385282^(5/18) 2584000077399664 a001 1346269/54018521*141422324^(8/13) 2584000077399664 a001 24157817/3010349*141422324^(4/13) 2584000077399664 a001 1346269/54018521*2537720636^(8/15) 2584000077399664 a001 24157817/3010349*2537720636^(4/15) 2584000077399664 a001 1346269/54018521*45537549124^(8/17) 2584000077399664 a001 24157817/3010349*45537549124^(4/17) 2584000077399664 a001 24157817/3010349*817138163596^(4/19) 2584000077399664 a001 1346269/54018521*14662949395604^(8/21) 2584000077399664 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^24/Lucas(37) 2584000077399664 a001 24157817/3010349*14662949395604^(4/21) 2584000077399664 a001 24157817/3010349*(1/2+1/2*5^(1/2))^12 2584000077399664 a001 1346269/54018521*192900153618^(4/9) 2584000077399664 a001 24157817/3010349*73681302247^(3/13) 2584000077399664 a001 1346269/54018521*73681302247^(6/13) 2584000077399664 a001 32522920134773/12586269025 2584000077399664 a001 24157817/3010349*10749957122^(1/4) 2584000077399664 a001 1346269/54018521*10749957122^(1/2) 2584000077399664 a001 24157817/3010349*4106118243^(6/23) 2584000077399664 a001 1346269/54018521*4106118243^(12/23) 2584000077399664 a001 24157817/3010349*1568397607^(3/11) 2584000077399664 a001 1346269/54018521*1568397607^(6/11) 2584000077399664 a001 24157817/3010349*599074578^(2/7) 2584000077399664 a001 1346269/54018521*599074578^(4/7) 2584000077399664 a001 24157817/3010349*228826127^(3/10) 2584000077399664 a001 1346269/54018521*228826127^(3/5) 2584000077399664 a001 2971215073/3010349*12752043^(1/17) 2584000077399664 a001 24157817/3010349*87403803^(6/19) 2584000077399664 a001 1346269/54018521*87403803^(12/19) 2584000077399665 a001 24157817/3010349*33385282^(1/3) 2584000077399665 a001 1346269/228826127*33385282^(3/4) 2584000077399665 a001 1346269/141422324*33385282^(13/18) 2584000077399665 a001 1346269/370248451*33385282^(7/9) 2584000077399665 a001 1134903170/3010349*12752043^(2/17) 2584000077399665 a001 1346269/969323029*33385282^(5/6) 2584000077399665 a001 1346269/2537720636*33385282^(8/9) 2584000077399665 a001 1346269/4106118243*33385282^(11/12) 2584000077399665 a001 1346269/6643838879*33385282^(17/18) 2584000077399665 a004 Fibonacci(31)*Lucas(36)/(1/2+sqrt(5)/2)^49 2584000077399666 a001 1346269/54018521*33385282^(2/3) 2584000077399666 a001 433494437/3010349*12752043^(3/17) 2584000077399667 a001 9227465/3010349*20633239^(2/5) 2584000077399667 a001 165580141/3010349*12752043^(4/17) 2584000077399668 a001 63245986/3010349*12752043^(5/17) 2584000077399668 a001 165580141/7881196*1860498^(1/3) 2584000077399669 a001 9227465/3010349*17393796001^(2/7) 2584000077399669 a001 1346269/20633239*312119004989^(2/5) 2584000077399669 a001 1346269/20633239*(1/2+1/2*5^(1/2))^22 2584000077399669 a001 9227465/3010349*14662949395604^(2/9) 2584000077399669 a001 9227465/3010349*(1/2+1/2*5^(1/2))^14 2584000077399669 a001 9227465/3010349*10749957122^(7/24) 2584000077399669 a001 1346269/20633239*10749957122^(11/24) 2584000077399669 a001 12422650078085/4807526976 2584000077399669 a001 9227465/3010349*4106118243^(7/23) 2584000077399669 a001 1346269/20633239*4106118243^(11/23) 2584000077399669 a001 9227465/3010349*1568397607^(7/22) 2584000077399669 a001 1346269/20633239*1568397607^(1/2) 2584000077399669 a001 9227465/3010349*599074578^(1/3) 2584000077399669 a001 1346269/20633239*599074578^(11/21) 2584000077399669 a001 9227465/3010349*228826127^(7/20) 2584000077399669 a001 1346269/20633239*228826127^(11/20) 2584000077399669 a001 9227465/3010349*87403803^(7/19) 2584000077399669 a001 1346269/20633239*87403803^(11/19) 2584000077399670 a001 24157817/3010349*12752043^(6/17) 2584000077399670 a001 2971215073/3010349*4870847^(1/16) 2584000077399670 a001 9227465/3010349*33385282^(7/18) 2584000077399671 a001 1346269/20633239*33385282^(11/18) 2584000077399674 a001 133957148/16692641*1860498^(2/5) 2584000077399675 a001 1346269/54018521*12752043^(12/17) 2584000077399675 a001 1346269/141422324*12752043^(13/17) 2584000077399676 a001 9227465/3010349*12752043^(7/17) 2584000077399676 a001 1346269/370248451*12752043^(14/17) 2584000077399676 a001 233802911/29134601*1860498^(2/5) 2584000077399677 a001 1836311903/228826127*1860498^(2/5) 2584000077399677 a001 267084832/33281921*1860498^(2/5) 2584000077399677 a001 12586269025/1568397607*1860498^(2/5) 2584000077399677 a001 10983760033/1368706081*1860498^(2/5) 2584000077399677 a001 43133785636/5374978561*1860498^(2/5) 2584000077399677 a001 75283811239/9381251041*1860498^(2/5) 2584000077399677 a001 591286729879/73681302247*1860498^(2/5) 2584000077399677 a001 86000486440/10716675201*1860498^(2/5) 2584000077399677 a001 4052739537881/505019158607*1860498^(2/5) 2584000077399677 a001 3278735159921/408569081798*1860498^(2/5) 2584000077399677 a001 2504730781961/312119004989*1860498^(2/5) 2584000077399677 a001 956722026041/119218851371*1860498^(2/5) 2584000077399677 a001 182717648081/22768774562*1860498^(2/5) 2584000077399677 a001 139583862445/17393796001*1860498^(2/5) 2584000077399677 a001 53316291173/6643838879*1860498^(2/5) 2584000077399677 a001 10182505537/1268860318*1860498^(2/5) 2584000077399677 a001 7778742049/969323029*1860498^(2/5) 2584000077399677 a001 2971215073/370248451*1860498^(2/5) 2584000077399677 a001 567451585/70711162*1860498^(2/5) 2584000077399677 a001 1134903170/3010349*4870847^(1/8) 2584000077399677 a001 1346269/969323029*12752043^(15/17) 2584000077399677 a001 433494437/54018521*1860498^(2/5) 2584000077399678 a001 1346269/2537720636*12752043^(16/17) 2584000077399679 a004 Fibonacci(31)*Lucas(34)/(1/2+sqrt(5)/2)^47 2584000077399679 a001 1346269/20633239*12752043^(11/17) 2584000077399683 a001 165580141/20633239*1860498^(2/5) 2584000077399684 a001 433494437/3010349*4870847^(3/16) 2584000077399690 a001 165580141/3010349*4870847^(1/4) 2584000077399697 a001 63245986/3010349*4870847^(5/16) 2584000077399701 a001 1346269/7881196*20633239^(4/7) 2584000077399705 a001 1346269/7881196*2537720636^(4/9) 2584000077399705 a001 1346269/7881196*(1/2+1/2*5^(1/2))^20 2584000077399705 a001 1346269/7881196*23725150497407^(5/16) 2584000077399705 a001 3524578/3010349*(1/2+1/2*5^(1/2))^16 2584000077399705 a001 1346269/7881196*505019158607^(5/14) 2584000077399705 a001 3524578/3010349*73681302247^(4/13) 2584000077399705 a001 1346269/7881196*73681302247^(5/13) 2584000077399705 a001 1346269/7881196*28143753123^(2/5) 2584000077399705 a001 3524578/3010349*10749957122^(1/3) 2584000077399705 a001 1346269/7881196*10749957122^(5/12) 2584000077399705 a001 3524578/3010349*4106118243^(8/23) 2584000077399705 a001 1346269/7881196*4106118243^(10/23) 2584000077399705 a001 4745030099482/1836311903 2584000077399705 a001 3524578/3010349*1568397607^(4/11) 2584000077399705 a001 1346269/7881196*1568397607^(5/11) 2584000077399705 a001 3524578/3010349*599074578^(8/21) 2584000077399705 a001 1346269/7881196*599074578^(10/21) 2584000077399705 a001 3524578/3010349*228826127^(2/5) 2584000077399705 a001 1346269/7881196*228826127^(1/2) 2584000077399705 a001 24157817/3010349*4870847^(3/8) 2584000077399705 a001 3524578/3010349*87403803^(8/19) 2584000077399705 a001 1346269/7881196*87403803^(10/19) 2584000077399706 a001 3524578/3010349*33385282^(4/9) 2584000077399706 a001 1346269/7881196*33385282^(5/9) 2584000077399710 a001 39088169/12752043*1860498^(7/15) 2584000077399712 a001 3524578/3010349*12752043^(8/17) 2584000077399713 a001 2971215073/3010349*1860498^(1/15) 2584000077399714 a001 1346269/7881196*12752043^(10/17) 2584000077399717 a001 9227465/3010349*4870847^(7/16) 2584000077399718 a001 31622993/3940598*1860498^(2/5) 2584000077399724 a001 14619165/4769326*1860498^(7/15) 2584000077399726 a001 267914296/87403803*1860498^(7/15) 2584000077399726 a001 701408733/228826127*1860498^(7/15) 2584000077399726 a001 1836311903/599074578*1860498^(7/15) 2584000077399726 a001 686789568/224056801*1860498^(7/15) 2584000077399726 a001 12586269025/4106118243*1860498^(7/15) 2584000077399726 a001 32951280099/10749957122*1860498^(7/15) 2584000077399726 a001 86267571272/28143753123*1860498^(7/15) 2584000077399726 a001 32264490531/10525900321*1860498^(7/15) 2584000077399726 a001 591286729879/192900153618*1860498^(7/15) 2584000077399726 a001 1548008755920/505019158607*1860498^(7/15) 2584000077399726 a001 1515744265389/494493258286*1860498^(7/15) 2584000077399726 a001 2504730781961/817138163596*1860498^(7/15) 2584000077399726 a001 956722026041/312119004989*1860498^(7/15) 2584000077399726 a001 365435296162/119218851371*1860498^(7/15) 2584000077399726 a001 139583862445/45537549124*1860498^(7/15) 2584000077399726 a001 53316291173/17393796001*1860498^(7/15) 2584000077399726 a001 20365011074/6643838879*1860498^(7/15) 2584000077399726 a001 7778742049/2537720636*1860498^(7/15) 2584000077399726 a001 2971215073/969323029*1860498^(7/15) 2584000077399726 a001 1134903170/370248451*1860498^(7/15) 2584000077399726 a001 433494437/141422324*1860498^(7/15) 2584000077399727 a001 165580141/54018521*1860498^(7/15) 2584000077399728 a001 12586269025/12752043*710647^(1/14) 2584000077399728 a001 133957148/930249*710647^(3/14) 2584000077399733 a001 63245986/20633239*1860498^(7/15) 2584000077399736 a001 24157817/12752043*1860498^(1/2) 2584000077399738 a001 1836311903/3010349*1860498^(1/10) 2584000077399741 a001 32951280099/33385282*710647^(1/14) 2584000077399743 a001 86267571272/87403803*710647^(1/14) 2584000077399743 a001 225851433717/228826127*710647^(1/14) 2584000077399743 a001 591286729879/599074578*710647^(1/14) 2584000077399743 a001 1548008755920/1568397607*710647^(1/14) 2584000077399743 a001 4052739537881/4106118243*710647^(1/14) 2584000077399743 a001 4807525989/4870846*710647^(1/14) 2584000077399743 a001 6557470319842/6643838879*710647^(1/14) 2584000077399743 a001 2504730781961/2537720636*710647^(1/14) 2584000077399743 a001 956722026041/969323029*710647^(1/14) 2584000077399743 a001 365435296162/370248451*710647^(1/14) 2584000077399744 a001 139583862445/141422324*710647^(1/14) 2584000077399744 a001 1346269/20633239*4870847^(11/16) 2584000077399744 a001 53316291173/54018521*710647^(1/14) 2584000077399746 a001 1346269/54018521*4870847^(3/4) 2584000077399749 a001 31622993/16692641*1860498^(1/2) 2584000077399750 a001 20365011074/20633239*710647^(1/14) 2584000077399751 a001 726103/4250681*1860498^(2/3) 2584000077399751 a001 165580141/87403803*1860498^(1/2) 2584000077399751 a001 433494437/228826127*1860498^(1/2) 2584000077399751 a001 567451585/299537289*1860498^(1/2) 2584000077399751 a001 2971215073/1568397607*1860498^(1/2) 2584000077399751 a001 7778742049/4106118243*1860498^(1/2) 2584000077399751 a001 10182505537/5374978561*1860498^(1/2) 2584000077399751 a001 53316291173/28143753123*1860498^(1/2) 2584000077399751 a001 139583862445/73681302247*1860498^(1/2) 2584000077399751 a001 182717648081/96450076809*1860498^(1/2) 2584000077399751 a001 956722026041/505019158607*1860498^(1/2) 2584000077399751 a001 10610209857723/5600748293801*1860498^(1/2) 2584000077399751 a001 591286729879/312119004989*1860498^(1/2) 2584000077399751 a001 225851433717/119218851371*1860498^(1/2) 2584000077399751 a001 21566892818/11384387281*1860498^(1/2) 2584000077399751 a001 32951280099/17393796001*1860498^(1/2) 2584000077399751 a001 12586269025/6643838879*1860498^(1/2) 2584000077399751 a001 1201881744/634430159*1860498^(1/2) 2584000077399751 a001 1836311903/969323029*1860498^(1/2) 2584000077399751 a001 701408733/370248451*1860498^(1/2) 2584000077399751 a001 66978574/35355581*1860498^(1/2) 2584000077399752 a001 1346269/141422324*4870847^(13/16) 2584000077399752 a001 102334155/54018521*1860498^(1/2) 2584000077399757 a001 39088169/20633239*1860498^(1/2) 2584000077399758 a001 4976784/4250681*1860498^(8/15) 2584000077399758 a001 1346269/370248451*4870847^(7/8) 2584000077399759 a001 3524578/3010349*4870847^(1/2) 2584000077399763 a001 1134903170/3010349*1860498^(2/15) 2584000077399765 a001 1346269/969323029*4870847^(15/16) 2584000077399769 a001 24157817/7881196*1860498^(7/15) 2584000077399772 a004 Fibonacci(31)*Lucas(32)/(1/2+sqrt(5)/2)^45 2584000077399773 a001 1346269/7881196*4870847^(5/8) 2584000077399773 a001 39088169/33385282*1860498^(8/15) 2584000077399776 a001 34111385/29134601*1860498^(8/15) 2584000077399776 a001 267914296/228826127*1860498^(8/15) 2584000077399776 a001 233802911/199691526*1860498^(8/15) 2584000077399776 a001 1836311903/1568397607*1860498^(8/15) 2584000077399776 a001 1602508992/1368706081*1860498^(8/15) 2584000077399776 a001 12586269025/10749957122*1860498^(8/15) 2584000077399776 a001 10983760033/9381251041*1860498^(8/15) 2584000077399776 a001 86267571272/73681302247*1860498^(8/15) 2584000077399776 a001 75283811239/64300051206*1860498^(8/15) 2584000077399776 a001 2504730781961/2139295485799*1860498^(8/15) 2584000077399776 a001 365435296162/312119004989*1860498^(8/15) 2584000077399776 a001 139583862445/119218851371*1860498^(8/15) 2584000077399776 a001 53316291173/45537549124*1860498^(8/15) 2584000077399776 a001 20365011074/17393796001*1860498^(8/15) 2584000077399776 a001 7778742049/6643838879*1860498^(8/15) 2584000077399776 a001 2971215073/2537720636*1860498^(8/15) 2584000077399776 a001 1134903170/969323029*1860498^(8/15) 2584000077399776 a001 433494437/370248451*1860498^(8/15) 2584000077399776 a001 165580141/141422324*1860498^(8/15) 2584000077399777 a001 63245986/54018521*1860498^(8/15) 2584000077399783 a001 24157817/20633239*1860498^(8/15) 2584000077399785 a001 7778742049/7881196*710647^(1/14) 2584000077399788 a001 701408733/3010349*1860498^(1/6) 2584000077399791 a001 3732588/1970299*1860498^(1/2) 2584000077399794 a001 5702887/12752043*1860498^(3/5) 2584000077399798 a001 2178309/20633239*1860498^(7/10) 2584000077399812 a001 433494437/3010349*1860498^(1/5) 2584000077399814 a001 311187/4769326*1860498^(11/15) 2584000077399821 a001 7465176/16692641*1860498^(3/5) 2584000077399824 a001 9227465/7881196*1860498^(8/15) 2584000077399825 a001 39088169/87403803*1860498^(3/5) 2584000077399826 a001 102334155/228826127*1860498^(3/5) 2584000077399826 a001 133957148/299537289*1860498^(3/5) 2584000077399826 a001 701408733/1568397607*1860498^(3/5) 2584000077399826 a001 1836311903/4106118243*1860498^(3/5) 2584000077399826 a001 2403763488/5374978561*1860498^(3/5) 2584000077399826 a001 12586269025/28143753123*1860498^(3/5) 2584000077399826 a001 32951280099/73681302247*1860498^(3/5) 2584000077399826 a001 43133785636/96450076809*1860498^(3/5) 2584000077399826 a001 225851433717/505019158607*1860498^(3/5) 2584000077399826 a001 591286729879/1322157322203*1860498^(3/5) 2584000077399826 a001 10610209857723/23725150497407*1860498^(3/5) 2584000077399826 a001 139583862445/312119004989*1860498^(3/5) 2584000077399826 a001 53316291173/119218851371*1860498^(3/5) 2584000077399826 a001 10182505537/22768774562*1860498^(3/5) 2584000077399826 a001 7778742049/17393796001*1860498^(3/5) 2584000077399826 a001 2971215073/6643838879*1860498^(3/5) 2584000077399826 a001 567451585/1268860318*1860498^(3/5) 2584000077399826 a001 433494437/969323029*1860498^(3/5) 2584000077399826 a001 165580141/370248451*1860498^(3/5) 2584000077399826 a001 31622993/70711162*1860498^(3/5) 2584000077399828 a001 24157817/54018521*1860498^(3/5) 2584000077399838 a001 9227465/20633239*1860498^(3/5) 2584000077399844 a001 701408733/1149851*439204^(1/9) 2584000077399857 a001 5702887/33385282*1860498^(2/3) 2584000077399862 a001 165580141/3010349*1860498^(4/15) 2584000077399866 a001 726103/29134601*1860498^(4/5) 2584000077399873 a001 4976784/29134601*1860498^(2/3) 2584000077399875 a001 39088169/228826127*1860498^(2/3) 2584000077399876 a001 34111385/199691526*1860498^(2/3) 2584000077399876 a001 267914296/1568397607*1860498^(2/3) 2584000077399876 a001 233802911/1368706081*1860498^(2/3) 2584000077399876 a001 1836311903/10749957122*1860498^(2/3) 2584000077399876 a001 1602508992/9381251041*1860498^(2/3) 2584000077399876 a001 12586269025/73681302247*1860498^(2/3) 2584000077399876 a001 10983760033/64300051206*1860498^(2/3) 2584000077399876 a001 86267571272/505019158607*1860498^(2/3) 2584000077399876 a001 75283811239/440719107401*1860498^(2/3) 2584000077399876 a001 2504730781961/14662949395604*1860498^(2/3) 2584000077399876 a001 139583862445/817138163596*1860498^(2/3) 2584000077399876 a001 53316291173/312119004989*1860498^(2/3) 2584000077399876 a001 20365011074/119218851371*1860498^(2/3) 2584000077399876 a001 7778742049/45537549124*1860498^(2/3) 2584000077399876 a001 2971215073/17393796001*1860498^(2/3) 2584000077399876 a001 1134903170/6643838879*1860498^(2/3) 2584000077399876 a001 433494437/2537720636*1860498^(2/3) 2584000077399876 a001 165580141/969323029*1860498^(2/3) 2584000077399876 a001 63245986/370248451*1860498^(2/3) 2584000077399877 a001 24157817/141422324*1860498^(2/3) 2584000077399883 a001 9227465/54018521*1860498^(2/3) 2584000077399886 a001 5702887/54018521*1860498^(7/10) 2584000077399887 a001 102334155/3010349*1860498^(3/10) 2584000077399891 a001 2178309/141422324*1860498^(5/6) 2584000077399898 a001 3732588/35355581*1860498^(7/10) 2584000077399900 a001 39088169/370248451*1860498^(7/10) 2584000077399900 a001 102334155/969323029*1860498^(7/10) 2584000077399901 a001 66978574/634430159*1860498^(7/10) 2584000077399901 a001 701408733/6643838879*1860498^(7/10) 2584000077399901 a001 1836311903/17393796001*1860498^(7/10) 2584000077399901 a001 1201881744/11384387281*1860498^(7/10) 2584000077399901 a001 12586269025/119218851371*1860498^(7/10) 2584000077399901 a001 32951280099/312119004989*1860498^(7/10) 2584000077399901 a001 21566892818/204284540899*1860498^(7/10) 2584000077399901 a001 225851433717/2139295485799*1860498^(7/10) 2584000077399901 a001 182717648081/1730726404001*1860498^(7/10) 2584000077399901 a001 139583862445/1322157322203*1860498^(7/10) 2584000077399901 a001 53316291173/505019158607*1860498^(7/10) 2584000077399901 a001 10182505537/96450076809*1860498^(7/10) 2584000077399901 a001 7778742049/73681302247*1860498^(7/10) 2584000077399901 a001 2971215073/28143753123*1860498^(7/10) 2584000077399901 a001 567451585/5374978561*1860498^(7/10) 2584000077399901 a001 433494437/4106118243*1860498^(7/10) 2584000077399901 a001 165580141/1568397607*1860498^(7/10) 2584000077399901 a001 31622993/299537289*1860498^(7/10) 2584000077399901 a001 24157817/228826127*1860498^(7/10) 2584000077399906 a001 9227465/87403803*1860498^(7/10) 2584000077399909 a001 1762289/3940598*1860498^(3/5) 2584000077399909 a001 5702887/87403803*1860498^(11/15) 2584000077399911 a001 165580141/1860498*710647^(1/4) 2584000077399912 a001 63245986/3010349*1860498^(1/3) 2584000077399916 a001 46347/4868641*1860498^(13/15) 2584000077399923 a001 14930352/228826127*1860498^(11/15) 2584000077399923 a001 3524578/20633239*1860498^(2/3) 2584000077399925 a001 39088169/599074578*1860498^(11/15) 2584000077399925 a001 14619165/224056801*1860498^(11/15) 2584000077399925 a001 267914296/4106118243*1860498^(11/15) 2584000077399925 a001 701408733/10749957122*1860498^(11/15) 2584000077399925 a001 1836311903/28143753123*1860498^(11/15) 2584000077399925 a001 686789568/10525900321*1860498^(11/15) 2584000077399925 a001 12586269025/192900153618*1860498^(11/15) 2584000077399925 a001 32951280099/505019158607*1860498^(11/15) 2584000077399925 a001 86267571272/1322157322203*1860498^(11/15) 2584000077399925 a001 32264490531/494493258286*1860498^(11/15) 2584000077399925 a001 1548008755920/23725150497407*1860498^(11/15) 2584000077399925 a001 365435296162/5600748293801*1860498^(11/15) 2584000077399925 a001 139583862445/2139295485799*1860498^(11/15) 2584000077399925 a001 53316291173/817138163596*1860498^(11/15) 2584000077399925 a001 20365011074/312119004989*1860498^(11/15) 2584000077399925 a001 7778742049/119218851371*1860498^(11/15) 2584000077399925 a001 2971215073/45537549124*1860498^(11/15) 2584000077399925 a001 1134903170/17393796001*1860498^(11/15) 2584000077399925 a001 433494437/6643838879*1860498^(11/15) 2584000077399925 a001 165580141/2537720636*1860498^(11/15) 2584000077399926 a001 63245986/969323029*1860498^(11/15) 2584000077399926 a001 1346269/3010349*7881196^(6/11) 2584000077399926 a001 24157817/370248451*1860498^(11/15) 2584000077399932 a001 9227465/141422324*1860498^(11/15) 2584000077399940 a001 1762289/16692641*1860498^(7/10) 2584000077399941 a001 2178309/370248451*1860498^(9/10) 2584000077399948 a001 1346269/3010349*141422324^(6/13) 2584000077399948 a001 1346269/3010349*2537720636^(2/5) 2584000077399948 a001 1346269/3010349*45537549124^(6/17) 2584000077399948 a001 1346269/3010349*14662949395604^(2/7) 2584000077399948 a001 1346269/3010349*(1/2+1/2*5^(1/2))^18 2584000077399948 a001 1346269/3010349*192900153618^(1/3) 2584000077399948 a001 1346269/3010349*10749957122^(3/8) 2584000077399948 a001 1346269/3010349*4106118243^(9/23) 2584000077399948 a001 1346269/3010349*1568397607^(9/22) 2584000077399948 a001 1812440220361/701408733 2584000077399948 a001 1346269/3010349*599074578^(3/7) 2584000077399948 a001 1346269/3010349*228826127^(9/20) 2584000077399948 a001 1346269/3010349*87403803^(9/19) 2584000077399949 a001 1346269/3010349*33385282^(1/2) 2584000077399957 a001 1346269/3010349*12752043^(9/17) 2584000077399959 a001 5702887/228826127*1860498^(4/5) 2584000077399963 a001 24157817/3010349*1860498^(2/5) 2584000077399966 a001 726103/199691526*1860498^(14/15) 2584000077399968 a001 3524578/54018521*1860498^(11/15) 2584000077399973 a001 829464/33281921*1860498^(4/5) 2584000077399975 a001 39088169/1568397607*1860498^(4/5) 2584000077399975 a001 34111385/1368706081*1860498^(4/5) 2584000077399975 a001 133957148/5374978561*1860498^(4/5) 2584000077399975 a001 233802911/9381251041*1860498^(4/5) 2584000077399975 a001 1836311903/73681302247*1860498^(4/5) 2584000077399975 a001 267084832/10716675201*1860498^(4/5) 2584000077399975 a001 12586269025/505019158607*1860498^(4/5) 2584000077399975 a001 10983760033/440719107401*1860498^(4/5) 2584000077399975 a001 43133785636/1730726404001*1860498^(4/5) 2584000077399975 a001 75283811239/3020733700601*1860498^(4/5) 2584000077399975 a001 182717648081/7331474697802*1860498^(4/5) 2584000077399975 a001 139583862445/5600748293801*1860498^(4/5) 2584000077399975 a001 53316291173/2139295485799*1860498^(4/5) 2584000077399975 a001 10182505537/408569081798*1860498^(4/5) 2584000077399975 a001 7778742049/312119004989*1860498^(4/5) 2584000077399975 a001 2971215073/119218851371*1860498^(4/5) 2584000077399975 a001 567451585/22768774562*1860498^(4/5) 2584000077399975 a001 433494437/17393796001*1860498^(4/5) 2584000077399975 a001 165580141/6643838879*1860498^(4/5) 2584000077399975 a001 31622993/1268860318*1860498^(4/5) 2584000077399976 a001 24157817/969323029*1860498^(4/5) 2584000077399981 a001 9227465/370248451*1860498^(4/5) 2584000077399984 a001 5702887/370248451*1860498^(5/6) 2584000077399998 a001 14930352/969323029*1860498^(5/6) 2584000077400000 a001 39088169/2537720636*1860498^(5/6) 2584000077400000 a001 1836311903/4870847*710647^(1/7) 2584000077400000 a001 102334155/6643838879*1860498^(5/6) 2584000077400000 a001 9238424/599786069*1860498^(5/6) 2584000077400000 a001 701408733/45537549124*1860498^(5/6) 2584000077400000 a001 1836311903/119218851371*1860498^(5/6) 2584000077400000 a001 4807526976/312119004989*1860498^(5/6) 2584000077400000 a001 12586269025/817138163596*1860498^(5/6) 2584000077400000 a001 32951280099/2139295485799*1860498^(5/6) 2584000077400000 a001 86267571272/5600748293801*1860498^(5/6) 2584000077400000 a001 7787980473/505618944676*1860498^(5/6) 2584000077400000 a001 365435296162/23725150497407*1860498^(5/6) 2584000077400000 a001 139583862445/9062201101803*1860498^(5/6) 2584000077400000 a001 53316291173/3461452808002*1860498^(5/6) 2584000077400000 a001 20365011074/1322157322203*1860498^(5/6) 2584000077400000 a001 7778742049/505019158607*1860498^(5/6) 2584000077400000 a001 2971215073/192900153618*1860498^(5/6) 2584000077400000 a001 1134903170/73681302247*1860498^(5/6) 2584000077400000 a001 433494437/28143753123*1860498^(5/6) 2584000077400000 a001 165580141/10749957122*1860498^(5/6) 2584000077400000 a001 63245986/4106118243*1860498^(5/6) 2584000077400001 a001 24157817/1568397607*1860498^(5/6) 2584000077400006 a001 9227465/599074578*1860498^(5/6) 2584000077400009 a001 5702887/599074578*1860498^(13/15) 2584000077400010 a001 1346269/3010349*4870847^(9/16) 2584000077400016 a004 Fibonacci(32)*Lucas(30)/(1/2+sqrt(5)/2)^44 2584000077400017 a001 1762289/70711162*1860498^(4/5) 2584000077400018 a001 9227465/3010349*1860498^(7/15) 2584000077400020 a001 5702887/3010349*1860498^(1/2) 2584000077400023 a001 14930352/1568397607*1860498^(13/15) 2584000077400025 a001 39088169/4106118243*1860498^(13/15) 2584000077400025 a001 102334155/10749957122*1860498^(13/15) 2584000077400025 a001 267914296/28143753123*1860498^(13/15) 2584000077400025 a001 701408733/73681302247*1860498^(13/15) 2584000077400025 a001 1836311903/192900153618*1860498^(13/15) 2584000077400025 a001 102287808/10745088481*1860498^(13/15) 2584000077400025 a001 12586269025/1322157322203*1860498^(13/15) 2584000077400025 a001 32951280099/3461452808002*1860498^(13/15) 2584000077400025 a001 86267571272/9062201101803*1860498^(13/15) 2584000077400025 a001 225851433717/23725150497407*1860498^(13/15) 2584000077400025 a001 139583862445/14662949395604*1860498^(13/15) 2584000077400025 a001 53316291173/5600748293801*1860498^(13/15) 2584000077400025 a001 20365011074/2139295485799*1860498^(13/15) 2584000077400025 a001 7778742049/817138163596*1860498^(13/15) 2584000077400025 a001 2971215073/312119004989*1860498^(13/15) 2584000077400025 a001 1134903170/119218851371*1860498^(13/15) 2584000077400025 a001 433494437/45537549124*1860498^(13/15) 2584000077400025 a001 165580141/17393796001*1860498^(13/15) 2584000077400025 a001 63245986/6643838879*1860498^(13/15) 2584000077400026 a001 24157817/2537720636*1860498^(13/15) 2584000077400029 a001 2971215073/3010349*710647^(1/14) 2584000077400031 a001 9227465/969323029*1860498^(13/15) 2584000077400034 a001 5702887/969323029*1860498^(9/10) 2584000077400042 a001 3524578/228826127*1860498^(5/6) 2584000077400048 a001 196452/33391061*1860498^(9/10) 2584000077400050 a001 39088169/6643838879*1860498^(9/10) 2584000077400050 a001 102334155/17393796001*1860498^(9/10) 2584000077400050 a001 66978574/11384387281*1860498^(9/10) 2584000077400050 a001 701408733/119218851371*1860498^(9/10) 2584000077400050 a001 1836311903/312119004989*1860498^(9/10) 2584000077400050 a001 1201881744/204284540899*1860498^(9/10) 2584000077400050 a001 12586269025/2139295485799*1860498^(9/10) 2584000077400050 a001 32951280099/5600748293801*1860498^(9/10) 2584000077400050 a001 1135099622/192933544679*1860498^(9/10) 2584000077400050 a001 139583862445/23725150497407*1860498^(9/10) 2584000077400050 a001 53316291173/9062201101803*1860498^(9/10) 2584000077400050 a001 10182505537/1730726404001*1860498^(9/10) 2584000077400050 a001 7778742049/1322157322203*1860498^(9/10) 2584000077400050 a001 2971215073/505019158607*1860498^(9/10) 2584000077400050 a001 567451585/96450076809*1860498^(9/10) 2584000077400050 a001 433494437/73681302247*1860498^(9/10) 2584000077400050 a001 165580141/28143753123*1860498^(9/10) 2584000077400050 a001 31622993/5374978561*1860498^(9/10) 2584000077400051 a001 24157817/4106118243*1860498^(9/10) 2584000077400056 a001 9227465/1568397607*1860498^(9/10) 2584000077400059 a001 5702887/1568397607*1860498^(14/15) 2584000077400067 a001 3524578/370248451*1860498^(13/15) 2584000077400072 a001 4976784/1368706081*1860498^(14/15) 2584000077400074 a001 39088169/10749957122*1860498^(14/15) 2584000077400075 a001 831985/228811001*1860498^(14/15) 2584000077400075 a001 267914296/73681302247*1860498^(14/15) 2584000077400075 a001 233802911/64300051206*1860498^(14/15) 2584000077400075 a001 1836311903/505019158607*1860498^(14/15) 2584000077400075 a001 1602508992/440719107401*1860498^(14/15) 2584000077400075 a001 12586269025/3461452808002*1860498^(14/15) 2584000077400075 a001 10983760033/3020733700601*1860498^(14/15) 2584000077400075 a001 86267571272/23725150497407*1860498^(14/15) 2584000077400075 a001 53316291173/14662949395604*1860498^(14/15) 2584000077400075 a001 20365011074/5600748293801*1860498^(14/15) 2584000077400075 a001 7778742049/2139295485799*1860498^(14/15) 2584000077400075 a001 2971215073/817138163596*1860498^(14/15) 2584000077400075 a001 1134903170/312119004989*1860498^(14/15) 2584000077400075 a001 433494437/119218851371*1860498^(14/15) 2584000077400075 a001 165580141/45537549124*1860498^(14/15) 2584000077400075 a001 63245986/17393796001*1860498^(14/15) 2584000077400076 a001 24157817/6643838879*1860498^(14/15) 2584000077400081 a001 9227465/2537720636*1860498^(14/15) 2584000077400091 a001 1762289/299537289*1860498^(9/10) 2584000077400093 a001 1602508992/4250681*710647^(1/7) 2584000077400093 a001 831985/15126*710647^(2/7) 2584000077400103 a001 3524578/3010349*1860498^(8/15) 2584000077400107 a001 12586269025/33385282*710647^(1/7) 2584000077400109 a001 10983760033/29134601*710647^(1/7) 2584000077400109 a004 Fibonacci(34)*Lucas(30)/(1/2+sqrt(5)/2)^46 2584000077400109 a001 86267571272/228826127*710647^(1/7) 2584000077400109 a001 267913919/710646*710647^(1/7) 2584000077400109 a001 591286729879/1568397607*710647^(1/7) 2584000077400109 a001 516002918640/1368706081*710647^(1/7) 2584000077400109 a001 4052739537881/10749957122*710647^(1/7) 2584000077400109 a001 3536736619241/9381251041*710647^(1/7) 2584000077400109 a001 6557470319842/17393796001*710647^(1/7) 2584000077400109 a001 2504730781961/6643838879*710647^(1/7) 2584000077400109 a001 956722026041/2537720636*710647^(1/7) 2584000077400109 a001 365435296162/969323029*710647^(1/7) 2584000077400109 a001 139583862445/370248451*710647^(1/7) 2584000077400109 a001 53316291173/141422324*710647^(1/7) 2584000077400110 a001 20365011074/54018521*710647^(1/7) 2584000077400115 a001 7778742049/20633239*710647^(1/7) 2584000077400116 a001 3524578/969323029*1860498^(14/15) 2584000077400122 a004 Fibonacci(36)*Lucas(30)/(1/2+sqrt(5)/2)^48 2584000077400124 a004 Fibonacci(38)*Lucas(30)/(1/2+sqrt(5)/2)^50 2584000077400124 a004 Fibonacci(40)*Lucas(30)/(1/2+sqrt(5)/2)^52 2584000077400124 a004 Fibonacci(42)*Lucas(30)/(1/2+sqrt(5)/2)^54 2584000077400124 a004 Fibonacci(44)*Lucas(30)/(1/2+sqrt(5)/2)^56 2584000077400124 a004 Fibonacci(46)*Lucas(30)/(1/2+sqrt(5)/2)^58 2584000077400124 a004 Fibonacci(48)*Lucas(30)/(1/2+sqrt(5)/2)^60 2584000077400124 a004 Fibonacci(50)*Lucas(30)/(1/2+sqrt(5)/2)^62 2584000077400124 a004 Fibonacci(52)*Lucas(30)/(1/2+sqrt(5)/2)^64 2584000077400124 a004 Fibonacci(54)*Lucas(30)/(1/2+sqrt(5)/2)^66 2584000077400124 a004 Fibonacci(56)*Lucas(30)/(1/2+sqrt(5)/2)^68 2584000077400124 a004 Fibonacci(58)*Lucas(30)/(1/2+sqrt(5)/2)^70 2584000077400124 a004 Fibonacci(60)*Lucas(30)/(1/2+sqrt(5)/2)^72 2584000077400124 a004 Fibonacci(62)*Lucas(30)/(1/2+sqrt(5)/2)^74 2584000077400124 a004 Fibonacci(64)*Lucas(30)/(1/2+sqrt(5)/2)^76 2584000077400124 a004 Fibonacci(66)*Lucas(30)/(1/2+sqrt(5)/2)^78 2584000077400124 a004 Fibonacci(68)*Lucas(30)/(1/2+sqrt(5)/2)^80 2584000077400124 a004 Fibonacci(70)*Lucas(30)/(1/2+sqrt(5)/2)^82 2584000077400124 a004 Fibonacci(72)*Lucas(30)/(1/2+sqrt(5)/2)^84 2584000077400124 a004 Fibonacci(74)*Lucas(30)/(1/2+sqrt(5)/2)^86 2584000077400124 a004 Fibonacci(76)*Lucas(30)/(1/2+sqrt(5)/2)^88 2584000077400124 a004 Fibonacci(78)*Lucas(30)/(1/2+sqrt(5)/2)^90 2584000077400124 a004 Fibonacci(80)*Lucas(30)/(1/2+sqrt(5)/2)^92 2584000077400124 a004 Fibonacci(82)*Lucas(30)/(1/2+sqrt(5)/2)^94 2584000077400124 a004 Fibonacci(84)*Lucas(30)/(1/2+sqrt(5)/2)^96 2584000077400124 a004 Fibonacci(86)*Lucas(30)/(1/2+sqrt(5)/2)^98 2584000077400124 a004 Fibonacci(88)*Lucas(30)/(1/2+sqrt(5)/2)^100 2584000077400124 a004 Fibonacci(87)*Lucas(30)/(1/2+sqrt(5)/2)^99 2584000077400124 a004 Fibonacci(85)*Lucas(30)/(1/2+sqrt(5)/2)^97 2584000077400124 a004 Fibonacci(83)*Lucas(30)/(1/2+sqrt(5)/2)^95 2584000077400124 a004 Fibonacci(81)*Lucas(30)/(1/2+sqrt(5)/2)^93 2584000077400124 a004 Fibonacci(79)*Lucas(30)/(1/2+sqrt(5)/2)^91 2584000077400124 a004 Fibonacci(77)*Lucas(30)/(1/2+sqrt(5)/2)^89 2584000077400124 a004 Fibonacci(75)*Lucas(30)/(1/2+sqrt(5)/2)^87 2584000077400124 a004 Fibonacci(73)*Lucas(30)/(1/2+sqrt(5)/2)^85 2584000077400124 a004 Fibonacci(71)*Lucas(30)/(1/2+sqrt(5)/2)^83 2584000077400124 a004 Fibonacci(69)*Lucas(30)/(1/2+sqrt(5)/2)^81 2584000077400124 a004 Fibonacci(67)*Lucas(30)/(1/2+sqrt(5)/2)^79 2584000077400124 a004 Fibonacci(65)*Lucas(30)/(1/2+sqrt(5)/2)^77 2584000077400124 a004 Fibonacci(63)*Lucas(30)/(1/2+sqrt(5)/2)^75 2584000077400124 a004 Fibonacci(61)*Lucas(30)/(1/2+sqrt(5)/2)^73 2584000077400124 a001 1/416020*(1/2+1/2*5^(1/2))^48 2584000077400124 a004 Fibonacci(59)*Lucas(30)/(1/2+sqrt(5)/2)^71 2584000077400124 a004 Fibonacci(57)*Lucas(30)/(1/2+sqrt(5)/2)^69 2584000077400124 a004 Fibonacci(55)*Lucas(30)/(1/2+sqrt(5)/2)^67 2584000077400124 a004 Fibonacci(53)*Lucas(30)/(1/2+sqrt(5)/2)^65 2584000077400124 a004 Fibonacci(51)*Lucas(30)/(1/2+sqrt(5)/2)^63 2584000077400124 a004 Fibonacci(49)*Lucas(30)/(1/2+sqrt(5)/2)^61 2584000077400124 a004 Fibonacci(47)*Lucas(30)/(1/2+sqrt(5)/2)^59 2584000077400124 a004 Fibonacci(45)*Lucas(30)/(1/2+sqrt(5)/2)^57 2584000077400124 a004 Fibonacci(43)*Lucas(30)/(1/2+sqrt(5)/2)^55 2584000077400125 a004 Fibonacci(41)*Lucas(30)/(1/2+sqrt(5)/2)^53 2584000077400125 a004 Fibonacci(39)*Lucas(30)/(1/2+sqrt(5)/2)^51 2584000077400125 a004 Fibonacci(37)*Lucas(30)/(1/2+sqrt(5)/2)^49 2584000077400131 a004 Fibonacci(35)*Lucas(30)/(1/2+sqrt(5)/2)^47 2584000077400151 a001 2971215073/7881196*710647^(1/7) 2584000077400166 a004 Fibonacci(33)*Lucas(30)/(1/2+sqrt(5)/2)^45 2584000077400170 a001 1346269/12752043*1860498^(7/10) 2584000077400202 a001 1346269/7881196*1860498^(2/3) 2584000077400217 a001 1346269/20633239*1860498^(11/15) 2584000077400261 a001 1346269/54018521*1860498^(4/5) 2584000077400285 a001 1346269/87403803*1860498^(5/6) 2584000077400310 a001 1346269/141422324*1860498^(13/15) 2584000077400335 a001 1346269/228826127*1860498^(9/10) 2584000077400360 a001 1346269/370248451*1860498^(14/15) 2584000077400365 a001 701408733/4870847*710647^(3/14) 2584000077400394 a001 1134903170/3010349*710647^(1/7) 2584000077400396 a001 1346269/3010349*1860498^(3/5) 2584000077400410 a004 Fibonacci(31)*Lucas(30)/(1/2+sqrt(5)/2)^43 2584000077400459 a001 39088169/1860498*710647^(5/14) 2584000077400459 a001 1836311903/12752043*710647^(3/14) 2584000077400472 a001 14930208/103681*710647^(3/14) 2584000077400474 a001 12586269025/87403803*710647^(3/14) 2584000077400474 a001 32951280099/228826127*710647^(3/14) 2584000077400474 a001 43133785636/299537289*710647^(3/14) 2584000077400474 a001 32264490531/224056801*710647^(3/14) 2584000077400474 a001 591286729879/4106118243*710647^(3/14) 2584000077400474 a001 774004377960/5374978561*710647^(3/14) 2584000077400474 a001 4052739537881/28143753123*710647^(3/14) 2584000077400474 a001 1515744265389/10525900321*710647^(3/14) 2584000077400474 a001 3278735159921/22768774562*710647^(3/14) 2584000077400474 a001 2504730781961/17393796001*710647^(3/14) 2584000077400474 a001 956722026041/6643838879*710647^(3/14) 2584000077400474 a001 182717648081/1268860318*710647^(3/14) 2584000077400474 a001 139583862445/969323029*710647^(3/14) 2584000077400474 a001 53316291173/370248451*710647^(3/14) 2584000077400475 a001 10182505537/70711162*710647^(3/14) 2584000077400475 a001 7778742049/54018521*710647^(3/14) 2584000077400480 a001 2971215073/20633239*710647^(3/14) 2584000077400516 a001 567451585/3940598*710647^(3/14) 2584000077400548 a001 433494437/4870847*710647^(1/4) 2584000077400586 a001 427859097160/165580141 2584000077400586 a001 832040/1149851*45537549124^(1/3) 2584000077400586 a001 514229/1860498*817138163596^(1/3) 2584000077400586 a001 514229/1860498*(1/2+1/2*5^(1/2))^19 2584000077400586 a001 832040/1149851*(1/2+1/2*5^(1/2))^17 2584000077400586 a001 514229/1860498*87403803^(1/2) 2584000077400594 a001 832040/1149851*12752043^(1/2) 2584000077400641 a001 1134903170/12752043*710647^(1/4) 2584000077400655 a001 2971215073/33385282*710647^(1/4) 2584000077400657 a001 7778742049/87403803*710647^(1/4) 2584000077400657 a001 20365011074/228826127*710647^(1/4) 2584000077400657 a001 53316291173/599074578*710647^(1/4) 2584000077400657 a001 139583862445/1568397607*710647^(1/4) 2584000077400657 a001 365435296162/4106118243*710647^(1/4) 2584000077400657 a001 956722026041/10749957122*710647^(1/4) 2584000077400657 a001 2504730781961/28143753123*710647^(1/4) 2584000077400657 a001 6557470319842/73681302247*710647^(1/4) 2584000077400657 a001 10610209857723/119218851371*710647^(1/4) 2584000077400657 a001 4052739537881/45537549124*710647^(1/4) 2584000077400657 a001 1548008755920/17393796001*710647^(1/4) 2584000077400657 a001 591286729879/6643838879*710647^(1/4) 2584000077400657 a001 225851433717/2537720636*710647^(1/4) 2584000077400657 a001 86267571272/969323029*710647^(1/4) 2584000077400657 a001 32951280099/370248451*710647^(1/4) 2584000077400657 a001 12586269025/141422324*710647^(1/4) 2584000077400658 a001 4807526976/54018521*710647^(1/4) 2584000077400663 a001 1836311903/20633239*710647^(1/4) 2584000077400699 a001 3524667/39604*710647^(1/4) 2584000077400731 a001 267914296/4870847*710647^(2/7) 2584000077400760 a001 433494437/3010349*710647^(3/14) 2584000077400822 a001 829464/103361*710647^(3/7) 2584000077400824 a001 233802911/4250681*710647^(2/7) 2584000077400838 a001 1836311903/33385282*710647^(2/7) 2584000077400840 a001 1602508992/29134601*710647^(2/7) 2584000077400840 a001 12586269025/228826127*710647^(2/7) 2584000077400840 a001 10983760033/199691526*710647^(2/7) 2584000077400840 a001 86267571272/1568397607*710647^(2/7) 2584000077400840 a001 75283811239/1368706081*710647^(2/7) 2584000077400840 a001 591286729879/10749957122*710647^(2/7) 2584000077400840 a001 12585437040/228811001*710647^(2/7) 2584000077400840 a001 4052739537881/73681302247*710647^(2/7) 2584000077400840 a001 3536736619241/64300051206*710647^(2/7) 2584000077400840 a001 6557470319842/119218851371*710647^(2/7) 2584000077400840 a001 2504730781961/45537549124*710647^(2/7) 2584000077400840 a001 956722026041/17393796001*710647^(2/7) 2584000077400840 a001 365435296162/6643838879*710647^(2/7) 2584000077400840 a001 139583862445/2537720636*710647^(2/7) 2584000077400840 a001 53316291173/969323029*710647^(2/7) 2584000077400840 a001 20365011074/370248451*710647^(2/7) 2584000077400840 a001 7778742049/141422324*710647^(2/7) 2584000077400841 a001 2971215073/54018521*710647^(2/7) 2584000077400846 a001 1134903170/20633239*710647^(2/7) 2584000077400881 a001 433494437/7881196*710647^(2/7) 2584000077400908 a001 98209/3940598*439204^(8/9) 2584000077400942 a001 267914296/3010349*710647^(1/4) 2584000077401047 a004 Fibonacci(29)*Lucas(31)/(1/2+sqrt(5)/2)^42 2584000077401096 a001 102334155/4870847*710647^(5/14) 2584000077401125 a001 165580141/3010349*710647^(2/7) 2584000077401174 a001 5702887/1860498*710647^(1/2) 2584000077401174 a001 416020/930249*710647^(9/14) 2584000077401189 a001 267914296/12752043*710647^(5/14) 2584000077401197 a001 514229/4870847*7881196^(7/11) 2584000077401203 a001 701408733/33385282*710647^(5/14) 2584000077401205 a001 2178309/1149851*7881196^(5/11) 2584000077401205 a001 1836311903/87403803*710647^(5/14) 2584000077401205 a001 102287808/4868641*710647^(5/14) 2584000077401205 a001 12586269025/599074578*710647^(5/14) 2584000077401205 a001 32951280099/1568397607*710647^(5/14) 2584000077401205 a001 86267571272/4106118243*710647^(5/14) 2584000077401205 a001 225851433717/10749957122*710647^(5/14) 2584000077401205 a001 591286729879/28143753123*710647^(5/14) 2584000077401205 a001 1548008755920/73681302247*710647^(5/14) 2584000077401205 a001 4052739537881/192900153618*710647^(5/14) 2584000077401205 a001 225749145909/10745088481*710647^(5/14) 2584000077401205 a001 6557470319842/312119004989*710647^(5/14) 2584000077401205 a001 2504730781961/119218851371*710647^(5/14) 2584000077401205 a001 956722026041/45537549124*710647^(5/14) 2584000077401205 a001 365435296162/17393796001*710647^(5/14) 2584000077401205 a001 139583862445/6643838879*710647^(5/14) 2584000077401205 a001 53316291173/2537720636*710647^(5/14) 2584000077401205 a001 20365011074/969323029*710647^(5/14) 2584000077401205 a001 7778742049/370248451*710647^(5/14) 2584000077401205 a001 2971215073/141422324*710647^(5/14) 2584000077401206 a001 1134903170/54018521*710647^(5/14) 2584000077401211 a001 433494437/20633239*710647^(5/14) 2584000077401220 a001 514229/4870847*20633239^(3/5) 2584000077401221 a001 2178309/1149851*20633239^(3/7) 2584000077401223 a001 514229/4870847*141422324^(7/13) 2584000077401223 a001 2178309/1149851*141422324^(5/13) 2584000077401223 a001 1120149658761/433494437 2584000077401223 a001 514229/4870847*2537720636^(7/15) 2584000077401223 a001 2178309/1149851*2537720636^(1/3) 2584000077401223 a001 514229/4870847*17393796001^(3/7) 2584000077401223 a001 514229/4870847*45537549124^(7/17) 2584000077401223 a001 2178309/1149851*45537549124^(5/17) 2584000077401223 a001 2178309/1149851*312119004989^(3/11) 2584000077401223 a001 514229/4870847*(1/2+1/2*5^(1/2))^21 2584000077401223 a001 2178309/1149851*14662949395604^(5/21) 2584000077401223 a001 2178309/1149851*(1/2+1/2*5^(1/2))^15 2584000077401223 a001 2178309/1149851*192900153618^(5/18) 2584000077401223 a001 514229/4870847*192900153618^(7/18) 2584000077401223 a001 2178309/1149851*28143753123^(3/10) 2584000077401223 a001 2178309/1149851*10749957122^(5/16) 2584000077401223 a001 514229/4870847*10749957122^(7/16) 2584000077401223 a001 2178309/1149851*599074578^(5/14) 2584000077401223 a001 514229/4870847*599074578^(1/2) 2584000077401223 a001 2178309/1149851*228826127^(3/8) 2584000077401224 a001 2178309/1149851*33385282^(5/12) 2584000077401225 a001 514229/4870847*33385282^(7/12) 2584000077401247 a001 165580141/7881196*710647^(5/14) 2584000077401291 a004 Fibonacci(29)*Lucas(33)/(1/2+sqrt(5)/2)^44 2584000077401295 a001 514229/370248451*7881196^(10/11) 2584000077401298 a001 514229/87403803*7881196^(9/11) 2584000077401308 a001 514229/20633239*7881196^(8/11) 2584000077401316 a001 14930352/1149851*7881196^(1/3) 2584000077401316 a001 5702887/1149851*141422324^(1/3) 2584000077401316 a001 2932589879123/1134903170 2584000077401316 a001 514229/12752043*(1/2+1/2*5^(1/2))^23 2584000077401316 a001 5702887/1149851*(1/2+1/2*5^(1/2))^13 2584000077401316 a001 5702887/1149851*73681302247^(1/4) 2584000077401316 a001 514229/12752043*4106118243^(1/2) 2584000077401321 a001 39088169/1149851*7881196^(3/11) 2584000077401323 a001 9227465/1149851*7881196^(4/11) 2584000077401325 a001 165580141/1149851*7881196^(2/11) 2584000077401326 a001 514229/33385282*20633239^(5/7) 2584000077401326 a004 Fibonacci(29)*Lucas(35)/(1/2+sqrt(5)/2)^46 2584000077401327 a001 514229/370248451*20633239^(6/7) 2584000077401328 a001 514229/141422324*20633239^(4/5) 2584000077401329 a001 701408733/1149851*7881196^(1/11) 2584000077401329 a001 1836311903/1860498*271443^(1/13) 2584000077401330 a001 514229/33385282*2537720636^(5/9) 2584000077401330 a001 7677619978608/2971215073 2584000077401330 a001 514229/33385282*312119004989^(5/11) 2584000077401330 a001 14930352/1149851*312119004989^(1/5) 2584000077401330 a001 514229/33385282*(1/2+1/2*5^(1/2))^25 2584000077401330 a001 14930352/1149851*(1/2+1/2*5^(1/2))^11 2584000077401330 a001 514229/33385282*28143753123^(1/2) 2584000077401330 a001 14930352/1149851*1568397607^(1/4) 2584000077401330 a001 514229/33385282*228826127^(5/8) 2584000077401331 a001 102334155/1149851*20633239^(1/5) 2584000077401331 a004 Fibonacci(29)*Lucas(37)/(1/2+sqrt(5)/2)^48 2584000077401331 a001 267914296/1149851*20633239^(1/7) 2584000077401332 a001 24157817/1149851*20633239^(2/7) 2584000077401332 a001 514229/87403803*141422324^(9/13) 2584000077401332 a001 39088169/1149851*141422324^(3/13) 2584000077401332 a001 514229/87403803*2537720636^(3/5) 2584000077401332 a001 39088169/1149851*2537720636^(1/5) 2584000077401332 a001 20100270056701/7778742049 2584000077401332 a001 514229/87403803*45537549124^(9/17) 2584000077401332 a001 39088169/1149851*45537549124^(3/17) 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^27/Lucas(38) 2584000077401332 a001 39088169/1149851*817138163596^(3/19) 2584000077401332 a001 39088169/1149851*14662949395604^(1/7) 2584000077401332 a001 39088169/1149851*(1/2+1/2*5^(1/2))^9 2584000077401332 a001 39088169/1149851*192900153618^(1/6) 2584000077401332 a001 514229/87403803*192900153618^(1/2) 2584000077401332 a001 39088169/1149851*10749957122^(3/16) 2584000077401332 a001 514229/87403803*10749957122^(9/16) 2584000077401332 a001 39088169/1149851*599074578^(3/14) 2584000077401332 a001 514229/87403803*599074578^(9/14) 2584000077401332 a004 Fibonacci(29)*Lucas(39)/(1/2+sqrt(5)/2)^50 2584000077401332 a001 514229/6643838879*141422324^(12/13) 2584000077401332 a001 514229/1568397607*141422324^(11/13) 2584000077401332 a001 514229/370248451*141422324^(10/13) 2584000077401332 a001 52623190191495/20365011074 2584000077401332 a001 102334155/1149851*17393796001^(1/7) 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^29/Lucas(40) 2584000077401332 a001 514229/228826127*1322157322203^(1/2) 2584000077401332 a001 102334155/1149851*14662949395604^(1/9) 2584000077401332 a001 102334155/1149851*(1/2+1/2*5^(1/2))^7 2584000077401332 a001 102334155/1149851*599074578^(1/6) 2584000077401332 a004 Fibonacci(29)*Lucas(41)/(1/2+sqrt(5)/2)^52 2584000077401332 a001 701408733/1149851*141422324^(1/13) 2584000077401332 a001 267914296/1149851*2537720636^(1/9) 2584000077401332 a001 137769300517784/53316291173 2584000077401332 a001 267914296/1149851*312119004989^(1/11) 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^31/Lucas(42) 2584000077401332 a001 514229/599074578*9062201101803^(1/2) 2584000077401332 a001 267914296/1149851*(1/2+1/2*5^(1/2))^5 2584000077401332 a001 267914296/1149851*28143753123^(1/10) 2584000077401332 a004 Fibonacci(29)*Lucas(43)/(1/2+sqrt(5)/2)^54 2584000077401332 a001 514229/1568397607*2537720636^(11/15) 2584000077401332 a001 701408733/1149851*2537720636^(1/15) 2584000077401332 a001 514229/1568397607*45537549124^(11/17) 2584000077401332 a001 701408733/1149851*45537549124^(1/17) 2584000077401332 a001 4052637206313/1568358005 2584000077401332 a001 514229/1568397607*312119004989^(3/5) 2584000077401332 a001 514229/1568397607*14662949395604^(11/21) 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^33/Lucas(44) 2584000077401332 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^3/Lucas(29) 2584000077401332 a001 514229/1568397607*192900153618^(11/18) 2584000077401332 a001 701408733/1149851*10749957122^(1/16) 2584000077401332 a001 514229/1568397607*10749957122^(11/16) 2584000077401332 a001 267914296/1149851*228826127^(1/8) 2584000077401332 a001 165580141/1149851*141422324^(2/13) 2584000077401332 a001 701408733/1149851*599074578^(1/14) 2584000077401332 a001 514229/4106118243*2537720636^(7/9) 2584000077401332 a004 Fibonacci(29)*Lucas(45)/(1/2+sqrt(5)/2)^56 2584000077401332 a001 514229/119218851371*2537720636^(14/15) 2584000077401332 a001 514229/45537549124*2537720636^(8/9) 2584000077401332 a001 514229/28143753123*2537720636^(13/15) 2584000077401332 a001 514229/1568397607*1568397607^(3/4) 2584000077401332 a001 514229/6643838879*2537720636^(4/5) 2584000077401332 a001 514229/4106118243*17393796001^(5/7) 2584000077401332 a001 514229/4106118243*312119004989^(7/11) 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^35/Lucas(46) 2584000077401332 a001 1836311903/2299702+1836311903/2299702*5^(1/2) 2584000077401332 a001 514229/4106118243*505019158607^(5/8) 2584000077401332 a001 514229/4106118243*28143753123^(7/10) 2584000077401332 a004 Fibonacci(29)*Lucas(47)/(1/2+sqrt(5)/2)^58 2584000077401332 a001 2472169789341504/956722026041 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^37/Lucas(48) 2584000077401332 a004 Fibonacci(48)/Lucas(29)/(1/2+sqrt(5)/2) 2584000077401332 a004 Fibonacci(29)*Lucas(49)/(1/2+sqrt(5)/2)^60 2584000077401332 a001 514229/119218851371*17393796001^(6/7) 2584000077401332 a001 514229/28143753123*45537549124^(13/17) 2584000077401332 a001 6472224534456725/2504730781961 2584000077401332 a001 514229/28143753123*14662949395604^(13/21) 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^39/Lucas(50) 2584000077401332 a004 Fibonacci(50)/Lucas(29)/(1/2+sqrt(5)/2)^3 2584000077401332 a001 514229/28143753123*192900153618^(13/18) 2584000077401332 a001 514229/28143753123*73681302247^(3/4) 2584000077401332 a004 Fibonacci(29)*Lucas(51)/(1/2+sqrt(5)/2)^62 2584000077401332 a001 514229/2139295485799*45537549124^(16/17) 2584000077401332 a001 514229/505019158607*45537549124^(15/17) 2584000077401332 a001 514229/119218851371*45537549124^(14/17) 2584000077401332 a001 16944503814028671/6557470319842 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^41/Lucas(52) 2584000077401332 a004 Fibonacci(52)/Lucas(29)/(1/2+sqrt(5)/2)^5 2584000077401332 a004 Fibonacci(29)*Lucas(53)/(1/2+sqrt(5)/2)^64 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^43/Lucas(54) 2584000077401332 a004 Fibonacci(54)/Lucas(29)/(1/2+sqrt(5)/2)^7 2584000077401332 a001 514229/505019158607*312119004989^(9/11) 2584000077401332 a004 Fibonacci(29)*Lucas(55)/(1/2+sqrt(5)/2)^66 2584000077401332 a001 514229/505019158607*14662949395604^(5/7) 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^45/Lucas(56) 2584000077401332 a004 Fibonacci(56)/Lucas(29)/(1/2+sqrt(5)/2)^9 2584000077401332 a004 Fibonacci(29)*Lucas(57)/(1/2+sqrt(5)/2)^68 2584000077401332 a001 514229/9062201101803*817138163596^(17/19) 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^47/Lucas(58) 2584000077401332 a004 Fibonacci(29)*Lucas(59)/(1/2+sqrt(5)/2)^70 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^49/Lucas(60) 2584000077401332 a004 Fibonacci(29)*Lucas(61)/(1/2+sqrt(5)/2)^72 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^51/Lucas(62) 2584000077401332 a004 Fibonacci(29)*Lucas(63)/(1/2+sqrt(5)/2)^74 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^53/Lucas(64) 2584000077401332 a004 Fibonacci(29)*Lucas(65)/(1/2+sqrt(5)/2)^76 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^55/Lucas(66) 2584000077401332 a004 Fibonacci(29)*Lucas(67)/(1/2+sqrt(5)/2)^78 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^57/Lucas(68) 2584000077401332 a004 Fibonacci(29)*Lucas(69)/(1/2+sqrt(5)/2)^80 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^59/Lucas(70) 2584000077401332 a004 Fibonacci(29)*Lucas(71)/(1/2+sqrt(5)/2)^82 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^61/Lucas(72) 2584000077401332 a004 Fibonacci(29)*Lucas(73)/(1/2+sqrt(5)/2)^84 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^63/Lucas(74) 2584000077401332 a004 Fibonacci(29)*Lucas(75)/(1/2+sqrt(5)/2)^86 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^65/Lucas(76) 2584000077401332 a004 Fibonacci(29)*Lucas(77)/(1/2+sqrt(5)/2)^88 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^67/Lucas(78) 2584000077401332 a004 Fibonacci(29)*Lucas(79)/(1/2+sqrt(5)/2)^90 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^69/Lucas(80) 2584000077401332 a004 Fibonacci(29)*Lucas(81)/(1/2+sqrt(5)/2)^92 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^71/Lucas(82) 2584000077401332 a004 Fibonacci(29)*Lucas(83)/(1/2+sqrt(5)/2)^94 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^73/Lucas(84) 2584000077401332 a004 Fibonacci(29)*Lucas(85)/(1/2+sqrt(5)/2)^96 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^75/Lucas(86) 2584000077401332 a004 Fibonacci(29)*Lucas(87)/(1/2+sqrt(5)/2)^98 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^77/Lucas(88) 2584000077401332 a004 Fibonacci(29)*Lucas(89)/(1/2+sqrt(5)/2)^100 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^79/Lucas(90) 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^81/Lucas(92) 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^83/Lucas(94) 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^85/Lucas(96) 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^87/Lucas(98) 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^88/Lucas(99) 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^89/Lucas(100) 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^86/Lucas(97) 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^84/Lucas(95) 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^82/Lucas(93) 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^80/Lucas(91) 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^78/Lucas(89) 2584000077401332 a004 Fibonacci(29)*Lucas(88)/(1/2+sqrt(5)/2)^99 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^76/Lucas(87) 2584000077401332 a004 Fibonacci(29)*Lucas(86)/(1/2+sqrt(5)/2)^97 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^74/Lucas(85) 2584000077401332 a004 Fibonacci(29)*Lucas(84)/(1/2+sqrt(5)/2)^95 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^72/Lucas(83) 2584000077401332 a004 Fibonacci(29)*Lucas(82)/(1/2+sqrt(5)/2)^93 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^70/Lucas(81) 2584000077401332 a004 Fibonacci(29)*Lucas(80)/(1/2+sqrt(5)/2)^91 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^68/Lucas(79) 2584000077401332 a004 Fibonacci(29)*Lucas(78)/(1/2+sqrt(5)/2)^89 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^66/Lucas(77) 2584000077401332 a004 Fibonacci(29)*Lucas(76)/(1/2+sqrt(5)/2)^87 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^64/Lucas(75) 2584000077401332 a004 Fibonacci(29)*Lucas(74)/(1/2+sqrt(5)/2)^85 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^62/Lucas(73) 2584000077401332 a004 Fibonacci(29)*Lucas(72)/(1/2+sqrt(5)/2)^83 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^60/Lucas(71) 2584000077401332 a004 Fibonacci(29)*Lucas(70)/(1/2+sqrt(5)/2)^81 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^58/Lucas(69) 2584000077401332 a004 Fibonacci(29)*Lucas(68)/(1/2+sqrt(5)/2)^79 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^56/Lucas(67) 2584000077401332 a004 Fibonacci(29)*Lucas(66)/(1/2+sqrt(5)/2)^77 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^54/Lucas(65) 2584000077401332 a004 Fibonacci(29)*Lucas(64)/(1/2+sqrt(5)/2)^75 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^52/Lucas(63) 2584000077401332 a001 514229/14662949395604*23725150497407^(13/16) 2584000077401332 a004 Fibonacci(29)*Lucas(62)/(1/2+sqrt(5)/2)^73 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^50/Lucas(61) 2584000077401332 a004 Fibonacci(29)*Lucas(60)/(1/2+sqrt(5)/2)^71 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^48/Lucas(59) 2584000077401332 a004 Fibonacci(60)/Lucas(29)/(1/2+sqrt(5)/2)^13 2584000077401332 a004 Fibonacci(62)/Lucas(29)/(1/2+sqrt(5)/2)^15 2584000077401332 a004 Fibonacci(64)/Lucas(29)/(1/2+sqrt(5)/2)^17 2584000077401332 a004 Fibonacci(66)/Lucas(29)/(1/2+sqrt(5)/2)^19 2584000077401332 a004 Fibonacci(68)/Lucas(29)/(1/2+sqrt(5)/2)^21 2584000077401332 a004 Fibonacci(70)/Lucas(29)/(1/2+sqrt(5)/2)^23 2584000077401332 a004 Fibonacci(72)/Lucas(29)/(1/2+sqrt(5)/2)^25 2584000077401332 a004 Fibonacci(74)/Lucas(29)/(1/2+sqrt(5)/2)^27 2584000077401332 a004 Fibonacci(76)/Lucas(29)/(1/2+sqrt(5)/2)^29 2584000077401332 a004 Fibonacci(78)/Lucas(29)/(1/2+sqrt(5)/2)^31 2584000077401332 a004 Fibonacci(80)/Lucas(29)/(1/2+sqrt(5)/2)^33 2584000077401332 a004 Fibonacci(82)/Lucas(29)/(1/2+sqrt(5)/2)^35 2584000077401332 a004 Fibonacci(84)/Lucas(29)/(1/2+sqrt(5)/2)^37 2584000077401332 a004 Fibonacci(86)/Lucas(29)/(1/2+sqrt(5)/2)^39 2584000077401332 a004 Fibonacci(88)/Lucas(29)/(1/2+sqrt(5)/2)^41 2584000077401332 a004 Fibonacci(90)/Lucas(29)/(1/2+sqrt(5)/2)^43 2584000077401332 a004 Fibonacci(92)/Lucas(29)/(1/2+sqrt(5)/2)^45 2584000077401332 a004 Fibonacci(94)/Lucas(29)/(1/2+sqrt(5)/2)^47 2584000077401332 a004 Fibonacci(96)/Lucas(29)/(1/2+sqrt(5)/2)^49 2584000077401332 a004 Fibonacci(100)/Lucas(29)/(1/2+sqrt(5)/2)^53 2584000077401332 a004 Fibonacci(29)*Lucas(58)/(1/2+sqrt(5)/2)^69 2584000077401332 a004 Fibonacci(98)/Lucas(29)/(1/2+sqrt(5)/2)^51 2584000077401332 a004 Fibonacci(97)/Lucas(29)/(1/2+sqrt(5)/2)^50 2584000077401332 a004 Fibonacci(99)/Lucas(29)/(1/2+sqrt(5)/2)^52 2584000077401332 a004 Fibonacci(95)/Lucas(29)/(1/2+sqrt(5)/2)^48 2584000077401332 a004 Fibonacci(93)/Lucas(29)/(1/2+sqrt(5)/2)^46 2584000077401332 a004 Fibonacci(91)/Lucas(29)/(1/2+sqrt(5)/2)^44 2584000077401332 a004 Fibonacci(89)/Lucas(29)/(1/2+sqrt(5)/2)^42 2584000077401332 a004 Fibonacci(87)/Lucas(29)/(1/2+sqrt(5)/2)^40 2584000077401332 a004 Fibonacci(85)/Lucas(29)/(1/2+sqrt(5)/2)^38 2584000077401332 a004 Fibonacci(83)/Lucas(29)/(1/2+sqrt(5)/2)^36 2584000077401332 a004 Fibonacci(81)/Lucas(29)/(1/2+sqrt(5)/2)^34 2584000077401332 a004 Fibonacci(79)/Lucas(29)/(1/2+sqrt(5)/2)^32 2584000077401332 a004 Fibonacci(77)/Lucas(29)/(1/2+sqrt(5)/2)^30 2584000077401332 a004 Fibonacci(75)/Lucas(29)/(1/2+sqrt(5)/2)^28 2584000077401332 a004 Fibonacci(73)/Lucas(29)/(1/2+sqrt(5)/2)^26 2584000077401332 a004 Fibonacci(71)/Lucas(29)/(1/2+sqrt(5)/2)^24 2584000077401332 a004 Fibonacci(69)/Lucas(29)/(1/2+sqrt(5)/2)^22 2584000077401332 a004 Fibonacci(67)/Lucas(29)/(1/2+sqrt(5)/2)^20 2584000077401332 a004 Fibonacci(65)/Lucas(29)/(1/2+sqrt(5)/2)^18 2584000077401332 a004 Fibonacci(63)/Lucas(29)/(1/2+sqrt(5)/2)^16 2584000077401332 a004 Fibonacci(61)/Lucas(29)/(1/2+sqrt(5)/2)^14 2584000077401332 a004 Fibonacci(59)/Lucas(29)/(1/2+sqrt(5)/2)^12 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^46/Lucas(57) 2584000077401332 a004 Fibonacci(57)/Lucas(29)/(1/2+sqrt(5)/2)^10 2584000077401332 a001 514229/3461452808002*505019158607^(7/8) 2584000077401332 a001 514229/14662949395604*505019158607^(13/14) 2584000077401332 a004 Fibonacci(29)*Lucas(56)/(1/2+sqrt(5)/2)^67 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^44/Lucas(55) 2584000077401332 a001 514229/312119004989*23725150497407^(11/16) 2584000077401332 a004 Fibonacci(55)/Lucas(29)/(1/2+sqrt(5)/2)^8 2584000077401332 a001 514229/2139295485799*192900153618^(8/9) 2584000077401332 a001 514229/9062201101803*192900153618^(17/18) 2584000077401332 a004 Fibonacci(29)*Lucas(54)/(1/2+sqrt(5)/2)^65 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^42/Lucas(53) 2584000077401332 a001 27416783093600617/10610209857723 2584000077401332 a004 Fibonacci(53)/Lucas(29)/(1/2+sqrt(5)/2)^6 2584000077401332 a001 514229/119218851371*505019158607^(3/4) 2584000077401332 a001 514229/119218851371*192900153618^(7/9) 2584000077401332 a001 514229/2139295485799*73681302247^(12/13) 2584000077401332 a004 Fibonacci(29)*Lucas(52)/(1/2+sqrt(5)/2)^63 2584000077401332 a001 514229/45537549124*312119004989^(8/11) 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^40/Lucas(51) 2584000077401332 a001 514229/45537549124*23725150497407^(5/8) 2584000077401332 a001 10472279279571946/4052739537881 2584000077401332 a004 Fibonacci(51)/Lucas(29)/(1/2+sqrt(5)/2)^4 2584000077401332 a001 514229/45537549124*73681302247^(10/13) 2584000077401332 a001 514229/505019158607*28143753123^(9/10) 2584000077401332 a004 Fibonacci(29)*Lucas(50)/(1/2+sqrt(5)/2)^61 2584000077401332 a001 514229/45537549124*28143753123^(4/5) 2584000077401332 a001 514229/17393796001*817138163596^(2/3) 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^38/Lucas(49) 2584000077401332 a001 4000054745115221/1548008755920 2584000077401332 a004 Fibonacci(49)/Lucas(29)/(1/2+sqrt(5)/2)^2 2584000077401332 a001 514229/28143753123*10749957122^(13/16) 2584000077401332 a001 514229/119218851371*10749957122^(7/8) 2584000077401332 a001 514229/45537549124*10749957122^(5/6) 2584000077401332 a001 514229/312119004989*10749957122^(11/12) 2584000077401332 a001 514229/505019158607*10749957122^(15/16) 2584000077401332 a001 514229/817138163596*10749957122^(23/24) 2584000077401332 a004 Fibonacci(29)*Lucas(48)/(1/2+sqrt(5)/2)^59 2584000077401332 a001 514229/17393796001*10749957122^(19/24) 2584000077401332 a001 514229/6643838879*45537549124^(12/17) 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^36/Lucas(47) 2584000077401332 a001 2971215073/1149851 2584000077401332 a001 514229/6643838879*192900153618^(2/3) 2584000077401332 a001 514229/6643838879*73681302247^(9/13) 2584000077401332 a001 514229/6643838879*10749957122^(3/4) 2584000077401332 a001 514229/45537549124*4106118243^(20/23) 2584000077401332 a001 514229/17393796001*4106118243^(19/23) 2584000077401332 a001 514229/119218851371*4106118243^(21/23) 2584000077401332 a001 514229/312119004989*4106118243^(22/23) 2584000077401332 a004 Fibonacci(29)*Lucas(46)/(1/2+sqrt(5)/2)^57 2584000077401332 a001 514229/6643838879*4106118243^(18/23) 2584000077401332 a001 514229/2537720636*45537549124^(2/3) 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^34/Lucas(45) 2584000077401332 a001 1134903170/1149851*(1/2+1/2*5^(1/2))^2 2584000077401332 a001 583600122205930/225851433717 2584000077401332 a001 1134903170/1149851*10749957122^(1/24) 2584000077401332 a001 1134903170/1149851*4106118243^(1/23) 2584000077401332 a001 514229/2537720636*10749957122^(17/24) 2584000077401332 a001 1134903170/1149851*1568397607^(1/22) 2584000077401332 a001 514229/2537720636*4106118243^(17/23) 2584000077401332 a001 1134903170/1149851*599074578^(1/21) 2584000077401332 a001 514229/17393796001*1568397607^(19/22) 2584000077401332 a001 514229/6643838879*1568397607^(9/11) 2584000077401332 a001 514229/45537549124*1568397607^(10/11) 2584000077401332 a001 514229/119218851371*1568397607^(21/22) 2584000077401332 a004 Fibonacci(29)*Lucas(44)/(1/2+sqrt(5)/2)^55 2584000077401332 a001 514229/2537720636*1568397607^(17/22) 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^32/Lucas(43) 2584000077401332 a001 514229/969323029*23725150497407^(1/2) 2584000077401332 a001 433494437/1149851*(1/2+1/2*5^(1/2))^4 2584000077401332 a001 433494437/1149851*23725150497407^(1/16) 2584000077401332 a001 433494437/1149851*73681302247^(1/13) 2584000077401332 a001 222915410844073/86267571272 2584000077401332 a001 514229/969323029*73681302247^(8/13) 2584000077401332 a001 433494437/1149851*10749957122^(1/12) 2584000077401332 a001 433494437/1149851*4106118243^(2/23) 2584000077401332 a001 514229/969323029*10749957122^(2/3) 2584000077401332 a001 433494437/1149851*1568397607^(1/11) 2584000077401332 a001 514229/969323029*4106118243^(16/23) 2584000077401332 a001 1134903170/1149851*228826127^(1/20) 2584000077401332 a001 433494437/1149851*599074578^(2/21) 2584000077401332 a001 514229/969323029*1568397607^(8/11) 2584000077401332 a001 514229/1568397607*599074578^(11/14) 2584000077401332 a001 514229/4106118243*599074578^(5/6) 2584000077401332 a001 514229/2537720636*599074578^(17/21) 2584000077401332 a001 514229/6643838879*599074578^(6/7) 2584000077401332 a001 514229/17393796001*599074578^(19/21) 2584000077401332 a001 514229/28143753123*599074578^(13/14) 2584000077401332 a001 514229/45537549124*599074578^(20/21) 2584000077401332 a004 Fibonacci(29)*Lucas(42)/(1/2+sqrt(5)/2)^53 2584000077401332 a001 433494437/1149851*228826127^(1/10) 2584000077401332 a001 514229/969323029*599074578^(16/21) 2584000077401332 a001 1134903170/1149851*87403803^(1/19) 2584000077401332 a001 514229/370248451*2537720636^(2/3) 2584000077401332 a001 165580141/1149851*2537720636^(2/15) 2584000077401332 a001 514229/370248451*45537549124^(10/17) 2584000077401332 a001 165580141/1149851*45537549124^(2/17) 2584000077401332 a001 514229/370248451*312119004989^(6/11) 2584000077401332 a001 514229/370248451*14662949395604^(10/21) 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^30/Lucas(41) 2584000077401332 a001 165580141/1149851*14662949395604^(2/21) 2584000077401332 a001 165580141/1149851*(1/2+1/2*5^(1/2))^6 2584000077401332 a001 514229/370248451*192900153618^(5/9) 2584000077401332 a001 85146110326289/32951280099 2584000077401332 a001 514229/370248451*28143753123^(3/5) 2584000077401332 a001 165580141/1149851*10749957122^(1/8) 2584000077401332 a001 514229/370248451*10749957122^(5/8) 2584000077401332 a001 165580141/1149851*4106118243^(3/23) 2584000077401332 a001 514229/370248451*4106118243^(15/23) 2584000077401332 a001 165580141/1149851*1568397607^(3/22) 2584000077401332 a001 514229/370248451*1568397607^(15/22) 2584000077401332 a001 165580141/1149851*599074578^(1/7) 2584000077401332 a001 514229/370248451*599074578^(5/7) 2584000077401332 a001 165580141/1149851*228826127^(3/20) 2584000077401332 a001 433494437/1149851*87403803^(2/19) 2584000077401332 a001 514229/969323029*228826127^(4/5) 2584000077401332 a001 514229/2537720636*228826127^(17/20) 2584000077401332 a001 514229/4106118243*228826127^(7/8) 2584000077401332 a001 514229/6643838879*228826127^(9/10) 2584000077401332 a001 514229/17393796001*228826127^(19/20) 2584000077401332 a004 Fibonacci(29)*Lucas(40)/(1/2+sqrt(5)/2)^51 2584000077401332 a001 514229/370248451*228826127^(3/4) 2584000077401332 a001 165580141/1149851*87403803^(3/19) 2584000077401332 a001 514229/141422324*17393796001^(4/7) 2584000077401332 a001 514229/141422324*14662949395604^(4/9) 2584000077401332 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^28/Lucas(39) 2584000077401332 a001 63245986/1149851*(1/2+1/2*5^(1/2))^8 2584000077401332 a001 514229/141422324*505019158607^(1/2) 2584000077401332 a001 63245986/1149851*73681302247^(2/13) 2584000077401332 a001 514229/141422324*73681302247^(7/13) 2584000077401332 a001 1134903170/1149851*33385282^(1/18) 2584000077401332 a001 32522920134794/12586269025 2584000077401332 a001 63245986/1149851*10749957122^(1/6) 2584000077401332 a001 514229/141422324*10749957122^(7/12) 2584000077401332 a001 63245986/1149851*4106118243^(4/23) 2584000077401332 a001 514229/141422324*4106118243^(14/23) 2584000077401332 a001 63245986/1149851*1568397607^(2/11) 2584000077401332 a001 514229/141422324*1568397607^(7/11) 2584000077401332 a001 63245986/1149851*599074578^(4/21) 2584000077401333 a001 514229/141422324*599074578^(2/3) 2584000077401333 a001 63245986/1149851*228826127^(1/5) 2584000077401333 a001 514229/141422324*228826127^(7/10) 2584000077401333 a001 701408733/1149851*33385282^(1/12) 2584000077401333 a001 63245986/1149851*87403803^(4/19) 2584000077401333 a001 39088169/1149851*33385282^(1/4) 2584000077401333 a001 433494437/1149851*33385282^(1/9) 2584000077401333 a001 514229/370248451*87403803^(15/19) 2584000077401333 a001 514229/969323029*87403803^(16/19) 2584000077401333 a001 514229/2537720636*87403803^(17/19) 2584000077401333 a001 514229/6643838879*87403803^(18/19) 2584000077401333 a004 Fibonacci(29)*Lucas(38)/(1/2+sqrt(5)/2)^49 2584000077401333 a001 514229/141422324*87403803^(14/19) 2584000077401333 a001 165580141/1149851*33385282^(1/6) 2584000077401333 a001 63245986/1149851*33385282^(2/9) 2584000077401333 a001 514229/54018521*141422324^(2/3) 2584000077401333 a001 24157817/1149851*2537720636^(2/9) 2584000077401333 a001 24157817/1149851*312119004989^(2/11) 2584000077401333 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^26/Lucas(37) 2584000077401333 a001 24157817/1149851*(1/2+1/2*5^(1/2))^10 2584000077401333 a001 514229/54018521*73681302247^(1/2) 2584000077401333 a001 24157817/1149851*28143753123^(1/5) 2584000077401333 a001 24157817/1149851*10749957122^(5/24) 2584000077401333 a001 514229/54018521*10749957122^(13/24) 2584000077401333 a001 12422650078093/4807526976 2584000077401333 a001 24157817/1149851*4106118243^(5/23) 2584000077401333 a001 514229/54018521*4106118243^(13/23) 2584000077401333 a001 24157817/1149851*1568397607^(5/22) 2584000077401333 a001 514229/54018521*1568397607^(13/22) 2584000077401333 a001 24157817/1149851*599074578^(5/21) 2584000077401333 a001 514229/54018521*599074578^(13/21) 2584000077401333 a001 24157817/1149851*228826127^(1/4) 2584000077401333 a001 514229/54018521*228826127^(13/20) 2584000077401333 a001 1134903170/1149851*12752043^(1/17) 2584000077401333 a001 24157817/1149851*87403803^(5/19) 2584000077401333 a001 514229/54018521*87403803^(13/19) 2584000077401334 a001 514229/87403803*33385282^(3/4) 2584000077401334 a001 24157817/1149851*33385282^(5/18) 2584000077401334 a001 433494437/1149851*12752043^(2/17) 2584000077401334 a001 514229/141422324*33385282^(7/9) 2584000077401334 a001 514229/370248451*33385282^(5/6) 2584000077401334 a001 514229/969323029*33385282^(8/9) 2584000077401334 a001 514229/1568397607*33385282^(11/12) 2584000077401335 a001 514229/2537720636*33385282^(17/18) 2584000077401335 a004 Fibonacci(29)*Lucas(36)/(1/2+sqrt(5)/2)^47 2584000077401335 a001 514229/54018521*33385282^(13/18) 2584000077401335 a001 165580141/1149851*12752043^(3/17) 2584000077401336 a001 63245986/1149851*12752043^(4/17) 2584000077401338 a001 24157817/1149851*12752043^(5/17) 2584000077401338 a001 514229/20633239*141422324^(8/13) 2584000077401338 a001 9227465/1149851*141422324^(4/13) 2584000077401338 a001 514229/20633239*2537720636^(8/15) 2584000077401338 a001 9227465/1149851*2537720636^(4/15) 2584000077401338 a001 514229/20633239*45537549124^(8/17) 2584000077401338 a001 9227465/1149851*45537549124^(4/17) 2584000077401338 a001 514229/20633239*14662949395604^(8/21) 2584000077401338 a001 514229/20633239*(1/2+1/2*5^(1/2))^24 2584000077401338 a001 9227465/1149851*(1/2+1/2*5^(1/2))^12 2584000077401338 a001 9227465/1149851*192900153618^(2/9) 2584000077401338 a001 514229/20633239*192900153618^(4/9) 2584000077401338 a001 9227465/1149851*73681302247^(3/13) 2584000077401338 a001 514229/20633239*73681302247^(6/13) 2584000077401338 a001 9227465/1149851*10749957122^(1/4) 2584000077401338 a001 514229/20633239*10749957122^(1/2) 2584000077401338 a001 9227465/1149851*4106118243^(6/23) 2584000077401338 a001 514229/20633239*4106118243^(12/23) 2584000077401338 a001 4745030099485/1836311903 2584000077401338 a001 9227465/1149851*1568397607^(3/11) 2584000077401338 a001 514229/20633239*1568397607^(6/11) 2584000077401338 a001 9227465/1149851*599074578^(2/7) 2584000077401338 a001 514229/20633239*599074578^(4/7) 2584000077401338 a001 9227465/1149851*228826127^(3/10) 2584000077401338 a001 514229/20633239*228826127^(3/5) 2584000077401339 a001 9227465/1149851*87403803^(6/19) 2584000077401339 a001 514229/20633239*87403803^(12/19) 2584000077401339 a001 1134903170/1149851*4870847^(1/16) 2584000077401339 a001 9227465/1149851*33385282^(1/3) 2584000077401340 a001 514229/20633239*33385282^(2/3) 2584000077401344 a001 9227465/1149851*12752043^(6/17) 2584000077401345 a001 514229/54018521*12752043^(13/17) 2584000077401346 a001 514229/141422324*12752043^(14/17) 2584000077401346 a001 433494437/1149851*4870847^(1/8) 2584000077401346 a001 514229/7881196*7881196^(2/3) 2584000077401346 a001 514229/370248451*12752043^(15/17) 2584000077401347 a001 514229/969323029*12752043^(16/17) 2584000077401348 a004 Fibonacci(29)*Lucas(34)/(1/2+sqrt(5)/2)^45 2584000077401350 a001 514229/20633239*12752043^(12/17) 2584000077401353 a001 165580141/1149851*4870847^(3/16) 2584000077401360 a001 63245986/1149851*4870847^(1/4) 2584000077401367 a001 24157817/1149851*4870847^(5/16) 2584000077401372 a001 3524578/1149851*20633239^(2/5) 2584000077401374 a001 3524578/1149851*17393796001^(2/7) 2584000077401374 a001 514229/7881196*312119004989^(2/5) 2584000077401374 a001 514229/7881196*(1/2+1/2*5^(1/2))^22 2584000077401374 a001 3524578/1149851*14662949395604^(2/9) 2584000077401374 a001 3524578/1149851*(1/2+1/2*5^(1/2))^14 2584000077401374 a001 3524578/1149851*10749957122^(7/24) 2584000077401374 a001 514229/7881196*10749957122^(11/24) 2584000077401374 a001 3524578/1149851*4106118243^(7/23) 2584000077401374 a001 514229/7881196*4106118243^(11/23) 2584000077401374 a001 3524578/1149851*1568397607^(7/22) 2584000077401374 a001 514229/7881196*1568397607^(1/2) 2584000077401374 a001 20364496858/7880997 2584000077401374 a001 3524578/1149851*599074578^(1/3) 2584000077401374 a001 514229/7881196*599074578^(11/21) 2584000077401374 a001 3524578/1149851*228826127^(7/20) 2584000077401374 a001 514229/7881196*228826127^(11/20) 2584000077401374 a001 3524578/1149851*87403803^(7/19) 2584000077401374 a001 514229/7881196*87403803^(11/19) 2584000077401375 a001 3524578/1149851*33385282^(7/18) 2584000077401375 a001 514229/7881196*33385282^(11/18) 2584000077401379 a001 9227465/1149851*4870847^(3/8) 2584000077401381 a001 3524578/1149851*12752043^(7/17) 2584000077401382 a001 1134903170/1149851*1860498^(1/15) 2584000077401384 a001 514229/7881196*12752043^(11/17) 2584000077401407 a001 701408733/1149851*1860498^(1/10) 2584000077401420 a001 514229/20633239*4870847^(3/4) 2584000077401422 a001 3524578/1149851*4870847^(7/16) 2584000077401422 a001 514229/54018521*4870847^(13/16) 2584000077401428 a001 514229/141422324*4870847^(7/8) 2584000077401432 a001 433494437/1149851*1860498^(2/15) 2584000077401434 a001 514229/370248451*4870847^(15/16) 2584000077401441 a004 Fibonacci(29)*Lucas(32)/(1/2+sqrt(5)/2)^43 2584000077401446 a001 726103/620166*710647^(4/7) 2584000077401449 a001 514229/7881196*4870847^(11/16) 2584000077401457 a001 267914296/1149851*1860498^(1/6) 2584000077401462 a001 39088169/4870847*710647^(3/7) 2584000077401482 a001 165580141/1149851*1860498^(1/5) 2584000077401491 a001 63245986/3010349*710647^(5/14) 2584000077401532 a001 63245986/1149851*1860498^(4/15) 2584000077401555 a001 34111385/4250681*710647^(3/7) 2584000077401556 a001 39088169/1149851*1860498^(3/10) 2584000077401569 a001 133957148/16692641*710647^(3/7) 2584000077401570 a001 233802911/29134601*710647^(3/7) 2584000077401571 a001 1836311903/228826127*710647^(3/7) 2584000077401571 a001 267084832/33281921*710647^(3/7) 2584000077401571 a001 12586269025/1568397607*710647^(3/7) 2584000077401571 a001 10983760033/1368706081*710647^(3/7) 2584000077401571 a001 43133785636/5374978561*710647^(3/7) 2584000077401571 a001 75283811239/9381251041*710647^(3/7) 2584000077401571 a001 591286729879/73681302247*710647^(3/7) 2584000077401571 a001 86000486440/10716675201*710647^(3/7) 2584000077401571 a001 4052739537881/505019158607*710647^(3/7) 2584000077401571 a001 3536736619241/440719107401*710647^(3/7) 2584000077401571 a001 3278735159921/408569081798*710647^(3/7) 2584000077401571 a001 2504730781961/312119004989*710647^(3/7) 2584000077401571 a001 956722026041/119218851371*710647^(3/7) 2584000077401571 a001 182717648081/22768774562*710647^(3/7) 2584000077401571 a001 139583862445/17393796001*710647^(3/7) 2584000077401571 a001 53316291173/6643838879*710647^(3/7) 2584000077401571 a001 10182505537/1268860318*710647^(3/7) 2584000077401571 a001 7778742049/969323029*710647^(3/7) 2584000077401571 a001 2971215073/370248451*710647^(3/7) 2584000077401571 a001 567451585/70711162*710647^(3/7) 2584000077401572 a001 433494437/54018521*710647^(3/7) 2584000077401577 a001 165580141/20633239*710647^(3/7) 2584000077401582 a001 24157817/1149851*1860498^(1/3) 2584000077401597 a001 2178309/1149851*1860498^(1/2) 2584000077401608 a001 98209/930249*439204^(7/9) 2584000077401613 a001 31622993/3940598*710647^(3/7) 2584000077401614 a001 514229/3010349*20633239^(4/7) 2584000077401618 a001 514229/3010349*2537720636^(4/9) 2584000077401618 a001 514229/3010349*(1/2+1/2*5^(1/2))^20 2584000077401618 a001 514229/3010349*23725150497407^(5/16) 2584000077401618 a001 1346269/1149851*(1/2+1/2*5^(1/2))^16 2584000077401618 a001 1346269/1149851*23725150497407^(1/4) 2584000077401618 a001 1346269/1149851*73681302247^(4/13) 2584000077401618 a001 514229/3010349*73681302247^(5/13) 2584000077401618 a001 514229/3010349*28143753123^(2/5) 2584000077401618 a001 1346269/1149851*10749957122^(1/3) 2584000077401618 a001 514229/3010349*10749957122^(5/12) 2584000077401618 a001 1346269/1149851*4106118243^(8/23) 2584000077401618 a001 514229/3010349*4106118243^(10/23) 2584000077401618 a001 1346269/1149851*1568397607^(4/11) 2584000077401618 a001 514229/3010349*1568397607^(5/11) 2584000077401618 a001 1346269/1149851*599074578^(8/21) 2584000077401618 a001 514229/3010349*599074578^(10/21) 2584000077401618 a001 692290561601/267914296 2584000077401618 a001 1346269/1149851*228826127^(2/5) 2584000077401618 a001 514229/3010349*228826127^(1/2) 2584000077401618 a001 1346269/1149851*87403803^(8/19) 2584000077401618 a001 514229/3010349*87403803^(10/19) 2584000077401619 a001 1346269/1149851*33385282^(4/9) 2584000077401619 a001 514229/3010349*33385282^(5/9) 2584000077401625 a001 1346269/1149851*12752043^(8/17) 2584000077401627 a001 514229/3010349*12752043^(10/17) 2584000077401637 a001 9227465/1149851*1860498^(2/5) 2584000077401672 a001 1346269/1149851*4870847^(1/2) 2584000077401686 a001 514229/3010349*4870847^(5/8) 2584000077401698 a001 1134903170/1149851*710647^(1/14) 2584000077401722 a001 3524578/1149851*1860498^(7/15) 2584000077401746 a001 514229/4870847*1860498^(7/10) 2584000077401825 a001 14930352/4870847*710647^(1/2) 2584000077401857 a001 24157817/3010349*710647^(3/7) 2584000077401920 a001 39088169/12752043*710647^(1/2) 2584000077401921 a001 514229/7881196*1860498^(11/15) 2584000077401934 a001 14619165/4769326*710647^(1/2) 2584000077401936 a001 514229/20633239*1860498^(4/5) 2584000077401936 a001 267914296/87403803*710647^(1/2) 2584000077401936 a001 701408733/228826127*710647^(1/2) 2584000077401936 a001 1836311903/599074578*710647^(1/2) 2584000077401936 a001 686789568/224056801*710647^(1/2) 2584000077401936 a001 12586269025/4106118243*710647^(1/2) 2584000077401936 a001 32951280099/10749957122*710647^(1/2) 2584000077401936 a001 86267571272/28143753123*710647^(1/2) 2584000077401936 a001 32264490531/10525900321*710647^(1/2) 2584000077401936 a001 591286729879/192900153618*710647^(1/2) 2584000077401936 a001 1548008755920/505019158607*710647^(1/2) 2584000077401936 a001 1515744265389/494493258286*710647^(1/2) 2584000077401936 a001 956722026041/312119004989*710647^(1/2) 2584000077401936 a001 365435296162/119218851371*710647^(1/2) 2584000077401936 a001 139583862445/45537549124*710647^(1/2) 2584000077401936 a001 53316291173/17393796001*710647^(1/2) 2584000077401936 a001 20365011074/6643838879*710647^(1/2) 2584000077401936 a001 7778742049/2537720636*710647^(1/2) 2584000077401936 a001 2971215073/969323029*710647^(1/2) 2584000077401936 a001 1134903170/370248451*710647^(1/2) 2584000077401936 a001 433494437/141422324*710647^(1/2) 2584000077401937 a001 165580141/54018521*710647^(1/2) 2584000077401943 a001 63245986/20633239*710647^(1/2) 2584000077401952 a001 514229/33385282*1860498^(5/6) 2584000077401967 a001 4807526976/4870847*271443^(1/13) 2584000077401979 a001 24157817/7881196*710647^(1/2) 2584000077401980 a001 514229/54018521*1860498^(13/15) 2584000077402004 a001 514229/87403803*1860498^(9/10) 2584000077402016 a001 1346269/1149851*1860498^(8/15) 2584000077402029 a001 514229/141422324*1860498^(14/15) 2584000077402060 a001 12586269025/12752043*271443^(1/13) 2584000077402063 a001 433494437/1149851*710647^(1/7) 2584000077402073 a001 32951280099/33385282*271443^(1/13) 2584000077402075 a001 86267571272/87403803*271443^(1/13) 2584000077402076 a001 225851433717/228826127*271443^(1/13) 2584000077402076 a001 591286729879/599074578*271443^(1/13) 2584000077402076 a001 1548008755920/1568397607*271443^(1/13) 2584000077402076 a001 4052739537881/4106118243*271443^(1/13) 2584000077402076 a001 4807525989/4870846*271443^(1/13) 2584000077402076 a001 6557470319842/6643838879*271443^(1/13) 2584000077402076 a001 2504730781961/2537720636*271443^(1/13) 2584000077402076 a001 956722026041/969323029*271443^(1/13) 2584000077402076 a001 365435296162/370248451*271443^(1/13) 2584000077402076 a001 139583862445/141422324*271443^(1/13) 2584000077402077 a001 53316291173/54018521*271443^(1/13) 2584000077402079 a004 Fibonacci(29)*Lucas(30)/(1/2+sqrt(5)/2)^41 2584000077402082 a001 20365011074/20633239*271443^(1/13) 2584000077402115 a001 514229/3010349*1860498^(2/3) 2584000077402117 a001 7778742049/7881196*271443^(1/13) 2584000077402177 a001 5702887/4870847*710647^(4/7) 2584000077402177 a001 832040/4870847*710647^(5/7) 2584000077402228 a001 9227465/3010349*710647^(1/2) 2584000077402284 a001 4976784/4250681*710647^(4/7) 2584000077402299 a001 39088169/33385282*710647^(4/7) 2584000077402301 a001 34111385/29134601*710647^(4/7) 2584000077402302 a001 267914296/228826127*710647^(4/7) 2584000077402302 a001 233802911/199691526*710647^(4/7) 2584000077402302 a001 1836311903/1568397607*710647^(4/7) 2584000077402302 a001 1602508992/1368706081*710647^(4/7) 2584000077402302 a001 12586269025/10749957122*710647^(4/7) 2584000077402302 a001 10983760033/9381251041*710647^(4/7) 2584000077402302 a001 86267571272/73681302247*710647^(4/7) 2584000077402302 a001 75283811239/64300051206*710647^(4/7) 2584000077402302 a001 2504730781961/2139295485799*710647^(4/7) 2584000077402302 a001 365435296162/312119004989*710647^(4/7) 2584000077402302 a001 139583862445/119218851371*710647^(4/7) 2584000077402302 a001 53316291173/45537549124*710647^(4/7) 2584000077402302 a001 20365011074/17393796001*710647^(4/7) 2584000077402302 a001 7778742049/6643838879*710647^(4/7) 2584000077402302 a001 2971215073/2537720636*710647^(4/7) 2584000077402302 a001 1134903170/969323029*710647^(4/7) 2584000077402302 a001 433494437/370248451*710647^(4/7) 2584000077402302 a001 165580141/141422324*710647^(4/7) 2584000077402303 a001 63245986/54018521*710647^(4/7) 2584000077402309 a001 24157817/20633239*710647^(4/7) 2584000077402349 a001 9227465/7881196*710647^(4/7) 2584000077402354 a001 14619165/101521*271443^(3/13) 2584000077402361 a001 2971215073/3010349*271443^(1/13) 2584000077402429 a001 165580141/1149851*710647^(3/14) 2584000077402449 a001 2178309/4870847*710647^(9/14) 2584000077402511 a001 208010/1970299*710647^(3/4) 2584000077402611 a001 102334155/1149851*710647^(1/4) 2584000077402629 a001 3524578/3010349*710647^(4/7) 2584000077402635 a001 5702887/12752043*710647^(9/14) 2584000077402636 a001 832040/12752043*710647^(11/14) 2584000077402663 a001 7465176/16692641*710647^(9/14) 2584000077402667 a001 39088169/87403803*710647^(9/14) 2584000077402667 a001 102334155/228826127*710647^(9/14) 2584000077402667 a001 133957148/299537289*710647^(9/14) 2584000077402667 a001 701408733/1568397607*710647^(9/14) 2584000077402667 a001 1836311903/4106118243*710647^(9/14) 2584000077402667 a001 2403763488/5374978561*710647^(9/14) 2584000077402667 a001 12586269025/28143753123*710647^(9/14) 2584000077402667 a001 32951280099/73681302247*710647^(9/14) 2584000077402667 a001 43133785636/96450076809*710647^(9/14) 2584000077402667 a001 225851433717/505019158607*710647^(9/14) 2584000077402667 a001 591286729879/1322157322203*710647^(9/14) 2584000077402667 a001 10610209857723/23725150497407*710647^(9/14) 2584000077402667 a001 139583862445/312119004989*710647^(9/14) 2584000077402667 a001 53316291173/119218851371*710647^(9/14) 2584000077402667 a001 10182505537/22768774562*710647^(9/14) 2584000077402667 a001 7778742049/17393796001*710647^(9/14) 2584000077402667 a001 2971215073/6643838879*710647^(9/14) 2584000077402667 a001 567451585/1268860318*710647^(9/14) 2584000077402667 a001 433494437/969323029*710647^(9/14) 2584000077402667 a001 165580141/370248451*710647^(9/14) 2584000077402668 a001 31622993/70711162*710647^(9/14) 2584000077402669 a001 24157817/54018521*710647^(9/14) 2584000077402679 a001 9227465/20633239*710647^(9/14) 2584000077402750 a001 1762289/3940598*710647^(9/14) 2584000077402794 a001 63245986/1149851*710647^(2/7) 2584000077402908 a001 726103/4250681*710647^(5/7) 2584000077403015 a001 5702887/33385282*710647^(5/7) 2584000077403015 a001 416020/16692641*710647^(6/7) 2584000077403030 a001 4976784/29134601*710647^(5/7) 2584000077403032 a001 39088169/228826127*710647^(5/7) 2584000077403033 a001 34111385/199691526*710647^(5/7) 2584000077403033 a001 267914296/1568397607*710647^(5/7) 2584000077403033 a001 233802911/1368706081*710647^(5/7) 2584000077403033 a001 1836311903/10749957122*710647^(5/7) 2584000077403033 a001 1602508992/9381251041*710647^(5/7) 2584000077403033 a001 12586269025/73681302247*710647^(5/7) 2584000077403033 a001 10983760033/64300051206*710647^(5/7) 2584000077403033 a001 86267571272/505019158607*710647^(5/7) 2584000077403033 a001 75283811239/440719107401*710647^(5/7) 2584000077403033 a001 2504730781961/14662949395604*710647^(5/7) 2584000077403033 a001 139583862445/817138163596*710647^(5/7) 2584000077403033 a001 53316291173/312119004989*710647^(5/7) 2584000077403033 a001 20365011074/119218851371*710647^(5/7) 2584000077403033 a001 7778742049/45537549124*710647^(5/7) 2584000077403033 a001 2971215073/17393796001*710647^(5/7) 2584000077403033 a001 1134903170/6643838879*710647^(5/7) 2584000077403033 a001 433494437/2537720636*710647^(5/7) 2584000077403033 a001 165580141/969323029*710647^(5/7) 2584000077403033 a001 63245986/370248451*710647^(5/7) 2584000077403034 a001 24157817/141422324*710647^(5/7) 2584000077403040 a001 9227465/54018521*710647^(5/7) 2584000077403080 a001 3524578/20633239*710647^(5/7) 2584000077403113 a001 2178309/20633239*710647^(3/4) 2584000077403161 a001 24157817/1149851*710647^(5/14) 2584000077403200 a001 5702887/54018521*710647^(3/4) 2584000077403213 a001 3732588/35355581*710647^(3/4) 2584000077403215 a001 39088169/370248451*710647^(3/4) 2584000077403215 a001 102334155/969323029*710647^(3/4) 2584000077403215 a001 66978574/634430159*710647^(3/4) 2584000077403215 a001 701408733/6643838879*710647^(3/4) 2584000077403215 a001 1836311903/17393796001*710647^(3/4) 2584000077403215 a001 1201881744/11384387281*710647^(3/4) 2584000077403215 a001 12586269025/119218851371*710647^(3/4) 2584000077403215 a001 32951280099/312119004989*710647^(3/4) 2584000077403215 a001 21566892818/204284540899*710647^(3/4) 2584000077403215 a001 225851433717/2139295485799*710647^(3/4) 2584000077403215 a001 182717648081/1730726404001*710647^(3/4) 2584000077403215 a001 139583862445/1322157322203*710647^(3/4) 2584000077403215 a001 53316291173/505019158607*710647^(3/4) 2584000077403215 a001 10182505537/96450076809*710647^(3/4) 2584000077403215 a001 7778742049/73681302247*710647^(3/4) 2584000077403215 a001 2971215073/28143753123*710647^(3/4) 2584000077403215 a001 567451585/5374978561*710647^(3/4) 2584000077403215 a001 433494437/4106118243*710647^(3/4) 2584000077403215 a001 165580141/1568397607*710647^(3/4) 2584000077403216 a001 31622993/299537289*710647^(3/4) 2584000077403216 a001 24157817/228826127*710647^(3/4) 2584000077403221 a001 9227465/87403803*710647^(3/4) 2584000077403238 a001 1346269/3010349*710647^(9/14) 2584000077403255 a001 1762289/16692641*710647^(3/4) 2584000077403264 a001 514229/1149851*7881196^(6/11) 2584000077403287 a001 514229/1149851*141422324^(6/13) 2584000077403287 a001 514229/1149851*2537720636^(2/5) 2584000077403287 a001 514229/1149851*45537549124^(6/17) 2584000077403287 a001 514229/1149851*14662949395604^(2/7) 2584000077403287 a001 514229/1149851*(1/2+1/2*5^(1/2))^18 2584000077403287 a001 514229/1149851*192900153618^(1/3) 2584000077403287 a001 514229/1149851*10749957122^(3/8) 2584000077403287 a001 514229/1149851*4106118243^(9/23) 2584000077403287 a001 514229/1149851*1568397607^(9/22) 2584000077403287 a001 514229/1149851*599074578^(3/7) 2584000077403287 a001 514229/1149851*228826127^(9/20) 2584000077403287 a001 264431464441/102334155 2584000077403287 a001 514229/1149851*87403803^(9/19) 2584000077403287 a001 311187/4769326*710647^(11/14) 2584000077403288 a001 514229/1149851*33385282^(1/2) 2584000077403295 a001 514229/1149851*12752043^(9/17) 2584000077403348 a001 514229/1149851*4870847^(9/16) 2584000077403359 a001 1346269/7881196*710647^(5/7) 2584000077403382 a001 5702887/87403803*710647^(11/14) 2584000077403382 a001 832040/87403803*710647^(13/14) 2584000077403396 a001 14930352/228826127*710647^(11/14) 2584000077403398 a001 39088169/599074578*710647^(11/14) 2584000077403398 a001 14619165/224056801*710647^(11/14) 2584000077403398 a001 267914296/4106118243*710647^(11/14) 2584000077403398 a001 701408733/10749957122*710647^(11/14) 2584000077403398 a001 1836311903/28143753123*710647^(11/14) 2584000077403398 a001 686789568/10525900321*710647^(11/14) 2584000077403398 a001 12586269025/192900153618*710647^(11/14) 2584000077403398 a001 32951280099/505019158607*710647^(11/14) 2584000077403398 a001 86267571272/1322157322203*710647^(11/14) 2584000077403398 a001 32264490531/494493258286*710647^(11/14) 2584000077403398 a001 1548008755920/23725150497407*710647^(11/14) 2584000077403398 a001 139583862445/2139295485799*710647^(11/14) 2584000077403398 a001 53316291173/817138163596*710647^(11/14) 2584000077403398 a001 20365011074/312119004989*710647^(11/14) 2584000077403398 a001 7778742049/119218851371*710647^(11/14) 2584000077403398 a001 2971215073/45537549124*710647^(11/14) 2584000077403398 a001 1134903170/17393796001*710647^(11/14) 2584000077403398 a001 433494437/6643838879*710647^(11/14) 2584000077403398 a001 165580141/2537720636*710647^(11/14) 2584000077403398 a001 63245986/969323029*710647^(11/14) 2584000077403399 a001 24157817/370248451*710647^(11/14) 2584000077403404 a001 9227465/141422324*710647^(11/14) 2584000077403441 a001 3524578/54018521*710647^(11/14) 2584000077403485 a001 1346269/12752043*710647^(3/4) 2584000077403531 a001 9227465/1149851*710647^(3/7) 2584000077403654 a001 726103/29134601*710647^(6/7) 2584000077403689 a001 1346269/20633239*710647^(11/14) 2584000077403735 a001 514229/1149851*1860498^(3/5) 2584000077403748 a001 5702887/228826127*710647^(6/7) 2584000077403748 a004 Fibonacci(30)*Lucas(28)/(1/2+sqrt(5)/2)^40 2584000077403761 a001 829464/33281921*710647^(6/7) 2584000077403763 a001 39088169/1568397607*710647^(6/7) 2584000077403764 a001 34111385/1368706081*710647^(6/7) 2584000077403764 a001 133957148/5374978561*710647^(6/7) 2584000077403764 a001 233802911/9381251041*710647^(6/7) 2584000077403764 a001 1836311903/73681302247*710647^(6/7) 2584000077403764 a001 267084832/10716675201*710647^(6/7) 2584000077403764 a001 12586269025/505019158607*710647^(6/7) 2584000077403764 a001 10983760033/440719107401*710647^(6/7) 2584000077403764 a001 43133785636/1730726404001*710647^(6/7) 2584000077403764 a001 75283811239/3020733700601*710647^(6/7) 2584000077403764 a001 182717648081/7331474697802*710647^(6/7) 2584000077403764 a001 139583862445/5600748293801*710647^(6/7) 2584000077403764 a001 53316291173/2139295485799*710647^(6/7) 2584000077403764 a001 10182505537/408569081798*710647^(6/7) 2584000077403764 a001 7778742049/312119004989*710647^(6/7) 2584000077403764 a001 2971215073/119218851371*710647^(6/7) 2584000077403764 a001 567451585/22768774562*710647^(6/7) 2584000077403764 a001 433494437/17393796001*710647^(6/7) 2584000077403764 a001 165580141/6643838879*710647^(6/7) 2584000077403764 a001 31622993/1268860318*710647^(6/7) 2584000077403765 a001 24157817/969323029*710647^(6/7) 2584000077403770 a001 9227465/370248451*710647^(6/7) 2584000077403805 a001 1762289/70711162*710647^(6/7) 2584000077403932 a001 3524578/1149851*710647^(1/2) 2584000077404020 a001 46347/4868641*710647^(13/14) 2584000077404027 a001 233802911/620166*271443^(2/13) 2584000077404030 a001 1134903170/1149851*271443^(1/13) 2584000077404050 a001 1346269/54018521*710647^(6/7) 2584000077404113 a001 5702887/599074578*710647^(13/14) 2584000077404127 a001 14930352/1568397607*710647^(13/14) 2584000077404129 a001 39088169/4106118243*710647^(13/14) 2584000077404129 a001 102334155/10749957122*710647^(13/14) 2584000077404129 a001 267914296/28143753123*710647^(13/14) 2584000077404129 a001 701408733/73681302247*710647^(13/14) 2584000077404129 a001 1836311903/192900153618*710647^(13/14) 2584000077404129 a001 102287808/10745088481*710647^(13/14) 2584000077404129 a001 12586269025/1322157322203*710647^(13/14) 2584000077404129 a001 32951280099/3461452808002*710647^(13/14) 2584000077404129 a001 86267571272/9062201101803*710647^(13/14) 2584000077404129 a001 225851433717/23725150497407*710647^(13/14) 2584000077404129 a001 139583862445/14662949395604*710647^(13/14) 2584000077404129 a001 53316291173/5600748293801*710647^(13/14) 2584000077404129 a001 20365011074/2139295485799*710647^(13/14) 2584000077404129 a001 7778742049/817138163596*710647^(13/14) 2584000077404129 a001 2971215073/312119004989*710647^(13/14) 2584000077404129 a001 1134903170/119218851371*710647^(13/14) 2584000077404129 a001 433494437/45537549124*710647^(13/14) 2584000077404129 a001 165580141/17393796001*710647^(13/14) 2584000077404129 a001 63245986/6643838879*710647^(13/14) 2584000077404130 a001 24157817/2537720636*710647^(13/14) 2584000077404135 a001 9227465/969323029*710647^(13/14) 2584000077404171 a001 3524578/370248451*710647^(13/14) 2584000077404277 a001 1134903170/710647*103682^(1/24) 2584000077404370 a001 34111385/90481*103682^(1/6) 2584000077404386 a004 Fibonacci(32)*Lucas(28)/(1/2+sqrt(5)/2)^42 2584000077404414 a001 1346269/141422324*710647^(13/14) 2584000077404479 a004 Fibonacci(34)*Lucas(28)/(1/2+sqrt(5)/2)^44 2584000077404492 a004 Fibonacci(36)*Lucas(28)/(1/2+sqrt(5)/2)^46 2584000077404494 a004 Fibonacci(38)*Lucas(28)/(1/2+sqrt(5)/2)^48 2584000077404495 a004 Fibonacci(40)*Lucas(28)/(1/2+sqrt(5)/2)^50 2584000077404495 a004 Fibonacci(42)*Lucas(28)/(1/2+sqrt(5)/2)^52 2584000077404495 a004 Fibonacci(44)*Lucas(28)/(1/2+sqrt(5)/2)^54 2584000077404495 a004 Fibonacci(46)*Lucas(28)/(1/2+sqrt(5)/2)^56 2584000077404495 a004 Fibonacci(48)*Lucas(28)/(1/2+sqrt(5)/2)^58 2584000077404495 a004 Fibonacci(50)*Lucas(28)/(1/2+sqrt(5)/2)^60 2584000077404495 a004 Fibonacci(52)*Lucas(28)/(1/2+sqrt(5)/2)^62 2584000077404495 a004 Fibonacci(54)*Lucas(28)/(1/2+sqrt(5)/2)^64 2584000077404495 a004 Fibonacci(56)*Lucas(28)/(1/2+sqrt(5)/2)^66 2584000077404495 a004 Fibonacci(58)*Lucas(28)/(1/2+sqrt(5)/2)^68 2584000077404495 a004 Fibonacci(60)*Lucas(28)/(1/2+sqrt(5)/2)^70 2584000077404495 a004 Fibonacci(62)*Lucas(28)/(1/2+sqrt(5)/2)^72 2584000077404495 a004 Fibonacci(64)*Lucas(28)/(1/2+sqrt(5)/2)^74 2584000077404495 a004 Fibonacci(66)*Lucas(28)/(1/2+sqrt(5)/2)^76 2584000077404495 a004 Fibonacci(68)*Lucas(28)/(1/2+sqrt(5)/2)^78 2584000077404495 a004 Fibonacci(70)*Lucas(28)/(1/2+sqrt(5)/2)^80 2584000077404495 a004 Fibonacci(72)*Lucas(28)/(1/2+sqrt(5)/2)^82 2584000077404495 a004 Fibonacci(74)*Lucas(28)/(1/2+sqrt(5)/2)^84 2584000077404495 a004 Fibonacci(76)*Lucas(28)/(1/2+sqrt(5)/2)^86 2584000077404495 a004 Fibonacci(78)*Lucas(28)/(1/2+sqrt(5)/2)^88 2584000077404495 a004 Fibonacci(80)*Lucas(28)/(1/2+sqrt(5)/2)^90 2584000077404495 a004 Fibonacci(82)*Lucas(28)/(1/2+sqrt(5)/2)^92 2584000077404495 a004 Fibonacci(84)*Lucas(28)/(1/2+sqrt(5)/2)^94 2584000077404495 a004 Fibonacci(86)*Lucas(28)/(1/2+sqrt(5)/2)^96 2584000077404495 a004 Fibonacci(88)*Lucas(28)/(1/2+sqrt(5)/2)^98 2584000077404495 a004 Fibonacci(90)*Lucas(28)/(1/2+sqrt(5)/2)^100 2584000077404495 a004 Fibonacci(89)*Lucas(28)/(1/2+sqrt(5)/2)^99 2584000077404495 a004 Fibonacci(87)*Lucas(28)/(1/2+sqrt(5)/2)^97 2584000077404495 a004 Fibonacci(85)*Lucas(28)/(1/2+sqrt(5)/2)^95 2584000077404495 a004 Fibonacci(83)*Lucas(28)/(1/2+sqrt(5)/2)^93 2584000077404495 a004 Fibonacci(81)*Lucas(28)/(1/2+sqrt(5)/2)^91 2584000077404495 a004 Fibonacci(79)*Lucas(28)/(1/2+sqrt(5)/2)^89 2584000077404495 a004 Fibonacci(77)*Lucas(28)/(1/2+sqrt(5)/2)^87 2584000077404495 a004 Fibonacci(75)*Lucas(28)/(1/2+sqrt(5)/2)^85 2584000077404495 a004 Fibonacci(73)*Lucas(28)/(1/2+sqrt(5)/2)^83 2584000077404495 a004 Fibonacci(71)*Lucas(28)/(1/2+sqrt(5)/2)^81 2584000077404495 a004 Fibonacci(69)*Lucas(28)/(1/2+sqrt(5)/2)^79 2584000077404495 a004 Fibonacci(67)*Lucas(28)/(1/2+sqrt(5)/2)^77 2584000077404495 a004 Fibonacci(65)*Lucas(28)/(1/2+sqrt(5)/2)^75 2584000077404495 a004 Fibonacci(63)*Lucas(28)/(1/2+sqrt(5)/2)^73 2584000077404495 a004 Fibonacci(61)*Lucas(28)/(1/2+sqrt(5)/2)^71 2584000077404495 a004 Fibonacci(59)*Lucas(28)/(1/2+sqrt(5)/2)^69 2584000077404495 a004 Fibonacci(57)*Lucas(28)/(1/2+sqrt(5)/2)^67 2584000077404495 a001 2/317811*(1/2+1/2*5^(1/2))^46 2584000077404495 a004 Fibonacci(55)*Lucas(28)/(1/2+sqrt(5)/2)^65 2584000077404495 a004 Fibonacci(53)*Lucas(28)/(1/2+sqrt(5)/2)^63 2584000077404495 a004 Fibonacci(51)*Lucas(28)/(1/2+sqrt(5)/2)^61 2584000077404495 a004 Fibonacci(49)*Lucas(28)/(1/2+sqrt(5)/2)^59 2584000077404495 a004 Fibonacci(47)*Lucas(28)/(1/2+sqrt(5)/2)^57 2584000077404495 a004 Fibonacci(45)*Lucas(28)/(1/2+sqrt(5)/2)^55 2584000077404495 a004 Fibonacci(43)*Lucas(28)/(1/2+sqrt(5)/2)^53 2584000077404495 a004 Fibonacci(41)*Lucas(28)/(1/2+sqrt(5)/2)^51 2584000077404495 a004 Fibonacci(39)*Lucas(28)/(1/2+sqrt(5)/2)^49 2584000077404496 a004 Fibonacci(37)*Lucas(28)/(1/2+sqrt(5)/2)^47 2584000077404501 a004 Fibonacci(35)*Lucas(28)/(1/2+sqrt(5)/2)^45 2584000077404536 a004 Fibonacci(33)*Lucas(28)/(1/2+sqrt(5)/2)^43 2584000077404541 a001 1346269/1149851*710647^(4/7) 2584000077404585 a001 208010/109801*439204^(5/9) 2584000077404664 a001 1836311903/4870847*271443^(2/13) 2584000077404757 a001 1602508992/4250681*271443^(2/13) 2584000077404771 a001 12586269025/33385282*271443^(2/13) 2584000077404773 a001 10983760033/29134601*271443^(2/13) 2584000077404773 a001 86267571272/228826127*271443^(2/13) 2584000077404773 a001 267913919/710646*271443^(2/13) 2584000077404773 a001 591286729879/1568397607*271443^(2/13) 2584000077404773 a001 516002918640/1368706081*271443^(2/13) 2584000077404773 a001 4052739537881/10749957122*271443^(2/13) 2584000077404773 a001 3536736619241/9381251041*271443^(2/13) 2584000077404773 a001 6557470319842/17393796001*271443^(2/13) 2584000077404773 a001 2504730781961/6643838879*271443^(2/13) 2584000077404773 a001 956722026041/2537720636*271443^(2/13) 2584000077404773 a001 365435296162/969323029*271443^(2/13) 2584000077404773 a001 139583862445/370248451*271443^(2/13) 2584000077404773 a001 53316291173/141422324*271443^(2/13) 2584000077404774 a001 20365011074/54018521*271443^(2/13) 2584000077404779 a001 7778742049/20633239*271443^(2/13) 2584000077404780 a004 Fibonacci(31)*Lucas(28)/(1/2+sqrt(5)/2)^41 2584000077404815 a001 2971215073/7881196*271443^(2/13) 2584000077405052 a001 39088169/710647*271443^(4/13) 2584000077405059 a001 1134903170/3010349*271443^(2/13) 2584000077405061 a001 514229/4870847*710647^(3/4) 2584000077405272 a001 514229/3010349*710647^(5/7) 2584000077405394 a001 514229/7881196*710647^(11/14) 2584000077405724 a001 514229/20633239*710647^(6/7) 2584000077406084 a001 514229/54018521*710647^(13/14) 2584000077406449 a004 Fibonacci(29)*Lucas(28)/(1/2+sqrt(5)/2)^39 2584000077406576 a001 514229/1149851*710647^(9/14) 2584000077406725 a001 133957148/930249*271443^(3/13) 2584000077406728 a001 433494437/1149851*271443^(2/13) 2584000077406862 a001 1762289/219602*439204^(4/9) 2584000077407362 a001 701408733/4870847*271443^(3/13) 2584000077407455 a001 1836311903/12752043*271443^(3/13) 2584000077407469 a001 14930208/103681*271443^(3/13) 2584000077407471 a001 12586269025/87403803*271443^(3/13) 2584000077407471 a001 32951280099/228826127*271443^(3/13) 2584000077407471 a001 43133785636/299537289*271443^(3/13) 2584000077407471 a001 32264490531/224056801*271443^(3/13) 2584000077407471 a001 591286729879/4106118243*271443^(3/13) 2584000077407471 a001 774004377960/5374978561*271443^(3/13) 2584000077407471 a001 4052739537881/28143753123*271443^(3/13) 2584000077407471 a001 1515744265389/10525900321*271443^(3/13) 2584000077407471 a001 3278735159921/22768774562*271443^(3/13) 2584000077407471 a001 2504730781961/17393796001*271443^(3/13) 2584000077407471 a001 956722026041/6643838879*271443^(3/13) 2584000077407471 a001 182717648081/1268860318*271443^(3/13) 2584000077407471 a001 139583862445/969323029*271443^(3/13) 2584000077407471 a001 53316291173/370248451*271443^(3/13) 2584000077407471 a001 10182505537/70711162*271443^(3/13) 2584000077407472 a001 7778742049/54018521*271443^(3/13) 2584000077407477 a001 2971215073/20633239*271443^(3/13) 2584000077407513 a001 567451585/3940598*271443^(3/13) 2584000077407656 a001 62423800998/24157817 2584000077407657 a001 317811/439204*45537549124^(1/3) 2584000077407657 a001 196418/710647*817138163596^(1/3) 2584000077407657 a001 196418/710647*(1/2+1/2*5^(1/2))^19 2584000077407657 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^19/Lucas(28) 2584000077407657 a001 317811/439204*(1/2+1/2*5^(1/2))^17 2584000077407657 a001 196418/710647*87403803^(1/2) 2584000077407665 a001 317811/439204*12752043^(1/2) 2584000077407747 a001 14930352/710647*271443^(5/13) 2584000077407756 a001 433494437/3010349*271443^(3/13) 2584000077408306 a001 196452/5779*439204^(1/3) 2584000077408647 a001 2971215073/1860498*103682^(1/24) 2584000077409109 a001 9303105/15251*64079^(3/23) 2584000077409285 a001 7778742049/4870847*103682^(1/24) 2584000077409378 a001 20365011074/12752043*103682^(1/24) 2584000077409391 a001 53316291173/33385282*103682^(1/24) 2584000077409393 a001 139583862445/87403803*103682^(1/24) 2584000077409393 a001 365435296162/228826127*103682^(1/24) 2584000077409394 a001 956722026041/599074578*103682^(1/24) 2584000077409394 a001 2504730781961/1568397607*103682^(1/24) 2584000077409394 a001 6557470319842/4106118243*103682^(1/24) 2584000077409394 a001 10610209857723/6643838879*103682^(1/24) 2584000077409394 a001 4052739537881/2537720636*103682^(1/24) 2584000077409394 a001 1548008755920/969323029*103682^(1/24) 2584000077409394 a001 591286729879/370248451*103682^(1/24) 2584000077409394 a001 225851433717/141422324*103682^(1/24) 2584000077409394 a001 86267571272/54018521*103682^(1/24) 2584000077409400 a001 32951280099/20633239*103682^(1/24) 2584000077409422 a001 831985/15126*271443^(4/13) 2584000077409425 a001 165580141/1149851*271443^(3/13) 2584000077409435 a001 12586269025/7881196*103682^(1/24) 2584000077409679 a001 4807526976/3010349*103682^(1/24) 2584000077409797 a001 31622993/219602*439204^(2/9) 2584000077410060 a001 267914296/4870847*271443^(4/13) 2584000077410153 a001 233802911/4250681*271443^(4/13) 2584000077410166 a001 1836311903/33385282*271443^(4/13) 2584000077410168 a001 1602508992/29134601*271443^(4/13) 2584000077410169 a001 12586269025/228826127*271443^(4/13) 2584000077410169 a001 10983760033/199691526*271443^(4/13) 2584000077410169 a001 86267571272/1568397607*271443^(4/13) 2584000077410169 a001 75283811239/1368706081*271443^(4/13) 2584000077410169 a001 591286729879/10749957122*271443^(4/13) 2584000077410169 a001 12585437040/228811001*271443^(4/13) 2584000077410169 a001 4052739537881/73681302247*271443^(4/13) 2584000077410169 a001 3536736619241/64300051206*271443^(4/13) 2584000077410169 a001 6557470319842/119218851371*271443^(4/13) 2584000077410169 a001 2504730781961/45537549124*271443^(4/13) 2584000077410169 a001 956722026041/17393796001*271443^(4/13) 2584000077410169 a001 365435296162/6643838879*271443^(4/13) 2584000077410169 a001 139583862445/2537720636*271443^(4/13) 2584000077410169 a001 53316291173/969323029*271443^(4/13) 2584000077410169 a001 20365011074/370248451*271443^(4/13) 2584000077410169 a001 7778742049/141422324*271443^(4/13) 2584000077410170 a001 2971215073/54018521*271443^(4/13) 2584000077410175 a001 1134903170/20633239*271443^(4/13) 2584000077410210 a001 433494437/7881196*271443^(4/13) 2584000077410432 a001 5702887/710647*271443^(6/13) 2584000077410454 a001 165580141/3010349*271443^(4/13) 2584000077410819 a004 Fibonacci(27)*Lucas(29)/(1/2+sqrt(5)/2)^38 2584000077411285 a001 66978574/109801*439204^(1/9) 2584000077411348 a001 1836311903/1149851*103682^(1/24) 2584000077411838 a001 3524578/710647*271443^(1/2) 2584000077412001 a001 98209/930249*7881196^(7/11) 2584000077412008 a001 208010/109801*7881196^(5/11) 2584000077412023 a001 98209/930249*20633239^(3/5) 2584000077412024 a001 208010/109801*20633239^(3/7) 2584000077412027 a001 81713816360/31622993 2584000077412027 a001 98209/930249*141422324^(7/13) 2584000077412027 a001 208010/109801*141422324^(5/13) 2584000077412027 a001 98209/930249*2537720636^(7/15) 2584000077412027 a001 208010/109801*2537720636^(1/3) 2584000077412027 a001 98209/930249*17393796001^(3/7) 2584000077412027 a001 98209/930249*45537549124^(7/17) 2584000077412027 a001 208010/109801*45537549124^(5/17) 2584000077412027 a001 98209/930249*14662949395604^(1/3) 2584000077412027 a001 98209/930249*(1/2+1/2*5^(1/2))^21 2584000077412027 a001 98209/930249*192900153618^(7/18) 2584000077412027 a001 208010/109801*312119004989^(3/11) 2584000077412027 a001 208010/109801*14662949395604^(5/21) 2584000077412027 a001 208010/109801*(1/2+1/2*5^(1/2))^15 2584000077412027 a001 208010/109801*192900153618^(5/18) 2584000077412027 a001 208010/109801*28143753123^(3/10) 2584000077412027 a001 208010/109801*10749957122^(5/16) 2584000077412027 a001 98209/930249*10749957122^(7/16) 2584000077412027 a001 208010/109801*599074578^(5/14) 2584000077412027 a001 98209/930249*599074578^(1/2) 2584000077412027 a001 208010/109801*228826127^(3/8) 2584000077412028 a001 208010/109801*33385282^(5/12) 2584000077412028 a001 98209/930249*33385282^(7/12) 2584000077412120 a001 39088169/1860498*271443^(5/13) 2584000077412123 a001 63245986/1149851*271443^(4/13) 2584000077412400 a001 208010/109801*1860498^(1/2) 2584000077412488 a004 Fibonacci(27)*Lucas(31)/(1/2+sqrt(5)/2)^40 2584000077412494 a001 39088169/64079*24476^(1/7) 2584000077412550 a001 98209/930249*1860498^(7/10) 2584000077412665 a001 2178309/439204*141422324^(1/3) 2584000077412665 a001 427859097162/165580141 2584000077412665 a001 196418/4870847*(1/2+1/2*5^(1/2))^23 2584000077412665 a001 2178309/439204*(1/2+1/2*5^(1/2))^13 2584000077412665 a001 2178309/439204*73681302247^(1/4) 2584000077412665 a001 196418/4870847*4106118243^(1/2) 2584000077412732 a004 Fibonacci(27)*Lucas(33)/(1/2+sqrt(5)/2)^42 2584000077412736 a001 98209/70711162*7881196^(10/11) 2584000077412737 a001 98209/16692641*7881196^(9/11) 2584000077412744 a001 5702887/439204*7881196^(1/3) 2584000077412753 a001 196418/12752043*20633239^(5/7) 2584000077412757 a001 102334155/4870847*271443^(5/13) 2584000077412758 a001 1120149658766/433494437 2584000077412758 a001 196418/12752043*2537720636^(5/9) 2584000077412758 a001 196418/12752043*312119004989^(5/11) 2584000077412758 a001 196418/12752043*(1/2+1/2*5^(1/2))^25 2584000077412758 a001 196418/12752043*3461452808002^(5/12) 2584000077412758 a001 5702887/439204*312119004989^(1/5) 2584000077412758 a001 5702887/439204*(1/2+1/2*5^(1/2))^11 2584000077412758 a001 196418/12752043*28143753123^(1/2) 2584000077412758 a001 5702887/439204*1568397607^(1/4) 2584000077412758 a001 196418/12752043*228826127^(5/8) 2584000077412760 a001 196452/5779*7881196^(3/11) 2584000077412766 a001 31622993/219602*7881196^(2/11) 2584000077412767 a004 Fibonacci(27)*Lucas(35)/(1/2+sqrt(5)/2)^44 2584000077412768 a001 98209/70711162*20633239^(6/7) 2584000077412770 a001 196418/54018521*20633239^(4/5) 2584000077412770 a001 66978574/109801*7881196^(1/11) 2584000077412771 a001 98209/16692641*141422324^(9/13) 2584000077412771 a001 196452/5779*141422324^(3/13) 2584000077412771 a001 86252643504/33379505 2584000077412771 a001 98209/16692641*2537720636^(3/5) 2584000077412771 a001 196452/5779*2537720636^(1/5) 2584000077412771 a001 98209/16692641*45537549124^(9/17) 2584000077412771 a001 196452/5779*45537549124^(3/17) 2584000077412771 a001 98209/16692641*817138163596^(9/19) 2584000077412771 a001 98209/16692641*14662949395604^(3/7) 2584000077412771 a001 98209/16692641*(1/2+1/2*5^(1/2))^27 2584000077412771 a001 98209/16692641*192900153618^(1/2) 2584000077412771 a001 196452/5779*14662949395604^(1/7) 2584000077412771 a001 196452/5779*(1/2+1/2*5^(1/2))^9 2584000077412771 a001 196452/5779*192900153618^(1/6) 2584000077412771 a001 196452/5779*10749957122^(3/16) 2584000077412771 a001 98209/16692641*10749957122^(9/16) 2584000077412771 a001 196452/5779*599074578^(3/14) 2584000077412771 a001 98209/16692641*599074578^(9/14) 2584000077412772 a001 196452/5779*33385282^(1/4) 2584000077412772 a001 39088169/439204*20633239^(1/5) 2584000077412773 a001 102334155/439204*20633239^(1/7) 2584000077412773 a004 Fibonacci(27)*Lucas(37)/(1/2+sqrt(5)/2)^46 2584000077412773 a001 98209/16692641*33385282^(3/4) 2584000077412773 a001 7677619978642/2971215073 2584000077412773 a001 39088169/439204*17393796001^(1/7) 2584000077412773 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^29/Lucas(38) 2584000077412773 a001 196418/87403803*1322157322203^(1/2) 2584000077412773 a001 39088169/439204*14662949395604^(1/9) 2584000077412773 a001 39088169/439204*(1/2+1/2*5^(1/2))^7 2584000077412773 a001 39088169/439204*599074578^(1/6) 2584000077412773 a004 Fibonacci(27)*Lucas(39)/(1/2+sqrt(5)/2)^48 2584000077412773 a001 98209/1268860318*141422324^(12/13) 2584000077412773 a001 98209/299537289*141422324^(11/13) 2584000077412773 a001 102334155/439204*2537720636^(1/9) 2584000077412773 a001 20100270056790/7778742049 2584000077412773 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^31/Lucas(40) 2584000077412773 a001 102334155/439204*312119004989^(1/11) 2584000077412773 a001 102334155/439204*(1/2+1/2*5^(1/2))^5 2584000077412773 a001 102334155/439204*28143753123^(1/10) 2584000077412773 a001 102334155/439204*228826127^(1/8) 2584000077412773 a004 Fibonacci(27)*Lucas(41)/(1/2+sqrt(5)/2)^50 2584000077412774 a001 66978574/109801*141422324^(1/13) 2584000077412774 a001 98209/299537289*2537720636^(11/15) 2584000077412774 a001 66978574/109801*2537720636^(1/15) 2584000077412774 a001 26311595095864/10182505537 2584000077412774 a001 98209/299537289*45537549124^(11/17) 2584000077412774 a001 98209/299537289*312119004989^(3/5) 2584000077412774 a001 66978574/109801*45537549124^(1/17) 2584000077412774 a001 98209/299537289*14662949395604^(11/21) 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^33/Lucas(42) 2584000077412774 a001 98209/299537289*192900153618^(11/18) 2584000077412774 a001 66978574/109801*14662949395604^(1/21) 2584000077412774 a001 66978574/109801*(1/2+1/2*5^(1/2))^3 2584000077412774 a001 66978574/109801*10749957122^(1/16) 2584000077412774 a001 98209/299537289*10749957122^(11/16) 2584000077412774 a001 66978574/109801*599074578^(1/14) 2584000077412774 a001 98209/299537289*1568397607^(3/4) 2584000077412774 a004 Fibonacci(27)*Lucas(43)/(1/2+sqrt(5)/2)^52 2584000077412774 a001 98209/299537289*599074578^(11/14) 2584000077412774 a001 196418/1568397607*2537720636^(7/9) 2584000077412774 a001 196418/1568397607*17393796001^(5/7) 2584000077412774 a001 137769300518394/53316291173 2584000077412774 a001 196418/1568397607*312119004989^(7/11) 2584000077412774 a001 196418/1568397607*14662949395604^(5/9) 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^35/Lucas(44) 2584000077412774 a001 196418/1568397607*505019158607^(5/8) 2584000077412774 a001 701408733/878408+701408733/878408*5^(1/2) 2584000077412774 a001 196418/1568397607*28143753123^(7/10) 2584000077412774 a004 Fibonacci(27)*Lucas(45)/(1/2+sqrt(5)/2)^54 2584000077412774 a001 98209/22768774562*2537720636^(14/15) 2584000077412774 a001 98209/5374978561*2537720636^(13/15) 2584000077412774 a001 196418/17393796001*2537720636^(8/9) 2584000077412774 a001 360684711363454/139583862445 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^37/Lucas(46) 2584000077412774 a004 Fibonacci(46)/Lucas(27)/(1/2+sqrt(5)/2) 2584000077412774 a004 Fibonacci(27)*Lucas(47)/(1/2+sqrt(5)/2)^56 2584000077412774 a001 98209/5374978561*45537549124^(13/17) 2584000077412774 a001 472142416785984/182717648081 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^39/Lucas(48) 2584000077412774 a001 98209/5374978561*192900153618^(13/18) 2584000077412774 a004 Fibonacci(48)/Lucas(27)/(1/2+sqrt(5)/2)^3 2584000077412774 a001 98209/5374978561*73681302247^(3/4) 2584000077412774 a004 Fibonacci(27)*Lucas(49)/(1/2+sqrt(5)/2)^58 2584000077412774 a001 98209/22768774562*17393796001^(6/7) 2584000077412774 a001 98209/5374978561*10749957122^(13/16) 2584000077412774 a001 2472169789352450/956722026041 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^41/Lucas(50) 2584000077412774 a004 Fibonacci(50)/Lucas(27)/(1/2+sqrt(5)/2)^5 2584000077412774 a004 Fibonacci(27)*Lucas(51)/(1/2+sqrt(5)/2)^60 2584000077412774 a001 98209/408569081798*45537549124^(16/17) 2584000077412774 a001 6472224534485382/2504730781961 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^43/Lucas(52) 2584000077412774 a004 Fibonacci(52)/Lucas(27)/(1/2+sqrt(5)/2)^7 2584000077412774 a004 Fibonacci(27)*Lucas(53)/(1/2+sqrt(5)/2)^62 2584000077412774 a001 98209/96450076809*312119004989^(9/11) 2584000077412774 a001 498367759238344/192866774113 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^45/Lucas(54) 2584000077412774 a004 Fibonacci(27)*Lucas(55)/(1/2+sqrt(5)/2)^64 2584000077412774 a001 196418/2139295485799*312119004989^(10/11) 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^47/Lucas(56) 2584000077412774 a004 Fibonacci(27)*Lucas(57)/(1/2+sqrt(5)/2)^66 2584000077412774 a001 196418/1322157322203*14662949395604^(7/9) 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^49/Lucas(58) 2584000077412774 a004 Fibonacci(27)*Lucas(59)/(1/2+sqrt(5)/2)^68 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^51/Lucas(60) 2584000077412774 a004 Fibonacci(27)*Lucas(61)/(1/2+sqrt(5)/2)^70 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^53/Lucas(62) 2584000077412774 a004 Fibonacci(27)*Lucas(63)/(1/2+sqrt(5)/2)^72 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^55/Lucas(64) 2584000077412774 a004 Fibonacci(27)*Lucas(65)/(1/2+sqrt(5)/2)^74 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^57/Lucas(66) 2584000077412774 a004 Fibonacci(27)*Lucas(67)/(1/2+sqrt(5)/2)^76 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^59/Lucas(68) 2584000077412774 a004 Fibonacci(27)*Lucas(69)/(1/2+sqrt(5)/2)^78 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^61/Lucas(70) 2584000077412774 a004 Fibonacci(27)*Lucas(71)/(1/2+sqrt(5)/2)^80 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^63/Lucas(72) 2584000077412774 a004 Fibonacci(27)*Lucas(73)/(1/2+sqrt(5)/2)^82 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^65/Lucas(74) 2584000077412774 a004 Fibonacci(27)*Lucas(75)/(1/2+sqrt(5)/2)^84 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^67/Lucas(76) 2584000077412774 a004 Fibonacci(27)*Lucas(77)/(1/2+sqrt(5)/2)^86 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^69/Lucas(78) 2584000077412774 a004 Fibonacci(27)*Lucas(79)/(1/2+sqrt(5)/2)^88 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^71/Lucas(80) 2584000077412774 a004 Fibonacci(27)*Lucas(81)/(1/2+sqrt(5)/2)^90 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^73/Lucas(82) 2584000077412774 a004 Fibonacci(27)*Lucas(83)/(1/2+sqrt(5)/2)^92 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^75/Lucas(84) 2584000077412774 a004 Fibonacci(27)*Lucas(85)/(1/2+sqrt(5)/2)^94 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^77/Lucas(86) 2584000077412774 a004 Fibonacci(27)*Lucas(87)/(1/2+sqrt(5)/2)^96 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^79/Lucas(88) 2584000077412774 a004 Fibonacci(27)*Lucas(89)/(1/2+sqrt(5)/2)^98 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^81/Lucas(90) 2584000077412774 a004 Fibonacci(27)*Lucas(91)/(1/2+sqrt(5)/2)^100 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^83/Lucas(92) 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^85/Lucas(94) 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^87/Lucas(96) 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^89/Lucas(98) 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^88/Lucas(97) 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^90/Lucas(99) 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^91/Lucas(100) 2584000077412774 a004 Fibonacci(27)*Lucas(1)/(1/2+sqrt(5)/2)^9 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^86/Lucas(95) 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^84/Lucas(93) 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^82/Lucas(91) 2584000077412774 a004 Fibonacci(27)*Lucas(90)/(1/2+sqrt(5)/2)^99 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^80/Lucas(89) 2584000077412774 a004 Fibonacci(27)*Lucas(88)/(1/2+sqrt(5)/2)^97 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^78/Lucas(87) 2584000077412774 a004 Fibonacci(27)*Lucas(86)/(1/2+sqrt(5)/2)^95 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^76/Lucas(85) 2584000077412774 a004 Fibonacci(27)*Lucas(84)/(1/2+sqrt(5)/2)^93 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^74/Lucas(83) 2584000077412774 a004 Fibonacci(27)*Lucas(82)/(1/2+sqrt(5)/2)^91 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^72/Lucas(81) 2584000077412774 a004 Fibonacci(27)*Lucas(80)/(1/2+sqrt(5)/2)^89 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^70/Lucas(79) 2584000077412774 a004 Fibonacci(27)*Lucas(78)/(1/2+sqrt(5)/2)^87 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^68/Lucas(77) 2584000077412774 a004 Fibonacci(27)*Lucas(76)/(1/2+sqrt(5)/2)^85 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^66/Lucas(75) 2584000077412774 a004 Fibonacci(27)*Lucas(74)/(1/2+sqrt(5)/2)^83 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^64/Lucas(73) 2584000077412774 a004 Fibonacci(27)*Lucas(72)/(1/2+sqrt(5)/2)^81 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^62/Lucas(71) 2584000077412774 a004 Fibonacci(27)*Lucas(70)/(1/2+sqrt(5)/2)^79 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^60/Lucas(69) 2584000077412774 a004 Fibonacci(27)*Lucas(68)/(1/2+sqrt(5)/2)^77 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^58/Lucas(67) 2584000077412774 a004 Fibonacci(27)*Lucas(66)/(1/2+sqrt(5)/2)^75 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^56/Lucas(65) 2584000077412774 a004 Fibonacci(27)*Lucas(64)/(1/2+sqrt(5)/2)^73 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^54/Lucas(63) 2584000077412774 a004 Fibonacci(27)*Lucas(62)/(1/2+sqrt(5)/2)^71 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^52/Lucas(61) 2584000077412774 a001 196418/23725150497407*3461452808002^(11/12) 2584000077412774 a004 Fibonacci(27)*Lucas(60)/(1/2+sqrt(5)/2)^69 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^50/Lucas(59) 2584000077412774 a004 Fibonacci(27)*Lucas(58)/(1/2+sqrt(5)/2)^67 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^48/Lucas(57) 2584000077412774 a001 196418/1322157322203*505019158607^(7/8) 2584000077412774 a001 196418/5600748293801*505019158607^(13/14) 2584000077412774 a004 Fibonacci(27)*Lucas(56)/(1/2+sqrt(5)/2)^65 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^46/Lucas(55) 2584000077412774 a001 27416783093722010/10610209857723 2584000077412774 a004 Fibonacci(56)/Lucas(27)/(1/2+sqrt(5)/2)^11 2584000077412774 a001 98209/1730726404001*192900153618^(17/18) 2584000077412774 a001 98209/408569081798*192900153618^(8/9) 2584000077412774 a004 Fibonacci(58)/Lucas(27)/(1/2+sqrt(5)/2)^13 2584000077412774 a004 Fibonacci(60)/Lucas(27)/(1/2+sqrt(5)/2)^15 2584000077412774 a004 Fibonacci(62)/Lucas(27)/(1/2+sqrt(5)/2)^17 2584000077412774 a004 Fibonacci(64)/Lucas(27)/(1/2+sqrt(5)/2)^19 2584000077412774 a004 Fibonacci(66)/Lucas(27)/(1/2+sqrt(5)/2)^21 2584000077412774 a004 Fibonacci(68)/Lucas(27)/(1/2+sqrt(5)/2)^23 2584000077412774 a004 Fibonacci(70)/Lucas(27)/(1/2+sqrt(5)/2)^25 2584000077412774 a004 Fibonacci(72)/Lucas(27)/(1/2+sqrt(5)/2)^27 2584000077412774 a004 Fibonacci(74)/Lucas(27)/(1/2+sqrt(5)/2)^29 2584000077412774 a004 Fibonacci(76)/Lucas(27)/(1/2+sqrt(5)/2)^31 2584000077412774 a004 Fibonacci(78)/Lucas(27)/(1/2+sqrt(5)/2)^33 2584000077412774 a004 Fibonacci(80)/Lucas(27)/(1/2+sqrt(5)/2)^35 2584000077412774 a004 Fibonacci(82)/Lucas(27)/(1/2+sqrt(5)/2)^37 2584000077412774 a004 Fibonacci(84)/Lucas(27)/(1/2+sqrt(5)/2)^39 2584000077412774 a004 Fibonacci(86)/Lucas(27)/(1/2+sqrt(5)/2)^41 2584000077412774 a004 Fibonacci(88)/Lucas(27)/(1/2+sqrt(5)/2)^43 2584000077412774 a004 Fibonacci(90)/Lucas(27)/(1/2+sqrt(5)/2)^45 2584000077412774 a004 Fibonacci(92)/Lucas(27)/(1/2+sqrt(5)/2)^47 2584000077412774 a004 Fibonacci(94)/Lucas(27)/(1/2+sqrt(5)/2)^49 2584000077412774 a004 Fibonacci(96)/Lucas(27)/(1/2+sqrt(5)/2)^51 2584000077412774 a004 Fibonacci(98)/Lucas(27)/(1/2+sqrt(5)/2)^53 2584000077412774 a004 Fibonacci(100)/Lucas(27)/(1/2+sqrt(5)/2)^55 2584000077412774 a004 Fibonacci(27)*Lucas(54)/(1/2+sqrt(5)/2)^63 2584000077412774 a004 Fibonacci(97)/Lucas(27)/(1/2+sqrt(5)/2)^52 2584000077412774 a004 Fibonacci(99)/Lucas(27)/(1/2+sqrt(5)/2)^54 2584000077412774 a004 Fibonacci(95)/Lucas(27)/(1/2+sqrt(5)/2)^50 2584000077412774 a004 Fibonacci(93)/Lucas(27)/(1/2+sqrt(5)/2)^48 2584000077412774 a004 Fibonacci(91)/Lucas(27)/(1/2+sqrt(5)/2)^46 2584000077412774 a004 Fibonacci(89)/Lucas(27)/(1/2+sqrt(5)/2)^44 2584000077412774 a004 Fibonacci(87)/Lucas(27)/(1/2+sqrt(5)/2)^42 2584000077412774 a004 Fibonacci(85)/Lucas(27)/(1/2+sqrt(5)/2)^40 2584000077412774 a004 Fibonacci(83)/Lucas(27)/(1/2+sqrt(5)/2)^38 2584000077412774 a004 Fibonacci(81)/Lucas(27)/(1/2+sqrt(5)/2)^36 2584000077412774 a004 Fibonacci(79)/Lucas(27)/(1/2+sqrt(5)/2)^34 2584000077412774 a004 Fibonacci(77)/Lucas(27)/(1/2+sqrt(5)/2)^32 2584000077412774 a004 Fibonacci(75)/Lucas(27)/(1/2+sqrt(5)/2)^30 2584000077412774 a004 Fibonacci(73)/Lucas(27)/(1/2+sqrt(5)/2)^28 2584000077412774 a004 Fibonacci(71)/Lucas(27)/(1/2+sqrt(5)/2)^26 2584000077412774 a004 Fibonacci(69)/Lucas(27)/(1/2+sqrt(5)/2)^24 2584000077412774 a004 Fibonacci(67)/Lucas(27)/(1/2+sqrt(5)/2)^22 2584000077412774 a004 Fibonacci(65)/Lucas(27)/(1/2+sqrt(5)/2)^20 2584000077412774 a004 Fibonacci(63)/Lucas(27)/(1/2+sqrt(5)/2)^18 2584000077412774 a004 Fibonacci(61)/Lucas(27)/(1/2+sqrt(5)/2)^16 2584000077412774 a004 Fibonacci(59)/Lucas(27)/(1/2+sqrt(5)/2)^14 2584000077412774 a004 Fibonacci(57)/Lucas(27)/(1/2+sqrt(5)/2)^12 2584000077412774 a004 Fibonacci(55)/Lucas(27)/(1/2+sqrt(5)/2)^10 2584000077412774 a001 196418/119218851371*312119004989^(4/5) 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^44/Lucas(53) 2584000077412774 a001 10472279279618314/4052739537881 2584000077412774 a001 98209/22768774562*45537549124^(14/17) 2584000077412774 a004 Fibonacci(53)/Lucas(27)/(1/2+sqrt(5)/2)^8 2584000077412774 a001 98209/408569081798*73681302247^(12/13) 2584000077412774 a004 Fibonacci(27)*Lucas(52)/(1/2+sqrt(5)/2)^61 2584000077412774 a001 196418/119218851371*73681302247^(11/13) 2584000077412774 a001 98209/22768774562*817138163596^(14/19) 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^42/Lucas(51) 2584000077412774 a001 1000013686283233/387002188980 2584000077412774 a001 98209/22768774562*505019158607^(3/4) 2584000077412774 a001 98209/22768774562*192900153618^(7/9) 2584000077412774 a004 Fibonacci(51)/Lucas(27)/(1/2+sqrt(5)/2)^6 2584000077412774 a001 98209/96450076809*28143753123^(9/10) 2584000077412774 a004 Fibonacci(27)*Lucas(50)/(1/2+sqrt(5)/2)^59 2584000077412774 a001 196418/17393796001*312119004989^(8/11) 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^40/Lucas(49) 2584000077412774 a001 196418/17393796001*23725150497407^(5/8) 2584000077412774 a001 1527884955780482/591286729879 2584000077412774 a004 Fibonacci(49)/Lucas(27)/(1/2+sqrt(5)/2)^4 2584000077412774 a001 196418/17393796001*73681302247^(10/13) 2584000077412774 a001 196418/17393796001*28143753123^(4/5) 2584000077412774 a001 196418/119218851371*10749957122^(11/12) 2584000077412774 a001 98209/22768774562*10749957122^(7/8) 2584000077412774 a001 98209/96450076809*10749957122^(15/16) 2584000077412774 a001 196418/312119004989*10749957122^(23/24) 2584000077412774 a004 Fibonacci(27)*Lucas(48)/(1/2+sqrt(5)/2)^57 2584000077412774 a001 196418/17393796001*10749957122^(5/6) 2584000077412774 a001 196418/6643838879*817138163596^(2/3) 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^38/Lucas(47) 2584000077412774 a001 583600122208514/225851433717 2584000077412774 a004 Fibonacci(47)/Lucas(27)/(1/2+sqrt(5)/2)^2 2584000077412774 a001 196418/6643838879*10749957122^(19/24) 2584000077412774 a001 98209/1268860318*2537720636^(4/5) 2584000077412774 a001 98209/22768774562*4106118243^(21/23) 2584000077412774 a001 196418/17393796001*4106118243^(20/23) 2584000077412774 a001 196418/119218851371*4106118243^(22/23) 2584000077412774 a004 Fibonacci(27)*Lucas(46)/(1/2+sqrt(5)/2)^55 2584000077412774 a001 196418/6643838879*4106118243^(19/23) 2584000077412774 a001 98209/1268860318*45537549124^(12/17) 2584000077412774 a001 98209/1268860318*14662949395604^(4/7) 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^36/Lucas(45) 2584000077412774 a001 98209/1268860318*505019158607^(9/14) 2584000077412774 a001 98209/1268860318*192900153618^(2/3) 2584000077412774 a001 567451585/219602 2584000077412774 a001 98209/1268860318*73681302247^(9/13) 2584000077412774 a001 98209/1268860318*10749957122^(3/4) 2584000077412774 a001 98209/1268860318*4106118243^(18/23) 2584000077412774 a001 196418/17393796001*1568397607^(10/11) 2584000077412774 a001 196418/6643838879*1568397607^(19/22) 2584000077412774 a001 98209/22768774562*1568397607^(21/22) 2584000077412774 a004 Fibonacci(27)*Lucas(44)/(1/2+sqrt(5)/2)^53 2584000077412774 a001 98209/1268860318*1568397607^(9/11) 2584000077412774 a001 196418/969323029*45537549124^(2/3) 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^34/Lucas(43) 2584000077412774 a001 433494437/439204*(1/2+1/2*5^(1/2))^2 2584000077412774 a001 85146110326666/32951280099 2584000077412774 a001 433494437/439204*10749957122^(1/24) 2584000077412774 a001 433494437/439204*4106118243^(1/23) 2584000077412774 a001 196418/969323029*10749957122^(17/24) 2584000077412774 a001 433494437/439204*1568397607^(1/22) 2584000077412774 a001 196418/969323029*4106118243^(17/23) 2584000077412774 a001 433494437/439204*599074578^(1/21) 2584000077412774 a001 196418/969323029*1568397607^(17/22) 2584000077412774 a001 196418/1568397607*599074578^(5/6) 2584000077412774 a001 433494437/439204*228826127^(1/20) 2584000077412774 a001 98209/1268860318*599074578^(6/7) 2584000077412774 a001 196418/6643838879*599074578^(19/21) 2584000077412774 a001 98209/5374978561*599074578^(13/14) 2584000077412774 a001 196418/17393796001*599074578^(20/21) 2584000077412774 a004 Fibonacci(27)*Lucas(42)/(1/2+sqrt(5)/2)^51 2584000077412774 a001 196418/969323029*599074578^(17/21) 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^32/Lucas(41) 2584000077412774 a001 196418/370248451*23725150497407^(1/2) 2584000077412774 a001 165580141/439204*(1/2+1/2*5^(1/2))^4 2584000077412774 a001 165580141/439204*23725150497407^(1/16) 2584000077412774 a001 165580141/439204*73681302247^(1/13) 2584000077412774 a001 196418/370248451*73681302247^(8/13) 2584000077412774 a001 165580141/439204*10749957122^(1/12) 2584000077412774 a001 32522920134938/12586269025 2584000077412774 a001 165580141/439204*4106118243^(2/23) 2584000077412774 a001 196418/370248451*10749957122^(2/3) 2584000077412774 a001 165580141/439204*1568397607^(1/11) 2584000077412774 a001 196418/370248451*4106118243^(16/23) 2584000077412774 a001 165580141/439204*599074578^(2/21) 2584000077412774 a001 196418/370248451*1568397607^(8/11) 2584000077412774 a001 433494437/439204*87403803^(1/19) 2584000077412774 a001 165580141/439204*228826127^(1/10) 2584000077412774 a001 196418/370248451*599074578^(16/21) 2584000077412774 a001 98209/70711162*141422324^(10/13) 2584000077412774 a001 196418/1568397607*228826127^(7/8) 2584000077412774 a001 196418/969323029*228826127^(17/20) 2584000077412774 a001 98209/1268860318*228826127^(9/10) 2584000077412774 a001 196418/6643838879*228826127^(19/20) 2584000077412774 a004 Fibonacci(27)*Lucas(40)/(1/2+sqrt(5)/2)^49 2584000077412774 a001 165580141/439204*87403803^(2/19) 2584000077412774 a001 196418/370248451*228826127^(4/5) 2584000077412774 a001 31622993/219602*141422324^(2/13) 2584000077412774 a001 98209/70711162*2537720636^(2/3) 2584000077412774 a001 31622993/219602*2537720636^(2/15) 2584000077412774 a001 98209/70711162*45537549124^(10/17) 2584000077412774 a001 31622993/219602*45537549124^(2/17) 2584000077412774 a001 98209/70711162*312119004989^(6/11) 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^30/Lucas(39) 2584000077412774 a001 98209/70711162*192900153618^(5/9) 2584000077412774 a001 31622993/219602*14662949395604^(2/21) 2584000077412774 a001 31622993/219602*(1/2+1/2*5^(1/2))^6 2584000077412774 a001 98209/70711162*28143753123^(3/5) 2584000077412774 a001 31622993/219602*10749957122^(1/8) 2584000077412774 a001 98209/70711162*10749957122^(5/8) 2584000077412774 a001 31622993/219602*4106118243^(3/23) 2584000077412774 a001 3105662519537/1201881744 2584000077412774 a001 98209/70711162*4106118243^(15/23) 2584000077412774 a001 31622993/219602*1568397607^(3/22) 2584000077412774 a001 98209/70711162*1568397607^(15/22) 2584000077412774 a001 31622993/219602*599074578^(1/7) 2584000077412774 a001 433494437/439204*33385282^(1/18) 2584000077412774 a001 98209/70711162*599074578^(5/7) 2584000077412774 a001 31622993/219602*228826127^(3/20) 2584000077412774 a001 98209/70711162*228826127^(3/4) 2584000077412774 a001 31622993/219602*87403803^(3/19) 2584000077412774 a001 66978574/109801*33385282^(1/12) 2584000077412774 a001 165580141/439204*33385282^(1/9) 2584000077412774 a001 196418/370248451*87403803^(16/19) 2584000077412774 a001 196418/969323029*87403803^(17/19) 2584000077412774 a001 98209/1268860318*87403803^(18/19) 2584000077412774 a004 Fibonacci(27)*Lucas(38)/(1/2+sqrt(5)/2)^47 2584000077412774 a001 98209/70711162*87403803^(15/19) 2584000077412774 a001 31622993/219602*33385282^(1/6) 2584000077412774 a001 196418/54018521*17393796001^(4/7) 2584000077412774 a001 196418/54018521*14662949395604^(4/9) 2584000077412774 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^28/Lucas(37) 2584000077412774 a001 24157817/439204*(1/2+1/2*5^(1/2))^8 2584000077412774 a001 24157817/439204*23725150497407^(1/8) 2584000077412774 a001 24157817/439204*505019158607^(1/7) 2584000077412774 a001 24157817/439204*73681302247^(2/13) 2584000077412774 a001 196418/54018521*73681302247^(7/13) 2584000077412774 a001 24157817/439204*10749957122^(1/6) 2584000077412774 a001 196418/54018521*10749957122^(7/12) 2584000077412774 a001 24157817/439204*4106118243^(4/23) 2584000077412774 a001 196418/54018521*4106118243^(14/23) 2584000077412774 a001 4745030099506/1836311903 2584000077412774 a001 24157817/439204*1568397607^(2/11) 2584000077412774 a001 196418/54018521*1568397607^(7/11) 2584000077412774 a001 24157817/439204*599074578^(4/21) 2584000077412774 a001 196418/54018521*599074578^(2/3) 2584000077412774 a001 24157817/439204*228826127^(1/5) 2584000077412774 a001 196418/54018521*228826127^(7/10) 2584000077412774 a001 433494437/439204*12752043^(1/17) 2584000077412774 a001 24157817/439204*87403803^(4/19) 2584000077412775 a001 196418/54018521*87403803^(14/19) 2584000077412775 a001 24157817/439204*33385282^(2/9) 2584000077412775 a001 165580141/439204*12752043^(2/17) 2584000077412776 a001 98209/70711162*33385282^(5/6) 2584000077412776 a001 196418/370248451*33385282^(8/9) 2584000077412776 a001 98209/299537289*33385282^(11/12) 2584000077412776 a001 196418/969323029*33385282^(17/18) 2584000077412776 a004 Fibonacci(27)*Lucas(36)/(1/2+sqrt(5)/2)^45 2584000077412776 a001 196418/54018521*33385282^(7/9) 2584000077412776 a001 31622993/219602*12752043^(3/17) 2584000077412778 a001 9227465/439204*20633239^(2/7) 2584000077412778 a001 24157817/439204*12752043^(4/17) 2584000077412780 a001 196418/20633239*141422324^(2/3) 2584000077412780 a001 9227465/439204*2537720636^(2/9) 2584000077412780 a001 196418/20633239*(1/2+1/2*5^(1/2))^26 2584000077412780 a001 9227465/439204*312119004989^(2/11) 2584000077412780 a001 9227465/439204*(1/2+1/2*5^(1/2))^10 2584000077412780 a001 196418/20633239*73681302247^(1/2) 2584000077412780 a001 9227465/439204*28143753123^(1/5) 2584000077412780 a001 9227465/439204*10749957122^(5/24) 2584000077412780 a001 196418/20633239*10749957122^(13/24) 2584000077412780 a001 9227465/439204*4106118243^(5/23) 2584000077412780 a001 196418/20633239*4106118243^(13/23) 2584000077412780 a001 9227465/439204*1568397607^(5/22) 2584000077412780 a001 196418/20633239*1568397607^(13/22) 2584000077412780 a001 1812440220370/701408733 2584000077412780 a001 9227465/439204*599074578^(5/21) 2584000077412780 a001 196418/20633239*599074578^(13/21) 2584000077412780 a001 9227465/439204*228826127^(1/4) 2584000077412780 a001 196418/20633239*228826127^(13/20) 2584000077412780 a001 9227465/439204*87403803^(5/19) 2584000077412780 a001 196418/20633239*87403803^(13/19) 2584000077412780 a001 9227465/439204*33385282^(5/18) 2584000077412780 a001 433494437/439204*4870847^(1/16) 2584000077412781 a001 196418/20633239*33385282^(13/18) 2584000077412784 a001 9227465/439204*12752043^(5/17) 2584000077412785 a001 98209/3940598*7881196^(8/11) 2584000077412787 a001 165580141/439204*4870847^(1/8) 2584000077412787 a001 196418/54018521*12752043^(14/17) 2584000077412788 a001 98209/70711162*12752043^(15/17) 2584000077412788 a001 196418/370248451*12752043^(16/17) 2584000077412789 a004 Fibonacci(27)*Lucas(34)/(1/2+sqrt(5)/2)^43 2584000077412792 a001 196418/20633239*12752043^(13/17) 2584000077412794 a001 31622993/219602*4870847^(3/16) 2584000077412800 a001 1762289/219602*7881196^(4/11) 2584000077412802 a001 24157817/439204*4870847^(1/4) 2584000077412814 a001 9227465/439204*4870847^(5/16) 2584000077412815 a001 98209/3940598*141422324^(8/13) 2584000077412815 a001 1762289/219602*141422324^(4/13) 2584000077412815 a001 98209/3940598*2537720636^(8/15) 2584000077412815 a001 1762289/219602*2537720636^(4/15) 2584000077412815 a001 98209/3940598*45537549124^(8/17) 2584000077412815 a001 1762289/219602*45537549124^(4/17) 2584000077412815 a001 98209/3940598*14662949395604^(8/21) 2584000077412815 a001 98209/3940598*(1/2+1/2*5^(1/2))^24 2584000077412815 a001 98209/3940598*192900153618^(4/9) 2584000077412815 a001 1762289/219602*817138163596^(4/19) 2584000077412815 a001 1762289/219602*14662949395604^(4/21) 2584000077412815 a001 1762289/219602*(1/2+1/2*5^(1/2))^12 2584000077412815 a001 1762289/219602*73681302247^(3/13) 2584000077412815 a001 98209/3940598*73681302247^(6/13) 2584000077412815 a001 1762289/219602*10749957122^(1/4) 2584000077412815 a001 98209/3940598*10749957122^(1/2) 2584000077412815 a001 1762289/219602*4106118243^(6/23) 2584000077412815 a001 98209/3940598*4106118243^(12/23) 2584000077412815 a001 1762289/219602*1568397607^(3/11) 2584000077412815 a001 98209/3940598*1568397607^(6/11) 2584000077412815 a001 1762289/219602*599074578^(2/7) 2584000077412815 a001 98209/3940598*599074578^(4/7) 2584000077412815 a001 173072640401/66978574 2584000077412815 a001 1762289/219602*228826127^(3/10) 2584000077412815 a001 98209/3940598*228826127^(3/5) 2584000077412815 a001 1762289/219602*87403803^(6/19) 2584000077412815 a001 98209/3940598*87403803^(12/19) 2584000077412816 a001 1762289/219602*33385282^(1/3) 2584000077412817 a001 98209/3940598*33385282^(2/3) 2584000077412821 a001 1762289/219602*12752043^(6/17) 2584000077412823 a001 433494437/439204*1860498^(1/15) 2584000077412826 a001 98209/3940598*12752043^(12/17) 2584000077412848 a001 66978574/109801*1860498^(1/10) 2584000077412851 a001 267914296/12752043*271443^(5/13) 2584000077412856 a001 1762289/219602*4870847^(3/8) 2584000077412864 a001 701408733/33385282*271443^(5/13) 2584000077412866 a001 1836311903/87403803*271443^(5/13) 2584000077412866 a001 102287808/4868641*271443^(5/13) 2584000077412866 a001 12586269025/599074578*271443^(5/13) 2584000077412866 a001 32951280099/1568397607*271443^(5/13) 2584000077412866 a001 86267571272/4106118243*271443^(5/13) 2584000077412866 a001 225851433717/10749957122*271443^(5/13) 2584000077412866 a001 591286729879/28143753123*271443^(5/13) 2584000077412866 a001 1548008755920/73681302247*271443^(5/13) 2584000077412866 a001 4052739537881/192900153618*271443^(5/13) 2584000077412866 a001 225749145909/10745088481*271443^(5/13) 2584000077412866 a001 6557470319842/312119004989*271443^(5/13) 2584000077412866 a001 2504730781961/119218851371*271443^(5/13) 2584000077412866 a001 956722026041/45537549124*271443^(5/13) 2584000077412866 a001 365435296162/17393796001*271443^(5/13) 2584000077412866 a001 139583862445/6643838879*271443^(5/13) 2584000077412866 a001 53316291173/2537720636*271443^(5/13) 2584000077412866 a001 20365011074/969323029*271443^(5/13) 2584000077412866 a001 7778742049/370248451*271443^(5/13) 2584000077412867 a001 2971215073/141422324*271443^(5/13) 2584000077412867 a001 1134903170/54018521*271443^(5/13) 2584000077412868 a001 196418/20633239*4870847^(13/16) 2584000077412870 a001 196418/54018521*4870847^(7/8) 2584000077412873 a001 433494437/20633239*271443^(5/13) 2584000077412873 a001 165580141/439204*1860498^(2/15) 2584000077412876 a001 98209/70711162*4870847^(15/16) 2584000077412882 a004 Fibonacci(27)*Lucas(32)/(1/2+sqrt(5)/2)^41 2584000077412897 a001 98209/3940598*4870847^(3/4) 2584000077412898 a001 102334155/439204*1860498^(1/6) 2584000077412908 a001 165580141/7881196*271443^(5/13) 2584000077412923 a001 31622993/219602*1860498^(1/5) 2584000077412973 a001 24157817/439204*1860498^(4/15) 2584000077412995 a001 196452/5779*1860498^(3/10) 2584000077413028 a001 9227465/439204*1860498^(1/3) 2584000077413031 a001 196418/3010349*7881196^(2/3) 2584000077413036 a001 311187/101521*271443^(7/13) 2584000077413056 a001 1346269/439204*20633239^(2/5) 2584000077413059 a001 1346269/439204*17393796001^(2/7) 2584000077413059 a001 196418/3010349*312119004989^(2/5) 2584000077413059 a001 196418/3010349*(1/2+1/2*5^(1/2))^22 2584000077413059 a001 1346269/439204*14662949395604^(2/9) 2584000077413059 a001 1346269/439204*(1/2+1/2*5^(1/2))^14 2584000077413059 a001 1346269/439204*505019158607^(1/4) 2584000077413059 a001 1346269/439204*10749957122^(7/24) 2584000077413059 a001 196418/3010349*10749957122^(11/24) 2584000077413059 a001 1346269/439204*4106118243^(7/23) 2584000077413059 a001 196418/3010349*4106118243^(11/23) 2584000077413059 a001 1346269/439204*1568397607^(7/22) 2584000077413059 a001 196418/3010349*1568397607^(1/2) 2584000077413059 a001 1346269/439204*599074578^(1/3) 2584000077413059 a001 196418/3010349*599074578^(11/21) 2584000077413059 a001 1346269/439204*228826127^(7/20) 2584000077413059 a001 196418/3010349*228826127^(11/20) 2584000077413059 a001 264431464442/102334155 2584000077413059 a001 1346269/439204*87403803^(7/19) 2584000077413059 a001 196418/3010349*87403803^(11/19) 2584000077413060 a001 1346269/439204*33385282^(7/18) 2584000077413060 a001 196418/3010349*33385282^(11/18) 2584000077413065 a001 1346269/439204*12752043^(7/17) 2584000077413069 a001 196418/3010349*12752043^(11/17) 2584000077413106 a001 1346269/439204*4870847^(7/16) 2584000077413114 a001 1762289/219602*1860498^(2/5) 2584000077413134 a001 196418/3010349*4870847^(11/16) 2584000077413139 a001 433494437/439204*710647^(1/14) 2584000077413152 a001 63245986/3010349*271443^(5/13) 2584000077413380 a001 196418/12752043*1860498^(5/6) 2584000077413407 a001 1346269/439204*1860498^(7/15) 2584000077413412 a001 98209/3940598*1860498^(4/5) 2584000077413424 a001 317811/710647*271443^(9/13) 2584000077413427 a001 196418/20633239*1860498^(13/15) 2584000077413443 a001 98209/16692641*1860498^(9/10) 2584000077413471 a001 196418/54018521*1860498^(14/15) 2584000077413504 a001 165580141/439204*710647^(1/7) 2584000077413520 a004 Fibonacci(27)*Lucas(30)/(1/2+sqrt(5)/2)^39 2584000077413606 a001 196418/3010349*1860498^(11/15) 2584000077413870 a001 31622993/219602*710647^(3/14) 2584000077414052 a001 39088169/439204*710647^(1/4) 2584000077414236 a001 24157817/439204*710647^(2/7) 2584000077414292 a001 701408733/710647*103682^(1/12) 2584000077414386 a001 63245986/271443*103682^(5/24) 2584000077414607 a001 9227465/439204*710647^(5/14) 2584000077414724 a001 196418/1149851*20633239^(4/7) 2584000077414728 a001 196418/1149851*2537720636^(4/9) 2584000077414728 a001 196418/1149851*(1/2+1/2*5^(1/2))^20 2584000077414728 a001 196418/1149851*23725150497407^(5/16) 2584000077414728 a001 196418/1149851*505019158607^(5/14) 2584000077414728 a001 514229/439204*(1/2+1/2*5^(1/2))^16 2584000077414728 a001 514229/439204*23725150497407^(1/4) 2584000077414728 a001 196418/1149851*73681302247^(5/13) 2584000077414728 a001 514229/439204*73681302247^(4/13) 2584000077414728 a001 196418/1149851*28143753123^(2/5) 2584000077414728 a001 514229/439204*10749957122^(1/3) 2584000077414728 a001 196418/1149851*10749957122^(5/12) 2584000077414728 a001 514229/439204*4106118243^(8/23) 2584000077414728 a001 196418/1149851*4106118243^(10/23) 2584000077414728 a001 514229/439204*1568397607^(4/11) 2584000077414728 a001 196418/1149851*1568397607^(5/11) 2584000077414728 a001 514229/439204*599074578^(8/21) 2584000077414728 a001 196418/1149851*599074578^(10/21) 2584000077414728 a001 514229/439204*228826127^(2/5) 2584000077414728 a001 196418/1149851*228826127^(1/2) 2584000077414728 a001 514229/439204*87403803^(8/19) 2584000077414728 a001 196418/1149851*87403803^(10/19) 2584000077414728 a001 101003831722/39088169 2584000077414729 a001 514229/439204*33385282^(4/9) 2584000077414729 a001 196418/1149851*33385282^(5/9) 2584000077414735 a001 514229/439204*12752043^(8/17) 2584000077414737 a001 196418/1149851*12752043^(10/17) 2584000077414782 a001 514229/439204*4870847^(1/2) 2584000077414796 a001 196418/1149851*4870847^(5/8) 2584000077414815 a001 829464/103361*271443^(6/13) 2584000077414822 a001 24157817/1149851*271443^(5/13) 2584000077415008 a001 1762289/219602*710647^(3/7) 2584000077415096 a001 832040/710647*271443^(8/13) 2584000077415126 a001 514229/439204*1860498^(8/15) 2584000077415226 a001 196418/1149851*1860498^(2/3) 2584000077415455 a001 39088169/4870847*271443^(6/13) 2584000077415471 a001 433494437/439204*271443^(1/13) 2584000077415548 a001 34111385/4250681*271443^(6/13) 2584000077415562 a001 133957148/16692641*271443^(6/13) 2584000077415564 a001 233802911/29134601*271443^(6/13) 2584000077415564 a001 1836311903/228826127*271443^(6/13) 2584000077415564 a001 267084832/33281921*271443^(6/13) 2584000077415564 a001 12586269025/1568397607*271443^(6/13) 2584000077415564 a001 10983760033/1368706081*271443^(6/13) 2584000077415564 a001 43133785636/5374978561*271443^(6/13) 2584000077415564 a001 75283811239/9381251041*271443^(6/13) 2584000077415564 a001 591286729879/73681302247*271443^(6/13) 2584000077415564 a001 86000486440/10716675201*271443^(6/13) 2584000077415564 a001 4052739537881/505019158607*271443^(6/13) 2584000077415564 a001 3536736619241/440719107401*271443^(6/13) 2584000077415564 a001 3278735159921/408569081798*271443^(6/13) 2584000077415564 a001 2504730781961/312119004989*271443^(6/13) 2584000077415564 a001 956722026041/119218851371*271443^(6/13) 2584000077415564 a001 182717648081/22768774562*271443^(6/13) 2584000077415564 a001 139583862445/17393796001*271443^(6/13) 2584000077415564 a001 53316291173/6643838879*271443^(6/13) 2584000077415564 a001 10182505537/1268860318*271443^(6/13) 2584000077415564 a001 7778742049/969323029*271443^(6/13) 2584000077415564 a001 2971215073/370248451*271443^(6/13) 2584000077415564 a001 567451585/70711162*271443^(6/13) 2584000077415565 a001 433494437/54018521*271443^(6/13) 2584000077415570 a001 165580141/20633239*271443^(6/13) 2584000077415606 a001 31622993/3940598*271443^(6/13) 2584000077415617 a001 1346269/439204*710647^(1/2) 2584000077415850 a001 24157817/3010349*271443^(6/13) 2584000077415864 a001 98209/930249*710647^(3/4) 2584000077416173 a001 9227465/1860498*271443^(1/2) 2584000077416304 a001 17711/167761*39603^(21/22) 2584000077416805 a001 24157817/4870847*271443^(1/2) 2584000077416897 a001 63245986/12752043*271443^(1/2) 2584000077416911 a001 165580141/33385282*271443^(1/2) 2584000077416913 a001 433494437/87403803*271443^(1/2) 2584000077416913 a001 1134903170/228826127*271443^(1/2) 2584000077416913 a001 2971215073/599074578*271443^(1/2) 2584000077416913 a001 7778742049/1568397607*271443^(1/2) 2584000077416913 a001 20365011074/4106118243*271443^(1/2) 2584000077416913 a001 53316291173/10749957122*271443^(1/2) 2584000077416913 a001 139583862445/28143753123*271443^(1/2) 2584000077416913 a001 365435296162/73681302247*271443^(1/2) 2584000077416913 a001 956722026041/192900153618*271443^(1/2) 2584000077416913 a001 2504730781961/505019158607*271443^(1/2) 2584000077416913 a001 10610209857723/2139295485799*271443^(1/2) 2584000077416913 a001 4052739537881/817138163596*271443^(1/2) 2584000077416913 a001 140728068720/28374454999*271443^(1/2) 2584000077416913 a001 591286729879/119218851371*271443^(1/2) 2584000077416913 a001 225851433717/45537549124*271443^(1/2) 2584000077416913 a001 86267571272/17393796001*271443^(1/2) 2584000077416913 a001 32951280099/6643838879*271443^(1/2) 2584000077416913 a001 1144206275/230701876*271443^(1/2) 2584000077416913 a001 4807526976/969323029*271443^(1/2) 2584000077416913 a001 1836311903/370248451*271443^(1/2) 2584000077416913 a001 701408733/141422324*271443^(1/2) 2584000077416914 a001 267914296/54018521*271443^(1/2) 2584000077416919 a001 9303105/1875749*271443^(1/2) 2584000077416954 a001 39088169/7881196*271443^(1/2) 2584000077417079 a001 196418/3010349*710647^(11/14) 2584000077417196 a001 14930352/3010349*271443^(1/2) 2584000077417201 a001 98209/3940598*710647^(6/7) 2584000077417239 a001 98209/219602*439204^(2/3) 2584000077417499 a001 5702887/1860498*271443^(7/13) 2584000077417525 a001 9227465/1149851*271443^(6/13) 2584000077417531 a001 196418/20633239*710647^(13/14) 2584000077417652 a001 514229/439204*710647^(4/7) 2584000077417890 a004 Fibonacci(27)*Lucas(28)/(1/2+sqrt(5)/2)^37 2584000077418151 a001 14930352/4870847*271443^(7/13) 2584000077418169 a001 165580141/439204*271443^(2/13) 2584000077418246 a001 39088169/12752043*271443^(7/13) 2584000077418259 a001 14619165/4769326*271443^(7/13) 2584000077418261 a001 267914296/87403803*271443^(7/13) 2584000077418262 a001 701408733/228826127*271443^(7/13) 2584000077418262 a001 1836311903/599074578*271443^(7/13) 2584000077418262 a001 686789568/224056801*271443^(7/13) 2584000077418262 a001 12586269025/4106118243*271443^(7/13) 2584000077418262 a001 32951280099/10749957122*271443^(7/13) 2584000077418262 a001 86267571272/28143753123*271443^(7/13) 2584000077418262 a001 32264490531/10525900321*271443^(7/13) 2584000077418262 a001 591286729879/192900153618*271443^(7/13) 2584000077418262 a001 1548008755920/505019158607*271443^(7/13) 2584000077418262 a001 1515744265389/494493258286*271443^(7/13) 2584000077418262 a001 2504730781961/817138163596*271443^(7/13) 2584000077418262 a001 956722026041/312119004989*271443^(7/13) 2584000077418262 a001 365435296162/119218851371*271443^(7/13) 2584000077418262 a001 139583862445/45537549124*271443^(7/13) 2584000077418262 a001 53316291173/17393796001*271443^(7/13) 2584000077418262 a001 20365011074/6643838879*271443^(7/13) 2584000077418262 a001 7778742049/2537720636*271443^(7/13) 2584000077418262 a001 2971215073/969323029*271443^(7/13) 2584000077418262 a001 1134903170/370248451*271443^(7/13) 2584000077418262 a001 433494437/141422324*271443^(7/13) 2584000077418263 a001 165580141/54018521*271443^(7/13) 2584000077418268 a001 63245986/20633239*271443^(7/13) 2584000077418304 a001 24157817/7881196*271443^(7/13) 2584000077418383 a001 196418/1149851*710647^(5/7) 2584000077418553 a001 9227465/3010349*271443^(7/13) 2584000077418663 a001 1836311903/1860498*103682^(1/12) 2584000077418851 a001 5702887/1149851*271443^(1/2) 2584000077419030 a001 28657/271443*64079^(21/23) 2584000077419300 a001 4807526976/4870847*103682^(1/12) 2584000077419393 a001 12586269025/12752043*103682^(1/12) 2584000077419407 a001 32951280099/33385282*103682^(1/12) 2584000077419409 a001 86267571272/87403803*103682^(1/12) 2584000077419409 a001 225851433717/228826127*103682^(1/12) 2584000077419409 a001 591286729879/599074578*103682^(1/12) 2584000077419409 a001 1548008755920/1568397607*103682^(1/12) 2584000077419409 a001 4052739537881/4106118243*103682^(1/12) 2584000077419409 a001 4807525989/4870846*103682^(1/12) 2584000077419409 a001 6557470319842/6643838879*103682^(1/12) 2584000077419409 a001 2504730781961/2537720636*103682^(1/12) 2584000077419409 a001 956722026041/969323029*103682^(1/12) 2584000077419409 a001 365435296162/370248451*103682^(1/12) 2584000077419409 a001 139583862445/141422324*103682^(1/12) 2584000077419410 a001 53316291173/54018521*103682^(1/12) 2584000077419415 a001 20365011074/20633239*103682^(1/12) 2584000077419451 a001 7778742049/7881196*103682^(1/12) 2584000077419694 a001 2971215073/3010349*103682^(1/12) 2584000077420104 a001 726103/620166*271443^(8/13) 2584000077420258 a001 3524578/1149851*271443^(7/13) 2584000077420492 a001 105937/620166*271443^(10/13) 2584000077420835 a001 5702887/4870847*271443^(8/13) 2584000077420867 a001 31622993/219602*271443^(3/13) 2584000077420941 a001 4976784/4250681*271443^(8/13) 2584000077420957 a001 39088169/33385282*271443^(8/13) 2584000077420959 a001 34111385/29134601*271443^(8/13) 2584000077420959 a001 267914296/228826127*271443^(8/13) 2584000077420959 a001 233802911/199691526*271443^(8/13) 2584000077420959 a001 1836311903/1568397607*271443^(8/13) 2584000077420959 a001 1602508992/1368706081*271443^(8/13) 2584000077420959 a001 12586269025/10749957122*271443^(8/13) 2584000077420959 a001 10983760033/9381251041*271443^(8/13) 2584000077420959 a001 86267571272/73681302247*271443^(8/13) 2584000077420959 a001 75283811239/64300051206*271443^(8/13) 2584000077420959 a001 2504730781961/2139295485799*271443^(8/13) 2584000077420959 a001 365435296162/312119004989*271443^(8/13) 2584000077420959 a001 139583862445/119218851371*271443^(8/13) 2584000077420959 a001 53316291173/45537549124*271443^(8/13) 2584000077420959 a001 20365011074/17393796001*271443^(8/13) 2584000077420959 a001 7778742049/6643838879*271443^(8/13) 2584000077420959 a001 2971215073/2537720636*271443^(8/13) 2584000077420960 a001 1134903170/969323029*271443^(8/13) 2584000077420960 a001 433494437/370248451*271443^(8/13) 2584000077420960 a001 165580141/141422324*271443^(8/13) 2584000077420961 a001 63245986/54018521*271443^(8/13) 2584000077420966 a001 24157817/20633239*271443^(8/13) 2584000077421007 a001 9227465/7881196*271443^(8/13) 2584000077421084 a001 75025/103682*103682^(17/24) 2584000077421286 a001 3524578/3010349*271443^(8/13) 2584000077421363 a001 1134903170/1149851*103682^(1/12) 2584000077422164 a001 416020/930249*271443^(9/13) 2584000077422789 a001 701408733/439204*103682^(1/24) 2584000077423199 a001 1346269/1149851*271443^(8/13) 2584000077423439 a001 2178309/4870847*271443^(9/13) 2584000077423565 a001 24157817/439204*271443^(4/13) 2584000077423625 a001 5702887/12752043*271443^(9/13) 2584000077423653 a001 7465176/16692641*271443^(9/13) 2584000077423657 a001 39088169/87403803*271443^(9/13) 2584000077423657 a001 102334155/228826127*271443^(9/13) 2584000077423657 a001 133957148/299537289*271443^(9/13) 2584000077423657 a001 701408733/1568397607*271443^(9/13) 2584000077423657 a001 1836311903/4106118243*271443^(9/13) 2584000077423657 a001 2403763488/5374978561*271443^(9/13) 2584000077423657 a001 12586269025/28143753123*271443^(9/13) 2584000077423657 a001 32951280099/73681302247*271443^(9/13) 2584000077423657 a001 43133785636/96450076809*271443^(9/13) 2584000077423657 a001 225851433717/505019158607*271443^(9/13) 2584000077423657 a001 10610209857723/23725150497407*271443^(9/13) 2584000077423657 a001 182717648081/408569081798*271443^(9/13) 2584000077423657 a001 139583862445/312119004989*271443^(9/13) 2584000077423657 a001 53316291173/119218851371*271443^(9/13) 2584000077423657 a001 10182505537/22768774562*271443^(9/13) 2584000077423657 a001 7778742049/17393796001*271443^(9/13) 2584000077423657 a001 2971215073/6643838879*271443^(9/13) 2584000077423657 a001 567451585/1268860318*271443^(9/13) 2584000077423657 a001 433494437/969323029*271443^(9/13) 2584000077423657 a001 165580141/370248451*271443^(9/13) 2584000077423657 a001 31622993/70711162*271443^(9/13) 2584000077423659 a001 24157817/54018521*271443^(9/13) 2584000077423669 a001 9227465/20633239*271443^(9/13) 2584000077423740 a001 1762289/3940598*271443^(9/13) 2584000077423827 a001 317811/4870847*271443^(11/13) 2584000077424227 a001 1346269/3010349*271443^(9/13) 2584000077424308 a001 433494437/710647*103682^(1/8) 2584000077424401 a001 39088169/271443*103682^(1/4) 2584000077425499 a001 832040/4870847*271443^(10/13) 2584000077426146 a001 98209/219602*7881196^(6/11) 2584000077426169 a001 98209/219602*141422324^(6/13) 2584000077426169 a001 98209/219602*2537720636^(2/5) 2584000077426169 a001 98209/219602*45537549124^(6/17) 2584000077426169 a001 98209/219602*14662949395604^(2/7) 2584000077426169 a001 98209/219602*(1/2+1/2*5^(1/2))^18 2584000077426169 a001 98209/219602*192900153618^(1/3) 2584000077426169 a001 98209/219602*10749957122^(3/8) 2584000077426169 a001 98209/219602*4106118243^(9/23) 2584000077426169 a001 98209/219602*1568397607^(9/22) 2584000077426169 a001 98209/219602*599074578^(3/7) 2584000077426169 a001 98209/219602*228826127^(9/20) 2584000077426169 a001 98209/219602*87403803^(9/19) 2584000077426170 a001 98209/219602*33385282^(1/2) 2584000077426171 a001 567353393/219564 2584000077426177 a001 98209/219602*12752043^(9/17) 2584000077426230 a001 726103/4250681*271443^(10/13) 2584000077426230 a001 98209/219602*4870847^(9/16) 2584000077426268 a001 9227465/439204*271443^(5/13) 2584000077426337 a001 5702887/33385282*271443^(10/13) 2584000077426352 a001 4976784/29134601*271443^(10/13) 2584000077426354 a001 39088169/228826127*271443^(10/13) 2584000077426355 a001 34111385/199691526*271443^(10/13) 2584000077426355 a001 267914296/1568397607*271443^(10/13) 2584000077426355 a001 233802911/1368706081*271443^(10/13) 2584000077426355 a001 1836311903/10749957122*271443^(10/13) 2584000077426355 a001 1602508992/9381251041*271443^(10/13) 2584000077426355 a001 12586269025/73681302247*271443^(10/13) 2584000077426355 a001 10983760033/64300051206*271443^(10/13) 2584000077426355 a001 86267571272/505019158607*271443^(10/13) 2584000077426355 a001 75283811239/440719107401*271443^(10/13) 2584000077426355 a001 2504730781961/14662949395604*271443^(10/13) 2584000077426355 a001 139583862445/817138163596*271443^(10/13) 2584000077426355 a001 53316291173/312119004989*271443^(10/13) 2584000077426355 a001 20365011074/119218851371*271443^(10/13) 2584000077426355 a001 7778742049/45537549124*271443^(10/13) 2584000077426355 a001 2971215073/17393796001*271443^(10/13) 2584000077426355 a001 1134903170/6643838879*271443^(10/13) 2584000077426355 a001 433494437/2537720636*271443^(10/13) 2584000077426355 a001 165580141/969323029*271443^(10/13) 2584000077426355 a001 63245986/370248451*271443^(10/13) 2584000077426356 a001 24157817/141422324*271443^(10/13) 2584000077426362 a001 9227465/54018521*271443^(10/13) 2584000077426403 a001 3524578/20633239*271443^(10/13) 2584000077426617 a001 98209/219602*1860498^(3/5) 2584000077426618 a001 105937/4250681*271443^(12/13) 2584000077426682 a001 1346269/7881196*271443^(10/13) 2584000077427566 a001 514229/1149851*271443^(9/13) 2584000077428290 a001 832040/12752043*271443^(11/13) 2584000077428594 a001 514229/3010349*271443^(10/13) 2584000077428678 a001 567451585/930249*103682^(1/8) 2584000077428941 a001 311187/4769326*271443^(11/13) 2584000077429001 a001 1762289/219602*271443^(6/13) 2584000077429036 a001 5702887/87403803*271443^(11/13) 2584000077429050 a001 14930352/228826127*271443^(11/13) 2584000077429052 a001 39088169/599074578*271443^(11/13) 2584000077429053 a001 14619165/224056801*271443^(11/13) 2584000077429053 a001 267914296/4106118243*271443^(11/13) 2584000077429053 a001 701408733/10749957122*271443^(11/13) 2584000077429053 a001 1836311903/28143753123*271443^(11/13) 2584000077429053 a001 686789568/10525900321*271443^(11/13) 2584000077429053 a001 12586269025/192900153618*271443^(11/13) 2584000077429053 a001 32951280099/505019158607*271443^(11/13) 2584000077429053 a001 86267571272/1322157322203*271443^(11/13) 2584000077429053 a001 32264490531/494493258286*271443^(11/13) 2584000077429053 a001 1548008755920/23725150497407*271443^(11/13) 2584000077429053 a001 139583862445/2139295485799*271443^(11/13) 2584000077429053 a001 53316291173/817138163596*271443^(11/13) 2584000077429053 a001 20365011074/312119004989*271443^(11/13) 2584000077429053 a001 7778742049/119218851371*271443^(11/13) 2584000077429053 a001 2971215073/45537549124*271443^(11/13) 2584000077429053 a001 1134903170/17393796001*271443^(11/13) 2584000077429053 a001 433494437/6643838879*271443^(11/13) 2584000077429053 a001 165580141/2537720636*271443^(11/13) 2584000077429053 a001 63245986/969323029*271443^(11/13) 2584000077429053 a001 24157817/370248451*271443^(11/13) 2584000077429059 a001 9227465/141422324*271443^(11/13) 2584000077429095 a001 3524578/54018521*271443^(11/13) 2584000077429316 a001 2971215073/4870847*103682^(1/8) 2584000077429331 a004 Fibonacci(28)*Lucas(26)/(1/2+sqrt(5)/2)^36 2584000077429344 a001 1346269/20633239*271443^(11/13) 2584000077429409 a001 7778742049/12752043*103682^(1/8) 2584000077429422 a001 10182505537/16692641*103682^(1/8) 2584000077429424 a001 53316291173/87403803*103682^(1/8) 2584000077429425 a001 139583862445/228826127*103682^(1/8) 2584000077429425 a001 182717648081/299537289*103682^(1/8) 2584000077429425 a001 956722026041/1568397607*103682^(1/8) 2584000077429425 a001 2504730781961/4106118243*103682^(1/8) 2584000077429425 a001 3278735159921/5374978561*103682^(1/8) 2584000077429425 a001 10610209857723/17393796001*103682^(1/8) 2584000077429425 a001 4052739537881/6643838879*103682^(1/8) 2584000077429425 a001 1134903780/1860499*103682^(1/8) 2584000077429425 a001 591286729879/969323029*103682^(1/8) 2584000077429425 a001 225851433717/370248451*103682^(1/8) 2584000077429425 a001 21566892818/35355581*103682^(1/8) 2584000077429426 a001 32951280099/54018521*103682^(1/8) 2584000077429431 a001 1144206275/1875749*103682^(1/8) 2584000077429458 a001 98209/219602*710647^(9/14) 2584000077429466 a001 1201881744/1970299*103682^(1/8) 2584000077429710 a001 1836311903/3010349*103682^(1/8) 2584000077430200 a001 2178309/439204*271443^(1/2) 2584000077430987 a001 317811/167761*167761^(3/5) 2584000077431001 a001 416020/16692641*271443^(12/13) 2584000077431049 a001 514229/7881196*271443^(11/13) 2584000077431136 a001 75025/439204*167761^(4/5) 2584000077431379 a001 701408733/1149851*103682^(1/8) 2584000077431641 a001 726103/29134601*271443^(12/13) 2584000077431734 a001 5702887/228826127*271443^(12/13) 2584000077431748 a001 829464/33281921*271443^(12/13) 2584000077431750 a001 39088169/1568397607*271443^(12/13) 2584000077431750 a001 34111385/1368706081*271443^(12/13) 2584000077431750 a001 133957148/5374978561*271443^(12/13) 2584000077431750 a001 233802911/9381251041*271443^(12/13) 2584000077431750 a001 1836311903/73681302247*271443^(12/13) 2584000077431750 a001 267084832/10716675201*271443^(12/13) 2584000077431750 a001 12586269025/505019158607*271443^(12/13) 2584000077431750 a001 10983760033/440719107401*271443^(12/13) 2584000077431750 a001 43133785636/1730726404001*271443^(12/13) 2584000077431750 a001 75283811239/3020733700601*271443^(12/13) 2584000077431750 a001 182717648081/7331474697802*271443^(12/13) 2584000077431750 a001 139583862445/5600748293801*271443^(12/13) 2584000077431750 a001 53316291173/2139295485799*271443^(12/13) 2584000077431750 a001 10182505537/408569081798*271443^(12/13) 2584000077431750 a001 7778742049/312119004989*271443^(12/13) 2584000077431750 a001 2971215073/119218851371*271443^(12/13) 2584000077431750 a001 567451585/22768774562*271443^(12/13) 2584000077431750 a001 433494437/17393796001*271443^(12/13) 2584000077431750 a001 165580141/6643838879*271443^(12/13) 2584000077431750 a001 31622993/1268860318*271443^(12/13) 2584000077431751 a001 24157817/969323029*271443^(12/13) 2584000077431756 a001 9227465/370248451*271443^(12/13) 2584000077431792 a001 1762289/70711162*271443^(12/13) 2584000077431942 a001 1346269/439204*271443^(7/13) 2584000077432036 a001 1346269/54018521*271443^(12/13) 2584000077432805 a001 433494437/439204*103682^(1/12) 2584000077433701 a004 Fibonacci(30)*Lucas(26)/(1/2+sqrt(5)/2)^38 2584000077433711 a001 514229/20633239*271443^(12/13) 2584000077434324 a001 267914296/710647*103682^(1/6) 2584000077434339 a004 Fibonacci(32)*Lucas(26)/(1/2+sqrt(5)/2)^40 2584000077434418 a001 24157817/271443*103682^(7/24) 2584000077434432 a004 Fibonacci(34)*Lucas(26)/(1/2+sqrt(5)/2)^42 2584000077434446 a004 Fibonacci(36)*Lucas(26)/(1/2+sqrt(5)/2)^44 2584000077434448 a004 Fibonacci(38)*Lucas(26)/(1/2+sqrt(5)/2)^46 2584000077434448 a004 Fibonacci(40)*Lucas(26)/(1/2+sqrt(5)/2)^48 2584000077434448 a004 Fibonacci(42)*Lucas(26)/(1/2+sqrt(5)/2)^50 2584000077434448 a004 Fibonacci(44)*Lucas(26)/(1/2+sqrt(5)/2)^52 2584000077434448 a004 Fibonacci(46)*Lucas(26)/(1/2+sqrt(5)/2)^54 2584000077434448 a004 Fibonacci(48)*Lucas(26)/(1/2+sqrt(5)/2)^56 2584000077434448 a004 Fibonacci(50)*Lucas(26)/(1/2+sqrt(5)/2)^58 2584000077434448 a004 Fibonacci(52)*Lucas(26)/(1/2+sqrt(5)/2)^60 2584000077434448 a004 Fibonacci(54)*Lucas(26)/(1/2+sqrt(5)/2)^62 2584000077434448 a004 Fibonacci(56)*Lucas(26)/(1/2+sqrt(5)/2)^64 2584000077434448 a004 Fibonacci(58)*Lucas(26)/(1/2+sqrt(5)/2)^66 2584000077434448 a004 Fibonacci(60)*Lucas(26)/(1/2+sqrt(5)/2)^68 2584000077434448 a004 Fibonacci(62)*Lucas(26)/(1/2+sqrt(5)/2)^70 2584000077434448 a004 Fibonacci(64)*Lucas(26)/(1/2+sqrt(5)/2)^72 2584000077434448 a004 Fibonacci(66)*Lucas(26)/(1/2+sqrt(5)/2)^74 2584000077434448 a004 Fibonacci(68)*Lucas(26)/(1/2+sqrt(5)/2)^76 2584000077434448 a004 Fibonacci(70)*Lucas(26)/(1/2+sqrt(5)/2)^78 2584000077434448 a004 Fibonacci(72)*Lucas(26)/(1/2+sqrt(5)/2)^80 2584000077434448 a004 Fibonacci(74)*Lucas(26)/(1/2+sqrt(5)/2)^82 2584000077434448 a004 Fibonacci(76)*Lucas(26)/(1/2+sqrt(5)/2)^84 2584000077434448 a004 Fibonacci(78)*Lucas(26)/(1/2+sqrt(5)/2)^86 2584000077434448 a004 Fibonacci(80)*Lucas(26)/(1/2+sqrt(5)/2)^88 2584000077434448 a004 Fibonacci(82)*Lucas(26)/(1/2+sqrt(5)/2)^90 2584000077434448 a004 Fibonacci(84)*Lucas(26)/(1/2+sqrt(5)/2)^92 2584000077434448 a004 Fibonacci(86)*Lucas(26)/(1/2+sqrt(5)/2)^94 2584000077434448 a004 Fibonacci(88)*Lucas(26)/(1/2+sqrt(5)/2)^96 2584000077434448 a004 Fibonacci(90)*Lucas(26)/(1/2+sqrt(5)/2)^98 2584000077434448 a004 Fibonacci(92)*Lucas(26)/(1/2+sqrt(5)/2)^100 2584000077434448 a004 Fibonacci(91)*Lucas(26)/(1/2+sqrt(5)/2)^99 2584000077434448 a004 Fibonacci(89)*Lucas(26)/(1/2+sqrt(5)/2)^97 2584000077434448 a004 Fibonacci(87)*Lucas(26)/(1/2+sqrt(5)/2)^95 2584000077434448 a004 Fibonacci(85)*Lucas(26)/(1/2+sqrt(5)/2)^93 2584000077434448 a004 Fibonacci(83)*Lucas(26)/(1/2+sqrt(5)/2)^91 2584000077434448 a004 Fibonacci(81)*Lucas(26)/(1/2+sqrt(5)/2)^89 2584000077434448 a004 Fibonacci(79)*Lucas(26)/(1/2+sqrt(5)/2)^87 2584000077434448 a004 Fibonacci(77)*Lucas(26)/(1/2+sqrt(5)/2)^85 2584000077434448 a004 Fibonacci(75)*Lucas(26)/(1/2+sqrt(5)/2)^83 2584000077434448 a004 Fibonacci(73)*Lucas(26)/(1/2+sqrt(5)/2)^81 2584000077434448 a004 Fibonacci(71)*Lucas(26)/(1/2+sqrt(5)/2)^79 2584000077434448 a004 Fibonacci(69)*Lucas(26)/(1/2+sqrt(5)/2)^77 2584000077434448 a004 Fibonacci(67)*Lucas(26)/(1/2+sqrt(5)/2)^75 2584000077434448 a004 Fibonacci(65)*Lucas(26)/(1/2+sqrt(5)/2)^73 2584000077434448 a004 Fibonacci(63)*Lucas(26)/(1/2+sqrt(5)/2)^71 2584000077434448 a004 Fibonacci(61)*Lucas(26)/(1/2+sqrt(5)/2)^69 2584000077434448 a004 Fibonacci(59)*Lucas(26)/(1/2+sqrt(5)/2)^67 2584000077434448 a004 Fibonacci(57)*Lucas(26)/(1/2+sqrt(5)/2)^65 2584000077434448 a004 Fibonacci(55)*Lucas(26)/(1/2+sqrt(5)/2)^63 2584000077434448 a004 Fibonacci(53)*Lucas(26)/(1/2+sqrt(5)/2)^61 2584000077434448 a001 2/121393*(1/2+1/2*5^(1/2))^44 2584000077434448 a004 Fibonacci(51)*Lucas(26)/(1/2+sqrt(5)/2)^59 2584000077434448 a004 Fibonacci(49)*Lucas(26)/(1/2+sqrt(5)/2)^57 2584000077434448 a004 Fibonacci(47)*Lucas(26)/(1/2+sqrt(5)/2)^55 2584000077434448 a004 Fibonacci(45)*Lucas(26)/(1/2+sqrt(5)/2)^53 2584000077434448 a004 Fibonacci(43)*Lucas(26)/(1/2+sqrt(5)/2)^51 2584000077434448 a004 Fibonacci(41)*Lucas(26)/(1/2+sqrt(5)/2)^49 2584000077434448 a004 Fibonacci(39)*Lucas(26)/(1/2+sqrt(5)/2)^47 2584000077434449 a004 Fibonacci(37)*Lucas(26)/(1/2+sqrt(5)/2)^45 2584000077434454 a004 Fibonacci(35)*Lucas(26)/(1/2+sqrt(5)/2)^43 2584000077434490 a004 Fibonacci(33)*Lucas(26)/(1/2+sqrt(5)/2)^41 2584000077434733 a004 Fibonacci(31)*Lucas(26)/(1/2+sqrt(5)/2)^39 2584000077436309 a001 514229/439204*271443^(8/13) 2584000077436402 a004 Fibonacci(29)*Lucas(26)/(1/2+sqrt(5)/2)^37 2584000077436470 a001 165580141/167761*64079^(2/23) 2584000077438694 a001 233802911/620166*103682^(1/6) 2584000077439196 a001 433494437/271443*39603^(1/22) 2584000077439331 a001 1836311903/4870847*103682^(1/6) 2584000077439424 a001 1602508992/4250681*103682^(1/6) 2584000077439438 a001 12586269025/33385282*103682^(1/6) 2584000077439440 a001 10983760033/29134601*103682^(1/6) 2584000077439440 a001 86267571272/228826127*103682^(1/6) 2584000077439440 a001 267913919/710646*103682^(1/6) 2584000077439440 a001 591286729879/1568397607*103682^(1/6) 2584000077439440 a001 516002918640/1368706081*103682^(1/6) 2584000077439440 a001 4052739537881/10749957122*103682^(1/6) 2584000077439440 a001 3536736619241/9381251041*103682^(1/6) 2584000077439440 a001 6557470319842/17393796001*103682^(1/6) 2584000077439440 a001 2504730781961/6643838879*103682^(1/6) 2584000077439440 a001 956722026041/2537720636*103682^(1/6) 2584000077439440 a001 365435296162/969323029*103682^(1/6) 2584000077439440 a001 139583862445/370248451*103682^(1/6) 2584000077439440 a001 53316291173/141422324*103682^(1/6) 2584000077439441 a001 20365011074/54018521*103682^(1/6) 2584000077439446 a001 7778742049/20633239*103682^(1/6) 2584000077439482 a001 2971215073/7881196*103682^(1/6) 2584000077439725 a001 1134903170/3010349*103682^(1/6) 2584000077440135 a001 28657/439204*64079^(22/23) 2584000077441115 a001 46368/167761*103682^(19/24) 2584000077441395 a001 433494437/1149851*103682^(1/6) 2584000077441705 a001 196418/1149851*271443^(10/13) 2584000077442733 a001 196418/3010349*271443^(11/13) 2584000077442820 a001 66978574/109801*103682^(1/8) 2584000077444339 a001 165580141/710647*103682^(5/24) 2584000077444430 a001 4976784/90481*103682^(1/3) 2584000077445187 a001 98209/3940598*271443^(12/13) 2584000077445700 a001 24157817/39603*15127^(3/20) 2584000077447843 a004 Fibonacci(27)*Lucas(26)/(1/2+sqrt(5)/2)^35 2584000077448709 a001 433494437/1860498*103682^(5/24) 2584000077449347 a001 1134903170/4870847*103682^(5/24) 2584000077449440 a001 2971215073/12752043*103682^(5/24) 2584000077449453 a001 7778742049/33385282*103682^(5/24) 2584000077449455 a001 20365011074/87403803*103682^(5/24) 2584000077449456 a001 53316291173/228826127*103682^(5/24) 2584000077449456 a001 139583862445/599074578*103682^(5/24) 2584000077449456 a001 365435296162/1568397607*103682^(5/24) 2584000077449456 a001 956722026041/4106118243*103682^(5/24) 2584000077449456 a001 2504730781961/10749957122*103682^(5/24) 2584000077449456 a001 6557470319842/28143753123*103682^(5/24) 2584000077449456 a001 10610209857723/45537549124*103682^(5/24) 2584000077449456 a001 4052739537881/17393796001*103682^(5/24) 2584000077449456 a001 1548008755920/6643838879*103682^(5/24) 2584000077449456 a001 591286729879/2537720636*103682^(5/24) 2584000077449456 a001 225851433717/969323029*103682^(5/24) 2584000077449456 a001 86267571272/370248451*103682^(5/24) 2584000077449456 a001 63246219/271444*103682^(5/24) 2584000077449457 a001 12586269025/54018521*103682^(5/24) 2584000077449462 a001 4807526976/20633239*103682^(5/24) 2584000077449497 a001 1836311903/7881196*103682^(5/24) 2584000077449741 a001 701408733/3010349*103682^(5/24) 2584000077450448 a001 98209/219602*271443^(9/13) 2584000077451410 a001 267914296/1149851*103682^(5/24) 2584000077452836 a001 165580141/439204*103682^(1/6) 2584000077454355 a001 14619165/101521*103682^(1/4) 2584000077454454 a001 9227465/271443*103682^(3/8) 2584000077454508 a001 3524578/167761*167761^(2/5) 2584000077456081 a001 9107509825/3524578 2584000077456122 a001 75025/271443*817138163596^(1/3) 2584000077456122 a001 75025/271443*(1/2+1/2*5^(1/2))^19 2584000077456122 a001 121393/167761*45537549124^(1/3) 2584000077456122 a001 121393/167761*(1/2+1/2*5^(1/2))^17 2584000077456123 a001 75025/271443*87403803^(1/2) 2584000077456130 a001 121393/167761*12752043^(1/2) 2584000077458558 a001 39088169/103682*39603^(2/11) 2584000077458725 a001 133957148/930249*103682^(1/4) 2584000077459362 a001 701408733/4870847*103682^(1/4) 2584000077459455 a001 1836311903/12752043*103682^(1/4) 2584000077459469 a001 14930208/103681*103682^(1/4) 2584000077459471 a001 12586269025/87403803*103682^(1/4) 2584000077459471 a001 32951280099/228826127*103682^(1/4) 2584000077459471 a001 43133785636/299537289*103682^(1/4) 2584000077459471 a001 32264490531/224056801*103682^(1/4) 2584000077459471 a001 591286729879/4106118243*103682^(1/4) 2584000077459471 a001 774004377960/5374978561*103682^(1/4) 2584000077459471 a001 4052739537881/28143753123*103682^(1/4) 2584000077459471 a001 1515744265389/10525900321*103682^(1/4) 2584000077459471 a001 3278735159921/22768774562*103682^(1/4) 2584000077459471 a001 2504730781961/17393796001*103682^(1/4) 2584000077459471 a001 956722026041/6643838879*103682^(1/4) 2584000077459471 a001 182717648081/1268860318*103682^(1/4) 2584000077459471 a001 139583862445/969323029*103682^(1/4) 2584000077459471 a001 53316291173/370248451*103682^(1/4) 2584000077459471 a001 10182505537/70711162*103682^(1/4) 2584000077459472 a001 7778742049/54018521*103682^(1/4) 2584000077459477 a001 2971215073/20633239*103682^(1/4) 2584000077459513 a001 567451585/3940598*103682^(1/4) 2584000077459756 a001 433494437/3010349*103682^(1/4) 2584000077461426 a001 165580141/1149851*103682^(1/4) 2584000077462851 a001 102334155/439204*103682^(5/24) 2584000077463831 a001 267914296/167761*64079^(1/23) 2584000077464370 a001 63245986/710647*103682^(7/24) 2584000077464448 a001 5702887/271443*103682^(5/12) 2584000077468740 a001 165580141/1860498*103682^(7/24) 2584000077469150 a001 1134903170/710647*39603^(1/22) 2584000077469378 a001 433494437/4870847*103682^(7/24) 2584000077469471 a001 1134903170/12752043*103682^(7/24) 2584000077469484 a001 2971215073/33385282*103682^(7/24) 2584000077469486 a001 7778742049/87403803*103682^(7/24) 2584000077469487 a001 20365011074/228826127*103682^(7/24) 2584000077469487 a001 53316291173/599074578*103682^(7/24) 2584000077469487 a001 139583862445/1568397607*103682^(7/24) 2584000077469487 a001 365435296162/4106118243*103682^(7/24) 2584000077469487 a001 956722026041/10749957122*103682^(7/24) 2584000077469487 a001 2504730781961/28143753123*103682^(7/24) 2584000077469487 a001 6557470319842/73681302247*103682^(7/24) 2584000077469487 a001 10610209857723/119218851371*103682^(7/24) 2584000077469487 a001 4052739537881/45537549124*103682^(7/24) 2584000077469487 a001 1548008755920/17393796001*103682^(7/24) 2584000077469487 a001 591286729879/6643838879*103682^(7/24) 2584000077469487 a001 225851433717/2537720636*103682^(7/24) 2584000077469487 a001 86267571272/969323029*103682^(7/24) 2584000077469487 a001 32951280099/370248451*103682^(7/24) 2584000077469487 a001 12586269025/141422324*103682^(7/24) 2584000077469488 a001 4807526976/54018521*103682^(7/24) 2584000077469493 a001 1836311903/20633239*103682^(7/24) 2584000077469528 a001 3524667/39604*103682^(7/24) 2584000077469772 a001 267914296/3010349*103682^(7/24) 2584000077471441 a001 102334155/1149851*103682^(7/24) 2584000077472829 a001 39088169/167761*167761^(1/5) 2584000077472867 a001 31622993/219602*103682^(1/4) 2584000077473520 a001 2971215073/1860498*39603^(1/22) 2584000077474157 a001 7778742049/4870847*39603^(1/22) 2584000077474250 a001 20365011074/12752043*39603^(1/22) 2584000077474264 a001 53316291173/33385282*39603^(1/22) 2584000077474266 a001 139583862445/87403803*39603^(1/22) 2584000077474266 a001 365435296162/228826127*39603^(1/22) 2584000077474266 a001 956722026041/599074578*39603^(1/22) 2584000077474266 a001 2504730781961/1568397607*39603^(1/22) 2584000077474266 a001 6557470319842/4106118243*39603^(1/22) 2584000077474266 a001 10610209857723/6643838879*39603^(1/22) 2584000077474266 a001 4052739537881/2537720636*39603^(1/22) 2584000077474266 a001 1548008755920/969323029*39603^(1/22) 2584000077474266 a001 591286729879/370248451*39603^(1/22) 2584000077474266 a001 225851433717/141422324*39603^(1/22) 2584000077474267 a001 86267571272/54018521*39603^(1/22) 2584000077474272 a001 32951280099/20633239*39603^(1/22) 2584000077474308 a001 12586269025/7881196*39603^(1/22) 2584000077474385 a001 39088169/710647*103682^(1/3) 2584000077474521 a001 3524578/271443*103682^(11/24) 2584000077474551 a001 4807526976/3010349*39603^(1/22) 2584000077475657 a001 75025/710647*439204^(7/9) 2584000077476221 a001 1836311903/1149851*39603^(1/22) 2584000077477797 a004 Fibonacci(25)*Lucas(27)/(1/2+sqrt(5)/2)^34 2584000077478634 a001 317811/167761*439204^(5/9) 2584000077478756 a001 831985/15126*103682^(1/3) 2584000077479393 a001 267914296/4870847*103682^(1/3) 2584000077479486 a001 233802911/4250681*103682^(1/3) 2584000077479500 a001 1836311903/33385282*103682^(1/3) 2584000077479502 a001 1602508992/29134601*103682^(1/3) 2584000077479502 a001 12586269025/228826127*103682^(1/3) 2584000077479502 a001 10983760033/199691526*103682^(1/3) 2584000077479502 a001 86267571272/1568397607*103682^(1/3) 2584000077479502 a001 75283811239/1368706081*103682^(1/3) 2584000077479502 a001 591286729879/10749957122*103682^(1/3) 2584000077479502 a001 12585437040/228811001*103682^(1/3) 2584000077479502 a001 4052739537881/73681302247*103682^(1/3) 2584000077479502 a001 3536736619241/64300051206*103682^(1/3) 2584000077479502 a001 6557470319842/119218851371*103682^(1/3) 2584000077479502 a001 2504730781961/45537549124*103682^(1/3) 2584000077479502 a001 956722026041/17393796001*103682^(1/3) 2584000077479502 a001 365435296162/6643838879*103682^(1/3) 2584000077479502 a001 139583862445/2537720636*103682^(1/3) 2584000077479502 a001 53316291173/969323029*103682^(1/3) 2584000077479502 a001 20365011074/370248451*103682^(1/3) 2584000077479502 a001 7778742049/141422324*103682^(1/3) 2584000077479503 a001 2971215073/54018521*103682^(1/3) 2584000077479508 a001 1134903170/20633239*103682^(1/3) 2584000077479544 a001 433494437/7881196*103682^(1/3) 2584000077479570 a001 75025/3010349*439204^(8/9) 2584000077479787 a001 165580141/3010349*103682^(1/3) 2584000077481457 a001 63245986/1149851*103682^(1/3) 2584000077482882 a001 39088169/439204*103682^(7/24) 2584000077484386 a001 726103/90481*103682^(1/2) 2584000077484402 a001 24157817/710647*103682^(3/8) 2584000077485524 a001 1346269/167761*439204^(4/9) 2584000077486049 a001 75025/710647*7881196^(7/11) 2584000077486057 a001 317811/167761*7881196^(5/11) 2584000077486070 a001 366827235/141961 2584000077486072 a001 75025/710647*20633239^(3/5) 2584000077486073 a001 317811/167761*20633239^(3/7) 2584000077486076 a001 75025/710647*141422324^(7/13) 2584000077486076 a001 317811/167761*141422324^(5/13) 2584000077486076 a001 75025/710647*2537720636^(7/15) 2584000077486076 a001 317811/167761*2537720636^(1/3) 2584000077486076 a001 75025/710647*17393796001^(3/7) 2584000077486076 a001 75025/710647*45537549124^(7/17) 2584000077486076 a001 75025/710647*14662949395604^(1/3) 2584000077486076 a001 75025/710647*(1/2+1/2*5^(1/2))^21 2584000077486076 a001 75025/710647*192900153618^(7/18) 2584000077486076 a001 317811/167761*45537549124^(5/17) 2584000077486076 a001 317811/167761*312119004989^(3/11) 2584000077486076 a001 317811/167761*14662949395604^(5/21) 2584000077486076 a001 317811/167761*(1/2+1/2*5^(1/2))^15 2584000077486076 a001 317811/167761*192900153618^(5/18) 2584000077486076 a001 317811/167761*28143753123^(3/10) 2584000077486076 a001 75025/710647*10749957122^(7/16) 2584000077486076 a001 317811/167761*10749957122^(5/16) 2584000077486076 a001 317811/167761*599074578^(5/14) 2584000077486076 a001 75025/710647*599074578^(1/2) 2584000077486076 a001 317811/167761*228826127^(3/8) 2584000077486077 a001 317811/167761*33385282^(5/12) 2584000077486077 a001 75025/710647*33385282^(7/12) 2584000077486449 a001 317811/167761*1860498^(1/2) 2584000077486598 a001 75025/710647*1860498^(7/10) 2584000077486711 a001 5702887/167761*439204^(1/3) 2584000077487662 a001 701408733/439204*39603^(1/22) 2584000077488216 a001 24157817/167761*439204^(2/9) 2584000077488772 a001 31622993/930249*103682^(3/8) 2584000077489238 a004 Fibonacci(25)*Lucas(29)/(1/2+sqrt(5)/2)^36 2584000077489409 a001 165580141/4870847*103682^(3/8) 2584000077489502 a001 433494437/12752043*103682^(3/8) 2584000077489516 a001 567451585/16692641*103682^(3/8) 2584000077489518 a001 2971215073/87403803*103682^(3/8) 2584000077489518 a001 7778742049/228826127*103682^(3/8) 2584000077489518 a001 10182505537/299537289*103682^(3/8) 2584000077489518 a001 53316291173/1568397607*103682^(3/8) 2584000077489518 a001 139583862445/4106118243*103682^(3/8) 2584000077489518 a001 182717648081/5374978561*103682^(3/8) 2584000077489518 a001 956722026041/28143753123*103682^(3/8) 2584000077489518 a001 2504730781961/73681302247*103682^(3/8) 2584000077489518 a001 3278735159921/96450076809*103682^(3/8) 2584000077489518 a001 10610209857723/312119004989*103682^(3/8) 2584000077489518 a001 4052739537881/119218851371*103682^(3/8) 2584000077489518 a001 387002188980/11384387281*103682^(3/8) 2584000077489518 a001 591286729879/17393796001*103682^(3/8) 2584000077489518 a001 225851433717/6643838879*103682^(3/8) 2584000077489518 a001 1135099622/33391061*103682^(3/8) 2584000077489518 a001 32951280099/969323029*103682^(3/8) 2584000077489518 a001 12586269025/370248451*103682^(3/8) 2584000077489518 a001 1201881744/35355581*103682^(3/8) 2584000077489519 a001 1836311903/54018521*103682^(3/8) 2584000077489524 a001 701408733/20633239*103682^(3/8) 2584000077489559 a001 66978574/1970299*103682^(3/8) 2584000077489704 a001 9303105/15251*439204^(1/9) 2584000077489803 a001 102334155/3010349*103682^(3/8) 2584000077489913 a001 75025/710647*710647^(3/4) 2584000077490445 a001 62423801000/24157817 2584000077490446 a001 75640/15251*141422324^(1/3) 2584000077490446 a001 75025/1860498*(1/2+1/2*5^(1/2))^23 2584000077490446 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^23/Lucas(30) 2584000077490446 a001 75640/15251*(1/2+1/2*5^(1/2))^13 2584000077490446 a001 75640/15251*73681302247^(1/4) 2584000077490446 a001 75025/1860498*4106118243^(1/2) 2584000077490907 a004 Fibonacci(25)*Lucas(31)/(1/2+sqrt(5)/2)^38 2584000077491070 a001 2178309/167761*7881196^(1/3) 2584000077491079 a001 75025/4870847*20633239^(5/7) 2584000077491083 a001 163427632725/63245986 2584000077491083 a001 75025/4870847*2537720636^(5/9) 2584000077491083 a001 75025/4870847*312119004989^(5/11) 2584000077491083 a001 75025/4870847*(1/2+1/2*5^(1/2))^25 2584000077491083 a001 75025/4870847*3461452808002^(5/12) 2584000077491083 a001 75025/4870847*28143753123^(1/2) 2584000077491083 a001 2178309/167761*312119004989^(1/5) 2584000077491083 a001 2178309/167761*(1/2+1/2*5^(1/2))^11 2584000077491083 a001 2178309/167761*1568397607^(1/4) 2584000077491083 a001 75025/4870847*228826127^(5/8) 2584000077491142 a001 75025/12752043*7881196^(9/11) 2584000077491151 a004 Fibonacci(25)*Lucas(33)/(1/2+sqrt(5)/2)^40 2584000077491155 a001 75025/54018521*7881196^(10/11) 2584000077491165 a001 5702887/167761*7881196^(3/11) 2584000077491176 a001 75025/12752043*141422324^(9/13) 2584000077491176 a001 5702887/167761*141422324^(3/13) 2584000077491176 a001 427859097175/165580141 2584000077491176 a001 75025/12752043*2537720636^(3/5) 2584000077491176 a001 5702887/167761*2537720636^(1/5) 2584000077491176 a001 75025/12752043*45537549124^(9/17) 2584000077491176 a001 75025/12752043*817138163596^(9/19) 2584000077491176 a001 75025/12752043*14662949395604^(3/7) 2584000077491176 a001 75025/12752043*(1/2+1/2*5^(1/2))^27 2584000077491176 a001 75025/12752043*192900153618^(1/2) 2584000077491176 a001 5702887/167761*45537549124^(3/17) 2584000077491176 a001 5702887/167761*817138163596^(3/19) 2584000077491176 a001 5702887/167761*14662949395604^(1/7) 2584000077491176 a001 5702887/167761*(1/2+1/2*5^(1/2))^9 2584000077491176 a001 5702887/167761*192900153618^(1/6) 2584000077491176 a001 5702887/167761*10749957122^(3/16) 2584000077491176 a001 75025/12752043*10749957122^(9/16) 2584000077491176 a001 5702887/167761*599074578^(3/14) 2584000077491176 a001 75025/12752043*599074578^(9/14) 2584000077491177 a001 5702887/167761*33385282^(1/4) 2584000077491178 a001 75025/12752043*33385282^(3/4) 2584000077491186 a001 24157817/167761*7881196^(2/11) 2584000077491186 a004 Fibonacci(25)*Lucas(35)/(1/2+sqrt(5)/2)^42 2584000077491188 a001 75025/54018521*20633239^(6/7) 2584000077491188 a001 9303105/15251*7881196^(1/11) 2584000077491189 a001 14930352/167761*20633239^(1/5) 2584000077491190 a001 1120149658800/433494437 2584000077491190 a001 75025/33385282*(1/2+1/2*5^(1/2))^29 2584000077491190 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^29/Lucas(36) 2584000077491190 a001 75025/33385282*1322157322203^(1/2) 2584000077491190 a001 14930352/167761*17393796001^(1/7) 2584000077491190 a001 14930352/167761*14662949395604^(1/9) 2584000077491190 a001 14930352/167761*(1/2+1/2*5^(1/2))^7 2584000077491190 a001 14930352/167761*599074578^(1/6) 2584000077491191 a001 39088169/167761*20633239^(1/7) 2584000077491191 a004 Fibonacci(25)*Lucas(37)/(1/2+sqrt(5)/2)^44 2584000077491192 a001 586517975845/226980634 2584000077491192 a001 39088169/167761*2537720636^(1/9) 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^31/Lucas(38) 2584000077491192 a001 75025/87403803*9062201101803^(1/2) 2584000077491192 a001 39088169/167761*312119004989^(1/11) 2584000077491192 a001 39088169/167761*(1/2+1/2*5^(1/2))^5 2584000077491192 a001 39088169/167761*28143753123^(1/10) 2584000077491192 a001 39088169/167761*228826127^(1/8) 2584000077491192 a001 75025/228826127*141422324^(11/13) 2584000077491192 a004 Fibonacci(25)*Lucas(39)/(1/2+sqrt(5)/2)^46 2584000077491192 a001 75025/969323029*141422324^(12/13) 2584000077491192 a001 9303105/15251*141422324^(1/13) 2584000077491192 a001 75025/228826127*2537720636^(11/15) 2584000077491192 a001 7677619978875/2971215073 2584000077491192 a001 9303105/15251*2537720636^(1/15) 2584000077491192 a001 75025/228826127*45537549124^(11/17) 2584000077491192 a001 75025/228826127*312119004989^(3/5) 2584000077491192 a001 75025/228826127*14662949395604^(11/21) 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^33/Lucas(40) 2584000077491192 a001 75025/228826127*192900153618^(11/18) 2584000077491192 a001 9303105/15251*45537549124^(1/17) 2584000077491192 a001 9303105/15251*14662949395604^(1/21) 2584000077491192 a001 9303105/15251*(1/2+1/2*5^(1/2))^3 2584000077491192 a001 9303105/15251*192900153618^(1/18) 2584000077491192 a001 9303105/15251*10749957122^(1/16) 2584000077491192 a001 75025/228826127*10749957122^(11/16) 2584000077491192 a001 9303105/15251*599074578^(1/14) 2584000077491192 a001 75025/228826127*1568397607^(3/4) 2584000077491192 a001 75025/228826127*599074578^(11/14) 2584000077491192 a004 Fibonacci(25)*Lucas(41)/(1/2+sqrt(5)/2)^48 2584000077491192 a001 75025/599074578*2537720636^(7/9) 2584000077491192 a001 1546174619800/598364773 2584000077491192 a001 75025/599074578*17393796001^(5/7) 2584000077491192 a001 75025/599074578*312119004989^(7/11) 2584000077491192 a001 75025/599074578*14662949395604^(5/9) 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^35/Lucas(42) 2584000077491192 a001 75025/599074578*505019158607^(5/8) 2584000077491192 a001 75025/599074578*28143753123^(7/10) 2584000077491192 a001 133957148/167761+133957148/167761*5^(1/2) 2584000077491192 a004 Fibonacci(25)*Lucas(43)/(1/2+sqrt(5)/2)^50 2584000077491192 a001 75025/599074578*599074578^(5/6) 2584000077491192 a001 52623190193325/20365011074 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^37/Lucas(44) 2584000077491192 a004 Fibonacci(44)/Lucas(25)/(1/2+sqrt(5)/2) 2584000077491192 a001 75025/4106118243*2537720636^(13/15) 2584000077491192 a004 Fibonacci(25)*Lucas(45)/(1/2+sqrt(5)/2)^52 2584000077491192 a001 75025/17393796001*2537720636^(14/15) 2584000077491192 a001 75025/6643838879*2537720636^(8/9) 2584000077491192 a001 75025/4106118243*45537549124^(13/17) 2584000077491192 a001 137769300522575/53316291173 2584000077491192 a001 75025/4106118243*14662949395604^(13/21) 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^39/Lucas(46) 2584000077491192 a001 75025/4106118243*192900153618^(13/18) 2584000077491192 a001 75025/4106118243*73681302247^(3/4) 2584000077491192 a004 Fibonacci(46)/Lucas(25)/(1/2+sqrt(5)/2)^3 2584000077491192 a001 75025/4106118243*10749957122^(13/16) 2584000077491192 a004 Fibonacci(25)*Lucas(47)/(1/2+sqrt(5)/2)^54 2584000077491192 a001 72136942274880/27916772489 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^41/Lucas(48) 2584000077491192 a004 Fibonacci(48)/Lucas(25)/(1/2+sqrt(5)/2)^5 2584000077491192 a004 Fibonacci(25)*Lucas(49)/(1/2+sqrt(5)/2)^56 2584000077491192 a001 944284833600625/365435296162 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^43/Lucas(50) 2584000077491192 a001 75025/73681302247*45537549124^(15/17) 2584000077491192 a004 Fibonacci(25)*Lucas(51)/(1/2+sqrt(5)/2)^58 2584000077491192 a001 75025/312119004989*45537549124^(16/17) 2584000077491192 a001 75025/73681302247*312119004989^(9/11) 2584000077491192 a001 2472169789427475/956722026041 2584000077491192 a001 75025/73681302247*14662949395604^(5/7) 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^45/Lucas(52) 2584000077491192 a001 75025/73681302247*192900153618^(5/6) 2584000077491192 a004 Fibonacci(25)*Lucas(53)/(1/2+sqrt(5)/2)^60 2584000077491192 a001 6472224534681800/2504730781961 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^47/Lucas(54) 2584000077491192 a004 Fibonacci(25)*Lucas(55)/(1/2+sqrt(5)/2)^62 2584000077491192 a001 75025/817138163596*312119004989^(10/11) 2584000077491192 a001 1303423370355225/504420793834 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^49/Lucas(56) 2584000077491192 a004 Fibonacci(25)*Lucas(57)/(1/2+sqrt(5)/2)^64 2584000077491192 a001 75025/1322157322203*14662949395604^(17/21) 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^51/Lucas(58) 2584000077491192 a004 Fibonacci(25)*Lucas(59)/(1/2+sqrt(5)/2)^66 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^53/Lucas(60) 2584000077491192 a004 Fibonacci(25)*Lucas(61)/(1/2+sqrt(5)/2)^68 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^55/Lucas(62) 2584000077491192 a004 Fibonacci(25)*Lucas(63)/(1/2+sqrt(5)/2)^70 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^57/Lucas(64) 2584000077491192 a004 Fibonacci(25)*Lucas(65)/(1/2+sqrt(5)/2)^72 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^59/Lucas(66) 2584000077491192 a004 Fibonacci(25)*Lucas(67)/(1/2+sqrt(5)/2)^74 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^61/Lucas(68) 2584000077491192 a004 Fibonacci(25)*Lucas(69)/(1/2+sqrt(5)/2)^76 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^63/Lucas(70) 2584000077491192 a004 Fibonacci(25)*Lucas(71)/(1/2+sqrt(5)/2)^78 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^65/Lucas(72) 2584000077491192 a004 Fibonacci(25)*Lucas(73)/(1/2+sqrt(5)/2)^80 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^67/Lucas(74) 2584000077491192 a004 Fibonacci(25)*Lucas(75)/(1/2+sqrt(5)/2)^82 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^69/Lucas(76) 2584000077491192 a004 Fibonacci(25)*Lucas(77)/(1/2+sqrt(5)/2)^84 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^71/Lucas(78) 2584000077491192 a004 Fibonacci(25)*Lucas(79)/(1/2+sqrt(5)/2)^86 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^73/Lucas(80) 2584000077491192 a004 Fibonacci(25)*Lucas(81)/(1/2+sqrt(5)/2)^88 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^75/Lucas(82) 2584000077491192 a004 Fibonacci(25)*Lucas(83)/(1/2+sqrt(5)/2)^90 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^77/Lucas(84) 2584000077491192 a004 Fibonacci(25)*Lucas(85)/(1/2+sqrt(5)/2)^92 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^79/Lucas(86) 2584000077491192 a004 Fibonacci(25)*Lucas(87)/(1/2+sqrt(5)/2)^94 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^81/Lucas(88) 2584000077491192 a004 Fibonacci(25)*Lucas(89)/(1/2+sqrt(5)/2)^96 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^83/Lucas(90) 2584000077491192 a004 Fibonacci(25)*Lucas(91)/(1/2+sqrt(5)/2)^98 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^85/Lucas(92) 2584000077491192 a004 Fibonacci(25)*Lucas(93)/(1/2+sqrt(5)/2)^100 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^87/Lucas(94) 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^89/Lucas(96) 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^91/Lucas(98) 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^92/Lucas(99) 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^93/Lucas(100) 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^90/Lucas(97) 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^88/Lucas(95) 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^86/Lucas(93) 2584000077491192 a004 Fibonacci(25)*Lucas(92)/(1/2+sqrt(5)/2)^99 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^84/Lucas(91) 2584000077491192 a004 Fibonacci(25)*Lucas(90)/(1/2+sqrt(5)/2)^97 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^82/Lucas(89) 2584000077491192 a004 Fibonacci(25)*Lucas(88)/(1/2+sqrt(5)/2)^95 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^80/Lucas(87) 2584000077491192 a004 Fibonacci(25)*Lucas(86)/(1/2+sqrt(5)/2)^93 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^78/Lucas(85) 2584000077491192 a004 Fibonacci(25)*Lucas(84)/(1/2+sqrt(5)/2)^91 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^76/Lucas(83) 2584000077491192 a004 Fibonacci(25)*Lucas(82)/(1/2+sqrt(5)/2)^89 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^74/Lucas(81) 2584000077491192 a004 Fibonacci(25)*Lucas(80)/(1/2+sqrt(5)/2)^87 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^72/Lucas(79) 2584000077491192 a004 Fibonacci(25)*Lucas(78)/(1/2+sqrt(5)/2)^85 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^70/Lucas(77) 2584000077491192 a004 Fibonacci(25)*Lucas(76)/(1/2+sqrt(5)/2)^83 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^68/Lucas(75) 2584000077491192 a004 Fibonacci(25)*Lucas(74)/(1/2+sqrt(5)/2)^81 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^66/Lucas(73) 2584000077491192 a004 Fibonacci(25)*Lucas(72)/(1/2+sqrt(5)/2)^79 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^64/Lucas(71) 2584000077491192 a004 Fibonacci(25)*Lucas(70)/(1/2+sqrt(5)/2)^77 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^62/Lucas(69) 2584000077491192 a004 Fibonacci(25)*Lucas(68)/(1/2+sqrt(5)/2)^75 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^60/Lucas(67) 2584000077491192 a004 Fibonacci(25)*Lucas(66)/(1/2+sqrt(5)/2)^73 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^58/Lucas(65) 2584000077491192 a004 Fibonacci(25)*Lucas(64)/(1/2+sqrt(5)/2)^71 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^56/Lucas(63) 2584000077491192 a004 Fibonacci(25)*Lucas(62)/(1/2+sqrt(5)/2)^69 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^54/Lucas(61) 2584000077491192 a004 Fibonacci(25)*Lucas(60)/(1/2+sqrt(5)/2)^67 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^52/Lucas(59) 2584000077491192 a004 Fibonacci(25)*Lucas(58)/(1/2+sqrt(5)/2)^65 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^50/Lucas(57) 2584000077491192 a001 27416783094554050/10610209857723 2584000077491192 a004 Fibonacci(25)*Lucas(56)/(1/2+sqrt(5)/2)^63 2584000077491192 a001 75025/312119004989*14662949395604^(16/21) 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^48/Lucas(55) 2584000077491192 a001 10472279279936125/4052739537881 2584000077491192 a001 75025/1322157322203*192900153618^(17/18) 2584000077491192 a004 Fibonacci(25)*Lucas(54)/(1/2+sqrt(5)/2)^61 2584000077491192 a001 75025/312119004989*192900153618^(8/9) 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^46/Lucas(53) 2584000077491192 a001 800010949050865/309601751184 2584000077491192 a001 75025/312119004989*73681302247^(12/13) 2584000077491192 a004 Fibonacci(25)*Lucas(52)/(1/2+sqrt(5)/2)^59 2584000077491192 a001 75025/17393796001*17393796001^(6/7) 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^44/Lucas(51) 2584000077491192 a001 75025/45537549124*23725150497407^(11/16) 2584000077491192 a001 1527884955826850/591286729879 2584000077491192 a001 75025/45537549124*73681302247^(11/13) 2584000077491192 a001 75025/73681302247*28143753123^(9/10) 2584000077491192 a004 Fibonacci(52)/Lucas(25)/(1/2+sqrt(5)/2)^9 2584000077491192 a004 Fibonacci(54)/Lucas(25)/(1/2+sqrt(5)/2)^11 2584000077491192 a004 Fibonacci(56)/Lucas(25)/(1/2+sqrt(5)/2)^13 2584000077491192 a004 Fibonacci(58)/Lucas(25)/(1/2+sqrt(5)/2)^15 2584000077491192 a004 Fibonacci(60)/Lucas(25)/(1/2+sqrt(5)/2)^17 2584000077491192 a004 Fibonacci(62)/Lucas(25)/(1/2+sqrt(5)/2)^19 2584000077491192 a004 Fibonacci(64)/Lucas(25)/(1/2+sqrt(5)/2)^21 2584000077491192 a004 Fibonacci(66)/Lucas(25)/(1/2+sqrt(5)/2)^23 2584000077491192 a004 Fibonacci(68)/Lucas(25)/(1/2+sqrt(5)/2)^25 2584000077491192 a004 Fibonacci(70)/Lucas(25)/(1/2+sqrt(5)/2)^27 2584000077491192 a004 Fibonacci(72)/Lucas(25)/(1/2+sqrt(5)/2)^29 2584000077491192 a004 Fibonacci(74)/Lucas(25)/(1/2+sqrt(5)/2)^31 2584000077491192 a004 Fibonacci(76)/Lucas(25)/(1/2+sqrt(5)/2)^33 2584000077491192 a004 Fibonacci(78)/Lucas(25)/(1/2+sqrt(5)/2)^35 2584000077491192 a004 Fibonacci(80)/Lucas(25)/(1/2+sqrt(5)/2)^37 2584000077491192 a004 Fibonacci(82)/Lucas(25)/(1/2+sqrt(5)/2)^39 2584000077491192 a004 Fibonacci(84)/Lucas(25)/(1/2+sqrt(5)/2)^41 2584000077491192 a004 Fibonacci(86)/Lucas(25)/(1/2+sqrt(5)/2)^43 2584000077491192 a004 Fibonacci(88)/Lucas(25)/(1/2+sqrt(5)/2)^45 2584000077491192 a004 Fibonacci(90)/Lucas(25)/(1/2+sqrt(5)/2)^47 2584000077491192 a004 Fibonacci(92)/Lucas(25)/(1/2+sqrt(5)/2)^49 2584000077491192 a004 Fibonacci(94)/Lucas(25)/(1/2+sqrt(5)/2)^51 2584000077491192 a004 Fibonacci(96)/Lucas(25)/(1/2+sqrt(5)/2)^53 2584000077491192 a004 Fibonacci(25)*Lucas(50)/(1/2+sqrt(5)/2)^57 2584000077491192 a004 Fibonacci(98)/Lucas(25)/(1/2+sqrt(5)/2)^55 2584000077491192 a004 Fibonacci(99)/Lucas(25)/(1/2+sqrt(5)/2)^56 2584000077491192 a004 Fibonacci(97)/Lucas(25)/(1/2+sqrt(5)/2)^54 2584000077491192 a004 Fibonacci(95)/Lucas(25)/(1/2+sqrt(5)/2)^52 2584000077491192 a004 Fibonacci(93)/Lucas(25)/(1/2+sqrt(5)/2)^50 2584000077491192 a004 Fibonacci(91)/Lucas(25)/(1/2+sqrt(5)/2)^48 2584000077491192 a004 Fibonacci(89)/Lucas(25)/(1/2+sqrt(5)/2)^46 2584000077491192 a004 Fibonacci(87)/Lucas(25)/(1/2+sqrt(5)/2)^44 2584000077491192 a004 Fibonacci(85)/Lucas(25)/(1/2+sqrt(5)/2)^42 2584000077491192 a004 Fibonacci(83)/Lucas(25)/(1/2+sqrt(5)/2)^40 2584000077491192 a004 Fibonacci(81)/Lucas(25)/(1/2+sqrt(5)/2)^38 2584000077491192 a004 Fibonacci(79)/Lucas(25)/(1/2+sqrt(5)/2)^36 2584000077491192 a004 Fibonacci(77)/Lucas(25)/(1/2+sqrt(5)/2)^34 2584000077491192 a004 Fibonacci(75)/Lucas(25)/(1/2+sqrt(5)/2)^32 2584000077491192 a004 Fibonacci(73)/Lucas(25)/(1/2+sqrt(5)/2)^30 2584000077491192 a004 Fibonacci(71)/Lucas(25)/(1/2+sqrt(5)/2)^28 2584000077491192 a004 Fibonacci(69)/Lucas(25)/(1/2+sqrt(5)/2)^26 2584000077491192 a004 Fibonacci(67)/Lucas(25)/(1/2+sqrt(5)/2)^24 2584000077491192 a004 Fibonacci(65)/Lucas(25)/(1/2+sqrt(5)/2)^22 2584000077491192 a004 Fibonacci(63)/Lucas(25)/(1/2+sqrt(5)/2)^20 2584000077491192 a004 Fibonacci(61)/Lucas(25)/(1/2+sqrt(5)/2)^18 2584000077491192 a004 Fibonacci(59)/Lucas(25)/(1/2+sqrt(5)/2)^16 2584000077491192 a004 Fibonacci(57)/Lucas(25)/(1/2+sqrt(5)/2)^14 2584000077491192 a004 Fibonacci(55)/Lucas(25)/(1/2+sqrt(5)/2)^12 2584000077491192 a004 Fibonacci(53)/Lucas(25)/(1/2+sqrt(5)/2)^10 2584000077491192 a004 Fibonacci(51)/Lucas(25)/(1/2+sqrt(5)/2)^8 2584000077491192 a001 75025/17393796001*45537549124^(14/17) 2584000077491192 a001 75025/17393796001*817138163596^(14/19) 2584000077491192 a001 75025/17393796001*14662949395604^(2/3) 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^42/Lucas(49) 2584000077491192 a001 44892317094325/17373187209 2584000077491192 a001 75025/17393796001*192900153618^(7/9) 2584000077491192 a004 Fibonacci(49)/Lucas(25)/(1/2+sqrt(5)/2)^6 2584000077491192 a001 75025/73681302247*10749957122^(15/16) 2584000077491192 a001 75025/119218851371*10749957122^(23/24) 2584000077491192 a001 75025/45537549124*10749957122^(11/12) 2584000077491192 a004 Fibonacci(25)*Lucas(48)/(1/2+sqrt(5)/2)^55 2584000077491192 a001 75025/17393796001*10749957122^(7/8) 2584000077491192 a001 75025/6643838879*312119004989^(8/11) 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^40/Lucas(47) 2584000077491192 a001 75025/6643838879*23725150497407^(5/8) 2584000077491192 a001 222915410851825/86267571272 2584000077491192 a001 75025/6643838879*73681302247^(10/13) 2584000077491192 a001 75025/6643838879*28143753123^(4/5) 2584000077491192 a004 Fibonacci(47)/Lucas(25)/(1/2+sqrt(5)/2)^4 2584000077491192 a001 75025/6643838879*10749957122^(5/6) 2584000077491192 a001 75025/45537549124*4106118243^(22/23) 2584000077491192 a001 75025/17393796001*4106118243^(21/23) 2584000077491192 a004 Fibonacci(25)*Lucas(46)/(1/2+sqrt(5)/2)^53 2584000077491192 a001 75025/6643838879*4106118243^(20/23) 2584000077491192 a001 75025/2537720636*817138163596^(2/3) 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^38/Lucas(45) 2584000077491192 a001 85146110329250/32951280099 2584000077491192 a004 Fibonacci(45)/Lucas(25)/(1/2+sqrt(5)/2)^2 2584000077491192 a001 75025/2537720636*10749957122^(19/24) 2584000077491192 a001 75025/2537720636*4106118243^(19/23) 2584000077491192 a001 75025/17393796001*1568397607^(21/22) 2584000077491192 a001 75025/6643838879*1568397607^(10/11) 2584000077491192 a004 Fibonacci(25)*Lucas(44)/(1/2+sqrt(5)/2)^51 2584000077491192 a001 75025/2537720636*1568397607^(19/22) 2584000077491192 a001 75025/969323029*2537720636^(4/5) 2584000077491192 a001 75025/969323029*45537549124^(12/17) 2584000077491192 a001 75025/969323029*14662949395604^(4/7) 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^36/Lucas(43) 2584000077491192 a001 75025/969323029*505019158607^(9/14) 2584000077491192 a001 75025/969323029*192900153618^(2/3) 2584000077491192 a001 75025/969323029*73681302247^(9/13) 2584000077491192 a001 433494437/167761 2584000077491192 a001 75025/969323029*10749957122^(3/4) 2584000077491192 a001 75025/969323029*4106118243^(18/23) 2584000077491192 a001 75025/969323029*1568397607^(9/11) 2584000077491192 a001 75025/4106118243*599074578^(13/14) 2584000077491192 a001 75025/2537720636*599074578^(19/21) 2584000077491192 a001 75025/6643838879*599074578^(20/21) 2584000077491192 a004 Fibonacci(25)*Lucas(42)/(1/2+sqrt(5)/2)^49 2584000077491192 a001 75025/969323029*599074578^(6/7) 2584000077491192 a001 75025/370248451*45537549124^(2/3) 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^34/Lucas(41) 2584000077491192 a001 165580141/167761*(1/2+1/2*5^(1/2))^2 2584000077491192 a001 165580141/167761*10749957122^(1/24) 2584000077491192 a001 165580141/167761*4106118243^(1/23) 2584000077491192 a001 75025/370248451*10749957122^(17/24) 2584000077491192 a001 12422650078525/4807526976 2584000077491192 a001 165580141/167761*1568397607^(1/22) 2584000077491192 a001 75025/370248451*4106118243^(17/23) 2584000077491192 a001 165580141/167761*599074578^(1/21) 2584000077491192 a001 75025/370248451*1568397607^(17/22) 2584000077491192 a001 165580141/167761*228826127^(1/20) 2584000077491192 a001 75025/370248451*599074578^(17/21) 2584000077491192 a001 75025/599074578*228826127^(7/8) 2584000077491192 a001 165580141/167761*87403803^(1/19) 2584000077491192 a001 75025/969323029*228826127^(9/10) 2584000077491192 a001 75025/2537720636*228826127^(19/20) 2584000077491192 a004 Fibonacci(25)*Lucas(40)/(1/2+sqrt(5)/2)^47 2584000077491192 a001 75025/370248451*228826127^(17/20) 2584000077491192 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^32/Lucas(39) 2584000077491192 a001 75025/141422324*23725150497407^(1/2) 2584000077491192 a001 75025/141422324*505019158607^(4/7) 2584000077491192 a001 75025/141422324*73681302247^(8/13) 2584000077491192 a001 63245986/167761*(1/2+1/2*5^(1/2))^4 2584000077491192 a001 63245986/167761*23725150497407^(1/16) 2584000077491192 a001 63245986/167761*73681302247^(1/13) 2584000077491192 a001 63245986/167761*10749957122^(1/12) 2584000077491192 a001 75025/141422324*10749957122^(2/3) 2584000077491192 a001 63245986/167761*4106118243^(2/23) 2584000077491192 a001 63245986/167761*1568397607^(1/11) 2584000077491192 a001 75025/141422324*4106118243^(16/23) 2584000077491192 a001 4745030099650/1836311903 2584000077491192 a001 63245986/167761*599074578^(2/21) 2584000077491192 a001 75025/141422324*1568397607^(8/11) 2584000077491192 a001 63245986/167761*228826127^(1/10) 2584000077491192 a001 75025/141422324*599074578^(16/21) 2584000077491192 a001 9303105/15251*33385282^(1/12) 2584000077491192 a001 165580141/167761*33385282^(1/18) 2584000077491192 a001 63245986/167761*87403803^(2/19) 2584000077491192 a001 75025/141422324*228826127^(4/5) 2584000077491193 a001 75025/370248451*87403803^(17/19) 2584000077491193 a001 75025/969323029*87403803^(18/19) 2584000077491193 a004 Fibonacci(25)*Lucas(38)/(1/2+sqrt(5)/2)^45 2584000077491193 a001 63245986/167761*33385282^(1/9) 2584000077491193 a001 75025/141422324*87403803^(16/19) 2584000077491193 a001 75025/54018521*141422324^(10/13) 2584000077491193 a001 24157817/167761*141422324^(2/13) 2584000077491193 a001 75025/54018521*2537720636^(2/3) 2584000077491193 a001 24157817/167761*2537720636^(2/15) 2584000077491193 a001 75025/54018521*45537549124^(10/17) 2584000077491193 a001 75025/54018521*312119004989^(6/11) 2584000077491193 a001 75025/54018521*14662949395604^(10/21) 2584000077491193 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^30/Lucas(37) 2584000077491193 a001 75025/54018521*192900153618^(5/9) 2584000077491193 a001 75025/54018521*28143753123^(3/5) 2584000077491193 a001 24157817/167761*45537549124^(2/17) 2584000077491193 a001 24157817/167761*14662949395604^(2/21) 2584000077491193 a001 24157817/167761*(1/2+1/2*5^(1/2))^6 2584000077491193 a001 24157817/167761*10749957122^(1/8) 2584000077491193 a001 75025/54018521*10749957122^(5/8) 2584000077491193 a001 24157817/167761*4106118243^(3/23) 2584000077491193 a001 75025/54018521*4106118243^(15/23) 2584000077491193 a001 24157817/167761*1568397607^(3/22) 2584000077491193 a001 75025/54018521*1568397607^(15/22) 2584000077491193 a001 24157817/167761*599074578^(1/7) 2584000077491193 a001 1812440220425/701408733 2584000077491193 a001 75025/54018521*599074578^(5/7) 2584000077491193 a001 24157817/167761*228826127^(3/20) 2584000077491193 a001 75025/54018521*228826127^(3/4) 2584000077491193 a001 24157817/167761*87403803^(3/19) 2584000077491193 a001 165580141/167761*12752043^(1/17) 2584000077491193 a001 75025/54018521*87403803^(15/19) 2584000077491194 a001 75025/20633239*20633239^(4/5) 2584000077491194 a001 24157817/167761*33385282^(1/6) 2584000077491194 a001 63245986/167761*12752043^(2/17) 2584000077491194 a001 75025/228826127*33385282^(11/12) 2584000077491195 a001 75025/141422324*33385282^(8/9) 2584000077491195 a001 75025/370248451*33385282^(17/18) 2584000077491195 a004 Fibonacci(25)*Lucas(36)/(1/2+sqrt(5)/2)^43 2584000077491195 a001 75025/54018521*33385282^(5/6) 2584000077491196 a001 24157817/167761*12752043^(3/17) 2584000077491198 a001 75025/20633239*17393796001^(4/7) 2584000077491198 a001 75025/20633239*14662949395604^(4/9) 2584000077491198 a001 75025/20633239*(1/2+1/2*5^(1/2))^28 2584000077491198 a001 75025/20633239*73681302247^(7/13) 2584000077491198 a001 9227465/167761*(1/2+1/2*5^(1/2))^8 2584000077491198 a001 9227465/167761*23725150497407^(1/8) 2584000077491198 a001 9227465/167761*505019158607^(1/7) 2584000077491198 a001 9227465/167761*73681302247^(2/13) 2584000077491198 a001 9227465/167761*10749957122^(1/6) 2584000077491198 a001 75025/20633239*10749957122^(7/12) 2584000077491198 a001 9227465/167761*4106118243^(4/23) 2584000077491198 a001 75025/20633239*4106118243^(14/23) 2584000077491198 a001 9227465/167761*1568397607^(2/11) 2584000077491198 a001 75025/20633239*1568397607^(7/11) 2584000077491198 a001 9227465/167761*599074578^(4/21) 2584000077491198 a001 75025/20633239*599074578^(2/3) 2584000077491198 a001 53253120125/20608792 2584000077491198 a001 9227465/167761*228826127^(1/5) 2584000077491198 a001 75025/20633239*228826127^(7/10) 2584000077491198 a001 9227465/167761*87403803^(4/19) 2584000077491199 a001 75025/20633239*87403803^(14/19) 2584000077491199 a001 9227465/167761*33385282^(2/9) 2584000077491199 a001 165580141/167761*4870847^(1/16) 2584000077491200 a001 75025/20633239*33385282^(7/9) 2584000077491202 a001 9227465/167761*12752043^(4/17) 2584000077491206 a001 63245986/167761*4870847^(1/8) 2584000077491207 a001 75025/54018521*12752043^(15/17) 2584000077491207 a001 75025/141422324*12752043^(16/17) 2584000077491208 a004 Fibonacci(25)*Lucas(34)/(1/2+sqrt(5)/2)^41 2584000077491211 a001 75025/20633239*12752043^(14/17) 2584000077491214 a001 24157817/167761*4870847^(3/16) 2584000077491226 a001 9227465/167761*4870847^(1/4) 2584000077491232 a001 3524578/167761*20633239^(2/7) 2584000077491234 a001 75025/7881196*141422324^(2/3) 2584000077491234 a001 3524578/167761*2537720636^(2/9) 2584000077491234 a001 75025/7881196*(1/2+1/2*5^(1/2))^26 2584000077491234 a001 75025/7881196*73681302247^(1/2) 2584000077491234 a001 3524578/167761*312119004989^(2/11) 2584000077491234 a001 3524578/167761*(1/2+1/2*5^(1/2))^10 2584000077491234 a001 3524578/167761*28143753123^(1/5) 2584000077491234 a001 3524578/167761*10749957122^(5/24) 2584000077491234 a001 75025/7881196*10749957122^(13/24) 2584000077491234 a001 3524578/167761*4106118243^(5/23) 2584000077491234 a001 75025/7881196*4106118243^(13/23) 2584000077491234 a001 3524578/167761*1568397607^(5/22) 2584000077491234 a001 75025/7881196*1568397607^(13/22) 2584000077491234 a001 3524578/167761*599074578^(5/21) 2584000077491234 a001 75025/7881196*599074578^(13/21) 2584000077491234 a001 3524578/167761*228826127^(1/4) 2584000077491234 a001 75025/7881196*228826127^(13/20) 2584000077491234 a001 52886292890/20466831 2584000077491234 a001 3524578/167761*87403803^(5/19) 2584000077491234 a001 75025/7881196*87403803^(13/19) 2584000077491235 a001 3524578/167761*33385282^(5/18) 2584000077491236 a001 75025/7881196*33385282^(13/18) 2584000077491239 a001 3524578/167761*12752043^(5/17) 2584000077491242 a001 165580141/167761*1860498^(1/15) 2584000077491246 a001 75025/7881196*12752043^(13/17) 2584000077491267 a001 9303105/15251*1860498^(1/10) 2584000077491268 a001 3524578/167761*4870847^(5/16) 2584000077491292 a001 63245986/167761*1860498^(2/15) 2584000077491294 a001 75025/20633239*4870847^(7/8) 2584000077491295 a001 75025/54018521*4870847^(15/16) 2584000077491301 a004 Fibonacci(25)*Lucas(32)/(1/2+sqrt(5)/2)^39 2584000077491316 a001 39088169/167761*1860498^(1/6) 2584000077491322 a001 75025/7881196*4870847^(13/16) 2584000077491343 a001 24157817/167761*1860498^(1/5) 2584000077491397 a001 9227465/167761*1860498^(4/15) 2584000077491400 a001 5702887/167761*1860498^(3/10) 2584000077491447 a001 75025/3010349*7881196^(8/11) 2584000077491462 a001 1346269/167761*7881196^(4/11) 2584000077491472 a001 39088169/1149851*103682^(3/8) 2584000077491477 a001 75025/3010349*141422324^(8/13) 2584000077491477 a001 1346269/167761*141422324^(4/13) 2584000077491477 a001 75025/3010349*2537720636^(8/15) 2584000077491477 a001 1346269/167761*2537720636^(4/15) 2584000077491477 a001 75025/3010349*45537549124^(8/17) 2584000077491477 a001 75025/3010349*14662949395604^(8/21) 2584000077491477 a001 75025/3010349*(1/2+1/2*5^(1/2))^24 2584000077491477 a001 75025/3010349*192900153618^(4/9) 2584000077491477 a001 75025/3010349*73681302247^(6/13) 2584000077491477 a001 1346269/167761*45537549124^(4/17) 2584000077491477 a001 1346269/167761*817138163596^(4/19) 2584000077491477 a001 1346269/167761*14662949395604^(4/21) 2584000077491477 a001 1346269/167761*(1/2+1/2*5^(1/2))^12 2584000077491477 a001 1346269/167761*192900153618^(2/9) 2584000077491477 a001 1346269/167761*73681302247^(3/13) 2584000077491477 a001 1346269/167761*10749957122^(1/4) 2584000077491477 a001 75025/3010349*10749957122^(1/2) 2584000077491477 a001 1346269/167761*4106118243^(6/23) 2584000077491477 a001 75025/3010349*4106118243^(12/23) 2584000077491477 a001 1346269/167761*1568397607^(3/11) 2584000077491477 a001 75025/3010349*1568397607^(6/11) 2584000077491477 a001 1346269/167761*599074578^(2/7) 2584000077491477 a001 75025/3010349*599074578^(4/7) 2584000077491477 a001 1346269/167761*228826127^(3/10) 2584000077491477 a001 75025/3010349*228826127^(3/5) 2584000077491478 a001 1346269/167761*87403803^(6/19) 2584000077491478 a001 75025/3010349*87403803^(12/19) 2584000077491478 a001 101003831725/39088169 2584000077491478 a001 1346269/167761*33385282^(1/3) 2584000077491479 a001 75025/3010349*33385282^(2/3) 2584000077491483 a001 3524578/167761*1860498^(1/3) 2584000077491483 a001 1346269/167761*12752043^(6/17) 2584000077491489 a001 75025/3010349*12752043^(12/17) 2584000077491518 a001 1346269/167761*4870847^(3/8) 2584000077491558 a001 165580141/167761*710647^(1/14) 2584000077491559 a001 75025/3010349*4870847^(3/4) 2584000077491706 a001 75025/4870847*1860498^(5/6) 2584000077491776 a001 1346269/167761*1860498^(2/5) 2584000077491848 a001 75025/12752043*1860498^(9/10) 2584000077491881 a001 75025/7881196*1860498^(13/15) 2584000077491895 a001 75025/20633239*1860498^(14/15) 2584000077491923 a001 63245986/167761*710647^(1/7) 2584000077491939 a004 Fibonacci(25)*Lucas(30)/(1/2+sqrt(5)/2)^37 2584000077492075 a001 75025/3010349*1860498^(4/5) 2584000077492290 a001 24157817/167761*710647^(3/14) 2584000077492469 a001 14930352/167761*710647^(1/4) 2584000077492660 a001 9227465/167761*710647^(2/7) 2584000077492899 a001 24157817/439204*103682^(1/3) 2584000077493061 a001 3524578/167761*710647^(5/14) 2584000077493119 a001 75025/1149851*7881196^(2/3) 2584000077493144 a001 514229/167761*20633239^(2/5) 2584000077493147 a001 75025/1149851*312119004989^(2/5) 2584000077493147 a001 75025/1149851*(1/2+1/2*5^(1/2))^22 2584000077493147 a001 514229/167761*17393796001^(2/7) 2584000077493147 a001 514229/167761*14662949395604^(2/9) 2584000077493147 a001 514229/167761*(1/2+1/2*5^(1/2))^14 2584000077493147 a001 514229/167761*505019158607^(1/4) 2584000077493147 a001 514229/167761*10749957122^(7/24) 2584000077493147 a001 75025/1149851*10749957122^(11/24) 2584000077493147 a001 514229/167761*4106118243^(7/23) 2584000077493147 a001 75025/1149851*4106118243^(11/23) 2584000077493147 a001 514229/167761*1568397607^(7/22) 2584000077493147 a001 75025/1149851*1568397607^(1/2) 2584000077493147 a001 514229/167761*599074578^(1/3) 2584000077493147 a001 75025/1149851*599074578^(11/21) 2584000077493147 a001 514229/167761*228826127^(7/20) 2584000077493147 a001 75025/1149851*228826127^(11/20) 2584000077493147 a001 514229/167761*87403803^(7/19) 2584000077493147 a001 75025/1149851*87403803^(11/19) 2584000077493148 a001 514229/167761*33385282^(7/18) 2584000077493148 a001 75025/1149851*33385282^(11/18) 2584000077493149 a001 38580030725/14930352 2584000077493153 a001 514229/167761*12752043^(7/17) 2584000077493157 a001 75025/1149851*12752043^(11/17) 2584000077493194 a001 514229/167761*4870847^(7/16) 2584000077493222 a001 75025/1149851*4870847^(11/16) 2584000077493495 a001 514229/167761*1860498^(7/15) 2584000077493670 a001 1346269/167761*710647^(3/7) 2584000077493694 a001 75025/1149851*1860498^(11/15) 2584000077493890 a001 165580141/167761*271443^(1/13) 2584000077494414 a001 14930352/710647*103682^(5/12) 2584000077494795 a001 1346269/271443*103682^(13/24) 2584000077495705 a001 514229/167761*710647^(1/2) 2584000077495863 a001 75025/3010349*710647^(6/7) 2584000077495985 a001 75025/7881196*710647^(13/14) 2584000077496309 a004 Fibonacci(25)*Lucas(28)/(1/2+sqrt(5)/2)^35 2584000077496588 a001 63245986/167761*271443^(2/13) 2584000077497167 a001 75025/1149851*710647^(11/14) 2584000077498787 a001 39088169/1860498*103682^(5/12) 2584000077499286 a001 24157817/167761*271443^(3/13) 2584000077499424 a001 102334155/4870847*103682^(5/12) 2584000077499518 a001 267914296/12752043*103682^(5/12) 2584000077499531 a001 701408733/33385282*103682^(5/12) 2584000077499533 a001 1836311903/87403803*103682^(5/12) 2584000077499533 a001 102287808/4868641*103682^(5/12) 2584000077499533 a001 12586269025/599074578*103682^(5/12) 2584000077499533 a001 32951280099/1568397607*103682^(5/12) 2584000077499533 a001 86267571272/4106118243*103682^(5/12) 2584000077499533 a001 225851433717/10749957122*103682^(5/12) 2584000077499533 a001 591286729879/28143753123*103682^(5/12) 2584000077499533 a001 1548008755920/73681302247*103682^(5/12) 2584000077499533 a001 4052739537881/192900153618*103682^(5/12) 2584000077499533 a001 225749145909/10745088481*103682^(5/12) 2584000077499533 a001 6557470319842/312119004989*103682^(5/12) 2584000077499533 a001 2504730781961/119218851371*103682^(5/12) 2584000077499533 a001 956722026041/45537549124*103682^(5/12) 2584000077499533 a001 365435296162/17393796001*103682^(5/12) 2584000077499533 a001 139583862445/6643838879*103682^(5/12) 2584000077499533 a001 53316291173/2537720636*103682^(5/12) 2584000077499533 a001 20365011074/969323029*103682^(5/12) 2584000077499533 a001 7778742049/370248451*103682^(5/12) 2584000077499534 a001 2971215073/141422324*103682^(5/12) 2584000077499534 a001 1134903170/54018521*103682^(5/12) 2584000077499540 a001 433494437/20633239*103682^(5/12) 2584000077499575 a001 165580141/7881196*103682^(5/12) 2584000077499819 a001 63245986/3010349*103682^(5/12) 2584000077501208 a001 267914296/167761*103682^(1/24) 2584000077501489 a001 24157817/1149851*103682^(5/12) 2584000077501989 a001 9227465/167761*271443^(4/13) 2584000077502911 a001 196452/5779*103682^(3/8) 2584000077503779 a001 832040/271443*103682^(7/12) 2584000077504438 a001 9227465/710647*103682^(11/24) 2584000077504584 a001 75025/439204*20633239^(4/7) 2584000077504588 a001 75025/439204*2537720636^(4/9) 2584000077504588 a001 75025/439204*(1/2+1/2*5^(1/2))^20 2584000077504588 a001 75025/439204*23725150497407^(5/16) 2584000077504588 a001 75025/439204*505019158607^(5/14) 2584000077504588 a001 75025/439204*73681302247^(5/13) 2584000077504588 a001 75025/439204*28143753123^(2/5) 2584000077504588 a001 196418/167761*(1/2+1/2*5^(1/2))^16 2584000077504588 a001 196418/167761*23725150497407^(1/4) 2584000077504588 a001 196418/167761*73681302247^(4/13) 2584000077504588 a001 75025/439204*10749957122^(5/12) 2584000077504588 a001 196418/167761*10749957122^(1/3) 2584000077504588 a001 196418/167761*4106118243^(8/23) 2584000077504588 a001 75025/439204*4106118243^(10/23) 2584000077504588 a001 196418/167761*1568397607^(4/11) 2584000077504588 a001 75025/439204*1568397607^(5/11) 2584000077504588 a001 196418/167761*599074578^(8/21) 2584000077504588 a001 75025/439204*599074578^(10/21) 2584000077504588 a001 196418/167761*228826127^(2/5) 2584000077504588 a001 75025/439204*228826127^(1/2) 2584000077504588 a001 196418/167761*87403803^(8/19) 2584000077504588 a001 75025/439204*87403803^(10/19) 2584000077504589 a001 196418/167761*33385282^(4/9) 2584000077504589 a001 75025/439204*33385282^(5/9) 2584000077504595 a001 196418/167761*12752043^(8/17) 2584000077504597 a001 75025/439204*12752043^(10/17) 2584000077504604 a001 14736260450/5702887 2584000077504642 a001 196418/167761*4870847^(1/2) 2584000077504656 a001 75025/439204*4870847^(5/8) 2584000077504722 a001 3524578/167761*271443^(5/13) 2584000077504986 a001 196418/167761*1860498^(8/15) 2584000077505086 a001 75025/439204*1860498^(2/3) 2584000077507512 a001 196418/167761*710647^(4/7) 2584000077507664 a001 1346269/167761*271443^(6/13) 2584000077507981 a001 75640/15251*271443^(1/2) 2584000077508243 a001 75025/439204*710647^(5/7) 2584000077508803 a001 24157817/1860498*103682^(11/24) 2584000077509440 a001 63245986/4870847*103682^(11/24) 2584000077509518 a001 121393/271443*103682^(3/4) 2584000077509533 a001 165580141/12752043*103682^(11/24) 2584000077509547 a001 433494437/33385282*103682^(11/24) 2584000077509549 a001 1134903170/87403803*103682^(11/24) 2584000077509549 a001 2971215073/228826127*103682^(11/24) 2584000077509549 a001 7778742049/599074578*103682^(11/24) 2584000077509549 a001 20365011074/1568397607*103682^(11/24) 2584000077509549 a001 53316291173/4106118243*103682^(11/24) 2584000077509549 a001 139583862445/10749957122*103682^(11/24) 2584000077509549 a001 365435296162/28143753123*103682^(11/24) 2584000077509549 a001 956722026041/73681302247*103682^(11/24) 2584000077509549 a001 2504730781961/192900153618*103682^(11/24) 2584000077509549 a001 10610209857723/817138163596*103682^(11/24) 2584000077509549 a001 4052739537881/312119004989*103682^(11/24) 2584000077509549 a001 1548008755920/119218851371*103682^(11/24) 2584000077509549 a001 591286729879/45537549124*103682^(11/24) 2584000077509549 a001 7787980473/599786069*103682^(11/24) 2584000077509549 a001 86267571272/6643838879*103682^(11/24) 2584000077509549 a001 32951280099/2537720636*103682^(11/24) 2584000077509549 a001 12586269025/969323029*103682^(11/24) 2584000077509549 a001 4807526976/370248451*103682^(11/24) 2584000077509549 a001 1836311903/141422324*103682^(11/24) 2584000077509550 a001 701408733/54018521*103682^(11/24) 2584000077509555 a001 9238424/711491*103682^(11/24) 2584000077509591 a001 102334155/7881196*103682^(11/24) 2584000077509834 a001 39088169/3010349*103682^(11/24) 2584000077511223 a001 165580141/167761*103682^(1/12) 2584000077511501 a001 14930352/1149851*103682^(11/24) 2584000077512031 a001 514229/167761*271443^(7/13) 2584000077512935 a001 9227465/439204*103682^(5/12) 2584000077514085 a001 267914296/271443*39603^(1/11) 2584000077514432 a001 5702887/710647*103682^(1/2) 2584000077516496 a001 514229/271443*103682^(5/8) 2584000077518816 a001 829464/103361*103682^(1/2) 2584000077519440 a001 105937/90481*103682^(2/3) 2584000077519455 a001 39088169/4870847*103682^(1/2) 2584000077519549 a001 34111385/4250681*103682^(1/2) 2584000077519562 a001 133957148/16692641*103682^(1/2) 2584000077519564 a001 233802911/29134601*103682^(1/2) 2584000077519564 a001 1836311903/228826127*103682^(1/2) 2584000077519565 a001 267084832/33281921*103682^(1/2) 2584000077519565 a001 12586269025/1568397607*103682^(1/2) 2584000077519565 a001 10983760033/1368706081*103682^(1/2) 2584000077519565 a001 43133785636/5374978561*103682^(1/2) 2584000077519565 a001 75283811239/9381251041*103682^(1/2) 2584000077519565 a001 591286729879/73681302247*103682^(1/2) 2584000077519565 a001 86000486440/10716675201*103682^(1/2) 2584000077519565 a001 4052739537881/505019158607*103682^(1/2) 2584000077519565 a001 3278735159921/408569081798*103682^(1/2) 2584000077519565 a001 2504730781961/312119004989*103682^(1/2) 2584000077519565 a001 956722026041/119218851371*103682^(1/2) 2584000077519565 a001 182717648081/22768774562*103682^(1/2) 2584000077519565 a001 139583862445/17393796001*103682^(1/2) 2584000077519565 a001 53316291173/6643838879*103682^(1/2) 2584000077519565 a001 10182505537/1268860318*103682^(1/2) 2584000077519565 a001 7778742049/969323029*103682^(1/2) 2584000077519565 a001 2971215073/370248451*103682^(1/2) 2584000077519565 a001 567451585/70711162*103682^(1/2) 2584000077519565 a001 433494437/54018521*103682^(1/2) 2584000077519571 a001 165580141/20633239*103682^(1/2) 2584000077519606 a001 31622993/3940598*103682^(1/2) 2584000077519851 a001 24157817/3010349*103682^(1/2) 2584000077521239 a001 9303105/15251*103682^(1/8) 2584000077521525 a001 9227465/1149851*103682^(1/2) 2584000077522821 a001 75025/1149851*271443^(11/13) 2584000077522929 a001 5702887/439204*103682^(11/24) 2584000077523850 a001 75025/3010349*271443^(12/13) 2584000077524505 a001 3524578/710647*103682^(13/24) 2584000077526169 a001 196418/167761*271443^(8/13) 2584000077526262 a004 Fibonacci(25)*Lucas(26)/(1/2+sqrt(5)/2)^33 2584000077528840 a001 9227465/1860498*103682^(13/24) 2584000077529472 a001 24157817/4870847*103682^(13/24) 2584000077529564 a001 63245986/12752043*103682^(13/24) 2584000077529578 a001 165580141/33385282*103682^(13/24) 2584000077529580 a001 433494437/87403803*103682^(13/24) 2584000077529580 a001 1134903170/228826127*103682^(13/24) 2584000077529580 a001 2971215073/599074578*103682^(13/24) 2584000077529580 a001 7778742049/1568397607*103682^(13/24) 2584000077529580 a001 20365011074/4106118243*103682^(13/24) 2584000077529580 a001 53316291173/10749957122*103682^(13/24) 2584000077529580 a001 139583862445/28143753123*103682^(13/24) 2584000077529580 a001 365435296162/73681302247*103682^(13/24) 2584000077529580 a001 956722026041/192900153618*103682^(13/24) 2584000077529580 a001 2504730781961/505019158607*103682^(13/24) 2584000077529580 a001 10610209857723/2139295485799*103682^(13/24) 2584000077529580 a001 4052739537881/817138163596*103682^(13/24) 2584000077529580 a001 140728068720/28374454999*103682^(13/24) 2584000077529580 a001 591286729879/119218851371*103682^(13/24) 2584000077529580 a001 225851433717/45537549124*103682^(13/24) 2584000077529580 a001 86267571272/17393796001*103682^(13/24) 2584000077529580 a001 32951280099/6643838879*103682^(13/24) 2584000077529580 a001 1144206275/230701876*103682^(13/24) 2584000077529580 a001 4807526976/969323029*103682^(13/24) 2584000077529580 a001 1836311903/370248451*103682^(13/24) 2584000077529580 a001 701408733/141422324*103682^(13/24) 2584000077529581 a001 267914296/54018521*103682^(13/24) 2584000077529586 a001 9303105/1875749*103682^(13/24) 2584000077529621 a001 39088169/7881196*103682^(13/24) 2584000077529863 a001 14930352/3010349*103682^(13/24) 2584000077531255 a001 63245986/167761*103682^(1/6) 2584000077531519 a001 5702887/1149851*103682^(13/24) 2584000077531565 a001 75025/439204*271443^(10/13) 2584000077533002 a001 1762289/219602*103682^(1/2) 2584000077533447 a001 24157817/103682*39603^(5/22) 2584000077534370 a001 311187/101521*103682^(7/12) 2584000077538833 a001 5702887/1860498*103682^(7/12) 2584000077539484 a001 14930352/4870847*103682^(7/12) 2584000077539579 a001 39088169/12752043*103682^(7/12) 2584000077539593 a001 14619165/4769326*103682^(7/12) 2584000077539595 a001 267914296/87403803*103682^(7/12) 2584000077539596 a001 701408733/228826127*103682^(7/12) 2584000077539596 a001 1836311903/599074578*103682^(7/12) 2584000077539596 a001 686789568/224056801*103682^(7/12) 2584000077539596 a001 12586269025/4106118243*103682^(7/12) 2584000077539596 a001 32951280099/10749957122*103682^(7/12) 2584000077539596 a001 86267571272/28143753123*103682^(7/12) 2584000077539596 a001 32264490531/10525900321*103682^(7/12) 2584000077539596 a001 591286729879/192900153618*103682^(7/12) 2584000077539596 a001 1548008755920/505019158607*103682^(7/12) 2584000077539596 a001 1515744265389/494493258286*103682^(7/12) 2584000077539596 a001 2504730781961/817138163596*103682^(7/12) 2584000077539596 a001 956722026041/312119004989*103682^(7/12) 2584000077539596 a001 365435296162/119218851371*103682^(7/12) 2584000077539596 a001 139583862445/45537549124*103682^(7/12) 2584000077539596 a001 53316291173/17393796001*103682^(7/12) 2584000077539596 a001 20365011074/6643838879*103682^(7/12) 2584000077539596 a001 7778742049/2537720636*103682^(7/12) 2584000077539596 a001 2971215073/969323029*103682^(7/12) 2584000077539596 a001 1134903170/370248451*103682^(7/12) 2584000077539596 a001 433494437/141422324*103682^(7/12) 2584000077539597 a001 165580141/54018521*103682^(7/12) 2584000077539602 a001 63245986/20633239*103682^(7/12) 2584000077539638 a001 24157817/7881196*103682^(7/12) 2584000077539887 a001 9227465/3010349*103682^(7/12) 2584000077541270 a001 39088169/167761*103682^(5/24) 2584000077541592 a001 3524578/1149851*103682^(7/12) 2584000077542867 a001 2178309/439204*103682^(13/24) 2584000077544038 a001 701408733/710647*39603^(1/11) 2584000077544780 a001 1346269/710647*103682^(5/8) 2584000077547968 a001 196418/271443*103682^(17/24) 2584000077548408 a001 1836311903/1860498*39603^(1/11) 2584000077548906 a001 1762289/930249*103682^(5/8) 2584000077549046 a001 4807526976/4870847*39603^(1/11) 2584000077549139 a001 12586269025/12752043*39603^(1/11) 2584000077549152 a001 32951280099/33385282*39603^(1/11) 2584000077549154 a001 86267571272/87403803*39603^(1/11) 2584000077549154 a001 225851433717/228826127*39603^(1/11) 2584000077549154 a001 591286729879/599074578*39603^(1/11) 2584000077549154 a001 1548008755920/1568397607*39603^(1/11) 2584000077549154 a001 4052739537881/4106118243*39603^(1/11) 2584000077549154 a001 4807525989/4870846*39603^(1/11) 2584000077549154 a001 6557470319842/6643838879*39603^(1/11) 2584000077549154 a001 2504730781961/2537720636*39603^(1/11) 2584000077549154 a001 956722026041/969323029*39603^(1/11) 2584000077549155 a001 365435296162/370248451*39603^(1/11) 2584000077549155 a001 139583862445/141422324*39603^(1/11) 2584000077549155 a001 53316291173/54018521*39603^(1/11) 2584000077549161 a001 20365011074/20633239*39603^(1/11) 2584000077549196 a001 7778742049/7881196*39603^(1/11) 2584000077549440 a001 2971215073/3010349*39603^(1/11) 2584000077549508 a001 9227465/4870847*103682^(5/8) 2584000077549596 a001 24157817/12752043*103682^(5/8) 2584000077549609 a001 31622993/16692641*103682^(5/8) 2584000077549611 a001 165580141/87403803*103682^(5/8) 2584000077549611 a001 433494437/228826127*103682^(5/8) 2584000077549611 a001 567451585/299537289*103682^(5/8) 2584000077549611 a001 2971215073/1568397607*103682^(5/8) 2584000077549611 a001 7778742049/4106118243*103682^(5/8) 2584000077549611 a001 10182505537/5374978561*103682^(5/8) 2584000077549611 a001 53316291173/28143753123*103682^(5/8) 2584000077549611 a001 139583862445/73681302247*103682^(5/8) 2584000077549611 a001 182717648081/96450076809*103682^(5/8) 2584000077549611 a001 956722026041/505019158607*103682^(5/8) 2584000077549611 a001 10610209857723/5600748293801*103682^(5/8) 2584000077549611 a001 591286729879/312119004989*103682^(5/8) 2584000077549611 a001 225851433717/119218851371*103682^(5/8) 2584000077549611 a001 21566892818/11384387281*103682^(5/8) 2584000077549611 a001 32951280099/17393796001*103682^(5/8) 2584000077549611 a001 12586269025/6643838879*103682^(5/8) 2584000077549611 a001 1201881744/634430159*103682^(5/8) 2584000077549611 a001 1836311903/969323029*103682^(5/8) 2584000077549611 a001 701408733/370248451*103682^(5/8) 2584000077549611 a001 66978574/35355581*103682^(5/8) 2584000077549612 a001 102334155/54018521*103682^(5/8) 2584000077549617 a001 39088169/20633239*103682^(5/8) 2584000077549650 a001 3732588/1970299*103682^(5/8) 2584000077549880 a001 5702887/3010349*103682^(5/8) 2584000077551109 a001 1134903170/1149851*39603^(1/11) 2584000077551286 a001 24157817/167761*103682^(1/4) 2584000077551457 a001 2178309/1149851*103682^(5/8) 2584000077553276 a001 1346269/439204*103682^(7/12) 2584000077553764 a001 832040/710647*103682^(2/3) 2584000077558771 a001 726103/620166*103682^(2/3) 2584000077559502 a001 5702887/4870847*103682^(2/3) 2584000077559502 a001 121393/710647*103682^(5/6) 2584000077559608 a001 4976784/4250681*103682^(2/3) 2584000077559624 a001 39088169/33385282*103682^(2/3) 2584000077559626 a001 34111385/29134601*103682^(2/3) 2584000077559627 a001 267914296/228826127*103682^(2/3) 2584000077559627 a001 233802911/199691526*103682^(2/3) 2584000077559627 a001 1836311903/1568397607*103682^(2/3) 2584000077559627 a001 1602508992/1368706081*103682^(2/3) 2584000077559627 a001 12586269025/10749957122*103682^(2/3) 2584000077559627 a001 10983760033/9381251041*103682^(2/3) 2584000077559627 a001 86267571272/73681302247*103682^(2/3) 2584000077559627 a001 75283811239/64300051206*103682^(2/3) 2584000077559627 a001 2504730781961/2139295485799*103682^(2/3) 2584000077559627 a001 365435296162/312119004989*103682^(2/3) 2584000077559627 a001 139583862445/119218851371*103682^(2/3) 2584000077559627 a001 53316291173/45537549124*103682^(2/3) 2584000077559627 a001 20365011074/17393796001*103682^(2/3) 2584000077559627 a001 7778742049/6643838879*103682^(2/3) 2584000077559627 a001 2971215073/2537720636*103682^(2/3) 2584000077559627 a001 1134903170/969323029*103682^(2/3) 2584000077559627 a001 433494437/370248451*103682^(2/3) 2584000077559627 a001 165580141/141422324*103682^(2/3) 2584000077559628 a001 63245986/54018521*103682^(2/3) 2584000077559634 a001 24157817/20633239*103682^(2/3) 2584000077559674 a001 9227465/7881196*103682^(2/3) 2584000077559953 a001 3524578/3010349*103682^(2/3) 2584000077561299 a001 14930352/167761*103682^(7/24) 2584000077561866 a001 1346269/1149851*103682^(2/3) 2584000077562260 a001 208010/109801*103682^(5/8) 2584000077562550 a001 433494437/439204*39603^(1/11) 2584000077566081 a001 267914296/167761*39603^(1/22) 2584000077566480 a001 514229/710647*103682^(17/24) 2584000077567999 a001 121393/439204*103682^(19/24) 2584000077569181 a001 1346269/1860498*103682^(17/24) 2584000077569425 a001 317811/710647*103682^(3/4) 2584000077569575 a001 3524578/4870847*103682^(17/24) 2584000077569632 a001 9227465/12752043*103682^(17/24) 2584000077569641 a001 24157817/33385282*103682^(17/24) 2584000077569642 a001 63245986/87403803*103682^(17/24) 2584000077569642 a001 165580141/228826127*103682^(17/24) 2584000077569642 a001 433494437/599074578*103682^(17/24) 2584000077569642 a001 1134903170/1568397607*103682^(17/24) 2584000077569642 a001 2971215073/4106118243*103682^(17/24) 2584000077569642 a001 7778742049/10749957122*103682^(17/24) 2584000077569642 a001 20365011074/28143753123*103682^(17/24) 2584000077569642 a001 53316291173/73681302247*103682^(17/24) 2584000077569642 a001 139583862445/192900153618*103682^(17/24) 2584000077569642 a001 365435296162/505019158607*103682^(17/24) 2584000077569642 a001 10610209857723/14662949395604*103682^(17/24) 2584000077569642 a001 225851433717/312119004989*103682^(17/24) 2584000077569642 a001 86267571272/119218851371*103682^(17/24) 2584000077569642 a001 32951280099/45537549124*103682^(17/24) 2584000077569642 a001 12586269025/17393796001*103682^(17/24) 2584000077569642 a001 4807526976/6643838879*103682^(17/24) 2584000077569642 a001 1836311903/2537720636*103682^(17/24) 2584000077569642 a001 701408733/969323029*103682^(17/24) 2584000077569642 a001 267914296/370248451*103682^(17/24) 2584000077569642 a001 102334155/141422324*103682^(17/24) 2584000077569643 a001 39088169/54018521*103682^(17/24) 2584000077569646 a001 14930352/20633239*103682^(17/24) 2584000077569668 a001 5702887/7881196*103682^(17/24) 2584000077569818 a001 2178309/3010349*103682^(17/24) 2584000077570850 a001 832040/1149851*103682^(17/24) 2584000077571323 a001 9227465/167761*103682^(1/3) 2584000077573276 a001 28657/167761*64079^(20/23) 2584000077574076 a001 75025/167761*439204^(2/3) 2584000077574977 a001 514229/439204*103682^(2/3) 2584000077576589 a001 121393/1149851*103682^(7/8) 2584000077577921 a001 317811/439204*103682^(17/24) 2584000077578165 a001 416020/930249*103682^(3/4) 2584000077579440 a001 2178309/4870847*103682^(3/4) 2584000077579626 a001 5702887/12752043*103682^(3/4) 2584000077579653 a001 7465176/16692641*103682^(3/4) 2584000077579657 a001 39088169/87403803*103682^(3/4) 2584000077579658 a001 102334155/228826127*103682^(3/4) 2584000077579658 a001 133957148/299537289*103682^(3/4) 2584000077579658 a001 701408733/1568397607*103682^(3/4) 2584000077579658 a001 1836311903/4106118243*103682^(3/4) 2584000077579658 a001 2403763488/5374978561*103682^(3/4) 2584000077579658 a001 12586269025/28143753123*103682^(3/4) 2584000077579658 a001 32951280099/73681302247*103682^(3/4) 2584000077579658 a001 43133785636/96450076809*103682^(3/4) 2584000077579658 a001 225851433717/505019158607*103682^(3/4) 2584000077579658 a001 10610209857723/23725150497407*103682^(3/4) 2584000077579658 a001 182717648081/408569081798*103682^(3/4) 2584000077579658 a001 139583862445/312119004989*103682^(3/4) 2584000077579658 a001 53316291173/119218851371*103682^(3/4) 2584000077579658 a001 10182505537/22768774562*103682^(3/4) 2584000077579658 a001 7778742049/17393796001*103682^(3/4) 2584000077579658 a001 2971215073/6643838879*103682^(3/4) 2584000077579658 a001 567451585/1268860318*103682^(3/4) 2584000077579658 a001 433494437/969323029*103682^(3/4) 2584000077579658 a001 165580141/370248451*103682^(3/4) 2584000077579658 a001 31622993/70711162*103682^(3/4) 2584000077579660 a001 24157817/54018521*103682^(3/4) 2584000077579670 a001 9227465/20633239*103682^(3/4) 2584000077579741 a001 1762289/3940598*103682^(3/4) 2584000077580228 a001 1346269/3010349*103682^(3/4) 2584000077581316 a001 5702887/167761*103682^(3/8) 2584000077582984 a001 75025/167761*7881196^(6/11) 2584000077583007 a001 75025/167761*141422324^(6/13) 2584000077583007 a001 75025/167761*2537720636^(2/5) 2584000077583007 a001 75025/167761*45537549124^(6/17) 2584000077583007 a001 75025/167761*14662949395604^(2/7) 2584000077583007 a001 75025/167761*(1/2+1/2*5^(1/2))^18 2584000077583007 a001 75025/167761*192900153618^(1/3) 2584000077583007 a001 75025/167761*10749957122^(3/8) 2584000077583007 a001 75025/167761*4106118243^(9/23) 2584000077583007 a001 75025/167761*1568397607^(9/22) 2584000077583007 a001 75025/167761*599074578^(3/7) 2584000077583007 a001 75025/167761*228826127^(9/20) 2584000077583007 a001 75025/167761*87403803^(9/19) 2584000077583008 a001 75025/167761*33385282^(1/2) 2584000077583015 a001 75025/167761*12752043^(9/17) 2584000077583068 a001 75025/167761*4870847^(9/16) 2584000077583116 a001 5628750625/2178309 2584000077583197 a001 121393/64079*64079^(15/23) 2584000077583455 a001 75025/167761*1860498^(3/5) 2584000077583567 a001 514229/1149851*103682^(3/4) 2584000077583903 a001 121393/1860498*103682^(11/12) 2584000077586296 a001 75025/167761*710647^(9/14) 2584000077586511 a001 317811/1149851*103682^(19/24) 2584000077588973 a001 165580141/271443*39603^(3/22) 2584000077589212 a001 832040/3010349*103682^(19/24) 2584000077589606 a001 2178309/7881196*103682^(19/24) 2584000077589664 a001 5702887/20633239*103682^(19/24) 2584000077589672 a001 14930352/54018521*103682^(19/24) 2584000077589673 a001 39088169/141422324*103682^(19/24) 2584000077589673 a001 102334155/370248451*103682^(19/24) 2584000077589673 a001 267914296/969323029*103682^(19/24) 2584000077589673 a001 701408733/2537720636*103682^(19/24) 2584000077589673 a001 1836311903/6643838879*103682^(19/24) 2584000077589673 a001 4807526976/17393796001*103682^(19/24) 2584000077589673 a001 12586269025/45537549124*103682^(19/24) 2584000077589673 a001 32951280099/119218851371*103682^(19/24) 2584000077589673 a001 86267571272/312119004989*103682^(19/24) 2584000077589673 a001 225851433717/817138163596*103682^(19/24) 2584000077589673 a001 1548008755920/5600748293801*103682^(19/24) 2584000077589673 a001 139583862445/505019158607*103682^(19/24) 2584000077589673 a001 53316291173/192900153618*103682^(19/24) 2584000077589673 a001 20365011074/73681302247*103682^(19/24) 2584000077589673 a001 7778742049/28143753123*103682^(19/24) 2584000077589673 a001 2971215073/10749957122*103682^(19/24) 2584000077589673 a001 1134903170/4106118243*103682^(19/24) 2584000077589673 a001 433494437/1568397607*103682^(19/24) 2584000077589673 a001 165580141/599074578*103682^(19/24) 2584000077589673 a001 63245986/228826127*103682^(19/24) 2584000077589674 a001 24157817/87403803*103682^(19/24) 2584000077589677 a001 9227465/33385282*103682^(19/24) 2584000077589699 a001 3524578/12752043*103682^(19/24) 2584000077589850 a001 1346269/4870847*103682^(19/24) 2584000077590881 a001 514229/1860498*103682^(19/24) 2584000077591389 a001 3524578/167761*103682^(5/12) 2584000077593826 a001 105937/620166*103682^(5/6) 2584000077594951 a001 121393/3010349*103682^(23/24) 2584000077597952 a001 196418/710647*103682^(19/24) 2584000077598833 a001 832040/4870847*103682^(5/6) 2584000077599564 a001 726103/4250681*103682^(5/6) 2584000077599671 a001 5702887/33385282*103682^(5/6) 2584000077599686 a001 4976784/29134601*103682^(5/6) 2584000077599688 a001 39088169/228826127*103682^(5/6) 2584000077599689 a001 34111385/199691526*103682^(5/6) 2584000077599689 a001 267914296/1568397607*103682^(5/6) 2584000077599689 a001 233802911/1368706081*103682^(5/6) 2584000077599689 a001 1836311903/10749957122*103682^(5/6) 2584000077599689 a001 1602508992/9381251041*103682^(5/6) 2584000077599689 a001 12586269025/73681302247*103682^(5/6) 2584000077599689 a001 10983760033/64300051206*103682^(5/6) 2584000077599689 a001 86267571272/505019158607*103682^(5/6) 2584000077599689 a001 75283811239/440719107401*103682^(5/6) 2584000077599689 a001 2504730781961/14662949395604*103682^(5/6) 2584000077599689 a001 139583862445/817138163596*103682^(5/6) 2584000077599689 a001 53316291173/312119004989*103682^(5/6) 2584000077599689 a001 20365011074/119218851371*103682^(5/6) 2584000077599689 a001 7778742049/45537549124*103682^(5/6) 2584000077599689 a001 2971215073/17393796001*103682^(5/6) 2584000077599689 a001 1134903170/6643838879*103682^(5/6) 2584000077599689 a001 433494437/2537720636*103682^(5/6) 2584000077599689 a001 165580141/969323029*103682^(5/6) 2584000077599689 a001 63245986/370248451*103682^(5/6) 2584000077599690 a001 24157817/141422324*103682^(5/6) 2584000077599696 a001 9227465/54018521*103682^(5/6) 2584000077599737 a001 3524578/20633239*103682^(5/6) 2584000077600016 a001 1346269/7881196*103682^(5/6) 2584000077601254 a001 2178309/167761*103682^(11/24) 2584000077601928 a001 514229/3010349*103682^(5/6) 2584000077604681 a004 Fibonacci(26)*Lucas(24)/(1/2+sqrt(5)/2)^32 2584000077604873 a001 317811/3010349*103682^(7/8) 2584000077606449 a001 98209/219602*103682^(3/4) 2584000077607286 a001 75025/167761*271443^(9/13) 2584000077608332 a001 7465176/51841*39603^(3/11) 2584000077609000 a001 208010/1970299*103682^(7/8) 2584000077609602 a001 2178309/20633239*103682^(7/8) 2584000077609689 a001 5702887/54018521*103682^(7/8) 2584000077609702 a001 3732588/35355581*103682^(7/8) 2584000077609704 a001 39088169/370248451*103682^(7/8) 2584000077609704 a001 102334155/969323029*103682^(7/8) 2584000077609704 a001 66978574/634430159*103682^(7/8) 2584000077609704 a001 701408733/6643838879*103682^(7/8) 2584000077609704 a001 1836311903/17393796001*103682^(7/8) 2584000077609704 a001 1201881744/11384387281*103682^(7/8) 2584000077609704 a001 12586269025/119218851371*103682^(7/8) 2584000077609704 a001 32951280099/312119004989*103682^(7/8) 2584000077609704 a001 21566892818/204284540899*103682^(7/8) 2584000077609704 a001 225851433717/2139295485799*103682^(7/8) 2584000077609704 a001 182717648081/1730726404001*103682^(7/8) 2584000077609704 a001 139583862445/1322157322203*103682^(7/8) 2584000077609704 a001 53316291173/505019158607*103682^(7/8) 2584000077609704 a001 10182505537/96450076809*103682^(7/8) 2584000077609704 a001 7778742049/73681302247*103682^(7/8) 2584000077609704 a001 2971215073/28143753123*103682^(7/8) 2584000077609704 a001 567451585/5374978561*103682^(7/8) 2584000077609704 a001 433494437/4106118243*103682^(7/8) 2584000077609704 a001 165580141/1568397607*103682^(7/8) 2584000077609705 a001 31622993/299537289*103682^(7/8) 2584000077609705 a001 24157817/228826127*103682^(7/8) 2584000077609710 a001 9227465/87403803*103682^(7/8) 2584000077609744 a001 1762289/16692641*103682^(7/8) 2584000077609974 a001 1346269/12752043*103682^(7/8) 2584000077611550 a001 514229/4870847*103682^(7/8) 2584000077611664 a001 1346269/167761*103682^(1/2) 2584000077614494 a001 317811/4870847*103682^(11/12) 2584000077615039 a001 196418/1149851*103682^(5/6) 2584000077617891 a001 63245986/64079*24476^(2/21) 2584000077618926 a001 433494437/710647*39603^(3/22) 2584000077618958 a001 832040/12752043*103682^(11/12) 2584000077619609 a001 311187/4769326*103682^(11/12) 2584000077619704 a001 5702887/87403803*103682^(11/12) 2584000077619718 a001 14930352/228826127*103682^(11/12) 2584000077619720 a001 39088169/599074578*103682^(11/12) 2584000077619720 a001 14619165/224056801*103682^(11/12) 2584000077619720 a001 267914296/4106118243*103682^(11/12) 2584000077619720 a001 701408733/10749957122*103682^(11/12) 2584000077619720 a001 1836311903/28143753123*103682^(11/12) 2584000077619720 a001 686789568/10525900321*103682^(11/12) 2584000077619720 a001 12586269025/192900153618*103682^(11/12) 2584000077619720 a001 32951280099/505019158607*103682^(11/12) 2584000077619720 a001 86267571272/1322157322203*103682^(11/12) 2584000077619720 a001 32264490531/494493258286*103682^(11/12) 2584000077619720 a001 1548008755920/23725150497407*103682^(11/12) 2584000077619720 a001 365435296162/5600748293801*103682^(11/12) 2584000077619720 a001 139583862445/2139295485799*103682^(11/12) 2584000077619720 a001 53316291173/817138163596*103682^(11/12) 2584000077619720 a001 20365011074/312119004989*103682^(11/12) 2584000077619720 a001 7778742049/119218851371*103682^(11/12) 2584000077619720 a001 2971215073/45537549124*103682^(11/12) 2584000077619720 a001 1134903170/17393796001*103682^(11/12) 2584000077619720 a001 433494437/6643838879*103682^(11/12) 2584000077619720 a001 165580141/2537720636*103682^(11/12) 2584000077619720 a001 63245986/969323029*103682^(11/12) 2584000077619721 a001 24157817/370248451*103682^(11/12) 2584000077619726 a001 9227465/141422324*103682^(11/12) 2584000077619762 a001 3524578/54018521*103682^(11/12) 2584000077620011 a001 1346269/20633239*103682^(11/12) 2584000077620648 a001 75640/15251*103682^(13/24) 2584000077621716 a001 514229/7881196*103682^(11/12) 2584000077622353 a001 98209/930249*103682^(7/8) 2584000077623296 a001 567451585/930249*39603^(3/22) 2584000077623934 a001 2971215073/4870847*39603^(3/22) 2584000077624027 a001 7778742049/12752043*39603^(3/22) 2584000077624040 a001 10182505537/16692641*39603^(3/22) 2584000077624042 a001 53316291173/87403803*39603^(3/22) 2584000077624043 a001 139583862445/228826127*39603^(3/22) 2584000077624043 a001 182717648081/299537289*39603^(3/22) 2584000077624043 a001 956722026041/1568397607*39603^(3/22) 2584000077624043 a001 2504730781961/4106118243*39603^(3/22) 2584000077624043 a001 3278735159921/5374978561*39603^(3/22) 2584000077624043 a001 10610209857723/17393796001*39603^(3/22) 2584000077624043 a001 4052739537881/6643838879*39603^(3/22) 2584000077624043 a001 1134903780/1860499*39603^(3/22) 2584000077624043 a001 591286729879/969323029*39603^(3/22) 2584000077624043 a001 225851433717/370248451*39603^(3/22) 2584000077624043 a001 21566892818/35355581*39603^(3/22) 2584000077624044 a001 32951280099/54018521*39603^(3/22) 2584000077624049 a001 1144206275/1875749*39603^(3/22) 2584000077624084 a001 1201881744/1970299*39603^(3/22) 2584000077624328 a001 1836311903/3010349*39603^(3/22) 2584000077624660 a001 317811/7881196*103682^(23/24) 2584000077625997 a001 701408733/1149851*39603^(3/22) 2584000077626387 a001 121393/167761*103682^(17/24) 2584000077628995 a001 75640/1875749*103682^(23/24) 2584000077629627 a001 2178309/54018521*103682^(23/24) 2584000077629720 a001 5702887/141422324*103682^(23/24) 2584000077629733 a001 14930352/370248451*103682^(23/24) 2584000077629735 a001 39088169/969323029*103682^(23/24) 2584000077629735 a001 9303105/230701876*103682^(23/24) 2584000077629735 a001 267914296/6643838879*103682^(23/24) 2584000077629736 a001 701408733/17393796001*103682^(23/24) 2584000077629736 a001 1836311903/45537549124*103682^(23/24) 2584000077629736 a001 4807526976/119218851371*103682^(23/24) 2584000077629736 a001 1144206275/28374454999*103682^(23/24) 2584000077629736 a001 32951280099/817138163596*103682^(23/24) 2584000077629736 a001 86267571272/2139295485799*103682^(23/24) 2584000077629736 a001 225851433717/5600748293801*103682^(23/24) 2584000077629736 a001 591286729879/14662949395604*103682^(23/24) 2584000077629736 a001 365435296162/9062201101803*103682^(23/24) 2584000077629736 a001 139583862445/3461452808002*103682^(23/24) 2584000077629736 a001 53316291173/1322157322203*103682^(23/24) 2584000077629736 a001 20365011074/505019158607*103682^(23/24) 2584000077629736 a001 7778742049/192900153618*103682^(23/24) 2584000077629736 a001 2971215073/73681302247*103682^(23/24) 2584000077629736 a001 1134903170/28143753123*103682^(23/24) 2584000077629736 a001 433494437/10749957122*103682^(23/24) 2584000077629736 a001 165580141/4106118243*103682^(23/24) 2584000077629736 a001 63245986/1568397607*103682^(23/24) 2584000077629736 a001 24157817/599074578*103682^(23/24) 2584000077629742 a001 9227465/228826127*103682^(23/24) 2584000077629777 a001 3524578/87403803*103682^(23/24) 2584000077630018 a001 1346269/33385282*103682^(23/24) 2584000077631674 a001 514229/12752043*103682^(23/24) 2584000077633364 a001 514229/167761*103682^(7/12) 2584000077633401 a001 196418/3010349*103682^(11/12) 2584000077634634 a004 Fibonacci(28)*Lucas(24)/(1/2+sqrt(5)/2)^34 2584000077636309 a001 317811/167761*103682^(5/8) 2584000077637438 a001 66978574/109801*39603^(3/22) 2584000077639005 a004 Fibonacci(30)*Lucas(24)/(1/2+sqrt(5)/2)^36 2584000077639642 a004 Fibonacci(32)*Lucas(24)/(1/2+sqrt(5)/2)^38 2584000077639735 a004 Fibonacci(34)*Lucas(24)/(1/2+sqrt(5)/2)^40 2584000077639749 a004 Fibonacci(36)*Lucas(24)/(1/2+sqrt(5)/2)^42 2584000077639751 a004 Fibonacci(38)*Lucas(24)/(1/2+sqrt(5)/2)^44 2584000077639751 a004 Fibonacci(40)*Lucas(24)/(1/2+sqrt(5)/2)^46 2584000077639751 a004 Fibonacci(42)*Lucas(24)/(1/2+sqrt(5)/2)^48 2584000077639751 a004 Fibonacci(44)*Lucas(24)/(1/2+sqrt(5)/2)^50 2584000077639751 a004 Fibonacci(46)*Lucas(24)/(1/2+sqrt(5)/2)^52 2584000077639751 a004 Fibonacci(48)*Lucas(24)/(1/2+sqrt(5)/2)^54 2584000077639751 a004 Fibonacci(50)*Lucas(24)/(1/2+sqrt(5)/2)^56 2584000077639751 a004 Fibonacci(52)*Lucas(24)/(1/2+sqrt(5)/2)^58 2584000077639751 a004 Fibonacci(54)*Lucas(24)/(1/2+sqrt(5)/2)^60 2584000077639751 a004 Fibonacci(56)*Lucas(24)/(1/2+sqrt(5)/2)^62 2584000077639751 a004 Fibonacci(58)*Lucas(24)/(1/2+sqrt(5)/2)^64 2584000077639751 a004 Fibonacci(60)*Lucas(24)/(1/2+sqrt(5)/2)^66 2584000077639751 a004 Fibonacci(62)*Lucas(24)/(1/2+sqrt(5)/2)^68 2584000077639751 a004 Fibonacci(64)*Lucas(24)/(1/2+sqrt(5)/2)^70 2584000077639751 a004 Fibonacci(66)*Lucas(24)/(1/2+sqrt(5)/2)^72 2584000077639751 a004 Fibonacci(68)*Lucas(24)/(1/2+sqrt(5)/2)^74 2584000077639751 a004 Fibonacci(70)*Lucas(24)/(1/2+sqrt(5)/2)^76 2584000077639751 a004 Fibonacci(72)*Lucas(24)/(1/2+sqrt(5)/2)^78 2584000077639751 a004 Fibonacci(74)*Lucas(24)/(1/2+sqrt(5)/2)^80 2584000077639751 a004 Fibonacci(76)*Lucas(24)/(1/2+sqrt(5)/2)^82 2584000077639751 a004 Fibonacci(78)*Lucas(24)/(1/2+sqrt(5)/2)^84 2584000077639751 a004 Fibonacci(80)*Lucas(24)/(1/2+sqrt(5)/2)^86 2584000077639751 a004 Fibonacci(82)*Lucas(24)/(1/2+sqrt(5)/2)^88 2584000077639751 a004 Fibonacci(84)*Lucas(24)/(1/2+sqrt(5)/2)^90 2584000077639751 a004 Fibonacci(86)*Lucas(24)/(1/2+sqrt(5)/2)^92 2584000077639751 a004 Fibonacci(88)*Lucas(24)/(1/2+sqrt(5)/2)^94 2584000077639751 a004 Fibonacci(90)*Lucas(24)/(1/2+sqrt(5)/2)^96 2584000077639751 a004 Fibonacci(92)*Lucas(24)/(1/2+sqrt(5)/2)^98 2584000077639751 a004 Fibonacci(94)*Lucas(24)/(1/2+sqrt(5)/2)^100 2584000077639751 a004 Fibonacci(93)*Lucas(24)/(1/2+sqrt(5)/2)^99 2584000077639751 a004 Fibonacci(91)*Lucas(24)/(1/2+sqrt(5)/2)^97 2584000077639751 a004 Fibonacci(89)*Lucas(24)/(1/2+sqrt(5)/2)^95 2584000077639751 a004 Fibonacci(87)*Lucas(24)/(1/2+sqrt(5)/2)^93 2584000077639751 a004 Fibonacci(85)*Lucas(24)/(1/2+sqrt(5)/2)^91 2584000077639751 a004 Fibonacci(83)*Lucas(24)/(1/2+sqrt(5)/2)^89 2584000077639751 a004 Fibonacci(81)*Lucas(24)/(1/2+sqrt(5)/2)^87 2584000077639751 a004 Fibonacci(79)*Lucas(24)/(1/2+sqrt(5)/2)^85 2584000077639751 a004 Fibonacci(77)*Lucas(24)/(1/2+sqrt(5)/2)^83 2584000077639751 a004 Fibonacci(75)*Lucas(24)/(1/2+sqrt(5)/2)^81 2584000077639751 a004 Fibonacci(73)*Lucas(24)/(1/2+sqrt(5)/2)^79 2584000077639751 a004 Fibonacci(71)*Lucas(24)/(1/2+sqrt(5)/2)^77 2584000077639751 a004 Fibonacci(69)*Lucas(24)/(1/2+sqrt(5)/2)^75 2584000077639751 a004 Fibonacci(67)*Lucas(24)/(1/2+sqrt(5)/2)^73 2584000077639751 a004 Fibonacci(65)*Lucas(24)/(1/2+sqrt(5)/2)^71 2584000077639751 a004 Fibonacci(63)*Lucas(24)/(1/2+sqrt(5)/2)^69 2584000077639751 a004 Fibonacci(61)*Lucas(24)/(1/2+sqrt(5)/2)^67 2584000077639751 a004 Fibonacci(59)*Lucas(24)/(1/2+sqrt(5)/2)^65 2584000077639751 a004 Fibonacci(57)*Lucas(24)/(1/2+sqrt(5)/2)^63 2584000077639751 a004 Fibonacci(55)*Lucas(24)/(1/2+sqrt(5)/2)^61 2584000077639751 a004 Fibonacci(53)*Lucas(24)/(1/2+sqrt(5)/2)^59 2584000077639751 a004 Fibonacci(51)*Lucas(24)/(1/2+sqrt(5)/2)^57 2584000077639751 a004 Fibonacci(49)*Lucas(24)/(1/2+sqrt(5)/2)^55 2584000077639751 a001 1/23184*(1/2+1/2*5^(1/2))^42 2584000077639751 a004 Fibonacci(47)*Lucas(24)/(1/2+sqrt(5)/2)^53 2584000077639751 a004 Fibonacci(45)*Lucas(24)/(1/2+sqrt(5)/2)^51 2584000077639751 a004 Fibonacci(43)*Lucas(24)/(1/2+sqrt(5)/2)^49 2584000077639751 a004 Fibonacci(41)*Lucas(24)/(1/2+sqrt(5)/2)^47 2584000077639751 a004 Fibonacci(39)*Lucas(24)/(1/2+sqrt(5)/2)^45 2584000077639752 a004 Fibonacci(37)*Lucas(24)/(1/2+sqrt(5)/2)^43 2584000077639757 a004 Fibonacci(35)*Lucas(24)/(1/2+sqrt(5)/2)^41 2584000077639793 a004 Fibonacci(33)*Lucas(24)/(1/2+sqrt(5)/2)^39 2584000077640036 a004 Fibonacci(31)*Lucas(24)/(1/2+sqrt(5)/2)^37 2584000077640969 a001 165580141/167761*39603^(1/11) 2584000077641705 a004 Fibonacci(29)*Lucas(24)/(1/2+sqrt(5)/2)^35 2584000077643022 a001 196418/4870847*103682^(23/24) 2584000077646418 a001 75025/271443*103682^(19/24) 2584000077653147 a004 Fibonacci(27)*Lucas(24)/(1/2+sqrt(5)/2)^33 2584000077654242 a001 28657/39603*39603^(17/22) 2584000077659023 a001 196418/64079*64079^(14/23) 2584000077663861 a001 34111385/90481*39603^(2/11) 2584000077664837 a001 196418/167761*103682^(2/3) 2584000077667872 a001 317811/64079*64079^(13/23) 2584000077682720 a001 75025/64079*64079^(16/23) 2584000077683229 a001 9227465/103682*39603^(7/22) 2584000077693814 a001 267914296/710647*39603^(2/11) 2584000077696402 a001 75025/710647*103682^(7/8) 2584000077698184 a001 233802911/620166*39603^(2/11) 2584000077698822 a001 1836311903/4870847*39603^(2/11) 2584000077698915 a001 1602508992/4250681*39603^(2/11) 2584000077698929 a001 12586269025/33385282*39603^(2/11) 2584000077698931 a001 10983760033/29134601*39603^(2/11) 2584000077698931 a001 86267571272/228826127*39603^(2/11) 2584000077698931 a001 267913919/710646*39603^(2/11) 2584000077698931 a001 591286729879/1568397607*39603^(2/11) 2584000077698931 a001 516002918640/1368706081*39603^(2/11) 2584000077698931 a001 4052739537881/10749957122*39603^(2/11) 2584000077698931 a001 3536736619241/9381251041*39603^(2/11) 2584000077698931 a001 6557470319842/17393796001*39603^(2/11) 2584000077698931 a001 2504730781961/6643838879*39603^(2/11) 2584000077698931 a001 956722026041/2537720636*39603^(2/11) 2584000077698931 a001 365435296162/969323029*39603^(2/11) 2584000077698931 a001 139583862445/370248451*39603^(2/11) 2584000077698931 a001 53316291173/141422324*39603^(2/11) 2584000077698932 a001 20365011074/54018521*39603^(2/11) 2584000077698937 a001 7778742049/20633239*39603^(2/11) 2584000077698973 a001 2971215073/7881196*39603^(2/11) 2584000077699216 a001 1134903170/3010349*39603^(2/11) 2584000077700885 a001 433494437/1149851*39603^(2/11) 2584000077702304 a001 514229/64079*64079^(12/23) 2584000077704899 a001 75025/439204*103682^(5/6) 2584000077712327 a001 165580141/439204*39603^(2/11) 2584000077713489 a001 75025/1149851*103682^(11/12) 2584000077715857 a001 9303105/15251*39603^(3/22) 2584000077720803 a001 75025/1860498*103682^(23/24) 2584000077723626 a001 165580141/103682*15127^(1/20) 2584000077726964 a001 832040/64079*64079^(11/23) 2584000077731565 a004 Fibonacci(25)*Lucas(24)/(1/2+sqrt(5)/2)^31 2584000077738749 a001 63245986/271443*39603^(5/22) 2584000077755357 a001 1346269/64079*64079^(10/23) 2584000077758095 a001 5702887/103682*39603^(4/11) 2584000077763286 a001 75025/167761*103682^(3/4) 2584000077768703 a001 165580141/710647*39603^(5/22) 2584000077773073 a001 433494437/1860498*39603^(5/22) 2584000077773710 a001 1134903170/4870847*39603^(5/22) 2584000077773803 a001 2971215073/12752043*39603^(5/22) 2584000077773817 a001 7778742049/33385282*39603^(5/22) 2584000077773819 a001 20365011074/87403803*39603^(5/22) 2584000077773819 a001 53316291173/228826127*39603^(5/22) 2584000077773819 a001 139583862445/599074578*39603^(5/22) 2584000077773819 a001 365435296162/1568397607*39603^(5/22) 2584000077773819 a001 956722026041/4106118243*39603^(5/22) 2584000077773819 a001 2504730781961/10749957122*39603^(5/22) 2584000077773819 a001 6557470319842/28143753123*39603^(5/22) 2584000077773819 a001 10610209857723/45537549124*39603^(5/22) 2584000077773819 a001 4052739537881/17393796001*39603^(5/22) 2584000077773819 a001 1548008755920/6643838879*39603^(5/22) 2584000077773819 a001 591286729879/2537720636*39603^(5/22) 2584000077773819 a001 225851433717/969323029*39603^(5/22) 2584000077773819 a001 86267571272/370248451*39603^(5/22) 2584000077773819 a001 63246219/271444*39603^(5/22) 2584000077773820 a001 12586269025/54018521*39603^(5/22) 2584000077773825 a001 4807526976/20633239*39603^(5/22) 2584000077773861 a001 1836311903/7881196*39603^(5/22) 2584000077774104 a001 701408733/3010349*39603^(5/22) 2584000077775774 a001 267914296/1149851*39603^(5/22) 2584000077782324 a001 2178309/64079*64079^(9/23) 2584000077786355 a001 1328767776/514229 2584000077787215 a001 102334155/439204*39603^(5/22) 2584000077788310 a001 28657/103682*817138163596^(1/3) 2584000077788310 a001 28657/103682*(1/2+1/2*5^(1/2))^19 2584000077788310 a001 46368/64079*45537549124^(1/3) 2584000077788310 a001 46368/64079*(1/2+1/2*5^(1/2))^17 2584000077788310 a001 28657/103682*87403803^(1/2) 2584000077788318 a001 46368/64079*12752043^(1/2) 2584000077790745 a001 63245986/167761*39603^(2/11) 2584000077804018 a001 17711/64079*39603^(19/22) 2584000077809836 a001 3524578/64079*64079^(8/23) 2584000077813637 a001 39088169/271443*39603^(3/11) 2584000077823287 a001 102334155/64079*24476^(1/21) 2584000077833041 a001 1762289/51841*39603^(9/22) 2584000077837139 a001 5702887/64079*64079^(7/23) 2584000077843591 a001 14619165/101521*39603^(3/11) 2584000077847961 a001 133957148/930249*39603^(3/11) 2584000077848599 a001 701408733/4870847*39603^(3/11) 2584000077848692 a001 1836311903/12752043*39603^(3/11) 2584000077848705 a001 14930208/103681*39603^(3/11) 2584000077848707 a001 12586269025/87403803*39603^(3/11) 2584000077848707 a001 32951280099/228826127*39603^(3/11) 2584000077848707 a001 43133785636/299537289*39603^(3/11) 2584000077848707 a001 32264490531/224056801*39603^(3/11) 2584000077848707 a001 591286729879/4106118243*39603^(3/11) 2584000077848707 a001 774004377960/5374978561*39603^(3/11) 2584000077848707 a001 4052739537881/28143753123*39603^(3/11) 2584000077848707 a001 1515744265389/10525900321*39603^(3/11) 2584000077848707 a001 3278735159921/22768774562*39603^(3/11) 2584000077848707 a001 2504730781961/17393796001*39603^(3/11) 2584000077848707 a001 956722026041/6643838879*39603^(3/11) 2584000077848707 a001 182717648081/1268860318*39603^(3/11) 2584000077848707 a001 139583862445/969323029*39603^(3/11) 2584000077848707 a001 53316291173/370248451*39603^(3/11) 2584000077848708 a001 10182505537/70711162*39603^(3/11) 2584000077848708 a001 7778742049/54018521*39603^(3/11) 2584000077848714 a001 2971215073/20633239*39603^(3/11) 2584000077848749 a001 567451585/3940598*39603^(3/11) 2584000077848993 a001 433494437/3010349*39603^(3/11) 2584000077850662 a001 165580141/1149851*39603^(3/11) 2584000077862103 a001 31622993/219602*39603^(3/11) 2584000077864522 a001 9227465/64079*64079^(6/23) 2584000077865633 a001 39088169/167761*39603^(5/22) 2584000077888527 a001 24157817/271443*39603^(7/22) 2584000077891875 a001 14930352/64079*64079^(5/23) 2584000077907778 a001 46347/2206*39603^(5/11) 2584000077918479 a001 63245986/710647*39603^(7/22) 2584000077919239 a001 24157817/64079*64079^(4/23) 2584000077922849 a001 165580141/1860498*39603^(7/22) 2584000077923487 a001 433494437/4870847*39603^(7/22) 2584000077923580 a001 1134903170/12752043*39603^(7/22) 2584000077923593 a001 2971215073/33385282*39603^(7/22) 2584000077923595 a001 7778742049/87403803*39603^(7/22) 2584000077923596 a001 20365011074/228826127*39603^(7/22) 2584000077923596 a001 53316291173/599074578*39603^(7/22) 2584000077923596 a001 139583862445/1568397607*39603^(7/22) 2584000077923596 a001 365435296162/4106118243*39603^(7/22) 2584000077923596 a001 956722026041/10749957122*39603^(7/22) 2584000077923596 a001 2504730781961/28143753123*39603^(7/22) 2584000077923596 a001 6557470319842/73681302247*39603^(7/22) 2584000077923596 a001 10610209857723/119218851371*39603^(7/22) 2584000077923596 a001 4052739537881/45537549124*39603^(7/22) 2584000077923596 a001 1548008755920/17393796001*39603^(7/22) 2584000077923596 a001 591286729879/6643838879*39603^(7/22) 2584000077923596 a001 225851433717/2537720636*39603^(7/22) 2584000077923596 a001 86267571272/969323029*39603^(7/22) 2584000077923596 a001 32951280099/370248451*39603^(7/22) 2584000077923596 a001 12586269025/141422324*39603^(7/22) 2584000077923597 a001 4807526976/54018521*39603^(7/22) 2584000077923602 a001 1836311903/20633239*39603^(7/22) 2584000077923637 a001 3524667/39604*39603^(7/22) 2584000077923881 a001 267914296/3010349*39603^(7/22) 2584000077925550 a001 102334155/1149851*39603^(7/22) 2584000077928929 a001 433494437/271443*15127^(1/20) 2584000077936868 a004 Fibonacci(23)*Lucas(25)/(1/2+sqrt(5)/2)^30 2584000077936991 a001 39088169/439204*39603^(7/22) 2584000077938524 a001 121393/64079*167761^(3/5) 2584000077940523 a001 24157817/167761*39603^(3/11) 2584000077946599 a001 39088169/64079*64079^(3/23) 2584000077958574 a001 46368/64079*103682^(17/24) 2584000077958882 a001 1134903170/710647*15127^(1/20) 2584000077963252 a001 2971215073/1860498*15127^(1/20) 2584000077963412 a001 4976784/90481*39603^(4/11) 2584000077963890 a001 7778742049/4870847*15127^(1/20) 2584000077963983 a001 20365011074/12752043*15127^(1/20) 2584000077963997 a001 53316291173/33385282*15127^(1/20) 2584000077963999 a001 139583862445/87403803*15127^(1/20) 2584000077963999 a001 365435296162/228826127*15127^(1/20) 2584000077963999 a001 956722026041/599074578*15127^(1/20) 2584000077963999 a001 2504730781961/1568397607*15127^(1/20) 2584000077963999 a001 6557470319842/4106118243*15127^(1/20) 2584000077963999 a001 10610209857723/6643838879*15127^(1/20) 2584000077963999 a001 4052739537881/2537720636*15127^(1/20) 2584000077963999 a001 1548008755920/969323029*15127^(1/20) 2584000077963999 a001 591286729879/370248451*15127^(1/20) 2584000077963999 a001 225851433717/141422324*15127^(1/20) 2584000077964000 a001 86267571272/54018521*15127^(1/20) 2584000077964005 a001 32951280099/20633239*15127^(1/20) 2584000077964040 a001 12586269025/7881196*15127^(1/20) 2584000077964284 a001 4807526976/3010349*15127^(1/20) 2584000077965953 a001 1836311903/1149851*15127^(1/20) 2584000077973961 a001 63245986/64079*64079^(2/23) 2584000077977394 a001 701408733/439204*15127^(1/20) 2584000077978605 a001 28657/103682*103682^(19/24) 2584000077983061 a001 1346269/103682*39603^(1/2) 2584000077983194 a001 28657/271443*439204^(7/9) 2584000077986171 a001 121393/64079*439204^(5/9) 2584000077992242 a001 1346269/64079*167761^(2/5) 2584000077993328 a001 3478759201/1346269 2584000077993367 a001 39088169/710647*39603^(4/11) 2584000077993586 a001 28657/271443*7881196^(7/11) 2584000077993594 a001 121393/64079*7881196^(5/11) 2584000077993609 a001 28657/271443*20633239^(3/5) 2584000077993610 a001 121393/64079*20633239^(3/7) 2584000077993613 a001 28657/271443*141422324^(7/13) 2584000077993613 a001 121393/64079*141422324^(5/13) 2584000077993613 a001 28657/271443*2537720636^(7/15) 2584000077993613 a001 28657/271443*17393796001^(3/7) 2584000077993613 a001 28657/271443*45537549124^(7/17) 2584000077993613 a001 28657/271443*14662949395604^(1/3) 2584000077993613 a001 28657/271443*(1/2+1/2*5^(1/2))^21 2584000077993613 a001 28657/271443*192900153618^(7/18) 2584000077993613 a001 28657/271443*10749957122^(7/16) 2584000077993613 a001 121393/64079*2537720636^(1/3) 2584000077993613 a001 121393/64079*45537549124^(5/17) 2584000077993613 a001 121393/64079*312119004989^(3/11) 2584000077993613 a001 121393/64079*14662949395604^(5/21) 2584000077993613 a001 121393/64079*(1/2+1/2*5^(1/2))^15 2584000077993613 a001 121393/64079*192900153618^(5/18) 2584000077993613 a001 121393/64079*28143753123^(3/10) 2584000077993613 a001 121393/64079*10749957122^(5/16) 2584000077993613 a001 121393/64079*599074578^(5/14) 2584000077993613 a001 28657/271443*599074578^(1/2) 2584000077993613 a001 121393/64079*228826127^(3/8) 2584000077993614 a001 121393/64079*33385282^(5/12) 2584000077993614 a001 28657/271443*33385282^(7/12) 2584000077993986 a001 121393/64079*1860498^(1/2) 2584000077994135 a001 28657/271443*1860498^(7/10) 2584000077997450 a001 28657/271443*710647^(3/4) 2584000077997737 a001 831985/15126*39603^(4/11) 2584000077998375 a001 267914296/4870847*39603^(4/11) 2584000077998468 a001 233802911/4250681*39603^(4/11) 2584000077998482 a001 1836311903/33385282*39603^(4/11) 2584000077998484 a001 1602508992/29134601*39603^(4/11) 2584000077998484 a001 12586269025/228826127*39603^(4/11) 2584000077998484 a001 10983760033/199691526*39603^(4/11) 2584000077998484 a001 86267571272/1568397607*39603^(4/11) 2584000077998484 a001 75283811239/1368706081*39603^(4/11) 2584000077998484 a001 591286729879/10749957122*39603^(4/11) 2584000077998484 a001 12585437040/228811001*39603^(4/11) 2584000077998484 a001 4052739537881/73681302247*39603^(4/11) 2584000077998484 a001 3536736619241/64300051206*39603^(4/11) 2584000077998484 a001 6557470319842/119218851371*39603^(4/11) 2584000077998484 a001 2504730781961/45537549124*39603^(4/11) 2584000077998484 a001 956722026041/17393796001*39603^(4/11) 2584000077998484 a001 365435296162/6643838879*39603^(4/11) 2584000077998484 a001 139583862445/2537720636*39603^(4/11) 2584000077998484 a001 53316291173/969323029*39603^(4/11) 2584000077998484 a001 20365011074/370248451*39603^(4/11) 2584000077998484 a001 7778742049/141422324*39603^(4/11) 2584000077998485 a001 2971215073/54018521*39603^(4/11) 2584000077998490 a001 1134903170/20633239*39603^(4/11) 2584000077998526 a001 433494437/7881196*39603^(4/11) 2584000077998769 a001 165580141/3010349*39603^(4/11) 2584000078000438 a001 63245986/1149851*39603^(4/11) 2584000078001322 a001 102334155/64079*64079^(1/23) 2584000078010318 a001 4976784/13201*15127^(1/5) 2584000078010318 a001 14930352/64079*167761^(1/5) 2584000078011880 a001 24157817/439204*39603^(4/11) 2584000078015287 a004 Fibonacci(23)*Lucas(27)/(1/2+sqrt(5)/2)^32 2584000078015408 a001 14930352/167761*39603^(7/22) 2584000078018730 a001 28657/1149851*439204^(8/9) 2584000078023525 a001 9107509827/3524578 2584000078023566 a001 317811/64079*141422324^(1/3) 2584000078023566 a001 28657/710647*(1/2+1/2*5^(1/2))^23 2584000078023566 a001 28657/710647*4106118243^(1/2) 2584000078023566 a001 317811/64079*(1/2+1/2*5^(1/2))^13 2584000078023566 a001 317811/64079*73681302247^(1/4) 2584000078024109 a001 2178309/64079*439204^(1/3) 2584000078024684 a001 514229/64079*439204^(4/9) 2584000078025712 a001 9227465/64079*439204^(2/9) 2584000078026728 a004 Fibonacci(23)*Lucas(29)/(1/2+sqrt(5)/2)^34 2584000078027194 a001 39088169/64079*439204^(1/9) 2584000078027922 a001 832040/64079*7881196^(1/3) 2584000078027930 a001 4768754056/1845493 2584000078027932 a001 28657/1860498*20633239^(5/7) 2584000078027936 a001 28657/1860498*2537720636^(5/9) 2584000078027936 a001 28657/1860498*312119004989^(5/11) 2584000078027936 a001 28657/1860498*(1/2+1/2*5^(1/2))^25 2584000078027936 a001 28657/1860498*3461452808002^(5/12) 2584000078027936 a001 28657/1860498*28143753123^(1/2) 2584000078027936 a001 832040/64079*312119004989^(1/5) 2584000078027936 a001 832040/64079*(1/2+1/2*5^(1/2))^11 2584000078027936 a001 832040/64079*1568397607^(1/4) 2584000078027936 a001 28657/1860498*228826127^(5/8) 2584000078028398 a004 Fibonacci(23)*Lucas(31)/(1/2+sqrt(5)/2)^36 2584000078028540 a001 28657/4870847*7881196^(9/11) 2584000078028558 a001 28657/1860498*1860498^(5/6) 2584000078028563 a001 2178309/64079*7881196^(3/11) 2584000078028573 a001 62423801013/24157817 2584000078028574 a001 28657/4870847*141422324^(9/13) 2584000078028574 a001 2178309/64079*141422324^(3/13) 2584000078028574 a001 28657/4870847*2537720636^(3/5) 2584000078028574 a001 28657/4870847*45537549124^(9/17) 2584000078028574 a001 28657/4870847*817138163596^(9/19) 2584000078028574 a001 28657/4870847*14662949395604^(3/7) 2584000078028574 a001 28657/4870847*(1/2+1/2*5^(1/2))^27 2584000078028574 a001 28657/4870847*192900153618^(1/2) 2584000078028574 a001 28657/4870847*10749957122^(9/16) 2584000078028574 a001 2178309/64079*2537720636^(1/5) 2584000078028574 a001 2178309/64079*45537549124^(3/17) 2584000078028574 a001 2178309/64079*14662949395604^(1/7) 2584000078028574 a001 2178309/64079*(1/2+1/2*5^(1/2))^9 2584000078028574 a001 2178309/64079*192900153618^(1/6) 2584000078028574 a001 2178309/64079*10749957122^(3/16) 2584000078028574 a001 2178309/64079*599074578^(3/14) 2584000078028574 a001 28657/4870847*599074578^(9/14) 2584000078028574 a001 2178309/64079*33385282^(1/4) 2584000078028576 a001 28657/4870847*33385282^(3/4) 2584000078028641 a004 Fibonacci(23)*Lucas(33)/(1/2+sqrt(5)/2)^38 2584000078028651 a001 28657/20633239*7881196^(10/11) 2584000078028666 a001 5702887/64079*20633239^(1/5) 2584000078028667 a001 163427632759/63245986 2584000078028667 a001 28657/12752043*(1/2+1/2*5^(1/2))^29 2584000078028667 a001 28657/12752043*1322157322203^(1/2) 2584000078028667 a001 5702887/64079*17393796001^(1/7) 2584000078028667 a001 5702887/64079*14662949395604^(1/9) 2584000078028667 a001 5702887/64079*(1/2+1/2*5^(1/2))^7 2584000078028667 a001 5702887/64079*599074578^(1/6) 2584000078028677 a004 Fibonacci(23)*Lucas(35)/(1/2+sqrt(5)/2)^40 2584000078028679 a001 39088169/64079*7881196^(1/11) 2584000078028680 a001 14930352/64079*20633239^(1/7) 2584000078028680 a001 427859097264/165580141 2584000078028681 a001 28657/33385282*(1/2+1/2*5^(1/2))^31 2584000078028681 a001 28657/33385282*9062201101803^(1/2) 2584000078028681 a001 14930352/64079*2537720636^(1/9) 2584000078028681 a001 14930352/64079*312119004989^(1/11) 2584000078028681 a001 14930352/64079*(1/2+1/2*5^(1/2))^5 2584000078028681 a001 14930352/64079*28143753123^(1/10) 2584000078028681 a001 14930352/64079*228826127^(1/8) 2584000078028681 a001 9227465/64079*7881196^(2/11) 2584000078028682 a004 Fibonacci(23)*Lucas(37)/(1/2+sqrt(5)/2)^42 2584000078028682 a001 28657/87403803*141422324^(11/13) 2584000078028682 a001 39088169/64079*141422324^(1/13) 2584000078028682 a001 1120149659033/433494437 2584000078028682 a001 28657/87403803*2537720636^(11/15) 2584000078028682 a001 28657/87403803*45537549124^(11/17) 2584000078028682 a001 28657/87403803*312119004989^(3/5) 2584000078028682 a001 28657/87403803*14662949395604^(11/21) 2584000078028682 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^33/Lucas(38) 2584000078028682 a001 28657/87403803*192900153618^(11/18) 2584000078028682 a001 28657/87403803*10749957122^(11/16) 2584000078028682 a001 39088169/64079*2537720636^(1/15) 2584000078028682 a001 39088169/64079*45537549124^(1/17) 2584000078028682 a001 39088169/64079*14662949395604^(1/21) 2584000078028682 a001 39088169/64079*(1/2+1/2*5^(1/2))^3 2584000078028682 a001 39088169/64079*192900153618^(1/18) 2584000078028682 a001 39088169/64079*10749957122^(1/16) 2584000078028682 a001 39088169/64079*599074578^(1/14) 2584000078028682 a001 28657/87403803*1568397607^(3/4) 2584000078028682 a001 28657/87403803*599074578^(11/14) 2584000078028683 a001 39088169/64079*33385282^(1/12) 2584000078028683 a004 Fibonacci(23)*Lucas(39)/(1/2+sqrt(5)/2)^44 2584000078028683 a001 28657/370248451*141422324^(12/13) 2584000078028683 a001 586517975967/226980634 2584000078028683 a001 28657/228826127*2537720636^(7/9) 2584000078028683 a001 28657/228826127*17393796001^(5/7) 2584000078028683 a001 28657/228826127*312119004989^(7/11) 2584000078028683 a001 28657/228826127*14662949395604^(5/9) 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^35/Lucas(40) 2584000078028683 a001 28657/228826127*505019158607^(5/8) 2584000078028683 a001 28657/228826127*28143753123^(7/10) 2584000078028683 a001 102334155/128158+102334155/128158*5^(1/2) 2584000078028683 a001 28657/228826127*599074578^(5/6) 2584000078028683 a004 Fibonacci(23)*Lucas(41)/(1/2+sqrt(5)/2)^46 2584000078028683 a001 7677619980472/2971215073 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^37/Lucas(42) 2584000078028683 a004 Fibonacci(42)/Lucas(23)/(1/2+sqrt(5)/2) 2584000078028683 a001 28657/228826127*228826127^(7/8) 2584000078028683 a004 Fibonacci(23)*Lucas(43)/(1/2+sqrt(5)/2)^48 2584000078028683 a001 28657/1568397607*2537720636^(13/15) 2584000078028683 a001 20100270061581/7778742049 2584000078028683 a001 28657/1568397607*45537549124^(13/17) 2584000078028683 a001 28657/1568397607*14662949395604^(13/21) 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^39/Lucas(44) 2584000078028683 a001 28657/1568397607*192900153618^(13/18) 2584000078028683 a001 28657/1568397607*73681302247^(3/4) 2584000078028683 a001 28657/1568397607*10749957122^(13/16) 2584000078028683 a004 Fibonacci(44)/Lucas(23)/(1/2+sqrt(5)/2)^3 2584000078028683 a004 Fibonacci(23)*Lucas(45)/(1/2+sqrt(5)/2)^50 2584000078028683 a001 28657/6643838879*2537720636^(14/15) 2584000078028683 a001 52623190204271/20365011074 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^41/Lucas(46) 2584000078028683 a004 Fibonacci(23)*Lucas(47)/(1/2+sqrt(5)/2)^52 2584000078028683 a001 137769300551232/53316291173 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^43/Lucas(48) 2584000078028683 a004 Fibonacci(23)*Lucas(49)/(1/2+sqrt(5)/2)^54 2584000078028683 a001 28657/28143753123*45537549124^(15/17) 2584000078028683 a001 28657/28143753123*312119004989^(9/11) 2584000078028683 a001 28657/28143753123*14662949395604^(5/7) 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^45/Lucas(50) 2584000078028683 a001 28657/28143753123*192900153618^(5/6) 2584000078028683 a004 Fibonacci(23)*Lucas(51)/(1/2+sqrt(5)/2)^56 2584000078028683 a001 28657/119218851371*45537549124^(16/17) 2584000078028683 a001 944284833797043/365435296162 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^47/Lucas(52) 2584000078028683 a001 28657/28143753123*28143753123^(9/10) 2584000078028683 a004 Fibonacci(23)*Lucas(53)/(1/2+sqrt(5)/2)^58 2584000078028683 a001 2472169789941704/956722026041 2584000078028683 a001 28657/192900153618*14662949395604^(7/9) 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^49/Lucas(54) 2584000078028683 a001 28657/192900153618*505019158607^(7/8) 2584000078028683 a004 Fibonacci(23)*Lucas(55)/(1/2+sqrt(5)/2)^60 2584000078028683 a001 28657/505019158607*817138163596^(17/19) 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^51/Lucas(56) 2584000078028683 a004 Fibonacci(23)*Lucas(57)/(1/2+sqrt(5)/2)^62 2584000078028683 a001 16944503818142503/6557470319842 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^53/Lucas(58) 2584000078028683 a004 Fibonacci(23)*Lucas(59)/(1/2+sqrt(5)/2)^64 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^55/Lucas(60) 2584000078028683 a004 Fibonacci(23)*Lucas(61)/(1/2+sqrt(5)/2)^66 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^57/Lucas(62) 2584000078028683 a004 Fibonacci(23)*Lucas(63)/(1/2+sqrt(5)/2)^68 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^59/Lucas(64) 2584000078028683 a004 Fibonacci(23)*Lucas(65)/(1/2+sqrt(5)/2)^70 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^61/Lucas(66) 2584000078028683 a004 Fibonacci(23)*Lucas(67)/(1/2+sqrt(5)/2)^72 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^63/Lucas(68) 2584000078028683 a004 Fibonacci(23)*Lucas(69)/(1/2+sqrt(5)/2)^74 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^65/Lucas(70) 2584000078028683 a004 Fibonacci(23)*Lucas(71)/(1/2+sqrt(5)/2)^76 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^67/Lucas(72) 2584000078028683 a004 Fibonacci(23)*Lucas(73)/(1/2+sqrt(5)/2)^78 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^69/Lucas(74) 2584000078028683 a004 Fibonacci(23)*Lucas(75)/(1/2+sqrt(5)/2)^80 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^71/Lucas(76) 2584000078028683 a004 Fibonacci(23)*Lucas(77)/(1/2+sqrt(5)/2)^82 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^73/Lucas(78) 2584000078028683 a004 Fibonacci(23)*Lucas(79)/(1/2+sqrt(5)/2)^84 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^75/Lucas(80) 2584000078028683 a004 Fibonacci(23)*Lucas(81)/(1/2+sqrt(5)/2)^86 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^77/Lucas(82) 2584000078028683 a004 Fibonacci(23)*Lucas(83)/(1/2+sqrt(5)/2)^88 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^79/Lucas(84) 2584000078028683 a004 Fibonacci(23)*Lucas(85)/(1/2+sqrt(5)/2)^90 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^81/Lucas(86) 2584000078028683 a004 Fibonacci(23)*Lucas(87)/(1/2+sqrt(5)/2)^92 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^83/Lucas(88) 2584000078028683 a004 Fibonacci(23)*Lucas(89)/(1/2+sqrt(5)/2)^94 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^85/Lucas(90) 2584000078028683 a004 Fibonacci(23)*Lucas(91)/(1/2+sqrt(5)/2)^96 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^87/Lucas(92) 2584000078028683 a004 Fibonacci(23)*Lucas(93)/(1/2+sqrt(5)/2)^98 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^89/Lucas(94) 2584000078028683 a004 Fibonacci(23)*Lucas(95)/(1/2+sqrt(5)/2)^100 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^91/Lucas(96) 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^93/Lucas(98) 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^95/Lucas(100) 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^92/Lucas(97) 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^94/Lucas(99) 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^90/Lucas(95) 2584000078028683 a004 Fibonacci(23)*Lucas(94)/(1/2+sqrt(5)/2)^99 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^88/Lucas(93) 2584000078028683 a004 Fibonacci(23)*Lucas(92)/(1/2+sqrt(5)/2)^97 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^86/Lucas(91) 2584000078028683 a004 Fibonacci(23)*Lucas(90)/(1/2+sqrt(5)/2)^95 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^84/Lucas(89) 2584000078028683 a004 Fibonacci(23)*Lucas(88)/(1/2+sqrt(5)/2)^93 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^82/Lucas(87) 2584000078028683 a004 Fibonacci(23)*Lucas(86)/(1/2+sqrt(5)/2)^91 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^80/Lucas(85) 2584000078028683 a004 Fibonacci(23)*Lucas(84)/(1/2+sqrt(5)/2)^89 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^78/Lucas(83) 2584000078028683 a004 Fibonacci(23)*Lucas(82)/(1/2+sqrt(5)/2)^87 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^76/Lucas(81) 2584000078028683 a004 Fibonacci(23)*Lucas(80)/(1/2+sqrt(5)/2)^85 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^74/Lucas(79) 2584000078028683 a004 Fibonacci(23)*Lucas(78)/(1/2+sqrt(5)/2)^83 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^72/Lucas(77) 2584000078028683 a004 Fibonacci(23)*Lucas(76)/(1/2+sqrt(5)/2)^81 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^70/Lucas(75) 2584000078028683 a004 Fibonacci(23)*Lucas(74)/(1/2+sqrt(5)/2)^79 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^68/Lucas(73) 2584000078028683 a004 Fibonacci(23)*Lucas(72)/(1/2+sqrt(5)/2)^77 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^66/Lucas(71) 2584000078028683 a004 Fibonacci(23)*Lucas(70)/(1/2+sqrt(5)/2)^75 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^64/Lucas(69) 2584000078028683 a004 Fibonacci(23)*Lucas(68)/(1/2+sqrt(5)/2)^73 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^62/Lucas(67) 2584000078028683 a004 Fibonacci(23)*Lucas(66)/(1/2+sqrt(5)/2)^71 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^60/Lucas(65) 2584000078028683 a004 Fibonacci(23)*Lucas(64)/(1/2+sqrt(5)/2)^69 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^58/Lucas(63) 2584000078028683 a004 Fibonacci(23)*Lucas(62)/(1/2+sqrt(5)/2)^67 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^56/Lucas(61) 2584000078028683 a004 Fibonacci(23)*Lucas(60)/(1/2+sqrt(5)/2)^65 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^54/Lucas(59) 2584000078028683 a004 Fibonacci(23)*Lucas(58)/(1/2+sqrt(5)/2)^63 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^52/Lucas(57) 2584000078028683 a001 10472279282114434/4052739537881 2584000078028683 a004 Fibonacci(23)*Lucas(56)/(1/2+sqrt(5)/2)^61 2584000078028683 a001 28657/817138163596*505019158607^(13/14) 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^50/Lucas(55) 2584000078028683 a001 28657/312119004989*3461452808002^(5/6) 2584000078028683 a001 28657/505019158607*192900153618^(17/18) 2584000078028683 a004 Fibonacci(23)*Lucas(54)/(1/2+sqrt(5)/2)^59 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^48/Lucas(53) 2584000078028683 a001 1527884956144661/591286729879 2584000078028683 a001 28657/119218851371*192900153618^(8/9) 2584000078028683 a004 Fibonacci(23)*Lucas(52)/(1/2+sqrt(5)/2)^57 2584000078028683 a001 28657/119218851371*73681302247^(12/13) 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^46/Lucas(51) 2584000078028683 a001 583600122347618/225851433717 2584000078028683 a004 Fibonacci(23)*Lucas(50)/(1/2+sqrt(5)/2)^55 2584000078028683 a001 28657/17393796001*312119004989^(4/5) 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^44/Lucas(49) 2584000078028683 a001 28657/17393796001*23725150497407^(11/16) 2584000078028683 a001 222915410898193/86267571272 2584000078028683 a001 28657/17393796001*73681302247^(11/13) 2584000078028683 a001 28657/28143753123*10749957122^(15/16) 2584000078028683 a004 Fibonacci(23)*Lucas(48)/(1/2+sqrt(5)/2)^53 2584000078028683 a001 28657/45537549124*10749957122^(23/24) 2584000078028683 a001 28657/17393796001*10749957122^(11/12) 2584000078028683 a001 28657/2537720636*2537720636^(8/9) 2584000078028683 a001 28657/6643838879*17393796001^(6/7) 2584000078028683 a001 28657/6643838879*45537549124^(14/17) 2584000078028683 a001 28657/6643838879*817138163596^(14/19) 2584000078028683 a001 28657/6643838879*14662949395604^(2/3) 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^42/Lucas(47) 2584000078028683 a001 28657/6643838879*192900153618^(7/9) 2584000078028683 a001 85146110346961/32951280099 2584000078028683 a001 28657/6643838879*10749957122^(7/8) 2584000078028683 a004 Fibonacci(48)/Lucas(23)/(1/2+sqrt(5)/2)^7 2584000078028683 a004 Fibonacci(50)/Lucas(23)/(1/2+sqrt(5)/2)^9 2584000078028683 a004 Fibonacci(52)/Lucas(23)/(1/2+sqrt(5)/2)^11 2584000078028683 a004 Fibonacci(54)/Lucas(23)/(1/2+sqrt(5)/2)^13 2584000078028683 a004 Fibonacci(56)/Lucas(23)/(1/2+sqrt(5)/2)^15 2584000078028683 a004 Fibonacci(58)/Lucas(23)/(1/2+sqrt(5)/2)^17 2584000078028683 a004 Fibonacci(60)/Lucas(23)/(1/2+sqrt(5)/2)^19 2584000078028683 a004 Fibonacci(62)/Lucas(23)/(1/2+sqrt(5)/2)^21 2584000078028683 a004 Fibonacci(64)/Lucas(23)/(1/2+sqrt(5)/2)^23 2584000078028683 a004 Fibonacci(66)/Lucas(23)/(1/2+sqrt(5)/2)^25 2584000078028683 a004 Fibonacci(68)/Lucas(23)/(1/2+sqrt(5)/2)^27 2584000078028683 a004 Fibonacci(70)/Lucas(23)/(1/2+sqrt(5)/2)^29 2584000078028683 a004 Fibonacci(72)/Lucas(23)/(1/2+sqrt(5)/2)^31 2584000078028683 a004 Fibonacci(74)/Lucas(23)/(1/2+sqrt(5)/2)^33 2584000078028683 a004 Fibonacci(76)/Lucas(23)/(1/2+sqrt(5)/2)^35 2584000078028683 a004 Fibonacci(78)/Lucas(23)/(1/2+sqrt(5)/2)^37 2584000078028683 a004 Fibonacci(80)/Lucas(23)/(1/2+sqrt(5)/2)^39 2584000078028683 a004 Fibonacci(82)/Lucas(23)/(1/2+sqrt(5)/2)^41 2584000078028683 a004 Fibonacci(84)/Lucas(23)/(1/2+sqrt(5)/2)^43 2584000078028683 a004 Fibonacci(86)/Lucas(23)/(1/2+sqrt(5)/2)^45 2584000078028683 a004 Fibonacci(88)/Lucas(23)/(1/2+sqrt(5)/2)^47 2584000078028683 a004 Fibonacci(90)/Lucas(23)/(1/2+sqrt(5)/2)^49 2584000078028683 a004 Fibonacci(23)*Lucas(46)/(1/2+sqrt(5)/2)^51 2584000078028683 a004 Fibonacci(94)/Lucas(23)/(1/2+sqrt(5)/2)^53 2584000078028683 a004 Fibonacci(96)/Lucas(23)/(1/2+sqrt(5)/2)^55 2584000078028683 a004 Fibonacci(100)/Lucas(23)/(1/2+sqrt(5)/2)^59 2584000078028683 a004 Fibonacci(98)/Lucas(23)/(1/2+sqrt(5)/2)^57 2584000078028683 a004 Fibonacci(99)/Lucas(23)/(1/2+sqrt(5)/2)^58 2584000078028683 a004 Fibonacci(97)/Lucas(23)/(1/2+sqrt(5)/2)^56 2584000078028683 a004 Fibonacci(95)/Lucas(23)/(1/2+sqrt(5)/2)^54 2584000078028683 a004 Fibonacci(93)/Lucas(23)/(1/2+sqrt(5)/2)^52 2584000078028683 a004 Fibonacci(91)/Lucas(23)/(1/2+sqrt(5)/2)^50 2584000078028683 a004 Fibonacci(89)/Lucas(23)/(1/2+sqrt(5)/2)^48 2584000078028683 a004 Fibonacci(87)/Lucas(23)/(1/2+sqrt(5)/2)^46 2584000078028683 a004 Fibonacci(85)/Lucas(23)/(1/2+sqrt(5)/2)^44 2584000078028683 a004 Fibonacci(83)/Lucas(23)/(1/2+sqrt(5)/2)^42 2584000078028683 a004 Fibonacci(81)/Lucas(23)/(1/2+sqrt(5)/2)^40 2584000078028683 a004 Fibonacci(79)/Lucas(23)/(1/2+sqrt(5)/2)^38 2584000078028683 a004 Fibonacci(77)/Lucas(23)/(1/2+sqrt(5)/2)^36 2584000078028683 a004 Fibonacci(75)/Lucas(23)/(1/2+sqrt(5)/2)^34 2584000078028683 a004 Fibonacci(73)/Lucas(23)/(1/2+sqrt(5)/2)^32 2584000078028683 a004 Fibonacci(71)/Lucas(23)/(1/2+sqrt(5)/2)^30 2584000078028683 a004 Fibonacci(69)/Lucas(23)/(1/2+sqrt(5)/2)^28 2584000078028683 a004 Fibonacci(67)/Lucas(23)/(1/2+sqrt(5)/2)^26 2584000078028683 a004 Fibonacci(65)/Lucas(23)/(1/2+sqrt(5)/2)^24 2584000078028683 a004 Fibonacci(63)/Lucas(23)/(1/2+sqrt(5)/2)^22 2584000078028683 a004 Fibonacci(61)/Lucas(23)/(1/2+sqrt(5)/2)^20 2584000078028683 a004 Fibonacci(59)/Lucas(23)/(1/2+sqrt(5)/2)^18 2584000078028683 a004 Fibonacci(57)/Lucas(23)/(1/2+sqrt(5)/2)^16 2584000078028683 a004 Fibonacci(55)/Lucas(23)/(1/2+sqrt(5)/2)^14 2584000078028683 a004 Fibonacci(53)/Lucas(23)/(1/2+sqrt(5)/2)^12 2584000078028683 a004 Fibonacci(51)/Lucas(23)/(1/2+sqrt(5)/2)^10 2584000078028683 a001 28657/17393796001*4106118243^(22/23) 2584000078028683 a004 Fibonacci(49)/Lucas(23)/(1/2+sqrt(5)/2)^8 2584000078028683 a001 28657/6643838879*4106118243^(21/23) 2584000078028683 a004 Fibonacci(47)/Lucas(23)/(1/2+sqrt(5)/2)^6 2584000078028683 a001 28657/2537720636*312119004989^(8/11) 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^40/Lucas(45) 2584000078028683 a001 28657/2537720636*23725150497407^(5/8) 2584000078028683 a001 28657/2537720636*73681302247^(10/13) 2584000078028683 a001 28657/2537720636*28143753123^(4/5) 2584000078028683 a001 6504584028538/2517253805 2584000078028683 a001 28657/2537720636*10749957122^(5/6) 2584000078028683 a001 28657/2537720636*4106118243^(20/23) 2584000078028683 a004 Fibonacci(45)/Lucas(23)/(1/2+sqrt(5)/2)^4 2584000078028683 a004 Fibonacci(23)*Lucas(44)/(1/2+sqrt(5)/2)^49 2584000078028683 a001 28657/6643838879*1568397607^(21/22) 2584000078028683 a001 28657/2537720636*1568397607^(10/11) 2584000078028683 a001 28657/969323029*817138163596^(2/3) 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^38/Lucas(43) 2584000078028683 a001 28657/969323029*10749957122^(19/24) 2584000078028683 a001 12422650081109/4807526976 2584000078028683 a001 28657/969323029*4106118243^(19/23) 2584000078028683 a004 Fibonacci(43)/Lucas(23)/(1/2+sqrt(5)/2)^2 2584000078028683 a001 28657/969323029*1568397607^(19/22) 2584000078028683 a001 28657/1568397607*599074578^(13/14) 2584000078028683 a004 Fibonacci(23)*Lucas(42)/(1/2+sqrt(5)/2)^47 2584000078028683 a001 28657/2537720636*599074578^(20/21) 2584000078028683 a001 28657/969323029*599074578^(19/21) 2584000078028683 a001 28657/370248451*2537720636^(4/5) 2584000078028683 a001 28657/370248451*45537549124^(12/17) 2584000078028683 a001 28657/370248451*14662949395604^(4/7) 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^36/Lucas(41) 2584000078028683 a001 28657/370248451*505019158607^(9/14) 2584000078028683 a001 28657/370248451*192900153618^(2/3) 2584000078028683 a001 28657/370248451*73681302247^(9/13) 2584000078028683 a001 28657/370248451*10749957122^(3/4) 2584000078028683 a001 28657/370248451*4106118243^(18/23) 2584000078028683 a001 165580141/64079 2584000078028683 a001 28657/370248451*1568397607^(9/11) 2584000078028683 a001 28657/370248451*599074578^(6/7) 2584000078028683 a004 Fibonacci(23)*Lucas(40)/(1/2+sqrt(5)/2)^45 2584000078028683 a001 28657/969323029*228826127^(19/20) 2584000078028683 a001 28657/370248451*228826127^(9/10) 2584000078028683 a001 28657/141422324*45537549124^(2/3) 2584000078028683 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^34/Lucas(39) 2584000078028683 a001 28657/141422324*10749957122^(17/24) 2584000078028683 a001 28657/141422324*4106118243^(17/23) 2584000078028683 a001 63245986/64079*(1/2+1/2*5^(1/2))^2 2584000078028683 a001 63245986/64079*10749957122^(1/24) 2584000078028683 a001 63245986/64079*4106118243^(1/23) 2584000078028683 a001 63245986/64079*1568397607^(1/22) 2584000078028683 a001 63245986/64079*599074578^(1/21) 2584000078028683 a001 28657/141422324*1568397607^(17/22) 2584000078028683 a001 1812440220802/701408733 2584000078028683 a001 63245986/64079*228826127^(1/20) 2584000078028683 a001 28657/141422324*599074578^(17/21) 2584000078028683 a001 63245986/64079*87403803^(1/19) 2584000078028683 a001 28657/141422324*228826127^(17/20) 2584000078028683 a001 63245986/64079*33385282^(1/18) 2584000078028683 a004 Fibonacci(23)*Lucas(38)/(1/2+sqrt(5)/2)^43 2584000078028683 a001 28657/370248451*87403803^(18/19) 2584000078028683 a001 28657/141422324*87403803^(17/19) 2584000078028684 a001 28657/20633239*20633239^(6/7) 2584000078028684 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^32/Lucas(37) 2584000078028684 a001 28657/54018521*23725150497407^(1/2) 2584000078028684 a001 28657/54018521*73681302247^(8/13) 2584000078028684 a001 28657/54018521*10749957122^(2/3) 2584000078028684 a001 28657/54018521*4106118243^(16/23) 2584000078028684 a001 24157817/64079*(1/2+1/2*5^(1/2))^4 2584000078028684 a001 24157817/64079*23725150497407^(1/16) 2584000078028684 a001 24157817/64079*73681302247^(1/13) 2584000078028684 a001 24157817/64079*10749957122^(1/12) 2584000078028684 a001 24157817/64079*4106118243^(2/23) 2584000078028684 a001 24157817/64079*1568397607^(1/11) 2584000078028684 a001 28657/54018521*1568397607^(8/11) 2584000078028684 a001 24157817/64079*599074578^(2/21) 2584000078028684 a001 24157817/64079*228826127^(1/10) 2584000078028684 a001 28657/54018521*599074578^(16/21) 2584000078028684 a001 692290561769/267914296 2584000078028684 a001 24157817/64079*87403803^(2/19) 2584000078028684 a001 28657/54018521*228826127^(4/5) 2584000078028684 a001 63245986/64079*12752043^(1/17) 2584000078028684 a001 24157817/64079*33385282^(1/9) 2584000078028684 a001 28657/54018521*87403803^(16/19) 2584000078028685 a001 28657/87403803*33385282^(11/12) 2584000078028685 a004 Fibonacci(23)*Lucas(36)/(1/2+sqrt(5)/2)^41 2584000078028685 a001 28657/141422324*33385282^(17/18) 2584000078028686 a001 24157817/64079*12752043^(2/17) 2584000078028686 a001 28657/54018521*33385282^(8/9) 2584000078028689 a001 28657/20633239*141422324^(10/13) 2584000078028689 a001 9227465/64079*141422324^(2/13) 2584000078028689 a001 28657/20633239*2537720636^(2/3) 2584000078028689 a001 28657/20633239*45537549124^(10/17) 2584000078028689 a001 28657/20633239*312119004989^(6/11) 2584000078028689 a001 28657/20633239*14662949395604^(10/21) 2584000078028689 a001 28657/20633239*(1/2+1/2*5^(1/2))^30 2584000078028689 a001 28657/20633239*192900153618^(5/9) 2584000078028689 a001 28657/20633239*28143753123^(3/5) 2584000078028689 a001 28657/20633239*10749957122^(5/8) 2584000078028689 a001 9227465/64079*2537720636^(2/15) 2584000078028689 a001 28657/20633239*4106118243^(15/23) 2584000078028689 a001 9227465/64079*45537549124^(2/17) 2584000078028689 a001 9227465/64079*14662949395604^(2/21) 2584000078028689 a001 9227465/64079*(1/2+1/2*5^(1/2))^6 2584000078028689 a001 9227465/64079*10749957122^(1/8) 2584000078028689 a001 9227465/64079*4106118243^(3/23) 2584000078028689 a001 9227465/64079*1568397607^(3/22) 2584000078028689 a001 28657/20633239*1568397607^(15/22) 2584000078028689 a001 9227465/64079*599074578^(1/7) 2584000078028689 a001 28657/20633239*599074578^(5/7) 2584000078028689 a001 9227465/64079*228826127^(3/20) 2584000078028689 a001 28657/20633239*228826127^(3/4) 2584000078028689 a001 52886292901/20466831 2584000078028689 a001 9227465/64079*87403803^(3/19) 2584000078028689 a001 28657/20633239*87403803^(15/19) 2584000078028689 a001 9227465/64079*33385282^(1/6) 2584000078028690 a001 63245986/64079*4870847^(1/16) 2584000078028691 a001 28657/20633239*33385282^(5/6) 2584000078028692 a001 9227465/64079*12752043^(3/17) 2584000078028697 a001 24157817/64079*4870847^(1/8) 2584000078028699 a001 28657/54018521*12752043^(16/17) 2584000078028699 a004 Fibonacci(23)*Lucas(34)/(1/2+sqrt(5)/2)^39 2584000078028703 a001 28657/20633239*12752043^(15/17) 2584000078028709 a001 9227465/64079*4870847^(3/16) 2584000078028720 a001 28657/7881196*20633239^(4/5) 2584000078028724 a001 28657/7881196*17393796001^(4/7) 2584000078028724 a001 28657/7881196*14662949395604^(4/9) 2584000078028724 a001 28657/7881196*(1/2+1/2*5^(1/2))^28 2584000078028724 a001 28657/7881196*73681302247^(7/13) 2584000078028724 a001 28657/7881196*10749957122^(7/12) 2584000078028724 a001 28657/7881196*4106118243^(14/23) 2584000078028724 a001 3524578/64079*(1/2+1/2*5^(1/2))^8 2584000078028724 a001 3524578/64079*23725150497407^(1/8) 2584000078028724 a001 3524578/64079*73681302247^(2/13) 2584000078028724 a001 3524578/64079*10749957122^(1/6) 2584000078028724 a001 3524578/64079*4106118243^(4/23) 2584000078028724 a001 3524578/64079*1568397607^(2/11) 2584000078028724 a001 28657/7881196*1568397607^(7/11) 2584000078028724 a001 3524578/64079*599074578^(4/21) 2584000078028724 a001 28657/7881196*599074578^(2/3) 2584000078028724 a001 3524578/64079*228826127^(1/5) 2584000078028724 a001 28657/7881196*228826127^(7/10) 2584000078028724 a001 3524578/64079*87403803^(4/19) 2584000078028725 a001 28657/7881196*87403803^(14/19) 2584000078028725 a001 101003831746/39088169 2584000078028725 a001 3524578/64079*33385282^(2/9) 2584000078028726 a001 28657/7881196*33385282^(7/9) 2584000078028728 a001 3524578/64079*12752043^(4/17) 2584000078028733 a001 63245986/64079*1860498^(1/15) 2584000078028738 a001 28657/7881196*12752043^(14/17) 2584000078028752 a001 3524578/64079*4870847^(1/4) 2584000078028757 a001 39088169/64079*1860498^(1/10) 2584000078028783 a001 24157817/64079*1860498^(2/15) 2584000078028791 a001 28657/20633239*4870847^(15/16) 2584000078028792 a004 Fibonacci(23)*Lucas(32)/(1/2+sqrt(5)/2)^37 2584000078028798 a001 2178309/64079*1860498^(3/10) 2584000078028805 a001 14930352/64079*1860498^(1/6) 2584000078028820 a001 28657/7881196*4870847^(7/8) 2584000078028838 a001 9227465/64079*1860498^(1/5) 2584000078028923 a001 3524578/64079*1860498^(4/15) 2584000078028966 a001 1346269/64079*20633239^(2/7) 2584000078028968 a001 28657/3010349*141422324^(2/3) 2584000078028968 a001 28657/3010349*(1/2+1/2*5^(1/2))^26 2584000078028968 a001 28657/3010349*73681302247^(1/2) 2584000078028968 a001 28657/3010349*10749957122^(13/24) 2584000078028968 a001 1346269/64079*2537720636^(2/9) 2584000078028968 a001 28657/3010349*4106118243^(13/23) 2584000078028968 a001 1346269/64079*312119004989^(2/11) 2584000078028968 a001 1346269/64079*(1/2+1/2*5^(1/2))^10 2584000078028968 a001 1346269/64079*28143753123^(1/5) 2584000078028968 a001 1346269/64079*10749957122^(5/24) 2584000078028968 a001 1346269/64079*4106118243^(5/23) 2584000078028968 a001 1346269/64079*1568397607^(5/22) 2584000078028968 a001 28657/3010349*1568397607^(13/22) 2584000078028968 a001 1346269/64079*599074578^(5/21) 2584000078028968 a001 28657/3010349*599074578^(13/21) 2584000078028968 a001 1346269/64079*228826127^(1/4) 2584000078028968 a001 28657/3010349*228826127^(13/20) 2584000078028968 a001 1346269/64079*87403803^(5/19) 2584000078028968 a001 28657/3010349*87403803^(13/19) 2584000078028969 a001 1346269/64079*33385282^(5/18) 2584000078028970 a001 28657/3010349*33385282^(13/18) 2584000078028970 a001 38580030733/14930352 2584000078028973 a001 1346269/64079*12752043^(5/17) 2584000078028980 a001 28657/3010349*12752043^(13/17) 2584000078029002 a001 1346269/64079*4870847^(5/16) 2584000078029048 a001 63245986/64079*710647^(1/14) 2584000078029056 a001 28657/3010349*4870847^(13/16) 2584000078029217 a001 1346269/64079*1860498^(1/3) 2584000078029246 a001 28657/4870847*1860498^(9/10) 2584000078029415 a001 24157817/64079*710647^(1/7) 2584000078029421 a001 28657/7881196*1860498^(14/15) 2584000078029429 a004 Fibonacci(23)*Lucas(30)/(1/2+sqrt(5)/2)^35 2584000078029615 a001 28657/3010349*1860498^(13/15) 2584000078029785 a001 9227465/64079*710647^(3/14) 2584000078029946 a001 5702887/64079*710647^(1/4) 2584000078030186 a001 3524578/64079*710647^(2/7) 2584000078030607 a001 28657/1149851*7881196^(8/11) 2584000078030622 a001 514229/64079*7881196^(4/11) 2584000078030637 a001 28657/1149851*141422324^(8/13) 2584000078030637 a001 514229/64079*141422324^(4/13) 2584000078030637 a001 28657/1149851*2537720636^(8/15) 2584000078030637 a001 28657/1149851*45537549124^(8/17) 2584000078030637 a001 28657/1149851*14662949395604^(8/21) 2584000078030637 a001 28657/1149851*(1/2+1/2*5^(1/2))^24 2584000078030637 a001 28657/1149851*192900153618^(4/9) 2584000078030637 a001 28657/1149851*73681302247^(6/13) 2584000078030637 a001 28657/1149851*10749957122^(1/2) 2584000078030637 a001 514229/64079*2537720636^(4/15) 2584000078030637 a001 28657/1149851*4106118243^(12/23) 2584000078030637 a001 514229/64079*45537549124^(4/17) 2584000078030637 a001 514229/64079*14662949395604^(4/21) 2584000078030637 a001 514229/64079*(1/2+1/2*5^(1/2))^12 2584000078030637 a001 514229/64079*192900153618^(2/9) 2584000078030637 a001 514229/64079*73681302247^(3/13) 2584000078030637 a001 514229/64079*10749957122^(1/4) 2584000078030637 a001 514229/64079*4106118243^(6/23) 2584000078030637 a001 514229/64079*1568397607^(3/11) 2584000078030637 a001 28657/1149851*1568397607^(6/11) 2584000078030637 a001 514229/64079*599074578^(2/7) 2584000078030637 a001 28657/1149851*599074578^(4/7) 2584000078030637 a001 514229/64079*228826127^(3/10) 2584000078030637 a001 28657/1149851*228826127^(3/5) 2584000078030637 a001 514229/64079*87403803^(6/19) 2584000078030637 a001 28657/1149851*87403803^(12/19) 2584000078030638 a001 514229/64079*33385282^(1/3) 2584000078030639 a001 28657/1149851*33385282^(2/3) 2584000078030643 a001 514229/64079*12752043^(6/17) 2584000078030648 a001 28657/1149851*12752043^(12/17) 2584000078030653 a001 14736260453/5702887 2584000078030678 a001 514229/64079*4870847^(3/8) 2584000078030719 a001 28657/1149851*4870847^(3/4) 2584000078030795 a001 1346269/64079*710647^(5/14) 2584000078030936 a001 514229/64079*1860498^(2/5) 2584000078031234 a001 28657/1149851*1860498^(4/5) 2584000078031381 a001 63245986/64079*271443^(1/13) 2584000078032830 a001 514229/64079*710647^(3/7) 2584000078033719 a001 28657/3010349*710647^(13/14) 2584000078033799 a004 Fibonacci(23)*Lucas(28)/(1/2+sqrt(5)/2)^33 2584000078034079 a001 24157817/64079*271443^(2/13) 2584000078035023 a001 28657/1149851*710647^(6/7) 2584000078036782 a001 9227465/64079*271443^(3/13) 2584000078038308 a001 9227465/271443*39603^(9/22) 2584000078038698 a001 102334155/64079*103682^(1/24) 2584000078039515 a001 3524578/64079*271443^(4/13) 2584000078041101 a001 317811/64079*271443^(1/2) 2584000078042051 a001 28657/439204*7881196^(2/3) 2584000078042076 a001 196418/64079*20633239^(2/5) 2584000078042078 a001 28657/439204*312119004989^(2/5) 2584000078042078 a001 28657/439204*(1/2+1/2*5^(1/2))^22 2584000078042078 a001 28657/439204*10749957122^(11/24) 2584000078042078 a001 28657/439204*4106118243^(11/23) 2584000078042078 a001 196418/64079*17393796001^(2/7) 2584000078042078 a001 196418/64079*14662949395604^(2/9) 2584000078042078 a001 196418/64079*(1/2+1/2*5^(1/2))^14 2584000078042078 a001 196418/64079*10749957122^(7/24) 2584000078042078 a001 196418/64079*4106118243^(7/23) 2584000078042078 a001 196418/64079*1568397607^(7/22) 2584000078042078 a001 28657/439204*1568397607^(1/2) 2584000078042078 a001 196418/64079*599074578^(1/3) 2584000078042078 a001 28657/439204*599074578^(11/21) 2584000078042078 a001 196418/64079*228826127^(7/20) 2584000078042078 a001 28657/439204*228826127^(11/20) 2584000078042078 a001 196418/64079*87403803^(7/19) 2584000078042079 a001 28657/439204*87403803^(11/19) 2584000078042079 a001 196418/64079*33385282^(7/18) 2584000078042080 a001 28657/439204*33385282^(11/18) 2584000078042085 a001 196418/64079*12752043^(7/17) 2584000078042089 a001 28657/439204*12752043^(11/17) 2584000078042126 a001 196418/64079*4870847^(7/16) 2584000078042153 a001 28657/439204*4870847^(11/16) 2584000078042187 a001 5628750626/2178309 2584000078042427 a001 196418/64079*1860498^(7/15) 2584000078042456 a001 1346269/64079*271443^(5/13) 2584000078042626 a001 28657/439204*1860498^(11/15) 2584000078044637 a001 196418/64079*710647^(1/2) 2584000078046099 a001 28657/439204*710647^(11/14) 2584000078046823 a001 514229/64079*271443^(6/13) 2584000078047046 a001 28657/167761*167761^(4/5) 2584000078048714 a001 63245986/64079*103682^(1/12) 2584000078055813 a001 267914296/167761*15127^(1/20) 2584000078056917 a001 416020/51841*39603^(6/11) 2584000078058729 a001 39088169/64079*103682^(1/8) 2584000078060962 a001 196418/64079*271443^(7/13) 2584000078063009 a001 28657/1149851*271443^(12/13) 2584000078063753 a004 Fibonacci(23)*Lucas(26)/(1/2+sqrt(5)/2)^31 2584000078068256 a001 24157817/710647*39603^(9/22) 2584000078068746 a001 24157817/64079*103682^(1/6) 2584000078071753 a001 28657/439204*271443^(11/13) 2584000078072626 a001 31622993/930249*39603^(9/22) 2584000078073263 a001 165580141/4870847*39603^(9/22) 2584000078073356 a001 433494437/12752043*39603^(9/22) 2584000078073370 a001 567451585/16692641*39603^(9/22) 2584000078073372 a001 2971215073/87403803*39603^(9/22) 2584000078073372 a001 7778742049/228826127*39603^(9/22) 2584000078073372 a001 10182505537/299537289*39603^(9/22) 2584000078073372 a001 53316291173/1568397607*39603^(9/22) 2584000078073372 a001 139583862445/4106118243*39603^(9/22) 2584000078073372 a001 182717648081/5374978561*39603^(9/22) 2584000078073372 a001 956722026041/28143753123*39603^(9/22) 2584000078073372 a001 2504730781961/73681302247*39603^(9/22) 2584000078073372 a001 3278735159921/96450076809*39603^(9/22) 2584000078073372 a001 10610209857723/312119004989*39603^(9/22) 2584000078073372 a001 4052739537881/119218851371*39603^(9/22) 2584000078073372 a001 387002188980/11384387281*39603^(9/22) 2584000078073372 a001 591286729879/17393796001*39603^(9/22) 2584000078073372 a001 225851433717/6643838879*39603^(9/22) 2584000078073372 a001 1135099622/33391061*39603^(9/22) 2584000078073372 a001 32951280099/969323029*39603^(9/22) 2584000078073372 a001 12586269025/370248451*39603^(9/22) 2584000078073372 a001 1201881744/35355581*39603^(9/22) 2584000078073373 a001 1836311903/54018521*39603^(9/22) 2584000078073378 a001 701408733/20633239*39603^(9/22) 2584000078073414 a001 66978574/1970299*39603^(9/22) 2584000078073657 a001 102334155/3010349*39603^(9/22) 2584000078075326 a001 39088169/1149851*39603^(9/22) 2584000078078758 a001 14930352/64079*103682^(5/24) 2584000078086765 a001 196452/5779*39603^(9/22) 2584000078088782 a001 9227465/64079*103682^(1/4) 2584000078090304 a001 9227465/167761*39603^(4/11) 2584000078098776 a001 5702887/64079*103682^(7/24) 2584000078103571 a001 102334155/64079*39603^(1/22) 2584000078108849 a001 3524578/64079*103682^(1/3) 2584000078113175 a001 5702887/271443*39603^(5/11) 2584000078118714 a001 2178309/64079*103682^(3/8) 2584000078120494 a001 28657/167761*20633239^(4/7) 2584000078120497 a001 28657/167761*2537720636^(4/9) 2584000078120497 a001 28657/167761*(1/2+1/2*5^(1/2))^20 2584000078120497 a001 28657/167761*23725150497407^(5/16) 2584000078120497 a001 28657/167761*505019158607^(5/14) 2584000078120497 a001 28657/167761*73681302247^(5/13) 2584000078120497 a001 28657/167761*28143753123^(2/5) 2584000078120497 a001 28657/167761*10749957122^(5/12) 2584000078120497 a001 28657/167761*4106118243^(10/23) 2584000078120497 a001 75025/64079*(1/2+1/2*5^(1/2))^16 2584000078120497 a001 75025/64079*23725150497407^(1/4) 2584000078120497 a001 75025/64079*73681302247^(4/13) 2584000078120497 a001 75025/64079*10749957122^(1/3) 2584000078120497 a001 75025/64079*4106118243^(8/23) 2584000078120497 a001 28657/167761*1568397607^(5/11) 2584000078120497 a001 75025/64079*1568397607^(4/11) 2584000078120497 a001 75025/64079*599074578^(8/21) 2584000078120497 a001 28657/167761*599074578^(10/21) 2584000078120497 a001 75025/64079*228826127^(2/5) 2584000078120497 a001 28657/167761*228826127^(1/2) 2584000078120497 a001 75025/64079*87403803^(8/19) 2584000078120497 a001 28657/167761*87403803^(10/19) 2584000078120498 a001 75025/64079*33385282^(4/9) 2584000078120498 a001 28657/167761*33385282^(5/9) 2584000078120505 a001 75025/64079*12752043^(8/17) 2584000078120507 a001 28657/167761*12752043^(10/17) 2584000078120552 a001 75025/64079*4870847^(1/2) 2584000078120565 a001 28657/167761*4870847^(5/8) 2584000078120895 a001 75025/64079*1860498^(8/15) 2584000078120995 a001 28657/167761*1860498^(2/3) 2584000078121244 a001 429998285/166408 2584000078123421 a001 75025/64079*710647^(4/7) 2584000078124152 a001 28657/167761*710647^(5/7) 2584000078129123 a001 1346269/64079*103682^(5/12) 2584000078134507 a001 514229/103682*39603^(13/22) 2584000078138107 a001 832040/64079*103682^(11/24) 2584000078142079 a001 75025/64079*271443^(8/13) 2584000078143142 a001 14930352/710647*39603^(5/11) 2584000078143846 a001 121393/64079*103682^(5/8) 2584000078147474 a001 28657/167761*271443^(10/13) 2584000078147514 a001 39088169/1860498*39603^(5/11) 2584000078148152 a001 102334155/4870847*39603^(5/11) 2584000078148245 a001 267914296/12752043*39603^(5/11) 2584000078148258 a001 701408733/33385282*39603^(5/11) 2584000078148260 a001 1836311903/87403803*39603^(5/11) 2584000078148260 a001 102287808/4868641*39603^(5/11) 2584000078148260 a001 12586269025/599074578*39603^(5/11) 2584000078148260 a001 32951280099/1568397607*39603^(5/11) 2584000078148260 a001 86267571272/4106118243*39603^(5/11) 2584000078148260 a001 225851433717/10749957122*39603^(5/11) 2584000078148260 a001 591286729879/28143753123*39603^(5/11) 2584000078148260 a001 1548008755920/73681302247*39603^(5/11) 2584000078148260 a001 4052739537881/192900153618*39603^(5/11) 2584000078148260 a001 225749145909/10745088481*39603^(5/11) 2584000078148260 a001 6557470319842/312119004989*39603^(5/11) 2584000078148260 a001 2504730781961/119218851371*39603^(5/11) 2584000078148260 a001 956722026041/45537549124*39603^(5/11) 2584000078148260 a001 365435296162/17393796001*39603^(5/11) 2584000078148260 a001 139583862445/6643838879*39603^(5/11) 2584000078148260 a001 53316291173/2537720636*39603^(5/11) 2584000078148260 a001 20365011074/969323029*39603^(5/11) 2584000078148260 a001 7778742049/370248451*39603^(5/11) 2584000078148261 a001 2971215073/141422324*39603^(5/11) 2584000078148261 a001 1134903170/54018521*39603^(5/11) 2584000078148267 a001 433494437/20633239*39603^(5/11) 2584000078148302 a001 165580141/7881196*39603^(5/11) 2584000078148546 a001 63245986/3010349*39603^(5/11) 2584000078150216 a001 24157817/1149851*39603^(5/11) 2584000078150824 a001 514229/64079*103682^(1/2) 2584000078153768 a001 317811/64079*103682^(13/24) 2584000078161662 a001 9227465/439204*39603^(5/11) 2584000078165171 a001 5702887/167761*39603^(9/22) 2584000078165488 a001 28657/64079*64079^(18/23) 2584000078178459 a001 63245986/64079*39603^(1/11) 2584000078182296 a001 196418/64079*103682^(7/12) 2584000078188120 a001 3524578/271443*39603^(1/2) 2584000078202324 a001 317811/103682*39603^(7/11) 2584000078203939 a001 28657/271443*103682^(7/8) 2584000078218038 a001 9227465/710647*39603^(1/2) 2584000078222403 a001 24157817/1860498*39603^(1/2) 2584000078223040 a001 63245986/4870847*39603^(1/2) 2584000078223133 a001 165580141/12752043*39603^(1/2) 2584000078223146 a001 433494437/33385282*39603^(1/2) 2584000078223148 a001 1134903170/87403803*39603^(1/2) 2584000078223149 a001 2971215073/228826127*39603^(1/2) 2584000078223149 a001 7778742049/599074578*39603^(1/2) 2584000078223149 a001 20365011074/1568397607*39603^(1/2) 2584000078223149 a001 53316291173/4106118243*39603^(1/2) 2584000078223149 a001 139583862445/10749957122*39603^(1/2) 2584000078223149 a001 365435296162/28143753123*39603^(1/2) 2584000078223149 a001 956722026041/73681302247*39603^(1/2) 2584000078223149 a001 2504730781961/192900153618*39603^(1/2) 2584000078223149 a001 10610209857723/817138163596*39603^(1/2) 2584000078223149 a001 4052739537881/312119004989*39603^(1/2) 2584000078223149 a001 1548008755920/119218851371*39603^(1/2) 2584000078223149 a001 591286729879/45537549124*39603^(1/2) 2584000078223149 a001 7787980473/599786069*39603^(1/2) 2584000078223149 a001 86267571272/6643838879*39603^(1/2) 2584000078223149 a001 32951280099/2537720636*39603^(1/2) 2584000078223149 a001 12586269025/969323029*39603^(1/2) 2584000078223149 a001 4807526976/370248451*39603^(1/2) 2584000078223149 a001 1836311903/141422324*39603^(1/2) 2584000078223150 a001 701408733/54018521*39603^(1/2) 2584000078223155 a001 9238424/711491*39603^(1/2) 2584000078223190 a001 102334155/7881196*39603^(1/2) 2584000078223434 a001 39088169/3010349*39603^(1/2) 2584000078225101 a001 14930352/1149851*39603^(1/2) 2584000078234079 a001 10946/64079*24476^(20/21) 2584000078236528 a001 5702887/439204*39603^(1/2) 2584000078240116 a001 3524578/167761*39603^(5/11) 2584000078253347 a001 39088169/64079*39603^(3/22) 2584000078253924 a001 28657/710647*103682^(23/24) 2584000078262420 a001 28657/439204*103682^(11/12) 2584000078262858 a001 726103/90481*39603^(6/11) 2584000078266620 a001 23184/51841*39603^(9/11) 2584000078269056 a004 Fibonacci(23)*Lucas(24)/(1/2+sqrt(5)/2)^29 2584000078280746 a001 75025/64079*103682^(2/3) 2584000078288247 a001 102334155/103682*15127^(1/10) 2584000078292904 a001 5702887/710647*39603^(6/11) 2584000078295724 a001 98209/51841*39603^(15/22) 2584000078297288 a001 829464/103361*39603^(6/11) 2584000078297928 a001 39088169/4870847*39603^(6/11) 2584000078298021 a001 34111385/4250681*39603^(6/11) 2584000078298035 a001 133957148/16692641*39603^(6/11) 2584000078298037 a001 233802911/29134601*39603^(6/11) 2584000078298037 a001 1836311903/228826127*39603^(6/11) 2584000078298037 a001 267084832/33281921*39603^(6/11) 2584000078298037 a001 12586269025/1568397607*39603^(6/11) 2584000078298037 a001 10983760033/1368706081*39603^(6/11) 2584000078298037 a001 43133785636/5374978561*39603^(6/11) 2584000078298037 a001 75283811239/9381251041*39603^(6/11) 2584000078298037 a001 591286729879/73681302247*39603^(6/11) 2584000078298037 a001 86000486440/10716675201*39603^(6/11) 2584000078298037 a001 4052739537881/505019158607*39603^(6/11) 2584000078298037 a001 3536736619241/440719107401*39603^(6/11) 2584000078298037 a001 3278735159921/408569081798*39603^(6/11) 2584000078298037 a001 2504730781961/312119004989*39603^(6/11) 2584000078298037 a001 956722026041/119218851371*39603^(6/11) 2584000078298037 a001 182717648081/22768774562*39603^(6/11) 2584000078298037 a001 139583862445/17393796001*39603^(6/11) 2584000078298037 a001 53316291173/6643838879*39603^(6/11) 2584000078298037 a001 10182505537/1268860318*39603^(6/11) 2584000078298037 a001 7778742049/969323029*39603^(6/11) 2584000078298037 a001 2971215073/370248451*39603^(6/11) 2584000078298037 a001 567451585/70711162*39603^(6/11) 2584000078298038 a001 433494437/54018521*39603^(6/11) 2584000078298043 a001 165580141/20633239*39603^(6/11) 2584000078298079 a001 31622993/3940598*39603^(6/11) 2584000078298323 a001 24157817/3010349*39603^(6/11) 2584000078299997 a001 9227465/1149851*39603^(6/11) 2584000078311474 a001 1762289/219602*39603^(6/11) 2584000078314854 a001 2178309/167761*39603^(1/2) 2584000078320808 a001 28657/167761*103682^(5/6) 2584000078322147 a001 121393/103682*39603^(8/11) 2584000078328237 a001 24157817/64079*39603^(2/11) 2584000078338140 a001 1346269/271443*39603^(13/22) 2584000078367850 a001 3524578/710647*39603^(13/22) 2584000078372185 a001 9227465/1860498*39603^(13/22) 2584000078372817 a001 24157817/4870847*39603^(13/22) 2584000078372909 a001 63245986/12752043*39603^(13/22) 2584000078372923 a001 165580141/33385282*39603^(13/22) 2584000078372925 a001 433494437/87403803*39603^(13/22) 2584000078372925 a001 1134903170/228826127*39603^(13/22) 2584000078372925 a001 2971215073/599074578*39603^(13/22) 2584000078372925 a001 7778742049/1568397607*39603^(13/22) 2584000078372925 a001 20365011074/4106118243*39603^(13/22) 2584000078372925 a001 53316291173/10749957122*39603^(13/22) 2584000078372925 a001 139583862445/28143753123*39603^(13/22) 2584000078372925 a001 365435296162/73681302247*39603^(13/22) 2584000078372925 a001 956722026041/192900153618*39603^(13/22) 2584000078372925 a001 2504730781961/505019158607*39603^(13/22) 2584000078372925 a001 10610209857723/2139295485799*39603^(13/22) 2584000078372925 a001 140728068720/28374454999*39603^(13/22) 2584000078372925 a001 591286729879/119218851371*39603^(13/22) 2584000078372925 a001 225851433717/45537549124*39603^(13/22) 2584000078372925 a001 86267571272/17393796001*39603^(13/22) 2584000078372925 a001 32951280099/6643838879*39603^(13/22) 2584000078372925 a001 1144206275/230701876*39603^(13/22) 2584000078372925 a001 4807526976/969323029*39603^(13/22) 2584000078372925 a001 1836311903/370248451*39603^(13/22) 2584000078372925 a001 701408733/141422324*39603^(13/22) 2584000078372926 a001 267914296/54018521*39603^(13/22) 2584000078372931 a001 9303105/1875749*39603^(13/22) 2584000078372966 a001 39088169/7881196*39603^(13/22) 2584000078373208 a001 14930352/3010349*39603^(13/22) 2584000078374864 a001 5702887/1149851*39603^(13/22) 2584000078386212 a001 2178309/439204*39603^(13/22) 2584000078390136 a001 1346269/167761*39603^(6/11) 2584000078391382 a001 11592/6119*24476^(5/7) 2584000078403122 a001 14930352/64079*39603^(5/22) 2584000078411997 a001 832040/271443*39603^(7/11) 2584000078442588 a001 311187/101521*39603^(7/11) 2584000078447051 a001 5702887/1860498*39603^(7/11) 2584000078447702 a001 14930352/4870847*39603^(7/11) 2584000078447797 a001 39088169/12752043*39603^(7/11) 2584000078447811 a001 14619165/4769326*39603^(7/11) 2584000078447813 a001 267914296/87403803*39603^(7/11) 2584000078447813 a001 701408733/228826127*39603^(7/11) 2584000078447813 a001 1836311903/599074578*39603^(7/11) 2584000078447813 a001 686789568/224056801*39603^(7/11) 2584000078447813 a001 12586269025/4106118243*39603^(7/11) 2584000078447813 a001 32951280099/10749957122*39603^(7/11) 2584000078447813 a001 86267571272/28143753123*39603^(7/11) 2584000078447813 a001 32264490531/10525900321*39603^(7/11) 2584000078447813 a001 591286729879/192900153618*39603^(7/11) 2584000078447813 a001 1548008755920/505019158607*39603^(7/11) 2584000078447813 a001 1515744265389/494493258286*39603^(7/11) 2584000078447813 a001 2504730781961/817138163596*39603^(7/11) 2584000078447813 a001 956722026041/312119004989*39603^(7/11) 2584000078447813 a001 365435296162/119218851371*39603^(7/11) 2584000078447813 a001 139583862445/45537549124*39603^(7/11) 2584000078447813 a001 53316291173/17393796001*39603^(7/11) 2584000078447813 a001 20365011074/6643838879*39603^(7/11) 2584000078447813 a001 7778742049/2537720636*39603^(7/11) 2584000078447813 a001 2971215073/969323029*39603^(7/11) 2584000078447813 a001 1134903170/370248451*39603^(7/11) 2584000078447814 a001 433494437/141422324*39603^(7/11) 2584000078447814 a001 165580141/54018521*39603^(7/11) 2584000078447820 a001 63245986/20633239*39603^(7/11) 2584000078447856 a001 24157817/7881196*39603^(7/11) 2584000078448105 a001 9227465/3010349*39603^(7/11) 2584000078449809 a001 3524578/1149851*39603^(7/11) 2584000078461494 a001 1346269/439204*39603^(7/11) 2584000078463993 a001 75640/15251*39603^(13/22) 2584000078478018 a001 9227465/64079*39603^(3/11) 2584000078489586 a001 514229/271443*39603^(15/22) 2584000078493550 a001 267914296/271443*15127^(1/10) 2584000078517870 a001 1346269/710647*39603^(15/22) 2584000078521997 a001 1762289/930249*39603^(15/22) 2584000078522599 a001 9227465/4870847*39603^(15/22) 2584000078522687 a001 24157817/12752043*39603^(15/22) 2584000078522700 a001 31622993/16692641*39603^(15/22) 2584000078522701 a001 165580141/87403803*39603^(15/22) 2584000078522702 a001 433494437/228826127*39603^(15/22) 2584000078522702 a001 567451585/299537289*39603^(15/22) 2584000078522702 a001 2971215073/1568397607*39603^(15/22) 2584000078522702 a001 7778742049/4106118243*39603^(15/22) 2584000078522702 a001 10182505537/5374978561*39603^(15/22) 2584000078522702 a001 53316291173/28143753123*39603^(15/22) 2584000078522702 a001 139583862445/73681302247*39603^(15/22) 2584000078522702 a001 182717648081/96450076809*39603^(15/22) 2584000078522702 a001 956722026041/505019158607*39603^(15/22) 2584000078522702 a001 10610209857723/5600748293801*39603^(15/22) 2584000078522702 a001 591286729879/312119004989*39603^(15/22) 2584000078522702 a001 225851433717/119218851371*39603^(15/22) 2584000078522702 a001 21566892818/11384387281*39603^(15/22) 2584000078522702 a001 32951280099/17393796001*39603^(15/22) 2584000078522702 a001 12586269025/6643838879*39603^(15/22) 2584000078522702 a001 1201881744/634430159*39603^(15/22) 2584000078522702 a001 1836311903/969323029*39603^(15/22) 2584000078522702 a001 701408733/370248451*39603^(15/22) 2584000078522702 a001 66978574/35355581*39603^(15/22) 2584000078522703 a001 102334155/54018521*39603^(15/22) 2584000078522707 a001 39088169/20633239*39603^(15/22) 2584000078522741 a001 3732588/1970299*39603^(15/22) 2584000078522971 a001 5702887/3010349*39603^(15/22) 2584000078523503 a001 701408733/710647*15127^(1/10) 2584000078523919 a001 75025/103682*39603^(17/22) 2584000078524547 a001 2178309/1149851*39603^(15/22) 2584000078527873 a001 1836311903/1860498*15127^(1/10) 2584000078528511 a001 4807526976/4870847*15127^(1/10) 2584000078528604 a001 12586269025/12752043*15127^(1/10) 2584000078528617 a001 32951280099/33385282*15127^(1/10) 2584000078528619 a001 86267571272/87403803*15127^(1/10) 2584000078528620 a001 225851433717/228826127*15127^(1/10) 2584000078528620 a001 591286729879/599074578*15127^(1/10) 2584000078528620 a001 1548008755920/1568397607*15127^(1/10) 2584000078528620 a001 4052739537881/4106118243*15127^(1/10) 2584000078528620 a001 4807525989/4870846*15127^(1/10) 2584000078528620 a001 6557470319842/6643838879*15127^(1/10) 2584000078528620 a001 2504730781961/2537720636*15127^(1/10) 2584000078528620 a001 956722026041/969323029*15127^(1/10) 2584000078528620 a001 365435296162/370248451*15127^(1/10) 2584000078528620 a001 139583862445/141422324*15127^(1/10) 2584000078528621 a001 53316291173/54018521*15127^(1/10) 2584000078528626 a001 20365011074/20633239*15127^(1/10) 2584000078528661 a001 7778742049/7881196*15127^(1/10) 2584000078528905 a001 2971215073/3010349*15127^(1/10) 2584000078530574 a001 1134903170/1149851*15127^(1/10) 2584000078535351 a001 208010/109801*39603^(15/22) 2584000078541582 a001 514229/167761*39603^(7/11) 2584000078542015 a001 433494437/439204*15127^(1/10) 2584000078552885 a001 5702887/64079*39603^(7/22) 2584000078557403 a001 105937/90481*39603^(8/11) 2584000078574947 a001 9227465/39603*15127^(1/4) 2584000078591727 a001 832040/710647*39603^(8/11) 2584000078593304 a001 102334155/64079*15127^(1/20) 2584000078596735 a001 726103/620166*39603^(8/11) 2584000078597465 a001 5702887/4870847*39603^(8/11) 2584000078597572 a001 4976784/4250681*39603^(8/11) 2584000078597587 a001 39088169/33385282*39603^(8/11) 2584000078597590 a001 34111385/29134601*39603^(8/11) 2584000078597590 a001 267914296/228826127*39603^(8/11) 2584000078597590 a001 233802911/199691526*39603^(8/11) 2584000078597590 a001 1836311903/1568397607*39603^(8/11) 2584000078597590 a001 1602508992/1368706081*39603^(8/11) 2584000078597590 a001 12586269025/10749957122*39603^(8/11) 2584000078597590 a001 10983760033/9381251041*39603^(8/11) 2584000078597590 a001 86267571272/73681302247*39603^(8/11) 2584000078597590 a001 75283811239/64300051206*39603^(8/11) 2584000078597590 a001 2504730781961/2139295485799*39603^(8/11) 2584000078597590 a001 365435296162/312119004989*39603^(8/11) 2584000078597590 a001 139583862445/119218851371*39603^(8/11) 2584000078597590 a001 53316291173/45537549124*39603^(8/11) 2584000078597590 a001 20365011074/17393796001*39603^(8/11) 2584000078597590 a001 7778742049/6643838879*39603^(8/11) 2584000078597590 a001 2971215073/2537720636*39603^(8/11) 2584000078597590 a001 1134903170/969323029*39603^(8/11) 2584000078597590 a001 433494437/370248451*39603^(8/11) 2584000078597590 a001 165580141/141422324*39603^(8/11) 2584000078597591 a001 63245986/54018521*39603^(8/11) 2584000078597597 a001 24157817/20633239*39603^(8/11) 2584000078597638 a001 9227465/7881196*39603^(8/11) 2584000078597917 a001 3524578/3010349*39603^(8/11) 2584000078599829 a001 1346269/1149851*39603^(8/11) 2584000078600706 a001 24157817/24476*9349^(2/19) 2584000078609399 a001 317811/167761*39603^(15/22) 2584000078612940 a001 514229/439204*39603^(8/11) 2584000078620434 a001 165580141/167761*15127^(1/10) 2584000078621700 a001 15456/90481*39603^(10/11) 2584000078627830 a001 3524578/64079*39603^(4/11) 2584000078649057 a001 28657/64079*439204^(2/3) 2584000078650804 a001 196418/271443*39603^(17/22) 2584000078657965 a001 28657/64079*7881196^(6/11) 2584000078657988 a001 28657/64079*141422324^(6/13) 2584000078657988 a001 28657/64079*2537720636^(2/5) 2584000078657988 a001 28657/64079*45537549124^(6/17) 2584000078657988 a001 28657/64079*14662949395604^(2/7) 2584000078657988 a001 28657/64079*(1/2+1/2*5^(1/2))^18 2584000078657988 a001 28657/64079*192900153618^(1/3) 2584000078657988 a001 28657/64079*10749957122^(3/8) 2584000078657988 a001 28657/64079*4106118243^(9/23) 2584000078657988 a001 28657/64079*1568397607^(9/22) 2584000078657988 a001 28657/64079*599074578^(3/7) 2584000078657988 a001 28657/64079*228826127^(9/20) 2584000078657988 a001 28657/64079*87403803^(9/19) 2584000078657989 a001 28657/64079*33385282^(1/2) 2584000078657996 a001 28657/64079*12752043^(9/17) 2584000078658049 a001 28657/64079*4870847^(9/16) 2584000078658436 a001 28657/64079*1860498^(3/5) 2584000078661277 a001 28657/64079*710647^(9/14) 2584000078663104 a001 821223649/317811 2584000078669316 a001 514229/710647*39603^(17/22) 2584000078672017 a001 1346269/1860498*39603^(17/22) 2584000078672411 a001 3524578/4870847*39603^(17/22) 2584000078672468 a001 9227465/12752043*39603^(17/22) 2584000078672477 a001 24157817/33385282*39603^(17/22) 2584000078672478 a001 63245986/87403803*39603^(17/22) 2584000078672478 a001 165580141/228826127*39603^(17/22) 2584000078672478 a001 433494437/599074578*39603^(17/22) 2584000078672478 a001 1134903170/1568397607*39603^(17/22) 2584000078672478 a001 2971215073/4106118243*39603^(17/22) 2584000078672478 a001 7778742049/10749957122*39603^(17/22) 2584000078672478 a001 20365011074/28143753123*39603^(17/22) 2584000078672478 a001 53316291173/73681302247*39603^(17/22) 2584000078672478 a001 139583862445/192900153618*39603^(17/22) 2584000078672478 a001 10610209857723/14662949395604*39603^(17/22) 2584000078672478 a001 225851433717/312119004989*39603^(17/22) 2584000078672478 a001 86267571272/119218851371*39603^(17/22) 2584000078672478 a001 32951280099/45537549124*39603^(17/22) 2584000078672478 a001 12586269025/17393796001*39603^(17/22) 2584000078672478 a001 4807526976/6643838879*39603^(17/22) 2584000078672478 a001 1836311903/2537720636*39603^(17/22) 2584000078672478 a001 701408733/969323029*39603^(17/22) 2584000078672478 a001 267914296/370248451*39603^(17/22) 2584000078672478 a001 102334155/141422324*39603^(17/22) 2584000078672479 a001 39088169/54018521*39603^(17/22) 2584000078672482 a001 14930352/20633239*39603^(17/22) 2584000078672504 a001 5702887/7881196*39603^(17/22) 2584000078672654 a001 2178309/3010349*39603^(17/22) 2584000078673686 a001 832040/1149851*39603^(17/22) 2584000078673696 a001 46368/167761*39603^(19/22) 2584000078677227 a001 121393/271443*39603^(9/11) 2584000078680757 a001 317811/439204*39603^(17/22) 2584000078682267 a001 28657/64079*271443^(9/13) 2584000078702568 a001 2178309/64079*39603^(9/22) 2584000078702800 a001 196418/167761*39603^(8/11) 2584000078729223 a001 121393/167761*39603^(17/22) 2584000078737133 a001 317811/710647*39603^(9/11) 2584000078745054 a001 11592/109801*39603^(21/22) 2584000078745873 a001 416020/930249*39603^(9/11) 2584000078747149 a001 2178309/4870847*39603^(9/11) 2584000078747335 a001 5702887/12752043*39603^(9/11) 2584000078747362 a001 7465176/16692641*39603^(9/11) 2584000078747366 a001 39088169/87403803*39603^(9/11) 2584000078747366 a001 102334155/228826127*39603^(9/11) 2584000078747366 a001 133957148/299537289*39603^(9/11) 2584000078747366 a001 701408733/1568397607*39603^(9/11) 2584000078747366 a001 1836311903/4106118243*39603^(9/11) 2584000078747366 a001 2403763488/5374978561*39603^(9/11) 2584000078747366 a001 12586269025/28143753123*39603^(9/11) 2584000078747366 a001 32951280099/73681302247*39603^(9/11) 2584000078747366 a001 43133785636/96450076809*39603^(9/11) 2584000078747366 a001 225851433717/505019158607*39603^(9/11) 2584000078747366 a001 10610209857723/23725150497407*39603^(9/11) 2584000078747366 a001 182717648081/408569081798*39603^(9/11) 2584000078747366 a001 139583862445/312119004989*39603^(9/11) 2584000078747366 a001 53316291173/119218851371*39603^(9/11) 2584000078747366 a001 10182505537/22768774562*39603^(9/11) 2584000078747366 a001 7778742049/17393796001*39603^(9/11) 2584000078747366 a001 2971215073/6643838879*39603^(9/11) 2584000078747366 a001 567451585/1268860318*39603^(9/11) 2584000078747366 a001 433494437/969323029*39603^(9/11) 2584000078747366 a001 165580141/370248451*39603^(9/11) 2584000078747367 a001 31622993/70711162*39603^(9/11) 2584000078747368 a001 24157817/54018521*39603^(9/11) 2584000078747379 a001 9227465/20633239*39603^(9/11) 2584000078747450 a001 1762289/3940598*39603^(9/11) 2584000078747937 a001 1346269/3010349*39603^(9/11) 2584000078751275 a001 514229/1149851*39603^(9/11) 2584000078774158 a001 98209/219602*39603^(9/11) 2584000078777850 a001 1346269/64079*39603^(5/11) 2584000078800580 a001 121393/439204*39603^(19/22) 2584000078806546 a004 Fibonacci(24)*Lucas(22)/(1/2+sqrt(5)/2)^28 2584000078819092 a001 317811/1149851*39603^(19/22) 2584000078821793 a001 832040/3010349*39603^(19/22) 2584000078822187 a001 2178309/7881196*39603^(19/22) 2584000078822245 a001 5702887/20633239*39603^(19/22) 2584000078822253 a001 14930352/54018521*39603^(19/22) 2584000078822254 a001 39088169/141422324*39603^(19/22) 2584000078822255 a001 102334155/370248451*39603^(19/22) 2584000078822255 a001 267914296/969323029*39603^(19/22) 2584000078822255 a001 701408733/2537720636*39603^(19/22) 2584000078822255 a001 1836311903/6643838879*39603^(19/22) 2584000078822255 a001 4807526976/17393796001*39603^(19/22) 2584000078822255 a001 12586269025/45537549124*39603^(19/22) 2584000078822255 a001 32951280099/119218851371*39603^(19/22) 2584000078822255 a001 86267571272/312119004989*39603^(19/22) 2584000078822255 a001 225851433717/817138163596*39603^(19/22) 2584000078822255 a001 1548008755920/5600748293801*39603^(19/22) 2584000078822255 a001 139583862445/505019158607*39603^(19/22) 2584000078822255 a001 53316291173/192900153618*39603^(19/22) 2584000078822255 a001 20365011074/73681302247*39603^(19/22) 2584000078822255 a001 7778742049/28143753123*39603^(19/22) 2584000078822255 a001 2971215073/10749957122*39603^(19/22) 2584000078822255 a001 1134903170/4106118243*39603^(19/22) 2584000078822255 a001 433494437/1568397607*39603^(19/22) 2584000078822255 a001 165580141/599074578*39603^(19/22) 2584000078822255 a001 63245986/228826127*39603^(19/22) 2584000078822255 a001 24157817/87403803*39603^(19/22) 2584000078822258 a001 9227465/33385282*39603^(19/22) 2584000078822280 a001 3524578/12752043*39603^(19/22) 2584000078822431 a001 1346269/4870847*39603^(19/22) 2584000078823463 a001 514229/1860498*39603^(19/22) 2584000078830534 a001 196418/710647*39603^(19/22) 2584000078838267 a001 28657/64079*103682^(3/4) 2584000078851707 a001 832040/64079*39603^(1/2) 2584000078852868 a001 31622993/51841*15127^(3/20) 2584000078856956 a001 121393/710647*39603^(10/11) 2584000078878999 a001 75025/271443*39603^(19/22) 2584000078891280 a001 105937/620166*39603^(10/11) 2584000078896288 a001 832040/4870847*39603^(10/11) 2584000078897018 a001 726103/4250681*39603^(10/11) 2584000078897125 a001 5702887/33385282*39603^(10/11) 2584000078897140 a001 4976784/29134601*39603^(10/11) 2584000078897143 a001 39088169/228826127*39603^(10/11) 2584000078897143 a001 34111385/199691526*39603^(10/11) 2584000078897143 a001 267914296/1568397607*39603^(10/11) 2584000078897143 a001 233802911/1368706081*39603^(10/11) 2584000078897143 a001 1836311903/10749957122*39603^(10/11) 2584000078897143 a001 1602508992/9381251041*39603^(10/11) 2584000078897143 a001 12586269025/73681302247*39603^(10/11) 2584000078897143 a001 10983760033/64300051206*39603^(10/11) 2584000078897143 a001 86267571272/505019158607*39603^(10/11) 2584000078897143 a001 75283811239/440719107401*39603^(10/11) 2584000078897143 a001 2504730781961/14662949395604*39603^(10/11) 2584000078897143 a001 139583862445/817138163596*39603^(10/11) 2584000078897143 a001 53316291173/312119004989*39603^(10/11) 2584000078897143 a001 20365011074/119218851371*39603^(10/11) 2584000078897143 a001 7778742049/45537549124*39603^(10/11) 2584000078897143 a001 2971215073/17393796001*39603^(10/11) 2584000078897143 a001 1134903170/6643838879*39603^(10/11) 2584000078897143 a001 433494437/2537720636*39603^(10/11) 2584000078897143 a001 165580141/969323029*39603^(10/11) 2584000078897143 a001 63245986/370248451*39603^(10/11) 2584000078897144 a001 24157817/141422324*39603^(10/11) 2584000078897150 a001 9227465/54018521*39603^(10/11) 2584000078897191 a001 3524578/20633239*39603^(10/11) 2584000078897470 a001 1346269/7881196*39603^(10/11) 2584000078899382 a001 514229/3010349*39603^(10/11) 2584000078912493 a001 196418/1149851*39603^(10/11) 2584000078928966 a001 75025/24476*24476^(2/3) 2584000078929296 a001 514229/64079*39603^(6/11) 2584000078930995 a001 75025/167761*39603^(9/11) 2584000078938916 a001 121393/1149851*39603^(21/22) 2584000078967200 a001 317811/3010349*39603^(21/22) 2584000078971326 a001 208010/1970299*39603^(21/22) 2584000078971928 a001 2178309/20633239*39603^(21/22) 2584000078972016 a001 5702887/54018521*39603^(21/22) 2584000078972029 a001 3732588/35355581*39603^(21/22) 2584000078972031 a001 39088169/370248451*39603^(21/22) 2584000078972031 a001 102334155/969323029*39603^(21/22) 2584000078972031 a001 66978574/634430159*39603^(21/22) 2584000078972031 a001 701408733/6643838879*39603^(21/22) 2584000078972031 a001 1836311903/17393796001*39603^(21/22) 2584000078972031 a001 1201881744/11384387281*39603^(21/22) 2584000078972031 a001 12586269025/119218851371*39603^(21/22) 2584000078972031 a001 32951280099/312119004989*39603^(21/22) 2584000078972031 a001 21566892818/204284540899*39603^(21/22) 2584000078972031 a001 225851433717/2139295485799*39603^(21/22) 2584000078972031 a001 182717648081/1730726404001*39603^(21/22) 2584000078972031 a001 139583862445/1322157322203*39603^(21/22) 2584000078972031 a001 53316291173/505019158607*39603^(21/22) 2584000078972031 a001 10182505537/96450076809*39603^(21/22) 2584000078972031 a001 7778742049/73681302247*39603^(21/22) 2584000078972031 a001 2971215073/28143753123*39603^(21/22) 2584000078972031 a001 567451585/5374978561*39603^(21/22) 2584000078972031 a001 433494437/4106118243*39603^(21/22) 2584000078972031 a001 165580141/1568397607*39603^(21/22) 2584000078972031 a001 31622993/299537289*39603^(21/22) 2584000078972032 a001 24157817/228826127*39603^(21/22) 2584000078972037 a001 9227465/87403803*39603^(21/22) 2584000078972070 a001 1762289/16692641*39603^(21/22) 2584000078972300 a001 1346269/12752043*39603^(21/22) 2584000078973877 a001 514229/4870847*39603^(21/22) 2584000078984680 a001 98209/930249*39603^(21/22) 2584000078997113 a001 317811/64079*39603^(13/22) 2584000079002353 a001 75025/439204*39603^(10/11) 2584000079006863 a001 9227465/15127*5778^(1/6) 2584000079007477 a001 121393/24476*24476^(13/21) 2584000079011849 a004 Fibonacci(26)*Lucas(22)/(1/2+sqrt(5)/2)^30 2584000079041803 a004 Fibonacci(28)*Lucas(22)/(1/2+sqrt(5)/2)^32 2584000079046173 a004 Fibonacci(30)*Lucas(22)/(1/2+sqrt(5)/2)^34 2584000079046811 a004 Fibonacci(32)*Lucas(22)/(1/2+sqrt(5)/2)^36 2584000079046904 a004 Fibonacci(34)*Lucas(22)/(1/2+sqrt(5)/2)^38 2584000079046917 a004 Fibonacci(36)*Lucas(22)/(1/2+sqrt(5)/2)^40 2584000079046919 a004 Fibonacci(38)*Lucas(22)/(1/2+sqrt(5)/2)^42 2584000079046919 a004 Fibonacci(40)*Lucas(22)/(1/2+sqrt(5)/2)^44 2584000079046919 a004 Fibonacci(42)*Lucas(22)/(1/2+sqrt(5)/2)^46 2584000079046919 a004 Fibonacci(44)*Lucas(22)/(1/2+sqrt(5)/2)^48 2584000079046919 a004 Fibonacci(46)*Lucas(22)/(1/2+sqrt(5)/2)^50 2584000079046919 a004 Fibonacci(48)*Lucas(22)/(1/2+sqrt(5)/2)^52 2584000079046919 a004 Fibonacci(50)*Lucas(22)/(1/2+sqrt(5)/2)^54 2584000079046919 a004 Fibonacci(52)*Lucas(22)/(1/2+sqrt(5)/2)^56 2584000079046919 a004 Fibonacci(54)*Lucas(22)/(1/2+sqrt(5)/2)^58 2584000079046919 a004 Fibonacci(56)*Lucas(22)/(1/2+sqrt(5)/2)^60 2584000079046919 a004 Fibonacci(58)*Lucas(22)/(1/2+sqrt(5)/2)^62 2584000079046919 a004 Fibonacci(60)*Lucas(22)/(1/2+sqrt(5)/2)^64 2584000079046919 a004 Fibonacci(62)*Lucas(22)/(1/2+sqrt(5)/2)^66 2584000079046919 a004 Fibonacci(64)*Lucas(22)/(1/2+sqrt(5)/2)^68 2584000079046919 a004 Fibonacci(66)*Lucas(22)/(1/2+sqrt(5)/2)^70 2584000079046919 a004 Fibonacci(68)*Lucas(22)/(1/2+sqrt(5)/2)^72 2584000079046919 a004 Fibonacci(70)*Lucas(22)/(1/2+sqrt(5)/2)^74 2584000079046919 a004 Fibonacci(72)*Lucas(22)/(1/2+sqrt(5)/2)^76 2584000079046919 a004 Fibonacci(74)*Lucas(22)/(1/2+sqrt(5)/2)^78 2584000079046919 a004 Fibonacci(76)*Lucas(22)/(1/2+sqrt(5)/2)^80 2584000079046919 a004 Fibonacci(78)*Lucas(22)/(1/2+sqrt(5)/2)^82 2584000079046919 a004 Fibonacci(80)*Lucas(22)/(1/2+sqrt(5)/2)^84 2584000079046919 a004 Fibonacci(82)*Lucas(22)/(1/2+sqrt(5)/2)^86 2584000079046919 a004 Fibonacci(84)*Lucas(22)/(1/2+sqrt(5)/2)^88 2584000079046919 a004 Fibonacci(86)*Lucas(22)/(1/2+sqrt(5)/2)^90 2584000079046919 a004 Fibonacci(88)*Lucas(22)/(1/2+sqrt(5)/2)^92 2584000079046919 a004 Fibonacci(90)*Lucas(22)/(1/2+sqrt(5)/2)^94 2584000079046919 a004 Fibonacci(92)*Lucas(22)/(1/2+sqrt(5)/2)^96 2584000079046919 a004 Fibonacci(94)*Lucas(22)/(1/2+sqrt(5)/2)^98 2584000079046919 a004 Fibonacci(96)*Lucas(22)/(1/2+sqrt(5)/2)^100 2584000079046919 a004 Fibonacci(95)*Lucas(22)/(1/2+sqrt(5)/2)^99 2584000079046919 a004 Fibonacci(93)*Lucas(22)/(1/2+sqrt(5)/2)^97 2584000079046919 a004 Fibonacci(91)*Lucas(22)/(1/2+sqrt(5)/2)^95 2584000079046919 a004 Fibonacci(89)*Lucas(22)/(1/2+sqrt(5)/2)^93 2584000079046919 a004 Fibonacci(87)*Lucas(22)/(1/2+sqrt(5)/2)^91 2584000079046919 a004 Fibonacci(85)*Lucas(22)/(1/2+sqrt(5)/2)^89 2584000079046919 a004 Fibonacci(83)*Lucas(22)/(1/2+sqrt(5)/2)^87 2584000079046919 a004 Fibonacci(81)*Lucas(22)/(1/2+sqrt(5)/2)^85 2584000079046919 a004 Fibonacci(79)*Lucas(22)/(1/2+sqrt(5)/2)^83 2584000079046919 a004 Fibonacci(77)*Lucas(22)/(1/2+sqrt(5)/2)^81 2584000079046919 a004 Fibonacci(75)*Lucas(22)/(1/2+sqrt(5)/2)^79 2584000079046919 a004 Fibonacci(73)*Lucas(22)/(1/2+sqrt(5)/2)^77 2584000079046919 a004 Fibonacci(71)*Lucas(22)/(1/2+sqrt(5)/2)^75 2584000079046919 a004 Fibonacci(69)*Lucas(22)/(1/2+sqrt(5)/2)^73 2584000079046919 a004 Fibonacci(67)*Lucas(22)/(1/2+sqrt(5)/2)^71 2584000079046919 a004 Fibonacci(65)*Lucas(22)/(1/2+sqrt(5)/2)^69 2584000079046919 a004 Fibonacci(63)*Lucas(22)/(1/2+sqrt(5)/2)^67 2584000079046919 a004 Fibonacci(61)*Lucas(22)/(1/2+sqrt(5)/2)^65 2584000079046919 a004 Fibonacci(59)*Lucas(22)/(1/2+sqrt(5)/2)^63 2584000079046919 a004 Fibonacci(57)*Lucas(22)/(1/2+sqrt(5)/2)^61 2584000079046919 a004 Fibonacci(55)*Lucas(22)/(1/2+sqrt(5)/2)^59 2584000079046919 a004 Fibonacci(53)*Lucas(22)/(1/2+sqrt(5)/2)^57 2584000079046919 a004 Fibonacci(51)*Lucas(22)/(1/2+sqrt(5)/2)^55 2584000079046919 a004 Fibonacci(49)*Lucas(22)/(1/2+sqrt(5)/2)^53 2584000079046919 a004 Fibonacci(47)*Lucas(22)/(1/2+sqrt(5)/2)^51 2584000079046919 a004 Fibonacci(45)*Lucas(22)/(1/2+sqrt(5)/2)^49 2584000079046919 a001 2/17711*(1/2+1/2*5^(1/2))^40 2584000079046919 a004 Fibonacci(43)*Lucas(22)/(1/2+sqrt(5)/2)^47 2584000079046919 a004 Fibonacci(41)*Lucas(22)/(1/2+sqrt(5)/2)^45 2584000079046920 a004 Fibonacci(39)*Lucas(22)/(1/2+sqrt(5)/2)^43 2584000079046920 a004 Fibonacci(37)*Lucas(22)/(1/2+sqrt(5)/2)^41 2584000079046926 a004 Fibonacci(35)*Lucas(22)/(1/2+sqrt(5)/2)^39 2584000079046961 a004 Fibonacci(33)*Lucas(22)/(1/2+sqrt(5)/2)^37 2584000079047205 a004 Fibonacci(31)*Lucas(22)/(1/2+sqrt(5)/2)^35 2584000079048874 a004 Fibonacci(29)*Lucas(22)/(1/2+sqrt(5)/2)^33 2584000079055664 a001 28657/24476*24476^(16/21) 2584000079058171 a001 165580141/271443*15127^(3/20) 2584000079058729 a001 75025/710647*39603^(21/22) 2584000079060315 a004 Fibonacci(27)*Lucas(22)/(1/2+sqrt(5)/2)^31 2584000079061410 a001 46368/64079*39603^(17/22) 2584000079088124 a001 433494437/710647*15127^(3/20) 2584000079090514 a001 196418/64079*39603^(7/11) 2584000079092494 a001 567451585/930249*15127^(3/20) 2584000079093132 a001 2971215073/4870847*15127^(3/20) 2584000079093225 a001 7778742049/12752043*15127^(3/20) 2584000079093238 a001 10182505537/16692641*15127^(3/20) 2584000079093240 a001 53316291173/87403803*15127^(3/20) 2584000079093241 a001 139583862445/228826127*15127^(3/20) 2584000079093241 a001 182717648081/299537289*15127^(3/20) 2584000079093241 a001 956722026041/1568397607*15127^(3/20) 2584000079093241 a001 2504730781961/4106118243*15127^(3/20) 2584000079093241 a001 3278735159921/5374978561*15127^(3/20) 2584000079093241 a001 10610209857723/17393796001*15127^(3/20) 2584000079093241 a001 4052739537881/6643838879*15127^(3/20) 2584000079093241 a001 1134903780/1860499*15127^(3/20) 2584000079093241 a001 591286729879/969323029*15127^(3/20) 2584000079093241 a001 225851433717/370248451*15127^(3/20) 2584000079093241 a001 21566892818/35355581*15127^(3/20) 2584000079093241 a001 32951280099/54018521*15127^(3/20) 2584000079093247 a001 1144206275/1875749*15127^(3/20) 2584000079093282 a001 1201881744/1970299*15127^(3/20) 2584000079093526 a001 1836311903/3010349*15127^(3/20) 2584000079095195 a001 701408733/1149851*15127^(3/20) 2584000079106636 a001 66978574/109801*15127^(3/20) 2584000079116937 a001 121393/64079*39603^(15/22) 2584000079138734 a004 Fibonacci(25)*Lucas(22)/(1/2+sqrt(5)/2)^29 2584000079139546 a001 5702887/39603*15127^(3/10) 2584000079157925 a001 63245986/64079*15127^(1/10) 2584000079185055 a001 9303105/15251*15127^(3/20) 2584000079211186 a001 28657/103682*39603^(19/22) 2584000079261339 a001 98209/12238*24476^(4/7) 2584000079318709 a001 75025/64079*39603^(8/11) 2584000079417488 a001 39088169/103682*15127^(1/5) 2584000079448223 a001 10959/844*24476^(11/21) 2584000079545296 a001 10946/39603*64079^(19/23) 2584000079566266 a001 28657/271443*39603^(21/22) 2584000079600018 a001 17711/24476*64079^(17/23) 2584000079618262 a001 28657/167761*39603^(10/11) 2584000079622791 a001 34111385/90481*15127^(1/5) 2584000079652745 a001 267914296/710647*15127^(1/5) 2584000079657115 a001 233802911/620166*15127^(1/5) 2584000079657752 a001 1836311903/4870847*15127^(1/5) 2584000079657846 a001 1602508992/4250681*15127^(1/5) 2584000079657859 a001 12586269025/33385282*15127^(1/5) 2584000079657861 a001 10983760033/29134601*15127^(1/5) 2584000079657861 a001 86267571272/228826127*15127^(1/5) 2584000079657861 a001 267913919/710646*15127^(1/5) 2584000079657861 a001 591286729879/1568397607*15127^(1/5) 2584000079657861 a001 516002918640/1368706081*15127^(1/5) 2584000079657861 a001 4052739537881/10749957122*15127^(1/5) 2584000079657861 a001 3536736619241/9381251041*15127^(1/5) 2584000079657861 a001 6557470319842/17393796001*15127^(1/5) 2584000079657861 a001 2504730781961/6643838879*15127^(1/5) 2584000079657861 a001 956722026041/2537720636*15127^(1/5) 2584000079657861 a001 365435296162/969323029*15127^(1/5) 2584000079657861 a001 139583862445/370248451*15127^(1/5) 2584000079657862 a001 53316291173/141422324*15127^(1/5) 2584000079657862 a001 20365011074/54018521*15127^(1/5) 2584000079657867 a001 7778742049/20633239*15127^(1/5) 2584000079657903 a001 2971215073/7881196*15127^(1/5) 2584000079658147 a001 1134903170/3010349*15127^(1/5) 2584000079659816 a001 433494437/1149851*15127^(1/5) 2584000079660690 a001 514229/24476*24476^(10/21) 2584000079671257 a001 165580141/439204*15127^(1/5) 2584000079676224 a004 Fibonacci(23)*Lucas(22)/(1/2+sqrt(5)/2)^27 2584000079704224 a001 3524578/39603*15127^(7/20) 2584000079722545 a001 39088169/64079*15127^(3/20) 2584000079749676 a001 63245986/167761*15127^(1/5) 2584000079863385 a001 208010/6119*24476^(3/7) 2584000079973342 a001 193864606/75025 2584000079982110 a001 24157817/103682*15127^(1/4) 2584000080005976 a001 28657/64079*39603^(9/11) 2584000080018835 a001 10946/15127*15127^(17/20) 2584000080051802 a001 63245986/39603*5778^(1/18) 2584000080065156 a001 10946/39603*817138163596^(1/3) 2584000080065156 a001 10946/39603*(1/2+1/2*5^(1/2))^19 2584000080065156 a001 17711/24476*45537549124^(1/3) 2584000080065156 a001 17711/24476*(1/2+1/2*5^(1/2))^17 2584000080065156 a001 10946/39603*87403803^(1/2) 2584000080065164 a001 17711/24476*12752043^(1/2) 2584000080069813 a001 1346269/24476*24476^(8/21) 2584000080156701 a001 39088169/24476*9349^(1/19) 2584000080187412 a001 63245986/271443*15127^(1/4) 2584000080217366 a001 165580141/710647*15127^(1/4) 2584000080221736 a001 433494437/1860498*15127^(1/4) 2584000080222373 a001 1134903170/4870847*15127^(1/4) 2584000080222466 a001 2971215073/12752043*15127^(1/4) 2584000080222480 a001 7778742049/33385282*15127^(1/4) 2584000080222482 a001 20365011074/87403803*15127^(1/4) 2584000080222482 a001 53316291173/228826127*15127^(1/4) 2584000080222482 a001 139583862445/599074578*15127^(1/4) 2584000080222482 a001 365435296162/1568397607*15127^(1/4) 2584000080222482 a001 956722026041/4106118243*15127^(1/4) 2584000080222482 a001 2504730781961/10749957122*15127^(1/4) 2584000080222482 a001 6557470319842/28143753123*15127^(1/4) 2584000080222482 a001 10610209857723/45537549124*15127^(1/4) 2584000080222482 a001 4052739537881/17393796001*15127^(1/4) 2584000080222482 a001 1548008755920/6643838879*15127^(1/4) 2584000080222482 a001 591286729879/2537720636*15127^(1/4) 2584000080222482 a001 225851433717/969323029*15127^(1/4) 2584000080222482 a001 86267571272/370248451*15127^(1/4) 2584000080222482 a001 63246219/271444*15127^(1/4) 2584000080222483 a001 12586269025/54018521*15127^(1/4) 2584000080222488 a001 4807526976/20633239*15127^(1/4) 2584000080222524 a001 1836311903/7881196*15127^(1/4) 2584000080222767 a001 701408733/3010349*15127^(1/4) 2584000080224437 a001 267914296/1149851*15127^(1/4) 2584000080235420 a001 17711/24476*103682^(17/24) 2584000080235878 a001 102334155/439204*15127^(1/4) 2584000080255451 a001 10946/39603*103682^(19/24) 2584000080268694 a001 726103/13201*15127^(2/5) 2584000080274815 a001 2178309/24476*24476^(1/3) 2584000080287167 a001 24157817/64079*15127^(1/5) 2584000080314296 a001 39088169/167761*15127^(1/4) 2584000080480362 a001 1762289/12238*24476^(2/7) 2584000080546728 a001 7465176/51841*15127^(3/10) 2584000080685701 a001 5702887/24476*24476^(5/21) 2584000080752033 a001 39088169/271443*15127^(3/10) 2584000080781986 a001 14619165/101521*15127^(3/10) 2584000080786357 a001 133957148/930249*15127^(3/10) 2584000080786994 a001 701408733/4870847*15127^(3/10) 2584000080787087 a001 1836311903/12752043*15127^(3/10) 2584000080787101 a001 14930208/103681*15127^(3/10) 2584000080787103 a001 12586269025/87403803*15127^(3/10) 2584000080787103 a001 32951280099/228826127*15127^(3/10) 2584000080787103 a001 43133785636/299537289*15127^(3/10) 2584000080787103 a001 32264490531/224056801*15127^(3/10) 2584000080787103 a001 591286729879/4106118243*15127^(3/10) 2584000080787103 a001 774004377960/5374978561*15127^(3/10) 2584000080787103 a001 4052739537881/28143753123*15127^(3/10) 2584000080787103 a001 1515744265389/10525900321*15127^(3/10) 2584000080787103 a001 3278735159921/22768774562*15127^(3/10) 2584000080787103 a001 2504730781961/17393796001*15127^(3/10) 2584000080787103 a001 956722026041/6643838879*15127^(3/10) 2584000080787103 a001 182717648081/1268860318*15127^(3/10) 2584000080787103 a001 139583862445/969323029*15127^(3/10) 2584000080787103 a001 53316291173/370248451*15127^(3/10) 2584000080787103 a001 10182505537/70711162*15127^(3/10) 2584000080787104 a001 7778742049/54018521*15127^(3/10) 2584000080787109 a001 2971215073/20633239*15127^(3/10) 2584000080787145 a001 567451585/3940598*15127^(3/10) 2584000080787388 a001 433494437/3010349*15127^(3/10) 2584000080789058 a001 165580141/1149851*15127^(3/10) 2584000080800499 a001 31622993/219602*15127^(3/10) 2584000080833709 a001 1346269/39603*15127^(9/20) 2584000080851785 a001 14930352/64079*15127^(1/4) 2584000080878918 a001 24157817/167761*15127^(3/10) 2584000080891119 a001 9227465/24476*24476^(4/21) 2584000080897742 a001 5473/51841*64079^(21/23) 2584000081061908 a001 11592/6119*64079^(15/23) 2584000081083393 a004 Fibonacci(21)*Lucas(23)/(1/2+sqrt(5)/2)^26 2584000081096507 a001 3732588/6119*24476^(1/7) 2584000081111357 a001 9227465/103682*15127^(7/20) 2584000081148077 a001 6765/24476*15127^(19/20) 2584000081202568 a001 10946/167761*64079^(22/23) 2584000081301906 a001 24157817/24476*24476^(2/21) 2584000081316655 a001 24157817/271443*15127^(7/20) 2584000081321934 a001 121393/24476*64079^(13/23) 2584000081338256 a001 17711/24476*39603^(17/22) 2584000081346607 a001 63245986/710647*15127^(7/20) 2584000081350977 a001 165580141/1860498*15127^(7/20) 2584000081351615 a001 433494437/4870847*15127^(7/20) 2584000081351708 a001 1134903170/12752043*15127^(7/20) 2584000081351722 a001 2971215073/33385282*15127^(7/20) 2584000081351724 a001 7778742049/87403803*15127^(7/20) 2584000081351724 a001 20365011074/228826127*15127^(7/20) 2584000081351724 a001 53316291173/599074578*15127^(7/20) 2584000081351724 a001 139583862445/1568397607*15127^(7/20) 2584000081351724 a001 365435296162/4106118243*15127^(7/20) 2584000081351724 a001 956722026041/10749957122*15127^(7/20) 2584000081351724 a001 2504730781961/28143753123*15127^(7/20) 2584000081351724 a001 6557470319842/73681302247*15127^(7/20) 2584000081351724 a001 10610209857723/119218851371*15127^(7/20) 2584000081351724 a001 4052739537881/45537549124*15127^(7/20) 2584000081351724 a001 1548008755920/17393796001*15127^(7/20) 2584000081351724 a001 591286729879/6643838879*15127^(7/20) 2584000081351724 a001 225851433717/2537720636*15127^(7/20) 2584000081351724 a001 86267571272/969323029*15127^(7/20) 2584000081351724 a001 32951280099/370248451*15127^(7/20) 2584000081351724 a001 12586269025/141422324*15127^(7/20) 2584000081351725 a001 4807526976/54018521*15127^(7/20) 2584000081351730 a001 1836311903/20633239*15127^(7/20) 2584000081351766 a001 3524667/39604*15127^(7/20) 2584000081352009 a001 267914296/3010349*15127^(7/20) 2584000081353678 a001 102334155/1149851*15127^(7/20) 2584000081365119 a001 39088169/439204*15127^(7/20) 2584000081397299 a001 832040/39603*15127^(1/2) 2584000081397760 a001 98209/12238*64079^(12/23) 2584000081406609 a001 10959/844*64079^(11/23) 2584000081416414 a001 9227465/64079*15127^(3/10) 2584000081417236 a001 11592/6119*167761^(3/5) 2584000081421457 a001 75025/24476*64079^(14/23) 2584000081441041 a001 514229/24476*64079^(10/23) 2584000081443536 a001 14930352/167761*15127^(7/20) 2584000081458929 a001 253772064/98209 2584000081458970 a001 165580141/103682*5778^(1/18) 2584000081461906 a001 5473/51841*439204^(7/9) 2584000081464883 a001 11592/6119*439204^(5/9) 2584000081465701 a001 208010/6119*64079^(9/23) 2584000081472298 a001 5473/51841*7881196^(7/11) 2584000081472306 a001 11592/6119*7881196^(5/11) 2584000081472321 a001 5473/51841*20633239^(3/5) 2584000081472322 a001 11592/6119*20633239^(3/7) 2584000081472324 a001 5473/51841*141422324^(7/13) 2584000081472324 a001 11592/6119*141422324^(5/13) 2584000081472324 a001 5473/51841*2537720636^(7/15) 2584000081472324 a001 5473/51841*17393796001^(3/7) 2584000081472324 a001 5473/51841*45537549124^(7/17) 2584000081472324 a001 5473/51841*14662949395604^(1/3) 2584000081472324 a001 5473/51841*(1/2+1/2*5^(1/2))^21 2584000081472324 a001 5473/51841*192900153618^(7/18) 2584000081472324 a001 5473/51841*10749957122^(7/16) 2584000081472324 a001 5473/51841*599074578^(1/2) 2584000081472324 a001 11592/6119*2537720636^(1/3) 2584000081472324 a001 11592/6119*45537549124^(5/17) 2584000081472324 a001 11592/6119*312119004989^(3/11) 2584000081472324 a001 11592/6119*14662949395604^(5/21) 2584000081472324 a001 11592/6119*(1/2+1/2*5^(1/2))^15 2584000081472324 a001 11592/6119*192900153618^(5/18) 2584000081472324 a001 11592/6119*28143753123^(3/10) 2584000081472324 a001 11592/6119*10749957122^(5/16) 2584000081472324 a001 11592/6119*599074578^(5/14) 2584000081472324 a001 11592/6119*228826127^(3/8) 2584000081472325 a001 11592/6119*33385282^(5/12) 2584000081472326 a001 5473/51841*33385282^(7/12) 2584000081472698 a001 11592/6119*1860498^(1/2) 2584000081472847 a001 5473/51841*1860498^(7/10) 2584000081476162 a001 5473/51841*710647^(3/4) 2584000081488033 a001 10946/39603*39603^(19/22) 2584000081494094 a001 1346269/24476*64079^(8/23) 2584000081507301 a001 39088169/24476*24476^(1/21) 2584000081521061 a001 2178309/24476*64079^(7/23) 2584000081548573 a001 1762289/12238*64079^(6/23) 2584000081575876 a001 5702887/24476*64079^(5/23) 2584000081603259 a001 9227465/24476*64079^(4/23) 2584000081620883 a004 Fibonacci(21)*Lucas(25)/(1/2+sqrt(5)/2)^28 2584000081622558 a001 11592/6119*103682^(5/8) 2584000081630612 a001 3732588/6119*64079^(3/23) 2584000081657976 a001 24157817/24476*64079^(2/23) 2584000081664273 a001 433494437/271443*5778^(1/18) 2584000081675673 a001 1328767778/514229 2584000081675956 a001 5702887/103682*15127^(2/5) 2584000081677628 a001 121393/24476*141422324^(1/3) 2584000081677628 a001 10946/271443*(1/2+1/2*5^(1/2))^23 2584000081677628 a001 10946/271443*4106118243^(1/2) 2584000081677628 a001 121393/24476*(1/2+1/2*5^(1/2))^13 2584000081677628 a001 121393/24476*73681302247^(1/4) 2584000081677926 a001 514229/24476*167761^(2/5) 2584000081682651 a001 5473/51841*103682^(7/8) 2584000081685336 a001 39088169/24476*64079^(1/23) 2584000081694227 a001 1134903170/710647*5778^(1/18) 2584000081694319 a001 5702887/24476*167761^(1/5) 2584000081695163 a001 121393/24476*271443^(1/2) 2584000081698597 a001 2971215073/1860498*5778^(1/18) 2584000081699234 a001 7778742049/4870847*5778^(1/18) 2584000081699302 a004 Fibonacci(21)*Lucas(27)/(1/2+sqrt(5)/2)^30 2584000081699328 a001 20365011074/12752043*5778^(1/18) 2584000081699341 a001 53316291173/33385282*5778^(1/18) 2584000081699343 a001 139583862445/87403803*5778^(1/18) 2584000081699343 a001 365435296162/228826127*5778^(1/18) 2584000081699343 a001 956722026041/599074578*5778^(1/18) 2584000081699343 a001 2504730781961/1568397607*5778^(1/18) 2584000081699343 a001 6557470319842/4106118243*5778^(1/18) 2584000081699343 a001 10610209857723/6643838879*5778^(1/18) 2584000081699343 a001 4052739537881/2537720636*5778^(1/18) 2584000081699343 a001 1548008755920/969323029*5778^(1/18) 2584000081699343 a001 591286729879/370248451*5778^(1/18) 2584000081699344 a001 225851433717/141422324*5778^(1/18) 2584000081699344 a001 86267571272/54018521*5778^(1/18) 2584000081699349 a001 32951280099/20633239*5778^(1/18) 2584000081699385 a001 12586269025/7881196*5778^(1/18) 2584000081699629 a001 4807526976/3010349*5778^(1/18) 2584000081701298 a001 1836311903/1149851*5778^(1/18) 2584000081707296 a001 3478759206/1346269 2584000081707486 a001 208010/6119*439204^(1/3) 2584000081707567 a001 10959/844*7881196^(1/3) 2584000081707577 a001 10946/710647*20633239^(5/7) 2584000081707581 a001 10946/710647*2537720636^(5/9) 2584000081707581 a001 10946/710647*312119004989^(5/11) 2584000081707581 a001 10946/710647*(1/2+1/2*5^(1/2))^25 2584000081707581 a001 10946/710647*3461452808002^(5/12) 2584000081707581 a001 10946/710647*28143753123^(1/2) 2584000081707581 a001 10959/844*312119004989^(1/5) 2584000081707581 a001 10959/844*(1/2+1/2*5^(1/2))^11 2584000081707581 a001 10959/844*1568397607^(1/4) 2584000081707581 a001 10946/710647*228826127^(5/8) 2584000081708203 a001 10946/710647*1860498^(5/6) 2584000081709762 a001 1762289/12238*439204^(2/9) 2584000081710743 a004 Fibonacci(21)*Lucas(29)/(1/2+sqrt(5)/2)^32 2584000081711207 a001 3732588/6119*439204^(1/9) 2584000081711909 a001 4553754920/1762289 2584000081711917 a001 5473/930249*7881196^(9/11) 2584000081711940 a001 208010/6119*7881196^(3/11) 2584000081711951 a001 5473/930249*141422324^(9/13) 2584000081711951 a001 208010/6119*141422324^(3/13) 2584000081711951 a001 5473/930249*2537720636^(3/5) 2584000081711951 a001 5473/930249*45537549124^(9/17) 2584000081711951 a001 5473/930249*14662949395604^(3/7) 2584000081711951 a001 5473/930249*(1/2+1/2*5^(1/2))^27 2584000081711951 a001 5473/930249*192900153618^(1/2) 2584000081711951 a001 5473/930249*10749957122^(9/16) 2584000081711951 a001 5473/930249*599074578^(9/14) 2584000081711951 a001 208010/6119*2537720636^(1/5) 2584000081711951 a001 208010/6119*45537549124^(3/17) 2584000081711951 a001 208010/6119*817138163596^(3/19) 2584000081711951 a001 208010/6119*14662949395604^(1/7) 2584000081711951 a001 208010/6119*(1/2+1/2*5^(1/2))^9 2584000081711951 a001 208010/6119*192900153618^(1/6) 2584000081711951 a001 208010/6119*10749957122^(3/16) 2584000081711951 a001 208010/6119*599074578^(3/14) 2584000081711952 a001 208010/6119*33385282^(1/4) 2584000081711953 a001 5473/930249*33385282^(3/4) 2584000081712175 a001 208010/6119*1860498^(3/10) 2584000081712412 a004 Fibonacci(21)*Lucas(31)/(1/2+sqrt(5)/2)^34 2584000081712583 a001 1834136178/709805 2584000081712587 a001 2178309/24476*20633239^(1/5) 2584000081712589 a001 10946/4870847*(1/2+1/2*5^(1/2))^29 2584000081712589 a001 10946/4870847*1322157322203^(1/2) 2584000081712589 a001 2178309/24476*17393796001^(1/7) 2584000081712589 a001 2178309/24476*14662949395604^(1/9) 2584000081712589 a001 2178309/24476*(1/2+1/2*5^(1/2))^7 2584000081712589 a001 2178309/24476*599074578^(1/6) 2584000081712623 a001 5473/930249*1860498^(9/10) 2584000081712656 a004 Fibonacci(21)*Lucas(33)/(1/2+sqrt(5)/2)^36 2584000081712681 a001 62423801102/24157817 2584000081712681 a001 5702887/24476*20633239^(1/7) 2584000081712682 a001 10946/12752043*(1/2+1/2*5^(1/2))^31 2584000081712682 a001 10946/12752043*9062201101803^(1/2) 2584000081712682 a001 5702887/24476*2537720636^(1/9) 2584000081712682 a001 5702887/24476*312119004989^(1/11) 2584000081712682 a001 5702887/24476*(1/2+1/2*5^(1/2))^5 2584000081712682 a001 5702887/24476*28143753123^(1/10) 2584000081712682 a001 5702887/24476*228826127^(1/8) 2584000081712691 a001 3732588/6119*7881196^(1/11) 2584000081712691 a004 Fibonacci(21)*Lucas(35)/(1/2+sqrt(5)/2)^38 2584000081712695 a001 81713816496/31622993 2584000081712695 a001 5473/16692641*141422324^(11/13) 2584000081712695 a001 3732588/6119*141422324^(1/13) 2584000081712695 a001 5473/16692641*2537720636^(11/15) 2584000081712695 a001 5473/16692641*45537549124^(11/17) 2584000081712695 a001 5473/16692641*312119004989^(3/5) 2584000081712695 a001 5473/16692641*14662949395604^(11/21) 2584000081712695 a001 5473/16692641*(1/2+1/2*5^(1/2))^33 2584000081712695 a001 5473/16692641*192900153618^(11/18) 2584000081712695 a001 5473/16692641*10749957122^(11/16) 2584000081712695 a001 5473/16692641*1568397607^(3/4) 2584000081712695 a001 5473/16692641*599074578^(11/14) 2584000081712695 a001 3732588/6119*2537720636^(1/15) 2584000081712695 a001 3732588/6119*45537549124^(1/17) 2584000081712695 a001 3732588/6119*14662949395604^(1/21) 2584000081712695 a001 3732588/6119*(1/2+1/2*5^(1/2))^3 2584000081712695 a001 3732588/6119*192900153618^(1/18) 2584000081712695 a001 3732588/6119*10749957122^(1/16) 2584000081712695 a001 3732588/6119*599074578^(1/14) 2584000081712695 a001 3732588/6119*33385282^(1/12) 2584000081712697 a004 Fibonacci(21)*Lucas(37)/(1/2+sqrt(5)/2)^40 2584000081712697 a001 427859097874/165580141 2584000081712697 a001 10946/87403803*2537720636^(7/9) 2584000081712697 a001 10946/87403803*17393796001^(5/7) 2584000081712697 a001 10946/87403803*312119004989^(7/11) 2584000081712697 a001 10946/87403803*14662949395604^(5/9) 2584000081712697 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^35/Lucas(38) 2584000081712697 a001 10946/87403803*505019158607^(5/8) 2584000081712697 a001 10946/87403803*28143753123^(7/10) 2584000081712697 a001 10946/87403803*599074578^(5/6) 2584000081712697 a001 39088169/48952+39088169/48952*5^(1/2) 2584000081712697 a001 10946/87403803*228826127^(7/8) 2584000081712697 a001 5473/16692641*33385282^(11/12) 2584000081712697 a004 Fibonacci(21)*Lucas(39)/(1/2+sqrt(5)/2)^42 2584000081712697 a001 1120149660630/433494437 2584000081712697 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^37/Lucas(40) 2584000081712697 a004 Fibonacci(40)/Lucas(21)/(1/2+sqrt(5)/2) 2584000081712697 a004 Fibonacci(21)*Lucas(41)/(1/2+sqrt(5)/2)^44 2584000081712698 a001 1466294942008/567451585 2584000081712698 a001 5473/299537289*2537720636^(13/15) 2584000081712698 a001 5473/299537289*45537549124^(13/17) 2584000081712698 a001 5473/299537289*14662949395604^(13/21) 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^39/Lucas(42) 2584000081712698 a001 5473/299537289*192900153618^(13/18) 2584000081712698 a001 5473/299537289*73681302247^(3/4) 2584000081712698 a001 5473/299537289*10749957122^(13/16) 2584000081712698 a004 Fibonacci(21)*Lucas(43)/(1/2+sqrt(5)/2)^46 2584000081712698 a001 7677619991418/2971215073 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^41/Lucas(44) 2584000081712698 a001 5473/299537289*599074578^(13/14) 2584000081712698 a004 Fibonacci(21)*Lucas(45)/(1/2+sqrt(5)/2)^48 2584000081712698 a001 1546174622326/598364773 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^43/Lucas(46) 2584000081712698 a004 Fibonacci(21)*Lucas(47)/(1/2+sqrt(5)/2)^50 2584000081712698 a001 26311595139648/10182505537 2584000081712698 a001 5473/5374978561*45537549124^(15/17) 2584000081712698 a001 5473/5374978561*312119004989^(9/11) 2584000081712698 a001 5473/5374978561*14662949395604^(5/7) 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^45/Lucas(48) 2584000081712698 a001 5473/5374978561*192900153618^(5/6) 2584000081712698 a001 5473/5374978561*28143753123^(9/10) 2584000081712698 a004 Fibonacci(21)*Lucas(49)/(1/2+sqrt(5)/2)^52 2584000081712698 a001 137769300747650/53316291173 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^47/Lucas(50) 2584000081712698 a001 5473/5374978561*10749957122^(15/16) 2584000081712698 a004 Fibonacci(21)*Lucas(51)/(1/2+sqrt(5)/2)^54 2584000081712698 a001 360684711963654/139583862445 2584000081712698 a001 10946/73681302247*14662949395604^(7/9) 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^49/Lucas(52) 2584000081712698 a001 10946/73681302247*505019158607^(7/8) 2584000081712698 a004 Fibonacci(21)*Lucas(53)/(1/2+sqrt(5)/2)^56 2584000081712698 a001 472142417571656/182717648081 2584000081712698 a001 5473/96450076809*14662949395604^(17/21) 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^51/Lucas(54) 2584000081712698 a004 Fibonacci(21)*Lucas(55)/(1/2+sqrt(5)/2)^58 2584000081712698 a001 2472169793466282/956722026041 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^53/Lucas(56) 2584000081712698 a004 Fibonacci(21)*Lucas(57)/(1/2+sqrt(5)/2)^60 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^55/Lucas(58) 2584000081712698 a001 10946/1322157322203*3461452808002^(11/12) 2584000081712698 a004 Fibonacci(21)*Lucas(59)/(1/2+sqrt(5)/2)^62 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^57/Lucas(60) 2584000081712698 a004 Fibonacci(21)*Lucas(61)/(1/2+sqrt(5)/2)^64 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^59/Lucas(62) 2584000081712698 a004 Fibonacci(21)*Lucas(63)/(1/2+sqrt(5)/2)^66 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^61/Lucas(64) 2584000081712698 a004 Fibonacci(21)*Lucas(65)/(1/2+sqrt(5)/2)^68 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^63/Lucas(66) 2584000081712698 a004 Fibonacci(21)*Lucas(67)/(1/2+sqrt(5)/2)^70 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^65/Lucas(68) 2584000081712698 a004 Fibonacci(21)*Lucas(69)/(1/2+sqrt(5)/2)^72 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^67/Lucas(70) 2584000081712698 a004 Fibonacci(21)*Lucas(71)/(1/2+sqrt(5)/2)^74 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^69/Lucas(72) 2584000081712698 a004 Fibonacci(21)*Lucas(73)/(1/2+sqrt(5)/2)^76 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^71/Lucas(74) 2584000081712698 a004 Fibonacci(21)*Lucas(75)/(1/2+sqrt(5)/2)^78 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^73/Lucas(76) 2584000081712698 a004 Fibonacci(21)*Lucas(77)/(1/2+sqrt(5)/2)^80 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^75/Lucas(78) 2584000081712698 a004 Fibonacci(21)*Lucas(79)/(1/2+sqrt(5)/2)^82 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^77/Lucas(80) 2584000081712698 a004 Fibonacci(21)*Lucas(81)/(1/2+sqrt(5)/2)^84 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^79/Lucas(82) 2584000081712698 a004 Fibonacci(21)*Lucas(83)/(1/2+sqrt(5)/2)^86 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^81/Lucas(84) 2584000081712698 a004 Fibonacci(21)*Lucas(85)/(1/2+sqrt(5)/2)^88 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^83/Lucas(86) 2584000081712698 a004 Fibonacci(21)*Lucas(87)/(1/2+sqrt(5)/2)^90 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^85/Lucas(88) 2584000081712698 a004 Fibonacci(21)*Lucas(89)/(1/2+sqrt(5)/2)^92 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^87/Lucas(90) 2584000081712698 a004 Fibonacci(21)*Lucas(91)/(1/2+sqrt(5)/2)^94 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^89/Lucas(92) 2584000081712698 a004 Fibonacci(21)*Lucas(93)/(1/2+sqrt(5)/2)^96 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^91/Lucas(94) 2584000081712698 a004 Fibonacci(21)*Lucas(95)/(1/2+sqrt(5)/2)^98 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^93/Lucas(96) 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^95/Lucas(98) 2584000081712698 a004 Fibonacci(21)*Lucas(97)/(1/2+sqrt(5)/2)^100 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^94/Lucas(97) 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^96/Lucas(99) 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^97/Lucas(100) 2584000081712698 a004 Fibonacci(21)*Lucas(96)/(1/2+sqrt(5)/2)^99 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^92/Lucas(95) 2584000081712698 a004 Fibonacci(21)*Lucas(94)/(1/2+sqrt(5)/2)^97 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^90/Lucas(93) 2584000081712698 a004 Fibonacci(21)*Lucas(92)/(1/2+sqrt(5)/2)^95 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^88/Lucas(91) 2584000081712698 a004 Fibonacci(21)*Lucas(90)/(1/2+sqrt(5)/2)^93 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^86/Lucas(89) 2584000081712698 a004 Fibonacci(21)*Lucas(88)/(1/2+sqrt(5)/2)^91 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^84/Lucas(87) 2584000081712698 a004 Fibonacci(21)*Lucas(86)/(1/2+sqrt(5)/2)^89 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^82/Lucas(85) 2584000081712698 a004 Fibonacci(21)*Lucas(84)/(1/2+sqrt(5)/2)^87 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^80/Lucas(83) 2584000081712698 a004 Fibonacci(21)*Lucas(82)/(1/2+sqrt(5)/2)^85 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^78/Lucas(81) 2584000081712698 a004 Fibonacci(21)*Lucas(80)/(1/2+sqrt(5)/2)^83 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^76/Lucas(79) 2584000081712698 a004 Fibonacci(21)*Lucas(78)/(1/2+sqrt(5)/2)^81 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^74/Lucas(77) 2584000081712698 a004 Fibonacci(21)*Lucas(76)/(1/2+sqrt(5)/2)^79 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^72/Lucas(75) 2584000081712698 a004 Fibonacci(21)*Lucas(74)/(1/2+sqrt(5)/2)^77 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^70/Lucas(73) 2584000081712698 a004 Fibonacci(21)*Lucas(72)/(1/2+sqrt(5)/2)^75 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^68/Lucas(71) 2584000081712698 a004 Fibonacci(21)*Lucas(70)/(1/2+sqrt(5)/2)^73 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^66/Lucas(69) 2584000081712698 a004 Fibonacci(21)*Lucas(68)/(1/2+sqrt(5)/2)^71 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^64/Lucas(67) 2584000081712698 a004 Fibonacci(21)*Lucas(66)/(1/2+sqrt(5)/2)^69 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^62/Lucas(65) 2584000081712698 a004 Fibonacci(21)*Lucas(64)/(1/2+sqrt(5)/2)^67 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^60/Lucas(63) 2584000081712698 a004 Fibonacci(21)*Lucas(62)/(1/2+sqrt(5)/2)^65 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^58/Lucas(61) 2584000081712698 a004 Fibonacci(21)*Lucas(60)/(1/2+sqrt(5)/2)^63 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^56/Lucas(59) 2584000081712698 a004 Fibonacci(21)*Lucas(58)/(1/2+sqrt(5)/2)^61 2584000081712698 a001 5473/408569081798*14662949395604^(6/7) 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^54/Lucas(57) 2584000081712698 a001 1000013687947313/387002188980 2584000081712698 a004 Fibonacci(21)*Lucas(56)/(1/2+sqrt(5)/2)^59 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^52/Lucas(55) 2584000081712698 a001 10946/312119004989*23725150497407^(13/16) 2584000081712698 a001 10946/312119004989*505019158607^(13/14) 2584000081712698 a004 Fibonacci(21)*Lucas(54)/(1/2+sqrt(5)/2)^57 2584000081712698 a001 5473/22768774562*45537549124^(16/17) 2584000081712698 a001 10946/119218851371*312119004989^(10/11) 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^50/Lucas(53) 2584000081712698 a001 10946/119218851371*3461452808002^(5/6) 2584000081712698 a001 44892317167666/17373187209 2584000081712698 a004 Fibonacci(21)*Lucas(52)/(1/2+sqrt(5)/2)^55 2584000081712698 a001 5473/22768774562*14662949395604^(16/21) 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^48/Lucas(51) 2584000081712698 a001 5473/22768774562*192900153618^(8/9) 2584000081712698 a001 55728852804001/21566892818 2584000081712698 a001 5473/22768774562*73681302247^(12/13) 2584000081712698 a004 Fibonacci(21)*Lucas(50)/(1/2+sqrt(5)/2)^53 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^46/Lucas(49) 2584000081712698 a001 85146110468354/32951280099 2584000081712698 a004 Fibonacci(21)*Lucas(48)/(1/2+sqrt(5)/2)^51 2584000081712698 a001 5473/1268860318*2537720636^(14/15) 2584000081712698 a001 10946/17393796001*10749957122^(23/24) 2584000081712698 a001 10946/6643838879*312119004989^(4/5) 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^44/Lucas(47) 2584000081712698 a001 10946/6643838879*23725150497407^(11/16) 2584000081712698 a001 10946/6643838879*73681302247^(11/13) 2584000081712698 a001 32522920189058/12586269025 2584000081712698 a001 10946/6643838879*10749957122^(11/12) 2584000081712698 a004 Fibonacci(21)*Lucas(46)/(1/2+sqrt(5)/2)^49 2584000081712698 a001 10946/6643838879*4106118243^(22/23) 2584000081712698 a001 5473/1268860318*17393796001^(6/7) 2584000081712698 a001 5473/1268860318*45537549124^(14/17) 2584000081712698 a001 5473/1268860318*14662949395604^(2/3) 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^42/Lucas(45) 2584000081712698 a001 5473/1268860318*505019158607^(3/4) 2584000081712698 a001 5473/1268860318*192900153618^(7/9) 2584000081712698 a001 5473/1268860318*10749957122^(7/8) 2584000081712698 a001 3105662524705/1201881744 2584000081712698 a001 5473/1268860318*4106118243^(21/23) 2584000081712698 a004 Fibonacci(21)*Lucas(44)/(1/2+sqrt(5)/2)^47 2584000081712698 a001 5473/1268860318*1568397607^(21/22) 2584000081712698 a001 10946/969323029*2537720636^(8/9) 2584000081712698 a001 10946/969323029*312119004989^(8/11) 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^40/Lucas(43) 2584000081712698 a001 10946/969323029*23725150497407^(5/8) 2584000081712698 a001 10946/969323029*73681302247^(10/13) 2584000081712698 a001 10946/969323029*28143753123^(4/5) 2584000081712698 a001 10946/969323029*10749957122^(5/6) 2584000081712698 a001 10946/969323029*4106118243^(20/23) 2584000081712698 a001 4745030107402/1836311903 2584000081712698 a001 10946/969323029*1568397607^(10/11) 2584000081712698 a004 Fibonacci(44)/Lucas(21)/(1/2+sqrt(5)/2)^5 2584000081712698 a004 Fibonacci(46)/Lucas(21)/(1/2+sqrt(5)/2)^7 2584000081712698 a004 Fibonacci(48)/Lucas(21)/(1/2+sqrt(5)/2)^9 2584000081712698 a004 Fibonacci(50)/Lucas(21)/(1/2+sqrt(5)/2)^11 2584000081712698 a004 Fibonacci(52)/Lucas(21)/(1/2+sqrt(5)/2)^13 2584000081712698 a004 Fibonacci(54)/Lucas(21)/(1/2+sqrt(5)/2)^15 2584000081712698 a004 Fibonacci(56)/Lucas(21)/(1/2+sqrt(5)/2)^17 2584000081712698 a004 Fibonacci(58)/Lucas(21)/(1/2+sqrt(5)/2)^19 2584000081712698 a004 Fibonacci(60)/Lucas(21)/(1/2+sqrt(5)/2)^21 2584000081712698 a004 Fibonacci(62)/Lucas(21)/(1/2+sqrt(5)/2)^23 2584000081712698 a004 Fibonacci(64)/Lucas(21)/(1/2+sqrt(5)/2)^25 2584000081712698 a004 Fibonacci(66)/Lucas(21)/(1/2+sqrt(5)/2)^27 2584000081712698 a004 Fibonacci(68)/Lucas(21)/(1/2+sqrt(5)/2)^29 2584000081712698 a004 Fibonacci(70)/Lucas(21)/(1/2+sqrt(5)/2)^31 2584000081712698 a004 Fibonacci(72)/Lucas(21)/(1/2+sqrt(5)/2)^33 2584000081712698 a004 Fibonacci(74)/Lucas(21)/(1/2+sqrt(5)/2)^35 2584000081712698 a004 Fibonacci(76)/Lucas(21)/(1/2+sqrt(5)/2)^37 2584000081712698 a004 Fibonacci(78)/Lucas(21)/(1/2+sqrt(5)/2)^39 2584000081712698 a004 Fibonacci(80)/Lucas(21)/(1/2+sqrt(5)/2)^41 2584000081712698 a004 Fibonacci(82)/Lucas(21)/(1/2+sqrt(5)/2)^43 2584000081712698 a004 Fibonacci(21)*Lucas(42)/(1/2+sqrt(5)/2)^45 2584000081712698 a004 Fibonacci(86)/Lucas(21)/(1/2+sqrt(5)/2)^47 2584000081712698 a004 Fibonacci(88)/Lucas(21)/(1/2+sqrt(5)/2)^49 2584000081712698 a004 Fibonacci(90)/Lucas(21)/(1/2+sqrt(5)/2)^51 2584000081712698 a004 Fibonacci(92)/Lucas(21)/(1/2+sqrt(5)/2)^53 2584000081712698 a004 Fibonacci(94)/Lucas(21)/(1/2+sqrt(5)/2)^55 2584000081712698 a004 Fibonacci(96)/Lucas(21)/(1/2+sqrt(5)/2)^57 2584000081712698 a004 Fibonacci(98)/Lucas(21)/(1/2+sqrt(5)/2)^59 2584000081712698 a004 Fibonacci(100)/Lucas(21)/(1/2+sqrt(5)/2)^61 2584000081712698 a004 Fibonacci(97)/Lucas(21)/(1/2+sqrt(5)/2)^58 2584000081712698 a004 Fibonacci(99)/Lucas(21)/(1/2+sqrt(5)/2)^60 2584000081712698 a004 Fibonacci(95)/Lucas(21)/(1/2+sqrt(5)/2)^56 2584000081712698 a004 Fibonacci(93)/Lucas(21)/(1/2+sqrt(5)/2)^54 2584000081712698 a004 Fibonacci(91)/Lucas(21)/(1/2+sqrt(5)/2)^52 2584000081712698 a004 Fibonacci(89)/Lucas(21)/(1/2+sqrt(5)/2)^50 2584000081712698 a004 Fibonacci(87)/Lucas(21)/(1/2+sqrt(5)/2)^48 2584000081712698 a004 Fibonacci(85)/Lucas(21)/(1/2+sqrt(5)/2)^46 2584000081712698 a004 Fibonacci(83)/Lucas(21)/(1/2+sqrt(5)/2)^44 2584000081712698 a004 Fibonacci(81)/Lucas(21)/(1/2+sqrt(5)/2)^42 2584000081712698 a004 Fibonacci(79)/Lucas(21)/(1/2+sqrt(5)/2)^40 2584000081712698 a004 Fibonacci(77)/Lucas(21)/(1/2+sqrt(5)/2)^38 2584000081712698 a004 Fibonacci(75)/Lucas(21)/(1/2+sqrt(5)/2)^36 2584000081712698 a004 Fibonacci(73)/Lucas(21)/(1/2+sqrt(5)/2)^34 2584000081712698 a004 Fibonacci(71)/Lucas(21)/(1/2+sqrt(5)/2)^32 2584000081712698 a004 Fibonacci(69)/Lucas(21)/(1/2+sqrt(5)/2)^30 2584000081712698 a004 Fibonacci(67)/Lucas(21)/(1/2+sqrt(5)/2)^28 2584000081712698 a004 Fibonacci(65)/Lucas(21)/(1/2+sqrt(5)/2)^26 2584000081712698 a004 Fibonacci(63)/Lucas(21)/(1/2+sqrt(5)/2)^24 2584000081712698 a004 Fibonacci(61)/Lucas(21)/(1/2+sqrt(5)/2)^22 2584000081712698 a004 Fibonacci(59)/Lucas(21)/(1/2+sqrt(5)/2)^20 2584000081712698 a004 Fibonacci(57)/Lucas(21)/(1/2+sqrt(5)/2)^18 2584000081712698 a004 Fibonacci(55)/Lucas(21)/(1/2+sqrt(5)/2)^16 2584000081712698 a004 Fibonacci(53)/Lucas(21)/(1/2+sqrt(5)/2)^14 2584000081712698 a004 Fibonacci(51)/Lucas(21)/(1/2+sqrt(5)/2)^12 2584000081712698 a004 Fibonacci(49)/Lucas(21)/(1/2+sqrt(5)/2)^10 2584000081712698 a004 Fibonacci(47)/Lucas(21)/(1/2+sqrt(5)/2)^8 2584000081712698 a004 Fibonacci(45)/Lucas(21)/(1/2+sqrt(5)/2)^6 2584000081712698 a001 10946/969323029*599074578^(20/21) 2584000081712698 a001 5473/70711162*141422324^(12/13) 2584000081712698 a004 Fibonacci(43)/Lucas(21)/(1/2+sqrt(5)/2)^4 2584000081712698 a001 10946/370248451*817138163596^(2/3) 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^38/Lucas(41) 2584000081712698 a001 10946/370248451*10749957122^(19/24) 2584000081712698 a001 10946/370248451*4106118243^(19/23) 2584000081712698 a001 10946/370248451*1568397607^(19/22) 2584000081712698 a001 1812440223386/701408733 2584000081712698 a001 10946/370248451*599074578^(19/21) 2584000081712698 a004 Fibonacci(41)/Lucas(21)/(1/2+sqrt(5)/2)^2 2584000081712698 a004 Fibonacci(21)*Lucas(40)/(1/2+sqrt(5)/2)^43 2584000081712698 a001 10946/370248451*228826127^(19/20) 2584000081712698 a001 5473/70711162*2537720636^(4/5) 2584000081712698 a001 5473/70711162*45537549124^(12/17) 2584000081712698 a001 5473/70711162*14662949395604^(4/7) 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^36/Lucas(39) 2584000081712698 a001 5473/70711162*192900153618^(2/3) 2584000081712698 a001 5473/70711162*73681302247^(9/13) 2584000081712698 a001 5473/70711162*10749957122^(3/4) 2584000081712698 a001 5473/70711162*4106118243^(18/23) 2584000081712698 a001 5473/70711162*1568397607^(9/11) 2584000081712698 a001 5473/70711162*599074578^(6/7) 2584000081712698 a001 31622993/12238 2584000081712698 a001 5473/70711162*228826127^(9/10) 2584000081712698 a004 Fibonacci(21)*Lucas(38)/(1/2+sqrt(5)/2)^41 2584000081712698 a001 5473/70711162*87403803^(18/19) 2584000081712698 a001 10946/54018521*45537549124^(2/3) 2584000081712698 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^34/Lucas(37) 2584000081712698 a001 10946/54018521*10749957122^(17/24) 2584000081712698 a001 10946/54018521*4106118243^(17/23) 2584000081712698 a001 10946/54018521*1568397607^(17/22) 2584000081712698 a001 10946/54018521*599074578^(17/21) 2584000081712698 a001 24157817/24476*(1/2+1/2*5^(1/2))^2 2584000081712698 a001 24157817/24476*10749957122^(1/24) 2584000081712698 a001 24157817/24476*4106118243^(1/23) 2584000081712698 a001 24157817/24476*1568397607^(1/22) 2584000081712698 a001 24157817/24476*599074578^(1/21) 2584000081712698 a001 24157817/24476*228826127^(1/20) 2584000081712698 a001 24157817/24476*87403803^(1/19) 2584000081712698 a001 10946/54018521*228826127^(17/20) 2584000081712698 a001 264431464882/102334155 2584000081712699 a001 24157817/24476*33385282^(1/18) 2584000081712699 a001 10946/54018521*87403803^(17/19) 2584000081712699 a001 24157817/24476*12752043^(1/17) 2584000081712700 a004 Fibonacci(21)*Lucas(36)/(1/2+sqrt(5)/2)^39 2584000081712701 a001 10946/54018521*33385282^(17/18) 2584000081712701 a001 5473/3940598*7881196^(10/11) 2584000081712704 a001 10946/20633239*(1/2+1/2*5^(1/2))^32 2584000081712704 a001 10946/20633239*23725150497407^(1/2) 2584000081712704 a001 10946/20633239*73681302247^(8/13) 2584000081712704 a001 10946/20633239*10749957122^(2/3) 2584000081712704 a001 10946/20633239*4106118243^(16/23) 2584000081712704 a001 10946/20633239*1568397607^(8/11) 2584000081712704 a001 10946/20633239*599074578^(16/21) 2584000081712704 a001 9227465/24476*(1/2+1/2*5^(1/2))^4 2584000081712704 a001 9227465/24476*23725150497407^(1/16) 2584000081712704 a001 9227465/24476*73681302247^(1/13) 2584000081712704 a001 9227465/24476*10749957122^(1/12) 2584000081712704 a001 9227465/24476*4106118243^(2/23) 2584000081712704 a001 9227465/24476*1568397607^(1/11) 2584000081712704 a001 9227465/24476*599074578^(2/21) 2584000081712704 a001 9227465/24476*228826127^(1/10) 2584000081712704 a001 10946/20633239*228826127^(4/5) 2584000081712704 a001 9227465/24476*87403803^(2/19) 2584000081712704 a001 9227465/24476*33385282^(1/9) 2584000081712704 a001 10946/20633239*87403803^(16/19) 2584000081712704 a001 101003831890/39088169 2584000081712705 a001 24157817/24476*4870847^(1/16) 2584000081712705 a001 9227465/24476*12752043^(2/17) 2584000081712706 a001 10946/20633239*33385282^(8/9) 2584000081712713 a004 Fibonacci(21)*Lucas(34)/(1/2+sqrt(5)/2)^37 2584000081712717 a001 9227465/24476*4870847^(1/8) 2584000081712719 a001 10946/20633239*12752043^(16/17) 2584000081712732 a001 1762289/12238*7881196^(2/11) 2584000081712734 a001 5473/3940598*20633239^(6/7) 2584000081712739 a001 701408733/439204*5778^(1/18) 2584000081712739 a001 5473/3940598*141422324^(10/13) 2584000081712739 a001 1762289/12238*141422324^(2/13) 2584000081712739 a001 5473/3940598*2537720636^(2/3) 2584000081712739 a001 5473/3940598*45537549124^(10/17) 2584000081712739 a001 5473/3940598*312119004989^(6/11) 2584000081712739 a001 5473/3940598*14662949395604^(10/21) 2584000081712739 a001 5473/3940598*(1/2+1/2*5^(1/2))^30 2584000081712739 a001 5473/3940598*192900153618^(5/9) 2584000081712739 a001 5473/3940598*28143753123^(3/5) 2584000081712739 a001 5473/3940598*10749957122^(5/8) 2584000081712739 a001 5473/3940598*4106118243^(15/23) 2584000081712739 a001 5473/3940598*1568397607^(15/22) 2584000081712739 a001 5473/3940598*599074578^(5/7) 2584000081712739 a001 1762289/12238*2537720636^(2/15) 2584000081712739 a001 1762289/12238*45537549124^(2/17) 2584000081712739 a001 1762289/12238*14662949395604^(2/21) 2584000081712739 a001 1762289/12238*(1/2+1/2*5^(1/2))^6 2584000081712739 a001 1762289/12238*10749957122^(1/8) 2584000081712739 a001 1762289/12238*4106118243^(3/23) 2584000081712739 a001 1762289/12238*1568397607^(3/22) 2584000081712739 a001 1762289/12238*599074578^(1/7) 2584000081712739 a001 1762289/12238*228826127^(3/20) 2584000081712739 a001 5473/3940598*228826127^(3/4) 2584000081712739 a001 1762289/12238*87403803^(3/19) 2584000081712739 a001 5473/3940598*87403803^(15/19) 2584000081712740 a001 1762289/12238*33385282^(1/6) 2584000081712741 a001 5473/3940598*33385282^(5/6) 2584000081712741 a001 9645007697/3732588 2584000081712742 a001 1762289/12238*12752043^(3/17) 2584000081712748 a001 24157817/24476*1860498^(1/15) 2584000081712753 a001 5473/3940598*12752043^(15/17) 2584000081712760 a001 1762289/12238*4870847^(3/16) 2584000081712770 a001 3732588/6119*1860498^(1/10) 2584000081712803 a001 9227465/24476*1860498^(2/15) 2584000081712806 a001 5702887/24476*1860498^(1/6) 2584000081712806 a004 Fibonacci(21)*Lucas(32)/(1/2+sqrt(5)/2)^35 2584000081712841 a001 5473/3940598*4870847^(15/16) 2584000081712888 a001 1762289/12238*1860498^(1/5) 2584000081712978 a001 10946/3010349*20633239^(4/5) 2584000081712983 a001 10946/3010349*17393796001^(4/7) 2584000081712983 a001 10946/3010349*14662949395604^(4/9) 2584000081712983 a001 10946/3010349*(1/2+1/2*5^(1/2))^28 2584000081712983 a001 10946/3010349*73681302247^(7/13) 2584000081712983 a001 10946/3010349*10749957122^(7/12) 2584000081712983 a001 10946/3010349*4106118243^(14/23) 2584000081712983 a001 10946/3010349*1568397607^(7/11) 2584000081712983 a001 10946/3010349*599074578^(2/3) 2584000081712983 a001 1346269/24476*(1/2+1/2*5^(1/2))^8 2584000081712983 a001 1346269/24476*23725150497407^(1/8) 2584000081712983 a001 1346269/24476*73681302247^(2/13) 2584000081712983 a001 1346269/24476*10749957122^(1/6) 2584000081712983 a001 1346269/24476*4106118243^(4/23) 2584000081712983 a001 1346269/24476*1568397607^(2/11) 2584000081712983 a001 1346269/24476*599074578^(4/21) 2584000081712983 a001 1346269/24476*228826127^(1/5) 2584000081712983 a001 10946/3010349*228826127^(7/10) 2584000081712983 a001 1346269/24476*87403803^(4/19) 2584000081712983 a001 10946/3010349*87403803^(14/19) 2584000081712983 a001 1346269/24476*33385282^(2/9) 2584000081712984 a001 10946/3010349*33385282^(7/9) 2584000081712986 a001 1346269/24476*12752043^(4/17) 2584000081712996 a001 10946/3010349*12752043^(14/17) 2584000081712999 a001 14736260474/5702887 2584000081713010 a001 1346269/24476*4870847^(1/4) 2584000081713064 a001 24157817/24476*710647^(1/14) 2584000081713078 a001 10946/3010349*4870847^(7/8) 2584000081713182 a001 1346269/24476*1860498^(4/15) 2584000081713435 a001 9227465/24476*710647^(1/7) 2584000081713444 a004 Fibonacci(21)*Lucas(30)/(1/2+sqrt(5)/2)^33 2584000081713679 a001 10946/3010349*1860498^(14/15) 2584000081713836 a001 1762289/12238*710647^(3/14) 2584000081713868 a001 2178309/24476*710647^(1/4) 2584000081714186 a001 5473/219602*439204^(8/9) 2584000081714445 a001 1346269/24476*710647^(2/7) 2584000081714650 a001 514229/24476*20633239^(2/7) 2584000081714652 a001 10946/1149851*141422324^(2/3) 2584000081714652 a001 10946/1149851*(1/2+1/2*5^(1/2))^26 2584000081714652 a001 10946/1149851*73681302247^(1/2) 2584000081714652 a001 10946/1149851*10749957122^(13/24) 2584000081714652 a001 10946/1149851*4106118243^(13/23) 2584000081714652 a001 10946/1149851*1568397607^(13/22) 2584000081714652 a001 10946/1149851*599074578^(13/21) 2584000081714652 a001 514229/24476*2537720636^(2/9) 2584000081714652 a001 514229/24476*312119004989^(2/11) 2584000081714652 a001 514229/24476*(1/2+1/2*5^(1/2))^10 2584000081714652 a001 514229/24476*28143753123^(1/5) 2584000081714652 a001 514229/24476*10749957122^(5/24) 2584000081714652 a001 514229/24476*4106118243^(5/23) 2584000081714652 a001 514229/24476*1568397607^(5/22) 2584000081714652 a001 514229/24476*599074578^(5/21) 2584000081714652 a001 514229/24476*228826127^(1/4) 2584000081714652 a001 10946/1149851*228826127^(13/20) 2584000081714652 a001 514229/24476*87403803^(5/19) 2584000081714652 a001 10946/1149851*87403803^(13/19) 2584000081714653 a001 514229/24476*33385282^(5/18) 2584000081714654 a001 10946/1149851*33385282^(13/18) 2584000081714657 a001 514229/24476*12752043^(5/17) 2584000081714664 a001 10946/1149851*12752043^(13/17) 2584000081714686 a001 514229/24476*4870847^(5/16) 2584000081714740 a001 10946/1149851*4870847^(13/16) 2584000081714761 a001 5628750634/2178309 2584000081714901 a001 514229/24476*1860498^(1/3) 2584000081715299 a001 10946/1149851*1860498^(13/15) 2584000081715396 a001 24157817/24476*271443^(1/13) 2584000081716479 a001 514229/24476*710647^(5/14) 2584000081717814 a004 Fibonacci(21)*Lucas(28)/(1/2+sqrt(5)/2)^31 2584000081718099 a001 9227465/24476*271443^(2/13) 2584000081719403 a001 10946/1149851*710647^(13/14) 2584000081720139 a001 98209/12238*439204^(4/9) 2584000081720832 a001 1762289/12238*271443^(3/13) 2584000081722713 a001 39088169/24476*103682^(1/24) 2584000081723773 a001 1346269/24476*271443^(4/13) 2584000081726063 a001 5473/219602*7881196^(8/11) 2584000081726078 a001 98209/12238*7881196^(4/11) 2584000081726093 a001 5473/219602*141422324^(8/13) 2584000081726093 a001 98209/12238*141422324^(4/13) 2584000081726093 a001 5473/219602*2537720636^(8/15) 2584000081726093 a001 5473/219602*45537549124^(8/17) 2584000081726093 a001 5473/219602*14662949395604^(8/21) 2584000081726093 a001 5473/219602*(1/2+1/2*5^(1/2))^24 2584000081726093 a001 5473/219602*192900153618^(4/9) 2584000081726093 a001 5473/219602*73681302247^(6/13) 2584000081726093 a001 5473/219602*10749957122^(1/2) 2584000081726093 a001 5473/219602*4106118243^(12/23) 2584000081726093 a001 5473/219602*1568397607^(6/11) 2584000081726093 a001 5473/219602*599074578^(4/7) 2584000081726093 a001 98209/12238*2537720636^(4/15) 2584000081726093 a001 98209/12238*45537549124^(4/17) 2584000081726093 a001 98209/12238*817138163596^(4/19) 2584000081726093 a001 98209/12238*14662949395604^(4/21) 2584000081726093 a001 98209/12238*(1/2+1/2*5^(1/2))^12 2584000081726093 a001 98209/12238*192900153618^(2/9) 2584000081726093 a001 98209/12238*73681302247^(3/13) 2584000081726093 a001 98209/12238*10749957122^(1/4) 2584000081726093 a001 98209/12238*4106118243^(6/23) 2584000081726093 a001 98209/12238*1568397607^(3/11) 2584000081726093 a001 98209/12238*599074578^(2/7) 2584000081726093 a001 98209/12238*228826127^(3/10) 2584000081726093 a001 5473/219602*228826127^(3/5) 2584000081726093 a001 98209/12238*87403803^(6/19) 2584000081726093 a001 5473/219602*87403803^(12/19) 2584000081726094 a001 98209/12238*33385282^(1/3) 2584000081726095 a001 5473/219602*33385282^(2/3) 2584000081726099 a001 98209/12238*12752043^(6/17) 2584000081726104 a001 5473/219602*12752043^(12/17) 2584000081726134 a001 98209/12238*4870847^(3/8) 2584000081726175 a001 5473/219602*4870847^(3/4) 2584000081726392 a001 98209/12238*1860498^(2/5) 2584000081726690 a001 5473/219602*1860498^(4/5) 2584000081726840 a001 537497857/208010 2584000081728140 a001 514229/24476*271443^(5/13) 2584000081728286 a001 98209/12238*710647^(3/7) 2584000081730479 a001 5473/219602*710647^(6/7) 2584000081732729 a001 24157817/24476*103682^(1/12) 2584000081742279 a001 98209/12238*271443^(6/13) 2584000081742742 a001 3732588/6119*103682^(1/8) 2584000081747767 a004 Fibonacci(21)*Lucas(26)/(1/2+sqrt(5)/2)^29 2584000081752766 a001 9227465/24476*103682^(1/6) 2584000081758465 a001 5473/219602*271443^(12/13) 2584000081762759 a001 5702887/24476*103682^(5/24) 2584000081772832 a001 1762289/12238*103682^(1/4) 2584000081782697 a001 2178309/24476*103682^(7/24) 2584000081787585 a001 39088169/24476*39603^(1/22) 2584000081791158 a001 267914296/167761*5778^(1/18) 2584000081793107 a001 1346269/24476*103682^(1/3) 2584000081794781 a001 10946/64079*64079^(20/23) 2584000081802091 a001 208010/6119*103682^(3/8) 2584000081804484 a001 10946/167761*7881196^(2/3) 2584000081804509 a001 75025/24476*20633239^(2/5) 2584000081804512 a001 10946/167761*312119004989^(2/5) 2584000081804512 a001 10946/167761*(1/2+1/2*5^(1/2))^22 2584000081804512 a001 10946/167761*10749957122^(11/24) 2584000081804512 a001 10946/167761*4106118243^(11/23) 2584000081804512 a001 10946/167761*1568397607^(1/2) 2584000081804512 a001 10946/167761*599074578^(11/21) 2584000081804512 a001 75025/24476*17393796001^(2/7) 2584000081804512 a001 75025/24476*14662949395604^(2/9) 2584000081804512 a001 75025/24476*(1/2+1/2*5^(1/2))^14 2584000081804512 a001 75025/24476*10749957122^(7/24) 2584000081804512 a001 75025/24476*4106118243^(7/23) 2584000081804512 a001 75025/24476*1568397607^(7/22) 2584000081804512 a001 75025/24476*599074578^(1/3) 2584000081804512 a001 75025/24476*228826127^(7/20) 2584000081804512 a001 10946/167761*228826127^(11/20) 2584000081804512 a001 75025/24476*87403803^(7/19) 2584000081804512 a001 10946/167761*87403803^(11/19) 2584000081804513 a001 75025/24476*33385282^(7/18) 2584000081804513 a001 10946/167761*33385282^(11/18) 2584000081804518 a001 75025/24476*12752043^(7/17) 2584000081804522 a001 10946/167761*12752043^(11/17) 2584000081804560 a001 75025/24476*4870847^(7/16) 2584000081804587 a001 10946/167761*4870847^(11/16) 2584000081804860 a001 75025/24476*1860498^(7/15) 2584000081805059 a001 10946/167761*1860498^(11/15) 2584000081807070 a001 75025/24476*710647^(1/2) 2584000081807830 a001 121393/24476*103682^(13/24) 2584000081808532 a001 10946/167761*710647^(11/14) 2584000081809628 a001 63171050/24447 2584000081814807 a001 514229/24476*103682^(5/12) 2584000081817752 a001 10959/844*103682^(11/24) 2584000081823396 a001 75025/24476*271443^(7/13) 2584000081834186 a001 10946/167761*271443^(11/13) 2584000081846280 a001 98209/12238*103682^(1/2) 2584000081862475 a001 24157817/24476*39603^(1/11) 2584000081881273 a001 4976784/90481*15127^(2/5) 2584000081904225 a001 28657/24476*64079^(16/23) 2584000081907985 a001 10946/271443*103682^(23/24) 2584000081911228 a001 39088169/710647*15127^(2/5) 2584000081915598 a001 831985/15126*15127^(2/5) 2584000081916236 a001 267914296/4870847*15127^(2/5) 2584000081916329 a001 233802911/4250681*15127^(2/5) 2584000081916343 a001 1836311903/33385282*15127^(2/5) 2584000081916344 a001 1602508992/29134601*15127^(2/5) 2584000081916345 a001 12586269025/228826127*15127^(2/5) 2584000081916345 a001 10983760033/199691526*15127^(2/5) 2584000081916345 a001 86267571272/1568397607*15127^(2/5) 2584000081916345 a001 75283811239/1368706081*15127^(2/5) 2584000081916345 a001 591286729879/10749957122*15127^(2/5) 2584000081916345 a001 12585437040/228811001*15127^(2/5) 2584000081916345 a001 4052739537881/73681302247*15127^(2/5) 2584000081916345 a001 3536736619241/64300051206*15127^(2/5) 2584000081916345 a001 6557470319842/119218851371*15127^(2/5) 2584000081916345 a001 2504730781961/45537549124*15127^(2/5) 2584000081916345 a001 956722026041/17393796001*15127^(2/5) 2584000081916345 a001 365435296162/6643838879*15127^(2/5) 2584000081916345 a001 139583862445/2537720636*15127^(2/5) 2584000081916345 a001 53316291173/969323029*15127^(2/5) 2584000081916345 a001 20365011074/370248451*15127^(2/5) 2584000081916345 a001 7778742049/141422324*15127^(2/5) 2584000081916346 a001 2971215073/54018521*15127^(2/5) 2584000081916351 a001 1134903170/20633239*15127^(2/5) 2584000081916386 a001 433494437/7881196*15127^(2/5) 2584000081916630 a001 165580141/3010349*15127^(2/5) 2584000081918299 a001 63245986/1149851*15127^(2/5) 2584000081929741 a001 24157817/439204*15127^(2/5) 2584000081937360 a001 3732588/6119*39603^(3/22) 2584000081944729 a001 75025/24476*103682^(7/12) 2584000081953071 a004 Fibonacci(21)*Lucas(24)/(1/2+sqrt(5)/2)^27 2584000081964620 a001 514229/39603*15127^(11/20) 2584000081975822 a001 17711/9349*9349^(15/19) 2584000081981013 a001 5702887/64079*15127^(7/20) 2584000082008165 a001 9227465/167761*15127^(2/5) 2584000082012257 a001 9227465/24476*39603^(2/11) 2584000082024854 a001 10946/167761*103682^(11/12) 2584000082087123 a001 5702887/24476*39603^(5/22) 2584000082162069 a001 1762289/12238*39603^(3/11) 2584000082236806 a001 2178309/24476*39603^(7/22) 2584000082240634 a001 1762289/51841*15127^(9/20) 2584000082268551 a001 10946/64079*167761^(4/5) 2584000082277318 a001 39088169/24476*15127^(1/20) 2584000082312089 a001 1346269/24476*39603^(4/11) 2584000082328648 a001 102334155/64079*5778^(1/18) 2584000082328886 a001 5473/12238*24476^(6/7) 2584000082341999 a001 10946/64079*20633239^(4/7) 2584000082342002 a001 10946/64079*2537720636^(4/9) 2584000082342002 a001 10946/64079*(1/2+1/2*5^(1/2))^20 2584000082342002 a001 10946/64079*23725150497407^(5/16) 2584000082342002 a001 10946/64079*505019158607^(5/14) 2584000082342002 a001 10946/64079*73681302247^(5/13) 2584000082342002 a001 10946/64079*28143753123^(2/5) 2584000082342002 a001 10946/64079*10749957122^(5/12) 2584000082342002 a001 10946/64079*4106118243^(10/23) 2584000082342002 a001 10946/64079*1568397607^(5/11) 2584000082342002 a001 10946/64079*599074578^(10/21) 2584000082342002 a001 28657/24476*(1/2+1/2*5^(1/2))^16 2584000082342002 a001 28657/24476*23725150497407^(1/4) 2584000082342002 a001 28657/24476*73681302247^(4/13) 2584000082342002 a001 28657/24476*10749957122^(1/3) 2584000082342002 a001 28657/24476*4106118243^(8/23) 2584000082342002 a001 28657/24476*1568397607^(4/11) 2584000082342002 a001 28657/24476*599074578^(8/21) 2584000082342002 a001 10946/64079*228826127^(1/2) 2584000082342002 a001 28657/24476*228826127^(2/5) 2584000082342003 a001 28657/24476*87403803^(8/19) 2584000082342003 a001 10946/64079*87403803^(10/19) 2584000082342003 a001 28657/24476*33385282^(4/9) 2584000082342004 a001 10946/64079*33385282^(5/9) 2584000082342010 a001 28657/24476*12752043^(8/17) 2584000082342012 a001 10946/64079*12752043^(10/17) 2584000082342057 a001 28657/24476*4870847^(1/2) 2584000082342070 a001 10946/64079*4870847^(5/8) 2584000082342401 a001 28657/24476*1860498^(8/15) 2584000082342500 a001 10946/64079*1860498^(2/3) 2584000082344926 a001 28657/24476*710647^(4/7) 2584000082345657 a001 10946/64079*710647^(5/7) 2584000082363584 a001 28657/24476*271443^(8/13) 2584000082368979 a001 10946/64079*271443^(10/13) 2584000082377072 a001 313679522/121393 2584000082385945 a001 208010/6119*39603^(9/22) 2584000082445902 a001 9227465/271443*15127^(9/20) 2584000082463534 a001 514229/24476*39603^(5/11) 2584000082475850 a001 24157817/710647*15127^(9/20) 2584000082480219 a001 31622993/930249*15127^(9/20) 2584000082480857 a001 165580141/4870847*15127^(9/20) 2584000082480950 a001 433494437/12752043*15127^(9/20) 2584000082480963 a001 567451585/16692641*15127^(9/20) 2584000082480965 a001 2971215073/87403803*15127^(9/20) 2584000082480966 a001 7778742049/228826127*15127^(9/20) 2584000082480966 a001 10182505537/299537289*15127^(9/20) 2584000082480966 a001 53316291173/1568397607*15127^(9/20) 2584000082480966 a001 139583862445/4106118243*15127^(9/20) 2584000082480966 a001 182717648081/5374978561*15127^(9/20) 2584000082480966 a001 956722026041/28143753123*15127^(9/20) 2584000082480966 a001 2504730781961/73681302247*15127^(9/20) 2584000082480966 a001 3278735159921/96450076809*15127^(9/20) 2584000082480966 a001 10610209857723/312119004989*15127^(9/20) 2584000082480966 a001 4052739537881/119218851371*15127^(9/20) 2584000082480966 a001 387002188980/11384387281*15127^(9/20) 2584000082480966 a001 591286729879/17393796001*15127^(9/20) 2584000082480966 a001 225851433717/6643838879*15127^(9/20) 2584000082480966 a001 1135099622/33391061*15127^(9/20) 2584000082480966 a001 32951280099/969323029*15127^(9/20) 2584000082480966 a001 12586269025/370248451*15127^(9/20) 2584000082480966 a001 1201881744/35355581*15127^(9/20) 2584000082480967 a001 1836311903/54018521*15127^(9/20) 2584000082480972 a001 701408733/20633239*15127^(9/20) 2584000082481007 a001 66978574/1970299*15127^(9/20) 2584000082481251 a001 102334155/3010349*15127^(9/20) 2584000082482920 a001 39088169/1149851*15127^(9/20) 2584000082494359 a001 196452/5779*15127^(9/20) 2584000082502251 a001 28657/24476*103682^(2/3) 2584000082522170 a001 105937/13201*15127^(3/5) 2584000082531352 a001 10959/844*39603^(1/2) 2584000082542313 a001 10946/64079*103682^(5/6) 2584000082545691 a001 3524578/64079*15127^(2/5) 2584000082572764 a001 5702887/167761*15127^(9/20) 2584000082595648 a001 11592/6119*39603^(15/22) 2584000082624752 a001 98209/12238*39603^(6/11) 2584000082651175 a001 121393/24476*39603^(13/22) 2584000082805105 a001 46347/2206*15127^(1/2) 2584000082841940 a001 24157817/24476*15127^(1/10) 2584000082852947 a001 75025/24476*39603^(7/11) 2584000083010501 a001 5702887/271443*15127^(1/2) 2584000083040468 a001 14930352/710647*15127^(1/2) 2584000083044840 a001 39088169/1860498*15127^(1/2) 2584000083044978 a001 5473/51841*39603^(21/22) 2584000083045478 a001 102334155/4870847*15127^(1/2) 2584000083045571 a001 267914296/12752043*15127^(1/2) 2584000083045584 a001 701408733/33385282*15127^(1/2) 2584000083045586 a001 1836311903/87403803*15127^(1/2) 2584000083045586 a001 102287808/4868641*15127^(1/2) 2584000083045587 a001 12586269025/599074578*15127^(1/2) 2584000083045587 a001 32951280099/1568397607*15127^(1/2) 2584000083045587 a001 86267571272/4106118243*15127^(1/2) 2584000083045587 a001 225851433717/10749957122*15127^(1/2) 2584000083045587 a001 591286729879/28143753123*15127^(1/2) 2584000083045587 a001 1548008755920/73681302247*15127^(1/2) 2584000083045587 a001 4052739537881/192900153618*15127^(1/2) 2584000083045587 a001 225749145909/10745088481*15127^(1/2) 2584000083045587 a001 6557470319842/312119004989*15127^(1/2) 2584000083045587 a001 2504730781961/119218851371*15127^(1/2) 2584000083045587 a001 956722026041/45537549124*15127^(1/2) 2584000083045587 a001 365435296162/17393796001*15127^(1/2) 2584000083045587 a001 139583862445/6643838879*15127^(1/2) 2584000083045587 a001 53316291173/2537720636*15127^(1/2) 2584000083045587 a001 20365011074/969323029*15127^(1/2) 2584000083045587 a001 7778742049/370248451*15127^(1/2) 2584000083045587 a001 2971215073/141422324*15127^(1/2) 2584000083045587 a001 1134903170/54018521*15127^(1/2) 2584000083045593 a001 433494437/20633239*15127^(1/2) 2584000083045628 a001 165580141/7881196*15127^(1/2) 2584000083045872 a001 63245986/3010349*15127^(1/2) 2584000083047542 a001 24157817/1149851*15127^(1/2) 2584000083058988 a001 9227465/439204*15127^(1/2) 2584000083105303 a001 196418/39603*15127^(13/20) 2584000083110162 a001 2178309/64079*15127^(9/20) 2584000083123997 a001 9227465/9349*3571^(2/17) 2584000083137442 a001 3524578/167761*15127^(1/2) 2584000083306807 a001 5702887/15127*5778^(2/9) 2584000083360239 a004 Fibonacci(21)*Lucas(22)/(1/2+sqrt(5)/2)^25 2584000083370119 a001 1346269/103682*15127^(11/20) 2584000083406558 a001 3732588/6119*15127^(3/20) 2584000083540214 a001 28657/24476*39603^(8/11) 2584000083575179 a001 3524578/271443*15127^(11/20) 2584000083605097 a001 9227465/710647*15127^(11/20) 2584000083609462 a001 24157817/1860498*15127^(11/20) 2584000083610099 a001 63245986/4870847*15127^(11/20) 2584000083610192 a001 165580141/12752043*15127^(11/20) 2584000083610205 a001 433494437/33385282*15127^(11/20) 2584000083610207 a001 1134903170/87403803*15127^(11/20) 2584000083610207 a001 2971215073/228826127*15127^(11/20) 2584000083610207 a001 7778742049/599074578*15127^(11/20) 2584000083610207 a001 20365011074/1568397607*15127^(11/20) 2584000083610207 a001 53316291173/4106118243*15127^(11/20) 2584000083610207 a001 139583862445/10749957122*15127^(11/20) 2584000083610207 a001 365435296162/28143753123*15127^(11/20) 2584000083610207 a001 956722026041/73681302247*15127^(11/20) 2584000083610207 a001 2504730781961/192900153618*15127^(11/20) 2584000083610207 a001 10610209857723/817138163596*15127^(11/20) 2584000083610207 a001 4052739537881/312119004989*15127^(11/20) 2584000083610207 a001 1548008755920/119218851371*15127^(11/20) 2584000083610207 a001 591286729879/45537549124*15127^(11/20) 2584000083610207 a001 7787980473/599786069*15127^(11/20) 2584000083610207 a001 86267571272/6643838879*15127^(11/20) 2584000083610207 a001 32951280099/2537720636*15127^(11/20) 2584000083610207 a001 12586269025/969323029*15127^(11/20) 2584000083610207 a001 4807526976/370248451*15127^(11/20) 2584000083610208 a001 1836311903/141422324*15127^(11/20) 2584000083610208 a001 701408733/54018521*15127^(11/20) 2584000083610213 a001 9238424/711491*15127^(11/20) 2584000083610249 a001 102334155/7881196*15127^(11/20) 2584000083610492 a001 39088169/3010349*15127^(11/20) 2584000083612159 a001 14930352/1149851*15127^(11/20) 2584000083621459 a001 121393/39603*15127^(7/10) 2584000083623587 a001 5702887/439204*15127^(11/20) 2584000083675177 a001 1346269/64079*15127^(1/2) 2584000083701913 a001 2178309/167761*15127^(11/20) 2584000083839767 a001 10946/64079*39603^(10/11) 2584000083933709 a001 416020/51841*15127^(3/5) 2584000083971187 a001 9227465/24476*15127^(1/5) 2584000084139649 a001 726103/90481*15127^(3/5) 2584000084169696 a001 5702887/710647*15127^(3/5) 2584000084174079 a001 829464/103361*15127^(3/5) 2584000084174719 a001 39088169/4870847*15127^(3/5) 2584000084174812 a001 34111385/4250681*15127^(3/5) 2584000084174826 a001 133957148/16692641*15127^(3/5) 2584000084174828 a001 233802911/29134601*15127^(3/5) 2584000084174828 a001 1836311903/228826127*15127^(3/5) 2584000084174828 a001 267084832/33281921*15127^(3/5) 2584000084174828 a001 12586269025/1568397607*15127^(3/5) 2584000084174828 a001 10983760033/1368706081*15127^(3/5) 2584000084174828 a001 43133785636/5374978561*15127^(3/5) 2584000084174828 a001 75283811239/9381251041*15127^(3/5) 2584000084174828 a001 591286729879/73681302247*15127^(3/5) 2584000084174828 a001 86000486440/10716675201*15127^(3/5) 2584000084174828 a001 4052739537881/505019158607*15127^(3/5) 2584000084174828 a001 3536736619241/440719107401*15127^(3/5) 2584000084174828 a001 3278735159921/408569081798*15127^(3/5) 2584000084174828 a001 2504730781961/312119004989*15127^(3/5) 2584000084174828 a001 956722026041/119218851371*15127^(3/5) 2584000084174828 a001 182717648081/22768774562*15127^(3/5) 2584000084174828 a001 139583862445/17393796001*15127^(3/5) 2584000084174828 a001 53316291173/6643838879*15127^(3/5) 2584000084174828 a001 10182505537/1268860318*15127^(3/5) 2584000084174828 a001 7778742049/969323029*15127^(3/5) 2584000084174828 a001 2971215073/370248451*15127^(3/5) 2584000084174828 a001 567451585/70711162*15127^(3/5) 2584000084174829 a001 433494437/54018521*15127^(3/5) 2584000084174834 a001 165580141/20633239*15127^(3/5) 2584000084174870 a001 31622993/3940598*15127^(3/5) 2584000084175114 a001 24157817/3010349*15127^(3/5) 2584000084176789 a001 9227465/1149851*15127^(3/5) 2584000084188265 a001 1762289/219602*15127^(3/5) 2584000084238766 a001 832040/64079*15127^(11/20) 2584000084266928 a001 1346269/167761*15127^(3/5) 2584000084267470 a001 17711/39603*15127^(9/10) 2584000084312964 a001 75025/39603*15127^(3/4) 2584000084351767 a001 39088169/39603*5778^(1/9) 2584000084501030 a001 514229/103682*15127^(13/20) 2584000084535786 a001 5702887/24476*15127^(1/4) 2584000084545397 a001 15456/13201*15127^(4/5) 2584000084704664 a001 1346269/271443*15127^(13/20) 2584000084734374 a001 3524578/710647*15127^(13/20) 2584000084738709 a001 9227465/1860498*15127^(13/20) 2584000084739341 a001 24157817/4870847*15127^(13/20) 2584000084739433 a001 63245986/12752043*15127^(13/20) 2584000084739447 a001 165580141/33385282*15127^(13/20) 2584000084739449 a001 433494437/87403803*15127^(13/20) 2584000084739449 a001 1134903170/228826127*15127^(13/20) 2584000084739449 a001 2971215073/599074578*15127^(13/20) 2584000084739449 a001 7778742049/1568397607*15127^(13/20) 2584000084739449 a001 20365011074/4106118243*15127^(13/20) 2584000084739449 a001 53316291173/10749957122*15127^(13/20) 2584000084739449 a001 139583862445/28143753123*15127^(13/20) 2584000084739449 a001 365435296162/73681302247*15127^(13/20) 2584000084739449 a001 956722026041/192900153618*15127^(13/20) 2584000084739449 a001 2504730781961/505019158607*15127^(13/20) 2584000084739449 a001 10610209857723/2139295485799*15127^(13/20) 2584000084739449 a001 140728068720/28374454999*15127^(13/20) 2584000084739449 a001 591286729879/119218851371*15127^(13/20) 2584000084739449 a001 225851433717/45537549124*15127^(13/20) 2584000084739449 a001 86267571272/17393796001*15127^(13/20) 2584000084739449 a001 32951280099/6643838879*15127^(13/20) 2584000084739449 a001 1144206275/230701876*15127^(13/20) 2584000084739449 a001 4807526976/969323029*15127^(13/20) 2584000084739449 a001 1836311903/370248451*15127^(13/20) 2584000084739449 a001 701408733/141422324*15127^(13/20) 2584000084739450 a001 267914296/54018521*15127^(13/20) 2584000084739455 a001 9303105/1875749*15127^(13/20) 2584000084739490 a001 39088169/7881196*15127^(13/20) 2584000084739732 a001 14930352/3010349*15127^(13/20) 2584000084741388 a001 5702887/1149851*15127^(13/20) 2584000084752736 a001 2178309/439204*15127^(13/20) 2584000084806087 a001 514229/64079*15127^(3/5) 2584000084830517 a001 75640/15251*15127^(13/20) 2584000085058580 a001 317811/103682*15127^(7/10) 2584000085100464 a001 1762289/12238*15127^(3/10) 2584000085268254 a001 832040/271443*15127^(7/10) 2584000085298844 a001 311187/101521*15127^(7/10) 2584000085303308 a001 5702887/1860498*15127^(7/10) 2584000085303959 a001 14930352/4870847*15127^(7/10) 2584000085304054 a001 39088169/12752043*15127^(7/10) 2584000085304068 a001 14619165/4769326*15127^(7/10) 2584000085304070 a001 267914296/87403803*15127^(7/10) 2584000085304070 a001 701408733/228826127*15127^(7/10) 2584000085304070 a001 1836311903/599074578*15127^(7/10) 2584000085304070 a001 686789568/224056801*15127^(7/10) 2584000085304070 a001 12586269025/4106118243*15127^(7/10) 2584000085304070 a001 32951280099/10749957122*15127^(7/10) 2584000085304070 a001 86267571272/28143753123*15127^(7/10) 2584000085304070 a001 32264490531/10525900321*15127^(7/10) 2584000085304070 a001 591286729879/192900153618*15127^(7/10) 2584000085304070 a001 1515744265389/494493258286*15127^(7/10) 2584000085304070 a001 2504730781961/817138163596*15127^(7/10) 2584000085304070 a001 956722026041/312119004989*15127^(7/10) 2584000085304070 a001 365435296162/119218851371*15127^(7/10) 2584000085304070 a001 139583862445/45537549124*15127^(7/10) 2584000085304070 a001 53316291173/17393796001*15127^(7/10) 2584000085304070 a001 20365011074/6643838879*15127^(7/10) 2584000085304070 a001 7778742049/2537720636*15127^(7/10) 2584000085304070 a001 2971215073/969323029*15127^(7/10) 2584000085304070 a001 1134903170/370248451*15127^(7/10) 2584000085304070 a001 433494437/141422324*15127^(7/10) 2584000085304071 a001 165580141/54018521*15127^(7/10) 2584000085304076 a001 63245986/20633239*15127^(7/10) 2584000085304112 a001 24157817/7881196*15127^(7/10) 2584000085304361 a001 9227465/3010349*15127^(7/10) 2584000085306066 a001 3524578/1149851*15127^(7/10) 2584000085317751 a001 1346269/439204*15127^(7/10) 2584000085363637 a001 317811/64079*15127^(13/20) 2584000085397839 a001 514229/167761*15127^(7/10) 2584000085533518 a001 5473/12238*64079^(18/23) 2584000085641713 a001 98209/51841*15127^(3/4) 2584000085664935 a001 2178309/24476*15127^(7/20) 2584000085758936 a001 102334155/103682*5778^(1/9) 2584000085808665 a001 28657/9349*9349^(14/19) 2584000085835575 a001 514229/271443*15127^(3/4) 2584000085863859 a001 1346269/710647*15127^(3/4) 2584000085867986 a001 1762289/930249*15127^(3/4) 2584000085868588 a001 9227465/4870847*15127^(3/4) 2584000085868676 a001 24157817/12752043*15127^(3/4) 2584000085868689 a001 31622993/16692641*15127^(3/4) 2584000085868691 a001 165580141/87403803*15127^(3/4) 2584000085868691 a001 433494437/228826127*15127^(3/4) 2584000085868691 a001 567451585/299537289*15127^(3/4) 2584000085868691 a001 2971215073/1568397607*15127^(3/4) 2584000085868691 a001 7778742049/4106118243*15127^(3/4) 2584000085868691 a001 10182505537/5374978561*15127^(3/4) 2584000085868691 a001 53316291173/28143753123*15127^(3/4) 2584000085868691 a001 139583862445/73681302247*15127^(3/4) 2584000085868691 a001 182717648081/96450076809*15127^(3/4) 2584000085868691 a001 956722026041/505019158607*15127^(3/4) 2584000085868691 a001 10610209857723/5600748293801*15127^(3/4) 2584000085868691 a001 591286729879/312119004989*15127^(3/4) 2584000085868691 a001 225851433717/119218851371*15127^(3/4) 2584000085868691 a001 21566892818/11384387281*15127^(3/4) 2584000085868691 a001 32951280099/17393796001*15127^(3/4) 2584000085868691 a001 12586269025/6643838879*15127^(3/4) 2584000085868691 a001 1201881744/634430159*15127^(3/4) 2584000085868691 a001 1836311903/969323029*15127^(3/4) 2584000085868691 a001 701408733/370248451*15127^(3/4) 2584000085868691 a001 66978574/35355581*15127^(3/4) 2584000085868692 a001 102334155/54018521*15127^(3/4) 2584000085868697 a001 39088169/20633239*15127^(3/4) 2584000085868730 a001 3732588/1970299*15127^(3/4) 2584000085868960 a001 5702887/3010349*15127^(3/4) 2584000085870536 a001 2178309/1149851*15127^(3/4) 2584000085881340 a001 208010/109801*15127^(3/4) 2584000085946770 a001 196418/64079*15127^(7/10) 2584000085955389 a001 317811/167761*15127^(3/4) 2584000085964239 a001 267914296/271443*5778^(1/9) 2584000085979696 a001 28657/39603*15127^(17/20) 2584000085994192 a001 701408733/710647*5778^(1/9) 2584000085998562 a001 1836311903/1860498*5778^(1/9) 2584000085999200 a001 4807526976/4870847*5778^(1/9) 2584000085999293 a001 12586269025/12752043*5778^(1/9) 2584000085999306 a001 32951280099/33385282*5778^(1/9) 2584000085999308 a001 86267571272/87403803*5778^(1/9) 2584000085999309 a001 225851433717/228826127*5778^(1/9) 2584000085999309 a001 591286729879/599074578*5778^(1/9) 2584000085999309 a001 1548008755920/1568397607*5778^(1/9) 2584000085999309 a001 4052739537881/4106118243*5778^(1/9) 2584000085999309 a001 4807525989/4870846*5778^(1/9) 2584000085999309 a001 6557470319842/6643838879*5778^(1/9) 2584000085999309 a001 2504730781961/2537720636*5778^(1/9) 2584000085999309 a001 956722026041/969323029*5778^(1/9) 2584000085999309 a001 365435296162/370248451*5778^(1/9) 2584000085999309 a001 139583862445/141422324*5778^(1/9) 2584000085999310 a001 53316291173/54018521*5778^(1/9) 2584000085999315 a001 20365011074/20633239*5778^(1/9) 2584000085999350 a001 7778742049/7881196*5778^(1/9) 2584000085999594 a001 2971215073/3010349*5778^(1/9) 2584000086001263 a001 1134903170/1149851*5778^(1/9) 2584000086012663 a001 39088169/24476*5778^(1/18) 2584000086012704 a001 433494437/439204*5778^(1/9) 2584000086017087 a001 5473/12238*439204^(2/3) 2584000086025994 a001 5473/12238*7881196^(6/11) 2584000086026017 a001 5473/12238*141422324^(6/13) 2584000086026017 a001 5473/12238*2537720636^(2/5) 2584000086026017 a001 5473/12238*45537549124^(6/17) 2584000086026017 a001 5473/12238*14662949395604^(2/7) 2584000086026017 a001 5473/12238*(1/2+1/2*5^(1/2))^18 2584000086026017 a001 5473/12238*192900153618^(1/3) 2584000086026017 a001 5473/12238*10749957122^(3/8) 2584000086026017 a001 5473/12238*4106118243^(9/23) 2584000086026017 a001 5473/12238*1568397607^(9/22) 2584000086026017 a001 5473/12238*599074578^(3/7) 2584000086026017 a001 5473/12238*228826127^(9/20) 2584000086026017 a001 5473/12238*87403803^(9/19) 2584000086026018 a001 5473/12238*33385282^(1/2) 2584000086026025 a001 5473/12238*12752043^(9/17) 2584000086026078 a001 5473/12238*4870847^(9/16) 2584000086026465 a001 5473/12238*1860498^(3/5) 2584000086029306 a001 5473/12238*710647^(9/14) 2584000086050296 a001 5473/12238*271443^(9/13) 2584000086091123 a001 165580141/167761*5778^(1/9) 2584000086157869 a001 121393/103682*15127^(4/5) 2584000086206297 a001 5473/12238*103682^(3/4) 2584000086229950 a001 1346269/24476*15127^(2/5) 2584000086266390 a001 29953729/11592 2584000086380687 a001 10946/9349*9349^(16/19) 2584000086393125 a001 105937/90481*15127^(4/5) 2584000086427449 a001 832040/710647*15127^(4/5) 2584000086432456 a001 726103/620166*15127^(4/5) 2584000086433187 a001 5702887/4870847*15127^(4/5) 2584000086433293 a001 4976784/4250681*15127^(4/5) 2584000086433309 a001 39088169/33385282*15127^(4/5) 2584000086433311 a001 34111385/29134601*15127^(4/5) 2584000086433312 a001 267914296/228826127*15127^(4/5) 2584000086433312 a001 233802911/199691526*15127^(4/5) 2584000086433312 a001 1836311903/1568397607*15127^(4/5) 2584000086433312 a001 1602508992/1368706081*15127^(4/5) 2584000086433312 a001 12586269025/10749957122*15127^(4/5) 2584000086433312 a001 10983760033/9381251041*15127^(4/5) 2584000086433312 a001 86267571272/73681302247*15127^(4/5) 2584000086433312 a001 75283811239/64300051206*15127^(4/5) 2584000086433312 a001 2504730781961/2139295485799*15127^(4/5) 2584000086433312 a001 365435296162/312119004989*15127^(4/5) 2584000086433312 a001 139583862445/119218851371*15127^(4/5) 2584000086433312 a001 53316291173/45537549124*15127^(4/5) 2584000086433312 a001 20365011074/17393796001*15127^(4/5) 2584000086433312 a001 7778742049/6643838879*15127^(4/5) 2584000086433312 a001 2971215073/2537720636*15127^(4/5) 2584000086433312 a001 1134903170/969323029*15127^(4/5) 2584000086433312 a001 433494437/370248451*15127^(4/5) 2584000086433312 a001 165580141/141422324*15127^(4/5) 2584000086433313 a001 63245986/54018521*15127^(4/5) 2584000086433319 a001 24157817/20633239*15127^(4/5) 2584000086433359 a001 9227465/7881196*15127^(4/5) 2584000086433638 a001 3524578/3010349*15127^(4/5) 2584000086435551 a001 1346269/1149851*15127^(4/5) 2584000086448662 a001 514229/439204*15127^(4/5) 2584000086462926 a001 121393/64079*15127^(3/4) 2584000086494983 a001 46368/9349*9349^(13/19) 2584000086538522 a001 196418/167761*15127^(4/5) 2584000086628614 a001 63245986/64079*5778^(1/9) 2584000086793539 a001 208010/6119*15127^(9/20) 2584000086849374 a001 75025/103682*15127^(17/20) 2584000086976258 a001 196418/271443*15127^(17/20) 2584000086994770 a001 514229/710647*15127^(17/20) 2584000086997471 a001 1346269/1860498*15127^(17/20) 2584000086997865 a001 3524578/4870847*15127^(17/20) 2584000086997923 a001 9227465/12752043*15127^(17/20) 2584000086997931 a001 24157817/33385282*15127^(17/20) 2584000086997932 a001 63245986/87403803*15127^(17/20) 2584000086997933 a001 165580141/228826127*15127^(17/20) 2584000086997933 a001 433494437/599074578*15127^(17/20) 2584000086997933 a001 1134903170/1568397607*15127^(17/20) 2584000086997933 a001 2971215073/4106118243*15127^(17/20) 2584000086997933 a001 7778742049/10749957122*15127^(17/20) 2584000086997933 a001 20365011074/28143753123*15127^(17/20) 2584000086997933 a001 53316291173/73681302247*15127^(17/20) 2584000086997933 a001 139583862445/192900153618*15127^(17/20) 2584000086997933 a001 10610209857723/14662949395604*15127^(17/20) 2584000086997933 a001 591286729879/817138163596*15127^(17/20) 2584000086997933 a001 225851433717/312119004989*15127^(17/20) 2584000086997933 a001 86267571272/119218851371*15127^(17/20) 2584000086997933 a001 32951280099/45537549124*15127^(17/20) 2584000086997933 a001 12586269025/17393796001*15127^(17/20) 2584000086997933 a001 4807526976/6643838879*15127^(17/20) 2584000086997933 a001 1836311903/2537720636*15127^(17/20) 2584000086997933 a001 701408733/969323029*15127^(17/20) 2584000086997933 a001 267914296/370248451*15127^(17/20) 2584000086997933 a001 102334155/141422324*15127^(17/20) 2584000086997933 a001 39088169/54018521*15127^(17/20) 2584000086997936 a001 14930352/20633239*15127^(17/20) 2584000086997958 a001 5702887/7881196*15127^(17/20) 2584000086998109 a001 2178309/3010349*15127^(17/20) 2584000086999140 a001 832040/1149851*15127^(17/20) 2584000087006211 a001 317811/439204*15127^(17/20) 2584000087044254 a004 Fibonacci(22)*Lucas(20)/(1/2+sqrt(5)/2)^24 2584000087054677 a001 121393/167761*15127^(17/20) 2584000087081807 a001 23184/51841*15127^(9/10) 2584000087108938 a001 17711/64079*15127^(19/20) 2584000087154431 a001 75025/64079*15127^(4/5) 2584000087360860 a001 514229/24476*15127^(1/2) 2584000087374006 a001 5473/12238*39603^(9/11) 2584000087386864 a001 46368/64079*15127^(17/20) 2584000087492413 a001 121393/271443*15127^(9/10) 2584000087552320 a001 317811/710647*15127^(9/10) 2584000087561060 a001 416020/930249*15127^(9/10) 2584000087562336 a001 2178309/4870847*15127^(9/10) 2584000087562522 a001 5702887/12752043*15127^(9/10) 2584000087562549 a001 7465176/16692641*15127^(9/10) 2584000087562553 a001 39088169/87403803*15127^(9/10) 2584000087562553 a001 102334155/228826127*15127^(9/10) 2584000087562553 a001 133957148/299537289*15127^(9/10) 2584000087562553 a001 701408733/1568397607*15127^(9/10) 2584000087562553 a001 1836311903/4106118243*15127^(9/10) 2584000087562553 a001 2403763488/5374978561*15127^(9/10) 2584000087562553 a001 12586269025/28143753123*15127^(9/10) 2584000087562553 a001 32951280099/73681302247*15127^(9/10) 2584000087562553 a001 43133785636/96450076809*15127^(9/10) 2584000087562553 a001 225851433717/505019158607*15127^(9/10) 2584000087562553 a001 591286729879/1322157322203*15127^(9/10) 2584000087562553 a001 10610209857723/23725150497407*15127^(9/10) 2584000087562553 a001 139583862445/312119004989*15127^(9/10) 2584000087562553 a001 53316291173/119218851371*15127^(9/10) 2584000087562553 a001 10182505537/22768774562*15127^(9/10) 2584000087562553 a001 7778742049/17393796001*15127^(9/10) 2584000087562553 a001 2971215073/6643838879*15127^(9/10) 2584000087562553 a001 567451585/1268860318*15127^(9/10) 2584000087562553 a001 433494437/969323029*15127^(9/10) 2584000087562553 a001 165580141/370248451*15127^(9/10) 2584000087562554 a001 31622993/70711162*15127^(9/10) 2584000087562555 a001 24157817/54018521*15127^(9/10) 2584000087562566 a001 9227465/20633239*15127^(9/10) 2584000087562637 a001 1762289/3940598*15127^(9/10) 2584000087563124 a001 1346269/3010349*15127^(9/10) 2584000087566462 a001 514229/1149851*15127^(9/10) 2584000087589344 a001 98209/219602*15127^(9/10) 2584000087606830 a001 3524578/15127*5778^(5/18) 2584000087746182 a001 75025/167761*15127^(9/10) 2584000087918410 a001 10959/844*15127^(11/20) 2584000087978616 a001 46368/167761*15127^(19/20) 2584000088105500 a001 121393/439204*15127^(19/20) 2584000088124012 a001 317811/1149851*15127^(19/20) 2584000088126713 a001 832040/3010349*15127^(19/20) 2584000088127107 a001 2178309/7881196*15127^(19/20) 2584000088127164 a001 5702887/20633239*15127^(19/20) 2584000088127173 a001 14930352/54018521*15127^(19/20) 2584000088127174 a001 39088169/141422324*15127^(19/20) 2584000088127174 a001 102334155/370248451*15127^(19/20) 2584000088127174 a001 267914296/969323029*15127^(19/20) 2584000088127174 a001 701408733/2537720636*15127^(19/20) 2584000088127174 a001 1836311903/6643838879*15127^(19/20) 2584000088127174 a001 4807526976/17393796001*15127^(19/20) 2584000088127174 a001 12586269025/45537549124*15127^(19/20) 2584000088127174 a001 32951280099/119218851371*15127^(19/20) 2584000088127174 a001 86267571272/312119004989*15127^(19/20) 2584000088127174 a001 225851433717/817138163596*15127^(19/20) 2584000088127174 a001 139583862445/505019158607*15127^(19/20) 2584000088127174 a001 53316291173/192900153618*15127^(19/20) 2584000088127174 a001 20365011074/73681302247*15127^(19/20) 2584000088127174 a001 7778742049/28143753123*15127^(19/20) 2584000088127174 a001 2971215073/10749957122*15127^(19/20) 2584000088127174 a001 1134903170/4106118243*15127^(19/20) 2584000088127174 a001 433494437/1568397607*15127^(19/20) 2584000088127174 a001 165580141/599074578*15127^(19/20) 2584000088127174 a001 63245986/228826127*15127^(19/20) 2584000088127175 a001 24157817/87403803*15127^(19/20) 2584000088127178 a001 9227465/33385282*15127^(19/20) 2584000088127200 a001 3524578/12752043*15127^(19/20) 2584000088127350 a001 1346269/4870847*15127^(19/20) 2584000088128382 a001 514229/1860498*15127^(19/20) 2584000088135453 a001 196418/710647*15127^(19/20) 2584000088183919 a001 75025/271443*15127^(19/20) 2584000088383167 a001 75025/9349*9349^(12/19) 2584000088451422 a004 Fibonacci(24)*Lucas(20)/(1/2+sqrt(5)/2)^26 2584000088501543 a001 98209/12238*15127^(3/5) 2584000088516106 a001 28657/103682*15127^(19/20) 2584000088651734 a001 24157817/39603*5778^(1/6) 2584000088656725 a004 Fibonacci(26)*Lucas(20)/(1/2+sqrt(5)/2)^28 2584000088686678 a004 Fibonacci(28)*Lucas(20)/(1/2+sqrt(5)/2)^30 2584000088691049 a004 Fibonacci(30)*Lucas(20)/(1/2+sqrt(5)/2)^32 2584000088691686 a004 Fibonacci(32)*Lucas(20)/(1/2+sqrt(5)/2)^34 2584000088691779 a004 Fibonacci(34)*Lucas(20)/(1/2+sqrt(5)/2)^36 2584000088691793 a004 Fibonacci(36)*Lucas(20)/(1/2+sqrt(5)/2)^38 2584000088691795 a004 Fibonacci(38)*Lucas(20)/(1/2+sqrt(5)/2)^40 2584000088691795 a004 Fibonacci(40)*Lucas(20)/(1/2+sqrt(5)/2)^42 2584000088691795 a004 Fibonacci(42)*Lucas(20)/(1/2+sqrt(5)/2)^44 2584000088691795 a004 Fibonacci(44)*Lucas(20)/(1/2+sqrt(5)/2)^46 2584000088691795 a004 Fibonacci(46)*Lucas(20)/(1/2+sqrt(5)/2)^48 2584000088691795 a004 Fibonacci(48)*Lucas(20)/(1/2+sqrt(5)/2)^50 2584000088691795 a004 Fibonacci(50)*Lucas(20)/(1/2+sqrt(5)/2)^52 2584000088691795 a004 Fibonacci(52)*Lucas(20)/(1/2+sqrt(5)/2)^54 2584000088691795 a004 Fibonacci(54)*Lucas(20)/(1/2+sqrt(5)/2)^56 2584000088691795 a004 Fibonacci(56)*Lucas(20)/(1/2+sqrt(5)/2)^58 2584000088691795 a004 Fibonacci(58)*Lucas(20)/(1/2+sqrt(5)/2)^60 2584000088691795 a004 Fibonacci(60)*Lucas(20)/(1/2+sqrt(5)/2)^62 2584000088691795 a004 Fibonacci(62)*Lucas(20)/(1/2+sqrt(5)/2)^64 2584000088691795 a004 Fibonacci(64)*Lucas(20)/(1/2+sqrt(5)/2)^66 2584000088691795 a004 Fibonacci(66)*Lucas(20)/(1/2+sqrt(5)/2)^68 2584000088691795 a004 Fibonacci(68)*Lucas(20)/(1/2+sqrt(5)/2)^70 2584000088691795 a004 Fibonacci(70)*Lucas(20)/(1/2+sqrt(5)/2)^72 2584000088691795 a004 Fibonacci(72)*Lucas(20)/(1/2+sqrt(5)/2)^74 2584000088691795 a004 Fibonacci(74)*Lucas(20)/(1/2+sqrt(5)/2)^76 2584000088691795 a004 Fibonacci(76)*Lucas(20)/(1/2+sqrt(5)/2)^78 2584000088691795 a004 Fibonacci(78)*Lucas(20)/(1/2+sqrt(5)/2)^80 2584000088691795 a004 Fibonacci(80)*Lucas(20)/(1/2+sqrt(5)/2)^82 2584000088691795 a004 Fibonacci(82)*Lucas(20)/(1/2+sqrt(5)/2)^84 2584000088691795 a004 Fibonacci(84)*Lucas(20)/(1/2+sqrt(5)/2)^86 2584000088691795 a004 Fibonacci(86)*Lucas(20)/(1/2+sqrt(5)/2)^88 2584000088691795 a004 Fibonacci(88)*Lucas(20)/(1/2+sqrt(5)/2)^90 2584000088691795 a004 Fibonacci(90)*Lucas(20)/(1/2+sqrt(5)/2)^92 2584000088691795 a004 Fibonacci(92)*Lucas(20)/(1/2+sqrt(5)/2)^94 2584000088691795 a004 Fibonacci(94)*Lucas(20)/(1/2+sqrt(5)/2)^96 2584000088691795 a004 Fibonacci(96)*Lucas(20)/(1/2+sqrt(5)/2)^98 2584000088691795 a004 Fibonacci(98)*Lucas(20)/(1/2+sqrt(5)/2)^100 2584000088691795 a004 Fibonacci(97)*Lucas(20)/(1/2+sqrt(5)/2)^99 2584000088691795 a004 Fibonacci(95)*Lucas(20)/(1/2+sqrt(5)/2)^97 2584000088691795 a004 Fibonacci(93)*Lucas(20)/(1/2+sqrt(5)/2)^95 2584000088691795 a004 Fibonacci(91)*Lucas(20)/(1/2+sqrt(5)/2)^93 2584000088691795 a004 Fibonacci(89)*Lucas(20)/(1/2+sqrt(5)/2)^91 2584000088691795 a004 Fibonacci(87)*Lucas(20)/(1/2+sqrt(5)/2)^89 2584000088691795 a004 Fibonacci(85)*Lucas(20)/(1/2+sqrt(5)/2)^87 2584000088691795 a004 Fibonacci(83)*Lucas(20)/(1/2+sqrt(5)/2)^85 2584000088691795 a004 Fibonacci(81)*Lucas(20)/(1/2+sqrt(5)/2)^83 2584000088691795 a004 Fibonacci(79)*Lucas(20)/(1/2+sqrt(5)/2)^81 2584000088691795 a004 Fibonacci(77)*Lucas(20)/(1/2+sqrt(5)/2)^79 2584000088691795 a004 Fibonacci(75)*Lucas(20)/(1/2+sqrt(5)/2)^77 2584000088691795 a004 Fibonacci(73)*Lucas(20)/(1/2+sqrt(5)/2)^75 2584000088691795 a004 Fibonacci(71)*Lucas(20)/(1/2+sqrt(5)/2)^73 2584000088691795 a004 Fibonacci(69)*Lucas(20)/(1/2+sqrt(5)/2)^71 2584000088691795 a004 Fibonacci(67)*Lucas(20)/(1/2+sqrt(5)/2)^69 2584000088691795 a004 Fibonacci(65)*Lucas(20)/(1/2+sqrt(5)/2)^67 2584000088691795 a004 Fibonacci(63)*Lucas(20)/(1/2+sqrt(5)/2)^65 2584000088691795 a004 Fibonacci(61)*Lucas(20)/(1/2+sqrt(5)/2)^63 2584000088691795 a004 Fibonacci(59)*Lucas(20)/(1/2+sqrt(5)/2)^61 2584000088691795 a004 Fibonacci(57)*Lucas(20)/(1/2+sqrt(5)/2)^59 2584000088691795 a004 Fibonacci(55)*Lucas(20)/(1/2+sqrt(5)/2)^57 2584000088691795 a004 Fibonacci(53)*Lucas(20)/(1/2+sqrt(5)/2)^55 2584000088691795 a004 Fibonacci(51)*Lucas(20)/(1/2+sqrt(5)/2)^53 2584000088691795 a004 Fibonacci(49)*Lucas(20)/(1/2+sqrt(5)/2)^51 2584000088691795 a004 Fibonacci(47)*Lucas(20)/(1/2+sqrt(5)/2)^49 2584000088691795 a004 Fibonacci(45)*Lucas(20)/(1/2+sqrt(5)/2)^47 2584000088691795 a004 Fibonacci(43)*Lucas(20)/(1/2+sqrt(5)/2)^45 2584000088691795 a004 Fibonacci(41)*Lucas(20)/(1/2+sqrt(5)/2)^43 2584000088691795 a001 2/6765*(1/2+1/2*5^(1/2))^38 2584000088691795 a004 Fibonacci(39)*Lucas(20)/(1/2+sqrt(5)/2)^41 2584000088691796 a004 Fibonacci(37)*Lucas(20)/(1/2+sqrt(5)/2)^39 2584000088691801 a004 Fibonacci(35)*Lucas(20)/(1/2+sqrt(5)/2)^37 2584000088691837 a004 Fibonacci(33)*Lucas(20)/(1/2+sqrt(5)/2)^35 2584000088692080 a004 Fibonacci(31)*Lucas(20)/(1/2+sqrt(5)/2)^33 2584000088693750 a004 Fibonacci(29)*Lucas(20)/(1/2+sqrt(5)/2)^31 2584000088705191 a004 Fibonacci(27)*Lucas(20)/(1/2+sqrt(5)/2)^29 2584000088783609 a004 Fibonacci(25)*Lucas(20)/(1/2+sqrt(5)/2)^27 2584000088821163 a001 28657/64079*15127^(9/10) 2584000089017699 a001 121393/24476*15127^(13/20) 2584000089321100 a004 Fibonacci(23)*Lucas(20)/(1/2+sqrt(5)/2)^25 2584000089663711 a001 17711/24476*15127^(17/20) 2584000089709204 a001 75025/24476*15127^(7/10) 2584000089812279 a001 121393/9349*9349^(11/19) 2584000089941637 a001 11592/6119*15127^(3/4) 2584000089946280 a001 6765/3571*3571^(15/17) 2584000090058901 a001 31622993/51841*5778^(1/6) 2584000090223187 r005 Im(z^2+c),c=33/106+5/34*I,n=8 2584000090264204 a001 165580141/271443*5778^(1/6) 2584000090294158 a001 433494437/710647*5778^(1/6) 2584000090298528 a001 567451585/930249*5778^(1/6) 2584000090299165 a001 2971215073/4870847*5778^(1/6) 2584000090299258 a001 7778742049/12752043*5778^(1/6) 2584000090299272 a001 10182505537/16692641*5778^(1/6) 2584000090299274 a001 53316291173/87403803*5778^(1/6) 2584000090299274 a001 139583862445/228826127*5778^(1/6) 2584000090299274 a001 182717648081/299537289*5778^(1/6) 2584000090299274 a001 956722026041/1568397607*5778^(1/6) 2584000090299274 a001 2504730781961/4106118243*5778^(1/6) 2584000090299274 a001 3278735159921/5374978561*5778^(1/6) 2584000090299274 a001 10610209857723/17393796001*5778^(1/6) 2584000090299274 a001 4052739537881/6643838879*5778^(1/6) 2584000090299274 a001 1134903780/1860499*5778^(1/6) 2584000090299274 a001 591286729879/969323029*5778^(1/6) 2584000090299274 a001 225851433717/370248451*5778^(1/6) 2584000090299274 a001 21566892818/35355581*5778^(1/6) 2584000090299275 a001 32951280099/54018521*5778^(1/6) 2584000090299280 a001 1144206275/1875749*5778^(1/6) 2584000090299316 a001 1201881744/1970299*5778^(1/6) 2584000090299559 a001 1836311903/3010349*5778^(1/6) 2584000090301229 a001 701408733/1149851*5778^(1/6) 2584000090312629 a001 24157817/24476*5778^(1/9) 2584000090312670 a001 66978574/109801*5778^(1/6) 2584000090391089 a001 9303105/15251*5778^(1/6) 2584000090792952 a001 10946/39603*15127^(19/20) 2584000090928579 a001 39088169/64079*5778^(1/6) 2584000091357573 a001 28284465/10946 2584000091375936 a001 28657/24476*15127^(4/5) 2584000091416741 a001 196418/9349*9349^(10/19) 2584000091768365 a001 4181/15127*24476^(19/21) 2584000091906644 a001 311187/2161*5778^(1/3) 2584000092179158 a001 6765/9349*24476^(17/21) 2584000092951696 a001 4976784/13201*5778^(2/9) 2584000092954226 a001 317811/9349*9349^(9/19) 2584000093005115 a004 Fibonacci(21)*Lucas(20)/(1/2+sqrt(5)/2)^23 2584000094358866 a001 39088169/103682*5778^(2/9) 2584000094517293 a001 514229/9349*9349^(8/19) 2584000094564170 a001 34111385/90481*5778^(2/9) 2584000094594123 a001 267914296/710647*5778^(2/9) 2584000094598493 a001 233802911/620166*5778^(2/9) 2584000094599131 a001 1836311903/4870847*5778^(2/9) 2584000094599224 a001 1602508992/4250681*5778^(2/9) 2584000094599237 a001 12586269025/33385282*5778^(2/9) 2584000094599239 a001 10983760033/29134601*5778^(2/9) 2584000094599240 a001 86267571272/228826127*5778^(2/9) 2584000094599240 a001 267913919/710646*5778^(2/9) 2584000094599240 a001 591286729879/1568397607*5778^(2/9) 2584000094599240 a001 516002918640/1368706081*5778^(2/9) 2584000094599240 a001 4052739537881/10749957122*5778^(2/9) 2584000094599240 a001 3536736619241/9381251041*5778^(2/9) 2584000094599240 a001 6557470319842/17393796001*5778^(2/9) 2584000094599240 a001 2504730781961/6643838879*5778^(2/9) 2584000094599240 a001 956722026041/2537720636*5778^(2/9) 2584000094599240 a001 365435296162/969323029*5778^(2/9) 2584000094599240 a001 139583862445/370248451*5778^(2/9) 2584000094599240 a001 53316291173/141422324*5778^(2/9) 2584000094599241 a001 20365011074/54018521*5778^(2/9) 2584000094599246 a001 7778742049/20633239*5778^(2/9) 2584000094599281 a001 2971215073/7881196*5778^(2/9) 2584000094599525 a001 1134903170/3010349*5778^(2/9) 2584000094601194 a001 433494437/1149851*5778^(2/9) 2584000094612591 a001 3732588/6119*5778^(1/6) 2584000094612635 a001 165580141/439204*5778^(2/9) 2584000094691054 a001 63245986/167761*5778^(2/9) 2584000094722953 a005 (1/cos(18/211*Pi))^1483 2584000094850182 a001 3524578/3571*1364^(2/15) 2584000095043648 a001 14930352/9349*3571^(1/17) 2584000095151032 a001 4181/15127*64079^(19/23) 2584000095205755 a001 6765/9349*64079^(17/23) 2584000095228545 a001 24157817/64079*5778^(2/9) 2584000095670893 a001 4181/15127*817138163596^(1/3) 2584000095670893 a001 4181/15127*(1/2+1/2*5^(1/2))^19 2584000095670893 a001 4181/15127*87403803^(1/2) 2584000095670893 a001 6765/9349*45537549124^(1/3) 2584000095670893 a001 6765/9349*(1/2+1/2*5^(1/2))^17 2584000095670901 a001 6765/9349*12752043^(1/2) 2584000095841157 a001 6765/9349*103682^(17/24) 2584000095861188 a001 4181/15127*103682^(19/24) 2584000096070589 a001 832040/9349*9349^(7/19) 2584000096189193 a001 5473/12238*15127^(9/10) 2584000096207004 a001 1346269/15127*5778^(7/18) 2584000096943993 a001 6765/9349*39603^(17/22) 2584000097093769 a001 4181/15127*39603^(19/22) 2584000097251670 a001 9227465/39603*5778^(5/18) 2584000097627617 a001 1346269/9349*9349^(6/19) 2584000098045034 r009 Im(z^3+c),c=-59/106+12/19*I,n=57 2584000098658833 a001 24157817/103682*5778^(5/18) 2584000098864135 a001 63245986/271443*5778^(5/18) 2584000098894088 a001 165580141/710647*5778^(5/18) 2584000098898459 a001 433494437/1860498*5778^(5/18) 2584000098899096 a001 1134903170/4870847*5778^(5/18) 2584000098899189 a001 2971215073/12752043*5778^(5/18) 2584000098899203 a001 7778742049/33385282*5778^(5/18) 2584000098899205 a001 20365011074/87403803*5778^(5/18) 2584000098899205 a001 53316291173/228826127*5778^(5/18) 2584000098899205 a001 139583862445/599074578*5778^(5/18) 2584000098899205 a001 365435296162/1568397607*5778^(5/18) 2584000098899205 a001 956722026041/4106118243*5778^(5/18) 2584000098899205 a001 2504730781961/10749957122*5778^(5/18) 2584000098899205 a001 6557470319842/28143753123*5778^(5/18) 2584000098899205 a001 10610209857723/45537549124*5778^(5/18) 2584000098899205 a001 4052739537881/17393796001*5778^(5/18) 2584000098899205 a001 1548008755920/6643838879*5778^(5/18) 2584000098899205 a001 591286729879/2537720636*5778^(5/18) 2584000098899205 a001 225851433717/969323029*5778^(5/18) 2584000098899205 a001 86267571272/370248451*5778^(5/18) 2584000098899205 a001 63246219/271444*5778^(5/18) 2584000098899206 a001 12586269025/54018521*5778^(5/18) 2584000098899211 a001 4807526976/20633239*5778^(5/18) 2584000098899247 a001 1836311903/7881196*5778^(5/18) 2584000098899490 a001 701408733/3010349*5778^(5/18) 2584000098901159 a001 267914296/1149851*5778^(5/18) 2584000098912565 a001 9227465/24476*5778^(2/9) 2584000098912601 a001 102334155/439204*5778^(5/18) 2584000098991019 a001 39088169/167761*5778^(5/18) 2584000099183219 a001 2178309/9349*9349^(5/19) 2584000099263410 a001 24157817/15127*2207^(1/16) 2584000099469388 a001 1762289/2889*2207^(3/16) 2584000099528508 a001 14930352/64079*5778^(5/18) 2584000100223786 r005 Re(z^2+c),c=-13/70+31/58*I,n=7 2584000100505938 a001 832040/15127*5778^(4/9) 2584000100739366 a001 3524578/9349*9349^(4/19) 2584000101551613 a001 5702887/39603*5778^(1/3) 2584000102234826 a001 17711/9349*24476^(5/7) 2584000102295305 a001 5702887/9349*9349^(3/19) 2584000102649990 a004 Fibonacci(19)*Lucas(21)/(1/2+sqrt(5)/2)^22 2584000102663344 a001 4181/5778*5778^(17/18) 2584000102958795 a001 7465176/51841*5778^(1/3) 2584000103164100 a001 39088169/271443*5778^(1/3) 2584000103194054 a001 14619165/101521*5778^(1/3) 2584000103198424 a001 133957148/930249*5778^(1/3) 2584000103199062 a001 701408733/4870847*5778^(1/3) 2584000103199155 a001 1836311903/12752043*5778^(1/3) 2584000103199168 a001 14930208/103681*5778^(1/3) 2584000103199170 a001 12586269025/87403803*5778^(1/3) 2584000103199171 a001 32951280099/228826127*5778^(1/3) 2584000103199171 a001 43133785636/299537289*5778^(1/3) 2584000103199171 a001 32264490531/224056801*5778^(1/3) 2584000103199171 a001 591286729879/4106118243*5778^(1/3) 2584000103199171 a001 774004377960/5374978561*5778^(1/3) 2584000103199171 a001 4052739537881/28143753123*5778^(1/3) 2584000103199171 a001 1515744265389/10525900321*5778^(1/3) 2584000103199171 a001 3278735159921/22768774562*5778^(1/3) 2584000103199171 a001 2504730781961/17393796001*5778^(1/3) 2584000103199171 a001 956722026041/6643838879*5778^(1/3) 2584000103199171 a001 182717648081/1268860318*5778^(1/3) 2584000103199171 a001 139583862445/969323029*5778^(1/3) 2584000103199171 a001 53316291173/370248451*5778^(1/3) 2584000103199171 a001 10182505537/70711162*5778^(1/3) 2584000103199171 a001 7778742049/54018521*5778^(1/3) 2584000103199177 a001 2971215073/20633239*5778^(1/3) 2584000103199212 a001 567451585/3940598*5778^(1/3) 2584000103199456 a001 433494437/3010349*5778^(1/3) 2584000103201125 a001 165580141/1149851*5778^(1/3) 2584000103212509 a001 5702887/24476*5778^(5/18) 2584000103212566 a001 31622993/219602*5778^(1/3) 2584000103290986 a001 24157817/167761*5778^(1/3) 2584000103828481 a001 9227465/64079*5778^(1/3) 2584000103851323 a001 9227465/9349*9349^(2/19) 2584000104052787 a001 46368/9349*24476^(13/21) 2584000104590370 a001 75025/9349*24476^(4/7) 2584000104668882 a001 121393/9349*24476^(11/21) 2584000104686464 a001 74049691/28657 2584000104717069 a001 28657/9349*24476^(2/3) 2584000104741186 a001 4181/39603*64079^(21/23) 2584000104808604 a001 514229/15127*5778^(1/2) 2584000104905353 a001 17711/9349*64079^(15/23) 2584000104922744 a001 196418/9349*24476^(10/21) 2584000105109628 a001 317811/9349*24476^(3/7) 2584000105260680 a001 17711/9349*167761^(3/5) 2584000105269448 a001 6765/9349*15127^(17/20) 2584000105305350 a001 4181/39603*439204^(7/9) 2584000105308327 a001 17711/9349*439204^(5/9) 2584000105315742 a001 4181/39603*7881196^(7/11) 2584000105315750 a001 17711/9349*7881196^(5/11) 2584000105315765 a001 4181/39603*20633239^(3/5) 2584000105315766 a001 17711/9349*20633239^(3/7) 2584000105315768 a001 4181/39603*141422324^(7/13) 2584000105315768 a001 4181/39603*2537720636^(7/15) 2584000105315768 a001 4181/39603*17393796001^(3/7) 2584000105315768 a001 4181/39603*45537549124^(7/17) 2584000105315768 a001 4181/39603*14662949395604^(1/3) 2584000105315768 a001 4181/39603*(1/2+1/2*5^(1/2))^21 2584000105315768 a001 4181/39603*192900153618^(7/18) 2584000105315768 a001 4181/39603*10749957122^(7/16) 2584000105315768 a001 4181/39603*599074578^(1/2) 2584000105315769 a001 17711/9349*141422324^(5/13) 2584000105315769 a001 17711/9349*2537720636^(1/3) 2584000105315769 a001 17711/9349*45537549124^(5/17) 2584000105315769 a001 17711/9349*312119004989^(3/11) 2584000105315769 a001 17711/9349*14662949395604^(5/21) 2584000105315769 a001 17711/9349*(1/2+1/2*5^(1/2))^15 2584000105315769 a001 17711/9349*192900153618^(5/18) 2584000105315769 a001 17711/9349*28143753123^(3/10) 2584000105315769 a001 17711/9349*10749957122^(5/16) 2584000105315769 a001 17711/9349*599074578^(5/14) 2584000105315769 a001 17711/9349*228826127^(3/8) 2584000105315770 a001 17711/9349*33385282^(5/12) 2584000105315770 a001 4181/39603*33385282^(7/12) 2584000105316142 a001 17711/9349*1860498^(1/2) 2584000105316291 a001 4181/39603*1860498^(7/10) 2584000105319606 a001 4181/39603*710647^(3/4) 2584000105322095 a001 514229/9349*24476^(8/21) 2584000105407311 a001 14930352/9349*9349^(1/19) 2584000105466002 a001 17711/9349*103682^(5/8) 2584000105524790 a001 832040/9349*24476^(1/3) 2584000105526095 a001 4181/39603*103682^(7/8) 2584000105731218 a001 1346269/9349*24476^(2/7) 2584000105851636 a001 3524578/39603*5778^(7/18) 2584000105936220 a001 2178309/9349*24476^(5/21) 2584000106141767 a001 3524578/9349*24476^(4/21) 2584000106334005 a004 Fibonacci(19)*Lucas(23)/(1/2+sqrt(5)/2)^24 2584000106347106 a001 5702887/9349*24476^(1/7) 2584000106367243 a001 46368/9349*64079^(13/23) 2584000106398689 a001 4181/15127*15127^(19/20) 2584000106439092 a001 17711/9349*39603^(15/22) 2584000106552524 a001 9227465/9349*24476^(2/21) 2584000106627268 a001 121393/9349*64079^(11/23) 2584000106631122 a001 193864608/75025 2584000106703095 a001 196418/9349*64079^(10/23) 2584000106711944 a001 317811/9349*64079^(9/23) 2584000106722937 a001 4181/103682*(1/2+1/2*5^(1/2))^23 2584000106722937 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^23/Lucas(24) 2584000106722937 a001 4181/103682*4106118243^(1/2) 2584000106722937 a001 46368/9349*141422324^(1/3) 2584000106722937 a001 46368/9349*(1/2+1/2*5^(1/2))^13 2584000106722937 a001 46368/9349*73681302247^(1/4) 2584000106726792 a001 75025/9349*64079^(12/23) 2584000106740472 a001 46368/9349*271443^(1/2) 2584000106746376 a001 514229/9349*64079^(8/23) 2584000106757912 a001 14930352/9349*24476^(1/21) 2584000106771036 a001 832040/9349*64079^(7/23) 2584000106799429 a001 1346269/9349*64079^(6/23) 2584000106826396 a001 2178309/9349*64079^(5/23) 2584000106853139 a001 46368/9349*103682^(13/24) 2584000106853907 a001 3524578/9349*64079^(4/23) 2584000106871496 a004 Fibonacci(19)*Lucas(25)/(1/2+sqrt(5)/2)^26 2584000106881211 a001 5702887/9349*64079^(3/23) 2584000106888422 a001 4181/39603*39603^(21/22) 2584000106908594 a001 9227465/9349*64079^(2/23) 2584000106914844 a001 507544133/196418 2584000106928226 a001 121393/9349*7881196^(1/3) 2584000106928236 a001 4181/271443*20633239^(5/7) 2584000106928240 a001 4181/271443*2537720636^(5/9) 2584000106928240 a001 4181/271443*312119004989^(5/11) 2584000106928240 a001 4181/271443*(1/2+1/2*5^(1/2))^25 2584000106928240 a001 4181/271443*3461452808002^(5/12) 2584000106928240 a001 4181/271443*28143753123^(1/2) 2584000106928240 a001 4181/271443*228826127^(5/8) 2584000106928240 a001 121393/9349*312119004989^(1/5) 2584000106928240 a001 121393/9349*(1/2+1/2*5^(1/2))^11 2584000106928240 a001 121393/9349*1568397607^(1/4) 2584000106928862 a001 4181/271443*1860498^(5/6) 2584000106935947 a001 14930352/9349*64079^(1/23) 2584000106939980 a001 196418/9349*167761^(2/5) 2584000106944838 a001 2178309/9349*167761^(1/5) 2584000106949914 a004 Fibonacci(19)*Lucas(27)/(1/2+sqrt(5)/2)^28 2584000106953294 a001 4181/103682*103682^(23/24) 2584000106953728 a001 317811/9349*439204^(1/3) 2584000106956239 a001 1328767791/514229 2584000106958159 a001 4181/710647*7881196^(9/11) 2584000106958182 a001 317811/9349*7881196^(3/11) 2584000106958193 a001 4181/710647*141422324^(9/13) 2584000106958193 a001 4181/710647*2537720636^(3/5) 2584000106958193 a001 4181/710647*45537549124^(9/17) 2584000106958193 a001 4181/710647*817138163596^(9/19) 2584000106958193 a001 4181/710647*14662949395604^(3/7) 2584000106958193 a001 4181/710647*(1/2+1/2*5^(1/2))^27 2584000106958193 a001 4181/710647*192900153618^(1/2) 2584000106958193 a001 4181/710647*10749957122^(9/16) 2584000106958193 a001 4181/710647*599074578^(9/14) 2584000106958194 a001 317811/9349*141422324^(3/13) 2584000106958194 a001 317811/9349*2537720636^(1/5) 2584000106958194 a001 317811/9349*45537549124^(3/17) 2584000106958194 a001 317811/9349*817138163596^(3/19) 2584000106958194 a001 317811/9349*14662949395604^(1/7) 2584000106958194 a001 317811/9349*(1/2+1/2*5^(1/2))^9 2584000106958194 a001 317811/9349*192900153618^(1/6) 2584000106958194 a001 317811/9349*10749957122^(3/16) 2584000106958194 a001 317811/9349*599074578^(3/14) 2584000106958194 a001 317811/9349*33385282^(1/4) 2584000106958195 a001 4181/710647*33385282^(3/4) 2584000106958418 a001 317811/9349*1860498^(3/10) 2584000106958865 a001 4181/710647*1860498^(9/10) 2584000106960619 a001 1346269/9349*439204^(2/9) 2584000106961355 a004 Fibonacci(19)*Lucas(29)/(1/2+sqrt(5)/2)^30 2584000106961806 a001 5702887/9349*439204^(1/9) 2584000106962278 a001 3478759240/1346269 2584000106962562 a001 832040/9349*20633239^(1/5) 2584000106962563 a001 4181/1860498*(1/2+1/2*5^(1/2))^29 2584000106962563 a001 4181/1860498*1322157322203^(1/2) 2584000106962564 a001 832040/9349*17393796001^(1/7) 2584000106962564 a001 832040/9349*14662949395604^(1/9) 2584000106962564 a001 832040/9349*(1/2+1/2*5^(1/2))^7 2584000106962564 a001 832040/9349*599074578^(1/6) 2584000106963025 a004 Fibonacci(19)*Lucas(31)/(1/2+sqrt(5)/2)^32 2584000106963159 a001 9107509929/3524578 2584000106963200 a001 2178309/9349*20633239^(1/7) 2584000106963201 a001 4181/4870847*(1/2+1/2*5^(1/2))^31 2584000106963201 a001 4181/4870847*9062201101803^(1/2) 2584000106963201 a001 2178309/9349*2537720636^(1/9) 2584000106963201 a001 2178309/9349*312119004989^(1/11) 2584000106963201 a001 2178309/9349*(1/2+1/2*5^(1/2))^5 2584000106963201 a001 2178309/9349*28143753123^(1/10) 2584000106963201 a001 2178309/9349*228826127^(1/8) 2584000106963268 a004 Fibonacci(19)*Lucas(33)/(1/2+sqrt(5)/2)^34 2584000106963288 a001 23843770547/9227465 2584000106963291 a001 5702887/9349*7881196^(1/11) 2584000106963294 a001 4181/12752043*141422324^(11/13) 2584000106963294 a001 4181/12752043*2537720636^(11/15) 2584000106963294 a001 4181/12752043*45537549124^(11/17) 2584000106963294 a001 4181/12752043*312119004989^(3/5) 2584000106963294 a001 4181/12752043*817138163596^(11/19) 2584000106963294 a001 4181/12752043*14662949395604^(11/21) 2584000106963294 a001 4181/12752043*(1/2+1/2*5^(1/2))^33 2584000106963294 a001 4181/12752043*192900153618^(11/18) 2584000106963294 a001 4181/12752043*10749957122^(11/16) 2584000106963294 a001 4181/12752043*1568397607^(3/4) 2584000106963294 a001 4181/12752043*599074578^(11/14) 2584000106963294 a001 5702887/9349*141422324^(1/13) 2584000106963294 a001 5702887/9349*2537720636^(1/15) 2584000106963294 a001 5702887/9349*45537549124^(1/17) 2584000106963294 a001 5702887/9349*14662949395604^(1/21) 2584000106963294 a001 5702887/9349*(1/2+1/2*5^(1/2))^3 2584000106963294 a001 5702887/9349*10749957122^(1/16) 2584000106963294 a001 5702887/9349*599074578^(1/14) 2584000106963295 a001 5702887/9349*33385282^(1/12) 2584000106963296 a001 4181/12752043*33385282^(11/12) 2584000106963304 a004 Fibonacci(19)*Lucas(35)/(1/2+sqrt(5)/2)^36 2584000106963307 a001 62423801712/24157817 2584000106963308 a001 4181/33385282*2537720636^(7/9) 2584000106963308 a001 4181/33385282*17393796001^(5/7) 2584000106963308 a001 4181/33385282*312119004989^(7/11) 2584000106963308 a001 4181/33385282*14662949395604^(5/9) 2584000106963308 a001 4181/33385282*(1/2+1/2*5^(1/2))^35 2584000106963308 a001 4181/33385282*505019158607^(5/8) 2584000106963308 a001 4181/33385282*28143753123^(7/10) 2584000106963308 a001 4181/33385282*599074578^(5/6) 2584000106963308 a001 4181/33385282*228826127^(7/8) 2584000106963308 a001 7465176/9349+7465176/9349*5^(1/2) 2584000106963309 a004 Fibonacci(19)*Lucas(37)/(1/2+sqrt(5)/2)^38 2584000106963309 a001 163427634589/63245986 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^37/Lucas(38) 2584000106963310 a004 Fibonacci(19)*Lucas(39)/(1/2+sqrt(5)/2)^40 2584000106963310 a001 427859102055/165580141 2584000106963310 a001 4181/228826127*2537720636^(13/15) 2584000106963310 a001 4181/228826127*45537549124^(13/17) 2584000106963310 a001 4181/228826127*14662949395604^(13/21) 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^39/Lucas(40) 2584000106963310 a001 4181/228826127*192900153618^(13/18) 2584000106963310 a001 4181/228826127*73681302247^(3/4) 2584000106963310 a001 4181/228826127*10749957122^(13/16) 2584000106963310 a001 4181/228826127*599074578^(13/14) 2584000106963310 a004 Fibonacci(19)*Lucas(41)/(1/2+sqrt(5)/2)^42 2584000106963310 a001 1120149671576/433494437 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^41/Lucas(42) 2584000106963310 a004 Fibonacci(19)*Lucas(43)/(1/2+sqrt(5)/2)^44 2584000106963310 a001 2932589912673/1134903170 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^43/Lucas(44) 2584000106963310 a004 Fibonacci(19)*Lucas(45)/(1/2+sqrt(5)/2)^46 2584000106963310 a001 7677620066443/2971215073 2584000106963310 a001 4181/4106118243*45537549124^(15/17) 2584000106963310 a001 4181/4106118243*312119004989^(9/11) 2584000106963310 a001 4181/4106118243*14662949395604^(5/7) 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^45/Lucas(46) 2584000106963310 a001 4181/4106118243*192900153618^(5/6) 2584000106963310 a001 4181/4106118243*28143753123^(9/10) 2584000106963310 a001 4181/4106118243*10749957122^(15/16) 2584000106963310 a004 Fibonacci(19)*Lucas(47)/(1/2+sqrt(5)/2)^48 2584000106963310 a001 20100270286656/7778742049 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^47/Lucas(48) 2584000106963310 a004 Fibonacci(19)*Lucas(49)/(1/2+sqrt(5)/2)^50 2584000106963310 a001 52623190793525/20365011074 2584000106963310 a001 4181/28143753123*14662949395604^(7/9) 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^49/Lucas(50) 2584000106963310 a001 4181/28143753123*505019158607^(7/8) 2584000106963310 a004 Fibonacci(19)*Lucas(51)/(1/2+sqrt(5)/2)^52 2584000106963310 a001 137769302093919/53316291173 2584000106963310 a001 4181/73681302247*14662949395604^(17/21) 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^51/Lucas(52) 2584000106963310 a001 4181/73681302247*192900153618^(17/18) 2584000106963310 a004 Fibonacci(19)*Lucas(53)/(1/2+sqrt(5)/2)^54 2584000106963310 a001 360684715488232/139583862445 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^53/Lucas(54) 2584000106963310 a004 Fibonacci(19)*Lucas(55)/(1/2+sqrt(5)/2)^56 2584000106963310 a001 225851433717/87403802 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^55/Lucas(56) 2584000106963310 a004 Fibonacci(19)*Lucas(57)/(1/2+sqrt(5)/2)^58 2584000106963310 a001 4181/1322157322203*14662949395604^(19/21) 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^57/Lucas(58) 2584000106963310 a004 Fibonacci(19)*Lucas(59)/(1/2+sqrt(5)/2)^60 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^59/Lucas(60) 2584000106963310 a004 Fibonacci(19)*Lucas(61)/(1/2+sqrt(5)/2)^62 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^61/Lucas(62) 2584000106963310 a004 Fibonacci(19)*Lucas(63)/(1/2+sqrt(5)/2)^64 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^63/Lucas(64) 2584000106963310 a004 Fibonacci(19)*Lucas(65)/(1/2+sqrt(5)/2)^66 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^65/Lucas(66) 2584000106963310 a004 Fibonacci(19)*Lucas(67)/(1/2+sqrt(5)/2)^68 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^67/Lucas(68) 2584000106963310 a004 Fibonacci(19)*Lucas(69)/(1/2+sqrt(5)/2)^70 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^69/Lucas(70) 2584000106963310 a004 Fibonacci(19)*Lucas(71)/(1/2+sqrt(5)/2)^72 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^71/Lucas(72) 2584000106963310 a004 Fibonacci(19)*Lucas(73)/(1/2+sqrt(5)/2)^74 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^73/Lucas(74) 2584000106963310 a004 Fibonacci(19)*Lucas(75)/(1/2+sqrt(5)/2)^76 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^75/Lucas(76) 2584000106963310 a004 Fibonacci(19)*Lucas(77)/(1/2+sqrt(5)/2)^78 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^77/Lucas(78) 2584000106963310 a004 Fibonacci(19)*Lucas(79)/(1/2+sqrt(5)/2)^80 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^79/Lucas(80) 2584000106963310 a004 Fibonacci(19)*Lucas(81)/(1/2+sqrt(5)/2)^82 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^81/Lucas(82) 2584000106963310 a004 Fibonacci(19)*Lucas(83)/(1/2+sqrt(5)/2)^84 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^83/Lucas(84) 2584000106963310 a004 Fibonacci(19)*Lucas(85)/(1/2+sqrt(5)/2)^86 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^85/Lucas(86) 2584000106963310 a004 Fibonacci(19)*Lucas(87)/(1/2+sqrt(5)/2)^88 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^87/Lucas(88) 2584000106963310 a004 Fibonacci(19)*Lucas(89)/(1/2+sqrt(5)/2)^90 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^89/Lucas(90) 2584000106963310 a004 Fibonacci(19)*Lucas(91)/(1/2+sqrt(5)/2)^92 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^91/Lucas(92) 2584000106963310 a004 Fibonacci(19)*Lucas(93)/(1/2+sqrt(5)/2)^94 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^93/Lucas(94) 2584000106963310 a004 Fibonacci(19)*Lucas(95)/(1/2+sqrt(5)/2)^96 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^95/Lucas(96) 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^97/Lucas(98) 2584000106963310 a004 Fibonacci(19)*Lucas(97)/(1/2+sqrt(5)/2)^98 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^96/Lucas(97) 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^98/Lucas(99) 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^99/Lucas(100) 2584000106963310 a004 Fibonacci(19)*Lucas(98)/(1/2+sqrt(5)/2)^99 2584000106963310 a004 Fibonacci(19)*Lucas(99)/(1/2+sqrt(5)/2)^100 2584000106963310 a004 Fibonacci(19)*Lucas(96)/(1/2+sqrt(5)/2)^97 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^94/Lucas(95) 2584000106963310 a004 Fibonacci(19)*Lucas(94)/(1/2+sqrt(5)/2)^95 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^92/Lucas(93) 2584000106963310 a004 Fibonacci(19)*Lucas(92)/(1/2+sqrt(5)/2)^93 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^90/Lucas(91) 2584000106963310 a004 Fibonacci(19)*Lucas(90)/(1/2+sqrt(5)/2)^91 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^88/Lucas(89) 2584000106963310 a004 Fibonacci(19)*Lucas(88)/(1/2+sqrt(5)/2)^89 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^86/Lucas(87) 2584000106963310 a004 Fibonacci(19)*Lucas(86)/(1/2+sqrt(5)/2)^87 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^84/Lucas(85) 2584000106963310 a004 Fibonacci(19)*Lucas(84)/(1/2+sqrt(5)/2)^85 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^82/Lucas(83) 2584000106963310 a004 Fibonacci(19)*Lucas(82)/(1/2+sqrt(5)/2)^83 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^80/Lucas(81) 2584000106963310 a004 Fibonacci(19)*Lucas(80)/(1/2+sqrt(5)/2)^81 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^78/Lucas(79) 2584000106963310 a004 Fibonacci(19)*Lucas(78)/(1/2+sqrt(5)/2)^79 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^76/Lucas(77) 2584000106963310 a004 Fibonacci(19)*Lucas(76)/(1/2+sqrt(5)/2)^77 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^74/Lucas(75) 2584000106963310 a004 Fibonacci(19)*Lucas(74)/(1/2+sqrt(5)/2)^75 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^72/Lucas(73) 2584000106963310 a004 Fibonacci(19)*Lucas(72)/(1/2+sqrt(5)/2)^73 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^70/Lucas(71) 2584000106963310 a004 Fibonacci(19)*Lucas(70)/(1/2+sqrt(5)/2)^71 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^68/Lucas(69) 2584000106963310 a004 Fibonacci(19)*Lucas(68)/(1/2+sqrt(5)/2)^69 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^66/Lucas(67) 2584000106963310 a004 Fibonacci(19)*Lucas(66)/(1/2+sqrt(5)/2)^67 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^64/Lucas(65) 2584000106963310 a004 Fibonacci(19)*Lucas(64)/(1/2+sqrt(5)/2)^65 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^62/Lucas(63) 2584000106963310 a004 Fibonacci(19)*Lucas(62)/(1/2+sqrt(5)/2)^63 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^60/Lucas(61) 2584000106963310 a001 10472279399378941/4052739537881 2584000106963310 a004 Fibonacci(19)*Lucas(60)/(1/2+sqrt(5)/2)^61 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^58/Lucas(59) 2584000106963310 a004 Fibonacci(19)*Lucas(58)/(1/2+sqrt(5)/2)^59 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^56/Lucas(57) 2584000106963310 a004 Fibonacci(19)*Lucas(56)/(1/2+sqrt(5)/2)^57 2584000106963310 a001 4181/312119004989*14662949395604^(6/7) 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^54/Lucas(55) 2584000106963310 a004 Fibonacci(19)*Lucas(54)/(1/2+sqrt(5)/2)^55 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^52/Lucas(53) 2584000106963310 a001 4181/119218851371*23725150497407^(13/16) 2584000106963310 a001 4181/119218851371*505019158607^(13/14) 2584000106963310 a001 222915413394313/86267571272 2584000106963310 a004 Fibonacci(19)*Lucas(52)/(1/2+sqrt(5)/2)^53 2584000106963310 a001 4181/45537549124*312119004989^(10/11) 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^50/Lucas(51) 2584000106963310 a001 4181/45537549124*3461452808002^(5/6) 2584000106963310 a001 85146111300394/32951280099 2584000106963310 a004 Fibonacci(19)*Lucas(50)/(1/2+sqrt(5)/2)^51 2584000106963310 a001 4181/17393796001*45537549124^(16/17) 2584000106963310 a001 4181/17393796001*14662949395604^(16/21) 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^48/Lucas(49) 2584000106963310 a001 4181/17393796001*192900153618^(8/9) 2584000106963310 a001 4181/17393796001*73681302247^(12/13) 2584000106963310 a001 32522920506869/12586269025 2584000106963310 a004 Fibonacci(19)*Lucas(48)/(1/2+sqrt(5)/2)^49 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^46/Lucas(47) 2584000106963310 a001 4181/6643838879*10749957122^(23/24) 2584000106963310 a001 12422650220213/4807526976 2584000106963310 a004 Fibonacci(19)*Lucas(46)/(1/2+sqrt(5)/2)^47 2584000106963310 a001 4181/2537720636*312119004989^(4/5) 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^44/Lucas(45) 2584000106963310 a001 4181/2537720636*23725150497407^(11/16) 2584000106963310 a001 4181/2537720636*73681302247^(11/13) 2584000106963310 a001 4181/2537720636*10749957122^(11/12) 2584000106963310 a001 4181/2537720636*4106118243^(22/23) 2584000106963310 a001 4745030153770/1836311903 2584000106963310 a004 Fibonacci(19)*Lucas(44)/(1/2+sqrt(5)/2)^45 2584000106963310 a001 4181/969323029*2537720636^(14/15) 2584000106963310 a001 4181/969323029*17393796001^(6/7) 2584000106963310 a001 4181/969323029*45537549124^(14/17) 2584000106963310 a001 4181/969323029*14662949395604^(2/3) 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^42/Lucas(43) 2584000106963310 a001 4181/969323029*505019158607^(3/4) 2584000106963310 a001 4181/969323029*192900153618^(7/9) 2584000106963310 a001 4181/969323029*10749957122^(7/8) 2584000106963310 a001 4181/969323029*4106118243^(21/23) 2584000106963310 a001 4181/969323029*1568397607^(21/22) 2584000106963310 a001 1812440241097/701408733 2584000106963310 a004 Fibonacci(19)*Lucas(42)/(1/2+sqrt(5)/2)^43 2584000106963310 a001 4181/370248451*2537720636^(8/9) 2584000106963310 a001 4181/370248451*312119004989^(8/11) 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^40/Lucas(41) 2584000106963310 a001 4181/370248451*23725150497407^(5/8) 2584000106963310 a001 4181/370248451*73681302247^(10/13) 2584000106963310 a001 4181/370248451*28143753123^(4/5) 2584000106963310 a001 4181/370248451*10749957122^(5/6) 2584000106963310 a001 4181/370248451*4106118243^(20/23) 2584000106963310 a001 4181/370248451*1568397607^(10/11) 2584000106963310 a001 4181/370248451*599074578^(20/21) 2584000106963310 a001 692290569521/267914296 2584000106963310 a004 Fibonacci(19)*Lucas(40)/(1/2+sqrt(5)/2)^41 2584000106963310 a001 4181/141422324*817138163596^(2/3) 2584000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^38/Lucas(39) 2584000106963310 a001 4181/141422324*10749957122^(19/24) 2584000106963310 a001 4181/141422324*4106118243^(19/23) 2584000106963310 a001 4181/141422324*1568397607^(19/22) 2584000106963310 a001 4181/141422324*599074578^(19/21) 2584000106963310 a001 4181/141422324*228826127^(19/20) 2584000106963310 a001 264431467466/102334155 2584000106963310 a004 Fibonacci(40)/Lucas(19)/(1/2+sqrt(5)/2)^3 2584000106963310 a004 Fibonacci(42)/Lucas(19)/(1/2+sqrt(5)/2)^5 2584000106963310 a004 Fibonacci(44)/Lucas(19)/(1/2+sqrt(5)/2)^7 2584000106963310 a004 Fibonacci(46)/Lucas(19)/(1/2+sqrt(5)/2)^9 2584000106963310 a004 Fibonacci(48)/Lucas(19)/(1/2+sqrt(5)/2)^11 2584000106963310 a004 Fibonacci(50)/Lucas(19)/(1/2+sqrt(5)/2)^13 2584000106963310 a004 Fibonacci(52)/Lucas(19)/(1/2+sqrt(5)/2)^15 2584000106963310 a004 Fibonacci(54)/Lucas(19)/(1/2+sqrt(5)/2)^17 2584000106963310 a004 Fibonacci(56)/Lucas(19)/(1/2+sqrt(5)/2)^19 2584000106963310 a004 Fibonacci(58)/Lucas(19)/(1/2+sqrt(5)/2)^21 2584000106963310 a004 Fibonacci(60)/Lucas(19)/(1/2+sqrt(5)/2)^23 2584000106963310 a004 Fibonacci(62)/Lucas(19)/(1/2+sqrt(5)/2)^25 2584000106963310 a004 Fibonacci(64)/Lucas(19)/(1/2+sqrt(5)/2)^27 2584000106963310 a004 Fibonacci(66)/Lucas(19)/(1/2+sqrt(5)/2)^29 2584000106963310 a004 Fibonacci(68)/Lucas(19)/(1/2+sqrt(5)/2)^31 2584000106963310 a004 Fibonacci(70)/Lucas(19)/(1/2+sqrt(5)/2)^33 2584000106963310 a004 Fibonacci(72)/Lucas(19)/(1/2+sqrt(5)/2)^35 2584000106963310 a004 Fibonacci(74)/Lucas(19)/(1/2+sqrt(5)/2)^37 2584000106963310 a004 Fibonacci(19)*Lucas(38)/(1/2+sqrt(5)/2)^39 2584000106963310 a004 Fibonacci(78)/Lucas(19)/(1/2+sqrt(5)/2)^41 2584000106963310 a004 Fibonacci(80)/Lucas(19)/(1/2+sqrt(5)/2)^43 2584000106963310 a004 Fibonacci(82)/Lucas(19)/(1/2+sqrt(5)/2)^45 2584000106963310 a004 Fibonacci(84)/Lucas(19)/(1/2+sqrt(5)/2)^47 2584000106963310 a004 Fibonacci(86)/Lucas(19)/(1/2+sqrt(5)/2)^49 2584000106963310 a004 Fibonacci(88)/Lucas(19)/(1/2+sqrt(5)/2)^51 2584000106963310 a004 Fibonacci(90)/Lucas(19)/(1/2+sqrt(5)/2)^53 2584000106963310 a004 Fibonacci(92)/Lucas(19)/(1/2+sqrt(5)/2)^55 2584000106963310 a004 Fibonacci(94)/Lucas(19)/(1/2+sqrt(5)/2)^57 2584000106963310 a004 Fibonacci(96)/Lucas(19)/(1/2+sqrt(5)/2)^59 2584000106963310 a004 Fibonacci(98)/Lucas(19)/(1/2+sqrt(5)/2)^61 2584000106963310 a004 Fibonacci(100)/Lucas(19)/(1/2+sqrt(5)/2)^63 2584000106963310 a004 Fibonacci(97)/Lucas(19)/(1/2+sqrt(5)/2)^60 2584000106963310 a004 Fibonacci(99)/Lucas(19)/(1/2+sqrt(5)/2)^62 2584000106963310 a004 Fibonacci(95)/Lucas(19)/(1/2+sqrt(5)/2)^58 2584000106963310 a004 Fibonacci(93)/Lucas(19)/(1/2+sqrt(5)/2)^56 2584000106963310 a004 Fibonacci(91)/Lucas(19)/(1/2+sqrt(5)/2)^54 2584000106963310 a004 Fibonacci(89)/Lucas(19)/(1/2+sqrt(5)/2)^52 2584000106963310 a004 Fibonacci(87)/Lucas(19)/(1/2+sqrt(5)/2)^50 2584000106963310 a004 Fibonacci(85)/Lucas(19)/(1/2+sqrt(5)/2)^48 2584000106963310 a004 Fibonacci(83)/Lucas(19)/(1/2+sqrt(5)/2)^46 2584000106963310 a004 Fibonacci(81)/Lucas(19)/(1/2+sqrt(5)/2)^44 2584000106963310 a004 Fibonacci(79)/Lucas(19)/(1/2+sqrt(5)/2)^42 2584000106963310 a004 Fibonacci(77)/Lucas(19)/(1/2+sqrt(5)/2)^40 2584000106963310 a004 Fibonacci(75)/Lucas(19)/(1/2+sqrt(5)/2)^38 2584000106963310 a004 Fibonacci(73)/Lucas(19)/(1/2+sqrt(5)/2)^36 2584000106963310 a004 Fibonacci(71)/Lucas(19)/(1/2+sqrt(5)/2)^34 2584000106963310 a004 Fibonacci(69)/Lucas(19)/(1/2+sqrt(5)/2)^32 2584000106963310 a004 Fibonacci(67)/Lucas(19)/(1/2+sqrt(5)/2)^30 2584000106963310 a004 Fibonacci(65)/Lucas(19)/(1/2+sqrt(5)/2)^28 2584000106963310 a004 Fibonacci(63)/Lucas(19)/(1/2+sqrt(5)/2)^26 2584000106963310 a004 Fibonacci(61)/Lucas(19)/(1/2+sqrt(5)/2)^24 2584000106963310 a004 Fibonacci(59)/Lucas(19)/(1/2+sqrt(5)/2)^22 2584000106963310 a004 Fibonacci(57)/Lucas(19)/(1/2+sqrt(5)/2)^20 2584000106963310 a004 Fibonacci(55)/Lucas(19)/(1/2+sqrt(5)/2)^18 2584000106963310 a004 Fibonacci(53)/Lucas(19)/(1/2+sqrt(5)/2)^16 2584000106963310 a004 Fibonacci(51)/Lucas(19)/(1/2+sqrt(5)/2)^14 2584000106963310 a004 Fibonacci(49)/Lucas(19)/(1/2+sqrt(5)/2)^12 2584000106963310 a004 Fibonacci(47)/Lucas(19)/(1/2+sqrt(5)/2)^10 2584000106963310 a004 Fibonacci(45)/Lucas(19)/(1/2+sqrt(5)/2)^8 2584000106963310 a004 Fibonacci(43)/Lucas(19)/(1/2+sqrt(5)/2)^6 2584000106963310 a004 Fibonacci(41)/Lucas(19)/(1/2+sqrt(5)/2)^4 2584000106963310 a004 Fibonacci(39)/Lucas(19)/(1/2+sqrt(5)/2)^2 2584000106963311 a001 4181/54018521*141422324^(12/13) 2584000106963311 a001 4181/54018521*2537720636^(4/5) 2584000106963311 a001 4181/54018521*45537549124^(12/17) 2584000106963311 a001 4181/54018521*14662949395604^(4/7) 2584000106963311 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^36/Lucas(37) 2584000106963311 a001 4181/54018521*192900153618^(2/3) 2584000106963311 a001 4181/54018521*73681302247^(9/13) 2584000106963311 a001 4181/54018521*10749957122^(3/4) 2584000106963311 a001 4181/54018521*4106118243^(18/23) 2584000106963311 a001 4181/54018521*1568397607^(9/11) 2584000106963311 a001 4181/54018521*599074578^(6/7) 2584000106963311 a001 4181/54018521*228826127^(9/10) 2584000106963311 a001 4181/54018521*87403803^(18/19) 2584000106963311 a001 24157817/9349 2584000106963312 a004 Fibonacci(19)*Lucas(36)/(1/2+sqrt(5)/2)^37 2584000106963316 a001 4181/20633239*45537549124^(2/3) 2584000106963316 a001 4181/20633239*(1/2+1/2*5^(1/2))^34 2584000106963316 a001 4181/20633239*10749957122^(17/24) 2584000106963316 a001 4181/20633239*4106118243^(17/23) 2584000106963316 a001 4181/20633239*1568397607^(17/22) 2584000106963316 a001 4181/20633239*599074578^(17/21) 2584000106963316 a001 4181/20633239*228826127^(17/20) 2584000106963316 a001 4181/20633239*87403803^(17/19) 2584000106963316 a001 9227465/9349*(1/2+1/2*5^(1/2))^2 2584000106963316 a001 9227465/9349*10749957122^(1/24) 2584000106963316 a001 9227465/9349*4106118243^(1/23) 2584000106963316 a001 9227465/9349*1568397607^(1/22) 2584000106963316 a001 9227465/9349*599074578^(1/21) 2584000106963316 a001 9227465/9349*228826127^(1/20) 2584000106963316 a001 9227465/9349*87403803^(1/19) 2584000106963316 a001 9227465/9349*33385282^(1/18) 2584000106963317 a001 9227465/9349*12752043^(1/17) 2584000106963318 a001 4181/20633239*33385282^(17/18) 2584000106963318 a001 38580031165/14930352 2584000106963323 a001 9227465/9349*4870847^(1/16) 2584000106963326 a001 2178309/9349*1860498^(1/6) 2584000106963326 a004 Fibonacci(19)*Lucas(34)/(1/2+sqrt(5)/2)^35 2584000106963351 a001 4181/7881196*(1/2+1/2*5^(1/2))^32 2584000106963351 a001 4181/7881196*23725150497407^(1/2) 2584000106963351 a001 4181/7881196*73681302247^(8/13) 2584000106963351 a001 4181/7881196*10749957122^(2/3) 2584000106963351 a001 4181/7881196*4106118243^(16/23) 2584000106963351 a001 4181/7881196*1568397607^(8/11) 2584000106963351 a001 4181/7881196*599074578^(16/21) 2584000106963352 a001 4181/7881196*228826127^(4/5) 2584000106963352 a001 4181/7881196*87403803^(16/19) 2584000106963352 a001 3524578/9349*(1/2+1/2*5^(1/2))^4 2584000106963352 a001 3524578/9349*23725150497407^(1/16) 2584000106963352 a001 3524578/9349*73681302247^(1/13) 2584000106963352 a001 3524578/9349*10749957122^(1/12) 2584000106963352 a001 3524578/9349*4106118243^(2/23) 2584000106963352 a001 3524578/9349*1568397607^(1/11) 2584000106963352 a001 3524578/9349*599074578^(2/21) 2584000106963352 a001 3524578/9349*228826127^(1/10) 2584000106963352 a001 3524578/9349*87403803^(2/19) 2584000106963352 a001 3524578/9349*33385282^(1/9) 2584000106963354 a001 4181/7881196*33385282^(8/9) 2584000106963354 a001 3524578/9349*12752043^(2/17) 2584000106963365 a001 3524578/9349*4870847^(1/8) 2584000106963366 a001 9227465/9349*1860498^(1/15) 2584000106963366 a001 4181/7881196*12752043^(16/17) 2584000106963367 a001 14736260618/5702887 2584000106963369 a001 5702887/9349*1860498^(1/10) 2584000106963419 a004 Fibonacci(19)*Lucas(32)/(1/2+sqrt(5)/2)^33 2584000106963451 a001 3524578/9349*1860498^(2/15) 2584000106963557 a001 4181/3010349*7881196^(10/11) 2584000106963588 a001 1346269/9349*7881196^(2/11) 2584000106963590 a001 4181/3010349*20633239^(6/7) 2584000106963595 a001 4181/3010349*141422324^(10/13) 2584000106963595 a001 4181/3010349*2537720636^(2/3) 2584000106963595 a001 4181/3010349*45537549124^(10/17) 2584000106963595 a001 4181/3010349*312119004989^(6/11) 2584000106963595 a001 4181/3010349*14662949395604^(10/21) 2584000106963595 a001 4181/3010349*(1/2+1/2*5^(1/2))^30 2584000106963595 a001 4181/3010349*192900153618^(5/9) 2584000106963595 a001 4181/3010349*28143753123^(3/5) 2584000106963595 a001 4181/3010349*10749957122^(5/8) 2584000106963595 a001 4181/3010349*4106118243^(15/23) 2584000106963595 a001 4181/3010349*1568397607^(15/22) 2584000106963595 a001 4181/3010349*599074578^(5/7) 2584000106963595 a001 4181/3010349*228826127^(3/4) 2584000106963595 a001 4181/3010349*87403803^(15/19) 2584000106963595 a001 1346269/9349*141422324^(2/13) 2584000106963595 a001 1346269/9349*2537720636^(2/15) 2584000106963595 a001 1346269/9349*45537549124^(2/17) 2584000106963595 a001 1346269/9349*14662949395604^(2/21) 2584000106963595 a001 1346269/9349*(1/2+1/2*5^(1/2))^6 2584000106963595 a001 1346269/9349*10749957122^(1/8) 2584000106963595 a001 1346269/9349*4106118243^(3/23) 2584000106963595 a001 1346269/9349*1568397607^(3/22) 2584000106963595 a001 1346269/9349*599074578^(1/7) 2584000106963595 a001 1346269/9349*228826127^(3/20) 2584000106963595 a001 1346269/9349*87403803^(3/19) 2584000106963596 a001 1346269/9349*33385282^(1/6) 2584000106963597 a001 4181/3010349*33385282^(5/6) 2584000106963598 a001 1346269/9349*12752043^(3/17) 2584000106963609 a001 4181/3010349*12752043^(15/17) 2584000106963616 a001 1346269/9349*4870847^(3/16) 2584000106963682 a001 9227465/9349*710647^(1/14) 2584000106963697 a001 4181/3010349*4870847^(15/16) 2584000106963704 a001 5628750689/2178309 2584000106963745 a001 1346269/9349*1860498^(1/5) 2584000106963843 a001 832040/9349*710647^(1/4) 2584000106964056 a004 Fibonacci(19)*Lucas(30)/(1/2+sqrt(5)/2)^31 2584000106964083 a001 3524578/9349*710647^(1/7) 2584000106964692 a001 1346269/9349*710647^(3/14) 2584000106965259 a001 4181/1149851*20633239^(4/5) 2584000106965264 a001 4181/1149851*17393796001^(4/7) 2584000106965264 a001 4181/1149851*14662949395604^(4/9) 2584000106965264 a001 4181/1149851*(1/2+1/2*5^(1/2))^28 2584000106965264 a001 4181/1149851*73681302247^(7/13) 2584000106965264 a001 4181/1149851*10749957122^(7/12) 2584000106965264 a001 4181/1149851*4106118243^(14/23) 2584000106965264 a001 4181/1149851*1568397607^(7/11) 2584000106965264 a001 4181/1149851*599074578^(2/3) 2584000106965264 a001 4181/1149851*228826127^(7/10) 2584000106965264 a001 4181/1149851*87403803^(14/19) 2584000106965265 a001 514229/9349*(1/2+1/2*5^(1/2))^8 2584000106965265 a001 514229/9349*23725150497407^(1/8) 2584000106965265 a001 514229/9349*505019158607^(1/7) 2584000106965265 a001 514229/9349*73681302247^(2/13) 2584000106965265 a001 514229/9349*10749957122^(1/6) 2584000106965265 a001 514229/9349*4106118243^(4/23) 2584000106965265 a001 514229/9349*1568397607^(2/11) 2584000106965265 a001 514229/9349*599074578^(4/21) 2584000106965265 a001 514229/9349*228826127^(1/5) 2584000106965265 a001 514229/9349*87403803^(4/19) 2584000106965265 a001 514229/9349*33385282^(2/9) 2584000106965266 a001 4181/1149851*33385282^(7/9) 2584000106965268 a001 514229/9349*12752043^(4/17) 2584000106965277 a001 4181/1149851*12752043^(14/17) 2584000106965292 a001 514229/9349*4870847^(1/4) 2584000106965360 a001 4181/1149851*4870847^(7/8) 2584000106965464 a001 514229/9349*1860498^(4/15) 2584000106965961 a001 4181/1149851*1860498^(14/15) 2584000106966011 a001 2149991449/832040 2584000106966014 a001 9227465/9349*271443^(1/13) 2584000106966726 a001 514229/9349*710647^(2/7) 2584000106968426 a004 Fibonacci(19)*Lucas(28)/(1/2+sqrt(5)/2)^29 2584000106968747 a001 3524578/9349*271443^(2/13) 2584000106971688 a001 1346269/9349*271443^(3/13) 2584000106973323 a001 14930352/9349*103682^(1/24) 2584000106976055 a001 514229/9349*271443^(4/13) 2584000106976704 a001 196418/9349*20633239^(2/7) 2584000106976705 a001 4181/439204*141422324^(2/3) 2584000106976705 a001 4181/439204*(1/2+1/2*5^(1/2))^26 2584000106976705 a001 4181/439204*73681302247^(1/2) 2584000106976705 a001 4181/439204*10749957122^(13/24) 2584000106976705 a001 4181/439204*4106118243^(13/23) 2584000106976705 a001 4181/439204*1568397607^(13/22) 2584000106976705 a001 4181/439204*599074578^(13/21) 2584000106976705 a001 4181/439204*228826127^(13/20) 2584000106976706 a001 4181/439204*87403803^(13/19) 2584000106976706 a001 196418/9349*2537720636^(2/9) 2584000106976706 a001 196418/9349*312119004989^(2/11) 2584000106976706 a001 196418/9349*(1/2+1/2*5^(1/2))^10 2584000106976706 a001 196418/9349*28143753123^(1/5) 2584000106976706 a001 196418/9349*10749957122^(5/24) 2584000106976706 a001 196418/9349*4106118243^(5/23) 2584000106976706 a001 196418/9349*1568397607^(5/22) 2584000106976706 a001 196418/9349*599074578^(5/21) 2584000106976706 a001 196418/9349*228826127^(1/4) 2584000106976706 a001 196418/9349*87403803^(5/19) 2584000106976706 a001 196418/9349*33385282^(5/18) 2584000106976707 a001 4181/439204*33385282^(13/18) 2584000106976710 a001 196418/9349*12752043^(5/17) 2584000106976718 a001 4181/439204*12752043^(13/17) 2584000106976740 a001 196418/9349*4870847^(5/16) 2584000106976794 a001 4181/439204*4870847^(13/16) 2584000106976955 a001 196418/9349*1860498^(1/3) 2584000106977352 a001 4181/439204*1860498^(13/15) 2584000106978533 a001 196418/9349*710647^(5/14) 2584000106981457 a001 4181/439204*710647^(13/14) 2584000106981822 a001 821223658/317811 2584000106983347 a001 9227465/9349*103682^(1/12) 2584000106990194 a001 196418/9349*271443^(5/13) 2584000106990671 a001 4181/64079*64079^(22/23) 2584000106993341 a001 5702887/9349*103682^(1/8) 2584000106998380 a004 Fibonacci(19)*Lucas(26)/(1/2+sqrt(5)/2)^27 2584000107003414 a001 3524578/9349*103682^(1/6) 2584000107013279 a001 2178309/9349*103682^(5/24) 2584000107023689 a001 1346269/9349*103682^(1/4) 2584000107032673 a001 832040/9349*103682^(7/24) 2584000107038196 a001 14930352/9349*39603^(1/22) 2584000107038411 a001 121393/9349*103682^(11/24) 2584000107043217 a001 4181/167761*439204^(8/9) 2584000107045389 a001 514229/9349*103682^(1/3) 2584000107048333 a001 317811/9349*103682^(3/8) 2584000107049171 a001 75025/9349*439204^(4/9) 2584000107055094 a001 4181/167761*7881196^(8/11) 2584000107055109 a001 75025/9349*7881196^(4/11) 2584000107055124 a001 4181/167761*141422324^(8/13) 2584000107055124 a001 4181/167761*2537720636^(8/15) 2584000107055124 a001 4181/167761*45537549124^(8/17) 2584000107055124 a001 4181/167761*14662949395604^(8/21) 2584000107055124 a001 4181/167761*(1/2+1/2*5^(1/2))^24 2584000107055124 a001 4181/167761*192900153618^(4/9) 2584000107055124 a001 4181/167761*73681302247^(6/13) 2584000107055124 a001 4181/167761*10749957122^(1/2) 2584000107055124 a001 4181/167761*4106118243^(12/23) 2584000107055124 a001 4181/167761*1568397607^(6/11) 2584000107055124 a001 4181/167761*599074578^(4/7) 2584000107055124 a001 4181/167761*228826127^(3/5) 2584000107055124 a001 4181/167761*87403803^(12/19) 2584000107055124 a001 75025/9349*141422324^(4/13) 2584000107055125 a001 75025/9349*2537720636^(4/15) 2584000107055125 a001 75025/9349*45537549124^(4/17) 2584000107055125 a001 75025/9349*817138163596^(4/19) 2584000107055125 a001 75025/9349*14662949395604^(4/21) 2584000107055125 a001 75025/9349*(1/2+1/2*5^(1/2))^12 2584000107055125 a001 75025/9349*192900153618^(2/9) 2584000107055125 a001 75025/9349*73681302247^(3/13) 2584000107055125 a001 75025/9349*10749957122^(1/4) 2584000107055125 a001 75025/9349*4106118243^(6/23) 2584000107055125 a001 75025/9349*1568397607^(3/11) 2584000107055125 a001 75025/9349*599074578^(2/7) 2584000107055125 a001 75025/9349*228826127^(3/10) 2584000107055125 a001 75025/9349*87403803^(6/19) 2584000107055125 a001 75025/9349*33385282^(1/3) 2584000107055126 a001 4181/167761*33385282^(2/3) 2584000107055130 a001 75025/9349*12752043^(6/17) 2584000107055135 a001 4181/167761*12752043^(12/17) 2584000107055165 a001 75025/9349*4870847^(3/8) 2584000107055206 a001 4181/167761*4870847^(3/4) 2584000107055423 a001 75025/9349*1860498^(2/5) 2584000107055721 a001 4181/167761*1860498^(4/5) 2584000107057317 a001 75025/9349*710647^(3/7) 2584000107059510 a001 4181/167761*710647^(6/7) 2584000107071311 a001 75025/9349*271443^(6/13) 2584000107076861 a001 196418/9349*103682^(5/12) 2584000107087496 a001 4181/167761*271443^(12/13) 2584000107090194 a001 313679525/121393 2584000107113093 a001 9227465/9349*39603^(1/11) 2584000107168706 a001 4181/24476*24476^(20/21) 2584000107175311 a001 75025/9349*103682^(1/2) 2584000107187959 a001 5702887/9349*39603^(3/22) 2584000107203683 a004 Fibonacci(19)*Lucas(24)/(1/2+sqrt(5)/2)^25 2584000107209560 a001 28657/9349*64079^(14/23) 2584000107258769 a001 9227465/103682*5778^(7/18) 2584000107262905 a001 3524578/9349*39603^(2/11) 2584000107337643 a001 2178309/9349*39603^(5/22) 2584000107412925 a001 1346269/9349*39603^(3/11) 2584000107464067 a001 24157817/271443*5778^(7/18) 2584000107486781 a001 832040/9349*39603^(7/22) 2584000107494020 a001 63245986/710647*5778^(7/18) 2584000107498390 a001 165580141/1860498*5778^(7/18) 2584000107499027 a001 433494437/4870847*5778^(7/18) 2584000107499120 a001 1134903170/12752043*5778^(7/18) 2584000107499134 a001 2971215073/33385282*5778^(7/18) 2584000107499136 a001 7778742049/87403803*5778^(7/18) 2584000107499136 a001 20365011074/228826127*5778^(7/18) 2584000107499136 a001 53316291173/599074578*5778^(7/18) 2584000107499136 a001 139583862445/1568397607*5778^(7/18) 2584000107499136 a001 365435296162/4106118243*5778^(7/18) 2584000107499136 a001 956722026041/10749957122*5778^(7/18) 2584000107499136 a001 2504730781961/28143753123*5778^(7/18) 2584000107499136 a001 6557470319842/73681302247*5778^(7/18) 2584000107499136 a001 10610209857723/119218851371*5778^(7/18) 2584000107499136 a001 4052739537881/45537549124*5778^(7/18) 2584000107499136 a001 1548008755920/17393796001*5778^(7/18) 2584000107499136 a001 591286729879/6643838879*5778^(7/18) 2584000107499136 a001 225851433717/2537720636*5778^(7/18) 2584000107499136 a001 86267571272/969323029*5778^(7/18) 2584000107499136 a001 32951280099/370248451*5778^(7/18) 2584000107499136 a001 12586269025/141422324*5778^(7/18) 2584000107499137 a001 4807526976/54018521*5778^(7/18) 2584000107499142 a001 1836311903/20633239*5778^(7/18) 2584000107499178 a001 3524667/39604*5778^(7/18) 2584000107499421 a001 267914296/3010349*5778^(7/18) 2584000107501090 a001 102334155/1149851*5778^(7/18) 2584000107512531 a001 39088169/439204*5778^(7/18) 2584000107512532 a001 1762289/12238*5778^(1/3) 2584000107527929 a001 14930352/9349*15127^(1/20) 2584000107564371 a001 514229/9349*39603^(4/11) 2584000107590948 a001 14930352/167761*5778^(7/18) 2584000107592587 a001 4181/64079*7881196^(2/3) 2584000107592613 a001 28657/9349*20633239^(2/5) 2584000107592615 a001 4181/64079*312119004989^(2/5) 2584000107592615 a001 4181/64079*(1/2+1/2*5^(1/2))^22 2584000107592615 a001 4181/64079*10749957122^(11/24) 2584000107592615 a001 4181/64079*4106118243^(11/23) 2584000107592615 a001 4181/64079*1568397607^(1/2) 2584000107592615 a001 4181/64079*599074578^(11/21) 2584000107592615 a001 4181/64079*228826127^(11/20) 2584000107592615 a001 4181/64079*87403803^(11/19) 2584000107592615 a001 28657/9349*17393796001^(2/7) 2584000107592615 a001 28657/9349*14662949395604^(2/9) 2584000107592615 a001 28657/9349*(1/2+1/2*5^(1/2))^14 2584000107592615 a001 28657/9349*10749957122^(7/24) 2584000107592615 a001 28657/9349*4106118243^(7/23) 2584000107592615 a001 28657/9349*1568397607^(7/22) 2584000107592615 a001 28657/9349*599074578^(1/3) 2584000107592615 a001 28657/9349*228826127^(7/20) 2584000107592615 a001 28657/9349*87403803^(7/19) 2584000107592616 a001 28657/9349*33385282^(7/18) 2584000107592616 a001 4181/64079*33385282^(11/18) 2584000107592622 a001 28657/9349*12752043^(7/17) 2584000107592625 a001 4181/64079*12752043^(11/17) 2584000107592663 a001 28657/9349*4870847^(7/16) 2584000107592690 a001 4181/64079*4870847^(11/16) 2584000107592963 a001 28657/9349*1860498^(7/15) 2584000107593162 a001 4181/64079*1860498^(11/15) 2584000107595173 a001 28657/9349*710647^(1/2) 2584000107596635 a001 4181/64079*710647^(11/14) 2584000107611499 a001 28657/9349*271443^(7/13) 2584000107622289 a001 4181/64079*271443^(11/13) 2584000107632188 a001 317811/9349*39603^(9/22) 2584000107696484 a001 46368/9349*39603^(13/22) 2584000107725588 a001 196418/9349*39603^(5/11) 2584000107732833 a001 28657/9349*103682^(7/12) 2584000107752011 a001 121393/9349*39603^(1/2) 2584000107812957 a001 4181/64079*103682^(11/12) 2584000107832988 a001 119814917/46368 2584000107953784 a001 75025/9349*39603^(6/11) 2584000107990291 a001 10946/9349*24476^(16/21) 2584000108092558 a001 9227465/9349*15127^(1/10) 2584000108128425 a001 5702887/64079*5778^(7/18) 2584000108519306 a001 4181/9349*9349^(18/19) 2584000108610851 a004 Fibonacci(19)*Lucas(22)/(1/2+sqrt(5)/2)^23 2584000108641051 a001 28657/9349*39603^(7/11) 2584000108657157 a001 5702887/9349*15127^(3/20) 2584000108908285 a001 63245986/39603*2207^(1/16) 2584000109101499 a001 317811/15127*5778^(5/9) 2584000109221835 a001 3524578/9349*15127^(1/5) 2584000109786306 a001 2178309/9349*15127^(1/4) 2584000110151451 a001 726103/13201*5778^(4/9) 2584000110315454 a001 165580141/103682*2207^(1/16) 2584000110351321 a001 1346269/9349*15127^(3/10) 2584000110520757 a001 433494437/271443*2207^(1/16) 2584000110550710 a001 1134903170/710647*2207^(1/16) 2584000110555080 a001 2971215073/1860498*2207^(1/16) 2584000110555718 a001 7778742049/4870847*2207^(1/16) 2584000110555811 a001 20365011074/12752043*2207^(1/16) 2584000110555824 a001 53316291173/33385282*2207^(1/16) 2584000110555826 a001 139583862445/87403803*2207^(1/16) 2584000110555827 a001 365435296162/228826127*2207^(1/16) 2584000110555827 a001 956722026041/599074578*2207^(1/16) 2584000110555827 a001 2504730781961/1568397607*2207^(1/16) 2584000110555827 a001 6557470319842/4106118243*2207^(1/16) 2584000110555827 a001 10610209857723/6643838879*2207^(1/16) 2584000110555827 a001 4052739537881/2537720636*2207^(1/16) 2584000110555827 a001 1548008755920/969323029*2207^(1/16) 2584000110555827 a001 591286729879/370248451*2207^(1/16) 2584000110555827 a001 225851433717/141422324*2207^(1/16) 2584000110555828 a001 86267571272/54018521*2207^(1/16) 2584000110555833 a001 32951280099/20633239*2207^(1/16) 2584000110555868 a001 12586269025/7881196*2207^(1/16) 2584000110556112 a001 4807526976/3010349*2207^(1/16) 2584000110557781 a001 1836311903/1149851*2207^(1/16) 2584000110569222 a001 701408733/439204*2207^(1/16) 2584000110647641 a001 267914296/167761*2207^(1/16) 2584000110729408 a001 4181/24476*64079^(20/23) 2584000110838852 a001 10946/9349*64079^(16/23) 2584000110914910 a001 832040/9349*15127^(7/20) 2584000111185132 a001 102334155/64079*2207^(1/16) 2584000111203178 a001 4181/24476*167761^(4/5) 2584000111263273 a001 14930352/9349*5778^(1/18) 2584000111276626 a001 4181/24476*20633239^(4/7) 2584000111276629 a001 4181/24476*2537720636^(4/9) 2584000111276629 a001 4181/24476*(1/2+1/2*5^(1/2))^20 2584000111276629 a001 4181/24476*23725150497407^(5/16) 2584000111276629 a001 4181/24476*505019158607^(5/14) 2584000111276629 a001 4181/24476*73681302247^(5/13) 2584000111276629 a001 4181/24476*28143753123^(2/5) 2584000111276629 a001 4181/24476*10749957122^(5/12) 2584000111276629 a001 4181/24476*4106118243^(10/23) 2584000111276629 a001 4181/24476*1568397607^(5/11) 2584000111276629 a001 4181/24476*599074578^(10/21) 2584000111276629 a001 4181/24476*228826127^(1/2) 2584000111276630 a001 4181/24476*87403803^(10/19) 2584000111276630 a001 10946/9349*(1/2+1/2*5^(1/2))^16 2584000111276630 a001 10946/9349*23725150497407^(1/4) 2584000111276630 a001 10946/9349*73681302247^(4/13) 2584000111276630 a001 10946/9349*10749957122^(1/3) 2584000111276630 a001 10946/9349*4106118243^(8/23) 2584000111276630 a001 10946/9349*1568397607^(4/11) 2584000111276630 a001 10946/9349*599074578^(8/21) 2584000111276630 a001 10946/9349*228826127^(2/5) 2584000111276630 a001 10946/9349*87403803^(8/19) 2584000111276631 a001 4181/24476*33385282^(5/9) 2584000111276631 a001 10946/9349*33385282^(4/9) 2584000111276637 a001 10946/9349*12752043^(8/17) 2584000111276639 a001 4181/24476*12752043^(10/17) 2584000111276684 a001 10946/9349*4870847^(1/2) 2584000111276698 a001 4181/24476*4870847^(5/8) 2584000111277028 a001 10946/9349*1860498^(8/15) 2584000111277127 a001 4181/24476*1860498^(2/3) 2584000111279554 a001 10946/9349*710647^(4/7) 2584000111280284 a001 4181/24476*710647^(5/7) 2584000111298211 a001 10946/9349*271443^(8/13) 2584000111303606 a001 4181/24476*271443^(10/13) 2584000111436878 a001 10946/9349*103682^(2/3) 2584000111476940 a001 4181/24476*103682^(5/6) 2584000111482231 a001 514229/9349*15127^(2/5) 2584000111558713 a001 5702887/103682*5778^(4/9) 2584000111764029 a001 4976784/90481*5778^(4/9) 2584000111793984 a001 39088169/710647*5778^(4/9) 2584000111798355 a001 831985/15126*5778^(4/9) 2584000111798993 a001 267914296/4870847*5778^(4/9) 2584000111799086 a001 233802911/4250681*5778^(4/9) 2584000111799099 a001 1836311903/33385282*5778^(4/9) 2584000111799101 a001 1602508992/29134601*5778^(4/9) 2584000111799101 a001 12586269025/228826127*5778^(4/9) 2584000111799101 a001 10983760033/199691526*5778^(4/9) 2584000111799101 a001 86267571272/1568397607*5778^(4/9) 2584000111799101 a001 75283811239/1368706081*5778^(4/9) 2584000111799101 a001 591286729879/10749957122*5778^(4/9) 2584000111799101 a001 12585437040/228811001*5778^(4/9) 2584000111799101 a001 4052739537881/73681302247*5778^(4/9) 2584000111799101 a001 3536736619241/64300051206*5778^(4/9) 2584000111799101 a001 6557470319842/119218851371*5778^(4/9) 2584000111799101 a001 2504730781961/45537549124*5778^(4/9) 2584000111799101 a001 956722026041/17393796001*5778^(4/9) 2584000111799101 a001 365435296162/6643838879*5778^(4/9) 2584000111799101 a001 139583862445/2537720636*5778^(4/9) 2584000111799101 a001 53316291173/969323029*5778^(4/9) 2584000111799101 a001 20365011074/370248451*5778^(4/9) 2584000111799102 a001 7778742049/141422324*5778^(4/9) 2584000111799102 a001 2971215073/54018521*5778^(4/9) 2584000111799108 a001 1134903170/20633239*5778^(4/9) 2584000111799143 a001 433494437/7881196*5778^(4/9) 2584000111799387 a001 165580141/3010349*5778^(4/9) 2584000111801056 a001 63245986/1149851*5778^(4/9) 2584000111812347 a001 2178309/24476*5778^(7/18) 2584000111812498 a001 24157817/439204*5778^(4/9) 2584000111890922 a001 9227465/167761*5778^(4/9) 2584000112039781 a001 317811/9349*15127^(9/20) 2584000112428448 a001 3524578/64079*5778^(4/9) 2584000112474842 a001 10946/9349*39603^(8/11) 2584000112622914 a001 196418/9349*15127^(1/2) 2584000112774394 a001 4181/24476*39603^(10/11) 2584000112924171 a001 45765226/17711 2584000113139070 a001 121393/9349*15127^(11/20) 2584000113419976 a001 196418/15127*5778^(11/18) 2584000113785082 a001 17711/9349*15127^(3/4) 2584000113830575 a001 75025/9349*15127^(3/5) 2584000114063008 a001 46368/9349*15127^(13/20) 2584000114451811 a001 1346269/39603*5778^(1/2) 2584000114869146 a001 39088169/24476*2207^(1/16) 2584000115497307 a001 28657/9349*15127^(7/10) 2584000115563247 a001 9227465/9349*5778^(1/9) 2584000115858735 a001 1762289/51841*5778^(1/2) 2584000116064003 a001 9227465/271443*5778^(1/2) 2584000116093951 a001 24157817/710647*5778^(1/2) 2584000116098321 a001 31622993/930249*5778^(1/2) 2584000116098958 a001 165580141/4870847*5778^(1/2) 2584000116099051 a001 433494437/12752043*5778^(1/2) 2584000116099065 a001 567451585/16692641*5778^(1/2) 2584000116099067 a001 2971215073/87403803*5778^(1/2) 2584000116099067 a001 7778742049/228826127*5778^(1/2) 2584000116099067 a001 10182505537/299537289*5778^(1/2) 2584000116099067 a001 53316291173/1568397607*5778^(1/2) 2584000116099067 a001 139583862445/4106118243*5778^(1/2) 2584000116099067 a001 182717648081/5374978561*5778^(1/2) 2584000116099067 a001 956722026041/28143753123*5778^(1/2) 2584000116099067 a001 2504730781961/73681302247*5778^(1/2) 2584000116099067 a001 3278735159921/96450076809*5778^(1/2) 2584000116099067 a001 10610209857723/312119004989*5778^(1/2) 2584000116099067 a001 4052739537881/119218851371*5778^(1/2) 2584000116099067 a001 387002188980/11384387281*5778^(1/2) 2584000116099067 a001 591286729879/17393796001*5778^(1/2) 2584000116099067 a001 225851433717/6643838879*5778^(1/2) 2584000116099067 a001 1135099622/33391061*5778^(1/2) 2584000116099067 a001 32951280099/969323029*5778^(1/2) 2584000116099067 a001 12586269025/370248451*5778^(1/2) 2584000116099067 a001 1201881744/35355581*5778^(1/2) 2584000116099068 a001 1836311903/54018521*5778^(1/2) 2584000116099073 a001 701408733/20633239*5778^(1/2) 2584000116099109 a001 66978574/1970299*5778^(1/2) 2584000116099352 a001 102334155/3010349*5778^(1/2) 2584000116101021 a001 39088169/1149851*5778^(1/2) 2584000116112460 a001 196452/5779*5778^(1/2) 2584000116112706 a001 1346269/24476*5778^(4/9) 2584000116190865 a001 5702887/167761*5778^(1/2) 2584000116728263 a001 2178309/64079*5778^(1/2) 2584000117471676 a001 10946/3571*3571^(14/17) 2584000117671476 a001 121393/15127*5778^(2/3) 2584000118255727 a004 Fibonacci(19)*Lucas(20)/(1/2+sqrt(5)/2)^21 2584000118750744 a001 832040/39603*5778^(5/9) 2584000118882970 a001 4181/3571*3571^(16/17) 2584000119863191 a001 5702887/9349*5778^(1/6) 2584000120158550 a001 46347/2206*5778^(5/9) 2584000120310564 a001 10946/9349*15127^(4/5) 2584000120363947 a001 5702887/271443*5778^(5/9) 2584000120393913 a001 14930352/710647*5778^(5/9) 2584000120398286 a001 39088169/1860498*5778^(5/9) 2584000120398923 a001 102334155/4870847*5778^(5/9) 2584000120399017 a001 267914296/12752043*5778^(5/9) 2584000120399030 a001 701408733/33385282*5778^(5/9) 2584000120399032 a001 1836311903/87403803*5778^(5/9) 2584000120399032 a001 102287808/4868641*5778^(5/9) 2584000120399032 a001 12586269025/599074578*5778^(5/9) 2584000120399032 a001 32951280099/1568397607*5778^(5/9) 2584000120399032 a001 86267571272/4106118243*5778^(5/9) 2584000120399032 a001 225851433717/10749957122*5778^(5/9) 2584000120399032 a001 591286729879/28143753123*5778^(5/9) 2584000120399032 a001 1548008755920/73681302247*5778^(5/9) 2584000120399032 a001 4052739537881/192900153618*5778^(5/9) 2584000120399032 a001 225749145909/10745088481*5778^(5/9) 2584000120399032 a001 6557470319842/312119004989*5778^(5/9) 2584000120399032 a001 2504730781961/119218851371*5778^(5/9) 2584000120399032 a001 956722026041/45537549124*5778^(5/9) 2584000120399032 a001 365435296162/17393796001*5778^(5/9) 2584000120399032 a001 139583862445/6643838879*5778^(5/9) 2584000120399032 a001 53316291173/2537720636*5778^(5/9) 2584000120399032 a001 20365011074/969323029*5778^(5/9) 2584000120399032 a001 7778742049/370248451*5778^(5/9) 2584000120399033 a001 2971215073/141422324*5778^(5/9) 2584000120399033 a001 1134903170/54018521*5778^(5/9) 2584000120399038 a001 433494437/20633239*5778^(5/9) 2584000120399074 a001 165580141/7881196*5778^(5/9) 2584000120399318 a001 63245986/3010349*5778^(5/9) 2584000120400988 a001 24157817/1149851*5778^(5/9) 2584000120411640 a001 208010/6119*5778^(1/2) 2584000120412434 a001 9227465/439204*5778^(5/9) 2584000120490888 a001 3524578/167761*5778^(5/9) 2584000121028622 a001 1346269/64079*5778^(5/9) 2584000122098326 a001 75025/15127*5778^(13/18) 2584000123053411 a001 514229/39603*5778^(11/18) 2584000123430475 a001 17711/3571*3571^(13/17) 2584000124163214 a001 3524578/9349*5778^(2/9) 2584000124458910 a001 1346269/103682*5778^(11/18) 2584000124663970 a001 3524578/271443*5778^(11/18) 2584000124693887 a001 9227465/710647*5778^(11/18) 2584000124698252 a001 24157817/1860498*5778^(11/18) 2584000124698889 a001 63245986/4870847*5778^(11/18) 2584000124698982 a001 165580141/12752043*5778^(11/18) 2584000124698996 a001 433494437/33385282*5778^(11/18) 2584000124698998 a001 1134903170/87403803*5778^(11/18) 2584000124698998 a001 2971215073/228826127*5778^(11/18) 2584000124698998 a001 7778742049/599074578*5778^(11/18) 2584000124698998 a001 20365011074/1568397607*5778^(11/18) 2584000124698998 a001 53316291173/4106118243*5778^(11/18) 2584000124698998 a001 139583862445/10749957122*5778^(11/18) 2584000124698998 a001 365435296162/28143753123*5778^(11/18) 2584000124698998 a001 956722026041/73681302247*5778^(11/18) 2584000124698998 a001 2504730781961/192900153618*5778^(11/18) 2584000124698998 a001 10610209857723/817138163596*5778^(11/18) 2584000124698998 a001 4052739537881/312119004989*5778^(11/18) 2584000124698998 a001 1548008755920/119218851371*5778^(11/18) 2584000124698998 a001 591286729879/45537549124*5778^(11/18) 2584000124698998 a001 7787980473/599786069*5778^(11/18) 2584000124698998 a001 86267571272/6643838879*5778^(11/18) 2584000124698998 a001 32951280099/2537720636*5778^(11/18) 2584000124698998 a001 12586269025/969323029*5778^(11/18) 2584000124698998 a001 4807526976/370248451*5778^(11/18) 2584000124698998 a001 1836311903/141422324*5778^(11/18) 2584000124698999 a001 701408733/54018521*5778^(11/18) 2584000124699004 a001 9238424/711491*5778^(11/18) 2584000124699039 a001 102334155/7881196*5778^(11/18) 2584000124699283 a001 39088169/3010349*5778^(11/18) 2584000124700950 a001 14930352/1149851*5778^(11/18) 2584000124712378 a001 5702887/439204*5778^(11/18) 2584000124714306 a001 514229/24476*5778^(5/9) 2584000124790703 a001 2178309/167761*5778^(11/18) 2584000125327556 a001 832040/64079*5778^(11/18) 2584000126066104 a001 6624/2161*5778^(7/9) 2584000127346305 a001 105937/13201*5778^(2/3) 2584000128463029 a001 2178309/9349*5778^(5/18) 2584000128757844 a001 416020/51841*5778^(2/3) 2584000128963785 a001 726103/90481*5778^(2/3) 2584000128993831 a001 5702887/710647*5778^(2/3) 2584000128998215 a001 829464/103361*5778^(2/3) 2584000128998854 a001 39088169/4870847*5778^(2/3) 2584000128998947 a001 34111385/4250681*5778^(2/3) 2584000128998961 a001 133957148/16692641*5778^(2/3) 2584000128998963 a001 233802911/29134601*5778^(2/3) 2584000128998963 a001 1836311903/228826127*5778^(2/3) 2584000128998963 a001 267084832/33281921*5778^(2/3) 2584000128998963 a001 12586269025/1568397607*5778^(2/3) 2584000128998963 a001 10983760033/1368706081*5778^(2/3) 2584000128998963 a001 43133785636/5374978561*5778^(2/3) 2584000128998963 a001 75283811239/9381251041*5778^(2/3) 2584000128998963 a001 591286729879/73681302247*5778^(2/3) 2584000128998963 a001 86000486440/10716675201*5778^(2/3) 2584000128998963 a001 4052739537881/505019158607*5778^(2/3) 2584000128998963 a001 3278735159921/408569081798*5778^(2/3) 2584000128998963 a001 2504730781961/312119004989*5778^(2/3) 2584000128998963 a001 956722026041/119218851371*5778^(2/3) 2584000128998963 a001 182717648081/22768774562*5778^(2/3) 2584000128998963 a001 139583862445/17393796001*5778^(2/3) 2584000128998963 a001 53316291173/6643838879*5778^(2/3) 2584000128998963 a001 10182505537/1268860318*5778^(2/3) 2584000128998963 a001 7778742049/969323029*5778^(2/3) 2584000128998963 a001 2971215073/370248451*5778^(2/3) 2584000128998964 a001 567451585/70711162*5778^(2/3) 2584000128998964 a001 433494437/54018521*5778^(2/3) 2584000128998969 a001 165580141/20633239*5778^(2/3) 2584000128999005 a001 31622993/3940598*5778^(2/3) 2584000128999249 a001 24157817/3010349*5778^(2/3) 2584000129000924 a001 9227465/1149851*5778^(2/3) 2584000129007201 a001 10959/844*5778^(11/18) 2584000129012401 a001 1762289/219602*5778^(2/3) 2584000129091063 a001 1346269/167761*5778^(2/3) 2584000129630223 a001 514229/64079*5778^(2/3) 2584000129929292 a001 55/199*322^(12/31) 2584000131235747 a001 28657/15127*5778^(5/6) 2584000131475807 r002 45th iterates of z^2 + 2584000131664783 a001 196418/39603*5778^(13/18) 2584000132213922 a001 17711-6765*5^(1/2) 2584000132419856 a001 14930352/15127*2207^(1/8) 2584000132625687 a001 726103/1926*2207^(1/4) 2584000132763388 a001 1346269/9349*5778^(1/3) 2584000132830111 a001 4181/9349*24476^(6/7) 2584000133060510 a001 514229/103682*5778^(13/18) 2584000133258867 a001 17711/15127*5778^(8/9) 2584000133264144 a001 1346269/271443*5778^(13/18) 2584000133293854 a001 3524578/710647*5778^(13/18) 2584000133298188 a001 9227465/1860498*5778^(13/18) 2584000133298821 a001 24157817/4870847*5778^(13/18) 2584000133298913 a001 63245986/12752043*5778^(13/18) 2584000133298927 a001 165580141/33385282*5778^(13/18) 2584000133298929 a001 433494437/87403803*5778^(13/18) 2584000133298929 a001 1134903170/228826127*5778^(13/18) 2584000133298929 a001 2971215073/599074578*5778^(13/18) 2584000133298929 a001 7778742049/1568397607*5778^(13/18) 2584000133298929 a001 20365011074/4106118243*5778^(13/18) 2584000133298929 a001 53316291173/10749957122*5778^(13/18) 2584000133298929 a001 139583862445/28143753123*5778^(13/18) 2584000133298929 a001 365435296162/73681302247*5778^(13/18) 2584000133298929 a001 956722026041/192900153618*5778^(13/18) 2584000133298929 a001 2504730781961/505019158607*5778^(13/18) 2584000133298929 a001 10610209857723/2139295485799*5778^(13/18) 2584000133298929 a001 140728068720/28374454999*5778^(13/18) 2584000133298929 a001 591286729879/119218851371*5778^(13/18) 2584000133298929 a001 225851433717/45537549124*5778^(13/18) 2584000133298929 a001 86267571272/17393796001*5778^(13/18) 2584000133298929 a001 32951280099/6643838879*5778^(13/18) 2584000133298929 a001 1144206275/230701876*5778^(13/18) 2584000133298929 a001 4807526976/969323029*5778^(13/18) 2584000133298929 a001 1836311903/370248451*5778^(13/18) 2584000133298929 a001 701408733/141422324*5778^(13/18) 2584000133298930 a001 267914296/54018521*5778^(13/18) 2584000133298935 a001 9303105/1875749*5778^(13/18) 2584000133298970 a001 39088169/7881196*5778^(13/18) 2584000133299212 a001 14930352/3010349*5778^(13/18) 2584000133300867 a001 5702887/1149851*5778^(13/18) 2584000133312216 a001 2178309/439204*5778^(13/18) 2584000133325679 a001 98209/12238*5778^(2/3) 2584000133389997 a001 75640/15251*5778^(13/18) 2584000133923117 a001 317811/64079*5778^(13/18) 2584000135916283 a001 121393/39603*5778^(7/9) 2584000136034743 a001 4181/9349*64079^(18/23) 2584000136518312 a001 4181/9349*439204^(2/3) 2584000136527220 a001 4181/9349*7881196^(6/11) 2584000136527242 a001 4181/9349*141422324^(6/13) 2584000136527242 a001 4181/9349*2537720636^(2/5) 2584000136527242 a001 4181/9349*45537549124^(6/17) 2584000136527242 a001 4181/9349*14662949395604^(2/7) 2584000136527242 a001 4181/9349*(1/2+1/2*5^(1/2))^18 2584000136527242 a001 4181/9349*192900153618^(1/3) 2584000136527242 a001 4181/9349*10749957122^(3/8) 2584000136527242 a001 4181/9349*4106118243^(9/23) 2584000136527242 a001 4181/9349*1568397607^(9/22) 2584000136527242 a001 4181/9349*599074578^(3/7) 2584000136527242 a001 4181/9349*228826127^(9/20) 2584000136527243 a001 4181/9349*87403803^(9/19) 2584000136527244 a001 4181/9349*33385282^(1/2) 2584000136527251 a001 4181/9349*12752043^(9/17) 2584000136527304 a001 4181/9349*4870847^(9/16) 2584000136527690 a001 4181/9349*1860498^(3/5) 2584000136530532 a001 4181/9349*710647^(9/14) 2584000136551522 a001 4181/9349*271443^(9/13) 2584000136707522 a001 4181/9349*103682^(3/4) 2584000137062322 a001 832040/9349*5778^(7/18) 2584000137353405 a001 317811/103682*5778^(7/9) 2584000137563078 a001 832040/271443*5778^(7/9) 2584000137577179 a001 121393/24476*5778^(13/18) 2584000137593669 a001 311187/101521*5778^(7/9) 2584000137598132 a001 5702887/1860498*5778^(7/9) 2584000137598783 a001 14930352/4870847*5778^(7/9) 2584000137598878 a001 39088169/12752043*5778^(7/9) 2584000137598892 a001 14619165/4769326*5778^(7/9) 2584000137598894 a001 267914296/87403803*5778^(7/9) 2584000137598894 a001 701408733/228826127*5778^(7/9) 2584000137598894 a001 1836311903/599074578*5778^(7/9) 2584000137598894 a001 686789568/224056801*5778^(7/9) 2584000137598894 a001 12586269025/4106118243*5778^(7/9) 2584000137598894 a001 32951280099/10749957122*5778^(7/9) 2584000137598894 a001 86267571272/28143753123*5778^(7/9) 2584000137598894 a001 32264490531/10525900321*5778^(7/9) 2584000137598894 a001 591286729879/192900153618*5778^(7/9) 2584000137598894 a001 1548008755920/505019158607*5778^(7/9) 2584000137598894 a001 1515744265389/494493258286*5778^(7/9) 2584000137598894 a001 2504730781961/817138163596*5778^(7/9) 2584000137598894 a001 956722026041/312119004989*5778^(7/9) 2584000137598894 a001 365435296162/119218851371*5778^(7/9) 2584000137598894 a001 139583862445/45537549124*5778^(7/9) 2584000137598894 a001 53316291173/17393796001*5778^(7/9) 2584000137598894 a001 20365011074/6643838879*5778^(7/9) 2584000137598894 a001 7778742049/2537720636*5778^(7/9) 2584000137598894 a001 2971215073/969323029*5778^(7/9) 2584000137598894 a001 1134903170/370248451*5778^(7/9) 2584000137598895 a001 433494437/141422324*5778^(7/9) 2584000137598895 a001 165580141/54018521*5778^(7/9) 2584000137598901 a001 63245986/20633239*5778^(7/9) 2584000137598937 a001 24157817/7881196*5778^(7/9) 2584000137599186 a001 9227465/3010349*5778^(7/9) 2584000137600890 a001 3524578/1149851*5778^(7/9) 2584000137612575 a001 1346269/439204*5778^(7/9) 2584000137626981 a001 28657/3571*3571^(12/17) 2584000137692663 a001 514229/167761*5778^(7/9) 2584000137875231 a001 4181/9349*39603^(9/11) 2584000138241595 a001 196418/64079*5778^(7/9) 2584000140119757 a001 14930352/9349*2207^(1/16) 2584000140343133 a001 75025/39603*5778^(5/6) 2584000141364988 a001 514229/9349*5778^(4/9) 2584000141594009 r005 Re(z^2+c),c=-4/5+7/46*I,n=32 2584000141671882 a001 98209/51841*5778^(5/6) 2584000141865744 a001 514229/271443*5778^(5/6) 2584000141894028 a001 1346269/710647*5778^(5/6) 2584000141898155 a001 1762289/930249*5778^(5/6) 2584000141898757 a001 9227465/4870847*5778^(5/6) 2584000141898845 a001 24157817/12752043*5778^(5/6) 2584000141898858 a001 31622993/16692641*5778^(5/6) 2584000141898860 a001 165580141/87403803*5778^(5/6) 2584000141898860 a001 433494437/228826127*5778^(5/6) 2584000141898860 a001 567451585/299537289*5778^(5/6) 2584000141898860 a001 2971215073/1568397607*5778^(5/6) 2584000141898860 a001 7778742049/4106118243*5778^(5/6) 2584000141898860 a001 10182505537/5374978561*5778^(5/6) 2584000141898860 a001 53316291173/28143753123*5778^(5/6) 2584000141898860 a001 139583862445/73681302247*5778^(5/6) 2584000141898860 a001 182717648081/96450076809*5778^(5/6) 2584000141898860 a001 956722026041/505019158607*5778^(5/6) 2584000141898860 a001 10610209857723/5600748293801*5778^(5/6) 2584000141898860 a001 591286729879/312119004989*5778^(5/6) 2584000141898860 a001 225851433717/119218851371*5778^(5/6) 2584000141898860 a001 21566892818/11384387281*5778^(5/6) 2584000141898860 a001 32951280099/17393796001*5778^(5/6) 2584000141898860 a001 12586269025/6643838879*5778^(5/6) 2584000141898860 a001 1201881744/634430159*5778^(5/6) 2584000141898860 a001 1836311903/969323029*5778^(5/6) 2584000141898860 a001 701408733/370248451*5778^(5/6) 2584000141898860 a001 66978574/35355581*5778^(5/6) 2584000141898861 a001 102334155/54018521*5778^(5/6) 2584000141898866 a001 39088169/20633239*5778^(5/6) 2584000141898899 a001 3732588/1970299*5778^(5/6) 2584000141899129 a001 5702887/3010349*5778^(5/6) 2584000141900705 a001 2178309/1149851*5778^(5/6) 2584000141911509 a001 208010/109801*5778^(5/6) 2584000141985558 a001 317811/167761*5778^(5/6) 2584000142004028 a001 75025/24476*5778^(7/9) 2584000142064734 a001 39088169/39603*2207^(1/8) 2584000142493095 a001 121393/64079*5778^(5/6) 2584000142884913 a007 Real Root Of 30*x^4+746*x^3-732*x^2+601*x+487 2584000143471903 a001 102334155/103682*2207^(1/8) 2584000143506339 a004 Fibonacci(20)*Lucas(18)/(1/2+sqrt(5)/2)^20 2584000143519693 a001 10946/15127*5778^(17/18) 2584000143677206 a001 267914296/271443*2207^(1/8) 2584000143707159 a001 701408733/710647*2207^(1/8) 2584000143711530 a001 1836311903/1860498*2207^(1/8) 2584000143712167 a001 4807526976/4870847*2207^(1/8) 2584000143712260 a001 12586269025/12752043*2207^(1/8) 2584000143712274 a001 32951280099/33385282*2207^(1/8) 2584000143712276 a001 86267571272/87403803*2207^(1/8) 2584000143712276 a001 225851433717/228826127*2207^(1/8) 2584000143712276 a001 591286729879/599074578*2207^(1/8) 2584000143712276 a001 1548008755920/1568397607*2207^(1/8) 2584000143712276 a001 4052739537881/4106118243*2207^(1/8) 2584000143712276 a001 4807525989/4870846*2207^(1/8) 2584000143712276 a001 6557470319842/6643838879*2207^(1/8) 2584000143712276 a001 2504730781961/2537720636*2207^(1/8) 2584000143712276 a001 956722026041/969323029*2207^(1/8) 2584000143712276 a001 365435296162/370248451*2207^(1/8) 2584000143712276 a001 139583862445/141422324*2207^(1/8) 2584000143712277 a001 53316291173/54018521*2207^(1/8) 2584000143712282 a001 20365011074/20633239*2207^(1/8) 2584000143712318 a001 7778742049/7881196*2207^(1/8) 2584000143712561 a001 2971215073/3010349*2207^(1/8) 2584000143714230 a001 1134903170/1149851*2207^(1/8) 2584000143725672 a001 433494437/439204*2207^(1/8) 2584000143804090 a001 165580141/167761*2207^(1/8) 2584000144310911 a001 15456/13201*5778^(8/9) 2584000144341581 a001 63245986/64079*2207^(1/8) 2584000145657883 a001 317811/9349*5778^(1/2) 2584000145923382 a001 121393/103682*5778^(8/9) 2584000145971806 a001 11592/6119*5778^(5/6) 2584000146158639 a001 105937/90481*5778^(8/9) 2584000146192962 a001 832040/710647*5778^(8/9) 2584000146197970 a001 726103/620166*5778^(8/9) 2584000146198701 a001 5702887/4870847*5778^(8/9) 2584000146198807 a001 4976784/4250681*5778^(8/9) 2584000146198823 a001 39088169/33385282*5778^(8/9) 2584000146198825 a001 34111385/29134601*5778^(8/9) 2584000146198825 a001 267914296/228826127*5778^(8/9) 2584000146198825 a001 233802911/199691526*5778^(8/9) 2584000146198825 a001 1836311903/1568397607*5778^(8/9) 2584000146198825 a001 1602508992/1368706081*5778^(8/9) 2584000146198825 a001 12586269025/10749957122*5778^(8/9) 2584000146198825 a001 10983760033/9381251041*5778^(8/9) 2584000146198825 a001 86267571272/73681302247*5778^(8/9) 2584000146198825 a001 75283811239/64300051206*5778^(8/9) 2584000146198825 a001 2504730781961/2139295485799*5778^(8/9) 2584000146198825 a001 365435296162/312119004989*5778^(8/9) 2584000146198825 a001 139583862445/119218851371*5778^(8/9) 2584000146198825 a001 53316291173/45537549124*5778^(8/9) 2584000146198825 a001 20365011074/17393796001*5778^(8/9) 2584000146198825 a001 7778742049/6643838879*5778^(8/9) 2584000146198825 a001 2971215073/2537720636*5778^(8/9) 2584000146198825 a001 1134903170/969323029*5778^(8/9) 2584000146198825 a001 433494437/370248451*5778^(8/9) 2584000146198826 a001 165580141/141422324*5778^(8/9) 2584000146198826 a001 63245986/54018521*5778^(8/9) 2584000146198832 a001 24157817/20633239*5778^(8/9) 2584000146198873 a001 9227465/7881196*5778^(8/9) 2584000146199152 a001 3524578/3010349*5778^(8/9) 2584000146201065 a001 1346269/1149851*5778^(8/9) 2584000146214175 a001 514229/439204*5778^(8/9) 2584000146304035 a001 196418/167761*5778^(8/9) 2584000146690418 a001 4181/9349*15127^(9/10) 2584000146919945 a001 75025/64079*5778^(8/9) 2584000147819660 a001 17480761/6765 2584000148025597 a001 24157817/24476*2207^(1/8) 2584000148676963 a001 46368/3571*3571^(11/17) 2584000149480554 a001 28657/39603*5778^(17/18) 2584000149976361 a001 196418/9349*5778^(5/9) 2584000150350232 a001 75025/103682*5778^(17/18) 2584000150477117 a001 196418/271443*5778^(17/18) 2584000150495629 a001 514229/710647*5778^(17/18) 2584000150498330 a001 1346269/1860498*5778^(17/18) 2584000150498724 a001 3524578/4870847*5778^(17/18) 2584000150498781 a001 9227465/12752043*5778^(17/18) 2584000150498790 a001 24157817/33385282*5778^(17/18) 2584000150498791 a001 63245986/87403803*5778^(17/18) 2584000150498791 a001 165580141/228826127*5778^(17/18) 2584000150498791 a001 433494437/599074578*5778^(17/18) 2584000150498791 a001 1134903170/1568397607*5778^(17/18) 2584000150498791 a001 2971215073/4106118243*5778^(17/18) 2584000150498791 a001 7778742049/10749957122*5778^(17/18) 2584000150498791 a001 20365011074/28143753123*5778^(17/18) 2584000150498791 a001 53316291173/73681302247*5778^(17/18) 2584000150498791 a001 139583862445/192900153618*5778^(17/18) 2584000150498791 a001 10610209857723/14662949395604*5778^(17/18) 2584000150498791 a001 591286729879/817138163596*5778^(17/18) 2584000150498791 a001 225851433717/312119004989*5778^(17/18) 2584000150498791 a001 86267571272/119218851371*5778^(17/18) 2584000150498791 a001 32951280099/45537549124*5778^(17/18) 2584000150498791 a001 12586269025/17393796001*5778^(17/18) 2584000150498791 a001 4807526976/6643838879*5778^(17/18) 2584000150498791 a001 1836311903/2537720636*5778^(17/18) 2584000150498791 a001 701408733/969323029*5778^(17/18) 2584000150498791 a001 267914296/370248451*5778^(17/18) 2584000150498791 a001 102334155/141422324*5778^(17/18) 2584000150498791 a001 39088169/54018521*5778^(17/18) 2584000150498795 a001 14930352/20633239*5778^(17/18) 2584000150498817 a001 5702887/7881196*5778^(17/18) 2584000150498967 a001 2178309/3010349*5778^(17/18) 2584000150499999 a001 832040/1149851*5778^(17/18) 2584000150507070 a001 317811/439204*5778^(17/18) 2584000150555535 a001 121393/167761*5778^(17/18) 2584000150887723 a001 46368/64079*5778^(17/18) 2584000151141450 a001 28657/24476*5778^(8/9) 2584000153151215 a004 Fibonacci(22)*Lucas(18)/(1/2+sqrt(5)/2)^22 2584000153164569 a001 17711/24476*5778^(17/18) 2584000154227861 a001 121393/9349*5778^(11/18) 2584000154558383 a004 Fibonacci(24)*Lucas(18)/(1/2+sqrt(5)/2)^24 2584000154751561 r005 Re(z^2+c),c=-13/40+1/56*I,n=13 2584000154763687 a004 Fibonacci(26)*Lucas(18)/(1/2+sqrt(5)/2)^26 2584000154793640 a004 Fibonacci(28)*Lucas(18)/(1/2+sqrt(5)/2)^28 2584000154798010 a004 Fibonacci(30)*Lucas(18)/(1/2+sqrt(5)/2)^30 2584000154798648 a004 Fibonacci(32)*Lucas(18)/(1/2+sqrt(5)/2)^32 2584000154798741 a004 Fibonacci(34)*Lucas(18)/(1/2+sqrt(5)/2)^34 2584000154798754 a004 Fibonacci(36)*Lucas(18)/(1/2+sqrt(5)/2)^36 2584000154798756 a004 Fibonacci(38)*Lucas(18)/(1/2+sqrt(5)/2)^38 2584000154798756 a004 Fibonacci(40)*Lucas(18)/(1/2+sqrt(5)/2)^40 2584000154798756 a004 Fibonacci(42)*Lucas(18)/(1/2+sqrt(5)/2)^42 2584000154798756 a004 Fibonacci(44)*Lucas(18)/(1/2+sqrt(5)/2)^44 2584000154798756 a004 Fibonacci(46)*Lucas(18)/(1/2+sqrt(5)/2)^46 2584000154798756 a004 Fibonacci(48)*Lucas(18)/(1/2+sqrt(5)/2)^48 2584000154798756 a004 Fibonacci(50)*Lucas(18)/(1/2+sqrt(5)/2)^50 2584000154798756 a004 Fibonacci(52)*Lucas(18)/(1/2+sqrt(5)/2)^52 2584000154798756 a004 Fibonacci(54)*Lucas(18)/(1/2+sqrt(5)/2)^54 2584000154798756 a004 Fibonacci(56)*Lucas(18)/(1/2+sqrt(5)/2)^56 2584000154798756 a004 Fibonacci(58)*Lucas(18)/(1/2+sqrt(5)/2)^58 2584000154798756 a004 Fibonacci(60)*Lucas(18)/(1/2+sqrt(5)/2)^60 2584000154798756 a004 Fibonacci(62)*Lucas(18)/(1/2+sqrt(5)/2)^62 2584000154798756 a004 Fibonacci(64)*Lucas(18)/(1/2+sqrt(5)/2)^64 2584000154798756 a004 Fibonacci(66)*Lucas(18)/(1/2+sqrt(5)/2)^66 2584000154798756 a004 Fibonacci(68)*Lucas(18)/(1/2+sqrt(5)/2)^68 2584000154798756 a004 Fibonacci(70)*Lucas(18)/(1/2+sqrt(5)/2)^70 2584000154798756 a004 Fibonacci(72)*Lucas(18)/(1/2+sqrt(5)/2)^72 2584000154798756 a004 Fibonacci(74)*Lucas(18)/(1/2+sqrt(5)/2)^74 2584000154798756 a004 Fibonacci(76)*Lucas(18)/(1/2+sqrt(5)/2)^76 2584000154798756 a004 Fibonacci(78)*Lucas(18)/(1/2+sqrt(5)/2)^78 2584000154798756 a004 Fibonacci(80)*Lucas(18)/(1/2+sqrt(5)/2)^80 2584000154798756 a004 Fibonacci(82)*Lucas(18)/(1/2+sqrt(5)/2)^82 2584000154798756 a004 Fibonacci(84)*Lucas(18)/(1/2+sqrt(5)/2)^84 2584000154798756 a004 Fibonacci(86)*Lucas(18)/(1/2+sqrt(5)/2)^86 2584000154798756 a004 Fibonacci(88)*Lucas(18)/(1/2+sqrt(5)/2)^88 2584000154798756 a004 Fibonacci(90)*Lucas(18)/(1/2+sqrt(5)/2)^90 2584000154798756 a004 Fibonacci(92)*Lucas(18)/(1/2+sqrt(5)/2)^92 2584000154798756 a004 Fibonacci(94)*Lucas(18)/(1/2+sqrt(5)/2)^94 2584000154798756 a004 Fibonacci(96)*Lucas(18)/(1/2+sqrt(5)/2)^96 2584000154798756 a004 Fibonacci(100)*Lucas(18)/(1/2+sqrt(5)/2)^100 2584000154798756 a004 Fibonacci(98)*Lucas(18)/(1/2+sqrt(5)/2)^98 2584000154798756 a004 Fibonacci(99)*Lucas(18)/(1/2+sqrt(5)/2)^99 2584000154798756 a004 Fibonacci(97)*Lucas(18)/(1/2+sqrt(5)/2)^97 2584000154798756 a004 Fibonacci(95)*Lucas(18)/(1/2+sqrt(5)/2)^95 2584000154798756 a004 Fibonacci(93)*Lucas(18)/(1/2+sqrt(5)/2)^93 2584000154798756 a004 Fibonacci(91)*Lucas(18)/(1/2+sqrt(5)/2)^91 2584000154798756 a004 Fibonacci(89)*Lucas(18)/(1/2+sqrt(5)/2)^89 2584000154798756 a004 Fibonacci(87)*Lucas(18)/(1/2+sqrt(5)/2)^87 2584000154798756 a004 Fibonacci(85)*Lucas(18)/(1/2+sqrt(5)/2)^85 2584000154798756 a004 Fibonacci(83)*Lucas(18)/(1/2+sqrt(5)/2)^83 2584000154798756 a004 Fibonacci(81)*Lucas(18)/(1/2+sqrt(5)/2)^81 2584000154798756 a004 Fibonacci(79)*Lucas(18)/(1/2+sqrt(5)/2)^79 2584000154798756 a004 Fibonacci(77)*Lucas(18)/(1/2+sqrt(5)/2)^77 2584000154798756 a004 Fibonacci(75)*Lucas(18)/(1/2+sqrt(5)/2)^75 2584000154798756 a004 Fibonacci(73)*Lucas(18)/(1/2+sqrt(5)/2)^73 2584000154798756 a004 Fibonacci(71)*Lucas(18)/(1/2+sqrt(5)/2)^71 2584000154798756 a004 Fibonacci(69)*Lucas(18)/(1/2+sqrt(5)/2)^69 2584000154798756 a004 Fibonacci(67)*Lucas(18)/(1/2+sqrt(5)/2)^67 2584000154798756 a004 Fibonacci(65)*Lucas(18)/(1/2+sqrt(5)/2)^65 2584000154798756 a004 Fibonacci(63)*Lucas(18)/(1/2+sqrt(5)/2)^63 2584000154798756 a004 Fibonacci(61)*Lucas(18)/(1/2+sqrt(5)/2)^61 2584000154798756 a004 Fibonacci(59)*Lucas(18)/(1/2+sqrt(5)/2)^59 2584000154798756 a004 Fibonacci(57)*Lucas(18)/(1/2+sqrt(5)/2)^57 2584000154798756 a004 Fibonacci(55)*Lucas(18)/(1/2+sqrt(5)/2)^55 2584000154798756 a004 Fibonacci(53)*Lucas(18)/(1/2+sqrt(5)/2)^53 2584000154798756 a004 Fibonacci(51)*Lucas(18)/(1/2+sqrt(5)/2)^51 2584000154798756 a004 Fibonacci(49)*Lucas(18)/(1/2+sqrt(5)/2)^49 2584000154798756 a004 Fibonacci(47)*Lucas(18)/(1/2+sqrt(5)/2)^47 2584000154798756 a004 Fibonacci(45)*Lucas(18)/(1/2+sqrt(5)/2)^45 2584000154798756 a004 Fibonacci(43)*Lucas(18)/(1/2+sqrt(5)/2)^43 2584000154798756 a004 Fibonacci(41)*Lucas(18)/(1/2+sqrt(5)/2)^41 2584000154798757 a004 Fibonacci(39)*Lucas(18)/(1/2+sqrt(5)/2)^39 2584000154798757 a004 Fibonacci(37)*Lucas(18)/(1/2+sqrt(5)/2)^37 2584000154798759 a001 1/1292*(1/2+1/2*5^(1/2))^36 2584000154798763 a004 Fibonacci(35)*Lucas(18)/(1/2+sqrt(5)/2)^35 2584000154798798 a004 Fibonacci(33)*Lucas(18)/(1/2+sqrt(5)/2)^33 2584000154799042 a004 Fibonacci(31)*Lucas(18)/(1/2+sqrt(5)/2)^31 2584000154800711 a004 Fibonacci(29)*Lucas(18)/(1/2+sqrt(5)/2)^29 2584000154812152 a004 Fibonacci(27)*Lucas(18)/(1/2+sqrt(5)/2)^27 2584000154890571 a004 Fibonacci(25)*Lucas(18)/(1/2+sqrt(5)/2)^25 2584000155428061 a004 Fibonacci(23)*Lucas(18)/(1/2+sqrt(5)/2)^23 2584000158654711 a001 75025/9349*5778^(2/3) 2584000159112076 a004 Fibonacci(21)*Lucas(18)/(1/2+sqrt(5)/2)^21 2584000160928810 a001 75025/3571*3571^(10/17) 2584000162622489 a001 46368/9349*5778^(13/18) 2584000163094357 r009 Re(z^3+c),c=-27/56+31/59*I,n=18 2584000163218479 m001 (Artin-Magata)/(cos(1/12*Pi)+exp(-1/2*Pi)) 2584000165576314 a001 9227465/15127*2207^(3/16) 2584000165782530 a001 1346269/5778*2207^(5/16) 2584000166624896 m002 1+E^Pi/2+Cosh[Pi]*Log[Pi] 2584000167792132 a001 28657/9349*5778^(7/9) 2584000168770306 a001 6765/9349*5778^(17/18) 2584000169198115 m001 1/exp(GAMMA(7/12))/Riemann1stZero^2*cosh(1)^2 2584000169815251 a001 17711/9349*5778^(5/6) 2584000172721586 a001 121393/3571*3571^(9/17) 2584000173070271 a001 5473-1292*5^(1/2) 2584000173276215 a001 9227465/9349*2207^(1/8) 2584000175180590 m001 ln(gamma)*(Bloch-ZetaQ(4)) 2584000175221185 a001 24157817/39603*2207^(3/16) 2584000175555575 a007 Real Root Of -123*x^4-150*x^3+148*x^2-482*x+662 2584000176182273 a001 2584/3571*9349^(17/19) 2584000176628353 a001 31622993/51841*2207^(3/16) 2584000176833656 a001 165580141/271443*2207^(3/16) 2584000176863609 a001 433494437/710647*2207^(3/16) 2584000176867979 a001 567451585/930249*2207^(3/16) 2584000176868617 a001 2971215073/4870847*2207^(3/16) 2584000176868710 a001 7778742049/12752043*2207^(3/16) 2584000176868723 a001 10182505537/16692641*2207^(3/16) 2584000176868725 a001 53316291173/87403803*2207^(3/16) 2584000176868726 a001 139583862445/228826127*2207^(3/16) 2584000176868726 a001 182717648081/299537289*2207^(3/16) 2584000176868726 a001 956722026041/1568397607*2207^(3/16) 2584000176868726 a001 2504730781961/4106118243*2207^(3/16) 2584000176868726 a001 3278735159921/5374978561*2207^(3/16) 2584000176868726 a001 10610209857723/17393796001*2207^(3/16) 2584000176868726 a001 4052739537881/6643838879*2207^(3/16) 2584000176868726 a001 1134903780/1860499*2207^(3/16) 2584000176868726 a001 591286729879/969323029*2207^(3/16) 2584000176868726 a001 225851433717/370248451*2207^(3/16) 2584000176868726 a001 21566892818/35355581*2207^(3/16) 2584000176868727 a001 32951280099/54018521*2207^(3/16) 2584000176868732 a001 1144206275/1875749*2207^(3/16) 2584000176868767 a001 1201881744/1970299*2207^(3/16) 2584000176869011 a001 1836311903/3010349*2207^(3/16) 2584000176870680 a001 701408733/1149851*2207^(3/16) 2584000176882121 a001 66978574/109801*2207^(3/16) 2584000176960540 a001 9303105/15251*2207^(3/16) 2584000177498030 a001 39088169/64079*2207^(3/16) 2584000180076078 a001 10946/9349*5778^(8/9) 2584000180270872 m005 (1/2*2^(1/2)-7/8)/(10/11*gamma+1/8) 2584000180581391 m001 (FeigenbaumAlpha-ln(3))^exp(Pi) 2584000181182043 a001 3732588/6119*2207^(3/16) 2584000184362689 a004 Fibonacci(19)*Lucas(18)/(1/2+sqrt(5)/2)^19 2584000184689711 a001 196418/3571*3571^(8/17) 2584000187441852 a001 1597*1364^(1/15) 2584000196590859 a001 317811/3571*3571^(7/17) 2584000198731672 a001 1597/5778*24476^(19/21) 2584000198732742 a001 5702887/15127*2207^(1/4) 2584000198937949 a001 416020/2889*2207^(3/8) 2584000199142478 a001 2584/3571*24476^(17/21) 2584000199555037 a001 4181/1364*1364^(14/15) 2584000202114339 a001 1597/5778*64079^(19/23) 2584000202169075 a001 2584/3571*64079^(17/23) 2584000202634199 a001 1597/5778*817138163596^(1/3) 2584000202634199 a001 1597/5778*(1/2+1/2*5^(1/2))^19 2584000202634200 a001 1597/5778*87403803^(1/2) 2584000202634213 a001 2584/3571*45537549124^(1/3) 2584000202634213 a001 2584/3571*(1/2+1/2*5^(1/2))^17 2584000202634221 a001 2584/3571*12752043^(1/2) 2584000202804477 a001 2584/3571*103682^(17/24) 2584000202824495 a001 1597/5778*103682^(19/24) 2584000203907313 a001 2584/3571*39603^(17/22) 2584000204057076 a001 1597/5778*39603^(19/22) 2584000206432643 a001 5702887/9349*2207^(3/16) 2584000208377632 a001 4976784/13201*2207^(1/4) 2584000208517590 a001 514229/3571*3571^(6/17) 2584000209784802 a001 39088169/103682*2207^(1/4) 2584000209990106 a001 34111385/90481*2207^(1/4) 2584000210020059 a001 267914296/710647*2207^(1/4) 2584000210024429 a001 233802911/620166*2207^(1/4) 2584000210025067 a001 1836311903/4870847*2207^(1/4) 2584000210025160 a001 1602508992/4250681*2207^(1/4) 2584000210025174 a001 12586269025/33385282*2207^(1/4) 2584000210025176 a001 10983760033/29134601*2207^(1/4) 2584000210025176 a001 86267571272/228826127*2207^(1/4) 2584000210025176 a001 267913919/710646*2207^(1/4) 2584000210025176 a001 591286729879/1568397607*2207^(1/4) 2584000210025176 a001 516002918640/1368706081*2207^(1/4) 2584000210025176 a001 4052739537881/10749957122*2207^(1/4) 2584000210025176 a001 3536736619241/9381251041*2207^(1/4) 2584000210025176 a001 6557470319842/17393796001*2207^(1/4) 2584000210025176 a001 2504730781961/6643838879*2207^(1/4) 2584000210025176 a001 956722026041/2537720636*2207^(1/4) 2584000210025176 a001 365435296162/969323029*2207^(1/4) 2584000210025176 a001 139583862445/370248451*2207^(1/4) 2584000210025176 a001 53316291173/141422324*2207^(1/4) 2584000210025177 a001 20365011074/54018521*2207^(1/4) 2584000210025182 a001 7778742049/20633239*2207^(1/4) 2584000210025217 a001 2971215073/7881196*2207^(1/4) 2584000210025461 a001 1134903170/3010349*2207^(1/4) 2584000210027130 a001 433494437/1149851*2207^(1/4) 2584000210038571 a001 165580141/439204*2207^(1/4) 2584000210116990 a001 63245986/167761*2207^(1/4) 2584000210654482 a001 24157817/64079*2207^(1/4) 2584000212232768 a001 2584/3571*15127^(17/20) 2584000213361996 a001 1597/5778*15127^(19/20) 2584000213881488 a007 Real Root Of -445*x^4-990*x^3+702*x^2+700*x-120 2584000213926620 a001 -6765+4181*5^(1/2) 2584000214338502 a001 9227465/24476*2207^(1/4) 2584000216702316 a001 33385282*144^(7/17) 2584000220434549 a001 832040/3571*3571^(5/17) 2584000224628400 m008 (2/5*Pi^3-2/5)/(1/6*Pi^2+3) 2584000227651751 r009 Im(z^3+c),c=-15/122+27/32*I,n=64 2584000229794548 a001 844/13*4181^(28/39) 2584000231224719 a007 Real Root Of -271*x^4-685*x^3-5*x^2-241*x-326 2584000231889250 a001 3524578/15127*2207^(5/16) 2584000232097100 a001 514229/5778*2207^(7/16) 2584000232355241 a001 1346269/3571*3571^(4/17) 2584000232689304 a007 Real Root Of -196*x^4-403*x^3+63*x^2-446*x+212 2584000233219906 m001 Zeta(7)/exp(Riemann2ndZero)*sin(Pi/5)^2 2584000235015400 m001 (Khinchin+Magata)/(3^(1/2)+Kac) 2584000239177230 a001 10803705/4181 2584000239177233 a001 26073/2-9349/2*5^(1/2) 2584000239589151 a001 3524578/9349*2207^(1/4) 2584000239754222 m001 PisotVijayaraghavan^2*Artin^2/ln(Sierpinski) 2584000241534091 a001 9227465/39603*2207^(5/16) 2584000242941254 a001 24157817/103682*2207^(5/16) 2584000243146557 a001 63245986/271443*2207^(5/16) 2584000243176510 a001 165580141/710647*2207^(5/16) 2584000243180880 a001 433494437/1860498*2207^(5/16) 2584000243181517 a001 1134903170/4870847*2207^(5/16) 2584000243181610 a001 2971215073/12752043*2207^(5/16) 2584000243181624 a001 7778742049/33385282*2207^(5/16) 2584000243181626 a001 20365011074/87403803*2207^(5/16) 2584000243181626 a001 53316291173/228826127*2207^(5/16) 2584000243181626 a001 139583862445/599074578*2207^(5/16) 2584000243181626 a001 365435296162/1568397607*2207^(5/16) 2584000243181626 a001 956722026041/4106118243*2207^(5/16) 2584000243181626 a001 2504730781961/10749957122*2207^(5/16) 2584000243181626 a001 6557470319842/28143753123*2207^(5/16) 2584000243181626 a001 10610209857723/45537549124*2207^(5/16) 2584000243181626 a001 4052739537881/17393796001*2207^(5/16) 2584000243181626 a001 1548008755920/6643838879*2207^(5/16) 2584000243181626 a001 591286729879/2537720636*2207^(5/16) 2584000243181626 a001 225851433717/969323029*2207^(5/16) 2584000243181626 a001 86267571272/370248451*2207^(5/16) 2584000243181627 a001 63246219/271444*2207^(5/16) 2584000243181627 a001 12586269025/54018521*2207^(5/16) 2584000243181632 a001 4807526976/20633239*2207^(5/16) 2584000243181668 a001 1836311903/7881196*2207^(5/16) 2584000243181912 a001 701408733/3010349*2207^(5/16) 2584000243183581 a001 267914296/1149851*2207^(5/16) 2584000243195022 a001 102334155/439204*2207^(5/16) 2584000243273440 a001 39088169/167761*2207^(5/16) 2584000243810929 a001 14930352/64079*2207^(5/16) 2584000244274507 a001 2178309/3571*3571^(3/17) 2584000245401231 a001 6765/3571*9349^(15/19) 2584000246722685 s002 sum(A193422[n]/(n^3*exp(n)-1),n=1..infinity) 2584000247494930 a001 5702887/24476*2207^(5/16) 2584000250469647 a004 Fibonacci(17)*Lucas(19)/(1/2+sqrt(5)/2)^18 2584000250606137 r005 Re(z^2+c),c=31/122+33/62*I,n=61 2584000251290416 a001 615/124*1364^(13/15) 2584000256194318 a001 3524578/3571*3571^(2/17) 2584000258158101 a001 17711/3571*9349^(13/19) 2584000259722920 a001 9227465/5778*843^(1/14) 2584000261990944 a001 28657/3571*9349^(12/19) 2584000262562966 a001 10946/3571*9349^(14/19) 2584000262677262 a001 46368/3571*9349^(11/19) 2584000264565446 a001 75025/3571*9349^(10/19) 2584000264735183 r005 Re(z^2+c),c=25/78+9/52*I,n=52 2584000265045550 a001 311187/2161*2207^(3/8) 2584000265246480 a001 105937/1926*2207^(1/2) 2584000265660237 a001 6765/3571*24476^(5/7) 2584000265994559 a001 121393/3571*9349^(9/19) 2584000267599021 a001 196418/3571*9349^(8/19) 2584000268113921 a001 1597*3571^(1/17) 2584000268166581 a001 1597/15127*64079^(21/23) 2584000268330763 a001 6765/3571*64079^(15/23) 2584000268686091 a001 6765/3571*167761^(3/5) 2584000268730745 a001 1597/15127*439204^(7/9) 2584000268733737 a001 6765/3571*439204^(5/9) 2584000268741137 a001 1597/15127*7881196^(7/11) 2584000268741160 a001 1597/15127*20633239^(3/5) 2584000268741161 a001 6765/3571*7881196^(5/11) 2584000268741164 a001 1597/15127*141422324^(7/13) 2584000268741164 a001 1597/15127*2537720636^(7/15) 2584000268741164 a001 1597/15127*17393796001^(3/7) 2584000268741164 a001 1597/15127*45537549124^(7/17) 2584000268741164 a001 1597/15127*14662949395604^(1/3) 2584000268741164 a001 1597/15127*(1/2+1/2*5^(1/2))^21 2584000268741164 a001 1597/15127*192900153618^(7/18) 2584000268741164 a001 1597/15127*10749957122^(7/16) 2584000268741164 a001 1597/15127*599074578^(1/2) 2584000268741165 a001 1597/15127*33385282^(7/12) 2584000268741177 a001 6765/3571*20633239^(3/7) 2584000268741179 a001 6765/3571*141422324^(5/13) 2584000268741179 a001 6765/3571*2537720636^(1/3) 2584000268741179 a001 6765/3571*45537549124^(5/17) 2584000268741179 a001 6765/3571*312119004989^(3/11) 2584000268741179 a001 6765/3571*14662949395604^(5/21) 2584000268741179 a001 6765/3571*(1/2+1/2*5^(1/2))^15 2584000268741179 a001 6765/3571*192900153618^(5/18) 2584000268741179 a001 6765/3571*28143753123^(3/10) 2584000268741179 a001 6765/3571*10749957122^(5/16) 2584000268741179 a001 6765/3571*599074578^(5/14) 2584000268741179 a001 6765/3571*228826127^(3/8) 2584000268741180 a001 6765/3571*33385282^(5/12) 2584000268741553 a001 6765/3571*1860498^(1/2) 2584000268741686 a001 1597/15127*1860498^(7/10) 2584000268745001 a001 1597/15127*710647^(3/4) 2584000268891413 a001 6765/3571*103682^(5/8) 2584000268951490 a001 1597/15127*103682^(7/8) 2584000269136505 a001 317811/3571*9349^(7/19) 2584000269864503 a001 6765/3571*39603^(15/22) 2584000270313817 a001 1597/15127*39603^(21/22) 2584000270699573 a001 514229/3571*9349^(6/19) 2584000272252868 a001 832040/3571*9349^(5/19) 2584000272745452 a001 2178309/9349*2207^(5/16) 2584000273809896 a001 1346269/3571*9349^(4/19) 2584000274072720 a001 28284467/10946 2584000274690520 a001 5702887/39603*2207^(3/8) 2584000275365499 a001 2178309/3571*9349^(3/19) 2584000275715905 a001 17711/3571*24476^(13/21) 2584000275720262 a004 Fibonacci(17)*Lucas(21)/(1/2+sqrt(5)/2)^20 2584000275733629 a001 2584/3571*5778^(17/18) 2584000276097702 a001 7465176/51841*2207^(3/8) 2584000276303007 a001 39088169/271443*2207^(3/8) 2584000276332961 a001 14619165/101521*2207^(3/8) 2584000276337331 a001 133957148/930249*2207^(3/8) 2584000276337968 a001 701408733/4870847*2207^(3/8) 2584000276338061 a001 1836311903/12752043*2207^(3/8) 2584000276338075 a001 14930208/103681*2207^(3/8) 2584000276338077 a001 12586269025/87403803*2207^(3/8) 2584000276338077 a001 32951280099/228826127*2207^(3/8) 2584000276338077 a001 43133785636/299537289*2207^(3/8) 2584000276338077 a001 32264490531/224056801*2207^(3/8) 2584000276338077 a001 591286729879/4106118243*2207^(3/8) 2584000276338077 a001 774004377960/5374978561*2207^(3/8) 2584000276338077 a001 4052739537881/28143753123*2207^(3/8) 2584000276338077 a001 1515744265389/10525900321*2207^(3/8) 2584000276338077 a001 3278735159921/22768774562*2207^(3/8) 2584000276338077 a001 2504730781961/17393796001*2207^(3/8) 2584000276338077 a001 956722026041/6643838879*2207^(3/8) 2584000276338077 a001 182717648081/1268860318*2207^(3/8) 2584000276338077 a001 139583862445/969323029*2207^(3/8) 2584000276338077 a001 53316291173/370248451*2207^(3/8) 2584000276338077 a001 10182505537/70711162*2207^(3/8) 2584000276338078 a001 7778742049/54018521*2207^(3/8) 2584000276338083 a001 2971215073/20633239*2207^(3/8) 2584000276338119 a001 567451585/3940598*2207^(3/8) 2584000276338362 a001 433494437/3010349*2207^(3/8) 2584000276340032 a001 165580141/1149851*2207^(3/8) 2584000276351473 a001 31622993/219602*2207^(3/8) 2584000276429893 a001 24157817/167761*2207^(3/8) 2584000276921646 a001 3524578/3571*9349^(2/19) 2584000276967388 a001 9227465/64079*2207^(3/8) 2584000277210493 a001 6765/3571*15127^(3/4) 2584000277533866 a001 46368/3571*24476^(11/21) 2584000278030362 a001 17711/3571*64079^(13/23) 2584000278071450 a001 75025/3571*24476^(10/21) 2584000278149962 a001 121393/3571*24476^(3/7) 2584000278198148 a001 28657/3571*24476^(4/7) 2584000278386040 a001 1597/39603*(1/2+1/2*5^(1/2))^23 2584000278386040 a001 1597/39603*4106118243^(1/2) 2584000278386056 a001 17711/3571*141422324^(1/3) 2584000278386056 a001 17711/3571*(1/2+1/2*5^(1/2))^13 2584000278386056 a001 17711/3571*73681302247^(1/4) 2584000278403591 a001 17711/3571*271443^(1/2) 2584000278403824 a001 196418/3571*24476^(8/21) 2584000278477585 a001 1597*9349^(1/19) 2584000278516258 a001 17711/3571*103682^(13/24) 2584000278590708 a001 317811/3571*24476^(1/3) 2584000278616398 a001 1597/39603*103682^(23/24) 2584000278803175 a001 514229/3571*24476^(2/7) 2584000279005870 a001 832040/3571*24476^(5/21) 2584000279163904 a001 74049696/28657 2584000279212298 a001 1346269/3571*24476^(4/21) 2584000279359603 a001 17711/3571*39603^(13/22) 2584000279404277 a004 Fibonacci(17)*Lucas(23)/(1/2+sqrt(5)/2)^22 2584000279417300 a001 2178309/3571*24476^(1/7) 2584000279492252 a001 46368/3571*64079^(11/23) 2584000279622847 a001 3524578/3571*24476^(2/21) 2584000279752278 a001 121393/3571*64079^(9/23) 2584000279793204 a001 1597/103682*20633239^(5/7) 2584000279793208 a001 1597/103682*2537720636^(5/9) 2584000279793208 a001 1597/103682*312119004989^(5/11) 2584000279793208 a001 1597/103682*(1/2+1/2*5^(1/2))^25 2584000279793208 a001 1597/103682*3461452808002^(5/12) 2584000279793208 a001 1597/103682*28143753123^(1/2) 2584000279793209 a001 1597/103682*228826127^(5/8) 2584000279793211 a001 46368/3571*7881196^(1/3) 2584000279793224 a001 46368/3571*312119004989^(1/5) 2584000279793224 a001 46368/3571*(1/2+1/2*5^(1/2))^11 2584000279793224 a001 46368/3571*1568397607^(1/4) 2584000279793831 a001 1597/103682*1860498^(5/6) 2584000279828104 a001 196418/3571*64079^(8/23) 2584000279828185 a001 1597*24476^(1/21) 2584000279836953 a001 317811/3571*64079^(7/23) 2584000279851801 a001 75025/3571*64079^(10/23) 2584000279871385 a001 514229/3571*64079^(6/23) 2584000279896046 a001 832040/3571*64079^(5/23) 2584000279903395 a001 46368/3571*103682^(11/24) 2584000279906697 a001 193864621/75025 2584000279924438 a001 1346269/3571*64079^(4/23) 2584000279941767 a004 Fibonacci(17)*Lucas(25)/(1/2+sqrt(5)/2)^24 2584000279951405 a001 2178309/3571*64079^(3/23) 2584000279978917 a001 3524578/3571*64079^(2/23) 2584000279994062 a001 121393/3571*439204^(1/3) 2584000279998478 a001 1597/271443*7881196^(9/11) 2584000279998512 a001 1597/271443*141422324^(9/13) 2584000279998512 a001 1597/271443*2537720636^(3/5) 2584000279998512 a001 1597/271443*45537549124^(9/17) 2584000279998512 a001 1597/271443*817138163596^(9/19) 2584000279998512 a001 1597/271443*14662949395604^(3/7) 2584000279998512 a001 1597/271443*(1/2+1/2*5^(1/2))^27 2584000279998512 a001 1597/271443*192900153618^(1/2) 2584000279998512 a001 1597/271443*10749957122^(9/16) 2584000279998512 a001 1597/271443*599074578^(9/14) 2584000279998513 a001 1597/271443*33385282^(3/4) 2584000279998516 a001 121393/3571*7881196^(3/11) 2584000279998527 a001 121393/3571*141422324^(3/13) 2584000279998528 a001 121393/3571*2537720636^(1/5) 2584000279998528 a001 121393/3571*45537549124^(3/17) 2584000279998528 a001 121393/3571*14662949395604^(1/7) 2584000279998528 a001 121393/3571*(1/2+1/2*5^(1/2))^9 2584000279998528 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^9/Lucas(17) 2584000279998528 a001 121393/3571*192900153618^(1/6) 2584000279998528 a001 121393/3571*10749957122^(3/16) 2584000279998528 a001 121393/3571*599074578^(3/14) 2584000279998528 a001 121393/3571*33385282^(1/4) 2584000279998751 a001 121393/3571*1860498^(3/10) 2584000279999183 a001 1597/271443*1860498^(9/10) 2584000280006220 a001 1597*64079^(1/23) 2584000280014488 a001 832040/3571*167761^(1/5) 2584000280015069 a001 507544167/196418 2584000280020186 a004 Fibonacci(17)*Lucas(27)/(1/2+sqrt(5)/2)^26 2584000280028465 a001 1597/710647*(1/2+1/2*5^(1/2))^29 2584000280028465 a001 1597/710647*1322157322203^(1/2) 2584000280028480 a001 317811/3571*20633239^(1/5) 2584000280028481 a001 317811/3571*17393796001^(1/7) 2584000280028481 a001 317811/3571*14662949395604^(1/9) 2584000280028481 a001 317811/3571*(1/2+1/2*5^(1/2))^7 2584000280028481 a001 317811/3571*599074578^(1/6) 2584000280029760 a001 317811/3571*710647^(1/4) 2584000280030881 a001 1328767880/514229 2584000280031627 a004 Fibonacci(17)*Lucas(29)/(1/2+sqrt(5)/2)^28 2584000280032000 a001 2178309/3571*439204^(1/9) 2584000280032575 a001 514229/3571*439204^(2/9) 2584000280032835 a001 1597/1860498*(1/2+1/2*5^(1/2))^31 2584000280032835 a001 1597/1860498*9062201101803^(1/2) 2584000280032850 a001 832040/3571*20633239^(1/7) 2584000280032851 a001 832040/3571*2537720636^(1/9) 2584000280032851 a001 832040/3571*312119004989^(1/11) 2584000280032851 a001 832040/3571*(1/2+1/2*5^(1/2))^5 2584000280032851 a001 832040/3571*28143753123^(1/10) 2584000280032851 a001 832040/3571*228826127^(1/8) 2584000280032975 a001 832040/3571*1860498^(1/6) 2584000280033188 a001 3478759473/1346269 2584000280033296 a004 Fibonacci(17)*Lucas(31)/(1/2+sqrt(5)/2)^30 2584000280033473 a001 1597/4870847*141422324^(11/13) 2584000280033473 a001 1597/4870847*2537720636^(11/15) 2584000280033473 a001 1597/4870847*45537549124^(11/17) 2584000280033473 a001 1597/4870847*312119004989^(3/5) 2584000280033473 a001 1597/4870847*14662949395604^(11/21) 2584000280033473 a001 1597/4870847*(1/2+1/2*5^(1/2))^33 2584000280033473 a001 1597/4870847*192900153618^(11/18) 2584000280033473 a001 1597/4870847*10749957122^(11/16) 2584000280033473 a001 1597/4870847*1568397607^(3/4) 2584000280033473 a001 1597/4870847*599074578^(11/14) 2584000280033475 a001 1597/4870847*33385282^(11/12) 2584000280033485 a001 2178309/3571*7881196^(1/11) 2584000280033489 a001 2178309/3571*141422324^(1/13) 2584000280033489 a001 2178309/3571*2537720636^(1/15) 2584000280033489 a001 2178309/3571*45537549124^(1/17) 2584000280033489 a001 2178309/3571*14662949395604^(1/21) 2584000280033489 a001 2178309/3571*(1/2+1/2*5^(1/2))^3 2584000280033489 a001 2178309/3571*10749957122^(1/16) 2584000280033489 a001 2178309/3571*599074578^(1/14) 2584000280033489 a001 2178309/3571*33385282^(1/12) 2584000280033524 a001 9107510539/3524578 2584000280033540 a004 Fibonacci(17)*Lucas(33)/(1/2+sqrt(5)/2)^32 2584000280033563 a001 2178309/3571*1860498^(1/10) 2584000280033566 a001 1597/12752043*2537720636^(7/9) 2584000280033566 a001 1597/12752043*17393796001^(5/7) 2584000280033566 a001 1597/12752043*312119004989^(7/11) 2584000280033566 a001 1597/12752043*14662949395604^(5/9) 2584000280033566 a001 1597/12752043*(1/2+1/2*5^(1/2))^35 2584000280033566 a001 1597/12752043*505019158607^(5/8) 2584000280033566 a001 1597/12752043*28143753123^(7/10) 2584000280033566 a001 1597/12752043*599074578^(5/6) 2584000280033566 a001 1597/12752043*228826127^(7/8) 2584000280033573 a001 23843772144/9227465 2584000280033576 a004 Fibonacci(17)*Lucas(35)/(1/2+sqrt(5)/2)^34 2584000280033579 a001 1597/33385282*(1/2+1/2*5^(1/2))^37 2584000280033580 a001 62423805893/24157817 2584000280033581 a004 Fibonacci(17)*Lucas(37)/(1/2+sqrt(5)/2)^36 2584000280033581 a001 1597/87403803*2537720636^(13/15) 2584000280033581 a001 1597/87403803*45537549124^(13/17) 2584000280033581 a001 1597/87403803*14662949395604^(13/21) 2584000280033581 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^39/Lucas(38) 2584000280033581 a001 1597/87403803*192900153618^(13/18) 2584000280033581 a001 1597/87403803*73681302247^(3/4) 2584000280033581 a001 1597/87403803*10749957122^(13/16) 2584000280033581 a001 1597/87403803*599074578^(13/14) 2584000280033581 a001 163427645535/63245986 2584000280033581 a004 Fibonacci(17)*Lucas(39)/(1/2+sqrt(5)/2)^38 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^41/Lucas(40) 2584000280033582 a001 427859130712/165580141 2584000280033582 a004 Fibonacci(17)*Lucas(41)/(1/2+sqrt(5)/2)^40 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^43/Lucas(42) 2584000280033582 a001 1120149746601/433494437 2584000280033582 a004 Fibonacci(17)*Lucas(43)/(1/2+sqrt(5)/2)^42 2584000280033582 a001 1597/1568397607*45537549124^(15/17) 2584000280033582 a001 1597/1568397607*312119004989^(9/11) 2584000280033582 a001 1597/1568397607*14662949395604^(5/7) 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^45/Lucas(44) 2584000280033582 a001 1597/1568397607*192900153618^(5/6) 2584000280033582 a001 1597/1568397607*28143753123^(9/10) 2584000280033582 a001 1597/1568397607*10749957122^(15/16) 2584000280033582 a001 2932590109091/1134903170 2584000280033582 a004 Fibonacci(17)*Lucas(45)/(1/2+sqrt(5)/2)^44 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^47/Lucas(46) 2584000280033582 a001 7677620580672/2971215073 2584000280033582 a004 Fibonacci(17)*Lucas(47)/(1/2+sqrt(5)/2)^46 2584000280033582 a001 1597/10749957122*14662949395604^(7/9) 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^49/Lucas(48) 2584000280033582 a001 1597/10749957122*505019158607^(7/8) 2584000280033582 a001 20100271632925/7778742049 2584000280033582 a004 Fibonacci(17)*Lucas(49)/(1/2+sqrt(5)/2)^48 2584000280033582 a001 1597/28143753123*817138163596^(17/19) 2584000280033582 a001 1597/28143753123*14662949395604^(17/21) 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^51/Lucas(50) 2584000280033582 a001 1597/28143753123*192900153618^(17/18) 2584000280033582 a001 32951280099/12752042 2584000280033582 a004 Fibonacci(17)*Lucas(51)/(1/2+sqrt(5)/2)^50 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^53/Lucas(52) 2584000280033582 a001 137769311321384/53316291173 2584000280033582 a004 Fibonacci(17)*Lucas(53)/(1/2+sqrt(5)/2)^52 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^55/Lucas(54) 2584000280033582 a001 1597/192900153618*3461452808002^(11/12) 2584000280033582 a001 360684739646049/139583862445 2584000280033582 a004 Fibonacci(17)*Lucas(55)/(1/2+sqrt(5)/2)^54 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^57/Lucas(56) 2584000280033582 a004 Fibonacci(17)*Lucas(57)/(1/2+sqrt(5)/2)^56 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^59/Lucas(58) 2584000280033582 a001 2472169983204240/956722026041 2584000280033582 a004 Fibonacci(17)*Lucas(59)/(1/2+sqrt(5)/2)^58 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^61/Lucas(60) 2584000280033582 a004 Fibonacci(17)*Lucas(61)/(1/2+sqrt(5)/2)^60 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^63/Lucas(62) 2584000280033582 a004 Fibonacci(17)*Lucas(63)/(1/2+sqrt(5)/2)^62 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^65/Lucas(64) 2584000280033582 a004 Fibonacci(17)*Lucas(65)/(1/2+sqrt(5)/2)^64 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^67/Lucas(66) 2584000280033582 a004 Fibonacci(17)*Lucas(67)/(1/2+sqrt(5)/2)^66 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^69/Lucas(68) 2584000280033582 a004 Fibonacci(17)*Lucas(69)/(1/2+sqrt(5)/2)^68 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^71/Lucas(70) 2584000280033582 a004 Fibonacci(17)*Lucas(71)/(1/2+sqrt(5)/2)^70 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^73/Lucas(72) 2584000280033582 a004 Fibonacci(17)*Lucas(73)/(1/2+sqrt(5)/2)^72 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^75/Lucas(74) 2584000280033582 a004 Fibonacci(17)*Lucas(75)/(1/2+sqrt(5)/2)^74 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^77/Lucas(76) 2584000280033582 a004 Fibonacci(17)*Lucas(77)/(1/2+sqrt(5)/2)^76 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^79/Lucas(78) 2584000280033582 a004 Fibonacci(17)*Lucas(79)/(1/2+sqrt(5)/2)^78 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^81/Lucas(80) 2584000280033582 a004 Fibonacci(17)*Lucas(81)/(1/2+sqrt(5)/2)^80 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^83/Lucas(82) 2584000280033582 a004 Fibonacci(17)*Lucas(83)/(1/2+sqrt(5)/2)^82 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^85/Lucas(84) 2584000280033582 a004 Fibonacci(17)*Lucas(85)/(1/2+sqrt(5)/2)^84 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^87/Lucas(86) 2584000280033582 a004 Fibonacci(17)*Lucas(87)/(1/2+sqrt(5)/2)^86 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^89/Lucas(88) 2584000280033582 a004 Fibonacci(17)*Lucas(89)/(1/2+sqrt(5)/2)^88 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^91/Lucas(90) 2584000280033582 a004 Fibonacci(17)*Lucas(91)/(1/2+sqrt(5)/2)^90 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^93/Lucas(92) 2584000280033582 a004 Fibonacci(17)*Lucas(93)/(1/2+sqrt(5)/2)^92 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^95/Lucas(94) 2584000280033582 a004 Fibonacci(17)*Lucas(95)/(1/2+sqrt(5)/2)^94 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^97/Lucas(96) 2584000280033582 a004 Fibonacci(17)*Lucas(97)/(1/2+sqrt(5)/2)^96 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)/Lucas(1) 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^100/Lucas(99) 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^99/Lucas(98) 2584000280033582 a004 Fibonacci(17)*Lucas(100)/(1/2+sqrt(5)/2)^99 2584000280033582 a004 Fibonacci(17)*Lucas(98)/(1/2+sqrt(5)/2)^97 2584000280033582 a004 Fibonacci(17)*Lucas(99)/(1/2+sqrt(5)/2)^98 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^98/Lucas(97) 2584000280033582 a004 Fibonacci(17)*Lucas(96)/(1/2+sqrt(5)/2)^95 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^96/Lucas(95) 2584000280033582 a004 Fibonacci(17)*Lucas(94)/(1/2+sqrt(5)/2)^93 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^94/Lucas(93) 2584000280033582 a004 Fibonacci(17)*Lucas(92)/(1/2+sqrt(5)/2)^91 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^92/Lucas(91) 2584000280033582 a004 Fibonacci(17)*Lucas(90)/(1/2+sqrt(5)/2)^89 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^90/Lucas(89) 2584000280033582 a004 Fibonacci(17)*Lucas(88)/(1/2+sqrt(5)/2)^87 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^88/Lucas(87) 2584000280033582 a004 Fibonacci(17)*Lucas(86)/(1/2+sqrt(5)/2)^85 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^86/Lucas(85) 2584000280033582 a004 Fibonacci(17)*Lucas(84)/(1/2+sqrt(5)/2)^83 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^84/Lucas(83) 2584000280033582 a004 Fibonacci(17)*Lucas(82)/(1/2+sqrt(5)/2)^81 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^82/Lucas(81) 2584000280033582 a004 Fibonacci(17)*Lucas(80)/(1/2+sqrt(5)/2)^79 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^80/Lucas(79) 2584000280033582 a004 Fibonacci(17)*Lucas(78)/(1/2+sqrt(5)/2)^77 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^78/Lucas(77) 2584000280033582 a004 Fibonacci(17)*Lucas(76)/(1/2+sqrt(5)/2)^75 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^76/Lucas(75) 2584000280033582 a004 Fibonacci(17)*Lucas(74)/(1/2+sqrt(5)/2)^73 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^74/Lucas(73) 2584000280033582 a004 Fibonacci(17)*Lucas(72)/(1/2+sqrt(5)/2)^71 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^72/Lucas(71) 2584000280033582 a004 Fibonacci(17)*Lucas(70)/(1/2+sqrt(5)/2)^69 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^70/Lucas(69) 2584000280033582 a004 Fibonacci(17)*Lucas(68)/(1/2+sqrt(5)/2)^67 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^68/Lucas(67) 2584000280033582 a004 Fibonacci(17)*Lucas(66)/(1/2+sqrt(5)/2)^65 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^66/Lucas(65) 2584000280033582 a004 Fibonacci(17)*Lucas(64)/(1/2+sqrt(5)/2)^63 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^64/Lucas(63) 2584000280033582 a004 Fibonacci(17)*Lucas(62)/(1/2+sqrt(5)/2)^61 2584000280033582 a001 10472280100787674/4052739537881 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^62/Lucas(61) 2584000280033582 a004 Fibonacci(17)*Lucas(60)/(1/2+sqrt(5)/2)^59 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^60/Lucas(59) 2584000280033582 a004 Fibonacci(17)*Lucas(58)/(1/2+sqrt(5)/2)^57 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^58/Lucas(57) 2584000280033582 a004 Fibonacci(17)*Lucas(56)/(1/2+sqrt(5)/2)^55 2584000280033582 a001 583600167970714/225851433717 2584000280033582 a001 1597/312119004989*14662949395604^(8/9) 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^56/Lucas(55) 2584000280033582 a004 Fibonacci(17)*Lucas(54)/(1/2+sqrt(5)/2)^53 2584000280033582 a001 222915428324665/86267571272 2584000280033582 a001 1597/119218851371*14662949395604^(6/7) 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^54/Lucas(53) 2584000280033582 a004 Fibonacci(17)*Lucas(52)/(1/2+sqrt(5)/2)^51 2584000280033582 a001 85146117003281/32951280099 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^52/Lucas(51) 2584000280033582 a001 1597/45537549124*23725150497407^(13/16) 2584000280033582 a001 1597/45537549124*505019158607^(13/14) 2584000280033582 a004 Fibonacci(17)*Lucas(50)/(1/2+sqrt(5)/2)^49 2584000280033582 a001 32522922685178/12586269025 2584000280033582 a001 1597/17393796001*312119004989^(10/11) 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^50/Lucas(49) 2584000280033582 a001 1597/17393796001*3461452808002^(5/6) 2584000280033582 a004 Fibonacci(17)*Lucas(48)/(1/2+sqrt(5)/2)^47 2584000280033582 a001 12422651052253/4807526976 2584000280033582 a001 1597/6643838879*45537549124^(16/17) 2584000280033582 a001 1597/6643838879*14662949395604^(16/21) 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^48/Lucas(47) 2584000280033582 a001 1597/6643838879*192900153618^(8/9) 2584000280033582 a001 1597/6643838879*73681302247^(12/13) 2584000280033582 a004 Fibonacci(17)*Lucas(46)/(1/2+sqrt(5)/2)^45 2584000280033582 a001 4745030471581/1836311903 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^46/Lucas(45) 2584000280033582 a001 1597/2537720636*10749957122^(23/24) 2584000280033582 a004 Fibonacci(17)*Lucas(44)/(1/2+sqrt(5)/2)^43 2584000280033582 a001 1812440362490/701408733 2584000280033582 a001 1597/969323029*312119004989^(4/5) 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^44/Lucas(43) 2584000280033582 a001 1597/969323029*23725150497407^(11/16) 2584000280033582 a001 1597/969323029*73681302247^(11/13) 2584000280033582 a001 1597/969323029*10749957122^(11/12) 2584000280033582 a001 1597/969323029*4106118243^(22/23) 2584000280033582 a004 Fibonacci(17)*Lucas(42)/(1/2+sqrt(5)/2)^41 2584000280033582 a001 692290615889/267914296 2584000280033582 a001 1597/370248451*2537720636^(14/15) 2584000280033582 a001 1597/370248451*17393796001^(6/7) 2584000280033582 a001 1597/370248451*45537549124^(14/17) 2584000280033582 a001 1597/370248451*817138163596^(14/19) 2584000280033582 a001 1597/370248451*14662949395604^(2/3) 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^42/Lucas(41) 2584000280033582 a001 1597/370248451*505019158607^(3/4) 2584000280033582 a001 1597/370248451*192900153618^(7/9) 2584000280033582 a001 1597/370248451*10749957122^(7/8) 2584000280033582 a001 1597/370248451*4106118243^(21/23) 2584000280033582 a001 1597/370248451*1568397607^(21/22) 2584000280033582 a004 Fibonacci(17)*Lucas(40)/(1/2+sqrt(5)/2)^39 2584000280033582 a001 264431485177/102334155 2584000280033582 a001 1597/141422324*2537720636^(8/9) 2584000280033582 a001 1597/141422324*312119004989^(8/11) 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^40/Lucas(39) 2584000280033582 a001 1597/141422324*23725150497407^(5/8) 2584000280033582 a001 1597/141422324*73681302247^(10/13) 2584000280033582 a001 1597/141422324*28143753123^(4/5) 2584000280033582 a001 1597/141422324*10749957122^(5/6) 2584000280033582 a001 1597/141422324*4106118243^(20/23) 2584000280033582 a001 1597/141422324*1568397607^(10/11) 2584000280033582 a001 1597/141422324*599074578^(20/21) 2584000280033582 a004 Fibonacci(17)*Lucas(38)/(1/2+sqrt(5)/2)^37 2584000280033582 a001 101003839642/39088169 2584000280033582 a001 1597/54018521*817138163596^(2/3) 2584000280033582 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^38/Lucas(37) 2584000280033582 a001 1597/54018521*10749957122^(19/24) 2584000280033582 a001 1597/54018521*4106118243^(19/23) 2584000280033582 a001 1597/54018521*1568397607^(19/22) 2584000280033582 a001 1597/54018521*599074578^(19/21) 2584000280033583 a001 1597/54018521*228826127^(19/20) 2584000280033584 a004 Fibonacci(17)*Lucas(36)/(1/2+sqrt(5)/2)^35 2584000280033585 a001 38580033749/14930352 2584000280033588 a001 1597/20633239*141422324^(12/13) 2584000280033588 a001 1597/20633239*2537720636^(4/5) 2584000280033588 a001 1597/20633239*45537549124^(12/17) 2584000280033588 a001 1597/20633239*14662949395604^(4/7) 2584000280033588 a001 1597/20633239*(1/2+1/2*5^(1/2))^36 2584000280033588 a001 1597/20633239*505019158607^(9/14) 2584000280033588 a001 1597/20633239*192900153618^(2/3) 2584000280033588 a001 1597/20633239*73681302247^(9/13) 2584000280033588 a001 1597/20633239*10749957122^(3/4) 2584000280033588 a001 1597/20633239*4106118243^(18/23) 2584000280033588 a001 1597/20633239*1568397607^(9/11) 2584000280033588 a001 1597/20633239*599074578^(6/7) 2584000280033588 a001 1597/20633239*228826127^(9/10) 2584000280033588 a001 1597/20633239*87403803^(18/19) 2584000280033595 a004 Fibonacci(36)/Lucas(17)/(1/2+sqrt(5)/2) 2584000280033597 a004 Fibonacci(38)/Lucas(17)/(1/2+sqrt(5)/2)^3 2584000280033597 a004 Fibonacci(40)/Lucas(17)/(1/2+sqrt(5)/2)^5 2584000280033597 a004 Fibonacci(42)/Lucas(17)/(1/2+sqrt(5)/2)^7 2584000280033597 a004 Fibonacci(44)/Lucas(17)/(1/2+sqrt(5)/2)^9 2584000280033597 a004 Fibonacci(46)/Lucas(17)/(1/2+sqrt(5)/2)^11 2584000280033597 a004 Fibonacci(48)/Lucas(17)/(1/2+sqrt(5)/2)^13 2584000280033597 a004 Fibonacci(50)/Lucas(17)/(1/2+sqrt(5)/2)^15 2584000280033597 a004 Fibonacci(52)/Lucas(17)/(1/2+sqrt(5)/2)^17 2584000280033597 a004 Fibonacci(54)/Lucas(17)/(1/2+sqrt(5)/2)^19 2584000280033597 a004 Fibonacci(56)/Lucas(17)/(1/2+sqrt(5)/2)^21 2584000280033597 a004 Fibonacci(58)/Lucas(17)/(1/2+sqrt(5)/2)^23 2584000280033597 a004 Fibonacci(60)/Lucas(17)/(1/2+sqrt(5)/2)^25 2584000280033597 a004 Fibonacci(62)/Lucas(17)/(1/2+sqrt(5)/2)^27 2584000280033597 a004 Fibonacci(64)/Lucas(17)/(1/2+sqrt(5)/2)^29 2584000280033597 a004 Fibonacci(66)/Lucas(17)/(1/2+sqrt(5)/2)^31 2584000280033597 a004 Fibonacci(17)*Lucas(34)/(1/2+sqrt(5)/2)^33 2584000280033597 a004 Fibonacci(70)/Lucas(17)/(1/2+sqrt(5)/2)^35 2584000280033597 a004 Fibonacci(72)/Lucas(17)/(1/2+sqrt(5)/2)^37 2584000280033597 a004 Fibonacci(74)/Lucas(17)/(1/2+sqrt(5)/2)^39 2584000280033597 a004 Fibonacci(76)/Lucas(17)/(1/2+sqrt(5)/2)^41 2584000280033597 a004 Fibonacci(78)/Lucas(17)/(1/2+sqrt(5)/2)^43 2584000280033597 a004 Fibonacci(80)/Lucas(17)/(1/2+sqrt(5)/2)^45 2584000280033597 a004 Fibonacci(82)/Lucas(17)/(1/2+sqrt(5)/2)^47 2584000280033597 a004 Fibonacci(84)/Lucas(17)/(1/2+sqrt(5)/2)^49 2584000280033597 a004 Fibonacci(86)/Lucas(17)/(1/2+sqrt(5)/2)^51 2584000280033597 a004 Fibonacci(88)/Lucas(17)/(1/2+sqrt(5)/2)^53 2584000280033597 a004 Fibonacci(90)/Lucas(17)/(1/2+sqrt(5)/2)^55 2584000280033597 a004 Fibonacci(92)/Lucas(17)/(1/2+sqrt(5)/2)^57 2584000280033597 a004 Fibonacci(94)/Lucas(17)/(1/2+sqrt(5)/2)^59 2584000280033597 a004 Fibonacci(96)/Lucas(17)/(1/2+sqrt(5)/2)^61 2584000280033597 a004 Fibonacci(100)/Lucas(17)/(1/2+sqrt(5)/2)^65 2584000280033597 a004 Fibonacci(98)/Lucas(17)/(1/2+sqrt(5)/2)^63 2584000280033597 a004 Fibonacci(99)/Lucas(17)/(1/2+sqrt(5)/2)^64 2584000280033597 a004 Fibonacci(97)/Lucas(17)/(1/2+sqrt(5)/2)^62 2584000280033597 a004 Fibonacci(95)/Lucas(17)/(1/2+sqrt(5)/2)^60 2584000280033597 a004 Fibonacci(93)/Lucas(17)/(1/2+sqrt(5)/2)^58 2584000280033597 a004 Fibonacci(91)/Lucas(17)/(1/2+sqrt(5)/2)^56 2584000280033597 a004 Fibonacci(89)/Lucas(17)/(1/2+sqrt(5)/2)^54 2584000280033597 a004 Fibonacci(87)/Lucas(17)/(1/2+sqrt(5)/2)^52 2584000280033597 a004 Fibonacci(85)/Lucas(17)/(1/2+sqrt(5)/2)^50 2584000280033597 a004 Fibonacci(83)/Lucas(17)/(1/2+sqrt(5)/2)^48 2584000280033597 a004 Fibonacci(81)/Lucas(17)/(1/2+sqrt(5)/2)^46 2584000280033597 a004 Fibonacci(79)/Lucas(17)/(1/2+sqrt(5)/2)^44 2584000280033597 a004 Fibonacci(77)/Lucas(17)/(1/2+sqrt(5)/2)^42 2584000280033597 a004 Fibonacci(75)/Lucas(17)/(1/2+sqrt(5)/2)^40 2584000280033597 a004 Fibonacci(73)/Lucas(17)/(1/2+sqrt(5)/2)^38 2584000280033597 a004 Fibonacci(71)/Lucas(17)/(1/2+sqrt(5)/2)^36 2584000280033597 a004 Fibonacci(69)/Lucas(17)/(1/2+sqrt(5)/2)^34 2584000280033597 a004 Fibonacci(67)/Lucas(17)/(1/2+sqrt(5)/2)^32 2584000280033597 a004 Fibonacci(65)/Lucas(17)/(1/2+sqrt(5)/2)^30 2584000280033597 a004 Fibonacci(63)/Lucas(17)/(1/2+sqrt(5)/2)^28 2584000280033597 a004 Fibonacci(61)/Lucas(17)/(1/2+sqrt(5)/2)^26 2584000280033597 a004 Fibonacci(59)/Lucas(17)/(1/2+sqrt(5)/2)^24 2584000280033597 a004 Fibonacci(57)/Lucas(17)/(1/2+sqrt(5)/2)^22 2584000280033597 a004 Fibonacci(55)/Lucas(17)/(1/2+sqrt(5)/2)^20 2584000280033597 a004 Fibonacci(53)/Lucas(17)/(1/2+sqrt(5)/2)^18 2584000280033597 a004 Fibonacci(51)/Lucas(17)/(1/2+sqrt(5)/2)^16 2584000280033597 a004 Fibonacci(49)/Lucas(17)/(1/2+sqrt(5)/2)^14 2584000280033597 a004 Fibonacci(47)/Lucas(17)/(1/2+sqrt(5)/2)^12 2584000280033597 a004 Fibonacci(45)/Lucas(17)/(1/2+sqrt(5)/2)^10 2584000280033597 a004 Fibonacci(43)/Lucas(17)/(1/2+sqrt(5)/2)^8 2584000280033597 a004 Fibonacci(41)/Lucas(17)/(1/2+sqrt(5)/2)^6 2584000280033598 a004 Fibonacci(39)/Lucas(17)/(1/2+sqrt(5)/2)^4 2584000280033598 a004 Fibonacci(37)/Lucas(17)/(1/2+sqrt(5)/2)^2 2584000280033604 a001 9227465/3571 2584000280033623 a001 1597/7881196*45537549124^(2/3) 2584000280033623 a001 1597/7881196*(1/2+1/2*5^(1/2))^34 2584000280033623 a001 1597/7881196*10749957122^(17/24) 2584000280033623 a001 1597/7881196*4106118243^(17/23) 2584000280033623 a001 1597/7881196*1568397607^(17/22) 2584000280033623 a001 1597/7881196*599074578^(17/21) 2584000280033623 a001 1597/7881196*228826127^(17/20) 2584000280033623 a001 1597/7881196*87403803^(17/19) 2584000280033625 a001 1597/7881196*33385282^(17/18) 2584000280033639 a001 3524578/3571*(1/2+1/2*5^(1/2))^2 2584000280033639 a001 3524578/3571*10749957122^(1/24) 2584000280033639 a001 3524578/3571*4106118243^(1/23) 2584000280033639 a001 3524578/3571*1568397607^(1/22) 2584000280033639 a001 3524578/3571*599074578^(1/21) 2584000280033639 a001 3524578/3571*228826127^(1/20) 2584000280033639 a001 3524578/3571*87403803^(1/19) 2584000280033639 a001 3524578/3571*33385282^(1/18) 2584000280033640 a001 3524578/3571*12752043^(1/17) 2584000280033646 a001 3524578/3571*4870847^(1/16) 2584000280033689 a001 3524578/3571*1860498^(1/15) 2584000280033690 a004 Fibonacci(17)*Lucas(32)/(1/2+sqrt(5)/2)^31 2584000280033732 a001 5628751066/2178309 2584000280033867 a001 1597/3010349*(1/2+1/2*5^(1/2))^32 2584000280033867 a001 1597/3010349*23725150497407^(1/2) 2584000280033867 a001 1597/3010349*73681302247^(8/13) 2584000280033867 a001 1597/3010349*10749957122^(2/3) 2584000280033867 a001 1597/3010349*4106118243^(16/23) 2584000280033867 a001 1597/3010349*1568397607^(8/11) 2584000280033867 a001 1597/3010349*599074578^(16/21) 2584000280033867 a001 1597/3010349*228826127^(4/5) 2584000280033867 a001 1597/3010349*87403803^(16/19) 2584000280033869 a001 1597/3010349*33385282^(8/9) 2584000280033882 a001 1597/3010349*12752043^(16/17) 2584000280033883 a001 1346269/3571*(1/2+1/2*5^(1/2))^4 2584000280033883 a001 1346269/3571*23725150497407^(1/16) 2584000280033883 a001 1346269/3571*73681302247^(1/13) 2584000280033883 a001 1346269/3571*10749957122^(1/12) 2584000280033883 a001 1346269/3571*4106118243^(2/23) 2584000280033883 a001 1346269/3571*1568397607^(1/11) 2584000280033883 a001 1346269/3571*599074578^(2/21) 2584000280033883 a001 1346269/3571*228826127^(1/10) 2584000280033883 a001 1346269/3571*87403803^(2/19) 2584000280033883 a001 1346269/3571*33385282^(1/9) 2584000280033884 a001 1346269/3571*12752043^(2/17) 2584000280033896 a001 1346269/3571*4870847^(1/8) 2584000280033982 a001 1346269/3571*1860498^(2/15) 2584000280034005 a001 3524578/3571*710647^(1/14) 2584000280034328 a004 Fibonacci(17)*Lucas(30)/(1/2+sqrt(5)/2)^29 2584000280034613 a001 2149991593/832040 2584000280034614 a001 1346269/3571*710647^(1/7) 2584000280035498 a001 1597/1149851*7881196^(10/11) 2584000280035531 a001 1597/1149851*20633239^(6/7) 2584000280035536 a001 1597/1149851*141422324^(10/13) 2584000280035536 a001 1597/1149851*2537720636^(2/3) 2584000280035536 a001 1597/1149851*45537549124^(10/17) 2584000280035536 a001 1597/1149851*312119004989^(6/11) 2584000280035536 a001 1597/1149851*14662949395604^(10/21) 2584000280035536 a001 1597/1149851*(1/2+1/2*5^(1/2))^30 2584000280035536 a001 1597/1149851*192900153618^(5/9) 2584000280035536 a001 1597/1149851*28143753123^(3/5) 2584000280035536 a001 1597/1149851*10749957122^(5/8) 2584000280035536 a001 1597/1149851*4106118243^(15/23) 2584000280035536 a001 1597/1149851*1568397607^(15/22) 2584000280035536 a001 1597/1149851*599074578^(5/7) 2584000280035536 a001 1597/1149851*228826127^(3/4) 2584000280035536 a001 1597/1149851*87403803^(15/19) 2584000280035538 a001 1597/1149851*33385282^(5/6) 2584000280035544 a001 514229/3571*7881196^(2/11) 2584000280035550 a001 1597/1149851*12752043^(15/17) 2584000280035552 a001 514229/3571*141422324^(2/13) 2584000280035552 a001 514229/3571*2537720636^(2/15) 2584000280035552 a001 514229/3571*45537549124^(2/17) 2584000280035552 a001 514229/3571*14662949395604^(2/21) 2584000280035552 a001 514229/3571*(1/2+1/2*5^(1/2))^6 2584000280035552 a001 514229/3571*10749957122^(1/8) 2584000280035552 a001 514229/3571*4106118243^(3/23) 2584000280035552 a001 514229/3571*1568397607^(3/22) 2584000280035552 a001 514229/3571*599074578^(1/7) 2584000280035552 a001 514229/3571*228826127^(3/20) 2584000280035552 a001 514229/3571*87403803^(3/19) 2584000280035552 a001 514229/3571*33385282^(1/6) 2584000280035555 a001 514229/3571*12752043^(3/17) 2584000280035572 a001 514229/3571*4870847^(3/16) 2584000280035638 a001 1597/1149851*4870847^(15/16) 2584000280035701 a001 514229/3571*1860498^(1/5) 2584000280036337 a001 3524578/3571*271443^(1/13) 2584000280036648 a001 514229/3571*710647^(3/14) 2584000280038698 a004 Fibonacci(17)*Lucas(28)/(1/2+sqrt(5)/2)^27 2584000280039278 a001 1346269/3571*271443^(2/13) 2584000280040653 a001 821223713/317811 2584000280043597 a001 1597*103682^(1/24) 2584000280043645 a001 514229/3571*271443^(3/13) 2584000280046972 a001 1597/439204*20633239^(4/5) 2584000280046977 a001 1597/439204*17393796001^(4/7) 2584000280046977 a001 1597/439204*14662949395604^(4/9) 2584000280046977 a001 1597/439204*(1/2+1/2*5^(1/2))^28 2584000280046977 a001 1597/439204*505019158607^(1/2) 2584000280046977 a001 1597/439204*73681302247^(7/13) 2584000280046977 a001 1597/439204*10749957122^(7/12) 2584000280046977 a001 1597/439204*4106118243^(14/23) 2584000280046977 a001 1597/439204*1568397607^(7/11) 2584000280046977 a001 1597/439204*599074578^(2/3) 2584000280046977 a001 1597/439204*228826127^(7/10) 2584000280046977 a001 1597/439204*87403803^(14/19) 2584000280046979 a001 1597/439204*33385282^(7/9) 2584000280046990 a001 1597/439204*12752043^(14/17) 2584000280046993 a001 196418/3571*(1/2+1/2*5^(1/2))^8 2584000280046993 a001 196418/3571*23725150497407^(1/8) 2584000280046993 a001 196418/3571*505019158607^(1/7) 2584000280046993 a001 196418/3571*73681302247^(2/13) 2584000280046993 a001 196418/3571*10749957122^(1/6) 2584000280046993 a001 196418/3571*4106118243^(4/23) 2584000280046993 a001 196418/3571*1568397607^(2/11) 2584000280046993 a001 196418/3571*599074578^(4/21) 2584000280046993 a001 196418/3571*228826127^(1/5) 2584000280046993 a001 196418/3571*87403803^(4/19) 2584000280046994 a001 196418/3571*33385282^(2/9) 2584000280046997 a001 196418/3571*12752043^(4/17) 2584000280047020 a001 196418/3571*4870847^(1/4) 2584000280047072 a001 1597/439204*4870847^(7/8) 2584000280047192 a001 196418/3571*1860498^(4/15) 2584000280047674 a001 1597/439204*1860498^(14/15) 2584000280048455 a001 196418/3571*710647^(2/7) 2584000280053670 a001 3524578/3571*103682^(1/12) 2584000280057784 a001 196418/3571*271443^(4/13) 2584000280063535 a001 2178309/3571*103682^(1/8) 2584000280068652 a004 Fibonacci(17)*Lucas(26)/(1/2+sqrt(5)/2)^25 2584000280073945 a001 1346269/3571*103682^(1/6) 2584000280082047 a001 313679546/121393 2584000280082929 a001 832040/3571*103682^(5/24) 2584000280088667 a001 121393/3571*103682^(3/8) 2584000280088686 a001 75025/3571*167761^(2/5) 2584000280095645 a001 514229/3571*103682^(1/4) 2584000280098590 a001 317811/3571*103682^(7/24) 2584000280108470 a001 1597*39603^(1/22) 2584000280125396 a001 1597/167761*141422324^(2/3) 2584000280125396 a001 1597/167761*(1/2+1/2*5^(1/2))^26 2584000280125396 a001 1597/167761*73681302247^(1/2) 2584000280125396 a001 1597/167761*10749957122^(13/24) 2584000280125396 a001 1597/167761*4106118243^(13/23) 2584000280125396 a001 1597/167761*1568397607^(13/22) 2584000280125396 a001 1597/167761*599074578^(13/21) 2584000280125396 a001 1597/167761*228826127^(13/20) 2584000280125396 a001 1597/167761*87403803^(13/19) 2584000280125398 a001 1597/167761*33385282^(13/18) 2584000280125408 a001 1597/167761*12752043^(13/17) 2584000280125410 a001 75025/3571*20633239^(2/7) 2584000280125412 a001 75025/3571*2537720636^(2/9) 2584000280125412 a001 75025/3571*312119004989^(2/11) 2584000280125412 a001 75025/3571*(1/2+1/2*5^(1/2))^10 2584000280125412 a001 75025/3571*28143753123^(1/5) 2584000280125412 a001 75025/3571*10749957122^(5/24) 2584000280125412 a001 75025/3571*4106118243^(5/23) 2584000280125412 a001 75025/3571*1568397607^(5/22) 2584000280125412 a001 75025/3571*599074578^(5/21) 2584000280125412 a001 75025/3571*228826127^(1/4) 2584000280125412 a001 75025/3571*87403803^(5/19) 2584000280125412 a001 75025/3571*33385282^(5/18) 2584000280125416 a001 75025/3571*12752043^(5/17) 2584000280125446 a001 75025/3571*4870847^(5/16) 2584000280125484 a001 1597/167761*4870847^(13/16) 2584000280125661 a001 75025/3571*1860498^(1/3) 2584000280126043 a001 1597/167761*1860498^(13/15) 2584000280127117 a001 196418/3571*103682^(1/3) 2584000280127239 a001 75025/3571*710647^(5/14) 2584000280130147 a001 1597/167761*710647^(13/14) 2584000280138900 a001 75025/3571*271443^(5/13) 2584000280183416 a001 3524578/3571*39603^(1/11) 2584000280225567 a001 75025/3571*103682^(5/12) 2584000280258153 a001 2178309/3571*39603^(3/22) 2584000280273955 a004 Fibonacci(17)*Lucas(24)/(1/2+sqrt(5)/2)^23 2584000280333436 a001 1346269/3571*39603^(2/11) 2584000280334569 a001 28657/3571*64079^(12/23) 2584000280365769 a001 119814925/46368 2584000280407292 a001 832040/3571*39603^(5/22) 2584000280484881 a001 514229/3571*39603^(3/11) 2584000280552699 a001 317811/3571*39603^(7/22) 2584000280598202 a001 1597*15127^(1/20) 2584000280616995 a001 46368/3571*39603^(1/2) 2584000280646099 a001 196418/3571*39603^(4/11) 2584000280650979 a001 1597/64079*439204^(8/9) 2584000280651439 a001 1762289/12238*2207^(3/8) 2584000280656949 a001 28657/3571*439204^(4/9) 2584000280662856 a001 1597/64079*7881196^(8/11) 2584000280662886 a001 1597/64079*141422324^(8/13) 2584000280662886 a001 1597/64079*2537720636^(8/15) 2584000280662886 a001 1597/64079*45537549124^(8/17) 2584000280662886 a001 1597/64079*14662949395604^(8/21) 2584000280662886 a001 1597/64079*(1/2+1/2*5^(1/2))^24 2584000280662886 a001 1597/64079*192900153618^(4/9) 2584000280662886 a001 1597/64079*73681302247^(6/13) 2584000280662886 a001 1597/64079*10749957122^(1/2) 2584000280662886 a001 1597/64079*4106118243^(12/23) 2584000280662886 a001 1597/64079*1568397607^(6/11) 2584000280662886 a001 1597/64079*599074578^(4/7) 2584000280662886 a001 1597/64079*228826127^(3/5) 2584000280662887 a001 1597/64079*87403803^(12/19) 2584000280662887 a001 28657/3571*7881196^(4/11) 2584000280662888 a001 1597/64079*33385282^(2/3) 2584000280662898 a001 1597/64079*12752043^(12/17) 2584000280662902 a001 28657/3571*141422324^(4/13) 2584000280662902 a001 28657/3571*2537720636^(4/15) 2584000280662902 a001 28657/3571*45537549124^(4/17) 2584000280662902 a001 28657/3571*817138163596^(4/19) 2584000280662902 a001 28657/3571*14662949395604^(4/21) 2584000280662902 a001 28657/3571*(1/2+1/2*5^(1/2))^12 2584000280662902 a001 28657/3571*192900153618^(2/9) 2584000280662902 a001 28657/3571*73681302247^(3/13) 2584000280662902 a001 28657/3571*10749957122^(1/4) 2584000280662902 a001 28657/3571*4106118243^(6/23) 2584000280662902 a001 28657/3571*1568397607^(3/11) 2584000280662902 a001 28657/3571*599074578^(2/7) 2584000280662902 a001 28657/3571*228826127^(3/10) 2584000280662902 a001 28657/3571*87403803^(6/19) 2584000280662903 a001 28657/3571*33385282^(1/3) 2584000280662908 a001 28657/3571*12752043^(6/17) 2584000280662943 a001 28657/3571*4870847^(3/8) 2584000280662968 a001 1597/64079*4870847^(3/4) 2584000280663201 a001 28657/3571*1860498^(2/5) 2584000280663484 a001 1597/64079*1860498^(4/5) 2584000280665095 a001 28657/3571*710647^(3/7) 2584000280667272 a001 1597/64079*710647^(6/7) 2584000280672522 a001 121393/3571*39603^(9/22) 2584000280679088 a001 28657/3571*271443^(6/13) 2584000280695259 a001 1597/64079*271443^(12/13) 2584000280783089 a001 28657/3571*103682^(1/2) 2584000280874294 a001 75025/3571*39603^(5/11) 2584000281162881 a001 3524578/3571*15127^(1/10) 2584000281400872 l006 ln(2547/3298) 2584000281471371 a001 10946/3571*24476^(2/3) 2584000281561561 a001 28657/3571*39603^(6/11) 2584000281681123 a004 Fibonacci(17)*Lucas(22)/(1/2+sqrt(5)/2)^21 2584000281727351 a001 2178309/3571*15127^(3/20) 2584000282292366 a001 1346269/3571*15127^(1/5) 2584000282310428 a001 45765229/17711 2584000282855955 a001 832040/3571*15127^(1/4) 2584000282859766 m001 ln(Salem)/Porter^2/cos(1)^2 2584000283423277 a001 514229/3571*15127^(3/10) 2584000283744958 a001 1597/24476*64079^(22/23) 2584000283963862 a001 10946/3571*64079^(14/23) 2584000283980827 a001 317811/3571*15127^(7/20) 2584000284333547 a001 1597*5778^(1/18) 2584000284346874 a001 1597/24476*7881196^(2/3) 2584000284346901 a001 1597/24476*312119004989^(2/5) 2584000284346901 a001 1597/24476*(1/2+1/2*5^(1/2))^22 2584000284346901 a001 1597/24476*10749957122^(11/24) 2584000284346901 a001 1597/24476*4106118243^(11/23) 2584000284346901 a001 1597/24476*1568397607^(1/2) 2584000284346901 a001 1597/24476*599074578^(11/21) 2584000284346901 a001 1597/24476*228826127^(11/20) 2584000284346902 a001 1597/24476*87403803^(11/19) 2584000284346903 a001 1597/24476*33385282^(11/18) 2584000284346912 a001 1597/24476*12752043^(11/17) 2584000284346915 a001 10946/3571*20633239^(2/5) 2584000284346917 a001 10946/3571*17393796001^(2/7) 2584000284346917 a001 10946/3571*14662949395604^(2/9) 2584000284346917 a001 10946/3571*(1/2+1/2*5^(1/2))^14 2584000284346917 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^14/Lucas(17) 2584000284346917 a001 10946/3571*505019158607^(1/4) 2584000284346917 a001 10946/3571*10749957122^(7/24) 2584000284346917 a001 10946/3571*4106118243^(7/23) 2584000284346917 a001 10946/3571*1568397607^(7/22) 2584000284346917 a001 10946/3571*599074578^(1/3) 2584000284346917 a001 10946/3571*228826127^(7/20) 2584000284346917 a001 10946/3571*87403803^(7/19) 2584000284346918 a001 10946/3571*33385282^(7/18) 2584000284346924 a001 10946/3571*12752043^(7/17) 2584000284346965 a001 10946/3571*4870847^(7/16) 2584000284346976 a001 1597/24476*4870847^(11/16) 2584000284347266 a001 10946/3571*1860498^(7/15) 2584000284347449 a001 1597/24476*1860498^(11/15) 2584000284349476 a001 10946/3571*710647^(1/2) 2584000284350922 a001 1597/24476*710647^(11/14) 2584000284365801 a001 10946/3571*271443^(7/13) 2584000284376576 a001 1597/24476*271443^(11/13) 2584000284487135 a001 10946/3571*103682^(7/12) 2584000284563960 a001 196418/3571*15127^(2/5) 2584000284567243 a001 1597/24476*103682^(11/12) 2584000284701587 a001 4181/3571*9349^(16/19) 2584000285080116 a001 121393/3571*15127^(9/20) 2584000285395353 a001 10946/3571*39603^(7/11) 2584000285726128 a001 17711/3571*15127^(13/20) 2584000285771621 a001 75025/3571*15127^(1/2) 2584000286004054 a001 46368/3571*15127^(11/20) 2584000287438353 a001 28657/3571*15127^(3/5) 2584000288337013 a001 1/322*(1/2*5^(1/2)+1/2)^4*3^(3/17) 2584000288633571 a001 3524578/3571*5778^(1/9) 2584000290503000 a001 5473/161*18^(40/57) 2584000291040319 a003 sin(Pi*19/89)/cos(Pi*41/97) 2584000291326000 a004 Fibonacci(17)*Lucas(20)/(1/2+sqrt(5)/2)^19 2584000292251610 a001 10946/3571*15127^(7/10) 2584000292933386 a001 2178309/3571*5778^(1/6) 2584000295639320 a001 17480762/6765 2584000297233746 a001 1346269/3571*5778^(2/9) 2584000298202396 a001 1346269/15127*2207^(7/16) 2584000298421443 a001 98209/2889*2207^(9/16) 2584000301532680 a001 832040/3571*5778^(5/18) 2584000305489592 a001 1597/9349*24476^(20/21) 2584000305835346 a001 514229/3571*5778^(1/3) 2584000305902297 a001 1346269/9349*2207^(3/8) 2584000306311193 a001 4181/3571*24476^(16/21) 2584000307847029 a001 3524578/39603*2207^(7/16) 2584000309050294 a001 1597/9349*64079^(20/23) 2584000309159754 a001 4181/3571*64079^(16/23) 2584000309254162 a001 9227465/103682*2207^(7/16) 2584000309459460 a001 24157817/271443*2207^(7/16) 2584000309489412 a001 63245986/710647*2207^(7/16) 2584000309493782 a001 165580141/1860498*2207^(7/16) 2584000309494420 a001 433494437/4870847*2207^(7/16) 2584000309494513 a001 1134903170/12752043*2207^(7/16) 2584000309494526 a001 2971215073/33385282*2207^(7/16) 2584000309494528 a001 7778742049/87403803*2207^(7/16) 2584000309494529 a001 20365011074/228826127*2207^(7/16) 2584000309494529 a001 53316291173/599074578*2207^(7/16) 2584000309494529 a001 139583862445/1568397607*2207^(7/16) 2584000309494529 a001 365435296162/4106118243*2207^(7/16) 2584000309494529 a001 956722026041/10749957122*2207^(7/16) 2584000309494529 a001 2504730781961/28143753123*2207^(7/16) 2584000309494529 a001 6557470319842/73681302247*2207^(7/16) 2584000309494529 a001 10610209857723/119218851371*2207^(7/16) 2584000309494529 a001 4052739537881/45537549124*2207^(7/16) 2584000309494529 a001 1548008755920/17393796001*2207^(7/16) 2584000309494529 a001 591286729879/6643838879*2207^(7/16) 2584000309494529 a001 225851433717/2537720636*2207^(7/16) 2584000309494529 a001 86267571272/969323029*2207^(7/16) 2584000309494529 a001 32951280099/370248451*2207^(7/16) 2584000309494529 a001 12586269025/141422324*2207^(7/16) 2584000309494530 a001 4807526976/54018521*2207^(7/16) 2584000309494535 a001 1836311903/20633239*2207^(7/16) 2584000309494570 a001 3524667/39604*2207^(7/16) 2584000309494814 a001 267914296/3010349*2207^(7/16) 2584000309496483 a001 102334155/1149851*2207^(7/16) 2584000309507924 a001 39088169/439204*2207^(7/16) 2584000309524065 a001 1597/9349*167761^(4/5) 2584000309586341 a001 14930352/167761*2207^(7/16) 2584000309597513 a001 1597/9349*20633239^(4/7) 2584000309597516 a001 1597/9349*2537720636^(4/9) 2584000309597516 a001 1597/9349*(1/2+1/2*5^(1/2))^20 2584000309597516 a001 1597/9349*23725150497407^(5/16) 2584000309597516 a001 1597/9349*505019158607^(5/14) 2584000309597516 a001 1597/9349*73681302247^(5/13) 2584000309597516 a001 1597/9349*28143753123^(2/5) 2584000309597516 a001 1597/9349*10749957122^(5/12) 2584000309597516 a001 1597/9349*4106118243^(10/23) 2584000309597516 a001 1597/9349*1568397607^(5/11) 2584000309597516 a001 1597/9349*599074578^(10/21) 2584000309597516 a001 1597/9349*228826127^(1/2) 2584000309597516 a001 1597/9349*87403803^(10/19) 2584000309597517 a001 1597/9349*33385282^(5/9) 2584000309597525 a001 1597/9349*12752043^(10/17) 2584000309597532 a001 4181/3571*(1/2+1/2*5^(1/2))^16 2584000309597532 a001 4181/3571*23725150497407^(1/4) 2584000309597532 a001 4181/3571*73681302247^(4/13) 2584000309597532 a001 4181/3571*10749957122^(1/3) 2584000309597532 a001 4181/3571*4106118243^(8/23) 2584000309597532 a001 4181/3571*1568397607^(4/11) 2584000309597532 a001 4181/3571*599074578^(8/21) 2584000309597532 a001 4181/3571*228826127^(2/5) 2584000309597532 a001 4181/3571*87403803^(8/19) 2584000309597533 a001 4181/3571*33385282^(4/9) 2584000309597539 a001 4181/3571*12752043^(8/17) 2584000309597584 a001 1597/9349*4870847^(5/8) 2584000309597586 a001 4181/3571*4870847^(1/2) 2584000309597930 a001 4181/3571*1860498^(8/15) 2584000309598014 a001 1597/9349*1860498^(2/3) 2584000309600455 a001 4181/3571*710647^(4/7) 2584000309601171 a001 1597/9349*710647^(5/7) 2584000309619113 a001 4181/3571*271443^(8/13) 2584000309624493 a001 1597/9349*271443^(10/13) 2584000309757780 a001 4181/3571*103682^(2/3) 2584000309797827 a001 1597/9349*103682^(5/6) 2584000310123818 a001 5702887/64079*2207^(7/16) 2584000310128241 a001 317811/3571*5778^(7/18) 2584000310795744 a001 4181/3571*39603^(8/11) 2584000311095281 a001 1597/9349*39603^(10/11) 2584000313190033 a001 1597*2207^(1/16) 2584000313807740 a001 2178309/24476*2207^(7/16) 2584000314446719 a001 196418/3571*5778^(4/9) 2584000318631466 a001 4181/3571*15127^(4/5) 2584000318698219 a001 121393/3571*5778^(1/2) 2584000323125070 a001 75025/3571*5778^(5/9) 2584000325309176 r005 Im(z^2+c),c=-65/126+13/30*I,n=11 2584000325829880 a001 24157817/15127*843^(1/14) 2584000326065216 a001 1346269/2207*843^(3/14) 2584000327092848 a001 46368/3571*5778^(11/18) 2584000331124050 r005 Re(z^2+c),c=2/9+22/45*I,n=32 2584000331357816 a001 832040/15127*2207^(1/2) 2584000331529429 a001 121393/5778*2207^(5/8) 2584000332262492 a001 28657/3571*5778^(2/3) 2584000333240666 a001 6765/3571*5778^(5/6) 2584000334285611 a001 17711/3571*5778^(13/18) 2584000335474756 a001 63245986/39603*843^(1/14) 2584000336021489 s004 Continued Fraction of A260840 2584000336021489 s004 Continued fraction of A260840 2584000336881924 a001 165580141/103682*843^(1/14) 2584000337087227 a001 433494437/271443*843^(1/14) 2584000337117181 a001 1134903170/710647*843^(1/14) 2584000337121551 a001 2971215073/1860498*843^(1/14) 2584000337122188 a001 7778742049/4870847*843^(1/14) 2584000337122282 a001 20365011074/12752043*843^(1/14) 2584000337122295 a001 53316291173/33385282*843^(1/14) 2584000337122297 a001 139583862445/87403803*843^(1/14) 2584000337122297 a001 365435296162/228826127*843^(1/14) 2584000337122297 a001 956722026041/599074578*843^(1/14) 2584000337122297 a001 2504730781961/1568397607*843^(1/14) 2584000337122297 a001 6557470319842/4106118243*843^(1/14) 2584000337122297 a001 10610209857723/6643838879*843^(1/14) 2584000337122297 a001 4052739537881/2537720636*843^(1/14) 2584000337122297 a001 1548008755920/969323029*843^(1/14) 2584000337122297 a001 591286729879/370248451*843^(1/14) 2584000337122298 a001 225851433717/141422324*843^(1/14) 2584000337122298 a001 86267571272/54018521*843^(1/14) 2584000337122303 a001 32951280099/20633239*843^(1/14) 2584000337122339 a001 12586269025/7881196*843^(1/14) 2584000337122583 a001 4807526976/3010349*843^(1/14) 2584000337124252 a001 1836311903/1149851*843^(1/14) 2584000337135693 a001 701408733/439204*843^(1/14) 2584000337214112 a001 267914296/167761*843^(1/14) 2584000337751602 a001 102334155/64079*843^(1/14) 2584000339057717 a001 832040/9349*2207^(7/16) 2584000341003330 a001 726103/13201*2207^(1/2) 2584000341435617 a001 39088169/24476*843^(1/14) 2584000342410592 a001 5702887/103682*2207^(1/2) 2584000342615908 a001 4976784/90481*2207^(1/2) 2584000342645864 a001 39088169/710647*2207^(1/2) 2584000342650234 a001 831985/15126*2207^(1/2) 2584000342650872 a001 267914296/4870847*2207^(1/2) 2584000342650965 a001 233802911/4250681*2207^(1/2) 2584000342650978 a001 1836311903/33385282*2207^(1/2) 2584000342650980 a001 1602508992/29134601*2207^(1/2) 2584000342650980 a001 12586269025/228826127*2207^(1/2) 2584000342650981 a001 10983760033/199691526*2207^(1/2) 2584000342650981 a001 86267571272/1568397607*2207^(1/2) 2584000342650981 a001 75283811239/1368706081*2207^(1/2) 2584000342650981 a001 591286729879/10749957122*2207^(1/2) 2584000342650981 a001 12585437040/228811001*2207^(1/2) 2584000342650981 a001 4052739537881/73681302247*2207^(1/2) 2584000342650981 a001 3536736619241/64300051206*2207^(1/2) 2584000342650981 a001 6557470319842/119218851371*2207^(1/2) 2584000342650981 a001 2504730781961/45537549124*2207^(1/2) 2584000342650981 a001 956722026041/17393796001*2207^(1/2) 2584000342650981 a001 365435296162/6643838879*2207^(1/2) 2584000342650981 a001 139583862445/2537720636*2207^(1/2) 2584000342650981 a001 53316291173/969323029*2207^(1/2) 2584000342650981 a001 20365011074/370248451*2207^(1/2) 2584000342650981 a001 7778742049/141422324*2207^(1/2) 2584000342650981 a001 2971215073/54018521*2207^(1/2) 2584000342650987 a001 1134903170/20633239*2207^(1/2) 2584000342651022 a001 433494437/7881196*2207^(1/2) 2584000342651266 a001 165580141/3010349*2207^(1/2) 2584000342652935 a001 63245986/1149851*2207^(1/2) 2584000342664377 a001 24157817/439204*2207^(1/2) 2584000342742801 a001 9227465/167761*2207^(1/2) 2584000343280327 a001 3524578/64079*2207^(1/2) 2584000343688132 r009 Im(z^3+c),c=-23/86+38/39*I,n=2 2584000344546439 a001 10946/3571*5778^(7/9) 2584000346346542 a001 3524578/3571*2207^(1/8) 2584000346964586 a001 1346269/24476*2207^(1/2) 2584000357432966 a004 Fibonacci(17)*Lucas(18)/(1/2+sqrt(5)/2)^17 2584000359487886 a001 5473/682*1364^(4/5) 2584000364516969 a001 514229/15127*2207^(9/16) 2584000364812766 a001 75025/5778*2207^(11/16) 2584000366686230 a001 14930352/9349*843^(1/14) 2584000372216870 a001 514229/9349*2207^(1/2) 2584000374160176 a001 1346269/39603*2207^(9/16) 2584000374721815 r009 Re(z^3+c),c=-29/82+17/44*I,n=7 2584000375567101 a001 1762289/51841*2207^(9/16) 2584000375772369 a001 9227465/271443*2207^(9/16) 2584000375802317 a001 24157817/710647*2207^(9/16) 2584000375806686 a001 31622993/930249*2207^(9/16) 2584000375807324 a001 165580141/4870847*2207^(9/16) 2584000375807417 a001 433494437/12752043*2207^(9/16) 2584000375807430 a001 567451585/16692641*2207^(9/16) 2584000375807432 a001 2971215073/87403803*2207^(9/16) 2584000375807433 a001 7778742049/228826127*2207^(9/16) 2584000375807433 a001 10182505537/299537289*2207^(9/16) 2584000375807433 a001 53316291173/1568397607*2207^(9/16) 2584000375807433 a001 139583862445/4106118243*2207^(9/16) 2584000375807433 a001 182717648081/5374978561*2207^(9/16) 2584000375807433 a001 956722026041/28143753123*2207^(9/16) 2584000375807433 a001 2504730781961/73681302247*2207^(9/16) 2584000375807433 a001 3278735159921/96450076809*2207^(9/16) 2584000375807433 a001 10610209857723/312119004989*2207^(9/16) 2584000375807433 a001 4052739537881/119218851371*2207^(9/16) 2584000375807433 a001 387002188980/11384387281*2207^(9/16) 2584000375807433 a001 591286729879/17393796001*2207^(9/16) 2584000375807433 a001 225851433717/6643838879*2207^(9/16) 2584000375807433 a001 1135099622/33391061*2207^(9/16) 2584000375807433 a001 32951280099/969323029*2207^(9/16) 2584000375807433 a001 12586269025/370248451*2207^(9/16) 2584000375807433 a001 1201881744/35355581*2207^(9/16) 2584000375807434 a001 1836311903/54018521*2207^(9/16) 2584000375807439 a001 701408733/20633239*2207^(9/16) 2584000375807474 a001 66978574/1970299*2207^(9/16) 2584000375807718 a001 102334155/3010349*2207^(9/16) 2584000375809387 a001 39088169/1149851*2207^(9/16) 2584000375820826 a001 196452/5779*2207^(9/16) 2584000375899231 a001 5702887/167761*2207^(9/16) 2584000375939770 s004 Continued Fraction of A235950 2584000375939770 s004 Continued fraction of A235950 2584000376436629 a001 2178309/64079*2207^(9/16) 2584000378396985 a001 4181/3571*5778^(8/9) 2584000379502844 a001 2178309/3571*2207^(3/16) 2584000380120006 a001 208010/6119*2207^(9/16) 2584000380339990 a001 843/1346269*89^(6/19) 2584000386996892 a001 -3876+2889*5^(1/2) 2584000386996904 a001 6677057/2584 2584000391511125 a007 Real Root Of -553*x^4-485*x^3-147*x^2+933*x+245 2584000397637031 a001 2576/321*2207^(3/4) 2584000397666350 a001 317811/15127*2207^(5/8) 2584000402642057 r005 Re(z^2+c),c=-5/122+5/8*I,n=49 2584000404885442 r002 12th iterates of z^2 + 2584000405366252 a001 317811/9349*2207^(9/16) 2584000405856886 r005 Im(z^2+c),c=35/122+5/56*I,n=45 2584000406191688 m001 GaussAGM*(exp(-1/2*Pi)-polylog(4,1/2)) 2584000407315597 a001 832040/39603*2207^(5/8) 2584000408723403 a001 46347/2206*2207^(5/8) 2584000408928800 a001 5702887/271443*2207^(5/8) 2584000408958766 a001 14930352/710647*2207^(5/8) 2584000408963139 a001 39088169/1860498*2207^(5/8) 2584000408963776 a001 102334155/4870847*2207^(5/8) 2584000408963869 a001 267914296/12752043*2207^(5/8) 2584000408963883 a001 701408733/33385282*2207^(5/8) 2584000408963885 a001 1836311903/87403803*2207^(5/8) 2584000408963885 a001 102287808/4868641*2207^(5/8) 2584000408963885 a001 12586269025/599074578*2207^(5/8) 2584000408963885 a001 32951280099/1568397607*2207^(5/8) 2584000408963885 a001 86267571272/4106118243*2207^(5/8) 2584000408963885 a001 225851433717/10749957122*2207^(5/8) 2584000408963885 a001 591286729879/28143753123*2207^(5/8) 2584000408963885 a001 1548008755920/73681302247*2207^(5/8) 2584000408963885 a001 4052739537881/192900153618*2207^(5/8) 2584000408963885 a001 225749145909/10745088481*2207^(5/8) 2584000408963885 a001 6557470319842/312119004989*2207^(5/8) 2584000408963885 a001 2504730781961/119218851371*2207^(5/8) 2584000408963885 a001 956722026041/45537549124*2207^(5/8) 2584000408963885 a001 365435296162/17393796001*2207^(5/8) 2584000408963885 a001 139583862445/6643838879*2207^(5/8) 2584000408963885 a001 53316291173/2537720636*2207^(5/8) 2584000408963885 a001 20365011074/969323029*2207^(5/8) 2584000408963885 a001 7778742049/370248451*2207^(5/8) 2584000408963886 a001 2971215073/141422324*2207^(5/8) 2584000408963886 a001 1134903170/54018521*2207^(5/8) 2584000408963891 a001 433494437/20633239*2207^(5/8) 2584000408963927 a001 165580141/7881196*2207^(5/8) 2584000408964171 a001 63245986/3010349*2207^(5/8) 2584000408965841 a001 24157817/1149851*2207^(5/8) 2584000408977287 a001 9227465/439204*2207^(5/8) 2584000409055741 a001 3524578/167761*2207^(5/8) 2584000409593475 a001 1346269/64079*2207^(5/8) 2584000411261086 r002 19th iterates of z^2 + 2584000412659691 a001 1346269/3571*2207^(1/4) 2584000413279160 a001 514229/24476*2207^(5/8) 2584000414849384 a007 Real Root Of 285*x^4+389*x^3-727*x^2+266*x-453 2584000420017079 r005 Re(z^2+c),c=-35/118+10/39*I,n=20 2584000424296586 r005 Im(z^2+c),c=2/21+9/37*I,n=20 2584000426371663 a007 Real Root Of 4*x^4-243*x^3+519*x^2+70*x+368 2584000429132695 r002 29th iterates of z^2 + 2584000430841315 a001 196418/15127*2207^(11/16) 2584000431663162 a001 28657/5778*2207^(13/16) 2584000432948115 a001 47/317811*2584^(23/35) 2584000435196520 m001 exp(Pi)*cosh(1)*Sarnak 2584000438541217 a001 196418/9349*2207^(5/8) 2584000438762088 r005 Im(z^2+c),c=25/58+25/54*I,n=5 2584000439056648 m001 Bloch^2*exp(FibonacciFactorial)^2/Zeta(9) 2584000440474751 a001 514229/39603*2207^(11/16) 2584000441880251 a001 1346269/103682*2207^(11/16) 2584000442085310 a001 3524578/271443*2207^(11/16) 2584000442115228 a001 9227465/710647*2207^(11/16) 2584000442119593 a001 24157817/1860498*2207^(11/16) 2584000442120230 a001 63245986/4870847*2207^(11/16) 2584000442120323 a001 165580141/12752043*2207^(11/16) 2584000442120336 a001 433494437/33385282*2207^(11/16) 2584000442120338 a001 1134903170/87403803*2207^(11/16) 2584000442120338 a001 2971215073/228826127*2207^(11/16) 2584000442120338 a001 7778742049/599074578*2207^(11/16) 2584000442120338 a001 20365011074/1568397607*2207^(11/16) 2584000442120338 a001 53316291173/4106118243*2207^(11/16) 2584000442120338 a001 139583862445/10749957122*2207^(11/16) 2584000442120338 a001 365435296162/28143753123*2207^(11/16) 2584000442120338 a001 956722026041/73681302247*2207^(11/16) 2584000442120338 a001 2504730781961/192900153618*2207^(11/16) 2584000442120338 a001 10610209857723/817138163596*2207^(11/16) 2584000442120338 a001 4052739537881/312119004989*2207^(11/16) 2584000442120338 a001 1548008755920/119218851371*2207^(11/16) 2584000442120338 a001 591286729879/45537549124*2207^(11/16) 2584000442120338 a001 7787980473/599786069*2207^(11/16) 2584000442120338 a001 86267571272/6643838879*2207^(11/16) 2584000442120338 a001 32951280099/2537720636*2207^(11/16) 2584000442120338 a001 12586269025/969323029*2207^(11/16) 2584000442120338 a001 4807526976/370248451*2207^(11/16) 2584000442120339 a001 1836311903/141422324*2207^(11/16) 2584000442120339 a001 701408733/54018521*2207^(11/16) 2584000442120345 a001 9238424/711491*2207^(11/16) 2584000442120380 a001 102334155/7881196*2207^(11/16) 2584000442120623 a001 39088169/3010349*2207^(11/16) 2584000442122291 a001 14930352/1149851*2207^(11/16) 2584000442133718 a001 5702887/439204*2207^(11/16) 2584000442212044 a001 2178309/167761*2207^(11/16) 2584000442748897 a001 832040/64079*2207^(11/16) 2584000443647887 m001 2*sqrt(3)-2*BesselJ(1,1) 2584000445815112 a001 832040/3571*2207^(5/16) 2584000446118761 a001 17711/1364*1364^(11/15) 2584000446428542 a001 10959/844*2207^(11/16) 2584000453103853 a001 7375/2-987/2*5^(1/2) 2584000454659877 a001 1597/3571*9349^(18/19) 2584000458564413 r005 Re(z^2+c),c=7/36+1/39*I,n=17 2584000462542768 a001 17711/5778*2207^(7/8) 2584000463949303 a001 121393/15127*2207^(3/4) 2584000469191455 p003 LerchPhi(1/6,3,172/235) 2584000471649205 a001 121393/9349*2207^(11/16) 2584000473624134 a001 105937/13201*2207^(3/4) 2584000475035672 a001 416020/51841*2207^(3/4) 2584000475241613 a001 726103/90481*2207^(3/4) 2584000475271659 a001 5702887/710647*2207^(3/4) 2584000475276043 a001 829464/103361*2207^(3/4) 2584000475276683 a001 39088169/4870847*2207^(3/4) 2584000475276776 a001 34111385/4250681*2207^(3/4) 2584000475276790 a001 133957148/16692641*2207^(3/4) 2584000475276792 a001 233802911/29134601*2207^(3/4) 2584000475276792 a001 1836311903/228826127*2207^(3/4) 2584000475276792 a001 267084832/33281921*2207^(3/4) 2584000475276792 a001 12586269025/1568397607*2207^(3/4) 2584000475276792 a001 10983760033/1368706081*2207^(3/4) 2584000475276792 a001 43133785636/5374978561*2207^(3/4) 2584000475276792 a001 75283811239/9381251041*2207^(3/4) 2584000475276792 a001 591286729879/73681302247*2207^(3/4) 2584000475276792 a001 86000486440/10716675201*2207^(3/4) 2584000475276792 a001 4052739537881/505019158607*2207^(3/4) 2584000475276792 a001 3278735159921/408569081798*2207^(3/4) 2584000475276792 a001 2504730781961/312119004989*2207^(3/4) 2584000475276792 a001 956722026041/119218851371*2207^(3/4) 2584000475276792 a001 182717648081/22768774562*2207^(3/4) 2584000475276792 a001 139583862445/17393796001*2207^(3/4) 2584000475276792 a001 53316291173/6643838879*2207^(3/4) 2584000475276792 a001 10182505537/1268860318*2207^(3/4) 2584000475276792 a001 7778742049/969323029*2207^(3/4) 2584000475276792 a001 2971215073/370248451*2207^(3/4) 2584000475276792 a001 567451585/70711162*2207^(3/4) 2584000475276793 a001 433494437/54018521*2207^(3/4) 2584000475276798 a001 165580141/20633239*2207^(3/4) 2584000475276834 a001 31622993/3940598*2207^(3/4) 2584000475277078 a001 24157817/3010349*2207^(3/4) 2584000475278752 a001 9227465/1149851*2207^(3/4) 2584000475290229 a001 1762289/219602*2207^(3/4) 2584000475368891 a001 1346269/167761*2207^(3/4) 2584000475908051 a001 514229/64079*2207^(3/4) 2584000478828841 m005 (1/2*Zeta(3)-1/7)/(Catalan+6/7) 2584000478970685 a001 1597/3571*24476^(6/7) 2584000478974267 a001 514229/3571*2207^(3/8) 2584000479603508 a001 98209/12238*2207^(3/4) 2584000480373199 a007 Real Root Of 77*x^4-55*x^3-619*x^2-9*x-272 2584000481191835 m001 (3^(1/2)+ln(Pi))/(-exp(1/Pi)+MertensB1) 2584000482175317 a001 1597/3571*64079^(18/23) 2584000482658887 a001 1597/3571*439204^(2/3) 2584000482667794 a001 1597/3571*7881196^(6/11) 2584000482667817 a001 1597/3571*141422324^(6/13) 2584000482667817 a001 1597/3571*2537720636^(2/5) 2584000482667817 a001 1597/3571*45537549124^(6/17) 2584000482667817 a001 1597/3571*14662949395604^(2/7) 2584000482667817 a001 1597/3571*(1/2+1/2*5^(1/2))^18 2584000482667817 a001 1597/3571*192900153618^(1/3) 2584000482667817 a001 1597/3571*10749957122^(3/8) 2584000482667817 a001 1597/3571*4106118243^(9/23) 2584000482667817 a001 1597/3571*1568397607^(9/22) 2584000482667817 a001 1597/3571*599074578^(3/7) 2584000482667817 a001 1597/3571*228826127^(9/20) 2584000482667817 a001 1597/3571*87403803^(9/19) 2584000482667818 a001 1597/3571*33385282^(1/2) 2584000482667825 a001 1597/3571*12752043^(9/17) 2584000482667878 a001 1597/3571*4870847^(9/16) 2584000482668265 a001 1597/3571*1860498^(3/5) 2584000482671106 a001 1597/3571*710647^(9/14) 2584000482692096 a001 1597/3571*271443^(9/13) 2584000482848097 a001 1597/3571*103682^(3/4) 2584000484015806 a001 1597/3571*39603^(9/11) 2584000488008576 r009 Re(z^3+c),c=-9/22+29/63*I,n=18 2584000491137228 r005 Re(z^2+c),c=-3/13+23/49*I,n=25 2584000492830994 a001 1597/3571*15127^(9/10) 2584000493539560 r005 Im(z^2+c),c=-11/40+17/43*I,n=17 2584000497232641 a001 75025/15127*2207^(13/16) 2584000500743439 a001 20365011074/3*123^(5/18) 2584000501660084 a001 5473/2889*2207^(15/16) 2584000504932543 a001 75025/9349*2207^(3/4) 2584000506799100 a001 196418/39603*2207^(13/16) 2584000507877759 r005 Re(z^2+c),c=-31/32+11/62*I,n=6 2584000508194827 a001 514229/103682*2207^(13/16) 2584000508398461 a001 1346269/271443*2207^(13/16) 2584000508428171 a001 3524578/710647*2207^(13/16) 2584000508432505 a001 9227465/1860498*2207^(13/16) 2584000508433138 a001 24157817/4870847*2207^(13/16) 2584000508433230 a001 63245986/12752043*2207^(13/16) 2584000508433244 a001 165580141/33385282*2207^(13/16) 2584000508433246 a001 433494437/87403803*2207^(13/16) 2584000508433246 a001 1134903170/228826127*2207^(13/16) 2584000508433246 a001 2971215073/599074578*2207^(13/16) 2584000508433246 a001 7778742049/1568397607*2207^(13/16) 2584000508433246 a001 20365011074/4106118243*2207^(13/16) 2584000508433246 a001 53316291173/10749957122*2207^(13/16) 2584000508433246 a001 139583862445/28143753123*2207^(13/16) 2584000508433246 a001 365435296162/73681302247*2207^(13/16) 2584000508433246 a001 956722026041/192900153618*2207^(13/16) 2584000508433246 a001 2504730781961/505019158607*2207^(13/16) 2584000508433246 a001 10610209857723/2139295485799*2207^(13/16) 2584000508433246 a001 4052739537881/817138163596*2207^(13/16) 2584000508433246 a001 140728068720/28374454999*2207^(13/16) 2584000508433246 a001 591286729879/119218851371*2207^(13/16) 2584000508433246 a001 225851433717/45537549124*2207^(13/16) 2584000508433246 a001 86267571272/17393796001*2207^(13/16) 2584000508433246 a001 32951280099/6643838879*2207^(13/16) 2584000508433246 a001 1144206275/230701876*2207^(13/16) 2584000508433246 a001 4807526976/969323029*2207^(13/16) 2584000508433246 a001 1836311903/370248451*2207^(13/16) 2584000508433246 a001 701408733/141422324*2207^(13/16) 2584000508433247 a001 267914296/54018521*2207^(13/16) 2584000508433252 a001 9303105/1875749*2207^(13/16) 2584000508433287 a001 39088169/7881196*2207^(13/16) 2584000508433529 a001 14930352/3010349*2207^(13/16) 2584000508435184 a001 5702887/1149851*2207^(13/16) 2584000508446533 a001 2178309/439204*2207^(13/16) 2584000508524314 a001 75640/15251*2207^(13/16) 2584000509057434 a001 317811/64079*2207^(13/16) 2584000509847834 b008 19/13+2^(1/6) 2584000512123650 a001 317811/3571*2207^(7/16) 2584000512711496 a001 121393/24476*2207^(13/16) 2584000517490998 b008 9*ArcSinh[44/5] 2584000519445835 a001 5702887/5778*843^(1/7) 2584000526033796 m001 (Otter-Robbin)/(BesselI(1,1)+FellerTornier) 2584000528128655 a008 Real Root of (17+10*x-9*x^2+x^3) 2584000530056908 a001 6624/2161*2207^(7/8) 2584000530503216 a004 Fibonacci(18)*Lucas(16)/(1/2+sqrt(5)/2)^16 2584000532669399 a007 Real Root Of 357*x^4+864*x^3-313*x^2-63*x+918 2584000537756810 a001 46368/9349*2207^(13/16) 2584000539756521 a001 1597*843^(1/14) 2584000539907089 a001 121393/39603*2207^(7/8) 2584000540024587 a003 cos(Pi*28/113)/cos(Pi*28/57) 2584000540987347 a001 28657/1364*1364^(2/3) 2584000541344211 a001 317811/103682*2207^(7/8) 2584000541553884 a001 832040/271443*2207^(7/8) 2584000541584475 a001 311187/101521*2207^(7/8) 2584000541588938 a001 5702887/1860498*2207^(7/8) 2584000541589589 a001 14930352/4870847*2207^(7/8) 2584000541589684 a001 39088169/12752043*2207^(7/8) 2584000541589698 a001 14619165/4769326*2207^(7/8) 2584000541589700 a001 267914296/87403803*2207^(7/8) 2584000541589700 a001 701408733/228826127*2207^(7/8) 2584000541589700 a001 1836311903/599074578*2207^(7/8) 2584000541589700 a001 686789568/224056801*2207^(7/8) 2584000541589700 a001 12586269025/4106118243*2207^(7/8) 2584000541589700 a001 32951280099/10749957122*2207^(7/8) 2584000541589700 a001 86267571272/28143753123*2207^(7/8) 2584000541589700 a001 32264490531/10525900321*2207^(7/8) 2584000541589700 a001 591286729879/192900153618*2207^(7/8) 2584000541589700 a001 1548008755920/505019158607*2207^(7/8) 2584000541589700 a001 1515744265389/494493258286*2207^(7/8) 2584000541589700 a001 2504730781961/817138163596*2207^(7/8) 2584000541589700 a001 956722026041/312119004989*2207^(7/8) 2584000541589700 a001 365435296162/119218851371*2207^(7/8) 2584000541589700 a001 139583862445/45537549124*2207^(7/8) 2584000541589700 a001 53316291173/17393796001*2207^(7/8) 2584000541589700 a001 20365011074/6643838879*2207^(7/8) 2584000541589700 a001 7778742049/2537720636*2207^(7/8) 2584000541589700 a001 2971215073/969323029*2207^(7/8) 2584000541589700 a001 1134903170/370248451*2207^(7/8) 2584000541589700 a001 433494437/141422324*2207^(7/8) 2584000541589701 a001 165580141/54018521*2207^(7/8) 2584000541589706 a001 63245986/20633239*2207^(7/8) 2584000541589743 a001 24157817/7881196*2207^(7/8) 2584000541589991 a001 9227465/3010349*2207^(7/8) 2584000541591696 a001 3524578/1149851*2207^(7/8) 2584000541603381 a001 1346269/439204*2207^(7/8) 2584000541683469 a001 514229/167761*2207^(7/8) 2584000542232401 a001 196418/64079*2207^(7/8) 2584000545298616 a001 196418/3571*2207^(1/2) 2584000545994835 a001 75025/24476*2207^(7/8) 2584000547323527 a001 377/3*24476^(57/58) 2584000548019523 a005 (1/sin(83/201*Pi))^876 2584000554938891 a001 521/832040*2178309^(13/51) 2584000560067164 a001 -987+1597*5^(1/2) 2584000562654578 r005 Re(z^2+c),c=-2/13+37/63*I,n=37 2584000564083041 a001 28657/15127*2207^(15/16) 2584000571782943 a001 28657/9349*2207^(7/8) 2584000573190428 a001 75025/39603*2207^(15/16) 2584000573890851 r005 Re(z^2+c),c=-5/16+7/41*I,n=22 2584000574519177 a001 98209/51841*2207^(15/16) 2584000574713039 a001 514229/271443*2207^(15/16) 2584000574741324 a001 1346269/710647*2207^(15/16) 2584000574745450 a001 1762289/930249*2207^(15/16) 2584000574746052 a001 9227465/4870847*2207^(15/16) 2584000574746140 a001 24157817/12752043*2207^(15/16) 2584000574746153 a001 31622993/16692641*2207^(15/16) 2584000574746155 a001 165580141/87403803*2207^(15/16) 2584000574746155 a001 433494437/228826127*2207^(15/16) 2584000574746155 a001 567451585/299537289*2207^(15/16) 2584000574746155 a001 2971215073/1568397607*2207^(15/16) 2584000574746155 a001 7778742049/4106118243*2207^(15/16) 2584000574746155 a001 10182505537/5374978561*2207^(15/16) 2584000574746155 a001 53316291173/28143753123*2207^(15/16) 2584000574746155 a001 139583862445/73681302247*2207^(15/16) 2584000574746155 a001 182717648081/96450076809*2207^(15/16) 2584000574746155 a001 956722026041/505019158607*2207^(15/16) 2584000574746155 a001 10610209857723/5600748293801*2207^(15/16) 2584000574746155 a001 591286729879/312119004989*2207^(15/16) 2584000574746155 a001 225851433717/119218851371*2207^(15/16) 2584000574746155 a001 21566892818/11384387281*2207^(15/16) 2584000574746155 a001 32951280099/17393796001*2207^(15/16) 2584000574746155 a001 12586269025/6643838879*2207^(15/16) 2584000574746155 a001 1201881744/634430159*2207^(15/16) 2584000574746155 a001 1836311903/969323029*2207^(15/16) 2584000574746155 a001 701408733/370248451*2207^(15/16) 2584000574746155 a001 66978574/35355581*2207^(15/16) 2584000574746156 a001 102334155/54018521*2207^(15/16) 2584000574746161 a001 39088169/20633239*2207^(15/16) 2584000574746194 a001 3732588/1970299*2207^(15/16) 2584000574746424 a001 5702887/3010349*2207^(15/16) 2584000574748001 a001 2178309/1149851*2207^(15/16) 2584000574758804 a001 208010/109801*2207^(15/16) 2584000574832853 a001 317811/167761*2207^(15/16) 2584000575340390 a001 121393/64079*2207^(15/16) 2584000578406606 a001 121393/3571*2207^(9/16) 2584000578819102 a001 11592/6119*2207^(15/16) 2584000585552821 a001 14930352/15127*843^(1/7) 2584000585787129 a001 832040/2207*843^(2/7) 2584000590916544 l006 ln(4164/4273) 2584000594036147 m001 OneNinth^ln(2+3^(1/2))/(OneNinth^Rabbit) 2584000594984547 a001 832040/843*322^(1/6) 2584000595197701 a001 39088169/39603*843^(1/7) 2584000596604870 a001 102334155/103682*843^(1/7) 2584000596610191 a004 Fibonacci(20)*Lucas(16)/(1/2+sqrt(5)/2)^18 2584000596810173 a001 267914296/271443*843^(1/7) 2584000596840126 a001 701408733/710647*843^(1/7) 2584000596844496 a001 1836311903/1860498*843^(1/7) 2584000596845134 a001 4807526976/4870847*843^(1/7) 2584000596845227 a001 12586269025/12752043*843^(1/7) 2584000596845241 a001 32951280099/33385282*843^(1/7) 2584000596845243 a001 86267571272/87403803*843^(1/7) 2584000596845243 a001 225851433717/228826127*843^(1/7) 2584000596845243 a001 591286729879/599074578*843^(1/7) 2584000596845243 a001 1548008755920/1568397607*843^(1/7) 2584000596845243 a001 4052739537881/4106118243*843^(1/7) 2584000596845243 a001 4807525989/4870846*843^(1/7) 2584000596845243 a001 6557470319842/6643838879*843^(1/7) 2584000596845243 a001 2504730781961/2537720636*843^(1/7) 2584000596845243 a001 956722026041/969323029*843^(1/7) 2584000596845243 a001 365435296162/370248451*843^(1/7) 2584000596845243 a001 139583862445/141422324*843^(1/7) 2584000596845244 a001 53316291173/54018521*843^(1/7) 2584000596845249 a001 20365011074/20633239*843^(1/7) 2584000596845285 a001 7778742049/7881196*843^(1/7) 2584000596845528 a001 2971215073/3010349*843^(1/7) 2584000596847197 a001 1134903170/1149851*843^(1/7) 2584000596858638 a001 433494437/439204*843^(1/7) 2584000596937057 a001 165580141/167761*843^(1/7) 2584000597222493 m005 (1/2*Zeta(3)-7/11)/(6/11*Catalan-7/11) 2584000597474548 a001 63245986/64079*843^(1/7) 2584000601158564 a001 24157817/24476*843^(1/7) 2584000602212731 s002 sum(A138828[n]/(n*exp(pi*n)+1),n=1..infinity) 2584000602662551 a001 17711/9349*2207^(15/16) 2584000606255068 a004 Fibonacci(22)*Lucas(16)/(1/2+sqrt(5)/2)^20 2584000607662237 a004 Fibonacci(24)*Lucas(16)/(1/2+sqrt(5)/2)^22 2584000607867540 a004 Fibonacci(26)*Lucas(16)/(1/2+sqrt(5)/2)^24 2584000607897494 a004 Fibonacci(28)*Lucas(16)/(1/2+sqrt(5)/2)^26 2584000607901864 a004 Fibonacci(30)*Lucas(16)/(1/2+sqrt(5)/2)^28 2584000607902501 a004 Fibonacci(32)*Lucas(16)/(1/2+sqrt(5)/2)^30 2584000607902594 a004 Fibonacci(34)*Lucas(16)/(1/2+sqrt(5)/2)^32 2584000607902608 a004 Fibonacci(36)*Lucas(16)/(1/2+sqrt(5)/2)^34 2584000607902610 a004 Fibonacci(38)*Lucas(16)/(1/2+sqrt(5)/2)^36 2584000607902610 a004 Fibonacci(40)*Lucas(16)/(1/2+sqrt(5)/2)^38 2584000607902610 a004 Fibonacci(42)*Lucas(16)/(1/2+sqrt(5)/2)^40 2584000607902610 a004 Fibonacci(44)*Lucas(16)/(1/2+sqrt(5)/2)^42 2584000607902610 a004 Fibonacci(46)*Lucas(16)/(1/2+sqrt(5)/2)^44 2584000607902610 a004 Fibonacci(48)*Lucas(16)/(1/2+sqrt(5)/2)^46 2584000607902610 a004 Fibonacci(50)*Lucas(16)/(1/2+sqrt(5)/2)^48 2584000607902610 a004 Fibonacci(52)*Lucas(16)/(1/2+sqrt(5)/2)^50 2584000607902610 a004 Fibonacci(54)*Lucas(16)/(1/2+sqrt(5)/2)^52 2584000607902610 a004 Fibonacci(56)*Lucas(16)/(1/2+sqrt(5)/2)^54 2584000607902610 a004 Fibonacci(58)*Lucas(16)/(1/2+sqrt(5)/2)^56 2584000607902610 a004 Fibonacci(60)*Lucas(16)/(1/2+sqrt(5)/2)^58 2584000607902610 a004 Fibonacci(62)*Lucas(16)/(1/2+sqrt(5)/2)^60 2584000607902610 a004 Fibonacci(64)*Lucas(16)/(1/2+sqrt(5)/2)^62 2584000607902610 a004 Fibonacci(66)*Lucas(16)/(1/2+sqrt(5)/2)^64 2584000607902610 a004 Fibonacci(68)*Lucas(16)/(1/2+sqrt(5)/2)^66 2584000607902610 a004 Fibonacci(70)*Lucas(16)/(1/2+sqrt(5)/2)^68 2584000607902610 a004 Fibonacci(72)*Lucas(16)/(1/2+sqrt(5)/2)^70 2584000607902610 a004 Fibonacci(74)*Lucas(16)/(1/2+sqrt(5)/2)^72 2584000607902610 a004 Fibonacci(76)*Lucas(16)/(1/2+sqrt(5)/2)^74 2584000607902610 a004 Fibonacci(78)*Lucas(16)/(1/2+sqrt(5)/2)^76 2584000607902610 a004 Fibonacci(80)*Lucas(16)/(1/2+sqrt(5)/2)^78 2584000607902610 a004 Fibonacci(82)*Lucas(16)/(1/2+sqrt(5)/2)^80 2584000607902610 a004 Fibonacci(84)*Lucas(16)/(1/2+sqrt(5)/2)^82 2584000607902610 a004 Fibonacci(86)*Lucas(16)/(1/2+sqrt(5)/2)^84 2584000607902610 a004 Fibonacci(88)*Lucas(16)/(1/2+sqrt(5)/2)^86 2584000607902610 a004 Fibonacci(90)*Lucas(16)/(1/2+sqrt(5)/2)^88 2584000607902610 a004 Fibonacci(92)*Lucas(16)/(1/2+sqrt(5)/2)^90 2584000607902610 a004 Fibonacci(94)*Lucas(16)/(1/2+sqrt(5)/2)^92 2584000607902610 a004 Fibonacci(96)*Lucas(16)/(1/2+sqrt(5)/2)^94 2584000607902610 a004 Fibonacci(100)*Lucas(16)/(1/2+sqrt(5)/2)^98 2584000607902610 a004 Fibonacci(98)*Lucas(16)/(1/2+sqrt(5)/2)^96 2584000607902610 a004 Fibonacci(99)*Lucas(16)/(1/2+sqrt(5)/2)^97 2584000607902610 a004 Fibonacci(97)*Lucas(16)/(1/2+sqrt(5)/2)^95 2584000607902610 a004 Fibonacci(95)*Lucas(16)/(1/2+sqrt(5)/2)^93 2584000607902610 a004 Fibonacci(93)*Lucas(16)/(1/2+sqrt(5)/2)^91 2584000607902610 a004 Fibonacci(91)*Lucas(16)/(1/2+sqrt(5)/2)^89 2584000607902610 a004 Fibonacci(89)*Lucas(16)/(1/2+sqrt(5)/2)^87 2584000607902610 a004 Fibonacci(87)*Lucas(16)/(1/2+sqrt(5)/2)^85 2584000607902610 a004 Fibonacci(85)*Lucas(16)/(1/2+sqrt(5)/2)^83 2584000607902610 a004 Fibonacci(83)*Lucas(16)/(1/2+sqrt(5)/2)^81 2584000607902610 a004 Fibonacci(81)*Lucas(16)/(1/2+sqrt(5)/2)^79 2584000607902610 a004 Fibonacci(79)*Lucas(16)/(1/2+sqrt(5)/2)^77 2584000607902610 a004 Fibonacci(77)*Lucas(16)/(1/2+sqrt(5)/2)^75 2584000607902610 a004 Fibonacci(75)*Lucas(16)/(1/2+sqrt(5)/2)^73 2584000607902610 a004 Fibonacci(73)*Lucas(16)/(1/2+sqrt(5)/2)^71 2584000607902610 a004 Fibonacci(71)*Lucas(16)/(1/2+sqrt(5)/2)^69 2584000607902610 a004 Fibonacci(69)*Lucas(16)/(1/2+sqrt(5)/2)^67 2584000607902610 a004 Fibonacci(67)*Lucas(16)/(1/2+sqrt(5)/2)^65 2584000607902610 a004 Fibonacci(65)*Lucas(16)/(1/2+sqrt(5)/2)^63 2584000607902610 a004 Fibonacci(63)*Lucas(16)/(1/2+sqrt(5)/2)^61 2584000607902610 a004 Fibonacci(61)*Lucas(16)/(1/2+sqrt(5)/2)^59 2584000607902610 a004 Fibonacci(59)*Lucas(16)/(1/2+sqrt(5)/2)^57 2584000607902610 a004 Fibonacci(57)*Lucas(16)/(1/2+sqrt(5)/2)^55 2584000607902610 a004 Fibonacci(55)*Lucas(16)/(1/2+sqrt(5)/2)^53 2584000607902610 a004 Fibonacci(53)*Lucas(16)/(1/2+sqrt(5)/2)^51 2584000607902610 a004 Fibonacci(51)*Lucas(16)/(1/2+sqrt(5)/2)^49 2584000607902610 a004 Fibonacci(49)*Lucas(16)/(1/2+sqrt(5)/2)^47 2584000607902610 a004 Fibonacci(47)*Lucas(16)/(1/2+sqrt(5)/2)^45 2584000607902610 a004 Fibonacci(45)*Lucas(16)/(1/2+sqrt(5)/2)^43 2584000607902610 a004 Fibonacci(43)*Lucas(16)/(1/2+sqrt(5)/2)^41 2584000607902610 a004 Fibonacci(41)*Lucas(16)/(1/2+sqrt(5)/2)^39 2584000607902610 a004 Fibonacci(39)*Lucas(16)/(1/2+sqrt(5)/2)^37 2584000607902611 a004 Fibonacci(37)*Lucas(16)/(1/2+sqrt(5)/2)^35 2584000607902616 a004 Fibonacci(35)*Lucas(16)/(1/2+sqrt(5)/2)^33 2584000607902652 a004 Fibonacci(33)*Lucas(16)/(1/2+sqrt(5)/2)^31 2584000607902719 a001 2/987*(1/2+1/2*5^(1/2))^34 2584000607902895 a004 Fibonacci(31)*Lucas(16)/(1/2+sqrt(5)/2)^29 2584000607904565 a004 Fibonacci(29)*Lucas(16)/(1/2+sqrt(5)/2)^27 2584000607916006 a004 Fibonacci(27)*Lucas(16)/(1/2+sqrt(5)/2)^25 2584000607994425 a004 Fibonacci(25)*Lucas(16)/(1/2+sqrt(5)/2)^23 2584000608531915 a004 Fibonacci(23)*Lucas(16)/(1/2+sqrt(5)/2)^21 2584000611689945 a001 75025/3571*2207^(5/8) 2584000612215931 a004 Fibonacci(21)*Lucas(16)/(1/2+sqrt(5)/2)^19 2584000616470501 m001 Zeta(5)+FeigenbaumAlpha^PlouffeB 2584000618450353 a007 Real Root Of -413*x^4+876*x^3+434*x^2+917*x-24 2584000620835832 a007 Real Root Of 409*x^4+891*x^3-216*x^2+415*x-347 2584000626409187 a001 9227465/9349*843^(1/7) 2584000630349613 a007 Real Root Of 312*x^4-647*x^3-369*x^2-219*x+91 2584000632709411 a001 11592/341*1364^(3/5) 2584000635512661 a007 Real Root Of 838*x^4-835*x^3+694*x^2-776*x-265 2584000637466548 a004 Fibonacci(19)*Lucas(16)/(1/2+sqrt(5)/2)^17 2584000639987253 m009 (16/5*Catalan+2/5*Pi^2-1)/(3/5*Psi(1,3/4)+3/4) 2584000644514213 a001 46368/3571*2207^(11/16) 2584000645137647 r002 22th iterates of z^2 + 2584000668916461 m001 (Catalan-GAMMA(5/6))/(-FeigenbaumB+ZetaQ(3)) 2584000675349311 m001 (FeigenbaumKappa+GaussAGM)/(Chi(1)-gamma(2)) 2584000678540348 a001 28657/3571*2207^(3/4) 2584000690029461 a007 Real Root Of 441*x^4-412*x^3-583*x^2-81*x+65 2584000690815761 r005 Re(z^2+c),c=-29/90+5/61*I,n=14 2584000695942462 m001 (FeigenbaumC-ThueMorse)/(ln(gamma)+ln(3)) 2584000701991727 a007 Real Root Of -273*x^4+319*x^3+46*x^2+756*x+199 2584000708513009 m005 (2/3*Pi-4)/(1/2*Pi-5/6) 2584000708513009 m006 (4/Pi-2/3)/(5/6/Pi-1/2) 2584000708513009 m008 (2/3*Pi-4)/(1/2*Pi-5/6) 2584000709329500 m001 Khintchine*DuboisRaymond*ln(GAMMA(13/24)) 2584000709419957 a001 17711/3571*2207^(13/16) 2584000710752273 a007 Real Root Of -224*x^4+620*x^3-143*x^2+994*x-257 2584000713231129 m001 (FeigenbaumMu+Thue)/(cos(1)+GAMMA(19/24)) 2584000718517493 r009 Im(z^3+c),c=-23/118+15/59*I,n=11 2584000725633345 a001 75025/1364*1364^(8/15) 2584000733137435 a001 1902+305*5^(1/2) 2584000734005082 a001 2178309/1364*521^(1/13) 2584000735023294 r008 a(0)=0,K{-n^6,-22-45*n^3+56*n^2-28*n} 2584000736995753 a007 Real Root Of -487*x^4-915*x^3+450*x^2-867*x+680 2584000748537277 a001 10946/3571*2207^(7/8) 2584000749089147 m001 (LandauRamanujan-RenyiParking)/Cahen 2584000752645031 r009 Im(z^3+c),c=-47/90+21/43*I,n=39 2584000766087993 a001 6765/3571*2207^(15/16) 2584000768881422 a007 Real Root Of 122*x^4-89*x^3-847*x^2-679*x+233 2584000772498919 a008 Real Root of x^2-x-67029 2584000772753231 m001 Riemann2ndZero*ln(Conway)*arctan(1/2) 2584000773416673 r005 Im(z^2+c),c=-17/52+17/41*I,n=51 2584000775821269 r005 Im(z^2+c),c=23/60+6/41*I,n=51 2584000779168857 a001 1762289/2889*843^(3/14) 2584000779362034 r005 Im(z^2+c),c=-41/106+11/29*I,n=8 2584000780031082 b008 2+13*Sqrt[389] 2584000780188768 m001 Robbin^2*exp(FeigenbaumC)^2/TwinPrimes 2584000785860585 r005 Im(z^2+c),c=-11/16+15/86*I,n=11 2584000787186111 m001 1/GAMMA(11/24)*Porter^2*exp(sin(1)) 2584000789382211 l006 ln(5969/7729) 2584000790219900 r005 Im(z^2+c),c=19/106+37/63*I,n=4 2584000799479545 a001 3524578/3571*843^(1/7) 2584000799874643 r005 Im(z^2+c),c=-49/122+1/24*I,n=17 2584000808221538 a007 Real Root Of -552*x^4+224*x^3+445*x^2+998*x-289 2584000809938832 p001 sum((-1)^n/(340*n+273)/n/(6^n),n=1..infinity) 2584000810536855 a004 Fibonacci(17)*Lucas(16)/(1/2+sqrt(5)/2)^15 2584000818098210 a001 121393/1364*1364^(7/15) 2584000829114469 m001 (Backhouse+GaussAGM)/(Trott2nd+Thue) 2584000837569002 r005 Re(z^2+c),c=-11/56+10/21*I,n=7 2584000839233559 a001 4181/521*521^(12/13) 2584000842053881 a007 Real Root Of 210*x^4+513*x^3-96*x^2-150*x-258 2584000842417635 m001 GaussKuzminWirsing^2*ln(Backhouse)^2/Rabbit^2 2584000845275800 a001 9227465/15127*843^(3/14) 2584000845512801 a001 514229/2207*843^(5/14) 2584000846943771 a007 Real Root Of 76*x^4+50*x^3-364*x^2-212*x-643 2584000854920673 a001 24157817/39603*843^(3/14) 2584000856327842 a001 31622993/51841*843^(3/14) 2584000856533145 a001 165580141/271443*843^(3/14) 2584000856563098 a001 433494437/710647*843^(3/14) 2584000856567468 a001 567451585/930249*843^(3/14) 2584000856568106 a001 2971215073/4870847*843^(3/14) 2584000856568199 a001 7778742049/12752043*843^(3/14) 2584000856568212 a001 10182505537/16692641*843^(3/14) 2584000856568214 a001 53316291173/87403803*843^(3/14) 2584000856568215 a001 139583862445/228826127*843^(3/14) 2584000856568215 a001 182717648081/299537289*843^(3/14) 2584000856568215 a001 956722026041/1568397607*843^(3/14) 2584000856568215 a001 2504730781961/4106118243*843^(3/14) 2584000856568215 a001 3278735159921/5374978561*843^(3/14) 2584000856568215 a001 10610209857723/17393796001*843^(3/14) 2584000856568215 a001 4052739537881/6643838879*843^(3/14) 2584000856568215 a001 1134903780/1860499*843^(3/14) 2584000856568215 a001 591286729879/969323029*843^(3/14) 2584000856568215 a001 225851433717/370248451*843^(3/14) 2584000856568215 a001 21566892818/35355581*843^(3/14) 2584000856568215 a001 32951280099/54018521*843^(3/14) 2584000856568221 a001 1144206275/1875749*843^(3/14) 2584000856568256 a001 1201881744/1970299*843^(3/14) 2584000856568500 a001 1836311903/3010349*843^(3/14) 2584000856570169 a001 701408733/1149851*843^(3/14) 2584000856581610 a001 66978574/109801*843^(3/14) 2584000856660029 a001 9303105/15251*843^(3/14) 2584000857197519 a001 39088169/64079*843^(3/14) 2584000857732562 m001 1/exp(GAMMA(5/6))^2*FeigenbaumAlpha*Pi^2 2584000860881533 a001 3732588/6119*843^(3/14) 2584000871879862 m005 (1/2*Zeta(3)-3/10)/(4*Pi-11/12) 2584000876475851 m005 (1/3*exp(1)-2/7)/(11/12*exp(1)-1/11) 2584000886132140 a001 5702887/9349*843^(3/14) 2584000892352616 a007 Real Root Of -749*x^4+927*x^3+545*x^2+828*x-263 2584000895211993 r002 10th iterates of z^2 + 2584000909320152 a001 987/1364*9349^(17/19) 2584000909506420 m001 (FeigenbaumC-Mills)/(sin(1/12*Pi)+Pi^(1/2)) 2584000910738428 a001 98209/682*1364^(2/5) 2584000910832864 m001 (-FeigenbaumMu+ZetaQ(3))/(Chi(1)+cos(1)) 2584000913181528 r005 Im(z^2+c),c=11/64+12/61*I,n=22 2584000917467741 m001 (Pi+3^(1/2))/(Rabbit+Salem) 2584000923656864 m001 ZetaR(2)^Chi(1)*Totient^Chi(1) 2584000923958160 m001 exp(Pi)/(ln(2)^(ln(2)/ln(10))) 2584000929916330 a007 Real Root Of 271*x^4+914*x^3+275*x^2-756*x-102 2584000931868934 a001 610/2207*24476^(19/21) 2584000932280364 a001 987/1364*24476^(17/21) 2584000935251602 a001 610/2207*64079^(19/23) 2584000935306962 a001 987/1364*64079^(17/23) 2584000935771463 a001 610/2207*817138163596^(1/3) 2584000935771463 a001 610/2207*(1/2+1/2*5^(1/2))^19 2584000935771463 a001 610/2207*87403803^(1/2) 2584000935772100 a001 987/1364*45537549124^(1/3) 2584000935772100 a001 987/1364*(1/2+1/2*5^(1/2))^17 2584000935772108 a001 987/1364*12752043^(1/2) 2584000935942365 a001 987/1364*103682^(17/24) 2584000935961758 a001 610/2207*103682^(19/24) 2584000937045201 a001 987/1364*39603^(17/22) 2584000937194340 a001 610/2207*39603^(19/22) 2584000945370658 a001 987/1364*15127^(17/20) 2584000946499263 a001 610/2207*15127^(19/20) 2584000956897747 m001 1/MadelungNaCl/ln(FeigenbaumC)^3 2584000960829079 r009 Re(z^3+c),c=-1/98+27/35*I,n=25 2584000964175047 m005 (1/2*gamma-2/7)/(8/11*gamma+7/10) 2584000966636613 a007 Real Root Of -299*x^4-616*x^3+441*x^2-275*x-953 2584000972195676 r005 Im(z^2+c),c=-25/74+23/55*I,n=41 2584000981887547 r009 Re(z^3+c),c=-23/70+10/33*I,n=7 2584000986848245 a007 Real Root Of 201*x^4+284*x^3-944*x^2-779*x+229 2584000991335349 m001 Rabbit^2*exp(PisotVijayaraghavan)^2*GAMMA(1/4) 2584000991909889 a003 sin(Pi*5/84)-sin(Pi*17/116) 2584000993701208 r005 Re(z^2+c),c=-17/54+5/33*I,n=10 2584000999368153 r005 Re(z^2+c),c=-6/31+24/37*I,n=59 2584001003311672 a001 317811/1364*1364^(1/3) 2584001008871538 a001 987/1364*5778^(17/18) 2584001010344011 m001 (-Stephens+TwinPrimes)/(exp(1)+cos(1)) 2584001011860332 a007 Real Root Of -299*x^4-697*x^3+321*x^2+282*x-110 2584001013171017 a001 233/2+2207/2*5^(1/2) 2584001013171225 a001 2550409/987 2584001035703830 a003 cos(Pi*15/62)-sin(Pi*34/77) 2584001038891696 a001 726103/1926*843^(2/7) 2584001046033778 a003 cos(Pi*9/92)/cos(Pi*30/79) 2584001050582799 m001 Sierpinski*Kolakoski^ZetaQ(4) 2584001052320880 g005 Pi^(1/2)*GAMMA(9/10)*GAMMA(5/9)*GAMMA(1/9) 2584001057683908 m005 (1/2*Pi+3/8)/(2/11*Pi+2/11) 2584001059202386 a001 2178309/3571*843^(3/14) 2584001060807217 r005 Im(z^2+c),c=23/74+3/46*I,n=34 2584001062218672 a001 322/9227465*832040^(6/19) 2584001062218914 a001 322/165580141*7778742049^(6/19) 2584001063107399 r009 Im(z^3+c),c=-29/102+5/22*I,n=9 2584001080492395 a007 Real Root Of -10*x^4-255*x^3+81*x^2-202*x-640 2584001085172240 m001 (Zeta(1/2)-gamma(2))/(GAMMA(17/24)-Sarnak) 2584001095910502 a001 514229/1364*1364^(4/15) 2584001097595775 h001 (1/12*exp(1)+2/5)/(4/5*exp(1)+1/4) 2584001097595775 m005 (5/6*exp(1)+4)/(4/5*exp(1)+1/4) 2584001102817932 r005 Re(z^2+c),c=13/66+1/41*I,n=4 2584001104998775 a001 5702887/15127*843^(2/7) 2584001105228726 a001 317811/2207*843^(3/7) 2584001114532193 r009 Re(z^3+c),c=-63/106+11/16*I,n=24 2584001114643668 a001 4976784/13201*843^(2/7) 2584001114756236 r002 8th iterates of z^2 + 2584001116050839 a001 39088169/103682*843^(2/7) 2584001116256142 a001 34111385/90481*843^(2/7) 2584001116286096 a001 267914296/710647*843^(2/7) 2584001116290466 a001 233802911/620166*843^(2/7) 2584001116291103 a001 1836311903/4870847*843^(2/7) 2584001116291196 a001 1602508992/4250681*843^(2/7) 2584001116291210 a001 12586269025/33385282*843^(2/7) 2584001116291212 a001 10983760033/29134601*843^(2/7) 2584001116291212 a001 86267571272/228826127*843^(2/7) 2584001116291212 a001 267913919/710646*843^(2/7) 2584001116291212 a001 591286729879/1568397607*843^(2/7) 2584001116291212 a001 516002918640/1368706081*843^(2/7) 2584001116291212 a001 4052739537881/10749957122*843^(2/7) 2584001116291212 a001 3536736619241/9381251041*843^(2/7) 2584001116291212 a001 6557470319842/17393796001*843^(2/7) 2584001116291212 a001 2504730781961/6643838879*843^(2/7) 2584001116291212 a001 956722026041/2537720636*843^(2/7) 2584001116291212 a001 365435296162/969323029*843^(2/7) 2584001116291212 a001 139583862445/370248451*843^(2/7) 2584001116291212 a001 53316291173/141422324*843^(2/7) 2584001116291213 a001 20365011074/54018521*843^(2/7) 2584001116291218 a001 7778742049/20633239*843^(2/7) 2584001116291254 a001 2971215073/7881196*843^(2/7) 2584001116291497 a001 1134903170/3010349*843^(2/7) 2584001116293167 a001 433494437/1149851*843^(2/7) 2584001116304608 a001 165580141/439204*843^(2/7) 2584001116383027 a001 63245986/167761*843^(2/7) 2584001116920518 a001 24157817/64079*843^(2/7) 2584001120604540 a001 9227465/24476*843^(2/7) 2584001124340683 r005 Im(z^2+c),c=-9/29+13/30*I,n=7 2584001127396971 m001 (Kac-ZetaP(4))/((1+3^(1/2))^(1/2)+Bloch) 2584001131106842 r005 Re(z^2+c),c=-3/14+29/61*I,n=16 2584001134035341 r009 Im(z^3+c),c=-5/44+11/41*I,n=4 2584001135710241 m008 (1/4*Pi^3+2/5)/(1/3*Pi^6-5) 2584001141275996 m005 (1/3*3^(1/2)+1/11)/(3/4*5^(1/2)+10/11) 2584001145072529 a007 Real Root Of 7*x^4-253*x^3-465*x^2+713*x+270 2584001145855198 a001 3524578/9349*843^(2/7) 2584001148600313 m005 (1/3*3^(1/2)-1/3)/(1/12*3^(1/2)+4/5) 2584001154204525 r008 a(0)=0,K{-n^6,-48-40*n^3+28*n^2+21*n} 2584001165307916 a007 Real Root Of -330*x^4-956*x^3-206*x^2-179*x-869 2584001166627932 a007 Real Root Of -392*x^4-737*x^3+951*x^2+341*x-708 2584001167473507 l006 ln(3422/4431) 2584001167765629 m001 GAMMA(17/24)^Zeta(1/2)/FeigenbaumD 2584001172729355 r009 Re(z^3+c),c=-25/62+25/57*I,n=15 2584001173315958 m001 1/exp(1)/ln(GAMMA(5/6))/sinh(1) 2584001173745062 m005 (1/3*Zeta(3)-1/4)/(3/7*5^(1/2)-9/10) 2584001188499564 a001 610*1364^(1/5) 2584001193949562 m001 (HardyLittlewoodC4+MertensB1)/(Shi(1)+ln(Pi)) 2584001194907022 r005 Re(z^2+c),c=-47/38+1/43*I,n=10 2584001204333258 a007 Real Root Of -468*x^4-706*x^3+980*x^2-725*x+267 2584001210081221 a001 646/341*3571^(15/17) 2584001214189740 m001 (Shi(1)+gamma)^(Pi*csc(11/24*Pi)/GAMMA(13/24)) 2584001215853088 a007 Real Root Of 331*x^4-873*x^3+780*x^2-416*x+69 2584001241593624 a007 Real Root Of 69*x^4-180*x^3-672*x^2+832*x+455 2584001244805004 r005 Re(z^2+c),c=17/46+5/51*I,n=48 2584001248522528 s002 sum(A104051[n]/((2^n+1)/n),n=1..infinity) 2584001252348152 a001 4126650/1597 2584001257228135 m001 (FeigenbaumAlpha+Niven)/(Salem+ZetaP(2)) 2584001259143761 r005 Im(z^2+c),c=-37/30+2/73*I,n=40 2584001263640559 a004 Fibonacci(15)*Lucas(17)/(1/2+sqrt(5)/2)^14 2584001275552255 m001 1/ln(RenyiParking)^2/Paris/arctan(1/2) 2584001281092361 a001 1346269/1364*1364^(2/15) 2584001281669499 m009 (20/3*Catalan+5/6*Pi^2-1/3)/(2*Psi(1,3/4)+1/3) 2584001288280721 r005 Im(z^2+c),c=-25/54+2/47*I,n=15 2584001292769911 m001 1/Ei(1)^2/ln(Sierpinski)*log(1+sqrt(2)) 2584001298178926 a007 Real Root Of -388*x^4-826*x^3+665*x^2+850*x+803 2584001298615106 a001 1346269/5778*843^(5/14) 2584001300027543 a001 615/124*3571^(13/17) 2584001306517666 m001 (GAMMA(13/24)+PlouffeB)/(cos(1/5*Pi)-gamma(2)) 2584001318925798 a001 1346269/3571*843^(2/7) 2584001322101909 a007 Real Root Of -225*x^4-378*x^3+145*x^2-675*x+797 2584001327552952 a001 5473/682*3571^(12/17) 2584001328964246 a001 4181/1364*3571^(14/17) 2584001329427361 m001 (Psi(1,1/3)-Riemann3rdZero)/gamma 2584001333511754 a001 17711/1364*3571^(11/17) 2584001342347530 r005 Im(z^2+c),c=-13/22+40/101*I,n=61 2584001344821713 m001 (sin(1/12*Pi)+Magata)/(gamma+sin(1)) 2584001347708267 a001 28657/1364*3571^(10/17) 2584001354719878 r005 Re(z^2+c),c=-11/54+28/53*I,n=56 2584001358758254 a001 11592/341*3571^(9/17) 2584001358884188 r009 Re(z^3+c),c=-17/40+32/63*I,n=62 2584001361357791 m006 (5*Pi^2+2/3)/(3/4*exp(Pi)+2) 2584001364206338 r002 5th iterates of z^2 + 2584001364721855 a001 3524578/15127*843^(5/14) 2584001364970261 a001 196418/2207*843^(1/2) 2584001365536240 a001 646/341*9349^(15/19) 2584001371010107 a001 75025/1364*3571^(8/17) 2584001371216613 m001 1/(3^(1/3))*exp(KhintchineLevy)/Zeta(1,2)^2 2584001371232990 m001 (Magata+Mills)/(2^(1/2)+HardyLittlewoodC5) 2584001371898708 m001 (Porter-Rabbit)/(GAMMA(3/4)+Niven) 2584001373430902 a007 Real Root Of -422*x^4-837*x^3+701*x^2-21*x-362 2584001373683736 a001 2178309/1364*1364^(1/15) 2584001374366700 a001 9227465/39603*843^(5/14) 2584001375773864 a001 24157817/103682*843^(5/14) 2584001375979166 a001 63245986/271443*843^(5/14) 2584001376009120 a001 165580141/710647*843^(5/14) 2584001376013490 a001 433494437/1860498*843^(5/14) 2584001376014127 a001 1134903170/4870847*843^(5/14) 2584001376014220 a001 2971215073/12752043*843^(5/14) 2584001376014234 a001 7778742049/33385282*843^(5/14) 2584001376014236 a001 20365011074/87403803*843^(5/14) 2584001376014236 a001 53316291173/228826127*843^(5/14) 2584001376014236 a001 139583862445/599074578*843^(5/14) 2584001376014236 a001 365435296162/1568397607*843^(5/14) 2584001376014236 a001 956722026041/4106118243*843^(5/14) 2584001376014236 a001 2504730781961/10749957122*843^(5/14) 2584001376014236 a001 6557470319842/28143753123*843^(5/14) 2584001376014236 a001 10610209857723/45537549124*843^(5/14) 2584001376014236 a001 4052739537881/17393796001*843^(5/14) 2584001376014236 a001 1548008755920/6643838879*843^(5/14) 2584001376014236 a001 591286729879/2537720636*843^(5/14) 2584001376014236 a001 225851433717/969323029*843^(5/14) 2584001376014236 a001 86267571272/370248451*843^(5/14) 2584001376014236 a001 63246219/271444*843^(5/14) 2584001376014237 a001 12586269025/54018521*843^(5/14) 2584001376014242 a001 4807526976/20633239*843^(5/14) 2584001376014278 a001 1836311903/7881196*843^(5/14) 2584001376014521 a001 701408733/3010349*843^(5/14) 2584001376016190 a001 267914296/1149851*843^(5/14) 2584001376027632 a001 102334155/439204*843^(5/14) 2584001376106050 a001 39088169/167761*843^(5/14) 2584001376643539 a001 14930352/64079*843^(5/14) 2584001379034377 r005 Re(z^2+c),c=-9/29+9/49*I,n=13 2584001379338602 a007 Real Root Of -991*x^4+298*x^3-307*x^2+499*x+159 2584001380327542 a001 5702887/24476*843^(5/14) 2584001382802888 a001 121393/1364*3571^(7/17) 2584001385795254 a001 646/341*24476^(5/7) 2584001387008710 r005 Im(z^2+c),c=-109/90+1/30*I,n=52 2584001388300870 a001 305/2889*64079^(21/23) 2584001388465781 a001 646/341*64079^(15/23) 2584001388821109 a001 646/341*167761^(3/5) 2584001388865035 a001 305/2889*439204^(7/9) 2584001388868756 a001 646/341*439204^(5/9) 2584001388875427 a001 305/2889*7881196^(7/11) 2584001388875450 a001 305/2889*20633239^(3/5) 2584001388875453 a001 305/2889*141422324^(7/13) 2584001388875453 a001 305/2889*2537720636^(7/15) 2584001388875453 a001 305/2889*17393796001^(3/7) 2584001388875453 a001 305/2889*45537549124^(7/17) 2584001388875453 a001 305/2889*14662949395604^(1/3) 2584001388875453 a001 305/2889*(1/2+1/2*5^(1/2))^21 2584001388875453 a001 305/2889*192900153618^(7/18) 2584001388875453 a001 305/2889*10749957122^(7/16) 2584001388875453 a001 305/2889*599074578^(1/2) 2584001388875455 a001 305/2889*33385282^(7/12) 2584001388875976 a001 305/2889*1860498^(7/10) 2584001388876179 a001 646/341*7881196^(5/11) 2584001388876195 a001 646/341*20633239^(3/7) 2584001388876198 a001 646/341*141422324^(5/13) 2584001388876198 a001 646/341*2537720636^(1/3) 2584001388876198 a001 646/341*45537549124^(5/17) 2584001388876198 a001 646/341*312119004989^(3/11) 2584001388876198 a001 646/341*14662949395604^(5/21) 2584001388876198 a001 646/341*(1/2+1/2*5^(1/2))^15 2584001388876198 a001 646/341*192900153618^(5/18) 2584001388876198 a001 646/341*28143753123^(3/10) 2584001388876198 a001 646/341*10749957122^(5/16) 2584001388876198 a001 646/341*599074578^(5/14) 2584001388876198 a001 646/341*228826127^(3/8) 2584001388876199 a001 646/341*33385282^(5/12) 2584001388876571 a001 646/341*1860498^(1/2) 2584001388879291 a001 305/2889*710647^(3/4) 2584001389026431 a001 646/341*103682^(5/8) 2584001389085780 a001 305/2889*103682^(7/8) 2584001389999522 a001 646/341*39603^(15/22) 2584001390448107 a001 305/2889*39603^(21/22) 2584001394771019 a001 98209/682*3571^(6/17) 2584001397345515 a001 646/341*15127^(3/4) 2584001405578074 a001 2178309/9349*843^(5/14) 2584001405657820 a007 Real Root Of -464*x^4-900*x^3+641*x^2-237*x+266 2584001406672172 a001 317811/1364*3571^(5/17) 2584001409927536 m001 exp(Kolakoski)^2*ArtinRank2/GAMMA(1/12)^2 2584001410988255 m001 (GAMMA(3/4)-Ei(1,1))/(Zeta(1,2)-Otter) 2584001414131646 r005 Im(z^2+c),c=7/23+1/20*I,n=55 2584001418598909 a001 514229/1364*3571^(4/17) 2584001430515874 a001 610*3571^(3/17) 2584001434755230 a001 615/124*9349^(13/19) 2584001435063381 a001 10803710/4181 2584001435164014 r005 Re(z^2+c),c=-5/26+5/9*I,n=43 2584001436342364 a005 (1/sin(26/121*Pi))^51 2584001436710923 a004 Fibonacci(15)*Lucas(19)/(1/2+sqrt(5)/2)^16 2584001442436571 a001 1346269/1364*3571^(2/17) 2584001447512106 a001 17711/1364*9349^(11/19) 2584001451344950 a001 28657/1364*9349^(10/19) 2584001451916972 a001 5473/682*9349^(12/19) 2584001452031269 a001 11592/341*9349^(9/19) 2584001452313043 a001 615/124*24476^(13/21) 2584001453375712 a001 646/341*5778^(5/6) 2584001453919454 a001 75025/1364*9349^(8/19) 2584001454355843 a001 2178309/1364*3571^(1/17) 2584001454627500 a001 615/124*64079^(13/23) 2584001454982448 a001 610/15127*(1/2+1/2*5^(1/2))^23 2584001454982448 a001 610/15127*4106118243^(1/2) 2584001454983194 a001 615/124*141422324^(1/3) 2584001454983195 a001 615/124*(1/2+1/2*5^(1/2))^13 2584001454983195 a001 615/124*73681302247^(1/4) 2584001455000730 a001 615/124*271443^(1/2) 2584001455113397 a001 615/124*103682^(13/24) 2584001455212806 a001 610/15127*103682^(23/24) 2584001455348567 a001 121393/1364*9349^(7/19) 2584001455956742 a001 615/124*39603^(13/22) 2584001456953030 a001 98209/682*9349^(6/19) 2584001458490515 a001 317811/1364*9349^(5/19) 2584001459846465 l006 ln(7719/9995) 2584001460053583 a001 514229/1364*9349^(4/19) 2584001460971318 r005 Re(z^2+c),c=-71/58+5/31*I,n=24 2584001461606879 a001 610*9349^(3/19) 2584001461721176 a001 14142240/5473 2584001461961549 a004 Fibonacci(15)*Lucas(21)/(1/2+sqrt(5)/2)^18 2584001462323270 a001 615/124*15127^(13/20) 2584001462368716 a001 17711/1364*24476^(11/21) 2584001463163908 a001 1346269/1364*9349^(2/19) 2584001464186678 a001 11592/341*24476^(3/7) 2584001464327103 a001 17711/1364*64079^(11/23) 2584001464627325 a001 610/39603*20633239^(5/7) 2584001464627329 a001 610/39603*2537720636^(5/9) 2584001464627329 a001 610/39603*312119004989^(5/11) 2584001464627329 a001 610/39603*(1/2+1/2*5^(1/2))^25 2584001464627329 a001 610/39603*3461452808002^(5/12) 2584001464627329 a001 610/39603*28143753123^(1/2) 2584001464627329 a001 610/39603*228826127^(5/8) 2584001464627951 a001 610/39603*1860498^(5/6) 2584001464628062 a001 17711/1364*7881196^(1/3) 2584001464628075 a001 17711/1364*312119004989^(1/5) 2584001464628075 a001 17711/1364*(1/2+1/2*5^(1/2))^11 2584001464628075 a001 17711/1364*1568397607^(1/4) 2584001464719512 a001 2178309/1364*9349^(1/19) 2584001464724262 a001 75025/1364*24476^(8/21) 2584001464738246 a001 17711/1364*103682^(11/24) 2584001464802774 a001 121393/1364*24476^(1/3) 2584001464850960 a001 28657/1364*24476^(10/21) 2584001465056636 a001 98209/682*24476^(2/7) 2584001465243520 a001 317811/1364*24476^(5/21) 2584001465451847 a001 17711/1364*39603^(1/2) 2584001465455987 a001 514229/1364*24476^(4/21) 2584001465610496 a001 74049730/28657 2584001465645566 a004 Fibonacci(15)*Lucas(23)/(1/2+sqrt(5)/2)^20 2584001465658682 a001 610*24476^(1/7) 2584001465788995 a001 11592/341*64079^(9/23) 2584001465865110 a001 1346269/1364*24476^(2/21) 2584001466030779 a001 11592/341*439204^(1/3) 2584001466034464 a001 305/51841*7881196^(9/11) 2584001466034498 a001 305/51841*141422324^(9/13) 2584001466034498 a001 305/51841*2537720636^(3/5) 2584001466034498 a001 305/51841*45537549124^(9/17) 2584001466034498 a001 305/51841*817138163596^(9/19) 2584001466034498 a001 305/51841*14662949395604^(3/7) 2584001466034498 a001 305/51841*(1/2+1/2*5^(1/2))^27 2584001466034498 a001 305/51841*192900153618^(1/2) 2584001466034498 a001 305/51841*10749957122^(9/16) 2584001466034498 a001 305/51841*599074578^(9/14) 2584001466034500 a001 305/51841*33385282^(3/4) 2584001466035170 a001 305/51841*1860498^(9/10) 2584001466035233 a001 11592/341*7881196^(3/11) 2584001466035245 a001 11592/341*141422324^(3/13) 2584001466035245 a001 11592/341*2537720636^(1/5) 2584001466035245 a001 11592/341*45537549124^(3/17) 2584001466035245 a001 11592/341*817138163596^(3/19) 2584001466035245 a001 11592/341*14662949395604^(1/7) 2584001466035245 a001 11592/341*(1/2+1/2*5^(1/2))^9 2584001466035245 a001 11592/341*192900153618^(1/6) 2584001466035245 a001 11592/341*10749957122^(3/16) 2584001466035245 a001 11592/341*599074578^(3/14) 2584001466035245 a001 11592/341*33385282^(1/4) 2584001466035468 a001 11592/341*1860498^(3/10) 2584001466049020 a001 121393/1364*64079^(7/23) 2584001466070113 a001 2178309/1364*24476^(1/21) 2584001466124847 a001 98209/682*64079^(6/23) 2584001466125384 a001 11592/341*103682^(3/8) 2584001466133696 a001 317811/1364*64079^(5/23) 2584001466148543 a001 75025/1364*64079^(8/23) 2584001466168128 a001 514229/1364*64079^(4/23) 2584001466177940 a001 38772942/15005 2584001466183057 a004 Fibonacci(15)*Lucas(25)/(1/2+sqrt(5)/2)^22 2584001466192788 a001 610*64079^(3/23) 2584001466221181 a001 1346269/1364*64079^(2/23) 2584001466239801 a001 610/271443*(1/2+1/2*5^(1/2))^29 2584001466239801 a001 610/271443*1322157322203^(1/2) 2584001466240547 a001 121393/1364*20633239^(1/5) 2584001466240548 a001 121393/1364*17393796001^(1/7) 2584001466240548 a001 121393/1364*14662949395604^(1/9) 2584001466240548 a001 121393/1364*(1/2+1/2*5^(1/2))^7 2584001466240548 a001 121393/1364*599074578^(1/6) 2584001466241827 a001 121393/1364*710647^(1/4) 2584001466248148 a001 2178309/1364*64079^(1/23) 2584001466252138 a001 317811/1364*167761^(1/5) 2584001466260729 a001 253772200/98209 2584001466261476 a004 Fibonacci(15)*Lucas(27)/(1/2+sqrt(5)/2)^24 2584001466269755 a001 610/710647*(1/2+1/2*5^(1/2))^31 2584001466269755 a001 610/710647*9062201101803^(1/2) 2584001466270500 a001 317811/1364*20633239^(1/7) 2584001466270501 a001 317811/1364*2537720636^(1/9) 2584001466270501 a001 317811/1364*312119004989^(1/11) 2584001466270501 a001 317811/1364*(1/2+1/2*5^(1/2))^5 2584001466270501 a001 317811/1364*28143753123^(1/10) 2584001466270501 a001 317811/1364*228826127^(1/8) 2584001466270626 a001 317811/1364*1860498^(1/6) 2584001466272808 a001 1328768490/514229 2584001466272917 a004 Fibonacci(15)*Lucas(29)/(1/2+sqrt(5)/2)^26 2584001466273383 a001 610*439204^(1/9) 2584001466274125 a001 305/930249*141422324^(11/13) 2584001466274125 a001 305/930249*2537720636^(11/15) 2584001466274125 a001 305/930249*45537549124^(11/17) 2584001466274125 a001 305/930249*312119004989^(3/5) 2584001466274125 a001 305/930249*14662949395604^(11/21) 2584001466274125 a001 305/930249*(1/2+1/2*5^(1/2))^33 2584001466274125 a001 305/930249*192900153618^(11/18) 2584001466274125 a001 305/930249*10749957122^(11/16) 2584001466274125 a001 305/930249*1568397607^(3/4) 2584001466274125 a001 305/930249*599074578^(11/14) 2584001466274127 a001 305/930249*33385282^(11/12) 2584001466274570 a001 3478761070/1346269 2584001466274586 a004 Fibonacci(15)*Lucas(31)/(1/2+sqrt(5)/2)^28 2584001466274762 a001 610/4870847*2537720636^(7/9) 2584001466274762 a001 610/4870847*17393796001^(5/7) 2584001466274762 a001 610/4870847*312119004989^(7/11) 2584001466274762 a001 610/4870847*14662949395604^(5/9) 2584001466274762 a001 610/4870847*(1/2+1/2*5^(1/2))^35 2584001466274762 a001 610/4870847*505019158607^(5/8) 2584001466274762 a001 610/4870847*28143753123^(7/10) 2584001466274762 a001 610/4870847*599074578^(5/6) 2584001466274762 a001 610/4870847*228826127^(7/8) 2584001466274827 a001 4553757360/1762289 2584001466274830 a004 Fibonacci(15)*Lucas(33)/(1/2+sqrt(5)/2)^30 2584001466274855 a001 610/12752043*(1/2+1/2*5^(1/2))^37 2584001466274865 a001 4768756618/1845493 2584001466274865 a004 Fibonacci(15)*Lucas(35)/(1/2+sqrt(5)/2)^32 2584001466274867 a001 610*7881196^(1/11) 2584001466274869 a001 305/16692641*2537720636^(13/15) 2584001466274869 a001 305/16692641*45537549124^(13/17) 2584001466274869 a001 305/16692641*14662949395604^(13/21) 2584001466274869 a001 305/16692641*(1/2+1/2*5^(1/2))^39 2584001466274869 a001 305/16692641*192900153618^(13/18) 2584001466274869 a001 305/16692641*73681302247^(3/4) 2584001466274869 a001 305/16692641*10749957122^(13/16) 2584001466274869 a001 305/16692641*599074578^(13/14) 2584001466274870 a001 62423834550/24157817 2584001466274870 a004 Fibonacci(15)*Lucas(37)/(1/2+sqrt(5)/2)^34 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^41/Lucas(38) 2584001466274871 a001 81713860280/31622993 2584001466274871 a004 Fibonacci(15)*Lucas(39)/(1/2+sqrt(5)/2)^36 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^43/Lucas(40) 2584001466274871 a001 427859327130/165580141 2584001466274871 a004 Fibonacci(15)*Lucas(41)/(1/2+sqrt(5)/2)^38 2584001466274871 a001 610*141422324^(1/13) 2584001466274871 a001 305/299537289*45537549124^(15/17) 2584001466274871 a001 305/299537289*312119004989^(9/11) 2584001466274871 a001 305/299537289*14662949395604^(5/7) 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^45/Lucas(42) 2584001466274871 a001 305/299537289*192900153618^(5/6) 2584001466274871 a001 305/299537289*28143753123^(9/10) 2584001466274871 a001 305/299537289*10749957122^(15/16) 2584001466274871 a001 1120150260830/433494437 2584001466274871 a004 Fibonacci(15)*Lucas(43)/(1/2+sqrt(5)/2)^40 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^47/Lucas(44) 2584001466274871 a001 4807526976/1860497 2584001466274871 a004 Fibonacci(15)*Lucas(45)/(1/2+sqrt(5)/2)^42 2584001466274871 a001 610/4106118243*14662949395604^(7/9) 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^49/Lucas(46) 2584001466274871 a001 610/4106118243*505019158607^(7/8) 2584001466274871 a001 7677624105250/2971215073 2584001466274871 a004 Fibonacci(15)*Lucas(47)/(1/2+sqrt(5)/2)^44 2584001466274871 a001 610*2537720636^(1/15) 2584001466274871 a001 305/5374978561*817138163596^(17/19) 2584001466274871 a001 305/5374978561*14662949395604^(17/21) 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^51/Lucas(48) 2584001466274871 a001 305/5374978561*192900153618^(17/18) 2584001466274871 a001 20100280860390/7778742049 2584001466274871 a004 Fibonacci(15)*Lucas(49)/(1/2+sqrt(5)/2)^46 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^53/Lucas(50) 2584001466274871 a001 26311609237960/10182505537 2584001466274871 a004 Fibonacci(15)*Lucas(51)/(1/2+sqrt(5)/2)^48 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^55/Lucas(52) 2584001466274871 a001 610/73681302247*3461452808002^(11/12) 2584001466274871 a001 137769374567370/53316291173 2584001466274871 a004 Fibonacci(15)*Lucas(53)/(1/2+sqrt(5)/2)^50 2584001466274871 a001 305/96450076809*14662949395604^(19/21) 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^57/Lucas(54) 2584001466274871 a001 72136981045238/27916772489 2584001466274871 a004 Fibonacci(15)*Lucas(55)/(1/2+sqrt(5)/2)^52 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^59/Lucas(56) 2584001466274871 a001 472142670555600/182717648081 2584001466274871 a004 Fibonacci(15)*Lucas(57)/(1/2+sqrt(5)/2)^54 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^61/Lucas(58) 2584001466274871 a004 Fibonacci(15)*Lucas(59)/(1/2+sqrt(5)/2)^56 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^63/Lucas(60) 2584001466274871 a004 Fibonacci(15)*Lucas(61)/(1/2+sqrt(5)/2)^58 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^65/Lucas(62) 2584001466274871 a004 Fibonacci(15)*Lucas(63)/(1/2+sqrt(5)/2)^60 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^67/Lucas(64) 2584001466274871 a004 Fibonacci(15)*Lucas(65)/(1/2+sqrt(5)/2)^62 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^69/Lucas(66) 2584001466274871 a004 Fibonacci(15)*Lucas(67)/(1/2+sqrt(5)/2)^64 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^71/Lucas(68) 2584001466274871 a004 Fibonacci(15)*Lucas(69)/(1/2+sqrt(5)/2)^66 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^73/Lucas(70) 2584001466274871 a004 Fibonacci(15)*Lucas(71)/(1/2+sqrt(5)/2)^68 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^75/Lucas(72) 2584001466274871 a004 Fibonacci(15)*Lucas(73)/(1/2+sqrt(5)/2)^70 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^77/Lucas(74) 2584001466274871 a004 Fibonacci(15)*Lucas(75)/(1/2+sqrt(5)/2)^72 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^79/Lucas(76) 2584001466274871 a004 Fibonacci(15)*Lucas(77)/(1/2+sqrt(5)/2)^74 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^81/Lucas(78) 2584001466274871 a004 Fibonacci(15)*Lucas(79)/(1/2+sqrt(5)/2)^76 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^83/Lucas(80) 2584001466274871 a004 Fibonacci(15)*Lucas(81)/(1/2+sqrt(5)/2)^78 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^85/Lucas(82) 2584001466274871 a004 Fibonacci(15)*Lucas(83)/(1/2+sqrt(5)/2)^80 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^87/Lucas(84) 2584001466274871 a004 Fibonacci(15)*Lucas(85)/(1/2+sqrt(5)/2)^82 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^89/Lucas(86) 2584001466274871 a004 Fibonacci(15)*Lucas(87)/(1/2+sqrt(5)/2)^84 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^91/Lucas(88) 2584001466274871 a004 Fibonacci(15)*Lucas(89)/(1/2+sqrt(5)/2)^86 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^93/Lucas(90) 2584001466274871 a004 Fibonacci(15)*Lucas(91)/(1/2+sqrt(5)/2)^88 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^95/Lucas(92) 2584001466274871 a004 Fibonacci(15)*Lucas(93)/(1/2+sqrt(5)/2)^90 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^97/Lucas(94) 2584001466274871 a004 Fibonacci(15)*Lucas(95)/(1/2+sqrt(5)/2)^92 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^99/Lucas(96) 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^3/Lucas(1) 2584001466274871 a004 Fibonacci(15)*Lucas(100)/(1/2+sqrt(5)/2)^97 2584001466274871 a004 Fibonacci(15)*Lucas(97)/(1/2+sqrt(5)/2)^94 2584001466274871 a004 Fibonacci(15)*Lucas(99)/(1/2+sqrt(5)/2)^96 2584001466274871 b008 61*(2+Sqrt[5]) 2584001466274871 b008 61*E^ArcSinh[2] 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^100/Lucas(97) 2584001466274871 a004 Fibonacci(15)*Lucas(98)/(1/2+sqrt(5)/2)^95 2584001466274871 a004 Fibonacci(15)*Lucas(96)/(1/2+sqrt(5)/2)^93 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^98/Lucas(95) 2584001466274871 a004 Fibonacci(15)*Lucas(94)/(1/2+sqrt(5)/2)^91 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^96/Lucas(93) 2584001466274871 a004 Fibonacci(15)*Lucas(92)/(1/2+sqrt(5)/2)^89 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^94/Lucas(91) 2584001466274871 a004 Fibonacci(15)*Lucas(90)/(1/2+sqrt(5)/2)^87 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^92/Lucas(89) 2584001466274871 a004 Fibonacci(15)*Lucas(88)/(1/2+sqrt(5)/2)^85 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^90/Lucas(87) 2584001466274871 a004 Fibonacci(15)*Lucas(86)/(1/2+sqrt(5)/2)^83 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^88/Lucas(85) 2584001466274871 a004 Fibonacci(15)*Lucas(84)/(1/2+sqrt(5)/2)^81 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^86/Lucas(83) 2584001466274871 a004 Fibonacci(15)*Lucas(82)/(1/2+sqrt(5)/2)^79 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^84/Lucas(81) 2584001466274871 a004 Fibonacci(15)*Lucas(80)/(1/2+sqrt(5)/2)^77 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^82/Lucas(79) 2584001466274871 a004 Fibonacci(15)*Lucas(78)/(1/2+sqrt(5)/2)^75 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^80/Lucas(77) 2584001466274871 a004 Fibonacci(15)*Lucas(76)/(1/2+sqrt(5)/2)^73 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^78/Lucas(75) 2584001466274871 a004 Fibonacci(15)*Lucas(74)/(1/2+sqrt(5)/2)^71 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^76/Lucas(73) 2584001466274871 a004 Fibonacci(15)*Lucas(72)/(1/2+sqrt(5)/2)^69 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^74/Lucas(71) 2584001466274871 a004 Fibonacci(15)*Lucas(70)/(1/2+sqrt(5)/2)^67 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^72/Lucas(69) 2584001466274871 a004 Fibonacci(15)*Lucas(68)/(1/2+sqrt(5)/2)^65 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^70/Lucas(67) 2584001466274871 a004 Fibonacci(15)*Lucas(66)/(1/2+sqrt(5)/2)^63 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^68/Lucas(65) 2584001466274871 a004 Fibonacci(15)*Lucas(64)/(1/2+sqrt(5)/2)^61 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^66/Lucas(63) 2584001466274871 a004 Fibonacci(15)*Lucas(62)/(1/2+sqrt(5)/2)^59 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^64/Lucas(61) 2584001466274871 a004 Fibonacci(15)*Lucas(60)/(1/2+sqrt(5)/2)^57 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^62/Lucas(59) 2584001466274871 a004 Fibonacci(15)*Lucas(58)/(1/2+sqrt(5)/2)^55 2584001466274871 a001 1527885776996210/591286729879 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^60/Lucas(57) 2584001466274871 a004 Fibonacci(15)*Lucas(56)/(1/2+sqrt(5)/2)^53 2584001466274871 a001 583600435885010/225851433717 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^58/Lucas(55) 2584001466274871 a004 Fibonacci(15)*Lucas(54)/(1/2+sqrt(5)/2)^51 2584001466274871 a001 55728882664705/21566892818 2584001466274871 a001 610/119218851371*14662949395604^(8/9) 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^56/Lucas(53) 2584001466274871 a004 Fibonacci(15)*Lucas(52)/(1/2+sqrt(5)/2)^49 2584001466274871 a001 85146156091450/32951280099 2584001466274871 a001 305/22768774562*14662949395604^(6/7) 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^54/Lucas(51) 2584001466274871 a001 610*10749957122^(1/16) 2584001466274871 a004 Fibonacci(15)*Lucas(50)/(1/2+sqrt(5)/2)^47 2584001466274871 a001 6504587523106/2517253805 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^52/Lucas(49) 2584001466274871 a001 610/17393796001*23725150497407^(13/16) 2584001466274871 a001 610/17393796001*505019158607^(13/14) 2584001466274871 a004 Fibonacci(15)*Lucas(48)/(1/2+sqrt(5)/2)^45 2584001466274871 a001 3105664188785/1201881744 2584001466274871 a001 610/6643838879*312119004989^(10/11) 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^50/Lucas(47) 2584001466274871 a001 610/6643838879*3461452808002^(5/6) 2584001466274871 a004 Fibonacci(15)*Lucas(46)/(1/2+sqrt(5)/2)^43 2584001466274871 a001 4745032649890/1836311903 2584001466274871 a001 305/1268860318*45537549124^(16/17) 2584001466274871 a001 305/1268860318*14662949395604^(16/21) 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^48/Lucas(45) 2584001466274871 a001 305/1268860318*192900153618^(8/9) 2584001466274871 a001 305/1268860318*73681302247^(12/13) 2584001466274871 a001 610*599074578^(1/14) 2584001466274871 a004 Fibonacci(15)*Lucas(44)/(1/2+sqrt(5)/2)^41 2584001466274871 a001 1812441194530/701408733 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^46/Lucas(43) 2584001466274871 a001 610/969323029*10749957122^(23/24) 2584001466274871 a004 Fibonacci(15)*Lucas(42)/(1/2+sqrt(5)/2)^39 2584001466274871 a001 173072733425/66978574 2584001466274871 a001 610/370248451*312119004989^(4/5) 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^44/Lucas(41) 2584001466274871 a001 610/370248451*23725150497407^(11/16) 2584001466274871 a001 610/370248451*73681302247^(11/13) 2584001466274871 a001 610/370248451*10749957122^(11/12) 2584001466274871 a001 610/370248451*4106118243^(22/23) 2584001466274871 a004 Fibonacci(15)*Lucas(40)/(1/2+sqrt(5)/2)^37 2584001466274871 a001 52886321314/20466831 2584001466274871 a001 305/70711162*2537720636^(14/15) 2584001466274871 a001 305/70711162*17393796001^(6/7) 2584001466274871 a001 305/70711162*45537549124^(14/17) 2584001466274871 a001 305/70711162*14662949395604^(2/3) 2584001466274871 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^42/Lucas(39) 2584001466274871 a001 305/70711162*505019158607^(3/4) 2584001466274871 a001 305/70711162*192900153618^(7/9) 2584001466274871 a001 305/70711162*10749957122^(7/8) 2584001466274871 a001 305/70711162*4106118243^(21/23) 2584001466274871 a001 305/70711162*1568397607^(21/22) 2584001466274871 a001 610*33385282^(1/12) 2584001466274872 a004 Fibonacci(15)*Lucas(38)/(1/2+sqrt(5)/2)^35 2584001466274872 a001 101003886010/39088169 2584001466274872 a001 610/54018521*2537720636^(8/9) 2584001466274872 a001 610/54018521*312119004989^(8/11) 2584001466274872 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^40/Lucas(37) 2584001466274872 a001 610/54018521*23725150497407^(5/8) 2584001466274872 a001 610/54018521*73681302247^(10/13) 2584001466274872 a001 610/54018521*28143753123^(4/5) 2584001466274872 a001 610/54018521*10749957122^(5/6) 2584001466274872 a001 610/54018521*4106118243^(20/23) 2584001466274872 a001 610/54018521*1568397607^(10/11) 2584001466274872 a001 610/54018521*599074578^(20/21) 2584001466274874 a004 Fibonacci(15)*Lucas(36)/(1/2+sqrt(5)/2)^33 2584001466274874 a001 9645012865/3732588 2584001466274877 a001 610/20633239*817138163596^(2/3) 2584001466274877 a001 610/20633239*(1/2+1/2*5^(1/2))^38 2584001466274877 a001 610/20633239*10749957122^(19/24) 2584001466274877 a001 610/20633239*4106118243^(19/23) 2584001466274877 a001 610/20633239*1568397607^(19/22) 2584001466274877 a001 610/20633239*599074578^(19/21) 2584001466274877 a001 610/20633239*228826127^(19/20) 2584001466274887 a004 Fibonacci(15)*Lucas(34)/(1/2+sqrt(5)/2)^31 2584001466274888 a001 14736268370/5702887 2584001466274913 a001 305/3940598*141422324^(12/13) 2584001466274913 a001 305/3940598*2537720636^(4/5) 2584001466274913 a001 305/3940598*45537549124^(12/17) 2584001466274913 a001 305/3940598*14662949395604^(4/7) 2584001466274913 a001 305/3940598*(1/2+1/2*5^(1/2))^36 2584001466274913 a001 305/3940598*505019158607^(9/14) 2584001466274913 a001 305/3940598*192900153618^(2/3) 2584001466274913 a001 305/3940598*73681302247^(9/13) 2584001466274913 a001 305/3940598*10749957122^(3/4) 2584001466274913 a001 305/3940598*4106118243^(18/23) 2584001466274913 a001 305/3940598*1568397607^(9/11) 2584001466274913 a001 305/3940598*599074578^(6/7) 2584001466274913 a001 305/3940598*228826127^(9/10) 2584001466274913 a001 305/3940598*87403803^(18/19) 2584001466274946 a001 610*1860498^(1/10) 2584001466274980 a004 Fibonacci(15)*Lucas(32)/(1/2+sqrt(5)/2)^29 2584001466274986 a001 5628753650/2178309 2584001466275156 a001 610/3010349*45537549124^(2/3) 2584001466275156 a001 610/3010349*(1/2+1/2*5^(1/2))^34 2584001466275156 a001 610/3010349*10749957122^(17/24) 2584001466275156 a001 610/3010349*4106118243^(17/23) 2584001466275156 a001 610/3010349*1568397607^(17/22) 2584001466275156 a001 610/3010349*599074578^(17/21) 2584001466275156 a001 610/3010349*228826127^(17/20) 2584001466275157 a001 610/3010349*87403803^(17/19) 2584001466275159 a001 610/3010349*33385282^(17/18) 2584001466275509 a001 2178309/2728+2178309/2728*5^(1/2) 2584001466275602 a004 Fibonacci(34)/Lucas(15)/(1/2+sqrt(5)/2) 2584001466275615 a004 Fibonacci(36)/Lucas(15)/(1/2+sqrt(5)/2)^3 2584001466275617 a004 Fibonacci(38)/Lucas(15)/(1/2+sqrt(5)/2)^5 2584001466275618 a004 Fibonacci(40)/Lucas(15)/(1/2+sqrt(5)/2)^7 2584001466275618 a004 Fibonacci(42)/Lucas(15)/(1/2+sqrt(5)/2)^9 2584001466275618 a004 Fibonacci(44)/Lucas(15)/(1/2+sqrt(5)/2)^11 2584001466275618 a004 Fibonacci(46)/Lucas(15)/(1/2+sqrt(5)/2)^13 2584001466275618 a004 Fibonacci(48)/Lucas(15)/(1/2+sqrt(5)/2)^15 2584001466275618 a004 Fibonacci(50)/Lucas(15)/(1/2+sqrt(5)/2)^17 2584001466275618 a004 Fibonacci(52)/Lucas(15)/(1/2+sqrt(5)/2)^19 2584001466275618 a004 Fibonacci(54)/Lucas(15)/(1/2+sqrt(5)/2)^21 2584001466275618 a004 Fibonacci(56)/Lucas(15)/(1/2+sqrt(5)/2)^23 2584001466275618 a004 Fibonacci(58)/Lucas(15)/(1/2+sqrt(5)/2)^25 2584001466275618 a004 Fibonacci(15)*Lucas(30)/(1/2+sqrt(5)/2)^27 2584001466275618 a004 Fibonacci(62)/Lucas(15)/(1/2+sqrt(5)/2)^29 2584001466275618 a004 Fibonacci(64)/Lucas(15)/(1/2+sqrt(5)/2)^31 2584001466275618 a004 Fibonacci(66)/Lucas(15)/(1/2+sqrt(5)/2)^33 2584001466275618 a004 Fibonacci(68)/Lucas(15)/(1/2+sqrt(5)/2)^35 2584001466275618 a004 Fibonacci(70)/Lucas(15)/(1/2+sqrt(5)/2)^37 2584001466275618 a004 Fibonacci(72)/Lucas(15)/(1/2+sqrt(5)/2)^39 2584001466275618 a004 Fibonacci(74)/Lucas(15)/(1/2+sqrt(5)/2)^41 2584001466275618 a004 Fibonacci(76)/Lucas(15)/(1/2+sqrt(5)/2)^43 2584001466275618 a004 Fibonacci(78)/Lucas(15)/(1/2+sqrt(5)/2)^45 2584001466275618 a004 Fibonacci(80)/Lucas(15)/(1/2+sqrt(5)/2)^47 2584001466275618 a004 Fibonacci(82)/Lucas(15)/(1/2+sqrt(5)/2)^49 2584001466275618 a004 Fibonacci(84)/Lucas(15)/(1/2+sqrt(5)/2)^51 2584001466275618 a004 Fibonacci(86)/Lucas(15)/(1/2+sqrt(5)/2)^53 2584001466275618 a004 Fibonacci(88)/Lucas(15)/(1/2+sqrt(5)/2)^55 2584001466275618 a004 Fibonacci(90)/Lucas(15)/(1/2+sqrt(5)/2)^57 2584001466275618 a004 Fibonacci(92)/Lucas(15)/(1/2+sqrt(5)/2)^59 2584001466275618 a004 Fibonacci(94)/Lucas(15)/(1/2+sqrt(5)/2)^61 2584001466275618 a004 Fibonacci(96)/Lucas(15)/(1/2+sqrt(5)/2)^63 2584001466275618 a004 Fibonacci(100)/Lucas(15)/(1/2+sqrt(5)/2)^67 2584001466275618 a004 Fibonacci(98)/Lucas(15)/(1/2+sqrt(5)/2)^65 2584001466275618 a004 Fibonacci(99)/Lucas(15)/(1/2+sqrt(5)/2)^66 2584001466275618 a004 Fibonacci(97)/Lucas(15)/(1/2+sqrt(5)/2)^64 2584001466275618 a004 Fibonacci(95)/Lucas(15)/(1/2+sqrt(5)/2)^62 2584001466275618 a004 Fibonacci(93)/Lucas(15)/(1/2+sqrt(5)/2)^60 2584001466275618 a004 Fibonacci(91)/Lucas(15)/(1/2+sqrt(5)/2)^58 2584001466275618 a004 Fibonacci(89)/Lucas(15)/(1/2+sqrt(5)/2)^56 2584001466275618 a004 Fibonacci(87)/Lucas(15)/(1/2+sqrt(5)/2)^54 2584001466275618 a004 Fibonacci(85)/Lucas(15)/(1/2+sqrt(5)/2)^52 2584001466275618 a004 Fibonacci(83)/Lucas(15)/(1/2+sqrt(5)/2)^50 2584001466275618 a004 Fibonacci(81)/Lucas(15)/(1/2+sqrt(5)/2)^48 2584001466275618 a004 Fibonacci(79)/Lucas(15)/(1/2+sqrt(5)/2)^46 2584001466275618 a004 Fibonacci(77)/Lucas(15)/(1/2+sqrt(5)/2)^44 2584001466275618 a004 Fibonacci(75)/Lucas(15)/(1/2+sqrt(5)/2)^42 2584001466275618 a004 Fibonacci(73)/Lucas(15)/(1/2+sqrt(5)/2)^40 2584001466275618 a004 Fibonacci(71)/Lucas(15)/(1/2+sqrt(5)/2)^38 2584001466275618 a004 Fibonacci(69)/Lucas(15)/(1/2+sqrt(5)/2)^36 2584001466275618 a004 Fibonacci(67)/Lucas(15)/(1/2+sqrt(5)/2)^34 2584001466275618 a004 Fibonacci(65)/Lucas(15)/(1/2+sqrt(5)/2)^32 2584001466275618 a004 Fibonacci(63)/Lucas(15)/(1/2+sqrt(5)/2)^30 2584001466275618 a004 Fibonacci(61)/Lucas(15)/(1/2+sqrt(5)/2)^28 2584001466275618 a004 Fibonacci(59)/Lucas(15)/(1/2+sqrt(5)/2)^26 2584001466275618 a004 Fibonacci(57)/Lucas(15)/(1/2+sqrt(5)/2)^24 2584001466275618 a004 Fibonacci(55)/Lucas(15)/(1/2+sqrt(5)/2)^22 2584001466275618 a004 Fibonacci(53)/Lucas(15)/(1/2+sqrt(5)/2)^20 2584001466275618 a004 Fibonacci(51)/Lucas(15)/(1/2+sqrt(5)/2)^18 2584001466275618 a004 Fibonacci(49)/Lucas(15)/(1/2+sqrt(5)/2)^16 2584001466275618 a004 Fibonacci(47)/Lucas(15)/(1/2+sqrt(5)/2)^14 2584001466275618 a004 Fibonacci(45)/Lucas(15)/(1/2+sqrt(5)/2)^12 2584001466275618 a004 Fibonacci(43)/Lucas(15)/(1/2+sqrt(5)/2)^10 2584001466275618 a004 Fibonacci(41)/Lucas(15)/(1/2+sqrt(5)/2)^8 2584001466275618 a004 Fibonacci(39)/Lucas(15)/(1/2+sqrt(5)/2)^6 2584001466275619 a004 Fibonacci(37)/Lucas(15)/(1/2+sqrt(5)/2)^4 2584001466275624 a004 Fibonacci(35)/Lucas(15)/(1/2+sqrt(5)/2)^2 2584001466275659 a001 1762289/682 2584001466275903 a001 1346269/1364*(1/2+1/2*5^(1/2))^2 2584001466275903 a001 1346269/1364*10749957122^(1/24) 2584001466275903 a001 1346269/1364*4106118243^(1/23) 2584001466275903 a001 1346269/1364*1568397607^(1/22) 2584001466275903 a001 1346269/1364*599074578^(1/21) 2584001466275903 a001 1346269/1364*228826127^(1/20) 2584001466275903 a001 1346269/1364*87403803^(1/19) 2584001466275903 a001 1346269/1364*33385282^(1/18) 2584001466275904 a001 1346269/1364*12752043^(1/17) 2584001466275910 a001 1346269/1364*4870847^(1/16) 2584001466275953 a001 1346269/1364*1860498^(1/15) 2584001466276268 a001 1346269/1364*710647^(1/14) 2584001466276826 a001 610/1149851*(1/2+1/2*5^(1/2))^32 2584001466276826 a001 610/1149851*23725150497407^(1/2) 2584001466276826 a001 610/1149851*505019158607^(4/7) 2584001466276826 a001 610/1149851*73681302247^(8/13) 2584001466276826 a001 610/1149851*10749957122^(2/3) 2584001466276826 a001 610/1149851*4106118243^(16/23) 2584001466276826 a001 610/1149851*1568397607^(8/11) 2584001466276826 a001 610/1149851*599074578^(16/21) 2584001466276826 a001 610/1149851*228826127^(4/5) 2584001466276826 a001 610/1149851*87403803^(16/19) 2584001466276828 a001 610/1149851*33385282^(8/9) 2584001466276841 a001 610/1149851*12752043^(16/17) 2584001466277572 a001 514229/1364*(1/2+1/2*5^(1/2))^4 2584001466277572 a001 514229/1364*23725150497407^(1/16) 2584001466277572 a001 514229/1364*73681302247^(1/13) 2584001466277572 a001 514229/1364*10749957122^(1/12) 2584001466277572 a001 514229/1364*4106118243^(2/23) 2584001466277572 a001 514229/1364*1568397607^(1/11) 2584001466277572 a001 514229/1364*599074578^(2/21) 2584001466277572 a001 514229/1364*228826127^(1/10) 2584001466277572 a001 514229/1364*87403803^(2/19) 2584001466277572 a001 514229/1364*33385282^(1/9) 2584001466277574 a001 514229/1364*12752043^(2/17) 2584001466277586 a001 514229/1364*4870847^(1/8) 2584001466277672 a001 514229/1364*1860498^(2/15) 2584001466278303 a001 514229/1364*710647^(1/7) 2584001466278601 a001 1346269/1364*271443^(1/13) 2584001466279988 a004 Fibonacci(15)*Lucas(28)/(1/2+sqrt(5)/2)^25 2584001466280273 a001 821224090/317811 2584001466282967 a001 514229/1364*271443^(2/13) 2584001466285524 a001 2178309/1364*103682^(1/24) 2584001466286036 a001 98209/682*439204^(2/9) 2584001466288229 a001 305/219602*7881196^(10/11) 2584001466288262 a001 305/219602*20633239^(6/7) 2584001466288267 a001 305/219602*141422324^(10/13) 2584001466288267 a001 305/219602*2537720636^(2/3) 2584001466288267 a001 305/219602*45537549124^(10/17) 2584001466288267 a001 305/219602*312119004989^(6/11) 2584001466288267 a001 305/219602*14662949395604^(10/21) 2584001466288267 a001 305/219602*(1/2+1/2*5^(1/2))^30 2584001466288267 a001 305/219602*192900153618^(5/9) 2584001466288267 a001 305/219602*28143753123^(3/5) 2584001466288267 a001 305/219602*10749957122^(5/8) 2584001466288267 a001 305/219602*4106118243^(15/23) 2584001466288267 a001 305/219602*1568397607^(15/22) 2584001466288267 a001 305/219602*599074578^(5/7) 2584001466288267 a001 305/219602*228826127^(3/4) 2584001466288267 a001 305/219602*87403803^(15/19) 2584001466288269 a001 305/219602*33385282^(5/6) 2584001466288281 a001 305/219602*12752043^(15/17) 2584001466288369 a001 305/219602*4870847^(15/16) 2584001466289006 a001 98209/682*7881196^(2/11) 2584001466289013 a001 98209/682*141422324^(2/13) 2584001466289013 a001 98209/682*2537720636^(2/15) 2584001466289013 a001 98209/682*45537549124^(2/17) 2584001466289013 a001 98209/682*14662949395604^(2/21) 2584001466289013 a001 98209/682*(1/2+1/2*5^(1/2))^6 2584001466289013 a001 98209/682*10749957122^(1/8) 2584001466289013 a001 98209/682*4106118243^(3/23) 2584001466289013 a001 98209/682*1568397607^(3/22) 2584001466289013 a001 98209/682*599074578^(1/7) 2584001466289013 a001 98209/682*228826127^(3/20) 2584001466289013 a001 98209/682*87403803^(3/19) 2584001466289014 a001 98209/682*33385282^(1/6) 2584001466289016 a001 98209/682*12752043^(3/17) 2584001466289034 a001 98209/682*4870847^(3/16) 2584001466289163 a001 98209/682*1860498^(1/5) 2584001466290110 a001 98209/682*710647^(3/14) 2584001466295934 a001 1346269/1364*103682^(1/12) 2584001466297106 a001 98209/682*271443^(3/13) 2584001466304918 a001 610*103682^(1/8) 2584001466309941 a004 Fibonacci(15)*Lucas(26)/(1/2+sqrt(5)/2)^23 2584001466310657 a001 121393/1364*103682^(7/24) 2584001466311896 a001 313679690/121393 2584001466317634 a001 514229/1364*103682^(1/6) 2584001466320579 a001 317811/1364*103682^(5/24) 2584001466349107 a001 98209/682*103682^(1/4) 2584001466350397 a001 2178309/1364*39603^(1/22) 2584001466366681 a001 610/167761*20633239^(4/5) 2584001466366686 a001 610/167761*17393796001^(4/7) 2584001466366686 a001 610/167761*14662949395604^(4/9) 2584001466366686 a001 610/167761*(1/2+1/2*5^(1/2))^28 2584001466366686 a001 610/167761*73681302247^(7/13) 2584001466366686 a001 610/167761*10749957122^(7/12) 2584001466366686 a001 610/167761*4106118243^(14/23) 2584001466366686 a001 610/167761*1568397607^(7/11) 2584001466366686 a001 610/167761*599074578^(2/3) 2584001466366686 a001 610/167761*228826127^(7/10) 2584001466366686 a001 610/167761*87403803^(14/19) 2584001466366687 a001 610/167761*33385282^(7/9) 2584001466366699 a001 610/167761*12752043^(14/17) 2584001466366781 a001 610/167761*4870847^(7/8) 2584001466367382 a001 610/167761*1860498^(14/15) 2584001466367432 a001 75025/1364*(1/2+1/2*5^(1/2))^8 2584001466367432 a001 75025/1364*23725150497407^(1/8) 2584001466367432 a001 75025/1364*73681302247^(2/13) 2584001466367432 a001 75025/1364*10749957122^(1/6) 2584001466367432 a001 75025/1364*4106118243^(4/23) 2584001466367432 a001 75025/1364*1568397607^(2/11) 2584001466367432 a001 75025/1364*599074578^(4/21) 2584001466367432 a001 75025/1364*228826127^(1/5) 2584001466367432 a001 75025/1364*87403803^(4/19) 2584001466367433 a001 75025/1364*33385282^(2/9) 2584001466367436 a001 75025/1364*12752043^(4/17) 2584001466367459 a001 75025/1364*4870847^(1/4) 2584001466367631 a001 75025/1364*1860498^(4/15) 2584001466368894 a001 75025/1364*710647^(2/7) 2584001466378223 a001 75025/1364*271443^(4/13) 2584001466425679 a001 1346269/1364*39603^(1/11) 2584001466447557 a001 75025/1364*103682^(1/3) 2584001466499536 a001 610*39603^(3/22) 2584001466515244 a004 Fibonacci(15)*Lucas(24)/(1/2+sqrt(5)/2)^21 2584001466528640 a001 29953745/11592 2584001466577125 a001 514229/1364*39603^(2/11) 2584001466631312 a001 28657/1364*64079^(10/23) 2584001466644943 a001 317811/1364*39603^(5/22) 2584001466709239 a001 11592/341*39603^(9/22) 2584001466738343 a001 98209/682*39603^(3/11) 2584001466764766 a001 121393/1364*39603^(7/22) 2584001466840130 a001 2178309/1364*15127^(1/20) 2584001466868197 a001 28657/1364*167761^(2/5) 2584001466904176 a001 610/64079*141422324^(2/3) 2584001466904176 a001 610/64079*(1/2+1/2*5^(1/2))^26 2584001466904176 a001 610/64079*73681302247^(1/2) 2584001466904176 a001 610/64079*10749957122^(13/24) 2584001466904176 a001 610/64079*4106118243^(13/23) 2584001466904176 a001 610/64079*1568397607^(13/22) 2584001466904176 a001 610/64079*599074578^(13/21) 2584001466904176 a001 610/64079*228826127^(13/20) 2584001466904177 a001 610/64079*87403803^(13/19) 2584001466904178 a001 610/64079*33385282^(13/18) 2584001466904189 a001 610/64079*12752043^(13/17) 2584001466904265 a001 610/64079*4870847^(13/16) 2584001466904823 a001 610/64079*1860498^(13/15) 2584001466904921 a001 28657/1364*20633239^(2/7) 2584001466904923 a001 28657/1364*2537720636^(2/9) 2584001466904923 a001 28657/1364*312119004989^(2/11) 2584001466904923 a001 28657/1364*(1/2+1/2*5^(1/2))^10 2584001466904923 a001 28657/1364*28143753123^(1/5) 2584001466904923 a001 28657/1364*10749957122^(5/24) 2584001466904923 a001 28657/1364*4106118243^(5/23) 2584001466904923 a001 28657/1364*1568397607^(5/22) 2584001466904923 a001 28657/1364*599074578^(5/21) 2584001466904923 a001 28657/1364*228826127^(1/4) 2584001466904923 a001 28657/1364*87403803^(5/19) 2584001466904924 a001 28657/1364*33385282^(5/18) 2584001466904928 a001 28657/1364*12752043^(5/17) 2584001466904957 a001 28657/1364*4870847^(5/16) 2584001466905172 a001 28657/1364*1860498^(1/3) 2584001466906750 a001 28657/1364*710647^(5/14) 2584001466908928 a001 610/64079*710647^(13/14) 2584001466918411 a001 28657/1364*271443^(5/13) 2584001466966538 a001 75025/1364*39603^(4/11) 2584001467005078 a001 28657/1364*103682^(5/12) 2584001467405145 a001 1346269/1364*15127^(1/10) 2584001467653806 a001 28657/1364*39603^(5/11) 2584001467922414 a004 Fibonacci(15)*Lucas(22)/(1/2+sqrt(5)/2)^19 2584001467968735 a001 610*15127^(3/20) 2584001468014228 a001 45765250/17711 2584001468124184 a001 5473/682*24476^(4/7) 2584001468536057 a001 514229/1364*15127^(1/5) 2584001469093607 a001 317811/1364*15127^(1/4) 2584001469676740 a001 98209/682*15127^(3/10) 2584001470192896 a001 121393/1364*15127^(7/20) 2584001470260606 a001 5473/682*64079^(12/23) 2584001470575477 a001 2178309/1364*5778^(1/18) 2584001470576286 a001 305/12238*439204^(8/9) 2584001470582986 a001 5473/682*439204^(4/9) 2584001470588163 a001 305/12238*7881196^(8/11) 2584001470588193 a001 305/12238*141422324^(8/13) 2584001470588193 a001 305/12238*2537720636^(8/15) 2584001470588193 a001 305/12238*45537549124^(8/17) 2584001470588193 a001 305/12238*14662949395604^(8/21) 2584001470588193 a001 305/12238*(1/2+1/2*5^(1/2))^24 2584001470588193 a001 305/12238*192900153618^(4/9) 2584001470588193 a001 305/12238*73681302247^(6/13) 2584001470588193 a001 305/12238*10749957122^(1/2) 2584001470588193 a001 305/12238*4106118243^(12/23) 2584001470588193 a001 305/12238*1568397607^(6/11) 2584001470588193 a001 305/12238*599074578^(4/7) 2584001470588193 a001 305/12238*228826127^(3/5) 2584001470588193 a001 305/12238*87403803^(12/19) 2584001470588195 a001 305/12238*33385282^(2/3) 2584001470588204 a001 305/12238*12752043^(12/17) 2584001470588275 a001 305/12238*4870847^(3/4) 2584001470588790 a001 305/12238*1860498^(4/5) 2584001470588924 a001 5473/682*7881196^(4/11) 2584001470588940 a001 5473/682*141422324^(4/13) 2584001470588940 a001 5473/682*2537720636^(4/15) 2584001470588940 a001 5473/682*45537549124^(4/17) 2584001470588940 a001 5473/682*14662949395604^(4/21) 2584001470588940 a001 5473/682*(1/2+1/2*5^(1/2))^12 2584001470588940 a001 5473/682*192900153618^(2/9) 2584001470588940 a001 5473/682*73681302247^(3/13) 2584001470588940 a001 5473/682*10749957122^(1/4) 2584001470588940 a001 5473/682*4106118243^(6/23) 2584001470588940 a001 5473/682*1568397607^(3/11) 2584001470588940 a001 5473/682*599074578^(2/7) 2584001470588940 a001 5473/682*228826127^(3/10) 2584001470588940 a001 5473/682*87403803^(6/19) 2584001470588940 a001 5473/682*33385282^(1/3) 2584001470588945 a001 5473/682*12752043^(6/17) 2584001470588980 a001 5473/682*4870847^(3/8) 2584001470589238 a001 5473/682*1860498^(2/5) 2584001470591132 a001 5473/682*710647^(3/7) 2584001470592579 a001 305/12238*710647^(6/7) 2584001470605126 a001 5473/682*271443^(6/13) 2584001470620565 a001 305/12238*271443^(12/13) 2584001470709126 a001 5473/682*103682^(1/2) 2584001470838908 a001 17711/1364*15127^(11/20) 2584001470884401 a001 75025/1364*15127^(2/5) 2584001471116835 a001 11592/341*15127^(9/20) 2584001471487599 a001 5473/682*39603^(6/11) 2584001472551134 a001 28657/1364*15127^(1/2) 2584001474055604 a001 4181/1364*9349^(14/19) 2584001474875838 a001 1346269/1364*5778^(1/9) 2584001477364393 a001 5473/682*15127^(3/5) 2584001477567294 a004 Fibonacci(15)*Lucas(20)/(1/2+sqrt(5)/2)^17 2584001478195268 a001 1597/1364*3571^(16/17) 2584001478196600 a001 3496154/1353 2584001479174774 a001 610*5778^(1/6) 2584001480438786 r009 Re(z^3+c),c=-14/23+7/23*I,n=4 2584001483477443 a001 514229/1364*5778^(2/9) 2584001487770340 a001 317811/1364*5778^(5/18) 2584001492088820 a001 98209/682*5778^(1/3) 2584001492964018 a001 4181/1364*24476^(2/3) 2584001495236875 a001 610/9349*64079^(22/23) 2584001495456510 a001 4181/1364*64079^(14/23) 2584001495635789 r005 Im(z^2+c),c=11/50+9/56*I,n=18 2584001495838792 a001 610/9349*7881196^(2/3) 2584001495838819 a001 610/9349*312119004989^(2/5) 2584001495838819 a001 610/9349*(1/2+1/2*5^(1/2))^22 2584001495838819 a001 610/9349*10749957122^(11/24) 2584001495838819 a001 610/9349*4106118243^(11/23) 2584001495838819 a001 610/9349*1568397607^(1/2) 2584001495838819 a001 610/9349*599074578^(11/21) 2584001495838819 a001 610/9349*228826127^(11/20) 2584001495838820 a001 610/9349*87403803^(11/19) 2584001495838821 a001 610/9349*33385282^(11/18) 2584001495838830 a001 610/9349*12752043^(11/17) 2584001495838894 a001 610/9349*4870847^(11/16) 2584001495839367 a001 610/9349*1860498^(11/15) 2584001495839563 a001 4181/1364*20633239^(2/5) 2584001495839565 a001 4181/1364*17393796001^(2/7) 2584001495839565 a001 4181/1364*14662949395604^(2/9) 2584001495839565 a001 4181/1364*(1/2+1/2*5^(1/2))^14 2584001495839565 a001 4181/1364*10749957122^(7/24) 2584001495839565 a001 4181/1364*4106118243^(7/23) 2584001495839565 a001 4181/1364*1568397607^(7/22) 2584001495839565 a001 4181/1364*599074578^(1/3) 2584001495839566 a001 4181/1364*228826127^(7/20) 2584001495839566 a001 4181/1364*87403803^(7/19) 2584001495839566 a001 4181/1364*33385282^(7/18) 2584001495839572 a001 4181/1364*12752043^(7/17) 2584001495839613 a001 4181/1364*4870847^(7/16) 2584001495839914 a001 4181/1364*1860498^(7/15) 2584001495842124 a001 4181/1364*710647^(1/2) 2584001495842840 a001 610/9349*710647^(11/14) 2584001495858449 a001 4181/1364*271443^(7/13) 2584001495868494 a001 610/9349*271443^(11/13) 2584001495979783 a001 4181/1364*103682^(7/12) 2584001496059161 a001 610/9349*103682^(11/12) 2584001496340322 a001 121393/1364*5778^(7/18) 2584001496888002 a001 4181/1364*39603^(7/11) 2584001497890624 m001 (KhinchinLevy-MertensB3)/(Zeta(5)-Bloch) 2584001499431975 a001 2178309/1364*2207^(1/16) 2584001500767174 a001 75025/1364*5778^(4/9) 2584001503744262 a001 4181/1364*15127^(7/10) 2584001504734954 a001 11592/341*5778^(1/2) 2584001509904600 a001 28657/1364*5778^(5/9) 2584001510882775 a001 615/124*5778^(13/18) 2584001511927721 a001 17711/1364*5778^(11/18) 2584001513952543 a007 Real Root Of -116*x^4+78*x^3+915*x^2+7*x+426 2584001517686945 r009 Re(z^3+c),c=-23/74+4/15*I,n=15 2584001522188553 a001 5473/682*5778^(2/3) 2584001526283079 a007 Real Root Of 363*x^4+298*x^3-280*x^2-960*x+260 2584001530647644 a001 6765/521*521^(11/13) 2584001532588837 a001 1346269/1364*2207^(1/8) 2584001536228496 s002 sum(A273760[n]/(exp(n)+1),n=1..infinity) 2584001543674291 a004 Fibonacci(15)*Lucas(18)/(1/2+sqrt(5)/2)^15 2584001547987616 a001 1669265/646 2584001556039115 a001 4181/1364*5778^(7/9) 2584001558337117 a001 416020/2889*843^(3/7) 2584001565744272 a001 610*2207^(3/16) 2584001572711347 a007 Real Root Of 275*x^4+581*x^3-190*x^2+386*x+30 2584001578647811 a001 832040/3571*843^(5/14) 2584001581709485 m001 Pi/(Psi(1,1/3)-Zeta(1/2)+BesselK(1,1)) 2584001586940765 a007 Real Root Of 290*x^4+515*x^3+539*x^2-548*x-170 2584001587954288 a007 Real Root Of 59*x^4-68*x^3-776*x^2-503*x+78 2584001598903441 a001 514229/1364*2207^(1/4) 2584001603844043 a007 Real Root Of -760*x^4+221*x^3-782*x^2+10*x+62 2584001607737202 r009 Im(z^3+c),c=-27/70+7/40*I,n=18 2584001620524225 p004 log(32251/24907) 2584001621866147 a001 29/6765*55^(13/29) 2584001623749981 a001 3524578/2207*322^(1/12) 2584001624444753 a001 311187/2161*843^(3/7) 2584001624644844 a001 121393/2207*843^(4/7) 2584001630947161 s002 sum(A140167[n]/(n^3*exp(n)+1),n=1..infinity) 2584001632052839 a001 317811/1364*2207^(5/16) 2584001634089728 a001 5702887/39603*843^(3/7) 2584001635496911 a001 7465176/51841*843^(3/7) 2584001635702216 a001 39088169/271443*843^(3/7) 2584001635732169 a001 14619165/101521*843^(3/7) 2584001635736540 a001 133957148/930249*843^(3/7) 2584001635737177 a001 701408733/4870847*843^(3/7) 2584001635737270 a001 1836311903/12752043*843^(3/7) 2584001635737284 a001 14930208/103681*843^(3/7) 2584001635737286 a001 12586269025/87403803*843^(3/7) 2584001635737286 a001 32951280099/228826127*843^(3/7) 2584001635737286 a001 43133785636/299537289*843^(3/7) 2584001635737286 a001 32264490531/224056801*843^(3/7) 2584001635737286 a001 591286729879/4106118243*843^(3/7) 2584001635737286 a001 774004377960/5374978561*843^(3/7) 2584001635737286 a001 4052739537881/28143753123*843^(3/7) 2584001635737286 a001 1515744265389/10525900321*843^(3/7) 2584001635737286 a001 3278735159921/22768774562*843^(3/7) 2584001635737286 a001 2504730781961/17393796001*843^(3/7) 2584001635737286 a001 956722026041/6643838879*843^(3/7) 2584001635737286 a001 182717648081/1268860318*843^(3/7) 2584001635737286 a001 139583862445/969323029*843^(3/7) 2584001635737286 a001 53316291173/370248451*843^(3/7) 2584001635737286 a001 10182505537/70711162*843^(3/7) 2584001635737287 a001 7778742049/54018521*843^(3/7) 2584001635737292 a001 2971215073/20633239*843^(3/7) 2584001635737328 a001 567451585/3940598*843^(3/7) 2584001635737571 a001 433494437/3010349*843^(3/7) 2584001635739240 a001 165580141/1149851*843^(3/7) 2584001635750682 a001 31622993/219602*843^(3/7) 2584001635829101 a001 24157817/167761*843^(3/7) 2584001636366597 a001 9227465/64079*843^(3/7) 2584001640050650 a001 1762289/12238*843^(3/7) 2584001644013972 a001 1597/1364*9349^(16/19) 2584001649962758 m001 1/GAMMA(1/6)*ln(Salem)/GAMMA(5/6) 2584001651742831 a003 sin(Pi*7/87)/sin(Pi*44/105) 2584001661942843 m005 (1/3*Catalan-1/11)/(3*exp(1)+1/7) 2584001664801274 a001 610/3571*24476^(20/21) 2584001665227820 a001 98209/682*2207^(3/8) 2584001665301521 a001 1346269/9349*843^(3/7) 2584001665623590 a001 1597/1364*24476^(16/21) 2584001667894048 r009 Re(z^3+c),c=-1/70+32/51*I,n=2 2584001668340572 r009 Re(z^3+c),c=-7/78+27/34*I,n=32 2584001668361978 a001 610/3571*64079^(20/23) 2584001668472153 a001 1597/1364*64079^(16/23) 2584001668835748 a001 610/3571*167761^(4/5) 2584001668909196 a001 610/3571*20633239^(4/7) 2584001668909200 a001 610/3571*2537720636^(4/9) 2584001668909200 a001 610/3571*(1/2+1/2*5^(1/2))^20 2584001668909200 a001 610/3571*23725150497407^(5/16) 2584001668909200 a001 610/3571*505019158607^(5/14) 2584001668909200 a001 610/3571*73681302247^(5/13) 2584001668909200 a001 610/3571*28143753123^(2/5) 2584001668909200 a001 610/3571*10749957122^(5/12) 2584001668909200 a001 610/3571*4106118243^(10/23) 2584001668909200 a001 610/3571*1568397607^(5/11) 2584001668909200 a001 610/3571*599074578^(10/21) 2584001668909200 a001 610/3571*228826127^(1/2) 2584001668909200 a001 610/3571*87403803^(10/19) 2584001668909201 a001 610/3571*33385282^(5/9) 2584001668909209 a001 610/3571*12752043^(10/17) 2584001668909268 a001 610/3571*4870847^(5/8) 2584001668909697 a001 610/3571*1860498^(2/3) 2584001668909930 a001 1597/1364*(1/2+1/2*5^(1/2))^16 2584001668909930 a001 1597/1364*23725150497407^(1/4) 2584001668909930 a001 1597/1364*73681302247^(4/13) 2584001668909930 a001 1597/1364*10749957122^(1/3) 2584001668909930 a001 1597/1364*4106118243^(8/23) 2584001668909930 a001 1597/1364*1568397607^(4/11) 2584001668909930 a001 1597/1364*599074578^(8/21) 2584001668909930 a001 1597/1364*228826127^(2/5) 2584001668909930 a001 1597/1364*87403803^(8/19) 2584001668909931 a001 1597/1364*33385282^(4/9) 2584001668909938 a001 1597/1364*12752043^(8/17) 2584001668909985 a001 1597/1364*4870847^(1/2) 2584001668910328 a001 1597/1364*1860498^(8/15) 2584001668912854 a001 1597/1364*710647^(4/7) 2584001668912854 a001 610/3571*710647^(5/7) 2584001668931512 a001 1597/1364*271443^(8/13) 2584001668936177 a001 610/3571*271443^(10/13) 2584001669070179 a001 1597/1364*103682^(2/3) 2584001669109511 a001 610/3571*103682^(5/6) 2584001670108143 a001 1597/1364*39603^(8/11) 2584001670406965 a001 610/3571*39603^(10/11) 2584001672825654 h001 (9/10*exp(2)+1/7)/(5/6*exp(1)+4/11) 2584001677943869 a001 1597/1364*15127^(4/5) 2584001680828060 r009 Re(z^3+c),c=-9/52+44/51*I,n=64 2584001684747003 r005 Im(z^2+c),c=-19/110+15/23*I,n=9 2584001689524495 a003 cos(Pi*1/114)/sin(Pi*11/87) 2584001692683384 l006 ln(4297/5564) 2584001698335823 a001 121393/1364*2207^(7/16) 2584001698781650 m001 Robbin^2/ln(Rabbit)^2/(3^(1/3)) 2584001708390254 r005 Re(z^2+c),c=-21/94+15/31*I,n=61 2584001711290670 m001 QuadraticClass/(exp(1)+ln(2)) 2584001717142674 r009 Re(z^3+c),c=-25/126+40/43*I,n=12 2584001725998568 a001 2178309/1364*843^(1/14) 2584001729813737 a007 Real Root Of 284*x^4-303*x^3-832*x^2-404*x+11 2584001731619177 a001 75025/1364*2207^(1/2) 2584001737709420 a001 1597/1364*5778^(8/9) 2584001740778961 m001 (ErdosBorwein-gamma)/(FransenRobinson+Salem) 2584001751934070 m001 (Ei(1,1)-GAMMA(7/12))/(MertensB3-Tribonacci) 2584001764443460 a001 11592/341*2207^(9/16) 2584001775367232 a007 Real Root Of -87*x^4-103*x^3+80*x^2-934*x-846 2584001780740741 m005 (-1/30+1/6*5^(1/2))/(23/72+4/9*5^(1/2)) 2584001798469609 a001 28657/1364*2207^(5/8) 2584001804475291 m005 (2/3*Catalan-2/3)/(1/5*Catalan-2/5) 2584001818062886 a001 514229/5778*843^(1/2) 2584001820293523 r009 Re(z^3+c),c=-27/94+4/19*I,n=5 2584001829349232 a001 17711/1364*2207^(11/16) 2584001832585143 s002 sum(A276175[n]/(n*exp(n)+1),n=1..infinity) 2584001833060176 r005 Im(z^2+c),c=-23/106+17/45*I,n=14 2584001838373582 a001 514229/3571*843^(3/7) 2584001844002660 r009 Re(z^3+c),c=-23/78+8/35*I,n=8 2584001844801547 m005 (1/2*5^(1/2)-3/4)/(Zeta(3)+2/9) 2584001856248575 a001 322/233*75025^(6/23) 2584001861986560 a007 Real Root Of -442*x^4-867*x^3+563*x^2-515*x-343 2584001868466568 a001 5473/682*2207^(3/4) 2584001870820192 a001 2207/13*1346269^(27/52) 2584001884168222 a001 1346269/15127*843^(1/2) 2584001884494804 a001 75025/2207*843^(9/14) 2584001886017292 a001 615/124*2207^(13/16) 2584001886223227 a001 646/341*2207^(15/16) 2584001893812861 a001 3524578/39603*843^(1/2) 2584001895219995 a001 9227465/103682*843^(1/2) 2584001895425293 a001 24157817/271443*843^(1/2) 2584001895455246 a001 63245986/710647*843^(1/2) 2584001895459616 a001 165580141/1860498*843^(1/2) 2584001895460253 a001 433494437/4870847*843^(1/2) 2584001895460346 a001 1134903170/12752043*843^(1/2) 2584001895460360 a001 2971215073/33385282*843^(1/2) 2584001895460362 a001 7778742049/87403803*843^(1/2) 2584001895460362 a001 20365011074/228826127*843^(1/2) 2584001895460362 a001 53316291173/599074578*843^(1/2) 2584001895460362 a001 139583862445/1568397607*843^(1/2) 2584001895460362 a001 365435296162/4106118243*843^(1/2) 2584001895460362 a001 956722026041/10749957122*843^(1/2) 2584001895460362 a001 2504730781961/28143753123*843^(1/2) 2584001895460362 a001 6557470319842/73681302247*843^(1/2) 2584001895460362 a001 10610209857723/119218851371*843^(1/2) 2584001895460362 a001 4052739537881/45537549124*843^(1/2) 2584001895460362 a001 1548008755920/17393796001*843^(1/2) 2584001895460362 a001 591286729879/6643838879*843^(1/2) 2584001895460362 a001 225851433717/2537720636*843^(1/2) 2584001895460362 a001 86267571272/969323029*843^(1/2) 2584001895460362 a001 32951280099/370248451*843^(1/2) 2584001895460362 a001 12586269025/141422324*843^(1/2) 2584001895460363 a001 4807526976/54018521*843^(1/2) 2584001895460368 a001 1836311903/20633239*843^(1/2) 2584001895460404 a001 3524667/39604*843^(1/2) 2584001895460647 a001 267914296/3010349*843^(1/2) 2584001895462316 a001 102334155/1149851*843^(1/2) 2584001895473757 a001 39088169/439204*843^(1/2) 2584001895552174 a001 14930352/167761*843^(1/2) 2584001896089652 a001 5702887/64079*843^(1/2) 2584001899373953 r009 Re(z^3+c),c=-25/64+27/62*I,n=20 2584001899773576 a001 2178309/24476*843^(1/2) 2584001906786455 a007 Real Root Of 260*x^4+384*x^3+232*x^2-628*x+139 2584001907591350 a007 Real Root Of 508*x^4-257*x^3+630*x^2-940*x+203 2584001914307946 r005 Re(z^2+c),c=-6/7+25/117*I,n=30 2584001917340258 a007 Real Root Of 231*x^4+335*x^3-394*x^2+899*x+435 2584001918953744 r009 Im(z^3+c),c=-35/78+5/42*I,n=43 2584001922418064 m001 1/exp(Trott)^2/MinimumGamma^2/BesselK(0,1)^2 2584001925023569 a001 832040/9349*843^(1/2) 2584001939953151 r009 Im(z^3+c),c=-41/78+31/64*I,n=60 2584001951491754 g005 GAMMA(1/7)*GAMMA(2/3)/GAMMA(7/8)/GAMMA(2/7) 2584001952062208 m005 (41/36+1/4*5^(1/2))/(9/11*2^(1/2)-1/2) 2584001957610147 r005 Im(z^2+c),c=2/21+9/37*I,n=19 2584001960030143 a001 4181/1364*2207^(7/8) 2584001966029363 a007 Real Root Of 828*x^4+981*x^3+802*x^2-885*x-269 2584001968257565 a007 Real Root Of 698*x^4-956*x^3-64*x^2-388*x-10 2584001969546409 a003 sin(Pi*3/71)/sin(Pi*19/111) 2584001977965235 r009 Re(z^3+c),c=-31/78+26/59*I,n=18 2584001985722047 a001 1346269/1364*843^(1/7) 2584001988629753 m001 (-GAMMA(19/24)+Paris)/(exp(1)+3^(1/3)) 2584001996778389 a004 Fibonacci(15)*Lucas(16)/(1/2+sqrt(5)/2)^13 2584002000869256 a007 Real Root Of -266*x^4-382*x^3+887*x^2-80*x-861 2584002001694055 m001 (Cahen-ln(Pi)*GaussKuzminWirsing)/ln(Pi) 2584002001694055 m001 (ln(Pi)*GaussKuzminWirsing-Cahen)/ln(Pi) 2584002002547352 m009 (4/5*Psi(1,3/4)-1/5)/(Psi(1,1/3)-3) 2584002003643983 r002 21th iterates of z^2 + 2584002006317439 m001 (sin(1)+sin(1/5*Pi))/(Bloch+StolarskyHarborth) 2584002007766826 m001 (exp(1/Pi)+(1+3^(1/2))^(1/2))/(Lehmer-Rabbit) 2584002019865304 r005 Re(z^2+c),c=-19/102+35/64*I,n=31 2584002024735635 b008 15*Sqrt[LogIntegral[4]] 2584002026342451 a001 2550410/987 2584002030543285 a007 Real Root Of 88*x^4+414*x^3+902*x^2+971*x-294 2584002031882627 r005 Re(z^2+c),c=3/98+26/33*I,n=6 2584002034195972 r005 Re(z^2+c),c=-3/13+28/57*I,n=20 2584002040183020 l006 ln(5172/6697) 2584002040980608 m008 (1/2*Pi^5+1/6)/(3/5*Pi^4+5/6) 2584002045698046 r005 Im(z^2+c),c=49/114+19/60*I,n=5 2584002052435436 l005 151/66/(exp(151/66)-1) 2584002058224913 a007 Real Root Of 254*x^4+482*x^3-326*x^2+425*x+267 2584002072840131 m001 KomornikLoreti^Conway+ZetaP(2) 2584002075623299 r009 Im(z^3+c),c=-33/86+9/49*I,n=5 2584002076854056 a001 9227465/5778*322^(1/12) 2584002077778909 a001 105937/1926*843^(4/7) 2584002085908909 a002 15^(7/6)+18^(2/7) 2584002088170056 a001 7/3*89^(15/28) 2584002092246307 m001 Kolakoski^Zeta(3)*Magata 2584002097468520 m001 GAMMA(5/6)^2*Riemann2ndZero^2/exp(GAMMA(7/24)) 2584002098058582 m001 1/cos(Pi/12)^2*exp(MadelungNaCl)/cosh(1)^2 2584002098089608 a001 317811/3571*843^(1/2) 2584002098168521 p001 sum((-1)^n/(473*n+380)/(24^n),n=0..infinity) 2584002101622719 b008 (7*ArcCot[10])/27 2584002104699785 a007 Real Root Of 197*x^4+456*x^3+180*x^2+841*x+56 2584002119851104 m001 (DuboisRaymond-cos(1))/(-Totient+ZetaQ(4)) 2584002127763706 m001 (arctan(1/2)+gamma(1))/(Gompertz-RenyiParking) 2584002128163188 m001 1/exp(GlaisherKinkelin)^2/Conway*Robbin^2 2584002132316583 m001 ln(GAMMA(19/24))*FeigenbaumDelta*sin(Pi/5)^2 2584002142669809 r008 a(0)=0,K{-n^6,14+14*n+33*n^2-25*n^3} 2584002142961063 a001 24157817/15127*322^(1/12) 2584002143885717 a001 46368/2207*843^(5/7) 2584002143890292 a001 832040/15127*843^(4/7) 2584002144077662 r005 Im(z^2+c),c=-97/118+8/51*I,n=27 2584002146832932 s002 sum(A254260[n]/(n*exp(pi*n)-1),n=1..infinity) 2584002149340494 m001 (Sierpinski+ZetaP(3))/(Pi^(1/2)-CareFree) 2584002149363547 r002 9th iterates of z^2 + 2584002152555005 a007 Real Root Of 254*x^4+435*x^3-730*x^2-249*x+412 2584002152605946 a001 63245986/39603*322^(1/12) 2584002153535813 a001 726103/13201*843^(4/7) 2584002154013116 a001 165580141/103682*322^(1/12) 2584002154218419 a001 433494437/271443*322^(1/12) 2584002154248372 a001 1134903170/710647*322^(1/12) 2584002154252742 a001 2971215073/1860498*322^(1/12) 2584002154253380 a001 7778742049/4870847*322^(1/12) 2584002154253473 a001 20365011074/12752043*322^(1/12) 2584002154253486 a001 53316291173/33385282*322^(1/12) 2584002154253488 a001 139583862445/87403803*322^(1/12) 2584002154253489 a001 365435296162/228826127*322^(1/12) 2584002154253489 a001 956722026041/599074578*322^(1/12) 2584002154253489 a001 2504730781961/1568397607*322^(1/12) 2584002154253489 a001 6557470319842/4106118243*322^(1/12) 2584002154253489 a001 10610209857723/6643838879*322^(1/12) 2584002154253489 a001 4052739537881/2537720636*322^(1/12) 2584002154253489 a001 1548008755920/969323029*322^(1/12) 2584002154253489 a001 591286729879/370248451*322^(1/12) 2584002154253489 a001 225851433717/141422324*322^(1/12) 2584002154253490 a001 86267571272/54018521*322^(1/12) 2584002154253495 a001 32951280099/20633239*322^(1/12) 2584002154253530 a001 12586269025/7881196*322^(1/12) 2584002154253774 a001 4807526976/3010349*322^(1/12) 2584002154255443 a001 1836311903/1149851*322^(1/12) 2584002154266884 a001 701408733/439204*322^(1/12) 2584002154345303 a001 267914296/167761*322^(1/12) 2584002154882794 a001 102334155/64079*322^(1/12) 2584002154943075 a001 5702887/103682*843^(4/7) 2584002155148392 a001 4976784/90481*843^(4/7) 2584002155178347 a001 39088169/710647*843^(4/7) 2584002155182718 a001 831985/15126*843^(4/7) 2584002155183355 a001 267914296/4870847*843^(4/7) 2584002155183448 a001 233802911/4250681*843^(4/7) 2584002155183462 a001 1836311903/33385282*843^(4/7) 2584002155183464 a001 1602508992/29134601*843^(4/7) 2584002155183464 a001 12586269025/228826127*843^(4/7) 2584002155183464 a001 10983760033/199691526*843^(4/7) 2584002155183464 a001 86267571272/1568397607*843^(4/7) 2584002155183464 a001 75283811239/1368706081*843^(4/7) 2584002155183464 a001 591286729879/10749957122*843^(4/7) 2584002155183464 a001 12585437040/228811001*843^(4/7) 2584002155183464 a001 4052739537881/73681302247*843^(4/7) 2584002155183464 a001 3536736619241/64300051206*843^(4/7) 2584002155183464 a001 6557470319842/119218851371*843^(4/7) 2584002155183464 a001 2504730781961/45537549124*843^(4/7) 2584002155183464 a001 956722026041/17393796001*843^(4/7) 2584002155183464 a001 365435296162/6643838879*843^(4/7) 2584002155183464 a001 139583862445/2537720636*843^(4/7) 2584002155183464 a001 53316291173/969323029*843^(4/7) 2584002155183464 a001 20365011074/370248451*843^(4/7) 2584002155183464 a001 7778742049/141422324*843^(4/7) 2584002155183465 a001 2971215073/54018521*843^(4/7) 2584002155183470 a001 1134903170/20633239*843^(4/7) 2584002155183506 a001 433494437/7881196*843^(4/7) 2584002155183749 a001 165580141/3010349*843^(4/7) 2584002155185419 a001 63245986/1149851*843^(4/7) 2584002155196861 a001 24157817/439204*843^(4/7) 2584002155275285 a001 9227465/167761*843^(4/7) 2584002155812811 a001 3524578/64079*843^(4/7) 2584002156239282 m001 ReciprocalFibonacci-StronglyCareFree 2584002158566811 a001 39088169/24476*322^(1/12) 2584002159497072 a001 1346269/24476*843^(4/7) 2584002160341972 m001 (1-ln(2)/ln(10))/(GAMMA(7/12)+Salem) 2584002161127129 r004 Im(z^2+c),c=17/42-3/7*I,z(0)=exp(3/8*I*Pi),n=5 2584002164912065 r005 Re(z^2+c),c=-9/82+38/61*I,n=53 2584002176557089 m001 (Zeta(1,-1)-exp(1))/(-sin(1/12*Pi)+exp(1/Pi)) 2584002176877109 r005 Im(z^2+c),c=-13/28+30/59*I,n=60 2584002183817442 a001 14930352/9349*322^(1/12) 2584002184139884 s002 sum(A100226[n]/((2^n+1)/n),n=1..infinity) 2584002184749375 a001 514229/9349*843^(4/7) 2584002186126827 a007 Real Root Of 236*x^4+385*x^3-775*x^2-306*x+505 2584002197648383 m001 (ArtinRank2+Cahen)/(Grothendieck+Magata) 2584002220952353 r005 Im(z^2+c),c=-67/66+16/59*I,n=18 2584002228965359 m001 (BesselJ(0,1)-Zeta(5))/(PlouffeB+Stephens) 2584002230298407 a007 Real Root Of -316*x^4-781*x^3-82*x^2-63*x+998 2584002245444127 a001 610*843^(3/14) 2584002245808472 r005 Re(z^2+c),c=-19/74+29/60*I,n=14 2584002247928024 m001 (Khinchin+TwinPrimes)/(gamma(2)-GAMMA(17/24)) 2584002257116926 r009 Re(z^3+c),c=-19/46+27/55*I,n=33 2584002269450834 m001 1/FeigenbaumDelta*exp(Cahen)^2*gamma^2 2584002278524047 a001 10946/521*521^(10/13) 2584002283565956 m005 (1/2*2^(1/2)+1/11)/(6*gamma-3/8) 2584002284143815 a007 Real Root Of -636*x^4+234*x^3+597*x^2+290*x-116 2584002286509234 r002 6th iterates of z^2 + 2584002287116358 l006 ln(6047/7830) 2584002290601011 a007 Real Root Of 213*x^4+227*x^3-593*x^2+877*x+646 2584002298313569 h001 (7/8*exp(2)+1/7)/(9/11*exp(1)+1/3) 2584002300275467 m001 (2*Pi/GAMMA(5/6)-Psi(2,1/3))/(Cahen+Niven) 2584002301213721 m008 (5/6*Pi-2/3)/(1/4*Pi^3-1/5) 2584002301500670 r005 Im(z^2+c),c=21/58+3/34*I,n=11 2584002316894967 m001 (LandauRamanujan-Totient)/(ln(3)+GAMMA(5/6)) 2584002319772999 a001 615*199^(16/59) 2584002322988353 m002 3+(Pi^6*Cosh[Pi]^2)/5 2584002325376509 r002 14th iterates of z^2 + 2584002331985265 s002 sum(A117861[n]/(exp(n)+1),n=1..infinity) 2584002335584243 r005 Im(z^2+c),c=13/38+29/60*I,n=8 2584002337045426 a007 Real Root Of -390*x^4-960*x^3+260*x^2-12*x-943 2584002337520542 a001 98209/2889*843^(9/14) 2584002345598039 p001 sum((-1)^n/(501*n+368)/(8^n),n=0..infinity) 2584002346951576 a007 Real Root Of 889*x^4+202*x^3-317*x^2-320*x-62 2584002356509863 a007 Real Root Of -945*x^4-938*x^3+682*x^2+638*x-190 2584002356887855 a001 1597*322^(1/12) 2584002357831242 a001 196418/3571*843^(4/7) 2584002373647393 r005 Re(z^2+c),c=-51/64+3/58*I,n=38 2584002378828426 q001 869/3363 2584002378828426 r002 2th iterates of z^2 + 2584002391727560 r005 Re(z^2+c),c=-3/13+29/63*I,n=15 2584002392013736 m004 (-375*Pi)/4+5*Sqrt[5]*Pi+Tanh[Sqrt[5]*Pi] 2584002402812726 a003 sin(Pi*21/79)-sin(Pi*36/73) 2584002403616120 a001 514229/15127*843^(9/14) 2584002404478523 a001 28657/2207*843^(11/14) 2584002409312733 r005 Re(z^2+c),c=-23/70+13/21*I,n=14 2584002412627298 r005 Re(z^2+c),c=5/27+32/59*I,n=33 2584002413259335 a001 1346269/39603*843^(9/14) 2584002414666261 a001 1762289/51841*843^(9/14) 2584002414871529 a001 9227465/271443*843^(9/14) 2584002414901477 a001 24157817/710647*843^(9/14) 2584002414905846 a001 31622993/930249*843^(9/14) 2584002414906484 a001 165580141/4870847*843^(9/14) 2584002414906577 a001 433494437/12752043*843^(9/14) 2584002414906590 a001 567451585/16692641*843^(9/14) 2584002414906592 a001 2971215073/87403803*843^(9/14) 2584002414906592 a001 7778742049/228826127*843^(9/14) 2584002414906593 a001 10182505537/299537289*843^(9/14) 2584002414906593 a001 53316291173/1568397607*843^(9/14) 2584002414906593 a001 139583862445/4106118243*843^(9/14) 2584002414906593 a001 182717648081/5374978561*843^(9/14) 2584002414906593 a001 956722026041/28143753123*843^(9/14) 2584002414906593 a001 2504730781961/73681302247*843^(9/14) 2584002414906593 a001 3278735159921/96450076809*843^(9/14) 2584002414906593 a001 10610209857723/312119004989*843^(9/14) 2584002414906593 a001 4052739537881/119218851371*843^(9/14) 2584002414906593 a001 387002188980/11384387281*843^(9/14) 2584002414906593 a001 591286729879/17393796001*843^(9/14) 2584002414906593 a001 225851433717/6643838879*843^(9/14) 2584002414906593 a001 1135099622/33391061*843^(9/14) 2584002414906593 a001 32951280099/969323029*843^(9/14) 2584002414906593 a001 12586269025/370248451*843^(9/14) 2584002414906593 a001 1201881744/35355581*843^(9/14) 2584002414906593 a001 1836311903/54018521*843^(9/14) 2584002414906599 a001 701408733/20633239*843^(9/14) 2584002414906634 a001 66978574/1970299*843^(9/14) 2584002414906878 a001 102334155/3010349*843^(9/14) 2584002414908547 a001 39088169/1149851*843^(9/14) 2584002414919986 a001 196452/5779*843^(9/14) 2584002414998391 a001 5702887/167761*843^(9/14) 2584002415535789 a001 2178309/64079*843^(9/14) 2584002416944868 m005 (-7/12+1/6*5^(1/2))/(8/11*3^(1/2)-4/9) 2584002417105024 r005 Im(z^2+c),c=-17/52+17/41*I,n=39 2584002419219169 a001 208010/6119*843^(9/14) 2584002428875954 m005 (1/2*2^(1/2)-1/4)/(217/220+7/20*5^(1/2)) 2584002432070941 a003 sin(Pi*16/115)/cos(Pi*47/105) 2584002444228944 r005 Im(z^2+c),c=-19/18+19/74*I,n=29 2584002444465435 a001 317811/9349*843^(9/14) 2584002452072118 r005 Im(z^2+c),c=-9/52+17/47*I,n=26 2584002454734507 r005 Im(z^2+c),c=11/64+12/61*I,n=23 2584002465408117 m005 (1/4*gamma+2/5)/(2/3*Catalan-2/5) 2584002471620721 l006 ln(6922/8963) 2584002475157108 m004 (3125*Sqrt[5])/Pi+125*Pi*Tan[Sqrt[5]*Pi] 2584002478460470 r009 Re(z^3+c),c=-9/31+5/23*I,n=16 2584002482850246 v003 sum((3*n^2+15*n-13)/(n!+1),n=1..infinity) 2584002486170750 a007 Real Root Of 427*x^4+800*x^3-863*x^2-543*x-875 2584002504496464 m001 (HardyLittlewoodC3-Niven)/(ThueMorse+ZetaQ(4)) 2584002505169965 a001 514229/1364*843^(2/7) 2584002510366871 m001 1/ln(FeigenbaumKappa)/Lehmer^2/BesselK(1,1)^2 2584002516111550 r005 Re(z^2+c),c=-11/14+16/93*I,n=4 2584002517097080 a007 Real Root Of -474*x^4-861*x^3+806*x^2-511*x-425 2584002524254575 a003 cos(Pi*7/69)*cos(Pi*47/114) 2584002547019867 m001 (GAMMA(2/3)-MasserGramain)/Trott2nd 2584002555345707 a001 76/233*987^(26/41) 2584002555447964 m001 (Kac+TreeGrowth2nd)/(3^(1/3)-2*Pi/GAMMA(5/6)) 2584002566038737 m005 (1/2*gamma-5/9)/(4/11*Catalan+7/10) 2584002586555408 r009 Re(z^3+c),c=-9/31+5/23*I,n=15 2584002589509989 r005 Re(z^2+c),c=-1/62+3/28*I,n=7 2584002597195223 a001 121393/5778*843^(5/7) 2584002604616423 r005 Re(z^2+c),c=33/98+11/63*I,n=27 2584002607478122 r005 Im(z^2+c),c=-14/29+29/64*I,n=37 2584002614713944 l006 ln(7797/10096) 2584002617505925 a001 121393/3571*843^(9/14) 2584002621990565 h005 exp(sin(Pi*10/47)/sin(Pi*12/53)) 2584002622131340 a007 Real Root Of -224*x^4-657*x^3-197*x^2-35*x-124 2584002628718830 a007 Real Root Of -444*x^4-883*x^3+934*x^2+968*x+825 2584002636054410 a007 Real Root Of 419*x^4+908*x^3-678*x^2-481*x+270 2584002636310767 r005 Re(z^2+c),c=-21/94+15/31*I,n=57 2584002637338442 r005 Re(z^2+c),c=27/98+7/50*I,n=27 2584002644049864 m001 Cahen^gamma(1)*Cahen^Pi 2584002644981971 a001 521/6765*6765^(7/51) 2584002648011208 a007 Real Root Of 101*x^4+300*x^3+19*x^2-69*x+368 2584002652519893 a001 974169/377 2584002661924828 a001 17711/2207*843^(6/7) 2584002663332202 a001 317811/15127*843^(5/7) 2584002671841774 a001 514229/843*322^(1/4) 2584002672981457 a001 832040/39603*843^(5/7) 2584002674389265 a001 46347/2206*843^(5/7) 2584002674594661 a001 5702887/271443*843^(5/7) 2584002674624628 a001 14930352/710647*843^(5/7) 2584002674629000 a001 39088169/1860498*843^(5/7) 2584002674629638 a001 102334155/4870847*843^(5/7) 2584002674629731 a001 267914296/12752043*843^(5/7) 2584002674629745 a001 701408733/33385282*843^(5/7) 2584002674629747 a001 1836311903/87403803*843^(5/7) 2584002674629747 a001 102287808/4868641*843^(5/7) 2584002674629747 a001 12586269025/599074578*843^(5/7) 2584002674629747 a001 32951280099/1568397607*843^(5/7) 2584002674629747 a001 86267571272/4106118243*843^(5/7) 2584002674629747 a001 225851433717/10749957122*843^(5/7) 2584002674629747 a001 591286729879/28143753123*843^(5/7) 2584002674629747 a001 1548008755920/73681302247*843^(5/7) 2584002674629747 a001 4052739537881/192900153618*843^(5/7) 2584002674629747 a001 225749145909/10745088481*843^(5/7) 2584002674629747 a001 6557470319842/312119004989*843^(5/7) 2584002674629747 a001 2504730781961/119218851371*843^(5/7) 2584002674629747 a001 956722026041/45537549124*843^(5/7) 2584002674629747 a001 365435296162/17393796001*843^(5/7) 2584002674629747 a001 139583862445/6643838879*843^(5/7) 2584002674629747 a001 53316291173/2537720636*843^(5/7) 2584002674629747 a001 20365011074/969323029*843^(5/7) 2584002674629747 a001 7778742049/370248451*843^(5/7) 2584002674629747 a001 2971215073/141422324*843^(5/7) 2584002674629748 a001 1134903170/54018521*843^(5/7) 2584002674629753 a001 433494437/20633239*843^(5/7) 2584002674629789 a001 165580141/7881196*843^(5/7) 2584002674630032 a001 63245986/3010349*843^(5/7) 2584002674631702 a001 24157817/1149851*843^(5/7) 2584002674643149 a001 9227465/439204*843^(5/7) 2584002674721603 a001 3524578/167761*843^(5/7) 2584002675259338 a001 1346269/64079*843^(5/7) 2584002678945025 a001 514229/24476*843^(5/7) 2584002681277651 p001 sum(1/(242*n+61)/n/(128^n),n=1..infinity) 2584002681385538 a007 Real Root Of -228*x^4-566*x^3-109*x^2-646*x-542 2584002682492139 a007 Real Root Of 55*x^4-128*x^3-263*x^2+946*x-460 2584002683165022 r005 Re(z^2+c),c=-7/13+41/51*I,n=3 2584002683375806 r005 Im(z^2+c),c=-13/16+17/115*I,n=31 2584002685798641 a001 1568397607/55*55^(11/20) 2584002689910483 m001 FeigenbaumD-OneNinth^Zeta(5) 2584002691675226 a007 Real Root Of 280*x^4+475*x^3-220*x^2+743*x-899 2584002695471840 m005 (7/44+1/4*5^(1/2))/(2/11*Catalan-4/9) 2584002704207104 a001 196418/9349*843^(5/7) 2584002705596310 m001 Zeta(1/2)*KhinchinHarmonic/Paris 2584002716159787 a007 Real Root Of -434*x^4-924*x^3+527*x^2-286*x-851 2584002719291220 m006 (1/3/Pi-5)/(2*Pi^2-4/5) 2584002719581083 m001 (LambertW(1)-Zeta(5))/(GAMMA(3/4)+Lehmer) 2584002721715911 a007 Real Root Of 409*x^4+680*x^3-985*x^2-176*x-380 2584002724188579 r005 Im(z^2+c),c=-17/54+23/56*I,n=54 2584002730271996 r005 Re(z^2+c),c=-4/27+29/48*I,n=58 2584002731153812 s002 sum(A276175[n]/(n*exp(n)-1),n=1..infinity) 2584002733377484 p001 sum((-1)^n/(110*n+41)/n/(256^n),n=0..infinity) 2584002750204126 a007 Real Root Of -308*x^4-508*x^3+617*x^2-495*x-432 2584002756044426 a007 Real Root Of -423*x^4-793*x^3+745*x^2-461*x-989 2584002762323507 m005 (1/3*3^(1/2)-3/7)/(3/4*gamma+1/7) 2584002763803102 s001 sum(exp(-Pi)^(n-1)*A035872[n],n=1..infinity) 2584002764886057 a001 317811/1364*843^(5/14) 2584002771382642 a007 Real Root Of 13*x^4-374*x^3-694*x^2+792*x-352 2584002772749630 a007 Real Root Of -51*x^4+416*x^3-548*x^2+850*x-190 2584002772965284 m002 -Pi^2/5-Pi^6+Pi^5*Cosh[Pi] 2584002780488359 m001 Totient^BesselI(0,2)*Totient^cos(1/12*Pi) 2584002789507423 m001 Grothendieck*Landau-Rabbit 2584002802269772 m001 ln(Pi)*(2/3+BesselI(1,2)) 2584002802851031 m005 (1/3*5^(1/2)+3/5)/(2/11*2^(1/2)-7/9) 2584002827143892 a001 305/682*9349^(18/19) 2584002829147747 r009 Re(z^3+c),c=-9/31+5/23*I,n=20 2584002831922379 a001 47/4181*610^(39/46) 2584002834037920 r009 Re(z^3+c),c=-9/31+5/23*I,n=19 2584002835609300 m005 (1/3*5^(1/2)-1/2)/(3/8*3^(1/2)+3/10) 2584002837478538 r009 Re(z^3+c),c=-9/31+5/23*I,n=24 2584002837646458 r009 Re(z^3+c),c=-9/31+5/23*I,n=23 2584002837674328 r009 Re(z^3+c),c=-9/31+5/23*I,n=28 2584002837678824 r009 Re(z^3+c),c=-9/31+5/23*I,n=29 2584002837678882 r009 Re(z^3+c),c=-9/31+5/23*I,n=32 2584002837678981 r009 Re(z^3+c),c=-9/31+5/23*I,n=33 2584002837678986 r009 Re(z^3+c),c=-9/31+5/23*I,n=36 2584002837678989 r009 Re(z^3+c),c=-9/31+5/23*I,n=37 2584002837678989 r009 Re(z^3+c),c=-9/31+5/23*I,n=40 2584002837678989 r009 Re(z^3+c),c=-9/31+5/23*I,n=41 2584002837678989 r009 Re(z^3+c),c=-9/31+5/23*I,n=44 2584002837678989 r009 Re(z^3+c),c=-9/31+5/23*I,n=45 2584002837678989 r009 Re(z^3+c),c=-9/31+5/23*I,n=48 2584002837678989 r009 Re(z^3+c),c=-9/31+5/23*I,n=49 2584002837678989 r009 Re(z^3+c),c=-9/31+5/23*I,n=52 2584002837678989 r009 Re(z^3+c),c=-9/31+5/23*I,n=53 2584002837678989 r009 Re(z^3+c),c=-9/31+5/23*I,n=56 2584002837678989 r009 Re(z^3+c),c=-9/31+5/23*I,n=57 2584002837678989 r009 Re(z^3+c),c=-9/31+5/23*I,n=60 2584002837678989 r009 Re(z^3+c),c=-9/31+5/23*I,n=61 2584002837678989 r009 Re(z^3+c),c=-9/31+5/23*I,n=64 2584002837678989 r009 Re(z^3+c),c=-9/31+5/23*I,n=63 2584002837678989 r009 Re(z^3+c),c=-9/31+5/23*I,n=62 2584002837678989 r009 Re(z^3+c),c=-9/31+5/23*I,n=59 2584002837678989 r009 Re(z^3+c),c=-9/31+5/23*I,n=58 2584002837678989 r009 Re(z^3+c),c=-9/31+5/23*I,n=55 2584002837678989 r009 Re(z^3+c),c=-9/31+5/23*I,n=54 2584002837678989 r009 Re(z^3+c),c=-9/31+5/23*I,n=51 2584002837678989 r009 Re(z^3+c),c=-9/31+5/23*I,n=50 2584002837678989 r009 Re(z^3+c),c=-9/31+5/23*I,n=47 2584002837678989 r009 Re(z^3+c),c=-9/31+5/23*I,n=46 2584002837678989 r009 Re(z^3+c),c=-9/31+5/23*I,n=43 2584002837678989 r009 Re(z^3+c),c=-9/31+5/23*I,n=42 2584002837678989 r009 Re(z^3+c),c=-9/31+5/23*I,n=39 2584002837678989 r009 Re(z^3+c),c=-9/31+5/23*I,n=38 2584002837678990 r009 Re(z^3+c),c=-9/31+5/23*I,n=35 2584002837679005 r009 Re(z^3+c),c=-9/31+5/23*I,n=34 2584002837679028 r009 Re(z^3+c),c=-9/31+5/23*I,n=31 2584002837679456 r009 Re(z^3+c),c=-9/31+5/23*I,n=27 2584002837679697 r009 Re(z^3+c),c=-9/31+5/23*I,n=30 2584002837679942 r009 Re(z^3+c),c=-9/31+5/23*I,n=25 2584002837709594 r009 Re(z^3+c),c=-9/31+5/23*I,n=26 2584002838063880 r009 Re(z^3+c),c=-9/31+5/23*I,n=21 2584002838988427 r009 Re(z^3+c),c=-9/31+5/23*I,n=22 2584002841527152 a007 Real Root Of -373*x^4-842*x^3-190*x^2-919*x+996 2584002851454722 a001 305/682*24476^(6/7) 2584002851789750 m001 (3^(1/3)+Zeta(1/2))/(PlouffeB-Salem) 2584002854659357 a001 305/682*64079^(18/23) 2584002855142927 a001 305/682*439204^(2/3) 2584002855151835 a001 305/682*7881196^(6/11) 2584002855151857 a001 305/682*141422324^(6/13) 2584002855151857 a001 305/682*2537720636^(2/5) 2584002855151857 a001 305/682*45537549124^(6/17) 2584002855151857 a001 305/682*14662949395604^(2/7) 2584002855151857 a001 305/682*(1/2+1/2*5^(1/2))^18 2584002855151857 a001 305/682*192900153618^(1/3) 2584002855151857 a001 305/682*10749957122^(3/8) 2584002855151857 a001 305/682*4106118243^(9/23) 2584002855151857 a001 305/682*1568397607^(9/22) 2584002855151857 a001 305/682*599074578^(3/7) 2584002855151857 a001 305/682*228826127^(9/20) 2584002855151858 a001 305/682*87403803^(9/19) 2584002855151859 a001 305/682*33385282^(1/2) 2584002855151866 a001 305/682*12752043^(9/17) 2584002855151919 a001 305/682*4870847^(9/16) 2584002855152305 a001 305/682*1860498^(3/5) 2584002855155147 a001 305/682*710647^(9/14) 2584002855176137 a001 305/682*271443^(9/13) 2584002855332137 a001 305/682*103682^(3/4) 2584002855333220 m001 (Riemann2ndZero+ZetaP(4))/(3^(1/3)-Kac) 2584002856499847 a001 305/682*39603^(9/11) 2584002857045280 a001 75025/5778*843^(11/14) 2584002860736964 r005 Im(z^2+c),c=1/38+19/30*I,n=19 2584002865315044 a001 305/682*15127^(9/10) 2584002865395577 m001 (exp(Pi)*sin(1/12*Pi)+gamma(2))/exp(Pi) 2584002868809957 r009 Re(z^3+c),c=-9/31+5/23*I,n=17 2584002876187020 m006 (1/6*ln(Pi)-1)/(3/5*ln(Pi)-1) 2584002876237270 m001 exp(Pi)*GAMMA(17/24)^TreeGrowth2nd 2584002877355984 a001 75025/3571*843^(5/7) 2584002879495926 a007 Real Root Of 232*x^4+164*x^3-957*x^2+539*x+269 2584002880869158 r005 Re(z^2+c),c=-5/4+9/247*I,n=32 2584002889745983 r009 Re(z^3+c),c=-23/74+4/15*I,n=18 2584002893113075 r009 Re(z^3+c),c=-9/31+5/23*I,n=18 2584002894646239 m009 (2*Psi(1,2/3)-5/6)/(2*Pi^2+3/4) 2584002900394951 m001 Kolakoski^(2^(1/3)*FeigenbaumDelta) 2584002921840759 r005 Re(z^2+c),c=-107/74+23/37*I,n=2 2584002923073893 a001 196418/15127*843^(11/14) 2584002923146744 m001 (ln(2)/ln(10)+exp(1))/(Artin+Kolakoski) 2584002927608874 a001 10946/2207*843^(13/14) 2584002927614256 m001 (-exp(1/Pi)+Rabbit)/(3^(1/2)+sin(1)) 2584002931935962 m005 (1/2*2^(1/2)-4/5)/(5/12*gamma-3/5) 2584002932707338 a001 514229/39603*843^(11/14) 2584002934112839 a001 1346269/103682*843^(11/14) 2584002934182350 m002 -(E^Pi/Pi^6)+Pi^2-E^Pi*Cosh[Pi] 2584002934317899 a001 3524578/271443*843^(11/14) 2584002934347817 a001 9227465/710647*843^(11/14) 2584002934352182 a001 24157817/1860498*843^(11/14) 2584002934352819 a001 63245986/4870847*843^(11/14) 2584002934352911 a001 165580141/12752043*843^(11/14) 2584002934352925 a001 433494437/33385282*843^(11/14) 2584002934352927 a001 1134903170/87403803*843^(11/14) 2584002934352927 a001 2971215073/228826127*843^(11/14) 2584002934352927 a001 7778742049/599074578*843^(11/14) 2584002934352927 a001 20365011074/1568397607*843^(11/14) 2584002934352927 a001 53316291173/4106118243*843^(11/14) 2584002934352927 a001 139583862445/10749957122*843^(11/14) 2584002934352927 a001 365435296162/28143753123*843^(11/14) 2584002934352927 a001 956722026041/73681302247*843^(11/14) 2584002934352927 a001 2504730781961/192900153618*843^(11/14) 2584002934352927 a001 10610209857723/817138163596*843^(11/14) 2584002934352927 a001 4052739537881/312119004989*843^(11/14) 2584002934352927 a001 1548008755920/119218851371*843^(11/14) 2584002934352927 a001 591286729879/45537549124*843^(11/14) 2584002934352927 a001 7787980473/599786069*843^(11/14) 2584002934352927 a001 86267571272/6643838879*843^(11/14) 2584002934352927 a001 32951280099/2537720636*843^(11/14) 2584002934352927 a001 12586269025/969323029*843^(11/14) 2584002934352927 a001 4807526976/370248451*843^(11/14) 2584002934352927 a001 1836311903/141422324*843^(11/14) 2584002934352928 a001 701408733/54018521*843^(11/14) 2584002934352933 a001 9238424/711491*843^(11/14) 2584002934352969 a001 102334155/7881196*843^(11/14) 2584002934353212 a001 39088169/3010349*843^(11/14) 2584002934354879 a001 14930352/1149851*843^(11/14) 2584002934366307 a001 5702887/439204*843^(11/14) 2584002934444633 a001 2178309/167761*843^(11/14) 2584002934981486 a001 832040/64079*843^(11/14) 2584002935400694 m001 (5^(1/2)+Si(Pi))/(-ln(5)+Trott2nd) 2584002938661135 a001 10959/844*843^(11/14) 2584002939162392 m001 GAMMA(17/24)^2/ln(Backhouse)^2/GAMMA(5/12)^2 2584002943002246 r002 3th iterates of z^2 + 2584002943002246 r002 3th iterates of z^2 + 2584002954210824 m001 1/exp(Paris)^2/MertensB1^2*Porter^2 2584002961221965 r002 25th iterates of z^2 + 2584002963110302 a007 Real Root Of 331*x^4+492*x^3-777*x^2+86*x-858 2584002963881822 a001 121393/9349*843^(11/14) 2584002977457578 a007 Real Root Of -343*x^4+290*x^3+585*x^2+420*x+76 2584002993671045 r005 Im(z^2+c),c=-59/122+26/59*I,n=40 2584003004834044 a001 17711/521*521^(9/13) 2584003005311878 a007 Real Root Of -560*x^4+617*x^3+170*x^2+625*x-181 2584003005445177 a001 11/196418*13^(31/52) 2584003016791551 a007 Real Root Of 49*x^4-63*x^3-553*x^2-171*x-21 2584003019407964 m001 (Cahen+Niven)/(QuadraticClass+Trott2nd) 2584003024530424 r005 Re(z^2+c),c=7/54+40/63*I,n=44 2584003024627759 a001 98209/682*843^(3/7) 2584003046721329 r009 Re(z^3+c),c=-45/98+33/59*I,n=8 2584003051549318 a001 47/8*86267571272^(1/17) 2584003058765915 a007 Real Root Of 340*x^4+227*x^3-251*x^2-467*x+132 2584003064666449 a007 Real Root Of 655*x^4+146*x^3+825*x^2-567*x-202 2584003071408320 p003 LerchPhi(1/12,4,311/124) 2584003080538558 r005 Re(z^2+c),c=-11/14+31/225*I,n=16 2584003080770631 a007 Real Root Of 516*x^4+877*x^3-992*x^2+404*x-206 2584003086372633 a007 Real Root Of -394*x^4-967*x^3-85*x^2-240*x+829 2584003086698223 r005 Re(z^2+c),c=17/54+10/59*I,n=38 2584003086711817 r004 Re(z^2+c),c=-11/34+1/16*I,z(0)=-1,n=15 2584003088577596 l003 AiryAi(1,3/61) 2584003098591960 a007 Real Root Of -910*x^4+722*x^3+224*x^2+261*x+69 2584003099503693 r005 Im(z^2+c),c=31/114+7/57*I,n=10 2584003103550343 m001 (Shi(1)+GAMMA(2/3))/(ln(3)+Zeta(1,-1)) 2584003107656205 r005 Im(z^2+c),c=7/118+17/61*I,n=4 2584003110743224 a001 28657/3*1364^(45/58) 2584003114767580 a001 521/2*144^(37/40) 2584003115455717 m001 (GAMMA(2/3)-ArtinRank2)/(Otter-PrimesInBinary) 2584003116436291 a001 2576/321*843^(6/7) 2584003123312614 a005 (1/sin(94/209*Pi))^260 2584003136746998 a001 46368/3571*843^(11/14) 2584003142412451 a008 Real Root of x^4-x^3-24*x^2+5*x+120 2584003151288973 a005 (1/cos(23/84*Pi))^13 2584003155563075 m001 exp(GAMMA(1/12))^2/MinimumGamma^2*LambertW(1) 2584003173949451 a001 18/89*89^(21/37) 2584003181851487 a007 Real Root Of 264*x^4+590*x^3-370*x^2-204*x+353 2584003182748633 a001 121393/15127*843^(6/7) 2584003183018647 a004 Fibonacci(16)*Lucas(14)/(1/2+sqrt(5)/2)^12 2584003192423474 a001 105937/13201*843^(6/7) 2584003192935284 a007 Real Root Of -299*x^4+231*x^3-148*x^2+363*x+109 2584003193835014 a001 416020/51841*843^(6/7) 2584003194040955 a001 726103/90481*843^(6/7) 2584003194071001 a001 5702887/710647*843^(6/7) 2584003194075385 a001 829464/103361*843^(6/7) 2584003194076025 a001 39088169/4870847*843^(6/7) 2584003194076118 a001 34111385/4250681*843^(6/7) 2584003194076132 a001 133957148/16692641*843^(6/7) 2584003194076134 a001 233802911/29134601*843^(6/7) 2584003194076134 a001 1836311903/228826127*843^(6/7) 2584003194076134 a001 267084832/33281921*843^(6/7) 2584003194076134 a001 12586269025/1568397607*843^(6/7) 2584003194076134 a001 10983760033/1368706081*843^(6/7) 2584003194076134 a001 43133785636/5374978561*843^(6/7) 2584003194076134 a001 75283811239/9381251041*843^(6/7) 2584003194076134 a001 591286729879/73681302247*843^(6/7) 2584003194076134 a001 86000486440/10716675201*843^(6/7) 2584003194076134 a001 4052739537881/505019158607*843^(6/7) 2584003194076134 a001 3278735159921/408569081798*843^(6/7) 2584003194076134 a001 2504730781961/312119004989*843^(6/7) 2584003194076134 a001 956722026041/119218851371*843^(6/7) 2584003194076134 a001 182717648081/22768774562*843^(6/7) 2584003194076134 a001 139583862445/17393796001*843^(6/7) 2584003194076134 a001 53316291173/6643838879*843^(6/7) 2584003194076134 a001 10182505537/1268860318*843^(6/7) 2584003194076134 a001 7778742049/969323029*843^(6/7) 2584003194076134 a001 2971215073/370248451*843^(6/7) 2584003194076134 a001 567451585/70711162*843^(6/7) 2584003194076135 a001 433494437/54018521*843^(6/7) 2584003194076140 a001 165580141/20633239*843^(6/7) 2584003194076176 a001 31622993/3940598*843^(6/7) 2584003194076420 a001 24157817/3010349*843^(6/7) 2584003194078094 a001 9227465/1149851*843^(6/7) 2584003194089571 a001 1762289/219602*843^(6/7) 2584003194168234 a001 1346269/167761*843^(6/7) 2584003194707394 a001 514229/64079*843^(6/7) 2584003196660005 r005 Re(z^2+c),c=-7/38+29/49*I,n=33 2584003198402854 a001 98209/12238*843^(6/7) 2584003199045678 r005 Im(z^2+c),c=-9/52+22/61*I,n=12 2584003202516612 m005 (3/5*2^(1/2)-2/3)/(1/6*gamma-4/5) 2584003212358403 m001 1/PisotVijayaraghavan^2*Magata/exp(Zeta(7))^2 2584003212877205 p003 LerchPhi(1/100,4,297/119) 2584003223731916 a001 75025/9349*843^(6/7) 2584003224939532 r005 Re(z^2+c),c=-45/122+4/25*I,n=2 2584003229833383 m005 (1/2*Pi-6)/(5/6*Zeta(3)-1) 2584003233838577 r005 Im(z^2+c),c=1/22+7/26*I,n=12 2584003236941863 a008 Real Root of (2+6*x-5*x^2+6*x^3-3*x^4-x^5) 2584003248828417 m005 (1/2*2^(1/2)+3)/(4/5*Zeta(3)-9/11) 2584003249985136 m005 (1/2*exp(1)-5/6)/(8/9*2^(1/2)+7/9) 2584003251873259 a007 Real Root Of -340*x^4-543*x^3+859*x^2-36*x-39 2584003255923964 r005 Re(z^2+c),c=3/94+16/63*I,n=10 2584003257762525 m001 (1+Ei(1))/(-Ei(1,1)+Totient) 2584003258546348 r004 Im(z^2+c),c=-1/11+12/19*I,z(0)=I,n=30 2584003259674585 r002 42th iterates of z^2 + 2584003270117653 p001 sum(1/(179*n+40)/(6^n),n=0..infinity) 2584003271682909 m001 ErdosBorwein+Catalan^MertensB1 2584003284302509 a001 121393/1364*843^(1/2) 2584003284705909 r009 Re(z^3+c),c=-5/14+31/58*I,n=3 2584003291141705 m001 GlaisherKinkelin^BesselI(1,2)+ln(3) 2584003292372752 s002 sum(A192579[n]/(10^n-1),n=1..infinity) 2584003292372752 s002 sum(A215658[n]/(10^n-1),n=1..infinity) 2584003298473979 r005 Re(z^2+c),c=13/38+9/58*I,n=34 2584003303229714 m005 (1/2*3^(1/2)+7/11)/(8/9*Catalan+5) 2584003322112360 m001 (-Landau+Trott2nd)/(cos(1)+Backhouse) 2584003327902518 r002 8th iterates of z^2 + 2584003328194195 a007 Real Root Of -334*x^4-916*x^3+48*x^2+553*x+195 2584003331507942 m007 (-3*gamma-6*ln(2)-5)/(-2/5*gamma-4/5*ln(2)+5) 2584003332145149 m001 (2^(1/3)+exp(1))/(GAMMA(7/12)+Trott) 2584003338041935 l006 ln(8519/8742) 2584003340497309 h001 (-4*exp(1)+9)/(-5*exp(-3)-7) 2584003348482069 r009 Re(z^3+c),c=-27/70+17/40*I,n=24 2584003348656611 a007 Real Root Of -325*x^4-960*x^3-135*x^2+184*x-697 2584003349003591 m001 (Ei(1,1)+gamma(3))/(MertensB3-PlouffeB) 2584003350156107 m001 BesselJ(0,1)*FransenRobinson/ln(Zeta(7)) 2584003350248509 r009 Re(z^3+c),c=-43/82+14/29*I,n=9 2584003360601540 r005 Re(z^2+c),c=-141/122+6/31*I,n=32 2584003363804153 a007 Real Root Of 452*x^4+893*x^3-926*x^2-390*x+431 2584003365574861 a007 Real Root Of 37*x^4-950*x^3-978*x^2-830*x+296 2584003368963584 m001 (2/3)^BesselI(0,1)-GolombDickman 2584003375028125 a001 7/4*(1/2*5^(1/2)+1/2)^8*4^(19/23) 2584003377029195 a001 28657/5778*843^(13/14) 2584003380927842 s002 sum(A241851[n]/(10^n-1),n=1..infinity) 2584003382138958 s002 sum(A049652[n]/(pi^n-1),n=1..infinity) 2584003390077283 m001 (GAMMA(2/3)*Mills+ErdosBorwein)/Mills 2584003397339903 a001 28657/3571*843^(6/7) 2584003414909024 a007 Real Root Of -574*x^4-909*x^3-700*x^2+950*x+25 2584003415121629 r005 Im(z^2+c),c=-3/4+47/224*I,n=3 2584003438566311 m005 (1/2*3^(1/2)+7/10)/(1/5*2^(1/2)-8/9) 2584003442188888 m001 (BesselI(1,2)-Landau)/(Magata+MasserGramain) 2584003442598749 a001 75025/15127*843^(13/14) 2584003452165219 a001 196418/39603*843^(13/14) 2584003453560948 a001 514229/103682*843^(13/14) 2584003453764582 a001 1346269/271443*843^(13/14) 2584003453794292 a001 3524578/710647*843^(13/14) 2584003453798626 a001 9227465/1860498*843^(13/14) 2584003453799259 a001 24157817/4870847*843^(13/14) 2584003453799351 a001 63245986/12752043*843^(13/14) 2584003453799364 a001 165580141/33385282*843^(13/14) 2584003453799366 a001 433494437/87403803*843^(13/14) 2584003453799367 a001 1134903170/228826127*843^(13/14) 2584003453799367 a001 2971215073/599074578*843^(13/14) 2584003453799367 a001 7778742049/1568397607*843^(13/14) 2584003453799367 a001 20365011074/4106118243*843^(13/14) 2584003453799367 a001 53316291173/10749957122*843^(13/14) 2584003453799367 a001 139583862445/28143753123*843^(13/14) 2584003453799367 a001 365435296162/73681302247*843^(13/14) 2584003453799367 a001 956722026041/192900153618*843^(13/14) 2584003453799367 a001 2504730781961/505019158607*843^(13/14) 2584003453799367 a001 10610209857723/2139295485799*843^(13/14) 2584003453799367 a001 4052739537881/817138163596*843^(13/14) 2584003453799367 a001 140728068720/28374454999*843^(13/14) 2584003453799367 a001 591286729879/119218851371*843^(13/14) 2584003453799367 a001 225851433717/45537549124*843^(13/14) 2584003453799367 a001 86267571272/17393796001*843^(13/14) 2584003453799367 a001 32951280099/6643838879*843^(13/14) 2584003453799367 a001 1144206275/230701876*843^(13/14) 2584003453799367 a001 4807526976/969323029*843^(13/14) 2584003453799367 a001 1836311903/370248451*843^(13/14) 2584003453799367 a001 701408733/141422324*843^(13/14) 2584003453799367 a001 267914296/54018521*843^(13/14) 2584003453799373 a001 9303105/1875749*843^(13/14) 2584003453799408 a001 39088169/7881196*843^(13/14) 2584003453799649 a001 14930352/3010349*843^(13/14) 2584003453801305 a001 5702887/1149851*843^(13/14) 2584003453812653 a001 2178309/439204*843^(13/14) 2584003453890435 a001 75640/15251*843^(13/14) 2584003454423556 a001 317811/64079*843^(13/14) 2584003456277146 r005 Im(z^2+c),c=-17/50+27/62*I,n=13 2584003458077622 a001 121393/24476*843^(13/14) 2584003466061016 m001 (-Cahen+FeigenbaumAlpha)/(2^(1/3)-cos(1)) 2584003470667971 m008 (2/5*Pi^4+3/5)/(5*Pi^5+1) 2584003476530180 m001 Riemann2ndZero^MasserGramainDelta+BesselJ(0,1) 2584003483122964 a001 46368/9349*843^(13/14) 2584003487082523 r005 Re(z^2+c),c=-3/31+7/11*I,n=44 2584003513180292 m001 (Magata-TwinPrimes)/(Ei(1,1)-GlaisherKinkelin) 2584003525661732 m008 (3/5*Pi^6+3/4)/(1/4*Pi^4-2) 2584003531329521 r005 Im(z^2+c),c=-17/54+23/56*I,n=52 2584003538365677 a003 cos(Pi*25/99)-sin(Pi*43/105) 2584003543130736 a001 2178309/1364*322^(1/12) 2584003544152635 a001 75025/1364*843^(4/7) 2584003548153513 r005 Re(z^2+c),c=2/9+5/12*I,n=37 2584003549558367 r009 Re(z^3+c),c=-17/62+4/23*I,n=10 2584003549773578 r002 32th iterates of z^2 + 2584003550932338 m001 TreeGrowth2nd^2/ln(PrimesInBinary)*Trott^2 2584003564862129 r005 Im(z^2+c),c=5/16+2/17*I,n=10 2584003571606165 m001 Pi+exp(Pi)+1-3^(1/3) 2584003574239793 r005 Im(z^2+c),c=-35/102+16/39*I,n=8 2584003581017747 r009 Re(z^3+c),c=-65/122+11/51*I,n=8 2584003589088957 r005 Im(z^2+c),c=-27/22+7/108*I,n=34 2584003594543664 s002 sum(A028134[n]/(n^3*2^n+1),n=1..infinity) 2584003595495091 r009 Im(z^3+c),c=-23/38+7/27*I,n=9 2584003599582425 m001 (1+exp(-1/2*Pi))/(BesselJ(1,1)+Trott2nd) 2584003607986259 s002 sum(A028134[n]/(n^3*2^n-1),n=1..infinity) 2584003612843531 m001 (-OneNinth+Riemann1stZero)/(Psi(2,1/3)+Chi(1)) 2584003636123138 a004 Fibonacci(18)*Lucas(14)/(1/2+sqrt(5)/2)^14 2584003650875091 h001 (6/7*exp(2)+4/11)/(11/12*exp(1)+1/10) 2584003654786307 a001 17711/3571*843^(13/14) 2584003656677481 a001 329*64079^(47/58) 2584003664038092 a007 Real Root Of 179*x^4+624*x^3+463*x^2-4*x-316 2584003665239449 a001 832040/521*199^(1/11) 2584003675067792 m001 Zeta(1,2)/ln(Trott)^2/sqrt(Pi) 2584003675520839 m001 Pi-(exp(Pi)-sin(1/5*Pi))*GAMMA(17/24) 2584003686912923 r009 Im(z^3+c),c=-13/28+1/27*I,n=5 2584003690367308 r009 Re(z^3+c),c=-25/58+23/38*I,n=10 2584003690369982 a007 Real Root Of 257*x^4-299*x^3+339*x^2-275*x-100 2584003690762533 a007 Real Root Of -998*x^4-376*x^3-995*x^2+637*x+229 2584003691095715 a007 Real Root Of 312*x^4+515*x^3-593*x^2+219*x-499 2584003700605184 a001 987*322^(1/6) 2584003700616812 r009 Re(z^3+c),c=-9/58+47/53*I,n=44 2584003702230192 a004 Fibonacci(20)*Lucas(14)/(1/2+sqrt(5)/2)^16 2584003711875082 a004 Fibonacci(22)*Lucas(14)/(1/2+sqrt(5)/2)^18 2584003711937512 m002 -(Log[Pi]/Pi^3)+ProductLog[Pi]^2/Pi^3 2584003711955132 a007 Real Root Of 600*x^4-716*x^3+250*x^2-926*x-271 2584003712994113 m001 (Si(Pi)-ln(2))/(GAMMA(7/12)+Otter) 2584003713282252 a004 Fibonacci(24)*Lucas(14)/(1/2+sqrt(5)/2)^20 2584003713487555 a004 Fibonacci(26)*Lucas(14)/(1/2+sqrt(5)/2)^22 2584003713517509 a004 Fibonacci(28)*Lucas(14)/(1/2+sqrt(5)/2)^24 2584003713521879 a004 Fibonacci(30)*Lucas(14)/(1/2+sqrt(5)/2)^26 2584003713522516 a004 Fibonacci(32)*Lucas(14)/(1/2+sqrt(5)/2)^28 2584003713522610 a004 Fibonacci(34)*Lucas(14)/(1/2+sqrt(5)/2)^30 2584003713522623 a004 Fibonacci(36)*Lucas(14)/(1/2+sqrt(5)/2)^32 2584003713522625 a004 Fibonacci(38)*Lucas(14)/(1/2+sqrt(5)/2)^34 2584003713522625 a004 Fibonacci(40)*Lucas(14)/(1/2+sqrt(5)/2)^36 2584003713522625 a004 Fibonacci(42)*Lucas(14)/(1/2+sqrt(5)/2)^38 2584003713522625 a004 Fibonacci(44)*Lucas(14)/(1/2+sqrt(5)/2)^40 2584003713522625 a004 Fibonacci(46)*Lucas(14)/(1/2+sqrt(5)/2)^42 2584003713522625 a004 Fibonacci(48)*Lucas(14)/(1/2+sqrt(5)/2)^44 2584003713522625 a004 Fibonacci(50)*Lucas(14)/(1/2+sqrt(5)/2)^46 2584003713522625 a004 Fibonacci(52)*Lucas(14)/(1/2+sqrt(5)/2)^48 2584003713522625 a004 Fibonacci(54)*Lucas(14)/(1/2+sqrt(5)/2)^50 2584003713522625 a004 Fibonacci(56)*Lucas(14)/(1/2+sqrt(5)/2)^52 2584003713522625 a004 Fibonacci(58)*Lucas(14)/(1/2+sqrt(5)/2)^54 2584003713522625 a004 Fibonacci(60)*Lucas(14)/(1/2+sqrt(5)/2)^56 2584003713522625 a004 Fibonacci(62)*Lucas(14)/(1/2+sqrt(5)/2)^58 2584003713522625 a004 Fibonacci(64)*Lucas(14)/(1/2+sqrt(5)/2)^60 2584003713522625 a004 Fibonacci(66)*Lucas(14)/(1/2+sqrt(5)/2)^62 2584003713522625 a004 Fibonacci(68)*Lucas(14)/(1/2+sqrt(5)/2)^64 2584003713522625 a004 Fibonacci(70)*Lucas(14)/(1/2+sqrt(5)/2)^66 2584003713522625 a004 Fibonacci(72)*Lucas(14)/(1/2+sqrt(5)/2)^68 2584003713522625 a004 Fibonacci(74)*Lucas(14)/(1/2+sqrt(5)/2)^70 2584003713522625 a004 Fibonacci(76)*Lucas(14)/(1/2+sqrt(5)/2)^72 2584003713522625 a004 Fibonacci(78)*Lucas(14)/(1/2+sqrt(5)/2)^74 2584003713522625 a004 Fibonacci(80)*Lucas(14)/(1/2+sqrt(5)/2)^76 2584003713522625 a004 Fibonacci(82)*Lucas(14)/(1/2+sqrt(5)/2)^78 2584003713522625 a004 Fibonacci(84)*Lucas(14)/(1/2+sqrt(5)/2)^80 2584003713522625 a004 Fibonacci(86)*Lucas(14)/(1/2+sqrt(5)/2)^82 2584003713522625 a004 Fibonacci(88)*Lucas(14)/(1/2+sqrt(5)/2)^84 2584003713522625 a004 Fibonacci(90)*Lucas(14)/(1/2+sqrt(5)/2)^86 2584003713522625 a004 Fibonacci(92)*Lucas(14)/(1/2+sqrt(5)/2)^88 2584003713522625 a004 Fibonacci(94)*Lucas(14)/(1/2+sqrt(5)/2)^90 2584003713522625 a004 Fibonacci(96)*Lucas(14)/(1/2+sqrt(5)/2)^92 2584003713522625 a004 Fibonacci(98)*Lucas(14)/(1/2+sqrt(5)/2)^94 2584003713522625 a004 Fibonacci(100)*Lucas(14)/(1/2+sqrt(5)/2)^96 2584003713522625 a004 Fibonacci(97)*Lucas(14)/(1/2+sqrt(5)/2)^93 2584003713522625 a004 Fibonacci(99)*Lucas(14)/(1/2+sqrt(5)/2)^95 2584003713522625 a004 Fibonacci(95)*Lucas(14)/(1/2+sqrt(5)/2)^91 2584003713522625 a004 Fibonacci(93)*Lucas(14)/(1/2+sqrt(5)/2)^89 2584003713522625 a004 Fibonacci(91)*Lucas(14)/(1/2+sqrt(5)/2)^87 2584003713522625 a004 Fibonacci(89)*Lucas(14)/(1/2+sqrt(5)/2)^85 2584003713522625 a004 Fibonacci(87)*Lucas(14)/(1/2+sqrt(5)/2)^83 2584003713522625 a004 Fibonacci(85)*Lucas(14)/(1/2+sqrt(5)/2)^81 2584003713522625 a004 Fibonacci(83)*Lucas(14)/(1/2+sqrt(5)/2)^79 2584003713522625 a004 Fibonacci(81)*Lucas(14)/(1/2+sqrt(5)/2)^77 2584003713522625 a004 Fibonacci(79)*Lucas(14)/(1/2+sqrt(5)/2)^75 2584003713522625 a004 Fibonacci(77)*Lucas(14)/(1/2+sqrt(5)/2)^73 2584003713522625 a004 Fibonacci(75)*Lucas(14)/(1/2+sqrt(5)/2)^71 2584003713522625 a004 Fibonacci(73)*Lucas(14)/(1/2+sqrt(5)/2)^69 2584003713522625 a004 Fibonacci(71)*Lucas(14)/(1/2+sqrt(5)/2)^67 2584003713522625 a004 Fibonacci(69)*Lucas(14)/(1/2+sqrt(5)/2)^65 2584003713522625 a004 Fibonacci(67)*Lucas(14)/(1/2+sqrt(5)/2)^63 2584003713522625 a004 Fibonacci(65)*Lucas(14)/(1/2+sqrt(5)/2)^61 2584003713522625 a004 Fibonacci(63)*Lucas(14)/(1/2+sqrt(5)/2)^59 2584003713522625 a004 Fibonacci(61)*Lucas(14)/(1/2+sqrt(5)/2)^57 2584003713522625 a004 Fibonacci(59)*Lucas(14)/(1/2+sqrt(5)/2)^55 2584003713522625 a004 Fibonacci(57)*Lucas(14)/(1/2+sqrt(5)/2)^53 2584003713522625 a004 Fibonacci(55)*Lucas(14)/(1/2+sqrt(5)/2)^51 2584003713522625 a004 Fibonacci(53)*Lucas(14)/(1/2+sqrt(5)/2)^49 2584003713522625 a004 Fibonacci(51)*Lucas(14)/(1/2+sqrt(5)/2)^47 2584003713522625 a004 Fibonacci(49)*Lucas(14)/(1/2+sqrt(5)/2)^45 2584003713522625 a004 Fibonacci(47)*Lucas(14)/(1/2+sqrt(5)/2)^43 2584003713522625 a004 Fibonacci(45)*Lucas(14)/(1/2+sqrt(5)/2)^41 2584003713522625 a004 Fibonacci(43)*Lucas(14)/(1/2+sqrt(5)/2)^39 2584003713522625 a004 Fibonacci(41)*Lucas(14)/(1/2+sqrt(5)/2)^37 2584003713522626 a004 Fibonacci(39)*Lucas(14)/(1/2+sqrt(5)/2)^35 2584003713522626 a004 Fibonacci(37)*Lucas(14)/(1/2+sqrt(5)/2)^33 2584003713522631 a004 Fibonacci(35)*Lucas(14)/(1/2+sqrt(5)/2)^31 2584003713522667 a004 Fibonacci(33)*Lucas(14)/(1/2+sqrt(5)/2)^29 2584003713522911 a004 Fibonacci(31)*Lucas(14)/(1/2+sqrt(5)/2)^27 2584003713524580 a004 Fibonacci(29)*Lucas(14)/(1/2+sqrt(5)/2)^25 2584003713527742 a001 2/377*(1/2+1/2*5^(1/2))^32 2584003713536021 a004 Fibonacci(27)*Lucas(14)/(1/2+sqrt(5)/2)^23 2584003713614440 a004 Fibonacci(25)*Lucas(14)/(1/2+sqrt(5)/2)^21 2584003713763229 a007 Real Root Of 325*x^4+628*x^3-257*x^2+605*x-375 2584003714151931 a004 Fibonacci(23)*Lucas(14)/(1/2+sqrt(5)/2)^19 2584003717835951 a004 Fibonacci(21)*Lucas(14)/(1/2+sqrt(5)/2)^17 2584003725907893 a007 Real Root Of 227*x^4+523*x^3-x^2+418*x-10 2584003726330047 r005 Im(z^2+c),c=-14/11+2/53*I,n=3 2584003731526025 a005 (1/cos(17/213*Pi))^1262 2584003739381964 a001 28657/521*521^(8/13) 2584003743086599 a004 Fibonacci(19)*Lucas(14)/(1/2+sqrt(5)/2)^15 2584003746703918 l006 ln(875/1133) 2584003763053229 r002 5th iterates of z^2 + 2584003768684247 m001 (BesselI(0,1)-Cahen)/(CareFree+Niven) 2584003779510958 a003 cos(Pi*5/46)/sin(Pi*12/101) 2584003783177142 r005 Re(z^2+c),c=-11/56+25/46*I,n=56 2584003786086133 q001 546/2113 2584003790632439 p002 log(7^(7/5)-10^(3/10)) 2584003791640760 m001 polylog(4,1/2)/sin(1/5*Pi)/Magata 2584003797535564 a007 Real Root Of -416*x^4-845*x^3-925*x^2+174*x+94 2584003798782462 a007 Real Root Of 254*x^4-908*x^3-150*x^2-381*x+123 2584003803543715 a001 11592/341*843^(9/14) 2584003813873564 a007 Real Root Of 43*x^4-45*x^3+86*x^2+955*x-800 2584003824594312 h001 (4/5*exp(1)+3/11)/(1/11*exp(1)+7/10) 2584003829059832 a007 Real Root Of -302*x^4-655*x^3+373*x^2+345*x+564 2584003829174736 m001 CareFree*GaussKuzminWirsing^sin(1) 2584003835056158 m001 (2^(1/3)-Landau)/(Mills+Porter) 2584003840664363 r005 Im(z^2+c),c=1/90+2/7*I,n=16 2584003845280383 m008 (2/5*Pi^6+2/3)/(5*Pi-4/5) 2584003862922464 m001 Backhouse^(3^(1/2))*Backhouse^Kolakoski 2584003864148104 s002 sum(A055162[n]/(pi^n),n=1..infinity) 2584003865228609 a007 Real Root Of -6*x^4+179*x^3-384*x^2+156*x-660 2584003869015782 a007 Real Root Of 25*x^4+671*x^3+670*x^2+650*x+755 2584003886240453 m005 (1/2*exp(1)+1/10)/(2*Pi-7/11) 2584003894658367 r005 Im(z^2+c),c=-11/12+27/106*I,n=17 2584003896930777 a007 Real Root Of 318*x^4+520*x^3-974*x^2-873*x-958 2584003903504853 m001 (BesselK(1,1)-Robbin)/(Tribonacci+Weierstrass) 2584003912906705 r005 Re(z^2+c),c=-17/86+26/47*I,n=38 2584003916157114 a004 Fibonacci(17)*Lucas(14)/(1/2+sqrt(5)/2)^13 2584003935969160 m001 (gamma(1)-HardyLittlewoodC3)/(MertensB2+Niven) 2584003939937106 r005 Im(z^2+c),c=-15/29+20/43*I,n=33 2584003960132446 m001 1/GAMMA(11/24)^2/ln(FransenRobinson)/Zeta(9)^2 2584003962390540 b008 ArcCoth[Pi^(-1)+Log[2]] 2584003962686215 r005 Re(z^2+c),c=-45/44+1/15*I,n=8 2584003964136250 m005 (1/2*3^(1/2)-3/5)/(1/8*5^(1/2)+3/4) 2584003964250778 m001 (-PlouffeB+Sierpinski)/(2^(1/2)-MertensB3) 2584003966223967 m001 GAMMA(11/12)/exp(LandauRamanujan)^2*GAMMA(5/6) 2584003966512023 r005 Re(z^2+c),c=-4/3+5/107*I,n=16 2584003971052547 m005 (1/2*gamma-3/5)/(7/10*Zeta(3)+4/11) 2584003973594827 a007 Real Root Of 702*x^4-579*x^3+327*x^2+54*x-21 2584003978812671 b008 (-2/5+Sinh[1])/3 2584003980812991 m001 Rabbit/GaussAGM(1,1/sqrt(2))/exp(Salem) 2584003996026742 m001 Sierpinski/(MertensB3^HeathBrownMoroz) 2584003999409923 r004 Re(z^2+c),c=1/38+11/13*I,z(0)=I,n=2 2584003999623958 m001 Catalan/ln(FeigenbaumD)/Ei(1)^2 2584004008192574 r005 Im(z^2+c),c=-71/78+16/61*I,n=31 2584004014255469 b008 (39*SinIntegral[1/3])/5 2584004039012320 m001 (MertensB3+Sarnak)/(MertensB1-Shi(1)) 2584004042656947 a007 Real Root Of 27*x^4+683*x^3-405*x^2-650*x+324 2584004044933148 m001 exp(BesselK(1,1))*BesselJ(1,1)*LambertW(1)^2 2584004046117948 m001 sin(1)^(1/3)+GAMMA(13/24) 2584004049583734 m001 OneNinth/(MertensB3-Catalan) 2584004062325726 m001 (gamma+arctan(1/2))/(gamma(1)+PlouffeB) 2584004064136688 a001 28657/1364*843^(5/7) 2584004064543561 a007 Real Root Of -28*x^4+134*x^3-658*x^2+45*x+58 2584004073038528 r005 Im(z^2+c),c=-65/82+1/8*I,n=13 2584004073146764 r005 Im(z^2+c),c=-19/52+31/54*I,n=55 2584004077200371 a001 76/3*2^(1/35) 2584004087925957 a007 Real Root Of -202*x^4-484*x^3-129*x^2-410*x+457 2584004092628568 r009 Im(z^3+c),c=-43/118+5/28*I,n=4 2584004100636511 m001 (Si(Pi)+Magata)/(OneNinth+Tetranacci) 2584004127730357 r005 Im(z^2+c),c=39/106+8/35*I,n=7 2584004139776361 r009 Re(z^3+c),c=-8/25+13/43*I,n=5 2584004142360876 r002 36th iterates of z^2 + 2584004142360876 r002 36th iterates of z^2 + 2584004153077708 m001 HardyLittlewoodC3-Zeta(5)+TwinPrimes 2584004153709752 a001 5702887/5778*322^(1/6) 2584004156248113 a001 726103*3571^(9/58) 2584004161580018 a007 Real Root Of 752*x^4-701*x^3+509*x^2-535*x+113 2584004162038148 m001 Lehmer*ZetaQ(4)-Sierpinski 2584004164956299 a007 Real Root Of 427*x^4+814*x^3-887*x^2-594*x-605 2584004176880833 r009 Re(z^3+c),c=-23/74+4/15*I,n=17 2584004185567659 r005 Re(z^2+c),c=-19/66+17/33*I,n=14 2584004187218602 m001 (BesselI(0,1)+Pi^(1/2))/(Sarnak+ZetaP(2)) 2584004192627820 a007 Real Root Of 170*x^4+485*x^3+7*x^2-620*x-860 2584004211843633 g007 -Psi(2,1/9)-Psi(2,1/8)-Psi(2,4/7)-Psi(2,2/7) 2584004219816831 a001 14930352/15127*322^(1/6) 2584004229461724 a001 39088169/39603*322^(1/6) 2584004229524965 a001 36/341*7^(23/50) 2584004230671278 a001 7/610*196418^(4/9) 2584004230868895 a001 102334155/103682*322^(1/6) 2584004231074199 a001 267914296/271443*322^(1/6) 2584004231104152 a001 701408733/710647*322^(1/6) 2584004231108522 a001 1836311903/1860498*322^(1/6) 2584004231109160 a001 4807526976/4870847*322^(1/6) 2584004231109253 a001 12586269025/12752043*322^(1/6) 2584004231109266 a001 32951280099/33385282*322^(1/6) 2584004231109268 a001 86267571272/87403803*322^(1/6) 2584004231109269 a001 225851433717/228826127*322^(1/6) 2584004231109269 a001 591286729879/599074578*322^(1/6) 2584004231109269 a001 1548008755920/1568397607*322^(1/6) 2584004231109269 a001 4052739537881/4106118243*322^(1/6) 2584004231109269 a001 4807525989/4870846*322^(1/6) 2584004231109269 a001 6557470319842/6643838879*322^(1/6) 2584004231109269 a001 2504730781961/2537720636*322^(1/6) 2584004231109269 a001 956722026041/969323029*322^(1/6) 2584004231109269 a001 365435296162/370248451*322^(1/6) 2584004231109269 a001 139583862445/141422324*322^(1/6) 2584004231109270 a001 53316291173/54018521*322^(1/6) 2584004231109275 a001 20365011074/20633239*322^(1/6) 2584004231109310 a001 7778742049/7881196*322^(1/6) 2584004231109554 a001 2971215073/3010349*322^(1/6) 2584004231111223 a001 1134903170/1149851*322^(1/6) 2584004231122664 a001 433494437/439204*322^(1/6) 2584004231201083 a001 165580141/167761*322^(1/6) 2584004231738575 a001 63245986/64079*322^(1/6) 2584004235422596 a001 24157817/24476*322^(1/6) 2584004259734610 m007 (-4*gamma+2)/(-1/3*gamma-ln(2)+1/6*Pi-5/6) 2584004260673255 a001 9227465/9349*322^(1/6) 2584004274207156 r005 Im(z^2+c),c=-33/56+13/60*I,n=4 2584004276582854 a007 Real Root Of -721*x^4+530*x^3-492*x^2+719*x+231 2584004301375779 r005 Im(z^2+c),c=-17/18+48/205*I,n=60 2584004305730025 a008 Real Root of x^4+8*x^2-98 2584004321583159 a001 17711/1364*843^(11/14) 2584004323912386 a001 5/103682*1364^(10/43) 2584004328664697 m003 3/2+(7*Sqrt[5])/32+3*E^(-1/2-Sqrt[5]/2) 2584004330589515 m001 (cos(1/5*Pi)+Rabbit)/(Tetranacci-Totient) 2584004331309689 a007 Real Root Of 30*x^4+778*x^3+89*x^2+423*x-208 2584004334452964 m005 (3/4*Pi-1/6)/(1/6*Catalan-1) 2584004348569847 a007 Real Root Of 225*x^4+556*x^3-182*x^2-452*x-391 2584004352976678 m005 (1/2*exp(1)-4/5)/(4/5*5^(1/2)+3/8) 2584004360293178 m005 (-11/36+1/4*5^(1/2))/(2/5*gamma+3/4) 2584004367734867 a001 3571/610*34^(8/19) 2584004386296210 r005 Im(z^2+c),c=-15/58+20/51*I,n=24 2584004388233197 m001 (BesselI(1,1)-Artin)/(Lehmer-MertensB3) 2584004390272895 a007 Real Root Of 947*x^4+837*x^3-709*x^2-961*x+277 2584004400465789 a007 Real Root Of 367*x^4+866*x^3-49*x^2+331*x-238 2584004433743856 a001 3524578/3571*322^(1/6) 2584004436597082 m001 (Niven+Weierstrass)/(Ei(1,1)+GolombDickman) 2584004442624542 h001 (5/6*exp(2)+1/12)/(3/11*exp(2)+2/5) 2584004452330598 r009 Im(z^3+c),c=-9/50+43/49*I,n=52 2584004456490422 a007 Real Root Of 865*x^4+176*x^3-5*x^2-954*x-247 2584004457321810 p003 LerchPhi(1/16,5,487/234) 2584004470783563 a001 46368/521*521^(7/13) 2584004483735015 b008 19/12+Coth[4] 2584004484607089 r005 Re(z^2+c),c=-59/58+1/12*I,n=4 2584004486976856 r005 Re(z^2+c),c=-4/31+35/61*I,n=23 2584004492186404 r009 Re(z^3+c),c=-23/74+4/15*I,n=21 2584004494390049 a008 Real Root of (1+4*x-x^2-4*x^3+6*x^4-4*x^5) 2584004494692102 m001 FeigenbaumC/Artin/Ei(1) 2584004497157491 r005 Im(z^2+c),c=-9/14+49/116*I,n=13 2584004515836893 m001 (BesselI(0,2)-Gompertz)/(TwinPrimes-ZetaQ(3)) 2584004534048589 a001 5/1860498*3571^(24/43) 2584004538438027 r009 Re(z^3+c),c=-21/64+25/64*I,n=4 2584004550106678 a007 Real Root Of 230*x^4+430*x^3-588*x^2-113*x+799 2584004555323721 r009 Re(z^3+c),c=-23/74+4/15*I,n=22 2584004574337063 p004 log(35603/2687) 2584004580708953 a003 sin(Pi*7/73)*sin(Pi*36/107) 2584004581670664 m005 (1/3*Zeta(3)+3/7)/(8/9*Pi+5/12) 2584004587267376 a001 5473/682*843^(6/7) 2584004598568279 m005 (1/2*Catalan-7/9)/(5/7*Catalan+7/12) 2584004603718925 r009 Re(z^3+c),c=-23/74+4/15*I,n=25 2584004604762277 m001 Pi*ln(BesselJ(1,1))*Zeta(9) 2584004605962238 r005 Im(z^2+c),c=-5/8+35/152*I,n=7 2584004606805907 a008 Real Root of x^3-x^2-114*x+284 2584004611888547 r009 Re(z^3+c),c=-23/74+4/15*I,n=26 2584004611995309 r009 Re(z^3+c),c=-23/74+4/15*I,n=29 2584004612252795 r009 Re(z^3+c),c=-23/74+4/15*I,n=28 2584004612381480 r009 Re(z^3+c),c=-23/74+4/15*I,n=32 2584004612399930 r009 Re(z^3+c),c=-23/74+4/15*I,n=33 2584004612410893 r009 Re(z^3+c),c=-23/74+4/15*I,n=36 2584004612412968 r009 Re(z^3+c),c=-23/74+4/15*I,n=40 2584004612412998 r009 Re(z^3+c),c=-23/74+4/15*I,n=37 2584004612413016 r009 Re(z^3+c),c=-23/74+4/15*I,n=39 2584004612413060 r009 Re(z^3+c),c=-23/74+4/15*I,n=43 2584004612413066 r009 Re(z^3+c),c=-23/74+4/15*I,n=44 2584004612413068 r009 Re(z^3+c),c=-23/74+4/15*I,n=47 2584004612413069 r009 Re(z^3+c),c=-23/74+4/15*I,n=51 2584004612413069 r009 Re(z^3+c),c=-23/74+4/15*I,n=50 2584004612413069 r009 Re(z^3+c),c=-23/74+4/15*I,n=48 2584004612413069 r009 Re(z^3+c),c=-23/74+4/15*I,n=54 2584004612413069 r009 Re(z^3+c),c=-23/74+4/15*I,n=55 2584004612413069 r009 Re(z^3+c),c=-23/74+4/15*I,n=58 2584004612413069 r009 Re(z^3+c),c=-23/74+4/15*I,n=62 2584004612413069 r009 Re(z^3+c),c=-23/74+4/15*I,n=61 2584004612413069 r009 Re(z^3+c),c=-23/74+4/15*I,n=64 2584004612413069 r009 Re(z^3+c),c=-23/74+4/15*I,n=63 2584004612413069 r009 Re(z^3+c),c=-23/74+4/15*I,n=59 2584004612413069 r009 Re(z^3+c),c=-23/74+4/15*I,n=60 2584004612413069 r009 Re(z^3+c),c=-23/74+4/15*I,n=57 2584004612413069 r009 Re(z^3+c),c=-23/74+4/15*I,n=56 2584004612413069 r009 Re(z^3+c),c=-23/74+4/15*I,n=53 2584004612413069 r009 Re(z^3+c),c=-23/74+4/15*I,n=52 2584004612413069 r009 Re(z^3+c),c=-23/74+4/15*I,n=49 2584004612413069 r009 Re(z^3+c),c=-23/74+4/15*I,n=46 2584004612413071 r009 Re(z^3+c),c=-23/74+4/15*I,n=45 2584004612413087 r009 Re(z^3+c),c=-23/74+4/15*I,n=42 2584004612413094 r009 Re(z^3+c),c=-23/74+4/15*I,n=41 2584004612413559 r009 Re(z^3+c),c=-23/74+4/15*I,n=38 2584004612414751 r009 Re(z^3+c),c=-23/74+4/15*I,n=35 2584004612421864 r009 Re(z^3+c),c=-23/74+4/15*I,n=34 2584004612492390 r009 Re(z^3+c),c=-23/74+4/15*I,n=31 2584004612506348 r009 Re(z^3+c),c=-23/74+4/15*I,n=30 2584004614405546 r009 Re(z^3+c),c=-23/74+4/15*I,n=27 2584004620244341 r009 Re(z^3+c),c=-23/74+4/15*I,n=24 2584004620804624 a007 Real Root Of 270*x^4+493*x^3-635*x^2-59*x+556 2584004624083495 m001 (-Backhouse+Lehmer)/(3^(1/2)+ln(5)) 2584004625765816 m001 ln(gamma)/(Gompertz-cos(1/5*Pi)) 2584004629271692 a001 5/4870847*9349^(26/43) 2584004634584156 m001 (-Sarnak+Totient)/(Khinchin-ln(2)/ln(10)) 2584004635778873 r009 Im(z^3+c),c=-49/110+4/33*I,n=15 2584004646871696 r009 Re(z^3+c),c=-23/74+4/15*I,n=23 2584004646937691 a001 5/710647*64079^(14/43) 2584004649185365 m001 LambertW(1)+GAMMA(2/3)+LaplaceLimit 2584004651360715 a001 5/24476*24476^(1/43) 2584004657017583 m001 (exp(Pi)+ln(2))/(RenyiParking+ZetaP(3)) 2584004663388246 r009 Re(z^3+c),c=-49/122+21/46*I,n=29 2584004669034146 r005 Re(z^2+c),c=-5/23+21/46*I,n=13 2584004669817347 m005 (1/2*exp(1)-1/9)/(5*Catalan+1/4) 2584004672060456 m001 1/RenyiParking^2/exp(Magata)*TwinPrimes^2 2584004672222221 r009 Re(z^3+c),c=-17/62+4/23*I,n=13 2584004673605701 r005 Im(z^2+c),c=-5/9-27/65*I,n=46 2584004673949981 m001 exp(1/exp(1))^GAMMA(13/24)*Riemann1stZero 2584004675107106 r005 Im(z^2+c),c=-67/78+11/62*I,n=24 2584004676430293 m001 log(1+sqrt(2))/ln(GolombDickman)*sinh(1)^2 2584004680877877 a001 34/47*4^(45/49) 2584004683002820 m001 (Ei(1,1)+gamma(1))/(gamma(3)+BesselI(1,1)) 2584004687274015 r005 Im(z^2+c),c=-6/7+7/36*I,n=59 2584004689246632 r009 Re(z^3+c),c=-43/102+37/48*I,n=4 2584004689873743 m005 (1/2*Pi+3)/(7/11*3^(1/2)+2/3) 2584004692129995 r005 Im(z^2+c),c=-1+36/139*I,n=25 2584004694849374 a001 5/39603*2207^(4/43) 2584004701319804 r005 Im(z^2+c),c=-17/54+23/56*I,n=51 2584004702202552 m009 (1/4*Psi(1,2/3)-6)/(2/5*Psi(1,2/3)+4/5) 2584004709380337 a007 Real Root Of -510*x^4-838*x^3+972*x^2-457*x+608 2584004710842565 r009 Im(z^3+c),c=-67/98+28/53*I,n=3 2584004726435602 a007 Real Root Of -719*x^4+996*x^3+52*x^2+724*x+204 2584004729384283 r005 Re(z^2+c),c=7/40+17/36*I,n=4 2584004736447270 m005 (1/2*gamma+4/7)/(10/11*exp(1)+6/7) 2584004742104701 h001 (3/5*exp(2)+3/4)/(3/5*exp(1)+3/8) 2584004748690899 a001 377*322^(1/3) 2584004751066419 a001 7/2504730781961*20365011074^(17/22) 2584004751067929 a001 7/701408733*514229^(17/22) 2584004751659787 m001 BesselK(1,1)^2/GolombDickman/exp(cos(Pi/5)) 2584004752089991 r009 Re(z^3+c),c=-5/19+6/43*I,n=10 2584004759183156 m001 sin(1/12*Pi)/RenyiParking/Totient 2584004761717185 m001 (3^(1/2)+4)/(-exp(1)+1/2) 2584004761717185 m005 (1/2*3^(1/2)+2)/(1/2*exp(1)-1/4) 2584004773616394 r005 Re(z^2+c),c=25/122+18/35*I,n=54 2584004775632653 r005 Im(z^2+c),c=-23/106+29/54*I,n=3 2584004777870504 r009 Re(z^3+c),c=-3/19+47/51*I,n=48 2584004784072668 b008 Sqrt[6]+Tanh[E^(-2)] 2584004785409372 a007 Real Root Of -199*x^4-177*x^3+836*x^2-377*x-738 2584004787849503 r009 Re(z^3+c),c=-9/31+5/23*I,n=13 2584004788326806 m001 (Lehmer+Thue)/(GAMMA(3/4)-KomornikLoreti) 2584004799860550 r005 Im(z^2+c),c=-39/86+7/15*I,n=44 2584004807710216 r005 Re(z^2+c),c=-7/66+41/55*I,n=18 2584004822901032 h001 (1/11*exp(2)+11/12)/(7/9*exp(2)+2/5) 2584004830456582 a007 Real Root Of 257*x^4-354*x^3+912*x^2-518*x-202 2584004831384983 a001 615/124*843^(13/14) 2584004835242028 a007 Real Root Of -315*x^4-616*x^3+210*x^2-790*x-28 2584004840257739 r005 Re(z^2+c),c=13/46+8/55*I,n=28 2584004847256355 a007 Real Root Of -124*x^4+357*x^3-262*x^2+154*x+64 2584004852229623 m001 1/cos(Pi/12)/Khintchine^2*exp(sin(Pi/5)) 2584004855839824 a007 Real Root Of 192*x^4+314*x^3+929*x^2-718*x-243 2584004868690589 m005 (1/2*2^(1/2)-6/11)/(5/9*Catalan-4/7) 2584004874625395 a007 Real Root Of -833*x^4+541*x^3+149*x^2+706*x-198 2584004882779648 a003 cos(Pi*29/98)*cos(Pi*39/109) 2584004889002531 r005 Im(z^2+c),c=-4/27+7/20*I,n=10 2584004899899048 a005 (1/sin(72/191*Pi))^433 2584004900258683 s002 sum(A097063[n]/(2^n-1),n=1..infinity) 2584004902371659 m001 Sierpinski-gamma(3)*PlouffeB 2584004909875504 a001 2/47*23725150497407^(2/15) 2584004909875533 a001 2/47*4870847^(4/15) 2584004913901452 r005 Im(z^2+c),c=-9/22+25/56*I,n=32 2584004915339750 a007 Real Root Of -143*x^4-275*x^3+201*x^2-13*x+255 2584004919232475 r009 Re(z^3+c),c=-13/25+16/37*I,n=16 2584004921093488 p004 log(19463/15031) 2584004925193824 m001 Salem^cos(1/12*Pi)+2^(1/2) 2584004929621974 r009 Re(z^3+c),c=-17/62+4/23*I,n=14 2584004938283000 a007 Real Root Of 148*x^4+316*x^3-354*x^2-470*x+3 2584004939401749 m001 (MasserGramain-Mills)/(ln(3)+Backhouse) 2584004939845980 m001 BesselK(0,1)/(ln(5)^GAMMA(23/24)) 2584004940060119 r009 Im(z^3+c),c=-49/86+7/53*I,n=2 2584004941460265 a007 Real Root Of 371*x^4+560*x^3-855*x^2+155*x-769 2584004945373611 m001 Totient*(GlaisherKinkelin+MasserGramain) 2584004946399071 r009 Re(z^3+c),c=-23/74+4/15*I,n=20 2584004946761826 m001 Backhouse^PrimesInBinary/ZetaP(2) 2584004947293871 r009 Re(z^3+c),c=-23/74+4/15*I,n=19 2584004959841462 a007 Real Root Of -11*x^4+307*x^3-805*x^2+287*x-173 2584004959872879 r005 Re(z^2+c),c=1/3+10/33*I,n=17 2584004960897667 m001 exp(1)^cos(Pi/12)-exp(-Pi) 2584004970276142 a007 Real Root Of 775*x^4-433*x^3-932*x^2-804*x+274 2584004974417154 m001 (5^(1/2)+arctan(1/2))/(-Kolakoski+Tribonacci) 2584004974873467 h001 (1/9*exp(1)+4/7)/(10/11*exp(1)+10/11) 2584004977867588 r009 Im(z^3+c),c=-3/25+31/38*I,n=54 2584004993683966 l006 ln(7078/9165) 2584005006775243 b008 Sqrt[ArcSech[1/397]] 2584005015299418 r009 Re(z^3+c),c=-63/106+17/61*I,n=12 2584005015370881 r002 4th iterates of z^2 + 2584005033451706 p004 log(35527/27437) 2584005046879487 m005 (1/2*gamma+2/9)/(7/10*Pi-2/9) 2584005050229943 a003 sin(Pi*1/111)-sin(Pi*1/58) 2584005050642722 m001 Porter/exp(Kolakoski)^2/OneNinth^2 2584005053719007 r004 Im(z^2+c),c=-1/24-9/20*I,z(0)=I,n=7 2584005067361494 r005 Re(z^2+c),c=-7/94+35/61*I,n=11 2584005068944831 b008 -7+(-1/11+Pi)*Pi 2584005082001126 r002 2th iterates of z^2 + 2584005084113797 r009 Re(z^3+c),c=-17/62+4/23*I,n=18 2584005085834120 r009 Re(z^3+c),c=-17/62+4/23*I,n=19 2584005085961049 r005 Re(z^2+c),c=-1/3+17/54*I,n=5 2584005086184513 r009 Re(z^3+c),c=-17/62+4/23*I,n=22 2584005086185611 r009 Re(z^3+c),c=-17/62+4/23*I,n=23 2584005086193629 r009 Re(z^3+c),c=-17/62+4/23*I,n=24 2584005086193743 r009 Re(z^3+c),c=-17/62+4/23*I,n=27 2584005086193789 r009 Re(z^3+c),c=-17/62+4/23*I,n=28 2584005086193815 r009 Re(z^3+c),c=-17/62+4/23*I,n=32 2584005086193815 r009 Re(z^3+c),c=-17/62+4/23*I,n=33 2584005086193815 r009 Re(z^3+c),c=-17/62+4/23*I,n=36 2584005086193815 r009 Re(z^3+c),c=-17/62+4/23*I,n=37 2584005086193815 r009 Re(z^3+c),c=-17/62+4/23*I,n=38 2584005086193815 r009 Re(z^3+c),c=-17/62+4/23*I,n=41 2584005086193815 r009 Re(z^3+c),c=-17/62+4/23*I,n=42 2584005086193815 r009 Re(z^3+c),c=-17/62+4/23*I,n=46 2584005086193815 r009 Re(z^3+c),c=-17/62+4/23*I,n=47 2584005086193815 r009 Re(z^3+c),c=-17/62+4/23*I,n=50 2584005086193815 r009 Re(z^3+c),c=-17/62+4/23*I,n=51 2584005086193815 r009 Re(z^3+c),c=-17/62+4/23*I,n=55 2584005086193815 r009 Re(z^3+c),c=-17/62+4/23*I,n=52 2584005086193815 r009 Re(z^3+c),c=-17/62+4/23*I,n=56 2584005086193815 r009 Re(z^3+c),c=-17/62+4/23*I,n=60 2584005086193815 r009 Re(z^3+c),c=-17/62+4/23*I,n=61 2584005086193815 r009 Re(z^3+c),c=-17/62+4/23*I,n=64 2584005086193815 r009 Re(z^3+c),c=-17/62+4/23*I,n=59 2584005086193815 r009 Re(z^3+c),c=-17/62+4/23*I,n=63 2584005086193815 r009 Re(z^3+c),c=-17/62+4/23*I,n=62 2584005086193815 r009 Re(z^3+c),c=-17/62+4/23*I,n=58 2584005086193815 r009 Re(z^3+c),c=-17/62+4/23*I,n=57 2584005086193815 r009 Re(z^3+c),c=-17/62+4/23*I,n=54 2584005086193815 r009 Re(z^3+c),c=-17/62+4/23*I,n=53 2584005086193815 r009 Re(z^3+c),c=-17/62+4/23*I,n=49 2584005086193815 r009 Re(z^3+c),c=-17/62+4/23*I,n=48 2584005086193815 r009 Re(z^3+c),c=-17/62+4/23*I,n=45 2584005086193815 r009 Re(z^3+c),c=-17/62+4/23*I,n=44 2584005086193815 r009 Re(z^3+c),c=-17/62+4/23*I,n=43 2584005086193815 r009 Re(z^3+c),c=-17/62+4/23*I,n=40 2584005086193815 r009 Re(z^3+c),c=-17/62+4/23*I,n=39 2584005086193815 r009 Re(z^3+c),c=-17/62+4/23*I,n=35 2584005086193815 r009 Re(z^3+c),c=-17/62+4/23*I,n=34 2584005086193815 r009 Re(z^3+c),c=-17/62+4/23*I,n=31 2584005086193818 r009 Re(z^3+c),c=-17/62+4/23*I,n=30 2584005086193819 r009 Re(z^3+c),c=-17/62+4/23*I,n=29 2584005086193959 r009 Re(z^3+c),c=-17/62+4/23*I,n=26 2584005086194672 r009 Re(z^3+c),c=-17/62+4/23*I,n=25 2584005086257466 r009 Re(z^3+c),c=-17/62+4/23*I,n=21 2584005086365766 r009 Re(z^3+c),c=-17/62+4/23*I,n=20 2584005086736085 r009 Re(z^3+c),c=-17/62+4/23*I,n=17 2584005089520390 a001 322*144^(15/17) 2584005098059408 r005 Re(z^2+c),c=23/78+9/58*I,n=33 2584005102400073 a004 Fibonacci(15)*Lucas(14)/(1/2+sqrt(5)/2)^11 2584005105617332 m001 CareFree+OrthogonalArrays+PlouffeB 2584005106233137 r009 Re(z^3+c),c=-17/62+4/23*I,n=16 2584005108106480 r009 Re(z^3+c),c=-17/62+4/23*I,n=15 2584005109640081 m005 (1/2*Catalan+8/9)/(6*Zeta(3)-2) 2584005112771457 a005 (1/cos(11/131*Pi))^681 2584005117069892 m001 sqrt(3)*(2/3-polylog(4,1/2)) 2584005121179566 r005 Im(z^2+c),c=-59/94+22/63*I,n=42 2584005133395804 a007 Real Root Of 449*x^4+986*x^3+64*x^2+961*x-950 2584005136278270 r005 Im(z^2+c),c=-17/54+23/56*I,n=57 2584005143733754 m005 (1/2*Catalan+7/12)/(3/4*Catalan-8/11) 2584005147270530 m005 (1/2*Pi+2)/(10/11*gamma+6/7) 2584005150525639 m001 GAMMA(2/3)/(Psi(2,1/3)+exp(1)) 2584005155428469 r002 10th iterates of z^2 + 2584005158973387 r009 Re(z^3+c),c=-9/31+5/23*I,n=14 2584005166688438 m001 (Zeta(1,-1)-Artin)/(Kac+MinimumGamma) 2584005169583929 l006 ln(6203/8032) 2584005169765681 r009 Re(z^3+c),c=-29/106+6/35*I,n=5 2584005176100531 a007 Real Root Of 589*x^4-31*x^3+264*x^2-918*x-258 2584005190026141 m005 (1/2*2^(1/2)-1/11)/(4/11*exp(1)-3/4) 2584005192811076 a001 2/47*2207^(8/15) 2584005203387237 a001 75025/521*521^(6/13) 2584005207891072 b008 Sinh[1/129]/3 2584005208513167 b008 ArcCsc[129]/3 2584005223286715 s002 sum(A272290[n]/(n^2*exp(n)-1),n=1..infinity) 2584005229063969 a001 599074578*144^(5/17) 2584005239622664 a005 (1/cos(4/151*Pi))^938 2584005245328778 s001 sum(exp(-3*Pi/5)^n*A276968[n],n=1..infinity) 2584005252778000 b008 1+78*E^(7/2) 2584005259633914 a007 Real Root Of 272*x^4-143*x^3+543*x^2-573*x-188 2584005260589765 r009 Re(z^3+c),c=-13/86+55/63*I,n=42 2584005263037783 p004 log(32423/2447) 2584005263210364 a007 Real Root Of -384*x^4-691*x^3+550*x^2-588*x+6 2584005270573239 a003 sin(Pi*8/109)/cos(Pi*17/110) 2584005279036231 r002 8th iterates of z^2 + 2584005305039787 a001 974170/377 2584005307125743 m001 (Shi(1)-cos(1))/(GAMMA(7/12)+Bloch) 2584005309930838 a003 cos(Pi*3/13)-cos(Pi*31/92) 2584005310385922 a007 Real Root Of 341*x^4+594*x^3-550*x^2+856*x+930 2584005315613068 h001 (1/4*exp(1)+5/11)/(4/7*exp(2)+1/6) 2584005315829168 r002 3th iterates of z^2 + 2584005316347847 r009 Re(z^3+c),c=-49/102+16/39*I,n=13 2584005327119365 m001 (Robbin+Sarnak)/(Lehmer-MasserGramain) 2584005337254253 a007 Real Root Of 111*x^4+68*x^3-552*x^2-348*x-989 2584005350098712 m001 (2^(1/2)-LambertW(1))/(ln(2)+Sierpinski) 2584005351698724 a003 cos(Pi*13/45)/cos(Pi*47/111) 2584005356859095 a007 Real Root Of -123*x^4-81*x^3+752*x^2+416*x+140 2584005364735709 r005 Im(z^2+c),c=11/64+12/61*I,n=28 2584005376344086 q001 769/2976 2584005378841315 a007 Real Root Of -38*x^4+548*x^3+165*x^2+827*x-234 2584005379555772 p003 LerchPhi(1/100,4,94/67) 2584005380533781 a007 Real Root Of -476*x^4-827*x^3+775*x^2-973*x-736 2584005384984209 m001 MertensB1*Conway*ln(log(2+sqrt(3)))^2 2584005385255032 m001 (1-Si(Pi))/(-PolyaRandomWalk3D+Trott) 2584005403258836 l006 ln(5328/6899) 2584005406673943 m005 (1/3*3^(1/2)+1/11)/(2/5*Catalan-5/8) 2584005416838249 k005 Champernowne real with floor(sqrt(2)*(100*n+83)) 2584005426848269 k001 Champernowne real with 142*n+116 2584005426848269 k005 Champernowne real with floor(Catalan*(155*n+127)) 2584005426848269 k005 Champernowne real with floor(sqrt(3)*(82*n+67)) 2584005426848269 k005 Champernowne real with floor(log(2)*(205*n+168)) 2584005429139827 m001 GAMMA(1/12)/ln(CareFree)^2/GAMMA(1/4) 2584005430543824 m005 (1/3*5^(1/2)-1/7)/(3*gamma+3/5) 2584005436868299 k005 Champernowne real with floor(log(3)*(130*n+105)) 2584005451201388 r005 Re(z^2+c),c=-4/19+6/11*I,n=29 2584005457310821 r005 Re(z^2+c),c=-21/110+33/58*I,n=44 2584005462960201 r009 Im(z^3+c),c=-9/86+43/51*I,n=10 2584005467130530 r005 Im(z^2+c),c=11/64+12/61*I,n=27 2584005490069876 r004 Re(z^2+c),c=7/18-3/17*I,z(0)=exp(3/8*I*Pi),n=8 2584005494372082 m001 1/Trott/MinimumGamma/ln(GAMMA(1/12)) 2584005495218745 m001 (Psi(2,1/3)*Sierpinski+ZetaQ(2))/Psi(2,1/3) 2584005504151290 r005 Im(z^2+c),c=11/64+12/61*I,n=29 2584005511185460 m001 Sierpinski/Backhouse^2*ln(cos(Pi/5)) 2584005512000381 r005 Re(z^2+c),c=-5/24+14/27*I,n=63 2584005516082000 m001 (Artin-HardyLittlewoodC5)/(ln(5)-Ei(1,1)) 2584005516717463 a007 Real Root Of -491*x^4+203*x^3-676*x^2+318*x+133 2584005520810835 r002 18th iterates of z^2 + 2584005539528552 m001 (GAMMA(13/24)-Backhouse)/(Rabbit+ZetaQ(4)) 2584005551264194 b008 -31/8+Sqrt[5/3] 2584005552144289 r009 Re(z^3+c),c=-37/114+13/41*I,n=4 2584005553496315 a007 Real Root Of 342*x^4+405*x^3-931*x^2+684*x-276 2584005556517641 m001 (ln(gamma)+Champernowne)/(MadelungNaCl-Paris) 2584005559502052 r005 Im(z^2+c),c=11/64+12/61*I,n=33 2584005562121374 r005 Im(z^2+c),c=11/64+12/61*I,n=34 2584005568179743 r005 Im(z^2+c),c=11/64+12/61*I,n=39 2584005568418209 r005 Im(z^2+c),c=11/64+12/61*I,n=38 2584005568447873 r005 Im(z^2+c),c=11/64+12/61*I,n=35 2584005568450730 r005 Im(z^2+c),c=11/64+12/61*I,n=40 2584005568573405 r005 Im(z^2+c),c=11/64+12/61*I,n=44 2584005568577671 r005 Im(z^2+c),c=11/64+12/61*I,n=45 2584005568590250 r005 Im(z^2+c),c=11/64+12/61*I,n=50 2584005568590405 r005 Im(z^2+c),c=11/64+12/61*I,n=46 2584005568590774 r005 Im(z^2+c),c=11/64+12/61*I,n=51 2584005568590795 r005 Im(z^2+c),c=11/64+12/61*I,n=49 2584005568591044 r005 Im(z^2+c),c=11/64+12/61*I,n=55 2584005568591050 r005 Im(z^2+c),c=11/64+12/61*I,n=56 2584005568591076 r005 Im(z^2+c),c=11/64+12/61*I,n=57 2584005568591076 r005 Im(z^2+c),c=11/64+12/61*I,n=61 2584005568591077 r005 Im(z^2+c),c=11/64+12/61*I,n=62 2584005568591078 r005 Im(z^2+c),c=11/64+12/61*I,n=60 2584005568591078 r005 Im(z^2+c),c=11/64+12/61*I,n=63 2584005568591078 r005 Im(z^2+c),c=11/64+12/61*I,n=64 2584005568591083 r005 Im(z^2+c),c=11/64+12/61*I,n=59 2584005568591086 r005 Im(z^2+c),c=11/64+12/61*I,n=58 2584005568591113 r005 Im(z^2+c),c=11/64+12/61*I,n=54 2584005568591201 r005 Im(z^2+c),c=11/64+12/61*I,n=52 2584005568591235 r005 Im(z^2+c),c=11/64+12/61*I,n=53 2584005568593217 r005 Im(z^2+c),c=11/64+12/61*I,n=48 2584005568595101 r005 Im(z^2+c),c=11/64+12/61*I,n=47 2584005568606416 r005 Im(z^2+c),c=11/64+12/61*I,n=43 2584005568657374 r005 Im(z^2+c),c=11/64+12/61*I,n=41 2584005568668208 r005 Im(z^2+c),c=11/64+12/61*I,n=42 2584005569605734 r005 Im(z^2+c),c=11/64+12/61*I,n=37 2584005570619281 r005 Im(z^2+c),c=11/64+12/61*I,n=36 2584005573713969 m005 (1/2*Zeta(3)+6)/(7/9*Pi+1/9) 2584005575166020 r005 Im(z^2+c),c=11/64+12/61*I,n=32 2584005577888980 p004 log(31151/2351) 2584005580941329 r002 30th iterates of z^2 + 2584005589979054 a001 7/4181*14930352^(4/9) 2584005590685872 r005 Im(z^2+c),c=11/64+12/61*I,n=24 2584005590807331 m006 (1/6*ln(Pi)-1/2)/(4*Pi-3/5) 2584005603124692 r005 Im(z^2+c),c=-37/90+3/5*I,n=25 2584005603889229 r005 Im(z^2+c),c=11/64+12/61*I,n=30 2584005606324464 r005 Im(z^2+c),c=11/64+12/61*I,n=31 2584005614298110 r002 3th iterates of z^2 + 2584005616764093 a003 cos(Pi*37/120)*cos(Pi*22/63) 2584005617130239 r002 45th iterates of z^2 + 2584005617617400 s002 sum(A140425[n]/(10^n+1),n=1..infinity) 2584005617617452 s002 sum(A140425[n]/(10^n-1),n=1..infinity) 2584005618634785 m001 HeathBrownMoroz^(ln(2+3^(1/2))/Shi(1)) 2584005618913743 a001 7/28657*1134903170^(4/9) 2584005619529654 a001 7/196418*86267571272^(4/9) 2584005619542764 a001 7/1346269*6557470319842^(4/9) 2584005619988026 a001 1346269/1364*322^(1/6) 2584005620673456 a005 (1/cos(16/203*Pi))^328 2584005626471208 h005 exp(cos(Pi*9/55)/sin(Pi*17/46)) 2584005634489404 m001 (Thue+ZetaP(3))/(GAMMA(23/24)-Kac) 2584005636623604 m001 1/Zeta(1/2)*GAMMA(11/12)^2*ln(Zeta(3))^2 2584005637260834 m002 -Pi^(-2)+Pi^3/Log[Pi]-Log[Pi] 2584005639516988 m001 (Rabbit-TwinPrimes)/(MertensB2-Otter) 2584005644326784 m005 (3*2^(1/2)+4)/(5/6*gamma-4/5) 2584005655693765 m001 (Kolakoski+Totient)/(LambertW(1)+sin(1/12*Pi)) 2584005663032672 r005 Re(z^2+c),c=-25/78+32/39*I,n=4 2584005666378068 a007 Real Root Of -313*x^4-760*x^3+165*x^2+272*x+443 2584005672427254 r009 Im(z^3+c),c=-8/17+5/61*I,n=58 2584005675662275 a007 Real Root Of 253*x^4+649*x^3-351*x-989 2584005679820447 m001 (Zeta(1,-1)+BesselI(0,2))/(Cahen+ZetaP(3)) 2584005683582828 r009 Im(z^3+c),c=-21/50+4/27*I,n=21 2584005683759734 m001 (ZetaQ(2)+ZetaQ(4))/(Pi^(1/2)+Artin) 2584005688589271 r002 4th iterates of z^2 + 2584005697059682 a001 2/109801*11^(7/48) 2584005699434274 a007 Real Root Of 505*x^4+959*x^3-957*x^2-441*x-718 2584005706676210 m001 (GAMMA(3/4)+ln(5))/(gamma(3)+OneNinth) 2584005718624114 m001 1/FeigenbaumKappa*exp(Salem)^2*gamma^2 2584005718632951 m001 (-MasserGramain+MinimumGamma)/(Si(Pi)+Conway) 2584005719285047 m001 (Psi(2,1/3)+ln(gamma))/(exp(1/exp(1))+Rabbit) 2584005724000984 r009 Im(z^3+c),c=-4/23+6/23*I,n=3 2584005727048685 a001 9349/1597*34^(8/19) 2584005728766451 l006 ln(4453/5766) 2584005735197701 r005 Re(z^2+c),c=-11/52+29/64*I,n=4 2584005736635133 h001 (1/8*exp(2)+1/8)/(1/2*exp(2)+4/11) 2584005742473490 a007 Real Root Of 175*x^4+365*x^3+574*x^2-856*x-254 2584005742881087 a007 Real Root Of 447*x^4+902*x^3-727*x^2-175*x+36 2584005749841229 m001 (Conway-FibonacciFactorial)/(Rabbit-ThueMorse) 2584005756211385 h001 (2/3*exp(2)+4/7)/(5/8*exp(1)+3/7) 2584005756954776 m001 GAMMA(17/24)*(CareFree+Mills) 2584005764510974 b008 ModularLambda[I*Sqrt[10]]/3 2584005766566082 m001 (2*Pi/GAMMA(5/6))^(MinimumGamma/Zeta(1,-1)) 2584005777462601 a001 1346269/2207*322^(1/4) 2584005795877688 h001 (2/3*exp(1)+9/10)/(1/10*exp(1)+7/9) 2584005804033101 a003 cos(Pi*20/119)-sin(Pi*37/106) 2584005807983837 m005 (1/2*Zeta(3)-1/3)/(-41/72+5/24*5^(1/2)) 2584005810463136 m001 1/OneNinth*ln(TwinPrimes)*sin(Pi/12)^2 2584005815033116 r005 Re(z^2+c),c=-8/25+6/55*I,n=18 2584005818366586 m005 (1/2*3^(1/2)+2/3)/(2/5*2^(1/2)-5/8) 2584005826657039 r005 Re(z^2+c),c=-17/16+29/120*I,n=22 2584005829570080 p003 LerchPhi(1/25,6,481/178) 2584005841220198 m008 (1/6*Pi^4-5)/(4*Pi^2+4) 2584005842904035 r005 Im(z^2+c),c=-23/122+18/49*I,n=23 2584005852682225 s002 sum(A103935[n]/(exp(n)-1),n=1..infinity) 2584005861357531 a007 Real Root Of -422*x^4-813*x^3+693*x^2+163*x+581 2584005867291439 r009 Re(z^3+c),c=-39/86+8/17*I,n=5 2584005868441926 m001 (Psi(2,1/3)-Zeta(3))/(Backhouse+Sarnak) 2584005870493055 m005 (11/12+1/4*5^(1/2))/(3/11*Pi-2/7) 2584005878091557 m001 ReciprocalLucas^(Grothendieck/BesselI(0,1)) 2584005888632022 m005 (1/2*Pi-4/7)/(1/6*3^(1/2)-1/4) 2584005892764109 r002 3th iterates of z^2 + 2584005898162220 m008 (5/6*Pi^4+3/5)/(1/3*Pi^6-4) 2584005902084383 r005 Re(z^2+c),c=17/90+13/32*I,n=14 2584005907941491 a007 Real Root Of 100*x^4+376*x^3+504*x^2+473*x-114 2584005914530236 a008 Real Root of x^4-2*x^3-10*x^2-20*x-64 2584005921342911 m001 (CareFree-DuboisRaymond)/(FeigenbaumD-Rabbit) 2584005925370002 a001 24476/4181*34^(8/19) 2584005925694946 m009 (1/5*Psi(1,1/3)-1/2)/(16/5*Catalan+2/5*Pi^2-1) 2584005926763464 m001 gamma(3)/(KomornikLoreti^FeigenbaumMu) 2584005934340055 a001 377/521*9349^(17/19) 2584005935532046 a001 233*521^(5/13) 2584005935733325 m009 (4*Psi(1,2/3)-1/2)/(2*Catalan+1/4*Pi^2+1/4) 2584005946155912 r005 Im(z^2+c),c=-17/54+23/56*I,n=59 2584005952608860 a007 Real Root Of -486*x^4-810*x^3+785*x^2-674*x+709 2584005954304695 a001 64079/10946*34^(8/19) 2584005956859565 a001 233/843*24476^(19/21) 2584005957300311 a001 377/521*24476^(17/21) 2584005958526210 a001 167761/28657*34^(8/19) 2584005959142120 a001 439204/75025*34^(8/19) 2584005959231981 a001 1149851/196418*34^(8/19) 2584005959245091 a001 3010349/514229*34^(8/19) 2584005959247004 a001 7881196/1346269*34^(8/19) 2584005959247283 a001 20633239/3524578*34^(8/19) 2584005959247324 a001 54018521/9227465*34^(8/19) 2584005959247330 a001 141422324/24157817*34^(8/19) 2584005959247330 a001 370248451/63245986*34^(8/19) 2584005959247331 a001 969323029/165580141*34^(8/19) 2584005959247331 a001 2537720636/433494437*34^(8/19) 2584005959247331 a001 6643838879/1134903170*34^(8/19) 2584005959247331 a001 17393796001/2971215073*34^(8/19) 2584005959247331 a001 45537549124/7778742049*34^(8/19) 2584005959247331 a001 119218851371/20365011074*34^(8/19) 2584005959247331 a001 312119004989/53316291173*34^(8/19) 2584005959247331 a001 817138163596/139583862445*34^(8/19) 2584005959247331 a001 2139295485799/365435296162*34^(8/19) 2584005959247331 a001 14662949395604/2504730781961*34^(8/19) 2584005959247331 a001 440719107401/75283811239*34^(8/19) 2584005959247331 a001 505019158607/86267571272*34^(8/19) 2584005959247331 a001 64300051206/10983760033*34^(8/19) 2584005959247331 a001 73681302247/12586269025*34^(8/19) 2584005959247331 a001 9381251041/1602508992*34^(8/19) 2584005959247331 a001 10749957122/1836311903*34^(8/19) 2584005959247331 a001 1368706081/233802911*34^(8/19) 2584005959247331 a001 1568397607/267914296*34^(8/19) 2584005959247331 a001 199691526/34111385*34^(8/19) 2584005959247331 a001 228826127/39088169*34^(8/19) 2584005959247333 a001 29134601/4976784*34^(8/19) 2584005959247349 a001 33385282/5702887*34^(8/19) 2584005959247455 a001 4250681/726103*34^(8/19) 2584005959248186 a001 4870847/832040*34^(8/19) 2584005959253194 a001 620166/105937*34^(8/19) 2584005959287517 a001 710647/121393*34^(8/19) 2584005959522774 a001 90481/15456*34^(8/19) 2584005960242239 a001 233/843*64079^(19/23) 2584005960326915 a001 377/521*64079^(17/23) 2584005960762101 a001 233/843*817138163596^(1/3) 2584005960762101 a001 233/843*(1/2+1/2*5^(1/2))^19 2584005960762101 a001 233/843*87403803^(1/2) 2584005960792054 a001 377/521*45537549124^(1/3) 2584005960792054 a001 377/521*(1/2+1/2*5^(1/2))^17 2584005960792062 a001 377/521*12752043^(1/2) 2584005960952396 a001 233/843*103682^(19/24) 2584005960962319 a001 377/521*103682^(17/24) 2584005961135249 a001 103682/17711*34^(8/19) 2584005962065157 a001 377/521*39603^(17/22) 2584005962184981 a001 233/843*39603^(19/22) 2584005964684833 l006 ln(4355/4469) 2584005970245313 m001 GAMMA(19/24)*(DuboisRaymond-PrimesInBinary) 2584005970390631 a001 377/521*15127^(17/20) 2584005971489921 a001 233/843*15127^(19/20) 2584005971511723 a001 1/829464*5^(9/19) 2584005972187319 a001 13201/2255*34^(8/19) 2584005975325108 m001 (exp(1/Pi)+LandauRamanujan2nd)^(2^(1/2)) 2584005976122989 r005 Re(z^2+c),c=-3/10+45/64*I,n=6 2584005983082022 r009 Re(z^3+c),c=-17/62+4/23*I,n=12 2584005986205159 m002 5/Pi^2+Coth[Pi]+ProductLog[Pi] 2584005991335055 m005 (1/2*exp(1)+2)/(6*5^(1/2)-5/12) 2584005999137920 a005 (1/cos(47/147*Pi))^57 2584006013978691 a007 Real Root Of -764*x^4+641*x^3+234*x^2+376*x+96 2584006018225060 m001 (BesselJ(1,1)+4)/(-exp(1)+1) 2584006033696271 m001 FeigenbaumKappa^2*LandauRamanujan*ln(Zeta(3)) 2584006033891633 a001 377/521*5778^(17/18) 2584006036629843 r005 Im(z^2+c),c=-29/70+19/43*I,n=59 2584006037139293 m008 (4*Pi^3+2)/(5*Pi^4+2/3) 2584006038643644 a001 4181/199*199^(10/11) 2584006040912814 m001 Pi*(1-cos(1/5*Pi)*Ei(1,1)) 2584006044495183 r005 Im(z^2+c),c=-21/38+2/43*I,n=32 2584006047939331 a001 15127/2584*34^(8/19) 2584006048191200 r005 Im(z^2+c),c=11/64+12/61*I,n=26 2584006050838922 m001 FeigenbaumD^Rabbit*FeigenbaumD^Sierpinski 2584006055099272 m001 (FeigenbaumC-MertensB3)/(GAMMA(3/4)+CareFree) 2584006070200606 m001 arctan(1/2)^gamma(2)/(arctan(1/2)^GAMMA(3/4)) 2584006095789194 m001 (exp(1/Pi)-GAMMA(23/24))/(OneNinth+Trott2nd) 2584006096906288 r005 Re(z^2+c),c=-13/58+27/56*I,n=53 2584006101523249 p004 log(29243/2207) 2584006109131496 a007 Real Root Of 85*x^4-357*x^3+986*x^2-997*x-330 2584006116337666 m001 KhinchinHarmonic+Kolakoski^BesselJ(0,1) 2584006118941846 p001 sum((-1)^n/(451*n+151)/n/(64^n),n=1..infinity) 2584006124177080 r002 25th iterates of z^2 + 2584006131750954 a007 Real Root Of 242*x^4+291*x^3-666*x^2+434*x-200 2584006139565090 m001 (-GAMMA(5/24)+1)/(-Khinchin+4) 2584006150469572 m006 (2/5*exp(2*Pi)+1/6)/(1/4/Pi+3/4) 2584006151702761 a007 Real Root Of -117*x^4-43*x^3+465*x^2-893*x-938 2584006152210810 r005 Re(z^2+c),c=-7/31+11/23*I,n=36 2584006167584631 s002 sum(A104051[n]/((2^n-1)/n),n=1..infinity) 2584006175721409 m001 TwinPrimes/(AlladiGrinstead+KhinchinHarmonic) 2584006182264707 h001 (-7*exp(3)-1)/(-10*exp(4)-2) 2584006186509479 r005 Re(z^2+c),c=6/17+3/16*I,n=49 2584006197532908 a007 Real Root Of 404*x^4+657*x^3-904*x^2+137*x-286 2584006199636420 m005 (1/2*gamma+3)/(1/6*5^(1/2)+9/10) 2584006204860816 m005 (1/3*gamma+1/10)/(3/4*5^(1/2)-6/11) 2584006206746847 m005 (1/2*Zeta(3)+9/11)/(3/8*Zeta(3)-1) 2584006208605702 m001 (-Gompertz+Salem)/(ArtinRank2-exp(Pi)) 2584006213479839 l006 ln(3578/4633) 2584006226440477 r005 Im(z^2+c),c=-17/54+23/56*I,n=62 2584006230567197 a001 1762289/2889*322^(1/4) 2584006232049930 m005 (1/2*exp(1)-9/11)/(5/9*exp(1)+7/12) 2584006235971050 a007 Real Root Of 371*x^4+848*x^3-284*x^2-94*x-256 2584006242543939 r005 Im(z^2+c),c=-17/54+23/56*I,n=47 2584006251628028 q001 992/3839 2584006253196228 r009 Re(z^3+c),c=-67/122+7/31*I,n=42 2584006255308891 p001 sum((-1)^n/(443*n+287)/n/(5^n),n=1..infinity) 2584006258865624 r005 Re(z^2+c),c=-19/86+14/25*I,n=14 2584006261150317 r008 a(0)=0,K{-n^6,26+4*n-27*n^2+36*n^3} 2584006271673340 r005 Re(z^2+c),c=-7/9+5/76*I,n=46 2584006284732388 m001 1/TwinPrimes^2*MinimumGamma*ln(Catalan)^2 2584006292194732 m001 Sierpinski-gamma(3)*Weierstrass 2584006296674280 a001 9227465/15127*322^(1/4) 2584006306319174 a001 24157817/39603*322^(1/4) 2584006307726345 a001 31622993/51841*322^(1/4) 2584006307931648 a001 165580141/271443*322^(1/4) 2584006307961601 a001 433494437/710647*322^(1/4) 2584006307965972 a001 567451585/930249*322^(1/4) 2584006307966609 a001 2971215073/4870847*322^(1/4) 2584006307966702 a001 7778742049/12752043*322^(1/4) 2584006307966716 a001 10182505537/16692641*322^(1/4) 2584006307966718 a001 53316291173/87403803*322^(1/4) 2584006307966718 a001 139583862445/228826127*322^(1/4) 2584006307966718 a001 182717648081/299537289*322^(1/4) 2584006307966718 a001 956722026041/1568397607*322^(1/4) 2584006307966718 a001 2504730781961/4106118243*322^(1/4) 2584006307966718 a001 3278735159921/5374978561*322^(1/4) 2584006307966718 a001 10610209857723/17393796001*322^(1/4) 2584006307966718 a001 4052739537881/6643838879*322^(1/4) 2584006307966718 a001 1134903780/1860499*322^(1/4) 2584006307966718 a001 591286729879/969323029*322^(1/4) 2584006307966718 a001 225851433717/370248451*322^(1/4) 2584006307966718 a001 21566892818/35355581*322^(1/4) 2584006307966719 a001 32951280099/54018521*322^(1/4) 2584006307966724 a001 1144206275/1875749*322^(1/4) 2584006307966760 a001 1201881744/1970299*322^(1/4) 2584006307967003 a001 1836311903/3010349*322^(1/4) 2584006307968672 a001 701408733/1149851*322^(1/4) 2584006307980114 a001 66978574/109801*322^(1/4) 2584006308058533 a001 9303105/15251*322^(1/4) 2584006308596024 a001 39088169/64079*322^(1/4) 2584006309445045 m001 (ln(gamma)-OneNinth)/(Otter-ThueMorse) 2584006309879717 m005 (1/2*Catalan+4/9)/(10/11*Pi+7/11) 2584006310263242 m001 GAMMA(1/3)/FeigenbaumAlpha*exp(log(1+sqrt(2))) 2584006312280046 a001 3732588/6119*322^(1/4) 2584006318026032 r009 Re(z^3+c),c=-19/78+1/22*I,n=4 2584006325596481 m002 -5+Pi^5-Pi^6/E^Pi-ProductLog[Pi] 2584006327075587 m001 (-Gompertz+Thue)/(Psi(1,1/3)-gamma(1)) 2584006332225590 r009 Im(z^3+c),c=-39/86+6/53*I,n=40 2584006337530706 a001 5702887/9349*322^(1/4) 2584006339868384 r005 Re(z^2+c),c=-13/86+38/45*I,n=21 2584006358757910 a007 Real Root Of -225*x^4-681*x^3-445*x^2-421*x+165 2584006364138547 m001 BesselK(0,1)-BesselK(1,1)*GAMMA(5/6) 2584006365548316 r005 Re(z^2+c),c=-127/126+9/34*I,n=6 2584006370359412 r005 Im(z^2+c),c=-1+22/85*I,n=9 2584006373129050 m001 (FeigenbaumD-OneNinth)/(Zeta(1/2)+arctan(1/2)) 2584006375615708 a007 Real Root Of 86*x^4-24*x^3-796*x^2-782*x-954 2584006388889102 r005 Re(z^2+c),c=-21/94+15/31*I,n=63 2584006406569627 m001 (-exp(1/exp(1))+3)/BesselK(1,1) 2584006425330460 r005 Re(z^2+c),c=-29/78+34/61*I,n=13 2584006440784702 a003 cos(Pi*43/103)/sin(Pi*23/50) 2584006442524630 r002 11th iterates of z^2 + 2584006445648361 r005 Re(z^2+c),c=37/94+53/59*I,n=2 2584006446285674 a007 Real Root Of -277*x^4-751*x^3+238*x^2+738*x-290 2584006447628958 a007 Real Root Of -426*x^4-984*x^3+304*x^2-240*x-635 2584006456769632 b008 EllipticE[-5+ArcTan[3]] 2584006458342676 a001 199/987*514229^(1/53) 2584006475305695 r005 Re(z^2+c),c=-19/102+31/55*I,n=43 2584006482721090 m001 (BesselI(0,1)+Bloch)/(-Kolakoski+Porter) 2584006486194644 p001 sum(1/(214*n+117)/n/(12^n),n=1..infinity) 2584006488522014 a007 Real Root Of 667*x^4+774*x^3+447*x^2-629*x-182 2584006494737334 m005 (1/2*3^(1/2)+4/7)/(4/11*Zeta(3)-6) 2584006500978776 a007 Real Root Of 304*x^4+538*x^3+984*x^2-860*x-280 2584006504239488 m001 FeigenbaumDelta*(Ei(1,1)-Psi(2,1/3)) 2584006505209270 r002 56th iterates of z^2 + 2584006510089808 a007 Real Root Of 28*x^4+755*x^3+819*x^2+110*x-898 2584006510601317 a001 2178309/3571*322^(1/4) 2584006516672468 m001 (ln(5)-Gompertz)/(KhinchinLevy-Kolakoski) 2584006520865358 m001 ln(BesselK(1,1))*Salem^2/exp(1) 2584006529730770 r002 52th iterates of z^2 + 2584006531174803 a007 Real Root Of -996*x^4+534*x^3-205*x^2+614*x+186 2584006533753560 a007 Real Root Of -485*x^4+826*x^3+934*x^2+571*x-222 2584006537916682 r005 Re(z^2+c),c=-5/4+12/199*I,n=26 2584006538699453 r005 Im(z^2+c),c=-5/6+31/196*I,n=11 2584006543083820 m005 (-13/20+1/4*5^(1/2))/(4*Catalan-1/7) 2584006548669821 m001 (exp(Pi)+Catalan)/(-sin(1)+Pi^(1/2)) 2584006552097855 r005 Im(z^2+c),c=-1/15+8/25*I,n=17 2584006552144430 m005 (1/2*gamma+4)/(7/9*exp(1)-5/11) 2584006557123944 l006 ln(6281/8133) 2584006565337769 a007 Real Root Of 149*x^4-732*x^3+373*x^2-750*x-232 2584006566478516 r005 Im(z^2+c),c=4/17+9/61*I,n=22 2584006567151450 a001 1926/329*34^(8/19) 2584006579174357 r009 Re(z^3+c),c=-3/56+22/39*I,n=2 2584006581046170 a005 (1/sin(101/229*Pi))^589 2584006581112621 r009 Re(z^3+c),c=-23/62+23/61*I,n=9 2584006588212969 r005 Im(z^2+c),c=11/64+12/61*I,n=25 2584006592048517 a001 5/710647*843^(23/43) 2584006593083519 p004 log(27653/2087) 2584006596196356 m001 Zeta(3)*(Pi-1)-gamma(2) 2584006597109278 a007 Real Root Of -157*x^4-32*x^3+852*x^2-174*x+309 2584006606467065 h001 (1/3*exp(2)+10/11)/(1/7*exp(1)+11/12) 2584006624065547 p003 LerchPhi(1/512,6,104/83) 2584006625230147 a007 Real Root Of -94*x^4+136*x^3+638*x^2-665*x+559 2584006627538671 m001 (Artin+OneNinth)/(BesselJ(0,1)+ln(3)) 2584006636441121 r005 Re(z^2+c),c=-17/86+13/24*I,n=64 2584006657724969 r005 Re(z^2+c),c=-11/60+27/47*I,n=56 2584006667638195 m001 1/Riemann1stZero^2/RenyiParking^2/ln(sqrt(2)) 2584006667852413 a001 196418/521*521^(4/13) 2584006673710703 r005 Re(z^2+c),c=-5/56+35/43*I,n=57 2584006678195741 m001 GAMMA(13/24)/exp(FeigenbaumC)/Zeta(7)^2 2584006681896759 m001 AlladiGrinstead^FeigenbaumB+KhinchinHarmonic 2584006682351348 m005 (1/2*2^(1/2)-9/11)/(1/7*exp(1)-9/11) 2584006684637166 a007 Real Root Of 546*x^4+870*x^3+386*x^2-661*x-184 2584006690232317 p001 sum((-1)^n/(163*n+151)/n/(12^n),n=0..infinity) 2584006692547203 m001 (ln(Pi)*Lehmer+BesselI(0,2))/ln(Pi) 2584006700271799 r005 Im(z^2+c),c=-21/38+26/63*I,n=48 2584006700518301 r005 Im(z^2+c),c=-17/52+17/41*I,n=54 2584006703946992 q001 1/3869959 2584006727385576 r005 Im(z^2+c),c=-17/54+23/56*I,n=64 2584006727863830 s001 sum(exp(-Pi/3)^n*A019698[n],n=1..infinity) 2584006732663816 a003 sin(Pi*5/53)*sin(Pi*28/81) 2584006736164927 r005 Re(z^2+c),c=-5/16+7/41*I,n=20 2584006744151442 r005 Im(z^2+c),c=-15/32+23/52*I,n=40 2584006748144953 a007 Real Root Of 512*x^4+771*x^3-999*x^2+813*x-753 2584006764146008 r005 Re(z^2+c),c=-1/70+35/62*I,n=6 2584006767843179 r002 5th iterates of z^2 + 2584006773852392 a001 6/2255*225851433717^(2/23) 2584006777732809 r005 Im(z^2+c),c=-21/16+10/37*I,n=3 2584006784062307 m005 (Catalan+1/3)/(1/5*Catalan-2/3) 2584006793874467 a001 55/24476*76^(1/31) 2584006804229463 m001 (3^(1/2)+exp(1/exp(1)))/(-Backhouse+Khinchin) 2584006804839519 r002 10th iterates of z^2 + 2584006805908068 p004 log(27017/2039) 2584006810869015 r009 Re(z^3+c),c=-41/98+31/63*I,n=57 2584006821342159 m002 -6+E^Pi*Pi^4*Coth[Pi]*Log[Pi] 2584006825567277 a001 196418/843*322^(5/12) 2584006831863881 r005 Im(z^2+c),c=-37/122+23/54*I,n=7 2584006839959530 a001 9/1292*3524578^(2/23) 2584006841341386 a007 Real Root Of -916*x^4+392*x^3-462*x^2+810*x+251 2584006842958565 m001 (ln(2)+Grothendieck)/(MertensB2-ZetaP(4)) 2584006844857770 p004 log(22133/17093) 2584006846669165 r005 Re(z^2+c),c=13/44+12/31*I,n=6 2584006848550320 r005 Im(z^2+c),c=-21/46+8/17*I,n=47 2584006859851230 a007 Real Root Of 40*x^4-174*x^3-856*x^2-168*x+496 2584006866041551 a003 cos(Pi*1/62)/sin(Pi*12/95) 2584006867085368 a007 Real Root Of -178*x^4-147*x^3+827*x^2+177*x+335 2584006868582373 r009 Re(z^3+c),c=-23/126+29/32*I,n=16 2584006873347027 m001 exp(1)*Pi^(1/2)+Riemann2ndZero 2584006874477653 r002 2th iterates of z^2 + 2584006878057173 p003 LerchPhi(1/5,1,26/63) 2584006881033201 s002 sum(A063074[n]/((10^n-1)/n),n=1..infinity) 2584006885558198 r005 Im(z^2+c),c=-17/54+23/56*I,n=60 2584006891639238 m001 (3^(1/3)+GAMMA(7/12))/(ArtinRank2+ZetaP(2)) 2584006897070843 h001 (9/11*exp(1)+1/4)/(1/11*exp(2)+2/7) 2584006900059304 m001 MadelungNaCl^Kolakoski+GAMMA(23/24) 2584006902261444 r005 Im(z^2+c),c=-23/122+18/49*I,n=20 2584006909831505 a001 17393796001/34*2504730781961^(18/23) 2584006910783115 r005 Im(z^2+c),c=-15/14+26/115*I,n=4 2584006911658799 r005 Im(z^2+c),c=-5/4+7/215*I,n=50 2584006926792365 m001 FeigenbaumMu-Gompertz^Trott2nd 2584006938455010 a007 Real Root Of -340*x^4-874*x^3-314*x^2-605*x+612 2584006942547413 r005 Im(z^2+c),c=39/94+20/53*I,n=10 2584006944408086 a007 Real Root Of 254*x^4-188*x^3-329*x^2-437*x+137 2584006947207594 a007 Real Root Of 576*x^4-198*x^3+577*x^2-207*x-98 2584006948957546 r002 18th iterates of z^2 + 2584006956697571 r005 Im(z^2+c),c=-53/66+7/48*I,n=29 2584006969996088 a007 Real Root Of -582*x^4-993*x^3+912*x^2-860*x+503 2584006978994167 m001 (-GAMMA(11/12)+RenyiParking)/(3^(1/2)-cos(1)) 2584006981266839 m005 (1/2*Catalan-5/11)/(2/9*5^(1/2)+5/6) 2584006984376214 m001 1/GAMMA(19/24)*ln(ArtinRank2)^2*GAMMA(7/12)^2 2584006989917020 h001 (-4*exp(6)+5)/(-3*exp(3)-2) 2584006992982654 m001 (Zeta(1,2)-cos(1))/(-Kac+ZetaQ(2)) 2584006994949780 m001 FeigenbaumD^(MasserGramainDelta/Ei(1)) 2584006995736755 r009 Re(z^3+c),c=-29/122+41/44*I,n=27 2584007005577009 a007 Real Root Of 388*x^4+669*x^3-722*x^2+421*x+153 2584007010895777 a001 161/305*4181^(4/21) 2584007012010574 l006 ln(2703/3500) 2584007012337609 a007 Real Root Of -209*x^4-326*x^3+498*x^2+810*x-236 2584007019650334 m001 1/Zeta(7)*Lehmer^2*exp(Zeta(9))^2 2584007025815696 m001 (LambertW(1)+Zeta(1,2))/(Rabbit+Sarnak) 2584007025974432 r005 Im(z^2+c),c=-5/24+9/20*I,n=5 2584007036759984 r009 Im(z^3+c),c=-61/118+5/24*I,n=10 2584007038896567 r009 Re(z^3+c),c=-5/19+6/43*I,n=11 2584007043859307 m001 (2*Pi/GAMMA(5/6)+Robbin)/(Sierpinski-ZetaP(3)) 2584007054069696 m002 -3+Pi^3/(3*E^Pi*ProductLog[Pi]) 2584007062772588 a007 Real Root Of -308*x^4-482*x^3+701*x^2-373*x-229 2584007063385730 m005 (1/2*gamma-1/3)/(8/9*Catalan+11/12) 2584007064307497 a007 Real Root Of -948*x^4-474*x^3+461*x^2+223*x-76 2584007075293730 a001 3/17711*34^(17/22) 2584007075626422 a001 11/21*13^(28/45) 2584007077091092 s002 sum(A152696[n]/((10^n-1)/n),n=1..infinity) 2584007078435997 m005 (1/2*exp(1)-4/5)/(5/7*exp(1)+2/9) 2584007086898669 m001 (Otter+ZetaP(4))/(Psi(1,1/3)+GAMMA(13/24)) 2584007091908999 a007 Real Root Of 463*x^4+997*x^3-801*x^2-822*x-216 2584007094756790 m001 GAMMA(1/3)^2*GlaisherKinkelin^2*exp(cosh(1))^2 2584007094927445 r009 Re(z^3+c),c=-15/31+13/24*I,n=48 2584007106537620 r009 Re(z^3+c),c=-43/106+7/15*I,n=33 2584007107091727 a007 Real Root Of -997*x^4-109*x^3+532*x^2+246*x+6 2584007115035395 b008 EulerGamma+EllipticE[-4/3] 2584007127658535 r005 Im(z^2+c),c=-39/118+11/24*I,n=7 2584007164200486 r005 Re(z^2+c),c=-19/62+1/5*I,n=8 2584007197671525 m001 (Zeta(5)+Ei(1,1))/(2*Pi/GAMMA(5/6)-CareFree) 2584007208112050 r002 49th iterates of z^2 + 2584007222828593 m005 (1/2*gamma+4)/(8/11*3^(1/2)+2/5) 2584007239064145 a007 Real Root Of 459*x^4+826*x^3-507*x^2+822*x-703 2584007252147533 a007 Real Root Of -228*x^4-359*x^3+591*x^2+252*x+676 2584007258305101 m001 GAMMA(7/12)^exp(1)/FibonacciFactorial 2584007258647509 a003 -1/2+cos(1/15*Pi)+2*cos(11/27*Pi)-cos(5/24*Pi) 2584007261605810 r005 Im(z^2+c),c=-17/54+23/56*I,n=63 2584007271278152 m005 (1/2*Pi+1/4)/(1/6*gamma-1/6) 2584007272902592 a007 Real Root Of -893*x^4-366*x^3-717*x^2+501*x+175 2584007273321143 a007 Real Root Of 506*x^4+974*x^3-992*x^2-172*x+425 2584007279567183 m001 Ei(1,1)^Champernowne+Riemann3rdZero 2584007281732006 a007 Real Root Of 303*x^4+515*x^3-836*x^2-534*x-421 2584007292485936 r009 Re(z^3+c),c=-9/14+31/59*I,n=6 2584007301157030 r002 10th iterates of z^2 + 2584007303012948 m008 (2*Pi^5-4/5)/(3/4*Pi^3+2/5) 2584007310021356 a001 87403803/89*46368^(7/23) 2584007310094228 a001 3010349/89*2971215073^(7/23) 2584007317098027 a001 161/1762289*8^(1/2) 2584007337968457 m001 BesselI(0,2)*GAMMA(5/6)+Trott 2584007342950029 r005 Im(z^2+c),c=-17/54+23/56*I,n=61 2584007351872538 r002 19th iterates of z^2 + 2584007371049022 r005 Im(z^2+c),c=2/21+9/37*I,n=12 2584007374857676 r005 Re(z^2+c),c=-17/110+13/21*I,n=47 2584007374981163 m005 (1/2*gamma-3/5)/(3/8*3^(1/2)+5/9) 2584007381082048 r009 Re(z^3+c),c=-15/58+51/53*I,n=57 2584007397749710 m001 cos(1/12*Pi)-Robbin^Chi(1) 2584007400106009 a001 317811/521*521^(3/13) 2584007406970873 l006 ln(7234/9367) 2584007416237889 g006 Psi(1,5/12)+Psi(1,5/7)-Psi(1,7/12)-Psi(1,2/11) 2584007431194730 r005 Im(z^2+c),c=-17/54+23/56*I,n=56 2584007431267790 h003 exp(Pi*(23^(1/2)-2^(1/2)*17^(1/2))) 2584007431595627 r005 Im(z^2+c),c=-25/114+19/44*I,n=3 2584007435787351 a007 Real Root Of 232*x^4+433*x^3-91*x^2+779*x-252 2584007436424811 r005 Im(z^2+c),c=-23/60+16/37*I,n=63 2584007451399074 m005 (1/2*Pi+6/7)/(1/7*gamma+6/7) 2584007464760720 m001 (Salem-Stephens)/(GAMMA(7/12)+Kolakoski) 2584007469801583 p001 sum(1/(363*n+25)/n/(100^n),n=1..infinity) 2584007487822370 r005 Im(z^2+c),c=-5/14+14/33*I,n=36 2584007488021357 r005 Re(z^2+c),c=-41/70+39/58*I,n=6 2584007492209246 m005 (13/12+1/4*5^(1/2))/(5/11*exp(1)-3/5) 2584007509443103 m001 ln(TwinPrimes)^2/CareFree*GAMMA(11/12) 2584007513557362 r005 Re(z^2+c),c=1/82+6/29*I,n=11 2584007521954223 a007 Real Root Of 357*x^4+682*x^3-480*x^2+504*x+358 2584007529875481 m001 GAMMA(1/4)^2*GolombDickman^2*exp(cos(Pi/5))^2 2584007541002932 r005 Im(z^2+c),c=2/27+14/55*I,n=11 2584007545567922 a001 123/121393*225851433717^(10/21) 2584007548828125 r005 Im(z^2+c),c=-91/64+7/25*I,n=3 2584007554025444 a007 Real Root Of 397*x^4+767*x^3-812*x^2-133*x+612 2584007554262414 r005 Re(z^2+c),c=-13/62+19/32*I,n=38 2584007554700930 r005 Im(z^2+c),c=-21/52+25/57*I,n=54 2584007566090828 r005 Re(z^2+c),c=2/29+29/54*I,n=3 2584007569631160 m001 1/ln(RenyiParking)^2*Backhouse*GAMMA(3/4)^2 2584007573042250 m001 (Chi(1)+GAMMA(13/24))/(2^(1/3)-ln(2)/ln(10)) 2584007584038662 r002 46th iterates of z^2 + 2584007587372898 m001 GAMMA(11/12)*KomornikLoreti+ArtinRank2 2584007594064412 m001 (MertensB1+ZetaP(4))/(arctan(1/2)-Pi^(1/2)) 2584007596371011 r005 Im(z^2+c),c=15/106+11/56*I,n=3 2584007607900245 m001 1/cosh(1)/GAMMA(19/24)^2*ln(sqrt(3)) 2584007629473826 a001 521/832040*13^(21/38) 2584007631979379 a007 Real Root Of 426*x^4+842*x^3-345*x^2+886*x+128 2584007642587216 l006 ln(4531/5867) 2584007645181688 r005 Re(z^2+c),c=31/122+18/41*I,n=29 2584007646990668 s001 sum(exp(-4*Pi/5)^n*A126753[n],n=1..infinity) 2584007652317276 m001 (Si(Pi)-ln(2))/(-cos(1/12*Pi)+polylog(4,1/2)) 2584007655294263 r005 Im(z^2+c),c=-2/3+47/241*I,n=9 2584007656269362 r009 Re(z^3+c),c=-17/110+15/17*I,n=60 2584007658497402 a007 Real Root Of -167*x^4-452*x^3-356*x^2-397*x+998 2584007663246000 r002 56th iterates of z^2 + 2584007664183542 r005 Im(z^2+c),c=-89/102+10/49*I,n=21 2584007669073622 r005 Re(z^2+c),c=9/82+20/23*I,n=4 2584007678615600 a007 Real Root Of -402*x^4-253*x^3-641*x^2+955*x+287 2584007684000391 m001 1/exp(OneNinth)/Si(Pi)^2*Pi^2 2584007690399417 r009 Re(z^3+c),c=-19/46+13/27*I,n=51 2584007696276759 r002 4th iterates of z^2 + 2584007696845560 a001 610*322^(1/4) 2584007704435096 m001 (Backhouse-Tetranacci)/(Pi-ln(2+3^(1/2))) 2584007711509931 r005 Im(z^2+c),c=-4/23+21/58*I,n=16 2584007712720198 a007 Real Root Of -417*x^4-743*x^3+898*x^2-284*x-958 2584007720165557 r009 Re(z^3+c),c=-23/118+3/4*I,n=30 2584007726610507 m001 BesselJ(0,1)-LandauRamanujan-Sierpinski 2584007745616975 a007 Real Root Of 886*x^4-285*x^3+325*x^2-742*x+171 2584007757233612 m001 Si(Pi)^(FeigenbaumB/cos(1)) 2584007764667192 m001 1/GAMMA(11/24)^2/Trott*exp(GAMMA(19/24))^2 2584007767823761 p004 log(24473/1847) 2584007782642437 r005 Im(z^2+c),c=-17/106+2/3*I,n=27 2584007784005209 m001 2^(1/3)*ArtinRank2+Niven 2584007801586125 r005 Re(z^2+c),c=-7/25+10/31*I,n=21 2584007803711393 m005 (1/2*exp(1)-5)/(5/12*Pi+1/10) 2584007805314095 r005 Re(z^2+c),c=-7/34+29/54*I,n=32 2584007808072076 a003 -1-2*cos(1/5*Pi)+cos(5/18*Pi)-cos(7/24*Pi) 2584007816732889 m001 FeigenbaumB^gamma(3)*Sierpinski 2584007820879872 r005 Re(z^2+c),c=-7/24+17/62*I,n=11 2584007838275449 r005 Re(z^2+c),c=-27/98+10/29*I,n=13 2584007838864650 a003 sin(Pi*5/54)*sin(Pi*5/14) 2584007854320261 a001 832040/2207*322^(1/3) 2584007860122847 a003 sin(Pi*23/107)/cos(Pi*19/45) 2584007860281501 r005 Re(z^2+c),c=-11/50+28/57*I,n=38 2584007861500914 r005 Im(z^2+c),c=-17/18+51/211*I,n=11 2584007867212268 m005 (1/2*5^(1/2)-4/9)/(35/16+3/16*5^(1/2)) 2584007871079312 m005 (1/2*5^(1/2)+7/12)/(3/11*2^(1/2)+3/11) 2584007883132206 r009 Re(z^3+c),c=-5/19+6/43*I,n=15 2584007884665600 r009 Re(z^3+c),c=-5/19+6/43*I,n=16 2584007886460382 r009 Re(z^3+c),c=-5/19+6/43*I,n=17 2584007886623740 r009 Re(z^3+c),c=-5/19+6/43*I,n=21 2584007886626433 r009 Re(z^3+c),c=-5/19+6/43*I,n=22 2584007886626874 r009 Re(z^3+c),c=-5/19+6/43*I,n=20 2584007886627199 r009 Re(z^3+c),c=-5/19+6/43*I,n=26 2584007886627201 r009 Re(z^3+c),c=-5/19+6/43*I,n=27 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=28 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=32 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=31 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=33 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=37 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=38 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=39 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=42 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=43 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=44 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=48 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=49 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=53 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=54 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=55 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=59 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=60 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=64 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=63 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=61 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=62 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=58 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=57 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=56 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=52 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=50 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=51 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=47 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=46 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=45 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=41 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=40 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=36 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=35 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=34 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=30 2584007886627203 r009 Re(z^3+c),c=-5/19+6/43*I,n=29 2584007886627215 r009 Re(z^3+c),c=-5/19+6/43*I,n=25 2584007886627290 r009 Re(z^3+c),c=-5/19+6/43*I,n=24 2584007886627308 r009 Re(z^3+c),c=-5/19+6/43*I,n=23 2584007886668771 r009 Re(z^3+c),c=-5/19+6/43*I,n=19 2584007886748674 r009 Re(z^3+c),c=-5/19+6/43*I,n=18 2584007891432524 m001 Zeta(1,2)+BesselJ(1,1)+GAMMA(7/24) 2584007897242645 h001 (5/8*exp(2)+1/8)/(5/11*exp(1)+3/5) 2584007900820289 r009 Re(z^3+c),c=-5/19+6/43*I,n=14 2584007905712241 h001 (11/12*exp(2)+8/9)/(5/6*exp(1)+7/10) 2584007908071806 s002 sum(A011051[n]/(n^2*2^n-1),n=1..infinity) 2584007910624422 l006 ln(6359/8234) 2584007922525216 m001 1/exp(GAMMA(2/3))*MinimumGamma/Zeta(1/2) 2584007926154719 m001 1/MinimumGamma/Khintchine^2*exp(Zeta(9)) 2584007934816789 a003 cos(Pi*11/96)*cos(Pi*30/73) 2584007936820643 a007 Real Root Of 259*x^4+545*x^3-39*x^2+619*x-284 2584007942964514 r005 Re(z^2+c),c=-21/94+15/31*I,n=60 2584007946606943 r002 19th iterates of z^2 + 2584007946910703 r009 Re(z^3+c),c=-5/19+6/43*I,n=12 2584007949146038 r005 Re(z^2+c),c=-83/56+11/60*I,n=4 2584007960626386 r009 Im(z^3+c),c=-45/94+2/21*I,n=45 2584007967894371 h001 (-7*exp(1)-5)/(-6*exp(-3)-9) 2584007969603983 r009 Re(z^3+c),c=-5/19+6/43*I,n=13 2584007980833367 r005 Im(z^2+c),c=-9/34+23/37*I,n=28 2584007983561211 m001 Catalan*FibonacciFactorial-Zeta(1/2) 2584007995008664 a003 cos(Pi*23/83)-sin(Pi*19/53) 2584007998976376 a007 Real Root Of -244*x^4-286*x^3+474*x^2-856*x+567 2584008001707639 m001 MadelungNaCl*MertensB2+StronglyCareFree 2584008010623307 m005 (3/5*gamma-3/4)/(2/3*exp(1)-1/4) 2584008018983032 a005 (1/sin(64/141*Pi))^309 2584008023718305 a001 144/9349*199^(30/31) 2584008037009476 a007 Real Root Of -383*x^4-829*x^3+488*x^2+526*x+873 2584008043091297 m005 (1/2*Pi-1/6)/(3/10*Catalan-9/11) 2584008056335542 m001 (Shi(1)+cos(1/12*Pi))/(-exp(1/exp(1))+Robbin) 2584008076037730 a001 41/329*9227465^(10/21) 2584008083325280 r002 49th iterates of z^2 + 2584008086490551 a007 Real Root Of -254*x^4-609*x^3-231*x^2-615*x+770 2584008091535190 m006 (1/6/Pi-1/5)/(3/5*ln(Pi)+5) 2584008097165991 q001 2553/988 2584008132385397 a001 514229/521*521^(2/13) 2584008134788333 a007 Real Root Of 21*x^4+524*x^3-503*x^2-525*x+654 2584008145117922 m001 Paris*Artin^2/ln((2^(1/3)))^2 2584008152585789 m001 GAMMA(2/3)^BesselK(0,1)/GAMMA(5/24) 2584008163218274 m002 Pi^(-2)+Pi/20 2584008167151793 r009 Im(z^3+c),c=-13/30+8/59*I,n=27 2584008185010008 m005 (1/2*Pi+4/7)/(21/55+1/5*5^(1/2)) 2584008186577400 r005 Im(z^2+c),c=7/38+27/58*I,n=4 2584008193591015 r002 6th iterates of z^2 + 2584008196721311 a001 315249/122 2584008206304131 r005 Im(z^2+c),c=-7/40+19/52*I,n=11 2584008208013017 a004 Fibonacci(13)*Lucas(15)/(1/2+sqrt(5)/2)^10 2584008212435928 m001 1/exp(BesselJ(1,1))/Riemann1stZero*LambertW(1) 2584008228918082 m001 HardyLittlewoodC5^ln(2^(1/2)+1)*LambertW(1) 2584008240240197 m001 Landau/ErdosBorwein*LandauRamanujan 2584008242757470 a001 2/21*8^(12/25) 2584008248502798 s001 sum(exp(-3*Pi/5)^n*A097127[n],n=1..infinity) 2584008256472386 r005 Im(z^2+c),c=-19/18+50/187*I,n=11 2584008259479564 m005 (31/44+1/4*5^(1/2))/(1/11*5^(1/2)+2/7) 2584008271970190 m001 Sierpinski^2*Paris/ln(GAMMA(23/24)) 2584008272862206 m001 (sin(1)+GAMMA(2/3))/(Zeta(1,2)+KomornikLoreti) 2584008275238961 m007 (-3/4*gamma-9/4*ln(2)+3/8*Pi-2/3)/(-3*gamma-4) 2584008282402466 m001 ln(Kolakoski)/GolombDickman^2*Robbin^2 2584008307426103 a001 726103/1926*322^(1/3) 2584008312810855 m001 1/ln((3^(1/3)))*OneNinth*Zeta(1,2)^2 2584008315832498 a001 2584/521*1364^(13/15) 2584008316176001 r009 Re(z^3+c),c=-9/58+8/9*I,n=62 2584008319349841 r005 Im(z^2+c),c=11/64+12/61*I,n=21 2584008321183605 r005 Im(z^2+c),c=5/94+13/49*I,n=13 2584008322450688 m001 (sin(1)-sin(1/5*Pi))/(-DuboisRaymond+Salem) 2584008330805365 m001 GAMMA(2/3)^GAMMA(3/4)*Grothendieck 2584008340052672 m001 (Cahen-GolombDickman)/(Zeta(3)-arctan(1/2)) 2584008346469154 r009 Im(z^3+c),c=-25/62+6/37*I,n=20 2584008349268589 m001 (-ArtinRank2+TreeGrowth2nd)/(Chi(1)+Zeta(1,2)) 2584008350594938 m001 PlouffeB^sin(1)*BesselK(0,1)^sin(1) 2584008360391343 a007 Real Root Of 329*x^4-304*x^3+386*x^2-91*x-56 2584008362566508 h001 (3/7*exp(2)+8/11)/(1/8*exp(2)+7/12) 2584008364579727 a001 322/4181*102334155^(4/21) 2584008368180024 m007 (-3/5*gamma+1/6)/(-1/3*gamma-ln(2)+1/6*Pi-1/3) 2584008372252737 a007 Real Root Of 567*x^4-439*x^3+422*x^2-581*x+127 2584008373533367 a001 5702887/15127*322^(1/3) 2584008382763488 m001 (2*Pi/GAMMA(5/6)-ZetaQ(4))/(ln(2)-Zeta(1/2)) 2584008383178287 a001 4976784/13201*322^(1/3) 2584008384585462 a001 39088169/103682*322^(1/3) 2584008384790766 a001 34111385/90481*322^(1/3) 2584008384820720 a001 267914296/710647*322^(1/3) 2584008384825090 a001 233802911/620166*322^(1/3) 2584008384825728 a001 1836311903/4870847*322^(1/3) 2584008384825821 a001 1602508992/4250681*322^(1/3) 2584008384825834 a001 12586269025/33385282*322^(1/3) 2584008384825836 a001 10983760033/29134601*322^(1/3) 2584008384825837 a001 86267571272/228826127*322^(1/3) 2584008384825837 a001 267913919/710646*322^(1/3) 2584008384825837 a001 591286729879/1568397607*322^(1/3) 2584008384825837 a001 516002918640/1368706081*322^(1/3) 2584008384825837 a001 4052739537881/10749957122*322^(1/3) 2584008384825837 a001 3536736619241/9381251041*322^(1/3) 2584008384825837 a001 6557470319842/17393796001*322^(1/3) 2584008384825837 a001 2504730781961/6643838879*322^(1/3) 2584008384825837 a001 956722026041/2537720636*322^(1/3) 2584008384825837 a001 365435296162/969323029*322^(1/3) 2584008384825837 a001 139583862445/370248451*322^(1/3) 2584008384825837 a001 53316291173/141422324*322^(1/3) 2584008384825837 a001 20365011074/54018521*322^(1/3) 2584008384825843 a001 7778742049/20633239*322^(1/3) 2584008384825878 a001 2971215073/7881196*322^(1/3) 2584008384826122 a001 1134903170/3010349*322^(1/3) 2584008384827791 a001 433494437/1149851*322^(1/3) 2584008384839232 a001 165580141/439204*322^(1/3) 2584008384917651 a001 63245986/167761*322^(1/3) 2584008385325737 m002 -E^Pi+5*Pi^2*Tanh[Pi]^2 2584008385455144 a001 24157817/64079*322^(1/3) 2584008386643176 m001 (PlouffeB-ZetaQ(2))/(gamma(1)+Niven) 2584008389139176 a001 9227465/24476*322^(1/3) 2584008389791875 p004 log(29537/22811) 2584008390003593 a001 2178309/76*9349^(32/43) 2584008391017856 r005 Im(z^2+c),c=-23/40+27/50*I,n=27 2584008393514447 a001 322/28657*2504730781961^(4/21) 2584008394300838 a001 24476*514229^(9/17) 2584008397374328 m001 (cos(1)-gamma(3)*FeigenbaumDelta)/gamma(3) 2584008397420694 r009 Re(z^3+c),c=-37/86+24/47*I,n=57 2584008406424571 r005 Im(z^2+c),c=-8/11+15/53*I,n=18 2584008407339787 a007 Real Root Of -278*x^4-409*x^3+472*x^2-731*x+297 2584008408895511 a001 1346269/76*24476^(31/43) 2584008414389905 a001 3524578/9349*322^(1/3) 2584008418962069 r009 Im(z^3+c),c=-29/70+3/20*I,n=10 2584008422241715 a001 317811/76*15127^(39/43) 2584008449681941 m005 (1/2*2^(1/2)+3/10)/(5/12*Zeta(3)-1/9) 2584008455463967 m005 (1/3*5^(1/2)+2/3)/(1/4*2^(1/2)-9/10) 2584008458082480 a007 Real Root Of -80*x^4-115*x^3+418*x^2+506*x+99 2584008470826440 r005 Re(z^2+c),c=-15/58+9/23*I,n=25 2584008477007819 a007 Real Root Of 566*x^4-588*x^3+462*x^2+2*x-43 2584008478014685 r009 Re(z^3+c),c=-9/70+7/8*I,n=6 2584008478601277 l006 ln(8901/9134) 2584008482314740 a007 Real Root Of -329*x^4-472*x^3+715*x^2-978*x-777 2584008490139327 r005 Im(z^2+c),c=-173/122+1/34*I,n=8 2584008490245752 r005 Im(z^2+c),c=-17/54+23/56*I,n=55 2584008492562877 r005 Im(z^2+c),c=-17/54+23/56*I,n=58 2584008500516447 r005 Im(z^2+c),c=-41/36+1/31*I,n=33 2584008503274953 a001 1597/521*1364^(14/15) 2584008515388178 a001 4181/521*1364^(4/5) 2584008522908382 r009 Re(z^3+c),c=-4/25+23/28*I,n=5 2584008527854409 a008 Real Root of x^4-14*x^2-31*x+129 2584008528374246 m001 1/cos(Pi/12)^2/exp(GAMMA(1/24))^2/sqrt(3) 2584008545694978 r005 Im(z^2+c),c=-15/44+23/55*I,n=22 2584008554215998 m001 1/exp(sin(Pi/5))*(3^(1/3))^2*sqrt(5) 2584008567123723 a001 6765/521*1364^(11/15) 2584008571635827 r009 Re(z^3+c),c=-7/46+34/39*I,n=52 2584008574998886 l006 ln(1828/2367) 2584008575113145 r009 Re(z^3+c),c=-1/26+15/32*I,n=16 2584008580508603 a007 Real Root Of 133*x^4+68*x^3-696*x^2+418*x+971 2584008581620345 m001 FeigenbaumKappa+ln(2+3^(1/2))^RenyiParking 2584008587460993 a001 1346269/3571*322^(1/3) 2584008588632218 r005 Im(z^2+c),c=-3/52+25/39*I,n=18 2584008589427837 m001 (Otter+Sierpinski)/(Chi(1)+Mills) 2584008595411673 r005 Im(z^2+c),c=-29/98+23/57*I,n=22 2584008596837226 a007 Real Root Of -155*x^4-29*x^3+864*x^2-144*x+269 2584008617169337 m001 (Kac+ZetaQ(3))/(5^(1/2)+Ei(1,1)) 2584008617882884 m005 (1/2*5^(1/2)-1/5)/(4*Catalan-1/9) 2584008624488123 m005 (1/2*gamma+1/7)/(3/10*Pi+8/11) 2584008629337258 m001 (ln(gamma)+ln(2^(1/2)+1))^FibonacciFactorial 2584008630043243 a007 Real Root Of -168*x^4-346*x^3+305*x^2+223*x+60 2584008653128719 a007 Real Root Of -120*x^4-341*x^3-184*x^2-55*x+553 2584008662520266 a007 Real Root Of -103*x^4-26*x^3+451*x^2-716*x-718 2584008666379863 r005 Im(z^2+c),c=3/10+1/15*I,n=61 2584008675321541 a001 10946/521*1364^(2/3) 2584008685588465 a001 1364/2178309*2178309^(13/51) 2584008687629077 m005 (1/2*Catalan+3/8)/(1/10*5^(1/2)+3) 2584008688485336 r005 Im(z^2+c),c=3/110+38/47*I,n=3 2584008694089890 r005 Re(z^2+c),c=-2/9+23/48*I,n=18 2584008697845111 a007 Real Root Of -243*x^4+465*x^3+520*x^2+338*x-129 2584008699307106 m005 (1/2*exp(1)+6/7)/(5*3^(1/2)-1/12) 2584008703084575 a007 Real Root Of -509*x^4-855*x^3+916*x^2-565*x+365 2584008705554411 m005 (1/3*gamma+1/11)/(8/9*gamma+7/12) 2584008722121669 b008 2+7*Sinh[1/12] 2584008732679420 m006 (1/4*Pi^2+1/4)/(3/5*Pi-5/6) 2584008732679420 m008 (1/4*Pi^2+1/4)/(3/5*Pi-5/6) 2584008746166702 r005 Re(z^2+c),c=43/126+19/47*I,n=37 2584008748176588 a007 Real Root Of -229*x^4-235*x^3+701*x^2-713*x-368 2584008754561058 m001 (sin(1/5*Pi)-GAMMA(17/24))/(Tribonacci+Thue) 2584008755184841 a007 Real Root Of 128*x^4+544*x^3+997*x^2+777*x-970 2584008758021434 r002 53th iterates of z^2 + 2584008761952695 a001 17711/521*1364^(3/5) 2584008773277056 a003 sin(Pi*9/71)*sin(Pi*13/56) 2584008773552659 r002 23th iterates of z^2 + 2584008775420816 a005 (1/cos(13/159*Pi))^1409 2584008775595108 p004 log(27271/21061) 2584008788020177 b008 31/E^(4*Sqrt[Pi]) 2584008788207695 r005 Re(z^2+c),c=-3/4+45/169*I,n=2 2584008791269815 m001 (2^(1/2)+exp(-1/2*Pi))/(-CareFree+ZetaP(4)) 2584008792987677 a001 2255*1364^(1/53) 2584008796063674 m001 (exp(Pi)+GAMMA(13/24))/(ArtinRank2+MertensB1) 2584008808684003 a007 Real Root Of -270*x^4-659*x^3+321*x^2+892*x+829 2584008823929754 s002 sum(A254391[n]/(n^3*2^n+1),n=1..infinity) 2584008834881651 a001 11/46368*13^(27/29) 2584008836038617 m001 (RenyiParking-Salem)/(GolombDickman+MertensB2) 2584008839385227 m001 log(1+sqrt(2))^2/GAMMA(17/24)^2*ln(sqrt(3)) 2584008839838776 m001 Khinchin^ThueMorse/(Khinchin^exp(sqrt(2))) 2584008840637902 r005 Re(z^2+c),c=41/106+32/59*I,n=6 2584008844325395 r005 Re(z^2+c),c=-19/74+25/63*I,n=30 2584008844756258 a001 4181/3*3571^(4/53) 2584008846395396 a001 7/47*(1/2*5^(1/2)+1/2)^5*47^(5/7) 2584008848606885 m001 1/Rabbit^2*ErdosBorwein^2*exp(cos(Pi/5))^2 2584008856821586 a001 28657/521*1364^(8/15) 2584008860578111 a007 Real Root Of 441*x^4+998*x^3-384*x^2+74*x+313 2584008864655219 a001 832040/521*521^(1/13) 2584008869502131 a007 Real Root Of -727*x^4+595*x^3-339*x^2+727*x+224 2584008878537299 m001 (ln(gamma)+ln(2))/(2*Pi/GAMMA(5/6)-ZetaQ(3)) 2584008880266142 r005 Re(z^2+c),c=-37/114+1/64*I,n=9 2584008880823046 a001 2178309/76*2207^(38/43) 2584008881590762 m001 Ei(1)*OneNinth*ln(GAMMA(7/24))^2 2584008887628002 a001 987/521*3571^(15/17) 2584008897097523 a007 Real Root Of -180*x^4-137*x^3+421*x^2-985*x+305 2584008898958811 m001 1/Si(Pi)/Champernowne*ln(arctan(1/2))^2 2584008902378346 a001 121393/843*322^(1/2) 2584008905059297 a007 Real Root Of -451*x^4-791*x^3+742*x^2-615*x-84 2584008906351624 a007 Real Root Of 216*x^4+615*x^3+523*x^2+639*x-860 2584008909778585 r005 Im(z^2+c),c=-19/46+2/37*I,n=6 2584008914408512 a003 cos(Pi*2/81)-sin(Pi*53/108) 2584008934602868 m001 (exp(Pi)+Psi(2,1/3))/(Robbin+Stephens) 2584008939105412 m006 (3*Pi+1/2)/(1/2/Pi-4) 2584008944233128 m001 (Ei(1,1)-BesselI(1,1))/(Totient-ZetaQ(4)) 2584008944780133 m001 (Bloch+ErdosBorwein)/(BesselK(0,1)-GAMMA(3/4)) 2584008948543946 a001 46368/521*1364^(7/15) 2584008949714501 r009 Im(z^3+c),c=-31/66+1/10*I,n=32 2584008951278050 a007 Real Root Of 29*x^4-209*x^3-813*x^2+71*x+713 2584008958705021 r005 Im(z^2+c),c=-19/36+23/50*I,n=28 2584008962721053 r009 Im(z^3+c),c=-15/56+49/54*I,n=4 2584008968520829 a007 Real Root Of -73*x^4+84*x^3-88*x^2+893*x-226 2584008985912149 r005 Re(z^2+c),c=-125/114+15/59*I,n=10 2584009007761077 r005 Re(z^2+c),c=-6/29+33/56*I,n=4 2584009022579295 m005 (1/2*3^(1/2)-3/11)/(7/9*exp(1)+2/11) 2584009025791498 m001 (Chi(1)+gamma)/(-GolombDickman+ZetaP(4)) 2584009028445369 r005 Im(z^2+c),c=-19/46+28/51*I,n=12 2584009035317622 r005 Re(z^2+c),c=-11/58+34/61*I,n=30 2584009040042338 r005 Im(z^2+c),c=-7/8+43/222*I,n=34 2584009041468178 a001 75025/521*1364^(2/5) 2584009043083483 a001 987/521*9349^(15/19) 2584009049932778 a005 (1/cos(26/181*Pi))^9 2584009051442398 m001 (Ei(1)-BesselI(0,2))/(LandauRamanujan+Sarnak) 2584009056188157 a007 Real Root Of -37*x^4+171*x^3+473*x^2-556*x+5 2584009058368032 r005 Re(z^2+c),c=-15/26+14/117*I,n=2 2584009063342557 a001 987/521*24476^(5/7) 2584009065813965 a001 233/2207*64079^(21/23) 2584009066013093 a001 987/521*64079^(15/23) 2584009066368422 a001 987/521*167761^(3/5) 2584009066378130 a001 233/2207*439204^(7/9) 2584009066388523 a001 233/2207*7881196^(7/11) 2584009066388546 a001 233/2207*20633239^(3/5) 2584009066388549 a001 233/2207*141422324^(7/13) 2584009066388549 a001 233/2207*2537720636^(7/15) 2584009066388549 a001 233/2207*17393796001^(3/7) 2584009066388549 a001 233/2207*45537549124^(7/17) 2584009066388549 a001 233/2207*14662949395604^(1/3) 2584009066388549 a001 233/2207*(1/2+1/2*5^(1/2))^21 2584009066388549 a001 233/2207*192900153618^(7/18) 2584009066388549 a001 233/2207*10749957122^(7/16) 2584009066388549 a001 233/2207*599074578^(1/2) 2584009066388551 a001 233/2207*33385282^(7/12) 2584009066389072 a001 233/2207*1860498^(7/10) 2584009066392387 a001 233/2207*710647^(3/4) 2584009066416068 a001 987/521*439204^(5/9) 2584009066423492 a001 987/521*7881196^(5/11) 2584009066423508 a001 987/521*20633239^(3/7) 2584009066423510 a001 987/521*141422324^(5/13) 2584009066423510 a001 987/521*2537720636^(1/3) 2584009066423510 a001 987/521*45537549124^(5/17) 2584009066423510 a001 987/521*312119004989^(3/11) 2584009066423510 a001 987/521*14662949395604^(5/21) 2584009066423510 a001 987/521*(1/2+1/2*5^(1/2))^15 2584009066423510 a001 987/521*192900153618^(5/18) 2584009066423510 a001 987/521*28143753123^(3/10) 2584009066423510 a001 987/521*10749957122^(5/16) 2584009066423510 a001 987/521*599074578^(5/14) 2584009066423510 a001 987/521*228826127^(3/8) 2584009066423511 a001 987/521*33385282^(5/12) 2584009066423884 a001 987/521*1860498^(1/2) 2584009066573744 a001 987/521*103682^(5/8) 2584009066598876 a001 233/2207*103682^(7/8) 2584009067546838 a001 987/521*39603^(15/22) 2584009067961208 a001 233/2207*39603^(21/22) 2584009070259047 m005 (1/2*2^(1/2)+2/9)/(8/9*Catalan-5/11) 2584009074892853 a001 987/521*15127^(3/4) 2584009088395513 r005 Re(z^2+c),c=-19/60+7/50*I,n=16 2584009088483657 r009 Re(z^3+c),c=-1/31+19/61*I,n=9 2584009089098026 m001 StolarskyHarborth^TravellingSalesman/Cahen 2584009090039679 a001 1364*6557470319842^(7/17) 2584009113461519 m001 (exp(Pi)-polylog(4,1/2))/ZetaQ(3) 2584009115469686 m001 (GAMMA(5/6)-Artin)/(CopelandErdos+Khinchin) 2584009130923217 a001 987/521*5778^(5/6) 2584009133933341 a001 233*1364^(1/3) 2584009135466832 r009 Im(z^3+c),c=-43/122+9/46*I,n=15 2584009136319724 a001 11*2584^(5/46) 2584009140517072 s002 sum(A254391[n]/(n^3*2^n-1),n=1..infinity) 2584009148114997 a007 Real Root Of 560*x^4+731*x^3-581*x^2-841*x+241 2584009160910139 m001 (gamma(1)-Bloch)/(MasserGramain+MinimumGamma) 2584009166241319 r005 Im(z^2+c),c=-43/110+10/23*I,n=58 2584009166784190 m005 (1/2*Zeta(3)-11/12)/(2/11*exp(1)+8/11) 2584009171112705 m001 (Thue+ZetaP(4))/(Grothendieck+Tribonacci) 2584009172988869 r005 Im(z^2+c),c=-37/62+1/21*I,n=46 2584009177239282 a001 121393/76*29^(1/7) 2584009180695482 r005 Im(z^2+c),c=-23/106+21/55*I,n=11 2584009187576557 r008 a(0)=0,K{-n^6,56+27*n^3+15*n^2-59*n} 2584009189729241 a007 Real Root Of 56*x^4-299*x^3-781*x^2+580*x-942 2584009203393692 m005 (19/28+1/4*5^(1/2))/(3/11*gamma-7/11) 2584009209027333 a001 5/24476*47^(29/44) 2584009222940555 s002 sum(A036264[n]/(n^2*2^n+1),n=1..infinity) 2584009223846199 r005 Re(z^2+c),c=-8/25+6/17*I,n=5 2584009224403908 r002 46th iterates of z^2 + 2584009226573857 a001 196418/521*1364^(4/15) 2584009231322785 l006 ln(6437/8335) 2584009236531990 m001 (3^(1/2)-exp(-1/2*Pi))/(-ArtinRank2+OneNinth) 2584009264075467 r005 Re(z^2+c),c=-5/16+10/57*I,n=9 2584009269988412 q001 223/863 2584009276352315 s001 sum(exp(-4*Pi)^(n-1)*A235950[n],n=1..infinity) 2584009280637909 a001 1149851/233*1836311903^(16/17) 2584009280641702 a001 2537720636/233*514229^(16/17) 2584009304372456 r005 Im(z^2+c),c=-35/94+19/33*I,n=52 2584009313673003 b008 21*Erfi[Sin[1]] 2584009317507850 m005 (17/4+1/4*5^(1/2))/(5^(1/2)-3/8) 2584009318120928 a001 317811/322*123^(1/5) 2584009319147399 a001 317811/521*1364^(1/5) 2584009334245219 r009 Re(z^3+c),c=-9/25+5/11*I,n=7 2584009339200515 a007 Real Root Of -380*x^4-614*x^3+779*x^2-239*x+529 2584009343854081 r009 Re(z^3+c),c=-23/50+29/57*I,n=64 2584009345774800 r005 Im(z^2+c),c=-25/98+25/64*I,n=22 2584009347050513 a005 (1/cos(4/111*Pi))^1582 2584009349657589 m001 (BesselK(1,1)+Artin)/(MinimumGamma-Tribonacci) 2584009352291489 m001 (exp(1)-FeigenbaumAlpha)^ln(1+sqrt(2)) 2584009352291489 m001 (exp(1)-FeigenbaumAlpha)^ln(2^(1/2)+1) 2584009353804384 a007 Real Root Of -757*x^4+432*x^3+297*x^2+844*x-242 2584009364572898 a001 2584/521*3571^(13/17) 2584009376527573 r009 Re(z^3+c),c=-13/31+31/59*I,n=30 2584009381810748 m001 (Cahen*ZetaP(3)+ZetaQ(2))/Cahen 2584009385449900 a007 Real Root Of 528*x^4+940*x^3-818*x^2+897*x+458 2584009389776650 m001 (-ln(Pi)+Cahen)/(sin(1)+ln(3)) 2584009391925248 m001 KhinchinHarmonic^Totient+Weierstrass 2584009392611145 a001 4126663/1597 2584009394000327 a001 199/144*55^(19/26) 2584009394258677 a004 Fibonacci(13)*Lucas(17)/(1/2+sqrt(5)/2)^12 2584009405286921 m005 1/4*5^(1/2)/(3/4*gamma-5/11) 2584009405770601 m001 Rabbit/(Magata-TwinPrimes) 2584009411546795 r009 Re(z^3+c),c=-51/110+24/53*I,n=21 2584009411746527 a001 514229/521*1364^(2/15) 2584009417967863 m001 (ln(Pi)-CareFree)/(HeathBrownMoroz-Niven) 2584009418471396 v002 sum(1/(5^n*(31/2*n^2-5/2*n-5)),n=1..infinity) 2584009423160581 m005 (1/2*gamma-1/10)/(3/4*3^(1/2)+6) 2584009423989288 m001 1/FeigenbaumB/ln(GolombDickman)/Pi^2 2584009430146114 r005 Re(z^2+c),c=5/19+4/31*I,n=23 2584009432056212 r009 Re(z^3+c),c=-5/19+6/43*I,n=9 2584009443878516 h001 (-11*exp(3)+3)/(-4*exp(3)-4) 2584009454519505 a001 6765/521*3571^(11/17) 2584009460343356 m001 (Pi-sinh(1))^OrthogonalArrays 2584009460398988 h001 (1/4*exp(1)+1/12)/(4/5*exp(1)+7/9) 2584009461463727 a001 843/55*377^(10/21) 2584009467329249 a007 Real Root Of -287*x^4-709*x^3-893*x^2+396*x+151 2584009481895049 a007 Real Root Of -566*x^4+946*x^3+975*x^2+488*x-205 2584009482045001 a001 10946/521*3571^(10/17) 2584009483456299 a001 4181/521*3571^(12/17) 2584009488003821 a001 17711/521*3571^(9/17) 2584009491630885 l006 ln(4609/5968) 2584009499301006 a001 2584/521*9349^(13/19) 2584009502200379 a001 28657/521*3571^(8/17) 2584009504335887 a001 832040/521*1364^(1/15) 2584009505094750 m001 ln(Niven)^2*Backhouse^2/GAMMA(7/12)^2 2584009513250401 a001 46368/521*3571^(7/17) 2584009516858874 a001 2584/521*24476^(13/21) 2584009519173338 a001 2584/521*64079^(13/23) 2584009519362385 a007 Real Root Of -240*x^4-804*x^3-426*x^2+273*x+378 2584009519493966 a001 233/5778*(1/2+1/2*5^(1/2))^23 2584009519493966 a001 233/5778*4106118243^(1/2) 2584009519529033 a001 2584/521*141422324^(1/3) 2584009519529033 a001 2584/521*(1/2+1/2*5^(1/2))^13 2584009519529033 a001 2584/521*73681302247^(1/4) 2584009519546568 a001 2584/521*271443^(1/2) 2584009519659236 a001 2584/521*103682^(13/24) 2584009519724324 a001 233/5778*103682^(23/24) 2584009520502584 a001 2584/521*39603^(13/22) 2584009520545483 a001 11/10946*3^(49/57) 2584009524400990 m005 (1/2*Zeta(3)+1/5)/(7/9*2^(1/2)+2) 2584009525502292 a001 75025/521*3571^(6/17) 2584009525933964 m001 (exp(-1/2*Pi)+Porter)/(GAMMA(3/4)-gamma) 2584009526869131 a001 2584/521*15127^(13/20) 2584009527057026 a007 Real Root Of -402*x^4-899*x^3+653*x^2+840*x+222 2584009530412860 r009 Re(z^3+c),c=-27/74+18/47*I,n=16 2584009533966297 a007 Real Root Of 307*x^4+711*x^3-499*x^2-447*x+757 2584009536316108 r005 Re(z^2+c),c=-8/25+6/55*I,n=20 2584009536370359 r009 Re(z^3+c),c=-2/15+46/55*I,n=42 2584009537295111 a001 233*3571^(5/17) 2584009537906006 a003 sin(Pi*7/64)*sin(Pi*32/115) 2584009539410212 m001 (exp(-1/2*Pi)-MasserGramain)/(Niven-ZetaQ(3)) 2584009539958140 r005 Re(z^2+c),c=-13/62+11/16*I,n=7 2584009548838928 r005 Re(z^2+c),c=-8/7+6/29*I,n=56 2584009549263279 a001 196418/521*3571^(4/17) 2584009553475731 p001 sum((-1)^n/(473*n+371)/(10^n),n=0..infinity) 2584009561164470 a001 317811/521*3571^(3/17) 2584009562134739 r005 Im(z^2+c),c=-15/74+26/33*I,n=39 2584009563772018 a001 987/521*2207^(15/16) 2584009566903176 a007 Real Root Of -380*x^4-626*x^3+792*x^2-592*x-677 2584009567089213 a001 10803744/4181 2584009567329586 a004 Fibonacci(13)*Lucas(19)/(1/2+sqrt(5)/2)^14 2584009568520215 a001 6765/521*9349^(11/19) 2584009571156070 m001 (gamma(2)+PisotVijayaraghavan)/(Zeta(3)-ln(2)) 2584009573091245 a001 514229/521*3571^(2/17) 2584009575428789 a001 2584/521*5778^(13/18) 2584009577160278 m002 -Pi^2+Pi^4*Csch[Pi]-Coth[Pi]*Log[Pi] 2584009579124280 m008 (1/2*Pi^2+5)/(4*Pi^6-5/6) 2584009579750727 s002 sum(A192791[n]/(n^3*exp(n)-1),n=1..infinity) 2584009581277130 a001 17711/521*9349^(9/19) 2584009583376872 a001 6765/521*24476^(11/21) 2584009585008247 a001 832040/521*3571^(1/17) 2584009585109987 a001 28657/521*9349^(8/19) 2584009585335265 a001 6765/521*64079^(11/23) 2584009585601164 a001 233/15127*20633239^(5/7) 2584009585601168 a001 233/15127*2537720636^(5/9) 2584009585601168 a001 233/15127*312119004989^(5/11) 2584009585601168 a001 233/15127*(1/2+1/2*5^(1/2))^25 2584009585601168 a001 233/15127*3461452808002^(5/12) 2584009585601168 a001 233/15127*28143753123^(1/2) 2584009585601168 a001 233/15127*228826127^(5/8) 2584009585601790 a001 233/15127*1860498^(5/6) 2584009585636224 a001 6765/521*7881196^(1/3) 2584009585636238 a001 6765/521*312119004989^(1/5) 2584009585636238 a001 6765/521*(1/2+1/2*5^(1/2))^11 2584009585636238 a001 6765/521*1568397607^(1/4) 2584009585682011 a001 10946/521*9349^(10/19) 2584009585746410 a001 6765/521*103682^(11/24) 2584009585796308 a001 46368/521*9349^(7/19) 2584009586460012 a001 6765/521*39603^(1/2) 2584009587684499 a001 75025/521*9349^(6/19) 2584009589113616 a001 233*9349^(5/19) 2584009590718084 a001 196418/521*9349^(4/19) 2584009591847091 a001 6765/521*15127^(11/20) 2584009592255574 a001 317811/521*9349^(3/19) 2584009592545221 a001 28284569/10946 2584009592580292 a004 Fibonacci(13)*Lucas(21)/(1/2+sqrt(5)/2)^16 2584009593432577 a001 17711/521*24476^(3/7) 2584009593818647 a001 514229/521*9349^(2/19) 2584009595034899 a001 17711/521*64079^(9/23) 2584009595246045 a001 233/39603*7881196^(9/11) 2584009595246079 a001 233/39603*141422324^(9/13) 2584009595246079 a001 233/39603*2537720636^(3/5) 2584009595246079 a001 233/39603*45537549124^(9/17) 2584009595246079 a001 233/39603*817138163596^(9/19) 2584009595246079 a001 233/39603*14662949395604^(3/7) 2584009595246079 a001 233/39603*(1/2+1/2*5^(1/2))^27 2584009595246079 a001 233/39603*192900153618^(1/2) 2584009595246079 a001 233/39603*10749957122^(9/16) 2584009595246079 a001 233/39603*599074578^(9/14) 2584009595246081 a001 233/39603*33385282^(3/4) 2584009595246751 a001 233/39603*1860498^(9/10) 2584009595250545 a001 46368/521*24476^(1/3) 2584009595276684 a001 17711/521*439204^(1/3) 2584009595281138 a001 17711/521*7881196^(3/11) 2584009595281150 a001 17711/521*141422324^(3/13) 2584009595281150 a001 17711/521*2537720636^(1/5) 2584009595281150 a001 17711/521*45537549124^(3/17) 2584009595281150 a001 17711/521*14662949395604^(1/7) 2584009595281150 a001 17711/521*(1/2+1/2*5^(1/2))^9 2584009595281150 a001 17711/521*192900153618^(1/6) 2584009595281150 a001 17711/521*10749957122^(3/16) 2584009595281150 a001 17711/521*599074578^(3/14) 2584009595281150 a001 17711/521*33385282^(1/4) 2584009595281374 a001 17711/521*1860498^(3/10) 2584009595371290 a001 17711/521*103682^(3/8) 2584009595371948 a001 832040/521*9349^(1/19) 2584009595788130 a001 75025/521*24476^(2/7) 2584009595866642 a001 233*24476^(5/21) 2584009595914829 a001 28657/521*24476^(8/21) 2584009595955146 a001 17711/521*39603^(9/22) 2584009596120505 a001 196418/521*24476^(4/21) 2584009596259203 a001 74049963/28657 2584009596264320 a004 Fibonacci(13)*Lucas(23)/(1/2+sqrt(5)/2)^18 2584009596307390 a001 317811/521*24476^(1/7) 2584009596496795 a001 46368/521*64079^(7/23) 2584009596519858 a001 514229/521*24476^(2/21) 2584009596653253 a001 233/103682*(1/2+1/2*5^(1/2))^29 2584009596653253 a001 233/103682*1322157322203^(1/2) 2584009596688322 a001 46368/521*20633239^(1/5) 2584009596688323 a001 46368/521*17393796001^(1/7) 2584009596688323 a001 46368/521*14662949395604^(1/9) 2584009596688323 a001 46368/521*(1/2+1/2*5^(1/2))^7 2584009596688323 a001 46368/521*599074578^(1/6) 2584009596689602 a001 46368/521*710647^(1/4) 2584009596722554 a001 832040/521*24476^(1/21) 2584009596756821 a001 233*64079^(5/23) 2584009596758432 a001 46368/521*103682^(7/24) 2584009596801066 a001 38773064/15005 2584009596801812 a004 Fibonacci(13)*Lucas(25)/(1/2+sqrt(5)/2)^20 2584009596832648 a001 196418/521*64079^(4/23) 2584009596841497 a001 317811/521*64079^(3/23) 2584009596856345 a001 75025/521*64079^(6/23) 2584009596858557 a001 233/271443*(1/2+1/2*5^(1/2))^31 2584009596858557 a001 233/271443*9062201101803^(1/2) 2584009596875264 a001 233*167761^(1/5) 2584009596875929 a001 514229/521*64079^(2/23) 2584009596880123 a001 507545997/196418 2584009596880231 a004 Fibonacci(13)*Lucas(27)/(1/2+sqrt(5)/2)^22 2584009596888510 a001 233/710647*141422324^(11/13) 2584009596888510 a001 233/710647*2537720636^(11/15) 2584009596888510 a001 233/710647*45537549124^(11/17) 2584009596888510 a001 233/710647*312119004989^(3/5) 2584009596888510 a001 233/710647*14662949395604^(11/21) 2584009596888510 a001 233/710647*(1/2+1/2*5^(1/2))^33 2584009596888510 a001 233/710647*192900153618^(11/18) 2584009596888510 a001 233/710647*10749957122^(11/16) 2584009596888510 a001 233/710647*1568397607^(3/4) 2584009596888510 a001 233/710647*599074578^(11/14) 2584009596888512 a001 233/710647*33385282^(11/12) 2584009596891657 a001 1328772671/514229 2584009596891673 a004 Fibonacci(13)*Lucas(29)/(1/2+sqrt(5)/2)^24 2584009596892880 a001 233/1860498*2537720636^(7/9) 2584009596892880 a001 233/1860498*17393796001^(5/7) 2584009596892880 a001 233/1860498*312119004989^(7/11) 2584009596892880 a001 233/1860498*14662949395604^(5/9) 2584009596892880 a001 233/1860498*(1/2+1/2*5^(1/2))^35 2584009596892880 a001 233/1860498*505019158607^(5/8) 2584009596892880 a001 233/1860498*28143753123^(7/10) 2584009596892880 a001 233/1860498*599074578^(5/6) 2584009596892881 a001 233/1860498*228826127^(7/8) 2584009596893340 a001 3478772016/1346269 2584009596893342 a004 Fibonacci(13)*Lucas(31)/(1/2+sqrt(5)/2)^26 2584009596893518 a001 233/4870847*(1/2+1/2*5^(1/2))^37 2584009596893585 a001 9107543377/3524578 2584009596893585 a004 Fibonacci(13)*Lucas(33)/(1/2+sqrt(5)/2)^28 2584009596893611 a001 233/12752043*2537720636^(13/15) 2584009596893611 a001 233/12752043*45537549124^(13/17) 2584009596893611 a001 233/12752043*14662949395604^(13/21) 2584009596893611 a001 233/12752043*(1/2+1/2*5^(1/2))^39 2584009596893611 a001 233/12752043*192900153618^(13/18) 2584009596893611 a001 233/12752043*73681302247^(3/4) 2584009596893611 a001 233/12752043*10749957122^(13/16) 2584009596893611 a001 233/12752043*599074578^(13/14) 2584009596893621 a001 4768771623/1845493 2584009596893621 a004 Fibonacci(13)*Lucas(35)/(1/2+sqrt(5)/2)^30 2584009596893625 a001 233/33385282*(1/2+1/2*5^(1/2))^41 2584009596893626 a001 62424030968/24157817 2584009596893626 a004 Fibonacci(13)*Lucas(37)/(1/2+sqrt(5)/2)^32 2584009596893626 a001 233*20633239^(1/7) 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^43/Lucas(38) 2584009596893627 a001 701408733/271442 2584009596893627 a004 Fibonacci(13)*Lucas(39)/(1/2+sqrt(5)/2)^34 2584009596893627 a001 233/228826127*45537549124^(15/17) 2584009596893627 a001 233/228826127*312119004989^(9/11) 2584009596893627 a001 233/228826127*14662949395604^(5/7) 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^45/Lucas(40) 2584009596893627 a001 233/228826127*192900153618^(5/6) 2584009596893627 a001 233/228826127*28143753123^(9/10) 2584009596893627 a001 233/228826127*10749957122^(15/16) 2584009596893627 a001 427860673399/165580141 2584009596893627 a004 Fibonacci(13)*Lucas(41)/(1/2+sqrt(5)/2)^36 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^47/Lucas(42) 2584009596893627 a001 1120153785408/433494437 2584009596893627 a004 Fibonacci(13)*Lucas(43)/(1/2+sqrt(5)/2)^38 2584009596893627 a001 233/1568397607*14662949395604^(7/9) 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^49/Lucas(44) 2584009596893627 a001 233/1568397607*505019158607^(7/8) 2584009596893627 a001 586520136565/226980634 2584009596893627 a004 Fibonacci(13)*Lucas(45)/(1/2+sqrt(5)/2)^40 2584009596893627 a001 233/4106118243*817138163596^(17/19) 2584009596893627 a001 233/4106118243*14662949395604^(17/21) 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^51/Lucas(46) 2584009596893627 a001 233/4106118243*192900153618^(17/18) 2584009596893627 a001 7677648263067/2971215073 2584009596893627 a004 Fibonacci(13)*Lucas(47)/(1/2+sqrt(5)/2)^42 2584009596893627 a001 233*2537720636^(1/9) 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^53/Lucas(48) 2584009596893627 a001 20100344106376/7778742049 2584009596893627 a004 Fibonacci(13)*Lucas(49)/(1/2+sqrt(5)/2)^44 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^55/Lucas(50) 2584009596893627 a001 233/28143753123*3461452808002^(11/12) 2584009596893627 a001 52623384056061/20365011074 2584009596893627 a004 Fibonacci(13)*Lucas(51)/(1/2+sqrt(5)/2)^46 2584009596893627 a001 233/73681302247*14662949395604^(19/21) 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^57/Lucas(52) 2584009596893627 a001 137769808061807/53316291173 2584009596893627 a004 Fibonacci(13)*Lucas(53)/(1/2+sqrt(5)/2)^48 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^59/Lucas(54) 2584009596893627 a001 72137208025872/27916772489 2584009596893627 a004 Fibonacci(13)*Lucas(55)/(1/2+sqrt(5)/2)^50 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^61/Lucas(56) 2584009596893627 a004 Fibonacci(13)*Lucas(57)/(1/2+sqrt(5)/2)^52 2584009596893627 a001 233*312119004989^(1/11) 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^63/Lucas(58) 2584009596893627 a004 Fibonacci(13)*Lucas(59)/(1/2+sqrt(5)/2)^54 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^65/Lucas(60) 2584009596893627 a004 Fibonacci(13)*Lucas(61)/(1/2+sqrt(5)/2)^56 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^67/Lucas(62) 2584009596893627 a004 Fibonacci(13)*Lucas(63)/(1/2+sqrt(5)/2)^58 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^69/Lucas(64) 2584009596893627 a004 Fibonacci(13)*Lucas(65)/(1/2+sqrt(5)/2)^60 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^71/Lucas(66) 2584009596893627 a004 Fibonacci(13)*Lucas(67)/(1/2+sqrt(5)/2)^62 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^73/Lucas(68) 2584009596893627 a004 Fibonacci(13)*Lucas(69)/(1/2+sqrt(5)/2)^64 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^75/Lucas(70) 2584009596893627 a004 Fibonacci(13)*Lucas(71)/(1/2+sqrt(5)/2)^66 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^77/Lucas(72) 2584009596893627 a004 Fibonacci(13)*Lucas(73)/(1/2+sqrt(5)/2)^68 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^79/Lucas(74) 2584009596893627 a004 Fibonacci(13)*Lucas(75)/(1/2+sqrt(5)/2)^70 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^81/Lucas(76) 2584009596893627 a004 Fibonacci(13)*Lucas(77)/(1/2+sqrt(5)/2)^72 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^83/Lucas(78) 2584009596893627 a004 Fibonacci(13)*Lucas(79)/(1/2+sqrt(5)/2)^74 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^85/Lucas(80) 2584009596893627 a004 Fibonacci(13)*Lucas(81)/(1/2+sqrt(5)/2)^76 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^87/Lucas(82) 2584009596893627 a004 Fibonacci(13)*Lucas(83)/(1/2+sqrt(5)/2)^78 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^89/Lucas(84) 2584009596893627 a004 Fibonacci(13)*Lucas(85)/(1/2+sqrt(5)/2)^80 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^91/Lucas(86) 2584009596893627 a004 Fibonacci(13)*Lucas(87)/(1/2+sqrt(5)/2)^82 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^93/Lucas(88) 2584009596893627 a004 Fibonacci(13)*Lucas(89)/(1/2+sqrt(5)/2)^84 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^95/Lucas(90) 2584009596893627 a004 Fibonacci(13)*Lucas(91)/(1/2+sqrt(5)/2)^86 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^97/Lucas(92) 2584009596893627 a004 Fibonacci(13)*Lucas(93)/(1/2+sqrt(5)/2)^88 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^99/Lucas(94) 2584009596893627 a004 Fibonacci(13)*Lucas(95)/(1/2+sqrt(5)/2)^90 2584009596893627 a004 Fibonacci(13)*Lucas(97)/(1/2+sqrt(5)/2)^92 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^5/Lucas(1) 2584009596893627 a004 Fibonacci(13)*Lucas(100)/(1/2+sqrt(5)/2)^95 2584009596893627 a004 Fibonacci(13)*Lucas(98)/(1/2+sqrt(5)/2)^93 2584009596893627 a004 Fibonacci(13)*Lucas(99)/(1/2+sqrt(5)/2)^94 2584009596893627 a004 Fibonacci(13)*Lucas(96)/(1/2+sqrt(5)/2)^91 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^100/Lucas(95) 2584009596893627 a004 Fibonacci(13)*Lucas(94)/(1/2+sqrt(5)/2)^89 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^98/Lucas(93) 2584009596893627 a004 Fibonacci(13)*Lucas(92)/(1/2+sqrt(5)/2)^87 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^96/Lucas(91) 2584009596893627 a004 Fibonacci(13)*Lucas(90)/(1/2+sqrt(5)/2)^85 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^94/Lucas(89) 2584009596893627 a004 Fibonacci(13)*Lucas(88)/(1/2+sqrt(5)/2)^83 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^92/Lucas(87) 2584009596893627 a004 Fibonacci(13)*Lucas(86)/(1/2+sqrt(5)/2)^81 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^90/Lucas(85) 2584009596893627 a004 Fibonacci(13)*Lucas(84)/(1/2+sqrt(5)/2)^79 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^88/Lucas(83) 2584009596893627 a004 Fibonacci(13)*Lucas(82)/(1/2+sqrt(5)/2)^77 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^86/Lucas(81) 2584009596893627 a004 Fibonacci(13)*Lucas(80)/(1/2+sqrt(5)/2)^75 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^84/Lucas(79) 2584009596893627 a004 Fibonacci(13)*Lucas(78)/(1/2+sqrt(5)/2)^73 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^82/Lucas(77) 2584009596893627 a004 Fibonacci(13)*Lucas(76)/(1/2+sqrt(5)/2)^71 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^80/Lucas(75) 2584009596893627 a004 Fibonacci(13)*Lucas(74)/(1/2+sqrt(5)/2)^69 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^78/Lucas(73) 2584009596893627 a004 Fibonacci(13)*Lucas(72)/(1/2+sqrt(5)/2)^67 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^76/Lucas(71) 2584009596893627 a004 Fibonacci(13)*Lucas(70)/(1/2+sqrt(5)/2)^65 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^74/Lucas(69) 2584009596893627 a004 Fibonacci(13)*Lucas(68)/(1/2+sqrt(5)/2)^63 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^72/Lucas(67) 2584009596893627 a004 Fibonacci(13)*Lucas(66)/(1/2+sqrt(5)/2)^61 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^70/Lucas(65) 2584009596893627 a004 Fibonacci(13)*Lucas(64)/(1/2+sqrt(5)/2)^59 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^68/Lucas(63) 2584009596893627 a004 Fibonacci(13)*Lucas(62)/(1/2+sqrt(5)/2)^57 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^66/Lucas(61) 2584009596893627 a004 Fibonacci(13)*Lucas(60)/(1/2+sqrt(5)/2)^55 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^64/Lucas(59) 2584009596893627 a004 Fibonacci(13)*Lucas(58)/(1/2+sqrt(5)/2)^53 2584009596893627 a001 1527890584523186/591286729879 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^62/Lucas(57) 2584009596893627 a004 Fibonacci(13)*Lucas(56)/(1/2+sqrt(5)/2)^51 2584009596893627 a001 233/312119004989*14662949395604^(20/21) 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^60/Lucas(55) 2584009596893627 a004 Fibonacci(13)*Lucas(54)/(1/2+sqrt(5)/2)^49 2584009596893627 a001 222916232067553/86267571272 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^58/Lucas(53) 2584009596893627 a001 233*28143753123^(1/10) 2584009596893627 a004 Fibonacci(13)*Lucas(52)/(1/2+sqrt(5)/2)^47 2584009596893627 a001 365435296162/141421803 2584009596893627 a001 233/45537549124*14662949395604^(8/9) 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^56/Lucas(51) 2584009596893627 a004 Fibonacci(13)*Lucas(50)/(1/2+sqrt(5)/2)^45 2584009596893627 a001 6504607989937/2517253805 2584009596893627 a001 233/17393796001*14662949395604^(6/7) 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^54/Lucas(49) 2584009596893627 a004 Fibonacci(13)*Lucas(48)/(1/2+sqrt(5)/2)^43 2584009596893627 a001 12422695843309/4807526976 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^52/Lucas(47) 2584009596893627 a001 233/6643838879*23725150497407^(13/16) 2584009596893627 a001 233/6643838879*505019158607^(13/14) 2584009596893627 a004 Fibonacci(13)*Lucas(46)/(1/2+sqrt(5)/2)^41 2584009596893627 a001 4745047580242/1836311903 2584009596893627 a001 233/2537720636*312119004989^(10/11) 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^50/Lucas(45) 2584009596893627 a001 233/2537720636*3461452808002^(5/6) 2584009596893627 a004 Fibonacci(13)*Lucas(44)/(1/2+sqrt(5)/2)^39 2584009596893627 a001 1812446897417/701408733 2584009596893627 a001 233/969323029*45537549124^(16/17) 2584009596893627 a001 233/969323029*14662949395604^(16/21) 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^48/Lucas(43) 2584009596893627 a001 233/969323029*192900153618^(8/9) 2584009596893627 a001 233/969323029*73681302247^(12/13) 2584009596893627 a001 233*228826127^(1/8) 2584009596893627 a004 Fibonacci(13)*Lucas(42)/(1/2+sqrt(5)/2)^37 2584009596893627 a001 692293112009/267914296 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^46/Lucas(41) 2584009596893627 a001 233/370248451*10749957122^(23/24) 2584009596893627 a004 Fibonacci(13)*Lucas(40)/(1/2+sqrt(5)/2)^35 2584009596893627 a001 52886487722/20466831 2584009596893627 a001 233/141422324*312119004989^(4/5) 2584009596893627 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^44/Lucas(39) 2584009596893627 a001 233/141422324*23725150497407^(11/16) 2584009596893627 a001 233/141422324*73681302247^(11/13) 2584009596893627 a001 233/141422324*10749957122^(11/12) 2584009596893627 a001 233/141422324*4106118243^(22/23) 2584009596893627 a004 Fibonacci(13)*Lucas(38)/(1/2+sqrt(5)/2)^33 2584009596893627 a001 101004203821/39088169 2584009596893628 a001 233/54018521*2537720636^(14/15) 2584009596893628 a001 233/54018521*17393796001^(6/7) 2584009596893628 a001 233/54018521*45537549124^(14/17) 2584009596893628 a001 233/54018521*817138163596^(14/19) 2584009596893628 a001 233/54018521*14662949395604^(2/3) 2584009596893628 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^42/Lucas(37) 2584009596893628 a001 233/54018521*505019158607^(3/4) 2584009596893628 a001 233/54018521*192900153618^(7/9) 2584009596893628 a001 233/54018521*10749957122^(7/8) 2584009596893628 a001 233/54018521*4106118243^(21/23) 2584009596893628 a001 233/54018521*1568397607^(21/22) 2584009596893629 a004 Fibonacci(13)*Lucas(36)/(1/2+sqrt(5)/2)^31 2584009596893629 a001 38580172853/14930352 2584009596893633 a001 233/20633239*2537720636^(8/9) 2584009596893633 a001 233/20633239*312119004989^(8/11) 2584009596893633 a001 233/20633239*(1/2+1/2*5^(1/2))^40 2584009596893633 a001 233/20633239*23725150497407^(5/8) 2584009596893633 a001 233/20633239*73681302247^(10/13) 2584009596893633 a001 233/20633239*28143753123^(4/5) 2584009596893633 a001 233/20633239*10749957122^(5/6) 2584009596893633 a001 233/20633239*4106118243^(20/23) 2584009596893633 a001 233/20633239*1568397607^(10/11) 2584009596893633 a001 233/20633239*599074578^(20/21) 2584009596893643 a004 Fibonacci(13)*Lucas(34)/(1/2+sqrt(5)/2)^29 2584009596893643 a001 14736314738/5702887 2584009596893669 a001 233/7881196*817138163596^(2/3) 2584009596893669 a001 233/7881196*(1/2+1/2*5^(1/2))^38 2584009596893669 a001 233/7881196*10749957122^(19/24) 2584009596893669 a001 233/7881196*4106118243^(19/23) 2584009596893669 a001 233/7881196*1568397607^(19/22) 2584009596893669 a001 233/7881196*599074578^(19/21) 2584009596893669 a001 233/7881196*228826127^(19/20) 2584009596893736 a004 Fibonacci(13)*Lucas(32)/(1/2+sqrt(5)/2)^27 2584009596893737 a001 5628771361/2178309 2584009596893751 a001 233*1860498^(1/6) 2584009596893912 a001 233/3010349*141422324^(12/13) 2584009596893912 a001 233/3010349*2537720636^(4/5) 2584009596893912 a001 233/3010349*45537549124^(12/17) 2584009596893912 a001 233/3010349*14662949395604^(4/7) 2584009596893912 a001 233/3010349*(1/2+1/2*5^(1/2))^36 2584009596893912 a001 233/3010349*505019158607^(9/14) 2584009596893912 a001 233/3010349*192900153618^(2/3) 2584009596893912 a001 233/3010349*73681302247^(9/13) 2584009596893912 a001 233/3010349*10749957122^(3/4) 2584009596893912 a001 233/3010349*4106118243^(18/23) 2584009596893912 a001 233/3010349*1568397607^(9/11) 2584009596893912 a001 233/3010349*599074578^(6/7) 2584009596893912 a001 233/3010349*228826127^(9/10) 2584009596893912 a001 233/3010349*87403803^(18/19) 2584009596894374 a004 Fibonacci(13)*Lucas(30)/(1/2+sqrt(5)/2)^25 2584009596894380 a001 429999869/166408 2584009596895581 a001 233/1149851*45537549124^(2/3) 2584009596895581 a001 233/1149851*(1/2+1/2*5^(1/2))^34 2584009596895581 a001 233/1149851*10749957122^(17/24) 2584009596895581 a001 233/1149851*4106118243^(17/23) 2584009596895581 a001 233/1149851*1568397607^(17/22) 2584009596895581 a001 233/1149851*599074578^(17/21) 2584009596895581 a001 233/1149851*228826127^(17/20) 2584009596895582 a001 233/1149851*87403803^(17/19) 2584009596895584 a001 233/1149851*33385282^(17/18) 2584009596898744 a004 Fibonacci(13)*Lucas(28)/(1/2+sqrt(5)/2)^23 2584009596898785 a001 821226674/317811 2584009596900589 a001 832040/521*64079^(1/23) 2584009596907023 a001 233/439204*(1/2+1/2*5^(1/2))^32 2584009596907023 a001 233/439204*23725150497407^(1/2) 2584009596907023 a001 233/439204*505019158607^(4/7) 2584009596907023 a001 233/439204*73681302247^(8/13) 2584009596907023 a001 233/439204*10749957122^(2/3) 2584009596907023 a001 233/439204*4106118243^(16/23) 2584009596907023 a001 233/439204*1568397607^(8/11) 2584009596907023 a001 233/439204*599074578^(16/21) 2584009596907023 a001 233/439204*228826127^(4/5) 2584009596907023 a001 233/439204*87403803^(16/19) 2584009596907025 a001 233/439204*33385282^(8/9) 2584009596907038 a001 233/439204*12752043^(16/17) 2584009596922092 a001 317811/521*439204^(1/9) 2584009596923577 a001 317811/521*7881196^(1/11) 2584009596923580 a001 317811/521*141422324^(1/13) 2584009596923580 a001 317811/521*2537720636^(1/15) 2584009596923580 a001 317811/521*45537549124^(1/17) 2584009596923580 a001 317811/521*14662949395604^(1/21) 2584009596923580 a001 317811/521*(1/2+1/2*5^(1/2))^3 2584009596923580 a001 317811/521*192900153618^(1/18) 2584009596923580 a001 317811/521*10749957122^(1/16) 2584009596923580 a001 317811/521*599074578^(1/14) 2584009596923581 a001 317811/521*33385282^(1/12) 2584009596923655 a001 317811/521*1860498^(1/10) 2584009596927951 a001 416020/521+416020/521*5^(1/2) 2584009596928588 a004 Fibonacci(32)/Lucas(13)/(1/2+sqrt(5)/2) 2584009596928681 a004 Fibonacci(34)/Lucas(13)/(1/2+sqrt(5)/2)^3 2584009596928695 a004 Fibonacci(36)/Lucas(13)/(1/2+sqrt(5)/2)^5 2584009596928697 a004 Fibonacci(38)/Lucas(13)/(1/2+sqrt(5)/2)^7 2584009596928697 a004 Fibonacci(40)/Lucas(13)/(1/2+sqrt(5)/2)^9 2584009596928697 a004 Fibonacci(42)/Lucas(13)/(1/2+sqrt(5)/2)^11 2584009596928697 a004 Fibonacci(44)/Lucas(13)/(1/2+sqrt(5)/2)^13 2584009596928697 a004 Fibonacci(46)/Lucas(13)/(1/2+sqrt(5)/2)^15 2584009596928697 a004 Fibonacci(48)/Lucas(13)/(1/2+sqrt(5)/2)^17 2584009596928697 a004 Fibonacci(50)/Lucas(13)/(1/2+sqrt(5)/2)^19 2584009596928697 a004 Fibonacci(13)*Lucas(26)/(1/2+sqrt(5)/2)^21 2584009596928697 a004 Fibonacci(54)/Lucas(13)/(1/2+sqrt(5)/2)^23 2584009596928697 a004 Fibonacci(56)/Lucas(13)/(1/2+sqrt(5)/2)^25 2584009596928697 a004 Fibonacci(58)/Lucas(13)/(1/2+sqrt(5)/2)^27 2584009596928697 a004 Fibonacci(60)/Lucas(13)/(1/2+sqrt(5)/2)^29 2584009596928697 a004 Fibonacci(62)/Lucas(13)/(1/2+sqrt(5)/2)^31 2584009596928697 a004 Fibonacci(64)/Lucas(13)/(1/2+sqrt(5)/2)^33 2584009596928697 a004 Fibonacci(66)/Lucas(13)/(1/2+sqrt(5)/2)^35 2584009596928697 a004 Fibonacci(68)/Lucas(13)/(1/2+sqrt(5)/2)^37 2584009596928697 a004 Fibonacci(70)/Lucas(13)/(1/2+sqrt(5)/2)^39 2584009596928697 a004 Fibonacci(72)/Lucas(13)/(1/2+sqrt(5)/2)^41 2584009596928697 a004 Fibonacci(74)/Lucas(13)/(1/2+sqrt(5)/2)^43 2584009596928697 a004 Fibonacci(76)/Lucas(13)/(1/2+sqrt(5)/2)^45 2584009596928697 a004 Fibonacci(78)/Lucas(13)/(1/2+sqrt(5)/2)^47 2584009596928697 a004 Fibonacci(80)/Lucas(13)/(1/2+sqrt(5)/2)^49 2584009596928697 a004 Fibonacci(82)/Lucas(13)/(1/2+sqrt(5)/2)^51 2584009596928697 a004 Fibonacci(84)/Lucas(13)/(1/2+sqrt(5)/2)^53 2584009596928697 a004 Fibonacci(86)/Lucas(13)/(1/2+sqrt(5)/2)^55 2584009596928697 a004 Fibonacci(88)/Lucas(13)/(1/2+sqrt(5)/2)^57 2584009596928697 a004 Fibonacci(90)/Lucas(13)/(1/2+sqrt(5)/2)^59 2584009596928697 a004 Fibonacci(92)/Lucas(13)/(1/2+sqrt(5)/2)^61 2584009596928697 a004 Fibonacci(94)/Lucas(13)/(1/2+sqrt(5)/2)^63 2584009596928697 a004 Fibonacci(96)/Lucas(13)/(1/2+sqrt(5)/2)^65 2584009596928697 a004 Fibonacci(100)/Lucas(13)/(1/2+sqrt(5)/2)^69 2584009596928697 a004 Fibonacci(98)/Lucas(13)/(1/2+sqrt(5)/2)^67 2584009596928697 a004 Fibonacci(99)/Lucas(13)/(1/2+sqrt(5)/2)^68 2584009596928697 a004 Fibonacci(97)/Lucas(13)/(1/2+sqrt(5)/2)^66 2584009596928697 a004 Fibonacci(95)/Lucas(13)/(1/2+sqrt(5)/2)^64 2584009596928697 a004 Fibonacci(93)/Lucas(13)/(1/2+sqrt(5)/2)^62 2584009596928697 a004 Fibonacci(91)/Lucas(13)/(1/2+sqrt(5)/2)^60 2584009596928697 a004 Fibonacci(89)/Lucas(13)/(1/2+sqrt(5)/2)^58 2584009596928697 a004 Fibonacci(87)/Lucas(13)/(1/2+sqrt(5)/2)^56 2584009596928697 a004 Fibonacci(85)/Lucas(13)/(1/2+sqrt(5)/2)^54 2584009596928697 a004 Fibonacci(83)/Lucas(13)/(1/2+sqrt(5)/2)^52 2584009596928697 a004 Fibonacci(81)/Lucas(13)/(1/2+sqrt(5)/2)^50 2584009596928697 a004 Fibonacci(79)/Lucas(13)/(1/2+sqrt(5)/2)^48 2584009596928697 a004 Fibonacci(77)/Lucas(13)/(1/2+sqrt(5)/2)^46 2584009596928697 a004 Fibonacci(75)/Lucas(13)/(1/2+sqrt(5)/2)^44 2584009596928697 a004 Fibonacci(73)/Lucas(13)/(1/2+sqrt(5)/2)^42 2584009596928697 a004 Fibonacci(71)/Lucas(13)/(1/2+sqrt(5)/2)^40 2584009596928697 a004 Fibonacci(69)/Lucas(13)/(1/2+sqrt(5)/2)^38 2584009596928697 a004 Fibonacci(67)/Lucas(13)/(1/2+sqrt(5)/2)^36 2584009596928697 a004 Fibonacci(65)/Lucas(13)/(1/2+sqrt(5)/2)^34 2584009596928697 a004 Fibonacci(63)/Lucas(13)/(1/2+sqrt(5)/2)^32 2584009596928697 a004 Fibonacci(61)/Lucas(13)/(1/2+sqrt(5)/2)^30 2584009596928697 a004 Fibonacci(59)/Lucas(13)/(1/2+sqrt(5)/2)^28 2584009596928697 a004 Fibonacci(57)/Lucas(13)/(1/2+sqrt(5)/2)^26 2584009596928697 a004 Fibonacci(55)/Lucas(13)/(1/2+sqrt(5)/2)^24 2584009596928697 a004 Fibonacci(53)/Lucas(13)/(1/2+sqrt(5)/2)^22 2584009596928697 a004 Fibonacci(51)/Lucas(13)/(1/2+sqrt(5)/2)^20 2584009596928697 a004 Fibonacci(49)/Lucas(13)/(1/2+sqrt(5)/2)^18 2584009596928697 a004 Fibonacci(47)/Lucas(13)/(1/2+sqrt(5)/2)^16 2584009596928697 a004 Fibonacci(45)/Lucas(13)/(1/2+sqrt(5)/2)^14 2584009596928697 a004 Fibonacci(43)/Lucas(13)/(1/2+sqrt(5)/2)^12 2584009596928697 a004 Fibonacci(41)/Lucas(13)/(1/2+sqrt(5)/2)^10 2584009596928697 a004 Fibonacci(39)/Lucas(13)/(1/2+sqrt(5)/2)^8 2584009596928698 a004 Fibonacci(37)/Lucas(13)/(1/2+sqrt(5)/2)^6 2584009596928703 a004 Fibonacci(35)/Lucas(13)/(1/2+sqrt(5)/2)^4 2584009596928739 a004 Fibonacci(33)/Lucas(13)/(1/2+sqrt(5)/2)^2 2584009596928982 a001 1346269/521 2584009596930651 a001 514229/521*(1/2+1/2*5^(1/2))^2 2584009596930651 a001 514229/521*10749957122^(1/24) 2584009596930651 a001 514229/521*4106118243^(1/23) 2584009596930651 a001 514229/521*1568397607^(1/22) 2584009596930651 a001 514229/521*599074578^(1/21) 2584009596930651 a001 514229/521*228826127^(1/20) 2584009596930651 a001 514229/521*87403803^(1/19) 2584009596930652 a001 514229/521*33385282^(1/18) 2584009596930652 a001 514229/521*12752043^(1/17) 2584009596930658 a001 514229/521*4870847^(1/16) 2584009596930701 a001 514229/521*1860498^(1/15) 2584009596931017 a001 514229/521*710647^(1/14) 2584009596933349 a001 514229/521*271443^(1/13) 2584009596937966 a001 832040/521*103682^(1/24) 2584009596942093 a001 196418/521*(1/2+1/2*5^(1/2))^4 2584009596942093 a001 196418/521*23725150497407^(1/16) 2584009596942093 a001 196418/521*73681302247^(1/13) 2584009596942093 a001 196418/521*10749957122^(1/12) 2584009596942093 a001 196418/521*4106118243^(2/23) 2584009596942093 a001 196418/521*1568397607^(1/11) 2584009596942093 a001 196418/521*599074578^(2/21) 2584009596942093 a001 196418/521*228826127^(1/10) 2584009596942093 a001 196418/521*87403803^(2/19) 2584009596942093 a001 196418/521*33385282^(1/9) 2584009596942095 a001 196418/521*12752043^(2/17) 2584009596942106 a001 196418/521*4870847^(1/8) 2584009596942192 a001 196418/521*1860498^(2/15) 2584009596942824 a001 196418/521*710647^(1/7) 2584009596943705 a001 233*103682^(5/24) 2584009596947488 a001 196418/521*271443^(2/13) 2584009596950683 a001 514229/521*103682^(1/12) 2584009596953627 a001 317811/521*103682^(1/8) 2584009596982155 a001 196418/521*103682^(1/6) 2584009596985404 a001 233/167761*7881196^(10/11) 2584009596985436 a001 233/167761*20633239^(6/7) 2584009596985442 a001 233/167761*141422324^(10/13) 2584009596985442 a001 233/167761*2537720636^(2/3) 2584009596985442 a001 233/167761*45537549124^(10/17) 2584009596985442 a001 233/167761*312119004989^(6/11) 2584009596985442 a001 233/167761*14662949395604^(10/21) 2584009596985442 a001 233/167761*(1/2+1/2*5^(1/2))^30 2584009596985442 a001 233/167761*192900153618^(5/9) 2584009596985442 a001 233/167761*28143753123^(3/5) 2584009596985442 a001 233/167761*10749957122^(5/8) 2584009596985442 a001 233/167761*4106118243^(15/23) 2584009596985442 a001 233/167761*1568397607^(15/22) 2584009596985442 a001 233/167761*599074578^(5/7) 2584009596985442 a001 233/167761*228826127^(3/4) 2584009596985442 a001 233/167761*87403803^(15/19) 2584009596985444 a001 233/167761*33385282^(5/6) 2584009596985456 a001 233/167761*12752043^(15/17) 2584009596985544 a001 233/167761*4870847^(15/16) 2584009597002839 a001 832040/521*39603^(1/22) 2584009597017535 a001 75025/521*439204^(2/9) 2584009597020504 a001 75025/521*7881196^(2/11) 2584009597020512 a001 75025/521*141422324^(2/13) 2584009597020512 a001 75025/521*2537720636^(2/15) 2584009597020512 a001 75025/521*45537549124^(2/17) 2584009597020512 a001 75025/521*14662949395604^(2/21) 2584009597020512 a001 75025/521*(1/2+1/2*5^(1/2))^6 2584009597020512 a001 75025/521*10749957122^(1/8) 2584009597020512 a001 75025/521*4106118243^(3/23) 2584009597020512 a001 75025/521*1568397607^(3/22) 2584009597020512 a001 75025/521*599074578^(1/7) 2584009597020512 a001 75025/521*228826127^(3/20) 2584009597020512 a001 75025/521*87403803^(3/19) 2584009597020512 a001 75025/521*33385282^(1/6) 2584009597020515 a001 75025/521*12752043^(3/17) 2584009597020532 a001 75025/521*4870847^(3/16) 2584009597020661 a001 75025/521*1860498^(1/5) 2584009597021608 a001 75025/521*710647^(3/14) 2584009597028605 a001 75025/521*271443^(3/13) 2584009597080429 a001 514229/521*39603^(1/11) 2584009597080605 a001 75025/521*103682^(1/4) 2584009597134001 a004 Fibonacci(13)*Lucas(24)/(1/2+sqrt(5)/2)^19 2584009597135955 a001 119815357/46368 2584009597148246 a001 317811/521*39603^(3/22) 2584009597212543 a001 46368/521*39603^(7/22) 2584009597241647 a001 196418/521*39603^(2/11) 2584009597268070 a001 233*39603^(5/22) 2584009597339115 a001 28657/521*64079^(8/23) 2584009597469843 a001 75025/521*39603^(3/11) 2584009597492574 a001 832040/521*15127^(1/20) 2584009597522929 a001 233/64079*20633239^(4/5) 2584009597522934 a001 233/64079*17393796001^(4/7) 2584009597522934 a001 233/64079*14662949395604^(4/9) 2584009597522934 a001 233/64079*(1/2+1/2*5^(1/2))^28 2584009597522934 a001 233/64079*73681302247^(7/13) 2584009597522934 a001 233/64079*10749957122^(7/12) 2584009597522934 a001 233/64079*4106118243^(14/23) 2584009597522934 a001 233/64079*1568397607^(7/11) 2584009597522934 a001 233/64079*599074578^(2/3) 2584009597522934 a001 233/64079*228826127^(7/10) 2584009597522934 a001 233/64079*87403803^(14/19) 2584009597522936 a001 233/64079*33385282^(7/9) 2584009597522947 a001 233/64079*12752043^(14/17) 2584009597523029 a001 233/64079*4870847^(7/8) 2584009597523631 a001 233/64079*1860498^(14/15) 2584009597558004 a001 28657/521*(1/2+1/2*5^(1/2))^8 2584009597558004 a001 28657/521*23725150497407^(1/8) 2584009597558004 a001 28657/521*73681302247^(2/13) 2584009597558004 a001 28657/521*10749957122^(1/6) 2584009597558004 a001 28657/521*4106118243^(4/23) 2584009597558004 a001 28657/521*1568397607^(2/11) 2584009597558004 a001 28657/521*599074578^(4/21) 2584009597558004 a001 28657/521*228826127^(1/5) 2584009597558004 a001 28657/521*87403803^(4/19) 2584009597558005 a001 28657/521*33385282^(2/9) 2584009597558008 a001 28657/521*12752043^(4/17) 2584009597558031 a001 28657/521*4870847^(1/4) 2584009597558203 a001 28657/521*1860498^(4/15) 2584009597559466 a001 28657/521*710647^(2/7) 2584009597568795 a001 28657/521*271443^(4/13) 2584009597638129 a001 28657/521*103682^(1/3) 2584009598059897 a001 514229/521*15127^(1/10) 2584009598157112 a001 28657/521*39603^(4/11) 2584009598541175 a004 Fibonacci(13)*Lucas(22)/(1/2+sqrt(5)/2)^17 2584009598554570 a001 45765394/17711 2584009598617449 a001 317811/521*15127^(3/20) 2584009599188063 a001 10946/521*24476^(10/21) 2584009599200584 a001 196418/521*15127^(1/5) 2584009599716742 a001 233*15127^(1/4) 2584009599812818 r005 Im(z^2+c),c=-47/74+13/41*I,n=20 2584009600362756 a001 17711/521*15127^(9/20) 2584009600408249 a001 75025/521*15127^(3/10) 2584009600640684 a001 46368/521*15127^(7/20) 2584009600968421 a001 10946/521*64079^(10/23) 2584009601191391 m001 (ln(2)-BesselI(1,2))/(polylog(4,1/2)+Otter) 2584009601205307 a001 10946/521*167761^(2/5) 2584009601206962 a001 233/24476*141422324^(2/3) 2584009601206962 a001 233/24476*(1/2+1/2*5^(1/2))^26 2584009601206962 a001 233/24476*73681302247^(1/2) 2584009601206962 a001 233/24476*10749957122^(13/24) 2584009601206962 a001 233/24476*4106118243^(13/23) 2584009601206962 a001 233/24476*1568397607^(13/22) 2584009601206962 a001 233/24476*599074578^(13/21) 2584009601206962 a001 233/24476*228826127^(13/20) 2584009601206963 a001 233/24476*87403803^(13/19) 2584009601206964 a001 233/24476*33385282^(13/18) 2584009601206975 a001 233/24476*12752043^(13/17) 2584009601207051 a001 233/24476*4870847^(13/16) 2584009601207609 a001 233/24476*1860498^(13/15) 2584009601211714 a001 233/24476*710647^(13/14) 2584009601227932 a001 832040/521*5778^(1/18) 2584009601242031 a001 10946/521*20633239^(2/7) 2584009601242033 a001 10946/521*2537720636^(2/9) 2584009601242033 a001 10946/521*312119004989^(2/11) 2584009601242033 a001 10946/521*(1/2+1/2*5^(1/2))^10 2584009601242033 a001 10946/521*28143753123^(1/5) 2584009601242033 a001 10946/521*10749957122^(5/24) 2584009601242033 a001 10946/521*4106118243^(5/23) 2584009601242033 a001 10946/521*1568397607^(5/22) 2584009601242033 a001 10946/521*599074578^(5/21) 2584009601242033 a001 10946/521*228826127^(1/4) 2584009601242033 a001 10946/521*87403803^(5/19) 2584009601242033 a001 10946/521*33385282^(5/18) 2584009601242037 a001 10946/521*12752043^(5/17) 2584009601242067 a001 10946/521*4870847^(5/16) 2584009601242281 a001 10946/521*1860498^(1/3) 2584009601243860 a001 10946/521*710647^(5/14) 2584009601255521 a001 10946/521*271443^(5/13) 2584009601342188 a001 10946/521*103682^(5/12) 2584009601990918 a001 10946/521*39603^(5/11) 2584009602074988 a001 28657/521*15127^(2/5) 2584009604291210 m001 1/exp(Ei(1))/OneNinth/cos(1) 2584009605530614 a001 514229/521*5778^(1/9) 2584009605669485 m001 (KhinchinLevy+Otter)/(Chi(1)+BesselJ(0,1)) 2584009606888262 a001 10946/521*15127^(1/2) 2584009607820712 a001 4181/521*9349^(12/19) 2584009608186086 a004 Fibonacci(13)*Lucas(20)/(1/2+sqrt(5)/2)^15 2584009608277900 a001 3496165/1353 2584009609823524 a001 317811/521*5778^(1/6) 2584009614142018 a001 196418/521*5778^(2/9) 2584009614842262 r005 Im(z^2+c),c=-8/19+17/59*I,n=3 2584009615646101 m001 1/exp(gamma)^2*ArtinRank2*sinh(1) 2584009618393533 a001 233*5778^(5/18) 2584009621814983 a005 (1/sin(86/177*Pi))^964 2584009622820399 a001 75025/521*5778^(1/3) 2584009624027975 a001 4181/521*24476^(4/7) 2584009626164404 a001 4181/521*64079^(12/23) 2584009626445761 a001 233/9349*439204^(8/9) 2584009626457638 a001 233/9349*7881196^(8/11) 2584009626457668 a001 233/9349*141422324^(8/13) 2584009626457668 a001 233/9349*2537720636^(8/15) 2584009626457668 a001 233/9349*45537549124^(8/17) 2584009626457668 a001 233/9349*14662949395604^(8/21) 2584009626457668 a001 233/9349*(1/2+1/2*5^(1/2))^24 2584009626457668 a001 233/9349*192900153618^(4/9) 2584009626457668 a001 233/9349*73681302247^(6/13) 2584009626457668 a001 233/9349*10749957122^(1/2) 2584009626457668 a001 233/9349*4106118243^(12/23) 2584009626457668 a001 233/9349*1568397607^(6/11) 2584009626457668 a001 233/9349*599074578^(4/7) 2584009626457668 a001 233/9349*228826127^(3/5) 2584009626457668 a001 233/9349*87403803^(12/19) 2584009626457670 a001 233/9349*33385282^(2/3) 2584009626457679 a001 233/9349*12752043^(12/17) 2584009626457750 a001 233/9349*4870847^(3/4) 2584009626458265 a001 233/9349*1860498^(4/5) 2584009626462054 a001 233/9349*710647^(6/7) 2584009626486784 a001 4181/521*439204^(4/9) 2584009626490041 a001 233/9349*271443^(12/13) 2584009626492723 a001 4181/521*7881196^(4/11) 2584009626492738 a001 4181/521*141422324^(4/13) 2584009626492738 a001 4181/521*2537720636^(4/15) 2584009626492738 a001 4181/521*45537549124^(4/17) 2584009626492738 a001 4181/521*817138163596^(4/19) 2584009626492738 a001 4181/521*14662949395604^(4/21) 2584009626492738 a001 4181/521*(1/2+1/2*5^(1/2))^12 2584009626492738 a001 4181/521*192900153618^(2/9) 2584009626492738 a001 4181/521*73681302247^(3/13) 2584009626492738 a001 4181/521*10749957122^(1/4) 2584009626492738 a001 4181/521*4106118243^(6/23) 2584009626492738 a001 4181/521*1568397607^(3/11) 2584009626492738 a001 4181/521*599074578^(2/7) 2584009626492738 a001 4181/521*228826127^(3/10) 2584009626492738 a001 4181/521*87403803^(6/19) 2584009626492739 a001 4181/521*33385282^(1/3) 2584009626492743 a001 4181/521*12752043^(6/17) 2584009626492779 a001 4181/521*4870847^(3/8) 2584009626493036 a001 4181/521*1860498^(2/5) 2584009626494931 a001 4181/521*710647^(3/7) 2584009626508924 a001 4181/521*271443^(6/13) 2584009626612925 a001 4181/521*103682^(1/2) 2584009626788192 a001 46368/521*5778^(7/18) 2584009627391400 a001 4181/521*39603^(6/11) 2584009630084522 a001 832040/521*2207^(1/16) 2584009631957854 a001 28657/521*5778^(4/9) 2584009632687792 a001 1597/521*3571^(14/17) 2584009632936032 a001 6765/521*5778^(11/18) 2584009633268213 a001 4181/521*15127^(3/5) 2584009633980981 a001 17711/521*5778^(1/2) 2584009641866437 a007 Real Root Of 29*x^4+751*x^3+80*x^2+963*x-285 2584009644241845 a001 10946/521*5778^(5/9) 2584009659876667 m001 HardyLittlewoodC4*(3^(1/3)-BesselK(1,1)) 2584009663243794 a001 514229/521*2207^(1/8) 2584009669195742 a007 Real Root Of 651*x^4-597*x^3+781*x^2-970*x-316 2584009669671536 m001 (FellerTornier+Magata)/(sin(1)+BesselK(1,1)) 2584009674293291 a004 Fibonacci(13)*Lucas(18)/(1/2+sqrt(5)/2)^13 2584009674818597 r005 Re(z^2+c),c=-7/5+67/122*I,n=2 2584009674922600 a001 6677081/2584 2584009677308929 a007 Real Root Of -465*x^4-833*x^3+965*x^2-44*x-198 2584009677546717 m005 (1/2*Catalan-5)/(5/9*5^(1/2)-3) 2584009677866051 a007 Real Root Of 505*x^4+929*x^3-742*x^2+520*x-188 2584009678092514 a001 4181/521*5778^(2/3) 2584009686258210 m005 (1/3*2^(1/2)+3/4)/(1/6*5^(1/2)+1/10) 2584009692071254 r009 Im(z^3+c),c=-59/106+12/19*I,n=33 2584009696393295 a001 317811/521*2207^(3/16) 2584009708156622 m001 Pi/Psi(2,1/3)-sin(1/12*Pi)/GAMMA(17/24) 2584009718370154 l006 ln(7390/9569) 2584009723186190 a005 (1/cos(37/235*Pi))^296 2584009729568379 a001 196418/521*2207^(1/4) 2584009732714920 m001 ln(2)/ln(10)+MadelungNaCl*Mills 2584009733603497 r005 Re(z^2+c),c=17/44+17/55*I,n=23 2584009736822266 r005 Im(z^2+c),c=-39/118+31/64*I,n=13 2584009761413362 m001 (-MadelungNaCl+Tetranacci)/(Catalan-Ei(1,1)) 2584009762676486 a001 233*2207^(5/16) 2584009763524031 m001 Lehmer-cos(1/5*Pi)^(2/3*Pi*3^(1/2)/GAMMA(2/3)) 2584009763524031 m001 Lehmer-cos(Pi/5)^GAMMA(1/3) 2584009767138914 a007 Real Root Of -715*x^4-200*x^3-834*x^2+753*x+250 2584009773708496 a001 514229/1364*322^(1/3) 2584009776045371 m001 1/Kolakoski*ln(GolombDickman)*TwinPrimes^2 2584009777779615 a001 1597/521*9349^(14/19) 2584009778998179 a007 Real Root Of -799*x^4+825*x^3+37*x^2+579*x-15 2584009782257293 r005 Re(z^2+c),c=19/56+4/11*I,n=45 2584009789998144 m001 1/exp(GAMMA(3/4))^2/FransenRobinson*sin(1) 2584009795756857 m005 (1/2*2^(1/2)+9/11)/(7/10*exp(1)+4) 2584009795959944 a001 75025/521*2207^(3/8) 2584009796688090 a001 1597/521*24476^(2/3) 2584009798926647 a001 233/3571*64079^(22/23) 2584009799180591 a001 1597/521*64079^(14/23) 2584009799217606 m001 (3^(1/2)+Zeta(5))/(HardyLittlewoodC5+Robbin) 2584009799528565 a001 233/3571*7881196^(2/3) 2584009799528593 a001 233/3571*312119004989^(2/5) 2584009799528593 a001 233/3571*(1/2+1/2*5^(1/2))^22 2584009799528593 a001 233/3571*10749957122^(11/24) 2584009799528593 a001 233/3571*4106118243^(11/23) 2584009799528593 a001 233/3571*1568397607^(1/2) 2584009799528593 a001 233/3571*599074578^(11/21) 2584009799528593 a001 233/3571*228826127^(11/20) 2584009799528593 a001 233/3571*87403803^(11/19) 2584009799528594 a001 233/3571*33385282^(11/18) 2584009799528603 a001 233/3571*12752043^(11/17) 2584009799528668 a001 233/3571*4870847^(11/16) 2584009799529140 a001 233/3571*1860498^(11/15) 2584009799532613 a001 233/3571*710647^(11/14) 2584009799558268 a001 233/3571*271443^(11/13) 2584009799563645 a001 1597/521*20633239^(2/5) 2584009799563647 a001 1597/521*17393796001^(2/7) 2584009799563647 a001 1597/521*14662949395604^(2/9) 2584009799563647 a001 1597/521*(1/2+1/2*5^(1/2))^14 2584009799563647 a001 1597/521*10749957122^(7/24) 2584009799563647 a001 1597/521*4106118243^(7/23) 2584009799563647 a001 1597/521*1568397607^(7/22) 2584009799563647 a001 1597/521*599074578^(1/3) 2584009799563647 a001 1597/521*228826127^(7/20) 2584009799563647 a001 1597/521*87403803^(7/19) 2584009799563648 a001 1597/521*33385282^(7/18) 2584009799563654 a001 1597/521*12752043^(7/17) 2584009799563695 a001 1597/521*4870847^(7/16) 2584009799563996 a001 1597/521*1860498^(7/15) 2584009799566206 a001 1597/521*710647^(1/2) 2584009799582531 a001 1597/521*271443^(7/13) 2584009799703865 a001 1597/521*103682^(7/12) 2584009799748936 a001 233/3571*103682^(11/12) 2584009800123051 m005 (1/2*gamma-2/7)/(8/11*exp(1)-6/7) 2584009800612087 a001 1597/521*39603^(7/11) 2584009807468369 a001 1597/521*15127^(7/10) 2584009807862540 r005 Im(z^2+c),c=-1/38+12/31*I,n=3 2584009816942499 r005 Re(z^2+c),c=-9/14+73/237*I,n=7 2584009821126583 a007 Real Root Of 13*x^4+358*x^3+608*x^2+968*x-15 2584009822123845 m001 (3^(1/2)-GolombDickman)/(-RenyiParking+Salem) 2584009828784329 a001 46368/521*2207^(7/16) 2584009830515965 r005 Im(z^2+c),c=-19/60+34/59*I,n=21 2584009852242026 r009 Re(z^3+c),c=-3/98+47/63*I,n=4 2584009856651827 a001 832040/521*843^(1/14) 2584009859763390 a001 1597/521*5778^(7/9) 2584009861971829 r005 Re(z^2+c),c=-29/114+21/52*I,n=27 2584009862810584 a001 28657/521*2207^(1/2) 2584009868519677 r005 Im(z^2+c),c=3/29+11/45*I,n=5 2584009871764320 m001 (gamma+cos(1/5*Pi))/(-FellerTornier+Thue) 2584009873335586 a007 Real Root Of 79*x^4+223*x^3+314*x^2+716*x+79 2584009874786277 r005 Im(z^2+c),c=5/106+7/26*I,n=7 2584009881689185 m001 GAMMA(2/3)*Riemann3rdZero^Catalan 2584009883210735 m001 HardHexagonsEntropy^FransenRobinson/Paris 2584009886892697 m005 (1/3*gamma-2/11)/(2*5^(1/2)-3/8) 2584009893690303 a001 17711/521*2207^(9/16) 2584009894576205 p002 log(18^(1/6)+19^(5/6)) 2584009900548683 r005 Im(z^2+c),c=-83/98+8/51*I,n=12 2584009908263731 r002 34th iterates of z^2 + 2584009913332068 r009 Re(z^3+c),c=-12/25+32/61*I,n=48 2584009931183323 a001 514229/2207*322^(5/12) 2584009932807762 a001 10946/521*2207^(5/8) 2584009935199210 r002 10th iterates of z^2 + 2584009937817559 r005 Re(z^2+c),c=21/64+11/61*I,n=48 2584009941734129 l003 Psi(2,37/38) 2584009950358541 a001 6765/521*2207^(11/16) 2584009950564476 a001 2584/521*2207^(13/16) 2584009953019537 m005 (1/2*Pi-8/9)/(1/7*5^(1/2)-7/12) 2584009959619083 m001 exp(1/exp(1))*KomornikLoreti+gamma(3) 2584009961486080 r005 Im(z^2+c),c=-3/4+22/225*I,n=19 2584009965544459 a007 Real Root Of 86*x^4-138*x^3-523*x^2-337*x+124 2584009969146240 r005 Re(z^2+c),c=-4/15+39/64*I,n=37 2584009969689514 m001 1/GAMMA(1/12)^2/BesselJ(0,1)*exp(GAMMA(1/6)) 2584009975464760 m006 (3/4*Pi^2-4)/(4*Pi+3/5) 2584009975464760 m008 (3/4*Pi^2-4)/(4*Pi+3/5) 2584009977871781 r002 6th iterates of z^2 + 2584009977930474 r009 Re(z^3+c),c=-9/50+14/19*I,n=56 2584009993173044 m001 1/FeigenbaumC*exp(Kolakoski)^2*cos(Pi/12) 2584009995460895 m001 ZetaQ(4)^GAMMA(11/12)*5^(1/2) 2584010004432772 m009 (2/5*Pi^2-2/3)/(6*Catalan+3/4*Pi^2-1/5) 2584010005577780 s001 sum(exp(-3*Pi/5)^n*A261309[n],n=1..infinity) 2584010012790894 m001 FeigenbaumD^RenyiParking/AlladiGrinstead 2584010017050130 m001 (sin(1)+Cahen)/(-HeathBrownMoroz+Stephens) 2584010024371622 a001 4181/521*2207^(3/4) 2584010029239708 m005 (1/3*5^(1/2)+1/6)/(3/10*3^(1/2)-1/6) 2584010029414597 m001 (CareFree+Otter)/(Totient+ZetaP(4)) 2584010039398959 p004 log(20021/1511) 2584010049838560 p001 sum((-1)^n/(361*n+25)/n/(100^n),n=1..infinity) 2584010053069105 r005 Im(z^2+c),c=-49/78+7/31*I,n=7 2584010057684273 m001 Si(Pi)^arctan(1/3)/Bloch 2584010058184196 r002 5th iterates of z^2 + 2584010070552397 a007 Real Root Of -235*x^4+603*x^3+4*x^2+640*x-175 2584010094149103 l006 ln(2781/3601) 2584010105369224 m001 (GAMMA(3/4)-GolombDickman)/(Porter+Thue) 2584010115405213 m002 -Cosh[Pi]+E^Pi*Cosh[Pi]+2/Log[Pi] 2584010116378430 a001 514229/521*843^(1/7) 2584010118392744 r002 63th iterates of z^2 + 2584010119523214 a007 Real Root Of -122*x^4-555*x^3-655*x^2-243*x-391 2584010120489994 m005 (1/2*5^(1/2)-1/11)/(Pi+5/6) 2584010122918320 r005 Re(z^2+c),c=17/64+27/47*I,n=32 2584010125889158 a001 2207/377*34^(8/19) 2584010127398814 a004 Fibonacci(13)*Lucas(16)/(1/2+sqrt(5)/2)^11 2584010128674995 r005 Re(z^2+c),c=9/28+4/23*I,n=51 2584010129505771 m001 (GAMMA(13/24)+LaplaceLimit)/(Porter-Stephens) 2584010131712259 a001 2550418/987 2584010133176618 m009 (6*Psi(1,3/4)+5/6)/(1/12*Pi^2-1/5) 2584010135398588 r009 Re(z^3+c),c=-17/62+4/23*I,n=11 2584010161888229 m009 (1/4*Psi(1,1/3)+1/3)/(3/5*Psi(1,1/3)+5) 2584010166256401 p001 sum((-1)^n/(598*n+361)/(5^n),n=0..infinity) 2584010166336242 m001 (Psi(1,1/3)+gamma)/(-PrimesInBinary+ZetaQ(4)) 2584010179404641 m001 3*cos(Pi/5)-Khinchin 2584010180971064 a001 1364/13*5^(14/25) 2584010185701816 m009 (3/5*Psi(1,2/3)+2/5)/(4/3*Catalan+1/6*Pi^2-2) 2584010188376611 r009 Re(z^3+c),c=-27/86+27/47*I,n=6 2584010198557584 s001 sum(exp(-Pi/2)^n*A277800[n],n=1..infinity) 2584010206328961 m001 (Stephens-Trott)/(BesselI(1,2)+Gompertz) 2584010208602605 p003 LerchPhi(1/100,2,127/204) 2584010216057130 r005 Re(z^2+c),c=2/17+40/63*I,n=11 2584010216144774 r005 Re(z^2+c),c=-29/122+23/52*I,n=16 2584010222348538 a001 610/3*15127^(14/53) 2584010231406956 m001 BesselJ(1,1)-exp(-1/2*Pi)*ReciprocalFibonacci 2584010236976785 a007 Real Root Of 271*x^4-344*x^3+653*x^2-566*x-197 2584010240532865 g004 Im(GAMMA(17/30+I*13/3)) 2584010241435347 a001 10749957122*144^(3/17) 2584010242076159 a007 Real Root Of -502*x^4-927*x^3+985*x^2+132*x+151 2584010244724241 r005 Im(z^2+c),c=-57/122+2/47*I,n=15 2584010250603416 m005 (7/8+1/4*5^(1/2))/(3/5*Catalan+5) 2584010263755716 a001 1597/521*2207^(7/8) 2584010271414342 a007 Real Root Of -331*x^4-525*x^3+702*x^2-419*x-71 2584010286801329 a001 123/55*987^(31/45) 2584010287624048 m001 Porter^2/exp(Magata)*BesselK(1,1)^2 2584010289398272 m001 1/Lehmer/ln(Si(Pi))^2/PrimesInBinary^2 2584010291157043 m006 (5*exp(Pi)-1/5)/(5/6*exp(2*Pi)+3/4) 2584010302334350 m001 (Lehmer+Sarnak)/(sin(1/12*Pi)-exp(-1/2*Pi)) 2584010303798440 b008 SphericalBesselJ[0,27/11] 2584010310134941 r002 10th iterates of z^2 + 2584010312002394 a001 47/317811*1346269^(15/41) 2584010315340036 h001 (1/2*exp(2)+1/10)/(2/11*exp(2)+1/8) 2584010331487135 m001 (BesselI(1,1)*Conway+Sarnak)/BesselI(1,1) 2584010335087873 r005 Im(z^2+c),c=25/102+1/7*I,n=7 2584010349846985 m001 1/exp(GAMMA(7/12))^2*RenyiParking^2/Zeta(7)^2 2584010350216755 m001 (ln(gamma)+Cahen)/(Niven+Tetranacci) 2584010365934954 m002 -6-E^Pi/18+Pi^2 2584010375522136 b008 Sqrt[Pi]*AiryBi[1]^2 2584010376095287 a001 317811/521*843^(3/14) 2584010377919518 a001 17/12238*47^(41/54) 2584010378111026 h001 (1/3*exp(1)+7/12)/(3/4*exp(2)+2/9) 2584010378414864 s001 sum(exp(-4*Pi)^(n-1)*A260840[n],n=1..infinity) 2584010380049331 m001 (Gompertz-Salem)/(Pi^(1/2)+Bloch) 2584010384287222 a001 1346269/5778*322^(5/12) 2584010388160962 r002 28th iterates of z^2 + 2584010392653099 r009 Im(z^3+c),c=-7/13+6/43*I,n=17 2584010397845082 r005 Im(z^2+c),c=-55/114+2/45*I,n=22 2584010402009532 r002 6th iterates of z^2 + 2584010402141666 m001 (-arctan(1/3)+sin(1/12*Pi))/(cos(1)+Ei(1)) 2584010402326482 r005 Im(z^2+c),c=-25/86+10/23*I,n=10 2584010404810347 m001 (FeigenbaumB-Shi(1))/(-GaussAGM+RenyiParking) 2584010405610914 m001 Sierpinski*cos(1/12*Pi)^Trott 2584010417452173 a007 Real Root Of 298*x^4+499*x^3-468*x^2+458*x-368 2584010421257356 r005 Im(z^2+c),c=-9/26+13/24*I,n=21 2584010422558823 a003 cos(Pi*9/34)-sin(Pi*34/89) 2584010429918094 m009 (4/5*Psi(1,1/3)-3)/(3/4*Psi(1,2/3)-1/3) 2584010436940483 m001 (gamma(2)-KomornikLoreti)/(Pi-Psi(1,1/3)) 2584010443145260 s002 sum(A023693[n]/(n*pi^n-1),n=1..infinity) 2584010447485492 a007 Real Root Of 191*x^4+340*x^3-711*x^2-889*x-199 2584010449433446 a007 Real Root Of -589*x^4+942*x^3+625*x^2+905*x+211 2584010450394203 a001 3524578/15127*322^(5/12) 2584010451045684 a007 Real Root Of 196*x^4+562*x^3+49*x^2-476*x-599 2584010452698420 r009 Im(z^3+c),c=-67/110+11/47*I,n=43 2584010455366355 r005 Im(z^2+c),c=-11/18+6/125*I,n=50 2584010460039082 a001 9227465/39603*322^(5/12) 2584010460349378 a007 Real Root Of -107*x^4+59*x^3+947*x^2+301*x+243 2584010460848765 r002 25th iterates of z^2 + 2584010461446251 a001 24157817/103682*322^(5/12) 2584010461651554 a001 63245986/271443*322^(5/12) 2584010461681508 a001 165580141/710647*322^(5/12) 2584010461685878 a001 433494437/1860498*322^(5/12) 2584010461686515 a001 1134903170/4870847*322^(5/12) 2584010461686608 a001 2971215073/12752043*322^(5/12) 2584010461686622 a001 7778742049/33385282*322^(5/12) 2584010461686624 a001 20365011074/87403803*322^(5/12) 2584010461686624 a001 53316291173/228826127*322^(5/12) 2584010461686624 a001 139583862445/599074578*322^(5/12) 2584010461686624 a001 365435296162/1568397607*322^(5/12) 2584010461686624 a001 956722026041/4106118243*322^(5/12) 2584010461686624 a001 2504730781961/10749957122*322^(5/12) 2584010461686624 a001 6557470319842/28143753123*322^(5/12) 2584010461686624 a001 10610209857723/45537549124*322^(5/12) 2584010461686624 a001 4052739537881/17393796001*322^(5/12) 2584010461686624 a001 1548008755920/6643838879*322^(5/12) 2584010461686624 a001 591286729879/2537720636*322^(5/12) 2584010461686624 a001 225851433717/969323029*322^(5/12) 2584010461686624 a001 86267571272/370248451*322^(5/12) 2584010461686624 a001 63246219/271444*322^(5/12) 2584010461686625 a001 12586269025/54018521*322^(5/12) 2584010461686630 a001 4807526976/20633239*322^(5/12) 2584010461686666 a001 1836311903/7881196*322^(5/12) 2584010461686909 a001 701408733/3010349*322^(5/12) 2584010461688579 a001 267914296/1149851*322^(5/12) 2584010461700020 a001 102334155/439204*322^(5/12) 2584010461778439 a001 39088169/167761*322^(5/12) 2584010462315929 a001 14930352/64079*322^(5/12) 2584010465999945 a001 5702887/24476*322^(5/12) 2584010466083076 m001 (Landau+MinimumGamma)/StronglyCareFree 2584010472942876 m001 GAMMA(2/3)*GAMMA(13/24)^Mills 2584010473641578 r002 44th iterates of z^2 + 2584010478919613 a001 1149851*514229^(7/17) 2584010480568311 a001 39603*1836311903^(7/17) 2584010484741066 r009 Im(z^3+c),c=-33/94+11/56*I,n=15 2584010491250566 a001 2178309/9349*322^(5/12) 2584010496465092 r005 Im(z^2+c),c=-71/122+20/53*I,n=22 2584010505644880 a007 Real Root Of 188*x^4+680*x^3+946*x^2+890*x-666 2584010506652465 r005 Re(z^2+c),c=-23/122+32/53*I,n=58 2584010520397197 l006 ln(6515/8436) 2584010523147787 m001 Chi(1)^Porter*BesselI(0,2)^Porter 2584010523641526 r005 Re(z^2+c),c=27/122+16/39*I,n=28 2584010532693272 a007 Real Root Of -108*x^4+421*x^3+298*x^2+663*x-198 2584010539684092 m005 (-19/36+1/4*5^(1/2))/(1/2*5^(1/2)+1/11) 2584010542944676 a003 cos(Pi*21/97)*cos(Pi*20/51) 2584010550667198 m001 (-ArtinRank2+Weierstrass)/(5^(1/2)-exp(1/Pi)) 2584010568012875 m001 (GAMMA(2/3)+BesselI(1,2))/(Gompertz+Landau) 2584010577931980 m001 (3^(1/3)+Khinchin)/(Riemann1stZero+Tribonacci) 2584010584015409 r002 18th iterates of z^2 + 2584010587225773 a007 Real Root Of 98*x^4+176*x^3+235*x^2-495*x-141 2584010606274305 b008 2+7*ArcCsc[12] 2584010611625100 m001 BesselK(0,1)/ln(FransenRobinson)^2/GAMMA(7/12) 2584010613272405 r002 34th iterates of z^2 + 2584010635837754 a001 196418/521*843^(2/7) 2584010637796292 a007 Real Root Of -341*x^4-441*x^3+689*x^2-847*x+805 2584010641944320 p001 sum(1/(574*n+401)/(12^n),n=0..infinity) 2584010645859261 m001 ln(GAMMA(1/6))/Robbin/Zeta(9)^2 2584010648620716 r009 Re(z^3+c),c=-43/110+24/55*I,n=39 2584010651189517 m001 (-Bloch+MertensB2)/(cos(1)-exp(1)) 2584010654599275 r005 Im(z^2+c),c=-5/8+19/251*I,n=20 2584010663946241 r009 Re(z^3+c),c=-37/90+12/25*I,n=36 2584010664320912 a001 832040/3571*322^(5/12) 2584010682283713 m001 (Catalan-Shi(1))/(-2*Pi/GAMMA(5/6)+Paris) 2584010688927354 p001 sum(1/(602*n+397)/(16^n),n=0..infinity) 2584010694415275 m001 (ln(3)+FeigenbaumDelta)/(Otter-Sarnak) 2584010695917137 p003 LerchPhi(1/2,1,82/171) 2584010696233034 a007 Real Root Of 987*x^4-279*x^3+693*x^2-567*x-202 2584010714433494 m001 1/Catalan^2*Riemann3rdZero^2*ln(sqrt(2)) 2584010716595497 m001 PrimesInBinary^2/CareFree^2/ln((3^(1/3)))^2 2584010733656519 s002 sum(A191260[n]/(n^3*exp(n)-1),n=1..infinity) 2584010738518124 r005 Re(z^2+c),c=-71/98+9/38*I,n=43 2584010751787364 a007 Real Root Of -362*x^4-475*x^3+945*x^2-666*x-87 2584010760352254 m001 1/GAMMA(1/4)*ln(FransenRobinson)^2*Zeta(1,2)^2 2584010763048996 r002 46th iterates of z^2 + 2584010765993844 a001 1364/17711*6765^(7/51) 2584010769789360 p003 LerchPhi(1/100,3,121/166) 2584010787813041 r005 Re(z^2+c),c=-11/54+25/42*I,n=41 2584010795093957 a001 610/521*3571^(16/17) 2584010801722958 m001 exp(MertensB1)/FeigenbaumDelta/OneNinth 2584010807061267 m001 arctan(1/2)*(Pi-Psi(2,1/3))-GAMMA(19/24) 2584010814410222 r002 3th iterates of z^2 + 2584010824477033 m001 1/CareFree^2/FransenRobinson^2*exp(Trott) 2584010830102688 m001 (GAMMA(5/6)-GAMMA(7/12))/(GAMMA(19/24)+Artin) 2584010831620472 m001 Ei(1)/exp(Trott)^2/GAMMA(1/3)^2 2584010832891875 r005 Re(z^2+c),c=1/3+4/17*I,n=19 2584010837857267 l006 ln(3734/4835) 2584010840108401 q001 1907/738 2584010847694513 a007 Real Root Of -420*x^4-990*x^3-8*x^2-636*x+54 2584010861610123 h001 (7/10*exp(2)+6/7)/(2/7*exp(2)+2/9) 2584010874757525 s002 sum(A046239[n]/((2^n-1)/n),n=1..infinity) 2584010877949924 a001 47/3524578*591286729879^(13/21) 2584010883701127 r005 Re(z^2+c),c=-11/90+34/47*I,n=6 2584010886895568 l006 ln(4546/4665) 2584010889242430 a001 47/6765*24157817^(13/21) 2584010895513269 a001 233*843^(5/14) 2584010899883237 r002 58th iterates of z^2 + 2584010905030775 m001 (5^(1/2)-Riemann3rdZero)/ln(2^(1/2)+1) 2584010907893949 r005 Re(z^2+c),c=-115/122+8/47*I,n=52 2584010908917371 m001 ln(PisotVijayaraghavan)/Artin^2*GAMMA(17/24) 2584010916579832 a007 Real Root Of 562*x^4-840*x^3-301*x^2-704*x+214 2584010931616289 m001 Riemann1stZero/MadelungNaCl*exp(sqrt(3))^2 2584010947558568 m001 (arctan(1/2)+5)/(exp(gamma)+1/3) 2584010960913259 a001 610/521*9349^(16/19) 2584010965255706 m001 exp(Zeta(3))^2/GAMMA(17/24)*sqrt(3)^2 2584010975355402 a007 Real Root Of 121*x^4+463*x^3+352*x^2-232*x-356 2584010978512430 r008 a(0)=0,K{-n^6,30+29*n^3-4*n^2-16*n} 2584010979366434 a001 75025/843*322^(7/12) 2584010980695770 r005 Re(z^2+c),c=-11/34+1/16*I,n=11 2584010981667043 a001 233/1364*24476^(20/21) 2584010982522954 a001 610/521*24476^(16/21) 2584010985227759 a001 233/1364*64079^(20/23) 2584010985371528 a001 610/521*64079^(16/23) 2584010985701532 a001 233/1364*167761^(4/5) 2584010985774980 a001 233/1364*20633239^(4/7) 2584010985774983 a001 233/1364*2537720636^(4/9) 2584010985774983 a001 233/1364*(1/2+1/2*5^(1/2))^20 2584010985774983 a001 233/1364*23725150497407^(5/16) 2584010985774983 a001 233/1364*505019158607^(5/14) 2584010985774983 a001 233/1364*73681302247^(5/13) 2584010985774983 a001 233/1364*28143753123^(2/5) 2584010985774983 a001 233/1364*10749957122^(5/12) 2584010985774983 a001 233/1364*4106118243^(10/23) 2584010985774983 a001 233/1364*1568397607^(5/11) 2584010985774983 a001 233/1364*599074578^(10/21) 2584010985774983 a001 233/1364*228826127^(1/2) 2584010985774984 a001 233/1364*87403803^(10/19) 2584010985774985 a001 233/1364*33385282^(5/9) 2584010985774993 a001 233/1364*12752043^(10/17) 2584010985775051 a001 233/1364*4870847^(5/8) 2584010985775481 a001 233/1364*1860498^(2/3) 2584010985778638 a001 233/1364*710647^(5/7) 2584010985801960 a001 233/1364*271443^(10/13) 2584010985809307 a001 610/521*(1/2+1/2*5^(1/2))^16 2584010985809307 a001 610/521*23725150497407^(1/4) 2584010985809307 a001 610/521*73681302247^(4/13) 2584010985809307 a001 610/521*10749957122^(1/3) 2584010985809307 a001 610/521*4106118243^(8/23) 2584010985809307 a001 610/521*1568397607^(4/11) 2584010985809307 a001 610/521*599074578^(8/21) 2584010985809307 a001 610/521*228826127^(2/5) 2584010985809307 a001 610/521*87403803^(8/19) 2584010985809308 a001 610/521*33385282^(4/9) 2584010985809314 a001 610/521*12752043^(8/17) 2584010985809361 a001 610/521*4870847^(1/2) 2584010985809705 a001 610/521*1860498^(8/15) 2584010985812231 a001 610/521*710647^(4/7) 2584010985830889 a001 610/521*271443^(8/13) 2584010985969556 a001 610/521*103682^(2/3) 2584010985975295 a001 233/1364*103682^(5/6) 2584010987007524 a001 610/521*39603^(8/11) 2584010987272755 a001 233/1364*39603^(10/11) 2584010993800794 m003 (6*Log[1/2+Sqrt[5]/2]*Tan[1/2+Sqrt[5]/2]^2)/5 2584010994843279 a001 610/521*15127^(4/5) 2584010995921161 r009 Re(z^3+c),c=-45/106+25/48*I,n=29 2584010996924177 a007 Real Root Of -436*x^4-940*x^3+447*x^2+186*x+716 2584010997706207 a007 Real Root Of 435*x^4+754*x^3-851*x^2-102*x-966 2584011004937327 r009 Re(z^3+c),c=-29/86+15/46*I,n=11 2584011007769504 h001 (-exp(2)-2)/(-9*exp(3/2)+4) 2584011008753460 m001 Sierpinski^ReciprocalFibonacci+GAMMA(7/12) 2584011011215197 a007 Real Root Of 440*x^4+955*x^3-307*x^2+294*x-330 2584011012734475 r005 Re(z^2+c),c=-7/50+29/47*I,n=64 2584011014433127 r005 Re(z^2+c),c=-11/34+1/9*I,n=4 2584011028198557 m004 -5*Pi-30*Sqrt[5]*Pi+5*Sinh[Sqrt[5]*Pi] 2584011050022711 k006 concat of cont frac of 2584011054609045 a001 610/521*5778^(8/9) 2584011059288258 a007 Real Root Of 279*x^4+660*x^3-38*x^2+44*x-684 2584011059534514 r005 Re(z^2+c),c=-17/90+38/63*I,n=61 2584011077332618 a007 Real Root Of -241*x^4-503*x^3+413*x^2+227*x-105 2584011085270554 r009 Re(z^3+c),c=-3/16+45/62*I,n=14 2584011088591494 r005 Im(z^2+c),c=-11/122+29/46*I,n=18 2584011089890594 m001 (Shi(1)+ln(gamma))/(-3^(1/3)+Magata) 2584011090942964 m001 1/GAMMA(5/24)^2*Backhouse^2/ln(GAMMA(7/12)) 2584011098201568 m005 (1/2*exp(1)-4/11)/(5*Catalan-8/11) 2584011100870000 m006 (2*Pi-4/5)/(2/5*exp(2*Pi)-2) 2584011119027467 r002 12th iterates of z^2 + 2584011119653577 m005 (1/3*5^(1/2)+1/7)/(1/2*Catalan-5/11) 2584011124199115 a001 199/610*75025^(22/37) 2584011131024483 m001 (gamma(3)-sin(1))/(-MertensB2+Rabbit) 2584011136823834 a007 Real Root Of 476*x^4-991*x^3+665*x^2+223*x-6 2584011138232661 a007 Real Root Of -932*x^4-650*x^3+470*x^2+414*x-11 2584011146484735 m002 Pi^2+36*E^Pi*Pi^3 2584011150129998 m001 (ln(5)*QuadraticClass+Thue)/QuadraticClass 2584011151984219 m001 (Bloch+MadelungNaCl)/(RenyiParking-Robbin) 2584011155364161 a001 75025/521*843^(3/7) 2584011157263082 r005 Re(z^2+c),c=-19/34+57/113*I,n=5 2584011162968506 l002 exp(polylog(3,29/35)) 2584011163358568 m001 GAMMA(23/24)/MinimumGamma^2*exp(sin(1))^2 2584011168854969 r002 14th iterates of z^2 + 2584011169496326 m006 (1/6*ln(Pi)+2/3)/(1/Pi+3) 2584011185257077 s001 sum(exp(-Pi)^(n-1)*A175460[n],n=1..infinity) 2584011200900519 a007 Real Root Of 101*x^4-448*x^3+936*x^2-574*x-219 2584011222614310 r009 Re(z^3+c),c=-35/86+28/57*I,n=24 2584011222687319 m001 (-Zeta(3)+HardyLittlewoodC3)/(Chi(1)-Shi(1)) 2584011222687319 m001 (Zeta(3)-HardyLittlewoodC3)/Ei(1,1) 2584011234664641 r005 Re(z^2+c),c=-10/19+25/52*I,n=56 2584011258902678 r009 Re(z^3+c),c=-11/26+32/63*I,n=38 2584011269789897 h001 (5/6*exp(2)+2/11)/(4/7*exp(1)+9/10) 2584011270097951 m001 (FeigenbaumD+ZetaQ(4))/(LambertW(1)+Bloch) 2584011270486541 a007 Real Root Of -595*x^4-83*x^3+207*x^2+686*x-187 2584011279131490 l006 ln(4687/6069) 2584011285114263 r005 Im(z^2+c),c=-39/94+23/52*I,n=55 2584011285167845 r005 Im(z^2+c),c=-37/94+15/34*I,n=30 2584011288376022 r005 Re(z^2+c),c=-7/36+35/64*I,n=51 2584011290797507 m005 (1/2*3^(1/2)+6/7)/(3/11*Catalan-11/12) 2584011290986465 r005 Im(z^2+c),c=-31/118+1/27*I,n=12 2584011298824506 r005 Re(z^2+c),c=43/126+8/37*I,n=27 2584011313285175 a007 Real Root Of -144*x^4+69*x^3+921*x^2-803*x-614 2584011314420911 m001 (exp(1)+gamma(1))/(-gamma(3)+GAMMA(23/24)) 2584011314421631 m002 3/Log[Pi]+Pi^5/Log[Pi]-Sinh[Pi] 2584011333827579 r009 Im(z^3+c),c=-3/86+11/40*I,n=6 2584011338023074 r005 Im(z^2+c),c=-101/94+1/34*I,n=9 2584011346161365 a001 322/4181*4807526976^(6/23) 2584011357629329 a007 Real Root Of -165*x^4+41*x^3+836*x^2-746*x+554 2584011360856385 a001 167761/233*6557470319842^(14/17) 2584011360948200 a001 141422324/233*1836311903^(14/17) 2584011360949809 a001 119218851371/233*514229^(14/17) 2584011362810048 m005 (1/2*Catalan+10/11)/(7/10*gamma+1/8) 2584011370756866 m001 (GAMMA(2/3)-Psi(1,1/3))/(-GAMMA(5/6)+Porter) 2584011371744303 h001 (1/2*exp(2)+4/7)/(1/8*exp(2)+8/11) 2584011378849607 a007 Real Root Of 788*x^4-50*x^3-440*x^2-840*x+22 2584011387396345 m001 (2^(1/3)+HardyLittlewoodC3)/(Kac+OneNinth) 2584011388094992 a007 Real Root Of -295*x^4-833*x^3+301*x^2+892*x-925 2584011395584488 m002 4+Pi^9*Csch[Pi]-Log[Pi] 2584011405846304 m005 (1/2*3^(1/2)-9/11)/(7/11*5^(1/2)+3/7) 2584011414756005 a001 46368/521*843^(1/2) 2584011437521245 m005 (1/2*exp(1)-6/11)/(1/9*Catalan-5/12) 2584011438989650 r002 54th iterates of z^2 + 2584011447882138 r002 22th iterates of z^2 + 2584011457699475 m006 (1/4*exp(Pi)-3/5)/(2/5*Pi+3/4) 2584011459792718 g006 Psi(1,4/7)+Psi(1,1/5)-Psi(1,6/7)-Psi(1,4/5) 2584011461297401 a001 682/305*1597^(1/51) 2584011465023309 s001 sum(exp(-Pi/2)^n*A213129[n],n=1..infinity) 2584011472119589 a005 (1/cos(15/196*Pi))^427 2584011481120721 m001 1/Tribonacci*ArtinRank2/ln(GAMMA(5/6))^2 2584011493743734 a007 Real Root Of 419*x^4+738*x^3-962*x^2-500*x-816 2584011507031862 m008 (5/6*Pi^6-4/5)/(1/6*Pi-5/6) 2584011533866865 h005 exp(sin(Pi*1/55)+sin(Pi*20/57)) 2584011538603500 r005 Im(z^2+c),c=-9/8+29/110*I,n=31 2584011556812986 r009 Re(z^3+c),c=-9/22+26/55*I,n=47 2584011558139712 h005 exp(sin(Pi*13/59)/cos(Pi*13/49)) 2584011560822760 a007 Real Root Of 458*x^4-281*x^3+806*x^2-868*x-285 2584011564218266 a007 Real Root Of -36*x^4-892*x^3+980*x^2-246*x-859 2584011564731560 m001 Niven*(BesselI(0,2)-LandauRamanujan) 2584011571280051 l006 ln(5640/7303) 2584011573361656 a007 Real Root Of 329*x^4-974*x^3+321*x^2-779*x-241 2584011578633831 m001 exp(Lehmer)^2/Bloch/FeigenbaumD 2584011583199356 r009 Re(z^3+c),c=-21/82+42/59*I,n=64 2584011586571856 m001 (Champernowne+Gompertz)/(5^(1/2)-ln(gamma)) 2584011588656362 m001 (Psi(2,1/3)+ln(2))/(exp(1/exp(1))+Robbin) 2584011591492388 a001 610/3*843^(20/53) 2584011592099279 s002 sum(A069078[n]/(n*2^n-1),n=1..infinity) 2584011601480569 a007 Real Root Of -193*x^4-165*x^3+779*x^2-266*x-131 2584011605713205 r005 Im(z^2+c),c=-61/94+1/31*I,n=27 2584011610119413 a007 Real Root Of 237*x^4+241*x^3-832*x^2+171*x-411 2584011612218985 r009 Im(z^3+c),c=-37/58+28/57*I,n=9 2584011613544350 r005 Re(z^2+c),c=-15/58+21/40*I,n=17 2584011615647733 r005 Re(z^2+c),c=-1+19/111*I,n=46 2584011616999393 m001 (Zeta(1,2)+BesselI(1,2))/(MertensB1-ZetaQ(3)) 2584011617984846 a007 Real Root Of 554*x^4-528*x^3+477*x^2-544*x-184 2584011620039323 r009 Re(z^3+c),c=-37/90+11/23*I,n=42 2584011623365464 r005 Re(z^2+c),c=2/11+10/23*I,n=2 2584011626478152 r009 Re(z^3+c),c=-29/98+3/13*I,n=7 2584011631580909 m005 (1/2*Pi+6/7)/(8/9*3^(1/2)-3/5) 2584011636815065 m001 (LambertW(1)+Gompertz)/(Psi(1,1/3)+Psi(2,1/3)) 2584011644262231 r005 Im(z^2+c),c=-29/22+5/99*I,n=7 2584011644593399 m001 (2^(1/3)+Catalan)/(-gamma(2)+FeigenbaumB) 2584011651212014 r009 Re(z^3+c),c=-17/46+11/28*I,n=24 2584011651743618 r005 Re(z^2+c),c=11/54+3/64*I,n=3 2584011659442443 a007 Real Root Of 29*x^4-724*x^3-199*x^2-734*x-189 2584011673789713 a001 832040/521*322^(1/12) 2584011675349746 a001 28657/521*843^(4/7) 2584011682391972 s002 sum(A160537[n]/(n^3*2^n+1),n=1..infinity) 2584011682674269 m001 BesselI(0,1)^(Shi(1)/ZetaP(4)) 2584011692460877 r005 Re(z^2+c),c=-19/102+21/37*I,n=64 2584011693338587 r002 3th iterates of z^2 + 2584011705567939 a007 Real Root Of -229*x^4-834*x^3-975*x^2-771*x+338 2584011716157265 m001 (Catalan-ln(gamma))/LambertW(1) 2584011716157265 m001 (Catalan-log(gamma))/LambertW(1) 2584011721565137 h001 (5/12*exp(2)+1/10)/(2/5*exp(1)+1/7) 2584011724373244 m005 (1/2*2^(1/2)-1/4)/(5/12*exp(1)+7/11) 2584011731721280 r005 Re(z^2+c),c=-5/8+82/219*I,n=62 2584011764865138 r005 Re(z^2+c),c=-11/56+32/59*I,n=48 2584011766087619 m005 (1/2*3^(1/2)-5/6)/(3/7*Zeta(3)+3/4) 2584011771412019 r009 Re(z^3+c),c=-23/52+9/16*I,n=27 2584011772920768 m001 (GAMMA(2/3)-ln(gamma))/(Zeta(1/2)+Sarnak) 2584011778970067 l006 ln(6593/8537) 2584011779252342 a007 Real Root Of 319*x^4+698*x^3-377*x^2-67*x+165 2584011781264066 m001 Zeta(1/2)/Riemann3rdZero^2*exp(Zeta(3))^2 2584011808959206 r005 Im(z^2+c),c=-9/46+23/63*I,n=9 2584011810020680 m001 (exp(1)+ln(2))/(-Pi^(1/2)+ZetaP(2)) 2584011813853397 r009 Im(z^3+c),c=-12/31+10/57*I,n=7 2584011822302245 r005 Im(z^2+c),c=-1/14+19/59*I,n=15 2584011827326278 r009 Re(z^3+c),c=-17/38+31/61*I,n=46 2584011828615851 a007 Real Root Of -407*x^4-877*x^3+548*x^2+178*x-185 2584011845792606 m001 (GAMMA(23/24)+1/3)/(2^(1/3)+4) 2584011850563329 a001 317811/1364*322^(5/12) 2584011850740327 m002 Pi^6*Csch[Pi]+(Pi^5*Log[Pi])/2 2584011854130140 r005 Im(z^2+c),c=-9/17+23/54*I,n=44 2584011857049046 p004 log(17477/1319) 2584011870568670 r005 Im(z^2+c),c=-11/10+40/143*I,n=3 2584011873610695 r005 Im(z^2+c),c=-23/86+25/63*I,n=16 2584011876926102 m001 1/GAMMA(1/3)*PrimesInBinary^2*ln(Zeta(9))^2 2584011877606556 a007 Real Root Of 381*x^4+813*x^3-777*x^2-916*x-138 2584011889738277 m005 (1/3*2^(1/2)-1/8)/(8/11*exp(1)-7/11) 2584011903659447 m006 (1/5*ln(Pi)-4)/(2/3*exp(Pi)-5/6) 2584011905738584 a007 Real Root Of -32*x^4+193*x^3+733*x^2+371*x+821 2584011910321653 m002 -4+Pi^2/6-Log[Pi]/5 2584011923879696 a007 Real Root Of -50*x^4+970*x^3+170*x^2+403*x-132 2584011927284567 m005 (1/2*Pi-9/10)/(7/10*gamma-3) 2584011929481057 a001 6765/199*199^(9/11) 2584011932796974 a001 17711/521*843^(9/14) 2584011933060145 a001 1/7*(1/2*5^(1/2)+1/2)^4*4^(7/10) 2584011934200874 l006 ln(7546/9771) 2584011935920971 r005 Im(z^2+c),c=-17/90+21/34*I,n=23 2584011946487854 m001 GaussKuzminWirsing*Zeta(1,2)^FeigenbaumAlpha 2584011946487854 m001 Zeta(1,2)^FeigenbaumAlpha*GaussKuzminWirsing 2584011950063743 a007 Real Root Of -260*x^4-118*x^3-368*x^2+810*x+233 2584011950833503 a001 3571/46368*6765^(7/51) 2584011951010201 a007 Real Root Of 119*x^4-88*x^3-778*x^2-776*x-2 2584011958021715 m005 (3/5*exp(1)-3/4)/(3*2^(1/2)-5/6) 2584011981362740 r002 41th iterates of z^2 + 2584011982747612 m002 -6/E^Pi+(Sech[Pi]*Tanh[Pi])/Pi^4 2584011982976238 m005 (1/2*Catalan-9/11)/(7/8*gamma+8/9) 2584011993994184 a007 Real Root Of -216*x^4-69*x^3+904*x^2-982*x-134 2584011996203174 m001 (ln(2)/ln(10)+Otter)/(Paris+Trott2nd) 2584011997280799 m001 (ln(Pi)-GAMMA(5/6))/(Kac-ZetaQ(3)) 2584011997596812 p003 LerchPhi(1/256,2,380/193) 2584012004264552 m001 (3^(1/2)+Conway)/(-GlaisherKinkelin+OneNinth) 2584012008038283 a001 317811/2207*322^(1/2) 2584012032505054 m001 1/Robbin/LandauRamanujan*exp(GAMMA(17/24))^2 2584012042585999 a007 Real Root Of -398*x^4-780*x^3+912*x^2+709*x+29 2584012043387084 m005 (1/2*Catalan-2/11)/(11/15+3/20*5^(1/2)) 2584012052678422 m001 (Mills-StronglyCareFree)/(Zeta(1/2)-Lehmer) 2584012062225690 r005 Im(z^2+c),c=-17/54+23/56*I,n=53 2584012062966984 m001 (-BesselJ(1,1)+2)/(Zeta(5)+5) 2584012065364245 m006 (5/6*Pi+1/6)/(1/5*exp(2*Pi)+2/3) 2584012075554309 m001 (Cahen+HardHexagonsEntropy)^MertensB3 2584012089792450 r005 Im(z^2+c),c=19/126+4/19*I,n=14 2584012089913783 r009 Re(z^3+c),c=-51/122+26/53*I,n=61 2584012094816859 m001 (exp(1)+2^(1/2))/(-Zeta(1,2)+Robbin) 2584012117711315 a007 Real Root Of 34*x^4+849*x^3-743*x^2+518*x-597 2584012123699279 a001 9349/121393*6765^(7/51) 2584012128333849 r005 Re(z^2+c),c=33/106+21/50*I,n=30 2584012148920056 a001 844/10959*6765^(7/51) 2584012153543205 r002 30th iterates of z^2 + 2584012154873874 a001 39603/514229*6765^(7/51) 2584012158212573 r005 Re(z^2+c),c=-81/106+8/59*I,n=4 2584012158341099 m001 Sierpinski-sin(1/5*Pi)*ZetaQ(4) 2584012158364730 m001 (Pi+GAMMA(23/24))/(PrimesInBinary-Stephens) 2584012159431269 r005 Re(z^2+c),c=-31/106+17/62*I,n=19 2584012159996902 m001 1/GAMMA(1/4)^2*exp(Artin)*GAMMA(7/12)^2 2584012162451755 m001 (Totient+Trott2nd)/(gamma(1)+BesselK(1,1)) 2584012164507354 a001 15127/196418*6765^(7/51) 2584012176725821 m004 -25-(Sqrt[5]*Pi)/4+Tan[Sqrt[5]*Pi] 2584012186945853 m001 (Zeta(3)+gamma(3))/(3^(1/2)-BesselI(0,1)) 2584012187361029 a007 Real Root Of 151*x^4-798*x^3+535*x^2+959*x+986 2584012198481974 a001 10946/521*843^(5/7) 2584012200167608 a007 Real Root Of -252*x^4-567*x^3+225*x^2+370*x+906 2584012203422629 m001 1/ln(Riemann3rdZero)^2/LaplaceLimit^2*Salem 2584012209592818 a001 1/76*2^(37/38) 2584012211708609 r005 Re(z^2+c),c=-25/78+5/48*I,n=13 2584012217312915 m001 1/ln(GAMMA(1/6))*(3^(1/3))^2*Zeta(1/2)^2 2584012219959266 q001 1015/3928 2584012230536205 a001 5778/75025*6765^(7/51) 2584012239230758 a007 Real Root Of -312*x^4-377*x^3+893*x^2-760*x-521 2584012240421410 a007 Real Root Of -243*x^4+789*x^3-740*x^2+700*x-144 2584012260153858 a007 Real Root Of 912*x^4-864*x^3+916*x^2-681*x+17 2584012270535047 a007 Real Root Of -39*x^4+262*x^3+799*x^2-598*x-621 2584012271096903 a001 76*10946^(5/38) 2584012275906479 m001 Zeta(3)*exp(GAMMA(13/24))^2*cos(Pi/5) 2584012290405040 m001 Zeta(1/2)*(Artin+HardHexagonsEntropy) 2584012293593322 r005 Re(z^2+c),c=1/118+43/48*I,n=4 2584012293805245 a008 Real Root of (1+5*x+5*x^2+x^3-5*x^4+2*x^5) 2584012297089381 a001 121393/18*9349^(37/41) 2584012331793535 a001 514229/18*15127^(29/41) 2584012332073366 m005 (1/2*5^(1/2)-3/4)/(3/7*2^(1/2)+9/11) 2584012342519634 r005 Re(z^2+c),c=-7/36+27/55*I,n=13 2584012347386407 h001 (1/5*exp(1)+4/11)/(2/5*exp(2)+5/9) 2584012349094278 s002 sum(A160537[n]/(n^3*2^n-1),n=1..infinity) 2584012349125095 m005 (1/2*Pi-1/12)/(3/7*3^(1/2)-1/6) 2584012356419831 m008 (4*Pi^5-3/5)/(5*Pi^2-2) 2584012359104918 m001 Salem/CareFree*exp(GAMMA(1/24)) 2584012373423672 m006 (1/5*Pi^2+3)/(5/Pi+1/3) 2584012385755156 m002 Pi^3+2*Pi^6*Cosh[Pi]^2 2584012388255063 s002 sum(A108479[n]/(n^3*pi^n+1),n=1..infinity) 2584012394135027 a008 Real Root of x^4-2*x^3-54*x^2-83*x+67 2584012400737256 m001 (Paris+Rabbit)/(FeigenbaumAlpha+Kac) 2584012414989642 r005 Im(z^2+c),c=-27/26+28/79*I,n=8 2584012415376863 b008 7*(-57+E^3) 2584012416328956 r005 Im(z^2+c),c=-47/110+2/47*I,n=28 2584012418976864 m005 (1/2*Catalan-1/10)/(5/8*gamma-2/9) 2584012419191929 m008 (3*Pi^2+2)/(4*Pi^5-5/6) 2584012428465362 r002 14th iterates of z^2 + 2584012429114079 r005 Re(z^2+c),c=35/106+12/43*I,n=8 2584012435231664 b008 Pi*ArcSec[1/18+Sqrt[2]] 2584012442600300 a001 6765/521*843^(11/14) 2584012449130744 s002 sum(A254306[n]/(n*exp(pi*n)-1),n=1..infinity) 2584012461148585 a001 416020/2889*322^(1/2) 2584012467442332 a007 Real Root Of -423*x^4-907*x^3+146*x^2-589*x+713 2584012470031329 a007 Real Root Of -199*x^4-661*x^3+76*x^2+851*x-841 2584012474588114 m001 (Sarnak+Thue)/(ln(2+3^(1/2))-CareFree) 2584012494916460 m005 (1/3*Pi-2/7)/(10/11*Pi+1/11) 2584012509967772 a001 139583862445/29*7^(19/22) 2584012510866655 a007 Real Root Of 156*x^4+275*x^3-14*x^2+486*x-861 2584012519869107 m001 (ln(3)-HardHexagonsEntropy)/(Salem-Trott2nd) 2584012527256501 a001 311187/2161*322^(1/2) 2584012527337784 r005 Im(z^2+c),c=-1+36/139*I,n=26 2584012530311005 s002 sum(A229450[n]/(n^2*exp(n)+1),n=1..infinity) 2584012536901516 a001 5702887/39603*322^(1/2) 2584012538308705 a001 7465176/51841*322^(1/2) 2584012538514011 a001 39088169/271443*322^(1/2) 2584012538543965 a001 14619165/101521*322^(1/2) 2584012538548335 a001 133957148/930249*322^(1/2) 2584012538548972 a001 701408733/4870847*322^(1/2) 2584012538549065 a001 1836311903/12752043*322^(1/2) 2584012538549079 a001 14930208/103681*322^(1/2) 2584012538549081 a001 12586269025/87403803*322^(1/2) 2584012538549081 a001 32951280099/228826127*322^(1/2) 2584012538549081 a001 43133785636/299537289*322^(1/2) 2584012538549081 a001 32264490531/224056801*322^(1/2) 2584012538549081 a001 591286729879/4106118243*322^(1/2) 2584012538549081 a001 774004377960/5374978561*322^(1/2) 2584012538549081 a001 4052739537881/28143753123*322^(1/2) 2584012538549081 a001 1515744265389/10525900321*322^(1/2) 2584012538549081 a001 3278735159921/22768774562*322^(1/2) 2584012538549081 a001 2504730781961/17393796001*322^(1/2) 2584012538549081 a001 956722026041/6643838879*322^(1/2) 2584012538549081 a001 182717648081/1268860318*322^(1/2) 2584012538549081 a001 139583862445/969323029*322^(1/2) 2584012538549081 a001 53316291173/370248451*322^(1/2) 2584012538549081 a001 10182505537/70711162*322^(1/2) 2584012538549082 a001 7778742049/54018521*322^(1/2) 2584012538549087 a001 2971215073/20633239*322^(1/2) 2584012538549123 a001 567451585/3940598*322^(1/2) 2584012538549366 a001 433494437/3010349*322^(1/2) 2584012538551036 a001 165580141/1149851*322^(1/2) 2584012538562477 a001 31622993/219602*322^(1/2) 2584012538640897 a001 24157817/167761*322^(1/2) 2584012539178395 a001 9227465/64079*322^(1/2) 2584012542862463 a001 1762289/12238*322^(1/2) 2584012549094234 m001 LambertW(1)*FeigenbaumB/ln(sin(Pi/12))^2 2584012553126272 m009 (1/3*Psi(1,3/4)-3/4)/(1/3*Psi(1,1/3)+2/5) 2584012553878728 m009 (6*Psi(1,2/3)+1/5)/(3*Psi(1,2/3)-2) 2584012556133177 m001 (Zeta(1,2)-Totient)/(GAMMA(2/3)-3^(1/3)) 2584012559216669 a001 439204*6557470319842^(5/17) 2584012559230173 a001 4870847*1836311903^(5/17) 2584012559230638 a001 54018521*514229^(5/17) 2584012559886338 r005 Im(z^2+c),c=-17/22+1/110*I,n=51 2584012562513800 r005 Im(z^2+c),c=-9/22+15/34*I,n=45 2584012568113441 a001 1346269/9349*322^(1/2) 2584012580400551 a007 Real Root Of -956*x^4+559*x^3-32*x^2+828*x+230 2584012593869261 m006 (2/3/Pi+5/6)/(3/4*exp(2*Pi)+3) 2584012606571229 m001 Khintchine^2*exp(Conway)*Paris^2 2584012607822160 m001 1/log(2+sqrt(3))^2/Zeta(3)^2*ln(sqrt(5))^2 2584012614585747 r005 Re(z^2+c),c=-8/25+6/55*I,n=22 2584012617793646 r005 Re(z^2+c),c=-13/50+11/18*I,n=51 2584012622698669 r009 Im(z^3+c),c=-53/118+5/62*I,n=4 2584012624319042 r009 Im(z^3+c),c=-37/122+27/38*I,n=10 2584012625362793 a001 2/1568397607*3^(9/14) 2584012633873770 m001 Sierpinski-gamma(3)*Bloch 2584012639164021 a007 Real Root Of 268*x^4+803*x^3+317*x^2+302*x+570 2584012639771557 p003 LerchPhi(1/12,2,389/194) 2584012642413542 h001 (-3*exp(3)-7)/(-7*exp(1)-7) 2584012645939894 r005 Re(z^2+c),c=-5/24+29/56*I,n=47 2584012661982829 r009 Re(z^3+c),c=-37/90+21/44*I,n=40 2584012662916781 m001 (Chi(1)-cos(1/5*Pi))/(-Otter+Tribonacci) 2584012664136600 r005 Re(z^2+c),c=-11/40+19/53*I,n=11 2584012668718600 m001 (Landau+OrthogonalArrays)/(GAMMA(3/4)-Bloch) 2584012670676052 p003 LerchPhi(1/512,6,366/199) 2584012680103523 m001 Mills^MasserGramain+HardHexagonsEntropy 2584012683104683 a001 2207/28657*6765^(7/51) 2584012684605745 a007 Real Root Of 652*x^4+411*x^3-738*x^2-800*x+246 2584012687125621 r009 Re(z^3+c),c=-23/74+4/15*I,n=16 2584012698556092 b008 E^(-3)+E^(13/4) 2584012708045327 r002 6th iterates of z^2 + 2584012711204205 a005 (1/sin(97/219*Pi))^771 2584012713342549 q001 2/77399 2584012717716061 a007 Real Root Of 81*x^4-250*x^3-887*x^2+567*x-537 2584012718189766 m005 (1/3*gamma-1/8)/(5/8*Catalan-5/6) 2584012728860792 h001 (3/4*exp(2)+4/11)/(7/11*exp(1)+5/9) 2584012741186232 a001 514229/3571*322^(1/2) 2584012742960532 r005 Re(z^2+c),c=7/86+9/40*I,n=9 2584012743181011 a001 4181/521*843^(6/7) 2584012746854157 m005 (1/2*gamma+7/12)/(7/8*2^(1/2)-9/10) 2584012751758515 m005 (1/2*exp(1)-5/11)/(1/4*5^(1/2)-10/11) 2584012752099555 a007 Real Root Of 439*x^4+941*x^3-844*x^2-755*x+348 2584012759663373 m006 (4/Pi+1/6)/(1/2*ln(Pi)+5) 2584012773501441 a007 Real Root Of -801*x^4-317*x^3-574*x^2+931*x+277 2584012797370879 m005 (5/6+1/4*5^(1/2))/(1/7*exp(1)+5) 2584012803121478 r005 Im(z^2+c),c=-17/52+17/41*I,n=59 2584012803420690 h001 (2/7*exp(2)+1/3)/(1/9*exp(2)+1/8) 2584012811894359 a007 Real Root Of 262*x^4+739*x^3+49*x^2-528*x-622 2584012820904227 m001 (Stephens-ZetaP(4))/(Kac+Mills) 2584012838095622 a001 1/3*(1/2*5^(1/2)+1/2)^6*76^(20/23) 2584012853056226 g002 -ln(2)+1/2*Pi+Psi(5/12)+Psi(7/9) 2584012857483030 b008 3-Sqrt[Tan[1]]/3 2584012870816438 a007 Real Root Of 379*x^4-476*x^3+248*x^2-778*x+191 2584012870921621 s001 sum(exp(-2*Pi)^(n-1)*A253954[n],n=1..infinity) 2584012871606114 m001 ln(5)+TravellingSalesman^ZetaP(4) 2584012884911447 r005 Im(z^2+c),c=2/11+31/52*I,n=4 2584012887533822 m001 1/ln(GAMMA(5/12))^2*(3^(1/3))^2*sin(1)^2 2584012895941360 a001 2584/521*843^(13/14) 2584012905002210 m001 (FeigenbaumD+Grothendieck)/(GAMMA(2/3)+Artin) 2584012910389155 a001 199/1346269*514229^(26/35) 2584012910896796 r005 Re(z^2+c),c=-85/66+7/41*I,n=4 2584012911400192 m001 (FeigenbaumB-FeigenbaumDelta)/(Kac+Thue) 2584012913535030 r005 Im(z^2+c),c=-39/98+19/32*I,n=30 2584012915331688 r005 Im(z^2+c),c=-53/122+13/29*I,n=40 2584012915719436 a005 (1/cos(9/137*Pi))^581 2584012935390897 m002 -Pi^2/15+Pi^5*Csch[Pi] 2584012936513481 a007 Real Root Of 257*x^4+606*x^3-216*x^2-315*x-374 2584012954238849 r005 Im(z^2+c),c=-17/52+17/41*I,n=56 2584012961735504 r005 Re(z^2+c),c=-23/90+17/44*I,n=12 2584013008111310 l006 ln(953/1234) 2584013009640991 m009 (3/5*Psi(1,1/3)-3/4)/(2*Pi^2+4/5) 2584013010056320 a001 34/228826127*11^(3/13) 2584013015265002 m001 gamma(3)+Champernowne^KomornikLoreti 2584013026300330 p001 sum(1/(241*n+62)/n/(128^n),n=1..infinity) 2584013027057874 h001 (3/8*exp(1)+2/3)/(7/9*exp(2)+7/9) 2584013030923887 a005 (1/cos(13/196*Pi))^254 2584013039647064 a007 Real Root Of -175*x^4-445*x^3-21*x^2+143*x+634 2584013050328730 a007 Real Root Of 312*x^4+513*x^3-497*x^2+958*x+735 2584013050570962 q001 1584/613 2584013050589443 m005 (1/2*Catalan-4/7)/(1/4*gamma-7/12) 2584013051102820 a007 Real Root Of 467*x^4+940*x^3-510*x^2+373*x-233 2584013055268873 h001 (2/5*exp(1)+7/10)/(6/7*exp(2)+7/12) 2584013055271322 m001 Salem*ln(ArtinRank2)/GAMMA(13/24) 2584013055897118 a001 15456/281*322^(2/3) 2584013055910945 a007 Real Root Of -342*x^4-484*x^3+689*x^2-891*x-6 2584013069466559 m001 (-GAMMA(7/12)+1/3)/(-Artin+5) 2584013069774813 r002 13th iterates of z^2 + 2584013074708361 r005 Re(z^2+c),c=-29/94+11/56*I,n=9 2584013103607236 a007 Real Root Of 227*x^4-836*x^3+286*x^2-621*x-195 2584013109985253 b008 ArcCsch[13/4+EulerGamma] 2584013114113013 r005 Im(z^2+c),c=-67/118+2/47*I,n=21 2584013142553867 r005 Re(z^2+c),c=-13/58+27/56*I,n=56 2584013145613161 m005 (1/3*exp(1)-3/5)/(2/5*Catalan+9/11) 2584013147357465 r005 Re(z^2+c),c=-6/19+5/34*I,n=16 2584013181442685 m005 (1/2*5^(1/2)-1/5)/(5*gamma+2/3) 2584013189208754 r009 Im(z^3+c),c=-3/13+35/38*I,n=20 2584013195417452 h005 exp(cos(Pi*7/51)/sin(Pi*13/32)) 2584013196087314 l006 ln(9283/9526) 2584013196676911 m009 (1/3*Psi(1,3/4)-1/5)/(3/5*Psi(1,2/3)+2/3) 2584013221623317 m001 ((1+3^(1/2))^(1/2)-3^(1/2))/(OneNinth+Otter) 2584013233030270 a004 Fibonacci(13)*Lucas(14)/(1/2+sqrt(5)/2)^9 2584013233580496 m001 (Lehmer+ZetaQ(4))/(ln(2)+ErdosBorwein) 2584013234508069 s002 sum(A099707[n]/((pi^n+1)/n),n=1..infinity) 2584013235357432 a007 Real Root Of 133*x^4+187*x^3-562*x^2-730*x-837 2584013238711376 m001 Rabbit/exp(GaussKuzminWirsing)^2*Sierpinski^2 2584013251619177 m001 Artin^Rabbit-Pi*csc(7/24*Pi)/GAMMA(17/24) 2584013254678766 a003 cos(Pi*36/109)/cos(Pi*52/119) 2584013262599469 a001 974173/377 2584013262943582 a007 Real Root Of -940*x^4-573*x^3+841*x^2+824*x-255 2584013271073159 m001 sin(1/12*Pi)^(BesselI(0,1)*Riemann3rdZero) 2584013272248760 r008 a(0)=3,K{-n^6,1+6*n^3+n^2-4*n} 2584013284444041 r009 Re(z^3+c),c=-33/86+27/64*I,n=32 2584013287076995 a007 Real Root Of 412*x^4+900*x^3-262*x^2+438*x+41 2584013289715499 m001 cos(Pi/5)/Pi^2/exp(gamma)^2 2584013293234242 m001 sin(1/12*Pi)/(Magata^HeathBrownMoroz) 2584013293455318 m001 (Artin+LaplaceLimit)/(Stephens-ZetaP(3)) 2584013295892612 r005 Re(z^2+c),c=-11/50+14/29*I,n=21 2584013296051796 a001 3/28657*5^(32/57) 2584013299300973 a001 843/5*75025^(13/29) 2584013302378156 m001 (ln(2)/ln(10))^ZetaP(2)-FellerTornier 2584013307876112 m001 1/GAMMA(17/24)/ln(RenyiParking)*cos(Pi/12) 2584013310674137 h002 exp(19/11*2^(1/4)*11^(2/3)) 2584013348416970 r005 Re(z^2+c),c=-5/4+25/153*I,n=4 2584013352474653 m001 Salem/(TwinPrimes^Ei(1)) 2584013362840240 m001 (GAMMA(5/6)-Psi(2,1/3))/(Porter+Rabbit) 2584013378309417 m001 ln(5)^(ln(2+3^(1/2))/TwinPrimes) 2584013378309417 m001 ln(5)^(ln(2+sqrt(3))/TwinPrimes) 2584013386143267 r002 15i'th iterates of 2*x/(1-x^2) of 2584013386847533 a007 Real Root Of 483*x^4-593*x^3+710*x^2-233*x-120 2584013393248783 a007 Real Root Of -447*x^4-815*x^3+694*x^2-307*x+440 2584013396253903 m001 GAMMA(1/3)/ln(Tribonacci)*sin(Pi/5) 2584013405539013 m005 (1/2*5^(1/2)+10/11)/(4*3^(1/2)+11/12) 2584013421097478 r005 Re(z^2+c),c=-1/14+21/34*I,n=42 2584013423749859 r005 Im(z^2+c),c=-39/58+5/39*I,n=16 2584013441258210 a001 54018521/233*6557470319842^(12/17) 2584013441258211 a001 17393796001/233*1836311903^(12/17) 2584013441259591 a001 5600748293801/233*514229^(12/17) 2584013446631376 m001 Zeta(5)^2/ln(TwinPrimes)/Zeta(9) 2584013464179003 a005 (1/cos(28/95*Pi))^124 2584013485207000 r005 Im(z^2+c),c=1/94+6/19*I,n=3 2584013487427059 m001 (BesselI(1,2)-GolombDickman)/Artin 2584013496907151 m001 cos(1)+Grothendieck+MertensB1 2584013498872277 a001 199/2178309*3^(53/56) 2584013509752150 m001 1/exp(Tribonacci)*Champernowne*log(2+sqrt(3)) 2584013511143491 a007 Real Root Of 12*x^4+303*x^3-209*x^2-662*x+261 2584013511168030 p003 LerchPhi(1/1024,5,11/133) 2584013512614760 r005 Re(z^2+c),c=3/10+7/44*I,n=51 2584013517732416 p003 LerchPhi(1/512,5,11/133) 2584013518894917 m001 (Chi(1)+Kolakoski)/(-PlouffeB+ThueMorse) 2584013522788683 a001 1346269/843*123^(1/10) 2584013523847147 h001 (5/12*exp(1)+2/9)/(5/8*exp(2)+5/8) 2584013530862650 p003 LerchPhi(1/256,5,11/133) 2584013538045125 r005 Re(z^2+c),c=-15/58+9/23*I,n=38 2584013539931100 p001 sum((-1)^n/(525*n+382)/(32^n),n=0..infinity) 2584013556523153 r005 Re(z^2+c),c=-9/38+23/51*I,n=36 2584013558389949 p003 LerchPhi(1/125,5,11/133) 2584013558782390 m001 Riemann3rdZero+HardyLittlewoodC3^ThueMorse 2584013565050906 r005 Im(z^2+c),c=-29/60+26/57*I,n=60 2584013570203891 m001 (Zeta(1,-1)+FeigenbaumC)/(Mills-Robbin) 2584013571841520 p003 LerchPhi(1/100,5,11/133) 2584013580849380 s002 sum(A059902[n]/(n^3*exp(n)-1),n=1..infinity) 2584013581691974 m001 GAMMA(2/3)^2/ln(BesselJ(1,1))^2*GAMMA(7/24)^2 2584013585869310 a007 Real Root Of -343*x^4-971*x^3-362*x^2-262*x+279 2584013604062548 m001 GAMMA(13/24)*ArtinRank2^2*exp(sinh(1)) 2584013609685060 p003 LerchPhi(1/64,5,11/133) 2584013614422614 m001 (Psi(2,1/3)+Zeta(1,-1))/(Artin+Riemann2ndZero) 2584013619927105 m001 exp((3^(1/3)))^2*Backhouse/Zeta(7) 2584013622545612 m001 1/FeigenbaumD^2/Niven*exp(gamma)^2 2584013634566718 a003 cos(Pi*8/33)/cos(Pi*34/83) 2584013649215064 r005 Re(z^2+c),c=-11/34+3/49*I,n=9 2584013656437585 r005 Im(z^2+c),c=-49/90+16/37*I,n=56 2584013661331387 m001 ln(Robbin)/MertensB1^2/GAMMA(7/12)^2 2584013664806975 r005 Im(z^2+c),c=-9/62+13/37*I,n=17 2584013667988386 r009 Re(z^3+c),c=-3/106+7/38*I,n=5 2584013679816011 m005 (1/3*gamma-1/11)/(1/8*gamma-4) 2584013693124901 r009 Re(z^3+c),c=-17/46+11/28*I,n=25 2584013693747633 m005 (1/2*Zeta(3)-5/6)/(1/4*2^(1/2)+6/11) 2584013697707970 r005 Im(z^2+c),c=-47/48+17/64*I,n=47 2584013707325608 m001 ZetaQ(2)^Weierstrass/cos(1/12*Pi) 2584013710606252 a001 843/1346269*2178309^(13/51) 2584013712153176 a001 11/701408733*3^(5/11) 2584013712333111 r002 5th iterates of z^2 + 2584013714891423 p003 LerchPhi(1/32,5,11/133) 2584013728172297 r005 Re(z^2+c),c=-13/70+11/19*I,n=50 2584013734893232 r005 Re(z^2+c),c=-65/126+4/43*I,n=2 2584013742501933 m001 (sin(1/12*Pi)-Kolakoski)/(ln(5)+arctan(1/2)) 2584013745853669 r005 Re(z^2+c),c=-19/34+11/101*I,n=2 2584013750655845 a001 514229/521*322^(1/6) 2584013759048839 m001 GAMMA(1/3)/(3^(1/3))^2*ln(Zeta(9)) 2584013769489267 r009 Im(z^3+c),c=-39/74+14/29*I,n=60 2584013771267764 a007 Real Root Of -103*x^4+513*x^3+215*x^2+265*x-7 2584013773862088 p003 LerchPhi(1/25,5,11/133) 2584013783043733 m001 1/GAMMA(13/24)/Robbin^2/exp(Zeta(1/2))^2 2584013792260653 a001 11/514229*17711^(37/51) 2584013792523189 m005 (-1/44+1/4*5^(1/2))/(3/5*exp(1)+4/9) 2584013805774365 a007 Real Root Of 265*x^4+886*x^3+311*x^2-494*x+119 2584013823340685 r005 Re(z^2+c),c=-8/25+6/55*I,n=24 2584013827334823 a007 Real Root Of 793*x^4-862*x^3+825*x^2-447*x-189 2584013827935228 r005 Im(z^2+c),c=13/56+3/20*I,n=10 2584013830517745 a007 Real Root Of 445*x^4+851*x^3-339*x^2+915*x-529 2584013831713849 m001 exp(GAMMA(1/3))*Magata^2/cos(Pi/5)^2 2584013833791521 a001 3571/1597*1597^(1/51) 2584013845232325 m001 FeigenbaumKappa-MertensB3^FellerTornier 2584013861759096 p001 sum((-1)^n/(111*n+40)/n/(256^n),n=0..infinity) 2584013862983244 m001 (polylog(4,1/2)-FeigenbaumDelta)/ErdosBorwein 2584013867012544 b008 EulerGamma+E^Pi*(8+Pi) 2584013867433143 a007 Real Root Of -630*x^4+617*x^3-248*x^2+534*x+168 2584013874295188 m001 ln(1+sqrt(2))^BesselI(1,1)+sqrt(1+sqrt(3)) 2584013874295188 m001 ln(2^(1/2)+1)^BesselI(1,1)+(1+3^(1/2))^(1/2) 2584013879415087 r002 14th iterates of z^2 + 2584013893735279 m001 GlaisherKinkelin^gamma(1)-Sarnak 2584013905699212 m005 (1/2*2^(1/2)-9/11)/(17/18+3/2*5^(1/2)) 2584013914239613 m001 (FellerTornier-Lehmer)/(MertensB1-Mills) 2584013925683825 p003 LerchPhi(1/16,5,11/133) 2584013927445414 a001 98209/682*322^(1/2) 2584013936674299 a007 Real Root Of 377*x^4+990*x^3+367*x^2+761*x-211 2584013949735419 a001 1/3010349*76^(9/19) 2584013952042969 m001 MertensB3/(Thue-exp(1/Pi)) 2584013959919339 b008 E^(7/4)+E^3 2584013980883954 r005 Re(z^2+c),c=-61/86+13/53*I,n=54 2584013993862841 m001 (-Zeta(3)+sin(1/12*Pi))/(2^(1/2)+5^(1/2)) 2584013997747875 r005 Re(z^2+c),c=-35/118+12/47*I,n=14 2584014004494821 m005 (19/42+1/6*5^(1/2))/(1/11*Zeta(3)-3/7) 2584014013476939 a007 Real Root Of -395*x^4-584*x^3+766*x^2-688*x+642 2584014013860368 m009 (24*Catalan+3*Pi^2+1/2)/(1/6*Psi(1,1/3)+1/3) 2584014015328932 r005 Im(z^2+c),c=-5/8+3/62*I,n=52 2584014025145950 a001 161/305*75025^(16/29) 2584014029180015 m001 BesselI(1,1)/(Pi^(1/2)+PrimesInBinary) 2584014030104541 b008 -4+E^(8/23) 2584014035579284 m001 (PrimesInBinary-Totient)/(GolombDickman+Otter) 2584014039363210 m001 1/Robbin/MinimumGamma*exp(Catalan) 2584014043729368 m001 (ln(gamma)+Gompertz)/(HardyLittlewoodC3+Salem) 2584014049104288 r005 Re(z^2+c),c=-29/114+21/52*I,n=24 2584014053425657 a007 Real Root Of 15*x^4+356*x^3-811*x^2+118*x-692 2584014054577629 m001 MinimumGamma/FeigenbaumDelta/ln(GAMMA(5/6)) 2584014060270137 l006 ln(7702/9973) 2584014063603685 m001 1/Rabbit*LaplaceLimit^2/exp(GAMMA(1/24))^2 2584014066496105 p003 LerchPhi(1/12,5,11/133) 2584014071469211 p003 LerchPhi(1/1024,6,7/82) 2584014072066616 p003 LerchPhi(1/512,6,7/82) 2584014073261494 p003 LerchPhi(1/256,6,7/82) 2584014075766261 p003 LerchPhi(1/125,6,7/82) 2584014076990112 p003 LerchPhi(1/100,6,7/82) 2584014080432717 p003 LerchPhi(1/64,6,7/82) 2584014084920495 a001 196418/2207*322^(7/12) 2584014088548103 a007 Real Root Of -174*x^4+455*x^3+940*x^2+763*x-267 2584014089999567 p003 LerchPhi(1/32,6,7/82) 2584014095359618 p003 LerchPhi(1/25,6,7/82) 2584014109151268 p003 LerchPhi(1/16,6,7/82) 2584014121932490 p003 LerchPhi(1/12,6,7/82) 2584014125820170 r004 Im(z^2+c),c=-31/46+4/17*I,z(0)=-1,n=5 2584014126692074 r002 52th iterates of z^2 + 2584014130980503 m001 Magata^(5^(1/2))/(Magata^MinimumGamma) 2584014132165251 p003 LerchPhi(1/10,6,7/82) 2584014141827640 m001 FeigenbaumKappa^Otter/(FeigenbaumDelta^Otter) 2584014141906474 m001 (Kolakoski+Salem)/(BesselJ(1,1)+FellerTornier) 2584014144361795 m001 (5^(1/2))^Weierstrass/LambertW(1) 2584014146567710 m001 Bloch/Ei(1,1)/FeigenbaumB 2584014147527445 p003 LerchPhi(1/8,6,7/82) 2584014148803206 m001 ln(CareFree)^2*Champernowne*Niven 2584014152874568 r004 Re(z^2+c),c=-2/11+13/23*I,z(0)=I,n=36 2584014153473494 a007 Real Root Of -584*x^4-557*x^3+9*x^2+846*x+211 2584014164074155 r005 Re(z^2+c),c=-8/25+6/55*I,n=26 2584014168218598 h001 (1/9*exp(1)+10/11)/(1/9*exp(1)+1/6) 2584014173166206 p003 LerchPhi(1/6,6,7/82) 2584014179311176 p003 LerchPhi(1/10,5,11/133) 2584014179933931 a001 9349/4181*1597^(1/51) 2584014183725249 m001 (HardyLittlewoodC5+Paris)/(Ei(1)-gamma(1)) 2584014184036744 m001 1/BesselJ(0,1)/FeigenbaumDelta^2/exp(sin(1)) 2584014193709131 p003 LerchPhi(1/5,6,7/82) 2584014196301521 r005 Re(z^2+c),c=1/22+23/43*I,n=6 2584014201874234 a007 Real Root Of 405*x^4+937*x^3-28*x^2+527*x-341 2584014207062990 a007 Real Root Of -129*x^4+108*x^3+839*x^2-698*x+209 2584014208749618 a007 Real Root Of -829*x^4+888*x^3+494*x^2+582*x-195 2584014208841378 l006 ln(6749/8739) 2584014219414539 p003 LerchPhi(1/5,4,278/197) 2584014224577415 p003 LerchPhi(1/4,6,7/82) 2584014225258285 r005 Re(z^2+c),c=-8/25+6/55*I,n=29 2584014226766861 r005 Re(z^2+c),c=-8/25+6/55*I,n=31 2584014229490054 r005 Re(z^2+c),c=-8/25+6/55*I,n=33 2584014230435432 a001 12238/5473*1597^(1/51) 2584014230707080 r005 Re(z^2+c),c=-8/25+6/55*I,n=35 2584014230830636 b008 5*(1+Pi*ProductLog[5]) 2584014231081295 r005 Re(z^2+c),c=-8/25+6/55*I,n=37 2584014231164916 r005 Re(z^2+c),c=-8/25+6/55*I,n=39 2584014231166546 r005 Re(z^2+c),c=-8/25+6/55*I,n=42 2584014231167561 r005 Re(z^2+c),c=-8/25+6/55*I,n=40 2584014231168792 r005 Re(z^2+c),c=-8/25+6/55*I,n=44 2584014231169983 r005 Re(z^2+c),c=-8/25+6/55*I,n=46 2584014231170384 r005 Re(z^2+c),c=-8/25+6/55*I,n=48 2584014231170483 r005 Re(z^2+c),c=-8/25+6/55*I,n=50 2584014231170492 r005 Re(z^2+c),c=-8/25+6/55*I,n=53 2584014231170494 r005 Re(z^2+c),c=-8/25+6/55*I,n=55 2584014231170495 r005 Re(z^2+c),c=-8/25+6/55*I,n=57 2584014231170495 r005 Re(z^2+c),c=-8/25+6/55*I,n=59 2584014231170495 r005 Re(z^2+c),c=-8/25+6/55*I,n=61 2584014231170495 r005 Re(z^2+c),c=-8/25+6/55*I,n=64 2584014231170495 r005 Re(z^2+c),c=-8/25+6/55*I,n=63 2584014231170495 r005 Re(z^2+c),c=-8/25+6/55*I,n=62 2584014231170495 r005 Re(z^2+c),c=-8/25+6/55*I,n=60 2584014231170495 r005 Re(z^2+c),c=-8/25+6/55*I,n=58 2584014231170496 r005 Re(z^2+c),c=-8/25+6/55*I,n=51 2584014231170496 r005 Re(z^2+c),c=-8/25+6/55*I,n=56 2584014231170498 r005 Re(z^2+c),c=-8/25+6/55*I,n=54 2584014231170498 r005 Re(z^2+c),c=-8/25+6/55*I,n=52 2584014231170538 r005 Re(z^2+c),c=-8/25+6/55*I,n=49 2584014231170746 r005 Re(z^2+c),c=-8/25+6/55*I,n=47 2584014231171465 r005 Re(z^2+c),c=-8/25+6/55*I,n=45 2584014231173243 r005 Re(z^2+c),c=-8/25+6/55*I,n=43 2584014231175133 r005 Re(z^2+c),c=-8/25+6/55*I,n=41 2584014231200728 r005 Re(z^2+c),c=-8/25+6/55*I,n=38 2584014231367033 a001 5/15251*18^(5/7) 2584014231385819 r005 Re(z^2+c),c=-8/25+6/55*I,n=36 2584014231880631 r005 Re(z^2+c),c=-8/25+6/55*I,n=28 2584014232086711 r005 Re(z^2+c),c=-8/25+6/55*I,n=34 2584014234022358 r005 Re(z^2+c),c=-8/25+6/55*I,n=32 2584014237077029 r005 Re(z^2+c),c=-8/25+6/55*I,n=30 2584014237803501 a001 64079/28657*1597^(1/51) 2584014239531709 m001 ((1+3^(1/2))^(1/2)-gamma(2))/Cahen 2584014240269093 m001 MertensB2/MinimumGamma/Trott2nd 2584014242357219 a001 39603/17711*1597^(1/51) 2584014244952670 r005 Im(z^2+c),c=-59/52+7/27*I,n=55 2584014247498047 s001 sum(exp(-Pi/4)^(n-1)*A114956[n],n=1..infinity) 2584014249164383 r005 Re(z^2+c),c=-8/25+6/55*I,n=27 2584014261647076 a001 15127/6765*1597^(1/51) 2584014263093374 m001 (gamma(1)+ErdosBorwein)/(Shi(1)-arctan(1/2)) 2584014266610127 r005 Im(z^2+c),c=-65/94+2/35*I,n=48 2584014276170872 p003 LerchPhi(1/3,6,7/82) 2584014292511075 a007 Real Root Of -68*x^4-302*x^3-621*x^2-465*x+766 2584014293537885 a007 Real Root Of 957*x^4+991*x^3-205*x^2-765*x+190 2584014321949117 m001 (Niven-Porter)/(sin(1/12*Pi)+LaplaceLimit) 2584014324247170 h005 exp(cos(Pi*2/55)*cos(Pi*2/21)) 2584014325259572 m001 Pi/(1+Shi(1)-sin(1)) 2584014325522551 r005 Re(z^2+c),c=-41/90+28/51*I,n=15 2584014341433736 r005 Im(z^2+c),c=-22/29+10/63*I,n=7 2584014342141107 p003 LerchPhi(1/2,6,250/199) 2584014346658475 r002 4th iterates of z^2 + 2584014348811761 p003 LerchPhi(1/8,5,11/133) 2584014351477235 m001 1/Zeta(3)/GAMMA(3/4)/exp(cos(Pi/12)) 2584014360499761 m001 ln(5)^BesselJ(0,1)+ln(Pi) 2584014362585861 m001 (Shi(1)-ln(2)/ln(10))/(-Cahen+FeigenbaumMu) 2584014379925414 p003 LerchPhi(1/2,6,7/82) 2584014380589706 m005 (1/2*gamma+2/9)/(11/12*Zeta(3)+7/8) 2584014381337795 m001 (Niven*Sierpinski-ZetaQ(4))/Niven 2584014382454124 a005 (1/sin(90/239*Pi))^72 2584014389962826 m005 (1/2*Zeta(3)-4)/(3^(1/2)-5/12) 2584014393861728 a001 2889/1292*1597^(1/51) 2584014402209397 r002 14th iterates of z^2 + 2584014406269893 l006 ln(5796/7505) 2584014406976202 m001 (gamma(2)+MadelungNaCl)/(Robbin+Trott) 2584014409633120 r005 Re(z^2+c),c=-8/25+6/55*I,n=25 2584014423169681 a003 sin(Pi*11/106)-sin(Pi*11/56) 2584014423720039 h001 (3/8*exp(1)+7/11)/(5/6*exp(2)+1/4) 2584014433576496 r005 Im(z^2+c),c=-35/86+27/49*I,n=25 2584014439705930 b008 Cosh[(5/3+Pi)/3] 2584014442390083 m005 (1/2*5^(1/2)+2/7)/(5/9*Catalan-5/11) 2584014446057913 r005 Im(z^2+c),c=-85/122+15/64*I,n=29 2584014455647635 m001 (Otter+ZetaP(2))/(ln(2)+Kac) 2584014463815326 s002 sum(A040575[n]/(n!^2),n=1..infinity) 2584014471979567 m001 (2^(1/3)+MertensB1*Riemann2ndZero)/MertensB1 2584014472591492 a007 Real Root Of -12*x^4+978*x^3-170*x^2+800*x+235 2584014477280227 r005 Re(z^2+c),c=27/106+25/47*I,n=45 2584014477905294 a003 sin(Pi*17/67)/cos(Pi*23/56) 2584014483500441 m001 (FeigenbaumD+Paris)/OneNinth 2584014492417402 r009 Re(z^3+c),c=-31/98+13/47*I,n=7 2584014493738138 m001 1/Si(Pi)^2/exp(DuboisRaymond)*OneNinth 2584014495983121 r005 Re(z^2+c),c=-9/31+21/52*I,n=6 2584014512239275 h005 exp(sin(Pi*5/59)+sin(Pi*13/54)) 2584014512376431 r005 Im(z^2+c),c=-19/86+21/62*I,n=4 2584014532243415 q001 569/2202 2584014532816748 m002 -6+Pi-Pi^9*Csch[Pi] 2584014534811634 a007 Real Root Of 26*x^4-145*x^3-580*x^2+247*x+850 2584014538015350 a001 514229/5778*322^(7/12) 2584014552729491 m005 (1/2*5^(1/2)+3/7)/(3/5*2^(1/2)-1/4) 2584014554937769 a007 Real Root Of 112*x^4-62*x^3-741*x^2+463*x+81 2584014561308169 m001 1/exp(MadelungNaCl)^2*Kolakoski/cos(Pi/12)^2 2584014562241113 r005 Re(z^2+c),c=-6/25+27/61*I,n=40 2584014577009351 r005 Re(z^2+c),c=-101/70+5/43*I,n=4 2584014582310595 r005 Re(z^2+c),c=-65/82+5/39*I,n=30 2584014583575829 a007 Real Root Of -281*x^4-441*x^3+630*x^2+88*x+940 2584014587551302 m005 (29/30+1/6*5^(1/2))/(1/5*Catalan+5) 2584014587954490 r008 a(0)=0,K{-n^6,-23-15*n-7*n^2+6*n^3} 2584014594143487 a007 Real Root Of 317*x^4+550*x^3-335*x^2-629*x+174 2584014604121012 a001 1346269/15127*322^(7/12) 2584014613765698 a001 3524578/39603*322^(7/12) 2584014615172839 a001 9227465/103682*322^(7/12) 2584014615378138 a001 24157817/271443*322^(7/12) 2584014615408091 a001 63245986/710647*322^(7/12) 2584014615412461 a001 165580141/1860498*322^(7/12) 2584014615413099 a001 433494437/4870847*322^(7/12) 2584014615413192 a001 1134903170/12752043*322^(7/12) 2584014615413205 a001 2971215073/33385282*322^(7/12) 2584014615413207 a001 7778742049/87403803*322^(7/12) 2584014615413208 a001 20365011074/228826127*322^(7/12) 2584014615413208 a001 53316291173/599074578*322^(7/12) 2584014615413208 a001 139583862445/1568397607*322^(7/12) 2584014615413208 a001 365435296162/4106118243*322^(7/12) 2584014615413208 a001 956722026041/10749957122*322^(7/12) 2584014615413208 a001 2504730781961/28143753123*322^(7/12) 2584014615413208 a001 6557470319842/73681302247*322^(7/12) 2584014615413208 a001 10610209857723/119218851371*322^(7/12) 2584014615413208 a001 4052739537881/45537549124*322^(7/12) 2584014615413208 a001 1548008755920/17393796001*322^(7/12) 2584014615413208 a001 591286729879/6643838879*322^(7/12) 2584014615413208 a001 225851433717/2537720636*322^(7/12) 2584014615413208 a001 86267571272/969323029*322^(7/12) 2584014615413208 a001 32951280099/370248451*322^(7/12) 2584014615413208 a001 12586269025/141422324*322^(7/12) 2584014615413208 a001 4807526976/54018521*322^(7/12) 2584014615413214 a001 1836311903/20633239*322^(7/12) 2584014615413249 a001 3524667/39604*322^(7/12) 2584014615413493 a001 267914296/3010349*322^(7/12) 2584014615415162 a001 102334155/1149851*322^(7/12) 2584014615426603 a001 39088169/439204*322^(7/12) 2584014615505020 a001 14930352/167761*322^(7/12) 2584014616042500 a001 5702887/64079*322^(7/12) 2584014619600536 b008 EllipticK[2^(-3/20)] 2584014619726442 a001 2178309/24476*322^(7/12) 2584014621303591 m008 (4*Pi^3+1/5)/(5*Pi^6+1/2) 2584014621779611 r005 Im(z^2+c),c=-9/20+23/51*I,n=60 2584014632063408 p003 LerchPhi(1/6,5,11/133) 2584014639541040 a001 141422324*6557470319842^(3/17) 2584014639541040 a001 599074578*1836311903^(3/17) 2584014639541385 a001 2537720636*514229^(3/17) 2584014644426570 r005 Im(z^2+c),c=-63/74+11/61*I,n=36 2584014644976560 a001 832040/9349*322^(7/12) 2584014653891386 r002 42th iterates of z^2 + 2584014661345257 a007 Real Root Of -427*x^4-902*x^3+253*x^2-966*x-711 2584014669333781 a001 2/75025*610^(17/48) 2584014670877274 m001 (2^(1/2)+GAMMA(19/24))/(-Salem+ZetaP(3)) 2584014671612201 m003 -1/4+Sqrt[5]/2+25*Sin[1/2+Sqrt[5]/2] 2584014671877485 s001 sum(exp(-Pi)^(n-1)*A083625[n],n=1..infinity) 2584014672479573 r005 Re(z^2+c),c=1/58+7/58*I,n=5 2584014681397916 l006 ln(4843/6271) 2584014681948597 a007 Real Root Of -449*x^4-733*x^3+894*x^2-284*x+668 2584014687190959 m001 KomornikLoreti^Niven-OneNinth 2584014707413453 a007 Real Root Of 131*x^4+153*x^3-428*x^2-67*x-516 2584014725056098 a007 Real Root Of -260*x^4-45*x^3+236*x^2+527*x-150 2584014729132107 a007 Real Root Of 340*x^4+626*x^3-443*x^2+717*x+453 2584014737107634 a001 7/75025*610^(29/56) 2584014742888986 r009 Re(z^3+c),c=-3/52+39/62*I,n=12 2584014746683589 a003 cos(Pi*16/97)-sin(Pi*14/67) 2584014748260193 m005 (1/2*2^(1/2)-2)/(1/6*Zeta(3)+3/10) 2584014757435068 a001 24476/3*34^(17/52) 2584014758006498 r009 Im(z^3+c),c=-3/64+14/51*I,n=4 2584014762711687 m001 exp(GAMMA(11/12))^2/GAMMA(1/4)/log(1+sqrt(2)) 2584014767808768 a005 (1/cos(7/232*Pi))^211 2584014772642006 a007 Real Root Of 441*x^4+310*x^3+470*x^2-28 2584014773306658 a001 29/2178309*17711^(4/59) 2584014774875013 r009 Re(z^3+c),c=-31/122+1/9*I,n=3 2584014776621354 m002 4/Pi+Log[Pi]+Tanh[Pi]/6 2584014778861420 r005 Re(z^2+c),c=-13/46+19/60*I,n=11 2584014783691823 m001 BesselK(0,1)/Zeta(3)/FeigenbaumKappa 2584014790462047 a007 Real Root Of 310*x^4+648*x^3-254*x^2+162*x-526 2584014791628464 m001 exp(-Pi)/(GAMMA(7/24)^FeigenbaumAlpha) 2584014795198868 r005 Im(z^2+c),c=-11/60+29/46*I,n=32 2584014800747636 m001 GAMMA(23/24)-cos(1/12*Pi)*Kolakoski 2584014808277804 r002 30th iterates of z^2 + 2584014818043450 a001 317811/3571*322^(7/12) 2584014825448646 s002 sum(A211768[n]/(n*2^n+1),n=1..infinity) 2584014833614930 a007 Real Root Of 737*x^4+237*x^3+585*x^2-862*x-261 2584014834544662 s002 sum(A211768[n]/(n*2^n-1),n=1..infinity) 2584014856951775 r005 Re(z^2+c),c=-3/16+41/61*I,n=13 2584014857698477 a007 Real Root Of -377*x^4-68*x^3+644*x^2+905*x-274 2584014859350800 p003 LerchPhi(1/5,5,11/133) 2584014863576997 s002 sum(A014303[n]/(n*10^n-1),n=1..infinity) 2584014881511857 m001 (LambertW(1)-Si(Pi))/(CopelandErdos+MertensB1) 2584014887434313 a001 7/233*514229^(9/55) 2584014890010275 r009 Re(z^3+c),c=-19/58+11/30*I,n=4 2584014891014113 m008 (1/3*Pi^3-2/5)/(4*Pi^6-3/5) 2584014891645295 r005 Im(z^2+c),c=-17/52+17/41*I,n=57 2584014896961864 m001 (Sarnak-ThueMorse)/(Landau-MadelungNaCl) 2584014910542297 m001 (MinimumGamma+Paris)/(2*Pi/GAMMA(5/6)+Bloch) 2584014912035267 a007 Real Root Of -32*x^4-828*x^3+6*x^2+912*x+318 2584014933203629 r005 Re(z^2+c),c=31/114+20/41*I,n=53 2584014943000409 m001 HardyLittlewoodC4*(1-Catalan) 2584014948307860 m001 1/Salem^2*exp(KhintchineLevy)^2*gamma^2 2584014974451197 s002 sum(A235280[n]/(n*pi^n-1),n=1..infinity) 2584015013376889 m005 (1/3*Pi-1/12)/(1/5*exp(1)-11/12) 2584015018066157 r005 Im(z^2+c),c=-17/52+17/41*I,n=64 2584015020888100 p004 log(36493/28183) 2584015021365901 m001 GAMMA(1/6)*exp(BesselK(0,1))^2*sqrt(2)^2 2584015022622778 r005 Im(z^2+c),c=-17/52+17/41*I,n=62 2584015030613165 m001 (Porter-ln(2)/ln(10))/(Sierpinski+Tetranacci) 2584015031620661 r005 Re(z^2+c),c=-21/94+15/31*I,n=58 2584015047113916 a001 2/6765*4181^(13/50) 2584015051224987 a005 (1/sin(97/211*Pi))^1552 2584015062237356 r009 Re(z^3+c),c=-1/13+11/16*I,n=6 2584015066300089 m005 (1/2*exp(1)-3/4)/(7/10*exp(1)+5/11) 2584015066769204 m005 (1/2*5^(1/2)+3/10)/(5/6*Catalan-9/11) 2584015068832604 m001 1/FeigenbaumKappa*exp(Lehmer)*BesselJ(1,1)^2 2584015069270687 a001 199/514229*4181^(39/50) 2584015075829150 r005 Re(z^2+c),c=-8/25+6/55*I,n=23 2584015091331585 l006 ln(3890/5037) 2584015091875472 r009 Im(z^3+c),c=-47/122+28/43*I,n=8 2584015093196502 a003 sin(Pi*9/91)*sin(Pi*25/78) 2584015098937896 m001 (1-2^(1/2))/(Ei(1)+Riemann1stZero) 2584015106051400 r009 Re(z^3+c),c=-23/29+29/44*I,n=2 2584015109297987 r005 Im(z^2+c),c=-5/78+13/41*I,n=8 2584015125408343 m001 BesselK(1,1)^(BesselI(0,1)/Weierstrass) 2584015132211699 m001 (Pi+BesselI(0,2))/(FransenRobinson-Rabbit) 2584015133631343 a001 28657/843*322^(3/4) 2584015133766064 r002 15th iterates of z^2 + 2584015138606914 a007 Real Root Of 412*x^4+676*x^3-661*x^2+845*x-108 2584015140847675 a007 Real Root Of -398*x^4-584*x^3+764*x^2-618*x+970 2584015141933902 m008 (4*Pi^2+3/4)/(1/6*Pi^4-2/3) 2584015142370877 r009 Re(z^3+c),c=-25/66+7/17*I,n=33 2584015144290847 a007 Real Root Of -264*x^4+416*x^3+360*x^2+974*x+236 2584015149027307 r005 Im(z^2+c),c=4/21+9/49*I,n=18 2584015151681302 m001 (GolombDickman-Otter)/(CareFree-ErdosBorwein) 2584015154584975 m001 PrimesInBinary-ZetaQ(2)^HardyLittlewoodC3 2584015157198015 a007 Real Root Of 365*x^4+687*x^3-249*x^2+699*x-951 2584015158486464 r005 Re(z^2+c),c=5/126+4/35*I,n=5 2584015181169557 m005 (1/2*exp(1)-4/11)/(3/8*5^(1/2)-4/5) 2584015181493582 m005 (1/2*Pi-2/5)/(7/10*gamma-6/7) 2584015186307142 r002 47th iterates of z^2 + 2584015189587359 m005 (1/2*5^(1/2)-1/2)/(11/12*exp(1)-1/10) 2584015212687316 m001 ln(5)*GAMMA(19/24)^Otter 2584015213703313 m001 Sierpinski+gamma(2)^Totient 2584015226817121 m002 6+2*Pi^2+Tanh[Pi]/Pi^2 2584015227782291 h001 (-9*exp(1/3)-6)/(-exp(1)+2) 2584015241630278 m005 (1/2*2^(1/2)+2)/(3/5*exp(1)-7/12) 2584015253816448 a001 192900153618*144^(1/17) 2584015253989169 r005 Im(z^2+c),c=-119/106+7/27*I,n=37 2584015263342650 m005 (1/2+1/2*5^(1/2))/(2/7*Catalan+6) 2584015276047826 m001 1/Khintchine*MertensB1^2/ln(GAMMA(1/3)) 2584015280062457 s002 sum(A255708[n]/(16^n),n=1..infinity) 2584015285563890 r009 Im(z^3+c),c=-31/106+13/58*I,n=8 2584015287469080 a003 -1/2-2*cos(7/18*Pi)-cos(1/27*Pi)-cos(11/30*Pi) 2584015293221100 a007 Real Root Of -341*x^4-873*x^3+441*x^2+750*x-866 2584015299637353 r005 Re(z^2+c),c=-13/54+11/26*I,n=13 2584015300074615 a001 2207/987*1597^(1/51) 2584015303079181 m001 (Conway-gamma)/(-DuboisRaymond+PlouffeB) 2584015311140835 a007 Real Root Of -76*x^4-109*x^3+80*x^2-328*x+126 2584015318388663 r005 Im(z^2+c),c=-5/122+13/42*I,n=10 2584015321033303 m005 (1/3*Zeta(3)+1/12)/(2/5*exp(1)-9/10) 2584015327970220 a007 Real Root Of -126*x^4+572*x^3+655*x^2+352*x-144 2584015329830180 r005 Im(z^2+c),c=5/82+16/61*I,n=8 2584015337738854 m001 (Ei(1)-exp(-1/2*Pi))/(Robbin-ZetaQ(3)) 2584015340435109 r005 Im(z^2+c),c=13/42+1/14*I,n=32 2584015346529239 m001 (GAMMA(1/3)+Khinchin)^BesselI(1,1) 2584015347445559 a007 Real Root Of 526*x^4+943*x^3-695*x^2+920*x-163 2584015348467171 v002 sum(1/(3^n*(4*n^2+41*n-31)),n=1..infinity) 2584015358099688 m001 1/ln(GAMMA(7/24))*Kolakoski/sqrt(1+sqrt(3))^2 2584015369944475 m001 (exp(Pi)-ln(2))/(-exp(1/exp(1))+Stephens) 2584015369985572 a007 Real Root Of -956*x^4+840*x^3-536*x^2+439*x-11 2584015373165213 m001 Stephens^(FransenRobinson/ln(Pi)) 2584015382134088 l006 ln(6827/8840) 2584015382140766 m001 BesselK(0,1)-MertensB1^GAMMA(2/3) 2584015388449527 r002 60th iterates of z^2 + 2584015391433711 p003 LerchPhi(1/64,6,149/81) 2584015398219073 m001 KhintchineHarmonic^2*Conway*ln(GAMMA(23/24))^2 2584015402115166 a007 Real Root Of -995*x^4+288*x^3-580*x^2+217*x+6 2584015402806793 a001 4/2178309*1597^(19/53) 2584015412170370 l006 ln(4737/4861) 2584015414068945 s001 sum(exp(-Pi)^(n-1)*A064111[n],n=1..infinity) 2584015417935641 r002 25th iterates of z^2 + 2584015422461162 r002 62th iterates of z^2 + 2584015428799268 m001 Bloch/(Ei(1,1)+ErdosBorwein) 2584015431084408 a001 3/322*123^(29/42) 2584015435457516 m005 (1/2*Pi-5/7)/(5*gamma+3/7) 2584015438618992 a007 Real Root Of -150*x^4-175*x^3+454*x^2+74*x+828 2584015443237454 r005 Re(z^2+c),c=-1/3+7/23*I,n=5 2584015444254658 a007 Real Root Of -909*x^4-546*x^3+69*x^2+979*x+243 2584015446868299 k005 Champernowne real with floor(log(2)*(206*n+167)) 2584015446868299 k005 Champernowne real with floor(Catalan*(156*n+126)) 2584015446878309 k005 Champernowne real with floor(sqrt(2)*(101*n+82)) 2584015446878309 k001 Champernowne real with 143*n+115 2584015451160372 r005 Re(z^2+c),c=-29/98+31/53*I,n=28 2584015455250455 a007 Real Root Of -273*x^4-285*x^3+797*x^2-422*x+842 2584015456898339 k005 Champernowne real with floor(sqrt(3)*(83*n+66)) 2584015469078963 r009 Im(z^3+c),c=-3/7+9/64*I,n=19 2584015473723356 r005 Re(z^2+c),c=-2/9+13/21*I,n=55 2584015474325542 r009 Re(z^3+c),c=-10/27+13/37*I,n=6 2584015475483687 r009 Im(z^3+c),c=-9/19+9/49*I,n=5 2584015475503186 a007 Real Root Of -295*x^4+264*x^3-975*x^2-205*x+18 2584015475577488 a001 3571/21*12586269025^(10/11) 2584015475860092 m004 -5*Pi-30*Sqrt[5]*Pi+5*Cosh[Sqrt[5]*Pi] 2584015479890848 a007 Real Root Of 399*x^4+739*x^3-625*x^2+57*x-718 2584015486177818 a007 Real Root Of -242*x^4-418*x^3+476*x^2-291*x-353 2584015486319217 a003 cos(Pi*25/91)/cos(Pi*44/105) 2584015499120480 a001 843/13*987^(31/58) 2584015501259795 r009 Im(z^3+c),c=-13/38+7/34*I,n=5 2584015505577309 a007 Real Root Of 220*x^4+17*x^3+360*x^2-241*x-87 2584015508641228 a007 Real Root Of 167*x^4-955*x^3+816*x^2-893*x+192 2584015510242182 m001 MinimumGamma/(3^(1/3)-Psi(2,1/3)) 2584015512457209 m001 (5^(1/2)-gamma)/(gamma(1)+TravellingSalesman) 2584015514456792 r005 Re(z^2+c),c=-21/110+17/33*I,n=19 2584015515152897 r004 Re(z^2+c),c=1/6+8/21*I,z(0)=I,n=21 2584015518081834 m001 FransenRobinson*KhinchinLevy-RenyiParking 2584015521569897 a001 2139295485799/233*1836311903^(10/17) 2584015521569897 a001 17393796001/233*6557470319842^(10/17) 2584015521931723 p003 LerchPhi(1/100,6,355/193) 2584015540064313 m001 DuboisRaymond^(FeigenbaumDelta/Sarnak) 2584015541464343 a003 sin(Pi*20/119)*sin(Pi*6/35) 2584015552903694 r005 Im(z^2+c),c=-11/9+3/20*I,n=16 2584015557665244 b008 E+SphericalBesselJ[2,7] 2584015563985033 a005 (1/sin(52/207*Pi))^211 2584015565364629 m009 (3/10*Pi^2+4/5)/(3/2*Pi^2-1/4) 2584015569305611 r001 17i'th iterates of 2*x^2-1 of 2584015580920950 r005 Re(z^2+c),c=23/110+3/47*I,n=15 2584015593626573 g006 Psi(1,1/12)+Psi(1,1/11)-Psi(1,5/12)-Psi(1,5/7) 2584015618121972 a007 Real Root Of 166*x^4+385*x^3-96*x^2+110*x+167 2584015631149145 a001 317811/199*76^(1/9) 2584015652009407 a007 Real Root Of -232*x^4-366*x^3+850*x^2+404*x-603 2584015657662344 r009 Re(z^3+c),c=-4/15+35/36*I,n=3 2584015658807494 a007 Real Root Of -934*x^4-803*x^3+675*x^2+708*x-210 2584015670625411 h001 (5/12*exp(2)+4/9)/(4/11*exp(1)+3/8) 2584015678199520 a001 439204/21*63245986^(10/11) 2584015678208263 a001 54018521/21*317811^(10/11) 2584015680531273 m001 1/exp(GAMMA(3/4))*Sierpinski^2*log(2+sqrt(3)) 2584015687219292 m001 ln(2+3^(1/2))+exp(1/exp(1))^Cahen 2584015687219292 m001 ln(2+sqrt(3))+exp(1/exp(1))^Cahen 2584015695227654 a007 Real Root Of 3*x^4+774*x^3-311*x^2+77*x-40 2584015696921434 m005 (1/2*Pi-3)/(1/11*Catalan-7/11) 2584015699017666 r005 Re(z^2+c),c=-21/94+15/31*I,n=36 2584015700319828 m001 Shi(1)+FransenRobinson^HardyLittlewoodC5 2584015703785989 m005 (-11/42+1/6*5^(1/2))/(1/11*Pi-5/7) 2584015707540802 r005 Im(z^2+c),c=-17/52+17/41*I,n=61 2584015710665365 r005 Re(z^2+c),c=-63/118+22/53*I,n=12 2584015710908191 r005 Im(z^2+c),c=-17/122+19/53*I,n=5 2584015713573714 a007 Real Root Of -296*x^4-747*x^3-287*x^2-573*x+744 2584015714581663 m001 PrimesInBinary*ln(LaplaceLimit)/TwinPrimes 2584015721391254 r009 Re(z^3+c),c=-12/31+15/34*I,n=16 2584015729425908 r005 Re(z^2+c),c=-57/44+3/58*I,n=52 2584015732056527 m005 (1/2*gamma+3/4)/(3/8*exp(1)+3) 2584015732147108 a001 4/5*89^(24/31) 2584015737207015 p001 sum((-1)^n/(119*n+1)/n/(32^n),n=0..infinity) 2584015740752199 r005 Im(z^2+c),c=-22/31+1/53*I,n=49 2584015756856622 r005 Im(z^2+c),c=-1/114+48/59*I,n=3 2584015760145661 a001 1364/2178309*13^(21/38) 2584015767296395 l006 ln(2937/3803) 2584015768293639 m005 (1/3*gamma+1/9)/(10/11*3^(1/2)-2/5) 2584015770411306 b008 (1/3+E)^Csch[1] 2584015774806058 p003 LerchPhi(1/3,5,11/133) 2584015780974030 p001 sum((-1)^n/(584*n+375)/(12^n),n=0..infinity) 2584015781931281 r005 Re(z^2+c),c=29/102+5/32*I,n=11 2584015785055174 a001 843/10946*6765^(7/51) 2584015791701068 r002 7th iterates of z^2 + 2584015804923362 m001 (GAMMA(2/3)+GAMMA(7/12))/(Sarnak-Tribonacci) 2584015808581964 r009 Re(z^3+c),c=-31/118+4/29*I,n=6 2584015814741598 q001 915/3541 2584015817639199 a007 Real Root Of -286*x^4-488*x^3+932*x^2+570*x-419 2584015827513874 a001 317811/521*322^(1/4) 2584015844219151 m001 (-ln(3)+polylog(4,1/2))/(BesselJ(0,1)-cos(1)) 2584015847438040 m001 BesselK(1,1)^2/ln(Magata)^2/cos(Pi/12)^2 2584015850074894 a007 Real Root Of -79*x^4+231*x^3+911*x^2-481*x+182 2584015855115225 b008 -3/4+Csc[1+E] 2584015858419341 m001 Zeta(1/2)*exp(GAMMA(1/6))^2*sin(Pi/12) 2584015859730291 r002 18th iterates of z^2 + 2584015862426939 a001 6643838879/21*1597^(10/11) 2584015863029378 m001 Riemann3rdZero^KhinchinHarmonic*Zeta(1,2) 2584015865663847 g006 -Psi(1,7/9)-Psi(1,4/7)-Psi(1,4/5)-Psi(1,1/4) 2584015887701942 m008 (Pi^3-1/4)/(4*Pi^3-5) 2584015888748547 r005 Im(z^2+c),c=-25/114+14/37*I,n=28 2584015890413871 m001 Artin-exp(1/Pi)^Magata 2584015899424563 r005 Im(z^2+c),c=-37/94+27/62*I,n=54 2584015900503094 m005 (1/2*exp(1)+3/5)/(4/11*gamma-2/7) 2584015903032688 a001 1/615*4181^(31/51) 2584015904597959 m005 (1/2*Pi-9/11)/(2/3*Pi+9/11) 2584015914658844 r005 Re(z^2+c),c=23/86+6/37*I,n=4 2584015921666235 m001 ArtinRank2*exp(Champernowne)/MadelungNaCl^2 2584015929184934 a007 Real Root Of -279*x^4-446*x^3-343*x^2+958*x+264 2584015932770945 m001 (Champernowne-FeigenbaumMu)/(Mills+Trott2nd) 2584015939970036 r005 Im(z^2+c),c=2/21+9/37*I,n=16 2584015944945315 r005 Re(z^2+c),c=-91/118+3/49*I,n=6 2584015963032976 r005 Re(z^2+c),c=-17/12+53/92*I,n=2 2584015979428520 r005 Im(z^2+c),c=-39/94+11/25*I,n=41 2584015985322163 s002 sum(A151032[n]/(n*exp(n)+1),n=1..infinity) 2584015990548288 r005 Im(z^2+c),c=-19/56+34/59*I,n=32 2584016004262191 a001 121393/1364*322^(7/12) 2584016018772150 a007 Real Root Of 460*x^4+259*x^3+486*x^2-859*x-252 2584016022350771 r009 Re(z^3+c),c=-29/106+5/29*I,n=6 2584016022398397 a001 682/305*6557470319842^(16/17) 2584016027802533 a007 Real Root Of -824*x^4-369*x^3+512*x^2+905*x-258 2584016042754323 m009 (3/8*Pi^2-2/5)/(2*Psi(1,2/3)-6) 2584016042803960 a007 Real Root Of -152*x^4-356*x^3-96*x^2-273*x+570 2584016046572358 r002 12th iterates of z^2 + 2584016060469254 m001 ErdosBorwein+cos(1/12*Pi)^Robbin 2584016068485268 b008 5+(23*E)/3 2584016068485268 v003 sum((1/6*n^3+2*n^2+47/6*n-5)/n!,n=1..infinity) 2584016079786112 a007 Real Root Of 459*x^4+949*x^3-593*x^2+306*x+660 2584016081541504 m005 (1/2*exp(1)-2/7)/(4/5+3/2*5^(1/2)) 2584016087962090 r009 Re(z^3+c),c=-43/122+5/14*I,n=16 2584016093276924 m005 (1/2*gamma-5)/(7/10*2^(1/2)+5/6) 2584016113918454 r009 Im(z^3+c),c=-3/62+6/7*I,n=4 2584016121416106 m009 (1/5*Psi(1,1/3)-1/3)/(1/4*Psi(1,1/3)+4) 2584016128861618 r005 Im(z^2+c),c=31/98+23/61*I,n=14 2584016142268697 r009 Re(z^3+c),c=-19/122+43/48*I,n=44 2584016143321026 r005 Im(z^2+c),c=-19/32+23/38*I,n=8 2584016147822775 p003 LerchPhi(1/25,3,151/207) 2584016149010469 b008 2-(3*Zeta[1/3])/5 2584016156399862 m001 Otter^(Pi*csc(11/24*Pi)/GAMMA(13/24))/Pi 2584016161564404 a007 Real Root Of 344*x^4+496*x^3-734*x^2+423*x-785 2584016161737398 a001 121393/2207*322^(2/3) 2584016169942793 a007 Real Root Of 144*x^4+668*x^3+611*x^2-669*x-703 2584016175242562 r005 Re(z^2+c),c=-6/29+32/61*I,n=34 2584016207732610 m001 (-FibonacciFactorial+Robbin)/(gamma+ln(5)) 2584016208217587 m001 (GAMMA(3/4)-Kac)/(MinimumGamma+Thue) 2584016217007732 r005 Re(z^2+c),c=-13/40+1/50*I,n=18 2584016232793533 m001 ln(Sierpinski)^2/DuboisRaymond^2*Trott 2584016234583406 m001 MertensB3*Mills*ZetaR(2) 2584016241746716 m001 (exp(1)+Bloch)/Champernowne 2584016245513087 m001 1/ln(GAMMA(1/6))/GAMMA(1/3)/sin(1) 2584016249302873 a007 Real Root Of 222*x^4-685*x^3-720*x^2-666*x+231 2584016260996958 m001 (5^(1/2)-Conway)/(-PrimesInBinary+ZetaQ(2)) 2584016262297689 m001 (sin(1/12*Pi)+exp(1/exp(1)))^Grothendieck 2584016262614538 r005 Re(z^2+c),c=-1/4+33/64*I,n=17 2584016262978360 r005 Im(z^2+c),c=-39/34+28/89*I,n=12 2584016264057956 r005 Re(z^2+c),c=-5/8+70/197*I,n=9 2584016265819415 r005 Re(z^2+c),c=-17/58+16/59*I,n=16 2584016266921468 a007 Real Root Of 796*x^4+742*x^3+586*x^2-372*x-126 2584016282171599 m001 (Pi+arctan(1/3))^LandauRamanujan 2584016285330513 a008 Real Root of x^2-x-66513 2584016294940052 r005 Im(z^2+c),c=-33/64+23/37*I,n=5 2584016295160916 r009 Re(z^3+c),c=-19/60+7/25*I,n=13 2584016297231886 r009 Re(z^3+c),c=-21/86+41/58*I,n=33 2584016301639609 l006 ln(4921/6372) 2584016301863335 a001 1/8*3^(39/59) 2584016302603592 a007 Real Root Of -212*x^4+606*x^3-96*x^2+82*x+39 2584016303543491 m009 (3*Psi(1,1/3)+1/5)/(16/3*Catalan+2/3*Pi^2+1/3) 2584016316444529 r005 Im(z^2+c),c=-13/12+19/78*I,n=35 2584016331202482 a007 Real Root Of 273*x^4-959*x^3+471*x^2-421*x-158 2584016335370749 r009 Re(z^3+c),c=-49/118+17/35*I,n=57 2584016336537532 a007 Real Root Of 772*x^4-193*x^3-462*x^2-686*x+208 2584016338809246 r005 Im(z^2+c),c=-17/54+23/56*I,n=50 2584016341040569 r005 Re(z^2+c),c=-19/74+27/62*I,n=9 2584016346121597 m001 arctan(1/2)^(3/2*GAMMA(19/24)) 2584016370826579 r005 Im(z^2+c),c=-89/90+3/11*I,n=5 2584016380284505 m001 TwinPrimes^2*exp(FeigenbaumKappa)*GAMMA(7/12) 2584016381369720 a007 Real Root Of 417*x^4+920*x^3-723*x^2-720*x+249 2584016387094088 m004 (Pi*Sec[Sqrt[5]*Pi]^2)/Sqrt[5] 2584016391727571 m001 (-OneNinth+ZetaP(3))/(Shi(1)-ln(2+3^(1/2))) 2584016393442622 q001 1261/488 2584016394959093 m002 4*Pi+(Pi^5*Coth[Pi])/E^Pi 2584016402162542 m001 (Grothendieck-MadelungNaCl)/(ArtinRank2+Cahen) 2584016410382383 r005 Im(z^2+c),c=-61/52+7/30*I,n=24 2584016416200163 r009 Im(z^3+c),c=-3/86+11/40*I,n=7 2584016416875862 m001 (ReciprocalFibonacci-Trott2nd)/(Pi-Si(Pi)) 2584016418023413 a001 13/1860498*4^(50/53) 2584016420921490 r009 Im(z^3+c),c=-2/11+9/35*I,n=7 2584016429817854 p003 LerchPhi(1/512,4,317/226) 2584016440015604 r002 41th iterates of z^2 + 2584016441036642 s002 sum(A065288[n]/(2^n+1),n=1..infinity) 2584016446508445 a007 Real Root Of 297*x^4+266*x^3-986*x^2+480*x-828 2584016463245629 r005 Im(z^2+c),c=-11/14+32/233*I,n=19 2584016470551036 a007 Real Root Of 906*x^4-356*x^3-610*x^2-972*x+294 2584016477829151 m001 Pi^(ln(3)/PisotVijayaraghavan) 2584016482253712 m002 Pi+(Pi^6*Cosh[Pi]^2)/5 2584016482814769 a007 Real Root Of -497*x^4-983*x^3-797*x^2+896*x+270 2584016484460236 r002 63th iterates of z^2 + 2584016488710732 g002 -gamma-2*ln(2)+Psi(11/12)+Psi(10/11)-Psi(6/7) 2584016493747965 m005 (1/2*exp(1)+6)/(8/11*Pi-2) 2584016496326112 m001 (Zeta(5)+Porter)/gamma(2) 2584016509261442 m002 -6+E^Pi+Pi^2-Sinh[Pi]/Pi^2 2584016513393795 a001 38/17*21^(41/51) 2584016528919255 l006 ln(6905/8941) 2584016538763968 m001 Zeta(5)*exp(GAMMA(7/12))*cos(1) 2584016559457370 r005 Re(z^2+c),c=7/90+18/53*I,n=31 2584016559517661 a007 Real Root Of -255*x^4-507*x^3+90*x^2-855*x-189 2584016562220183 a007 Real Root Of -150*x^4-51*x^3+789*x^2-374*x-427 2584016571597412 m005 (1/3*3^(1/2)-1/10)/(10/11*3^(1/2)+3/11) 2584016575010008 a007 Real Root Of -469*x^4-967*x^3+385*x^2-974*x-862 2584016581266518 r005 Im(z^2+c),c=-115/114+11/45*I,n=60 2584016582137646 m001 ln(Tribonacci)*Riemann1stZero*sqrt(3)^2 2584016591198601 r009 Re(z^3+c),c=-8/23+19/34*I,n=4 2584016598226657 r005 Re(z^2+c),c=5/17+10/61*I,n=8 2584016605559418 m001 (Pi*csc(5/12*Pi)/GAMMA(7/12)+Otter)^2 2584016610107522 h005 exp(sin(Pi*18/47)/sin(Pi*15/34)) 2584016610896866 a001 55/439204*521^(15/31) 2584016614874013 a001 105937/1926*322^(2/3) 2584016620248775 m005 (1/2*Zeta(3)-3/8)/(1/2*Catalan-6/11) 2584016624348108 r005 Re(z^2+c),c=-7/22+8/59*I,n=9 2584016628423977 a001 3524578/2207*123^(1/10) 2584016630009921 m001 Rabbit*sin(1/12*Pi)^RenyiParking 2584016631124467 m001 ln(2)*BesselJ(1,1)^Zeta(3) 2584016636036445 r005 Re(z^2+c),c=-23/78+14/53*I,n=17 2584016647842253 m001 exp(GAMMA(2/3))^2/TreeGrowth2nd^2/sqrt(3)^2 2584016650696898 m001 exp(Pi)^TreeGrowth2nd*Artin^TreeGrowth2nd 2584016663086968 m001 Pi+exp(Pi)-Chi(1)/Ei(1) 2584016668858219 r005 Re(z^2+c),c=9/32+8/55*I,n=19 2584016680985767 a001 832040/15127*322^(2/3) 2584016684954124 r009 Re(z^3+c),c=-53/110+10/21*I,n=48 2584016689271763 a007 Real Root Of 298*x^4+294*x^3-810*x^2+952*x-345 2584016690631342 a001 726103/13201*322^(2/3) 2584016691918204 a007 Real Root Of -329*x^4-818*x^3-372*x^2-797*x+979 2584016692038613 a001 5702887/103682*322^(2/3) 2584016692243931 a001 4976784/90481*322^(2/3) 2584016692273886 a001 39088169/710647*322^(2/3) 2584016692278257 a001 831985/15126*322^(2/3) 2584016692278894 a001 267914296/4870847*322^(2/3) 2584016692278987 a001 233802911/4250681*322^(2/3) 2584016692279001 a001 1836311903/33385282*322^(2/3) 2584016692279003 a001 1602508992/29134601*322^(2/3) 2584016692279003 a001 12586269025/228826127*322^(2/3) 2584016692279003 a001 10983760033/199691526*322^(2/3) 2584016692279003 a001 86267571272/1568397607*322^(2/3) 2584016692279003 a001 75283811239/1368706081*322^(2/3) 2584016692279003 a001 591286729879/10749957122*322^(2/3) 2584016692279003 a001 12585437040/228811001*322^(2/3) 2584016692279003 a001 4052739537881/73681302247*322^(2/3) 2584016692279003 a001 3536736619241/64300051206*322^(2/3) 2584016692279003 a001 6557470319842/119218851371*322^(2/3) 2584016692279003 a001 2504730781961/45537549124*322^(2/3) 2584016692279003 a001 956722026041/17393796001*322^(2/3) 2584016692279003 a001 365435296162/6643838879*322^(2/3) 2584016692279003 a001 139583862445/2537720636*322^(2/3) 2584016692279003 a001 53316291173/969323029*322^(2/3) 2584016692279003 a001 20365011074/370248451*322^(2/3) 2584016692279003 a001 7778742049/141422324*322^(2/3) 2584016692279004 a001 2971215073/54018521*322^(2/3) 2584016692279009 a001 1134903170/20633239*322^(2/3) 2584016692279045 a001 433494437/7881196*322^(2/3) 2584016692279288 a001 165580141/3010349*322^(2/3) 2584016692280958 a001 63245986/1149851*322^(2/3) 2584016692292400 a001 24157817/439204*322^(2/3) 2584016692370824 a001 9227465/167761*322^(2/3) 2584016692908354 a001 3524578/64079*322^(2/3) 2584016696592635 a001 1346269/24476*322^(2/3) 2584016701141120 m001 (3^(1/3))^cos(1/12*Pi)/Psi(2,1/3) 2584016701424822 m001 GAMMA(13/24)^CopelandErdos-Zeta(1/2) 2584016704590568 m001 (Ei(1)+Porter)/(ReciprocalLucas-Robbin) 2584016718186406 a001 15127/5*4181^(17/21) 2584016719853691 a001 73681302247*1836311903^(1/17) 2584016719853691 a001 45537549124*6557470319842^(1/17) 2584016719853806 a001 119218851371*514229^(1/17) 2584016720940480 m001 ln(3)^Psi(1,1/3)/(ln(3)^HeathBrownMoroz) 2584016721845080 a001 514229/9349*322^(2/3) 2584016721929819 m001 RenyiParking^Cahen+Riemann3rdZero 2584016723973495 m001 sinh(1)*GAMMA(17/24)^Pi 2584016737030749 r009 Re(z^3+c),c=-17/98+41/46*I,n=32 2584016752441525 m005 (-9/28+1/4*5^(1/2))/(7/12*3^(1/2)-1/11) 2584016753310051 m005 (1/2*Pi+2)/(Catalan-7/9) 2584016758527532 r005 Im(z^2+c),c=-61/102+1/21*I,n=57 2584016765957231 m001 Zeta(1,2)-arctan(1/3)-PisotVijayaraghavan 2584016777261795 m001 1/ln(log(1+sqrt(2)))^2/cos(Pi/5)/sqrt(3)^2 2584016777327406 m001 1/3*Zeta(5)*RenyiParking 2584016785797501 a007 Real Root Of -338*x^4-694*x^3+57*x^2-907*x+371 2584016790036176 a007 Real Root Of 444*x^4+931*x^3-374*x^2+462*x-41 2584016811030277 r009 Im(z^3+c),c=-14/25+5/19*I,n=25 2584016811637151 r005 Im(z^2+c),c=-75/118+13/58*I,n=3 2584016816756293 m001 1/BesselJ(0,1)/ln((2^(1/3)))^2*GAMMA(11/12) 2584016817653448 m004 16+5*Pi-(25*Cos[Sqrt[5]*Pi])/Pi 2584016820833531 r005 Re(z^2+c),c=-5/26+35/64*I,n=42 2584016822600253 r005 Re(z^2+c),c=10/29+13/64*I,n=45 2584016823567363 m001 (BesselI(0,1)+FeigenbaumB)/(Trott2nd+ZetaQ(2)) 2584016830019077 a007 Real Root Of -184*x^4-413*x^3-128*x^2-367*x+984 2584016831438110 m001 (-Kac+MertensB1)/(gamma+FeigenbaumB) 2584016836912774 m004 -3+(Pi*Csc[Sqrt[5]*Pi])/(5*Sqrt[5]) 2584016845035819 a007 Real Root Of 264*x^4+564*x^3-195*x^2+524*x+617 2584016863549173 m001 arctan(1/3)^(FeigenbaumB/ArtinRank2) 2584016870076545 r002 37th iterates of z^2 + 2584016873621023 m001 (ZetaP(3)+ZetaQ(4))/(2^(1/3)-gamma) 2584016884326266 r009 Re(z^3+c),c=-21/64+10/31*I,n=5 2584016888253140 a005 (1/cos(5/222*Pi))^1298 2584016888550482 a007 Real Root Of -267*x^4-468*x^3+720*x^2+516*x+355 2584016894927921 a001 196418/3571*322^(2/3) 2584016906448429 p003 LerchPhi(1/16,2,38/193) 2584016908913105 m005 (1/3*Catalan-1/10)/(5/9*Catalan+2/7) 2584016910563103 r005 Im(z^2+c),c=-145/122+2/59*I,n=29 2584016918636225 m008 (3/4*Pi^4+1/2)/(4/5*Pi+1/3) 2584016922248265 a007 Real Root Of -70*x^4-48*x^3+506*x^2+667*x-205 2584016926087909 s001 sum(exp(-2*Pi/3)^n*A015806[n],n=1..infinity) 2584016931104691 a007 Real Root Of -210*x^4-222*x^3+960*x^2+80*x-671 2584016934150556 p003 LerchPhi(1/2,5,11/133) 2584016941785045 a007 Real Root Of 155*x^4-72*x^3-788*x^2+848*x-700 2584016949891088 r005 Re(z^2+c),c=31/102+11/26*I,n=32 2584016970337903 s001 sum(exp(-3*Pi/5)^n*A104287[n],n=1..infinity) 2584016971456676 m009 (3/5*Psi(1,1/3)-6)/(8*Catalan+Pi^2+5) 2584016974415595 b008 Csch[2+CosIntegral[2/3]] 2584016986614605 h001 (4/7*exp(1)+3/11)/(5/6*exp(2)+10/11) 2584016997624273 m005 (1/3*Catalan+3)/(5*exp(1)-4/5) 2584017036648881 a007 Real Root Of -302*x^4+618*x^3-520*x^2+895*x+278 2584017038993653 m008 (1/6*Pi^3-1/6)/(3/5*Pi^3+3/4) 2584017054135194 r002 3th iterates of z^2 + 2584017055753789 m001 Porter^Zeta(1/2)*ZetaP(2) 2584017064109290 r005 Re(z^2+c),c=-21/106+27/50*I,n=56 2584017070129365 r002 31th iterates of z^2 + 2584017073516068 m005 (1/4*Catalan-1/3)/(1/6*gamma-1/2) 2584017074393207 a003 sin(Pi*9/112)/cos(Pi*8/97) 2584017081530684 a001 9227465/5778*123^(1/10) 2584017085286165 a007 Real Root Of -46*x^4+244*x^3+688*x^2-767*x-315 2584017092650654 l006 ln(1984/2569) 2584017093668282 r005 Re(z^2+c),c=-29/118+34/47*I,n=14 2584017095416518 m001 (Gompertz-Kolakoski)/(Cahen+Champernowne) 2584017095598542 r005 Im(z^2+c),c=-43/34+5/81*I,n=21 2584017098247368 a007 Real Root Of 680*x^4+376*x^3-185*x^2-972*x+254 2584017102333535 r005 Re(z^2+c),c=-8/25+6/55*I,n=21 2584017103706500 m001 (-Stephens+Trott2nd)/(Chi(1)+GAMMA(17/24)) 2584017115431028 r005 Im(z^2+c),c=-17/52+17/41*I,n=63 2584017115736236 m001 (GAMMA(13/24)+Artin)/(Bloch+HardyLittlewoodC4) 2584017130001808 a007 Real Root Of 187*x^4+413*x^3-648*x^2-915*x+751 2584017134019714 r005 Im(z^2+c),c=-67/122+18/49*I,n=12 2584017147292509 r005 Im(z^2+c),c=-13/14+29/134*I,n=3 2584017147638075 a001 24157817/15127*123^(1/10) 2584017157283013 a001 63245986/39603*123^(1/10) 2584017158690191 a001 165580141/103682*123^(1/10) 2584017158895495 a001 433494437/271443*123^(1/10) 2584017158925449 a001 1134903170/710647*123^(1/10) 2584017158929819 a001 2971215073/1860498*123^(1/10) 2584017158930457 a001 7778742049/4870847*123^(1/10) 2584017158930550 a001 20365011074/12752043*123^(1/10) 2584017158930563 a001 53316291173/33385282*123^(1/10) 2584017158930565 a001 139583862445/87403803*123^(1/10) 2584017158930565 a001 365435296162/228826127*123^(1/10) 2584017158930565 a001 956722026041/599074578*123^(1/10) 2584017158930565 a001 2504730781961/1568397607*123^(1/10) 2584017158930565 a001 6557470319842/4106118243*123^(1/10) 2584017158930565 a001 10610209857723/6643838879*123^(1/10) 2584017158930565 a001 4052739537881/2537720636*123^(1/10) 2584017158930565 a001 1548008755920/969323029*123^(1/10) 2584017158930566 a001 591286729879/370248451*123^(1/10) 2584017158930566 a001 225851433717/141422324*123^(1/10) 2584017158930566 a001 86267571272/54018521*123^(1/10) 2584017158930572 a001 32951280099/20633239*123^(1/10) 2584017158930607 a001 12586269025/7881196*123^(1/10) 2584017158930851 a001 4807526976/3010349*123^(1/10) 2584017158932520 a001 1836311903/1149851*123^(1/10) 2584017158943961 a001 701408733/439204*123^(1/10) 2584017159022380 a001 267914296/167761*123^(1/10) 2584017159559874 a001 102334155/64079*123^(1/10) 2584017163243913 a001 39088169/24476*123^(1/10) 2584017170032884 m001 ln(2)/ln(10)/(GAMMA(19/24)-ZetaQ(3)) 2584017173567636 r005 Im(z^2+c),c=-5/4+27/143*I,n=5 2584017188494691 a001 14930352/9349*123^(1/10) 2584017208220694 a001 17711/843*322^(5/6) 2584017209126444 a001 1/1353*(1/2*5^(1/2)+1/2)^9*11^(7/11) 2584017211473930 a001 6765/76*11^(4/9) 2584017214869041 a007 Real Root Of -175*x^4-30*x^3+762*x^2-823*x+70 2584017220707031 r009 Re(z^3+c),c=-49/90+20/63*I,n=44 2584017220744608 b008 (11*ArcCosh[Khinchin])/7 2584017222095698 m001 Niven*LandauRamanujan/exp(cos(Pi/5))^2 2584017228666535 m005 (1/2*Catalan-7/9)/(19/28+1/4*5^(1/2)) 2584017230956919 r005 Re(z^2+c),c=-21/106+19/35*I,n=49 2584017240775622 m006 (4/Pi-2/3)/(exp(Pi)+1/3) 2584017242882713 m002 -5+Pi^6/4+E^Pi*Tanh[Pi] 2584017245352353 a001 1/726103*610^(16/35) 2584017246530356 r005 Im(z^2+c),c=-23/62+3/7*I,n=57 2584017254914579 a007 Real Root Of -295*x^4-295*x^3+690*x^2-961*x+972 2584017265707452 m001 (Sierpinski+Trott)/(BesselI(0,1)-MertensB1) 2584017267330704 r009 Im(z^3+c),c=-11/114+40/47*I,n=2 2584017278111149 m005 (1/2*5^(1/2)+2/5)/(-65/84+1/12*5^(1/2)) 2584017291765871 m001 (TreeGrowth2nd-Weierstrass)/FeigenbaumKappa 2584017306420364 m001 Catalan-Zeta(1,-1)-GAMMA(11/12) 2584017308576640 r005 Im(z^2+c),c=-11/30+16/51*I,n=3 2584017316932724 r009 Re(z^3+c),c=-51/118+1/2*I,n=38 2584017317723556 m001 1/Porter*FeigenbaumDelta*exp(GAMMA(5/24)) 2584017321984753 m001 (Kolakoski+Sarnak)/(2^(1/2)-FeigenbaumKappa) 2584017327245275 r005 Im(z^2+c),c=-41/102+22/47*I,n=25 2584017331107312 l005 85264/10201/(exp(292/101)^2-1) 2584017340163335 m001 1/sin(Pi/12)*ln(Zeta(9))/sqrt(3)^2 2584017344327511 a007 Real Root Of -922*x^4+947*x^3+454*x^2+590*x-195 2584017358832070 m001 (FeigenbaumKappa+MertensB3)/(2^(1/2)-Artin) 2584017359231871 a001 199/18*(1/2*5^(1/2)+1/2)^3*18^(13/22) 2584017361566109 a001 1597*123^(1/10) 2584017363987916 a007 Real Root Of -151*x^4-141*x^3+865*x^2+682*x+286 2584017372739198 m001 1/GAMMA(1/12)^2*MertensB1*exp(GAMMA(17/24))^2 2584017375263057 m001 1/Lehmer^2/ln(Bloch)/Porter 2584017376397806 m005 (1/2*gamma+7/8)/(2/9*5^(1/2)-5) 2584017379136529 m005 (1/3*2^(1/2)+3/5)/(1/3*gamma+2/9) 2584017396119187 a001 24476/89*514229^(19/55) 2584017411282922 a001 3010349/610*1836311903^(16/17) 2584017411285046 a001 6643838879/610*514229^(16/17) 2584017414683744 r002 10th iterates of z^2 + 2584017415862714 a007 Real Root Of 311*x^4+910*x^3+515*x^2+624*x+9 2584017434467320 r005 Im(z^2+c),c=-31/54+2/43*I,n=33 2584017435454184 a001 18/75025*55^(1/54) 2584017436140205 m001 MadelungNaCl+sin(1)^MertensB2 2584017437388684 a007 Real Root Of -321*x^4-671*x^3+550*x^2+562*x+514 2584017447582669 r009 Re(z^3+c),c=-41/114+19/51*I,n=20 2584017448405439 r005 Im(z^2+c),c=7/110+13/50*I,n=14 2584017453709713 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)+gamma(1)*Conway 2584017454327758 m001 1/sqrt(3)^2*ln(cos(Pi/12))*sqrt(5) 2584017456987953 s002 sum(A042576[n]/(n^3*10^n+1),n=1..infinity) 2584017458673577 m001 (-ErdosBorwein+ZetaQ(2))/(2^(1/2)-GAMMA(2/3)) 2584017477335537 m007 (-2*gamma-6*ln(2)-Pi+3/4)/(-1/2*gamma-ln(2)-2) 2584017482839379 r005 Re(z^2+c),c=-7/13+1/2*I,n=53 2584017485452795 m001 BesselI(1,2)*KomornikLoreti-sin(1/12*Pi) 2584017496548721 m005 (1/4*gamma-2)/(2/3*gamma+1/3) 2584017496548721 m007 (-1/4*gamma+2)/(-2/3*gamma-1/3) 2584017504101099 a007 Real Root Of 161*x^4-858*x^3+160*x^2-815*x+214 2584017508416715 m006 (3/5*exp(Pi)-3)/(2/3/Pi+4) 2584017511803350 m005 (1/2*gamma+1/6)/(45/56+3/7*5^(1/2)) 2584017523060511 r002 34th iterates of z^2 + 2584017528571604 a007 Real Root Of -264*x^4-344*x^3+636*x^2-985*x-957 2584017540664790 l006 ln(9665/9918) 2584017541882738 a003 sin(Pi*5/64)/sin(Pi*37/95) 2584017552801024 m001 exp(Zeta(1/2))^2*Lehmer*cos(Pi/5) 2584017556091983 h001 (4/9*exp(2)+3/4)/(1/5*exp(2)+1/12) 2584017562550069 r005 Re(z^2+c),c=29/98+8/21*I,n=6 2584017566810974 v002 sum(1/(2^n*(5/2*n^2+45/2*n+1)),n=1..infinity) 2584017567773564 r002 51th iterates of z^2 + 2584017572049498 a007 Real Root Of 384*x^4+980*x^3+345*x^2+651*x-833 2584017573786191 m005 (1/3*gamma+1/11)/(1/5*3^(1/2)+3/4) 2584017576971410 r005 Im(z^2+c),c=-9/62+29/39*I,n=6 2584017577132700 r005 Im(z^2+c),c=-19/36+15/31*I,n=55 2584017584408025 r005 Re(z^2+c),c=-55/118+39/58*I,n=5 2584017601176813 r009 Re(z^3+c),c=-13/30+9/19*I,n=17 2584017601883258 a001 5600748293801/233*6557470319842^(8/17) 2584017614380181 r005 Im(z^2+c),c=-11/8+1/31*I,n=3 2584017625294325 r009 Re(z^3+c),c=-29/70+29/60*I,n=61 2584017626232751 m005 (1/3*3^(1/2)+1/3)/(4/9*Zeta(3)-2/11) 2584017628453783 r005 Re(z^2+c),c=-15/74+23/44*I,n=30 2584017633331687 a007 Real Root Of -187*x^4-122*x^3+819*x^2-669*x-965 2584017640498263 a001 47/6765*6765^(7/47) 2584017650085151 l006 ln(6983/9042) 2584017654296539 m001 1/GAMMA(1/4)^2/ln(GAMMA(1/24))/cos(Pi/12)^2 2584017655897821 r009 Re(z^3+c),c=-27/110+1/20*I,n=2 2584017661235724 m001 Shi(1)*(ArtinRank2-Pi) 2584017668067193 r002 22th iterates of z^2 + 2584017677149908 r009 Im(z^3+c),c=-3/86+11/40*I,n=9 2584017696797863 r005 Im(z^2+c),c=-19/56+18/43*I,n=51 2584017706448746 r005 Im(z^2+c),c=-17/52+17/41*I,n=60 2584017707139422 r005 Re(z^2+c),c=-5/22+14/29*I,n=23 2584017708896241 m001 Magata*ln(Champernowne)*GAMMA(1/4) 2584017716349354 m009 (16*Catalan+2*Pi^2+3/5)/(5*Psi(1,3/4)+5/6) 2584017719169105 a001 2207/3*514229^(39/49) 2584017726310991 a007 Real Root Of 453*x^4+866*x^3-779*x^2+254*x+603 2584017758945855 m001 (Salem+Weierstrass)/(Cahen-GlaisherKinkelin) 2584017760010645 a001 182717648081*2^(1/2) 2584017774552180 g005 GAMMA(1/9)/GAMMA(7/12)^2/GAMMA(7/11) 2584017785746960 s001 sum(exp(-2*Pi/5)^n*A188235[n],n=1..infinity) 2584017785746960 s002 sum(A188235[n]/(exp(2/5*pi*n)),n=1..infinity) 2584017789543721 p004 log(37061/2797) 2584017793939483 r005 Re(z^2+c),c=-21/74+17/55*I,n=16 2584017801978870 a007 Real Root Of 347*x^4+273*x^3+225*x^2-701*x-193 2584017822875814 r005 Re(z^2+c),c=11/34+7/39*I,n=14 2584017826096912 a007 Real Root Of -805*x^4+992*x^3-224*x^2-49*x+23 2584017826645209 m001 Robbin^FeigenbaumKappa*ZetaP(2) 2584017838211281 h001 (5/8*exp(1)+7/9)/(2/7*exp(1)+2/11) 2584017839592418 m005 (1/2*5^(1/2)-1/6)/(1/7*gamma+2/7) 2584017868155635 m001 GlaisherKinkelin*exp(Si(Pi))^2*CareFree^2 2584017871319398 l006 ln(4999/6473) 2584017871319398 p004 log(6473/4999) 2584017876794374 a001 10946/199*199^(8/11) 2584017884537512 m001 (HardyLittlewoodC4-Niven)/(ArtinRank2-Cahen) 2584017889744595 a007 Real Root Of -370*x^4-813*x^3+729*x^2+623*x-789 2584017895720029 m001 (MertensB2+ReciprocalFibonacci)/(Shi(1)+Cahen) 2584017904399156 a001 196418/521*322^(1/3) 2584017910302365 r005 Im(z^2+c),c=-49/74+11/61*I,n=10 2584017910753221 r005 Im(z^2+c),c=-7/6+5/152*I,n=21 2584017912513963 r005 Im(z^2+c),c=-1/3+5/12*I,n=40 2584017912713221 m001 (3^(1/3))^2/exp(TwinPrimes)^2/arctan(1/2)^2 2584017913314981 a001 144/11*322^(54/59) 2584017923823749 q001 346/1339 2584017938890626 m005 (1/3*exp(1)+2/3)/(1/9*gamma-1/8) 2584017944893576 r009 Im(z^3+c),c=-3/86+11/40*I,n=11 2584017947386616 r005 Im(z^2+c),c=-5/98+16/51*I,n=7 2584017949219130 r005 Re(z^2+c),c=-11/50+30/61*I,n=47 2584017949771627 m005 (1/2*3^(1/2)-1/4)/(2*2^(1/2)-4/9) 2584017960467770 m009 (4/5*Psi(1,3/4)+2/5)/(4*Psi(1,3/4)-3/4) 2584017962615703 r009 Im(z^3+c),c=-3/86+11/40*I,n=13 2584017963476718 r009 Im(z^3+c),c=-3/86+11/40*I,n=15 2584017963510568 r009 Im(z^3+c),c=-3/86+11/40*I,n=17 2584017963511621 r009 Im(z^3+c),c=-3/86+11/40*I,n=19 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=22 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=24 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=26 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=28 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=30 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=32 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=34 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=35 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=37 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=39 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=41 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=43 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=45 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=47 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=50 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=52 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=54 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=56 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=58 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=59 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=60 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=61 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=62 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=57 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=55 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=53 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=51 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=49 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=48 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=46 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=44 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=42 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=40 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=38 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=36 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=33 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=31 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=29 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=27 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=25 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=23 2584017963511641 r009 Im(z^3+c),c=-3/86+11/40*I,n=21 2584017963511642 r009 Im(z^3+c),c=-3/86+11/40*I,n=20 2584017963511804 r009 Im(z^3+c),c=-3/86+11/40*I,n=18 2584017963517987 r009 Im(z^3+c),c=-3/86+11/40*I,n=16 2584017963693133 r009 Im(z^3+c),c=-3/86+11/40*I,n=14 2584017967713470 r009 Im(z^3+c),c=-3/86+11/40*I,n=12 2584017973242205 m001 (Psi(2,1/3)-ln(2))/(MadelungNaCl+ThueMorse) 2584017982439380 r005 Re(z^2+c),c=-41/90+22/45*I,n=8 2584017988284340 r005 Im(z^2+c),c=-19/94+15/41*I,n=6 2584017990820279 m001 OneNinth^arctan(1/2)/(OneNinth^Otter) 2584017992181126 r005 Re(z^2+c),c=6/23+8/63*I,n=23 2584017994295181 m001 (CareFree-Sierpinski)/(ln(3)-GAMMA(23/24)) 2584017994319321 a003 cos(Pi*18/115)-sin(Pi*38/105) 2584017995678191 m001 1/Catalan^2*exp(MertensB1)^2*GAMMA(17/24) 2584018005956030 r005 Re(z^2+c),c=23/106+5/52*I,n=4 2584018022615795 m001 GaussKuzminWirsing/exp(Cahen)^2*GAMMA(7/24) 2584018038003749 r009 Re(z^3+c),c=-21/50+31/60*I,n=32 2584018040369724 r009 Im(z^3+c),c=-3/86+11/40*I,n=10 2584018056314908 m005 (1/3*Catalan+3/4)/(Catalan-5) 2584018057980047 r005 Re(z^2+c),c=-9/46+31/51*I,n=49 2584018061676906 a003 cos(2/7*Pi)+3^(1/2)+cos(1/30*Pi)-cos(2/9*Pi) 2584018062904555 r005 Re(z^2+c),c=-15/58+9/23*I,n=40 2584018068259918 m004 5+25*Pi+(25*Sqrt[5]*Sinh[Sqrt[5]*Pi])/(4*Pi) 2584018077329040 a005 (1/sin(44/179*Pi))^105 2584018081255988 a001 75025/1364*322^(2/3) 2584018086620382 m001 Pi+exp(Pi)-gamma(3)-BesselJ(1,1) 2584018092290417 a001 311187*1364^(30/49) 2584018099492385 b008 ArcSinh[5+2^(2/3)] 2584018100124268 m001 MertensB1+GAMMA(17/24)^ReciprocalFibonacci 2584018110984456 a007 Real Root Of -319*x^4-453*x^3+983*x^2-253*x-811 2584018131185625 m001 (Cahen-GolombDickman)/(Robbin+ZetaP(4)) 2584018134480491 a007 Real Root Of 467*x^4+983*x^3-603*x^2+166 2584018143275156 m001 (FeigenbaumAlpha+Trott)/(exp(1/exp(1))-Bloch) 2584018143316887 a001 843/5*21^(26/29) 2584018154668407 r005 Re(z^2+c),c=-17/82+25/48*I,n=60 2584018154933138 a007 Real Root Of -223*x^4-514*x^3+321*x^2+441*x+70 2584018179337764 r005 Re(z^2+c),c=8/23+12/59*I,n=51 2584018185131564 r005 Re(z^2+c),c=-7/74+29/59*I,n=5 2584018202993755 p004 log(36319/2741) 2584018212201327 m001 BesselI(1,2)-Psi(2,1/3)*TreeGrowth2nd 2584018212849970 m001 Mills/(LandauRamanujan2nd^(2^(1/3))) 2584018229533372 m001 (exp(1)*KhinchinHarmonic+BesselI(0,2))/exp(1) 2584018233791279 m001 1/Shi(1)/csc(1/12*Pi)*GAMMA(11/12) 2584018233791279 m001 sin(1/12*Pi)/Shi(1)*GAMMA(11/12) 2584018236459405 m001 GAMMA(23/24)*MasserGramainDelta/Sarnak 2584018237556244 b008 1/4+Sqrt[6]+E^Pi 2584018238731322 a001 75025/2207*322^(3/4) 2584018246930851 m001 BesselJ(0,1)/ln(Trott)/cos(Pi/5)^2 2584018249079565 m001 (Trott2nd+ZetaQ(2))^Backhouse 2584018255968625 m001 (ln(2^(1/2)+1)+MertensB1)/(Otter+Porter) 2584018259016735 r005 Re(z^2+c),c=-27/94+13/44*I,n=21 2584018263441168 p004 log(12071/911) 2584018270798600 a007 Real Root Of -402*x^4-899*x^3+163*x^2-182*x+853 2584018292394442 r005 Re(z^2+c),c=-27/94+18/59*I,n=10 2584018299027230 a001 89/3*312119004989^(7/9) 2584018304666773 m001 Pi^(1/2)+Thue^exp(1/Pi) 2584018315943246 a007 Real Root Of 334*x^4+822*x^3-24*x^2-152*x-941 2584018318671905 a007 Real Root Of -362*x^4-681*x^3+542*x^2-424*x-325 2584018322215147 r005 Im(z^2+c),c=-45/94+19/34*I,n=52 2584018342319503 m001 (-GAMMA(2/3)+ArtinRank2)/(3^(1/2)+cos(1/5*Pi)) 2584018360807096 m001 Riemann2ndZero*(Landau-Pi^(1/2)) 2584018363387805 m005 (1/2*5^(1/2)-4/9)/(5/11*Zeta(3)-2/7) 2584018369885098 m001 ln(2)/ln(10)/(Conway^Stephens) 2584018372690111 h001 (9/10*exp(2)+8/9)/(1/3*exp(2)+5/11) 2584018378473411 r005 Re(z^2+c),c=-39/122+4/37*I,n=10 2584018383716972 l006 ln(3015/3904) 2584018384444608 m005 (1/2*2^(1/2)+6/11)/(1/6*Catalan-5) 2584018388416242 r005 Re(z^2+c),c=-17/14+9/212*I,n=2 2584018389618139 m001 (QuadraticClass-Si(Pi))/(-ZetaP(2)+ZetaP(4)) 2584018394896705 a001 3571/1597*6557470319842^(16/17) 2584018400023558 m001 cos(1/5*Pi)+FibonacciFactorial^FransenRobinson 2584018402613778 a007 Real Root Of -363*x^4-556*x^3+767*x^2-489*x+206 2584018403017572 a007 Real Root Of -222*x^4-335*x^3+217*x^2-705*x+847 2584018413205393 r002 54th iterates of z^2 + 2584018433717060 m005 (41/36+1/4*5^(1/2))/(1/2*Pi+5) 2584018436102753 a007 Real Root Of -317*x^4+805*x^3+957*x^2+223*x-134 2584018444604426 r005 Im(z^2+c),c=-14/25+2/43*I,n=41 2584018451764459 r005 Re(z^2+c),c=-47/114+33/59*I,n=5 2584018455829962 r005 Re(z^2+c),c=-31/114+7/20*I,n=32 2584018458407079 r005 Im(z^2+c),c=-65/98+1/20*I,n=22 2584018469250350 r005 Im(z^2+c),c=-9/56+5/14*I,n=20 2584018470024151 v002 sum(1/(5^n+(17*n^2+4*n+43)),n=1..infinity) 2584018477862627 a003 cos(Pi*10/91)/cos(Pi*45/118) 2584018478118868 m009 (5/2*Pi^2+4/5)/(3*Psi(1,2/3)+2/3) 2584018478372627 a007 Real Root Of -208*x^4-788*x^3-443*x^2+933*x+258 2584018482422173 r005 Re(z^2+c),c=-15/52+9/31*I,n=17 2584018484663147 r005 Im(z^2+c),c=15/106+20/33*I,n=10 2584018497972004 m001 (Shi(1)-Zeta(3))/(-sin(1/5*Pi)+Trott2nd) 2584018511112933 m005 (-7/30+1/6*5^(1/2))/(3/7*Catalan+5) 2584018514134591 a007 Real Root Of 129*x^4+127*x^3-772*x^2-787*x-439 2584018525575039 a007 Real Root Of -314*x^4-972*x^3-128*x^2+650*x-237 2584018526194897 m008 (4*Pi-1/6)/(1/2*Pi^6-5/6) 2584018534004851 a001 7/1926*199^(29/36) 2584018540559048 m001 DuboisRaymond*ReciprocalLucas^BesselK(0,1) 2584018546053891 a007 Real Root Of 287*x^4+675*x^3-172*x^2-192*x-497 2584018547815877 a001 2178309/1364*123^(1/10) 2584018552614918 r009 Re(z^3+c),c=-25/58+18/35*I,n=58 2584018560056354 h001 (8/11*exp(1)+6/11)/(1/8*exp(1)+7/11) 2584018567717312 h001 (5/7*exp(2)+1/9)/(3/5*exp(1)+5/11) 2584018575521318 m001 (Psi(1,1/3)-Rabbit)/(-TreeGrowth2nd+ZetaP(4)) 2584018577798608 a001 10946/11*521^(9/59) 2584018589258324 m005 (1/2*gamma-7/11)/(9/10*5^(1/2)-2/3) 2584018594701162 m001 GAMMA(1/12)^cos(Pi/12)/(GAMMA(1/12)^gamma) 2584018595625969 g001 Psi(3/7,91/110) 2584018597532319 a001 7881196/1597*1836311903^(16/17) 2584018597534200 a001 17393796001/1597*514229^(16/17) 2584018597609363 m001 1/LambertW(1)^2/exp(GAMMA(1/12))^2*cos(Pi/5) 2584018603600863 m001 (Zeta(1,-1)+cos(1/12*Pi))/(Khinchin+ThueMorse) 2584018608033079 s002 sum(A181263[n]/(n^2*2^n+1),n=1..infinity) 2584018608948642 r002 38th iterates of z^2 + 2584018609802023 a007 Real Root Of 121*x^4+339*x^3+467*x^2+784*x-638 2584018616830839 h001 (-3*exp(-2)+1)/(-6*exp(-3)-2) 2584018623076628 m001 (GAMMA(3/4)-GAMMA(7/12))/GAMMA(19/24) 2584018625246088 a007 Real Root Of -460*x^4-827*x^3+770*x^2-636*x-545 2584018635982974 r005 Re(z^2+c),c=-9/31+23/62*I,n=5 2584018636126297 r005 Re(z^2+c),c=-2/3+45/148*I,n=11 2584018636355783 h001 (3/7*exp(2)+3/4)/(1/12*exp(2)+9/10) 2584018646376654 m001 GAMMA(2/3)*exp(GAMMA(17/24))^2*Zeta(1/2) 2584018652162743 r009 Im(z^3+c),c=-4/25+55/63*I,n=12 2584018652261108 r005 Re(z^2+c),c=-5/22+28/59*I,n=52 2584018660857933 s001 sum(exp(-Pi/4)^(n-1)*A151477[n],n=1..infinity) 2584018666502998 a007 Real Root Of 66*x^4-228*x^3-688*x^2+715*x-435 2584018677454988 m001 1/GAMMA(3/4)/exp(Sierpinski)/cosh(1)^2 2584018681900775 r002 18th iterates of z^2 + 2584018683816518 a003 cos(Pi*1/115)/sin(Pi*11/87) 2584018691759927 a001 98209/2889*322^(3/4) 2584018697976696 m001 Paris^2/ln(Cahen)^2/BesselJ(1,1)^2 2584018701110178 m001 1/GAMMA(7/24)^2/ln(Robbin)/Pi^2 2584018706428368 r005 Im(z^2+c),c=11/38+5/59*I,n=35 2584018716831953 m002 -5/4+Pi^5-4*Cosh[Pi] 2584018720984763 b008 AiryAiPrime[Pi/64] 2584018721150262 a007 Real Root Of 145*x^4-117*x^3-872*x^2+916*x-294 2584018725798011 r005 Re(z^2+c),c=-4/7+13/31*I,n=26 2584018741039725 a001 9349/4181*6557470319842^(16/17) 2584018746480797 l006 ln(7061/9143) 2584018748827075 r005 Re(z^2+c),c=41/122+9/49*I,n=59 2584018749101112 a005 (1/cos(17/203*Pi))^882 2584018751405223 a007 Real Root Of 99*x^4-231*x^3-993*x^2+858*x+448 2584018752747827 m005 (1/2*Zeta(3)+4/5)/(11/12*gamma-7/12) 2584018756704814 h001 (1/10*exp(1)+1/2)/(4/11*exp(2)+3/10) 2584018757855923 a001 514229/15127*322^(3/4) 2584018759046326 a001 1/72*1836311903^(6/17) 2584018762808287 h001 (1/4*exp(2)+4/5)/(1/6*exp(1)+4/7) 2584018763716744 s001 sum(exp(-Pi/4)^n*A265261[n],n=1..infinity) 2584018767499200 a001 1346269/39603*322^(3/4) 2584018768057912 r005 Im(z^2+c),c=-17/52+17/41*I,n=52 2584018768906135 a001 1762289/51841*322^(3/4) 2584018769111404 a001 9227465/271443*322^(3/4) 2584018769141352 a001 24157817/710647*322^(3/4) 2584018769145721 a001 31622993/930249*322^(3/4) 2584018769146359 a001 165580141/4870847*322^(3/4) 2584018769146452 a001 433494437/12752043*322^(3/4) 2584018769146466 a001 567451585/16692641*322^(3/4) 2584018769146467 a001 2971215073/87403803*322^(3/4) 2584018769146468 a001 7778742049/228826127*322^(3/4) 2584018769146468 a001 10182505537/299537289*322^(3/4) 2584018769146468 a001 53316291173/1568397607*322^(3/4) 2584018769146468 a001 139583862445/4106118243*322^(3/4) 2584018769146468 a001 182717648081/5374978561*322^(3/4) 2584018769146468 a001 956722026041/28143753123*322^(3/4) 2584018769146468 a001 2504730781961/73681302247*322^(3/4) 2584018769146468 a001 3278735159921/96450076809*322^(3/4) 2584018769146468 a001 10610209857723/312119004989*322^(3/4) 2584018769146468 a001 4052739537881/119218851371*322^(3/4) 2584018769146468 a001 387002188980/11384387281*322^(3/4) 2584018769146468 a001 591286729879/17393796001*322^(3/4) 2584018769146468 a001 225851433717/6643838879*322^(3/4) 2584018769146468 a001 1135099622/33391061*322^(3/4) 2584018769146468 a001 32951280099/969323029*322^(3/4) 2584018769146468 a001 12586269025/370248451*322^(3/4) 2584018769146468 a001 1201881744/35355581*322^(3/4) 2584018769146469 a001 1836311903/54018521*322^(3/4) 2584018769146474 a001 701408733/20633239*322^(3/4) 2584018769146509 a001 66978574/1970299*322^(3/4) 2584018769146753 a001 102334155/3010349*322^(3/4) 2584018769148422 a001 39088169/1149851*322^(3/4) 2584018769159861 a001 196452/5779*322^(3/4) 2584018769238267 a001 5702887/167761*322^(3/4) 2584018769775668 a001 2178309/64079*322^(3/4) 2584018770603865 a001 20633239/4181*1836311903^(16/17) 2584018770605711 a001 45537549124/4181*514229^(16/17) 2584018773459072 a001 208010/6119*322^(3/4) 2584018785477599 a001 317811/7*3571^(38/49) 2584018786788648 m001 polylog(4,1/2)^Rabbit*ThueMorse 2584018787977532 r002 5th iterates of z^2 + 2584018788413647 r005 Im(z^2+c),c=-11/12+31/120*I,n=61 2584018791541315 a001 12238/5473*6557470319842^(16/17) 2584018795854665 a001 54018521/10946*1836311903^(16/17) 2584018795856506 a001 119218851371/10946*514229^(16/17) 2584018798705497 a001 317811/9349*322^(3/4) 2584018798909398 a001 64079/28657*6557470319842^(16/17) 2584018799538707 a001 141422324/28657*1836311903^(16/17) 2584018799540547 a001 312119004989/28657*514229^(16/17) 2584018799984387 a001 167761/75025*6557470319842^(16/17) 2584018800076202 a001 370248451/75025*1836311903^(16/17) 2584018800078041 a001 817138163596/75025*514229^(16/17) 2584018800141226 a001 219602/98209*6557470319842^(16/17) 2584018800154621 a001 969323029/196418*1836311903^(16/17) 2584018800156461 a001 2139295485799/196418*514229^(16/17) 2584018800164108 a001 1149851/514229*6557470319842^(16/17) 2584018800166063 a001 2537720636/514229*1836311903^(16/17) 2584018800167447 a001 3010349/1346269*6557470319842^(16/17) 2584018800167732 a001 6643838879/1346269*1836311903^(16/17) 2584018800167902 a001 5600748293801/514229*514229^(16/17) 2584018800167934 a001 3940598/1762289*6557470319842^(16/17) 2584018800167975 a001 17393796001/3524578*1836311903^(16/17) 2584018800168005 a001 20633239/9227465*6557470319842^(16/17) 2584018800168011 a001 45537549124/9227465*1836311903^(16/17) 2584018800168015 a001 54018521/24157817*6557470319842^(16/17) 2584018800168016 a001 119218851371/24157817*1836311903^(16/17) 2584018800168017 a001 70711162/31622993*6557470319842^(16/17) 2584018800168017 a001 312119004989/63245986*1836311903^(16/17) 2584018800168017 a001 370248451/165580141*6557470319842^(16/17) 2584018800168017 a001 817138163596/165580141*1836311903^(16/17) 2584018800168017 a001 969323029/433494437*6557470319842^(16/17) 2584018800168017 a001 2139295485799/433494437*1836311903^(16/17) 2584018800168017 a001 1268860318/567451585*6557470319842^(16/17) 2584018800168017 a001 5600748293801/1134903170*1836311903^(16/17) 2584018800168017 a001 14662949395604/2971215073*1836311903^(16/17) 2584018800168017 a001 23725150497407/4807526976*1836311903^(16/17) 2584018800168017 a001 6643838879/2971215073*6557470319842^(16/17) 2584018800168017 a001 17393796001/7778742049*6557470319842^(16/17) 2584018800168017 a001 22768774562/10182505537*6557470319842^(16/17) 2584018800168017 a001 119218851371/53316291173*6557470319842^(16/17) 2584018800168017 a001 96450076809/43133785636*6557470319842^(16/17) 2584018800168017 a001 73681302247/32951280099*6557470319842^(16/17) 2584018800168017 a001 28143753123/12586269025*6557470319842^(16/17) 2584018800168017 a001 9062201101803/1836311903*1836311903^(16/17) 2584018800168017 a001 5374978561/2403763488*6557470319842^(16/17) 2584018800168017 a001 4106118243/1836311903*6557470319842^(16/17) 2584018800168017 a001 3461452808002/701408733*1836311903^(16/17) 2584018800168017 a001 1568397607/701408733*6557470319842^(16/17) 2584018800168017 a001 1322157322203/267914296*1836311903^(16/17) 2584018800168017 a001 299537289/133957148*6557470319842^(16/17) 2584018800168017 a001 505019158607/102334155*1836311903^(16/17) 2584018800168017 a001 228826127/102334155*6557470319842^(16/17) 2584018800168017 a001 192900153618/39088169*1836311903^(16/17) 2584018800168018 a001 87403803/39088169*6557470319842^(16/17) 2584018800168019 a001 73681302247/14930352*1836311903^(16/17) 2584018800168022 a001 16692641/7465176*6557470319842^(16/17) 2584018800168033 a001 28143753123/5702887*1836311903^(16/17) 2584018800168049 a001 12752043/5702887*6557470319842^(16/17) 2584018800168126 a001 4870846/987*1836311903^(16/17) 2584018800168235 a001 4870847/2178309*6557470319842^(16/17) 2584018800168763 a001 4106118243/832040*1836311903^(16/17) 2584018800169510 a001 930249/416020*6557470319842^(16/17) 2584018800169571 a001 14662949395604/1346269*514229^(16/17) 2584018800169965 a001 23725150497407/2178309*514229^(16/17) 2584018800170603 a001 9062201101803/832040*514229^(16/17) 2584018800173134 a001 1568397607/317811*1836311903^(16/17) 2584018800174973 a001 3461452808002/317811*514229^(16/17) 2584018800178250 a001 710647/317811*6557470319842^(16/17) 2584018800203087 a001 599074578/121393*1836311903^(16/17) 2584018800204927 a001 1322157322203/121393*514229^(16/17) 2584018800238157 a001 271443/121393*6557470319842^(16/17) 2584018800408392 a001 228826127/46368*1836311903^(16/17) 2584018800410231 a001 505019158607/46368*514229^(16/17) 2584018800648767 a001 51841/23184*6557470319842^(16/17) 2584018801410105 q001 2199/851 2584018801815571 a001 87403803/17711*1836311903^(16/17) 2584018801817410 a001 192900153618/17711*514229^(16/17) 2584018803463124 a001 39603/17711*6557470319842^(16/17) 2584018810538809 s002 sum(A114957[n]/(16^n),n=1..infinity) 2584018810538809 s002 sum(A114957[n]/(16^n-1),n=1..infinity) 2584018811335439 a007 Real Root Of 98*x^4-184*x^3-947*x^2+443*x-76 2584018811460518 a001 33385282/6765*1836311903^(16/17) 2584018811462355 a001 73681302247/6765*514229^(16/17) 2584018820432315 a001 2/3*75025^(7/58) 2584018822753015 a001 15127/6765*6557470319842^(16/17) 2584018825946604 a007 Real Root Of -473*x^4-796*x^3+955*x^2-436*x-149 2584018827610422 m001 GlaisherKinkelin/ln(ArtinRank2)/GAMMA(19/24)^2 2584018843311992 m001 (-MertensB2+ZetaP(2))/(BesselK(1,1)-exp(Pi)) 2584018846594985 a007 Real Root Of 90*x^4+321*x^3+407*x^2-650*x-190 2584018848434434 r009 Im(z^3+c),c=-3/86+11/40*I,n=8 2584018849835357 r005 Re(z^2+c),c=-20/21+15/56*I,n=8 2584018850300996 a007 Real Root Of 329*x^4+859*x^3+181*x^2+705*x+766 2584018857146787 r001 59i'th iterates of 2*x^2-1 of 2584018859484811 a007 Real Root Of -348*x^4-989*x^3+153*x^2+980*x-38 2584018873290822 r005 Re(z^2+c),c=5/62+21/61*I,n=28 2584018877567974 a001 12752043/2584*1836311903^(16/17) 2584018877569798 a001 28143753123/2584*514229^(16/17) 2584018890239566 r005 Im(z^2+c),c=21/62+7/58*I,n=10 2584018905099837 r002 19th iterates of z^2 + 2584018905199393 m001 (BesselJ(1,1)-GAMMA(17/24))/(Landau-Stephens) 2584018912325271 p003 LerchPhi(1/1024,6,629/233) 2584018922109742 a001 317811/7*9349^(34/49) 2584018922796525 m001 OrthogonalArrays^HardHexagonsEntropy*ln(5) 2584018932460227 m008 (1/2*Pi^3+3/4)/(1/3*Pi^2+3) 2584018948216734 h001 (5/9*exp(2)+8/9)/(5/12*exp(1)+4/5) 2584018951812785 a001 17711/7*15127^(47/49) 2584018953322188 r005 Re(z^2+c),c=7/36+1/39*I,n=16 2584018954967900 a001 2889/1292*6557470319842^(16/17) 2584018960008694 m001 1/BesselJ(0,1)*ln(Trott)^2*cos(Pi/12) 2584018961874206 r009 Re(z^3+c),c=-51/122+24/49*I,n=44 2584018967102246 r005 Re(z^2+c),c=-12/31+16/33*I,n=5 2584018970373538 m006 (4/5*ln(Pi)-5/6)/(1/6*ln(Pi)+3) 2584018971747083 a001 121393/3571*322^(3/4) 2584018977182627 a001 1364/3*89^(12/31) 2584018982118415 a001 311187*5778^(25/49) 2584018992093995 m001 (Backhouse-FeigenbaumC)/(3^(1/3)-gamma(2)) 2584019007673911 m005 (4/15+1/6*5^(1/2))/(7/10*exp(1)+4/7) 2584019015664363 r005 Im(z^2+c),c=-17/52+17/41*I,n=58 2584019016805289 l006 ln(4046/5239) 2584019017392618 a007 Real Root Of -696*x^4-299*x^3+272*x^2+488*x-136 2584019017784313 m001 GAMMA(19/24)-ln(3)*Conway 2584019025683293 m001 (5^(1/2)+ln(Pi))/(-exp(1/Pi)+FeigenbaumD) 2584019027656612 a007 Real Root Of 306*x^4+276*x^3-925*x^2+677*x-955 2584019030876376 m001 MertensB2/(ReciprocalFibonacci^ln(Pi)) 2584019034273653 r009 Re(z^3+c),c=-19/60+7/25*I,n=17 2584019049060018 a007 Real Root Of -453*x^4-827*x^3+726*x^2-454*x-93 2584019055808622 m001 (2^(1/3)-ln(5))/(ln(Pi)+exp(-1/2*Pi)) 2584019061825863 m001 1/PrimesInBinary*ln(DuboisRaymond)*cos(Pi/5)^2 2584019077003609 a007 Real Root Of -885*x^4+220*x^3+758*x^2+540*x-190 2584019081964348 r005 Im(z^2+c),c=-17/31+10/41*I,n=3 2584019088449874 a001 233/521*9349^(18/19) 2584019090658601 r005 Re(z^2+c),c=-8/27+14/33*I,n=6 2584019111738603 r005 Re(z^2+c),c=-23/30+1/25*I,n=6 2584019112760858 a001 233/521*24476^(6/7) 2584019115965513 a001 233/521*64079^(18/23) 2584019116449086 a001 233/521*439204^(2/3) 2584019116457993 a001 233/521*7881196^(6/11) 2584019116458016 a001 233/521*141422324^(6/13) 2584019116458016 a001 233/521*2537720636^(2/5) 2584019116458016 a001 233/521*45537549124^(6/17) 2584019116458016 a001 233/521*14662949395604^(2/7) 2584019116458016 a001 233/521*(1/2+1/2*5^(1/2))^18 2584019116458016 a001 233/521*192900153618^(1/3) 2584019116458016 a001 233/521*10749957122^(3/8) 2584019116458016 a001 233/521*4106118243^(9/23) 2584019116458016 a001 233/521*1568397607^(9/22) 2584019116458016 a001 233/521*599074578^(3/7) 2584019116458016 a001 233/521*228826127^(9/20) 2584019116458016 a001 233/521*87403803^(9/19) 2584019116458017 a001 233/521*33385282^(1/2) 2584019116458025 a001 233/521*12752043^(9/17) 2584019116458077 a001 233/521*4870847^(9/16) 2584019116458464 a001 233/521*1860498^(3/5) 2584019116461305 a001 233/521*710647^(9/14) 2584019116482296 a001 233/521*271443^(9/13) 2584019116638297 a001 233/521*103682^(3/4) 2584019117806015 a001 233/521*39603^(9/11) 2584019126621266 a001 233/521*15127^(9/10) 2584019144099024 a003 sin(Pi*1/108)*sin(Pi*39/112) 2584019145682015 r005 Re(z^2+c),c=47/98+61/62*I,n=2 2584019148449926 p004 log(34729/2621) 2584019151723361 r009 Im(z^3+c),c=-75/122+5/41*I,n=2 2584019157598241 m005 (1/3*3^(1/2)-1/5)/(1/5*exp(1)+11/12) 2584019160499316 m001 (Psi(1,1/3)*exp(1)-FeigenbaumKappa)/Psi(1,1/3) 2584019176755469 m001 (ln(Pi)-BesselK(1,1))/(Magata-Mills) 2584019177910361 m005 (1/2*3^(1/2)-8/9)/(7/8*Catalan+1/12) 2584019210209009 m001 MinimumGamma*exp(Champernowne)^2*sinh(1)^2 2584019211043771 m005 (1/3*gamma-1/6)/(3/5*Pi-8/9) 2584019218943972 m009 (2/3*Psi(1,2/3)+1/5)/(40*Catalan+5*Pi^2+4/5) 2584019223171054 m005 (5/6*gamma+1/3)/(3/5*2^(1/2)-4) 2584019226283933 a007 Real Root Of -307*x^4+604*x^3+372*x^2+608*x-191 2584019227107648 m001 1/GAMMA(7/12)^2*Niven/ln(sin(Pi/5))^2 2584019227609737 r008 a(0)=0,K{-n^6,8+5*n+3*n^2+23*n^3} 2584019243717012 r005 Im(z^2+c),c=-11/10+50/207*I,n=4 2584019246731581 m005 (1/3*Pi-1/10)/(1/12*3^(1/2)+2/9) 2584019255224396 a007 Real Root Of 206*x^4+292*x^3-594*x^2+149*x+205 2584019261128495 m005 (-1/44+1/4*5^(1/2))/(-19/7+2/7*5^(1/2)) 2584019262967716 m001 (gamma(1)+Cahen)/(Otter-RenyiParking) 2584019267277020 h001 (1/6*exp(2)+2/3)/(8/9*exp(2)+7/9) 2584019277140660 p003 LerchPhi(1/3,4,87/196) 2584019279660530 a007 Real Root Of -601*x^4-47*x^3+106*x^2+620*x+155 2584019281478631 m001 GAMMA(11/12)-Magata^Khinchin 2584019291049478 a001 10946/843*322^(11/12) 2584019296719632 a007 Real Root Of -231*x^4-259*x^3+758*x^2-541*x-629 2584019299263576 m001 Landau*(FeigenbaumMu+KhinchinLevy) 2584019320438957 a007 Real Root Of -322*x^4-709*x^3+554*x^2+577*x-85 2584019324193906 m001 (gamma(2)-Weierstrass)/(Pi-BesselI(0,1)) 2584019330675311 a001 4870847/987*1836311903^(16/17) 2584019330677041 a001 10749957122/987*514229^(16/17) 2584019332362291 m001 1/exp(GAMMA(1/12))/Tribonacci/Zeta(1/2)^2 2584019337764966 r009 Re(z^3+c),c=-11/46+18/19*I,n=3 2584019345574936 h001 (2/3*exp(2)+2/5)/(1/5*exp(2)+7/12) 2584019348174130 m001 GAMMA(5/6)/Robbin/TwinPrimes 2584019352711976 a001 7/281*3^(1/30) 2584019355683046 m001 (Catalan-GAMMA(2/3))^GAMMA(13/24) 2584019355683046 m001 (GAMMA(2/3)-Catalan)^GAMMA(13/24) 2584019367077935 r005 Re(z^2+c),c=15/62+19/34*I,n=28 2584019373335811 r005 Re(z^2+c),c=-31/114+7/20*I,n=34 2584019377249741 r005 Im(z^2+c),c=-47/70+11/42*I,n=20 2584019392449290 r005 Im(z^2+c),c=-11/90+12/35*I,n=11 2584019392767703 l006 ln(5077/6574) 2584019395832304 m005 (4*gamma-1/6)/(27/10+5/2*5^(1/2)) 2584019397638531 r009 Re(z^3+c),c=-5/27+43/50*I,n=24 2584019405816504 m005 (1/3*gamma+1/5)/(11/12*2^(1/2)+2/9) 2584019416504301 r005 Re(z^2+c),c=-29/94+17/35*I,n=11 2584019419677678 m009 (Psi(1,3/4)+1/4)/(3/2*Pi^2-4) 2584019424418631 m005 (1/2*Pi+10/11)/(3/4*Catalan+3/11) 2584019426232531 m001 exp(1)*StronglyCareFree+Weierstrass 2584019430282769 m005 (1/5*gamma-5)/(1/4*gamma-1/3) 2584019430282769 m007 (-1/5*gamma+5)/(-1/4*gamma+1/3) 2584019441477666 m001 (2/3*Pi*3^(1/2)/GAMMA(2/3)-cos(1/5*Pi))/Sarnak 2584019442176467 s002 sum(A099707[n]/(pi^n+1),n=1..infinity) 2584019453159082 m001 (Mills-Tetranacci)/(ln(5)+Kolakoski) 2584019464022142 m001 (Zeta(1/2)-RenyiParking)/(sin(1/5*Pi)-3^(1/3)) 2584019467206091 a003 sin(Pi*5/69)/cos(Pi*17/105) 2584019488902411 a007 Real Root Of -197*x^4-543*x^3-50*x^2+433*x+867 2584019491584694 a001 219602/305*6557470319842^(14/17) 2584019491598089 a001 370248451/610*1836311903^(14/17) 2584019491599699 a001 312119004989/610*514229^(14/17) 2584019502702041 m001 (gamma(3)+ArtinRank2)/(Chi(1)-LambertW(1)) 2584019505839851 r005 Re(z^2+c),c=-21/94+15/31*I,n=43 2584019508302727 a007 Real Root Of 565*x^4+205*x^3+867*x^2-759*x-253 2584019509600973 r002 2th iterates of z^2 + 2584019511389952 r002 35th iterates of z^2 + 2584019531330828 m005 (1/3*Pi-2/11)/(4/11*gamma+1/8) 2584019555643410 h001 (1/5*exp(1)+5/7)/(5/8*exp(2)+1/4) 2584019571512246 a007 Real Root Of -288*x^4-776*x^3-159*x^2-53*x+376 2584019576321368 r002 40th iterates of z^2 + 2584019585474107 r005 Re(z^2+c),c=-49/106+23/51*I,n=10 2584019586662732 l006 ln(4928/5057) 2584019597130119 m005 (1/2*Catalan+7/11)/(7/11*Zeta(3)-5) 2584019598106247 m001 Rabbit^LaplaceLimit+KomornikLoreti 2584019598280717 a007 Real Root Of -411*x^4-892*x^3+484*x^2+161*x+118 2584019599148391 s002 sum(A071418[n]/(n^3*10^n+1),n=1..infinity) 2584019607097487 r005 Im(z^2+c),c=31/114+7/64*I,n=31 2584019608844307 m001 TwinPrimes^2/exp(Riemann3rdZero)^2*Pi 2584019609835197 r002 31th iterates of z^2 + 2584019627944422 a003 sin(Pi*9/113)/cos(Pi*6/65) 2584019635653832 a007 Real Root Of -438*x^4-189*x^3+538*x^2+957*x-278 2584019641808941 l006 ln(6108/7909) 2584019642297296 r005 Re(z^2+c),c=41/122+11/62*I,n=45 2584019643977899 r005 Re(z^2+c),c=-9/31+11/56*I,n=4 2584019645907170 r005 Im(z^2+c),c=9/50+25/46*I,n=26 2584019652434660 r005 Im(z^2+c),c=-17/54+23/56*I,n=48 2584019659376855 m001 GAMMA(11/12)*(exp(-Pi)+BesselJZeros(0,1)) 2584019668621518 s002 sum(A135932[n]/(n*exp(n)-1),n=1..infinity) 2584019675720783 m001 Sierpinski^2*DuboisRaymond^2*exp(Trott)^2 2584019691464612 p004 log(32971/25463) 2584019693343132 m001 Riemann3rdZero^2*Bloch*exp(sqrt(5))^2 2584019694344196 r005 Re(z^2+c),c=-19/60+6/43*I,n=12 2584019697210326 m001 1/cos(1)*exp(Trott)*sinh(1)^2 2584019698414719 r009 Im(z^3+c),c=-29/62+4/49*I,n=33 2584019713628061 m001 (2^(1/3)+2^(1/2))/(-Zeta(5)+gamma(3)) 2584019735310022 r004 Im(z^2+c),c=-1/3+5/12*I,z(0)=-1,n=49 2584019736219480 a007 Real Root Of -61*x^4+920*x^3+605*x^2+387*x-156 2584019751757821 m001 ArtinRank2*FibonacciFactorial*ln(gamma)^2 2584019753230015 a005 (1/sin(58/149*Pi))^1059 2584019758499448 r005 Im(z^2+c),c=-15/16+21/94*I,n=13 2584019773417984 r009 Re(z^3+c),c=-27/110+22/23*I,n=49 2584019774168402 m001 (Psi(2,1/3)-gamma(2))/(-Kac+ThueMorse) 2584019790051661 m008 (4/5*Pi^3+1/6)/(Pi^6+5) 2584019790083241 a007 Real Root Of -210*x^4-685*x^3-192*x^2+627*x+446 2584019790733686 m001 (-Paris+Sarnak)/(LambertW(1)-cos(1/5*Pi)) 2584019793275552 r005 Re(z^2+c),c=-26/21+7/60*I,n=52 2584019799328254 m001 1/Zeta(5)^2*MadelungNaCl*exp(arctan(1/2)) 2584019816197471 a001 9062201101803/8*365435296162^(7/11) 2584019818918108 l006 ln(7139/9244) 2584019819030719 g002 -Psi(1/11)-Psi(1/10)-Psi(5/9)-Psi(4/9) 2584019833361782 r005 Im(z^2+c),c=5/98+35/54*I,n=39 2584019837818651 m005 (1/2*Zeta(3)-2/9)/(41/60+7/20*5^(1/2)) 2584019838576317 r004 Re(z^2+c),c=-3/16+7/12*I,z(0)=I,n=54 2584019840256975 r005 Im(z^2+c),c=9/40+7/47*I,n=3 2584019846731875 r005 Im(z^2+c),c=-49/82+22/61*I,n=28 2584019857134696 m001 (Zeta(3)+Zeta(1/2))/(HeathBrownMoroz+Paris) 2584019860486193 r009 Im(z^3+c),c=-63/106+10/39*I,n=41 2584019861182387 a001 2207/987*6557470319842^(16/17) 2584019873348690 m001 (Si(Pi)-ln(2)/ln(10))/(-Champernowne+Sarnak) 2584019875342861 r009 Re(z^3+c),c=-69/122+7/23*I,n=52 2584019885359468 r005 Im(z^2+c),c=-145/122+1/29*I,n=46 2584019891635834 m001 (HardyLittlewoodC4-Sierpinski)/ln(2^(1/2)+1) 2584019892912044 r005 Re(z^2+c),c=-13/42+10/53*I,n=13 2584019895547239 b008 5+41*E^(1+Pi) 2584019921664053 r005 Re(z^2+c),c=-2/9+20/43*I,n=16 2584019926912795 m001 (Magata+Robbin)/(BesselJ(0,1)+AlladiGrinstead) 2584019931275775 m001 (-Mills+TwinPrimes)/(Chi(1)-sin(1/5*Pi)) 2584019934545697 m001 (Robbin+Sarnak)/(CareFree-Rabbit) 2584019938431869 s001 sum(exp(-2*Pi)^(n-1)*A124009[n],n=1..infinity) 2584019940812565 s002 sum(A202326[n]/(n^2*exp(n)+1),n=1..infinity) 2584019947201493 a001 2584/11*24476^(14/59) 2584019947566458 r005 Im(z^2+c),c=15/52+2/23*I,n=61 2584019967630540 g007 Psi(2,7/12)-Psi(2,5/9)-Psi(2,1/5)-Psi(2,3/4) 2584019981219129 a001 233*322^(5/12) 2584019986663088 r009 Re(z^3+c),c=-13/28+29/48*I,n=8 2584019993875041 m001 (Pi^(1/2))^BesselI(1,2)+Paris 2584019995796969 m001 ArtinRank2^CareFree-ReciprocalFibonacci 2584020007256189 m008 (4*Pi^3+1/6)/(5*Pi^6-4/5) 2584020014555869 a001 615*39603^(8/59) 2584020028842340 a007 Real Root Of 400*x^4+786*x^3-383*x^2+760*x+249 2584020034058208 h001 (2/3*exp(1)+1/9)/(8/9*exp(2)+7/8) 2584020036958827 a003 sin(Pi*1/18)/sin(Pi*19/81) 2584020040439832 m005 (1/3*Pi+2/5)/(7/9*gamma+1/9) 2584020040577962 a007 Real Root Of -23*x^4+238*x^3+361*x^2-975*x+202 2584020040766408 p004 log(11117/839) 2584020040912219 a007 Real Root Of -365*x^4-828*x^3+5*x^2-657*x+256 2584020064541943 m001 (ln(2)-Artin)/(Grothendieck-Riemann1stZero) 2584020070838669 a003 sin(Pi*1/12)*sin(Pi*40/83) 2584020083278034 a001 1/930249*4^(31/49) 2584020083745177 m001 GAMMA(1/3)/(GAMMA(23/24)^sqrt(2)) 2584020083893602 a008 Real Root of (-6+4*x+5*x^2+6*x^3+2*x^4-2*x^5) 2584020084896986 a008 Real Root of x^2-x-67030 2584020092411527 m005 (1/2*5^(1/2)+5/11)/(1/10*2^(1/2)-3/4) 2584020094518379 h002 exp(16/(4^(2/3)-5)^(1/2)) 2584020097254639 p004 log(25163/19433) 2584020098986912 a007 Real Root Of -851*x^4-14*x^3+662*x^2+843*x-258 2584020103947574 m001 gamma(2)/(OneNinth^BesselJ(1,1)) 2584020113240609 a001 615*2207^(11/59) 2584020115478673 r009 Re(z^3+c),c=-37/94+32/61*I,n=18 2584020121400400 r009 Re(z^3+c),c=-47/60+33/41*I,n=2 2584020146332933 r005 Re(z^2+c),c=-11/30+31/36*I,n=4 2584020151752565 r009 Im(z^3+c),c=-39/86+5/47*I,n=16 2584020157792379 a001 11592/341*322^(3/4) 2584020160458429 m001 ln(gamma)^Totient*LaplaceLimit^Totient 2584020161150299 r005 Re(z^2+c),c=-11/58+27/64*I,n=5 2584020162624867 m001 (exp(-1/2*Pi)+ZetaP(2))/(arctan(1/3)-gamma) 2584020162873553 m001 exp((2^(1/3)))*KhintchineHarmonic/cosh(1)^2 2584020166135317 r005 Im(z^2+c),c=-9/23+10/23*I,n=54 2584020167137670 m005 (1/3*5^(1/2)+2/7)/(8/9*Catalan-9/11) 2584020172432169 m001 (-Cahen+MertensB1)/(Artin-Si(Pi)) 2584020180578514 m001 Tribonacci/FeigenbaumB^2*exp(GAMMA(1/12))^2 2584020184463624 r009 Re(z^3+c),c=-5/18+7/38*I,n=7 2584020184469876 a007 Real Root Of -255*x^4-531*x^3+636*x^2+797*x+20 2584020198381932 m001 Paris^ReciprocalFibonacci-sin(1/12*Pi) 2584020205862200 a001 123/10946*377^(11/12) 2584020217533295 h005 exp(cos(Pi*5/38)/sin(Pi*22/53)) 2584020220363581 r005 Re(z^2+c),c=-31/110+6/19*I,n=20 2584020235496792 m001 TreeGrowth2nd*exp(FeigenbaumAlpha)/(3^(1/3))^2 2584020239256831 r005 Im(z^2+c),c=-13/66+10/27*I,n=20 2584020252915012 r009 Im(z^3+c),c=-11/28+9/53*I,n=13 2584020253172986 r005 Im(z^2+c),c=-99/98+10/41*I,n=52 2584020257751800 r005 Re(z^2+c),c=7/52+16/51*I,n=30 2584020266207272 a001 1730726404001/72*144^(16/17) 2584020289140865 m005 (1/3*Pi+1/10)/(1/3*gamma-7/11) 2584020291693088 q001 815/3154 2584020297587032 a007 Real Root Of 413*x^4+744*x^3-815*x^2-237*x-747 2584020301762956 r005 Re(z^2+c),c=-15/58+9/23*I,n=43 2584020303631283 m005 (1/2*exp(1)+5/11)/(11/12*Zeta(3)-2/5) 2584020315267840 a001 46368/2207*322^(5/6) 2584020323897606 r009 Re(z^3+c),c=-17/90+7/10*I,n=5 2584020329223133 m001 (BesselI(0,2)-ZetaP(4))^Zeta(3) 2584020335036214 m001 (Backhouse+Riemann1stZero)/(Stephens+Trott2nd) 2584020335752767 m001 (3^(1/3))^TwinPrimes*(3^(1/3))^GAMMA(11/24) 2584020340387413 r002 23th iterates of z^2 + 2584020348868213 a005 (1/cos(21/155*Pi))^429 2584020352216172 m001 (3^(1/3)+GAMMA(13/24))/(BesselK(0,1)-cos(1)) 2584020380313397 m001 GAMMA(19/24)^GAMMA(17/24)+FeigenbaumKappa 2584020382112550 r009 Re(z^3+c),c=-47/114+10/19*I,n=26 2584020401721299 m001 (5^(1/2)-ErdosBorwein)/(Gompertz+Tribonacci) 2584020434762470 m001 exp(GAMMA(1/12))*Sierpinski/Pi^2 2584020437607105 s001 sum(exp(-Pi/3)^(n-1)*A072308[n],n=1..infinity) 2584020440339930 b008 Haversine[5^(1/25)] 2584020448239025 m005 (1/2*exp(1)+7/8)/(8/11*gamma-1/3) 2584020469127928 m001 1/BesselJ(0,1)/exp(Porter)^2/GAMMA(13/24)^2 2584020469440642 r005 Im(z^2+c),c=-7/86+15/46*I,n=17 2584020472182294 r005 Im(z^2+c),c=-15/34+29/60*I,n=35 2584020472642267 r005 Re(z^2+c),c=-13/18+25/104*I,n=2 2584020480722788 r005 Im(z^2+c),c=7/40+20/41*I,n=4 2584020489961591 a007 Real Root Of 19*x^4-114*x^3+825*x^2+314*x+24 2584020493885939 r009 Re(z^3+c),c=-7/48+55/57*I,n=2 2584020494523522 m003 Sqrt[5]/64-(17*Tanh[1/2+Sqrt[5]/2])/6 2584020501440604 s002 sum(A106859[n]/(exp(n)-1),n=1..infinity) 2584020502640873 r005 Re(z^2+c),c=-13/40+1/50*I,n=20 2584020516410438 m001 Cahen*(ThueMorse-Trott) 2584020517786930 m001 (BesselJ(0,1)-Catalan)/(-TwinPrimes+ZetaP(4)) 2584020526158791 a001 199*34^(2/27) 2584020529729334 h001 (4/7*exp(2)+2/11)/(3/10*exp(1)+8/9) 2584020533352940 r005 Re(z^2+c),c=-8/25+6/55*I,n=17 2584020554715312 m001 (GAMMA(11/24)-cos(Pi/12))/Artin 2584020554715389 a007 Real Root Of 36*x^4+892*x^3-976*x^2+346*x+714 2584020562005249 m005 (1/2*5^(1/2)-5/6)/(1/9*Catalan+1) 2584020562020711 m001 1/GlaisherKinkelin/exp(Magata) 2584020564685237 m001 (2^(1/2)+Niven*Riemann3rdZero)/Niven 2584020571002560 m001 (ln(2)/ln(10)+Landau)/(Tetranacci+Totient) 2584020572941253 a007 Real Root Of -472*x^4-873*x^3+784*x^2-331*x-109 2584020587483370 m001 (3^(1/2)-sin(1))/(-Champernowne+FeigenbaumMu) 2584020593179935 m001 (GAMMA(11/12)+MasserGramain)/(Trott-ZetaP(4)) 2584020600468926 m001 (Si(Pi)+Shi(1)*FeigenbaumB)/Shi(1) 2584020600663469 m001 (Sierpinski-Trott2nd)/(Bloch-MinimumGamma) 2584020603849352 m001 ThueMorse/(GAMMA(17/24)-exp(1/exp(1))) 2584020604649424 m001 1/exp(Robbin)/DuboisRaymond^2*Ei(1) 2584020608126880 r005 Re(z^2+c),c=17/54+24/49*I,n=52 2584020616341118 m002 -4+E^Pi+(5*Pi^3)/E^Pi 2584020618599657 r005 Im(z^2+c),c=-6/5+7/32*I,n=7 2584020628388178 a007 Real Root Of -662*x^4-142*x^3-16*x^2+532*x-131 2584020634709309 a001 55/439204*1364^(13/31) 2584020636525364 m001 Porter/((1+3^(1/2))^(1/2)-Psi(2,1/3)) 2584020646062539 m001 LambertW(1)*exp(Kolakoski)^2/Zeta(5)^2 2584020646092310 g002 -2*gamma-5*ln(2)-1/2*Pi+Psi(4/7)-Psi(1/10) 2584020647707436 m001 PisotVijayaraghavan*(Catalan+MertensB2) 2584020656420048 m001 (exp(1)+Backhouse)/(ErdosBorwein+ZetaQ(3)) 2584020657284365 r009 Re(z^3+c),c=-17/31+6/37*I,n=34 2584020658164250 a001 6557470319842/29*76^(9/16) 2584020661697648 r005 Re(z^2+c),c=37/98+4/31*I,n=18 2584020677808495 m001 (gamma+cos(1/5*Pi))/(-arctan(1/2)+gamma(1)) 2584020677846244 a001 1149851/1597*6557470319842^(14/17) 2584020677848198 a001 969323029/1597*1836311903^(14/17) 2584020677849808 a001 817138163596/1597*514229^(14/17) 2584020679681084 m001 1/exp(GAMMA(3/4))^2/Kolakoski*cosh(1)^2 2584020686173316 l001 sinh(67/16*Pi) 2584020686173316 l004 sinh(67/16*Pi) 2584020686192666 l001 cosh(67/16*Pi) 2584020686192666 l004 cosh(67/16*Pi) 2584020686545412 m005 (1/2*Pi-5/6)/(4/9*2^(1/2)-3/5) 2584020690739653 m005 (1/3*gamma+1/11)/(4/5*Catalan+4/11) 2584020704415557 a007 Real Root Of -6*x^4+299*x^3+544*x^2-322*x+962 2584020710133510 r009 Im(z^3+c),c=-11/26+8/55*I,n=22 2584020713368346 r009 Re(z^3+c),c=-37/90+4/9*I,n=15 2584020727454959 m001 (Pi-exp(Pi))/(BesselJ(0,1)+ZetaQ(3)) 2584020731235749 m005 (1/2*3^(1/2)+11/12)/(113/18+5/18*5^(1/2)) 2584020732101955 a007 Real Root Of -79*x^4-65*x^3-73*x^2-757*x+932 2584020733792737 m001 1/Robbin^2/CareFree^2/exp(gamma) 2584020734373207 m001 (MinimumGamma-ThueMorse)/(exp(1/Pi)+Khinchin) 2584020735434275 r005 Im(z^2+c),c=-5/11+17/39*I,n=21 2584020737386553 m001 BesselI(0,2)^exp(1/Pi)*FeigenbaumB 2584020739276579 a001 29/34*55^(13/47) 2584020739433622 m001 1/arctan(1/2)*FeigenbaumDelta^2*ln(gamma) 2584020750799764 r005 Im(z^2+c),c=-29/78+23/56*I,n=16 2584020755337154 r005 Re(z^2+c),c=-19/62+11/53*I,n=21 2584020761370652 m001 (1+Shi(1))/(ArtinRank2+Paris) 2584020762630772 a007 Real Root Of -593*x^4-791*x^3-138*x^2+275*x-7 2584020763579310 r009 Re(z^3+c),c=-15/34+15/34*I,n=15 2584020765566944 a007 Real Root Of -277*x^4+967*x^3-846*x^2+606*x+231 2584020768580533 a001 121393/5778*322^(5/6) 2584020777421356 r005 Im(z^2+c),c=-21/44+27/62*I,n=35 2584020780257918 a007 Real Root Of 273*x^4+275*x^3-715*x^2+828*x-513 2584020783232487 m001 (-MertensB3+Riemann1stZero)/(exp(1)+5^(1/2)) 2584020784450752 m001 (2^(1/2)+GAMMA(19/24))/(-Cahen+Landau) 2584020785177206 a001 843/1346269*13^(21/38) 2584020789218887 m001 RenyiParking/FeigenbaumB^2*exp(GAMMA(1/24))^2 2584020790350205 r005 Im(z^2+c),c=-17/52+17/41*I,n=48 2584020794344083 m001 Cahen^PisotVijayaraghavan-Pi 2584020802685670 a008 Real Root of (-2+6*x+7*x^2-4*x^4+x^8) 2584020803285410 m005 (1/2*gamma-3/8)/(1/9*exp(1)-7/11) 2584020812323672 a007 Real Root Of -905*x^4-42*x^3+543*x^2+760*x-20 2584020815306199 h001 (4/9*exp(1)+6/11)/(4/5*exp(2)+7/8) 2584020822616379 m005 (1/2*Pi-1/4)/(4*2^(1/2)-6/11) 2584020834717977 a001 317811/15127*322^(5/6) 2584020842252818 r005 Re(z^2+c),c=-8/25+6/55*I,n=16 2584020842439299 a007 Real Root Of -248*x^4-94*x^3-521*x^2+954*x-209 2584020844367301 a001 832040/39603*322^(5/6) 2584020845775118 a001 46347/2206*322^(5/6) 2584020845980516 a001 5702887/271443*322^(5/6) 2584020846010483 a001 14930352/710647*322^(5/6) 2584020846014855 a001 39088169/1860498*322^(5/6) 2584020846015493 a001 102334155/4870847*322^(5/6) 2584020846015586 a001 267914296/12752043*322^(5/6) 2584020846015600 a001 701408733/33385282*322^(5/6) 2584020846015601 a001 1836311903/87403803*322^(5/6) 2584020846015602 a001 102287808/4868641*322^(5/6) 2584020846015602 a001 12586269025/599074578*322^(5/6) 2584020846015602 a001 32951280099/1568397607*322^(5/6) 2584020846015602 a001 86267571272/4106118243*322^(5/6) 2584020846015602 a001 225851433717/10749957122*322^(5/6) 2584020846015602 a001 591286729879/28143753123*322^(5/6) 2584020846015602 a001 1548008755920/73681302247*322^(5/6) 2584020846015602 a001 4052739537881/192900153618*322^(5/6) 2584020846015602 a001 225749145909/10745088481*322^(5/6) 2584020846015602 a001 6557470319842/312119004989*322^(5/6) 2584020846015602 a001 2504730781961/119218851371*322^(5/6) 2584020846015602 a001 956722026041/45537549124*322^(5/6) 2584020846015602 a001 365435296162/17393796001*322^(5/6) 2584020846015602 a001 139583862445/6643838879*322^(5/6) 2584020846015602 a001 53316291173/2537720636*322^(5/6) 2584020846015602 a001 20365011074/969323029*322^(5/6) 2584020846015602 a001 7778742049/370248451*322^(5/6) 2584020846015602 a001 2971215073/141422324*322^(5/6) 2584020846015603 a001 1134903170/54018521*322^(5/6) 2584020846015608 a001 433494437/20633239*322^(5/6) 2584020846015643 a001 165580141/7881196*322^(5/6) 2584020846015887 a001 63245986/3010349*322^(5/6) 2584020846017557 a001 24157817/1149851*322^(5/6) 2584020846029004 a001 9227465/439204*322^(5/6) 2584020846107459 a001 3524578/167761*322^(5/6) 2584020846645197 a001 1346269/64079*322^(5/6) 2584020847851550 m001 GAMMA(3/4)*exp(Rabbit)*Zeta(5) 2584020850330910 a001 514229/24476*322^(5/6) 2584020850919563 a001 3010349/4181*6557470319842^(14/17) 2584020850919848 a001 2537720636/4181*1836311903^(14/17) 2584020850921457 a001 2139295485799/4181*514229^(14/17) 2584020856834600 a005 (1/sin(94/221*Pi))^283 2584020864161701 h001 (-9*exp(1/2)+8)/(-9*exp(1)-2) 2584020867702083 r005 Im(z^2+c),c=27/86+3/50*I,n=5 2584020868173899 l006 ln(1031/1335) 2584020875593167 a001 196418/9349*322^(5/6) 2584020876170622 a001 3940598/5473*6557470319842^(14/17) 2584020876170663 a001 6643838879/10946*1836311903^(14/17) 2584020876172273 a001 5600748293801/10946*514229^(14/17) 2584020878975600 r005 Re(z^2+c),c=-37/118+10/61*I,n=14 2584020879854702 a001 20633239/28657*6557470319842^(14/17) 2584020879854708 a001 17393796001/28657*1836311903^(14/17) 2584020879856317 a001 14662949395604/28657*514229^(14/17) 2584020880392202 a001 54018521/75025*6557470319842^(14/17) 2584020880392202 a001 45537549124/75025*1836311903^(14/17) 2584020880470622 a001 70711162/98209*6557470319842^(14/17) 2584020880470622 a001 119218851371/196418*1836311903^(14/17) 2584020880482063 a001 370248451/514229*6557470319842^(14/17) 2584020880482063 a001 312119004989/514229*1836311903^(14/17) 2584020880483732 a001 969323029/1346269*6557470319842^(14/17) 2584020880483732 a001 817138163596/1346269*1836311903^(14/17) 2584020880483976 a001 1268860318/1762289*6557470319842^(14/17) 2584020880483976 a001 2139295485799/3524578*1836311903^(14/17) 2584020880484011 a001 5600748293801/9227465*1836311903^(14/17) 2584020880484011 a001 6643838879/9227465*6557470319842^(14/17) 2584020880484017 a001 14662949395604/24157817*1836311903^(14/17) 2584020880484017 a001 17393796001/24157817*6557470319842^(14/17) 2584020880484017 a001 22768774562/31622993*6557470319842^(14/17) 2584020880484017 a001 119218851371/165580141*6557470319842^(14/17) 2584020880484017 a001 312119004989/433494437*6557470319842^(14/17) 2584020880484017 a001 408569081798/567451585*6557470319842^(14/17) 2584020880484017 a001 2139295485799/2971215073*6557470319842^(14/17) 2584020880484017 a001 5600748293801/7778742049*6557470319842^(14/17) 2584020880484017 a001 10749853441/14930208*6557470319842^(14/17) 2584020880484017 a001 1322157322203/1836311903*6557470319842^(14/17) 2584020880484017 a001 505019158607/701408733*6557470319842^(14/17) 2584020880484017 a001 96450076809/133957148*6557470319842^(14/17) 2584020880484018 a001 10525900321/14619165*6557470319842^(14/17) 2584020880484018 a001 23725150497407/39088169*1836311903^(14/17) 2584020880484018 a001 28143753123/39088169*6557470319842^(14/17) 2584020880484020 a001 3020733700601/4976784*1836311903^(14/17) 2584020880484020 a001 5374978561/7465176*6557470319842^(14/17) 2584020880484033 a001 3461452808002/5702887*1836311903^(14/17) 2584020880484033 a001 4106118243/5702887*6557470319842^(14/17) 2584020880484126 a001 440719107401/726103*1836311903^(14/17) 2584020880484126 a001 224056801/311187*6557470319842^(14/17) 2584020880484764 a001 505019158607/832040*1836311903^(14/17) 2584020880484764 a001 299537289/416020*6557470319842^(14/17) 2584020880489134 a001 64300051206/105937*1836311903^(14/17) 2584020880489134 a001 228826127/317811*6557470319842^(14/17) 2584020880519088 a001 73681302247/121393*1836311903^(14/17) 2584020880519088 a001 87403803/121393*6557470319842^(14/17) 2584020880724392 a001 9381251041/15456*1836311903^(14/17) 2584020880724395 a001 103681/144*6557470319842^(14/17) 2584020880726002 a001 23725150497407/46368*514229^(14/17) 2584020882131572 a001 10749957122/17711*1836311903^(14/17) 2584020882131588 a001 12752043/17711*6557470319842^(14/17) 2584020882133182 a001 9062201101803/17711*514229^(14/17) 2584020886536554 m001 (GAMMA(2/3)-BesselI(0,2))/(Kac+Otter) 2584020889059825 a007 Real Root Of 456*x^4-904*x^3-522*x^2-473*x-105 2584020891776526 a001 1368706081/2255*1836311903^(14/17) 2584020891776634 a001 4870847/6765*6557470319842^(14/17) 2584020891778135 a001 3461452808002/6765*514229^(14/17) 2584020894388729 a003 cos(Pi*19/88)-cos(Pi*29/89) 2584020895862272 m001 Riemann2ndZero/ln(LaplaceLimit)^2*(3^(1/3))^2 2584020912123889 r005 Re(z^2+c),c=33/98+17/45*I,n=35 2584020930227698 a007 Real Root Of -330*x^4-497*x^3+888*x^2-290*x-541 2584020932625761 r005 Re(z^2+c),c=-13/56+22/57*I,n=7 2584020935609610 r005 Im(z^2+c),c=-17/90+2/59*I,n=5 2584020937005855 a003 cos(Pi*2/105)-sin(Pi*17/40) 2584020957561996 s001 sum(exp(-Pi/2)^(n-1)*A071683[n],n=1..infinity) 2584020957884021 a001 1568397607/2584*1836311903^(14/17) 2584020957884768 a001 930249/1292*6557470319842^(14/17) 2584020957885631 a001 1322157322203/2584*514229^(14/17) 2584020959871315 m005 (1/5*2^(1/2)+5)/(23/20+2/5*5^(1/2)) 2584020965151077 s002 sum(A246932[n]/(n^2*pi^n-1),n=1..infinity) 2584020966183419 r005 Im(z^2+c),c=-20/23+1/6*I,n=8 2584020971012255 a007 Real Root Of -473*x^4-948*x^3+852*x^2+401*x+79 2584020972123412 m001 (cos(1/5*Pi)-FeigenbaumMu)/(Tetranacci-Thue) 2584020988021042 a007 Real Root Of 9*x^4-904*x^3+318*x^2-859*x+22 2584021022028992 r005 Re(z^2+c),c=-11/52+25/41*I,n=41 2584021025095741 a007 Real Root Of 415*x^4+806*x^3-725*x^2+190*x+736 2584021030458527 a007 Real Root Of 434*x^4-969*x^3+231*x^2-437*x-147 2584021032481475 m005 (1/2*Catalan+7/8)/(7/10*Zeta(3)-6) 2584021033298075 a001 2/317811*121393^(49/54) 2584021035490397 p003 LerchPhi(1/5,1,8/205) 2584021048743265 a001 75025/3571*322^(5/6) 2584021049211332 s001 sum(exp(-3*Pi)^(n-1)*A209945[n],n=1..infinity) 2584021051735961 m005 (1/2*5^(1/2)+5/9)/(7/11*3^(1/2)-5/11) 2584021056043274 m001 (Si(Pi)+Chi(1))/(Trott2nd+ZetaP(4)) 2584021069215597 a007 Real Root Of -582*x^4+844*x^3-807*x^2-124*x+39 2584021087834570 m001 (ln(2^(1/2)+1)+cos(1/12*Pi))/(Sarnak-ZetaQ(3)) 2584021089704762 r002 4th iterates of z^2 + 2584021105316135 a007 Real Root Of -299*x^4-240*x^3+963*x^2-806*x+677 2584021106244480 m001 (ln(3)+gamma(3))/(GAMMA(17/24)-Thue) 2584021106382439 m002 Cosh[Pi]+15/Log[Pi]+Log[Pi] 2584021113979783 m001 Otter^Psi(2,1/3)/TreeGrowth2nd 2584021115429162 m005 (1/2*2^(1/2)-5)/(5/12*3^(1/2)-5/9) 2584021116615723 r005 Re(z^2+c),c=-8/25+6/55*I,n=19 2584021119893300 r005 Re(z^2+c),c=-27/94+13/44*I,n=25 2584021119953629 m001 KhinchinLevy^Magata/ln(2) 2584021122189341 r005 Re(z^2+c),c=-25/82+2/9*I,n=10 2584021123427970 a007 Real Root Of 315*x^4+479*x^3-846*x^2+162*x+288 2584021127714026 r005 Re(z^2+c),c=-3/16+17/36*I,n=8 2584021150682840 s002 sum(A010461[n]/((exp(n)+1)/n),n=1..infinity) 2584021171845570 m001 KhinchinHarmonic*ZetaR(2)-polylog(4,1/2) 2584021173580339 m001 RenyiParking/exp(Paris)^2*BesselK(0,1) 2584021176819717 m001 1/exp(GAMMA(13/24))^2/ErdosBorwein^2*sqrt(Pi) 2584021177672207 a001 55/103682*3571^(6/31) 2584021184848511 r005 Re(z^2+c),c=-57/56+3/34*I,n=6 2584021194650783 r002 20th iterates of z^2 + 2584021210548461 a001 5/15251*9349^(7/31) 2584021210975395 a007 Real Root Of 718*x^4+947*x^3-343*x^2-552*x+146 2584021215281975 h001 (1/11*exp(2)+5/7)/(1/6*exp(1)+1/12) 2584021216213422 a001 55/39603*15127^(2/31) 2584021222441510 m009 (1/2*Psi(1,2/3)+2/5)/(4/5*Psi(1,1/3)-3/5) 2584021236942422 r005 Re(z^2+c),c=-4/9+11/20*I,n=54 2584021236964995 a001 2/2178309*75025^(11/37) 2584021242447726 a001 2584/11*843^(21/59) 2584021244593717 a001 2889/4*514229^(28/45) 2584021244677539 m001 1/sin(1)/exp(1)/exp(sqrt(2))^2 2584021248432620 r009 Re(z^3+c),c=-29/82+4/11*I,n=11 2584021257080074 a001 55/1860498*5778^(16/31) 2584021262458291 a007 Real Root Of -310*x^4-792*x^3+56*x^2-2*x-223 2584021271075420 a001 3571/34*28657^(5/57) 2584021281746337 m001 exp(Pi)+exp(1/Pi)+PisotVijayaraghavan 2584021289803844 a007 Real Root Of 830*x^4+944*x^3-263*x^2-821*x-182 2584021291843418 m001 1/exp(GAMMA(3/4))*OneNinth^2/log(2+sqrt(3)) 2584021296546347 a007 Real Root Of 387*x^4+654*x^3-481*x^2+862*x-531 2584021303324389 r009 Re(z^3+c),c=-6/17+23/64*I,n=14 2584021306296579 m001 MertensB3/(PisotVijayaraghavan-cos(1/5*Pi)) 2584021312960436 r005 Re(z^2+c),c=-51/64+2/35*I,n=30 2584021317870802 r009 Re(z^3+c),c=-27/70+23/54*I,n=32 2584021324922930 r005 Im(z^2+c),c=-5/34+42/55*I,n=3 2584021327542024 r005 Re(z^2+c),c=23/98+13/27*I,n=26 2584021329365015 a007 Real Root Of 390*x^4+853*x^3-834*x^2-814*x+795 2584021341344063 a007 Real Root Of -331*x^4-694*x^3+423*x^2+276*x+672 2584021343144260 m005 (1/2*gamma-3/5)/(19/77+3/7*5^(1/2)) 2584021346671265 r005 Re(z^2+c),c=-25/74+4/15*I,n=3 2584021350679020 a007 Real Root Of 223*x^4+651*x^3+214*x^2+53*x-2 2584021351674529 a001 9/10182505537*987^(14/17) 2584021361590372 r009 Im(z^3+c),c=-1/8+16/19*I,n=44 2584021363600560 a004 Fibonacci(14)*Lucas(12)/(1/2+sqrt(5)/2)^8 2584021385109872 r005 Re(z^2+c),c=-1/62+3/28*I,n=8 2584021386675449 a007 Real Root Of -38*x^4-996*x^3-359*x^2+144*x+636 2584021391012108 m001 GAMMA(23/24)-Psi(2,1/3)*FeigenbaumDelta 2584021401352718 m005 (1/2*Zeta(3)-1)/(5/7*Pi-7/10) 2584021404975610 r005 Im(z^2+c),c=-9/19+7/15*I,n=64 2584021410105000 m001 GAMMA(5/6)/(Pi+FibonacciFactorial) 2584021410991630 a001 199691526/329*1836311903^(14/17) 2584021410993239 a001 10745088481/21*514229^(14/17) 2584021410996746 a001 101521/141*6557470319842^(14/17) 2584021417991124 a007 Real Root Of 347*x^4+711*x^3-900*x^2-841*x+633 2584021418305086 a007 Real Root Of 251*x^4+345*x^3-774*x^2-262*x-747 2584021422346167 m001 (TreeGrowth2nd-Thue)/(GAMMA(23/24)+Gompertz) 2584021437946761 b008 -1/3+E^(1+Sqrt[2]+Pi) 2584021439787832 m005 (25/36+1/4*5^(1/2))/(2/11*3^(1/2)-4/5) 2584021443428139 r008 a(0)=0,K{-n^6,6+21*n^3+8*n^2+4*n} 2584021445909929 p004 log(33577/25931) 2584021448740213 a001 1/3*(1/2*5^(1/2)+1/2)^25*29^(5/11) 2584021463843072 r005 Im(z^2+c),c=-10/31+11/24*I,n=8 2584021464254553 m001 (Salem-Thue)/(GAMMA(3/4)+gamma(3)) 2584021487262901 r005 Re(z^2+c),c=-13/40+1/50*I,n=22 2584021488254468 p001 sum(1/(491*n+39)/(10^n),n=0..infinity) 2584021490986539 a001 9349/144*4181^(28/39) 2584021497266679 m001 1/Robbin^2*Rabbit^2*exp(cos(Pi/5)) 2584021511358702 a001 843/377*1597^(1/51) 2584021525168323 a001 55/1860498*2207^(18/31) 2584021530779640 r005 Im(z^2+c),c=9/122+14/55*I,n=10 2584021531584628 m006 (2/3/Pi+1/2)/(3/4*Pi+2/5) 2584021541913286 m008 (5/6*Pi^4+1/6)/(2/5*Pi^2-4/5) 2584021548406854 m001 (3^(1/3)-Zeta(1,2))/(StolarskyHarborth+Trott) 2584021551746744 r005 Re(z^2+c),c=25/74+3/23*I,n=21 2584021554130560 m005 (1/2*exp(1)+4/9)/(1/10*Zeta(3)-9/11) 2584021559772886 m001 ln(GAMMA(3/4))*RenyiParking^2/GAMMA(5/24) 2584021564598840 m005 (-7/20+1/4*5^(1/2))/(5*3^(1/2)-4/7) 2584021567321463 p004 log(31231/2357) 2584021571914646 a001 70711162/305*6557470319842^(12/17) 2584021571914646 a001 22768774562/305*1836311903^(12/17) 2584021571916026 a001 7331474697802/305*514229^(12/17) 2584021573027009 a001 28657/843*18^(40/57) 2584021574545050 a001 1/843*(1/2*5^(1/2)+1/2)^6*3^(3/17) 2584021577407497 a007 Real Root Of 412*x^4+718*x^3-777*x^2+629*x+833 2584021577436442 r005 Re(z^2+c),c=19/66+9/61*I,n=21 2584021586974400 a007 Real Root Of 486*x^4+903*x^3-458*x^2+936*x-611 2584021597187446 r009 Re(z^3+c),c=-9/22+29/61*I,n=33 2584021605723075 r002 24th iterates of z^2 + 2584021615955946 m005 (1/2*Catalan+1/11)/(7/9*Catalan-1/2) 2584021621788900 r005 Re(z^2+c),c=-31/114+7/20*I,n=31 2584021625017303 s002 sum(A081649[n]/(n^3*pi^n+1),n=1..infinity) 2584021631707336 m001 MadelungNaCl^2*ln(LaplaceLimit)^2*sqrt(5)^2 2584021632025867 a003 cos(Pi*2/91)/cos(Pi*40/107) 2584021638085457 r005 Re(z^2+c),c=-17/58+3/11*I,n=15 2584021640280255 r009 Im(z^3+c),c=-51/86+10/41*I,n=21 2584021657225836 r005 Re(z^2+c),c=5/21+5/48*I,n=20 2584021662397454 r005 Im(z^2+c),c=-141/122+3/62*I,n=3 2584021666547115 a001 322/514229*89^(6/19) 2584021678669822 a007 Real Root Of 637*x^4-968*x^3-658*x^2-880*x-203 2584021689128401 r005 Im(z^2+c),c=-21/82+19/31*I,n=28 2584021704129920 r009 Im(z^3+c),c=-47/102+5/52*I,n=23 2584021704541153 r005 Re(z^2+c),c=-13/40+1/50*I,n=24 2584021709574322 a007 Real Root Of 571*x^4+510*x^3-560*x^2-530*x+163 2584021712874581 r005 Im(z^2+c),c=-5/4+12/85*I,n=11 2584021714118561 a003 sin(Pi*19/77)/cos(Pi*26/63) 2584021721798038 r005 Im(z^2+c),c=-3/20+25/38*I,n=60 2584021726189858 r009 Im(z^3+c),c=-15/46+9/43*I,n=11 2584021726417430 a001 15127/2*144^(27/38) 2584021731453707 p004 log(31019/2341) 2584021748527767 h005 exp(cos(Pi*5/32)/sin(Pi*11/29)) 2584021749698629 r005 Re(z^2+c),c=-13/40+1/50*I,n=26 2584021751846290 r005 Re(z^2+c),c=-125/102+5/53*I,n=26 2584021757130968 a007 Real Root Of 974*x^4+616*x^3+561*x^2-634*x-195 2584021758177310 r005 Re(z^2+c),c=-13/40+1/50*I,n=28 2584021759021735 a007 Real Root Of 297*x^4+607*x^3+506*x^2-787*x-228 2584021759310191 r005 Re(z^2+c),c=-13/40+1/50*I,n=31 2584021759341977 r005 Re(z^2+c),c=-13/40+1/50*I,n=33 2584021759387778 r005 Re(z^2+c),c=-13/40+1/50*I,n=35 2584021759409900 r005 Re(z^2+c),c=-13/40+1/50*I,n=37 2584021759418402 r005 Re(z^2+c),c=-13/40+1/50*I,n=39 2584021759421346 r005 Re(z^2+c),c=-13/40+1/50*I,n=41 2584021759422305 r005 Re(z^2+c),c=-13/40+1/50*I,n=43 2584021759422604 r005 Re(z^2+c),c=-13/40+1/50*I,n=45 2584021759422695 r005 Re(z^2+c),c=-13/40+1/50*I,n=47 2584021759422722 r005 Re(z^2+c),c=-13/40+1/50*I,n=49 2584021759422730 r005 Re(z^2+c),c=-13/40+1/50*I,n=51 2584021759422732 r005 Re(z^2+c),c=-13/40+1/50*I,n=53 2584021759422733 r005 Re(z^2+c),c=-13/40+1/50*I,n=55 2584021759422733 r005 Re(z^2+c),c=-13/40+1/50*I,n=57 2584021759422733 r005 Re(z^2+c),c=-13/40+1/50*I,n=59 2584021759422733 r005 Re(z^2+c),c=-13/40+1/50*I,n=61 2584021759422733 r005 Re(z^2+c),c=-13/40+1/50*I,n=63 2584021759422733 r005 Re(z^2+c),c=-13/40+1/50*I,n=64 2584021759422733 r005 Re(z^2+c),c=-13/40+1/50*I,n=62 2584021759422733 r005 Re(z^2+c),c=-13/40+1/50*I,n=60 2584021759422733 r005 Re(z^2+c),c=-13/40+1/50*I,n=58 2584021759422733 r005 Re(z^2+c),c=-13/40+1/50*I,n=56 2584021759422733 r005 Re(z^2+c),c=-13/40+1/50*I,n=54 2584021759422735 r005 Re(z^2+c),c=-13/40+1/50*I,n=52 2584021759422739 r005 Re(z^2+c),c=-13/40+1/50*I,n=50 2584021759422753 r005 Re(z^2+c),c=-13/40+1/50*I,n=48 2584021759422803 r005 Re(z^2+c),c=-13/40+1/50*I,n=46 2584021759422969 r005 Re(z^2+c),c=-13/40+1/50*I,n=44 2584021759423507 r005 Re(z^2+c),c=-13/40+1/50*I,n=42 2584021759425197 r005 Re(z^2+c),c=-13/40+1/50*I,n=40 2584021759430247 r005 Re(z^2+c),c=-13/40+1/50*I,n=38 2584021759444205 r005 Re(z^2+c),c=-13/40+1/50*I,n=36 2584021759456482 r005 Re(z^2+c),c=-13/40+1/50*I,n=30 2584021759477474 r005 Re(z^2+c),c=-13/40+1/50*I,n=34 2584021759530020 r005 Re(z^2+c),c=-13/40+1/50*I,n=32 2584021759712739 r005 Re(z^2+c),c=-13/40+1/50*I,n=29 2584021763146933 r005 Re(z^2+c),c=-13/40+1/50*I,n=27 2584021770588679 m001 exp(BesselK(0,1))^2/Riemann3rdZero/Ei(1)^2 2584021772400932 a007 Real Root Of -3*x^4+392*x^3+902*x^2-720*x-986 2584021780161853 r009 Im(z^3+c),c=-3/7+8/57*I,n=25 2584021781314858 m001 exp(Kolakoski)/GaussKuzminWirsing^2*OneNinth 2584021782109875 h001 (3/5*exp(2)+6/11)/(2/11*exp(2)+7/12) 2584021783049097 r005 Re(z^2+c),c=-13/40+1/50*I,n=25 2584021786292384 m001 LandauRamanujan2nd*ZetaQ(4)-Sierpinski 2584021790198259 r005 Re(z^2+c),c=-25/114+37/49*I,n=42 2584021806051801 r009 Im(z^3+c),c=-53/118+7/59*I,n=24 2584021808780695 r002 5th iterates of z^2 + 2584021814882239 r002 64th iterates of z^2 + 2584021826679581 r005 Im(z^2+c),c=-53/118+24/53*I,n=62 2584021832653554 m001 exp(1/2)^GAMMA(1/6)/(exp(1/2)^Zeta(1,2)) 2584021836969374 r005 Im(z^2+c),c=-4/5+1/67*I,n=18 2584021839069317 a007 Real Root Of 242*x^4+372*x^3-357*x^2+485*x-734 2584021842682519 r009 Re(z^3+c),c=-9/29+17/64*I,n=12 2584021843822882 a007 Real Root Of -517*x^4+107*x^3-575*x^2+679*x+218 2584021859374227 r005 Re(z^2+c),c=7/52+16/51*I,n=31 2584021883029626 r005 Re(z^2+c),c=-13/40+1/50*I,n=23 2584021888085643 m001 (Porter+Sarnak)/(cos(1)+HardyLittlewoodC4) 2584021890522714 m001 BesselK(0,1)^exp(1/Pi)+BesselI(0,2) 2584021894663579 m001 1/exp(Magata)*MertensB1/FeigenbaumC^2 2584021894991764 l006 ln(7295/9446) 2584021899248806 m001 (Psi(1,1/3)*Sierpinski+gamma(2))/Psi(1,1/3) 2584021904025471 a007 Real Root Of 542*x^4+339*x^3-614*x^2-984*x+287 2584021907164670 m001 1/BesselJ(1,1)*MadelungNaCl*ln(GAMMA(23/24))^2 2584021912211141 m001 1/Catalan^2*MinimumGamma^2/ln(GAMMA(1/3)) 2584021921073391 m001 (Pi+Zeta(1/2))/(CareFree-ZetaQ(2)) 2584021924507146 m001 sin(1/5*Pi)^(Pi^(1/2))*LaplaceLimit 2584021933488622 m005 (1/2*Pi-9/10)/(2/7*2^(1/2)-3) 2584021964840854 m001 (-exp(1/Pi)+1)/(ln(gamma)+2) 2584021965652800 a007 Real Root Of -271*x^4-397*x^3+604*x^2-138*x+843 2584021979707702 a007 Real Root Of 435*x^4+6*x^3-89*x^2-488*x+130 2584022000737734 m006 (5*exp(Pi)-3/5)/(5/6*exp(2*Pi)-4/5) 2584022014611969 m005 (41/36+1/4*5^(1/2))/(8/9*2^(1/2)-3/5) 2584022018700913 m001 (Totient+ZetaQ(2))/(Zeta(3)-LaplaceLimit) 2584022025358526 m004 5+25*Pi+(25*Sqrt[5]*Cosh[Sqrt[5]*Pi])/(4*Pi) 2584022025800788 m001 BesselJ(0,1)^2/exp(CopelandErdos)^2/sqrt(2) 2584022026321545 m006 (5/6*Pi-3/4)/(4/5*Pi^2-2/3) 2584022026321545 m008 (5/6*Pi-3/4)/(4/5*Pi^2-2/3) 2584022028061210 m001 FeigenbaumD^FeigenbaumKappa-FibonacciFactorial 2584022034323933 r005 Im(z^2+c),c=-17/52+17/41*I,n=53 2584022035889221 r005 Re(z^2+c),c=19/46+13/41*I,n=4 2584022037789159 a003 cos(Pi*13/77)-sin(Pi*39/112) 2584022038567493 q001 469/1815 2584022038567493 r002 2th iterates of z^2 + 2584022054374850 r005 Im(z^2+c),c=19/86+4/25*I,n=22 2584022058216123 a001 75025/521*322^(1/2) 2584022063997056 l006 ln(6264/8111) 2584022069686707 a007 Real Root Of 330*x^4+689*x^3-783*x^2-771*x+411 2584022077400874 h001 (-9*exp(6)+6)/(-7*exp(1)+5) 2584022083087130 a007 Real Root Of 172*x^4+412*x^3+233*x^2+657*x-418 2584022102828236 a007 Real Root Of 326*x^4+591*x^3-722*x^2-11*x+455 2584022110522521 a001 18/233*987^(28/55) 2584022111965954 r005 Im(z^2+c),c=23/102+21/40*I,n=47 2584022115451114 m005 (1/2*Catalan-5/12)/(44/45+5/18*5^(1/2)) 2584022127262073 r005 Re(z^2+c),c=4/23+7/17*I,n=48 2584022129091596 m001 (Zeta(1,-1)+Grothendieck)/(ZetaQ(2)+ZetaQ(3)) 2584022145141015 r009 Im(z^3+c),c=-8/19+35/61*I,n=3 2584022153503652 a007 Real Root Of 281*x^4+713*x^3-498*x^2-887*x+807 2584022154604197 r005 Im(z^2+c),c=-27/58+25/52*I,n=52 2584022155660686 r009 Im(z^3+c),c=-5/48+28/33*I,n=44 2584022162850485 a007 Real Root Of -204*x^4-220*x^3+875*x^2-46*x-662 2584022171233170 p004 log(14887/11497) 2584022184387949 a007 Real Root Of -38*x^4-986*x^3-100*x^2+119*x-404 2584022202181495 m001 (exp(1)-exp(Pi))/(-Ei(1)+Khinchin) 2584022204359128 m001 GaussAGM^gamma(3)*Sierpinski 2584022216126204 a007 Real Root Of -23*x^4-591*x^3+54*x^2-810*x+384 2584022217909361 r002 11th iterates of z^2 + 2584022230405691 r005 Im(z^2+c),c=-13/20+2/59*I,n=29 2584022232587102 r005 Re(z^2+c),c=-9/38+9/20*I,n=29 2584022235532315 a001 28657/1364*322^(5/6) 2584022255172489 r009 Re(z^3+c),c=-25/62+19/63*I,n=3 2584022263305924 r005 Re(z^2+c),c=-15/46+1/62*I,n=8 2584022268322643 m001 (2*Pi/GAMMA(5/6)-Backhouse)/BesselI(1,2) 2584022268322643 m001 (Backhouse-GAMMA(1/6))/BesselI(1,2) 2584022279298478 m005 (1/3*3^(1/2)+1/11)/(5/7*Zeta(3)-3/5) 2584022282655135 a007 Real Root Of 308*x^4+560*x^3-351*x^2+591*x-199 2584022289846360 m001 (Chi(1)-gamma(1))/(-GAMMA(7/12)+Salem) 2584022291025575 m001 Lehmer-Si(Pi)-PisotVijayaraghavan 2584022299596825 l006 ln(5233/6776) 2584022301095964 r009 Im(z^3+c),c=-13/122+39/46*I,n=50 2584022305168052 m001 (BesselI(1,2)-Sierpinski)/(Ei(1,1)-Zeta(1,-1)) 2584022317208022 r005 Re(z^2+c),c=-15/58+9/23*I,n=46 2584022322990896 r005 Re(z^2+c),c=-15/58+9/23*I,n=33 2584022329118064 m001 GAMMA(1/3)^2*ln(ErdosBorwein)/log(2+sqrt(3)) 2584022336444688 m001 (HardyLittlewoodC4+Sarnak)/(gamma(1)+Bloch) 2584022348334094 r005 Re(z^2+c),c=-13/40+1/50*I,n=21 2584022348594334 m001 GAMMA(1/3)^2/ln((2^(1/3)))/Zeta(3) 2584022350919008 m001 (ln(2)-Pi^(1/2))/(FeigenbaumB-PrimesInBinary) 2584022355821936 m001 GAMMA(7/12)/OneNinth/ln(gamma) 2584022355821936 m001 GAMMA(7/12)/OneNinth/log(gamma) 2584022355821936 m001 GAMMA(7/12)/ln(gamma)/OneNinth 2584022385350799 r004 Im(z^2+c),c=5/42+5/23*I,z(0)=exp(7/8*I*Pi),n=6 2584022386823744 v003 sum((n^3+3/2*n^2+3/2*n+12)/n^n,n=1..infinity) 2584022393007902 a001 28657/2207*322^(11/12) 2584022395498107 m005 (1/2*exp(1)-4/9)/(1/4*Pi-3/4) 2584022397505068 r005 Im(z^2+c),c=-27/62+23/51*I,n=44 2584022397516238 m001 (-Paris+Thue)/(2^(1/2)+GAMMA(7/12)) 2584022405367150 a007 Real Root Of 184*x^4-699*x^3-614*x^2-537*x+191 2584022405624722 r005 Im(z^2+c),c=-15/22+15/58*I,n=53 2584022408853214 p001 sum((-1)^n/(599*n+373)/(10^n),n=0..infinity) 2584022410307777 r009 Re(z^3+c),c=-11/27+9/19*I,n=24 2584022411048850 l006 ln(759/10057) 2584022417286968 a007 Real Root Of -407*x^4-883*x^3+938*x^2+958*x-877 2584022419526207 r005 Re(z^2+c),c=-25/94+17/46*I,n=21 2584022424084542 r005 Re(z^2+c),c=-109/114+8/35*I,n=52 2584022430318820 m001 (Chi(1)-ln(5))/(-Artin+ReciprocalFibonacci) 2584022432627959 r002 22i'th iterates of 2*x/(1-x^2) of 2584022436323474 a001 1860498/377*1836311903^(16/17) 2584022436324567 a001 4106118243/377*514229^(16/17) 2584022458731150 m006 (3/4*Pi-2/5)/(1/2*exp(Pi)-4) 2584022459735463 a007 Real Root Of -491*x^4-800*x^3+965*x^2-475*x+417 2584022460803581 m001 Zeta(7)^2*exp(Lehmer)^2*log(1+sqrt(2))^2 2584022465785264 h001 (-5*exp(1/3)-4)/(-7*exp(-1)+3) 2584022468231394 r005 Re(z^2+c),c=-11/16+31/69*I,n=27 2584022496511104 a007 Real Root Of -415*x^4-836*x^3+345*x^2-508*x+462 2584022498109111 r005 Im(z^2+c),c=-23/18+5/249*I,n=49 2584022507203215 m009 (1/4*Psi(1,2/3)+1)/(2/5*Psi(1,3/4)-1/3) 2584022508336534 m005 (1/2*Zeta(3)+5)/(257/198+7/18*5^(1/2)) 2584022510641140 m005 (1/2*2^(1/2)-1/12)/(1/10*Pi-5/9) 2584022510833182 r005 Re(z^2+c),c=-19/62+11/53*I,n=24 2584022514145619 m001 1/ln(GAMMA(1/3))^2/FeigenbaumC^2*sin(1) 2584022532616547 m001 (Pi-ln(2)/ln(10))/(GolombDickman+Weierstrass) 2584022541637847 a001 1/6*2^(31/49) 2584022542748484 l006 ln(755/10004) 2584022547782863 p004 log(23099/17839) 2584022560460681 g002 Psi(10/11)+Psi(5/11)+Psi(5/7)-Psi(3/5) 2584022565117639 m005 (1/2*gamma-8/9)/(1/2*Zeta(3)-5/6) 2584022565270782 r005 Re(z^2+c),c=-15/82+15/26*I,n=61 2584022568539294 a007 Real Root Of -53*x^4+193*x^3+391*x^2-812*x+984 2584022581488026 m001 (FeigenbaumD-Lehmer)/cos(1/5*Pi) 2584022588085975 a007 Real Root Of -631*x^4-723*x^3+354*x^2+494*x-136 2584022600436114 a007 Real Root Of -161*x^4-92*x^3+878*x^2-175*x-724 2584022606403769 r002 17th iterates of z^2 + 2584022610142662 p001 sum(1/(415*n+393)/(32^n),n=0..infinity) 2584022617736407 m006 (4*exp(Pi)-1/4)/(2/3*exp(2*Pi)+1/4) 2584022629721537 m006 (2*exp(Pi)+1/4)/(1/4*Pi^2-2/3) 2584022632450713 a001 2/47*322^(32/45) 2584022638449755 a007 Real Root Of 638*x^4+354*x^3+776*x^2-946*x-293 2584022650809796 l006 ln(4202/5441) 2584022653153378 m001 (BesselI(1,2)-BesselK(0,1))/(-Salem+Sarnak) 2584022659699984 r005 Im(z^2+c),c=-31/34+31/120*I,n=61 2584022674105830 a007 Real Root Of -11*x^4-283*x^3+46*x^2+369*x+258 2584022675535986 r005 Re(z^2+c),c=-15/58+9/23*I,n=48 2584022675851027 l006 ln(751/9951) 2584022678292280 m001 Khintchine^2/ln(FeigenbaumDelta)^2/Trott^2 2584022687184495 r002 27th iterates of z^2 + 2584022711046401 m005 (1/2*3^(1/2)-8/9)/(-17/140+9/20*5^(1/2)) 2584022712884924 b008 ArcCoth[23+5*Pi] 2584022715606482 m005 (1/2*gamma+7/12)/(7/10*3^(1/2)-7/8) 2584022716003043 r009 Re(z^3+c),c=-43/122+11/19*I,n=4 2584022725808973 r005 Im(z^2+c),c=-19/56+18/43*I,n=48 2584022752809990 r005 Re(z^2+c),c=-23/118+11/20*I,n=44 2584022756620072 h005 exp(cos(Pi*3/31)*sin(Pi*22/47)) 2584022758165711 a001 370248451/1597*6557470319842^(12/17) 2584022758165711 a001 119218851371/1597*1836311903^(12/17) 2584022784923978 l002 exp(polylog(10,92/97)) 2584022794724964 m005 (1/2*Catalan+4)/(3/10*Catalan-2) 2584022800831856 r005 Re(z^2+c),c=-13/58+27/56*I,n=50 2584022805101207 s002 sum(A008940[n]/(n*exp(n)-1),n=1..infinity) 2584022810379014 l006 ln(747/9898) 2584022817349696 a007 Real Root Of -136*x^4-260*x^3-200*x^2-844*x+732 2584022821182877 m001 (Pi+Catalan)/(HardHexagonsEntropy+ZetaP(3)) 2584022821630191 m001 (3^(1/2)+gamma(3))/(-OneNinth+ZetaP(3)) 2584022824957560 r005 Im(z^2+c),c=-19/52+8/13*I,n=40 2584022834874157 a007 Real Root Of -282*x^4-764*x^3-561*x^2-943*x+700 2584022841940238 r005 Im(z^2+c),c=-5/58+13/40*I,n=7 2584022845578160 a001 75025/5778*322^(11/12) 2584022850969756 r005 Im(z^2+c),c=-7/30+23/60*I,n=27 2584022852568785 a007 Real Root Of 551*x^4+968*x^3+650*x^2-874*x-255 2584022855542406 p004 log(29641/2237) 2584022859318636 r005 Re(z^2+c),c=-15/58+9/23*I,n=51 2584022861841036 r002 43th iterates of z^2 + 2584022865305884 r009 Re(z^3+c),c=-10/29+35/48*I,n=7 2584022880385057 m001 (Zeta(5)-Ei(1,1))/(FeigenbaumC+MertensB3) 2584022880517081 a001 521/21*2178309^(19/24) 2584022883363698 h001 (7/11*exp(2)+1/10)/(7/12*exp(1)+3/11) 2584022885228266 r009 Im(z^3+c),c=-39/82+1/13*I,n=57 2584022900083826 l006 ln(7373/9547) 2584022906252931 r009 Re(z^3+c),c=-45/122+9/23*I,n=19 2584022908171404 m001 (cos(1/5*Pi)-Kolakoski)/(Paris-TwinPrimes) 2584022910083815 r009 Re(z^3+c),c=-53/122+31/59*I,n=62 2584022911607284 a001 196418/15127*322^(11/12) 2584022919552100 a007 Real Root Of -366*x^4-762*x^3+391*x^2-145*x+185 2584022921240803 a001 514229/39603*322^(11/12) 2584022922646315 a001 1346269/103682*322^(11/12) 2584022922851376 a001 3524578/271443*322^(11/12) 2584022922881294 a001 9227465/710647*322^(11/12) 2584022922885659 a001 24157817/1860498*322^(11/12) 2584022922886296 a001 63245986/4870847*322^(11/12) 2584022922886389 a001 165580141/12752043*322^(11/12) 2584022922886403 a001 433494437/33385282*322^(11/12) 2584022922886405 a001 1134903170/87403803*322^(11/12) 2584022922886405 a001 2971215073/228826127*322^(11/12) 2584022922886405 a001 7778742049/599074578*322^(11/12) 2584022922886405 a001 20365011074/1568397607*322^(11/12) 2584022922886405 a001 53316291173/4106118243*322^(11/12) 2584022922886405 a001 139583862445/10749957122*322^(11/12) 2584022922886405 a001 365435296162/28143753123*322^(11/12) 2584022922886405 a001 956722026041/73681302247*322^(11/12) 2584022922886405 a001 2504730781961/192900153618*322^(11/12) 2584022922886405 a001 10610209857723/817138163596*322^(11/12) 2584022922886405 a001 4052739537881/312119004989*322^(11/12) 2584022922886405 a001 1548008755920/119218851371*322^(11/12) 2584022922886405 a001 591286729879/45537549124*322^(11/12) 2584022922886405 a001 7787980473/599786069*322^(11/12) 2584022922886405 a001 86267571272/6643838879*322^(11/12) 2584022922886405 a001 32951280099/2537720636*322^(11/12) 2584022922886405 a001 12586269025/969323029*322^(11/12) 2584022922886405 a001 4807526976/370248451*322^(11/12) 2584022922886405 a001 1836311903/141422324*322^(11/12) 2584022922886406 a001 701408733/54018521*322^(11/12) 2584022922886411 a001 9238424/711491*322^(11/12) 2584022922886447 a001 102334155/7881196*322^(11/12) 2584022922886690 a001 39088169/3010349*322^(11/12) 2584022922888357 a001 14930352/1149851*322^(11/12) 2584022922899785 a001 5702887/439204*322^(11/12) 2584022922978111 a001 2178309/167761*322^(11/12) 2584022923514969 a001 832040/64079*322^(11/12) 2584022927194646 a001 10959/844*322^(11/12) 2584022929912145 m001 1/ln(FeigenbaumKappa)^2*Conway*GAMMA(2/3)^2 2584022931237499 a001 969323029/4181*6557470319842^(12/17) 2584022931237499 a001 312119004989/4181*1836311903^(12/17) 2584022937864132 m001 (Robbin-Totient)/(Pi-polylog(4,1/2)) 2584022942072597 r005 Re(z^2+c),c=-11/114+13/21*I,n=57 2584022946355466 l006 ln(743/9845) 2584022951100132 a007 Real Root Of 553*x^4+962*x^3-904*x^2+962*x+465 2584022952415528 a001 121393/9349*322^(11/12) 2584022953621502 r005 Im(z^2+c),c=-21/106+13/35*I,n=13 2584022956488335 a001 1268860318/5473*6557470319842^(12/17) 2584022956488335 a001 408569081798/5473*1836311903^(12/17) 2584022958643344 m001 (Mills+Salem)/(sin(1)+Zeta(1,2)) 2584022960172382 a001 2139295485799/28657*1836311903^(12/17) 2584022960172382 a001 6643838879/28657*6557470319842^(12/17) 2584022960709878 a001 5600748293801/75025*1836311903^(12/17) 2584022960709878 a001 17393796001/75025*6557470319842^(12/17) 2584022960788297 a001 7331474697802/98209*1836311903^(12/17) 2584022960788297 a001 22768774562/98209*6557470319842^(12/17) 2584022960799738 a001 119218851371/514229*6557470319842^(12/17) 2584022960801408 a001 312119004989/1346269*6557470319842^(12/17) 2584022960801651 a001 408569081798/1762289*6557470319842^(12/17) 2584022960801687 a001 2139295485799/9227465*6557470319842^(12/17) 2584022960801692 a001 5600748293801/24157817*6557470319842^(12/17) 2584022960801693 a001 7331474697802/31622993*6557470319842^(12/17) 2584022960801693 a001 23725150497407/102334155*6557470319842^(12/17) 2584022960801693 a001 9062201101803/39088169*6557470319842^(12/17) 2584022960801695 a001 1730726404001/7465176*6557470319842^(12/17) 2584022960801709 a001 1322157322203/5702887*6557470319842^(12/17) 2584022960801802 a001 10745088481/46347*6557470319842^(12/17) 2584022960802439 a001 96450076809/416020*6557470319842^(12/17) 2584022960806809 a001 23725150497407/317811*1836311903^(12/17) 2584022960806809 a001 73681302247/317811*6557470319842^(12/17) 2584022960836763 a001 9062201101803/121393*1836311903^(12/17) 2584022960836763 a001 28143753123/121393*6557470319842^(12/17) 2584022961042068 a001 10749853441/144*1836311903^(12/17) 2584022961042068 a001 5374978561/23184*6557470319842^(12/17) 2584022962449249 a001 1322157322203/17711*1836311903^(12/17) 2584022962449249 a001 4106118243/17711*6557470319842^(12/17) 2584022972094210 a001 505019158607/6765*1836311903^(12/17) 2584022972094210 a001 1568397607/6765*6557470319842^(12/17) 2584022976638399 m008 (1/3*Pi^6+2/3)/(4*Pi^3+1/4) 2584022997588321 m001 FeigenbaumDelta^LandauRamanujan-LaplaceLimit 2584023022752858 r005 Re(z^2+c),c=-15/58+9/23*I,n=54 2584023037822732 p004 log(29429/2221) 2584023038201759 a001 96450076809/1292*1836311903^(12/17) 2584023038201759 a001 299537289/1292*6557470319842^(12/17) 2584023046553635 r009 Re(z^3+c),c=-19/60+7/25*I,n=18 2584023050670594 r001 55i'th iterates of 2*x^2-1 of 2584023051114810 r005 Re(z^2+c),c=-15/58+9/23*I,n=56 2584023052335061 a007 Real Root Of -358*x^4-596*x^3+809*x^2-156*x-127 2584023056986311 r005 Re(z^2+c),c=-15/58+9/23*I,n=41 2584023059155782 a007 Real Root Of -37*x^4-976*x^3-543*x^2-722*x+362 2584023060892306 r009 Im(z^3+c),c=-25/58+4/29*I,n=28 2584023066197262 r005 Re(z^2+c),c=-15/58+9/23*I,n=59 2584023069593907 r005 Re(z^2+c),c=13/58+11/26*I,n=52 2584023079449640 r005 Re(z^2+c),c=-15/58+9/23*I,n=62 2584023079561932 r005 Im(z^2+c),c=-7/12+29/69*I,n=53 2584023081693330 r005 Re(z^2+c),c=-15/58+9/23*I,n=64 2584023083803905 l006 ln(739/9792) 2584023083854398 r005 Re(z^2+c),c=-15/58+9/23*I,n=53 2584023084295316 r005 Re(z^2+c),c=-15/58+9/23*I,n=61 2584023084671294 r005 Re(z^2+c),c=-15/58+9/23*I,n=57 2584023084950798 r005 Re(z^2+c),c=-15/58+9/23*I,n=49 2584023087339966 r005 Re(z^2+c),c=-15/58+9/23*I,n=45 2584023089581123 r005 Re(z^2+c),c=-15/58+9/23*I,n=63 2584023090237421 r005 Re(z^2+c),c=29/102+32/59*I,n=8 2584023093901435 r005 Re(z^2+c),c=-15/58+9/23*I,n=60 2584023098263528 a007 Real Root Of 437*x^4+904*x^3-457*x^2+273*x-129 2584023101879153 r005 Re(z^2+c),c=-15/58+9/23*I,n=58 2584023121823619 r005 Re(z^2+c),c=7/36+26/51*I,n=32 2584023125282041 a001 46368/3571*322^(11/12) 2584023133426302 m002 -5+Pi^3-Tanh[Pi]/6 2584023138149536 p004 log(34183/26399) 2584023138495616 a001 322/89*8^(52/55) 2584023142609726 s002 sum(A050779[n]/(10^n-1),n=1..infinity) 2584023148418583 r005 Re(z^2+c),c=-15/58+9/23*I,n=55 2584023156176608 a007 Real Root Of 246*x^4+963*x^3+966*x^2+100*x-544 2584023158105514 r009 Re(z^3+c),c=-11/27+4/7*I,n=47 2584023165991818 a007 Real Root Of 385*x^4+952*x^3-322*x^2-705*x-411 2584023171152837 m001 BesselJ(1,1)/DuboisRaymond/exp(sqrt(5))^2 2584023176120667 r005 Im(z^2+c),c=-17/52+17/41*I,n=55 2584023177889262 a007 Real Root Of 53*x^4+305*x^3+704*x^2+372*x-840 2584023178842994 m001 (-Lehmer+Trott)/(Kac-exp(Pi)) 2584023194759671 r005 Im(z^2+c),c=-91/90+11/37*I,n=6 2584023194901294 m001 (-Cahen+ZetaQ(3))/(1+Backhouse) 2584023201069005 r005 Re(z^2+c),c=-15/58+9/23*I,n=52 2584023202921158 a005 (1/sin(96/227*Pi))^343 2584023203334269 r005 Re(z^2+c),c=-1/15+26/41*I,n=20 2584023206692252 m001 (Psi(1,1/3)+Ei(1,1))/(Khinchin+Mills) 2584023217625403 a007 Real Root Of -282*x^4-565*x^3+316*x^2-451*x-451 2584023220407604 a007 Real Root Of 843*x^4+809*x^3+177*x^2-938*x-244 2584023220462806 m001 (Totient-Thue)/(ln(2+3^(1/2))+Landau) 2584023222748362 l006 ln(735/9739) 2584023230405315 l006 ln(3171/4106) 2584023239052435 a007 Real Root Of -214*x^4-102*x^3+983*x^2-679*x-537 2584023239206489 r002 43th iterates of z^2 + 2584023240885387 a007 Real Root Of 280*x^4+836*x^3+301*x^2-51*x-201 2584023240918985 r005 Re(z^2+c),c=-15/58+9/23*I,n=37 2584023255569568 r005 Re(z^2+c),c=-27/122+31/63*I,n=28 2584023268185603 m001 1/ln(LaplaceLimit)/Cahen^2*BesselJ(1,1) 2584023268849371 m001 GAMMA(3/4)/ln(2)*MinimumGamma 2584023276609328 a007 Real Root Of 467*x^4+930*x^3-647*x^2+68*x-279 2584023288173826 a003 sin(Pi*9/107)-sin(Pi*4/23) 2584023294657874 r005 Im(z^2+c),c=19/66+1/8*I,n=9 2584023301886631 r005 Re(z^2+c),c=-15/58+9/23*I,n=50 2584023306057901 a007 Real Root Of 214*x^4+384*x^3-19*x^2+693*x-998 2584023306876814 m001 (1-LambertW(1))/(-Cahen+TwinPrimes) 2584023329202339 m001 GAMMA(1/24)*Bloch^2*ln(GAMMA(13/24)) 2584023330477645 p004 log(31513/24337) 2584023332935307 r009 Im(z^3+c),c=-47/74+17/36*I,n=3 2584023335521077 r005 Im(z^2+c),c=13/40+4/29*I,n=9 2584023336467384 r005 Re(z^2+c),c=-47/60+3/40*I,n=46 2584023343283501 a007 Real Root Of -213*x^4-558*x^3+104*x^2+37*x-730 2584023350115187 r005 Re(z^2+c),c=-11/56+23/42*I,n=46 2584023350653766 a007 Real Root Of -278*x^4-562*x^3+322*x^2-491*x-721 2584023353208112 m001 (BesselI(0,1)-MertensB3)/(-Sierpinski+Trott) 2584023355886405 m001 (3^(1/3))^2/DuboisRaymond^2/exp(GAMMA(7/12))^2 2584023363213395 l006 ln(731/9686) 2584023369602007 a007 Real Root Of -348*x^4-593*x^3+588*x^2-746*x-570 2584023369663386 a007 Real Root Of 254*x^4+274*x^3+944*x^2-424*x-169 2584023372278534 m003 13/6+Sqrt[5]/4+3*Cos[1/2+Sqrt[5]/2] 2584023376720990 m001 (-Ei(1)+PrimesInBinary)/(BesselI(0,1)-ln(2)) 2584023377425896 m004 (-25*Pi)/2+5*Sqrt[5]*Pi*Cot[Sqrt[5]*Pi]^2 2584023387718251 r005 Im(z^2+c),c=-49/106+16/35*I,n=52 2584023390952373 m005 (1/2*Catalan+7/10)/(2/9*Pi-1/4) 2584023407195303 r005 Re(z^2+c),c=-63/62+3/28*I,n=30 2584023410434519 r008 a(0)=0,K{-n^6,30-25*n^3+22*n^2-66*n} 2584023411371156 a007 Real Root Of 711*x^4+636*x^3-814*x^2-719*x+226 2584023413562644 a007 Real Root Of -141*x^4+4*x^3+554*x^2-920*x+279 2584023414172451 a007 Real Root Of 82*x^4-568*x^3-85*x^2-745*x-197 2584023424864726 r005 Re(z^2+c),c=-7/29+25/57*I,n=23 2584023428079327 r002 52th iterates of z^2 + 2584023429632138 m001 ln(1+sqrt(2))^sqrt(2)+MadelungNaCl 2584023429632138 m001 ln(2^(1/2)+1)^(2^(1/2))+MadelungNaCl 2584023446458904 r005 Im(z^2+c),c=-5/6+43/254*I,n=23 2584023449637829 l006 ln(5119/5253) 2584023487964973 a007 Real Root Of 55*x^4-120*x^3-671*x^2-241*x-665 2584023488255670 m001 (-Champernowne+FellerTornier)/(2^(1/2)-Cahen) 2584023491309732 a001 10525900321/141*1836311903^(12/17) 2584023491309732 a001 4868641/21*6557470319842^(12/17) 2584023491311112 a001 23725150497407/987*514229^(12/17) 2584023505224104 l006 ln(727/9633) 2584023518933053 a007 Real Root Of 369*x^4+481*x^3-324*x^2-632*x+175 2584023521699349 r005 Im(z^2+c),c=-13/31+19/43*I,n=43 2584023524714360 m001 exp(Trott)^2*Niven^2/GAMMA(1/12) 2584023527401392 r005 Re(z^2+c),c=-37/114+1/63*I,n=9 2584023535449749 m002 -Pi^5-Cosh[Pi]/Log[Pi]+5*Sinh[Pi] 2584023538870456 r005 Im(z^2+c),c=-31/34+8/41*I,n=8 2584023543286955 a001 41/726103*121393^(11/12) 2584023543318994 a001 123/433494437*39088169^(11/12) 2584023543318994 a001 123/86267571272*12586269025^(11/12) 2584023545129097 m001 (Catalan+Backhouse)/(Champernowne+Kolakoski) 2584023558558777 r009 Re(z^3+c),c=-65/118+11/29*I,n=24 2584023588075436 a007 Real Root Of -216*x^4-188*x^3+807*x^2-697*x-803 2584023589530718 a001 199/1548008755920*514229^(13/14) 2584023592786998 a007 Real Root Of 206*x^4+482*x^3-269*x^2-192*x+432 2584023608927207 m005 (1/2*Catalan-7/9)/(8/11*Catalan+4/7) 2584023611852380 m001 MinimumGamma*Si(Pi)^2*exp(GAMMA(13/24)) 2584023615225235 r005 Re(z^2+c),c=-23/38+37/44*I,n=3 2584023616421605 r005 Re(z^2+c),c=-13/40+1/48*I,n=14 2584023619747459 r005 Im(z^2+c),c=9/34+5/42*I,n=17 2584023627222331 m001 sin(1/12*Pi)/(Zeta(3)^ZetaQ(3)) 2584023637201485 a007 Real Root Of -71*x^4+144*x^3+657*x^2-264*x+581 2584023638606276 a007 Real Root Of -374*x^4-619*x^3+963*x^2+472*x+784 2584023642940278 m002 -Pi^5+(Pi^4*Sinh[Pi])/E^Pi-Tanh[Pi] 2584023645703539 m001 (gamma(1)+StolarskyHarborth)/(2^(1/2)+Si(Pi)) 2584023648806141 l006 ln(723/9580) 2584023652232878 a001 5600748293801/610*1836311903^(10/17) 2584023652232878 a001 22768774562/305*6557470319842^(10/17) 2584023655157637 m001 Si(Pi)^GAMMA(5/6)/StronglyCareFree 2584023678285671 a007 Real Root Of -753*x^4+508*x^3-424*x^2+722*x+227 2584023680840057 r005 Re(z^2+c),c=-1/5+9/17*I,n=27 2584023686072968 g007 Psi(2,4/9)-Psi(2,7/11)-Psi(2,5/11)-Psi(2,1/5) 2584023688404748 s002 sum(A097239[n]/(n!^3),n=1..infinity) 2584023688801226 m001 1/PrimesInBinary^2/exp(Kolakoski)/Zeta(7)^2 2584023688974369 l006 ln(5311/6877) 2584023696150607 r005 Re(z^2+c),c=-1/5+35/58*I,n=58 2584023715443488 r005 Re(z^2+c),c=-3/4+7/33*I,n=13 2584023719644601 m009 (3/5*Psi(1,1/3)+3/5)/(1/6*Psi(1,3/4)-3) 2584023720084635 r005 Im(z^2+c),c=33/118+1/62*I,n=29 2584023724764055 m001 Psi(2,1/3)*(3^(1/2)+Otter) 2584023740834663 r009 Re(z^3+c),c=-23/114+51/58*I,n=27 2584023762371978 m005 (1/2*exp(1)-1/3)/(3*Zeta(3)+4/11) 2584023762896255 r005 Re(z^2+c),c=-47/114+27/47*I,n=24 2584023768523214 m001 exp(TwinPrimes)^2*FeigenbaumB^2/Zeta(9)^2 2584023769903941 m005 (1/2*Pi+7/9)/(5*3^(1/2)+3/7) 2584023771914468 m001 (GAMMA(13/24)+FeigenbaumMu)/(Mills+Rabbit) 2584023782240988 r005 Re(z^2+c),c=-19/62+11/53*I,n=22 2584023793985732 l006 ln(719/9527) 2584023795473959 m005 (1/2*Pi+1/9)/(5/9*Catalan+6) 2584023801471343 m001 Paris*(FeigenbaumB+KomornikLoreti) 2584023802554584 a001 89*199^(7/11) 2584023802649975 r002 43th iterates of z^2 + 2584023807313255 m001 (GAMMA(2/3)-ArtinRank2)/(FeigenbaumC+Rabbit) 2584023817028813 r005 Im(z^2+c),c=-47/90+7/18*I,n=13 2584023818910552 m005 (1/3*Zeta(3)-3/8)/(1/3*3^(1/2)+5/12) 2584023820177567 r005 Im(z^2+c),c=5/38+3/13*I,n=5 2584023822652930 r005 Re(z^2+c),c=-4/19+19/37*I,n=56 2584023826105380 m001 1/ln(HardHexagonsEntropy)*Cahen^2*(3^(1/3))^2 2584023851303192 m004 4+(30*Sqrt[5])/Pi+Log[Sqrt[5]*Pi]/4 2584023851438155 r005 Im(z^2+c),c=-103/106+9/40*I,n=12 2584023851833035 r005 Im(z^2+c),c=4/23+31/63*I,n=4 2584023853531288 r009 Im(z^3+c),c=-1/19+31/36*I,n=6 2584023863938209 m001 1/ln(Porter)*Paris*Zeta(9)^2 2584023867005010 m007 (-4/5*gamma-8/5*ln(2)-1/4)/(-1/6*gamma+1/6) 2584023868878017 a001 18/53316291173*317811^(12/17) 2584023875817499 r005 Re(z^2+c),c=-15/58+9/23*I,n=47 2584023882821642 r005 Re(z^2+c),c=-9/10+76/213*I,n=4 2584023884014741 a007 Real Root Of -67*x^4+109*x^3+725*x^2-106*x-247 2584023884132391 l006 ln(7451/9648) 2584023885646389 m005 (1/2*Zeta(3)-10/11)/(7/12*3^(1/2)+2/11) 2584023885734974 a007 Real Root Of -180*x^4-178*x^3+576*x^2-702*x-706 2584023895302565 r005 Im(z^2+c),c=-5/98+16/51*I,n=10 2584023903254560 a007 Real Root Of -337*x^4+228*x^3-842*x^2+725*x+249 2584023909080666 m005 (1/2*2^(1/2)-1/7)/(7/9*5^(1/2)+4/9) 2584023914191178 r008 a(0)=4,K{-n^6,-7-2*n^3+9*n^2+3*n} 2584023925952245 r002 3th iterates of z^2 + 2584023940789689 l006 ln(715/9474) 2584023944552346 m001 1/BesselJ(1,1)^2/FeigenbaumB^2*ln(cos(Pi/12)) 2584023948656057 r009 Re(z^3+c),c=-11/29+12/29*I,n=19 2584023949136238 a007 Real Root Of -213*x^4-304*x^3+442*x^2-512*x-23 2584023949873891 r005 Re(z^2+c),c=-29/36+1/38*I,n=46 2584023950602652 r009 Re(z^3+c),c=-9/22+9/19*I,n=42 2584023965844778 m008 (4/5*Pi^3-5/6)/(3*Pi^3-1/4) 2584023967155582 m005 (1/2*2^(1/2)+1)/(1/9*5^(1/2)-10/11) 2584023979446447 a007 Real Root Of 823*x^4-882*x^3-387*x^2-757*x+233 2584023986767750 r005 Im(z^2+c),c=11/64+12/61*I,n=20 2584023990896567 r009 Re(z^3+c),c=-3/19+59/64*I,n=62 2584023991914933 m001 (-Pi^(1/2)+Riemann2ndZero)/(Catalan-sin(1)) 2584023994071456 m002 -E^Pi/4-Pi+Pi^5/Log[Pi] 2584023994720407 r005 Re(z^2+c),c=5/14+14/57*I,n=12 2584023997286526 m001 (GAMMA(19/24)+MertensB3)/(Paris-ZetaQ(4)) 2584024009302131 p003 LerchPhi(1/12,1,94/237) 2584024014137216 r002 37th iterates of z^2 + 2584024014927753 a001 1149851/5*832040^(13/19) 2584024019369775 m005 (-21/44+1/4*5^(1/2))/(5/6*Pi+6/11) 2584024019489756 m001 QuadraticClass^Khinchin*Pi*2^(1/2)/GAMMA(3/4) 2584024026913158 m001 (ln(Pi)+GAMMA(13/24))/(Paris-Salem) 2584024034524256 p003 LerchPhi(1/100,2,416/211) 2584024044560183 a007 Real Root Of 428*x^4-835*x^3+103*x^2-660*x+17 2584024053855158 r009 Re(z^3+c),c=-3/19+12/13*I,n=30 2584024061004501 m006 (1/Pi+5/6)/(1/6*exp(Pi)+3/5) 2584024062297081 m001 ln(FeigenbaumD)/Kolakoski*(3^(1/3))^2 2584024071448216 a007 Real Root Of -377*x^4-883*x^3+388*x^2+715*x+830 2584024072888403 m001 exp(BesselK(0,1))^2*Bloch^2*sqrt(5)^2 2584024075453231 r005 Re(z^2+c),c=-31/114+7/20*I,n=37 2584024078278917 m001 ln(Pi)*GAMMA(7/12)^2*cos(Pi/12) 2584024087517713 h001 (4/11*exp(1)+2/9)/(7/12*exp(2)+3/8) 2584024089245426 l006 ln(711/9421) 2584024089265427 m006 (2/3*Pi+3/5)/(2/3*exp(Pi)-5) 2584024092482674 r005 Re(z^2+c),c=13/82+7/16*I,n=19 2584024094237111 h001 (-7*exp(-2)+8)/(-2*exp(-2)+3) 2584024104256386 m001 Pi*exp(Pi)*sin(1/12*Pi)/gamma(1) 2584024109924367 a007 Real Root Of 194*x^4+244*x^3-769*x^2-295*x-67 2584024116959801 m001 exp(Riemann1stZero)*MinimumGamma^2*Zeta(1,2)^2 2584024130520127 a001 11/34*28657^(28/43) 2584024134755710 a001 46368/521*322^(7/12) 2584024140060820 s002 sum(A083866[n]/(n^2*exp(n)-1),n=1..infinity) 2584024143307194 r005 Re(z^2+c),c=13/110+2/5*I,n=25 2584024149513366 a001 55/4870847*843^(25/31) 2584024168333658 r005 Im(z^2+c),c=-25/27+16/63*I,n=8 2584024171885743 a007 Real Root Of 530*x^4-250*x^3+806*x^2-923*x-299 2584024173123585 a007 Real Root Of -189*x^4-302*x^3+723*x^2+664*x+104 2584024185748816 a007 Real Root Of 248*x^4+225*x^3-724*x^2+852*x-139 2584024186319218 a001 24476/13*196418^(33/34) 2584024186864974 m001 GAMMA(1/4)^GaussKuzminWirsing*MadelungNaCl 2584024188480713 m001 (-BesselI(0,2)+MertensB1)/(Catalan-Chi(1)) 2584024194467513 r005 Re(z^2+c),c=-1+91/170*I,n=4 2584024208990561 m001 (Pi-gamma(3))/(polylog(4,1/2)+ArtinRank2) 2584024210360658 p003 LerchPhi(1/64,4,55/124) 2584024211788463 r005 Im(z^2+c),c=-49/106+27/64*I,n=20 2584024213095253 r005 Im(z^2+c),c=11/64+12/61*I,n=19 2584024215111362 r005 Re(z^2+c),c=19/46+37/62*I,n=4 2584024223649200 r005 Re(z^2+c),c=-15/26+28/69*I,n=19 2584024236405813 s002 sum(A164540[n]/(n^3*2^n-1),n=1..infinity) 2584024238904481 r005 Re(z^2+c),c=1/64+7/11*I,n=42 2584024239380980 l006 ln(707/9368) 2584024243433750 m001 arctan(1/3)^Zeta(5)/(KhinchinLevy^Zeta(5)) 2584024247532915 m004 (25*Pi)/4+(10*Log[Sqrt[5]*Pi])/Pi 2584024248897648 r005 Re(z^2+c),c=-31/114+7/20*I,n=27 2584024266701476 a007 Real Root Of -212*x^4-375*x^3+262*x^2-670*x-499 2584024267641013 m001 Sierpinski-ZetaQ(3)^Porter 2584024280345689 m001 (2^(1/2)-GaussAGM)/(Porter+StronglyCareFree) 2584024287722055 r005 Im(z^2+c),c=-43/110+10/23*I,n=52 2584024302070903 a007 Real Root Of 518*x^4+873*x^3-875*x^2+787*x-156 2584024307965311 a007 Real Root Of 825*x^4+586*x^3+733*x^2-683*x-219 2584024308850584 m005 (1/2*Zeta(3)+3/10)/(8/9*gamma-4) 2584024309594453 m005 (1/2*Catalan+1/11)/(3/7*Pi+7/9) 2584024310127367 a001 17711/1364*322^(11/12) 2584024316247755 m006 (4*Pi^2+1/4)/(5*Pi-1/3) 2584024316247755 m008 (4*Pi^2+1/4)/(5*Pi-1/3) 2584024316337323 h001 (5/11*exp(1)+1/11)/(3/5*exp(2)+7/10) 2584024316677852 m001 (ln(Pi)+GAMMA(5/6))/(FeigenbaumKappa-PlouffeB) 2584024318473056 r005 Re(z^2+c),c=-19/60+2/17*I,n=6 2584024318963974 m001 CareFree/(FeigenbaumD-Otter) 2584024329747666 a001 377/3571*7^(23/50) 2584024334148235 m001 exp(GAMMA(19/24))/Rabbit*LambertW(1) 2584024349067900 r009 Re(z^3+c),c=-37/90+11/23*I,n=34 2584024353213608 a001 5/1860498*322^(34/43) 2584024358149547 m001 (QuadraticClass-ZetaQ(4))/(gamma(3)-Magata) 2584024358383296 m001 3^(1/2)-arctan(1/3)+GAMMA(19/24) 2584024363515431 a007 Real Root Of -347*x^4-668*x^3+872*x^2+985*x+668 2584024363832408 m005 (1/2*5^(1/2)+7/9)/(3*exp(1)-9/11) 2584024367863011 a007 Real Root Of 589*x^4-577*x^3-177*x^2-415*x-108 2584024368470812 l006 ln(2140/2771) 2584024370892118 a007 Real Root Of 807*x^4+164*x^3+708*x^2-828*x-262 2584024372554394 r005 Im(z^2+c),c=-29/114+25/64*I,n=26 2584024379163935 a007 Real Root Of 382*x^4+639*x^3-952*x^2+88*x+578 2584024391225023 l006 ln(703/9315) 2584024395762094 a001 41/105937*8^(21/23) 2584024404228910 m001 arctan(1/3)/(OrthogonalArrays^MasserGramain) 2584024408834951 a007 Real Root Of -320*x^4-825*x^3+349*x^2+503*x-998 2584024411243011 r005 Re(z^2+c),c=-13/40+1/50*I,n=19 2584024418435851 m005 (1/2*gamma-3)/(4/15+7/20*5^(1/2)) 2584024419274462 r002 20th iterates of z^2 + 2584024424223267 m001 (5^(1/2)-Shi(1))/(Zeta(3)+ReciprocalFibonacci) 2584024429022835 r009 Re(z^3+c),c=-2/5+5/11*I,n=38 2584024439637928 r005 Im(z^2+c),c=-4/9+9/20*I,n=60 2584024443295593 r005 Im(z^2+c),c=-3/110+33/52*I,n=60 2584024443474465 q001 592/2291 2584024451689052 m001 (CopelandErdos+GaussAGM)/(1-2^(1/2)) 2584024451962111 a001 47/28657*3^(12/29) 2584024456673237 r005 Im(z^2+c),c=3/22+9/41*I,n=16 2584024458745566 m001 GAMMA(13/24)-GAMMA(2/3)-Trott2nd 2584024461580333 r005 Im(z^2+c),c=-37/102+19/45*I,n=24 2584024462636734 a003 sin(Pi*6/95)/sin(Pi*29/105) 2584024469250529 a004 Fibonacci(16)*Lucas(12)/(1/2+sqrt(5)/2)^10 2584024479675075 r005 Im(z^2+c),c=-41/36+1/31*I,n=38 2584024489915610 r005 Im(z^2+c),c=-7/10+50/247*I,n=26 2584024495713130 a007 Real Root Of 292*x^4+634*x^3-526*x^2-821*x-689 2584024504827335 r005 Im(z^2+c),c=-9/8+7/221*I,n=27 2584024509444491 a002 3^(1/6)+7^(1/6) 2584024513680802 l003 sinh(3+52/55) 2584024513680802 l004 sinh(217/55) 2584024516641655 a001 228826127/377*1836311903^(14/17) 2584024516643265 a001 192900153618/377*514229^(14/17) 2584024516676725 a001 271443/377*6557470319842^(14/17) 2584024517127257 m001 GlaisherKinkelin^exp(1/Pi)+Salem 2584024517291529 r005 Re(z^2+c),c=-15/58+9/23*I,n=44 2584024521243162 m001 (GAMMA(2/3)-Zeta(1,-1))/(Pi^(1/2)-FeigenbaumC) 2584024521630305 m001 (5^(1/2)+ln(3))/(-MertensB3+MinimumGamma) 2584024539831783 r005 Re(z^2+c),c=-3/4+17/156*I,n=4 2584024542252080 a001 38/17*10946^(5/19) 2584024544448874 m005 (3/28+1/4*5^(1/2))/(5/7*exp(1)+7/11) 2584024544806887 l006 ln(699/9262) 2584024545438365 a001 2207/5*7778742049^(13/19) 2584024553273229 a001 1322157322203/89*21^(2/11) 2584024553537424 h001 (2/5*exp(1)+3/10)/(5/7*exp(2)+1/11) 2584024566276356 a007 Real Root Of 841*x^4-597*x^3+175*x^2-492*x+122 2584024592404571 m001 Magata^2/ln(ErdosBorwein)*GAMMA(11/12) 2584024594824755 h005 exp(cos(Pi*8/47)/sin(Pi*13/36)) 2584024598955089 r005 Im(z^2+c),c=-1+68/235*I,n=10 2584024604577024 m005 (1/3*Pi-2/3)/(1/3*5^(1/2)+8/11) 2584024611522750 a001 843/34*55^(31/53) 2584024613307657 m001 (1+Chi(1))/(sin(1/5*Pi)+Champernowne) 2584024623231153 m005 (1/2*5^(1/2)-5/7)/(1/2*5^(1/2)+4/9) 2584024632395971 r005 Re(z^2+c),c=3/14+4/55*I,n=22 2584024643896246 a007 Real Root Of -495*x^4-970*x^3+882*x^2+526*x+803 2584024668369850 m005 (41/36+1/4*5^(1/2))/(1/5*Zeta(3)+5/12) 2584024668723212 m001 (ln(Pi)+TravellingSalesman)/(2^(1/3)-cos(1)) 2584024678134726 a001 75025/2207*18^(40/57) 2584024680190264 a001 1/2207*(1/2*5^(1/2)+1/2)^8*3^(3/17) 2584024682531500 a007 Real Root Of 155*x^4+351*x^3+577*x^2-717*x+140 2584024686402506 g002 -Psi(1/8)-Psi(1/10)-Psi(4/9)-Psi(2/9) 2584024692134046 a007 Real Root Of 505*x^4+924*x^3+100*x^2-805*x-201 2584024693723342 m001 1/GAMMA(5/6)*exp(GlaisherKinkelin)*cos(Pi/5) 2584024694782085 a007 Real Root Of 951*x^4+39*x^3+478*x^2-954*x-282 2584024695054851 m006 (3/4*Pi^2-5/6)/(2/5*ln(Pi)-3) 2584024700156574 l006 ln(695/9209) 2584024708177795 r005 Im(z^2+c),c=-37/58+3/14*I,n=7 2584024719261617 r005 Im(z^2+c),c=-17/46+30/53*I,n=47 2584024724638478 m001 TwinPrimes/Artin^2/ln(sin(Pi/12))^2 2584024734574780 m001 (FransenRobinson+GaussAGM)/(gamma+FeigenbaumB) 2584024749697128 a007 Real Root Of 488*x^4+940*x^3-985*x^2-124*x+718 2584024750987673 a001 18/233*28657^(2/17) 2584024751336842 a007 Real Root Of -307*x^4-700*x^3-47*x^2-917*x-446 2584024762839350 m001 1/GAMMA(2/3)^2/MertensB1^2*exp(sin(Pi/5))^2 2584024771926968 r004 Re(z^2+c),c=2/11-4/9*I,z(0)=I,n=14 2584024779857268 m001 (-Riemann1stZero+Robbin)/(gamma-ln(3)) 2584024780081085 m005 (1/2*5^(1/2)+4)/(3/8*exp(1)-3) 2584024785381590 r008 a(0)=0,K{-n^6,10+17*n^3+22*n^2-10*n} 2584024797089477 a007 Real Root Of -324*x^4-656*x^3+36*x^2-910*x+535 2584024805166762 m001 (GAMMA(3/4)+GAMMA(13/24))/(Gompertz-Niven) 2584024823506659 a005 (1/cos(2/97*Pi))^1549 2584024830742711 s002 sum(A051224[n]/(n*2^n+1),n=1..infinity) 2584024833465942 r009 Re(z^3+c),c=-5/14+19/53*I,n=9 2584024834803851 a007 Real Root Of -622*x^4-540*x^3-845*x^2+74*x+69 2584024838324919 r005 Re(z^2+c),c=-19/78+10/23*I,n=25 2584024838484898 a001 14662949395604/1597*1836311903^(10/17) 2584024838484898 a001 119218851371/1597*6557470319842^(10/17) 2584024838898260 m005 (1/2*Catalan+6)/(7/11*Pi+1/2) 2584024839014729 m005 (1/3*5^(1/2)-3/7)/(6/11*2^(1/2)+5/11) 2584024847284555 r005 Im(z^2+c),c=-33/70+17/35*I,n=64 2584024847791492 l006 ln(7529/9749) 2584024847791492 p004 log(9749/7529) 2584024855670475 r009 Re(z^3+c),c=-19/60+7/25*I,n=21 2584024857304787 l006 ln(691/9156) 2584024862907818 m001 exp(sqrt(2))^(3*Si(Pi)) 2584024867691810 r005 Re(z^2+c),c=-27/31+11/43*I,n=26 2584024870177829 r009 Re(z^3+c),c=-21/122+13/15*I,n=20 2584024871391253 m001 1/ln(FeigenbaumD)/Salem*sqrt(3)^2 2584024879210715 a001 199/2971215073*610^(13/14) 2584024896265560 q001 2491/964 2584024901043423 s002 sum(A038901[n]/(n^2*pi^n-1),n=1..infinity) 2584024905601807 p001 sum((-1)^n/(112*n+39)/n/(256^n),n=0..infinity) 2584024915523257 r005 Im(z^2+c),c=-9/38+22/57*I,n=16 2584024917601205 r002 2th iterates of z^2 + 2584024917912687 r005 Im(z^2+c),c=-55/46+1/29*I,n=59 2584024918117812 r009 Im(z^3+c),c=-61/126+5/39*I,n=18 2584024922358753 a004 Fibonacci(18)*Lucas(12)/(1/2+sqrt(5)/2)^12 2584024923683254 r002 15th iterates of z^2 + 2584024924643194 r005 Im(z^2+c),c=1/11+14/57*I,n=17 2584024926576878 r005 Im(z^2+c),c=-17/54+23/56*I,n=43 2584024930518107 m005 (1/3*5^(1/2)-2/5)/(3/11*exp(1)-7/8) 2584024931178916 h001 (1/11*exp(2)+4/9)/(1/2*exp(2)+5/8) 2584024945891035 m005 (3/4*Catalan-1/5)/(1/5*gamma-2) 2584024952789330 p001 sum((-1)^n/(330*n+137)/n/(8^n),n=1..infinity) 2584024953900349 m001 (MertensB2+Trott2nd)/(MasserGramain-Shi(1)) 2584024974302277 a001 199/46368*34^(28/55) 2584024979204735 m001 (Conway+TreeGrowth2nd)/(gamma(1)-BesselK(1,1)) 2584024979578876 m001 1/sin(Pi/5)^2/Ei(1)*exp(sqrt(2))^2 2584024988466352 a004 Fibonacci(20)*Lucas(12)/(1/2+sqrt(5)/2)^14 2584024990528176 r005 Re(z^2+c),c=-69/86+4/35*I,n=12 2584024990726880 r005 Im(z^2+c),c=23/114+36/47*I,n=3 2584024998111320 a004 Fibonacci(22)*Lucas(12)/(1/2+sqrt(5)/2)^16 2584024999518502 a004 Fibonacci(24)*Lucas(12)/(1/2+sqrt(5)/2)^18 2584024999551421 m001 (Porter-Tetranacci)/(GAMMA(19/24)-Otter) 2584024999723807 a004 Fibonacci(26)*Lucas(12)/(1/2+sqrt(5)/2)^20 2584024999753761 a004 Fibonacci(28)*Lucas(12)/(1/2+sqrt(5)/2)^22 2584024999758131 a004 Fibonacci(30)*Lucas(12)/(1/2+sqrt(5)/2)^24 2584024999758769 a004 Fibonacci(32)*Lucas(12)/(1/2+sqrt(5)/2)^26 2584024999758862 a004 Fibonacci(34)*Lucas(12)/(1/2+sqrt(5)/2)^28 2584024999758875 a004 Fibonacci(36)*Lucas(12)/(1/2+sqrt(5)/2)^30 2584024999758877 a004 Fibonacci(38)*Lucas(12)/(1/2+sqrt(5)/2)^32 2584024999758878 a004 Fibonacci(40)*Lucas(12)/(1/2+sqrt(5)/2)^34 2584024999758878 a004 Fibonacci(42)*Lucas(12)/(1/2+sqrt(5)/2)^36 2584024999758878 a004 Fibonacci(44)*Lucas(12)/(1/2+sqrt(5)/2)^38 2584024999758878 a004 Fibonacci(46)*Lucas(12)/(1/2+sqrt(5)/2)^40 2584024999758878 a004 Fibonacci(48)*Lucas(12)/(1/2+sqrt(5)/2)^42 2584024999758878 a004 Fibonacci(50)*Lucas(12)/(1/2+sqrt(5)/2)^44 2584024999758878 a004 Fibonacci(52)*Lucas(12)/(1/2+sqrt(5)/2)^46 2584024999758878 a004 Fibonacci(54)*Lucas(12)/(1/2+sqrt(5)/2)^48 2584024999758878 a004 Fibonacci(56)*Lucas(12)/(1/2+sqrt(5)/2)^50 2584024999758878 a004 Fibonacci(58)*Lucas(12)/(1/2+sqrt(5)/2)^52 2584024999758878 a004 Fibonacci(60)*Lucas(12)/(1/2+sqrt(5)/2)^54 2584024999758878 a004 Fibonacci(62)*Lucas(12)/(1/2+sqrt(5)/2)^56 2584024999758878 a004 Fibonacci(64)*Lucas(12)/(1/2+sqrt(5)/2)^58 2584024999758878 a004 Fibonacci(66)*Lucas(12)/(1/2+sqrt(5)/2)^60 2584024999758878 a004 Fibonacci(68)*Lucas(12)/(1/2+sqrt(5)/2)^62 2584024999758878 a004 Fibonacci(70)*Lucas(12)/(1/2+sqrt(5)/2)^64 2584024999758878 a004 Fibonacci(72)*Lucas(12)/(1/2+sqrt(5)/2)^66 2584024999758878 a004 Fibonacci(74)*Lucas(12)/(1/2+sqrt(5)/2)^68 2584024999758878 a004 Fibonacci(76)*Lucas(12)/(1/2+sqrt(5)/2)^70 2584024999758878 a004 Fibonacci(78)*Lucas(12)/(1/2+sqrt(5)/2)^72 2584024999758878 a004 Fibonacci(80)*Lucas(12)/(1/2+sqrt(5)/2)^74 2584024999758878 a004 Fibonacci(82)*Lucas(12)/(1/2+sqrt(5)/2)^76 2584024999758878 a004 Fibonacci(84)*Lucas(12)/(1/2+sqrt(5)/2)^78 2584024999758878 a004 Fibonacci(86)*Lucas(12)/(1/2+sqrt(5)/2)^80 2584024999758878 a004 Fibonacci(88)*Lucas(12)/(1/2+sqrt(5)/2)^82 2584024999758878 a004 Fibonacci(90)*Lucas(12)/(1/2+sqrt(5)/2)^84 2584024999758878 a004 Fibonacci(92)*Lucas(12)/(1/2+sqrt(5)/2)^86 2584024999758878 a004 Fibonacci(94)*Lucas(12)/(1/2+sqrt(5)/2)^88 2584024999758878 a004 Fibonacci(96)*Lucas(12)/(1/2+sqrt(5)/2)^90 2584024999758878 a004 Fibonacci(100)*Lucas(12)/(1/2+sqrt(5)/2)^94 2584024999758878 a004 Fibonacci(98)*Lucas(12)/(1/2+sqrt(5)/2)^92 2584024999758878 a004 Fibonacci(99)*Lucas(12)/(1/2+sqrt(5)/2)^93 2584024999758878 a004 Fibonacci(97)*Lucas(12)/(1/2+sqrt(5)/2)^91 2584024999758878 a004 Fibonacci(95)*Lucas(12)/(1/2+sqrt(5)/2)^89 2584024999758878 a004 Fibonacci(93)*Lucas(12)/(1/2+sqrt(5)/2)^87 2584024999758878 a004 Fibonacci(91)*Lucas(12)/(1/2+sqrt(5)/2)^85 2584024999758878 a004 Fibonacci(89)*Lucas(12)/(1/2+sqrt(5)/2)^83 2584024999758878 a004 Fibonacci(87)*Lucas(12)/(1/2+sqrt(5)/2)^81 2584024999758878 a004 Fibonacci(85)*Lucas(12)/(1/2+sqrt(5)/2)^79 2584024999758878 a004 Fibonacci(83)*Lucas(12)/(1/2+sqrt(5)/2)^77 2584024999758878 a004 Fibonacci(81)*Lucas(12)/(1/2+sqrt(5)/2)^75 2584024999758878 a004 Fibonacci(79)*Lucas(12)/(1/2+sqrt(5)/2)^73 2584024999758878 a004 Fibonacci(77)*Lucas(12)/(1/2+sqrt(5)/2)^71 2584024999758878 a004 Fibonacci(75)*Lucas(12)/(1/2+sqrt(5)/2)^69 2584024999758878 a004 Fibonacci(73)*Lucas(12)/(1/2+sqrt(5)/2)^67 2584024999758878 a004 Fibonacci(71)*Lucas(12)/(1/2+sqrt(5)/2)^65 2584024999758878 a004 Fibonacci(69)*Lucas(12)/(1/2+sqrt(5)/2)^63 2584024999758878 a004 Fibonacci(67)*Lucas(12)/(1/2+sqrt(5)/2)^61 2584024999758878 a004 Fibonacci(65)*Lucas(12)/(1/2+sqrt(5)/2)^59 2584024999758878 a004 Fibonacci(63)*Lucas(12)/(1/2+sqrt(5)/2)^57 2584024999758878 a004 Fibonacci(61)*Lucas(12)/(1/2+sqrt(5)/2)^55 2584024999758878 a004 Fibonacci(59)*Lucas(12)/(1/2+sqrt(5)/2)^53 2584024999758878 a004 Fibonacci(57)*Lucas(12)/(1/2+sqrt(5)/2)^51 2584024999758878 a004 Fibonacci(55)*Lucas(12)/(1/2+sqrt(5)/2)^49 2584024999758878 a004 Fibonacci(53)*Lucas(12)/(1/2+sqrt(5)/2)^47 2584024999758878 a004 Fibonacci(51)*Lucas(12)/(1/2+sqrt(5)/2)^45 2584024999758878 a004 Fibonacci(49)*Lucas(12)/(1/2+sqrt(5)/2)^43 2584024999758878 a004 Fibonacci(47)*Lucas(12)/(1/2+sqrt(5)/2)^41 2584024999758878 a004 Fibonacci(45)*Lucas(12)/(1/2+sqrt(5)/2)^39 2584024999758878 a004 Fibonacci(43)*Lucas(12)/(1/2+sqrt(5)/2)^37 2584024999758878 a004 Fibonacci(41)*Lucas(12)/(1/2+sqrt(5)/2)^35 2584024999758878 a004 Fibonacci(39)*Lucas(12)/(1/2+sqrt(5)/2)^33 2584024999758878 a004 Fibonacci(37)*Lucas(12)/(1/2+sqrt(5)/2)^31 2584024999758884 a004 Fibonacci(35)*Lucas(12)/(1/2+sqrt(5)/2)^29 2584024999758919 a004 Fibonacci(33)*Lucas(12)/(1/2+sqrt(5)/2)^27 2584024999759163 a004 Fibonacci(31)*Lucas(12)/(1/2+sqrt(5)/2)^25 2584024999760832 a004 Fibonacci(29)*Lucas(12)/(1/2+sqrt(5)/2)^23 2584024999772273 a004 Fibonacci(27)*Lucas(12)/(1/2+sqrt(5)/2)^21 2584024999850693 a004 Fibonacci(25)*Lucas(12)/(1/2+sqrt(5)/2)^19 2584024999999253 a001 1/72*(1/2+1/2*5^(1/2))^30 2584025000388189 a004 Fibonacci(23)*Lucas(12)/(1/2+sqrt(5)/2)^17 2584025004072239 a004 Fibonacci(21)*Lucas(12)/(1/2+sqrt(5)/2)^15 2584025011556826 a001 312119004989/4181*6557470319842^(10/17) 2584025016282939 l006 ln(687/9103) 2584025017051658 m001 ln(GAMMA(1/6))/Riemann1stZero*GAMMA(5/12) 2584025029323095 a004 Fibonacci(19)*Lucas(12)/(1/2+sqrt(5)/2)^13 2584025035597594 m001 1/GAMMA(7/24)^2/GAMMA(13/24)^2/exp(exp(1)) 2584025036807682 a001 408569081798/5473*6557470319842^(10/17) 2584025038132227 l006 ln(5389/6978) 2584025040491732 a001 2139295485799/28657*6557470319842^(10/17) 2584025041029228 a001 5600748293801/75025*6557470319842^(10/17) 2584025041107647 a001 7331474697802/98209*6557470319842^(10/17) 2584025041126160 a001 23725150497407/317811*6557470319842^(10/17) 2584025041156113 a001 9062201101803/121393*6557470319842^(10/17) 2584025041361418 a001 10749853441/144*6557470319842^(10/17) 2584025042768600 a001 1322157322203/17711*6557470319842^(10/17) 2584025052373724 m001 (cos(1/5*Pi)-ln(2^(1/2)+1)*Rabbit)/Rabbit 2584025052413569 a001 505019158607/6765*6557470319842^(10/17) 2584025053455895 m001 (-Ei(1,1)+MertensB2)/(2^(1/3)+Ei(1)) 2584025079197161 r005 Re(z^2+c),c=-13/58+27/56*I,n=59 2584025084517468 m001 (FransenRobinson-Lehmer*Trott)/Trott 2584025090366888 r002 12th iterates of z^2 + 2584025092714424 m005 (1/3*exp(1)+3/7)/(1/8*3^(1/2)+3/10) 2584025101572132 a007 Real Root Of 37*x^4-188*x^3-701*x^2-93*x-453 2584025110771575 a003 sin(Pi*2/77)/cos(Pi*37/93) 2584025117919217 r008 a(0)=0,K{-n^6,28-23*n^3+15*n^2-59*n} 2584025118521171 a001 23725150497407/2584*1836311903^(10/17) 2584025118521171 a001 96450076809/1292*6557470319842^(10/17) 2584025120301339 a007 Real Root Of 196*x^4+57*x^3-873*x^2+666*x-205 2584025131164460 a001 98209/2889*18^(40/57) 2584025133298419 a001 1/5778*(1/2*5^(1/2)+1/2)^10*3^(3/17) 2584025139175484 m005 (1/3*Zeta(3)+1/8)/(3/8*5^(1/2)-9/11) 2584025141875625 r005 Re(z^2+c),c=-19/62+11/53*I,n=26 2584025144244200 m001 (cos(1)+MasserGramainDelta*Rabbit)/Rabbit 2584025145230181 a007 Real Root Of 57*x^4+6*x^3-363*x^2-12*x-45 2584025146100494 m005 (1/2*Pi+1/3)/(-31/36+1/18*5^(1/2)) 2584025146787989 m001 (GAMMA(7/12)+Paris)/(Stephens+ZetaQ(2)) 2584025149872495 m001 ln(2)/ln(10)/(GAMMA(13/24)-Weierstrass) 2584025152233487 s002 sum(A109312[n]/(n*exp(pi*n)+1),n=1..infinity) 2584025156121890 m001 Riemann3rdZero*ln(PrimesInBinary)*GAMMA(19/24) 2584025177123181 l006 ln(683/9050) 2584025186027299 r005 Im(z^2+c),c=-39/94+31/58*I,n=30 2584025188141078 m001 OneNinth/(Ei(1,1)^gamma) 2584025189255966 m001 (exp(1)-FibonacciFactorial)/gamma 2584025195223394 a007 Real Root Of 204*x^4+279*x^3-453*x^2+722*x+609 2584025197260621 a001 514229/15127*18^(40/57) 2584025199406021 a001 1/15127*(1/2*5^(1/2)+1/2)^12*3^(3/17) 2584025199675342 r005 Re(z^2+c),c=15/64+27/61*I,n=47 2584025199781477 m001 1/Khintchine^2*ln(ArtinRank2)/GAMMA(5/24)^2 2584025201028749 m001 1/GAMMA(1/4)*TwinPrimes/exp(GAMMA(5/12))^2 2584025202395036 a004 Fibonacci(17)*Lucas(12)/(1/2+sqrt(5)/2)^11 2584025206903921 a001 1346269/39603*18^(40/57) 2584025209050990 a001 1/39603*(1/2*5^(1/2)+1/2)^14*3^(3/17) 2584025209180396 a001 2178309/64079*18^(40/57) 2584025209222793 a005 (1/cos(11/112*Pi))^448 2584025211327859 a001 1/64079*(1/2*5^(1/2)+1/2)^15*3^(3/17) 2584025212863809 a001 208010/6119*18^(40/57) 2584025213866609 r009 Im(z^3+c),c=-13/54+15/62*I,n=5 2584025215011909 a001 1/24476*(1/2*5^(1/2)+1/2)^13*3^(3/17) 2584025215158746 p003 LerchPhi(1/25,6,193/154) 2584025217721639 h001 (4/11*exp(1)+8/9)/(1/12*exp(1)+1/2) 2584025228009020 m001 ln(2)^(5^(1/2))/Niven 2584025228961112 s002 sum(A215304[n]/(pi^n-1),n=1..infinity) 2584025238110297 a001 317811/9349*18^(40/57) 2584025240262767 a001 1/9349*(1/2*5^(1/2)+1/2)^11*3^(3/17) 2584025242356680 m008 (4/5*Pi-5/6)/(2*Pi^3+3) 2584025263876832 m008 (1/6*Pi^4-4)/(5*Pi^2-2) 2584025266225716 r009 Im(z^3+c),c=-6/13+2/29*I,n=21 2584025272427202 m001 1/ln(CareFree)^2/ArtinRank2^2*cosh(1) 2584025274826236 m008 (1/6*Pi^3+4)/(4*Pi^2-4) 2584025283434558 a007 Real Root Of 274*x^4+769*x^3+431*x^2+628*x-203 2584025296473653 a005 (1/cos(25/233*Pi))^1209 2584025308726334 r005 Im(z^2+c),c=-17/14+16/91*I,n=6 2584025323057466 m001 (Gompertz+Trott2nd)/(GAMMA(5/6)+GAMMA(17/24)) 2584025332518808 m001 ZetaP(2)^Zeta(1,2)/(ZetaP(2)^sin(1/12*Pi)) 2584025332906261 a007 Real Root Of -195*x^4-170*x^3+904*x^2-20*x-327 2584025337046536 r009 Re(z^3+c),c=-19/60+7/25*I,n=24 2584025339858422 l006 ln(679/8997) 2584025347171375 r009 Re(z^3+c),c=-19/60+7/25*I,n=25 2584025356133899 p001 sum(1/(361*n+27)/n/(100^n),n=1..infinity) 2584025356694003 h001 (1/7*exp(1)+7/8)/(4/7*exp(2)+2/3) 2584025357500391 r005 Re(z^2+c),c=-17/90+11/17*I,n=55 2584025365946698 r009 Re(z^3+c),c=-19/60+7/25*I,n=28 2584025366204614 r009 Re(z^3+c),c=-27/106+7/54*I,n=2 2584025369247610 r009 Re(z^3+c),c=-19/60+7/25*I,n=32 2584025369299756 r009 Re(z^3+c),c=-19/60+7/25*I,n=29 2584025369308381 r009 Re(z^3+c),c=-19/60+7/25*I,n=31 2584025369413593 r009 Re(z^3+c),c=-19/60+7/25*I,n=35 2584025369431555 r009 Re(z^3+c),c=-19/60+7/25*I,n=36 2584025369434191 r009 Re(z^3+c),c=-19/60+7/25*I,n=39 2584025369435519 r009 Re(z^3+c),c=-19/60+7/25*I,n=38 2584025369435521 r009 Re(z^3+c),c=-19/60+7/25*I,n=42 2584025369435599 r009 Re(z^3+c),c=-19/60+7/25*I,n=43 2584025369435638 r009 Re(z^3+c),c=-19/60+7/25*I,n=46 2584025369435648 r009 Re(z^3+c),c=-19/60+7/25*I,n=49 2584025369435648 r009 Re(z^3+c),c=-19/60+7/25*I,n=50 2584025369435648 r009 Re(z^3+c),c=-19/60+7/25*I,n=53 2584025369435648 r009 Re(z^3+c),c=-19/60+7/25*I,n=57 2584025369435648 r009 Re(z^3+c),c=-19/60+7/25*I,n=54 2584025369435648 r009 Re(z^3+c),c=-19/60+7/25*I,n=56 2584025369435648 r009 Re(z^3+c),c=-19/60+7/25*I,n=60 2584025369435648 r009 Re(z^3+c),c=-19/60+7/25*I,n=61 2584025369435648 r009 Re(z^3+c),c=-19/60+7/25*I,n=64 2584025369435648 r009 Re(z^3+c),c=-19/60+7/25*I,n=63 2584025369435648 r009 Re(z^3+c),c=-19/60+7/25*I,n=62 2584025369435648 r009 Re(z^3+c),c=-19/60+7/25*I,n=59 2584025369435648 r009 Re(z^3+c),c=-19/60+7/25*I,n=58 2584025369435648 r009 Re(z^3+c),c=-19/60+7/25*I,n=55 2584025369435649 r009 Re(z^3+c),c=-19/60+7/25*I,n=52 2584025369435649 r009 Re(z^3+c),c=-19/60+7/25*I,n=51 2584025369435649 r009 Re(z^3+c),c=-19/60+7/25*I,n=47 2584025369435651 r009 Re(z^3+c),c=-19/60+7/25*I,n=48 2584025369435653 r009 Re(z^3+c),c=-19/60+7/25*I,n=45 2584025369435688 r009 Re(z^3+c),c=-19/60+7/25*I,n=44 2584025369435947 r009 Re(z^3+c),c=-19/60+7/25*I,n=41 2584025369435948 r009 Re(z^3+c),c=-19/60+7/25*I,n=40 2584025369441752 r009 Re(z^3+c),c=-19/60+7/25*I,n=37 2584025369469236 r009 Re(z^3+c),c=-19/60+7/25*I,n=34 2584025369501101 r009 Re(z^3+c),c=-19/60+7/25*I,n=33 2584025370307127 r009 Re(z^3+c),c=-19/60+7/25*I,n=30 2584025372639830 r009 Re(z^3+c),c=-19/60+7/25*I,n=27 2584025375752284 r005 Im(z^2+c),c=7/24+7/60*I,n=10 2584025380034782 a007 Real Root Of -84*x^4+190*x^3-324*x^2+920*x-219 2584025381387631 r009 Re(z^3+c),c=-19/60+7/25*I,n=26 2584025382669184 m005 (1/2*5^(1/2)+1/8)/(1/11*gamma+3/7) 2584025391644108 r009 Im(z^3+c),c=-63/110+41/61*I,n=4 2584025394679019 m001 GAMMA(1/3)/(Khinchin-exp(1/2)) 2584025401794656 m005 (2*exp(1)+5/6)/(3*2^(1/2)-4) 2584025402042720 m002 -Log[Pi]+2*Pi^4*Cosh[Pi]*Log[Pi] 2584025402572889 r005 Re(z^2+c),c=-17/94+29/47*I,n=61 2584025405073575 r005 Im(z^2+c),c=-23/70+22/53*I,n=34 2584025411152314 a001 121393/3571*18^(40/57) 2584025413334738 a001 1/3571*(1/2*5^(1/2)+1/2)^9*3^(3/17) 2584025414786398 r009 Re(z^3+c),c=-19/60+7/25*I,n=22 2584025416687741 b008 13+10*E^(1/4) 2584025418108635 a007 Real Root Of -636*x^4+726*x^3+613*x^2+164*x-93 2584025437043910 r005 Re(z^2+c),c=-13/122+33/59*I,n=14 2584025440713258 m005 (-3/20+1/4*5^(1/2))/(9/11*3^(1/2)-3) 2584025456888329 k005 Champernowne real with floor(log(2)*(207*n+166)) 2584025456898339 k005 Champernowne real with floor(Catalan*(157*n+125)) 2584025461850806 m001 (cos(1)+GAMMA(5/6))/(-Kolakoski+Thue) 2584025462350687 a005 (1/cos(10/107*Pi))^127 2584025464459055 r005 Re(z^2+c),c=-31/114+7/20*I,n=39 2584025466898339 k005 Champernowne real with floor(log(3)*(131*n+104)) 2584025466903890 m005 (1/2*3^(1/2)+3/5)/(-79/180+9/20*5^(1/2)) 2584025466908349 k001 Champernowne real with 144*n+114 2584025466908349 k005 Champernowne real with floor(exp(1)*(53*n+42)) 2584025466918359 k005 Champernowne real with floor(log(2)*(208*n+165)) 2584025479214205 l006 ln(3249/4207) 2584025485747224 r009 Re(z^3+c),c=-19/60+7/25*I,n=23 2584025485918180 m001 Zeta(7)*exp(FransenRobinson)^2*cos(Pi/12)^2 2584025504522350 l006 ln(675/8944) 2584025504563654 r005 Re(z^2+c),c=-7/6+32/165*I,n=26 2584025514282609 a007 Real Root Of -230*x^4-601*x^3-271*x^2-403*x+653 2584025522710000 r005 Im(z^2+c),c=-13/110+29/51*I,n=6 2584025524750207 r002 10th iterates of z^2 + 2584025526509253 m001 Pi/(2^(1/3)/ln(2)-BesselK(1,1)) 2584025532161487 m001 (Bloch+Sarnak)/(Pi-2/3*Pi*3^(1/2)/GAMMA(2/3)) 2584025537856115 r009 Re(z^3+c),c=-17/40+16/35*I,n=8 2584025539142010 m001 LandauRamanujan2nd^ln(5)/(FellerTornier^ln(5)) 2584025565024288 r005 Re(z^2+c),c=23/70+12/55*I,n=15 2584025571629509 a001 3020733700601/329*1836311903^(10/17) 2584025571629509 a001 10525900321/141*6557470319842^(10/17) 2584025571869552 r009 Re(z^3+c),c=-19/60+7/25*I,n=20 2584025600567283 m001 1/cos(1)*LandauRamanujan*ln(sin(Pi/12))^2 2584025607105447 r005 Im(z^2+c),c=-9/8+7/221*I,n=32 2584025617320434 g007 Psi(2,5/11)+Psi(2,4/9)+Psi(2,1/5)-Psi(2,3/8) 2584025621292074 m005 (1/2*gamma-2)/(5/7*gamma+1/4) 2584025633118897 r005 Re(z^2+c),c=-51/44+5/27*I,n=20 2584025636542710 a007 Real Root Of 120*x^4-41*x^3-507*x^2+860*x-450 2584025638219204 s001 sum(1/10^(n-1)*A190959[n]/n!^2,n=1..infinity) 2584025655055907 a007 Real Root Of 277*x^4+452*x^3-731*x^2+228*x+919 2584025658327135 a005 (1/sin(36/89*Pi))^978 2584025671149457 l006 ln(671/8891) 2584025704791369 h001 (3/10*exp(1)+8/11)/(3/4*exp(2)+3/7) 2584025706358054 r009 Re(z^3+c),c=-41/118+17/49*I,n=21 2584025706780600 r005 Re(z^2+c),c=-11/60+39/59*I,n=24 2584025732552785 a001 7331474697802/305*6557470319842^(8/17) 2584025735186822 r005 Re(z^2+c),c=15/106+22/51*I,n=35 2584025743143706 r005 Im(z^2+c),c=-17/78+17/45*I,n=18 2584025756185176 a005 (1/cos(4/69*Pi))^195 2584025757808893 m001 (GAMMA(1/3)+GAMMA(11/24))^GAMMA(5/12) 2584025759929996 m001 (Catalan+arctan(1/2))/(Psi(2,1/3)+3^(1/2)) 2584025769418831 a007 Real Root Of 226*x^4+692*x^3+97*x^2-130*x+880 2584025772375011 m005 (-7/12+1/4*5^(1/2))/(5*3^(1/2)+3/4) 2584025774919719 m001 (Artin*Thue-Landau)/Thue 2584025775672844 m005 (1/2*2^(1/2)+3/10)/(4/7*3^(1/2)-3/5) 2584025788582644 a007 Real Root Of 326*x^4+412*x^3-981*x^2+20*x-824 2584025790709748 r005 Re(z^2+c),c=-15/58+9/23*I,n=42 2584025791688333 l006 ln(7607/9850) 2584025795546480 r005 Re(z^2+c),c=-31/114+7/20*I,n=42 2584025796613638 r009 Re(z^3+c),c=-11/20+20/61*I,n=21 2584025799778722 m001 (OneNinth+Weierstrass)/(arctan(1/2)-exp(1)) 2584025805613425 m001 (2^(1/2)-Zeta(1,2))/(-Landau+ZetaP(2)) 2584025809239685 r005 Im(z^2+c),c=-57/122+29/64*I,n=60 2584025812218740 m001 (Zeta(1,2)+MertensB1)/(2^(1/2)+Zeta(3)) 2584025815950257 r005 Im(z^2+c),c=7/110+13/50*I,n=7 2584025820516578 a005 (1/cos(9/118*Pi))^986 2584025821974777 r005 Re(z^2+c),c=-47/82+9/16*I,n=42 2584025823717882 m001 (-Porter+Trott2nd)/(Lehmer-Psi(2,1/3)) 2584025826759110 a007 Real Root Of -172*x^4-100*x^3+763*x^2-357*x-74 2584025831463902 r005 Im(z^2+c),c=-3/10+13/32*I,n=26 2584025839603621 a008 Real Root of x^4-2*x^3-18*x^2-19*x-8 2584025839775061 l006 ln(667/8838) 2584025851407427 m001 MadelungNaCl^Cahen*MadelungNaCl^Shi(1) 2584025851914564 r009 Re(z^3+c),c=-6/23+3/4*I,n=8 2584025866921204 m001 (1-gamma(1))/(-polylog(4,1/2)+FeigenbaumDelta) 2584025871728116 m001 GAMMA(17/24)^2/exp(Artin)/GAMMA(5/24) 2584025883118215 m001 gamma(2)*Paris+Sierpinski 2584025901945229 r005 Re(z^2+c),c=23/82+27/58*I,n=59 2584025915241618 r005 Im(z^2+c),c=35/114+16/41*I,n=5 2584025939095457 h001 (-4*exp(7)-1)/(-3*exp(4)-6) 2584025949201710 a001 9/10182505537*39088169^(10/17) 2584025949201710 a001 18/2504730781961*139583862445^(10/17) 2584025951738982 a001 18/165580141*10946^(10/17) 2584025958945540 r005 Re(z^2+c),c=-29/122+26/47*I,n=23 2584025967036157 r005 Im(z^2+c),c=3/50+11/42*I,n=11 2584025974640966 m001 ln(Paris)^2*FeigenbaumDelta^2/GAMMA(5/12)^2 2584025982022253 r009 Re(z^3+c),c=-15/38+31/53*I,n=47 2584025988008425 h001 (1/12*exp(1)+4/7)/(1/3*exp(2)+5/8) 2584025990312358 m001 (ErdosBorwein+Khinchin)/(Shi(1)-exp(1)) 2584025992907113 r001 63i'th iterates of 2*x^2-1 of 2584025993134777 m001 exp(MertensB1)^2/Bloch/Salem^2 2584025997968925 h005 exp(cos(Pi*1/8)/cos(Pi*21/47)) 2584026008947082 m001 FeigenbaumDelta^(GlaisherKinkelin/Zeta(1/2)) 2584026010435335 l006 ln(663/8785) 2584026012543672 r005 Im(z^2+c),c=-9/31+23/57*I,n=16 2584026020961329 q001 715/2767 2584026021528456 h001 (10/11*exp(2)+4/5)/(4/11*exp(2)+2/9) 2584026024645748 l006 ln(4358/5643) 2584026025240521 m005 (1/2*Catalan-7/10)/(2/5*Catalan-3/11) 2584026037157074 r005 Im(z^2+c),c=-9/20+24/53*I,n=51 2584026041944710 r009 Re(z^3+c),c=-37/94+19/43*I,n=45 2584026042747365 r002 10th iterates of z^2 + 2584026067654970 q001 1/386993 2584026072477437 a001 843/377*6557470319842^(16/17) 2584026080371070 m006 (2/3*exp(Pi)-3)/(1/6*ln(Pi)-5) 2584026085012831 m006 (2/3*exp(2*Pi)-5/6)/(1/5*Pi+3/4) 2584026118661668 r005 Re(z^2+c),c=-31/114+7/20*I,n=45 2584026130111239 r005 Re(z^2+c),c=-11/74+18/29*I,n=56 2584026131458080 r005 Re(z^2+c),c=-31/114+7/20*I,n=40 2584026133543744 r005 Re(z^2+c),c=-31/114+7/20*I,n=47 2584026136956851 r009 Re(z^3+c),c=-31/82+16/39*I,n=33 2584026160799217 r005 Re(z^2+c),c=-31/114+7/20*I,n=44 2584026168068957 a007 Real Root Of 33*x^4-107*x^3-573*x^2+172*x+953 2584026171528205 r005 Re(z^2+c),c=-31/114+7/20*I,n=50 2584026172768623 m001 (Backhouse-FeigenbaumC)/(PlouffeB-Tetranacci) 2584026176179904 r005 Re(z^2+c),c=-19/62+11/53*I,n=29 2584026183167327 l006 ln(659/8732) 2584026184257343 r005 Re(z^2+c),c=-31/114+7/20*I,n=52 2584026185904407 a007 Real Root Of 164*x^4+157*x^3-587*x^2-83*x-898 2584026186214362 a007 Real Root Of 314*x^4+946*x^3+519*x^2+789*x+896 2584026186646700 r005 Re(z^2+c),c=-31/114+7/20*I,n=55 2584026189142902 r005 Re(z^2+c),c=-31/114+7/20*I,n=53 2584026189342799 r005 Re(z^2+c),c=-31/114+7/20*I,n=58 2584026189528906 r005 Re(z^2+c),c=-31/114+7/20*I,n=60 2584026189828886 r005 Re(z^2+c),c=-31/114+7/20*I,n=57 2584026189834142 r005 Re(z^2+c),c=-31/114+7/20*I,n=63 2584026190094723 r005 Re(z^2+c),c=-31/114+7/20*I,n=62 2584026190113063 r005 Re(z^2+c),c=-31/114+7/20*I,n=64 2584026190114683 r005 Re(z^2+c),c=-31/114+7/20*I,n=61 2584026190748539 r005 Re(z^2+c),c=-31/114+7/20*I,n=59 2584026191710533 r005 Re(z^2+c),c=-31/114+7/20*I,n=56 2584026193629866 r005 Re(z^2+c),c=-31/114+7/20*I,n=54 2584026200325585 r005 Re(z^2+c),c=-31/114+7/20*I,n=49 2584026204122778 r005 Re(z^2+c),c=-31/114+7/20*I,n=51 2584026204728076 m001 (Bloch+FeigenbaumD)/(Zeta(1,-1)-GAMMA(11/12)) 2584026206219142 r005 Re(z^2+c),c=-31/114+7/20*I,n=48 2584026208190264 m001 1/ln(OneNinth)^2/Lehmer/GAMMA(1/4)^2 2584026210307786 r005 Re(z^2+c),c=-19/62+11/53*I,n=31 2584026211769573 m001 Riemann3rdZero^(ZetaP(3)/Lehmer) 2584026212498843 a001 28657/521*322^(2/3) 2584026229357435 m001 (-polylog(4,1/2)+Robbin)/(Psi(2,1/3)-ln(2)) 2584026231613474 r002 3th iterates of z^2 + 2584026242538133 m001 1/exp(Riemann1stZero)^2*Bloch*Zeta(5) 2584026247103119 m001 (sin(1/12*Pi)+gamma(3))/Psi(1,1/3) 2584026251806804 m001 Pi-1/(2^(1/3)-GAMMA(3/4)) 2584026262963926 p001 sum(1/(371*n+312)/n/(6^n),n=1..infinity) 2584026263133105 a007 Real Root Of -297*x^4-91*x^3+407*x^2+502*x-154 2584026268495719 m001 (-Trott+TwinPrimes)/(2^(1/2)+ln(3)) 2584026270603382 m001 (2/3*Catalan-Artin)/Catalan 2584026270831782 m005 (1/2*5^(1/2)-5/9)/(15/11+4/11*5^(1/2)) 2584026274802133 m001 exp(1)/Magata*exp(sinh(1)) 2584026277303300 a007 Real Root Of -778*x^4-299*x^3-453*x^2+967*x-211 2584026277741470 r005 Re(z^2+c),c=-31/114+7/20*I,n=46 2584026280277445 r005 Re(z^2+c),c=-25/31+1/47*I,n=60 2584026283950849 r005 Re(z^2+c),c=-19/62+11/53*I,n=33 2584026287731736 r005 Im(z^2+c),c=-6/7+19/103*I,n=5 2584026300939023 r005 Re(z^2+c),c=-19/62+11/53*I,n=36 2584026301916322 r005 Re(z^2+c),c=-19/62+11/53*I,n=28 2584026303174175 r005 Re(z^2+c),c=-19/62+11/53*I,n=38 2584026303423205 p001 sum((-1)^n/(397*n+338)/(3^n),n=0..infinity) 2584026305057362 r005 Re(z^2+c),c=-19/62+11/53*I,n=40 2584026305258003 r005 Re(z^2+c),c=-19/62+11/53*I,n=43 2584026305340174 r005 Re(z^2+c),c=-19/62+11/53*I,n=45 2584026305369935 r005 Re(z^2+c),c=-19/62+11/53*I,n=41 2584026305384609 r005 Re(z^2+c),c=-19/62+11/53*I,n=50 2584026305384850 r005 Re(z^2+c),c=-19/62+11/53*I,n=47 2584026305384869 r005 Re(z^2+c),c=-19/62+11/53*I,n=48 2584026305387093 r005 Re(z^2+c),c=-19/62+11/53*I,n=52 2584026305387909 r005 Re(z^2+c),c=-19/62+11/53*I,n=55 2584026305387958 r005 Re(z^2+c),c=-19/62+11/53*I,n=57 2584026305388025 r005 Re(z^2+c),c=-19/62+11/53*I,n=59 2584026305388038 r005 Re(z^2+c),c=-19/62+11/53*I,n=62 2584026305388040 r005 Re(z^2+c),c=-19/62+11/53*I,n=64 2584026305388044 r005 Re(z^2+c),c=-19/62+11/53*I,n=60 2584026305388045 r005 Re(z^2+c),c=-19/62+11/53*I,n=63 2584026305388045 r005 Re(z^2+c),c=-19/62+11/53*I,n=61 2584026305388079 r005 Re(z^2+c),c=-19/62+11/53*I,n=54 2584026305388086 r005 Re(z^2+c),c=-19/62+11/53*I,n=58 2584026305388167 r005 Re(z^2+c),c=-19/62+11/53*I,n=56 2584026305388320 r005 Re(z^2+c),c=-19/62+11/53*I,n=53 2584026305390095 r005 Re(z^2+c),c=-19/62+11/53*I,n=51 2584026305392413 r005 Re(z^2+c),c=-19/62+11/53*I,n=49 2584026305406968 r005 Re(z^2+c),c=-19/62+11/53*I,n=46 2584026305477378 r005 Re(z^2+c),c=-19/62+11/53*I,n=44 2584026305519843 r005 Re(z^2+c),c=-19/62+11/53*I,n=42 2584026305820005 m001 (Cahen-Mills)/(Zeta(5)+GAMMA(7/12)) 2584026306440447 r005 Re(z^2+c),c=-19/62+11/53*I,n=39 2584026308267389 r005 Re(z^2+c),c=-19/62+11/53*I,n=35 2584026309001917 r005 Re(z^2+c),c=-19/62+11/53*I,n=37 2584026309378386 r009 Re(z^3+c),c=-15/94+46/61*I,n=5 2584026309695015 r005 Re(z^2+c),c=-19/62+11/53*I,n=34 2584026317115842 b008 EllipticPi[Sqrt[2],-1]/11 2584026317222354 a007 Real Root Of -322*x^4-752*x^3+9*x^2-413*x+254 2584026320147324 a007 Real Root Of -239*x^4-644*x^3+158*x^2+325*x-671 2584026325882800 a001 3/377*121393^(11/37) 2584026329395301 b008 21*Haversine[7] 2584026348791899 l006 ln(5467/7079) 2584026357200455 m005 (1/3*2^(1/2)-2/5)/(1/12*Catalan+1/5) 2584026357586314 r005 Re(z^2+c),c=-19/62+11/53*I,n=32 2584026358008992 l006 ln(655/8679) 2584026371340830 m009 (4*Psi(1,1/3)+3/4)/(6*Psi(1,3/4)+2/3) 2584026378439830 m001 ln(ArtinRank2)^2/Artin^2/Ei(1)^2 2584026382484625 r009 Im(z^3+c),c=-7/15+2/25*I,n=20 2584026388647766 a004 Fibonacci(15)*Lucas(12)/(1/2+sqrt(5)/2)^9 2584026399731714 a001 98209/161*123^(3/10) 2584026401445025 r005 Re(z^2+c),c=-31/114+7/20*I,n=43 2584026411047897 h001 (1/10*exp(1)+2/11)/(1/7*exp(2)+7/10) 2584026412753655 r005 Re(z^2+c),c=-13/40+1/51*I,n=15 2584026413922545 a007 Real Root Of -287*x^4-881*x^3-164*x^2+796*x+747 2584026420373742 r005 Re(z^2+c),c=1/7+27/56*I,n=9 2584026420777294 h005 exp(cos(Pi*2/49)-cos(Pi*18/37)) 2584026424186106 m001 Psi(1,1/3)/(UniversalParabolic^GAMMA(13/24)) 2584026427268508 m001 (Ei(1)+Paris)/(Chi(1)-ln(5)) 2584026432463429 m009 (5/6*Psi(1,3/4)-4/5)/(1/2*Pi^2+1/6) 2584026440126206 r005 Re(z^2+c),c=-19/62+11/53*I,n=30 2584026449931959 r005 Im(z^2+c),c=-91/82+5/21*I,n=25 2584026468501828 a007 Real Root Of 9*x^4-91*x^3-483*x^2-532*x-121 2584026471449296 m001 (Zeta(5)+ln(gamma))/(ReciprocalLucas-ZetaP(4)) 2584026472907536 m001 (-FeigenbaumB+Sierpinski)/(1-arctan(1/3)) 2584026474354394 r005 Im(z^2+c),c=-13/14+31/141*I,n=36 2584026482662234 r009 Im(z^3+c),c=-73/122+9/35*I,n=57 2584026490438487 r005 Re(z^2+c),c=-17/66+15/38*I,n=24 2584026491283478 a007 Real Root Of 296*x^4+508*x^3-879*x^2-252*x+786 2584026494076582 m005 (5/6*Pi-2)/(Pi-3/4) 2584026494076582 m006 (5/6*Pi-2)/(Pi-3/4) 2584026494076582 m008 (5/6*Pi-2)/(Pi-3/4) 2584026505636465 m001 (FellerTornier-GaussAGM)/(Tetranacci+ZetaQ(2)) 2584026507069417 r005 Im(z^2+c),c=-23/62+3/7*I,n=46 2584026507150256 r005 Re(z^2+c),c=-15/58+9/23*I,n=29 2584026515978132 h001 (1/2*exp(2)+2/9)/(1/12*exp(2)+9/10) 2584026525837151 m005 (1/3*Zeta(3)+2/11)/(-11/80+1/16*5^(1/2)) 2584026530974701 m005 (-17/28+1/4*5^(1/2))/(7/8*2^(1/2)+5/8) 2584026534999219 l006 ln(651/8626) 2584026535426648 r005 Im(z^2+c),c=-5/4+28/163*I,n=16 2584026557215720 m001 (-exp(-Pi)+1/3)/(-Backhouse+1/3) 2584026563607728 l006 ln(6576/8515) 2584026571087209 a005 (1/cos(33/226*Pi))^494 2584026575209198 m001 Riemann3rdZero+ZetaP(2)^CopelandErdos 2584026580810394 m006 (3/4*ln(Pi)-5)/(2/3*exp(Pi)+3/5) 2584026583526091 s001 sum(exp(-3*Pi)^n*A231801[n],n=1..infinity) 2584026594830078 s002 sum(A029372[n]/((pi^n+1)/n),n=1..infinity) 2584026596962258 a001 28143753123/377*1836311903^(12/17) 2584026596962258 a001 87403803/377*6557470319842^(12/17) 2584026596963637 a001 9062201101803/377*514229^(12/17) 2584026597200566 a001 11592/341*18^(40/57) 2584026598804560 r005 Re(z^2+c),c=-31/114+7/20*I,n=41 2584026599588296 a001 1/1364*(1/2*5^(1/2)+1/2)^7*3^(3/17) 2584026602954909 m001 (OrthogonalArrays+Totient)/(Cahen-Niven) 2584026608282046 r009 Re(z^3+c),c=-1/22+17/27*I,n=45 2584026608447922 m001 (3^(1/2)-FeigenbaumDelta)/(Robbin+Weierstrass) 2584026616796076 r005 Re(z^2+c),c=7/90+18/53*I,n=32 2584026621636549 m001 (cos(1)+FeigenbaumMu)/BesselI(1,2) 2584026622296173 q001 1553/601 2584026634691283 m001 (BesselJ(1,1)-FransenRobinson)/(ln(2)-ln(5)) 2584026648594672 m002 1+Pi/3+ProductLog[Pi]/2 2584026649380937 m001 Sierpinski^2/MinimumGamma*exp(sqrt(3)) 2584026650487849 a007 Real Root Of 117*x^4-239*x^3-986*x^2+874*x-498 2584026652735368 m008 (1/2*Pi^6+2)/(5/6*Pi-3/4) 2584026654334968 r005 Im(z^2+c),c=-4/15+15/38*I,n=33 2584026656065172 m001 exp(Pi)^Robbin*exp(Pi)^Tribonacci 2584026660733753 m001 1/Niven^2/Bloch/exp(Zeta(5)) 2584026663850147 m001 (Rabbit+ZetaP(2))/(Pi+FeigenbaumKappa) 2584026669526995 r009 Im(z^3+c),c=-49/110+7/57*I,n=38 2584026678522067 a001 832040/521*123^(1/10) 2584026687759901 m001 FeigenbaumC^2*exp(Backhouse)/GAMMA(1/6) 2584026692249368 r005 Re(z^2+c),c=-13/60+7/13*I,n=26 2584026693705468 r005 Re(z^2+c),c=-19/62+11/53*I,n=27 2584026699275764 a003 cos(Pi*4/55)*sin(Pi*10/117) 2584026704788412 m001 Pi-ln(2)/ln(10)*(LambertW(1)+GAMMA(17/24)) 2584026706836890 h001 (-5*exp(3/2)-9)/(-3*exp(1)-4) 2584026710856438 r005 Re(z^2+c),c=11/52+3/44*I,n=19 2584026712254285 r002 56th iterates of z^2 + 2584026714177855 l006 ln(647/8573) 2584026714177855 p004 log(8573/647) 2584026716424658 l006 ln(7685/9951) 2584026731549094 m001 (BesselI(1,2)+Kolakoski)/(3^(1/2)-cos(1/5*Pi)) 2584026735425924 m005 (1/2*Pi+3/4)/(2/9*Pi+1/5) 2584026744782152 p001 sum(1/(423*n+395)/(24^n),n=0..infinity) 2584026749025019 a007 Real Root Of -485*x^4-784*x^3+860*x^2-543*x+951 2584026749134128 m001 BesselJ(1,1)/Conway/Mills 2584026749537761 m005 (1/2*2^(1/2)+3/8)/(1/6*Catalan-4/7) 2584026757961195 a007 Real Root Of -192*x^4-184*x^3+838*x^2+17*x-166 2584026769275741 a007 Real Root Of -463*x^4-558*x^3-95*x^2+651*x+167 2584026773336248 a001 13/15127*4^(27/34) 2584026776649216 a007 Real Root Of 546*x^4+88*x^3-463*x^2-778*x+228 2584026799931629 a007 Real Root Of -328*x^4-933*x^3-72*x^2+237*x-381 2584026811527760 h005 exp(cos(Pi*5/48)/sin(Pi*21/44)) 2584026814055194 b008 EulerGamma/7+SinhIntegral[2] 2584026831766068 r005 Im(z^2+c),c=-13/10+7/141*I,n=7 2584026834335384 h003 exp(Pi*(19/23-12^(1/4))) 2584026844032145 r005 Im(z^2+c),c=-13/34+19/43*I,n=25 2584026844266836 h001 (7/8*exp(2)+5/7)/(7/8*exp(1)+2/5) 2584026875136577 r005 Re(z^2+c),c=-73/126+21/53*I,n=12 2584026881759702 m005 (3*exp(1)+2/3)/(4*Catalan-1/4) 2584026885893726 m001 (-ArtinRank2+OneNinth)/(Shi(1)+GAMMA(3/4)) 2584026888908344 a007 Real Root Of 387*x^4-427*x^3+5*x^2-455*x-127 2584026891651313 r005 Im(z^2+c),c=-73/98+6/37*I,n=38 2584026895585742 l006 ln(643/8520) 2584026898391932 h005 exp(cos(Pi*3/56)-cos(Pi*21/43)) 2584026898870014 a007 Real Root Of 365*x^4+435*x^3+807*x^2-743*x-240 2584026920298912 s002 sum(A178745[n]/(n*exp(n)+1),n=1..infinity) 2584026922011967 m001 (BesselK(1,1)-StronglyCareFree)^Magata 2584026933940821 m001 PisotVijayaraghavan*Riemann2ndZero^Ei(1,1) 2584026938654947 m001 (exp(1/Pi)-BesselJ(1,1))/(ln(3)+Zeta(1/2)) 2584026957637507 a007 Real Root Of -226*x^4-579*x^3+213*x^2+567*x+129 2584026965739209 m001 Khinchin*sin(Pi/12)^sqrt(3) 2584026965739209 m001 sin(1/12*Pi)^(3^(1/2))*Khinchin 2584026972134725 r009 Im(z^3+c),c=-15/32+5/56*I,n=51 2584026980485035 a001 9349/55*317811^(23/58) 2584026986692235 a007 Real Root Of -571*x^4+861*x^3-116*x^2+42*x+36 2584026997569686 m001 (3^(1/3)-GaussAGM)/(MasserGramain+Niven) 2584026997824944 a007 Real Root Of 393*x^4+661*x^3-880*x^2+149*x+144 2584027031372767 a007 Real Root Of -435*x^4-681*x^3+804*x^2-803*x+201 2584027034711382 l006 ln(5310/5449) 2584027035990274 m009 (Psi(1,1/3)+1/4)/(1/8*Pi^2-5/6) 2584027038527886 r009 Re(z^3+c),c=-5/114+20/33*I,n=19 2584027040920147 m001 (Lehmer+MertensB1)/(BesselI(0,2)+GAMMA(23/24)) 2584027043773049 m001 (FeigenbaumMu+Otter)/(Catalan+ln(5)) 2584027045815145 r009 Re(z^3+c),c=-19/50+17/41*I,n=23 2584027051944865 m001 Zeta(1,2)/exp(Riemann3rdZero)^2*Zeta(1/2) 2584027055349446 m005 (1/3*Catalan-5)/(1/5*Catalan-2) 2584027059328160 m001 2*Pi/GAMMA(5/6)*Landau-TreeGrowth2nd 2584027062960065 m001 (FeigenbaumC+LaplaceLimit)/(arctan(1/3)+Cahen) 2584027065690995 r005 Im(z^2+c),c=-67/54+21/61*I,n=10 2584027071315694 m009 (1/2*Psi(1,1/3)-4)/(4*Psi(1,1/3)+1/6) 2584027078579235 r009 Im(z^3+c),c=-15/29+3/19*I,n=36 2584027079264742 l006 ln(639/8467) 2584027084302810 r009 Im(z^3+c),c=-13/23+22/61*I,n=28 2584027086328559 a007 Real Root Of -178*x^4+867*x^3-392*x^2+388*x-1 2584027087224589 r005 Re(z^2+c),c=-5/24+27/52*I,n=46 2584027100530014 a007 Real Root Of -502*x^4-977*x^3+405*x^2-841*x+647 2584027116237346 a007 Real Root Of -613*x^4-118*x^3-636*x^2+278*x+115 2584027128023174 m001 (BesselI(0,1)-cos(1/5*Pi))^FeigenbaumDelta 2584027128023174 m001 (BesselI(0,1)-cos(Pi/5))^FeigenbaumDelta 2584027135368485 q001 838/3243 2584027139158121 r005 Re(z^2+c),c=-57/118+21/41*I,n=45 2584027144014225 a007 Real Root Of 934*x^4-501*x^3+188*x^2-693*x+171 2584027156345378 m001 (exp(1)+sin(1))/(-Zeta(1,2)+BesselJ(1,1)) 2584027162703841 m001 HeathBrownMoroz^GAMMA(19/24)-sin(1/12*Pi) 2584027165085880 m001 1/FeigenbaumC*ln(Niven)^2/BesselK(1,1) 2584027169272740 r005 Re(z^2+c),c=-27/94+13/44*I,n=28 2584027175305209 a007 Real Root Of 225*x^4+449*x^3-533*x^2-701*x-537 2584027178346723 m001 exp(Catalan)*Salem*Zeta(1,2)^2 2584027182060685 r002 13th iterates of z^2 + 2584027185553145 r001 5i'th iterates of 2*x^2-1 of 2584027206352852 r009 Re(z^3+c),c=-29/56+27/53*I,n=5 2584027209924464 v002 sum(1/(2^n*(21*n^2-40*n+45)),n=1..infinity) 2584027210979068 m001 (exp(1)+Kolakoski)/(-OneNinth+Porter) 2584027212238044 m001 (FeigenbaumB+Otter)/(Zeta(5)-FeigenbaumAlpha) 2584027213915754 r002 9th iterates of z^2 + 2584027214768029 r005 Re(z^2+c),c=5/62+21/61*I,n=27 2584027215731218 r005 Im(z^2+c),c=-19/16+11/53*I,n=15 2584027216630868 a007 Real Root Of -445*x^4-846*x^3+697*x^2+73*x+778 2584027220419455 m005 (1/2*Zeta(3)+1/12)/(8/11*Pi+4/11) 2584027226578611 a003 sin(Pi*6/97)/cos(Pi*10/21) 2584027227364010 m001 (gamma(1)-gamma(2))/(Magata+Riemann2ndZero) 2584027232672198 m001 GaussAGM^MertensB2+Riemann3rdZero 2584027234763970 r005 Re(z^2+c),c=-31/114+7/20*I,n=36 2584027235281956 r005 Re(z^2+c),c=25/64+20/61*I,n=54 2584027245250292 r005 Re(z^2+c),c=-5/66+9/11*I,n=18 2584027249358461 m001 Sierpinski/(MertensB2^Trott) 2584027250021096 a007 Real Root Of -302*x^4-429*x^3+803*x^2-183*x+228 2584027262329093 a001 987/9349*7^(23/50) 2584027265257774 l006 ln(635/8414) 2584027267881446 m001 exp(1/Pi)*(OrthogonalArrays+PlouffeB) 2584027268169373 h001 (1/2*exp(1)+4/7)/(1/11*exp(1)+1/2) 2584027268169373 m005 (1/2*exp(1)+4/7)/(10/11*exp(1)+5) 2584027273014413 r005 Im(z^2+c),c=-33/31+7/27*I,n=3 2584027276302937 r005 Im(z^2+c),c=-33/98+5/12*I,n=22 2584027280127362 m005 (1/3*5^(1/2)-3/4)/(1/3*Pi+3/4) 2584027280648550 a007 Real Root Of -425*x^4-904*x^3+616*x^2+550*x+659 2584027283337055 r005 Re(z^2+c),c=-27/94+13/44*I,n=16 2584027287098245 r005 Re(z^2+c),c=3/14+4/55*I,n=21 2584027292084309 a007 Real Root Of -348*x^4-956*x^3-564*x^2-900*x+461 2584027294480196 r005 Re(z^2+c),c=-19/86+26/53*I,n=37 2584027294563839 a007 Real Root Of 284*x^4+347*x^3-887*x^2+307*x+41 2584027300738288 s002 sum(A182599[n]/((2^n+1)/n),n=1..infinity) 2584027311134689 r005 Re(z^2+c),c=-23/74+9/25*I,n=5 2584027311821374 m005 (1/2*5^(1/2)+2/11)/(6/7*Zeta(3)+4) 2584027327777255 p004 log(25189/1901) 2584027328221918 r009 Re(z^3+c),c=-25/64+27/62*I,n=30 2584027329253429 m005 (5/6*gamma+3/4)/(-7/10+1/10*5^(1/2)) 2584027333585284 r009 Re(z^3+c),c=-19/60+7/25*I,n=19 2584027335883998 m005 (1/2*Zeta(3)+7/12)/(1/7*5^(1/2)-7/9) 2584027342381706 m001 (BesselI(0,1)-Zeta(3))/(-ln(gamma)+Tetranacci) 2584027352741071 r005 Im(z^2+c),c=-47/118+22/41*I,n=36 2584027363045883 a005 (1/cos(11/183*Pi))^1465 2584027375081145 h001 (-10*exp(3)-3)/(-10*exp(2)-5) 2584027377401440 m001 MertensB2^Otter*MertensB3^Otter 2584027385045144 m005 (21/20+1/4*5^(1/2))/(1/4+1/6*5^(1/2)) 2584027409822547 r009 Re(z^3+c),c=-25/48+13/45*I,n=4 2584027444541349 a007 Real Root Of 246*x^4+886*x^3+504*x^2-320*x+127 2584027445903960 m001 arctan(1/2)/GAMMA(7/12)/GAMMA(19/24) 2584027453608844 l006 ln(631/8361) 2584027454634735 m002 -Pi^3+Pi^5-Cosh[Pi]-5*Coth[Pi] 2584027457652566 m008 (3*Pi^4-2/3)/(2*Pi+5) 2584027464406194 m001 (LambertW(1)*Backhouse-Zeta(3))/Backhouse 2584027474161569 m005 (2/5*2^(1/2)+2/3)/(2/5*gamma-5) 2584027498660457 m001 (GAMMA(2/3)+Ei(1,1))/(MertensB3-Sarnak) 2584027504407324 a007 Real Root Of 86*x^4-145*x^3-912*x^2-59*x-399 2584027518282725 r002 47th iterates of z^2 + 2584027518749790 m001 ln(GAMMA(3/4))*(3^(1/3))*log(1+sqrt(2)) 2584027519580188 a007 Real Root Of -267*x^4-496*x^3+153*x^2-929*x-76 2584027531338696 a007 Real Root Of -249*x^4-415*x^3+385*x^2-482*x+125 2584027551234833 m002 E^Pi*Pi^4*Log[Pi]+Sinh[Pi]/Pi 2584027557919189 r002 5th iterates of z^2 + 2584027562629011 a007 Real Root Of -292*x^4+324*x^3-723*x^2+456*x+173 2584027565073849 m002 -(Log[Pi]/Pi^6)+E^Pi*ProductLog[Pi]+Tanh[Pi] 2584027572755566 h001 (3/8*exp(2)+5/9)/(2/5*exp(1)+1/5) 2584027578282102 r005 Re(z^2+c),c=-1/118+1/2*I,n=2 2584027579253259 p001 sum((-1)^n/(601*n+378)/(16^n),n=0..infinity) 2584027581191859 r002 3th iterates of z^2 + 2584027581452021 r005 Re(z^2+c),c=-41/52+3/49*I,n=44 2584027593688125 a007 Real Root Of 87*x^4-63*x^3-448*x^2+381*x-990 2584027594929712 m001 (Zeta(5)+ArtinRank2)/(HardyLittlewoodC3-Mills) 2584027600792425 m001 (MertensB2+MinimumGamma)/(Cahen+FellerTornier) 2584027613937589 b008 Haversine[1/4+Sqrt[2/3]] 2584027622578024 l006 ln(1109/1436) 2584027629992432 a007 Real Root Of -34*x^4-909*x^3-777*x^2+217*x-626 2584027631796449 m005 (1/2*Pi+7/9)/(4/7*Zeta(3)-7/9) 2584027633153624 r005 Im(z^2+c),c=-15/118+22/63*I,n=5 2584027644363082 l006 ln(627/8308) 2584027651156034 m005 (1/2*gamma-4)/(3/10*3^(1/2)+11/12) 2584027651950961 a001 23725150497407/987*6557470319842^(8/17) 2584027654917851 m001 (BesselJ(0,1)*Niven-GAMMA(17/24))/BesselJ(0,1) 2584027667395241 m001 CareFree*ln(Conway)*Salem^2 2584027668649776 m001 ReciprocalFibonacci^OneNinth+exp(1/exp(1)) 2584027671171182 b008 -7+Pi*ArcTan[6] 2584027671619620 r005 Im(z^2+c),c=-19/74+23/59*I,n=17 2584027675508403 m002 -5/E^Pi+Pi^2-Pi^3*Log[Pi] 2584027678237258 m005 (1/2*exp(1)+2/11)/(2/3*gamma-4/9) 2584027690186924 a001 646/6119*7^(23/50) 2584027710701554 m001 (LandauRamanujan2nd+ZetaQ(2))/(1-Zeta(1/2)) 2584027711122738 a001 11/13*10946^(44/51) 2584027711525930 m001 (Catalan+Bloch)/(Psi(2,1/3)+2^(1/2)) 2584027713680191 r005 Im(z^2+c),c=-23/58+13/24*I,n=41 2584027715977363 r009 Im(z^3+c),c=-5/9+14/53*I,n=41 2584027719526300 m001 (3^(1/3)+Stephens)/(BesselK(0,1)-Zeta(3)) 2584027731895217 r009 Im(z^3+c),c=-31/56+13/50*I,n=56 2584027733247958 r005 Re(z^2+c),c=3/14+4/55*I,n=23 2584027736431761 r002 54th iterates of z^2 + 2584027743909588 r009 Re(z^3+c),c=-41/102+29/63*I,n=31 2584027752610540 a001 6765/64079*7^(23/50) 2584027761718023 a001 17711/167761*7^(23/50) 2584027763046787 a001 11592/109801*7^(23/50) 2584027763240651 a001 121393/1149851*7^(23/50) 2584027763268935 a001 317811/3010349*7^(23/50) 2584027763275612 a001 514229/4870847*7^(23/50) 2584027763286416 a001 98209/930249*7^(23/50) 2584027763360465 a001 75025/710647*7^(23/50) 2584027763868008 a001 28657/271443*7^(23/50) 2584027765351671 m003 -1/4+(33*Sqrt[5])/64+E^(1/2+Sqrt[5]/2)/3 2584027766328918 m001 (CareFree-TreeGrowth2nd)/(Ei(1,1)-arctan(1/3)) 2584027767346757 a001 5473/51841*7^(23/50) 2584027770897446 m001 1/GAMMA(2/3)^2*ln(BesselJ(1,1))*gamma 2584027777777777 r002 2th iterates of z^2 + 2584027777777777 r004 Re(z^2+c),c=-5/24-2/5*I,z(0)=-1,n=2 2584027779467754 a007 Real Root Of 212*x^4+595*x^3-27*x^2-749*x-941 2584027781487202 r005 Re(z^2+c),c=5/44+11/39*I,n=17 2584027786517112 r005 Im(z^2+c),c=-93/82+7/23*I,n=3 2584027790832419 m001 (Zeta(3)-Cahen)/(FellerTornier+Tribonacci) 2584027791190456 a001 4181/39603*7^(23/50) 2584027793502412 m002 3-Log[Pi]+(2*Log[Pi])/Pi 2584027804825689 m005 (1/2*Catalan-8/11)/(9/11*3^(1/2)-3/8) 2584027815314584 p001 sum((-1)^n/(363*n+23)/n/(100^n),n=1..infinity) 2584027818467625 m001 exp(Porter)*GolombDickman^2*GAMMA(7/12) 2584027822608616 r002 8th iterates of z^2 + 2584027824524402 m001 1/GAMMA(5/12)/ln(FeigenbaumB)^2/cos(1) 2584027837566775 l006 ln(623/8255) 2584027837736945 m005 (1/2*Zeta(3)+6/11)/(1/9*Catalan-6/11) 2584027839297348 s002 sum(A052291[n]/(10^n-1),n=1..infinity) 2584027850862103 a005 (1/cos(1/26*Pi))^1703 2584027860134772 a007 Real Root Of 263*x^4+765*x^3+270*x^2+242*x+296 2584027863895244 r009 Re(z^3+c),c=-7/26+7/44*I,n=9 2584027864006943 a007 Real Root Of -23*x^4+181*x^3+722*x^2+595*x+865 2584027873253239 r005 Re(z^2+c),c=1/56+38/59*I,n=10 2584027873524817 p001 sum((-1)^n/(453*n+149)/n/(64^n),n=1..infinity) 2584027874049220 r005 Re(z^2+c),c=-31/114+7/20*I,n=38 2584027876952358 g007 -14*Zeta(3)-Psi(2,11/12)-Psi(2,2/5)-Psi(2,2/3) 2584027885491567 m001 (Shi(1)+(1+3^(1/2))^(1/2))/(-Pi^(1/2)+Sarnak) 2584027887196871 r005 Im(z^2+c),c=-15/14+61/235*I,n=52 2584027889572446 r005 Im(z^2+c),c=-23/74+25/61*I,n=26 2584027890256679 m001 (-Kolakoski+Trott2nd)/(GAMMA(2/3)-Shi(1)) 2584027893379570 r002 23th iterates of z^2 + 2584027917581203 r005 Im(z^2+c),c=-15/26+6/127*I,n=36 2584027934807930 r005 Re(z^2+c),c=19/58+13/31*I,n=29 2584027941012152 s002 sum(A055329[n]/(n*pi^n-1),n=1..infinity) 2584027946196341 a007 Real Root Of -456*x^4+998*x^3-998*x^2+608*x+243 2584027954617602 a001 1597/15127*7^(23/50) 2584027955676554 r009 Im(z^3+c),c=-16/31+11/27*I,n=17 2584027956180117 m001 (RenyiParking-TreeGrowth2nd)/(Ei(1)-CareFree) 2584027964506587 q001 961/3719 2584027967753444 p004 log(24659/1861) 2584027977114870 a007 Real Root Of -19*x^4-480*x^3+287*x^2+67*x-708 2584027992450036 m001 1/FeigenbaumB/FibonacciFactorial/ln(cos(1))^2 2584027999852273 m005 (1/2*Zeta(3)+5/7)/(-1/2+5/2*5^(1/2)) 2584028001658853 m001 1/GAMMA(11/12)/CopelandErdos^2*exp(exp(1)) 2584028016852097 r009 Re(z^3+c),c=-14/31+23/62*I,n=6 2584028016978154 m001 (polylog(4,1/2)+Rabbit)/Weierstrass 2584028021419672 h001 (3/4*exp(2)+4/9)/(5/7*exp(1)+3/8) 2584028026219364 p003 LerchPhi(1/10,6,173/138) 2584028027925248 m001 PrimesInBinary+Sierpinski^Magata 2584028029523465 a001 18/165580141*14930352^(8/17) 2584028029523466 a001 18/7778742049*53316291173^(8/17) 2584028030412129 r005 Re(z^2+c),c=-25/122+12/23*I,n=36 2584028033267408 l006 ln(619/8202) 2584028043436014 a001 9/1762289*4181^(8/17) 2584028048421120 a007 Real Root Of 605*x^4+910*x^3+549*x^2-247*x+6 2584028048653384 a007 Real Root Of 56*x^4-124*x^3-370*x^2+770*x-176 2584028050777314 r005 Im(z^2+c),c=-47/114+15/34*I,n=49 2584028051352825 a001 18/75025*17711^(56/59) 2584028058539179 m001 (FeigenbaumMu-OneNinth)/(cos(1/12*Pi)+Artin) 2584028062934394 h001 (8/9*exp(2)+10/11)/(8/11*exp(1)+11/12) 2584028091649523 a007 Real Root Of 621*x^4-500*x^3+640*x^2-491*x+90 2584028095716563 m001 (-MinimumGamma+Porter)/(sin(1)+BesselI(0,1)) 2584028103924648 a001 (2+3^(1/2))^(352/59) 2584028106597236 m001 (exp(1)+exp(1/Pi))/(Niven+Riemann1stZero) 2584028109595655 p003 LerchPhi(1/16,6,127/69) 2584028123420119 a007 Real Root Of 396*x^4+902*x^3-236*x^2+246*x+119 2584028153200742 r005 Re(z^2+c),c=17/78+4/51*I,n=14 2584028158703736 r005 Re(z^2+c),c=13/86+27/61*I,n=33 2584028161704953 a007 Real Root Of -27*x^4-720*x^3-583*x^2-175*x-221 2584028171963827 m005 (1/2*5^(1/2)-1/12)/(3/4*gamma-5/6) 2584028174394541 r005 Im(z^2+c),c=-29/60+27/59*I,n=37 2584028183944968 r005 Im(z^2+c),c=-19/18+52/237*I,n=4 2584028188949065 m001 Chi(1)^Shi(1)+Riemann3rdZero 2584028194448947 a007 Real Root Of 33*x^4+848*x^3-156*x^2-873*x+6 2584028198792577 m001 ln(2^(1/2)+1)/(Weierstrass^exp(1/exp(1))) 2584028204560086 a007 Real Root Of -69*x^4+184*x^3-944*x^2+861*x+289 2584028231513701 l006 ln(615/8149) 2584028234137263 m002 -10+Pi^5/Log[Pi]+ProductLog[Pi] 2584028250662741 m001 HeathBrownMoroz*Sarnak-Sierpinski 2584028253737491 m001 Psi(2,1/3)^(2/3*Pi*3^(1/2)/GAMMA(2/3)/Shi(1)) 2584028259314889 r005 Im(z^2+c),c=-1/50+13/43*I,n=6 2584028268935134 a007 Real Root Of -138*x^4+916*x^3+859*x^2+768*x-271 2584028273486678 r009 Re(z^3+c),c=-47/118+14/31*I,n=37 2584028277814516 a007 Real Root Of 279*x^4+981*x^3+927*x^2+342*x-819 2584028287097088 a001 17711/521*322^(3/4) 2584028303487197 m001 polylog(4,1/2)/(GAMMA(13/24)^OrthogonalArrays) 2584028307961796 a007 Real Root Of -866*x^4+208*x^3-568*x^2+699*x+226 2584028317683136 m001 GAMMA(11/12)*(exp(Pi)+Totient) 2584028344717205 a003 cos(Pi*2/55)-sin(Pi*49/117) 2584028345234606 r005 Re(z^2+c),c=-31/114+7/20*I,n=35 2584028374473691 m001 cos(1/5*Pi)^FeigenbaumDelta-Otter 2584028375996601 a001 8/39603*521^(38/49) 2584028376029191 a007 Real Root Of 756*x^4+476*x^3-471*x^2-968*x+270 2584028385863067 a007 Real Root Of -601*x^4+352*x^3-223*x^2+578*x+173 2584028396283736 m001 1/GAMMA(5/6)^2/(3^(1/3))*exp(GAMMA(7/24))^2 2584028398498347 m002 -4+(Pi^3*Sinh[Pi])/12 2584028404823884 m005 (1/6*exp(1)-3/5)/(3/4*Catalan+5) 2584028407200089 m006 (4/5*Pi^2-5)/(5/6*ln(Pi)+1/6) 2584028410109196 m006 (1/4*Pi-3)/(1/2*exp(Pi)-3) 2584028414796686 m008 (1/3*Pi^2+5/6)/(1/6*Pi^6-2/3) 2584028416543079 m005 (1/2*5^(1/2)+5/11)/(1/4*Zeta(3)-10/11) 2584028430751939 m001 HeathBrownMoroz*GAMMA(17/24)^Khinchin 2584028432355651 l006 ln(611/8096) 2584028434176799 p004 log(33331/25741) 2584028436845381 m005 (1/3*exp(1)-1/2)/(7/9*Zeta(3)-7/9) 2584028448075743 a007 Real Root Of 109*x^4+84*x^3-725*x^2-905*x-908 2584028460604806 s001 sum(1/10^(n-1)*A281862[n]/n!^2,n=1..infinity) 2584028461190993 m001 exp(1/exp(1))+exp(1/Pi)^HardyLittlewoodC5 2584028462878741 m001 gamma(1)^(FransenRobinson/BesselK(0,1)) 2584028472979421 m005 (1/3*5^(1/2)-1/8)/(-5/63+1/7*5^(1/2)) 2584028480330654 b008 FresnelC[19/3]^2 2584028498397768 m001 1/Ei(1)/exp(OneNinth)/GAMMA(2/3)^2 2584028499981686 m001 exp(GAMMA(1/24))^2/Conway^2*GAMMA(2/3)^2 2584028501488257 m006 (exp(Pi)-4/5)/(4/5*Pi^2+3/4) 2584028503103626 a005 (1/sin(45/131*Pi))^519 2584028505254355 a001 11*(1/2*5^(1/2)+1/2)^14*29^(7/23) 2584028509363561 m001 (HeathBrownMoroz*Niven-Magata)/HeathBrownMoroz 2584028540999463 m001 (CopelandErdos+Rabbit)/(Pi+polylog(4,1/2)) 2584028543101380 r005 Re(z^2+c),c=49/122+11/48*I,n=52 2584028548149996 a003 -2^(1/2)-1/2*3^(1/2)-cos(4/15*Pi)+cos(8/21*Pi) 2584028555709681 m001 PrimesInBinary^FellerTornier+FeigenbaumC 2584028556238710 m001 1/Salem/FeigenbaumB^2/exp(GAMMA(7/24))^2 2584028564915079 m001 1/2*Pi*2^(1/2)*(sin(1)+arctan(1/3)) 2584028577300514 a007 Real Root Of 289*x^4+670*x^3-239*x^2+226*x+855 2584028580853860 r005 Re(z^2+c),c=-69/86+1/20*I,n=16 2584028588843712 r005 Im(z^2+c),c=-65/114+3/64*I,n=40 2584028592606601 a007 Real Root Of 326*x^4+442*x^3-873*x^2+199*x-565 2584028603671803 p001 sum(1/(457*n+412)/(8^n),n=0..infinity) 2584028605482717 q001 2168/839 2584028611102224 m001 cos(1)^(Robbin/ln(2)*ln(10)) 2584028615035877 a007 Real Root Of -644*x^4+898*x^3+994*x^2+685*x+129 2584028622645025 a007 Real Root Of 524*x^4+951*x^3-882*x^2+198*x-553 2584028625958796 a001 2537720636*13^(19/21) 2584028635844570 l006 ln(607/8043) 2584028636568892 m001 (KhinchinHarmonic+Sierpinski)/(gamma+ln(3)) 2584028637727132 p003 LerchPhi(1/1024,4,56/71) 2584028648344617 a007 Real Root Of -291*x^4-805*x^3-617*x^2-905*x+866 2584028649613971 m001 1/cos(1)^2/CareFree*ln(sin(Pi/5)) 2584028652734822 m001 (Mills-ZetaP(2))/(BesselI(0,2)+GAMMA(23/24)) 2584028653408148 a007 Real Root Of -399*x^4-784*x^3+696*x^2-94*x-628 2584028657008794 l006 ln(6732/8717) 2584028676223486 r005 Im(z^2+c),c=-9/19+8/17*I,n=46 2584028676867136 a007 Real Root Of -221*x^4-306*x^3+520*x^2-576*x-387 2584028676998753 m001 (-FeigenbaumMu+Thue)/(gamma+Bloch) 2584028677284535 a001 3461452808002/377*1836311903^(10/17) 2584028677284535 a001 28143753123/377*6557470319842^(10/17) 2584028681413465 r005 Re(z^2+c),c=-21/40+28/41*I,n=17 2584028684218312 a007 Real Root Of 144*x^4-64*x^3-818*x^2+441*x-923 2584028685776095 r009 Re(z^3+c),c=-17/50+34/43*I,n=2 2584028686175505 m001 (LaplaceLimit-Sarnak)^Mills 2584028686527933 r005 Re(z^2+c),c=-19/62+11/53*I,n=25 2584028694000709 r009 Im(z^3+c),c=-1/10+10/37*I,n=5 2584028709343991 m001 2^(1/3)-Salem+ZetaP(3) 2584028712191326 m001 (Chi(1)*Ei(1)+gamma)/Chi(1) 2584028717162839 r002 40th iterates of z^2 + 2584028722716509 r005 Re(z^2+c),c=4/21+35/64*I,n=10 2584028731704369 r005 Im(z^2+c),c=-77/60+4/37*I,n=6 2584028755240665 r005 Im(z^2+c),c=-10/23+13/28*I,n=37 2584028759126827 m001 FeigenbaumC^BesselK(1,1)+ln(Pi) 2584028765928435 a008 Real Root of (-1-2*x^2+6*x^3-2*x^4) 2584028768627837 a001 13/39603*11^(37/43) 2584028780122426 r005 Im(z^2+c),c=-137/114+1/29*I,n=60 2584028805250172 r005 Im(z^2+c),c=-13/10+19/97*I,n=4 2584028824694517 a007 Real Root Of -553*x^4-888*x^3-780*x^2+758*x-126 2584028827476524 m001 (3^(1/2)-FeigenbaumAlpha)/(Otter+Trott2nd) 2584028830778057 a007 Real Root Of 300*x^4+865*x^3+406*x^2+734*x+735 2584028833800105 m001 exp(GAMMA(7/12))*Cahen^2/exp(1)^2 2584028840314968 a001 3/710647*11^(34/45) 2584028842033134 l006 ln(603/7990) 2584028855222040 p003 LerchPhi(1/64,2,71/114) 2584028861025093 l006 ln(5623/7281) 2584028866860040 m001 (ErdosBorwein+ZetaP(4))^MasserGramainDelta 2584028877955683 r002 29th iterates of z^2 + 2584028879876496 m001 1/exp(Si(Pi))*FransenRobinson/Niven 2584028880191242 m007 (-1/4*gamma+3/5)/(-gamma-2*ln(2)+1/5) 2584028880436375 m001 ln(Catalan)^2/Tribonacci^2/log(1+sqrt(2)) 2584028884755824 a007 Real Root Of -434*x^4-907*x^3+271*x^2-868*x-352 2584028898594252 m001 BesselI(1,2)-Chi(1)+FeigenbaumC 2584028924605186 a007 Real Root Of -541*x^4-224*x^3+559*x^2+619*x-191 2584028937625471 m001 (1+3^(1/2))^(1/2)/(Rabbit^Conway) 2584028965874789 r005 Re(z^2+c),c=-15/16+16/71*I,n=36 2584028971435494 m001 (Cahen-Riemann3rdZero)/(ln(2+3^(1/2))-Artin) 2584028975219613 r009 Re(z^3+c),c=-63/122+24/47*I,n=17 2584028980223506 m001 (-BesselJ(1,1)+Artin)/(5^(1/2)+arctan(1/3)) 2584028985103087 m008 (1/5*Pi^2-1/6)/(2/3*Pi^4+5) 2584028987124377 r005 Re(z^2+c),c=7/66+31/53*I,n=41 2584028988724312 m001 (Shi(1)-gamma(3))/(ReciprocalFibonacci+Sarnak) 2584028988904949 m001 1/exp(BesselK(1,1))*MinimumGamma/GAMMA(1/6)^2 2584029013201489 m005 (1/2*gamma+2)/(5/9*2^(1/2)+1/10) 2584029025901942 m001 MinimumGamma^FeigenbaumAlpha-ZetaQ(4) 2584029037147824 m001 (ln(gamma)-Pi^(1/2))/(FellerTornier+Stephens) 2584029037310016 a007 Real Root Of -312*x^4-618*x^3+358*x^2-108*x+578 2584029045950036 r005 Re(z^2+c),c=-33/74+25/53*I,n=10 2584029049113314 m001 (-FeigenbaumMu+Robbin)/(BesselK(0,1)+CareFree) 2584029050975426 l006 ln(599/7937) 2584029050975426 p004 log(7937/599) 2584029052956744 r002 2i'th iterates of 2*x/(1-x^2) of 2584029055716766 m005 (1/3*Zeta(3)-1/12)/(5/12*Zeta(3)+8/11) 2584029059079709 r005 Im(z^2+c),c=23/118+3/16*I,n=6 2584029060555430 r005 Re(z^2+c),c=-21/110+5/9*I,n=53 2584029066047324 s002 sum(A017147[n]/(pi^n),n=1..infinity) 2584029074763894 a001 305/2889*7^(23/50) 2584029076544571 r008 a(0)=0,K{-n^6,26-19*n^3+2*n^2-48*n} 2584029076619817 r005 Im(z^2+c),c=-23/44+1/22*I,n=38 2584029077131151 m001 (5^(1/2)-Psi(1,1/3))/(-gamma+ln(2^(1/2)+1)) 2584029100030268 a007 Real Root Of -136*x^4+757*x^2-493*x-265 2584029118356842 m001 (Chi(1)+CopelandErdos)/(Magata+RenyiParking) 2584029124037109 a007 Real Root Of -877*x^4-491*x^3+439*x^2+871*x-242 2584029136251804 r005 Im(z^2+c),c=-41/50+11/62*I,n=13 2584029143726642 r005 Im(z^2+c),c=11/26+13/37*I,n=10 2584029161690052 m005 (1/2*5^(1/2)-3/4)/(3/10*2^(1/2)+1) 2584029165286877 l006 ln(4514/5845) 2584029165940736 r002 10th iterates of z^2 + 2584029167518471 h001 (9/11*exp(1)+4/5)/(4/11*exp(1)+2/11) 2584029170847171 m008 (1/5*Pi^3+5)/(1/2*Pi^2-3/5) 2584029172473424 s001 sum(1/10^(n-1)*A232115[n]/n!^2,n=1..infinity) 2584029172477385 s001 sum(1/10^(n-1)*A275529[n]/n!^2,n=1..infinity) 2584029174259656 r005 Re(z^2+c),c=13/40+9/52*I,n=39 2584029176339341 s001 sum(1/10^(n-1)*A275848[n]/n!^2,n=1..infinity) 2584029176355075 s001 sum(1/10^(n-1)*A162196[n]/n!^2,n=1..infinity) 2584029178268347 s001 sum(1/10^(n-1)*A143052[n]/n!^2,n=1..infinity) 2584029180189473 s001 sum(1/10^(n-1)*A166108[n]/n!^2,n=1..infinity) 2584029180490510 m001 sin(1/12*Pi)*Salem+BesselI(0,2) 2584029182134227 s001 sum(1/10^(n-1)*A143053[n]/n!^2,n=1..infinity) 2584029182134227 s001 sum(1/10^(n-1)*A220508[n]/n!^2,n=1..infinity) 2584029182134264 s001 sum(1/10^(n-1)*A082362[n]/n!^2,n=1..infinity) 2584029182134270 s001 sum(1/10^(n-1)*A082364[n]/n!^2,n=1..infinity) 2584029192176200 m001 (MertensB1+ZetaQ(3))/(gamma(2)+GAMMA(11/12)) 2584029198255643 r005 Im(z^2+c),c=-21/58+20/47*I,n=39 2584029202601333 r005 Im(z^2+c),c=-2/3+70/173*I,n=7 2584029217830753 m001 (sqrt(2)*exp(-Pi)+GAMMA(11/12))/exp(-Pi) 2584029217830753 m001 exp(Pi)*GAMMA(11/12)+2^(1/2) 2584029217830753 m001 exp(Pi)*GAMMA(11/12)+sqrt(2) 2584029224983570 s002 sum(A051268[n]/(n*2^n-1),n=1..infinity) 2584029233291889 a007 Real Root Of -639*x^4-357*x^3-554*x^2+752*x+228 2584029238473277 s001 sum(1/10^(n-1)*A218610[n]/n!^2,n=1..infinity) 2584029244307839 a007 Real Root Of 266*x^4+408*x^3-218*x^2+956*x-894 2584029245685326 r005 Re(z^2+c),c=15/62+33/58*I,n=34 2584029250115642 a001 1/76*(1/2*5^(1/2)+1/2)^3*3571^(3/16) 2584029262726981 l006 ln(595/7884) 2584029272212233 s002 sum(A073903[n]/((10^n+1)/n),n=1..infinity) 2584029272214756 s002 sum(A069710[n]/((10^n+1)/n),n=1..infinity) 2584029280508140 r009 Im(z^3+c),c=-43/78+23/51*I,n=35 2584029281772871 m005 (1/3*Zeta(3)-1/4)/(3/11*Catalan+1/3) 2584029282348276 m004 15*Sin[Sqrt[5]*Pi]+5*Pi*Tanh[Sqrt[5]*Pi] 2584029284974425 a001 13/844*199^(30/31) 2584029286262219 a001 1/76*(1/2*5^(1/2)+1/2)^5*9349^(1/16) 2584029288109978 a001 1/76*7881196^(3/16) 2584029288542638 a001 1/4870004*(1/2*5^(1/2)+1/2)^22*64079^(5/16) 2584029288573362 a001 1/76*39603^(9/32) 2584029290536255 a001 1/1860176*(1/2*5^(1/2)+1/2)^18*24476^(7/16) 2584029296203891 a001 119218851371/13*987^(9/11) 2584029314716323 a001 1/76*5778^(11/32) 2584029315826486 a001 1/710524*(1/2*5^(1/2)+1/2)^24*9349^(1/16) 2584029319777152 a007 Real Root Of -415*x^4-554*x^3+945*x^2-959*x+156 2584029329574854 a007 Real Root Of 284*x^4+847*x^3+22*x^2-942*x-629 2584029341571516 m001 (ln(5)-gamma(1))/(CareFree-FeigenbaumKappa) 2584029343195904 r009 Re(z^3+c),c=-7/18+16/37*I,n=23 2584029355388388 m005 (1/2*5^(1/2)+5/9)/(3/8*3^(1/2)-5/7) 2584029358265257 m001 1/exp(LambertW(1))^2*Magata^2/Zeta(3)^2 2584029367973488 m003 -23/8+Sqrt[5]/16+6*Csch[1/2+Sqrt[5]/2] 2584029371723873 m001 1/3*(3^(1/2)*Sierpinski-ZetaQ(4))*3^(1/2) 2584029375237998 r005 Im(z^2+c),c=-23/58+14/33*I,n=18 2584029377121883 r005 Re(z^2+c),c=-19/98+19/35*I,n=39 2584029377732666 m001 1/sin(Pi/5)^2/exp(LaplaceLimit)*sqrt(3) 2584029383062800 a007 Real Root Of -124*x^4+973*x^3-850*x^2+300*x-37 2584029397200281 m001 Kolakoski+exp(1)^LandauRamanujan2nd 2584029409596719 r005 Re(z^2+c),c=-13/46+27/44*I,n=34 2584029427090814 m001 (BesselJ(0,1)-exp(1/Pi))/(GAMMA(11/12)+Conway) 2584029435002116 m001 ln(MinimumGamma)^2*Conway^2*GAMMA(11/12) 2584029440352091 a007 Real Root Of 500*x^4+33*x^3+444*x^2-205*x+5 2584029452752149 a001 1/271396*(1/2*5^(1/2)+1/2)^20*3571^(3/16) 2584029465260620 m001 (Trott-ZetaP(4))/(ln(Pi)+OrthogonalArrays) 2584029471585371 r008 a(0)=0,K{-n^6,-20-11*n^3-45*n^2+37*n} 2584029477344839 l006 ln(591/7831) 2584029504052073 r005 Re(z^2+c),c=-2/5+9/14*I,n=23 2584029504160996 m001 Sierpinski-arctan(1/2)*gamma(3) 2584029515537685 m001 1/exp(GAMMA(5/24))*Riemann2ndZero/Zeta(9) 2584029525845630 a007 Real Root Of 306*x^4+542*x^3-736*x^2-31*x+543 2584029527620451 a001 3571/13*1548008755920^(9/11) 2584029529658946 a001 233/11*9349^(31/59) 2584029535376820 a007 Real Root Of 76*x^4-306*x^3-447*x^2-531*x+172 2584029548527168 a001 1/103664*(1/2*5^(1/2)+1/2)^9*1364^(13/16) 2584029559394642 m005 (1/2*3^(1/2)+5/8)/(1/8*Zeta(3)-8/11) 2584029569167169 r005 Im(z^2+c),c=13/44+4/53*I,n=64 2584029579121455 g007 Psi(2,2/9)+Psi(2,4/7)+Psi(2,2/7)-Psi(2,4/9) 2584029584618521 m001 (Magata-ln(Pi))/ZetaQ(3) 2584029584994924 a007 Real Root Of 544*x^4-313*x^3+439*x^2-638*x-202 2584029593764974 m001 Sierpinski-gamma*ZetaQ(4) 2584029596870493 m001 sin(Pi/5)/GAMMA(5/12)^2/ln(sqrt(1+sqrt(3))) 2584029602200941 r005 Im(z^2+c),c=-11/36+24/59*I,n=16 2584029603506082 m001 (5^(1/2)+Zeta(3))/(-gamma(3)+MertensB3) 2584029610985721 a007 Real Root Of -266*x^4-501*x^3+217*x^2-427*x+663 2584029614744476 r002 20th iterates of z^2 + 2584029658190627 r005 Im(z^2+c),c=4/11+7/43*I,n=48 2584029667690069 r005 Re(z^2+c),c=-6/19+23/47*I,n=11 2584029667743248 l006 ln(3405/4409) 2584029683484609 m001 (Otter-Stephens)/(StolarskyHarborth+Trott) 2584029685593525 a001 75025/18*11^(35/46) 2584029686942972 a001 38/17*21^(1/21) 2584029688740223 r005 Re(z^2+c),c=-19/118+10/17*I,n=49 2584029688775206 m001 1/ln(GAMMA(1/12))^2/Salem^2*Zeta(1/2)^2 2584029694447593 s001 sum(exp(-Pi/2)^n*A272511[n],n=1..infinity) 2584029694887596 l006 ln(587/7778) 2584029699814971 m001 (KhinchinLevy+Otter)/(gamma+GAMMA(23/24)) 2584029714920192 v002 sum(1/(5^n+(9*n^2+35*n+19)),n=1..infinity) 2584029725549711 r005 Im(z^2+c),c=-3/118+13/43*I,n=16 2584029726647696 a007 Real Root Of 151*x^4+353*x^3-354*x^2-471*x+505 2584029730256973 a001 20633239/13*39088169^(9/11) 2584029730267940 a001 1568397607/13*196418^(9/11) 2584029730292050 a001 271443/13*7778742049^(9/11) 2584029730910568 h005 exp(sin(Pi*2/59)/cos(Pi*13/28)) 2584029736566184 a001 28657/199*199^(6/11) 2584029736656516 m008 (1/2*Pi^4+1)/(2*Pi^6+3/4) 2584029748255843 m001 1/Riemann1stZero^2/Cahen^2/exp(cosh(1)) 2584029755215570 s001 sum(exp(-Pi/4)^(n-1)*A009490[n],n=1..infinity) 2584029755636839 h001 (3/7*exp(1)+7/10)/(10/11*exp(2)+1/2) 2584029755797959 r005 Re(z^2+c),c=17/60+6/41*I,n=40 2584029757804971 m001 (Psi(2,1/3)+GaussAGM)/(Kolakoski+Mills) 2584029763973646 m001 1/ln((2^(1/3)))^2*Trott^2*GAMMA(19/24) 2584029764837581 m001 Catalan-KhinchinHarmonic-Riemann3rdZero 2584029766571619 h001 (1/9*exp(1)+3/10)/(7/11*exp(1)+3/5) 2584029768735024 m008 (1/5*Pi^5-2)/(3/4*Pi^5-2/5) 2584029783067647 a005 (1/cos(28/213*Pi))^509 2584029785501310 b008 InverseErfc[(3+E)/8] 2584029792804542 h001 (4/11*exp(2)+7/8)/(5/11*exp(1)+1/7) 2584029815753837 a007 Real Root Of 283*x^4+743*x^3+98*x^2-135*x-801 2584029818629225 r005 Re(z^2+c),c=-19/94+25/47*I,n=62 2584029832489005 r002 64th iterates of z^2 + 2584029841383535 m009 (1/4*Psi(1,3/4)+3/5)/(2/5*Pi^2+5/6) 2584029842370704 m005 (1/2*gamma-2)/(5/11*3^(1/2)-1/8) 2584029855771759 a001 18/1597*1597^(14/19) 2584029863084672 m005 (1/2*5^(1/2)+1/4)/(56/11+1/11*5^(1/2)) 2584029866917875 s001 sum(1/10^(n-1)*A079404[n]/n!^2,n=1..infinity) 2584029871027262 m001 Psi(1,1/3)^(Niven/Rabbit) 2584029871470156 r005 Im(z^2+c),c=7/50+5/23*I,n=11 2584029874645734 s001 sum(1/10^(n-1)*A141730[n]/n!^2,n=1..infinity) 2584029883086267 a001 1/39596*(1/2*5^(1/2)+1/2)^7*521^(15/16) 2584029894551993 b008 17*Sqrt[3]*Cos[1/2] 2584029909096876 a001 18/1346269*14930352^(14/19) 2584029909097162 a001 9/567451585*139583862445^(14/19) 2584029915415453 l006 ln(583/7725) 2584029931274153 r009 Im(z^3+c),c=-39/86+4/35*I,n=15 2584029936817368 r005 Re(z^2+c),c=-27/122+20/41*I,n=33 2584029961003173 m005 (1/3*3^(1/2)-1/3)/(7/8*Catalan+1/7) 2584029963900898 a007 Real Root Of 32*x^4+836*x^3+196*x^2-991*x+711 2584029965540959 m005 (1/2*Zeta(3)-5)/(67/63+2/7*5^(1/2)) 2584029967984084 a007 Real Root Of 806*x^4+841*x^3+431*x^2-790*x-222 2584029972051405 m005 (1/2*3^(1/2)+1/9)/(2/11*Zeta(3)-4) 2584029974099759 a007 Real Root Of 407*x^4+602*x^3-858*x^2+906*x+311 2584029983891107 r005 Re(z^2+c),c=-11/14+17/154*I,n=64 2584029988000635 r009 Re(z^3+c),c=-47/122+11/26*I,n=21 2584029991557035 m001 FellerTornier+FibonacciFactorial+MertensB2 2584030004693304 m001 ln(cos(Pi/12))^2/(3^(1/3))^2/sqrt(5) 2584030006050552 a007 Real Root Of 20*x^4+478*x^3-966*x^2+967*x+443 2584030010060254 m001 MasserGramain/(Riemann3rdZero-ZetaQ(4)) 2584030010950518 m001 (GAMMA(1/4)+RenyiParking)^Cahen 2584030010950518 m001 (Pi*2^(1/2)/GAMMA(3/4)+RenyiParking)^Cahen 2584030011672637 b008 Sqrt[Pi]*SinIntegral[12/7] 2584030013897312 p004 log(33937/26209) 2584030048249765 a003 -3/2+cos(5/21*Pi)-1/2*3^(1/2)-cos(1/10*Pi) 2584030050961456 r005 Re(z^2+c),c=-149/126+7/39*I,n=8 2584030052131572 r009 Re(z^3+c),c=-47/110+12/23*I,n=58 2584030056200236 a003 cos(Pi*13/51)*cos(Pi*36/95) 2584030065583620 l006 ln(5701/7382) 2584030068576990 m001 (CareFree-Salem)/(GAMMA(2/3)+Bloch) 2584030102784665 l003 AiryAi(1,5/102) 2584030106745924 a005 (1/sin(93/199*Pi))^180 2584030106755728 m005 (2/5*Pi+2/3)/(1/4*gamma+3/5) 2584030109780452 m001 FeigenbaumD*Kolakoski+ZetaP(2) 2584030109846891 a001 18/9227465*701408733^(6/17) 2584030109846897 a001 18/165580141*2504730781961^(6/17) 2584030109849670 a001 18/514229*196418^(6/17) 2584030124063893 m005 (1/2*Pi+1/7)/(4/7*gamma+1/3) 2584030125229175 a007 Real Root Of -559*x^4+931*x^3-486*x^2+789*x-185 2584030129900625 a003 sin(Pi*7/72)*sin(Pi*26/79) 2584030135960278 r005 Re(z^2+c),c=-1/5+28/53*I,n=30 2584030138209540 a007 Real Root Of 55*x^4-263*x^3-678*x^2+885*x-176 2584030138212664 m001 (Otter-RenyiParking)/(ZetaP(4)+ZetaQ(3)) 2584030138990278 l006 ln(579/7672) 2584030163862942 h001 (2/5*exp(2)+1/7)/(1/12*exp(2)+7/12) 2584030164707445 m004 5*Pi+15*Sin[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi] 2584030167729205 a007 Real Root Of -391*x^4-645*x^3+736*x^2-785*x-639 2584030171144225 a007 Real Root Of -612*x^4-622*x^3+337*x^2+667*x+17 2584030174661455 a007 Real Root Of 159*x^4-793*x^3+660*x^2+619*x+587 2584030190467732 r005 Re(z^2+c),c=-13/40+1/34*I,n=10 2584030193140185 a001 199/18*(1/2*5^(1/2)+1/2)^17*18^(13/20) 2584030194026233 m005 (1/2*Pi-7/9)/(11/12*gamma-2/9) 2584030197218818 r005 Re(z^2+c),c=-33/82+28/51*I,n=18 2584030214203264 p004 log(22963/1733) 2584030221837445 r009 Im(z^3+c),c=-33/106+8/37*I,n=9 2584030230733840 r005 Re(z^2+c),c=-13/44+23/57*I,n=8 2584030238191296 m001 1/TwinPrimes^2*FeigenbaumD^2/ln(Ei(1)) 2584030243381736 r005 Re(z^2+c),c=-95/102+8/33*I,n=64 2584030246090124 r005 Re(z^2+c),c=-13/54+26/59*I,n=37 2584030249756981 r009 Re(z^3+c),c=-11/70+41/44*I,n=24 2584030257953616 r002 20th iterates of z^2 + 2584030278837182 m001 (Zeta(1,-1)-Bloch)/(Cahen+MasserGramainDelta) 2584030297132197 a008 Real Root of x^4-x^3-38*x^2+100*x-32 2584030320967601 r009 Re(z^3+c),c=-19/118+27/29*I,n=20 2584030336269983 a007 Real Root Of 410*x^4+961*x^3+172*x^2+752*x-904 2584030338325266 r005 Im(z^2+c),c=-43/40+6/23*I,n=7 2584030343960411 m001 1/exp(Zeta(7))/MinimumGamma/cos(Pi/12) 2584030344373089 m001 (2^(1/3)-Riemann3rdZero)/(-Trott+ZetaQ(4)) 2584030347150336 r005 Im(z^2+c),c=-63/74+12/59*I,n=43 2584030350852597 a007 Real Root Of -457*x^4-118*x^3+355*x^2+996*x-277 2584030354461921 m001 1/(3^(1/3))*exp(Kolakoski)^2/GAMMA(1/4)^2 2584030355171986 h001 (1/6*exp(2)+3/7)/(6/7*exp(2)+1/11) 2584030365675659 l006 ln(575/7619) 2584030369934803 a001 10946/521*322^(5/6) 2584030370830431 l006 ln(5501/5645) 2584030384957096 s002 sum(A141834[n]/((3*n+1)!),n=1..infinity) 2584030388400305 p004 log(16301/12589) 2584030391655688 a007 Real Root Of 455*x^4+966*x^3-453*x^2+113*x-302 2584030409435136 m001 (ln(gamma)+GAMMA(13/24)*ZetaP(4))/GAMMA(13/24) 2584030414829170 a007 Real Root Of 319*x^4+553*x^3-716*x^2-229*x-492 2584030416180765 r005 Im(z^2+c),c=-39/62+3/7*I,n=6 2584030422947296 a007 Real Root Of 581*x^4+27*x^3+828*x^2-308*x-137 2584030429947843 b008 -4+Sqrt[1+Coth[3]] 2584030441245514 m001 (Psi(2,1/3)-ln(3))/(-gamma(2)+exp(-1/2*Pi)) 2584030461210161 m001 (Bloch+Weierstrass)/(Ei(1)-GAMMA(7/12)) 2584030462153899 r005 Re(z^2+c),c=-1+25/146*I,n=58 2584030467831357 m001 (Gompertz-MertensB1)/(Riemann1stZero-Salem) 2584030476326249 m001 FeigenbaumD/exp(CopelandErdos)^2*cosh(1) 2584030480740946 r005 Im(z^2+c),c=-89/94+9/40*I,n=13 2584030485080493 r005 Im(z^2+c),c=35/118+3/41*I,n=57 2584030486402133 r005 Im(z^2+c),c=-5/12+11/25*I,n=9 2584030491850172 a007 Real Root Of 7*x^4-540*x^3+373*x^2-773*x-234 2584030505639058 r009 Im(z^3+c),c=-11/62+1/43*I,n=6 2584030510954767 a007 Real Root Of -260*x^4-590*x^3+108*x^2-108*x+412 2584030517686125 r009 Re(z^3+c),c=-51/122+25/48*I,n=29 2584030521852732 a007 Real Root Of 559*x^4+902*x^3-946*x^2+961*x-560 2584030523012736 r005 Re(z^2+c),c=-21/52+23/63*I,n=5 2584030530817818 g005 GAMMA(8/9)*GAMMA(1/9)/GAMMA(2/7)/GAMMA(5/6) 2584030537028811 m001 (CareFree-Tetranacci)/(arctan(1/2)-gamma(2)) 2584030541881608 m001 QuadraticClass^Grothendieck-cos(1) 2584030547082990 a007 Real Root Of -636*x^4+410*x^3+380*x^2+773*x-2 2584030547433179 a007 Real Root Of 283*x^4+491*x^3-812*x^2-572*x-202 2584030559453015 s001 sum(1/10^(n-1)*A249618[n]/n!^2,n=1..infinity) 2584030563283433 s001 sum(1/10^(n-1)*A280356[n]/n!^2,n=1..infinity) 2584030563295274 s001 sum(1/10^(n-1)*A022484[n]/n!^2,n=1..infinity) 2584030565224274 s001 sum(1/10^(n-1)*A023963[n]/n!^2,n=1..infinity) 2584030565224280 s001 sum(1/10^(n-1)*A054637[n]/n!^2,n=1..infinity) 2584030567161166 s001 sum(1/10^(n-1)*A161359[n]/n!^2,n=1..infinity) 2584030569086273 s001 sum(1/10^(n-1)*A154426[n]/n!^2,n=1..infinity) 2584030585962103 r005 Im(z^2+c),c=-9/8+7/221*I,n=24 2584030586474335 m001 GAMMA(1/12)*RenyiParking/exp(Zeta(3)) 2584030587275952 r005 Im(z^2+c),c=-69/98+4/15*I,n=32 2584030595536964 l006 ln(571/7566) 2584030600102789 m001 (arctan(1/3)-gamma(2))^GAMMA(3/4) 2584030600473746 r009 Im(z^3+c),c=-61/118+1/4*I,n=5 2584030604072436 a007 Real Root Of -107*x^4+817*x^3-999*x^2-672*x-919 2584030604407720 a001 832040/843*123^(1/5) 2584030607468497 a007 Real Root Of -27*x^4-732*x^3-882*x^2+127*x+193 2584030644321619 r005 Re(z^2+c),c=-33/106+3/20*I,n=3 2584030655586406 l006 ln(2296/2973) 2584030656380782 r005 Re(z^2+c),c=-37/122+13/59*I,n=11 2584030676949642 m009 (3/5*Psi(1,2/3)-4/5)/(4*Psi(1,1/3)-1/5) 2584030683947727 m001 Stephens/(gamma(2)^ln(2+3^(1/2))) 2584030685333477 m005 (-19/4+1/4*5^(1/2))/(6*exp(1)-1/11) 2584030693981900 a007 Real Root Of -105*x^4-134*x^3+85*x^2-950*x-653 2584030700280207 m005 (1/2*gamma+2/11)/(5/7*3^(1/2)+7/12) 2584030716549336 a007 Real Root Of -329*x^4+645*x^3-157*x^2+901*x-232 2584030723795288 a003 cos(Pi*46/119)-cos(Pi*49/104) 2584030733064887 m005 (1/2*5^(1/2)-1/11)/(4*Zeta(3)-5/6) 2584030734938448 a007 Real Root Of 374*x^4+943*x^3-301*x^2-412*x+541 2584030738178564 a007 Real Root Of 426*x^4+338*x^3-167*x^2-886*x+23 2584030745104603 r002 9th iterates of z^2 + 2584030746855105 r009 Re(z^3+c),c=-4/25+19/23*I,n=23 2584030747916254 h001 (1/6*exp(2)+7/12)/(11/12*exp(2)+1/4) 2584030751195775 m005 (1/2*gamma-3/5)/(7/8*gamma+7/10) 2584030755183596 s001 sum(exp(-Pi/2)^n*A223642[n],n=1..infinity) 2584030757608488 a001 9062201101803/377*6557470319842^(8/17) 2584030764533952 m001 1/exp(GAMMA(7/24))^2/Bloch^2*sqrt(1+sqrt(3))^2 2584030785091195 r005 Re(z^2+c),c=-9/31+15/53*I,n=17 2584030796024867 m001 (KhinchinLevy+Niven)/(gamma(2)+GAMMA(5/6)) 2584030797133915 r005 Re(z^2+c),c=-45/64+11/58*I,n=17 2584030798847566 r009 Re(z^3+c),c=-7/18+25/58*I,n=14 2584030811368141 r005 Re(z^2+c),c=-19/62+11/53*I,n=23 2584030824624552 h001 (2/5*exp(1)+3/10)/(7/11*exp(2)+2/3) 2584030828641408 l006 ln(567/7513) 2584030843923217 r005 Re(z^2+c),c=-13/70+33/58*I,n=64 2584030849233684 m009 (3*Pi^2-1/2)/(16/3*Catalan+2/3*Pi^2-1/5) 2584030867900199 m005 (1/3*gamma+1/11)/(1/3*2^(1/2)+5/8) 2584030875870875 a007 Real Root Of -92*x^4-2*x^3+546*x^2-102*x+158 2584030892836741 a001 7/377*21^(32/37) 2584030898891064 r005 Im(z^2+c),c=-71/110+19/43*I,n=55 2584030916004667 m005 (1/2*gamma+1/9)/(7/12*Pi-2/7) 2584030926233439 m006 (2*Pi-3/4)/(4*exp(2*Pi)-2/3) 2584030935405030 a001 514229/76*11^(19/34) 2584030963173144 a001 3/75025*53316291173^(13/24) 2584030985880170 p004 log(22433/1693) 2584031000388710 a005 (1/cos(46/173*Pi))^112 2584031000579183 r009 Re(z^3+c),c=-16/31+30/59*I,n=5 2584031011616570 m002 -6+Pi^5/Log[Pi]-Pi/ProductLog[Pi] 2584031016362968 m001 (Psi(2,1/3)+Backhouse)/(-MertensB1+ZetaQ(2)) 2584031022029545 m001 (3^(1/2)+KhinchinLevy)/(-Rabbit+Tribonacci) 2584031024139722 a007 Real Root Of 178*x^4+751*x^3+649*x^2+111*x+975 2584031032141649 a001 1/5473*46368^(1/31) 2584031035827673 l003 hypergeom([1,1,1],[2,1/2],41/63) 2584031037445048 r005 Re(z^2+c),c=-34/31+32/53*I,n=2 2584031045994479 p001 sum(1/(122*n+115)/n/(2^n),n=0..infinity) 2584031054886718 m005 (1/2*Zeta(3)-2/9)/(5/12*exp(1)+1/3) 2584031065058116 l006 ln(563/7460) 2584031068409809 a007 Real Root Of 242*x^4+367*x^3-546*x^2+376*x+160 2584031068680894 m001 MertensB1*(LambertW(1)+BesselK(0,1)) 2584031083300631 m001 (Pi^(1/2)+DuboisRaymond)/(Paris-ZetaP(3)) 2584031085271223 r005 Im(z^2+c),c=-67/114+2/41*I,n=30 2584031088705422 b008 Tan[1/129]/3 2584031089327542 b008 ArcCoth[129]/3 2584031098875960 r005 Im(z^2+c),c=-17/18+11/49*I,n=13 2584031115967887 r005 Re(z^2+c),c=-91/114+1/21*I,n=50 2584031117946527 m008 (5*Pi^4+1/3)/(3/5*Pi^5+5) 2584031124716219 r005 Re(z^2+c),c=-25/26+17/63*I,n=37 2584031144401271 m001 Artin-ArtinRank2+LandauRamanujan2nd 2584031145113709 a007 Real Root Of -516*x^4-937*x^3+978*x^2-405*x-738 2584031160580630 a001 1346269/2*11^(23/41) 2584031171260975 a007 Real Root Of -299*x^4-934*x^3-633*x^2-307*x+649 2584031196736297 m001 (Zeta(1,2)-exp(1))/(OrthogonalArrays+Trott) 2584031217538902 a007 Real Root Of -449*x^4+951*x^3-182*x^2+297*x-79 2584031218689958 a007 Real Root Of 442*x^4-314*x^3-327*x^2-502*x+155 2584031233389422 m008 (Pi-4)/(1/3*Pi^4+3/4) 2584031237625805 l006 ln(5779/7483) 2584031253885643 s001 sum(1/10^(n-1)*A250072[n]/n!^2,n=1..infinity) 2584031259668719 s001 sum(1/10^(n-1)*A130234[n]/n!^2,n=1..infinity) 2584031259668731 s001 sum(1/10^(n-1)*A227789[n]/n!^2,n=1..infinity) 2584031261597737 s001 sum(1/10^(n-1)*A217031[n]/n!^2,n=1..infinity) 2584031261601680 s001 sum(1/10^(n-1)*A004721[n]/n!^2,n=1..infinity) 2584031261601680 s001 sum(1/10^(n-1)*A179005[n]/n!^2,n=1..infinity) 2584031261601680 s001 sum(1/10^(n-1)*A184985[n]/n!^2,n=1..infinity) 2584031261601680 s001 sum(1/10^(n-1)*A052404[n]/n!^2,n=1..infinity) 2584031261601680 s001 sum(1/10^(n-1)*A072809[n]/n!^2,n=1..infinity) 2584031261601680 s001 sum(1/10^(n-1)*A039238[n]/n!^2,n=1..infinity) 2584031261601680 s001 sum(1/10^(n-1)*A262288[n]/n!^2,n=1..infinity) 2584031261601680 s001 sum(1/10^(n-1)*A047565[n]/n!^2,n=1..infinity) 2584031261601680 s001 sum(1/10^(n-1)*A039237[n]/n!^2,n=1..infinity) 2584031261601680 s001 sum(1/10^(n-1)*A039181[n]/n!^2,n=1..infinity) 2584031261601680 s001 sum(1/10^(n-1)*A047310[n]/n!^2,n=1..infinity) 2584031261601680 s001 sum(1/10^(n-1)*A039236[n]/n!^2,n=1..infinity) 2584031261601680 s001 sum(1/10^(n-1)*A039180[n]/n!^2,n=1..infinity) 2584031261601680 s001 sum(1/10^(n-1)*A039134[n]/n!^2,n=1..infinity) 2584031261601680 s001 sum(1/10^(n-1)*A158648[n]/n!^2,n=1..infinity) 2584031261601680 s001 sum(1/10^(n-1)*A261604[n]/n!^2,n=1..infinity) 2584031261601686 s001 sum(1/10^(n-1)*A039235[n]/n!^2,n=1..infinity) 2584031261601686 s001 sum(1/10^(n-1)*A047252[n]/n!^2,n=1..infinity) 2584031261601686 s001 sum(1/10^(n-1)*A039179[n]/n!^2,n=1..infinity) 2584031261601686 s001 sum(1/10^(n-1)*A039133[n]/n!^2,n=1..infinity) 2584031261601686 s001 sum(1/10^(n-1)*A253200[n]/n!^2,n=1..infinity) 2584031261601686 s001 sum(1/10^(n-1)*A039096[n]/n!^2,n=1..infinity) 2584031261601686 s001 sum(1/10^(n-1)*A081692[n]/n!^2,n=1..infinity) 2584031261601686 s001 sum(1/10^(n-1)*A139372[n]/n!^2,n=1..infinity) 2584031261601705 s001 sum(1/10^(n-1)*A052002[n]/n!^2,n=1..infinity) 2584031261605623 s001 sum(1/10^(n-1)*A197354[n]/n!^2,n=1..infinity) 2584031261605623 s001 sum(1/10^(n-1)*A039234[n]/n!^2,n=1..infinity) 2584031261605623 s001 sum(1/10^(n-1)*A001965[n]/n!^2,n=1..infinity) 2584031261605623 s001 sum(1/10^(n-1)*A039178[n]/n!^2,n=1..infinity) 2584031261605623 s001 sum(1/10^(n-1)*A099352[n]/n!^2,n=1..infinity) 2584031261605623 s001 sum(1/10^(n-1)*A039132[n]/n!^2,n=1..infinity) 2584031261605623 s001 sum(1/10^(n-1)*A047207[n]/n!^2,n=1..infinity) 2584031261605623 s001 sum(1/10^(n-1)*A241403[n]/n!^2,n=1..infinity) 2584031261605623 s001 sum(1/10^(n-1)*A039095[n]/n!^2,n=1..infinity) 2584031261605623 s001 sum(1/10^(n-1)*A001957[n]/n!^2,n=1..infinity) 2584031261605623 s001 sum(1/10^(n-1)*A219636[n]/n!^2,n=1..infinity) 2584031261605623 s001 sum(1/10^(n-1)*A047428[n]/n!^2,n=1..infinity) 2584031261605623 s001 sum(1/10^(n-1)*A218784[n]/n!^2,n=1..infinity) 2584031261605623 s001 sum(1/10^(n-1)*A039066[n]/n!^2,n=1..infinity) 2584031261605623 s001 sum(1/10^(n-1)*A197911[n]/n!^2,n=1..infinity) 2584031261605623 s001 sum(1/10^(n-1)*A191885[n]/n!^2,n=1..infinity) 2584031261605623 s001 sum(1/10^(n-1)*A139483[n]/n!^2,n=1..infinity) 2584031261605623 s001 sum(1/10^(n-1)*A023729[n]/n!^2,n=1..infinity) 2584031261605629 s001 sum(1/10^(n-1)*A202110[n]/n!^2,n=1..infinity) 2584031261605629 s001 sum(1/10^(n-1)*A194081[n]/n!^2,n=1..infinity) 2584031261605629 s001 sum(1/10^(n-1)*A073849[n]/n!^2,n=1..infinity) 2584031261605629 s001 sum(1/10^(n-1)*A198382[n]/n!^2,n=1..infinity) 2584031261605629 s001 sum(1/10^(n-1)*A167057[n]/n!^2,n=1..infinity) 2584031261605642 s001 sum(1/10^(n-1)*A288819[n]/n!^2,n=1..infinity) 2584031261609566 s001 sum(1/10^(n-1)*A266322[n]/n!^2,n=1..infinity) 2584031261609572 s001 sum(1/10^(n-1)*A228235[n]/n!^2,n=1..infinity) 2584031261609578 s001 sum(1/10^(n-1)*A105857[n]/n!^2,n=1..infinity) 2584031261621364 s001 sum(1/10^(n-1)*A181549[n]/n!^2,n=1..infinity) 2584031263534635 s001 sum(1/10^(n-1)*A039233[n]/n!^2,n=1..infinity) 2584031263534635 s001 sum(1/10^(n-1)*A039177[n]/n!^2,n=1..infinity) 2584031263534635 s001 sum(1/10^(n-1)*A058986[n]/n!^2,n=1..infinity) 2584031263534635 s001 sum(1/10^(n-1)*A039131[n]/n!^2,n=1..infinity) 2584031263534635 s001 sum(1/10^(n-1)*A191979[n]/n!^2,n=1..infinity) 2584031263534635 s001 sum(1/10^(n-1)*A081690[n]/n!^2,n=1..infinity) 2584031263534635 s001 sum(1/10^(n-1)*A081688[n]/n!^2,n=1..infinity) 2584031263534635 s001 sum(1/10^(n-1)*A039094[n]/n!^2,n=1..infinity) 2584031263534635 s001 sum(1/10^(n-1)*A042965[n]/n!^2,n=1..infinity) 2584031263534635 s001 sum(1/10^(n-1)*A039065[n]/n!^2,n=1..infinity) 2584031263534635 s001 sum(1/10^(n-1)*A035059[n]/n!^2,n=1..infinity) 2584031263534642 s001 sum(1/10^(n-1)*A063732[n]/n!^2,n=1..infinity) 2584031263534642 s001 sum(1/10^(n-1)*A047367[n]/n!^2,n=1..infinity) 2584031263534642 s001 sum(1/10^(n-1)*A039043[n]/n!^2,n=1..infinity) 2584031263534648 s001 sum(1/10^(n-1)*A131613[n]/n!^2,n=1..infinity) 2584031263534648 s001 sum(1/10^(n-1)*A268678[n]/n!^2,n=1..infinity) 2584031263534660 s001 sum(1/10^(n-1)*A174269[n]/n!^2,n=1..infinity) 2584031263538578 s001 sum(1/10^(n-1)*A153329[n]/n!^2,n=1..infinity) 2584031263538585 s001 sum(1/10^(n-1)*A190941[n]/n!^2,n=1..infinity) 2584031263538585 s001 sum(1/10^(n-1)*A049646[n]/n!^2,n=1..infinity) 2584031263538591 s001 sum(1/10^(n-1)*A063950[n]/n!^2,n=1..infinity) 2584031263538591 s001 sum(1/10^(n-1)*A010420[n]/n!^2,n=1..infinity) 2584031263542509 s001 sum(1/10^(n-1)*A105148[n]/n!^2,n=1..infinity) 2584031263546464 s001 sum(1/10^(n-1)*A057773[n]/n!^2,n=1..infinity) 2584031263546477 s001 sum(1/10^(n-1)*A076497[n]/n!^2,n=1..infinity) 2584031263550407 s001 sum(1/10^(n-1)*A023713[n]/n!^2,n=1..infinity) 2584031263554362 s001 sum(1/10^(n-1)*A079463[n]/n!^2,n=1..infinity) 2584031265442299 s001 sum(exp(-Pi/4)^(n-1)*A068309[n],n=1..infinity) 2584031265467591 s001 sum(1/10^(n-1)*A274231[n]/n!^2,n=1..infinity) 2584031265467591 s001 sum(1/10^(n-1)*A173999[n]/n!^2,n=1..infinity) 2584031265467591 s001 sum(1/10^(n-1)*A127427[n]/n!^2,n=1..infinity) 2584031265467597 s001 sum(1/10^(n-1)*A120631[n]/n!^2,n=1..infinity) 2584031265467597 s001 sum(1/10^(n-1)*A047601[n]/n!^2,n=1..infinity) 2584031265467603 s001 sum(1/10^(n-1)*A256173[n]/n!^2,n=1..infinity) 2584031265471534 s001 sum(1/10^(n-1)*A202104[n]/n!^2,n=1..infinity) 2584031265471534 s001 sum(1/10^(n-1)*A117483[n]/n!^2,n=1..infinity) 2584031265471546 s001 sum(1/10^(n-1)*A118250[n]/n!^2,n=1..infinity) 2584031265491248 s001 sum(1/10^(n-1)*A216888[n]/n!^2,n=1..infinity) 2584031265530684 s001 sum(1/10^(n-1)*A058983[n]/n!^2,n=1..infinity) 2584031267127090 m001 1/GAMMA(11/24)/exp(Tribonacci)*Pi 2584031267361111 s001 sum(1/10^(n-1)*A010375[n]/n!^2,n=1..infinity) 2584031267400546 s001 sum(1/10^(n-1)*A139531[n]/n!^2,n=1..infinity) 2584031267404489 s001 sum(1/10^(n-1)*A010384[n]/n!^2,n=1..infinity) 2584031267404489 s001 sum(1/10^(n-1)*A028954[n]/n!^2,n=1..infinity) 2584031267404520 s001 sum(1/10^(n-1)*A239197[n]/n!^2,n=1..infinity) 2584031267408432 s001 sum(1/10^(n-1)*A010422[n]/n!^2,n=1..infinity) 2584031267408432 s001 sum(1/10^(n-1)*A243654[n]/n!^2,n=1..infinity) 2584031267408432 s001 sum(1/10^(n-1)*A063953[n]/n!^2,n=1..infinity) 2584031267420261 s001 sum(1/10^(n-1)*A117125[n]/n!^2,n=1..infinity) 2584031271266457 s001 sum(1/10^(n-1)*A006288[n]/n!^2,n=1..infinity) 2584031271282228 s001 sum(1/10^(n-1)*A152911[n]/n!^2,n=1..infinity) 2584031280022929 s002 sum(A254411[n]/(n^2*pi^n+1),n=1..infinity) 2584031282907567 s001 sum(1/10^(n-1)*A174326[n]/n!^2,n=1..infinity) 2584031282931433 s001 sum(1/10^(n-1)*A224890[n]/n!^2,n=1..infinity) 2584031286412405 r009 Im(z^3+c),c=-31/70+11/16*I,n=3 2584031287639680 m001 GaussAGM^OrthogonalArrays-ReciprocalFibonacci 2584031291876777 r005 Im(z^2+c),c=-6/7+13/70*I,n=38 2584031294493500 s001 sum(1/10^(n-1)*A126896[n]/n!^2,n=1..infinity) 2584031296941147 m001 (MinimumGamma-Thue)/(ln(gamma)-Grothendieck) 2584031298318045 m005 (1/3*exp(1)+3/5)/(5*Zeta(3)-2/11) 2584031299933448 a007 Real Root Of -314*x^4-965*x^3-608*x^2-384*x+417 2584031304858190 l006 ln(559/7407) 2584031316307365 m001 (Bloch+Robbin)/(sin(1/12*Pi)-ArtinRank2) 2584031316788780 a007 Real Root Of 663*x^4-696*x^3-518*x^2-489*x+170 2584031329522990 r005 Re(z^2+c),c=-9/28+5/44*I,n=7 2584031343378049 m005 (1/2*gamma+7/9)/(17/22+3/2*5^(1/2)) 2584031344421727 m001 LaplaceLimit/(BesselK(1,1)+ReciprocalLucas) 2584031353780297 r005 Im(z^2+c),c=-73/114+17/54*I,n=25 2584031365105373 m001 GAMMA(7/12)^2/exp(Bloch)*sqrt(Pi) 2584031379510454 m001 cos(1/5*Pi)/(TreeGrowth2nd^(2^(1/2))) 2584031379524849 a007 Real Root Of 7*x^4-146*x^3+82*x^2+931*x-973 2584031388449411 m005 (1/2*gamma-2)/(12/35+1/7*5^(1/2)) 2584031397193608 m001 1/BesselJ(0,1)^2/Lehmer^2*ln(sin(Pi/5)) 2584031414051506 m001 1/Trott^2*RenyiParking^2/ln(Zeta(3)) 2584031415312144 a007 Real Root Of 391*x^4+634*x^3-921*x^2+339*x+532 2584031426674121 m001 Salem*(Artin+MasserGramainDelta) 2584031430566225 a007 Real Root Of -140*x^4-33*x^3+844*x^2+274*x+745 2584031443707217 r005 Re(z^2+c),c=-23/74+2/11*I,n=19 2584031447276469 a007 Real Root Of 121*x^4+155*x^3+78*x^2+949*x-789 2584031450340922 s001 sum(exp(-Pi/3)^n*A160580[n],n=1..infinity) 2584031450464230 m001 (ln(Pi)+BesselI(1,2))/(Grothendieck-Sarnak) 2584031454262400 m001 (PlouffeB-Tribonacci)/(ln(2)+Zeta(1,-1)) 2584031479954225 m001 (3^(1/3)-Cahen)/(HardyLittlewoodC4+ZetaQ(4)) 2584031484080780 a007 Real Root Of 21*x^4+527*x^3-370*x^2+853*x-870 2584031486041919 a007 Real Root Of 122*x^4-775*x^3+346*x^2-801*x-244 2584031500029215 m005 (1/2*gamma-3/7)/(3/7*5^(1/2)-5/12) 2584031503914011 m001 (BesselI(1,1)-Gompertz)/(Kolakoski+ThueMorse) 2584031504671162 m001 (Pi^(1/2))^MertensB3+TreeGrowth2nd 2584031505195524 r009 Re(z^3+c),c=-29/70+15/31*I,n=34 2584031520345923 s002 sum(A030527[n]/(10^n+1),n=1..infinity) 2584031534534156 r005 Im(z^2+c),c=-93/122+11/47*I,n=6 2584031536490028 r009 Re(z^3+c),c=-10/17+27/35*I,n=2 2584031541015505 r005 Re(z^2+c),c=-18/17+9/35*I,n=26 2584031545693563 r005 Im(z^2+c),c=1/102+47/58*I,n=3 2584031547721699 a007 Real Root Of 673*x^4+537*x^3-107*x^2-733*x-176 2584031548114782 l006 ln(555/7354) 2584031550494096 r005 Im(z^2+c),c=-6/7+21/92*I,n=4 2584031572600930 m001 FeigenbaumKappa/exp(Niven)^2*gamma 2584031573839567 m008 (5*Pi^5-1/4)/(1/5*Pi^5-2) 2584031574609013 r002 20th iterates of z^2 + 2584031579259078 m001 1/DuboisRaymond*ln(Cahen)^2*Sierpinski 2584031579627252 a007 Real Root Of 417*x^4+969*x^3-63*x^2+769*x+535 2584031583191633 a007 Real Root Of 114*x^4-581*x^3+719*x^2-590*x-211 2584031585204691 a003 sin(Pi*37/105)/cos(Pi*31/80) 2584031585365078 r005 Im(z^2+c),c=-113/122+15/62*I,n=8 2584031591950391 m001 Salem/(Artin+StolarskyHarborth) 2584031592363247 h001 (2/5*exp(1)+3/11)/(7/10*exp(2)+1/11) 2584031608967368 r005 Re(z^2+c),c=-89/114+4/43*I,n=6 2584031618433627 m001 exp(1/exp(1))^Ei(1)+Stephens 2584031621307228 l006 ln(3483/4510) 2584031635468397 m001 (GAMMA(3/4)+FeigenbaumDelta)/(Niven+Stephens) 2584031635476469 b008 1/4+ArcCot[119] 2584031656892812 r005 Re(z^2+c),c=-7/25+13/43*I,n=9 2584031659755926 r009 Re(z^3+c),c=-11/28+15/34*I,n=28 2584031660096260 m005 (1/2*gamma-5/7)/(11/12*Zeta(3)+6/11) 2584031663236885 m008 (3/4*Pi^3+5/6)/(3*Pi^3+1/5) 2584031665141212 m001 Sierpinski-Stephens*ZetaQ(4) 2584031680701186 a007 Real Root Of 289*x^4+493*x^3-525*x^2+319*x-49 2584031683056731 m001 1/Kolakoski/ln(Conway)/FeigenbaumKappa^2 2584031683694737 a007 Real Root Of -32*x^4+152*x^3+585*x^2+212*x+691 2584031685485801 a007 Real Root Of -428*x^4-767*x^3+578*x^2-781*x-29 2584031692571644 h001 (6/7*exp(1)+2/9)/(1/9*exp(2)+1/6) 2584031694603228 r009 Re(z^3+c),c=-10/27+34/57*I,n=2 2584031719006846 r005 Re(z^2+c),c=-11/34+3/49*I,n=14 2584031732413125 a003 cos(Pi*1/21)*cos(Pi*42/101) 2584031742770624 m004 3+E^(Sqrt[5]*Pi)/5+750*Pi 2584031744717334 r005 Im(z^2+c),c=-7/10+3/76*I,n=61 2584031749812730 r002 32th iterates of z^2 + 2584031751918671 r005 Re(z^2+c),c=-17/74+45/56*I,n=3 2584031758347131 m001 (Pi+gamma)/(ln(3)+PolyaRandomWalk3D) 2584031768187182 m004 5*Pi+15*Sin[Sqrt[5]*Pi] 2584031773927084 r005 Re(z^2+c),c=-17/66+19/47*I,n=9 2584031774025374 m001 (Totient+ZetaQ(3))/(ln(gamma)-FeigenbaumDelta) 2584031779556441 r005 Re(z^2+c),c=-11/36+10/47*I,n=14 2584031794903171 l006 ln(551/7301) 2584031795209161 a007 Real Root Of -389*x^4-627*x^3+489*x^2-942*x+826 2584031796374469 a007 Real Root Of -372*x^4-756*x^3+164*x^2-744*x+524 2584031804760004 r009 Re(z^3+c),c=-17/90+34/45*I,n=22 2584031808904484 r009 Im(z^3+c),c=-49/90+2/15*I,n=37 2584031833142231 a007 Real Root Of 338*x^4-321*x^3+581*x^2-247*x+6 2584031837195308 r005 Im(z^2+c),c=-7/10+3/164*I,n=33 2584031838690290 a007 Real Root Of 636*x^4+270*x^3+426*x^2-640*x-192 2584031839932132 a005 (1/sin(101/221*Pi))^1866 2584031847947743 r005 Re(z^2+c),c=-15/29+19/36*I,n=8 2584031855832280 m001 exp(Conway)*ErdosBorwein^2*exp(1) 2584031858401646 r009 Im(z^3+c),c=-9/34+15/64*I,n=11 2584031860874436 m001 (exp(1/Pi)+Cahen)/(BesselK(0,1)-Zeta(3)) 2584031871268187 a001 47/17711*225851433717^(19/24) 2584031880894411 m005 (-11/36+1/4*5^(1/2))/(5/8*5^(1/2)-5/12) 2584031883886616 r002 36th iterates of z^2 + 2584031887908294 r005 Re(z^2+c),c=3/14+4/55*I,n=24 2584031894731924 a007 Real Root Of -90*x^4-399*x^3-217*x^2+743*x+200 2584031895930005 r005 Im(z^2+c),c=-41/114+23/58*I,n=8 2584031908617926 g005 1/GAMMA(7/11)/GAMMA(4/7)^2/GAMMA(5/6) 2584031916351157 m001 (cos(1)+ReciprocalLucas)^MertensB2 2584031918097281 m005 (1/2*gamma-1/7)/(-53/9+1/9*5^(1/2)) 2584031919832678 a008 Real Root of x^5-x^4-5*x^3+10*x^2-3*x-1 2584031928766491 m001 BesselJZeros(0,1)*ln(3)^LandauRamanujan 2584031932801582 a007 Real Root Of -373*x^4-957*x^3-410*x^2-830*x+711 2584031934846201 a007 Real Root Of 421*x^4+722*x^3-881*x^2-205*x-960 2584031937301818 r005 Im(z^2+c),c=-41/122+17/43*I,n=9 2584031938242638 a007 Real Root Of -360*x^4-759*x^3+455*x^2+4*x-73 2584031939258309 r005 Im(z^2+c),c=-17/78+21/52*I,n=8 2584031946432514 s001 sum(1/10^(n-1)*A125776[n]/n!^2,n=1..infinity) 2584031948354586 m001 1/Lehmer/ln(LaplaceLimit)/(2^(1/3))^2 2584031952035053 a007 Real Root Of 295*x^4+863*x^3+557*x^2+768*x+3 2584031956046125 s001 sum(1/10^(n-1)*A217032[n]/n!^2,n=1..infinity) 2584031957967276 s001 sum(1/10^(n-1)*A167161[n]/n!^2,n=1..infinity) 2584031957979080 s001 sum(1/10^(n-1)*A078923[n]/n!^2,n=1..infinity) 2584031957979080 s001 sum(1/10^(n-1)*A039232[n]/n!^2,n=1..infinity) 2584031957979080 s001 sum(1/10^(n-1)*A039176[n]/n!^2,n=1..infinity) 2584031957979080 s001 sum(1/10^(n-1)*A066533[n]/n!^2,n=1..infinity) 2584031957979080 s001 sum(1/10^(n-1)*A039130[n]/n!^2,n=1..infinity) 2584031957979080 s001 sum(1/10^(n-1)*A039093[n]/n!^2,n=1..infinity) 2584031957979080 s001 sum(1/10^(n-1)*A047517[n]/n!^2,n=1..infinity) 2584031957979080 s001 sum(1/10^(n-1)*A039064[n]/n!^2,n=1..infinity) 2584031957979080 s001 sum(1/10^(n-1)*A075747[n]/n!^2,n=1..infinity) 2584031957979086 s001 sum(1/10^(n-1)*A047299[n]/n!^2,n=1..infinity) 2584031957979086 s001 sum(1/10^(n-1)*A022846[n]/n!^2,n=1..infinity) 2584031957979086 s001 sum(1/10^(n-1)*A039042[n]/n!^2,n=1..infinity) 2584031957979086 s001 sum(1/10^(n-1)*A127260[n]/n!^2,n=1..infinity) 2584031957979092 s001 sum(1/10^(n-1)*A201820[n]/n!^2,n=1..infinity) 2584031957982961 s001 sum(1/10^(n-1)*A275672[n]/n!^2,n=1..infinity) 2584031957983023 s001 sum(1/10^(n-1)*A246443[n]/n!^2,n=1..infinity) 2584031957983023 s001 sum(1/10^(n-1)*A032766[n]/n!^2,n=1..infinity) 2584031957983023 s001 sum(1/10^(n-1)*A258574[n]/n!^2,n=1..infinity) 2584031957983023 s001 sum(1/10^(n-1)*A140758[n]/n!^2,n=1..infinity) 2584031957983023 s001 sum(1/10^(n-1)*A026315[n]/n!^2,n=1..infinity) 2584031957983023 s001 sum(1/10^(n-1)*A126332[n]/n!^2,n=1..infinity) 2584031957983023 s001 sum(1/10^(n-1)*A039026[n]/n!^2,n=1..infinity) 2584031957983023 s001 sum(1/10^(n-1)*A123540[n]/n!^2,n=1..infinity) 2584031957983029 s001 sum(1/10^(n-1)*A065313[n]/n!^2,n=1..infinity) 2584031957983029 s001 sum(1/10^(n-1)*A056576[n]/n!^2,n=1..infinity) 2584031957983029 s001 sum(1/10^(n-1)*A172272[n]/n!^2,n=1..infinity) 2584031957983029 s001 sum(1/10^(n-1)*A006855[n]/n!^2,n=1..infinity) 2584031957983035 s001 sum(1/10^(n-1)*A089038[n]/n!^2,n=1..infinity) 2584031957986960 s001 sum(1/10^(n-1)*A135215[n]/n!^2,n=1..infinity) 2584031957986966 s001 sum(1/10^(n-1)*A092494[n]/n!^2,n=1..infinity) 2584031957986966 s001 sum(1/10^(n-1)*A093579[n]/n!^2,n=1..infinity) 2584031957986966 s001 sum(1/10^(n-1)*A060832[n]/n!^2,n=1..infinity) 2584031957986966 s001 sum(1/10^(n-1)*A191926[n]/n!^2,n=1..infinity) 2584031957986978 s001 sum(1/10^(n-1)*A108588[n]/n!^2,n=1..infinity) 2584031957986984 s001 sum(1/10^(n-1)*A194095[n]/n!^2,n=1..infinity) 2584031957994852 s001 sum(1/10^(n-1)*A153883[n]/n!^2,n=1..infinity) 2584031957994852 s001 sum(1/10^(n-1)*A105133[n]/n!^2,n=1..infinity) 2584031958687619 a007 Real Root Of 340*x^4+571*x^3-116*x^2-813*x-194 2584031959912035 s001 sum(1/10^(n-1)*A099356[n]/n!^2,n=1..infinity) 2584031959912041 s001 sum(1/10^(n-1)*A161579[n]/n!^2,n=1..infinity) 2584031959912041 s001 sum(1/10^(n-1)*A047416[n]/n!^2,n=1..infinity) 2584031959912041 s001 sum(1/10^(n-1)*A085270[n]/n!^2,n=1..infinity) 2584031959912041 s001 sum(1/10^(n-1)*A066096[n]/n!^2,n=1..infinity) 2584031959912041 s001 sum(1/10^(n-1)*A061402[n]/n!^2,n=1..infinity) 2584031959912041 s001 sum(1/10^(n-1)*A133280[n]/n!^2,n=1..infinity) 2584031959915910 s001 sum(1/10^(n-1)*A135251[n]/n!^2,n=1..infinity) 2584031959915984 s001 sum(1/10^(n-1)*A058992[n]/n!^2,n=1..infinity) 2584031959915984 s001 sum(1/10^(n-1)*A215476[n]/n!^2,n=1..infinity) 2584031959915984 s001 sum(1/10^(n-1)*A156624[n]/n!^2,n=1..infinity) 2584031959915984 s001 sum(1/10^(n-1)*A206580[n]/n!^2,n=1..infinity) 2584031959916003 s001 sum(1/10^(n-1)*A109441[n]/n!^2,n=1..infinity) 2584031961844997 s001 sum(1/10^(n-1)*A102342[n]/n!^2,n=1..infinity) 2584031961844997 s001 sum(1/10^(n-1)*A014419[n]/n!^2,n=1..infinity) 2584031961844997 s001 sum(1/10^(n-1)*A138670[n]/n!^2,n=1..infinity) 2584031961844997 s001 sum(1/10^(n-1)*A080336[n]/n!^2,n=1..infinity) 2584031961845003 s001 sum(1/10^(n-1)*A101448[n]/n!^2,n=1..infinity) 2584031961845015 s001 sum(1/10^(n-1)*A034706[n]/n!^2,n=1..infinity) 2584031961845015 s001 sum(1/10^(n-1)*A245810[n]/n!^2,n=1..infinity) 2584031961848933 s001 sum(1/10^(n-1)*A087805[n]/n!^2,n=1..infinity) 2584031961848933 s001 sum(1/10^(n-1)*A173318[n]/n!^2,n=1..infinity) 2584031961848933 s001 sum(1/10^(n-1)*A034027[n]/n!^2,n=1..infinity) 2584031961848946 s001 sum(1/10^(n-1)*A094345[n]/n!^2,n=1..infinity) 2584031961852876 s001 sum(1/10^(n-1)*A010430[n]/n!^2,n=1..infinity) 2584031961852895 s001 sum(1/10^(n-1)*A182531[n]/n!^2,n=1..infinity) 2584031961856831 s001 sum(1/10^(n-1)*A032720[n]/n!^2,n=1..infinity) 2584031961876565 s001 sum(1/10^(n-1)*A018830[n]/n!^2,n=1..infinity) 2584031963781889 s001 sum(1/10^(n-1)*A137951[n]/n!^2,n=1..infinity) 2584031963793755 s001 sum(1/10^(n-1)*A099417[n]/n!^2,n=1..infinity) 2584031965710938 s001 sum(1/10^(n-1)*A115018[n]/n!^2,n=1..infinity) 2584031969580767 s001 sum(1/10^(n-1)*A102733[n]/n!^2,n=1..infinity) 2584031975059438 r005 Im(z^2+c),c=5/62+8/33*I,n=3 2584031977024591 m001 exp(Pi)*Shi(1)+exp(1/Pi) 2584031983686355 m001 (GAMMA(17/24)-gamma)/(Khinchin+ZetaQ(2)) 2584031986478102 r005 Re(z^2+c),c=-37/122+11/49*I,n=14 2584031990742949 m001 GaussAGM^Salem*Khinchin^Salem 2584031996009862 r005 Re(z^2+c),c=7/90+18/53*I,n=35 2584032000058787 r005 Im(z^2+c),c=-5/6+37/236*I,n=9 2584032004831769 m002 -(E^Pi*Pi^2)-Pi^3+Tanh[Pi]^2 2584032011725214 a007 Real Root Of 144*x^4+200*x^3-237*x^2+404*x-343 2584032012920985 r005 Re(z^2+c),c=-13/40+1/55*I,n=13 2584032014608245 m001 FeigenbaumD/(Gompertz^gamma(1)) 2584032019885085 m001 GolombDickman*Totient+MadelungNaCl 2584032022868736 r005 Re(z^2+c),c=-11/58+24/43*I,n=63 2584032024087979 h001 (7/12*exp(2)+5/7)/(1/7*exp(2)+8/9) 2584032024856039 r009 Im(z^3+c),c=-23/44+8/45*I,n=29 2584032034588642 r005 Im(z^2+c),c=-55/86+1/22*I,n=39 2584032041672545 m009 (3/5*Psi(1,3/4)+1/4)/(Pi^2-3) 2584032042180745 r005 Re(z^2+c),c=-5/6+49/198*I,n=4 2584032044152544 m001 exp(1/Pi)^Cahen/Weierstrass 2584032045300834 l006 ln(547/7248) 2584032046674394 a007 Real Root Of -487*x^4-920*x^3+832*x^2+98*x+537 2584032062742504 r005 Re(z^2+c),c=-111/110+5/36*I,n=26 2584032071867201 a007 Real Root Of -47*x^4+83*x^3-681*x^2+522*x+182 2584032073784478 a007 Real Root Of 119*x^4+426*x^3+651*x^2+836*x-142 2584032079763364 s001 sum(1/10^(n-1)*A256326[n]/n!^2,n=1..infinity) 2584032092332988 a003 sin(Pi*6/79)/sin(Pi*43/117) 2584032095820457 p004 log(36187/2731) 2584032096102699 l006 ln(4670/6047) 2584032099233085 a001 8/843*3571^(6/49) 2584032129544363 m005 (1/2*exp(1)-5/7)/(7/11*Catalan-1/3) 2584032142166871 r005 Im(z^2+c),c=-97/118+7/39*I,n=5 2584032145984078 a007 Real Root Of 26*x^4-990*x^3-756*x^2-780*x+269 2584032149487798 r009 Im(z^3+c),c=-29/62+4/43*I,n=57 2584032150383244 m001 1/GAMMA(7/12)*GAMMA(11/12)^2/exp(Zeta(5)) 2584032183876300 r002 50th iterates of z^2 + 2584032185850378 a001 9/5473*121393^(4/17) 2584032190080187 a001 18/75025*433494437^(4/17) 2584032190170048 a001 18/514229*1548008755920^(4/17) 2584032196894525 m001 1/ln((2^(1/3)))^2*Backhouse/GAMMA(11/12) 2584032198757589 r005 Im(z^2+c),c=-19/36+3/7*I,n=17 2584032211410468 r008 a(0)=0,K{-n^6,-63+11*n^3-25*n^2+45*n} 2584032224197366 b008 Gamma[4*Sech[Pi]] 2584032230263821 m002 -Pi+4*Pi^5-Pi^6-Log[Pi] 2584032231561332 a007 Real Root Of -221*x^4+417*x^3-997*x^2+922*x+313 2584032235598552 h001 (3/4*exp(2)+1/5)/(7/12*exp(1)+7/11) 2584032238588021 r005 Re(z^2+c),c=-9/122+24/47*I,n=5 2584032266423956 m001 (Otter+Sarnak)/(2^(1/2)-gamma(2)) 2584032267289116 r002 26th iterates of z^2 + 2584032271535359 a007 Real Root Of 217*x^4+312*x^3-797*x^2-286*x+291 2584032275304837 m006 (3*exp(2*Pi)-1/4)/(3/Pi-1/3) 2584032276604873 r004 Im(z^2+c),c=-1/10+1/3*I,z(0)=I,n=16 2584032281823470 m001 BesselI(0,2)^Niven/(Mills^Niven) 2584032285817115 m001 FeigenbaumC/(arctan(1/3)^GaussKuzminWirsing) 2584032293689362 a005 (1/cos(19/175*Pi))^16 2584032294020403 m005 (-1/30+1/6*5^(1/2))/(7/10*gamma-3/11) 2584032299387532 l006 ln(543/7195) 2584032315052124 r009 Re(z^3+c),c=-27/50+7/43*I,n=44 2584032323453259 r002 9th iterates of z^2 + 2584032345295914 a001 2207/3*8^(29/48) 2584032347302606 r009 Re(z^3+c),c=-3/19+59/64*I,n=64 2584032354550706 r005 Re(z^2+c),c=-13/58+27/56*I,n=54 2584032365101051 r005 Re(z^2+c),c=-27/94+13/44*I,n=26 2584032365572458 m004 -2+5*Pi-5*Sqrt[5]*Pi-6*Cos[Sqrt[5]*Pi] 2584032366127247 r005 Re(z^2+c),c=-23/38+43/64*I,n=9 2584032370361590 m001 (-Gompertz+ZetaP(2))/(Cahen-Psi(2,1/3)) 2584032374207918 s002 sum(A016311[n]/(16^n-1),n=1..infinity) 2584032374736819 m006 (3*exp(2*Pi)+2)/(5/6*Pi^2-2) 2584032375958803 r005 Re(z^2+c),c=-15/58+17/37*I,n=8 2584032377813064 r009 Im(z^3+c),c=-19/32+10/47*I,n=5 2584032378450754 l006 ln(5857/7584) 2584032380402254 r009 Re(z^3+c),c=-49/118+29/60*I,n=41 2584032386949853 a001 987/64079*199^(30/31) 2584032402073457 p004 log(35869/2707) 2584032404655935 s001 sum(exp(-Pi/4)^n*A072304[n],n=1..infinity) 2584032413681162 a001 105937/6*47^(23/33) 2584032418242120 a007 Real Root Of 67*x^4+191*x^3-37*x^2-314*x-256 2584032420177606 m005 (1/2*Zeta(3)+1/11)/(4/5*5^(1/2)+8/9) 2584032431207329 a001 6765/521*322^(11/12) 2584032435385116 a001 3/3010349*199^(9/50) 2584032435552010 a001 7/13*21^(17/33) 2584032436655295 m005 (1/3*exp(1)-1/11)/(2/3*3^(1/2)+2) 2584032447785997 m001 Gompertz/BesselI(0,1)/MasserGramainDelta 2584032449969765 r005 Im(z^2+c),c=-4/17+20/49*I,n=3 2584032455091925 m001 (ln(2)/ln(10)*Salem+Khinchin)/Salem 2584032455644600 r009 Im(z^3+c),c=-2/27+3/11*I,n=5 2584032458382316 m005 (1/3*2^(1/2)-1/10)/(3/7*Pi+1/11) 2584032488010800 m001 (ErdosBorwein-Khinchin)/(Ei(1)+BesselI(0,2)) 2584032494514604 r005 Im(z^2+c),c=-43/78+13/34*I,n=24 2584032503367610 m005 (1/3*5^(1/2)-1/2)/(7/8*gamma+4/9) 2584032514857440 m001 Landau/(Riemann2ndZero+ZetaQ(4)) 2584032517359010 r005 Im(z^2+c),c=-2/7+14/17*I,n=6 2584032518122059 p001 sum(1/(175*n+39)/(24^n),n=0..infinity) 2584032526576349 a007 Real Root Of 28*x^4-402*x^3-849*x^2+977*x+9 2584032528258537 m009 (3*Psi(1,3/4)-1/6)/(5/6*Psi(1,2/3)+1/3) 2584032530432268 a007 Real Root Of -773*x^4+8*x^3+643*x^2+818*x-251 2584032535486248 a007 Real Root Of -201*x^4-679*x^3-701*x^2-438*x+795 2584032546701951 a007 Real Root Of 225*x^4-382*x^3-355*x^2-471*x+151 2584032557245396 l006 ln(539/7142) 2584032565433298 m001 Rabbit*LaplaceLimit*ln(sqrt(3)) 2584032565640616 l006 ln(7044/9121) 2584032578469427 r009 Re(z^3+c),c=-23/60+8/19*I,n=35 2584032588402652 p001 sum(1/(456*n+403)/(12^n),n=0..infinity) 2584032600308641 r004 Re(z^2+c),c=-7/24+1/24*I,z(0)=-1,n=3 2584032610488564 r009 Re(z^3+c),c=-35/78+33/62*I,n=45 2584032612972098 r002 19th iterates of z^2 + 2584032624450448 b008 1/4+ArcCsch[119] 2584032625383380 m001 Pi*LaplaceLimit^Weierstrass 2584032631164273 a007 Real Root Of 64*x^4-311*x^3-194*x^2-988*x-248 2584032645780674 s002 sum(A262250[n]/(pi^n+1),n=1..infinity) 2584032652431416 s001 sum(1/10^(n-1)*A261368[n]/n!^2,n=1..infinity) 2584032654356480 s001 sum(1/10^(n-1)*A232779[n]/n!^2,n=1..infinity) 2584032654356480 s001 sum(1/10^(n-1)*A080722[n]/n!^2,n=1..infinity) 2584032654356486 s001 sum(1/10^(n-1)*A075821[n]/n!^2,n=1..infinity) 2584032654356486 s001 sum(1/10^(n-1)*A100991[n]/n!^2,n=1..infinity) 2584032654356486 s001 sum(1/10^(n-1)*A047545[n]/n!^2,n=1..infinity) 2584032654356486 s001 sum(1/10^(n-1)*A192052[n]/n!^2,n=1..infinity) 2584032654356492 s001 sum(1/10^(n-1)*A205647[n]/n!^2,n=1..infinity) 2584032654356498 s001 sum(1/10^(n-1)*A109054[n]/n!^2,n=1..infinity) 2584032654360423 s001 sum(1/10^(n-1)*A047344[n]/n!^2,n=1..infinity) 2584032654360423 s001 sum(1/10^(n-1)*A005187[n]/n!^2,n=1..infinity) 2584032654360423 s001 sum(1/10^(n-1)*A242921[n]/n!^2,n=1..infinity) 2584032654360435 s001 sum(1/10^(n-1)*A032788[n]/n!^2,n=1..infinity) 2584032654364378 s001 sum(1/10^(n-1)*A050122[n]/n!^2,n=1..infinity) 2584032654364384 s001 sum(1/10^(n-1)*A179016[n]/n!^2,n=1..infinity) 2584032654364390 s001 sum(1/10^(n-1)*A192051[n]/n!^2,n=1..infinity) 2584032654368296 s001 sum(1/10^(n-1)*A078823[n]/n!^2,n=1..infinity) 2584032654368308 s001 sum(1/10^(n-1)*A165157[n]/n!^2,n=1..infinity) 2584032654380137 s001 sum(1/10^(n-1)*A037013[n]/n!^2,n=1..infinity) 2584032656289435 s001 sum(1/10^(n-1)*A010444[n]/n!^2,n=1..infinity) 2584032656289435 s001 sum(1/10^(n-1)*A010398[n]/n!^2,n=1..infinity) 2584032656289435 s001 sum(1/10^(n-1)*A010435[n]/n!^2,n=1..infinity) 2584032656289441 s001 sum(1/10^(n-1)*A026140[n]/n!^2,n=1..infinity) 2584032656289441 s001 sum(1/10^(n-1)*A233010[n]/n!^2,n=1..infinity) 2584032656289484 s001 sum(1/10^(n-1)*A274794[n]/n!^2,n=1..infinity) 2584032656293378 s001 sum(1/10^(n-1)*A095043[n]/n!^2,n=1..infinity) 2584032656293384 s001 sum(1/10^(n-1)*A191978[n]/n!^2,n=1..infinity) 2584032656293390 s001 sum(1/10^(n-1)*A077025[n]/n!^2,n=1..infinity) 2584032656297321 s001 sum(1/10^(n-1)*A032729[n]/n!^2,n=1..infinity) 2584032656297321 s001 sum(1/10^(n-1)*A003136[n]/n!^2,n=1..infinity) 2584032656297321 s001 sum(1/10^(n-1)*A034022[n]/n!^2,n=1..infinity) 2584032656297321 s001 sum(1/10^(n-1)*A198772[n]/n!^2,n=1..infinity) 2584032656297327 s001 sum(1/10^(n-1)*A246514[n]/n!^2,n=1..infinity) 2584032656297333 s001 sum(1/10^(n-1)*A060142[n]/n!^2,n=1..infinity) 2584032656297339 s001 sum(1/10^(n-1)*A244952[n]/n!^2,n=1..infinity) 2584032656297352 s001 sum(1/10^(n-1)*A005539[n]/n!^2,n=1..infinity) 2584032656301264 s001 sum(1/10^(n-1)*A203623[n]/n!^2,n=1..infinity) 2584032656305213 s001 sum(1/10^(n-1)*A140208[n]/n!^2,n=1..infinity) 2584032656309168 s001 sum(1/10^(n-1)*A158911[n]/n!^2,n=1..infinity) 2584032656309180 s001 sum(1/10^(n-1)*A086772[n]/n!^2,n=1..infinity) 2584032656313099 s001 sum(1/10^(n-1)*A281734[n]/n!^2,n=1..infinity) 2584032656334039 s001 sum(1/10^(n-1)*A101062[n]/n!^2,n=1..infinity) 2584032656596972 a007 Real Root Of 103*x^4-24*x^3-928*x^2-108*x+911 2584032658226333 s001 sum(1/10^(n-1)*A137294[n]/n!^2,n=1..infinity) 2584032658230282 s001 sum(1/10^(n-1)*A108855[n]/n!^2,n=1..infinity) 2584032660159307 s001 sum(1/10^(n-1)*A023563[n]/n!^2,n=1..infinity) 2584032660171136 s001 sum(1/10^(n-1)*A166375[n]/n!^2,n=1..infinity) 2584032661548078 a007 Real Root Of 304*x^4+331*x^3-904*x^2+739*x+103 2584032662072547 s001 sum(1/10^(n-1)*A132111[n]/n!^2,n=1..infinity) 2584032662084395 s001 sum(1/10^(n-1)*A164831[n]/n!^2,n=1..infinity) 2584032662088307 s001 sum(1/10^(n-1)*A085188[n]/n!^2,n=1..infinity) 2584032662096187 s001 sum(1/10^(n-1)*A051215[n]/n!^2,n=1..infinity) 2584032662096187 s001 sum(1/10^(n-1)*A192112[n]/n!^2,n=1..infinity) 2584032662127847 s001 sum(1/10^(n-1)*A049859[n]/n!^2,n=1..infinity) 2584032664041026 s001 sum(1/10^(n-1)*A193883[n]/n!^2,n=1..infinity) 2584032664060802 s001 sum(1/10^(n-1)*A282718[n]/n!^2,n=1..infinity) 2584032667887173 s001 sum(1/10^(n-1)*A070035[n]/n!^2,n=1..infinity) 2584032668225014 m001 (Niven+Salem)/(Psi(1,1/3)+GAMMA(11/12)) 2584032671749091 s001 sum(1/10^(n-1)*A078825[n]/n!^2,n=1..infinity) 2584032673709795 s001 sum(1/10^(n-1)*A093611[n]/n!^2,n=1..infinity) 2584032681437630 s001 sum(1/10^(n-1)*A056655[n]/n!^2,n=1..infinity) 2584032689491650 a007 Real Root Of 615*x^4+938*x^3+621*x^2-503*x-158 2584032692398709 r005 Im(z^2+c),c=-15/38+17/39*I,n=61 2584032711275919 r005 Im(z^2+c),c=-55/56+1/40*I,n=4 2584032722577504 a003 sin(Pi*9/119)/cos(Pi*13/96) 2584032735759612 a008 Real Root of x^4-x^3+x^2-12*x-3 2584032763409920 b008 (13*Sech[1/9])/5 2584032771571075 m001 (-Pi^(1/2)+4)/(-GAMMA(7/12)+2/3) 2584032787051890 r002 3th iterates of z^2 + 2584032787181416 a007 Real Root Of 57*x^4-210*x^3-908*x^2+99*x+154 2584032788384686 a007 Real Root Of 829*x^4-478*x^3-64*x^2-307*x-87 2584032788676955 m001 (Pi-sin(1))/(ln(2^(1/2)+1)+ZetaQ(3)) 2584032793680195 r005 Re(z^2+c),c=9/26+15/61*I,n=30 2584032805420275 p001 sum(1/(425*n+406)/n/(5^n),n=1..infinity) 2584032812444597 r005 Im(z^2+c),c=-11/21+27/64*I,n=39 2584032818959010 l006 ln(535/7089) 2584032827655311 a007 Real Root Of 328*x^4+402*x^3-870*x^2+900*x+447 2584032839521968 a001 2584/167761*199^(30/31) 2584032858418887 a007 Real Root Of 874*x^4+697*x^3+413*x^2-869*x-244 2584032860443765 r005 Im(z^2+c),c=-13/62+3/8*I,n=24 2584032863776174 m005 (1/2*Catalan+7/8)/(17/176+3/16*5^(1/2)) 2584032867567760 a007 Real Root Of 370*x^4-608*x^3-6*x^2-864*x-235 2584032868154864 r005 Re(z^2+c),c=-15/58+9/23*I,n=39 2584032881447518 r002 21th iterates of z^2 + 2584032881605658 a001 9/305*102334155^(2/17) 2584032898165885 m001 (arctan(1/2)-Gompertz)/(LaplaceLimit-Salem) 2584032905551350 a001 6765/439204*199^(30/31) 2584032915184906 a001 17711/1149851*199^(30/31) 2584032916590423 a001 46368/3010349*199^(30/31) 2584032916922221 a001 75025/4870847*199^(30/31) 2584032917459081 a001 28657/1860498*199^(30/31) 2584032921138772 a001 10946/710647*199^(30/31) 2584032922858691 r009 Re(z^3+c),c=-33/82+27/59*I,n=24 2584032942651629 m005 (1/3*gamma+1/11)/(4*exp(1)+1/11) 2584032946359752 a001 4181/271443*199^(30/31) 2584032946709878 a001 9/5473*165580141^(7/18) 2584032951028369 a001 6/105937*956722026041^(7/18) 2584032962289550 m001 (-Rabbit+Trott2nd)/(BesselI(0,1)+exp(1/Pi)) 2584032966784155 b008 4+3*Sqrt[53] 2584032971276225 m005 (1/2*gamma-8/11)/(2/7*Pi+4/5) 2584032977509127 m001 1/ln(GAMMA(1/4))*Rabbit/Zeta(1/2)^2 2584032994669643 a007 Real Root Of -105*x^4+91*x^3+767*x^2-704*x-689 2584033003839876 a007 Real Root Of -231*x^4-489*x^3+136*x^2-700*x-855 2584033004070454 h001 (1/4*exp(2)+1/11)/(11/12*exp(2)+8/11) 2584033010763036 a007 Real Root Of 167*x^4+119*x^3-677*x^2+36*x-779 2584033014637612 a007 Real Root Of 272*x^4+275*x^3-800*x^2+530*x-671 2584033016461152 m001 Riemann3rdZero/GAMMA(2/3)/TravellingSalesman 2584033025746770 m001 GAMMA(2/3)-MertensB2^FeigenbaumD 2584033031952809 m001 GAMMA(1/4)^2/GAMMA(1/24)*exp(GAMMA(7/12)) 2584033042098983 m001 (Riemann3rdZero+Salem)/(BesselI(1,2)-gamma) 2584033050322491 a007 Real Root Of -814*x^4+622*x^3-804*x^2+530*x+205 2584033064624678 m001 (KhinchinLevy+Paris)/(ln(2)-Cahen) 2584033065670466 r009 Re(z^3+c),c=-13/32+20/43*I,n=32 2584033075326464 a007 Real Root Of 572*x^4-21*x^3+566*x^2-801*x+167 2584033080710691 l005 sec(419/82) 2584033082610666 m001 (sin(1)*HardyLittlewoodC3+GAMMA(13/24))/sin(1) 2584033083627467 r009 Im(z^3+c),c=-73/122+9/35*I,n=61 2584033084615509 l006 ln(531/7036) 2584033087879602 r009 Re(z^3+c),c=-19/50+24/61*I,n=2 2584033095982370 m001 1/Si(Pi)*exp(FeigenbaumDelta)^2*BesselK(0,1) 2584033099239354 m001 (Stephens-Totient)/(GAMMA(19/24)+Grothendieck) 2584033111114001 g005 GAMMA(7/9)*GAMMA(4/9)*GAMMA(4/5)/GAMMA(9/10) 2584033119226917 a001 1597/103682*199^(30/31) 2584033119749460 m001 (Zeta(1,-1)+Conway)/(FeigenbaumMu+GaussAGM) 2584033129561991 m001 ZetaR(2)*(LambertW(1)+GAMMA(19/24)) 2584033129599298 m001 1/FeigenbaumC^2*Conway/exp(FeigenbaumKappa)^2 2584033136939662 m002 -Log[Pi]/(3*Pi^6)+3*Sech[Pi] 2584033146233066 r005 Im(z^2+c),c=-11/20+22/49*I,n=54 2584033158738397 m001 (GAMMA(11/12)-GlaisherKinkelin)/(Paris-Trott) 2584033165883411 m001 GAMMA(11/12)/(GaussKuzminWirsing^FeigenbaumD) 2584033174067211 a007 Real Root Of -736*x^4+919*x^3+350*x^2+542*x-176 2584033174233739 a007 Real Root Of 194*x^4+560*x^3+223*x^2+348*x+423 2584033176223767 r009 Re(z^3+c),c=-1/48+23/32*I,n=21 2584033184421233 r009 Re(z^3+c),c=-27/98+4/23*I,n=4 2584033190924055 h001 (2/5*exp(1)+1/5)/(5/8*exp(2)+4/11) 2584033194134184 m001 ln(2)*Pi^(1/2)+FeigenbaumKappa 2584033215587743 a001 12752043/89*21^(19/20) 2584033218959759 s002 sum(A226232[n]/(n^3*pi^n+1),n=1..infinity) 2584033223203363 m001 (BesselK(0,1)+RenyiParking)/ZetaP(2) 2584033228182313 a007 Real Root Of 424*x^4+825*x^3-760*x^2-38*x+307 2584033229240636 a001 2/121393*610^(4/57) 2584033232370284 m003 -2+5*Coth[1/2+Sqrt[5]/2]-6*Sin[1/2+Sqrt[5]/2] 2584033241084520 r005 Im(z^2+c),c=-9/58+16/45*I,n=14 2584033245582959 b008 (77*Cosh[3])/3 2584033247439335 m001 ln(gamma)^(FeigenbaumAlpha/HardyLittlewoodC5) 2584033249640030 r005 Re(z^2+c),c=-13/40+1/50*I,n=17 2584033250645576 m001 (-PlouffeB+ThueMorse)/(exp(Pi)+Mills) 2584033262710711 m001 HardHexagonsEntropy+(2^(1/3))^RenyiParking 2584033265242471 r005 Re(z^2+c),c=-7/78+13/17*I,n=12 2584033268983476 r002 11th iterates of z^2 + 2584033269464623 r009 Im(z^3+c),c=-9/34+15/64*I,n=12 2584033273854008 r005 Im(z^2+c),c=-11/78+20/57*I,n=11 2584033283160559 a007 Real Root Of -309*x^4-864*x^3-138*x^2+271*x+491 2584033286578573 m007 (-gamma+4/5)/(-2*gamma-6*ln(2)-Pi-1/6) 2584033289127613 r005 Re(z^2+c),c=-63/62+3/28*I,n=32 2584033290213299 r005 Im(z^2+c),c=-27/56+13/28*I,n=64 2584033303460846 r005 Re(z^2+c),c=-29/31+11/59*I,n=40 2584033304877787 r009 Re(z^3+c),c=-31/82+16/39*I,n=31 2584033321052893 a001 322*1836311903^(9/17) 2584033321816267 m001 Riemann3rdZero^GAMMA(23/24)-Totient 2584033324651321 m005 (3*gamma-5/6)/(1/6*Pi-4) 2584033325101033 a008 Real Root of x^3-x^2-248*x-64 2584033329738814 r009 Re(z^3+c),c=-11/17+14/57*I,n=5 2584033335203063 r008 a(0)=0,K{-n^6,36-17*n^3+n^2-59*n} 2584033343029640 s001 sum(1/10^(n-1)*A078766[n]/n!^2,n=1..infinity) 2584033343041481 s001 sum(1/10^(n-1)*A253080[n]/n!^2,n=1..infinity) 2584033344202757 p001 sum(1/(511*n+402)/(12^n),n=0..infinity) 2584033344950761 s001 sum(1/10^(n-1)*A129283[n]/n!^2,n=1..infinity) 2584033346887683 s001 sum(1/10^(n-1)*A049826[n]/n!^2,n=1..infinity) 2584033348146389 a007 Real Root Of 126*x^4-549*x^3-483*x^2-665*x+213 2584033348812747 s001 sum(1/10^(n-1)*A065309[n]/n!^2,n=1..infinity) 2584033350052087 p001 sum((-1)^n/(419*n+376)/(16^n),n=0..infinity) 2584033350737822 s001 sum(1/10^(n-1)*A057549[n]/n!^2,n=1..infinity) 2584033350737822 s001 sum(1/10^(n-1)*A047460[n]/n!^2,n=1..infinity) 2584033350737822 s001 sum(1/10^(n-1)*A068056[n]/n!^2,n=1..infinity) 2584033350741833 s001 sum(1/10^(n-1)*A191285[n]/n!^2,n=1..infinity) 2584033350753594 s001 sum(1/10^(n-1)*A135276[n]/n!^2,n=1..infinity) 2584033350757537 s001 sum(1/10^(n-1)*A273257[n]/n!^2,n=1..infinity) 2584033352670778 s001 sum(1/10^(n-1)*A268514[n]/n!^2,n=1..infinity) 2584033352682606 s001 sum(1/10^(n-1)*A182276[n]/n!^2,n=1..infinity) 2584033354304672 l006 ln(527/6983) 2584033354619517 s001 sum(1/10^(n-1)*A186423[n]/n!^2,n=1..infinity) 2584033354627390 s001 sum(1/10^(n-1)*A288566[n]/n!^2,n=1..infinity) 2584033356540662 s001 sum(1/10^(n-1)*A271474[n]/n!^2,n=1..infinity) 2584033357296795 a007 Real Root Of 957*x^4-383*x^3-435*x^2-956*x+25 2584033358481521 s001 sum(1/10^(n-1)*A033955[n]/n!^2,n=1..infinity) 2584033358971744 a007 Real Root Of -394*x^4+690*x^3+646*x^2+115*x-83 2584033360426336 s001 sum(1/10^(n-1)*A023558[n]/n!^2,n=1..infinity) 2584033366264749 s001 sum(1/10^(n-1)*A215095[n]/n!^2,n=1..infinity) 2584033368648030 m001 (Bloch*Niven+PrimesInBinary)/Bloch 2584033370766333 m001 OneNinth*ZetaP(4)-Trott 2584033371669456 m004 5*Pi+15*Coth[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi] 2584033379736119 s001 sum(1/10^(n-1)*A217248[n]/n!^2,n=1..infinity) 2584033380486601 r005 Im(z^2+c),c=-21/86+12/31*I,n=27 2584033388561478 a003 2^(1/2)+cos(1/10*Pi)+cos(1/18*Pi)-cos(2/9*Pi) 2584033397468178 s001 sum(1/10^(n-1)*A180629[n]/n!^2,n=1..infinity) 2584033422811370 r005 Im(z^2+c),c=-37/56+3/10*I,n=63 2584033431347021 r002 24th iterates of z^2 + 2584033434476452 p003 LerchPhi(1/6,2,475/232) 2584033478192822 r009 Im(z^3+c),c=-6/25+59/62*I,n=60 2584033483056638 l006 ln(5692/5841) 2584033489289278 l006 ln(1187/1537) 2584033489906504 m001 (Tribonacci+ZetaQ(3))/(Zeta(5)-arctan(1/3)) 2584033515789836 a003 sin(Pi*1/26)-sin(Pi*12/97) 2584033535843043 m001 (PisotVijayaraghavan+Thue)/(Ei(1,1)+Kac) 2584033537855310 r005 Re(z^2+c),c=-37/122+11/49*I,n=19 2584033539045576 a003 sin(Pi*2/49)+sin(Pi*1/24) 2584033551209150 a007 Real Root Of -424*x^4-761*x^3+779*x^2-538*x-818 2584033556128664 r005 Re(z^2+c),c=31/90+5/56*I,n=16 2584033559735800 m001 (Kac+RenyiParking)/(LambertW(1)-ln(3)) 2584033564761352 r005 Im(z^2+c),c=9/82+15/64*I,n=6 2584033578066384 r005 Re(z^2+c),c=-91/122+2/15*I,n=55 2584033587159330 s002 sum(A248683[n]/(n*10^n-1),n=1..infinity) 2584033603598655 m001 ln(5)^BesselI(1,2)+ZetaP(2) 2584033611759216 m002 -6-E^Pi-Pi+6*ProductLog[Pi] 2584033613236162 m001 exp(TwinPrimes)*ErdosBorwein^2/GAMMA(5/24)^2 2584033613445378 q001 123/476 2584033613445378 r002 2th iterates of z^2 + 2584033613445378 r002 2th iterates of z^2 + 2584033613445378 r002 2th iterates of z^2 + 2584033613445378 r002 2th iterates of z^2 + 2584033613445378 r002 2th iterates of z^2 + 2584033613445378 r002 2th iterates of z^2 + 2584033613445378 r002 2th iterates of z^2 + 2584033613445378 r002 2th iterates of z^2 + 2584033613445378 r005 Im(z^2+c),c=-9/14+123/136*I,n=2 2584033617454068 a007 Real Root Of -24*x^4-616*x^3+97*x^2-285*x-217 2584033619742708 a001 11/39088169*433494437^(5/22) 2584033620722978 a001 11/3524578*10946^(5/22) 2584033623359601 r005 Re(z^2+c),c=21/110+16/43*I,n=8 2584033628119026 l006 ln(523/6930) 2584033647680920 r009 Re(z^3+c),c=-31/82+16/39*I,n=28 2584033663165368 m001 1/2*Pi*2^(2/3)-GAMMA(2/3)+exp(1/exp(1)) 2584033679024661 m001 (Kac+Lehmer)/(ln(2^(1/2)+1)-HardyLittlewoodC5) 2584033687724945 r005 Re(z^2+c),c=-47/102+31/60*I,n=23 2584033690136663 a007 Real Root Of -861*x^4-728*x^3-695*x^2+563*x+15 2584033695055353 r005 Re(z^2+c),c=-13/46+4/13*I,n=12 2584033695672056 m001 GAMMA(1/12)^2*BesselJ(0,1)/exp(Zeta(1,2)) 2584033710064424 a001 987*123^(1/5) 2584033713110790 r005 Im(z^2+c),c=-29/46+1/24*I,n=31 2584033713842589 a007 Real Root Of 30*x^4-52*x^3-291*x^2+56*x-147 2584033721931959 s002 sum(A201825[n]/(n*pi^n+1),n=1..infinity) 2584033728142351 b008 10+22*EulerGamma+Pi 2584033757164561 m001 Weierstrass/(Conway-Pi) 2584033758994935 m001 Trott*exp(Artin)*GAMMA(13/24) 2584033762596108 r005 Im(z^2+c),c=-29/86+5/14*I,n=6 2584033767845411 m001 (-Porter+Weierstrass)/(GAMMA(3/4)-sin(1)) 2584033773580971 m002 3+(Pi^4*ProductLog[Pi])/(4*Log[Pi]) 2584033773633207 a007 Real Root Of -270*x^4-979*x^3-654*x^2+308*x+309 2584033776686009 m005 (1/2*5^(1/2)-1/10)/(6/7*Zeta(3)-7/11) 2584033785775933 h001 (8/9*exp(1)+4/7)/(1/11*exp(1)+10/11) 2584033785959471 a007 Real Root Of -291*x^4-429*x^3+359*x^2-853*x+971 2584033794898906 m001 (-ThueMorse+TwinPrimes)/(Paris-Shi(1)) 2584033800440449 m001 (2^(1/2)-cos(1))/(MertensB1+ZetaP(4)) 2584033820748670 a007 Real Root Of 362*x^4+518*x^3-857*x^2+635*x+161 2584033820912669 m005 (1/5*Pi+3)/(1/2*Pi-1/6) 2584033820912669 m006 (3/Pi+1/5)/(1/6/Pi-1/2) 2584033820912669 m008 (1/5*Pi+3)/(1/2*Pi-1/6) 2584033827442457 a007 Real Root Of 135*x^4+21*x^3-745*x^2+579*x+814 2584033830486046 m001 GAMMA(11/12)*exp(CopelandErdos)^2/cos(Pi/5)^2 2584033831088981 p001 sum(1/(239*n+64)/n/(128^n),n=1..infinity) 2584033833183666 a007 Real Root Of -5*x^4+519*x^3-541*x^2+469*x-94 2584033838096158 a007 Real Root Of -315*x^4+203*x^3-498*x^2+576*x+187 2584033838666515 a007 Real Root Of -808*x^4+637*x^3+18*x^2+733*x-198 2584033842268309 a001 28143753123/13*701408733^(8/23) 2584033843768613 a001 1322157322203/13*10946^(8/23) 2584033879269171 a007 Real Root Of -702*x^4+39*x^3-412*x^2+885*x+260 2584033885563232 m001 Trott2nd-ThueMorse^(2^(1/2)) 2584033885895138 r005 Im(z^2+c),c=-59/46+3/40*I,n=14 2584033893871598 a001 8/47*3^(19/50) 2584033906153947 l006 ln(519/6877) 2584033906200084 r005 Im(z^2+c),c=-75/94+3/22*I,n=55 2584033908121397 r005 Re(z^2+c),c=-19/74+5/12*I,n=9 2584033911542571 r009 Im(z^3+c),c=-1/78+25/29*I,n=10 2584033923373430 a007 Real Root Of 713*x^4-110*x^3-695*x^2-783*x-161 2584033928317235 r005 Re(z^2+c),c=-5/24+25/49*I,n=27 2584033933905897 a001 1346269/76*18^(51/55) 2584033945548346 a007 Real Root Of -169*x^4-773*x^3-851*x^2-27*x-190 2584033946101150 r009 Im(z^3+c),c=-6/13+5/43*I,n=19 2584033960180524 a007 Real Root Of -103*x^4+102*x^3+512*x^2-809*x+843 2584033960260012 a007 Real Root Of 685*x^4+206*x^3+123*x^2-901*x+218 2584033960939692 s002 sum(A051648[n]/(n^3*exp(n)-1),n=1..infinity) 2584033972327471 b008 -10+(3+E)^2+Pi 2584033982726035 m001 PisotVijayaraghavan^PrimesInBinary-Zeta(1/2) 2584034008604511 r005 Im(z^2+c),c=-83/102+14/55*I,n=4 2584034010336548 m005 (1/2*gamma+9/11)/(2*Pi-2) 2584034016283420 r005 Im(z^2+c),c=-19/118+5/14*I,n=18 2584034037505597 s001 sum(1/10^(n-1)*A023183[n]/n!^2,n=1..infinity) 2584034039383370 s001 sum(1/10^(n-1)*A249187[n]/n!^2,n=1..infinity) 2584034039414889 s001 sum(1/10^(n-1)*A168341[n]/n!^2,n=1..infinity) 2584034039450320 s001 sum(1/10^(n-1)*A054791[n]/n!^2,n=1..infinity) 2584034043233540 s001 sum(1/10^(n-1)*A022463[n]/n!^2,n=1..infinity) 2584034047111279 s001 sum(1/10^(n-1)*A079258[n]/n!^2,n=1..infinity) 2584034047111279 s001 sum(1/10^(n-1)*A134025[n]/n!^2,n=1..infinity) 2584034047115142 s001 sum(1/10^(n-1)*A010376[n]/n!^2,n=1..infinity) 2584034047115222 s001 sum(1/10^(n-1)*A010388[n]/n!^2,n=1..infinity) 2584034047115222 s001 sum(1/10^(n-1)*A010400[n]/n!^2,n=1..infinity) 2584034047115222 s001 sum(1/10^(n-1)*A010439[n]/n!^2,n=1..infinity) 2584034047115222 s001 sum(1/10^(n-1)*A005836[n]/n!^2,n=1..infinity) 2584034047115222 s001 sum(1/10^(n-1)*A276986[n]/n!^2,n=1..infinity) 2584034047115222 s001 sum(1/10^(n-1)*A283984[n]/n!^2,n=1..infinity) 2584034047115222 s001 sum(1/10^(n-1)*A283985[n]/n!^2,n=1..infinity) 2584034047115240 s001 sum(1/10^(n-1)*A242661[n]/n!^2,n=1..infinity) 2584034047119165 s001 sum(1/10^(n-1)*A059985[n]/n!^2,n=1..infinity) 2584034049060031 s001 sum(1/10^(n-1)*A176744[n]/n!^2,n=1..infinity) 2584034049569639 m001 MadelungNaCl/(Lehmer^RenyiParking) 2584034050977276 s001 sum(1/10^(n-1)*A047075[n]/n!^2,n=1..infinity) 2584034050985075 s001 sum(1/10^(n-1)*A010394[n]/n!^2,n=1..infinity) 2584034050985075 s001 sum(1/10^(n-1)*A010427[n]/n!^2,n=1..infinity) 2584034050989031 s001 sum(1/10^(n-1)*A155564[n]/n!^2,n=1..infinity) 2584034050989049 s001 sum(1/10^(n-1)*A243185[n]/n!^2,n=1..infinity) 2584034054696060 a007 Real Root Of 205*x^4-852*x^3-954*x^2-656*x+247 2584034056807697 s001 sum(1/10^(n-1)*A253197[n]/n!^2,n=1..infinity) 2584034060653801 s001 sum(1/10^(n-1)*A192115[n]/n!^2,n=1..infinity) 2584034062693252 s001 sum(1/10^(n-1)*A217492[n]/n!^2,n=1..infinity) 2584034064523796 s001 sum(1/10^(n-1)*A178784[n]/n!^2,n=1..infinity) 2584034067861914 a001 18/1597*365435296162^(2/17) 2584034068452991 s001 sum(1/10^(n-1)*A032789[n]/n!^2,n=1..infinity) 2584034070432571 s001 sum(1/10^(n-1)*A089243[n]/n!^2,n=1..infinity) 2584034076164734 s001 sum(1/10^(n-1)*A247087[n]/n!^2,n=1..infinity) 2584034081150166 m005 (1/2*gamma+3/10)/(-27/40+1/5*5^(1/2)) 2584034082109846 s001 sum(1/10^(n-1)*A237583[n]/n!^2,n=1..infinity) 2584034091640993 s001 sum(1/10^(n-1)*A058857[n]/n!^2,n=1..infinity) 2584034095159333 m001 cos(1)^2/exp(LaplaceLimit)^2*gamma^2 2584034111290368 m001 DuboisRaymond^Otter/(Zeta(1/2)^Otter) 2584034118020662 m005 (1/3*2^(1/2)-2/11)/(5/9*gamma+4/5) 2584034125368741 a007 Real Root Of -561*x^4-206*x^3+497*x^2+282*x-100 2584034133238448 r009 Re(z^3+c),c=-15/74+50/51*I,n=26 2584034135572001 m001 Niven/exp(DuboisRaymond)^2*sqrt(5) 2584034141858211 h001 (1/8*exp(2)+5/11)/(3/5*exp(2)+9/10) 2584034157891314 a007 Real Root Of -308*x^4-756*x^3-25*x^2-459*x-331 2584034162654814 m001 5^(1/2)*sin(1)/gamma(1) 2584034163174255 a001 5702887/5778*123^(1/5) 2584034164801073 m005 (1/2*2^(1/2)-5/8)/(7/8*Pi+3/7) 2584034187831230 v002 sum(1/(3^n+(18*n^2-40*n+24)),n=1..infinity) 2584034188507778 l006 ln(515/6824) 2584034198562072 r002 26th iterates of z^2 + 2584034204303886 m001 Backhouse^Stephens*FeigenbaumMu^Stephens 2584034207829090 g004 Re(GAMMA(13/60+I*53/20)) 2584034216282928 m001 (-Riemann3rdZero+TwinPrimes)/(2^(1/2)-Bloch) 2584034229282102 a001 14930352/15127*123^(1/5) 2584034238927107 a001 39088169/39603*123^(1/5) 2584034240334294 a001 102334155/103682*123^(1/5) 2584034240539600 a001 267914296/271443*123^(1/5) 2584034240569554 a001 701408733/710647*123^(1/5) 2584034240573924 a001 1836311903/1860498*123^(1/5) 2584034240574562 a001 4807526976/4870847*123^(1/5) 2584034240574655 a001 12586269025/12752043*123^(1/5) 2584034240574668 a001 32951280099/33385282*123^(1/5) 2584034240574670 a001 86267571272/87403803*123^(1/5) 2584034240574670 a001 225851433717/228826127*123^(1/5) 2584034240574670 a001 591286729879/599074578*123^(1/5) 2584034240574670 a001 1548008755920/1568397607*123^(1/5) 2584034240574670 a001 4052739537881/4106118243*123^(1/5) 2584034240574670 a001 4807525989/4870846*123^(1/5) 2584034240574670 a001 6557470319842/6643838879*123^(1/5) 2584034240574670 a001 2504730781961/2537720636*123^(1/5) 2584034240574670 a001 956722026041/969323029*123^(1/5) 2584034240574670 a001 365435296162/370248451*123^(1/5) 2584034240574671 a001 139583862445/141422324*123^(1/5) 2584034240574671 a001 53316291173/54018521*123^(1/5) 2584034240574677 a001 20365011074/20633239*123^(1/5) 2584034240574712 a001 7778742049/7881196*123^(1/5) 2584034240574956 a001 2971215073/3010349*123^(1/5) 2584034240576625 a001 1134903170/1149851*123^(1/5) 2584034240588066 a001 433494437/439204*123^(1/5) 2584034240666486 a001 165580141/167761*123^(1/5) 2584034241203984 a001 63245986/64079*123^(1/5) 2584034243326987 m001 (FeigenbaumC-Stephens)/(Trott+Weierstrass) 2584034243848803 r005 Im(z^2+c),c=-45/56+3/22*I,n=11 2584034244888048 a001 24157817/24476*123^(1/5) 2584034245384329 m001 ln(1+sqrt(2))/Catalan*Khinchin 2584034245384329 m001 ln(2^(1/2)+1)/Catalan*Khinchin 2584034254030021 m004 5*Pi*Coth[Sqrt[5]*Pi]+15*Sin[Sqrt[5]*Pi] 2584034254307338 r005 Im(z^2+c),c=-13/36+26/61*I,n=33 2584034269368299 a007 Real Root Of -319*x^4-361*x^3+824*x^2-642*x+833 2584034270139000 a001 9227465/9349*123^(1/5) 2584034271507723 m005 (1/2*gamma+4)/(Catalan-3/4) 2584034284129344 r005 Im(z^2+c),c=-73/122+1/21*I,n=51 2584034285245401 r005 Im(z^2+c),c=-7/22+12/29*I,n=20 2584034288809420 m001 1/GAMMA(7/12)^2*exp(GolombDickman)^2/gamma 2584034298507068 r005 Im(z^2+c),c=-13/62+17/37*I,n=3 2584034301126644 a007 Real Root Of -110*x^4-379*x^3-377*x^2-177*x+425 2584034304076095 a001 610/39603*199^(30/31) 2584034307884839 r005 Im(z^2+c),c=-7/20+7/16*I,n=12 2584034310445536 a007 Real Root Of -279*x^4-785*x^3-389*x^2-812*x-606 2584034311783410 m006 (5/6*Pi-4)/(exp(2*Pi)-2/3) 2584034311960205 m001 exp(FeigenbaumKappa)*Rabbit^2*GAMMA(1/12)^2 2584034312900357 r005 Re(z^2+c),c=23/102+4/45*I,n=19 2584034329568889 m003 -5/2+Sqrt[5]/64-(3*E^(-1/2-Sqrt[5]/2))/5 2584034343260247 a007 Real Root Of -439*x^4-921*x^3+161*x^2-986*x+59 2584034347688067 r009 Re(z^3+c),c=-23/60+8/19*I,n=31 2584034352471873 r005 Im(z^2+c),c=-3/58+16/51*I,n=19 2584034353878216 m001 (Pi+Backhouse)/(FeigenbaumAlpha-Sarnak) 2584034362550881 m001 (2^(1/3))^2/ln(Niven)^2*arctan(1/2) 2584034371530719 m002 3/ProductLog[Pi]-Sinh[Pi]/(2*ProductLog[Pi]) 2584034384177225 h001 (11/12*exp(2)+1/9)/(7/8*exp(1)+2/7) 2584034388430375 m001 (Riemann1stZero+ZetaP(4))/(Chi(1)-FeigenbaumB) 2584034392925469 l006 ln(7200/9323) 2584034397457084 m001 exp(Pi)^GAMMA(23/24)/(exp(Pi)^Sarnak) 2584034403702759 b008 1/6+95*E 2584034404888875 r009 Re(z^3+c),c=-39/98+17/38*I,n=20 2584034412688405 m001 (exp(Pi)+BesselI(0,2))/(-FellerTornier+Mills) 2584034416199801 m001 MadelungNaCl+Robbin+ZetaP(3) 2584034428011065 m001 Zeta(1,2)/exp(Robbin)^2/cos(Pi/12) 2584034434777243 r005 Re(z^2+c),c=-11/9+17/111*I,n=34 2584034438534639 m001 (gamma(3)+MertensB2)/(Stephens-ZetaP(3)) 2584034442220731 r009 Re(z^3+c),c=-47/102+22/43*I,n=12 2584034442248127 r005 Im(z^2+c),c=-23/30+5/49*I,n=34 2584034443211611 a001 3524578/3571*123^(1/5) 2584034448261152 r005 Re(z^2+c),c=-8/29+21/64*I,n=12 2584034450538370 r005 Re(z^2+c),c=17/86+1/33*I,n=4 2584034456318690 a001 8/271443*1364^(46/49) 2584034466880059 m001 (Si(Pi)+ln(gamma))/(3^(1/2)-5^(1/2)) 2584034469031368 m001 (Champernowne+Robbin)/(BesselI(0,1)+Pi^(1/2)) 2584034469416697 a007 Real Root Of 178*x^4+106*x^3-915*x^2-338*x-871 2584034475281940 l006 ln(511/6771) 2584034477428357 m001 1/CareFree*exp(FransenRobinson)^2*LaplaceLimit 2584034477600263 a007 Real Root Of 555*x^4+216*x^3+554*x^2-388*x-136 2584034488508420 m001 BesselJ(0,1)/FeigenbaumD^2/exp(sqrt(2)) 2584034490145661 m001 Gompertz^(Khinchin/GAMMA(23/24)) 2584034497515268 a007 Real Root Of 351*x^4+730*x^3-405*x^2-28*x-422 2584034508819175 r002 46th iterates of z^2 + 2584034509228202 r005 Im(z^2+c),c=1/23+9/14*I,n=20 2584034518070530 a001 281/48*34^(8/19) 2584034519344941 a004 Fibonacci(13)*Lucas(12)/(1/2+sqrt(5)/2)^7 2584034524003908 r005 Re(z^2+c),c=-23/122+22/37*I,n=50 2584034527061521 a003 sin(Pi*1/111)*sin(Pi*37/101) 2584034556492495 m006 (2*exp(2*Pi)+5/6)/(4*Pi^2+2) 2584034557019915 r009 Re(z^3+c),c=-43/52+31/41*I,n=2 2584034558645496 m001 (BesselJ(1,1)+GAMMA(19/24))/(1+Zeta(1,2)) 2584034571308323 l006 ln(6013/7786) 2584034586208043 m001 Pi^2*exp(PisotVijayaraghavan)^2/cos(1) 2584034593385573 a007 Real Root Of 69*x^4-661*x^3-316*x^2-274*x+103 2584034596544954 a007 Real Root Of 425*x^4+878*x^3-246*x^2+637*x-511 2584034602503165 b008 1/4+ArcCsc[119] 2584034604640700 h001 (2/5*exp(1)+7/9)/(11/12*exp(2)+4/9) 2584034608727113 r009 Re(z^3+c),c=-11/29+26/63*I,n=27 2584034612267134 r005 Re(z^2+c),c=-13/58+27/56*I,n=62 2584034615902702 m005 (2/3*Pi-3/5)/(2*Pi-1/2) 2584034615902702 m006 (2/3*Pi-3/5)/(2*Pi-1/2) 2584034615902702 m008 (2/3*Pi-3/5)/(2*Pi-1/2) 2584034629937460 m001 ln(gamma)/(Sierpinski^Kolakoski) 2584034644827956 a007 Real Root Of 235*x^4+376*x^3-526*x^2+277*x+238 2584034646745260 m001 (sin(1/12*Pi)*Trott2nd+Robbin)/sin(1/12*Pi) 2584034649232855 a007 Real Root Of 228*x^4-74*x^3-203*x^2-736*x+204 2584034654564946 m001 Khinchin^Gompertz/ArtinRank2 2584034657543435 m001 ln(KhintchineLevy)*LaplaceLimit^2/Niven^2 2584034670984327 p002 log(19^(11/12)-11^(1/5)) 2584034684484561 b008 -1/3+ArcCsch[40/3] 2584034687890002 a007 Real Root Of 469*x^4+839*x^3-982*x^2+134*x+469 2584034704667949 a003 cos(Pi*10/89)-cos(Pi*11/82) 2584034709768506 r002 52th iterates of z^2 + 2584034716896761 m004 6/5+75*Pi*Cot[Sqrt[5]*Pi] 2584034726525533 a001 17711/521*18^(40/57) 2584034730320458 a001 1/521*(1/2*5^(1/2)+1/2)^5*3^(3/17) 2584034733397664 m001 (Sarnak-ZetaP(3))/(Ei(1,1)+Riemann2ndZero) 2584034739579029 a007 Real Root Of -53*x^4+172*x^3+832*x^2+56*x-80 2584034741511722 a007 Real Root Of 53*x^4-938*x^3+168*x^2-739*x+19 2584034743492622 s001 sum(1/10^(n-1)*A224853[n]/n!^2,n=1..infinity) 2584034743492622 s001 sum(1/10^(n-1)*A225571[n]/n!^2,n=1..infinity) 2584034743524165 s001 sum(1/10^(n-1)*A131179[n]/n!^2,n=1..infinity) 2584034745480797 s001 sum(1/10^(n-1)*A239632[n]/n!^2,n=1..infinity) 2584034746910362 m005 (4/5*Catalan-1/3)/(5*Pi-1/4) 2584034748032063 q001 1/3869917 2584034751240177 s001 sum(1/10^(n-1)*A048155[n]/n!^2,n=1..infinity) 2584034751256252 s001 sum(1/10^(n-1)*A103080[n]/n!^2,n=1..infinity) 2584034751295194 s001 sum(1/10^(n-1)*A007007[n]/n!^2,n=1..infinity) 2584034753157398 s001 sum(1/10^(n-1)*A281903[n]/n!^2,n=1..infinity) 2584034758370047 m001 1/GAMMA(23/24)^2/Kolakoski^2*exp(cos(1)) 2584034764818297 s001 sum(1/10^(n-1)*A103038[n]/n!^2,n=1..infinity) 2584034766581054 l006 ln(507/6718) 2584034770788581 r009 Re(z^3+c),c=-41/106+23/54*I,n=21 2584034776568758 a007 Real Root Of 426*x^4+999*x^3-556*x^2-834*x-199 2584034783573468 m001 1/Si(Pi)^2/Artin/ln(sqrt(3))^2 2584034788677238 s002 sum(A137870[n]/((exp(n)+1)/n),n=1..infinity) 2584034797885317 m001 (Zeta(5)-ln(Pi))/(BesselK(1,1)+FeigenbaumMu) 2584034798526485 m001 ln(Ei(1))^2*CareFree^2*GAMMA(5/6)^2 2584034801607541 m005 (1/2*Catalan+2/5)/(7/8*Pi+4/7) 2584034804203337 r004 Re(z^2+c),c=1/3+3/17*I,z(0)=exp(3/8*I*Pi),n=37 2584034811762334 r005 Re(z^2+c),c=-37/110+23/30*I,n=3 2584034819443975 r005 Re(z^2+c),c=9/29+24/49*I,n=20 2584034828834563 r005 Re(z^2+c),c=-21/26+16/103*I,n=10 2584034829059932 a007 Real Root Of 551*x^4+924*x^3-832*x^2+949*x-616 2584034832189809 m001 (GaussAGM-ZetaQ(3))/(ln(2)+FeigenbaumAlpha) 2584034837441046 l006 ln(4826/6249) 2584034838257002 m001 (gamma(1)-FeigenbaumC)/(TwinPrimes+ZetaP(4)) 2584034844333651 m001 (OneNinth-OrthogonalArrays)/(ln(5)+Magata) 2584034846818819 a007 Real Root Of -340*x^4+97*x^3+167*x^2+707*x-194 2584034851053926 m001 FeigenbaumD*(AlladiGrinstead-Pi^(1/2)) 2584034861055376 m001 cos(1)^GaussKuzminWirsing+Riemann3rdZero 2584034887292064 m001 FibonacciFactorial*((1+3^(1/2))^(1/2)-3^(1/3)) 2584034893100963 m001 (LambertW(1)-Lehmer)/Paris 2584034897906164 m001 (MertensB1-Robbin)/(Zeta(3)-KhinchinLevy) 2584034903649243 r005 Re(z^2+c),c=-2/11+11/18*I,n=62 2584034904763461 a007 Real Root Of -28*x^4-703*x^3+545*x^2+355*x-511 2584034918212960 r005 Re(z^2+c),c=-27/94+13/44*I,n=30 2584034924512474 m001 arctan(1/2)/(Artin-DuboisRaymond) 2584034928659014 m001 (Lehmer+Riemann2ndZero)/(Robbin+ZetaP(3)) 2584034956289577 m001 gamma(2)/(KomornikLoreti+ReciprocalLucas) 2584034963547963 r005 Re(z^2+c),c=-7/6+73/249*I,n=46 2584034964397244 r005 Re(z^2+c),c=-5/16+7/41*I,n=17 2584034967025203 m001 3^(1/3)-ArtinRank2+Tribonacci 2584034983567585 m001 (3^(1/2)+ln(2))/(-cos(1/12*Pi)+Trott2nd) 2584034990564438 m001 exp(1/exp(1))^FeigenbaumAlpha-gamma(1) 2584034996923188 a001 322/514229*2178309^(13/51) 2584034997823299 m005 (1/2*gamma-2/3)/(5/11*Zeta(3)+11/12) 2584035001023380 s002 sum(A239106[n]/(n^3*pi^n+1),n=1..infinity) 2584035001662470 m001 (LambertW(1)-ln(5))/(arctan(1/2)+FeigenbaumMu) 2584035012682053 r009 Re(z^3+c),c=-37/126+7/31*I,n=9 2584035014177480 r005 Re(z^2+c),c=-21/74+19/52*I,n=6 2584035017120067 r005 Re(z^2+c),c=27/82+10/57*I,n=14 2584035030546931 m001 (3^(1/3)+CareFree)/(Mills-PlouffeB) 2584035034835769 m001 (BesselK(0,1)+ln(2^(1/2)+1))/(3^(1/2)-5^(1/2)) 2584035040747562 s001 sum(1/10^(n-1)*A130775[n]/n!^2,n=1..infinity) 2584035044883651 m001 KhinchinHarmonic^CareFree*KhinchinHarmonic 2584035051221244 a007 Real Root Of 328*x^4+575*x^3-723*x^2-152*x-268 2584035051765491 r009 Re(z^3+c),c=-37/94+19/43*I,n=38 2584035062513069 l006 ln(503/6665) 2584035063354486 a003 cos(Pi*1/119)-cos(Pi*26/111) 2584035070210506 a007 Real Root Of 280*x^4+768*x^3-95*x^2-787*x-632 2584035073013534 r005 Re(z^2+c),c=3/14+4/55*I,n=25 2584035074779914 r005 Re(z^2+c),c=11/58+5/13*I,n=51 2584035082630021 m001 (ZetaP(4)+ZetaQ(3))/(Pi-Zeta(1,-1)) 2584035087474530 a001 1346269/76*39603^(48/53) 2584035088010830 m001 (ln(5)-MertensB1)/(ZetaQ(2)-ZetaQ(4)) 2584035090079412 a003 sin(Pi*13/114)*sin(Pi*24/91) 2584035090437165 a007 Real Root Of -806*x^4+863*x^3+379*x^2+164*x+4 2584035094022790 m005 (1/2*2^(1/2)-7/9)/(5/11*Catalan-1/7) 2584035099327084 a007 Real Root Of -108*x^4-127*x^3+658*x^2+960*x+711 2584035104034070 m001 (MertensB3-PlouffeB)/(sin(1/12*Pi)-gamma(1)) 2584035109451201 a007 Real Root Of 299*x^4+609*x^3-910*x^2-887*x+961 2584035109488806 a007 Real Root Of 287*x^4+520*x^3-616*x^2-117*x-13 2584035114137123 r002 6th iterates of z^2 + 2584035115294966 r009 Re(z^3+c),c=-1/46+33/49*I,n=5 2584035121313223 a007 Real Root Of 299*x^4+770*x^3-323*x^2-612*x+530 2584035148136492 r005 Im(z^2+c),c=19/56+3/41*I,n=31 2584035148539091 a003 -1+cos(4/15*Pi)-2*cos(2/21*Pi)-cos(7/18*Pi) 2584035148645397 m001 (GAMMA(1/12)-sin(1))/ThueMorse 2584035149012071 m001 GAMMA(17/24)-cos(1)+Tribonacci 2584035149049619 m001 1/OneNinth^2/ArtinRank2^2*exp(GAMMA(1/3)) 2584035161839775 a007 Real Root Of -341*x^4+176*x^3+480*x^2+706*x-216 2584035162857333 r002 12th iterates of z^2 + 2584035181062579 m001 (FeigenbaumB-ln(2)/ln(10))/(MertensB3+Sarnak) 2584035216348846 s001 sum(exp(-3*Pi/4)^n*A117078[n],n=1..infinity) 2584035216932929 a007 Real Root Of -253*x^4-868*x^3-743*x^2-109*x+983 2584035221674059 m001 (LaplaceLimit-Mills)/(ln(5)+ln(2^(1/2)+1)) 2584035224055253 a003 cos(Pi*32/73)+cos(Pi*57/119) 2584035225845795 m001 (Cahen+1/3)/(-exp(sqrt(2))+1/3) 2584035227820140 a007 Real Root Of 25*x^4-261*x^3-840*x^2-320*x-836 2584035230881699 m001 (Bloch+Sierpinski)/(cos(1/5*Pi)+Artin) 2584035232008244 a001 8/2207*15127^(10/49) 2584035240533998 a003 cos(Pi*1/116)/sin(Pi*11/87) 2584035244798769 m005 (1/3*Zeta(3)-1/9)/(5/11*3^(1/2)+1/3) 2584035245798413 m001 (Catalan-ln(Pi))/(-GAMMA(7/12)+Cahen) 2584035257341489 a005 (1/sin(31/78*Pi))^846 2584035266247902 r005 Re(z^2+c),c=-13/14+13/71*I,n=20 2584035269993263 m001 Zeta(1/2)^GAMMA(2/3)/MasserGramain 2584035277192628 l006 ln(3639/4712) 2584035290060981 r005 Re(z^2+c),c=-27/94+13/44*I,n=33 2584035291831448 m002 -2*ProductLog[Pi]+Pi^7*Sech[Pi] 2584035295831172 m001 Trott2nd^BesselK(0,1)*Porter^BesselK(0,1) 2584035296121319 a007 Real Root Of -277*x^4-767*x^3-248*x^2-103*x+506 2584035307895588 m001 BesselI(1,2)^(Pi^(1/2))+HardyLittlewoodC4 2584035311350341 r005 Re(z^2+c),c=-27/110+3/7*I,n=28 2584035315237262 m001 (gamma(3)+Porter)/(3^(1/2)-Psi(2,1/3)) 2584035320339176 a007 Real Root Of -475*x^4+507*x^3-384*x^2+29*x+44 2584035326878549 r002 25th iterates of z^2 + 2584035327227576 m001 1/ln(GAMMA(2/3))/(2^(1/3))*Pi^2 2584035333112633 m001 (cos(1/5*Pi)+GAMMA(2/3))/(ln(3)-MertensB1) 2584035333505645 g007 Psi(2,8/11)-2*Psi(13/10)-Psi(2,4/5) 2584035334225396 r005 Re(z^2+c),c=7/90+18/53*I,n=36 2584035335359490 s001 sum(1/10^(n-1)*A101982[n]/n!^2,n=1..infinity) 2584035337767108 r005 Re(z^2+c),c=8/25+21/62*I,n=11 2584035363189396 l006 ln(499/6612) 2584035388591327 r005 Re(z^2+c),c=-4/21+5/9*I,n=57 2584035393285069 r005 Im(z^2+c),c=-2/3+25/209*I,n=16 2584035394293118 r005 Re(z^2+c),c=7/90+18/53*I,n=39 2584035396665463 a007 Real Root Of 330*x^4+956*x^3-145*x^2-851*x+551 2584035397780781 m005 (1/2*Zeta(3)-5/6)/(2/7*Zeta(3)+5/9) 2584035398680023 m001 Backhouse+KhinchinHarmonic*MasserGramain 2584035409037171 r005 Re(z^2+c),c=-33/118+19/58*I,n=10 2584035412545568 a007 Real Root Of -755*x^4-96*x^3-262*x^2+954*x-224 2584035428481450 m001 Landau^(GAMMA(13/24)/gamma(3)) 2584035435354976 a007 Real Root Of -183*x^4-388*x^3+179*x^2-408*x-785 2584035441437104 a007 Real Root Of -245*x^4-367*x^3+659*x^2+91*x+426 2584035441954866 h001 (6/11*exp(2)+5/8)/(2/5*exp(1)+5/7) 2584035442181087 m001 FeigenbaumD-LambertW(1)*ZetaP(3) 2584035442742913 a001 7465176*14662949395604^(20/21) 2584035442742916 a001 774004377960*141422324^(12/13) 2584035442742916 a001 3278735159921*141422324^(11/13) 2584035442742916 a001 102334155/2*14662949395604^(8/9) 2584035442742916 a001 133957148*14662949395604^(6/7) 2584035442742916 a001 701408733/2*23725150497407^(13/16) 2584035442742916 a001 701408733/2*505019158607^(13/14) 2584035442742916 a001 43133785636*2537720636^(14/15) 2584035442742916 a001 225851433717/2*2537720636^(8/9) 2584035442742916 a001 182717648081*2537720636^(13/15) 2584035442742916 a001 774004377960*2537720636^(4/5) 2584035442742916 a001 2504730781961/2*2537720636^(7/9) 2584035442742916 a001 3278735159921*2537720636^(11/15) 2584035442742916 a001 1836311903/2*312119004989^(10/11) 2584035442742916 a001 1836311903/2*3461452808002^(5/6) 2584035442742916 a001 2403763488*45537549124^(16/17) 2584035442742916 a001 2403763488*14662949395604^(16/21) 2584035442742916 a001 2403763488*192900153618^(8/9) 2584035442742916 a001 2403763488*73681302247^(12/13) 2584035442742916 a001 43133785636*17393796001^(6/7) 2584035442742916 a001 2504730781961/2*17393796001^(5/7) 2584035442742916 a001 43133785636*45537549124^(14/17) 2584035442742916 a001 182717648081*45537549124^(13/17) 2584035442742916 a001 774004377960*45537549124^(12/17) 2584035442742916 a001 4052739537881/2*45537549124^(2/3) 2584035442742916 a001 3278735159921*45537549124^(11/17) 2584035442742916 a001 32951280099/2*312119004989^(4/5) 2584035442742916 a001 32951280099/2*23725150497407^(11/16) 2584035442742916 a001 32951280099/2*73681302247^(11/13) 2584035442742916 a001 43133785636*505019158607^(3/4) 2584035442742916 a001 225851433717/2*312119004989^(8/11) 2584035442742916 a001 2504730781961/2*312119004989^(7/11) 2584035442742916 a001 225851433717/2*23725150497407^(5/8) 2584035442742916 a001 10610209857723/2*23725150497407^(1/2) 2584035442742916 a001 10610209857723/2*505019158607^(4/7) 2584035442742916 a001 3278735159921*192900153618^(11/18) 2584035442742916 a001 182717648081*192900153618^(13/18) 2584035442742916 a001 10182505537*45537549124^(15/17) 2584035442742916 a001 10610209857723/2*73681302247^(8/13) 2584035442742916 a001 774004377960*73681302247^(9/13) 2584035442742916 a001 182717648081*73681302247^(3/4) 2584035442742916 a001 10182505537*312119004989^(9/11) 2584035442742916 a001 10182505537*14662949395604^(5/7) 2584035442742916 a001 10182505537*192900153618^(5/6) 2584035442742916 a001 2504730781961/2*28143753123^(7/10) 2584035442742916 a001 225851433717/2*28143753123^(4/5) 2584035442742916 a001 10182505537*28143753123^(9/10) 2584035442742916 a001 10610209857723/2*10749957122^(2/3) 2584035442742916 a001 3278735159921*10749957122^(11/16) 2584035442742916 a001 4052739537881/2*10749957122^(17/24) 2584035442742916 a001 774004377960*10749957122^(3/4) 2584035442742916 a001 591286729879/2*10749957122^(19/24) 2584035442742916 a001 12586269025/2*10749957122^(23/24) 2584035442742916 a001 182717648081*10749957122^(13/16) 2584035442742916 a001 225851433717/2*10749957122^(5/6) 2584035442742916 a001 43133785636*10749957122^(7/8) 2584035442742916 a001 32951280099/2*10749957122^(11/12) 2584035442742916 a001 10182505537*10749957122^(15/16) 2584035442742916 a001 2971215073/2*14662949395604^(7/9) 2584035442742916 a001 2971215073/2*505019158607^(7/8) 2584035442742916 a001 10610209857723/2*4106118243^(16/23) 2584035442742916 a001 4052739537881/2*4106118243^(17/23) 2584035442742916 a001 774004377960*4106118243^(18/23) 2584035442742916 a001 591286729879/2*4106118243^(19/23) 2584035442742916 a001 225851433717/2*4106118243^(20/23) 2584035442742916 a001 43133785636*4106118243^(21/23) 2584035442742916 a001 32951280099/2*4106118243^(22/23) 2584035442742916 a001 567451585*817138163596^(17/19) 2584035442742916 a001 567451585*14662949395604^(17/21) 2584035442742916 a001 567451585*192900153618^(17/18) 2584035442742916 a001 10610209857723/2*1568397607^(8/11) 2584035442742916 a001 3278735159921*1568397607^(3/4) 2584035442742916 a001 4052739537881/2*1568397607^(17/22) 2584035442742916 a001 774004377960*1568397607^(9/11) 2584035442742916 a001 591286729879/2*1568397607^(19/22) 2584035442742916 a001 225851433717/2*1568397607^(10/11) 2584035442742916 a001 43133785636*1568397607^(21/22) 2584035442742916 a001 10610209857723/2*599074578^(16/21) 2584035442742916 a001 3278735159921*599074578^(11/14) 2584035442742916 a001 4052739537881/2*599074578^(17/21) 2584035442742916 a001 2504730781961/2*599074578^(5/6) 2584035442742916 a001 774004377960*599074578^(6/7) 2584035442742916 a001 591286729879/2*599074578^(19/21) 2584035442742916 a001 182717648081*599074578^(13/14) 2584035442742916 a001 225851433717/2*599074578^(20/21) 2584035442742916 a001 165580141/2*3461452808002^(11/12) 2584035442742916 a001 10610209857723/2*228826127^(4/5) 2584035442742916 a001 4052739537881/2*228826127^(17/20) 2584035442742916 a001 2504730781961/2*228826127^(7/8) 2584035442742916 a001 774004377960*228826127^(9/10) 2584035442742916 a001 591286729879/2*228826127^(19/20) 2584035442742916 a001 31622993*14662949395604^(19/21) 2584035442742916 a001 10610209857723/2*87403803^(16/19) 2584035442742916 a001 4052739537881/2*87403803^(17/19) 2584035442742916 a001 774004377960*87403803^(18/19) 2584035442742918 a001 10610209857723/2*33385282^(8/9) 2584035442742918 a001 3278735159921*33385282^(11/12) 2584035442742918 a001 4052739537881/2*33385282^(17/18) 2584035442742931 a001 10610209857723/2*12752043^(16/17) 2584035456158977 a001 1/18*(1/2*5^(1/2)+1/2)^15*47^(11/12) 2584035474738509 s001 sum(1/10^(n-1)*A019169[n]/n!^2,n=1..infinity) 2584035476918359 k005 Champernowne real with floor(sqrt(2)*(102*n+81)) 2584035476928379 k005 Champernowne real with floor(Catalan*(158*n+124)) 2584035476940165 a007 Real Root Of -221*x^4-727*x^3-249*x^2+527*x+334 2584035486938389 k005 Champernowne real with floor(log(2)*(209*n+164)) 2584035486938389 k001 Champernowne real with 145*n+113 2584035486938389 k005 Champernowne real with floor(log(3)*(132*n+103)) 2584035488039425 a007 Real Root Of 171*x^4+412*x^3+310*x^2+706*x-761 2584035489098716 m002 (3*E^Pi)/Pi^3+4*Sech[Pi] 2584035495103241 m001 (exp(Pi)*TwinPrimes+Grothendieck)/TwinPrimes 2584035496948409 k005 Champernowne real with floor(sqrt(3)*(84*n+65)) 2584035496958409 k005 Champernowne real with floor(Catalan*(159*n+123)) 2584035498703915 m001 (Zeta(5)+GAMMA(3/4))/ZetaQ(3) 2584035502053718 m001 (ln(2)+Ei(1,1))/(FransenRobinson+Sarnak) 2584035510207596 r005 Im(z^2+c),c=-5/24+29/59*I,n=3 2584035511391948 r005 Re(z^2+c),c=-23/82+11/35*I,n=12 2584035515437296 a007 Real Root Of -251*x^4-990*x^3-747*x^2+688*x+875 2584035521751185 m001 (Psi(1,1/3)+BesselI(1,2))/ZetaP(2) 2584035523740726 m001 (3^(1/3))*exp(1/2)+GAMMA(1/24) 2584035526940858 m001 GAMMA(2/3)^2/exp(CareFree)^2/log(2+sqrt(3))^2 2584035530904674 s001 sum(1/10^(n-1)*A102013[n]/n!^2,n=1..infinity) 2584035537734589 a001 75025/47*2^(41/59) 2584035539802834 r005 Re(z^2+c),c=43/126+7/38*I,n=64 2584035545631261 r005 Im(z^2+c),c=-17/32+22/53*I,n=25 2584035569174269 r009 Re(z^3+c),c=-13/110+31/38*I,n=50 2584035571334033 s001 sum(1/10^(n-1)*A113468[n]/n!,n=1..infinity) 2584035582557609 a007 Real Root Of -106*x^4+37*x^3+384*x^2+896*x+207 2584035591581906 b008 1/4+ArcCoth[119] 2584035606158432 m008 (3/5*Pi^5+4)/(3/4*Pi^6+5) 2584035613097336 h001 (1/8*exp(1)+7/10)/(3/7*exp(2)+6/7) 2584035617424801 r005 Im(z^2+c),c=-11/32+21/50*I,n=47 2584035625615062 l006 ln(6091/7887) 2584035626883054 r005 Im(z^2+c),c=-47/70+15/43*I,n=8 2584035627193954 r009 Re(z^3+c),c=-3/16+37/51*I,n=16 2584035629467272 a007 Real Root Of 483*x^4-588*x^3-477*x^2+11*x+37 2584035629469558 a001 1346269/1364*123^(1/5) 2584035629584319 m001 gamma(2)*exp(-1/2*Pi)^sin(1) 2584035636746992 r005 Re(z^2+c),c=23/106+23/55*I,n=38 2584035639439912 m001 (OneNinth-Stephens)/(Kac+KhinchinLevy) 2584035645914865 a003 cos(Pi*23/87)-sin(Pi*31/81) 2584035656001290 a007 Real Root Of 380*x^4+150*x^3+866*x^2-697*x+118 2584035657087040 a007 Real Root Of -133*x^4-322*x^3+141*x^2+321*x+262 2584035663560199 a007 Real Root Of 477*x^4+794*x^3+15*x^2-544*x-130 2584035667444844 a001 46368/199*199^(5/11) 2584035668725045 l006 ln(495/6559) 2584035670652529 r005 Re(z^2+c),c=-27/94+13/44*I,n=31 2584035682734997 a007 Real Root Of 663*x^4-611*x^3-350*x^2-669*x-163 2584035685808861 m001 GAMMA(5/24)/exp(OneNinth)*cos(Pi/5)^2 2584035689603248 a001 3/17393796001*123^(9/16) 2584035691041950 a003 sin(Pi*4/29)*sin(Pi*23/109) 2584035691384429 a007 Real Root Of -122*x^4-92*x^3+354*x^2+981*x-275 2584035704114631 m005 (5*Pi-1/3)/(2*Pi-1/3) 2584035704114631 m006 (1/3/Pi-5)/(1/3/Pi-2) 2584035704114631 m008 (5*Pi-1/3)/(2*Pi-1/3) 2584035717051942 r005 Im(z^2+c),c=3/22+9/41*I,n=20 2584035730089777 a007 Real Root Of -272*x^4-684*x^3-201*x^2-357*x+745 2584035742879322 a001 8/39603*9349^(26/49) 2584035748883407 r009 Re(z^3+c),c=-29/66+11/21*I,n=55 2584035749526742 a001 8/15127*39603^(18/49) 2584035759793723 a001 8/271443*64079^(30/49) 2584035764616917 r005 Im(z^2+c),c=-9/14+9/43*I,n=7 2584035766183912 m005 (1/2*Catalan+8/11)/(1/2*Catalan-11/12) 2584035777628039 p003 LerchPhi(1/256,3,234/149) 2584035783672735 a001 8/15127*5778^(22/49) 2584035798228715 m001 Zeta(1,-1)+Niven^Ei(1) 2584035810103161 a007 Real Root Of 452*x^4+306*x^3-872*x^2-871*x+276 2584035815109843 m001 1/ln(gamma)^2/FeigenbaumDelta^2/sin(Pi/5) 2584035820617170 r005 Im(z^2+c),c=-5/66+30/47*I,n=37 2584035821028683 m001 GAMMA(11/24)*GAMMA(1/24)*ln(GAMMA(5/12))^2 2584035828131027 r005 Re(z^2+c),c=-10/31+5/61*I,n=9 2584035831772357 m005 (1/3*3^(1/2)-1/6)/(9/10*exp(1)-6/7) 2584035843865427 m005 (5*Pi-2/5)/(1/3*gamma+2/5) 2584035857292794 a001 199/14930352*17711^(7/13) 2584035857941816 m001 (3^(1/3)-CopelandErdos)/FeigenbaumDelta 2584035858179942 a001 199/12586269025*4807526976^(7/13) 2584035858179942 a001 199/365435296162*2504730781961^(7/13) 2584035858179945 a001 199/433494437*9227465^(7/13) 2584035865864899 p001 sum((-1)^n/(113*n+38)/n/(256^n),n=0..infinity) 2584035870125618 m001 1/FeigenbaumC^2/exp(Paris)^2*GAMMA(11/12) 2584035872578365 r002 18th iterates of z^2 + 2584035876345622 r005 Im(z^2+c),c=5/21+25/49*I,n=24 2584035892767815 a007 Real Root Of -482*x^4-937*x^3+533*x^2-786*x-267 2584035919822123 m005 (1/2*2^(1/2)+3/11)/(4/9*exp(1)-5) 2584035928615864 r005 Re(z^2+c),c=4/19+27/56*I,n=3 2584035934160306 m001 (BesselJ(1,1)-Riemann2ndZero)/(ln(3)-Ei(1)) 2584035944758833 r005 Im(z^2+c),c=-19/40+7/15*I,n=36 2584035952918423 a007 Real Root Of 454*x^4+950*x^3-449*x^2+461*x+339 2584035957549101 m001 HardHexagonsEntropy-ln(5)^Shi(1) 2584035971758525 a007 Real Root Of 340*x^4+969*x^3+494*x^2+658*x-38 2584035972285990 m001 (Landau-Salem)/(CopelandErdos-Khinchin) 2584035973932119 m001 Trott^2*Riemann2ndZero*exp(GAMMA(19/24))^2 2584035974862627 m001 (GAMMA(3/4)-sin(1))/(Riemann1stZero+Sarnak) 2584035975480228 r005 Im(z^2+c),c=-103/118+1/55*I,n=21 2584035978671174 m001 1/Zeta(1,2)/Khintchine^2/ln(sqrt(Pi)) 2584035979238776 l006 ln(491/6506) 2584035980768413 a007 Real Root Of -204*x^4-21*x^3+953*x^2-883*x+88 2584035983737237 m001 (-KomornikLoreti+TreeGrowth2nd)/(gamma-ln(3)) 2584035994357718 m001 1/Porter*Si(Pi)*ln(Trott)^2 2584035998249151 r005 Re(z^2+c),c=-9/28+4/43*I,n=15 2584036000568772 r005 Im(z^2+c),c=-4/27+19/54*I,n=13 2584036001252108 a007 Real Root Of 39*x^4+974*x^3-849*x^2+618*x+122 2584036001444131 m005 (1/3*Catalan+1/12)/(2/9*exp(1)+9/10) 2584036004757105 m001 (ln(2)+ln(5))/(HardHexagonsEntropy-Mills) 2584036011772997 m001 Backhouse/(FibonacciFactorial-Psi(2,1/3)) 2584036021832216 r009 Re(z^3+c),c=-25/58+20/39*I,n=58 2584036031606336 m001 gamma(3)^Landau*LandauRamanujan2nd^Landau 2584036042681235 m001 (2^(1/2)-ErdosBorwein)/(MasserGramain+Paris) 2584036045581933 a007 Real Root Of 375*x^4+779*x^3-458*x^2-198*x-732 2584036048859821 m005 (1/2*Catalan-7/8)/(-53/176+1/16*5^(1/2)) 2584036052079090 r005 Re(z^2+c),c=7/90+18/53*I,n=43 2584036056057708 r005 Im(z^2+c),c=31/114+6/55*I,n=24 2584036062942448 m001 1+cos(1/12*Pi)*GAMMA(13/24) 2584036069589128 a007 Real Root Of 218*x^4+371*x^3-732*x^2-701*x-242 2584036075413247 m001 (gamma(3)+MasserGramain)/(MertensB3+Salem) 2584036081058731 a007 Real Root Of -389*x^4-513*x^3+990*x^2-796*x-175 2584036082808406 m005 (1/2*2^(1/2)-1/8)/(Pi-8/9) 2584036083587803 m001 exp(exp(1))^2/Zeta(7)/log(1+sqrt(2)) 2584036083972792 a007 Real Root Of -536*x^4-996*x^3+856*x^2-606*x-569 2584036106432535 m005 (1/3*5^(1/2)-3/4)/(5/7*5^(1/2)+1/5) 2584036106481249 m001 (Kac+ZetaQ(2))/(GAMMA(19/24)+Backhouse) 2584036114258962 m001 1/ln(ArtinRank2)/Backhouse*FeigenbaumKappa 2584036119211908 a007 Real Root Of 395*x^4-355*x^3-200*x^2-72*x+2 2584036129597405 m001 sin(1/12*Pi)*FeigenbaumB^ZetaQ(3) 2584036130322270 m005 (1/2*Catalan-1/10)/(7/12*3^(1/2)+3/8) 2584036132660424 r005 Re(z^2+c),c=-4/15+35/46*I,n=18 2584036133734529 r002 55th iterates of z^2 + 2584036135771656 h001 (10/11*exp(1)+4/9)/(1/3*exp(1)+2/9) 2584036136465689 s001 sum(exp(-Pi/2)^n*A177762[n],n=1..infinity) 2584036137330297 m005 (1/2*3^(1/2)+1)/(1/5*5^(1/2)-3/8) 2584036138191323 r005 Im(z^2+c),c=-51/38+2/23*I,n=11 2584036142010905 s001 sum(1/10^(n-1)*A122757[n]/n!^2,n=1..infinity) 2584036142081842 s001 sum(1/10^(n-1)*A282458[n]/n!^2,n=1..infinity) 2584036142441222 r009 Re(z^3+c),c=-5/24+26/29*I,n=3 2584036142706900 l006 ln(2452/3175) 2584036148033342 r005 Re(z^2+c),c=7/90+18/53*I,n=42 2584036151715018 s001 sum(1/10^(n-1)*A101727[n]/n!^2,n=1..infinity) 2584036159760787 r009 Re(z^3+c),c=-17/44+3/7*I,n=22 2584036160563306 a001 4/51841*2207^(37/49) 2584036166657541 r005 Re(z^2+c),c=7/90+18/53*I,n=47 2584036168946767 r005 Re(z^2+c),c=7/90+18/53*I,n=46 2584036178048701 r009 Re(z^3+c),c=-7/19+39/61*I,n=4 2584036178683438 a007 Real Root Of 354*x^4+776*x^3-596*x^2-662*x-125 2584036180259343 r005 Im(z^2+c),c=39/98+12/49*I,n=13 2584036181392663 m005 (1/3*5^(1/2)-1/7)/(1/12*Zeta(3)-1/3) 2584036182356028 r005 Re(z^2+c),c=7/90+18/53*I,n=50 2584036184570441 r005 Re(z^2+c),c=7/90+18/53*I,n=51 2584036186193984 r005 Re(z^2+c),c=7/90+18/53*I,n=54 2584036187006171 r005 Re(z^2+c),c=7/90+18/53*I,n=55 2584036187061883 r005 Re(z^2+c),c=7/90+18/53*I,n=58 2584036187233121 r005 Re(z^2+c),c=7/90+18/53*I,n=62 2584036187261771 r005 Re(z^2+c),c=7/90+18/53*I,n=61 2584036187264907 r005 Re(z^2+c),c=7/90+18/53*I,n=59 2584036187275837 r005 Re(z^2+c),c=7/90+18/53*I,n=63 2584036187283450 r005 Re(z^2+c),c=7/90+18/53*I,n=64 2584036187329968 r005 Re(z^2+c),c=7/90+18/53*I,n=57 2584036187356468 r005 Re(z^2+c),c=7/90+18/53*I,n=60 2584036187747567 r005 Re(z^2+c),c=7/90+18/53*I,n=56 2584036188159961 r005 Re(z^2+c),c=7/90+18/53*I,n=53 2584036189610557 r005 Re(z^2+c),c=7/90+18/53*I,n=52 2584036190541867 a001 843/5*5^(13/49) 2584036193646847 r005 Im(z^2+c),c=7/86+9/16*I,n=7 2584036193976967 a001 13201*317811^(39/50) 2584036194906816 r005 Re(z^2+c),c=7/90+18/53*I,n=49 2584036196940593 r005 Im(z^2+c),c=-17/58+24/59*I,n=18 2584036197091460 r005 Re(z^2+c),c=7/90+18/53*I,n=48 2584036199065816 r005 Re(z^2+c),c=7/90+18/53*I,n=40 2584036200139805 a007 Real Root Of 19*x^4-515*x^3+912*x^2+466*x+745 2584036208279208 a001 7/24157817*63245986^(1/4) 2584036208279209 a001 7/63245986*2971215073^(1/4) 2584036208279209 a001 7/165580141*139583862445^(1/4) 2584036208279209 a001 7/433494437*6557470319842^(1/4) 2584036208279209 a001 7/267914296*956722026041^(1/4) 2584036208279209 a001 1/14619165*20365011074^(1/4) 2584036208279209 a001 7/39088169*433494437^(1/4) 2584036208279213 a001 7/14930352*9227465^(1/4) 2584036208279274 a001 7/9227465*1346269^(1/4) 2584036208282574 a001 7/5702887*196418^(1/4) 2584036208436496 a001 7/3524578*28657^(1/4) 2584036208479994 m001 arctan(1/2)^Zeta(5)*arctan(1/2)^Sarnak 2584036211277997 r005 Re(z^2+c),c=-27/94+13/44*I,n=35 2584036212851640 s002 sum(A029929[n]/((pi^n+1)/n),n=1..infinity) 2584036215670404 a001 1/311187*4181^(1/4) 2584036216952554 m005 (27/28+1/4*5^(1/2))/(2/11*gamma-6) 2584036217402709 r005 Re(z^2+c),c=-27/94+13/44*I,n=38 2584036217714211 r005 Re(z^2+c),c=7/90+18/53*I,n=44 2584036217862287 m001 (Pi^(1/2))^(3^(1/3))+ln(2)/ln(10) 2584036225674215 m005 (5/6*Pi+1/2)/(4*Pi-1/2) 2584036225674215 m006 (1/2/Pi+5/6)/(1/2/Pi-4) 2584036225674215 m008 (5/6*Pi+1/2)/(4*Pi-1/2) 2584036226652986 r008 a(0)=0,K{-n^6,32-47*n-10*n^2-14*n^3} 2584036233120166 m001 (sin(1/5*Pi)-Landau)/(MertensB1+MinimumGamma) 2584036236509734 r005 Re(z^2+c),c=-27/94+13/44*I,n=36 2584036240876897 r005 Re(z^2+c),c=7/90+18/53*I,n=45 2584036243531368 m001 AlladiGrinstead*(GAMMA(11/12)-exp(1/Pi)) 2584036250624119 r004 Re(z^2+c),c=3/8+7/22*I,z(0)=exp(5/12*I*Pi),n=4 2584036276738380 a007 Real Root Of -271*x^4-258*x^3-662*x^2+213*x+96 2584036291844416 r005 Im(z^2+c),c=-5/94+11/35*I,n=14 2584036294853249 l006 ln(487/6453) 2584036306074480 m001 2^(1/2)*Magata+Riemann2ndZero 2584036310368326 m001 exp(Lehmer)^2*FeigenbaumDelta^2*BesselK(1,1)^2 2584036321894850 r005 Re(z^2+c),c=-27/94+13/44*I,n=41 2584036322479398 r005 Re(z^2+c),c=-27/94+13/44*I,n=43 2584036325887941 r005 Re(z^2+c),c=-27/94+13/44*I,n=40 2584036326833252 m001 1/2*Paris^FeigenbaumC/Pi*GAMMA(5/6) 2584036333914472 r005 Re(z^2+c),c=-27/94+13/44*I,n=46 2584036334293037 r005 Re(z^2+c),c=-27/94+13/44*I,n=48 2584036335143042 r005 Re(z^2+c),c=-27/94+13/44*I,n=45 2584036335532600 r005 Re(z^2+c),c=-27/94+13/44*I,n=51 2584036335610699 r005 Re(z^2+c),c=-27/94+13/44*I,n=53 2584036335743674 r005 Re(z^2+c),c=-27/94+13/44*I,n=56 2584036335756460 r005 Re(z^2+c),c=-27/94+13/44*I,n=58 2584036335759033 r005 Re(z^2+c),c=-27/94+13/44*I,n=50 2584036335770559 r005 Re(z^2+c),c=-27/94+13/44*I,n=61 2584036335772444 r005 Re(z^2+c),c=-27/94+13/44*I,n=63 2584036335774962 r005 Re(z^2+c),c=-27/94+13/44*I,n=64 2584036335775643 r005 Re(z^2+c),c=-27/94+13/44*I,n=60 2584036335777825 r005 Re(z^2+c),c=-27/94+13/44*I,n=62 2584036335779056 r005 Re(z^2+c),c=-27/94+13/44*I,n=55 2584036335780443 r005 Re(z^2+c),c=-27/94+13/44*I,n=59 2584036335804184 r005 Re(z^2+c),c=-27/94+13/44*I,n=57 2584036335836209 r005 Re(z^2+c),c=-27/94+13/44*I,n=54 2584036336030739 r005 Re(z^2+c),c=-27/94+13/44*I,n=52 2584036336389544 r005 Re(z^2+c),c=-27/94+13/44*I,n=49 2584036337237437 m005 (1/3*2^(1/2)-2/5)/(6*gamma-7/10) 2584036337961273 r005 Re(z^2+c),c=-27/94+13/44*I,n=47 2584036341772815 r005 Re(z^2+c),c=-27/94+13/44*I,n=44 2584036347686626 m001 GAMMA(23/24)^2/exp(Magata)^2*sqrt(5) 2584036353523075 b008 3^(1+EulerGamma)^(-1)+EulerGamma 2584036354261501 r005 Re(z^2+c),c=-27/94+13/44*I,n=42 2584036354405758 r005 Re(z^2+c),c=7/90+18/53*I,n=38 2584036363092592 r005 Im(z^2+c),c=-23/34+19/127*I,n=27 2584036364326130 b008 Cosh[EulerGamma^(-4+Pi)] 2584036365039970 r009 Re(z^3+c),c=-37/102+25/49*I,n=6 2584036366360163 a007 Real Root Of 274*x^4+756*x^3-118*x^2-835*x-542 2584036368798519 r005 Im(z^2+c),c=-23/102+5/13*I,n=11 2584036372165859 a007 Real Root Of 118*x^4-205*x^3-899*x^2+891*x-493 2584036377177765 r005 Re(z^2+c),c=-31/114+7/20*I,n=33 2584036383528892 m002 -Pi^3-Cosh[Pi]*ProductLog[Pi]+6*Sinh[Pi] 2584036390887670 r009 Re(z^3+c),c=-14/23+17/60*I,n=15 2584036393197018 l006 ln(5883/6037) 2584036393307789 r005 Re(z^2+c),c=-27/94+13/44*I,n=39 2584036441656424 m009 (3/10*Pi^2+1/4)/(2/3*Psi(1,2/3)-4/5) 2584036447528037 m006 (1/2*Pi^2-2/5)/(3/Pi+4/5) 2584036467412918 a007 Real Root Of -78*x^4-18*x^3+197*x^2-734*x-45 2584036469619802 a001 9349/89*610^(8/57) 2584036470952805 m005 (1/3*gamma-1/7)/(5/8*3^(1/2)-3) 2584036480724748 a007 Real Root Of 434*x^4+907*x^3-908*x^2-790*x+321 2584036490522085 r005 Re(z^2+c),c=-27/94+13/44*I,n=37 2584036491226773 s002 sum(A151434[n]/(n^3*pi^n+1),n=1..infinity) 2584036494018084 r009 Re(z^3+c),c=-3/19+18/19*I,n=44 2584036499330891 r005 Im(z^2+c),c=3/22+9/41*I,n=19 2584036499483247 m001 (MadelungNaCl+Magata)/(Shi(1)-Zeta(1,2)) 2584036503301253 m001 ZetaP(4)^Thue*Pi*csc(1/24*Pi)/GAMMA(23/24) 2584036506656727 a007 Real Root Of 269*x^4+595*x^3-45*x^2+390*x-419 2584036508109198 m005 (1/3+1/4*5^(1/2))/(7/12*Zeta(3)-2/3) 2584036516917436 m006 (1/3*ln(Pi)+1)/(exp(2*Pi)-5/6) 2584036518952416 r005 Re(z^2+c),c=7/90+18/53*I,n=41 2584036522999334 m005 (5/6*Catalan-1/5)/(4/5*Pi-1/3) 2584036523589185 m001 (3^(1/2)+FeigenbaumAlpha)^Zeta(1,2) 2584036523589185 m001 (sqrt(3)+FeigenbaumAlpha)^Zeta(1,2) 2584036530539644 h001 (1/7*exp(2)+7/11)/(1/5*exp(1)+1/9) 2584036538480759 m005 (1/2*5^(1/2)+9/11)/(Catalan-1/6) 2584036544182880 a007 Real Root Of 326*x^4+507*x^3-960*x^2-216*x+65 2584036555502582 a001 7/1346269*610^(1/4) 2584036559943523 a001 1/167761*47^(8/21) 2584036561936117 a007 Real Root Of 243*x^4-821*x^3-29*x^2-885*x-242 2584036564284618 m001 (Niven+PlouffeB)/(cos(1)+GaussKuzminWirsing) 2584036578859299 m006 (ln(Pi)-3)/(2/3*Pi^2+3/5) 2584036587442609 a001 18/377*28657^(7/18) 2584036590453571 a007 Real Root Of -550*x^4-972*x^3+708*x^2-898*x+703 2584036595873866 g007 Psi(2,1/11)+Psi(2,5/9)-Psi(2,2/7)-Psi(2,3/4) 2584036596027170 r009 Re(z^3+c),c=-3/19+28/31*I,n=22 2584036598259345 a001 34/3*29^(13/14) 2584036599477770 a008 Real Root of x^5-2*x^4-13*x^3+18*x^2+43*x-29 2584036599752134 m001 HeathBrownMoroz^OneNinth/Ei(1) 2584036602423962 a003 cos(Pi*34/111)/cos(Pi*35/71) 2584036602744316 a007 Real Root Of 46*x^4-913*x^3-453*x^2-887*x+275 2584036612444951 m001 (Gompertz+Sarnak)/(sin(1/5*Pi)-ln(3)) 2584036613304951 m001 (MasserGramainDelta+ThueMorse)/(3^(1/3)-gamma) 2584036615695190 l006 ln(483/6400) 2584036624840645 r005 Im(z^2+c),c=-25/58+25/56*I,n=56 2584036624940002 m001 (cos(1/5*Pi)-2*Pi/GAMMA(5/6))/(Artin+Porter) 2584036630490491 r009 Re(z^3+c),c=-1/21+23/33*I,n=44 2584036638943455 a007 Real Root Of 584*x^4+16*x^3-559*x^2-565*x-111 2584036650708842 r009 Re(z^3+c),c=-1/23+43/61*I,n=31 2584036653260671 l006 ln(6169/7988) 2584036654411544 r005 Re(z^2+c),c=33/118+9/41*I,n=3 2584036660432918 r009 Im(z^3+c),c=-11/62+1/43*I,n=7 2584036668374323 a007 Real Root Of 428*x^4+875*x^3-358*x^2+431*x-481 2584036702123246 m001 (Zeta(1,-1)-gamma)/(MertensB2+Tribonacci) 2584036703636964 a001 7/3*13^(15/16) 2584036729130111 r009 Re(z^3+c),c=-53/122+29/63*I,n=18 2584036730276053 m001 (HardyLittlewoodC3+Totient)/(1-CopelandErdos) 2584036733022022 m005 (1/2*Pi+4/5)/(3*Pi-1/4) 2584036733022022 m006 (1/2*Pi+4/5)/(3*Pi-1/4) 2584036733022022 m008 (1/2*Pi+4/5)/(3*Pi-1/4) 2584036748344805 r005 Re(z^2+c),c=-1/5+22/41*I,n=44 2584036751767340 a001 3/2584*317811^(12/49) 2584036752359249 a001 233/2207*7^(23/50) 2584036756716269 r005 Im(z^2+c),c=17/110+30/49*I,n=36 2584036756769794 a007 Real Root Of 542*x^4-59*x^3-931*x^2-593*x+214 2584036779520106 r005 Im(z^2+c),c=49/118+1/48*I,n=5 2584036810821431 m005 (1/2*2^(1/2)+7/11)/(7/10*Pi+3) 2584036810857766 m001 Landau^(Riemann3rdZero/exp(1/exp(1))) 2584036817988335 a007 Real Root Of -981*x^4+4*x^3-254*x^2+904*x+255 2584036821799081 r005 Im(z^2+c),c=-29/70+29/64*I,n=30 2584036822556072 r005 Re(z^2+c),c=19/56+24/59*I,n=23 2584036829750364 m001 1/exp(MertensB1)*Artin/GAMMA(11/12)^2 2584036844944503 a001 4181/322*18^(5/21) 2584036845030717 m001 (HardyLittlewoodC3+Khinchin)/GAMMA(17/24) 2584036856601750 r005 Re(z^2+c),c=3/19+19/55*I,n=29 2584036870757754 a007 Real Root Of -912*x^4-834*x^3+795*x^2+907*x-269 2584036876408727 m001 (-GaussKuzminWirsing+Trott2nd)/(cos(1)-ln(5)) 2584036879030365 r005 Re(z^2+c),c=3/14+4/55*I,n=26 2584036879982692 r005 Re(z^2+c),c=-27/94+13/44*I,n=34 2584036891272785 s001 sum(1/10^(n-1)*A201821[n]/n!^2,n=1..infinity) 2584036897659150 m001 (CareFree+ReciprocalLucas)/(gamma-ln(5)) 2584036905545903 a007 Real Root Of -344*x^4-524*x^3+586*x^2-867*x+143 2584036921122488 m001 Pi*(Psi(2,1/3)+ln(2+3^(1/2)))*GAMMA(7/12) 2584036922460897 m001 BesselI(1,2)^sqrt(5)-GAMMA(7/24) 2584036926077930 r009 Im(z^3+c),c=-33/82+10/61*I,n=11 2584036930031561 a007 Real Root Of -446*x^4-792*x^3+534*x^2-954*x+189 2584036932715110 a007 Real Root Of -806*x^4+806*x^3+889*x^2+961*x-318 2584036935371617 m001 Ei(1,1)^FibonacciFactorial/BesselK(1,1) 2584036939433318 r005 Im(z^2+c),c=-59/74+11/41*I,n=4 2584036941895554 l006 ln(479/6347) 2584036942641333 a003 sin(Pi*7/111)-sin(Pi*17/113) 2584036957226180 m002 Pi^3/2+Log[Pi]+Pi^2/ProductLog[Pi] 2584036963854223 r009 Re(z^3+c),c=-25/66+7/17*I,n=31 2584036963890726 a007 Real Root Of -257*x^4-546*x^3+131*x^2-779*x-850 2584036966947705 m001 1/OneNinth/exp(Si(Pi))*BesselK(0,1)^2 2584036977378319 r009 Im(z^3+c),c=-29/74+6/35*I,n=11 2584036990058572 l006 ln(3717/4813) 2584036995965043 r005 Re(z^2+c),c=-19/70+15/44*I,n=12 2584037000569684 r002 52th iterates of z^2 + 2584037010250914 r005 Im(z^2+c),c=-29/114+19/49*I,n=7 2584037010404077 a007 Real Root Of 337*x^4-970*x^3+434*x^2-212*x-102 2584037010731695 r009 Im(z^3+c),c=-1/28+12/43*I,n=2 2584037019329729 m001 (BesselI(0,1)*ArtinRank2-Khinchin)/ArtinRank2 2584037023447345 m005 (3/5*exp(1)-1/2)/(1/4*Catalan-2/3) 2584037026038425 h001 (2/11*exp(1)+5/7)/(4/7*exp(2)+5/11) 2584037035005442 m001 ln(GAMMA(19/24))/ArtinRank2^2/GAMMA(5/6)^2 2584037046139894 a001 322/4181*6765^(7/51) 2584037050610776 m001 1/ln(Paris)/FeigenbaumB^2*PrimesInBinary 2584037053598975 m005 (1/3*Catalan-2/11)/(3*3^(1/2)-5/12) 2584037069438488 m009 (48*Catalan+6*Pi^2-5/6)/(3/10*Pi^2+1) 2584037076467985 m008 (5/6*Pi^3-1/6)/(1/2*Pi^2+5) 2584037078340034 m008 (1/4*Pi^6-1/2)/(3*Pi^3-1/5) 2584037078881430 a007 Real Root Of 365*x^4+603*x^3-881*x^2+51*x+145 2584037083462406 r005 Re(z^2+c),c=3/110+29/49*I,n=3 2584037087392310 m005 (1/2*5^(1/2)+1/12)/(2/7*gamma+3/10) 2584037093911779 m001 (5^(1/2)-Ei(1))/(-Cahen+ReciprocalLucas) 2584037102988429 r005 Re(z^2+c),c=3/14+4/55*I,n=34 2584037107111278 r005 Re(z^2+c),c=3/14+4/55*I,n=33 2584037110294924 r005 Re(z^2+c),c=3/14+4/55*I,n=35 2584037119321802 r005 Re(z^2+c),c=3/14+4/55*I,n=36 2584037126038527 r005 Re(z^2+c),c=3/14+4/55*I,n=37 2584037129752048 r005 Re(z^2+c),c=3/14+4/55*I,n=38 2584037130024787 r005 Re(z^2+c),c=3/14+4/55*I,n=46 2584037130030393 r005 Re(z^2+c),c=3/14+4/55*I,n=45 2584037130041759 r005 Re(z^2+c),c=3/14+4/55*I,n=47 2584037130061307 r005 Re(z^2+c),c=3/14+4/55*I,n=48 2584037130075440 r005 Re(z^2+c),c=3/14+4/55*I,n=49 2584037130083057 r005 Re(z^2+c),c=3/14+4/55*I,n=50 2584037130083215 r005 Re(z^2+c),c=3/14+4/55*I,n=58 2584037130083221 r005 Re(z^2+c),c=3/14+4/55*I,n=57 2584037130083254 r005 Re(z^2+c),c=3/14+4/55*I,n=59 2584037130083297 r005 Re(z^2+c),c=3/14+4/55*I,n=60 2584037130083326 r005 Re(z^2+c),c=3/14+4/55*I,n=61 2584037130083342 r005 Re(z^2+c),c=3/14+4/55*I,n=62 2584037130083345 r005 Re(z^2+c),c=3/14+4/55*I,n=56 2584037130083347 r005 Re(z^2+c),c=3/14+4/55*I,n=63 2584037130083347 r005 Re(z^2+c),c=3/14+4/55*I,n=64 2584037130083690 r005 Re(z^2+c),c=3/14+4/55*I,n=55 2584037130084338 r005 Re(z^2+c),c=3/14+4/55*I,n=54 2584037130085246 r005 Re(z^2+c),c=3/14+4/55*I,n=53 2584037130085874 r005 Re(z^2+c),c=3/14+4/55*I,n=51 2584037130086061 r005 Re(z^2+c),c=3/14+4/55*I,n=52 2584037130094037 r005 Re(z^2+c),c=3/14+4/55*I,n=44 2584037130262270 r005 Re(z^2+c),c=3/14+4/55*I,n=43 2584037130570464 r005 Re(z^2+c),c=3/14+4/55*I,n=42 2584037130990698 r005 Re(z^2+c),c=3/14+4/55*I,n=41 2584037131187773 r005 Re(z^2+c),c=3/14+4/55*I,n=39 2584037131343405 r005 Re(z^2+c),c=3/14+4/55*I,n=40 2584037139450337 r005 Re(z^2+c),c=3/14+4/55*I,n=32 2584037144993459 a007 Real Root Of -750*x^4+638*x^3-600*x^2+962*x+303 2584037174368252 m001 (MertensB3-Riemann2ndZero)/(ln(gamma)+Kac) 2584037187242476 r005 Im(z^2+c),c=-43/118+26/61*I,n=39 2584037191936736 a001 1/10182505537*46368^(7/23) 2584037192009894 a001 2/591286729879*2971215073^(7/23) 2584037198051832 r005 Re(z^2+c),c=7/19+9/52*I,n=40 2584037201526561 m001 (gamma(3)+LandauRamanujan2nd)/(cos(1)-exp(Pi)) 2584037214582985 h005 exp(cos(Pi*4/49)*sin(Pi*25/57)) 2584037219101139 m001 (GaussAGM-Psi(2,1/3))/(Mills+Thue) 2584037221053081 r005 Re(z^2+c),c=31/94+3/26*I,n=16 2584037221369928 r005 Re(z^2+c),c=3/14+4/55*I,n=31 2584037222674538 m001 1/exp(FeigenbaumB)^2*FransenRobinson^2*sqrt(3) 2584037223301578 a007 Real Root Of 548*x^4-560*x^3+455*x^2-656*x-212 2584037223908974 r005 Re(z^2+c),c=11/126+39/56*I,n=5 2584037226462057 m002 -6+Pi^2/Log[Pi]-Sinh[Pi]/Pi^5 2584037230979970 r009 Im(z^3+c),c=-11/62+1/43*I,n=8 2584037262564907 m001 (Psi(2,1/3)+ln(gamma))/(GAMMA(7/12)+Kac) 2584037265960831 a005 (1/cos(4/59*Pi))^646 2584037266034297 m006 (1/5*Pi^2+4/5)/(1/5*exp(2*Pi)+1/4) 2584037266716387 m001 1/exp(Niven)*Artin^2*Zeta(7)^2 2584037270770318 m003 25+4*E^(-1/2-Sqrt[5]/2)-Cos[1/2+Sqrt[5]/2] 2584037271402927 r005 Im(z^2+c),c=-83/94+13/63*I,n=41 2584037273589710 l006 ln(475/6294) 2584037276524297 m001 (Robbin-Stephens)/(ln(gamma)+ln(2^(1/2)+1)) 2584037276806827 a007 Real Root Of 269*x^4+289*x^3-611*x^2+961*x-444 2584037277154554 m006 (1/3*exp(2*Pi)-2/5)/(3*exp(Pi)-1/2) 2584037277694415 a007 Real Root Of -122*x^4-398*x^3-365*x^2-47*x+888 2584037278683408 r009 Im(z^3+c),c=-11/62+1/43*I,n=9 2584037282081930 r009 Im(z^3+c),c=-11/62+1/43*I,n=10 2584037282244098 r009 Im(z^3+c),c=-11/62+1/43*I,n=23 2584037282244098 r009 Im(z^3+c),c=-11/62+1/43*I,n=22 2584037282244098 r009 Im(z^3+c),c=-11/62+1/43*I,n=24 2584037282244098 r009 Im(z^3+c),c=-11/62+1/43*I,n=25 2584037282244098 r009 Im(z^3+c),c=-11/62+1/43*I,n=26 2584037282244098 r009 Im(z^3+c),c=-11/62+1/43*I,n=27 2584037282244098 r009 Im(z^3+c),c=-11/62+1/43*I,n=28 2584037282244098 r009 Im(z^3+c),c=-11/62+1/43*I,n=29 2584037282244098 r009 Im(z^3+c),c=-11/62+1/43*I,n=30 2584037282244098 r009 Im(z^3+c),c=-11/62+1/43*I,n=31 2584037282244098 r009 Im(z^3+c),c=-11/62+1/43*I,n=32 2584037282244098 r009 Im(z^3+c),c=-11/62+1/43*I,n=33 2584037282244098 r009 Im(z^3+c),c=-11/62+1/43*I,n=42 2584037282244098 r009 Im(z^3+c),c=-11/62+1/43*I,n=43 2584037282244098 r009 Im(z^3+c),c=-11/62+1/43*I,n=45 2584037282244098 r009 Im(z^3+c),c=-11/62+1/43*I,n=41 2584037282244098 r009 Im(z^3+c),c=-11/62+1/43*I,n=40 2584037282244098 r009 Im(z^3+c),c=-11/62+1/43*I,n=39 2584037282244098 r009 Im(z^3+c),c=-11/62+1/43*I,n=38 2584037282244098 r009 Im(z^3+c),c=-11/62+1/43*I,n=37 2584037282244098 r009 Im(z^3+c),c=-11/62+1/43*I,n=36 2584037282244098 r009 Im(z^3+c),c=-11/62+1/43*I,n=35 2584037282244098 r009 Im(z^3+c),c=-11/62+1/43*I,n=34 2584037282244098 r009 Im(z^3+c),c=-11/62+1/43*I,n=21 2584037282244098 r009 Im(z^3+c),c=-11/62+1/43*I,n=20 2584037282244098 r009 Im(z^3+c),c=-11/62+1/43*I,n=19 2584037282244098 r009 Im(z^3+c),c=-11/62+1/43*I,n=18 2584037282244098 r009 Im(z^3+c),c=-11/62+1/43*I,n=17 2584037282244099 r009 Im(z^3+c),c=-11/62+1/43*I,n=16 2584037282244106 r009 Im(z^3+c),c=-11/62+1/43*I,n=15 2584037282244166 r009 Im(z^3+c),c=-11/62+1/43*I,n=14 2584037282244593 r009 Im(z^3+c),c=-11/62+1/43*I,n=13 2584037282246902 r009 Im(z^3+c),c=-11/62+1/43*I,n=12 2584037282249640 r009 Im(z^3+c),c=-11/62+1/43*I,n=11 2584037284391948 r005 Im(z^2+c),c=-59/106+2/43*I,n=36 2584037293363549 r005 Re(z^2+c),c=-27/122+43/63*I,n=4 2584037304281823 a007 Real Root Of -291*x^4-845*x^3-321*x^2-315*x-276 2584037312091380 m001 Magata^(2/3*Pi*3^(1/2)/GAMMA(2/3))-sin(1) 2584037312131132 m001 (Zeta(1,2)+Otter)/(BesselK(0,1)-Zeta(3)) 2584037325030758 a007 Real Root Of -283*x^4-459*x^3+960*x^2+769*x+275 2584037339292866 r005 Re(z^2+c),c=-23/21+5/21*I,n=18 2584037340139722 m005 (1/2*Catalan+1/9)/(6/7*5^(1/2)+2/7) 2584037359944375 r005 Re(z^2+c),c=-63/62+3/28*I,n=38 2584037363751601 b008 5*E+3*Coth[1/4] 2584037367674367 r005 Re(z^2+c),c=3/14+4/55*I,n=30 2584037369576436 r005 Im(z^2+c),c=-41/114+17/40*I,n=47 2584037373931358 a007 Real Root Of -393*x^4-602*x^3+884*x^2-463*x+36 2584037377641308 m005 (1/2*2^(1/2)+3/4)/(2/7*5^(1/2)+5) 2584037392883172 m001 (-Thue+ThueMorse)/(Champernowne-Si(Pi)) 2584037393184533 m001 (HeathBrownMoroz-Magata)/(ln(3)+Ei(1,1)) 2584037394765996 m005 (1/3*Zeta(3)+1/10)/(8/11*2^(1/2)+10/11) 2584037401177988 m001 (HeathBrownMoroz+Stephens)/(5^(1/2)-gamma(3)) 2584037401959351 r009 Re(z^3+c),c=-23/62+33/52*I,n=30 2584037407101159 l006 ln(4982/6451) 2584037411111293 r009 Im(z^3+c),c=-35/78+5/42*I,n=44 2584037414404215 r009 Im(z^3+c),c=-2/9+44/61*I,n=16 2584037414437192 a007 Real Root Of 786*x^4+137*x^3+407*x^2-587*x-180 2584037417227627 m002 -3/5+2*Log[Pi]*Sinh[Pi] 2584037422633092 r005 Im(z^2+c),c=-35/74+11/23*I,n=64 2584037426358220 a007 Real Root Of -357*x^4-535*x^3+752*x^2-604*x+104 2584037430548784 m001 1/ln(Kolakoski)*MertensB1/TreeGrowth2nd 2584037469933404 r005 Im(z^2+c),c=25/102+3/22*I,n=12 2584037471418457 a001 119218851371/5*317811^(11/15) 2584037471421924 a001 3010349/5*591286729879^(11/15) 2584037471422209 a001 599074578/5*433494437^(11/15) 2584037503380387 a001 1/322*(1/2*5^(1/2)+1/2)^7*3^(23/24) 2584037509240197 m001 1/Riemann3rdZero*ln(CopelandErdos)/sqrt(5) 2584037517710447 m001 1/ln(Catalan)^3*MadelungNaCl 2584037523072315 a001 1268860318*6557470319842^(15/17) 2584037523072315 a001 1730726404001*1836311903^(15/17) 2584037525977594 m005 (1/3*2^(1/2)-1/5)/(6/7*gamma+5/9) 2584037532582772 s002 sum(A061918[n]/((2^n+1)/n),n=1..infinity) 2584037538092026 r008 a(0)=0,K{-n^6,-10-6*n^3-55*n^2+32*n} 2584037550827074 a001 1/4*987^(37/55) 2584037553634867 p003 LerchPhi(1/25,3,263/167) 2584037557579685 r005 Im(z^2+c),c=-7/22+7/17*I,n=37 2584037558249785 h001 (3/11*exp(1)+7/10)/(5/7*exp(2)+3/10) 2584037561415863 r005 Re(z^2+c),c=3/14+4/55*I,n=29 2584037567828729 m001 (1+sin(1))/(-arctan(1/2)+Salem) 2584037569650066 r002 26th iterates of z^2 + 2584037585557945 r009 Re(z^3+c),c=-11/70+49/54*I,n=52 2584037587209615 r005 Im(z^2+c),c=5/118+13/48*I,n=11 2584037592163419 a007 Real Root Of -258*x^4-536*x^3+3*x^2-878*x-34 2584037594181376 b008 8-19*E^EulerGamma 2584037606420670 r005 Re(z^2+c),c=3/14+4/55*I,n=27 2584037610917625 l006 ln(471/6241) 2584037617011469 r005 Re(z^2+c),c=-27/94+13/44*I,n=32 2584037628518175 r005 Re(z^2+c),c=-13/48+19/50*I,n=5 2584037629190681 r009 Re(z^3+c),c=-1/78+41/51*I,n=12 2584037646497267 a007 Real Root Of -867*x^4-197*x^3-970*x^2+956*x-175 2584037655243827 l006 ln(6247/8089) 2584037655243827 p004 log(8089/6247) 2584037658598182 r005 Re(z^2+c),c=11/102+59/64*I,n=4 2584037659289268 m004 5/2+5*Pi+5*ProductLog[Sqrt[5]*Pi] 2584037662922342 m006 (1/4*Pi-2/3)/(2*exp(Pi)-1/3) 2584037667788462 m001 (2*Pi/GAMMA(5/6))^Zeta(1,-1)+FeigenbaumC 2584037675928161 m001 (exp(1/exp(1))-Kolakoski)/(Salem+Totient) 2584037679589301 m001 Shi(1)*GAMMA(17/24)+GAMMA(3/4) 2584037682037959 r005 Re(z^2+c),c=-13/70+9/16*I,n=54 2584037682343035 a007 Real Root Of -29*x^4+245*x^3+376*x^2-900*x+684 2584037693232981 m005 (1/2*Zeta(3)-4)/(93/154+7/22*5^(1/2)) 2584037698219120 g007 Psi(2,3/11)-Psi(2,1/11)-Psi(13/10)-Psi(2,2/5) 2584037698828510 m001 FeigenbaumKappa/ln(Magata)*GAMMA(7/12)^2 2584037707793464 r002 35i'th iterates of 2*x/(1-x^2) of 2584037709549083 a007 Real Root Of -263*x^4-472*x^3+328*x^2-659*x-311 2584037712236370 r005 Re(z^2+c),c=3/14+4/55*I,n=28 2584037734219597 m001 cos(1)^2*GlaisherKinkelin*exp(cos(Pi/12))^2 2584037748041235 r005 Re(z^2+c),c=-7/24+5/18*I,n=20 2584037751550717 r005 Im(z^2+c),c=-29/118+27/40*I,n=5 2584037766550948 p003 LerchPhi(1/1024,1,12/31) 2584037766611167 s001 sum(exp(-2*Pi)^(n-1)*A120054[n],n=1..infinity) 2584037780146091 r005 Re(z^2+c),c=11/28+13/59*I,n=22 2584037784371006 m001 Gompertz*TravellingSalesman/ZetaQ(4) 2584037795805818 m001 (1-exp(1/exp(1)))/(-GolombDickman+ZetaP(2)) 2584037804030852 r005 Im(z^2+c),c=1/30+32/51*I,n=39 2584037809290651 m001 (ln(2)+ln(5))/(ln(2^(1/2)+1)-Pi^(1/2)) 2584037819813415 l006 ln(7512/9727) 2584037824837652 p001 sum((-1)^n/(443*n+373)/(12^n),n=0..infinity) 2584037825444488 m001 (Landau-Robbin)/(Pi+3^(1/3)) 2584037827489637 a007 Real Root Of -20*x^4+516*x^3+719*x^2+140*x-93 2584037829278046 r005 Im(z^2+c),c=-55/74+7/54*I,n=38 2584037831825140 r005 Im(z^2+c),c=-11/28+20/47*I,n=18 2584037832952293 m006 (4*exp(2*Pi)+1/6)/(1/3*Pi^2+5) 2584037861048828 m001 (ln(2)-2*Pi/GAMMA(5/6))/(KomornikLoreti+Paris) 2584037862426314 m001 exp(1/Pi)+MertensB3^Robbin 2584037864120785 r009 Re(z^3+c),c=-45/86+15/46*I,n=14 2584037865112369 r005 Re(z^2+c),c=-1/62+3/28*I,n=11 2584037872674962 a007 Real Root Of -645*x^4+135*x^3-630*x^2+835*x+22 2584037884802567 a001 1/3009828*(1/2*5^(1/2)+1/2)^8*39603^(1/21) 2584037887509138 a005 (1/sin(50/111*Pi))^1403 2584037889061336 m001 Paris^2*ErdosBorwein/ln(FeigenbaumC) 2584037914898678 r005 Im(z^2+c),c=-37/58+13/30*I,n=20 2584037915965831 m001 gamma(3)^FeigenbaumD*Sarnak^FeigenbaumD 2584037923234304 m001 (Kac-Lehmer)/(DuboisRaymond-FellerTornier) 2584037929016828 m008 (4*Pi^3+1/6)/(5*Pi^6-5/6) 2584037935176383 m001 (Khinchin+ThueMorse)/(3^(1/2)-Si(Pi)) 2584037937008347 m001 1/exp(sinh(1))^2*GAMMA(13/24)*sqrt(1+sqrt(3)) 2584037937976444 a007 Real Root Of -800*x^4+738*x^3-537*x^2+487*x+178 2584037940962829 a007 Real Root Of 225*x^4-204*x^3+592*x^2-321*x-127 2584037943931541 m001 (sin(1/12*Pi)-Landau)/(ln(2^(1/2)+1)+Ei(1,1)) 2584037950170355 a007 Real Root Of 850*x^4-242*x^3-228*x^2-953*x-239 2584037954024059 l006 ln(467/6188) 2584037972667825 r005 Im(z^2+c),c=-13/25+17/40*I,n=39 2584037977236545 r005 Re(z^2+c),c=-21/26+1/105*I,n=34 2584037980118082 a007 Real Root Of 977*x^4+197*x^3+57*x^2-513*x+121 2584037985098653 a007 Real Root Of 348*x^4+621*x^3-841*x^2-686*x-958 2584037987598246 m001 (ThueMorse+TwinPrimes)/(3^(1/2)-ln(2+3^(1/2))) 2584037989496581 r002 50th iterates of z^2 + 2584037994739747 r005 Re(z^2+c),c=-121/126+4/35*I,n=22 2584037999454105 a007 Real Root Of -270*x^4-790*x^3-499*x^2-300*x+964 2584038000763079 r005 Im(z^2+c),c=-7/5+2/127*I,n=21 2584038000771380 r002 58th iterates of z^2 + 2584038003751897 m001 (-LandauRamanujan+ZetaP(4))/(1-BesselI(0,1)) 2584038019128747 a007 Real Root Of 223*x^4+821*x^3+934*x^2+576*x-525 2584038022060453 m001 (BesselK(0,1)+ln(Pi))/(-Grothendieck+Salem) 2584038024475435 r002 60th iterates of z^2 + 2584038025485353 a007 Real Root Of -543*x^4-927*x^3+909*x^2-758*x+187 2584038027637586 s001 sum(exp(-4*Pi/5)^n*A228972[n],n=1..infinity) 2584038029338440 r005 Re(z^2+c),c=-63/62+3/28*I,n=46 2584038034212931 r005 Re(z^2+c),c=-63/62+3/28*I,n=44 2584038034991632 r005 Re(z^2+c),c=7/90+18/53*I,n=37 2584038049867412 r005 Re(z^2+c),c=-63/62+3/28*I,n=52 2584038050536228 r005 Re(z^2+c),c=-1/62+3/28*I,n=14 2584038051016898 r005 Re(z^2+c),c=-63/62+3/28*I,n=54 2584038051183800 r005 Re(z^2+c),c=-1/62+3/28*I,n=15 2584038051375046 r005 Re(z^2+c),c=-63/62+3/28*I,n=60 2584038051442207 r005 Re(z^2+c),c=-1/62+3/28*I,n=18 2584038051445636 r005 Re(z^2+c),c=-1/62+3/28*I,n=21 2584038051445653 r005 Re(z^2+c),c=-1/62+3/28*I,n=22 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=25 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=28 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=29 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=32 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=31 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=35 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=36 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=38 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=39 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=42 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=43 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=45 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=46 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=49 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=52 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=53 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=56 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=59 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=60 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=61 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=62 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=63 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=64 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=58 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=57 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=55 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=54 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=50 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=51 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=48 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=47 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=44 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=41 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=40 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=37 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=34 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=33 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=30 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=27 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=26 2584038051445657 r005 Re(z^2+c),c=-1/62+3/28*I,n=24 2584038051445658 r005 Re(z^2+c),c=-1/62+3/28*I,n=23 2584038051445793 r005 Re(z^2+c),c=-1/62+3/28*I,n=20 2584038051445809 r005 Re(z^2+c),c=-1/62+3/28*I,n=19 2584038051448166 r005 Re(z^2+c),c=-63/62+3/28*I,n=62 2584038051450276 r005 Re(z^2+c),c=-1/62+3/28*I,n=17 2584038051458596 r005 Re(z^2+c),c=-63/62+3/28*I,n=64 2584038051480803 r005 Re(z^2+c),c=-63/62+3/28*I,n=58 2584038051512908 r005 Re(z^2+c),c=-1/62+3/28*I,n=16 2584038051797431 r005 Re(z^2+c),c=-63/62+3/28*I,n=56 2584038053188653 r005 Re(z^2+c),c=-1/62+3/28*I,n=12 2584038054208106 r005 Re(z^2+c),c=-63/62+3/28*I,n=40 2584038054812446 r005 Re(z^2+c),c=-63/62+3/28*I,n=50 2584038054834408 r002 64th iterates of z^2 + 2584038057535123 r005 Re(z^2+c),c=-63/62+3/28*I,n=48 2584038059499043 r005 Re(z^2+c),c=-1/62+3/28*I,n=13 2584038063834878 a007 Real Root Of 132*x^4+109*x^3-788*x^2-584*x-252 2584038064444128 r002 62th iterates of z^2 + 2584038065298440 r009 Im(z^3+c),c=-9/34+15/64*I,n=15 2584038079118608 m001 GAMMA(7/12)^Landau+PisotVijayaraghavan 2584038085285111 h001 (7/8*exp(1)+1/4)/(1/3*exp(1)+1/9) 2584038092907527 m001 2^(1/3)/Otter/ZetaQ(4) 2584038095568407 m001 (Gompertz+Kolakoski)/(cos(1)-gamma(3)) 2584038096602952 m001 (-3^(1/2)+Robbin)/(1-2^(1/2)) 2584038109893330 r005 Re(z^2+c),c=1/64+5/44*I,n=9 2584038111737324 m001 2^(1/3)/FellerTornier*Robbin 2584038119228393 r005 Re(z^2+c),c=-77/114+13/55*I,n=13 2584038141118331 m001 (exp(1)+3^(1/3))/(-Zeta(1,-1)+exp(1/exp(1))) 2584038141421136 r002 8th iterates of z^2 + 2584038145162194 p003 LerchPhi(1/1024,6,35/41) 2584038146639765 m001 1/GAMMA(3/4)/ln(Riemann2ndZero)/Zeta(5) 2584038146820702 m001 TwinPrimes+GolombDickman*GAMMA(7/24) 2584038154253960 m001 Pi-2^(1/3)+Zeta(1,2)+GAMMA(13/24) 2584038158432459 r005 Re(z^2+c),c=-13/42+7/52*I,n=3 2584038160339358 r002 6th iterates of z^2 + 2584038164292957 a007 Real Root Of -443*x^4-645*x^3+890*x^2-883*x+398 2584038164937316 h001 (4/7*exp(1)+1/6)/(7/9*exp(2)+10/11) 2584038180977908 r005 Re(z^2+c),c=-63/62+3/28*I,n=42 2584038186131366 m001 ln(GAMMA(2/3))^2/TwinPrimes^2*GAMMA(3/4) 2584038190281362 r005 Im(z^2+c),c=-3/86+19/62*I,n=14 2584038190413372 m001 (Zeta(1,2)-Zeta(5))^HardHexagonsEntropy 2584038197500366 m001 (Niven+ZetaP(2))/(exp(1/exp(1))-BesselI(0,2)) 2584038197727307 r005 Re(z^2+c),c=5/48+16/25*I,n=28 2584038198678797 r002 54th iterates of z^2 + 2584038200622550 m001 (GAMMA(7/12)-MinimumGamma)/(Sierpinski+Trott) 2584038201608716 a007 Real Root Of 144*x^4+149*x^3-405*x^2+829*x+997 2584038205435326 m001 BesselJ(1,1)/Lehmer/exp(GAMMA(11/12)) 2584038206926984 a007 Real Root Of -369*x^4-622*x^3+848*x^2-222*x-516 2584038208086678 m001 Lehmer^(3^(1/3))*ln(gamma) 2584038208086678 m001 Lehmer^(3^(1/3))*log(gamma) 2584038211472336 m001 (Chi(1)-GAMMA(19/24))/(Champernowne+Salem) 2584038215684834 r009 Im(z^3+c),c=-9/34+15/64*I,n=16 2584038217395404 m005 (1/3*Catalan-1/7)/(1/11*Catalan+6/11) 2584038220252580 m001 MertensB3*Riemann2ndZero/Trott 2584038229839966 r002 56th iterates of z^2 + 2584038232116429 r009 Re(z^3+c),c=-43/114+13/31*I,n=13 2584038235328432 a003 cos(Pi*31/111)*cos(Pi*43/117) 2584038236181740 m001 1/CopelandErdos^2/exp(Cahen)*sqrt(1+sqrt(3))^2 2584038239422995 m001 1/GAMMA(7/24)^2/exp(Kolakoski)^2*Zeta(3) 2584038244078828 a007 Real Root Of -326*x^4+848*x^3-586*x^2+986*x+310 2584038247392751 r005 Re(z^2+c),c=-27/122+22/45*I,n=51 2584038248221087 r005 Re(z^2+c),c=-21/82+39/62*I,n=15 2584038250103494 r005 Re(z^2+c),c=-29/114+40/61*I,n=3 2584038265743921 r009 Im(z^3+c),c=-9/34+15/64*I,n=19 2584038268354594 r005 Im(z^2+c),c=-37/78+1/2*I,n=14 2584038269740195 a007 Real Root Of -442*x^4+620*x^3+801*x^2+897*x-294 2584038269894822 r009 Im(z^3+c),c=-9/34+15/64*I,n=20 2584038270053918 r009 Im(z^3+c),c=-9/34+15/64*I,n=23 2584038270111354 r009 Im(z^3+c),c=-9/34+15/64*I,n=22 2584038270126875 r009 Im(z^3+c),c=-9/34+15/64*I,n=26 2584038270127661 r009 Im(z^3+c),c=-9/34+15/64*I,n=27 2584038270128634 r009 Im(z^3+c),c=-9/34+15/64*I,n=30 2584038270128674 r009 Im(z^3+c),c=-9/34+15/64*I,n=31 2584038270128683 r009 Im(z^3+c),c=-9/34+15/64*I,n=34 2584038270128684 r009 Im(z^3+c),c=-9/34+15/64*I,n=38 2584038270128684 r009 Im(z^3+c),c=-9/34+15/64*I,n=37 2584038270128684 r009 Im(z^3+c),c=-9/34+15/64*I,n=35 2584038270128684 r009 Im(z^3+c),c=-9/34+15/64*I,n=41 2584038270128684 r009 Im(z^3+c),c=-9/34+15/64*I,n=42 2584038270128684 r009 Im(z^3+c),c=-9/34+15/64*I,n=45 2584038270128684 r009 Im(z^3+c),c=-9/34+15/64*I,n=46 2584038270128684 r009 Im(z^3+c),c=-9/34+15/64*I,n=49 2584038270128684 r009 Im(z^3+c),c=-9/34+15/64*I,n=53 2584038270128684 r009 Im(z^3+c),c=-9/34+15/64*I,n=52 2584038270128684 r009 Im(z^3+c),c=-9/34+15/64*I,n=56 2584038270128684 r009 Im(z^3+c),c=-9/34+15/64*I,n=57 2584038270128684 r009 Im(z^3+c),c=-9/34+15/64*I,n=60 2584038270128684 r009 Im(z^3+c),c=-9/34+15/64*I,n=61 2584038270128684 r009 Im(z^3+c),c=-9/34+15/64*I,n=64 2584038270128684 r009 Im(z^3+c),c=-9/34+15/64*I,n=63 2584038270128684 r009 Im(z^3+c),c=-9/34+15/64*I,n=62 2584038270128684 r009 Im(z^3+c),c=-9/34+15/64*I,n=59 2584038270128684 r009 Im(z^3+c),c=-9/34+15/64*I,n=58 2584038270128684 r009 Im(z^3+c),c=-9/34+15/64*I,n=55 2584038270128684 r009 Im(z^3+c),c=-9/34+15/64*I,n=54 2584038270128684 r009 Im(z^3+c),c=-9/34+15/64*I,n=50 2584038270128684 r009 Im(z^3+c),c=-9/34+15/64*I,n=51 2584038270128684 r009 Im(z^3+c),c=-9/34+15/64*I,n=48 2584038270128684 r009 Im(z^3+c),c=-9/34+15/64*I,n=47 2584038270128684 r009 Im(z^3+c),c=-9/34+15/64*I,n=44 2584038270128684 r009 Im(z^3+c),c=-9/34+15/64*I,n=43 2584038270128684 r009 Im(z^3+c),c=-9/34+15/64*I,n=40 2584038270128684 r009 Im(z^3+c),c=-9/34+15/64*I,n=39 2584038270128684 r009 Im(z^3+c),c=-9/34+15/64*I,n=36 2584038270128685 r009 Im(z^3+c),c=-9/34+15/64*I,n=33 2584038270128691 r009 Im(z^3+c),c=-9/34+15/64*I,n=32 2584038270128791 r009 Im(z^3+c),c=-9/34+15/64*I,n=29 2584038270129002 r009 Im(z^3+c),c=-9/34+15/64*I,n=28 2584038270136995 r009 Im(z^3+c),c=-9/34+15/64*I,n=24 2584038270137704 r009 Im(z^3+c),c=-9/34+15/64*I,n=25 2584038270716170 r009 Im(z^3+c),c=-9/34+15/64*I,n=21 2584038274675408 r009 Im(z^3+c),c=-9/34+15/64*I,n=18 2584038281901538 a007 Real Root Of 300*x^4+456*x^3-699*x^2+516*x+493 2584038287400748 h001 (5/9*exp(1)+1/8)/(4/5*exp(2)+5/12) 2584038294462061 a007 Real Root Of 815*x^4+730*x^3+722*x^2-30*x-47 2584038296505253 a001 28143753123/34*956722026041^(7/24) 2584038296505255 a001 408569081798/17*9227465^(7/24) 2584038297440410 a003 sin(Pi*13/80)-sin(Pi*29/108) 2584038301102430 r009 Im(z^3+c),c=-9/34+15/64*I,n=17 2584038303058777 l006 ln(463/6135) 2584038304069666 p001 sum((-1)^n/(377*n+365)/(8^n),n=0..infinity) 2584038306145585 m001 ln(FeigenbaumD)/LaplaceLimit^2*GAMMA(1/12) 2584038310601762 a007 Real Root Of -11*x^4+231*x^3+809*x^2+544*x+480 2584038319339833 m005 (1/2*2^(1/2)-1)/(19/72+7/18*5^(1/2)) 2584038322261097 r009 Re(z^3+c),c=-9/23+25/57*I,n=25 2584038337193419 m001 1/ln(TwinPrimes)^2*Riemann2ndZero^2*Zeta(7) 2584038353224696 a007 Real Root Of 291*x^4-164*x^3+548*x^2+26*x-34 2584038360860285 r005 Re(z^2+c),c=-7/8+23/116*I,n=12 2584038365869370 r002 31th iterates of z^2 + 2584038373829549 m001 1/exp(Robbin)^2/FransenRobinson^2*BesselJ(0,1) 2584038391689632 m001 (exp(1/Pi)+Sarnak)/(Trott2nd+ZetaQ(2)) 2584038396196375 m001 (-Zeta(5)+LaplaceLimit)/(Shi(1)-Zeta(3)) 2584038412058128 r002 17th iterates of z^2 + 2584038414440547 m006 (5/Pi-1/5)/(1/4*exp(Pi)-2/5) 2584038416950265 r005 Re(z^2+c),c=13/44+11/25*I,n=25 2584038417072279 h005 exp(sin(Pi*3/14)/sin(Pi*13/57)) 2584038422119821 p004 log(37573/29017) 2584038426023878 m001 (Trott2nd-ZetaP(4))/(Cahen-GolombDickman) 2584038427534353 h005 exp(sin(Pi*13/35)/sin(Pi*21/50)) 2584038430338114 r001 47i'th iterates of 2*x^2-1 of 2584038444200219 r009 Re(z^3+c),c=-27/106+4/37*I,n=12 2584038446438162 m001 Cahen-GolombDickman^Ei(1,1) 2584038447865855 r005 Re(z^2+c),c=-1/62+3/28*I,n=10 2584038462281459 r009 Re(z^3+c),c=-13/94+26/35*I,n=23 2584038464495260 r002 3th iterates of z^2 + 2584038471207303 a001 521*(1/2*5^(1/2)+1/2)^21*3^(9/14) 2584038471268159 r009 Re(z^3+c),c=-27/106+4/37*I,n=13 2584038474848029 r002 7th iterates of z^2 + 2584038485252168 r009 Re(z^3+c),c=-27/106+4/37*I,n=14 2584038486537224 m001 (Lehmer+Magata)/(2^(1/3)-FransenRobinson) 2584038487213893 r009 Re(z^3+c),c=-27/106+4/37*I,n=19 2584038487215310 r009 Re(z^3+c),c=-27/106+4/37*I,n=18 2584038487216652 r009 Re(z^3+c),c=-27/106+4/37*I,n=20 2584038487217559 r009 Re(z^3+c),c=-27/106+4/37*I,n=21 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=25 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=26 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=27 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=32 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=33 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=34 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=39 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=38 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=40 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=41 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=45 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=46 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=47 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=52 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=53 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=54 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=58 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=59 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=60 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=61 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=64 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=63 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=62 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=57 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=56 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=55 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=51 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=50 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=49 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=48 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=44 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=43 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=42 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=37 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=36 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=35 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=31 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=30 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=28 2584038487217602 r009 Re(z^3+c),c=-27/106+4/37*I,n=29 2584038487217604 r009 Re(z^3+c),c=-27/106+4/37*I,n=24 2584038487217619 r009 Re(z^3+c),c=-27/106+4/37*I,n=23 2584038487217650 r009 Re(z^3+c),c=-27/106+4/37*I,n=22 2584038487265034 r009 Re(z^3+c),c=-27/106+4/37*I,n=17 2584038487472846 r009 Re(z^3+c),c=-27/106+4/37*I,n=16 2584038487656044 r009 Re(z^3+c),c=-27/106+4/37*I,n=15 2584038502134392 r005 Im(z^2+c),c=-17/106+37/58*I,n=35 2584038511760093 r005 Re(z^2+c),c=-63/62+3/28*I,n=36 2584038512831576 m001 (Ei(1,1)+ZetaQ(2))/(Chi(1)-Ei(1)) 2584038512831576 m001 (Ei(1,1)+ZetaQ(2))/Shi(1) 2584038514469801 m001 GAMMA(7/24)*DuboisRaymond/exp(sin(1)) 2584038531177298 r005 Re(z^2+c),c=-7/114+23/39*I,n=21 2584038537787624 r009 Re(z^3+c),c=-27/106+4/37*I,n=11 2584038560146078 m001 GAMMA(23/24)/(ZetaQ(3)^((1+3^(1/2))^(1/2))) 2584038563919806 a007 Real Root Of -264*x^4-235*x^3+955*x^2-495*x+60 2584038570395666 r005 Re(z^2+c),c=-13/106+17/32*I,n=11 2584038574269938 m001 GAMMA(7/12)^2*Robbin^2*ln(sqrt(1+sqrt(3)))^2 2584038584822209 m003 -29/12+(3*Sqrt[5])/4+Log[1/2+Sqrt[5]/2] 2584038601904874 a008 Real Root of (1+5*x+5*x^2+3*x^3+3*x^4+3*x^5) 2584038602781168 a007 Real Root Of -415*x^4-804*x^3+703*x^2-155*x-464 2584038608720509 a007 Real Root Of 396*x^4+960*x^3-142*x^2+121*x+169 2584038609976272 r009 Im(z^3+c),c=-25/94+2/9*I,n=2 2584038623932025 a001 322/5*75025^(17/23) 2584038627116145 a007 Real Root Of 219*x^4-118*x^3+924*x^2+382*x+34 2584038631312619 b008 (1+12*Pi)^(-1) 2584038632385613 m001 Champernowne^GAMMA(19/24)*ln(2)/ln(10) 2584038632513941 l006 ln(1265/1638) 2584038633204462 m001 PrimesInBinary^2/Porter^2/exp(GAMMA(5/6)) 2584038633443526 r005 Im(z^2+c),c=-19/66+25/58*I,n=10 2584038648503074 r009 Re(z^3+c),c=-23/114+29/33*I,n=45 2584038649759620 m005 (1/2*Zeta(3)-5/7)/(2/7*Catalan-7/10) 2584038650647931 r002 4th iterates of z^2 + 2584038652117415 a007 Real Root Of 255*x^4+217*x^3-902*x^2+307*x-809 2584038655210708 r005 Im(z^2+c),c=-25/56+14/31*I,n=56 2584038658176764 l006 ln(459/6082) 2584038659231468 r002 16th iterates of z^2 + 2584038667950790 r002 5th iterates of z^2 + 2584038675449266 a007 Real Root Of 373*x^4+766*x^3-741*x^2-918*x-838 2584038677866437 h001 (-9*exp(-1)+1)/(-8*exp(-1)-6) 2584038694074969 q001 2137/827 2584038714280789 m005 (3/4*Pi+1/2)/(1/3*Catalan+4/5) 2584038763677527 m001 AlladiGrinstead-ln(3)^ArtinRank2 2584038768337409 a007 Real Root Of -223*x^4-412*x^3+215*x^2-348*x+499 2584038773516044 m001 (Shi(1)+Catalan)/(Rabbit+ZetaQ(2)) 2584038788429108 r009 Re(z^3+c),c=-27/122+49/53*I,n=27 2584038798933016 a005 (1/cos(32/209*Pi))^27 2584038818172659 r009 Im(z^3+c),c=-9/34+15/64*I,n=14 2584038828724675 a007 Real Root Of -310*x^4-983*x^3-600*x^2-77*x+668 2584038853455748 a007 Real Root Of 449*x^4+939*x^3-219*x^2+695*x-559 2584038866970396 a007 Real Root Of -348*x^4-849*x^3+92*x^2-85*x+33 2584038870564425 a007 Real Root Of 108*x^4-795*x^3+563*x^2-709*x-235 2584038872222727 m001 exp(Khintchine)*Conway^2*Zeta(5) 2584038878989174 m006 (1/2*exp(2*Pi)+2/3)/(3/4/Pi+4/5) 2584038885697121 p004 log(31223/24113) 2584038886643793 m001 cos(Pi/12)/GAMMA(11/12)*ln(sin(Pi/5))^2 2584038890585931 m001 (cos(1/5*Pi)-GAMMA(2/3))/(Khinchin-Stephens) 2584038891564859 r005 Re(z^2+c),c=-37/114+1/62*I,n=9 2584038906621825 m001 GAMMA(2/3)^2/GolombDickman^2*ln(sqrt(3)) 2584038915116126 r005 Im(z^2+c),c=-27/25+10/41*I,n=35 2584038920869326 r005 Re(z^2+c),c=-5/58+37/40*I,n=7 2584038925688000 r005 Re(z^2+c),c=-23/114+33/62*I,n=53 2584038936223546 r002 12th iterates of z^2 + 2584038936305402 r009 Re(z^3+c),c=-17/70+2/53*I,n=5 2584038942870315 r009 Re(z^3+c),c=-4/9+32/63*I,n=55 2584038953400776 m001 Shi(1)*Pi*csc(1/24*Pi)/GAMMA(23/24)+MertensB2 2584038954970548 a001 55/15127*76^(24/53) 2584038965427204 m005 (1/2*exp(1)-6/11)/(7/8*Pi+2/5) 2584038967033788 r002 25th iterates of z^2 + 2584038968669746 g007 Psi(2,6/7)-Psi(2,9/10)-Psi(2,1/5)-Psi(2,2/3) 2584038979879806 m001 sin(1)*MinimumGamma+GAMMA(2/3) 2584038985977987 r005 Im(z^2+c),c=-33/82+23/52*I,n=32 2584038987816992 a007 Real Root Of 172*x^4-180*x^3-25*x^2-356*x+96 2584038994919677 m001 1/ln((3^(1/3)))^2*ErdosBorwein/arctan(1/2) 2584039004362329 q001 1007/3897 2584039010185928 a007 Real Root Of 402*x^4+910*x^3-98*x^2+520*x-224 2584039011653907 h001 (7/11*exp(1)+2/11)/(1/8*exp(1)+2/5) 2584039012714955 a007 Real Root Of 169*x^4+224*x^3-711*x^2-232*x+478 2584039015599742 h001 (3/4*exp(1)+7/10)/(1/12*exp(1)+5/6) 2584039016514486 m008 (2/3*Pi^5-2)/(4/5*Pi^4+1/4) 2584039016994846 m001 Magata-Thue^GlaisherKinkelin 2584039019538455 l006 ln(455/6029) 2584039029128540 a007 Real Root Of -960*x^4-720*x^3-137*x^2+607*x-131 2584039040217607 r005 Re(z^2+c),c=-13/66+32/59*I,n=56 2584039052484852 r009 Re(z^3+c),c=-3/7+33/64*I,n=61 2584039059656203 r005 Re(z^2+c),c=-4/23+28/51*I,n=25 2584039063182979 r005 Im(z^2+c),c=-7/8+39/200*I,n=18 2584039064981551 m001 sin(1)/GAMMA(2/3)/BesselJZeros(0,1) 2584039086625010 h001 (1/8*exp(1)+4/9)/(3/10*exp(2)+9/11) 2584039093564910 m001 (GAMMA(13/24)+Champernowne)/(Rabbit-Trott2nd) 2584039096561994 a007 Real Root Of 343*x^4+499*x^3-980*x^2-145*x-514 2584039096854608 m001 (-Khinchin+Trott)/(Backhouse-BesselK(0,1)) 2584039097622614 m001 Magata^2*Lehmer*exp(Robbin)^2 2584039100514812 r009 Re(z^3+c),c=-35/86+15/32*I,n=56 2584039104141901 r002 34th iterates of z^2 + 2584039112607416 m005 (1/2*Catalan-2/5)/(1/10*gamma+1/6) 2584039112866456 m001 Zeta(7)*GAMMA(5/24)*exp(log(1+sqrt(2)))^2 2584039120315651 l006 ln(6074/6233) 2584039120708301 m001 1/ln(GAMMA(23/24))*Backhouse^2/LambertW(1)^2 2584039123570924 r005 Re(z^2+c),c=-23/98+9/20*I,n=21 2584039128522592 r005 Re(z^2+c),c=-17/14+7/51*I,n=12 2584039128944768 r005 Re(z^2+c),c=-7/29+18/41*I,n=34 2584039144052578 r005 Re(z^2+c),c=-11/56+31/57*I,n=54 2584039146006663 m003 13/24+Sqrt[5]/2+Tanh[1/2+Sqrt[5]/2] 2584039150859880 m001 (KhinchinHarmonic-Paris)/(Zeta(1,-1)-Bloch) 2584039152003981 a005 (1/cos(2/167*Pi))^1341 2584039155730903 r002 6th iterates of z^2 + 2584039157186146 m001 (FellerTornier-Sierpinski)/ZetaQ(3) 2584039164356132 p001 sum(1/(491*n+411)/(8^n),n=0..infinity) 2584039167094167 m001 1/ln(MertensB1)/Champernowne/GAMMA(7/12)^2 2584039175090265 m009 (6*Psi(1,2/3)-5)/(24*Catalan+3*Pi^2+1/5) 2584039183176671 r002 15th iterates of z^2 + 2584039192834982 h001 (-8*exp(1/3)-3)/(-exp(3/2)-1) 2584039195132535 a007 Real Root Of -236*x^4-720*x^3-235*x^2+157*x+74 2584039207906418 r009 Im(z^3+c),c=-7/13+6/43*I,n=52 2584039212118211 m001 FellerTornier-GAMMA(13/24)*Pi^(1/2) 2584039222258846 m001 GAMMA(7/12)/(PrimesInBinary^Gompertz) 2584039236112988 r002 26th iterates of z^2 + 2584039240609896 m001 OneNinth*ZetaQ(3)-Sierpinski 2584039244995667 a005 (1/cos(16/165*Pi))^704 2584039248194521 a007 Real Root Of -171*x^4-36*x^3+892*x^2-94*x+804 2584039249078677 g006 Psi(1,4/7)+Psi(1,4/5)-Psi(1,5/11)-Psi(1,1/5) 2584039251143338 r005 Re(z^2+c),c=7/90+18/53*I,n=34 2584039263690788 a007 Real Root Of 483*x^4+888*x^3-435*x^2+958*x-833 2584039277653413 a007 Real Root Of -237*x^4-729*x^3-246*x^2+279*x+352 2584039278709457 s002 sum(A099062[n]/(16^n-1),n=1..infinity) 2584039287321688 a001 55/47*4^(4/7) 2584039296975826 r002 52i'th iterates of 2*x/(1-x^2) of 2584039297609508 a007 Real Root Of -104*x^4-320*x^3-142*x^2+283*x+795 2584039311395278 m001 (BesselI(0,2)-gamma)/(-polylog(4,1/2)+Salem) 2584039324063604 h001 (3/8*exp(1)+6/11)/(5/7*exp(2)+7/9) 2584039341242546 m001 DuboisRaymond/(cos(1/5*Pi)^Totient) 2584039348177125 m001 (Champernowne+Trott)/(arctan(1/3)-sin(1)) 2584039355394615 m005 (1/2+1/4*5^(1/2))/(1/4*5^(1/2)-3/5) 2584039356228478 r005 Re(z^2+c),c=5/118+11/18*I,n=13 2584039367062139 r005 Re(z^2+c),c=1/40+37/62*I,n=3 2584039368773840 p003 LerchPhi(1/16,1,80/203) 2584039374127778 r009 Im(z^3+c),c=-27/106+32/43*I,n=7 2584039375069446 g007 Psi(2,1/11)+Psi(2,7/8)+Psi(2,6/7)-Psi(2,2/7) 2584039387309974 l006 ln(451/5976) 2584039394100387 r009 Re(z^3+c),c=-27/106+4/37*I,n=10 2584039399332055 r005 Im(z^2+c),c=-41/46+8/33*I,n=14 2584039428680589 l006 ln(7668/9929) 2584039435017903 m005 (1/2*Pi+1/6)/(1/8*3^(1/2)-8/9) 2584039442417628 m001 Paris/GlaisherKinkelin^2/exp(BesselK(0,1))^2 2584039466558644 a003 sin(Pi*4/75)/sin(Pi*23/103) 2584039467163653 a007 Real Root Of 308*x^4+546*x^3-639*x^2+200*x+472 2584039477145113 a007 Real Root Of -524*x^4+296*x^3+810*x^2+612*x-215 2584039479542226 m008 (1/3*Pi^5-2/3)/(3/5*Pi^2-2) 2584039481408003 a001 1/5*1597^(29/44) 2584039504335994 r005 Re(z^2+c),c=-19/86+24/49*I,n=43 2584039507063094 r009 Im(z^3+c),c=-9/34+15/64*I,n=13 2584039513743315 a007 Real Root Of 425*x^4+743*x^3-820*x^2+234*x-49 2584039516370163 a007 Real Root Of 373*x^4+737*x^3-190*x^2+689*x-865 2584039516732393 a007 Real Root Of -415*x^4-862*x^3+367*x^2-605*x-384 2584039529691192 r005 Re(z^2+c),c=-7/10+14/53*I,n=22 2584039529854139 a007 Real Root Of -303*x^4-273*x^3+853*x^2-879*x+832 2584039540145604 a003 cos(Pi*16/83)*cos(Pi*45/113) 2584039541736530 m001 Zeta(1,2)-exp(1/exp(1))^FeigenbaumKappa 2584039556849210 s002 sum(A058253[n]/(10^n-1),n=1..infinity) 2584039582675378 m005 (1/2*exp(1)-1/7)/(3/11*Zeta(3)+1/7) 2584039585974165 l006 ln(6403/8291) 2584039603403388 a001 408569081798*6557470319842^(13/17) 2584039613307164 a007 Real Root Of -249*x^4-189*x^3+853*x^2-495*x+866 2584039614807640 r005 Im(z^2+c),c=-25/22+26/123*I,n=26 2584039624164539 m003 -19/6+Sqrt[5]/4-Cos[1/2+Sqrt[5]/2]/2 2584039625721948 r009 Re(z^3+c),c=-19/102+5/7*I,n=7 2584039634406687 a007 Real Root Of -212*x^4-454*x^3+440*x^2+247*x-681 2584039634466843 r005 Im(z^2+c),c=-71/60+11/45*I,n=21 2584039646312187 h001 (3/5*exp(1)+5/7)/(1/6*exp(1)+5/11) 2584039648405009 r005 Im(z^2+c),c=-19/50+22/51*I,n=52 2584039651910036 a003 cos(Pi*2/45)*sin(Pi*10/119) 2584039668723307 r005 Im(z^2+c),c=-7/31+22/39*I,n=11 2584039669490548 m001 ln(cos(1))^2/KhintchineLevy*cos(Pi/5) 2584039670362645 r009 Im(z^3+c),c=-53/56+4/57*I,n=2 2584039686166595 h001 (1/2*exp(2)+3/11)/(1/9*exp(2)+5/7) 2584039686465029 a007 Real Root Of -454*x^4-921*x^3+637*x^2+8*x+118 2584039688943801 m005 (1/3*5^(1/2)-1/2)/(7/10*gamma+6/11) 2584039689125480 a007 Real Root Of -296*x^4-448*x^3+415*x^2-814*x+593 2584039691864574 r005 Im(z^2+c),c=3/14+6/41*I,n=4 2584039692970179 r005 Re(z^2+c),c=-29/90+3/34*I,n=9 2584039706178042 m001 (-Paris+QuadraticClass)/(FeigenbaumMu-cos(1)) 2584039718863857 r005 Re(z^2+c),c=6/19+23/40*I,n=29 2584039725461982 p003 LerchPhi(1/8,5,417/200) 2584039730921137 a001 11/1134903170*987^(10/21) 2584039732371661 s002 sum(A076060[n]/(n*10^n-1),n=1..infinity) 2584039744580469 r009 Re(z^3+c),c=-19/60+7/25*I,n=16 2584039744641318 m001 (PrimesInBinary-Trott)/(Ei(1,1)-Grothendieck) 2584039754457760 q001 884/3421 2584039761418384 b008 3*Zeta[E*Pi,4] 2584039761663396 l006 ln(447/5923) 2584039763343027 m001 (Otter+ZetaQ(4))/(BesselJ(1,1)+CareFree) 2584039768076763 r009 Im(z^3+c),c=-59/106+12/19*I,n=39 2584039784289298 m001 (PlouffeB+Sarnak)/(Trott-Weierstrass) 2584039784842355 m001 (1+3^(1/2)*GAMMA(19/24))/GAMMA(19/24) 2584039790153938 r009 Re(z^3+c),c=-13/36+23/37*I,n=45 2584039804695231 a007 Real Root Of -311*x^4-698*x^3+466*x^2+832*x+861 2584039812312353 r009 Im(z^3+c),c=-11/70+11/42*I,n=5 2584039818244890 r005 Im(z^2+c),c=19/94+7/40*I,n=19 2584039820720586 l006 ln(5138/6653) 2584039864298354 s002 sum(A030744[n]/(exp(n)-1),n=1..infinity) 2584039868316140 r005 Re(z^2+c),c=8/25+11/61*I,n=17 2584039868558490 m001 (KhinchinLevy-cos(1))/(Robbin+Tribonacci) 2584039894007996 m005 (1/2*5^(1/2)-3/4)/(3/7*Zeta(3)+10/11) 2584039895861652 a003 sin(Pi*1/72)*sin(Pi*1/53) 2584039909372512 r005 Im(z^2+c),c=-31/74+21/46*I,n=30 2584039917307270 m001 (3^(1/2)*MertensB2+QuadraticClass)/MertensB2 2584039919397682 a007 Real Root Of -415*x^4-746*x^3+960*x^2+616*x+813 2584039924665371 r002 24th iterates of z^2 + 2584039924665371 r002 24th iterates of z^2 + 2584039932475913 m001 HeathBrownMoroz*TravellingSalesman-Sierpinski 2584039940494226 r005 Im(z^2+c),c=7/46+9/43*I,n=9 2584039944185026 a007 Real Root Of -330*x^4-603*x^3+925*x^2+934*x+546 2584039958516519 m001 (cos(1/12*Pi)+sin(1/12*Pi))/(Magata+MertensB3) 2584039974044286 m001 Landau^Conway-Rabbit 2584039981873603 a007 Real Root Of -431*x^4-866*x^3+431*x^2-391*x+386 2584039983545639 a001 11/139583862445*24157817^(10/21) 2584039988636958 a007 Real Root Of -393*x^4-907*x^3+639*x^2+990*x+164 2584039994175379 m001 (Zeta(5)+ln(Pi))/(BesselK(1,1)-polylog(4,1/2)) 2584040019403211 m001 (Pi-GlaisherKinkelin)/(Porter-RenyiParking) 2584040025335163 m001 Mills+KhinchinHarmonic^TreeGrowth2nd 2584040029327953 m004 5/4+5*Pi+6*Csc[Sqrt[5]*Pi] 2584040031088784 m001 GAMMA(1/24)^2/Riemann3rdZero^2/exp(GAMMA(3/4)) 2584040033407875 r005 Re(z^2+c),c=1/3+5/27*I,n=47 2584040035238703 h001 (-7*exp(5)-1)/(-exp(6)+1) 2584040039024692 r009 Re(z^3+c),c=-27/106+4/37*I,n=8 2584040040043067 m001 -GAMMA(7/12)/(Catalan+5) 2584040064694853 m001 (Pi^(1/2)+Magata)^gamma 2584040089786157 m005 (1/2*gamma-3)/(5/12*exp(1)-1/12) 2584040104805257 a007 Real Root Of 20*x^4+546*x^3+746*x^2-183*x+835 2584040111949207 m001 1/exp(Trott)^2*GaussKuzminWirsing/GAMMA(1/12) 2584040139075128 r009 Im(z^3+c),c=-69/122+11/42*I,n=13 2584040142777006 l006 ln(443/5870) 2584040147086885 r005 Re(z^2+c),c=-15/46+8/39*I,n=5 2584040176909076 a007 Real Root Of 142*x^4+577*x^3+751*x^2+459*x-204 2584040180048465 a001 5/23725150497407*2^(5/17) 2584040194848564 r009 Re(z^3+c),c=-11/42+5/37*I,n=6 2584040199876622 r002 49th iterates of z^2 + 2584040202730813 m001 (ln(Pi)-(1+3^(1/2))^(1/2))/(Mills+TwinPrimes) 2584040207944156 m001 (2^(1/2)-LambertW(1))/(Khinchin+Lehmer) 2584040208812837 l006 ln(3873/5015) 2584040220874058 m005 (1/3*Pi+1/11)/(-31/45+1/9*5^(1/2)) 2584040225202205 r008 a(0)=0,K{-n^6,40-8*n+26*n^2-21*n^3} 2584040235018504 r009 Re(z^3+c),c=-45/122+27/53*I,n=9 2584040241459581 m005 (1/2*2^(1/2)-1/6)/(1/5*3^(1/2)-5/9) 2584040249706969 m001 arctan(1/2)^2/ln(Rabbit)^2/sin(1)^2 2584040253211558 r005 Im(z^2+c),c=5/18+5/49*I,n=42 2584040253664768 m001 ((2^(1/3))-arctan(1/2))/GAMMA(7/24) 2584040261222995 m002 -Log[Pi]+(Pi^3*Tanh[Pi])/Log[Pi] 2584040266157330 m001 BesselJ(0,1)-FeigenbaumKappa^ZetaP(4) 2584040274590930 a007 Real Root Of -901*x^4+387*x^3+425*x^2+359*x+9 2584040282436677 m001 1/GAMMA(7/12)*ln(GAMMA(1/4))^2*cosh(1)^2 2584040288569619 r009 Re(z^3+c),c=-33/122+6/37*I,n=5 2584040293973657 m001 ln(GAMMA(2/3))/Champernowne*GAMMA(23/24)^2 2584040294016306 r005 Im(z^2+c),c=-21/19+12/49*I,n=4 2584040294046680 m002 2+2/Pi^3+6*Csch[Pi] 2584040303905493 m006 (1/5/Pi-1/6)/(3/4*exp(2*Pi)-3) 2584040307404350 r005 Re(z^2+c),c=-39/58+9/32*I,n=22 2584040322254039 a007 Real Root Of 299*x^4+589*x^3-579*x^2-366*x-248 2584040323309940 m001 1/exp(OneNinth)*TreeGrowth2nd/GAMMA(7/12) 2584040324629947 a007 Real Root Of 4*x^4-393*x^3-945*x^2+509*x+666 2584040331071165 r005 Im(z^2+c),c=-17/52+17/41*I,n=50 2584040336780683 a007 Real Root Of 366*x^4+368*x^3+730*x^2-677*x+17 2584040346954293 p001 sum((-1)^n/(587*n+347)/(3^n),n=0..infinity) 2584040348722728 m008 (1/3*Pi-5)/(5*Pi^5-2/5) 2584040348937461 b008 AiryBiPrime[1+1/Sqrt[2]] 2584040353199794 a003 -2*cos(1/5*Pi)-3^(1/2)+cos(2/9*Pi) 2584040356765237 r009 Re(z^3+c),c=-23/74+4/15*I,n=13 2584040364712157 r005 Re(z^2+c),c=-53/78+8/25*I,n=16 2584040366832819 r002 60th iterates of z^2 + 2584040373619902 r002 59th iterates of z^2 + 2584040374766654 p004 log(29191/2203) 2584040377190039 a001 144/199*9349^(17/19) 2584040392211495 r009 Im(z^3+c),c=-11/94+15/56*I,n=4 2584040398332612 a001 89/322*24476^(19/21) 2584040398542279 h001 (5/7*exp(1)+7/8)/(1/10*exp(1)+9/11) 2584040400150601 a001 144/199*24476^(17/21) 2584040401715332 a001 89/322*64079^(19/23) 2584040402235200 a001 89/322*817138163596^(1/3) 2584040402235200 a001 89/322*(1/2+1/2*5^(1/2))^19 2584040402235200 a001 89/322*87403803^(1/2) 2584040402425498 a001 89/322*103682^(19/24) 2584040403177245 a001 144/199*64079^(17/23) 2584040403642391 a001 144/199*45537549124^(1/3) 2584040403642391 a001 144/199*(1/2+1/2*5^(1/2))^17 2584040403642398 a001 144/199*12752043^(1/2) 2584040403658099 a001 89/322*39603^(19/22) 2584040403812657 a001 144/199*103682^(17/24) 2584040404915511 a001 144/199*39603^(17/22) 2584040412963164 a001 89/322*15127^(19/20) 2584040413241095 a001 144/199*15127^(17/20) 2584040417123832 r005 Im(z^2+c),c=-67/118+26/61*I,n=58 2584040431955597 a007 Real Root Of -308*x^4-541*x^3+574*x^2-507*x-745 2584040443112284 a007 Real Root Of 931*x^4-982*x^3-387*x^2-773*x-195 2584040454524189 r005 Re(z^2+c),c=-35/31+13/53*I,n=6 2584040457421766 r005 Im(z^2+c),c=1/11+14/57*I,n=18 2584040458457806 m001 Zeta(3)^2*Bloch*ln(cos(1))^2 2584040476742944 a001 144/199*5778^(17/18) 2584040480348947 r002 5th iterates of z^2 + 2584040481748050 h001 (-3*exp(1)+9)/(-2*exp(-2)-3) 2584040483291357 a005 (1/cos(8/89*Pi))^1163 2584040511998456 a001 55/1860498*322^(24/31) 2584040516484171 l006 ln(6481/8392) 2584040530835590 l006 ln(439/5817) 2584040538162646 r005 Re(z^2+c),c=-21/26+1/80*I,n=46 2584040539343987 a007 Real Root Of -306*x^4-404*x^3+789*x^2-591*x-123 2584040540505461 a007 Real Root Of 447*x^4+99*x^3-218*x^2-895*x-217 2584040545115008 m001 (ln(Pi)-CopelandErdos)/(FeigenbaumB+Khinchin) 2584040554360198 m001 RenyiParking+Salem+TwinPrimes 2584040555239465 m001 1/Paris/MertensB1/exp(GAMMA(2/3))^2 2584040556909386 m001 (3^(1/2)+Chi(1))/(-BesselI(0,2)+GAMMA(17/24)) 2584040559094775 m001 FibonacciFactorial^ThueMorse/BesselK(0,1) 2584040563519675 m005 (1/2*5^(1/2)+8/11)/(19/36+1/12*5^(1/2)) 2584040579374037 r009 Re(z^3+c),c=-3/8+23/57*I,n=21 2584040586911726 r009 Re(z^3+c),c=-19/60+7/25*I,n=15 2584040595469583 h001 (1/7*exp(2)+7/8)/(1/11*exp(1)+1/2) 2584040601554437 m005 (1/2*gamma-1/5)/(4/9*Catalan-3/4) 2584040614613724 b008 1/11+Coth[3]/6 2584040619166706 a007 Real Root Of 284*x^4+741*x^3+324*x^2+992*x+523 2584040652513551 r005 Re(z^2+c),c=-29/94+9/46*I,n=15 2584040667973994 m001 1/GAMMA(5/12)/exp(LaplaceLimit)/Zeta(1,2) 2584040668240845 a005 (1/cos(23/174*Pi))^244 2584040670837923 r005 Im(z^2+c),c=-89/106+1/6*I,n=7 2584040681581483 r005 Re(z^2+c),c=-15/58+9/23*I,n=36 2584040684042915 a007 Real Root Of -375*x^4-923*x^3+313*x^2+738*x+611 2584040689055890 m001 HardyLittlewoodC5/(GAMMA(19/24)+ThueMorse) 2584040690649027 m001 (Shi(1)-ln(3))/(GAMMA(5/6)+Bloch) 2584040690702881 r009 Im(z^3+c),c=-11/26+8/55*I,n=27 2584040693879661 a007 Real Root Of 149*x^4+122*x^3-750*x^2-20*x+418 2584040694829476 m001 Robbin/(ReciprocalFibonacci^StronglyCareFree) 2584040712568854 a007 Real Root Of 250*x^4+504*x^3-478*x^2-273*x+36 2584040718745150 r005 Re(z^2+c),c=-21/122+37/64*I,n=46 2584040721264269 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)*Salem-LambertW(1) 2584040729672618 r005 Re(z^2+c),c=-21/94+15/31*I,n=55 2584040731812340 a008 Real Root of x^4-2*x^3-39*x^2+4*x+240 2584040736345857 m005 (1/3*Catalan-1/8)/(1/8*Catalan+7/12) 2584040736452157 m001 (-FellerTornier+Khinchin)/(Si(Pi)+Zeta(1,2)) 2584040747028862 q001 1522/589 2584040753826647 m005 (1/2*Catalan-4/9)/(1/4*3^(1/2)+1/11) 2584040763088107 m005 (-1/30+1/6*5^(1/2))/(4/11*exp(1)-6/7) 2584040765352636 r009 Re(z^3+c),c=-5/94+41/59*I,n=26 2584040765538559 s002 sum(A217369[n]/(2^n+1),n=1..infinity) 2584040765954017 m005 (-23/4+1/4*5^(1/2))/(4*gamma-3/10) 2584040784248608 m001 ArtinRank2^(exp(1)/Sarnak) 2584040787690360 a007 Real Root Of -28*x^4+429*x^3-537*x^2-839*x-400 2584040795573005 r005 Re(z^2+c),c=13/82+19/42*I,n=56 2584040799724584 r005 Re(z^2+c),c=29/114+7/58*I,n=17 2584040803499751 m001 (Conway-MertensB3)/(Salem-ZetaQ(2)) 2584040810407473 a007 Real Root Of -486*x^4-798*x^3+941*x^2-797*x-443 2584040821927986 m001 exp(Pi)+5^(1/2)+arctan(1/2) 2584040821927986 m001 exp(Pi)+sqrt(5)+arctan(1/2) 2584040824562744 a001 521/2971215073*3^(6/17) 2584040839914044 a001 11/196418*514229^(5/43) 2584040841148053 m001 GAMMA(17/24)+Riemann3rdZero^StolarskyHarborth 2584040857798812 a007 Real Root Of -239*x^4-797*x^3-99*x^2+763*x-463 2584040858096910 r005 Re(z^2+c),c=-19/98+16/25*I,n=59 2584040863483429 m009 (3/4*Psi(1,3/4)-5/6)/(1/3*Psi(1,3/4)-5) 2584040866600573 a001 29/4181*46368^(27/49) 2584040870565906 a003 sin(Pi*1/77)*sin(Pi*19/87) 2584040873307845 r005 Re(z^2+c),c=-87/122+17/49*I,n=12 2584040879434661 a007 Real Root Of 536*x^4-416*x^3+30*x^2-884*x-240 2584040880715984 r005 Re(z^2+c),c=-7/26+14/33*I,n=11 2584040880935040 r005 Im(z^2+c),c=-9/52+17/47*I,n=24 2584040892504741 m001 (Kolakoski+MertensB3)/(Ei(1)-exp(1)) 2584040911498012 m001 1/TwinPrimes^2/Magata/ln(sinh(1))^2 2584040923617573 m001 (2^(1/2)-PlouffeB)/(-TreeGrowth2nd+ZetaP(4)) 2584040925888168 r005 Im(z^2+c),c=-11/19+1/37*I,n=9 2584040926030728 l006 ln(435/5764) 2584040932601238 h001 (5/6*exp(1)+5/7)/(1/6*exp(1)+7/10) 2584040934952085 a003 sin(Pi*3/76)+sin(Pi*4/93) 2584040936205824 r009 Im(z^3+c),c=-41/114+9/47*I,n=12 2584040937268223 a007 Real Root Of 364*x^4+514*x^3-942*x^2+667*x+653 2584040938206945 m001 1/gamma*FeigenbaumAlpha/exp(sin(Pi/12))^2 2584040942846793 m001 KhintchineHarmonic/exp(Champernowne)^2*Ei(1) 2584040954370699 r005 Im(z^2+c),c=-2/9+51/62*I,n=6 2584040973390241 l006 ln(2608/3377) 2584040977082814 m001 FeigenbaumD-TwinPrimes^(2*Pi/GAMMA(5/6)) 2584040981926489 s001 sum(1/10^(n-1)*A020344[n]/n!^2,n=1..infinity) 2584040987170506 r005 Im(z^2+c),c=-17/54+23/56*I,n=42 2584040994586696 m001 (3^(1/3)+Artin)/(MasserGramain-Stephens) 2584040996759067 r005 Im(z^2+c),c=5/24+10/59*I,n=11 2584041001700722 s002 sum(A157833[n]/(10^n-1),n=1..infinity) 2584041005083568 m001 exp(GAMMA(7/12))/GaussKuzminWirsing/sin(Pi/5) 2584041023114893 r005 Im(z^2+c),c=-5/6+41/230*I,n=44 2584041024793127 b008 2*E^(3/10)+E^Pi 2584041024811001 a001 55/199*11^(55/59) 2584041039349393 m005 (1/3*3^(1/2)+1/4)/(4/9*Catalan-8/11) 2584041048894676 r005 Im(z^2+c),c=-7/6+1/30*I,n=36 2584041050623953 a007 Real Root Of -131*x^4-34*x^3+787*x^2-19*x-50 2584041059382473 p004 log(17239/1301) 2584041064195282 m005 (1/42+1/6*5^(1/2))/(7/9*Pi-10/11) 2584041072870137 a001 38/17*9227465^(7/12) 2584041078212880 r005 Im(z^2+c),c=5/18+1/64*I,n=33 2584041088662091 m005 (1/3*Zeta(3)+3/4)/(1/6*exp(1)+4) 2584041097292145 r005 Re(z^2+c),c=-45/122+37/57*I,n=38 2584041098511936 m009 (3/2*Pi^2-5)/(3/10*Pi^2+5/6) 2584041101245516 a007 Real Root Of 464*x^4+867*x^3-891*x^2+106*x+495 2584041105364519 a001 1/6*(1/2*5^(1/2)+1/2)^2*18^(8/13) 2584041114900473 r005 Im(z^2+c),c=11/122+15/61*I,n=11 2584041125879225 m001 1/GAMMA(19/24)^2/Magata^2*ln(GAMMA(3/4))^2 2584041134444566 r005 Im(z^2+c),c=-53/54+4/15*I,n=10 2584041137284946 m005 (1/2*Zeta(3)+7/11)/(2/5*Pi-7/9) 2584041148919337 r002 15th iterates of z^2 + 2584041154216007 a008 Real Root of x^4-2*x^3+8*x^2+18*x-86 2584041158784323 m001 ln(Rabbit)^2*ErdosBorwein^2/GAMMA(19/24) 2584041169248569 r005 Im(z^2+c),c=3/22+9/41*I,n=21 2584041172147930 r005 Im(z^2+c),c=3/22+9/41*I,n=24 2584041174780063 r005 Re(z^2+c),c=-13/58+27/56*I,n=64 2584041180320316 m001 (GAMMA(13/24)+Salem)/(cos(1)-ln(gamma)) 2584041186205681 r005 Re(z^2+c),c=-23/118+35/64*I,n=62 2584041187872063 a007 Real Root Of -209*x^4-568*x^3-79*x^2-232*x-554 2584041211851297 r005 Im(z^2+c),c=3/22+9/41*I,n=25 2584041217656368 m001 (BesselJ(0,1)-Catalan)^GAMMA(11/24) 2584041226517994 m001 Zeta(1,2)^Zeta(1/2)/(ZetaP(4)^Zeta(1/2)) 2584041232865695 r009 Im(z^3+c),c=-25/52+2/9*I,n=5 2584041249590155 r005 Im(z^2+c),c=11/94+32/53*I,n=17 2584041254862757 a007 Real Root Of 609*x^4-414*x^3+97*x^2-809*x+207 2584041256052657 r002 5th iterates of z^2 + 2584041258720108 m001 CopelandErdos^Bloch/(CopelandErdos^GAMMA(5/6)) 2584041261637807 r002 44th iterates of z^2 + 2584041261791131 r005 Im(z^2+c),c=-13/32+11/25*I,n=47 2584041262218670 a007 Real Root Of -933*x^4-751*x^3-972*x^2+166*x+99 2584041263105763 r009 Re(z^3+c),c=-49/114+33/64*I,n=45 2584041270833617 r009 Re(z^3+c),c=-12/31+3/7*I,n=33 2584041292795146 a003 sin(Pi*9/38)/cos(Pi*32/77) 2584041298871056 r005 Re(z^2+c),c=-25/34+11/92*I,n=29 2584041306652237 m002 Cosh[Pi]/Pi+E^Pi*Pi^4*Log[Pi] 2584041322792373 a007 Real Root Of 384*x^4+823*x^3-135*x^2+461*x-828 2584041328561115 l006 ln(431/5711) 2584041328561115 p004 log(5711/431) 2584041329925955 m001 1/3*(3^(1/3)*Sarnak+FeigenbaumD)*3^(2/3) 2584041331699897 r009 Im(z^3+c),c=-7/82+3/11*I,n=2 2584041331868884 r005 Re(z^2+c),c=-23/70+13/55*I,n=5 2584041341056095 r005 Re(z^2+c),c=-1/62+3/28*I,n=9 2584041353481023 m005 (1/3*Zeta(3)-3/7)/(1/6*Pi+5/9) 2584041366500241 m001 (Ei(1,1)+gamma(1))/(Stephens-ZetaQ(3)) 2584041371655841 m001 Riemann2ndZero*Champernowne*ln(GAMMA(1/24))^2 2584041373680188 a007 Real Root Of -426*x^4+436*x^3-41*x^2+906*x-237 2584041374454483 a007 Real Root Of 302*x^4+829*x^3+489*x^2+759*x-465 2584041393630817 a007 Real Root Of 111*x^4+327*x^3+986*x^2-721*x-247 2584041394780900 a007 Real Root Of -614*x^4+439*x^3+952*x^2+993*x-325 2584041407728471 r004 Im(z^2+c),c=-45/46+4/11*I,z(0)=-1,n=4 2584041410067055 m001 exp(Pi)/Robbin*exp(1)^2 2584041416324189 m008 (5*Pi^2+4/5)/(2*Pi^4-3/4) 2584041416649731 r005 Re(z^2+c),c=-63/62+3/28*I,n=34 2584041421826589 r005 Re(z^2+c),c=-27/94+13/44*I,n=29 2584041424354355 h001 (5/7*exp(2)+7/9)/(5/9*exp(1)+5/6) 2584041424862737 l006 ln(6559/8493) 2584041425167516 r009 Re(z^3+c),c=-1/66+41/52*I,n=9 2584041436726533 m001 1/GAMMA(5/6)^2*ln(Tribonacci)*cos(1) 2584041437975140 g005 GAMMA(4/9)*GAMMA(2/9)*GAMMA(3/7)/GAMMA(1/7) 2584041445019715 r005 Im(z^2+c),c=3/22+9/41*I,n=29 2584041448250361 m001 (-exp(1/Pi)+AlladiGrinstead)/(2^(1/3)-exp(Pi)) 2584041450163118 r005 Im(z^2+c),c=3/22+9/41*I,n=30 2584041459847933 r005 Im(z^2+c),c=3/22+9/41*I,n=34 2584041460226217 r005 Im(z^2+c),c=3/22+9/41*I,n=35 2584041460615031 r005 Im(z^2+c),c=3/22+9/41*I,n=39 2584041460638313 r005 Im(z^2+c),c=3/22+9/41*I,n=40 2584041460653261 r005 Im(z^2+c),c=3/22+9/41*I,n=44 2584041460654568 r005 Im(z^2+c),c=3/22+9/41*I,n=45 2584041460655109 r005 Im(z^2+c),c=3/22+9/41*I,n=49 2584041460655178 r005 Im(z^2+c),c=3/22+9/41*I,n=50 2584041460655182 r005 Im(z^2+c),c=3/22+9/41*I,n=48 2584041460655196 r005 Im(z^2+c),c=3/22+9/41*I,n=54 2584041460655198 r005 Im(z^2+c),c=3/22+9/41*I,n=53 2584041460655200 r005 Im(z^2+c),c=3/22+9/41*I,n=55 2584041460655200 r005 Im(z^2+c),c=3/22+9/41*I,n=59 2584041460655200 r005 Im(z^2+c),c=3/22+9/41*I,n=58 2584041460655200 r005 Im(z^2+c),c=3/22+9/41*I,n=60 2584041460655200 r005 Im(z^2+c),c=3/22+9/41*I,n=63 2584041460655200 r005 Im(z^2+c),c=3/22+9/41*I,n=64 2584041460655200 r005 Im(z^2+c),c=3/22+9/41*I,n=62 2584041460655200 r005 Im(z^2+c),c=3/22+9/41*I,n=61 2584041460655201 r005 Im(z^2+c),c=3/22+9/41*I,n=57 2584041460655201 r005 Im(z^2+c),c=3/22+9/41*I,n=56 2584041460655213 r005 Im(z^2+c),c=3/22+9/41*I,n=52 2584041460655220 r005 Im(z^2+c),c=3/22+9/41*I,n=51 2584041460655368 r005 Im(z^2+c),c=3/22+9/41*I,n=43 2584041460655495 r005 Im(z^2+c),c=3/22+9/41*I,n=47 2584041460655572 r005 Im(z^2+c),c=3/22+9/41*I,n=46 2584041460661756 r005 Im(z^2+c),c=3/22+9/41*I,n=41 2584041460662067 r005 Im(z^2+c),c=3/22+9/41*I,n=42 2584041460671752 r005 Im(z^2+c),c=3/22+9/41*I,n=38 2584041460759970 r005 Im(z^2+c),c=3/22+9/41*I,n=36 2584041460811033 r005 Im(z^2+c),c=3/22+9/41*I,n=37 2584041461297086 r005 Im(z^2+c),c=3/22+9/41*I,n=33 2584041462027192 r005 Im(z^2+c),c=3/22+9/41*I,n=31 2584041464108205 r005 Im(z^2+c),c=3/22+9/41*I,n=32 2584041468090581 r005 Im(z^2+c),c=-97/86+9/35*I,n=61 2584041469354243 r005 Im(z^2+c),c=3/22+9/41*I,n=26 2584041470763913 m001 (Sierpinski-TwinPrimes)/(MasserGramain+Paris) 2584041480623011 r005 Im(z^2+c),c=3/22+9/41*I,n=28 2584041486775274 m001 (-MasserGramain+Mills)/(arctan(1/3)-gamma) 2584041491167915 a003 sin(Pi*3/116)/sin(Pi*6/59) 2584041503901286 r005 Re(z^2+c),c=-11/118+26/49*I,n=8 2584041517642816 a001 11/514229*377^(21/50) 2584041521350513 m009 (6*Psi(1,2/3)+1/3)/(4/5*Psi(1,1/3)-5/6) 2584041535363077 r005 Im(z^2+c),c=3/22+9/41*I,n=27 2584041570021887 r005 Im(z^2+c),c=1/78+18/61*I,n=4 2584041571081044 a007 Real Root Of 205*x^4-762*x^3-899*x^2-177*x+118 2584041598944760 a001 2/5*144^(26/31) 2584041599539001 a001 75025/199*199^(4/11) 2584041607055415 m001 (gamma(3)+CopelandErdos)/(MertensB3-ThueMorse) 2584041608008438 a007 Real Root Of 338*x^4+547*x^3-929*x^2-134*x+225 2584041611980272 m001 Trott*(Gompertz+KomornikLoreti) 2584041613987831 r005 Re(z^2+c),c=-65/66+13/63*I,n=30 2584041618518479 m005 (4/5*Pi+5/6)/(4/5*gamma+5/6) 2584041621568533 m005 (13/42+1/6*5^(1/2))/(1/6*Catalan-5/12) 2584041637966283 m001 gamma(3)*(arctan(1/2)+Kolakoski) 2584041644373552 r005 Im(z^2+c),c=25/58+9/37*I,n=7 2584041648317557 m001 TwinPrimes-ReciprocalFibonacci-exp(Pi) 2584041661235845 m001 Zeta(1/2)/Riemann1stZero*Riemann3rdZero 2584041671945134 m005 (2*Pi+2/3)/(3/4*Pi+1/3) 2584041671945134 m006 (2/3/Pi+2)/(1/3/Pi+3/4) 2584041671945134 m008 (2*Pi+2/3)/(3/4*Pi+1/3) 2584041681151803 l006 ln(6265/6429) 2584041693159275 m001 (-FeigenbaumD+GaussAGM)/(GAMMA(5/6)-Shi(1)) 2584041699421257 m001 (Shi(1)+MasserGramain)^Grothendieck 2584041722873425 l006 ln(3951/5116) 2584041727537810 m001 Zeta(5)^Psi(1,1/3)-exp(1/exp(1)) 2584041727918233 a007 Real Root Of -317*x^4-791*x^3-727*x^2+832*x-21 2584041738632887 l006 ln(427/5658) 2584041738864392 m001 (-Zeta(1,2)+Gompertz)/(Shi(1)-arctan(1/2)) 2584041742846341 m001 (-Otter+ZetaP(4))/(BesselK(0,1)+ln(2)) 2584041744037312 m001 FeigenbaumC/(Landau-Zeta(1,-1)) 2584041751684553 m008 (1/6*Pi^4-3)/(3/5*Pi^2-4/5) 2584041759284491 r002 3th iterates of z^2 + 2584041761429819 m005 (1/2*3^(1/2)+6/11)/(36/7+1/7*5^(1/2)) 2584041763942421 r009 Im(z^3+c),c=-23/118+15/59*I,n=8 2584041782422189 m001 (ln(gamma)+HeathBrownMoroz)/(2^(1/2)-Zeta(3)) 2584041783163765 s002 sum(A209192[n]/(10^n-1),n=1..infinity) 2584041791151208 a007 Real Root Of -25*x^4-610*x^3+921*x^2-275*x-746 2584041792034282 m001 (exp(1/Pi)+MertensB1)/(cos(1/5*Pi)-3^(1/3)) 2584041797099039 a001 1/7*832040^(1/23) 2584041803099168 r005 Im(z^2+c),c=-103/90+17/53*I,n=7 2584041810243411 a007 Real Root Of 159*x^4+184*x^3+678*x^2-856*x-264 2584041814007020 a007 Real Root Of 313*x^4+803*x^3+167*x^2+848*x+976 2584041815833453 p003 LerchPhi(1/8,2,125/199) 2584041819352687 m009 (3*Psi(1,3/4)+1/4)/(1/2*Psi(1,1/3)-2) 2584041824668083 r005 Re(z^2+c),c=-37/38+2/45*I,n=4 2584041833119962 r002 16th iterates of z^2 + 2584041836032270 m006 (2/3/Pi+3/4)/(5*ln(Pi)-2) 2584041857320873 r005 Im(z^2+c),c=-19/50+22/51*I,n=59 2584041877036087 p004 log(16921/1277) 2584041883770921 m001 (-PlouffeB+ZetaQ(2))/(Chi(1)+Kolakoski) 2584041886379258 m001 1/BesselK(0,1)^2*Trott^2/ln(GAMMA(19/24))^2 2584041886477696 r005 Im(z^2+c),c=-33/98+6/11*I,n=21 2584041890392719 r009 Re(z^3+c),c=-27/106+4/37*I,n=9 2584041894885050 m001 (Salem-ThueMorse)/(GAMMA(19/24)+Grothendieck) 2584041906110889 m009 (24*Catalan+3*Pi^2-5)/(8*Catalan+Pi^2+5/6) 2584041909314480 m001 Mills-MinimumGamma^Champernowne 2584041922802420 m001 (1+sinh(1)*Rabbit)/Rabbit 2584041933444094 a001 521/10946*8^(48/59) 2584041944820609 m001 1/BesselK(1,1)/GolombDickman*ln(GAMMA(1/3))^2 2584041946081853 r009 Im(z^3+c),c=-9/28+11/52*I,n=13 2584041953039947 r005 Re(z^2+c),c=-35/36+3/62*I,n=12 2584041970958391 m009 (3/10*Pi^2-4)/(1/3*Psi(1,2/3)+3) 2584041987367279 r009 Re(z^3+c),c=-39/110+17/47*I,n=10 2584042002304377 r005 Re(z^2+c),c=5/38+23/55*I,n=40 2584042011232321 a001 199/2584*144^(41/58) 2584042016390502 m005 (7/44+1/4*5^(1/2))/(2/7*5^(1/2)-2/3) 2584042019627152 r005 Im(z^2+c),c=3/22+9/41*I,n=23 2584042022158857 m001 (2^(1/2)+Zeta(1/2))^TreeGrowth2nd 2584042030190305 m001 Zeta(5)*(Grothendieck+Rabbit) 2584042039350792 m001 (3^(1/3)+Artin)/(LandauRamanujan-Porter) 2584042044956086 s002 sum(A155080[n]/(n^2*pi^n+1),n=1..infinity) 2584042048405373 r005 Im(z^2+c),c=29/114+5/41*I,n=7 2584042048719122 h001 (4/11*exp(2)+3/5)/(2/11*exp(1)+7/9) 2584042066874521 s002 sum(A115641[n]/((exp(n)+1)/n),n=1..infinity) 2584042068980221 a003 cos(Pi*27/65)*sin(Pi*23/52) 2584042071552420 a001 322/514229*13^(21/38) 2584042075648836 m001 Zeta(5)/ln(Paris)*gamma 2584042076760048 a007 Real Root Of 207*x^4+294*x^3-530*x^2+441*x+522 2584042081518995 a008 Real Root of (-2+6*x+7*x^2-4*x^4) 2584042092093681 l006 ln(5294/6855) 2584042110135229 b008 6+21*ArcCsch[Catalan] 2584042113817975 r002 23th iterates of z^2 + 2584042114886779 r005 Im(z^2+c),c=-11/25+13/29*I,n=40 2584042120181773 r009 Re(z^3+c),c=-17/36+18/37*I,n=8 2584042122316727 q001 638/2469 2584042139823092 m001 (polylog(4,1/2)+1/2)/(-Zeta(1,2)+3) 2584042144510069 m001 ln(sin(1))/Bloch^2/sqrt(3)^2 2584042145116294 h001 (-10*exp(3)+1)/(-4*exp(3)+3) 2584042156459982 l006 ln(423/5605) 2584042160038828 m001 (ln(2)+Grothendieck)/(Landau+PrimesInBinary) 2584042168456001 a007 Real Root Of 367*x^4+682*x^3-722*x^2-338*x-648 2584042177603038 a007 Real Root Of -386*x^4-834*x^3+326*x^2-610*x-933 2584042184831390 a007 Real Root Of -203*x^4-229*x^3+830*x^2+136*x-91 2584042202358057 m001 (StronglyCareFree+ZetaP(4))/(Magata-OneNinth) 2584042203387760 m001 (exp(1/Pi)+BesselI(0,2))/sqrt(2) 2584042203387760 m001 1/2*2^(1/2)*(exp(1/Pi)+BesselI(0,2)) 2584042204721598 m001 Conway^sin(1/5*Pi)/ZetaP(2) 2584042210603108 a007 Real Root Of -119*x^4+765*x^3-320*x^2+916*x-228 2584042211087708 a007 Real Root Of 318*x^4+474*x^3-982*x^2-194*x+56 2584042219472642 m001 (Pi-sin(1))/(Zeta(1,-1)+GAMMA(11/12)) 2584042246568444 a007 Real Root Of -520*x^4-665*x^3+500*x^2+911*x-255 2584042247226007 m001 GAMMA(1/4)^2*Tribonacci/exp(sqrt(5)) 2584042258135707 m001 (ln(5)-Bloch)/(FeigenbaumB+FeigenbaumMu) 2584042278718243 m005 (1/2*Catalan+5)/(2/3*exp(1)+3/10) 2584042299920197 m001 (Landau+Mills)/(sin(1/5*Pi)-Conway) 2584042311890154 l006 ln(6637/8594) 2584042333827226 r005 Im(z^2+c),c=-5/36+15/43*I,n=19 2584042341571820 a007 Real Root Of 568*x^4+82*x^3-156*x^2-690*x-169 2584042345110431 m001 Zeta(5)^2*GaussKuzminWirsing^2*ln(sinh(1))^2 2584042361895148 m001 Otter/(GlaisherKinkelin^cos(1)) 2584042364639018 m001 (-Otter+Rabbit)/(OrthogonalArrays-Psi(1,1/3)) 2584042377940936 r002 5th iterates of z^2 + 2584042393399090 a003 cos(Pi*11/103)*cos(Pi*7/17) 2584042394040832 a003 cos(Pi*13/67)-sin(Pi*33/113) 2584042407001091 m001 (Otter-ZetaQ(4))/(polylog(4,1/2)+Kac) 2584042408221450 m001 1/Rabbit^2/Cahen^2*exp(Zeta(1/2))^2 2584042414081796 m001 1/exp(FeigenbaumC)*Backhouse^2/GAMMA(1/4)^2 2584042420134334 m001 (Bloch-GaussKuzminWirsing)/(Landau+OneNinth) 2584042425153142 a001 233/15127*199^(30/31) 2584042444082044 m001 Pi^MasserGramainDelta*Ei(1)^MasserGramainDelta 2584042450714510 m001 GAMMA(13/24)*Ei(1)*ln(Zeta(7)) 2584042466403034 r005 Im(z^2+c),c=25/64+4/45*I,n=3 2584042471858736 r005 Re(z^2+c),c=-17/60+9/29*I,n=23 2584042500125535 a007 Real Root Of -376*x^4-702*x^3+447*x^2-988*x-886 2584042503460987 p003 LerchPhi(1/1024,6,139/239) 2584042504861832 m001 ArtinRank2/(2^(1/2)+GAMMA(17/24)) 2584042515138174 a007 Real Root Of -x^4+529*x^3-980*x^2-812*x-441 2584042539889841 r005 Im(z^2+c),c=-19/26+21/79*I,n=8 2584042540350706 r005 Im(z^2+c),c=-7/10+32/169*I,n=5 2584042541972271 r005 Im(z^2+c),c=-17/52+17/41*I,n=47 2584042545879203 r005 Re(z^2+c),c=-17/90+25/53*I,n=8 2584042553064425 r005 Re(z^2+c),c=-11/78+49/55*I,n=10 2584042553191489 q001 2429/940 2584042553310341 r009 Im(z^3+c),c=-7/15+2/21*I,n=61 2584042554716383 r005 Im(z^2+c),c=-4/23+21/58*I,n=19 2584042558302711 r001 62i'th iterates of 2*x^2-1 of 2584042563082861 a007 Real Root Of 391*x^4+652*x^3-845*x^2+452*x+627 2584042564164999 a007 Real Root Of 300*x^4+504*x^3-968*x^2-351*x+877 2584042582264502 l006 ln(419/5552) 2584042589347431 a007 Real Root Of -402*x^4-783*x^3+218*x^2-842*x+782 2584042603993729 a003 cos(Pi*9/95)-cos(Pi*15/59) 2584042613225757 b008 ArcCoth[46*Sin[1]] 2584042618925959 m001 MinimumGamma*(FeigenbaumKappa+ThueMorse) 2584042619318979 m002 -Pi^(-6)+E^Pi*ProductLog[Pi]+Tanh[Pi] 2584042627470948 m001 (-BesselJ(0,1)+cos(1/5*Pi))/(5^(1/2)-cos(1)) 2584042628237747 r009 Re(z^3+c),c=-43/110+23/53*I,n=14 2584042630045123 a007 Real Root Of -15*x^4+589*x^3-81*x^2+400*x+119 2584042630298945 m005 (1/2*gamma-2/7)/(2/5*gamma+8/9) 2584042639653456 m001 (CareFree-Niven)/(PrimesInBinary-Trott2nd) 2584042645665619 m005 (1/3*3^(1/2)+1/12)/(9/11*5^(1/2)+8/11) 2584042652873821 r005 Re(z^2+c),c=-17/14+7/165*I,n=2 2584042675963708 r009 Re(z^3+c),c=-11/70+29/32*I,n=46 2584042676584546 m005 (1/2*Catalan+5/12)/(2/3*gamma+3) 2584042684489952 a008 Real Root of x^4-x^3+11*x^2+57*x+12 2584042690159370 m004 -1/5+125*Pi+E^(Sqrt[5]*Pi)*Log[Sqrt[5]*Pi] 2584042711842592 a007 Real Root Of 718*x^4+936*x^3+691*x^2-7*x-35 2584042717206125 r009 Im(z^3+c),c=-31/34+2/27*I,n=2 2584042725137128 m001 (Pi-Psi(2,1/3))/(ln(gamma)-Niven) 2584042731820712 r005 Re(z^2+c),c=-21/82+13/27*I,n=14 2584042749469914 s002 sum(A206082[n]/(n^3*2^n+1),n=1..infinity) 2584042762497720 a007 Real Root Of 48*x^4-672*x^3-309*x^2-336*x-78 2584042766166964 m001 Trott2nd^sin(1)*Trott2nd^ZetaP(3) 2584042767419249 m001 Chi(1)^gamma(3)*Sierpinski 2584042788916622 r009 Re(z^3+c),c=-25/78+37/48*I,n=4 2584042790188802 h001 (2/11*exp(1)+1/10)/(4/5*exp(1)+1/8) 2584042798502217 m005 (1/3*gamma+1/9)/(3/5*Catalan+5/8) 2584042803516808 m001 (-FeigenbaumC+Otter)/(5^(1/2)-BesselI(0,2)) 2584042812522963 m001 Ei(1)*Porter^cos(1/5*Pi) 2584042820257694 a001 726103/6*29^(10/11) 2584042835432262 a007 Real Root Of -884*x^4-697*x^3-236*x^2+961*x+256 2584042837929070 a001 11/317811*4181^(15/29) 2584042869535674 a001 34/4870847*18^(24/53) 2584042871146389 a003 sin(Pi*13/86)*sin(Pi*13/68) 2584042871560171 r005 Im(z^2+c),c=-27/86+39/46*I,n=3 2584042879267272 s002 sum(A018689[n]/(n*2^n+1),n=1..infinity) 2584042880780255 a007 Real Root Of 809*x^4-527*x^3+562*x^2-568*x-197 2584042890783110 m005 (1/3*exp(1)-1/10)/(4/11*2^(1/2)-6/11) 2584042906921834 m005 (1/2*Zeta(3)-7/11)/(3/8*Zeta(3)+11/12) 2584042935550061 r005 Im(z^2+c),c=-5/8+19/41*I,n=7 2584042937942445 r005 Im(z^2+c),c=1/11+14/57*I,n=21 2584042938924035 m001 (ln(5)+Trott2nd)/(3^(1/2)-ln(3)) 2584042939045887 g005 GAMMA(2/11)/GAMMA(6/11)/GAMMA(9/10)/GAMMA(5/6) 2584042941279377 r005 Re(z^2+c),c=9/34+19/37*I,n=5 2584042970274057 r002 25th iterates of z^2 + 2584042992111839 a007 Real Root Of 351*x^4+435*x^3-902*x^2+555*x-687 2584042997699758 r005 Re(z^2+c),c=31/90+9/55*I,n=40 2584043002618055 m009 (2*Catalan+1/4*Pi^2-1/6)/(1/4*Psi(1,2/3)+5/6) 2584043007083248 m002 -(E^Pi*ProductLog[Pi])-Tanh[Pi]+Tanh[Pi]/Pi^6 2584043008225116 r005 Im(z^2+c),c=-19/70+26/37*I,n=3 2584043011581019 a007 Real Root Of -464*x^4+911*x^3+402*x^2+542*x+131 2584043016277116 l006 ln(415/5499) 2584043017284269 a007 Real Root Of 960*x^4+606*x^3+688*x^2-980*x-293 2584043022333589 r005 Im(z^2+c),c=-7/8+25/113*I,n=48 2584043022552036 a001 2207/21*514229^(18/43) 2584043024080063 r005 Im(z^2+c),c=-37/122+41/63*I,n=50 2584043032996285 a007 Real Root Of -783*x^4-370*x^3-523*x^2+294*x+108 2584043037107306 r005 Im(z^2+c),c=3/22+9/41*I,n=22 2584043040297025 a001 2/17*5^(22/45) 2584043041911323 m001 GAMMA(13/24)/(AlladiGrinstead-ZetaP(3)) 2584043050321648 r005 Im(z^2+c),c=-5/114+9/29*I,n=15 2584043078979178 m001 1/exp(HardHexagonsEntropy)^2*Cahen*cos(Pi/5)^2 2584043086903777 s002 sum(A158598[n]/((exp(n)-1)/n),n=1..infinity) 2584043088518656 m001 GAMMA(17/24)^2/GAMMA(1/24)/exp(Zeta(9)) 2584043106489427 m001 GAMMA(2/3)*(BesselK(1,1)+Mills) 2584043127442307 h005 exp(sin(Pi*4/29)/cos(Pi*17/48)) 2584043130960977 m001 1/GAMMA(1/12)^2/Ei(1)*ln(sqrt(5))^2 2584043134123005 a007 Real Root Of 511*x^4-556*x^3-668*x^2-902*x+285 2584043144669716 a008 Real Root of x^4-x^3+10*x-36 2584043167085631 m001 (ZetaP(2)+ZetaQ(3))^MadelungNaCl 2584043171116201 m001 (BesselK(1,1)-GAMMA(11/12))/(MertensB2-Thue) 2584043174616299 r009 Re(z^3+c),c=-9/58+55/56*I,n=26 2584043177805435 m001 1/GAMMA(17/24)^2*(2^(1/3))*ln(Zeta(3))^2 2584043178310454 l006 ln(1343/1739) 2584043185761001 a007 Real Root Of -247*x^4-304*x^3+795*x^2-101*x+198 2584043204129693 s002 sum(A056852[n]/((pi^n+1)/n),n=1..infinity) 2584043213302894 a007 Real Root Of -202*x^4-325*x^3+310*x^2-241*x+706 2584043214598824 b008 E-(2*ArcCsc[5])/3 2584043215796966 m006 (4*exp(Pi)-2/5)/(2/3*exp(2*Pi)-1/3) 2584043225606391 m005 (1/2*2^(1/2)-7/12)/(1/4*Catalan+1/4) 2584043228271275 r005 Re(z^2+c),c=-21/22+25/121*I,n=34 2584043232934249 a007 Real Root Of -185*x^4-54*x^3+808*x^2-624*x+309 2584043234526149 b008 5*Csch[5/26] 2584043237311957 a001 76/233*196418^(9/53) 2584043239146858 a007 Real Root Of 35*x^4+937*x^3+836*x^2-150*x+135 2584043244430079 r005 Im(z^2+c),c=1/36+16/55*I,n=4 2584043256371727 a001 55/39603*123^(4/31) 2584043263299609 h001 (1/7*exp(1)+7/9)/(1/2*exp(2)+9/11) 2584043268707564 m006 (1/5*exp(Pi)+3/5)/(4/Pi+3/4) 2584043278032610 m001 (Artin+MadelungNaCl)/(MasserGramain+ZetaP(3)) 2584043289412124 a007 Real Root Of 30*x^4+805*x^3+733*x^2-916*x+842 2584043289998876 r005 Im(z^2+c),c=-27/62+21/40*I,n=58 2584043292570129 a005 (1/sin(90/217*Pi))^153 2584043302725347 r005 Im(z^2+c),c=-5/14+14/33*I,n=52 2584043303900336 a007 Real Root Of -638*x^4-716*x^3+209*x^2+799*x+183 2584043307310565 m001 Pi/(ln(2)/ln(10)+Chi(1)/Catalan) 2584043310309652 m002 Pi^9*Csch[Pi]+Sinh[Pi]/4 2584043326614671 p001 sum((-1)^n/(389*n+339)/n/(5^n),n=1..infinity) 2584043329188112 m001 (Shi(1)+cos(1))/((1+3^(1/2))^(1/2)-MertensB2) 2584043332331947 a007 Real Root Of 395*x^4-718*x^3+711*x^2-818*x-273 2584043332343143 r005 Re(z^2+c),c=31/94+9/50*I,n=62 2584043338290666 r005 Re(z^2+c),c=-19/54+24/41*I,n=59 2584043338447626 p001 sum(1/(359*n+29)/n/(100^n),n=1..infinity) 2584043358715894 a007 Real Root Of -100*x^4-88*x^3+127*x^2-526*x+733 2584043363570421 r005 Im(z^2+c),c=-61/102+1/21*I,n=59 2584043363978641 a007 Real Root Of 209*x^4+292*x^3-437*x^2+687*x+413 2584043364538964 m001 1/exp(sqrt(3))/log(1+sqrt(2))^3 2584043366241120 r005 Im(z^2+c),c=-55/118+29/62*I,n=59 2584043373487992 a007 Real Root Of 456*x^4+860*x^3-818*x^2-167*x-462 2584043383023166 s002 sum(A256072[n]/(10^n-1),n=1..infinity) 2584043385945778 a007 Real Root Of -496*x^4-885*x^3+706*x^2-451*x+965 2584043395811321 r009 Re(z^3+c),c=-31/64+34/59*I,n=54 2584043405036014 m001 (FeigenbaumB-GaussAGM)/(Lehmer-Porter) 2584043408694958 a001 17711/322*29^(17/37) 2584043409025819 m002 -(Pi^3/Log[Pi])+Log[Pi]+Tanh[Pi]/Pi^2 2584043410480673 m001 (LandauRamanujan-OneNinth)/(ln(3)+3^(1/3)) 2584043425156247 r009 Re(z^3+c),c=-5/12+21/43*I,n=56 2584043426731470 m001 (FransenRobinson-sin(1/12*Pi))/Paris 2584043434080658 m001 (2/3+TwinPrimes)^GAMMA(1/12) 2584043444296405 a007 Real Root Of -611*x^4+114*x^3-176*x^2+834*x-203 2584043451244411 r005 Im(z^2+c),c=-47/110+13/36*I,n=8 2584043452658196 r005 Re(z^2+c),c=-9/38+9/20*I,n=26 2584043458737470 l006 ln(411/5446) 2584043460369174 r005 Re(z^2+c),c=-13/14+51/248*I,n=56 2584043468461802 a001 11/13*317811^(14/31) 2584043481388439 a001 121393/322*123^(2/5) 2584043499572915 r005 Im(z^2+c),c=-31/86+25/42*I,n=55 2584043501615380 r005 Re(z^2+c),c=-19/122+35/64*I,n=17 2584043516121873 r005 Re(z^2+c),c=-17/90+22/39*I,n=52 2584043534949253 m001 (cos(1)-PlouffeB)/FeigenbaumAlpha 2584043535197846 r005 Re(z^2+c),c=-27/86+9/56*I,n=18 2584043557352292 r009 Re(z^3+c),c=-7/26+7/44*I,n=10 2584043575020593 m001 (gamma(3)+Bloch)/(Mills-PisotVijayaraghavan) 2584043578998533 p003 LerchPhi(1/64,6,478/177) 2584043579701546 m009 (24/5*Catalan+3/5*Pi^2+1/4)/(1/3*Pi^2+4/5) 2584043583276958 r005 Im(z^2+c),c=1/11+14/57*I,n=22 2584043597160147 a007 Real Root Of -293*x^4-427*x^3+955*x^2+169*x-244 2584043605049861 a007 Real Root Of 158*x^4+486*x^3-66*x^2-794*x-270 2584043605810300 r009 Re(z^3+c),c=-37/78+10/21*I,n=2 2584043611025126 r005 Im(z^2+c),c=11/102+4/17*I,n=6 2584043623179155 r005 Im(z^2+c),c=-151/102+7/46*I,n=3 2584043625507630 a007 Real Root Of 517*x^4+952*x^3-710*x^2+767*x+98 2584043626616761 r005 Re(z^2+c),c=3/14+4/55*I,n=20 2584043662922144 r002 22th iterates of z^2 + 2584043666835517 m001 (BesselI(0,1)-Catalan)/(ln(2)+Robbin) 2584043682892583 h001 (1/6*exp(1)+3/10)/(7/9*exp(1)+4/5) 2584043685420777 a007 Real Root Of 972*x^4+655*x^3-555*x^2-842*x+239 2584043687992416 a007 Real Root Of -255*x^4-423*x^3+420*x^2-665*x-452 2584043688653206 r002 48th iterates of z^2 + 2584043689353834 r005 Re(z^2+c),c=27/82+11/60*I,n=41 2584043696242718 r005 Im(z^2+c),c=-9/31+25/62*I,n=23 2584043706038495 a007 Real Root Of 106*x^4+396*x^3+707*x^2+788*x-578 2584043707123542 r005 Im(z^2+c),c=-7/16+1/26*I,n=9 2584043709985550 r005 Im(z^2+c),c=-12/29+19/43*I,n=60 2584043710393714 s002 sum(A104323[n]/((2^n+1)/n),n=1..infinity) 2584043722950312 a001 1568397607/144*514229^(16/17) 2584043722953589 a001 710647/144*1836311903^(16/17) 2584043723173259 r005 Im(z^2+c),c=-9/23+16/37*I,n=29 2584043743711921 a007 Real Root Of 318*x^4+941*x^3+283*x^2+121*x+481 2584043744836716 m001 1/(3^(1/3))^2*Tribonacci*ln(GAMMA(11/12))^2 2584043747138495 m001 (2^(1/3))^2*ln(Champernowne)/GAMMA(17/24) 2584043753429621 a007 Real Root Of 456*x^4+675*x^3-965*x^2+779*x-228 2584043758200517 m001 (Gompertz+Sarnak)/(ln(3)-ln(5)) 2584043760231802 a001 514229/521*123^(1/5) 2584043767389919 a007 Real Root Of 304*x^4+806*x^3+83*x^2+141*x+163 2584043773238490 a001 4/55*63245986^(7/12) 2584043778371048 r005 Re(z^2+c),c=-5/4+1/165*I,n=42 2584043789820183 r009 Re(z^3+c),c=-43/122+23/61*I,n=7 2584043795212287 r005 Im(z^2+c),c=-19/44+29/64*I,n=42 2584043819100485 m001 (Psi(2,1/3)-Zeta(5))/(-Ei(1,1)+gamma(3)) 2584043829811856 m002 -(Cosh[Pi]/Pi)+ProductLog[Pi]+Tanh[Pi]/Pi^3 2584043830608148 a007 Real Root Of -325*x^4-599*x^3+503*x^2-136*x+445 2584043831561002 m001 BesselI(1,2)+Landau^Trott 2584043835020335 m001 1/exp(gamma)^2/Zeta(5)^2*log(1+sqrt(2)) 2584043836896425 a001 521/377*55^(19/26) 2584043844439197 m001 (CopelandErdos+Niven)/(ln(3)-GAMMA(19/24)) 2584043852398601 m001 (2^(1/3)+GAMMA(23/24))/(Rabbit+ZetaP(3)) 2584043856194176 m001 Pi/(ln(2)/ln(10)-3^(1/3)*exp(-1/2*Pi)) 2584043874979048 m001 (LandauRamanujan-Mills)/(Conway+Kolakoski) 2584043876883321 a007 Real Root Of -915*x^4+101*x^3+343*x^2+902*x+216 2584043897607925 r005 Im(z^2+c),c=43/114+4/27*I,n=23 2584043906102191 a007 Real Root Of 30*x^4+781*x^3+120*x^2-747*x+418 2584043906500807 r005 Im(z^2+c),c=43/114+5/18*I,n=5 2584043908612511 s002 sum(A255945[n]/(exp(n)+1),n=1..infinity) 2584043909894632 l006 ln(407/5393) 2584043913280032 a003 cos(Pi*8/89)/cos(Pi*25/66) 2584043933178769 r009 Re(z^3+c),c=-7/15+21/41*I,n=61 2584043937393967 a007 Real Root Of 281*x^4+474*x^3-881*x^2-453*x+362 2584043956458237 r009 Re(z^3+c),c=-25/66+7/17*I,n=34 2584043964664326 m001 (ln(5)-Zeta(1,-1))/(Kolakoski-OneNinth) 2584043969436000 m001 1/FeigenbaumD/exp(Khintchine)*Zeta(7)^2 2584043974684723 h001 (7/11*exp(1)+1/11)/(11/12*exp(2)+3/11) 2584043979167872 b008 Sqrt[3*LogGamma[13/3]] 2584043983052292 m005 (1/2*exp(1)+4/11)/(6/7*Zeta(3)-4/11) 2584043985793615 h001 (10/11*exp(1)+5/12)/(1/8*exp(1)+7/9) 2584043989766042 a001 1364/3*13^(21/31) 2584043991828554 m001 sin(1/12*Pi)^(2^(1/2))*ZetaP(3) 2584044018057130 r002 17i'th iterates of 2*x/(1-x^2) of 2584044020392409 m001 GAMMA(11/24)^2/exp(Porter)/gamma^2 2584044024833498 l006 ln(6793/8796) 2584044031581623 m001 Cahen^ThueMorse/FellerTornier 2584044034965712 a001 8/167761*7^(33/38) 2584044035283187 r005 Im(z^2+c),c=1/11+14/57*I,n=25 2584044040309253 r005 Im(z^2+c),c=1/11+14/57*I,n=26 2584044053597192 m002 E^Pi+ProductLog[Pi]+6*Pi*Sech[Pi] 2584044060682306 r005 Im(z^2+c),c=-43/110+30/53*I,n=21 2584044080668604 r005 Re(z^2+c),c=-41/34+13/101*I,n=22 2584044085433665 r005 Im(z^2+c),c=1/11+14/57*I,n=30 2584044088162302 r005 Im(z^2+c),c=1/11+14/57*I,n=29 2584044089105623 r005 Im(z^2+c),c=1/11+14/57*I,n=34 2584044089315822 r005 Im(z^2+c),c=1/11+14/57*I,n=31 2584044089318744 r005 Im(z^2+c),c=1/11+14/57*I,n=35 2584044089362548 r005 Im(z^2+c),c=1/11+14/57*I,n=38 2584044089370792 r005 Im(z^2+c),c=1/11+14/57*I,n=39 2584044089377795 r005 Im(z^2+c),c=1/11+14/57*I,n=43 2584044089377808 r005 Im(z^2+c),c=1/11+14/57*I,n=42 2584044089378464 r005 Im(z^2+c),c=1/11+14/57*I,n=47 2584044089378510 r005 Im(z^2+c),c=1/11+14/57*I,n=46 2584044089378518 r005 Im(z^2+c),c=1/11+14/57*I,n=51 2584044089378519 r005 Im(z^2+c),c=1/11+14/57*I,n=48 2584044089378521 r005 Im(z^2+c),c=1/11+14/57*I,n=52 2584044089378521 r005 Im(z^2+c),c=1/11+14/57*I,n=55 2584044089378522 r005 Im(z^2+c),c=1/11+14/57*I,n=56 2584044089378522 r005 Im(z^2+c),c=1/11+14/57*I,n=60 2584044089378522 r005 Im(z^2+c),c=1/11+14/57*I,n=59 2584044089378522 r005 Im(z^2+c),c=1/11+14/57*I,n=64 2584044089378522 r005 Im(z^2+c),c=1/11+14/57*I,n=63 2584044089378522 r005 Im(z^2+c),c=1/11+14/57*I,n=61 2584044089378522 r005 Im(z^2+c),c=1/11+14/57*I,n=62 2584044089378522 r005 Im(z^2+c),c=1/11+14/57*I,n=58 2584044089378522 r005 Im(z^2+c),c=1/11+14/57*I,n=57 2584044089378522 r005 Im(z^2+c),c=1/11+14/57*I,n=54 2584044089378523 r005 Im(z^2+c),c=1/11+14/57*I,n=53 2584044089378524 r005 Im(z^2+c),c=1/11+14/57*I,n=50 2584044089378537 r005 Im(z^2+c),c=1/11+14/57*I,n=49 2584044089378642 r005 Im(z^2+c),c=1/11+14/57*I,n=44 2584044089378729 r005 Im(z^2+c),c=1/11+14/57*I,n=45 2584044089380955 r005 Im(z^2+c),c=1/11+14/57*I,n=41 2584044089382062 r005 Im(z^2+c),c=1/11+14/57*I,n=40 2584044089401330 r005 Im(z^2+c),c=1/11+14/57*I,n=37 2584044089446161 r005 Im(z^2+c),c=1/11+14/57*I,n=36 2584044089500069 r005 Im(z^2+c),c=1/11+14/57*I,n=33 2584044090435617 r005 Im(z^2+c),c=1/11+14/57*I,n=32 2584044090463823 l006 ln(6456/6625) 2584044093349366 g006 Psi(1,2/5)-Psi(1,4/11)-2*Psi(1,3/10) 2584044097222052 r005 Im(z^2+c),c=-6/5+1/127*I,n=3 2584044098423658 m001 polylog(4,1/2)*MasserGramainDelta*Trott2nd 2584044099101839 r005 Im(z^2+c),c=1/11+14/57*I,n=27 2584044103567279 r005 Im(z^2+c),c=1/11+14/57*I,n=28 2584044114022796 m001 (BesselK(0,1)-cos(1))/(-arctan(1/2)+gamma(3)) 2584044116488900 a007 Real Root Of -474*x^4-920*x^3+946*x^2+493*x+217 2584044121167176 m001 (-Magata+ZetaQ(4))/(2^(1/2)-GlaisherKinkelin) 2584044131373708 r009 Re(z^3+c),c=-13/23+11/37*I,n=12 2584044133142141 p003 LerchPhi(1/64,2,152/77) 2584044145066276 m001 GlaisherKinkelin/CopelandErdos*Weierstrass 2584044152870576 m001 5^(1/2)*Ei(1)/GAMMA(13/24) 2584044152870576 m001 sqrt(5)*Ei(1)/GAMMA(13/24) 2584044154540893 q001 103/3986 2584044169611051 a007 Real Root Of 380*x^4+825*x^3-56*x^2+945*x+108 2584044176147295 r005 Re(z^2+c),c=-7/23+3/47*I,n=3 2584044177045359 r002 34th iterates of z^2 + 2584044177464640 a007 Real Root Of -905*x^4+335*x^3-692*x^2+979*x+309 2584044184454608 m001 (gamma(3)+HeathBrownMoroz)/(Mills-ZetaQ(4)) 2584044186887048 a001 1/46347*832040^(31/45) 2584044187379687 m005 (7/24+1/6*5^(1/2))/(8/9*5^(1/2)+7/12) 2584044194178123 h001 (2/9*exp(1)+1/4)/(8/9*exp(1)+8/9) 2584044201140151 m001 (Mills+TravellingSalesman)/(exp(1/Pi)-Lehmer) 2584044204765884 h005 exp(cos(Pi*1/9)/sin(Pi*5/11)) 2584044205619499 m001 (exp(-1/2*Pi)-Grothendieck)/(Khinchin+Magata) 2584044215625090 p004 log(16073/1213) 2584044221825934 p003 LerchPhi(1/16,4,278/111) 2584044222330346 a003 cos(Pi*26/109)-sin(Pi*26/57) 2584044224621931 m001 BesselJ(0,1)/ln(FeigenbaumC)^2/cos(Pi/5) 2584044228229890 l003 Psi(2,9/98) 2584044229017985 m002 -6+Pi+Pi*Log[Pi]-Tanh[Pi] 2584044233435404 l006 ln(5450/7057) 2584044236794094 m001 (3^(1/2)+GAMMA(17/24))/(GolombDickman+Landau) 2584044237822465 r009 Im(z^3+c),c=-2/11+9/35*I,n=9 2584044251558090 r005 Im(z^2+c),c=1/11+14/57*I,n=24 2584044267888102 a001 39603/233*28657^(2/49) 2584044275883441 m001 BesselJ(0,1)*Mills*Sierpinski 2584044284580624 p001 sum((-1)^n/(501*n+377)/(16^n),n=0..infinity) 2584044291280288 p001 sum(1/(238*n+65)/n/(128^n),n=1..infinity) 2584044293072843 a007 Real Root Of 950*x^4-868*x^3+978*x^2-373*x+9 2584044297511008 a007 Real Root Of -384*x^4-863*x^3+655*x^2+483*x-895 2584044298971630 r005 Im(z^2+c),c=-25/29+5/26*I,n=62 2584044305945502 r005 Re(z^2+c),c=-13/74+23/41*I,n=34 2584044305979882 r009 Re(z^3+c),c=-25/122+50/57*I,n=61 2584044307832485 r004 Im(z^2+c),c=1/26+3/11*I,z(0)=I,n=19 2584044309935378 m001 (-2*Pi/GAMMA(5/6)+Artin)/(LambertW(1)+3^(1/3)) 2584044315353273 b008 7*Cot[Pi/116] 2584044346125334 r004 Im(z^2+c),c=-27/38+3/22*I,z(0)=-1,n=22 2584044347559518 r009 Im(z^3+c),c=-11/27+4/25*I,n=12 2584044349636539 r005 Im(z^2+c),c=1/11+14/57*I,n=23 2584044370007557 l006 ln(403/5340) 2584044371086263 r005 Re(z^2+c),c=-59/114+29/64*I,n=17 2584044380928179 m001 Ei(1)^(exp(sqrt(2))/sin(Pi/12)) 2584044387664162 a003 sin(Pi*9/103)*sin(Pi*35/87) 2584044397434391 a001 1/203*(1/2*5^(1/2)+1/2)^2*7^(5/14) 2584044404765125 r005 Re(z^2+c),c=-15/74+14/45*I,n=2 2584044404854366 m001 1/exp(arctan(1/2))*FeigenbaumKappa^2*sqrt(5) 2584044413247982 r005 Re(z^2+c),c=-1/26+31/53*I,n=18 2584044421484754 a007 Real Root Of -358*x^4-991*x^3-235*x^2-546*x-979 2584044423015028 a001 199/53316291173*46368^(14/23) 2584044425035055 m001 1/Robbin*FeigenbaumDelta*ln((3^(1/3))) 2584044440450771 r005 Re(z^2+c),c=-27/118+7/15*I,n=19 2584044445118963 a007 Real Root Of -808*x^4+112*x^3+18*x^2+823*x+217 2584044452253217 r009 Im(z^3+c),c=-57/106+17/62*I,n=12 2584044452482253 a001 23725150497407/5*233^(11/15) 2584044461062786 b008 3+InverseErfc[ArcSinh[2]] 2584044463128347 p004 log(26647/2011) 2584044473127502 m001 (FeigenbaumC+GlaisherKinkelin)/(Landau+Robbin) 2584044474492458 m005 (1/2*Pi-2/3)/(7/8*Pi+3/4) 2584044480952640 a001 987/29*76^(22/47) 2584044483299961 m001 StronglyCareFree-polylog(4,1/2) 2584044483299961 m001 polylog(4,1/2)-StronglyCareFree 2584044490219149 r005 Re(z^2+c),c=-25/82+8/37*I,n=15 2584044496259874 a007 Real Root Of -414*x^4-48*x^3+822*x^2+986*x-307 2584044503377892 p001 sum(1/(513*n+398)/(16^n),n=0..infinity) 2584044508127865 m001 (3^(1/3)+Magata)/(MasserGramainDelta+ZetaQ(2)) 2584044518650465 r005 Im(z^2+c),c=7/19+11/50*I,n=36 2584044532462872 r005 Re(z^2+c),c=-3/16+35/58*I,n=61 2584044533682109 m001 1/exp(GAMMA(1/6))*Robbin^2*cosh(1) 2584044536715504 r009 Re(z^3+c),c=-31/82+16/39*I,n=34 2584044544398942 a001 21/29*521^(4/7) 2584044560018051 a007 Real Root Of -999*x^4+793*x^3+158*x^2+651*x-188 2584044562886319 a007 Real Root Of -531*x^4-708*x^3+91*x^2+923*x-230 2584044567397207 r005 Im(z^2+c),c=-23/52+14/31*I,n=59 2584044578464065 l006 ln(4107/5318) 2584044581802919 r005 Im(z^2+c),c=-30/31+12/55*I,n=14 2584044582608389 a007 Real Root Of -698*x^4+255*x^3+302*x^2+859*x+22 2584044591059262 m005 (1/2*Pi+8/9)/(11/28+1/4*5^(1/2)) 2584044605472239 r005 Im(z^2+c),c=5/66+14/55*I,n=8 2584044617242329 m001 (1/2*Pi*2^(2/3)+exp(gamma))/Zeta(1,-1) 2584044624215162 r005 Im(z^2+c),c=-39/31+2/15*I,n=9 2584044626282183 r005 Im(z^2+c),c=-25/86+19/48*I,n=14 2584044626707214 r009 Im(z^3+c),c=-3/29+34/41*I,n=14 2584044634380598 a007 Real Root Of -90*x^4+88*x^3+945*x^2+671*x+955 2584044637603638 r005 Re(z^2+c),c=19/54+5/32*I,n=47 2584044652785108 a007 Real Root Of -397*x^4-984*x^3-204*x^2-869*x-161 2584044656286896 a007 Real Root Of -3*x^4+206*x^3-264*x^2-486*x-402 2584044678087483 m004 Cos[Sqrt[5]*Pi]+18/(5*Log[Sqrt[5]*Pi]) 2584044688767183 r005 Im(z^2+c),c=29/118+29/60*I,n=12 2584044701632915 m002 -Pi^6-Cosh[Pi]/6+Pi^5*Cosh[Pi] 2584044702310889 m001 (-polylog(4,1/2)+PlouffeB)/(exp(1)-ln(3)) 2584044702343821 m001 1/ln(GolombDickman)/Backhouse*sqrt(Pi) 2584044703682519 r005 Im(z^2+c),c=-3/86+19/62*I,n=15 2584044707124206 p003 LerchPhi(1/5,6,76/89) 2584044717704712 m001 1/GAMMA(1/12)*ln((2^(1/3)))^2*GAMMA(1/6) 2584044730938664 m001 ln(Zeta(9))^2/BesselK(1,1)/sin(Pi/12) 2584044735378443 m001 cos(1/5*Pi)^QuadraticClass+Riemann3rdZero 2584044736250245 a007 Real Root Of 443*x^4+814*x^3-822*x^2-91*x-453 2584044736903576 m001 Si(Pi)^2*FeigenbaumAlpha^2/ln(Zeta(7)) 2584044792104278 m005 (1/2*Zeta(3)+3)/(2/3*Catalan-3/4) 2584044794963794 s002 sum(A206082[n]/(n^3*2^n-1),n=1..infinity) 2584044798050107 r005 Re(z^2+c),c=13/38+19/49*I,n=5 2584044808511192 m005 (1/2*2^(1/2)-2/5)/(2/7*Catalan-1/7) 2584044823256598 m006 (1/4/Pi-1)/(3/4*Pi-2) 2584044823516212 m001 1/exp(GAMMA(1/4))^2/Kolakoski/sin(Pi/5)^2 2584044836236869 m001 cos(1)+exp(1)^TravellingSalesman 2584044839345586 l006 ln(399/5287) 2584044850895750 m001 (BesselI(0,1)+GAMMA(13/24))/(-Artin+MertensB1) 2584044852136913 l006 ln(6871/8897) 2584044862197529 p004 log(20071/19559) 2584044874968069 a007 Real Root Of -171*x^4-80*x^3+717*x^2-610*x-120 2584044880947852 m008 (1/4*Pi^2-5)/(Pi^4+3/5) 2584044887099514 g007 -Psi(2,6/11)-Psi(13/10)-Psi(2,5/7)-Psi(2,1/5) 2584044891766557 m001 (HardyLittlewoodC3-BesselI(1,1))^exp(1/Pi) 2584044913187958 r005 Im(z^2+c),c=-5/6+1/64*I,n=20 2584044916323622 r005 Re(z^2+c),c=25/86+20/43*I,n=46 2584044929002352 s002 sum(A124084[n]/(n^3*pi^n+1),n=1..infinity) 2584044939144613 m001 FeigenbaumB+Psi(2,1/3)^ZetaR(2) 2584044942311883 a003 cos(Pi*14/89)*cos(Pi*47/116) 2584044943294705 m001 gamma/(ln(5)+GolombDickman) 2584044945876145 r009 Re(z^3+c),c=-29/70+15/31*I,n=54 2584044947007472 r005 Im(z^2+c),c=-31/40+5/28*I,n=5 2584044947900743 m001 (Niven+Rabbit)/(Chi(1)-Pi^(1/2)) 2584044963614544 p003 LerchPhi(1/10,3,144/91) 2584044977030315 m001 ZetaP(2)^Paris*ZetaP(2)^ErdosBorwein 2584044979736234 m001 1/exp(GAMMA(3/4))^2/Porter*GAMMA(5/24) 2584044993153130 m009 (1/2*Pi^2-4/5)/(6*Psi(1,3/4)+3/4) 2584044994507181 m005 (1/4*gamma+3)/(1/5*Pi-3/4) 2584044997114147 a007 Real Root Of -359*x^4-808*x^3+433*x^2+201*x-307 2584045000465316 m001 GAMMA(11/12)*Kolakoski+KhinchinHarmonic 2584045002533260 a007 Real Root Of -193*x^3+686*x^2-845*x+933 2584045002560407 m005 (11/12+1/6*5^(1/2))/(7/12*3^(1/2)-6) 2584045024129984 a001 123/2584*610^(54/55) 2584045025743918 m001 (3^(1/2)+GAMMA(19/24))/(-FeigenbaumC+Otter) 2584045032138906 m001 FeigenbaumAlpha^Magata/QuadraticClass 2584045040139902 a001 3*(1/2*5^(1/2)+1/2)^20*76^(14/15) 2584045040403433 h001 (6/7*exp(2)+4/11)/(3/10*exp(2)+3/8) 2584045040940757 m001 (GAMMA(1/3)+Lehmer)/BesselI(0,1) 2584045047370094 m001 Psi(2,1/3)^MertensB3/AlladiGrinstead 2584045047676533 a003 sin(Pi*1/15)/cos(Pi*17/84) 2584045051935259 m001 1/Salem^2/Backhouse^2*ln(log(2+sqrt(3)))^2 2584045054304562 a007 Real Root Of 187*x^4+717*x^3+632*x^2+348*x+713 2584045073880230 a003 cos(Pi*2/111)*sin(Pi*1/12) 2584045080705575 m001 HeathBrownMoroz/(DuboisRaymond-CareFree) 2584045084991133 m001 (2^(1/3)+cos(1/5*Pi)*Rabbit)/Rabbit 2584045088299028 a007 Real Root Of 434*x^4+704*x^3-772*x^2+487*x-790 2584045091945765 m001 1/Robbin^2/Champernowne^2*ln(TwinPrimes)^2 2584045093391803 a003 cos(Pi*5/26)/cos(Pi*25/63) 2584045094062127 r005 Im(z^2+c),c=-73/98+13/62*I,n=45 2584045096849980 a001 54018521/34*591286729879^(20/21) 2584045096849982 a001 408569081798/17*24157817^(20/21) 2584045098457027 r005 Re(z^2+c),c=-39/98+13/25*I,n=5 2584045102531596 m001 (Zeta(1/2)-BesselI(0,2))/(Backhouse-ZetaQ(3)) 2584045105564997 m005 (1/2*Catalan+5/7)/(2*exp(1)-9/10) 2584045105948935 m001 Lehmer*CopelandErdos/ln(GAMMA(11/12)) 2584045108149469 r005 Re(z^2+c),c=-33/106+5/28*I,n=19 2584045118980100 m005 (1/2*Zeta(3)-1/11)/(1/7*Catalan-1/9) 2584045120480272 a007 Real Root Of -114*x^4-193*x^3+686*x^2+909*x-479 2584045131091729 m001 (-LaplaceLimit+Totient)/(Chi(1)+Grothendieck) 2584045134210082 m005 (-5/12+1/4*5^(1/2))/(2/3*Catalan-5/9) 2584045135522786 m001 Pi-gamma*cos(1/12*Pi) 2584045135522786 m001 Pi-gamma*cos(Pi/12) 2584045139555960 r005 Im(z^2+c),c=-43/90+18/47*I,n=10 2584045148749173 m001 (Lehmer+MinimumGamma)/(BesselK(0,1)+Artin) 2584045150717268 m001 (Ei(1)+GlaisherKinkelin)/(Mills-ZetaP(4)) 2584045154279504 r002 2th iterates of z^2 + 2584045158174058 a007 Real Root Of 25*x^4+611*x^3-872*x^2+810*x-909 2584045164520222 r009 Re(z^3+c),c=-39/94+17/36*I,n=26 2584045166074331 r005 Im(z^2+c),c=-37/118+16/39*I,n=35 2584045173800632 r009 Re(z^3+c),c=-9/20+27/59*I,n=2 2584045193210499 a007 Real Root Of -266*x^4-365*x^3+604*x^2-678*x-223 2584045199607153 m001 ln(KhintchineHarmonic)/Champernowne^2/sqrt(2) 2584045207842121 r005 Re(z^2+c),c=-13/58+27/56*I,n=61 2584045209025513 m006 (1/4/Pi-1)/(2/3*exp(2*Pi)-4/5) 2584045212461998 s002 sum(A254547[n]/(n^3*10^n+1),n=1..infinity) 2584045213302216 a001 47/317811*377^(47/54) 2584045214424623 a007 Real Root Of 822*x^4+824*x^3+831*x^2-996*x+184 2584045225681754 a003 sin(Pi*35/108)/cos(Pi*46/117) 2584045237267804 r005 Re(z^2+c),c=-5/9+37/57*I,n=12 2584045254363341 v002 sum(1/(5^n*(9/2*n^2+63/2*n-28)),n=1..infinity) 2584045258784652 l006 ln(2764/3579) 2584045277517242 r005 Im(z^2+c),c=-127/102+5/16*I,n=4 2584045302313217 r005 Im(z^2+c),c=-5/23+23/33*I,n=9 2584045302851353 s002 sum(A234216[n]/(n*exp(pi*n)-1),n=1..infinity) 2584045307832436 m006 (1/2*exp(Pi)+1/6)/(2/5*ln(Pi)-5) 2584045318188969 l006 ln(395/5234) 2584045329595656 a007 Real Root Of -466*x^4-868*x^3+773*x^2-289*x-108 2584045332170895 m005 (1/3*Catalan+1/7)/(5/8*3^(1/2)-10/11) 2584045332781601 m001 exp(Magata)/FeigenbaumDelta/Riemann3rdZero 2584045335317832 m001 (ln(5)+MertensB1)/(Salem-ZetaP(2)) 2584045349144238 a005 (1/sin(79/185*Pi))^1686 2584045352285932 r005 Re(z^2+c),c=-17/14+35/236*I,n=30 2584045353097669 m001 Sarnak-Shi(1)*BesselJ(1,1) 2584045354315606 a001 1346269/4*47^(9/17) 2584045355764284 a007 Real Root Of 178*x^4+432*x^3-123*x^2+180*x+804 2584045365302632 a007 Real Root Of 60*x^4+167*x^3+78*x^2+369*x+639 2584045370186358 a007 Real Root Of 154*x^4+68*x^3-729*x^2+675*x+919 2584045377874189 r005 Re(z^2+c),c=13/86+23/39*I,n=11 2584045384409721 a007 Real Root Of 329*x^4+528*x^3-600*x^2+567*x-87 2584045392028593 r005 Im(z^2+c),c=-49/106+21/47*I,n=45 2584045396376911 a001 3524578/11*18^(13/18) 2584045396539219 m001 (GAMMA(2/3)+Ei(1,1))/(LaplaceLimit-ZetaQ(2)) 2584045396672466 r009 Im(z^3+c),c=-11/62+8/31*I,n=7 2584045398293357 a007 Real Root Of -318*x^4-487*x^3+932*x^2+80*x-241 2584045400809217 a008 Real Root of x^4-2*x^3-27*x^2-38*x+1 2584045402469641 a001 47/701408733*4807526976^(9/19) 2584045402470561 a001 47/9227465*514229^(9/19) 2584045409861281 a007 Real Root Of -225*x^4-332*x^3+481*x^2-97*x+841 2584045412013875 a007 Real Root Of 573*x^4+995*x^3-986*x^2+969*x+708 2584045414536424 m001 ThueMorse/(ln(2^(1/2)+1)+TravellingSalesman) 2584045415042298 m001 1/ln(GAMMA(19/24))^2*Si(Pi)^2*GAMMA(5/24)^2 2584045416520766 r005 Re(z^2+c),c=7/90+18/53*I,n=33 2584045421209832 r005 Im(z^2+c),c=-27/82+12/29*I,n=24 2584045434184749 r005 Re(z^2+c),c=23/66+6/31*I,n=48 2584045449699299 a008 Real Root of x^4-x^3+15*x^2-162 2584045457227494 r009 Re(z^3+c),c=-3/7+29/55*I,n=49 2584045463118724 r005 Im(z^2+c),c=-13/32+19/43*I,n=37 2584045470377599 r009 Im(z^3+c),c=-61/102+9/35*I,n=53 2584045471607735 r009 Re(z^3+c),c=-43/102+8/17*I,n=20 2584045479965809 p004 log(15649/1181) 2584045485962057 m005 (1/2*5^(1/2)-7/9)/(5/9*Pi-3/7) 2584045486365020 p001 sum((-1)^n/(365*n+21)/n/(100^n),n=1..infinity) 2584045487143384 m004 Cos[Sqrt[5]*Pi]+(3125*Pi)/Log[Sqrt[5]*Pi]^2 2584045495857303 m001 1/ln(GAMMA(1/6))^2*Lehmer*GAMMA(17/24) 2584045496958409 k005 Champernowne real with floor(log(2)*(210*n+163)) 2584045506958419 k005 Champernowne real with floor(sqrt(2)*(103*n+80)) 2584045506968429 k001 Champernowne real with 146*n+112 2584045506968429 k005 Champernowne real with floor(log(3)*(133*n+102)) 2584045513026259 h001 (-exp(3)-3)/(-3*exp(8)+9) 2584045516978439 k005 Champernowne real with floor(log(2)*(211*n+162)) 2584045516978449 k005 Champernowne real with floor(Catalan*(160*n+122)) 2584045520603283 r002 19th iterates of z^2 + 2584045523725498 a007 Real Root Of 180*x^4-270*x^3+94*x^2-288*x+72 2584045523820161 m005 (1/3*gamma+2/7)/(7/9*5^(1/2)+1/9) 2584045524653291 m001 1/(2^(1/3))^2*ln(Riemann3rdZero)*GAMMA(5/6)^2 2584045526389235 p004 log(36479/2753) 2584045544129485 r005 Im(z^2+c),c=1/11+14/57*I,n=20 2584045545971570 m005 (1/2*5^(1/2)-9/11)/(1/4*Pi+3/8) 2584045549708205 h001 (7/10*exp(1)+3/10)/(3/11*exp(1)+1/9) 2584045560034501 s002 sum(A151754[n]/(2^n+1),n=1..infinity) 2584045567725116 r004 Im(z^2+c),c=1/7-4/19*I,z(0)=exp(5/24*I*Pi),n=4 2584045575400706 b008 63*Sqrt[ArcCoth[6]] 2584045584045584 q001 907/351 2584045598511607 r005 Im(z^2+c),c=-17/54+23/56*I,n=45 2584045604670887 r005 Re(z^2+c),c=-9/22+4/11*I,n=5 2584045607744322 a007 Real Root Of 225*x^4+503*x^3-383*x^2-321*x+375 2584045608774483 a007 Real Root Of 683*x^4-280*x^3+839*x^2-215*x+5 2584045614269656 m001 (gamma(3)-exp(-1/2*Pi))/(Landau-Totient) 2584045616451049 m001 CopelandErdos/(Weierstrass^Champernowne) 2584045623887256 a008 Real Root of x^4-x^3-33*x^2-131*x-180 2584045626532203 r005 Re(z^2+c),c=-37/114+2/53*I,n=14 2584045634246886 a001 21/9349*64079^(49/58) 2584045636946927 a007 Real Root Of -25*x^4-614*x^3+847*x^2+482*x-773 2584045648939357 a007 Real Root Of 203*x^4+745*x^3+865*x^2+908*x+374 2584045657208553 m001 1/ln(BesselK(0,1))/Tribonacci^2/GAMMA(1/12)^2 2584045660867902 l006 ln(6949/8998) 2584045661280257 a008 Real Root of x^4-x^3-19*x^2-26*x+8 2584045661944655 m001 (GAMMA(23/24)-Cahen)/(FransenRobinson-Otter) 2584045670251198 a007 Real Root Of 571*x^4-152*x^3+304*x^2-807*x-234 2584045674387747 r005 Im(z^2+c),c=-25/46+8/29*I,n=5 2584045688782055 b008 (77*E)/81 2584045689409181 r005 Im(z^2+c),c=-39/94+27/61*I,n=52 2584045690353046 m008 (1/2*Pi^2+2/3)/(1/6*Pi^3-3) 2584045700563150 m002 -4-E^Pi+3/Pi^2+Tanh[Pi] 2584045713204885 r005 Im(z^2+c),c=21/94+3/19*I,n=19 2584045715074958 r005 Im(z^2+c),c=-11/62+21/64*I,n=4 2584045715748748 r005 Im(z^2+c),c=-11/13+5/24*I,n=3 2584045716163144 r005 Re(z^2+c),c=-3/122+26/45*I,n=15 2584045719889355 a007 Real Root Of -934*x^4-111*x^3+162*x^2+722*x+178 2584045729509005 a007 Real Root Of -366*x^4-659*x^3+609*x^2-124*x+561 2584045736605632 r005 Im(z^2+c),c=-51/70+21/58*I,n=8 2584045740238520 m001 (ln(2)+gamma(3))/(FeigenbaumC+Thue) 2584045743574615 r005 Im(z^2+c),c=-65/66+7/29*I,n=36 2584045744607587 s001 sum(exp(-3*Pi)^n*A250280[n],n=1..infinity) 2584045746822141 r005 Re(z^2+c),c=-23/78+11/23*I,n=11 2584045753776433 p001 sum(1/(537*n+394)/(24^n),n=0..infinity) 2584045757719057 r005 Im(z^2+c),c=-19/56+18/43*I,n=49 2584045760477254 m002 Pi+4*Pi^4-Cosh[Pi]^2 2584045773920096 a007 Real Root Of -8*x^4-229*x^3-593*x^2-483*x-883 2584045781881371 m006 (1/6*exp(Pi)+1/6)/(1/2*exp(Pi)+4) 2584045792599729 m005 (1/3*Pi-1/10)/(7/8*Pi+11/12) 2584045803284538 a001 29134601/48*1836311903^(14/17) 2584045803286147 a001 73681302247/144*514229^(14/17) 2584045803524915 a001 51841/72*6557470319842^(14/17) 2584045804337369 m001 ln(RenyiParking)/Niven/TwinPrimes 2584045806829422 l006 ln(391/5181) 2584045808331535 r009 Im(z^3+c),c=-37/102+11/61*I,n=4 2584045815626573 m005 (1/2*exp(1)+2)/(7/11*2^(1/2)+2/5) 2584045819016274 r005 Re(z^2+c),c=-13/40+1/49*I,n=16 2584045833420979 m005 (1/3*Pi+3/7)/(4/9*2^(1/2)-4/7) 2584045837394282 h005 exp(sin(Pi*5/21)/sin(Pi*15/59)) 2584045856126075 m005 (31/28+1/4*5^(1/2))/(1/6*Zeta(3)+4/9) 2584045860331094 s002 sum(A020770[n]/(n^2*2^n-1),n=1..infinity) 2584045860437006 m001 Ei(1)^FeigenbaumB+QuadraticClass 2584045875404886 r005 Im(z^2+c),c=-15/31+26/59*I,n=40 2584045882923822 r009 Re(z^3+c),c=-27/70+23/54*I,n=31 2584045888533432 a007 Real Root Of 724*x^4-187*x^3+209*x^2-917*x+223 2584045889324570 m001 GAMMA(1/4)^2*Cahen^2*exp(GAMMA(7/24))^2 2584045892591560 m001 arctan(1/2)*Totient+ReciprocalLucas 2584045900275781 r009 Re(z^3+c),c=-47/114+23/48*I,n=50 2584045913882001 a007 Real Root Of -101*x^4-264*x^3-38*x^2-39*x+101 2584045915994879 m001 (arctan(1/2)+MertensB3)/(3^(1/2)-Zeta(5)) 2584045926425385 l006 ln(4185/5419) 2584045933879237 a007 Real Root Of 943*x^4-431*x^3+496*x^2-522*x+105 2584045943582106 r005 Im(z^2+c),c=-13/25+4/13*I,n=5 2584045944836018 a001 5600748293801/5*2178309^(11/13) 2584045944836110 a001 141422324/5*591286729879^(11/13) 2584045944836111 a001 28143753123/5*1134903170^(11/13) 2584045948282642 p004 log(36161/2729) 2584045949875048 r005 Re(z^2+c),c=-49/102+3/32*I,n=2 2584045949908581 r005 Re(z^2+c),c=-5/44+20/33*I,n=38 2584045950733109 b008 5/13+18*Sqrt[2] 2584045951047197 m009 (4/5*Psi(1,3/4)+1/2)/(3/2*Pi^2-5) 2584045960801294 a001 199/9227465*2^(6/23) 2584045965748520 r005 Im(z^2+c),c=-15/22+17/89*I,n=11 2584045985625753 m005 (1/2*Zeta(3)+6/7)/(1/6*2^(1/2)-4/5) 2584046001978839 a007 Real Root Of 780*x^4+234*x^3+412*x^2-630*x+16 2584046005515311 a001 13/47*1364^(22/35) 2584046015910977 r005 Re(z^2+c),c=-27/122+22/45*I,n=43 2584046028507985 a007 Real Root Of 434*x^4+931*x^3-371*x^2+158*x-401 2584046030304650 a007 Real Root Of 23*x^4+557*x^3-948*x^2+428*x-51 2584046031285045 r009 Re(z^3+c),c=-39/118+21/64*I,n=5 2584046032991491 r009 Re(z^3+c),c=-19/122+42/43*I,n=26 2584046040984133 a007 Real Root Of -28*x^4-706*x^3+417*x^2-909*x+588 2584046049033569 m001 (2^(1/3))*GaussAGM(1,1/sqrt(2))-cos(Pi/5) 2584046049970054 m005 (1/2*5^(1/2)+4/5)/(5/9*5^(1/2)-1/2) 2584046051811093 m001 GAMMA(7/12)/(Mills-TravellingSalesman) 2584046052355739 r005 Im(z^2+c),c=-19/56+18/43*I,n=56 2584046061563614 r002 11th iterates of z^2 + 2584046067694726 r005 Re(z^2+c),c=4/15+24/49*I,n=7 2584046068448443 m001 1/ln(RenyiParking)^2/Paris^2*GAMMA(5/12) 2584046077763150 a007 Real Root Of 84*x^4-135*x^3-506*x^2+772*x-701 2584046082388740 a007 Real Root Of 421*x^4+806*x^3-481*x^2+880*x+622 2584046097153250 m001 (2^(1/2)-Si(Pi))/(BesselI(1,1)+GAMMA(5/6)) 2584046099382412 q001 1/38699 2584046106816449 a007 Real Root Of -496*x^4+569*x^3-175*x^2+991*x-252 2584046124793362 m005 (1/2*exp(1)+4/9)/(1/7*2^(1/2)-9/10) 2584046144684825 m005 (3*Catalan+1/3)/(1/3*gamma+1) 2584046148027589 r009 Re(z^3+c),c=-25/122+50/57*I,n=45 2584046149269133 m001 (ln(2)-Kac)/(Khinchin-ZetaP(4)) 2584046153596704 r005 Im(z^2+c),c=-7/8+44/193*I,n=28 2584046185488864 b008 9*(2/13)^(2/3) 2584046191480239 r005 Re(z^2+c),c=-15/56+4/11*I,n=21 2584046201335623 b008 Csch[Sqrt[5*Csch[1]]] 2584046208994329 m001 LambertW(1)*ZetaQ(4)-Sierpinski 2584046209746085 r005 Re(z^2+c),c=19/60+7/38*I,n=22 2584046213878850 r002 44th iterates of z^2 + 2584046224416972 r009 Re(z^3+c),c=-25/66+7/17*I,n=36 2584046236905816 m008 (1/3*Pi^4-2/3)/(2/5*Pi^5+2/3) 2584046244715775 m005 (1/2*gamma-11/12)/(5/7*5^(1/2)+5/6) 2584046255601070 l006 ln(5606/7259) 2584046261376352 a007 Real Root Of -32*x^4-817*x^3+271*x^2+361*x-897 2584046263842942 m003 4+Sqrt[5]/4-12*Tan[1/2+Sqrt[5]/2] 2584046267223155 m005 (1/2*Zeta(3)+3/8)/(3/11*exp(1)-4/11) 2584046282541855 h001 (2/11*exp(1)+2/11)/(8/9*exp(1)+1/5) 2584046287819263 r005 Re(z^2+c),c=5/21+5/48*I,n=23 2584046288581625 s002 sum(A052870[n]/(n^3*pi^n+1),n=1..infinity) 2584046288986503 a007 Real Root Of -55*x^4+136*x^3+702*x^2-76*x-85 2584046302891180 a003 cos(Pi*38/91)/sin(Pi*53/116) 2584046305570724 l006 ln(387/5128) 2584046311135845 h001 (6/7*exp(2)+2/11)/(7/8*exp(1)+1/7) 2584046313190511 m001 (Zeta(1,-1)+GAMMA(23/24))/(Artin+Otter) 2584046313709646 b008 3+PolyGamma[2,1]^(-1) 2584046313800864 a007 Real Root Of 442*x^4+882*x^3-237*x^2+978*x-379 2584046319902909 r005 Re(z^2+c),c=-23/74+2/11*I,n=21 2584046321270373 r005 Re(z^2+c),c=-5/21+29/62*I,n=12 2584046321954607 m001 1/GAMMA(3/4)^2/ln(BesselK(1,1))^2 2584046323691276 m001 Trott^exp(Pi)/(Catalan^exp(Pi)) 2584046327528876 a007 Real Root Of 12*x^4-108*x^3-628*x^2-575*x+309 2584046329051204 a007 Real Root Of -350*x^4-896*x^3-401*x^2-789*x+784 2584046334677755 m001 1/GAMMA(7/24)/exp(BesselJ(0,1))^2/exp(1) 2584046336261452 m001 Magata^ZetaP(2)*ZetaR(2) 2584046345627385 r005 Re(z^2+c),c=-11/34+22/63*I,n=5 2584046346343950 m001 1/GAMMA(5/6)^2/exp(Khintchine)^2*sin(1)^2 2584046349318077 m001 Porter*(ln(3)+LaplaceLimit) 2584046349748944 m001 (BesselK(0,1)-exp(Pi))/(-ln(3)+Ei(1,1)) 2584046358175787 r009 Im(z^3+c),c=-43/74+8/31*I,n=13 2584046361313748 l006 ln(6647/6821) 2584046365005384 r005 Im(z^2+c),c=17/98+1/5*I,n=5 2584046366786729 v002 sum(1/(5^n*(32*n^2-53*n+29)),n=1..infinity) 2584046366989982 m005 (1/2*Pi+3)/(-27/14+1/14*5^(1/2)) 2584046375613343 a003 cos(Pi*28/83)/cos(Pi*29/66) 2584046398840123 m001 (Zeta(1/2)+2/3)/(BesselJZeros(0,1)+2/3) 2584046405935523 m001 exp(1/Pi)*GAMMA(23/24)+GAMMA(19/24) 2584046409022819 a007 Real Root Of 395*x^4+874*x^3+101*x^2+965*x-712 2584046429074411 m005 (1/4*2^(1/2)+1/5)/(4*gamma-1/6) 2584046440832119 m001 1/2*cos(1)^MasserGramainDelta*2^(2/3) 2584046451644930 l006 ln(7027/9099) 2584046460521272 m001 (3^(1/3))^Khinchin/MertensB2 2584046465119260 a007 Real Root Of -190*x^4-141*x^3+556*x^2-618*x+729 2584046468185818 b008 Zeta[E^2,13/3] 2584046479119351 m001 gamma(2)+Sierpinski+ZetaQ(3) 2584046487037487 m001 (ErdosBorwein-Paris)/(ln(5)-GAMMA(23/24)) 2584046492267566 a007 Real Root Of -185*x^4-224*x^3+495*x^2-639*x-573 2584046493351082 m001 HeathBrownMoroz*Rabbit-Sierpinski 2584046518040066 r009 Im(z^3+c),c=-29/66+5/39*I,n=17 2584046536596905 m005 (1/2*2^(1/2)+3/7)/(3/10*Catalan-5/7) 2584046536812048 m002 Pi^6*ProductLog[Pi]+Cosh[Pi]^2*Sinh[Pi] 2584046540749517 r005 Im(z^2+c),c=-13/29+27/59*I,n=49 2584046543225608 m001 Trott^2/ln(Bloch)*GAMMA(17/24)^2 2584046544498829 m001 Backhouse*Stephens+KhinchinHarmonic 2584046550086647 a007 Real Root Of 252*x^4+630*x^3-241*x^2-515*x-87 2584046564126185 r005 Im(z^2+c),c=-25/94+36/61*I,n=22 2584046580713253 r005 Re(z^2+c),c=-25/78+5/38*I,n=7 2584046581908417 s001 sum(1/10^(n-1)*A222112[n]/n!^2,n=1..infinity) 2584046596352878 m001 1/ln(GAMMA(7/24))*Rabbit^2*gamma 2584046601976820 a001 1364*(1/2*5^(1/2)+1/2)^19*3^(9/14) 2584046604700990 a003 sin(Pi*31/117)-sin(Pi*47/98) 2584046620892409 a003 cos(Pi*28/67)/sin(Pi*48/107) 2584046625327004 m001 (Kac+KomornikLoreti)/(Champernowne-Shi(1)) 2584046628127788 a007 Real Root Of -268*x^4-386*x^3+293*x^2-999*x+751 2584046646405682 m008 (3/5*Pi^2+3/5)/(5/6*Pi^3-3/5) 2584046649453331 r005 Im(z^2+c),c=-35/94+3/7*I,n=39 2584046658935432 r005 Im(z^2+c),c=-131/110+11/58*I,n=15 2584046662025343 a007 Real Root Of -29*x^4-713*x^3+915*x^2-655*x-293 2584046683558190 m001 exp(Catalan)*Riemann3rdZero^2*sqrt(1+sqrt(3)) 2584046685592056 a007 Real Root Of 863*x^4-359*x^3+289*x^2-614*x-188 2584046720362218 r009 Re(z^3+c),c=-37/94+19/43*I,n=48 2584046735218988 m008 (1/6*Pi^3+5)/(1/2*Pi^2-1) 2584046736244743 m005 (1/2*Zeta(3)+1/11)/(2/3*Pi+7/12) 2584046739063653 r002 5th iterates of z^2 + 2584046743493203 p001 sum((-1)^n/(114*n+37)/n/(256^n),n=0..infinity) 2584046743517640 a007 Real Root Of 205*x^4-812*x^3-2*x^2-709*x-198 2584046752191094 a001 1/54018521*76^(14/23) 2584046778301988 m001 ln(Riemann3rdZero)^2*Riemann2ndZero^2/sqrt(Pi) 2584046813256469 r005 Re(z^2+c),c=-27/94+13/44*I,n=27 2584046814695355 r005 Re(z^2+c),c=-3/8+19/49*I,n=5 2584046814729342 l006 ln(383/5075) 2584046822769346 h001 (7/8*exp(1)+2/9)/(1/8*exp(1)+2/3) 2584046826960247 r009 Re(z^3+c),c=-47/110+19/41*I,n=11 2584046827329170 h001 (-3*exp(3/2)-4)/(-5*exp(-3)+7) 2584046839343027 r005 Re(z^2+c),c=1/82+25/29*I,n=8 2584046853927307 a007 Real Root Of 908*x^4-612*x^3-694*x^2-910*x+288 2584046875932585 m001 (DuboisRaymond+Gompertz)/(PlouffeB+Sierpinski) 2584046876602036 a001 13/47*24476^(22/49) 2584046878538651 a001 13/47*7881196^(2/7) 2584046878538663 a001 13/47*1568397607^(3/14) 2584046879244765 a001 13/47*39603^(3/7) 2584046880375530 r005 Im(z^2+c),c=17/98+9/46*I,n=17 2584046890083738 r002 35th iterates of z^2 + 2584046894309096 m008 (1/3*Pi^5+2/5)/(2/5*Pi^4+2/3) 2584046911657917 r005 Im(z^2+c),c=-63/94+3/43*I,n=32 2584046919081929 a001 13/47*5778^(11/21) 2584046936845722 m002 1/36-Log[Pi]/4 2584046970169413 r009 Re(z^3+c),c=-1/26+47/64*I,n=41 2584046973415749 m001 gamma(3)^GolombDickman/StolarskyHarborth 2584046986855302 s002 sum(A238040[n]/(n^3*2^n-1),n=1..infinity) 2584047016089193 m001 (gamma(1)+Niven)/(PlouffeB-ThueMorse) 2584047020692040 h001 (-exp(5)+6)/(-8*exp(2)+4) 2584047030421533 a007 Real Root Of -364*x^4-952*x^3-425*x^2-863*x+411 2584047036477494 s002 sum(A099707[n]/(pi^n),n=1..infinity) 2584047052837758 r005 Im(z^2+c),c=-77/118+1/45*I,n=15 2584047063052221 m001 (Zeta(5)-exp(1/exp(1)))/(Landau+MertensB2) 2584047065304072 r002 54th iterates of z^2 + 2584047066480275 m001 (Pi+Si(Pi))*polylog(4,1/2) 2584047066480275 m001 polylog(4,1/2)*(Pi+Si(Pi)) 2584047073317674 l006 ln(762/10097) 2584047095160289 r005 Im(z^2+c),c=-6/31+17/46*I,n=13 2584047107495302 p003 LerchPhi(1/16,2,423/212) 2584047110113341 m002 -Pi^5+4*Cosh[Pi]*Coth[Pi]+ProductLog[Pi] 2584047142616842 h001 (10/11*exp(1)+5/9)/(1/12*exp(2)+5/9) 2584047167413803 a007 Real Root Of -386*x^4-735*x^3+339*x^2-621*x+660 2584047178786217 h001 (-9*exp(8)+9)/(-7*exp(5)+1) 2584047180075375 r005 Re(z^2+c),c=-3/50+35/53*I,n=22 2584047181002732 m001 (Khinchin+TreeGrowth2nd)/(ZetaP(3)-ZetaQ(2)) 2584047191162288 a001 13/47*2207^(33/56) 2584047196210390 r005 Im(z^2+c),c=1/11+14/57*I,n=14 2584047201329798 m001 cos(1/5*Pi)^ln(2^(1/2)+1)+Riemann3rdZero 2584047225059306 l006 ln(1421/1840) 2584047233360963 r005 Im(z^2+c),c=-14/31+7/18*I,n=13 2584047254514067 a001 29/121393*5^(2/41) 2584047255735647 r005 Im(z^2+c),c=-57/118+25/54*I,n=64 2584047269924284 m001 (Zeta(3)-LandauRamanujan)/(Niven-Trott) 2584047286901340 r002 7th iterates of z^2 + 2584047288105853 m001 (Ei(1,1)-gamma(2))/(Trott2nd+Thue) 2584047299172793 r009 Re(z^3+c),c=-2/31+26/35*I,n=53 2584047299891078 m001 1/ln(KhintchineLevy)^2*Cahen*Trott^2 2584047314267514 r009 Im(z^3+c),c=-13/24+6/25*I,n=39 2584047316177114 m005 (1/2*5^(1/2)-5/12)/(1/11*2^(1/2)+1/7) 2584047317050366 r005 Im(z^2+c),c=-67/118+12/25*I,n=24 2584047317534703 m002 -6+Pi^3+3/(Pi*Log[Pi]) 2584047334635103 l006 ln(379/5022) 2584047339634972 m001 ErdosBorwein^(Champernowne/ZetaQ(4)) 2584047350342547 m005 (1/3*gamma-3/5)/(1/3*3^(1/2)+1) 2584047359518528 r005 Im(z^2+c),c=-35/118+17/42*I,n=44 2584047361405636 a007 Real Root Of -28*x^4-695*x^3+737*x^2+25*x+855 2584047374255373 m001 (ln(2)/ln(10)+Psi(2,1/3))/(Artin+MadelungNaCl) 2584047405456535 a007 Real Root Of -25*x^4-639*x^3+168*x^2-313*x+719 2584047406875228 r005 Im(z^2+c),c=-49/54+1/45*I,n=6 2584047414791244 m001 (Niven+Weierstrass)/(ln(2)/ln(10)-ln(Pi)) 2584047444111879 a007 Real Root Of -243*x^4-862*x^3-486*x^2+157*x-388 2584047446684872 m005 (1/3*2^(1/2)-1/11)/(5/8*Catalan+9/10) 2584047446692050 m001 (gamma(3)+FellerTornier)/(Gompertz+TwinPrimes) 2584047447816158 a007 Real Root Of 141*x^4-4*x^3-766*x^2+183*x-768 2584047454041151 a007 Real Root Of 30*x^4+780*x^3+133*x^2+255*x+357 2584047462096242 q001 392/1517 2584047462096242 r005 Im(z^2+c),c=-55/82+28/37*I,n=2 2584047462636663 m001 gamma^(2^(1/3)/ZetaQ(2)) 2584047465965688 r002 64th iterates of z^2 + 2584047465968022 m001 (-LandauRamanujan+Rabbit)/(3^(1/2)+Artin) 2584047469821336 r005 Im(z^2+c),c=-29/28+14/53*I,n=16 2584047475039905 p003 LerchPhi(1/25,2,395/199) 2584047479356190 m001 ln(2^(1/2)+1)/ln(5)*Bloch 2584047482324181 r009 Re(z^3+c),c=-12/29+24/43*I,n=32 2584047497267049 m001 (FellerTornier+Totient)/(Chi(1)-DuboisRaymond) 2584047501866015 m001 Pi+2^(1/3)-BesselJ(0,1)/BesselK(0,1) 2584047503468332 m001 LandauRamanujan/(3^(1/2)+GAMMA(3/4)) 2584047503468332 m001 LandauRamanujan/(sqrt(3)+GAMMA(3/4)) 2584047512874139 a007 Real Root Of -289*x^4-489*x^3+862*x^2+551*x+116 2584047515057936 a007 Real Root Of 449*x^4+974*x^3-745*x^2-930*x-642 2584047516965651 m008 (3/4*Pi-1/4)/(5/6*Pi^4+1/3) 2584047517689410 m004 (20*Sqrt[5])/Pi+Sqrt[5]*Pi+5*Tan[Sqrt[5]*Pi] 2584047531187696 a001 121393/199*199^(3/11) 2584047533678449 r005 Im(z^2+c),c=-89/126+7/29*I,n=40 2584047537826194 m001 (Pi^(1/2)+MasserGramain)/(MertensB2-Paris) 2584047542898788 a007 Real Root Of -172*x^4-169*x^3+692*x^2+248*x+773 2584047553601472 m001 Landau*(AlladiGrinstead-GAMMA(17/24)) 2584047560568739 r005 Im(z^2+c),c=-77/118+1/48*I,n=11 2584047573445888 a003 sin(Pi*7/71)/cos(Pi*43/93) 2584047598725062 l006 ln(754/9991) 2584047599575872 a007 Real Root Of -771*x^4+743*x^3-584*x^2+773*x+255 2584047605999687 m001 (Shi(1)-ln(gamma)*TwinPrimes)/ln(gamma) 2584047606375329 m001 (HardyLittlewoodC5+Porter)/(Conway-gamma) 2584047628624330 m009 (1/3*Psi(1,1/3)-1/4)/(4*Psi(1,2/3)-1/5) 2584047637853637 r002 39th iterates of z^2 + 2584047638985216 r005 Im(z^2+c),c=-17/82+17/38*I,n=5 2584047642046762 a001 89/4870847*2^(1/2) 2584047649324145 m001 1/GAMMA(5/6)^2/ArtinRank2*exp(exp(1))^2 2584047652384398 m001 (Artin+Weierstrass)/(BesselI(0,1)+Zeta(1,2)) 2584047660191035 m001 Niven^OneNinth/HardyLittlewoodC5 2584047663773362 a007 Real Root Of -274*x^4-619*x^3+533*x^2+611*x-444 2584047670975149 r005 Re(z^2+c),c=13/58+3/35*I,n=10 2584047679234453 m003 -3+(9*Tanh[1/2+Sqrt[5]/2])/20 2584047685546875 r005 Im(z^2+c),c=-71/50+19/64*I,n=3 2584047686143407 a001 514229/843*123^(3/10) 2584047686859561 r005 Re(z^2+c),c=7/32+24/47*I,n=39 2584047693946585 m001 (Shi(1)-cos(1))/(exp(1/Pi)+Kac) 2584047699250402 m001 (Zeta(1/2)-Pi^(1/2))/(Champernowne+ZetaQ(4)) 2584047729699807 l004 Ssi(283/80) 2584047738244872 a007 Real Root Of -325*x^4-404*x^3+877*x^2-729*x-220 2584047739985544 m005 (1/2*gamma-8/9)/(2/7*2^(1/2)-7/11) 2584047741583031 m001 BesselI(1,1)^Psi(2,1/3)/Pi^(1/2) 2584047748475551 r005 Re(z^2+c),c=-5/31+18/31*I,n=40 2584047755112965 m001 (2^(1/3)+Ei(1))/(-Zeta(1,-1)+GAMMA(11/12)) 2584047761255315 m009 (6*Catalan+3/4*Pi^2-3/5)/(24*Catalan+3*Pi^2-4) 2584047762051024 s001 sum(exp(-2*Pi/5)^n*A006034[n],n=1..infinity) 2584047762051024 s002 sum(A006034[n]/(exp(2/5*pi*n)),n=1..infinity) 2584047788240105 a001 3571*(1/2*5^(1/2)+1/2)^17*3^(9/14) 2584047789553850 m001 (3^(1/2))^(FibonacciFactorial/Rabbit) 2584047790437193 a007 Real Root Of 108*x^4+140*x^3-119*x^2+495*x-326 2584047809248097 r005 Im(z^2+c),c=-35/38+13/56*I,n=64 2584047823080248 r005 Im(z^2+c),c=-17/42+6/13*I,n=22 2584047830451497 a007 Real Root Of -27*x^4-683*x^3+369*x^2-276*x-6 2584047831342202 a007 Real Root Of -340*x^4-788*x^3-53*x^2-806*x-166 2584047838573780 m005 (1/2*exp(1)-6/11)/(4/9*gamma-4/7) 2584047841435291 a007 Real Root Of -424*x^4-636*x^3+689*x^2-983*x+790 2584047847516011 m001 exp(Kolakoski)^2*Cahen^2*GAMMA(5/6)^2 2584047856094423 r009 Re(z^3+c),c=-6/23+35/59*I,n=3 2584047856172474 m001 (exp(1)+Magata)/(-Mills+Riemann3rdZero) 2584047857166748 r005 Re(z^2+c),c=-2/25+23/37*I,n=51 2584047865631909 l006 ln(375/4969) 2584047867824118 m001 (5^(1/2)+Chi(1))/(-Grothendieck+Lehmer) 2584047883622278 a001 5374978561/72*1836311903^(12/17) 2584047883622280 a001 16692641/72*6557470319842^(12/17) 2584047883623657 a001 1730726404001/72*514229^(12/17) 2584047886157257 r002 3th iterates of z^2 + 2584047893516823 p004 log(31583/24391) 2584047895263457 m001 (Zeta(5)-Trott2nd)/(Pi+BesselJ(0,1)) 2584047896894351 r009 Re(z^3+c),c=-5/22+17/23*I,n=8 2584047905957387 r005 Re(z^2+c),c=-13/38+2/55*I,n=4 2584047923628005 r009 Re(z^3+c),c=-7/27+23/24*I,n=17 2584047926397388 r009 Im(z^3+c),c=-11/34+4/19*I,n=11 2584047959875917 m001 (Chi(1)-GAMMA(13/24))/(Salem+Tetranacci) 2584047961313586 a001 9349*(1/2*5^(1/2)+1/2)^15*3^(9/14) 2584047962741486 a007 Real Root Of -485*x^4-960*x^3+818*x^2-96*x-650 2584047973206805 r005 Im(z^2+c),c=-19/56+18/43*I,n=54 2584047980159849 v002 sum(1/(2^n*(22*n^2-9*n+10)),n=1..infinity) 2584047981640999 m005 (1/3*Zeta(3)+1/5)/(10/11*3^(1/2)+3/4) 2584047981676653 l006 ln(7183/9301) 2584047984381980 m001 exp(1)/exp(1/exp(1))/gamma(1) 2584047986564666 a001 24476*(1/2*5^(1/2)+1/2)^13*3^(9/14) 2584047990248749 a001 64079*(1/2*5^(1/2)+1/2)^11*3^(9/14) 2584047990878082 a001 12752043*3^(9/14) 2584047992525638 a001 39603*(1/2*5^(1/2)+1/2)^12*3^(9/14) 2584047993803636 m001 (cos(1/12*Pi)-exp(1))/(GolombDickman+ZetaQ(2)) 2584048002170692 a001 15127*(1/2*5^(1/2)+1/2)^14*3^(9/14) 2584048003920907 r005 Im(z^2+c),c=-61/102+1/21*I,n=55 2584048016189976 r009 Im(z^3+c),c=-27/118+14/57*I,n=7 2584048017390695 r009 Im(z^3+c),c=-21/82+14/59*I,n=7 2584048019318501 a001 34/64079*7^(48/59) 2584048023728949 m001 (2^(1/2))^Khinchin*(2^(1/2))^ZetaQ(2) 2584048024140754 a007 Real Root Of 577*x^4+406*x^3+164*x^2-985*x+234 2584048025116177 m001 KhinchinLevy/(GaussKuzminWirsing^Sierpinski) 2584048034557558 m005 (21/4+1/4*5^(1/2))/(1/2*exp(1)+8/9) 2584048047202537 m001 (MinimumGamma+ZetaP(4))/(Bloch+Champernowne) 2584048048508236 a001 8/29*123^(50/53) 2584048052428884 m005 (exp(1)+3/5)/(5*exp(1)-3/4) 2584048064031838 a007 Real Root Of -694*x^4-284*x^3+473*x^2+671*x+140 2584048068017062 m001 (Trott-ZetaP(4))/(PlouffeB+Riemann3rdZero) 2584048068278879 a001 5778*(1/2*5^(1/2)+1/2)^16*3^(9/14) 2584048072359212 m005 (1/2*Pi-1/3)/(4/5*5^(1/2)+3) 2584048076825413 m001 GAMMA(19/24)^2*exp(MinimumGamma)^2*Zeta(7) 2584048080605396 m001 (MertensB2-sin(1))/RenyiParking 2584048081746069 s001 sum(exp(-4*Pi/5)^n*A193123[n],n=1..infinity) 2584048084127755 m001 LambertW(1)^2/Khintchine^2/ln(sin(1)) 2584048085403899 r002 33th iterates of z^2 + 2584048086637133 r002 3th iterates of z^2 + 2584048111685958 m001 (cos(1)+ln(gamma))/(-ln(3)+Backhouse) 2584048124515334 m001 (KhinchinLevy-Mills)/arctan(1/2) 2584048128357177 a001 2/3*89^(22/27) 2584048133610496 r005 Im(z^2+c),c=-13/18+1/73*I,n=23 2584048135400956 l006 ln(746/9885) 2584048151526295 m005 (-1/3+1/6*5^(1/2))/(2/7*Pi+5/8) 2584048160643059 r005 Im(z^2+c),c=-14/31+29/61*I,n=19 2584048168270405 l006 ln(5762/7461) 2584048178039049 m001 (ln(2)-gamma(1))/(GAMMA(5/6)-FeigenbaumB) 2584048190397582 m005 (1/2*Catalan+5)/(6/7*2^(1/2)+9/10) 2584048193697160 m005 (1/2*5^(1/2)-5/12)/(7/9*exp(1)+3/5) 2584048198426182 m001 (2^(1/2)+cos(1))/(-GAMMA(23/24)+Grothendieck) 2584048206368440 m005 (1/2*Pi+1)/(2/7*3^(1/2)+1/2) 2584048209091818 r005 Re(z^2+c),c=-61/86+17/61*I,n=46 2584048218448292 m001 (Stephens+Thue)/(ln(3)-Landau) 2584048225565812 m001 Ei(1,1)-(Pi*csc(7/24*Pi)/GAMMA(17/24))^Catalan 2584048237169840 r002 5th iterates of z^2 + 2584048237728646 m001 1/exp(LaplaceLimit)^2*DuboisRaymond*sqrt(5)^2 2584048247749219 r002 23th iterates of z^2 + 2584048250157968 a003 sin(Pi*3/53)/cos(Pi*13/50) 2584048253477189 m008 (2/3*Pi^4-3/5)/(1/3*Pi^2-4/5) 2584048262861192 r005 Re(z^2+c),c=-23/114+31/59*I,n=28 2584048266086966 m001 ln(Niven)*MertensB1^2*sin(1)^2 2584048270398883 a007 Real Root Of 65*x^4+268*x^3+542*x^2+488*x-632 2584048276777777 p001 sum(1/(499*n+394)/(25^n),n=0..infinity) 2584048282698616 g001 Psi(3/10,64/81) 2584048291412565 r005 Re(z^2+c),c=-8/31+39/64*I,n=62 2584048298508166 r005 Im(z^2+c),c=-5/9-33/73*I,n=60 2584048299265978 r005 Im(z^2+c),c=-31/118+24/61*I,n=23 2584048300221942 m002 -3/(5*ProductLog[Pi])+Pi^5*Sech[Pi] 2584048306055332 r005 Re(z^2+c),c=-19/94+18/31*I,n=38 2584048314530590 a007 Real Root Of -450*x^4-715*x^3+845*x^2-501*x+790 2584048324036701 m001 cosh(1)*(2^(1/3)+PrimesInBinary) 2584048332705609 a007 Real Root Of -58*x^4-40*x^3+32*x^2-805*x-398 2584048351435647 m001 3^(1/2)*FeigenbaumC-sin(1/5*Pi) 2584048361001615 m001 exp(GAMMA(5/24))*PrimesInBinary^2/cos(1) 2584048370178362 m001 GlaisherKinkelin/(Zeta(1,-1)+Robbin) 2584048383337889 m002 -(E^Pi/Pi^5)-Pi^3+6/Log[Pi] 2584048384429711 m001 (ThueMorse-ZetaQ(3))/(cos(1/12*Pi)+Gompertz) 2584048403855510 r005 Im(z^2+c),c=-35/114+26/63*I,n=18 2584048406476664 m001 (GAMMA(5/6)-GaussAGM)/(LaplaceLimit+PlouffeB) 2584048408078490 l006 ln(371/4916) 2584048422194518 r005 Im(z^2+c),c=-7/8+46/233*I,n=46 2584048426520172 m001 (ln(5)*KomornikLoreti+GlaisherKinkelin)/ln(5) 2584048463558861 m001 (GAMMA(5/6)-Pi^(1/2))/(DuboisRaymond-Khinchin) 2584048469657263 r002 40th iterates of z^2 + 2584048470412808 m005 (1/2*Catalan-9/10)/(7/8*Catalan+10/11) 2584048477024814 l006 ln(4341/5621) 2584048485259572 a007 Real Root Of -281*x^4-728*x^3+386*x^2+820*x-491 2584048487769261 r005 Im(z^2+c),c=-7/10+18/241*I,n=49 2584048492867497 r002 7i'th iterates of 2*x/(1-x^2) of 2584048498530076 r009 Im(z^3+c),c=-4/11+7/37*I,n=16 2584048505304212 l006 ln(6838/7017) 2584048505417092 r005 Re(z^2+c),c=-37/118+9/55*I,n=16 2584048513977609 r002 41th iterates of z^2 + 2584048516545764 a007 Real Root Of -74*x^4+x^3+186*x^2-472*x+855 2584048517587729 r005 Re(z^2+c),c=15/46+15/41*I,n=51 2584048517853762 a001 199/89*377^(1/41) 2584048521391135 a001 2207*(1/2*5^(1/2)+1/2)^18*3^(9/14) 2584048521496846 r002 4th iterates of z^2 + 2584048532131368 m001 (Gompertz+ZetaP(2))/(exp(1/Pi)+FeigenbaumD) 2584048550709211 r005 Im(z^2+c),c=-59/60+1/40*I,n=12 2584048557185969 m001 (Niven+Porter)/(BesselK(1,1)+Kac) 2584048565583147 b008 1/4+(8+Sqrt[2])*E 2584048571583093 h001 (1/7*exp(2)+7/10)/(5/6*exp(2)+7/11) 2584048572042810 a007 Real Root Of 246*x^4+510*x^3-542*x^2-876*x-813 2584048581894272 r005 Im(z^2+c),c=-17/44+13/30*I,n=56 2584048591660848 m009 (3/8*Pi^2+4/5)/(Psi(1,3/4)-4/5) 2584048595664090 r005 Im(z^2+c),c=-129/110+9/31*I,n=21 2584048605741258 m001 MadelungNaCl^Tribonacci-exp(-1/2*Pi) 2584048612880432 a001 4/3*46368^(25/51) 2584048618552352 a007 Real Root Of 586*x^4-383*x^3-195*x^2-236*x+78 2584048619074222 a003 cos(Pi*20/103)/cos(Pi*29/73) 2584048637851995 m009 (1/6*Psi(1,1/3)+2)/(6*Psi(1,3/4)-1) 2584048642758917 r009 Re(z^3+c),c=-11/31+21/58*I,n=16 2584048659229453 a003 cos(Pi*40/97)-cos(Pi*58/117) 2584048664499441 r005 Re(z^2+c),c=-5/22+7/13*I,n=23 2584048675381158 a001 38*514229^(11/13) 2584048676125248 a007 Real Root Of 369*x^4+913*x^3+17*x^2+203*x-288 2584048681719199 m005 (1/3*exp(1)+3/5)/(2*2^(1/2)+3) 2584048683711802 l006 ln(738/9779) 2584048686346175 a007 Real Root Of -519*x^4-930*x^3+558*x^2-931*x+962 2584048691802326 r005 Re(z^2+c),c=37/118+2/15*I,n=14 2584048693538966 m001 (ln(5)+ZetaP(4))/(Zeta(3)+ln(gamma)) 2584048699018984 r005 Im(z^2+c),c=-49/82+11/32*I,n=21 2584048701021140 m001 (-Mills+ReciprocalFibonacci)/(Shi(1)-Si(Pi)) 2584048707416942 m001 (Otter+ReciprocalFibonacci)/(Pi-ArtinRank2) 2584048711967158 r005 Im(z^2+c),c=-53/114+31/63*I,n=39 2584048714789299 r009 Re(z^3+c),c=-5/12+10/27*I,n=6 2584048722038290 l006 ln(7261/9402) 2584048723514207 s001 sum(exp(-Pi/4)^(n-1)*A001548[n],n=1..infinity) 2584048737458057 m006 (4*Pi+1/4)/(5*Pi^2+1/4) 2584048737458057 m008 (4*Pi+1/4)/(5*Pi^2+1/4) 2584048740256658 m006 (3/4*Pi^2-5)/(4*exp(Pi)+2/5) 2584048743739021 p003 LerchPhi(1/512,6,139/239) 2584048749807886 g006 -Psi(1,1/12)-Psi(1,6/11)-Psi(1,1/9)-Psi(1,1/5) 2584048759713723 a001 1/55*55^(5/57) 2584048759739582 b008 ArcCsch[3*(1+Csch[2])] 2584048762603052 r005 Re(z^2+c),c=-5/19+17/45*I,n=29 2584048781768536 r005 Re(z^2+c),c=-2/3+35/184*I,n=2 2584048802899148 r009 Re(z^3+c),c=-7/32+43/58*I,n=10 2584048826507742 p004 log(13183/10181) 2584048850618152 m005 (1/3*exp(1)+1/6)/(3/5*2^(1/2)-5) 2584048853802491 a007 Real Root Of -829*x^4+495*x^3+934*x^2+897*x-299 2584048855350480 r002 5th iterates of z^2 + 2584048861999807 a001 1364/987*55^(19/26) 2584048865253146 a008 Real Root of x^4+7*x^2-8*x-112 2584048869760155 h001 (10/11*exp(2)+1/5)/(8/11*exp(1)+7/10) 2584048874870056 m005 (1/2*3^(1/2)+3/11)/(2/5*2^(1/2)-1/8) 2584048876771001 m001 Paris^(1/5*5^(1/2)*Mills) 2584048883477535 a007 Real Root Of 332*x^4+468*x^3-846*x^2+251*x-430 2584048885431221 r009 Im(z^3+c),c=-2/11+9/35*I,n=10 2584048894887281 h001 (-7*exp(6)-2)/(-exp(7)+3) 2584048895496109 r005 Im(z^2+c),c=1/11+14/57*I,n=19 2584048897424083 m001 1/GAMMA(1/4)/ln(Niven)*sqrt(5)^2 2584048909969049 m001 (GAMMA(7/12)+TwinPrimes)/(2^(1/2)-LambertW(1)) 2584048919600139 m005 (1/2*exp(1)-1/11)/(1/11*3^(1/2)+1/3) 2584048919809445 p004 log(35281/34381) 2584048924253210 r005 Re(z^2+c),c=11/30+16/57*I,n=63 2584048943093768 m005 (1/3*gamma+1/11)/(3/7*Pi-1/4) 2584048946033052 a008 Real Root of (10+14*x-9*x^2-5*x^3) 2584048955339665 a001 1364/7778742049*3^(6/17) 2584048958644299 h001 (7/12*exp(2)+5/7)/(2/5*exp(1)+6/7) 2584048962349215 l006 ln(367/4863) 2584048990502861 r005 Re(z^2+c),c=-9/7+53/67*I,n=2 2584048990809249 p004 log(35869/27701) 2584048994377215 a003 cos(Pi*5/83)*sin(Pi*5/59) 2584049002010825 h001 (1/8*exp(2)+2/5)/(4/7*exp(2)+9/10) 2584049021152194 m001 (ln(2)+Khinchin)/(Landau+LandauRamanujan) 2584049025432802 m001 (5^(1/2)-BesselI(1,1))/(Bloch+ZetaP(3)) 2584049028049295 m001 GAMMA(19/24)/exp(Pi)/ReciprocalLucas 2584049037677813 a003 sin(Pi*8/91)-sin(Pi*18/101) 2584049041305866 r005 Im(z^2+c),c=-51/118+20/41*I,n=35 2584049042385224 m001 (exp(1/exp(1))+BesselI(1,2))/(Salem-ZetaQ(4)) 2584049049381931 h001 (-4*exp(8)-7)/(-2*exp(3)-6) 2584049050786942 a007 Real Root Of -181*x^4-368*x^3-33*x^2-950*x-514 2584049056677474 m005 (3/5*Pi+3/5)/(1/5*Pi+1/3) 2584049056677474 m006 (3/5*Pi+3/5)/(1/5*Pi+1/3) 2584049056677474 m008 (3/5*Pi+3/5)/(1/5*Pi+1/3) 2584049057811188 r005 Re(z^2+c),c=-37/48+3/32*I,n=38 2584049062460404 m001 (Si(Pi)*ErdosBorwein+Salem)/ErdosBorwein 2584049066842453 r005 Re(z^2+c),c=-9/8+44/195*I,n=28 2584049072246409 m001 sqrt(3)^2*FibonacciFactorial^2*ln(sqrt(Pi)) 2584049074235856 a002 12^(3/10)+14^(6/5) 2584049079754601 q001 1053/4075 2584049086286054 l006 ln(2920/3781) 2584049086700042 r009 Re(z^3+c),c=-7/19+20/49*I,n=10 2584049096229076 r009 Re(z^3+c),c=-27/110+3/50*I,n=9 2584049097937577 m001 LandauRamanujan2nd/(2^(1/2)+Chi(1)) 2584049102504174 m001 (-cos(1/12*Pi)+gamma(2))/(exp(1)+Shi(1)) 2584049104562043 m001 Trott/ln(RenyiParking)/(3^(1/3)) 2584049106437992 m005 (1/2*exp(1)+4/9)/(1/9*exp(1)-1) 2584049119104703 r005 Im(z^2+c),c=-6/5+23/119*I,n=37 2584049120402829 a007 Real Root Of 416*x^4+983*x^3-403*x^2-567*x-361 2584049120722238 a007 Real Root Of 289*x^4+640*x^3-537*x^2-495*x+464 2584049128808855 r002 6th iterates of z^2 + 2584049141797131 r009 Im(z^3+c),c=-7/13+6/43*I,n=32 2584049172209925 r002 37th iterates of z^2 + 2584049183461042 m001 exp(1/Pi)+GAMMA(5/12)*GAMMA(1/12) 2584049186589821 m002 -4-5*E^(2*Pi)+Pi^4 2584049190181940 m001 Conway-GAMMA(23/24)^(3^(1/2)) 2584049191484492 a007 Real Root Of -269*x^4-752*x^3+57*x^2+901*x+966 2584049192678223 p004 log(32189/24859) 2584049242357166 a003 -cos(1/7*Pi)-2^(1/2)-1/2*3^(1/2)+cos(8/27*Pi) 2584049244040110 l006 ln(730/9673) 2584049246680984 r005 Im(z^2+c),c=-37/44+2/11*I,n=42 2584049252043241 m005 (1/2*exp(1)-3/8)/(1/7*Catalan+1/4) 2584049254736189 m002 2+E^Pi-Cosh[Pi]/Pi^3+ProductLog[Pi] 2584049258571672 a007 Real Root Of -157*x^4-86*x^3+703*x^2-173*x+375 2584049264214769 a005 (1/cos(3/74*Pi))^683 2584049303138534 m008 (5*Pi^5+5/6)/(3/5*Pi^4+4/5) 2584049303404363 m001 cos(1)/(exp(1/exp(1))+MasserGramain) 2584049307477686 r009 Re(z^3+c),c=-23/54+31/57*I,n=54 2584049308711697 a007 Real Root Of 546*x^4+996*x^3-889*x^2+614*x+364 2584049316860701 m001 RenyiParking^2/exp(Magata)^2*BesselK(0,1) 2584049320809981 r005 Im(z^2+c),c=-17/56+11/26*I,n=13 2584049324956485 m001 Artin-ThueMorse^polylog(4,1/2) 2584049327400151 a001 13/47*843^(33/49) 2584049339703268 m001 (Salem+ZetaQ(2))/(cos(1/5*Pi)-GAMMA(17/24)) 2584049341734085 a007 Real Root Of 359*x^4+896*x^3-253*x^2-599*x-405 2584049345622435 m001 GolombDickman^2*ln(Bloch)^2*sinh(1) 2584049371270732 m001 (ArtinRank2+MinimumGamma)/(ln(2)-GAMMA(7/12)) 2584049378121168 a007 Real Root Of -357*x^4-711*x^3+417*x^2-678*x-887 2584049399742896 r009 Re(z^3+c),c=-27/110+3/50*I,n=10 2584049406593752 r005 Re(z^2+c),c=21/74+21/50*I,n=7 2584049416828265 s002 sum(A042506[n]/(n^2*10^n+1),n=1..infinity) 2584049418120105 a008 Real Root of (-3-6*x+x^2-6*x^3+5*x^4+3*x^5) 2584049421086793 m005 (1/3*3^(1/2)-1/6)/(6*exp(1)-5/12) 2584049427445475 s002 sum(A261048[n]/(n!^2),n=1..infinity) 2584049429677959 r005 Re(z^2+c),c=-37/54+11/35*I,n=56 2584049429783534 a007 Real Root Of 82*x^4+326*x^3+321*x^2-59*x-327 2584049441559801 r005 Im(z^2+c),c=29/98+1/13*I,n=33 2584049446662524 l006 ln(7339/9503) 2584049459652636 r005 Re(z^2+c),c=-13/29+2/19*I,n=2 2584049463631702 a007 Real Root Of 91*x^4-508*x^3+182*x^2-719*x+182 2584049464177886 m001 cos(1/5*Pi)+GAMMA(5/6)+MasserGramain 2584049467795716 a007 Real Root Of 367*x^4-799*x^3-523*x^2-735*x+237 2584049482076801 m001 BesselI(1,1)*ZetaQ(4)-Sierpinski 2584049483423692 r005 Im(z^2+c),c=-3/5+35/92*I,n=61 2584049486324301 h005 exp(sin(Pi*2/19)/cos(Pi*7/18)) 2584049491535044 m001 (Pi^(1/2)-Champernowne)/(Gompertz-TwinPrimes) 2584049497017571 r005 Im(z^2+c),c=-59/70+7/43*I,n=9 2584049497614615 a001 312119004989/3*8^(7/16) 2584049506449697 m005 (1/2*Catalan+6/11)/(1/9*2^(1/2)-6/11) 2584049508399950 m001 1/GAMMA(5/24)^2*(3^(1/3))*exp(sqrt(Pi))^2 2584049516639246 r005 Im(z^2+c),c=-27/110+19/49*I,n=19 2584049528834956 l006 ln(363/4810) 2584049529120578 r009 Im(z^3+c),c=-7/20+16/21*I,n=8 2584049532972938 r009 Re(z^3+c),c=-27/110+3/50*I,n=11 2584049533822299 m005 (1/2*2^(1/2)-4/5)/(2/5*3^(1/2)-1/3) 2584049539343601 m001 (LandauRamanujan+GAMMA(1/24))/Zeta(1,2) 2584049549860823 m001 ThueMorse^CopelandErdos+Pi^(1/2) 2584049558049493 r009 Re(z^3+c),c=-27/110+3/50*I,n=8 2584049565161400 a005 (1/cos(9/122*Pi))^120 2584049565445970 m001 (Psi(2,1/3)+Si(Pi))/(Paris+ReciprocalLucas) 2584049567517945 r005 Im(z^2+c),c=15/46+4/37*I,n=3 2584049567622810 r009 Re(z^3+c),c=-27/110+3/50*I,n=12 2584049569880194 m001 (Sarnak-StronglyCareFree)/(FeigenbaumD-Robbin) 2584049574078339 r009 Re(z^3+c),c=-27/110+3/50*I,n=13 2584049574719882 r009 Re(z^3+c),c=-27/110+3/50*I,n=20 2584049574719893 r009 Re(z^3+c),c=-27/110+3/50*I,n=21 2584049574719899 r009 Re(z^3+c),c=-27/110+3/50*I,n=22 2584049574719901 r009 Re(z^3+c),c=-27/110+3/50*I,n=23 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=24 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=31 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=32 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=33 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=34 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=35 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=42 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=43 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=44 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=45 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=46 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=47 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=54 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=53 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=55 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=56 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=57 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=58 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=62 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=63 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=64 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=60 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=61 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=59 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=52 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=51 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=50 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=49 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=48 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=41 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=40 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=39 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=36 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=38 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=37 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=30 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=29 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=28 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=27 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=25 2584049574719902 r009 Re(z^3+c),c=-27/110+3/50*I,n=26 2584049574719923 r009 Re(z^3+c),c=-27/110+3/50*I,n=19 2584049574720488 r009 Re(z^3+c),c=-27/110+3/50*I,n=18 2584049574724030 r009 Re(z^3+c),c=-27/110+3/50*I,n=17 2584049574739646 r009 Re(z^3+c),c=-27/110+3/50*I,n=16 2584049574786271 r009 Re(z^3+c),c=-27/110+3/50*I,n=15 2584049574818359 r009 Re(z^3+c),c=-27/110+3/50*I,n=14 2584049575935394 r005 Im(z^2+c),c=-9/14+103/227*I,n=22 2584049587592381 m005 (1/2*exp(1)-5)/(3/7*3^(1/2)+2/3) 2584049595151501 a001 3571/2584*55^(19/26) 2584049595991122 m001 1/TwinPrimes^2/Bloch*ln(sin(Pi/5)) 2584049600556327 a007 Real Root Of 132*x^4-98*x^3-925*x^2+599*x+148 2584049606800995 m001 KhintchineHarmonic*Artin*exp(Tribonacci)^2 2584049606883703 r005 Re(z^2+c),c=-15/58+13/22*I,n=25 2584049615237134 m008 (2*Pi^3-3/4)/(1/2*Pi+4/5) 2584049619158225 v003 sum((2*n^3-7*n^2+13*n+10)/n^n,n=1..infinity) 2584049619799605 m001 (-FeigenbaumAlpha+FeigenbaumC)/(1-2^(1/3)) 2584049632045044 m008 (1/3*Pi^6-4)/(4*Pi^5+3/5) 2584049635169645 a007 Real Root Of 383*x^4+995*x^3+30*x^2+68*x+67 2584049638554828 a007 Real Root Of 423*x^4+598*x^3-646*x^2-960*x+279 2584049648083873 m001 (GAMMA(13/24)-Kac)/(Sierpinski+Totient) 2584049653121952 a001 5778/13*89^(20/51) 2584049656224471 m001 5^(1/2)/(3^(1/3)-Psi(1,1/3)) 2584049657606247 b008 2+Sqrt[Pi]*Tan[Pi^(-1)] 2584049661863895 m002 -4/3-2*E^Pi+Pi^5 2584049662126590 m001 1/RenyiParking/ln(FeigenbaumC)^2/sqrt(2) 2584049662582930 r009 Im(z^3+c),c=-2/11+9/35*I,n=12 2584049663136395 r009 Im(z^3+c),c=-13/25+13/28*I,n=37 2584049669066166 m001 TreeGrowth2nd^Zeta(1/2)*KhinchinLevy^Zeta(1/2) 2584049676831100 m001 1/Zeta(7)^2/Zeta(1/2)/ln(sinh(1))^2 2584049682528999 b008 2/9+7*CosIntegral[1] 2584049683423238 m001 Salem^2*CareFree^2/exp(GAMMA(13/24))^2 2584049684793156 l006 ln(4419/5722) 2584049690301133 s002 sum(A021498[n]/((pi^n+1)/n),n=1..infinity) 2584049696857856 s001 sum(exp(-3*Pi/5)^n*A063617[n],n=1..infinity) 2584049700747614 m005 (1/2*2^(1/2)+6/7)/(1/8*2^(1/2)+3/7) 2584049702116870 a001 9349/6765*55^(19/26) 2584049704527029 m007 (-3*gamma-6*ln(2)+1/2)/(-5*gamma+4/5) 2584049707768703 r005 Im(z^2+c),c=-7/31+21/55*I,n=16 2584049710447349 r005 Im(z^2+c),c=-31/94+19/50*I,n=4 2584049713822011 p002 log(13^(9/10)+15^(3/7)) 2584049715183220 r002 12th iterates of z^2 + 2584049716856939 a001 7*39603^(45/58) 2584049717722906 a001 24476/17711*55^(19/26) 2584049719579184 r005 Re(z^2+c),c=-5/28+39/62*I,n=29 2584049719999796 a001 64079/46368*55^(19/26) 2584049721406992 a001 39603/28657*55^(19/26) 2584049725151425 r002 11th iterates of z^2 + 2584049727367967 a001 15127/10946*55^(19/26) 2584049733886021 h001 (6/7*exp(2)+10/11)/(7/10*exp(1)+9/10) 2584049735647558 m001 Riemann2ndZero/exp(Conway)*GAMMA(5/12)^2 2584049739342143 r009 Im(z^3+c),c=-2/11+9/35*I,n=13 2584049747328324 r005 Im(z^2+c),c=-7/18+23/53*I,n=49 2584049747972798 r005 Im(z^2+c),c=-19/34+53/123*I,n=43 2584049749358896 r005 Im(z^2+c),c=-59/60+1/40*I,n=11 2584049753127632 r005 Re(z^2+c),c=43/122+5/16*I,n=63 2584049755204383 s001 sum(exp(-Pi/2)^n*A284711[n],n=1..infinity) 2584049759218191 r009 Im(z^3+c),c=-2/11+9/35*I,n=15 2584049760412413 r009 Im(z^3+c),c=-2/11+9/35*I,n=16 2584049760894190 r009 Im(z^3+c),c=-2/11+9/35*I,n=18 2584049760910968 r009 Im(z^3+c),c=-2/11+9/35*I,n=19 2584049760922225 r009 Im(z^3+c),c=-2/11+9/35*I,n=21 2584049760922414 r009 Im(z^3+c),c=-2/11+9/35*I,n=22 2584049760922670 r009 Im(z^3+c),c=-2/11+9/35*I,n=24 2584049760922671 r009 Im(z^3+c),c=-2/11+9/35*I,n=25 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=28 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=27 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=31 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=30 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=34 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=37 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=40 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=43 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=46 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=49 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=52 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=55 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=58 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=61 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=64 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=62 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=63 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=59 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=60 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=57 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=56 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=54 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=53 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=51 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=50 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=48 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=47 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=45 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=44 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=42 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=41 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=39 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=38 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=36 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=33 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=35 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=32 2584049760922677 r009 Im(z^3+c),c=-2/11+9/35*I,n=29 2584049760922679 r009 Im(z^3+c),c=-2/11+9/35*I,n=26 2584049760922778 r009 Im(z^3+c),c=-2/11+9/35*I,n=23 2584049760927797 r009 Im(z^3+c),c=-2/11+9/35*I,n=20 2584049761180063 r009 Im(z^3+c),c=-2/11+9/35*I,n=17 2584049761358265 a007 Real Root Of -367*x^4-841*x^3+138*x^2-681*x-829 2584049768225100 a001 5778/4181*55^(19/26) 2584049771107732 m001 1/GAMMA(7/24)*GAMMA(1/24)^2/ln(Zeta(7))^2 2584049772908965 a007 Real Root Of 55*x^4-508*x^3+930*x^2-753*x+141 2584049773655063 r005 Im(z^2+c),c=-45/82+23/58*I,n=20 2584049773750192 r009 Im(z^3+c),c=-2/11+9/35*I,n=14 2584049780005427 m001 (MertensB1-Sarnak)/(BesselK(1,1)+KhinchinLevy) 2584049785262681 a007 Real Root Of 321*x^4+701*x^3-749*x^2-975*x+265 2584049788550998 r005 Re(z^2+c),c=-11/42+18/31*I,n=23 2584049788976022 a001 7*5778^(55/58) 2584049797307730 m001 (Ei(1)-arctan(1/3))/(ArtinRank2-Mills) 2584049798521237 m001 CopelandErdos^2/ln(Backhouse)*MadelungNaCl 2584049800744166 m009 (2*Psi(1,3/4)+3/5)/(4/3*Catalan+1/6*Pi^2-2/3) 2584049800898575 r002 23th iterates of z^2 + 2584049802141700 a001 4181/76*76^(8/9) 2584049806818015 r005 Re(z^2+c),c=-11/10+49/198*I,n=4 2584049816785341 l006 ln(722/9567) 2584049827308148 p002 log(14^(9/10)+3^(5/6)) 2584049830233584 r005 Im(z^2+c),c=-1/19+11/35*I,n=7 2584049837014666 r005 Re(z^2+c),c=-23/17+22/47*I,n=2 2584049848459965 m001 CareFree^2/ArtinRank2/ln(log(2+sqrt(3))) 2584049848631765 m001 exp(Porter)/Paris*sin(Pi/5) 2584049852542132 m005 (1/3*3^(1/2)-2/11)/(6/11*Zeta(3)+7/8) 2584049862320907 m001 1/sinh(1)*exp(LandauRamanujan)*sqrt(2) 2584049863300425 m001 (Niven-OneNinth)/((1+3^(1/2))^(1/2)-MertensB2) 2584049863572874 g007 Psi(2,10/11)+2*Psi(2,6/11)-Psi(2,7/8) 2584049866099582 a003 cos(Pi*12/85)-cos(Pi*18/65) 2584049872294564 m001 1/ln(LaplaceLimit)*Conway^2*Riemann3rdZero^2 2584049878279183 a007 Real Root Of -702*x^4+944*x^3-771*x^2+577*x+220 2584049883494998 a007 Real Root Of 508*x^4+840*x^3-887*x^2+653*x-546 2584049901798170 m001 (2^(1/3))^Ei(1)+MertensB2 2584049912022002 a007 Real Root Of -922*x^4-435*x^3+889*x^2+655*x-217 2584049912727196 m001 (Khinchin-ZetaP(4))/Psi(1,1/3) 2584049920997381 a007 Real Root Of 81*x^4+74*x^3+410*x^2-540*x-166 2584049921295030 m001 KhintchineLevy^2/exp(GlaisherKinkelin)*Robbin 2584049929038404 m001 (DuboisRaymond-KhinchinLevy)/(Pi+ArtinRank2) 2584049929039391 m001 (-FeigenbaumMu+Salem)/(FeigenbaumB-Psi(1,1/3)) 2584049945148895 a001 199*21^(16/19) 2584049961639842 m001 (Lehmer+Paris)/(RenyiParking+Tetranacci) 2584049963961692 a001 440719107401/48*1836311903^(10/17) 2584049963961692 a001 5374978561/72*6557470319842^(10/17) 2584049968170505 a007 Real Root Of 496*x^4+944*x^3-957*x^2-280*x-160 2584049977302679 m001 BesselJ(0,1)^2*ln(Robbin)^2*sin(Pi/12) 2584049978357964 m001 exp(Rabbit)/GaussAGM(1,1/sqrt(2))*OneNinth 2584049980102493 l006 ln(5918/7663) 2584049984219297 a001 21/29*141422324^(4/21) 2584049984219297 a001 21/29*73681302247^(1/7) 2584049984229317 a001 21/29*271443^(2/7) 2584049988413705 a001 21/29*15127^(13/35) 2584049990932788 a007 Real Root Of -402*x^4+802*x^3+561*x^2+505*x-180 2584049997262337 h001 (1/10*exp(1)+5/11)/(4/5*exp(1)+7/11) 2584049999395077 m001 GAMMA(3/4)*Zeta(1/2)-Kolakoski 2584050003323617 m005 (1/2*3^(1/2)-1/12)/(5*gamma+1/7) 2584050014253934 a007 Real Root Of -830*x^4-901*x^3+361*x^2+708*x+147 2584050021261981 a007 Real Root Of -493*x^4-913*x^3+510*x^2-730*x+936 2584050027914500 r005 Re(z^2+c),c=1/14+11/18*I,n=63 2584050031491990 r009 Im(z^3+c),c=-13/29+44/63*I,n=3 2584050032412357 r005 Im(z^2+c),c=1/56+13/46*I,n=8 2584050035496287 m001 ln(GAMMA(1/3))^2/Backhouse^2/sqrt(Pi) 2584050039093041 q001 661/2558 2584050048264037 a001 2207/1597*55^(19/26) 2584050049186803 r005 Re(z^2+c),c=4/13+13/27*I,n=10 2584050062098517 r005 Im(z^2+c),c=-49/122+15/34*I,n=35 2584050067908591 a001 1364/28657*8^(48/59) 2584050068471814 a007 Real Root Of 338*x^4+977*x^3-104*x^2-611*x+903 2584050074152062 m001 1/CareFree^2*exp(GolombDickman)^2/exp(1) 2584050074941977 h001 (-3*exp(4)-10)/(-3*exp(3)-7) 2584050078225709 m004 -2+Sqrt[5]*Pi-4*Cot[Sqrt[5]*Pi]^2 2584050079753513 m001 (ln(Pi)+sin(1/12*Pi))/(Cahen-KhinchinLevy) 2584050084841846 r005 Re(z^2+c),c=-29/102+18/61*I,n=6 2584050098562366 b008 Pi*EllipticPi[17,-4] 2584050102601683 r002 54th iterates of z^2 + 2584050103147156 r005 Re(z^2+c),c=-13/58+27/56*I,n=57 2584050106650116 m001 (GAMMA(3/4)+ln(Pi))/(MadelungNaCl-Tribonacci) 2584050107944002 l006 ln(359/4757) 2584050108790443 r009 Im(z^3+c),c=-9/74+13/49*I,n=2 2584050120938492 r005 Im(z^2+c),c=-5/7+1/64*I,n=43 2584050135160386 r002 13th iterates of z^2 + 2584050135743695 s001 sum(1/10^(n-1)*A248336[n]/n^n,n=1..infinity) 2584050137874523 a005 (1/sin(89/203*Pi))^295 2584050141604031 a001 3571/20365011074*3^(6/17) 2584050148475467 r005 Im(z^2+c),c=-69/118+5/12*I,n=7 2584050153841457 m005 (1/3*exp(1)+1/3)/(2/9*Catalan-5) 2584050156045857 l006 ln(7417/9604) 2584050157691704 m005 (1/2*5^(1/2)-5/7)/(5*Pi-1/12) 2584050165748240 r005 Im(z^2+c),c=5/42+14/59*I,n=5 2584050170016201 r009 Im(z^3+c),c=-13/90+14/53*I,n=8 2584050190470007 m001 1/Zeta(1,2)^2*exp(Kolakoski)^2*arctan(1/2) 2584050203976297 r002 55th iterates of z^2 + 2584050204474762 m001 (Ei(1)-arctan(1/2)*exp(sqrt(2)))/arctan(1/2) 2584050207089032 r005 Re(z^2+c),c=-53/122+23/64*I,n=5 2584050219796106 p004 log(21149/16333) 2584050221373014 a007 Real Root Of 893*x^4+885*x^3+904*x^2-824*x-262 2584050230529113 a001 21/29*2207^(13/28) 2584050236281088 r009 Re(z^3+c),c=-7/26+7/44*I,n=14 2584050249209020 a003 sin(Pi*9/110)/sin(Pi*27/61) 2584050251456220 r002 45th iterates of z^2 + 2584050268193380 r005 Im(z^2+c),c=-1/10+50/51*I,n=7 2584050278359731 m004 (-5*Pi)/4+(5*Pi)/(6*Log[Sqrt[5]*Pi]) 2584050278472359 r005 Re(z^2+c),c=-35/102+1/36*I,n=4 2584050284241187 r009 Re(z^3+c),c=-7/26+7/44*I,n=15 2584050289647344 r009 Re(z^3+c),c=-25/66+7/17*I,n=28 2584050297769486 a007 Real Root Of 331*x^4+744*x^3+49*x^2+892*x+57 2584050298627048 r002 3th iterates of z^2 + 2584050298924133 a008 Real Root of x^4-2*x^3-67*x^2+68*x+544 2584050302059397 r009 Re(z^3+c),c=-7/26+7/44*I,n=19 2584050302204493 r009 Re(z^3+c),c=-7/26+7/44*I,n=20 2584050302251669 r009 Re(z^3+c),c=-7/26+7/44*I,n=24 2584050302252105 r009 Re(z^3+c),c=-7/26+7/44*I,n=25 2584050302252228 r009 Re(z^3+c),c=-7/26+7/44*I,n=29 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=30 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=34 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=35 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=33 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=39 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=38 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=40 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=44 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=43 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=45 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=49 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=48 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=50 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=54 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=53 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=55 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=58 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=59 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=60 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=63 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=64 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=62 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=61 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=57 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=56 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=52 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=51 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=47 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=46 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=42 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=41 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=37 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=36 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=32 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=31 2584050302252230 r009 Re(z^3+c),c=-7/26+7/44*I,n=28 2584050302252248 r009 Re(z^3+c),c=-7/26+7/44*I,n=27 2584050302252260 r009 Re(z^3+c),c=-7/26+7/44*I,n=26 2584050302252468 r009 Re(z^3+c),c=-7/26+7/44*I,n=23 2584050302258558 r009 Re(z^3+c),c=-7/26+7/44*I,n=22 2584050302261890 r009 Re(z^3+c),c=-7/26+7/44*I,n=21 2584050302382002 r009 Re(z^3+c),c=-7/26+7/44*I,n=18 2584050304521155 r009 Re(z^3+c),c=-7/26+7/44*I,n=17 2584050305249204 r009 Re(z^3+c),c=-7/26+7/44*I,n=16 2584050314677669 a001 9349/53316291173*3^(6/17) 2584050328269845 a007 Real Root Of 16*x^4+430*x^3+405*x^2-598*x-288 2584050328598486 r005 Im(z^2+c),c=-10/27+25/58*I,n=18 2584050339664318 r005 Im(z^2+c),c=-9/52+23/64*I,n=10 2584050339928773 a001 24476/139583862445*3^(6/17) 2584050343612859 a001 64079/365435296162*3^(6/17) 2584050344150360 a001 167761/956722026041*3^(6/17) 2584050344228781 a001 439204/2504730781961*3^(6/17) 2584050344240222 a001 1149851/6557470319842*3^(6/17) 2584050344242923 a001 620166/3536736619241*3^(6/17) 2584050344247293 a001 710647/4052739537881*3^(6/17) 2584050344277247 a001 90481/516002918640*3^(6/17) 2584050344482554 a001 103682/591286729879*3^(6/17) 2584050345889750 a001 13201/75283811239*3^(6/17) 2584050352040298 m002 -3-Pi^6+Pi^5*Cosh[Pi]+ProductLog[Pi] 2584050355534813 a001 15127/86267571272*3^(6/17) 2584050358233643 m001 Niven/(HeathBrownMoroz^HardyLittlewoodC5) 2584050361196827 r005 Im(z^2+c),c=-10/23+33/62*I,n=45 2584050364241340 r009 Re(z^3+c),c=-7/26+7/44*I,n=13 2584050388032828 m002 4*E^Pi+5*Pi^5+Pi^6 2584050390989400 m005 (1/3*Zeta(3)+2/5)/(5/6*exp(1)+5/6) 2584050394758447 r009 Im(z^3+c),c=-2/11+9/35*I,n=11 2584050401079509 r002 5th iterates of z^2 + 2584050402364859 l006 ln(714/9461) 2584050405475931 m005 (1/2*5^(1/2)+5/8)/(1/3*5^(1/2)+6) 2584050407937450 m001 TwinPrimes*ln(DuboisRaymond)^2*Zeta(1/2) 2584050408862405 m001 BesselJ(1,1)*(ThueMorse+ZetaP(3)) 2584050411527022 r005 Im(z^2+c),c=15/52+2/23*I,n=62 2584050411862361 r002 8th iterates of z^2 + 2584050412077627 a003 cos(Pi*8/61)/cos(Pi*5/13) 2584050415319523 m002 -Pi^6+Pi^2*Log[Pi]+Pi^5*Sinh[Pi] 2584050421643061 a001 1926/10983760033*3^(6/17) 2584050440850774 r009 Re(z^3+c),c=-35/86+13/29*I,n=11 2584050443345409 m001 (-Lehmer+ZetaP(2))/(Psi(2,1/3)+Kolakoski) 2584050445915937 a007 Real Root Of -365*x^4-849*x^3+29*x^2-504*x+129 2584050452507293 m001 FeigenbaumB+Lehmer*Otter 2584050453408020 a007 Real Root Of -705*x^4+155*x^3-350*x^2+394*x+131 2584050458137230 r005 Re(z^2+c),c=-19/62+11/53*I,n=20 2584050468105874 m005 (1/2*Zeta(3)-5/6)/(1/7*Zeta(3)+8/11) 2584050471263892 r005 Im(z^2+c),c=17/46+14/47*I,n=6 2584050484120927 m001 GAMMA(5/12)*Si(Pi)^2/ln(sin(Pi/5))^2 2584050485548750 h001 (5/6*exp(2)+7/11)/(4/5*exp(1)+5/11) 2584050487638049 m001 1/exp(GAMMA(1/12))*Lehmer^2/GAMMA(19/24)^2 2584050499763562 a001 1/47*24476^(1/52) 2584050500043599 m001 (AlladiGrinstead-Mills)/(Robbin-Sierpinski) 2584050525634433 r005 Im(z^2+c),c=1/11+14/57*I,n=16 2584050532776728 l006 ln(7029/7213) 2584050542715815 m001 (Shi(1)+ln(gamma))/(Ei(1,1)+KhinchinHarmonic) 2584050543683954 r005 Im(z^2+c),c=-59/60+1/40*I,n=14 2584050545201831 b008 Sqrt[Csch[Glaisher]]/3 2584050558789704 r005 Re(z^2+c),c=-10/31+4/53*I,n=7 2584050559675666 a007 Real Root Of 254*x^4+457*x^3-660*x^2-153*x+572 2584050562574900 m001 (Pi+Psi(2,1/3))/(Chi(1)+GAMMA(19/24)) 2584050565302717 a007 Real Root Of 443*x^4+840*x^3-785*x^2+28*x+56 2584050566508279 r005 Im(z^2+c),c=-47/98+17/37*I,n=26 2584050567584763 m001 LandauRamanujan^2/exp(Si(Pi))^2/GAMMA(1/6) 2584050569012834 r002 60th iterates of z^2 + 2584050576031364 r009 Im(z^3+c),c=-9/32+59/61*I,n=4 2584050586402064 a007 Real Root Of 6*x^4-212*x^3-517*x^2+194*x+28 2584050587164679 a007 Real Root Of -269*x^4-528*x^3+264*x^2-816*x-988 2584050616447496 m001 HardHexagonsEntropy^GAMMA(19/24)*MadelungNaCl 2584050625550066 m001 (ln(gamma)+FransenRobinson)/(2^(1/2)-cos(1)) 2584050631426068 r005 Re(z^2+c),c=-31/98+39/64*I,n=9 2584050633389129 m005 (1/2*exp(1)+1/7)/(3/11*Zeta(3)-10/11) 2584050637133985 a007 Real Root Of 69*x^4-446*x^3+408*x^2+395*x+874 2584050639029236 b008 1/3-15/(2+Pi) 2584050640563040 a007 Real Root Of -922*x^4+728*x^3+13*x^2+291*x+91 2584050653071357 m009 (5/12*Pi^2+5/6)/(2*Pi^2-3/5) 2584050659574330 h001 (3/7*exp(1)+6/11)/(6/7*exp(2)+2/7) 2584050675101688 a007 Real Root Of 269*x^4+553*x^3-475*x^2-383*x-270 2584050679321224 r005 Re(z^2+c),c=-19/98+32/53*I,n=52 2584050690173427 m002 -4+Pi^3-(Sinh[Pi]*Tanh[Pi])/Pi^2 2584050692926682 a001 1/77*(1/2*5^(1/2)+1/2)^4*11^(4/9) 2584050699546960 m005 (2*Catalan-1/2)/(2*gamma+4) 2584050700103047 l006 ln(355/4704) 2584050705794020 r005 Re(z^2+c),c=-23/78+14/53*I,n=20 2584050709241587 r009 Re(z^3+c),c=-5/19+6/43*I,n=8 2584050715180593 r009 Re(z^3+c),c=-53/90+16/29*I,n=5 2584050724851395 m001 exp(GAMMA(1/12))^2*FeigenbaumKappa^2*Zeta(3)^2 2584050726211744 m001 1/GAMMA(3/4)^2*exp(FeigenbaumC)^2/Zeta(9)^2 2584050738715987 m005 (1/3*2^(1/2)+1/4)/(11/12*exp(1)+3/10) 2584050745137748 p001 sum((-1)^n/(609*n+370)/(8^n),n=0..infinity) 2584050757906517 r005 Im(z^2+c),c=-29/50+14/33*I,n=39 2584050764255739 m001 Bloch+(Pi^(1/2))^Mills 2584050768449224 m001 1/Riemann3rdZero/ln(Rabbit)^2/log(2+sqrt(3)) 2584050791818335 a001 1346269/2207*123^(3/10) 2584050791900386 r002 3th iterates of z^2 + 2584050793256807 m001 1/GAMMA(11/12)/OneNinth/exp(GAMMA(3/4)) 2584050811769336 r005 Im(z^2+c),c=-59/60+1/40*I,n=13 2584050812814313 a001 4/2178309*2584^(1/23) 2584050816179419 a001 2/1762289*165580141^(1/23) 2584050816179476 a001 4/5702887*10610209857723^(1/23) 2584050821132597 r002 22th iterates of z^2 + 2584050823964489 r005 Im(z^2+c),c=-5/12+27/61*I,n=54 2584050826910649 a007 Real Root Of 298*x^4-169*x^3+983*x^2+224*x-12 2584050829448260 m001 MertensB2-sin(1/12*Pi)-ReciprocalFibonacci 2584050832442986 m005 (1/2*exp(1)-5/8)/(3/8*Zeta(3)-1/6) 2584050833921776 a007 Real Root Of 444*x^4+978*x^3-507*x^2+156*x+867 2584050850664125 l006 ln(1499/1941) 2584050855253250 m001 1/Salem^2/Rabbit^2*ln(GAMMA(7/12))^2 2584050856646536 r005 Im(z^2+c),c=-67/122+16/43*I,n=12 2584050859122256 m005 (1/2*exp(1)+3)/(2^(1/2)+3/11) 2584050863956740 m005 (13/4+1/4*5^(1/2))/(9/11*exp(1)-3/4) 2584050866710437 r002 18th iterates of z^2 + 2584050866981723 m001 GAMMA(17/24)*DuboisRaymond^2*ln(sin(Pi/5)) 2584050874755729 a001 2207/12586269025*3^(6/17) 2584050909204116 r005 Im(z^2+c),c=-13/46+23/63*I,n=3 2584050910437012 r009 Re(z^3+c),c=-41/110+21/52*I,n=11 2584050947085939 a007 Real Root Of 348*x^4+701*x^3-611*x^2-305*x-129 2584050953232476 b008 Tan[22/87] 2584050965085785 r005 Re(z^2+c),c=-13/58+27/56*I,n=63 2584050970305701 m001 arctan(1/2)^2*Zeta(3) 2584050978702604 a007 Real Root Of -465*x^4+319*x^3-378*x^2+914*x+269 2584050982944857 r002 21th iterates of z^2 + 2584050993890646 a007 Real Root Of 353*x^4+842*x^3-258*x^2-113*x+220 2584050998836001 m001 Zeta(3)/Backhouse/exp(sqrt(3))^2 2584051001214947 l006 ln(706/9355) 2584051003005206 a007 Real Root Of -369*x^4-625*x^3+579*x^2-514*x+474 2584051021685745 h001 (4/9*exp(2)+2/3)/(1/11*exp(2)+6/7) 2584051033909847 r005 Im(z^2+c),c=1/60+1/40*I,n=6 2584051038314073 s002 sum(A175758[n]/(10^n-1),n=1..infinity) 2584051052415192 r005 Im(z^2+c),c=-59/60+1/40*I,n=16 2584051056201045 a001 29/3*196418^(46/55) 2584051062187941 r005 Re(z^2+c),c=-13/60+5/9*I,n=18 2584051065391566 m001 BesselI(0,1)/GAMMA(3/4)*Riemann3rdZero 2584051067173641 r002 28th iterates of z^2 + 2584051070846084 r005 Im(z^2+c),c=-59/60+1/40*I,n=15 2584051076875445 r002 27th iterates of z^2 + 2584051077804424 m001 (1-MinimumGamma)/(Niven+StolarskyHarborth) 2584051078028345 m001 Riemann3rdZero+Robbin^ZetaP(2) 2584051081382364 m001 (Pi^(1/2)*Sierpinski-ZetaQ(4))/Pi^(1/2) 2584051081449329 r002 30th iterates of z^2 + 2584051083690072 r005 Im(z^2+c),c=1/60+1/40*I,n=7 2584051084842382 r002 29th iterates of z^2 + 2584051086714371 m001 (CareFree-Ei(1)*Otter)/Ei(1) 2584051087768320 r002 32th iterates of z^2 + 2584051088080590 r002 31th iterates of z^2 + 2584051088284511 r005 Im(z^2+c),c=1/60+1/40*I,n=8 2584051088384099 r005 Im(z^2+c),c=-59/60+1/40*I,n=24 2584051088385307 r005 Im(z^2+c),c=-59/60+1/40*I,n=23 2584051088385393 r005 Im(z^2+c),c=-59/60+1/40*I,n=26 2584051088386135 r005 Im(z^2+c),c=-59/60+1/40*I,n=25 2584051088386755 r005 Im(z^2+c),c=-59/60+1/40*I,n=28 2584051088386836 r005 Im(z^2+c),c=-59/60+1/40*I,n=27 2584051088386900 r002 42th iterates of z^2 + 2584051088386908 r002 41th iterates of z^2 + 2584051088386915 r002 44th iterates of z^2 + 2584051088386915 r005 Im(z^2+c),c=1/60+1/40*I,n=12 2584051088386916 r002 43th iterates of z^2 + 2584051088386917 r002 39th iterates of z^2 + 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=13 2584051088386917 r002 46th iterates of z^2 + 2584051088386917 r002 45th iterates of z^2 + 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=14 2584051088386917 r005 Im(z^2+c),c=-59/60+1/40*I,n=38 2584051088386917 r005 Im(z^2+c),c=-59/60+1/40*I,n=37 2584051088386917 r005 Im(z^2+c),c=-59/60+1/40*I,n=40 2584051088386917 r005 Im(z^2+c),c=-59/60+1/40*I,n=39 2584051088386917 r002 54th iterates of z^2 + 2584051088386917 r005 Im(z^2+c),c=-59/60+1/40*I,n=42 2584051088386917 r002 53th iterates of z^2 + 2584051088386917 r005 Im(z^2+c),c=-59/60+1/40*I,n=41 2584051088386917 r002 56th iterates of z^2 + 2584051088386917 r002 55th iterates of z^2 + 2584051088386917 r002 58th iterates of z^2 + 2584051088386917 r002 57th iterates of z^2 + 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=18 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=19 2584051088386917 r005 Im(z^2+c),c=-59/60+1/40*I,n=50 2584051088386917 r005 Im(z^2+c),c=-59/60+1/40*I,n=49 2584051088386917 r005 Im(z^2+c),c=-59/60+1/40*I,n=52 2584051088386917 r005 Im(z^2+c),c=-59/60+1/40*I,n=51 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=20 2584051088386917 r005 Im(z^2+c),c=-59/60+1/40*I,n=54 2584051088386917 r005 Im(z^2+c),c=-59/60+1/40*I,n=53 2584051088386917 r005 Im(z^2+c),c=-59/60+1/40*I,n=64 2584051088386917 r005 Im(z^2+c),c=-59/60+1/40*I,n=63 2584051088386917 r005 Im(z^2+c),c=-59/60+1/40*I,n=62 2584051088386917 r005 Im(z^2+c),c=-59/60+1/40*I,n=61 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=24 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=25 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=26 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=27 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=31 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=32 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=33 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=34 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=35 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=36 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=37 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=38 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=39 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=40 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=41 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=42 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=43 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=44 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=45 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=46 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=47 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=48 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=49 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=30 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=29 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=28 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=23 2584051088386917 r005 Im(z^2+c),c=-59/60+1/40*I,n=59 2584051088386917 r005 Im(z^2+c),c=-59/60+1/40*I,n=60 2584051088386917 r005 Im(z^2+c),c=-59/60+1/40*I,n=57 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=22 2584051088386917 r005 Im(z^2+c),c=-59/60+1/40*I,n=58 2584051088386917 r005 Im(z^2+c),c=-59/60+1/40*I,n=55 2584051088386917 r005 Im(z^2+c),c=-59/60+1/40*I,n=56 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=21 2584051088386917 r002 63th iterates of z^2 + 2584051088386917 r002 64th iterates of z^2 + 2584051088386917 r002 61th iterates of z^2 + 2584051088386917 r002 62th iterates of z^2 + 2584051088386917 r002 59th iterates of z^2 + 2584051088386917 r005 Im(z^2+c),c=-59/60+1/40*I,n=47 2584051088386917 r002 60th iterates of z^2 + 2584051088386917 r005 Im(z^2+c),c=-59/60+1/40*I,n=48 2584051088386917 r005 Im(z^2+c),c=-59/60+1/40*I,n=45 2584051088386917 r005 Im(z^2+c),c=-59/60+1/40*I,n=46 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=17 2584051088386917 r005 Im(z^2+c),c=-59/60+1/40*I,n=43 2584051088386917 r005 Im(z^2+c),c=-59/60+1/40*I,n=44 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=16 2584051088386917 r002 51th iterates of z^2 + 2584051088386917 r002 52th iterates of z^2 + 2584051088386917 r005 Im(z^2+c),c=1/60+1/40*I,n=15 2584051088386917 r002 49th iterates of z^2 + 2584051088386917 r005 Im(z^2+c),c=-59/60+1/40*I,n=35 2584051088386917 r002 50th iterates of z^2 + 2584051088386917 r005 Im(z^2+c),c=-59/60+1/40*I,n=36 2584051088386917 r002 47th iterates of z^2 + 2584051088386917 r002 48th iterates of z^2 + 2584051088386918 r005 Im(z^2+c),c=-59/60+1/40*I,n=33 2584051088386918 r005 Im(z^2+c),c=-59/60+1/40*I,n=34 2584051088386918 r005 Im(z^2+c),c=-59/60+1/40*I,n=30 2584051088386918 r005 Im(z^2+c),c=-59/60+1/40*I,n=29 2584051088386919 r005 Im(z^2+c),c=-59/60+1/40*I,n=31 2584051088386920 r005 Im(z^2+c),c=-59/60+1/40*I,n=32 2584051088386921 r002 40th iterates of z^2 + 2584051088386948 r005 Im(z^2+c),c=1/60+1/40*I,n=11 2584051088387542 r002 37th iterates of z^2 + 2584051088388005 r005 Im(z^2+c),c=1/60+1/40*I,n=10 2584051088388168 r002 38th iterates of z^2 + 2584051088392723 r002 35th iterates of z^2 + 2584051088397273 r002 33th iterates of z^2 + 2584051088397770 r005 Im(z^2+c),c=1/60+1/40*I,n=9 2584051088398217 r002 36th iterates of z^2 + 2584051088404647 r002 34th iterates of z^2 + 2584051088426222 r005 Im(z^2+c),c=-59/60+1/40*I,n=21 2584051088466435 r005 Im(z^2+c),c=-59/60+1/40*I,n=22 2584051088861193 r005 Im(z^2+c),c=-59/60+1/40*I,n=19 2584051089316069 r005 Im(z^2+c),c=-59/60+1/40*I,n=20 2584051090043727 r005 Im(z^2+c),c=-59/60+1/40*I,n=17 2584051091458618 r005 Im(z^2+c),c=-59/60+1/40*I,n=18 2584051097185332 m004 5+10/Pi+5*Pi+Log[Sqrt[5]*Pi] 2584051101503634 r009 Re(z^3+c),c=-17/98+34/45*I,n=46 2584051112260635 r009 Re(z^3+c),c=-7/26+7/44*I,n=12 2584051118524538 r009 Re(z^3+c),c=-33/70+9/19*I,n=39 2584051119737877 r009 Re(z^3+c),c=-25/64+24/55*I,n=28 2584051125312586 q001 93/3599 2584051125312586 r002 2th iterates of z^2 + 2584051125312586 r002 2th iterates of z^2 + 2584051125312586 r002 2th iterates of z^2 + 2584051125312586 r002 2th iterates of z^2 + 2584051125312586 r005 Im(z^2+c),c=-121/118+15/61*I,n=2 2584051130669420 r002 38th iterates of z^2 + 2584051131676883 a007 Real Root Of 344*x^4+578*x^3-640*x^2+490*x+175 2584051140855255 m001 (GlaisherKinkelin+Salem)/(GAMMA(7/12)-gamma) 2584051140985348 m001 1/ln(FeigenbaumD)/Khintchine^2*Tribonacci 2584051144215075 a008 Real Root of x^4-x^3-30*x^2+30*x+216 2584051144914234 m001 exp(sin(1))*Ei(1)*sin(Pi/5) 2584051148468559 m001 (Psi(1,1/3)-ln(2)/ln(10))/(GaussAGM+Otter) 2584051159671983 r005 Re(z^2+c),c=-9/40+12/25*I,n=44 2584051170898592 a007 Real Root Of -358*x^4-542*x^3+628*x^2-960*x-64 2584051174779629 s002 sum(A099707[n]/(n*pi^n+1),n=1..infinity) 2584051178149821 a005 (1/sin(37/98*Pi))^680 2584051185943630 a007 Real Root Of 556*x^4-855*x^3-629*x^2-711*x+238 2584051196713858 v002 sum(1/(3^n*(14*n^2-21*n+22)),n=1..infinity) 2584051207262770 a008 Real Root of (-4+2*x-3*x^2-3*x^3-x^4+x^5) 2584051208148880 r009 Re(z^3+c),c=-7/26+7/44*I,n=11 2584051211674772 r005 Im(z^2+c),c=-31/74+5/11*I,n=32 2584051211686192 m001 cos(1)^(2/3)/exp(sqrt(2))^(2/3) 2584051227518093 r002 25th iterates of z^2 + 2584051229492020 r009 Im(z^3+c),c=-43/110+6/35*I,n=16 2584051233672169 m001 exp(GAMMA(2/3))^2*Si(Pi)/Zeta(5)^2 2584051236384320 m005 (1/2*Pi-5/6)/(Zeta(3)-11/12) 2584051244930824 a001 1762289/2889*123^(3/10) 2584051251120913 h001 (-4*exp(2)-6)/(-7*exp(3)+3) 2584051252550580 p004 log(33199/25639) 2584051254710968 a001 3571/75025*8^(48/59) 2584051267116769 m001 (Ei(1)-Zeta(1/2))/(GAMMA(19/24)-Conway) 2584051285076043 r009 Im(z^3+c),c=-19/44+9/64*I,n=13 2584051286629999 r005 Im(z^2+c),c=-29/78+14/45*I,n=3 2584051294602828 a007 Real Root Of -269*x^4-348*x^3+928*x^2+117*x+95 2584051302086979 m001 1/PrimesInBinary/Lehmer^2/exp(GAMMA(13/24))^2 2584051302528584 a007 Real Root Of -130*x^4-333*x^3+89*x^2+888*x-23 2584051304896154 b008 9*Sqrt[5]*E^(1/4) 2584051305758231 l006 ln(351/4651) 2584051309340732 a007 Real Root Of 261*x^4+955*x^3+921*x^2+349*x-407 2584051311039059 a001 9227465/15127*123^(3/10) 2584051311698703 b008 -1+E+Gudermannian[1] 2584051313245491 p004 log(36457/35527) 2584051320684120 a001 24157817/39603*123^(3/10) 2584051320942453 r005 Im(z^2+c),c=-35/114+20/49*I,n=40 2584051321719890 r005 Re(z^2+c),c=-107/126+3/11*I,n=4 2584051322091316 a001 31622993/51841*123^(3/10) 2584051322296623 a001 165580141/271443*123^(3/10) 2584051322326577 a001 433494437/710647*123^(3/10) 2584051322330947 a001 567451585/930249*123^(3/10) 2584051322331585 a001 2971215073/4870847*123^(3/10) 2584051322331678 a001 7778742049/12752043*123^(3/10) 2584051322331691 a001 10182505537/16692641*123^(3/10) 2584051322331693 a001 53316291173/87403803*123^(3/10) 2584051322331694 a001 139583862445/228826127*123^(3/10) 2584051322331694 a001 182717648081/299537289*123^(3/10) 2584051322331694 a001 956722026041/1568397607*123^(3/10) 2584051322331694 a001 2504730781961/4106118243*123^(3/10) 2584051322331694 a001 3278735159921/5374978561*123^(3/10) 2584051322331694 a001 10610209857723/17393796001*123^(3/10) 2584051322331694 a001 4052739537881/6643838879*123^(3/10) 2584051322331694 a001 1134903780/1860499*123^(3/10) 2584051322331694 a001 591286729879/969323029*123^(3/10) 2584051322331694 a001 225851433717/370248451*123^(3/10) 2584051322331694 a001 21566892818/35355581*123^(3/10) 2584051322331694 a001 32951280099/54018521*123^(3/10) 2584051322331700 a001 1144206275/1875749*123^(3/10) 2584051322331735 a001 1201881744/1970299*123^(3/10) 2584051322331979 a001 1836311903/3010349*123^(3/10) 2584051322333648 a001 701408733/1149851*123^(3/10) 2584051322345089 a001 66978574/109801*123^(3/10) 2584051322423510 a001 9303105/15251*123^(3/10) 2584051322961011 a001 39088169/64079*123^(3/10) 2584051326645096 a001 3732588/6119*123^(3/10) 2584051336302491 m005 (-15/4+1/4*5^(1/2))/(3/4*Zeta(3)+1/3) 2584051340959189 g005 1/GAMMA(4/7)/GAMMA(2/3)^3 2584051344583989 r005 Im(z^2+c),c=-15/106+22/61*I,n=6 2584051344681547 r005 Re(z^2+c),c=-16/29+29/50*I,n=51 2584051351896196 a001 5702887/9349*123^(3/10) 2584051354701391 a003 sin(Pi*13/115)*sin(Pi*4/15) 2584051363253670 m001 1/GAMMA(1/3)^2*ln(GAMMA(1/12))/log(2+sqrt(3)) 2584051370366775 m001 (GAMMA(5/6)-gamma)/(-MertensB1+Weierstrass) 2584051372866642 r002 26th iterates of z^2 + 2584051374571125 a003 cos(Pi*1/117)/sin(Pi*11/87) 2584051376055094 r009 Re(z^3+c),c=-43/102+29/57*I,n=41 2584051377809470 p003 LerchPhi(1/12,6,257/95) 2584051380632680 m001 1/Sierpinski^2*ln(MertensB1)/log(1+sqrt(2))^2 2584051386004535 a007 Real Root Of -328*x^4-554*x^3+613*x^2-740*x-940 2584051389398434 r005 Im(z^2+c),c=-115/114+7/25*I,n=33 2584051392287400 a007 Real Root Of -470*x^4+720*x^3+513*x^2+942*x-288 2584051397567163 r005 Im(z^2+c),c=1/60+1/40*I,n=5 2584051399958394 m001 1/GAMMA(1/6)/ln(Magata)/LambertW(1) 2584051400262062 m001 BesselK(0,1)^2/GaussKuzminWirsing*exp(Ei(1))^2 2584051402758250 a007 Real Root Of 398*x^4+732*x^3-971*x^2-619*x-231 2584051403318352 m001 Ei(1,1)*(BesselK(1,1)+Stephens) 2584051404185690 a007 Real Root Of 953*x^4-564*x^3+535*x^2-868*x-274 2584051427863102 a001 9349/196418*8^(48/59) 2584051441949930 r005 Im(z^2+c),c=-3/118+13/43*I,n=17 2584051453125658 a001 24476/514229*8^(48/59) 2584051456811415 a001 64079/1346269*8^(48/59) 2584051459089338 a001 39603/832040*8^(48/59) 2584051459212465 r009 Re(z^3+c),c=-25/66+7/17*I,n=37 2584051464608861 m005 (1/2*Pi-4)/(4/7*Catalan+5/12) 2584051468738776 a001 15127/317811*8^(48/59) 2584051470899859 m001 1/exp(GAMMA(5/24))^2/Kolakoski/exp(1)^2 2584051476795493 r005 Re(z^2+c),c=5/118+8/29*I,n=11 2584051486907868 a007 Real Root Of -395*x^4-764*x^3+936*x^2+431*x-707 2584051487784579 s001 sum(exp(-2*Pi/3)^n*A094381[n],n=1..infinity) 2584051488522626 p001 sum((-1)^n/(202*n+173)/n/(10^n),n=1..infinity) 2584051493125430 r005 Im(z^2+c),c=-49/122+19/43*I,n=32 2584051498126490 r005 Re(z^2+c),c=-31/122+24/59*I,n=17 2584051513013958 m005 (4/5*Catalan+5/6)/(3/4*2^(1/2)+5) 2584051514673538 m005 (1/3*Catalan-2/9)/(1/8*Pi-5/7) 2584051515380189 a007 Real Root Of 464*x^4-959*x^3+777*x^2-714*x-255 2584051523206060 a007 Real Root Of -463*x^4-877*x^3+613*x^2-478*x+183 2584051524969823 a001 2178309/3571*123^(3/10) 2584051530973558 l006 ln(7573/9806) 2584051534153492 a001 76/1346269*121393^(18/25) 2584051534877006 a001 5778/121393*8^(48/59) 2584051536778850 a007 Real Root Of 397*x^4+679*x^3-471*x^2+750*x-902 2584051537537981 a003 sin(Pi*17/106)*sin(Pi*16/89) 2584051538479333 r005 Re(z^2+c),c=-31/25+6/53*I,n=60 2584051538687871 r008 a(0)=0,K{-n^6,-48+55*n+26*n^2+6*n^3} 2584051541229032 r005 Re(z^2+c),c=-21/118+18/29*I,n=64 2584051544707229 r005 Re(z^2+c),c=-7/31+17/36*I,n=24 2584051556991157 r005 Im(z^2+c),c=-63/52+14/55*I,n=9 2584051564058153 a001 123*1597^(29/40) 2584051570373549 a003 cos(Pi*18/103)-cos(Pi*11/37) 2584051574132075 m001 (Cahen+Rabbit)/(ln(gamma)+BesselK(1,1)) 2584051580466509 a003 cos(Pi*10/81)-cos(Pi*23/86) 2584051580724802 r005 Im(z^2+c),c=15/44+2/39*I,n=36 2584051594476973 r009 Re(z^3+c),c=-41/102+11/24*I,n=30 2584051613791887 l006 ln(698/9249) 2584051616179150 m008 (1/6*Pi^6-3/4)/(3/5*Pi^2+1/4) 2584051618246086 m001 Sierpinski-ZetaP(4)^exp(1) 2584051619492403 m001 cos(1/5*Pi)/ln(5)/DuboisRaymond 2584051620680053 a007 Real Root Of 462*x^4+75*x^3+73*x^2-860*x+214 2584051627068736 a001 843*(1/2*5^(1/2)+1/2)^20*3^(9/14) 2584051630255653 r005 Im(z^2+c),c=-7/10+37/170*I,n=50 2584051630323862 m001 1/ErdosBorwein/Backhouse^2*ln(PrimesInBinary) 2584051638045717 h001 (-8*exp(1)+1)/(-2*exp(6)+4) 2584051642501759 r005 Re(z^2+c),c=-9/28+7/16*I,n=8 2584051653649047 r009 Re(z^3+c),c=-31/82+16/39*I,n=36 2584051654213590 r002 3th iterates of z^2 + 2584051656135490 m001 (Psi(1,1/3)+ln(3))/(-GAMMA(23/24)+Lehmer) 2584051657487057 r005 Re(z^2+c),c=-15/74+17/30*I,n=35 2584051658647813 r005 Im(z^2+c),c=-69/110+25/53*I,n=11 2584051673079170 r005 Im(z^2+c),c=1/3+3/37*I,n=30 2584051681336568 m001 (ln(2)+CareFree)/(Psi(2,1/3)+Zeta(5)) 2584051689279932 m001 (Niven-PlouffeB)/(Grothendieck-Mills) 2584051689864074 r005 Im(z^2+c),c=-17/26+29/93*I,n=39 2584051698802352 r005 Im(z^2+c),c=-6/17+23/45*I,n=8 2584051698866841 l006 ln(6074/7865) 2584051704823123 r005 Im(z^2+c),c=-15/44+16/39*I,n=16 2584051722447848 r005 Im(z^2+c),c=-14/31+19/43*I,n=26 2584051723191653 m005 (1/2*gamma+5/8)/(4/7*Zeta(3)-1/3) 2584051724137931 q001 1199/464 2584051731988654 s001 sum(1/10^(n-1)*A023668[n],n=1..infinity) 2584051731988654 s001 sum(1/10^n*A023668[n],n=1..infinity) 2584051737003481 a007 Real Root Of 192*x^4+462*x^3-83*x^2-139*x-394 2584051737829936 a007 Real Root Of 301*x^4+658*x^3+66*x^2+753*x-562 2584051745547721 r005 Re(z^2+c),c=-1/94+40/63*I,n=35 2584051754512012 h003 exp(Pi*(1/17*(306+7^(2/3))^(1/2))) 2584051784709542 r005 Im(z^2+c),c=-27/34+11/75*I,n=50 2584051793096209 r005 Im(z^2+c),c=-25/102+13/34*I,n=7 2584051802438865 m005 (1/2*2^(1/2)-5)/(9/11*Pi-10/11) 2584051806563284 r009 Re(z^3+c),c=-7/44+39/40*I,n=10 2584051807117725 s001 sum(exp(-3*Pi)^n*A159982[n],n=1..infinity) 2584051821956311 m001 (BesselI(0,1)-Zeta(3))/(-ThueMorse+TwinPrimes) 2584051825220633 m001 (Riemann2ndZero-TreeGrowth2nd)/(ln(3)-Ei(1)) 2584051841784870 r005 Im(z^2+c),c=-5/14+14/33*I,n=49 2584051842515781 r009 Re(z^3+c),c=-3/64+31/48*I,n=24 2584051845340689 a007 Real Root Of -218*x^4-750*x^3-149*x^2+721*x-363 2584051845503987 m005 (1/3*gamma-1/11)/(10/11*Zeta(3)-7/10) 2584051845787221 p001 sum((-1)^n/(315*n+1)/n/(12^n),n=1..infinity) 2584051847769043 m001 1/exp(Niven)^2/Champernowne*cos(Pi/12) 2584051850307283 r005 Im(z^2+c),c=-17/114+11/30*I,n=5 2584051852665828 m001 1/cos(Pi/5)*FeigenbaumB^2*ln(sqrt(3))^2 2584051858653643 r009 Re(z^3+c),c=-15/64+16/17*I,n=45 2584051859260206 p003 LerchPhi(1/3,5,83/159) 2584051863284208 a007 Real Root Of 370*x^4+27*x^3-842*x^2-778*x-146 2584051865954549 r005 Im(z^2+c),c=-35/118+17/42*I,n=42 2584051877263381 r005 Re(z^2+c),c=-19/78+13/30*I,n=36 2584051879876181 m006 (2/5*exp(2*Pi)-5)/(4/5*Pi^2+1/5) 2584051881605805 r005 Re(z^2+c),c=-139/114+4/45*I,n=16 2584051886530225 m001 ln(2)/ln(10)*ArtinRank2/StolarskyHarborth 2584051887193551 g007 Psi(2,3/5)+Psi(2,3/4)-Psi(2,5/11)-Psi(2,1/5) 2584051894802876 m001 (HeathBrownMoroz+Otter)/(gamma+LambertW(1)) 2584051902220128 r009 Re(z^3+c),c=-11/48+37/40*I,n=57 2584051903952625 m002 -Pi^6+Pi^5*Cosh[Pi]-Sinh[Pi]/6 2584051904562420 a001 21/76*47^(18/31) 2584051907831483 a007 Real Root Of 906*x^4+509*x^3-584*x^2-653*x-125 2584051912622370 m001 (ZetaQ(2)+ZetaQ(4))/(AlladiGrinstead-Otter) 2584051913627443 a001 21/29*843^(26/49) 2584051913732720 a007 Real Root Of 343*x^4+820*x^3+191*x^2+849*x-226 2584051917537866 a001 5778/5*832040^(36/49) 2584051925376267 l006 ln(347/4598) 2584051927933284 m001 GolombDickman/(AlladiGrinstead+ErdosBorwein) 2584051930419908 m001 TwinPrimes^(2^(1/3))*polylog(4,1/2)^(2^(1/3)) 2584051930419908 m001 polylog(4,1/2)^(2^(1/3))*TwinPrimes^(2^(1/3)) 2584051941190225 m001 ln(2+3^(1/2))*HardyLittlewoodC3+MadelungNaCl 2584051943626666 a007 Real Root Of 81*x^4-883*x^3+283*x^2+29*x-27 2584051952917017 m001 (3^(1/2)-Zeta(3))/(Champernowne+Tetranacci) 2584051967678455 a001 843/610*55^(19/26) 2584051968055511 m001 Riemann3rdZero/Cahen/exp(FeigenbaumKappa)^2 2584051970641278 m001 ln((2^(1/3)))^2*Bloch*GAMMA(23/24) 2584051975019228 m001 (Riemann1stZero-Sarnak)/(ln(Pi)-Kac) 2584051976780677 l006 ln(4575/5924) 2584051987556791 s001 sum(1/10^(n-1)*A023564[n],n=1..infinity) 2584051987556791 s001 sum(1/10^n*A023564[n],n=1..infinity) 2584051988195176 a001 2207/46368*8^(48/59) 2584051994268624 m001 (ln(2+3^(1/2))-exp(1/Pi))/(GAMMA(7/12)+Rabbit) 2584052011299042 r009 Re(z^3+c),c=-21/50+14/29*I,n=32 2584052011383574 a003 cos(Pi*20/97)*cos(Pi*47/119) 2584052014559893 m005 (1/2*2^(1/2)-9/10)/(1/9*exp(1)+4/9) 2584052016973371 r005 Re(z^2+c),c=-17/14+21/148*I,n=44 2584052027671661 h001 (2/7*exp(1)+1/2)/(1/10*exp(1)+2/9) 2584052032614013 r002 20th iterates of z^2 + 2584052032930979 r005 Re(z^2+c),c=-7/26+14/39*I,n=24 2584052041209146 a007 Real Root Of -215*x^4-702*x^3-523*x^2-710*x-869 2584052044302782 a001 1730726404001/72*6557470319842^(8/17) 2584052044888778 r005 Im(z^2+c),c=-41/114+17/27*I,n=37 2584052048531862 a001 23725150497407*2504730781961^(17/21) 2584052054123027 a007 Real Root Of -172*x^4-626*x^3-812*x^2-756*x+336 2584052062687321 a007 Real Root Of 499*x^4-637*x^3+380*x^2-257*x-105 2584052068269243 r005 Re(z^2+c),c=-27/122+29/59*I,n=31 2584052071218771 b008 E^((1/6+Sqrt[3])/2) 2584052072411177 r005 Im(z^2+c),c=-35/118+17/42*I,n=41 2584052087241844 r005 Im(z^2+c),c=-45/74+11/37*I,n=14 2584052100154310 r002 5th iterates of z^2 + 2584052115171790 r009 Im(z^3+c),c=-11/62+8/31*I,n=9 2584052136181250 r005 Re(z^2+c),c=-31/114+7/20*I,n=30 2584052137806101 r005 Im(z^2+c),c=-73/90+4/25*I,n=43 2584052140065740 r005 Re(z^2+c),c=-35/94+29/53*I,n=21 2584052142784695 a007 Real Root Of 16*x^4-238*x^3+537*x^2-268*x+500 2584052148689308 m005 (1/3*gamma+3/8)/(1/2*Pi+5/8) 2584052155974275 r002 44i'th iterates of 2*x/(1-x^2) of 2584052195321448 p004 log(32027/2417) 2584052197411783 l006 ln(7651/9907) 2584052203972641 a001 7/2971215073*2^(2/15) 2584052217234287 a007 Real Root Of 939*x^4+154*x^3+534*x^2-305*x-116 2584052224964412 m001 (GlaisherKinkelin-cos(1/12*Pi))^Salem 2584052234624180 r005 Re(z^2+c),c=1/50+9/13*I,n=7 2584052240573121 l006 ln(690/9143) 2584052285498844 m001 (Lehmer-Pi)/Paris 2584052285738604 h003 exp(Pi*(11^(12/7)-6^(4/7))) 2584052285738604 h008 exp(Pi*(11^(12/7)-6^(4/7))) 2584052290878850 a007 Real Root Of 853*x^4-797*x^3-964*x^2-676*x+249 2584052297446802 s002 sum(A154990[n]/(exp(n)),n=1..infinity) 2584052304647122 a007 Real Root Of -759*x^4+492*x^3+923*x^2+299*x-144 2584052305496819 r005 Re(z^2+c),c=-7/12+14/113*I,n=2 2584052305876909 a007 Real Root Of 529*x^4-28*x^3+162*x^2-338*x-101 2584052306079084 m005 (1/2*Catalan-3/7)/(Catalan+2/9) 2584052309189683 m001 1/exp(GAMMA(7/12))*Salem/Pi^2 2584052310748381 m001 exp(Robbin)^2/FibonacciFactorial^2/cos(Pi/12) 2584052327137274 m002 5/E^(2*Pi)+Tanh[Pi]/4 2584052335765555 m001 (MadelungNaCl+Robbin)/(GAMMA(7/12)-Gompertz) 2584052347412272 r005 Im(z^2+c),c=-9/94+29/46*I,n=18 2584052354823959 r002 3th iterates of z^2 + 2584052366759732 m001 (-GAMMA(17/24)+1/3)/(-ln(2+sqrt(3))+5) 2584052376782862 m001 (Robbin-Trott2nd)/(arctan(1/2)-Riemann3rdZero) 2584052377011142 b008 1/2+(-1+E^(-4))*Pi 2584052378369822 r005 Re(z^2+c),c=21/74+6/41*I,n=28 2584052381114978 s001 sum(exp(-3*Pi)^n*A195592[n],n=1..infinity) 2584052390303906 a007 Real Root Of 314*x^4+672*x^3-251*x^2+204*x-202 2584052390931538 a007 Real Root Of 151*x^4+344*x^3-150*x^2-340*x-674 2584052409406502 m001 (Pi-exp(1/exp(1)))/(GlaisherKinkelin-Kac) 2584052411465893 m008 (4/5*Pi^3+5/6)/(3/5*Pi^2+4) 2584052420640175 a007 Real Root Of -124*x^4+880*x^2+182*x+123 2584052430074403 r004 Im(z^2+c),c=-4/9*I,z(0)=1/2+1/2*I*3^(1/2),n=5 2584052434279564 m001 1/ln(FeigenbaumB)*MertensB1^2/(3^(1/3)) 2584052442764776 a007 Real Root Of -273*x^4-986*x^3-477*x^2+806*x+427 2584052444778637 m003 -8+Sqrt[5]/16+4/ProductLog[1/2+Sqrt[5]/2] 2584052452978499 l006 ln(7220/7409) 2584052476574398 a007 Real Root Of -123*x^4-403*x^3-259*x^2-351*x-647 2584052479989551 b008 ModularLambda[1+3*I]/5 2584052491865452 m001 AlladiGrinstead-GaussAGM*TwinPrimes 2584052494415586 r002 20th iterates of z^2 + 2584052500913556 s002 sum(A218060[n]/((3*n+1)!),n=1..infinity) 2584052516786795 r009 Re(z^3+c),c=-49/114+25/48*I,n=55 2584052520249643 a001 7/832040*89^(1/4) 2584052525561096 l006 ln(3076/3983) 2584052527072239 m001 FeigenbaumAlpha/(Sarnak^Paris) 2584052531830232 r005 Re(z^2+c),c=19/56+23/63*I,n=10 2584052533572983 a001 8/15127*322^(33/49) 2584052539333011 h001 (-2*exp(3)+9)/(-3*exp(6)+4) 2584052539771648 r005 Re(z^2+c),c=-23/82+17/52*I,n=13 2584052554984527 r009 Im(z^3+c),c=-13/90+14/53*I,n=9 2584052559445639 l006 ln(343/4545) 2584052565469688 b008 CosIntegral[ArcCosh[20/3]] 2584052573324617 a007 Real Root Of -379*x^4-694*x^3+533*x^2-246*x+729 2584052574056333 a007 Real Root Of -319*x^4-721*x^3+61*x^2-533*x-2 2584052588190071 r005 Im(z^2+c),c=-59/110+7/15*I,n=34 2584052611502240 a007 Real Root Of 402*x^4+635*x^3-995*x^2+485*x+930 2584052613701586 m001 1/TwinPrimes^2/LaplaceLimit^2*ln(GAMMA(13/24)) 2584052619044814 a007 Real Root Of -241*x^4-886*x^3-662*x^2-336*x-990 2584052621291460 m001 (ln(Pi)+GAMMA(7/12))/(GAMMA(23/24)+ZetaQ(3)) 2584052626317999 a007 Real Root Of -143*x^4-185*x^3+257*x^2-669*x-261 2584052626990846 m001 (Si(Pi)+GAMMA(17/24))/(-Gompertz+Weierstrass) 2584052652759016 m002 (-5*Coth[Pi])/4+Tanh[Pi] 2584052658449676 a001 29/8*1346269^(13/43) 2584052658496288 h001 (1/2*exp(1)+5/9)/(11/12*exp(2)+7/11) 2584052658521515 a007 Real Root Of 418*x^4+802*x^3-779*x^2-542*x-998 2584052663566910 r005 Im(z^2+c),c=-5/8+46/87*I,n=4 2584052665898500 a001 2/5473*233^(25/32) 2584052669943610 r002 16th iterates of z^2 + 2584052673537313 r005 Re(z^2+c),c=-5/26+33/59*I,n=44 2584052676120295 r005 Re(z^2+c),c=2/15+15/34*I,n=13 2584052689924111 b008 E^(-1/12)+Sinh[Glaisher] 2584052690996573 h001 (5/7*exp(2)+7/12)/(1/2*exp(1)+10/11) 2584052708462289 m001 1/exp(Riemann1stZero)^2/Porter^2/GAMMA(7/24)^2 2584052711234730 a001 610*123^(3/10) 2584052725724351 r005 Im(z^2+c),c=19/64+2/27*I,n=41 2584052729398378 r009 Re(z^3+c),c=-25/64+23/41*I,n=14 2584052733826281 m001 (GAMMA(5/6)+GAMMA(13/24))/(Artin+ArtinRank2) 2584052749349961 r009 Re(z^3+c),c=-6/17+5/14*I,n=12 2584052755561352 m001 Grothendieck^(5^(1/2))*Rabbit 2584052757424394 m001 (GAMMA(5/6)-LaplaceLimit)^(Pi^(1/2)) 2584052760722667 m003 -25-E^(1/2+Sqrt[5]/2)/6 2584052761778018 h005 exp(sin(Pi*21/53)/sin(Pi*23/48)) 2584052774694219 m006 (1/5*exp(2*Pi)-2/5)/(1/4/Pi+1/3) 2584052776673537 m001 (Grothendieck+KhinchinLevy)/(Salem-Trott2nd) 2584052776693911 q001 1/386989 2584052784921772 m001 GAMMA(13/24)*Cahen^2/exp(cos(Pi/12)) 2584052795484868 m005 (4*gamma-3)/(4/5*exp(1)+1/2) 2584052808276964 a007 Real Root Of -801*x^4+131*x^3+205*x^2+905*x+226 2584052826692508 r002 43th iterates of z^2 + 2584052834437653 m001 1/exp((2^(1/3)))*GolombDickman^2*GAMMA(7/12)^2 2584052841160986 m003 1/2+Sqrt[5]/8+(15*Log[1/2+Sqrt[5]/2])/4 2584052843072870 r005 Im(z^2+c),c=-3/25+14/41*I,n=16 2584052845636958 m001 5^(1/2)*Sarnak+cos(1/12*Pi) 2584052850398760 l006 ln(7729/10008) 2584052852659373 a007 Real Root Of 262*x^4+658*x^3+6*x^2-193*x-867 2584052854921313 m001 (Shi(1)+Chi(1))/(Kac+OneNinth) 2584052878740359 r005 Im(z^2+c),c=-61/106+10/21*I,n=35 2584052879160570 r005 Re(z^2+c),c=-35/106+11/43*I,n=5 2584052882058493 l006 ln(682/9037) 2584052882323372 m001 LandauRamanujan2nd^Lehmer/FransenRobinson 2584052886511255 m005 (1/2*Pi+8/9)/(8/11*Catalan+2/7) 2584052895767827 a007 Real Root Of 859*x^4-918*x^3+947*x^2-755*x-278 2584052904359756 m001 Pi+exp(Pi)*5^(1/2)/BesselI(0,2) 2584052913694038 a001 2207/13*2^(20/33) 2584052918261479 m001 Sierpinski-gamma(3)*ZetaP(2) 2584052922411532 a007 Real Root Of 976*x^4-864*x^3+115*x^2-275*x-98 2584052929195761 m005 (1/2*exp(1)-9/11)/(7/11*exp(1)+4/11) 2584052930128070 r009 Im(z^3+c),c=-5/14+11/57*I,n=9 2584052930203024 m005 (1/2*Pi-8/9)/(7/11*exp(1)+10/11) 2584052931868202 a007 Real Root Of 247*x^4+340*x^3+655*x^2-747*x-232 2584052936341443 m002 Cosh[Pi]^2*Log[Pi]+Pi^4*ProductLog[Pi] 2584052966193500 r005 Im(z^2+c),c=-29/70+25/49*I,n=28 2584052968033445 m005 (1/2*Catalan+5)/(5/7*3^(1/2)+7/8) 2584052975909033 a001 4/3*139583862445^(5/6) 2584052978877090 m006 (2*exp(Pi)-1/6)/(4/5*exp(Pi)-2/3) 2584052979661746 a007 Real Root Of -893*x^4+68*x^3-164*x^2+731*x+205 2584052988521725 a007 Real Root Of -323*x^4+835*x^3-825*x^2+662*x+242 2584052997234820 l005 sech(976/109) 2584052998582105 m002 6+Pi^(-2)+2*Pi^2 2584053001363160 a007 Real Root Of 505*x^4+494*x^3-334*x^2-455*x-89 2584053019802620 r005 Im(z^2+c),c=1/9+15/64*I,n=18 2584053020897737 r005 Im(z^2+c),c=-27/56+14/33*I,n=23 2584053021079597 m001 ln(PrimesInBinary)^2*Lehmer^2*GAMMA(7/24)^2 2584053035182233 a007 Real Root Of -362*x^4-912*x^3-150*x^2-337*x+535 2584053044115439 r005 Im(z^2+c),c=-20/29+1/12*I,n=20 2584053052822634 m001 (Ei(1,1)-MasserGramain)/(PlouffeB+Salem) 2584053065142072 l006 ln(4653/6025) 2584053082535860 r008 a(0)=0,K{-n^6,81+46*n^3-81*n^2-86*n} 2584053083246744 r005 Re(z^2+c),c=-19/66+13/49*I,n=6 2584053084107671 r005 Im(z^2+c),c=-73/118+3/62*I,n=46 2584053090995426 s002 sum(A175722[n]/((exp(n)+1)*n),n=1..infinity) 2584053091737115 m001 1/MadelungNaCl/Lehmer*ln(BesselJ(0,1)) 2584053094834985 a005 (1/cos(25/92*Pi))^101 2584053105915946 r005 Re(z^2+c),c=-5/17+24/61*I,n=8 2584053115664584 m002 2+Pi^2+15/ProductLog[Pi] 2584053121565328 r005 Re(z^2+c),c=-19/60+24/49*I,n=11 2584053124167486 m001 (Pi+ArtinRank2)/(Rabbit+StronglyCareFree) 2584053124882494 r005 Im(z^2+c),c=-33/94+11/26*I,n=30 2584053140647552 r005 Im(z^2+c),c=-7/10+32/161*I,n=26 2584053142219654 r005 Im(z^2+c),c=-77/106+1/48*I,n=26 2584053169621406 r002 23th iterates of z^2 + 2584053174694707 r005 Im(z^2+c),c=8/25+21/43*I,n=28 2584053188980045 s001 sum(exp(-Pi)^n*A192211[n],n=1..infinity) 2584053188980045 s002 sum(A192211[n]/(exp(pi*n)),n=1..infinity) 2584053198673671 m001 Chi(1)^GAMMA(11/12)+Riemann3rdZero 2584053201244784 a007 Real Root Of -654*x^4+628*x^3-7*x^2+660*x-178 2584053205916527 m001 GAMMA(13/24)^2*exp(GAMMA(1/3))^2*GAMMA(5/12)^2 2584053207953754 r005 Re(z^2+c),c=-19/86+24/49*I,n=51 2584053208477883 l006 ln(339/4492) 2584053209662283 r009 Re(z^3+c),c=-31/82+16/39*I,n=37 2584053210158335 m001 (Pi^(1/2)+FeigenbaumC)/(5^(1/2)-sin(1)) 2584053213351354 m001 Si(Pi)^2*exp(Champernowne)/GAMMA(3/4)^2 2584053215687230 m001 (-Riemann1stZero+ZetaP(3))/(Psi(2,1/3)+ln(3)) 2584053219191832 r005 Re(z^2+c),c=7/36+1/39*I,n=15 2584053232248431 m005 (1/3*2^(1/2)+1/11)/(3*gamma+4/9) 2584053234031422 p003 LerchPhi(1/8,5,27/82) 2584053248338850 a007 Real Root Of -599*x^4+734*x^3+333*x^2+746*x-225 2584053254115980 r005 Re(z^2+c),c=-13/58+27/56*I,n=60 2584053258021788 r005 Im(z^2+c),c=-4/19+16/43*I,n=12 2584053259380697 m005 (1/2*Catalan-3/5)/(-5/56+2/7*5^(1/2)) 2584053263500234 a001 18/13*4181^(37/59) 2584053270482875 a003 cos(Pi*23/100)/cos(Pi*13/32) 2584053277276486 r005 Re(z^2+c),c=-29/98+13/48*I,n=10 2584053277469179 a007 Real Root Of 434*x^4+988*x^3-289*x^2+177*x+84 2584053284097203 m005 (1/2*exp(1)-2/9)/(1/9*Pi+1/11) 2584053302353149 m001 (BesselJ(0,1)-Zeta(1,-1))/(MertensB1+Paris) 2584053316155679 r009 Re(z^3+c),c=-5/13+14/33*I,n=20 2584053316713737 r002 47th iterates of z^2 + 2584053331554755 l006 ln(6230/8067) 2584053340552731 r002 55i'th iterates of 2*x/(1-x^2) of 2584053350542440 r005 Re(z^2+c),c=-5/18+17/27*I,n=61 2584053372044630 r009 Re(z^3+c),c=-9/58+55/56*I,n=20 2584053378779776 a007 Real Root Of -128*x^4+2*x^3+712*x^2-492*x-284 2584053382448516 r005 Im(z^2+c),c=-47/60+1/31*I,n=4 2584053385598339 r002 9th iterates of z^2 + 2584053403323540 a007 Real Root Of 444*x^4+881*x^3-836*x^2-714*x-858 2584053408117129 a007 Real Root Of 555*x^4+951*x^3+851*x^2-608*x-200 2584053415175961 m006 (4/Pi+5/6)/(3/4*Pi^2+3/4) 2584053421025908 m001 (ln(5)-cos(1/12*Pi))/(OneNinth-Riemann3rdZero) 2584053422965520 m005 (1/2*exp(1)+2/11)/(41/110+1/10*5^(1/2)) 2584053429309142 a007 Real Root Of -256*x^4-489*x^3+313*x^2-68*x+711 2584053431205578 m001 1/GAMMA(19/24)/exp(MinimumGamma)^2/sqrt(Pi) 2584053434534378 a007 Real Root Of 99*x^4-111*x^3-603*x^2+695*x-507 2584053436023790 r005 Re(z^2+c),c=6/19+15/58*I,n=8 2584053449258016 r002 3th iterates of z^2 + 2584053463025360 a001 196418/199*199^(2/11) 2584053471793849 m001 (-FibonacciFactorial+Paris)/(2^(1/3)-Conway) 2584053472368091 a001 521/139583862445*20365011074^(21/22) 2584053472369972 a001 521/5702887*514229^(21/22) 2584053482264817 r009 Im(z^3+c),c=-31/82+3/16*I,n=5 2584053494429446 m001 (-Paris+Weierstrass)/(Catalan+cos(1)) 2584053496888520 m001 BesselK(1,1)/cos(1/12*Pi)*PrimesInBinary 2584053508426363 m001 Magata/MadelungNaCl^2*ln(Paris) 2584053508456532 a007 Real Root Of -96*x^4+23*x^3+380*x^2-878*x-129 2584053510415616 m001 exp(MinimumGamma)^2*Khintchine/GAMMA(5/24)^2 2584053511459017 a001 199/4181*13^(31/47) 2584053518619541 q001 9/34829 2584053529112800 m001 (Chi(1)-Riemann1stZero)/(-Robbin+Salem) 2584053538771579 l006 ln(674/8931) 2584053553623773 h001 (5/12*exp(2)+8/11)/(1/12*exp(2)+6/7) 2584053557544001 m001 CareFree*HeathBrownMoroz-Sierpinski 2584053562771572 a007 Real Root Of 132*x^4+530*x^3+338*x^2-631*x-628 2584053572191347 a003 sin(Pi*9/119)-sin(Pi*12/73) 2584053574529788 a003 cos(Pi*17/77)*cos(Pi*43/110) 2584053576808167 m001 (ln(2)+Zeta(1,-1))/(exp(1)-exp(Pi)) 2584053578953813 a007 Real Root Of -468*x^4-368*x^3-211*x^2+794*x+215 2584053587586023 r005 Im(z^2+c),c=-9/44+19/51*I,n=10 2584053597511681 m001 (Ei(1)+arctan(1/2))/(Backhouse-Landau) 2584053599119810 r005 Im(z^2+c),c=-19/56+18/43*I,n=59 2584053605138485 p001 sum(1/(573*n+392)/(32^n),n=0..infinity) 2584053624686813 m001 (GAMMA(3/4)-sin(1))/(-Ei(1,1)+Niven) 2584053625520514 a007 Real Root Of 263*x^4+809*x^3+216*x^2-117*x+488 2584053625835061 a007 Real Root Of -341*x^4-896*x^3-224*x^2-746*x-688 2584053640539582 b008 -20/149+E 2584053642550059 r005 Re(z^2+c),c=7/32+3/38*I,n=11 2584053647508025 a007 Real Root Of -489*x^4-807*x^3+780*x^2-805*x+590 2584053654550289 m001 (Pi+MertensB1)/ln(2+3^(1/2)) 2584053656178129 a007 Real Root Of -146*x^4-621*x^3-861*x^2-354*x+629 2584053662938329 b008 Sqrt[2]+(3*FresnelC[1])/2 2584053663627149 m008 (2/5*Pi^4+5/6)/(1/2*Pi^5+1) 2584053665570905 a007 Real Root Of 281*x^4+401*x^3-590*x^2+466*x-466 2584053670386419 a007 Real Root Of 906*x^4+987*x^3+167*x^2-665*x-170 2584053689961936 r005 Im(z^2+c),c=21/122+12/61*I,n=12 2584053708042758 m001 1/ln(Trott)^2*MadelungNaCl^2*sqrt(3) 2584053709049195 m005 (1/2*exp(1)+2)/(7/12*exp(1)-2/7) 2584053733740396 r005 Im(z^2+c),c=-75/118+1/47*I,n=12 2584053739144221 a007 Real Root Of -283*x^4-866*x^3-544*x^2-887*x-984 2584053740298918 s001 sum(exp(-2*Pi/3)^n*A203069[n],n=1..infinity) 2584053742505887 m001 (-Chi(1)+ZetaQ(4))/(5^(1/2)+1) 2584053751090367 p001 sum(1/(398*n+39)/(12^n),n=0..infinity) 2584053752626496 a005 (1/sin(63/157*Pi))^302 2584053759654086 r005 Re(z^2+c),c=-36/29+1/47*I,n=14 2584053767172286 r009 Im(z^3+c),c=-11/70+51/59*I,n=14 2584053768810353 m001 Kolakoski^2/FeigenbaumDelta/ln(Lehmer) 2584053786446688 m005 (1/2*Pi-5/8)/(5/9*Catalan-1/7) 2584053792564445 a001 1/72*377^(37/42) 2584053794428434 q001 269/1041 2584053798592829 m008 (2/5*Pi^5+2)/(1/2*Pi^6+3/4) 2584053803097962 a007 Real Root Of 506*x^4+954*x^3-754*x^2+569*x+405 2584053821192676 s002 sum(A279803[n]/(2^n+1),n=1..infinity) 2584053826361946 m005 (7/6+1/4*5^(1/2))/(4*3^(1/2)-1/4) 2584053833363084 r005 Im(z^2+c),c=-13/18+21/128*I,n=47 2584053838847126 r009 Im(z^3+c),c=-11/27+9/64*I,n=3 2584053840416243 r005 Im(z^2+c),c=-91/114+6/43*I,n=60 2584053846620958 m005 (1/2*exp(1)+1/8)/(4/9*gamma-6) 2584053859839738 m001 Pi-exp(Pi)*ln(5)/GAMMA(17/24) 2584053870090109 a008 Real Root of x^4-x^3-37*x^2-74*x-6 2584053872708798 r009 Re(z^3+c),c=-4/19+50/57*I,n=5 2584053873008968 l006 ln(335/4439) 2584053879913030 m001 Shi(1)^(2^(1/2))/(cos(1)^(2^(1/2))) 2584053908713132 a007 Real Root Of 293*x^4+645*x^3+49*x^2+683*x-497 2584053910729787 m001 Magata*(RenyiParking+Trott) 2584053911131242 p003 LerchPhi(1/5,4,349/138) 2584053912902223 m001 (Gompertz+Thue)/(Psi(2,1/3)-Zeta(3)) 2584053916149164 r005 Im(z^2+c),c=-10/27+25/58*I,n=23 2584053926918069 r005 Re(z^2+c),c=-33/64+16/35*I,n=17 2584053934414210 p004 log(34613/26731) 2584053960816785 h005 exp(cos(Pi*5/23)+cos(Pi*4/9)) 2584053961456151 r008 a(0)=3,K{-n^6,-4+3*n^3+n^2+5*n} 2584053962234745 r005 Re(z^2+c),c=-25/102+27/64*I,n=12 2584053972240935 a007 Real Root Of -356*x^4-854*x^3+455*x^2+984*x+642 2584053975753679 a007 Real Root Of 415*x^4-168*x^3+918*x^2-619*x-226 2584053978780691 r005 Im(z^2+c),c=37/126+5/62*I,n=32 2584053980436158 a001 281/1602508992*3^(6/17) 2584053982364409 a003 sin(Pi*23/103)-sin(Pi*37/103) 2584053994826013 p001 sum(1/(487*n+192)/n/(6^n),n=1..infinity) 2584054006923796 m001 ln(GAMMA(1/6))*GlaisherKinkelin*GAMMA(19/24) 2584054009806365 a003 2^(1/2)+cos(1/15*Pi)-cos(4/9*Pi)+cos(8/21*Pi) 2584054018558767 m002 -2+ProductLog[Pi]+(3*Sinh[Pi])/Pi^2 2584054031587231 m001 (ArtinRank2+FeigenbaumC)/(3^(1/3)-arctan(1/2)) 2584054032786276 m001 (Otter-PolyaRandomWalk3D)/(ln(2)-Niven) 2584054034370403 r005 Re(z^2+c),c=-103/114+12/29*I,n=2 2584054040231557 r004 Im(z^2+c),c=5/8*I,z(0)=I,n=35 2584054048997717 a007 Real Root Of -32*x^4+392*x^3+875*x^2-570*x+875 2584054052019627 a007 Real Root Of 66*x^4-3*x^3-379*x^2+277*x+252 2584054056089426 a007 Real Root Of -380*x^4-541*x^3+998*x^2-259*x+275 2584054060714600 m005 (4/5*Catalan-5/6)/(Pi+3/4) 2584054066372857 r005 Re(z^2+c),c=-27/86+47/61*I,n=3 2584054077187223 r005 Re(z^2+c),c=1/7+5/16*I,n=8 2584054081051273 a007 Real Root Of 37*x^4+992*x^3+930*x^2+29*x-803 2584054085823173 a007 Real Root Of 146*x^4+99*x^3-615*x^2+219*x-129 2584054093690671 m001 ln(gamma)/OrthogonalArrays*TwinPrimes 2584054100195235 a008 Real Root of (-6+6*x+2*x^2-5*x^3+6*x^4+3*x^5) 2584054109735356 r009 Im(z^3+c),c=-13/90+14/53*I,n=11 2584054110100000 m001 (LandauRamanujan+TwinPrimes)/Psi(2,1/3) 2584054111099153 r005 Re(z^2+c),c=-157/126+1/61*I,n=22 2584054113789218 m002 Cosh[Pi]/4+Pi^9*Csch[Pi] 2584054117615724 l006 ln(1577/2042) 2584054123737817 a001 521/24157817*6557470319842^(17/24) 2584054135030471 a001 521/6765*63245986^(17/24) 2584054143740931 a003 cos(Pi*1/77)/cos(Pi*34/91) 2584054151998598 a001 47/4052739537881*21^(5/19) 2584054162749306 m005 (1/3*5^(1/2)-1/2)/(1/7*Zeta(3)+7/9) 2584054164146118 r005 Re(z^2+c),c=19/60+11/51*I,n=7 2584054172948431 m001 (FeigenbaumMu-LambertW(1))/(Rabbit+ZetaP(2)) 2584054174110108 a007 Real Root Of -245*x^4-343*x^3+835*x^2+531*x+802 2584054189617532 m001 Niven/(Lehmer^Kolakoski) 2584054194063627 a001 1/311187*1597^(39/43) 2584054201774271 r005 Im(z^2+c),c=-9/16+37/98*I,n=22 2584054204093318 a003 cos(Pi*10/61)*cos(Pi*40/99) 2584054207272525 b008 16/3+PolyLog[2,-5] 2584054210164870 a007 Real Root Of 761*x^4-466*x^3+496*x^2-648*x-212 2584054211261108 l006 ln(666/8825) 2584054222793020 s002 sum(A201322[n]/(exp(n)+1),n=1..infinity) 2584054225877584 r005 Re(z^2+c),c=-27/94+17/58*I,n=14 2584054236143613 a007 Real Root Of 233*x^4+368*x^3-599*x^2-145*x-414 2584054238043110 r005 Im(z^2+c),c=-45/118+15/34*I,n=25 2584054244423782 m001 exp(-1/2*Pi)^QuadraticClass/gamma(2) 2584054245816370 r009 Im(z^3+c),c=-13/90+14/53*I,n=12 2584054246085446 r009 Im(z^3+c),c=-13/90+14/53*I,n=14 2584054248753664 r009 Im(z^3+c),c=-13/90+14/53*I,n=17 2584054248793108 r009 Im(z^3+c),c=-13/90+14/53*I,n=20 2584054248793428 r009 Im(z^3+c),c=-13/90+14/53*I,n=19 2584054248793534 r009 Im(z^3+c),c=-13/90+14/53*I,n=22 2584054248793550 r009 Im(z^3+c),c=-13/90+14/53*I,n=23 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=25 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=28 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=31 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=33 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=34 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=36 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=37 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=39 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=42 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=45 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=44 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=47 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=48 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=50 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=53 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=56 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=58 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=59 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=61 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=62 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=64 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=63 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=60 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=57 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=55 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=54 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=51 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=52 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=49 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=46 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=43 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=41 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=40 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=38 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=35 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=32 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=30 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=29 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=27 2584054248793553 r009 Im(z^3+c),c=-13/90+14/53*I,n=26 2584054248793555 r009 Im(z^3+c),c=-13/90+14/53*I,n=24 2584054248793699 r009 Im(z^3+c),c=-13/90+14/53*I,n=21 2584054248801631 r009 Im(z^3+c),c=-13/90+14/53*I,n=18 2584054248866110 r009 Im(z^3+c),c=-13/90+14/53*I,n=16 2584054249081810 r009 Im(z^3+c),c=-13/90+14/53*I,n=15 2584054258058491 r009 Im(z^3+c),c=-13/90+14/53*I,n=13 2584054262770135 m005 (1/2*Pi+4/7)/(27/10+5/2*5^(1/2)) 2584054274203435 l006 ln(7411/7605) 2584054281039631 r005 Im(z^2+c),c=19/86+4/25*I,n=16 2584054281659304 r002 8th iterates of z^2 + 2584054284657458 a007 Real Root Of 162*x^4+450*x^3-109*x^2-117*x+967 2584054286188029 a001 199/10946*21^(34/39) 2584054295246975 m001 (GAMMA(17/24)-Otter)/(Trott+ZetaQ(2)) 2584054298353492 m001 KhintchineLevy^2*exp(Backhouse)/GAMMA(7/12)^2 2584054304973472 a007 Real Root Of 864*x^4-108*x^3-300*x^2-441*x+132 2584054311653744 m001 (Landau+TwinPrimes)/(Chi(1)-Conway) 2584054312593453 r009 Re(z^3+c),c=-39/94+16/33*I,n=60 2584054324993378 m001 Pi+ln(2)/ln(10)-ln(2)+Zeta(1,-1) 2584054371815637 r005 Im(z^2+c),c=-11/13+1/61*I,n=17 2584054375525994 a001 161/17*196418^(37/57) 2584054394994055 m001 (PlouffeB-TwinPrimes)/(gamma(2)-CareFree) 2584054410957232 m007 (-5*gamma-10*ln(2)+3/5)/(-3/4*gamma+4) 2584054411891710 a007 Real Root Of -512*x^4+562*x^3-485*x^2+254*x+110 2584054424764293 m001 5^(1/2)/(FeigenbaumC-cos(1/12*Pi)) 2584054434294752 r005 Re(z^2+c),c=-19/62+11/53*I,n=15 2584054435387728 a001 2/1346269*21^(2/11) 2584054438634764 a007 Real Root Of 262*x^4+618*x^3-359*x^2-705*x-443 2584054443804119 a007 Real Root Of 889*x^4-764*x^3-879*x^2-635*x+232 2584054449612349 m005 (-1/66+1/6*5^(1/2))/(4/9*Catalan-6/11) 2584054452725639 r005 Re(z^2+c),c=-19/26+11/79*I,n=25 2584054467749822 r002 43th iterates of z^2 + 2584054472808204 m001 1/ln(GAMMA(5/12))/BesselJ(0,1)/sin(Pi/12)^2 2584054476059556 m001 (MasserGramain+Riemann2ndZero)^Shi(1) 2584054491781391 b008 1/4+Sqrt[2]*Erfi[1] 2584054497021099 m001 (ln(Pi)-3^(1/3))/(sin(1/12*Pi)-Artin) 2584054504342804 m001 (ln(2^(1/2)+1)+Zeta(1,-1))/(Conway+Porter) 2584054508478563 m006 (2/3*exp(2*Pi)+1)/(1/4*Pi+3/5) 2584054534804880 r002 27th iterates of z^2 + 2584054538203335 a007 Real Root Of 229*x^4+189*x^3-869*x^2+799*x+918 2584054539629426 m001 GAMMA(19/24)/ln(2)*ln(10)*LaplaceLimit 2584054539715640 r009 Re(z^3+c),c=-37/94+19/43*I,n=41 2584054540343327 r002 35th iterates of z^2 + 2584054543282069 r005 Im(z^2+c),c=15/52+2/23*I,n=47 2584054543603859 m001 (-ln(gamma)+Ei(1,1))/(Chi(1)-cos(1)) 2584054543765949 s002 sum(A227276[n]/(2^n-1),n=1..infinity) 2584054548256492 a001 3/267914296*144^(12/19) 2584054548490236 r009 Re(z^3+c),c=-13/64+43/49*I,n=61 2584054549610244 r005 Re(z^2+c),c=-3/13+40/57*I,n=21 2584054553280023 m005 (1/2*gamma-5/8)/(7/8*Zeta(3)+1/4) 2584054553600770 l006 ln(331/4386) 2584054554703358 r005 Re(z^2+c),c=13/90+10/23*I,n=49 2584054554830748 a005 (1/cos(25/164*Pi))^471 2584054561662662 a001 7/1134903170*46368^(2/15) 2584054561694712 a001 7/7778742049*86267571272^(2/15) 2584054561694712 a001 7/2971215073*63245986^(2/15) 2584054563796493 r005 Re(z^2+c),c=31/106+24/59*I,n=43 2584054578328397 a007 Real Root Of 663*x^4+317*x^3+414*x^2-847*x-244 2584054585793122 r009 Im(z^3+c),c=-47/106+1/8*I,n=29 2584054585882327 a007 Real Root Of 387*x^4+723*x^3-467*x^2+871*x+589 2584054588237204 r002 32th iterates of z^2 + 2584054588950398 a003 -3/2+cos(11/30*Pi)-cos(4/27*Pi)-cos(8/27*Pi) 2584054615510602 a007 Real Root Of -334*x^4-862*x^3-201*x^2-597*x-182 2584054625395741 a001 8/7*64079^(24/49) 2584054626916906 m001 1/Si(Pi)*Cahen^2/ln(BesselK(0,1)) 2584054641179059 m001 FeigenbaumB*Conway^2*ln(sin(Pi/12))^2 2584054646852591 a007 Real Root Of -2*x^4+289*x^3+856*x^2+411*x+422 2584054647560374 a007 Real Root Of 327*x^4-328*x^3+76*x^2-669*x+172 2584054654382218 m005 (1/2*Pi-4/11)/(1/5*2^(1/2)-3/4) 2584054661094573 r005 Im(z^2+c),c=-103/110+6/25*I,n=35 2584054665364039 r009 Re(z^3+c),c=-13/90+45/53*I,n=46 2584054683814554 a007 Real Root Of -218*x^4-588*x^3-333*x^2-616*x+206 2584054690821253 m005 (1/3*gamma-1/10)/(3/5*Zeta(3)-4/11) 2584054731304250 m001 (ErdosBorwein-Porter)/cos(1) 2584054740310150 m001 (RenyiParking+TwinPrimes)/(Psi(2,1/3)+Cahen) 2584054745596598 m008 (1/3*Pi^6+3/5)/(3*Pi+3) 2584054751159811 m001 (Magata-MertensB2)/(arctan(1/3)+Gompertz) 2584054754067008 h001 (1/6*exp(1)+3/4)/(3/5*exp(2)+2/9) 2584054760462378 m001 (-Grothendieck+Lehmer)/(1+Zeta(1/2)) 2584054783468644 a007 Real Root Of 304*x^4+662*x^3-353*x^2+3*x+233 2584054797401179 a007 Real Root Of 630*x^4-56*x^3+387*x^2-587*x+124 2584054801856907 s002 sum(A213900[n]/((10^n+1)/n),n=1..infinity) 2584054815214784 m001 (3^(1/3)+GAMMA(7/12))/(Rabbit+TreeGrowth2nd) 2584054829110197 m001 FeigenbaumMu-cos(1/12*Pi)^HardyLittlewoodC5 2584054834596148 b008 3-(5*Sqrt[2])/17 2584054838500481 m009 (2/3*Psi(1,3/4)+3)/(2/5*Psi(1,3/4)+4/5) 2584054839744342 m002 Sinh[Pi]/8+Log[Pi]*Tanh[Pi] 2584054842076119 m001 (BesselJ(0,1)*MertensB1+PlouffeB)/MertensB1 2584054846249100 a007 Real Root Of 232*x^4+162*x^3-854*x^2+749*x+89 2584054847647408 r004 Re(z^2+c),c=-3/11-8/23*I,z(0)=-1,n=25 2584054852945130 m001 (PlouffeB+Thue)/(BesselK(0,1)+Zeta(1,2)) 2584054854354501 a005 (1/cos(17/150*Pi))^619 2584054857326952 h001 (-5*exp(2/3)-8)/(-exp(-2)+7) 2584054881856907 s002 sum(A213648[n]/((10^n+1)/n),n=1..infinity) 2584054884474393 l006 ln(6386/8269) 2584054891947801 m001 ln(Rabbit)^2/FeigenbaumAlpha*GAMMA(1/24)^2 2584054892616498 a001 1/11592*34^(14/45) 2584054900102497 l006 ln(658/8719) 2584054901637512 r005 Re(z^2+c),c=-13/46+8/23*I,n=6 2584054915146163 m005 (1/3*2^(1/2)-2/5)/(4/5*Pi+1/4) 2584054916539577 m001 HardyLittlewoodC4/((3^(1/3))^Weierstrass) 2584054920776645 r002 3th iterates of z^2 + 2584054941094644 a007 Real Root Of 386*x^4+879*x^3+53*x^2+751*x-457 2584054947189852 m002 Pi^(-4)+Tanh[Pi]^2/4 2584054988735700 r005 Im(z^2+c),c=-3/58+16/51*I,n=22 2584054989672591 a003 sin(Pi*5/71)/cos(Pi*17/96) 2584054992106587 m009 (1/4*Psi(1,3/4)-1/2)/(24*Catalan+3*Pi^2+5/6) 2584054993578198 p003 LerchPhi(1/8,2,14/225) 2584054996892455 r005 Re(z^2+c),c=-11/60+17/28*I,n=61 2584054997211696 p003 LerchPhi(1/12,6,278/151) 2584055002342151 m001 Riemann3rdZero+Sarnak^gamma 2584055003834790 a007 Real Root Of 580*x^4-607*x^3-659*x^2-481*x-12 2584055020377823 r005 Re(z^2+c),c=-37/114+1/61*I,n=9 2584055021069341 r009 Im(z^3+c),c=-13/90+14/53*I,n=10 2584055026779032 m001 (2/3)^GAMMA(11/12)+GAMMA(11/24) 2584055028270100 r005 Im(z^2+c),c=-8/27+17/42*I,n=28 2584055031832423 m001 1/Zeta(5)*exp(LaplaceLimit)*sinh(1)^2 2584055037196543 m001 (sin(1)+Ei(1,1))/(Zeta(1,-1)+Stephens) 2584055040825317 a007 Real Root Of 243*x^4+401*x^3-387*x^2+641*x+325 2584055042087128 a001 75025/7*47^(8/35) 2584055059513076 a008 Real Root of x^2-x-66515 2584055061314846 a007 Real Root Of 268*x^4+583*x^3-649*x^2-580*x+945 2584055069688527 a007 Real Root Of 18*x^4+449*x^3-402*x^2+349*x-868 2584055081272681 a003 sin(Pi*26/69)/cos(Pi*23/60) 2584055081664790 h001 (-6*exp(1/2)-6)/(-9*exp(2)+5) 2584055081913205 r005 Re(z^2+c),c=-17/60+6/19*I,n=13 2584055089859082 a007 Real Root Of 229*x^4+747*x^3+278*x^2-696*x-976 2584055095129307 r002 28th iterates of z^2 + 2584055095284142 a001 843/17711*8^(48/59) 2584055096085359 r002 7th iterates of z^2 + 2584055097033726 a007 Real Root Of 62*x^4-415*x^3+187*x^2-726*x+182 2584055104012055 a001 21/521*9349^(41/58) 2584055104854479 r005 Re(z^2+c),c=-10/31+1/13*I,n=14 2584055106950877 a001 64079/233*610^(17/24) 2584055116774463 r005 Im(z^2+c),c=-1/52+16/53*I,n=6 2584055123738211 r009 Im(z^3+c),c=-33/94+11/56*I,n=19 2584055126356004 r005 Im(z^2+c),c=-23/18+103/223*I,n=3 2584055132861194 h001 (3/7*exp(2)+1/4)/(1/10*exp(2)+7/12) 2584055135477534 m002 -4*Coth[Pi]+(5*Log[Pi])/4 2584055135947893 l006 ln(4809/6227) 2584055156204980 m001 1/GAMMA(13/24)^2/exp(FeigenbaumD)*Zeta(7)^2 2584055167802235 m001 (Ei(1)+Backhouse)/(HardyLittlewoodC3+Robbin) 2584055170934036 r005 Re(z^2+c),c=-13/90+22/41*I,n=14 2584055176598519 m005 (1/12+1/6*5^(1/2))/(7/9*Catalan-8/9) 2584055182962330 r002 24th iterates of z^2 + 2584055187070854 r005 Im(z^2+c),c=-31/102+28/43*I,n=47 2584055187167676 r005 Im(z^2+c),c=-11/23+19/42*I,n=55 2584055190471165 m001 Shi(1)^ln(Pi)/ThueMorse 2584055198421528 m001 DuboisRaymond+HardyLittlewoodC3+Riemann3rdZero 2584055205367925 m001 GAMMA(5/6)^2/Lehmer*ln(cos(Pi/12))^2 2584055213762388 m001 GAMMA(1/3)-ln(1+sqrt(2))*OneNinth 2584055225715246 m001 (Kolakoski+Salem)/(Cahen-LambertW(1)) 2584055227277014 r005 Im(z^2+c),c=-41/36+1/31*I,n=26 2584055230934616 m001 (Conway-Si(Pi))/(DuboisRaymond+Tetranacci) 2584055240727408 m005 (1/2*3^(1/2)+3/10)/(5/6*2^(1/2)-8/11) 2584055243058996 m001 (Mills+Salem)/(Zeta(1,-1)+MertensB1) 2584055249953680 m002 -Pi+Pi^7*Sech[Pi]+Tanh[Pi] 2584055250842656 l006 ln(327/4333) 2584055269552206 m001 (LaplaceLimit+Trott)/(1+ErdosBorwein) 2584055270909717 m005 (1/2*2^(1/2)-1/11)/(6/7*3^(1/2)+9/10) 2584055275040935 r005 Im(z^2+c),c=-21/31+3/58*I,n=52 2584055284030883 m001 ln(2+3^(1/2))^(FeigenbaumDelta/GAMMA(2/3)) 2584055284030883 m001 ln(2+sqrt(3))^(FeigenbaumDelta/GAMMA(2/3)) 2584055305095270 m001 (StolarskyHarborth+ZetaP(3))^FeigenbaumD 2584055315213372 r005 Re(z^2+c),c=-19/66+12/41*I,n=19 2584055328202218 r005 Im(z^2+c),c=1/24+16/59*I,n=11 2584055328544137 m001 OrthogonalArrays+(3^(1/3))^ZetaP(2) 2584055331991894 m001 FeigenbaumC^2*CareFree^2*exp(BesselJ(1,1)) 2584055341612117 r002 3th iterates of z^2 + 2584055348734409 a007 Real Root Of -389*x^4+634*x^3+103*x^2+976*x+258 2584055358348716 r002 9th iterates of z^2 + 2584055364206826 r005 Im(z^2+c),c=-125/114+13/56*I,n=40 2584055376054499 a003 cos(Pi*7/79)/cos(Pi*39/103) 2584055379643684 m001 Zeta(1,-1)/cos(1/12*Pi)/LaplaceLimit 2584055383222906 m001 Trott/(Sarnak^Khinchin) 2584055387121248 r005 Im(z^2+c),c=-11/48+12/29*I,n=8 2584055401212065 r005 Im(z^2+c),c=-19/56+18/43*I,n=53 2584055420867963 b008 ArcCsc[E*Pi^Pi^(-1)] 2584055433461362 r005 Im(z^2+c),c=-7/94+11/34*I,n=12 2584055439810980 a007 Real Root Of -317*x^4+886*x^3+123*x^2+745*x+201 2584055443123099 m001 exp((3^(1/3)))^2/Sierpinski/GAMMA(1/3) 2584055448685317 a007 Real Root Of -202*x^4-137*x^3+812*x^2-234*x+616 2584055449294540 a001 5/47*29^(18/19) 2584055459272097 q001 1491/577 2584055479173909 m001 (2^(1/2)-Psi(2,1/3))/(Mills+QuadraticClass) 2584055480879442 m001 ((1+3^(1/2))^(1/2)-ThueMorse)/(Shi(1)-gamma) 2584055482515628 r009 Re(z^3+c),c=-37/98+23/56*I,n=17 2584055485372364 m001 Riemann3rdZero+StronglyCareFree+ZetaQ(2) 2584055494041834 a007 Real Root Of 310*x^4+837*x^3-234*x^2-823*x+56 2584055504740866 m001 ln(FeigenbaumD)^2/ErdosBorwein^2/Zeta(1/2) 2584055507428442 m005 (1/3*5^(1/2)-2/7)/(4/11*Pi+7/11) 2584055510243893 a007 Real Root Of -121*x^4+348*x^3+858*x^2+773*x+149 2584055513509245 r005 Re(z^2+c),c=-29/98+13/51*I,n=11 2584055514162539 a001 370248451/21*144^(1/13) 2584055514866667 m001 (ln(Pi)*gamma(2)+MertensB1)/gamma(2) 2584055516988459 k005 Champernowne real with floor(exp(1)*(54*n+41)) 2584055519261009 m005 (1/2*5^(1/2)-5/6)/(36/55+1/5*5^(1/2)) 2584055526998469 k001 Champernowne real with 147*n+111 2584055526998469 k005 Champernowne real with floor(log(2)*(212*n+161)) 2584055526998469 k005 Champernowne real with floor(sqrt(3)*(85*n+64)) 2584055526998479 k005 Champernowne real with floor(log(3)*(134*n+101)) 2584055527008479 k005 Champernowne real with floor(sqrt(2)*(104*n+79)) 2584055534538969 p004 log(21559/1627) 2584055537008489 k005 Champernowne real with floor(Catalan*(161*n+121)) 2584055546580900 a007 Real Root Of 3*x^4+775*x^3-54*x^2+514*x+130 2584055550121821 m001 (Ei(1)-Cahen)/(FeigenbaumDelta+ZetaP(3)) 2584055556115902 m001 1/Si(Pi)^2*exp(GaussKuzminWirsing)/GAMMA(7/12) 2584055559475924 m005 (1/3*2^(1/2)+1/8)/(1/9*gamma+1/6) 2584055563483382 a007 Real Root Of 540*x^4-812*x^3-949*x^2-747*x+268 2584055571658758 r002 5th iterates of z^2 + 2584055574480467 m008 (5*Pi^2+1/3)/(2*Pi^6-1/6) 2584055575023208 b008 ArcSinh[LogIntegral[2]/4] 2584055578548089 r002 2th iterates of z^2 + 2584055582264113 m001 (BesselK(0,1)+ArtinRank2)/(1-LambertW(1)) 2584055583769491 m007 (-4*gamma-8*ln(2)+1/5)/(-1/6*gamma-1/5) 2584055596374922 r005 Re(z^2+c),c=-31/106+14/51*I,n=20 2584055605899490 l006 ln(650/8613) 2584055615394632 r004 Re(z^2+c),c=-1/42-13/22*I,z(0)=I,n=18 2584055617216952 m005 (1/2*5^(1/2)-10/11)/(7/10*2^(1/2)-10/11) 2584055627889730 a007 Real Root Of -270*x^4-645*x^3-216*x^2-631*x+721 2584055632825896 l006 ln(3232/4185) 2584055635067926 m002 -(Cosh[Pi]/Pi^3)+(4*Csch[Pi])/3 2584055637447385 m001 (Ei(1)-ErdosBorwein)/(FeigenbaumKappa-Porter) 2584055645689646 m001 (3^(1/2)-cos(1))/(-GAMMA(3/4)+LandauRamanujan) 2584055647462791 r005 Im(z^2+c),c=-19/56+18/43*I,n=61 2584055654160096 r009 Re(z^3+c),c=-47/126+2/5*I,n=29 2584055654822634 r005 Re(z^2+c),c=-11/42+21/55*I,n=21 2584055656978928 p004 log(30119/2273) 2584055658338731 g007 Psi(2,7/12)+Psi(2,3/5)+Psi(2,1/3)-Psi(2,2/11) 2584055680370774 a008 Real Root of x^5-2*x^4-13*x^3+9*x^2+24*x-18 2584055681158667 r005 Re(z^2+c),c=-23/74+2/11*I,n=23 2584055697710783 s001 sum(exp(-3*Pi/4)^n*A195146[n],n=1..infinity) 2584055698509467 r009 Im(z^3+c),c=-21/46+5/48*I,n=24 2584055707087583 s001 sum(exp(-Pi/3)^(n-1)*A008952[n],n=1..infinity) 2584055714704190 m001 GAMMA(2/3)+(3^(1/3))^BesselI(1,1) 2584055719955098 m001 sqrt(1+sqrt(3))*(BesselJZeros(0,1)-sin(1)) 2584055741680139 m005 (1/2*Pi-2)/(6*exp(1)+3/10) 2584055741965711 m001 (Pi+sin(1/5*Pi))/(GAMMA(23/24)-QuadraticClass) 2584055751146946 m005 (1/2*exp(1)-7/9)/(3/11*Catalan+2) 2584055751234669 m001 (exp(1)+ArtinRank2)/(Robbin+TwinPrimes) 2584055755501643 m001 1/TreeGrowth2nd/Porter^2*ln(GAMMA(13/24))^2 2584055759035111 b008 1/13+2*Sqrt[11/7] 2584055763233661 m001 (Ei(1)+MinimumGamma)/(TreeGrowth2nd+Thue) 2584055763439821 r005 Im(z^2+c),c=39/94+19/43*I,n=4 2584055771772068 m001 (MertensB3-Rabbit)/(ln(2^(1/2)+1)+GAMMA(7/12)) 2584055774467015 r009 Im(z^3+c),c=-9/28+11/52*I,n=14 2584055776346250 r005 Re(z^2+c),c=-33/106+5/28*I,n=21 2584055781344937 a005 (1/sin(47/147*Pi))^304 2584055782224634 m002 3*Csch[Pi]-Log[Pi]^2/Pi^6 2584055784027833 m001 1/GAMMA(11/12)*exp(FeigenbaumD)^2*GAMMA(5/6)^2 2584055788121013 r002 47th iterates of z^2 + 2584055793991416 a001 602085/233 2584055796774980 m001 (gamma(2)+BesselJ(1,1))/(Landau-Rabbit) 2584055801979675 r005 Im(z^2+c),c=-7/36+17/46*I,n=22 2584055805249006 a004 Fibonacci(11)*Lucas(13)/(1/2+sqrt(5)/2)^6 2584055816766215 m002 -Pi-Cosh[Pi]/Pi^3+ProductLog[Pi]^(-1) 2584055817449703 m005 (1/2*exp(1)+4)/(5/8*exp(1)+3/8) 2584055818246538 a007 Real Root Of 79*x^4+117*x^3-179*x^2-234*x-913 2584055818518490 r005 Im(z^2+c),c=-85/118+5/27*I,n=22 2584055825588936 g001 abs(Psi(-83/24+I*1/4)) 2584055830461240 r005 Im(z^2+c),c=-83/102+4/21*I,n=13 2584055839265706 a007 Real Root Of -414*x^4-819*x^3+526*x^2-341*x-66 2584055851806046 r005 Im(z^2+c),c=-9/16+11/87*I,n=8 2584055853362163 m001 (ln(Pi)-Ei(1))/(BesselI(0,2)+GolombDickman) 2584055862976955 m001 (3^(1/3))^2*exp(FeigenbaumAlpha)*Zeta(7)^2 2584055867000203 a007 Real Root Of -887*x^4-262*x^3+438*x^2+860*x-243 2584055876675835 a007 Real Root Of -368*x^4+389*x^3+456*x^2+592*x+15 2584055886163786 a001 1/48*514229^(13/24) 2584055891049715 m001 Porter+ln(3)^Salem 2584055896123780 m008 (1/6*Pi-1)/(3/5*Pi^5+3/4) 2584055923775114 r009 Re(z^3+c),c=-23/62+19/48*I,n=26 2584055925716521 g007 Psi(2,11/12)+Psi(2,5/8)+Psi(2,3/7)-Psi(2,5/9) 2584055927048282 a007 Real Root Of -152*x^4+76*x^3+793*x^2-713*x+951 2584055950167117 m001 1/Trott^2/exp(ArtinRank2)^2*GAMMA(3/4) 2584055955168863 m001 (-ln(2)+MasserGramain)/(5^(1/2)-BesselK(0,1)) 2584055963596463 a007 Real Root Of -763*x^4+421*x^3-304*x^2+480*x+155 2584055965353185 l006 ln(323/4280) 2584055967906096 m001 (gamma(1)+TwinPrimes)/(Si(Pi)+BesselK(0,1)) 2584055989435446 r005 Re(z^2+c),c=-11/30+33/58*I,n=37 2584055996174848 m001 GAMMA(2/3)^OneNinth*Riemann3rdZero 2584055999841573 m001 RenyiParking^2*FransenRobinson^2/ln(Robbin)^2 2584056003911908 l006 ln(7602/7801) 2584056023253798 r005 Re(z^2+c),c=3/52+22/35*I,n=8 2584056026842221 m001 1/exp(Zeta(1/2))^2*HardHexagonsEntropy/Zeta(9) 2584056030412513 s002 sum(A114908[n]/((exp(n)-1)/n),n=1..infinity) 2584056036839056 r009 Re(z^3+c),c=-7/17+11/23*I,n=53 2584056038346347 m001 Riemann1stZero*ln(Niven)/cos(1)^2 2584056043291085 a007 Real Root Of 107*x^4-94*x^3-746*x^2+838*x+754 2584056063103416 r005 Im(z^2+c),c=25/102+5/36*I,n=16 2584056070617841 r005 Im(z^2+c),c=-41/90+18/41*I,n=30 2584056073912449 r005 Re(z^2+c),c=-13/56+27/58*I,n=22 2584056078491539 r005 Im(z^2+c),c=-23/18+1/92*I,n=34 2584056083428131 a003 cos(Pi*14/67)*cos(Pi*41/104) 2584056084202887 m001 gamma(3)^GAMMA(5/6)-Sierpinski 2584056086196041 a007 Real Root Of -768*x^4+942*x^3+290*x^2+661*x-203 2584056093019357 a007 Real Root Of 222*x^4-225*x^3-563*x^2-656*x+210 2584056093474774 m008 (3/5*Pi^4+1)/(3/4*Pi^3-1/4) 2584056094676309 m001 1/GAMMA(11/24)^2/TreeGrowth2nd*ln(GAMMA(7/12)) 2584056096281907 h001 (1/11*exp(1)+5/12)/(7/9*exp(1)+5/11) 2584056098659588 r005 Re(z^2+c),c=-8/31+29/45*I,n=57 2584056099043543 m001 Rabbit*(Ei(1)+KhinchinHarmonic) 2584056100718718 r005 Im(z^2+c),c=-2/21+8/13*I,n=12 2584056103657041 r005 Re(z^2+c),c=-59/74+1/38*I,n=12 2584056104887005 m001 sin(1)/Ei(1,1)/ZetaR(2) 2584056106232884 r005 Re(z^2+c),c=-7/29+17/39*I,n=16 2584056106639914 r005 Re(z^2+c),c=-35/118+15/53*I,n=8 2584056110990559 h001 (9/11*exp(2)+3/4)/(7/11*exp(1)+9/10) 2584056117564391 r005 Im(z^2+c),c=-81/118+2/7*I,n=32 2584056121773349 l006 ln(4887/6328) 2584056129412034 r005 Im(z^2+c),c=3/22+9/41*I,n=18 2584056140300560 a007 Real Root Of -927*x^4+671*x^3+842*x^2+745*x+152 2584056142860949 r005 Re(z^2+c),c=-17/98+32/55*I,n=51 2584056145635000 a001 47*(1/2*5^(1/2)+1/2)^16*18^(6/19) 2584056146789438 h001 (-4*exp(5)-5)/(-3*exp(2)-1) 2584056167630859 r005 Im(z^2+c),c=-73/90+4/25*I,n=61 2584056175901387 m001 (-GAMMA(19/24)+Sarnak)/(3^(1/2)-gamma(2)) 2584056189029192 r009 Re(z^3+c),c=-7/20+6/17*I,n=14 2584056195655816 a001 47/610*610^(10/53) 2584056202358809 r005 Re(z^2+c),c=-21/26+1/87*I,n=38 2584056203949624 r009 Re(z^3+c),c=-19/23+25/37*I,n=2 2584056208913829 r009 Re(z^3+c),c=-25/66+7/17*I,n=40 2584056215315363 g005 GAMMA(7/12)*GAMMA(3/7)/GAMMA(1/11)/GAMMA(4/5) 2584056232728598 m001 (Psi(1,1/3)-sin(1/5*Pi))/(Otter+Sarnak) 2584056244825232 r005 Re(z^2+c),c=-25/82+3/40*I,n=3 2584056245266386 m001 Rabbit^2/ln(PisotVijayaraghavan)*(3^(1/3)) 2584056245375793 r009 Re(z^3+c),c=-21/52+30/61*I,n=21 2584056248221153 a007 Real Root Of 297*x^4-510*x^3+388*x^2-795*x+187 2584056262001307 a001 34/4106118243*199^(13/20) 2584056274792584 r009 Re(z^3+c),c=-43/102+1/2*I,n=56 2584056290884900 a007 Real Root Of -223*x^4-99*x^3+751*x^2-916*x+853 2584056301210015 r005 Re(z^2+c),c=-17/56+1/24*I,n=3 2584056308340622 m001 sinh(1)^2/cosh(1)/exp(sqrt(Pi))^2 2584056310165347 m001 (Artin+KomornikLoreti)/(3^(1/2)-Psi(1,1/3)) 2584056318501930 a003 sin(Pi*7/74)-sin(Pi*21/113) 2584056321235139 r005 Re(z^2+c),c=-3/13+35/62*I,n=26 2584056326986050 r005 Re(z^2+c),c=-5/8+64/147*I,n=28 2584056327705598 a001 1/41*2^(1/12) 2584056327941781 m001 1/CareFree*exp(GaussKuzminWirsing)^2/Zeta(7) 2584056329285923 l006 ln(642/8507) 2584056332887716 a007 Real Root Of 18*x^4+470*x^3+141*x^2+402*x+265 2584056333407030 r005 Im(z^2+c),c=5/18+5/49*I,n=41 2584056334362395 m001 (-Champernowne+ZetaP(4))/(2^(1/3)-ln(gamma)) 2584056343584028 a007 Real Root Of -321*x^4-748*x^3-172*x^2-850*x+358 2584056362608241 a007 Real Root Of 89*x^4-181*x^3-948*x^2+514*x+567 2584056363332217 l006 ln(6542/8471) 2584056365820521 p001 sum((-1)^n/(229*n+86)/n/(12^n),n=1..infinity) 2584056374101165 a007 Real Root Of 514*x^4+929*x^3-989*x^2-241*x-907 2584056380822667 a007 Real Root Of 482*x^4+990*x^3-680*x^2-378*x-845 2584056383923855 m001 1/sin(1)/Champernowne^2/ln(sqrt(3))^2 2584056385898760 a007 Real Root Of 189*x^4+406*x^3-259*x^2-296*x-457 2584056392190993 m001 (HeathBrownMoroz-ZetaP(4))/(ln(Pi)+Pi^(1/2)) 2584056394045100 a007 Real Root Of 199*x^4+484*x^3+53*x^2+59*x-723 2584056399132321 q001 953/3688 2584056402572222 m001 (ReciprocalLucas-StolarskyHarborth)/gamma(1) 2584056406552716 a007 Real Root Of 325*x^4+961*x^3+490*x^2+743*x+739 2584056420060838 r005 Im(z^2+c),c=-9/19+25/53*I,n=51 2584056424807800 a001 18/1597*28657^(45/46) 2584056429079747 m001 (CopelandErdos-Totient)/(Ei(1,1)+exp(-1/2*Pi)) 2584056440359460 m005 (1/2*5^(1/2)-5/6)/(3/8*2^(1/2)+4/7) 2584056442117492 a007 Real Root Of 324*x^4+468*x^3-855*x^2+171*x-220 2584056460192310 m001 (Bloch+CopelandErdos)/(ln(5)+GAMMA(5/6)) 2584056461168320 r005 Im(z^2+c),c=-37/60+25/37*I,n=6 2584056466737131 m001 MertensB1^(Pi^(1/2))*Grothendieck^(Pi^(1/2)) 2584056469548733 r005 Re(z^2+c),c=-13/40+1/43*I,n=12 2584056471431521 m001 (1-sin(1))/(-GolombDickman+Trott) 2584056477172721 r005 Re(z^2+c),c=-13/58+27/56*I,n=58 2584056481694992 a007 Real Root Of 186*x^4+33*x^3-926*x^2+530*x-171 2584056519105868 r005 Im(z^2+c),c=-5/102+52/63*I,n=3 2584056530896631 m005 (1/2*Zeta(3)-3/10)/(7/11*Zeta(3)+2/5) 2584056538090757 r009 Re(z^3+c),c=-3/19+31/33*I,n=30 2584056544229990 r005 Re(z^2+c),c=-75/58+3/25*I,n=8 2584056558700864 r009 Im(z^3+c),c=-31/66+5/58*I,n=39 2584056559547767 p004 log(23371/18049) 2584056560128333 m001 (-Porter+QuadraticClass)/(1+BesselI(0,1)) 2584056572560556 m005 (5*Catalan+4/5)/(2*Catalan+1/4) 2584056597991051 m004 (-25*Sqrt[5])/(6*Pi)+ProductLog[Sqrt[5]*Pi]/4 2584056601476492 r005 Im(z^2+c),c=-111/94+4/21*I,n=38 2584056606064594 r009 Re(z^3+c),c=-25/66+7/17*I,n=39 2584056628136151 r005 Im(z^2+c),c=-11/9+17/127*I,n=20 2584056630615472 r005 Re(z^2+c),c=37/106+31/58*I,n=8 2584056631905462 a007 Real Root Of -244*x^4+753*x^3-589*x^2-257*x-13 2584056645985756 r002 8th iterates of z^2 + 2584056646524631 m001 (Pi+ln(Pi))/(Champernowne-Grothendieck) 2584056655293629 r005 Re(z^2+c),c=-7/34+25/44*I,n=4 2584056672405981 p001 sum(1/(439*n+399)/(16^n),n=0..infinity) 2584056673712405 p001 sum(1/(155*n+8)/n/(24^n),n=0..infinity) 2584056678407279 a001 3/199*18^(11/59) 2584056689580939 r002 50i'th iterates of 2*x/(1-x^2) of 2584056690149235 r005 Re(z^2+c),c=-31/114+13/29*I,n=11 2584056693796528 s002 sum(A099707[n]/(n*pi^n-1),n=1..infinity) 2584056693958270 m005 (1/2*exp(1)-7/12)/(1/9*Zeta(3)+1/6) 2584056697781945 l006 ln(319/4227) 2584056721970739 m001 ReciprocalFibonacci*StronglyCareFree^MertensB2 2584056736842903 m001 1/exp(GAMMA(5/12))^2/TwinPrimes*Zeta(3) 2584056741821248 a001 1597/199*521^(12/13) 2584056744447250 m001 (GAMMA(19/24)-Zeta(3))^GAMMA(23/24) 2584056744447250 m001 (Zeta(3)-GAMMA(19/24))^GAMMA(23/24) 2584056748759366 m001 (Shi(1)-Zeta(1,2))^exp(1/Pi) 2584056753159600 r009 Re(z^3+c),c=-19/122+49/55*I,n=50 2584056758262816 r005 Re(z^2+c),c=-15/58+9/23*I,n=34 2584056768166395 r005 Im(z^2+c),c=-35/114+9/22*I,n=20 2584056785237234 r005 Im(z^2+c),c=-17/26+25/68*I,n=6 2584056787927065 r005 Re(z^2+c),c=3/10+7/44*I,n=43 2584056792570813 a008 Real Root of x^5-x^4-13*x^3+x^2+26*x-4 2584056793561112 h001 (3/7*exp(2)+5/9)/(3/10*exp(1)+5/8) 2584056803625044 a007 Real Root Of 191*x^4+66*x^3-838*x^2+609*x-208 2584056813636345 r005 Re(z^2+c),c=-25/34+25/99*I,n=2 2584056834618126 r005 Re(z^2+c),c=17/64+8/61*I,n=22 2584056850359233 m001 BesselJ(1,1)/ln(Trott)^2*Zeta(3) 2584056857131722 r005 Re(z^2+c),c=13/46+7/48*I,n=31 2584056863897004 p001 sum((-1)^n/(242*n+223)/n/(8^n),n=1..infinity) 2584056866937505 a007 Real Root Of 203*x^4+202*x^3-827*x^2+304*x+742 2584056869359303 m001 (ln(Pi)+BesselI(1,1))/Robbin 2584056882823733 a007 Real Root Of 260*x^4+504*x^3-542*x^2-135*x+374 2584056882984071 h001 (7/8*exp(2)+5/12)/(6/7*exp(1)+1/3) 2584056895748722 m001 (2*Pi/GAMMA(5/6))^Catalan+Riemann2ndZero 2584056896720680 r005 Im(z^2+c),c=-21/86+25/51*I,n=8 2584056911981987 r005 Re(z^2+c),c=-14/19+16/63*I,n=2 2584056916402215 a003 sin(Pi*29/99)/cos(Pi*25/51) 2584056917735161 r005 Re(z^2+c),c=-35/122+19/64*I,n=23 2584056923470282 r009 Re(z^3+c),c=-9/58+17/19*I,n=36 2584056974744816 a003 cos(Pi*22/53)*sin(Pi*38/87) 2584056979157170 a007 Real Root Of -902*x^4-318*x^3-413*x^2+522*x+161 2584056981364952 r005 Im(z^2+c),c=-19/56+18/43*I,n=64 2584056984438029 m001 TwinPrimes^Backhouse*Riemann1stZero^Backhouse 2584056987569256 m005 (1/2*exp(1)-1/5)/(4/11*2^(1/2)-5) 2584056996176941 r005 Re(z^2+c),c=-10/31+5/63*I,n=11 2584057008553862 r002 48th iterates of z^2 + 2584057010031492 a001 7/121393*1346269^(28/47) 2584057015470492 r009 Re(z^3+c),c=-37/98+7/17*I,n=16 2584057043108419 g007 Psi(2,2/9)+14*Zeta(3)-Psi(2,1/11)-Psi(2,2/7) 2584057048188830 h001 (-8*exp(-3)-1)/(-8*exp(2)+5) 2584057049731276 r009 Re(z^3+c),c=-85/114+40/63*I,n=2 2584057069258083 r005 Im(z^2+c),c=-11/30+16/37*I,n=25 2584057070927621 l006 ln(634/8401) 2584057076624137 l006 ln(1655/2143) 2584057080710120 m001 (Otter+PrimesInBinary)/(gamma(3)-Mills) 2584057086407312 m001 1/KhintchineLevy^2/Bloch*ln(GAMMA(1/6)) 2584057099022799 r009 Re(z^3+c),c=-37/94+19/43*I,n=51 2584057101574338 r005 Im(z^2+c),c=-31/74+22/43*I,n=28 2584057106205426 a007 Real Root Of 398*x^4+996*x^3-452*x^2-692*x+670 2584057106444869 r005 Im(z^2+c),c=-1/42+19/63*I,n=15 2584057126447266 m005 (1/2*Zeta(3)+1)/(6*Catalan+7/10) 2584057127212823 r002 6th iterates of z^2 + 2584057128801770 g007 Psi(2,6/7)+Psi(2,2/7)-Psi(2,7/12)-Psi(2,1/11) 2584057147818728 v003 sum((1/6*n^3+107/6*n-8)/(n!+1),n=1..infinity) 2584057155985426 a007 Real Root Of -70*x^4+744*x^3-194*x^2+585*x-15 2584057159271530 h001 (6/7*exp(2)+2/7)/(1/4*exp(2)+5/7) 2584057160874317 m001 1/Ei(1)^2/ln(Magata)/Zeta(1,2)^2 2584057168958309 r005 Re(z^2+c),c=-7/26+5/12*I,n=11 2584057170953339 m001 1/Bloch/Artin^2*ln(Robbin)^2 2584057171584346 b008 LogIntegral[Pi+ArcCot[E]] 2584057173041612 m001 (5^(1/2)+sin(1/5*Pi))/(-ln(gamma)+Landau) 2584057173172759 m001 (-2^(1/3)+1/3)/(-2^(1/2)+5) 2584057183317461 p001 sum((-1)^n/(385*n+384)/(64^n),n=0..infinity) 2584057188777781 r005 Re(z^2+c),c=-77/60+10/59*I,n=4 2584057194067767 a001 2584/199*521^(11/13) 2584057217987351 r005 Re(z^2+c),c=-23/74+2/11*I,n=26 2584057223816233 b008 1/32+Sinh[5/3] 2584057224737190 p003 LerchPhi(1/2,6,282/103) 2584057227102853 a008 Real Root of (3+11*x+x^2+13*x^3) 2584057229828074 m001 (gamma(3)-PrimesInBinary)^GAMMA(7/12) 2584057233116921 m001 Conway^TreeGrowth2nd-Zeta(1/2) 2584057244330698 r005 Re(z^2+c),c=-7/27+20/51*I,n=19 2584057246640388 a007 Real Root Of -941*x^4-121*x^3+825*x^2+856*x-270 2584057249885110 r002 3th iterates of z^2 + 2584057266159803 a007 Real Root Of 121*x^4+64*x^3-393*x^2+506*x-359 2584057270626991 a007 Real Root Of 603*x^4+77*x^3-260*x^2-476*x-107 2584057292882509 m001 arctan(1/3)/(GlaisherKinkelin^ln(2^(1/2)+1)) 2584057294292064 r005 Im(z^2+c),c=-17/21+9/61*I,n=54 2584057299237213 m008 (3/4*Pi^3-1/6)/(1/2*Pi^2+4) 2584057303736670 a008 Real Root of x^4-x^3-25*x^2+25*x+75 2584057306040646 m001 1/exp(Trott)^2*MinimumGamma^2/cos(Pi/5) 2584057307815362 m001 Champernowne-Conway-OrthogonalArrays 2584057310523367 m001 Trott/Rabbit*exp(sqrt(2))^2 2584057317849720 a007 Real Root Of 31*x^4+772*x^3-780*x^2-718*x+898 2584057327161945 a001 23725150497407/34*89^(7/24) 2584057328153231 m009 (3*Psi(1,2/3)+3/4)/(1/3*Psi(1,3/4)+3) 2584057331803904 m001 GAMMA(2/3)*GAMMA(5/6)+GAMMA(11/12) 2584057358134079 r005 Im(z^2+c),c=45/122+1/4*I,n=57 2584057358309555 m001 (ln(2)+FeigenbaumD)/(Grothendieck-PlouffeB) 2584057362187757 r002 61th iterates of z^2 + 2584057363835652 a003 cos(Pi*12/115)/sin(Pi*8/67) 2584057366238095 m001 (Mills-StronglyCareFree)/(GAMMA(2/3)-Magata) 2584057367707161 r005 Re(z^2+c),c=-69/86+7/60*I,n=12 2584057368296043 r004 Re(z^2+c),c=3/14+3/22*I,z(0)=exp(5/8*I*Pi),n=6 2584057372893663 s002 sum(A063563[n]/((10^n-1)/n),n=1..infinity) 2584057374114438 r002 44th iterates of z^2 + 2584057375500094 a007 Real Root Of -235*x^4-214*x^3+857*x^2-642*x-596 2584057379198487 b008 3/4+E^(1/Sqrt[E]) 2584057397528518 m001 TreeGrowth2nd/ln(Porter)^2/OneNinth^2 2584057402583493 m004 15/E^(Sqrt[5]*Pi)+Sqrt[5]*Pi*Sech[Sqrt[5]*Pi] 2584057409403336 m005 (5/6*gamma-1/4)/(3/4*2^(1/2)-1/6) 2584057417405428 a001 64079/144*21^(26/45) 2584057420385685 r002 6th iterates of z^2 + 2584057422739908 a007 Real Root Of 329*x^4+517*x^3-988*x^2-229*x+257 2584057423498299 q001 684/2647 2584057431318201 a001 54018521/21*10610209857723^(1/13) 2584057431318202 a001 141422324/21*39088169^(1/13) 2584057431318202 a001 29134601/7*20365011074^(1/13) 2584057431325265 a001 228826127/21*75025^(1/13) 2584057438610861 r005 Im(z^2+c),c=-25/26+19/70*I,n=35 2584057439961517 a003 cos(Pi*30/119)/cos(Pi*40/97) 2584057448811512 l006 ln(315/4174) 2584057451853475 r005 Im(z^2+c),c=-37/98+19/44*I,n=35 2584057452953126 r005 Im(z^2+c),c=-51/98+29/63*I,n=45 2584057456677053 r005 Re(z^2+c),c=-23/74+2/11*I,n=28 2584057458416872 m001 Bloch^gamma(3)/(Bloch^BesselI(0,1)) 2584057461453398 r005 Im(z^2+c),c=-83/78+11/43*I,n=31 2584057462905668 a007 Real Root Of -261*x^4-365*x^3+607*x^2-846*x-900 2584057473516500 s001 sum(exp(-Pi/4)^(n-1)*A183151[n],n=1..infinity) 2584057478332263 r005 Re(z^2+c),c=-27/86+9/56*I,n=21 2584057479594988 r009 Im(z^3+c),c=-33/94+11/56*I,n=20 2584057492052068 m005 (1/3*3^(1/2)-1/3)/(2/11*Catalan+7/9) 2584057513104452 m005 (1/3*Zeta(3)-1/11)/(1/7*Pi+3/4) 2584057515911990 r005 Im(z^2+c),c=-31/114+23/58*I,n=31 2584057518776484 m001 Pi-Psi(1,1/3)*LambertW(1) 2584057521577661 r009 Re(z^3+c),c=-25/62+6/13*I,n=40 2584057531155351 a007 Real Root Of -101*x^4-170*x^3+54*x^2-237*x+597 2584057531757274 a007 Real Root Of -455*x^4-985*x^3+760*x^2+958*x+692 2584057535659740 r005 Im(z^2+c),c=-47/110+2/47*I,n=30 2584057538291667 m001 HardHexagonsEntropy^Backhouse*BesselI(1,2) 2584057539417371 p001 sum((-1)^n/(115*n+36)/n/(256^n),n=0..infinity) 2584057539772714 h001 (4/11*exp(1)+5/6)/(9/10*exp(2)+2/5) 2584057565871928 m005 (1/2*exp(1)-10/11)/(3/5*5^(1/2)+2/5) 2584057570495928 m001 Zeta(1/2)*ln(FeigenbaumB)/Zeta(5) 2584057580197673 a001 843/233*8^(52/55) 2584057582398466 a007 Real Root Of -36*x^4-926*x^3+134*x^2+608*x-248 2584057583493550 m001 (BesselK(0,1)-ln(2))/(-GAMMA(7/12)+PlouffeB) 2584057593737595 g006 Psi(1,7/11)-Psi(1,9/10)-Psi(1,8/9)-Psi(1,7/8) 2584057594249946 m001 BesselJ(0,1)^2/ErdosBorwein^2/ln(Catalan) 2584057595210871 a007 Real Root Of 436*x^4+568*x^3-992*x^2+855*x-806 2584057608323421 m004 -23*E^(Sqrt[5]*Pi)+5*Pi 2584057609880412 m005 (1/2*gamma+2)/(7/12*exp(1)-7/10) 2584057613604700 r005 Im(z^2+c),c=-77/90+4/21*I,n=47 2584057627595985 m001 1/ln(CareFree)/FeigenbaumAlpha^2*LambertW(1) 2584057634952566 r005 Re(z^2+c),c=-23/74+2/11*I,n=30 2584057636950496 p001 sum((-1)^n/(580*n+381)/(25^n),n=0..infinity) 2584057646897320 r005 Im(z^2+c),c=-7/48+6/17*I,n=11 2584057648832897 l006 ln(7793/7997) 2584057651659822 a007 Real Root Of 278*x^4+808*x^3+308*x^2-154*x-908 2584057667787623 r005 Im(z^2+c),c=11/34+17/57*I,n=5 2584057668273927 r002 29th iterates of z^2 + 2584057671919155 r005 Re(z^2+c),c=-23/74+2/11*I,n=33 2584057671932276 m001 (Stephens+ZetaQ(2))/(Pi-CareFree) 2584057672755374 m001 OrthogonalArrays*sin(1/12*Pi)^Otter 2584057673917810 a007 Real Root Of -373*x^4+675*x^3-171*x^2+706*x-181 2584057675134055 r002 19th iterates of z^2 + 2584057675525860 r005 Re(z^2+c),c=-23/74+2/11*I,n=35 2584057678883596 r005 Re(z^2+c),c=-23/74+2/11*I,n=37 2584057679733246 r005 Re(z^2+c),c=-23/74+2/11*I,n=40 2584057679782469 r005 Re(z^2+c),c=-23/74+2/11*I,n=42 2584057679844967 r005 Re(z^2+c),c=-23/74+2/11*I,n=44 2584057679863872 r005 Re(z^2+c),c=-23/74+2/11*I,n=47 2584057679864411 r005 Re(z^2+c),c=-23/74+2/11*I,n=49 2584057679865559 r005 Re(z^2+c),c=-23/74+2/11*I,n=51 2584057679865970 r005 Re(z^2+c),c=-23/74+2/11*I,n=54 2584057679865972 r005 Re(z^2+c),c=-23/74+2/11*I,n=56 2584057679865983 r005 Re(z^2+c),c=-23/74+2/11*I,n=46 2584057679865984 r005 Re(z^2+c),c=-23/74+2/11*I,n=53 2584057679865993 r005 Re(z^2+c),c=-23/74+2/11*I,n=58 2584057679866001 r005 Re(z^2+c),c=-23/74+2/11*I,n=60 2584057679866001 r005 Re(z^2+c),c=-23/74+2/11*I,n=63 2584057679866001 r005 Re(z^2+c),c=-23/74+2/11*I,n=61 2584057679866002 r005 Re(z^2+c),c=-23/74+2/11*I,n=64 2584057679866002 r005 Re(z^2+c),c=-23/74+2/11*I,n=62 2584057679866005 r005 Re(z^2+c),c=-23/74+2/11*I,n=59 2584057679866020 r005 Re(z^2+c),c=-23/74+2/11*I,n=57 2584057679866041 r005 Re(z^2+c),c=-23/74+2/11*I,n=55 2584057679866158 r005 Re(z^2+c),c=-23/74+2/11*I,n=52 2584057679866929 r005 Re(z^2+c),c=-23/74+2/11*I,n=50 2584057679868210 r005 Re(z^2+c),c=-23/74+2/11*I,n=48 2584057679872625 r005 Re(z^2+c),c=-23/74+2/11*I,n=45 2584057679911348 r005 Re(z^2+c),c=-23/74+2/11*I,n=39 2584057679912583 r005 Re(z^2+c),c=-23/74+2/11*I,n=43 2584057679988504 r005 Re(z^2+c),c=-23/74+2/11*I,n=41 2584057680130617 r005 Re(z^2+c),c=-23/74+2/11*I,n=38 2584057681056619 a007 Real Root Of 886*x^4+746*x^3-420*x^2-955*x+258 2584057681334414 m001 (GAMMA(11/12)+1/3)/(exp(1/Pi)+4) 2584057682179299 r005 Re(z^2+c),c=-23/74+2/11*I,n=36 2584057684548203 r005 Re(z^2+c),c=-23/74+2/11*I,n=32 2584057685984964 a001 1/5796*(1/2*5^(1/2)+1/2)^26*18^(13/22) 2584057686560352 r005 Re(z^2+c),c=-23/74+2/11*I,n=34 2584057689439385 r005 Re(z^2+c),c=-23/74+2/11*I,n=31 2584057698074843 m005 (1/2*Catalan-5/9)/(9/11*exp(1)-6) 2584057702382290 a007 Real Root Of -159*x^4-21*x^3+631*x^2-691*x+728 2584057702669497 a007 Real Root Of 624*x^4+938*x^3+279*x^2-993*x+219 2584057710547727 a007 Real Root Of 292*x^4+826*x^3+502*x^2+709*x-287 2584057714551595 r005 Re(z^2+c),c=-7/9+10/83*I,n=30 2584057723926413 m005 (5*gamma+2/3)/(-8/15+3/10*5^(1/2)) 2584057727493923 a007 Real Root Of -273*x^4+478*x^3-686*x^2+622*x+216 2584057738701086 m001 (Sarnak+ZetaP(4))/(HardHexagonsEntropy-Niven) 2584057751027467 m001 (5^(1/2)+arctan(1/2))/(-sin(1/12*Pi)+Conway) 2584057757534322 a007 Real Root Of 198*x^4+253*x^3-539*x^2+294*x-104 2584057773303058 l006 ln(6698/8673) 2584057777169361 h001 (5/11*exp(1)+2/9)/(5/7*exp(2)+4/11) 2584057793402029 r005 Re(z^2+c),c=-23/74+2/11*I,n=29 2584057795015880 m001 cos(Pi/12)^2/FeigenbaumB/ln(cosh(1)) 2584057816802632 r005 Im(z^2+c),c=-7/24+21/52*I,n=16 2584057820144059 r009 Im(z^3+c),c=-11/62+8/31*I,n=10 2584057822337753 m001 (-KhinchinLevy+ZetaP(2))/(exp(1)+Champernowne) 2584057826764982 b008 E-(2*Sinh[1/5])/3 2584057831524446 l006 ln(626/8295) 2584057834768881 a001 1/15124*(1/2*5^(1/2)+1/2)^11*199^(9/16) 2584057835036482 m001 BesselJ(0,1)^ArtinRank2+Riemann3rdZero 2584057837924603 a007 Real Root Of -4*x^4-55*x^3-472*x^2+79*x+51 2584057842782494 r005 Im(z^2+c),c=-35/118+17/42*I,n=47 2584057848993161 a007 Real Root Of 389*x^4-616*x^3-406*x^2-743*x+228 2584057851390374 r009 Re(z^3+c),c=-19/48+25/56*I,n=40 2584057852126945 r005 Re(z^2+c),c=-5/7+28/81*I,n=14 2584057852891178 m001 gamma(1)^(cos(1/12*Pi)*exp(1/exp(1))) 2584057867616110 m005 (1/2*Zeta(3)+1/8)/(5/11*Catalan-4/9) 2584057870460975 r009 Im(z^3+c),c=-9/94+17/21*I,n=16 2584057878704226 r005 Im(z^2+c),c=-59/60+1/40*I,n=9 2584057881527195 a007 Real Root Of -531*x^4+651*x^3-522*x^2+445*x-89 2584057885567955 m001 (Gompertz+PisotVijayaraghavan)/(Porter-Sarnak) 2584057888265651 r009 Im(z^3+c),c=-29/62+2/21*I,n=45 2584057893369491 a007 Real Root Of 545*x^4+974*x^3-969*x^2+179*x-561 2584057897680557 a007 Real Root Of -363*x^4-779*x^3+91*x^2-798*x+74 2584057904551660 m005 (2*gamma-1)/(1/6*2^(1/2)-5/6) 2584057913160834 m001 ZetaQ(3)^BesselJ(1,1)*exp(-1/2*Pi) 2584057921393599 m001 (GaussAGM+Porter)/(ln(3)-exp(-1/2*Pi)) 2584057925898638 m005 (2/3+1/6*5^(1/2))/(7/11*3^(1/2)-7/10) 2584057927070642 r004 Im(z^2+c),c=1/3-4/15*I,z(0)=exp(5/24*I*Pi),n=9 2584057933018384 r002 3th iterates of z^2 + 2584057948153960 m001 (FeigenbaumC-Sarnak)/(Pi+ln(Pi)) 2584057948234633 r005 Re(z^2+c),c=-25/98+19/49*I,n=12 2584057954565488 m001 (-Lehmer+OneNinth)/(exp(1)-sin(1)) 2584057956739536 r005 Im(z^2+c),c=-3/5+29/126*I,n=5 2584057960381872 r005 Re(z^2+c),c=-23/74+2/11*I,n=24 2584057963988754 a007 Real Root Of -694*x^4+671*x^3+170*x^2+289*x+78 2584057971014492 q001 1783/690 2584057975477514 r004 Im(z^2+c),c=-23/20+4/17*I,z(0)=-1,n=30 2584057976414955 h001 (7/9*exp(2)+2/5)/(3/11*exp(2)+4/11) 2584057989585971 a007 Real Root Of 169*x^4-26*x^3-898*x^2+905*x+351 2584058001937514 l006 ln(5043/6530) 2584058003706251 r005 Im(z^2+c),c=-15/32+27/58*I,n=56 2584058003971979 a007 Real Root Of 203*x^4-850*x^3+903*x^2-670*x-249 2584058004077176 r009 Im(z^3+c),c=-11/62+8/31*I,n=12 2584058006304153 m001 ArtinRank2^2*CopelandErdos^2*exp(GAMMA(5/6))^2 2584058010402040 r009 Re(z^3+c),c=-41/98+31/63*I,n=56 2584058014967525 r009 Re(z^3+c),c=-15/44+39/53*I,n=28 2584058016823965 a007 Real Root Of -228*x^4-178*x^3+744*x^2-441*x+987 2584058030120667 r005 Im(z^2+c),c=-43/114+12/29*I,n=9 2584058033319902 a001 4181/199*521^(10/13) 2584058038081040 r005 Re(z^2+c),c=-9/40+27/56*I,n=31 2584058038635516 r005 Re(z^2+c),c=-23/74+2/11*I,n=25 2584058040020214 m001 (GAMMA(2/3)-exp(1))/(-GAMMA(3/4)+ArtinRank2) 2584058040829358 r005 Re(z^2+c),c=-23/74+2/11*I,n=27 2584058047472588 a007 Real Root Of -385*x^4+387*x^3+654*x^2+609*x-206 2584058055139468 m001 (Champernowne-Gompertz)/(Artin+Backhouse) 2584058057331124 r005 Im(z^2+c),c=-59/114+3/38*I,n=8 2584058065463881 m001 Pi-Psi(2,1/3)*(gamma+Zeta(1,-1)) 2584058067481085 m001 (Mills+Rabbit)/(5^(1/2)+2*Pi/GAMMA(5/6)) 2584058075855511 a007 Real Root Of 857*x^4+96*x^3-563*x^2-973*x-216 2584058084639548 p004 log(23977/18517) 2584058086403823 r009 Re(z^3+c),c=-5/29+53/62*I,n=33 2584058088425015 r005 Im(z^2+c),c=-6/25+21/61*I,n=4 2584058091621944 m005 (3*Pi-1/3)/(exp(1)+4/5) 2584058101388838 r005 Re(z^2+c),c=-19/90+22/43*I,n=44 2584058106202502 a001 10946/843*18^(5/21) 2584058111065480 r009 Im(z^3+c),c=-11/62+8/31*I,n=13 2584058115663541 r009 Im(z^3+c),c=-11/62+8/31*I,n=15 2584058117329628 a007 Real Root Of -204*x^4-733*x^3-834*x^2-464*x+818 2584058117666656 r009 Im(z^3+c),c=-11/62+8/31*I,n=16 2584058117775650 r009 Im(z^3+c),c=-11/62+8/31*I,n=18 2584058117813088 r009 Im(z^3+c),c=-11/62+8/31*I,n=19 2584058117815583 r009 Im(z^3+c),c=-11/62+8/31*I,n=21 2584058117816281 r009 Im(z^3+c),c=-11/62+8/31*I,n=22 2584058117816337 r009 Im(z^3+c),c=-11/62+8/31*I,n=24 2584058117816350 r009 Im(z^3+c),c=-11/62+8/31*I,n=25 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=27 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=28 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=30 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=31 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=33 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=34 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=36 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=37 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=39 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=40 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=42 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=43 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=45 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=46 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=48 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=49 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=51 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=52 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=54 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=55 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=57 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=58 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=60 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=61 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=63 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=64 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=62 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=59 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=56 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=53 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=50 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=47 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=44 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=41 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=38 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=35 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=32 2584058117816351 r009 Im(z^3+c),c=-11/62+8/31*I,n=29 2584058117816353 r009 Im(z^3+c),c=-11/62+8/31*I,n=26 2584058117816425 r009 Im(z^3+c),c=-11/62+8/31*I,n=23 2584058117820147 r009 Im(z^3+c),c=-11/62+8/31*I,n=20 2584058118011041 r009 Im(z^3+c),c=-11/62+8/31*I,n=17 2584058121119524 a005 (1/sin(52/145*Pi))^641 2584058122168207 m006 (1/4*Pi^2-5/6)/(5*ln(Pi)+3/5) 2584058127796161 r009 Im(z^3+c),c=-11/62+8/31*I,n=14 2584058134919565 m001 1/Khintchine/FeigenbaumAlpha^2/ln(Kolakoski) 2584058143446617 m009 (4/5*Psi(1,3/4)+2/3)/(1/6*Pi^2-3/5) 2584058165865702 r009 Re(z^3+c),c=-31/82+16/39*I,n=40 2584058194123134 r005 Re(z^2+c),c=-13/48+25/64*I,n=11 2584058200442049 r005 Im(z^2+c),c=-19/27+11/41*I,n=28 2584058219159583 l006 ln(311/4121) 2584058224534202 m005 (1/2*Zeta(3)-8/11)/(1/8*Catalan-5) 2584058237277529 a007 Real Root Of -78*x^4+325*x^3-329*x^2+128*x+61 2584058240626833 h001 (7/12*exp(2)+3/8)/(7/11*exp(1)+1/12) 2584058244455020 m001 (FeigenbaumD+Trott)/(AlladiGrinstead-Si(Pi)) 2584058252187207 m001 Si(Pi)+LandauRamanujan2nd^Stephens 2584058252465978 s002 sum(A072826[n]/(10^n-1),n=1..infinity) 2584058256000743 s002 sum(A058094[n]/(n^3*pi^n+1),n=1..infinity) 2584058271602418 a007 Real Root Of -107*x^4-447*x^3-248*x^2+512*x+37 2584058273800475 m001 (Riemann3rdZero-Sierpinski)/(Thue+ZetaQ(3)) 2584058276691862 m001 FibonacciFactorial+(2^(1/2))^QuadraticClass 2584058280322121 m005 (1/2*Catalan-1)/(5/8*5^(1/2)+7/10) 2584058288995778 r005 Re(z^2+c),c=-21/74+17/59*I,n=7 2584058292138866 r005 Re(z^2+c),c=-23/110+13/25*I,n=34 2584058311671292 m008 (1/5*Pi^4+1/2)/(4/5*Pi^4-3/5) 2584058320481365 p001 sum(1/(166*n+39)/(25^n),n=0..infinity) 2584058340256325 r005 Im(z^2+c),c=-3/58+16/51*I,n=25 2584058344346192 b008 (7*Pi*ArcCot[E])/3 2584058345645305 r005 Im(z^2+c),c=-5/7+2/101*I,n=5 2584058346597172 m001 1/exp(Sierpinski)^2*Porter*GAMMA(1/6)^2 2584058346694147 r009 Im(z^3+c),c=-33/94+11/56*I,n=24 2584058351238347 h001 (2/11*exp(2)+1/2)/(10/11*exp(2)+5/12) 2584058358513500 r005 Re(z^2+c),c=-17/26+29/44*I,n=3 2584058359169674 m005 (1/2*Catalan+4/9)/(3/8*Zeta(3)-4/5) 2584058364686740 r009 Im(z^3+c),c=-49/106+2/17*I,n=12 2584058366728954 a007 Real Root Of 37*x^4-356*x^3+869*x^2-912*x-300 2584058381375014 r009 Im(z^3+c),c=-33/94+11/56*I,n=23 2584058389687540 m001 (exp(Pi)+Si(Pi))/(-Ei(1,1)+KhinchinLevy) 2584058395082368 a007 Real Root Of 572*x^4-65*x^3+315*x^2-977*x+230 2584058407474782 a007 Real Root Of 441*x^4+878*x^3-613*x^2+459*x+766 2584058409544917 r005 Im(z^2+c),c=-1/13+12/37*I,n=15 2584058409695022 m001 (Thue-ZetaP(3))/(cos(1/5*Pi)+Tribonacci) 2584058421171430 m001 1/Riemann2ndZero/Lehmer*ln(Riemann3rdZero) 2584058422581208 r009 Im(z^3+c),c=-4/17+50/53*I,n=26 2584058428122280 m005 (1/2*Zeta(3)+9/10)/(2^(1/2)-5/6) 2584058437691388 r009 Re(z^3+c),c=-25/66+23/54*I,n=13 2584058453762519 m001 (Riemann2ndZero-ZetaP(2))^ReciprocalFibonacci 2584058453942689 l006 ln(3388/4387) 2584058456919103 b008 25+Sech[1/Sqrt[E]] 2584058458949026 r009 Im(z^3+c),c=-33/94+11/56*I,n=28 2584058461365146 r009 Im(z^3+c),c=-33/94+11/56*I,n=25 2584058461872497 r009 Im(z^3+c),c=-33/94+11/56*I,n=29 2584058464764355 r009 Im(z^3+c),c=-33/94+11/56*I,n=33 2584058464973635 r009 Im(z^3+c),c=-33/94+11/56*I,n=34 2584058465008210 r009 Im(z^3+c),c=-33/94+11/56*I,n=32 2584058465015664 r009 Im(z^3+c),c=-33/94+11/56*I,n=37 2584058465016376 r009 Im(z^3+c),c=-33/94+11/56*I,n=38 2584058465024233 r009 Im(z^3+c),c=-33/94+11/56*I,n=42 2584058465024547 r009 Im(z^3+c),c=-33/94+11/56*I,n=43 2584058465024724 r009 Im(z^3+c),c=-33/94+11/56*I,n=47 2584058465024735 r009 Im(z^3+c),c=-33/94+11/56*I,n=46 2584058465024741 r009 Im(z^3+c),c=-33/94+11/56*I,n=48 2584058465024742 r009 Im(z^3+c),c=-33/94+11/56*I,n=51 2584058465024743 r009 Im(z^3+c),c=-33/94+11/56*I,n=52 2584058465024743 r009 Im(z^3+c),c=-33/94+11/56*I,n=56 2584058465024743 r009 Im(z^3+c),c=-33/94+11/56*I,n=57 2584058465024743 r009 Im(z^3+c),c=-33/94+11/56*I,n=61 2584058465024743 r009 Im(z^3+c),c=-33/94+11/56*I,n=60 2584058465024743 r009 Im(z^3+c),c=-33/94+11/56*I,n=62 2584058465024743 r009 Im(z^3+c),c=-33/94+11/56*I,n=64 2584058465024743 r009 Im(z^3+c),c=-33/94+11/56*I,n=63 2584058465024743 r009 Im(z^3+c),c=-33/94+11/56*I,n=59 2584058465024743 r009 Im(z^3+c),c=-33/94+11/56*I,n=58 2584058465024743 r009 Im(z^3+c),c=-33/94+11/56*I,n=55 2584058465024743 r009 Im(z^3+c),c=-33/94+11/56*I,n=53 2584058465024743 r009 Im(z^3+c),c=-33/94+11/56*I,n=54 2584058465024745 r009 Im(z^3+c),c=-33/94+11/56*I,n=50 2584058465024748 r009 Im(z^3+c),c=-33/94+11/56*I,n=49 2584058465024813 r009 Im(z^3+c),c=-33/94+11/56*I,n=45 2584058465024833 r009 Im(z^3+c),c=-33/94+11/56*I,n=44 2584058465025083 r009 Im(z^3+c),c=-33/94+11/56*I,n=41 2584058465025298 r009 Im(z^3+c),c=-33/94+11/56*I,n=39 2584058465027012 r009 Im(z^3+c),c=-33/94+11/56*I,n=40 2584058465049794 r009 Im(z^3+c),c=-33/94+11/56*I,n=36 2584058465080794 r009 Im(z^3+c),c=-33/94+11/56*I,n=35 2584058465915973 r009 Im(z^3+c),c=-33/94+11/56*I,n=30 2584058466012112 m005 (1/2*exp(1)-2/3)/(11/12*Pi-1/5) 2584058466024301 r009 Im(z^3+c),c=-33/94+11/56*I,n=31 2584058472264711 r009 Im(z^3+c),c=-33/94+11/56*I,n=27 2584058480981769 m001 (Zeta(1,-1)-exp(Pi))/(-BesselI(1,1)+Porter) 2584058485500894 m001 exp(RenyiParking)/Bloch/sqrt(3) 2584058486481469 r005 Im(z^2+c),c=-3/4+29/221*I,n=11 2584058487172392 r009 Im(z^3+c),c=-35/122+26/37*I,n=53 2584058487273965 a007 Real Root Of -214*x^4-290*x^3+814*x^2+578*x+596 2584058489707430 r005 Im(z^2+c),c=-7/54+10/29*I,n=13 2584058494656178 r009 Im(z^3+c),c=-33/94+11/56*I,n=26 2584058499872493 s002 sum(A062698[n]/((pi^n-1)/n),n=1..infinity) 2584058500813190 m001 (ReciprocalFibonacci-Riemann3rdZero)/Chi(1) 2584058507628231 r009 Re(z^3+c),c=-1/21+21/31*I,n=53 2584058512546275 m001 (Psi(2,1/3)+Shi(1))/(Catalan+Salem) 2584058516345950 b008 -2+(46/5)^(1/4) 2584058517143866 a007 Real Root Of -733*x^4+418*x^3+485*x^2+169*x-80 2584058534815258 r005 Re(z^2+c),c=-23/90+11/26*I,n=14 2584058546077434 r005 Re(z^2+c),c=-17/82+3/5*I,n=43 2584058571006887 a003 sin(Pi*3/119)-sin(Pi*8/73) 2584058594894553 r005 Im(z^2+c),c=-9/14+73/207*I,n=33 2584058603929583 a003 cos(Pi*31/110)-cos(Pi*17/45) 2584058611812497 l006 ln(618/8189) 2584058613657986 m001 (sin(1)+Kolakoski)/(-Rabbit+ZetaP(4)) 2584058620524858 m001 (3^(1/3))+GolombDickman+polylog(4,1/2) 2584058620524858 m001 3^(1/3)+polylog(4,1/2)+GolombDickman 2584058625287090 r002 25th iterates of z^2 + 2584058629006169 r009 Im(z^3+c),c=-11/62+8/31*I,n=11 2584058646251519 r005 Im(z^2+c),c=-3/58+16/51*I,n=26 2584058651274018 m005 (1/2*gamma+2/9)/(2/5*gamma-3/7) 2584058666258122 b008 2+BesselY[5,1] 2584058666966884 r005 Im(z^2+c),c=-3/58+16/51*I,n=23 2584058672550749 m001 (Robbin+ZetaP(3))/(2^(1/2)+MasserGramainDelta) 2584058676748306 m001 (1-gamma)/(-BesselI(0,1)+GlaisherKinkelin) 2584058678307240 m001 (Paris+Totient)/(Landau-Psi(2,1/3)) 2584058696876678 m001 (Mills-Riemann1stZero)/(Pi+MasserGramainDelta) 2584058697809399 a001 123/610*9227465^(11/15) 2584058709260954 a008 Real Root of x^2-x-67032 2584058724749290 a001 6765/199*521^(9/13) 2584058738880329 r009 Re(z^3+c),c=-25/66+7/17*I,n=43 2584058741057962 h001 (1/3*exp(1)+3/5)/(8/11*exp(2)+5/11) 2584058750650065 r005 Im(z^2+c),c=-39/58+11/54*I,n=10 2584058757720755 r009 Re(z^3+c),c=-37/114+40/61*I,n=26 2584058758273580 m006 (1/5*ln(Pi)-3)/(5*ln(Pi)+5) 2584058778251120 r005 Im(z^2+c),c=-3/58+16/51*I,n=29 2584058786303764 q001 1/3869881 2584058786981146 r005 Im(z^2+c),c=-27/58+21/43*I,n=49 2584058789821068 r009 Re(z^3+c),c=-12/23+29/43*I,n=5 2584058789894990 a001 1/843*(1/2*5^(1/2)+1/2)^9*3^(23/24) 2584058791984407 r005 Im(z^2+c),c=-3/58+16/51*I,n=28 2584058798531259 a007 Real Root Of -291*x^4-674*x^3+465*x^2+842*x+416 2584058811335250 m001 (ln(2)/ln(10)+5^(1/2))/(-arctan(1/3)+Conway) 2584058821581813 r005 Im(z^2+c),c=-3/58+16/51*I,n=32 2584058823531262 m005 (1/2*Pi+1/6)/(3/11*3^(1/2)+1/5) 2584058827925715 b008 7*(Pi+ArcSinh[3]^(-1)) 2584058831552590 r005 Im(z^2+c),c=-3/58+16/51*I,n=35 2584058833449942 r005 Im(z^2+c),c=-3/58+16/51*I,n=38 2584058833758123 r005 Im(z^2+c),c=-3/58+16/51*I,n=41 2584058833786280 r005 Im(z^2+c),c=-3/58+16/51*I,n=42 2584058833788233 r005 Im(z^2+c),c=-3/58+16/51*I,n=39 2584058833798409 r005 Im(z^2+c),c=-3/58+16/51*I,n=45 2584058833799667 r005 Im(z^2+c),c=-3/58+16/51*I,n=44 2584058833802392 r005 Im(z^2+c),c=-3/58+16/51*I,n=48 2584058833803308 r005 Im(z^2+c),c=-3/58+16/51*I,n=51 2584058833803483 r005 Im(z^2+c),c=-3/58+16/51*I,n=54 2584058833803511 r005 Im(z^2+c),c=-3/58+16/51*I,n=57 2584058833803514 r005 Im(z^2+c),c=-3/58+16/51*I,n=58 2584058833803514 r005 Im(z^2+c),c=-3/58+16/51*I,n=55 2584058833803515 r005 Im(z^2+c),c=-3/58+16/51*I,n=61 2584058833803515 r005 Im(z^2+c),c=-3/58+16/51*I,n=60 2584058833803515 r005 Im(z^2+c),c=-3/58+16/51*I,n=64 2584058833803515 r005 Im(z^2+c),c=-3/58+16/51*I,n=63 2584058833803516 r005 Im(z^2+c),c=-3/58+16/51*I,n=62 2584058833803517 r005 Im(z^2+c),c=-3/58+16/51*I,n=59 2584058833803526 r005 Im(z^2+c),c=-3/58+16/51*I,n=56 2584058833803552 r005 Im(z^2+c),c=-3/58+16/51*I,n=52 2584058833803564 r005 Im(z^2+c),c=-3/58+16/51*I,n=53 2584058833803662 r005 Im(z^2+c),c=-3/58+16/51*I,n=47 2584058833803680 r005 Im(z^2+c),c=-3/58+16/51*I,n=50 2584058833803951 r005 Im(z^2+c),c=-3/58+16/51*I,n=49 2584058833806906 r005 Im(z^2+c),c=-3/58+16/51*I,n=46 2584058833825099 r005 Im(z^2+c),c=-3/58+16/51*I,n=43 2584058833920700 r005 Im(z^2+c),c=-3/58+16/51*I,n=40 2584058834204662 r005 Im(z^2+c),c=-3/58+16/51*I,n=36 2584058834336130 r005 Im(z^2+c),c=-3/58+16/51*I,n=37 2584058835301841 g006 Psi(1,1/7)-Psi(1,9/11)-Psi(1,2/7)-Psi(1,1/6) 2584058835400278 r005 Im(z^2+c),c=-3/58+16/51*I,n=31 2584058835601426 r005 Im(z^2+c),c=-3/58+16/51*I,n=34 2584058836892342 m001 1/exp(GAMMA(1/3))^2*Ei(1)/sin(Pi/5)^2 2584058838536700 r005 Im(z^2+c),c=-3/58+16/51*I,n=33 2584058847662718 r005 Im(z^2+c),c=19/66+5/57*I,n=33 2584058848335216 a007 Real Root Of -351*x^4-750*x^3+659*x^2+432*x-575 2584058855492830 a003 sin(Pi*5/68)/sin(Pi*35/101) 2584058856278053 r009 Im(z^3+c),c=-33/94+11/56*I,n=22 2584058863231319 r005 Im(z^2+c),c=-23/28+5/26*I,n=6 2584058870675097 r005 Im(z^2+c),c=-3/58+16/51*I,n=30 2584058872307122 m005 (3/4*Catalan+2/5)/(2/5*exp(1)-2/3) 2584058876013279 r005 Re(z^2+c),c=37/122+9/56*I,n=34 2584058888872133 m001 Shi(1)*CareFree+Tribonacci 2584058899063173 l006 ln(5121/6631) 2584058901194579 a007 Real Root Of -229*x^4-390*x^3+519*x^2+11*x+44 2584058904221676 a007 Real Root Of 180*x^4+326*x^3-74*x^2+732*x-15 2584058931671826 r002 27th iterates of z^2 + 2584058932705249 a007 Real Root Of -435*x^4-726*x^3+829*x^2-416*x+258 2584058943899585 m001 (Zeta(1,-1)-GAMMA(23/24))/(ZetaP(2)+ZetaQ(3)) 2584058947524687 r005 Im(z^2+c),c=-7/17+21/46*I,n=27 2584058962655728 a003 cos(Pi*9/88)-cos(Pi*26/101) 2584058970069203 a007 Real Root Of -400*x^4-716*x^3-612*x^2+649*x+198 2584058973534371 h001 (2/7*exp(2)+11/12)/(1/11*exp(2)+1/2) 2584058977907704 m001 (Riemann2ndZero-ZetaQ(3))/(GAMMA(17/24)-Bloch) 2584058995008567 m001 (MertensB3+Sarnak)^ln(2+3^(1/2)) 2584058996447122 m001 Porter*ln(GlaisherKinkelin)*sin(1)^2 2584058997096066 r005 Re(z^2+c),c=-8/25+6/43*I,n=7 2584059009581253 l006 ln(307/4068) 2584059028602309 s002 sum(A077933[n]/(pi^n),n=1..infinity) 2584059036070439 r005 Re(z^2+c),c=-8/31+11/28*I,n=21 2584059041487179 r009 Im(z^3+c),c=-7/52+36/43*I,n=54 2584059043026882 m005 (1/3*5^(1/2)-1/10)/(4/11*Catalan-1/12) 2584059048163530 r005 Im(z^2+c),c=-43/118+19/43*I,n=20 2584059060415952 a007 Real Root Of -362*x^4-535*x^3+721*x^2-909*x-254 2584059060962451 m001 1/2*(2^(1/3)*Magata-Zeta(5))*2^(2/3) 2584059062464086 r002 63th iterates of z^2 + 2584059068549032 r005 Im(z^2+c),c=-3/58+16/51*I,n=27 2584059069636894 m001 Si(Pi)*MasserGramainDelta/Mills 2584059069816914 m001 (FellerTornier-Niven)/(Rabbit-ZetaP(3)) 2584059085499246 r005 Im(z^2+c),c=13/42+1/23*I,n=45 2584059091925863 m001 GAMMA(3/4)^PrimesInBinary/BesselK(0,1) 2584059105041041 m001 1/exp(Lehmer)^2*Champernowne/Zeta(1/2) 2584059111931043 r009 Re(z^3+c),c=-7/17+19/41*I,n=20 2584059114194063 r009 Im(z^3+c),c=-33/94+11/56*I,n=21 2584059118543412 a003 cos(Pi*22/87)-cos(Pi*17/48) 2584059119090624 l006 ln(6854/8875) 2584059155826516 m001 Bloch*(GolombDickman-ZetaP(4)) 2584059163268559 r005 Re(z^2+c),c=-13/62+17/33*I,n=38 2584059166255977 r005 Re(z^2+c),c=-23/110+19/42*I,n=10 2584059166335243 r005 Im(z^2+c),c=-13/56+18/47*I,n=24 2584059168774048 m001 Stephens^BesselI(1,1)+Si(Pi) 2584059169518880 r009 Re(z^3+c),c=-41/66+31/40*I,n=2 2584059170143645 p004 log(20287/1531) 2584059176794212 r005 Re(z^2+c),c=-13/16+80/91*I,n=3 2584059177360063 a001 76/5*46368^(9/13) 2584059190299415 r009 Re(z^3+c),c=-13/27+9/20*I,n=34 2584059190870708 a007 Real Root Of 149*x^4+133*x^3-694*x^2-83*x+71 2584059198241150 r005 Im(z^2+c),c=-23/48+25/59*I,n=23 2584059209341987 r005 Re(z^2+c),c=9/64+34/63*I,n=10 2584059215051479 l006 ln(7984/8193) 2584059215059042 r009 Re(z^3+c),c=-21/58+20/53*I,n=22 2584059220103536 p001 sum(1/(490*n+39)/(10^n),n=0..infinity) 2584059225753696 a007 Real Root Of 89*x^4+291*x^3+587*x^2+806*x-784 2584059226141125 r005 Re(z^2+c),c=7/26+7/52*I,n=34 2584059226669038 g005 GAMMA(7/10)/GAMMA(5/11)/GAMMA(2/11)^2 2584059252694527 a005 (1/sin(90/209*Pi))^809 2584059257041735 m001 ln(5)^GAMMA(3/4)*(3^(1/3)) 2584059257041735 m001 ln(5)^GAMMA(3/4)*3^(1/3) 2584059261582625 h001 (6/7*exp(1)+1/5)/(2/9*exp(1)+3/8) 2584059265818298 r005 Re(z^2+c),c=-5/8+93/256*I,n=30 2584059284207894 h001 (4/5*exp(2)+4/11)/(4/7*exp(1)+7/8) 2584059287328815 a007 Real Root Of 205*x^4+785*x^3+603*x^2-281*x-348 2584059320951337 r002 57th iterates of z^2 + 2584059328216438 r005 Re(z^2+c),c=-23/74+16/37*I,n=8 2584059335107397 r005 Re(z^2+c),c=-17/66+17/44*I,n=15 2584059337679203 m005 (1/2*3^(1/2)+5/12)/(2/5*gamma-8/11) 2584059343119460 m001 (gamma(2)+GaussAGM)/(3^(1/2)-Zeta(1/2)) 2584059353352441 m007 (-2*gamma-6*ln(2)-Pi-3)/(-3/4*gamma-4) 2584059363726134 m001 exp(Zeta(7))^2*PrimesInBinary^2*sqrt(2)^2 2584059380372888 m004 15/E^(Sqrt[5]*Pi)+Sqrt[5]*Pi*Csch[Sqrt[5]*Pi] 2584059381266593 a007 Real Root Of -742*x^4+260*x^3-15*x^2+901*x-233 2584059384703356 m001 (GaussAGM+Totient)/sin(1) 2584059385268415 m001 1/exp(BesselK(0,1))^2*OneNinth^2/GAMMA(11/24) 2584059390561090 s002 sum(A010180[n]/(pi^n+1),n=1..infinity) 2584059394809663 a001 317811/199*199^(1/11) 2584059394926811 m001 (GolombDickman+Kolakoski)/(ln(gamma)+ln(3)) 2584059403195792 a001 6624*29^(19/47) 2584059404313505 r009 Re(z^3+c),c=-31/60+29/57*I,n=5 2584059408565251 m001 1/ln(OneNinth)/Si(Pi)/Zeta(1,2) 2584059412566487 l006 ln(610/8083) 2584059414762118 m001 (ln(5)-GAMMA(7/12))/(CopelandErdos+ZetaP(4)) 2584059432377696 m001 1/GAMMA(1/3)/BesselK(1,1)^2*ln(GAMMA(17/24)) 2584059433031408 r005 Im(z^2+c),c=-13/36+20/47*I,n=46 2584059446139427 m001 ln(2+sqrt(3))^arctan(1/2)/GAMMA(5/24) 2584059457553477 b008 JacobiDS[3/2,2+Pi] 2584059472642246 a001 10946/199*521^(8/13) 2584059480445242 r005 Im(z^2+c),c=-6/7+13/64*I,n=23 2584059495519865 a007 Real Root Of 110*x^4-421*x^3-252*x^2-935*x-24 2584059509351158 a007 Real Root Of -411*x^4-932*x^3+179*x^2-734*x-848 2584059519945120 m008 (5/6*Pi-3/5)/(4/5*Pi^4+1/6) 2584059520768124 r005 Re(z^2+c),c=11/40+6/43*I,n=34 2584059527804520 g002 Psi(1/12)+Psi(2/9)+Psi(1/9)-Psi(8/9) 2584059529366598 a002 7^(7/10)-7^(1/7) 2584059529958262 m001 1/GAMMA(19/24)^2/Khintchine*exp(GAMMA(5/6))^2 2584059531078944 r009 Re(z^3+c),c=-31/78+17/38*I,n=24 2584059531627802 m004 5+Sqrt[5]*Pi+750*Pi*Cot[Sqrt[5]*Pi] 2584059535472291 r009 Im(z^3+c),c=-33/94+11/56*I,n=18 2584059538488000 m001 Rabbit*(GAMMA(11/12)+Sierpinski) 2584059543057861 r005 Im(z^2+c),c=-7/102+17/53*I,n=14 2584059544249365 r002 40th iterates of z^2 + 2584059544249365 r002 40th iterates of z^2 + 2584059548215988 a007 Real Root Of -32*x^4-797*x^3+794*x^2+544*x-226 2584059550918916 r005 Im(z^2+c),c=23/74+23/55*I,n=44 2584059569329012 r001 57i'th iterates of 2*x^2-1 of 2584059574798037 r005 Re(z^2+c),c=3/44+23/35*I,n=20 2584059586896827 p004 log(28211/2129) 2584059594734018 a003 cos(Pi*11/97)-cos(Pi*21/80) 2584059595656790 m001 (arctan(1/2)+sin(1/12*Pi))/(Backhouse+Totient) 2584059601896862 m005 (1/3*3^(1/2)+1/2)/(4/11*Catalan-3/4) 2584059607439255 a007 Real Root Of 414*x^4+869*x^3-526*x^2-280*x-676 2584059608330858 r009 Re(z^3+c),c=-27/110+3/50*I,n=7 2584059612535509 m001 (TwinPrimes+ZetaQ(3))/(GAMMA(17/24)+Conway) 2584059631981208 b008 -1/9*Pi+ArcCot[11] 2584059633822123 a007 Real Root Of 391*x^4+996*x^3-212*x^2-157*x+762 2584059645237850 r005 Im(z^2+c),c=-101/82+2/47*I,n=4 2584059660240984 r005 Re(z^2+c),c=-35/78+34/63*I,n=43 2584059671345433 r009 Re(z^3+c),c=-33/98+13/40*I,n=11 2584059686009230 r009 Re(z^3+c),c=-35/114+4/15*I,n=5 2584059695327001 m008 (5/6*Pi^3-1)/(Pi^6-1/6) 2584059701342170 a001 11/317811*317811^(16/47) 2584059706256245 h001 (2/5*exp(1)+1/11)/(5/9*exp(2)+5/11) 2584059706812836 a007 Real Root Of 123*x^4-611*x^3+877*x^2-867*x-23 2584059712207855 r005 Im(z^2+c),c=-2/11+23/63*I,n=16 2584059727672153 m001 (Thue-polylog(4,1/2))^(2^(1/3)) 2584059730234255 m001 BesselI(0,1)*(exp(1/exp(1))+Gompertz) 2584059737107398 m001 log(1+sqrt(2))*GAMMA(7/24)^2/exp(sinh(1)) 2584059737366557 a007 Real Root Of 173*x^4+261*x^3-375*x^2+245*x-73 2584059741915431 a007 Real Root Of -960*x^4-433*x^3+571*x^2+788*x-230 2584059742417890 m004 4+25*Pi+25*Sqrt[5]*Pi+Cos[Sqrt[5]*Pi]/3 2584059753891339 a007 Real Root Of 478*x^4-310*x^3+477*x^2-258*x-106 2584059755179756 a007 Real Root Of -72*x^4-161*x^3-368*x^2-744*x+967 2584059758196704 r009 Re(z^3+c),c=-31/82+16/39*I,n=39 2584059769269808 l006 ln(1733/2244) 2584059769466265 a007 Real Root Of -33*x^4+18*x^3+160*x^2-x+711 2584059769704053 r002 3th iterates of z^2 + 2584059775682900 m001 Magata/Champernowne^2/ln(BesselK(0,1)) 2584059775840597 q001 2075/803 2584059777008708 s001 sum(exp(-2*Pi/3)^n*A122406[n],n=1..infinity) 2584059786972356 r009 Re(z^3+c),c=-12/29+19/35*I,n=37 2584059788042931 r005 Re(z^2+c),c=-19/60+3/23*I,n=4 2584059791529879 s002 sum(A184806[n]/((10^n+1)/n),n=1..infinity) 2584059805597673 m002 3/2+4*Pi*Sech[Pi] 2584059807834753 m001 (Bloch-OneNinth)^Totient 2584059808600720 h001 (5/11*exp(2)+4/11)/(3/10*exp(1)+5/8) 2584059820871492 l006 ln(303/4015) 2584059821329020 g007 Psi(2,1/10)+Psi(2,1/8)-Psi(2,1/6)-Psi(2,3/5) 2584059840854555 a007 Real Root Of -267*x^4-527*x^3+466*x^2+483*x+948 2584059849193175 r005 Re(z^2+c),c=-9/8+43/192*I,n=16 2584059852427277 m001 BesselK(0,1)+Tribonacci^BesselI(0,1) 2584059853242296 a007 Real Root Of 16*x^4+414*x^3+28*x^2+375*x+491 2584059859357754 r009 Re(z^3+c),c=-25/66+7/17*I,n=42 2584059863120253 m001 Paris^(KomornikLoreti/arctan(1/3)) 2584059863902069 r005 Im(z^2+c),c=15/38+8/29*I,n=12 2584059879137562 r009 Re(z^3+c),c=-9/22+29/55*I,n=29 2584059901541741 r005 Re(z^2+c),c=-47/62+3/44*I,n=52 2584059906019346 h001 (-exp(6)+7)/(-exp(5)-5) 2584059915757436 r008 a(0)=3,K{-n^6,-5+7*n^3-5*n^2+7*n} 2584059920957267 a007 Real Root Of -192*x^4-290*x^3+54*x^2-872*x+943 2584059922686322 m009 (8/5*Catalan+1/5*Pi^2-2/3)/(2/3*Psi(1,1/3)+4) 2584059923447313 a001 123/196418*6765^(9/56) 2584059928936684 m005 (1/2*exp(1)+7/12)/(5/6*Zeta(3)-1/4) 2584059935746095 a007 Real Root Of -185*x^4-565*x^3+34*x^2+884*x+557 2584059950296659 s002 sum(A059999[n]/(10^n-1),n=1..infinity) 2584059953638874 s001 sum(exp(-Pi/3)^(n-1)*A156099[n],n=1..infinity) 2584059958828830 r005 Re(z^2+c),c=-7/25+6/19*I,n=12 2584059969693195 r009 Re(z^3+c),c=-25/66+7/17*I,n=46 2584059971197646 m001 Riemann3rdZero^2*exp(Lehmer)/Robbin^2 2584059973118201 h001 (-exp(-2)-5)/(-4*exp(1)-9) 2584059982246824 r005 Re(z^2+c),c=-53/46+19/62*I,n=58 2584059997343241 r005 Re(z^2+c),c=-27/86+9/56*I,n=23 2584060005459243 m002 -5+Pi^3+Log[Pi]-Log[Pi]^2 2584060040420504 a001 3/89*46368^(34/55) 2584060042383718 m001 (cos(1)+ln(gamma))/(sin(1/12*Pi)+Paris) 2584060043136480 m005 (1/2*2^(1/2)-2/5)/(4/11*exp(1)+1/5) 2584060046452058 r009 Im(z^3+c),c=-43/122+9/46*I,n=19 2584060049217564 m001 (MertensB3-PolyaRandomWalk3D)/(Pi+ArtinRank2) 2584060058497098 b008 3*(86+E^(-2)) 2584060068083056 m001 (Paris+Stephens)/(OneNinth-exp(1)) 2584060074748815 m001 1/GAMMA(3/4)^2*exp(GAMMA(13/24))^2*Zeta(1/2) 2584060082484148 m005 (1/2*Pi+7/9)/(5/9*Catalan+2/5) 2584060083200222 a007 Real Root Of 291*x^4+375*x^3-647*x^2+721*x-321 2584060083773870 m001 (gamma(3)+Weierstrass)/(Zeta(5)+cos(1/5*Pi)) 2584060085004466 r005 Im(z^2+c),c=-19/56+18/43*I,n=62 2584060086751466 a001 123/121393*12586269025^(11/15) 2584060098891603 r005 Re(z^2+c),c=-23/94+12/23*I,n=12 2584060100965812 m001 (Shi(1)-arctan(1/3))/(-FeigenbaumMu+Sarnak) 2584060104505648 r005 Im(z^2+c),c=-75/118+13/31*I,n=42 2584060108453020 r005 Im(z^2+c),c=-3/58+16/51*I,n=24 2584060110143635 m001 1/ln(GlaisherKinkelin)^2/Artin^2*sqrt(5) 2584060118360123 p001 sum((-1)^n/(503*n+229)/n/(5^n),n=1..infinity) 2584060119494139 m001 Pi+exp(Pi)-gamma*BesselJ(0,1) 2584060119756489 m001 (Paris-Sarnak)/(Pi^(1/2)+MasserGramain) 2584060133861680 a007 Real Root Of 308*x^4-8*x^3+519*x^2-456*x-154 2584060139217850 m001 1/Lehmer^2*Kolakoski/exp(sqrt(5))^2 2584060157935533 r009 Re(z^3+c),c=-31/82+19/46*I,n=16 2584060167685124 a003 cos(Pi*2/109)/cos(Pi*37/99) 2584060179348037 m005 (1/2*Pi+1/9)/(10/11*Catalan-2/11) 2584060186016094 r005 Im(z^2+c),c=-9/14+61/199*I,n=6 2584060186322082 r009 Re(z^3+c),c=-15/29+28/55*I,n=5 2584060188360916 p004 log(35923/2711) 2584060197612027 m005 (1/2*Catalan-8/11)/(3/11*Zeta(3)+5/7) 2584060198968320 a001 89*521^(7/13) 2584060210594864 a007 Real Root Of -212*x^4-569*x^3-219*x^2-94*x+854 2584060221991902 p003 LerchPhi(1/10,2,457/227) 2584060225094947 m005 (1/3*Catalan+2/5)/(9/11*5^(1/2)+9/10) 2584060227935036 r005 Re(z^2+c),c=10/29+18/35*I,n=4 2584060234602308 l006 ln(602/7977) 2584060236355275 m001 GAMMA(7/12)^2/exp(Lehmer)*sqrt(2)^2 2584060241355576 r005 Im(z^2+c),c=-57/106+2/5*I,n=27 2584060246041626 m001 LambertW(1)^2*ln(CareFree)^2*cos(Pi/5)^2 2584060250231534 m001 exp((2^(1/3)))/Magata^2/sinh(1) 2584060262253105 r009 Re(z^3+c),c=-25/78+17/59*I,n=10 2584060268810401 m005 (1/2*Pi+4)/(7/9*5^(1/2)+5/12) 2584060277298588 m005 (1/2*3^(1/2)+7/8)/(5*Zeta(3)+8/11) 2584060286223697 m001 cos(1/12*Pi)+BesselI(1,2)^Zeta(5) 2584060286223697 m001 cos(Pi/12)+BesselI(1,2)^Zeta(5) 2584060299603019 s002 sum(A141894[n]/(10^n-1),n=1..infinity) 2584060303175453 a007 Real Root Of 402*x^4+655*x^3-924*x^2+468*x+757 2584060314031328 a007 Real Root Of -715*x^4+716*x^3-419*x^2+176*x+89 2584060317968394 m001 KhintchineLevy/ln(Conway)/sqrt(3) 2584060319444527 m001 (gamma(2)-Cahen)/(MertensB1-ZetaQ(3)) 2584060326038358 m005 (1/2*Catalan-1/9)/(4*Pi+6/7) 2584060337367340 m001 1/Salem/Lehmer*ln(GAMMA(7/12))^2 2584060345970405 a007 Real Root Of 377*x^4+140*x^3-843*x^2-661*x+223 2584060348987286 r005 Re(z^2+c),c=-25/118+24/47*I,n=60 2584060354233401 r005 Re(z^2+c),c=-6/29+12/23*I,n=63 2584060365136879 a007 Real Root Of -269*x^4-483*x^3+263*x^2-628*x+281 2584060391832050 a007 Real Root Of 760*x^4-520*x^3-306*x^2-871*x-217 2584060404714582 m001 Zeta(3)*(Riemann2ndZero+Weierstrass) 2584060404979914 l006 ln(7010/9077) 2584060405270203 r005 Re(z^2+c),c=-5/22+28/59*I,n=49 2584060405279495 r009 Re(z^3+c),c=-19/46+9/17*I,n=35 2584060411948208 r005 Im(z^2+c),c=-101/126+8/59*I,n=11 2584060412877693 a001 13/2207*521^(13/55) 2584060418944974 a001 2207/13*10946^(26/33) 2584060420108156 r005 Im(z^2+c),c=-13/27+10/23*I,n=35 2584060436493994 r005 Re(z^2+c),c=-15/46+1/61*I,n=8 2584060437289304 a007 Real Root Of -34*x^4-871*x^3+217*x^2+567*x+553 2584060441446395 m001 ln(Tribonacci)/GolombDickman^2*sqrt(1+sqrt(3)) 2584060442621209 m001 (Gompertz+ReciprocalFibonacci)/(Chi(1)+ln(2)) 2584060448508242 a007 Real Root Of 233*x^4+311*x^3-501*x^2+800*x+390 2584060465334887 r005 Re(z^2+c),c=-95/118+1/60*I,n=20 2584060467729570 r009 Re(z^3+c),c=-17/42+13/28*I,n=53 2584060471392872 a007 Real Root Of 31*x^4+792*x^3-233*x^2-3*x-801 2584060473758002 r009 Im(z^3+c),c=-23/52+11/19*I,n=41 2584060480637333 r005 Im(z^2+c),c=-87/94+12/55*I,n=15 2584060488473797 a007 Real Root Of -211*x^4-234*x^3+546*x^2-749*x-211 2584060488645512 r005 Re(z^2+c),c=15/56+8/59*I,n=9 2584060508674447 a001 7/34*17711^(15/58) 2584060516829667 m001 (Mills+Thue)/(BesselJ(0,1)-gamma(1)) 2584060518023383 m001 (ln(3)-Conway)/(HeathBrownMoroz-Kolakoski) 2584060521554573 r005 Re(z^2+c),c=-19/106+11/18*I,n=64 2584060522839579 a007 Real Root Of 383*x^4+827*x^3-277*x^2+751*x+983 2584060531217935 p001 sum((-1)^n/(433*n+356)/(5^n),n=0..infinity) 2584060534479076 r009 Re(z^3+c),c=-25/66+7/17*I,n=49 2584060537421938 g007 Psi(2,2/9)-Psi(2,3/11)-Psi(2,1/11)-Psi(2,5/6) 2584060539166285 a007 Real Root Of -180*x^4-137*x^3+808*x^2-107*x-10 2584060550265622 s002 sum(A078683[n]/(exp(n)),n=1..infinity) 2584060559092231 r005 Im(z^2+c),c=-25/102+5/8*I,n=36 2584060563333436 a001 75025/322*123^(1/2) 2584060573898981 r009 Im(z^3+c),c=-9/62+21/25*I,n=12 2584060574804681 m008 (1/6*Pi^4-2/5)/(2*Pi^5+3/4) 2584060582672787 h001 (1/9*exp(2)+5/9)/(7/11*exp(2)+5/8) 2584060588605997 m005 (-9/28+1/4*5^(1/2))/(1/7*5^(1/2)+3/5) 2584060590912034 m001 BesselJ(1,1)/(2^(1/3))/ln(sin(Pi/12)) 2584060609099075 a007 Real Root Of -430*x^4-712*x^3+841*x^2-672*x-465 2584060613751104 l006 ln(5277/6833) 2584060617697954 m005 (1/2*2^(1/2)+6)/(1/5*gamma-3/8) 2584060620243330 a001 2207/55*6765^(11/15) 2584060622921849 m001 (sin(1/5*Pi)+ln(Pi))/(Robbin+ZetaQ(3)) 2584060649425745 m005 (1/2*5^(1/2)+5/8)/(5/9*Pi+5) 2584060650480320 m001 (Pi+Psi(2,1/3))/(HardHexagonsEntropy-Magata) 2584060653014120 r005 Re(z^2+c),c=41/126+7/41*I,n=32 2584060653867809 l006 ln(299/3962) 2584060656702553 r009 Re(z^3+c),c=-31/82+16/39*I,n=43 2584060667612873 r002 21th iterates of z^2 + 2584060677740724 r005 Im(z^2+c),c=-121/122+13/54*I,n=19 2584060699084913 r009 Re(z^3+c),c=-1/25+31/60*I,n=11 2584060702247200 p003 LerchPhi(1/256,5,401/193) 2584060708084045 l006 ln(8175/8389) 2584060713087682 m001 PisotVijayaraghavan-ln(gamma)+Rabbit 2584060713129622 a007 Real Root Of -822*x^4+887*x^3+198*x^2+879*x-252 2584060713669239 m001 (HeathBrownMoroz+KhinchinLevy)/(1-cos(1)) 2584060714725195 m001 ArtinRank2-Zeta(1,-1)^StolarskyHarborth 2584060721445433 m001 1/exp(OneNinth)/Kolakoski^2/GAMMA(1/24)^2 2584060729094685 r005 Im(z^2+c),c=-15/22+11/50*I,n=10 2584060741606121 m001 (cos(1)+BesselK(1,1))/(-Lehmer+MertensB2) 2584060750401051 a007 Real Root Of -356*x^4+268*x^3-2*x^2+755*x-198 2584060762445584 a007 Real Root Of 296*x^4+297*x^3-665*x^2-778*x+239 2584060775496826 a007 Real Root Of 123*x^4+51*x^3-880*x^2-700*x-537 2584060779379109 r009 Re(z^3+c),c=-25/66+7/17*I,n=45 2584060782808534 r009 Re(z^3+c),c=-25/66+7/17*I,n=52 2584060809478154 p003 LerchPhi(1/1024,4,439/176) 2584060811575648 h001 (6/7*exp(2)+1/11)/(2/7*exp(2)+3/8) 2584060814420012 a007 Real Root Of -658*x^4+899*x^3+797*x^2+657*x+135 2584060816830209 r008 a(0)=0,K{-n^6,-62+3*n^3+28*n^2+70*n} 2584060823875117 r005 Re(z^2+c),c=-9/29+5/34*I,n=4 2584060828722564 a007 Real Root Of 249*x^4+649*x^3-306*x^2-730*x+253 2584060832295867 a007 Real Root Of -267*x^4-202*x^3+980*x^2-720*x+15 2584060840532692 m001 (Si(Pi)-ZetaR(2))^Grothendieck 2584060842044684 a001 317811/521*123^(3/10) 2584060858724641 a001 3/322*18^(6/17) 2584060860481905 m001 (Stephens-exp(1))/(StolarskyHarborth+ZetaQ(4)) 2584060864340254 m001 Psi(2,1/3)^Chi(1)/(gamma(1)^Chi(1)) 2584060870353488 r009 Re(z^3+c),c=-53/126+19/37*I,n=35 2584060882567953 a001 46/3*21^(6/35) 2584060884122062 a007 Real Root Of 308*x^4-410*x^3+30*x^2-601*x+159 2584060888334837 r009 Re(z^3+c),c=-25/66+7/17*I,n=55 2584060895624241 r002 46th iterates of z^2 + 2584060909382223 r005 Re(z^2+c),c=-7/32+29/59*I,n=30 2584060915602587 r005 Re(z^2+c),c=-5/28+28/53*I,n=10 2584060922178070 m002 -1-Pi^5+(Pi^4*Sinh[Pi])/E^Pi 2584060931886632 r009 Re(z^3+c),c=-25/66+7/17*I,n=58 2584060933532498 a001 28657/199*521^(6/13) 2584060933984750 m006 (3*Pi^2-1/4)/(1/6/Pi-1/6) 2584060949389839 r009 Re(z^3+c),c=-25/66+7/17*I,n=61 2584060953877372 r005 Re(z^2+c),c=-1/15+38/63*I,n=14 2584060955289458 h001 (3/7*exp(1)+1/2)/(5/6*exp(2)+2/7) 2584060956247298 r009 Re(z^3+c),c=-25/66+7/17*I,n=64 2584060962464780 r009 Re(z^3+c),c=-25/66+7/17*I,n=62 2584060964870270 r009 Re(z^3+c),c=-25/66+7/17*I,n=63 2584060968829733 r009 Re(z^3+c),c=-25/66+7/17*I,n=59 2584060970043119 r009 Re(z^3+c),c=-25/66+7/17*I,n=60 2584060970704334 a001 3571/21*5^(13/50) 2584060972375838 r005 Im(z^2+c),c=-19/56+18/43*I,n=63 2584060979849434 r009 Re(z^3+c),c=-25/66+7/17*I,n=57 2584060980018468 m001 (Robbin+ZetaQ(2))/(3^(1/2)+Zeta(5)) 2584060980446686 r009 Im(z^3+c),c=-29/54+10/59*I,n=64 2584060986023956 m005 (1/2*exp(1)+4/7)/(5*2^(1/2)+2/5) 2584060989278502 r009 Re(z^3+c),c=-25/66+7/17*I,n=56 2584060990346221 r009 Re(z^3+c),c=-25/66+7/17*I,n=48 2584060995666014 r009 Re(z^3+c),c=-25/66+7/17*I,n=54 2584060996975679 a007 Real Root Of 143*x^4-356*x^3-739*x^2-900*x-190 2584061011740655 r009 Re(z^3+c),c=-25/66+7/17*I,n=51 2584061017686769 m001 5^(1/2)*Tribonacci-GAMMA(7/12) 2584061022588417 r005 Im(z^2+c),c=-121/106+9/29*I,n=3 2584061026698619 l006 ln(3544/4589) 2584061029534526 a007 Real Root Of -243*x^4-22*x^3-151*x^2+267*x+7 2584061030235744 m005 (1/2*Catalan-3/11)/(5/11*gamma+5/11) 2584061030444563 s002 sum(A267620[n]/(n^3*pi^n+1),n=1..infinity) 2584061044299785 m005 (1/2*3^(1/2)+2)/(1/9*3^(1/2)+11/12) 2584061050778796 r009 Re(z^3+c),c=-25/66+7/17*I,n=53 2584061055813337 m001 MadelungNaCl^2*CareFree*ln(sqrt(2))^2 2584061061162031 m005 (1/2*Catalan+3/11)/(1/7*Zeta(3)-1/5) 2584061076903555 g006 -Psi(1,4/7)-Psi(1,5/6)-Psi(1,3/4)-Psi(1,1/4) 2584061078779805 l006 ln(594/7871) 2584061084960060 r009 Im(z^3+c),c=-9/34+15/64*I,n=9 2584061089625080 a007 Real Root Of -430*x^4-998*x^3+580*x^2+893*x+387 2584061091197351 a007 Real Root Of -316*x^4-899*x^3-368*x^2-22*x+978 2584061093732768 r005 Im(z^2+c),c=-87/98+1/52*I,n=24 2584061097634342 r004 Im(z^2+c),c=-3/8+3/7*I,z(0)=exp(7/8*I*Pi),n=19 2584061104609118 r005 Re(z^2+c),c=-23/74+2/11*I,n=17 2584061109892594 r005 Im(z^2+c),c=-19/56+18/43*I,n=58 2584061126345756 p004 log(35393/2671) 2584061129378720 s002 sum(A267620[n]/(n^3*pi^n-1),n=1..infinity) 2584061135114546 r009 Re(z^3+c),c=-31/74+17/36*I,n=23 2584061135371179 q001 2367/916 2584061142250349 a007 Real Root Of 363*x^4+647*x^3-453*x^2+720*x-136 2584061144068018 m001 TreeGrowth2nd^2*LandauRamanujan/ln(sqrt(Pi)) 2584061156868877 m002 -1-Log[Pi]+Pi^7*Sech[Pi] 2584061157221804 m005 (1/2*exp(1)+2/9)/(5/12*Zeta(3)+1/9) 2584061158543361 m001 1/FeigenbaumC/Magata^2*ln(sqrt(3)) 2584061162754315 m001 (-GaussAGM+Sierpinski)/(1-FellerTornier) 2584061169138668 a001 620166/7*34^(22/23) 2584061169508649 r005 Re(z^2+c),c=-71/58+5/28*I,n=64 2584061178254738 r004 Re(z^2+c),c=-4/5+1/20*I,z(0)=-1,n=27 2584061190780654 r005 Im(z^2+c),c=-17/122+17/53*I,n=4 2584061208207521 a001 28657/2207*18^(5/21) 2584061214461490 r005 Re(z^2+c),c=-27/29+13/64*I,n=54 2584061217650859 a001 1926*832040^(4/21) 2584061219935630 m001 1/ErdosBorwein/Artin*exp(TreeGrowth2nd) 2584061226229927 p003 LerchPhi(1/256,6,139/239) 2584061227319857 r009 Re(z^3+c),c=-25/66+7/17*I,n=50 2584061236628949 m001 Riemann3rdZero/Kolakoski*ln(BesselJ(1,1)) 2584061241728376 r005 Re(z^2+c),c=21/64+17/48*I,n=8 2584061252145823 m001 2*ZetaP(3)^TreeGrowth2nd*Pi/GAMMA(5/6) 2584061271559800 r009 Re(z^3+c),c=-67/126+11/32*I,n=54 2584061278781282 s002 sum(A123112[n]/(exp(n)),n=1..infinity) 2584061282466928 m001 (Chi(1)-ln(Pi))/(RenyiParking+TreeGrowth2nd) 2584061291447827 a007 Real Root Of x^4-284*x^3-541*x^2+309*x-534 2584061312714046 a003 sin(Pi*25/103)-sin(Pi*41/103) 2584061319386328 m001 (-RenyiParking+Tetranacci)/(1-2*Pi/GAMMA(5/6)) 2584061322735745 r005 Im(z^2+c),c=-9/8+63/244*I,n=19 2584061322767557 s002 sum(A099707[n]/(n^2*pi^n+1),n=1..infinity) 2584061334081287 r005 Re(z^2+c),c=-37/114+2/53*I,n=17 2584061340830018 a003 cos(Pi*20/69)/cos(Pi*25/59) 2584061342854425 m001 (Pi+ln(5))/(GAMMA(5/6)+Rabbit) 2584061349465386 r004 Re(z^2+c),c=-1/7-1/16*I,z(0)=exp(1/8*I*Pi),n=5 2584061360084914 p004 log(25391/19609) 2584061363064456 r005 Re(z^2+c),c=-23/98+16/57*I,n=2 2584061363829082 m001 exp(GAMMA(1/24))^2/Khintchine^2/GAMMA(17/24) 2584061372396485 r005 Re(z^2+c),c=-43/90+5/53*I,n=2 2584061377388599 r005 Re(z^2+c),c=-13/54+26/59*I,n=35 2584061378043217 a007 Real Root Of -323*x^4-559*x^3+920*x^2+296*x-622 2584061387085838 a003 sin(Pi*2/71)/cos(Pi*7/18) 2584061396061047 r005 Im(z^2+c),c=15/52+2/23*I,n=64 2584061396976802 m002 -2-E^Pi/Pi^6-Pi+Pi^3 2584061401844552 b008 -6+ProductLog[104] 2584061401985987 r005 Re(z^2+c),c=-27/82+11/25*I,n=8 2584061412623112 m001 (Robbin+Trott2nd)/(ln(2)-ReciprocalFibonacci) 2584061417518005 p001 sum(1/(357*n+31)/n/(100^n),n=1..infinity) 2584061419702989 r005 Im(z^2+c),c=1/9+15/64*I,n=19 2584061424410908 q001 976/3777 2584061425079660 r005 Im(z^2+c),c=17/60+2/21*I,n=22 2584061429368371 r005 Re(z^2+c),c=-23/60+21/59*I,n=3 2584061433631195 l006 ln(5355/6934) 2584061435381206 m001 gamma(3)^MertensB3*(2*Pi/GAMMA(5/6))^MertensB3 2584061442088544 r005 Im(z^2+c),c=-17/118+20/57*I,n=12 2584061444069554 a007 Real Root Of -614*x^4-726*x^3+509*x^2+865*x+22 2584061449380349 m001 Zeta(7)^2*GAMMA(5/12)^2/exp(gamma) 2584061453405794 a007 Real Root Of -384*x^4-680*x^3-3*x^2+387*x-1 2584061455344217 r009 Re(z^3+c),c=-49/102+26/55*I,n=58 2584061457456362 r002 6th iterates of z^2 + 2584061461188736 m005 (1/2*gamma+3/7)/(7/10*Catalan-4/11) 2584061473603859 a007 Real Root Of 7*x^4-857*x^3+638*x^2-753*x-252 2584061475154834 p003 LerchPhi(1/1024,5,110/133) 2584061478321636 r009 Re(z^3+c),c=-2/13+50/57*I,n=62 2584061484443081 r005 Im(z^2+c),c=1/52+11/39*I,n=11 2584061485624765 a007 Real Root Of -111*x^4+757*x^3-246*x^2+816*x-207 2584061488849564 r005 Re(z^2+c),c=17/118+23/53*I,n=33 2584061491547360 r005 Re(z^2+c),c=-69/86+7/61*I,n=12 2584061499680364 r005 Re(z^2+c),c=23/94+6/53*I,n=12 2584061504381687 m001 GAMMA(5/6)^2*Backhouse*exp(log(2+sqrt(3)))^2 2584061504950896 a007 Real Root Of 902*x^4+203*x^3+142*x^2-774*x+183 2584061509453134 l006 ln(295/3909) 2584061511616997 a001 377/199*3571^(15/17) 2584061518992097 r005 Re(z^2+c),c=-67/110+20/37*I,n=5 2584061522987645 m001 (Shi(1)+GAMMA(2/3))/(Lehmer+PolyaRandomWalk3D) 2584061533747805 p001 sum(1/(539*n+536)/(2^n),n=0..infinity) 2584061533927317 r008 a(0)=0,K{-n^6,-16-5*n^3+75*n^2-15*n} 2584061534261393 r005 Im(z^2+c),c=-27/94+15/38*I,n=11 2584061537884130 r005 Re(z^2+c),c=-25/106+24/53*I,n=32 2584061545541909 m001 Zeta(3)^2*ln(Paris)^2/sqrt(3)^2 2584061572908238 m001 1/ln(cos(1))/GAMMA(11/12)^2*sqrt(Pi) 2584061576709846 a007 Real Root Of 476*x^4+921*x^3-859*x^2-231*x-193 2584061577170962 r005 Im(z^2+c),c=-21/86+12/31*I,n=29 2584061591627421 r002 6th iterates of z^2 + 2584061595424857 m008 (1/6*Pi^5-5/6)/(2*Pi^4-2/3) 2584061599846937 r005 Re(z^2+c),c=-19/102+29/52*I,n=36 2584061602488047 a001 18*2178309^(34/35) 2584061603184809 a001 682/182717648081*20365011074^(21/22) 2584061603186677 a001 341/3732588*514229^(21/22) 2584061608643350 a007 Real Root Of 367*x^4+729*x^3-842*x^2-357*x+915 2584061634882801 l006 ln(7166/9279) 2584061635661577 r002 10th iterates of z^2 + 2584061648331199 a007 Real Root Of -223*x^4-388*x^3+566*x^2+473*x+691 2584061651904383 r005 Im(z^2+c),c=-31/94+21/52*I,n=14 2584061653248652 m005 (3*exp(1)-1/5)/(2*2^(1/2)+1/4) 2584061656190642 m001 ln(Pi)*(LambertW(1)-exp(Pi)) 2584061657180473 r005 Im(z^2+c),c=-35/118+17/42*I,n=49 2584061658019364 a001 8/39603*3^(13/58) 2584061659224901 a007 Real Root Of 221*x^4+135*x^3-795*x^2+659*x-513 2584061660784577 a001 75025/5778*18^(5/21) 2584061664950286 a001 46368/199*521^(5/13) 2584061667075644 a001 377/199*9349^(15/19) 2584061669427967 r005 Re(z^2+c),c=-2/23+40/63*I,n=32 2584061669428751 m005 (1/2*exp(1)+6)/(3*Catalan+1/10) 2584061672443394 m001 2^(1/2)+GAMMA(2/3)^polylog(4,1/2) 2584061672443394 m001 sqrt(2)+GAMMA(2/3)^polylog(4,1/2) 2584061679782750 m004 2+10*Pi*Cos[Sqrt[5]*Pi]+Sin[Sqrt[5]*Pi] 2584061681125714 r005 Re(z^2+c),c=-29/102+10/27*I,n=6 2584061685117787 a007 Real Root Of 276*x^4+564*x^3-356*x^2+271*x+503 2584061687335131 a001 377/199*24476^(5/7) 2584061688199086 a001 89/843*64079^(21/23) 2584061688763264 a001 89/843*439204^(7/9) 2584061688773656 a001 89/843*7881196^(7/11) 2584061688773679 a001 89/843*20633239^(3/5) 2584061688773683 a001 89/843*141422324^(7/13) 2584061688773683 a001 89/843*2537720636^(7/15) 2584061688773683 a001 89/843*17393796001^(3/7) 2584061688773683 a001 89/843*45537549124^(7/17) 2584061688773683 a001 89/843*14662949395604^(1/3) 2584061688773683 a001 89/843*(1/2+1/2*5^(1/2))^21 2584061688773683 a001 89/843*192900153618^(7/18) 2584061688773683 a001 89/843*10749957122^(7/16) 2584061688773683 a001 89/843*599074578^(1/2) 2584061688773684 a001 89/843*33385282^(7/12) 2584061688774205 a001 89/843*1860498^(7/10) 2584061688777520 a001 89/843*710647^(3/4) 2584061688984014 a001 89/843*103682^(7/8) 2584061690005721 a001 377/199*64079^(15/23) 2584061690346374 a001 89/843*39603^(21/22) 2584061690361057 a001 377/199*167761^(3/5) 2584061690408705 a001 377/199*439204^(5/9) 2584061690416128 a001 377/199*7881196^(5/11) 2584061690416144 a001 377/199*20633239^(3/7) 2584061690416147 a001 377/199*141422324^(5/13) 2584061690416147 a001 377/199*2537720636^(1/3) 2584061690416147 a001 377/199*45537549124^(5/17) 2584061690416147 a001 377/199*312119004989^(3/11) 2584061690416147 a001 377/199*14662949395604^(5/21) 2584061690416147 a001 377/199*(1/2+1/2*5^(1/2))^15 2584061690416147 a001 377/199*192900153618^(5/18) 2584061690416147 a001 377/199*28143753123^(3/10) 2584061690416147 a001 377/199*10749957122^(5/16) 2584061690416147 a001 377/199*599074578^(5/14) 2584061690416147 a001 377/199*228826127^(3/8) 2584061690416148 a001 377/199*33385282^(5/12) 2584061690416520 a001 377/199*1860498^(1/2) 2584061690566384 a001 377/199*103682^(5/8) 2584061691539497 a001 377/199*39603^(15/22) 2584061698275002 r005 Im(z^2+c),c=-19/54+19/45*I,n=32 2584061698885662 a001 377/199*15127^(3/4) 2584061703714516 a007 Real Root Of -296*x^4-785*x^3+83*x^2+593*x+631 2584061712713062 m001 GAMMA(7/12)*ZetaP(3)-ZetaQ(3) 2584061716031177 r009 Re(z^3+c),c=-25/66+7/17*I,n=47 2584061726814693 a001 196418/15127*18^(5/21) 2584061730159210 a007 Real Root Of 375*x^4+983*x^3+101*x^2-3*x-441 2584061734862741 a001 521/2584*514229^(1/53) 2584061736448357 a001 514229/39603*18^(5/21) 2584061736606267 s002 sum(A224586[n]/(exp(2*pi*n)+1),n=1..infinity) 2584061737853890 a001 1346269/103682*18^(5/21) 2584061738058954 a001 3524578/271443*18^(5/21) 2584061738088873 a001 9227465/710647*18^(5/21) 2584061738093238 a001 24157817/1860498*18^(5/21) 2584061738093875 a001 63245986/4870847*18^(5/21) 2584061738093967 a001 165580141/12752043*18^(5/21) 2584061738093981 a001 433494437/33385282*18^(5/21) 2584061738093983 a001 1134903170/87403803*18^(5/21) 2584061738093983 a001 2971215073/228826127*18^(5/21) 2584061738093983 a001 7778742049/599074578*18^(5/21) 2584061738093983 a001 20365011074/1568397607*18^(5/21) 2584061738093983 a001 53316291173/4106118243*18^(5/21) 2584061738093983 a001 139583862445/10749957122*18^(5/21) 2584061738093983 a001 365435296162/28143753123*18^(5/21) 2584061738093983 a001 956722026041/73681302247*18^(5/21) 2584061738093983 a001 2504730781961/192900153618*18^(5/21) 2584061738093983 a001 10610209857723/817138163596*18^(5/21) 2584061738093983 a001 4052739537881/312119004989*18^(5/21) 2584061738093983 a001 1548008755920/119218851371*18^(5/21) 2584061738093983 a001 591286729879/45537549124*18^(5/21) 2584061738093983 a001 7787980473/599786069*18^(5/21) 2584061738093983 a001 86267571272/6643838879*18^(5/21) 2584061738093983 a001 32951280099/2537720636*18^(5/21) 2584061738093983 a001 12586269025/969323029*18^(5/21) 2584061738093983 a001 4807526976/370248451*18^(5/21) 2584061738093983 a001 1836311903/141422324*18^(5/21) 2584061738093984 a001 701408733/54018521*18^(5/21) 2584061738093989 a001 9238424/711491*18^(5/21) 2584061738094025 a001 102334155/7881196*18^(5/21) 2584061738094268 a001 39088169/3010349*18^(5/21) 2584061738095935 a001 14930352/1149851*18^(5/21) 2584061738107363 a001 5702887/439204*18^(5/21) 2584061738185691 a001 2178309/167761*18^(5/21) 2584061738722557 a001 832040/64079*18^(5/21) 2584061740726849 a007 Real Root Of -328*x^4-887*x^3-357*x^2-696*x-95 2584061740867544 r009 Im(z^3+c),c=-49/90+15/44*I,n=60 2584061742402289 a001 10959/844*18^(5/21) 2584061744354275 r005 Re(z^2+c),c=-27/86+9/56*I,n=25 2584061746960781 h001 (9/10*exp(1)+1/7)/(1/9*exp(1)+7/10) 2584061754917167 a001 377/199*5778^(5/6) 2584061758687788 m001 Niven/Magata^2*exp(Sierpinski)^2 2584061761569405 r005 Re(z^2+c),c=7/64+31/51*I,n=37 2584061764641395 m001 1/LambertW(1)/ln(Trott)^2*sqrt(3)^2 2584061766297076 r005 Im(z^2+c),c=-7/118+13/41*I,n=12 2584061767623550 a001 121393/9349*18^(5/21) 2584061772435303 m001 1/Robbin/Magata/exp(cos(1)) 2584061780232802 a008 Real Root of (1+2*x-6*x^2+4*x^3-2*x^4+4*x^5) 2584061781492880 a003 sin(Pi*3/52)/cos(Pi*43/90) 2584061783479623 r005 Im(z^2+c),c=-16/25+15/31*I,n=11 2584061784390706 a007 Real Root Of -289*x^4-120*x^3-903*x^2+881*x-164 2584061792800671 a005 (1/cos(15/224*Pi))^559 2584061798545587 a003 sin(Pi*3/56)/cos(Pi*27/98) 2584061798671537 r005 Re(z^2+c),c=-45/74+33/61*I,n=5 2584061806837577 r005 Im(z^2+c),c=-21/82+9/23*I,n=24 2584061812931537 r009 Re(z^3+c),c=-23/58+34/59*I,n=33 2584061818038837 r009 Re(z^3+c),c=-31/82+16/39*I,n=46 2584061818640720 m001 (OneNinth+Thue)/(BesselI(0,2)+MinimumGamma) 2584061823355911 a007 Real Root Of 260*x^4+848*x^3+508*x^2+51*x-221 2584061825434764 m005 (1/2*gamma+4/7)/(8/11*Catalan-1/3) 2584061831310041 a007 Real Root Of -419*x^4-138*x^3+571*x^2+639*x-199 2584061835460768 m005 (1/2*exp(1)+3/7)/(3/7*gamma+4/9) 2584061837330154 m001 (-Zeta(1,2)+GolombDickman)/(cos(1)-ln(Pi)) 2584061841899966 a007 Real Root Of 322*x^4+485*x^3-433*x^2+824*x-968 2584061854639998 a007 Real Root Of 335*x^4+258*x^3+741*x^2-832*x+21 2584061855282408 a003 sin(Pi*10/113)*sin(Pi*25/64) 2584061859207767 m005 (1/6*Catalan+1)/(-29/6+1/6*5^(1/2)) 2584061869135913 a008 Real Root of x^4-x^3-26*x^2-27*x+42 2584061874681318 s002 sum(A099707[n]/(n^2*pi^n-1),n=1..infinity) 2584061876664632 r005 Im(z^2+c),c=-55/122+13/29*I,n=48 2584061880018464 r005 Re(z^2+c),c=-19/74+11/17*I,n=37 2584061882532096 r005 Re(z^2+c),c=41/122+6/55*I,n=24 2584061885707962 h001 (3/8*exp(1)+5/11)/(2/3*exp(2)+7/9) 2584061895584932 a001 1/2207*(1/2*5^(1/2)+1/2)^11*3^(23/24) 2584061895982480 m001 (AlladiGrinstead+Totient)/(Trott2nd-Thue) 2584061898811548 a007 Real Root Of 305*x^4+141*x^3-574*x^2-888*x+264 2584061907352630 s002 sum(A265255[n]/(n*pi^n+1),n=1..infinity) 2584061930388444 m001 1/ln(TwinPrimes)^2/Magata^2/GAMMA(5/24)^2 2584061934113783 m005 (1/3*3^(1/2)+2/3)/(8/9*Catalan+4) 2584061939599521 r005 Im(z^2+c),c=11/64+12/61*I,n=13 2584061940492659 a001 46368/3571*18^(5/21) 2584061945476264 m001 2^(1/2)+gamma+Lehmer 2584061945476264 m001 sqrt(2)+gamma+Lehmer 2584061946005774 l006 ln(586/7765) 2584061946345821 a007 Real Root Of 192*x^4+154*x^3-909*x^2+75*x+360 2584061949297168 m001 (BesselJ(1,1)+CareFree)/(FeigenbaumMu+Thue) 2584061975789608 h001 (5/9*exp(1)+3/8)/(8/9*exp(2)+8/11) 2584061982059380 a003 cos(Pi*36/119)-sin(Pi*33/104) 2584061992427853 m001 DuboisRaymond-ln(2+3^(1/2))-MinimumGamma 2584062007576559 m001 (FellerTornier-GolombDickman)/(Salem-ZetaQ(3)) 2584062043356594 b008 18-31*Sqrt[2] 2584062050380793 m001 ZetaP(3)*(TreeGrowth2nd-sin(1/5*Pi)) 2584062060635254 r005 Re(z^2+c),c=-91/90+5/39*I,n=14 2584062066236698 a007 Real Root Of -390*x^4-556*x^3+760*x^2-965*x+227 2584062067457056 a007 Real Root Of 979*x^4+825*x^3-469*x^2-736*x-149 2584062074658045 a007 Real Root Of -691*x^4+779*x^3-472*x^2+828*x+262 2584062076601527 m001 (Backhouse+Conway*Porter)/Conway 2584062079116005 r005 Im(z^2+c),c=-5/86+20/63*I,n=9 2584062083787203 m001 Ei(1)/ln(MinimumGamma)/GAMMA(11/24) 2584062088320230 r009 Im(z^3+c),c=-35/118+21/31*I,n=5 2584062092850690 p004 log(11621/877) 2584062095966464 m001 1/BesselK(0,1)^2/Cahen*ln(GAMMA(1/6))^2 2584062100815638 m001 BesselI(0,1)+ln(3)+Ei(1,1) 2584062101828470 r005 Re(z^2+c),c=-5/28+37/63*I,n=64 2584062107859058 a007 Real Root Of 487*x^4-702*x^3+591*x^2-300*x+48 2584062110511327 m001 1/Paris^2*ln(CareFree)*GAMMA(1/3)^2 2584062114650656 r009 Re(z^3+c),c=-31/82+16/39*I,n=42 2584062116788385 m005 (1/2*exp(1)+5/11)/(1/4*5^(1/2)+1/7) 2584062124423959 m001 (gamma(1)+GolombDickman)/(Kolakoski+Totient) 2584062132769285 s002 sum(A112012[n]/(64^n-1),n=1..infinity) 2584062132943217 l006 ln(8366/8585) 2584062137715364 r002 12th iterates of z^2 + 2584062138753454 p001 sum(1/(453*n+422)/(6^n),n=0..infinity) 2584062143391819 m001 (1/3+ln(2+sqrt(3)))^Ei(1) 2584062156840275 p003 LerchPhi(1/5,2,440/213) 2584062162474050 m001 (BesselI(1,1)-CopelandErdos)/(Paris+Salem) 2584062165097709 m005 (1/3*2^(1/2)+2/7)/(6/7*exp(1)+3/5) 2584062166936099 a007 Real Root Of -307*x^4-917*x^3-84*x^2+766*x+406 2584062176613965 r009 Re(z^3+c),c=-1/94+23/28*I,n=44 2584062180734375 r005 Im(z^2+c),c=-51/110+13/29*I,n=43 2584062187774783 a001 377/199*2207^(15/16) 2584062189734285 m002 Cosh[Pi]+ProductLog[Pi]+(Pi^5*Tanh[Pi])/E^Pi 2584062193791926 m005 (1/2*exp(1)+2/9)/(3/11*gamma+5/11) 2584062196307094 q001 2659/1029 2584062200741656 r005 Im(z^2+c),c=-9/8+21/82*I,n=31 2584062204344895 m001 (TravellingSalesman-exp(Pi))/(Thue+ZetaQ(3)) 2584062210809716 p004 log(19333/1459) 2584062219177613 p003 LerchPhi(1/3,6,290/157) 2584062221157161 m001 (1+2*Pi/GAMMA(5/6))/(-Otter+PrimesInBinary) 2584062222986244 p003 LerchPhi(1/512,6,35/41) 2584062224627159 r009 Re(z^3+c),c=-1/22+17/27*I,n=47 2584062226149925 r002 18th iterates of z^2 + 2584062228640811 r005 Re(z^2+c),c=35/106+23/52*I,n=12 2584062229969663 l006 ln(1811/2345) 2584062233833109 m002 5/Log[Pi]+(E^Pi*Tanh[Pi])/ProductLog[Pi] 2584062237366163 m001 sin(Pi/12)*GAMMA(7/24)*exp(sin(Pi/5))^2 2584062254556585 a001 682/31622993*6557470319842^(17/24) 2584062256204167 a001 1364/17711*63245986^(17/24) 2584062261203070 r005 Re(z^2+c),c=-27/86+9/56*I,n=28 2584062261704779 m001 (-ln(3)+BesselI(0,2))/(exp(1)+Si(Pi)) 2584062262958156 r005 Re(z^2+c),c=-27/86+9/56*I,n=30 2584062274106457 r002 33th iterates of z^2 + 2584062275474582 r005 Re(z^2+c),c=-27/86+9/56*I,n=27 2584062284598976 r005 Im(z^2+c),c=-65/114+17/43*I,n=43 2584062285555929 r005 Re(z^2+c),c=-27/86+9/56*I,n=32 2584062286086731 p001 sum((-1)^n/(106*n+47)/n/(25^n),n=0..infinity) 2584062288491357 m005 (3/4*Catalan-1/6)/(47/40+3/8*5^(1/2)) 2584062295427035 r005 Re(z^2+c),c=-27/86+9/56*I,n=34 2584062296901138 r005 Re(z^2+c),c=-27/86+9/56*I,n=37 2584062297099152 r005 Re(z^2+c),c=-27/86+9/56*I,n=39 2584062297252419 r005 Re(z^2+c),c=-27/86+9/56*I,n=41 2584062297301252 r005 Re(z^2+c),c=-27/86+9/56*I,n=43 2584062297301374 r005 Re(z^2+c),c=-27/86+9/56*I,n=46 2584062297301737 r005 Re(z^2+c),c=-27/86+9/56*I,n=44 2584062297303286 r005 Re(z^2+c),c=-27/86+9/56*I,n=48 2584062297304171 r005 Re(z^2+c),c=-27/86+9/56*I,n=50 2584062297304323 r005 Re(z^2+c),c=-27/86+9/56*I,n=53 2584062297304338 r005 Re(z^2+c),c=-27/86+9/56*I,n=55 2584062297304351 r005 Re(z^2+c),c=-27/86+9/56*I,n=57 2584062297304356 r005 Re(z^2+c),c=-27/86+9/56*I,n=59 2584062297304356 r005 Re(z^2+c),c=-27/86+9/56*I,n=62 2584062297304356 r005 Re(z^2+c),c=-27/86+9/56*I,n=60 2584062297304356 r005 Re(z^2+c),c=-27/86+9/56*I,n=64 2584062297304357 r005 Re(z^2+c),c=-27/86+9/56*I,n=63 2584062297304357 r005 Re(z^2+c),c=-27/86+9/56*I,n=61 2584062297304358 r005 Re(z^2+c),c=-27/86+9/56*I,n=58 2584062297304367 r005 Re(z^2+c),c=-27/86+9/56*I,n=56 2584062297304378 r005 Re(z^2+c),c=-27/86+9/56*I,n=52 2584062297304384 r005 Re(z^2+c),c=-27/86+9/56*I,n=54 2584062297304391 r005 Re(z^2+c),c=-27/86+9/56*I,n=51 2584062297304859 r005 Re(z^2+c),c=-27/86+9/56*I,n=49 2584062297306292 r005 Re(z^2+c),c=-27/86+9/56*I,n=47 2584062297308033 r005 Re(z^2+c),c=-27/86+9/56*I,n=45 2584062297323037 r005 Re(z^2+c),c=-27/86+9/56*I,n=42 2584062297416545 r005 Re(z^2+c),c=-27/86+9/56*I,n=40 2584062297571686 r005 Re(z^2+c),c=-27/86+9/56*I,n=35 2584062297613764 r005 Re(z^2+c),c=-27/86+9/56*I,n=36 2584062297624598 r005 Re(z^2+c),c=-27/86+9/56*I,n=38 2584062298467186 m004 6+5*Pi+2*Cot[Sqrt[5]*Pi]+Log[Sqrt[5]*Pi] 2584062302666886 r005 Re(z^2+c),c=-27/86+9/56*I,n=33 2584062303113079 h001 (5/7*exp(2)+8/11)/(5/8*exp(1)+5/8) 2584062303830551 r009 Re(z^3+c),c=-37/94+19/43*I,n=54 2584062314464503 m001 1/GAMMA(13/24)^2*exp(GAMMA(1/4))/cos(1) 2584062314911756 r005 Im(z^2+c),c=-41/114+17/40*I,n=36 2584062319038046 r005 Re(z^2+c),c=-27/86+9/56*I,n=31 2584062320389754 a007 Real Root Of -123*x^4+17*x^3+918*x^2+235*x+255 2584062332236661 r009 Re(z^3+c),c=-31/82+16/39*I,n=49 2584062341430465 r005 Re(z^2+c),c=-27/86+9/56*I,n=29 2584062342188705 m001 (Ei(1,1)+KhinchinHarmonic)/(Paris+Robbin) 2584062343604573 m001 (Pi-Zeta(1/2))/(Grothendieck-HeathBrownMoroz) 2584062348699612 a001 1/5778*(1/2*5^(1/2)+1/2)^13*3^(23/24) 2584062366442917 m005 (-7/20+1/4*5^(1/2))/(5/9*Catalan+3/10) 2584062368153938 r009 Im(z^3+c),c=-43/122+9/46*I,n=20 2584062380099249 m001 FeigenbaumC^Si(Pi)/KhinchinLevy 2584062381964202 h001 (1/11*exp(2)+7/10)/(3/5*exp(2)+7/8) 2584062387037897 a008 Real Root of x^4-19*x^2-45*x-34 2584062388558943 l006 ln(291/3856) 2584062388578036 m001 (Cahen+FeigenbaumB)/(LandauRamanujan2nd-Trott) 2584062389143233 a007 Real Root Of 239*x^4+548*x^3+93*x^2+943*x+615 2584062391442265 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)+LandauRamanujan-Thue 2584062397570176 a001 75025/199*521^(4/13) 2584062405892098 a008 Real Root of (2+5*x+6*x^2+5*x^3+2*x^4-2*x^5) 2584062406126352 m005 (1/3*gamma-1/5)/(3/7*2^(1/2)-9/10) 2584062409976981 m001 ln(GAMMA(1/24))^2*FeigenbaumAlpha*Zeta(5) 2584062414808166 a001 1/15127*(1/2*5^(1/2)+1/2)^15*3^(23/24) 2584062416625938 m001 GAMMA(2/3)+ln(2^(1/2)+1)*HardHexagonsEntropy 2584062424453275 a001 1/39603*(1/2*5^(1/2)+1/2)^17*3^(23/24) 2584062426730176 a001 1/64079*(1/2*5^(1/2)+1/2)^18*3^(23/24) 2584062430414279 a001 1/24476*(1/2*5^(1/2)+1/2)^16*3^(23/24) 2584062439033652 m001 GAMMA(2/3)/ln(GaussKuzminWirsing)/GAMMA(5/24) 2584062440350945 s001 sum(1/10^(n-1)*A105813[n]/n^n,n=1..infinity) 2584062452338795 m002 4/Pi^3+(3*Sech[Pi])/2 2584062455665501 a001 1/9349*(1/2*5^(1/2)+1/2)^14*3^(23/24) 2584062467283509 a007 Real Root Of 13*x^4+311*x^3-653*x^2-251*x-582 2584062475635322 m001 BesselJ(1,1)*exp(Porter)*GAMMA(2/3) 2584062479438486 m001 (Salem+Stephens)/(ln(Pi)-MasserGramainDelta) 2584062481276289 m001 1/ln(GAMMA(7/12))^2/(2^(1/3))^2*exp(1)^2 2584062484426322 r005 Im(z^2+c),c=-101/86+15/62*I,n=14 2584062485332774 r005 Re(z^2+c),c=-27/86+9/56*I,n=26 2584062485837464 m001 HardyLittlewoodC3*Mills+Riemann3rdZero 2584062500382604 g007 Psi(2,5/12)+Psi(2,6/7)-Psi(2,10/11)-Psi(2,8/9) 2584062504811199 m001 (3^(1/2)+Grothendieck)/(MertensB3+Trott2nd) 2584062505597429 r005 Im(z^2+c),c=15/52+2/23*I,n=52 2584062511210996 s002 sum(A199572[n]/(n^2*pi^n+1),n=1..infinity) 2584062522308154 a003 sin(Pi*1/93)*sin(Pi*33/119) 2584062530520060 r005 Im(z^2+c),c=-35/118+17/42*I,n=52 2584062532610476 a007 Real Root Of -252*x^4-812*x^3-254*x^2+515*x+252 2584062537077246 r005 Im(z^2+c),c=-7/29+17/44*I,n=21 2584062538992057 m001 ZetaP(3)*(FeigenbaumB+MasserGramain) 2584062551047315 r009 Re(z^3+c),c=-31/82+16/39*I,n=52 2584062551097268 r005 Im(z^2+c),c=-17/26+3/59*I,n=46 2584062551770826 r005 Re(z^2+c),c=-17/62+15/44*I,n=17 2584062598999405 m001 1/exp(Paris)*FibonacciFactorial^2*Ei(1) 2584062605298465 a001 2207/610*8^(52/55) 2584062607000385 m001 FeigenbaumAlpha^2/ln(CopelandErdos)^2/Magata^2 2584062610094902 s002 sum(A197390[n]/(n^3*exp(n)+1),n=1..infinity) 2584062611212269 a007 Real Root Of 332*x^4-157*x^3-924*x^2-306*x+142 2584062612598752 r005 Re(z^2+c),c=-37/114+2/53*I,n=19 2584062612631662 a007 Real Root Of -408*x^4-974*x^3+450*x^2+533*x-242 2584062616933889 m001 1/ln(FibonacciFactorial)/Artin^2/GAMMA(2/3) 2584062621985932 r009 Re(z^3+c),c=-37/94+19/43*I,n=44 2584062627940995 r002 19th iterates of z^2 + 2584062628739965 a001 1/3571*(1/2*5^(1/2)+1/2)^12*3^(23/24) 2584062641129648 r009 Re(z^3+c),c=-31/82+16/39*I,n=55 2584062641208383 m001 (ln(2)-ln(Pi))/(GAMMA(13/24)+OneNinth) 2584062643771084 h001 (3/8*exp(1)+7/9)/(9/11*exp(2)+10/11) 2584062643942883 q001 561/2171 2584062650740961 m001 1/sin(1)^2/LambertW(1)^2*exp(sqrt(Pi)) 2584062653494424 a007 Real Root Of 397*x^4+884*x^3-597*x^2-451*x+373 2584062656721907 p001 sum(1/(467*n+362)/n/(5^n),n=1..infinity) 2584062661990455 a007 Real Root Of 352*x^4+621*x^3-914*x^2-554*x-308 2584062662508766 m001 Pi*(Psi(2,1/3)-Zeta(3))*Zeta(1/2) 2584062671948476 m001 GAMMA(5/6)*MertensB1*exp(sqrt(5))^2 2584062672741513 a007 Real Root Of 434*x^4+972*x^3-713*x^2-924*x-206 2584062676819425 a007 Real Root Of -238*x^4-26*x^3-375*x^2+571*x-121 2584062677137336 r009 Re(z^3+c),c=-31/82+16/39*I,n=58 2584062677328081 h001 (1/7*exp(2)+7/11)/(4/5*exp(2)+7/11) 2584062684369939 m001 KhinchinHarmonic/(Rabbit^ln(Pi)) 2584062691133600 r009 Re(z^3+c),c=-31/82+16/39*I,n=61 2584062694447644 a007 Real Root Of 33*x^4+857*x^3+149*x^2+988*x-469 2584062696000668 r009 Re(z^3+c),c=-31/82+16/39*I,n=45 2584062696423661 r009 Re(z^3+c),c=-31/82+16/39*I,n=64 2584062700082811 r009 Re(z^3+c),c=-31/82+16/39*I,n=62 2584062701885272 m004 -1/6+Sqrt[5]*Pi-125*Pi*Sin[Sqrt[5]*Pi] 2584062703083732 m001 ArtinRank2*HeathBrownMoroz-Sierpinski 2584062703340431 r009 Re(z^3+c),c=-31/82+16/39*I,n=63 2584062703867334 r009 Re(z^3+c),c=-31/82+16/39*I,n=59 2584062708307366 r009 Re(z^3+c),c=-31/82+16/39*I,n=60 2584062708334587 b008 LogIntegral[ArcSec[70]] 2584062717514554 r009 Re(z^3+c),c=-31/82+16/39*I,n=56 2584062718508689 r009 Re(z^3+c),c=-31/82+16/39*I,n=57 2584062722199069 r002 60th iterates of z^2 + 2584062725589815 m005 (1/2*2^(1/2)-11/12)/(1/4*gamma+2/3) 2584062730744153 m001 (exp(1)+arctan(1/2))/(-CopelandErdos+Porter) 2584062734461096 a003 sin(Pi*30/113)-sin(Pi*53/109) 2584062735047743 r002 10th iterates of z^2 + 2584062737416290 r009 Re(z^3+c),c=-31/82+16/39*I,n=54 2584062746925665 a007 Real Root Of 419*x^4+991*x^3-506*x^2-947*x-651 2584062753636137 s001 sum(exp(-2*Pi/3)^n*A072800[n],n=1..infinity) 2584062755359419 r005 Re(z^2+c),c=-23/118+31/57*I,n=45 2584062760359923 m001 FeigenbaumDelta^ZetaP(2)*MadelungNaCl^ZetaP(2) 2584062761693718 r009 Re(z^3+c),c=-31/82+16/39*I,n=53 2584062763328616 h001 (1/6*exp(2)+5/11)/(7/9*exp(2)+7/9) 2584062765888383 r009 Re(z^3+c),c=-31/82+16/39*I,n=51 2584062771223289 r005 Im(z^2+c),c=-25/114+14/37*I,n=26 2584062785350967 r009 Re(z^3+c),c=-31/82+16/39*I,n=48 2584062789454981 a001 3571/956722026041*20365011074^(21/22) 2584062789456847 a001 3571/39088169*514229^(21/22) 2584062791708582 r009 Im(z^3+c),c=-16/31+7/62*I,n=38 2584062792725863 q001 8/30959 2584062795570781 m005 (1/3*gamma+1/8)/(1/5*Pi+3/5) 2584062800653818 v002 sum(1/(2^n*(1/2*n^2+39/2*n+8)),n=1..infinity) 2584062805315189 a007 Real Root Of -849*x^4-244*x^3+367*x^2+772*x-216 2584062807360374 m002 -2/Pi^2-Pi^3+5*ProductLog[Pi] 2584062808518532 r005 Im(z^2+c),c=-19/46+11/30*I,n=8 2584062812377776 l006 ln(7322/9481) 2584062822247055 a007 Real Root Of 265*x^4-785*x^3+217*x^2-688*x-207 2584062826147307 m001 Ei(1)^2/exp(TreeGrowth2nd)^2*log(2+sqrt(3))^2 2584062833252441 r002 57th iterates of z^2 + 2584062837237216 l006 ln(578/7659) 2584062838484919 r009 Im(z^3+c),c=-4/11+7/37*I,n=14 2584062856704079 r005 Re(z^2+c),c=-9/14+73/113*I,n=3 2584062865507484 m001 Tribonacci^(1/2*ReciprocalLucas*2^(2/3)) 2584062874791350 m001 (FeigenbaumD+ZetaP(2))/(BesselI(0,1)-ln(Pi)) 2584062875437437 r005 Im(z^2+c),c=-7/19+17/40*I,n=26 2584062877023657 m005 (39/44+1/4*5^(1/2))/(2/11*5^(1/2)-6) 2584062879761240 a001 233/29*11^(19/39) 2584062890160787 p001 sum((-1)^n/(383*n+85)/n/(8^n),n=1..infinity) 2584062895495442 r009 Re(z^3+c),c=-31/82+16/39*I,n=50 2584062898065005 m003 -5/2+(33*Sqrt[5])/64+(3*Cosh[1/2+Sqrt[5]/2])/2 2584062911378988 m001 Sierpinski/ln(Magata)*GAMMA(3/4) 2584062914662725 m001 (Zeta(5)+CareFree)/(Lehmer+StolarskyHarborth) 2584062916071603 r005 Re(z^2+c),c=-7/29+18/41*I,n=37 2584062920912406 r005 Im(z^2+c),c=-75/62+3/19*I,n=34 2584062948500572 m005 (1/2*3^(1/2)-5/7)/(7/5+2*5^(1/2)) 2584062956882424 r005 Re(z^2+c),c=-7/31+22/45*I,n=23 2584062962529467 a001 9349/2504730781961*20365011074^(21/22) 2584062962531332 a001 9349/102334155*514229^(21/22) 2584062964666051 r005 Re(z^2+c),c=-35/122+19/64*I,n=16 2584062980761378 a001 516002918640*199^(7/23) 2584062981412326 a007 Real Root Of -163*x^4-142*x^3+443*x^2-446*x+707 2584062987042104 m001 ln(3)^exp(1/exp(1))-OrthogonalArrays 2584062987780694 a001 12238/3278735159921*20365011074^(21/22) 2584062987782560 a001 1/10946*514229^(21/22) 2584062991466664 a001 64079/701408733*514229^(21/22) 2584062991572444 m005 (1/2*Catalan+2)/(6/11*gamma+7/11) 2584062992004167 a001 167761/1836311903*514229^(21/22) 2584062992082588 a001 109801/1201881744*514229^(21/22) 2584062992094030 a001 1149851/12586269025*514229^(21/22) 2584062992095699 a001 3010349/32951280099*514229^(21/22) 2584062992095942 a001 1970299/21566892818*514229^(21/22) 2584062992095978 a001 711491/7787980473*514229^(21/22) 2584062992095983 a001 54018521/591286729879*514229^(21/22) 2584062992095984 a001 35355581/387002188980*514229^(21/22) 2584062992095984 a001 370248451/4052739537881*514229^(21/22) 2584062992095984 a001 969323029/10610209857723*514229^(21/22) 2584062992095984 a001 299537289/3278735159921*514229^(21/22) 2584062992095984 a001 228826127/2504730781961*514229^(21/22) 2584062992095984 a001 87403803/956722026041*514229^(21/22) 2584062992095986 a001 16692641/182717648081*514229^(21/22) 2584062992096000 a001 12752043/139583862445*514229^(21/22) 2584062992096093 a001 4870847/53316291173*514229^(21/22) 2584062992096731 a001 930249/10182505537*514229^(21/22) 2584062992101101 a001 710647/7778742049*514229^(21/22) 2584062992131055 a001 271443/2971215073*514229^(21/22) 2584062992336363 a001 51841/567451585*514229^(21/22) 2584062993741700 a001 13201/3536736619241*20365011074^(21/22) 2584062993743566 a001 39603/433494437*514229^(21/22) 2584062993948559 m001 ln(5)*Ei(1)*GaussAGM(1,1/sqrt(2)) 2584063001929560 a001 13/1149851*3571^(52/55) 2584063003386811 a001 15127/4052739537881*20365011074^(21/22) 2584063003388676 a001 15127/165580141*514229^(21/22) 2584063003766099 l006 ln(5511/7136) 2584063022039464 m001 (gamma(1)+Bloch)/(LaplaceLimit+QuadraticClass) 2584063028327891 r009 Re(z^3+c),c=-25/66+7/17*I,n=44 2584063036513637 a007 Real Root Of 212*x^4+96*x^3-800*x^2+805*x-374 2584063037773803 a007 Real Root Of -460*x^4-966*x^3+318*x^2-383*x+729 2584063038062037 a001 228826127/233*46368^(7/23) 2584063038135154 a001 7881196/233*2971215073^(7/23) 2584063041827699 m001 (-ln(2)+ln(2+3^(1/2)))/(exp(Pi)+1) 2584063059370139 s001 sum(exp(-Pi/4)^n*A025524[n],n=1..infinity) 2584063061957117 m001 (-ln(3)+FeigenbaumDelta)/(sin(1)+cos(1)) 2584063063555722 a005 (1/cos(7/167*Pi))^1698 2584063063740155 p001 sum((-1)^n/(367*n+19)/n/(100^n),n=1..infinity) 2584063069495381 a001 321/86000486440*20365011074^(21/22) 2584063069497247 a001 2889/31622993*514229^(21/22) 2584063071471368 a001 199/2178309*46368^(3/31) 2584063072096905 p003 LerchPhi(1/8,5,298/227) 2584063097725854 m001 LandauRamanujan/ln(Kolakoski)^2/RenyiParking^2 2584063097802684 a001 2/139583862445*21^(19/20) 2584063103121907 m001 (MasserGramain+ReciprocalLucas)/(1-gamma(2)) 2584063103296820 m006 (1/2*exp(2*Pi)+4)/(3/5*Pi-5/6) 2584063103705672 m001 BesselJ(0,1)/ln(Kolakoski)*log(1+sqrt(2))^2 2584063117470798 r002 5th iterates of z^2 + 2584063125355783 a001 17711/1364*18^(5/21) 2584063129731190 a001 121393/199*521^(3/13) 2584063130708516 a003 cos(Pi*7/93)-sin(Pi*21/83) 2584063132107287 a007 Real Root Of -514*x^4+827*x^3-793*x^2-180*x+23 2584063133993558 m001 (Cahen+Tribonacci)/(sin(1)+Zeta(1,2)) 2584063134219158 m001 (GAMMA(1/4)-Lehmer)/GAMMA(19/24) 2584063134219158 m001 (Pi*2^(1/2)/GAMMA(3/4)-Lehmer)/GAMMA(19/24) 2584063156414530 m001 GAMMA(5/24)^ThueMorse/(BesselJ(1,1)^ThueMorse) 2584063167052592 r005 Re(z^2+c),c=-11/62+21/37*I,n=40 2584063168788062 m008 (1/3*Pi^6-2)/(2/5*Pi^5+5/6) 2584063174754502 b008 PolyGamma[0,3*Sqrt[21]] 2584063180691778 r005 Re(z^2+c),c=-23/74+2/11*I,n=22 2584063190998984 a001 13/103682*24476^(29/55) 2584063193420273 r005 Im(z^2+c),c=-3/58+16/51*I,n=20 2584063208972643 a003 cos(Pi*15/119)*cos(Pi*34/83) 2584063209685114 a005 (1/cos(3/89*Pi))^169 2584063212145842 a007 Real Root Of -297*x^4-776*x^3-126*x^2-495*x-585 2584063215600186 m001 Chi(1)*Porter*Riemann2ndZero 2584063238275918 a001 167761/610*610^(17/24) 2584063239656691 m001 (MertensB2-QuadraticClass)/Lehmer 2584063241844431 r005 Im(z^2+c),c=-71/98+8/47*I,n=62 2584063244741102 m006 (2*exp(Pi)-2/5)/(3/4*exp(Pi)+2/5) 2584063245261443 a007 Real Root Of -916*x^4+449*x^3+731*x^2+687*x-230 2584063254040829 a001 13/439204*5778^(43/55) 2584063256347576 m001 1/exp(cos(1))^2/GAMMA(3/4)*cos(Pi/12)^2 2584063256903587 m001 1/5*(5^(1/2)*Sierpinski-gamma(3))*5^(1/2) 2584063265871614 a007 Real Root Of 272*x^4+313*x^3-929*x^2+342*x+360 2584063268116299 a007 Real Root Of 133*x^4-138*x^3-995*x^2+973*x+847 2584063268554904 m001 FibonacciFactorial^BesselI(1,1)+MinimumGamma 2584063272290769 m001 1/ln(Zeta(7))*Niven^2*exp(1)^2 2584063273379148 h001 (3/5*exp(1)+2/7)/(10/11*exp(2)+7/10) 2584063279045453 m001 (-2*Pi/GAMMA(5/6)+Lehmer)/(Si(Pi)-gamma(1)) 2584063281623593 p001 sum(1/(401*n+390)/(64^n),n=0..infinity) 2584063281931922 r009 Re(z^3+c),c=-31/82+16/39*I,n=47 2584063284646153 a007 Real Root Of -159*x^4+719*x^3-29*x^2+321*x+98 2584063290060817 m005 (1/2*exp(1)+1/7)/(1/4*Pi-8/11) 2584063292168638 l006 ln(287/3803) 2584063293574826 s002 sum(A257429[n]/((pi^n+1)/n),n=1..infinity) 2584063298742513 r009 Im(z^3+c),c=-3/7+8/57*I,n=29 2584063305708876 s002 sum(A223337[n]/((3*n)!),n=1..infinity) 2584063305986569 r005 Re(z^2+c),c=-23/74+11/60*I,n=12 2584063312939620 s001 sum(exp(-2*Pi/5)^n*A280288[n],n=1..infinity) 2584063312939620 s002 sum(A280288[n]/(exp(2/5*pi*n)),n=1..infinity) 2584063315368075 r004 Re(z^2+c),c=-13/42+2/11*I,z(0)=-1,n=12 2584063327423426 m001 (ln(gamma)+arctan(1/3))/QuadraticClass 2584063332674057 m001 KhintchineLevy/Lehmer/ln(PrimesInBinary)^2 2584063337264439 a008 Real Root of (-5+2*x-5*x^2+3*x^3-3*x^4+x^5) 2584063338453433 a001 5778/1597*8^(52/55) 2584063344891271 m004 5*Pi+Sqrt[5]*Pi+(4*Sqrt[5]*Cot[Sqrt[5]*Pi])/Pi 2584063345613622 a007 Real Root Of -539*x^4+743*x^3+898*x^2+653*x+124 2584063355993545 r005 Im(z^2+c),c=-81/122+18/59*I,n=18 2584063360788565 r005 Im(z^2+c),c=-17/24+8/45*I,n=36 2584063363103952 a008 Real Root of (-2+6*x+7*x^2-4*x^4-x^8) 2584063363928440 a007 Real Root Of 722*x^4-945*x^3+672*x^2-726*x-252 2584063369758225 r005 Im(z^2+c),c=-53/90+12/53*I,n=4 2584063369831001 m005 (1/2*3^(1/2)-3)/(1/11*Catalan-10/11) 2584063382508063 l006 ln(3700/4791) 2584063394134553 h001 (1/2*exp(1)+3/8)/(8/9*exp(2)+1/7) 2584063407227449 a007 Real Root Of 475*x^4+803*x^3-750*x^2+564*x-858 2584063422185762 m001 (ln(5)*TwinPrimes+Cahen)/TwinPrimes 2584063424362805 m001 GaussAGM+MertensB2+TravellingSalesman 2584063428114597 r009 Im(z^3+c),c=-11/94+51/61*I,n=24 2584063437215010 r005 Re(z^2+c),c=-35/106+11/57*I,n=2 2584063438881266 a007 Real Root Of 441*x^4+774*x^3-942*x^2+27*x+52 2584063439880053 r005 Im(z^2+c),c=-11/28+27/62*I,n=47 2584063440827057 a001 3571/165580141*6557470319842^(17/24) 2584063441067436 a001 3571/46368*63245986^(17/24) 2584063444805348 r005 Re(z^2+c),c=-2/29+26/59*I,n=2 2584063445419357 a001 15127/4181*8^(52/55) 2584063451942896 r005 Im(z^2+c),c=-51/98+1/22*I,n=30 2584063454775999 s001 sum(exp(-Pi/4)^n*A063771[n],n=1..infinity) 2584063461025477 a001 39603/10946*8^(52/55) 2584063464709582 a001 64079/17711*8^(52/55) 2584063465314152 a007 Real Root Of 426*x^4+867*x^3-424*x^2+317*x-384 2584063470670589 a001 24476/6765*8^(52/55) 2584063477639003 r005 Im(z^2+c),c=-15/86+21/58*I,n=18 2584063487355814 r005 Re(z^2+c),c=-9/32+10/19*I,n=9 2584063493125728 r009 Re(z^3+c),c=-7/40+38/43*I,n=26 2584063494194072 l006 ln(8557/8781) 2584063495866518 g006 Psi(1,3/11)+Psi(1,1/4)-Psi(1,7/12)-Psi(1,5/6) 2584063497379758 r005 Re(z^2+c),c=-1/29+31/51*I,n=31 2584063506968640 r009 Im(z^3+c),c=-43/122+9/46*I,n=24 2584063507686479 a007 Real Root Of -39*x^4-995*x^3+370*x^2+999*x-650 2584063509123843 m001 Psi(1,1/3)/Backhouse/FeigenbaumD 2584063509150408 a007 Real Root Of 423*x^4+101*x^3+212*x^2-351*x-105 2584063509758389 a001 11/5*46368^(25/38) 2584063511527942 a001 9349/2584*8^(52/55) 2584063522610267 a001 2207/591286729879*20365011074^(21/22) 2584063522612132 a001 2207/24157817*514229^(21/22) 2584063523991387 a007 Real Root Of 79*x^4-153*x^3+830*x^2-486*x-184 2584063526512652 r005 Re(z^2+c),c=-27/86+9/56*I,n=24 2584063530858321 r005 Im(z^2+c),c=-11/20+14/39*I,n=12 2584063531193368 a001 13/3571*2207^(14/55) 2584063536482492 m001 Zeta(1,-1)^(FransenRobinson*Sarnak) 2584063537815376 r005 Re(z^2+c),c=35/118+23/57*I,n=44 2584063555252702 m001 (GAMMA(2/3)-Rabbit)/(Riemann3rdZero-ZetaP(4)) 2584063556886503 r005 Im(z^2+c),c=-29/56+19/43*I,n=47 2584063560220928 m001 (GAMMA(17/24)+5)/(GAMMA(11/24)+1/2) 2584063561667417 a007 Real Root Of -71*x^4+59*x^3+897*x^2+623*x-196 2584063578478115 r009 Im(z^3+c),c=-43/122+9/46*I,n=23 2584063582346232 m005 (3*2^(1/2)-3)/(2/5*gamma+1/4) 2584063586183507 m001 BesselJ(0,1)^2/ln(Tribonacci)*GAMMA(13/24)^2 2584063590907970 r009 Im(z^3+c),c=-11/106+28/33*I,n=28 2584063592392298 a001 987/199*1364^(13/15) 2584063592442765 m001 (Kac+Khinchin)/(Psi(1,1/3)+exp(1)) 2584063595540499 r005 Re(z^2+c),c=-31/98+4/31*I,n=8 2584063596009838 m001 (FeigenbaumC-Mills)/(Rabbit-Riemann2ndZero) 2584063601217818 a007 Real Root Of 384*x^4+877*x^3-700*x^2-726*x+809 2584063602399952 g006 Psi(1,7/9)+Psi(1,2/5)-Psi(1,4/11)-Psi(1,3/5) 2584063604589408 p001 sum(1/(497*n+468)/(3^n),n=0..infinity) 2584063613901586 a001 9349/433494437*6557470319842^(17/24) 2584063613936657 a001 9349/121393*63245986^(17/24) 2584063616681314 r005 Re(z^2+c),c=-13/40+1/49*I,n=18 2584063616994741 m001 ZetaP(2)/(ZetaQ(3)^Totient) 2584063620459846 m005 (1/2*5^(1/2)-1/8)/(9/11*2^(1/2)-5) 2584063625821819 r009 Im(z^3+c),c=-7/34+39/41*I,n=16 2584063632394798 r009 Im(z^3+c),c=-43/122+9/46*I,n=25 2584063632740353 m005 (1/2*Pi+4/5)/(5/8*3^(1/2)-2) 2584063632861436 a007 Real Root Of 192*x^4-653*x^3-702*x^2-595*x-119 2584063638954984 r009 Im(z^3+c),c=-43/122+9/46*I,n=28 2584063639152819 a001 12238/567451585*6557470319842^(17/24) 2584063639157936 a001 844/10959*63245986^(17/24) 2584063641127117 r009 Im(z^3+c),c=-43/122+9/46*I,n=29 2584063642836925 a001 64079/2971215073*6557470319842^(17/24) 2584063642837671 a001 64079/832040*63245986^(17/24) 2584063643374428 a001 167761/7778742049*6557470319842^(17/24) 2584063643374537 a001 167761/2178309*63245986^(17/24) 2584063643452849 a001 219602/10182505537*6557470319842^(17/24) 2584063643452865 a001 439204/5702887*63245986^(17/24) 2584063643464291 a001 1149851/53316291173*6557470319842^(17/24) 2584063643464293 a001 1149851/14930352*63245986^(17/24) 2584063643465960 a001 3010349/139583862445*6557470319842^(17/24) 2584063643465960 a001 3010349/39088169*63245986^(17/24) 2584063643466203 a001 3940598/182717648081*6557470319842^(17/24) 2584063643466204 a001 7881196/102334155*63245986^(17/24) 2584063643466239 a001 20633239/956722026041*6557470319842^(17/24) 2584063643466239 a001 711491/9238424*63245986^(17/24) 2584063643466244 a001 54018521/2504730781961*6557470319842^(17/24) 2584063643466244 a001 54018521/701408733*63245986^(17/24) 2584063643466245 a001 70711162/3278735159921*6557470319842^(17/24) 2584063643466245 a001 141422324/1836311903*63245986^(17/24) 2584063643466245 a001 4868641/225749145909*6557470319842^(17/24) 2584063643466245 a001 370248451/4807526976*63245986^(17/24) 2584063643466245 a001 969323029/12586269025*63245986^(17/24) 2584063643466245 a001 2537720636/32951280099*63245986^(17/24) 2584063643466245 a001 6643838879/86267571272*63245986^(17/24) 2584063643466245 a001 599786069/7787980473*63245986^(17/24) 2584063643466245 a001 45537549124/591286729879*63245986^(17/24) 2584063643466245 a001 119218851371/1548008755920*63245986^(17/24) 2584063643466245 a001 312119004989/4052739537881*63245986^(17/24) 2584063643466245 a001 817138163596/10610209857723*63245986^(17/24) 2584063643466245 a001 505019158607/6557470319842*63245986^(17/24) 2584063643466245 a001 192900153618/2504730781961*63245986^(17/24) 2584063643466245 a001 73681302247/956722026041*63245986^(17/24) 2584063643466245 a001 28143753123/365435296162*63245986^(17/24) 2584063643466245 a001 10749957122/139583862445*63245986^(17/24) 2584063643466245 a001 4106118243/53316291173*63245986^(17/24) 2584063643466245 a001 1568397607/20365011074*63245986^(17/24) 2584063643466245 a001 599074578/7778742049*63245986^(17/24) 2584063643466245 a001 228826127/2971215073*63245986^(17/24) 2584063643466245 a001 87403803/4052739537881*6557470319842^(17/24) 2584063643466245 a001 87403803/1134903170*63245986^(17/24) 2584063643466247 a001 16692641/774004377960*6557470319842^(17/24) 2584063643466247 a001 33385282/433494437*63245986^(17/24) 2584063643466261 a001 12752043/591286729879*6557470319842^(17/24) 2584063643466261 a001 12752043/165580141*63245986^(17/24) 2584063643466354 a001 4870847/63245986*63245986^(17/24) 2584063643466354 a001 4870847/225851433717*6557470319842^(17/24) 2584063643466991 a001 1860498/24157817*63245986^(17/24) 2584063643466991 a001 930249/43133785636*6557470319842^(17/24) 2584063643471356 a001 710647/9227465*63245986^(17/24) 2584063643471362 a001 710647/32951280099*6557470319842^(17/24) 2584063643501274 a001 271443/3524578*63245986^(17/24) 2584063643501316 a001 271443/12586269025*6557470319842^(17/24) 2584063643706339 a001 103682/1346269*63245986^(17/24) 2584063643706624 a001 1/46368*6557470319842^(17/24) 2584063644955736 r009 Im(z^3+c),c=-43/122+9/46*I,n=33 2584063645111873 a001 39603/514229*63245986^(17/24) 2584063645113827 a001 39603/1836311903*6557470319842^(17/24) 2584063645172904 r009 Im(z^3+c),c=-43/122+9/46*I,n=34 2584063645248847 r009 Im(z^3+c),c=-43/122+9/46*I,n=38 2584063645252040 r009 Im(z^3+c),c=-43/122+9/46*I,n=37 2584063645259280 r009 Im(z^3+c),c=-43/122+9/46*I,n=42 2584063645259474 r009 Im(z^3+c),c=-43/122+9/46*I,n=39 2584063645259541 r009 Im(z^3+c),c=-43/122+9/46*I,n=43 2584063645259823 r009 Im(z^3+c),c=-43/122+9/46*I,n=47 2584063645259843 r009 Im(z^3+c),c=-43/122+9/46*I,n=48 2584063645259848 r009 Im(z^3+c),c=-43/122+9/46*I,n=52 2584063645259848 r009 Im(z^3+c),c=-43/122+9/46*I,n=51 2584063645259849 r009 Im(z^3+c),c=-43/122+9/46*I,n=56 2584063645259849 r009 Im(z^3+c),c=-43/122+9/46*I,n=57 2584063645259849 r009 Im(z^3+c),c=-43/122+9/46*I,n=61 2584063645259849 r009 Im(z^3+c),c=-43/122+9/46*I,n=60 2584063645259849 r009 Im(z^3+c),c=-43/122+9/46*I,n=62 2584063645259849 r009 Im(z^3+c),c=-43/122+9/46*I,n=64 2584063645259849 r009 Im(z^3+c),c=-43/122+9/46*I,n=63 2584063645259849 r009 Im(z^3+c),c=-43/122+9/46*I,n=59 2584063645259849 r009 Im(z^3+c),c=-43/122+9/46*I,n=58 2584063645259849 r009 Im(z^3+c),c=-43/122+9/46*I,n=53 2584063645259849 r009 Im(z^3+c),c=-43/122+9/46*I,n=55 2584063645259849 r009 Im(z^3+c),c=-43/122+9/46*I,n=54 2584063645259849 r009 Im(z^3+c),c=-43/122+9/46*I,n=46 2584063645259851 r009 Im(z^3+c),c=-43/122+9/46*I,n=50 2584063645259854 r009 Im(z^3+c),c=-43/122+9/46*I,n=49 2584063645259929 r009 Im(z^3+c),c=-43/122+9/46*I,n=44 2584063645259946 r009 Im(z^3+c),c=-43/122+9/46*I,n=45 2584063645260554 r009 Im(z^3+c),c=-43/122+9/46*I,n=41 2584063645262628 r009 Im(z^3+c),c=-43/122+9/46*I,n=40 2584063645295591 r009 Im(z^3+c),c=-43/122+9/46*I,n=36 2584063645319925 r009 Im(z^3+c),c=-43/122+9/46*I,n=35 2584063645338540 r009 Im(z^3+c),c=-43/122+9/46*I,n=32 2584063645995957 r009 Im(z^3+c),c=-43/122+9/46*I,n=30 2584063646495463 r009 Im(z^3+c),c=-43/122+9/46*I,n=31 2584063654745544 a001 15127/196418*63245986^(17/24) 2584063654758940 a001 15127/701408733*6557470319842^(17/24) 2584063655191190 m001 Riemann2ndZero^2*ArtinRank2^2*ln(cos(Pi/12))^2 2584063655852045 r009 Im(z^3+c),c=-43/122+9/46*I,n=27 2584063665256846 a007 Real Root Of 157*x^4-942*x^3+336*x^2-935*x-281 2584063671220042 r005 Im(z^2+c),c=29/98+4/61*I,n=16 2584063678409422 r009 Im(z^3+c),c=-43/122+9/46*I,n=26 2584063709499173 r005 Re(z^2+c),c=-37/114+2/53*I,n=21 2584063713661306 a007 Real Root Of -327*x^4-788*x^3+89*x^2-173*x-58 2584063718486486 m001 (Trott2nd-Thue)/(Zeta(1/2)+Grothendieck) 2584063720504831 a007 Real Root Of 659*x^4-123*x^3+997*x^2-787*x-275 2584063720775711 a001 5778/75025*63245986^(17/24) 2584063720867527 a001 2889/133957148*6557470319842^(17/24) 2584063721976140 a003 cos(Pi*29/106)-sin(Pi*27/74) 2584063753484852 l006 ln(570/7553) 2584063755637144 r005 Im(z^2+c),c=-17/52+23/53*I,n=13 2584063755964295 l006 ln(5589/7237) 2584063770544820 m001 (cos(1)+GAMMA(23/24))/(-ArtinRank2+Conway) 2584063790521215 m005 (1/2*5^(1/2)+1/9)/(5/12*Pi-5/6) 2584063791568459 a001 3571/987*8^(52/55) 2584063802059383 r005 Im(z^2+c),c=-25/66+25/58*I,n=60 2584063803197498 m001 (GAMMA(3/4)+GAMMA(23/24))/(Kolakoski+ZetaP(4)) 2584063806178793 m001 (-Landau+Mills)/(Gompertz-ln(2)/ln(10)) 2584063814342173 a007 Real Root Of 374*x^4+589*x^3-988*x^2+76*x+281 2584063815010607 a001 1/1364*(1/2*5^(1/2)+1/2)^10*3^(23/24) 2584063816722024 r005 Re(z^2+c),c=7/90+18/53*I,n=30 2584063823591984 a007 Real Root Of 469*x^4+756*x^3-964*x^2+671*x+304 2584063838424942 m006 (1/3*Pi^2-5)/(5/6*Pi+4) 2584063838424942 m008 (1/3*Pi^2-5)/(5/6*Pi+4) 2584063841385744 m005 (1/3*exp(1)+3/5)/(3/10*Zeta(3)+2/9) 2584063854923788 m001 sqrt(3)+GaussAGM(1,1/sqrt(2))^cos(Pi/12) 2584063862067766 a001 196418/199*521^(2/13) 2584063865206146 r005 Re(z^2+c),c=10/29+7/57*I,n=29 2584063868100946 s002 sum(A085532[n]/(n*10^n+1),n=1..infinity) 2584063868122564 s002 sum(A085532[n]/(n*10^n-1),n=1..infinity) 2584063879385158 a007 Real Root Of 27*x^4+736*x^3+967*x^2-566*x+577 2584063884187252 a007 Real Root Of -172*x^4-269*x^3+720*x^2+401*x-744 2584063884232019 a002 10^(4/7)-5^(1/12) 2584063907495952 r002 62th iterates of z^2 + 2584063908657042 a007 Real Root Of -292*x^4-502*x^3+413*x^2-748*x-333 2584063911906262 r005 Im(z^2+c),c=-25/18+23/205*I,n=12 2584063925726719 r005 Re(z^2+c),c=-27/86+9/56*I,n=19 2584063930951903 m001 (1-KhinchinLevy)/(-Sarnak+ZetaQ(4)) 2584063931173538 m001 (1/2)^exp(sqrt(2))/sqrt(5) 2584063934426229 a001 1576279/610 2584063936073065 a004 Fibonacci(11)*Lucas(15)/(1/2+sqrt(5)/2)^8 2584063937692846 s002 sum(A283328[n]/((3*n+1)!),n=1..infinity) 2584063940744720 l006 ln(7478/9683) 2584063942791282 m002 -6/E^Pi+ProductLog[Pi]/(4*Pi^5) 2584063956891841 r005 Re(z^2+c),c=-11/48+2/5*I,n=5 2584063957380368 m001 1/GAMMA(23/24)/exp(MertensB1)^2/sqrt(5) 2584063994711182 r005 Re(z^2+c),c=9/25+38/61*I,n=4 2584063998290473 a001 8/321*521^(23/31) 2584064026165095 r005 Re(z^2+c),c=-41/122+19/43*I,n=8 2584064037560857 a007 Real Root Of -866*x^4+60*x^3+737*x^2+757*x-242 2584064044270644 g007 Psi(2,11/12)+Psi(2,3/5)+Psi(2,1/5)-Psi(2,5/7) 2584064054782097 a007 Real Root Of 288*x^4+304*x^3-937*x^2+839*x+829 2584064059872569 a001 1/5600748293801*2^(8/15) 2584064061059371 m001 Kolakoski^FeigenbaumKappa+Si(Pi) 2584064081804428 r005 Im(z^2+c),c=-17/44+20/41*I,n=12 2584064084243209 a007 Real Root Of -55*x^4+911*x^3+328*x^2+855*x+215 2584064084535046 a001 161/72*1597^(1/51) 2584064108004635 r005 Re(z^2+c),c=27/82+16/49*I,n=12 2584064110690373 h001 (7/9*exp(1)+1/7)/(1/9*exp(1)+4/7) 2584064111173705 m006 (1/2*exp(Pi)+1/3)/(2/5/Pi+1/3) 2584064120917007 r009 Im(z^3+c),c=-43/122+9/46*I,n=22 2584064127233127 m001 ZetaQ(2)^ThueMorse*ZetaQ(2)^(2*Pi/GAMMA(5/6)) 2584064131136268 a007 Real Root Of -324*x^4+639*x^3+473*x^2+932*x-282 2584064137460576 r002 28th iterates of z^2 + 2584064138990125 r002 3th iterates of z^2 + 2584064142826589 m001 (ln(3)-polylog(4,1/2))/(Porter+Riemann2ndZero) 2584064144722280 r002 4th iterates of z^2 + 2584064148037221 a007 Real Root Of 415*x^4+837*x^3-373*x^2+296*x-806 2584064150654847 a007 Real Root Of 350*x^4+458*x^3-946*x^2+507*x-76 2584064151373474 r009 Im(z^3+c),c=-4/9+2/35*I,n=5 2584064152872808 r005 Im(z^2+c),c=-35/118+17/42*I,n=55 2584064154869946 r005 Im(z^2+c),c=-33/52+20/59*I,n=26 2584064163862221 r005 Re(z^2+c),c=-33/106+5/28*I,n=23 2584064166198156 m001 polylog(4,1/2)/ln(3)/MasserGramainDelta 2584064168533355 m005 (1/2*gamma-2/11)/(67/20+7/20*5^(1/2)) 2584064169185302 r005 Re(z^2+c),c=-15/52+13/45*I,n=11 2584064173353207 a001 2207/28657*63245986^(17/24) 2584064173982528 a001 2207/102334155*6557470319842^(17/24) 2584064176463296 r005 Re(z^2+c),c=25/78+2/3*I,n=7 2584064183512840 a007 Real Root Of -544*x^4+110*x^3-376*x^2+722*x+216 2584064186590172 m005 (1/2*gamma+3)/(2/7*3^(1/2)+7/9) 2584064197112191 r005 Re(z^2+c),c=-37/114+2/53*I,n=23 2584064200937403 r009 Re(z^3+c),c=-1/62+21/25*I,n=33 2584064202019604 a007 Real Root Of -274*x^4-426*x^3+443*x^2-593*x+376 2584064211555775 b008 11+Sinh[5]/5 2584064217030320 m005 (1/2*Zeta(3)+5)/(8/9*Pi-5/8) 2584064219971171 r005 Im(z^2+c),c=-35/118+17/42*I,n=57 2584064221321218 l006 ln(283/3750) 2584064229998595 a007 Real Root Of -929*x^4-766*x^3-958*x^2+875*x+281 2584064230695422 a001 2584/199*1364^(11/15) 2584064234239482 a001 5/103682*123^(15/43) 2584064242524862 h001 (1/7*exp(1)+1/7)/(5/9*exp(1)+6/11) 2584064246282032 m003 1/4+(Sqrt[5]*Log[1/2+Sqrt[5]/2])/128 2584064273278438 s002 sum(A075489[n]/(2^n+1),n=1..infinity) 2584064277909378 a007 Real Root Of -275*x^4+355*x^3-75*x^2+552*x+155 2584064286730517 a005 (1/sin(46/131*Pi))^353 2584064292744303 b008 3*Gamma[7/5,3] 2584064300656493 g001 abs(GAMMA(-79/30+I*17/12)) 2584064301927647 r009 Im(z^3+c),c=-43/122+9/46*I,n=21 2584064302076063 h001 (-9*exp(3)-5)/(-10*exp(2)+2) 2584064305278672 a007 Real Root Of -364*x^4-788*x^3+75*x^2-937*x-289 2584064311000083 h003 exp(Pi*(19^(3/2)-6^(1/12))) 2584064311000083 h008 exp(Pi*(19^(3/2)-6^(1/12))) 2584064327485380 q001 707/2736 2584064344835823 a007 Real Root Of -10*x^4+306*x^3+664*x^2-536*x-93 2584064356468940 a007 Real Root Of -11*x^4-280*x^3+108*x^2-52*x-177 2584064357029540 r009 Re(z^3+c),c=-31/82+16/39*I,n=44 2584064364250235 h001 (7/8*exp(1)+3/4)/(4/11*exp(1)+2/9) 2584064368475123 m005 (1/2*gamma-1)/(3/4*exp(1)+5/7) 2584064375465885 r005 Re(z^2+c),c=-37/114+2/53*I,n=25 2584064389499592 s002 sum(A265474[n]/(n*pi^n+1),n=1..infinity) 2584064391947639 r005 Im(z^2+c),c=15/52+2/23*I,n=63 2584064393803079 s002 sum(A265474[n]/(n*pi^n-1),n=1..infinity) 2584064397441768 r005 Re(z^2+c),c=-15/82+35/57*I,n=62 2584064404232915 r005 Im(z^2+c),c=1/9+15/64*I,n=23 2584064405045962 a007 Real Root Of -27*x^4+85*x^3-240*x^2+289*x-60 2584064409128383 r005 Im(z^2+c),c=-27/94+17/47*I,n=3 2584064409871775 m005 (3/4*2^(1/2)-4)/(7/15+3/10*5^(1/2)) 2584064418141933 a001 1597/199*1364^(4/5) 2584064424428776 m005 (1/2*Zeta(3)+5/11)/(1/8*3^(1/2)-5/8) 2584064424624531 a001 439204/1597*610^(17/24) 2584064430255420 a001 4181/199*1364^(2/3) 2584064431674090 r005 Im(z^2+c),c=1/9+15/64*I,n=22 2584064434145585 a001 199/233*2584^(23/53) 2584064434423528 r005 Re(z^2+c),c=-37/114+2/53*I,n=27 2584064437612519 h001 (8/9*exp(2)+1/11)/(8/11*exp(1)+3/5) 2584064451985690 a001 2/1597*987^(18/41) 2584064452215897 m001 Ei(1)+StolarskyHarborth^ZetaR(2) 2584064452665521 r005 Re(z^2+c),c=-37/114+2/53*I,n=29 2584064453959583 a001 13/3571*843^(16/55) 2584064458035533 r005 Re(z^2+c),c=-37/114+2/53*I,n=31 2584064459551935 r005 Re(z^2+c),c=-37/114+2/53*I,n=33 2584064459964243 r005 Re(z^2+c),c=-37/114+2/53*I,n=35 2584064460072258 r005 Re(z^2+c),c=-37/114+2/53*I,n=37 2584064460099462 r005 Re(z^2+c),c=-37/114+2/53*I,n=39 2584064460106010 r005 Re(z^2+c),c=-37/114+2/53*I,n=41 2584064460107499 r005 Re(z^2+c),c=-37/114+2/53*I,n=43 2584064460107811 r005 Re(z^2+c),c=-37/114+2/53*I,n=45 2584064460107868 r005 Re(z^2+c),c=-37/114+2/53*I,n=47 2584064460107872 r005 Re(z^2+c),c=-37/114+2/53*I,n=50 2584064460107873 r005 Re(z^2+c),c=-37/114+2/53*I,n=52 2584064460107874 r005 Re(z^2+c),c=-37/114+2/53*I,n=54 2584064460107874 r005 Re(z^2+c),c=-37/114+2/53*I,n=56 2584064460107874 r005 Re(z^2+c),c=-37/114+2/53*I,n=58 2584064460107874 r005 Re(z^2+c),c=-37/114+2/53*I,n=60 2584064460107874 r005 Re(z^2+c),c=-37/114+2/53*I,n=62 2584064460107874 r005 Re(z^2+c),c=-37/114+2/53*I,n=64 2584064460107874 r005 Re(z^2+c),c=-37/114+2/53*I,n=63 2584064460107874 r005 Re(z^2+c),c=-37/114+2/53*I,n=61 2584064460107874 r005 Re(z^2+c),c=-37/114+2/53*I,n=59 2584064460107874 r005 Re(z^2+c),c=-37/114+2/53*I,n=57 2584064460107874 r005 Re(z^2+c),c=-37/114+2/53*I,n=55 2584064460107874 r005 Re(z^2+c),c=-37/114+2/53*I,n=48 2584064460107874 r005 Re(z^2+c),c=-37/114+2/53*I,n=53 2584064460107875 r005 Re(z^2+c),c=-37/114+2/53*I,n=51 2584064460107875 r005 Re(z^2+c),c=-37/114+2/53*I,n=49 2584064460107896 r005 Re(z^2+c),c=-37/114+2/53*I,n=46 2584064460108033 r005 Re(z^2+c),c=-37/114+2/53*I,n=44 2584064460108723 r005 Re(z^2+c),c=-37/114+2/53*I,n=42 2584064460111871 r005 Re(z^2+c),c=-37/114+2/53*I,n=40 2584064460125301 r005 Re(z^2+c),c=-37/114+2/53*I,n=38 2584064460179790 r005 Re(z^2+c),c=-37/114+2/53*I,n=36 2584064460391822 r005 Re(z^2+c),c=-37/114+2/53*I,n=34 2584064461186197 r005 Re(z^2+c),c=-37/114+2/53*I,n=32 2584064464053775 r005 Re(z^2+c),c=-37/114+2/53*I,n=30 2584064465666377 m001 (ln(3)+5)/(-GAMMA(13/24)+4) 2584064468263941 m005 (1/2*3^(1/2)-1/5)/(9/10*Pi-1/4) 2584064474006633 r005 Re(z^2+c),c=-37/114+2/53*I,n=28 2584064481992084 a001 6765/199*1364^(3/5) 2584064482023333 r005 Im(z^2+c),c=-35/118+17/42*I,n=60 2584064487456081 l006 ln(1889/2446) 2584064500649150 r009 Re(z^3+c),c=-1/12+4/5*I,n=16 2584064506245713 r005 Im(z^2+c),c=-35/118+17/42*I,n=50 2584064507031430 r005 Re(z^2+c),c=-37/114+2/53*I,n=26 2584064510200282 a007 Real Root Of 4*x^4+90*x^3-359*x^2-373*x-489 2584064514844997 m001 1/FibonacciFactorial/Conway*ln(GAMMA(3/4))^2 2584064516991754 m001 (LambertW(1)+arctan(1/2))/(Conway+Khinchin) 2584064522187819 r005 Re(z^2+c),c=-19/52+31/54*I,n=45 2584064522681271 m005 (1/2*2^(1/2)-4/7)/(9/11*Catalan-6) 2584064529139967 m001 1/LaplaceLimit/exp(Bloch)^2*BesselJ(1,1) 2584064532309190 r005 Im(z^2+c),c=43/122+7/39*I,n=14 2584064540537291 a007 Real Root Of 418*x^4+692*x^3-963*x^2+255*x+392 2584064547672341 h001 (-exp(1/3)+3)/(-2*exp(1/3)+9) 2584064563128742 r005 Im(z^2+c),c=-35/118+17/42*I,n=54 2584064570190485 a007 Real Root Of -507*x^4-486*x^3-73*x^2+922*x+237 2584064574810022 h001 (1/4*exp(2)+1/12)/(1/11*exp(1)+1/2) 2584064575759267 m001 (Kolakoski-MasserGramainDelta)/(Pi+Chi(1)) 2584064579198641 a001 13/1364*9349^(6/55) 2584064588175150 r005 Im(z^2+c),c=-65/126+5/24*I,n=4 2584064590192244 a001 10946/199*1364^(8/15) 2584064591602390 m001 (Robbin+Weierstrass)/(Pi^(1/2)-MertensB3) 2584064594337570 a001 317811/199*521^(1/13) 2584064597710552 a001 1149851/4181*610^(17/24) 2584064604248440 b008 E^(2+(3*Pi)/2)*Pi 2584064604929418 r005 Re(z^2+c),c=-21/86+19/44*I,n=27 2584064610586008 r005 Re(z^2+c),c=-37/114+2/53*I,n=24 2584064610714884 m005 (1/2*Catalan-8/11)/(6/11*gamma+8/11) 2584064613067986 r005 Re(z^2+c),c=-7/16+47/61*I,n=3 2584064622963464 a001 3010349/10946*610^(17/24) 2584064626647814 a001 7881196/28657*610^(17/24) 2584064627185354 a001 20633239/75025*610^(17/24) 2584064627263780 a001 54018521/196418*610^(17/24) 2584064627275222 a001 141422324/514229*610^(17/24) 2584064627276891 a001 370248451/1346269*610^(17/24) 2584064627277135 a001 969323029/3524578*610^(17/24) 2584064627277171 a001 2537720636/9227465*610^(17/24) 2584064627277176 a001 6643838879/24157817*610^(17/24) 2584064627277176 a001 17393796001/63245986*610^(17/24) 2584064627277177 a001 45537549124/165580141*610^(17/24) 2584064627277177 a001 119218851371/433494437*610^(17/24) 2584064627277177 a001 312119004989/1134903170*610^(17/24) 2584064627277177 a001 817138163596/2971215073*610^(17/24) 2584064627277177 a001 2139295485799/7778742049*610^(17/24) 2584064627277177 a001 5600748293801/20365011074*610^(17/24) 2584064627277177 a001 14662949395604/53316291173*610^(17/24) 2584064627277177 a001 23725150497407/86267571272*610^(17/24) 2584064627277177 a001 3020733700601/10983760033*610^(17/24) 2584064627277177 a001 3461452808002/12586269025*610^(17/24) 2584064627277177 a001 440719107401/1602508992*610^(17/24) 2584064627277177 a001 505019158607/1836311903*610^(17/24) 2584064627277177 a001 64300051206/233802911*610^(17/24) 2584064627277177 a001 73681302247/267914296*610^(17/24) 2584064627277177 a001 228811001/831985*610^(17/24) 2584064627277177 a001 10749957122/39088169*610^(17/24) 2584064627277179 a001 1368706081/4976784*610^(17/24) 2584064627277192 a001 1568397607/5702887*610^(17/24) 2584064627277286 a001 199691526/726103*610^(17/24) 2584064627277923 a001 228826127/832040*610^(17/24) 2584064627282294 a001 29134601/105937*610^(17/24) 2584064627312250 a001 33385282/121393*610^(17/24) 2584064627517572 a001 4250681/15456*610^(17/24) 2584064627695804 a007 Real Root Of 986*x^4+960*x^3+974*x^2-759*x-249 2584064627984935 r005 Im(z^2+c),c=-3/58+16/51*I,n=21 2584064628924868 a001 4870847/17711*610^(17/24) 2584064638570622 a001 15126/55*610^(17/24) 2584064641155133 a001 987/199*3571^(13/17) 2584064650940286 r005 Im(z^2+c),c=-35/118+17/42*I,n=62 2584064651177160 m001 (5^(1/2)+ln(2))/(Bloch+Robbin) 2584064657925391 m005 (1/3*3^(1/2)+1/11)/(5*gamma-3/10) 2584064665869199 m008 (2/5*Pi-1/4)/(2/5*Pi^6+5) 2584064670917987 m001 (BesselI(0,2)-FeigenbaumMu)/(Pi+Si(Pi)) 2584064675053104 m005 (1/2*Pi-6)/(1/3*2^(1/2)-3/10) 2584064676825272 a001 89*1364^(7/15) 2584064694376192 r005 Im(z^2+c),c=-35/118+17/42*I,n=63 2584064695260423 r009 Re(z^3+c),c=-3/19+59/64*I,n=58 2584064695816954 l006 ln(562/7447) 2584064696665410 a001 15456/281*29^(17/37) 2584064697000658 m001 1/Robbin*Riemann3rdZero*exp(GAMMA(1/6))^2 2584064698572136 m003 -5/2+(3*Sqrt[5])/64+4*Cos[1/2+Sqrt[5]/2] 2584064704683608 a001 710647/2584*610^(17/24) 2584064706352929 m002 1/5+Log[Pi]^2+ProductLog[Pi] 2584064710276507 a007 Real Root Of -336*x^4-592*x^3+769*x^2-97*x-619 2584064713145975 a007 Real Root Of -53*x^4+72*x^3+951*x^2+746*x-817 2584064720561819 m001 sqrt(2)/GAMMA(17/24)^2*ln(sqrt(3))^2 2584064721586551 r005 Re(z^2+c),c=-16/21+5/38*I,n=4 2584064727017070 r005 Im(z^2+c),c=-19/18+47/168*I,n=7 2584064727205149 h001 (6/7*exp(1)+5/11)/(2/11*exp(1)+7/12) 2584064732636703 m001 (2^(1/3)+Conway)/(-DuboisRaymond+KhinchinLevy) 2584064743188262 r002 3th iterates of z^2 + 2584064747345517 b008 1/3+ArcCosh[24/5] 2584064753509301 r005 Re(z^2+c),c=5/126+4/35*I,n=6 2584064757398264 m001 BesselK(1,1)+GAMMA(11/24)*GAMMA(23/24) 2584064767982241 a001 377*123^(2/5) 2584064771696216 a001 28657/199*1364^(2/5) 2584064775886123 a001 987/199*9349^(13/19) 2584064776458967 a001 281*20365011074^(4/21) 2584064782704256 a001 29/13*233^(34/39) 2584064785567536 a001 46368/11*7^(41/44) 2584064785580220 a001 6/75283811239*144^(7/10) 2584064793444366 a001 987/199*24476^(13/21) 2584064794444766 m001 1/Sierpinski*ln(Cahen)/TwinPrimes 2584064794467109 a001 89/2207*(1/2+1/2*5^(1/2))^23 2584064794467109 a001 89/2207*4106118243^(1/2) 2584064794697472 a001 89/2207*103682^(23/24) 2584064795758880 a001 987/199*64079^(13/23) 2584064796003000 l006 ln(8748/8977) 2584064796114583 a001 987/199*141422324^(1/3) 2584064796114583 a001 987/199*(1/2+1/2*5^(1/2))^13 2584064796114583 a001 987/199*73681302247^(1/4) 2584064796132118 a001 987/199*271443^(1/2) 2584064796244788 a001 987/199*103682^(13/24) 2584064797088154 a001 987/199*39603^(13/22) 2584064799177827 r005 Im(z^2+c),c=-35/118+17/42*I,n=64 2584064800684142 r005 Im(z^2+c),c=-43/82+15/31*I,n=19 2584064803454838 a001 987/199*15127^(13/20) 2584064808068356 m008 (1/5*Pi^5+4/5)/(1/4*Pi^6-2/5) 2584064810521822 m005 (1/3*Pi-1/3)/(7/8*2^(1/2)-4) 2584064810627846 a007 Real Root Of 115*x^4-512*x^3+211*x^2-924*x+233 2584064833045316 r005 Im(z^2+c),c=35/122+5/56*I,n=43 2584064833773698 a007 Real Root Of -24*x^4-617*x^3+109*x^2+666*x-780 2584064848450143 m001 (1-Psi(2,1/3))/(BesselI(1,1)+ErdosBorwein) 2584064851853833 r005 Im(z^2+c),c=1/9+15/64*I,n=27 2584064852015534 a001 987/199*5778^(13/18) 2584064858469801 r005 Im(z^2+c),c=-35/118+17/42*I,n=58 2584064863420561 a001 46368/199*1364^(1/3) 2584064866657610 r005 Im(z^2+c),c=-35/118+17/42*I,n=59 2584064873721597 s002 sum(A024033[n]/(pi^n),n=1..infinity) 2584064876356380 r005 Im(z^2+c),c=1/9+15/64*I,n=28 2584064878318776 m001 2^(1/3)-FeigenbaumAlpha^ZetaQ(4) 2584064882111937 a007 Real Root Of 426*x^4+982*x^3+26*x^2+936*x+195 2584064884754981 m001 ln(2+3^(1/2))*(exp(1/exp(1))+polylog(4,1/2)) 2584064884754981 m001 ln(2+sqrt(3))*(exp(1/exp(1))+polylog(4,1/2)) 2584064885944559 r005 Im(z^2+c),c=1/9+15/64*I,n=32 2584064886124544 r005 Im(z^2+c),c=1/9+15/64*I,n=31 2584064887319203 r005 Im(z^2+c),c=1/9+15/64*I,n=36 2584064887390485 r005 Im(z^2+c),c=1/9+15/64*I,n=37 2584064887421166 r005 Im(z^2+c),c=1/9+15/64*I,n=41 2584064887422005 r005 Im(z^2+c),c=1/9+15/64*I,n=40 2584064887425382 r005 Im(z^2+c),c=1/9+15/64*I,n=45 2584064887425589 r005 Im(z^2+c),c=1/9+15/64*I,n=46 2584064887425687 r005 Im(z^2+c),c=1/9+15/64*I,n=50 2584064887425690 r005 Im(z^2+c),c=1/9+15/64*I,n=49 2584064887425700 r005 Im(z^2+c),c=1/9+15/64*I,n=54 2584064887425700 r005 Im(z^2+c),c=1/9+15/64*I,n=55 2584064887425701 r005 Im(z^2+c),c=1/9+15/64*I,n=59 2584064887425701 r005 Im(z^2+c),c=1/9+15/64*I,n=58 2584064887425701 r005 Im(z^2+c),c=1/9+15/64*I,n=63 2584064887425701 r005 Im(z^2+c),c=1/9+15/64*I,n=64 2584064887425701 r005 Im(z^2+c),c=1/9+15/64*I,n=60 2584064887425701 r005 Im(z^2+c),c=1/9+15/64*I,n=62 2584064887425701 r005 Im(z^2+c),c=1/9+15/64*I,n=61 2584064887425701 r005 Im(z^2+c),c=1/9+15/64*I,n=57 2584064887425701 r005 Im(z^2+c),c=1/9+15/64*I,n=56 2584064887425701 r005 Im(z^2+c),c=1/9+15/64*I,n=51 2584064887425701 r005 Im(z^2+c),c=1/9+15/64*I,n=53 2584064887425705 r005 Im(z^2+c),c=1/9+15/64*I,n=52 2584064887425744 r005 Im(z^2+c),c=1/9+15/64*I,n=48 2584064887425768 r005 Im(z^2+c),c=1/9+15/64*I,n=47 2584064887425876 r005 Im(z^2+c),c=1/9+15/64*I,n=42 2584064887425891 r005 Im(z^2+c),c=1/9+15/64*I,n=44 2584064887426984 r005 Im(z^2+c),c=1/9+15/64*I,n=43 2584064887439655 r005 Im(z^2+c),c=1/9+15/64*I,n=39 2584064887448517 r005 Im(z^2+c),c=1/9+15/64*I,n=38 2584064887481578 r005 Im(z^2+c),c=1/9+15/64*I,n=35 2584064887508999 r005 Im(z^2+c),c=1/9+15/64*I,n=33 2584064887849611 r005 Im(z^2+c),c=1/9+15/64*I,n=34 2584064890532887 m002 -Pi^3+Pi^6*Csch[Pi]-Pi^5*Sech[Pi] 2584064890672647 m001 FeigenbaumC/Pi^(1/2)*Riemann3rdZero 2584064891919463 r005 Im(z^2+c),c=1/9+15/64*I,n=30 2584064895175578 r005 Im(z^2+c),c=1/9+15/64*I,n=29 2584064896763107 r005 Im(z^2+c),c=-5/44+19/54*I,n=6 2584064903438338 r005 Re(z^2+c),c=-23/78+37/56*I,n=57 2584064903574860 r005 Im(z^2+c),c=1/9+15/64*I,n=26 2584064904278404 g001 Re(GAMMA(7/5+I*103/60)) 2584064910307871 r005 Re(z^2+c),c=-37/114+2/53*I,n=22 2584064911105185 r005 Im(z^2+c),c=-25/58+17/38*I,n=62 2584064911893889 r009 Re(z^3+c),c=-37/94+19/43*I,n=57 2584064912905752 r005 Im(z^2+c),c=-35/118+17/42*I,n=61 2584064920399121 b008 1/17+LogGamma[1/13] 2584064923223991 r005 Im(z^2+c),c=1/9+15/64*I,n=24 2584064924583146 m007 (-3*gamma-9*ln(2)+3/2*Pi+1/3)/(-3*gamma+3/5) 2584064924916016 r005 Re(z^2+c),c=-11/90+31/36*I,n=24 2584064930546941 r005 Re(z^2+c),c=-9/14+5/11*I,n=42 2584064933020192 r005 Im(z^2+c),c=-5/8+43/120*I,n=24 2584064933367739 m001 (BesselI(1,2)-Landau)/(Zeta(5)-3^(1/3)) 2584064939957806 r005 Im(z^2+c),c=-27/110+12/31*I,n=20 2584064946810241 m001 GAMMA(1/4)*ln(FeigenbaumDelta)^2/gamma^2 2584064956346804 a001 75025/199*1364^(4/15) 2584064961518713 m001 (Pi+arctan(1/2))/(OrthogonalArrays-ZetaQ(3)) 2584064966016706 r005 Im(z^2+c),c=-63/118+25/64*I,n=6 2584064968130757 m001 (cos(1)+1/2)/(GAMMA(23/24)+3) 2584064970042542 m001 StolarskyHarborth/ln(gamma)*ZetaP(3) 2584064972727549 h001 (4/7*exp(1)+3/7)/(2/11*exp(1)+3/11) 2584064983072584 a007 Real Root Of 349*x^4+123*x^3-874*x^2-930*x+295 2584064984130269 r009 Re(z^3+c),c=-23/70+19/62*I,n=15 2584064987759012 a001 7/514229*21^(4/19) 2584064989376020 a001 199/13*89^(17/27) 2584064997762027 r009 Im(z^3+c),c=-25/56+2/43*I,n=8 2584064998137698 g005 GAMMA(5/6)/GAMMA(9/10)/GAMMA(7/10)/GAMMA(2/7) 2584064998489466 m001 (ln(Pi)+AlladiGrinstead)/(Shi(1)-ln(2)/ln(10)) 2584065005789228 m001 Paris/exp(CareFree)^2/cos(Pi/12)^2 2584065011815313 m001 Pi+exp(Pi)/(sin(1)-GAMMA(13/24)) 2584065015287377 r005 Im(z^2+c),c=-19/56+18/43*I,n=57 2584065022796469 r005 Re(z^2+c),c=-37/114+1/26*I,n=12 2584065022995422 l006 ln(7634/9885) 2584065027321806 r005 Im(z^2+c),c=1/9+15/64*I,n=25 2584065027587824 a007 Real Root Of 405*x^4+869*x^3-546*x^2-105*x+311 2584065031466954 m001 (GAMMA(3/4)+ln(gamma))/(ln(Pi)+Riemann3rdZero) 2584065043627911 p003 LerchPhi(1/16,3,254/161) 2584065048813968 a001 121393/199*1364^(1/5) 2584065052401202 m001 FeigenbaumC+cos(1/5*Pi)^Totient 2584065056817247 r005 Im(z^2+c),c=-35/26+3/97*I,n=29 2584065057975283 s002 sum(A227131[n]/(n^3*pi^n+1),n=1..infinity) 2584065079532390 r005 Re(z^2+c),c=-11/12+25/117*I,n=10 2584065091090784 m001 ln(Riemann1stZero)*Rabbit^2*BesselJ(1,1)^2 2584065096991448 m001 exp(Trott)^2*Salem*arctan(1/2)^2 2584065101374220 m001 (1+Shi(1))/(-BesselI(1,2)+Kolakoski) 2584065102083410 m001 (2^(1/2)-Catalan)/(-Zeta(1,-1)+Trott2nd) 2584065109504668 m001 (-Zeta(1,2)+Paris)/(Catalan-ln(2+3^(1/2))) 2584065111636410 m001 1/exp(GAMMA(3/4))^2*Tribonacci^2/GAMMA(5/6) 2584065118059759 s002 sum(A232332[n]/(n*2^n+1),n=1..infinity) 2584065118110320 a001 2584/199*3571^(11/17) 2584065122103944 a001 4126752/1597 2584065122344308 a004 Fibonacci(11)*Lucas(17)/(1/2+sqrt(5)/2)^10 2584065123493156 a001 322/233*55^(19/26) 2584065124919164 r009 Im(z^3+c),c=-14/29+3/31*I,n=3 2584065131573609 r009 Re(z^3+c),c=-27/64+1/2*I,n=25 2584065137418367 m001 (Sarnak-ZetaP(3))/(Zeta(1,2)-KhinchinLevy) 2584065139482003 r009 Re(z^3+c),c=-11/42+8/57*I,n=3 2584065141456488 a001 196418/199*1364^(2/15) 2584065144258132 r009 Im(z^3+c),c=-25/42+9/35*I,n=13 2584065149207394 a007 Real Root Of -340*x^4-756*x^3+133*x^2-851*x-972 2584065152534847 r005 Re(z^2+c),c=-77/54+1/49*I,n=8 2584065157828841 a001 90481/329*610^(17/24) 2584065161764798 m005 (1/2*gamma+2)/(8/11*2^(1/2)-1/7) 2584065165863621 a007 Real Root Of -183*x^4-416*x^3+86*x^2+92*x+645 2584065170086302 a007 Real Root Of 979*x^4-111*x^3-575*x^2-66*x+53 2584065177115266 l006 ln(279/3697) 2584065181256755 r005 Re(z^2+c),c=43/122+21/64*I,n=54 2584065185263550 m001 (Paris+PlouffeB)/(Catalan+Mills) 2584065195647334 m001 (-LandauRamanujan2nd+Sarnak)/(Conway-Si(Pi)) 2584065196139298 r005 Re(z^2+c),c=-11/56+6/11*I,n=55 2584065199084853 l006 ln(5745/7439) 2584065199596154 r005 Re(z^2+c),c=-29/90+1/11*I,n=7 2584065206351326 m001 Grothendieck-arctan(1/3)-Zeta(3) 2584065208058867 a001 6765/199*3571^(9/17) 2584065213176570 r009 Re(z^3+c),c=-7/17+11/23*I,n=49 2584065214494784 m001 (OneNinth-ZetaQ(2))/(BesselK(1,1)-Khinchin) 2584065217287622 a007 Real Root Of -328*x^4-762*x^3-77*x^2-746*x+63 2584065218589855 m001 ln(Zeta(3))*GAMMA(2/3)*Zeta(5) 2584065227159246 a001 987/199*2207^(13/16) 2584065232113486 a001 2584/199*9349^(11/19) 2584065232866041 m001 (-OneNinth+Sarnak)/(exp(Pi)+ArtinRank2) 2584065234032033 a001 317811/199*1364^(1/15) 2584065235584957 a001 10946/199*3571^(8/17) 2584065236996286 a001 4181/199*3571^(10/17) 2584065241543906 a001 89*3571^(7/17) 2584065242007021 m005 (1/2*Zeta(3)-3)/(2/7*Catalan+2/3) 2584065243019314 r005 Im(z^2+c),c=4/21+9/49*I,n=19 2584065246970463 a001 2584/199*24476^(11/21) 2584065247582293 a001 89/5778*20633239^(5/7) 2584065247582297 a001 89/5778*2537720636^(5/9) 2584065247582297 a001 89/5778*312119004989^(5/11) 2584065247582297 a001 89/5778*(1/2+1/2*5^(1/2))^25 2584065247582297 a001 89/5778*3461452808002^(5/12) 2584065247582297 a001 89/5778*28143753123^(1/2) 2584065247582297 a001 89/5778*228826127^(5/8) 2584065247582919 a001 89/5778*1860498^(5/6) 2584065248928899 a001 2584/199*64079^(11/23) 2584065249229864 a001 2584/199*7881196^(1/3) 2584065249229878 a001 2584/199*312119004989^(1/5) 2584065249229878 a001 2584/199*(1/2+1/2*5^(1/2))^11 2584065249229878 a001 2584/199*1568397607^(1/4) 2584065249340052 a001 2584/199*103682^(11/24) 2584065250053669 a001 2584/199*39603^(1/2) 2584065255440864 a001 2584/199*15127^(11/20) 2584065255740770 a001 28657/199*3571^(6/17) 2584065264588139 s002 sum(A040611[n]/(n*2^n-1),n=1..infinity) 2584065265175607 r005 Re(z^2+c),c=19/106+23/55*I,n=50 2584065266791030 a001 46368/199*3571^(5/17) 2584065273378584 r005 Re(z^2+c),c=23/82+19/46*I,n=38 2584065274317964 a007 Real Root Of 282*x^4+816*x^3+417*x^2+211*x-733 2584065275128349 m001 (-PolyaRandomWalk3D+Trott2nd)/(Chi(1)+Artin) 2584065279043186 a001 75025/199*3571^(4/17) 2584065282599284 r009 Im(z^3+c),c=-67/122+13/51*I,n=40 2584065290836259 a001 121393/199*3571^(3/17) 2584065293092861 r009 Re(z^3+c),c=-29/114+27/28*I,n=28 2584065295206815 m001 Pi^gamma*exp(1/2)^gamma 2584065295206815 m001 exp(gamma)^ln(Pi)*exp(gamma)^(1/2) 2584065295383879 a001 10803977/4181 2584065295418949 a004 Fibonacci(11)*Lucas(19)/(1/2+sqrt(5)/2)^12 2584065296530691 a001 2584/199*5778^(11/18) 2584065301334187 a001 6765/199*9349^(9/19) 2584065302804686 a001 196418/199*3571^(2/17) 2584065304686224 r005 Im(z^2+c),c=-7/29+31/49*I,n=14 2584065304735023 r005 Re(z^2+c),c=-16/25+16/43*I,n=57 2584065310128956 r009 Im(z^3+c),c=-3/16+37/40*I,n=6 2584065313489896 a001 6765/199*24476^(3/7) 2584065313690892 a001 89/15127*7881196^(9/11) 2584065313690926 a001 89/15127*141422324^(9/13) 2584065313690926 a001 89/15127*2537720636^(3/5) 2584065313690926 a001 89/15127*45537549124^(9/17) 2584065313690926 a001 89/15127*14662949395604^(3/7) 2584065313690926 a001 89/15127*(1/2+1/2*5^(1/2))^27 2584065313690926 a001 89/15127*192900153618^(1/2) 2584065313690926 a001 89/15127*10749957122^(9/16) 2584065313690926 a001 89/15127*599074578^(9/14) 2584065313690927 a001 89/15127*33385282^(3/4) 2584065313691597 a001 89/15127*1860498^(9/10) 2584065314091378 a001 89*9349^(7/19) 2584065314706134 a001 317811/199*3571^(1/17) 2584065315092253 a001 6765/199*64079^(9/23) 2584065315334043 a001 6765/199*439204^(1/3) 2584065315338497 a001 6765/199*7881196^(3/11) 2584065315338509 a001 6765/199*141422324^(3/13) 2584065315338509 a001 6765/199*2537720636^(1/5) 2584065315338509 a001 6765/199*45537549124^(3/17) 2584065315338509 a001 6765/199*817138163596^(3/19) 2584065315338509 a001 6765/199*14662949395604^(1/7) 2584065315338509 a001 6765/199*(1/2+1/2*5^(1/2))^9 2584065315338509 a001 6765/199*192900153618^(1/6) 2584065315338509 a001 6765/199*10749957122^(3/16) 2584065315338509 a001 6765/199*599074578^(3/14) 2584065315338509 a001 6765/199*33385282^(1/4) 2584065315338733 a001 6765/199*1860498^(3/10) 2584065315428651 a001 6765/199*103682^(3/8) 2584065316012520 a001 6765/199*39603^(9/22) 2584065317924317 a001 28657/199*9349^(6/19) 2584065318496354 a001 10946/199*9349^(8/19) 2584065318610653 a001 46368/199*9349^(5/19) 2584065319381036 m001 GaussKuzminWirsing/Psi(1,1/3)*Thue 2584065320420225 a001 6765/199*15127^(9/20) 2584065320498885 a001 75025/199*9349^(4/19) 2584065320665083 a001 2175783/842 2584065320670199 a004 Fibonacci(11)*Lucas(21)/(1/2+sqrt(5)/2)^14 2584065321928033 a001 121393/199*9349^(3/19) 2584065323336045 a001 89/39603*(1/2+1/2*5^(1/2))^29 2584065323336045 a001 89/39603*1322157322203^(1/2) 2584065323532535 a001 196418/199*9349^(2/19) 2584065323545818 a001 89*24476^(1/3) 2584065323562268 r005 Im(z^2+c),c=-35/114+20/49*I,n=37 2584065324076818 m001 (Riemann3rdZero-Robbin)/(GaussAGM+OneNinth) 2584065324217041 m001 (Catalan-Porter)/(-Sierpinski+ZetaP(2)) 2584065324353561 a001 74051560/28657 2584065324354307 a004 Fibonacci(11)*Lucas(23)/(1/2+sqrt(5)/2)^16 2584065324743249 a001 89/103682*(1/2+1/2*5^(1/2))^31 2584065324743249 a001 89/103682*9062201101803^(1/2) 2584065324792095 a001 89*64079^(7/23) 2584065324891702 a001 193869501/75025 2584065324891811 a004 Fibonacci(11)*Lucas(25)/(1/2+sqrt(5)/2)^18 2584065324948557 a001 89/271443*141422324^(11/13) 2584065324948557 a001 89/271443*2537720636^(11/15) 2584065324948557 a001 89/271443*45537549124^(11/17) 2584065324948557 a001 89/271443*312119004989^(3/5) 2584065324948557 a001 89/271443*14662949395604^(11/21) 2584065324948557 a001 89/271443*(1/2+1/2*5^(1/2))^33 2584065324948557 a001 89/271443*192900153618^(11/18) 2584065324948557 a001 89/271443*10749957122^(11/16) 2584065324948557 a001 89/271443*1568397607^(3/4) 2584065324948557 a001 89/271443*599074578^(11/14) 2584065324948559 a001 89/271443*33385282^(11/12) 2584065324970216 a001 507556943/196418 2584065324970232 a004 Fibonacci(11)*Lucas(27)/(1/2+sqrt(5)/2)^20 2584065324978511 a001 89/710647*2537720636^(7/9) 2584065324978511 a001 89/710647*17393796001^(5/7) 2584065324978511 a001 89/710647*312119004989^(7/11) 2584065324978511 a001 89/710647*14662949395604^(5/9) 2584065324978511 a001 89/710647*(1/2+1/2*5^(1/2))^35 2584065324978511 a001 89/710647*505019158607^(5/8) 2584065324978511 a001 89/710647*28143753123^(7/10) 2584065324978511 a001 89/710647*599074578^(5/6) 2584065324978511 a001 89/710647*228826127^(7/8) 2584065324981671 a001 1328801328/514229 2584065324981673 a004 Fibonacci(11)*Lucas(29)/(1/2+sqrt(5)/2)^22 2584065324982881 a001 89/1860498*(1/2+1/2*5^(1/2))^37 2584065324983342 a001 3478847041/1346269 2584065324983343 a004 Fibonacci(11)*Lucas(31)/(1/2+sqrt(5)/2)^24 2584065324983519 a001 89/4870847*2537720636^(13/15) 2584065324983519 a001 89/4870847*45537549124^(13/17) 2584065324983519 a001 89/4870847*14662949395604^(13/21) 2584065324983519 a001 89/4870847*(1/2+1/2*5^(1/2))^39 2584065324983519 a001 89/4870847*192900153618^(13/18) 2584065324983519 a001 89/4870847*73681302247^(3/4) 2584065324983519 a001 89/4870847*10749957122^(13/16) 2584065324983519 a001 89/4870847*599074578^(13/14) 2584065324983586 a001 102334155/39602 2584065324983586 a004 Fibonacci(11)*Lucas(33)/(1/2+sqrt(5)/2)^26 2584065324983612 a001 89/12752043*(1/2+1/2*5^(1/2))^41 2584065324983622 a001 1834182488/709805 2584065324983622 a004 Fibonacci(11)*Lucas(35)/(1/2+sqrt(5)/2)^28 2584065324983626 a001 89/33385282*(1/2+1/2*5^(1/2))^43 2584065324983627 a001 89*20633239^(1/5) 2584065324983627 a001 62425377237/24157817 2584065324983627 a004 Fibonacci(11)*Lucas(37)/(1/2+sqrt(5)/2)^30 2584065324983628 a001 89/87403803*45537549124^(15/17) 2584065324983628 a001 89/87403803*312119004989^(9/11) 2584065324983628 a001 89/87403803*14662949395604^(5/7) 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^45/Lucas(38) 2584065324983628 a001 89/87403803*192900153618^(5/6) 2584065324983628 a001 89/87403803*28143753123^(9/10) 2584065324983628 a001 89/87403803*10749957122^(15/16) 2584065324983628 a001 163431759367/63245986 2584065324983628 a004 Fibonacci(11)*Lucas(39)/(1/2+sqrt(5)/2)^32 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^47/Lucas(40) 2584065324983628 a001 427869900864/165580141 2584065324983628 a004 Fibonacci(11)*Lucas(41)/(1/2+sqrt(5)/2)^34 2584065324983628 a001 89/599074578*14662949395604^(7/9) 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^49/Lucas(42) 2584065324983628 a001 89/599074578*505019158607^(7/8) 2584065324983628 a001 1120177943225/433494437 2584065324983628 a004 Fibonacci(11)*Lucas(43)/(1/2+sqrt(5)/2)^36 2584065324983628 a001 89/1568397607*14662949395604^(17/21) 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^51/Lucas(44) 2584065324983628 a001 89/1568397607*192900153618^(17/18) 2584065324983628 a001 2932663928811/1134903170 2584065324983628 a004 Fibonacci(11)*Lucas(45)/(1/2+sqrt(5)/2)^38 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^53/Lucas(46) 2584065324983628 a001 7677813843208/2971215073 2584065324983628 a004 Fibonacci(11)*Lucas(47)/(1/2+sqrt(5)/2)^40 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^55/Lucas(48) 2584065324983628 a001 89/10749957122*3461452808002^(11/12) 2584065324983628 a001 1546213661601/598364773 2584065324983628 a004 Fibonacci(11)*Lucas(49)/(1/2+sqrt(5)/2)^42 2584065324983628 a001 89/28143753123*14662949395604^(19/21) 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^57/Lucas(50) 2584065324983628 a001 52624518959231/20365011074 2584065324983628 a004 Fibonacci(11)*Lucas(51)/(1/2+sqrt(5)/2)^44 2584065324983628 a001 89*17393796001^(1/7) 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^59/Lucas(52) 2584065324983628 a001 137772779276880/53316291173 2584065324983628 a004 Fibonacci(11)*Lucas(53)/(1/2+sqrt(5)/2)^46 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^61/Lucas(54) 2584065324983628 a001 4052739537881/1568358005 2584065324983628 a004 Fibonacci(11)*Lucas(55)/(1/2+sqrt(5)/2)^48 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^63/Lucas(56) 2584065324983628 a004 Fibonacci(11)*Lucas(57)/(1/2+sqrt(5)/2)^50 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^65/Lucas(58) 2584065324983628 a004 Fibonacci(11)*Lucas(59)/(1/2+sqrt(5)/2)^52 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^67/Lucas(60) 2584065324983628 a004 Fibonacci(11)*Lucas(61)/(1/2+sqrt(5)/2)^54 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^69/Lucas(62) 2584065324983628 a004 Fibonacci(11)*Lucas(63)/(1/2+sqrt(5)/2)^56 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^71/Lucas(64) 2584065324983628 a004 Fibonacci(11)*Lucas(65)/(1/2+sqrt(5)/2)^58 2584065324983628 a001 89*14662949395604^(1/9) 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^73/Lucas(66) 2584065324983628 a004 Fibonacci(11)*Lucas(67)/(1/2+sqrt(5)/2)^60 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^75/Lucas(68) 2584065324983628 a004 Fibonacci(11)*Lucas(69)/(1/2+sqrt(5)/2)^62 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^77/Lucas(70) 2584065324983628 a004 Fibonacci(11)*Lucas(71)/(1/2+sqrt(5)/2)^64 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^79/Lucas(72) 2584065324983628 a004 Fibonacci(11)*Lucas(73)/(1/2+sqrt(5)/2)^66 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^81/Lucas(74) 2584065324983628 a004 Fibonacci(11)*Lucas(75)/(1/2+sqrt(5)/2)^68 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^83/Lucas(76) 2584065324983628 a004 Fibonacci(11)*Lucas(77)/(1/2+sqrt(5)/2)^70 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^85/Lucas(78) 2584065324983628 a004 Fibonacci(11)*Lucas(79)/(1/2+sqrt(5)/2)^72 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^87/Lucas(80) 2584065324983628 a004 Fibonacci(11)*Lucas(81)/(1/2+sqrt(5)/2)^74 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^89/Lucas(82) 2584065324983628 a004 Fibonacci(11)*Lucas(83)/(1/2+sqrt(5)/2)^76 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^91/Lucas(84) 2584065324983628 a004 Fibonacci(11)*Lucas(85)/(1/2+sqrt(5)/2)^78 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^93/Lucas(86) 2584065324983628 a004 Fibonacci(11)*Lucas(87)/(1/2+sqrt(5)/2)^80 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^95/Lucas(88) 2584065324983628 a004 Fibonacci(11)*Lucas(89)/(1/2+sqrt(5)/2)^82 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^97/Lucas(90) 2584065324983628 a004 Fibonacci(11)*Lucas(91)/(1/2+sqrt(5)/2)^84 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^99/Lucas(92) 2584065324983628 a004 Fibonacci(11)*Lucas(93)/(1/2+sqrt(5)/2)^86 2584065324983628 a004 Fibonacci(11)*Lucas(95)/(1/2+sqrt(5)/2)^88 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^7/Lucas(1) 2584065324983628 a004 Fibonacci(11)*Lucas(97)/(1/2+sqrt(5)/2)^90 2584065324983628 a004 Fibonacci(11)*Lucas(99)/(1/2+sqrt(5)/2)^92 2584065324983628 a004 Fibonacci(11)*Lucas(100)/(1/2+sqrt(5)/2)^93 2584065324983628 a004 Fibonacci(11)*Lucas(98)/(1/2+sqrt(5)/2)^91 2584065324983628 a004 Fibonacci(11)*Lucas(96)/(1/2+sqrt(5)/2)^89 2584065324983628 a004 Fibonacci(11)*Lucas(94)/(1/2+sqrt(5)/2)^87 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^100/Lucas(93) 2584065324983628 a004 Fibonacci(11)*Lucas(92)/(1/2+sqrt(5)/2)^85 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^98/Lucas(91) 2584065324983628 a004 Fibonacci(11)*Lucas(90)/(1/2+sqrt(5)/2)^83 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^96/Lucas(89) 2584065324983628 a004 Fibonacci(11)*Lucas(88)/(1/2+sqrt(5)/2)^81 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^94/Lucas(87) 2584065324983628 a004 Fibonacci(11)*Lucas(86)/(1/2+sqrt(5)/2)^79 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^92/Lucas(85) 2584065324983628 a004 Fibonacci(11)*Lucas(84)/(1/2+sqrt(5)/2)^77 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^90/Lucas(83) 2584065324983628 a004 Fibonacci(11)*Lucas(82)/(1/2+sqrt(5)/2)^75 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^88/Lucas(81) 2584065324983628 a004 Fibonacci(11)*Lucas(80)/(1/2+sqrt(5)/2)^73 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^86/Lucas(79) 2584065324983628 a004 Fibonacci(11)*Lucas(78)/(1/2+sqrt(5)/2)^71 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^84/Lucas(77) 2584065324983628 a004 Fibonacci(11)*Lucas(76)/(1/2+sqrt(5)/2)^69 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^82/Lucas(75) 2584065324983628 a004 Fibonacci(11)*Lucas(74)/(1/2+sqrt(5)/2)^67 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^80/Lucas(73) 2584065324983628 a004 Fibonacci(11)*Lucas(72)/(1/2+sqrt(5)/2)^65 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^78/Lucas(71) 2584065324983628 a004 Fibonacci(11)*Lucas(70)/(1/2+sqrt(5)/2)^63 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^76/Lucas(69) 2584065324983628 a004 Fibonacci(11)*Lucas(68)/(1/2+sqrt(5)/2)^61 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^74/Lucas(67) 2584065324983628 a004 Fibonacci(11)*Lucas(66)/(1/2+sqrt(5)/2)^59 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^72/Lucas(65) 2584065324983628 a004 Fibonacci(11)*Lucas(64)/(1/2+sqrt(5)/2)^57 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^70/Lucas(63) 2584065324983628 a004 Fibonacci(11)*Lucas(62)/(1/2+sqrt(5)/2)^55 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^68/Lucas(61) 2584065324983628 a004 Fibonacci(11)*Lucas(60)/(1/2+sqrt(5)/2)^53 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^66/Lucas(59) 2584065324983628 a004 Fibonacci(11)*Lucas(58)/(1/2+sqrt(5)/2)^51 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^64/Lucas(57) 2584065324983628 a004 Fibonacci(11)*Lucas(56)/(1/2+sqrt(5)/2)^49 2584065324983628 a001 44893450651226/17373187209 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^62/Lucas(55) 2584065324983628 a004 Fibonacci(11)*Lucas(54)/(1/2+sqrt(5)/2)^47 2584065324983628 a001 222921039594529/86267571272 2584065324983628 a001 89/119218851371*14662949395604^(20/21) 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^60/Lucas(53) 2584065324983628 a004 Fibonacci(11)*Lucas(52)/(1/2+sqrt(5)/2)^45 2584065324983628 a001 85148260317649/32951280099 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^58/Lucas(51) 2584065324983628 a004 Fibonacci(11)*Lucas(50)/(1/2+sqrt(5)/2)^43 2584065324983628 a001 32523741358418/12586269025 2584065324983628 a001 89/17393796001*14662949395604^(8/9) 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^56/Lucas(49) 2584065324983628 a004 Fibonacci(11)*Lucas(48)/(1/2+sqrt(5)/2)^41 2584065324983628 a001 12422963757605/4807526976 2584065324983628 a001 89/6643838879*14662949395604^(6/7) 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^54/Lucas(47) 2584065324983628 a004 Fibonacci(11)*Lucas(46)/(1/2+sqrt(5)/2)^39 2584065324983628 a001 4745149914397/1836311903 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^52/Lucas(45) 2584065324983628 a001 89/2537720636*23725150497407^(13/16) 2584065324983628 a001 89/2537720636*505019158607^(13/14) 2584065324983628 a004 Fibonacci(11)*Lucas(44)/(1/2+sqrt(5)/2)^37 2584065324983628 a001 20365011074/7880997 2584065324983628 a001 89*599074578^(1/6) 2584065324983628 a001 89/969323029*312119004989^(10/11) 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^50/Lucas(43) 2584065324983628 a001 89/969323029*3461452808002^(5/6) 2584065324983628 a004 Fibonacci(11)*Lucas(42)/(1/2+sqrt(5)/2)^35 2584065324983628 a001 53254464797/20608792 2584065324983628 a001 89/370248451*45537549124^(16/17) 2584065324983628 a001 89/370248451*14662949395604^(16/21) 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^48/Lucas(41) 2584065324983628 a001 89/370248451*192900153618^(8/9) 2584065324983628 a001 89/370248451*73681302247^(12/13) 2584065324983628 a004 Fibonacci(11)*Lucas(40)/(1/2+sqrt(5)/2)^33 2584065324983628 a001 264438141497/102334155 2584065324983628 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^46/Lucas(39) 2584065324983628 a001 89/141422324*10749957122^(23/24) 2584065324983628 a004 Fibonacci(11)*Lucas(38)/(1/2+sqrt(5)/2)^31 2584065324983628 a001 101006382130/39088169 2584065324983629 a001 89/54018521*312119004989^(4/5) 2584065324983629 a004 Fibonacci(11)*(1/2+sqrt(5)/2)^44/Lucas(37) 2584065324983629 a001 89/54018521*23725150497407^(11/16) 2584065324983629 a001 89/54018521*73681302247^(11/13) 2584065324983629 a001 89/54018521*10749957122^(11/12) 2584065324983629 a001 89/54018521*4106118243^(22/23) 2584065324983630 a004 Fibonacci(11)*Lucas(36)/(1/2+sqrt(5)/2)^29 2584065324983630 a001 38581004893/14930352 2584065324983634 a001 89/20633239*2537720636^(14/15) 2584065324983634 a001 89/20633239*17393796001^(6/7) 2584065324983634 a001 89/20633239*45537549124^(14/17) 2584065324983634 a001 89/20633239*817138163596^(14/19) 2584065324983634 a001 89/20633239*14662949395604^(2/3) 2584065324983634 a001 89/20633239*(1/2+1/2*5^(1/2))^42 2584065324983634 a001 89/20633239*192900153618^(7/9) 2584065324983634 a001 89/20633239*10749957122^(7/8) 2584065324983634 a001 89/20633239*4106118243^(21/23) 2584065324983634 a001 89/20633239*1568397607^(21/22) 2584065324983644 a004 Fibonacci(11)*Lucas(34)/(1/2+sqrt(5)/2)^27 2584065324983644 a001 14736632549/5702887 2584065324983669 a001 89/7881196*2537720636^(8/9) 2584065324983669 a001 89/7881196*312119004989^(8/11) 2584065324983669 a001 89/7881196*(1/2+1/2*5^(1/2))^40 2584065324983669 a001 89/7881196*23725150497407^(5/8) 2584065324983669 a001 89/7881196*73681302247^(10/13) 2584065324983669 a001 89/7881196*28143753123^(4/5) 2584065324983669 a001 89/7881196*10749957122^(5/6) 2584065324983669 a001 89/7881196*4106118243^(20/23) 2584065324983669 a001 89/7881196*1568397607^(10/11) 2584065324983669 a001 89/7881196*599074578^(20/21) 2584065324983737 a004 Fibonacci(11)*Lucas(32)/(1/2+sqrt(5)/2)^25 2584065324983737 a001 5628892754/2178309 2584065324983913 a001 89/3010349*817138163596^(2/3) 2584065324983913 a001 89/3010349*(1/2+1/2*5^(1/2))^38 2584065324983913 a001 89/3010349*10749957122^(19/24) 2584065324983913 a001 89/3010349*4106118243^(19/23) 2584065324983913 a001 89/3010349*1568397607^(19/22) 2584065324983913 a001 89/3010349*599074578^(19/21) 2584065324983913 a001 89/3010349*228826127^(19/20) 2584065324984374 a004 Fibonacci(11)*Lucas(30)/(1/2+sqrt(5)/2)^23 2584065324984375 a001 2150045713/832040 2584065324984907 a001 89*710647^(1/4) 2584065324985582 a001 89/1149851*141422324^(12/13) 2584065324985582 a001 89/1149851*2537720636^(4/5) 2584065324985582 a001 89/1149851*45537549124^(12/17) 2584065324985582 a001 89/1149851*14662949395604^(4/7) 2584065324985582 a001 89/1149851*(1/2+1/2*5^(1/2))^36 2584065324985582 a001 89/1149851*505019158607^(9/14) 2584065324985582 a001 89/1149851*192900153618^(2/3) 2584065324985582 a001 89/1149851*73681302247^(9/13) 2584065324985582 a001 89/1149851*10749957122^(3/4) 2584065324985582 a001 89/1149851*4106118243^(18/23) 2584065324985582 a001 89/1149851*1568397607^(9/11) 2584065324985582 a001 89/1149851*599074578^(6/7) 2584065324985582 a001 89/1149851*228826127^(9/10) 2584065324985583 a001 89/1149851*87403803^(18/19) 2584065324988745 a004 Fibonacci(11)*Lucas(28)/(1/2+sqrt(5)/2)^21 2584065324988751 a001 63172645/24447 2584065324997024 a001 89/439204*45537549124^(2/3) 2584065324997024 a001 89/439204*(1/2+1/2*5^(1/2))^34 2584065324997024 a001 89/439204*10749957122^(17/24) 2584065324997024 a001 89/439204*4106118243^(17/23) 2584065324997024 a001 89/439204*1568397607^(17/22) 2584065324997024 a001 89/439204*599074578^(17/21) 2584065324997024 a001 89/439204*228826127^(17/20) 2584065324997024 a001 89/439204*87403803^(17/19) 2584065324997026 a001 89/439204*33385282^(17/18) 2584065325018699 a004 Fibonacci(11)*Lucas(26)/(1/2+sqrt(5)/2)^19 2584065325018740 a001 313687442/121393 2584065325053738 a001 89*103682^(7/24) 2584065325070058 a001 317811/199*9349^(1/19) 2584065325075444 a001 89/167761*(1/2+1/2*5^(1/2))^32 2584065325075444 a001 89/167761*23725150497407^(1/2) 2584065325075444 a001 89/167761*73681302247^(8/13) 2584065325075444 a001 89/167761*10749957122^(2/3) 2584065325075444 a001 89/167761*4106118243^(16/23) 2584065325075444 a001 89/167761*1568397607^(8/11) 2584065325075445 a001 89/167761*599074578^(16/21) 2584065325075445 a001 89/167761*228826127^(4/5) 2584065325075445 a001 89/167761*87403803^(16/19) 2584065325075447 a001 89/167761*33385282^(8/9) 2584065325075459 a001 89/167761*12752043^(16/17) 2584065325224007 a004 Fibonacci(11)*Lucas(24)/(1/2+sqrt(5)/2)^17 2584065325224292 a001 119817941/46368 2584065325363825 a001 46368/199*24476^(5/21) 2584065325507859 a001 89*39603^(7/22) 2584065325612911 a001 89/64079*7881196^(10/11) 2584065325612943 a001 89/64079*20633239^(6/7) 2584065325612948 a001 89/64079*141422324^(10/13) 2584065325612949 a001 89/64079*2537720636^(2/3) 2584065325612949 a001 89/64079*45537549124^(10/17) 2584065325612949 a001 89/64079*312119004989^(6/11) 2584065325612949 a001 89/64079*14662949395604^(10/21) 2584065325612949 a001 89/64079*(1/2+1/2*5^(1/2))^30 2584065325612949 a001 89/64079*192900153618^(5/9) 2584065325612949 a001 89/64079*28143753123^(3/5) 2584065325612949 a001 89/64079*10749957122^(5/8) 2584065325612949 a001 89/64079*4106118243^(15/23) 2584065325612949 a001 89/64079*1568397607^(15/22) 2584065325612949 a001 89/64079*599074578^(5/7) 2584065325612949 a001 89/64079*228826127^(3/4) 2584065325612949 a001 89/64079*87403803^(15/19) 2584065325612951 a001 89/64079*33385282^(5/6) 2584065325612963 a001 89/64079*12752043^(15/17) 2584065325613051 a001 89/64079*4870847^(15/16) 2584065325901422 a001 75025/199*24476^(4/21) 2584065325979936 a001 121393/199*24476^(1/7) 2584065326028123 a001 28657/199*24476^(2/7) 2584065326233804 a001 196418/199*24476^(2/21) 2584065326254023 a001 46368/199*64079^(5/23) 2584065326372468 a001 46368/199*167761^(1/5) 2584065326390831 a001 46368/199*20633239^(1/7) 2584065326390832 a001 46368/199*2537720636^(1/9) 2584065326390832 a001 46368/199*312119004989^(1/11) 2584065326390832 a001 46368/199*(1/2+1/2*5^(1/2))^5 2584065326390832 a001 46368/199*28143753123^(1/10) 2584065326390832 a001 46368/199*228826127^(1/8) 2584065326390956 a001 46368/199*1860498^(1/6) 2584065326420693 a001 317811/199*24476^(1/21) 2584065326440911 a001 46368/199*103682^(5/24) 2584065326514055 a001 121393/199*64079^(3/23) 2584065326589883 a001 196418/199*64079^(2/23) 2584065326594652 a001 121393/199*439204^(1/9) 2584065326596136 a001 121393/199*7881196^(1/11) 2584065326596140 a001 121393/199*141422324^(1/13) 2584065326596140 a001 121393/199*2537720636^(1/15) 2584065326596140 a001 121393/199*45537549124^(1/17) 2584065326596140 a001 121393/199*14662949395604^(1/21) 2584065326596140 a001 121393/199*(1/2+1/2*5^(1/2))^3 2584065326596140 a001 121393/199*192900153618^(1/18) 2584065326596140 a001 121393/199*10749957122^(1/16) 2584065326596140 a001 121393/199*599074578^(1/14) 2584065326596140 a001 121393/199*33385282^(1/12) 2584065326596215 a001 121393/199*1860498^(1/10) 2584065326598732 a001 317811/199*64079^(1/23) 2584065326613580 a001 75025/199*64079^(4/23) 2584065326626094 a001 317811/398+317811/398*5^(1/2) 2584065326626187 a001 121393/199*103682^(1/8) 2584065326630464 a004 Fibonacci(30)/Lucas(11)/(1/2+sqrt(5)/2) 2584065326631102 a004 Fibonacci(32)/Lucas(11)/(1/2+sqrt(5)/2)^3 2584065326631195 a004 Fibonacci(34)/Lucas(11)/(1/2+sqrt(5)/2)^5 2584065326631209 a004 Fibonacci(36)/Lucas(11)/(1/2+sqrt(5)/2)^7 2584065326631211 a004 Fibonacci(38)/Lucas(11)/(1/2+sqrt(5)/2)^9 2584065326631211 a004 Fibonacci(40)/Lucas(11)/(1/2+sqrt(5)/2)^11 2584065326631211 a004 Fibonacci(42)/Lucas(11)/(1/2+sqrt(5)/2)^13 2584065326631211 a004 Fibonacci(11)*Lucas(22)/(1/2+sqrt(5)/2)^15 2584065326631211 a004 Fibonacci(46)/Lucas(11)/(1/2+sqrt(5)/2)^17 2584065326631211 a004 Fibonacci(48)/Lucas(11)/(1/2+sqrt(5)/2)^19 2584065326631211 a004 Fibonacci(50)/Lucas(11)/(1/2+sqrt(5)/2)^21 2584065326631211 a004 Fibonacci(52)/Lucas(11)/(1/2+sqrt(5)/2)^23 2584065326631211 a004 Fibonacci(54)/Lucas(11)/(1/2+sqrt(5)/2)^25 2584065326631211 a004 Fibonacci(56)/Lucas(11)/(1/2+sqrt(5)/2)^27 2584065326631211 a004 Fibonacci(58)/Lucas(11)/(1/2+sqrt(5)/2)^29 2584065326631211 a004 Fibonacci(60)/Lucas(11)/(1/2+sqrt(5)/2)^31 2584065326631211 a004 Fibonacci(62)/Lucas(11)/(1/2+sqrt(5)/2)^33 2584065326631211 a004 Fibonacci(64)/Lucas(11)/(1/2+sqrt(5)/2)^35 2584065326631211 a004 Fibonacci(66)/Lucas(11)/(1/2+sqrt(5)/2)^37 2584065326631211 a004 Fibonacci(68)/Lucas(11)/(1/2+sqrt(5)/2)^39 2584065326631211 a004 Fibonacci(70)/Lucas(11)/(1/2+sqrt(5)/2)^41 2584065326631211 a004 Fibonacci(72)/Lucas(11)/(1/2+sqrt(5)/2)^43 2584065326631211 a004 Fibonacci(74)/Lucas(11)/(1/2+sqrt(5)/2)^45 2584065326631211 a004 Fibonacci(76)/Lucas(11)/(1/2+sqrt(5)/2)^47 2584065326631211 a004 Fibonacci(78)/Lucas(11)/(1/2+sqrt(5)/2)^49 2584065326631211 a004 Fibonacci(80)/Lucas(11)/(1/2+sqrt(5)/2)^51 2584065326631211 a004 Fibonacci(82)/Lucas(11)/(1/2+sqrt(5)/2)^53 2584065326631211 a004 Fibonacci(84)/Lucas(11)/(1/2+sqrt(5)/2)^55 2584065326631211 a004 Fibonacci(86)/Lucas(11)/(1/2+sqrt(5)/2)^57 2584065326631211 a004 Fibonacci(88)/Lucas(11)/(1/2+sqrt(5)/2)^59 2584065326631211 a004 Fibonacci(90)/Lucas(11)/(1/2+sqrt(5)/2)^61 2584065326631211 a004 Fibonacci(92)/Lucas(11)/(1/2+sqrt(5)/2)^63 2584065326631211 a004 Fibonacci(94)/Lucas(11)/(1/2+sqrt(5)/2)^65 2584065326631211 a004 Fibonacci(96)/Lucas(11)/(1/2+sqrt(5)/2)^67 2584065326631211 a004 Fibonacci(100)/Lucas(11)/(1/2+sqrt(5)/2)^71 2584065326631211 a004 Fibonacci(98)/Lucas(11)/(1/2+sqrt(5)/2)^69 2584065326631211 a004 Fibonacci(99)/Lucas(11)/(1/2+sqrt(5)/2)^70 2584065326631211 a004 Fibonacci(97)/Lucas(11)/(1/2+sqrt(5)/2)^68 2584065326631211 a004 Fibonacci(95)/Lucas(11)/(1/2+sqrt(5)/2)^66 2584065326631211 a004 Fibonacci(93)/Lucas(11)/(1/2+sqrt(5)/2)^64 2584065326631211 a004 Fibonacci(91)/Lucas(11)/(1/2+sqrt(5)/2)^62 2584065326631211 a004 Fibonacci(89)/Lucas(11)/(1/2+sqrt(5)/2)^60 2584065326631211 a004 Fibonacci(87)/Lucas(11)/(1/2+sqrt(5)/2)^58 2584065326631211 a004 Fibonacci(85)/Lucas(11)/(1/2+sqrt(5)/2)^56 2584065326631211 a004 Fibonacci(83)/Lucas(11)/(1/2+sqrt(5)/2)^54 2584065326631211 a004 Fibonacci(81)/Lucas(11)/(1/2+sqrt(5)/2)^52 2584065326631211 a004 Fibonacci(79)/Lucas(11)/(1/2+sqrt(5)/2)^50 2584065326631211 a004 Fibonacci(77)/Lucas(11)/(1/2+sqrt(5)/2)^48 2584065326631211 a004 Fibonacci(75)/Lucas(11)/(1/2+sqrt(5)/2)^46 2584065326631211 a004 Fibonacci(73)/Lucas(11)/(1/2+sqrt(5)/2)^44 2584065326631211 a004 Fibonacci(71)/Lucas(11)/(1/2+sqrt(5)/2)^42 2584065326631211 a004 Fibonacci(69)/Lucas(11)/(1/2+sqrt(5)/2)^40 2584065326631211 a004 Fibonacci(67)/Lucas(11)/(1/2+sqrt(5)/2)^38 2584065326631211 a004 Fibonacci(65)/Lucas(11)/(1/2+sqrt(5)/2)^36 2584065326631211 a004 Fibonacci(63)/Lucas(11)/(1/2+sqrt(5)/2)^34 2584065326631211 a004 Fibonacci(61)/Lucas(11)/(1/2+sqrt(5)/2)^32 2584065326631211 a004 Fibonacci(59)/Lucas(11)/(1/2+sqrt(5)/2)^30 2584065326631211 a004 Fibonacci(57)/Lucas(11)/(1/2+sqrt(5)/2)^28 2584065326631211 a004 Fibonacci(55)/Lucas(11)/(1/2+sqrt(5)/2)^26 2584065326631211 a004 Fibonacci(53)/Lucas(11)/(1/2+sqrt(5)/2)^24 2584065326631211 a004 Fibonacci(51)/Lucas(11)/(1/2+sqrt(5)/2)^22 2584065326631211 a004 Fibonacci(49)/Lucas(11)/(1/2+sqrt(5)/2)^20 2584065326631211 a004 Fibonacci(47)/Lucas(11)/(1/2+sqrt(5)/2)^18 2584065326631211 a004 Fibonacci(45)/Lucas(11)/(1/2+sqrt(5)/2)^16 2584065326631211 a004 Fibonacci(43)/Lucas(11)/(1/2+sqrt(5)/2)^14 2584065326631211 a004 Fibonacci(41)/Lucas(11)/(1/2+sqrt(5)/2)^12 2584065326631211 a004 Fibonacci(39)/Lucas(11)/(1/2+sqrt(5)/2)^10 2584065326631212 a004 Fibonacci(37)/Lucas(11)/(1/2+sqrt(5)/2)^8 2584065326631217 a004 Fibonacci(35)/Lucas(11)/(1/2+sqrt(5)/2)^6 2584065326631253 a004 Fibonacci(33)/Lucas(11)/(1/2+sqrt(5)/2)^4 2584065326631496 a004 Fibonacci(31)/Lucas(11)/(1/2+sqrt(5)/2)^2 2584065326633165 a001 514229/199 2584065326636110 a001 317811/199*103682^(1/24) 2584065326644607 a001 196418/199*(1/2+1/2*5^(1/2))^2 2584065326644607 a001 196418/199*10749957122^(1/24) 2584065326644607 a001 196418/199*4106118243^(1/23) 2584065326644607 a001 196418/199*1568397607^(1/22) 2584065326644607 a001 196418/199*599074578^(1/21) 2584065326644607 a001 196418/199*228826127^(1/20) 2584065326644607 a001 196418/199*87403803^(1/19) 2584065326644607 a001 196418/199*33385282^(1/18) 2584065326644608 a001 196418/199*12752043^(1/17) 2584065326644614 a001 196418/199*4870847^(1/16) 2584065326644657 a001 196418/199*1860498^(1/15) 2584065326644972 a001 196418/199*710647^(1/14) 2584065326647305 a001 196418/199*271443^(1/13) 2584065326664638 a001 196418/199*103682^(1/12) 2584065326700984 a001 317811/199*39603^(1/22) 2584065326723028 a001 75025/199*(1/2+1/2*5^(1/2))^4 2584065326723028 a001 75025/199*23725150497407^(1/16) 2584065326723028 a001 75025/199*73681302247^(1/13) 2584065326723028 a001 75025/199*10749957122^(1/12) 2584065326723028 a001 75025/199*4106118243^(2/23) 2584065326723028 a001 75025/199*1568397607^(1/11) 2584065326723028 a001 75025/199*599074578^(2/21) 2584065326723028 a001 75025/199*228826127^(1/10) 2584065326723028 a001 75025/199*87403803^(2/19) 2584065326723028 a001 75025/199*33385282^(1/9) 2584065326723029 a001 75025/199*12752043^(2/17) 2584065326723041 a001 75025/199*4870847^(1/8) 2584065326723127 a001 75025/199*1860498^(2/15) 2584065326723759 a001 75025/199*710647^(1/7) 2584065326728423 a001 75025/199*271443^(2/13) 2584065326763091 a001 75025/199*103682^(1/6) 2584065326765282 a001 46368/199*39603^(5/22) 2584065326794387 a001 196418/199*39603^(1/11) 2584065326820810 a001 121393/199*39603^(3/22) 2584065327022588 a001 75025/199*39603^(2/11) 2584065327096361 a001 28657/199*64079^(6/23) 2584065327190729 a001 317811/199*15127^(1/20) 2584065327257555 a001 28657/199*439204^(2/9) 2584065327260524 a001 28657/199*7881196^(2/11) 2584065327260532 a001 28657/199*141422324^(2/13) 2584065327260532 a001 28657/199*2537720636^(2/15) 2584065327260532 a001 28657/199*45537549124^(2/17) 2584065327260532 a001 28657/199*14662949395604^(2/21) 2584065327260532 a001 28657/199*(1/2+1/2*5^(1/2))^6 2584065327260532 a001 28657/199*10749957122^(1/8) 2584065327260532 a001 28657/199*4106118243^(3/23) 2584065327260532 a001 28657/199*1568397607^(3/22) 2584065327260532 a001 28657/199*599074578^(1/7) 2584065327260532 a001 28657/199*228826127^(3/20) 2584065327260532 a001 28657/199*87403803^(3/19) 2584065327260532 a001 28657/199*33385282^(1/6) 2584065327260534 a001 28657/199*12752043^(3/17) 2584065327260552 a001 28657/199*4870847^(3/16) 2584065327260681 a001 28657/199*1860498^(1/5) 2584065327261628 a001 28657/199*710647^(3/14) 2584065327268625 a001 28657/199*271443^(3/13) 2584065327320626 a001 28657/199*103682^(1/4) 2584065327709872 a001 28657/199*39603^(3/11) 2584065327773877 a001 196418/199*15127^(1/10) 2584065328290045 a001 121393/199*15127^(3/20) 2584065328332092 p001 sum(1/(236*n+67)/n/(128^n),n=1..infinity) 2584065328936074 a001 89*15127^(7/20) 2584065328981568 a001 75025/199*15127^(1/5) 2584065329214007 a001 46368/199*15127^(1/4) 2584065329297051 a001 89/24476*20633239^(4/5) 2584065329297056 a001 89/24476*17393796001^(4/7) 2584065329297056 a001 89/24476*14662949395604^(4/9) 2584065329297056 a001 89/24476*(1/2+1/2*5^(1/2))^28 2584065329297056 a001 89/24476*73681302247^(7/13) 2584065329297056 a001 89/24476*10749957122^(7/12) 2584065329297056 a001 89/24476*4106118243^(14/23) 2584065329297056 a001 89/24476*1568397607^(7/11) 2584065329297056 a001 89/24476*599074578^(2/3) 2584065329297056 a001 89/24476*228826127^(7/10) 2584065329297057 a001 89/24476*87403803^(14/19) 2584065329297058 a001 89/24476*33385282^(7/9) 2584065329297069 a001 89/24476*12752043^(14/17) 2584065329297152 a001 89/24476*4870847^(7/8) 2584065329297753 a001 89/24476*1860498^(14/15) 2584065329301429 a001 10946/199*24476^(8/21) 2584065330648342 a001 28657/199*15127^(3/10) 2584065330725745 a001 10946/199*64079^(8/23) 2584065330926168 a001 317811/199*5778^(1/18) 2584065330944639 a001 10946/199*(1/2+1/2*5^(1/2))^8 2584065330944639 a001 10946/199*23725150497407^(1/8) 2584065330944639 a001 10946/199*505019158607^(1/7) 2584065330944639 a001 10946/199*73681302247^(2/13) 2584065330944639 a001 10946/199*10749957122^(1/6) 2584065330944639 a001 10946/199*4106118243^(4/23) 2584065330944639 a001 10946/199*1568397607^(2/11) 2584065330944639 a001 10946/199*599074578^(4/21) 2584065330944639 a001 10946/199*228826127^(1/5) 2584065330944639 a001 10946/199*87403803^(4/19) 2584065330944640 a001 10946/199*33385282^(2/9) 2584065330944643 a001 10946/199*12752043^(4/17) 2584065330944667 a001 10946/199*4870847^(1/4) 2584065330944838 a001 10946/199*1860498^(4/15) 2584065330946101 a001 10946/199*710647^(2/7) 2584065330955430 a001 10946/199*271443^(4/13) 2584065331024766 a001 10946/199*103682^(1/3) 2584065331543760 a001 10946/199*39603^(4/11) 2584065335244755 a001 196418/199*5778^(1/9) 2584065335461720 a001 10946/199*15127^(2/5) 2584065336276330 a004 Fibonacci(11)*Lucas(20)/(1/2+sqrt(5)/2)^13 2584065336289726 a001 17481202/6765 2584065337359859 a007 Real Root Of 689*x^4-367*x^3-567*x^2-768*x-170 2584065339496362 a001 121393/199*5778^(1/6) 2584065340635532 a001 4181/199*9349^(10/19) 2584065343923324 a001 75025/199*5778^(2/9) 2584065347891202 a001 46368/199*5778^(5/18) 2584065352896761 m002 3*Pi^4*Csch[Pi]+ProductLog[Pi]/2 2584065353060976 a001 28657/199*5778^(1/3) 2584065354039175 a001 6765/199*5778^(1/2) 2584065354141876 a001 4181/199*24476^(10/21) 2584065354548306 a001 89/9349*141422324^(2/3) 2584065354548307 a001 89/9349*(1/2+1/2*5^(1/2))^26 2584065354548307 a001 89/9349*73681302247^(1/2) 2584065354548307 a001 89/9349*10749957122^(13/24) 2584065354548307 a001 89/9349*4106118243^(13/23) 2584065354548307 a001 89/9349*1568397607^(13/22) 2584065354548307 a001 89/9349*599074578^(13/21) 2584065354548307 a001 89/9349*228826127^(13/20) 2584065354548307 a001 89/9349*87403803^(13/19) 2584065354548308 a001 89/9349*33385282^(13/18) 2584065354548319 a001 89/9349*12752043^(13/17) 2584065354548395 a001 89/9349*4870847^(13/16) 2584065354548954 a001 89/9349*1860498^(13/15) 2584065354553058 a001 89/9349*710647^(13/14) 2584065355084146 a001 89*5778^(7/18) 2584065355922272 a001 4181/199*64079^(10/23) 2584065356159163 a001 4181/199*167761^(2/5) 2584065356195888 a001 4181/199*20633239^(2/7) 2584065356195889 a001 4181/199*2537720636^(2/9) 2584065356195889 a001 4181/199*312119004989^(2/11) 2584065356195889 a001 4181/199*(1/2+1/2*5^(1/2))^10 2584065356195889 a001 4181/199*28143753123^(1/5) 2584065356195889 a001 4181/199*10749957122^(5/24) 2584065356195889 a001 4181/199*4106118243^(5/23) 2584065356195889 a001 4181/199*1568397607^(5/22) 2584065356195889 a001 4181/199*599074578^(5/21) 2584065356195889 a001 4181/199*228826127^(1/4) 2584065356195889 a001 4181/199*87403803^(5/19) 2584065356195890 a001 4181/199*33385282^(5/18) 2584065356195894 a001 4181/199*12752043^(5/17) 2584065356195923 a001 4181/199*4870847^(5/16) 2584065356196138 a001 4181/199*1860498^(1/3) 2584065356197717 a001 4181/199*710647^(5/14) 2584065356209378 a001 4181/199*271443^(5/13) 2584065356296047 a001 4181/199*103682^(5/12) 2584065356944791 a001 4181/199*39603^(5/11) 2584065358226066 m005 (1/2*2^(1/2)-2/3)/(3*gamma-1/6) 2584065359783380 a001 317811/199*2207^(1/16) 2584065361842240 a001 4181/199*15127^(1/2) 2584065365345232 a001 10946/199*5778^(4/9) 2584065368322108 a007 Real Root Of 441*x^4+807*x^3-636*x^2+222*x-918 2584065373241322 m005 (1/2*Pi+6/7)/(149/180+1/20*5^(1/2)) 2584065374128082 r005 Im(z^2+c),c=-59/60+1/40*I,n=10 2584065386047427 h001 (-exp(1/3)+1)/(-6*exp(1)+1) 2584065386230998 a001 1597/199*3571^(12/17) 2584065392959179 a001 196418/199*2207^(1/8) 2584065395404161 m002 -(E^Pi/Pi^5)+Sech[Pi]/Log[Pi] 2584065399196630 a001 4181/199*5778^(5/9) 2584065399383960 m001 arctan(1/2)^2/exp(MinimumGamma)^2*sqrt(5) 2584065402384961 a004 Fibonacci(11)*Lucas(18)/(1/2+sqrt(5)/2)^11 2584065402476780 a001 6677225/2584 2584065404185278 m001 MertensB1^Stephens/KomornikLoreti 2584065412616238 a001 21/29*322^(13/21) 2584065419224529 a001 610/199*1364^(14/15) 2584065426068000 a001 121393/199*2207^(3/16) 2584065434716752 q001 853/3301 2584065436491375 r009 Re(z^3+c),c=-31/60+21/47*I,n=16 2584065440580043 m005 (1/2*gamma-5)/(-29/11+4/11*5^(1/2)) 2584065443038191 m005 (exp(1)-4/5)/(11/6+5/2*5^(1/2)) 2584065444813654 m001 GAMMA(19/24)+LaplaceLimit+RenyiParking 2584065448827269 r002 36th iterates of z^2 + 2584065455813501 r005 Im(z^2+c),c=-19/56+18/43*I,n=60 2584065459352174 a001 75025/199*2207^(1/4) 2584065461020188 m001 (Backhouse+Sarnak)/(sin(1)+gamma(3)) 2584065461036057 m001 (Chi(1)-cos(1))/(Zeta(1,-1)+ln(2+3^(1/2))) 2584065464190256 r005 Im(z^2+c),c=-35/118+17/42*I,n=56 2584065464380659 r005 Im(z^2+c),c=-17/44+10/19*I,n=20 2584065481248315 r005 Re(z^2+c),c=19/122+24/53*I,n=32 2584065482691006 m001 (GAMMA(2/3)+FeigenbaumDelta)/(Kac+Niven) 2584065492177266 a001 46368/199*2207^(5/16) 2584065501078929 r005 Re(z^2+c),c=-29/90+5/59*I,n=11 2584065502511002 a007 Real Root Of -948*x^4-437*x^3+236*x^2+871*x+206 2584065506897840 r009 Im(z^3+c),c=-63/110+13/55*I,n=33 2584065510598101 a001 1597/199*9349^(12/19) 2584065525667627 r005 Im(z^2+c),c=-1/3+5/12*I,n=42 2584065526204254 a001 28657/199*2207^(3/8) 2584065526805715 a001 1597/199*24476^(4/7) 2584065527611057 a001 89/3571*439204^(8/9) 2584065527622934 a001 89/3571*7881196^(8/11) 2584065527622964 a001 89/3571*141422324^(8/13) 2584065527622964 a001 89/3571*2537720636^(8/15) 2584065527622964 a001 89/3571*45537549124^(8/17) 2584065527622964 a001 89/3571*14662949395604^(8/21) 2584065527622964 a001 89/3571*(1/2+1/2*5^(1/2))^24 2584065527622964 a001 89/3571*192900153618^(4/9) 2584065527622964 a001 89/3571*73681302247^(6/13) 2584065527622964 a001 89/3571*10749957122^(1/2) 2584065527622964 a001 89/3571*4106118243^(12/23) 2584065527622964 a001 89/3571*1568397607^(6/11) 2584065527622964 a001 89/3571*599074578^(4/7) 2584065527622964 a001 89/3571*228826127^(3/5) 2584065527622964 a001 89/3571*87403803^(12/19) 2584065527622965 a001 89/3571*33385282^(2/3) 2584065527622975 a001 89/3571*12752043^(12/17) 2584065527623046 a001 89/3571*4870847^(3/4) 2584065527623561 a001 89/3571*1860498^(4/5) 2584065527627350 a001 89/3571*710647^(6/7) 2584065527655337 a001 89/3571*271443^(12/13) 2584065527707734 m005 (1/2*exp(1)+7/9)/(10/11*Catalan-3/4) 2584065528942190 a001 1597/199*64079^(12/23) 2584065529264578 a001 1597/199*439204^(4/9) 2584065529270516 a001 1597/199*7881196^(4/11) 2584065529270531 a001 1597/199*141422324^(4/13) 2584065529270531 a001 1597/199*2537720636^(4/15) 2584065529270531 a001 1597/199*45537549124^(4/17) 2584065529270531 a001 1597/199*817138163596^(4/19) 2584065529270531 a001 1597/199*14662949395604^(4/21) 2584065529270531 a001 1597/199*(1/2+1/2*5^(1/2))^12 2584065529270531 a001 1597/199*192900153618^(2/9) 2584065529270531 a001 1597/199*73681302247^(3/13) 2584065529270531 a001 1597/199*10749957122^(1/4) 2584065529270531 a001 1597/199*4106118243^(6/23) 2584065529270531 a001 1597/199*1568397607^(3/11) 2584065529270531 a001 1597/199*599074578^(2/7) 2584065529270531 a001 1597/199*228826127^(3/10) 2584065529270531 a001 1597/199*87403803^(6/19) 2584065529270532 a001 1597/199*33385282^(1/3) 2584065529270537 a001 1597/199*12752043^(6/17) 2584065529270572 a001 1597/199*4870847^(3/8) 2584065529270830 a001 1597/199*1860498^(2/5) 2584065529272724 a001 1597/199*710647^(3/7) 2584065529286718 a001 1597/199*271443^(6/13) 2584065529390721 a001 1597/199*103682^(1/2) 2584065530169213 a001 1597/199*39603^(6/11) 2584065531041482 r009 Im(z^3+c),c=-43/122+9/46*I,n=18 2584065531372578 s002 sum(A201331[n]/((exp(n)+1)/n),n=1..infinity) 2584065536046153 a001 1597/199*15127^(3/5) 2584065537018499 k005 Champernowne real with floor(log(2)*(213*n+160)) 2584065541760955 a007 Real Root Of 208*x^4-153*x^3-435*x^2-741*x-166 2584065545286092 m001 (Zeta(5)-Ei(1,1))/(Pi^(1/2)-Backhouse) 2584065547028509 k001 Champernowne real with 148*n+110 2584065547038519 k005 Champernowne real with floor(log(3)*(135*n+100)) 2584065547206798 m001 sin(1)^gamma(3)*Sierpinski 2584065547701730 l006 ln(3856/4993) 2584065557038511 k005 Champernowne real with floor(log(2)*(214*n+159)) 2584065557038511 k005 Champernowne real with floor(Catalan*(162*n+120)) 2584065557041928 m001 1/Niven/ln(ArtinRank2)*(2^(1/3))^2 2584065557084639 a001 89*2207^(7/16) 2584065562935318 m003 2/3+Sqrt[5]/2-4*Sech[1/2+Sqrt[5]/2] 2584065566148259 m001 GAMMA(2/3)/Robbin*ln(log(1+sqrt(2))) 2584065570749212 r005 Im(z^2+c),c=-29/70+19/43*I,n=54 2584065571538603 m001 1/FeigenbaumKappa*Magata^2*ln(sqrt(3))^2 2584065580871424 a001 1597/199*5778^(2/3) 2584065586355572 a001 317811/199*843^(1/14) 2584065596202940 a001 10946/199*2207^(1/2) 2584065596682261 m005 (1/2*Catalan+1/8)/(1/8*Catalan+1/9) 2584065599333999 r009 Im(z^3+c),c=-7/13+6/43*I,n=47 2584065604848993 r005 Im(z^2+c),c=-19/50+22/51*I,n=47 2584065613754097 a001 6765/199*2207^(9/16) 2584065613960037 a001 2584/199*2207^(11/16) 2584065618697135 a001 21/2207*521^(19/36) 2584065625911199 a007 Real Root Of 829*x^4-571*x^3-968*x^2-887*x+300 2584065632827253 m001 TwinPrimes/exp(1/Pi)*ZetaQ(2) 2584065641430907 m001 (Pi*2^(1/2)/GAMMA(3/4)+Niven)/(OneNinth+Paris) 2584065652110069 m006 (4/Pi+1/2)/(3*exp(Pi)-4/5) 2584065658086277 m001 1/CareFree^2*DuboisRaymond*exp(GAMMA(5/24))^2 2584065659136520 r005 Re(z^2+c),c=-13/40+1/54*I,n=13 2584065665363497 l006 ln(554/7341) 2584065668132974 r005 Re(z^2+c),c=-37/114+2/53*I,n=20 2584065681782982 r009 Re(z^3+c),c=-5/13+37/64*I,n=28 2584065684524310 m002 -3-5/Pi+2*Coth[Pi] 2584065687768773 a001 4181/199*2207^(5/8) 2584065710997362 a001 1364/377*8^(52/55) 2584065713528607 r005 Im(z^2+c),c=-43/94+21/46*I,n=61 2584065716860088 r005 Re(z^2+c),c=-9/14+84/239*I,n=48 2584065748078770 r005 Re(z^2+c),c=21/64+9/43*I,n=20 2584065752103692 a007 Real Root Of -431*x^4-814*x^3+978*x^2+222*x-785 2584065760516103 a007 Real Root Of 432*x^4+973*x^3-304*x^2+303*x+340 2584065777316184 a007 Real Root Of 232*x^4+532*x^3-228*x^2-258*x-309 2584065777475094 m001 (ln(Pi)-Pi^(1/2))/(Bloch-TravellingSalesman) 2584065787998861 r009 Im(z^3+c),c=-33/94+11/56*I,n=16 2584065793762266 a007 Real Root Of 44*x^4-467*x^3+470*x^2+830*x+813 2584065800564767 a007 Real Root Of -804*x^4-923*x^3-458*x^2+804*x+226 2584065829783709 r005 Im(z^2+c),c=-49/118+23/52*I,n=60 2584065830163767 m001 exp(GAMMA(23/24))/Riemann1stZero^2/cos(1) 2584065830579306 a007 Real Root Of 405*x^4+697*x^3-705*x^2+188*x-838 2584065846103588 a001 196418/199*843^(1/7) 2584065849816621 r009 Re(z^3+c),c=-37/94+19/43*I,n=47 2584065851268390 m001 KomornikLoreti*OneNinth^Zeta(1,-1) 2584065855500256 a004 Fibonacci(11)*Lucas(16)/(1/2+sqrt(5)/2)^9 2584065855618986 g004 Im(Psi(-9/2+I*25/8)) 2584065856129685 a001 2550473/987 2584065863102566 r005 Re(z^2+c),c=-15/56+19/52*I,n=14 2584065870417876 a007 Real Root Of 280*x^4+654*x^3+22*x^2+378*x-370 2584065891648818 l006 ln(5823/7540) 2584065895781470 r005 Re(z^2+c),c=-3/19+24/43*I,n=20 2584065915855220 r002 3th iterates of z^2 + 2584065919664038 r005 Re(z^2+c),c=13/38+5/14*I,n=55 2584065927158023 a001 1597/199*2207^(3/4) 2584065928588907 p001 sum((-1)^n/(373*n+241)/n/(6^n),n=1..infinity) 2584065931239419 m001 exp(Pi)^PisotVijayaraghavan*exp(Pi)^Salem 2584065944442235 s002 sum(A012956[n]/(n^2*10^n+1),n=1..infinity) 2584065944442274 s002 sum(A012956[n]/(n^2*10^n-1),n=1..infinity) 2584065977059656 r005 Re(z^2+c),c=-27/86+9/56*I,n=22 2584065978735673 r005 Re(z^2+c),c=-21/106+20/37*I,n=54 2584065985373117 s002 sum(A232332[n]/(n*2^n-1),n=1..infinity) 2584065987696056 m001 Otter/ArtinRank2/GAMMA(13/24) 2584065987833628 m001 BesselJ(0,1)-MertensB3^StolarskyHarborth 2584065989074803 p004 log(17627/13613) 2584065992515326 r005 Im(z^2+c),c=-31/46+3/10*I,n=10 2584066003220527 r005 Im(z^2+c),c=-35/118+17/42*I,n=53 2584066025847064 m001 (Pi+BesselJ(0,1))/(Zeta(5)+Weierstrass) 2584066040668050 m005 (1/2*Zeta(3)-7/9)/(5/12*Pi-5/8) 2584066042180296 l006 ln(8939/9173) 2584066045079859 m001 LandauRamanujan^HeathBrownMoroz*Sierpinski 2584066052401444 m001 (HeathBrownMoroz+Mills)/(ZetaP(2)+ZetaQ(2)) 2584066058067245 r005 Im(z^2+c),c=-35/52+7/44*I,n=25 2584066061900414 l006 ln(7790/10087) 2584066068881400 a007 Real Root Of -402*x^4-694*x^3+907*x^2+149*x+278 2584066069072134 a007 Real Root Of 210*x^4-859*x^3+261*x^2-870*x-258 2584066074033254 m001 1/DuboisRaymond/Cahen/exp(GAMMA(5/6)) 2584066075372056 m001 Trott/exp(GlaisherKinkelin)^2*GAMMA(1/6)^2 2584066077086533 m001 (-MertensB1+StronglyCareFree)/(Chi(1)-Zeta(5)) 2584066083573895 r005 Re(z^2+c),c=-37/122+11/49*I,n=22 2584066085620721 m005 (1/2*2^(1/2)-10/11)/(5/12*Catalan+2/5) 2584066088510808 m001 Ei(1)/FellerTornier*TreeGrowth2nd 2584066097689885 p001 sum(1/(337*n+166)/n/(8^n),n=1..infinity) 2584066097884169 m005 (1/2*exp(1)+2)/(7/9*2^(1/2)+1/5) 2584066105784652 a001 121393/199*843^(3/14) 2584066111407098 a007 Real Root Of -361*x^4-856*x^3+356*x^2+668*x+675 2584066120623466 a005 (1/cos(5/144*Pi))^1318 2584066123756688 m008 (2/5*Pi^6-5/6)/(3/5*Pi-2/5) 2584066131420435 q001 1/386987 2584066134774546 m005 (1/2*5^(1/2)+1/4)/(5*Catalan+5/7) 2584066136865437 r005 Re(z^2+c),c=-33/106+5/28*I,n=26 2584066143972895 r009 Re(z^3+c),c=-7/40+28/39*I,n=5 2584066151847726 a007 Real Root Of 69*x^4-115*x^3-849*x^2+104*x+877 2584066160713277 l006 ln(275/3644) 2584066196452202 m001 (BesselI(1,1)+BesselK(1,1))/(Pi+exp(1/Pi)) 2584066204873284 r009 Im(z^3+c),c=-55/126+6/49*I,n=11 2584066216662226 m005 (1/2*Catalan-5/7)/(2/9*3^(1/2)-2/7) 2584066217739009 r009 Re(z^3+c),c=-37/94+19/43*I,n=60 2584066218313502 q001 999/3866 2584066219812779 r005 Re(z^2+c),c=-1+11/215*I,n=8 2584066256356561 a003 sin(Pi*13/34)-sin(Pi*42/103) 2584066256838218 m001 1/GAMMA(13/24)^2*Salem*ln(arctan(1/2))^2 2584066264054674 m001 BesselI(1,2)-BesselI(0,2)-Ei(1) 2584066264099977 m001 GAMMA(17/24)*Riemann2ndZero-GAMMA(19/24) 2584066266592763 r005 Re(z^2+c),c=-33/106+5/28*I,n=28 2584066272049777 a007 Real Root Of -27*x^4-689*x^3+242*x^2+425*x-530 2584066281073149 r005 Im(z^2+c),c=-25/66+25/58*I,n=63 2584066307543295 r005 Re(z^2+c),c=-7/29+18/41*I,n=35 2584066315180349 a007 Real Root Of -273*x^4-376*x^3+409*x^2-982*x+416 2584066319532188 r009 Re(z^3+c),c=-19/52+13/33*I,n=10 2584066320004935 r005 Im(z^2+c),c=-47/114+15/34*I,n=58 2584066327425158 a003 sin(Pi*11/112)-sin(Pi*19/100) 2584066332329477 r005 Im(z^2+c),c=1/9+15/64*I,n=21 2584066333717627 m005 (3/4*gamma-5/6)/(3/5*Catalan+1) 2584066336760691 r005 Re(z^2+c),c=-91/114+8/59*I,n=32 2584066340657346 m001 (Pi+LambertW(1))/(polylog(4,1/2)-Artin) 2584066343715209 a007 Real Root Of 505*x^4-38*x^3+755*x^2-596*x+102 2584066356606891 r005 Im(z^2+c),c=-125/102+1/59*I,n=44 2584066365641095 a001 75025/199*843^(2/7) 2584066375583283 a007 Real Root Of 769*x^4-227*x^3-952*x^2-588*x+216 2584066400555000 a005 (1/cos(26/207*Pi))^559 2584066413159181 m001 Robbin/(Gompertz+Riemann3rdZero) 2584066416905826 r005 Re(z^2+c),c=-33/106+5/28*I,n=30 2584066420229939 m005 (1/2*gamma-6/7)/(5/11*Catalan-7/11) 2584066425376028 a005 (1/cos(15/226*Pi))^1200 2584066441675311 m001 (-PolyaRandomWalk3D+ZetaP(2))/(Catalan+Magata) 2584066451268711 m001 arctan(1/2)*ln(Khintchine)/sqrt(Pi) 2584066457580782 r009 Re(z^3+c),c=-25/66+7/17*I,n=41 2584066460726984 a001 13/47*322^(11/14) 2584066462875251 r005 Re(z^2+c),c=-33/106+5/28*I,n=33 2584066463890621 r005 Re(z^2+c),c=-33/106+5/28*I,n=35 2584066464638039 s002 sum(A053115[n]/(n^3*exp(n)+1),n=1..infinity) 2584066466330940 s002 sum(A053115[n]/(n^3*exp(n)-1),n=1..infinity) 2584066466510013 r005 Re(z^2+c),c=-33/106+5/28*I,n=37 2584066467039848 r005 Re(z^2+c),c=-33/106+5/28*I,n=32 2584066467513207 r005 Re(z^2+c),c=-33/106+5/28*I,n=39 2584066467517249 r005 Re(z^2+c),c=-33/106+5/28*I,n=42 2584066467526088 r005 Re(z^2+c),c=-33/106+5/28*I,n=40 2584066467561388 r005 Re(z^2+c),c=-33/106+5/28*I,n=44 2584066467580992 r005 Re(z^2+c),c=-33/106+5/28*I,n=46 2584066467582288 r005 Re(z^2+c),c=-33/106+5/28*I,n=49 2584066467582990 r005 Re(z^2+c),c=-33/106+5/28*I,n=47 2584066467583001 r005 Re(z^2+c),c=-33/106+5/28*I,n=51 2584066467583375 r005 Re(z^2+c),c=-33/106+5/28*I,n=53 2584066467583422 r005 Re(z^2+c),c=-33/106+5/28*I,n=56 2584066467583433 r005 Re(z^2+c),c=-33/106+5/28*I,n=58 2584066467583440 r005 Re(z^2+c),c=-33/106+5/28*I,n=60 2584066467583442 r005 Re(z^2+c),c=-33/106+5/28*I,n=63 2584066467583442 r005 Re(z^2+c),c=-33/106+5/28*I,n=62 2584066467583442 r005 Re(z^2+c),c=-33/106+5/28*I,n=64 2584066467583442 r005 Re(z^2+c),c=-33/106+5/28*I,n=61 2584066467583446 r005 Re(z^2+c),c=-33/106+5/28*I,n=54 2584066467583446 r005 Re(z^2+c),c=-33/106+5/28*I,n=59 2584066467583456 r005 Re(z^2+c),c=-33/106+5/28*I,n=57 2584066467583460 r005 Re(z^2+c),c=-33/106+5/28*I,n=55 2584066467583644 r005 Re(z^2+c),c=-33/106+5/28*I,n=52 2584066467584229 r005 Re(z^2+c),c=-33/106+5/28*I,n=50 2584066467584699 r005 Re(z^2+c),c=-33/106+5/28*I,n=48 2584066467592694 r005 Re(z^2+c),c=-33/106+5/28*I,n=45 2584066467625433 r005 Re(z^2+c),c=-33/106+5/28*I,n=43 2584066467665378 r005 Re(z^2+c),c=-33/106+5/28*I,n=41 2584066467986348 r005 Re(z^2+c),c=-33/106+5/28*I,n=38 2584066468008334 r005 Re(z^2+c),c=-27/86+9/56*I,n=20 2584066469774267 r005 Re(z^2+c),c=-33/106+5/28*I,n=36 2584066472625282 r005 Re(z^2+c),c=-33/106+5/28*I,n=34 2584066472776008 m001 ln(3)*(1/3-Khinchin) 2584066483922926 r005 Re(z^2+c),c=-33/106+5/28*I,n=31 2584066484818713 r005 Im(z^2+c),c=23/82+22/45*I,n=32 2584066487414385 m005 (1/2*exp(1)+5/7)/(5*3^(1/2)-7/11) 2584066498299419 a007 Real Root Of 440*x^4+898*x^3-240*x^2+882*x-242 2584066504509084 m001 (ln(5)+cos(1/12*Pi))/(FeigenbaumC-GaussAGM) 2584066512626517 r005 Re(z^2+c),c=11/52+3/44*I,n=18 2584066513768050 a007 Real Root Of -4*x^4-90*x^3+379*x^2+861*x-254 2584066516346769 m001 (Robbin-TreeGrowth2nd)/(cos(1/12*Pi)-OneNinth) 2584066526360784 m001 (gamma-ln(2+3^(1/2))*ThueMorse)/ln(2+3^(1/2)) 2584066526360784 m001 (gamma-ln(2+sqrt(3))*ThueMorse)/ln(2+sqrt(3)) 2584066538509448 r009 Re(z^3+c),c=-17/42+29/63*I,n=26 2584066538584695 a007 Real Root Of 793*x^4-746*x^3+566*x^2-541*x-194 2584066539700539 r009 Re(z^3+c),c=-1/23+17/38*I,n=4 2584066548662244 a001 610/199*3571^(14/17) 2584066559357083 a005 (1/cos(1/92*Pi))^1628 2584066562610181 a008 Real Root of x^2-66774 2584066565903979 l006 ln(1967/2547) 2584066566477615 m001 (FellerTornier+Khinchin)/(OneNinth+ZetaQ(3)) 2584066575188469 m005 (1/2*2^(1/2)+6/7)/(2/11*exp(1)+1/9) 2584066579330033 r005 Re(z^2+c),c=-33/106+5/28*I,n=29 2584066591069238 p004 log(25349/1913) 2584066593900524 a007 Real Root Of -432*x^4-966*x^3+195*x^2-477*x+59 2584066604588400 r005 Re(z^2+c),c=-33/106+5/28*I,n=25 2584066611168956 a007 Real Root Of -414*x^4-762*x^3+540*x^2-533*x+328 2584066615927516 r005 Re(z^2+c),c=-5/19+17/45*I,n=32 2584066616942159 p003 LerchPhi(1/16,3,127/174) 2584066618109413 r005 Re(z^2+c),c=-15/118+39/43*I,n=10 2584066618753278 m001 1/Trott^2*exp(Backhouse)*sin(1)^2 2584066623049632 a003 cos(Pi*19/59)*cos(Pi*24/71) 2584066625038481 a001 46368/199*843^(5/14) 2584066628305897 a001 1/267913919*20365011074^(21/22) 2584066628307757 a001 843/9227465*514229^(21/22) 2584066636191959 r002 21th iterates of z^2 + 2584066652976401 m005 (1/2*gamma-8/9)/(1/8*Pi-5/8) 2584066655434065 a007 Real Root Of 217*x^4+829*x^3+920*x^2+862*x+713 2584066662573065 a007 Real Root Of -24*x^4-620*x^3-32*x^2-957*x-325 2584066663320679 l006 ln(546/7235) 2584066667989598 r002 3th iterates of z^2 + 2584066669612386 r005 Re(z^2+c),c=-3/11+8/23*I,n=21 2584066672593221 a007 Real Root Of -279*x^4-616*x^3+582*x^2+711*x-238 2584066673346384 r005 Im(z^2+c),c=-65/106+13/35*I,n=44 2584066675956634 m005 (1/3*3^(1/2)-2/9)/(187/180+3/20*5^(1/2)) 2584066678173847 m001 1/exp(Zeta(3))^2/GAMMA(7/24)*log(1+sqrt(2)) 2584066685601138 a007 Real Root Of -474*x^4-780*x^3+998*x^2-544*x-394 2584066688075665 r009 Re(z^3+c),c=-23/48+13/30*I,n=19 2584066693757263 a001 610/199*9349^(14/19) 2584066711314367 a003 cos(Pi*47/106)*cos(Pi*34/75) 2584066711417714 m005 (1/2*exp(1)-1/2)/(5/12*Zeta(3)-5/6) 2584066711456714 m005 (1/2*Zeta(3)+1/2)/(7/9*5^(1/2)-6) 2584066712666154 a001 610/199*24476^(2/3) 2584066713292978 a001 89/1364*64079^(22/23) 2584066713894910 a001 89/1364*7881196^(2/3) 2584066713894938 a001 89/1364*312119004989^(2/5) 2584066713894938 a001 89/1364*(1/2+1/2*5^(1/2))^22 2584066713894938 a001 89/1364*10749957122^(11/24) 2584066713894938 a001 89/1364*4106118243^(11/23) 2584066713894938 a001 89/1364*1568397607^(1/2) 2584066713894938 a001 89/1364*599074578^(11/21) 2584066713894938 a001 89/1364*228826127^(11/20) 2584066713894938 a001 89/1364*87403803^(11/19) 2584066713894939 a001 89/1364*33385282^(11/18) 2584066713894948 a001 89/1364*12752043^(11/17) 2584066713895012 a001 89/1364*4870847^(11/16) 2584066713895485 a001 89/1364*1860498^(11/15) 2584066713898958 a001 89/1364*710647^(11/14) 2584066713924613 a001 89/1364*271443^(11/13) 2584066714115285 a001 89/1364*103682^(11/12) 2584066714253412 m001 1/log(1+sqrt(2))*Conway/ln(sqrt(Pi)) 2584066715158710 a001 610/199*64079^(14/23) 2584066715541773 a001 610/199*20633239^(2/5) 2584066715541775 a001 610/199*17393796001^(2/7) 2584066715541775 a001 610/199*14662949395604^(2/9) 2584066715541775 a001 610/199*(1/2+1/2*5^(1/2))^14 2584066715541775 a001 610/199*505019158607^(1/4) 2584066715541775 a001 610/199*10749957122^(7/24) 2584066715541775 a001 610/199*4106118243^(7/23) 2584066715541775 a001 610/199*1568397607^(7/22) 2584066715541775 a001 610/199*599074578^(1/3) 2584066715541775 a001 610/199*228826127^(7/20) 2584066715541775 a001 610/199*87403803^(7/19) 2584066715541776 a001 610/199*33385282^(7/18) 2584066715541782 a001 610/199*12752043^(7/17) 2584066715541823 a001 610/199*4870847^(7/16) 2584066715542123 a001 610/199*1860498^(7/15) 2584066715544333 a001 610/199*710647^(1/2) 2584066715560659 a001 610/199*271443^(7/13) 2584066715681996 a001 610/199*103682^(7/12) 2584066716590237 a001 610/199*39603^(7/11) 2584066719581024 a007 Real Root Of 437*x^4+806*x^3-804*x^2+152*x+184 2584066723446671 a001 610/199*15127^(7/10) 2584066737838937 m001 HardyLittlewoodC4^Trott2nd-Rabbit 2584066765233485 r005 Re(z^2+c),c=-33/106+5/28*I,n=27 2584066772251157 r005 Im(z^2+c),c=-35/118+17/42*I,n=51 2584066775742844 a001 610/199*5778^(7/9) 2584066776527634 m005 (1/2*gamma-3/7)/(3/5*5^(1/2)-4/5) 2584066786469865 m001 StolarskyHarborth*(Ei(1)+GAMMA(17/24)) 2584066790987259 m005 (1/2*Pi-5)/(Zeta(3)+1/8) 2584066791771790 r005 Re(z^2+c),c=-37/114+2/53*I,n=16 2584066797377469 a001 7/139583862445*6557470319842^(1/18) 2584066797377469 a001 7/86267571272*1134903170^(1/18) 2584066797378213 a001 7/53316291173*196418^(1/18) 2584066798596051 s001 sum(1/10^(n-1)*A132678[n]/n!^2,n=1..infinity) 2584066800603950 m001 MadelungNaCl^(2/3)*exp(gamma) 2584066810010728 r005 Re(z^2+c),c=-11/94+31/55*I,n=17 2584066817091606 m006 (3/4*ln(Pi)+1/4)/(4/5*exp(2*Pi)+3/5) 2584066817242927 l004 Shi(182/89) 2584066828369964 m009 (1/3*Psi(1,3/4)-1/2)/(1/6*Psi(1,2/3)+5/6) 2584066834528399 m002 -6/Pi-Pi^6+Pi^5*Cosh[Pi] 2584066857093196 m001 BesselI(0,2)*(Bloch+Robbin) 2584066871072081 r009 Re(z^3+c),c=-37/94+19/43*I,n=63 2584066873080230 a007 Real Root Of -330*x^4-495*x^3+851*x^2-206*x-42 2584066885637790 a001 28657/199*843^(3/7) 2584066895698792 m005 (1/2*Pi-2/9)/(1/3*gamma-5/7) 2584066897178889 m001 1/exp(1)^2*BesselK(1,1)*exp(gamma)^2 2584066913174191 r005 Im(z^2+c),c=-115/98+5/14*I,n=5 2584066914082430 m005 (1/3*Pi+1/10)/(3*Zeta(3)+5/6) 2584066933208102 r009 Re(z^3+c),c=-47/98+43/56*I,n=2 2584066933282778 m001 1/FeigenbaumB^2*ArtinRank2/exp(FeigenbaumC)^2 2584066936714503 m001 (Shi(1)-Zeta(3))/(-ln(gamma)+Trott) 2584066942021064 a007 Real Root Of -377*x^4-636*x^3+905*x^2+328*x+640 2584066948812745 a005 (1/sin(74/169*Pi))^1731 2584066949023722 m001 GAMMA(1/24)^2/exp(Robbin)^2/LambertW(1) 2584066956680564 h001 (2/3*exp(1)+1/7)/(1/9*exp(1)+5/11) 2584066969169248 b008 3/2+Sqrt[Sinh[1]] 2584066985779241 m001 (ln(gamma)-sin(1/12*Pi))/(Landau+Sierpinski) 2584067004667216 m001 1/ln(GAMMA(1/12))^2/Cahen/Zeta(7) 2584067031276467 r009 Re(z^3+c),c=-25/126+33/38*I,n=11 2584067037134315 r002 15th iterates of z^2 + 2584067046896377 r005 Im(z^2+c),c=-31/78+13/33*I,n=11 2584067053894877 r005 Re(z^2+c),c=-33/106+5/28*I,n=24 2584067059089873 b008 -1/3*EulerGamma+ArcSinh[8] 2584067062815921 r005 Re(z^2+c),c=-37/114+2/53*I,n=18 2584067066030063 r009 Re(z^3+c),c=-37/94+19/43*I,n=50 2584067068603436 h001 (7/9*exp(2)+5/11)/(7/9*exp(1)+2/7) 2584067086352378 r009 Re(z^3+c),c=-47/114+13/25*I,n=27 2584067088282213 r002 20th iterates of z^2 + 2584067088307071 m001 (Si(Pi)-gamma*GolombDickman)/gamma 2584067090831585 a007 Real Root Of -206*x^4-290*x^3+951*x^2+637*x-523 2584067091695943 a007 Real Root Of 91*x^4-73*x^3-918*x^2-27*x+743 2584067092790135 r005 Im(z^2+c),c=-29/62+2/47*I,n=15 2584067094514510 r005 Im(z^2+c),c=-5/44+20/59*I,n=16 2584067099046148 r005 Re(z^2+c),c=-45/122+23/41*I,n=6 2584067100193746 a003 cos(Pi*1/118)/sin(Pi*11/87) 2584067117628635 r005 Re(z^2+c),c=-37/114+2/53*I,n=15 2584067125602419 a007 Real Root Of -219*x^4-398*x^3+527*x^2+181*x-154 2584067137708148 a007 Real Root Of 49*x^4-189*x^3-524*x^2+577*x-456 2584067138537992 m001 ln(Magata)^2/KhintchineHarmonic/gamma^2 2584067142141696 a001 29/1597*6765^(1/25) 2584067143090519 a001 89*843^(1/2) 2584067145149218 a003 cos(Pi*4/79)-cos(Pi*6/25) 2584067151084054 m005 (1/2*Pi+2)/(9/10*Zeta(3)+3/10) 2584067169650712 a007 Real Root Of -38*x^4+168*x^3+379*x^2-677*x+313 2584067172606294 a001 123/8*6765^(16/19) 2584067173346381 l006 ln(271/3591) 2584067179744068 a001 610/199*2207^(7/8) 2584067210950891 a007 Real Root Of 151*x^4-255*x^3+666*x^2-951*x+205 2584067215995512 m001 (2/3-Zeta(1/2)*GAMMA(5/12))/Zeta(1/2) 2584067216256045 h001 (2/11*exp(2)+3/7)/(5/6*exp(2)+7/10) 2584067220423435 m005 (1/2*Pi-9/11)/(1/6*Zeta(3)+1/11) 2584067220795941 m008 (3/5*Pi^5-2/3)/(2/3*Pi^2+1/2) 2584067222566890 l006 ln(5979/7742) 2584067226058760 r005 Re(z^2+c),c=-11/10+122/201*I,n=2 2584067230966162 m001 (DuboisRaymond+Thue)/(Zeta(5)-exp(1/exp(1))) 2584067234911083 m005 (1/3*Catalan-1/9)/(2/5*5^(1/2)-1/7) 2584067235796632 m001 (ZetaP(2)-ZetaQ(2))/(cos(1/12*Pi)+Stephens) 2584067236046031 s001 sum(exp(-Pi/4)^(n-1)*A171730[n],n=1..infinity) 2584067236217411 l006 ln(9130/9369) 2584067249084900 r002 48th iterates of z^2 + 2584067254351290 r009 Re(z^3+c),c=-31/82+16/39*I,n=41 2584067257151433 m001 (Trott+ZetaQ(2))/(gamma(2)-Riemann3rdZero) 2584067275365509 a001 843/10946*63245986^(17/24) 2584067279678941 a001 843/39088169*6557470319842^(17/24) 2584067286246983 m006 (1/3*exp(Pi)-4/5)/(1/2*exp(2*Pi)-1/5) 2584067288418883 p003 LerchPhi(1/256,4,479/192) 2584067302662866 r005 Im(z^2+c),c=-35/118+17/42*I,n=46 2584067308650097 a007 Real Root Of 993*x^4-473*x^3+407*x^2-552*x+14 2584067321140810 a001 29/433494437*12586269025^(15/23) 2584067321154663 a001 1/10959*196418^(15/23) 2584067321923607 a007 Real Root Of 475*x^4+411*x^3-82*x^2-920*x+234 2584067328027410 r005 Im(z^2+c),c=-135/118+11/42*I,n=61 2584067328856201 a007 Real Root Of 20*x^4-934*x^3+487*x^2-806*x-257 2584067345577844 r005 Re(z^2+c),c=-9/34+22/59*I,n=25 2584067345973326 r005 Re(z^2+c),c=-59/74+3/59*I,n=64 2584067350046580 m001 (-PlouffeB+ThueMorse)/(Catalan+GAMMA(7/12)) 2584067356006988 m001 exp(Niven)*FeigenbaumB/sqrt(Pi) 2584067365486318 m001 (Pi-BesselK(0,1))/(Champernowne-Salem) 2584067374299137 a007 Real Root Of -539*x^4+457*x^3-561*x^2+922*x+286 2584067377841314 r005 Re(z^2+c),c=17/58+11/57*I,n=8 2584067386383404 m001 (ln(5)+CopelandErdos)/(Kac-Totient) 2584067388278991 r002 10th iterates of z^2 + 2584067393307166 r005 Im(z^2+c),c=-13/74+34/45*I,n=24 2584067397847183 a001 7/832040*75025^(25/49) 2584067403532648 a001 317811/199*322^(1/12) 2584067408781196 a001 10946/199*843^(4/7) 2584067415625997 r005 Re(z^2+c),c=-6/25+27/61*I,n=37 2584067422840519 r009 Im(z^3+c),c=-53/114+5/51*I,n=60 2584067463743664 r009 Re(z^3+c),c=-1/7+43/49*I,n=14 2584067468183779 p004 log(25031/1889) 2584067472427437 a007 Real Root Of 226*x^4+676*x^3+269*x^2-98*x-462 2584067476394007 r005 Im(z^2+c),c=23/106+6/37*I,n=11 2584067479817385 r009 Re(z^3+c),c=-37/94+19/43*I,n=53 2584067483146790 a001 377/322*3571^(3/31) 2584067503443429 m001 exp(1)^KomornikLoreti/(exp(1)^Chi(1)) 2584067507289951 m001 Zeta(1/2)/Artin*Robbin 2584067514366498 m001 (Artin-Weierstrass)/(arctan(1/2)+gamma(1)) 2584067514857486 r005 Im(z^2+c),c=1/9+15/64*I,n=20 2584067515155548 m001 1/log(1+sqrt(2))*ln(LambertW(1))^2*sin(1)^2 2584067516051016 m001 (ln(2^(1/2)+1)+Sierpinski)/(Totient+ZetaQ(4)) 2584067519111688 r009 Re(z^3+c),c=-35/62+19/30*I,n=17 2584067523250961 m001 (ln(3)-Pi^(1/2))/(HeathBrownMoroz-Trott2nd) 2584067544515016 l006 ln(4012/5195) 2584067552661794 r009 Im(z^3+c),c=-13/23+7/45*I,n=36 2584067552668380 a003 cos(Pi*7/103)/sin(Pi*10/81) 2584067554379156 r005 Im(z^2+c),c=-19/110+19/52*I,n=6 2584067555715122 r009 Re(z^3+c),c=-27/58+21/43*I,n=17 2584067562534651 m008 (1/4*Pi^4-4)/(4/5*Pi^4+5/6) 2584067562841980 a007 Real Root Of -266*x^4-79*x^3+430*x^2+998*x+229 2584067566847815 r002 20th iterates of z^2 + 2584067579008714 m001 (BesselJ(1,1)-Artin)/(Kac-QuadraticClass) 2584067583853623 r009 Re(z^3+c),c=-37/94+19/43*I,n=62 2584067585534035 m001 LambertW(1)^OrthogonalArrays/KhinchinHarmonic 2584067591836597 r009 Re(z^3+c),c=-37/94+19/43*I,n=56 2584067600430199 r005 Re(z^2+c),c=-31/110+12/25*I,n=8 2584067601558730 r009 Re(z^3+c),c=-37/94+19/43*I,n=59 2584067614110379 m002 -5+Pi^5-(Cosh[Pi]*Sinh[Pi])/Pi 2584067649542702 m001 (ln(2)/ln(10)-TreeGrowth2nd)^Si(Pi) 2584067651580368 a007 Real Root Of -304*x^4-661*x^3+642*x^2+936*x+281 2584067652904738 a001 6765/199*843^(9/14) 2584067681218929 p004 log(18233/14081) 2584067683321187 m005 (3/5*gamma+3)/(1/5*Pi+2/3) 2584067690955741 r005 Re(z^2+c),c=-1/3+17/56*I,n=5 2584067690955844 l006 ln(538/7129) 2584067694040794 a001 17/682*76^(27/50) 2584067695479203 m001 Totient^DuboisRaymond-ln(2+3^(1/2)) 2584067706298536 a003 sin(Pi*18/113)*sin(Pi*21/116) 2584067715644863 r005 Re(z^2+c),c=-19/29+22/49*I,n=47 2584067719912366 m001 (ArtinRank2+CareFree)/(Gompertz-ZetaQ(2)) 2584067724648796 r005 Im(z^2+c),c=-39/118+22/53*I,n=27 2584067728879046 h001 (1/11*exp(2)+1/11)/(9/11*exp(1)+8/11) 2584067735790487 a007 Real Root Of -141*x^4-333*x^3+351*x^2+592*x-273 2584067760323543 b008 -1/3+ArcSinh[Sqrt[85]] 2584067769068315 a007 Real Root Of -590*x^4-568*x^3-674*x^2+763*x+235 2584067769375498 m001 (exp(-1/2*Pi)-Conway)/(Pi+ln(3)) 2584067772597667 r005 Re(z^2+c),c=-4/27+32/53*I,n=28 2584067774004363 m001 Gompertz+Tribonacci+ZetaR(2) 2584067781001025 m001 sin(1/5*Pi)^FeigenbaumDelta+ZetaP(3) 2584067789932186 r005 Im(z^2+c),c=-27/34+4/31*I,n=39 2584067798370895 r005 Re(z^2+c),c=-13/40+1/49*I,n=20 2584067802567760 a001 121393/2207*29^(17/37) 2584067806041668 r005 Re(z^2+c),c=-75/94+7/48*I,n=26 2584067809667269 m001 (gamma(3)+CareFree)/(Paris+ZetaP(3)) 2584067824089031 r009 Re(z^3+c),c=-3/8+26/43*I,n=38 2584067846980008 m001 (gamma(1)+BesselJ(1,1))/(ArtinRank2+Sarnak) 2584067858843778 a007 Real Root Of -375*x^4+726*x^3+851*x^2+276*x-139 2584067862317192 l006 ln(6057/7843) 2584067873683738 a001 832040/2207*123^(2/5) 2584067880365582 m001 (PlouffeB+ZetaP(4))/(5^(1/2)-Paris) 2584067880715960 m001 Pi*(exp(Pi)-Si(Pi))/sin(1/12*Pi) 2584067888169347 m001 GAMMA(13/24)-polylog(4,1/2)+MinimumGamma 2584067894144162 a007 Real Root Of -776*x^4-725*x^3+517*x^2+648*x-186 2584067894874096 m001 1/ln(FeigenbaumB)^2*GolombDickman/GAMMA(1/3)^2 2584067897370263 m001 exp(GAMMA(11/12))*BesselJ(0,1)*sinh(1) 2584067908859532 m001 (Si(Pi)+Zeta(1,-1))/(Stephens+ZetaP(4)) 2584067909657204 m005 (1/3*exp(1)+3/7)/(3/7*exp(1)+4) 2584067925939763 s001 sum(exp(-4*Pi/5)^n*A044163[n],n=1..infinity) 2584067927754279 r009 Re(z^3+c),c=-5/12+21/43*I,n=62 2584067930464335 m005 (1/3*2^(1/2)-2/9)/(3/5*exp(1)-2/3) 2584067939926154 m001 Pi*csc(5/12*Pi)*Kolakoski 2584067939926154 m001 Pi/cos(1/12*Pi)*Kolakoski 2584067941091716 r002 3th iterates of z^2 + 2584067945263853 m001 (BesselK(0,1)+Landau)/(Otter+StronglyCareFree) 2584067953491871 a001 4181/199*843^(5/7) 2584067964761392 r005 Re(z^2+c),c=1/7+8/21*I,n=19 2584067973368109 a007 Real Root Of -375*x^4-539*x^3+951*x^2-551*x-354 2584067977617121 m001 1/Tribonacci*exp(FeigenbaumKappa)*GAMMA(3/4) 2584067978219998 m001 1/(2^(1/3))*Rabbit^2/exp(GAMMA(1/24)) 2584067978740697 r005 Re(z^2+c),c=19/110+23/44*I,n=50 2584067981557397 m001 (exp(Pi)+LambertW(1))/(-sin(1/12*Pi)+Salem) 2584067986217820 m001 1/ln(arctan(1/2))/DuboisRaymond/sin(Pi/12) 2584067991254426 a005 (1/cos(1/83*Pi))^1325 2584067993911810 r009 Re(z^3+c),c=-37/94+19/43*I,n=64 2584068002026400 m001 Pi-(ln(2)/ln(10)+cos(1/12*Pi))*BesselJ(1,1) 2584068004866252 a007 Real Root Of 446*x^4-611*x^3+839*x^2-94*x-3 2584068013216174 r004 Im(z^2+c),c=-1/3+5/12*I,z(0)=-1,n=47 2584068015582341 a007 Real Root Of 96*x^4+231*x^3+248*x^2+631*x-320 2584068025536098 r002 4th iterates of z^2 + 2584068025841621 m001 MertensB2/(Salem-StronglyCareFree) 2584068040206419 a001 521/1597*75025^(22/37) 2584068045617000 a007 Real Root Of 327*x^4+889*x^3+194*x^2+387*x+464 2584068053872945 a007 Real Root Of 324*x^4+929*x^3+549*x^2+643*x-421 2584068073146830 a007 Real Root Of 148*x^4+148*x^3-741*x^2-32*x+820 2584068090588190 m001 (2-3^(1/2))/Zeta(5) 2584068090588190 m001 1/Zeta(5)/exp(log(2+sqrt(3))) 2584068090588190 m001 sin(1/12*Pi)/cos(1/12*Pi)/Zeta(5) 2584068090588190 m001 sin(Pi/12)/cos(Pi/12)/Zeta(5) 2584068105890734 a007 Real Root Of -619*x^4-739*x^3-36*x^2+397*x+95 2584068106255483 a001 2584/199*843^(11/14) 2584068107665934 r005 Im(z^2+c),c=-43/114+29/51*I,n=60 2584068110753387 r005 Im(z^2+c),c=-7/10+55/188*I,n=54 2584068129420207 a001 1/49*(1/2*5^(1/2)+1/2)^23*7^(7/20) 2584068134471032 m005 (1/2*gamma+1/5)/(3/7*2^(1/2)-5/8) 2584068139593881 a007 Real Root Of -606*x^4+269*x^3-63*x^2+121*x-29 2584068144985495 a005 (1/cos(31/95*Pi))^19 2584068147597923 m005 (1/2*gamma-2/11)/(5/12*exp(1)+3) 2584068172599137 a001 987/199*843^(13/14) 2584068175680734 m004 (-25*Sqrt[5]*Pi)/6+Pi*Cot[Sqrt[5]*Pi] 2584068184181332 r005 Re(z^2+c),c=-15/56+18/49*I,n=16 2584068192368940 m001 1/exp(Tribonacci)/FeigenbaumB/exp(1)^2 2584068197157318 a003 sin(Pi*3/49)/sin(Pi*22/83) 2584068203679643 a007 Real Root Of 196*x^4+87*x^3-736*x^2+624*x-711 2584068204278947 m001 Conway^GlaisherKinkelin*Tribonacci 2584068207293119 a007 Real Root Of -184*x^4+912*x^3-508*x^2+865*x+274 2584068209730576 a007 Real Root Of -853*x^4-287*x^3+895*x^2+921*x-289 2584068210996956 r002 52th iterates of z^2 + 2584068216319481 l006 ln(267/3538) 2584068223481817 r005 Re(z^2+c),c=-25/78+8/39*I,n=3 2584068224911028 m001 (Bloch-GaussAGM)/(Lehmer-ZetaP(2)) 2584068231861057 r005 Re(z^2+c),c=23/98+7/47*I,n=3 2584068234282543 m008 (5/6*Pi^4-5)/(2/5*Pi^2-1) 2584068243441321 r002 40th iterates of z^2 + 2584068246522259 b008 3-7*Sqrt[7/11] 2584068249038834 m001 arctan(1/2)-BesselK(0,1)-ln(2)/ln(10) 2584068254554138 p001 sum((-1)^n/(116*n+35)/n/(256^n),n=0..infinity) 2584068255713430 a001 105937/1926*29^(17/37) 2584068263736753 a001 103682/377*610^(17/24) 2584068267010439 r005 Re(z^2+c),c=7/23+6/37*I,n=39 2584068269763377 a007 Real Root Of -787*x^4+30*x^3-763*x^2+449*x+171 2584068271273880 m001 (Si(Pi)+GAMMA(3/4))/(BesselI(1,1)+Kac) 2584068280718671 r005 Re(z^2+c),c=-29/114+23/57*I,n=28 2584068297551231 m005 (5/12+1/4*5^(1/2))/(7/12*gamma-5/7) 2584068306941847 r009 Re(z^3+c),c=-25/126+31/53*I,n=2 2584068316523772 r005 Im(z^2+c),c=-129/118+15/64*I,n=8 2584068319137555 m009 (3*Psi(1,1/3)-6)/(4*Catalan+1/2*Pi^2+4/5) 2584068321826505 a001 832040/15127*29^(17/37) 2584068326800104 a001 726103/1926*123^(2/5) 2584068331472273 a001 726103/13201*29^(17/37) 2584068332246788 a007 Real Root Of 357*x^4+427*x^3-932*x^2+561*x-877 2584068334443042 m008 (5*Pi+5/6)/(2/3*Pi^6-4/5) 2584068337433686 a001 1346269/24476*29^(17/37) 2584068338404603 r005 Im(z^2+c),c=-3/106+17/56*I,n=15 2584068346040615 a003 sin(Pi*28/117)-sin(Pi*41/105) 2584068361170800 m009 (5/6*Psi(1,3/4)+5/6)/(4*Psi(1,2/3)-5/6) 2584068362686635 a001 514229/9349*29^(17/37) 2584068372679892 m008 (4*Pi^3+1/5)/(5*Pi^6+2/5) 2584068380980234 r005 Re(z^2+c),c=-30/31+2/25*I,n=12 2584068381319615 l006 ln(9321/9565) 2584068385572829 m001 (Zeta(1,2)+Conway)/(Totient+ZetaP(4)) 2584068392908904 a001 5702887/15127*123^(2/5) 2584068401761157 a007 Real Root Of -11*x^4-308*x^3-611*x^2+41*x-797 2584068402554048 a001 4976784/13201*123^(2/5) 2584068403961256 a001 39088169/103682*123^(2/5) 2584068404166565 a001 34111385/90481*123^(2/5) 2584068404196519 a001 267914296/710647*123^(2/5) 2584068404200889 a001 233802911/620166*123^(2/5) 2584068404201527 a001 1836311903/4870847*123^(2/5) 2584068404201620 a001 1602508992/4250681*123^(2/5) 2584068404201633 a001 12586269025/33385282*123^(2/5) 2584068404201635 a001 10983760033/29134601*123^(2/5) 2584068404201636 a001 86267571272/228826127*123^(2/5) 2584068404201636 a001 267913919/710646*123^(2/5) 2584068404201636 a001 591286729879/1568397607*123^(2/5) 2584068404201636 a001 516002918640/1368706081*123^(2/5) 2584068404201636 a001 4052739537881/10749957122*123^(2/5) 2584068404201636 a001 3536736619241/9381251041*123^(2/5) 2584068404201636 a001 6557470319842/17393796001*123^(2/5) 2584068404201636 a001 2504730781961/6643838879*123^(2/5) 2584068404201636 a001 956722026041/2537720636*123^(2/5) 2584068404201636 a001 365435296162/969323029*123^(2/5) 2584068404201636 a001 139583862445/370248451*123^(2/5) 2584068404201636 a001 53316291173/141422324*123^(2/5) 2584068404201637 a001 20365011074/54018521*123^(2/5) 2584068404201642 a001 7778742049/20633239*123^(2/5) 2584068404201677 a001 2971215073/7881196*123^(2/5) 2584068404201921 a001 1134903170/3010349*123^(2/5) 2584068404203590 a001 433494437/1149851*123^(2/5) 2584068404215032 a001 165580141/439204*123^(2/5) 2584068404293453 a001 63245986/167761*123^(2/5) 2584068404830958 a001 24157817/64079*123^(2/5) 2584068408515075 a001 9227465/24476*123^(2/5) 2584068417315845 r009 Im(z^3+c),c=-3/106+53/62*I,n=4 2584068418726524 a007 Real Root Of -76*x^4+674*x^3-849*x^2-904*x-236 2584068421531421 r005 Im(z^2+c),c=-7/8+46/219*I,n=3 2584068421958502 m001 ErdosBorwein+cos(1/12*Pi)^TwinPrimes 2584068423282863 s002 sum(A099707[n]/((pi^n-1)/n),n=1..infinity) 2584068426128733 m001 cos(1/12*Pi)*Thue+Riemann3rdZero 2584068431063982 r005 Im(z^2+c),c=-25/54+23/51*I,n=48 2584068433766391 a001 3524578/9349*123^(2/5) 2584068440327776 m001 Sierpinski-ln(2)*HeathBrownMoroz 2584068441041971 m005 (1/2*2^(1/2)-1/5)/(7/10*3^(1/2)+3/4) 2584068443874755 m005 (1/2*Pi+2/7)/(2/7*Zeta(3)+3/8) 2584068484511663 r005 Im(z^2+c),c=-13/25+17/43*I,n=22 2584068485799967 l006 ln(2045/2648) 2584068492057414 r009 Re(z^3+c),c=-37/94+19/43*I,n=61 2584068503166580 m008 (1/5*Pi-3)/(3*Pi^5-1/4) 2584068512928510 r002 34th iterates of z^2 + 2584068513404185 h001 (5/11*exp(1)+6/7)/(1/12*exp(1)+7/12) 2584068535772935 a001 196418/3571*29^(17/37) 2584068564616486 m001 (Stephens-ZetaP(4))/(ln(5)+FellerTornier) 2584068565741267 r005 Im(z^2+c),c=-43/114+11/26*I,n=19 2584068566079963 r005 Re(z^2+c),c=-21/106+31/57*I,n=40 2584068590487051 r005 Im(z^2+c),c=-4/3+21/170*I,n=7 2584068594098418 a007 Real Root Of -94*x^4-101*x^3+469*x^2-75*x-877 2584068602941761 a003 cos(Pi*29/111)*cos(Pi*38/101) 2584068606841498 a001 1346269/3571*123^(2/5) 2584068610782127 a007 Real Root Of -180*x^4-134*x^3+659*x^2-550*x-108 2584068614676315 r002 42th iterates of z^2 + 2584068614800149 r005 Re(z^2+c),c=-13/50+12/31*I,n=26 2584068622001815 b008 -30*(6+E)+Pi 2584068633183833 m001 polylog(4,1/2)*MasserGramain^BesselI(1,2) 2584068641321345 r005 Im(z^2+c),c=-2/3+52/173*I,n=61 2584068645728928 a001 161/72*6557470319842^(16/17) 2584068645918302 p003 LerchPhi(1/32,3,96/61) 2584068646026232 a001 1597/199*843^(6/7) 2584068653726127 a007 Real Root Of 443*x^4+230*x^3-270*x^2-882*x+240 2584068658212652 a001 47/20365011074*39088169^(8/15) 2584068658212652 a001 47/956722026041*53316291173^(8/15) 2584068658249752 a001 599074578/5*89^(13/19) 2584068658548290 a001 47/433494437*28657^(8/15) 2584068664077261 r005 Im(z^2+c),c=13/46+1/52*I,n=27 2584068664924877 a007 Real Root Of -219*x^4-755*x^3-767*x^2-950*x-596 2584068674391769 a001 7/832040*13^(7/16) 2584068676007426 m005 (1/2*gamma+1/9)/(17/24+3/8*5^(1/2)) 2584068699254088 a001 76/13*55^(52/55) 2584068710475738 m005 (1/2*Catalan-1/7)/(9/10*gamma+7/10) 2584068721098480 a007 Real Root Of -203*x^4-784*x^3-948*x^2-698*x+50 2584068731141856 r005 Re(z^2+c),c=25/74+2/11*I,n=52 2584068732045006 a007 Real Root Of -801*x^4+620*x^3+366*x^2+496*x+118 2584068735084699 a007 Real Root Of -210*x^4-218*x^3+552*x^2-719*x+58 2584068739832504 m001 1/GAMMA(11/12)^2*ln(BesselK(1,1))*LambertW(1) 2584068740585960 h001 (10/11*exp(2)+9/10)/(3/4*exp(1)+10/11) 2584068741198976 r005 Im(z^2+c),c=-51/50+5/21*I,n=42 2584068747308554 m001 (ln(2)-ln(Pi))/MadelungNaCl 2584068748177177 a007 Real Root Of 930*x^4-921*x^3-660*x^2-349*x+146 2584068749555682 r005 Re(z^2+c),c=-13/40+1/49*I,n=22 2584068749612852 l006 ln(530/7023) 2584068764028274 a007 Real Root Of 329*x^4+869*x^3+31*x^2-31*x+38 2584068765681472 a001 199/6765*2178309^(28/45) 2584068782954720 m005 (1/3*2^(1/2)+3/7)/(7/11*Zeta(3)-5/12) 2584068783456077 a001 13201/7*6765^(1/28) 2584068795757709 m005 (1/3*Zeta(3)-3/4)/(7/8*Zeta(3)+3/10) 2584068814843460 r009 Re(z^3+c),c=-1/30+14/41*I,n=7 2584068815071591 m005 (1/2*5^(1/2)-2/5)/(1/4*Zeta(3)-3/11) 2584068822545223 m003 -1/8+(3*Sqrt[5])/4+(5*Csch[1/2+Sqrt[5]/2])/2 2584068855684814 m004 (15*Sqrt[5])/Pi+5*Pi-Cos[Sqrt[5]*Pi]^2 2584068857564456 m001 exp(exp(1))/PrimesInBinary/sqrt(2) 2584068857671784 a007 Real Root Of -319*x^4-656*x^3+42*x^2-712*x+784 2584068868164261 m005 (1/3*Pi+1/4)/(1/2*exp(1)-6/7) 2584068886107079 m001 (DuboisRaymond-HardyLittlewoodC3)/Niven 2584068895786663 m001 (sin(Pi/12)+2/3)/(GAMMA(7/24)+1/2) 2584068898992416 r005 Re(z^2+c),c=-23/122+32/57*I,n=53 2584068924508176 a007 Real Root Of 669*x^4-882*x^3+520*x^2-385*x+77 2584068935150796 a007 Real Root Of -247*x^4+367*x^3-822*x^2+378*x+160 2584068939015459 r009 Re(z^3+c),c=-8/23+17/61*I,n=3 2584068956350617 r005 Re(z^2+c),c=-13/40+1/49*I,n=24 2584068959998249 m001 1/ln(GAMMA(23/24))^2/MertensB1*GAMMA(5/24) 2584068960213161 a007 Real Root Of -418*x^4-822*x^3+502*x^2-632*x-531 2584068961198690 a004 Fibonacci(11)*Lucas(14)/(1/2+sqrt(5)/2)^7 2584068961793975 a007 Real Root Of -349*x^4-435*x^3+857*x^2-544*x+927 2584068965657048 m001 PisotVijayaraghavan/ln(Si(Pi))*Zeta(3) 2584068970717735 a003 -1+2*cos(1/27*Pi)+cos(1/21*Pi)+cos(7/24*Pi) 2584068986972775 a001 18/12586269025*55^(13/18) 2584068998293061 r005 Re(z^2+c),c=-13/40+1/49*I,n=26 2584069005206034 m001 Landau^(Conway/sin(1/5*Pi)) 2584069005208361 a007 Real Root Of 326*x^4-965*x^3+974*x^2-665*x+122 2584069005804717 r005 Re(z^2+c),c=-13/40+1/49*I,n=28 2584069006056383 a007 Real Root Of 829*x^4+795*x^3+139*x^2-653*x-168 2584069006473382 r005 Re(z^2+c),c=-13/40+1/49*I,n=31 2584069006549744 r005 Re(z^2+c),c=-13/40+1/49*I,n=33 2584069006608221 r005 Re(z^2+c),c=-13/40+1/49*I,n=35 2584069006633898 r005 Re(z^2+c),c=-13/40+1/49*I,n=37 2584069006643382 r005 Re(z^2+c),c=-13/40+1/49*I,n=39 2584069006646593 r005 Re(z^2+c),c=-13/40+1/49*I,n=41 2584069006647624 r005 Re(z^2+c),c=-13/40+1/49*I,n=43 2584069006647942 r005 Re(z^2+c),c=-13/40+1/49*I,n=45 2584069006648038 r005 Re(z^2+c),c=-13/40+1/49*I,n=47 2584069006648066 r005 Re(z^2+c),c=-13/40+1/49*I,n=49 2584069006648074 r005 Re(z^2+c),c=-13/40+1/49*I,n=51 2584069006648077 r005 Re(z^2+c),c=-13/40+1/49*I,n=53 2584069006648077 r005 Re(z^2+c),c=-13/40+1/49*I,n=55 2584069006648078 r005 Re(z^2+c),c=-13/40+1/49*I,n=57 2584069006648078 r005 Re(z^2+c),c=-13/40+1/49*I,n=59 2584069006648078 r005 Re(z^2+c),c=-13/40+1/49*I,n=61 2584069006648078 r005 Re(z^2+c),c=-13/40+1/49*I,n=63 2584069006648078 r005 Re(z^2+c),c=-13/40+1/49*I,n=64 2584069006648078 r005 Re(z^2+c),c=-13/40+1/49*I,n=62 2584069006648078 r005 Re(z^2+c),c=-13/40+1/49*I,n=60 2584069006648078 r005 Re(z^2+c),c=-13/40+1/49*I,n=58 2584069006648078 r005 Re(z^2+c),c=-13/40+1/49*I,n=56 2584069006648078 r005 Re(z^2+c),c=-13/40+1/49*I,n=54 2584069006648079 r005 Re(z^2+c),c=-13/40+1/49*I,n=52 2584069006648084 r005 Re(z^2+c),c=-13/40+1/49*I,n=50 2584069006648099 r005 Re(z^2+c),c=-13/40+1/49*I,n=48 2584069006648151 r005 Re(z^2+c),c=-13/40+1/49*I,n=46 2584069006648326 r005 Re(z^2+c),c=-13/40+1/49*I,n=44 2584069006648901 r005 Re(z^2+c),c=-13/40+1/49*I,n=42 2584069006650730 r005 Re(z^2+c),c=-13/40+1/49*I,n=40 2584069006656294 r005 Re(z^2+c),c=-13/40+1/49*I,n=38 2584069006672123 r005 Re(z^2+c),c=-13/40+1/49*I,n=36 2584069006712116 r005 Re(z^2+c),c=-13/40+1/49*I,n=34 2584069006721487 r005 Re(z^2+c),c=-13/40+1/49*I,n=29 2584069006788477 r005 Re(z^2+c),c=-13/40+1/49*I,n=32 2584069006798069 r005 Re(z^2+c),c=-13/40+1/49*I,n=30 2584069009628848 r005 Re(z^2+c),c=-13/40+1/49*I,n=27 2584069022259269 a007 Real Root Of 159*x^4-796*x^3+971*x^2-591*x-232 2584069027722233 m001 (Niven+Robbin)/Catalan 2584069027763724 r005 Re(z^2+c),c=-13/40+1/49*I,n=25 2584069045176522 m001 (Pi*2^(1/2)/GAMMA(3/4)-Zeta(1,-1))/Porter 2584069053530493 b008 1+(5/3)!! 2584069061763635 r005 Im(z^2+c),c=-87/82+9/37*I,n=23 2584069062104985 m001 Psi(1,1/3)*DuboisRaymond^FeigenbaumB 2584069063351249 a005 (1/cos(2/75*Pi))^1581 2584069088628359 r002 1i'th iterates of 2*x/(1-x^2) of 2584069088865873 m001 (ln(2)-ln(3))/(GAMMA(23/24)+Landau) 2584069091400757 r005 Re(z^2+c),c=-7/8+83/215*I,n=2 2584069093627897 l006 ln(6213/8045) 2584069094930903 r009 Re(z^3+c),c=-17/110+38/43*I,n=62 2584069096359219 r008 a(0)=0,K{-n^6,-6+5*n^3-n^2-9*n} 2584069096519994 a001 1/105937*2584^(5/7) 2584069116375437 r005 Im(z^2+c),c=2/21+9/37*I,n=15 2584069120128514 s002 sum(A070993[n]/(exp(n)+1),n=1..infinity) 2584069120137216 a007 Real Root Of 182*x^4+149*x^3-608*x^2+192*x-988 2584069121923765 r005 Re(z^2+c),c=-13/40+1/49*I,n=23 2584069127296442 m001 (FeigenbaumD+OneNinth)/(Psi(1,1/3)+CareFree) 2584069139581569 r009 Im(z^3+c),c=-7/62+16/19*I,n=24 2584069149444069 a001 2/13*34^(5/34) 2584069151801548 a001 3/39088169*2178309^(5/7) 2584069151801625 a001 1/1602508992*1836311903^(5/7) 2584069151801625 a001 3/53316291173*53316291173^(5/7) 2584069151801625 a001 3/591286729879*1548008755920^(5/7) 2584069151801625 a001 3/433494437*63245986^(5/7) 2584069151867167 a001 3/3524578*75025^(5/7) 2584069156345997 r005 Im(z^2+c),c=-31/78+19/37*I,n=28 2584069163398071 m001 (FeigenbaumB+MertensB1)/(Pi-exp(1)) 2584069174134928 a007 Real Root Of 302*x^4+396*x^3-586*x^2+852*x-518 2584069180096396 a001 64079/55*2584^(11/16) 2584069181106756 m001 Zeta(1/2)^((1+3^(1/2))^(1/2))/Sarnak 2584069181442835 m001 CareFree-MertensB1^BesselK(1,1) 2584069183878877 h001 (6/11*exp(2)+8/9)/(3/5*exp(1)+3/11) 2584069189698715 r002 22th iterates of z^2 + 2584069193081773 a001 123/4181*12586269025^(11/16) 2584069193285405 m001 (GAMMA(7/12)+Salem)/(ln(2^(1/2)+1)-Zeta(1,-1)) 2584069210422779 m001 (Kolakoski-MertensB3)/(ln(Pi)-Zeta(1,2)) 2584069217060170 m001 OneNinth^HeathBrownMoroz*OneNinth^Zeta(1/2) 2584069218897897 m002 -6/Pi^2+(2*Pi^5)/E^Pi 2584069229265558 r005 Im(z^2+c),c=-20/21+14/55*I,n=20 2584069240491069 m001 (-FeigenbaumAlpha+Porter)/(5^(1/2)+Pi^(1/2)) 2584069248558335 r005 Re(z^2+c),c=-5/27+38/63*I,n=7 2584069259449661 m001 (2^(1/2)-Kac)/(-MertensB2+Totient) 2584069263277926 b008 27+10*E^Pi 2584069263277926 m002 -27/10-E^Pi 2584069264499856 p004 log(18839/14549) 2584069265312764 s002 sum(A011814[n]/(n^2*2^n+1),n=1..infinity) 2584069278241779 r009 Im(z^3+c),c=-9/28+11/52*I,n=18 2584069291016859 l006 ln(263/3485) 2584069293880619 s002 sum(A011814[n]/(n^2*2^n-1),n=1..infinity) 2584069297369975 a003 -3/2+1/2*3^(1/2)-cos(2/21*Pi)-cos(1/30*Pi) 2584069306799002 m005 (1/2*2^(1/2)-3/8)/(4*Pi+2/7) 2584069310320909 r005 Im(z^2+c),c=-23/44+23/51*I,n=64 2584069323634285 m005 (1/2*2^(1/2)-2/3)/(3/7*exp(1)+2/5) 2584069328802249 r002 8th iterates of z^2 + 2584069336150862 m005 (1/3*exp(1)-1/3)/(1/8*3^(1/2)+2) 2584069338157175 m005 (1/2*exp(1)+5/12)/(12/5+2*5^(1/2)) 2584069339785801 m001 (GAMMA(3/4)+ln(Pi))/(Artin+Landau) 2584069348048368 a007 Real Root Of -480*x^4-887*x^3+633*x^2-937*x-551 2584069352579092 r009 Re(z^3+c),c=-7/23+9/37*I,n=4 2584069353128264 r002 48th iterates of z^2 + 2584069353678922 m001 (FeigenbaumD+ZetaQ(4))/(Zeta(5)+gamma(3)) 2584069357407409 a001 199/20365011074*5702887^(4/19) 2584069357407413 a001 199/139583862445*53316291173^(4/19) 2584069359998151 r009 Im(z^3+c),c=-43/122+9/46*I,n=16 2584069362096275 a007 Real Root Of -301*x^4-395*x^3+983*x^2-379*x-938 2584069374307340 r002 10th iterates of z^2 + 2584069380854965 a003 sin(Pi*7/69)*sin(Pi*25/81) 2584069381408954 m001 (MertensB3+Tribonacci)/(GAMMA(3/4)+gamma(3)) 2584069388561295 a007 Real Root Of 52*x^4-139*x^3-349*x^2+905*x-48 2584069390379557 a001 199/233*21^(4/11) 2584069391854399 l006 ln(4168/5397) 2584069412527822 m005 (-11/20+1/4*5^(1/2))/(7/9*gamma-1/10) 2584069414501117 m005 (1/2*Pi+5/8)/(64/99+1/11*5^(1/2)) 2584069439721807 r009 Im(z^3+c),c=-9/28+11/52*I,n=17 2584069439750617 a007 Real Root Of 531*x^4+986*x^3-973*x^2+157*x+240 2584069442955823 m008 (1/4*Pi^5+3/5)/(5/6*Pi^3+4) 2584069458378511 r005 Im(z^2+c),c=1/9+15/64*I,n=17 2584069465604092 a007 Real Root Of -142*x^4+18*x^3+804*x^2-350*x+369 2584069467449793 m005 (1+1/4*5^(1/2))/(2*Pi-1/4) 2584069477240266 r005 Re(z^2+c),c=-57/110+6/13*I,n=22 2584069478026899 r005 Im(z^2+c),c=-17/56+26/61*I,n=7 2584069479015903 m001 2^(1/2)*LandauRamanujan2nd-Magata 2584069480434733 l006 ln(9512/9761) 2584069480459384 a001 196418/199*322^(1/6) 2584069482755527 s002 sum(A084932[n]/(pi^n+1),n=1..infinity) 2584069483181272 v002 sum(1/(2^n*(17/2*n^2+3/2*n+16)),n=1..infinity) 2584069485830905 a007 Real Root Of 49*x^4-479*x^3+559*x^2+727*x+469 2584069504253700 a003 sin(Pi*8/103)-sin(Pi*1/6) 2584069513973665 m001 (ln(2)-exp(1/Pi))/(MinimumGamma+Salem) 2584069515900301 r009 Re(z^3+c),c=-37/94+19/43*I,n=58 2584069516706449 r005 Re(z^2+c),c=-7/34+27/47*I,n=35 2584069523336603 r005 Re(z^2+c),c=-7/29+18/41*I,n=27 2584069546928079 b008 Cosh[Khinchin]^2/21 2584069548653217 r005 Im(z^2+c),c=-163/114+15/62*I,n=3 2584069554265684 r005 Re(z^2+c),c=17/106+8/23*I,n=20 2584069558664248 r005 Re(z^2+c),c=23/102+4/45*I,n=18 2584069568450260 r005 Re(z^2+c),c=-13/40+1/49*I,n=21 2584069570743490 a007 Real Root Of -921*x^4+569*x^3-977*x^2+843*x+297 2584069573043947 m005 (1/3*Pi-2/11)/(11/12*exp(1)+6/7) 2584069584383766 m001 GAMMA(11/12)^2/exp(Ei(1))*cosh(1) 2584069586623997 m001 (Catalan-polylog(4,1/2))/(CopelandErdos+Mills) 2584069590443971 m001 GAMMA(5/24)^2/exp(Rabbit)*exp(1) 2584069591353242 a007 Real Root Of -236*x^4-667*x^3-11*x^2+224*x-334 2584069592210419 m001 (Robbin+Sierpinski)/(3^(1/2)-PlouffeB) 2584069595345744 r009 Im(z^3+c),c=-19/44+7/51*I,n=23 2584069598878942 r009 Re(z^3+c),c=-27/86+14/51*I,n=8 2584069600070541 r005 Im(z^2+c),c=-79/70+2/63*I,n=17 2584069620466527 a007 Real Root Of -457*x^4+766*x^3+992*x^2+753*x-272 2584069622378998 a007 Real Root Of 403*x^4+930*x^3-641*x^2-617*x+764 2584069633344533 m001 (5^(1/2)+Magata)/(PisotVijayaraghavan+Thue) 2584069640662318 p001 sum(1/(568*n+409)/(8^n),n=0..infinity) 2584069649810031 a001 199/2971215073*610^(4/19) 2584069653949060 a007 Real Root Of -98*x^4-57*x^3+849*x^2+851*x-84 2584069660953196 a005 (1/cos(15/142*Pi))^99 2584069667612250 m001 Kolakoski/ln(CopelandErdos)/GAMMA(5/12) 2584069674564282 a007 Real Root Of 399*x^4+771*x^3-804*x^2-37*x+786 2584069674942045 b008 E^E+6*E^EulerGamma 2584069675760957 r005 Im(z^2+c),c=-41/106+13/30*I,n=49 2584069680922174 m001 cos(1/5*Pi)+ln(gamma)^cos(1/12*Pi) 2584069680922174 m001 cos(Pi/5)+log(gamma)^cos(Pi/12) 2584069685555234 m001 (exp(Pi)+ln(2^(1/2)+1))/(-Artin+Conway) 2584069685632162 a007 Real Root Of 33*x^4-381*x^3-872*x^2+539*x-830 2584069686383282 l006 ln(6291/8146) 2584069691766708 m001 (Ei(1,1)-Conway)/(FeigenbaumMu+Kac) 2584069692028473 r005 Re(z^2+c),c=-11/38+11/37*I,n=10 2584069693450414 a007 Real Root Of -323*x^4-689*x^3+9*x^2-668*x+727 2584069722124711 a001 75025/1364*29^(17/37) 2584069723276845 a005 (1/sin(64/131*Pi))^1467 2584069733194197 a007 Real Root Of -866*x^4+39*x^3-25*x^2+630*x+169 2584069734408987 m005 (1/3*5^(1/2)+1/10)/(4/9*5^(1/2)-2/3) 2584069746802665 m005 (1/4*Catalan+1/2)/(1/5*gamma+1/6) 2584069755052591 m001 (Pi+2^(1/2)*Khinchin)/Khinchin 2584069755052591 m001 (Pi+sqrt(2)*Khinchin)/Khinchin 2584069759496888 r005 Re(z^2+c),c=11/70+17/39*I,n=18 2584069762692759 m005 (3/4*Pi+4/5)/(1/3*2^(1/2)+3/4) 2584069762771972 r005 Im(z^2+c),c=-3/4+2/201*I,n=37 2584069768956360 a007 Real Root Of -20*x^4-506*x^3+313*x^2+883*x+408 2584069779224389 p004 log(31153/2351) 2584069792134467 a001 11/121393*4181^(40/59) 2584069793116555 a001 514229/1364*123^(2/5) 2584069799596710 a001 124/615*514229^(1/53) 2584069812400928 m001 (Cahen+ReciprocalLucas)/(Psi(1,1/3)+gamma(2)) 2584069819182334 m001 1/Magata*exp(KhintchineHarmonic)^2*FeigenbaumD 2584069819516224 m001 Rabbit^2/Lehmer^2*ln(GAMMA(7/12))^2 2584069826572870 r005 Im(z^2+c),c=-7/11+16/43*I,n=16 2584069829050428 m001 (Rabbit-ZetaP(2))/(Zeta(1/2)+arctan(1/2)) 2584069833203454 r009 Im(z^3+c),c=-7/13+6/43*I,n=62 2584069835368493 m005 (1/2*3^(1/2)-7/9)/(1/8*3^(1/2)+1/8) 2584069835656949 m005 (1/2*2^(1/2)-4/11)/(2/5*3^(1/2)+7/11) 2584069840717945 l006 ln(522/6917) 2584069841402476 r005 Re(z^2+c),c=37/122+13/32*I,n=43 2584069845554043 m001 (BesselI(1,1)+Artin)/(exp(1)+Catalan) 2584069845605703 a007 Real Root Of 184*x^4+92*x^3-332*x^2-980*x+273 2584069849208712 r005 Im(z^2+c),c=-19/40+25/53*I,n=64 2584069851139199 r009 Re(z^3+c),c=-17/44+26/61*I,n=24 2584069857319205 r005 Im(z^2+c),c=7/46+13/62*I,n=17 2584069870908425 r005 Re(z^2+c),c=-4/7+30/53*I,n=3 2584069890657086 r009 Re(z^3+c),c=-1/56+47/55*I,n=13 2584069904118519 r005 Im(z^2+c),c=-45/122+23/54*I,n=29 2584069907333288 a001 24476/89*21^(39/53) 2584069922879294 b008 Sqrt[5]-5*Tanh[2] 2584069926252957 a001 18/165580141*89^(12/17) 2584069929595285 m005 (3/5*2^(1/2)-1/6)/(3/4*exp(1)+3/5) 2584069938947860 r005 Im(z^2+c),c=-31/86+25/58*I,n=18 2584069954707888 m001 (ln(3)+BesselI(0,2))/(FeigenbaumB+Weierstrass) 2584069958561518 s002 sum(A244202[n]/(exp(n)+1),n=1..infinity) 2584069959002550 r009 Im(z^3+c),c=-9/28+11/52*I,n=22 2584069960116797 s002 sum(A114216[n]/(n^3*pi^n+1),n=1..infinity) 2584069968256158 a007 Real Root Of 463*x^4+806*x^3-605*x^2+998*x-118 2584069984117637 r009 Im(z^3+c),c=-9/28+11/52*I,n=23 2584069987027623 r009 Im(z^3+c),c=-9/28+11/52*I,n=26 2584069987645990 r009 Im(z^3+c),c=-9/28+11/52*I,n=27 2584069987977049 r009 Im(z^3+c),c=-9/28+11/52*I,n=30 2584069987981480 r009 Im(z^3+c),c=-9/28+11/52*I,n=31 2584069988000408 r009 Im(z^3+c),c=-9/28+11/52*I,n=35 2584069988001093 r009 Im(z^3+c),c=-9/28+11/52*I,n=34 2584069988001239 r009 Im(z^3+c),c=-9/28+11/52*I,n=36 2584069988001252 r009 Im(z^3+c),c=-9/28+11/52*I,n=39 2584069988001276 r009 Im(z^3+c),c=-9/28+11/52*I,n=40 2584069988001283 r009 Im(z^3+c),c=-9/28+11/52*I,n=43 2584069988001284 r009 Im(z^3+c),c=-9/28+11/52*I,n=44 2584069988001284 r009 Im(z^3+c),c=-9/28+11/52*I,n=48 2584069988001284 r009 Im(z^3+c),c=-9/28+11/52*I,n=47 2584069988001284 r009 Im(z^3+c),c=-9/28+11/52*I,n=52 2584069988001284 r009 Im(z^3+c),c=-9/28+11/52*I,n=53 2584069988001284 r009 Im(z^3+c),c=-9/28+11/52*I,n=56 2584069988001284 r009 Im(z^3+c),c=-9/28+11/52*I,n=57 2584069988001284 r009 Im(z^3+c),c=-9/28+11/52*I,n=60 2584069988001284 r009 Im(z^3+c),c=-9/28+11/52*I,n=61 2584069988001284 r009 Im(z^3+c),c=-9/28+11/52*I,n=64 2584069988001284 r009 Im(z^3+c),c=-9/28+11/52*I,n=62 2584069988001284 r009 Im(z^3+c),c=-9/28+11/52*I,n=63 2584069988001284 r009 Im(z^3+c),c=-9/28+11/52*I,n=59 2584069988001284 r009 Im(z^3+c),c=-9/28+11/52*I,n=58 2584069988001284 r009 Im(z^3+c),c=-9/28+11/52*I,n=55 2584069988001284 r009 Im(z^3+c),c=-9/28+11/52*I,n=54 2584069988001284 r009 Im(z^3+c),c=-9/28+11/52*I,n=51 2584069988001284 r009 Im(z^3+c),c=-9/28+11/52*I,n=49 2584069988001284 r009 Im(z^3+c),c=-9/28+11/52*I,n=50 2584069988001284 r009 Im(z^3+c),c=-9/28+11/52*I,n=46 2584069988001284 r009 Im(z^3+c),c=-9/28+11/52*I,n=45 2584069988001286 r009 Im(z^3+c),c=-9/28+11/52*I,n=42 2584069988001290 r009 Im(z^3+c),c=-9/28+11/52*I,n=41 2584069988001310 r009 Im(z^3+c),c=-9/28+11/52*I,n=38 2584069988001456 r009 Im(z^3+c),c=-9/28+11/52*I,n=37 2584069988004264 r009 Im(z^3+c),c=-9/28+11/52*I,n=32 2584069988005552 r009 Im(z^3+c),c=-9/28+11/52*I,n=33 2584069988088224 r009 Im(z^3+c),c=-9/28+11/52*I,n=29 2584069988163129 r009 Im(z^3+c),c=-9/28+11/52*I,n=28 2584069989304745 r009 Im(z^3+c),c=-9/28+11/52*I,n=25 2584069992149116 m001 (Chi(1)*FellerTornier-ZetaQ(2))/Chi(1) 2584069993462223 r009 Im(z^3+c),c=-9/28+11/52*I,n=24 2584069993519347 r009 Im(z^3+c),c=-9/28+11/52*I,n=21 2584069995102544 m001 (GAMMA(7/12)+MertensB3)/(5^(1/2)-GAMMA(5/6)) 2584070017772539 r009 Re(z^3+c),c=-43/110+24/55*I,n=42 2584070020473510 a007 Real Root Of 412*x^4+988*x^3-454*x^2-591*x+182 2584070027918549 m007 (-1/2*gamma+4)/(-5/6*gamma-5/3*ln(2)+1/5) 2584070030384252 r009 Im(z^3+c),c=-9/28+11/52*I,n=19 2584070040088209 m005 (1/3+1/6*5^(1/2))/(9/10*exp(1)+2/7) 2584070063149081 v002 sum(1/(5^n*(15*n^2-n-6)),n=1..infinity) 2584070072907180 s002 sum(A244202[n]/(exp(n)),n=1..infinity) 2584070083029422 a007 Real Root Of 20*x^4+538*x^3+567*x^2+507*x+54 2584070087432388 s002 sum(A099707[n]/(n^3*pi^n+1),n=1..infinity) 2584070090332251 r009 Im(z^3+c),c=-63/118+17/49*I,n=40 2584070093269737 h001 (2/3*exp(2)+5/8)/(1/6*exp(2)+11/12) 2584070094654305 a007 Real Root Of -370*x^4-995*x^3-111*x^2-108*x-209 2584070098787619 r005 Im(z^2+c),c=-19/90+22/43*I,n=3 2584070099901662 r009 Im(z^3+c),c=-13/28+8/45*I,n=6 2584070107001730 m001 (FeigenbaumD-Weierstrass)/(ZetaP(4)+ZetaQ(3)) 2584070108682228 r002 10th iterates of z^2 + 2584070112190051 r005 Re(z^2+c),c=-59/48+5/57*I,n=20 2584070113791298 r005 Re(z^2+c),c=-19/60+7/50*I,n=18 2584070120422896 r002 2th iterates of z^2 + 2584070120784073 a007 Real Root Of -218*x^4-196*x^3+928*x^2+261*x+816 2584070133055358 a007 Real Root Of -339*x^4-860*x^3-94*x^2-116*x+604 2584070134806978 r009 Im(z^3+c),c=-9/28+11/52*I,n=20 2584070137043714 l003 AiryAi(1,2/41) 2584070142625255 s002 sum(A099707[n]/(n^3*pi^n-1),n=1..infinity) 2584070143919726 m001 HeathBrownMoroz^GAMMA(11/12)-Sierpinski 2584070144805020 a005 (1/sin(36/121*Pi))^89 2584070147760521 m002 Pi^6/4-E^(2*Pi)/ProductLog[Pi] 2584070150086642 r005 Re(z^2+c),c=-13/40+1/50*I,n=15 2584070155215281 m001 BesselK(0,1)^2/(2^(1/3))^2*exp(Pi) 2584070161106519 r002 25th iterates of z^2 + 2584070179484216 a007 Real Root Of -332*x^4-824*x^3+278*x^2+252*x-620 2584070182623903 a001 144/9349*1364^(22/31) 2584070184055075 r005 Im(z^2+c),c=-25/56+19/44*I,n=28 2584070186386478 m001 Otter^KhinchinLevy/(Trott2nd^KhinchinLevy) 2584070193600164 a005 (1/sin(85/207*Pi))^1119 2584070205946628 s002 sum(A244202[n]/(exp(n)-1),n=1..infinity) 2584070213080570 m002 -3/Pi^4+Pi^2-E^Pi*Cosh[Pi] 2584070219335992 r009 Re(z^3+c),c=-5/32+35/39*I,n=64 2584070223430525 r005 Re(z^2+c),c=-7/12+44/91*I,n=5 2584070225394260 a007 Real Root Of 24*x^4+658*x^3+989*x^2+280*x-526 2584070235385765 m001 FeigenbaumKappa^2/ln(FeigenbaumC)/sinh(1) 2584070239524863 m001 1/Trott*exp(Conway)/GAMMA(1/4)^2 2584070246349942 m005 (1/3*Pi+3/7)/(4/7*gamma-3/11) 2584070249134246 m001 (Magata+ZetaP(4))/(Ei(1,1)+GAMMA(5/6)) 2584070263042610 h001 (-3*exp(-2)-2)/(-9*exp(-1)-6) 2584070264411039 r005 Im(z^2+c),c=-27/22+13/119*I,n=31 2584070264619896 l006 ln(2123/2749) 2584070267576840 r002 3th iterates of z^2 + 2584070277942931 r009 Re(z^3+c),c=-61/126+13/21*I,n=10 2584070289149912 a001 3/86267571272*1346269^(12/19) 2584070289383571 r009 Re(z^3+c),c=-33/74+27/56*I,n=21 2584070297339427 s002 sum(A257858[n]/(n*exp(pi*n)+1),n=1..infinity) 2584070306343520 a007 Real Root Of 273*x^4+825*x^3+124*x^2-188*x+749 2584070309470351 r005 Re(z^2+c),c=-51/122+17/47*I,n=5 2584070309692027 r005 Re(z^2+c),c=-19/98+25/44*I,n=41 2584070309756020 m001 Riemann3rdZero/(QuadraticClass^sin(1/12*Pi)) 2584070309898449 m001 1/ln(Zeta(7))*LandauRamanujan^2/exp(1) 2584070315409519 r005 Re(z^2+c),c=-6/23+5/13*I,n=31 2584070328508163 r005 Re(z^2+c),c=-7/15+4/41*I,n=2 2584070333116991 r002 38th iterates of z^2 + 2584070335293424 a001 4/299537289*2^(20/21) 2584070338624724 a003 sin(Pi*3/13)/cos(Pi*48/115) 2584070338831750 m001 (Psi(2,1/3)-sin(1))/(Zeta(5)+GAMMA(5/6)) 2584070368249902 m001 (ThueMorse-ZetaQ(3))/(ln(3)+arctan(1/2)) 2584070375827212 m001 (-gamma(3)+BesselK(1,1))/(exp(Pi)-gamma(1)) 2584070377958034 a007 Real Root Of -229*x^4-588*x^3-239*x^2-537*x+273 2584070381962706 m001 BesselJ(0,1)^HeathBrownMoroz*Sierpinski 2584070395638551 a003 sin(Pi*1/81)/cos(Pi*33/73) 2584070398908315 l006 ln(259/3432) 2584070418242524 r005 Im(z^2+c),c=-23/66+23/48*I,n=13 2584070420110703 a007 Real Root Of 293*x^4+862*x^3+403*x^2+708*x+948 2584070423786524 m001 Backhouse-gamma+Niven 2584070433711183 r005 Im(z^2+c),c=-13/12+27/112*I,n=20 2584070446164181 r005 Re(z^2+c),c=-25/106+27/49*I,n=23 2584070448902538 a007 Real Root Of -250*x^4-312*x^3+479*x^2-969*x+61 2584070449666731 b008 15-13*Pi 2584070453062392 r005 Im(z^2+c),c=-47/122+13/30*I,n=45 2584070462421794 m001 (Riemann2ndZero+Stephens)/(Chi(1)-gamma(3)) 2584070465272175 a007 Real Root Of 33*x^4+825*x^3-742*x^2-679*x-789 2584070479826238 m001 (BesselI(0,2)-gamma(3))/ln(2^(1/2)+1) 2584070481917302 a007 Real Root Of -213*x^4-274*x^3+221*x^2-912*x+937 2584070491707899 a001 29/987*514229^(16/47) 2584070501432438 m005 (1/2*Catalan-7/10)/(1/11*2^(1/2)-2/9) 2584070514651138 r005 Im(z^2+c),c=-10/29+14/31*I,n=15 2584070526954624 a007 Real Root Of 24*x^4-335*x^3-654*x^2+648*x-809 2584070535509069 m001 (Chi(1)+ln(5))/(Cahen+GaussKuzminWirsing) 2584070536278484 l006 ln(9703/9957) 2584070548776757 r005 Re(z^2+c),c=-33/52+7/11*I,n=3 2584070550016528 r005 Im(z^2+c),c=-89/94+7/31*I,n=34 2584070558283387 g004 Re(GAMMA(-7/10+I*6/5)) 2584070560608733 m001 Zeta(1,2)*(GAMMA(5/12)-Si(Pi)) 2584070560608733 m001 Zeta(1,2)*(Pi*csc(5/12*Pi)/GAMMA(7/12)-Si(Pi)) 2584070568151669 r005 Re(z^2+c),c=-7/8+62/197*I,n=4 2584070569706000 r002 59th iterates of z^2 + 2584070570088863 m005 (1/2*Catalan-5/12)/(7/8*3^(1/2)+1/12) 2584070624605649 p004 log(17107/1291) 2584070632340073 a001 21/2207*9349^(13/36) 2584070643424781 a007 Real Root Of 962*x^4-179*x^3-130*x^2-36*x-8 2584070647557633 a007 Real Root Of -319*x^4-848*x^3+313*x^2+775*x-496 2584070648300552 m001 RenyiParking/LaplaceLimit^2/ln(GAMMA(11/24)) 2584070658092468 a007 Real Root Of -426*x^4-934*x^3+150*x^2-568*x+409 2584070677764195 a007 Real Root Of -482*x^4-862*x^3+977*x^2-414*x-976 2584070691157684 m001 GAMMA(5/12)*(polylog(4,1/2)-sqrt(3)) 2584070692057892 r009 Im(z^3+c),c=-33/94+9/46*I,n=7 2584070698534786 a007 Real Root Of 92*x^4-570*x^3+588*x^2+647*x+135 2584070705284517 h002 exp(1/12*(22+2^(1/3))*12^(2/3)) 2584070709436095 m001 (exp(Pi)*ZetaP(3)+Bloch)/ZetaP(3) 2584070713982221 r005 Re(z^2+c),c=-13/74+11/19*I,n=49 2584070723706307 b008 2+(3*(-1+Pi))/11 2584070727630119 r009 Im(z^3+c),c=-37/66+9/56*I,n=45 2584070738141127 m008 (5*Pi+5/6)/(2*Pi^3+2) 2584070739272891 r005 Re(z^2+c),c=-1/19+18/29*I,n=52 2584070745447414 a007 Real Root Of -907*x^4+277*x^3+556*x^2+968*x-288 2584070759226070 a007 Real Root Of 328*x^4+732*x^3-398*x^2-165*x+237 2584070767221639 a007 Real Root Of -132*x^4+17*x^3+745*x^2-473*x-18 2584070770521855 r005 Im(z^2+c),c=-13/114+14/41*I,n=9 2584070772721227 a007 Real Root Of 219*x^4+351*x^3-616*x^2-351*x-502 2584070772903790 r009 Re(z^3+c),c=-29/74+3/7*I,n=8 2584070775849112 p004 log(10243/773) 2584070791907268 r005 Re(z^2+c),c=-7/30+6/13*I,n=28 2584070796460176 q001 146/565 2584070796460176 r005 Im(z^2+c),c=-7/10+73/113*I,n=2 2584070797339563 a007 Real Root Of -227*x^4-418*x^3+841*x^2+979*x-177 2584070799092893 a001 521/1346269*4181^(39/50) 2584070803336515 r005 Re(z^2+c),c=-31/102+8/49*I,n=4 2584070812044321 a007 Real Root Of -409*x^4-841*x^3+638*x^2+43*x-424 2584070822849380 m001 (arctan(1/3)-Pi^(1/2))/(GAMMA(17/24)-Sarnak) 2584070828864712 l006 ln(6447/8348) 2584070833280012 a007 Real Root Of -300*x^4-572*x^3-845*x^2+221*x+105 2584070836395473 r005 Re(z^2+c),c=-3/11+8/23*I,n=18 2584070842222413 m005 (1/3*5^(1/2)+1/11)/(2/11*gamma-3/7) 2584070843060023 a007 Real Root Of -438*x^4+955*x^3+144*x^2+914*x+245 2584070846649657 a007 Real Root Of -244*x^4-358*x^3+429*x^2-566*x+375 2584070866006420 r005 Im(z^2+c),c=-61/82+8/37*I,n=8 2584070877063067 a007 Real Root Of 778*x^4+163*x^3-283*x^2-891*x-212 2584070877884635 r009 Im(z^3+c),c=-47/98+25/51*I,n=3 2584070883747854 m001 FeigenbaumKappa^MasserGramainDelta*ZetaR(2) 2584070887118020 m001 (FeigenbaumD+GaussAGM)/(KhinchinLevy+ZetaP(3)) 2584070895137997 r005 Im(z^2+c),c=-7/10+3/160*I,n=7 2584070895182169 r005 Re(z^2+c),c=-13/82+34/59*I,n=19 2584070900926568 s001 sum(exp(-Pi)^n*A044144[n],n=1..infinity) 2584070900926568 s002 sum(A044144[n]/(exp(pi*n)),n=1..infinity) 2584070900999537 s001 sum(exp(-Pi)^n*A044525[n],n=1..infinity) 2584070900999537 s002 sum(A044525[n]/(exp(pi*n)),n=1..infinity) 2584070912708420 m001 (ln(2+3^(1/2))-DuboisRaymond)/(Pi+Zeta(3)) 2584070918893374 a007 Real Root Of 216*x^4+317*x^3-569*x^2+318*x+460 2584070921925936 m005 (1/2*Catalan+1/9)/(10/11*2^(1/2)+11/12) 2584070940576660 r009 Re(z^3+c),c=-17/46+20/51*I,n=18 2584070941674836 m001 1/Rabbit*exp(Niven)/sqrt(3)^2 2584070950839208 m001 (Magata-OneNinth)/(3^(1/3)+Zeta(1,-1)) 2584070965786153 l006 ln(514/6811) 2584070970010283 m001 (-Conway+CopelandErdos)/(exp(1)+2^(1/2)) 2584070976225505 a001 3571/17711*514229^(1/53) 2584070984293942 a007 Real Root Of -379*x^4+131*x^3+93*x^2+829*x-221 2584071001451091 r005 Im(z^2+c),c=-35/118+17/42*I,n=48 2584071006649287 a007 Real Root Of -9*x^4+433*x^3+936*x^2-828*x-517 2584071016027631 m005 (1/2*3^(1/2)-2)/(1/7*exp(1)+4) 2584071016963883 m001 (-GAMMA(1/4)+3)/(BesselK(0,1)+2) 2584071018542740 r005 Re(z^2+c),c=-153/122+3/64*I,n=22 2584071026542658 m001 (ln(Pi)-CopelandErdos)/(FeigenbaumD+GaussAGM) 2584071032776916 a001 3/2161*3571^(23/36) 2584071041991157 a007 Real Root Of -208*x^4+169*x^3-813*x^2+371*x+154 2584071058718756 a007 Real Root Of -291*x^4-386*x^3+989*x^2+372*x+672 2584071061074514 a001 8/321*64079^(13/31) 2584071072759550 a007 Real Root Of 661*x^4-573*x^3-364*x+101 2584071081783148 m005 (1/3*gamma+2/5)/(8/9*Pi-1/2) 2584071091549162 r005 Im(z^2+c),c=1/60+1/40*I,n=4 2584071099672036 m001 (ln(3)+GAMMA(23/24))^(2^(1/3)) 2584071105897943 l006 ln(4324/5599) 2584071109326872 a001 144/15127*9349^(19/31) 2584071119072297 h001 (5/8*exp(1)+8/11)/(1/10*exp(2)+1/5) 2584071124775333 m001 1/exp(FeigenbaumD)/Paris^2/exp(1) 2584071125346191 a007 Real Root Of -893*x^4-587*x^3+328*x^2+882*x-23 2584071134699659 a001 144/710647*24476^(29/31) 2584071137173085 p001 sum((-1)^n/(457*n+145)/n/(64^n),n=1..infinity) 2584071147893332 a001 9349/46368*514229^(1/53) 2584071160515053 a005 (1/cos(11/104*Pi))^549 2584071161944041 a001 3/2161*64079^(17/36) 2584071165803068 a001 123/1134903170*86267571272^(5/23) 2584071165803130 a001 1/831985*1346269^(5/23) 2584071168874529 a001 299537289/305*46368^(7/23) 2584071168947682 a001 20633239/610*2971215073^(7/23) 2584071169101892 a001 144/9349*39603^(15/31) 2584071172939330 a001 24476/121393*514229^(1/53) 2584071173904224 r005 Re(z^2+c),c=-61/114+36/55*I,n=5 2584071178851888 a001 39603/196418*514229^(1/53) 2584071187317325 a007 Real Root Of -77*x^4+86*x^3+646*x^2-114*x+309 2584071187636114 a003 sin(Pi*3/32)-sin(Pi*22/119) 2584071188418608 a001 15127/75025*514229^(1/53) 2584071210887272 a007 Real Root Of -668*x^4+568*x^3+516*x^2+978*x-294 2584071220349661 m001 (BesselJ(0,1)-cosh(1))/ln(2)*ln(10) 2584071228085990 r005 Im(z^2+c),c=-9/44+25/42*I,n=14 2584071241360092 m001 (TreeGrowth2nd+ZetaQ(3))/(BesselI(0,2)-Landau) 2584071246557734 a001 6765/521*18^(5/21) 2584071249238886 r005 Re(z^2+c),c=-1+25/146*I,n=40 2584071253989883 a001 5778/28657*514229^(1/53) 2584071262909318 m005 (1/2*2^(1/2)+3/4)/(7/6+2*5^(1/2)) 2584071264991618 m005 (1/2*gamma-6/11)/(3/5*Zeta(3)+3/11) 2584071276414052 a007 Real Root Of 85*x^4-564*x^3+703*x^2-410*x-163 2584071277450925 r002 43th iterates of z^2 + 2584071278242025 h001 (2/9*exp(1)+2/11)/(8/9*exp(1)+5/8) 2584071281624171 m001 TreeGrowth2nd^(2*Pi/GAMMA(5/6)*Conway) 2584071297321473 r005 Re(z^2+c),c=-89/94+10/63*I,n=50 2584071307549426 m005 (1/3*2^(1/2)-1/10)/(19/35+2/5*5^(1/2)) 2584071315396018 m001 Sierpinski*Paris^2/exp(GAMMA(1/12))^2 2584071317927649 a007 Real Root Of -462*x^4-846*x^3+820*x^2-547*x-887 2584071320723688 r005 Re(z^2+c),c=-53/94+25/56*I,n=62 2584071324924764 a007 Real Root Of -256*x^4+569*x^3-131*x^2+395*x-102 2584071327446836 a007 Real Root Of -28*x^4-719*x^3+119*x^2+10*x-866 2584071327702190 m001 (Otter+Trott2nd)/(GAMMA(7/12)-FeigenbaumD) 2584071329231745 m001 ArtinRank2+MasserGramainDelta^Shi(1) 2584071338899932 a001 123/4181*987^(37/57) 2584071339083727 a007 Real Root Of -424*x^4-330*x^3+729*x^2+762*x-238 2584071342581642 p001 sum(1/(381*n+121)/n/(8^n),n=1..infinity) 2584071352979921 a001 24476/7*(1/2*5^(1/2)+1/2)^31*7^(6/13) 2584071356664037 a001 64079/7*(1/2*5^(1/2)+1/2)^29*7^(6/13) 2584071356955136 a007 Real Root Of 402*x^4+873*x^3-619*x^2-809*x-818 2584071358940946 a001 39603/7*(1/2*5^(1/2)+1/2)^30*7^(6/13) 2584071359152958 s002 sum(A285212[n]/((pi^n-1)/n),n=1..infinity) 2584071359508913 r002 21th iterates of z^2 + 2584071367181821 m005 (1/2*3^(1/2)-2/9)/(5/12*Zeta(3)-3/4) 2584071368586088 a001 2161*(1/2*5^(1/2)+1/2)^32*7^(6/13) 2584071368706696 a007 Real Root Of -198*x^4-268*x^3+731*x^2+471*x+540 2584071371739502 a001 8/710647*123^(28/43) 2584071379619506 l006 ln(6525/8449) 2584071409867802 r005 Re(z^2+c),c=23/66+9/40*I,n=38 2584071417337226 a007 Real Root Of 734*x^4-410*x^3-389*x^2-651*x+198 2584071432219429 a007 Real Root Of 358*x^4+850*x^3-202*x^2-161*x-363 2584071436213638 m001 GAMMA(2/3)*TreeGrowth2nd*ln(cosh(1)) 2584071441039833 m005 (1/2*Pi+5/8)/(1/8*Zeta(3)-1) 2584071449998965 r005 Im(z^2+c),c=-25/62+27/64*I,n=18 2584071451988455 m001 exp(1)+Zeta(1,-1)^Robbin 2584071456527168 r009 Re(z^3+c),c=-43/106+12/25*I,n=18 2584071458231411 r005 Im(z^2+c),c=-35/118+17/42*I,n=45 2584071470981394 a007 Real Root Of 439*x^4+689*x^3-991*x^2+769*x+919 2584071476250920 r005 Re(z^2+c),c=23/126+16/33*I,n=59 2584071481932618 a007 Real Root Of 365*x^4+776*x^3-364*x^2+502*x+843 2584071488729007 m001 Bloch/FransenRobinson^2/ln(Paris) 2584071496927787 a003 sin(Pi*34/91)/cos(Pi*38/99) 2584071511484584 m001 (3^(1/2)-Pi^(1/2))/(CareFree+Thue) 2584071527048529 m005 (1/3*Pi-2/3)/(5/9*Pi-3/11) 2584071541555863 l006 ln(255/3379) 2584071546352405 a001 123*(1/2*5^(1/2)+1/2)^9*4^(11/15) 2584071557320810 a001 121393/199*322^(1/4) 2584071568030706 r005 Im(z^2+c),c=7/19+31/61*I,n=9 2584071572199104 r005 Re(z^2+c),c=-13/40+1/49*I,n=19 2584071576129049 b008 23+3*Sech[1/3] 2584071582900551 r009 Re(z^3+c),c=-31/86+11/17*I,n=12 2584071589788025 m001 GAMMA(1/24)/ln(Niven)*sin(Pi/5) 2584071596273376 m001 (GlaisherKinkelin-Zeta(1,2))/Thue 2584071597341257 m001 Mills^(Shi(1)*ReciprocalFibonacci) 2584071598211223 a007 Real Root Of 192*x^4+261*x^3-478*x^2+66*x-695 2584071602652769 m004 -30+Sqrt[5]*Pi-Log[Sqrt[5]*Pi]-Tan[Sqrt[5]*Pi] 2584071614859202 a007 Real Root Of 259*x^4+400*x^3-630*x^2-172*x-884 2584071617018557 m001 Sierpinski/(Mills^HeathBrownMoroz) 2584071618585724 r009 Re(z^3+c),c=-37/94+19/43*I,n=55 2584071625405023 r005 Re(z^2+c),c=31/90+13/35*I,n=24 2584071633582926 r005 Im(z^2+c),c=-1+59/204*I,n=41 2584071653285436 a007 Real Root Of 98*x^4-831*x^3+926*x^2-671*x-250 2584071665673654 m001 exp(GAMMA(1/6))^2*(2^(1/3))^2*cosh(1)^2 2584071678681665 m001 (5^(1/2))^Pi/(((1+3^(1/2))^(1/2))^Pi) 2584071678681665 m001 sqrt(5)^Pi/(sqrt(1+sqrt(3))^Pi) 2584071679090697 m001 (GAMMA(5/6)+Tetranacci)/(Psi(1,1/3)+3^(1/2)) 2584071682956567 m001 Catalan*GAMMA(3/4)+MinimumGamma 2584071684024034 a003 cos(Pi*8/63)*cos(Pi*43/105) 2584071703422087 a001 2207/10946*514229^(1/53) 2584071715565569 a007 Real Root Of 275*x^4+548*x^3-476*x^2+167*x+804 2584071718676481 m001 FransenRobinson^(GAMMA(3/4)/MertensB3) 2584071737169568 h001 (1/10*exp(2)+7/8)/(9/11*exp(2)+1/5) 2584071743280957 m005 (1/2*Catalan-3)/(5/7*gamma+4/7) 2584071747416645 m001 1/GAMMA(11/12)^2*CareFree/ln(GAMMA(13/24))^2 2584071750414110 r005 Re(z^2+c),c=19/58+10/37*I,n=3 2584071750582787 h005 exp(sin(Pi*17/43)/sin(Pi*19/40)) 2584071762011930 a007 Real Root Of -346*x^4-712*x^3+682*x^2+661*x+296 2584071771969234 p004 log(31249/24133) 2584071777190544 m001 MinimumGamma/ln(DuboisRaymond)/sin(Pi/5)^2 2584071779106207 m001 OneNinth^Pi-Sierpinski 2584071779144064 m001 MasserGramain/(Riemann3rdZero-gamma(3)) 2584071787806736 m001 (Khinchin+5)/(-GAMMA(23/24)+4) 2584071790252638 h001 (5/12*exp(2)+2/5)/(1/4*exp(1)+2/3) 2584071795294228 r005 Im(z^2+c),c=-3/11+13/32*I,n=13 2584071809838741 m001 exp(GAMMA(1/12))*TreeGrowth2nd^2/exp(1)^2 2584071819329372 r009 Re(z^3+c),c=-10/23+17/35*I,n=15 2584071825912811 r005 Re(z^2+c),c=-35/36+16/33*I,n=4 2584071833772600 r009 Im(z^3+c),c=-4/11+7/37*I,n=20 2584071834702228 m009 (4/5*Psi(1,2/3)+1/6)/(1/10*Pi^2-2) 2584071836294096 m001 1/2*gamma(2)/Pi*GAMMA(5/6)*ZetaR(2) 2584071863584418 a007 Real Root Of 113*x^4-304*x^3-48*x^2-720*x+194 2584071875980623 a007 Real Root Of 399*x^4+825*x^3-994*x^2-887*x+790 2584071876247398 m005 (1/2*2^(1/2)+4/9)/(1/5*exp(1)-5) 2584071880807552 r005 Re(z^2+c),c=-41/48+16/57*I,n=4 2584071884146970 m001 (BesselI(0,1)+Zeta(1,-1))/(Conway+Otter) 2584071892873391 m005 (1/2*exp(1)+2)/(9/11*2^(1/2)+1/7) 2584071897520322 m001 Ei(1)*ln((3^(1/3)))^2*Zeta(7)^2 2584071905033492 m001 Gompertz*KomornikLoreti/ThueMorse 2584071917362345 l006 ln(2201/2850) 2584071925702957 r005 Im(z^2+c),c=-1/20+14/45*I,n=8 2584071926407972 m001 1/ln(GAMMA(13/24))*Lehmer/arctan(1/2) 2584071927888203 r005 Im(z^2+c),c=-21/86+24/61*I,n=10 2584071930446124 l006 ln(761/10084) 2584071933034311 r005 Re(z^2+c),c=-31/114+7/20*I,n=28 2584071945859869 a001 1/521*(1/2*5^(1/2)+1/2)^8*3^(23/24) 2584071965485500 r005 Re(z^2+c),c=-37/114+1/60*I,n=9 2584071970785897 r009 Re(z^3+c),c=-49/110+21/38*I,n=37 2584071971725291 r005 Im(z^2+c),c=-137/122+17/64*I,n=49 2584071980366954 b008 E^Sqrt[2/3]+Tanh[1/3] 2584072010611380 m001 BesselK(0,1)*Si(Pi)/ln(sqrt(3))^2 2584072026338671 m001 (TwinPrimes-ZetaQ(3))/(Ei(1)+Kac) 2584072031460371 r005 Re(z^2+c),c=-95/118+1/36*I,n=58 2584072032471969 r005 Re(z^2+c),c=-33/106+5/28*I,n=22 2584072038514215 r005 Im(z^2+c),c=-5/36+1/31*I,n=8 2584072043626260 b008 EulerGamma+Pi*Coth[1/8] 2584072050854703 m001 sin(1/12*Pi)^gamma(3)/(sin(1/12*Pi)^CareFree) 2584072051470958 h001 (9/11*exp(2)+6/7)/(3/10*exp(2)+5/11) 2584072071579099 r005 Im(z^2+c),c=-17/18+45/193*I,n=31 2584072079043869 m001 (cos(1/5*Pi)-Conway)/(MinimumGamma+ZetaP(2)) 2584072087608365 a001 1/98209*2178309^(41/59) 2584072098838320 m001 (-Zeta(3)+Kac)/(Chi(1)-exp(Pi)) 2584072102675998 m001 (Conway+Kac)/(Pi^(1/2)-GAMMA(23/24)) 2584072103977020 m005 (1/2*Zeta(3)-5)/(5/9*2^(1/2)+11/12) 2584072114833113 a007 Real Root Of -40*x^4+95*x^3+404*x^2+29*x+800 2584072120084304 m001 1/LandauRamanujan^2/ln(ArtinRank2)/Tribonacci 2584072126428313 l006 ln(506/6705) 2584072139008559 m001 (BesselK(0,1)+ln(2))/(-TreeGrowth2nd+ZetaQ(3)) 2584072141092406 q001 1/3869861 2584072144421223 m001 (GAMMA(13/24)+GaussAGM)/(Niven-RenyiParking) 2584072145357532 m005 (1/2*5^(1/2)+7/9)/(3/8*Pi-4/9) 2584072152450392 h001 (1/2*exp(2)+3/4)/(4/7*exp(1)+1/6) 2584072156757483 r005 Im(z^2+c),c=-23/110+25/54*I,n=3 2584072165269225 p001 sum((-1)^n/(443*n+26)/n/(8^n),n=1..infinity) 2584072165383363 a007 Real Root Of -212*x^4-414*x^3+457*x^2+410*x+317 2584072174437977 m001 (-BesselI(1,1)+3)/(-3^(1/3)+1/2) 2584072200086409 m001 (Cahen+FellerTornier)/(gamma(1)-ln(2)/ln(10)) 2584072201481947 a001 11/5*2^(13/56) 2584072203560342 r005 Im(z^2+c),c=-11/28+27/62*I,n=43 2584072208400444 a001 19/36*21^(12/23) 2584072221616494 a007 Real Root Of 505*x^4+943*x^3-971*x^2-437*x-891 2584072223140213 r005 Im(z^2+c),c=-23/70+18/43*I,n=20 2584072243695952 m001 (Pi-Paris)/(Robbin-Tribonacci) 2584072244058879 h001 (4/11*exp(1)+1/10)/(6/11*exp(2)+2/11) 2584072254128633 a005 (1/cos(3/205*Pi))^898 2584072256465851 m001 Weierstrass/(Robbin+Salem) 2584072258424528 r005 Re(z^2+c),c=39/98+7/22*I,n=8 2584072266085729 r005 Re(z^2+c),c=-17/58+11/29*I,n=8 2584072285801857 a007 Real Root Of 333*x^4+798*x^3+12*x^2+559*x+286 2584072294881121 a007 Real Root Of -819*x^4-825*x^3+293*x^2+752*x-196 2584072308456293 r005 Im(z^2+c),c=-5/12+19/42*I,n=32 2584072314982409 a007 Real Root Of 756*x^4+276*x^3+205*x^2-827*x-226 2584072321725389 a007 Real Root Of -224*x^4+979*x^3-418*x^2+805*x-196 2584072323446036 l006 ln(757/10031) 2584072340035700 r005 Im(z^2+c),c=-41/98+24/55*I,n=31 2584072349469192 m001 cos(1)/(GaussKuzminWirsing+KomornikLoreti) 2584072352309521 r009 Im(z^3+c),c=-33/94+11/56*I,n=17 2584072355148362 a001 1568397607/1597*46368^(7/23) 2584072355221520 a001 54018521/1597*2971215073^(7/23) 2584072364820623 a007 Real Root Of -190*x^4-381*x^3+222*x^2+63*x+578 2584072368816131 a007 Real Root Of -236*x^4-710*x^3-617*x^2-883*x+110 2584072380380903 r009 Re(z^3+c),c=-5/86+38/53*I,n=39 2584072389987329 r005 Im(z^2+c),c=-25/62+19/47*I,n=13 2584072394224157 a008 Real Root of x^4-x^3-23*x^2-3*x+134 2584072396222119 m001 (GAMMA(19/24)-PlouffeB)/(Pi-BesselJ(1,1)) 2584072408037495 r009 Re(z^3+c),c=-1/6+53/59*I,n=24 2584072408350204 p003 LerchPhi(1/256,2,443/225) 2584072410404592 m001 Zeta(1/2)^2*exp(FeigenbaumAlpha)/Zeta(7) 2584072421391346 r005 Re(z^2+c),c=-13/62+33/64*I,n=57 2584072422739248 m005 (1/2*exp(1)+7/10)/(-1/24+3/8*5^(1/2)) 2584072439040208 m001 LambertW(1)-ZetaR(2)^arctan(1/3) 2584072442240513 a008 Real Root of x^3-x^2-232*x+60 2584072442548969 l006 ln(6681/8651) 2584072453019925 m001 (3^(1/2)-GAMMA(17/24))/(KhinchinLevy+Landau) 2584072453816079 m001 (Mills+ThueMorse)/(BesselI(0,1)-MertensB3) 2584072455378873 a007 Real Root Of 404*x^4-917*x^3+25*x^2-761*x+209 2584072472236061 r005 Im(z^2+c),c=-3/118+13/43*I,n=20 2584072475836033 a003 cos(Pi*19/79)-cos(Pi*31/90) 2584072476548418 a007 Real Root Of -263*x^4+186*x^3-297*x^2+599*x+179 2584072487102044 m001 1/exp(Riemann2ndZero)^2*Cahen^2/log(1+sqrt(2)) 2584072492908413 m001 exp(sin(1))^2/(2^(1/3))/sqrt(1+sqrt(3)) 2584072502783704 b008 Log[(2+EulerGamma)*(2+Pi)] 2584072509752527 m001 1/ln(TwinPrimes)^2/FeigenbaumC/GAMMA(3/4) 2584072512257317 m005 (1/2*Pi-2/5)/(2/7*2^(1/2)-6/7) 2584072514457192 m004 2-(25*Cos[Sqrt[5]*Pi])/(2*Pi)+Sin[Sqrt[5]*Pi] 2584072522113085 r005 Im(z^2+c),c=-113/102+11/40*I,n=9 2584072527304273 h001 (-2*exp(-2)-1)/(-8*exp(-2)+6) 2584072528223473 a001 4106118243/4181*46368^(7/23) 2584072528258277 a001 305/161*15127^(1/31) 2584072528296632 a001 141422324/4181*2971215073^(7/23) 2584072550048271 r005 Re(z^2+c),c=-15/46+3/29*I,n=4 2584072553474793 a001 5374978561/5473*46368^(7/23) 2584072553547952 a001 370248451/10946*2971215073^(7/23) 2584072557158911 a001 28143753123/28657*46368^(7/23) 2584072557232070 a001 969323029/28657*2971215073^(7/23) 2584072557696417 a001 73681302247/75025*46368^(7/23) 2584072557769576 a001 2537720636/75025*2971215073^(7/23) 2584072557774838 a001 96450076809/98209*46368^(7/23) 2584072557786279 a001 505019158607/514229*46368^(7/23) 2584072557787949 a001 1322157322203/1346269*46368^(7/23) 2584072557788192 a001 1730726404001/1762289*46368^(7/23) 2584072557788228 a001 9062201101803/9227465*46368^(7/23) 2584072557788233 a001 23725150497407/24157817*46368^(7/23) 2584072557788236 a001 192933544679/196452*46368^(7/23) 2584072557788250 a001 5600748293801/5702887*46368^(7/23) 2584072557788343 a001 2139295485799/2178309*46368^(7/23) 2584072557788980 a001 204284540899/208010*46368^(7/23) 2584072557793350 a001 312119004989/317811*46368^(7/23) 2584072557823305 a001 119218851371/121393*46368^(7/23) 2584072557847997 a001 6643838879/196418*2971215073^(7/23) 2584072557859438 a001 17393796001/514229*2971215073^(7/23) 2584072557861108 a001 45537549124/1346269*2971215073^(7/23) 2584072557861351 a001 119218851371/3524578*2971215073^(7/23) 2584072557861387 a001 312119004989/9227465*2971215073^(7/23) 2584072557861392 a001 817138163596/24157817*2971215073^(7/23) 2584072557861393 a001 2139295485799/63245986*2971215073^(7/23) 2584072557861393 a001 5600748293801/165580141*2971215073^(7/23) 2584072557861393 a001 14662949395604/433494437*2971215073^(7/23) 2584072557861393 a001 23725150497407/701408733*2971215073^(7/23) 2584072557861393 a001 9062201101803/267914296*2971215073^(7/23) 2584072557861393 a001 228826126/6765*2971215073^(7/23) 2584072557861393 a001 1322157322203/39088169*2971215073^(7/23) 2584072557861395 a001 505019158607/14930352*2971215073^(7/23) 2584072557861409 a001 192900153618/5702887*2971215073^(7/23) 2584072557861502 a001 10525900321/311187*2971215073^(7/23) 2584072557862139 a001 28143753123/832040*2971215073^(7/23) 2584072557866510 a001 10749957122/317811*2971215073^(7/23) 2584072557896464 a001 4106118243/121393*2971215073^(7/23) 2584072558028614 a001 11384387281/11592*46368^(7/23) 2584072558101773 a001 224056801/6624*2971215073^(7/23) 2584072559400209 a003 sin(Pi*10/81)*sin(Pi*17/71) 2584072559435821 a001 17393796001/17711*46368^(7/23) 2584072559436910 a007 Real Root Of -85*x^4+230*x^3+884*x^2-943*x-581 2584072559508980 a001 599074578/17711*2971215073^(7/23) 2584072559962089 m005 (1/2*3^(1/2)-1/8)/(2/11*gamma+2/11) 2584072565689505 r005 Im(z^2+c),c=-17/26+6/109*I,n=38 2584072567348743 m001 (Si(Pi)+GaussAGM)/(Psi(1,1/3)+ln(2)/ln(10)) 2584072569080968 a001 6643838879/6765*46368^(7/23) 2584072569154127 a001 228826127/6765*2971215073^(7/23) 2584072572064652 m001 (-BesselJ(1,1)+Cahen)/(GAMMA(2/3)-LambertW(1)) 2584072572166435 h005 exp(cos(Pi*10/37)+cos(Pi*24/59)) 2584072575761695 a007 Real Root Of 296*x^4+683*x^3-104*x^2+309*x+80 2584072577399209 a005 (1/cos(65/209*Pi))^73 2584072577934581 a007 Real Root Of -125*x^4-437*x^3-633*x^2-885*x-27 2584072580834796 r005 Im(z^2+c),c=-27/34+17/115*I,n=50 2584072584812993 a007 Real Root Of 110*x^4-478*x^3-976*x^2-395*x+175 2584072596721236 a005 (1/cos(8/143*Pi))^1396 2584072616150024 r009 Im(z^3+c),c=-11/24+6/55*I,n=27 2584072617104009 m001 (-GaussAGM+OneNinth)/(5^(1/2)+gamma) 2584072621568700 m005 (1/2*3^(1/2)+1/3)/(1/9*gamma+2/5) 2584072635189786 a001 33391061/34*46368^(7/23) 2584072635262945 a001 87403803/2584*2971215073^(7/23) 2584072635343557 m001 Pi^2*GAMMA(1/3)^2/exp(Zeta(7)) 2584072636629437 a007 Real Root Of 93*x^4+52*x^3-331*x^2+389*x-34 2584072640158175 a007 Real Root Of -518*x^4+803*x^3+875*x^2+953*x+204 2584072656978371 r005 Re(z^2+c),c=17/50+7/38*I,n=63 2584072659023858 r009 Re(z^3+c),c=-3/19+39/41*I,n=30 2584072663215163 a007 Real Root Of -322*x^4-478*x^3+661*x^2-282*x+967 2584072669513772 r005 Im(z^2+c),c=-121/106+11/42*I,n=49 2584072673847056 m001 (GAMMA(23/24)-Kac)/(Porter+StolarskyHarborth) 2584072679460425 r005 Re(z^2+c),c=11/98+31/49*I,n=57 2584072680685068 a007 Real Root Of 407*x^4-422*x^3-913*x^2-246*x+130 2584072700570334 l006 ln(4480/5801) 2584072709840221 r002 57th iterates of z^2 + 2584072711670660 a008 Real Root of x^4+x^2-21*x+3 2584072712424795 r009 Re(z^3+c),c=-19/90+48/55*I,n=21 2584072719151422 r009 Re(z^3+c),c=-37/106+14/39*I,n=7 2584072720621089 l006 ln(251/3326) 2584072728008461 m001 arctan(1/3)^sin(1)/(ErdosBorwein^sin(1)) 2584072728268982 m001 (Robbin+ZetaP(4))/(ln(gamma)+Magata) 2584072729969271 r005 Im(z^2+c),c=-7/86+31/37*I,n=32 2584072730389911 r002 6th iterates of z^2 + 2584072731178436 r005 Re(z^2+c),c=-21/26+1/93*I,n=36 2584072731458660 m002 -Pi^2/2+Pi^3*Tanh[Pi]^2 2584072732242767 m005 (4*Catalan+1/3)/(17/24+3/8*5^(1/2)) 2584072742006668 m005 (43/44+1/4*5^(1/2))/(2/5*gamma+4/11) 2584072754921672 r005 Re(z^2+c),c=31/114+3/22*I,n=22 2584072755305511 a008 Real Root of x^4-2*x^3+29*x^2+104*x-4 2584072760135954 r005 Im(z^2+c),c=29/90+13/32*I,n=32 2584072761009050 r005 Re(z^2+c),c=-23/74+7/48*I,n=3 2584072784456795 r009 Im(z^3+c),c=-7/15+3/31*I,n=45 2584072810058831 a007 Real Root Of -524*x^4+949*x^3+139*x^2+854*x-244 2584072811103611 m001 (gamma(1)-KhinchinLevy)/(Pi+3^(1/2)) 2584072815568179 m005 (1/2*Pi-4/9)/(7/10*Catalan-5) 2584072820366048 m001 1/FeigenbaumD^2/Bloch^2/exp(log(1+sqrt(2))) 2584072830276843 r005 Im(z^2+c),c=-27/122+50/51*I,n=3 2584072836088113 m002 7*Pi+Sinh[Pi]/3 2584072839983513 h001 (9/11*exp(1)+5/8)/(1/10*exp(2)+4/11) 2584072844486401 a007 Real Root Of -820*x^4-212*x^3+275*x^2+936*x+24 2584072852526381 a007 Real Root Of x^4+260*x^3+411*x^2-147*x+15 2584072871174662 m008 (2/5*Pi^4-1/5)/(1/2*Pi^5-3) 2584072876273746 r009 Re(z^3+c),c=-11/60+53/58*I,n=22 2584072896109677 a007 Real Root Of -156*x^4+126*x^3+917*x^2-900*x+681 2584072896167432 a007 Real Root Of 506*x^4-629*x^3+844*x^2-896*x-301 2584072897051905 s002 sum(A238753[n]/(n!^3),n=1..infinity) 2584072906892792 r005 Re(z^2+c),c=-35/118+10/39*I,n=22 2584072909942410 a007 Real Root Of 37*x^4+925*x^3-830*x^2-704*x-715 2584072913699685 a001 322*(1/2*5^(1/2)+1/2)^22*3^(9/14) 2584072919714132 m001 (Chi(1)*BesselI(1,2)+FeigenbaumB)/Chi(1) 2584072924313571 m001 (cos(1/12*Pi)-BesselK(1,1))/(Salem-Sierpinski) 2584072926654894 a007 Real Root Of 326*x^4+577*x^3-586*x^2+61*x-509 2584072944823305 m001 (exp(1/Pi)-exp(-1/2*Pi))/(ln(2)-ln(Pi)) 2584072945646939 r005 Re(z^2+c),c=-5/22+28/59*I,n=44 2584072952838548 r005 Im(z^2+c),c=-13/42+10/27*I,n=4 2584072955614083 l006 ln(6759/8752) 2584072962599854 m005 (1/2*exp(1)+3)/(4/5*2^(1/2)+5/9) 2584072969313001 r005 Im(z^2+c),c=17/98+33/61*I,n=15 2584072987717932 r005 Im(z^2+c),c=-3/118+13/43*I,n=14 2584072994654357 r009 Re(z^3+c),c=-8/25+16/55*I,n=4 2584072994814908 r001 40i'th iterates of 2*x^2-1 of 2584073012990728 a007 Real Root Of -360*x^4-869*x^3-79*x^2-787*x-449 2584073020552053 r005 Im(z^2+c),c=-8/13+11/34*I,n=13 2584073043586194 m001 (Niven+Riemann1stZero)/(Ei(1,1)-FeigenbaumB) 2584073045899778 r005 Im(z^2+c),c=-26/21+3/10*I,n=5 2584073059509492 m001 (Ei(1,1)+2*Pi/GAMMA(5/6))/(Zeta(3)+Zeta(5)) 2584073073649126 r009 Re(z^3+c),c=-13/54+56/59*I,n=3 2584073088306455 a001 969323029/987*46368^(7/23) 2584073088379617 a001 4769326/141*2971215073^(7/23) 2584073089101795 a001 521/18*(1/2*5^(1/2)+1/2)*18^(13/22) 2584073089942835 r009 Im(z^3+c),c=-51/122+8/55*I,n=10 2584073100203978 h001 (-3*exp(-2)+5)/(-2*exp(2)-3) 2584073113344862 m001 (FeigenbaumKappa+Robbin)/(1-Ei(1,1)) 2584073122038171 l006 ln(749/9925) 2584073122612276 r005 Im(z^2+c),c=25/106+5/34*I,n=17 2584073137147214 r002 55th iterates of z^2 + 2584073137253872 m001 exp(-1/2*Pi)+Conway*MasserGramainDelta 2584073153586586 m001 1/exp(GAMMA(5/6))^2*Robbin^2/sqrt(Pi) 2584073161673171 s002 sum(A128896[n]/(n*exp(n)+1),n=1..infinity) 2584073171227852 m001 ZetaQ(4)^(Pi^(1/2))*Riemann2ndZero^(Pi^(1/2)) 2584073177293516 r002 2th iterates of z^2 + 2584073177293516 r002 2th iterates of z^2 + 2584073178440498 a003 sin(Pi*17/79)-sin(Pi*29/84) 2584073183891948 r005 Re(z^2+c),c=-31/98+1/7*I,n=16 2584073190797279 r009 Re(z^3+c),c=-19/58+7/23*I,n=9 2584073192150140 h001 (-9*exp(2)+8)/(-4*exp(4)-8) 2584073195401318 m006 (5/6*Pi-2)/(5/Pi+4/5) 2584073202766113 m001 FeigenbaumAlpha^Shi(1)-ZetaQ(2) 2584073206190546 r009 Re(z^3+c),c=-9/16+31/58*I,n=2 2584073225664714 m001 Weierstrass*(Psi(2,1/3)+TravellingSalesman) 2584073229190227 m001 exp(1/2)^sin(Pi/12)*exp(1/2)^GAMMA(13/24) 2584073240238952 m006 (5/Pi-5/6)/(3*ln(Pi)-1/2) 2584073242040689 a001 7/832040*75025^(18/59) 2584073256165694 r009 Im(z^3+c),c=-9/28+11/52*I,n=16 2584073260650048 m001 FeigenbaumD^2/Conway*exp(cosh(1)) 2584073263618060 a005 (1/cos(18/197*Pi))^629 2584073264254302 m001 (Thue+ZetaQ(3))/(Artin-Rabbit) 2584073276927964 a003 sin(Pi*12/89)/cos(Pi*53/118) 2584073289871624 a007 Real Root Of -468*x^4-787*x^3+698*x^2-871*x+376 2584073298481249 r005 Im(z^2+c),c=-7/32+11/29*I,n=10 2584073314787324 m001 Landau/(HeathBrownMoroz+Riemann2ndZero) 2584073319082206 m001 ln(FeigenbaumB)*Kolakoski*BesselK(0,1)^2 2584073324358768 l006 ln(498/6599) 2584073341826961 m001 1/GAMMA(13/24)*FeigenbaumC*exp(Pi) 2584073341826961 m001 exp(Pi)/GAMMA(13/24)*FeigenbaumC 2584073354013062 m005 (1/2*Catalan-3/4)/(17/112+7/16*5^(1/2)) 2584073360685130 m001 (Ei(1)-Pi*csc(1/24*Pi)/GAMMA(23/24))/GaussAGM 2584073365376860 m005 (1/2*Pi+9/11)/(1/9*3^(1/2)-1/10) 2584073386824623 m008 (1/5*Pi^4-1)/(3/4*Pi^2-1/4) 2584073392039923 p004 log(29669/2239) 2584073411558596 m005 (1/2*3^(1/2)-3/7)/(3/7*gamma-5/12) 2584073416109432 m001 (Pi^(1/2)-CopelandErdos)/(Gompertz-ZetaQ(4)) 2584073425712523 a007 Real Root Of -379*x^4+407*x^3+632*x^2+888*x-277 2584073433691134 r009 Im(z^3+c),c=-3/25+38/45*I,n=20 2584073437158678 m001 (-exp(1/exp(1))+Thue)/(1+BesselI(0,1)) 2584073437847706 r005 Re(z^2+c),c=-87/110+1/17*I,n=44 2584073438401770 m001 ln(2)^(5^(1/2))*ln(2)^Backhouse 2584073438401770 m001 ln(2)^sqrt(5)*ln(2)^Backhouse 2584073450079757 m001 (ArtinRank2+ZetaQ(2))/(Si(Pi)+GAMMA(11/12)) 2584073456180654 a008 Real Root of x^4-2*x^3+13*x^2+43*x-208 2584073456972551 l006 ln(2279/2951) 2584073457890032 r005 Re(z^2+c),c=-39/56+4/17*I,n=39 2584073458663473 r005 Im(z^2+c),c=-3/7+25/51*I,n=27 2584073464102067 b008 -17/5+Pi 2584073464102067 m002 -17/5+Pi 2584073464906881 r005 Re(z^2+c),c=-63/62+3/28*I,n=28 2584073468688108 m001 1/Sierpinski^2*exp(Conway)/Zeta(1/2)^2 2584073472602910 r005 Im(z^2+c),c=25/102+7/58*I,n=6 2584073473362540 a001 3/11*76^(27/52) 2584073484779740 r005 Re(z^2+c),c=-19/98+11/20*I,n=64 2584073485209805 a007 Real Root Of -91*x^4-35*x^3+253*x^2-841*x-409 2584073492693109 m005 (1/2*Pi+4/11)/(3*5^(1/2)+7/9) 2584073498714625 m008 (5/6*Pi^3-1/5)/(3/5*Pi^2+4) 2584073507286565 m001 (GolombDickman-Lehmer)/(Ei(1)-Pi^(1/2)) 2584073519178573 r005 Im(z^2+c),c=19/86+10/63*I,n=11 2584073520460564 m008 (2*Pi^3+1/4)/(1/4*Pi^6+3/5) 2584073527765609 l006 ln(745/9872) 2584073533929549 m001 1/RenyiParking^2/Magata^2/ln(GAMMA(1/12))^2 2584073542844637 m001 (ZetaP(2)-ZetaQ(3))/(HardyLittlewoodC5+Mills) 2584073551866610 m009 (2*Psi(1,1/3)+2/3)/(3/4*Psi(1,1/3)+1/2) 2584073559176560 m001 (FransenRobinson-sin(1/5*Pi)*Trott)/Trott 2584073559292783 m001 (-FeigenbaumKappa+Gompertz)/(exp(1)+Ei(1,1)) 2584073570869309 m001 Zeta(5)^gamma(2)*Sierpinski 2584073572473452 m009 (3*Psi(1,1/3)-1/2)/(1/3*Psi(1,3/4)-2) 2584073588741041 m001 (exp(1/Pi)+Otter)/(GAMMA(2/3)+arctan(1/3)) 2584073591647168 r005 Im(z^2+c),c=-5/4+22/229*I,n=16 2584073592932671 a007 Real Root Of -827*x^4+896*x^3+150*x^2+709*x-205 2584073606487284 a007 Real Root Of -342*x^4-483*x^3+870*x^2-614*x-481 2584073627438047 m003 15/8+(3*Sqrt[5])/32+Sin[1/2+Sqrt[5]/2]/2 2584073631619490 r009 Im(z^3+c),c=-4/11+7/37*I,n=19 2584073634359259 a001 75025/199*322^(1/3) 2584073638251899 a005 (1/sin(95/231*Pi))^258 2584073638582724 r009 Re(z^3+c),c=-39/94+29/55*I,n=27 2584073651993461 l003 exp(75/79) 2584073665971266 m005 (1/2*exp(1)+2/11)/(3/5*gamma+1/4) 2584073668053650 r004 Re(z^2+c),c=7/30+3/5*I,z(0)=I,n=4 2584073671419717 r005 Im(z^2+c),c=-49/106+2/47*I,n=15 2584073682907886 a001 2/21*17711^(5/49) 2584073688769122 r005 Im(z^2+c),c=5/118+15/56*I,n=6 2584073695009850 m006 (1/2*Pi^2-1)/(2/3*exp(Pi)-1/5) 2584073708186929 m001 Sierpinski/(KhinchinLevy^gamma(3)) 2584073722398364 m002 3*Pi^2+Pi^6/4-Sinh[Pi] 2584073727014433 r009 Re(z^3+c),c=-5/13+25/59*I,n=29 2584073732152758 r002 13th iterates of z^2 + 2584073749793832 a007 Real Root Of 351*x^4-822*x^3-928*x^2-918*x-191 2584073751606691 m005 (1/2*exp(1)-10/11)/(5/7*exp(1)-1/5) 2584073768157779 r005 Re(z^2+c),c=-27/118+8/17*I,n=38 2584073788610263 a007 Real Root Of 409*x^4+896*x^3-138*x^2+477*x-622 2584073794330407 a007 Real Root Of 511*x^4-577*x^3-664*x^2-236*x+113 2584073795428116 r005 Re(z^2+c),c=-2/11+16/27*I,n=56 2584073800230989 m001 (GolombDickman-Kolakoski)/(ln(3)-BesselJ(1,1)) 2584073800931952 r005 Im(z^2+c),c=-83/86+17/64*I,n=9 2584073801806469 a007 Real Root Of -497*x^4+466*x^3+525*x^2+252*x-106 2584073804966018 a003 cos(Pi*34/111)-sin(Pi*24/77) 2584073805287418 m005 (1/2*exp(1)-11/12)/(2/5*exp(1)+5/8) 2584073808894167 r005 Im(z^2+c),c=-41/36+11/42*I,n=25 2584073816822117 r005 Re(z^2+c),c=7/86+29/55*I,n=3 2584073820626257 m001 (MertensB2+MinimumGamma)/(ln(5)-Cahen) 2584073822953706 r005 Im(z^2+c),c=3/22+9/41*I,n=17 2584073827836170 m005 (1/2*Catalan-5/12)/(2*gamma+4/9) 2584073834831988 a007 Real Root Of 375*x^4+862*x^3-89*x^2+297*x-485 2584073842156723 m001 exp(cos(1))^2/GAMMA(3/4)^2*log(2+sqrt(3)) 2584073852455877 m001 1/exp(BesselK(1,1))*Khintchine^2/GAMMA(7/12) 2584073855773753 a007 Real Root Of 256*x^4+476*x^3-407*x^2+422*x+607 2584073859729412 m005 (1/3*exp(1)+1/8)/(2/5*2^(1/2)-1/6) 2584073861624788 a007 Real Root Of 142*x^4-655*x^3+369*x^2+821*x+385 2584073868109197 h003 exp(Pi*(5^(1/2)*(19+11^(1/2))^(1/2))) 2584073879348423 r002 43th iterates of z^2 + 2584073882066750 r005 Re(z^2+c),c=-1/3+6/19*I,n=5 2584073890672966 a007 Real Root Of 313*x^4+204*x^3-627*x^2-987*x+292 2584073897794217 a007 Real Root Of 437*x^4+761*x^3-814*x^2+179*x-456 2584073909967762 h001 (3/4*exp(1)+1/5)/(3/11*exp(1)+1/8) 2584073911942894 m001 CopelandErdos+ReciprocalFibonacci^CareFree 2584073922116310 a007 Real Root Of 490*x^4+163*x^3-527*x^2-661*x+201 2584073937873203 l006 ln(247/3273) 2584073945513407 a007 Real Root Of -367*x^4-954*x^3-161*x^2-561*x-472 2584073947020522 l006 ln(6915/8954) 2584073950535406 a007 Real Root Of -273*x^4-930*x^3-424*x^2+343*x-157 2584073951196787 m001 (FeigenbaumMu-BesselI(1,1))^Otter 2584073951570600 r005 Im(z^2+c),c=7/46+13/62*I,n=21 2584073984808107 a007 Real Root Of 271*x^4+864*x^3+421*x^2+158*x+422 2584073984908895 a007 Real Root Of 459*x^4+876*x^3-690*x^2+2*x-738 2584074002008629 a005 (1/cos(8/229*Pi))^1302 2584074005248623 m005 (1/2*gamma-5/8)/(1/8*Pi+10/11) 2584074019223090 r009 Im(z^3+c),c=-25/42+9/37*I,n=37 2584074023508625 a007 Real Root Of 806*x^4-957*x^3+830*x^2-640*x+16 2584074024998032 a007 Real Root Of 288*x^4+724*x^3-248*x^2-865*x-928 2584074029721210 m001 (Tetranacci-Totient)/(3^(1/3)+FeigenbaumB) 2584074035501038 r005 Im(z^2+c),c=-23/56+26/59*I,n=49 2584074037951253 a007 Real Root Of -19*x^4+258*x^3+488*x^2-843*x-138 2584074043706462 p004 log(14957/11551) 2584074067528103 b008 Sin[(5*E)/52] 2584074068417857 r005 Re(z^2+c),c=-17/70+27/62*I,n=30 2584074069705113 r005 Im(z^2+c),c=-63/58+16/59*I,n=3 2584074071572878 r005 Re(z^2+c),c=-55/122+29/54*I,n=56 2584074075105372 a007 Real Root Of -395*x^4-669*x^3+773*x^2-673*x-832 2584074087138489 r002 63th iterates of z^2 + 2584074103699330 r005 Re(z^2+c),c=-75/98+1/32*I,n=6 2584074111788011 m001 1/Zeta(7)^2/exp(LandauRamanujan)/sqrt(Pi) 2584074125115601 m001 Cahen-GAMMA(5/6)*GAMMA(1/24) 2584074125115601 m001 Cahen-GAMMA(5/6)*Pi*csc(1/24*Pi)/GAMMA(23/24) 2584074131676346 a003 cos(Pi*17/90)/cos(Pi*40/101) 2584074137769162 r005 Im(z^2+c),c=-47/110+2/47*I,n=32 2584074139946894 r005 Im(z^2+c),c=19/86+4/25*I,n=27 2584074141863762 a003 cos(Pi*12/95)-cos(Pi*32/119) 2584074150538465 a007 Real Root Of 456*x^4-519*x^3-650*x^2-556*x+194 2584074156296002 a007 Real Root Of 986*x^4+202*x^3-161*x^2-759*x+199 2584074165897063 m001 (ln(3)+exp(1/exp(1)))/(Backhouse-Bloch) 2584074182703213 m001 gamma(2)*(Pi-Weierstrass) 2584074186038309 a007 Real Root Of 258*x^4+521*x^3-641*x^2-569*x+296 2584074187922007 l006 ln(4636/6003) 2584074202332325 m001 GAMMA(2/3)^2/GAMMA(13/24)^2*ln(cos(1))^2 2584074226999828 m004 10+3*ProductLog[Sqrt[5]*Pi]*Sinh[Sqrt[5]*Pi] 2584074250338921 s002 sum(A022053[n]/(n^3*10^n+1),n=1..infinity) 2584074255681894 r005 Im(z^2+c),c=-20/21+9/38*I,n=12 2584074258953145 m001 1/ln(FeigenbaumKappa)*MinimumGamma^2/exp(1) 2584074268319552 r009 Im(z^3+c),c=-9/28+11/52*I,n=15 2584074268466313 h001 (5/12*exp(2)+7/11)/(3/7*exp(1)+3/11) 2584074278409132 r005 Im(z^2+c),c=-7/34+49/60*I,n=27 2584074294828765 m005 (1/2*Zeta(3)-7/9)/(4/5*gamma+2/9) 2584074306090193 m001 (Champernowne+ZetaP(2))/(Zeta(3)+GAMMA(23/24)) 2584074315090236 r005 Im(z^2+c),c=-13/58+15/29*I,n=5 2584074327168898 m001 (ln(gamma)+ln(2^(1/2)+1))/(Cahen-Tetranacci) 2584074332097176 a007 Real Root Of 269*x^4+734*x^3-112*x^2-765*x-558 2584074332144199 a007 Real Root Of 293*x^4+573*x^3-792*x^2-860*x-111 2584074351900770 m001 FeigenbaumD^2*exp(MertensB1)^2*GAMMA(5/12) 2584074352432268 l006 ln(737/9766) 2584074352457302 m001 (gamma(3)-Conway)/(Pi+Ei(1)) 2584074353467559 m005 (1/12+1/6*5^(1/2))/(7/8*Catalan-5/8) 2584074411921497 a007 Real Root Of -138*x^4+93*x^3+879*x^2-677*x+139 2584074413675282 m001 (exp(1/Pi)-Rabbit)/(Riemann3rdZero+Sarnak) 2584074420117277 a007 Real Root Of -131*x^4-93*x^3+376*x^2-953*x-737 2584074426136469 l006 ln(6993/9055) 2584074426312229 m001 1/exp(log(1+sqrt(2)))^2*(3^(1/3))^2/sinh(1)^2 2584074426863077 r005 Re(z^2+c),c=-18/19+8/55*I,n=10 2584074427383818 a001 36/6119*843^(28/31) 2584074446385757 a008 Real Root of x^2-x-66516 2584074451512178 r009 Re(z^3+c),c=-7/22+15/53*I,n=10 2584074461664582 a007 Real Root Of 272*x^4+984*x^3+732*x^2+392*x+976 2584074461715056 m001 (exp(1)+BesselI(0,1))/(cos(1/12*Pi)+Stephens) 2584074466578798 r002 6th iterates of z^2 + 2584074472558039 h001 (4/7*exp(2)+5/7)/(5/12*exp(1)+7/9) 2584074480708721 a001 13/7*18^(4/35) 2584074480721928 m005 (1/2*Pi-9/10)/(2*Zeta(3)-5) 2584074490109225 m005 (1/2*exp(1)+3/8)/(-17/22+1/22*5^(1/2)) 2584074491878684 a007 Real Root Of 383*x^4+487*x^3-962*x^2+992*x+313 2584074493438088 m009 (4*Catalan+1/2*Pi^2-1/2)/(1/4*Pi^2+2/3) 2584074495519789 a007 Real Root Of 651*x^4-915*x^3+46*x^2-504*x-152 2584074506513945 m005 (1/2*Catalan-7/8)/(46/77+5/11*5^(1/2)) 2584074509091778 m001 GAMMA(17/24)+TreeGrowth2nd+Thue 2584074516308000 m001 (Pi-gamma(3))/(GolombDickman-Tribonacci) 2584074527829678 g007 Psi(2,1/11)+Psi(2,9/10)-14*Zeta(3)-Psi(2,3/11) 2584074530793189 m001 (ln(3)-Ei(1,1))/(CopelandErdos-Stephens) 2584074558370988 r005 Im(z^2+c),c=-13/36+20/47*I,n=53 2584074561403814 l006 ln(490/6493) 2584074562265985 a007 Real Root Of -430*x^4-774*x^3+723*x^2-253*x+336 2584074566931857 m001 PisotVijayaraghavan/(GAMMA(2/3)-sin(1)) 2584074573121303 m001 (2^(1/2)+Porter)/(-RenyiParking+Thue) 2584074581102446 a007 Real Root Of 143*x^4+272*x^3-489*x^2-357*x+660 2584074588085730 m001 (PlouffeB+Porter)/(ln(2+3^(1/2))-BesselI(1,1)) 2584074589551766 r002 3th iterates of z^2 + 2584074600720711 m005 (1/2*gamma+1/2)/(7/8*Zeta(3)+2) 2584074603859139 m001 Sierpinski^2*FibonacciFactorial/exp(gamma)^2 2584074622830830 r005 Re(z^2+c),c=-19/18+61/247*I,n=26 2584074627340053 m008 (2/3*Pi^5+3/5)/(1/4*Pi^3+1/6) 2584074628372672 a007 Real Root Of -789*x^4+377*x^3-738*x^2-36*x+50 2584074630942047 a007 Real Root Of 153*x^4-910*x^3-864*x^2-837*x+289 2584074631367943 s002 sum(A099707[n]/(pi^n-1),n=1..infinity) 2584074640638036 m001 (5^(1/2)+Cahen)/(CareFree+HardyLittlewoodC5) 2584074645298303 a003 sin(Pi*33/97)/cos(Pi*23/59) 2584074654978823 a007 Real Root Of -557*x^4+479*x^3-100*x^2+731*x-188 2584074655645776 a001 233/199*3571^(16/17) 2584074660746795 a007 Real Root Of -276*x^4-607*x^3+417*x^2+695*x+844 2584074672427874 h001 (2/11*exp(2)+3/10)/(3/4*exp(2)+9/11) 2584074675477095 m001 (-PlouffeB+ThueMorse)/(1+exp(1/exp(1))) 2584074686125901 m001 (Psi(1,1/3)+gamma)/(-sin(1/5*Pi)+ZetaP(3)) 2584074686950429 m001 1/ln(FeigenbaumD)^2/Kolakoski*sqrt(2)^2 2584074697283359 m005 (1/3*gamma+1/5)/(11/12*Zeta(3)+5/12) 2584074702499202 a001 1/271443*76^(53/54) 2584074716384587 b008 (3+Sqrt[3+Pi])!! 2584074716674664 q001 7/27089 2584074724362885 m005 (1/3*Catalan-1/11)/(4/7*Zeta(3)+1/7) 2584074744364202 a007 Real Root Of 240*x^4+603*x^3-514*x^2-854*x+929 2584074771515679 l006 ln(733/9713) 2584074778109691 m001 (FeigenbaumB+Sarnak)/(Chi(1)-CopelandErdos) 2584074783516202 a007 Real Root Of 312*x^4+829*x^3-108*x^2-500*x-178 2584074783876207 a001 843/4181*514229^(1/53) 2584074791693273 a003 sin(Pi*9/58)-sin(Pi*13/79) 2584074794645234 m001 KhinchinLevy/Pi/MinimumGamma 2584074802849863 m001 Pi*Psi(1,1/3)-2*Pi/GAMMA(5/6)*GAMMA(11/12) 2584074803519914 r005 Im(z^2+c),c=31/106+1/16*I,n=20 2584074803801454 m006 (2/3*ln(Pi)-3)/(2/5*exp(Pi)-3/5) 2584074804193820 r005 Re(z^2+c),c=13/118+19/45*I,n=9 2584074804587625 r005 Re(z^2+c),c=-25/18+69/130*I,n=2 2584074810783380 m001 Riemann1stZero/(BesselI(1,1)^Shi(1)) 2584074812066699 q001 1/3869857 2584074820577171 r009 Re(z^3+c),c=-12/29+27/56*I,n=40 2584074821469176 a001 233/199*9349^(16/19) 2584074829091642 v002 sum(1/(2^n*(31*n^2-54*n+47)),n=1..infinity) 2584074840105265 r009 Re(z^3+c),c=-31/82+16/39*I,n=38 2584074840537736 m001 (gamma(2)+Magata)/(BesselJ(0,1)-ln(gamma)) 2584074840645279 a001 89/521*24476^(20/21) 2584074842826175 r005 Im(z^2+c),c=1/122+16/57*I,n=5 2584074843079405 a001 233/199*24476^(16/21) 2584074844206083 a001 89/521*64079^(20/23) 2584074844679867 a001 89/521*167761^(4/5) 2584074844753317 a001 89/521*20633239^(4/7) 2584074844753321 a001 89/521*2537720636^(4/9) 2584074844753321 a001 89/521*(1/2+1/2*5^(1/2))^20 2584074844753321 a001 89/521*23725150497407^(5/16) 2584074844753321 a001 89/521*505019158607^(5/14) 2584074844753321 a001 89/521*73681302247^(5/13) 2584074844753321 a001 89/521*28143753123^(2/5) 2584074844753321 a001 89/521*10749957122^(5/12) 2584074844753321 a001 89/521*4106118243^(10/23) 2584074844753321 a001 89/521*1568397607^(5/11) 2584074844753321 a001 89/521*599074578^(10/21) 2584074844753321 a001 89/521*228826127^(1/2) 2584074844753321 a001 89/521*87403803^(10/19) 2584074844753322 a001 89/521*33385282^(5/9) 2584074844753330 a001 89/521*12752043^(10/17) 2584074844753389 a001 89/521*4870847^(5/8) 2584074844753819 a001 89/521*1860498^(2/3) 2584074844756976 a001 89/521*710647^(5/7) 2584074844780299 a001 89/521*271443^(10/13) 2584074844953638 a001 89/521*103682^(5/6) 2584074845928049 a001 233/199*64079^(16/23) 2584074846251129 a001 89/521*39603^(10/11) 2584074846365839 a001 233/199*(1/2+1/2*5^(1/2))^16 2584074846365839 a001 233/199*23725150497407^(1/4) 2584074846365839 a001 233/199*73681302247^(4/13) 2584074846365839 a001 233/199*10749957122^(1/3) 2584074846365839 a001 233/199*4106118243^(8/23) 2584074846365839 a001 233/199*1568397607^(4/11) 2584074846365839 a001 233/199*599074578^(8/21) 2584074846365839 a001 233/199*228826127^(2/5) 2584074846365839 a001 233/199*87403803^(8/19) 2584074846365840 a001 233/199*33385282^(4/9) 2584074846365847 a001 233/199*12752043^(8/17) 2584074846365893 a001 233/199*4870847^(1/2) 2584074846366237 a001 233/199*1860498^(8/15) 2584074846368763 a001 233/199*710647^(4/7) 2584074846387421 a001 233/199*271443^(8/13) 2584074846526092 a001 233/199*103682^(2/3) 2584074847564086 a001 233/199*39603^(8/11) 2584074855400034 a001 233/199*15127^(4/5) 2584074857036502 m001 (Niven+ZetaP(2))/(Zeta(1,2)+Pi^(1/2)) 2584074889024568 a007 Real Root Of -36*x^4-944*x^3-393*x^2-975*x+265 2584074894682165 l006 ln(2357/3052) 2584074905360022 m001 (BesselK(0,1)-Zeta(5))/(-Riemann3rdZero+Salem) 2584074913778134 a007 Real Root Of -324*x^4+27*x^3-413*x^2+269*x+99 2584074914896941 r005 Im(z^2+c),c=-31/114+23/58*I,n=34 2584074915167277 a001 233/199*5778^(8/9) 2584074919693781 m001 FeigenbaumD^(AlladiGrinstead/sin(1)) 2584074943388224 r005 Im(z^2+c),c=25/66+21/61*I,n=40 2584074952491548 a005 (1/cos(19/149*Pi))^179 2584074954934119 a007 Real Root Of 177*x^4+762*x^3+709*x^2+144*x+894 2584074960025417 h001 (7/8*exp(2)+5/8)/(10/11*exp(1)+3/11) 2584074977944972 r005 Im(z^2+c),c=-45/118+19/44*I,n=61 2584074980899893 m005 (1/3*3^(1/2)-1/8)/(7/10*Zeta(3)+10/11) 2584074984823167 s002 sum(A010780[n]/(n^2*pi^n+1),n=1..infinity) 2584074988030023 m001 ln(2)/ln(10)+(5^(1/2))^GAMMA(23/24) 2584074992969661 a001 5778/13*13^(35/51) 2584075010487965 a005 (1/cos(7/197*Pi))^1996 2584075021673562 a007 Real Root Of 80*x^4+253*x^3+114*x^2+27*x+107 2584075030536956 m001 (GAMMA(11/12)+Tetranacci)/(ln(Pi)-gamma(2)) 2584075040393655 a007 Real Root Of -408*x^4+236*x^3+474*x^2+844*x-252 2584075043768533 a007 Real Root Of 237*x^4+263*x^3-855*x^2+67*x-147 2584075051672549 a005 (1/cos(1/53*Pi))^1850 2584075052270179 m001 exp(1/exp(1))+GAMMA(7/12)^HardyLittlewoodC4 2584075052968253 m005 (1/2*Catalan+1/7)/(6/7*gamma-8/11) 2584075065394297 m001 (FeigenbaumC+Khinchin)/(GAMMA(5/6)-Conway) 2584075071310533 p003 LerchPhi(1/125,2,61/98) 2584075071489372 a007 Real Root Of 65*x^4+250*x^3+302*x^2-17*x-645 2584075082008096 a007 Real Root Of 422*x^4+962*x^3-503*x^2-789*x-897 2584075092503700 a007 Real Root Of 655*x^4-45*x^3+709*x^2-950*x+196 2584075094775848 r005 Im(z^2+c),c=-43/60+17/40*I,n=4 2584075108057446 m001 (GAMMA(13/24)-GAMMA(23/24))/(Pi-BesselJ(0,1)) 2584075112984833 m001 Zeta(1/2)*exp(GAMMA(1/24))^2*exp(1)^2 2584075119532099 m005 (1/2*3^(1/2)+5/6)/(2/9*3^(1/2)+3/11) 2584075141287987 g007 Psi(2,8/9)-Psi(2,9/11)-Psi(2,5/7)-Psi(2,1/5) 2584075170232973 m001 FeigenbaumKappa+GlaisherKinkelin-ZetaQ(2) 2584075170880422 p004 log(15361/11863) 2584075171797869 r009 Re(z^3+c),c=-3/106+11/59*I,n=3 2584075173095944 q001 1045/4044 2584075180133191 m001 (KhinchinLevy+MertensB1)/(Catalan-Psi(2,1/3)) 2584075187115526 m001 (-MertensB2+ThueMorse)/(Zeta(1,2)-exp(Pi)) 2584075189241262 a007 Real Root Of 247*x^4+335*x^3-430*x^2+655*x-669 2584075191523504 m001 Riemann3rdZero-OneNinth-Zeta(1,2) 2584075191694369 r009 Re(z^3+c),c=-25/66+7/17*I,n=38 2584075195197905 l006 ln(243/3220) 2584075198125976 m005 (5/6*exp(1)+1/3)/(4/5*Catalan-5/6) 2584075202560447 a007 Real Root Of -683*x^4+658*x^3-410*x^2+651*x+210 2584075206274692 r005 Im(z^2+c),c=-59/60+13/47*I,n=21 2584075229155758 r005 Im(z^2+c),c=-9/10+9/40*I,n=57 2584075229570254 r009 Re(z^3+c),c=-5/32+35/39*I,n=46 2584075248236542 m001 ln(gamma)*ZetaQ(4)+Sierpinski 2584075254846598 r005 Im(z^2+c),c=-16/25+11/39*I,n=12 2584075255222971 m006 (2*Pi^2+1/4)/(3/4*Pi^2+1/3) 2584075255222971 m008 (2*Pi^2+1/4)/(3/4*Pi^2+1/3) 2584075267086493 a001 322/1836311903*3^(6/17) 2584075287859924 r002 36th iterates of z^2 + 2584075288597410 r005 Re(z^2+c),c=-5/16+8/47*I,n=11 2584075294461011 m005 (1/2*2^(1/2)+3)/(4/9*gamma-2/5) 2584075294513693 m001 1/2*Bloch/Pi*3^(1/2)*GAMMA(2/3)*Porter 2584075298062807 m001 (Lehmer+Trott)/(Cahen-HardyLittlewoodC5) 2584075300293869 s002 sum(A230489[n]/(n*exp(n)-1),n=1..infinity) 2584075301590540 r005 Im(z^2+c),c=-5/27+16/45*I,n=7 2584075304587151 a001 55/3*3571^(39/44) 2584075315059883 m001 (Catalan+exp(1/Pi))/(Trott2nd+Thue) 2584075335002838 a003 cos(Pi*2/61)-cos(Pi*9/113) 2584075339312145 m001 Robbin/HardHexagonsEntropy^2/ln(Zeta(5))^2 2584075340419301 m001 GAMMA(5/6)^2*BesselJ(0,1)^2*exp(sqrt(Pi))^2 2584075342059223 m001 exp(1/exp(1))/FeigenbaumKappa/ThueMorse 2584075342936253 r009 Re(z^3+c),c=-29/70+29/60*I,n=53 2584075345584229 a007 Real Root Of 214*x^4+697*x^3+530*x^2+252*x-403 2584075347454159 r005 Im(z^2+c),c=7/106+1/45*I,n=4 2584075349416346 a007 Real Root Of 232*x^4+290*x^3-749*x^2+495*x+940 2584075351195825 r005 Re(z^2+c),c=-19/98+7/8*I,n=10 2584075353003594 l006 ln(7149/9257) 2584075357974606 r005 Im(z^2+c),c=-13/27+12/23*I,n=54 2584075365315802 m001 AlladiGrinstead-Tribonacci^OneNinth 2584075367324678 m001 GAMMA(1/3)*TreeGrowth2nd^2/ln(Zeta(9)) 2584075385178217 r005 Re(z^2+c),c=-37/122+11/49*I,n=24 2584075391982054 m001 (Tetranacci+Thue)/(Artin+CareFree) 2584075394689591 r005 Im(z^2+c),c=19/86+4/25*I,n=28 2584075395251552 r005 Im(z^2+c),c=-9/8+49/186*I,n=49 2584075421304704 m001 Ei(1)^(2/3)/Lehmer 2584075430305889 a007 Real Root Of 414*x^4+713*x^3-914*x^2+155*x+347 2584075444928960 a005 (1/cos(34/235*Pi))^439 2584075450291171 m005 (1/3*2^(1/2)+2/7)/(4/5*Pi+5/12) 2584075455782647 r005 Re(z^2+c),c=-9/32+11/34*I,n=11 2584075458957477 m005 (1/3*Pi-2/11)/(7/8*Pi+3/5) 2584075459165792 a008 Real Root of (1+2*x-6*x^2+6*x^3+6*x^4+5*x^5) 2584075459573287 a007 Real Root Of 330*x^4+903*x^3-78*x^2-553*x-41 2584075466860859 r005 Re(z^2+c),c=-6/23+15/38*I,n=14 2584075478030267 a001 5/3461452808002*3^(9/17) 2584075480669068 m005 (4*gamma-5/6)/(1/4*Catalan-4/5) 2584075482831171 a007 Real Root Of 485*x^4+904*x^3-541*x^2+824*x-285 2584075485407378 m003 8*E^(-1/2-Sqrt[5]/2)+Sin[1/2+Sqrt[5]/2]^2 2584075501321260 a007 Real Root Of -177*x^4-433*x^3+402*x^2+852*x-62 2584075508536867 a007 Real Root Of -469*x^4-849*x^3+947*x^2+91*x+174 2584075514225142 m005 (1/2*5^(1/2)-7/8)/(5/12*gamma+7/10) 2584075522037721 m001 Trott2nd*(LaplaceLimit-Psi(1,1/3)) 2584075522552606 m001 PlouffeB/(HeathBrownMoroz+Tribonacci) 2584075547775793 m001 (sin(1)+Rabbit)/(-Salem+Stephens) 2584075557048521 k005 Champernowne real with floor(sqrt(2)*(105*n+78)) 2584075557048531 k005 Champernowne real with floor(sqrt(3)*(86*n+63)) 2584075567058541 k001 Champernowne real with 149*n+109 2584075567058541 k005 Champernowne real with floor(log(2)*(215*n+158)) 2584075567068551 k005 Champernowne real with floor(Catalan*(163*n+119)) 2584075567068551 k005 Champernowne real with floor(log(3)*(136*n+99)) 2584075577068561 k005 Champernowne real with floor(exp(1)*(55*n+40)) 2584075578434223 l006 ln(4792/6205) 2584075585636454 m005 (1/2*gamma-1/9)/(1/4*2^(1/2)+1/3) 2584075604620996 m001 (LambertW(1)+TwinPrimes)/Weierstrass 2584075610923197 m002 1+ProductLog[Pi]^2+5*Sech[Pi] 2584075616756690 a007 Real Root Of 326*x^4+317*x^3-970*x^2+652*x-904 2584075617236373 p001 sum(1/(217*n+29)/n/(16^n),n=1..infinity) 2584075623555063 l006 ln(725/9607) 2584075625716497 a007 Real Root Of -134*x^4-406*x^3-674*x^2-974*x+953 2584075631049869 m001 (PlouffeB+TravellingSalesman)/(Artin-GaussAGM) 2584075648469857 b008 AiryAiPrime[-1/21] 2584075661023351 r005 Im(z^2+c),c=-29/66+21/44*I,n=37 2584075673774830 a007 Real Root Of -475*x^4+79*x^3-429*x^2+193*x+82 2584075695285832 r002 14th iterates of z^2 + 2584075703380024 m005 (1/3*exp(1)+3/4)/(1/12*5^(1/2)+5/11) 2584075710940293 a001 46368/199*322^(5/12) 2584075716248977 m001 exp(GAMMA(1/6))^2*(2^(1/3))*sqrt(3)^2 2584075719794696 m001 (Cahen+Lehmer)/(GAMMA(11/12)-gamma) 2584075728720196 a007 Real Root Of -338*x^4-996*x^3-536*x^2-380*x+482 2584075731093804 a007 Real Root Of 102*x^4-124*x^3-658*x^2+611*x-715 2584075736922544 r005 Re(z^2+c),c=-41/110+8/51*I,n=2 2584075738080707 r002 15th iterates of z^2 + 2584075744192163 a007 Real Root Of -195*x^4-887*x^3-818*x^2+795*x+906 2584075749362015 r002 28th iterates of z^2 + 2584075750870032 m005 (1/3*exp(1)-3/4)/(2/7*2^(1/2)+1/5) 2584075760310223 m005 (1/3*5^(1/2)-2/3)/(7/8*exp(1)+2/3) 2584075760589687 a007 Real Root Of -423*x^4-795*x^3+539*x^2-844*x-637 2584075761541663 m001 (KhinchinLevy+Salem)/(Si(Pi)+Zeta(1,2)) 2584075772029837 m001 2*Pi/GAMMA(5/6)-RenyiParking+Riemann2ndZero 2584075777239290 m001 ln(3)+(3^(1/3))+exp(-Pi) 2584075778520800 h001 (7/10*exp(2)+2/7)/(2/3*exp(1)+3/10) 2584075780045741 m001 (Si(Pi)-ln(Pi))/(-ln(2+3^(1/2))+BesselI(1,2)) 2584075782618897 a007 Real Root Of -203*x^4-810*x^3-734*x^2-132*x-365 2584075784277288 m005 (1/2*exp(1)-11/12)/(1/3*gamma-4/11) 2584075791778816 m005 (1/2*Catalan-1/7)/(7/11*Zeta(3)+5/11) 2584075793178493 r005 Im(z^2+c),c=-3/40+11/34*I,n=15 2584075795204953 m001 (Bloch-ln(2)/ln(10))/(-LaplaceLimit+ZetaQ(4)) 2584075801431805 l006 ln(7227/9358) 2584075808717667 a001 6*(1/2*5^(1/2)+1/2)^20*3^(20/21) 2584075811008817 m001 (Porter+Weierstrass)/(polylog(4,1/2)-Lehmer) 2584075811822888 a003 sin(Pi*23/106)-sin(Pi*23/101) 2584075816962857 r005 Im(z^2+c),c=7/46+13/62*I,n=20 2584075822751822 m005 (1/3*2^(1/2)+1/3)/(7/9*exp(1)+1) 2584075827471224 m001 1/LambertW(1)^2/ln(GAMMA(19/24))^2*Zeta(1/2)^2 2584075831417039 r005 Im(z^2+c),c=3/17+6/31*I,n=15 2584075836565494 m001 1/TreeGrowth2nd^2*ln(Si(Pi))^2*log(2+sqrt(3)) 2584075839510988 l006 ln(482/6387) 2584075839646066 r005 Re(z^2+c),c=-19/86+14/31*I,n=13 2584075854679594 m005 (1/3*gamma+1/7)/(1/7*exp(1)+10/11) 2584075856192566 r002 42th iterates of z^2 + 2584075866625589 m001 GAMMA(19/24)/(gamma(1)+Trott2nd) 2584075878521271 r005 Im(z^2+c),c=15/52+2/23*I,n=56 2584075883874676 q001 899/3479 2584075887204915 r005 Re(z^2+c),c=-17/70+31/53*I,n=15 2584075892307568 a001 55/33385282*18^(20/21) 2584075905447807 m001 (GAMMA(2/3)-ln(2))/(Ei(1)+LaplaceLimit) 2584075905627492 p001 sum(1/(235*n+68)/n/(128^n),n=1..infinity) 2584075910260807 m001 (Lehmer-ThueMorse)/(sin(1/5*Pi)-GAMMA(17/24)) 2584075927809672 m001 exp(BesselJ(1,1))^2/Tribonacci^2*GAMMA(1/4) 2584075932993946 r009 Re(z^3+c),c=-51/118+21/40*I,n=39 2584075933661110 r009 Re(z^3+c),c=-37/94+19/43*I,n=52 2584075940493118 m001 OrthogonalArrays^ln(gamma)+Riemann3rdZero 2584075942301909 m001 (Zeta(1,-1)-cos(1))/(GAMMA(23/24)+Niven) 2584075966492532 r005 Re(z^2+c),c=-2/31+32/51*I,n=9 2584075973258647 r002 27th iterates of z^2 + 2584075979260994 m005 (1/3*3^(1/2)+1/8)/(5/6*Pi+1/10) 2584075991944487 r009 Re(z^3+c),c=-37/98+25/61*I,n=19 2584075993301332 r009 Re(z^3+c),c=-1/26+20/43*I,n=10 2584075993898327 a007 Real Root Of 210*x^4+361*x^3-190*x^2+693*x-75 2584076012841043 a007 Real Root Of -12*x^4-332*x^3-554*x^2+312*x-80 2584076016311563 r005 Re(z^2+c),c=-23/90+28/51*I,n=20 2584076023492703 m004 -1/6+125*Pi+E^(Sqrt[5]*Pi)*Log[Sqrt[5]*Pi] 2584076028400365 m001 (3^(1/3)+Tetranacci)/(2^(1/2)-exp(1)) 2584076033319694 m005 (1/2*Pi+1/9)/(1/9*2^(1/2)-2/9) 2584076034232864 a001 64300051206/7*377^(9/16) 2584076041139070 h001 (5/9*exp(2)+4/5)/(1/6*exp(2)+2/3) 2584076043336669 m005 (1/2*exp(1)-3)/(1/5*Catalan-9/11) 2584076045070235 r005 Re(z^2+c),c=-9/50+31/52*I,n=59 2584076047571545 r005 Im(z^2+c),c=-29/82+11/26*I,n=42 2584076048910614 a001 2/305*34^(7/18) 2584076052716180 m005 (1/2*5^(1/2)+6)/(4/7*3^(1/2)-5/7) 2584076056664958 l006 ln(721/9554) 2584076057762724 r002 50th iterates of z^2 + 2584076060510317 g005 GAMMA(7/11)^2*GAMMA(5/8)/GAMMA(6/7) 2584076064853476 a007 Real Root Of 301*x^4+284*x^3-960*x^2+747*x-180 2584076070588820 s002 sum(A123214[n]/(10^n-1),n=1..infinity) 2584076077100074 a007 Real Root Of -816*x^4+628*x^3-324*x^2+433*x+148 2584076117107041 r005 Im(z^2+c),c=-39/70+17/48*I,n=17 2584076129771375 m006 (4/5/Pi+3/4)/(4*Pi^2-3/5) 2584076132905365 a007 Real Root Of 403*x^4+77*x^3+296*x^2-998*x+235 2584076135944698 m001 (Artin-LandauRamanujan)/(MertensB2+PlouffeB) 2584076138185859 r005 Re(z^2+c),c=7/90+18/53*I,n=29 2584076150210002 r005 Im(z^2+c),c=-19/56+18/43*I,n=55 2584076166244544 a007 Real Root Of -146*x^4+744*x^3+406*x^2+262*x-107 2584076171206320 a007 Real Root Of 358*x^4+999*x^3+456*x^2+907*x+574 2584076172713267 a008 Real Root of x^4-x^3-54*x^2+223*x-243 2584076173639189 h001 (-2*exp(4)-4)/(-4*exp(7)+6) 2584076173684916 r005 Re(z^2+c),c=-117/122+22/47*I,n=2 2584076174529653 m001 (-Zeta(5)+2/3)/(-LambertW(1)+2) 2584076182142799 r005 Im(z^2+c),c=-14/27+9/29*I,n=5 2584076189943346 a007 Real Root Of -665*x^4-642*x^3-145*x^2+408*x+107 2584076192654205 r005 Re(z^2+c),c=-3/34+20/33*I,n=33 2584076194018590 a001 370248451/377*46368^(7/23) 2584076194091765 a001 12752043/377*2971215073^(7/23) 2584076209032972 m001 LandauRamanujan^2*Cahen^2/exp(sqrt(5)) 2584076209375502 m005 (1/2*Pi+3/4)/(11/12*Zeta(3)-2) 2584076212790540 m001 (ln(5)+2)/(-GAMMA(5/24)+3) 2584076218675620 m005 (-7/20+1/4*5^(1/2))/(7/8*2^(1/2)-3/7) 2584076231799277 r009 Re(z^3+c),c=-29/54+10/27*I,n=48 2584076240283706 l006 ln(2435/3153) 2584076247274000 a007 Real Root Of 73*x^4-163*x^3-555*x^2+833*x-209 2584076253552202 a005 (1/cos(16/227*Pi))^411 2584076254036578 h003 exp(Pi*(17/9-5^(2/3))) 2584076255308470 m005 (-29/44+1/4*5^(1/2))/(11/12*2^(1/2)-10/11) 2584076261416192 m001 HardyLittlewoodC4-Trott2nd^Chi(1) 2584076269059364 m001 1/exp(Kolakoski)^2/FransenRobinson^2/Zeta(9) 2584076271786643 r005 Im(z^2+c),c=-27/58+1/22*I,n=14 2584076274147347 r005 Im(z^2+c),c=-3/58+16/51*I,n=15 2584076302041334 r009 Re(z^3+c),c=-7/52+25/33*I,n=20 2584076309215013 h001 (1/4*exp(2)+7/11)/(1/10*exp(2)+2/9) 2584076311438076 r009 Re(z^3+c),c=-3/19+17/18*I,n=34 2584076322358685 a007 Real Root Of 331*x^4-915*x^3+138*x^2-954*x-273 2584076326745980 m001 (FeigenbaumB-FeigenbaumD)/(gamma(1)-Cahen) 2584076336234234 a007 Real Root Of 288*x^4-836*x^3+976*x^2-252*x-146 2584076344144342 a001 1364/4181*75025^(22/37) 2584076359283045 r005 Im(z^2+c),c=-61/90+8/31*I,n=26 2584076366736934 a007 Real Root Of 878*x^4+14*x^3-619*x^2-758*x+20 2584076380665903 m001 (CopelandErdos+ZetaP(3))/(ln(Pi)-Conway) 2584076391588822 a001 322/6765*8^(48/59) 2584076394621483 m001 Artin/Paris/Porter 2584076403103282 r009 Re(z^3+c),c=-23/58+18/43*I,n=12 2584076405264328 a007 Real Root Of 411*x^4+944*x^3-482*x^2-422*x+91 2584076411457838 a001 1149851/5*13^(1/22) 2584076421574322 r005 Im(z^2+c),c=-29/52+2/43*I,n=38 2584076424363690 r005 Im(z^2+c),c=-23/31+4/59*I,n=39 2584076432215478 a007 Real Root Of 23*x^4-549*x^3+994*x^2+584*x+301 2584076438870400 s002 sum(A043352[n]/(n^3*2^n+1),n=1..infinity) 2584076450218786 s001 sum(exp(-Pi/3)^n*A239860[n],n=1..infinity) 2584076450637714 m001 (3^(1/3)+GAMMA(5/6)*Mills)/GAMMA(5/6) 2584076456288708 m001 (Zeta(3)-BesselI(0,2))/(CareFree-LaplaceLimit) 2584076471454596 h001 (-3*exp(1)-10)/(-3*exp(3)-10) 2584076471903946 r005 Re(z^2+c),c=-13/62+20/33*I,n=41 2584076485824729 m001 Stephens^HardHexagonsEntropy*Stephens^Shi(1) 2584076491567596 a007 Real Root Of 584*x^4-239*x^3-628*x^2-838*x+260 2584076493156333 m001 1/exp(LandauRamanujan)*FeigenbaumDelta/sin(1) 2584076494607129 l006 ln(239/3167) 2584076494607129 p004 log(3167/239) 2584076494865989 a007 Real Root Of 619*x^4-531*x^3+835*x^2-841*x-285 2584076494888314 m001 GAMMA(3/4)/Catalan^2/exp(sqrt(3)) 2584076498932028 s002 sum(A207840[n]/(n^3*2^n-1),n=1..infinity) 2584076528882395 a001 2/271443*76^(23/28) 2584076532144348 a007 Real Root Of -x^4+173*x^3-194*x^2-483*x-397 2584076533876672 a007 Real Root Of 712*x^4+455*x^3+716*x^2-549*x-185 2584076567889979 a007 Real Root Of 111*x^4+369*x^3+286*x^2+41*x-386 2584076568902786 a003 cos(Pi*2/117)-cos(Pi*1/35) 2584076570451928 h001 (1/5*exp(2)+3/7)/(9/10*exp(2)+8/11) 2584076579325103 a001 4181/47*4^(10/13) 2584076579609218 r005 Re(z^2+c),c=-5/19+18/29*I,n=11 2584076587876578 m001 (sin(1)+ln(2^(1/2)+1))/(Champernowne+Landau) 2584076587948988 p001 sum(1/(601*n+397)/(16^n),n=0..infinity) 2584076590643073 m001 (2^(1/3))*polylog(4,1/2)^BesselJZeros(0,1) 2584076601985929 r005 Im(z^2+c),c=-87/94+7/27*I,n=8 2584076606066726 r005 Re(z^2+c),c=-4/5+5/108*I,n=36 2584076633492238 m002 -25+3/Pi^2-Log[Pi] 2584076635448454 m005 (1/3*gamma-2/3)/(5/6*Zeta(3)-9/11) 2584076639231392 m005 (1/2*5^(1/2)+4/7)/(1/6*gamma-3/4) 2584076653795088 m001 Bloch^GAMMA(23/24)*Bloch^StronglyCareFree 2584076659264193 a007 Real Root Of -91*x^4+57*x^3+472*x^2-545*x+481 2584076664794476 a001 4/89*610^(3/11) 2584076669862814 l006 ln(7383/9560) 2584076672616860 m001 ZetaP(2)^ReciprocalLucas*FibonacciFactorial 2584076675003459 a007 Real Root Of -495*x^4+538*x^3+331*x^2+514*x-162 2584076677323352 m001 (-GaussAGM+HardyLittlewoodC4)/(Chi(1)+Zeta(3)) 2584076685935817 m001 Robbin*exp(GaussKuzminWirsing)^2*GAMMA(5/12) 2584076687906220 m001 BesselJ(1,1)^Khinchin/(BesselJ(1,1)^Zeta(5)) 2584076703712877 r005 Im(z^2+c),c=-37/34+15/64*I,n=56 2584076706444077 r009 Re(z^3+c),c=-37/66+14/55*I,n=52 2584076712538295 r005 Im(z^2+c),c=-97/70+5/42*I,n=8 2584076715746004 a005 (1/cos(1/30*Pi))^592 2584076720238947 b008 1/13+SinIntegral[2/11] 2584076720883234 r005 Re(z^2+c),c=-83/106+3/44*I,n=34 2584076734682414 m002 -(Pi^3/Log[Pi])+(5*Tanh[Pi])/4 2584076737086609 a007 Real Root Of -419*x^4-912*x^3+341*x^2+7*x+687 2584076743266636 m001 exp(1/Pi)^Zeta(1/2)*exp(sqrt(2)) 2584076745012183 h001 (-9*exp(7)+6)/(-2*exp(3)+2) 2584076745327311 r005 Im(z^2+c),c=-117/122+2/9*I,n=3 2584076748180078 h001 (-exp(1/3)-1)/(-2*exp(-2)-9) 2584076760106680 r005 Re(z^2+c),c=-9/110+21/32*I,n=15 2584076768538696 m001 (Otter+ReciprocalFibonacci)/(ln(5)+GaussAGM) 2584076770846657 m005 (1/2*3^(1/2)-3/11)/(103/77+3/7*5^(1/2)) 2584076773866220 b008 7+(27*E^(1/3))/2 2584076777454454 m001 1/GAMMA(1/6)^2*(3^(1/3))/ln(GAMMA(7/12))^2 2584076814322935 r009 Im(z^3+c),c=-9/34+15/64*I,n=7 2584076814701708 r005 Re(z^2+c),c=-7/31+11/23*I,n=45 2584076819464346 m001 GAMMA(23/24)+PisotVijayaraghavan*Salem 2584076830674457 a007 Real Root Of 53*x^4-731*x^3-291*x^2-558*x+176 2584076831213787 m001 Trott^TreeGrowth2nd/(Trott^Khinchin) 2584076833360396 m005 (1/2*Zeta(3)+3/4)/(4*2^(1/2)-3/7) 2584076847781001 r009 Im(z^3+c),c=-4/11+7/37*I,n=21 2584076855815043 a007 Real Root Of 466*x^4+776*x^3-816*x^2+511*x-619 2584076870281400 q001 753/2914 2584076881266430 l006 ln(4948/6407) 2584076881866321 r009 Re(z^3+c),c=-8/19+23/45*I,n=38 2584076898756212 m001 (1+3^(1/2))^(1/2)+ln(2)^DuboisRaymond 2584076903363653 r002 11th iterates of z^2 + 2584076908707675 r005 Re(z^2+c),c=-23/74+2/11*I,n=20 2584076933520585 a007 Real Root Of -331*x^4-773*x^3+527*x^2+451*x-933 2584076937462902 l006 ln(713/9448) 2584076943687034 a007 Real Root Of -429*x^4+712*x^3-688*x^2+816*x+271 2584076951255083 r005 Re(z^2+c),c=-31/82+27/47*I,n=40 2584076956055366 m006 (3*exp(Pi)-1/4)/(5*exp(2*Pi)-3/5) 2584076958414357 h001 (-7*exp(3)+6)/(-2*exp(1/3)+8) 2584076990473297 r009 Im(z^3+c),c=-4/11+7/37*I,n=24 2584076991605563 a007 Real Root Of -476*x^4-878*x^3+766*x^2-389*x-46 2584076994443283 a007 Real Root Of 295*x^4+713*x^3+210*x^2+654*x-563 2584076996677778 m001 1/exp(Porter)^2*Lehmer^2*Salem^2 2584077008957423 a007 Real Root Of 335*x^4+404*x^3-897*x^2+528*x-612 2584077009410599 m001 exp(MadelungNaCl)^2/Si(Pi)^2*GAMMA(13/24)^2 2584077009899232 m005 (1/2*3^(1/2)+5/12)/(5/8*gamma-6/7) 2584077011037466 m002 -2-(4*Pi^5)/5-Cosh[Pi] 2584077012823379 r005 Im(z^2+c),c=-21/50+26/59*I,n=38 2584077019125639 r009 Re(z^3+c),c=-8/31+11/15*I,n=22 2584077036279129 a007 Real Root Of -399*x^4-870*x^3+601*x^2+824*x+895 2584077044061850 h005 exp(cos(Pi*6/53)/cos(Pi*8/17)) 2584077047454989 r009 Im(z^3+c),c=-4/11+7/37*I,n=25 2584077053792606 m002 E^Pi*Pi^4*Log[Pi]+4/ProductLog[Pi] 2584077054538431 m001 (Zeta(5)-FeigenbaumMu)/(Khinchin-Niven) 2584077061552024 a007 Real Root Of 151*x^4+110*x^3-730*x^2+336*x+908 2584077085004028 r009 Re(z^3+c),c=-43/122+23/62*I,n=5 2584077089107070 a007 Real Root Of 842*x^4+438*x^3+852*x^2+70*x-35 2584077090459952 l006 ln(7461/9661) 2584077099148199 b008 3-68*Sqrt[2]*E 2584077100368561 h001 (-7*exp(1/3)+6)/(-4*exp(-2)+2) 2584077102196915 a007 Real Root Of -360*x^4-970*x^3-61*x^2+122*x+37 2584077104368279 r005 Re(z^2+c),c=-7/27+23/59*I,n=24 2584077112088620 m001 (ln(gamma)-BesselI(0,2))/(Paris+Trott) 2584077114903043 r005 Re(z^2+c),c=-19/122+13/22*I,n=19 2584077116847567 m001 ((1+3^(1/2))^(1/2)+TwinPrimes)/(1-Ei(1)) 2584077123291905 m001 1/Tribonacci^2/LaplaceLimit/ln(sin(1)) 2584077123466292 r005 Re(z^2+c),c=3/20+19/43*I,n=59 2584077131593823 m005 (1/2*Pi-5)/(5/9*Catalan+9/11) 2584077135711443 m001 Pi*Psi(2,1/3)/(ln(5)-BesselI(0,2)) 2584077139627301 m005 (51/44+1/4*5^(1/2))/(8/11*2^(1/2)-4/11) 2584077140319227 r004 Re(z^2+c),c=-3/11+8/23*I,z(0)=-1,n=39 2584077152158398 a001 1/12238*4^(49/59) 2584077158171878 p003 LerchPhi(1/6,6,317/172) 2584077160759304 l006 ln(474/6281) 2584077163799728 a007 Real Root Of -720*x^4-807*x^3-838*x^2+177*x-4 2584077165989123 p004 log(35491/27409) 2584077169224899 p004 log(34183/33311) 2584077170765075 s001 sum(exp(-Pi/4)^n*A029466[n],n=1..infinity) 2584077173464118 r009 Re(z^3+c),c=-37/70+19/51*I,n=21 2584077173590793 m001 (-GAMMA(7/12)+Paris)/(Ei(1,1)-Psi(2,1/3)) 2584077178058863 m006 (2*exp(2*Pi)-4/5)/(3/4*ln(Pi)-5) 2584077182447754 a007 Real Root Of -767*x^4-527*x^3-395*x^2+303*x+99 2584077188041737 g007 Psi(2,1/11)+Psi(2,4/9)-Psi(2,3/11)-Psi(2,6/7) 2584077189345849 m005 (1/2*Zeta(3)-2/7)/(11/42+3/7*5^(1/2)) 2584077189627455 a007 Real Root Of -294*x^4-756*x^3+241*x^2+471*x-328 2584077219505652 s001 sum(exp(-Pi/2)^(n-1)*A002071[n],n=1..infinity) 2584077228517674 r005 Im(z^2+c),c=-23/82+11/30*I,n=3 2584077231256122 m001 cosh(1)^2/GAMMA(2/3)^2/ln(sqrt(1+sqrt(3))) 2584077237498440 m001 (2*Pi/GAMMA(5/6)-sin(1))/(-Tribonacci+Trott) 2584077249586589 a007 Real Root Of 152*x^4+287*x^3-258*x^2+160*x+311 2584077250315358 r005 Re(z^2+c),c=-1/5+26/49*I,n=36 2584077250667537 m001 gamma/Zeta(3)*exp(sin(1))^2 2584077250781480 r009 Im(z^3+c),c=-4/11+7/37*I,n=29 2584077258951093 r009 Re(z^3+c),c=-9/28+31/57*I,n=3 2584077259000472 r009 Im(z^3+c),c=-4/11+7/37*I,n=30 2584077266112877 r009 Im(z^3+c),c=-4/11+7/37*I,n=34 2584077266691155 r009 Im(z^3+c),c=-4/11+7/37*I,n=35 2584077266895901 r009 Im(z^3+c),c=-4/11+7/37*I,n=39 2584077266915864 r009 Im(z^3+c),c=-4/11+7/37*I,n=38 2584077266928506 r009 Im(z^3+c),c=-4/11+7/37*I,n=40 2584077266931931 r009 Im(z^3+c),c=-4/11+7/37*I,n=43 2584077266931983 r009 Im(z^3+c),c=-4/11+7/37*I,n=44 2584077266933456 r009 Im(z^3+c),c=-4/11+7/37*I,n=48 2584077266933499 r009 Im(z^3+c),c=-4/11+7/37*I,n=49 2584077266933553 r009 Im(z^3+c),c=-4/11+7/37*I,n=53 2584077266933557 r009 Im(z^3+c),c=-4/11+7/37*I,n=54 2584077266933558 r009 Im(z^3+c),c=-4/11+7/37*I,n=58 2584077266933558 r009 Im(z^3+c),c=-4/11+7/37*I,n=57 2584077266933558 r009 Im(z^3+c),c=-4/11+7/37*I,n=59 2584077266933558 r009 Im(z^3+c),c=-4/11+7/37*I,n=63 2584077266933558 r009 Im(z^3+c),c=-4/11+7/37*I,n=62 2584077266933558 r009 Im(z^3+c),c=-4/11+7/37*I,n=64 2584077266933559 r009 Im(z^3+c),c=-4/11+7/37*I,n=61 2584077266933559 r009 Im(z^3+c),c=-4/11+7/37*I,n=60 2584077266933559 r009 Im(z^3+c),c=-4/11+7/37*I,n=56 2584077266933560 r009 Im(z^3+c),c=-4/11+7/37*I,n=55 2584077266933560 r009 Im(z^3+c),c=-4/11+7/37*I,n=52 2584077266933572 r009 Im(z^3+c),c=-4/11+7/37*I,n=50 2584077266933579 r009 Im(z^3+c),c=-4/11+7/37*I,n=51 2584077266933601 r009 Im(z^3+c),c=-4/11+7/37*I,n=45 2584077266933670 r009 Im(z^3+c),c=-4/11+7/37*I,n=47 2584077266934021 r009 Im(z^3+c),c=-4/11+7/37*I,n=46 2584077266937535 r009 Im(z^3+c),c=-4/11+7/37*I,n=42 2584077266942978 r009 Im(z^3+c),c=-4/11+7/37*I,n=41 2584077267010228 r009 Im(z^3+c),c=-4/11+7/37*I,n=33 2584077267048532 r009 Im(z^3+c),c=-4/11+7/37*I,n=37 2584077267103309 r009 Im(z^3+c),c=-4/11+7/37*I,n=36 2584077269424973 r009 Im(z^3+c),c=-4/11+7/37*I,n=31 2584077269873175 r009 Im(z^3+c),c=-4/11+7/37*I,n=32 2584077270058807 m001 (Trott-ZetaP(2))/(Ei(1,1)-Tetranacci) 2584077270474114 m005 (1/2*gamma-1/9)/(-19/70+3/7*5^(1/2)) 2584077272667387 m005 (1/2*gamma-7/12)/(7/8*3^(1/2)-3/8) 2584077279492184 r009 Im(z^3+c),c=-4/11+7/37*I,n=28 2584077287093495 r009 Im(z^3+c),c=-4/11+7/37*I,n=26 2584077302739982 m001 (gamma*StolarskyHarborth+exp(1/exp(1)))/gamma 2584077313444073 b008 -26+ArcCoth[19/3] 2584077317429739 m001 (Zeta(1,-1)+CareFree)/(Trott-ZetaQ(3)) 2584077333220913 r005 Im(z^2+c),c=-15/74+19/51*I,n=22 2584077335160937 r009 Im(z^3+c),c=-4/11+7/37*I,n=27 2584077338140817 m001 Catalan/ln(Kolakoski)^2/sin(Pi/12)^2 2584077350304247 m005 (1/3*Catalan-1/2)/(7/12*gamma+5/12) 2584077358143814 a008 Real Root of x^3-x^2-579*x+2961 2584077360196816 r005 Re(z^2+c),c=-13/42+9/47*I,n=9 2584077366598581 r005 Re(z^2+c),c=-25/106+29/64*I,n=35 2584077367522924 r009 Im(z^3+c),c=-14/29+6/53*I,n=25 2584077378904099 m001 (GAMMA(3/4)-FeigenbaumD)/(Khinchin+Otter) 2584077381021147 r005 Re(z^2+c),c=-23/118+28/51*I,n=55 2584077381061806 m001 (PlouffeB-StronglyCareFree)/(Landau-Niven) 2584077382973085 r009 Re(z^3+c),c=-19/74+18/25*I,n=57 2584077385315438 l006 ln(709/9395) 2584077386036949 m001 (Stephens+ZetaP(4))/(ln(2^(1/2)+1)-Magata) 2584077392971911 m005 (1/6*Catalan+3/5)/(2/5*exp(1)-4) 2584077404765011 r002 20th iterates of z^2 + 2584077420300935 m001 GAMMA(13/24)-ln(3)-LambertW(1) 2584077420300935 m001 LambertW(1)+ln(3)-GAMMA(13/24) 2584077426201679 a007 Real Root Of 31*x^4-212*x^3-694*x^2+103*x-140 2584077426578708 r005 Im(z^2+c),c=-29/78+1/24*I,n=10 2584077432319100 h001 (7/12*exp(2)+9/11)/(5/8*exp(1)+2/7) 2584077452576293 m001 Zeta(1/2)*(Catalan-Khinchin) 2584077458771895 a001 75283811239*521^(13/23) 2584077467073368 r005 Im(z^2+c),c=-27/70+25/48*I,n=20 2584077482945514 m001 Lehmer^2*ln(FeigenbaumDelta)^2*GAMMA(1/6)^2 2584077494096315 r002 40th iterates of z^2 + 2584077496649764 r005 Re(z^2+c),c=4/11+18/61*I,n=24 2584077497209606 r009 Im(z^3+c),c=-11/78+9/34*I,n=8 2584077498566142 a007 Real Root Of -350*x^4+245*x^3+211*x^2+690*x+170 2584077499805078 a007 Real Root Of 812*x^4+178*x^3+727*x^2-522*x+13 2584077502353909 l006 ln(2513/3254) 2584077505347657 a007 Real Root Of -32*x^4-814*x^3+296*x^2-983*x-381 2584077522842208 m005 (1/2*5^(1/2)+2/7)/(4/11*gamma+1/3) 2584077523985153 a003 sin(Pi*1/27)+sin(Pi*1/22) 2584077524988272 r002 7th iterates of z^2 + 2584077528983813 a007 Real Root Of -45*x^4+303*x^3+763*x^2-938*x-284 2584077545720782 a007 Real Root Of 83*x^4-657*x^3-629*x^2-658*x+223 2584077555672650 a001 3571/10946*75025^(22/37) 2584077557544996 a003 cos(Pi*5/107)-cos(Pi*11/46) 2584077573799241 r005 Im(z^2+c),c=5/78+13/50*I,n=5 2584077607162653 a007 Real Root Of -120*x^4-87*x^3+366*x^2-410*x+346 2584077608261515 m001 (arctan(1/2)+exp(1/Pi))/(Rabbit+ZetaQ(4)) 2584077608930878 m002 -30+5*Pi-Sinh[Pi] 2584077614757960 m001 (2^(1/3)+Zeta(3))/(-GAMMA(7/12)+Stephens) 2584077620339696 m001 (DuboisRaymond+Kac)/(3^(1/2)+3^(1/3)) 2584077627384212 a007 Real Root Of 270*x^4+711*x^3+288*x^2+513*x-368 2584077632121769 m001 (Si(Pi)+gamma)/(-KhinchinHarmonic+Khinchin) 2584077633354852 m001 3^(1/2)*QuadraticClass+Shi(1) 2584077636597772 h001 (7/11*exp(1)+1/12)/(1/11*exp(1)+5/11) 2584077642484302 m005 (1/3*Pi-1/6)/(4/9*Zeta(3)-7/8) 2584077644932268 a001 144*123^(3/5) 2584077648609606 r009 Re(z^3+c),c=-23/82+9/47*I,n=8 2584077659034145 r005 Im(z^2+c),c=-33/82+17/36*I,n=25 2584077660888891 r005 Im(z^2+c),c=6/23+4/33*I,n=15 2584077672473233 a008 Real Root of x^4-2*x^3+7*x^2+10*x-100 2584077673946883 m001 cos(1/5*Pi)*GAMMA(23/24)+Riemann3rdZero 2584077674600021 a007 Real Root Of 951*x^4-750*x^3+946*x^2-799*x+152 2584077686840716 m001 GaussAGM(1,1/sqrt(2))+sqrt(1+sqrt(3))^ln(3) 2584077687730808 m001 (FibonacciFactorial-Kac)/(Bloch-CareFree) 2584077692839980 m001 Zeta(5)+FeigenbaumB+TravellingSalesman 2584077704010266 a005 (1/sin(89/221*Pi))^942 2584077706771711 r005 Im(z^2+c),c=-1/15+7/22*I,n=8 2584077707633210 r005 Im(z^2+c),c=-5/6+17/91*I,n=36 2584077721237151 r002 26th iterates of z^2 + 2584077732432250 a001 9349/28657*75025^(22/37) 2584077735726456 m001 1/GAMMA(11/12)/ln(MinimumGamma)/cos(Pi/12) 2584077741878582 p003 LerchPhi(1/125,4,549/220) 2584077747716982 r009 Re(z^3+c),c=-1/118+41/52*I,n=59 2584077758221128 a001 24476/75025*75025^(22/37) 2584077762732883 m001 1/Sierpinski/MertensB1^2/exp(cosh(1))^2 2584077764309057 a001 39603/121393*75025^(22/37) 2584077765069226 a007 Real Root Of 282*x^4-268*x^3+348*x^2-610*x-16 2584077767459301 m005 (1/2*3^(1/2)-6)/(1/3*2^(1/2)-3/11) 2584077774159532 a001 2161/6624*75025^(22/37) 2584077774338398 r009 Im(z^3+c),c=-4/11+7/37*I,n=23 2584077787118947 r005 Re(z^2+c),c=19/98+9/17*I,n=18 2584077788724898 a001 28657/199*322^(1/2) 2584077794544541 r005 Re(z^2+c),c=-21/110+33/59*I,n=46 2584077830026962 a007 Real Root Of -447*x^4-979*x^3+257*x^2-288*x+578 2584077838249784 l006 ln(235/3114) 2584077841675691 a001 5778/17711*75025^(22/37) 2584077851103092 a007 Real Root Of 402*x^4+973*x^3-195*x^2+247*x+805 2584077853530066 a001 28657/521*29^(17/37) 2584077857170048 m001 1/ln(Zeta(9))*Zeta(5)*sqrt(5)^2 2584077860324371 m005 (1/3*Catalan+1/5)/(4/5*5^(1/2)+1/6) 2584077870213994 r009 Re(z^3+c),c=-7/26+7/44*I,n=8 2584077878700701 m001 (Zeta(3)+CareFree)/(DuboisRaymond+Landau) 2584077896829541 a008 Real Root of x^4-2*x^3-13*x^2-56*x-137 2584077903010769 a007 Real Root Of 237*x^4+420*x^3-7*x^2+905*x-935 2584077905812053 l006 ln(7617/9863) 2584077916625423 a001 969323029/8*5^(8/17) 2584077921588305 m001 (Mills-Weierstrass)/arctan(1/3) 2584077923390383 m001 LambertW(1)/Trott^2*exp(Pi)^2 2584077923996069 a001 196418/521*123^(2/5) 2584077928345066 m001 (-Magata+Riemann3rdZero)/(gamma+sin(1/12*Pi)) 2584077934509945 r005 Re(z^2+c),c=-3/44+10/17*I,n=18 2584077935039639 m001 Zeta(3)*BesselJ(0,1)^2/exp(Zeta(9)) 2584077936886106 a001 4/514229*10946^(34/39) 2584077939011127 m001 (MertensB2-Psi(2,1/3))/(Rabbit+Riemann2ndZero) 2584077941711074 a001 3/1597*832040^(5/26) 2584077943767261 r005 Re(z^2+c),c=-9/28+3/23*I,n=5 2584077960013001 r002 20th iterates of z^2 + 2584077963111384 r002 36th iterates of z^2 + 2584077968539575 m001 Sierpinski-gamma(3)*BesselJ(1,1) 2584077984413676 a007 Real Root Of -15*x^4+293*x^3+541*x^2-750*x+174 2584077989045543 h001 (1/3*exp(1)+4/7)/(7/10*exp(2)+6/11) 2584077994011167 h001 (2/3*exp(1)+7/12)/(1/9*exp(1)+5/8) 2584078019074340 m005 (-11/36+1/4*5^(1/2))/(8/9*Catalan+1/6) 2584078021226861 a008 Real Root of x^2-x-67033 2584078022112990 r005 Re(z^2+c),c=-33/106+11/62*I,n=11 2584078022143197 g007 Psi(2,1/11)+Psi(2,9/10)+Psi(2,5/6)-Psi(2,2/7) 2584078022691726 a001 8/7*322^(46/49) 2584078023293278 r009 Re(z^3+c),c=-51/122+26/53*I,n=31 2584078029530032 m004 9375/Pi-(Sqrt[5]*Cosh[Sqrt[5]*Pi])/Pi 2584078030868689 r009 Im(z^3+c),c=-33/118+1/54*I,n=6 2584078042679150 m006 (4*exp(2*Pi)+1/5)/(1/3*Pi^2+5) 2584078048734745 r009 Im(z^3+c),c=-27/58+6/61*I,n=22 2584078054240711 m001 HeathBrownMoroz^(2*Pi/GAMMA(5/6)*MertensB2) 2584078057281325 m001 MinimumGamma^2/ln(Conway)^2/Salem 2584078066189998 m001 ArtinRank2^polylog(4,1/2)+Riemann3rdZero 2584078066912240 m001 (FellerTornier+ZetaQ(3))/GlaisherKinkelin 2584078068359371 r005 Im(z^2+c),c=7/46+13/62*I,n=22 2584078077644252 r005 Re(z^2+c),c=-4/15+13/37*I,n=9 2584078079601166 a001 439204/21*4052739537881^(9/16) 2584078079614142 a001 2537720636/21*832040^(9/16) 2584078079614564 a001 4769326/3*1836311903^(9/16) 2584078083872514 m001 DuboisRaymond^FibonacciFactorial-exp(1) 2584078096692754 a007 Real Root Of 284*x^4+349*x^3-841*x^2+706*x+799 2584078104458270 l006 ln(5104/6609) 2584078112396545 m001 (Landau+Trott2nd)/(Shi(1)-exp(Pi)) 2584078121510922 m005 (1/3*exp(1)-2/9)/(7/11*exp(1)+11/12) 2584078122298864 m005 (1/2*Zeta(3)-2)/(29/99+1/9*5^(1/2)) 2584078122633530 m001 ZetaQ(2)*(Pi*2^(1/2)/GAMMA(3/4)+Salem) 2584078123487227 r005 Im(z^2+c),c=-13/48+21/53*I,n=29 2584078136326327 m001 1/BesselK(0,1)/exp(GlaisherKinkelin)^2*sqrt(2) 2584078139792876 m001 (3^(1/2)+Si(Pi))/(BesselK(0,1)+cos(1/12*Pi)) 2584078150200711 m001 1/ln(Riemann2ndZero)^2/Rabbit/sin(Pi/5) 2584078153860728 r005 Re(z^2+c),c=-11/36+2/23*I,n=3 2584078166750875 a007 Real Root Of 22*x^4-497*x^3+988*x^2+220*x+429 2584078178787490 m001 1/2*ZetaQ(2)/(1+3^(1/2))^(1/2)*2^(2/3) 2584078182025451 r005 Im(z^2+c),c=-26/21+4/45*I,n=17 2584078194458307 m001 Sierpinski*cos(1/5*Pi)^ZetaQ(4) 2584078197034609 r005 Im(z^2+c),c=5/34+7/33*I,n=7 2584078211167478 r005 Im(z^2+c),c=-73/122+11/28*I,n=43 2584078222677521 p004 log(16573/12799) 2584078228499916 m001 Sierpinski-gamma(3)*TreeGrowth2nd 2584078235185301 m005 11/5*(1/2*2^(1/2)-2/11)*5^(1/2) 2584078235667030 m005 (1/5*Catalan+1/4)/(-19/10+1/10*5^(1/2)) 2584078246152892 m001 Magata/FeigenbaumDelta/ln(sin(Pi/5))^2 2584078246674800 m009 (3/5*Psi(1,3/4)+5)/(3/5*Psi(1,3/4)+1) 2584078252963444 r009 Re(z^3+c),c=-27/46+28/51*I,n=2 2584078253658145 m001 1/Zeta(7)^2/ln(Zeta(5))^2*sin(Pi/5)^2 2584078257639245 a007 Real Root Of -413*x^4-46*x^3+743*x^2+627*x-209 2584078288259162 a007 Real Root Of -256*x^4+147*x^3+655*x^2+460*x-164 2584078296352930 l006 ln(701/9289) 2584078297665076 m005 (1/2*2^(1/2)-4/11)/(3/10*5^(1/2)-2) 2584078300566768 m004 10+3*Cosh[Sqrt[5]*Pi]*ProductLog[Sqrt[5]*Pi] 2584078301090914 l006 ln(7695/9964) 2584078304438335 a001 2207/6765*75025^(22/37) 2584078308229239 b008 5+18*Tan[4] 2584078310438428 m001 (2*Pi/GAMMA(5/6)-gamma)/(GolombDickman+Mills) 2584078313325776 m001 (Zeta(3)+Zeta(5))/(Mills-TreeGrowth2nd) 2584078328639574 a007 Real Root Of 91*x^4-153*x^3-805*x^2+300*x-547 2584078331204767 q001 607/2349 2584078334878216 r005 Im(z^2+c),c=-79/106+1/16*I,n=39 2584078346097921 m004 93750/Pi-(5*Sqrt[5]*E^(Sqrt[5]*Pi))/Pi 2584078356668625 m008 (1/4*Pi^6+2/3)/(3*Pi^3+1/4) 2584078378587686 m001 (2^(1/3)+Psi(2,1/3))/(ln(5)+Weierstrass) 2584078387768427 r005 Im(z^2+c),c=-3/11+25/63*I,n=31 2584078388808097 m001 MasserGramainDelta*Salem+TreeGrowth2nd 2584078388982461 m001 (2^(1/3)-BesselJ(0,1)*Zeta(1,2))/BesselJ(0,1) 2584078398760787 r005 Im(z^2+c),c=-3/58+16/51*I,n=18 2584078398831656 h001 (-5*exp(4)-10)/(-6*exp(3)+11) 2584078399028001 m005 (1/3*gamma+2/5)/(7/10*5^(1/2)+8/11) 2584078411727543 m001 (Stephens-Trott)/(Pi-Riemann3rdZero) 2584078412720404 m001 (FeigenbaumB+TwinPrimes)/(LambertW(1)-ln(Pi)) 2584078413325678 m005 (1/3*5^(1/2)-1/8)/(1/3*Zeta(3)+2) 2584078420019281 m001 1/2/RenyiParking/sin(Pi/12) 2584078420019281 m001 exp(1/2)^ln(2+sqrt(3))/RenyiParking 2584078421414184 r009 Re(z^3+c),c=-31/78+22/49*I,n=29 2584078427323613 m001 (ln(Pi)+Pi^(1/2))/(Backhouse-Sierpinski) 2584078439672351 a001 123/28657*1346269^(37/60) 2584078442711684 p001 sum((-1)^n/(445*n+171)/n/(6^n),n=1..infinity) 2584078447882960 s002 sum(A054156[n]/(2^n-1),n=1..infinity) 2584078452528867 m001 (GAMMA(11/24)+GAMMA(23/24))/ln(Pi) 2584078463024174 m008 (1/5*Pi^4-1/2)/(3/4*Pi^4+2/5) 2584078475699625 m001 (Pi^(1/2)+MertensB3)/(gamma(1)-GAMMA(5/6)) 2584078481867826 m001 Bloch^Kolakoski-cos(1/5*Pi) 2584078488942389 a007 Real Root Of -127*x^4-191*x^3+255*x^2+92*x+902 2584078503335488 m001 LandauRamanujan/(FeigenbaumD^ln(3)) 2584078503433111 r005 Re(z^2+c),c=-19/82+26/43*I,n=46 2584078509255485 m009 (4/5*Psi(1,3/4)+1)/(1/5*Pi^2-4/5) 2584078509435027 a007 Real Root Of -22*x^4-563*x^3+126*x^2-409*x+151 2584078527370532 l006 ln(466/6175) 2584078528363006 a007 Real Root Of 369*x^4+572*x^3-620*x^2+966*x+53 2584078531443179 m001 sin(1/12*Pi)-gamma(3)^(2^(1/3)) 2584078552133895 r005 Im(z^2+c),c=-3/118+13/43*I,n=23 2584078554520387 a007 Real Root Of 36*x^4-354*x^3+542*x^2+130*x+548 2584078559504847 m001 GAMMA(17/24)-ln(Pi)^DuboisRaymond 2584078563307529 a007 Real Root Of 118*x^4-294*x^3+153*x^2-823*x+207 2584078569560680 r005 Re(z^2+c),c=-8/31+11/28*I,n=28 2584078584415537 m005 (1/2*gamma+1/6)/(5/6*2^(1/2)+7/12) 2584078589113024 a007 Real Root Of -462*x^4-970*x^3+751*x^2+319*x-328 2584078604261140 a007 Real Root Of 540*x^4-209*x^3+397*x^2-354*x-124 2584078612912119 m001 1/GaussKuzminWirsing/Bloch^2/ln(sqrt(Pi)) 2584078615358628 m001 1/exp(Porter)^2/CareFree^2/PrimesInBinary 2584078630100510 a007 Real Root Of 373*x^4+829*x^3-554*x^2-586*x-142 2584078631524960 r005 Re(z^2+c),c=-13/40+1/47*I,n=14 2584078635285646 m001 exp(GAMMA(5/6))/GlaisherKinkelin/cos(Pi/12)^2 2584078641500933 a007 Real Root Of 225*x^4+473*x^3-261*x^2+142*x+239 2584078649741244 m001 Otter^gamma+TravellingSalesman 2584078651473071 r005 Im(z^2+c),c=-13/66+23/62*I,n=13 2584078654288803 a007 Real Root Of -663*x^4+420*x^3+795*x^2+312*x-138 2584078659639097 v003 sum((n^3+6*n^2-8*n+5)/(n!+1),n=1..infinity) 2584078662162815 r005 Im(z^2+c),c=33/94+5/44*I,n=63 2584078662665809 m004 9375/Pi-(Sqrt[5]*Sinh[Sqrt[5]*Pi])/Pi 2584078664093664 a005 (1/cos(20/233*Pi))^1965 2584078668246955 a007 Real Root Of 93*x^4+22*x^3-137*x^2+747*x-922 2584078688436721 l006 ln(2591/3355) 2584078688472078 m001 (-Robbin+Thue)/(BesselJ(0,1)-HeathBrownMoroz) 2584078689917094 r005 Re(z^2+c),c=-69/86+5/43*I,n=12 2584078695511485 a007 Real Root Of 595*x^4-514*x^3+721*x^2-783*x-262 2584078697714413 m009 (1/4*Psi(1,3/4)-2/5)/(5/12*Pi^2+5) 2584078704702014 a001 6119/36*28657^(2/49) 2584078709230954 r009 Im(z^3+c),c=-4/11+7/37*I,n=22 2584078709446659 m001 (OneNinth+Robbin)/(FeigenbaumMu-Lehmer) 2584078714024787 r009 Re(z^3+c),c=-31/118+30/31*I,n=33 2584078714252001 m005 (1/4*Pi+4/5)/(-9/40+3/8*5^(1/2)) 2584078738496044 a007 Real Root Of -719*x^4+820*x^3-227*x^2+531*x-133 2584078739752598 a007 Real Root Of 736*x^4-565*x^3+748*x^2-627*x-225 2584078755900924 r002 3th iterates of z^2 + 2584078755900924 r002 3th iterates of z^2 + 2584078758694895 r005 Im(z^2+c),c=7/46+13/62*I,n=26 2584078759713862 l006 ln(697/9236) 2584078762042337 m001 (2^(1/3)+gamma)/(-Conway+Lehmer) 2584078771740994 s002 sum(A197710[n]/(n^2*pi^n-1),n=1..infinity) 2584078772142464 m005 (1/2*5^(1/2)-8/11)/(2/3*exp(1)-3/10) 2584078775276721 r005 Re(z^2+c),c=-21/94+15/31*I,n=47 2584078777085340 r005 Re(z^2+c),c=-37/46+1/28*I,n=28 2584078781703294 r005 Im(z^2+c),c=-3/26+16/47*I,n=8 2584078783605718 m002 Pi^9*Sech[Pi]+Sinh[Pi]+Tanh[Pi] 2584078800065857 m001 (BesselI(1,2)-FeigenbaumMu)/(ln(2)-gamma(1)) 2584078814970163 m001 AlladiGrinstead^QuadraticClass+Riemann3rdZero 2584078835724117 p001 sum(1/(436*n+407)/(10^n),n=0..infinity) 2584078840015601 r005 Im(z^2+c),c=-23/48+24/55*I,n=16 2584078843572423 m001 (-BesselI(0,2)+Grothendieck)/(Si(Pi)-gamma(1)) 2584078847249193 m008 (1/4*Pi-2)/(1/6*Pi^5-4) 2584078860694404 a007 Real Root Of -356*x^4-675*x^3+804*x^2+141*x-778 2584078865547503 r005 Re(z^2+c),c=13/110+37/58*I,n=11 2584078867082971 a001 521/144*8^(52/55) 2584078876317113 r005 Re(z^2+c),c=-7/52+37/61*I,n=50 2584078879481381 a001 11/46368*13^(1/30) 2584078889806586 p001 sum((-1)^n/(117*n+34)/n/(256^n),n=0..infinity) 2584078903813844 r005 Re(z^2+c),c=37/102+5/28*I,n=37 2584078908434024 r002 19th iterates of z^2 + 2584078918906535 m001 (-MertensB1+Trott)/(5^(1/2)-BesselI(0,1)) 2584078928608448 r005 Im(z^2+c),c=7/46+13/62*I,n=25 2584078937273349 m005 (4*Pi-2/5)/(-1/5+3/10*5^(1/2)) 2584078939635771 r005 Im(z^2+c),c=7/46+13/62*I,n=27 2584078941074150 m005 (1/3*2^(1/2)+1/9)/(-11/80+1/16*5^(1/2)) 2584078941277186 a003 cos(Pi*17/47)/cos(Pi*43/96) 2584078957458820 m001 1/exp(BesselJ(1,1))/MadelungNaCl^2*GAMMA(3/4) 2584078958959495 m001 (BesselJ(0,1)-sin(1/12*Pi))/(Trott+ZetaQ(3)) 2584078959279594 m001 ln(1+sqrt(2))^sqrt(1+sqrt(3))+sqrt(Pi) 2584078959279594 m001 ln(2^(1/2)+1)^((1+3^(1/2))^(1/2))+Pi^(1/2) 2584078959411813 h001 (-2*exp(2)-8)/(-6*exp(5)+9) 2584078966958721 r009 Re(z^3+c),c=-43/106+16/29*I,n=37 2584078970812980 m001 (Porter-Tetranacci)/(Mills+PlouffeB) 2584078972665825 a001 1/15174*(1/2*5^(1/2)+1/2)^28*18^(13/22) 2584078985115912 r005 Re(z^2+c),c=-23/122+22/39*I,n=30 2584078985540443 m005 (1/2*Catalan+6)/(5/12*Zeta(3)-3) 2584078989055198 p001 sum((-1)^n/(322*n+55)/n/(10^n),n=1..infinity) 2584078996819651 r002 11th iterates of z^2 + 2584078997709420 r005 Im(z^2+c),c=7/46+13/62*I,n=31 2584078999084186 a007 Real Root Of 246*x^4+134*x^3-870*x^2+829*x-705 2584079005201180 r005 Im(z^2+c),c=7/46+13/62*I,n=32 2584079009208135 r005 Im(z^2+c),c=7/46+13/62*I,n=36 2584079009491692 r005 Im(z^2+c),c=7/46+13/62*I,n=37 2584079009741644 r005 Im(z^2+c),c=7/46+13/62*I,n=41 2584079009750742 r005 Im(z^2+c),c=7/46+13/62*I,n=42 2584079009765358 r005 Im(z^2+c),c=7/46+13/62*I,n=46 2584079009765540 r005 Im(z^2+c),c=7/46+13/62*I,n=47 2584079009766350 r005 Im(z^2+c),c=7/46+13/62*I,n=52 2584079009766355 r005 Im(z^2+c),c=7/46+13/62*I,n=51 2584079009766387 r005 Im(z^2+c),c=7/46+13/62*I,n=48 2584079009766390 r005 Im(z^2+c),c=7/46+13/62*I,n=53 2584079009766393 r005 Im(z^2+c),c=7/46+13/62*I,n=57 2584079009766394 r005 Im(z^2+c),c=7/46+13/62*I,n=56 2584079009766395 r005 Im(z^2+c),c=7/46+13/62*I,n=58 2584079009766395 r005 Im(z^2+c),c=7/46+13/62*I,n=62 2584079009766395 r005 Im(z^2+c),c=7/46+13/62*I,n=63 2584079009766395 r005 Im(z^2+c),c=7/46+13/62*I,n=61 2584079009766395 r005 Im(z^2+c),c=7/46+13/62*I,n=64 2584079009766396 r005 Im(z^2+c),c=7/46+13/62*I,n=60 2584079009766396 r005 Im(z^2+c),c=7/46+13/62*I,n=59 2584079009766401 r005 Im(z^2+c),c=7/46+13/62*I,n=55 2584079009766407 r005 Im(z^2+c),c=7/46+13/62*I,n=54 2584079009766494 r005 Im(z^2+c),c=7/46+13/62*I,n=50 2584079009766651 r005 Im(z^2+c),c=7/46+13/62*I,n=49 2584079009767927 r005 Im(z^2+c),c=7/46+13/62*I,n=45 2584079009767983 r005 Im(z^2+c),c=7/46+13/62*I,n=43 2584079009771732 r005 Im(z^2+c),c=7/46+13/62*I,n=44 2584079009787269 r005 Im(z^2+c),c=7/46+13/62*I,n=40 2584079009825255 r005 Im(z^2+c),c=7/46+13/62*I,n=30 2584079009831752 r005 Im(z^2+c),c=7/46+13/62*I,n=38 2584079009874187 r005 Im(z^2+c),c=7/46+13/62*I,n=39 2584079009978350 r005 Im(z^2+c),c=7/46+13/62*I,n=35 2584079011693756 r005 Im(z^2+c),c=7/46+13/62*I,n=33 2584079011875030 r005 Im(z^2+c),c=7/46+13/62*I,n=34 2584079017217736 p003 LerchPhi(1/5,3,64/189) 2584079025657433 a007 Real Root Of -153*x^4-110*x^3+928*x^2+383*x-283 2584079026670608 a007 Real Root Of 223*x^4+379*x^3-880*x^2-703*x+656 2584079027594048 r005 Im(z^2+c),c=-33/46+1/36*I,n=34 2584079031505363 m001 Porter/Artin*ln(GAMMA(11/24)) 2584079038830001 h001 (4/11*exp(2)+3/4)/(1/12*exp(2)+5/7) 2584079049676326 r005 Im(z^2+c),c=7/46+13/62*I,n=29 2584079054685566 a007 Real Root Of -240*x^4-376*x^3+347*x^2-449*x+736 2584079059305486 r005 Im(z^2+c),c=7/46+13/62*I,n=28 2584079061970643 r005 Im(z^2+c),c=-7/90+14/45*I,n=4 2584079069670968 r009 Im(z^3+c),c=-43/122+9/46*I,n=17 2584079071379368 a007 Real Root Of 96*x^4+284*x^3+326*x^2+320*x-730 2584079076812961 m001 Pi*csc(5/12*Pi)/GAMMA(7/12)*(GAMMA(3/4)-Trott) 2584079086604870 r002 33th iterates of z^2 + 2584079096507825 h001 (3/7*exp(2)+1/6)/(3/7*exp(1)+1/8) 2584079102225757 p004 log(37309/28813) 2584079117929058 a007 Real Root Of 395*x^4+618*x^3-973*x^2+311*x+352 2584079128508971 m001 cos(1)^GAMMA(1/4)*BesselJZeros(0,1)^GAMMA(1/4) 2584079130914357 a007 Real Root Of -371*x^4-654*x^3+750*x^2+114*x+544 2584079134946049 r009 Im(z^3+c),c=-35/58+2/5*I,n=4 2584079139734840 r005 Im(z^2+c),c=23/82+2/39*I,n=8 2584079144102917 a007 Real Root Of 13*x^4+347*x^3+290*x^2+116*x+360 2584079144524937 m001 (cos(1/5*Pi)+3^(1/3))/(Kolakoski+ZetaP(4)) 2584079151357101 r005 Re(z^2+c),c=-7/74+8/13*I,n=29 2584079182170304 a001 843/8*8^(22/51) 2584079182529227 r002 32th iterates of z^2 + 2584079185607543 a007 Real Root Of 279*x^4+456*x^3-778*x^2-478*x-612 2584079191858388 a007 Real Root Of 354*x^4+813*x^3-509*x^2-623*x+33 2584079220301613 m005 (5*2^(1/2)-3/5)/(3/5*Catalan-4/5) 2584079220346861 a007 Real Root Of -307*x^4-799*x^3-121*x^2+2*x+715 2584079224635795 m001 Ei(1,1)^Salem/(ln(2)^Salem) 2584079226567019 a007 Real Root Of 622*x^4+661*x^3+209*x^2-769*x-20 2584079226692503 s002 sum(A038103[n]/(n^2*2^n+1),n=1..infinity) 2584079228423618 l006 ln(231/3061) 2584079230154259 r002 38th iterates of z^2 + 2584079230722096 r005 Im(z^2+c),c=4/17+9/61*I,n=23 2584079231829821 m005 (1/2*exp(1)+1/3)/(2/7*Catalan-11/12) 2584079243443684 m001 (-BesselI(1,2)+ZetaP(4))/(BesselI(0,1)-Si(Pi)) 2584079255095628 l006 ln(5260/6811) 2584079260189714 m001 PrimesInBinary*Conway^2/exp(sqrt(1+sqrt(3)))^2 2584079268035672 a007 Real Root Of -447*x^4+878*x^3-378*x^2+902*x-221 2584079313842680 a007 Real Root Of -715*x^4+708*x^3+930*x^2+282*x-144 2584079319535013 a001 521/4052739537881*514229^(13/14) 2584079319653853 r005 Im(z^2+c),c=11/78+13/60*I,n=16 2584079323221405 m005 (1/3*2^(1/2)+2/11)/(5/7*Zeta(3)-5/6) 2584079329429992 m005 (-5/28+1/4*5^(1/2))/(9/11*gamma+1) 2584079337152001 h001 (1/11*exp(2)+5/8)/(5/8*exp(2)+2/5) 2584079350292264 a007 Real Root Of -335*x^4-643*x^3+536*x^2-464*x-936 2584079358604765 a007 Real Root Of 392*x^4+963*x^3-255*x^2-609*x-733 2584079359587336 r005 Re(z^2+c),c=-17/86+25/53*I,n=7 2584079367381403 s001 sum(exp(-3*Pi/5)^n*A279172[n],n=1..infinity) 2584079381906983 r002 5th iterates of z^2 + 2584079387495202 h001 (1/10*exp(2)+5/9)/(2/3*exp(2)+1/12) 2584079408765573 a003 cos(Pi*1/39)/sin(Pi*15/119) 2584079419612723 r005 Im(z^2+c),c=-9/17+25/58*I,n=46 2584079422063729 r005 Im(z^2+c),c=1/9+15/64*I,n=15 2584079429904339 m001 (FransenRobinson+Riemann3rdZero)/OneNinth 2584079431525012 m001 (Mills+Niven)/(Salem-Trott) 2584079447151968 m005 (1/2*Pi+3/10)/(2/7*gamma-8/9) 2584079449932188 m001 (Champernowne-Rabbit)/(Ei(1)+Artin) 2584079453614197 m001 Psi(1,1/3)/(FeigenbaumAlpha+OrthogonalArrays) 2584079454587478 m001 (-Paris+Stephens)/(FeigenbaumDelta-exp(Pi)) 2584079464299681 m004 -2-Cos[Sqrt[5]*Pi]+(25*Pi*Cot[Sqrt[5]*Pi])/3 2584079474266451 m005 (1/3*exp(1)+1/8)/(8/9*Catalan-9/11) 2584079480367670 r005 Im(z^2+c),c=-19/29+19/53*I,n=41 2584079485806149 m001 (Zeta(3)-ln(gamma))/(Conway-Kac) 2584079486284998 q001 2/77397 2584079493625636 r009 Im(z^3+c),c=-25/42+16/63*I,n=9 2584079494821254 r005 Re(z^2+c),c=9/62+14/23*I,n=49 2584079495082542 r005 Im(z^2+c),c=-33/46+2/61*I,n=40 2584079499949363 m005 (1/2*3^(1/2)-1/11)/(8/9*exp(1)+7/12) 2584079509543828 m005 (-1/6+1/4*5^(1/2))/(2/3*3^(1/2)+4/11) 2584079515513737 r002 38th iterates of z^2 + 2584079515944105 m001 GolombDickman*cos(Pi/12)-gamma 2584079515944105 m001 cos(1/12*Pi)*GolombDickman-gamma 2584079533726771 a007 Real Root Of 209*x^4+850*x^3+763*x^2-231*x-344 2584079535466722 a001 19/208010*1346269^(9/38) 2584079542664425 a007 Real Root Of 272*x^4+740*x^3+503*x^2+774*x-718 2584079551871907 r005 Re(z^2+c),c=-13/58+27/56*I,n=55 2584079556915623 m006 (1/4/Pi-5)/(1/2*Pi+1/3) 2584079590341983 r004 Im(z^2+c),c=-43/34+2/9*I,z(0)=-1,n=5 2584079590812073 p001 sum(1/(430*n+71)/n/(8^n),n=1..infinity) 2584079593284096 h001 (7/8*exp(2)+2/9)/(1/3*exp(2)+1/8) 2584079594128656 p001 sum(1/(355*n+33)/n/(100^n),n=1..infinity) 2584079601990049 q001 2597/1005 2584079602750223 h001 (10/11*exp(1)+3/5)/(1/10*exp(1)+11/12) 2584079603090677 r005 Im(z^2+c),c=-3/118+13/43*I,n=26 2584079604836772 a007 Real Root Of -82*x^4-57*x^3+170*x^2-405*x+491 2584079620207429 a007 Real Root Of 866*x^4-254*x^3-186*x^2-794*x-201 2584079621793090 a005 (1/cos(11/170*Pi))^599 2584079624837920 s002 sum(A020974[n]/(64^n-1),n=1..infinity) 2584079661187784 r005 Im(z^2+c),c=-3/118+13/43*I,n=27 2584079667337872 m001 1/Magata/Lehmer^2/exp(GAMMA(19/24)) 2584079688744882 h001 (2/3*exp(2)+1/9)/(7/12*exp(1)+4/11) 2584079692291148 m001 1/CareFree*ln(FransenRobinson)/LambertW(1) 2584079700289236 s001 sum(exp(-Pi/2)^(n-1)*A276119[n],n=1..infinity) 2584079702575355 l006 ln(689/9130) 2584079703437532 r005 Re(z^2+c),c=-41/56+9/64*I,n=25 2584079706061064 r005 Im(z^2+c),c=-3/118+13/43*I,n=30 2584079706937605 a007 Real Root Of 936*x^4+255*x^3-763*x^2-772*x+2 2584079709733892 a007 Real Root Of 431*x^4+713*x^3-746*x^2+415*x-861 2584079719644980 r005 Im(z^2+c),c=-3/118+13/43*I,n=33 2584079721367826 r005 Im(z^2+c),c=-3/118+13/43*I,n=29 2584079722047872 r005 Im(z^2+c),c=-3/118+13/43*I,n=36 2584079722199591 r005 Im(z^2+c),c=-3/118+13/43*I,n=37 2584079722294811 r005 Im(z^2+c),c=-3/118+13/43*I,n=40 2584079722325113 r005 Im(z^2+c),c=-3/118+13/43*I,n=43 2584079722326520 r005 Im(z^2+c),c=-3/118+13/43*I,n=39 2584079722330600 r005 Im(z^2+c),c=-3/118+13/43*I,n=46 2584079722330989 r005 Im(z^2+c),c=-3/118+13/43*I,n=47 2584079722331190 r005 Im(z^2+c),c=-3/118+13/43*I,n=50 2584079722331255 r005 Im(z^2+c),c=-3/118+13/43*I,n=49 2584079722331257 r005 Im(z^2+c),c=-3/118+13/43*I,n=53 2584079722331270 r005 Im(z^2+c),c=-3/118+13/43*I,n=56 2584079722331271 r005 Im(z^2+c),c=-3/118+13/43*I,n=57 2584079722331271 r005 Im(z^2+c),c=-3/118+13/43*I,n=60 2584079722331271 r005 Im(z^2+c),c=-3/118+13/43*I,n=59 2584079722331271 r005 Im(z^2+c),c=-3/118+13/43*I,n=63 2584079722331271 r005 Im(z^2+c),c=-3/118+13/43*I,n=64 2584079722331271 r005 Im(z^2+c),c=-3/118+13/43*I,n=62 2584079722331271 r005 Im(z^2+c),c=-3/118+13/43*I,n=61 2584079722331272 r005 Im(z^2+c),c=-3/118+13/43*I,n=58 2584079722331272 r005 Im(z^2+c),c=-3/118+13/43*I,n=54 2584079722331275 r005 Im(z^2+c),c=-3/118+13/43*I,n=55 2584079722331284 r005 Im(z^2+c),c=-3/118+13/43*I,n=52 2584079722331304 r005 Im(z^2+c),c=-3/118+13/43*I,n=51 2584079722331559 r005 Im(z^2+c),c=-3/118+13/43*I,n=44 2584079722331566 r005 Im(z^2+c),c=-3/118+13/43*I,n=48 2584079722332996 r005 Im(z^2+c),c=-3/118+13/43*I,n=45 2584079722337372 r005 Im(z^2+c),c=-3/118+13/43*I,n=42 2584079722345071 r005 Im(z^2+c),c=-3/118+13/43*I,n=41 2584079722404085 r005 Im(z^2+c),c=-3/118+13/43*I,n=34 2584079722459912 r005 Im(z^2+c),c=-3/118+13/43*I,n=38 2584079723101619 r005 Im(z^2+c),c=-3/118+13/43*I,n=35 2584079725170220 r005 Im(z^2+c),c=-3/118+13/43*I,n=32 2584079725970211 m005 (25/24+3/8*5^(1/2))/(1/3*exp(1)-5/6) 2584079728146826 r005 Im(z^2+c),c=-3/118+13/43*I,n=31 2584079730700059 r005 Im(z^2+c),c=-3/118+13/43*I,n=24 2584079734380118 a007 Real Root Of -279*x^4+740*x^3-494*x^2+565*x+193 2584079735125371 r005 Im(z^2+c),c=-13/22+36/91*I,n=61 2584079736735679 a007 Real Root Of -455*x^4-759*x^3+835*x^2-321*x+786 2584079738179085 r005 Im(z^2+c),c=7/46+13/62*I,n=24 2584079739729945 r009 Re(z^3+c),c=-5/32+34/35*I,n=32 2584079746384533 s001 sum(exp(-Pi/2)^n*A052966[n],n=1..infinity) 2584079750678444 r005 Im(z^2+c),c=-27/74+2/49*I,n=12 2584079772926776 a007 Real Root Of 880*x^4-880*x^3+333*x^2-970*x-292 2584079774330858 m001 (1+Psi(2,1/3))/(GAMMA(17/24)+AlladiGrinstead) 2584079778003780 r005 Re(z^2+c),c=8/25+5/41*I,n=15 2584079778407719 r005 Im(z^2+c),c=-3/118+13/43*I,n=28 2584079778777503 a007 Real Root Of -194*x^4-449*x^3+17*x^2+58*x+939 2584079795363804 r005 Im(z^2+c),c=-3/118+13/43*I,n=19 2584079805194221 l006 ln(2669/3456) 2584079816769076 m005 (5^(1/2)+5/6)/(2/3*exp(1)-3) 2584079830686831 r005 Im(z^2+c),c=-23/98+19/31*I,n=5 2584079834203919 r005 Im(z^2+c),c=-3/28+22/63*I,n=6 2584079838021837 m005 (1/2*Catalan+3/11)/(2*3^(1/2)-7/11) 2584079853895303 m005 (1/2*Zeta(3)+6)/(10/11*exp(1)+1/12) 2584079856781772 m001 Riemann1stZero*ln(Kolakoski)^2*sin(Pi/5)^2 2584079861322541 m006 (exp(2*Pi)+1/4)/(4/Pi+4/5) 2584079861851676 p004 log(27337/2063) 2584079863364551 a001 89*322^(7/12) 2584079863402307 a001 1/2576*1597^(52/59) 2584079867388383 a001 1/726103*4181^(4/53) 2584079869084623 r005 Re(z^2+c),c=15/56+10/49*I,n=3 2584079870795458 m001 (ErdosBorwein+Niven)/(gamma+CareFree) 2584079872290636 m001 1/Tribonacci^2*exp(Paris)^2*GAMMA(1/3)^2 2584079900920954 p003 LerchPhi(1/12,2,391/195) 2584079906091323 r005 Re(z^2+c),c=37/102+1/11*I,n=8 2584079908122151 g006 -Psi(1,5/12)-Psi(1,3/11)-Psi(1,5/6)-Psi(1,4/5) 2584079923602580 m001 1/exp(Zeta(3))*CareFree^2/gamma 2584079930653094 m002 144+Pi^2*Cosh[Pi] 2584079941721670 l006 ln(458/6069) 2584079942622192 r005 Im(z^2+c),c=-47/110+2/47*I,n=34 2584079943381870 a007 Real Root Of 320*x^4+743*x^3-241*x^2-71*x-22 2584079948306179 r005 Re(z^2+c),c=9/29+11/63*I,n=22 2584079949165489 m001 (Zeta(5)+Pi^(1/2))/(FeigenbaumB-Sarnak) 2584079959533321 r005 Re(z^2+c),c=-21/94+15/31*I,n=52 2584079964161162 a001 13/24476*322^(37/55) 2584079971000642 a005 (1/cos(6/127*Pi))^919 2584079971092509 m001 BesselI(1,2)/(BesselK(0,1)+DuboisRaymond) 2584079971576406 r005 Re(z^2+c),c=11/56+1/54*I,n=4 2584079973278740 a007 Real Root Of 196*x^4+203*x^3-834*x^2+90*x+565 2584079982510601 a007 Real Root Of 147*x^4-13*x^3-897*x^2-22*x-846 2584079987501807 m001 (3^(1/3)-Khinchin)/(Magata+OrthogonalArrays) 2584079990159605 m001 (GAMMA(7/12)+Porter)/(ln(2)/ln(10)+Zeta(1/2)) 2584080001825257 m001 Otter^Rabbit/(StronglyCareFree^Rabbit) 2584080006938988 r005 Re(z^2+c),c=9/44+19/34*I,n=29 2584080021884073 m001 (Landau-MertensB1)/(ln(gamma)+GAMMA(13/24)) 2584080031702290 r005 Re(z^2+c),c=-7/44+29/49*I,n=32 2584080042521475 m009 (Psi(1,1/3)+3)/(5*Psi(1,1/3)+1/5) 2584080046339896 a007 Real Root Of 371*x^4+962*x^3-68*x^2-382*x-476 2584080049902706 b008 1-41*Sqrt[3/7] 2584080052220029 r002 10th iterates of z^2 + 2584080058677327 r005 Im(z^2+c),c=-5/17+26/45*I,n=13 2584080065845439 r005 Im(z^2+c),c=-3/118+13/43*I,n=25 2584080070373226 m006 (4*exp(Pi)-1/4)/(1/2*ln(Pi)+3) 2584080070465942 r005 Im(z^2+c),c=31/122+8/59*I,n=3 2584080074183247 r005 Re(z^2+c),c=-7/6+20/111*I,n=4 2584080077115486 m006 (2/5*Pi^2+3/4)/(5/6*Pi-4/5) 2584080077115486 m008 (2/5*Pi^2+3/4)/(5/6*Pi-4/5) 2584080079590088 m001 ln(TwinPrimes)*Khintchine^2/OneNinth^2 2584080086345743 r009 Im(z^3+c),c=-33/56+2/37*I,n=3 2584080094729270 r005 Im(z^2+c),c=19/86+4/25*I,n=29 2584080097462242 m009 (6*Catalan+3/4*Pi^2-1/3)/(5/12*Pi^2+3/4) 2584080100162119 a007 Real Root Of -401*x^4+873*x^3-909*x^2+559*x+222 2584080103515096 a003 sin(Pi*7/117)/cos(Pi*25/103) 2584080116887564 r002 4th iterates of z^2 + 2584080123174010 m005 (2/3*2^(1/2)+3)/(1/2*exp(1)+1/6) 2584080125176932 m005 (1/2*5^(1/2)-11/12)/(5/7*Catalan+1/8) 2584080129847844 a007 Real Root Of -940*x^4+684*x^3-835*x^2+612*x-110 2584080134798553 r004 Im(z^2+c),c=-25/34+1/16*I,z(0)=-1,n=54 2584080147217944 a007 Real Root Of 126*x^4+166*x^3-274*x^2+252*x-273 2584080150062872 m005 (1/2*Catalan-5/8)/(3/10*Zeta(3)+2/7) 2584080154031849 q001 1/3869849 2584080154596797 r005 Im(z^2+c),c=-59/94+18/59*I,n=23 2584080171630539 r005 Im(z^2+c),c=-55/48+1/44*I,n=6 2584080172705274 r002 4th iterates of z^2 + 2584080180521046 m001 Sierpinski*AlladiGrinstead^ZetaQ(4) 2584080182263972 r009 Re(z^3+c),c=-15/31+16/35*I,n=43 2584080182264401 l006 ln(685/9077) 2584080185622048 r005 Im(z^2+c),c=7/46+13/62*I,n=23 2584080202017588 m001 1/ln(GAMMA(1/3))*FeigenbaumC^2/log(2+sqrt(3)) 2584080205791402 r005 Im(z^2+c),c=-31/90+10/17*I,n=56 2584080209177570 a007 Real Root Of 241*x^4-774*x^3-271*x^2-436*x-109 2584080214409777 r002 14th iterates of z^2 + 2584080214449653 m001 exp(Zeta(3))^2*FeigenbaumDelta*sqrt(5)^2 2584080217510764 m001 (FeigenbaumMu+MertensB2)/(Niven+ZetaP(4)) 2584080218774358 a007 Real Root Of -537*x^4+309*x^3-884*x^2+713*x+251 2584080229368084 r005 Re(z^2+c),c=-13/40+1/49*I,n=17 2584080232421149 m001 (GAMMA(23/24)-FeigenbaumB)/(gamma(1)-gamma(3)) 2584080234712909 r005 Im(z^2+c),c=-11/10+22/89*I,n=23 2584080241520437 a007 Real Root Of -182*x^4-184*x^3+546*x^2-384*x+302 2584080242014796 m005 (1/2*5^(1/2)+7/12)/(1/10*Catalan-3/4) 2584080254027172 b008 5*Sqrt[BesselI[1,10]] 2584080262095794 a001 47/3*34^(31/39) 2584080262377332 a007 Real Root Of 271*x^4+917*x^3+497*x^2-193*x-78 2584080273146420 s002 sum(A132763[n]/((exp(n)+1)*n),n=1..infinity) 2584080281685787 a001 3461452808002/233*21^(2/11) 2584080290712400 r005 Im(z^2+c),c=-10/9+19/73*I,n=33 2584080293986207 r005 Re(z^2+c),c=7/26+7/52*I,n=33 2584080310066005 a001 5/271443*2^(21/43) 2584080314649364 s002 sum(A223984[n]/(16^n-1),n=1..infinity) 2584080315119687 m001 (FransenRobinson+Weierstrass)/(gamma+ln(2)) 2584080324453349 r005 Re(z^2+c),c=29/82+23/49*I,n=2 2584080330326614 m001 HardyLittlewoodC5/(MertensB3^ErdosBorwein) 2584080330649733 r005 Im(z^2+c),c=-35/118+17/42*I,n=37 2584080339447995 l006 ln(5416/7013) 2584080346455919 r005 Re(z^2+c),c=-5/31+6/7*I,n=3 2584080355512210 r005 Re(z^2+c),c=-33/86+3/8*I,n=5 2584080359324958 m005 (1/2*2^(1/2)+7/12)/(4/9*5^(1/2)+4) 2584080367024828 m004 -1+5*Pi-5*Sqrt[5]*Pi-4*Sec[Sqrt[5]*Pi] 2584080369282006 m005 (1/3*Zeta(3)+1/6)/(2*Catalan+4/11) 2584080372210960 m001 MertensB1/(ZetaP(4)^Khinchin) 2584080375099619 a008 Real Root of x^4-10*x^2-26*x-45 2584080381382539 r009 Re(z^3+c),c=-19/74+18/25*I,n=50 2584080389751202 m001 HeathBrownMoroz^Shi(1)-Sierpinski 2584080390641823 r005 Im(z^2+c),c=-1/110+5/17*I,n=8 2584080393258248 a001 47/34*6765^(41/48) 2584080395162756 r009 Re(z^3+c),c=-41/106+22/37*I,n=27 2584080405187607 m001 exp(1/Pi)^FransenRobinson*exp(1/Pi)^ZetaP(3) 2584080408994354 m005 (1/2*Catalan-5/7)/(49/99+2/9*5^(1/2)) 2584080420626871 a007 Real Root Of -969*x^4-556*x^3-601*x^2+604*x+16 2584080426565330 a007 Real Root Of 236*x^4+480*x^3-493*x^2-607*x-517 2584080428880396 r005 Re(z^2+c),c=-9/44+28/47*I,n=24 2584080429640486 r005 Re(z^2+c),c=-23/32+2/7*I,n=31 2584080458446822 a007 Real Root Of -249*x^4-610*x^3+102*x^2-10*x-130 2584080467244784 m002 270-Cosh[Pi] 2584080472967320 r005 Re(z^2+c),c=4/25+24/61*I,n=20 2584080488568544 a007 Real Root Of -350*x^4-451*x^3+719*x^2-813*x+922 2584080511439407 m001 ln(Pi)*Ei(1)+PrimesInBinary 2584080511694084 m001 gamma(1)/(Si(Pi)+cos(1/12*Pi)) 2584080524619316 r005 Im(z^2+c),c=-17/31+25/62*I,n=34 2584080529547774 m005 (1/3*Zeta(3)-1/10)/(1/2*gamma+7/8) 2584080541909755 r005 Im(z^2+c),c=-25/34+30/107*I,n=6 2584080542637780 a007 Real Root Of -725*x^4-883*x^3+13*x^2+904*x-216 2584080548182359 p001 sum((-1)^n/(369*n+17)/n/(100^n),n=1..infinity) 2584080549086083 a001 29/47*(1/2*5^(1/2)+1/2)^6*47^(9/11) 2584080558793882 a007 Real Root Of 39*x^4-547*x^3+969*x^2+281*x+503 2584080561968014 m005 (1/2*exp(1)+4/11)/(6*Zeta(3)-6/11) 2584080563732051 p004 log(24697/19073) 2584080578403104 m005 (1/3*exp(1)+3/4)/(1/9*3^(1/2)-5/6) 2584080594890986 r009 Im(z^3+c),c=-49/106+1/10*I,n=37 2584080607188020 a001 377/4*29^(59/60) 2584080609242824 a001 521/7778742049*610^(13/14) 2584080626525303 r005 Im(z^2+c),c=-75/118+11/34*I,n=28 2584080644528668 m001 (Grothendieck+Mills)/(Pi^(1/2)-gamma) 2584080657773219 r005 Re(z^2+c),c=-37/122+11/49*I,n=27 2584080665039694 r002 3th iterates of z^2 + 2584080667588327 l006 ln(227/3008) 2584080669270428 a007 Real Root Of -605*x^4+554*x^3+949*x^2+924*x-309 2584080678505694 a001 144/521*5778^(8/31) 2584080687049803 m001 (2^(1/2)+Si(Pi))/(cos(1)+Sarnak) 2584080703646899 m009 (1/12*Pi^2+4)/(4/3*Catalan+1/6*Pi^2-1) 2584080704131128 a001 1/233*34^(28/55) 2584080710357938 a003 cos(Pi*19/54)-cos(Pi*18/41) 2584080711096458 a007 Real Root Of -359*x^4-977*x^3-369*x^2-625*x-2 2584080717488789 q001 2305/892 2584080720994201 m001 exp(-1/2*Pi)^(ln(2+3^(1/2))/GAMMA(7/12)) 2584080720994201 m001 exp(-1/2*Pi)^(ln(2+sqrt(3))/GAMMA(7/12)) 2584080725493935 m008 (1/5*Pi^4-1/6)/(5/6*Pi^2-3/4) 2584080745993672 a005 (1/sin(56/127*Pi))^986 2584080752356157 r005 Re(z^2+c),c=-37/122+11/49*I,n=29 2584080761966900 r009 Re(z^3+c),c=-1/24+25/46*I,n=22 2584080762646436 r005 Im(z^2+c),c=-7/20+10/31*I,n=3 2584080765667366 r009 Re(z^3+c),c=-47/98+12/25*I,n=2 2584080769112670 a007 Real Root Of 432*x^4+889*x^3-812*x^2-275*x+789 2584080772520319 a001 3/377*832040^(12/47) 2584080773331688 m001 (ln(5)+FeigenbaumC*Niven)/FeigenbaumC 2584080783065765 r005 Re(z^2+c),c=-17/86+32/59*I,n=44 2584080787000283 a007 Real Root Of -538*x^4-917*x^3+891*x^2-483*x+968 2584080800437607 m002 5/Pi-Log[Pi]/Pi^5+Tanh[Pi] 2584080809521625 r009 Im(z^3+c),c=-2/11+9/35*I,n=8 2584080812552898 a001 144/521*2207^(9/31) 2584080819154850 m001 (ErdosBorwein+MertensB3)/(5^(1/2)-ln(3)) 2584080819439085 a007 Real Root Of -523*x^4-940*x^3+881*x^2-252*x+566 2584080821216573 m001 BesselI(0,1)-exp(1/exp(1))*ArtinRank2 2584080825159578 m001 (Niven-Tetranacci)/(Ei(1)-MertensB2) 2584080835293067 a007 Real Root Of -152*x^4-60*x^3+619*x^2+729*x-228 2584080849570838 r009 Im(z^3+c),c=-9/34+15/64*I,n=10 2584080853057115 r009 Re(z^3+c),c=-11/74+51/59*I,n=44 2584080854254790 a001 3571/89*28657^(47/55) 2584080858531813 l006 ln(2747/3557) 2584080876310310 a007 Real Root Of -112*x^4+4*x^3+778*x^2+55*x+10 2584080877434626 r005 Re(z^2+c),c=-67/114+10/21*I,n=7 2584080878902787 m001 (Pi^(1/2)+Khinchin)^HardyLittlewoodC3 2584080879047945 a008 Real Root of x^4-2*x^3-11*x^2-28*x+8 2584080881547505 a007 Real Root Of -299*x^4+597*x^3+982*x^2+679*x-250 2584080882163170 m001 (-MertensB3+Mills)/(Chi(1)-Si(Pi)) 2584080889345280 m001 (LambertW(1)-log(gamma))/exp(-Pi) 2584080889345280 m001 exp(Pi)*(LambertW(1)-ln(gamma)) 2584080889345280 m001 exp(Pi)*(LambertW(1)-log(gamma)) 2584080895522750 r002 20th iterates of z^2 + 2584080895558130 m001 OneNinth-FransenRobinson-exp(Pi) 2584080900018428 m001 Pi*2^(1/2)/GAMMA(3/4)-ln(Pi)^(ln(2)/ln(10)) 2584080903976076 m001 Niven^Mills+Stephens 2584080913872443 r005 Re(z^2+c),c=6/29+14/27*I,n=52 2584080924687674 m005 (1/2*exp(1)+7/12)/(3/10*3^(1/2)-4/9) 2584080931928576 r005 Im(z^2+c),c=-7/30+13/34*I,n=15 2584080933563276 a002 19^(7/6)-3^(3/2) 2584080933665643 m001 (Bloch-Paris)/(3^(1/3)+gamma(3)) 2584080953891869 r005 Im(z^2+c),c=-9/14+6/149*I,n=33 2584080965156480 r005 Im(z^2+c),c=-30/31+15/64*I,n=48 2584080966987204 r005 Re(z^2+c),c=-13/54+29/59*I,n=17 2584080967191285 m001 (FeigenbaumC*Sierpinski-ZetaQ(4))/FeigenbaumC 2584080984089006 r005 Re(z^2+c),c=-11/74+33/59*I,n=20 2584081002512128 r005 Im(z^2+c),c=-41/46+1/40*I,n=4 2584081002692035 m001 GAMMA(1/12)/exp(TwinPrimes)^2*sin(1) 2584081014333939 r009 Re(z^3+c),c=-12/29+1/2*I,n=19 2584081018630533 r005 Im(z^2+c),c=-29/94+9/22*I,n=26 2584081019242311 b008 19*EllipticE[ArcCsch[2]] 2584081023058318 a007 Real Root Of -435*x^4-873*x^3+644*x^2+53*x+169 2584081037919235 r005 Im(z^2+c),c=-3/118+13/43*I,n=22 2584081039260219 m006 (2/3*ln(Pi)+2/3)/(2*Pi-3/4) 2584081042473384 r005 Re(z^2+c),c=-37/122+11/49*I,n=26 2584081043146685 m001 1/exp(sin(Pi/5))*Khintchine*sqrt(3) 2584081044340744 m001 1/MadelungNaCl/ln(Lehmer)^2/cos(Pi/5) 2584081058662269 m001 ZetaP(4)^ErdosBorwein*Totient^ErdosBorwein 2584081062804324 a007 Real Root Of 450*x^4+853*x^3-576*x^2+952*x+960 2584081088278331 a007 Real Root Of 417*x^4+755*x^3-958*x^2-454*x-342 2584081097879954 a007 Real Root Of 736*x^4-466*x^3-956*x^2-745*x-140 2584081101416032 a001 1/416020*75025^(43/52) 2584081130783195 m001 ErdosBorwein/(LambertW(1)^Chi(1)) 2584081131404095 m001 (Gompertz-MasserGramain)/(ln(3)+FeigenbaumB) 2584081135322490 r005 Re(z^2+c),c=-37/122+11/49*I,n=31 2584081152899099 a007 Real Root Of -36*x^4+385*x^3-874*x^2+661*x-910 2584081158647008 l006 ln(677/8971) 2584081158647008 p004 log(8971/677) 2584081164485574 m005 (1/4*exp(1)-4)/(3/5*Pi-3/5) 2584081178324142 m001 (GolombDickman+OneNinth)/(Ei(1)-Zeta(1,2)) 2584081180439511 m001 1/2/(GAMMA(1/24)-exp(sqrt(2))) 2584081180619235 m002 2+Tanh[Pi]/2+Sech[Pi]*Tanh[Pi] 2584081183362501 s002 sum(A147298[n]/(n^2*2^n-1),n=1..infinity) 2584081190081871 r005 Re(z^2+c),c=-23/98+20/33*I,n=32 2584081193125462 a007 Real Root Of -216*x^4-371*x^3+98*x^2-810*x+482 2584081193664441 a007 Real Root Of 981*x^4-991*x^3-351*x^2-932*x+277 2584081195719261 a005 (1/cos(4/211*Pi))^535 2584081206923233 r005 Re(z^2+c),c=-37/122+11/49*I,n=34 2584081208563719 m001 (FeigenbaumKappa+Stephens)^(3^(1/3)) 2584081211387145 a007 Real Root Of 118*x^4+19*x^3-929*x^2-568*x-198 2584081224356661 r005 Re(z^2+c),c=-37/122+11/49*I,n=36 2584081225410099 a005 (1/cos(19/207*Pi))^514 2584081235185030 r005 Re(z^2+c),c=-37/122+11/49*I,n=39 2584081235274235 r005 Re(z^2+c),c=-37/122+11/49*I,n=41 2584081235658025 r005 Re(z^2+c),c=-37/122+11/49*I,n=38 2584081236021054 r005 Re(z^2+c),c=-37/122+11/49*I,n=43 2584081236176922 r005 Re(z^2+c),c=-37/122+11/49*I,n=46 2584081236209407 r005 Re(z^2+c),c=-37/122+11/49*I,n=48 2584081236231568 r005 Re(z^2+c),c=-37/122+11/49*I,n=53 2584081236231588 r005 Re(z^2+c),c=-37/122+11/49*I,n=51 2584081236231945 r005 Re(z^2+c),c=-37/122+11/49*I,n=50 2584081236233021 r005 Re(z^2+c),c=-37/122+11/49*I,n=55 2584081236233358 r005 Re(z^2+c),c=-37/122+11/49*I,n=58 2584081236233418 r005 Re(z^2+c),c=-37/122+11/49*I,n=60 2584081236233463 r005 Re(z^2+c),c=-37/122+11/49*I,n=62 2584081236233463 r005 Re(z^2+c),c=-37/122+11/49*I,n=63 2584081236233471 r005 Re(z^2+c),c=-37/122+11/49*I,n=64 2584081236233487 r005 Re(z^2+c),c=-37/122+11/49*I,n=61 2584081236233543 r005 Re(z^2+c),c=-37/122+11/49*I,n=56 2584081236233545 r005 Re(z^2+c),c=-37/122+11/49*I,n=57 2584081236233551 r005 Re(z^2+c),c=-37/122+11/49*I,n=59 2584081236234548 r005 Re(z^2+c),c=-37/122+11/49*I,n=54 2584081236235947 r005 Re(z^2+c),c=-37/122+11/49*I,n=52 2584081236243195 r005 Re(z^2+c),c=-37/122+11/49*I,n=49 2584081236263362 r005 Re(z^2+c),c=-37/122+11/49*I,n=44 2584081236276147 r005 Re(z^2+c),c=-37/122+11/49*I,n=47 2584081236277912 r005 Re(z^2+c),c=-37/122+11/49*I,n=45 2584081236768151 r005 Re(z^2+c),c=-37/122+11/49*I,n=42 2584081237521282 r005 Re(z^2+c),c=-37/122+11/49*I,n=40 2584081240865995 r005 Re(z^2+c),c=-37/122+11/49*I,n=37 2584081243765155 a003 sin(Pi*17/111)-sin(Pi*10/39) 2584081247006288 r005 Re(z^2+c),c=-37/122+11/49*I,n=32 2584081247679806 m001 Porter^Niven+Robbin 2584081250775734 a007 Real Root Of 95*x^4+88*x^3-271*x^2+58*x-758 2584081251653997 m001 (FeigenbaumD+GlaisherKinkelin)/(sin(1)+ln(2)) 2584081257782333 r005 Re(z^2+c),c=-37/122+11/49*I,n=35 2584081259075365 r005 Re(z^2+c),c=27/118+17/40*I,n=49 2584081260893047 r005 Re(z^2+c),c=-37/122+11/49*I,n=33 2584081263409317 r005 Re(z^2+c),c=-23/106+25/51*I,n=21 2584081268749221 m001 LandauRamanujan^ln(2)+Riemann3rdZero 2584081270378895 m005 (1/2*Zeta(3)+1/6)/(1/11*3^(1/2)-5/11) 2584081276511046 m001 AlladiGrinstead^ln(2^(1/2)+1)+Riemann3rdZero 2584081286953022 r002 8th iterates of z^2 + 2584081311628033 m001 ln(GAMMA(13/24))^2/Riemann1stZero/sin(Pi/12)^2 2584081319473263 h001 (-exp(3)-7)/(-exp(3/2)-6) 2584081325133646 a007 Real Root Of 222*x^4+498*x^3-115*x^2+181*x-70 2584081342015468 r009 Im(z^3+c),c=-71/122+22/35*I,n=30 2584081350952169 m001 (BesselI(0,1)-gamma(3))/(ThueMorse+ZetaP(4)) 2584081352497332 h001 (9/11*exp(1)+3/7)/(1/12*exp(1)+4/5) 2584081354789539 h001 (-9*exp(3)-1)/(-4*exp(3)+10) 2584081363082749 l006 ln(5572/7215) 2584081364273293 b008 ArcCosh[2*(1+Sqrt[2*E])] 2584081397579317 r009 Re(z^3+c),c=-1/70+33/40*I,n=37 2584081406358740 l006 ln(450/5963) 2584081410281791 r009 Re(z^3+c),c=-23/114+38/53*I,n=3 2584081411731013 r005 Im(z^2+c),c=19/86+4/25*I,n=34 2584081418041586 m005 (1/4*Pi-3/5)/(4/5*exp(1)+5) 2584081428473899 m001 BesselJ(0,1)-Zeta(5)^Cahen 2584081434010612 p004 log(25303/19541) 2584081440268048 m001 exp(sin(Pi/5))^2*cos(1)^2*sqrt(1+sqrt(3))^2 2584081459452936 m001 (arctan(1/3)+exp(-1/2*Pi))/(Rabbit+Totient) 2584081460468317 a008 Real Root of x^4-2*x^3-16*x^2+15*x+58 2584081461122988 m001 (Pi-exp(Pi)+Catalan)*GAMMA(2/3) 2584081475387949 m001 (cos(1/12*Pi)+FransenRobinson)/(GaussAGM+Kac) 2584081476260775 a001 843/2584*75025^(22/37) 2584081479098208 m001 1/BesselJ(1,1)/Kolakoski/exp(Zeta(3))^2 2584081489299688 r005 Im(z^2+c),c=-19/56+18/43*I,n=44 2584081499915087 r005 Re(z^2+c),c=-37/122+11/49*I,n=30 2584081508040976 r005 Im(z^2+c),c=23/106+8/49*I,n=22 2584081509275361 a007 Real Root Of 405*x^4+649*x^3-858*x^2+191*x-637 2584081511000076 a001 7778742049/3*1364^(22/23) 2584081520651823 r005 Im(z^2+c),c=-17/42+15/34*I,n=37 2584081525541544 m001 (Lehmer+OneNinth)/(Zeta(1,2)-Pi^(1/2)) 2584081526440731 m005 (1/3*Pi+2/9)/(6*Catalan-7/12) 2584081529288689 m001 CopelandErdos*GAMMA(3/4)^ZetaP(2) 2584081529307284 m001 (polylog(4,1/2)+Magata)/(2^(1/3)+sin(1/12*Pi)) 2584081533496209 m008 (5*Pi^4-3)/(1/5*Pi^4-3/4) 2584081538098869 h001 (-8*exp(3)+7)/(-7*exp(-2)-5) 2584081538473344 h001 (4/7*exp(1)+4/7)/(1/10*exp(2)+1/12) 2584081547182435 a007 Real Root Of -371*x^4-622*x^3+25*x^2+862*x+212 2584081551538330 a007 Real Root Of -73*x^4+664*x^3+385*x^2+465*x-157 2584081555289528 r002 8th iterates of z^2 + 2584081558392045 r009 Im(z^3+c),c=-47/122+3/17*I,n=7 2584081563009284 r005 Im(z^2+c),c=19/86+4/25*I,n=35 2584081563713819 r005 Re(z^2+c),c=-29/114+23/57*I,n=29 2584081569975926 r005 Re(z^2+c),c=1/102+16/25*I,n=16 2584081572775565 m005 (1/3*5^(1/2)-1/10)/(1/8*Zeta(3)-2/5) 2584081578257513 m001 (Zeta(5)-GAMMA(23/24))/(ErdosBorwein+Khinchin) 2584081581109459 m001 (3^(1/2)-cos(1/5*Pi))/(gamma(3)+FeigenbaumMu) 2584081591152797 r005 Im(z^2+c),c=-7/36+17/46*I,n=17 2584081608037325 m001 (Ei(1)+Pi^(1/2))/(Cahen+StronglyCareFree) 2584081612935358 r005 Re(z^2+c),c=8/27+5/32*I,n=42 2584081613716827 m001 (Chi(1)+ln(3))/(2*Pi/GAMMA(5/6)+Tetranacci) 2584081614432992 m005 (1/2*exp(1)-10/11)/(7/12*2^(1/2)+11/12) 2584081616885272 a007 Real Root Of -271*x^4-809*x^3-131*x^2+55*x-859 2584081626140296 r005 Re(z^2+c),c=-27/86+5/31*I,n=12 2584081639868575 m001 Riemann3rdZero^2*ln(Artin)/cosh(1)^2 2584081642471520 r005 Re(z^2+c),c=37/110+11/58*I,n=33 2584081655542694 l006 ln(673/8918) 2584081665710523 m001 ErdosBorwein/BesselJ(0,1)/StolarskyHarborth 2584081675098279 r005 Re(z^2+c),c=-13/50+22/57*I,n=20 2584081680441552 r009 Re(z^3+c),c=-19/74+18/25*I,n=64 2584081685897632 a007 Real Root Of -943*x^4-74*x^3+391*x^2+527*x+113 2584081697337057 r005 Im(z^2+c),c=19/86+4/25*I,n=33 2584081712920073 h003 exp(Pi*(17^(1/10)+19^(7/12))) 2584081712920073 h008 exp(Pi*(17^(1/10)+19^(7/12))) 2584081724415425 r005 Re(z^2+c),c=-37/64+4/9*I,n=55 2584081728644662 a007 Real Root Of -300*x^4-718*x^3+72*x^2-186*x+26 2584081728758764 a007 Real Root Of 343*x^4+957*x^3+351*x^2+619*x+475 2584081729381706 a007 Real Root Of 109*x^4+100*x^3-498*x^2-306*x-600 2584081730943334 m001 (Catalan-sin(1))/(GAMMA(2/3)+GAMMA(7/12)) 2584081733011031 m001 1/GAMMA(7/24)/GAMMA(17/24)^2*ln(Zeta(5))^2 2584081741274082 a001 5/39603*4^(31/60) 2584081744829245 r005 Re(z^2+c),c=-11/56+29/54*I,n=36 2584081760377319 a001 2/233*2971215073^(15/19) 2584081767212164 m008 (1/3*Pi^4-5/6)/(4*Pi^5+1/5) 2584081772417235 v003 sum((32+9*n^2-27*n)/n^(n-1),n=1..infinity) 2584081784601533 m005 (1/2*exp(1)-5/6)/(8/11*Pi-1/4) 2584081795846662 m001 Catalan^exp(1/Pi)-ln(Pi) 2584081795936009 r005 Im(z^2+c),c=19/86+4/25*I,n=36 2584081804921311 r005 Im(z^2+c),c=19/86+4/25*I,n=41 2584081810171762 a001 76/10610209857723*63245986^(1/14) 2584081810178321 a001 38/3278735159921*75025^(1/14) 2584081811332958 r005 Im(z^2+c),c=19/86+4/25*I,n=40 2584081815501562 r005 Im(z^2+c),c=19/86+4/25*I,n=42 2584081822082172 r005 Im(z^2+c),c=-7/60+26/43*I,n=9 2584081823151101 h003 exp(Pi*(22*11^(2/3)-5^(1/2))) 2584081824300890 r005 Im(z^2+c),c=19/86+4/25*I,n=47 2584081824321819 r005 Im(z^2+c),c=19/86+4/25*I,n=48 2584081824933513 r005 Im(z^2+c),c=19/86+4/25*I,n=49 2584081825194853 r005 Im(z^2+c),c=19/86+4/25*I,n=54 2584081825209615 r005 Im(z^2+c),c=19/86+4/25*I,n=55 2584081825241276 r005 Im(z^2+c),c=19/86+4/25*I,n=56 2584081825244396 r005 Im(z^2+c),c=19/86+4/25*I,n=53 2584081825246162 r005 Im(z^2+c),c=19/86+4/25*I,n=61 2584081825247399 r005 Im(z^2+c),c=19/86+4/25*I,n=62 2584081825247537 r005 Im(z^2+c),c=19/86+4/25*I,n=60 2584081825248909 r005 Im(z^2+c),c=19/86+4/25*I,n=63 2584081825249548 r005 Im(z^2+c),c=19/86+4/25*I,n=64 2584081825253082 r005 Im(z^2+c),c=19/86+4/25*I,n=59 2584081825259307 r005 Im(z^2+c),c=19/86+4/25*I,n=57 2584081825259992 r005 Im(z^2+c),c=19/86+4/25*I,n=58 2584081825371774 r005 Im(z^2+c),c=19/86+4/25*I,n=52 2584081825390784 r005 Im(z^2+c),c=19/86+4/25*I,n=50 2584081825486968 r005 Im(z^2+c),c=19/86+4/25*I,n=51 2584081825746448 r005 Im(z^2+c),c=19/86+4/25*I,n=46 2584081825839210 r005 Im(z^2+c),c=-47/110+2/47*I,n=36 2584081826202409 r005 Im(z^2+c),c=19/86+4/25*I,n=43 2584081828468763 r005 Im(z^2+c),c=19/86+4/25*I,n=45 2584081829992299 r005 Im(z^2+c),c=19/86+4/25*I,n=44 2584081830852793 h005 exp(cos(Pi*2/39)*cos(Pi*3/34)) 2584081833616342 m001 1/Catalan^2/exp(LaplaceLimit)^2/GAMMA(3/4) 2584081833726879 m001 (Landau-Lehmer)/(Champernowne+KomornikLoreti) 2584081834775827 m001 Pi^Thue/MertensB2 2584081843154762 m001 1/sin(1)^2/ln(GAMMA(1/24))/sqrt(3) 2584081846009400 r005 Im(z^2+c),c=-35/118+17/42*I,n=33 2584081848854631 r005 Im(z^2+c),c=19/86+4/25*I,n=39 2584081849959578 a001 196418/843*123^(1/2) 2584081853702696 l006 ln(2825/3658) 2584081861576494 r005 Re(z^2+c),c=-7/22+8/63*I,n=16 2584081873827871 r005 Re(z^2+c),c=-25/98+28/61*I,n=8 2584081879219184 g007 -Psi(2,8/9)-Psi(2,7/9)-2*Psi(2,5/8) 2584081879947539 a007 Real Root Of 4*x^4-312*x^3+336*x^2+828*x+822 2584081885543389 r009 Re(z^3+c),c=-47/110+16/31*I,n=32 2584081888071439 a007 Real Root Of 528*x^4+807*x^3-962*x^2+942*x-760 2584081902640791 r005 Im(z^2+c),c=19/86+4/25*I,n=38 2584081902878904 r005 Re(z^2+c),c=-37/122+11/49*I,n=28 2584081907398525 r005 Re(z^2+c),c=-157/126+21/64*I,n=11 2584081910998680 r005 Im(z^2+c),c=19/86+4/25*I,n=37 2584081911703865 m001 ln(Porter)*Lehmer/Zeta(1,2)^2 2584081913303523 r005 Im(z^2+c),c=-13/90+20/57*I,n=16 2584081916066321 a007 Real Root Of -300*x^4-784*x^3+227*x^2+502*x-370 2584081916229458 m004 -75*Pi+5*Sqrt[5]*Pi-25*Pi*Cos[Sqrt[5]*Pi] 2584081932324466 m001 1/Pi*ln(Khintchine)^2/Zeta(3) 2584081934786385 b008 CosIntegral[E^(-2/15)] 2584081946243839 a001 10946/199*322^(2/3) 2584081948513215 m001 (Artin+DuboisRaymond*Robbin)/DuboisRaymond 2584081952975317 m001 (5^(1/2))^(sin(1/12*Pi)/Ei(1,1)) 2584081957516321 m001 (Psi(1,1/3)+LandauRamanujan2nd)/(Otter+Salem) 2584081975477143 m006 (5*Pi^2+1)/(5/6*exp(Pi)+1/5) 2584081980879829 r009 Im(z^3+c),c=-11/78+9/34*I,n=9 2584081985627241 a003 cos(Pi*3/116)-sin(Pi*23/87) 2584081988007075 r005 Re(z^2+c),c=-23/74+2/11*I,n=18 2584081990063056 r005 Im(z^2+c),c=-2/31+15/47*I,n=15 2584081990627048 a003 cos(Pi*26/93)-sin(Pi*17/48) 2584081999169344 r005 Re(z^2+c),c=-7/26+25/59*I,n=11 2584082003572238 m001 Magata*FeigenbaumDelta/ln(cos(1)) 2584082011639558 a007 Real Root Of -289*x^4-758*x^3-396*x^2-916*x+84 2584082020022428 a007 Real Root Of 503*x^4+59*x^3-929*x^2-473*x+181 2584082024047184 a007 Real Root Of -406*x^4-868*x^3+414*x^2-435*x-763 2584082025568484 m001 Thue^MinimumGamma*FellerTornier 2584082025572165 m001 1/Tribonacci*exp(MadelungNaCl)^2*(3^(1/3)) 2584082046078487 a005 (1/cos(32/165*Pi))^28 2584082052495543 b008 EulerGamma*ArcCosh[14*Pi] 2584082053069638 r009 Re(z^3+c),c=-23/44+5/17*I,n=3 2584082055560105 m001 (GolombDickman-Otter)/(sin(1/12*Pi)+Cahen) 2584082059379015 r005 Im(z^2+c),c=-27/46+13/33*I,n=47 2584082069370501 r005 Im(z^2+c),c=-19/34+2/43*I,n=42 2584082073095167 a007 Real Root Of -365*x^4-671*x^3+852*x^2+155*x-592 2584082076637199 m005 (1/2*3^(1/2)-1/3)/(7/9*3^(1/2)+5/7) 2584082078380024 a001 1/39726*(1/2*5^(1/2)+1/2)^30*18^(13/22) 2584082091694777 s001 sum(exp(-2*Pi/5)^n*A010519[n],n=1..infinity) 2584082091694777 s002 sum(A010519[n]/(exp(2/5*pi*n)),n=1..infinity) 2584082104276109 r005 Im(z^2+c),c=-49/36+5/31*I,n=5 2584082134610416 r005 Im(z^2+c),c=9/44+9/52*I,n=16 2584082136472383 m007 (-1/4*gamma+1/6)/(-4*gamma-8*ln(2)-4/5) 2584082156611039 q001 2013/779 2584082158380079 l006 ln(223/2955) 2584082165094823 r005 Im(z^2+c),c=-3/118+13/43*I,n=21 2584082170968544 h001 (3/8*exp(1)+4/5)/(2/9*exp(1)+1/10) 2584082184924293 r005 Re(z^2+c),c=-33/106+5/28*I,n=18 2584082186463013 m006 (4/Pi-1/6)/(4/5*exp(2*Pi)-1/6) 2584082188172686 a007 Real Root Of -397*x^4-908*x^3+222*x^2-198*x+40 2584082189527611 m002 Pi^9*Csch[Pi]+Pi/ProductLog[Pi] 2584082189962715 m001 (-Gompertz+KhinchinHarmonic)/(1-exp(1/exp(1))) 2584082210260653 r005 Re(z^2+c),c=-73/118+17/55*I,n=7 2584082224819089 s002 sum(A126158[n]/((2^n-1)/n),n=1..infinity) 2584082229596881 a007 Real Root Of 413*x^4+790*x^3-514*x^2+694*x+442 2584082230658453 a001 9/3278735159921*17711^(7/10) 2584082234056573 b008 9/11+ExpIntegralEi[-1/2] 2584082238357375 a007 Real Root Of -437*x^4+127*x^3+126*x^2+984*x+250 2584082244961740 a007 Real Root Of 84*x^4-299*x^3+19*x^2-856*x-228 2584082245140658 m001 (ArtinRank2-MertensB2)/(Mills-ZetaQ(4)) 2584082252357941 r005 Im(z^2+c),c=-27/74+23/52*I,n=20 2584082260554645 r009 Re(z^3+c),c=-3/8+21/52*I,n=24 2584082266157413 m001 BesselI(0,1)*(sin(1/12*Pi)+Grothendieck) 2584082266935782 r005 Im(z^2+c),c=-19/18+50/217*I,n=24 2584082276925147 m001 (BesselJ(0,1)-Si(Pi))/(-Artin+Kolakoski) 2584082278559128 r005 Im(z^2+c),c=-1/42+17/56*I,n=7 2584082284170203 m001 (Zeta(3)-FeigenbaumC)/(Riemann3rdZero-Robbin) 2584082286899152 r005 Re(z^2+c),c=-51/82+16/43*I,n=37 2584082298707737 r005 Im(z^2+c),c=-19/16+24/119*I,n=11 2584082303255245 r005 Im(z^2+c),c=-19/22+16/77*I,n=30 2584082312118005 m001 (cos(1/5*Pi)-3^(1/3))/(arctan(1/3)-ZetaP(4)) 2584082320015232 m001 BesselK(0,1)^2*Riemann2ndZero^2/ln(GAMMA(2/3)) 2584082324156241 r005 Re(z^2+c),c=-33/106+5/28*I,n=17 2584082330960765 l006 ln(5728/7417) 2584082345508255 r005 Im(z^2+c),c=-47/110+2/47*I,n=41 2584082349134527 g005 GAMMA(2/9)/GAMMA(7/9)/GAMMA(7/8)/GAMMA(3/4) 2584082354065600 m009 (8*Catalan+Pi^2-2)/(1/2*Psi(1,1/3)+5/6) 2584082358948923 m005 (1/2*Pi-8/9)/(2/7*5^(1/2)+2) 2584082360317691 m001 (GAMMA(2/3)+GAMMA(3/4))/(gamma+BesselK(0,1)) 2584082362499647 r005 Im(z^2+c),c=-47/110+2/47*I,n=43 2584082362588714 r005 Im(z^2+c),c=-47/110+2/47*I,n=38 2584082372151708 m008 (1/3*Pi^6-5/6)/(4*Pi^3-1/3) 2584082374546180 p001 sum((-1)^n/(525*n+359)/(5^n),n=0..infinity) 2584082380837358 r005 Im(z^2+c),c=-47/110+2/47*I,n=39 2584082382883268 r005 Im(z^2+c),c=-47/110+2/47*I,n=45 2584082384049571 r005 Im(z^2+c),c=-7/10+9/56*I,n=13 2584082385406869 m001 Catalan+cos(1/5*Pi)+Thue 2584082396815531 r005 Im(z^2+c),c=-47/110+2/47*I,n=47 2584082404784268 r005 Im(z^2+c),c=-47/110+2/47*I,n=49 2584082408588612 a001 317811/199*123^(1/10) 2584082408939216 r005 Im(z^2+c),c=-47/110+2/47*I,n=51 2584082410980820 r005 Im(z^2+c),c=-47/110+2/47*I,n=53 2584082411761968 a007 Real Root Of 331*x^4-225*x^3+709*x^2-868*x-277 2584082411941580 r005 Im(z^2+c),c=-47/110+2/47*I,n=55 2584082412378408 r005 Im(z^2+c),c=-47/110+2/47*I,n=57 2584082412571261 r005 Im(z^2+c),c=-47/110+2/47*I,n=59 2584082412654158 r005 Im(z^2+c),c=-47/110+2/47*I,n=61 2584082412688890 r005 Im(z^2+c),c=-47/110+2/47*I,n=63 2584082412726609 r005 Im(z^2+c),c=-47/110+2/47*I,n=64 2584082412748875 r005 Im(z^2+c),c=-47/110+2/47*I,n=62 2584082412802704 r005 Im(z^2+c),c=-47/110+2/47*I,n=60 2584082412929553 r005 Im(z^2+c),c=-47/110+2/47*I,n=58 2584082413220809 r005 Im(z^2+c),c=-47/110+2/47*I,n=56 2584082413871189 r005 Im(z^2+c),c=-47/110+2/47*I,n=54 2584082414361142 r005 Re(z^2+c),c=-25/31+1/54*I,n=26 2584082415278370 r005 Im(z^2+c),c=-47/110+2/47*I,n=52 2584082416996590 m001 (ln(5)+5)/(-3^(1/3)+4) 2584082418208915 r005 Im(z^2+c),c=-47/110+2/47*I,n=50 2584082418469318 a007 Real Root Of -91*x^4+264*x^3+982*x^2-650*x+376 2584082423139706 h001 (-7*exp(8)-9)/(-2*exp(6)-1) 2584082424014442 r005 Im(z^2+c),c=-47/110+2/47*I,n=48 2584082429657812 m001 1/MadelungNaCl^2/Conway^2*ln((3^(1/3)))^2 2584082431070896 a003 cos(Pi*1/119)/sin(Pi*11/87) 2584082433566643 r005 Re(z^2+c),c=6/17+10/51*I,n=54 2584082434709176 r005 Im(z^2+c),c=-47/110+2/47*I,n=46 2584082438125357 r004 Re(z^2+c),c=-1/4+7/22*I,z(0)=-1,n=11 2584082441005672 r005 Im(z^2+c),c=-1+4/155*I,n=3 2584082441732928 b008 ArcCsch[2^Pi^EulerGamma] 2584082443238710 m005 (1/3*3^(1/2)-1/12)/(149/168+11/24*5^(1/2)) 2584082446714001 a005 (1/cos(13/94*Pi))^482 2584082449588094 m001 Artin^MadelungNaCl+BesselJZeros(0,1) 2584082452113848 r005 Im(z^2+c),c=-47/110+2/47*I,n=44 2584082455426933 p001 sum(1/(503*n+428)/(5^n),n=0..infinity) 2584082457248693 a007 Real Root Of -430*x^4-735*x^3+708*x^2-957*x-710 2584082463327673 a007 Real Root Of 421*x^4+722*x^3-595*x^2+833*x-188 2584082467275541 m002 -4-Pi^9*Csch[Pi]+ProductLog[Pi] 2584082469292770 a007 Real Root Of 468*x^4+824*x^3-939*x^2-46*x-498 2584082473402140 r005 Im(z^2+c),c=-47/110+2/47*I,n=42 2584082475040892 r005 Im(z^2+c),c=-47/110+2/47*I,n=40 2584082488499055 a003 sin(Pi*6/83)/cos(Pi*8/49) 2584082490412906 m001 (3^(1/2))^(Riemann1stZero/LandauRamanujan) 2584082496727768 m005 (1/3*5^(1/2)-2/9)/(1/11*Catalan-2/7) 2584082496958787 p004 log(26489/1999) 2584082507967742 r005 Im(z^2+c),c=-45/74+9/20*I,n=39 2584082508877774 a007 Real Root Of 247*x^4+595*x^3-129*x^2-390*x-893 2584082511529497 m002 1+Pi^9*Sech[Pi]+Sinh[Pi] 2584082515479607 r005 Im(z^2+c),c=25/86+1/12*I,n=44 2584082518825867 m005 (1/2*Zeta(3)+2)/(2/11*5^(1/2)+3/5) 2584082519143023 r005 Im(z^2+c),c=-5/44+17/20*I,n=6 2584082522616112 a001 75025/4*3^(7/24) 2584082531498243 a001 1/104004*(1/2*5^(1/2)+1/2)^32*18^(13/22) 2584082541460283 m001 Zeta(3)+Pi*csc(1/24*Pi)/GAMMA(23/24)+Salem 2584082554276944 r005 Re(z^2+c),c=-13/62+17/33*I,n=50 2584082561297992 r005 Im(z^2+c),c=-11/32+11/26*I,n=23 2584082566526531 m001 (Si(Pi)+Zeta(5))/(-GAMMA(5/6)+Trott) 2584082584082584 q001 776/3003 2584082592231939 r005 Im(z^2+c),c=19/86+4/25*I,n=32 2584082592874825 a001 55/29*1364^(32/47) 2584082602821658 m001 TwinPrimes^Magata/(TwinPrimes^ZetaR(2)) 2584082604034682 r009 Re(z^3+c),c=-25/74+15/46*I,n=13 2584082608900091 a001 1/18*(1/2*5^(1/2)+1/2)^14*18^(13/22) 2584082609500667 r005 Im(z^2+c),c=-97/86+15/61*I,n=24 2584082609612003 m001 (-Zeta(1/2)+BesselI(0,2))/(1-ln(Pi)) 2584082619239798 m008 (2/3*Pi^3-1/6)/(1/2*Pi^2+3) 2584082621331833 m001 ln(Pi)^GAMMA(3/4)+OrthogonalArrays 2584082630888919 m001 Backhouse^(Pi*2^(1/2)/GAMMA(3/4))*Robbin 2584082634422129 a007 Real Root Of 116*x^4+8*x^3-486*x^2+779*x+224 2584082642452515 r005 Im(z^2+c),c=-47/110+2/47*I,n=37 2584082654096719 m001 FeigenbaumC^CareFree/Lehmer 2584082660378365 m001 (1-LaplaceLimit)/(ZetaP(4)+ZetaQ(2)) 2584082667266379 l006 ln(665/8812) 2584082667376959 r005 Im(z^2+c),c=-4/15+15/38*I,n=27 2584082690759741 m005 (1/3*Catalan+2/11)/(5/9*exp(1)+3/8) 2584082702609774 m005 (1/3*Pi-2/9)/(8/9*Pi+2/5) 2584082707085792 a007 Real Root Of 62*x^4-502*x^3+384*x^2-377*x-132 2584082716185732 a001 53316291173/3*3571^(14/23) 2584082725646423 a007 Real Root Of 392*x^4+921*x^3-321*x^2-573*x-924 2584082738338624 r009 Re(z^3+c),c=-37/106+20/57*I,n=14 2584082746982932 a001 34/7*1364^(20/23) 2584082747131135 r009 Re(z^3+c),c=-1/50+39/50*I,n=6 2584082750748319 m001 (Zeta(1/2)+GAMMA(5/6))/(Conway-Riemann1stZero) 2584082751962954 m001 BesselI(1,2)+Bloch^ZetaQ(3) 2584082755687522 m005 (1/3*3^(1/2)-1/9)/(26/33+5/11*5^(1/2)) 2584082757889570 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)/(gamma(3)+MertensB2) 2584082764223406 m001 Magata^GolombDickman*Zeta(3) 2584082768135602 r005 Re(z^2+c),c=-5/24+23/49*I,n=13 2584082768266274 m002 6+Pi^2/E^Pi+Pi^3-Cosh[Pi] 2584082778116993 m001 (FransenRobinson-sin(1/5*Pi))/Thue 2584082781281118 a007 Real Root Of 529*x^4-437*x^3-408*x^2-544*x+173 2584082795395481 l006 ln(2903/3759) 2584082808162435 m005 (1/2*gamma-2/3)/(11/12*2^(1/2)+1/6) 2584082811540783 a001 1/64278*(1/2*5^(1/2)+1/2)^31*18^(13/22) 2584082812538223 a001 1836311903/3*9349^(21/23) 2584082821680014 m003 1/16+E^(1/2+Sqrt[5]/2)/2 2584082823712010 r005 Im(z^2+c),c=-99/98+7/29*I,n=26 2584082835968952 a001 1836311903/3*24476^(19/23) 2584082839516275 a001 956722026041/3*167761^(4/23) 2584082839531078 a001 2504730781961/3*439204^(2/23) 2584082839531478 a001 10983760033*1149851^(9/23) 2584082839531497 a001 832040/3*2139295485799^(13/23) 2584082839532225 a001 7778742049/3*7881196^(10/23) 2584082839532227 a001 5702887/3*2537720636^(15/23) 2584082839532231 a001 4052739537881/3*3010349^(1/23) 2584082839532239 a001 63245986/3*20633239^(16/23) 2584082839532240 a001 4976784*54018521^(17/23) 2584082839532243 a001 39088169/3*119218851371^(11/23) 2584082839532243 a001 433494437/3*141422324^(12/23) 2584082839532243 a001 591286729879/3*370248451^(3/23) 2584082839532243 a001 86267571272/3*969323029^(5/23) 2584082839532243 a001 1836311903/3*817138163596^(7/23) 2584082839532243 a001 2504730781961/3*192900153618^(1/23) 2584082839532243 a001 139583862445/3*23725150497407^(3/23) 2584082839532243 a001 956722026041/3*28143753123^(2/23) 2584082839532243 a001 139583862445/3*10749957122^(4/23) 2584082839532243 a001 7778742049/3*312119004989^(6/23) 2584082839532243 a001 2971215073/3*6643838879^(8/23) 2584082839532243 a001 433494437/3*73681302247^(9/23) 2584082839532243 a001 63245986/3*505019158607^(10/23) 2584082839532243 a001 63245986/3*228826127^(14/23) 2584082839532244 a001 433494437/3*33385282^(13/23) 2584082839532248 a001 53316291173/3*12752043^(7/23) 2584082839532272 a001 139583862445/3*4870847^(6/23) 2584082839532528 a001 1346269/3*9062201101803^(12/23) 2584082839532600 a001 7778742049/3*1860498^(11/23) 2584082839536693 a001 63245986/3*710647^(20/23) 2584082839545639 a001 196418/3*1568397607^(19/23) 2584082839545639 a001 196418/3*87403803^(22/23) 2584082839559690 a001 433494437/3*271443^(18/23) 2584082839615854 a001 139583862445/3*103682^(8/23) 2584082839624060 a001 75025/3*17393796001^(18/23) 2584082839624060 a001 75025/3*14662949395604^(14/23) 2584082839624060 a001 75025/3*599074578^(21/23) 2584082840161568 a001 28657/3*1322157322203^(16/23) 2584082840606761 a001 7778742049/3*39603^(15/23) 2584082841987195 a001 956722026041/3*15127^(5/23) 2584082844661924 r005 Im(z^2+c),c=-17/74+11/19*I,n=3 2584082849628137 a001 2504730781961/3*5778^(3/23) 2584082849856256 a007 Real Root Of 439*x^4+702*x^3-795*x^2+556*x-716 2584082851369867 a003 sin(Pi*1/11)*sin(Pi*17/46) 2584082863851542 m005 (3/5*gamma+1)/(1/4*Catalan-3/4) 2584082865430900 m001 (ln(2)+Riemann2ndZero)/(1-Catalan) 2584082867561732 m001 1/Niven^2/Lehmer/exp(cos(Pi/5)) 2584082869097122 a001 4181/3*45537549124^(20/23) 2584082869097122 a001 4181/3*3461452808002^(17/23) 2584082876455801 s001 sum(exp(-2*Pi/3)^n*A256076[n],n=1..infinity) 2584082880355490 b008 ArcCot[2^(1/11)+E] 2584082881553818 r009 Im(z^3+c),c=-23/74+36/53*I,n=44 2584082908223214 r005 Im(z^2+c),c=-25/29+9/46*I,n=35 2584082913487998 m001 (1+2*Pi/GAMMA(5/6))/(FeigenbaumC+Rabbit) 2584082913761528 a007 Real Root Of 407*x^4+611*x^3-937*x^2+570*x+125 2584082923152436 r009 Im(z^3+c),c=-11/78+9/34*I,n=11 2584082924012084 l006 ln(442/5857) 2584082928133233 r009 Re(z^3+c),c=-41/118+16/25*I,n=62 2584082928464597 a003 cos(Pi*31/102)-sin(Pi*29/92) 2584082935174536 m001 (ln(2)+Backhouse)/(Bloch-Conway) 2584082936557084 m001 gamma/Zeta(3)*ZetaQ(2) 2584082953261056 r002 39th iterates of z^2 + 2584082953612591 a003 -1/2+cos(1/10*Pi)+2*cos(10/27*Pi)-cos(1/18*Pi) 2584082954321524 m001 (Pi^(1/2)-exp(1))/(CareFree+Otter) 2584082958135123 m001 (Bloch+Riemann2ndZero)/(sin(1)+gamma(2)) 2584082961484353 a007 Real Root Of -329*x^4+420*x^3+64*x^2+126*x+37 2584082962055259 r005 Re(z^2+c),c=-27/34+6/77*I,n=22 2584082972177324 r005 Im(z^2+c),c=-19/50+16/37*I,n=23 2584082975927738 a007 Real Root Of 31*x^4+806*x^3+154*x^2+682*x-68 2584082990827862 s001 sum(1/10^(n-1)*A205258[n]/n!^2,n=1..infinity) 2584083002330165 r009 Re(z^3+c),c=-25/56+27/53*I,n=61 2584083016804511 m001 ln(Khintchine)*Backhouse/GAMMA(1/6) 2584083023083692 g004 Im(GAMMA(-71/30+I*2/3)) 2584083031147596 m006 (3/4*exp(2*Pi)-2/3)/(3/5*Pi-1/3) 2584083039226784 r005 Im(z^2+c),c=-3/38+11/34*I,n=8 2584083043913627 m005 (1/2*exp(1)+5/6)/(8/11*5^(1/2)-7/9) 2584083045292543 m001 Pi*FeigenbaumC*ln(cos(Pi/5))^2 2584083047071341 a001 322/13*5^(1/38) 2584083051832921 m001 Khintchine/exp(GolombDickman)/GAMMA(1/6) 2584083062224250 r005 Im(z^2+c),c=-31/60+17/43*I,n=20 2584083064313645 r005 Im(z^2+c),c=-13/58+19/50*I,n=14 2584083068949838 r009 Im(z^3+c),c=-11/78+9/34*I,n=14 2584083071208084 m001 Ei(1)^2*CopelandErdos/ln(sqrt(Pi))^2 2584083071385734 r009 Im(z^3+c),c=-11/78+9/34*I,n=17 2584083071414525 r009 Im(z^3+c),c=-11/78+9/34*I,n=19 2584083071415154 r009 Im(z^3+c),c=-11/78+9/34*I,n=20 2584083071415346 r009 Im(z^3+c),c=-11/78+9/34*I,n=22 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=25 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=28 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=30 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=31 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=33 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=36 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=39 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=41 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=42 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=44 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=47 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=45 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=50 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=52 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=53 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=55 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=56 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=58 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=61 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=63 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=64 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=62 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=60 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=59 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=57 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=54 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=51 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=49 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=48 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=46 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=43 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=40 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=38 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=37 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=34 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=35 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=32 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=29 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=27 2584083071415370 r009 Im(z^3+c),c=-11/78+9/34*I,n=26 2584083071415371 r009 Im(z^3+c),c=-11/78+9/34*I,n=23 2584083071415371 r009 Im(z^3+c),c=-11/78+9/34*I,n=24 2584083071415488 r009 Im(z^3+c),c=-11/78+9/34*I,n=21 2584083071423574 r009 Im(z^3+c),c=-11/78+9/34*I,n=18 2584083071435005 r009 Im(z^3+c),c=-11/78+9/34*I,n=16 2584083071813127 r009 Im(z^3+c),c=-11/78+9/34*I,n=15 2584083072742884 m001 (BesselI(0,2)*Landau-Zeta(1,-1))/Landau 2584083077881365 r009 Im(z^3+c),c=-11/78+9/34*I,n=13 2584083078600165 r009 Im(z^3+c),c=-11/78+9/34*I,n=12 2584083096185388 m001 1/(2^(1/3))*exp(Sierpinski)^2/cos(1) 2584083103887428 m008 (4*Pi+4)/(2/3*Pi^6+1/6) 2584083116325390 a001 139583862445/3*2207^(12/23) 2584083147574904 a007 Real Root Of 497*x^4+178*x^3+805*x^2-577*x-202 2584083149240661 a007 Real Root Of 434*x^4+945*x^3-289*x^2+590*x+409 2584083153515765 m001 (LandauRamanujan+Trott)/(ln(Pi)-exp(1/exp(1))) 2584083157401386 r005 Im(z^2+c),c=19/86+4/25*I,n=30 2584083164612438 r005 Im(z^2+c),c=8/27+1/14*I,n=38 2584083177898991 r002 4th iterates of z^2 + 2584083178801816 r005 Im(z^2+c),c=-7/8+32/145*I,n=4 2584083182311402 l006 ln(661/8759) 2584083184268717 r005 Re(z^2+c),c=25/102+31/61*I,n=10 2584083196553678 r009 Re(z^3+c),c=-19/52+37/63*I,n=17 2584083201341850 r005 Re(z^2+c),c=17/70+6/55*I,n=17 2584083217027723 r005 Im(z^2+c),c=-15/31+17/37*I,n=37 2584083225500762 r005 Im(z^2+c),c=19/86+4/25*I,n=26 2584083230532529 a007 Real Root Of 313*x^4+596*x^3-314*x^2+422*x-485 2584083239328863 r005 Re(z^2+c),c=-3/22+47/53*I,n=21 2584083241374684 m003 -35/2+Sqrt[5]+Tan[1/2+Sqrt[5]/2]/2 2584083241944287 a005 (1/cos(13/231*Pi))^1526 2584083247516815 l006 ln(5884/7619) 2584083275717815 r005 Im(z^2+c),c=-93/106+1/49*I,n=8 2584083291378700 m005 (1/2*exp(1)+1/10)/(5*Zeta(3)-4/11) 2584083292609769 m001 Pi*Magata*exp(log(1+sqrt(2))) 2584083293199438 a007 Real Root Of 304*x^4+599*x^3-835*x^2-958*x-119 2584083307369560 r005 Im(z^2+c),c=-1+31/133*I,n=3 2584083311137980 m001 1/MinimumGamma*ErdosBorwein^2*exp(FeigenbaumD) 2584083323514818 r005 Im(z^2+c),c=-20/29+20/59*I,n=51 2584083330243542 a007 Real Root Of 115*x^4+76*x^3-70*x^2-999*x+261 2584083333199602 s002 sum(A031538[n]/(2^n-1),n=1..infinity) 2584083335003863 m001 (-Bloch+QuadraticClass)/(1-sin(1)) 2584083352629022 a007 Real Root Of -284*x^4-17*x^3-77*x^2+351*x-84 2584083362962884 h003 exp(Pi*(1/17*(3^(1/2)-6)*17^(1/2))) 2584083363485270 r005 Re(z^2+c),c=-27/94+13/44*I,n=24 2584083376047320 a001 18/17711*377^(6/11) 2584083377991493 m001 TwinPrimes^2/Kolakoski/exp(GAMMA(1/3))^2 2584083379797362 r005 Re(z^2+c),c=-3/13+11/15*I,n=13 2584083383939909 m001 GAMMA(11/12)/ln(Magata)^2/exp(1) 2584083385194749 b008 1/2+ArcSinh[2]^2 2584083386585721 a007 Real Root Of -506*x^4-952*x^3+577*x^2-584*x+773 2584083390060130 a003 cos(Pi*11/113)-cos(Pi*12/47) 2584083403847134 h001 (-exp(8)-4)/(-6*exp(3)+5) 2584083409154151 r005 Im(z^2+c),c=-5/8+37/115*I,n=30 2584083418170727 r005 Re(z^2+c),c=3/14+4/55*I,n=19 2584083419033435 a001 2178309/4*199^(35/48) 2584083426819146 r005 Im(z^2+c),c=37/106+5/12*I,n=18 2584083431617294 r005 Re(z^2+c),c=-37/122+11/49*I,n=25 2584083431936195 r005 Im(z^2+c),c=-49/82+1/21*I,n=48 2584083435801265 m001 (GAMMA(2/3)-GolombDickman)/(OneNinth+ZetaP(3)) 2584083453798156 m001 MertensB1-Trott2nd^ErdosBorwein 2584083459314764 m005 (1/2*3^(1/2)-5/9)/(7/8*Catalan+2/5) 2584083476072271 r005 Re(z^2+c),c=-33/106+5/28*I,n=20 2584083480676588 r005 Im(z^2+c),c=-13/40+13/30*I,n=13 2584083492512589 r009 Re(z^3+c),c=-7/17+11/23*I,n=46 2584083494400249 a007 Real Root Of -432*x^4-956*x^3+636*x^2+725*x+393 2584083494937533 a007 Real Root Of -357*x^4-990*x^3-431*x^2-328*x+866 2584083501458701 r005 Im(z^2+c),c=-17/18+35/153*I,n=32 2584083504020990 r005 Re(z^2+c),c=-29/98+16/55*I,n=8 2584083514047264 m001 (gamma+ln(Pi))/(-3^(1/3)+StronglyCareFree) 2584083518277768 r009 Re(z^3+c),c=-15/62+1/61*I,n=3 2584083530509546 a001 3/322*3^(13/14) 2584083532355267 m001 (3^(1/3)-Zeta(1/2))/(LandauRamanujan2nd-Niven) 2584083544289333 a001 55/29*15127^(24/47) 2584083546644640 m002 -Pi^2+E^Pi*Cosh[Pi]+Tanh[Pi]/Pi^3 2584083548532761 a001 305/161*123^(2/31) 2584083552795520 r005 Re(z^2+c),c=-7/36+23/42*I,n=56 2584083553001358 r005 Im(z^2+c),c=-37/106+5/14*I,n=6 2584083553076443 r005 Im(z^2+c),c=19/86+4/25*I,n=31 2584083582687613 r009 Re(z^3+c),c=-5/19+5/36*I,n=5 2584083592652316 m001 QuadraticClass^TwinPrimes-Robbin 2584083599480127 a007 Real Root Of 546*x^4+985*x^3-636*x^2+913*x-743 2584083605013473 a007 Real Root Of -327*x^4-667*x^3+865*x^2+912*x-348 2584083606082216 r002 55th iterates of z^2 + 2584083619818783 m001 (HeathBrownMoroz-Porter*Sierpinski)/Porter 2584083621320091 m005 (1/2*Catalan+8/9)/(6/7*2^(1/2)+4) 2584083632705317 p003 LerchPhi(1/6,2,432/211) 2584083648706885 m005 (5/6*gamma-1/2)/(5/6*exp(1)-3) 2584083657890809 m001 Riemann3rdZero-Zeta(1/2)^Sierpinski 2584083670283690 r005 Im(z^2+c),c=-47/110+2/47*I,n=35 2584083675392318 r005 Re(z^2+c),c=-6/29+31/55*I,n=21 2584083686969626 r004 Im(z^2+c),c=-3/22+8/23*I,z(0)=I,n=22 2584083687808051 l006 ln(2981/3860) 2584083690427674 a007 Real Root Of -27*x^4-733*x^3-902*x^2+277*x+404 2584083691974847 m005 (1/3*gamma-3/5)/(5/7*Pi-2/3) 2584083698437960 m001 (ln(3)+ln(Pi))/(2^(1/2)-Psi(1,1/3)) 2584083700858183 a007 Real Root Of 964*x^4-987*x^3-535*x^2-493*x-113 2584083703627632 l006 ln(219/2902) 2584083703797503 a007 Real Root Of 150*x^4+229*x^3-307*x^2+534*x+693 2584083719113046 r002 3th iterates of z^2 + 2584083726934135 m003 -6+(3*Sqrt[5])/16+3*Sin[1/2+Sqrt[5]/2] 2584083732538313 r005 Re(z^2+c),c=-11/52+21/41*I,n=43 2584083740185967 a007 Real Root Of -409*x^4-845*x^3+701*x^2+395*x-4 2584083744268589 r009 Im(z^3+c),c=-11/78+9/34*I,n=10 2584083744938579 m001 GAMMA(7/12)^2/ln(RenyiParking)*LambertW(1)^2 2584083755769000 m001 exp(Zeta(7))/FeigenbaumKappa^2*sqrt(3) 2584083778654908 m001 MertensB3-sin(1/5*Pi)+Tribonacci 2584083781822861 m009 (2/5*Psi(1,2/3)+1)/(2/3*Psi(1,3/4)-5/6) 2584083798035374 m001 (LambertW(1)-ln(3))/(-Zeta(1/2)+Gompertz) 2584083798955952 m001 (Psi(1,1/3)-ln(2^(1/2)+1))/(-Ei(1,1)+Stephens) 2584083802647406 r005 Re(z^2+c),c=-13/66+35/58*I,n=47 2584083812297196 r009 Im(z^3+c),c=-13/122+39/46*I,n=48 2584083814343557 r002 40th iterates of z^2 + 2584083820568282 m001 1/ln(FeigenbaumD)*ErdosBorwein*(2^(1/3))^2 2584083820755578 r005 Re(z^2+c),c=7/24+11/63*I,n=10 2584083826647775 r009 Re(z^3+c),c=-41/98+25/58*I,n=2 2584083855138102 m001 1/Pi^2/ln(FransenRobinson)^2*exp(1) 2584083863939349 m001 (Trott2nd-ZetaP(2))/(Conway+PolyaRandomWalk3D) 2584083871684664 r005 Im(z^2+c),c=-31/70+29/60*I,n=35 2584083873985551 a007 Real Root Of 425*x^4+715*x^3-890*x^2-103*x-936 2584083877147982 r005 Re(z^2+c),c=33/118+7/48*I,n=18 2584083877152815 a001 55/29*2207^(30/47) 2584083878812631 r005 Im(z^2+c),c=-51/74+8/45*I,n=7 2584083885439784 r005 Im(z^2+c),c=3/14+9/59*I,n=5 2584083905153488 r005 Im(z^2+c),c=-17/44+13/30*I,n=59 2584083910722904 a007 Real Root Of -104*x^4-203*x^3-246*x^2-911*x+423 2584083937520557 a007 Real Root Of -239*x^4-848*x^3-738*x^2-319*x+128 2584083940241864 r009 Re(z^3+c),c=-5/21+49/51*I,n=9 2584083941606411 m001 1/TwinPrimes^2/exp(Champernowne)*GAMMA(5/6)^2 2584083954636603 m001 (Champernowne-Khinchin)/(PlouffeB-Porter) 2584083954692093 a001 34/7*167761^(12/23) 2584083954739997 a001 34/7*3461452808002^(5/23) 2584083954739997 a001 34/7*28143753123^(6/23) 2584083954740322 a001 34/7*1860498^(10/23) 2584083955055299 m001 (Paris+Thue)/(BesselI(1,1)-DuboisRaymond) 2584083955119307 a001 281/726103*4181^(39/50) 2584083955166031 r005 Im(z^2+c),c=-89/74+1/29*I,n=51 2584083962104856 a001 34/7*15127^(15/23) 2584083964680116 m005 (-1/18+1/6*5^(1/2))/(7/11*3^(1/2)+1/8) 2584083974500248 r009 Re(z^3+c),c=-19/40+17/36*I,n=39 2584083986167151 m001 (ZetaP(3)+ZetaQ(2))/(sin(1/12*Pi)+Kac) 2584083997820691 a001 1/24552*(1/2*5^(1/2)+1/2)^29*18^(13/22) 2584084005382707 r009 Re(z^3+c),c=-1/22+17/27*I,n=49 2584084007557507 a001 6765/199*322^(3/4) 2584084015065556 r009 Re(z^3+c),c=-3/19+47/51*I,n=56 2584084035760263 r005 Re(z^2+c),c=-1/56+22/35*I,n=40 2584084040844079 h001 (3/8*exp(1)+3/8)/(5/8*exp(2)+7/9) 2584084047860795 r005 Re(z^2+c),c=11/40+13/28*I,n=5 2584084055702847 r005 Re(z^2+c),c=-15/58+21/53*I,n=16 2584084057293124 b008 -2/5+E+Sech[2] 2584084064518342 r005 Re(z^2+c),c=-15/58+9/23*I,n=21 2584084064834147 m001 Zeta(1,-1)+GlaisherKinkelin+Porter 2584084067055810 h001 (8/9*exp(2)+5/6)/(7/9*exp(1)+3/4) 2584084082667371 b008 Coth[1/Sqrt[6]] 2584084084084084 q001 1721/666 2584084111214459 m001 Shi(1)*Zeta(5)*CopelandErdos 2584084115434829 r005 Im(z^2+c),c=-43/114+19/44*I,n=28 2584084115451565 r005 Im(z^2+c),c=19/66+3/32*I,n=20 2584084116029860 a001 2584/29*7^(29/53) 2584084116727507 l006 ln(6040/7821) 2584084121049704 m001 gamma/Salem^2/ln(sinh(1)) 2584084122423010 m001 GaussKuzminWirsing^(3^(1/3))+BesselJZeros(0,1) 2584084132873213 a007 Real Root Of -243*x^4-275*x^3+470*x^2-886*x+662 2584084133441480 a007 Real Root Of -392*x^4+173*x^3+523*x^2+647*x+137 2584084137119485 a007 Real Root Of -286*x^4-448*x^3-692*x^2+624*x+201 2584084138068864 m001 (3^(1/2)+exp(-1/2*Pi))/(Stephens+ZetaP(3)) 2584084144330607 m005 (1/3*Pi+1/4)/(4/9*Catalan-10/11) 2584084145594610 a005 (1/cos(22/193*Pi))^682 2584084151858097 a001 1149851/2*610^(20/21) 2584084158752110 r005 Im(z^2+c),c=29/102+3/35*I,n=15 2584084165946679 r005 Im(z^2+c),c=-15/26+4/85*I,n=42 2584084167892972 a005 (1/cos(11/146*Pi))^115 2584084171048534 a007 Real Root Of 841*x^4+833*x^3+258*x^2-936*x+24 2584084173987617 r002 6th iterates of z^2 + 2584084179565943 m001 FeigenbaumC*Psi(2,1/3)^TwinPrimes 2584084181412284 m001 sin(1)^GAMMA(5/24)/(ln(Pi)^GAMMA(5/24)) 2584084185016385 m001 (2^(1/2)-Champernowne)/(-Totient+Tribonacci) 2584084188797130 m001 ArtinRank2*exp(Conway)^2*sqrt(1+sqrt(3))^2 2584084191690694 r005 Im(z^2+c),c=-5/11+5/11*I,n=46 2584084201185455 p004 log(19603/15139) 2584084212026238 m001 GAMMA(2/3)*(arctan(1/2)+exp(1/exp(1))) 2584084213720487 r002 12th iterates of z^2 + 2584084231330307 l006 ln(653/8653) 2584084232078941 a008 Real Root of x^4+24*x^2-17*x-6 2584084241824365 r005 Im(z^2+c),c=-17/110+11/31*I,n=20 2584084253724338 a007 Real Root Of 351*x^4+610*x^3-564*x^2+897*x+959 2584084256345855 a007 Real Root Of 385*x^4+716*x^3-716*x^2+332*x+827 2584084264655485 a001 12238*317811^(13/54) 2584084268316591 m005 (1/2*Catalan-6)/(5/11*exp(1)+10/11) 2584084274458702 a007 Real Root Of 259*x^4+621*x^3+239*x^2+618*x-832 2584084276468557 m001 (2^(1/3)+gamma)/(-KhinchinLevy+PlouffeB) 2584084282600572 r009 Im(z^3+c),c=-11/62+8/31*I,n=8 2584084288938103 a007 Real Root Of -873*x^4+886*x^3+484*x^2+361*x-137 2584084300266643 m001 Salem^2*ln(KhintchineLevy)/Catalan 2584084303427108 s002 sum(A152231[n]/(exp(n)),n=1..infinity) 2584084305821863 a001 2889/4*46368^(7/59) 2584084333861360 m001 (2^(1/2)+Zeta(1/2))/(-KomornikLoreti+ZetaQ(4)) 2584084338381716 a007 Real Root Of 419*x^4+701*x^3-701*x^2+683*x-141 2584084344286988 r005 Re(z^2+c),c=-11/106+13/21*I,n=48 2584084347731547 m001 1/TreeGrowth2nd^2*exp(Si(Pi))/GAMMA(5/6)^2 2584084352363276 a007 Real Root Of -580*x^4+536*x^3+653*x^2+444*x-165 2584084354980942 m005 (1/2*Pi+1)/(1/4*Zeta(3)-2/5) 2584084362480619 r009 Im(z^3+c),c=-8/17+5/48*I,n=9 2584084365375322 r005 Im(z^2+c),c=-47/110+16/31*I,n=28 2584084384030946 m001 BesselK(1,1)-Shi(1)*Riemann3rdZero 2584084394833643 m001 exp(GAMMA(5/6))^2/GAMMA(2/3)/sqrt(1+sqrt(3))^2 2584084396066308 r009 Re(z^3+c),c=-6/23+9/56*I,n=2 2584084398094887 a007 Real Root Of -67*x^4+354*x^3+999*x^2-755*x+474 2584084408175805 m001 (GAMMA(17/24)+Kolakoski)/(Landau+MertensB1) 2584084409772600 r009 Im(z^3+c),c=-29/74+7/41*I,n=16 2584084410946121 a007 Real Root Of -981*x^4+870*x^3+802*x^2+674*x+140 2584084416994789 a007 Real Root Of -241*x^4-384*x^3+938*x^2+857*x+71 2584084424530866 m005 (1/2*5^(1/2)+4/5)/(3*5^(1/2)+5/7) 2584084424828581 p004 log(31657/2389) 2584084451087810 b008 (3*Log[Sinh[5]])/5 2584084465547386 r009 Re(z^3+c),c=-3/17+53/55*I,n=12 2584084473834483 r005 Re(z^2+c),c=-131/118+29/47*I,n=2 2584084473902897 p001 sum(1/(407*n+404)/(12^n),n=0..infinity) 2584084475102966 m001 Paris*ln(GlaisherKinkelin)/GAMMA(7/24)^2 2584084478520654 a007 Real Root Of 601*x^4-670*x^3-978*x^2-394*x+176 2584084480917569 a007 Real Root Of -33*x^4-813*x^3+990*x^2-980*x-538 2584084485952339 m001 (polylog(4,1/2)-GAMMA(13/24))/(Pi+Zeta(3)) 2584084490897696 s002 sum(A018289[n]/((exp(n)+1)/n),n=1..infinity) 2584084497580082 m001 (Psi(2,1/3)-Shi(1))/(sin(1)+MertensB3) 2584084497613349 l006 ln(434/5751) 2584084505690810 b008 5*(-52+Pi^(-1)) 2584084507073626 r005 Re(z^2+c),c=-29/106+10/29*I,n=19 2584084509105831 r005 Re(z^2+c),c=-37/122+11/49*I,n=20 2584084517208490 r005 Im(z^2+c),c=-19/56+18/43*I,n=52 2584084521656880 r009 Re(z^3+c),c=-21/40+11/30*I,n=52 2584084523114055 r005 Re(z^2+c),c=13/40+4/17*I,n=14 2584084534710131 l006 ln(3059/3961) 2584084549076464 m005 (1/2+1/2*5^(1/2))/(4*3^(1/2)-2/3) 2584084554374450 a007 Real Root Of -276*x^4-275*x^3+996*x^2+11*x+939 2584084569193347 r009 Re(z^3+c),c=-17/48+15/53*I,n=3 2584084591182794 m001 (Landau+ZetaP(4))/(GAMMA(3/4)+GAMMA(19/24)) 2584084596582400 r009 Im(z^3+c),c=-31/50+10/37*I,n=5 2584084601759531 m001 -exp(1/exp(1))/(BesselI(1,2)+4) 2584084602738542 a007 Real Root Of 880*x^4-340*x^3-378*x^2-559*x-129 2584084603908785 a007 Real Root Of -418*x^4-937*x^3-92*x^2-932*x+676 2584084608396529 m001 (Chi(1)-GaussKuzminWirsing)/(-Magata+Totient) 2584084611413957 a007 Real Root Of -288*x^4-775*x^3-7*x^2+136*x-133 2584084622170165 m001 gamma(2)^OneNinth/(gamma(2)^cos(1/5*Pi)) 2584084631338583 r005 Re(z^2+c),c=-35/122+11/37*I,n=18 2584084633121902 a001 7/4181*17711^(17/33) 2584084636532967 r002 17th iterates of z^2 + 2584084637289477 s001 sum(1/10^(n-1)*A252097[n]/n^n,n=1..infinity) 2584084647441308 a008 Real Root of (-2+6*x+7*x^2-4*x^4-2*x^8) 2584084652897869 r005 Im(z^2+c),c=-55/46+1/29*I,n=64 2584084658542460 r005 Im(z^2+c),c=9/32+1/9*I,n=11 2584084660533892 m001 (Pi^(1/2))^Lehmer/Landau 2584084664577049 m005 (1/2*5^(1/2)-6/11)/(1/9*gamma-2/7) 2584084672020346 m001 GAMMA(7/12)+FeigenbaumC-StronglyCareFree 2584084675770397 m001 (LandauRamanujan+1/2)/(-OneNinth+5) 2584084685870614 r005 Re(z^2+c),c=11/52+3/44*I,n=16 2584084688680337 m001 (Si(Pi)+BesselK(1,1))/(-polylog(4,1/2)+Porter) 2584084704923123 m001 (-GaussAGM+GolombDickman)/(GAMMA(2/3)-cos(1)) 2584084705647903 b008 Tanh[Sec[1]/7] 2584084743196911 r005 Re(z^2+c),c=9/38+28/55*I,n=23 2584084744117091 m001 (GaussAGM+ZetaQ(2))/(5^(1/2)+Zeta(3)) 2584084748957262 m002 -Pi^(-3)+Pi^2-E^Pi*Cosh[Pi] 2584084751931142 m001 GAMMA(7/24)*GAMMA(5/24)^2*ln(cosh(1)) 2584084754853271 a007 Real Root Of 219*x^4-404*x^3-78*x^2-477*x-126 2584084756635518 m005 (13/12+1/4*5^(1/2))/(1/9*gamma+4/7) 2584084757776088 r005 Im(z^2+c),c=-43/110+10/23*I,n=63 2584084765537509 l006 ln(649/8600) 2584084767627953 m001 (CareFree+Porter)/(1-Catalan) 2584084774476397 a007 Real Root Of 35*x^4+898*x^3-160*x^2+123*x-927 2584084780173024 m001 (Otter+Trott2nd)/(ArtinRank2-Si(Pi)) 2584084782452209 r009 Re(z^3+c),c=-37/94+19/43*I,n=49 2584084788745721 m003 1/48+Sqrt[5]/4096+Cos[1/2+Sqrt[5]/2] 2584084799048412 r005 Im(z^2+c),c=-11/14+31/254*I,n=14 2584084802667482 a007 Real Root Of -675*x^4+656*x^3+616*x^2+869*x-274 2584084818971006 a007 Real Root Of -783*x^4+754*x^3+555*x^2+942*x-290 2584084828102111 m001 (Pi-KhinchinHarmonic)/cos(1) 2584084828278685 m001 1/GAMMA(1/4)^2*exp(KhintchineLevy)*Zeta(5) 2584084841649968 a007 Real Root Of -711*x^4-388*x^3-482*x^2+898*x-190 2584084854037423 s002 sum(A019383[n]/((2^n-1)/n),n=1..infinity) 2584084856012866 a007 Real Root Of 275*x^4+895*x^3+742*x^2+877*x+493 2584084872477093 a001 11/514229*2584^(28/31) 2584084879409601 a007 Real Root Of -921*x^4+273*x^3-698*x^2+952*x-200 2584084883649415 m001 (-exp(-Pi)+1)/(-Zeta(5)+2/3) 2584084884539496 a007 Real Root Of 13*x^4+315*x^3-569*x^2-729*x-58 2584084897572276 r005 Re(z^2+c),c=-9/46+32/59*I,n=34 2584084898799196 m001 (Sierpinski*Tribonacci-ZetaQ(4))/Tribonacci 2584084904955259 m001 GAMMA(17/24)^BesselJ(1,1)*exp(Pi) 2584084904955259 m001 GAMMA(17/24)^BesselJ(1,1)/exp(-Pi) 2584084905141965 h001 (5/6*exp(1)+3/11)/(3/10*exp(1)+1/6) 2584084909907145 r005 Re(z^2+c),c=-3/20+16/31*I,n=11 2584084925798575 m001 1/GAMMA(5/24)*exp(FibonacciFactorial)*gamma^2 2584084933003994 r002 54th iterates of z^2 + 2584084942168967 l006 ln(6196/8023) 2584084943607536 r005 Re(z^2+c),c=-19/94+8/15*I,n=34 2584084945749552 r005 Im(z^2+c),c=-3/13+23/33*I,n=8 2584084946814206 m001 (Zeta(5)+Bloch)/(Lehmer-ZetaQ(3)) 2584084955665794 a001 514229/2207*123^(1/2) 2584084988022534 m001 (RenyiParking+Sierpinski)/(Pi-Si(Pi)) 2584084998737613 m001 Niven-HardyLittlewoodC5-Zeta(5) 2584085001552055 a007 Real Root Of -102*x^4-326*x^3-67*x^2+92*x-392 2584085009146912 a001 4/1346269*514229^(32/37) 2584085022323207 r005 Im(z^2+c),c=-19/50+22/51*I,n=51 2584085033865695 m002 -5+Pi^3-Tanh[Pi]^2/6 2584085042124001 a007 Real Root Of 75*x^4-8*x^3-849*x^2-529*x+820 2584085058122289 r005 Re(z^2+c),c=-11/48+7/15*I,n=15 2584085064592853 m001 FeigenbaumD^(LandauRamanujan/Kolakoski) 2584085067266890 m001 (2^(1/2))^(ln(2^(1/2)+1)/arctan(1/3)) 2584085096433137 m005 (1/2*5^(1/2)-7/10)/(4/5*gamma-3/10) 2584085099963665 r005 Im(z^2+c),c=-8/9+17/75*I,n=32 2584085100256247 r001 23i'th iterates of 2*x^2-1 of 2584085107268492 a007 Real Root Of 390*x^4+909*x^3-121*x^2+294*x-137 2584085118071656 m001 (ln(2)+ln(5))/(ln(2^(1/2)+1)-gamma(2)) 2584085131166841 m001 (Pi+Si(Pi))/(Lehmer+Totient) 2584085166436011 m001 GAMMA(2/3)-exp(Pi)*sinh(1) 2584085171064415 r005 Re(z^2+c),c=-73/66+15/62*I,n=10 2584085174849903 r005 Im(z^2+c),c=-9/8+9/35*I,n=13 2584085175010769 a003 cos(Pi*17/79)*cos(Pi*42/107) 2584085177746550 a007 Real Root Of -382*x^4-779*x^3+380*x^2-621*x-551 2584085185024181 a007 Real Root Of -280*x^4+925*x^3+26*x^2+571*x-164 2584085187455652 a007 Real Root Of -482*x^4-563*x^3-944*x^2+509*x+187 2584085191118898 a007 Real Root Of -35*x^4+871*x^3+351*x^2+922*x+230 2584085199481112 a007 Real Root Of -269*x^4+353*x^3-649*x^2+984*x-25 2584085217738146 a007 Real Root Of 242*x^4+789*x^3+489*x^2+273*x+264 2584085220701646 a001 1/225749145909*144^(9/11) 2584085220842247 r005 Im(z^2+c),c=-31/106+19/47*I,n=21 2584085222700565 m001 FeigenbaumMu/(GAMMA(2/3)+Trott2nd) 2584085238492839 r009 Re(z^3+c),c=-11/28+28/57*I,n=12 2584085239012453 m004 -4+(5*Sqrt[5]*Pi)/4-5*Pi*Log[Sqrt[5]*Pi] 2584085251850249 a007 Real Root Of -354*x^4-499*x^3+652*x^2-766*x+841 2584085253965098 m006 (3/4*exp(2*Pi)+3)/(3*ln(Pi)-5) 2584085254490794 a007 Real Root Of 274*x^4+284*x^3-743*x^2+571*x-880 2584085259698730 r009 Im(z^3+c),c=-23/52+8/63*I,n=20 2584085266260641 m001 Thue/(Pi*2^(1/2)/GAMMA(3/4)-ln(2)/ln(10)) 2584085288278075 r009 Re(z^3+c),c=-17/46+21/55*I,n=2 2584085289323748 r009 Im(z^3+c),c=-17/36+6/29*I,n=5 2584085300087953 p003 LerchPhi(1/3,2,245/114) 2584085301520215 a007 Real Root Of -111*x^4+159*x^3+758*x^2-992*x+68 2584085303074133 r005 Re(z^2+c),c=-13/14+71/162*I,n=2 2584085306370245 l006 ln(215/2849) 2584085315832649 q001 315/1219 2584085315832649 r002 2th iterates of z^2 + 2584085315832649 r002 2th iterates of z^2 + 2584085315832649 r002 2th iterates of z^2 + 2584085315832649 r002 2th iterates of z^2 + 2584085315832649 r005 Im(z^2+c),c=-67/106+45/46*I,n=2 2584085335668514 r005 Im(z^2+c),c=15/52+1/14*I,n=18 2584085336758829 r009 Re(z^3+c),c=-9/17+11/32*I,n=36 2584085339496518 l006 ln(3137/4062) 2584085340482109 m001 ln(Cahen)^2*Artin^2/GAMMA(23/24)^2 2584085341389425 r002 17th iterates of z^2 + 2584085345968379 r005 Im(z^2+c),c=-18/29+17/50*I,n=26 2584085351367738 a001 377/15127*521^(23/31) 2584085356038464 m001 FeigenbaumAlpha/Conway^2/ln(GAMMA(5/12))^2 2584085357805770 a001 18/1836311903*591286729879^(6/11) 2584085357805770 a001 6/34111385*2971215073^(6/11) 2584085357805784 a001 18/5702887*14930352^(6/11) 2584085357860969 a001 6/105937*75025^(6/11) 2584085389765066 p004 log(13877/13523) 2584085391634033 m004 3*Sqrt[5]*Pi+4*Cot[Sqrt[5]*Pi]^2 2584085393296922 r005 Re(z^2+c),c=-23/78+13/49*I,n=13 2584085396176687 r005 Im(z^2+c),c=19/66+23/56*I,n=9 2584085397801473 a005 (1/cos(6/101*Pi))^1763 2584085400944336 m001 (ln(2)+BesselI(1,1))/(Robbin-ZetaP(3)) 2584085402643512 r009 Re(z^3+c),c=-61/126+13/24*I,n=57 2584085404338406 r005 Re(z^2+c),c=-11/70+35/59*I,n=52 2584085408782848 a001 1346269/5778*123^(1/2) 2584085416563562 m001 (BesselI(1,1)-FransenRobinson)/(Thue+ZetaQ(3)) 2584085419528354 r005 Re(z^2+c),c=-87/110+7/52*I,n=50 2584085426605709 a007 Real Root Of 406*x^4-609*x^3-108*x^2-229*x+6 2584085432986768 r005 Re(z^2+c),c=-1/62+8/11*I,n=13 2584085445529136 r002 59th iterates of z^2 + 2584085446797712 a007 Real Root Of -153*x^4-222*x^3+785*x^2+730*x-364 2584085456634655 m001 GAMMA(19/24)*KhintchineLevy/exp(Zeta(1/2))^2 2584085457530161 m001 (2*Pi/GAMMA(5/6)-Stephens)/(ln(5)+arctan(1/3)) 2584085468150505 r002 7th iterates of z^2 + 2584085468764011 a001 843*233^(27/43) 2584085472893855 a007 Real Root Of -408*x^4-671*x^3+964*x^2-29*x+102 2584085474891749 a001 3524578/15127*123^(1/2) 2584085479089788 a007 Real Root Of 278*x^4+609*x^3+36*x^2+811*x-32 2584085484536908 a001 9227465/39603*123^(1/2) 2584085485944117 a001 24157817/103682*123^(1/2) 2584085486149426 a001 63245986/271443*123^(1/2) 2584085486179381 a001 165580141/710647*123^(1/2) 2584085486183751 a001 433494437/1860498*123^(1/2) 2584085486184389 a001 1134903170/4870847*123^(1/2) 2584085486184482 a001 2971215073/12752043*123^(1/2) 2584085486184495 a001 7778742049/33385282*123^(1/2) 2584085486184497 a001 20365011074/87403803*123^(1/2) 2584085486184497 a001 53316291173/228826127*123^(1/2) 2584085486184497 a001 139583862445/599074578*123^(1/2) 2584085486184497 a001 365435296162/1568397607*123^(1/2) 2584085486184497 a001 956722026041/4106118243*123^(1/2) 2584085486184497 a001 2504730781961/10749957122*123^(1/2) 2584085486184497 a001 6557470319842/28143753123*123^(1/2) 2584085486184497 a001 10610209857723/45537549124*123^(1/2) 2584085486184497 a001 4052739537881/17393796001*123^(1/2) 2584085486184497 a001 1548008755920/6643838879*123^(1/2) 2584085486184497 a001 591286729879/2537720636*123^(1/2) 2584085486184497 a001 225851433717/969323029*123^(1/2) 2584085486184497 a001 86267571272/370248451*123^(1/2) 2584085486184498 a001 63246219/271444*123^(1/2) 2584085486184498 a001 12586269025/54018521*123^(1/2) 2584085486184504 a001 4807526976/20633239*123^(1/2) 2584085486184539 a001 1836311903/7881196*123^(1/2) 2584085486184783 a001 701408733/3010349*123^(1/2) 2584085486186452 a001 267914296/1149851*123^(1/2) 2584085486197893 a001 102334155/439204*123^(1/2) 2584085486276315 a001 39088169/167761*123^(1/2) 2584085486813821 a001 14930352/64079*123^(1/2) 2584085490497944 a001 5702887/24476*123^(1/2) 2584085499424728 a003 sin(Pi*6/103)-sin(Pi*9/62) 2584085501843069 m001 LambertW(1)+exp(1/Pi)*Porter 2584085503827696 p003 LerchPhi(1/512,2,431/219) 2584085506870485 m001 (-KomornikLoreti+ZetaP(4))/(Cahen-gamma) 2584085512638789 a003 sin(Pi*18/79)-sin(Pi*43/117) 2584085513537433 r004 Im(z^2+c),c=-43/42-6/23*I,z(0)=-1,n=19 2584085515749298 a001 2178309/9349*123^(1/2) 2584085527187186 a001 53316291173/3*843^(17/23) 2584085543212646 m001 cos(1)^2*exp(FeigenbaumD)/sqrt(1+sqrt(3)) 2584085562440687 a007 Real Root Of 780*x^4+105*x^3+341*x^2-513*x-157 2584085565210865 a003 cos(Pi*17/80)/cos(Pi*47/117) 2584085565531869 a007 Real Root Of -320*x^4-334*x^3+745*x^2-987*x+980 2584085568407642 r005 Im(z^2+c),c=-5/122+17/55*I,n=14 2584085574454990 r005 Im(z^2+c),c=-21/86+12/31*I,n=26 2584085577078571 k005 Champernowne real with floor(log(2)*(216*n+157)) 2584085581442192 m001 1/Riemann3rdZero^2/Paris*ln(log(1+sqrt(2)))^2 2584085582820303 m006 (2/5/Pi+1/4)/(1/4*Pi-4/5) 2584085583358639 a007 Real Root Of -570*x^4+980*x^3+739*x^2+820*x+182 2584085586290630 r005 Re(z^2+c),c=-89/126+7/31*I,n=2 2584085587088581 k005 Champernowne real with floor(sqrt(2)*(106*n+77)) 2584085587088581 k001 Champernowne real with 150*n+108 2584085587088591 k005 Champernowne real with floor(Catalan*(164*n+118)) 2584085594028467 r005 Re(z^2+c),c=-143/118+8/57*I,n=22 2584085597098601 k005 Champernowne real with floor(log(2)*(217*n+156)) 2584085597098601 k005 Champernowne real with floor(log(3)*(137*n+98)) 2584085597108601 k005 Champernowne real with floor(sqrt(3)*(87*n+62)) 2584085598499793 a007 Real Root Of -413*x^4-194*x^3+914*x^2+643*x-222 2584085607414803 m001 (Landau-MinimumGamma*Otter)/MinimumGamma 2584085608198489 m001 Landau*ZetaQ(4)-Sierpinski 2584085619401162 r009 Im(z^3+c),c=-37/66+9/59*I,n=40 2584085629013157 r002 7th iterates of z^2 + 2584085635289849 r009 Re(z^3+c),c=-25/42+14/29*I,n=3 2584085635678966 p001 sum(1/(507*n+467)/(3^n),n=0..infinity) 2584085659963682 r009 Re(z^3+c),c=-43/110+24/55*I,n=26 2584085663691362 a001 832040/47*521^(47/59) 2584085672932727 a007 Real Root Of 245*x^4+695*x^3-171*x^2-909*x-139 2584085688625301 r002 46th iterates of z^2 + 2584085688824668 a001 832040/3571*123^(1/2) 2584085690432114 r009 Re(z^3+c),c=-13/40+17/53*I,n=4 2584085694882908 a007 Real Root Of 387*x^4+649*x^3-826*x^2+20*x-490 2584085704988587 m001 Ei(1,1)^LaplaceLimit-GolombDickman 2584085707279933 m001 (Magata+PlouffeB)/(ln(2)+AlladiGrinstead) 2584085710273680 a001 701408733/4*3^(6/17) 2584085724499509 a007 Real Root Of -406*x^4-883*x^3+546*x^2+644*x+885 2584085727066009 l006 ln(6352/8225) 2584085731037688 m001 (ln(Pi)-Ei(1))/(3^(1/3)+MinimumGamma) 2584085739149362 m001 (CopelandErdos-Paris*TwinPrimes)/TwinPrimes 2584085745901292 r005 Im(z^2+c),c=31/110+5/56*I,n=15 2584085757715941 m001 (3^(1/2)+GAMMA(3/4))/(BesselJ(1,1)+CareFree) 2584085758524265 m001 MasserGramainDelta^RenyiParking*ZetaQ(4) 2584085768168120 r005 Im(z^2+c),c=-6/5+40/127*I,n=11 2584085768283639 r005 Im(z^2+c),c=13/86+4/19*I,n=11 2584085768703192 r005 Im(z^2+c),c=-9/14+77/205*I,n=47 2584085784930927 a007 Real Root Of 818*x^4-321*x^3-53*x^2-369*x-101 2584085792418254 r005 Re(z^2+c),c=-43/82+31/60*I,n=3 2584085795176770 a007 Real Root Of 945*x^4-812*x^3-857*x^2-681*x+243 2584085802351122 r002 3th iterates of z^2 + 2584085809126763 h001 (7/9*exp(2)+1/9)/(2/9*exp(2)+5/8) 2584085816473896 m001 (Kac+Mills)/(FeigenbaumDelta+FransenRobinson) 2584085827395545 a007 Real Root Of -381*x^4+924*x^3+262*x^2+696*x+180 2584085829704571 m004 -100/Pi+125*Pi*Cos[Sqrt[5]*Pi]+Sin[Sqrt[5]*Pi] 2584085834625146 a007 Real Root Of -386*x^4+882*x^3+946*x^2+384*x+53 2584085838034584 r009 Im(z^3+c),c=-16/27+11/43*I,n=9 2584085848835206 r005 Im(z^2+c),c=-17/52+17/41*I,n=45 2584085853952546 l006 ln(641/8494) 2584085875768994 r005 Re(z^2+c),c=37/98+21/62*I,n=45 2584085897553517 a007 Real Root Of 384*x^4+899*x^3+39*x^2+858*x+347 2584085905121024 r009 Re(z^3+c),c=-31/74+25/51*I,n=40 2584085909542551 a001 1836311903/3*123^(7/9) 2584085913026877 m005 (1/2*Catalan-1/10)/(27/55+2/5*5^(1/2)) 2584085915034195 m001 (RenyiParking-Totient)/(GAMMA(2/3)-Zeta(1,2)) 2584085922277484 m001 (Champernowne-Stephens)/(Zeta(1,-1)+gamma(2)) 2584085923286900 a001 521/18*(1/2*5^(1/2)+1/2)^15*18^(13/20) 2584085923497075 m001 Stephens^ln(3)*Stephens^GAMMA(2/3) 2584085947175444 r005 Re(z^2+c),c=-3/98+11/23*I,n=2 2584085950377007 m001 3^(1/2)+exp(1/exp(1))-Lehmer 2584085950377007 m001 Lehmer-exp(1/exp(1))-sqrt(3) 2584085965735812 m003 4+Sqrt[5]/8-12*Sec[1/2+Sqrt[5]/2] 2584085968287870 r009 Re(z^3+c),c=-3/7+21/41*I,n=61 2584085974983727 m001 GAMMA(7/24)^2*exp(GAMMA(19/24))*sin(1) 2584085989927807 m001 polylog(4,1/2)/arctan(1/3)*ErdosBorwein 2584085992185557 r009 Re(z^3+c),c=-41/102+11/24*I,n=38 2584085996177689 m008 (1/2*Pi^3+3)/(3/4*Pi^6-5) 2584086019171057 m001 (PlouffeB-ThueMorse)/(ln(gamma)-Ei(1)) 2584086027073081 a007 Real Root Of -449*x^4-999*x^3+664*x^2+718*x+204 2584086028141775 r005 Re(z^2+c),c=37/98+21/62*I,n=50 2584086035844061 m001 (-Zeta(5)+FeigenbaumC)/(5^(1/2)+Chi(1)) 2584086041459323 r005 Re(z^2+c),c=-31/106+3/5*I,n=55 2584086047386579 r005 Im(z^2+c),c=31/122+7/57*I,n=7 2584086062642294 r005 Re(z^2+c),c=37/98+21/62*I,n=60 2584086064325078 r005 Re(z^2+c),c=37/98+21/62*I,n=55 2584086074725140 a003 sin(Pi*8/69)*sin(Pi*31/120) 2584086079657815 m003 -1-E^(1/2+Sqrt[5]/2)/4+2*Sinh[1/2+Sqrt[5]/2] 2584086091169966 r009 Re(z^3+c),c=-13/30+20/39*I,n=63 2584086105232556 l006 ln(3215/4163) 2584086106312266 r005 Re(z^2+c),c=-1+28/159*I,n=8 2584086107109185 m002 -(E^Pi*Pi^3)+3*Pi^6*Log[Pi] 2584086111809867 r005 Im(z^2+c),c=-1+41/166*I,n=51 2584086122856790 r005 Re(z^2+c),c=-13/82+27/47*I,n=28 2584086125336784 a001 4181/199*322^(5/6) 2584086130314391 l006 ln(426/5645) 2584086148036628 m005 (-5/44+1/4*5^(1/2))/(3/8*Pi+6/11) 2584086152525263 m001 (KhinchinLevy+Trott2nd)/(LambertW(1)-Zeta(5)) 2584086154763827 m005 (1/3*Zeta(3)-2/3)/(1/9*exp(1)+8/11) 2584086167815246 r005 Re(z^2+c),c=-23/122+31/55*I,n=50 2584086168036668 a007 Real Root Of 36*x^4+944*x^3+388*x^2+872*x+343 2584086168261454 m001 (GAMMA(19/24)-Thue)/(ln(Pi)-gamma(1)) 2584086168293153 m001 Shi(1)-exp(1/Pi)+Stephens 2584086169082691 m001 (Cahen+MertensB3)/(ln(2)/ln(10)+arctan(1/2)) 2584086172547698 a007 Real Root Of -515*x^4+895*x^3-482*x^2+217*x+106 2584086177774469 m005 (1/2*gamma-2/7)/(6/7*gamma+5/8) 2584086184783506 h001 (1/7*exp(1)+3/10)/(3/4*exp(1)+5/8) 2584086187556493 a007 Real Root Of -471*x^4-989*x^3+748*x^2+693*x+732 2584086205582491 r005 Re(z^2+c),c=-17/14+5/118*I,n=2 2584086207494956 r005 Re(z^2+c),c=-19/26+8/127*I,n=4 2584086221698951 b008 -5+Log[56/5] 2584086225202105 m001 GAMMA(1/4)/ln(Riemann1stZero)^2*sqrt(5)^2 2584086227135547 m006 (1/3*exp(2*Pi)+4)/(4/5*Pi^2-5/6) 2584086228443500 m001 1/Rabbit*ln(FibonacciFactorial)/GAMMA(11/12)^2 2584086230085556 m001 MadelungNaCl*Weierstrass+Riemann3rdZero 2584086268509148 r005 Im(z^2+c),c=-5/94+38/59*I,n=18 2584086271227809 s002 sum(A107816[n]/((exp(n)-1)/n),n=1..infinity) 2584086271979060 a007 Real Root Of 369*x^4+949*x^3-187*x^2-417*x+93 2584086292961151 a001 2/98209*89^(30/53) 2584086310062482 a001 13/29*76^(44/47) 2584086315736022 a007 Real Root Of -9*x^4-245*x^3-341*x^2-486*x+623 2584086315838064 m001 exp(Magata)*Lehmer*Zeta(3)^2 2584086323378420 m001 (ln(3)-ln(Pi))/(exp(1/Pi)+HardyLittlewoodC5) 2584086335549096 r009 Im(z^3+c),c=-27/64+8/57*I,n=10 2584086335917294 a007 Real Root Of 253*x^4+684*x^3+809*x^2-797*x+139 2584086345837084 a001 3/89*12586269025^(5/13) 2584086347603975 m001 Paris*ErdosBorwein^2/ln(GAMMA(1/3)) 2584086351240184 m005 (1/2*Pi-1/6)/(5/6*3^(1/2)-9/10) 2584086357988600 r009 Re(z^3+c),c=-17/54+8/29*I,n=12 2584086364097853 m009 (8/3*Catalan+1/3*Pi^2+4)/(1/8*Pi^2-5) 2584086372661242 r005 Re(z^2+c),c=-3/10+13/54*I,n=20 2584086372886933 m001 (Sarnak-ZetaP(4))/(exp(1/Pi)+GAMMA(5/6)) 2584086373225182 m001 1/3*GAMMA(5/6)/Backhouse 2584086377943918 m005 (1/2*exp(1)+1/6)/(2/11*2^(1/2)+1/3) 2584086385139243 a007 Real Root Of -362*x^4-773*x^3-3*x^2-945*x+381 2584086401223416 p004 log(21017/16231) 2584086403635540 h001 (1/9*exp(2)+8/9)/(9/11*exp(2)+4/7) 2584086405429127 m005 (3/5*exp(1)-2)/(2/3*2^(1/2)-4/5) 2584086408411556 l006 ln(637/8441) 2584086418625886 a003 cos(Pi*5/117)-sin(Pi*37/89) 2584086424745454 r005 Im(z^2+c),c=-47/50+11/45*I,n=49 2584086438331374 m001 (Pi+LambertW(1))/(GAMMA(19/24)+MertensB1) 2584086438597453 a008 Real Root of (1+3*x-3*x^2-6*x^4-2*x^5) 2584086443995305 m001 (2*Pi/GAMMA(5/6)-DuboisRaymond)/exp(-1/2*Pi) 2584086450055391 a007 Real Root Of -490*x^4-999*x^3+918*x^2+295*x-757 2584086461889420 m009 (1/2*Pi^2+3/5)/(Psi(1,3/4)-2/5) 2584086470806270 a001 76/4052739537881*89^(1/14) 2584086474334249 l006 ln(6508/8427) 2584086477382457 a007 Real Root Of -241*x^4-419*x^3+840*x^2+673*x-354 2584086492781847 r005 Im(z^2+c),c=-11/14+13/119*I,n=19 2584086516033041 a007 Real Root Of -254*x^4-469*x^3+622*x^2+220*x-352 2584086516988531 a007 Real Root Of 310*x^4+656*x^3-289*x^2+153*x-178 2584086524583529 m005 (1/2*5^(1/2)+1/10)/(6/11*Pi+3) 2584086527399395 r005 Re(z^2+c),c=-23/102+47/58*I,n=51 2584086532822334 s002 sum(A148193[n]/(n^3*pi^n+1),n=1..infinity) 2584086541493203 m006 (1/6*Pi^2-1/6)/(3/4/Pi+1/3) 2584086553610463 r005 Im(z^2+c),c=-57/122+27/61*I,n=40 2584086578431249 m001 exp(1)/(cos(1/12*Pi)^Zeta(1/2)) 2584086578431249 m001 exp(1)/(cos(Pi/12)^Zeta(1/2)) 2584086583688836 m005 (1/2*Catalan+2)/(7/12*Zeta(3)+1/4) 2584086592843030 h001 (-8*exp(3/2)-9)/(-2*exp(-1)-1) 2584086593865435 r005 Re(z^2+c),c=37/98+21/62*I,n=40 2584086594026766 m001 GAMMA(13/24)*exp(Kolakoski)^2*LambertW(1)^2 2584086618250322 a007 Real Root Of -182*x^4-772*x^3-698*x^2-72*x-731 2584086627899274 r005 Re(z^2+c),c=-81/106+1/47*I,n=6 2584086633030966 r005 Im(z^2+c),c=-9/28+50/57*I,n=3 2584086644013458 r002 6th iterates of z^2 + 2584086654116084 m005 (3*2^(1/2)+2/5)/(3/5*gamma-1/6) 2584086660876747 m001 2*Pi/GAMMA(5/6)/FeigenbaumC/Salem 2584086661288574 a001 1/72*(1/2*5^(1/2)+1/2)^19*18^(5/21) 2584086663854867 m001 Grothendieck/Bloch/MinimumGamma 2584086667672397 b008 (-9+Sqrt[3/5])*Pi 2584086676801338 m001 GAMMA(11/24)/exp(Tribonacci)*sin(1) 2584086705023896 r005 Im(z^2+c),c=-1/16+25/36*I,n=42 2584086712813517 r002 15th iterates of z^2 + 2584086725314742 r005 Im(z^2+c),c=-35/118+17/42*I,n=43 2584086729514464 m005 (1/3*gamma+1/11)/(5/9*Zeta(3)+3/7) 2584086734360941 a007 Real Root Of 309*x^4+783*x^3-11*x^2-57*x-341 2584086734560025 m001 Zeta(7)*(2^(1/3))^2*ln(sinh(1)) 2584086737131013 m001 (Backhouse+MertensB2)/(cos(1/12*Pi)-gamma(3)) 2584086749396434 r005 Im(z^2+c),c=-23/62+3/7*I,n=54 2584086788385802 m001 (Ei(1)-AlladiGrinstead)/(Kolakoski+Magata) 2584086799276672 q001 1429/553 2584086799791931 r005 Im(z^2+c),c=-10/9+27/107*I,n=7 2584086808371434 m001 (-AlladiGrinstead+LaplaceLimit)/(gamma-ln(Pi)) 2584086809752486 m001 Salem/(Cahen-ln(3)) 2584086829765849 a007 Real Root Of 196*x^4+161*x^3-832*x^2-206*x-938 2584086830351721 m001 (3^(1/2)-5^(1/2))/(GAMMA(2/3)+Gompertz) 2584086834693161 l006 ln(3293/4264) 2584086843152239 r005 Im(z^2+c),c=-69/122+12/35*I,n=8 2584086849053159 m001 1/ln(Robbin)^2/LaplaceLimit^2*TreeGrowth2nd^2 2584086857119725 m001 (-Paris+Tetranacci)/(BesselK(0,1)-GAMMA(5/6)) 2584086857803558 a007 Real Root Of -138*x^4-259*x^3+105*x^2-500*x-309 2584086862459031 a007 Real Root Of 429*x^4-467*x^3+793*x^2-128*x-96 2584086863259840 a007 Real Root Of 164*x^4+489*x^3-290*x^2-912*x+705 2584086873729550 r005 Im(z^2+c),c=-51/62+3/19*I,n=48 2584086875101527 a001 317811/1364*123^(1/2) 2584086878281369 r005 Im(z^2+c),c=-153/106+7/34*I,n=3 2584086878813608 r002 3th iterates of z^2 + 2584086879258679 a007 Real Root Of 100*x^4-216*x^3-912*x^2+983*x+444 2584086882263996 a007 Real Root Of -424*x^4-844*x^3+873*x^2+834*x+668 2584086888799633 m001 (2^(1/2)-Zeta(5))/(-GAMMA(3/4)+Khinchin) 2584086890729269 a001 11/10946*24157817^(1/18) 2584086890982851 m001 Psi(2,1/3)^(Lehmer/FeigenbaumAlpha) 2584086896690331 a001 11/17711*139583862445^(1/18) 2584086907008454 m006 (1/4*ln(Pi)-4/5)/(5/6*exp(Pi)+3/5) 2584086907978026 a001 1/615*4181^(1/18) 2584086908073875 r009 Re(z^3+c),c=-21/64+16/41*I,n=4 2584086910117084 a007 Real Root Of 955*x^4+478*x^3+366*x^2-499*x+92 2584086914792882 r005 Im(z^2+c),c=-9/8+52/203*I,n=43 2584086915148916 m005 (1/2*2^(1/2)-3)/(4*exp(1)-2) 2584086918819098 m005 (-17/28+1/4*5^(1/2))/(-19/66+1/22*5^(1/2)) 2584086919223772 r005 Re(z^2+c),c=-23/78+14/53*I,n=18 2584086920699479 a007 Real Root Of -367*x^4-769*x^3+471*x^2+50*x+79 2584086920733378 r009 Re(z^3+c),c=-1/27+7/16*I,n=9 2584086940258927 m005 (1/3*3^(1/2)-1/8)/(61/77+3/7*5^(1/2)) 2584086947980911 a007 Real Root Of 425*x^4+901*x^3-949*x^2-768*x+949 2584086962523566 a005 (1/sin(35/121*Pi))^4 2584086969877634 l006 ln(211/2796) 2584086970321539 r005 Re(z^2+c),c=17/74+35/64*I,n=47 2584086971857955 r005 Re(z^2+c),c=-5/46+53/60*I,n=36 2584086974036446 m001 1/(2^(1/3))*exp(MadelungNaCl)*LambertW(1) 2584086974160586 a007 Real Root Of -485*x^4-750*x^3+869*x^2-898*x+561 2584086980705723 s002 sum(A038965[n]/(10^n-1),n=1..infinity) 2584086986756813 r002 40th iterates of z^2 + 2584086999234670 s001 sum(exp(-Pi/3)^(n-1)*A100875[n],n=1..infinity) 2584087006105835 a001 199/89*832040^(35/51) 2584087015319841 r005 Im(z^2+c),c=-47/110+2/47*I,n=33 2584087021867296 r002 40th iterates of z^2 + 2584087023696472 m001 BesselK(1,1)^Zeta(3)/Riemann2ndZero 2584087029100883 b008 -5+Erfi[6/5] 2584087029558940 m005 (1/2*5^(1/2)-8/11)/(6/7*2^(1/2)+3/10) 2584087054101522 m001 (BesselI(0,2)+FeigenbaumD)^Lehmer 2584087058125304 m001 gamma/GAMMA(2/3)/ZetaQ(4) 2584087097729184 s002 sum(A049895[n]/(n^3*pi^n+1),n=1..infinity) 2584087099400038 a007 Real Root Of 187*x^4+192*x^3-805*x^2-211*x-195 2584087109361990 r005 Re(z^2+c),c=45/122+14/41*I,n=19 2584087111690460 m005 (3/4*Catalan-5/6)/(2/5*Catalan+1/5) 2584087116805576 a007 Real Root Of 17*x^4+466*x^3+654*x^2-911*x+555 2584087117322619 r005 Im(z^2+c),c=-57/118+31/63*I,n=57 2584087120693527 m001 1/ln(gamma)^2/Paris^2/log(2+sqrt(3)) 2584087126437640 m001 (Zeta(5)-GaussAGM)/(Paris-QuadraticClass) 2584087140245337 a005 (1/sin(31/89*Pi))^125 2584087146319324 r005 Re(z^2+c),c=8/29+5/37*I,n=14 2584087158410201 r005 Re(z^2+c),c=1/66+44/49*I,n=4 2584087161293018 r009 Im(z^3+c),c=-53/122+7/52*I,n=30 2584087163370271 r002 19th iterates of z^2 + 2584087174222733 m001 (2^(1/2)+5^(1/2))/(-gamma(1)+Totient) 2584087178483030 a007 Real Root Of -344*x^4-769*x^3+449*x^2+349*x-27 2584087184247243 r005 Re(z^2+c),c=8/25+29/51*I,n=53 2584087186616288 l006 ln(6664/8629) 2584087193188912 m005 (1/2*Catalan+5/11)/(4/9*3^(1/2)-5/12) 2584087195190698 r005 Im(z^2+c),c=-39/56+12/41*I,n=22 2584087199609473 r005 Re(z^2+c),c=-35/114+9/44*I,n=17 2584087225326991 r005 Im(z^2+c),c=-23/34+29/62*I,n=20 2584087225767444 r005 Im(z^2+c),c=-25/26+11/54*I,n=4 2584087227945753 r009 Re(z^3+c),c=-13/62+31/43*I,n=63 2584087246080577 m005 (1/2*2^(1/2)+5/7)/(3/11*Zeta(3)+2/9) 2584087251203409 a001 3/15127*2^(21/55) 2584087267681065 a007 Real Root Of -451*x^4-844*x^3+904*x^2+74*x-299 2584087273653468 r009 Re(z^3+c),c=-5/32+35/39*I,n=54 2584087286515908 m006 (1/3*Pi^2+4/5)/(2/3*exp(Pi)+2/5) 2584087286537381 b008 -30+ArcSinh[32] 2584087293800912 m001 (Si(Pi)+ErdosBorwein)/(-Rabbit+Stephens) 2584087293804169 h001 (10/11*exp(1)+1/4)/(1/6*exp(1)+3/5) 2584087302045394 p001 sum(1/(335*n+63)/n/(10^n),n=1..infinity) 2584087308417594 m005 (1/2*Zeta(3)-1/5)/(5/11*2^(1/2)+10/11) 2584087309176012 m001 (Si(Pi)+GAMMA(17/24))/(KhinchinLevy+Trott2nd) 2584087322214514 m001 DuboisRaymond^((1+3^(1/2))^(1/2))/Sierpinski 2584087325825787 m002 ProductLog[Pi]/3+(Pi^6*ProductLog[Pi])/4 2584087359475470 m005 (1/2*Pi+2)/(2/9*exp(1)+7/9) 2584087362299082 m001 Zeta(1,-1)/GaussAGM/ZetaP(4) 2584087363676457 a003 cos(Pi*22/63)-cos(Pi*31/71) 2584087365703040 a007 Real Root Of -714*x^4-541*x^3+202*x^2+641*x+146 2584087397909514 p003 LerchPhi(1/125,6,139/239) 2584087414877268 a008 Real Root of x^4-2*x^3+21*x^2-8*x-240 2584087432548024 m001 3^(1/3)-MertensB3^sin(1/5*Pi) 2584087437302214 r005 Re(z^2+c),c=-7/24+10/21*I,n=11 2584087444508723 m009 (24*Catalan+3*Pi^2+3/4)/(2/5*Psi(1,2/3)+4/5) 2584087450433060 a001 1364/10610209857723*514229^(13/14) 2584087453875537 m001 (5^(1/2)+ln(gamma))/(Stephens+ZetaP(4)) 2584087454660549 r009 Re(z^3+c),c=-65/106+13/59*I,n=7 2584087464062746 m003 (3*Sqrt[5])/16-3*Csc[1/2+Sqrt[5]/2] 2584087467933226 m005 (1/2*5^(1/2)+7/12)/(7/8*3^(1/2)-6/7) 2584087486785015 r009 Im(z^3+c),c=-33/62+9/62*I,n=47 2584087487004996 a007 Real Root Of 446*x^4-925*x^3+389*x^2-217*x-100 2584087493018376 r005 Re(z^2+c),c=-7/66+38/61*I,n=63 2584087493709907 p001 sum((-1)^n/(527*n+382)/(32^n),n=0..infinity) 2584087504551295 a007 Real Root Of 314*x^4+795*x^3+217*x^2+750*x+206 2584087506318005 a007 Real Root Of -181*x^4-526*x^3-208*x^2+68*x+559 2584087510972232 a007 Real Root Of 250*x^4+647*x^3-116*x^2-511*x-529 2584087530396418 l006 ln(3371/4365) 2584087535930470 r005 Im(z^2+c),c=-7/29+17/44*I,n=18 2584087538484453 l006 ln(629/8335) 2584087539539466 m001 GAMMA(3/4)/PrimesInBinary^2*ln(Zeta(5)) 2584087545862450 m001 (GaussAGM-ZetaQ(3))/(Artin-FeigenbaumMu) 2584087549547543 m001 KomornikLoreti^(Psi(2,1/3)/Landau) 2584087553069212 s001 sum(1/10^(n-1)*A173088[n],n=1..infinity) 2584087553069212 s001 sum(1/10^n*A173088[n],n=1..infinity) 2584087554774029 m005 (1/2*exp(1)+5/6)/(1/9*5^(1/2)+3/5) 2584087558781757 m001 (1+BesselI(0,2))/(Cahen+Kac) 2584087559050401 r002 4th iterates of z^2 + 2584087590571033 m001 ln(Pi)^Porter/Bloch 2584087592010457 a007 Real Root Of 225*x^4+493*x^3-289*x^2-346*x-490 2584087621187720 h001 (4/5*exp(1)+1/7)/(1/10*exp(1)+5/8) 2584087634014893 a007 Real Root Of 391*x^4+643*x^3-908*x^2-178*x-736 2584087634021372 a001 8/521*199^(8/15) 2584087645984046 a007 Real Root Of -350*x^4-794*x^3+126*x^2-192*x+568 2584087653813173 a001 24476/3*10946^(13/15) 2584087663253754 m005 (1/2*gamma+4)/(7/10*Zeta(3)+9/11) 2584087674004450 m005 (1/2*gamma+5)/(13/14+1/2*5^(1/2)) 2584087676252719 a007 Real Root Of -208*x^4-166*x^3+580*x^2-829*x+395 2584087676490813 m001 (ln(3)+cos(1/12*Pi))/(CopelandErdos-MertensB2) 2584087676531887 a007 Real Root Of -361*x^4-933*x^3-67*x^2+19*x+494 2584087679304687 m001 (GAMMA(11/12)+StolarskyHarborth)/TreeGrowth2nd 2584087690035261 a007 Real Root Of 318*x^4+365*x^3-852*x^2+683*x-427 2584087698929276 r005 Re(z^2+c),c=-11/48+8/17*I,n=26 2584087701872444 m008 (1/2*Pi^2+1/5)/(2/3*Pi^3-4/5) 2584087707581344 m001 (5^(1/2)+sin(1/12*Pi))/(-BesselI(1,1)+Robbin) 2584087723294218 p004 log(30757/23753) 2584087741044418 m001 (Catalan-LandauRamanujan)/(ThueMorse+ZetaP(3)) 2584087745785779 m001 exp((2^(1/3)))^2*FeigenbaumB^2/gamma^2 2584087753449307 m001 Riemann3rdZero+Thue^FibonacciFactorial 2584087755007720 m001 (Catalan+GAMMA(23/24))/(-OneNinth+Thue) 2584087756234711 m001 (FeigenbaumAlpha+Landau)/(5^(1/2)-Shi(1)) 2584087761978789 r005 Im(z^2+c),c=-7/6+46/235*I,n=46 2584087762993722 a007 Real Root Of 367*x^4+950*x^3-225*x^2-532*x+156 2584087767915564 h005 exp(cos(Pi*2/11)+cos(Pi*27/58)) 2584087771533396 r002 32th iterates of z^2 + 2584087774494158 r005 Re(z^2+c),c=-69/86+3/26*I,n=12 2584087778104802 a007 Real Root Of -120*x^4+925*x^3+900*x^2+634*x-17 2584087790197305 m001 (Pi*Psi(1,1/3)+1)/BesselI(0,1) 2584087791495198 r009 Im(z^3+c),c=-7/30+1/45*I,n=2 2584087799745747 p004 log(22027/17011) 2584087816930130 h001 (2/11*exp(2)+4/11)/(6/7*exp(2)+3/11) 2584087825508347 l006 ln(418/5539) 2584087829985356 g007 Psi(2,7/11)+Psi(2,4/9)+Psi(2,1/3)-Psi(2,2/7) 2584087833864558 r005 Re(z^2+c),c=-4/19+18/35*I,n=35 2584087859536729 m001 (GaussAGM+Riemann2ndZero)/(Artin+Bloch) 2584087865940661 r005 Im(z^2+c),c=-69/106+11/50*I,n=8 2584087866312944 l006 ln(6820/8831) 2584087867282048 m001 (LambertW(1)-cos(1/5*Pi))/(-MertensB2+Paris) 2584087870978319 a007 Real Root Of -180*x^4+11*x^3+951*x^2-607*x+297 2584087879298755 r002 13th iterates of z^2 + 2584087886347572 h005 exp(cos(Pi*7/60)/sin(Pi*19/43)) 2584087899651333 r002 12th iterates of z^2 + 2584087901887484 r005 Im(z^2+c),c=-61/62+15/61*I,n=21 2584087904301583 a007 Real Root Of 38*x^4+974*x^3-238*x^2-807*x+833 2584087907824753 a007 Real Root Of -420*x^4-628*x^3+696*x^2-881*x+967 2584087911138438 m006 (1/6*ln(Pi)+4/5)/(3*ln(Pi)+2/5) 2584087911337635 m001 CopelandErdos+Kolakoski*Otter 2584087915060422 a001 161/43133785636*20365011074^(21/22) 2584087915062247 a001 161/1762289*514229^(21/22) 2584087915391942 m001 1/exp(BesselJ(0,1))^2/(2^(1/3))^2*Ei(1) 2584087925797468 s002 sum(A202280[n]/(16^n),n=1..infinity) 2584087935423947 s002 sum(A202280[n]/(16^n-1),n=1..infinity) 2584087947073016 m005 (1/2*Zeta(3)+2/3)/(5/6*Catalan-3/11) 2584087956935929 m001 OneNinth/exp(MinimumGamma)/cos(Pi/12) 2584087968952134 q001 799/3092 2584087971868915 r002 3th iterates of z^2 + 2584087972614211 m001 (cos(1)*GAMMA(1/24)+GAMMA(17/24))/cos(1) 2584087977199647 m005 (2/3*Catalan-5/6)/(4/5*gamma+2/5) 2584087984578266 a003 cos(Pi*19/62)-sin(Pi*19/61) 2584087993314681 r005 Re(z^2+c),c=-13/60+23/33*I,n=7 2584088003336756 a007 Real Root Of -328*x^4-463*x^3+821*x^2-414*x+84 2584088020572257 r005 Re(z^2+c),c=-29/54+44/63*I,n=3 2584088024156885 a001 123*(1/2*5^(1/2)+1/2)^18*47^(14/15) 2584088028503810 a007 Real Root Of -475*x^4-917*x^3+951*x^2+292*x-239 2584088029295714 a007 Real Root Of 100*x^4+423*x^3+479*x^2+59*x-206 2584088049128856 r005 Im(z^2+c),c=-7/10+35/223*I,n=11 2584088052842868 a001 55/39603*2^(43/48) 2584088064199804 p004 log(22229/17167) 2584088066453895 m001 (-2^(1/2)+sin(1/5*Pi))/(exp(Pi)+Psi(2,1/3)) 2584088082216067 r005 Re(z^2+c),c=-1/9+34/53*I,n=48 2584088084028554 m001 Totient^AlladiGrinstead+ln(2+3^(1/2)) 2584088087539619 r005 Im(z^2+c),c=27/98+27/58*I,n=33 2584088095293098 a001 2584/199*322^(11/12) 2584088096230691 r009 Im(z^3+c),c=-7/13+6/43*I,n=57 2584088105839122 a003 cos(Pi*13/48)-sin(Pi*37/100) 2584088114369111 l006 ln(625/8282) 2584088128613295 r009 Im(z^3+c),c=-13/34+8/45*I,n=11 2584088129490799 a007 Real Root Of -146*x^4+171*x^3+932*x^2-966*x+741 2584088136181177 r005 Im(z^2+c),c=-139/114+8/57*I,n=34 2584088139527790 a007 Real Root Of -680*x^4-974*x^3-55*x^2+923*x-215 2584088140237837 m001 1/Riemann1stZero*Conway^2*exp(BesselJ(0,1)) 2584088141085492 m001 1/RenyiParking/ln(Backhouse)/GAMMA(19/24)^2 2584088149073537 a003 sin(Pi*26/115)/cos(Pi*49/117) 2584088154585386 a001 4/55*365435296162^(1/21) 2584088162716195 m001 (Sierpinski+Totient)/(cos(1/5*Pi)+Rabbit) 2584088163924476 h001 (3/10*exp(2)+5/6)/(1/6*exp(1)+8/11) 2584088169400392 r005 Im(z^2+c),c=-113/122+5/23*I,n=14 2584088185772960 a007 Real Root Of -257*x^4-529*x^3-970*x^2+798*x+263 2584088191186326 a008 Real Root of x^4+9*x^2-72*x+18 2584088194632622 l006 ln(3449/4466) 2584088203466899 g007 Psi(2,5/12)+Psi(2,3/8)-Psi(2,1/11)-Psi(13/10) 2584088210535949 m005 (1/3*Catalan+2/11)/(5/7*2^(1/2)+7/8) 2584088213622853 m002 -2+2*Cosh[Pi]+5/ProductLog[Pi] 2584088224160278 m008 (1/2*Pi^4+1)/(1/6*Pi^4+3) 2584088241281869 a007 Real Root Of -358*x^4-848*x^3-244*x^2-782*x+939 2584088268774544 a007 Real Root Of 96*x^4-49*x^3-600*x^2+744*x+803 2584088277506258 r009 Im(z^3+c),c=-41/78+31/64*I,n=63 2584088280475015 a007 Real Root Of 562*x^4+987*x^3-963*x^2+936*x+821 2584088282625291 a007 Real Root Of -359*x^4-856*x^3+137*x^2-228*x-267 2584088296052660 m004 (-5*Sqrt[5])/Pi+Log[Sqrt[5]*Pi]/2 2584088307972162 p004 log(24793/1871) 2584088314672724 m001 (BesselJ(0,1)-ln(Pi))/(Porter+ZetaQ(4)) 2584088320819699 r009 Re(z^3+c),c=-33/106+15/56*I,n=12 2584088337274115 p004 log(15053/14669) 2584088349234684 m001 (arctan(1/2)+Pi^(1/2))/(3^(1/3)-Psi(1,1/3)) 2584088356933104 h001 (3/4*exp(2)+5/9)/(3/10*exp(2)+1/7) 2584088359823726 m001 (Gompertz-Stephens)/(GAMMA(2/3)-BesselI(1,1)) 2584088364474375 r005 Im(z^2+c),c=-14/27+25/63*I,n=22 2584088366780492 a007 Real Root Of -244*x^4-275*x^3+673*x^2-340*x+762 2584088369794756 m001 (Mills+Trott2nd)/(BesselI(0,1)-Grothendieck) 2584088370589971 m001 Zeta(5)/(Zeta(1,-1)^KomornikLoreti) 2584088374752551 m001 1/GAMMA(1/12)*BesselJ(1,1)/ln(GAMMA(5/24)) 2584088384657194 m001 (-ArtinRank2+Otter)/(2^(1/2)-cos(1)) 2584088397316655 a001 1926/7*28657^(41/46) 2584088403013024 r005 Im(z^2+c),c=23/118+7/39*I,n=10 2584088403362962 r009 Im(z^3+c),c=-31/78+1/6*I,n=17 2584088412552537 a001 9062201101803/610*21^(2/11) 2584088415317298 a007 Real Root Of 596*x^4+796*x^3+683*x^2-710*x-218 2584088415868338 r005 Im(z^2+c),c=-45/94+31/64*I,n=52 2584088434398035 a007 Real Root Of 134*x^4+20*x^3-524*x^2+765*x-154 2584088446038827 h005 exp(sin(Pi*19/47)*sin(Pi*20/43)) 2584088456058385 r005 Im(z^2+c),c=1/64+36/49*I,n=6 2584088460514841 a007 Real Root Of -520*x^4-979*x^3+785*x^2-578*x-442 2584088461091796 m001 GAMMA(2/3)+ln(5)*LandauRamanujan 2584088466739817 a001 329/13201*521^(23/31) 2584088472844307 a008 Real Root of x^4-x^3-15*x^2+20*x+90 2584088473321882 a007 Real Root Of -252*x^4-779*x^3+97*x^2+810*x-760 2584088473581207 a007 Real Root Of 265*x^4+700*x^3+87*x^2-162*x-737 2584088480958676 m001 (BesselI(0,1)-FeigenbaumDelta)/ln(2+3^(1/2)) 2584088480958676 m001 (BesselI(0,1)-FeigenbaumDelta)/ln(2+sqrt(3)) 2584088489151896 a007 Real Root Of 237*x^4+723*x^3+452*x^2-593*x-172 2584088498015581 r005 Re(z^2+c),c=-29/114+23/57*I,n=31 2584088501936481 a007 Real Root Of 664*x^4-650*x^3-611*x^2-966*x-223 2584088504511702 m006 (5*ln(Pi)+1/2)/(5/Pi-4) 2584088504589946 m005 (1/3*Zeta(3)+3/7)/(3/11*Pi-8/9) 2584088506531957 m001 (StolarskyHarborth-Trott2nd)/(Pi-Shi(1)) 2584088506947804 a007 Real Root Of -627*x^4+442*x^3-307*x^2+912*x-220 2584088515610279 l006 ln(6976/9033) 2584088520167558 m001 GAMMA(1/4)*ln(Kolakoski)*GAMMA(1/6)^2 2584088535339497 m001 Zeta(3)^2*ln(Bloch)*cosh(1)^2 2584088536873888 a001 322/4181*63245986^(17/24) 2584088547079105 a001 47/3*267914296^(13/21) 2584088566438834 a001 161/7465176*6557470319842^(17/24) 2584088568841934 r005 Im(z^2+c),c=-25/54+8/19*I,n=20 2584088594278426 r009 Re(z^3+c),c=-9/32+6/31*I,n=8 2584088595967846 m001 Porter*(Zeta(1/2)-ln(2)/ln(10)) 2584088611900420 a007 Real Root Of -297*x^4-497*x^3+838*x^2+412*x+136 2584088620270055 m005 (1/2*Pi+5)/(7/9*exp(1)+3/7) 2584088620342396 q001 2566/993 2584088634832013 p001 sum(1/(40*n+39)/(64^n),n=0..infinity) 2584088640700922 m001 (Pi+exp(Pi))/(GAMMA(23/24)-ZetaQ(3)) 2584088641161995 r002 29th iterates of z^2 + 2584088642642758 r005 Im(z^2+c),c=-37/30+19/123*I,n=12 2584088651568872 m001 (MadelungNaCl+Totient)/(Psi(1,1/3)+Si(Pi)) 2584088653064252 r009 Re(z^3+c),c=-43/62+31/51*I,n=2 2584088665224633 r009 Re(z^3+c),c=-3/19+59/64*I,n=44 2584088676694265 m002 ProductLog[Pi]/4-(Log[Pi]*Sech[Pi])/Pi^2 2584088682896142 m001 (-cos(1/12*Pi)+Niven)/(Catalan-Zeta(3)) 2584088697518851 m004 -3*Csc[Sqrt[5]*Pi]^2+6*ProductLog[Sqrt[5]*Pi] 2584088697672234 l006 ln(207/2743) 2584088698071179 s002 sum(A047386[n]/(2^n-1),n=1..infinity) 2584088707511567 m001 Riemann3rdZero+Sarnak^Stephens 2584088710062525 a001 11/21*28657^(29/35) 2584088726667994 r005 Re(z^2+c),c=-1+11/215*I,n=18 2584088736734673 m001 (Catalan-gamma(1))/(exp(-1/2*Pi)+ZetaP(3)) 2584088740144929 a001 682/10182505537*610^(13/14) 2584088741304751 r005 Re(z^2+c),c=-25/34+5/66*I,n=4 2584088749491663 m001 Zeta(5)/RenyiParking^2*exp(log(2+sqrt(3)))^2 2584088768123987 m001 1/sin(1)^2*exp(CareFree)^2/sqrt(5) 2584088784439671 m002 2/Log[Pi]+2*Sinh[Pi]+Tanh[Pi] 2584088786861377 m001 (Khinchin-PlouffeB)/(sin(1/12*Pi)+Gompertz) 2584088796229389 m001 (Rabbit-Stephens)/(Pi^(1/2)+Magata) 2584088800361708 r005 Re(z^2+c),c=-19/26+36/107*I,n=7 2584088804939339 a007 Real Root Of 342*x^4+559*x^3-467*x^2+641*x-829 2584088821222213 a001 1/5473*13^(5/37) 2584088824136183 r005 Re(z^2+c),c=-9/28+5/54*I,n=14 2584088826392823 r005 Re(z^2+c),c=-37/118+8/49*I,n=15 2584088829489469 l006 ln(3527/4567) 2584088829489469 p004 log(4567/3527) 2584088835003577 a001 1364/317811*34^(28/55) 2584088844302361 m005 (3*Catalan-1/5)/(1/6*Catalan+5/6) 2584088849993939 s001 sum(exp(-4*Pi/5)^n*A044544[n],n=1..infinity) 2584088859352426 s002 sum(A282615[n]/((exp(n)+1)/n),n=1..infinity) 2584088859969872 r009 Re(z^3+c),c=-51/106+23/45*I,n=45 2584088860341136 r005 Im(z^2+c),c=-5/23+17/45*I,n=22 2584088860624670 a001 7/2584*13^(51/58) 2584088876087762 a007 Real Root Of 35*x^4+874*x^3-777*x^2+228*x-363 2584088876699522 h001 (-8*exp(1)-4)/(-2*exp(3/2)-1) 2584088883822171 a007 Real Root Of -223*x^4-437*x^3+351*x^2+190*x+550 2584088906147561 m001 1/ln(MertensB1)*DuboisRaymond^2*Catalan 2584088921266479 a001 1292/51841*521^(23/31) 2584088943413535 r009 Im(z^3+c),c=-21/46+5/46*I,n=28 2584088944187103 a001 33385282/233*21^(19/20) 2584088948257957 m001 (Pi-Cahen)^Zeta(5) 2584088967670368 m001 (Chi(1)+GAMMA(13/24))/(-DuboisRaymond+Paris) 2584088969008863 m005 (1/2*2^(1/2)+3/5)/(2/7*3^(1/2)-6/11) 2584088973056991 a007 Real Root Of -116*x^4-459*x^3-553*x^2-664*x-771 2584088975752774 h001 (1/10*exp(1)+7/9)/(4/9*exp(2)+7/9) 2584088976275092 a007 Real Root Of -405*x^4-891*x^3+739*x^2+797*x-191 2584088987581026 a001 2255/90481*521^(23/31) 2584088996797966 r005 Im(z^2+c),c=-19/44+5/11*I,n=14 2584088997256188 a001 17711/710647*521^(23/31) 2584088998667775 a001 2576/103361*521^(23/31) 2584088998873723 a001 121393/4870847*521^(23/31) 2584088999001005 a001 75025/3010349*521^(23/31) 2584088999540184 a001 28657/1149851*521^(23/31) 2584089003015442 r005 Im(z^2+c),c=-19/70+13/33*I,n=11 2584089003235767 a001 5473/219602*521^(23/31) 2584089018768665 m005 (2/5*gamma-5)/(2*gamma-3) 2584089018768665 m007 (-2/5*gamma+5)/(-2*gamma+3) 2584089019915529 m001 1/Tribonacci/exp(DuboisRaymond)/sqrt(3) 2584089028565669 a001 4181/167761*521^(23/31) 2584089030160945 m001 (3^(1/3))^2*ArtinRank2*exp(gamma) 2584089034373433 m001 ln(2^(1/2)+1)/(Riemann1stZero^MertensB3) 2584089037904537 a007 Real Root Of x^4+8*x^3+962*x^2-166*x-107 2584089042271769 m005 (1/4+1/6*5^(1/2))/(gamma-9/11) 2584089043047868 m001 (ArtinRank2+RenyiParking)/(ln(gamma)+gamma(2)) 2584089062499886 a007 Real Root Of -388*x^4-792*x^3+738*x^2+441*x-154 2584089070892336 a007 Real Root Of -34*x^4-840*x^3+966*x^2-825*x-480 2584089083328389 m005 (1/2*3^(1/2)+10/11)/(2^(1/2)-8/11) 2584089088300578 m001 Zeta(1,2)^2*GAMMA(11/12)^2/ln(cos(1))^2 2584089106887230 a007 Real Root Of 180*x^4+187*x^3+421*x^2-156*x-66 2584089125917667 r005 Im(z^2+c),c=-23/50+13/37*I,n=8 2584089127803634 r005 Im(z^2+c),c=-57/74+2/59*I,n=4 2584089133029720 p003 LerchPhi(1/10,5,139/168) 2584089136503093 l006 ln(7132/9235) 2584089139910885 m001 (Sarnak+Trott2nd)/(FransenRobinson+Paris) 2584089141351673 r009 Re(z^3+c),c=-45/122+24/61*I,n=13 2584089159382891 r009 Im(z^3+c),c=-49/110+7/57*I,n=43 2584089164475350 a007 Real Root Of -63*x^4+318*x^3-47*x^2+646*x-169 2584089179385152 m001 exp(Tribonacci)^2/Conway/Trott^2 2584089183947129 r005 Im(z^2+c),c=-21/46+29/62*I,n=47 2584089191232048 r002 3th iterates of z^2 + 2584089191322217 a007 Real Root Of 35*x^4+879*x^3-684*x^2-692*x+37 2584089193182992 m005 (1/3*2^(1/2)+2/3)/(2/3*3^(1/2)-5/7) 2584089197981555 m001 1/BesselJ(1,1)^2*LaplaceLimit^2/ln(Catalan) 2584089202179406 a001 1597/64079*521^(23/31) 2584089220717222 m001 (ArtinRank2+Lehmer)/(Stephens-ZetaP(4)) 2584089224430154 h002 exp(12^(7/12)+6^(5/7)) 2584089224430154 h007 exp(12^(7/12)+6^(5/7)) 2584089229758582 m005 (11/12+1/4*5^(1/2))/(1/11*exp(1)-9/11) 2584089237481165 m001 (Catalan-ln(5))/(Paris+Sierpinski) 2584089266824255 m001 (-Artin+TreeGrowth2nd)/(exp(1)+Zeta(1,-1)) 2584089268205242 a007 Real Root Of -741*x^4-650*x^3+673*x^2+842*x-248 2584089272262486 a007 Real Root Of 857*x^4+639*x^3-834*x^2-643*x+207 2584089279332737 p001 sum((-1)^n/(441*n+380)/(25^n),n=0..infinity) 2584089281698950 r005 Im(z^2+c),c=-29/90+15/34*I,n=8 2584089285481823 a007 Real Root Of 107*x^4-813*x^3+28*x^2-877*x-243 2584089288538097 l006 ln(617/8176) 2584089310488406 g005 GAMMA(4/7)*GAMMA(3/7)/GAMMA(9/11)/GAMMA(7/8) 2584089338450049 r009 Re(z^3+c),c=-5/13+25/64*I,n=9 2584089346774633 a007 Real Root Of 215*x^4+262*x^3-644*x^2+410*x+294 2584089355417588 a007 Real Root Of -326*x^4-561*x^3+608*x^2-469*x-416 2584089360748357 m001 (Si(Pi)+MasserGramain)^Zeta(5) 2584089374775314 a007 Real Root Of 264*x^4+622*x^3+139*x^2+909*x+382 2584089375308197 a001 89/843*7^(23/50) 2584089378391148 m001 (Ei(1)-Psi(2,1/3))/(3^(1/3)+LandauRamanujan) 2584089380439453 r005 Im(z^2+c),c=-81/58+5/61*I,n=4 2584089383458474 a007 Real Root Of 727*x^4-266*x^3+709*x^2-990*x-311 2584089386131309 r005 Re(z^2+c),c=37/98+21/62*I,n=30 2584089398729245 r005 Re(z^2+c),c=-5/27+14/25*I,n=45 2584089399826117 b008 -4+Sqrt[6]*E^(5/2) 2584089409330222 m005 (2/3*gamma-4)/(2/5*2^(1/2)+5/6) 2584089410806208 m001 1/ln(TwinPrimes)^2*ArtinRank2^2*Catalan 2584089412466241 r005 Re(z^2+c),c=-11/28+25/42*I,n=55 2584089425672344 m003 -23/5+(9*Sqrt[5])/16+ProductLog[1/2+Sqrt[5]/2] 2584089431827765 a005 (1/sin(64/133*Pi))^1864 2584089436873971 l006 ln(3605/4668) 2584089440326992 m001 (ln(5)-Khinchin)/(cos(1/5*Pi)-GAMMA(3/4)) 2584089444954192 r002 38th iterates of z^2 + 2584089446064391 p001 sum((-1)^n/(118*n+33)/n/(256^n),n=0..infinity) 2584089470955752 a007 Real Root Of 255*x^4+674*x^3-23*x^2-528*x-951 2584089496727202 s001 sum(exp(-Pi/3)^(n-1)*A275039[n],n=1..infinity) 2584089497506728 r005 Re(z^2+c),c=-17/40+22/41*I,n=26 2584089509939415 a001 3/196418*2^(22/29) 2584089510820701 r008 a(0)=3,K{-n^6,-13+27*n-39*n^2+28*n^3} 2584089512758127 r005 Re(z^2+c),c=-1/6+35/62*I,n=13 2584089517314940 a007 Real Root Of -445*x^4-682*x^3+735*x^2-935*x+750 2584089519351304 m008 (1/2*Pi+4/5)/(3*Pi^5-3/5) 2584089526349301 r002 8th iterates of z^2 + 2584089529830183 m001 (AlladiGrinstead+ReciprocalLucas)/(1-gamma(1)) 2584089535594881 m005 (1/3*2^(1/2)+2/11)/(-7/10+1/5*5^(1/2)) 2584089536519554 m001 KhintchineLevy*exp(Champernowne)^2/sin(Pi/5) 2584089543079841 r005 Im(z^2+c),c=-17/58+14/39*I,n=6 2584089544972784 m004 (-25*Pi)/3+Sec[Sqrt[5]*Pi]/4 2584089545881782 a007 Real Root Of 25*x^4-529*x^3-886*x^2-603*x+224 2584089552147232 a001 13201/48*610^(17/24) 2584089565010279 h001 (8/9*exp(2)+1/4)/(8/9*exp(1)+2/9) 2584089576770293 r005 Im(z^2+c),c=-15/46+25/61*I,n=19 2584089579548015 m001 GAMMA(5/6)+Mills^OrthogonalArrays 2584089586853169 l006 ln(410/5433) 2584089590558686 m006 (5/6*exp(Pi)+1/3)/(1/2/Pi+3/5) 2584089593696345 m001 1/ln(Riemann3rdZero)^2*Backhouse*Tribonacci 2584089598834286 a001 23725150497407/1597*21^(2/11) 2584089599323194 m001 (FeigenbaumD-Rabbit)/(gamma(2)+gamma(3)) 2584089614331384 a007 Real Root Of 377*x^4+925*x^3+305*x^2+840*x-715 2584089616063493 r005 Im(z^2+c),c=-7/22+7/17*I,n=35 2584089641525371 b008 25+2^(-1/4) 2584089641755631 a001 514229/29*76^(2/23) 2584089683435991 a001 34/3*5600748293801^(13/16) 2584089695675387 q001 484/1873 2584089706667450 a007 Real Root Of 273*x^4+577*x^3-458*x^2-217*x+281 2584089724109878 a007 Real Root Of 141*x^4-911*x^3+322*x^2-356*x+9 2584089730815387 l006 ln(7288/9437) 2584089731991094 p003 LerchPhi(1/32,2,53/85) 2584089737992798 r009 Re(z^3+c),c=-17/42+22/47*I,n=28 2584089739337672 m005 (1/2*gamma+7/11)/(7/132+3/22*5^(1/2)) 2584089746523669 a007 Real Root Of 861*x^4-230*x^3+525*x^2-913*x+201 2584089751446644 m001 (Zeta(3)-Riemann3rdZero)^GAMMA(23/24) 2584089753880991 a003 cos(Pi*5/17)-sin(Pi*35/106) 2584089756293623 a007 Real Root Of 56*x^4-997*x^3+151*x^2-937*x+249 2584089764869490 r005 Re(z^2+c),c=-2/3+47/150*I,n=58 2584089782431936 r005 Re(z^2+c),c=41/114+35/57*I,n=5 2584089782972477 r005 Re(z^2+c),c=-37/114+1/59*I,n=9 2584089784881835 m003 -3/2+(3*Sqrt[5])/8+3*Coth[1/2+Sqrt[5]/2] 2584089788459068 r005 Re(z^2+c),c=-6/19+11/61*I,n=3 2584089791050507 m005 (1/2*5^(1/2)-2/7)/(2/9*2^(1/2)-7/11) 2584089800936369 m001 (Artin+Tribonacci)/(Catalan-Pi^(1/2)) 2584089803661166 r005 Im(z^2+c),c=39/110+4/13*I,n=31 2584089807564501 r004 Im(z^2+c),c=5/16-2/17*I,z(0)=exp(3/8*I*Pi),n=3 2584089820017592 r009 Re(z^3+c),c=-13/30+29/54*I,n=33 2584089820071501 r005 Im(z^2+c),c=-31/42+1/8*I,n=25 2584089820843428 m001 (FeigenbaumAlpha-Gompertz)/(3^(1/3)-CareFree) 2584089826597253 m001 (Riemann1stZero+ZetaQ(2))/(ln(gamma)+ln(3)) 2584089834174498 m001 arctan(1/3)-ln(Pi)+Magata 2584089842633758 r005 Re(z^2+c),c=-6/25+14/33*I,n=13 2584089863191108 m001 GAMMA(11/24)^GAMMA(5/24)*GAMMA(11/24)^cos(1) 2584089886162943 r009 Re(z^3+c),c=-9/58+50/51*I,n=28 2584089887114742 l006 ln(613/8123) 2584089887114742 p004 log(8123/613) 2584089903024166 m001 (GAMMA(19/24)-sin(1))/(-Landau+PrimesInBinary) 2584089907737167 g002 -Psi(5/12)-Psi(1/12)-Psi(1/9)-Psi(3/5) 2584089910894999 m001 (GAMMA(17/24)+Kac)/(LaplaceLimit+ZetaP(4)) 2584089926427559 a001 3571/53316291173*610^(13/14) 2584089931368173 a007 Real Root Of -256*x^4-802*x^3-162*x^2+745*x+583 2584089936317186 r005 Re(z^2+c),c=-29/36+1/47*I,n=22 2584089960199960 a005 (1/cos(9/181*Pi))^1957 2584089964020517 m001 (2^(1/2)-cos(1))/(ln(5)+Pi^(1/2)) 2584089965177305 s002 sum(A056256[n]/((2^n+1)/n),n=1..infinity) 2584089969380981 m008 (1/3*Pi+4)/(2*Pi^4+1/2) 2584089972576798 a003 cos(Pi*7/31)*cos(Pi*44/113) 2584089992440767 m001 (Kolakoski-MertensB3)/(Mills+StronglyCareFree) 2584089995660702 m001 1/Magata*ln(Lehmer)^2*LambertW(1)^2 2584090018531590 l006 ln(3683/4769) 2584090021281881 a001 3571/832040*34^(28/55) 2584090031659020 m001 1/GAMMA(11/24)*ln(Catalan)^2/cosh(1) 2584090048371649 a007 Real Root Of 451*x^4+644*x^3-895*x^2+945*x-579 2584090050905256 m001 (CareFree+Porter)/(3^(1/3)-BesselK(1,1)) 2584090059085803 h001 (9/10*exp(2)+4/11)/(7/9*exp(1)+3/5) 2584090062390146 m001 (HardyLittlewoodC4-StolarskyHarborth)/ZetaQ(3) 2584090070766663 r005 Im(z^2+c),c=-5/62+19/58*I,n=9 2584090076074192 m001 1/ln(Zeta(7))^2*GAMMA(1/6)^2/log(2+sqrt(3))^2 2584090082855440 r009 Re(z^3+c),c=-37/118+3/11*I,n=10 2584090084222389 m001 (Zeta(5)+ln(2))/(2*Pi/GAMMA(5/6)+GAMMA(5/6)) 2584090092642866 m005 (1/2*Catalan-4/7)/(3/11*5^(1/2)-5) 2584090097088937 g007 -14*Zeta(3)-Psi(2,6/11)-Psi(2,5/11)-Psi(2,2/3) 2584090097969788 r009 Re(z^3+c),c=-19/74+18/25*I,n=22 2584090099503862 a001 9349/139583862445*610^(13/14) 2584090101945455 m005 (3/5+2/5*5^(1/2))/(2*Pi-1/2) 2584090105341882 a007 Real Root Of -133*x^4-496*x^3-701*x^2-460*x+864 2584090109251726 m001 (exp(1/exp(1))+gamma(1))/(Gompertz-Landau) 2584090112581247 m001 GAMMA(17/24)^2/exp(Robbin)^2*sin(Pi/5) 2584090114023699 m001 TwinPrimes^2*Riemann2ndZero*exp(Zeta(5)) 2584090119117626 a007 Real Root Of -234*x^4-537*x^3+414*x^2+270*x-899 2584090124755354 a001 12238/182717648081*610^(13/14) 2584090128439497 a001 64079/956722026041*610^(13/14) 2584090128977007 a001 167761/2504730781961*610^(13/14) 2584090129055428 a001 219602/3278735159921*610^(13/14) 2584090129073941 a001 101521/1515744265389*610^(13/14) 2584090129103895 a001 271443/4052739537881*610^(13/14) 2584090129309206 a001 51841/774004377960*610^(13/14) 2584090130716423 a001 39603/591286729879*610^(13/14) 2584090132794246 a007 Real Root Of -20*x^4-16*x^3+85*x^2+183*x+521 2584090136466671 a007 Real Root Of -199*x^4-410*x^3+62*x^2-881*x-892 2584090140361635 a001 2161/32264490531*610^(13/14) 2584090143327401 r005 Re(z^2+c),c=-23/30+7/82*I,n=30 2584090146785262 a008 Real Root of x^5-x^4+12*x^2-20*x+28 2584090151984918 m001 1/MadelungNaCl/exp(Si(Pi))^2*GAMMA(2/3)^2 2584090165341711 r005 Re(z^2+c),c=-103/98+13/57*I,n=16 2584090165457997 r002 28th iterates of z^2 + 2584090167428890 r005 Im(z^2+c),c=-25/54+23/50*I,n=64 2584090177383722 r009 Re(z^3+c),c=-25/106+16/23*I,n=12 2584090194357552 a001 9349/2178309*34^(28/55) 2584090197387101 h001 (6/7*exp(2)+1/11)/(7/10*exp(1)+7/12) 2584090201141026 a005 (1/sin(56/135*Pi))^725 2584090206470900 a001 2889/43133785636*610^(13/14) 2584090211137726 m001 (Pi*csc(7/24*Pi)/GAMMA(17/24))^ln(3)-Thue 2584090213429056 r009 Re(z^3+c),c=-37/66+8/15*I,n=2 2584090222008184 r005 Im(z^2+c),c=-17/70+21/55*I,n=12 2584090231389318 r002 32th iterates of z^2 + 2584090242936729 r002 17th iterates of z^2 + 2584090247972432 a004 Fibonacci(11)*Lucas(12)/(1/2+sqrt(5)/2)^5 2584090251497220 a007 Real Root Of 305*x^4+48*x^3+415*x^2-417*x-136 2584090259889342 m009 (24*Catalan+3*Pi^2+2)/(2*Pi^2+1) 2584090263705528 a007 Real Root Of 483*x^4+899*x^3-925*x^2-251*x-496 2584090264078445 a007 Real Root Of 247*x^4+194*x^3-727*x^2+838*x-646 2584090278422274 m001 1/exp(Ei(1))/Robbin/Zeta(1,2)^2 2584090284528444 m002 -5+Pi^3-(6*Csch[Pi])/Pi 2584090300218267 l006 ln(7444/9639) 2584090301324200 a001 5778/1346269*34^(28/55) 2584090304536423 r005 Im(z^2+c),c=1/90+2/7*I,n=13 2584090306168341 a001 144/521*322^(12/31) 2584090312666506 r002 8th iterates of z^2 + 2584090313847575 r005 Re(z^2+c),c=9/56+17/52*I,n=8 2584090329182493 m001 (BesselI(0,1)*Sierpinski+Magata)/Sierpinski 2584090331997271 a001 14662949395604/987*21^(2/11) 2584090346878445 m001 (BesselJ(0,1)-arctan(1/2))^GAMMA(5/6) 2584090351812149 m001 ln(PisotVijayaraghavan)/Lehmer^2/GAMMA(1/6)^2 2584090351963122 r002 38th iterates of z^2 + 2584090352774676 r005 Re(z^2+c),c=-15/98+39/55*I,n=15 2584090359662949 r005 Im(z^2+c),c=-9/14+7/69*I,n=18 2584090384174982 a007 Real Root Of -362*x^4-906*x^3+100*x^2-9*x-183 2584090384549009 r005 Re(z^2+c),c=-13/82+31/52*I,n=58 2584090389079257 m001 (MinimumGamma+Totient)/Trott 2584090392145661 a001 305/12238*521^(23/31) 2584090395452023 a007 Real Root Of 301*x^4+645*x^3-39*x^2+586*x-517 2584090403630727 m001 (GAMMA(23/24)-GaussAGM)/(Lehmer-MertensB3) 2584090410541255 a007 Real Root Of 459*x^4-145*x^3-929*x^2-358*x+155 2584090422379366 a001 11/18*(1/2*5^(1/2)+1/2)^26*18^(19/20) 2584090434939087 a007 Real Root Of 199*x^4-897*x^3+965*x^2-945*x-325 2584090436950092 m005 (4*exp(1)-3/5)/(2/5*gamma+1/6) 2584090447124807 a001 6765/199*18^(40/57) 2584090455099971 m003 -3+Cos[1/2+Sqrt[5]/2]+2*Log[1/2+Sqrt[5]/2]^2 2584090460565028 a001 1/199*(1/2*5^(1/2)+1/2)^3*3^(3/17) 2584090467138920 s002 sum(A261923[n]/((2^n-1)/n),n=1..infinity) 2584090475104622 a007 Real Root Of -241*x^4-771*x^3-659*x^2-650*x+163 2584090475223305 m001 (CopelandErdos+DuboisRaymond*Paris)/Paris 2584090485457107 m001 Sierpinski-cos(1)*ZetaQ(4) 2584090493554097 l006 ln(203/2690) 2584090503350791 a001 219602*63245986^(13/20) 2584090508076385 m005 (1/3*Zeta(3)-1/11)/(3/5*5^(1/2)-1/7) 2584090512738690 a001 3/75025*21^(19/31) 2584090517502588 s002 sum(A211800[n]/(n*2^n+1),n=1..infinity) 2584090517759742 r002 47th iterates of z^2 + 2584090522581416 a001 228826127/2*4181^(13/20) 2584090524885470 r002 16th iterates of z^2 + 2584090530429698 r005 Im(z^2+c),c=-25/74+5/14*I,n=6 2584090543285172 m001 Riemann1stZero/Artin*exp(GAMMA(1/6))^2 2584090547791371 m001 (Pi^(1/2)-MertensB1)/(Stephens+ZetaQ(3)) 2584090562396753 r005 Re(z^2+c),c=-21/26+1/82*I,n=42 2584090568705666 a007 Real Root Of 28*x^4+723*x^3-14*x^2-24*x-682 2584090569696236 b008 Sqrt[Pi]-ArcCosh[39] 2584090572011949 a007 Real Root Of -384*x^4-806*x^3+855*x^2+693*x-704 2584090576062990 l006 ln(3761/4870) 2584090585180542 a003 cos(Pi*37/96)-cos(Pi*55/117) 2584090599743720 h005 exp(sin(Pi*2/57)+sin(Pi*13/41)) 2584090600530172 m001 1/exp(Conway)*Champernowne^2*GolombDickman 2584090615444248 q001 6/23219 2584090618756205 m008 (3/5*Pi^2+4)/(2/5*Pi^6-3/5) 2584090621484045 a005 (1/sin(78/181*Pi))^1593 2584090625466887 a007 Real Root Of 13*x^4+91*x^3+391*x^2+557*x-181 2584090626839404 a007 Real Root Of 203*x^4+298*x^3-393*x^2+259*x-616 2584090626986187 m005 (1/3*Pi+3/7)/(2*gamma-7/12) 2584090634766451 s002 sum(A044277[n]/(pi^n+1),n=1..infinity) 2584090639900163 a003 cos(Pi*28/89)-cos(Pi*28/69) 2584090640394311 m001 ZetaQ(4)/Riemann2ndZero/GaussKuzminWirsing 2584090644555935 a007 Real Root Of -349*x^4-829*x^3+31*x^2-779*x-963 2584090646399269 a007 Real Root Of -765*x^4+761*x^3-971*x^2+579*x+231 2584090654917701 m001 ZetaQ(3)^ln(5)/(ZetaQ(3)^Chi(1)) 2584090659590544 a001 2207/32951280099*610^(13/14) 2584090690032122 m001 exp(RenyiParking)^2*Rabbit^2*GAMMA(1/12) 2584090691018371 a001 55/45537549124*3^(9/13) 2584090692678023 r005 Re(z^2+c),c=-11/14+11/175*I,n=40 2584090704630814 a007 Real Root Of -223*x^4-465*x^3+282*x^2+266*x+724 2584090705360146 m001 (Kolakoski-MertensB2)/(Niven-StronglyCareFree) 2584090708607344 m001 (arctan(1/2)+FeigenbaumD)/(Rabbit-Tetranacci) 2584090749001187 m001 OneNinth^Thue/(OneNinth^GAMMA(17/24)) 2584090754201536 r005 Im(z^2+c),c=-27/31+11/51*I,n=63 2584090754442192 a001 2207/514229*34^(28/55) 2584090755022784 m001 (Shi(1)-cos(1/5*Pi))/(-Champernowne+Trott2nd) 2584090759966705 a001 610/3*3^(12/55) 2584090760240452 a007 Real Root Of 594*x^4+626*x^3+41*x^2-644*x-161 2584090787312212 r002 19th iterates of z^2 + 2584090788551846 a007 Real Root Of 8*x^4-358*x^3-561*x^2+702*x-974 2584090810743532 a007 Real Root Of -286*x^4-675*x^3-31*x^2-163*x+891 2584090811577432 h001 (-7*exp(2/3)-2)/(-9*exp(2)+6) 2584090821531328 r005 Im(z^2+c),c=-27/52+17/37*I,n=45 2584090822286522 r005 Im(z^2+c),c=-27/52+23/52*I,n=61 2584090823769072 a007 Real Root Of -300*x^4-907*x^3-318*x^2+105*x+121 2584090828737595 m001 (exp(1/Pi)+CareFree)/(MertensB2-Tribonacci) 2584090828909320 b008 3*Sqrt[ArcCot[12/11]] 2584090833457360 r005 Re(z^2+c),c=-25/122+15/22*I,n=49 2584090837040050 m001 ReciprocalLucas^FellerTornier*exp(-1/2*Pi) 2584090846245630 l006 ln(7600/9841) 2584090847261395 r005 Im(z^2+c),c=-23/34+38/127*I,n=10 2584090847438292 a003 cos(Pi*14/79)/cos(Pi*24/61) 2584090867984285 a005 (1/cos(33/226*Pi))^283 2584090870624488 m001 1/Salem*ln(LaplaceLimit)*exp(1)^2 2584090876348330 m001 3^(1/2)*(Catalan+Stephens) 2584090899102198 a007 Real Root Of 498*x^4+847*x^3-887*x^2+788*x+369 2584090909190728 m001 (sin(1/12*Pi)-Riemann2ndZero)^FeigenbaumC 2584090933108649 m001 1/exp(Zeta(3))^2*GAMMA(17/24)^2*sqrt(3) 2584090939958231 a007 Real Root Of 461*x^4+808*x^3-798*x^2+835*x+873 2584090943937873 m001 (Thue-ZetaP(3))/(HardyLittlewoodC4-Otter) 2584090946380335 a007 Real Root Of -336*x^4-742*x^3+677*x^2+709*x-510 2584090950052117 r002 13th iterates of z^2 + 2584090962937714 m001 1/Zeta(9)^2/Porter/exp(cos(Pi/12)) 2584090971710826 b008 -43/6+Sqrt[21] 2584090978121247 s002 sum(A197908[n]/(n^2*pi^n-1),n=1..infinity) 2584090978659578 r005 Im(z^2+c),c=-25/56+5/11*I,n=54 2584090986533548 r009 Re(z^3+c),c=-35/86+15/32*I,n=59 2584090993772494 a007 Real Root Of -111*x^4-322*x^3-186*x^2-401*x-401 2584091003230301 a007 Real Root Of -280*x^4-994*x^3-320*x^2+957*x-57 2584091005034434 m001 1/Tribonacci^2*Magata*ln(GAMMA(19/24))^2 2584091006805474 m005 (3/4*gamma+3/5)/(4*Catalan+1/3) 2584091025117051 m001 (Si(Pi)*Sierpinski-ZetaQ(4))/Si(Pi) 2584091032708797 m001 Sierpinski^2*exp(Riemann2ndZero)^2*GAMMA(5/12) 2584091077261916 m001 1/GAMMA(1/6)*ln(Kolakoski)^2*exp(1) 2584091086325785 a001 76/4052739537881*13^(1/8) 2584091088833282 a001 1346269/29*199^(12/37) 2584091091699979 b008 1/3-2/Pi^(3/2) 2584091103006974 m001 cos(1/5*Pi)/(ZetaP(4)^ZetaP(2)) 2584091108012110 l006 ln(605/8017) 2584091110938748 l006 ln(3839/4971) 2584091112244518 b008 Pi+7*PolyLog[4,-1/2] 2584091115874397 r002 10th iterates of z^2 + 2584091132905952 m001 (-exp(gamma)+2)/GaussAGM(1,1/sqrt(2)) 2584091141585361 a007 Real Root Of -531*x^4-32*x^3-161*x^2+884*x+241 2584091141862436 r009 Re(z^3+c),c=-5/12+20/41*I,n=58 2584091145619309 r005 Re(z^2+c),c=-11/32+11/39*I,n=3 2584091146887558 m001 PrimesInBinary^2*ln(Magata)^2 2584091157241883 m006 (3/5*exp(2*Pi)-1/6)/(2/3*exp(Pi)-3) 2584091166627210 m001 (3^(1/2)+ln(Pi))/(-GAMMA(17/24)+GAMMA(19/24)) 2584091166747110 m001 (-Backhouse+Trott2nd)/(Psi(2,1/3)+Zeta(1,-1)) 2584091167295948 b008 -31+ArcSinh[87] 2584091174904271 m001 (MertensB1+Salem)/(Psi(2,1/3)-polylog(4,1/2)) 2584091189231678 a007 Real Root Of 242*x^4+623*x^3+76*x^2+387*x+452 2584091193589248 r002 11th iterates of z^2 + 2584091198894670 h001 (11/12*exp(2)+5/8)/(1/3*exp(2)+2/5) 2584091200396512 m001 cosh(1)^2*GlaisherKinkelin^2/exp(exp(1)) 2584091206179423 b008 15+92*Sqrt[7] 2584091228379376 m001 1/Lehmer^2/Artin/exp(cos(1))^2 2584091230883815 r005 Re(z^2+c),c=-13/18+23/78*I,n=52 2584091234127984 m001 LambertW(1)^Zeta(1/2)*GAMMA(5/6) 2584091245632353 r005 Im(z^2+c),c=-39/58+4/17*I,n=20 2584091248079627 a008 Real Root of x^4+6*x^2-16*x-126 2584091257907347 r005 Im(z^2+c),c=-13/60+47/57*I,n=6 2584091278469976 m001 1/sin(Pi/5)^2/cos(1)^2*ln(sinh(1))^2 2584091285066655 p004 log(18671/1409) 2584091293794349 r008 a(0)=0,K{-n^6,-47-48*n^3+53*n^2+3*n} 2584091294592815 a007 Real Root Of -313*x^4-480*x^3+721*x^2-326*x+17 2584091304129547 r005 Re(z^2+c),c=-29/90+7/48*I,n=5 2584091313241551 a007 Real Root Of -494*x^4-873*x^3+787*x^2-803*x-367 2584091314083991 a007 Real Root Of 505*x^4+911*x^3-772*x^2+618*x-46 2584091317041042 r005 Re(z^2+c),c=-95/118+1/35*I,n=44 2584091320923654 a005 (1/cos(16/137*Pi))^883 2584091322573571 m001 (Si(Pi)+GAMMA(3/4))/(-Gompertz+KomornikLoreti) 2584091331972025 a007 Real Root Of 548*x^4+934*x^3-969*x^2+505*x-543 2584091332161558 m001 ln(Salem)^2*Rabbit*sinh(1)^2 2584091333934088 r009 Im(z^3+c),c=-21/64+5/24*I,n=12 2584091334649895 m005 (2*2^(1/2)-1/6)/(-1/12+1/12*5^(1/2)) 2584091365260906 r005 Re(z^2+c),c=-5/19+17/45*I,n=30 2584091370307965 l006 ln(7756/10043) 2584091375888831 b008 Pi*Zeta[ArcCoth[4]] 2584091377489519 a007 Real Root Of -290*x^4-553*x^3+563*x^2+306*x+420 2584091388488874 a007 Real Root Of 250*x^4+170*x^3-947*x^2+420*x-805 2584091391920114 r005 Im(z^2+c),c=-7/36+1/29*I,n=10 2584091394529296 m001 (KhinchinHarmonic-MertensB3)/(Niven-OneNinth) 2584091405806750 a007 Real Root Of 3*x^4+772*x^3-832*x^2+514*x-413 2584091410353565 a007 Real Root Of -250*x^4-811*x^3-431*x^2-146*x-346 2584091417754255 r005 Re(z^2+c),c=27/118+27/53*I,n=15 2584091418297978 l006 ln(402/5327) 2584091431076320 p001 sum(1/(422*n+395)/(24^n),n=0..infinity) 2584091436013235 a001 45537549124*121393^(13/24) 2584091436032232 a001 87403803*12586269025^(13/24) 2584091438854124 m001 (1+cos(1/5*Pi))/(MasserGramain+ZetaQ(2)) 2584091440816910 a007 Real Root Of -363*x^4-791*x^3+552*x^2+803*x+926 2584091444391466 a001 13/844*1364^(22/31) 2584091447571442 r005 Re(z^2+c),c=23/58+21/53*I,n=8 2584091447941953 m001 (OrthogonalArrays+ThueMorse)^BesselI(1,2) 2584091455313404 a007 Real Root Of 183*x^4+109*x^3-622*x^2+905*x+213 2584091466563496 m005 (1/3*gamma+1/2)/(3^(1/2)-2) 2584091480237481 r005 Im(z^2+c),c=-37/58+2/41*I,n=57 2584091487663284 s002 sum(A056131[n]/(n*10^n-1),n=1..infinity) 2584091487737182 m001 (Gompertz-HardyLittlewoodC5)/(Khinchin-Magata) 2584091489228447 r005 Im(z^2+c),c=-7/20+2/45*I,n=6 2584091492434165 r005 Re(z^2+c),c=-13/50+23/59*I,n=19 2584091493222991 r002 8th iterates of z^2 + 2584091496114606 m001 (5^(1/2)-ln(gamma))/(Kac+ZetaP(2)) 2584091501641964 s002 sum(A051224[n]/(n*2^n-1),n=1..infinity) 2584091503715716 r005 Re(z^2+c),c=1/8+23/40*I,n=51 2584091531842624 a007 Real Root Of 16*x^4+441*x^3+704*x^2-166*x+917 2584091544630187 a001 47/2584*5^(12/55) 2584091567328502 m001 Sierpinski^(BesselJ(0,1)*Mills) 2584091571825676 r002 9th iterates of z^2 + 2584091572160542 m001 (2*Pi/GAMMA(5/6)+Trott)/(Catalan+Zeta(1,2)) 2584091573688039 a001 13/521*47^(17/28) 2584091587561667 a001 521/39088169*17711^(7/13) 2584091588448836 a001 1/63246219*4807526976^(7/13) 2584091588448836 a001 521/956722026041*2504730781961^(7/13) 2584091588448839 a001 521/1134903170*9227465^(7/13) 2584091594053680 r005 Im(z^2+c),c=-7/10+8/225*I,n=14 2584091594066382 b008 8*Sqrt[6]+Sqrt[39] 2584091605320114 a007 Real Root Of 837*x^4+342*x^3-816*x^2-701*x+226 2584091609052091 m005 (1/2*Pi+3/10)/(-17/63+4/9*5^(1/2)) 2584091611527870 a007 Real Root Of -425*x^4-681*x^3+788*x^2-936*x-481 2584091612663919 h001 (3/8*exp(2)+9/11)/(1/7*exp(2)+1/3) 2584091615463596 a007 Real Root Of 177*x^4-228*x^3+611*x^2-354*x-137 2584091624512305 l006 ln(3917/5072) 2584091637274233 m001 FeigenbaumB/Champernowne*ln(Porter) 2584091639669235 m001 (2^(1/2)-Landau)/(Otter+PrimesInBinary) 2584091641188369 a001 7/32951280099*34^(1/18) 2584091687037405 r005 Re(z^2+c),c=-63/62+3/28*I,n=26 2584091713287260 s002 sum(A084670[n]/(pi^n+1),n=1..infinity) 2584091715390136 m001 exp(GAMMA(19/24))^2*MadelungNaCl^2*cos(Pi/5) 2584091721570350 m001 GAMMA(5/6)^Si(Pi)+MertensB3 2584091728709214 r005 Im(z^2+c),c=-25/38+19/62*I,n=50 2584091730648879 l006 ln(601/7964) 2584091735648813 m001 exp(1)^(MasserGramainDelta/Champernowne) 2584091735648813 m001 exp(MasserGramainDelta/Champernowne) 2584091743518030 r005 Im(z^2+c),c=7/46+13/62*I,n=19 2584091750857042 a001 4*(1/2*5^(1/2)+1/2)^2*18^(5/16) 2584091756056839 m001 (2^(1/3)+BesselI(0,1))^Zeta(1/2) 2584091756056839 m001 (BesselI(0,1)+(2^(1/3)))^Zeta(1/2) 2584091761393183 m005 (-9/28+1/4*5^(1/2))/(1/40+2/5*5^(1/2)) 2584091785024828 m001 (3^(1/2)+GAMMA(19/24))/(PrimesInBinary+Rabbit) 2584091808468539 q001 653/2527 2584091815059576 a003 cos(Pi*43/100)+cos(Pi*19/39) 2584091818017855 a007 Real Root Of -225*x^4-504*x^3-28*x^2-736*x-379 2584091822375565 a001 102334155/47*11^(1/14) 2584091826064286 a007 Real Root Of -209*x^4-310*x^3+542*x^2-75*x+157 2584091838996844 m005 (1/2*Zeta(3)+6)/(1/12*3^(1/2)+1/9) 2584091839008366 m001 GAMMA(13/24)*exp(Conway)/GAMMA(7/12)^2 2584091848120203 a003 cos(Pi*4/99)-sin(Pi*27/103) 2584091848583176 a007 Real Root Of 188*x^4+319*x^3-486*x^2+96*x+615 2584091854972282 r005 Re(z^2+c),c=-33/64+4/43*I,n=2 2584091862473104 m001 MertensB3+PlouffeB+StronglyCareFree 2584091869250677 m001 ln(Zeta(5))*Champernowne*gamma 2584091870539752 m001 (Bloch+MertensB1)/(5^(1/2)+BesselK(1,1)) 2584091875639339 a001 329/281*3571^(3/31) 2584091884739841 m001 (GaussAGM+Lehmer)/(PlouffeB+ZetaP(4)) 2584091887449145 r005 Im(z^2+c),c=-29/94+11/27*I,n=22 2584091888737269 m005 (1/2*Catalan-1/11)/(-59/132+3/22*5^(1/2)) 2584091896902495 m005 (1/2*3^(1/2)+4/9)/(2/11*2^(1/2)+1/4) 2584091901809494 a007 Real Root Of 218*x^4-632*x^3-764*x^2-403*x-65 2584091915296477 a005 (1/sin(46/177*Pi))^3 2584091918663725 r005 Im(z^2+c),c=-1/36+25/59*I,n=3 2584091923230773 r002 3th iterates of z^2 + 2584091929153112 r005 Im(z^2+c),c=-77/86+13/61*I,n=50 2584091937465146 m001 LandauRamanujan*MinimumGamma+Porter 2584091937485543 a007 Real Root Of 431*x^4-149*x^3+906*x^2-774*x-265 2584091941017522 m001 (Kac+KhinchinLevy)/(Salem-Weierstrass) 2584091942331490 m001 BesselK(1,1)/Magata/exp(GAMMA(1/6))^2 2584091944028874 a007 Real Root Of 278*x^4+237*x^3-875*x^2+660*x-758 2584091944986517 m001 Kolakoski^ErdosBorwein*Artin 2584091968115853 a007 Real Root Of -470*x^4+17*x^3+678*x^2+598*x-198 2584091988845772 m001 Kolakoski-Khinchin-ln(2) 2584091995120812 h001 (5/9*exp(1)+2/7)/(2/9*exp(1)+1/11) 2584091997430052 a001 3/34*21^(6/17) 2584091998562145 r005 Re(z^2+c),c=-9/122+19/32*I,n=15 2584092008793059 r009 Im(z^3+c),c=-15/31+2/43*I,n=38 2584092010729470 a007 Real Root Of 242*x^4+280*x^3-579*x^2+902*x+238 2584092022417187 m001 (MadelungNaCl+ZetaP(2))/(exp(-1/2*Pi)+Cahen) 2584092023107960 a001 123/89*75025^(6/23) 2584092031780562 m001 Niven^2*ln(ArtinRank2)^2/Zeta(1/2) 2584092038611305 m001 (Grothendieck+Magata)/(Pi^(1/2)+CopelandErdos) 2584092048583112 a007 Real Root Of -426*x^4-829*x^3+728*x^2+224*x+408 2584092049957732 v002 sum(1/(3^n*(28*n^2-35*n+21)),n=1..infinity) 2584092070568146 a007 Real Root Of -356*x^4-636*x^3+943*x^2+196*x-891 2584092071819221 a007 Real Root Of -44*x^4+518*x^3-607*x^2-762*x-954 2584092083654301 m001 1/ln(GAMMA(1/3))*FeigenbaumDelta/GAMMA(2/3)^2 2584092085941963 m001 ln(BesselK(0,1))/BesselJ(1,1)*GAMMA(1/4)^2 2584092091447848 r005 Im(z^2+c),c=-7/26+17/43*I,n=19 2584092096207425 m001 (Kac-MertensB1)/(Pi-3^(1/2)) 2584092096896399 r005 Re(z^2+c),c=-37/122+11/49*I,n=23 2584092105727099 m005 (11/30+1/6*5^(1/2))/(exp(1)+1/7) 2584092106497064 r005 Im(z^2+c),c=-127/114+16/57*I,n=39 2584092118031400 l006 ln(3995/5173) 2584092118889466 a007 Real Root Of 178*x^4+68*x^3-646*x^2+926*x-57 2584092121768439 m001 (GAMMA(3/4)+sin(1/12*Pi))/(BesselI(0,2)-Niven) 2584092123499997 m001 1/Bloch^2*FeigenbaumAlpha*exp(FeigenbaumB) 2584092123746446 a007 Real Root Of 566*x^4+717*x^3+921*x^2-636*x-216 2584092128096719 r009 Re(z^3+c),c=-1/23+21/37*I,n=14 2584092128733459 a001 1/9378*(1/2*5^(1/2)+1/2)^27*18^(13/22) 2584092131042555 r005 Im(z^2+c),c=-19/102+11/30*I,n=19 2584092165400238 r005 Im(z^2+c),c=-8/27+17/42*I,n=31 2584092169397662 m001 Landau/(Backhouse+MasserGramain) 2584092172613129 r009 Re(z^3+c),c=-41/102+13/28*I,n=25 2584092184413581 a007 Real Root Of 706*x^4-602*x^3-240*x^2-861*x-220 2584092189812008 a007 Real Root Of 311*x^4+572*x^3-375*x^2+341*x-612 2584092190566829 r005 Im(z^2+c),c=-41/62+23/49*I,n=53 2584092200522751 m001 (GAMMA(19/24)-sin(1))/(Rabbit+Stephens) 2584092217238258 a008 Real Root of x^4-2*x^3+64*x^2+78*x-639 2584092223540867 a001 24476/233*610^(8/57) 2584092228435152 m001 GaussKuzminWirsing*Totient-ZetaR(2) 2584092237321434 m001 (2^(1/2)-Zeta(1/2))/(TwinPrimes+ZetaP(2)) 2584092242779527 m005 (4*exp(1)+1/5)/(5/6*2^(1/2)-3/4) 2584092244390465 m002 -4*Pi^3+Pi^4+Pi^5/ProductLog[Pi] 2584092249541020 s001 sum(exp(-Pi/4)^(n-1)*A247490[n],n=1..infinity) 2584092250169487 r005 Im(z^2+c),c=-19/15+5/41*I,n=23 2584092254359952 r002 64th iterates of z^2 + 2584092273557582 v003 sum((5/6*n^3-23/6*n+23)/(n!+1),n=1..infinity) 2584092278477182 m001 (2^(1/2)+BesselI(0,1)*Porter)/BesselI(0,1) 2584092287524741 r009 Im(z^3+c),c=-21/46+7/64*I,n=47 2584092292788995 m001 (Backhouse+Thue)/(BesselK(0,1)-ln(2+3^(1/2))) 2584092296326777 m001 1/ln(cosh(1))/(2^(1/3))/sin(1)^2 2584092297624305 m001 OrthogonalArrays*(HeathBrownMoroz+Tribonacci) 2584092303560767 p001 sum((-1)^n/(485*n+132)/n/(6^n),n=1..infinity) 2584092308893095 m001 ReciprocalFibonacci^FeigenbaumKappa-Sierpinski 2584092314397497 r005 Im(z^2+c),c=-7/19+25/59*I,n=24 2584092316644590 m001 (1+KhinchinLevy)/(-Khinchin+Tribonacci) 2584092322237308 g006 Psi(1,1/12)+Psi(1,1/11)-Psi(1,3/7)-Psi(1,2/3) 2584092331422554 m001 (GAMMA(23/24)+Kolakoski)/CareFree 2584092333764831 a007 Real Root Of -242*x^4-529*x^3+248*x^2-42*x-102 2584092353284140 r005 Im(z^2+c),c=7/46+13/62*I,n=12 2584092356635693 a007 Real Root Of -171*x^4-800*x^3-825*x^2+797*x+248 2584092361628794 l006 ln(199/2637) 2584092379524300 m005 (-3/4+1/4*5^(1/2))/(-5/84+5/14*5^(1/2)) 2584092401647627 a001 38/5473*2971215073^(19/21) 2584092403584813 m001 1/Porter*ln(ArtinRank2)*GAMMA(23/24)^2 2584092405998796 a001 377/39603*9349^(19/31) 2584092414210141 a001 377/15127*64079^(13/31) 2584092421730941 a001 377/1860498*24476^(29/31) 2584092430877573 a001 13/844*39603^(15/31) 2584092436004903 r005 Im(z^2+c),c=7/118+16/61*I,n=12 2584092446843385 a007 Real Root Of 251*x^4+445*x^3-721*x^2-793*x-748 2584092469814852 a007 Real Root Of -536*x^4-836*x^3+682*x^2+984*x-283 2584092475604412 a001 843/6557470319842*514229^(13/14) 2584092483559094 r005 Im(z^2+c),c=-9/20+29/64*I,n=61 2584092484335455 m005 (1/36+1/4*5^(1/2))/(1/2*Pi+7/10) 2584092512258304 r005 Im(z^2+c),c=-17/46+28/57*I,n=13 2584092528238844 r005 Im(z^2+c),c=35/122+1/8*I,n=9 2584092529191473 m002 -1+Pi-Pi^7*Sech[Pi] 2584092550230045 m001 exp(PisotVijayaraghavan)^2/Si(Pi)*Tribonacci^2 2584092550311643 m001 3^(1/3)/gamma(2)/Stephens 2584092550883397 m002 -4+2*Log[Pi]+4*ProductLog[Pi] 2584092550940502 a007 Real Root Of 406*x^4+893*x^3-68*x^2+603*x-682 2584092563968683 m001 (cos(1/12*Pi)-Artin)/(Landau+MadelungNaCl) 2584092565597667 r009 Re(z^3+c),c=-1/14+27/40*I,n=2 2584092573268932 a007 Real Root Of -407*x^4+306*x^3-684*x^2+295*x+129 2584092577997185 m001 Totient^Tribonacci/LaplaceLimit 2584092589501706 m005 (-7/30+1/6*5^(1/2))/(5/8*gamma-9/10) 2584092592648194 l006 ln(4073/5274) 2584092607243482 a007 Real Root Of 190*x^4+468*x^3+175*x^2+512*x-242 2584092609488965 a001 5778/5*1346269^(23/60) 2584092614286688 m005 (-7/36+1/4*5^(1/2))/(1/3*Pi+4/11) 2584092619973962 m001 (gamma(2)-BesselI(0,2))/(ln(Pi)-sin(1/12*Pi)) 2584092625531390 r005 Im(z^2+c),c=-15/122+10/29*I,n=9 2584092628777720 a001 1597/843*15127^(1/31) 2584092631598549 r009 Re(z^3+c),c=-5/12+21/43*I,n=59 2584092645433788 a003 -1+cos(1/24*Pi)-cos(1/21*Pi)-2*cos(5/24*Pi) 2584092647158787 p001 sum((-1)^n/(459*n+143)/n/(64^n),n=1..infinity) 2584092649656124 m001 (2^(1/2)+5^(1/2))/(-Riemann1stZero+ZetaQ(3)) 2584092661129761 m001 Ei(1)*ln(Salem)^2/GAMMA(5/24)^2 2584092662536069 r005 Im(z^2+c),c=-61/90+3/61*I,n=62 2584092668023972 m009 (1/2*Psi(1,2/3)-1/4)/(3/10*Pi^2+2) 2584092684160071 m001 (Trott+ZetaQ(2))/(LaplaceLimit+Tribonacci) 2584092689919144 a001 47/610*2178309^(34/39) 2584092690266278 a007 Real Root Of 286*x^4+679*x^3+325*x^2+956*x-736 2584092703358143 a001 13201/7*89^(4/57) 2584092713808942 a007 Real Root Of -145*x^4+895*x^3-69*x^2+690*x+199 2584092723448302 a003 cos(Pi*46/109)+cos(Pi*49/99) 2584092731489256 r005 Im(z^2+c),c=-19/14+3/56*I,n=8 2584092744111426 r009 Im(z^3+c),c=-13/122+39/46*I,n=40 2584092745880455 m005 (1/2*Catalan-4)/(gamma-5/7) 2584092746313775 a001 2/233*10946^(27/44) 2584092751118657 r005 Im(z^2+c),c=-29/30+20/79*I,n=62 2584092761718704 m001 Magata^gamma(2)*MertensB1 2584092777340558 r005 Im(z^2+c),c=-17/78+20/37*I,n=3 2584092784505105 m005 (1/3*gamma+1/3)/(3/4*gamma-7/11) 2584092787000335 p004 log(23627/1783) 2584092801120505 a007 Real Root Of 146*x^4-127*x^3+422*x^2-730*x+162 2584092810579523 r009 Re(z^3+c),c=-3/19+59/64*I,n=54 2584092815599234 r009 Im(z^3+c),c=-13/21+18/49*I,n=5 2584092838381998 a003 sin(Pi*9/88)-sin(Pi*22/113) 2584092839386735 r009 Im(z^3+c),c=-4/11+7/37*I,n=18 2584092849463595 r009 Im(z^3+c),c=-15/34+7/55*I,n=23 2584092849663633 m005 (1/2*3^(1/2)-7/12)/(1/12*Zeta(3)-1/9) 2584092859217910 m005 (1/2*5^(1/2)+2/9)/(2*exp(1)-1/4) 2584092859950956 r009 Re(z^3+c),c=-17/74+43/46*I,n=15 2584092869417167 m005 (1/3*3^(1/2)-2/7)/(7/11*Zeta(3)+4/11) 2584092872364595 a007 Real Root Of 472*x^4+747*x^3-836*x^2+839*x-406 2584092885704523 m002 -(E^Pi*Sinh[Pi])-Tanh[Pi]+Pi^2*Tanh[Pi] 2584092894421570 a003 cos(Pi*1/120)-cos(Pi*26/111) 2584092913512290 h001 (1/6*exp(2)+1/3)/(5/7*exp(2)+7/9) 2584092920680790 p004 log(37423/28901) 2584092937164755 r005 Im(z^2+c),c=-39/122+26/63*I,n=26 2584092945385606 a007 Real Root Of -155*x^4-568*x^3-292*x^2+10*x-914 2584092947673501 m001 (exp(Pi)+gamma*Catalan)/Catalan 2584092950115212 r005 Im(z^2+c),c=-25/78+26/63*I,n=33 2584092950699360 h001 (3/8*exp(2)+7/8)/(2/11*exp(1)+11/12) 2584092966372951 a007 Real Root Of 468*x^4+902*x^3-987*x^2-365*x+344 2584092966979957 s002 sum(A024197[n]/(n^3*2^n+1),n=1..infinity) 2584092973882093 m001 1/cos(Pi/5)^2*cos(1)^2/ln(sin(1)) 2584092991112266 l004 Ssi(286/103) 2584092997601965 r005 Im(z^2+c),c=15/56+4/35*I,n=32 2584092999287144 m001 KhintchineLevy*exp(FeigenbaumB)/GAMMA(11/12) 2584093001120679 l006 ln(593/7858) 2584093007235398 m005 (1/2*Zeta(3)-3/4)/(7/11*Zeta(3)+5) 2584093011824325 m001 (-BesselI(1,2)+FeigenbaumD)/(1-gamma) 2584093013853720 a001 2207/34*121393^(19/21) 2584093016404579 a001 199*75025^(27/32) 2584093025579931 m003 -3+E^(1/2+Sqrt[5]/2)+Coth[1/2+Sqrt[5]/2]/2 2584093036280186 a007 Real Root Of 290*x^4+785*x^3+174*x^2+165*x-121 2584093036431240 r005 Re(z^2+c),c=-4/5+1/15*I,n=12 2584093046161823 m001 (Cahen-ZetaQ(2))/(gamma(3)+BesselI(0,2)) 2584093047829990 r009 Im(z^3+c),c=-3/5+16/63*I,n=33 2584093049428247 l006 ln(4151/5375) 2584093050223680 m005 (1/2*3^(1/2)-1/8)/(5/8*Catalan-2/7) 2584093052499214 q001 822/3181 2584093064866871 r002 10th iterates of z^2 + 2584093065987940 r009 Re(z^3+c),c=-23/62+14/33*I,n=10 2584093066141394 s002 sum(A016223[n]/(n*10^n-1),n=1..infinity) 2584093074300448 r002 3th iterates of z^2 + 2584093081224481 m001 (gamma+BesselJ(0,1))/(-GAMMA(2/3)+GaussAGM) 2584093097757946 m008 (1/2*Pi^4-1/5)/(3/5*Pi^3+1/6) 2584093104424306 m001 Riemann3rdZero/(GaussKuzminWirsing^Trott2nd) 2584093136335313 m001 ((1+3^(1/2))^(1/2))^GAMMA(2/3)/LandauRamanujan 2584093140013951 m001 GAMMA(3/4)^2/Riemann2ndZero^2/ln(Zeta(5))^2 2584093140497342 b008 Csch[Pi^Sqrt[2/5]] 2584093142222556 m001 Grothendieck^Zeta(3)/(cos(1/5*Pi)^Zeta(3)) 2584093142375658 g005 GAMMA(2/11)*GAMMA(5/8)/GAMMA(3/11)/GAMMA(1/9) 2584093147690740 a001 46347*3571^(29/59) 2584093151005510 r009 Re(z^3+c),c=-5/34+37/45*I,n=58 2584093184358079 r009 Re(z^3+c),c=-17/46+11/28*I,n=28 2584093185391964 m005 (1/2*exp(1)-7/8)/(5/7*3^(1/2)+7/11) 2584093186691596 r005 Im(z^2+c),c=-13/22+19/48*I,n=61 2584093193558438 m001 (FeigenbaumDelta+Porter)/(BesselJ(0,1)+ln(5)) 2584093197922688 m001 1/5*(KhinchinLevy-GAMMA(5/6))*5^(1/2) 2584093217083910 a001 17711/47*9349^(57/59) 2584093231675757 m005 (1/3*3^(1/2)-1/3)/(1/4*gamma+4/5) 2584093251443270 m001 gamma^(Pi*csc(5/12*Pi)/GAMMA(7/12))/Zeta(3) 2584093251443270 m001 gamma^GAMMA(5/12)/Zeta(3) 2584093263237425 a007 Real Root Of 188*x^4+560*x^3+95*x^2-200*x+129 2584093263636182 m001 ln(5)+FibonacciFactorial*Kolakoski 2584093265549601 h001 (8/9*exp(2)+3/11)/(1/4*exp(2)+4/5) 2584093267550631 a007 Real Root Of -441*x^4-857*x^3+931*x^2+448*x-183 2584093267593328 m008 (2*Pi^4+3/5)/(4/5*Pi^2-1/3) 2584093294779592 m001 Zeta(5)*(FeigenbaumAlpha-Trott) 2584093323326475 r005 Re(z^2+c),c=-6/19+5/34*I,n=18 2584093324112618 l006 ln(394/5221) 2584093325246636 m001 Salem*TreeGrowth2nd-StronglyCareFree 2584093326420461 a007 Real Root Of 281*x^4+933*x^3+884*x^2+759*x-372 2584093334379320 r002 20th iterates of z^2 + 2584093341934539 m005 (1/2*Pi-4/7)/(5/12*exp(1)-5) 2584093356699447 r005 Re(z^2+c),c=37/98+21/62*I,n=35 2584093357393201 m001 (-MertensB2+Porter)/(HardyLittlewoodC5-gamma) 2584093358382898 a001 89/3*322^(41/53) 2584093383006957 m001 1/exp(GAMMA(3/4))^2*GaussKuzminWirsing*Pi^2 2584093391636918 r005 Re(z^2+c),c=9/58+13/29*I,n=54 2584093415153568 a001 505019158607/89*32951280099^(8/23) 2584093415154248 a001 23725150497407/89*514229^(8/23) 2584093430231882 r009 Im(z^3+c),c=-55/114+3/28*I,n=31 2584093433075788 m001 (Niven+OneNinth)/(BesselJ(1,1)+MertensB1) 2584093437730131 a001 5600748293801/377*21^(2/11) 2584093438810799 a001 34/4106118243*521^(11/20) 2584093485697644 m001 ln(GAMMA(11/24))/(3^(1/3))^2/GAMMA(3/4) 2584093486739273 r002 3th iterates of z^2 + 2584093489358509 l006 ln(4229/5476) 2584093493102298 a007 Real Root Of 273*x^4+707*x^3-78*x^2-172*x+103 2584093497979016 m001 LandauRamanujan/(Otter+ZetaQ(4)) 2584093518936303 m002 Sinh[Pi]^2/(5*ProductLog[Pi])+Tanh[Pi] 2584093519448312 a007 Real Root Of 649*x^4+201*x^3+134*x^2-788*x-212 2584093539980179 a007 Real Root Of 292*x^4+269*x^3-910*x^2+724*x-431 2584093541284608 m001 (TwinPrimes+ZetaQ(3))/(Kac+ReciprocalLucas) 2584093547291555 m001 gamma(1)^exp(1/Pi)/GAMMA(11/12) 2584093551547266 h001 (3/11*exp(2)+1/10)/(1/11*exp(1)+4/7) 2584093553562107 m001 GAMMA(2/3)*(Backhouse+ZetaP(2)) 2584093583360453 m002 -1+5/Pi+2*Tanh[Pi] 2584093590282153 r009 Im(z^3+c),c=-13/46+13/60*I,n=2 2584093597263059 b008 ArcCosh[E!!^2] 2584093600391835 m001 1/ln(GAMMA(3/4))/Conway/Zeta(1/2) 2584093605505946 m001 (FeigenbaumD*Landau-ZetaQ(2))/Landau 2584093610381978 r005 Re(z^2+c),c=-139/114+5/56*I,n=16 2584093617377581 m001 (Pi-Cahen)/(OneNinth+Thue) 2584093618231944 h001 (1/2*exp(1)+3/10)/(9/11*exp(2)+3/8) 2584093620767562 a007 Real Root Of -267*x^4-819*x^3-413*x^2+130*x+867 2584093621475276 m001 (Otter+StolarskyHarborth)/(ln(gamma)-Kac) 2584093632670769 a007 Real Root Of -219*x^4-836*x^3-451*x^2+866*x+589 2584093633813569 r005 Im(z^2+c),c=-15/31+26/57*I,n=43 2584093638875603 r008 a(0)=0,K{-n^6,-41+47*n^2-45*n^3} 2584093645091117 r009 Re(z^3+c),c=-8/31+11/15*I,n=29 2584093648785317 r009 Im(z^3+c),c=-3/7+8/57*I,n=30 2584093649297945 l006 ln(589/7805) 2584093657451613 m001 (BesselI(0,1)+Bloch)/(Robbin+Trott) 2584093682315545 m001 1/exp(Riemann2ndZero)/Cahen^2*(3^(1/3)) 2584093698496889 m001 1/ln(Salem)/Kolakoski/sqrt(3)^2 2584093707698071 m001 Psi(1,1/3)/(MasserGramain-Zeta(5)) 2584093716093435 m001 Trott*ln(KhintchineLevy)/GAMMA(1/3)^2 2584093721865685 h001 (1/10*exp(2)+8/11)/(8/11*exp(2)+3/10) 2584093727729255 a001 4/701408733*377^(9/14) 2584093737445131 a007 Real Root Of -29*x^4-738*x^3+308*x^2+365*x+254 2584093745700860 a007 Real Root Of 535*x^4+999*x^3-913*x^2+234*x+84 2584093748974952 m001 (Pi-exp(Pi))/(ln(2)-Porter) 2584093754392454 a007 Real Root Of 464*x^4+958*x^3-391*x^2+505*x-243 2584093761625330 a007 Real Root Of -244*x^4-427*x^3+656*x^2+222*x-295 2584093765318789 a001 843/12586269025*610^(13/14) 2584093765349618 m008 (1/4*Pi^3-1/6)/(1/4*Pi^4+5) 2584093776291199 m005 (1/2*gamma-1/9)/(7/8*gamma+2/11) 2584093776606097 m005 (1/2*Catalan-9/11)/(3/7*2^(1/2)-2) 2584093780984476 m001 (BesselI(0,1)-Ei(1,1))/(Cahen+Magata) 2584093781779457 r009 Re(z^3+c),c=-9/20+21/52*I,n=9 2584093815958047 m001 (-ln(2+3^(1/2))+Cahen)/(Chi(1)-gamma) 2584093817729669 m001 1/OneNinth^2/ln(HardHexagonsEntropy)/Zeta(9) 2584093820083067 r009 Re(z^3+c),c=-5/22+19/28*I,n=11 2584093833112707 a008 Real Root of x^2-x-66517 2584093834667507 a001 377/1364*5778^(8/31) 2584093836817990 a001 17711/3*76^(15/44) 2584093848481463 r005 Re(z^2+c),c=3/94+29/46*I,n=38 2584093852168479 m001 1/Zeta(3)/ln(OneNinth)^2*cosh(1) 2584093860159110 a001 843/196418*34^(28/55) 2584093860967147 r009 Im(z^3+c),c=-23/98+10/43*I,n=2 2584093868122111 a007 Real Root Of -123*x^4+671*x^3-403*x^2+402*x-88 2584093872229465 q001 1982/767 2584093880839171 r005 Re(z^2+c),c=-45/34+3/98*I,n=60 2584093885844643 a003 cos(Pi*14/65)/cos(Pi*33/82) 2584093894759091 h003 exp(Pi*(1/3*(15^(1/2)-3^(2/3))*3^(1/2))) 2584093895961169 a001 13/7*15127^(20/39) 2584093908711529 a008 Real Root of x^4-49*x^2-121*x-28 2584093911159229 m001 1/BesselK(0,1)*Si(Pi)^2*exp(gamma)^2 2584093911637753 m001 1/GAMMA(2/3)^2*BesselK(0,1)*ln(GAMMA(7/24)) 2584093913019828 m001 (Landau+Magata)/GAMMA(7/12) 2584093913354431 l006 ln(4307/5577) 2584093919363270 a007 Real Root Of 263*x^4+910*x^3+393*x^2-435*x+227 2584093919604020 m005 (1/2*exp(1)-5/12)/(16/5+1/5*5^(1/2)) 2584093941429418 a001 1/646*2584^(3/46) 2584093945632516 r005 Im(z^2+c),c=11/36+2/39*I,n=61 2584093954346495 r005 Im(z^2+c),c=11/58+7/38*I,n=15 2584093958175754 r005 Re(z^2+c),c=-17/78+44/53*I,n=10 2584093968715392 a001 377/1364*2207^(9/31) 2584093971362313 a005 (1/cos(1/72*Pi))^997 2584093989584854 m001 ln(GAMMA(17/24))^2*FeigenbaumKappa^2*sqrt(5) 2584093996854418 m006 (4/5*exp(2*Pi)-1/5)/(1/2*exp(Pi)+5) 2584094000264888 a007 Real Root Of 282*x^4+456*x^3-516*x^2+353*x-348 2584094001555742 r005 Im(z^2+c),c=-19/46+31/54*I,n=36 2584094006378055 a007 Real Root Of 16*x^4+434*x^3+570*x^2+984*x-681 2584094015178818 m001 (Si(Pi)+MasserGramain)/(OneNinth+Thue) 2584094016590919 m001 (2^(1/2)+GAMMA(2/3))/(Gompertz+Weierstrass) 2584094017692523 r005 Re(z^2+c),c=-19/60+7/50*I,n=20 2584094018237122 m009 (4*Catalan+1/2*Pi^2-3/5)/(3*Psi(1,1/3)+2/3) 2584094021784955 m001 (-gamma(3)+Pi^(1/2))/(GAMMA(3/4)-cos(1)) 2584094037230935 r009 Re(z^3+c),c=-33/74+17/31*I,n=16 2584094047013717 m001 (Chi(1)*RenyiParking-HardyLittlewoodC5)/Chi(1) 2584094051601816 r005 Re(z^2+c),c=5/29+31/54*I,n=30 2584094054205727 a001 682/9*(1/2*5^(1/2)+1/2)^13*18^(13/20) 2584094059324911 m001 (gamma(1)+FellerTornier)/(OneNinth+Thue) 2584094069323720 r002 62th iterates of z^2 + 2584094074188237 a003 sin(Pi*4/85)/cos(Pi*31/101) 2584094076334850 h001 (3/11*exp(1)+7/8)/(1/8*exp(1)+2/7) 2584094079431215 a007 Real Root Of -294*x^4-553*x^3+425*x^2-79*x+525 2584094079992890 m005 (1/2*5^(1/2)+7/10)/(2/9*Catalan+1/2) 2584094097546723 r005 Re(z^2+c),c=-19/106+35/58*I,n=62 2584094098688875 h001 (-3*exp(1)-7)/(-exp(-2)+6) 2584094111907510 m001 ArtinRank2^(Pi^(1/2)/Bloch) 2584094114673260 h001 (5/8*exp(2)+4/9)/(1/2*exp(1)+3/5) 2584094120072446 a007 Real Root Of 315*x^4+722*x^3+24*x^2+542*x-347 2584094121050816 r005 Re(z^2+c),c=-13/70+18/31*I,n=50 2584094130044160 r009 Im(z^3+c),c=-5/56+44/51*I,n=6 2584094137062265 r005 Im(z^2+c),c=45/122+17/63*I,n=50 2584094139614679 a001 843/2*956722026041^(13/20) 2584094145900146 r002 34th iterates of z^2 + 2584094148700022 m001 (-GAMMA(7/12)+1/2)/(-BesselK(1,1)+1) 2584094151968673 a007 Real Root Of 498*x^4+967*x^3-628*x^2+733*x+568 2584094156299827 r009 Re(z^3+c),c=-31/82+16/39*I,n=35 2584094156965710 a001 322/55*5702887^(11/16) 2584094171987184 m001 (KomornikLoreti+Magata)/(ln(2)+ln(2+3^(1/2))) 2584094174641844 m005 (1/2*exp(1)-9/11)/(169/132+4/11*5^(1/2)) 2584094180591606 a007 Real Root Of 214*x^4+362*x^3-827*x^2-477*x+994 2584094193277735 m001 1/2*(2^(1/3)*MinimumGamma+2^(1/2))*2^(2/3) 2584094202599953 m005 (1/3*3^(1/2)-3/4)/(gamma+1/11) 2584094203134242 r005 Re(z^2+c),c=-29/118+10/37*I,n=2 2584094205604364 a007 Real Root Of 567*x^4+626*x^3+912*x^2-431*x-164 2584094209409760 r005 Re(z^2+c),c=-14/15+7/39*I,n=20 2584094219521155 m001 BesselJ(1,1)^(Si(Pi)*BesselJZeros(0,1)) 2584094222424350 a007 Real Root Of -302*x^4-664*x^3+27*x^2-995*x-743 2584094230248484 a001 13/7*2207^(25/39) 2584094234394121 r005 Im(z^2+c),c=37/106+3/28*I,n=56 2584094254951028 m001 1/GAMMA(17/24)*ln(BesselJ(0,1))^2*arctan(1/2) 2584094261968285 r005 Im(z^2+c),c=-17/25+5/36*I,n=29 2584094277513806 m001 (-Niven+Totient)/(3^(1/2)-BesselI(1,2)) 2584094286448852 v002 sum(1/(2^n*(37/2*n^2+5/2*n+2)),n=1..infinity) 2584094306338745 l006 ln(195/2584) 2584094308304283 a002 12^(1/10)+14^(1/10) 2584094317163551 r005 Im(z^2+c),c=3/82+11/40*I,n=7 2584094321897382 a007 Real Root Of 446*x^4+875*x^3+882*x^2-620*x-206 2584094322266330 l006 ln(4385/5678) 2584094324757297 b008 19*(1+ArcCsch[E]) 2584094329226589 m005 (1/3*3^(1/2)-1/12)/(2*2^(1/2)-11/12) 2584094342053820 m001 (ln(3)-ln(2^(1/2)+1))/(Kac-Rabbit) 2584094354326866 m001 FeigenbaumB/Cahen^2/exp(GAMMA(23/24))^2 2584094367958056 r008 a(0)=0,K{-n^6,-17-60*n+37*n^2-2*n^3} 2584094370451562 r005 Re(z^2+c),c=-17/58+39/62*I,n=17 2584094371813098 b008 ArcSec[2*(-1+Sin[E])] 2584094381407529 a007 Real Root Of 260*x^4+456*x^3-493*x^2+176*x+22 2584094392845882 m001 arctan(1/2)^2*GAMMA(23/24)^2/exp(sqrt(5))^2 2584094416854827 r009 Im(z^3+c),c=-37/70+9/52*I,n=24 2584094426657706 m006 (2*Pi+2)/(3/5*exp(2*Pi)-3/4) 2584094440189793 m001 1/exp(GAMMA(11/24))*Backhouse*GAMMA(3/4) 2584094465183744 s002 sum(A037298[n]/(n^3*10^n+1),n=1..infinity) 2584094466406423 r009 Re(z^3+c),c=-21/86+3/59*I,n=4 2584094473319187 r005 Im(z^2+c),c=1/19+17/64*I,n=15 2584094477430328 m005 (1/2*3^(1/2)+6/11)/(1/9*Catalan+4/9) 2584094488015027 m001 (BesselJ(0,1)-exp(Pi))/(FellerTornier+Landau) 2584094499453333 a007 Real Root Of 212*x^4+414*x^3+27*x^2+833*x-337 2584094511861979 m007 (-3*gamma-2/3)/(-3/5*gamma-6/5*ln(2)+1/4) 2584094512839915 m001 BesselI(1,1)-LaplaceLimit^Bloch 2584094513090158 m001 Pi*BesselK(1,1)+ln(2) 2584094520966565 m001 MasserGramainDelta^GAMMA(17/24)+BesselK(0,1) 2584094535310317 m005 (1/2*5^(1/2)+1/12)/(7/12*3^(1/2)-6/11) 2584094536380377 r009 Re(z^3+c),c=-29/90+19/31*I,n=8 2584094536403371 m005 (1/2*5^(1/2)+3/11)/(1/12*Pi-4/5) 2584094538331458 r005 Re(z^2+c),c=23/118+1/36*I,n=12 2584094540595580 r002 26i'th iterates of 2*x/(1-x^2) of 2584094543267903 r005 Im(z^2+c),c=-13/56+17/44*I,n=10 2584094546441513 a001 987/64079*1364^(22/31) 2584094556073202 a007 Real Root Of 204*x^4+317*x^3-456*x^2+28*x-509 2584094573934184 h001 (1/3*exp(2)+1/11)/(1/7*exp(1)+3/5) 2584094574321197 m001 (2^(1/2)+1)/(-GAMMA(5/6)+DuboisRaymond) 2584094575421828 a007 Real Root Of 259*x^4+470*x^3-240*x^2+839*x+332 2584094579034048 a007 Real Root Of -135*x^4-67*x^3+322*x^2-961*x+230 2584094601282501 m008 (2*Pi^2+1/3)/(4/5*Pi^4-1/4) 2584094605317213 m001 Pi+exp(Pi)-LambertW(1)/GAMMA(17/24) 2584094607813707 a003 sin(Pi*29/117)-sin(Pi*39/95) 2584094611240825 r005 Im(z^2+c),c=-37/98+8/19*I,n=21 2584094616636042 m001 ArtinRank2/exp(FeigenbaumAlpha)*GAMMA(5/12)^2 2584094621429867 a003 sin(Pi*1/96)+sin(Pi*5/69) 2584094649516604 a007 Real Root Of 655*x^4+832*x^3+720*x^2-756*x-232 2584094655703020 r005 Im(z^2+c),c=-5/26+19/51*I,n=11 2584094657557458 r002 40th iterates of z^2 + 2584094658826493 m005 (19/20+1/4*5^(1/2))/(11/12*Catalan+5) 2584094669726826 h001 (11/12*exp(2)+1/6)/(7/9*exp(1)+4/7) 2584094673790403 m001 GAMMA(11/24)^2*CopelandErdos/exp(GAMMA(3/4)) 2584094681015110 a003 sin(Pi*4/97)*sin(Pi*5/78) 2584094697777620 r005 Im(z^2+c),c=-23/78+26/47*I,n=16 2584094704935700 m001 (GAMMA(3/4)+sin(1/12*Pi))/(BesselK(1,1)-Salem) 2584094706037788 r009 Im(z^3+c),c=-39/86+32/59*I,n=6 2584094706910229 r009 Im(z^3+c),c=-43/114+9/50*I,n=9 2584094712148635 m008 (1/3*Pi^3+3/4)/(1/3*Pi^2+1) 2584094716885080 l006 ln(4463/5779) 2584094716885080 p004 log(5779/4463) 2584094721157754 r005 Im(z^2+c),c=-25/42+25/58*I,n=52 2584094724123423 m005 (1/2*Pi+3/10)/(5/6*2^(1/2)-5/11) 2584094727845926 a001 28657/322*123^(7/10) 2584094737949287 r005 Im(z^2+c),c=-29/82+21/41*I,n=8 2584094739991720 m001 Pi^Zeta(5)-ln(2) 2584094741329483 r009 Im(z^3+c),c=-21/44+13/25*I,n=30 2584094754528188 r009 Re(z^3+c),c=-37/90+21/44*I,n=54 2584094762400213 a003 sin(Pi*21/110)/cos(Pi*46/107) 2584094762704420 r005 Re(z^2+c),c=23/106+1/13*I,n=21 2584094772866608 r005 Re(z^2+c),c=-37/122+11/49*I,n=21 2584094776325379 m001 exp(Pi)+Salem*UniversalParabolic 2584094779637589 m001 1/GAMMA(3/4)*ln(ArtinRank2)*Zeta(1,2)^2 2584094790480866 r005 Im(z^2+c),c=-19/29+6/23*I,n=14 2584094796493169 a003 cos(Pi*21/104)*cos(Pi*40/101) 2584094798524327 p001 sum(1/(261*n+244)/n/(8^n),n=1..infinity) 2584094804751161 r005 Im(z^2+c),c=-67/74+13/61*I,n=3 2584094808422349 a001 13/2*1364^(25/49) 2584094812892595 r009 Im(z^3+c),c=-31/90+1/5*I,n=12 2584094814674961 a007 Real Root Of -749*x^4+147*x^3-284*x^2+448*x-96 2584094814871633 r005 Im(z^2+c),c=-7/8+15/89*I,n=8 2584094838010176 r005 Re(z^2+c),c=-38/31+8/59*I,n=2 2584094849400501 m001 (-Sarnak+ZetaP(4))/(exp(Pi)+Ei(1)) 2584094850690209 m001 LaplaceLimit/ln(Backhouse)^2*GAMMA(1/24)^2 2584094863124039 m001 Bloch+MertensB1-Weierstrass 2584094866930990 m001 BesselK(1,1)*Riemann3rdZero*exp(cos(1)) 2584094883817924 a007 Real Root Of -365*x^4+930*x^3+443*x^2+851*x+208 2584094892916211 m001 (BesselK(0,1)-ln(Pi))/(-Conway+Mills) 2584094896108569 r005 Im(z^2+c),c=-5/6+21/101*I,n=3 2584094900351771 m001 (arctan(1/2)-BesselK(1,1))/(Rabbit-ZetaP(3)) 2584094903098771 m001 (-ln(1+sqrt(2))+1)/(BesselI(1,2)+3) 2584094916820292 m001 FeigenbaumAlpha^Khinchin*FeigenbaumAlpha^Thue 2584094919704557 m001 1/ln(Khintchine)/FeigenbaumDelta/Catalan^2 2584094940826621 m001 Conway^BesselJ(1,1)-Zeta(1/2) 2584094941980822 r005 Im(z^2+c),c=-49/118+3/7*I,n=23 2584094965534420 r009 Re(z^3+c),c=-31/64+27/50*I,n=42 2584094969229631 m006 (1/3*exp(2*Pi)+1/4)/(3*exp(Pi)-1/4) 2584094971957138 m006 (2/3/Pi+5/6)/(5/6*ln(Pi)-5) 2584094972426138 l006 ln(581/7699) 2584094983819021 a007 Real Root Of -994*x^4+914*x^3+231*x^2+829*x+219 2584094987611088 r005 Im(z^2+c),c=-10/31+16/37*I,n=13 2584094987972226 m001 PrimesInBinary^Mills/GAMMA(3/4) 2584094989531089 a008 Real Root of x^4+4*x^2-44*x-185 2584094994416897 r009 Im(z^3+c),c=-25/62+6/37*I,n=19 2584094997350926 m001 exp(FeigenbaumKappa)^2*Salem*Zeta(1/2) 2584094999024515 a001 2584/167761*1364^(22/31) 2584094999939886 r002 10th iterates of z^2 + 2584095002957998 r009 Re(z^3+c),c=-15/98+20/23*I,n=54 2584095005993394 a001 233*123^(1/2) 2584095009132823 m001 (Pi^(1/2)+PlouffeB)/(sin(1/12*Pi)-GAMMA(5/6)) 2584095012005189 m001 Zeta(5)+GAMMA(3/4)+arctan(1/3) 2584095018223508 h002 exp(17^(7/10)-6^(3/10)) 2584095018223508 h007 exp(17^(7/10)-6^(3/10)) 2584095037772945 m005 (1/2*2^(1/2)-2/11)/(1/7*Zeta(3)-3/8) 2584095046104326 m001 (Kac+LaplaceLimit)/(ln(2)-DuboisRaymond) 2584095046240858 a005 (1/sin(81/179*Pi))^85 2584095048471497 r009 Re(z^3+c),c=-11/70+45/47*I,n=26 2584095048944162 a003 cos(Pi*7/100)-cos(Pi*13/53) 2584095050576465 m005 (Pi+5/6)/(4/5*gamma-2) 2584095051833413 a007 Real Root Of 295*x^4+619*x^3-701*x^2-596*x+668 2584095060566537 m001 (FeigenbaumD-Landau)/(Zeta(3)-Artin) 2584095065055485 a001 6765/439204*1364^(22/31) 2584095070244070 r008 a(0)=0,K{-n^6,-27-21*n+54*n^2-45*n^3} 2584095074689274 a001 17711/1149851*1364^(22/31) 2584095076094825 a001 46368/3010349*1364^(22/31) 2584095076426630 a001 75025/4870847*1364^(22/31) 2584095076963503 a001 28657/1860498*1364^(22/31) 2584095079170893 a007 Real Root Of -213*x^4-260*x^3+971*x^2+609*x+101 2584095080643283 a001 10946/710647*1364^(22/31) 2584095095008041 m001 (-BesselK(0,1)+GAMMA(11/12))/(exp(Pi)+2^(1/2)) 2584095097947214 l006 ln(4541/5880) 2584095100540824 r005 Im(z^2+c),c=-23/50+19/44*I,n=28 2584095102988852 r005 Im(z^2+c),c=-29/44+19/50*I,n=62 2584095105864869 a001 4181/271443*1364^(22/31) 2584095108527590 m001 Psi(1,1/3)^FellerTornier+PlouffeB 2584095114291047 r005 Im(z^2+c),c=-13/30+17/38*I,n=61 2584095119861546 a007 Real Root Of 927*x^4-571*x^3-979*x^2-787*x+21 2584095135385400 m001 gamma(2)^Sarnak*TwinPrimes^Sarnak 2584095137220867 r005 Im(z^2+c),c=-45/106+7/15*I,n=30 2584095146431254 m005 (1/2*3^(1/2)-2/9)/(1/8*Catalan-4/11) 2584095172594112 p004 log(29501/22783) 2584095178350711 m001 (Backhouse+Niven)/(GAMMA(3/4)-gamma(3)) 2584095192532265 m001 (-5^(1/2)+1/2)/(exp(1)+4) 2584095192532265 m005 (-1/4+1/2*5^(1/2))/(1/2*exp(1)+2) 2584095201632646 r005 Re(z^2+c),c=-11/42+26/55*I,n=9 2584095204022126 r005 Re(z^2+c),c=-65/66+15/62*I,n=50 2584095204206352 m005 (1/3*Pi+3/5)/(7/8*2^(1/2)-3/5) 2584095211818062 a007 Real Root Of -131*x^4-85*x^3+713*x^2+405*x+660 2584095218778179 a008 Real Root of (2+6*x-6*x^2+2*x^3-4*x^4-3*x^5) 2584095219911920 r005 Im(z^2+c),c=-47/50+14/61*I,n=54 2584095231334999 m005 (1/2*Pi+10/11)/(8/11*3^(1/2)-3/10) 2584095240219955 r005 Re(z^2+c),c=-35/118+10/39*I,n=25 2584095240490796 a001 3571/18*(1/2*5^(1/2)+1/2)^11*18^(13/20) 2584095254384596 a007 Real Root Of -589*x^4-382*x^3+53*x^2+378*x-92 2584095261071912 a001 55/29*76^(1/14) 2584095262513666 m005 (1/2*2^(1/2)+4/7)/(1/10*Pi-4/11) 2584095266818006 r005 Re(z^2+c),c=-5/6+52/229*I,n=6 2584095272601852 r005 Re(z^2+c),c=-11/50+31/63*I,n=48 2584095278736193 a001 1597/103682*1364^(22/31) 2584095292378864 h001 (-10*exp(3)-2)/(-9*exp(2)-12) 2584095299109320 a007 Real Root Of 289*x^4-927*x^3+915*x^2-757*x-274 2584095308920895 l006 ln(386/5115) 2584095321249800 m001 GAMMA(19/24)+MasserGramainDelta-ThueMorse 2584095335357963 m007 (-3/5*gamma-1/3)/(-gamma-2*ln(2)-2/3) 2584095338369387 r005 Re(z^2+c),c=7/86+26/55*I,n=8 2584095338576027 m005 (1/2*gamma-3/7)/(5/11*Catalan+5) 2584095343762992 a003 sin(Pi*1/116)*sin(Pi*48/119) 2584095365295858 m001 KhinchinHarmonic^cos(1/12*Pi)/LaplaceLimit 2584095371916242 m001 (Ei(1,1)-Kolakoski)/(Pi-Catalan) 2584095391841313 r005 Re(z^2+c),c=-1/8+40/41*I,n=5 2584095397737488 h001 (-9*exp(4)+1)/(-9*exp(3)-9) 2584095409788760 m001 (1-ln(5))/(GAMMA(23/24)+MertensB3) 2584095411860560 a007 Real Root Of 381*x^4+718*x^3-527*x^2+151*x-690 2584095413567455 a001 9349/18*(1/2*5^(1/2)+1/2)^9*18^(13/20) 2584095426593304 m001 (ln(5)-exp(1/exp(1)))/(sin(1/5*Pi)-GAMMA(3/4)) 2584095431495829 m005 (1/3*5^(1/2)-1/11)/(7/12*Pi+7/10) 2584095432139127 m001 Champernowne^ReciprocalFibonacci-Sierpinski 2584095434489634 a001 2584/2207*3571^(3/31) 2584095434609382 m001 1/(2^(1/3))/FeigenbaumD/ln(Pi) 2584095438818999 a001 12238/9*(1/2*5^(1/2)+1/2)^7*18^(13/20) 2584095442503150 a001 64079/18*(1/2*5^(1/2)+1/2)^5*18^(13/20) 2584095443132478 a001 1/18*(1/2*5^(1/2)+1/2)^28*18^(13/20) 2584095444780080 a001 13201/6*(1/2*5^(1/2)+1/2)^6*18^(13/20) 2584095449730698 b008 -11/4+ArcCsch[6] 2584095450490094 a007 Real Root Of 37*x^4-294*x^3-900*x^2+483*x+535 2584095451313426 m001 BesselI(1,1)+FeigenbaumB+KhinchinLevy 2584095454140654 m001 (Ei(1,1)+FeigenbaumKappa)/(1-ln(5)) 2584095454425312 a001 15127/18*(1/2*5^(1/2)+1/2)^8*18^(13/20) 2584095466139516 l006 ln(4619/5981) 2584095488352017 r008 a(0)=0,K{-n^6,-23-45*n^3+56*n^2-27*n} 2584095496149783 a001 47/34*39088169^(19/23) 2584095499526145 r005 Re(z^2+c),c=4/21+13/31*I,n=10 2584095505047680 a008 Real Root of (2+5*x+3*x^2-4*x^3+6*x^4+3*x^5) 2584095513141368 a001 21/2206*9349^(19/31) 2584095513987182 g001 Re(GAMMA(81/20+I*77/30)) 2584095520516769 m001 (MasserGramain-ZetaP(4))/(Pi+Zeta(1,2)) 2584095520534713 a001 321*(1/2*5^(1/2)+1/2)^10*18^(13/20) 2584095527466950 a001 987/4870847*24476^(29/31) 2584095528758233 m005 (-25/44+1/4*5^(1/2))/(6*gamma+1/12) 2584095529590735 a001 329/13201*64079^(13/31) 2584095532928804 a001 987/64079*39603^(15/31) 2584095533947001 m001 (Kac+ThueMorse)/(Zeta(5)-HardyLittlewoodC3) 2584095542042660 r009 Re(z^3+c),c=-39/94+19/40*I,n=29 2584095552382077 m001 Conway/(Trott^TwinPrimes) 2584095559868439 r002 52th iterates of z^2 + 2584095561431667 a001 4181/2207*15127^(1/31) 2584095571694163 m001 Rabbit^Landau+Riemann3rdZero 2584095575213086 m001 (2^(1/2)-BesselJ(1,1))/(-Paris+PlouffeB) 2584095576354418 r005 Re(z^2+c),c=-15/14+147/254*I,n=2 2584095577374971 m001 (FeigenbaumDelta-KomornikLoreti)/(Bloch+Cahen) 2584095578333411 a007 Real Root Of -664*x^4+697*x^3+755*x^2+567*x-206 2584095595615090 m008 (2/5*Pi^6+1/2)/(1/2*Pi^5-4) 2584095607118621 k001 Champernowne real with 151*n+107 2584095607118621 k005 Champernowne real with floor(Catalan*(165*n+117)) 2584095607118621 k005 Champernowne real with floor(log(2)*(218*n+155)) 2584095617128641 k005 Champernowne real with floor(log(3)*(138*n+97)) 2584095631444596 m001 ZetaQ(3)^Sierpinski/(ZetaQ(3)^sin(1)) 2584095638756383 h001 (6/7*exp(2)+5/12)/(2/3*exp(1)+4/5) 2584095645892176 r005 Re(z^2+c),c=-6/31+31/46*I,n=31 2584095647748258 l006 ln(577/7646) 2584095651877766 r005 Im(z^2+c),c=-31/122+7/11*I,n=17 2584095653583034 b008 LogIntegral[ArcTan[70]] 2584095657117638 r005 Im(z^2+c),c=7/24+3/37*I,n=35 2584095660077886 a007 Real Root Of 233*x^4+680*x^3+641*x^2+892*x-631 2584095660164801 r005 Im(z^2+c),c=23/86+7/61*I,n=31 2584095662147588 r005 Im(z^2+c),c=-1/44+19/63*I,n=10 2584095681216939 m001 1/10*Pi*2^(1/2)*5^(1/2)+BesselI(1,2) 2584095688967450 r005 Re(z^2+c),c=27/74+19/63*I,n=3 2584095698010585 m001 (cos(1/5*Pi)-ln(Pi))/(BesselJ(1,1)+Thue) 2584095706612715 s002 sum(A256725[n]/((exp(n)-1)/n),n=1..infinity) 2584095708359605 r005 Im(z^2+c),c=-13/62+3/8*I,n=27 2584095709223995 m001 1/exp(Zeta(3))*GAMMA(7/12)^2/exp(1) 2584095710753704 a001 377/64079*843^(28/31) 2584095729979258 r005 Im(z^2+c),c=-1/17+19/60*I,n=14 2584095748718430 a007 Real Root Of 462*x^4+903*x^3-668*x^2+341*x+323 2584095754118726 a001 987/3571*5778^(8/31) 2584095755669484 r005 Im(z^2+c),c=-14/17+1/46*I,n=3 2584095756451379 a001 55/271443*2^(20/57) 2584095761677743 a007 Real Root Of -748*x^4+476*x^3+436*x^2+209*x-88 2584095763616945 r005 Re(z^2+c),c=-9/10+87/212*I,n=2 2584095764552477 a003 cos(Pi*19/81)-sin(Pi*50/103) 2584095768129545 m001 1/exp(PisotVijayaraghavan)/Si(Pi)^2/sqrt(3)^2 2584095769475228 r005 Re(z^2+c),c=-13/62+31/60*I,n=43 2584095774422584 m001 (2^(1/3))/(GAMMA(11/24)-exp(1/exp(1))) 2584095779197454 a007 Real Root Of -201*x^4+491*x^3+653*x^2+692*x-230 2584095785541105 s002 sum(A098751[n]/(pi^n),n=1..infinity) 2584095789739111 r009 Im(z^3+c),c=-9/22+6/43*I,n=3 2584095802932224 m005 (1/3*Zeta(3)-1/4)/(7/11*Zeta(3)-2/11) 2584095803701889 r005 Im(z^2+c),c=5/12+17/42*I,n=5 2584095819852829 a007 Real Root Of -778*x^4+491*x^3+369*x^2+529*x+124 2584095822103148 l006 ln(4697/6082) 2584095823630799 a007 Real Root Of 548*x^4-508*x^3-969*x^2-948*x+316 2584095843226163 m001 1/ln(Ei(1))^2*BesselJ(1,1)^2/GAMMA(2/3)^2 2584095857988165 r002 3th iterates of z^2 + 2584095864070663 r009 Re(z^3+c),c=-39/94+16/33*I,n=34 2584095868974922 r002 34th iterates of z^2 + 2584095877093108 a007 Real Root Of -390*x^4+572*x^3+510*x^2+394*x-144 2584095879153158 m001 (cos(1/12*Pi)+FransenRobinson)/Zeta(1/2) 2584095888166711 a001 987/3571*2207^(9/31) 2584095888938704 g007 Psi(2,10/11)+Psi(2,5/11)-Psi(2,2/5)-Psi(2,1/5) 2584095895197246 m003 -149/30+Sqrt[5]/8+Tan[1/2+Sqrt[5]/2] 2584095897621228 a001 322/1597*514229^(1/53) 2584095906856048 h001 (7/11*exp(1)+1/5)/(8/9*exp(2)+9/10) 2584095908121980 r005 Im(z^2+c),c=-15/26+10/117*I,n=12 2584095913541233 a003 cos(Pi*11/118)-sin(Pi*17/69) 2584095916481027 m001 (exp(1)+ln(3))/(-GAMMA(23/24)+FeigenbaumAlpha) 2584095936550393 m001 (exp(-1/2*Pi)+CareFree)/(Champernowne+Magata) 2584095936999068 a007 Real Root Of -223*x^4+13*x^3+204*x^2+702*x+169 2584095942506124 b008 9*JacobiCD[Glaisher,E] 2584095944620529 r005 Im(z^2+c),c=-45/98+23/51*I,n=55 2584095949303255 s002 sum(A024020[n]/(pi^n),n=1..infinity) 2584095952586400 b008 ProductLog[3*(10+Sqrt[2])] 2584095953719609 a001 2255/1926*3571^(3/31) 2584095966467360 a001 2584/271443*9349^(19/31) 2584095973655289 a001 2207/18*(1/2*5^(1/2)+1/2)^12*18^(13/20) 2584095978070930 a007 Real Root Of 365*x^4-320*x^3-708*x^2-158*x+92 2584095985511978 a001 2584/167761*39603^(15/31) 2584095986498215 p003 LerchPhi(1/1024,2,12/61) 2584095989300700 a001 5473/2889*15127^(1/31) 2584095990789616 a007 Real Root Of -632*x^4-965*x^3-328*x^2+735*x+198 2584095998355656 a007 Real Root Of 466*x^4+982*x^3-388*x^2+96*x-995 2584096003812691 r005 Im(z^2+c),c=-11/46+14/33*I,n=8 2584096006321096 a007 Real Root Of 708*x^4-225*x^3+881*x^2-848*x-285 2584096008775840 r005 Im(z^2+c),c=-15/14+7/239*I,n=9 2584096020972977 m001 FeigenbaumC/ln(CareFree)^2*sqrt(3) 2584096029474257 a001 17711/15127*3571^(3/31) 2584096029852439 m001 TwinPrimes^2*ln(Backhouse)^2/cosh(1)^2 2584096030062502 p004 log(30713/23719) 2584096032606731 a001 6765/710647*9349^(19/31) 2584096034162737 a001 2584/9349*5778^(8/31) 2584096040526712 a001 15456/13201*3571^(3/31) 2584096042139243 a001 121393/103682*3571^(3/31) 2584096042256335 a001 17711/1860498*9349^(19/31) 2584096042374508 a001 105937/90481*3571^(3/31) 2584096042408833 a001 832040/710647*3571^(3/31) 2584096042413841 a001 726103/620166*3571^(3/31) 2584096042416936 a001 1346269/1149851*3571^(3/31) 2584096042430047 a001 514229/439204*3571^(3/31) 2584096042519910 a001 196418/167761*3571^(3/31) 2584096043135842 a001 75025/64079*3571^(3/31) 2584096043664194 a001 46368/4870847*9349^(19/31) 2584096044534298 a001 28657/3010349*9349^(19/31) 2584096047357504 a001 28657/24476*3571^(3/31) 2584096048220119 a001 10946/1149851*9349^(19/31) 2584096051542973 a001 6765/439204*39603^(15/31) 2584096051725964 a001 28657/15127*15127^(1/31) 2584096053212174 p003 LerchPhi(1/8,4,493/196) 2584096053917206 m001 FeigenbaumAlpha*(FellerTornier+Rabbit) 2584096058658099 r005 Re(z^2+c),c=-35/118+10/39*I,n=18 2584096060833687 a001 75025/39603*15127^(1/31) 2584096061176766 a001 17711/1149851*39603^(15/31) 2584096062162486 a001 98209/51841*15127^(1/31) 2584096062356355 a001 514229/271443*15127^(1/31) 2584096062384640 a001 1346269/710647*15127^(1/31) 2584096062391318 a001 2178309/1149851*15127^(1/31) 2584096062402121 a001 208010/109801*15127^(1/31) 2584096062476173 a001 317811/167761*15127^(1/31) 2584096062582317 a001 46368/3010349*39603^(15/31) 2584096062914123 a001 75025/4870847*39603^(15/31) 2584096062983729 a001 121393/64079*15127^(1/31) 2584096063450996 a001 28657/1860498*39603^(15/31) 2584096065321186 a001 4/53316291173*317811^(9/14) 2584096065324475 a001 4/4052739537881*267914296^(9/14) 2584096066462570 a001 11592/6119*15127^(1/31) 2584096067130777 a001 10946/710647*39603^(15/31) 2584096073483110 a001 4181/439204*9349^(19/31) 2584096075020605 a001 6765/24476*5778^(8/31) 2584096076293206 a001 10946/9349*3571^(3/31) 2584096080981687 a001 17711/64079*5778^(8/31) 2584096081851398 a001 46368/167761*5778^(8/31) 2584096081978287 a001 121393/439204*5778^(8/31) 2584096081996799 a001 317811/1149851*5778^(8/31) 2584096081999500 a001 832040/3010349*5778^(8/31) 2584096082000138 a001 1346269/4870847*5778^(8/31) 2584096082001170 a001 514229/1860498*5778^(8/31) 2584096082008241 a001 196418/710647*5778^(8/31) 2584096082056708 a001 75025/271443*5778^(8/31) 2584096082388908 a001 28657/103682*5778^(8/31) 2584096084665839 a001 10946/39603*5778^(8/31) 2584096090306900 a001 17711/9349*15127^(1/31) 2584096092352373 a001 4181/271443*39603^(15/31) 2584096097420286 m001 Zeta(1/2)*ln(MertensB1)^2/Zeta(7)^2 2584096100272155 a001 4181/15127*5778^(8/31) 2584096100450300 r005 Im(z^2+c),c=-37/102+23/54*I,n=44 2584096100586303 m005 (1/2*exp(1)+1/3)/(3/5*Catalan+6) 2584096112708759 m001 (Zeta(5)-GAMMA(2/3))/(GAMMA(3/4)+gamma(3)) 2584096118397539 r005 Im(z^2+c),c=-107/122+11/47*I,n=21 2584096166437381 l006 ln(4775/6183) 2584096168210737 a001 2584/9349*2207^(9/31) 2584096174574967 m001 (FransenRobinson-OrthogonalArrays)/Landau 2584096182650104 a007 Real Root Of -394*x^4-756*x^3+374*x^2-652*x+341 2584096183227543 m001 (gamma(2)+GAMMA(19/24))/(1+ln(gamma)) 2584096184023685 m004 (4*E^(Sqrt[5]*Pi))/25+25*Pi 2584096185344933 r005 Re(z^2+c),c=4/13+27/55*I,n=23 2584096186447177 m001 (DuboisRaymond+ZetaP(2))/FeigenbaumAlpha 2584096207239436 a001 1597/5778*5778^(8/31) 2584096209068607 a001 6765/24476*2207^(9/31) 2584096211437638 a001 55/5778*29^(50/51) 2584096211467189 m001 3/2*GAMMA(13/24)-exp(1) 2584096214348313 a003 -1-cos(5/21*Pi)+cos(7/15*Pi)-cos(2/21*Pi) 2584096215029690 a001 17711/64079*2207^(9/31) 2584096215899400 a001 46368/167761*2207^(9/31) 2584096216026289 a001 121393/439204*2207^(9/31) 2584096216044802 a001 317811/1149851*2207^(9/31) 2584096216047503 a001 832040/3010349*2207^(9/31) 2584096216048140 a001 1346269/4870847*2207^(9/31) 2584096216049172 a001 514229/1860498*2207^(9/31) 2584096216056243 a001 196418/710647*2207^(9/31) 2584096216104711 a001 75025/271443*2207^(9/31) 2584096216436910 a001 28657/103682*2207^(9/31) 2584096218348876 a007 Real Root Of -195*x^4-864*x^3-757*x^2+390*x-151 2584096218713841 a001 10946/39603*2207^(9/31) 2584096225123317 r005 Im(z^2+c),c=-17/18+9/41*I,n=24 2584096228509445 m001 Pi+exp(Pi)-ln(2^(1/2)+1)+BesselJ(1,1) 2584096232766210 r009 Re(z^3+c),c=-37/118+13/43*I,n=2 2584096232946957 a007 Real Root Of 4*x^4-248*x^3+573*x^2+3*x+267 2584096234320159 a001 4181/15127*2207^(9/31) 2584096237533259 r002 26i'th iterates of 2*x/(1-x^2) of 2584096240378017 m001 (GAMMA(19/24)-Si(Pi))/(ReciprocalLucas+Robbin) 2584096246638232 a001 1597/167761*9349^(19/31) 2584096249206680 a007 Real Root Of -664*x^4-68*x^3-227*x^2+509*x-13 2584096253738381 a001 6765/3571*15127^(1/31) 2584096256969265 a007 Real Root Of 414*x^4+860*x^3-379*x^2+335*x-224 2584096265032334 a001 1597/64079*64079^(13/31) 2584096265223763 a001 1597/103682*39603^(15/31) 2584096268575657 r005 Im(z^2+c),c=19/94+7/40*I,n=20 2584096269572112 m005 (1/2*Catalan-4/5)/(7/10*3^(1/2)+1/9) 2584096273418038 r005 Im(z^2+c),c=-63/94+3/59*I,n=52 2584096274621473 a001 4181/3571*3571^(3/31) 2584096282216818 m001 (Si(Pi)-exp(Pi))/(-ln(2^(1/2)+1)+Niven) 2584096300036303 m001 (Ei(1,1)+ZetaP(4))/(ln(5)-arctan(1/2)) 2584096308074727 r005 Im(z^2+c),c=-89/60+3/53*I,n=4 2584096308622975 m001 (OneNinth+Stephens)/(exp(1)+gamma(1)) 2584096316805468 m001 (ln(2)-Backhouse)/(FellerTornier-Trott2nd) 2584096321068806 m001 1/Magata^2/Kolakoski^2*exp(Riemann1stZero)^2 2584096332498494 l006 ln(191/2531) 2584096332498494 p004 log(2531/191) 2584096336386852 m001 (2^(1/2)+Catalan)/(Zeta(1,2)+Tribonacci) 2584096341287445 a001 1597/5778*2207^(9/31) 2584096347693535 r005 Im(z^2+c),c=-7/18+19/33*I,n=8 2584096353473028 a003 sin(Pi*1/115)*sin(Pi*47/119) 2584096358029313 r005 Im(z^2+c),c=-4/7+33/82*I,n=27 2584096359202032 m005 (1/2*3^(1/2)-5/8)/(11/12*2^(1/2)-4/11) 2584096364883401 r005 Re(z^2+c),c=-13/54+11/40*I,n=2 2584096365095834 m001 (BesselK(0,1)-FeigenbaumD)/(Trott+ZetaP(4)) 2584096373781994 r009 Re(z^3+c),c=-8/31+11/15*I,n=36 2584096374702111 m008 (3*Pi^4+3)/(3*Pi+2) 2584096391604161 m001 Pi+Psi(2,1/3)*LambertW(1)+BesselI(0,2) 2584096402969641 r005 Im(z^2+c),c=-73/106+13/62*I,n=22 2584096425696023 b008 E-Tanh[Sqrt[3]]/7 2584096442684282 m005 (1/2*5^(1/2)-8/9)/(1/6*3^(1/2)-1/5) 2584096444786167 m001 (ln(3)-Kolakoski)/(Lehmer-Weierstrass) 2584096462844537 r009 Re(z^3+c),c=-5/16+11/39*I,n=5 2584096463613873 a001 610/39603*1364^(22/31) 2584096473733773 m002 -2*Pi^4*Cosh[Pi]*Log[Pi]+ProductLog[Pi] 2584096475384270 b008 3+54*CosIntegral[2] 2584096479008254 m001 (Zeta(1,2)+Bloch)/(BesselJ(0,1)+Zeta(5)) 2584096499702955 l006 ln(4853/6284) 2584096504717497 a007 Real Root Of 4*x^4+95*x^3-222*x^2-185*x-861 2584096513272215 m001 (HardyLittlewoodC4+ZetaQ(2))/(5^(1/2)-Chi(1)) 2584096513562810 r005 Re(z^2+c),c=-23/82+17/53*I,n=23 2584096513912274 m001 (GAMMA(7/12)-Niven)/(arctan(1/2)+Ei(1,1)) 2584096516303979 a007 Real Root Of -343*x^4-997*x^3+27*x^2+472*x-870 2584096523534334 r009 Re(z^3+c),c=-15/44+15/47*I,n=6 2584096528160134 m001 (-ln(2^(1/2)+1)+GaussAGM)/(1+cos(1/5*Pi)) 2584096534223400 r009 Re(z^3+c),c=-11/27+17/36*I,n=27 2584096535994584 g007 Psi(2,9/10)-14*Zeta(3)-Psi(2,7/10)-Psi(13/10) 2584096540110358 a007 Real Root Of -654*x^4+895*x^3+27*x^2+912*x-250 2584096541637614 r005 Re(z^2+c),c=-13/40+1/48*I,n=16 2584096548436127 r005 Im(z^2+c),c=19/86+4/25*I,n=23 2584096550318846 m001 (cos(1)+ln(5))/(-HardyLittlewoodC3+Porter) 2584096550714754 m001 GAMMA(11/24)/Paris/ln(log(2+sqrt(3)))^2 2584096563646989 r002 25th iterates of z^2 + 2584096574619756 m001 (ln(2)/ln(10)+MertensB1)/(Porter+Rabbit) 2584096580407599 r002 38th iterates of z^2 + 2584096584604203 a007 Real Root Of 278*x^4-405*x^3-429*x^2-243*x-6 2584096590368826 b008 Pi+Zeta[-1/3,16] 2584096606975826 r009 Im(z^3+c),c=-25/64+6/35*I,n=14 2584096607524427 a007 Real Root Of 325*x^4+403*x^3-953*x^2+779*x+839 2584096621291318 a001 3010349/2*196418^(11/18) 2584096632576256 a001 15127/2*1134903170^(11/18) 2584096641922983 a001 7881196/55*832040^(11/20) 2584096643571038 a001 39603/55*12586269025^(11/20) 2584096655433059 h001 (7/10*exp(2)+7/12)/(5/7*exp(1)+2/7) 2584096657265465 m005 (1/4*exp(1)+3/4)/(1/3*Catalan-1/4) 2584096664686003 a001 28143753123*377^(16/21) 2584096672429344 r005 Im(z^2+c),c=-53/118+11/24*I,n=49 2584096683238317 r005 Im(z^2+c),c=1/18+5/19*I,n=5 2584096685417848 a007 Real Root Of 849*x^4-440*x^3+986*x^2-955*x-324 2584096694569245 p004 log(31723/24499) 2584096701743760 s002 sum(A210088[n]/(64^n),n=1..infinity) 2584096707177121 r005 Im(z^2+c),c=23/106+8/49*I,n=27 2584096751219004 r005 Re(z^2+c),c=6/29+31/59*I,n=26 2584096752660314 a007 Real Root Of 216*x^4+526*x^3+177*x^2+695*x+59 2584096754262921 m009 (32/5*Catalan+4/5*Pi^2-4/5)/(5*Psi(1,1/3)-1/3) 2584096755708043 r005 Im(z^2+c),c=-31/78+24/55*I,n=44 2584096759702131 r009 Re(z^3+c),c=-1/22+17/27*I,n=51 2584096782873886 r005 Im(z^2+c),c=-11/20+28/61*I,n=53 2584096784770245 r005 Im(z^2+c),c=-5/12+27/61*I,n=59 2584096786073808 r002 42th iterates of z^2 + 2584096786395876 r009 Re(z^3+c),c=-8/31+11/15*I,n=43 2584096788948233 m001 Backhouse/(GAMMA(3/4)-Psi(2,1/3)) 2584096790044388 m001 (ln(2^(1/2)+1)+Artin)/(Trott+Weierstrass) 2584096792990596 a007 Real Root Of 356*x^4+915*x^3+186*x^2+752*x+616 2584096803590824 r005 Re(z^2+c),c=-13/42+9/47*I,n=10 2584096807722266 m001 exp(gamma)*Champernowne*sinh(1) 2584096812452611 m005 (4/15+1/6*5^(1/2))/(10/11*gamma-1/2) 2584096822425135 l006 ln(4931/6385) 2584096839541991 r005 Im(z^2+c),c=-23/62+3/7*I,n=52 2584096841702852 r009 Re(z^3+c),c=-8/31+11/15*I,n=50 2584096847572274 r009 Re(z^3+c),c=-8/31+11/15*I,n=57 2584096847815661 r009 Re(z^3+c),c=-8/31+11/15*I,n=64 2584096848186011 m001 Tribonacci*exp(FeigenbaumDelta)^2/cos(Pi/5) 2584096851668145 r005 Im(z^2+c),c=-61/102+1/21*I,n=61 2584096851786546 m001 (2^(1/3)-Chi(1))/(Zeta(5)+Gompertz) 2584096852367767 l006 ln(760/10071) 2584096856981241 m005 (1/2*3^(1/2)-6/11)/(5/7*Catalan-2/3) 2584096860761164 a007 Real Root Of -968*x^4+285*x^3-5*x^2+533*x-138 2584096861816186 m001 (BesselI(1,1)-Kolakoski)/(Totient-ZetaP(2)) 2584096862469129 r005 Re(z^2+c),c=-10/31+5/64*I,n=13 2584096864576210 m005 (5/6*Catalan+1/4)/(-14/3+1/3*5^(1/2)) 2584096865127618 m001 (Kolakoski+Lehmer)/(Psi(2,1/3)+3^(1/3)) 2584096865510398 r002 13th iterates of z^2 + 2584096870853471 r005 Re(z^2+c),c=-33/118+12/37*I,n=18 2584096876441231 r009 Re(z^3+c),c=-25/66+7/17*I,n=35 2584096878382147 r005 Re(z^2+c),c=13/54+23/48*I,n=3 2584096882058688 a007 Real Root Of 37*x^4+992*x^3+909*x^2-494*x-558 2584096894788944 a007 Real Root Of -613*x^4+952*x^3-730*x^2-197*x+17 2584096904989577 a003 sin(Pi*22/87)/cos(Pi*30/73) 2584096906020575 r005 Im(z^2+c),c=-47/110+2/47*I,n=31 2584096908581356 a007 Real Root Of -30*x^4+274*x^3+483*x^2-778*x+830 2584096929277906 m001 ln(MertensB1)*Artin^2*GAMMA(19/24)^2 2584096940403938 a001 610/2207*5778^(8/31) 2584096944635075 r005 Re(z^2+c),c=-21/58+33/64*I,n=11 2584096959326513 r008 a(0)=0,K{-n^6,-6-94*n^3+37*n^2+59*n} 2584096975806336 m001 sin(1)^GAMMA(5/6)-Magata 2584096979240542 m001 (Sarnak-ZetaQ(2))/(GAMMA(17/24)-GAMMA(23/24)) 2584096980074989 r005 Re(z^2+c),c=-11/58+29/52*I,n=60 2584096981149382 a007 Real Root Of 203*x^4+324*x^3-605*x^2-65*x+411 2584096994071765 r005 Im(z^2+c),c=-11/18+3/103*I,n=15 2584096995358535 a001 4/121393*21^(23/34) 2584096997230093 a007 Real Root Of -336*x^4-381*x^3+982*x^2-838*x-315 2584097009855638 m008 (3/5*Pi^4+5)/(1/4*Pi^4+1/5) 2584097011556333 a003 sin(Pi*1/42)-sin(Pi*4/37) 2584097020159167 r009 Re(z^3+c),c=-37/94+23/52*I,n=31 2584097026875670 l006 ln(569/7540) 2584097028116654 a007 Real Root Of 75*x^4+427*x^3+604*x^2-352*x-919 2584097041811305 r005 Re(z^2+c),c=-11/52+23/45*I,n=42 2584097050713703 m006 (Pi^2+1/2)/(3/4*exp(2*Pi)-1/3) 2584097059393299 m001 1/Trott*exp(MertensB1)/arctan(1/2) 2584097069513078 s001 sum(exp(-4*Pi/5)^n*A201301[n],n=1..infinity) 2584097074451985 a001 610/2207*2207^(9/31) 2584097075081108 a001 87403803/610*21^(19/20) 2584097077366089 m001 (5^(1/2)+BesselJ(1,1))/(HardyLittlewoodC5+Kac) 2584097077528793 a007 Real Root Of -252*x^4+546*x^3-479*x^2+799*x+249 2584097082648839 r009 Im(z^3+c),c=-11/82+16/61*I,n=2 2584097089116968 m009 (16*Catalan+2*Pi^2+3)/(3/2*Pi^2-1/3) 2584097091678349 a007 Real Root Of 341*x^4+699*x^3-322*x^2+492*x+278 2584097091998112 m001 (-Backhouse+GaussAGM)/(2^(1/2)-GAMMA(19/24)) 2584097118203742 a005 (1/cos(20/189*Pi))^344 2584097124691019 r009 Re(z^3+c),c=-11/25+13/25*I,n=58 2584097127495198 m008 (2/3*Pi^6-1)/(1/6*Pi-3) 2584097128175160 r002 28th iterates of z^2 + 2584097128916199 a007 Real Root Of -188*x^4+606*x^3-730*x^2-213*x+5 2584097135096464 l006 ln(5009/6486) 2584097138435776 a003 cos(Pi*5/56)*cos(Pi*31/75) 2584097140936925 m001 Zeta(1,-1)^Landau/Backhouse 2584097143018867 m008 (1/6*Pi^5-4/5)/(1/5*Pi^6+2) 2584097154046322 a007 Real Root Of 309*x^4+453*x^3-839*x^2+500*x+933 2584097159879519 m001 HeathBrownMoroz^Salem-sin(1/12*Pi) 2584097167651265 m001 1/(Paris^HardyLittlewoodC5) 2584097174992225 m005 (1/2*5^(1/2)-3/8)/(6/7*exp(1)+6/11) 2584097178856767 p001 sum(1/(233*n+70)/n/(128^n),n=1..infinity) 2584097179530164 r005 Im(z^2+c),c=-1/42+18/41*I,n=3 2584097201431001 m005 (1/2*exp(1)-9/10)/(7/9*Pi-2/3) 2584097202271508 r005 Im(z^2+c),c=-39/74+19/42*I,n=34 2584097221966063 m001 (GAMMA(19/24)-Weierstrass)/(cos(1/5*Pi)+Ei(1)) 2584097237914496 a001 13201/7*13^(7/57) 2584097239363138 r002 8th iterates of z^2 + 2584097240478409 a007 Real Root Of -130*x^4-77*x^3+532*x^2-708*x-914 2584097253689870 a007 Real Root Of -60*x^4+226*x^3+856*x^2-281*x+133 2584097257501205 r005 Re(z^2+c),c=-47/86+34/63*I,n=3 2584097257813026 r009 Im(z^3+c),c=-15/106+1/41*I,n=2 2584097262641222 a007 Real Root Of 168*x^4+249*x^3-483*x^2+62*x+191 2584097263151443 m001 (Kac+Stephens)/(2*Pi/GAMMA(5/6)-Catalan) 2584097263483101 m001 sin(1)/(GAMMA(5/6)+GAMMA(5/12)) 2584097264083210 m009 (2/3*Psi(1,3/4)+1/2)/(1/6*Psi(1,1/3)-5/6) 2584097273719101 m001 (GAMMA(17/24)-Sarnak)/(Sierpinski-ThueMorse) 2584097275428594 m001 (-Trott+Weierstrass)/(5^(1/2)-BesselJ(1,1)) 2584097276061796 a007 Real Root Of 361*x^4+888*x^3+85*x^2+424*x-246 2584097278952111 a007 Real Root Of 188*x^4+442*x^3+199*x^2+503*x-785 2584097279715673 a007 Real Root Of -226*x^4-555*x^3-985*x^2+154*x+97 2584097280255897 r005 Re(z^2+c),c=-13/58+27/56*I,n=43 2584097299115663 a007 Real Root Of -26*x^4+972*x^3+487*x^2+521*x+119 2584097302489397 m001 ln(FeigenbaumB)^2*LaplaceLimit^2*MadelungNaCl 2584097317702700 m001 1/FeigenbaumDelta/ln(Cahen)^2*GAMMA(1/24) 2584097317787274 m001 GAMMA(23/24)*(Zeta(3)+ln(2+3^(1/2))) 2584097317787274 m001 GAMMA(23/24)*(Zeta(3)+ln(2+sqrt(3))) 2584097323203718 a003 cos(Pi*21/113)/cos(Pi*17/43) 2584097350468799 m001 (-Cahen+StronglyCareFree)/(GAMMA(2/3)-sin(1)) 2584097351573624 r005 Im(z^2+c),c=-53/122+25/48*I,n=45 2584097352716761 m003 3/8+(25*Sqrt[5])/32+Tanh[1/2+Sqrt[5]/2]/2 2584097368297260 m005 (-3/20+1/4*5^(1/2))/(8/11*Catalan+11/12) 2584097368824601 r005 Im(z^2+c),c=-69/62+13/42*I,n=13 2584097373915008 a001 646/341*15127^(1/31) 2584097375757947 r005 Im(z^2+c),c=-3/118+10/33*I,n=4 2584097377702165 m009 (1/3*Pi^2+3)/(5/2*Pi^2-1/3) 2584097377738029 l006 ln(378/5009) 2584097380304520 a003 cos(Pi*1/120)/sin(Pi*11/87) 2584097387860228 s002 sum(A168563[n]/(n^3*pi^n+1),n=1..infinity) 2584097392451047 m001 GAMMA(1/6)*(BesselK(0,1)+exp(-Pi)) 2584097405148544 r005 Im(z^2+c),c=-25/54+11/25*I,n=21 2584097421829133 m001 1/exp(DuboisRaymond)^2*Cahen*Lehmer 2584097427673908 m001 (Ei(1,1)+cos(1/12*Pi))/(MertensB2-Stephens) 2584097433461087 a001 610/64079*9349^(19/31) 2584097438179279 l006 ln(5087/6587) 2584097446008276 a007 Real Root Of -114*x^4+97*x^3+498*x^2-994*x+863 2584097446917363 a001 610/3010349*24476^(29/31) 2584097446989122 r009 Im(z^3+c),c=-51/110+3/29*I,n=32 2584097450101895 a001 610/39603*39603^(15/31) 2584097455001841 a001 305/12238*64079^(13/31) 2584097456596874 r005 Im(z^2+c),c=-11/102+21/34*I,n=12 2584097462381209 m001 sin(1/12*Pi)*GaussAGM^ZetaQ(3) 2584097464951858 r005 Im(z^2+c),c=-61/106+19/47*I,n=13 2584097465744448 m001 (Rabbit-Trott2nd)/(GAMMA(19/24)+Porter) 2584097477469292 m001 1/Zeta(1,2)*exp(Backhouse)^2*log(2+sqrt(3)) 2584097481087180 a001 35355581/36*46368^(7/23) 2584097481160448 a001 4870847/144*2971215073^(7/23) 2584097490027675 m001 (Ei(1)-Zeta(1,2))/(Bloch+GolombDickman) 2584097490597798 a007 Real Root Of -542*x^4-917*x^3+934*x^2-530*x+738 2584097498384462 m001 GaussAGM-RenyiParking^Ei(1) 2584097510624200 m005 (1/3*exp(1)+3/7)/(2/7*gamma+5) 2584097516331277 r005 Re(z^2+c),c=-35/34+16/63*I,n=38 2584097517744918 a007 Real Root Of -536*x^4+587*x^3-789*x^2+808*x+274 2584097524842357 r009 Re(z^3+c),c=-13/27+19/37*I,n=39 2584097546950739 m001 (1-Zeta(3))/(-exp(1/exp(1))+LaplaceLimit) 2584097548947762 m001 Kolakoski^AlladiGrinstead+Riemann3rdZero 2584097555364631 r002 8th iterates of z^2 + 2584097563802041 m001 polylog(4,1/2)^(FeigenbaumDelta*TreeGrowth2nd) 2584097565991761 a003 cos(Pi*17/105)-cos(Pi*24/83) 2584097571668756 r002 49th iterates of z^2 + 2584097572969302 m001 HeathBrownMoroz*(GAMMA(5/6)+FeigenbaumB) 2584097578072238 m009 (3/5*Psi(1,1/3)+5)/(5/12*Pi^2+1/6) 2584097589388372 s002 sum(A231743[n]/(n^2*pi^n+1),n=1..infinity) 2584097590146963 a007 Real Root Of -64*x^4-181*x^3-373*x^2-639*x+570 2584097590560825 s002 sum(A231743[n]/(n^2*pi^n-1),n=1..infinity) 2584097593948396 m005 (1/2*Pi-4/7)/(-93/20+7/20*5^(1/2)) 2584097610565313 m001 (1+3^(1/2))^(1/2)+QuadraticClass^BesselI(1,1) 2584097612168218 m001 (-Zeta(1,2)+Robbin)/(sin(1)+Zeta(1/2)) 2584097617168881 m001 Salem/ArtinRank2^2/exp(sqrt(5)) 2584097620227770 a007 Real Root Of -518*x^4+818*x^3+530*x^2+650*x+149 2584097623320118 a003 cos(Pi*2/9)*cos(Pi*41/105) 2584097633984354 a001 1597/1364*3571^(3/31) 2584097636897247 a003 cos(Pi*25/113)-cos(Pi*31/94) 2584097637959377 a007 Real Root Of 38*x^4+967*x^3-421*x^2-871*x+526 2584097643275990 m001 GlaisherKinkelin^GAMMA(5/6)+2^(1/3) 2584097643342229 r005 Re(z^2+c),c=-105/74+3/55*I,n=4 2584097647816353 r005 Re(z^2+c),c=-19/78+18/43*I,n=13 2584097656778525 a007 Real Root Of -898*x^4+372*x^3-778*x^2+223*x+120 2584097675524459 a001 521/6765*144^(41/58) 2584097677491328 m001 (Ei(1)-BesselI(1,2))/(DuboisRaymond-ZetaP(4)) 2584097694425904 r005 Im(z^2+c),c=-1/4+12/31*I,n=14 2584097704027091 a001 34/7*76^(22/57) 2584097708130860 a007 Real Root Of -261*x^4-877*x^3-393*x^2+313*x-62 2584097708938643 m001 (Paris-Rabbit)/(Pi^(1/2)+Lehmer) 2584097713382100 m001 (FeigenbaumB-TreeGrowth2nd)/(ln(Pi)+Artin) 2584097716774803 r008 a(0)=0,K{-n^6,-48+99*n^3-79*n^2+32*n} 2584097722839199 h001 (2/11*exp(1)+1/6)/(9/10*exp(1)+1/9) 2584097731084244 l006 ln(565/7487) 2584097732107986 l006 ln(5165/6688) 2584097742729557 m001 BesselK(0,1)*ln(Si(Pi))/Zeta(9)^2 2584097743811608 r005 Im(z^2+c),c=17/98+32/57*I,n=4 2584097748473915 r005 Re(z^2+c),c=-17/26+12/67*I,n=2 2584097759751584 r005 Im(z^2+c),c=-4/3+1/81*I,n=4 2584097765399020 a007 Real Root Of -962*x^4-106*x^3+491*x^2+961*x-275 2584097773188428 b008 -31+ArcCosh[87] 2584097799664326 m008 (1/3*Pi^2+2)/(2/3*Pi^3-1/5) 2584097808368548 m005 (1/3*3^(1/2)+3/4)/(1/12*5^(1/2)-7/10) 2584097815124742 p003 LerchPhi(1/10,2,42/67) 2584097815253327 r005 Re(z^2+c),c=-17/82+25/48*I,n=48 2584097817250244 a001 2/5*6765^(11/52) 2584097819455083 m001 (1-Psi(1,1/3)*FeigenbaumD)/Psi(1,1/3) 2584097832221813 b008 -1+E^Haversine[1] 2584097833445147 m008 (3/4*Pi^3-1/5)/(3/5*Pi^2+3) 2584097841492553 b008 -1+Sin[1]^Sqrt[3] 2584097841492553 m001 1-sin(1)^(3^(1/2)) 2584097846109192 r005 Re(z^2+c),c=-4/21+27/55*I,n=10 2584097847993062 m009 (5*Psi(1,2/3)-2/3)/(1/8*Pi^2-2/3) 2584097852974995 r009 Im(z^3+c),c=-9/19+7/50*I,n=12 2584097859327217 q001 169/654 2584097859327217 r005 Im(z^2+c),c=-2/3+169/218*I,n=2 2584097865935113 a007 Real Root Of -330*x^4+438*x^3+321*x^2+919*x-265 2584097869071693 p001 sum(1/(353*n+35)/n/(100^n),n=1..infinity) 2584097889696660 r005 Re(z^2+c),c=29/110+7/54*I,n=30 2584097908697055 l006 ln(752/9965) 2584097911559545 h001 (6/11*exp(2)+1/9)/(3/8*exp(1)+7/12) 2584097925564558 m005 (1/2*5^(1/2)-1/8)/(1/9*2^(1/2)-4) 2584097928763149 m001 (-KhinchinHarmonic+MertensB3)/(Shi(1)+cos(1)) 2584097934534265 m001 Ei(1)+HardyLittlewoodC3+ZetaQ(2) 2584097938971576 a007 Real Root Of 465*x^4+964*x^3-833*x^2-540*x+67 2584097940374493 m005 (1/2*gamma+1/11)/(4/9*3^(1/2)-11/12) 2584097940426181 p001 sum((-1)^n/(371*n+15)/n/(100^n),n=1..infinity) 2584097945567066 m001 (Niven+Tetranacci)/(GolombDickman-Kac) 2584097945601851 r005 Im(z^2+c),c=1/20+13/48*I,n=3 2584097946187708 a001 144/2207*18^(10/21) 2584097953515129 r009 Re(z^3+c),c=-37/94+23/44*I,n=18 2584097955466259 r005 Re(z^2+c),c=3/26+37/59*I,n=44 2584097957385698 a007 Real Root Of -602*x^4+136*x^3-585*x^2+940*x+287 2584097972282829 r009 Re(z^3+c),c=-23/54+12/25*I,n=15 2584097982221936 a007 Real Root Of 279*x^4+549*x^3-542*x^2-17*x+608 2584097992319364 a007 Real Root Of 376*x^4+856*x^3-530*x^2-892*x-761 2584097994901722 r005 Re(z^2+c),c=-9/26+4/9*I,n=8 2584097995844997 a001 4/6765*4181^(35/48) 2584098011626119 m005 (4*Pi-1/2)/(2/5*Catalan-5/6) 2584098017291142 l006 ln(5243/6789) 2584098023416330 m001 (Otter*ZetaQ(4)-StolarskyHarborth)/Otter 2584098027194994 a007 Real Root Of -34*x^4-891*x^3-332*x^2-270*x+635 2584098030388972 a007 Real Root Of -552*x^4-241*x^3-575*x^2+125*x+69 2584098038824706 a007 Real Root Of 240*x^4+504*x^3-386*x^2-92*x+335 2584098043304605 m001 1/Kolakoski^2/Cahen^2/ln(GAMMA(5/24)) 2584098044593810 b008 PolyGamma[3,12/5] 2584098052828713 r005 Re(z^2+c),c=-7/24+8/29*I,n=14 2584098071889927 m005 (1/2*gamma-7/9)/(2/5*Pi+7/11) 2584098076323825 r009 Im(z^3+c),c=-25/48+26/53*I,n=18 2584098076627554 s002 sum(A063824[n]/((2*n+1)!),n=1..infinity) 2584098081203509 a005 (1/cos(7/162*Pi))^601 2584098084849337 a007 Real Root Of 311*x^4+568*x^3-185*x^2+957*x-358 2584098086383716 m005 (1/2*2^(1/2)+1/12)/(4*gamma+3/4) 2584098087841666 a001 89/5778*199^(30/31) 2584098106425304 m001 Zeta(5)+(3^(1/2))^Kolakoski 2584098111504156 r005 Im(z^2+c),c=-11/42+11/28*I,n=22 2584098129002566 p004 log(34147/26371) 2584098131085425 b008 17/8+Sech[Sqrt[2]] 2584098132038637 r005 Re(z^2+c),c=-23/102+17/40*I,n=10 2584098136604420 m001 (ln(Pi)+ArtinRank2)/(MadelungNaCl-MertensB2) 2584098137356395 a007 Real Root Of -36*x^4-949*x^3-510*x^2-663*x+320 2584098187168177 v003 sum((2*n^3-12*n^2+41*n-16)/n^n,n=1..infinity) 2584098187466308 a005 (1/sin(53/125*Pi))^113 2584098196529316 a007 Real Root Of -96*x^4+764*x^3+757*x^2+53*x-77 2584098215036650 m001 FellerTornier-arctan(1/3)-Sierpinski 2584098219682910 r005 Re(z^2+c),c=5/42+18/53*I,n=18 2584098226679723 r005 Re(z^2+c),c=-17/114+32/55*I,n=29 2584098227056101 m001 Zeta(1,2)^BesselI(1,1)/(ZetaP(3)^BesselI(1,1)) 2584098237939094 m001 (Trott+Trott2nd)/(Riemann1stZero+Robbin) 2584098238713307 r002 5th iterates of z^2 + 2584098253583158 r002 26th iterates of z^2 + 2584098258738896 a001 7/4250681*2^(13/20) 2584098259448142 m001 Riemann1stZero^gamma(2)+ln(5) 2584098261366833 a001 228826127/1597*21^(19/20) 2584098263898016 a007 Real Root Of 566*x^4-846*x^3-92*x^2-716*x-196 2584098286285542 m001 cos(1/5*Pi)/(Pi-Trott) 2584098294113349 l006 ln(5321/6890) 2584098305685821 m001 (CopelandErdos+Paris)/(gamma(2)+Conway) 2584098327499838 m005 (1/3*5^(1/2)+1/5)/(3/5*5^(1/2)-5) 2584098329732052 m005 (3*2^(1/2)+1/3)/(11/10+3/10*5^(1/2)) 2584098336227844 b008 7/24+ArcCosh[5] 2584098337121655 r005 Im(z^2+c),c=-37/102+23/54*I,n=42 2584098345668081 m006 (1/3*ln(Pi)+2)/(4*exp(Pi)-2/5) 2584098346204970 r005 Im(z^2+c),c=-11/60+33/50*I,n=17 2584098380140185 m005 (1/2*3^(1/2)+9/11)/(1/6*gamma+5/9) 2584098382106004 h001 (3/4*exp(2)+1/12)/(5/9*exp(1)+2/3) 2584098389811141 r005 Im(z^2+c),c=-13/36+20/47*I,n=51 2584098392302726 r005 Re(z^2+c),c=27/122+33/62*I,n=60 2584098407773695 m001 Zeta(1/2)/Niven*ln(sqrt(3))^2 2584098434443679 a001 599074578/4181*21^(19/20) 2584098436106669 m002 -Log[Pi]+Pi^7*Sech[Pi]-Tanh[Pi] 2584098437137955 p001 sum((-1)^(n+1)/(89*n+38)/(16^n),n=0..infinity) 2584098441324381 r002 8th iterates of z^2 + 2584098445334501 l006 ln(187/2478) 2584098445987458 b008 (-3*Pi)/8+Cosh[2] 2584098456871425 a007 Real Root Of 128*x^4-32*x^3-974*x^2+193*x+743 2584098459695253 a001 1568397607/10946*21^(19/20) 2584098463379408 a001 4106118243/28657*21^(19/20) 2584098463916919 a001 10749957122/75025*21^(19/20) 2584098463995340 a001 28143753123/196418*21^(19/20) 2584098464006782 a001 73681302247/514229*21^(19/20) 2584098464008451 a001 192900153618/1346269*21^(19/20) 2584098464008695 a001 505019158607/3524578*21^(19/20) 2584098464008730 a001 1322157322203/9227465*21^(19/20) 2584098464008735 a001 3461452808002/24157817*21^(19/20) 2584098464008736 a001 9062201101803/63245986*21^(19/20) 2584098464008736 a001 23725150497407/165580141*21^(19/20) 2584098464008736 a001 14662949395604/102334155*21^(19/20) 2584098464008737 a001 5600748293801/39088169*21^(19/20) 2584098464008739 a001 2139295485799/14930352*21^(19/20) 2584098464008752 a001 817138163596/5702887*21^(19/20) 2584098464008845 a001 312119004989/2178309*21^(19/20) 2584098464009483 a001 119218851371/832040*21^(19/20) 2584098464013853 a001 45537549124/317811*21^(19/20) 2584098464043808 a001 17393796001/121393*21^(19/20) 2584098464249119 a001 6643838879/46368*21^(19/20) 2584098465656341 a001 2537720636/17711*21^(19/20) 2584098467967923 a003 cos(Pi*2/99)/sin(Pi*13/103) 2584098470498039 p001 sum((-1)^n/(349*n+335)/(3^n),n=0..infinity) 2584098475301584 a001 969323029/6765*21^(19/20) 2584098482226916 a001 34/312119004989*3571^(19/20) 2584098489055072 r005 Im(z^2+c),c=-7/16+27/59*I,n=30 2584098492323739 a007 Real Root Of 334*x^4+587*x^3-876*x^2-761*x-881 2584098500184805 r005 Re(z^2+c),c=-9/31+17/60*I,n=20 2584098501113705 b008 -1/10*E^(-1+E)+Pi 2584098501447344 m001 (exp(1/Pi)+Backhouse*GAMMA(13/24))/Backhouse 2584098501447344 m001 (exp(1/Pi)+GAMMA(13/24)*Backhouse)/Backhouse 2584098501988159 r005 Im(z^2+c),c=-1/52+39/61*I,n=64 2584098506943778 m001 (FeigenbaumB-Si(Pi))/(-FeigenbaumDelta+Sarnak) 2584098510077634 r005 Re(z^2+c),c=-11/18+17/118*I,n=2 2584098510439736 r005 Im(z^2+c),c=-11/8+36/217*I,n=5 2584098516522425 m001 (Ei(1)+Cahen)/(ErdosBorwein-GolombDickman) 2584098535131405 a007 Real Root Of 30*x^4+800*x^3+673*x^2+848*x-61 2584098537495565 m007 (-1/2*gamma-3)/(-3/4*gamma-3/2*ln(2)+1/5) 2584098539943981 a007 Real Root Of -682*x^4+561*x^3-909*x^2+931*x+314 2584098541411064 a001 370248451/2584*21^(19/20) 2584098548295798 a001 233/9349*521^(23/31) 2584098562936981 l006 ln(5399/6991) 2584098562936981 p004 log(6991/5399) 2584098574586263 a007 Real Root Of -338*x^4-853*x^3+264*x^2+451*x-245 2584098578655151 r005 Re(z^2+c),c=-17/18+20/121*I,n=58 2584098589408482 p004 log(37117/2801) 2584098596070950 m001 (Bloch+Trott)/(BesselI(0,1)+BesselK(1,1)) 2584098602575651 b008 7*(5+Erfi[Pi]) 2584098611244695 r005 Re(z^2+c),c=-39/34+29/121*I,n=18 2584098614218626 r005 Im(z^2+c),c=-23/106+43/58*I,n=36 2584098617027651 r005 Im(z^2+c),c=-31/122+25/64*I,n=24 2584098619018228 m001 (QuadraticClass-gamma)/(-Robbin+Tribonacci) 2584098626190457 r009 Im(z^3+c),c=-13/25+7/46*I,n=32 2584098629548351 a007 Real Root Of -396*x^4+395*x^3-844*x^2+453*x+182 2584098649606454 a001 34/312119004989*9349^(17/20) 2584098652852498 a007 Real Root Of 5*x^4+131*x^3+18*x^2-716*x+453 2584098666451157 r009 Re(z^3+c),c=-43/110+24/55*I,n=45 2584098674089732 a001 17/299537289*24476^(3/20) 2584098674705288 a001 34/228826127*64079^(1/20) 2584098674730727 a001 17/22768774562*439204^(9/20) 2584098674736071 a001 34/17393796001*1149851^(7/20) 2584098674736570 a001 34/2139295485799*3010349^(13/20) 2584098674736732 a001 17/408569081798*7881196^(11/20) 2584098674736755 a001 17/299537289*14662949395604^(1/20) 2584098674736755 a001 17/1268860318*370248451^(3/20) 2584098674736755 a001 17/1730726404001*6643838879^(9/20) 2584098674736755 a001 17/5374978561*5600748293801^(3/20) 2584098674736755 a001 34/505019158607*17393796001^(7/20) 2584098674736755 a001 34/370248451*969323029^(1/20) 2584098697022451 r009 Re(z^3+c),c=-47/114+11/25*I,n=5 2584098712283405 m001 Ei(1)/exp(GlaisherKinkelin)^2*sqrt(Pi) 2584098716693668 a001 47/34*196418^(46/57) 2584098718939972 m001 (Magata+Trott)/(gamma(1)+HardHexagonsEntropy) 2584098727483659 b008 45*Zeta[Sin[1]] 2584098729515704 a003 sin(Pi*27/83)-sin(Pi*27/79) 2584098735235530 a007 Real Root Of 528*x^4+915*x^3-945*x^2+290*x-695 2584098745764661 a007 Real Root Of -526*x^4+39*x^3+466*x^2+878*x-23 2584098751676339 m001 LambertW(1)*(StolarskyHarborth-ZetaP(4)) 2584098755722744 r005 Re(z^2+c),c=-5/31+15/31*I,n=8 2584098759137977 r005 Re(z^2+c),c=-13/58+31/64*I,n=31 2584098760692175 a005 (1/cos(29/228*Pi))^208 2584098765432098 s002 sum(A270809[n]/(16^n),n=1..infinity) 2584098773032113 a007 Real Root Of 524*x^4+712*x^3-222*x^2-630*x+163 2584098782052071 m009 (1/3*Psi(1,2/3)-4)/(1/3*Psi(1,3/4)-2) 2584098783988191 r005 Im(z^2+c),c=19/50+18/61*I,n=17 2584098786989634 b008 AiryAi[7/2] 2584098788097002 m001 1/GAMMA(1/24)^2*ln(TwinPrimes)/cos(1)^2 2584098800707428 m001 Paris^(PrimesInBinary/Rabbit) 2584098803666692 m001 Otter^LandauRamanujan*GAMMA(5/6) 2584098808990780 a001 75025/123*7^(23/31) 2584098809685410 m001 Weierstrass/(Tribonacci-HeathBrownMoroz) 2584098812305296 r004 Re(z^2+c),c=-7/24+5/18*I,z(0)=-1,n=26 2584098815955517 a001 987/167761*843^(28/31) 2584098824103771 l006 ln(5477/7092) 2584098829426298 m005 (1/2*exp(1)+7/8)/(55/18+5/2*5^(1/2)) 2584098835434580 a007 Real Root Of -338*x^4-723*x^3-16*x^2-987*x+152 2584098842412918 a001 2/987*4052739537881^(13/18) 2584098853592640 r009 Im(z^3+c),c=-15/32+5/54*I,n=48 2584098857903944 a007 Real Root Of -163*x^4-322*x^3+135*x^2-540*x-585 2584098860986752 r005 Re(z^2+c),c=-13/60+17/24*I,n=22 2584098863958858 r005 Re(z^2+c),c=-12/31+8/55*I,n=2 2584098864792409 r005 Re(z^2+c),c=-3/40+16/27*I,n=18 2584098872324483 h001 (3/7*exp(2)+7/11)/(1/11*exp(2)+4/5) 2584098882067995 m001 ln(Ei(1))/LaplaceLimit*GAMMA(1/3) 2584098909632070 p001 sum((-1)^n/(364*n+363)/n/(5^n),n=1..infinity) 2584098929342805 r009 Re(z^3+c),c=-9/31+5/23*I,n=10 2584098931982856 a001 121393/843*123^(3/5) 2584098932370628 r005 Im(z^2+c),c=-31/46+17/63*I,n=36 2584098936531779 r008 a(0)=0,K{-n^6,43-8*n+36*n^2-33*n^3} 2584098938194266 r005 Re(z^2+c),c=-27/122+35/54*I,n=45 2584098952121577 m001 (Pi+ln(2)/ln(10))/exp(1/Pi)/gamma(2) 2584098959927534 r005 Re(z^2+c),c=-19/60+7/50*I,n=23 2584098960216173 a007 Real Root Of 290*x^4+286*x^3-847*x^2+786*x-309 2584098964917424 m001 ln(5)/(Gompertz^Catalan) 2584098967726738 a007 Real Root Of -461*x^4-914*x^3+740*x^2-250*x-803 2584098970734147 m001 Bloch^Zeta(1,-1)/(Bloch^ln(3)) 2584098972355153 v002 sum(1/(2^n*(16*n^2-13*n-1)),n=1..infinity) 2584098978511870 m001 (ln(gamma)+GAMMA(17/24))/(FeigenbaumMu-Sarnak) 2584098979018705 r002 3th iterates of z^2 + 2584098987741949 l006 ln(744/9859) 2584098989320601 m001 MasserGramain/(FeigenbaumAlpha-gamma(3)) 2584098994532276 a001 141422324/987*21^(19/20) 2584098997823630 r009 Im(z^3+c),c=-15/56+7/30*I,n=8 2584099016362195 r005 Re(z^2+c),c=-25/122+13/25*I,n=33 2584099027684083 m001 Riemann1stZero^(2^(1/3))-UniversalParabolic 2584099027915615 r005 Im(z^2+c),c=-35/52+2/37*I,n=46 2584099032717774 h001 (10/11*exp(2)+1/2)/(3/11*exp(2)+7/9) 2584099037090049 a007 Real Root Of 54*x^4-916*x^3+714*x^2-984*x-318 2584099039442621 s002 sum(A286170[n]/((exp(n)+1)/n),n=1..infinity) 2584099040222072 a008 Real Root of (16+12*x+10*x^2+3*x^3) 2584099052995681 a007 Real Root Of 229*x^4+287*x^3-872*x^2-209*x+24 2584099056654397 a007 Real Root Of 764*x^4+345*x^3-x^2-929*x-24 2584099065082800 m001 5^(1/2)*FeigenbaumKappa^PlouffeB 2584099065431256 a001 19/11592*1346269^(1/31) 2584099077936258 l006 ln(5555/7193) 2584099079389921 a001 281/6*(1/2*5^(1/2)+1/2)^14*18^(13/20) 2584099082598855 r005 Im(z^2+c),c=-17/13+1/40*I,n=5 2584099082710776 m001 GAMMA(3/4)^2*LandauRamanujan^2*exp(cos(1))^2 2584099088468632 m001 (-Porter+ZetaP(4))/(Psi(2,1/3)+ln(2+3^(1/2))) 2584099093412224 r005 Im(z^2+c),c=-143/106+1/53*I,n=52 2584099095248103 m001 (cos(1/5*Pi)+ln(5))/(Zeta(1,2)+ZetaQ(4)) 2584099100278787 m005 (1/2*5^(1/2)-6/11)/(99/80+7/16*5^(1/2)) 2584099101401799 a007 Real Root Of 838*x^4-704*x^3-356*x^2-870*x+257 2584099104741804 m001 (Mills-Tribonacci)/(Zeta(1/2)-BesselK(1,1)) 2584099105199544 a007 Real Root Of 5*x^4-369*x^3-950*x^2+268*x+446 2584099106112569 a007 Real Root Of -133*x^4-202*x^3-115*x^2-895*x+900 2584099122292106 r005 Re(z^2+c),c=-19/60+7/50*I,n=25 2584099126509944 m001 1/exp(BesselK(1,1))/Riemann2ndZero/Zeta(7) 2584099130072357 r009 Re(z^3+c),c=-3/110+17/27*I,n=7 2584099136302144 m001 (GAMMA(7/12)+MertensB1)/(2^(1/3)-LambertW(1)) 2584099164074073 a007 Real Root Of -882*x^4+690*x^3-10*x^2+796*x-213 2584099165042206 p001 sum(1/(97*n+25)/n/(32^n),n=0..infinity) 2584099169842768 l006 ln(557/7381) 2584099179679217 m005 (4*gamma-1/6)/(1/4*Catalan+3/5) 2584099184443981 m001 (gamma(3)+ThueMorse)/(LambertW(1)+Zeta(5)) 2584099199654222 m001 MinimumGamma+Salem-ZetaQ(2) 2584099202299929 r005 Re(z^2+c),c=13/44+16/29*I,n=40 2584099211352091 m005 (1/2*exp(1)-1/8)/(5/6*Catalan-2/7) 2584099223449795 a001 3571/8*8^(38/45) 2584099226886624 a007 Real Root Of -974*x^4-291*x^3-762*x^2+808*x+259 2584099228024303 a007 Real Root Of -3*x^4-779*x^3-975*x^2-193*x-810 2584099237817276 r005 Im(z^2+c),c=-17/52+23/31*I,n=5 2584099248498124 m001 (Chi(1)+GAMMA(2/3))/(-Trott+Thue) 2584099249994682 m001 1/exp(GAMMA(5/6))^2*Khintchine^2/cos(1)^2 2584099261647267 a001 64079/5*55^(7/40) 2584099266586969 r005 Im(z^2+c),c=41/114+2/21*I,n=35 2584099268666795 h001 (1/11*exp(1)+3/4)/(5/11*exp(2)+1/2) 2584099268998356 a001 34/5779*843^(28/31) 2584099272917479 r001 60i'th iterates of 2*x^2-1 of 2584099274739813 a007 Real Root Of 149*x^4+101*x^3-707*x^2+286*x+559 2584099275408618 m001 (Conway-FeigenbaumDelta)/(Lehmer+Rabbit) 2584099290178219 a007 Real Root Of 31*x^4+780*x^3-540*x^2+106*x-259 2584099294906943 m001 1/Tribonacci^2*ln(FeigenbaumC)*Zeta(3)^2 2584099302149324 m001 (exp(1)+ln(5))/(-Zeta(1,-1)+gamma(3)) 2584099303619249 r002 3th iterates of z^2 + 2584099313432244 a007 Real Root Of 369*x^4+683*x^3+342*x^2-690*x-191 2584099317965088 m001 ((1+3^(1/2))^(1/2)-PlouffeB)/(Pi+2^(1/2)) 2584099319841790 a007 Real Root Of 100*x^4+84*x^3-495*x^2-260*x-376 2584099324739115 l006 ln(5633/7294) 2584099329331391 b008 Pi*ExpIntegralEi[-2*Sqrt[2/3]] 2584099332323141 m001 ln(FeigenbaumB)/ErdosBorwein/Riemann2ndZero^2 2584099333064922 m005 (1/2*Zeta(3)+2/3)/(3/10*gamma-2/9) 2584099335096415 a001 6765/1149851*843^(28/31) 2584099338527577 a007 Real Root Of 860*x^4-95*x^3+703*x^2-753*x-247 2584099344739992 a001 17711/3010349*843^(28/31) 2584099346405228 s002 sum(A179159[n]/(2^n+1),n=1..infinity) 2584099347016531 a001 28657/4870847*843^(28/31) 2584099350700050 a001 5473/930249*843^(28/31) 2584099359266365 a007 Real Root Of 345*x^4+626*x^3-223*x^2+850*x-896 2584099373974159 r005 Im(z^2+c),c=-5/16+25/61*I,n=32 2584099374107239 a007 Real Root Of 371*x^4+765*x^3+602*x^2-725*x-216 2584099375947262 a001 4181/710647*843^(28/31) 2584099381656977 a007 Real Root Of 16*x^4+395*x^3-477*x^2-5*x-75 2584099385060306 r005 Re(z^2+c),c=-19/60+7/50*I,n=27 2584099393493851 r002 3th iterates of z^2 + 2584099406082831 a007 Real Root Of 14*x^4-265*x^3+403*x^2+290*x+508 2584099417956065 m005 (1/4*Catalan-2/5)/(4/5*gamma+1/5) 2584099428676014 r005 Re(z^2+c),c=25/114+29/55*I,n=24 2584099431585567 a007 Real Root Of -10*x^4+454*x^3+823*x^2-990*x+226 2584099435172629 a001 12752043*9227465^(16/21) 2584099454070008 m009 (2/3*Psi(1,2/3)+6)/(5/12*Pi^2-1) 2584099457417901 a001 6765/76*76^(7/9) 2584099457986800 r009 Re(z^3+c),c=-1/7+23/31*I,n=7 2584099460252532 m001 sin(1/12*Pi)*(ln(2)/ln(10))^HeathBrownMoroz 2584099463670532 r001 48i'th iterates of 2*x^2-1 of 2584099471300700 m005 (1/2*Catalan-6)/(1/4*2^(1/2)-3/8) 2584099478137413 p002 log(5^(5/3)-3^(2/7)) 2584099479217350 m001 (Pi+Zeta(5))/(3^(1/3)+ZetaP(3)) 2584099490682562 a001 196418/199*123^(1/5) 2584099492666354 h001 (1/11*exp(1)+5/8)/(4/9*exp(2)+1/11) 2584099492796510 r005 Re(z^2+c),c=-19/60+7/50*I,n=29 2584099493593298 r009 Im(z^3+c),c=-37/94+10/59*I,n=16 2584099505285261 r005 Im(z^2+c),c=-9/10+47/228*I,n=7 2584099512574963 a001 5778*225851433717^(16/21) 2584099512576832 m001 (GAMMA(2/3)-GaussAGM)/(Landau+Porter) 2584099512863646 r005 Re(z^2+c),c=17/78+4/51*I,n=16 2584099517194603 r005 Re(z^2+c),c=-19/60+7/50*I,n=32 2584099517638873 r005 Re(z^2+c),c=-19/60+7/50*I,n=34 2584099517739795 r005 Im(z^2+c),c=-39/40+11/54*I,n=4 2584099518764171 r005 Re(z^2+c),c=-19/60+7/50*I,n=36 2584099519172019 r005 Re(z^2+c),c=-19/60+7/50*I,n=31 2584099519248321 r005 Re(z^2+c),c=-19/60+7/50*I,n=38 2584099519367568 r005 Re(z^2+c),c=-19/60+7/50*I,n=41 2584099519368263 r005 Re(z^2+c),c=-19/60+7/50*I,n=43 2584099519371887 r005 Re(z^2+c),c=-19/60+7/50*I,n=40 2584099519373053 r005 Re(z^2+c),c=-19/60+7/50*I,n=45 2584099519375222 r005 Re(z^2+c),c=-19/60+7/50*I,n=47 2584099519375798 r005 Re(z^2+c),c=-19/60+7/50*I,n=52 2584099519375799 r005 Re(z^2+c),c=-19/60+7/50*I,n=49 2584099519375800 r005 Re(z^2+c),c=-19/60+7/50*I,n=50 2584099519375818 r005 Re(z^2+c),c=-19/60+7/50*I,n=54 2584099519375827 r005 Re(z^2+c),c=-19/60+7/50*I,n=56 2584099519375830 r005 Re(z^2+c),c=-19/60+7/50*I,n=58 2584099519375830 r005 Re(z^2+c),c=-19/60+7/50*I,n=61 2584099519375830 r005 Re(z^2+c),c=-19/60+7/50*I,n=59 2584099519375830 r005 Re(z^2+c),c=-19/60+7/50*I,n=63 2584099519375830 r005 Re(z^2+c),c=-19/60+7/50*I,n=64 2584099519375830 r005 Re(z^2+c),c=-19/60+7/50*I,n=62 2584099519375831 r005 Re(z^2+c),c=-19/60+7/50*I,n=60 2584099519375831 r005 Re(z^2+c),c=-19/60+7/50*I,n=57 2584099519375837 r005 Re(z^2+c),c=-19/60+7/50*I,n=55 2584099519375852 r005 Re(z^2+c),c=-19/60+7/50*I,n=53 2584099519375871 r005 Re(z^2+c),c=-19/60+7/50*I,n=51 2584099519376038 r005 Re(z^2+c),c=-19/60+7/50*I,n=48 2584099519377228 r005 Re(z^2+c),c=-19/60+7/50*I,n=46 2584099519380722 r005 Re(z^2+c),c=-19/60+7/50*I,n=44 2584099519385559 r005 Re(z^2+c),c=-19/60+7/50*I,n=42 2584099519416798 r005 Re(z^2+c),c=-19/60+7/50*I,n=39 2584099519677413 r005 Re(z^2+c),c=-19/60+7/50*I,n=37 2584099520473692 r005 Re(z^2+c),c=-19/60+7/50*I,n=35 2584099520706708 m001 Khinchin+MasserGramain-RenyiParking 2584099521691818 r005 Re(z^2+c),c=-19/60+7/50*I,n=33 2584099526351912 r002 4th iterates of z^2 + 2584099527317609 r005 Re(z^2+c),c=-19/60+7/50*I,n=30 2584099530685651 m001 (2^(1/2)-Zeta(3))/(MasserGramain+ZetaP(3)) 2584099536012963 l006 ln(370/4903) 2584099548994228 a001 1597/271443*843^(28/31) 2584099550913110 a007 Real Root Of 436*x^4+929*x^3-813*x^2-779*x+5 2584099564800372 l006 ln(5711/7395) 2584099565627608 m001 FeigenbaumC*ln(5)^Sarnak 2584099576797257 s002 sum(A107769[n]/(n^3*exp(n)-1),n=1..infinity) 2584099584226567 r005 Re(z^2+c),c=-19/60+7/50*I,n=28 2584099587297284 b008 1/5-9*ArcSinh[9] 2584099597406540 m001 cos(1/5*Pi)/polylog(4,1/2)*(1+3^(1/2))^(1/2) 2584099597406540 m001 cos(Pi/5)/polylog(4,1/2)*sqrt(1+sqrt(3)) 2584099599884393 p001 sum((-1)^n/(581*n+381)/(25^n),n=0..infinity) 2584099602505021 r002 47th iterates of z^2 + 2584099604003263 a001 3571/5*86267571272^(18/23) 2584099607352186 p001 sum(1/(397*n+39)/(12^n),n=0..infinity) 2584099608593616 m004 25*Pi+(51*Sqrt[5]*Pi)/2+Cos[Sqrt[5]*Pi] 2584099614469423 r002 22th iterates of z^2 + 2584099616522724 a007 Real Root Of -222*x^4-769*x^3-264*x^2+941*x+824 2584099622522316 m001 Ei(1)^FellerTornier/PlouffeB 2584099622628548 r005 Re(z^2+c),c=-19/60+7/50*I,n=22 2584099623025312 r009 Im(z^3+c),c=-41/114+9/47*I,n=9 2584099642593079 a007 Real Root Of -386*x^4-749*x^3+665*x^2-15*x-192 2584099658656828 p004 log(22037/1663) 2584099659919952 r005 Im(z^2+c),c=-13/19+13/47*I,n=45 2584099684409025 m001 (HardyLittlewoodC5+Paris)/(Pi-GAMMA(19/24)) 2584099686460725 a007 Real Root Of -130*x^4-93*x^3+322*x^2-984*x-501 2584099686526592 a007 Real Root Of -22*x^4+334*x^3+900*x^2-333*x-126 2584099695130539 m001 (2^(1/3))*ln(DuboisRaymond)^2*BesselJ(0,1) 2584099696833621 a001 3/29*521^(6/41) 2584099698394991 s002 sum(A093278[n]/((exp(n)-1)/n),n=1..infinity) 2584099709649655 a001 123/2584*233^(9/29) 2584099716642624 r009 Im(z^3+c),c=-43/94+23/42*I,n=9 2584099718498316 a001 124/9303105*17711^(7/13) 2584099719385488 a001 341/21566892818*4807526976^(7/13) 2584099719385488 a001 1364/2504730781961*2504730781961^(7/13) 2584099719385491 a001 1364/2971215073*9227465^(7/13) 2584099726323146 m001 cos(1)/((ln(2)/ln(10))^Conway) 2584099731293969 m001 ((1+3^(1/2))^(1/2)+ArtinRank2)/(1-Psi(1,1/3)) 2584099739474080 a003 cos(Pi*8/95)/cos(Pi*45/119) 2584099743544979 m001 exp(1)/(Riemann2ndZero^GAMMA(7/12)) 2584099744397894 m001 ln(Lehmer)^2*GaussKuzminWirsing/LambertW(1)^2 2584099746712085 m005 (1/2*2^(1/2)-4/9)/(3/8*gamma+4/5) 2584099752179044 p004 log(37379/28867) 2584099752688968 a007 Real Root Of -211*x^4-366*x^3+241*x^2-222*x+910 2584099754749496 a007 Real Root Of 523*x^4-571*x^3+89*x^2-942*x+245 2584099755305897 a007 Real Root Of 151*x^4-55*x^3-959*x^2+343*x-392 2584099765021074 r005 Re(z^2+c),c=-19/60+7/50*I,n=26 2584099766176520 a007 Real Root Of -362*x^4-716*x^3+331*x^2-884*x-708 2584099770709142 m001 gamma/GAMMA(3/4)/MasserGramainDelta 2584099775230302 a007 Real Root Of -296*x^4-521*x^3+393*x^2-942*x-850 2584099779744261 r009 Re(z^3+c),c=-3/19+59/64*I,n=60 2584099789355146 r002 6th iterates of z^2 + 2584099790703782 r005 Re(z^2+c),c=5/114+22/39*I,n=3 2584099791818544 a003 cos(Pi*9/59)*cos(Pi*41/101) 2584099791835829 r005 Im(z^2+c),c=-45/94+19/42*I,n=57 2584099798392534 l006 ln(5789/7496) 2584099802662603 r005 Im(z^2+c),c=-10/29+21/50*I,n=32 2584099806645504 a001 20633239/5*1346269^(18/23) 2584099806689295 m005 (1/3*3^(1/2)-3/7)/(1/7*2^(1/2)-7/9) 2584099813995159 m001 (Kac+Paris)/(5^(1/2)+LambertW(1)) 2584099825224848 m001 (Psi(2,1/3)+gamma(1))/(Conway+FeigenbaumB) 2584099828499149 r005 Im(z^2+c),c=-1/110+3/10*I,n=4 2584099841139289 a007 Real Root Of -210*x^4-452*x^3+106*x^2-429*x-252 2584099846051827 a001 123/75025*34^(4/31) 2584099847324129 r005 Im(z^2+c),c=23/106+8/49*I,n=26 2584099858112083 a001 1/21*1597^(35/41) 2584099861474033 m001 (-Cahen+Magata)/(Catalan-cos(1/5*Pi)) 2584099862930022 r005 Im(z^2+c),c=-5/8+67/157*I,n=13 2584099869765295 s002 sum(A152819[n]/(n^3*2^n-1),n=1..infinity) 2584099891983772 r005 Re(z^2+c),c=-27/94+18/61*I,n=17 2584099896510239 a007 Real Root Of -429*x^4-892*x^3+457*x^2+71*x+869 2584099898614197 a007 Real Root Of 212*x^4-716*x^3+184*x^2-822*x-238 2584099902637296 m001 (-cos(1/5*Pi)+Tetranacci)/(1-LambertW(1)) 2584099904831631 l006 ln(553/7328) 2584099909984599 m001 (-Cahen+1/3)/(GAMMA(1/12)+1/2) 2584099910512503 r005 Re(z^2+c),c=11/52+3/44*I,n=17 2584099917844571 m005 (1/2*3^(1/2)+7/8)/(8/9*2^(1/2)-7/12) 2584099924204078 p001 sum((-1)^n/(119*n+32)/n/(256^n),n=0..infinity) 2584099956264270 m008 (2/5*Pi^5+5)/(1/2*Pi^4+3/5) 2584099960951820 a007 Real Root Of -275*x^4-397*x^3+412*x^2-840*x+490 2584099963558900 m001 GAMMA(7/12)*Cahen*exp(cos(Pi/12)) 2584099967114389 r005 Re(z^2+c),c=-37/70+18/41*I,n=10 2584099981562006 r005 Re(z^2+c),c=-4/13+10/49*I,n=10 2584099982369934 a007 Real Root Of 507*x^4-503*x^3+715*x^2-632*x-222 2584099998799233 a007 Real Root Of 363*x^4+957*x^3+67*x^2+149*x+265 2584099999219247 r005 Re(z^2+c),c=-35/118+10/39*I,n=27 2584099999574289 m001 (FransenRobinson+GaussAGM)/(Pi-3^(1/2))